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Abstract
New methods for high-resolution regional geoid and quasi-geoid determi-
nation based on ellipsoidal approximation in geometry and gravity space
are developed and tested.

Deterministic collocation of linearized observational functionals of type (i)
gravity potential and (ii) gravity intensity at GPS positioned stations is
used to compute a high resolution regional Gauss-Listing Geoid as well as
Molodensky Quasi-Geoid. The Gauss-Listing Geoid is solved via fixed-
free two-boundary value problem of Physical Geodesy. The solution tech-
nique produces a harmonic incremental potential field by means of re-
move-restore methodology for the centrifugal potential, for the topographic
masses (terrain effect), and for the higher order (degree/order 360/360) el-
lipsoidal harmonic expansion. The incremental (or reduced) observational
functionals of type (i) and (ii) are downward continued by means of a Tik-
honov-Phillips regularised inversion of the ellipsoidal Abel-Poisson inte-
gral. The downward continued incremental potential data on the surface of
the International Reference Ellipsoid 2

,a b�  � the World Geodetic Datum
2000 � are converted into geoidal undulations by means of the nonlinear,
ellipsoidal Bruns transform (Bruns formula). The innovative method is
tested numerically by presenting a high resolution regional geoid for the
State of Baden-Württemberg /Germany/ and is compared to European
Gravimetric Quasi-Geoid 97 (EGG97). The advantages of the new meth-
odology for high resolution geoid computation are as follows: (i) a higher
order ellipsoidal reference potential field with respect to the World Geo-
detic Datum 2000 is implemented avoiding any datum bias with respect to
the traditional spherical approach, (ii) in contrast to the Stokes boundary
value problem incremental potential data (gravimetric levelling) as well as
incremental gravity data (National Gravity Survey) given on the (GPS)
topographic surface of the Earth are directly converted via regularised
downward continuation to the incremental potential on the International
Reference Ellipsoid 2

,a b� .

The problem of global geoid computation is presented as an application of
the soft Implicit Function Theorem: Given the level datum of the geoid

0 0( , , )W U u� ��  with respect to (i) a reference gravitational potential
( , , )U u� �  at level datum 0U  and (ii) spheroidal / ellipsoidal coordinates of

type {longitude � , latitude � , �height u �}, we solve for 0( , , )u u W� ��
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as a representative of the shape of the geoid with respect to the reference
ellipsoid / World Geodetic Datum 2000. The analysis is based on a set of
coefficients (�spheroidal moments�) of a spheroidal / ellipsoidal harmonic
expansion of the terrestrial gravity potential up to degree/order 360/360.
Wavelength signatures of the order of 50-60 km are resolved, sufficient for
a global geoid representation. A numerical evaluation of the spheroidal
geoid computation based upon the spheroidal Bruns formula, namely for
23 benchmarks of the Baltic Level Project, has documented a level of ac-
curacy of the order of 0.18cm� .

Minimum-distance mapping is applied to determine a potential type Molo-
densky telluroid and Quasi-Geoid. With respect to a reference potential
field of Somigliana-Pizzetti type which relates to the World Geodetic Da-
tum 2000 it is shown that a point-wise minimum distance mapping of the
topographical surface of the Earth onto the telluroid surface, constrained to
the gauge ( ) ( )W P u p� , leads to a system of four nonlinear normal equa-
tions. Those normal equations are solved by a fast Newton-Raphson itera-
tion. The method is tested numerically by presenting the quasi-geoid for
the East Germany and the State of Baden-Württemberg /Germany/ which
are compared to European Gravimetric Quasi-Geoid 97 (EGG97).
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0 Introduction
Geoid as a particular level surface (equipotential surface) of the gravity
field of the earth, which fits to the surface of the oceans in an optimum
way, has been the centre of interest in geodesy for decades. C. Gauss was
first who introduced the aforementioned definition in 1828 as the mathe-
matical surface of the earth. In his famous historical publication (C.
Gauss, 1828 p. 49) he writes:

“What we call in the geometric sense the surface of the earth is nothing
else but that surface which intersects the direction of gravity at right
angles and from which the surface of the world’s ocean is a part.”

J. Listing in 1872 introduced the term geoid to the mathematical surface of
the earth in C. Gauss’s terminology. He wrote (J. Listing 1873 p.45):

“We shall call the previously defined mathematical surface of the
earth, of which the ocean surface is a part, geoidal surface of the earth
or the geoid”

Here we remain faithful to the definition of geoid according to C. Gauss
and J. Listing. Let us explain the term �optimum fit to the oceans surface�
in the definition of geoid. In practice by the �optimum fit to the oceans sur-
face� we mean that the average separation between geoid and mean oceans
surface is zero.

If 0w  be the actual gravity potential at the geoid�s surface, then in terms of
Cartesian coordinates ( , , )x y z , geoid can be defined as the lattice of points
for which the following formula holds
 0( , , )w x y z w� . (0.1)
However in practice instead of Cartesian coordinates, geoid is presented in
terms of surface normal heights of a reference equipotential surface which
can be derived by gauging a reference potential to the geoid potential value

0w . As is shown in Figure 0-1 the minimum distance mapping of the geoid
onto the surface of reference equipotential surface can be established via
the Bruns formula. Having selected a reference gravity field and deter-
mined the incremental potential 0( ) ( )W w w� � �X X  (geoid�s potential

0w  minus actual potential ( )w X  at the reference equipotential surface)
Bruns formula provides us with transformation equation of the incremental
potential ( )W� X  in gravity space, into surface normal heights h , in ge-
ometry space. For example, if we select a reference field of Somigliana-
Pizzetti type, then we will end up with an ellipsoid of revolution as the ref-
erence equipotential surface, e.g. International Reference Ellipsoid
WGD2000 (E. Grafarend and A. Ardalan 1999) (see Box 0-1 and Figure
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0-2) and the Bruns formula as introduced in Box 0-2 provides us with
minimum distance mapping of geoid onto the surface of reference ellipsoid

2
,a b�  of WGD2000.

Selection of a reference
potential field

Determination of the level
surface of the reference field

(reference equipotential
surface)

Computation of the
incremental potential at the

surface of reference
equipotential surface

Conversion of the incremental
potential on the reference

equipotential surface into the
geoid height

( )W W� x
0( )W w�X

0( ) ( )W w w� � �X X( ) ( )W h� �X X

Figure 0-1: The steps of geoid computation at-large.

( , , )W�� � � �

G eoid

0 0

2
cosh , sinh  

(e.g. W GD 2000)
� � � �

�

0w w�

S/P reference
equipotential

surface

Figure 0-2: minimum distance mapping of the geoid onto the reference
equipotential surface of the ellipsoidal type.
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Box 0-1: Minimum-distance mapping of the geoid onto the reference
equipotential surface of Somigliana-Pizzetti type (e.g. WGD2000).

� Level surface of the reference potential field (reference
equipotential surface)

0 0

2
0 cosh , sinh( , )  (e.g. WGD 2000)W w

� � � �
� � � � �

� Incremental potential on surface of reference equipotential surface

0 0 0( , , ) ( , , )W w w� � � � �� � � � � � � �

� Bruns formula

0( , , )W� � �� � � 0( , , )w�� � �Bruns Formula

Minimum Distance Mapping of the geoid onto the
reference equipotential surface

2
2 2 2

2
0 0 0

2 2 2 2

( , ) arc cot(sinh )

(3 sinh 1)arc cot(sinh ) 3 sinh1 (3 sin 1)
6 (3 sinh 1)arc cot(sinh ) 3 sinh
1 ( )cos
2

GMW

a

u

� � �
�

� � �
�

� � �

� �

�

� �
� � �

� �

� � �

� Reference potential field
Te

rra

in

Re
fe

re
nc
e equipotential surface

G
au

ss
-L

ist

ing
 Ge doi

{ ( ), ( )}i ip pc �x x
( )ipiP x

0( )w w�x ( )w X ?

0( )W w�X

GPS
positioned

station

?

Figure 0-3: The required gravity potential ( )w X on the surface of the
reference equipotential surface versus the observations of the type geo-
potential numbers ( )pic x , and gravity intensity ( )pi� x  at GPS posi-
tioned stations on the surface of the earth.
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Box 0-2: Bruns formula as the transformation relation between geometry and gravity space.

2 3
0

1 1
( ) ( ) ( ( )) ( ( )) ( )

1! 2 !N N N Ww w w w h w h h� � � � � � � �x X X X �

� Expand geoid’s potential into Taylor series.

� Solve for “h” through series inversion

2 3

1
0

1 1
( ) ( ) ( ) ( ( )) ( ( )) ( )

1! 2!N N N W

n
n

n

W W X w w h w h h

a h

�

�

�

� � � � � � � �

� �

X X X X � Hom. Pol.

1
0

n
n

n
h b W�

�

�

� �
Bruns

Formula

� �

� �

2 2 2 1/2 2 2 2 1/2
2 3

2 2
3

3 2 2 2 2

cosh (cosh cos ) cosh (cosh cos )
( ) ( ) ( )

sinh 2 cosh cos1( ) ( ( ) )
2 cosh (cosh cos )

h W W
gm gm

gm W

� � � � � � � �
� �

� � �
�

� � � �

� �

� �

�

� �
�

X X

X�

( ) arc cot(sinh )GMw �
�

�X� For example if we assume                                                   then
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However, as shown in Figure 0-3, the geoid and its best fitting ellipsoid
(e.g. WGD2000) is partially within the earth and as such is not accessible
to direct potential observations. Therefore, we have to determine the re-
quired potential on the surface of reference equipotential surface, as the
solution of a boundary value problem. The common gravity observables of
the boundary value problems of the geoid determination are:
(i) Gravity potential (or zero order derivative of the gravity potential)

measured by means of gravimetric levelling (E. Groten, 1979)
(ii) Modulus of gravity intensity (or vertical derivative of the gravity

potential) measured by means of relative or absolute gravimetry (E.
Groten, 1984)

(iii) Components of deflection of vertical (horizontal derivatives of the
gravity potential) measured by means of astrogeodetic or GPS-LPS
levelling (E. Grafarend, 1988a, 1991)

(iv) Higher order derivatives of gravity potential, measured via gradi-
ometry

Besides the above listed observables, any geodetic observation can be used
as an information source of the gravity field of the earth. Since all the geo-
detic observations are made under the influence of the earth gravity field,
they are in one way or the another related to gravity field of the earth. E.
Grafarend (1980) has shown that all the geodetic observation equations
can be equivalently set up in geometry or gravity space.
Any measured gravity field quantity must always be accompanied with po-
sition and time information. In other words, we must know where in 3-D
space and at which time the gravity observation has been made. The time
information is necessary since the gravity field of the earth is a function of
time. Especially, due to of gravitational force of external celestial bodies,
deformation of the earth, and the movement of the interior masses of the
earth. The required accuracy for the positional of the gravity stations de-
pends on the accuracy or resolution of the gravity observation itself. If
0.1mGal (1 milli-Gal is equal to 5 2 210 /m s� ) be the average resolution of
the currently available gravity data, then one readily can determine that
100m horizontal movement in geometry space can hardly produce a varia-
tion more than 0.1mGal in gravity space. It is even true for the most
mountainous areas! In contrast, 0.1mGal change in gravity space is
equivalent to 0.3m movement in vertical direction. Therefore, if we con-
sider 0.1mGal as the accuracy of the currently available gravity data, the
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horizontal position of the gravity stations must be given to a few meters
accuracy. However, the height component should be accurate to a few
centimetres to meet the same accuracy level in the gravity space. F. Sansó
(1995) has a complete review on accuracy requirements in the boundary
value problems of the geoid determination.

The boundary value problems for geoid determination can be classified ac-
cording to:

(i) Type of the input data
� Classical or Stokes boundary value problem, where the modulus of

the gravity intensity vector on the boundary (earth�s surface 2
h� ),

as well as the orthometric heights of the points on 2
h�  are given.

� Non-Classical, where other sources of data are given.

(ii) Redundancy of the data
� Over-determined boundary value problem, where the input data are

more than the minimum necessary.
� Just determined, where exactly the minimum necessary amount of

data and/or conditions to solve the boundary value problem are
available.

(iii) The boundary on which the input gravity data are given
� Fixed boundary-value problem, where the gravity data are given on

a known surface of the earth.
� Free boundary-value problem where the gravity data are given on a

surface which we are searching for (say the geoid 2
g� ).

� Weakly known, where the estimated position vector of the bound-
ary x and its corresponding variance-covariance matrix x�  are
known.

(iv) The resolution of the solution
� Global, with about 50-100km resolution, determined based on

spherical/ellipsoidal harmonic expansion of the gravity field of
the earth.

� Marine geoid, nowadays with maximum resolution of 6km, based on
satellite altimetry (see for example D. Chambers, 1998).

� Continental geoid, with accuracy demand of decimetre, based on the
gravimetric boundary value problems, the geopotential models,
and the Digital Terrain Models (DTM�s).
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� Local/regional geoid, with highest accuracy, nowadays centimetre
accuracy level is the target, to specifically support the GPS de-
rived heights in order to compute orthometric heights (H. Euler et
al., 1986, T. Kling et al., 1987, E. Groten, 1996).

If instead of the surface of the earth we stick to the telluroid and instead of
geoid to quasi-geoid then, we are walking in the realm of Molodensky
boundary value problem, where the modulus of gravitational intensity
vector and the gravitational potential on the telluroid 2

H�  are given.

Here, for our boundary value problem, we assume that the gravity observ-
ables of the type modulus of gravity intensity ( )� x , and gravity potential

( )w x  are given on the known surface of the earth, e.g., positioned by GPS
observations. These observables build up the data on the fixed boundary.
Whereas, geoid�s potential 0w  provides the boundary data on the geoid,
which is geometrically unknown (the free boundary). The two-boundary
value problem for the observable of the kind modulus of gravity intensity
has already been studied by E. Grafarend and F. Sansó (1984), M. Mihel-
cic (1972) and recently by Z. Martinec (1998a). Here in contrast to the
previous studies, we present the fixed free two-boundary value problem for
two types of observables, namely, modulus of gravity intensity ( )� x  and
gravity potential ( )w x , both given on the outer boundary. Consequently,
we are left with an over-determined boundary value problem.

The highlight of our approach is ellipsoidal approximation, which is
maintained throughout the computations. It has been revealed by the great
early 18th century expeditions that the earth is not geometrically a sphere,
but nearly an oblate ellipsoid-of-revolution 2

,a b� . Historical review of the
progress in the determination of the shape of the earth is well documented
in J. Kakkuri et al. (1986), J. Smith (1986, 1987) and E. Tobé (1986) J. L.
Greenberg (1995). Due to the closeness of the figure of the earth to an ob-
late ellipsoid-of-revolution, gravity field of the type Somigliana-Pizzetti,
developed separately by P. Pizzetti (1894) and C. Somigliana (1930) and
extensively analysed by E. Grafarend et al. (1977) and recently, by E.
Grafarend and A. Ardalan (1999a, 1999b), has been introduced as the
standard gravity field in the Geodesist�s Handbook 2000 (edited by H.
Moritz, 2000). Here for completeness let us also mention the World Geo-
detic Datum developed by B. Eitschberger and E. Grafarend (1974), and
World Geodetic Datum 2000 developed by E. Grafarend and A. Ardalan
(1999a, 1999b), which are based on the gravity field of the Somigliana-
Pizzetti type. Therefore, in order to be close to the earth�s reality, both in
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geometry and gravity spaces, we shall use a reference ellipsoidal gravity
field, and remain at the level of ellipsoidal approximation for all computa-
tions.

The reference / normal gravity field plays an important role in the set up of
a boundary value problem. The reference gravity field contains the mod-
elled part of the gravity field of the earth. The reference gravity field is
normally used to remove the major known part of the gravity signal from
the gravity observations. If the modelled gravity be close to the actual
gravity field it can remove the high frequency part of the signal and make
the remaining incremental part fairly smooth. Which is the needed prop-
erty for the linearization of a non-linear boundary value problem.

The boundary value problems, which are based on the Laplace partial dif-
ferential equation, all require harmonic data on the boundary. A proper
choice of the reference field beside the smoothing role can be a tool to
produce the surface incremental quantities which are harmonic on the sur-
face of the earth, and down to the geoid�s surface (usually approximated by
reference ellipsoid 2

,a b� ). This property is injected in to our solution, by
considering a high degree/order reference field and including the terrain
correction, which corrects for the remaining high frequency part of the sig-
nal, emitted from the local topographic masses.

0.1 Objectives of the Study
The goal of this work is to study the local high-resolution geoid determi-
nation with the support of GPS positions, gravity, and potential data. As
the by-products of the study, methods for geoid determination with global
details as well as quasi-geoid determination with support of GPS observa-
tions will be presented.

Improvements in the accuracy of the gravity observation and positioning,
thanks to GPS, demand the revision of geoid determination techniques.
Especially to provide theories compatible with accuracy of the modern ob-
servations. It is now a clear fact that the classical geoid-determination
based on spherical approximations cannot produce the required accuracy
demanded by observations / input data. As a contribution towards the re-
finement of the theory of geoid determination, we will present methodolo-
gies for (i) local/ regional high-resolution geoid computation, (ii) global
geoid computation, and (iii) quasi-geoid determination, all at the level of
ellipsoidal approximation. The feasibility of the derived methods is also
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verified by numerical studies. The methods that will be presented are com-
prised of

(i) Fixed-free two-boundary value problem based on ellipsoidal ap-
proximation as a contribution towards high-resolution local geoid
determination.

(ii) Application of global geopotential models and non-linear ellip-
soidal Bruns formula, as the realisation of soft implicit-function
theorem, for geoid determination with global details.

(iii) Minimum distance mapping of the physical surface of the earth
into the Molodensky telluroid, as the fast and accurate technique for
quasi-geoid determination with support of GPS positions.

Let us now briefly highlight the main features of the first technique, which
is the heart of this study. The fixed-free two-boundary value problem in
ellipsoidal approximation is a boundary value problem tailored to the
gravity observables of the type modulus of gravity intensity ( )� x  (from
gravimetry) and gravity potential ( )w x  or geopotential numbers ( )c x
(from precise levelling), both with GPS derived positions. These observ-
ables satisfy the non-linear Poisson equation. By taking advantage of a
normal / reference gravity field, the surface gravity observations can be
converted into disturbing quantities of the kind ( )�� x  and ( )w� x .

By a proper choice of reference gravity field, which synthesises the actual
gravity field of the earth very closely, the Laplace-Poisson equation for the
disturbing quantities can be linearized in gravity space. In summary, the
linearization process leads to �linearized fixed-free two-boundary value
problem�. Our choice of reference field is ellipsoidal eigenvalue/eigen-
function expansion of the external gravity field of the Earth up to de-
gree/order 360/360.

To remain as close as possible to the actual geometry of the Earth, which
in global sense resembles an oblate spheroid /ellipsoid of revolution, we
have chosen ellipsoidal coordinates and ellipsoidal Laplace-Poisson
equation. In other words, we are using ellipsoidal fixed-free two-boundary
value problem to tackle the problem of local high-resolution geoid deter-
mination.

By eliminating the effect of topographical masses between the surface of
the earth and the reference ellipsoid, we will be left with disturbing quan-
tities which are harmonic at the surface of the earth down to the level of
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reference ellipsoid. This process can be referred to as �terrain reduction�.
Indeed, in the global sense the Newton Potential generated by topographi-
cal masses has to be computed in ellipsoidal coordinates. However, once
the effect of global and regional masses is removed, i.e. by means of a ref-
erence field of ellipsoidal harmonic expansion of degree/order 360/360,
the remaining effect of the local topographical masses can be successfully
modelled in planar approximation, extended to a radius of 50km around
the computational points. We refer to this step as the �remove step� of
topographic masses.

For the downward continuation, we will use the ellipsoidal Abel-Poisson
integral. The downward continuation is need to transfer the surface dis-
turbing quantities of the type modulus of gravity intensity and gravity po-
tential form the surface of the earth to disturbing gravity potential down at
the level of reference ellipsoid of World Geodetic Datum 2000. The
downward continuation, via the ellipsoidal Abel-Poisson integral, is an
improperly posed problem and can be stabilised by means of Phillips-
Tikhonov regularisation procedure among the others.

The downward continuation is finally followed by the restore step. In this
step on the level of reference ellipsoid 2

,a b� , we restore the impact of the
topographic masses and the effect of the removed reference field.

Finally, the potential at the surface of geoid derived from the restore proc-
ess can be subtracted from the geoid�s potential 0w  to produce disturbing
potential which can be converted to geoidal undulation via Bruns formula
(we will use non-linear ellipsoidal Bruns formula).

The whole procedure described above can be summarised in terms of a
flowchart as shown in Figure 0-4.



11

T h e  G e o id  F lo w c h a rt

D o w n w a rd  c o n tin u a tio n
o f  in c re m e n ta l g ra v ity

o b s e rv a b le s  to  th e
re fe re n c e  e q u ip o te n tia l

s u rfa c e

B o u n d a ry  d a ta
w , a n d  �  a t G P S

p o s itio n e d  p o in ts
o f th e  e a rth

s u rfa c e

R e m o v e  re fe re n c e
g ra v ity  a n d  p o te n tia l

fie ld  (e llip s o id a l
e x p a n s io n

d e g re e /o rd e r 3 6 0 /3 6 0 )

R e d u c e  to p o g ra p h ic
m a s s e s  o u ts id e  th e

re fe re n c e  e q u ip o te n tia l
s u rfa c e

re s to re  th e  to p o g ra p h ic
m a s s e s  o u ts id e  th e

re fe re n c e  e q u ip o te n tia l
s u rfa c e

W G D  2 0 0 0
In te rn a tio n a l R e f.

E llip s o id

R e s to re  th e
re fe re n c e  g ra v ity

a n d  re fe re n c e
p o te n tia l fie ld

C o n v e rs io n  b y
B ru n s  fo rm u la  fro m

g ra v ity  s p a c e  to
g e o m e try  s p a c e :

G e o id a l u n d u la tio n

U p :
to p o g ra p h ic

s u rfa c e

D o w n :
re fe re n c e

e q u ip o te n tia l
s u rfa c e

2
,a b�

Figure 0-4: Flowchart of geoid determination.
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1 Fixed-free two-boundary value
problem—mathematical set-up

In this chapter, a new methodology for precise geoid determination with
finest local details based on ellipsoidal approximation is presented. This
methodology is formulated through the �fixed-free two boundary-value
problem� based on the observables of the type modulus of gravity intensity
/gravity acceleration / and gravity potential at the GPS positioned stations,
with support of the known geoid�s potential value, 0w . The solution of the
boundary value problem is obtained through the following steps:

(i) Removal of the reference gravity potential, and gravity inten-
sity fields, as the additive combination of

(a) ellipsoidal harmonic expansion of degree/order
360/360, including the mass of the atmosphere,
and,

(b) centrifugal field.
(ii) Removal of gravitational potential and gravitational intensity

of the topographical masses between the physical surface of
the earth and the reference ellipsoid 2

,a b�  (i.e. World Geodetic
Datum 2000, WGD2000) up to 50km around the computa-
tional points, in planar approximation.

(iii) Downward continuation of the surface disturbing quantities of
the type gravitational potential and gravitational intensity
from the surface of the earth into disturbing potential on the
surface of reference ellipsoid  (World Geodetic Datum 2000,
WGD 2000), through inverse solution of ellipsoidal Abel-
Poisson integral.

(iv) Restoration of the removed gravitational potential of the to-
pographical masses and the gravitational potential of the ref-
erence fields both for the computational points on the surface
of the reference ellipsoid (WGD2000), to produce finally the
gravity potential at the surface of the reference ellipsoid.

(v) Transformation of obtained gravity potential values at the sur-
face of the reference ellipsoidal into geoidal heights /geoidal
undulations/ with respect to the reference ellipsoid
(WGD2000) via nonlinear ellipsoidal Bruns formula.
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The practical feasibility of the procedure is tested numerically by comput-
ing a high-resolution geoid for the state of Baden Württemberg / Germany.
The two-boundary value problem of the observables of the type modulus of
the gravity intensity has already been studied by E. Grafarend and F.
Sansó (1984), M. Mihelcic (1972) and recently by Z. Martinec (1998a
pages 6-7). Here in contrast, we will apply the fixed free two-boundary
value problem to observables of the type modulus of gravity intensity ( )� x
and gravity potential ( )w x , given on the physical surface of the earth (the
outer boundary). Such a boundary value problem is over-determined!

In this chapter, the theoretical details of the fixed-free two-boundary value
problem and its solution will be explained. The numerical example, i.e.,
the case study of �the high-resolution potential-geoid and gravity-geoid of
the state of Baden-Württemberg� is left to the next chapter.

1.1 Over-determined, non-linear, fixed-free
two-boundary value problem

The fixed-free two-boundary value problem, is the problem of solving the
Laplace-Poisson partial differential equation for the boundary data of the
type modulus of gravity intensity /gravity acceleration/ ( )� x , and the grav-
ity potential ( )w x  on the surface of the earth. The surface of the earth 2

h�

is further assumed be positioned point-wise, for example by GPS (Global
Positioning system), and therefore is a fixed boundary. The gauge value of
the geoid 0w , comprises the boundary data on the free boundary, the geoid

2
g� . A summary of the definition of the fixed-free two-boundary value

problem is given in Box 1-1.

The fixed-free two-boundary value problem, is an over determined, non-
linear, oblique boundary value problem. It is an over determined boundary
value problem since we have two boundary data of the type modulus of
gravity intensity and gravity potential on the fixed boundary. In a fixed
boundary value problem, one scalar type observable /boundary data/ is suf-
ficient to obtain a unique solution of the unknown potential function for
the whole 3

�  space. The fixed-free two-boundary value problem is non-
linear since the norm operator, introduced by the modulus of gravity inten-
sity, is a non-linear operator. It is also an oblique boundary value problem
since the direction of gravity vector, in general, is not perpendicular to the
boundary, i.e. the earth surface.
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Box 1-1: Over determine, non-linear fixed-free two-boundary value problem.
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Since we are interested in the solution of an ellipsoidal boundary value
problem, the most suitable coordinate system is the one, which has an el-
lipsoid of revolution as one of its coordinate surfaces. This property can be
fulfilled by six ellipsoidal coordinates introduced in the Appendix A (page
205). However, amongst those six ellipsoidal coordinates, Jacobi ellipsoi-
dal coordinates are the only ones, allowing for the separation of three-
dimensional Laplace partial differential equation. As a thorough study on
the separation of the Laplace partial differential equation in terms of dif-
ferent ellipsoidal coordinates, the contribution by E. Grafarend (1989) is
notable. Appendix A has a brief introduction into six different types of el-
lipsoidal coordinates.

Our solution technique to tackle the stated boundary value problem is base
on the inversion of ellipsoidal Abel-Poisson integral. For this reason in
Appendix A we have started with a brief review of ellipsoidal coordinates
and then in Appendix B we have formulated ellipsoidal eigen-
value/eigenfunction solution of the three-dimensional Laplace partial dif-
ferential equation in terms of two Jacobi ellipsoidal coordinates { , , }� � �

and { , , }u� � . Further, in Appendix D we have shown how a particular so-
lution of the Laplace partial differential equation can lead to the ellipsoi-
dal Abel-Poisson integral. That is done in terms of two types of Jacobi el-
lipsoidal coordinates { , , }� � �  and { , , }u� �  in Appendix D.1 and D.2, re-
spectively. In the next section, we will formulate the ellipsoidal Abel-
Poisson integral as the sum of well know spherical Abel-Poisson kernel
and some further terms showing the ellipticity of the field.
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1.2 Abel-Poisson integral for the gravitational
potential

Appendix B introduces the eigenspace solution of 3-D Laplace differential
equation. Indeed, the ellipsoidal Abel-Poisson integral, as derived in Ap-
pendix D, is nothing else but the solution of external Dirichlet problem
value problem of the Laplace equation, with boundary data on an ellipsoid
of revolution, which is outlined in Appendix B (page 225). Box 1-2 below
starts with the rigorous presentation of Abel-Poisson integral and goes
further to present an approximate form of the Abel-Poisson integral which
is correct up to the order of relative eccentricity cubed, 4( )e� .

Box 1-2: Ellipsoidal Abel-Poisson integral for the gravitational potential

� 4( )e�  approximation�.

