Bestimmung des Potentialwertes für das finnische Höhendatum unter Berücksichtigung der neuen Satelliten-Schwerefeldmodelle

Studienarbeit im Studiengang

Geodäsie und Geoinformatik

an der Universität Stuttgart

Christine Holst
Stuttgart, Oktober 2004

Betreuer:

Dipl.-Ing. Tilo Reubelt
Universität Stuttgart

Prof. Dr.-Ing.habil. Dr.techn.h.c. mult. Erik W. Grafarend
Universität Stuttgart
Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Studienarbeit selbständig bearbeitet und nur unter zu Zuhilfenahme der angegebenen Literaturquellen erstellt habe.

Stuttgart, den 12.10.2004

..

(Christine Holst)
Abstract: In dieser Arbeit wird die Berechnung eines neuen Geoidwertes \(W_0 \) für das finnische Höhendatum vorgestellt. Dieser wird aus den GPS-Beobachtungen von 167 finnischen Messstationen des Baltic Sea Level Projektes (Epoche 1997.4) und den orthometrischen Höhen dieser Punkte abgeleitet. Dazu wird der Potentialwert aus verschiedenen globalen Schwerefeldmodellen (Modelle der CHAMP- und GRACE-Mission, Stuttgarter Modelle, EGM96 sowie einem selbst entwickelten Mischmodell aus GRACE- und EGM96-Koeffizienten) bestimmt. Da die Koeffizienten der Schwerefeldmodelle sich auf das „tide-free“-System beziehen, werden die orthometrischen Höhen, die bezüglich des „mean-tide“-Systems vorliegen, zuvor auf „tide-free“-Werte reduziert. Anschließend wird der Potentialwert unter Berücksichtigung des Modell-Schweregradienten für eine Topographie mit durchschnittlicher Massendichte auf das Geoid reduziert. Für jedes Schwerefeldmodell werden zwei Datensätze ausgewertet: alle Messstationen und nur meeresnahe Stationen. Zur Untersuchung der verwendeten Schwerefeldmodelle bezüglich der Sensitivität ihrer Satellitendaten werden die Berechnungen mit unterschiedlichen Entwicklungsgraden (70 und 120) berechnet. Die Entwicklungsgrade stellen die Grenze dar, bis zu welchem Grad die entsprechenden Modelle bezüglich ihrer Satellitendaten sensitiv sind. Die Ergebnisse aus den Berechnungsdurchgängen werden verglichen und ein endgültiger neuer Wert für \(W_0 \) benannt. Dieser ergibt sich aus dem Mischmodell mit allen Punkten und maximaler Entwicklung (Grad, Ordnung = 360, 360) zu \(W_0 = 62636856,60559 \text{ [m}^2\text{/s}^2\text{]} \). Das Mischmodell wie auch das EGM96-Modell liefern in den Berechnungsdurchgängen sehr gute Ergebnisse sowohl in der Homogenität der \(W_0 \)-Werte wie auch bezüglich ihrer Genauigkeit (Standardabweichung). Als Ergebnis für \(W_0 \) wird das Resultat des Mischmodells verwendet, da dieses Modell gegenüber dem EGM96 über die genauere Satellitendatengrundlage verfügt, bei gleich guter, sehr hoher Auflösung (maximaler Entwicklungsgrad = 360). Gegenüber dem global gültigen Wert \(W_0 = 62636856,0 \text{ [m}^2\text{/s}^2\text{]} \) der von [Buša et al 2000] aus TOPEX/POSEIDON-Altimeterdaten generiert wurde, ergibt sich ein Versatz des finnischen Höhendatums mit Pegel Helsinki von ca. 6 cm.

Schlüsselwörter: Geoidwert \(W_0 \) - Kugelfunktionsentwicklung - Schwerefeldmodelle - Baltic Sea Level Projekt - finnisches Höhendatum

Key words: Geoid Potential Value \(W_0 \) - spherical harmonic series expansion - Gravity Field Models - Baltic Sea Level Project - finnish height datum
INHALTSVERZEICHNIS

1 Einleitung .. 3
 1.1 Motivation ... 3
 1.2 Aufgabenstellung .. 5
 1.3 Grundlagen .. 6
 1.4 Vorstellung des Ansatzes ... 7
 1.5 Aufbau .. 8

2 Verwendete Modelle und Daten ..9
 2.1 Baltic Sea Level Projekt (BSLP) .. 9
 2.2 Höhen ... 11
 2.2.1 Landhebungseffekte ... 12
 2.2.2 Mean-tide oder tide-free ... 13
 2.3 Globale Schwerefeldmodelle .. 14
 2.3.1 Earth Gravity Modell 1996 (EGM 96) .. 14
 2.3.2 Schwerefeldmodelle aus der Champ-Mission .. 16
 2.3.3 Schwerefeldmodelle aus der Grace-Mission .. 21
 2.3.4 Kombiniertes Modell EIGEN-CG01C .. 23
 2.3.5 Mischmodell (EG) ... 24
 2.3.6 GOCE-Mission (Gravity Field and Steady-State Ocean Circulation Explorer) ... 25

3 Darstellung des Rechenweges ...26
 3.1 Koordinatentransformationen .. 26
 3.1.1 Transformation kartesisch ⇒ sphärisch ... 26
 3.1.2 Transformation ellipsoidnormal ⇒ kartesisch .. 26
 3.2 Transformation „mean-tide“ ↔ „tide-free“ ... 27
 3.3 Berechnung des Gravitationspotentials ... 29
 3.4 Berechnung des Schwerepotentials ... 31
 3.5 Reduktion auf das Geoid .. 31

4 Numerische Auswertung ...35
 4.1 Matlab-Programm ... 35
 4.2 Durchgeführte Berechnungen ... 39

5 Ergebnisse ..41
 5.1 Originalpunkte, Maximaler Grad ... 41
 5.2 Originalpunkte, bis Grad 70 .. 44
 5.3 Originalpunkte, bis Grad 120 .. 46
 5.4 Ausreißerelimination global .. 48
 5.5 Ausreißerelimination angepasst ... 49
 5.6 Evaluierung der Modelle ... 52

6 Fazit und Ausblick .. 57

7 Literaturverzeichnis .. 59
INHALTSVERZEICHNIS

Anhang: .. 63
Matlabprogramm: .. 63
1 Einleitung

1.1 Motivation

Seit der Entsendung von Satelliten ins All und der Erfassung ihrer Bahnabweichungen zur theoretisch vorhergesagten Keplerbahn, kann aus diesen Bahnfehlern ein Rückschluss auf die Erdschwere gezogen werden. Aus diesen Informationen und Daten werden durch mathematische Modelle globale Erdschweremodule abgeleitet, welche eine Berechnung der Schwere an jedem Punkt der Erde erlauben. Allerdings ist die Auflösung und damit die Genauigkeit dieser Modelle gering. Lokale Phänomene werden nicht erfasst, wenn sie kleiner als die halbe Wellenlänge des Messsignals (Samplingzeit \(\Delta t \)) sind. Die Genauigkeit reicht für lokale Anwendungen meist nicht aus.

Aus diesem Grund ist es interessant, globale Schwerefeldmodelle mit lokalen Informationen zu kombinieren und so eine verbesserte Auflösung und Genauigkeit für das betreffende Gebiet zu erreichen.

In dieser Studienarbeit wird das Gebiet des Ostseeraumes betrachtet. Das Gebiet der Ostsee ist als ideal für die Berechnung des Potentialwertes für das Geoid \((W_o) \) anzusehen, da aufgrund der Binnenseecarakteristik kaum Meeresströmungen und Gezeitenhub vorhanden sind, welche die Wasseroberfläche anheben und so Einfluss auf den Geoid\((W_o) \)-Wert nehmen.

In diesem Gebiet wurden insgesamt 183 Messstationen beobachtet und vermessen. Über GPS-Messungen ist die genaue Position im World Geodetic System (WGS84) bekannt und ihre orthometrische Höhe durch Feinnivelllement und GPS-Messungen bestimmt. Diese lokalen Informationen sollen bei der Berechnung der Potentialwerte für das Geoid auf den

Abb. 1-1: Schematische Darstellung der verschiedenen Höheninformationen.
1.2 AUFGABENSTELLUNG

Zusammenfassung:

Es wird der Oberflächenschwerewert aus jedem der folgenden Schwerefeldmodelle

- EIGEN-1s, EIGEN-2, EIGEN-3p aus der CHAMP-Mission
- EIGEN-GRACE01s, EIGEN-GRACE02s aus der GRACE-Mission
- EGM96
- GIS-CHAMP_01p_k1, GIS-CHAMP_01sw_k1

einmal nur für die meeresnahen Stationen (bis zu einer orthometrischen Höhe von 30 m) und einmal für alle Messstationsdaten des Baltic Sea Level Projektes, (bis zu einer orthometrischen Höhe von 300 m) berechnet. Um den Geoidwert W_p zu erhalten, muss das Schwerepotential an der Erdoberfläche reduziert werden (Reduktion der Potentialwerte auf das Geoid). Für die endgültigen Ergebnisse soll die Genauigkeit durch ihre Standardabweichung angegeben werden (Stochastik). Die Ergebnisse sollen diskutiert und dargestellt, sowie ein endgültiger Wert für W_p bestimmt werden.
1.3 GRUNDLAGEN

Von zentraler Bedeutung für die Festlegung des Geoids ist die Bestimmung des Potentialwertes des Geoids \(W_0 \). Dazu wird das Potential eines Punktes in einer Kugelflächenfunktion entwickelt, für deren Entwicklung man die Kugelfunktionskoeffizienten kennen muss, die das zugrunde gelegte Schwerefeldmodell beschreiben. Als Grundlage für das Geoid wurden bisher einerseits globale Schwerefeldmodelle (z.B. EGM96 \(^1\), OSU91A \(^2\), EIGEN-Modelle u.a.) sowie lokale Geoidmodelle [z.B. EGG97 \(^3\) (Quasigeoid für Europa), FIN2000 \(^4\) (mittleres finnisches Geoid)] verwendet.

Liegen lokale Geoidmodelle auf einem Gebiet vor, das größer ist als die Auflösung globaler Schwerefeldmodelle, so können die lokalen Geoidmodelle zur Evaluierung der globalen Schwerefeldmodelle verwendet werden [Bilker et al 2003]. Beispiele für Datensätze, die für die lokale Geoidbestimmung sowie für die Validierung globaler Schwerefeldmodelle herangezogen werden können, sind die GPS-Messungen des Baltic Sea Level Projektes in Kombination mit den finnischen Nivellementnetzen, die auch in dieser Arbeit verwendet werden. Der im Folgenden vorgestellte Ansatz bietet somit eine Möglichkeit zur Evaluierung der globalen Gravitationsfeldmodelle.

\(^{2}\) [Rapp et al 1991]
\(^{3}\) [Denker et al 1996]
\(^{4}\) [Ollikainen 2002]
1.4 VORSTELLUNG DES ANSATZES

Darüber hinaus werden die Werte im „tide-free“-System berechnet, d.h. die Einflüsse der Permanentgezeiten werden rechnerisch eliminiert und auf Grund der verschiedenen Höhenbezugsflächen und Höhensysteme der Länder nur finnische Punkte verwendet. So ist es gewährleistet, dass die verwendeten Daten bezüglich ihrer Referenzen und Gezeitensysteme konsistent sind und unbekannte Höhenversätze zwischen den Ländern sich nicht fehlerhaft auf die Ergebnisse auswirken. Bei bisherigen Berechnungen wurde dies nicht berücksichtigt bzw. die Werte im „mean-tide“-System, also mit Einfluss der Permanentgezeiten berechnet.

Der mathematische Hintergrund dieses Verfahrens wird im Abschnitt 3 ausführlich dargestellt.
1.5 AUFBAU

Das Kapitel 2 beschäftigt sich mit der Vorstellung der verwendeten Datensätze und den zugrunde gelegten Modellen.

Im 3. Kapitel wird der mathematische Hintergrund des Ansatzes dokumentiert.

Das Matlabprogramm zur Berechnung und die gerechneten Kombinationen werden im Kapitel 4 beschrieben.

Die Ergebnisse der verschiedenen, gerechneten Kombinationen werden in Kapitel 5 eingehender besprochen.

Zum Abschluss soll in Kapitel 6 eine Zusammenfassung der Ergebnisse und ein Ausblick für weitere Anwendungen gegeben werden.

Das Quellenverzeichnis und der Anhang mit der Pfadbeschreibung für die beiliegende CDROM befinden sich am Ende dieser Ausfertigung.
2 VERWENDETE MODELLE UND DATEN

In diesem Kapitel sollen die verschiedenen Modelle und Datensätze, die für diese Arbeit verwendet werden, eingehender beschrieben werden. Es werden die grundlegenden Komponenten und bisherigen Anwendungen kurz vorgestellt.

