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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Entwicklung eines konstitutiven Rahmens fiir
gradientenbasierte standard dissipative Materialmodelle, die einem Variationsprinzip zu
Grunde liegen. Ein Fokus liegt dabei auf der Formulierung theoretischer und computer-
orientierter Methoden zur Beschreibung von Grofieneffekten in inelastischen Festkorpern.
Im Mittelpunkt steht eine vereinheitlichende Theorie und die numerische Behand-
lung der inkrementellen Variationsformulierung, die im Verlauf der Arbeit auf eine
breite Klasse von gradientenbasierten Materialmodellen mit intrinsischen Langenskalen
angewandt wird. Mit diesen gekoppelten, symmetrischen Mehrfeldproblemen werden
zunachst ein gradientenerweitertes Schéadigungsmodell formuliert, das Nachteile lokaler
Schadigungsmodelle in Hinblick auf Netzabhéngigkeiten bei Finite Elemente Analysen
iiberwindet. Eine zweite Anwendung des Variationsprinzips befasst sich mit der Phasen-
feldmodellierung von Bruchvorgangen, die in der Lage ist krummlinige Risse, Rissverzwei-
gungen und Rissbildung in Korpern frei von Imperfektionen abzubilden. Diese For-
mulierung vermeidet die Modellierung von scharfen Diskontinuitdten, wie sie in klas-
sischen Ansatzen zur Bruchmechanik verwendet wird. Formal weist dieses Bruchmodell
wesentliche Ahnlichkeiten zu dem zuvor diskutierten Schiadigungsmodell auf. Eine Heraus-
forderung bei der Phasenfeldmodellierung von Bruchvorgangen entsteht in Hinblick auf die
approximative Beschreibung der Risstopologie. Genaue numerische Ergebnisse erfordern
die Verwendung von hoch verdichteten Finite Elemente Netzen in der kritischen Risszone.
Eine Verbesserung der numerischen Effizienz wird durch ein h-adaptives Verfahren errei-
cht, das ausschliellich durch diskrete materielle Krafte gesteuert wird. Eine letzte An-
wendung des entwickelten Prinzips beschaftigt sich mit phanomenologischer Plastizitit
mit gradientenerweiterter Verfestigung bei kleinen und grofien Verformungen, die eine
Regularisierung von Scherbéandern und die Vorhersage des Hall-Petch Effekts ermoglicht.

Abstract

The thesis addresses the development of a variational-based framework for gradient-type
standard dissipative solids. A focus lies on the design of theoretical and computational
approaches towards the description of length-scale effects in inelastically deforming solids.
A strong emphasis is put on a unifying theoretical and numerical treatment of the incre-
mental variational formulation that is applied to a broad class of gradient-type solids
with intrinsic length scales. The coupled, symmetric multi-field formulation is first used
to model gradient-type damage mechanics that overcomes drawbacks of local constitutive
damage models regarding mesh sensitivity. A second application of the variational-based
framework for gradient-type solids is concerned with the phase field modeling of frac-
ture, allowing for the prediction of curvilinear crack patterns, crack kinking, and crack
initiation in solids free of imperfections. This formulation avoids the modeling of sharp
discontinuities usually done in classical approaches towards fracture and turns out to be
conceptually in line with the previously discussed model of gradient-type damage me-
chanics. A challenge of the phase field modeling of fracture arises with regard to the
approximate description of the crack topology. Accurate results demand the employment
of highly densified finite element meshes in the crack evolution zone. An improvement
of the numerical efficiency is obtained by an h-adaptive solution procedure that is ex-
clusively governed by discrete configurational forces. A last application of the proposed
framework covers models of phenomenological plasticity with gradient-type hardening at
small and large deformations. These models allow for the regularization of shear bands
and the description of the so-called Hall-Petch effect.
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1. Introduction

The overall goal of this work is to develop an incremental variational formulation for
gradient-type standard dissipative solids. The focus thereby lies on the design of theo-
retical and computational approaches for the description of size effects and length-scale
effects in inelastically deforming solids. A strong emphasis is put on a unifying theoretical
and numerical treatment of the incremental variational formulation that can be applied
to a broad class of gradient-type solids with intrinsic length scales. In order to demon-
strate the performance of the incremental variational framework for gradient-type solids,
applications in the fields of (i) damage mechanics, (ii) phase field modeling of fracture,
and (7ii) gradient-type phenomenological plasticity are investigated.

1.1. Motivation and State of the Art

In classical theories of local continuum mechanics, only the placement within the Euclid-
ian space is assigned to each material patch. Changes in relative placements are evaluated
to measure the local deformation of a material element. Following this methodology, the
features of the material substructure are overlooked. In order to take into account the
material’s microstructure, besides the placement of a material point within the Euclidian
space, additional global fields can be introduced that describe the substructural config-
uration of the material patch. Additional scalar-valued fields describe e.g. the volume
fraction in porous media, vectorial fields are used to describe oriented media like rods
and shells, and additional second order tensorial fields characterize e.g. Nye’s tensor in
dislocated continua. Hereby, the material’s microstructure is associated with an ntrin-
sic length scale yielding so-called size effects in the constitutive response. The additional
fields are considered as observable quantities that together with the placement in the
Euclidian space characterize the physical configuration of the solid. Associated with the
additional fields, substructural interactions are introduced that depend on the nature of
the material’s microstructure. These interactions develop explicit power in the rate of the
additional microscopic fields and perhaps of their gradient. As a consequence, additional
balance equations have to be considered that describe the evolution of these additional
microscopic fields and thus the state of the material’s substructure. Another more classical
possibility to take into account the material’s microstructure is based on the introduction
of local internal variables that are considered as non-observable variables. Thus, no addi-
tional mechanical power associated with the internal variables develops and no additional
balance equations are evaluated. The driving forces, i.e. the derivatives of the free energy
with respect to the internal variables and possibly with respect to their gradients, charac-
terize no real substructural interactions. They are relations that only have to satisfy the
second law of thermodynamics.

Following ERINGEN [37, 38], the departure from classical local theories begins with so-
called polar theories. In these theories the material patches are considered as geometric
objects that possess properties similar to rigid sub-bodies leading to so-called micropo-
lar media, and deformable sub-bodies yielding the theory of micromorphic media. In this
scenario, the additional fields are introduced as independent degrees of freedom charac-
terized by a set of three vectors that are attached to the material patches. In micropolar
theories, these vectors are considered as rigid directors, whereas in micromorphic theories
they are considered deformable. Higher-order polar theories can be constructed by the
introduction of tensors of arbitrary order that are attached to the material points.
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Non-standard continuum theories for continua containing independent microstructural
degrees of freedom can be traced back to the pioneering work by COSSERAT &
COSSERAT [30] who considered the material sub-structure as a rigid body that can rotate
independently of neighboring patches. This microscopic rigid body motion is characterized
by a peculiar triad of rigid vectors. Couple stresses dual to the rotational degrees of free-
dom are introduced and taken into account by additional balance equations. The work by
ERICKSEN & TRUESDELL [36] is concerned with a generalization of the Cosserat medium
in view of the description of rods and shells. Here, each point is endowed by triads of
mutually perpendicular vectors that, in contrast to the Cosserat medium, are considered
as stretchable vectors. An extension of this idea towards the mechanics of elastic solids
with microstructure can be found in the work by TOUPIN [171], see also MINDLIN [134]. In
the work by MINDLIN [133], the very general concept of an elastic continuum each point
of which is in itself a deformable medium has been introduced. If each micro-continuum
is constrained to deform homogeneously, such a model reverts to the oriented medium
with deformable directors suggested by ERICKSEN & TRUESDELL [36]. A comprehensive
treatment and a classification of various theories for generalized continua can be found in
the recent publications by FOREST & SIEVERT [47, 48] and FOREST [45].

However, all these types of multi-field theories for the description of generalized solids
can be considered as specific classes of continua with affine microstructure as inten-
sively discussed by CAPRiz, PoODIO-GUIDUGLI & WILLIAMS [24], CAPRIZ & PoODIO-
GuipucGLI [23], CAPRIZ & VIRGA [25], and CAPRIZ [20, 21, 22| giving a sound mathe-
matical basis for the definition of an order-parameter-based framework for continua with
substructure. Continua with microstructure are regarded as refined mathematical models
for a broad class of material bodies endowed with some sort of arbitrary microscopic or-
der. In this scenario the material substructure influences the gross mechanical behavior of
the solid, where additional fields are introduced capturing the microstructural state of the
material. These fields are often denoted as order parameters, phase fields, microstructural
fields, muicro displacements, or micro deformations. Follow-up comprehensive treatments
in this spirit with application to microcracked continua can be found in MARIANO &
AucusTI [107], a more general description with extension to configurational mechan-
ics in MARIANO [105, 106]. The book by FREMOND [51] offers a very general approach
to gradient-type dissipative materials with an intense focus on the full thermodynamic
setting. In all of these treatments, the critical point is to account for the working of inde-
pendent kinematic processes associated with the microstructure of the material described
by the micro structural fields. Hence substructural interactions are accompanied by ex-
plicit power expressions in the rate of the micro structural variables, yielding additional
balance equations associated with the microstructure. As a consequence, the standard
macro-balances of mass and momentum are coupled with an additional micro-balance
equation, which governs a micro-force system associated with the order parameters. This
perspective on generalized continua with microstructure builds the point of departure for
the further development.

Representative examples of the above mentioned theoretical framework for continua with
affine microstructure cover the works by FRIED & GURTIN [53] on phase transformations,
FREMOND & NEDJAR [52] on gradient-type damage mechanics, and BOURDIN, FRANC-
FORT & MARIGO [17] on regularized brittle fracture. They all consider scalar-valued fields
as microscopic order parameter field variables. Recent non-standard gradient-type formu-
lations for theories of plasticity are also covered by the general framework for continua
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with microstructure. In this context, size effects associated with dislocation density in-
duced lattice curvature are incorporated by this approach, see NYE [144], KRONER [94],
AsHBY [5], FLECK, MULLER, ASHBY & HUTCHINSON [43], FLECK & HUTCHINSON [42],
Nix & GAO [143], and ARzT [4]. Strain-gradient theories for single crystal plasticity that
are based on additional micro-force balances are proposed by GURTIN [65, 66, 68], SVEND-
SEN [168], EVERS, BREKELMANS & GEERS [41], and in the recent work by FOREST [44].
Phenomenological theories for gradient-type plasticity with additional microstructural
field variables are discussed in GURTIN [67], GUDMUNDSON [60], and ANAND, (GURTIN,
LELE & GETHING [3]. These contributions consider the working of the additional mi-
crostructural fields and derive additional microscopic balance equations that drive the
evolution of the microstructural state of the material. However, a unifying theoretical and
numerical treatment of an incremental variational formulation that governs this sort of
gradient-type material response is still missing in literature.

Variational formulations for inelastic solid materials can be found in the works by ORT1Z
& REPETTO [145], MIEHE [118], and CARSTENSEN, HACKL & MIELKE [26]. In the works
by MIEHE, SCHOTTE & LAMBRECHT [127] and MIEHE, LAMBRECHT & GURSES [126]
a general variational framework for local standard dissipative materials is outlined and
applied to a variational based definition of homogenization and relaxation in dissipative
solids. These minimization principles are considered as the key to the incremental response
of inelastic solids. They exhibit basic features of standard dissipative materials such as
formulated by B1oT [13], ZIEGLER & WEHRLI [182], GERMAIN [55], and HALPHEN &
NGUYEN [76], which are exclusively based on two scalar valued functions, namely the
energy storage function and the dissipation function. However, all these treatments can
be related to local theories of inelasticity, where the evolution of the internal variables is
governed by local evolution equations. First steps towards a generalization of the varia-
tional formulations towards strain-gradient theories are outlined in the works by MIELKE
& MULLER [131], FRANCFORT & MIELKE [49], and MIELKE & ROUBICEK [132] for
rate-independent plasticity and damage mechanics, respectively.

1.2. Objectives and Overview

The first part of the thesis is devoted to the outline of a general theoretical framework
for gradient-type standard dissipative solids that is based on incremental variational for-
mulations. An emphasis is thereby put on the unifying numerical implementation of the
resulting symmetric systems. In the second part of the thesis, this general framework is
applied to the description of specific classes of gradient-type standard dissipative solids.

The foundation for a wvariational-based framework for gradient-type standard dissipative
solids is laid in Chapter 3 and is conceptually in line with the recent work by MIEHE [120].
Hereby, a focus is put on the geometric setting and the mapping properties of the addi-
tional microscopic deformation- and strain-measures. A compact notation is introduced
that points out the strict duality between macro- and microscopic motions, where the lat-
ter ones are identified as the above mentioned order-parameters. The rates of the macro-
and microscopic fields characterize external power expressions that are balanced with
internal power mechanisms. Focusing on gradient-type standard dissipative solids, the
internal constitutive response is characterized by two constitutive functions, namely the
energy storage and dissipation functions. The governing equations of the multi-field prob-
lem are obtained by a global form of the Clausius-Planck inequality, or alternatively as the
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Euler equations of a continuous variational formulation expressed in the rate-arguments.
However, the focus is directly put on a time-discrete incremental variational principle that
yields an algorithmic version of the coupled macro- and microscopic balance equations.
Depending on the nature of the dissipation function, these balance equations can take
different representations that in the subsequent treatment are discussed in detail. This
chapter closes with a unifying finite element treatment of the fully coupled multi-field
problem for all possible representations of the dissipation function. Thereby, details of the
matrix notation needed for the numerical treatment of the resulting symmetric systems
are pointed out.

The objective of Chapter 4 is the application of the previously developed framework
for gradient-type standard dissipative solids to a model problem of gradient-type damage
mechanics. The fundamental works by KACHANOV [90], LEMAITRE & CHABOCHE [99],
LEMAITRE [98], and LEMAITRE & DESMORAT [100] provide a comprehensive introduction
to continuum damage mechanics. Like other strain softening materials, damage mechanics
shows the phenomenon of localization. An overview of this subject is given by FOREST &
LORENTZ [46] and DE BORST[33], where the effect of material instability and the effect
of mesh sensitivity are explained. Damage models that overcome the severe drawback
of mesh-dependent results are based on a damage-gradient extension of the constitutive
functions, see e.g. PEERLING, GEERS, DE BORST & BREKELMANS [147]. The model
introduced in the underlying chapter exhibits similarities to the model of gradient-type
damage discussed by FREMOND & NEDJAR [52]. In this work, the rate of damage and
its gradient enter the power of internal forces as additional contributions. As a conse-
quence, an additional balance equation is obtained that characterizes the evolution of
the global damage field. This motivates the fitting of such types of damage formulations
into the variational-based framework for gradient-type standard dissipative solids. The
chapter is organized as follows. Initially, the effects of material instabilities and mesh
sensitivity in strain softening solids are briefly summarized and the fundamentals of con-
tinuum damage mechanics are given. The basic kinematic relations are set up, an isotropic
degradation of the stored bulk energy is suggested, and a rate-independent formulation
of the dissipation function is introduced. Alternative smooth representations of the rate-
independent /non-smooth dissipation function are discussed yielding a penalty-type model
I and a wviscous over-force model 1I. For these constitutive functions, the application of
the incremental variational framework delivers the algorithmic representation of the gov-
erning balance equations and provides the basis for a unified numerical implementation.
An investigation of the constitutive characteristics of both models shows that model IT is
more convenient regarding a numerical treatment. Thus, several mesh-objective numerical
tests are performed for model II that demonstrate the performance of the gradient-type
damage formulation regarding the regularization of shear bands.

In Chapter 5, a thermodynamically consistent model of phase field fracture is constructed
that overcomes difficulties that arise in classical approaches to brittle fracture. This model
is in line with the recent publication by MIEHE, WELSCHINGER & HOFACKER [130]. Of
particular interest is a descriptive and comprehensive representation of the basic ingredi-
ents and the embedding of the proposed model into the very general theory of gradient-
type standard dissipative solids. Theoretical foundations of classical brittle fracture can
be found in the works by GRIFFITH [58], IRWIN [86], and BARENBLATT [6]. Accord-
ing to Griffith and Irwin, a crack propagates if the energy release rate reaches a critical
value. Griffith’s theory can predict when a crack propagates but cannot determine curvi-
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linear crack patters, crack kinking, crack branching angles, or crack initiation in solids
free of defects. These drawbacks can be overcome by variational-based energy minimiza-
tion methods as suggested by FRANCFORT & MARIGO [50], BOURDIN, FRANCFORT &
MARIGO [16], and DAL MASO & TOADER [31]. The regularized setting of their proposed
theory is discussed in BOURDIN, FRANCFORT & MARIGO [16, 17] and is obtained by
the method of I'-convergence inspired by the work on image segmentation by MUMFORD
& SHAH [137]. For details on I'-convergent approximation of free discontinuity problems
see AMBROSIO & TORTORELLI [2] and BRAIDES [18, 19]. In this spirit, a sharp crack
surface topology in the solid is approximated by a diffusive crack zone characterized by an
auxiliary variable. This variable is considered as a damage-like order-parameter field that
interpolates between the unbroken and the broken state of the material. Conceptually sim-
ilar approaches can be found in EASTGATE, SETHNA, RAUSCHER, CRETEGNY, CHEN &
MYERS [35], KARMA, KESSLER & LEVINE [91], and HAKIM & KARMA [74] that can be
considered as time-dependent viscous regularizations of the above mentioned theories of
energy minimization based on a Ginzburg-Landau type evolution equation. These phase
field approaches towards the modeling of brittle fracture avoid the modeling of sharp dis-
continuities but still have several drawbacks regarding the postulate of irreversibility and
their restriction to boundary value problems where tensile stresses are present in the full
solid domain. Starting with the approximate description of the crack topology by a crack
surface functional, a rate-independent, gradient-type dissipation function is constructed
that allows the crack topology to grow or to stay constant in time only. In analogy to the
previous model problem of gradient-type damage, smooth representations of this dissipa-
tion function are introduced yielding model I in a penalty-type two-field setting and model
I1 in a viscous over-force formulation. The isotropic formulation of the above mentioned
theories of regularized fracture exhibit the problem of crack propagation in compression
and tension. To improve this characteristic, an anisotropic degradation of the stored en-
ergy is introduced, which allows for the analysis of physically motivated, more complex
boundary value problems. With these two constitutive functions at hand, the discrete
incremental variational principle for gradient-type standard dissipative solids can be ap-
plied, which allows for the discussion of several numerical benchmark tests at the end of
this chapter.

It is the purpose of Chapter 6 to tmprove the numerical efficiency of the previously intro-
duced phase field model of fracture. One challenge of phase field modeling of fracture arises
when approximating the smooth crack topology. On the one hand the length scale param-
eter related to the crack surface functional has to be chosen as small as possible, which is
on the other hand limited by the local element size. As a consequence, accurate results for
a small length scale parameter are only obtained with a huge number of elements, espe-
cially in cases where the crack pattern is not known a priori and a uniform dense mesh has
to be employed. A tremendous improvement of the numerical efficiency can be obtained
by the construction of an h-adaptive finite element solution scheme that locally adapts the
mesh during crack propagation. Basic ingredients of an h-adaptive solution scheme are the
global and local mesh refinement indicators. In the underlying work such indicators are
introduced that solely depend on discrete configurational forces. The concept of configu-
rational mechanics describes the effect of forces acting on singularities, inhomogeneities,
and defects. The probably most prominent application of configuration mechanics can be
found in the description of material configurational forces acting on crack tip singularities
in the sense of ESHELBY [39, 40| and RICE [152], see also MAUGIN [111], GURTIN [63, 64],
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KIENZLER & HERRMANN [92], GURTIN & PODIO-GUIDUGLI [72, 73|, and STEINMANN
& MAUGIN [167] for a broader context. An exploitation of discrete configurational forces
with regard to the construction of an h-adaptive method has been successfully developed
by ZIMMERMANN [184]. In order to construct a configurational force based h-adaptive
algorithm, the configurational setting of phase field fracture is investigated and the gov-
erning dual balance equations in physical and material space derived. The focus hereby
lies on model II introduced in the previous chapter. An algorithmic version of these cou-
pled equations can alternatively be obtained by the design of an adequate incremental
variational principle. Discrete configurational forces are obtained by the application of a
staggered numerical solution scheme, where the balance in physical space is solved and
the balance in material space simply evaluated. These discrete configurational forces are
the point of departure for the design of an h-adaptive solution method.

Chapter 7 is concerned with the development of gradient-type models of phenomeno-
logical plasticity at small and large deformations. Similar phenomenological theories for
gradient-type plasticity with additional microstructural field variables are discussed in
the works by GURTIN [67], GUDMUNDSON [60], and ANAND, GURTIN, LELE & GETH-
ING [3]. In these contributions the working of the additional microstructural fields are
taken into account and additional microscopic balance equations are derived that pre-
scribe the evolution of the order-parameter fields. In a first part of this chapter, the
constitutive equations for gradient-type Jo-plasticity are specified for the case of small
deformations. The application of the incremental variational framework for gradient-type
solids then provides the governing balance equations and delivers a unified finite element
treatment of the coupled system. Two elementary numerical examples describing shear
band formations confirm the mesh-objectivity of the proposed model. In view of an ex-
tension of the material model towards geometrically large deformations, a short summary
of the additive approach to finite plasticity in the logarithmic strain space is given. This
approach mainly bases on the developments by MIEHE [116, 117] and MIEHE, APEL
& LAMBRECHT [121]. The latter work provides a modular structure that consists in its
core of the initially introduced small strain material model for gradient-type plasticity.
The logarithmic constitutive core is framed by purely geometric pre- and post-processing
steps. This kinematic picture is embedded into the variational structure of gradient-type
dissipative solids which on the one hand allows for an extremely compact notation and on
the other hand for an effective numerical treatment of the resulting symmetric system. At
the end of this chapter several numerical examples demonstrate the performance of the
model with regard to the regularization of shear bands and the prediction of the so-called
Hall-Petch effect.



2. Fundamentals of Local Continuum Mechanics

The purpose of this chapter is to give a short introduction to the concept of a continuous
medium as a macroscopic physical model that is used to describe certain phenomena in
deforming mechanical systems and builds the basis for a further development of the un-
derlying work. Shortly, the basic notation of continuum mechanics, the kinematics, and
the geometric setting are reiterated. The concepts of stresses and heat flux are discussed,
allowing for the introduction of the essential governing balance laws. This chapter has an
introductory character and is by no means complete. For further reading in this broad field
of knowledge, the reader is referred to the textbooks on continuum mechanics by BASAR &
WEICHERT (7|, CHADWICK [27], HAUPT [77], HOLZAPFEL [83], MALVERN [104], MARS-
DEN & HUGHES [108], SALENGON [155], SILHAVY [159], and TRUESDELL & NOLL [172]
and the textbooks on tensor algebra and analysis by IBEN [84] and ITSkOV [87], only to
mention a few among others.