(i) Ellipsoidal Abel-Poisson integral (c.f. Appendix B.1)
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(ii) Abel-Poisson Kernel
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(iii) Power series expansion of 0( sinh )/ ( sinh )nm nmQ i Q i� �  according to
N. Thong (1993) and Z. Martinec and E. Grafarend (1997b)
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0 0cosha � ��  is major semi-axis of the reference ellipsoid 2
,0 0a b�  and

cosha � ��  is the minor semi-axis of the ellipsoid passing through the
computational point and 1nmA  is as defined below.
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(iv) Ellipsoidal Abel-Poisson integral for the gravitational potential up to
the level of approximation 4( )e� .
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 subject to
 cos sin sin ' cos cos ' cos( ')� � � � � � �� � � (1.10)

Putting cosh /r� ��  and 0cosh /R� �� , reduce the equation (1.7) to
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which is the well-known spherical Abel-Poisson kernel (Kellogg, 1929).
For spherical Abel-Poisson kernel following closed-form formula exists.
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Therefore, in Box 1-2 we succeeded in splitting the ellipsoidal Abel-
Poisson kernel into spherical Abel-Poisson kernel ( , , ;sphericalK � � �

0', ', )� � �  and ellipsoidal corrections being introduced here up to the order
of 4( )e�  via 01( , , ; ', ', )K � � � � � �  and 02( , , ; ', ', )K � � � � � � .

Equation (1.5) provides us with the observation equation for observables
of the type gravitational potential. Indeed, given the harmonic gravitational
potentials ( , , )U � � � , integral equation (1.5) can be solved for ( , ,U � � �

0)�� . More on this to come in Section 1.13.

Z. Martinec and E. Grafarend (1998b) have offered a closed form formula
for 01( , , ; )K � � � � , which is correct up to the order of accuracy of first ec-
centricity squared 2

0( )e� . They have also shown that 1( , , ;K � � �  0', ', )� � �

�  0 0( , , ; ', ', )K � � � � � � , and that 01( , , ; ', ', )K � � � � � �  has the same degree
of singularity as 0 0( , , ; ', ', )K � � � � � � . The closed form of the ellipsoidal
Abel-Poisson kernel, i.e. 0( , , ; ', ', )ellipsoidalK � � � � � � , is represented in Box
1-3.  Figure 1-1 shows the variation of the ellipsoidal Abel-Poisson kernel

0( , , ; ', ', )ellipsoidalK � � � � � � , the spherical Abel-Poisson kernel sphericalK
0( , , ; ', ', )� � � � � � , and the ellipsoidal correction to spherical Abel-Poisson

kernel ( , , ;ellipsoidaldK � � �  0', ', )� � �  against the space angle � , while Figure
1-2 represents the ellipsoidal Abel-Poisson kernel ellipsoidalK  ( , , ;� � �

0', ', )� � �  calculated for the same point but for different azimuths at the
space angle 1� �

� . Figure 1-3 represents the variation of ellipsoidal
Abel-Poisson kernel 0( , , ; ', ', )ellipsoidalK � � � � � �  of Figure 1-2 but in terms
of the percentage of the kernel�s value for 0� �

� . From a study of the
Figure 1-1 to Figure 1-3 following conclusions can be made:

(i) Ellipsoidal correction term of the Abel-Poisson kernel van-

ishes rather faster than spherical part of the kernel.
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(ii) Dependency of the ellipsoidal Abel-Poisson kernel on azi-
muth is quite minute. In fact, as is shown in Figure 1-3 the
dependency on azimuth is not exceeding 0.3 percent of the
whole kernel value at 0� �

� .

Box 1-3: Closed form solution of the ellipsoidal Abel-Poisson kernel

� ellipsoidalK  0( , , ; ', ', )� � � � � � �

 (i) Ellipsoidal Abel-Poisson kernel
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(ii) spherical Abel-Poisson kernel

 

0
2 2

0
0 2 2 3 / 2

0 0
2

3

( , , ; ', ', )
cosh coshcosh

(cosh cosh 2cosh cosh cos )

( , , ; ', ', )
'

spherical

spherical

K

r RK r R R

� � � � � �

� �
�

� � � � �

� � � �

�
�

� �

�
� �

�x x

(1.14)

(iii)  ellipsoidal correction to spherical Abel-Poisson kernel
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(iv) isotropic parts of the ellipsoidal correction
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Figure 1-1: Ellipsoidal
Abel-Poisson kernel

0( , , ; ', ', )ellipK � � � � � � ,
spherical Abel-Poisson
kernel

0( , , ; ', ', )sphK � � � � � � ,
and ellipsoidal correction
to spherical Abel-Poisson
kernel

0( , , ; ', ', )ellipdK � � � � � �
versus angular distance
� . Calculated for the
point { , , }� � � �

{9.6174328693 ,�
49.703934050 ,�
3.19471515096}  with
respect to the reference
ellipsoid

0 3.1947135814� �

(WGD2000) along the
azimuth 10� �

� . The
scale on the vertical axis
is logarithmic.



21

0 50 100 150 200 250 300 350
0.5885

0.589

0.5895

0.59

0.5905

0.591
K

er
ne

l
Ellipsoidal Abel−Poisson Kernel vs. Azimuth

Azimuth (α°)

Figure 1-2: Ellipsoidal
Abel-Poisson kernel

0( , , ; ', ', )ellipsoidalK � � � � � �

versus azimuth � . Calcu-
lated for the point
{ , , }� � � �

{9.617432869327196 ,�

49.70393405021537 ,�

3.194715150960513} , at
the space angle 1� �

� ,
with respect to the refer-
ence ellipsoid

0 3.194713581� � .



22

0 50 100 150 200 250 300 350
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
P

e
rc

e
n
t

Ellipsoidal Abel−Poisson Kernel vs. Azimuth

Azimuth (α°)

Figure 1-3: Variation of
ellipsoidal Abel-Poisson
kernel

0( , , ; ', ', )ellipsoidalK � � � � � �

versus azimuth � , in
terms of percentage of the
value of the kernel at

0� �
� . Calculations are

for the point { , , }� � � �

{9.617432869327196 ,�

49.70393405021537 ,�

3.194715150960513}
with respect to the refer-
ence ellipsoid

0 3.194713581445341� �

at the space angle 1� �
� .
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1.3 Euler �-increment

It is clear that Abel-Poisson integral and its inverse solution is valid only
for external space of the earth where there are no masses. However, in the
space between the surface of the earth and the reference ellipsoid, the re-
gion where we want to apply the inverse Abel-Poisson integral, there are
topographical masses. Therefore, before applying the inverse Abel-Poisson
integral to our problem, the effect of topographical masses must be re-
moved from the observed gravity quantities (i.e. ( )� x  and ( )w x ). If be-
sides the effect of topographical masses we remove the global gravity po-
tential and gravity intensity, by using a global geopotential model, we get
such a smooth incremental / disturbing / quantities which can be satisfacto-
rily linearized. Disturbing quantities / Euler � -increments / can be intro-
duced for the various quantities involved in our boundary value problem.
Box 1-4 has a list of those Euler � -increments.

To generate the smooth incremental boundary data, we will use the ellip-
soidal harmonic expansion of the external gravitational field of the earth
up to degree/order 360/360, as the normal / reference gravitational field.

Box 1-4: Euler � -increments
(i) observables of the type modulus of gravity intensity

 ( ): ( ) ( ) ( ) ( )� �� � � � �x x x x x�� � � � � (1.20)
(ii) observables of the type potential

 ( ) ( ) ( )W w W� � �x x x (1.21)
(iii) mass density

 � �� � � � (1.22)
(iv) angular velocity of the earth

 || || || ||�� � � ��� � � (1.23)

 Figure 1-4 illustrates the decomposition scheme for the three different
gravity field quantities of the type potential ( )w x , gravity intensity vector

( )X�  and modulus of gravity intensity 2( ) ��x� , which are some times
confusing.
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Figure 1-4: Decomposition of the scalar valued gravity potential ( )w x ,
of the vector-valued gravity intensity ( )x�  and of the scalar-valued
modulus of gravity intensity 2( ) ��x� .

We refer to the step whereby the domain of Laplace differential equation
is extended to the space between the surface of the earth and the surface of
reference ellipsoid as remove step. Box 1-5 bellow summarises the remove
step.

Box 1-5: The remove step

(i) Subtraction of the reference ellipsoidal gravity field comprised of
gravitational potential and gravitational intensity of ellipsoidal har-
monic expansion up to degree/order 360/360, and the centrifugal
part (including the effect of atmospheric masses, and the permanent
tide) from the observations of the type modulus of gravity intensity

( )� x  and gravity potential ( )W x .

(ii) Removal of the effect of local topographical masses between obser-
vation point and the reference ellipsoid WGD2000 in a radius of
50km around the computational point.

Note that in our remove step thanks to the application of ellipsoidal har-
monic expansion up to degree/order 360/360 there is no need to include
the effect of balancing isostatic masses, they are included in the high de-
gree/order ellipsoidal harmonic model. In summary, the remove step will
lead to disturbing quantities, ( )�� x  and ( )W� x , which are harmonic out-
side the reference ellipsoid 2

,a b�  and which are free from high frequency
variations.
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In the next section, we shall introduce the linearized fixed-free two-
boundary value problem.

1.4 Over-determined, linear, fixed-free two-
boundary value problem

The boundary operator for the observables of the type modulus of gravity
intensity 2( ) ��x�  is a non-linear. In Box 1-6 we have a résumé of
Taylor expansion of the boundary operator 2( ) ��x�  up to the order of
five in �� , (i.e. 5( )��� ).  Based on the linear part of this expansion, col-
lected in Box 1-7, the over-determined, linear fixed-free two-boundary
value problem can be constructed. Box 1-8 is devoted to the definition of
linear fixed-free two-boundary value problem, based on incremental quan-
tities �� , W� , and �� .

Box 1-6: expansion of non-linear boundary operator ( )� x  up to the order
five in ��

(i) Non-linear boundary operator:

 � �

� �

1/ 22 2

1/ 2
2

2 2

( ) grad ( ) grad ( ) grad ( )

grad ( ) grad ( ) grad ( ) grad ( )

grad ( ) grad ( ) 2 grad ( ) grad ( )

2 1( ) 1

w W W

W W W W

W W W W

� �

� �

� �

�

� � �

� � �

� � �

� � � � �
� �

x x x x

x x x x

x x x x

x � ��

(1.24)

subject to B. Taylor expansion of 1/ 2(1 )x�  where | | 0x � , i.e.,

 1/ 2 2 3 41 1 1(1 ) 1 ( )
2 8 16

x x x x x� � � � � �� (1.25)

we have:
(ii) Expansion of non-linear boundary operator ( )� x

 

� �

2

2 2 4
3 3 3

5

1 1( ) ( )
2

1 1 1
2 2 8
�

� �

� �

�

� � � � �
� �

� � � � �
� � �

�

x x � ��

� �� � ��

�+

(1.26)

(iii) Expansion of non-linear boundary operator ( )�� x
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(1.27)

 

Box 1-7: linearized boundary operator ��
According to Box 1-6, the linearized boundary operator ��  can be con-
structed as follows:
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�
��

��

�

�

�

(1.28)

where e� ��  in (1.28) is the directional derivative of ��  in the direction
of reference gravity vector � .

Box 1-8: Over determine, linear fixed-free two-boundary value problem.

Field Diff.
Equ.

Boundary
Values

Regularity at
Infinity

3

2 2 3

2
0

23
22
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( ) ( ) ( ) ( ) /
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For the space where there are no masses, the boundary values of the type
W� , and �� , satisfy the Abel-Poisson integral, as the special solution of

the Laplace partial differential equation. Therefore, if we are looking for
the incremental gravitational potential on the surface of reference ellip-
soid 2

,a b� , the Abel-Poisson integral can be used as the observation equa-
tion. That is, given the harmonic incremental gravitational potential

( )W� x , and modulus of incremental gravitational intensity ( )�� x  on the



27

surface of the earth 2
h� , the incremental gravitational potential ( )�� X  on

the reference ellipsoid 2
,a b�  can the derived as the inverse solution of the

Poisson-Abel integral. More on the inverse solution of an integral equation
will come later in this chapter.

Let us now present the Abel-Poisson integral equation for the linearized
harmonic boundary values of the types modulus of incremental gravita-
tional intensity ��  and incremental gravitational potential W� . It is clear
that the Abel-Poisson integral (1.1) is true for any harmonic function
( , )f � � . Therefore, if we assume that the incremental gravitational poten-

tial W�  is free from the effect of the masses outside the reference ellip-
soid, it satisfies the Abel-Poisson integral as is presented in Box 1-9.
 

Box 1-9: Abel-Poisson integral for incremental gravitational potential
W� .
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,

| |

0| |0

0
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,

( ')( , , ) '[

( sinh )
( sinh )

( ', ') ( , )] ( ', ')
1 ' ( ') ( , , ; ', ', ) ( ', ')
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nm nm
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(1.29)

Where the Abel-Poisson Kernel in spectral form is given by

 
| |
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0| |0
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( , , ; ', ', )
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Q i
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Q i
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�
� � � � � �

�

� � � �

�

� ��

�

�

� � (1.30)

In order to obtain an Abel-Poisson integral structure for the modulus of in-
cremental gravitational intensity �� , one can set off from the linearized
relation given in (1.28). Box 1-10 and Box 1-11 have the details of the
derivation.

Box 1-10: Abel Poisson integral for the modulus of incremental gravita-
tional intensity ��
(i) the linearized boundary operator ��

 2( ) ( ) ( ) ( )� � �� � � � � � �x x x e� �� � (1.31)
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(ii) the unit reference gravity vector e�

 �e�
�

�
(1.32)

(iii) the vector of incremental gravitational intensity
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(iv) Ellipsoidal Abel-Poisson integral for incremental gravitational inten-
sity ��
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Box 1-11: First derivatives of ellipsoidal Abel-Poisson kernel, in closed
form.
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 (i) 0( , , ; ', ', )sphericalK � � � � � ��  / ��
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subject to
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 (i) 0( , , ; ', ', )sphericalK � � � � � ��  / ��
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Note that the derivatives of the ellipsoidal correction-part of the kernel are
not presented here!

1.5 Modified ellipsoidal Abel-Poisson kernel
The closed form solution of the Abel-Poisson kernel presented in the pre-
vious section contains the effect of harmonics of all degree and order.
However, since in preparation of the incremental quantities ( W� , �� ) we
remove the effect of a reference field made up of ellipsoidal harmonic ex-
pansion up to degree/order 360/360, naturally the effect of these harmonics
must also be removed from the Abel-Poisson kernel. However, the most
dominant parts are coming from the zero and first. degree/order harmonics.
Those harmonics are reflecting the effects originated from the mass of the
earth GM , and the origin of the coordinate system. The modified Abel-
Poisson kernel after removal of the zero and first-degree harmonics is
given in Box 1-12.

Box 1-12: Removal of the zero and first-degree harmonics form the Abel-
Poisson integral.
(i) Spectral form of the ellipsoidal Abel-Poisson kernel
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(ii) zero-degree term of the ellipsoidal Abel-Poisson kernel
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(iii) first-degree term of the ellipsoidal Abel-Poisson kernel
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(iv) Modified ellipsoidal Abel-Poisson kernel
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Let us now have a look at the shape of the modified Poisson kernel

*
ellipsoidalK  as derived in Box 1-12. Figure 1-5 illustrates the variation of the

modified ellipsoidal Abel-Poisson kernel 0( , , ; ', ', )ellipsoidalK � � � � � �  versus
angular distance � . This figure is plotted for variations of the kernel at the
point { , , }� � � �  {9.617432869327 ,�  49.7039340502 ,�  3.19471515096} ,
with respect to the reference ellipsoid 0 3.194713581445341� �  along the
azimuth 10� �

� . Figure 1-6 shows the variation of the modified ellipsoi-
dal Abel-Poisson kernel 0( , , ; ', ', )ellipsoidalK � � � � � �  versus azimuth � , cal-
culated for the same point, when the running point of integral is fixed
along the space angle 1� �

� . Figure 1-7 is the same as Figure 1-6, except
that it is  plotted in percentage of the value of the kernel at 0� �

� . As it is
shown in Figure 1-7 dependency of the modified ellipsoidal Abel-Poisson
kernel on azimuth is not exceeding 0.3 percent of the whole kernel�s value
at 0� �

� .
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Figure 1-5: Variation of the Modified ellipsoidal Abel-Poisson kernel 0( , , ; ', ', )ellipsoidalK � � � � � �  versus an-
gular distance � . Calculated for the point { , , }� � � �  {9.617432869327196 ,�  49.70393405021537 ,�

3.194715150960513} , with respect to the reference ellipsoid 0 3.194713581445341� �  along the azimuth
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0 3.194713581445341� �  at the space angle 1� �

� .
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Similar modified kernel can also be derived for the kernel of ellipsoidal
Abel-Poisson integral of the incremental gravitational intensity �� . In-
deed, what we have to do is to remove the derivatives of the zero and
first terms of the kernel of ellipsoidal Abel-Poisson integral for incre-
mental gravitational intensity ��  of Box 1-10. Those derivatives are
collected in Box 1-13.

Box 1-13: First derivatives of zero order and first terms of ellipsoidal Abel-
Poisson kernel.
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In the next section, we shall be concentrating on the determination of
general form of the Bruns formula. Such a study is quite necessary since
the Bruns formula plays a crucial role in our geoid calculation. Indeed, it
provides us with the transformation relation between the incremental
gravity potential at the surface of reference ellipsoid of the Somigliana-
Pizzetti type and the geoidal undulation.

1.6 General Bruns transformation
The result of the remove, downward continuation, and restore is the
gravity potential 0( , , )w � � �  at the surface of reference ellipsoid 2

,a b� . As
was mentioned before the gravity potential on the surface of the refer-
ence ellipsoid 2

,a b�  can be converted into the geoidal undulations h  via
the Bruns formula. Such a transformation requires the reference ellipsoid
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2
,a b� , be a reference level surface /equipotential surface/ with the gauge

value 0w , i.e. 0( , , )W w� � � � .

A summary of the derivation of the most general form of Bruns formula
/Bruns transformation/ is given in Box 1-14. The derivation starts with
the decomposition of the actual gravity potential ( )w x  at the geoid sur-
face 2: gi� � �x �� , into reference gravity potential ( )W x  and incre-
mental potential ( )W� x , within equation (1.52). In the second step the
reference potential ( )W x  at the geoid and incremental gravity potential
at the geoid ( )W� x  are represented by a Taylor series expansion for the
expansion point on the surface of the reference equipotential surface

2
G�X � , through equations (1.53)-(1.54). Remarkable issues related to

the Taylor expansion here are:
(i) The directional derivative ( )NW� X , which is along the normal to

the surface of the ellipsoid 2
,a b�  (see Appendix F, page 236 for the

advantage of presenting the Taylor series expansion in terms of
directional derivative operator).

(ii) The height h, which due to the type of directional derivatives ap-
plied, is of isozenithal type.

The Taylor expansion leads to forward transformation equation from ge-
ometry space into gravity space, shown in power series of isozenithal
height h, equation in (1.56). It is important to note that here we have
given way to different potential values on the geoid and reference ellip-
soid 0 0 : ( , )w W W� � � x X , see equation (1.56). This will keep the
Bruns transformation at its most general form. The series (1.56) is a ho-
mogeneous polynomial and can be inverted according to the series inver-
sion developed by E. Grafarend et al. (1996) to backward transformation
from gravity space into geometry space, according to equation (1.57).
The first few coefficients of inverse series expansion according to E.
Grafarend et al. (1996) are collected in Box 1-15. In connection with the
Non-linear Bruns transformation related contributions by E. Grafarend
and W. Niemeier (1971) and E. Grafarend et al. (1999) can be acknowl-
edged. Box 1-16 covers the highlights of the directional derivative

:� � �YX X Y .

Box 1-14: General form of the Bruns transformation.
(i) Decomposition of the actual gravity potential ( )w x  into reference po-
tential ( )W x  and incremental potential ( )W� x
 ( ) ( ) ( )w W W�� �x x x (1.52)
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 2: gi� � � �x ��  and 2
G�X �  e.g. 2

,a b�

2
g�  presents the geoid�s surface, and 2

G�  presents the surface of a refer-
ence equipotential surface .
(ii) Taylor series expansion of the reference gravity potential and incre-
mental gravity potential reads as

 
2

3

1 1( ) ( ) ( ( )) ( ( ))
1! 2!

( )
N N N

W

W W W h W h

h

� � � � � �

�

x X X X
�

(1.53)

 
2

3

1 1( ) ( ) ( ( )) ( ( ))
1! 2!

( )
N N N

W

W W W h W h

h�

� � � �� � � � � �

�

x X X X
�

(1.54)

Where directional derivatives N�  are along the normal to the equipoten-
tial surfaces 2

G� , i.e. reference ellipsoid 2
,a b� .  h is called normal isozeni-

thal height.

(iii) Forward transformation from geometry space into gravity space
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(iv) Backward transformation from gravity space into geometry space
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� � � �� X x X (1.57)
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The two-point function ( , )W� x X , called Laplace � - increments, is de-
fined as follows
 ( , ): ( ) ( )W w W� � �x X x X (1.58)

Box 1-15: Inversion of a homogeneous polynomial

 2
11 12 1( ) n

ny x a x a x a x� � � �� (1.59)
 versus
 2

11 12 1( ) n
nx y b y b y b y� � � �� (1.60)

subject to
 1

11 11b a�

�

 3
12 11 12b a a�

�

 6 2 4
13 11 12 11 132b a a a a� �

� �

 �

Box 1-16: Directional derivative vw�

(i) Directional derivative vw�  of a function  w  from a vector space
w � �  equipped with a canonical differential structure
 : gradvw dw v w v� � � (1.61)
(ii) the properties of the directional derivative

(1) 1 2 1 2( )v v vw w w w� � � � ��

(2) ( ) ( )v v vw w w� � �� � � � �

(3) 1 21 2 v vv v w w w�� � � ��

(4) v vw w� �� � � ;
where � � �  and 1 2 1 2( , , , )w w � � �� .

In the next section, we shall restrict the general representation of the
Bruns formula, derived in Box 1-14, to the Jacobi ellipsoidal coordinates
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{ , , }� � �  and to the reference ellipsoidal field of the first order term of
ellipsoidal harmonic expansion.

1.7 Non-linear ellipsoidal Bruns transforma-
tion

In the previous section, we derived the most general form of the Bruns
transformation. Here, we derive an especial non-linear ellipsoidal form
of it in terms of Jacobi ellipsoidal coordinates { , , }� � � . If we limit our-
selves to the order of accuracy of first eccentricity squared 2( )e�

( 2 2 2 2( )/e a b a� � ) then the first term of ellipsoidal harmonic expan-
sion, ( , , )U � � �  arc cot(sinh )gm � �� , can be used as the reference
gravitational field. The order of accuracy of 2( )e�  is enough for the
geoid determination at centimetre accuracy level (see e.g. Z. Martinec
1998a, and Z. Martinec and Grafarend 1997a, 1997b). Such a reference
field besides its simple form has the property of having ellipsoidal level
surfaces (see Box 1-20 for the proof). Since we want to present the de-
viation /the disturbance/ of the actual equipotential field of the earth from
reference field of an ellipsoid of revolution this model is the correct
choice.

Box 1-17 presents the definition of the gradient of the scalar function
( , , )U � � �  as the covariant derivative D U�  of the function ( , , )U � � �  with

respect to contravariant base vectors �
� . The contravariant base vectors

are replaced by g ��
�� , the transformation relation of covariant base vec-

tors into contravariant ones. The non-normalised covariant base vectors
��  are further written in terms of normalised base vectors �e  multiplied

by the norm of ��  ( � �� g�� �e ). Finally the orthogonality of the Jacobi
ellipsoidal base vectors has led to special representations of (1.63) and
(1.64). Box 1-18 provides us with the directional derivative along the sur-
face-normals of reference ellipsoid 2

,a b� , while Box 1-19 presents the ap-
plication of the directional derivatives to the reference gravitational po-
tential field ( , , )U � � �  arc cot(sinh )gm � �� . We have to mention that
in Box 1-19 we have gone up to directional second order derivatives. Fi-
nally, under the assumptions and approximations collected in Box 1-21,
non-linear ellipsoidal Bruns transformation formula of Box 1-22 is de-
rived.
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Box 1-17: Gradient of a scalar function ( , , )U � � �

(i) General definition of the gradient of a scalar function in terms of a cur-
vilinear coordinate system

 
gradU D U g D U

g D U g g D U

� ��
� � �

�� ��
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� �

� �

m m

m e e
(1.62)

(ii) Gradient of the scalar function U in terms of orthogonal Jacobi ellip-
soidal coordinates { , , }� � �
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Box 1-18: Directional derivative along the surface normal of the reference
ellipsoid 2

,a b�

 
2 2
1 1grad 

cosh cos
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 (1.65)
 

Box 1-19: Reference ellipsoidal gravitational field and its directional de-
rivatives along the surface normals of reference ellipsoid 2

,a b�

(i) Reference ellipsoidal field of the first order
 ( , , ) arc cot(sinh )gmU � � � �

�
� (1.66)

(ii) Directional derivative along the surface normals of 2
,a b�
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Box 1-20: Geometrical interpretation of the reference equipotential sur-
face ( , , ) arc cot(sinh )U gm� � � � �� = 0w .

from the reference equipotential surface
 0( , , ) arc cot(sinh )gmU w� � � �

�
� � (1.69)

one can imply that the only varying parameter, i.e., �  must be constant
 0� �� (1.70)
from the inverse transformation of Cartesian coordinates { , , }x y z  into Ja-
cobi ellipsoidal coordinate �  (cf. Appendix A.1.2 (page 209)) we have
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which is the equation of  the reference ellipsoid 2
cosh , sinh0 0� � � �� .

Box 1-21: Assumptions and approximations used in the derivation of non-
linear ellipsoidal Bruns transformation formula of  Box 1-22.
(i) Equality of the actual gravity potential on the geoid to the reference
potential on the reference ellipsoid 2

,a b�

 2 2 2
,( ) ( ) : and , i.e. gi G a bw W� � � � � �x X x X� � �� (1.72)

 ( , ): ( ) ( ) 0W w W� � � � �x X x X (1.73)
(ii) Directional derivatives of the incremental potential
 2

n times
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(iii) Reference gravity potential field
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 (1.75)
 (iv) Reference gravitational potential field
 ( , , ) arc cot(sinh )gmU � � � �

�
� (1.76)

Box 1-22: Non-linear ellipsoidal Bruns transformation

 1 1
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1.8 The reference field
As was mentioned in Section 1.4, our geoid determination requires quan-
tities of the type gravity potential and modulus of gravity intensity which
are harmonic at the surface of the earth down to the surface of the refer-
ence ellipsoid 2

,a b� . However, the observed modulus of gravity intensity
and gravity potential /geopotential numbers/ at the surface of the earth
due to the centrifugal field, the retained permanent tide effects, and the
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gravitation of atmospheric masses are not harmonic. To tackle this prob-
lem we shift form the actual observation space into incremental space by
adopting a suitable reference field. In other words, we adopt a reference
field, which includes the effects of all sources of non-harmonicity of the
boundary data on the surface of the earth. Apart from this necessary con-
dition, the adopted reference field must also behave like a low-pass filter
to remove the high frequency spatial variations of the observations. Of
course, such a goal can only be achieved if we a reference field which is
as close as possible to the actual gravity intensity and gravity potential
fields.

Consequently, before deciding upon the type of the reference field, we
must be aware of all type of reductions which are applied to the observa-
tions of the type modulus of gravity intensity and gravity potential. For
example, the gravity data of the state Baden-Württemberg are given in
the IGSN71 (IAG, 1974) system. This means that the direct and indirect
effects of the permanent tide according to specifications of IGSN71 are
retained in the gravity data. Besides, the gravity observations are under
the effect of the attraction of the atmospheric masses, with average
gravitation of 0.87 mGal on the earth's surface (M. Vermeer and M.
Poutanen, 1997). Therefore, the reference field of our choice, besides the
centrifugal field, must include the effect of the gravitation of the atmos-
pheric masses, and should be in mean-tide permanent tide system.
Clearly, it must also include the gravitational effect of the masses be-
tween the surface of the earth and the reference ellipsoid.