2.1 Baltic Sea Level Projekt (BSLP)

Ziele dieser Forschungsgruppe waren am Anfang die Vereinheitlichung des Höhendatums im Ostseeraum, welches für alle Ostsee-Anrainerstaaten übergreifend und einheitlich sein sollte, sowie die Ableitung eines Geoids für den Ostseeraum. Außerdem will man durch die Beobachtungen den Meeresspiegel und die Meerestopographie erfassen. Darüber hinaus kann durch wiederholte Messkampagnen und ein Vergleichen der Ergebnisse ein potentielles Anheben der Landmassen im Küstenbereich nach der letzten Eiszeit aufgedeckt werden.

Abb. 2-1: Kartenausschnitt des Ostseeraumes mit den Messstationen (grün)

2.2 Höhen

Die hier eingehenden orthometrischen Höhen der Messstationen müssen vor der Weiterverwendung in Bezug auf einige Eigenschaften angepasst werden. Die zur Verfügung stehenden Höhen beziehen sich auf ihr jeweiliges Landesdatum, deren Bezugsflächen untereinander, d.h. Länder übergreifend nicht identisch sind. Außerdem ist bei einigen Höhen nicht zu klären, ob es sich um Normalhöhen oder um orthometrische Höhen handelt, und ob sie bezüglich des „mean-tide-“ oder „free-tide-Systems“ gegeben sind. Auf Grund dieser mangelnden Informationen zu einigen Höhendaten, wurde entschieden, dass für die Berechnungen im Rahmen dieser Studienarbeit nur die 167 finnischen Punkte Verwendung finden.

Abb. 2-2: Kartenausschnitt mit den finnischen Messstationen in grün
2.2.1 Landhebungseffekte

Abb. 2-3: Isolinien der Landhebung Skandinaviens in mm/Jahr nach [Ekman 1996]

Die Änderungen in den Höhen lassen sich allgemein durch drei Haupeffekte erklären: Zum einen hebt sich ganz Skandinavien nach dem Abschmelzen der Eismassen der letzten Eiszeit („observed land uplift“). Daneben kommt es zu der so genannten eustatischen Anhebung des Meeresspiegels („Eustatic rise“) um ca. 1 mm pro Jahr. Beide Effekte haben so eine Anhebung des Geoids zur Folge („Geoid rise“).
2.2.2 Mean-tide oder tide-free

Die Gezeiten, hervorgerufen durch die Anziehungskräfte von Sonne und Mond, beeinflussen jede größere Wasseroberfläche und vor allem die Weltmeere. Darüber hinaus deformieren sie kontinuierlich die Oberfläche der Erde. Ihr Einfluss kann in zwei unterschiedliche Effekte unterteilt werden. Zum einen verursachen die wirkenden Kräfte die periodischen Gezeiten (Ebbe und Flut), zum anderen entsteht eine zeitunabhängige Tide ("permanent tide"). Die Ergebnisse aus GPS-Messungen werden in der Regel "tide-free" also ohne diese permanente Deformation ausgewertet. Die für die Berechnungen eingesetzten Schwerefeldmodelle beziehen sich mit ihren Koeffizienten ebenfalls auf "tide-free" Werte. Allerdings beziehen sich die orthometrischen finnischen Höhen auf das "mean-tide"-System, da das finnische Höhensystem an den mittleren Pegel in Helsinki angeschlossen ist. Man kann nun entweder die Koeffizienten der Schweremodelle und die Koordinaten der Messstationen an das "mean-tide"-System angleichen oder die orthometrischen "mean-tide" Höhen in "tide-free" Höhen umrechnen. Da dies nur ein Umrechnungsschritt und damit weniger Aufwand ist, wird in dieser Studienarbeit so verfahren. Trotzdem wurden für das Matlab-Programm beide Wege programmiert und sind auf der im Anhang befindlichen CD zu finden.

Ein weiterer anzupassender Punkt in den zugrunde liegenden finnischen Höhen ist also die Umrechnung von den "mean-tide" Höhen in "tide-free" Höhen. Der Rechenweg ist im Abschnitt 3.2 nachzulesen.
2.3 GLOBALE SCHWEREFELDMODELLE

Globale Gravitationsfelder lassen sich aus den zugehörigen Schwerefeldkoeffizienten berechnen, die aus Messdaten bestimmt wurden. Im Normalfall werden die langwelligen Anteile solcher globalen Modelle aus Satellitendaten unterschiedlichster Art gewonnen, wobei die Auflösung von der Sensitivität des Messprinzips abhängt. Bei EGM96 wurden beispielsweise die Koeffizienten bis Grad 70 (± 570 km Auflösung) aus den Daten mehrerer Satelliten berechnet (EGM96S) und anschließend die Auflösung durch Berücksichtigung von terrestrischen Daten (z.B. Gravimetrie) und stochastische Auswerteverfahren bis zum Maximalgrad 360 (± 110 km Auflösung) verfeinert. Die neuen Satellitenmissionen (CHAMP, GRACE, GOCE) sollen vor allem die mangelnde Genauigkeit im mittel- und langwelligen Bereich verbessern. Mit CHAMP gelang zum ersten Mal die Gravitationsfeldbestimmung mit einem einzigen Satelliten (siehe Abschnitt 2.3.2). Dabei wurde eine Geoidgenauigkeit im Zentimeterbereich bis Grad 50 erreicht. Die GRACE-Mission (siehe Abschnitt 2.3.3.1) trägt zu einer weiteren Verbesserung bei und ermöglicht cm-Genauigkeit bis zu mittelwelligen Auflösungen vom Grad 120. Mit der GOCE-Mission, die Ende des Jahres 2006 starten soll, wird eine Genauigkeitssteigerung der Schwerefeldkoeffizienten bis Grad 250 erwartet.

In diesem Abschnitt werden die globalen Schwerefeldmodelle vorgestellt.

2.3.1 EARTH GRAVITY MODELL 1996 (EGM 96)

Das EGM96 ist ein globales Schwerefeldmodell, das komplett bis zum Grad und der Ordnung 360 bestimmt wurde. Es entstand durch die Zusammenarbeit zwischen dem Goddard Space Flight Center der NASA, der Ohio State University und der NIMA (National Imagery and Mapping Agency). Die Datengrundlage setzt sich aus neuen oder verbesserten Oberflächenschweredaten, die weltweit gesammelt wurden, sowie verschiedenen Satellitenaltimetriedaten (TOPEX/POSEIDON, ERS-1 und GEOSAT), Satellite Laser Ranging (SLR) und den Daten der neuesten Gravimetriemesskampagne durch Befliegung Grönlands und der Arktis (1990) zusammen.

Bis zum Grad und Ordnung 70 ist es eine Kombinationslösung, die direkt aus Satellitendaten abgeleitet wurde. Die folgenden Koeffizienten höheren Grades bis 359 entstammen einer blockdiagonalen Lösung unter Einbeziehen von terrestrischen Daten und die letzten Koeffizienten des Grades 360 entsprechen der Quadraturlösung.

Abb. 2-4: Grafik zum Verhalten der kumulierten Geoidfehler in Abhängigkeit von der Wellenlänge für das EGM96S, Quelle: GFZ Potsdam

Die obere Abb. 2-4 zeigt deutlich die typische Charakteristik von globalen Schwerefeldmodellen: Je kürzer die Wellenlänge, d.h. je feiner die Auflösung am Boden, desto ungenauer wird das Geoid. Die Werte entstammen der rein aus Satellitendaten bestimmten Lösung für des EGM96S (bis Grad 70). Für eine Auflösung des Geoids in Detailstrukturen bis ca. 300km besitzt das Geoid des EGM96-Modells nur noch eine Genauigkeit von 1m. Das EGM96S und das EGM96 (bis Grad 360) sind zwei verschiedene Modelle, weshalb die Koeffizienten des EGM96 bis Grad 70 nicht gleich denen des EGM96S sind. Allerdings enthält das EGM96 neben zusätzlichen Informationen, z. B. Altimetrie, die Satelliteninformationen des EGM96S. Es ist dem EGM96S jedoch in Genauigkeit und Auflösung überlegen.

Die für das EGM96-Modell definierten Parameter werden im Header der Koeffizientendateien mitgeliefert, die auf der folgenden Internetseite (http://oceans.gsfc.nasa.gov/926/egm96/...gendesc.html) bereitgestellt werden.

\(^1\) [Rapp et al 1991] und [Tapley]
2.3.2 SCHWEREFELDMODELLE AUS DER CHAMP-MISSION

2.3.2.1 DER CHAMP-SATELLIT

(Challenging Minisatellite Payload)

Das Messprinzip beruht auf highlow Satellite to Satellite Tracking (SST), d.h. Tracking zwischen den hochfliegenden GPS-Satelliten („high“, Bahnhöhe ca. 20 000 km) und dem niedrig fliegenden CHAMP-Satelliten („low“, ca. 450 km Bahnhöhe). Aus Abweichungen der realen CHAMP-Bahnen zur idealen Keplerbahn können Rückschlüsse auf Abweichungen des Erdschwerefeldes vom sphärischen Referenzfeld gezogen und aus diesen Daten die Koeffizienten bestimmt werden. Der Beschleunigungsmesser (Akzelerometer) misst nicht-gravitative Störbeschleunigungen, welche u.a. durch Atmosphärenreibung und Solardruck verursacht werden und die bei der Auswertung berücksichtigt werden müssen.

Abb. 2-5: Der CHAMP-Satellit im All, Quelle: GFZ Potsdam

Aufgrund der Sensitivität des Messprinzips ist zu erwarten, dass die Genauigkeit der Koeffizienten bis Grad 70 gegenüber dem EGM96-Modell gesteigert wird. Koeffizienten höheren Grades können mit CHAMP nicht oder nur sehr ungenau aufgelöst werden.

In einem Beitrag zu den Anwendungen schreibt ein Mitarbeiter vom Institut für Erdmessung der Technischen Universität Hannover: “Mit Hilfe der globalen CHAMP-Schwerefeldmodelle ist, …
auch eine Kontrolle der langwelligen Feldanteile der regional vorhandenen terrestrischen Schwerefelddaten möglich.“ Unter Hinzunahme dieser aus Satellitenbeobachtungen abgeleiteten Modelle können so verbesserte regionale Kombinationslösungen insbesondere für Geoid und Quasigeoid gerechnet werden. Man erwartet dabei eine Verbesserung der Genauigkeit im langwelligen Bereich. Insgesamt bedeutet dies einen Fortschritt für die großräumige Höhenbestimmung mittels GPS.

![Diagram](image)

Abb. 2-6: Grafik zum Verhalten der kumulierten Geoidfehler in Abhängigkeit von der Wellenlänge für die CHAMP-Daten im Vergleich zu den EGM96S-Daten, Quelle: GFZ Potsdam

Die Abb. 2-6 zeigt den Fortschritt der Datengenauigkeit aus der CHAMP-Mission im Verhältnis zu den EGM96S-Daten. Dieses EGM96S-Modell enthält nur die Satellitendaten, daher die schlechtere Genauigkeit und geringe Auflösung gegenüber dem EGM96-Modell. Es ist sowohl eine Verbesserung in der Bodenauflosung (kleinere Wellenlängen bis ca. 150 km erfasst) als auch eine Verschiebung in der Fehleranstiegskurve nach unten deutlich erkennbar.

Die Daten, Ergebnisse (die abgeleiteten Modelle) und die entsprechenden Koeffizienten der EIGEN-Modelle können auf der Homepage des GFZ Potsdam (www.gfz-potsdam.de) eingesehen und abgerufen werden.
2.3.2.2 EIGEN-1S (CHAMP 1)

2.3.2.3 EIGEN-2 (CHAMP 2)

2.3.2.4 EIGEN-3P (CHAMP 3)

2.3.2.5 MODELLE AUS KINEMATISCHEN CHAMP-BAHN DATEN

Bei dem GIS-Beschleunigungsansatz werden zunächst mit Hilfe eines Newton'schen Interpolationspolynoms und numerischer Differentiation aus dem kinematischen Orbit Beschleunigungen abgeleitet. Nach Reduktion von Störeffekten werden anschließend aus den Beschleunigungen durch einen Vergleich mit einem Gravitationsfeldmodell die zugehörigen Schwerfeldkoeffizienten bis Grad 90 geschätzt. Der Zusatz „k1“ im Modellnamen bedeutet, dass zur Schätzung der Koeffizienten die Kaula-Regularisierung verwendet worden ist, die das stärker ansteigende Rauschen in den Koeffizienten höheren Grades (ab Grad 70) unterdrückt. Zusätzlich zu dem normalen Modell GIS_CHAMP_01p_k1 (im Folgenden GI_1 genannt) wurde noch die Variante GIS_CHAMP_01sw_k1 (im Folgenden GI_2 genannt) berechnet, der eine Wavelet-Filterung des kinematischen Orbits zur Ausreißersuche voraus ging („sw“ = smoothing with wavelets). Für den Einsatz in dieser Studienarbeit müssen die $C_{0,0}$ und $C_{2,0}$ -Term der Koeffizienten modifiziert werden, da diese aufgrund des Messprinzips und nicht erfasster Störeffekte nur ungenau bestimmt werden können. Die betroffenen Koeffizienten wurden durch die weißlich genauer entsprechenden Werte aus dem EGM96-Modell bei den weiteren Berechnungsdurchgängen ersetzt. Wurde mit dem modifizierten Koeffizientensatz gerechnet, so sind die Ergebnisse mit der Zusatzbezeichnung …_mod gekennzeichnet.