2.1. Kinematics of Finite Deformations

This section aims at a straightforward understanding of the kinematics of continuous
bodies undergoing large deformations that bases on modern terminologies of differential
geometry and is closely related to the lecture notes by MIEHE [119].

2.1.1. Basic Elements of Euclidian Base Systems. Regarding a unique identifica-
tion of tensorial objects in the three-dimensional space, a reference frame has to be set
up. A widely used coordinate system is the Cartesian coordinate system. In most cases it
is sufficient for the description of continuum mechanical processes. Aiming at a precise ge-
ometric interpretation of the motion of material bodies, it is very illustrative to introduce
arbitrary, convected coordinate systems that are discussed briefly in the sequel.

2.1.1.1. Orthonormal Base Systems. First, the focus is put on some basic elements
of Cartesian coordinate systems. The standard Cartesian base vectors {e;};,—1 23 of the
three-dimensional space R? satisfy the orthonormality condition and possess a positive
orientation characterized by the inner product and the cross product

ei-ej=10; and e; xe;=c¢jex, (2.1)
where 6;; denotes the Kronecker delta and €;j; the permutation symbol with

+1 for (4,7, k) even

1 fori=j ) J
0ij 1= { 0 otherwise and €5 = (1) i(;iéi;gi,slz) odd (2.2)

According to Einstein’s convention two identical indices imply a summation.

2.1.1.2. Arbitrary Base Systems. Metric Tensors. In what follows, the above out-
lined Cartesian frame is extended to arbitrary base systems of the three-dimensional space
R3. The assumption of orthonormal bases (2.1); is dropped and dual co- and contra-
variant base systems {g, }i=123 and {g'}i—123 are introduced. The relation between their
linearly independent base vectors of arbitrary length and orientation to a Cartesian ref-
erence self dual base {€;}i—123 and {€'};—1 23 reads

g, =j-e and g := . el (2.3)
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Figure 2.1: Definition of co- and contra-variant base vectors g, = j - €; and g' = T el

in a Cartesian self dual reference frame e; = e’.

The second-order tensor 7 is understood as a deformation that maps the Cartesian base
vectors {e;};—123 onto the co-variant base vectors {g,}i—123, see Figure 2.1a). As illus-
trated in Figure 2.1b), the adjoint tensor 577 maps the Cartesian base vectors {€}i—1 3
onto the contra-variant base vectors {g'};—123. The mapping j and the adjoint mapping

4T are constrained by the condition

Vg = det[j] = g, - (92 x g5) >0 and % =det[j '] =g' (g xg°) >0 (24)

ensuring that the co- and contra-variant base vectors {g, }i=123 and {g'}i—1 23 are linearly
independent and span parallelepipeds of volume /g and 1/,/g, respectively. Based on
definition (2.3), the dual bases satisfy the generalized orthogonality condition

g-g;=€-(j7'j)-ej=€-e and g, g =e-(j75j7) e =e-€& (25

allowing for the deduction of the fundamental reciprocal conditions
g - g, = 52 and g, -g’ =0/ with 53 =0 =0 =4y (2.6)

between the co- and contra-variant base vectors expressed in terms of the Kronecker delta
as introduced in (2.2);. Here, the summation convention is applied as follows. When an
index is diagonally repeated, a sum of all terms associated with the index valuesi =1,2,3
is understood. From (2.3) it further follows that the columns of j and 5~ correspond to
the co- and contra-variant base vectors

T

=9, ®€ =19,,9,,95] and j ' =g'®e =[g' g’ 9" (2.7)

Assume the co-variant or the contra-variant base vectors to be known. By inversion of
(2.7), their individual reciprocal counterparts are obtained via

goe=[geel" and goe =[g el . (2.8)

For a cyclic permutation of the indices (7, j, k), in combination with the generalized or-
thogonality condition (2.5), one can write

g -9, =c(g;xg)-g,=0 and g,-g'=ci (g’ xg")-g' =6/ (2.9)

Nonzero values are obtained for i = [ yielding the unknown coefficients ¢! = ¢ = ¢ =

1/ V9 and ¢; = ¢ = c3 = /g and finally the crucial relationship

g=—g,xg, and g,=+gg xg" (2.10)

1
NG
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for even permutations of the indices (4, j, k). This gives a clear geometric interpretation
for the construction of dual base vectors. From (2.10), the cross products

g:xg;=ejg" and g ' xg/ =c'tg, (2.11)
for co- and contra-variant base vectors are obtained, where the permutation symbols

- 1 . -

eijk = g eyr and  e7F = — €7 with e = €9 (2.12)
are introduced, see also equation (2.2)s. The inner product of the co- and contra-variant
base vectors define the co- and contra-variant metric coefficients

9ij =9;-9;=¢€-(37j§)-e and ¢7:=g"-g'=€-(j7'57) €, (2.13)

where the co- and contra-variant base vectors (2.3) have been employed. The Cartesian
coordinates of the co- and contra-variant metric tensors

g=3"j= Gij e®e and gl=3"'jT=¢"¢e® e; (2.14)

are the dual metric coefficients in the Cartesian base system. Note that both are inverse to
each other, i.e. (j77)71 = 771577, The metric coefficients possess the important property
of index lowering and index raising

g; = Gij g’ and g'=g" g;- (2.15)
For known metric coefficients (2.13), the according dual base vectors
9.=(9:,9,)9 =(9’®g,)g9;=1-g, and g' =(g9"g")g; =(9,09’)g'=1-g" (2.16)
are obtained and the second-order identity tensor
909, =7 (€®e)j =1 and g,0g' =j(ei®e)j ' =1 (2.17)
can be identified, see also definition (2.3).

2.1.2. Geometric Setting and Motion of a Material Body. A material body is a
physical object equipped with certain properties like texture, microstructure, etc. char-
acterizing its behavior under loading. One key property of the body is that it occupies
a certain domain in the Euclidian three-dimensional space R?. Mathematically speaking,
a material body B consists of infinitely many material points P € B associated with
geometric coordinates in the Euclidian space R3. The motion of the body B in R? is
determined by a one parameter family of placements

B—-SCcR?

x.(P) : {P = (P). (2.18)

At frozen time ¢, the map x,(P) for P € B uniquely maps a material point P onto a
coordinate triple € R3. Regarding a description of the motion of a deformable solid,
it is common sense to introduce at the initial time t = ¢y an arbitrarily chosen reference
configuration, which in general possesses an undistorted, stress-free state

B —- BCTR?

X, (P) - {P X~ (7). (2.19)
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= |

Figure 2.2: The motion of a material body B in the Euklidian space R? is governed by
a one parameter family of placements x,. In a reference description of the motion p(X 1),
the configuration ¢, (X) of the solid and the path px (t) of a particle P are identified.

In what follows, the notation B := X, (B) is introduced for the reference, material or
Lagrangian configuration and S := x,(B) is chosen for the current, spatial or Eulerian
configuration. The corresponding reference and current positions of the material point P
in the Euclidian space are denoted by X := x, (P) € Band  := x,(P) € S, respectively.
A relative description of the solid’s motion is obtained by a composition of the mappings
(2.18) and (2.19) defining the nonlinear deformation map

BxT — 8

PO (Xt = (X)) X). (2:20)

At current time t € R, a reference position X € B of the Lagrangian configuration is
mapped onto its deformed spatial position & = ¢,(X) € S in the Eulerian setting.

2.1.3. Material and Spatial Velocities and Accelerations. Based on the relative
description of the motion (2.20), the following notation is introduced

2 = (X, 1) = ¢,(X) = ox(1). (2.21)

where (X, t) is the entire motion and ¢,(X) the configuration of the solid at time t.
The path of a particle P labeled by its Lagrangian position X is denoted by x (), see
Figure 2.2. The material velocity and material acceleration

V(X t) = d (t) = 0 (X,t) and A(X,t)= & (t) = o (X,t) (2.22)

9 - dtsOX - 8tcp ) ) - dtzsz - at2<p ) .

are spatial vector fields parametrized by the Lagrangian coordinates X € B. The spatial
velocity and spatial acceleration are spatial vector fields that are parametrized by the
current position € S obtained by a composition with the inverse motion

v(z,t) = V(X,t)op; () and a(zx,t)= A(X,t)op,  (x). (2.23)

Note that the material and spatial objects (2.22) and (2.23) are the same Eulerian objects,
they only differ in their parametrization. Without knowing the motion (X, t), which is
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(X, 1)

rive
/T {Ea) = {ed}

Figure 2.3: Coordinate frame for the description of kinematic objects. Curvilinear de-
scription for © # @ where the Lagrangian and Eulerian base vectors {G 4} and {g,} are
independent and convective curvilinear description for for ® = 6 where the Eulerian base
vectors {g,} are the deformed images of {G 4}.

the case e.g. in fluid mechanics, the material acceleration can alternatively be obtained
by the material time derivative of the spatial velocity

d 0
a(x,t) = %v(w,t) = afu(w,t) +1-v(x,t) with 1:= Vyv(z,t) (2.24)
exhibiting the classical split into a local and convective part. In addition, the spatial velocity
gradient I := Vzv can be identified that later plays an important role when introducing
the work conjugate internal power expressions.

2.1.4. The Deformation Gradient and Deduced Mappings. The probably most
fundamental object in the description of finite strain kinematics is the deformation gradi-
ent. It is defined by the Fréchet derivative of the nonlinear deformation map (2.20) with
respect to the material coordinates

F = Vxp(X.t). (2.25)

So far no reference coordinate frame has been introduced to describe the nonlinear defor-
mation map (2.20) and the associated deformation gradient (2.25). In what follows, the
focus is put on a description of the geometric setup within the frame of convective curvi-
linear coordinate systems. It can be looked at as an extension of the concept of arbitrary
base systems as introduced in Section 2.1.1.2. In convective curvilinear coordinate sys-
tems, the Lagrangian coordinate lines are oriented along material lines that are deformed
together with the entire body. The spatial deformed images of these lines are identified
with the Eulerian coordinate lines. This point of view is illustrated in Figure 2.3 for the
case of equal Lagrangian and Eulerian curvilinear coordinates ® = 6. Based on this idea,
a local parametrization of a Lagrangian and Eulerian patch is introduced

A— B A—S
X(0): {0 - X(6) and x(6) : {0 - 2(0), (2.26)

in terms of the curvilinear coordinates @ € A belonging to the parameter space A. The
associated linear mappings

J=VeX =[G,Gy,G3] and J T =[G G* G (2.27)
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p(X,1)

Figure 2.4: The deformation gradient F'; linearly maps tangents T' € Tx B to material
curves €(0) at X onto tangents t € T,;S to deformed material curves ¢(6):=¢,(€(0)) at .

locally characterize the Lagrangian dual co- and contra-variant base vectors attached to
the Lagrangian position X € B. The linear mappings

T

j - VQ$ = [91792793] and j_ = [91’92’93] (228)

locally determine the time and deformation dependent Eulerian dual co- and contra-variant
base vectors attached to the Eulerian position & € S. Obviously, the natural Eulerian
base vectors are not independent of the Lagrangian base vectors, they are their deformed
images. For a geometric interpretation of the linear mappings (2.27) and (2.28) see Fig-
ure 2.1. Focus now on one single material curve in the Lagrangian configuration €(6)
and its deformed Eulerian counterpart ¢(6,t) = ¢(€(0),t), parametrized by the scalar
curvilinear coordinate 6, see Figure 2.4 for an illustration. The tangent to this curve with
base point X (0) € €(0) deforms via

t=Le0.1) = Vxp(e(0), t)d%

i CH)=FT (2.29)

and delivers a precise geometric interpretation of the deformation gradient. All tangent
vectors to undeformed Lagrangian material curves T with base point X live in the tangent
space Tx BB spanned by the Lagrangian co-variant base vectors {G 4} a—123. Tangents to
the deformed Eulerian curves ¢t with base point € = ¢(X,t) live in the tangent space
1S spanned by the Eulerian co-variant base vectors {g,}a—1.23. Thus, the deformation
gradient can be identified as the tangent map

F: {Txlg — LS (2.30)

T —t=FT

between the tangent spaces TxB and 7,S of the manifolds B and S, respectively. In
convective curvilinear coordinates, the constant linear maps (2.27) and the deformation
dependent linear maps (2.28) characterize the deformation gradient

F:.=3J". (2.31)

Exploitation of (2.7) for arbitrary Lagrangian and Eulerian co- and contra-variant base
vectors yields the deformation gradient in convective curvilinear coordinates

F=(g,0e")(Ba®G") =0%g,®G". (2.32)
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Note that in this representation the coordinates of the mixed-variant tensor F' simply
correspond to the Kronecker delta. All the information about the deformation is stored
in the convected, deformation dependent current base vectors.

When curvilinear coordinates are employed, the Lagrangian and Eulerian configurations
are parametrized independently with © # 6. Thus, the re-parametrization is introduced

X(@):{é:;@) and m(@):{::i(e)’ (2.33)

in terms of the curvilinear Lagrangian ® € A and Eulerian @ € A coordinates, both
belonging to the parameter space A. The associated linear mappings

J=VeX =[G1,Gy,G5] and J T =[G'G* G’ (2.34)

characterize the Lagrangian dual co- and contra-variant base vectors locally at the La-
grangian position X € B. The linear mappings

j = VQCC = [91792793] and j_T = [91792793] (235>

determine the constant Eulerian dual co- and contra-variant base vectors locally at « € S.
As a consequence, the base vectors in the Eulerian configuration can not be considered
as deformed images of the Lagrangian base vectors. Therefore, the linear mappings (2.35)
are independent of (2.34), they only provide the metric tensors that are necessary for the
evaluation of tensor operations in curvilinear coordinate systems. Following (2.14), they
are evaluated in the Lagrangian setting via

G=J'T=GuG*"®G? and G '=J'JT=GPG,2Gp (2.36)
and accordingly in the Eulerian configuration via

g=3"j=gwg"®g" and g l=j"'j"=9"g,®g,. (2.37)

Note that in (2.36) and (2.37) the metric coefficients are given with respect to their
curvilinear basis. In this setting the mixed variant deformation gradient

F=F%g,®G" (2.38)
is based on its mixed curvilinear coordinates F'4 = 9x%/0X* in arbitrary Lagrangian and

Eulerian base systems that are independent of each other.

When choosing a Cartesian reference system, the above explanations simplify significantly.
The Cartesian reference system is obtained by evaluation of the parametrization (2.33)
for the case ® = X and 0 = x. In this case, the linear mappings (2.34) and (2.35) reduce
to the identity map leading to the simple representation of the metric tensors

G=J"J=0E*®E? and G'=J'J"=0"PE,®Ep (2.39)

in the Lagrangian setting and in analogy for the Eulerian configuration

g=73"j=0pe'®e’ and gl=5"'7"=6%e,e,. (2.40)
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With these definitions at hand, the deformation gradient
F=F%e,®E* (2.41)

is expressed in terms of its Cartesian components F'Y = 9z¢/90X 4. In what follows Carte-
sian coordinates are employed with keeping in mind the above geometric interpretations.

In a proceeding step, material surfaces are considered that are embedded into the solid.
Following the concept of tangents to material curves, see Figure 2.4, a combination of two
Lagrangian tangents T'; and T'5 is considered. Their cross product defines the area vector
A =T, xTy= NA, expressed in terms of the normal vector IN. Due to the placement
of the normal’s index, see the cross product’s fundamental definition (2.11), the normal
can be identified as an object of the Lagrangian co-tangent space TxB. The mapping of
the normal IN onto the Eulerian co-tangent space 7S is given by the normal map

B — T;S
F 1.3 X g 2.42
{ N —»n=FTN. (242)
Here, the co-tangent space Ty B is spanned by the contra-variant base vectors {G*} 41— 5.3
and the Eulerian co-tangent space T.;S by the contra-variant base vectors {g®},—123. The
area element A is mapped via the Jacobian determinant J := det[F| by the area map

Ry — R
J:{A+»—>a;JA, (2.43)

Combination of the normal map (2.42) and the area map (2.43) yields Nanson’s formula
na=JF T TNA=cof[FINA with JF T = cof[F]. (2.44)

The volume of a parallelepiped spanned by three linearly independent Lagrangian tangents
T,, T5, and T3 is given by the product V = (T'; x T'y) - T'3. The volume of the deformed
parallelepiped is determined by the volume map

Ry — R
J:{VJF»—WJ;JV (2.45)

which, in analogy to (2.43), is characterized by the Jacobian determinant. So far, the
mappings (2.30) and (2.42) have been identified as mappings between the Lagrangian
and Eulerian tangent and co-tangent spaces, respectively. For instance when measuring
the length of a Lagrangian vector, the reference metric has to be known. To this end,
consider the Lagrangian tangent T' € Tx B that possesses the length

Tl = /T (GT) = \/TAGA5T5 = \/TAN, = VTN, (2.46)

where the normal N = GT' € T%B is considered as an element of the co-tangent space
of the Lagrangian configuration. Vice versa, when measuring the length of an Eulerian
tangent t € 1,5, the current metric has to be known

thy = VEGE) = VEgut = VEm, = Vin. (2.47)
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Figure 2.5: Mapping properties of fundamental metric tensors. a) Right Cauchy Green
tensor C as pull back ¢*(g) = F' gF of spatial metric g and b) left Cauchy Green tensor
c as push forward ¢.(G) = F~TGF ™" of reference metric G.

The normal n = gt € I);S is considered as an element of the co-tangent space of the
Eulerian configuration. As a consequence, the following mapping properties are assigned
to the Lagrangian and Eulerian metric tensors

G__{TXB—>T5§B TS — TrS

T  N—GT and g::{t gt (2.48)

Note in this context the index raising and index lowering properties of the symmetric,
positive definite metric tensors (2.15). In many textbooks N, and T are the Lagrangian
and n, and t* the Eulerian co- and contra-variant coordinates of the same vectors. In what
follows the normals and tangents are considered as different geometric objects associated
with the co-tangent and tangent spaces.

2.1.5. Fundamental Strain Measures. In a Lagrangian strategy, the deformation of
a Lagrangian unit vector T' with |T'|g = 1 is investigated. The deformed Eulerian stretch
vector can be expressed by A = F'T and its scalar valued stretch reads

A=Ay = VAgA=\/T(F'gF)T =vTCT = |T|c. (2.49)

Here, the right Cauchy Green tensor C' is introduced that links the tangent and the co-
tangent spaces in the sense of an Fulerian metric g in the Lagrangian configuration. It is
obtained by the so-called pull back operation of the Eulerian metric

C:=¢(g)=F'gF or Cup=F"%guaF'. (2.50)

For an illustration of the mapping properties see Figure 2.5a). In an Eulerian strategy, a
spatial unit vector ¢ with [t|; = 1 is considered. Looking back at the reference configu-
ration, this unit vector has been obtained by an undeformed Lagrangian stretch vector
characterized by A = F~'t with the length |A|g = 1/)\. These considerations yield

% — [Alg = VAGA = \Jt (FTGF )t = Vict - |t (2.51)

where the Eulerian tensor field ¢ is identified as the left Cauchy Green tensor correspond-
ing to the Lagrangian metric G in the Fulerian configuration. It is obtained by the push
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forward operation of the Lagrangian metric
c:=p,(G)=FTGF™" or cyp=FNH, Gap(F 15, . (2.52)

A geometric interpretation is given in Figure 2.5b). In a proceeding step, the strain tensors
are defined based on the comparison of metric tensors in either the Lagrangian or Eulerian
configuration. In a Lagrangian strategy, the Lagrangian line element T with unit length
|T|le = 1 is compared to its deformed counterpart A stretched by the value |Alc = A.
Following this idea, the Green strain takes the form

€Green = 3 (N —1) = 3 (TG - |T|g) =T 3 (C - G)T =TET, (2.53)
where the so-called Green strain tensor
E:=3(C-G)=3(F'gF-G)= 5(¢"(9)—G) or Eap= 5(Cap—Gap) (2.54)

can be identified. It defines the Lagrangian strain by comparing the current and the
reference metric in the Lagrangian setting. In an Fulerian strategy, the deformed Eulerian
line element ¢ with unit length |t|; = 1 is compared to its Lagrangian origin line element
with the initial length |t|. = 1/\. The Almansi strain then reads

EAtmansi = 3 (1 —1/X%) =1 (|t|g2 —[t7) =ti(g—c)t =tet, (2.55)
where the Almansi strain tensor
e=13(g-c)=3@g-F GF ") =1(g—¢.(G)) or ew=3(ga—ca) (2.56)

can be identified. It defines the Eulerian strain by comparing the current metric and the
reference metric in the Eulerian setting. Further strain measures are summarized by the
family of Seth-Hill strain tensors. In a Lagrangian setting these tensors are given by

B,.(C) L(C™? - @) for m#£0 (257
" a 1 In[C] for m=0, .
whereas in the Eulerian setting they are determined by
Lig—c™?) for m#0
enl(c) = T(g ) 4 (2.58)
5 In[c] for m=0.

For m = 2 in (2.57), the Green strain tensor (2.54) and for m = 2 in (2.58), the Almansi
strain tensor (2.56) is received.

2.2. Concept of Stresses and Heat Flux

This section is concerned with the introduction of stresses and the heat flux of a thermome-
chanically loaded continuum. To this end, consider a solid § in its deformed configuration
and a cut section in the deformed configuration Ps C S, see Figure 2.6. Following Fuler’s
cut principle, the force action of the cut-off part on the remaining cut section in the Eule-
rian configuration is replaced by the surface traction ¢ and the heat flux ¢q. An alternative
representation of Euler’s cut principle in the Lagrangian setting is discussed accordingly.
In the previous sections, the notation T' € T'xB and t € TS has been employed to in-
dicate Lagrangian and Eulerian tangents to material curves as purely geometric objects.
To avoid confusions, note that the notation changes and the aforementioned variables get
a completely different meaning and denote the traction vectors as physical objects.
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Figure 2.6: Euler’s cut principle. Lagrangian T (X, t; N) € TxB and Eulerian ¢(x,t;n) €
TS and T(X,t; N) € T,S traction vectors representing the mechanical action and La-
grangian Q (X, t; N) and Eulerian ¢(z, t; n) heat fluxes representing the heat conduction of
the rest of the body at the vicinity on the surface of the cut out parts 9Pg and IPs.