As the reference gravitational field, we will use the ellipsoidal harmonic
expansion of the earth's gravitational potential and its gradient field up to
degree/order 360/360 in mean-tide permanent tide system (see Section
1.12 for the definition of different permanent tide systems). We also in-
clude the effect of the atmospheric masses in our ellipsoidal reference
field by using a  gravitational constant, GM , value which includes the
mass of the earth's atmosphere (J. C. Ries, 1992, and E. Groten, 1997).
Such a reference field can take care of the global and regional masses as
well as isostasy balancing masses up to features of 50-60 km. The effect
of remaining topographical masses between the computation point at the
surface of the earth and the reference ellipsoid 2

,a b�  will be determined by
Newton�s integral. In the following sections, the ellipsoidal expansion of
the external gravitational field of the earth and the reference centrifugal
field will be described in details.
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1.8.1 Reference potential field of the external grav-
ity field of the earth

For a rigid uniformly rotating earth, the gravity potential field ( , , )w � � �

can be additively decomposed into the gravitational potential field
( , , )u � � �  and the centrifugal potential field ( , , )v � � � , namely

 ( , , ) ( , , ) ( , , )w u v� � � � � � � � �� � . (1.81)
See Appendix A.1.2 Page 209, for the definition of ellipsoidal coordi-
nates { , , }� � � . The multiplicative decomposition of the gravitational
potential field into separable functions ( , , )u � � �  = ( ) ( ) ( )H� � �� �  gener-
ates the following eigenvalue solution of the three dimensional Laplace
partial differential equation.
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where ( , )nme � �  are surface ellipsoidal harmonic functions
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(1.82) is valid for the space 3 2
,{ / }a b� �  which is external to the reference

ellipsoid of 2 2( )x y� / 2 2
0cosh� �  + 2 2 2

0/ sinh 1z � � � . The normalised
associated Legendre functions of the first kind * (sin )nmP �  and of the second
kind * (sinh )nmQ �  are defined in Appendix C. The surface ellipsoidal har-
monic functions ( , )nme � �  are orthonormal with respect to the weighted
scalar product
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where the weight function is defined by
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S  is the area of the surface of the reference ellipsoid 2
,a b�
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The representation of the centrifugal potential in terms of (i) Cartesian
coordinates { , , }x y z , (ii) ellipsoidal coordinates { , , }� � �  and (iii) surface
ellipsoidal harmonic functions ( , )nme � �  are as follows.

 (i) 2 2 21( , ) ( )
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where to derive (1.89) we have used the following relations
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If the series of ellipsoidal harmonic expansion of the earth be extended
up to a limited degree and order, one arrives at an approximate represen-
tation for the external gravitational potential field of the earth, which can
be used as a reference gravitational field. For example if we expand the
ellipsoidal harmonic expansion of the external gravitational field of the
earth up to degree/order 360/360 we have
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which is an approximate solution of the actual eigen-value problem of
the three dimensional Laplace partial differential equation. The ellipsoi-
dal harmonic coefficients nmu  appearing in (1.92) can be determined ei-
ther, through an ellipsoidal harmonic analysis of the external gravita-
tional field of the earth, or by an exact transformation of spherical har-
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monic coefficients into ellipsoidal harmonic coefficients. In the Section
2.2, we will see the numerical details of exact transformation of spherical
harmonic coefficients into ellipsoidal ones.

1.8.2 Reference gravity intensity field of the exter-
nal gravity field of the earth

In the preceding section the following formulation was presented for ex-
ternal gravitational field of the earth
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Gradient of formula (1.94) can provide us with a presentation for gravi-
tational intensity field for the external space of the earth.
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where the metric tensor coefficients are as follows
 2 2 2

11 cosh cosg � � �� (1.96)
 2 2 2

22 33 (cosh cos )g g � � �� � � (1.97)

Box 1-23. presents the partial derivatives used in (1.95) while Box 1-24
provides us with some non-recursive formulas for computation of first
derivatives of the Legendre functions of the first kind as well as second
kind.

Box 1-23: Partial derivatives of the gravitational potential of the external

gravitational field of the earth.
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Box 1-24: First order derivatives of the Legendre functions of the first

kind and the Legendre functions of second kind (Thong 1989).

 (i) Non-recursive formulas for computations of the first order derivatives

of the Legendre functions of the first kind.
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(ii) Non-recursive formulas for computations of the first order derivatives
of the Legendre functions of the second kind.
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In the same way, the centrifugal intensity can be determined from the
gradient of the centrifugal potential.
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The partial derivatives of the centrifugal potential with respect to �  and
�  are given in Box 1-25 bellow.

Box 1-25: Partial derivatives of the centrifugal potential.
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�
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Finally, the sum of the gravitational intensity and centrifugal intensity
produces the gravity intensity vector ( , , )� � � �  as follows.
 � �( , , ) Grad ( , , ) Grad( ( , ))u v� � � � � � � � �� � (1.108)

where � �Grad ( , , )u � � �  and Grad( ( , ))v � �  are given by (1.95) and
(1.105), respectively.

If the summation (1.95) is continued up to some finite degree/order one
arrives at an approximate representation of the external gravitational in-
tensity vector field of the earth.
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1.9 Terrain correction
So far, we modelled the effect of global and regional masses of the earth
by ellipsoidal harmonic expansion of the earth�s gravitational potential
up to degree/order 360/360. We will supply the ellipsoidal harmonic co-
efficients needed for such an expansion by the exact transformation of
spherical harmonic coefficients of EGM96 geopotential model (F.
Lemoine et al., 1996) into ellipsoidal harmonic coefficients (see Section
2.2 page 79). According to F. Lemoine et al. (1996) the EGM96 geopo-
tential model has the maximum resolution of about 55km. That is, the
removal of the reference field of ellipsoidal harmonic expansion of
gravitational potential up to degree/order 360/360, with support of
EGM96 global geopotential model, will remove the effect of the global
and regional masses up to 55 km wave length. The same is true for refer-
ence gravitational intensity field. The effect of remaining local masses,
i.e. the effect of the features smaller than 55 km, especially the gravita-
tion of those masses between the evaluation point and reference ellipsoid
can be removed by the Newton integral over the local topographical
masses. In literature, such a correction is known as terrain reduction.

If one be interested in computation of the global topographical masses
the most accurately modelled is of ellipsoidal type. Such an ellipsoidal
model can be obtained by expressing the Newton integral, in terms of for
example Jacobi coordinates { , ,u� � }. However, in the case of local near
zone topographical masses one can obtain satisfactory results even in
terms of planar approximation. The Planar or flat approximation is ob-
tained by presenting the Newton integral in terms of local Cartesian co-
ordinate system centred at the calculation point, with x , y  axes in the
tangent plane and z  along the local normal. The name �planar� comes
form the fact that such a formulation is based on the assumption that
earth or geoid is flat! This is of course wrong for the case of global topo-
graphic reduction.

However, we shouldn�t forget that in our cases, after removal of the ref-
erence field of degree/order 360/360, we are left with only some very
small and localised topographical effects. Therefore, planar approxima-
tion can provide reasonable accuracy for terrain reduction. E. Grafarend
and S. Hanke (2000) have made an analytical study over the classical
planar approximation and have shown that the error of planar approxi-
mation grows exponentially as we go away from the calculation point.
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The planar terrain reduction has become very popular especially for the
construction of a convolution kernel and application of Fast Fourier
Transformation (FFT) techniques and wavelet algorithms, see for exam-
ple contributions by Y. Li and M. Sideris (1992, 1994), K. Schwarz et al.
(1990), M. Sideris and Y. Li (1993), M. Peng, et al. (1994), R. Forsberg
(1984, 1985, 1994), and M. Sideris (1995) G. Papp and J. Benedek
(2000) for planar terrain reduction and/or application of FFF technique.
Somewhere between the ellipsoidal approximation and planar approxi-
mation, we have the spherical terrain reduction, which assumes a spheri-
cal model for the earth or geoid. In this respect we can refer to contribu-
tions by H. Abd-Elmotaal (1995), R. Rummel et al. (1988) L. Sjoeberg
(1998, 2000), H. Nahavandchi (1996), H. Nahavandchi and L. Sjoeberg
(1998), J. Engels and E. Grafarend (1993), J. Engels et al. (1993).

Though we will use the planar approximation for the terrain reduction let
us for completeness give the outlines of the ellipsoidal approximation for
the topographic reduction.

1.9.1 Newton gravitational potential and gravita-
tional intensity in terms of the Jacobi ellipsoi-
dal coordinates {����,����,u}

At point p  in three-dimensional space 3
� , located by position vector x ,

the gravitational potential of a mass body V  can be derived via the
Newton’s gravitational law
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(1.109)

where ( )U x  is the gravitational potential of the mass body V , *dm  is the
differential mass element at the running point of the integral *x , and G
is the Newton gravitational constant. In terms of Cartesian coordinates,
Newton potential (1.109) may be written as
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where *
�  is the mass density at the running point of integral, i.e.

* * * *{ , , }x y z�x .
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The Jacobi ellipsoidal coordinates { , , }u� �  are generated by intersection
of three coordinate surfaces from three families of surfaces, namely: (i)
the family of confocal oblate spheroids, (ii) the family of confocal half
hyperboloids, and (iii) the family of half planes. Jacobi ellipsoidal coor-
dinates { , , }u� �  are related to Cartesian coordinates { , , }x y z  as follows
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with the Jacobi matrix
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and the matrix of metrics
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Using equations (1.111) to (1.113) we can formulate the Newton’s
gravitational law in terms of ellipsoidal coordinates { , , }u� �  as is done
in Box 1-26.

Box 1-26: Newton gravitational integral in terms of ellipsoidal coordinates
{ , , }u� �

(i) Newton kernel in terms of Jacobi ellipsoidal coordinates { , , }u� �

 * * 2 * 2 * 2

1 1
( ) ( ) ( )x x y y z z

�
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 (ii) The volume element
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(iii) The Newton’s gravitational law in terms of ellipsoidal coordinates
{ , , }u� �
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where in (1.117) * *( , )u � �  is the representation of topographical surface of
the earth in terms of Jacobi height u .

The Newton integral (1.117) is extended over the whole topographical
masses of the earth. However, one may be interested in the gravitational
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potential of local masses between the computational point and the refer-
ence ellipsoid in some limited radial distance from the calculation point,
therefore, (1.117) can be written as
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1.9.2 Planar approximation of terrain reduction

An exact terrain reduction in the local Cartesian coordinate system, can
be obtained by equi-areal map projection of the surface of the reference
ellipsoid 2

,a b�  into local tangent plane. However, according to E. Gra-
farend and S. Hanke (2000), the classical planar approximation is still of
reasonable accuracy if it is applied to the topographical masses in a ra-
dius of shorter than 100km around the computation point. Therefore, in
our case where we are talking about the terrain reduction in a radius of
50km around the computational point the classical planar approximation
is of sufficient accuracy.
Let us now briefly explain planar approximation and planar terrain re-
duction. In planar approximation the masses of the local-terrain is di-
vided into rectangular prisms and the total potential of the local-terrain
masses, are calculated by summing up the contributions of individual
prisms. In this method, the earth is regarded as a plane surface and the
Newton integral is formulated at the local Cartesian coordinate system in
the tangent plane at the computation point. This three-dimensional Carte-
sian coordinate system { , ,x y z } is built at the calculation point as follows
(see Figure 1-8):

1. The origin located at the calculation point
2. The z  axis along the local vertical of the computation point
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3. The x  and y  coordinates in the tangent plane at the calculation
point

4. The x  axis pointing towards North
5. The y  axis completes the right-handed system

Figure 1-8: The
Cartesian coordinate
system { , , }x y z  in
local tangent plane
and the mass prism

iV� .

 
The Newton integral equation in terms of local Cartesian coordinate
system for one rectangular prism can be written as follows.
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Assuming a constant density � , and putting the centre of coordinate
system at the computational point p , the volume integral (1.119) can be
solved analytically.
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Since we are also going to employ the observations of the type modulus
of gravitational intensity in our geoid computations let us, also derive the
gravitational intensity of a rectangular prism shown in Figure 1-8. For a
differential mass element dM , the gravitational intensity can be derived
from the gradient of the gravitational potential as follows.
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Therefore, for a mass prism shown in Figure 1-8 one can write
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1.10 Level ellipsoid of Somigliana-Pizzetti;
best fitting ellipsoid to geoid

Millions of years ago when the earth was at liquid state, it formed as an
ellipsoidal body at hydrostatic equilibrium. Later during the cooling pe-
riod up to now, it has deviated from its initial hydrostatic equilibrium
state. However, this deviation is still not more than some thousands me-
ters. Furthermore, one of the especial equipotential surfaces of the earth,
i.e., geoid, which fits to the surface of oceans in an optimum way, is still
up a very high degree of approximation resembling an ellipsoid of revo-
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lution. Indeed, the deviation of geoid from an ellipsoid of revolution of
the Somigliana-Pizzetti type is not more than 100m. Therefore, a refer-
ence ellipsoid of Somigliana–Pizzetti type can be considered as approxi-
mate geoid in first degree approximation. Box 1-27 covers the definition
of the Somigliana-Pizzetti ellipsoid, which was first proposed by P. Piz-
zetti (1894), and later by C. Somigliana (1930) as a model level surface
of the earth. As an in-depth review of the reference ellipsoid of the type
Somigliana-Pizzetti, recent research made by E. Grafarend and A. Arda-
lan (1999a, 1999b) can also be acknowledged.

Box 1-27: Somigliana-Pizzetti gravity field

Somigliana-Pizzetti gravity field is a model gravity field generated by an
ellipsoidal with following properties
(i) Having the same mass M  as that of the earth
(ii) Rotating with the same angular velocity �  as the earth
(iii) being a model equipotential surface /reference level surface/ with

the geoid�s potential 0w  as its gauge

Note: According to Stokes theorem, having defined the potential value on
the known surface of the reference ellipsoid 2

,a b� , the gravity potential out
side 2

,a b�  can be determine uniquely.

The World Geodetic Datum 2000 (WGD2000) defined by E. Grafarend
and A. Ardalan (1999a, 1999b) is an international reference ellipsoid
generated according to Somigliana Pizzetti concept of a level ellipsoid.
WGD2000 is derived base on the current best estimates of the funda-
mental geodetic parameters { 0 0, , ,GM J W� } are listed in Table 1-1.
Table 1-2 offers the size and shape parameters { ,a b } of the WGD2000 in
different permanent tide systems.
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Table 1-1: Current best estimates of the fundamental geodetic parame-
ters { 02, , ,GM J W� }

Funda-
mental Pa-
rameters

GM
3 2/km s

2J �

/rad s
0W

2 2/m s

Zero Fre-
quency

398600.4418III

�0.0008

�4.841695485

�10�4 IV

 
�4.66�10�11

7.292115

�10�5 I

�10�12

62636855.80II

�0.5

Tide-Free 398600.4418III

�0.0008

�4.8416537

�10�4 IV

�3.561�10�11

7.292115

�10-5 I

 
� 10�12

62636855.80II

�0.5

Mean-Tide 398600.4418III

�0.0008

�4.84183457

�10�4 V

�3.561�10�11

7.292115

�10-5 I

�10�12

62636855.80II

�0.5

I)  Groten, 1997
II)  Grafarend and Ardalan, 1997, and Burša et al., 1997b
III)  Ries et al., 1992 (in SI units)
IV) Tapley et al., 1996
V)Lemoine et al., 1996

Table 1-2: World Geodetic Datum 2000 (WGD2000)  (E. Grafarend and
A. Ardalan (1999a, 1999b)) as a Somigliana-Pizzetti type reference ellip-
soid defined in zero frequency, tide free, and mean-tide permanent tide
systems.

WGD2000 Pa-
rameters

a
m

b

m
�

m
Zero Frequency 6378136.602

�0.053

6356751.860

�0.052

521854.674

�0.015
Tide-Free 6378136.572

�0.053

6356751.920

�0.052

521853.580

�0.013
Mean-Tide 6378136.701

�0.053

6356751.661

�0.052

521858.317

�0.013



64

1.11 The geoid potential value W0

In Section 1.10, we defined the reference ellipsoid of Somigliana-Pizzetti
type as an approximate figure of geoid. In other words, we look upon the
reference ellipsoid of Somigliana-Pizzetti type as an equipotential sur-
face of reference gravity field of the earth, which approximates the geoid
in an optimum way. One of the most important parameters in the defini-
tion of a reference ellipsoid of Somigliana-Pizzetti type is the geoid�s
potential 0W . In fact, according to E. Grafarend and A. Ardalan (1999b),
it is the leading parameter in definition of a reference ellipsoid of Somi-
gliana-Pizzetti type. It is important to note that while the shape of geoid
changes from one permanent tide system to another, its gravity potential,
i.e. the 0W  value, remains constant (see M. Burša, 1995 for a proof). For
our computations we will use following 0W  value, which has been de-
rived by E. Grafarend and A. Ardalan (1997), and M. Burša et al.
(1997b) and is used by E. Grafarend and A. Ardalan (1999) to define the
WGD2000.
 2 2

0 (62636855.8 0.5)( / )W m s� � (1.123)
 The 0W  value is not constant value is varying in time, dominantly due to
eustatic rise. A. Ardalan and E. Grafarend (1999) from the repeated GPS
observations of the Baltic Sea Level Projects have derived a raise of
0.0086 2 2( / )/m s year  for the 0W  value.

1.12 The permanent tide effect
The tidal gravitational intensity and tidal gravitational potential of sun
and moon and other planets can be split into two components: (i) the time
varying component and (ii) the permanent or time invariant part. Geoid
as an especial equipotential surface of the gravity potential field of the
earth, by definition, is free from the effect of all masses which are outside
the earth. The permanent tide component, like the time varying compo-
nent, affects both the geometry and gravity space of the earth. However,
since the permanent component of the tide is constant in course of time,
is not observable, cannot be modelled empirically, and consequently,
cannot be accurately estimated. Therefore, several concepts in dealing
with the permanent part of the earth tide have been developed, which are
as follows:

(i) mean permanent tide system
(ii) zero frequency permanent tide system
(iii) tide-free (or non- tidal) permanent tide system
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Mean permanents tide system refers to a system where both the gravity
and crust deformation caused by permanent tide is left intact (not cor-
rected). In contrast, the tide-free permanent-tide system refers to the case
where both the gravity and deformation of the permanent tide is re-
moved. Somewhere between these two systems is the zero frequency
permanent-tide system, in which the gravitational part of the permanent
tide is removed while the deformation caused by the permanent tide is
retained.

Let us now briefly review the history of permanent tide correction of the
gravity data. Traditionally, gravity measurements were corrected for both
the periodical and permanent parts of the tide. This means that the tide-
free system was adopted. However, complete removal of the tide effect
(including the permanent tide effect) demands a proper choice of zero
frequency Love number 20k , which is not measurable and is just adopted
base on some pure hypothetical assumptions. Besides, when removing
the gravity effect of the permanent tide one must also correct the defor-
mation caused by it. Once the deformation caused by permanent tide is
corrected, one must also change the earth's moments of inertia, the rota-
tional velocity, and the centrifugal force. Which makes the whole proce-
dure quite complicated! Therefore, Hankasalo in (1964) suggested that
the permanent part of the tide does not be removed from the gravity ob-
servation, i.e. using the mean-tide system. Honkasalo's suggestion was
adopted in International Gravity Standardisation Net 1971 (IGSN71).
Since in the mean-tide permanent tide system the gravity data are af-
fected by the masses, which are outside the earth, they do not fit into the
Laplace differential equation, which is the field equation in most geoid
computation methods. To avoid this problem M. Heikkinen in (1979)
proposed that to revert to traditional correction of gravity data, i.e. tide-
free system, this was also resolved by the IAG in 1979. However, this
was still the matter of confusion as to what should be done for the indi-
rect effects like deformation of the earth, changes in moment of inertia,
and rotational velocity of the earth caused by complete removal of the
permanent tide. As a results M. Ekman (1979, 1981) and E. Groten
(1980, 1996a, 1996b) proposed a third permanent tide concept, which
was later resolved by IAG in 1983, that to eliminate the attraction due to
permanent tide but to leave its deformation intact. This was termed as
zero frequency tide system.

Each of the above mentioned permanent tide systems has its own poten-
tial field, reference ellipsoid, and geoid (see M. Ekman (1989, 1995), R.
Rapp et al. (1991) and M. Burša (1995a, 1995b)). It is important to note
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that while the shape of geoid changes from one tide system to another, its
potential, 0W , remains constant  (see M. Burša, 1995c). According to E.
Grafarend and A. Ardalan (1999a, 1999b) the linear eccentricity �of the
reference ellipsoid WGD2000 varies by about 1 m  form tide-free to
zero-frequency permanent tide system, i.e., the reference ellipsoid is 1 m
more oblate in zero-frequency tide system (see Table 1-2).

In terms of spherical geopotential field of the earth, the permanent tide is
only affecting the 20J  coefficient, i.e. the second zonal-geopotential coef-
ficient. The transformation equations of *

20J  (fully normalised 20J ) be-
tween different permanent tide systems according to D. Smith (1989) is
as follows
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20 20
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5

J J
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(1.126)

 subject to
 *

20 20 / 5J J�

where 0k  is the zero frequency love number. In the case of EGM96,
20 0.3k �  is adopted.

1.13 Downward continuation problem
We mentioned that our solution technique to solve the fixed-free two-
boundary-value problem is through the application of Abel-Poisson inte-
gral and its gradient to the incremental quantities which are harmonic, on
the surface of the earth down to the surface of the reference ellipsoid.
Now let us have a brief review of integral equations and their classifica-
tions. In general, an equation in which the unknown function is under the
integral sign is called �integral equation�. If the unknown function is
only under the integral sign, then the equation is said to be of the �first
kind�. If the unknown function is both inside and outside the integral
sign, the integral equation is of the �second kind�. If the limits are fixed
then the integral equation is called �Fredholm integral equation�. There-
fore, a Fredholm integral equation of the first kind is like
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 ( , ) ( ) ( )
b

a
k s t x t dt g s�� . (1.127)

When the upper limit of the integral is also a variable, then we have a
Volterra integral equation. The Volterra integral equation of the first
kind can be written as
 ( , ) ( ) ( )

s

a
k s t x t dt g s�� (1.128)

An especial type of Volterra integral equation with the kernel
1( , ) ( )k s t s t ��

� �  is known as Abel integral equation (N. Abel, 1823).
Among the references on integral equations C. Corduneanu (1991), J.
Kondo (1992), W. Lovitt (1950), S. Mikhlin (1961,1964), A. Pipkin
(1991), D. Porter and D. Stirling (1990), W. Press et al (1992), F. Tri-
comi (1957), E. Whittaker and G. Robinson (1967), and C. Baker (1977)
are outstanding.

Now let us return to our integral equation and see to which category of
integral equations it fits. Clearly, it is of the form of Fredholm integral
equations of the first kind. Besides it is a linear equation, therefore, more
precisely it is of a linear Fredholm integral equation of the first kind.
The kernel of Abel-Poisson integral is square integrable, and is also
symmetric, i.e., ( , ) ( , )k s t k t s�  (G. Arfken, 1985). A comparison of the
Able-Poisson integral with the general form of Fredholm integral equa-
tion of the first kind (1.127), reveals that in our case, the known function
( )g s  is incremental gravitational intensity and incremental gravitational

potential at the surface of the earth. While the unknown function ( )x t  is
the incremental gravitational potential at the surface of the reference el-
lipsoid. Equation (1.127) in short hand notations may be written as
 y Ax� (1.129)
Where, in the language of functional analysis, A  can be called a compact
linear operator from Hilbert space 1H  into Hilbert space 2H . It is im-
portant to note that though (1.129) theoretically has a unique solution,
however, in practice due to observation errors, discretization of the
problem, and  observations (equations) than unknowns, does not poses a
unique solution. Consequently, (1.129) can be reformulated as
 y i Ax� � (1.130)
where i  represents the inconsistencies of the observations y . To obtain
an optimum solution for (1.130) one may resort to minimum norm solu-
tion x̂  through
 * 1 *ˆ ( )x A A A y�

� (1.131)
where *A  is the adjoint of A .
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This minimum norm solution if exists will be unique and have the prop-
erty of being orthogonal to the null-space of A . However, it is well
known that an equation of the type (1.129) or (1.130) is ill-posed (see for
example C. Baker, 1977, C. Baker and G. Miller, 1982), which implies
that minimum norm solution of (1.130) does not depend continuously on
the left hand side of (1.130).  D. Phillips in (1962) and later A. Tikhonov
in (1963) proposed a regularisation method to solve the ill posed prob-
lems like (1.130), which is later known as Phillips-Tikhonov regularisa-
tion method. The Phillips-Tikhonov regularisation is based on minimisa-
tion of following functional for x � .
 2 2( )F x Ax y x� � �

� �� � � (1.132)
where �  is a positive parameter and is called regularisation parameter.
The minimum norm solution of (1.132) over a finite dimensional sub-
space mV  of 1H  is given by (see F. Natterer (1977), and J. Marti (1978,
1980) for example)
 * 1 *( )mx A A I A y�

�
�

� � (1.133)
Note that, mx �  satisfies the following orthogonality condition in mV .
 | | 0m mAx y A x� �� � �� � � (1.134)
for all mV� � .

It is well known that the stability of the solution mx �  depends on the size
of the regularisation parameter � . That is, the bigger the regularisation
parameter �  the less the variance for the solution mx � . However, by in-
creasing the regularisation parameter �  we will increase the bias of the
solution. Indeed, the optimum solution is the one, which compromises
between variance and bias of the solution. Finding the optimum regulari-
sation parameter �  is a tedious process and requires lots of repetition of
the solution. A. Frommer and P. Maass (1999) have proposed a fast
method, which accelerates the process of finding a proper value for �  by
a factor of 3.

1.13.1 Discretization of the Abel-Poisson integral

In order to solve the Able-Poisson integral numerically it must be decre-
tized. The standard method for discretizing an integral equation is based
on interchange of the integration by summation. Following boxes, sum-
marise our discretization scheme.

The important issue to mention here is that in our downward continuation
scheme, we derive from both incremental quantities of the type gravita-
tional intensity and gravitational potential at the surface of the earth the
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incremental gravitational potential at the surface of the reference ellip-
soid. This is what which makes our approach different from usual down-
ward continuation of gravity anomalies at the surface of the earth into
gravity anomaly at the surface of the reference sphere (see for example
H. Nahavandchi 1998). As a pioneer contribution to the discrete solution
of a boundary-value problem A. Bjerhammar (1974) can be mentioned.

Box 1-28: Discretization of the ellipsoidal Abel-Poisson integral of in-
cremental gravitational potential W� .
(i) Continues form of the integral equation
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(ii) Discretized form of the integral equation
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Box 1-29: Discretization of the ellipsoidal Abel-Poisson integral of in-
cremental gravitational intensity �� .
(i) Continues form of the integral equation
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(ii) Discretized form of the integral equation
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subject to
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2 Fixed-free two-boundary value
problem—case study high-
resolution geoid of Baden-
Württemberg

In the previous chapter the theoretical foundation of a high-resolution
geoid determination methodology based on fixed-free two-boundary value
problem is established. Here we are going to test the derived methodology
by calculating a high-resolution local geoid for the State Baden-
Württemberg /Germany/ and comparing it with European Gravimetric
Quasi Geoid (EGG97). Let us start with by introducing the input data.

2.1 Input data
To compute the high-resolution geoid of Baden-Württemberg, based on
fixed-free two-boundary value problem, different type of data are collected
and applied. These data are as follows:

� Modulus of gravity intensity and geopotential numbers at 1488 sta-
tions along the first order levelling network of the State Baden-
Württemberg /Germany.

� 1 1km km�  Digital Terrain Model (DTM) of Baden-Württemberg.

� Ellipsoidal harmonic coefficients of external gravitational field of
the earth up to degree/order 360/360.

� 157 GPS stations of BWREF.

There are currently over 14000 stations in Baden-Württemberg, along the
gravimetric /precise/ levelling lines of first and second order, which are
equipped with geopotential numbers. Since these station are too dense
along the levelling lines we selected only 1488 stations along the first or-
der levelling for are calculations. Table 2-1 represents the first 10 records
of these data set, and Figure 2-1 shows the coverage of the data. As shown
in Table 2-1 the records are consist of modulus of gravity intensity, geo-
potential number, Gauss-Krüger map-projection coordinates ( , )x y , and
the normal heights.
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The GPS stations of BWREF are the Baden-Württemberg part of the cover-
age GPS network of the Germany (DREF). The 157 GPS coordinates of
BWREF, which are provided to us via the kind grace of the State Geodesy
Department of Baden-Württemberg, are plotted in Figure 2-2.  Unfortu-
nately, non-of these GPS stations are identical with the first order levelling
benchmarks!