Wie aus der Grafik in Abb. 2-7 zu entnehmen ist, konnten die Koeffizienten bis Grad 80 relativ genau bestimmt werden. Für Koeffizienten höheren Grades liegen die Fehler im Bereich des
Signals selbst. Es konnte eine ähnliche Genauigkeit wie bei dem offiziellen Modell EIGEN-3p erreicht werden, die wavelet-gefilterte Version GIS_CHAMP_01sw_k1 scheint sogar etwas genauer zu sein.

Abb. 2-7: Grafik zur Darstellung der Genauigkeiten der Modelle im Vergleich

Erläuterungen zur Grafik:
Diese zeigt Fehlergradvarianzen von EIGEN3p (grün), GIS_CHAMP_01p_k1 (blau), GIS_CHAMP_01sw_k1 (orange) und EGM96 (türkis) die durch Vergleich zu dem derzeit genauesten Modell EIGEN-GRACE02S (rot) entstehen.
2.3.3 Schwerefeldmodelle aus der GRACE-Mission

2.3.3.1 Der GRACE-Satellit

(Gravity recovery and climate experiment)

Abb. 2-8: Logo der Grace-Mission auf der Homepage des GFZ Potsdams, Quelle: GFZ Potsdam

Abb. 2-9: Grafik zum Verhalten der kumulierten Geoidfehler in Abhängigkeit von der Wellenlänge für die GRACE-Daten im Vergleich zu den EGM96S- und CHAMP-Daten, Quelle: GFZ Potsdam

Die Abb. 2-9 verdeutlicht den Genauigkeitsgewinn gegenüber den CHAMP-Daten auch wenn sich die direkte Auflösung nicht weiter verbessert hat. Dies ist nur durch eine entsprechende Auswertung der Daten möglich.

Abb. 2-10: visualisiertes Schwerefeldmodell aus GRACE-Daten, Quelle: GFZ Potsdam

- 22 -

2.3.3.2 EIGEN-GRACE01s (GRACE_1)

Die ersten Ergebnisse (Koeffizienten aus dem gerechneten Gravitationsmodell) des GRACE-Projektes wurden am 25.07.2003 in Form des ersten GRACE-Modells EIGEN-GRACE01s veröffentlicht. Sie wurden aus den Daten der ersten Messkampagne vom August bis November 2002 abgeleitet und enthalten Daten aus 39 Tagen. Es zeigte sich, dass die abgeleiteten Koeffizienten fünfmal genauer sind als die Koeffizienten, die aus dem letzten CHAMP-Modell abgeleitet wurden und 50-mal genauer, als die Koeffizienten der Pre-CHAMP-Modelle. Es wurden die Koeffizienten bis zum Grad 120 bestimmt und mit ausgewählten Koeffizienten bis Grad 140 ergänzt. Der Geoidfehler beträgt bei diesem Modell $\sigma_{\text{Geoid}} = 1\text{cm}$ für eine Auflösung von $N/2 = 360\text{km}$.

2.3.3.3 EIGEN-GRACE02s (GRACE_2)

Das zweite und bisher genaueste Schwerefeldmodell überhaupt wurde aus 110 Tagen (Zeitraum: 2002/2003) GRACE-Daten abgeleitet [Reigber et al 2004a]. Es ist bis zum Grad 150 vollständig bestimmt.

2.3.4 KOMBINIERTES MODELL EIGEN-CG01C

Bei dem im Folgenden kurz vorgestellten EIGEN-CG01C-Modell handelt es sich um ein aus CHAMP-, GRACE-, und terrestrischen Daten abgeleitetes Schwerefeldmodell, das bis zum Grad 360 komplett bestimmt ist. Im Einzelnen wurden CHAMP-Daten aus 860 Tagen und GRACE-Daten aus 109 Tagen, sowie terrestrische Daten in einer $0,5^\circ \times 0,5^\circ$ Auflösung bzgl. Gravimetrie- und Altimetrie-messung verwendet. Das Ergebnis ist das zurzeit genaueste Schwerefeldmodell (vgl. hierzu [Reigber et al 2004b]). Allerdings stehen die Koeffizienten dieses Modells noch nicht offiziell zur Verfügung, so dass dieses Modell in dieser Studienarbeit nicht verwendet werden konnte.
2.3.5 Mischmodell (EG)

Dieses Modell entspricht einer Eigenkreation aus Kombination von Grace-1- und EGM96-Koeffizienten. Im Verlauf der Berechnung von \(W \) mittels verschiedener Modelle kristallisierte sich heraus, dass bis zum Grad 120 das Grace-1-Modell die genauesten Ergebnisse liefert. In Kombination mit den Koeffizienten des EGM96 für die Grade 121 bis 360 kann die hohe Auflösung erhalten bleiben, für die Koeffizienten unter Grad 120 werden nun jedoch die des Grace-1-Modells verwendet. Natürlich ist dieses Zerschneiden und Zusammensetzen der Koeffizienten verschiedener Modelle formal falsch, da die Koeffizienten untereinander korreliert sind und sich gegenseitig beeinflussen, so dass bei einem „Zerstückeln“ und neuem Zusammensetzen Information verloren geht. Trotzdem wurde in diesem Mischmodell dieser Weg experimentell verfolgt.
2.3.6 GOCE-Mission (Gravity Field and Steady-State Ocean Circulation Explorer)

Abb. 2-11: Computergrafik des GOCE-Satelliten, Quelle: GOCE-Projektbüro München

Der Start ist für Ende 2006 geplant und mit ihm sind große Erwartungen verknüpft. So hält man als Ergebnis ein bis zum Grad 250 (evtl. sogar bis 300) aufgelöstes Schwerefeldmodell für möglich, was auch aus rechentechnischer Sicht als Obergrenze der Problemgröße (Auflösung) angenommen wird. Mehr Informationen zum GOCE-Projekt können auf der folgenden Website gefunden werden: http://www.goce-projektbuero.de/
3 DARSTELLUNG DES RECHENWEGES

In diesem Kapitel werden die grundlegenden Überlegungen und Berechnungsformeln zur Berechnung des Geoidpotentialwertes W_o dargestellt. Diese gliedern sich im Wesentlichen in die Koordinatentransformation von kartesischen in sphärische Koordinaten, Angleichung der orthometrischen Höhen ("mean-tide" ↔ "tide-free") und die Berechnung des Schwerepotentials sowie dessen Fortsetzung nach unten.

3.1 KOORDINATENTRANSFORMATIONEN

3.1.1 Transformation kartesisch ↔ sphärisch

Die Ausgangskoordinaten, d.h. die Position der Beobachtungsstationen, liegen in kartesischen Koordinaten (X, Y, Z) bezüglich des World Geodetic Systems (WGS84) vor. Darüber hinaus ist ihre orthometrische Höhe durch gravimetrisches Nivellement bekannt.

Zunächst müssen die Stationskoordinaten von kartesischen in sphärische Koordinaten umgerechnet werden. Die Abbildungsvorschrift für kartesische Koordinaten lautet wie folgt:

$$X = r \cdot \cos(\phi) \cdot \cos(\lambda)$$
(3-1)

$$Y = r \cdot \cos(\phi) \cdot \sin(\lambda)$$
(3-2)

$$Z = r \cdot \sin(\phi)$$
(3-3)

Entsprechend ergeben sich sphärische Koordinaten aus kartesischen nach der folgenden Abbildungsvorschrift:

$$\phi = \arctan \frac{Z}{\sqrt{X^2 + Y^2}}$$
(3-4)

$$\phi \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$$

$$\lambda = \arctan \frac{Y}{X}$$
| Quadranten beachten!
(3-5)

$$\lambda \in \left[0;2\pi\right]$$

$$r = \sqrt{X^2 + Y^2 + Z^2}$$
(3-6)

$$r > 0$$

3.1.2 Transformation ellipsoidnormal ↔ kartesisch

In der Regel stellen GPS-Empfänger Koordinaten bzgl. des WGS84 in kartesischen (X,Y,Z) oder in ellipsoidnormalen Koordinaten (L,B,H) bereit. Sind nur ellipsoidnormale Koordinaten vorhanden, so müssen diese zunächst gemäß folgender Transformation in kartesische Koordinaten umgerechnet werden:
\[X = (N+H) \cos (B) \cos (L) \]
\[Y = (N+H) \cos (B) \sin (L) \]
\[Z = (N^*(1-e^2)+H) \sin (B) \]
\[N = \frac{a}{\sqrt{1-e^2 \sin^2 (B)}} \]

mit der großen Halbachse \(a \) und dem Quadrat der ersten numerischen Exzentrizität \(e^2 \), beides Parameter zur Beschreibung des Referenzellipsoïdes.

3.2 Transformation „mean-tide“ \(\leftrightarrow \) „tide-free“

Umrechnung *mean-tide*- in *tide-free*-System:

Die zugrunde liegenden orthometrischen Höhen sind zwar um Landhebungseffekte bereinigt, sie müssen jedoch noch vom Einfluss der Permanentgezeiten befreit werden, um sie vom „mean-tide“- ins „tide-free“-System zu transformieren. Ziel ist, dass die verschiedenen Datengrundlagen konsistent bezüglich ihrer Referenz sind.

Die Gleichungen zur Umrechnung finden sich in [Poutanen 2000]. Die „mean-tide“-Höhe steht danach mit der „tide-free“-Höhe in folgender Beziehung:

\[H_{\text{mean}} = H_{\text{non-tidal}} - \gamma \frac{\overline{W}_2}{g} = H_{\text{non-tidal}} + (h_2 - 1 - k_2) \frac{\overline{W}_2}{g} \]
\[H_{\text{non-tidal}} = H_{\text{mean}} + \gamma \frac{\overline{W}_2}{g} = H_{\text{mean}} - (h_2 - 1 - k_2) \frac{\overline{W}_2}{g} \]

wobei \(\overline{W}_2 \) die so genannte „permanent tide“ (Permanentgezeiten) ist, die 1899 von G. H. Darwin entdeckt wurde und nur von der Breite \(\varphi \) abhängig ist. Sie berechnet sich zu:

\[\overline{W}_2 = D \left(\frac{1}{2} \sin^2 \epsilon - \frac{1}{3} \right) (3 \sin^2 \varphi - 1) \]

Die unterschiedliche Elastizität der Erdoberfläche wird durch die Love-Shida Zahlen \(h_2 \) und \(k_2 \) ausgedrückt. Ihr Wert wird in der Literatur je nach Anwendung unterschiedlich angegeben. Für GPS-Messungen werden sie überwiegend zu \(h_2 = 0.6 \) und \(k_2 = 0.29 \) angenommen. In die Gleichung geht außerdem die Ekliptik \(\epsilon \) und die Breite \(\varphi \) ein. Die „Doodson'sche
Tidenkonstante D für Sonne ($= 1.21 \times 10^5 \text{ m}^3 \text{mGal}$) und Mond ($= 2.63 \times 10^5 \text{ m}^3 \text{mGal}$) errechnet sich allgemein zu:

$$D = \frac{3}{4} G M \frac{r^2}{d^3} \quad (3-14)$$

G ist die Gravitationskonstante, M die Masse des Himmelskörpers (Sonne oder Mond), r die geozentrische Distanz des Oberflächenpunktes und d die geozentrische Distanz des Himmelskörpers (Sonne oder Mond).

Umrechnung „tide-free“- in „mean-tide“-System

Für den umgekehrten Fall, dass man die Eingangsdaten konsistent machen und sich dabei auf das „mean-tide“-System beziehen möchte, müssen das Schwerefeld sowie die Koordinaten der Messpunkte vom „tide-free“ ins „mean-tide“-System transformiert werden. Die Umrechnung des Schwerefeldes erfolgt durch Anpassung des C_{20}-Terms. Dies ist nach der Gleichung von D. Smith (1989) wie folgt möglich, wobei C_{20} der vollständig normierte Koeffizient ist:

$$C_{20} \text{(mean-tide)} = C_{20} \text{(tide-free)} - \frac{3.11080}{\sqrt{5}} \cdot 10^{-8} + k_{20} \cdot \left(- \frac{3.11080}{\sqrt{5}} \cdot 10^{-8} \right) \quad (3-15)$$

Auch hier ist die Love-Zahl k_{20} mit 0,3 angesetzt. Für weitere Ausführungen wird auf die Veröffentlichung von [Ardalan 2000] verwiesen.

$$r_{\text{mean}} = r_{\text{non-tidal}} + h_{2} \cdot \frac{W_{2}}{g} \quad (3-16)$$

$$\phi_{\text{mean}} = \phi_{\text{non-tidal}} + \frac{l_{2}}{R_{E} \cdot g} \cdot \frac{\partial W_{2}}{\partial \phi} \quad (3-17)$$

$$\lambda_{\text{mean}} = \lambda_{\text{non-tidal}} + \frac{l_{2}}{g \cdot R_{E} \cdot \cos^{2} \phi} \cdot \frac{\partial W_{2}}{\partial \lambda} \quad (3-18)$$

h_{2} und l_{2} sind die Love- bzw. Shida-Zahlen zweiten Grades, für die in der Berner’schen GPS-Software die Werte $l_{2} = 0.08$ und $h_{2} = 0.6$ verwendet werden. $g = 9.81 \text{ m/s}^2$ ist dabei die Oberflächenschwere und $R_{E} = 6371000 \text{ m}$ der mittlere Erdradius.
Das für diese Studienarbeit geschriebene Matlab-Programm wurde entsprechend der beiden möglichen Rechenwege in zwei Varianten realisiert. Sie sind auf der CD am Ende der Arbeit zu finden.