2.2.1. Representations of the Stress Tensor. Regarding purely mechanical prob-
lems, consider a cut section Pg C B of the solid in the Lagrangian configuration and its
Eulerian counterpart Ps C S circumscribed by the inner boundaries 9P and 9Ps. As il-
lustrated in Figure 2.6, the stress vector ¢ acts on the surface element da C 9Ps of the cut
section in the deformed configuration. This stress vector replaces the mechanical action
of the cut-off part on the cut section. The Cauchy theorem postulates a linear relationship
between the spatial traction vector ¢ € 1,S and the Eulerian normal n € 1S

t(z,t;n) :=o(x,t)n or t*=o0"%n,, (2.59)

in terms of the Cauchy stress tensor o that is interpreted as a contra-variant mapping
that transforms Eulerian normals n € 1;)S onto Eulerian traction vectors t € TS

{ES%T;*S
o

n —t=on.

(2.60)

In this expression, the current force state in the Eulerian configuration is related to the
deformed area element da. Thus, the Cauchy stress tensor is often denoted as true stress
tensor. The so-called Kirchhoff stress tensor

T:=Jo (2.61)

is used when the spatial stress power is set up with respect to the reference volume.
Consider a Lagrangian normal IN to the surface element dA C 0Pp that is mapped onto
the current configuration. The material version of Cauchy’s theorem states a linear relation
between the material traction vector T' € TS and the Lagrangian normal N € T3

T(X,t;N):=P(X,t)N or T"= P’ Ny, (2.62)

in terms of the first Piola-Kirchhoff stress tensor P. Material traction vectors and the
true traction vectors are linked via t da = T dA allowing for the reformulation on da =
PN dA which yields together with Nanson’s formula (2.44) the relation

P=7FT=JoF ", (2.63)

The first Piola-Kirchhoff stress tensor possesses the geometric mapping property

| I%xB = TS
P{N T — PN (2.64)
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Figure 2.7: Mapping properties of stress tensors and stress power. a) The representations of
the stress tensor o, 7, P and S are related through the tangent and normal mapping F' and
F~T | respectively. b) Stress power of dual objects P = (gP) : F = S : %C’ =T %Evg.

Lagrangian traction vectors T™ € Tx BB are obtained by a pull-back operation of the spatial
traction vectors T € T, S via

T = (T)=F'T or T =(F1H", 1" (2.65)

A relation between the Lagrangian traction vector T and the Lagrangian normal N to
the Lagrangian surface element dA C 0Py is given by

T (X,t;N)=8S(X,t) N or T =S54 Np, (2.66)
in terms of the second Piola-Kirchhoff stress tensor S with the mapping properties

S'{N SN (2.67)

A combination of (2.60)-(2.62) allows to reformulate the second Piola-Kirchhoff stresses

S=F'P=F'tF 7T or S =(FNH4 PP =(FH" r°F N,  (2.68)

a

expressed in terms of the first Piola-Kirchhoff stress tensor P or in terms of the Kirchhoff
stress tensor 7. Similarly, for the Kirchhoff stresses the representations hold

T=Jo=PF"'=FSF" or 7%=Jo%=PPF",=p", S PF,". (2.69)

A compact illustration of the geometric mapping properties of the introduced stress mea-
sures is given in Figure 2.7a).

2.2.2. Heat Flux. The counterpart of Cauchy’s stress theorem (2.59) in continuum
mechanics corresponds to the Stokes” heat flux theorem in thermodynamics. It postulates
the heat flux as the linear relationship

q(xz,t;n) := —q(x, t)n (2.70)

between the Cauchy heat flux vector @ and the outward unit normal n to an infinitesimal
spatial surface element da C OPs at position . The Piola-Kirchhoff heat flux theorem

QX,t;N) = —Q(X,t)N (2.71)
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relates the nominal heat fluz vector Q with the normal N to a Lagrangian surface element
dA C OPg at position X. The equivalence of (2.70) and (2.71) states @ dA = ¢ da allowing
for the reformulation QN dA = gn da which yields together with Nanson’s formula (2.44)
the relation between the Cauchy heat flux and the nominal heat flux

Q=JFq. (2.72)

The minus signs in (2.70) and (2.71) indicate that heat enters the body which corresponds
to an inward normal flux in opposite direction of the normal vectors.

2.3. Dual Stresses and Strains

In order to obtain a precise interpretation of the stress tensors and their dual strain tensors,
consider the stress power associated with a unit volume in the undeformed configuration

P=(gP):F or P=(guP") F,. (2.73)

The first Piola-Kirchhoff stress tensor gP and the deformation gradient F' are dual two
point tensors. Consider the second Piola-Kirchhoff tensor S in terms of gP = gF'S, which
gives together with definition (2.73) the alternative representation of the stress power

P=(gFS) F=S:1C=8:E o P=S*"Eu, (2.74)

where the second Piola-Kirchhoff tensor S and the right Cauchy Green tensor C' are
identified as dual objects. The rate of C' can alternatively be formulated in terms of the
strain rate tensor E. The push-forward of (2.74) gives the Eulerian representation

PzT:%Evg:T:d or P=r71%d, (2.75)

identifying the Kirchhoff stress tensor 7 as dual quantity to the Eulerian metric g. In this
expression the so-called Lie-derivative

L) = | 70| (2.76)

is introduced which has to be understood as a combination of three steps. In a first step,
the Eulerian object is brought to the time invariant Lagrangian setting via a pull back
operation (2.50). Then, the material time derivative is computed and in a last step, the
resulting quantity is pushed forward (2.52) to the Eulerian configuration. Application of
the Lie-derivative (2.76) to the current metric g delivers the rate of deformation tensor d

Log=1"g+gl =2sym[gl] =2d with [:=V,v=FF, (2.77)

in terms of the spatial velocity gradient | := Vyv = FF™', see also (2.24). Figure 2.7b)
gives a clear illustration of the conjugate dual stresses and strains.

2.4. Physical Balance Principles

The aim of this section is to provide the classical balance principles of continuum thermo-
mechanics. The fundamental balance principles, i.e. the conservation of mass, the balances
of momentum, and the first and second law of thermodynamics must be satisfied for every
particular material at all times. Starting with their integral representations with respect
to a cut section Ps C S subjected to mechanical and thermal surface and volume loading,
the fundamental balance principles are transformed to local or strong statements that
are valid at arbitrary spatial positions & € §. Regarding the undeformed counterpart P
of the Eulerian subregion Ps in the Lagrangian configuration, the local statements can
alternatively be expressed with respect to arbitrary reference positions X € B.
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2.4.1. Conservation of Mass. The balance of mass demands the mass of the subregion
Ps C S, see Figure 2.6, being constant in time. No transport of mass into Ps and no
production of mass inside Ps is investigated

d

—m=0. 2.
il 0 (2.78)
Here, the total mass m of the cut section Ps C S has been introduced
m = dm = pdv= / podV, (2.79)
Ps Ps P

in terms of the current density function p and the reference density function py = Jp. The
material time derivative of the reference density po(X,t) at fixed Lagrangian position
X = const commutes with its partial time derivative, i.e. gy = O;po. In contrast, the
material time derivative of the current density function p(a,t) consists of a local and
convective part, i.e. p = d;p—+ Vyp-v. Together with J = J div[v], a simple reformulation
of (2.79) with application of the localization theorem yields the local or strong forms

p+pdivfiv] =0 and Jp—py =0 (2.80)
in the Eulerian and Lagrangian representation valid at arbitrary current * € S and
reference positions X € B, respectively. Note that the Eulerian strong form (2.80); is an
outcome of the important integral equation for spatial scalar fields f(x,t)

% N (w’t)dU:/PS{qufdiv[v]}dv, (2.81)

also known as Reynold’s transport theorem. For incompressible materials with p = const,
the Eulerian strong form (2.80); delivers the continuity equation of fluid mechanics.

2.4.2. Balance of Linear Momentum. The balance of linear momentum postulates
the temporal change of the linear momentum I of an arbitrary subregion Ps C S being
equal to the resulting force F'.,; acting on that region

d

—I=F,.,. 2.82
CI=F., (2.82)
Here, the linear momentum has been introduced
I = / T dm = pv dv = / poV dV | (2.83)
Ps Ps Ps

in terms of the material and spatial velocities (2.22); and (2.23);. The external forces
acting in or on this subregion are defined by

Fm:/ 7dv+/ tda:/ v dV+ [ TdA (2.84)
Ps IPs Pr IPr

consisting of the spatial volume force v = pb and the surface traction t in the Eulerian
setting and v, = pob and T in the Lagrangian setting. The vector b denotes a prescribed
acceleration field. Application of Gauss’ theorem transforms the surface integrals into
volume integrals and application of the localization theorem yields together with the
accelerations (2.22), and (2.23), the Eulerian and Lagrangian strong forms

pa =divie]+~ and pyA = DIV[P]+7,, (2.85)

where the identity DIV[P] = J div|o| has been exploited. The strong expressions (2.85)
are locally valid at Eulerian and Lagrangian positions € S and X € B, respectively.
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2.4.3. Balance of Angular Momentum. The balance of angular momentum states
that the temporal change of the angular momentum D° with respect to the origin "0”
of a fixed coordinate system is equal to the resultant torque M, , acting on that region
with respect to the same reference point

d

—D° =M.,
dt ext

The angular momentum D° in the subregion Ps C S with respect to "0” is defined by

(2.86)

D°:/ x X xdn = mvadv:/ x X pV dV . (2.87)
Ps Ps Ps

The sum of the applied moments resulting from the body forces v and ~, and the surface
tractions t and T" acting in or on the subdomains Ps C S and P C B yields the torque

th:/ a:x*ydij/ a:xtda:/ a:x')/odV+/ x xTdA. (2.88)
Ps IPs Pr 0Ps

Some transformations and identification of the balance of linear momentum (2.85) and
the axial vector of Cauchy’s stress tensor allow for the representations of the local forms

oc=0' or 7T=7" and S§=587 (2.89)

identifying the Cauchy stress tensor o and thus the Kirchhoff stress tensor 7 and the
second Piola-Kirchhoff stress tensor S as symmetric quantities. In contrast, the first Piola-
Kirchhoff stress tensor P is not symmetric, but possesses the property

PF" = FP” (2.90)
obtained by application of the Piola-transformation (2.69) on (2.89);.

2.4.4. First Law of Thermodynamics. Balance of Energy. The first law of ther-
modynamics postulates that the temporal change of the total energy &, in the subregion
Ps C S is equal to the sum of external mechanical P.,; and thermal power Q..

d
Egtot = Pewt + Qemt . (291>

In this equation, the total energy of the subbody Ps is given by the expression

Eiot ::/ pedv:/ poe dV (2.92)
Ps Ps

where e denotes the specific energy per unit mass. Focusing on thermomechanical pro-
cesses, the external, mechanically caused power reads

Pmiz/ 'y~gvdv+/ t-gvda:/ Yo gV dV + T gV dA, (2.93)
Ps OPs Pr JIPn

in terms of the volume forces v and =, and the surface tractions ¢ and T, respectively.
The thermally caused external power can be summarized by

Qe i= / pr dv + / qda = / poR AV + QdA, (2.94)
Ps OPs Ps OPs
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in terms of the heat source per unit volume r and its re-parametrization R(X,t) = r(x,t)o
p,(X) and the Eulerian or Lagrangian heat fluxes ¢ and @) as introduced in (2.70) and
(2.71). The Eulerian and Lagrangian local counterparts to (2.91) read

pé =divigv-o—q|+~v-gv+pr and peé=DIV[gV -P—-Q|+~,-9V +poR, (2.95)

to be satisfied at the current and reference positions * € S and X € B. The total energy
Eiot = K + U can further be decomposed into a kinetic contribution

K= %drg:'cdm: %pfv-gvdv:/ %p0V~ngV (2.96)
Ps Ps Pn

and a contribution related to internal energy storage mechanisms

Z/{::/ pudv:/ pou dV (2.97)
Ps Pi

based on the specific internal energy density per unit volume u. Insertion of the definitions
(2.96) and (2.97) into (2.91) yields on the one hand the balance of kinetic energy

d
— —_ 2.
dth Pewt — S, (2.98)

in terms of the so-called stress power
5:/}rd@:/(ﬁnjwv (2.99)
Ps Ps

See Section 2.3 for work conjugate stresses and strains. The local form of the balance of
kinetic energy (2.98) is equivalent to the equilibrium condition obtained from the balance
of linear momentum. On the other hand the balance of kinetic energy comes along with
the balance of internal energy also denoted as first law of thermodynamics

d
Eu — 8 + Qemt (2100)

expressed in terms of the stress power as defined in (2.99). The according local forms
pi=0:d—divlqg +pr and poi= (gP): F —DIV[Q] + poR (2.101)
are valid at arbitrary Eulerian and Lagrangian material points € § and X € B.

2.4.5. Second Law of Thermodynamics. Entropy Inequality Principle. Entropy
in thermodynamics is considered as a measure of how organized or disorganized a sys-
tem is. It is probably the most important state variable of thermodynamics and governs
the evolution of internal dissipative processes. The entropy inequality condition states a
positive entropy production

d
G=—-H-Q>0. (2.102)

Within the subregion Ps C S, the rate of entropy production G and the entropy H

Q::/ pydv:/ poydV and H:= pndv:/ pon dV (2.103)
Ps Ps Ps P
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base on the local entropy production per unit mass v and the local entropy per unit mass
1. The rate of entropy input Q is characterized by

Q= pf dv—l—/ gOZCL:/ poﬁ av + QdA, (2.104)
Ps 0 OPs 0 Pr 0 IPp 0

in terms of the heat fluxes ¢ and @), the heat sources r and R and the absolute temper-
ature @ > 0. A thermodynamic process without any entropy production G = 0 is called
a reversible process. Solving (2.102) for the local forms, the so-called Clausius-Duhem
inequality is obtained as a result of positive local entropy production

r 1 1
= H — — — 1 _ . >
Py ==y + 7 div[q] 724 V0 >0

. R 1 1
oy = pi = pog + 5 DIVIQ] = 75 Q - Vxt > 0

(2.105)

valid at arbitrary Eulerian and Lagrangian positions « € S and X € B. The introduction
of the Helmholtz free energy per unit mass W = u — 0n via a Legendre transformation
allows together with (2.101) for a reformulation of (2.105) in the sense

. . 1
py0 :a:d—p\If—pen—éq-VwQ >0

. ' ' 1 (2.106)
pov0 = (gP) : F — po¥ — pobn — EQ'VXH >0.

A stronger representation is obtained by the introduction of the mechanical dissipation
per unit volume D := v6 > 0 and its additive split D = D,,,, + D,,. into a local part

Do =0 :d—p¥ —phn >0 and pyDie = (gP) : F — po¥ — pobin >0, (2.107)
also known as Clausius-Planck inequality and a convective part
1 1
PDeon, = —éq Ve >0 and pgDeo, = —5Q -Vx0 >0, (2.108)

widely denoted as Fourier inequality. Note that in (2.107) and (2.108) the inequality
constraint has to be satisfied independently and thus forms a more strict condition.
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3. Continuum Mechanics of Gradient-Type Dissipative Continua

The central goal of this chapter is the outline of a general theory for gradient-type stan-
dard dissipative solids that is based on variational formulations. A compact notation is
introduced that points out in a rigorous way the duality between macro- and microstruc-
tural observations. The central idea is founded on a multi-scale viewpoint, where macro-
and microscopic motions are introduced. The latter one represent the so-called order pa-
rameter fields or generalized internal variables. The rates of these fields are associated
with dual macro- and microstructural power expressions. The constitutive response is de-
fined as a gradient-type standard dissipative material based on an energy storage and a
dissipation function. Focusing on materials of grade one, these constitutive functions are
assumed to depend on the macro- and microscopic motion and their first gradients. Re-
duced constitutive functions are obtained from the principle of material frame invariance.
Evaluation of a global form of the Clausius-Planck inequality in the sense of Coleman’s
method yields the set of coupled balance equations. This approach is conceptually in line
with COLEMAN & GURTIN [29]. For quasi-static processes, this statement postulates an
equivalence of internal and external power accompanied by the irreversibility constraint
of the second axiom of thermodynamics. As a consequence, the derivation of the macro-
and micro-structural balances is conceptually similar to the virtual power based treatment
of gradient-type plasticity as discussed by GURTIN, ANAND & LELE [71], GURTIN [69]
and GURTIN & ANAND [70]. For prescribed Dirichlet-type boundary conditions for the
macro- and microscopic partition, the argument of virtual power yields the fully cou-
pled macro- and microstructural balance equations in combination with the according
Neumann-type boundary conditions. These coupled field equations cover a broad class
of gradient-type standard dissipative materials that extend in a natural way the classical
local treatments of BIOT [13], ZIEGLER & WEHRLI [182], and HALPHEN & NGUYEN [76]
to gradient-dependencies of the order parameter fields. The coupled field equations are
hereby solely governed by the two constitutive functions for the free energy and the dissi-
pation. The focus is put on rate-dependent dissipative processes characterized by smooth
dissipation functions and their transition towards rate-independent processed governed by
non-smooth dissipation functions. Such a framework of gradient-type standard dissipative
solids is consistent with a global rate-type variational formulation. However, instead of
constructing a continuous version of the global variational formulation that delivers the
coupled field equations as the Euler equations of the continuous variational statement, a
time-discrete variational statement is set up. Within a sequence of discrete time steps,
the optimization of an incremental potential yields the algorithmic representation of the
Euler equations evaluated at current time. Having the time-discrete incremental varia-
tional principle at hand, an appropriate finite element discretization scheme is introduced
to tackle the resulting multi-field problem consisting of macro- and microstructural fields.
Hereby, details of the matrix representation needed for the numerical solution are pointed
out. One clear advantage of the proposed framework is the symmetry of the monolithic
tangent matriz of the fully coupled problem.

The chapter is organized as follows. In a first step, the geometric setting and the gener-
alized kinematics of solids with microstructure are introduced. The focus hereby lies on
a precise differential geometric interpretation of the arising microscopic quantities. Then,
the concept of generalized stresses is introduced, where in addition to the well known
macroscopic stresses additional microstructural stresses show up. The dual stresses and
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strains are identified, the external loading of a continuum with microstructure is defined,
and the constitutive response of gradient-type standard dissipative solids is specified.
The exploitation of the principle of virtual power then provides the governing coupled
field equations whose algorithmic representation alternatively can be obtained by a time-
discrete incremental variational principle. Furthermore, a multi-field finite element so-
lution scheme is introduced to solve the incremental variational principle. The section
closes with a reduction of the proposed framework to the case of geometrically small
deformations.

3.1. Generalized Kinematics of Solids with Microstructure

The scope of this section lies on the discussion of the geometric setting of a solid with
microstructure undergoing large deformations. Besides the standard macroscopic deforma-
tion field additional microscopic fields are introduced, describing the current microstruc-
tural state of the material.

3.1.1. Notation. Let B C R? be the time-invariant reference configuration of a material
body and 0B C R? its surface. In the following treatment, the deformation of the material
body under mechanical loading is investigated. In order to predict the macroscopic defor-
mation, besides the macroscopic deformation field an additional global field is introduced
that describes the microscopic state of the material. Thus, the focus lies on a multi-field
viewpoint that characterizes the inelastic response of the material, where dissipative effects
are related to microstructural variable fields. Aiming at a compact notation, the macro-
and microstructural fields parametrized in the Lagrangian or Eulerian setting

()X, t) and ()(X,t) or ()(@,t) and ()(w,1) (3.1)
are indicated with a bar and a check-accent, respectively. The gradient of the field () in
the Lagrangian and Eulerian setting is given by Vx(-) = 0x(+) and Vg (-) = 0x(*).

3.1.2. Extended Geometric Setting and Motion. Within the context of generalized
continua subjected to large deformations, the macroscopic motion of the material body
is given by the nonlinear macroscopic deformation map

BxT — S
o(X,1): 2
0 { O C e aixn (32)
At time t € R, the macroscopic deformation map ¢, maps the Lagrangian position
X € B of the reference configuration B C R? onto the Eulerian position & € S of the
current configuration & C R3. The exterior surface of the body is decomposed into a part
0B, where the macroscopic deformation is prescribed by Dirichlet boundary conditions

@(X,t) = @p(X,t) on 0By, (3.3)

and a part Bz, where the macro-tractions Ty (X, t) are prescribed by Neumann boundary
conditions. Clearly, the common boundary set 0B, N 9B; = 0 is equal to the empty set.
In the context of generalized continua, the material point P is equipped with additional
microstructural information g € M living in an abstract microscopic manifold M C R™.
The order m of the microstructure depends on the nature of the particular model under
focus. In analogy to the standard concept of internal variables, these fields are related to
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R?)

Figure 3.1: Fundamental mappings. Time-invariant reference configuration B with coordi-
nates X, time dependent current configuration S with coordinates @, and configuration of
the microstructure M with microscopic state g. Microstructural information in a Lagrangian
Nx or Eulerian neighborhood A, are considered by the length scales L or [, respectively.

dissipative processes, but in contrast are driven by additional balance equations and thus
exhibit a field character. The Lagrangian and Eulerian representations of the microscopic
deformation map read

§ BxT — M 50 ASxXT =M
SO(X7t>:{(X,t)I—>q:§0(X,t) and SO(LU,t)-{(m’t) qugbo(w’t)

mapping the Lagrangian or Eulerian coordinates to the abstract order parameter space
M. The mappings ¢, and @; cover m scalar variables at each material point P at time
t € R.. Due to the global character of these fields, boundary conditions have to be
introduced. In full analogy to the macroscopic deformation field, the exterior surface of
the body is decomposed into a part 9By, where the micro-deformation is prescribed by
Dirichlet-type boundary conditions

P(X,t) = pp(X,t) on 0By, (3.5)

(3.4)

and a part B;, where the micro-traction Ty (X, t) is prescribed by Neumann-type bound-
ary conditions. Again, the common microscopic boundary corresponds to the empty set,
i.e. 0B,NOB; = (). The mapping properties of the fundamental macro- and microscopic pri-
mary kinematic quantities (3.2) and (3.4) are illustrated in Figure 3.1, where the deformed
spatial surfaces 0Sg = @,(0Bg), 05t = @,(0B;), 0Sy = @,(0By), and 0S; = @,(0B;) have

been introduced.