However, in our methodology, observations of the type gravity intensity
and gravity potential must be reduced to the surface of the reference ellip-
soid, and therefore, one need to access the GPS coordinates, i.e. Gauss el-
lipsoidal coordinates { , , }l b h , of the stations. To rescue the computations
from such a data deficiency, not having GPS positioned gravity intensity
and gravity potential stations, following strategy was applied.

(i) The Gauss-Krüger map-projection coordinates ( , )x y  of the
gravity stations are readily transformed into Gauss ellipsoidal
longitude and latitude { , }l b  of the corresponding reference ellip-
soid (Bessel ellipsoid in this case).

(ii) By using the global geoid computations machinery, presented in
Chapter 3 the global geoidal undulation of the gravity stations is
computed and used to convert the normal height of the stations
into ellipsoidal height h .

Why do we accept such an approximation of using a global geoidal undu-
lation and then apply it as the quasi geoid height to convert the normal
heights into ellipsoidal heights? The answer lies in the fact that we esti-
mated the accuracy of the available gravity data as 0.1 mGal. Considering
the vertical variations of the gravity intensity of the earth, 10-cm accuracy
is enough to express the vertical location of the gravity stations. As will be
seen in chapter 3 our global geoid computation method can provide us with
geoidal undulations of up to decimetre accuracy level. Besides, we know
that the difference between quasi-geoid and geoid is not more than a few
centimetres.

In this way, we succeeded to device a procedure, which solves the problem
of lacking GPS coordinate of previously measured gravity stations.

For terrain reduction, one needs a DTM. Figure 2-3 shows the topographic
map of Baden-Württemberg generated by a 1�1 km DTM file that we used
for of the terrain reduction.
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Table 2-1: First ten records of the data file of 1488 benchmarks along the
first order levelling lines of the state Baden-Württemberg, which are
equipped with geopotential numbers and modulus of gravity intensity.

Station
Number

Geopotential
Number

(kGal�m)

x (Gauss
Krüger)

(m)

y (Gauss
Krüger)

(m)

Modulus of
Gravity Inten-
sity(mGal)

Normal
Height

(m)
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Having introduced the input data, let us start the computations of the high-
resolution geoid of Baden-Württemberg by remove step, which will lead us
to harmonic incremental gravitational intensity ( )�� x  and incremental
gravitational potential ( )W� x  at the surface of the earth, the outer bound-
ary. We will perform the remove process in two steps. In remove-step 1,
we remove the effect of global gravitational field { , }g gW�  and centrifugal
field { , }c cW� . Remove-step 2 is devoted to removal of the gravitational
field of the local topographical masses { , }t tW� , the so-called terrain re-
duction. The effect of global gravitational field { , }g gW�  will be formu-
lated via ellipsoidal harmonic expansion of the external gravitational field
of the earth up to degree/order 360/360. Such an expansion requires ellip-
soidal harmonic coefficients, which are derived from exact transformation
of the spherical harmonic coefficients into ellipsoidal harmonic coeffi-
cients. In the next section, we will ponder on this transformation.
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Figure 2-1: Coverage-map of 1488
gravity intensity and gravity potential
stations along the first order levelling
lines of Baden-Württemberg.
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Figure 2-2: Distribution of the
BWREF GPS stations of Baden-
Württemberg. In total 157 GPS sta-
tion.
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Figure 2-3: Topographic map of Ba-
den-Württemberg, based on
1km�1km DTM file. Maximum ele-
vation is 1426.9 m.  and minimum
elevation 87 m.
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Figure 2-4: Variation of the modulus
of gravity intensity in Baden-
Württemberg. Modulus of gravity in-
tensity varies from 980625.102
mGal  to 981017.587 mGal , with
standard deviation of 100.221  mGal
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Figure 2-5: Variation of geopotential
numbers in Baden-Württemberg.
Geopotential numbers vary between

2 29.3948 /m s  and 2 2103.6360 /m s ,
with standard deviation of

2 220.0744 /m s .

10

20

30

40

50

60

70

80

 49° N 

 48° N 

 10° E   9° E   8° E 

 50° N 

Baden−Württemberg/Germany m2/s2 

Map Projection Information:
Equidistant Conic Projection
Standard Parallels: 48 N�  and 49 N�
Reference ellipsoid: WGD2000



79

2.2 Transformation of spherical harmonic co-
efficients into ellipsoidal harmonic coeffi-
cients

Nowadays it is a common practice to represent the �Standard Gravity
Earth Models� in terms of spherical harmonics. Fortunately, precise trans-
formation relations between spherical and ellipsoidal harmonic coefficients
are available and therefore one can transfer the spherical harmonic coeffi-
cients into ellipsoidal ones without any loss of accuracy. Box 2-1 offers a
summary of the transformation formulae of spherical harmonic coefficients
into ellipsoidal harmonic coefficients according to C. Jekeli (1981, 1988).
In conjunction with the ellipsoidal harmonics, contributions by D. Gleason
(1988, 1989), G. Sona (1996) and J. Yu and H. Cao (1996) should also be
acknowledged.

Box 2-1: Transformation of spherical harmonic coefficients into ellipsoidal

harmonic coefficients

Spherical harmonic coefficients, , ( )n mu sphere , can be uniquely trans-
formed into ellipsoidal harmonic coefficients, , ( )n mu ellipsoid  via
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By expanding the factorials in (2.2), one can reach to the following recur-
sive formula, which is numerically stable especially for high degree/orders.
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(2.4)

with the start value
 , ,0 1 ,n m n m� � � (2.5)

*
0, | |(sinh )n mQ �  are associated Legendre functions of the second kind, see

equation (C.20) for their corresponding recursive relations.

As one can read from (2.1)-(2.5) each of the ellipsoidal harmonic coeffi-
cients , ( )n mu ellipsoid  is equal to the spherical harmonic coefficients of the
same degree and order , ( )n mu sphere  plus a linear combination of spherical
harmonic coefficients of the lower degree but the same order. There are
three parameters involved in (2.1), namely linear eccentricity

2 2a b� � � , and the size parameters 0� , and a . In fact, two of these pa-
rameters, say 0{ , }� � , are enough to determine the shape and size of a ref-
erence ellipsoid 0 0

2
cosh , sinh� � � ���  uniquely. The question now arises as to

which reference ellipsoid these parameters are related. The size parameter
a in (2.2) can be identified from the identity a R� , where R is the scale
factor normally given with the spherical harmonic coefficients. In fact, R
is the reference sphere 2

r R�
�  out of which the spherical harmonic expan-

sion is uniformly convergent. That is, it defines the validity space of
spherical harmonic expansion of external gravitational field of the earth.
The sphere 2

r R�
�  in ellipsoidal harmonic expansion of external gravita-

tional field of the earth is replaced by the reference ellipsoid 0 0
2
cosh , sinh� � � ��� .

Similar to 2
r R�

� , 0 0
2
cosh , sinh� � � ���  defines the validity space of the ellipsoidal

harmonic expansion. While 0cosh a� � �  is determined via the identity
a R� , the selection of 0sinh b� � �  should be determined according to
second zonal spherical harmonic 20J . Especially when one is interested in
a Somigliana-Pizzetti type reference ellipsoid as the validity space of ellip-
soidal harmonic expansion. As one knows the reference ellipsoid of Somi-
gliana-Pizzetti type is uniquely determined via four fundamental geodetic
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parameters 20J , � , 0W , and GM  (see Grafarend and Ardalan, 1999a,
1999b).

In our case, the ellipsoidal harmonic coefficients are supplied from the
transformation of the spherical harmonic coefficients of EGM96 (F.
Lemoine et al., 1996 and 1998). Table 2-2 is a collection of some spherical
harmonic coefficients of EGM96. The harmonic coefficients of EGM96 are
compatible with the following model.

 � �
360

2
( , , ) 1 ( ) ( , )

n
n

s nm nm s
n m n

gm RU l b r u e l b
r r

� ��

� �� � (2.6)

( , )nm se l b  are surface spherical harmonics
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�
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In (2.6) { , , }sl b r  are spherical coordinates of the computational point, R = 6
378 136.3 m is the scale factor which defines the radius of the reference
sphere 2

r R�
�  out of which the series expansion of (2.6) is uniformly con-

vergent. The product of Newton gravitational constant and the mass of the
earth in the EGM96 (F. Lemoine et al., 1998) model is gm=3 986
004.415E+8 m3/s2.  The spherical harmonic coefficients of EGM96 are in
tide free system. However, they can be transferred into mean-tide or zero-
frequency permanent tide systems via the formulae given in Section 1.12.
Table 2-2: Some spherical harmonic coefficients of the EGM96 global
geopotential model.
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Some of the computed ellipsoidal harmonic coefficients are represented in
Table 2-3. These coefficients are compatible with the following series ex-
pansion, which is convergent outside the reference ellipsoid 0 0

2
cosh , sinh� � � ��� .

0cosh a� � �  = 6 378 136.3 m is coming from identity 2
r Ra
�

�� � , and
0sinh b� � � =6 356 751.647m is the linear eccentricity �  = 521 853.580

(m) of WGD 2000 in tide free system (E. Grafarend and A. Ardalan
(1999b)) which has been computed based on four fundamental geodetic
parameters including the 20J  coefficient of EGM96.
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where gm=3 986 004.415E+8 m3/s2. *
,| |(sinh )n mQ �  are the numerically sta-

bilised associated Legendre functions of the second kind (see  (C.20)).

Table 2-3: Ellipsoidal harmonic coefficients; valid for the outer space of
the reference ellipsoid 

0 0
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521 853.580 (m) in tide free system (E. Grafarend and A. Ardalan, 1999b)
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2.3 Remove steps

2.3.1 Remove-step 1: Removal of the global gravita-
tional field and centrifugal field

Let us now get started with the removal of the modelled gravitational field,
via the ellipsoidal harmonics expansion of the external gravitational field
of the earth up to degree/order 360/360 in mean-tide permanent tide system
(see Section 1.12, page 64 for the definition of different permanent tide
systems). We will also include the effect of the atmospheric masses in the
expansion by adopting a proper gravitational constant GM , which in-
cludes the mass of the earth's atmosphere (J. C. Ries, 1992, and E. Groten,
1997). Such a reference field represents the effect of global and regional
masses up to the features of 50-60 km wavelength (F.G. Lemoine et al.
1996).

In Table 2-4 we have a collection of the ellipsoidal coordinates of a few
first stations along the first order levelling lines of Baden-Württemberg.
Ellipsoidal heights in Table 2-4 are computed from global geoidal heights
as we explained before. Transformation of the Gauss ellipsoidal coordi-
nates in to Jacobi ellipsoidal coordinates, application of the harmonic ex-
pansion up to degree/order 360/360, and finally addetively combination of
the gravitation of centrifugal field have led to the gravity intensity and
gravity potential values represented in Table 2-5 for few first stations. The
components of gravity intensity vector { , , }�� �� � �  in Table 2-5 are with
respect to Jacobi ellipsoidal base vectors { , , }�� �e e e .

Table 2-4: Gauss ellipsoidal coordinates { , }l b  and computed ellipsoidal
height h  of the stations along the first order levelling lines of Baden-
Württemberg. Ellipsoidal heights are computed by adding the geoidal un-
dulations obtained from global geoid computations to the normal height of
the stations.

Point # l b h
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Table 2-5: Gravity potential ( , , )W u� �  and gravity intensity
( , , ) ( , , )� �� � � � � �� � e�  �  ( , , )� �� � �� e  ( , , )� �� � ��� e , i.e. gravitational

potential and gravitational intensity of ellipsoidal harmonic expasion up to
degree/order 360/360) plus the centrifugal potetnial.

 Point #  ( , , )� � � �� ( , , )� � � �� ( , , )� � � �� ( , , )W � � �
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Removal of the calculated gravity and centrifugal intensity fields
{ ( ), ( )}g cx x� � , and gravity and centrifugal potential fields { ( ), ( )}g cW Wx x
form the observed gravity intensity ( )� x  and geopotential number ( )c x
generates the incremental pseudo observations of the remove step 1 as
follows.
 1 ( ) ( ) ( )g c� �� � � �x x x� � (2.9)
 01( ) ( ) ( ( ) ( ))g cW w c W W� � � � �x x x x (2.10)
Figure 2-6 shows the variation of the incremental gravity intensity

1 ( ) ( ) ( )g c� �� � � �x x x� �  while Figure 2-7 presents the variation of
incremental gravity potential 01( ) ( ) ( ( ) ( ))g cW w c W W� � � � �x x x x
within the state Baden-Württemberg. A comparison between these two fig-
ures and topographical map of the state Baden-Württemberg shows a high
correlation between topography and the incremental quantities of the type

1( )�� x , and 1( )W� x .

Note that the incremental quantities 1( )�� x  and 1( )W� x  due to the re-
maining effect of topographical masses are not harmonic in space between
the surface of the earth and the reference ellipsoid. Therefore, we have to
proceed to the remove-step 2 to remove the effect of the topographical
masses between the surface of the earth and the reference ellipsoid.
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Figure 2-6: Incremental gravitational in-
tensity 1 ( )� �� � x  �  ( ) ( )g c�x x� � .
minimum: 40.7307mGal�

maximum:   44.8557mGal
standard deviation: 14.9594mGal .
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Figure 2-7: Incremental gravitational
potential 1( )W� x  0 ( )w c� � x

( ( )gW� x  ( ))cW� x .
minimum: 2 224.1242 /m s�

maximum: 2 20.4859 /m s�

standard deviation:  2 23.5054 /m s .
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2.3.2 Remove-step 2: Terrain reduction

In this section, we are going to remove the effect of the near zone masses,
i.e. those features, with the wavelength signature smaller than 50 km.
These features are specifically the terrain masses between the evaluation
point and the reference ellipsoid in a radius of 50 km. Since after removal
of the global field of ellipsoidal expansion of degree/order 360/360 we are
left with the terrain reduction in a very small area of 50km around the
computational point, Newton integral over the local topographical masses
in planar approximation can be used. Our computations will be based on
the 1 1km km�  DTM of Baden-Württemberg. In Table 2-6 we have pre-
sented the computed components of gravitational intensity vector and
gravitational potential of the topographical masses above the reference el-
lipsoid for first few points of the data file. As it is shown in Figure 2-8, the
gravitational potential of topographical masses varies from 2 27.9147 /m s
to 2 243.8092 /m s . While the variation of modulus of gravitational inten-
sity of topographical masses is in the range of 12.8281  mGal  to
116.1205 mGal  (see Figure 2-9).
Table 2-6: Components of gravitational intensity ( , , )t � � ��  ( ,t

�
� �� �

, ) �� e �  ( , , )t
� �� � �� e  �  ( , , )t

� �� � �� e , and gravitational potential ( ,tW � �

, )u  of topographical masses above the reference ellipsoid in a radius of 50
km around the calculation point on the surface of the earth.
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Removal of the gravitational intensity ( )t x� and potential ( )tW x of the lo-
cal topographical masses in a radius of 50km  around the calculation
points, as well as, gravitational and centrifugal intensity { ( ), ( )}g cx x� � ,
and gravitational and centrifugal potential { ( ), ( )}g cW Wx x form the ob-
served modulus of gravity intensity ( )� x  and geopotential number ( )c x
generates the incremental pseudo observations ( 2( )�� x , and 2( )W� x ) of
the remove-step 2.
 2( ) ( ) ( ) ( ) ( )g c t� �� � � � �x x x x x� � � (2.11)
 02( ) ( ) ( ( ) ( ) ( ))g c tW w c W W W� � � � � �x x x x x (2.12)

A comparison of Figure 2-9 and Figure 2-10 with Figure 2-7 and Figure
2-8 reveals the fact that in the process of generating the harmonic incre-
mental gravitational potential in remove-step 2 we have made the incre-
mental fields of gravitational potential and gravitational intensity a bit
rougher. Why do we have such a result? The answer is that the global po-
tential and intensity fields computed from the ellipsoidal harmonic expan-
sion are based on actually observed gravity field information, embedded in
the coefficients. Therefore, it naturally fits better to the real gravitational
potential and gravitational intensity field, than the gravitational intensity
and potential computed by Newton integral over the terrain masses in pla-
nar approximation and constant mass density ( 32.67 /g cm� � ). It is im-
portant to note that by removing the global intensity and potential field of
ellipsoidal harmonic expansion of degree/order 360/360 we do not need to
consider any isostasy effect, because it is implanted in ellipsoidal har-
monic expansion of degree/order 360/360!   
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Figure 2-8: Gravitational potential of
topographical masses above reference
ellipsoid in an area of 50km 50km
around the calculation points. Computa-
tions are based on 1 1km km�  DTM
model and planar approximation. The
gravitational potential of topographical
masses varies between 2 27.9147 /m s  to

2 243.8092 /m s .
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Figure 2-9: Modulus of gravitational
intensity of topographical masses in a
radius of 50km  around computation
point above the reference ellipsoid.
Calculations are based on a
1 1km km�  local DTM model and
planar approximation. The norm of
gravitational intensity of topographi-
cal masses varies from 12.8281
mGal  to 116.1205 mGal .
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Figure 2-10: Incremental potential
after remove-step 2. The incremental
potential varies in the interval
[ 2 259.1281 /m s� , 2 216.9759 /m s� ]
with standard deviation of

2 28.3188 /m s .
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Figure 2-11: Modulus of incremental
gravity intensity after remove-step 2.
The modulus of incremental gravity
intensity varies in the interval
[ 32.8583mGal� ,127.5585 mGal ]
with standard deviation of 25.5092
mGal .
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2.4 Downward continuation step
Here we will present the detailed results of downward continuation of the
harmonic pseudo-observables derived from the remove-step 2. Our down-
ward continuation machinery is Abel-Poisson integral in discrete form as
derived in Section 1.13.1 (page 68).  It is a well-know fact that integral
equations of the first kind are very sensitive to errors of observations. That
is, for example, in Abel-Poisson integral, written in compact form as

 ( , ) ( ) ( )
b

a
k s t x t dt g s�� (2.13)

any small error in the observations ( )g s  will be magnified and transferred
into unknowns ( )x t . To reduce the effect of errors on the pseudo observ-
ables one can replace the original observables by some mean values.  Fol-
lowing that idea we overlaid a 6 ' 6 '� gird over the data points, averaged
the incremental observables within each cell of the grid, and attributed the
mean value to the centeroid of the averaged points within the cells. Figure
2-12 shows the adopted grid for averaging while Figure 2-13 displays the
averaged data points.

Let us now have a glance at the variations of the incremental quantities
2��  and 2W�  after averaging in Figure 2-14 and Figure 2-15. The figures

show that the averaging process does not change overall picture of the
variations of the disturbing quantities but behaves like a low-pass filter.

For the numerical integration of Abel-Poisson integral over the reference
ellipsoid 2

,a b�  we select a 12 ' 12 '�  grid over the geographical region
7.5 10.5�� �

� �  and 57.5 50�� �
� � , which results in 15 13 198� �

unknowns of the type mean incremental gravitational potential on the sur-
face of reference ellipsoid 2

,a b�  against 228 observations of the type 2��

and 228 observations of the type 2W� . That is we have an over-determined
case of 456  equations to determine 198  unknowns. Since we are going to
use two different types of observables simultaneously we have to think of
the relative weight between the two types of observations amongst the
other numerical problems of solving an insatiable integral equation of the
first kind.  Therefore, it is reasonable to solve the problem first for each
type of observables separately, and then derive the combined solution. Let
us first start with the observables of the type incremental gravitational po-
tential 2W� .
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Figure 2-12: The overlaid 6 ' 6 '�  grid
over the data points.
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Figure 2-13: 228 averaged data points
in 6 6� ��  grid.
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Figure 2-14: Averaged incremental
gravitational potential 2W� . Variations
are in the interval [ 2 253.2306 /m s� ,

2 219.2751 /m s� ] with standard de-
viation of 2 28.6191 /m s .
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Figure 2-15: Averaged modulus of in-
cremental gravitational intensity 2�� .
Variations are in the interval
[ 31.3276mGal� ,107.8387mGal ] with
standard deviation of 24.147469mGal .

−20

−10

0

10

20

30

40

50

60

70

80

 10° E 

 48° N 

 49° N 

  8° E   9° E 

 50° N 

Baden−Württemberg/Germany

Map Projection Information:
Equidistant Conic Projection
Standard Parallels: 48 N�  and 49 N�
Reference ellipsoid: WGD2000



99

2.4.1 Case 1: Solution for the disturbing Gravita-
tional potential �W2

The following discretized integral-equation (c.f. Section 1.13.1) provides
us with observation equations for determination of unknown incremental
gravitational potential 2W�  .

 

max max

2 2 2

1 1

0

1( ) . sin

cos ( ) ( , , ; , , ) ( )
ij

i j

p ij
i j

ij P

W a b
S

w K W

� � �

� � � � � � � � � � �

� �

� �

� � �

��x

X
(2.14)

where

 
2

2 2 2

1 1( ): ( ln )
2 4sin

a b aw
a ab

�
�

� �� �

�
� � �

��

(2.15)

 � �E
2

2
,

1 1area ( ) 4 ln
2 4a b

b aS a
a a

�

�

� �

�
� � � �

�
, (2.16)

and 0( , , ; , , )K � � � � � �  stands for ellipsoidal Abel-Poisson kernel (c.f. Box
1-9, page 27). Equation (2.14) is a linear equation and can be written in
matrix notations as
 � �y i Ax (2.17)
where 2( )py W x� �  is the vector of pseudo-observations and

2( )Px W X� �  is the vector of unknowns and i  is the vector of inconsis-
tencies. In this case A  is a 228 195�  matrix.

First, the rank of the matrix TA A  is computed and it turned out to be 195 ,
which guaranties the existence and uniqueness of the discretized problem!
However, the condition number of TA A , i.e. the ratio of the largest singu-
lar value of TA A  to the smallest one, is 256.6 10� , which indicates an ill
conditioned problem. Therefore, the weighted least-square solution of
(2.17) with weight function P
 1ˆ ( )T T�

�x A PA A Py (2.18)
which minimises the functional
 2( )F � �x Ax y (2.19)
would not produce any reliable result and one has to resort to one of the
regularisation methods. We select the Phillips-Tikhonov regularisation
method, which has proven itself as the most efficient one. Phillips-
Tikhonov regularisation is based on reformulation of (2.19) as follows: In-
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stead of searching for x̂ , which minimises (2.19), looking for ˆ�x  which
minimises the functional
 2 2( )F � � �

� �� � �x Ax y x (2.20)
where �  is a positive parameter, called regularisation parameter. The
minimum norm solution of (2.20) is
 1ˆ ( )T T�

�
�

� �x A PA I A Py . (2.21)
For the observables be of the same kind and the same accuracy, the weight
matrix can be considered as unit matrix, i.e. �P I . Therefore, (2.21) can
be written as
 1ˆ ( )T T�

�
�

� �x A A I A y (2.22)
We already mentioned that the condition number of TA A  is 256.6 10� ,
which indeed is a very large condition number! However, for example

1� � , reduces the condition number of ( )T
��A A I  to 20.5 , which

guaranties a stable solution. Of course, in expense of the bias is introduced
by � . Let us see how much bias is introduced by condition number 1� �

by looking into the vector of estimated inconsistencies î
 ˆ ˆ� �i Ax y . (2.23)
The maximum value of estimated inconsistencies for 1� �  is 31.3248
m2/s2 ( 2 2ˆmax( ) 31.3248 /m s�i ). Figure 2-17 shows the plot of the
maximum estimated inconsistencies per different regularisation parame-
ters. Now the question arises as to what regularisation parameter should be
adopted. In other words, is there any optimum regularisation parameter �
which can compromise between stability of the solution and bias? The an-
swer is yes, and such a regularisation can be obtained by studying the
variation of the mean square error of x̂ �  ( ˆ{ }MSE x � ) versus the regulari-
sation parameter � . The following formula borrowed from E. Grafarend
and B. Schaffrin (1993, page 124) provides us with an estimation of MSE
matrix of the downward continued incremental gravitational potential ˆ�x .
 2 1 1

0ˆ{ } ( ) ( )T T TMSE A�

� � �
� �

� � � �x A A I A A A I ��� (2.24)
 where
 1( ) ( { })T E� �

�

� � �I A A x� . (2.25)
 Indeed the expected value of the unknown parameter { }E x  appearing in
(2.25) is unknown. However since ˆ{ }MSE �x  is not sensitive to { }E x , in
practice instead of { }E x  one can use any estimated value of ˆ�x derived
from a very small regularisation parameter � . Figure 2-16 shows the
variations of the trace of ˆ{ }MSE �x  against the regularisation parameter
� . We have also a plot of estimated inconsistencies î  versus condition
number �  in Figure 2-17 and the condition number of T

��A A I  versus
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the regularisation parameter �  in Figure 2-18. Based on Figure 2-16,
variations of the trace of ˆ{ }MSE �x  against the regularisation parameter
� , one can conclude that the optimum regularisation parameter in this case
is 0.7� � .
 
 The regularised downward continued incremental gravitational potential

2( )PW� X , based on the optimum regularisation parameter 0.7� � , is
shown in Figure 2-19. In Figure 2-20, we have a plot of square root of the
diagonal elements of ˆ{ }MSE �x  based on optimum regularisation parame-
ter 0.7� � . As it can be observed in Figure 2-20 the standard error of the
downward continued incremental gravitational potentials is quite small,
except in some spots/cells. Whoever, even within those spots the accuracy
is enough as compared with the accuracy of the observations.
 
The difference between the incremental gravitational potential at the refer-
ence ellipsoid (from downward continuation based on the optimum regu-
larisation parameter 0.7� � .) and at the surface of the Earth is shown in
Figure 2-21. The black spots are areas without surface data.

Having settled with regularisation let us start with restore process.
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Figure 2-16: Trace
of Mean Square Er-
ror matrix
MSE{ˆ�x } of esti-
mated parameters
versus the regulari-
sation parameter � .
As one can see the
optimum regulari-
sation parameter is
0.725 0.02� .
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Figure 2-20: Standard deviation of
downward continued incremental
gravitational potential based on the
optimum regularisation parameter
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Figure 2-21: Difference between the
incremental gravitational potential on
the ellipsoid (from downward con-
tinuation based on the optimum
regularisation parameter 0.7� � .)
and on the surface of the Earth. The
black spots are areas without surface
data.
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2.4.2 Restore-step 1: Restoration of the gravitational
potential of topographical masses

Having transformed the pseudo-observations of type incremental gravita-
tional potential form the surface of the earth into the surface of reference
ellipsoid 2

,a b� , we can now restore those removed potentials of global ellip-
soidal harmonic model and of topographical masses both for the computa-
tional points at the surface of the reference ellipsoid. In this section, we re-
store the effects of removed topographical masses, and leave the restora-
tion of the global ellipsoidal harmonic field to the next section.

At the surface of the ellipsoid, the computational points are under the to-
pographical masses, therefore, the topographical potential acts in the oppo-
site direction to the potential of the bulk masses of the earth. That is, the
potential of topographical masses ( )t

PU X  must be subtracted form the
downward continued incremental gravitational potential 2̂( )PW� X .
 1 2

ˆ ˆ( ) ( ) ( )t
P P PW W U� �� �X X X (2.26)

In (2.26) ( )t
PU X  is the terrain potential computed for the centre of com-

putational cell PX  on the surface of the reference ellipsoid. See Figure
2-22 for a contour map plot of the gravitational potential of the topog-
raphical masses for the case where computation point is on the surface of
the reference ellipsoid. Here again the planar approximation and constant
mass density ( 32.67 /g cm� � ) is adopted, and the integral over terrain
masses is extended to a radius of 50km around the computational point.

Figure 2-23 shows the contour map of incremental gravitational potential
1̂( )PW� X  at the surface of reference ellipsoid after restoration of the

gravitational potential of terrain masses.
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Figure 2-22: Gravitational potential
of the terrain masses in a radius of
50km around the computational point,
where the computational point is on
the surface of reference ellipsoid.
The computations are based on
1 1km km�  DTM model, planar ap-
proximation, and constant density
( 32.67 /g cm� � ).
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Figure 2-23: Incremental gravitational
potential 1̂( )PW� X  at the surface of ref-
erence ellipsoid after restoration of the
gravitational potential of topographical
masses.
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2.4.3 Restore-step 2: Restoration of global gravita-
tional potential model and centrifugal potential

After restoration of the removed topographical masses, let us restore the
gravitational potential of the global ellipsoidal harmonic model ( )g

PU X
and centrifugal potential ( )c

PV X . Using ellipsoidal harmonic coefficients
and ellipsoidal harmonic expansion up to degree/order 360/360, we com-
pute the gravitational potential at the centre of the cells on the surface of
reference ellipsoid (see Figure 2-24).  Centrifugal potential at the centre of
the cells ( )c

PV X  is also computed.  Figure 2-25 presents the contour map
of the centrifugal potential.