3.3 Berechnung des Gravitationspotentials

Das Erdschwerepotential $U(\lambda, \phi, r)$ wird normalerweise in einer Kugelfunktionsentwicklung dargestellt, die man nach Lösen des Separationsansatzes nach den sphärischen Koordinaten (λ, ϕ, r) der Laplace-Differentialgleichung

$$\Delta U(\lambda, \phi, r) = 0 \quad (3-19)$$

erhält (vgl. hierzu [Grafarend 2002]).

Die Laplace-Differentialgleichung gilt im massfreien Raum und liefert zwei Lösungen: eine für den Außen- und eine für den Innenraum der Kugel mit dem Radius R (hier der Erdradius). Für die sich im Außenraum bewegenden Satelliten und die Analyse ihrer Bahnabweichungen zur Ableitung des Erdschwerefeldes wird nur die Kugelfunktionsentwicklung für den Außenraum benötigt. Diese lautet wie folgt:

$$U(\lambda, \phi, r) = \frac{GM}{r} \lim_{l \to \infty} \sum_{l=0}^{l} \left(\frac{R}{r} \right)^l \sum_{m=0}^{l} \left(c_{lm} \cdot \cos(m\lambda) + s_{lm} \cdot \sin(m\lambda) \right) \cdot \overline{P}_l(m)(\sin(\phi)) \quad (3-20)$$

$$U(\lambda, \phi, r) = \frac{GM}{r} \lim_{l \to \infty} \sum_{l=0}^{l} \left(\frac{R}{r} \right)^l \sum_{m=-l}^{l} e^{im}(\lambda, \phi) \cdot \begin{cases} c_{lm} & m \geq 0 \\ s_{lm} & m < 0 \end{cases} \quad (3-21)$$

$c_{l,m}$, $s_{l,m}$ sind die unbekannten Koeffizienten von Grad l und Ordnung m, deren Bestimmung eine Grundaufgabe der Geodäsie ist. Sie können z.B. aus Satellitenbahnabweichungen abgeleitet werden. Beispiele für solche Koeffizientensätze sind das EGM96 sowie die CHAMP-Modelle. Die weiteren Parameter der Kugelfunktionsentwicklung, die in der Regel bei einem maximalen Grad L abgebrochen wird, sind: der Erdradius R und die geozentrische Gravitationskonstante GM.

Die in der Formel (3-21) enthaltenen Kugelflächenfunktionen $e^{im}(\lambda, \phi)$ berechnen sich über die normierten Legendre-Funktionen $\overline{P}_{l,m}(\sin \phi)$.
Rechenweg

\[e^{i\lambda}(\phi) = \begin{cases}
\bar{P}_{l,m}(\sin \phi) \cdot (\cos m\lambda) & ; m > 0 \\
\bar{P}_{l,0}(\sin \phi) & ; m = 0 \\
\bar{P}_{|l|,m}(\sin \phi) \cdot (\sin |m| \lambda) & ; m < 0
\end{cases} \tag{3-22} \]

\[\bar{P}_{l,m}(\sin \phi) = \begin{dcases}
\sqrt{2(2l+1)} \frac{(l-m)!}{(l+m)!} \cdot P_{l,m}(\sin \phi) & ; m > 0 \\
\sqrt{2l+1} \cdot P_{l,0}(\sin \phi) & ; m = 0
\end{dcases} \tag{3-23} \]

Die bei der Berechnung auftretenden (normierten) Legendre-Funktionen berechnet man aus numerischen Gründen (Rechenzeit und Genauigkeit) besser über Rekursionsformeln als direkt. Für die Berechnungen im Rahmen dieser Studienarbeit werden die Legendre-Funktionen nicht explizit benötigt, können aber allgemein nach der folgenden Summenformel berechnet werden:

\[P_{l,m}(\sin \phi) = \frac{1}{2^l} \cdot (1 - \sin^2 \phi)^{\frac{m}{2}} \sum_{k=0}^{r} (-1)^k \cdot \frac{(2l - 2k)!}{k!(l-k)!(l-m - 2k)!} (\sin \phi)^{l-m-2k} \tag{3-24} \]

wobei: \[r = \text{die größte Zahl} \leq \frac{(l-m)}{2} \]

Aus den effizienteren Rekursionsformeln zur Berechnung der Legendre’schen Funktionen \(P_{l,m}(\sin \phi) \) können die Rekursionsformeln zur Berechnung von normierten Legendre’schen Funktionen \(\bar{P}_{l,m}(\sin \phi) \) abgeleitet werden [Paul 1978], [Wenzel 1985], die innerhalb des Matlab-Programmes verwendet werden. Diese Rekursionsformeln für die \(\bar{P}_{l,m}(\sin \phi) \) sind numerisch stabiler als diejenigen für \(P_{l,m}(\sin \phi) \), da die Berechnung von Fakultäten, die sehr große Werte annehmen können, entfällt. Der Algorithmus zur Berechnung der normierten Legendre’schen Funktionen \(\bar{P}_{l,m}(\sin \phi) \) mit \(t = \sin(\phi) \) lautet:

1. Startwerte:

\[\bar{P}_{0,0}(t) = 1 \tag{3-25} \]
\[\bar{P}_{1,1}(t) = \sqrt{3(1-t^2)} \tag{3-26} \]

2. Berechnung der Diagonalelemente:

\[\bar{P}_{l+1,l+1}(t) = \frac{2l+3}{2l+2} \sqrt{1-t^2} \cdot \bar{P}_{l,l}(t) \quad \text{für} \ l \geq 1 \tag{3-27} \]
3. Berechnung der waagerechten Reihen:
\[
\bar{P}_{l+1,m}(t) = \sqrt{\frac{2l+3}{(l+m+1)(l-m+1)}} \left[\sqrt{\frac{l+1}{2l-1}} \cdot \bar{P}_{l,m}(t) - \frac{(l+m)(l-m)}{2l-1} \cdot \bar{P}_{l-1,m}(t) \right] \tag{3-28}
\]

für \(m \geq 0 \)

3.4 BERECHNUNG DES SCHWEREPOTENTIALS

Nachdem die normierten Legendre'schen Polynome berechnet sind, kann das Gravitationspotential \(U \) am Oberflächenpunkt berechnet werden (vgl. Abschnitt 3.3). Zur Berechnung des Schwerepotentials \(W \), das sich aus dem Gravitationspotential \(U \) und dem Zentrifugalphysicalpotential \(V \) zusammensetzt, muss das Zentrifugalphysicalpotential \(V \) berechnet werden. Die allgemein bekannte Gleichung für das Zentrifugalphysicalpotential lautet:
\[
V = \frac{1}{2} \cdot \omega^2 \cdot r^2 \cdot (\cos^2 \varphi) \tag{3-29}
\]
mit der Winkelgeschwindigkeit der Erde \(\omega \).

Das gesamte Schwerepotential \(W \) am Oberflächenpunkt ergibt sich somit zu:
\[
W = U + V \tag{3-30}
\]

3.5 REDUKTION AUF DAS GEOID

Nachdem das Schwerepotential an den Oberflächenpunkten berechnet ist, muss die Schwere unter Berücksichtigung der orthometrischen Höhen (vgl. Exceltable BLQcompare.exe) auf das Geoid reduziert werden, um den Geoidpotentialwert \(W_o \) zu erhalten. Folgende Grafik veranschaulicht den grundlegenden Gedanken:
Erläuterungen zur oberen Grafik (Abb. 3-1):
Bisher sind folgende Größen bekannt:
- die orthometrische Höhe h_{orth} des Punktes P
- das Schwerepotential $W(P)$ am Punkt P
Gesucht wird das Schwerepotential $W(P')$, welches dem Geoidwert W_0 auf dem Geoid am Punkt P' entspricht.

Das Schwerepotential ergibt sich auf dem Geoid zu:
$$W(P') = W_0 = W(P) + \Delta W$$ \hspace{1cm} (3-31)

Die Potentialdifferenz ΔW lässt sich dabei exakt nach folgender Integralformel berechnen:
$$\Delta W = \int_0^h \Gamma(h') dh'$$ \hspace{1cm} (3-32)

In der Praxis ist die Auswertung dieses Integrals im Normalfall jedoch nicht möglich, da der Verlauf der Schwere entlang der Lotlinie nicht bekannt ist. Vielmehr wird im Allgemeinen die Trapezformel
$$\Delta W = h \cdot \frac{1}{2} \cdot (\Gamma(P) + \Gamma(P')) = h \cdot \Gamma_{mittel}$$ \hspace{1cm} (3-33)
mit $\Gamma(P)$ Schwere am Punkt P, $\Gamma(P')$ Schwere am Punkt P', Γ_{mittel} mittlere Schwere zur Bestimmung der Potentialdifferenzen ΔW verwendet (siehe Abb. 3-2), die eine lineare Näherung der obigen Integralformel darstellt. Ihr liegt die Annahme zugrunde, dass sich die Schwere linear mit der Höhe ändert. Diese Annahme ist auch in den vorliegenden Fall zu rechtfertigen, da der topographische Einfluss aufgrund des flachen und ebenen Charakters Finnlands als klein anzusehen ist und der begangene Fehler in ΔW, ausgedrückt in metrischen Einheiten, kleiner als 1 cm sein sollte.

- 32 -
Abb. 3-2: Näherungsweise Flächenberechnung mit Trapezformel zur Bestimmung von ΔW

Zur Fortsetzung des Schwerewertes $\Gamma(P)$ nach unten wird, wie in der Literatur üblich, eine durchschnittliche Untergrunddichte von 2,27 g/cm3 angenommen, die auf einen Schweregradienten von $k = 0,0848$ mGal/m führt [Heiskanen, Moritz 1967].

Somit ergibt sich die mittlere Schwere Γ_{mittel} entlang der Lotlinie zu:

$$\Gamma_{mittel} = \Gamma(P) - \frac{1}{2} \cdot h_{ortho} \cdot k \tag{3-34}$$

Und schließlich der Potentialunterschied ΔW:

$$\Delta W = h_{ortho} \cdot \Gamma_{mittel} = h_{ortho} \left[\Gamma(P) - \frac{1}{2} \cdot h_{ortho} \cdot k \right] \tag{3-35}$$

Der zur Berechnung der mittleren Schwere benützte Schwerewert an dem Oberflächenpunkt P ergibt sich als Betrag des Gradienten des Schwerepotentials $W(P)$ an der Oberfläche:

$$\Gamma(P) = \left| \text{grad}(W(P)) \right| = \left| \text{grad}(U(P) + V(P)) \right| = \left| \text{grad}(U(P)) + \text{grad}(V(P)) \right| \tag{3-36}$$

mit den Gradienten des Zentrifugalpotentials

$$\text{grad}(V(P)) = \frac{\partial V}{\partial r} \cdot e_r + \frac{1}{r} \frac{\partial V}{\partial \phi} \cdot e_\phi + \frac{1}{r \cdot \cos(\phi)} \frac{\partial V}{\partial \lambda} \cdot e_\lambda = \omega^2 \cdot r \cdot \left(\cos^2(\phi) \right) \cdot e_r - \omega^2 \cdot r^2 \cdot \cos(\phi) \cdot \sin(\phi) \cdot e_\phi \tag{3-37}$$

und dem Gradienten des Gravitationspotentials

$$\text{grad}(U(P)) = \frac{\partial U}{\partial r} \cdot e_r + \frac{1}{r} \frac{\partial U}{\partial \phi} \cdot e_\phi + \frac{1}{r \cdot \cos(\phi)} \frac{\partial U}{\partial \lambda} \cdot e_\lambda \tag{3-38}$$

mit den partiellen Ableitungen:

$$\frac{\partial U}{\partial r} = -\frac{GM}{r^2} \sum_{l=0}^{L} (l+1) \cdot \left(\frac{R}{r} \right)^l \cdot \sum_{m=0}^{l} (c_{lm}(\cos(m\lambda)) + s_{lm}(\sin(m\lambda))) \cdot \bar{P}_m(\sin \phi) \tag{3-39}$$
\[
\frac{\partial U}{\partial \phi} = \frac{GM}{r} \sum_{l=0}^{l} \left(\frac{R}{r} \right)^{l} \sum_{m=0}^{l} \left(c_{lm}(\cos(m\lambda)) + s_{lm}(\sin(m\lambda)) \right) \cdot \frac{d\bar{P}_{lm}(\sin \phi)}{d\phi} \tag{3-40}
\]

\[
\frac{\partial U}{\partial \lambda} = \frac{GM}{r^{2}} \sum_{l=0}^{l} \left(\frac{R}{r} \right)^{l} \sum_{m=0}^{l} \left(-m \cdot c_{lm} \cdot \sin(m\lambda) + m \cdot s_{lm} \cos(m\lambda) \right) \cdot \bar{P}_{lm}(\sin \phi) \tag{3-41}
\]

Die Ableitung der normierten Legendre'schen Funktionen geschieht dabei in einer Art Rekursionsformel aus den normierten Legendre'schen Funktionen selbst [Paul 1978], [Wenzel 1985]:

\[
\frac{d\bar{P}_{m}(\sin \phi)}{d\phi} = \frac{1}{\cos \phi} \left[(l+1) \cdot \sin \phi \cdot \bar{P}_{lm}(\sin \phi) - (l-m+1) \cdot \sqrt{\frac{(2l+1) \cdot (l+m+1)}{(2l+3) \cdot (l-m+1)}} \cdot \bar{P}_{l+1,m}(\sin \phi) \right] \tag{3-42}
\]

Die Berechnung der partiellen Ableitungen \(\partial U/\partial r, \partial U/\partial \phi, \partial U/\partial \lambda \) kann dabei innerhalb derselben Schleife wie der zur Berechnung des Gravitationspotentials geschehen.
4 Numerische Auswertung

In diesem Kapitel wird die eigentliche Berechnung in einem Matlab-Programm beschrieben und graphisch in einem Flussdiagramm dargestellt. Außerdem wird erläutert, welche Durchgänge gerechnet wurden und welche Modifikationen und weitere Berechnungen sich aus den Ergebnissen ergaben.