3.1.3. Macro- and Microscopic Deformation Gradients. The macroscopic defor-
mation gradient has been introduced in Section 2.1.4 as the fundamental quantity in the
kinematics of finite deformations. Recalling definition (2.25), the macroscopic deformation
gradient is given by the Fréchet derivative of the deformation map (3.2) with respect to
the Lagrangian coordinate X and reads

F=Vxp(X,t). (3.6)

The macroscopic deformation gradient is considered as a linear mapping of line elements
mapping tangent vectors T' € B to material curves onto tangent vectors t € S to deformed
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Figure 3.2: Mapping properties of macro- and microscopic deformation gradients. The
microscopic deformation gradients F and F° map Lagrangian and Eulerian tangents T €
TxB and t € T,S onto elements of the abstract order parameter space ¢ € T,M that
describe the spatial change of the order parameter field.

spatial curves. As intensively discussed in Section 2.1.4 the co-variant bases {Gi}i:17273 and
{G,}i=123 span the tangent spaces T'x3 and 7,S in the Lagrangian and Eulerian setting,
respectively. These fully three-dimensional patches live locally at every Lagrangian or
Eulerian material point and contain all possible tangent vectors to arbitrary material or
spatial curves

F T »—>t—FT (3.7)

The microscopic deformation gradient is introduced in full analogy to the definition of the
macroscopic deformation gradient (3.6). Due to the two possible parametrizations of the
microscopic deformation maps (3.4), the micro-deformation gradients can be given by

' =Vxp(X,t) and F° = V,p°(x,t). (3.8)

In what follows, the microscopic deformation gradients are considered as mappings of
macroscopic Lagrangian and Eulerian line elements. The Lagrangian micro- deformation
gradient F maps tangent vectors T € B to material curves onto elements of the abstract
tangent space t € M. The Eulerian micro-deformation gradient F*° maps tangent vectors
t € S to spatial curves onto elements of the abstract tangent space £ € M. In full analogy
to the macroscopic setting, co-variant base vectors {g, };—1.. . are introduced to span the
tangent space T3 M. This allows for the identification of the mapping properties that are
assigned to the microscopic deformation gradient

v_{TXBH%M N . .{TS—>TM (3.9)

t —t=F°t.

Regarding nonlocal effects, the elements of the abstract tangent space £ € T, M describe
the spatial change of the microscopic deformation within a Lagrangian N'x or Eulerian
neighborhood N, in the direction of the Lagrangian or Eulerian tangent T and £, respec-
tively. As discussed by STEINMANN [166] and GEERS, UBACHS & ENGELEN [54], the
Lagrangian neighborhood N'x and the Eulerian neighborhoods N, are associated with a
material and spatial length scale parameter L and [, respectively. Note that L describes
a constant undeformed region in the reference configuration with a constant set of mate-
rial points P, whereas [ refers to a deformed domain in the current configuration where
material points P, depending on the deformation, can enter or leave the domain of in-
fluence. The relationship between the microscopic deformation gradients is obtained by
F = F°F, a summary of these basic kinematic relations is given in Figure 3.2. In the
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Figure 3.3: Generalized Euler’s cut principle. Lagrangian macroscopic T*(X ,t; N) € Tx B
and microscopic T*(X ,t; N) € T,M as well as Eulerian macroscopic (zx,t;n) € TS and
microscopic t(x,t;n) € Ty M traction vectors representing the force action of the rest of the
body at the vicinity on the surface of the cut out parts 9Pz and 0Ps.

following treatment, the focus lies on a purely Lagrangian nonlocality expressed in terms
of the microscopic deformation gradient F'. The micro-deformation gradient F'° has been
introduced for the sake of completeness.

3.2. Concept of Generalized Stresses

Consider a cut section Pg C B of the material body in the reference configuration and
its spatial counterpart Ps C S enclosed by the respective boundaries 0Pz and 0Ps. As
depicted in Figure 3.3, the macroscopic stress vector t and the microscopic stress vector t
are introduced in the deformed configuration. They act on the surface element da C 0Ps
and represent the force action of the rest of the body. A generalized Cauchy stress theorem
is introduced that postulates a linear dependency between the macroscopic traction vector
t € T, S, the microscopic traction vector £ € TypM, and the spatial normal n € TS, i.e.

t(x,t;n) :=o(x,t)n and t(z,t;n) =z, t)n, (3.10)

in terms of the macroscopic and microscopic Cauchy stress tensor & and &, respectively. In
index notation (3.10) reads £* = 5%ny, and % = 3°’n,, where Greek letters are introduced
for the components of the microscopic order parameter space M. Within the geometric
setup for continua with microstructure, the macroscopic Cauchy stress tensor can be
interpreted as a contra-variant mapping transforming normals n € TS onto spatial
macroscopic traction vectors ¢ € T,S and the microscopic Cauchy stress tensor as a

mapping transforming normals n € TS onto microscopic traction vectors tc TyM

8 — 1.5 . s — 1
0':{03 = and a:{w ﬁquv (3.11)
n —t=on n —t=on.
The Cauchy stresses are also denoted as true stresses, because they describe the present
force state in the current configuration acting on the deformed area element da. The
generalized macroscopic and microscopic Kirchhoff stress tensors are defined by

T:=Jo and T:=Jo (3.12)

and are used for the construction of spatial stress power terms with respect to the un-
deformed reference volume. An alternative stress measure can be set up when regarding
modified stress vectors T' € 1,,§ and T' € T, M that are obtained by scaling the spatial



30 3 Continuum Mechanics of Gradient-Type Dissipative Continua

F o
Ty B ! l F\* ’{ l ! TS
A A

T, M

Figure 3.4: Mapping properties of generalized stress tensors. The macroscopic stress tensors
o, T, P, and S and microscopic stress tensors ¢, 7, P, and S are related through the macro-
and microscopic deformation gradients F', F', and F°.

force terms t da and t da with the reference area element dA. Based on this idea, the
exploitation of a reference Cauchy-type theorem

T(X,t;N):=P(X,t) N and T(X,t;N):=P(X,t)N (3.13)

yields the macro- and microscopic generalized first Piola-Kirchhoff stress tensors P and
P. The following mapping properties can be assigned

P:{T;}BHES . {T;}BHI;M

N —T-pNn @ P:og o pN. (3.14)

The macroscopic Lagrangian stress vector 1:’* € T'xB is defined by the macroscopic pull-
back operation of the spatial stress vector T' € TS

T =F'T or T =(FY" T (3.15)

a

A strict dual treatment of the microscopic spatial stress vector T' € Ty M with a micro-
scopic pull-back operation yields the microscopic Lagrangian stress vector T € Tx B

T =F'T or T4=(FYHA T (3.16)

o

Note that regarding an arbitrary order of the microstructure m, the inverse microscopic
deformation gradient F™" does not necessarily exist. Nevertheless, the material Cauchy-
type theorem states the linear relationship

T*(X,t;N):=S(X,t) N and T*(X,t;N):=8(X,t)N, (3.17)

in terms of the generalized second Piola-Kirchhoff stress tensors S and S. The following
formal mapping properties can be deduced

= {T}B — TxB

g - L B T;B—>Txlg
"IN —=T =8N

N —T =S8N. (3.18)

and S:{
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A combination of equations (3.14)-(3.18) allows for the reformulation of the macroscopic
second Piola-Kirchhoff stress tensor

S=F'P=F'"#F " or S8 =(F Y P8 =(FH #FNH%, (3.19)

a

and for the microscopic second Piola-Kirchhoff stress tensor

S=F'P=F '#F " or 8§48 = (F )4 P°B = (FHA 7(F )8, (3.20)
both expressed in terms of the macro- and microscopic first Piola-Kirchhoff stress tensors
P and P or in terms of the Kirchhoff stress tensors 7 and #, respectively. The same

relation holds for the macroscopic Kirchhoff stress tensor

F—Jo—PF —FSF or 7= J5%— PP, — o GAPFD  (321)
and for the microscopic Kirchhoff stress tensor

f=Jo=PF =FSF" o #°=J5%=PpPBF,=F,S48F," (322

A compact illustration of the geometric mapping properties of the proposed generalized
stress measures is given in Figure 3.4, see also ZAH [181] for more detailed information.

3.3. Macro- and Microscopic Dual Stresses and Strains

The book by FREMOND [51] offers a very general approach to gradient-type dissipative
materials with an intense focus on the full thermodynamic setting. In all of these treat-
ments, the critical point is to account for the working of independent kinematic processes
associated with the microstructure of the material characterized by the micro structural
fields. Substructural interactions are accompanied by explicit power expressions in the rate
of the microstructural variables yielding additional balance equations associated with the
microstructure. As a consequence, the standard macro-balances of mass and momentum
are coupled with additional micro-balance equations that govern the micro force systems
associated with the order parameters. Thus, the dual stresses and strains defined for a
standard continuum (2.73) have to be extended to take into account the working of the
microstructural fields. The generalized stress power in a microscopic Lagrangian setting

P=(GP): F+p-¢+@GP): F or P=(GuP") F, +pad® + (Gas PP F*, (3.23)

contains the macroscopic first Piola-Kirchhoff stress tensor gP and the macroscopic de-
formation gradient F', the microscopic force p and the microscopic deformation ¢, and
the microscopic stress tensor P and the macroscopic deformation gradient F as dual
objects. In a microscopic Eulerian setting, the generalized stress power

P=(gP): F+p-$+(gs): F° or P = (GuP") F* 4+ Pad” + (Japc™) F>%, (3.24)
contains the microscopic stress gé and the micro-deformation gradient F° as dual objects.

3.4. External Loading of Continua with Microstructure

The continuum with microstructure is assumed to be loaded by macroscopic and micro-
scopic external field actions. As visualized in Figure 3.5, the continuum is loaded by a
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Figure 3.5: External loading of continua with microstructure. Prescribed Eulerian macro-
and microscopic volume forces 4 and 4 and Neumann-type surface tractions Ty and Ty .

macroscopic body force field 4, per unit volume of the domain B. Furthermore, on the sur-
face OBg, a traction field Ty is defined representing the macroscopic Neumann boundary
condition. The power of external macroscopic loading reads

Pual@) = [ (X0 paV + [ gTu(X.1)- pda. (3.25)
B OB;

In analogy to the macroscopic loading, possible external actions related to microscopic

fields associated with the abstract micro-motion are considered. To this end, an abstract

microscopic source 7, per unit volume of the continuum B and a prescribed micro-traction

field Ty on the surface OB; representing the Neumann-type boundary condition are in-

troduced. Thus, the microscopic power contribution of external loading reads

Rm¢y:/1¢X¢y¢dv+/mgﬁwX¢y¢¢4 (3.26)
B oB;

Having both contributions at hand, the total external power due to prescribed external
loading fields can additively be expressed by

Pe:ct - 756:L‘t + 75e:(:t (327)

and characterizes the external multi-field loading of the continuum with microstructure.

3.5. Constitutive Response of Order-Parameter Materials

The focus of this subsection lies on the introduction of the constitutive equations and
the according reduced forms. Ideas of local standard dissipative materials, see e.g.
Bror [13, 14], NGUYEN [141], HALPHEN & NGUYEN [76], NGUYEN & ANDRIEUX [142],
and ZIEGLER & WEHRLI [182] are generalized and adopted for the underlying multi-
field framework. So-called reduced forms are derived that a priori fulfill the second law of
thermodynamics and the power of internal mechanisms is set up. Hereby, the subsequent
formulation extends ideas outlined in MIEHE [120] to the large strain format.

3.5.1. Energy Storage and Dissipation. Within the context of standard dissipa-
tive materials, the constitutive response is exclusively determined by two scalar-valued
functionals, namely the energy storage and the dissipation functionals

ﬂ%@:L¢W'm1mg¢,@:me. (3.28)
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The functional E represents the free energy stored inside the body B due to its macro- and
microscopic deformation. The functional D describes internal dissipative mechanisms. The
local quantities ¢ and ¢ are called the energy storage function and dissipation function,
respectively. Locally at a material point, they describe the density of the stored energy and
the dissipation. Focusing on materials of grade one, the free energy and the dissipation
function depend on the macro- and micro-motion, their first gradients, and their rates.
The set of independent constitutive state variables is given by

co:={@.F.¢.F} or ¢ :={pF ¢ F}, (3.29)

where a material or spatial parametrization of the micro-deformation can be chosen, see
definition (3.4). With this definition, a material or spatial constitutive description

Y =1(cp) and ¢ =p(co;c0) or P =1(cg) and ¢ = P(g; ) (3.30)

can be introduced. An intense discussion of material and spatial nonlocality can be found
in the contributions by GEERS, UBACHS & ENGELEN [54] and STEINMANN [166].

3.5.2. Material Frame Invariance. Effective State Variables. The basic principle
of material frame invariance or principle of material objectivity can be traced back to
TRUESDELL & NOLL [172] and demands the constitutive functions being invariant with
respect to macroscopic rigid body motions superimposed onto the current configuration.
To this end, consider a time-dependent macroscopic rigid body motion

N
x" {8 S (3.31)

x—xt=Qx+c
characterized by the time-dependent orthogonal rotation matrix Q(¢) with the properties

QeS0(3)={Q|QQ" =1 and det|Q] =1}, (3.32)

where SO (3) represents the special orthogonal linear group in the Euclidian space R? and
the vector €(t) characterizes a time-dependent translation. In order to guarantee material
frame invariance, the free energy function needs to satisfy the condition

(eo) = ¥(eg) or (eg) = (e, (3.33)
whereas the dissipation function needs to satisfy
(€5 e0) = d(eg;ed) or o(eg;eq) = d(€5;¢5T), (3.34)

for arbitrary rotation matrices @ € SO(8). This rotation matrix is used to define the
modified states ¢ = {@*, F*, ¢, F} and ¢t = {@*, F*,@°, F°}. As a consequence,
the free energy 1) and the dissipation function ¢ cannot depend on the macroscopic de-
formation field { and its rate ¢, respectively. In a first step, this constraint motivates the
introduction of a reduced set of state variables

c={F,¢,F} or ¢ :={F ¢ F°}. (3.35)

A further outcome of (3.33) and (3.34) is another reduced set of state variables that a
priori fulfills the objectivity constraint and is obtained by replacing the dependency on the
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macroscopic deformation gradient F' in the constitutive state (3.35) by the macroscopic
right Cauchy-Green tensor. The reason can be found in the invariance property of the
right Cauchy-Green tensor

Ct=F"gFt=(F'Q")g(QF)=F gF=C (3.36)
with respect to superimposed rotations Q. Thus, an a priori objective constitutive state
¢, ={C,p,F} or ¢ :={C,¢° F°} (3.37)

can be introduced. For the sake of simplicity, in the remaining part of this section the
constitutive state (3.35) is employed. This yields the constitutive descriptions

v=1y(c) and ¢=0¢(¢¢) or ¢ =1(c”) and ¢ = (¢ 7). (3.38)

Note that the microscopic material description (3.4); is used throughout the remaining
part of this work. The microscopic spatial counterpart can easily be obtained by an
analogous approach.

3.5.3. Rate of Energy Storage and Dissipation Functionals. The above constitu-
tive functions determine the power expressions of energetic and dissipative mechanisms
caused by a deformation of the solid. The power of energy storage mechanisms is defined
as the total time derivative of the energy storage functional (3.28)4, i.e.

E($. 917, 7) = /acw ¢av
2/13{5¢¢-<'p+5¢w-¢}dv (3.39)

{(Op¢ - N)- @} dA+ %V{(@pw-N)@}dA

OBz

In this expression, the variational or functional derivatives of the free energy function
with respect to the macro- and micro-motion fields are introduced

Sptb = —DIV[9gp] and 640 := Db — DIV[9pf] . (3.40)

In contrast, the dissipation functional is not the time derivative of the dissipation func-
tional (3.28),, but is defined by the expression

D&, %%, ¢) /acas édv
=/13{6¢¢-¢+6;,¢-s‘o}dv (3.41)
{(0z¢-N)-@}YdA+ | {(0;0-N)-¢}dA
OB; OBy

Analogous to (3.40), the functional derivatives of the dissipation function ¢ with respect
to the rates of the macro- and micro-motion fields are specified to

5¢¢ = - DIV[&F¢] and 5¢(Z) = 8¢¢ - DIV[@F(Z)] . (3.42)
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Figure 3.6: One-dimensional positively homogeneous function of degree one. a) Dissipation
function ¢(¢) = ¢|¢| with normal cone at ¢ = 0 and b) subgradient 9; ¢(¢) with elastic domain
E bounding the thermodynamic force f.

Thus, the total power of internal mechanisms in generalized standard dissipative materials
additively decomposes into the energy storage and dissipative contributions

and is exclusively governed by the constitutive functions ¢ and ¢. Clearly, both contribu-
tions contain coupling effects from the macro- and microscopic actions.

3.5.4. Irreversibility Constraint and Convex Dissipation Function. The central
idea of the second axiom of thermodynamics demands that the dissipative power remains
positive for all admissible thermodynamic processes

D>0. (3.44)

This constraint is satisfied if the integrand in (3.41) is positive for arbitrary arguments.
The above inequality serves as a fundamental physically-based constraint on the constitu-
tive dissipation function ¢, which is a priori satisfied if the following conditions hold. The
dissipation function ¢ needs to satisfy the normalization condition and has to be positive
for arbitrary deformation arguments

®(0;¢) =0 and ¢(¢;¢) > 0. (3.45)

The dissipation function ¢ has to be conver with respect to the rate arguments
ap(er;e)+ (1 —a)p(ea;c) > plae; + (1 —a)ey;c) (3.46)
for a € [0, 1]. When these conditions are satisfied, the integrand in (3.41) remains positive.

3.5.5. Non-Smooth Dissipation Functions and Notion of Sub-Gradients. Plas-
ticity and dry friction are rate-independent irreversible processes governed by non-smooth
dissipation functions ¢. Rate-independent processes are characterized by dissipation func-
tions that are positively homogeneous of degree one with respect to the fluxes

dlace) =ap(cc). (3.47)

Such a function has a cone-like graph and is not differentiable evaluated at zero argu-
ments (0;¢), see Figure 3.6 for a one-dimensional representation. As a consequence, the
differential operator for smooth functions needs to be generalized and the notion of sub
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differentials is introduced. Thus, 0;(-) denotes the sub-differential of a non-smooth, convex
dissipation function, see MOREAU [135], MAUGIN [110], and references therein. The set

E:= 0l = {FI- ¢ < d(é¢) } (3.48)

is a convex domain for the admissible thermodynamic forces § for all rates ¢, often denoted
as elastic domain. Elements f € E are sub-gradients of the non-smooth function ¢(0; ¢)
evaluated at zero rate-arguments. Using terminologies of convex non-smooth analysis,
the dissipation function ¢ is the support function of the convex set [E. When taking the
derivative of (3.47) with respect to «, the following relationship is obtained

0:d - & = (&5 ¢). (3.49)

Integration over the domain under focus and comparison with (3.28), finally gives
Do b0 p) = [ doliie)-eaV = [ o)V = D@ pipg).  (350)
B B

leading to the conclusion that for rate-independent processes the dissipation (3.28)s co-
incides with the dissipation functional (3.41).

3.6. Exploitation of the Principle of Virtual Power

This subsection is concerned with the derivation of the governing coupled field equations
for gradient-type standard dissipative solids. Starting from the global equilibration of
internal and external virtual power, the balance equations for quasi-static processes are
obtained. The focus hereby lies on the different possibilities to express the dissipation
function. First, a canonical dissipation function, then a conjugate rate-independent and
rate-dependent representation of the dissipation function are investigated.

3.6.1. Coupled Two-Field Balances of Gradient-Type Solids. In order to deter-
mine the coupled macro- and micro-balance equations, the standard argument of virtual
power is exploited. At time ¢ with a given state of the system {@, ¢}, the argument

0€E(@,:0,0) +D(@, #; 8, P) = Peut(, P) (3.51)

has to be satisfied for all admissible rates ¢ and ¢ of the macro- and micro-motion
satisfying the homogeneous form of the Dirichlet-type boundary condition

peEWS:={@|@p=0 on 9B,} and @eW, :={@|e=0 on 0B,}. (3.52)

When restricting to quasi-static processes, the principle of virtual power (3.51) equilibrates
the internal and external virtual power Py, and P.,,. Insertion of the rate of energy storage
functional (3.39), the dissipation functional (3.41), and the external power functional
(3.27) and application of Gauss’ theorem gives

0 € [10t+050-30) @YV + [ {{0pv+050) N —gTa] - o} dd
5 OBt (3.53)

+ {50 +6,0 =30 1 aV + | {{(0p0+040) - N —gT] - ¢} dA
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Table 3.1: Coupled two-field balances of gradient-type solids.

Macroscopic equilibrium condition

0 € DIV[OgY) + 050] +74, in B
9Ty = (Op¢ + 03¢) - N on 0By

Microscopic evolution equation

0 € DIV[0p) + 050] — [0p0) + 0x0] +, in B
QTN = (81;1# + 8F¢) -INN on 88;5

for all ¢ € Wg, and ¢ € Wg. As a result the coupled balance equations
0 €0 +050 —7y and 0 € + 050 — 7 (3.54)

are obtained in the domain B coming along with the Neumann-type boundary condition
for the macro- and microscopic traction on the traction boundaries

(OpY + 040) - N = gTy on 0B; and (9p) + 050) N = gTn on0B;.  (3.55)

An explicit representation that follows by execution of the variational derivative is given
in Table 3.1. It consists of the macroscopic stress equilibrium condition and a micro-
scopic balance-type evolution equation valid in the domain B. The last equation determines
the evolution of the micro-deformation field . This summarizes the basic ingredients of
gradient-type standard dissipative solids in the multi-field context in terms of the two
fields @ and ¢ introduced in (3.2) and (3.4);.

3.6.2. Coupled Three-Field Balance Equations of Gradient-Type Solids. An
alternative three-field representation of the coupled balance equations bases on the intro-
duction of a variable dual to the rate of the constitutive state, see also Section 3.5.5. To
this end, the following representation of the dissipation is introduced

D::/Bf~th20 (3.56)

containing the inner product of the thermodynamic dissipative force array and the rate
of the constitutive state

f={F fF} and ¢={F  F}. (3.57)

The thermodynamic dissipative driving forces § and the rate ¢ are dual variables
D:/{}';F+}-<‘p+ﬁ:if}dvzo. (3.58)
B

In this setting, the thermodynamic force F is dual to the macroscopic deformation gra-
dient F, the force f dual to the microscopic deformation ¢, and the force F dual to the
microscopic deformation gradient F. With this definition at hand, a conjugate represen-
tation of the dissipation function expressed in terms of the thermodynamic driving forces
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Table 3.2: Coupled three-field balances of gradient-type solids.