Finally, after all restoration we have the gravitational potential ( )PW X  at
the surface of reference ellipsoid (see Figure 2-26).
 2̂( ) ( ) ( ) ( ) ( )t g c

P P P P PW W U U V�� � � �X X X X X (2.27)
 Now we are ready to apply the Bruns formula to the downward continued
gravity potential to derive the geoidal undulations.

2.4.4 Application of ellipsoidal Bruns formula

Having computed the gravity potential at the surface of reference ellipsoid
now we can compute the potential geoid, i.e. the geoid based on geopoten-
tial numbers. To keep the promise of performing all the computations at
the ellipsoidal approximation level, we use the following non-linear ellip-
soidal Bruns formula (see Section 1.7) to convert the potential values

( )W X  into geoidal heights ( )h X .

 
� �

� �

2 2 2 1 / 2

2 2 2 1 / 2
2 3

2 2
2

3 2 2 2 2

cosh (cosh cos )
( ) ( )

cosh (cosh cos )
( ) ( )

sinh 2 cosh cos1( ) ( )
2 cosh ( cosh cos )

h W
gm

W
gm

gm e

� � � �
�

� � � �
�

� � �

� � � �

�� ��
� ��
�
�
� ���� ��
�
�
�
� ��
� � �� ��
���

X X

X

�

(2.28)

 where
 0( ) ( )PW w W� � �X X . (2.29)
Figure 2-27 presents the contour map of the potential geoid of Baden-
Württemberg.. For comparison with European gravimetric quasi-geoid
1997 (EGG97, H. Denker and W. Torge, 1998) we refer to Figure 2-28.
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Figure 2-24: Gravitational potential of
ellipsoidal harmonic model of de-
gree/order 360/360 computed for the
centre of the cells at the surface of ref-
erence ellipsoid 2

,a b� .
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Figure 2-25: Centrifugal potential
computed for the centre of the cells at
surface of reference ellipsoid 2

,a b� .
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Figure 2-26: Gravity potential at the
surface of reference ellipsoid derived
from downward continuation of po-
tential data after all restorations.
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Figure 2-27: Potential geoid of the State
Baden-Württemberg with respect to
WGD2000 in tide free system.
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Figure 2-28: Baden-Württemberg part
of European quasi-gravimetric geoid
1997 (EGG97) with respect to GRS80.
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2.4.5 Case 2: Solution for the modulus of incremental
gravitation intensity �����2

The following discretized integral equation (c.f. Section 1.13.1 page 68)
provides us with observation equations for the observables of the type
modulus of incremental gravitational intensity 2�� .
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 where the weight function

 
2
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1 1( ): ( ln )
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�
�
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�
� � �

��

, (2.31)

 and the area element

 � �E
2

2
,

1 1area ( ) 4 ln
2 4a b

b aS a
a a

�

�

� �

�
� � � �

�
. (2.32)

 The derivatives of ellipsoidal Abel-Poisson kernel are those defined in Box
1-11 (page 28) and Box 1-13 (36). In (2.30) The vector �  is the sum of all
removed intensity vectors, i.e. gravitational intensity ( )g x�  of ellipsoidal
harmonic expansion of degree/order 360/360, centrifugal intensity ( )c x� ,
and gravitational intensity ( )c x�  of topographical/terrain masses.
 ( ) ( ) ( )g c t� �� � �� � � � �e e e x x x�� � � � � � � � (2.33)
 Equations (2.30) are linear equations and can be written in matrix notations
as
 � �y i Ax (2.34)
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where 2( )py x� ��  is the vector of observations, i  vector of inconsisten-
cies, and 2( )Px W X� �  is the vector of unknowns. The coefficient matrix
A  is a 228 195�  matrix (see Section 2.4.1, page 99). The numerical rank
of A , i.e. the number of non-zero singular values of A , is found out to be
195 , which implies that the discrete solution does exist and is unique!
However, the condition number of TA A , i.e. the ratio of the largest singu-
lar value to the smallest one, is 258.4 10� , which shows that the problem is
ill conditioned. Therefore, the least square solution based on the minimisa-
tion of the functional
 2( )F � �x Ax y (2.35)
 Does not lead to a stable solution! The regularised solution can be obtained
by, for example, Phillips-Tikhonov regularisation, which is based on
reformulation of (2.35) as
 2 2( )F � � �

� �� � �x Ax y x (2.36)
where �  is the positive regularisation parameter. The minimum norm so-
lution of (2.36) ˆ�x  is
 1ˆ ( )T T�

�
�

� �x A PA I A Py (2.37)
For the equally accurate observables, the weight matrix can be considered
unit matrix, i.e. �P I , and (2.37) can be written as
 1ˆ ( )T T�

�
�

� �x A A I A y (2.38)
Considering 1� �  as the regularisation parameter, condition number of
( )T

��A A I  amounts to 1.0 , which suggests a stable solution. However,
this regular solution is at the price of introducing some biases. Let us see
how much bias is introduced by such a regularisation parameter 1� � .
Estimated inconsistencies î
 ˆ ˆ� �i Ax y (2.39)
can give us an estimate of the bias mixed with observation errors. For the
case 1� � , cond( ) 1.0T

�� �A A I  was derived. In Figure 2-9 we have a
plot of the variations of maximum absolute value of the bias per different
regularisation parameters in the interval 6 4[1 10 ,1.2 10 ]� �

� � . Figure 2-30
shows the variations of condition number of ( )T

��A A I  versus the regu-
larisation parameter � . To get an estimate of the inconsistencies before
applying the regularisation, in Figure 2-32 we present a contour map of the
estimated inconsistencies of the observations based on regularisation pa-
rameter 284.9 10�

�

� � , which is practically zero.  However, since this
regularisation parameter is almost zero, the matrix ( )T

��A A I  has a very
poor condition number, which will result in very large mean square error
(MSE) for the estimated parameters 2

ˆˆ ( )Px W X� � . This can be observed
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very well in Figure 2-29 where shown the plot of the trace of MSE{ˆ�x }
versus the regularisation parameters. The result of downward continuation,

2
ˆˆ ( )Px W X� � , based on regularisation parameter 284.9 10�

�

� � , is de-
picted in Figure 2-33. As the figure shows, we have only some edge ef-
fects, and no signal. Let us see what will happen if we remove the edge ef-
fect. Figure 2-34 shows the results after deleting the data outside the Ba-
den-Württemberg. Still there is no evidence of any signal. A study of the
Figure 2-29 can direct us towards the optimum regularisation parameter.
As Figure 2-29 shows the optimum regularity parameter is 0.001� � .
Figure 2-35 shows the downward continued incremental gravitational po-
tential 2

ˆˆ ( )Px W X� � , while Figure 2-36 depicts the estimated bias
ˆ ˆ� �i Ax y  based on regularity parameter 0.001� � . Now the down-
ward continuation is quite stable, however we have some biases, which is
the price we paid for a stable solution! However this bias in most areas is
still bellow the accuracy of the observations!

Using the error propagation formula (2.24), we can estimate the Mean
Square Error matrix of the downward continued incremental gravitational
potential ˆ�x . Figure 2-20 provides us with a plot of square root of the di-
agonal elements of ˆ( )MSE �x . As it is inferred from Figure 2-20 the stan-
dard error of the downward continued incremental gravitational potentials
are quite small, except in some small spots where we have lower accuracy.
Whoever, even within those spots the accuracy is enough as compared
with the accuracy of the observations.

One may be interested to know how the regularised downward continued
incremental gravitational intensity differs from the downward continued
incremental gravity potential. Figure 2-38 shows the difference of incre-
mental gravitational potential (from downward continued incremental
gravitational potential data) and incremental gravitational potential (from
downward continued incremental gravitational intensity data).

Now that we settled the regularisation problem let us, proceed into restore
process.
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Figure 2-29: Trace of
MSE{ˆ�x } matrix of
estimated parameters
versus the regularisa-
tion parameter � . For
downward continua-
tion of incremental
gravitational inten-
sity. As one can see
the optimum regulari-
sation parameter is
0.001.
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Figure 2-32: Map of the estimated bias
of observations after application of the
regularisation parameter

284.9 10�
�

� � . Very little bias is in-
troduced by the regularisation parameter.
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Figure 2-33: Downward continued in-
cremental gravitational potential

2
ˆˆ ( )Px W X� �  based on regularisation

parameter 284.9 10�

� . Due to insta-
bility of the downward continuation
we cannot see any signal.
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Figure 2-34: Downward continued
incremental gravitational potential

2
ˆˆ ( )Px W X� �  based on regularisa-

tion parameter 284.9 10�

� , after re-
moving the data outside the region.
Still there is no signal visible.
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Figure 2-35: Stabilised downward
continued incremental gravitational
potential 2

ˆˆ ( )Px W X� �  based on the
regularisation parameter 0.001� � ,
after removal of the edge effects.
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Figure 2-36: Map of the estimated
bias based on regularisation parameter

0.001� � . Note the biases at the
mountainous areas.
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Figure 2-37: STD of downward con-
tinued incremental gravitational po-
tential based on the optimum regulari-
sation parameter � = 0.7.

Average: 0.0046.
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Figure 2-38: The difference of incre-
mental gravitational potential (from
downward continued incremental
gravitational potential data) and in-
cremental gravitational potential
(from downward continued incre-
mental gravitational intensity data).
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2.4.6 Restore-step 1: Restoration of the gravitational
intensity of topographical masses

After transformation of the input incremental data form the surface of the
earth, onto the reference ellipsoid 2

,a b�  we can return the actual physical
situation of the gravity space back to its initial state. That is now we can
restore the effect of removed topographical masses and the global ellipsoi-
dal harmonic model. This section is devoted to restoration of removed to-
pographical masses, while the restoration of the global ellipsoidal har-
monic model is left to the next section.

Since now the topographical masses are on top of the computational points
the effect of gravitational potential ( )t

PU X  must be subtracted form the
downward continued incremental gravitational potential 2̂( )PW� X .
 1 2

ˆ ˆ( ) ( ) ( )t
P P PW W U� �� �X X X (2.40)

( )t
PU X  is the terrain potential, computed for the centre of computational

cell PX  on the surface of the reference ellipsoid. Figure 2-22 shows the
calculated gravitational potential of the topographical masses for the case
that the computation point is on the surface of reference ellipsoid.

Figure 2-29 shows the contour map of incremental gravitational potential
1̂( )PW� X  at the surface of reference ellipsoid after restoration of the

gravitational potential of terrain masses.
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Figure 2-39: Incremental gravita-
tional potential 1̂( )PW� X  at the sur-
face of reference ellipsoid after resto-
ration of the gravitational potential of
terrain masses.
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2.4.7 Restore-step 2: Restoration of global gravita-
tional potential model and centrifugal potential

After restoration of the effect of removed terrain masses, let us new restore
the two last potentials, i.e. gravitational potential of the global ellipsoidal
harmonic model ( )g

PU X  and centrifugal potential. Using the ellipsoidal
harmonic expansion of degree/order 360/360, we calculate the gravita-
tional potential of the centre of computation cells on the surface of refer-
ence ellipsoid (see Figure 2-24).  Mean centrifugal potentials are also cal-
culated for individual calculation cells ( )c

PV X . The map of computed
centrifugal potential for the points on the surface of reference ellipsoid is
shown in Figure 2-25. Finally, let us see the plot of the gravity potential
ˆ( )PW X  at the surface of reference ellipsoid derived after all restorations in

Figure 2-40.
 2

ˆ ˆ( ) ( ) ( ) ( ) ( )t g c
P P P P PW W U U V�� � � �X X X X X (2.41)

Having calculated the gravity potential at the surface of reference ellipsoid
now we are able to use the Bruns formula to obtain the geoid for the Case
2 �gravity geoid�.
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Figure 2-40: Gravity potential
ˆ( )PW X  at the surface of reference

ellipsoid derived from downward
continued gravity intensity data after
all restorations.
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2.4.8 Application of ellipsoidal Bruns formula

Having computed the gravity potential at the surface of reference ellipsoid,
now we are at the position to compute the �gravity-geoid�, i.e. the geoid
based on the observables of the type modulus of gravity intensity. To keep
the ellipsoidal approximation that we have maintained so far  we use the
following non-linear ellipsoidal Bruns formula which was derived in Sec-
tion 1.7 (page 40).

 � �

� �

2 2 2 1/ 2

2 2 2 1/ 2
2 3

2 2
2

3 2 2 2 2

cosh (cosh cos )
( )

cosh (cosh cos )
( ) ( )

sinh 2 cosh cos1( ) ( )
2 cosh (cosh cos )

h W
gm

W
gm

gm e

� � � �
�

� � � �
�

� � �

� � � �

�� ��
� ��
�
�
� ���� ��
�
�
�
� ��
� � �� ��
���

X

X

�

(2.42)

 where
 0( ) ( )PW w W� �� �X X (2.43)

Figure 2-41 presents the contour map of the gravity geoid of Baden-
Württemberg. For comparison with European gravimetric quasi-geoid
1997 (EGG97 H. Denker and W. Torge, 1998) we refer to Figure 2-28.

Let us also compare the gravity-geoid with the potential-geoid that we de-
rive before. Figure 2-42 shows the difference between potential-geoid and
gravity-geoid. As one can see the two geoid solutions are differing by
(0.058�0.029)m, which shows a high level of consistency between the two
solutions.
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Figure 2-41: Gravity geoid of the
state Baden-Württemberg with re-
spect to WGD2000 in tide free, per-
manent tide system.
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Figure 2-42: potential-geoid minus
Gravity-geoid.
mean = (0.058�0.029)m,
max = 3.628m,
min = -0.893m.
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2.4.9 Case 3: Combined solution

Final now we can introduce the high-resolution geoid of Baden-
Württemberg, in the World Geodetic Datum 2000 (tide free); based upon
collocation of linearized observational functionals of the type GPS, gravity
potential and gravity intensity. This can be obtained via a combined solu-
tion based on the already obtained optimum regularisation parameters

1 2{ , }� �  as follows.

 

1
1 1 1 1 1

222 2 2
ˆ

T T
�

�

�

�� �� � � � � �� � � ��� �� � � � � �� ��	 
 � ��� � � � � � ��� � � ��� � � �� �� � � � � �

A A I A y
x yIA A A (2.44)

where 1A  and 2A  are those coefficient matrices used in case 1 and case 2
respectively.  Figure 2-43 shows the final geoid obtained from the com-
bined solution.

2.5 Conclusions
We have illustrated the first attempt to solve for a high-resolution local
geoid, using combined observations of the type modulus of gravity inten-
sity and geopotential numbers. We demonstrated how GPS observations
could be efficiently combined with gravity type information in a boundary
value problem for geoid determination. A boundary-value problem which,
can incorporate all available pieces of information in a precise way to-
wards computation of a high-resolution local geoid. The highlights of our
approach are as follows:

(1) Application of high degree/order global geopotential model,
which provides us with the global gravity and isostasy informa-
tion.

(2) Using observables of the type gravity intensity (from gravimetric
observation), and gravity potential (form precise levelling) in a
combined model for geoid determination.

(3) Remaining at the level of ellipsoidal approximation throughout
the computations.

(4) Presenting a method, which works based on local gravity infor-
mation.
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(5) Converting surface observations of the type gravity intensity and
gravity potential (through remove, downward continuation, and
restore) to the gravity potential on the surface of the reference
equipotential surface.

(6) Using non-linear ellipsoidal Bruns formula to convert the incre-
mental gravity potential on the surface of reference ellipsoid to
the geoidal undulations.

(7) Formulating the whole computations with respect to the refer-
ence ellipsoid.

Our results in spite of some shortcomings in the data (e.g. unavailability of
GPS observation, and poor geometrical coverage of the gravity data) are
quite promising.

In summary, we have tested a boundary value problem, which can address
the future trend of geoid determination!
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Figure 2-43: High-resolution geoid of
Baden-Württemberg, in The World
Geodetic Datum 2000 (tide free);
based upon collocation of linearized
observational functionals of the type
GPS, gravity potential and gravity
intensity.
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3 Global geoid computation as a solu-
tion of the implicit function theo-
rem

In this chapter, we are going to present the problem of Global Geoid Com-
putation as a realisation of implicit function theorem. Based on the implicit
function theorem we construct a geoid determination procedure, which de-
scribes the problem of geoid computation at-large! The global geoid com-
putation will then be presented as an example of the application of implicit
function theorem to geoid computations.

The aforementioned global geoid will be achieved by ellipsoidal harmonic
expansion of external gravitational field of the earth up to degree/order
360/360, and nonlinear ellipsoidal Bruns formula, which presents the fea-
tures with 50-60 km wavelength signature. Such a resolution covers all
global details of geoid. As will be shown if we are interested in using a
global geopotential model to present the geoidal heights with respect to an
ellipsoid of revolution, say international reference ellipsoid of WGD2000,
then the only rigorous way is through the application of ellipsoidal har-
monic expansion and ellipsoidal Bruns formula.

Let us now start the problem of global geoid determination by introducing
the implicit function theorem.

3.1 Implicit function theorem

Let ( , , )w u� �  be the presentation of the scalar gravity- potential field of
the earth in terms of Jacobi ellipsoidal coordinates { , , }u� �  {Jacobi ellip-
soidal longitude, Jacobi ellipsoidal latitude, and Jacobi ellipsoidal height}.
See Appendix A.1.3, for the definition of Jacobi ellipsoidal coordinates
{ , , }u� � . ( , , )w u� �  0w�  presents an especial equipotential surface of the
earth, which according to Gauss-Listing school, is called geoid. 0w  is the
gravity potential of geoid. Furthermore, let us assume that [ , , ]Tx y z  ac-
cording to the following definition is the shape function of geoid.
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2 2

2 2

0 0 cos cos
0 0 cos sin
0 0 sin

ux
y u
z u

� � �

� � �

�

� �� � �� � � � � �� � � � � �� � � �� � � �� � � � � �� � � � � �� � � �� �� �

(3.1)

However, as was mentioned in Introduction we are normally interested in
presentation of geoid with respect to a reference equipotential surface of
ellipsoidal type, for example the reference ellipsoid 2

,a b�  of WGD2000.
Such a presentation can be achieved in terms of incremental shape function
u u b� � � . Where b  is the semi-minor axis of the reference ellipsoid

/reference equipotential surface/ 2
,a b� . Accordingly, (3.1) can be written as
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(3.2)
By means of B. Taylor series expansion of the type 1 x� �  1

21 x�

21
8 x�  3 41 5

16 128x x� � �� for 1x � , from (3.2) one can reach to (3.4)
through following steps.
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 �� �X X (3.4)
 Where

 

2

2

( ) 0 0 cos cos
0 ( ) 0 cos sin
0 0 sin

b

b
b

� � �

� � �

�

� � � ��
� � � �
� � � �� �� � � �
� � � �
� � � �� � � �

X  (3.5)

 presents the transformation equation of the reference ellipsoid, u b� ,
form the Jacobi ellipsoidal coordinates { , , }u� �  into Cartesian coordinates
{ , , }x y z , and
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� �
� �
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X

(3.6)
 is the transformation equation of the incremental shape function  u�  (with
respect to the reference ellipsoid 2

,a b� ) form the Jacobi ellipsoidal coordi-
nates { , , }u� �  into Cartesian coordinates { , , }x y z .

Due to the separation between the reference equipotential surface 2
,a b�  and

the geoid u� , the actual potential ( , , )w b� �  on the surface of the reference
equipotential surface differs from the reference potential 0 0U w�  by the
incremental potential W� .

 
0

0

( , , )
( , , )

W w b U
w b w
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� �

� �

� �

(3.7)

Since W�  caused by the separation u�  of geoid and the reference equipo-
tential surface, it can be written as a function of u�  as follows.
 ( , , )W W u� � � � �� (3.8)
or
 ( , , , ) ( , , ) 0f u W w u W� � � � � � � � �� � � (3.9)
Introducing the new variables

 

1

2

3

4

:
:
:
:

x
x
x u
x w

�

�

�

�

�

�

�

�

(3.10)

(3.9) can be written as
 1 2 4 3( , , ; ) 0f x x x x � (3.11)
According to the implicit function theorem (introduced in Table 3-1 after
E. Grafarend  and B. Schaffrin (1993) ) the function (3.8) can be inverted
to an explicit form in 3x u��

 3 1 2 4( , , )x g x x x� (3.12)
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if and only if the rank of the Jacobian matrix 1 2 4 3

3

( , , ; )f x x x x
x

� � �
� � �

�� �� �
J  be

equal to 1 ( 1r �  see Table 3-1), or equivalently the determinant of the Ja-
cobian matrix J  be non-zero.

 1 2 3

3

( , , )det( ) det( ) 0f x x x
x

� � �
� �� �

�� �� 	
J . (3.13)

 The implicit function theorem offers the condition, which must be fulfilled
to get the explicit form 3 1 2 4( , , )x g x x x� , but does not say anything on the
way that such a solution can be obtained. However, if we can succeed to
determine the function 3 1 2 4( , , )x g x x x� , we have the incremental shape
function of geoid 3u x� �  as a function of incremental gravity potential on
the surface of the reference ellipsoid 4W x� �  and surface Jacobi ellipsoi-
dal coordinates 1 2{ , } { , }x x� � � . Example 3-1 presents the application of
the implicit function theorem to determination of the shape function equi-
potential surface ( )U r c�  of the gravitational field ( )U r  of a massive
sphere 2

R�  (see Figure 3-1).

 Considering the explicit function (3.12) is available (3.4) can be written as
follows.
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(3.14)

 
In the next section, we will determine the relation between the incremental
potential W�  and the incremental shape height u� , in its most general
sense, called �generalised Bruns formula�.
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Table 3-1: Implicit function theorem.

The vector function ( )F x  of vector variables 1 2[ ; ]� �x x x  1[ , , ;m rx x ��

1, , ]mm rx x� � �  defined as
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� �

(3.15)

can be converted into an explicit form in 2x , i.e.
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if and only if the rank of the Jacobian matrix 1 2

2

( ; )� � �
� � �

�� �� �

F x xJ
x

 be equal to

r

 1 2

2

( ; )rank( ) rank r� � � � ���� �	 
 �� ��� ��	 
 �

F x xJ
x

(3.17)

or equivalently the determinant of J  be non-zero.

 1 2

2

( ; )det( ) det 0� � � � ���� 	
 � �� ��� �
 �� �

F x xJ
x

(3.18)

Example 3-1: The shape function of the equipotential surfaces of a mas-
sive sphere.

Given the potential of a homogenous massive sphere 2
R�  (see Figure 3-1),

with following gravitational potential field

 

2 2
3

1 [3 ] for inner space 
2( )

for outer space 

gm R r r R
RU r gm r R

r

�� � ����� �
�� ����

(3.19)

we want to determine the shape function of the equipotential surface
( ) .U r c const� �  for following two cases:

�Case a: For the inner space (Zone A)�

 2 2
3

1( ) [3 ]
2

gmU r R r c
R

� � � (3.20)

or in terms of new variables 1 :x r�  and 2 :x c�



146

 2
2 1 1 23

1( ; ) [3 ] 0
2

gmf x x R x x
R

� � � � (3.21)

According to implicit function theorem 2 1( ; )f x x  can be converted into an
explicit form in 1x , i.e. 1 2( )x g x�  if and only if the rank of the Jacobian

matrix 2 1

1

( ; )f x x
x

� � �
� � �

�� �� �
J  is equal to 1 ( 1r � , see Table 3-1), or equiva-

lently determinant of the Jacobian matrix J  is non-zero.

 2 1
13

1

( ; )f x x gm x
x R

� � �
� � �� �

�� �� 	
J (3.22)

Therefore,

 2 1
13

1

( ; )det( ) det( )f x x gm x
x R

� � �
� � �� �

�� �� 	
J . (3.23)

det( )J  is non-zero for 1 0x � . Therefore, 2 1( ; )f x x  can be converted into
an explicit form in 1x  for all those values 1 0x � , as follows
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23 Rx R x
gm

� � (3.24)

In (3.24) since all quantities on the right-hand-side of the equation are con-
stant the left-hand-side must also be a constant, 1 .x r const� �  There-
fore, the shape of the equipotential surface ( )U r c�  is the sphere

3
2

2

2
23 RR x
gm

�

�

�Case b: For the outer space, zone B�

 ( ) gmU r c
r

� � (3.25)

By introducing new variables 1 :x r�  and 2x c�  (3.25) can be written as
 2 1 2

1
( ; ) 0gmf x x x

x
� � � (3.26)

According to implicit function theorem 2 1( ; )f x x  can be converted into an
explicit form in 1x , i.e. 1 2( )x g x� , if and only if the rank of the Jacobian

matrix 2 1

1

( ; )f x x
x

� � �
� � �

�� �� �
J  is equal to 1 ( 1r � , see Table 3-1), or equiva-

lently determinant of the Jacobian matrix J  is non-zero.
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det( )J  is zero for 1x � � . Therefore, 2 1( ; )f x x  can be converted into an
explicit form in 1x  for 1x � � , as follows

 1
2

gmx
x

� (3.29)

since in (3.29) all quantities on the right-hand-side of the equation are con-
stant the left-hand-side must also be a constant, 1 .x r const� �  There-
fore, the shape of the equipotential surface ( )U r c�  is the sphere 

2

2
gm
x

� .

 

Figure 3-1: Homogeneous stationary massive sphere 2
R� , inner zone A,

and the outer zone B.

Example 3-2: Shape function of the equipotential surface of a rotational
massive sphere, with constant mass density.

 Given the external gravity potential of a homogenous massive sphere 2
R�

(see Figure 3-1), as follows.

 
�

2 2 2

Gravitational Centrifugal
field field

1( , ) cos for 
2

gmW r r r R
r

� � �� � �

�������������

(3.30)

 we want to determine the shape function of the equipotential surface
( , ) .W r c const� � � , i.e.
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field field

1( , ) cos for 
2

gmW r r c r R
r
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�������������

(3.31)

 Introducing a new set of variables 1 2 3{ , , } { , , }x x x r c�� , (3.31) can be
written as follows
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(3.32)

 According to implicit function theorem (3.32) can be converted into an ex-
plicit form in 2x  provided that the rank of the Jacobian matrix

1 3 2

2

( , ; )f x x x
x

� � �
� � �

�� �� �
J  is equal to 1 (r=1 see Table 3-1), or equivalently the

determinate of the Jacobian matrix J  is non zero. The Jacobian matrix J

 1 3 2 2 2
2 12

2 2

( , ; ) cosf x x x gm x x
x x

�

� � �
� � � �� �

�� �	 

J (3.33)

 is zero for

 32 2 2
1cos

gmx
x�

� . (3.34)

 Therefore, for

 32 2 2
1cos

gmx
x�

� (3.35)

 (3.32) can be inverted into an explicit form in 2x  as follows.

 2 2 3
1 2 3 2

1( cos ) 0
2

x x x x gm� � � � (3.36)

 or assuming 2 2
1

1 cos
2

a x�� , 3b x� , c gm� , (3.36) can  be written as

 3
2 2 0ax bx c� � � (3.37)

 which results in three solutions for 2x , two complex and one real. The real
solution is given in equation (3.38) bellow.

 

1/31/23
2 2 2

2

1/31/23
2 2 2
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1
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ba c a c
a

x
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� �� ��� ��	 
 	 
 �� ��� �� � ��



� �� ��� ��	 
 	 
 �� ��� �� � �

(3.38)
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3.2 Generalised Bruns formula

To derive a generalised form for the Bruns Formula, let us assume that
geoid is to be determined with respect to a given reference equipotential
surface 0W w� . That is, we are looking for the incremental height of
geoid h , which is normal to the reference equipotential surface 0W w� .

Let us start with the following B. Taylor expansion of geoid�s potential 0w ,
based on the expansion point ( )w X . ( )w X  is the actual potential at point
X  on the surface of the reference equipotential surface.

 
0

2

1( ) ( )
1!

1 ( ( )) : ( )
2!

N

N N

w w w h

w h W

� � �

� � � � �

X X

X X�

(3.39)

where N�  is the directional derivative along the normal direction to the
surface of reference equipotential surface, i.e.
 ( ) grad ( ) |Nw w� �X X n (3.40)
n  is the unit normal vector of the reference equipotential surface, h  is the
incremental height of geoid along the surface normal of the reference equi-
potential surface. (See Appendix F, page 236  for the advantage of using
the directional derivative operator). Upon transformation of ( )w X  to the
left-hand side of the equation (3.39) we have

 2

1
1

1( ) ( ) ( ) ( )
1!