4.1 MATLAB-Programm

Der mathematische Berechnungsalgorithmus wurde in zwei Matlab-Programme (Finnland_W0_tide_free.m und Finnland_W0_mean_tide.m) umgesetzt. Diese sind als Funktionen konstruiert. Der Benutzer kann über die Eingabe selbst wählen, welcher Datensatz in welchem Modell berechnet werden soll. Zur Wahl für den Datensatz stehen dabei die gesamten 167 finnischen Messstationen ('alle') oder nur die 19 meeresnahen finnischen Punkte ('meer'). Außerdem kann bei der Eingabe der Funktion das Schwerefeldmodell gewählt werden. Die verschiedenen Modelle sind wie folgt codiert:

Name des Modells = 'Eingabename'
EIGEN-1s (CHAMP 1) = '1'
EIGEN-2s (CHAMP 2) = '2'
EIGEN-3p (CHAMP 3) = '3'
EGM96 = 'EGM'
EIGEN-GRACE01s (Grace_1) = 'G_1'
EIGEN-GRACE02s (Grace_2) = 'G_2'
GIS_CHAMP_01p_k1 (Stuttgarter Modell 1) = 'GL_1'
GIS_CHAMP_01sw_k1 (Stuttgarter Modell 2) = 'GL_2'
Mischmodell aus Grace_1 und EGM96 = 'EG'

Wie die einzelnen Kombinationen gewählt werden, wird am folgenden Beispiel erläutert:
Im Matlab Command Window gibt man z.B. Finnland_W0_tide_free('1', 'alle') ein. In den Klammern hinter dem Funktionsnamen wird also zuerst das Modell und nach dem Komma der Datensatz gewählt. Beide Angaben müssen in Hochkommaten stehen. Das Beispiel berechnet entsprechend der Eingabe die Schwerewerte für alle Messstationen bezüglich der Schwerefeldkoeffizienten des Modells EIGEN-1s.
Im zur Funktion gehörenden Quellcode kann in den Abschnitten für die jeweiligen Modelle der Eingangsdatensatz für die Schwerefeldkoeffizienten eingestellt werden, z.B. Champl_sortiert.txt. Ebenso kann manuell der Name der Ergebnisdateien angepasst werden. Ausgegeben werden zwei verschiedene Textdateien. In der Datei Erg_... .txt stehen punktweise die numerischen Werte für die Gesamtschwere W, die Schwere U (im Quellcode V_sph genannt), das Zentrifugalpotential V und den Potentialunterschied ΔW (Geopotentielle Kote). In der zweiten Ausgabedatei Stoch_... .txt sind die numerischen Werte der Gesamtschwere W, der reduzierten Schwere W₀ und stochastische Größen wie Mittelwert von W₀, dessen Einzel- und die Gesamtstandardabweichung sowie die Fehlerquadrat W₀,y enthalten.

Die Hauptberechnungsschritte und Abläufe des Programms sind in der Grafik Abb. 4-1 dargestellt. Einstellungen und Vordefinitionen, die den Berechnungsprozess beschleunigen, für die Berechnung allerdings keine unmittelbare Bedeutung haben, wurden weggelassen. Der Quelltext der Programme kann im Anhang auf der CD eingesehen werden.
Eingabeparameter

- alle Messstationen = 'alle'
- meeresnahe Stationen = 'meer'

Wahl der Berechnungsparameter

('Schwerefeldmodell', 'Datensatz')

Programmstart

für i = 1:z

Koordinatentransformation

für i = 1:z

für l = 0:L

für m = 0:L

Einlesen der Schwerefeldkoeffizienten

für i = 1:z

für i = 1:z

Für l = 0:L

für m = 0:L

Berechnung der normierten Legendre-Polynome

Berechnung der Zirkularfunktionen

Initialisierung der Startwerte

Für l = 0:L

Für m = 0:L

Ableiten der normierten Legendre-Polynome

Berechnen des Gravitationspotentials

Berechnung der partiellen Ableitungen des Gravitationspotentials

z = Anzahl der zu berechnenden Punkte

L = max. Entwicklunggrad

EIGEN-1s (CHAMP 1) = '1s'
EIGEN-2s (CHAMP 2) = '2s'
EIGEN-3p (CHAMP 3) = '3p'
EGM96 = 'EGM'
EIGEN-GRACE01s (Grace_1) = 'G_1'
EIGEN-GRACE02s (Grace_2) = 'G_2'
GIS_CHAMP_01p_k1 (Stgter Modell 1) = 'GI_1'
GIS_CHAMP_01sw_k1 (Stgter Modell 2) = 'GI_2'
Mischmodell aus Grace_1 und EGM96 = 'EG'
Fortsetzung Flussdiagramm

\[m = m+1 \]

\[i = i+1 \]

Berechnung des Zentrifugalpotentials

Berechnung der Zentrifugalbeschleunigung

Berechnung des Schwerepotentials

Transformation der orthometrischen Höhen ins „tide-free“-System

Berechnung der Oberflächenschwere und der mittleren Schwere entlang der Lotlinie

Berechnung der geopotientiellen Kote \(\Delta W_0 \)

Berechnung von \(W_0 \)

Ausgabe von
- Gravitations-, Zentrifugal-, Schwerepotential
- Geopotentielle Kote
- \(W_0 \)

\[i = i+1 \]

Stochastische Berechnungen
- Mittelwert von \(W_0 \)
- Standardabweichungen
- Fehlerquadrat

Erg........txt

Programmende

Stoch......txt

Abb. 4-1: Flussdiagramm
4.2 DURCHGEFÜHRTE BERECHNUNGEN

Während der Berechnungen kristallisierte sich das EGM96 als genauestes Modell heraus, was auf die hohe Auflösung bei diesem Modell zurückzuführen ist. Allerdings wurde das EGM96 bei Berechnungen bis Grad 120 noch vom Grace-1-Modell übertroffen (siehe Abschnitt 5.3). Dieses Ergebnis motivierte das Aufstellen eines eigenen Mischmodells aus Grace-1-Koeffizienten bis Grad 120 und aus EGM96-Koeffizienten für die Grade 121 bis 360. Dieses Verschneiden von Modelldatensätzen ist formal nicht zulässig, da die Modellkoeffizienten untereinander korreliert sind, weshalb bei diesem Verschneiden ein Informationsverlust entsteht. Dies kann zu Ungenauigkeiten führen. Trotzdem wurde dieses Mischmodell experimentell aufgestellt und gerechnet.

Um einen gerechteren Vergleich der zugrunde liegenden Satellitendaten der Modelle durchführen zu können, wurden mit den Originaldatensätzen alle Modelle bis Grad 70 berechnet und die Modelle mit einem höheren maximalen Grad als 120 (GRACE-1 und -2, EGM96) noch einmal bis Grad 120 gerechnet. Bis zu diesen Graden werden die aus der CHAMP- bzw. GRACE-Mission abgeleiteten Modelle als genauer als das EGM96 erwartet, da ihre zugrunde liegenden Satellitendaten neueren Ursprungs und von einer höheren Qualität als die Daten des EGM96 sind.
Zusammenfassung der durchgeführten Berechnungen:

Jedes Modell wird bis zum jeweiligen maximalen Entwicklungsgrad für die beiden Originaldatensätze (Meer und alle) gerechnet.

Alle Modelle werden für die beiden Originaldatensätze bis Grad 70 entwickelt.

EGM96, Grace-1 und Grace-2 werden mit den Originaldaten bis Grad 120 entwickelt.

Nach spezifischer (modellabhängiger) Ausreißerelimination werden die Modelle noch einmal bis zu ihrem maximalen Grad entwickelt.
5 Ergebnisse

In diesem Kapitel werden die Ergebnisse der verschiedenen Kombinationen und Durchläufe vorgestellt und miteinander verglichen. Zuerst sollen die Modelle mit ihren verschiedenen Ergebnissen vorgestellt werden. Zusammenfassend werden die verschiedenen Ergebnisse untereinander verglichen.

5.1 Originalpunkte, Maximaler Grad

Im ersten Berechnungsdurchgang wurden alle Modelle für beide Datensätze (nur Meeresstationen, alle Messstationen) bis zu ihrem maximalen Entwicklungsgrad entwickelt. In der Tabelle 5-1 sind die Ergebnisse mit ihren wichtigsten Ergebnisparametern zusammengefasst. Dabei entspricht 1.0 m²/s² ca. 10 cm Geoidhöhendifferenz.

<table>
<thead>
<tr>
<th>Alle Punkte</th>
<th>Mittelwert von W_o [m²/s²]</th>
<th>Standardabweichung W_o [m²/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>62636852,58889</td>
<td>0,98894</td>
</tr>
<tr>
<td>Champ-2</td>
<td>62636854,21473</td>
<td>0,83068</td>
</tr>
<tr>
<td>Champ-3</td>
<td>62636856,48740</td>
<td>0,64098</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636856,26393</td>
<td>0,25503</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636856,21600</td>
<td>0,41520</td>
</tr>
<tr>
<td>EGM96</td>
<td>62636856,64744</td>
<td>0,10213</td>
</tr>
<tr>
<td>GI_1_modified</td>
<td>62636856,06998</td>
<td>0,46855</td>
</tr>
<tr>
<td>GI_2_modified</td>
<td>62636855,66584</td>
<td>0,74072</td>
</tr>
<tr>
<td>Mischmodell</td>
<td>62636856,60559</td>
<td>0,13315</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meeresnahe Punkte</th>
<th>Mittelwert von W_o [m²/s²]</th>
<th>Standardabweichung W_o [m²/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>62636864,02386</td>
<td>2,87256</td>
</tr>
<tr>
<td>Champ-2</td>
<td>62636864,49858</td>
<td>2,59453</td>
</tr>
<tr>
<td>Champ-3</td>
<td>62636860,17895</td>
<td>2,82842</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636857,11411</td>
<td>0,96607</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636856,27070</td>
<td>1,09516</td>
</tr>
<tr>
<td>EGM96</td>
<td>62636856,45352</td>
<td>0,35591</td>
</tr>
<tr>
<td>GI_1_modified</td>
<td>62636864,56112</td>
<td>1,83666</td>
</tr>
<tr>
<td>GI_2_modified</td>
<td>62636864,66721</td>
<td>2,30812</td>
</tr>
<tr>
<td>Mischmodell</td>
<td>62636856,50081</td>
<td>0,25985</td>
</tr>
</tbody>
</table>

Tabelle 5-1: Ergebnistabelle der ersten Berechnung: alle Modelle bis zum Maximalgrad entwickelt.

Bei der Durchsicht der Ergebnisse schneiden das Mischmodell und das EGM96 bezüglich ihrer Genauigkeit bei beiden Datensätzen mit Abstand am besten ab. Erstaunlich auch die Überlegenheit des Mischmodells gegenüber dem EGM96 und die von CHAMP-2 gegenüber dem neueren CHAMP-3-Modell bei den Ergebnissen für die meeresnahen Punkte. Die beiden GRACE-Modelle sind bei beiden Datensätzen (meeresnahe und alle Punkte) sehr gut bezüglich ihrer Genauigkeit und deutlich besser, als die auf CHAMP-Daten basierenden Modelle. In
Metem umgerechnet bedeuten die Standardabweichungen folgendes: CHAMP-1 ist Schließlich bezüglich der Genauigkeit, deren Wert etwa 9,8 cm Geoidhöhenunterschied bei der Berechnung mit allen Punkten entspricht. Die Standardabweichung des Mischmodells entspricht ca. 2,6 cm Geoidhöhenunterschied für den Datensatz der meeresnahen Stationen, im Gesamtdatensatz ist das EGM96 führend in der Genauigkeit mit einem Geoidhöhenfehler von ca. 1 cm. Dies ist ein gutes Ergebnis für die Genauigkeit des berechneten \(W_0 \)- Wertes.