Macroscopic equilibrium condition

0 =DIV[optp+F |+, in B
gTn = (0p +F)-N on 0B
Microscopic evolution equation
0 =DIV[9p)+ F| —[0ptp + f]1+5, in B
9Ty = (00 + F)-N on 0B;
Inverse definition of dissipative driving forces

Fc 0z¢* and € d3¢*  and F €0gp* in B

f is obtained by a partial Legendre-Fenchel transformation in the rate slots. These types
of transformations are discussed in GLOCKER [56], MAUGIN & MORRO [112], ROCK-
AFELLAR [153, 154], and HEINRICH & DEMOMENT [78]. For the dissipation function
discussed so far, one gets at a given constitutive state ¢ the conjugate dissipation function
in combination with the corresponding Euler equation

¢"(fie) =sup[f-¢ —p(¢;c)] with §e€ de(e;c). (3.59)

Dealing with convex functions, the dissipation function in its primal representation can
be recovered by an inverse application of the Legendre transformation

o€ ¢) = Sl;p[f €= ¢ (f0)] with ¢ € 9" (f;¢), (3.60)

expressed in terms of the Euler equation that relates the evolution ¢ of the constitutive
state to the dissipative forces f. In what follows all dissipative forces are considered as a
third variable field in the solid domain B in a mized setting. Evaluation of the principle of
virtual power (3.51) in combination with this choice of dissipation function, application
of Gauss’ theorem, and localization theorem gives the balances

0 =DIV[Opt) + F| +7, and 0 =DIV[dp + F| — [0 + F] + 7o (3.61)
inside the domain B completed by the Neumann-type boundary conditions
(0 +F)- N =gTy on0B; and (9ptp+ F)- N = gTn on 0B; (3.62)
and the inverse definition of the dissipative driving forces via the evolution equations
Fe 0z¢* and ¢ € J03¢" and Fe Oxp”. (3.63)

A summary of the governing equations is given in Table 3.2, where the basic ingredients of
gradient-type standard dissipative solid in a multi-field context are summarized in terms
of the three fields @, @, and f:= { F, f,F } introduced in (3.2), (3.4);, and (3.57).
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Table 3.3: Rate-independent balances of gradient-type solids.

Macroscopic equilibrium condition

0 =DIV[opp+F|+74, in B
gTn = (0 + F)-N on 0B
Microscopic evolution equation
0 =DIV[0p) + F| — [0p0 + ]+, in B
gTy = (00 +F)-N on 0B;
Inverse definition of dissipative driving forces
F = Nogp and (p= AOdpp  and F= ANOgp in B

Loading/unloading condition

A>0 and ¢(f;¢) <0 and Ap(f;¢)=0 in B

3.6.3. Threshold-Function-Based Rate-Independent Coupled Balances. In
practical engineering applications, rate-independent dissipation functions are often mod-
eled by the so-called concept of maximum dissipation. In this scenario, the dissipation is
maximized for permissible thermodynamic forces f inside the elastic domain E

¢(¢;¢) = sup[f-¢] with E:={f[e(f;¢)<0} (3.64)

fekE

characterized by the yield function ¢(f;¢) that bounds the thermodynamic forces inside
the elastic domain. Note that this particular form of the dissipation function expressed in
terms of the yield function ¢ can also be obtained by choosing

& (F; ) :{ 0 if p(f; ) <0

+00 otherwise (3.65)

as conjugate dissipation function ¢* in combination with equation (3.60). The principle
of maximum dissipation (3.64) is usually solved by a Lagrange multiplier method

P(¢;¢) = fsgfo[f e = Ao(f;c)] (3.66)

whose evaluation yields the evolution equation for the constitutive state
¢ = Aoso(f;¢). (3.67)

The evolution ¢ is related to the dissipative driving forces § in combination with the
according loading/unloading conditions

A>0 and ¢(f;¢) <0 and Ap(f;c)=0 (3.68)

that are widely known as Karush-Kuhn-Tucker conditions. Evaluation of the principle
of virtual power (3.51) and application of Gauss’ theorem yields the three-field balance
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Figure 3.7: One-dimensional representations of the dissipation function. a) Primal ¢(¢) =
c|¢| and b) non-smooth dual representation ¢*(f) with its regularized smooth counterpart

o (F) = 55 (p(N)3 with ¢(f) = [f| —c.

equations (3.61) and the Neumann-type boundary conditions (3.62). Only the evolution
equations (3.63) have to be replaced by the specific rate-independent expressions

F= Nogp and @ = AOpp and F= A0z, (3.69)

accompanied by the loading conditions (3.68). A summary of the governing equations is
given in Table 3.3. A detailed discussion of a purely rate-independent setting in a multi-
field context which, regarding a numerical implementation, involves a global active set
strategy can be found in LIEBE & STEINMANN [102], see also the proceeding contribution
by WELSCHINGER & MIEHE [175].

3.6.4. Threshold-Function-Based Rate-Dependent Coupled Balances. A rate-
dependent class of dissipation functions with elastic domain E defined by the yield function
©(f; ¢) is obtained by a penalty-type solution of the principle of maximum dissipation
(3.64). Following conceptually PERZYNA [148, 149], a viscous regularization

ol €) = suplf - ¢ - % (o(f; )2 ] (3.70)

is set up, where the Foeppl-bracket ((-)); = 1 ((-) + [(-)]) for the positive domain has
been introduced. A one-dimensional illustration of the viscous regularization is given in

Table 3.4: Rate-dependent balances of gradient-type solids.

Macroscopic equilibrium condition

0=DIV[optb+F|+ 4, in B
gTy = (0ptv + F)- N on 0B
Microscopic evolution equation
0 =DIV[0gtp + F| — [0pt + f]+ 4, in B
gTn = (0 + F)- N on 0B;
Inverse smooth definition of dissipative driving forces with A := % (p(f;¢)) s

f*’:)\aj.-go and cfo:)\afw and szﬁﬁgo in B
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Figure 3.7. The necessary condition of the maximum problem (3.70) provides the nonlinear
smooth evolution equation for the constitutive state

¢ = % (o (: ) Byl ). (3.71)

Evaluation of the principle of virtual power (3.51) and application of Gauss’ theorem
finally yields the coupled three-field balance equations (3.61) and the Neumann-type
boundary conditions (3.62). The evolution equations (3.69) of the rate-independent case
are adopted

F= ANogp and ¢ = AOdzp and F= A0z, (3.72)
where the Lagrange parameter is replaced by the constitutive definition
1
A= p (p(f;¢))+ =0 (3.73)

characterizing rate-dependent loading. Obviously, for the limit case n — 0 the rate-
independent form (3.67) in combination with (3.68) is recovered. The strong forms of the
coupled balance equations for the rate-dependent setting are summarized in Table 3.4.

3.7. Time-Discrete Incremental Variational Principles

Variationally consistent approaches for the treatment of elastoplastic systems can be
traced back to the work by MARTIN [109]. General variational frameworks for standard dis-
sipative materials are outlined in MIEHE [118], MIEHE, SCHOTTE & LAMBRECHT [127],
and MIEHE, LAMBRECHT & GURSES [126], see also the references cited therein. The
following incremental variational principle for gradient-type solids extends formulations
discussed in MIEHE [120] to the large strain setting.

3.7.1. Time-Discrete Field Variables in Incremental Setting. An algorithmic
representation of the nonlinear algebraic equations for the macro- and microscopic
response can alternatively be obtained by a variational principle. To this end, con-
sider the time-discrete solution of the field variables at the discrete solution times
0,t1,t2, ...ty tut1, ..., T of the process interval [0,7]. In order to maintain the solu-
tion within a typical time step, the focus is put on the discrete time increment [¢,,,¢,11]
with the typical time step

Tong1 i=tpy1 —tp > 0. (3.74)

In what follows, all field variables at time t,, are assumed to be known. The global fields
at time t,,1 are then derived based on a variational principle valid for the current time
interval. Regarding a compact notation, the subscript n + 1 is dropped, all variables
without subscript are meant to be evaluated at time ¢,, 1. In particular one can write

P = @(X 1) and @ i= G(X, tos) (3.75)
for the actual macro- and microscopic deformation maps and
@, = @(X,t,) and @, = p(X,1,) (3.76)

for the macro- and microscopic field variables evaluated at the previous solution time.
As a consequence, the rates of these global fields are constant quantities within the time
increment under focus. They are defined by

o=(p—p)/r and ¢==(p—p,)/r. (3.77)
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In full analogy, the rate of the constitutive state (3.35) is approximated by
¢c:=(c—c,)/T. (3.78)
In the extended setting, the dual dissipative driving forces need to be introduced
F=F( X, tyy) and f:=f( X, t,1) and F:=F (X, t,41) (3.79)
that, aiming at a compact notation, are summarized in the assembled array
f={F.f.F}. (3.80)

This array represents the time-discrete dissipative forces evaluated at current time. Re-
garding a possibly non-smooth, rate-independent implementation, the global field

A= ANX,tp11) >0 (3.81)
denotes in what follows the Lagrangian multiplier field at time ¢,,;.

3.7.2. Incremental Energy, Dissipation, and Load Functionals. The incremental
variational principle provides the macro- and microscopic deformation @ and ¢ evaluated
at current time ¢,,.1. The generation of such an incremental variational principle dramat-
ically depends on the incremental energy storage, dissipation, and load expended to the
system within the finite time step [¢,,¢,.1] under focus.

3.7.2.1. Incremental Energy Functional. Associated with the discrete time interval
(3.74), the incrementally stored energy inside a solid with microstructure is given by

(o) = |

tn

t

T hd = /B{ b(e) — b(en) Y dV, (3.82)

expressed in terms of the energy functional as defined in (3.28);. Recalling the constitutive
relationship (3.38);, the incremental energy is considered as a functional that depends on
the macro- and microscopic field variables ¢ and ¢ evaluated at current time ¢, and
governed by the free energy function .

3.7.2.2. Incremental Dissipation Functional. In a next step, an expression for the
incremental dissipation potential valid for the current time interval is set up
tn+1
D7 (@, @) == D dt. (3.83)
tn

As discussed in Section 3.6, there exist different possibilities to model the constitutive
dissipation function. Making use of definition (3.38), and the approximated constitutive
rates (3.78), a canonical setting of the incremental dissipation functional is introduced

D (. @) = / {7 6((c — )/ c) } dV (3.84)

depending on the primary field variables ¢ and ¢ evaluated at current time t,,,. By
insertion of the Legendre transformation (3.60), an extended dissipation functional for
the discrete time interval under focus can be obtained

D" (@, 3. f) = /B (F-(c— ) — 7" (Fen) } V. (3.85)
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This extended dissipation functional is a function of an extended set of variables, including
the thermodynamic dissipative driving forces f as defined in (3.57). An exploitation of the
rate-independent, yield function based dissipation function (3.66) allows for the third
representation of the dissipation functional

DY (@, @A) = /B{f-(c—cn)—TW(f; ¢)}dv, (3.86)

which shows an additional dependency on the Lagrange multiplier field A, see also its defi-
nition (3.81). Starting with the smooth dissipation function (3.70), the last representation
of the incremental dissipation functional is obtained

Dy (@ f)i= {1 (6= e) = - (et v, (3.87)

where 7 > 0 is the viscosity parameter. Obviously, for vanishing viscosity n — 0 the
incremental dissipation (3.86) is recovered. Thus, the penalty-type dissipation functional
(3.87) is considered as the viscous regularization of the Lagrange-type dissipation func-
tional (3.86).

3.7.2.3. Incremental Load Functional. The incrementally expended external work
associated with the discrete time interval (3.74) is given by the expression

(2}
W (@, ) i— Powe di (3.88)

tn

and takes into account external actions on the multi-field problem. Here, P,,; is the total
power of external loading as defined in (3.25) and (3.26) describing macro- and microscopic
contributions, respectively. Assuming constant rates within the time step under focus, see
equation (3.77), the incremental work can be considered as a functional of the macro- and
microscopic deformations ¢ and ¢, respectively. Thus, at current time ¢, 1 the external
work is defined by the algorithmic expression

Wie.9) = [ B (@-e)dV+ [ gTy-(o-p,)dA
N o (3.89)
+/>yo-<¢—¢n>dV+/a aTy - (7 — @,) dA
B By

in terms of the prescribed macro- and microscopic body force fields

Yo = Yo( X tpt1) and g = Vo(X, ta1) (3.90)
and the prescribed macro- and microscopic surface tractions
TN = TN(X, tn+1) and TN = TN(X, tn+1) (391)

evaluated at the current solution time ¢,,,1.
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3.7.3. The Canonical Incremental Minimization Principle. The canonical in-
cremental minimization principle for gradient-type dissipative solids is governed by the
incremental potential

HT(@a ¢) = ET(¢7¢)+DT<¢7 ¢) _WT(SBu ¢) : (392>
potential energy dissipation work

It is based on the incremental energy storage (3.82), the dissipation functional in its
canonical representation (3.84), and the external work functional as defined in (3.89). In
order to obtain a compact notation of the canonical incremental minimization principle,
the generalized constitutive state vector ¢ is introduced

cu):={F,p.F} with u:={g, ¢} (3.93)

as a function of the generalized deformation vector u. The latter contains the macro- and
microscopic deformation fields ¢ and ¢. The constitutive state contains the macroscopic
deformation gradient F', the micro-deformation map ¢, and the microscopic deformation
gradient F. The generalized volume force vector acting inside the solid is defined by

g:={%.%} in B (3.94)

and contains macro- and microscopic body forces. The generalized surface traction vector
summarizes the macro- and microscopic surface tractions T and Ty in the way

tN = {QTN, QTN } on 8Bt = {88;, 88,3} y (395)

where the generalized traction surface 0B has been introduced. It consists of the part
of the surface 0Bz where macroscopic tractions act and a possibly different part of the
surface dB; where microscopic tractions perform work. With this compact notation at
hand, the incremental potential (3.92) can be reformulated

I (u) = /B{ T (ee,) —g-(u—uw,) FdV — / ty - (u—u,)dA (3.96)

0B

expressed in terms of the incremental internal work density

(€5 en) = P(e) = P(en) + 7 O((€ =€) /75 €n) . (3.97)

It is uniquely determined by the constitutive free energy function v and the constitutive
dissipation function ¢. Following this line, the finite step sized incremental minimization
principle takes the form

(@, ¢} = arg{infinfII"(, ) } (3.98)

and delivers the current macro- and microscopic deformation ¢ and ¢ as the minimum
of the incremental functional (3.96). The according necessary condition reads

0 € 6T = 65117 4 6,117, (3.99)
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where the variations of the incremental potential with respect to the macro- and micro-
scopic deformations are summarized by the explicit expressions

5ol i— /B {050 + 0] : Vb — 4o - 6 } AV

—/ gTN -0 dA
o (3.100)
=/B{ [0t + 048] : Vx0@ + [0p1) + 000 — o] - 6@ } AV

— / gTy -6 dA
oB;

based on the admissible variations d¢ € WO and dp € WO The Euler equations of the
minimization principle (3.98) evaluated at current time tn+1 correspond to the coupled
two-field balances as summarized in Table 3.1, where the rates @ and ¢ are meant to
be evaluated by the algorithmic expression (3.77). The strong form is obtained from
(3.100) by application of Gauss’ and localization theorem. Carefully observe that the
above statement can be interpreted as a wirtual work balance of internal and external
actions at the discrete time t¢,,.1, where the internal work decomposes into an energetic
and a dissipative part. A short discussion of the canonical two-field representation can be
found in the proceeding contribution by WELSCHINGER, ZIMMERMANN & MIEHE [177].

3.7.4. The Extended Incremental Variational Principle. In this subsection, the
focus is put on an extended incremental variational principle of gradient-type standard
dissipative solids based on the extended dissipation functional (3.85). This extended vari-
ational principle is governed by the incremental potential

17 (3, @.§) = B (%, @)+ D (@, 0.§) — W (. 0). (3.101)
S———— S—— ~~ - N ~~ -~
potential energy dissipation work

where the constitutive state (3.93) has to be modified to take into account the thermo-
dynamic driving forces. To this end, an extended constitutive state vector ¢* is introduced

c(w):={F,p Ff} with uw:={@ @f} (3.102)

as a function of the extended deformation vector w*. The extended constitutive state
contains the macroscopic deformation gradient F', the microscopic deformation map ¢,
the microscopic deformation gradient F', and the dissipative thermodynamic driving forces
f. Together with the generalized volume force vector (3.94) and the generalized surface
traction vector (3.95), the incremental potential (3.101) is reformulated into

I ( /{ﬁ g-(u—un)}dV—/ ty-(u—w)dA  (3.103)
OBy
expressed in terms of the extended incremental internal work density

T (e e) = ¥(e) —Plen) +F- (e — ) =T (f5 ) - (3.104)

It contains the constitutive free energy function ¢ and the conjugate constitutive dissi-
pation function ¢*. In this scenario, the finite step sized incremental stationary principle
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takes the form

{#.¢.f} = arg{infinf sup (e, ¢, 1) } (3.105)

and characterizes the current macro- and microscopic deformation ¢ and ¢ and the dis-
sipative thermodynamic driving forces § as the saddle point of the incremental functional
(3.103). The associated necessary condition takes the form

0 € 0117 = 6,117 + 61T + 6117, (3.106)

where the variations with respect to the macro- and microscopic deformation and with
respect to the thermodynamic forces are determined by the explicit expressions

6¢H*T::/{ Op) + F| : V0@ — 7y - 6@ } dV
B
—/ gTn -0 dA
oB;
5T i— / {[0pt + F] : Vixdp + [0ptb + F — 50| - 60 } AV (3.107)
B
—/ gTy -6 dA
oB;
5T ;:/{ e — ¢, — 70" - 6f } dV
B

in terms of the admissible variations 0@ € Wg,, op € Wg, and 0f of the current macro-
and microscopic deformation and the dissipative forces, respectively. Application of Gauss’
and localization theorem yields the Euler equations of the stationary principle (3.105)
evaluated at current time t,.;. They correspond to the three-field balance equations
as summarized in Table 3.2. Similar to the previously discussed setting (3.100), these
equations can be interpreted as a wvirtual work balance which shows in addition weak
statements for the definition of incremental update equations of the dissipative driving

forces.

3.7.5. Rate-Independent Principle with Threshold Function. An alternative in-
cremental variational principle for gradient-type standard dissipative solids containing a
threshold-type yield function bases on the extended dissipation functional (3.86). The
non-smooth evolution of the global fields is characterized by a constrained optimization
principle involving a Lagrange multiplier method. The rate-independent variational prin-
ciple with threshold function is governed by the incremental potential

(@, @, 1. \) = E7(@,0) + Dy (@, @, 1, A) — W (@, @) (3.108)
N— ——— ~- - ~ -~
potential energy dissipation work

expressed in terms of the yield function ¢ as introduced in Section 3.6.3. In view of a
compact notation, the following extended constitutive state vector ¢} as a function of the
extended deformation vector uy for the non-smooth problem is introduced

c;(u}) = { F, @, F.f,\} with u:={p & f A} (3.109)
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that characterizes a rate-independent constitutive response. This constitutive state con-
tains the macroscopic deformation gradient F', the microscopic deformation map ¢, the
microscopic deformation gradient F', the thermodynamic driving forces f, and the La-
grangian multiplier field \. Together with the generalized volume force vector (3.94) and
the generalized surface traction (3.95), the incremental potential (3.108) is reformulated

I (u}) /{7‘(‘ (eX; ex,) g-(u—un)}dV—/aB ty - (u—u,)dA. (3.110)

Here, the extended incremental internal work density for the internal energy storage and
dissipation has been introduced. It takes the specific representation

(€35 ) = P(e) = vlen) + - (¢ =€) =T Ap(F; €n) (3.111)

and is uniquely determined by the constitutive free energy function v and the yield
function ¢, respectively. The finite step sized incremental stationary principle reads

{QO Soa fa )‘} - arg{ lIlflIlfSup sSup H)\ (_?Sb? fa )‘)} (3112)

P § A>0

and identifies the current macro- and microscopic deformation @ and ¢, the dissipative
thermodynamic driving forces f, and the Lagrangian multiplier field A > 0 as the saddle
point of the incremental potential (3.110). The necessary condition reads

0 € SII = S,IT57 + 0115 + ST + 65117, (3.113)

where the single variations are summarized by the explicit expressions
&,,H*T::/{ [0 + F) : Vx0p — ¢ - 0 } dV
B
— / gTy - 5@ dA
OB;

5 TI5 = / {[0pt + F) - Vb + [0pt0 + F — 0] - 60} dV

5 (3.114)

—/ gTy - 0@ dA
oB;

osII%" ::/B{ ¢ — ¢, —TAO5p] - 0F } AV
5AH§*::/B{ —r ] 6A}dV

in terms of the admissible variations 6 € W2, 6@ € W, 6f, and 6\ > 0 of the current
macro- and microscopic deformation, the dissipative forces, and the Lagrangian multi-
plier field, respectively. The Euler equations of the stationary principle (3.112) evaluated
at current time t,,, correspond to the three-field balance equations as summarized in
Table 3.3. This statement balances the virtual internal and external work and involves
weak incremental updates for the dissipative forces expressed in terms of a yield function.
The evolution equations are complemented by the threshold-type loading conditions.
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3.7.6. Rate-Dependent Principle with Threshold Function. The focus now lies on
an incremental variational principle of gradient-type standard dissipative solids, which is
based on the extended dissipation functional (3.87). It can be interpreted as a smooth vis-
cous regularization of the representation (3.86) by means of an over force penalty method.
The variational principle is governed by the incremental potential

0y (.¢.1) = E7(#,9) + Dy (%, 0.1) - V(9. 9) (3.115)
——— N—_—— _— L

7

WV
potential energy dissipation work

Based on the generalized deformation and constitutive state vectors (3.101), the extended
generalized volume force vector (3.94), and the generalized surface traction vector (3.95),
the incremental potential (3.115) is reformulated

IL7 (") = /B{ mr(e5e) —g-(uw—u,) pdV — /aza ty - (u—u,)dA (3.116)
expressed in terms of the extended incremental internal work density
KT [ K, ¥ T
™y (€5 6,) = ¥(€) = dlen) +§- (e —¢n) = 2 (o(F ) (3.117)

determined by the constitutive free energy function ¢ and the yield function . In this
sense, the finite step sized incremental stationary principle reads