1 ( ( ))
2!

.

N

N N

n
n

n

W W w w h

w h

a h

�

�

�

� � � � � �

� � � �

� �

X X X X

X � (3.41)

(3.41) is a homogeneous polynomial in terms of h , and according to E.
Grafarend et al. (1996) can be inverted to

 1
1

( )nn
n

h b w�
�

�

� �� (3.42)

provided that 10a  is non-zero.  10a  is the derivative of ( )w X  with respect to
the h , surface normal of the reference equipotential surface. Note that it is
exactly the same condition imposed by implicit function theorem to bridge
from the implicit form (3.11) to the explicit form (3.12)! Therefore, the in-
verse homogeneous polynomial (3.42) is indeed an explicit solution for h
according to implicit function theorem! In physical sense, the required
condition is fulfilled if the gradient of the actual gravity potential, i.e.
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gravity vector, is not tangent to the surface of reference equipotential sur-
face 0W w� .

Table 3-2 shows how the coefficients 1nb  can be derived recursively from
11 111/b a� , and the other coefficients 1 1,...,na n� � � .

Table 3-2: Recursive relations for determination of the coefficients 1nb  of
the inverse homogenous polynomial.

Given the homogenous polynomial

 1
1

n
n

n
w a h

�

�

� � � (3.43)

 the inverse homogenous polynomial

 1
1

n
n

n
h b w

�

�

� �� (3.44)

can be derived from the following recursive relations
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1
1 1 1

1
( ) 2

n

nnn i i
i

b b a a n
�

�

�

� � � �� (3.45)

subject to

 
( 1)

1 1
1

n m

nm i m n i
i

a a a m n
� �

� �

�

� � � �� (3.46)

 (�  is the Kronecker product)
 1 1 1

11 11( ) ( )n n
nna a a� � �

� � (3.47)
 with start values
 1

11 11b a�

� (3.48)
 3

12 11 12b a a�

� � (3.49)
subject to

 11 0a �

 Note that (3.42) is without any approximation and is valid for any refer-
ence equipotential surface  / reference level surface ( )W X  0w� . There-
fore, let us call (3.42) the �Generalised Bruns Formula�.

Table 3-3 provides us with a set of simple models, which can be used as
the reference gravity field, in spherical and ellipsoidal approximation.
These are the only reference fields, which produce reference equipotential
surfaces of the type sphere or ellipsoid of revolution!  However, if we want
to be faithful to the resolution N �7 of IUGG, presented in The Geodesist’s
Handbook (H. Moritz, 2000), concerning the use of an equipotential ellip-
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soid as the international reference equipotential surface, the second or third
model in Table 3-3 should be adopted.

The Bruns formula (3.42) is so far exact and without any approximation.
However, this formula is not in a practical form. Namely due to of the cal-
culation of the coefficients 1nb  in (3.42) which requires the actual gravity
potential ( )w X  as an analytical continuously differentiable function, so
that directional derivative along the normal to the reference equipotential
surface can be computed. To overcome this problem one can perform the
directional derivative on an approximation form of the actual gravity po-
tential. Though the choice of such an approximate formula is quite free,
however computational ease would be achieved if one chooses the one,
which produces the reference level surface identical to reference equipo-
tential surface.  In Table 3-4, we have a collection of two different refer-
ence fields and their corresponding Bruns formula, both up to the linear
part. In the next chapter, we will present a more accurate version of ellip-
soidal Bruns formula presented in Table 3-4, which includes the effect of
second order term in ( )W� X . As one can recognise, the first row of Table

3-4 contains the traditional Bruns formula 2
( )
/

w R
GM R

Tr �
�

�
� � . Such a Bruns

formula is only valid for presentation of the geoid with respect to a refer-
ence sphere 2

R� , the level sphere 0
GM
RW w� � . Unfortunately, in litera-

ture quite often by mistake the incremental heights derived from
2

( )
/

w R
GM R

r �
� �  are considered as the geoidal height with respect to reference

ellipsoid!

Here since we are interested in presenting the geoidal height with respect
to international ellipsoidal WGD2000 the second model in Table 3-3 is
selected, and we have gone up to the third order term, 3( )w�� , in the in-
verse polynomial expansion (3.42).

Now that we derived the generalised Bruns formula, we can offer a general
procedure for geoid determination.
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Table 3-3: Different choices of reference gravity/gravitational field.

reference field
( )W X

reference equipotential surface
0( )wX X�

( ) GMW r
r

�

sphere 2
R�

2 2 2 2

0
( )GMx y z

w
� � �

( , ) arc cot( )GM uW u�
� �

�

ellipsoid of revolution 2
,a b�

2 2 2

0 02 2 2 2 2cot ( ) cot ( )
x y z

w w
GM GM
� �

� � �

�
�

�

2
2
2
2

2 2 2

2 2 2 2

( , ) arc cot( )

(3 1)arc cot( ) 31 (3 sin 1)
6 (3 1)arc cot( ) 3

1 ( )cos
2

u u u

b b b

GM uW u

a

u

� �
�

� �
�

�
� �

�

� �

�

�

�

� �

� �

� �

� �

ellipsoid of revolution 2
,a b� , e.g. WGD 2000

2 2 2

2 2
2000 2000WGD WGD

x y z
a b

�
�

Table 3-4: Two different types of reference field and their respective Bruns formulas.
Reference field Reference equipotential

surface
Bruns formula
(up to linear term)

( ) GMW r
r

�

sphere 2
R�

2
( )
/

W Rr
GM R
�

� �

( , ) arc cot( )GM uW u�
� �

�

ellipsoid of revolution
2
,a b� 2 2 2 2 2 2

( )
/( cos )

W u bu
gm u u

�
�

� � � �

�
�

� � �
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3.3 Ellipsoidal Bruns Transformation
In the previous chapter, we derived the most general form of the Bruns
transformation. Here, we derive an especial non-linear ellipsoidal form of
it in terms of Jacobi ellipsoidal coordinates { , , }u� � . If we limit ourselves
to the order of accuracy of first eccentricity squared 2( )e�

( 2 2 2 2( )/e a b a� � ) then the first term of ellipsoidal harmonic expansion,

( , , )U u� �  /  arccot( )ugm �

�

� , can be used as the reference gravitational

field. The order of accuracy of 2( )e�  is enough for the geoid determina-
tion at centimetre accuracy level (see e.g. Z. Martinec 1998a, and Z. Mar-
tinec and Grafarend 1997a, 1997b). Such a reference field besides its sim-
ple form has the property of having ellipsoidal level surfaces (see Box 1-20
for the proof). Since we want to present the geoidal undulations with re-
spect to reference equipotential surface of WGD2000, such a model is a
correct choice.

Box 1-17 presents the definition of the gradient of the scalar function
( , , )U u� �  as the covariant derivative D U�  of the function ( , , )U u� �  with

respect to contravariant base vectors �
� . The contravariant base vectors

are replaced by g��

�� , the transformation relation between the covariant
base vectors and contravariant ones. The non-normalised covariant base
vectors ��  are further written in terms of normalised base vectors �e  mul-
tiplied by the norm of ��  ( � �� g�� �e ). Finally the orthogonality of the
Jacobi ellipsoidal base vectors has led to special representations of (1.63)
and (1.64). Box 1-18 provides us with the directional derivative along the
surface-normals of reference ellipsoid 2

,a b� , while Box 1-19 presents the
application of the directional derivatives to the reference gravitational po-
tential field ( , , )U u� �  /  arccot( )ugm �

�

� . We have to mention that in

Box 1-19 we have gone up to second order directional derivatives. Finally,
under the assumption ( , , ) ( , , )w u U u� � � ��  /  arccot( )ugm �

�

�  we have

proceeded to the non-linear ellipsoidal Bruns transformation formula of
Box 1-22. One may now ask what is the relation between the surface nor-
mal height h  of the reference equipotential surface appearing in Taylor se-
ries expansion (3.39) and the Jacobi ellipsoidal height u .  To answer this
question we start with the following Taylor expansion  of geoid�s potential
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0w , over  the expansion point ( )w u b� . ( )w u b�  is the actual potential
at point any point X  on the surface of the reference ellipsoid u b� .

 
0

2

1( ) D ( )
1!

1 D (D ( )) : ( )
2!

u

u u

w w u b w u

w u W

� � �

� � �

X

X X�

(3.50)

The partial derivative D : /u u� � �  is related to the directional derivative
along the coordinate line of u  as follows.
 Du uu ug� � (3.51)
Therefore, (3.50) can be written as
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1( ) ( )
1!

1 ( ( )) : ( )
2!

u uu

u u uu

w w u b w g u

w g u W

� � � �
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X

X X�

(3.52)

 According to A. Eringen (1962, page 437) uuh g u�  is the physical
component of the Jacobi ellipsoidal coordinate u .  uuh g u�  is an in-
variant parameter and is indeed the quantity that we need to present the
height of geoid with respect to the reference ellipsoid of WGD2000.

uuh g u�  can be called the geoidal height or geoidal undulation (see
also Appendix F, page 236 ).

Box 3-1: Gradient of a scalar function ( , , )U u� �

(i) General definition of the gradient of a scalar function in terms of a cur-
vilinear coordinate system

 
gradU D U g D U

g D U g g D U

� ��

� � �

�� ��

� � � �� � �

� �

� �

m m
m e e (3.53)

(ii) Gradient of the scalar function U in terms of orthogonal Jacobi ellip-
soidal coordinates { , , }u� �

 
1 1 1grad u u

uu
U D U D U D U

g g g� � � �

�� ��

� � �E E E (3.54)

 �
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E E

E

(3.55)
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Box 3-2: Directional derivative along the surface normal of the reference

ellipsoid 2
,a b�

 
2 2

2 2 2 2

1grad 
cosuu u u

uu

uU U D U U
gu

�

� � �

�
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� �
EE

(3.56)
 

Box 3-3: Reference ellipsoidal gravitational field and its directional de-

rivatives along the surface normals of reference ellipsoid 2
,a b�

(i) Normal ellipsoidal field of the first order
 ( , , ) arc cot( )gm uU � � �

� �
� (3.57)

(ii) Directional derivative along the surface normals of 2
,a b�
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(3.59)

Box 3-4:  Geometrical interpretation of the reference equipotential surface

( , , ) / arc cot( )uU u gm� � �
�

� = 0w .

from the reference equipotential surface
 0( , , ) arc cot( )gm uU w� � �

� �
� � (3.60)
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one can imply that the only varying parameter, i.e., �  must be constant
 0u u� (3.61)
from the inverse transformation of Cartesian coordinates { , , }x y z  into Ja-
cobi ellipsoidal coordinate u  (cf. Appendix A.1.3) we have
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which is the equation of  the reference ellipsoid 2 2
00

2
,u u��

� .

Box 3-5: Non-linear ellipsoidal Bruns transformation
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3.4 Geoid computation procedure

The generalised Bruns formula enables us to convert the disturbing gravity
potential calculated on the surface of reference equipotential surface

0( )W w�X  into incremental geoidal height ( )h X . This formula also gives
a procedure for geoid determination, which is shown schematically in
Figure 3-2, and is described bellow.

1. Determine the reference equipotential surface
0( )W w�X .

2. Determine the actual potential ( )w X  on the surface of the
reference equipotential surface 0( )W w�X  (via e.g. (i) re-
move, harmonic downward continuation, and restore proc-
ess, or by (ii) a global geopotential model).

3. Subtract the gravity potential ( )w X  from 0w  to produce
the disturbing gravity potential ( )W� X .

4. Convert the disturbing potential into geoidal height by
using a version of Bruns formula, which complies with the
reference equipotential surface 0( )W w�X .

As case studies, here we are going to use this geoid determination proce-
dure for computing a global geoid. Namely, by applying ellipsoidal har-
monic expansion of degree/order 360/360 that carries only global scale in-
formation about geoid.
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Geoid Computation
Flowchart

Determine the reference equipotential
surface  W(X)=w0

Calculate �W(X)= w(X) - w0

Convert �W(X) into to geoidal
height h(X) by using the Bruns

formula

Determine the actual potential w(X)
on the surface of reference

equipotential surface W(X)

Figure 3-2: Geoid determination procedure, inferred from implicit func-
tion theorem and generalised Bruns formula.

3.5 Application of ellipsoidal harmonics

Application of spherical harmonic expansion to geoid determination prob-
lem has already been extensively studied, see for example R. Rapp (1971,
1992, and 1997), D. Smith (1998), and C. Tscherning et al. (1983). How-
ever, if we use spherical harmonic expansion to determine the gravitational
potential on the surface of a reference equipotential surface of the type el-
lipsoid of rotation, the compus! It is for the reason that the spherical har-
monic expansion is valid outside an international sphere 2

R a�
�

2
R a�

� , which
is inside the international reference ellipsoid 2

,a b� .  International reference
ellipsoid 2

,a b�  is actually is in global geoid computation, where we need to
compute the gravity potential values.
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In contrast, the ellipsoidal harmonic expansion is valid outside a rotational
ellipsoid 2

*, *a b� , which can be selected in a way to be smaller than interna-
tional ellipsoid 2

,a b� . Therefore, there will be no problem with the validity
of the ellipsoidal harmonic expansion on the surface of the reference ellip-
soid 2

,a b� .

Given the ellipsoidal harmonics nmu , and angular velocity of the earth � ,
a model gravity field for the external gravity field of the earth can be de-
rived from ellipsoidal harmonic expansion (say up to degree/order
360/360).

 

*360 | | 2 2 2 2
*

*0
| |

( ) 1( ) ( , ) ( )cos
2( )

n n m
nm nm

n m n
n m

uQgmW u e ua bQ
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�

�

� ��

� � �� �X (3.67)

where in (3.67) gm=3 986 004.415E+8 m3/s2 is the product of Newton
gravitational constant by the mass of the earth, *

,| |( )u
n mQ �  stands for numeri-

cally stabilised associated Legendre functions of the second kind, intro-
duced in Appendix C, and ( , )nme � �  are surface ellipsoidal harmonics.

 *
| |

cos 0
( , ) (sin ) sin | | 0nm n m

m m
e P m m

�
� � �

�

� ��
��
� � �
�

(3.68)

The Equation (3.67) converges uniformly for the points outside the ellip-
soid 2

,* *a b� . For the computations that will be offered later in case studies,
the semi-major axis, *a  = 6 378 136.3 m, which comes from the identity
R a� , is used. Where r R�  presents the sphere 2

R a�
�  out of which the

spherical harmonic expansion is valid (i.e., converging uniformly). The
semi-minor axis *b =6 356 751.647m is determined by introducing linear
eccentricity �  = 521 853.580 (m) of WGD 2000 of E. Grafarend and A.
Ardalan (1999b) in tide free permanent tide system.

Furthermore, since we want to present the geoidal undulations with respect
to the reference ellipsoid 2

,a b�  of World Geodetic Datum 2000, we adopt a
reference gravity field, with ellipsoidal equipotential surfaces. The prob-
lem of geoid determination is then the problem of determination of the
shape function of geoid with respect to the reference equipotential surface
of WGD2000.

for the points 2
,a b�X � , on the surface of reference equipotential surface,

0( )W w�X , the disturbing potential ( )W� X  0 ( )w W� � X  can be com-
puted as follows.
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 According to geoid computation flowchart (Figure 3-2) to compute the
geoidal height ( )h X , one needs to supply the actual potential on the sur-
face of reference equipotential surface. ( )W� X  can consequently be con-
verted to incremental heights /geoidal heights/ via Bruns formula.

3.5.1 Case study 1; geoid computations in the area
bounded by l=7.5����-10.5���� E and b=47.5����-50���� N

Using the ellipsoidal harmonic expansion of external gravitational field of
the earth and nonlinear ellipsoidal Bruns formula (Section 1.7, formula
(1.80)) the geoidal undulations of 28800 points on a grid of
(( 1.5 ') ( 1')L B� � � � � ) in the area bounded by Gauss ellipsoidal co-
ordinates L=7.5�-10.5� E and B=47.5�-50� N are computed. The calculated
geoidal undulations 0( , , )h h w� ��  for some few first points are given in
Table 3-5. Column 1 and 2 of the Table 3-5 presenting the Gauss ellipsoi-
dal coordinates of the computation points which are first transferred into
Jacobi ellipsoidal coordinates and then used for the computation of the
geoidal undulations of column 3.

Table 3-5: Geoidal heights of a few grid points in the area bounded by
geographical coordinates L=7.5�-10.5� E and B=47.5�-50� N. Based on el-
lipsoidal harmonic expansion in tide free, 0w = 62 636 855.80 2 2/m s  (E.
Grafarend and A. Ardalan, 1997); reference ellipsoid WGD 2000 a = 6
378 136.572m, b = 6 356 751.920m in tide free system (E. Grafarend and
A. Ardalan, 1999b).

L
(degree)

B
(degree)

0( , , )h h w� ��

(m)
7.0125E+000 4.99916666E+001 4.929709E+001
7.5125E+000 4.99916666E+001 4.936084E+001
8.0125E+000 4.99916666E+001 4.902617E+001
8.5125E+000 4.99916666E+001 4.866512E+001
9.0125E+000 4.99916666E+001 4.877286E+001
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9.5125E+000 4.99916666E+001 4.895994E+001
1.0012E+001 4.99916666E+001 4.856834E+001
1.0512E+001 4.99916666E+001 4.791010E+001
7.0125E+000 4.96583333E+001 4.923508E+001
7.5125E+000 4.96583333E+001 4.945663E+001
8.0125E+000 4.96583333E+001 4.899719E+001
8.5125E+000 4.96583333E+001 4.854704E+001
9.0125E+000 4.96583333E+001 4.875500E+001
9.5125E+000 4.96583333E+001 4.911705E+001
1.0012E+001 4.96583333E+001 4.886358E+001

The calculated geoid at the 28800 test points over a 1.5��1� grid were
compared with the European Gravimetric Geoid EGG97 made available to
us over the same grid. Summary of the statistics of this comparison is
given in Table 3-6. Figure 3-3 presents us with a geoid map derived from
computed geoidal undulations, in equidistant conic map projection system.
Figure 3-4 presents the difference between our global geoid and EGG97.
As the Table 3-6 documents difference between two geoid does not ac-
cedes 0.579 m, on average, with a standard deviation of �0.394 m. This
difference is partly due to different reference ellipsoids and permanent tide
systems to which the two solutions are referred.

Table 3-6: Statistical summary of the difference h(Global)�  h(EGG97).

Statistics of �h = h(Global)�h(EGG97) m
 mean 0.579
 minimum �3.726
maximum 4.141
standard deviation 0.394
number of sample points 28 800
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Figure 3-3: Calculated geoid based
on ellipsoidal harmonic expansion in
tide free system,

0w = 62 636 855.80 2 2/m s  (E. Gra-
farend and A. Ardalan, 1997); refer-
ence ellipsoid WGD2000
a = 6 378 136.572 m,
b = 6 356 751.920 m, in tide free
system (E. Grafarend and A. Arda-
lan, 1999b).
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Figure 3-4: Difference between cal-
culated geoid based on ellipsoidal
harmonic expansion in tide free
system, 0w = 62 636 855.80 2 2/m s
(E. Grafarend and A. Ardalan,
1997); reference ellipsoid WGD2000
a = 6 378 136.572m, b = 6 356
751.920m in tide free system (E.
Grafarend and A. Ardalan, 1999b)
and EGG97 in zero frequency tide
system, with respect to ref. ellipsoid
GRS80.
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3.5.2 Case study 2; geoid computation at tide-gauge
stations of Baltic Sea level project, third cam-
paign

As the second case study we used 23 tide gauge stations of the Baltic Sea
Level Project, third campaign 1997.4. Those stations can be a good
benchmark for checking the computed geoid. The orthometric heights of
those tide gauge stations are known very accurately by direct sea level ob-
servations. Some of the tide gauges have several hundred years of tide
gauge observations behind. See J. Kakkuri (1995), J. Kakkuri and M Pou-
tanen (1997), M. Poutanen (1998a, 1998b, 1998c), and M. Vermeer (1995)
for the state-of-art of the Baltic Sea Level Project, and more information
on the tide gauge stations. Those tide gauge stations are also equipped with
precise GPS observations. Table 3-7 presents the GPS coordinates of the
tide gauge stations in terms of Cartesian coordinates in ITRF 96 reference
frame. In the last column of Table 3-7 are orthometric heights of the tide
gauge stations. To provide the Jacobi ellipsoidal coordinates, needed for
the ellipsoidal harmonic expansion the Cartesian coordinates are con-
verted into Jacobi ellipsoidal coordinates given in Table 3-8. From the
Cartesian coordinates the Gauss ellipsoidal height of the tide gauge sta-
tions with respect to the international ellipsoid WGD2000, are computed.
The computed Gauss ellipsoidal heights, and the known orthometric
heights of the tide gauge stations led to, geoidal undulations/ geoidal
heights/ of the GPS stations with respect to WGD2000, according to fol-
lowing formula.
 ( ) ( ) ( )oh Baltic H GPS H Baltic� �� (3.70)
where 0( )H Baltic  is orthometric height, and ( )H GPS  is Gauss ellipsoidal
height of the tide gauge stations. ( )h Baltic  is the geoidal undulation of the
tide gauges with respect to WGD2000. The equation (3.70) is accurate up
to the curvature of plumb line, which is neglected here.

Using ellipsoidal harmonic expansion and non-linear ellipsoidal Bruns
formula (see Section 1.7, formula (1.80)) the global geoidal undulations
( )h Global  of 23 tide gauge stations of the Baltic Sea Level Project are

computed and compared with the GPS derived geoidal undulations
( )h Baltic . Table 3-9 presents the results of this comparison. Summary of

statistics of the comparison of ( )h Global  and ( )h Baltic  is given in Table
3-10. By a review of the results of Table 3-9 and Table 3-10 we can con-
clude that on average the global geoidal undulation deviates from that of
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the Baltic Sea Level project by (�0.0087�0.1780)m, which reflects an im-
pressive consistency between the two sets of geoidal undulations! It is im-
portant to note that here, geoidal undulations are referred to the same ellip-
soid, namely WGD2000  (c.f. Table 3-8).
 
Table 3-7: Cartesian coordinates (ITRF 96), and orthometric heights of the GPS sta-
tions of the Baltic Sea Level Project, third campaign 1997.4
Station Name X(m) Y(m) Z(m) Ho (m)
Borkum (Ger) 3770667.9989   446076.4896 5107686.2085   4.501
Degerby (Fin) 2994064.9360 1112559.0570 5502241.3760   2.687
Furuögrund_TG (Swe) 2527022.8721   981957.2890 5753940.9920 10.861
Hamina (Fin) 2795471.2067 1435427.7930 5531682.2031   1.583
Hanko (Fin) 2959210.9709 1254679.1202 5490594.4410   5.031
Helgoland (Ger) 3706044.9443   513713.2151 5148193.4472   4.429
Helsinki (Fin) 2885137.3909 1342710.2301 5509039.1190   6.346
Kemi (Fin) 2397071.5771 1093330.3129 5789108.4470   6.874
Klagshamn (Swe) 3527585.7675   807513.8946 5234549.7020   2.053
Klaipeda (Lit) 3353590.2428 1302063.0141 5249159.4123 28.186
List/Sylt (Ger) 3625339.9221   537853.8704 5202539.0255   4.066
Mäntyluoto (Fin) 2831096.7193 1113102.7637 5587165.0458   2.303
Molas (Lit) 3358793.3811 1294907.4149 5247584.4010   4.554
Ölands N. Udde.(Swe) 3295551.5710 1012564.9063 5348113.6687   4.146
Raahe (Fin) 2494035.0244 1131370.9936 5740955.4096   3.287
Ratan (Swe) 2620087.6160 1000008.2649 5709322.5771   1.433
Spikarna (Swe) 2828573.4638   893623.7288 5627447.0693   1.788
Stockholm (Swe) 3101008.8620 1013021.0372 5462373.3830 11.927
Swinoujscie (Pol) 3649458.3681   927709.9794 5130741.6420   2.184
Ustka (Pol) 3545014.3300 1073939.7720 5174949.9470   1.454
Vaasa (Fin) 2691307.2541 1063691.5238 5664806.3799   0.917
Visby (Swe) 3249304.4375 1073624.8912 5364363.0732   2.014
Warnemuende (Ger) 3658217.6419   783004.6986 5148504.3041 21.171

Ger: Germany, Fin: Finland, Swe: Sweden, Lit: Lithuania, Pol: Poland

Table 3-8: Gauss ellipsoidal coordinates of the GPS stations of the Baltic Sea Level
Project, third campaign 1997.4, with respect to the reference ellipsoid WGD 2000 (a = 6
378 136.572m, b = 6 356 751.920m in tide free system (E. Grafarend and A. Ardalan,
1999b))
Station Name L (degrees) B (degrees) H (meters)
Borkum (Ger)   6.74683093901 53.55763277178 45.0936
Degerby (Fin) 20.38446961960 60.03134814035 22.0658
Furuögrund_TG (Swe) 21.23526361253 64.91950300777 33.2520
Hamina (Fin) 27.17974139926 60.56471648855 17.1284
Hanko (Fin) 22.97651236414 59.82267871268 25.2759
Helgoland (Ger)   7.89176332880 54.17483199363 44.0129
Helsinki (Fin) 24.95673461689 60.15367752700 24.5952
Kemi (Fin) 24.51824268792 65.67436132063 26.5358
Klagshamn (Swe) 12.89365547340 55.52231343765 38.3139
Klaipeda (Lit) 21.21917098867 55.75460902512 53.3124
List/Sylt (Ger)   8.43882205649 55.01752680208 45.0711
Mäntyluoto (Fin) 21.46327159076 61.59426465421 21.5889
Molas (Lit) 21.08302585169 55.72978961516 29.7446
Ölands N. Udde.(Swe) 17.07968171596 57.36762447842 31.7890
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Raahe (Fin) 24.40050548601 64.64634248642 21.7134
Ratan (Swe) 20.89034421363 63.99155313921 23.1852
Spikarna (Swe) 17.53275165792 62.36354502846 27.5791
Stockholm (Swe) 18.09090355205 59.32233411275 35.5029
Swinoujscie (Pol) 14.26276599922 53.90788921075 38.2916
Ustka (Pol) 16.85385420680 54.58768995293 34.2772
Vaasa (Fin) 21.56553183992 63.09523250642 19.5395
Visby (Swe) 18.28442477487 57.63926280096 27.5974
Warnemuende (Ger) 12.08129300662 54.17940436931 60.0204

Ger: Germany, Fin: Finland, Swe: Sweden, Lit: Lithuania, Pol: Poland

Table 3-9: Geodetic longitude L, geodetic latitude B, geoidal undulations
( )h Global , and difference h�  between the calculated geoidal heights and

that of the tide gauge stations of the Baltic Sea Level Project, Third cam-
paign 1997.4. Based on ellipsoidal harmonic expansion in tide free tide
system, w0= 62 636 855.80 m2/s2 (E. Grafarend and A. Ardalan, 1997);
reference ellipsoid WGD 2000 a = 6 378 136.572m, b = 6 356 751.920m in
tide free permanent tide system (E. Grafarend and A. Ardalan, 1999b).
Station Name L (degrees) B (degrees) h(Global) h�

Borkum (Ger) 6.746830939 53.557632771 40.6641 0.0715
Degerby (Fin) 20.384469619 60.031348140 19.0611 �0.3177
Furuögrund_TG (Swe) 21.235263612 64.919503007 22.4812 0.0902
Hamina (Fin) 27.179741399 60.564716488 15.6561 0.1106
Hanko (Fin) 22.976512364 59.822678712 20.0588 �0.1861
Helgoland (Ger) 7.891763328 54.174831993 39.6885 0.1046
Helsinki (Fin) 24.956734616 60.153677527 18.3905 0.1413
Kemi (Fin) 24.518242687 65.674361320 19.6509 �0.0109
Klagshamn (Swe) 12.893655473 55.522313437 36.1692 �0.0917
Klaipeda (Lit) 21.219170988 55.754609025 25.1266 0.0002
List/Sylt (Ger) 8.438822056 55.017526802 41.1569 0.1518
Mäntyluoto (Fin) 21.463271590 61.594264654 19.3383 0.0524
Molas (Lit) 21.083025851 55.729789615 25.1627 �0.0279
Ölands N. Udde.(Swe) 17.079681715 57.367624478 27.9441 0.3010
Raahe (Fin) 24.400505486 64.646342486 18.2121 �0.2143
Ratan (Swe) 20.890344213 63.991553139 21.9975 0.2453
Spikarna (Swe) 17.532751657 62.363545028 25.8072 0.0161
Stockholm (Swe) 18.090903552 59.322334112 23.6516 0.0757
Swinoujscie (Pol) 14.262765999 53.907889210 36.0640 �0.0436
Ustka (Pol) 16.853854206 54.587689952 32.3518 �0.4714
Vaasa (Fin) 21.565531839 63.095232506 18.5281 �0.0944
Visby (Swe) 18.284424774 57.639262800 25.6559 0.0725
Warnemuende (Ger) 12.081293006 54.179404369 38.6743 �0.1751

Ger: Germany, Fin: Finland, Swe: Sweden, Lit: Lithuania, Pol: Poland

Table 3-10: Statistical Summary of the difference h(Global) �   h(Baltic),
geoid at tide-gauge stations of Baltic Sea Level Project and calculated
geoid based on ellipsoidal harmonic expansion.