Vergleicht man die Ergebnisse nicht innerhalb der Modelle sondern zwischen den beiden Datensätzen, so haben die Ergebnisse des Gesamtdatensatzes für die meisten Modelle eine bessere Genauigkeit gegenüber denen für die meeresnahen Stationen. Dies unterstreicht die Annahme, dass ein größerer Datensatz sich positiv auf die Genauigkeit auswirkt.

Vergleicht man die Werte für das Mittel von \(W_0 \), so variieren sie etwas innerhalb und zwischen den beiden Datensätzen. Unter verwandten Modellen ähneln sie sich jedoch bis auf die auf CHAMP-Daten basierenden Modelle (CHAMP-1 bis -3). Dies gilt für die modifizierten Stuttgarter Modelle GL_1 und GL_2 wie auch für die auf GRACE-Daten basierenden Modelle GRACE-1 und GRACE-2. Das Mischmodell und das EGM96 sind davon getrennt zu betrachten. Die CHAMP-Modelle, besonders die früheren (CHAMP-1 und -2) liefern deutlich andere Werte in beiden Datensätzen. CHAMP-3 dagegen liefert bezüglich der Ergebnisse und Genauigkeit ähnliche Werte wie die übrigen, besonders deutlich wird dies für den Gesamtdatensatz. Die übrigen Modelle liegen im Gesamtdatensatz mit ihren Mittelwerten für \(W_0 \) recht eng beieinander. Bezüglich der meeresnahen Stationen variieren die Mittelwerte für \(W_0 \) stärker. Jedoch ähneln sich auch hier wieder verwandte Modelle. Dies könnte an der Auflösung der Modelle liegen: verwandte Modelle haben eine ähnliche Auflösung. Dies macht sich bei den Meerespunkten deutlicher bemerkbar, da es hier weniger Punkte in einem kleinen Gebiet sind. Die auf CHAMP-Daten basierenden Modelle CHAMP-1 und -2 und GL_1 modifiziert und GL_2 modifiziert (Gruppe_1) haben ähnliche Werte, ebenso wie die auf GRACE-Daten basierenden Modelle GRACE-1, -2, das Mischmodell und das EGM96 (Gruppe_2). Der überschlägige Unterschied zwischen den beiden Gruppen im Mittelwert von \(W_0 \) beträgt ca. 70 Zentimeter (Gruppe_1 \(\bar{\sigma} = 62636863,58594 \), Gruppe_2 \(\bar{\sigma} = 62636856,58479 \)).

Bei dem Meeresdatensatz ist der Mittelwert für \(W_0 \) für jedes Modell (Ausnahme: EGM96 und Mischmodell) größer als der entsprechende aus dem Gesamtdatensatz. Zwischen den Datensätzen ergibt sich ein durchschnittlicher Unterschied für den Mittelwert von \(W_0 \) von umgerechnet ca. 48 Zentimetern (Gesamtdatensatz \(\bar{\sigma} = 62636855,6400 \), Meeresdatensatz \(\bar{\sigma} = 62636860,47 \)).
Homogenität wird also nur bei der Verwendung aller Punkte erreicht, dann jedoch für alle genauerer Modelle (CHAMP-3, GRACE-1 und -2, EGM96, Mischmodell und GI 1). Aus ihren Ergebnissen ließe sich ein relativ genauer Wert für \(W \) ableiten.
5.2 Originalpunkte, bis Grad 70

Um die CHAMP-Modelle mit dem EGM96 und den GRACE-Modellen vergleichbarer zu machen, wurden alle Modelle bis zum Grad 70 entwickelt. Dies ist dadurch motiviert, dass die CHAMP-Mission nur bis zum Grad 70 sensitiv ist und die Vergleichbarkeit ihrer Daten mit dem EGM96 und den GRACE-Modellen nur dann möglich ist, wenn diese ebenfalls nur bis Grad 70 entwickelt werden. So lässt sich untersuchen, welche Qualität die zugrunde liegenden Satellitendaten tatsächlich haben. Das Mischmodell wurde nicht zum Vergleich herangezogen, da es bis zum Grad 120 mit dem GRACE-1-Modell identisch ist, und so keine neuen Erkenntnisse liefert.

Die Ergebnisse sind in der Tabelle 5-2 zusammengestellt.

<table>
<thead>
<tr>
<th>Alle Punkte bis Grad 70</th>
<th>Mittel W_o [m2/s2]</th>
<th>Standardabweichung W_o [m2/s2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>62636852,78822</td>
<td>0,97119</td>
</tr>
<tr>
<td>Champ-2</td>
<td>62636854,32394</td>
<td>0,78521</td>
</tr>
<tr>
<td>Champ-3</td>
<td>62636855,97962</td>
<td>0,65145</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636854,75700</td>
<td>0,64996</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636854,75379</td>
<td>0,64806</td>
</tr>
<tr>
<td>EGM96</td>
<td>62636855,04176</td>
<td>0,66896</td>
</tr>
<tr>
<td>Gl_1_modifiziert</td>
<td>62636854,91494</td>
<td>0,69016</td>
</tr>
<tr>
<td>Gl_2_modifiziert</td>
<td>62636854,72835</td>
<td>0,68227</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meeresnahe Punkte bis Grad 70</th>
<th>Mittel W_o [m2/s2]</th>
<th>Standardabweichung W_o [m2/s2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>62636863,93776</td>
<td>2,75829</td>
</tr>
<tr>
<td>Champ-2</td>
<td>62636865,33955</td>
<td>2,45236</td>
</tr>
<tr>
<td>Champ-3</td>
<td>62636862,18310</td>
<td>2,64013</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636862,40683</td>
<td>2,60111</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636862,35313</td>
<td>2,60495</td>
</tr>
<tr>
<td>EGM96</td>
<td>62636862,10779</td>
<td>2,78467</td>
</tr>
<tr>
<td>Gl_1_modifiziert</td>
<td>62636862,73109</td>
<td>2,75861</td>
</tr>
<tr>
<td>Gl_2_modifiziert</td>
<td>62636863,01992</td>
<td>2,68823</td>
</tr>
</tbody>
</table>

Tabelle 5-2: Ergebnistabelle aller Modelle bis zum Entwicklungsgrad 70.

Die Ergebnisse des meeresnahen Datensatzes zeigen ein analoges Bild: Die Genauigkeiten der Modelle sind recht ähnlich, abgesehen vom CHAMP-2-Modell, das hier die höchste Genauigkeit aufweist. Das EGM96 ist das Schlusslicht bezüglich der Genauigkeit. Auch der Mittelwert für W_0 ist abgesehen von den Modellen CHAMP-1 und -2 recht homogen. Absolut betrachtet ist er gegenüber den Ergebnissen aus den Daten aller Messstationen deutlich höher. In Metern ausgedrückt sind es etwa 83.5 Zentimeter (Gesamtdatensatz $\bar{\phi} = 62636854.6610$, Meeresdatensatz $\bar{\phi} = 62636863.0099$). Lokale Phänomene in den beiden Datensätzen, die durch die niedrige Auflösung nicht mehr erfasst werden, führen also zu unterschiedlichen Ergebnissen für beide Datensätze.

5.3 Originalpunkte, bis Grad 120

Ähnlich wie im vorangegangenen Abschnitt soll hier der Vergleich zwischen den GRACE-Modellen und dem EGM96 gesucht werden. Die GRACE-Mission besitzt zum jetzigen Zeitpunkt eine Sensitivität bis Grad 120, der maximale Entwicklungsgrad liegt zwischen 140 (GRACE1) und 150 (GRACE2), der vom EGM96 bei 360. Das EGM96 liefert in maximaler Entwicklung auf Grund höherer Auflösung die genausten Ergebnisse (vgl. Abschnitt 5.1). Jedoch wird erwartet, dass bis zum Grad 120 die GRACE-Modelle dem EGM96 überlegen sind, da die den GRACE-Modellen zugrunde liegenden Satellitendaten die bessere Qualität aufweisen.

Die Ergebnisse sind wieder in einer Tabelle zusammengestellt.

<table>
<thead>
<tr>
<th>Alle Punkte bis Grad 120</th>
<th>Mittel von W_0 [m2 / s2]</th>
<th>Standardabweichung W_0 [m2 / s2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGM96</td>
<td>62636856,20057</td>
<td>0,28250</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636856,15626</td>
<td>0,25609</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636855,90328</td>
<td>0,30898</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meeresnahe Punkte bis Grad 120</th>
<th>Mittel von W_0 [m2 / s2]</th>
<th>Standardabweichung W_0 [m2 / s2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGM96</td>
<td>62636857,38634</td>
<td>1,03748</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636857,43132</td>
<td>0,99696</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636856,52568</td>
<td>1,29221</td>
</tr>
</tbody>
</table>

Tabelle 5-3: Ergebnistabelle der Modelle bis zum Entwicklungsgrad 120

Insgesamt bestätigt sich durch die Ergebnisse der Trend, dass der Datensatz mit allen Beobachtungsstationen genauere Ergebnisse liefert, als der der meeresnahen Stationen, da die Ergebnisse für W_0 hier homogener sind und weniger differieren und auch die Genauigkeiten besser sind. Der Vorteil der meeresnahen Stationen aufgrund ihrer Lage dicht am Meeresspiegel wiegt weniger als die größere Punktanzahl des Datensatzes aller Stationen (19 zu 163 Punkten), und die damit verbundene größere flächenhafte Abdeckung des Landes mit Messdaten. Außerdem sind die Fehler, die bei den nicht meeresnahen Punkten gemacht werden, wie erwartet gering, da auf Grund der Landestopographie Finnlands die orthometrische Höhe der Messpunkte nicht über 300 Meter steigt.
ERGEBNISSE

Der bisher dokumentierte große Unterschied für den Mittelwert von W_c zwischen den beiden Datensätzen kann hier nicht gefunden werden. Die Werte liegen in beiden Datensätzen recht ähnlich (Gesamtdatensatz $\bar{c} = 62636856,08670$, Meeresdatensatz $\bar{c} = 62636857,11445$). Dies entspricht einer Geoidhöhen differenz zwischen beiden Datensätzen von ca. 10,3 cm. Allerdings sind die Mittelwerte für W_c im Gesamtdatensatz homogener und liegen wieder etwas niedriger als die Ergebnisse aus dem Meeresdatensatz.

Bildet man modellweise die Differenzen der W_c-Werte zwischen den Datensätzen, so zeigt das GRACE-2-Modell die geringste Differenz von umgerechnet ca. 6 cm. Die Differenzen der anderen beiden Modelle liegen bei ca. 12 cm für das EGM96 und ca. 13 cm für das GRACE-1-Modell. Diese Differenzen sind also doppelt so groß wie für das GRACE-2-Modell und liegen über der Differenz des Gesamtmittels.
5.4 AUSREISSERELIMINATION GLOBAL

Nach dem ersten Durchgang wurden die Ergebnisse in ihrer Standardabweichung und ihren Fehlerquadraten begutachtet und Ausreißer, die die Drei-Sigma-Grenze bezüglich der Einzelstandardabweichung überschreiten, sollten eliminiert werden. Alle Punkte lagen unter dieser Grenze, manche waren jedoch in ihrem Fehlerquadrat in vielen Modellen auffällig hoch. Vor allem in den Modellen mit einem geringen Entwicklungsgrad, also einer geringeren Auflösung waren identische Punkte auffällig. Auf eine Berechnung ohne diese Punkte für alle Modelle wurde jedoch verzichtet, da die Modelle höherer Auflösung andere kritische Punkte aufwiesen.

Abb. 5-1: Der Kartenausschnitt zeigt die Positionen der Messstationen (grün). Die rot eingefärbbten Messstationen sind die als globale Ausreißer detektierten Punkte.