{#.¢.f} = arg{infinf sup I (@, ¢.1) } (3.118)

and uniquely determines the current macro- and microscopic deformation ¢ and ¢ and
the dissipative thermodynamic driving forces § as the saddle point of the incremental
potential (3.116). The variation of the functional (3.116) yields the smooth condition

0= 0l" = 0pl1}7 + 0pI1" + 05117 (3.119)
where the single variations are summarized by the explicit expressions
&,,H;;T::/B{ [0F + F| : Vxdp — 7y - 6 } dV
— / gTN -0 dA
OB;
54,11;7::/{ (050 + F : V0@ + [0p0 + F — o] - 0 } dV (3.120)
B
— / gTy - 6¢p dA
oB;
-
a1y = [ (e = e = T (sdyel 07} av

in terms of the admissible variations 6 € Wg,, op € Wg,, and df of the current macro- and
microscopic deformation and the dissipative forces, respectively. The Euler equations of
the stationary principle (3.118) correspond to the smooth three-field balance equations as
summarized in Table 3.4 evaluated at current time ¢,,.1. Such a formulation is particularly
convenient due to the smooth nature of the viscous dissipation function.
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3.7.7. Rate-Dependent Principle with Local History. In classical phenomenologi-
cal theories of physically nonlinear continua, the energetic state of a solid is characterized
by local internal variables Z whose evolution is described by an ordinary differential equa-
tion, see e.g. COLEMAN & GURTIN [29]. In general cases one wishes to keep these local
variables in addition to the extended global constitutive state as introduced in (3.35);.
Following this methodology, the constitutive descriptions (3.38); 2 are modified

Y =1v(¢,Z) and ¢ =¢(¢,Z;¢,T). (3.121)

In particular, the specific representation of the dissipation (3.56) has to be extended to
take into account the effects of the local internal variables

D::/{f-tJr]-‘-i'}dvzo. (3.122)
B

Besides the already known dissipative force array f introduced in (3.57);, the local thermo-
dynamic dissipative force F dual to the local internal variable Z has been introduced. With
these definitions at hand, a conjugate representation of the dissipation function expressed
in terms of the global and local thermodynamic driving forces § and JF is obtained by a
partial Legendre-Fenchel transformation in the rate slots. These types of transformations
are discussed in GLOCKER [56], MAUGIN & MORRO [112], ROCKAFELLAR [153, 154],
and HEINRICH & DEMOMENT [78]. At a given constitutive state ¢ and Z one obtains the
conjugate dissipation function

¢*(F, F;¢,T) = supsup[f- ¢ + F - I — ¢(¢,Z;¢,T)] (3.123)
¢ I

in combination with the according Euler equations defining the thermodynamic forces
fe (e, Z;¢,Z) and F € dz0(¢,Z;¢,T). (3.124)

Due to the convex characteristic of the dissipation function, its primal representation can
be recovered by the inverse application of a Legendre transformation

<Z>(é,i'; ¢,Z) =supsup[f-¢ +F -I— o (f, F;¢,T)] (3.125)
i F

coming along with the Euler equations of the global and local constitutive state variables
¢ € (5, F;e,T) and T € dxd*(f,F;¢,T). (3.126)

They relate the evolution ¢ of the constitutive state to the dissipative forces § and the
evolution of the local internal variables Z to the local dissipative force . In what follows,
the dissipative forces f are considered as a third variable field on the solid domain in a
mized setting, whereas the local dissipative forces F are treated as a local history field.
In the subsequent treatment, the extended incremental variational principle discussed in
Section 3.7.6 is modified to take into account dissipative effects sufficiently described by
a local internal variable field Z. The setup of an incremental variational principle bases
on the construction of an incremental energy functional. To do so, ideas from equation
(3.82) are augmented by an additional dependency on the local history

tn+1

E(e.e.1) = |

tn

Edt = /{w(c,z) — (e, L) }dV . (3.127)
B
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Focusing on the rate-dependent threshold-type setting, the incremental dissipation is ob-
tained in analogy to (3.87) and yields in combination with (3.125) the expression

T

DI (9,.5.T, F) = /B (- (=) + F-(T-T) = (el Fien T F V. (3128)

The extended variational formulation including the local history field variables is governed
by the incremental potential

0y (0.¢.1.7.7) = F'(@.0.L)+ Dy (0.9 . T.F) - W (@, @), (3129)

, - / , /

potential energy dissipation w;;“k
where the incremental external load functional (3.89) remains unaffected and is used
without any changes. In this setting, the extended constitutive state vector as a function

of the extended deformation vector and the local solution pair
)= {F. @ Ff} with wi={g@f} and p={L,F}  (3130)

are introduced. The constitutive state contains the macroscopic deformation gradient F,
the microscopic deformation map ¢, the microscopic deformation gradient F', and the
thermodynamic driving force §f summarized by the global constitutive state ¢*. The local
solution pair p contains the local internal variable Z and its dual thermodynamic driving
force F. Together with the generalized volume force vector (3.94) and the generalized
surface traction vector (3.95), the incremental potential (3.129) can be reformulated ac-
cording to

7 (', p) = /B{ (¢ pr €t pa) — g (1 — ) } AV — /83 ty-(u—1)dA  (3.131)
expressed in terms of the extended incremental internal work density with local history

(P e pn) = (6 L) = (en, o) +§- (¢ —¢0) + F - (T = T,)

T

(3.132)

It is determined by the constitutive free energy function v and the yield function ¢. The
finite step sized incremental stationary principle then reads

{9_07 Svoa f>I>T} = arg{ H_lf lI}f sup inf sup H;T(Qb’ Qvoa fal.a ‘7:)} (3133)
» ¢ § T F

and delivers the current macro- and microscopic deformations ¢ and ¢ and the dissipative
thermodynamic driving force § as global quantities and the local internal variable Z with
its thermodynamic driving force F as the saddle point of the incremental functional
(3.131). The according necessary condition is given by the smooth expression

0 = 011 = 0117 + G117 + G{ILT + 07T + 01T | (3.134)
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Table 3.5: Balances of gradient-type solids with local history.

Macroscopic equilibrium condition
0 =DIV[dpp+ F]+%, in B
gTn = (0 +F)- N on 0B;
Microscopic evolution equation
0 = DIV[0pth + F| — [0t + ] +7, in B
9Ty = (0a¢ +F)-N on 0B;
Inverse smooth definition of dissipative driving forces
c=c¢,+ % (p)+05p in B

Evolution subproblem of internal variables

0= [0 +F| in B
Inverse smooth definition of local dissipative driving forces

I=1I,+ % (p)+0Fp in B

where the single variations are summarized by the explicit expressions
&,,H;;T::/B{ [0F + F| : Vxdp — 7, - 6 } dV
— / gT -0 dA
OB;
Soltyri= [ {(0p0 -+ F|: Vb + 0+ F = 40) -G} av
_/ Gy - 6¢ dA (3.135)
0B;
-
oL = [ { e — en — = ()4 0] - 6 } dV
B n
5IH;;T;:/{ Ozt + F| - 0T } dV
B
-
oty [ (1T~ T, - T (20l 07}V
B

in terms of the admissible variations 0 € Wg, op € Wg, 0f, 0Z, and 0F of the current
macro- and microscopic deformation, the dissipative forces, the local internal variable,
and its dual dissipative force. The algorithmic Euler equations of the stationary principle
(3.133) correspond to the smooth three-field balance equations as summarized for the
continuous setting in Table 3.4 augmented by the evolutionary subproblem for the local
internal variables. The overall governing strong equations evaluated at current time ¢,
are summarized in Table 3.5.
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Figure 3.8: Isoparametric mapping of the geometry. The Lagrangian B¢ C B" and Eulerian
configuration §¢ C 8" are characterized by the isoparametric mappings X (€) and z"¢(¢).

3.8. Finite Element Discretization of Incremental Variational Principles

Regarding a large strain finite element implementation of the previously introduced vari-
ational principles, there exist two geometric configurations that have to be taken into
account. Namely the Lagrangian configuration B and the Eulerian configuration &. The
first step towards a numerical treatment bases on a discretization of the continuous solu-
tion domains B and S into discrete domains B" and S". As illustrated in Figure 3.8, the
discrete domains consist of the entity of all element sub domains B¢ C B"* and S¢ C S"

Nen Nen

B'= AB° and S"= AS°. (3.136)
e=1 e=1

In this expression, the symbol A<} has been introduced for the assembly operation of all
elements e =1, ..., n,,. Within the context of an isoparametric finite element formulation,
the Lagrangian and the Eulerian configuration are approximated on element level by

Nel Nel
X" =>"N;X{ and a" =) Na (3.137)
=1

i=1

based on the shape functions N;(£) as functions of the element’s local isoparametric coor-
dinates &, the material and spatial nodal coordinates X and x¢, and the number of nodes
per element n,;. The discrete displacement field @"¢ is introduced as difference between
the positions X" and "¢ of a material point in its reference and current configuration

Nel Nel

aht =gt — X" =N (2 - X)) =) Nids, (3.138)
i=1 =1

where the discrete nodal displacements d¢ := x¢— X § associated with node i of the element
e have been introduced. Note that (3.138) a priori fulfills the isoparametric concept. In
analogy to the definition of the macroscopic deformation gradient F¢ = Vxu'® 4+ 1" as
the material gradient of the nonlinear deformation map @,(X"¢), the gradients of the
isoparametric maps X"¢ and ¢ are introduced

J" =VeX" and 3" = Vez". (3.139)
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Figure 3.8 shows the relation between the tangent maps
jhe = Fte ghe and JM = Fhe_ljhe and Fhe = jhe Jhe (3.140)

In what follows, the discrete representations of the previously discussed incremental vari-
ational principles are discussed.

3.8.1. Canonical Incremental Minimization Principle. Having the discrete geome-
try (3.137) and the discrete macroscopic deformation (3.138) at hand, it remains to specify
the discrete counterpart to the generalized deformation

W= A [Z o ) 14 ] AT ] e e

expressed in terms of the element’s macro- and microscopic approximation matrices [N
and [N |¢ that, regarding a compact notation, can be summarized by the generalized global
matrix 9T containing the assembly and the element summation procedure. Clearly, the
latter matrix is never build explicitly, it is introduced for the sake of a compact notation.

At node 7 of the finite element discretization, the generalized nodal displacements are
= [d,d]". (3.142)

The discretization of the generalized constitutive state vector takes the form

o B[S 858)- 5] -A55)- AL

1=1

containing the element’s approximation matrices for the macro- and microscopic gradient
terms [B]¢ and [B]¢, respectively. All element matrices discussed so far depend on the
geometric and microstructural dimension, they are specified in the respective sections.
The discretizations (3.141) and (3.143) govern the expressions of the incremental energy,

dissipation, and work functionals. Thus, the incremental potential (3.96) is reformulated
m"®)= | {77("(0);c"(®,) —g- N0 —-2,)}dV — / ty - M0 —0,)dA, (3.144)
Bh oBl

leading to the discrete finite step sized incremental minimization principle

{0} =arg{ ilngh(b) ). (3.145)

It determines the generalized nodal displacements 0 of the finite element mesh at current
time t,,11. Due to the linear dependency of the discrete macroscopic deformation gradient
on the macroscopic displacement the variation of the discrete constitutive state vector
(3.143) with respect to the nodal generalized displacements is introduced

5o = A {Ui]e [g]e} BZ} — B(X) 0. (3.146)

e=1
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Thus, the necessary condition of the discrete variational problem (3.145) can be specified

0l = / (B[S -n"g}dV - Nty dA with S :=0ar",  (3.147)
Bh Bl
where the generalized stresses S have been introduced. The necessary condition delivers a

nonlinear algebraic system for the determination of the generalized nodal displacements.
The coupled residual (3.147) is linearized

LinIT% =11 + [I,] - Ad = 0, (3.148)

which builds the basis for a Newton iteration. Solving for the increments A9, the update
directive for the generalized displacements is summarized by the algorithm

<=0 [ - 11% until |1y < tol (3.149)

founded on the symmetric monolithic tangent matrix of the coupled problem
I, = / {(BT[C)B}dV  with C =% 7" (3.150)
Bh

Here, the generalized moduli C have been introduced as the second constitutive derivative
of the incremental internal work density 7" with respect to the constitutive state ¢”.

3.8.2. Extended Incremental Variational Principle. The focus of this section lies
on the construction of a discrete extended incremental variational principle that employs
the extended version of the incremental dissipation functional (3.85) or the threshold-type
viscous incremental dissipation functional (3.87). Both dissipation functionals demand the
extension of the discrete generalized constitutive state

B[S 2] BB ] e
u é[; o' 1ar] 7] é 0 [AF| |} CO(X)0*,  (3.151)
where in addition to (3.141) also the thermodynamic driving forces are discretized via the
approximation matrix [A[S. In this setting, the global matrix 9t* contains the assembly
and the element summation procedure and is never build explicitly. It is introduced to
allow for a compact notation. At node 7 of the discretization, the extended nodal displace-
ment vector 9* is defined by

F=[0,fI] =d.d fIf (3.152)

containing the nodal displacements d;, the nodal micro-deformations d;, and the nodal
thermodynamic forces f,. According to (3.143), the discrete extended constitutive state
can be introduced

v [ [BIEA]) [17]] o, [[Bld+1"] ., [F"(d)
(") = S Bldi|+|o||=A| Brd |=A|[BFd | . (3153)
e=1 i=1 [A]zefze 0 e=1 [A]efe e=1 [A]efe

All element matrices depend on the geometric dimension and the nature of the materials
microstructure, they are introduced in the respective sections. Based on the discretization
(3.151) and (3.153), the extended potential (3.101) or (3.116) can be reformulated

I (%) = {w;h(c*h(a*);c*h(a;))—gm(a—an)}d\/—/ ty-M(0-0,) dA, (3.154)
Bh oBh
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which finally allows for the introduction of the discrete incremental stationary principle

{9"} = arg{ stagt (%) }. (3.155)

It identifies the generalized nodal displacements ® and the nodal thermodynamic forces
f of the discrete problem at time ¢, ;. Based on the variation of the discrete constitutive
state vector (3.153) with respect to the extended nodal generalized displacements

nn [[BIY 0 07 [6d]°
Spec=A| 0 [B]* 0 | |dd| =:B*(X)o0", (3.156)
=1 0 0 [A]| |of

the discrete necessary condition of the stationary principle (3.155) can be specified

0cIl. = | {B7[S]-N"g}dV —/ Nty dA  with 8% :=denm), (3.157)
Bh oBh

expressed in terms of the extended generalized stresses S*. This system of nonlinear equa-
tions is solved iteratively in a Newton solution scheme based on the algorithm

0 =0 — [ I umtil [T || < tol. (3.158)

This expression contains the symmetric monolithic tangent matrix

(3.159)

n

I yye = / {(BT[CB*}dV  with C* := %, 7"

where the extended generalized moduli C* have been introduced as second constitutive
derlvatlve of the incremental internal work density ) h with respect to the constitutive
state ¢*

3.8.3. Extended Incremental Variational Principle with Local History. The
focus is now put on a compact formulation of the discrete incremental variational principle
which involves in addition to the global nodal unknowns the numerical treatment of
the local history variables. According to (3.151) and (3.156), the discrete generalized
displacements and the variation of the discrete constitutive state with respect to the
nodal unknowns read

u =9(X)0* and ¢ = BH(X) 0. (3.160)
The local solution pair is locally approximated on Gauss point level via
h={T" F"}. (3.161)

With these expressions, the incremental potential with local history (3.131) is discretized

0@ p) = [ {n3(e(0) B ¢ (@), B)) — 8- M@ —0,) AV

(3.162)
—/ ty - DD —0,) dA.
oBM
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The discrete incremental stationary problem takes the form

{o*,p"} = arg{ stat I (0%, p") } (3.163)

and identifies the extended generalized nodal displacements 9* and the discrete local
solution pair p” of the discrete problem at time ¢,,;. The discrete necessary condition
defines a global FE-system which is solved for the nodal unknowns 9*

0ell. = /Bh{%*T[S*] ~Nlg}dv — | Nty dA with S* = enr"

o (3.164)
oBh

expressed in terms of the generalized stresses S™ and a local equation for the computation
of the local solution pair p”

0 €mh =gy (3.165)

The system of nonlinear equations (3.164) is solved iteratively in a Newton solution scheme
which bases on the linearization

LinILfy. = T00. + [IK0.,.] - Ad* = 0. (3.166)
The extended generalized displacements 0* are updated according to the algorithm

0 =0 — I I umtil [|IT,

< tol (3.167)

expressed in terms of the symmetric monolithic tangent matrix

" Oenp” . (3.168)

c*hph

H,’;ha o /{%*T 1B} dV with C7 —8c*hc*h7T*h+0

In contrast to (3.159), this tangent matrix contains the generalized moduli C* that show
additional softening contributions arising from the local update procedure. The discrete
necessary condition (3.165) describes the evolution subproblem of the local internal vari-
ables p" := {Z" F"}. For rather more complex material models, this subproblem is a
nonlinear equation that is solved in a local Newton iteration carried out on Gauss point
level. To this end, consider the local linearization

Lin wh, = mh + [mhn] - Ap” = 0 (3.169)
that builds the basis for the update procedure of the local solution pair
pt <= ph — [W;f;hph]_l '71':;’};;1 until ||’ ph|| < tol. (3.170)

This local update algorithm bases on the local, monolithic, and symmetric tangent matrix

n ph ph- Note that within one iteration step of the global solution procedure (3.167) the

global unknowns 9* are frozen. Thus, the sensitivity d..»p” in the global tangent matrix
(3.168) at one global iteration step has to be determined iteratively on local level via
enforcing the condition

Dol + [0 sn] - Oeenp™ = 0. (3.171)
This finally gives the iterative update rule for the algorithmic sensitivity
ac*hph = 8c*hph — [ ;};ahph] 1 ac*hﬂ-n};:.h (3172)

and is build simultaneously with the local update directive (3.170). It does not disturb
the symmetry property of the global tangent matrix (3.168)s.
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Figure 3.9: Linearization of macroscopic deformation map. For small macroscopic defor-
mations the linearization of @,(X) yields the macroscopic displacement field @ and the
Eulerian configuration S coincides with the Lagrangian configuration B, i.e. x = X.

3.9. Restriction to Geometric Linear Theory

This section aims at a reduction of the previously discussed framework for generalized
continua undergoing large deformations to the small strain setting. First, the kinematics
of macroscopically small deformations are discussed. Then, the objective constitutive state
variables are introduced and the incremental variational principle is directly applied to
the canonical two-field and the viscous, extended three-field setting. At the end of this
section, an appropriate FE solution strategy is provided for both models.

3.9.1. Generalized Kinematics at Small Strains. In the context of small deforma-
tions, the macroscopic deformation is assumed to be small and can be obtained by a
linearization of the macroscopic nonlinear deformation map @,(X) evaluated in the refer-
ence configuration & = X. For a mathematical foundation of the linearization of the large
deformation kinematics, see MARSDEN & HUGHES [108]. As depicted in Figure 3.9, the
Eulerian configuration S coincides with the Lagrangian configuration B, where the La-
grangian and Eulerian gradients Vx(-) and V,(-) of an arbitrary field (-) are equal. Thus,
the gradient operator V(-) is introduced to denote the spatial gradient of the vector field
(). As a consequence, the macroscopic deformation field reads

) Bx7T — R3
u(x,t) : {(w,t) — u(x,t),

where w(x,t) is the displacement of the material point P at position & € B at time
t € 7. The exterior of the solid is decomposed into a domain 0By where the displacement
is prescribed in the sense of a Dirichlet boundary condition

u(x,t) = up(x,t) on IBy (3.174)

(3.173)

and a part 0B; where the macroscopic traction ty(a,t) is prescribed by a Neumann
boundary condition. Clearly, the common set of the displacement and traction boundaries
correspond to the empty set, i.e. 9Bz N IB; = (0. In the interior domain B, the strains are
assumed to be small. Thus, the norm of the macroscopic displacement gradient

|h| < e with h:=Vau(z,t?) (3.175)
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is bounded by a small number e. In contrast, the microscopic deformation gradient is
not bounded by a small number. Due to the coincidence of the Lagrangian and Eulerian
coordinates X = x, the microscopic deformation field can be re-defined

BxT — R™

w(x,t) : { (@.1) — a(z,t) = ¢(X,1) with X =x. (3.176)

Note that in the context of macroscopically small deformations, the FEulerian and La-
grangian microscopic deformation maps (3.4) coincide, i.e. ¢,(X) = @;(x). Regarding
the microstructural field, the surface of the solid is decomposed into a domain 0B;,, where
the micro-motion is prescribed by the Dirichlet-type boundary condition

and a domain dB;, where the microscopic traction £y(x,t) is prescribed by a Neumann-
type boundary condition. Obviously, the microscopic partition of the surface imposes the
constraint 9By N OB = (.

3.9.2. Constitutive Response of Generalized Continua. An adaption of the energy
storage and dissipation functionals (3.28) to the scenario of small deformations reads

E(u,) ::/B@bdv and D(u,;u,w) ::/ngdV (3.178)

in terms of the energy storage function i and the dissipation function ¢. Regarding
materials of grade one, they depend on the constitutive state

¢ :={u,Vu,u,Vu} (3.179)

containing the macro- and microscopic deformations and their gradients. Thus, the con-
stitutive functions can be specified to

Y =1(cg) and ¢ = P(¢o; o). (3.180)

The constitutive functions (3.180) have to be invariant with respect to arbitrary super-
imposed macroscopic rigid body motions

P(eo) = Y(cg) and  @(€o; €0) = B(eg5¢7), (3.181)
where ¢f == {a™, Vu', 4", Vu' } denotes the transformed constitutive state. This mod-
ified constitutive state takes into account the transformed macroscopic contributions

ut i =ut+wxz+e (3.182)
based on the time dependent, skew-symmetric, second-order tensor w(t) with the proper-
ties w? = —w and ||@]| < € describing an infinitesimal rotation. The vector €(t) is a time
dependent translation superimposed onto the displaced solid. In contrast, the microscopic
variables are unaffected by a macroscopic superimposed rigid body motion

at =, (3.183)

A direct consequence of (3.181) states that the free energy function ¢ cannot depend
on the macroscopic deformation @ and the skew part of its gradient skew[Vu] and the



3.9 Restriction to Geometric Linear Theory 59

dissipation function ¢ cannot depend on the macroscopic rate 4 and the skew part of its
gradient skew[Vu], respectively. Thus, the objective state is introduced

¢ ={Vsu,u,Vu}, (3.184)
which finally allows for the introduction of the reduced forms
Y=1(c) and ¢=g(éc) (3.185)

that a priori satisfy the principle of material frame invariance. In this formulation, the
symmetric part of the macroscopic displacement gradient can be identified as the classical
small strain displacement gradient

e:=Viu= ih+h"] with h:=Vu. (3.186)

3.9.3. Time-Discrete Incremental Variational Formulation. According to the
large strain formulation, the governing coupled field equations in the geometric linear
theory can be obtained by a time-discrete incremental variational formulation. The fo-
cus hereby lies on the canonical two-field setting and the viscous three field setting, the
remaining representations follow accordingly.