Statistics of �h�h(Global)�h(Baltic) m
mean �0.0087
 minimum �0.4714
 maximum 0.3010
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standard deviation 0.1780
number of sample points 23

3.6 Conclusions

Form the results of the two case studies we can conclude that our rigours
method for global geoid determination based on the application of implicit
function theorem, and nonlinear ellipsoidal harmonic expansion is accu-
racy up to decimetre level! In summary, the achievements are as follows.

� Surface normal mapping of geoid with respect to the reference ellip-
soid 2

,a b� , based on the implicit function theorem, through (3.14).

� Generalised Bruns formula (3.42) as a realisation of implicit function
theorem.

� A general procedure for geoid computation, according to Figure 3-2,
based on generalised Bruns formula and implicit function theorem.

� A rigorous method for global geoid computation based on ellipsoidal
harmonic expansion and nonlinear ellipsoidal Bruns formula.

 
 At the end, we have to emphasise that:

1. Spherical harmonic expansion should not be used for determination of
gravitational potential on the surface of a reference ellipsoid, namely
for the reason that the reference ellipsoid 2

,a b�  is partially inside the
sphere 2

R a�
� . The spherical harmonic expansion is only valid at the

outer space of 2
R a�

� .

2. The traditional Bruns formula 2
( )
/

w R
GM R

r �
� �  is only true for a geoid

mapping with respect to the reference sphere 2
R� . Therefore cannot be

used to presents the geoidal heights with respect to the reference ellip-
soid 2

,a b� .
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4 Minimum distance mapping of the
surface of the earth onto the tellu-
roid

In this chapter, a potential type Molodensky telluroid based upon minimum
distance mapping is formulated. With respect to the reference potential
field of Somigliana-Pizzetti type it is shown that a point-wise minimum
distance mapping of the topographical surface of the Earth onto the tellu-
roid surface, constrained to the gauge ( ) ( )W P u p� , leads to a system of
four nonlinear normal equations. Those normal equations are solved by a
fast Newton-Raphson iteration.

M. S. Molodensky in 1945 introduced the telluroid as the best analytical
representation of the irregular surface of the Earth. See for example M. S.
Molodensky 1945, 1948, and 1960. Given the placement vector of a point
in geometry space, for instance by GPS, and reference gravity potential in
gravity space, the telluroid can be uniquely defined by a properly chosen
projection. For instance, astronomical longitude / astronomical latitude
(spherical coordinates in gravity space) at the topographic point can be de-
fined to be equal with the reference longitude / reference latitude (spherical
coordinates in reference gravity space) at the telluroid point in order to es-
tablish an isoparametric mapping of the telluroid. Such a mapping proce-
dure as was experienced by A. Bode and E. Grafarend (1982) for a refer-
ence gravity field generated by (i) the zero order coefficient of a spherical
harmonic expansion of the gravitational potential and (ii) the centrifugal
potential. Here we aim at an ellipsoidal telluroid mapping, which is set-up
as following:

Let us suppose that the Jacobi ellipsoidal / spheroidal coordinates
{ , , }p p pu� �  of a point p  on the topographic surface of the Earth be given.
Such a triple which parameterise the geometry space can be obtained by
converting the GPS positions into Jacobi ellipsoidal coordinates. In addi-
tion, let as assume that the actual gravity potential pw , which parameterise
the gravity space, at p  be given by means of gravimetric levelling. Now
the problem of mapping the points on the surface of the earth onto Molo-
densky telluroid can be stated as follows. Find the point P  on the telluroid
whose reference gravity potential PW  is equal to the actual gravity poten-
tial pw  at point p  under a mapping procedure. The telluroid derived from
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such a definition is called a potential telluroid in contrast to case where the
modulus of gravity acceleration/ gravity intensity at p  is considered equal
to the modulus of reference gravity acceleration at P . In such a case, we
would refer to a gravity telluroid, a proposal which was materialised by E.
Grafarend (1978a, 1978b, and 1980). Here we have chosen the reference
gravity field of a level ellipsoid which coincides with the World Geodetic
Datum (E. Grafarend and A. Ardalan 1999) and is known as Somigliana-
Pizzetti gravity potential field. (C. Somigliana 1930, and P. Pizzetti 1894).
We may therefore call the related telluroid, �the Somigliana-Pizzetti tellu-
roid�. Besides, our mapping procedure is based on minimisation of the
distance between the points on the surface of the earth and potential tellu-
roid. Therefore, we are going to formulate a minimum distance Somi-
gliana-Pizzetti potential telluroid.

In the next section, we introduce the minimum distance mapping of a
topographic point p  to the corresponding point P  on the telluroid with a
proper potential gauge. In particular / we present the Somigliana-Pizzetti
gravity potential field, both in an explicit form and in a form of ellipsoidal
orthonormal functions. Then we present two case studies, namely we com-
pute the Somigliana-Pizzetti potential telluroid and quasi-geoid from po-
sition and potential data for the state Baden Württemberg and East Ger-
many.

4.1 Formulation of the problem
In the introduction, we presented a general definition for the mapping of
the Earth surface onto the telluroid. Here we are going to specify that defi-
nition to the Somigliana-Pizzetti reference field and the minimum distance
mapping. We call such a mapping, minimum-distance Somigliana-Pizzetti
telluroid-mapping.

The minimum-distance Somigliana-Pizzetti telluroid-mapping can be de-
fined as follows:

Given the actual gravity potential value ( )w x , at the known point
( )p x  on the surface of the Earth 2

h� ,
find the point ( )P X  such that;
(i)  the reference Somigliana-Pizzetti potential field PW  = ( )W X
at point ( )P X  � 2

H�  be equal to the actual potential at ( )p x  �
2
h� ,
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(ii)  the point ( )P X  � 2
H�  be at minimum (Euclidean) distance

from the point ( )p x  � 2
h� .on the physical surface of the Earth.

By definition, the surface 2
H�  is called Molodensky telluroid, or specifi-

cally in our case, the Molodensky telluroid of Somigliana-Pizzetti type.
Figure 4-1 shows the point ( )p x  on the Earth�s surface and its minimum
distance projection ( )P X  onto telluroid.

Figure 4-1: Point 2( ) hp x ��  on the topographic surface and its mini-
mum distance mapping onto the surface of telluroid 2

H� : Various pro-
jections, but one orthogonal projection of 2

h�  onto 2
H� .

Analytically we can formulate the above stated optimisation problem by
minimising the constraint Lagrangean:
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where 1 2 3( , , ) ( , , )x x x U� ��  are Jacobi  ellipsoidal coordinates of the
point 2~ HP X � �  on the telluroid, and 4x  is the unknown Lagrange
multiplier. For the definition of Jacobi ellipsoidal coordinates we refer to
Appendix A.

Since the most suitable coordinate system for formulation of the Somi-
gliana-Pizzetti field is ellipsoidal coordinates, we formulate our minimisa-
tion problem in terms of Jacobi ellipsoidal coordinates { , , }u� � .
Definition 4-1 presents the Somigliana-Pizzetti gravity potential field in
terms of Jacobi- ellipsoidal coordinates { , , }u� � . Somigliana-Pizzetti field
has been developed by P. Pizzetti (1894) and C. Somigliana (1930) and re-
cently extensively analysed by E. Grafarend and A. Ardalan (1999) in
functional analytical terms.
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Definition 4-1: Somigliana-Pizzetti field as the gravity potential field of an
ellipsoid of revolution.
 (i) Explicit form in terms of fundamental geodetic parameters 0{ , , , }a b W �

(according to E. Grafarend and A. Ardalan 1999)

 �
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 (ii) Explicit form in terms of fundamental geodetic parameters
{ , , , }a b GM �
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 (iii) Functional analytical form (according to Grafarend et al. 1999)
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Where *
0 0( , ) (sin )n ne P� � ��  are orthogonal base functions of Legendre

type, * (sin ),nmP �  and * ( )u
nmP �  are normalised associated Legendre func-

tions of the first kind, and * ( )u
nmQ �  are associated Legendre functions of the

second kind as shortly reviewed by Table 4-1.□
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Table 4-1: Normalised associated Legendre functions of the first kind * (sin ),nmP �  * ( )u
nmP � , and the associated Legendre

functions of the second kind * ( )u
nmQ �
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Using the forward transformation relations of Jacobi ellipsoidal coordi-
nates { , , }u� �  into Cartesian coordinates { , , }x y z  as summarised in Ap-
pendix A (Section A.1.3, page 212) the functional 1 2 3 4( , , , )x x x x�  can be
written as
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(4.6)

or
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where 1 2 3{ , , }x x x  are unknown Jacobi  ellipsoidal coordinates of the point
1 2 3( , , ) ( , , )P U P x x x� � �  on the telluroid ( ( )P X  � 2

H�  ), ( , )W U�

2 3( , )W x x�  corresponds to Somigliana-Pizzetti potential field at point
( , , )P U� � � 2

H�  (c.f. Equation (4.4)), and pw  refers to actual gravity po-
tential at point { , , }p x y z  on the surface of the Earth.

The functional 1 2 3 4( , , , )x x x x�  is minimal if and only if following two
conditions hold:
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Partial derivatives /W �� �  and /W u� � of (4.8) can be readily derive
from (4.4) as follows
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Equations (4.8) build up the variational equations of the optimisation
problem (4.2). System of equations (4.8) is a nonlinear system and its
Brook Taylor expansion reads
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where
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and �  is the symbol for the Kronecker tensor product.

Newton iteration solution (X. Chen et al. (1997)) can be performed by the
n-sequence
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where Jacobean matrix of linearized form of the variational equations
(4.13) is as follows.
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The solution set 1 2 3 4ˆ ˆ ˆ ˆ( , , , )x x x x  derived from final step of Newton iteration
(4.16) provides the necessary condition (4.8) of a minimal solution. This
extremal solution is minimal if condition (4.9) is also satisfied. Indeed, we
must show that Hesse matrix H�  of second derivatives is positive semi-
definite, i.e. the characteristic polynomials of 0�H I� � �  are all non-
negative. The Hesse matrix H�  of second derivatives is given in Appendix
E. We proved the positive-definiteness of the Hesse-matrix H�  of second
derivatives by a numerical test.

4.2 Case study 1: Quasi-geoid map of Baden-
Württemberg

Here, we shall present the results of the minimum distance mapping of the
physical surface of the earth 2

h�  onto the Somigliana-Pizzetti telluroid
2
H�  for 157 GPS stations in the state Baden-Württemberg/Germany. Table

4-2 shows the first ten GPS points of the GPS file of Baden-Württemberg.
The coordinates are given in terms of Gauss ellipsoidal coordinates
{ , , }l b h  with respect to the GRS80 reference ellipsoid. This set of points
constitute the Baden-Württemberg part (BWREF) of the German GPS
network (DREF) which itself is part to European GPS network (EUREF).

Table 4-2: Part of the GPS file of the state Baden-Württemberg/Germany

Point ID
Number

Longitude
( pl )

(deg)

Latitude
( pb )

(deg)

Ellipsoidal
height
( ph )
(m)

Geopotential
Number
( 2 2/m s )

621707001 8.62383367 49.71395228 218.6128 2148.9295
631805402 8.81299339 49.60717789 587.0355 5785.3299
632000110 9.06549094 49.65066941 590.7425 5811.1345
632107425 9.21517069 49.65909479 234.5042 2305.4354
632302808 9.57513953 49.67395950 379.2613 3733.6137
632400308 9.80809056 49.64845024 412.8049 4058.8965
641400308 8.15923636 49.59699675 349.7134 3434.9047
641600108 8.47034288 49.59000986 136.4937 1339.6896
641701308 8.62851323 49.52709190 143.9359 1415.1545
642100208 9.25086269 49.55034041 523.2340 5160.5154
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The Gauss ellipsoidal coordinates { , , }l b h  of 157 GPS stations are con-
verted to Jacobi ellipsoidal coordinates { , , }u� �  according to forward
transformation equations (A.47)-(A.49). Table 4-3 presents the Jacobi el-
lipsoidal coordinates of the sample stations of Table 4-2.

Table 4-3: Transferred Jacobi ellipsoidal coordinates { , , }pu� �  of Table
4-2

Point ID
Number

p� p� pu

621707001 9.617432869327 49.60898966016 6356968.4504330
631805402 9.549475653403 49.60842348799 6356966.7368298
632000110 9.552776702951 49.61342803807 6356955.3539607
632107425 9.518509890067 49.66515664873 6356940.4330151
632302808 9.584526828221 49.60509389361 6356960.5466633
632400308 9.535064264303 49.62428053013 6356953.7623961
641400308 9.526483136723 49.63746430741 6356947.9810204
641600108 9.525534139567 49.64979432997 6356958.1832061
641701308 9.512823290742 49.65372897068 6356948.4890495
642100208 9.544545338174 49.62132133267 6356961.9798826

Newton Raphson iteration solution of the normal equations (4.8) led to
point-wise telluroid mapping of all GPS stations in the state of Baden-
Württemberg. A portion of the results for first ten GPS stations is pre-
sented in Table 4-4. Columns 2-4 are referring to Jacobi ellipsoidal coor-
dinates of telluroid projection points. Column 5 presents the difference
between u component of the GPS stations and their telluroid projection.
Finally, column 6 shows the projection of p pu U�  along the unit vector

uE . The geometrical height 33( )pH u U G� �  presents the separation
between the surface of the earth and Molodensky telluroid, specifically the
minimum distance mapping of the physical surface of the earth to the So-
migliana-Pizzetti telluroid. If we consider H as the height above the refer-
ence ellipsoid, by definition, we have a presentation of the quasi-geoid.
Figure 4-2 is the result of the minimum distance mapping described here
for Baden-Württemberg in the form of a quasi-geoid map.

Finally, the calculated quasi-geoid is compared with new European Gra-
vimetric Quasi-Geoid (EGG97) (H. Denker and W. Torge, 1998). The
summary of statistics of this comparison is given in Table 4-4.
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Table 4-4: Telluroid mapping of the sample GPS stations of Table 4-2
Point ID
Number

P� P� PU p pu U� 3( )pu U G�

(m)
621707001 8.623833 49.61901 6356923.6746 47.10590 47.0396
631805402 8.812993 49.51218 6357295.0294 44.69613 44.6330
632000110 9.065490 49.55569 6357297.6868 45.74952 45.6850
632107425 9.215170 49.56412 6356939.7418 46.95325 46.8870
632302808 9.575139 49.57899 6357085.8037 45.85237 45.7878
632400308 9.808090 49.55347 6357118.3259 46.92168 46.8555
641400308 8.159236 49.50199 6357054.1765 47.89158 47.8239
641600108 8.470342 49.49500 6356840.8091 47.73767 47.6702
641701308 8.628513 49.43205 6356848.6787 47.32132 47.2542
642100208 9.250862 49.45531 6357231.6235 44.21203 44.1494

Table 4-5: Statistics of the comparison between calculated height anoma-
lies at 157 GPS station in Baden-Württemberg and EGG97

Statistics of 97EGGN �� (m)
Mean 0.995
Std 1.322
Max 7.402
Min �0.921
number of sample points 157
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Baden−Württemberg/Germany Figure 4-2: Quasi-geoid map of Ba-
den-Württemberg, based on the mini-
mum-distance mapping of the physical
surface of the earth to the Somigliana-
Pizzetti telluroid.

Range of variations: 40.653-49.722m.

Map Projection Information:
Equidistant Conic Projection
Standard Parallels: 48 N�  and 49 N�
Reference ellipsoid: WGD2000
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4.2.1 Remarks and conclusions

From a review of Table 4-2 to Table 4-5 the following conclusions can be
made: (i) { , }P P� �  of the telluroid point P is very close to { , }p p� �  of
point p on the surface of the earth. This reveals the fact that the minimum
distance mapping of the physical surface of the earth to the Somigliana-
Pizzetti telluroid is very close to the mapping along the coordinate line of
u. (ii) The calculated quasi-geoid for GPS station based on minimum dis-
tance mapping of the physical surface of the earth to the Somigliana-
Pizzetti deviates from EGG97 by (0.995� 1.322778)(m) on average. This
difference can be mainly due to the interpolations process involved in pro-
viding the GPS stations with geopotential numbers. Indeed, since the pres-
ent GPS stations of Baden-Württemberg are not identical with the first or-
der level stations, where we have the geopotential numbers, such an inter-
polation is unavoidable. However, the present results, which are based on a
very simple interpolation process, are indicating the minimum distance
mapping of the physical surface of the earth to the Somigliana-Pizzetti
telluroid is an optimal method in quasi-geoid calculations. This is espe-
cially valid if the GPS stations are identical with first order levelling sta-
tions, which we recommend for the future national GPS campaigns.

4.3 Case study 2: Quasi-geoid map of East
Germany

Next, we shall present the results of the minimum distance mapping of the
physical surface of the earth 2

h�  onto the Somigliana-Pizzetti telluroid
2
H�  for 196 GPS stations in eastern part of Germany. Figure 4-3 shows

the geographical distribution of the GPS stations while Table 4-6 lists the
first ten GPS records of the GPS file of East Germany. The coordinates are
given in terms of Gauss ellipsoidal coordinates { , , }l b h  with respect to the
GRS80 reference ellipsoid.



184

Table 4-6: Part of the GPS file of the East Germany

Longitude
( pl )

(deg)

Latitude
( pb )

(deg)

Ellipsoidal height
( ph )
(m)

Geopotential
Number
( 2 2/m s )

13.4363 54.6772 82.295 455.75
13.6433 54.5136 68.192 318.76
12.5016 54.4716 39.663 21.20
13.0076 54.4256 48.669 115.93
13.4252 54.4172 92.697 553.89
13.2909 54.3508 42.444 58.39
12.7371 54.2981 50.352 127.90
13.6586 54.2971 101.363 641.58
13.0796 54.2511 55.762 185.67
12.4053 54.2495 40.304 23.93
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Figure 4-3: The 196 GPS stations in East
Germany.
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The Gauss ellipsoidal coordinates { , , }l b h  of 196 GPS stations are con-
verted to Jacobi ellipsoidal coordinates { , , }u� �  according to forward
transformation equations (A.47)-(A.49). Table 4-7 presents the Jacobi el-
lipsoidal coordinates of the sample stations of Table 4-6.
Table 4-7: Transferred Jacobi ellipsoidal coordinates { , , }pu� �  of Table
4-6

p� p� pu
13.4363 54.5864 6356834.2477
13.6433 54.4226 6356820.1294
12.5016 54.3805 6356791.5681
13.0076 54.3345 6356800.5844
13.4252 54.3261 6356844.6627
13.2909 54.2596 6356794.3526
12.7371 54.2069 6356802.2698
13.6586 54.2059 6356853.3393
13.0796 54.1598 6356807.6861
12.4053 54.1582 6356792.2103

Newton Raphson iteration solution of the normal equations led to point-
wise telluroid mapping of all GPS stations in the state of East Germany.
The geometrical height 33( )pH u U G� �  presenting the separation be-
tween the surface of the earth and Molodensky telluroid is considered as
the height above the reference ellipsoid, to produce the quasi-geoid map
shown in Figure 4-4. A part of European Gravimetric Quasi-Geoid
(EGG97) (H. Denker and W. Torge, 1998) covering the East Germany is
also shown in Figure 4-5.

Finally, the calculated quasi-geoid is compared with new European Gra-
vimetric Quasi-Geoid (EGG97). The summary of statistics of this compari-
son is given in Table 4-8, while Figure 4-6 shows the contour map of the
difference.
Table 4-8: Statistics of Quasi-geoid height of EGG97 minus the calculated
quasi geoid based on minimum distance mapping of physical surface of the
earth on to the telluroid at 196 GPS station in eastern part of Germany.

Statistics of 97EGGN �� (m)
Mean ��������

Std ����	�

Max ���
��

Min �������

number of sample points ���
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Figure 4-4: Quasi-geoid map of eastern
part of Germany, based on the mini-
mum-distance mapping of the physical
surface of the earth to the Somigliana-
Pizzetti telluroid. The quasi-geoid un-
dulations are in the interval [35.609m-
47.501m].
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Figure 4-5: Quasi-geoid height of
EGG97 over the East Germany.
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4.3.1 Conclusions and remarks

A review of Table 4-6 - Table 4-8 reveals that (i) the Jacobi ellipsoidal co-
ordinates { , }P P� �  of the telluroid point P are very close to Jacobi ellip-
soidal coordinates { , }p p� �  of point p on the surface of the Earth. An indi-
cation to the fact that the minimum distance mapping of the physical sur-
face of the Earth to the Somigliana-Pizzetti telluroid is very close to the
alternative mapping along the coordinate line of u. Such a result can be
analysed in Figure A-1-Figure A-3 in terms of the curvatures of the coor-
dinate line of u. As one can deduce from Figure A-1-Figure A-3  the cur-
vature of the coordinate line of u approaches zero very fast as one goes
away from the centre of the coordinate system. According to Figure A-2
for 2000000u m�  coordinate line of u has practically no curvature. (ii)
The calculated quasi-geoid for GPS station based on minimum distance
mapping of the physical surface of the Earth to the Somigliana-Pizzetti
telluroid deviates from EGG97 by ( 0.05496 0.0389)m� �  on average.
Considering the speed of our calculations as compared to classical Molo-
densky quasi-geoid computation, we can concluded that the minimum dis-
tance mapping of the physical surface of the Earth to the Somigliana-
Pizzetti telluroid is an optimal method for quasi-geoid determination.
Therefore, we recommend the GPS observations along the first-order lev-
elling stations, for the future national GPS campaigns, which can open the
door to the quasi-geoid calculation based on Somigliana-Pizzetti telluroid
mapping.
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Figure 4-6: Quasi-geoid height of
EGG97 minus the calculated quasi geoid
based on minimum distance mapping of
physical surface of the earth on to the
telluroid. The difference is in the range of
�������m to ������m.
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A Appendices A: Ellipsoidal coordinates
In this appendix, six different ellipsoidal coordinates will be introduced.
Among these six, there are two, which we have used in various chapters.
Therefore, for these two we will present the eigenvalue/eigenfunction so-
lution of 3-D Laplace differential equation of gravitational field of the
earth in Appendix B, and external Dirichlet problem of Laplace equation
with boundary data on the ellipsoid of revolution in Appendix D. These
two coordinates are Jacobi ellipsoidal coordinates { , , }� � �  and { , , }u� � .
N. Thong and E. Grafarend (1989) have given an extensive review to four
different types of ellipsoidal coordinates and the ellipsoidal eigenval-
ues/eigenfunctions which span the three-dimensional Laplace partial dif-
ferential equation for the external gravity field of the earth.
Box A-1 presents six different ellipsoidal coordinates, which will be intro-
duced in detail in the following sections of this appendix.

Box A-1: Different types of ellipsoidal coordinates

� Jacobi ellipsoidal coordinates
 1st variant, elliptic coordinates{ , , }� � �

 2nd variant, trigonometric elliptic coordinates { , , }� � �

 3rd variant, mixed elliptic-trigonometric elliptic coordi-
nates{ , , }u� �

 4th variant, mixed elliptic-trigonometric elliptic coordinates
{ , , }v� �

� Gauss ellipsoidal coordinates
First variant, geodetic coordinates{ , , }l b h  (geodetic longitude, geo-
detic latitude, and ellipsoidal height)
Second variant, normal-geodetic coordinates{ , , }Nl b h  (geodetic
longitude, geodetic latitude, and normal height)
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A.1 Jacobi ellipsoidal coordinates

In this section, we will briefly review the ellipsoidal coordinates of Jacobi
type. This brief review covers all the backgrounds that one may need in
different chapters of the thesis. For more on ellipsoidal coordinates, one
can refer for example to P. Moon and E. Spencer (1961), W. Heiskanen
and H. Moritz (1967), and N. Thong and E. Grafarend (1989).

A.1.1 First variant: Elliptic coordinates {�����}

In terms of ellipsoidal coordinates { , , }� � � , a point in space can be located
as intersection of three coordinate surfaces. In Jacobi ellipsoidal coordi-
nate system the coordinate surfaces are corresponding to three families the
type (i) confocal oblate spheroids, (ii) confocal half hyperboloids, and (iii)
planes. These families of surfaces are defined as follows. For the variant
{ , , }� � �  of Jacobi ellipsoidal coordinates these families are as follows

(i) the family of confocal, oblate spheroids

 � �2 2

2 2 2
2 3 2 2

2 2,
: | 1,

a b
a

x y z b
a b� �

�
� �

x� �
� �

�

�
� � � � �

� �

(A.1)

(ii) the family of confocal half hyperboloids

 � �2 2

2 2 2
2 3 2 2

2 2,
: | 1,

a b

x y z b a
a b� �

�

� �

x� �
� �

�
� � � � � �

� �

(A.2)

(iii) the family of half planes
 � �2 3

cos ,sin | tan , [0,2 ]: y x� � � � �x� � � �� � (A.3)

According to Figure A-4 page 222, the longitude �  gives orientation to
the half planes. The elliptic coordinate �  is related to the inclination �  of
the asymptotes of confocal half hyperboloids through 2 2 2cosa� � �� � ,
the elliptic coordinate �  in the form of 2a ��  defines the semi-major
axis of confocal oblate spheroids (confocal, oblate ellipsoids of revolu-
tion).

The forward and backward transformations of ellipsoidal coordinates
{ , , }� � �  into Cartesian coordinates are collected in Box A-2, while and the
Jacobi matrix of the forward transformation is reviewed in Definition A-2.
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Box A-2: Conversion of Cartesian coordinates { , , }x y z  into ellipsoidal
coordinates { , , }� � � :

(i) Forward transformation from ellipsoidal coordinates { , , }� � �  into
Cartesian coordinates { , , }x y z

 

2 2

2 2

2 2

2 2

2 2

2 2

( )( ) cos

( )( ) sin

( )( ) cos

a ax
a b

a ay
a b

b bz
a b

� �
�

� �
�

� �
�

� �
�

�

� �
�

�

� �
� �

�

(A.4)

(ii) Backward transformation of Cartesian coordinates { , , }x y z  into ellip-
soidal coordinates { , , }� � �

 

arctan for 0 and 0

arctan for 0 and 0

arctan 2 for 0 and 0

for 0 and 0
2

3 for 0 and 0
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y x y
x
y x y
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x y

x y

�

� �

�

�

� � �
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� � 	�
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(A.5)
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a b x y z

a b x y z x y z
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(A.6)

 

2 2 2 2 2

2 2 2 2 2 2 2 2 2

1( ( ))
2
1 ( ) 4( )
2

a b x y z

a b x y z x y z

� � � � � �
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(A.7)
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Definition A-1: Basic geometry of ellipsoidal coordinates { , , }� � �

(i) Jacobi matrix of the transformation from ellipsoidal coordinates
{ , , }� � � into Cartesian coordinates { , , }x y z

From equation (A.4) the Jacobi matrix �J � of the transformation from el-
lipsoidal coordinates { , , }� � �  into Cartesian coordinates { , , }x y z  can be
constructed as follows.