In dem Kartenausschnitt Abb. 5-1 sind die kritischen Punkte rot eingefärbt. Auffällig ist die Konzentration der Ausreißer in einem kleinen Gebiet. Dies könnte damit erklärt werden, dass dort eine lokale Struktur vorherrscht, die in den niedrig auflösenden Modellen nicht erfasst wird, da diese Punkte bei niedrigem Entwicklungsgrad (70) auch in GRACE-Modellen und dem EGM96 schlecht waren.
5.5 AUSREISSERELIMINATION ANGEPASST

Für jedes Modell wurden nach dem ersten Durchgang die Ergebnisse betrachtet und vor allem anhand der Fehlerverbesserungsquadrat der einzelnen Punkte „schlechte“ Punkte detektiert. Diese wurden bei der hier dokumentierten Berechnung eliminiert. Das Kriterium, ab welchem Fehlerquadrat Punkte eliminiert wurden, ist modellabhängig. Als Orientierungshilfe wurde die Zwei-Sigma-Grenze herangezogen. Lagen die durchschnittlichen Fehlerquadrat eines Modells deutlich unter dieser Grenze, so wurde die Grenze nach Gefühl herabgesetzt. Für die einzelnen Modelle ergaben sich die Grenzen und ausscheidenden Punkte wie sie in der folgenden Tabelle dokumentiert sind:

<table>
<thead>
<tr>
<th>Alle Punkte</th>
<th>Grenze für Fehlerquadrat ([m^4/s^4])</th>
<th>Eliminierte Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>400</td>
<td>5, 6, 10, 17, 52, 55, 99, 122, 135, 136, 163</td>
</tr>
<tr>
<td>Champ-2</td>
<td>400</td>
<td>6, 12, 13, 17, 55, 56, 73, 119, 135, 136, 151, 162</td>
</tr>
<tr>
<td>Champ-3</td>
<td>300</td>
<td>6, 13, 17, 34, 55, 113, 119, 135, 136</td>
</tr>
<tr>
<td>Grace-1</td>
<td>50</td>
<td>29, 62, 145</td>
</tr>
<tr>
<td>Grace-2</td>
<td>100</td>
<td>67, 89, 97, 106, 112, 151</td>
</tr>
<tr>
<td>EGM96</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>GI_1_modifiziert</td>
<td>200</td>
<td>6, 13, 16, 17, 19, 55, 119, 125, 135, 136</td>
</tr>
<tr>
<td>GI_2_modifiziert</td>
<td>200</td>
<td>1, 6, 16, 17, 34, 48, 55, 79, 113, 119, 125, 135, 136</td>
</tr>
<tr>
<td>Mischmodell</td>
<td>15</td>
<td>47, 74, 96, 97, 112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meeresnahe Punkte</th>
<th>Grenze für Fehlerquadrat ([m^4/s^4])</th>
<th>Eliminierte Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>300</td>
<td>2, 12</td>
</tr>
<tr>
<td>Champ-2</td>
<td>300</td>
<td>2, 9, 12</td>
</tr>
<tr>
<td>Champ-3</td>
<td>300</td>
<td>2, 6, 12, 15, 18</td>
</tr>
<tr>
<td>Grace-1</td>
<td>30</td>
<td>Keine</td>
</tr>
<tr>
<td>Grace-2</td>
<td>40</td>
<td>1, 2, 7, 10</td>
</tr>
<tr>
<td>EGM96</td>
<td>5</td>
<td>1, 10, 18</td>
</tr>
<tr>
<td>GI_1_modifiziert</td>
<td>100</td>
<td>2, 6, 12, 15, 18</td>
</tr>
<tr>
<td>GI_2_modifiziert</td>
<td>100</td>
<td>2, 6, 12, 15, 18</td>
</tr>
<tr>
<td>Mischmodell</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Tabelle 5-4: Übersicht über Fehlergrenzen zur Punktelimination und gelöschte Punkte

Allein aus den angesetzten Fehlergrenzen sieht man schon die unterschiedliche Güte der Ergebnisse für die verschiedenen Modelle im ersten Durchgang. Die Fehlergrenzen für die Modelle variieren sehr stark. Je niedriger die Fehlergrenzen sind, umso genauer und homogener stellten sich die entsprechenden Ergebnisse des jeweiligen Modells dar. Auch hier bilden die CHAMP-1 und CHAMP-2-Modelle das Schlusslicht. Wirkliche Ausreißer, die die Drei-Sigma-Grenze überschritten, gab es nicht.
Nach der Berechnung erhält man folgende Ergebnisse:

<table>
<thead>
<tr>
<th>Alle Punkte</th>
<th>Mittel von W_o [m2/s2]</th>
<th>Standardabweichung W_o [m2/s2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>62636851,05307</td>
<td>0,94299</td>
</tr>
<tr>
<td>Champ-2</td>
<td>62636852,53190</td>
<td>0,67396</td>
</tr>
<tr>
<td>Champ-3</td>
<td>62636855,17505</td>
<td>0,50391</td>
</tr>
<tr>
<td>EGM96</td>
<td>62636856,61735</td>
<td>0,09819</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636856,41065</td>
<td>0,24507</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636855,85558</td>
<td>0,37697</td>
</tr>
<tr>
<td>GI_1_modifiziert</td>
<td>62636854,69673</td>
<td>0,54252</td>
</tr>
<tr>
<td>GI_2_modifiziert</td>
<td>62636853,95360</td>
<td>0,57981</td>
</tr>
<tr>
<td>Mischmodell</td>
<td>62636856,52778</td>
<td>0,12471</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meeresnahe Stationen</th>
<th>Mittel von W_o [m2/s2]</th>
<th>Standardabweichung W_o [m2/s2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>62636866,89048</td>
<td>2,34429</td>
</tr>
<tr>
<td>Champ-2</td>
<td>62636865,43142</td>
<td>2,18491</td>
</tr>
<tr>
<td>Champ-3</td>
<td>62636858,71405</td>
<td>2,27914</td>
</tr>
<tr>
<td>EGM96</td>
<td>62636856,62879</td>
<td>0,28446</td>
</tr>
<tr>
<td>Grace-1*</td>
<td>62636857,11411</td>
<td>0,96607</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636855,21937</td>
<td>0,92692</td>
</tr>
<tr>
<td>GI_1_modifiziert</td>
<td>62636863,75853</td>
<td>1,08103</td>
</tr>
<tr>
<td>GI_2_modifiziert</td>
<td>62636863,33084</td>
<td>1,33931</td>
</tr>
<tr>
<td>Mischmodell</td>
<td>62636856,36793</td>
<td>0,12471</td>
</tr>
</tbody>
</table>

* wie Originaldaten

Tabelle 5-5: Ergebnisse nach angepasster Punktelmination für alle Modelle

Betrachtet man zunächst die Fehlerquadrate nach der erneuten Berechnung, so hat sich die Anzahl der kritischen Punkte verringert, jedoch sind nicht alle Punkte unter den gesetzten Grenzen geblieben. Dies ist nicht ganz befriedigend, die Homogenität der Einzelergebnisse wurde jedoch in einzelnen Modellen verbessert (Mischmodell, GRACE-1).

Auffällig ist außerdem, dass das CHAMP-2-Modell für den Meeresdatensatz eine höhere Genauigkeit aufweist als das neuere CHAMP-3-Modell. Auch das Mischmodell ist hier gegenüber dem EGM96 bezüglich der Genauigkeit besser. Dies bestätigt das Ergebnis aus dem Durchgang mit den Originaldatensätzen, wo es sich ebenso verhielt. Insgesamt liegen die Standardabweichungen der CHAMP-Modelle deutlich über den der anderen Modelle, wobei das
CHAMP-1-Modell auch hier die geringste Genauigkeit hat. Das EGM96 und das Mischmodell schneiden bezüglich ihrer Genauigkeit am besten ab.

Für die Mittelwerte von W_o ergeben sich wieder gruppenspezifisch unterschiedliche Werte. Wie schon beobachtet, liegen die Ergebnisse der Modelle mit einem niedrigen Entwicklungsgrad bzw. die aus alten Satellitendaten abgeleiteten Modelle (CHAMP-1 und -2, GL_1 und GL_2) je nach Datensatz deutlich unter bzw. über denen der Modelle mit hohem Entwicklungsgrad (GRACE-1 und -2, Mischmodell, EGM96). Das CHAMP-3-Modell liegt mit seinen Werten zwischen diesen beiden Hauptgruppen. Bildet man die Differenz aus dem Mittel zwischen diesen Gruppen einmal innerhalb der Datensätze und einmal zwischen den Datensätzen, so ergibt sich folgendes Bild:

Für die Differenz der Gruppen innerhalb der Datensätze ergibt sich für den Gesamtdatensatz ein überschlägiger Geoidhöhenunterschied von ca. 33 Zentimetern, für den Meeresdatensatz eine Differenz von ca. 85 cm. Zwischen den Datensätzen ergibt sich für die Gruppe der niedrig auflösenden Modelle eine Geoidhöhenunterschied von ca. 118 cm und für die Gruppe der hoch auflösenden Modelle eine Differenz von weniger als einem Zentimeter. Dies macht den Unterschied in der Homogenität der Ergebnisse unabhängig vom verwendeten Datensatz deutlich.

Bildet man wieder modellweise die Differenzen zwischen den Datensätzen, so hat das EGM96 die geringste Differenz von ca. 0,5 cm, d.h. es liefert die ähnlichsten Werte unabhängig vom Datensatz. Auch das Mischmodell mit ca. 1,5 cm Differenz hat eine gute Übereinstimmung in seinen Ergebnissen aus beiden Datensätzen.
5.6 Evaluierung der Modelle

In diesem Abschnitt werden die Ergebnisse aller Berechnungsdurchgänge gegenübergestellt. Zuerst werden die Ergebnisse beider Datensätze für unterschiedliche Entwicklungsgrade betrachtet. Im Anschluss daran werden die Ergebnisse für beide Datensätze ohne die detektierten Ausreißer zusammengefasst.

In der Tabelle 5-6 werden die Ergebnisse ohne Ausreißerelimination für verschiedene Entwicklungsgrade dokumentiert.

<table>
<thead>
<tr>
<th>alle</th>
<th>Mittel von W_o [m²/s²]</th>
<th>Stdabw W o [m²/s²]</th>
<th>Meer</th>
<th>Mittel von W_o [m²/s²]</th>
<th>Stdabw W o [m²/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>62636852,58889</td>
<td>0,98894</td>
<td>Champ-1</td>
<td>62636864,02386</td>
<td>2,87256</td>
</tr>
<tr>
<td>Champ-2</td>
<td>62636854,21473</td>
<td>0,83068</td>
<td>Champ-2</td>
<td>62636865,49858</td>
<td>2,59453</td>
</tr>
<tr>
<td>Champ-3</td>
<td>62636856,48740</td>
<td>0,64098</td>
<td>Champ-3</td>
<td>62636860,17895</td>
<td>2,82842</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636856,28393</td>
<td>0,25503</td>
<td>Grace-1</td>
<td>62636857,11411</td>
<td>0,96607</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636856,21600</td>
<td>0,41520</td>
<td>Grace-2</td>
<td>62636856,27070</td>
<td>1,09516</td>
</tr>
<tr>
<td>EGM96</td>
<td>62636856,64744</td>
<td>0,10213</td>
<td>EGM96</td>
<td>62636856,45352</td>
<td>0,35591</td>
</tr>
<tr>
<td>Gl 1_mod</td>
<td>62636856,06998</td>
<td>0,64855</td>
<td>Gl 1_mod</td>
<td>62636864,56112</td>
<td>1,83666</td>
</tr>
<tr>
<td>Gl 2_mod</td>
<td>62636855,66854</td>
<td>0,74072</td>
<td>Gl 2_mod</td>
<td>62636864,66721</td>
<td>2,30812</td>
</tr>
<tr>
<td>Misch</td>
<td>62636856,60559</td>
<td>0,13315</td>
<td>Misch</td>
<td>62636856,50081</td>
<td>0,25985</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alle 70</th>
<th>Mittel von W_o [m²/s²]</th>
<th>Stdabw W o [m²/s²]</th>
<th>Meer 70</th>
<th>Mittel von W_o [m²/s²]</th>
<th>Stdabw W o [m²/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>62636852,78822</td>
<td>0,97119</td>
<td>Champ-1</td>
<td>62636863,93776</td>
<td>2,75829</td>
</tr>
<tr>
<td>Champ-2</td>
<td>62636854,32394</td>
<td>0,78521</td>
<td>Champ-2</td>
<td>62636865,33955</td>
<td>2,45236</td>
</tr>
<tr>
<td>Champ-3</td>
<td>62636855,97962</td>
<td>0,65145</td>
<td>Champ-3</td>
<td>62636862,18310</td>
<td>2,64013</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636854,75700</td>
<td>0,64996</td>
<td>Grace-1</td>
<td>62636862,40683</td>
<td>2,60111</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636854,75379</td>
<td>0,64806</td>
<td>Grace-2</td>
<td>62636862,35133</td>
<td>2,60495</td>
</tr>
<tr>
<td>EGM96</td>
<td>62636855,04176</td>
<td>0,66896</td>
<td>EGM96</td>
<td>62636862,10779</td>
<td>2,78467</td>
</tr>
<tr>
<td>Gl 1_mod</td>
<td>62636854,91494</td>
<td>0,69016</td>
<td>Gl 1_mod</td>
<td>62636862,73109</td>
<td>2,75861</td>
</tr>
<tr>
<td>Gl 2_mod</td>
<td>62636854,72835</td>
<td>0,68227</td>
<td>Gl 2_mod</td>
<td>62636863,01992</td>
<td>2,68823</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alle 120</th>
<th>Mittel von W_o [m²/s²]</th>
<th>Stdabw W o [m²/s²]</th>
<th>Meer 120</th>
<th>Mittel von W_o [m²/s²]</th>
<th>Stdabw W o [m²/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGM96</td>
<td>62636856,20057</td>
<td>0,28250</td>
<td>EGM96</td>
<td>62636857,38634</td>
<td>1,03748</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636856,15626</td>
<td>0,25609</td>
<td>Grace-1</td>
<td>62636857,43132</td>
<td>0,99696</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636855,90328</td>
<td>0,30898</td>
<td>Grace-2</td>
<td>62636856,52568</td>
<td>1,29221</td>
</tr>
</tbody>
</table>

Tabelle 5-6: Ergebnisse der Berechnungen ohne Ausreißerelimination

Bei der Genauigkeit der Ergebnisse liegen das EGM96 und das Mischmodell im ersten Durchgang an der Spitze. Sie haben den höchsten Entwicklungsgrad (360) und somit die größte Auflösung am Boden. Sie erfassen auch kleinere topographische Details im Gegensatz zu den auf CHAMP- oder GRACE-Daten basierenden Modellen. Bei den Ergebnissen für einen reduzierten Entwicklungsgrad wird jedoch deutlich, dass die CHAMP- und GRACE-Datengrundlage qualitativ, d.h. in Auflösung und Genauigkeit, besser sein muss als die
Satellitendaten, die dem EGM96 zugrunde liegen. Dabei scheinen die GRACE-Daten noch genauer als die CHAMP-Daten zu sein. GRACE-1 ist in der Genauigkeit bis zum Grad 120 gegenüber dem EGM96 und dem GRACE-2-Modell am besten.