3.9.3.1. Time-Discrete Field Variables. In a time-discrete setting, the field variables
at the discrete solution times 0,%q,...,t,,t 1,1 are investigated. Within a typical time
step [tn, tnt1], the macro- and microscopic field variables evaluated at time ¢, read

w:=u(x,t,y1) and @:=w(x, ), (3.187)

where all variables without subscript are meant to be evaluated at current time ¢,,.1. The
global fields evaluated at the previous solution time ¢,, can be expressed by

uw, :=u(x,t,) and u,:=u(x,t,). (3.188)

As a consequence, the rates of these global fields are constant quantities within the time
increment under focus. They are defined by

w:=(u—a,)/r and := (@ —u,)/T. (3.189)
The rate of the constitutive state (3.184) is approximated via
c:=(c—c,)/T. (3.190)
In the extended setting, the dual dissipative thermodynamic forces
F =F(x,tyry) and f:= f(x,thy1) and F:= F(xz,tnsr) (3.191)
have to be introduced which are summarized in the array
f={F fF}. (3.192)

This array of dissipative forces is dual to the rate of the constitutive state (3.184).
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3.9.3.2. Incremental Energy, Dissipation, and Load Functionals. Associated with
a typical discrete time interval, the incrementally stored energy in the solid reads

E (@, @) = /tthEdt /{w blen) } dV (3.193)

and bases on the energy functional defined in (3.178);. Recalling the constitutive rela-
tionship (3.185), the incremental energy is considered as a functional of the macro- and
microscopic displacements w and @ at time ¢, 1, governed by the free energy function 1.
The incremental dissipation functional is obtained by the expression

t7L4*1
D" (@, ) = Ddt. (3.194)

tn

As discussed in Section 3.6, there exist different possibilities to model the constitutive
dissipation function. Making use of definition (3.185), and the approximated constitutive
rates (3.190), a canonical setting of the incremental dissipation functional is introduced

D™(@, @) = /B (76((c—¢,)/7ic,) } dV (3.195)

depending on the primary field variables w and @ at current time ¢,,,. Starting with the
smooth dissipation function (3.70), the incremental dissipation functional

Dy (@, / (5 (e = e) = 5 (plfica)t Y av (3.196)

is obtained, where n > 0 is the viscosity parameter. The incremental external work ex-
pended to the system within the discrete time interval by external actions on the multi-
field problem is given by the expression

tnt1
W (a, i) = / Pouy dt (3.197)
tn

Here, P..: is the total power of external loading consisting of macro- and microscopic
contributions. Assuming constant rates within the time step under focus, see equation
(3.189), the incremental work is considered as a functional of the macro- and microscopic
displacement u and @, respectively. Thus, at current time ¢,, 1 the external work is defined
by the algorithmic expression

W7 (a, ) iZ/i/-(ﬁ—ﬂn)dV+/ fx - (i — 10,) dA
+/:’y-('a—'an)dv+/ Fx - (i — 1) dA | (3.198)

in terms of the prescribed macro- and microscopic body force fields 4 and 4 and the
macro- and microscopic surface tractions £y and ty evaluated at the current time ¢,;.
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3.9.3.3. Canonical Incremental Minimization Principle. The canonical incremen-
tal minimization principle for generalized solids undergoing macroscopically small defor-
mations is governed by the incremental potential

I"(w,u) := E"(u,a)+ D" (u,a) — W (u,u) (3.199)
ial dissipati k
potentia energy 1sstpation wor

and bases on the incremental energy storage (3.193), the incremental dissipation (3.195),
and the incremental work (3.198). In view of a compact notation, the generalized consti-
tutive state as a function of the generalized displacements

c(u) ={Viu,u,Vu} and u:={wu,u} (3.200)
is introduced. The generalized vector of macro- and microscopic body forces
g:={% %} inB (3.201)
and the generalized surface traction vector
ty = {ty,ty } on OB :={0B;, 0B}, (3.202)

summarizing the macro- and microscopic surface tractions &y and &y are defined. The
incremental potential (3.199) can be reformulated in a compact format

/{7? ¢ien) — (u—un)}dV—/ b (1 1,) dA (3.203)
OB
In this expression, the extended incremental internal work density

m(€ en) = () = P(en) + 7 o((¢ =€) /75 €n) (3.204)

is introduced, determined by the free energy function 1 and the dissipation function ¢.
In this sense, the finite step sized incremental minimum principle reads

{u,a} = arg{ i%f i%f 1" (w,u) } (3.205)

and determines the current macro- and microscopic displacements w and 4 as the mini-
mum of the incremental functional (3.203). The non-smooth necessary condition reads

0 € 0117 = 6117 + 65117, (3.206)

where the single variations can be summarized by the explicit expressions

517 /B { [Dosats + Do.0d] : V6@ — -0} dV

—/ ty-oudA
OBz

i o /B ([Ovat) + Bg.0d] : Vit + [Dath + 0 — 7] - 60} dV

—/ ty - dudA
oB;

in terms of the admissible variations du € W2 and du € W2 of the current macro- and
microscopic displacements. The Euler equations of the minimum principle (3.205) follow
by application of Gauss’ and localization theorem. They exhibit a structure formally
similar to those obtained in the large strain setting as summarized in Table 3.1.

(3.207)
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3.9.3.4. Rate-Dependent Principle with Threshold Function. The variational
principle for the rate-dependent setting of the dissipation function is governed by the
extended incremental potential

7 (w, @, f) = E7(@,@) + D7 (@, @, §) — W (w, @) . (3.208)
N——— S— ~ ~ _ ~ _
potential energy dissipation work

It consists of the incremental energy storage (3.193), the incremental dissipation (3.196),
and the incremental external work (3.198). A compact notation of the incremental varia-
tional principle is founded on the generalized constitutive state and displacements

(u) = { Vi, 4, Vi, f} with o= {a,a,f} (3.209)

that in addition to (3.200) contain the dissipative thermodynamic forces f. Thus, the
incremental potential (3.208) can be reformulated in the compact format

I (u /{ ™, (¢ g -(u—u,)}dvV— /63 ty - (u—u,)dA, (3.210)

where the definitions of the generalized volume and surface forces (3.201) and (3.202)
have been employed. The local quantity

my (€55 6) = ¥(e) = Plen) +F- (¢ —¢n) — % (o(f; €a))3 (3.211)

is denoted the extended incremental internal work density and is determined by the con-
stitutive free energy function ¢ and the yield function . In this sense, the finite step
sized incremental stationary principle reads

{a,q,f} = arg{ i%f i%f sgp L (w, @, f) } (3.212)

and determines the current macro- and microscopic displacements uw and @ and the dis-
sipative thermodynamic driving force § as the saddle point of the incremental functional
(3.210). Its variation characterizes the smooth necessary condition

0 = 6117 = 05l + 0alL + 61T | (3.213)

where the single variations are summarized by the explicit expressions

5ﬁH;;T::/B{ [Ov.at + F| : Viou — 5 - du } dV

—/ ty - dudA
oB;

5,111;7::/8{ [Ovat) + F]: Vou + [0 + F — ] - 0u} dV (3.214)

—/ ty - 0udA
0B;
)
ITT = /B (fe= e = T ()adyel o7} av

in terms of the admissible variations du € W2, du € Wa, and 6f of the current macro-
and microscopic displacements, and the dissipative forces. The Euler equations of the
stationary principle (3.212) follow by application of Gauss’ and localization theorem and
exhibit a structure conceptually similar to the large strain setting, see Table 3.4. Such a
formulation is particularly convenient due to its smooth, viscous character.



3.9 Restriction to Geometric Linear Theory 63

3.9.4. FE-Discretization of Incremental Variational Formulation. The first step
towards a finite element treatment of the coupled set of equations consists of a discretiza-
tion of the continuous solution domain B into a discrete domain B". The discrete domain

Nen

B"= A B (3.215)
e=1

consists of the entity of all element sub domains B°. The symbol A’ is introduced for
the assembly operation of all elements e = 1, ..., n.,. Within the concept of isoparametric
finite elements, the geometry is approximated on element level B¢ by the relation

Nel

z' =Y Naf (3.216)
i=1

expressed in terms of the shape functions V;(€) as a function of the local isoparametric
coordinates &, the given nodal coordinates x{ of the element e under focus, and the number
of nodes per element n,;.

3.9.4.1. Canonical Incremental Minimization Principle. In the canonical repre-
sentation, the discretization of the generalized deformation (3.200), contains the macro-
and microscopic deformation only. They are approximated via

W= A [Z ) 1 ] AT ] = e

in terms of the macro- and microscopic approximation matrices [N]¢ and [IN]¢ in com-
bination with the nodal macro- and microscopic displacements d¢ and d¢. In view of a
compact notation, the approximation matrices are summarized by the generalized matrix
I that already includes the assembly procedure. At node ¢ of the finite element mesh,

the generalized nodal displacements are
0, =[d,d]". (3.218)

Based on the discrete primary fields (3.217), the discrete constitutive state is evaluated

Nel € 7 7€
h N [Bl;d, N |[Bld
= -l | = o e 21
c=A [Z [[B]@d” Albra (3.219)
as a function of the generalized nodal displacements and the macro- and microscopic ma-
trices [B]¢ and [B]$ for the approximation of the constitutive state. All element matrices
mentioned so far depend on the geometric and microstructural dimension, they are spec-
ified in the corresponding chapters. With the discrete primary variables (3.219) and the

discrete constitutive state (3.217), the incremental potential (3.203) is discretized
@)= | {7"("(0);c"(d,) —g- N0 —-2,)}dV - / ty - M0 —0,)dA. (3.220)
Bh B

As a consequence, the discrete incremental minimization principle

{0} = arg{ iralth(D)} (3.221)
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is introduced that determines the generalized nodal displacements 0 of the discrete prob-
lem at time ¢,41. Based on the variation of the discrete constitutive state vector (3.219)
with respect to the generalized nodal displacements

Nel o 37 €
h_ A (Bl 0 | |dd| | _
Spc! = é [Z; [ p [B];} {&l 1= B(z) 60, (3.222)
the discrete necessary condition to the minimum principle (3.221) can be specified
OEH?:/ﬂﬂBqﬂ—Jﬁh}ﬂ/— Nty dA with S := dur" (3.223)
Bh oBh

expressed in terms of the generalized stresses S. This system of nonlinear equations is
solved iteratively in a Newton solution scheme that bases on the algorithm

<=0 [ - 11% until I < tol. (3.224)

This algorithm contains the symmetric monolithic tangent matrix
Bh

where the generalized moduli C' have been introduced.

3.9.4.2. Extended Incremental Variational Principle. In addition to the gener-
alized constitutive state (3.219), the extended incremental variational principle involves
the thermodynamic forces as global variables. In a compact notation, the generalized
deformation vector (3.209), is approximated via

e B[S 2B ALY GG - ono

e=1 i=1 i e=1

In addition to the approximation matrix of the canonical setting [D%]¢ in combination with
the generalized displacements ¢, a further matrix [A[$ is introduced to approximate the
dissipative thermodynamic forces. Regarding a compact notation, the global matrix Dt
is introduced that contains all these matrices in an assembled format. At node ¢ of the
mesh, the extended nodal unknowns are

o =[0,f]i =[d.d f]. (3.227)

Based on the discrete primary fields (3.226), the constitutive state is approximated via

Nen el [B]zec_lze Nen [B eae
@) = A [Blsd; || = A |BlId (3.228)
S CRIC AN 2\

as a function of the extended nodal displacements (3.227) and in terms of the matrices
[B]¢ and [B]¢ for the approximation of the macro- and microscopic state and the matrix
[A]¢ to approximate the thermodynamic forces. All element matrices depend on the ge-
ometric dimension and the nature of the material’s microstructure, they are introduced
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in the respective chapters. Based on the discretization (3.226) and (3.228), the extended
potential (3.210) can be expressed in its discrete counterpart

I (%) = {w;h(c*h(a*);c*h(a;))—g-m(a—an)}d\/—/ ty-M(0-0,) dA (3.229)
Bh B}

allowing for the introduction of the discrete incremental stationary principle

{0"} = arg{ s’g@t H;;h(b*) }. (3.230)

It determines the generalized nodal displacements ® and the nodal thermodynamic forces
f of the discrete problem at time ¢,,,;. Based on the variation of the discrete constitutive
state vector (3.228) with respect to the extended generalized nodal displacements

na [[B]f 0 0O 6d]°

Soc = A |D | 0 [Blf 0| |dd| | =B"(x)s0", (3.231)
=tle=t | 0 0 [Alf] [0f],

7

the discrete necessary condition to the stationary principle (3.230) can be specified

0=1II" = Bh{ B[S —nTg}dV — thmTtN dA  with 8% :=d.nm", (3.232)
t

expressed in terms of the extended generalized stresses S*. This system of nonlinear equa-
tions is solved iteratively in a Newton solution scheme based on the algorithm

0 =0 — [ I umtil [T || < tol. (3.233)
This algorithm contains the symmetric monolithic tangent matrix

H;;fla*a* - / { %*T[C*]%* } dV  with C* = 8?*hc*h7'r;h y (3234)
Bh

where the extended generalized moduli C* have been introduced.
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4. Variational-Based Formulation of Gradient-Type Damage

The overall goal of this chapter is the application of the previously introduced gener-
alized continuum mechanical framework for gradient-type standard dissipative solids to
a model problem of gradient-type damage mechanics. The books by KAcHANOV [90],
LEMAITRE & CHABOCHE [99], LEMAITRE [98], and LEMAITRE & DESMORAT [100] pro-
vide an overview over the broad topic of damage mechanics. Among other strain softening
materials, damage mechanics exhibits the phenomenon of localization. A good introduc-
tion to that subject can be found in the works by FOREST & LORENTZ [46] and DE
BORST [33], where the effect of material instability and the effect of mesh sensitivity are
explained. Damage models that overcome this severe drawback are based on a damage-
gradient extension of the constitutive functions, see e.g. PEERLINGS [146] and PEERLING,
GEERS, DE BORST & BREKELMANS [147] and the references therein. The model intro-
duced in the sequel shows resemblances to the model on gradient-type damage mechanics
as discussed by FREMOND & NEDJAR [52]. In this work, the power of internal forces
is modified to take into account additional terms related to the rate of damage and its
gradient. As a consequence, an additional balance equation is obtained that describes
the global evolution of the damage field. Thus, it seems to be obvious to fit such types
of damage formulations into the variational-based framework for gradient-type standard
dissipative solids.

This chapter is structured as follows. In a first step, the phenomena of material instabilities
and mesh sensitivity in strain softening materials are reiterated. Then, the fundamentals
of classical continuum damage mechanics are briefly reviewed. The basic kinematics are
discussed and an isotropic degradation of the stored bulk energy and a rate-independent
formulation of the dissipation function are introduced. Alternative smooth representa-
tions of the rate-independent/non-smooth dissipation function are discussed yielding a
penalty-type model I and a viscous over-force model II. For these constitutive functions,
the application of the incremental variational framework delivers the algorithmic repre-
sentation of the governing balance equations and provides the basis for a unified numerical
implementation. The local characteristics of both models are investigated and for model
IT representative numerical examples are discussed that demonstrate the performance of
the gradient-type framework with regard to the regularization of shear bands.

4.1. Material Instabilities and Mesh Sensitivity

Failure of engineering structures through material instabilities can be related to the phe-
nomenon of localization which describes the concentration of high inelastic deformations
in inhomogeneous small deformation patterns. This effect shows up in a large variety of
materials, the book by NADAI [138] provides some general information for that issue. A
detailed discussion of failure and post-failure analyses of inelastic geomaterials can be
found in the books by VARDOULAKIS & SULEM [173] and JUMIKIS [88] among others.
In this class of materials, non-reversible deformation processes occur during the loading
history. Inelastic deformations in geomaterials have an inherently non-uniform charac-
ter. Whenever a deformation occurs, due to relative motions between grains or due to
micro-cracking, the deformation at a lower scale is discontinuous. Considering size scales
capturing groups of grains or cracks, the plastic deformation often appears uniform in
specimens which are themselves subjected to macroscopically uniform loading conditions.
But even on this larger macroscopic scale, a critical configuration of the body may ex-
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Figure 4.1: Localization phenomena in solids. a) Shear band formation in sand, taken from
ALSHIBLI, BATISTE & STURE [1], b) detailed microscopy of shear band craze in polymers
produced by tensile deformation, taken from L1 [103], and ¢) electron micrograph showing
shear bands in metallic glasses, taken from LEWANDOWSKI & GREER [101].

ist where the homogeneous deformation breaks down into bands of localized shearing.
In the case of granular solids, shear localization induces intense inter granular slip lead-
ing to a strong dilatation of the material inside the localized zone. Experimental studies
exhibiting the phenomenon of shear band formation are illustrated in Figure 4.1a) for
the analysis of sand, taken from ALSHIBLI, BATISTE & STURE [1], in Figure 4.1b) for
crazing effects in polymers, see L1 [103], and in Figure 4.1c) for investigations on metallic
glasses, taken from LEWANDOWSKI & GREER [101]. Mathematically speaking, localiza-
tion is the result of strain concentrations in a critical zone as the result of a bifurcation
of the local constitutive behavior of the material. The orientation of the localization zone
thereby does not depend on the boundary conditions, it is an intrinsic characteristic of the
material. Regarding numerical implementations of standard local material models, severe
difficulties may arise with respect to mesh sensitivity. Localization then develops in a zone
depending on the size of the triangulation. A mesh refinement results in a smaller width
of the localization band, the associated energy dissipation decreases to physically unreal-
istic values. The necessary and sufficient condition for a unique solution has intensively
been discussed by HILL [79, 80], and states the positive definiteness of the second order
work. Thus, material instability occurs whenever the tangent tensor in the constitutive
rate equation obtains a zero eigenvalue. In general, this effect shows up in the analysis of
strain softening behavior of inelastic material response and can be identified by a negative
slope in the resulting structural load-deflection curves. The loss of positive definiteness
is equivalent to the loss of ellipticity of the governing partial differential equation. As a
result, the post critical material response for strain-softening materials is not well posed,
numerical results become meaningless. For a detailed discussion see e.g. BELYTSCHKO,
FisH & ENGELMANN [12] and DE BORST [32], among others. The implementation of clas-
sical damage mechanics as a standard continuum model exhibits the severe problem of
mesh sensitivity in the post critical regime of the deformation process. The reason for this
mesh sensitivity can directly be related to a local change in the character of the governing
partial differential equations. The initial boundary value problem loses its well-posedness
resulting in an infinite number of possible solutions. This means that an increase of the
number of elements used in a simulation also increases the number of possible solutions.
In a first step, the mechanical and mathematical reasons for this phenomenon are eluci-
dated. Then, in a subsequent step a one-dimensional gradient-type technique is discussed
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to overcome this problem. This section closes with the explanation of mesh sensitivity for
a simple material model with linear softening behavior.

4.1.1. Stability and Ellipticity. This section provides the reader a short summary of
bifurcation and stability analysis and is by no means complete. For further investigations
on this subject, the reader is referred to HILL [79, 80] and NEILSEN & SCHREYER [140].
Regarding small deformations, an important criterion for a limit point on the continuum
level bases on the constitutive rate equation

o:€>0. (4.1)

This scalar product becomes negative when the slope of the overall load-deflection curve
becomes negative. This is the so-called phenomenon of strain-softening and occurs in
inelastic constitutive models, e.g. in damage mechanics and plasticity. Note that the over-
all load-deflection curve is the homogenized response of the specimen undergoing local
stress concentrations that cause high inhomogeneous deformations. This information is
lost when the global load-deflection curve is looked at only. Focusing on the constitutive
rate expression (4.1), the relation between the stress rate ¢ and the strain rate € reads

oc=D:¢, (4.2)
with the continuous material tangential stiffness D. Thus, equation (4.1) is reformulated
e:D:e>0 (4.3)

and allows to determine a limit point of material instability. Such a point is characterized
by the loss of positive definiteness of the material tangential stiffness tensor

det[D] = 0. (4.4)

Following HILL [79], structural instability occurs when the entire structure B violates the
constitutive rate equation (4.1) in an integral format

/d:édV>O (4.5)
B

for kinematically admissible rates €. This argument is violated if a local instability (4.1)
occurs, finally yielding a structural instability. The facts considered so far do not explain
the phenomenon of mesh sensitivity. The reason for this observation can be found in the
loss of positive definiteness of the material tangent tensor D which causes the character
of the governing equations to change, they lose their elliptic character. Mathematically
speaking, ellipticity stands for the fact that discontinuous solutions are not possible. In
order to obtain a criterion for localized bifurcation, a short review on the theory of singular
surfaces with jumps in the rate expression is given. For further reading on this subject,
see e.g. THOMAS [170] and HiLL [80]. As depicted in Figure 4.2, a continuum B contains
a surface I' C B characterized by a normal n at the position @ € I'. The surface describes
the place of possible localized bifurcations, where the deformation becomes discontinuous.
In the context of displacement-compatible singular surfaces, the displacement field u is
considered to be continuous across the singular surface

[ul]=ut—u =0 at xzel, (4.6)
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B* B~

Figure 4.2: Singular surface I' with normal n = n™ = n~ at position € I' in a homoge-
neous body B = BT U B~ and traction vector t = tT = ¢t~ at the discontinuity I'.

whereas the evolving localization is characterized by a jump in the velocity field @ and in
the gradient of the velocity field Vu

[u] =ut -4~ #0 and [Vu]=Va"—-Vau #0 at zeTl. (4.7)
A particular compatibility condition for the strain rate can be introduced
[[Vsu]]:%[m®n+n®m], (4.8)

where m defines the shape of the discontinuity. For m-n = 0 the localization pattern
corresponds to the simple shear mode, for m-n = 1 localization occurs as a pure extension
perpendicular to the discontinuity surface. Now, assume that localization has just begun
to evolve. The stresses and strains are continuously distributed over the body, whereas
their rates are discontinuously distributed, separated by the discontinuity surface I' whose
normal direction n has to be determined. Singularity points are identified by the postulate
of continuity of the traction vector t across the discontinuity surface I, i.e.