 :

X X X

J Y Y Y

Z Z Z

� ��

� ��

� ��

� �
� �

� � �
� �
� �� �

(A.8)

The partial derivatives involved in (A.8) reads as follows

 2 2 2 2( - )( - )/( - ) sinX D X a a a b� � � � �� � �

 2 2 2 2( )( )/( ) cosY D Y a a a b� � � � �� � � � �

 0Z D Z� �� �

 2 2 2 21/2 ( )/[( )( )]cosX D X a a a b� � � � �� � � � � �

 2 2 2 21/2 ( )/[( )( )]sinY D Y a a a b� � � � �� � � � � �

 2 2 2 21/2 ( )/[( )( )]Z D Z b b a b� � � �� � � � � �

 2 2 2 21/2 ( )/[( )( )]cosX D X a a a b� � � � �� � � � � �

 2 2 2 21/2 ( )/[( )( )] sinY D Y a a a b� � � � �� � � � � �

 2 2 2 21/2 ( )/[( )( )]Z D Z b b a b� � � �� � � � � � .

(ii) The metric tensor of the ellipsoidal geometry space { , , }� � �  is given
by

 2 *[ , , ]

d

dS d d d J J d

d

�

� � � �

�

� �
� �
� �

� � �
� �
� �
� �� �

(A.9)
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*

2 2 2 2

2 2

2 2

:

( )( )/( ) 0 0

0 1/4( - )/[( - )( - )] 0

0 0 -1/4( - )/[( - )(a - )]

G J J

a a a b

a b

b

� �

� � � �
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�

� �� � �
� �

� � �
� �
� �� �

 : , 1,2,3nmg n m� � � (A.10)

(iii) The Laplacian read as follows

 

� �
11 22 33
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(A.11)

�

A.1.2 Second variant: Trigonometric elliptic coordi-
nates  {�����}

In terms of ellipsoidal coordinates { , , }� � � , a point in space can be lo-
cated as the intersection of three coordinate surfaces. The coordinate sur-
faces are corresponding to three families of surfaces of the type (i) confo-
cal oblate spheroids, (ii) confocal half hyperboloids, and (iii) planes. These
families of surfaces are defined as follows.
(i) The family of confocal oblate spheroids

 
�

�

2 2 2
2 3
cosh , sinh 2 2 2 2

2 2 2

: | 1,
cosh sinh

(0, ), :

x y z

a b

� � � �
� � � �

� �

�
� � � �

� �� � �

x� �
(A.12)

(ii) The family of confocal half hyperboloids
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�

�

2 2 2
2 3

cos , sin 2 2 2 2: | 1,
cos sin

[ , ], 0
2 2

x y z
� � � �

� � � �

� �
� �

�
� � � �

� � �

x� �

(A.13)

(iii) The family of half planes
 � �2 3

cos ,sin | tan , [0,2 ]: y x� � � � �� �� �x� � (A.14)

�

According to Figure A-4 page 222, the longitude �  gives orientation to
the half planes. The latitude �  is related to the inclination of the asymp-
totes of confocal half hyperboloids; the elliptic coordinate �  in the form of

cosh� �  defines the semi-minor axis of confocal oblate spheroids (confo-
cal, oblate ellipsoids of revolution).
The forward and backward transformations of ellipsoidal coordinates
{ , , }� � �  into Cartesian coordinates are collected in Box A-3. The Jacobi
matrix of the forward transformation is reviewed in Definition A-2.

Box A-3: Conversion of Cartesian coordinates { , , }x y z  into ellipsoidal
coordinates { , , }� � �

Forward transformation of ellipsoidal coordinates { , , }� � �  into Cartesian
coordinates { , , }x y z

 

cosh cos cos
cosh cos sin
sinh sin

x
y
z

� � � �

� � � �
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�

�

�

(A.15)

Backward transformation of Cartesian coordinates { , , }x y z  into ellipsoi-
dal coordinates { , , }� � �
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arctan for 0 and 0
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x y
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(A.16)
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2
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1(sgn )arcsin [ ( )
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x y z z
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(A.17)
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(A.18)

 Valid for

 

{ |0 2 }

{ | }
2 2

{ | 0}

� � � �

� �
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� � �

�

�

�

� � � �
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� � �

(A.19)

Definition A-2: Basic geometry of ellipsoidal coordinates { , , }� � �

(i) Jacobi matrix of transformation from the ellipsoidal coordinates
{ , , }� � � into Cartesian coordinates { , , }x y z

From equation (A.15) Jacobi matrix �J � of the transformation from ellip-
soidal coordinates { , , }� � �  into Cartesian coordinates { , , }x y z  can be con-
structed as follows

 :
X X X

J Y Y Y
Z Z Z

�� �

�� �

�� �

� �
� �
� ��
� �
� �
� �� �

(A.20)

(ii) The partial derivatives involved in (A.20) read as
 cosh cos sinX D X� � � � � �� � �

 cosh cos cosY D Y� � � � � �� �

 0Z D Z� �� �

 cosh sin cosX D X� � � � � �� � �

 cosh sin sinY D Y� � � � � �� � �

 sinh cosZ D Z� � � � �� �

 sinh cos cosX D X� � � � � �� �

 sinh cos sinY D Y� � � � � �� �

 cosh sin .Z D Z� � � � �� �
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(iii) The metric tensor
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(A.21)

(iv) The Laplacian
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1 sin sinh tan
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tanh
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(A.22)

�

A.1.3 Third variant: Mixed elliptic-trigonometric el-
liptic coordinates { , , }u� �

In terms of ellipsoidal coordinates { , , }u� � , a point in space can be lo-
cated as the intersection of following family of surfaces.
(i) the family of confocal, oblate spheroids

 2 2

2 2 2
2 3 2 2 2

2 2 2,
: | 1, (0, ), :

u u
x y z u a b
u u�

�

�
�

� ��� �� �� � � � � �� � �	 

� ��� �� �
x� �

 (A.23)
(ii) the family of confocal half hyperboloids

 
2 2 2

2 3
cos , sin 2 2 2 2: | 1, [ , ], 0

2 2cos sin
x y z
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� �
� �

� � � �

� ��� �� �� � � � � � �	 

� �� �� �
x� �

 (A.24)
(iii) the family of half planes
 � �2 3

cos ,sin | tan , [0,2 ]: y x� � � � �� �� �x� � (A.25)
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According to Figure A-4 page 222, the longitude �  gives orientation to
the half planes. The latitude �  is related to the inclination of the asymp-
totes of confocal half hyperboloids; the elliptic coordinate u coincides with
the semi-minor axis of confocal oblate spheroids (confocal, oblate ellip-
soids of revolution).
Box A-4: Conversion of Cartesian coordinates { , , }x y z  into ellipsoidal
coordinates { , , }u� �

(i)  Forward transformation from ellipsoidal coordinates { , , }u� �  into
Cartesian coordinates { , , }x y z
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cos sin

sin

x u
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(A.26)

(ii)  Backward transformation of Cartesian coordinates { , , }x y z  into ellip-
soidal coordinates 
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(A.29)

Figure A-1 illustrates the coordinate lines u  and �  in the plane 0� �
� .

This configuration, because of the rotational symmetry of the system is the
same for any plane const� � . As one can see the coordinate line of �  for

6,356,751.860 mu b� � , with linear eccentricity 2 2: a b� � �

521,854.677 m�  is very close to a circle. Besides, the coordinate lines u
(( , ) .const� � � ) for 2000,000u m�  tend to become straight lines. This
can be very well seen in terms of variations of curvature of coordinate line
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.const� �  in 0� �
�  plane verses Jacobi ellipsoidal coordinate u  as

shown in Figure A-2 and Figure A-3.
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Figure A-1: Jacobi ellipsoi-
dal coordinates { , , }u� � .
Coordinate lines

{45 ,60 ,80 }� �
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6,356,751.860( )u b m� �

with linear eccentricity
2 2a b� � �

521854.677( )m� , in the
plane 0� �

� .
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Definition A-3: Basic geometry of ellipsoidal coordinates { , , }u� �

(i) Jacobi matrix of the transformation from ellipsoidal coordinates
{ , , }u� � into Cartesian coordinates { , , }x y z

From equation (A.26) Jacobi matrix �J � of the transformation from ellip-
soidal coordinates { , , }u� �  into Cartesian coordinates { , , }x y z  can be con-
structed

 :

u

u

u

X X X

J Y Y Y

Z Z Z

� �

� �

� �

� �
� �

� � �
� �
� �� �

(A.30)

The partial derivatives involved in (A.30) are as follows
 2 2 cos sinX D X u� � � � �� � � 	

 2 2 cos cosY D Y u� � � � �� � �

 0Z D Z� �� �

 
2 2 sin cosX D X u� � � � �� � � �

 2 2 sin sinY D Y u� � � � �� � � �

 cosZ D Z u� � �� �

 
2 2

cos cosu u
uX D X

u
� �

�
� �

�

 
2 2

cos sinu u
uY D Y

u
� �

�
� �

�

 sinu uZ D Z �� � .

(ii) The metric tensor

 2 *[ , , ]

d

dS d d du J J d

du

�

� � �

� �
� �

� � �
� �
� �� �

(A.31)

 *:G J J�

2 2 2

2 2 2

2 2 2 2 2

( )cos 0 0

0 sin 0

0 0 ( sin )/( )

u

u

u u

� �

� �

� � �

� ��
� �

�� �
� �

� �� �� �
: , 1,2,3nmg n m� � � (A.32)
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(iii) Laplacian
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� � �
� � � � � �
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� �

�� � �

� � �
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�� �

(A.33)

A.1.4 Fourth variant: Mixed elliptic-trigonometric
elliptic coordinates {��v��}

In terms of ellipsoidal coordinates { , , }� � � , a point in space can be lo-
cated as the intersection point of family of surfaces.
(i) the family of confocal, oblate spheroids

 � �
2 2 2

2 3 2 2 2
cosh , sinh 2 2 2 2: | 1, (0, ), :

cosh sinh
x y z a b� � � � � �
� � � �

x� �
�

� � � � � � � � �

 (A.34)
(ii) the family of confocal half hyperboloids

 � �2 2

2 2 2
2 3 2 2

2 2 2,
: | 1, 0 v

v vv v

x y z a b
�

�

x� �
�

�
� � � � � � �

�

(A.35)

(iii) the family of half planes
 � �2 3

cos ,sin | tan , [0,2 ]: y x� � � � �x� � � �� � (A.36)

According to Figure A-4 page 222, the longitude �  gives orientation to
the half planes. The elliptic coordinate v  is related to the inclination �  of
the asymptotes of confocal half hyperboloids through v cos� �� ; the el-
liptic coordinate �  defines the semi-minor axis of confocal oblate sphe-
roids via 2 2cosh� �  (confocal, oblate ellipsoids of revolution).
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Box A-5: Conversion of Cartesian coordinates { , , }x y z  into ellipsoidal
coordinates { ,v, }� �

(i)  Forward transformation from ellipsoidal coordinates { ,v, }� �  into
Cartesian coordinates { , , }x y z

 

2 2

v cosh cos

v cosh sin

v sinh

x

y

z

� �

� �

� �

�

�

� � �

(A.37)

(ii)  Backward transformation of Cartesian coordinates { , , }x y z  into ellip-
soidal coordinates { ,v, }� �
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(A.38)
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(A.39)

 2 2 2 2 2 2 2 2 2 2 2 21 1v ( ) ( ) 4 ( )
2 2

x y z x y z x y� � �� � � � � � � � � �

 (A.40)

Definition A-4: Geometry of ellipsoidal coordinates { ,v, }� �

(i) Jacobi matrix of the transformation of ellipsoidal coordinates
{ ,v, }� � into Cartesian coordinates { , , }x y z

From equation (A.37) Jacobi matrix �J � of the transformation of ellipsoi-
dal coordinates { ,v, }� �  into Cartesian coordinates { , , }x y z  can be con-
structed
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v

v

v

:

X X X

J Y Y Y

Z Z Z

��

��

��

� 
� �

� � �
� �
� �� �

(A.41)

The partial derivatives involved in (A.41) are as bellows
 v cosh sinX D X� � � �� � �

 v cosh cosY D Y� � � �� �

 0Z D Z� �� �

 v v cosh cosX D X � �� �

 v v cosh sinY D Y � �� �

 2 2
v v 1/ -v v sinhZ D Z e �� � �

 v sinh cosX D X� � � �� �

 v sinh sinY D Y� � � �� �

 2 2v coshZ D Z� � � �� � � .

(ii) The metric tensor

 2 *[ , v, ] v

d

dS d d d J J d

d

�

� �

�

� 
� �

� � �
� �
� �� �

(A.42)

 *:G J J� �
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0 ( v + cosh )/( v ) 0

0 0 v + cosh
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� � �
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� �
� �

� �� �
� �

�� �� �
: , 1,2,3nmg n m� � � (A.43)

(iii) The Laplacian
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(A.44)
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Figure A-4: Ellipsoidal Coordinates
{ , , }� � � , characterised by the coordinate
surfaces of the type: (i) Spheroids (�  =
const.), (ii) half hyperboloids of one
sheet (�  = cost.) and, (iii) half planes (�
= const.).

Ellipsoidal Coordinates { , , }� � � , char-
acterised by the coordinate surfaces of
the type: (i) Spheroids (�  = const.), (ii)
half hyperboloids of one sheet (�  =
cost.) and, (iii) half planes (�  = const.).

Ellipsoidal Coordinates { , , }u� � , char-
acterised by the coordinate surfaces of
the type: (i) Spheroids (u  = const.), (ii)
half hyperboloids of one sheet (�  =
const.) and, (iii) half planes (�  = const.).

Ellipsoidal Coordinates { ,v, }� � , char-
acterised by the coordinate surfaces of
the type: (i) Spheroids (�  = const.), (ii)
half hyperboloids of one sheet (v  =
const.) and, (iii) half planes (�  = const.).
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A.2 Gauss ellipsoidal coordinates

A.2.1 1st variant: Geodetic coordinates {L, B, H}

In terms of Gauss ellipsoidal coordinates, a point in 3-D space is identified
by intersection of a plane and a reference ellipsoid and a vertical distance
from the reference ellipsoid 2

,a b� . Box A-6 defines the Gauss ellipsoidal
coordinates through their relation with the Cartesian coordinates { , , }x y z .

Box A-6: forward and backward transformation of Gauss ellipsoidal co-
ordinates { , , }L B H  into Cartesian coordinates { , , }x y z

 �Forward transformation�

 

2 2

2 2

2

2 2

[ ( , )]cos cos
1 sin

[ ( , )]cos sin
1 sin

(1 )[ ( , )]sin
1 sin

ax H L B B L
e B
ay H L B B L

e B
a ez H L B B

e B

��
� � ��
� ��
�
�� � ��
� ��
�

��
� � ��
��� �

(A.45)

 In (A.45) 2 2: /e a b a� �  is the relative eccentricity.
 �Backward transformation�

 

sgn , sgn : 0 /2

sgn , sgn : /2
arctan /

sgn , sgn : 3 /2

sgn , sgn : 3 /2 2

X Y L

X Y L
L Y X

X Y L

X Y L

�

� �

� �

� �

� � � � � ��
�

� � � � � ��
� �

� � � � � ��
� � � � � � �	

(A.46)

The other two components i.e. B, H can be derived either by Newton it-
eration or by solution of a system of algebraic equations or using closed
formulae of M. Heikkinen (1982). E. Grafarend and J. Engels (1992a,
1992b) have developed series expansion for the height function H (L, B)
in terms of a set of orthonormal functions on 2

,a b� .
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A.2.2 2nd variant: Normal-geodetic coordinates {L,
B, HN}

The normal geodetic coordinates { , , }NL B H  are the same as geodetic co-
ordinates { , , }L B H  except that the height component NH  here refers to
reference gravity field. In fact, in terms of normal geodetic coordinates
{ , , }NL B H , in contrast to geodetic coordinates, the height component NH
is measured along the normal plumb line down to the surface of quasi-geod
(see Figure A-5).

P

q

B

L

H

X

Y

Z

Figure A-5: Geodetic coordinates { , , }L B H  versus normal-geodetic co-
ordinates { , , }NL B H . H  is measured along the ellipsoidal normal while

NH  is a length along normal plumb line down to the surface of quasi-
geoid.

A.3 Direct transformation between Gauss el-
lipsoidal coordinates and Jacobi ellipsoidal
coordinates

According to E. Grafarend et al. (1999), following relations between
Gauss ellipsoidal coordinates { , , }L B H  and Jacobi ellipsoidal coordi-
nates { , , }u� �  exists.
(i)  Forward  transformation { , , } { , , }u L B H� � �

 L� � (A.47)
 2arctan( 1 tan )e B� � � (A.48)
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 � �
2

1/22 2
2 2 1/22

(1 )1 cos 1 (1 )tan
(1 sin )1

a eu B H e B
e Be

�� �
� � � �� ��� � 	

(A.49)

(ii)  Backward transformation { , , } { , , }u L B H� � �

 L �� (A.50)

 
2

1arctan( tan )
1

B
e

��

�

(A.51)
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�
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� �
� � � � � �� �� � �� 	

 (A.52)

B Appendix B: Eigenspace solution of 3-
D Laplace differential equation of
gravitational field of the earth

Jacobi ellipsoidal coordinates enjoy the property of decomposing the three-
dimensional Laplace partial differential equation into separable functions.
In the next sections, a summary of the ellipsoidal eigenvalue/eigenfunction
solution of Laplace differential equation for Jacobi ellipsoidal coordinates
of the types { , , }� � �  and { , , }u� �  will be presented.

B.1 In terms of Jacobi ellipsoidal coordinates
{�����}

(i) Laplace differential equation

 
�

�

2 2 2

2 2 2 2 2 2

2 2

2 2

1 sin sinh( , , ) tan
(sin sinh ) cos cosh

tanh 0

U

U

� �
� � � �

�� � � � � �

�
�� �

�
� � �

� �
�� �

� � �
� � � �

�� �

(B.1)

(ii) Multiplicative decomposition
 ( , , ) ( ) ( ) ( )U H� � � � � �� �� (B.2)
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(iii) Separated ordinary differential equations
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(B.3)

(iv) Eigen-conditions
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Or equivalently
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(v) Eigenvalue-eigenfunction solutions
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 (B.6)
(vi) General eigenvalue-eigenfunction solution

 | |
0

( , , ) ( sinh ) ( , )
n

nm nmn m
n m n

U u Q i e� � � � � �
�

� ��

� � � (B.7)

Where the surface ellipsoidal harmonics ( , )nme � �  are defined as

 *
| |

cos 0
( , ) (sin )

sin | | 0
nm n m

m m
e P

m m

�
� � �

�

� ��
� �

� ���
(B.8)
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B.2 In terms of Jacobi ellipsoidal coordinates
{�,�,u}

(i) Laplace differential equation
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(B.9)

(ii) Multiplicative decomposition
 ( , , ) ( ) ( ) ( )U u H u� � � �� � � (B.10)

(iii) Separated ordinary differential equations
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(iv) Eigen-conditions
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Or equivalently
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(v) Eigenvalue-eigenfunction solutions
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(vi) General eigenvalue-eigenfunction solution
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Where the surface ellipsoidal harmonics ( , )nme � �  are defined as
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| |

cos 0
( , ) (sin )

sin | | 0
nm n m

m m
e P

m m
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� ���
(B.16)

The normalised associated Legendre functions of the first kind * (sin )nmP � ,
as well as of the second kind * (sinh )nmQ � as they appear in (B.7), (B.8),
(B.15)and (B.16) will be defined in the next section.

C Appendix C: Normalised associated
Legendre functions of the first and
second kind

We define the normalised associated Legendre functions of the first kind
* (sin )nmP �  by the recurrence relations

 * *
1, 1

2 1(sin ) cos (sin )
2

nn n n
nP P

n
� � �

� �
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(C.3)

subject to
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[3, ) and [0, 2] n m n� � � � �

with start up values

 *
00(sin ) 1P � � (C.4)

 *
10(sin ) 3 sinP � �� (C.5)

 *
11(sin ) 3 cosP � �� (C.6)

 * 2
20

5(sin ) (3 sin 1)
2

P � �� � (C.7)

 *
21(sin ) 15 sin cosP � � �� (C.8)

 * 2
22

15(sin ) cos
2

P � �� (C.9)

Let us define the normalised associated Legendre functions of the first
kind * (sinh )nmP �  through an integral equation
 * (sinh ): ( sinh )n

nm nmP i P i� �
�

� (C.10)
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 (C.11)
where 1i � �  is the imaginary unit. First few normalised associated
Legendre functions of the first kind * (sinh )nmP �  for n = 0, 1, 2 and m = 0
are as follows.
 *

0 (sinh ) 1P � � (C.12)
 *

1 (sinh ) sinhP � �� (C.13)

 * 2
2

1(sinh ) (3 sinh 1)
2

P � �� � (C.14)

The associated Legendre functions of the second kind can be defined by an
integral relation of the type
 * 1(sinh ) ( sinh )n

nm nmQ i Q i� �
�

� (C.15)
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sinh( 1) 2 ( )! !( sinh ) (cosh )
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 (C.16)
with starting values for n = 0, 1, 2 and m = 0
 *

0 (sinh ) arc cot(sinh )Q � �� (C.17)
 *

1 (sinh ) 1 sinh arc cot(sinh )Q � � �� � (C.18)

 * 2
2

1(sinh ) [(3 sinh 1)arc cot(sinh ) 3 sinh ]
2

Q � � � �� � � (C.19)

�
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Instead of the above integral formulas, in practice the associated Legendre
functions of the second kind are better to be calculated via the recursive
relations which enjoy the numerical stable, especially for the higher degree
and order functions (N. Thong and E. Grafarend, 1989, G. Sona, 1996)

 
max

* *
| | | |

0
(sinh ) ( )

k

n m n m k
k

Q Q� �

�

� � (C.20)

 * *
| | | | 12

(1 | | 2 )( | | 2 )( ) ( ) 1
2 (2 2 1)sinhn m k n m k
n m k n m kQ Q k

k n k
� �

�
�
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 (C.21)

 0* | | 1
| |0

cosh( ) cosh ( ) , [ , ]
sinh

m n
n mQ n m n n�

� �
�

�
� � � �� �� � (C.22)

The summation (C.20) is continued until
 

max
* *
| | | | max 1

( ) ( )n m k n m kQ Q� � �
�

� � (C.23)
where �  indicates the numerical accuracy limit. For double precision accu-
racy, � =1E�16 may be adopted.

D Appendix D: External Dirichlet prob-
lem of Laplace equation with boundary
data on the ellipsoid of revolution

D.1 In terms of Jacobi ellipsoidal coordinates
{�����}

Definition of the problem:

(i) Field differential equation
 3 2( ) 0 a bU� � � �x x � � ,/  (D.1)
 (i.e., � �x external points of the reference ellipsoid 2

,a b� )

(ii) Eigen-conditions
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(2 , , ) (0, , )

( , , )

lim ( , , ) 0
u

U U

U

U

� � � � �

� � �

� � �
��

� �
��

� ��
�

���

(D.2)

(iii) Boundary values
 2

,( ) ( , ) a bU f � �� � �X X �  (D.3)

Solution steps:
(i) Eigenvalue/eigenfunction solution of external gravitational field of the
earth, in terms of ellipsoidal coordinates { , , }� � �  according to

 | |
0

( , , ) ( sinh ) ( , )
n

nm nmn m
n m n

U u Q i e� � � � � �

�

� ��

� � � (D.4)

(ii) At the surface of reference ellipsoid 2
,a b�

 0| |
0

( sinh ) ( , ) ( , )
n

nm nmn m
n m n

u Q i e f� � � � �

�

� ��

�� � (D.5)

(iii) Using the weighted orthonormality of ellipsoidal harmonics

 
2
,0| |

1 1 ( ') ( ', ') ( ', ') '
( sinh )

a b

nm nm
n m

u w f e dS
Q i S

� � � � �
� �

� � (D.6)

where the local area element
 2 2 2 2

,' {area ( )} sin ' cos ' ' 'a bdS d a b d d� � � � ��� � � � (D.7)

global area element
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2

2
,

1 1area ( ) 4 ln
2 4a b
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(D.8)

and the weight function
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2 2 2
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(D.9)

(iv) Solution of the ellipsoidal Dirichlet boundary value problem
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 (D.10)
(v) Ellipsoidal Abel-Poisson integral
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Where to reach (D.11) from (D.10) we have interchanged the integral and
summation signs which is justified by the uniform convergent property of
the series (D.4) in the domain 3 2

a b� � ,/ .

(vi) Abel-Poisson Kernel
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 (D.12)

D.2 In terms of Jacobi ellipsoidal coordinates
{�,�,u}

Definition of the problem:

(i) Field differential equation
 3 2( ) 0 a bU� x x � �� � � ,/  (D.13)
 (i.e., x � external space of the reference ellipsoid 2

,a b� )

(ii) Eigen-conditions
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u

U u U u
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���

(D.14)

(iii) Boundary values
 2

,( ) ( , ) a bU f � �X X �� � � (D.15)

Solution steps:
(i) Eigenvalue/eigenfunction solution of external gravitational field of the
earth, in terms of ellipsoidal coordinates { , , }u� �  according to
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(ii) At the surface of reference ellipsoid 2
,a b�

 | |
0

( ) ( , ) ( , )
n

nm nmn m
n m n

bu Q i e f� � � �
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�

� ��

�� � (D.17)

(iii) Using the weighted orthonormality of ellipsoidal harmonics we have
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where the local area element
 2 2 2 2

,' {area ( )} sin ' cos ' ' 'a bdS d a b d d� � � � ��� � � � (D.19)

global area element
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1 1area ( ) 4 ln
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(D.20)

and the weight function
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(iv) Solution of the ellipsoidal Dirichlet boundary value problem
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(v) Ellipsoidal Abel-Poisson integral
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Where to reach (D.23) from (D.22) we have interchanged the integral and
summation signs which is justified by the uniform convergent property of
the series (D.4) in the domain 3 2

a b� � ,/ .

(iv) Abel-Poisson Kernel
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E Appendix E: The Hesse matrix of
minimum distance mapping of the sur-
face of the earth onto the telluroid

Here we shall present the Hesse matrix H
�

 of second derivatives of the
minimisation problem (4.1) as follows.
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2

2
2
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F Appendix F: Taylor series expansion in
terms of invariant / physical compo-
nents

Suppose ( , , )F u v w  is a scalar function of orthogonal curvilinear coordi-
nates { , , }u v w . The B. Taylor expansion of ( , , )F u v w  with respect to the
curvilinear component u  around the point 0u  by definition is as follows.

 0 0

0 0

2
2

0 2

2 2
0

1 1( , , ) ( , , )
1! 2!
1 1( , , ) D D
1! 2!

u u u u

u uu u u u

F FF u v w F u v w du du
u u

F u v w du du

� �

�
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� �
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� �
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�

�

(F.1)

 du  in (F.1) is the differential form of the curvilinear coordinate u , and as
such depends on the definition of the curvilinear coordinates { , , }u v w .
However, when dealing with physical quantities it is advantageous to pres-
ent the Taylor series expansions in terms of invariant quantities, which do
not depend on the coordinate systems. It is for the reason that natural /
physical quantities indeed, do not depend on any coordinate system. Ac-
cording to A. Eringen  (1962) the physical / invariant form of du  is as fol-
lows.
 (1)

uudu g du� (F.2)
 where uug  is the metric tensor of the u  component of the curvilinear  coor-
dinates { , , }u v w . The metric tensor of the orthogonal curvilinear coordi-
nates { , , }u v w , i.e. { , , }uu vv wwg g g , can be derived from the transformation
relations of the curvilinear coordinates { , , }u v w  into Cartesian coordinates
{ , , }x y z  as follows.
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(F.3)

 or in short
 ( , , )u v w�x x (F.4)
 where
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x x t t (F.8)

 : /u u� � �t x , : /v v� � �t x , and : /w w� � �t x  are the local tangent
vectors of the coordinate line of u , v , and w , respectively. Accordingly,
the normalised local tangent vectors { , , }u v we e e  can be defined as follows.

 : u
u

uug
�

te (F.9)

 : v
v

vvg
�

te (F.10)

 : w
w

wwg
�

te (F.11)

 By definition, the directional derivative of ( , , )F u v w  along the coordinate
line of u  is as follows.
 ( , , ) grad ( , , ) |u uF u v w F u v w� �e e (F.12)
The gradient of ( , , )F u v w , grad ( , , )F u v w , in terms of orthogonal coordi-
nates { , , }u v w  is given by
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Substitution of (F.13) in to (F.12) results in
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 From (F.14) one may conclude that
 ( , , )uu uuD F g F u v w� �e . (F.15)
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 Now, let us return to the Taylor series expansion (F.1). By using the defi-
nition (F.2) and (F.15) now we can offer an alternative presentation for the
Taylor expansion (F.1), which depends on the physical component (1)du .
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