Bezüglich des Mittelwertes für W_0, dessen Bestimmung das Ziel der hier durchgeführten Berechnungen ist, ist es schwierig, einen endgültig richtigen zu bestimmen. In Abhängigkeit von den untersuchten Messstationen, also einmal mit allen und einmal nur mit den meeresnahen Stationen gerechnet, ergeben sich unterschiedliche Werte, die auch von Modell zu Modell variieren. Durch die doch große Inhomogenität der Ergebnisse kann man schwer entscheiden, welcher Wert der richtige oder optimale ist. Wie bereits in Abschnitt 5.1 beschrieben, liegen die Werte für das Mittel von W_0 je nach Datengrundlage (Meer oder alle) unterschiedlich, die Werte aus den Meeresdaten liegen jedoch meist höher. Bei der Gegenüberstellung der Ergebnisse der Durchgänge bis zum Grad 70 bzw. 120 fällt auf, dass die Ergebnisse für W_0 für verschiedene Modelle (bis auf CHAMP-1 und-2) für den jeweils gleichen Datensatz sehr nahe beieinander liegen. Die Genauigkeit der Ergebnisse aus der Berechnung bis Grad 120 ist für beide Datensätze besser als die aus der Berechnung bis Grad 70. Am homogensten und genauesten sind allerdings die Ergebnisse der Berechnung bei maximalem Entwicklungsgrad.

In der folgenden Grafik Abb. 5-2 sind die Ergebnisse für die Mittelwerte von W_0 für die verschiedenen Entwicklungsgrade dargestellt. Die eben beschriebenen Ergebnisse werden hier visuell deutlich gemacht.

In der untenstehenden Tabelle 5-7 sind die Ergebnisse der Originaldaten denen ohne spezifische Ausreißer gegenübergestellt. Alle Modelle wurden bis zu ihrem jeweiligen maximalen Entwicklungsgrad und für beide Datensätze berechnet.
Werte im Originalzustand

<table>
<thead>
<tr>
<th>alle</th>
<th>Mittel von W_o [m²/s²]</th>
<th>Stdabwg W_o [m²/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>62636852,58889</td>
<td>0,98944</td>
</tr>
<tr>
<td>Champ-2</td>
<td>62636854,21473</td>
<td>0,83068</td>
</tr>
<tr>
<td>Champ-3</td>
<td>62636856,48740</td>
<td>0,64098</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636855,26393</td>
<td>0,25503</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636856,21600</td>
<td>0,41520</td>
</tr>
<tr>
<td>EGM96</td>
<td>62636856,64744</td>
<td>0,10213</td>
</tr>
<tr>
<td>GI_1_mod</td>
<td>62636856,06998</td>
<td>0,64855</td>
</tr>
<tr>
<td>Misch</td>
<td>62636856,60559</td>
<td>0,13315</td>
</tr>
</tbody>
</table>

Werte ohne spezielle Ausreißer:

<table>
<thead>
<tr>
<th>alle</th>
<th>Mittel von W_o [m²/s²]</th>
<th>Stdabwg W_o [m²/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>62636851,05307</td>
<td>0,94299</td>
</tr>
<tr>
<td>Champ-2</td>
<td>62636852,53190</td>
<td>0,67396</td>
</tr>
<tr>
<td>Champ-3</td>
<td>62636855,17505</td>
<td>0,50391</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636856,41065</td>
<td>0,24507</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636855,85558</td>
<td>0,37697</td>
</tr>
<tr>
<td>EGM96</td>
<td>62636856,61735</td>
<td>0,09819</td>
</tr>
<tr>
<td>GI_1_mod</td>
<td>62636854,69673</td>
<td>0,54252</td>
</tr>
<tr>
<td>GI_2_mod</td>
<td>62636853,95360</td>
<td>0,57981</td>
</tr>
<tr>
<td>Misch</td>
<td>62636857,52778</td>
<td>0,12471</td>
</tr>
</tbody>
</table>

Meer

<table>
<thead>
<tr>
<th>alle</th>
<th>Mittel von W_o [m²/s²]</th>
<th>Stdabwg W_o [m²/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>62636864,02386</td>
<td>2,87256</td>
</tr>
<tr>
<td>Champ-2</td>
<td>62636864,49858</td>
<td>2,59453</td>
</tr>
<tr>
<td>Champ-3</td>
<td>62636860,17895</td>
<td>2,82842</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636857,11411</td>
<td>0,96607</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636856,27070</td>
<td>1,09516</td>
</tr>
<tr>
<td>EGM96</td>
<td>62636856,45352</td>
<td>0,35591</td>
</tr>
<tr>
<td>GI_1_mod</td>
<td>62636864,56112</td>
<td>1,83666</td>
</tr>
<tr>
<td>GI_2_mod</td>
<td>62636864,66721</td>
<td>2,30812</td>
</tr>
<tr>
<td>Misch</td>
<td>62636856,50081</td>
<td>0,25985</td>
</tr>
</tbody>
</table>

Meer

<table>
<thead>
<tr>
<th>alle</th>
<th>Mittel von W_o [m²/s²]</th>
<th>Stdabwg W_o [m²/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ-1</td>
<td>62636866,89048</td>
<td>2,34429</td>
</tr>
<tr>
<td>Champ-2</td>
<td>62636865,43142</td>
<td>2,18491</td>
</tr>
<tr>
<td>Champ-3</td>
<td>62636858,71405</td>
<td>2,27914</td>
</tr>
<tr>
<td>Grace-1</td>
<td>62636857,11411</td>
<td>0,96607</td>
</tr>
<tr>
<td>Grace-2</td>
<td>62636855,21937</td>
<td>0,92692</td>
</tr>
<tr>
<td>EGM96</td>
<td>62636856,62879</td>
<td>0,28446</td>
</tr>
<tr>
<td>GI_1_mod</td>
<td>62636863,75853</td>
<td>1,08103</td>
</tr>
<tr>
<td>GI_2_mod</td>
<td>62636863,33084</td>
<td>1,33931</td>
</tr>
<tr>
<td>Misch</td>
<td>62636856,36793</td>
<td>0,23608</td>
</tr>
</tbody>
</table>

Champ-1	62636851,05307	0,94299
Champ-2	62636852,53190	0,67396
Champ-3	62636855,17505	0,50391
Grace-1	62636856,41065	0,24507
Grace-2	62636855,85558	0,37697
EGM96	62636856,61735	0,09819
GI_1_mod	62636854,69673	0,54252
GI_2_mod	62636853,95360	0,57981
Misch	62636857,52778	0,12471

Champ-1	62636864,02386	2,87256
Champ-2	62636864,49858	2,59453
Champ-3	62636860,17895	2,82842
Grace-1	62636857,11411	0,96607
Grace-2	62636856,27070	1,09516
EGM96	62636856,45352	0,35591
GI_1_mod	62636864,56112	1,83666
GI_2_mod	62636864,66721	2,30812
Misch	62636856,50081	0,25985

Tabelle 5-7: Ergebnisse aller Modelle ohne spezifischer Ausreißer

Bei dieser Gegenüberstellung wird deutlich, wie sich durch gezielte Ausreißersuche die Genauigkeit (Standardabweichung) leicht verbessert. Im Gesamtdatensatz hat das EGM96 die höchste Genauigkeit, im Meeresdatensatz das Mischmodell. Für die Mittelwerte wird jedoch keine deutliche Verbesserung bezüglich der Homogenität erreicht. Im Gegenteil: die Mittelwerte streuen nach der Ausreißerelimination stärker. Auch die Ergebnisse der hoch auflösenden GRACE-Modelle werden inhomogen. Die Grafik Abb. 5-3 macht dies noch einmal deutlich.
Die Grafik macht noch einmal deutlich, wie sehr die Mittelwerte von \(W_0 \) auch nach der Ausreißerelimination je nach Modell und Datensatz streuen, die Streuung wird im Vergleich zur ersten Berechnung sogar noch größer. Lediglich die hoch auflösenden Modelle GRACE-1 und -2, das EGM96 und das Mischmodell liegen für alle Berechnungen mit ihren Ergebnissen noch einigermaßen dicht beieinander. Vor allem das EGM96 und das Mischmodell sind diesbezüglich immer noch herausragend. Dies prädestiniert sie als die Modelle für die Berechnung eines neuen Geoidwertes \(W_0 \).

Insgesamt hat die Ausreißerelimination keine Verbesserung bezüglich der Homogenität der \(W_0 \)-Werte gebracht. Zwar verbessert sich die Genauigkeit etwas, aber die Mittelwerte scheinen sich zu verschlechtern. Dies kann damit begründet werden, dass die Ausreißer nicht aufgrund ungenauer Ausgangswerte und damit hoher Fehlerquadrate als solche detektiert wurden, sondern aufgrund lokaler Phänomene, die wegen der zu geringen Auflösung der Modelle nicht erfasst wurden. Diese verursachen die hohen Fehlerquadrate der eliminierten Punkte.
6 FAZIT UND AUSBlick

Die unterschiedlichen Berechnungen haben gezeigt, dass das EGM96 aufgrund seiner hohen Auflösung (Entwicklungsgrad) bezüglich der Genauigkeit des ermittelten Potentialwertes immer sehr gute Ergebnisse generierte. Gemittelt ergeben die Ergebnisse aus dem EGM96 für W_0 folgenden Wert: $W_0_{\text{mittel}} = 62636857,135445$ [m2/s2]. Für geringere Entwicklungsgrade wurde jedoch auch deutlich, dass speziell die GRACE-Modelle die genauesten Ergebnisse lieferten. Von den CHAMP-Modellen zeigt das CHAMP-3-Modell gegenüber den anderen beiden eine deutlich höhere Genauigkeit für fast alle Berechnungsdurchgänge. Das Mischmodell hat sich im Nachhinein als das Beste aller Modelle erwiesen. Es zeigt in allen Durchgängen eine herausragende Genauigkeit und für den Mittelwert sehr konstante Werte in allen Berechnungsdurchgängen. Diese ergeben gemittelt einem Wert von $W_0_{\text{mittel}} = 62636856,50053$ [m2/s2].

Geoids ergibt sich in dieser Arbeit: \(W_0 = 62636856,60559 \, [m^2/s^2] \) bei einer Standardabweichung von 0,13315 \([m^2/s^2]\). Die Genauigkeit entspricht für dieses Ergebnis einer Geoidhöhendifferenz von ca. 1,3 cm. Vergleicht man diesen Wert mit dem Ergebnis früherer Berechnungen, so ergibt sich folgendes Bild:

Vergleicht man das Ergebnis aus dieser Studienarbeit mit dem global gültigen Wert für \(W_0 = 62636856,0 \, [m^2/s^2] \) der von [Burša et al 2000] aus TOPEX/POSEIDON-Altimeterdaten bestimmt wurde, ergibt sich ein Versatz des finnischen Höhendatums mit Pegel Helsinki von ca. 6 cm.

7 Literaturverzeichnis

ANHANG

MATLABPROGRAMM

In den Matlabprogrammen Finnland_W0_tide_free.m und Finnland_W0_mean_--tide.m zur Berechnung der Potentiale W, U und V werden für jeden Oberflächenpunkt dieselben berechnet. Anmerkung: Das Gravitationspotential U ist im Programm mit V_sph bezeichnet. Aufgrund der Länge des Quelltextes, wird auf einen Ausdruck verzichtet. Er kann auf der beiliegenden CD-ROM unter dem jeweiligen Programmnamen gefunden werden.

BEILIEGENDE CD

Auf der beiliegenden CD sind alle Daten zu dieser Studienarbeit abgelegt. In den entsprechend benannten Ordnern können die Eingangsdaten, Berechnungsprogramme, Ergebnisse, Bilder und Graphiken sowie die Worddokumente der Studienarbeit, vom Titelblatt und dem Abstract gefunden werden.