[tfj=t"—t =n-[c]=0 at zeTl. (4.9)
A combination of the rate equation (4.2) and the compatibility condition (4.8) gives
[tfj=n-[6]=9n-D-n] m=7A-m=0 at wel, (4.10)

where the minor symmetry of the tangential stiffness tensor D has been exploited. Fur-
thermore, the second order tensor A =n - D - n is introduced, often denoted as acoustic
tensor or localization tensor. This tensor is a function of the orientation n of the singular
surface ' at position & with given tangential moduli D. A nontrivial solution of (4.10)
only exists when the determinant of the localization tensor changes its sign, i.e. for

det[A] =0 (4.11)

and identifies the first point in the deformation history where localization starts. If equa-
tion (4.11) is met, discontinuous solutions can emerge and a loss of ellipticity of the
governing differential equations occurs. Note that ellipticity is a necessary condition for
the well-posedness of the boundary value problem. The loss of ellipticity yields an infinite
number of possible solutions, in particular those with discontinuities. When numerical so-
lution procedures are applied to solve such systems, they tend to capture the discontinuity
as accurately as possible and resolve the localization zone with the smallest volume that is
available, of course limited by the local element size. To resolve the evolving discontinuity
surface in an adequate manner, special approximation techniques have been discussed in
literature, see e.g. MIEHE & SCHRODER [128].
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Figure 4.3: Localization and mesh sensitivity in one-dimensional bar. a) Continuous setting
with localization starting at the weakest point P; and b) discretization with m elements.

4.1.2. Localization and Mesh Sensitivity in One Dimension. To clarify the effect
of strain softening and localization, consider a bar with uniform cross-sectional area A
subjected to an uni-axial tensile stress o, see Figure 4.3. The specimen is fixed at the left
side and the stress o is applied at the opposite side of the bar. Suppose that the specimen
deforms homogeneously up to a critical maximum tensile strength y, where the weakest
point P; in the specimen starts to fail. A subsequent failure does not occur throughout the
entire length of the bar, instead a local failure process zone develops uniformly across the
specimen parametrized by the coordinate x*. The constitutive response of the specimen
is assumed to behave linear elastically first, followed by a simple linear softening law.
The kinematic is additively decomposed into an elastic stress producing term £ and an
inelastic term &P

e=¢e"+¢P. (4.12)

Focusing on monotonic loading processes, the kinematic relation in the elastic regime of
the deformation takes the form

ef=¢ and /=0 for 0<e<gg. (4.13)
In the softening regime the elastic strain is scaled by a softening parameter h € R, via
e=—he and e =(1+h)e for gg<e<e,. (4.14)

Thus, the local constitutive behavior can be summarized by the relation

Ee if0<e<eq
o=1 Yo—hE(E—¢) ifeg<e<egy (4.15)
0 ife >e,,

in terms of Young’s modulus E, the ultimate tensile strength yo with its corresponding
critical yield strain €, and the ultimate stain €, prior complete loss of integrity. A visual-
ization of the constitutive response is illustrated in Figure 4.4a). An alternative possibility
to describe the constitutive response bases on the introduction of a yield function

oyl —eP/eb) if 0 <eP < el
_{ v P (4.16)
expressed in terms of the ultimate plastic strain
1+h
e = %% ::n%, (4.17)

for an illustration see Figure 4.4b). The discussion of an analytical solution of this problem
can be found in SCHREYER [156], where an additional gradient-term is introduced in the
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Figure 4.4: Local linear softening. a) Relationship between stress o and axial strain e with
ultimate tensile strength yo and b) alternative description based on a yield criterion.

following way. In the softening equation (4.16), the local plastic strain e? is replaced by
its nonlocal counterpart

— y(](l - gﬁon/EI;) if0<er < 515
‘p_{ 0 if e? > et (4.18)
containing a first order gradient-type expansion of the local plastic strain.
der\ 2
Pn=c"+0— 4.19
=242 () (4.19)

where the length scale parameter [ enters the formulation. In a monotonic loading process,
the material behaves linear elastically up to the peak stress. At this point, localization
starts at the weakest position P; inside the specimen in combination with a local softening
behavior. In the remaining parts of the bar, the material unloads elastically. The softening
regime is characterized by o = ¢ which means that the differential equation (4.19) has to
be solved for the plastic strain &

deP

el + I? (d—)2 = (1—0/y)el. (4.20)

T

In the one-dimensional setting, this equation corresponds to an ordinary differential equa-
tion that can be solved in combination with the appropriate boundary conditions. The
trivial local solution is characterized by

e =(1—-0o/y) el (4.21)

<
(=}

stress o [N/mm?]

total strain e [-]

Figure 4.5: Local linear softening at the material point P; of a one-dimensional bar.
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Figure 4.6: Average stress-strain response (4.25) for local analysis of a bar in tension. Load-
deflection curves for triangulations 73 with m = 1, 73 with m = n and 73 with m — oo.

and is associated with the homogeneous deformation in the softening regime. The nonlocal
solution provides an evolving softening zone characterized by

e? = (1 —o/yy) el — x*/41%. (4.22)

For positive plastic strains £, the solution of (4.22) is only valid inside the domain

0<ax<z with 2" =20\/(1-0c/yo)eh. (4.23)

For a local theory with [ = 0, the zone size vanishes z* = 0 for all stress values. In
a nonlocal or gradient-type theory, the size of the localization zone at the beginning of
softening o = yq is zero x* = 0, at the end of the softening process o = 0, the size of the
localization zone reaches its maximum value

ot =2/l (4.24)

The key characteristic of a nonlocal approach is that softening is enforced over the domain
0 <z <z . with a finite size, localization in a zone of zero width becomes impossible.
As illustrated in Figure 4.5, softening is initiated at P, and strain-softening is followed
continuously. An adjacent point P, inside the domain 0 < z* < z7 . initially unloads
elastically until the present gradient reduces locally the yield limit as far as the stress point
is on the yield surface. Then, strain softening of the stress-strain curve is followed. At a
point P outside or on the boundary of the softening zone 0 < z* < z7 . the stress goes
back to zero, total elastic unloading is present. In a next step, a discretized counterpart
of the bar is investigated with the local theory [ = 0. As depicted in Figure 4.3b), one
element in the center of the specimen has a reduced tensile strength causing localization
to start inside this particular element. Consider again a monotonic loading process. The
stress state in all elements grow homogeneously up to the point where the maximum
tensile strength in the weakest element is reached. Localization then starts inside this
element, whereas the neighboring elements unload elastically. Beyond the peak load, the

average strain state in the bar is given by

m

— : 1+ h
€ _ 2, th—9 with n:= ——

E m FE h '’

(4.25)

where m denotes the number of elements employed to discretize the bar. The results
are plotted for different ratios n/m in Figure 4.6. Here, one can clearly observe that the
computed post-peak curves do not converge to a unique curve. The reason is found in the



74 4 Variational-Based Formulation of Gradient-Type Damage

fact that the governing equations predict the failure mechanism to be a line crack with
zero width. The numerical solution scheme tries to resolve this line crack as accurately
as possible. This results in a localization within one single element irrespective of the
element’s width. The impact on the averaged stress-strain curve is obvious. An infinite
number of elements m — oo forces the stress-strain curve in the post-critical regime to
go back on the original loading path. For a more detailed discussion of this subject, the
reader is referred to the works by DE BORST [32, 33], DE BORST & MUHLHAUS [34],
BazanT & Ou [10], BAZANT & LIN [9], and SCHREYER & CHEN [157].

4.2. Fundamentals of Continuum Damage Mechanics

The scope of this section is to give the reader some necessary information about the mi-
cro mechanics of continuum damage mechanics. The phenomenon of damage describes a
physical evolution inside the material that causes materials to break. The mechanics of
damaging processes bases on the introduction of mechanical variables that describe the
deterioration of the material on a continuum level. On the micro-scale level, the accu-
mulation of micro stresses near defects and the breaking of bonds damages the material.
At the meso-scale level, this results into the evolution of surface discontinuities, micro-
cracks, or volume discontinuities in the form of cavities. On these levels, the damage
process can be characterized by damage variables in a continuous manner. This postu-
lates that the medium is discontinuous at the micro- and meso-level, but is considered to
be continuous at a larger continuum level. In the pioneering work by KACHANOV [89],
a scalar damage variable is introduced to capture these mechanisms. Tensorial damage
variables are used to describe anisotropic damage processes that are based on the ob-
servation that micro-cracking often occurs perpendicular to the largest positive principal
stress. For an introductory treatise of these phenomena, the reader is referred to the books
by KACHANOV [90], LEMAITRE & CHABOCHE [99], LEMAITRE [98] and LEMAITRE &
DESMORAT [100], and the references therein. In an engineering language, the damage
variable is an averaged quantity obtained by a homogenization procedure of variables
living on the micro- or meso-scale. For this homogenization, the representative volume
element must be small enough to capture effects that are responsible for the evolution
of damage, i.e. the creation of micro-cracks or discontinuities, breaking of atomic bonds,
and the plastic enlargement of micro cavities. To this end, consider a damaging material
that possesses a representative volume element living at the material position X € B.
On the meso-scale, this representative volume element describes in an averaged sense the
effect of failure due to micro defects over its volume. For anisotropic damage processes,
the microscopic deformation map (3.4) can be specified to

. BxT — M

PX 1) { (X, 1) = M(X.1) = p(X, 1), (4.26)
where the abstract microstructural configuration M C R3*3*3%3 ghelters the fourth-order
anisotropic structural tensors M. Aiming at the construction of a continuum mechanical
framework for damage mechanics, there exist two possible alternative approaches. A good
overview over these approaches can be found in SIMO & JU [163, 164]. The first possibility
bases on the concept of effective stress, where LEMAITRE [97] introduced the hypothesis
of strain equivalence: the strain associated with a damaged state under the applied stress
is equivalent to the strain associated with its undamaged state under the effective stress.
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Figure 4.7: Hypothesis of strain equivalence. The strain associated with a damaged state
€z2 Of the representative volume element under the applied stress o,, is equivalent to the
strain €5, associated with its undamaged state under the effective stress o¢,.

For a visualization, see Figure 4.7. This hypotheses yields the effective stress
c°=M"':0. (4.27)

As illustrated in Figure 4.8, the second possibility bases on the concept of effective strain,
where the hypothesis of stress equivalence is postulated: the stress associated with a dam-
aged state under the applied strain is equivalent to the stress associated with its undam-
aged state under the effective strain. This yields the effective strain

e=M:e. (4.28)

For the isotropic case, the mechanical behavior of micro-cracks, or micro voids does not
depend on their orientation inside the material and is characterized by a scalar variable
d. Thus, the tensorial object M simply reduces to M;s, = (1 — d) [*¥™ where [*¥™ is the
symmetric fourth order identity tensor and d € [0, 1] the scalar-valued damage variable. As
a result, the abstract microscopic manifold simply reduces to the one-dimensional space
M C R. In order to get a clear understanding of isotropic damage processes, consider a
representative volume element as shown in Figure 4.9. The representative volume element
is cut at height h into two parts. The total cross section of the volume element A exhibits
cracks and micro cavities with a total effective area Ag). The amount of damage is then
determined by
Ay
VB
A homogenized quantity of d that is used in the continuum mechanical formulation is
obtained at the height A which is most damaged

d(X,N,h) = (4.29)

A(X, N) = max[d(X. N, h)]. (4.30)
//u---O'zzn
E:?cac f:__ |__-: / Exx
1 1 _ _ 1

‘ Oz

Figure 4.8: Hypothesis of stress equivalence. The stress associated with a damaged state
0z, under the applied strain ., is equivalent to the stress 0., associated with its undamaged
state under the effective strain ¢,.
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]

Figure 4.9: Motivation of damage variable d. Ay is the effective area of all microdefects
that lie inside the total area A of the representative volume element’s cut surface.

Starting with this definition, it is obvious that the value of the scalar-valued damage
variable d lies in a bounded domain d € [0, 1]. The value d(X, N) = 1 describes the fully
broken and d(X, N) = 0 the undamaged state of the material. Thus, d can be looked at
as an effective surface density of micro defects.

4.3. Isotropic Strain-Gradient Damage Mechanics at Small Strains

This section is concerned with the application of the proposed gradient-type framework
for standard dissipative solids to a model problem of damage mechanics at small deforma-
tions. In a first step, the basic kinematics and state variables are introduced. Hereby, the
focus lies on an isotropic damage process that is characterized by a scalar-valued dam-
age variable d. A subsequent step is concerned with the introduction of the constitutive
equations, namely the free energy function showing an additional damage-gradient term
combined with an energetic length scale parameter and the dissipation function. For the
latter one, a canonical two-field and an extended three-field representation is investigated.
Having the constitutive equations at hand, the full boundary value problem is described
and the governing equations derived from the argument of virtual power. As an alterna-
tive, two incremental variational statements are set up that build a perfect basis for the
numerical implementation.

4.3.1. Basic Kinematics and State Variables. Focusing on a continuum mechanical
description of isotropic damage mechanics, besides the macroscopic displacement field
u, a scalar quantity « is introduced that describes in a homogenized sense a gradual
deterioration process of the microstructure via micro-crack and micro-void nucleation

w:={u} and w:={a}. (4.31)

The macroscopic strain € = Vyu can additively be decomposed into elastic and inelastic
parts yielding the definition of the stress producing elastic strain

e=ec—¢e? with e’=d(a)e. (4.32)

In this expression, the inelastic part of the strain e is assumed to be proportional to
the total macroscopic strain e. Hereby, the proportionality factor d(«) corresponds to a
function that relates the present microstructural deterioration « to a continuous damage
variable d. This mapping function d : Ry — R, is a monotonic increasing, smooth
function with the property d € [0, 1] for a € [0, 00). It is characterized by

dla)=1-(14+a)™", (4.33)

where d(a) = 0 describes the undamaged state and d(«) = 1 the fully damaged state
of the material. An increasing value for the parameter v amplifies damage evolution, a
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Figure 4.10: Mapping function for damage process. Increasing v enforces damage evolution.

decreasing value for v diminishes damage evolution, see Figure 4.10. As discussed earlier
in Section 4.2, the elastic stress producing strain for isotropic damage processes (4.32);
can alternatively be obtained by the hypothesis of stress equivalence

e =M e=(1—d(a)e with M, = (1—-d(a))Il*¥", (4.34)

expressed in terms of the fourth-order identity tensor I*¥™. The effective strain (4.34);
is used as a state variable for the description of energy storage mechanisms related to
elastic macroscopic distortions. Additional energy storage mechanisms are introduced that
are related to homogeneously and inhomogeneously distributed distortions surrounding
microscopic defects characterized by the field variable oo and its gradient Va. Thus, the
constitutive state can be specified to

c:={¢g,a,Va}, (4.35)
which builds the kinematic basis for the construction of the constitutive equations.

4.3.2. Isotropic Degradation of Stored Bulk Energy. In what follows, the consti-
tutive equations for a model problem of isotropic gradient-type damage are introduced.
According to (3.28)1, the free energy stored in the solid B is defined by

E(u, ) = /qu(c) v, (4.36)

where the free energy function consists of contributions arising from elastic macroscopic
distortions characterized by the effective strain €° and from microscopic inhomogeneously
distributed distortions characterized by Va. A decoupled representation reads

P(c) = &loc(se(s,a)ljt dnon(Val . (4.37)
elast. m;,rcro—dist. inh. mi‘crro—dist.

For the particular model under focus, the energetic contributions take the specific form

Yic(e%(e, @) = 3%, )T = 3 (1 —d(a))? [lelT,

5 (4.38)
Ynon(Va) = %/LF IVal?,
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where the elastic moduli €' := A1 ® 1 4+2ul*¥™ contain the Lamé constants A and p, and
[ is the length scale parameter. According to (3.39), the rate of energy storage

d

E(e i a) = E/Blp(c) v = /B{(ﬁsib) e+ (Bu)a } dV (4.39)

is governed by the total stresses and the elastic driving force
o =00 =(1-d(a))’C:e and f°:= 0,0 =—(1—d(a))d(a)|el|t—pul* Aa. (4.40)
For monotonically increasing functions d(«) the elastic driving force (3¢ is strictly negative.

4.3.3. Dissipation Functions for Damage Evolution. In damage mechanics, re-
versible processes are not considered, effects of self-healing are excluded. The irreversibility
constraint is satisfied by locally ensuring a positive evolution of the damage field

a>0. (4.41)
For rate-independent processes, the dissipative material response is characterized by

D(d; d) :/¢(¢; ) dV:/&cgﬁ(t;c) ¢dV =D(d;d), (4.42)

where for positively homogeneous dissipation functions ¢ the dissipation potential func-
tional D is identical to the dissipation D. The dissipation function

O(E3¢) = Procd; ) (4.43)

hom. micro-diss.

is assumed to be influenced by homogeneously distributed damage only.

4.3.3.1. Model I: Canonical Two Field Setting. A dissipation function that a priori
fulfills the growth condition (4.41) bases on the non-smooth representation

qgloc(d; Oé) = ¢c a+ I—l—(a) ) (444)

where the parameter 9. is a constitutive threshold value and I, (z) is the non-smooth
indicator function for the set R of positive real numbers. The latter is defined by

I+(:1:):{ 0 ifz>0

+00 otherwise,
ensuring a positive damage evolution. For a visualization see Figure 4.11a). As depicted in
Figure 4.11b), the indicator function can be approximated by the penalty-type expression

(4.45)

I (2) = 5(x)?., (4.46)
based on the ramp function (x)_ := (|z| — 2)/2 of the set R_ of negative real numbers.
For an illustration see Figure 4.11d). The constant € is a regularization parameter that
enforces for € — oo the exact satisfaction of the constraint condition (4.41). Making use
of the approximation (4.46), a smooth representation of the dissipation function (4.44) is
introduced

Ploe(d; @) = Yo v + §<d>2_ : (4.47)

which is used as a first attempt to model the dissipation in damage mechanics.
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Figure 4.11: Convex functions. a) Indicator function of R4 and b) regularized indicator
function I, (x) = §(x)? of the Ry. ¢) Ramp function (z)4 := (|z| 4+ 2)/2 of Ry and d)
ramp function (z)_ := (|z] — z)/2 of R_.

4.3.3.2. Model IT: Extended Three Field Setting. An alternative formulation of the
dissipation function that also fulfills the damage growth condition (4.41) is constructed
by taking into account the thermodynamic driving force dual to the damage field

f=1{p}. (4.48)
An elastic domain [E in the space of dissipative forces is bounded by the threshold function
P(B) =B —1. <0 (4.49)

and characterizes for ¢(3) < 0 an elastic domain without damage accumulation. An
appropriate dissipation function is obtained by the constrained optimization problem

¢(¢;c)=21;%[ﬂd] with E:={8[¢(3) <0}, (4.50)

also known as principle of maximum dissipation. The fully rate-independent constrained
optimization problem (4.50); is solved by a Lagrange-type solution strategy

Droc(é; ) = ﬁsggo[ﬂo'z —Ap(6)] (4.51)

with the Lagrange multiplier A\. The necessary condition of this constraint optimization
problem identifies the Lagrange multiplier A\ = & and the evolution of the damage field

>0 and <. and &(f—1.) =0. (4.52)

These so-called Karush-Kuhn-Tucker loading/unloading conditions explicitly include the
irreversibility condition (4.41). A wviscous regularization of (4.51) bases on the over-force
formulation

&1 (650) = sup[ B — (8 — )2 ] (4.53)
3 2n
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Figure 4.12: Dissipation functions for damage mechanics. a) Canonical penalty-type repre-
sentation ¢f . and b) viscous over-force representation ¢, = % (B — )% The correspond-

ing dual non-smooth counterparts ¢o. and éfoc are given in dotted lines.

In this setting, the ramp function (z), := (|z|+x)/2 of the set R of positive real numbers
has been employed, for an illustration see Figure 4.11c). The necessary condition of the
smooth unconstrained optimization problem (4.53) defines the damage evolution

&= (8- ), (4.54)
n

and obviously satisfies the irreversibility constraint (4.41). The viscosity 1 characterizes a
viscous over-force response which governs the damage evolution. For n — oo, the model
degenerates to the rate-independent model (4.51) and the Lagrange-multiplier

1
A= B e (4.55)

is identified. Due to the limit character of the smooth over-force setting (4.53), this formu-
lation is highly attractive for a numerical implementation and is considered as a second
approach to model the dissipation in damage mechanics. A graphical interpretation of the
four different dissipation functions is given in Figure 4.12. In the sense of convex analysis,
the non-smooth dissipation functions (4.44) and (4.51) are identical, where the latter one
bases on the dual dissipation function ¢} (3) = A (/). They are displayed in Figure 4.12
with dotted lines, their regularized counterparts are shown in solid lines.

4.3.4. Governing Balance Equations of Coupled Problem. The focus now lies
on the derivation of the governing balance equations that determine the displacement
field w, the damage field «, and in the extended setting the driving force (. In view of
the displacement field, the surface of the solid is decomposed into a part 9B, where the
displacements are prescribed by the Dirichlet boundary conditions

u = up on 0B, (4.56)

and a Neumann part 0B; with prescribed tractions ty. Obviously, the common set 9B, N
OB; = () of these boundaries is empty. The power of external mechanical load reads

Pext(u):/’YUdV—l—/ tN’U,dA, (457)
B 0By

in terms of a given body force field « per unit volume. For the damage field no Dirichlet-
type boundary conditions are set, the natural Neumann-type conditions Va - n = 0 on
the full surface OB are chosen. The damage field « is considered to be driven by the
displacement field u of the solid. Thus, no prescribed external loading associated with
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the damage field is considered. Having the external load functional (4.57), the rate of
the energy storage functional (4.39), and the dissipation functional (4.42) at hand, the
balance equations are obtained from the standard argument of virtual power

E(t, &) + D(¢) — Pege(1) = 0. (4.58)

This principle has to be valid for all admissible rates w of the displacement field satisfying
the homogeneous form of the Dirichlet boundary condition

weEW, :={u|t=0o0n0B,}. (4.59)

The description of the boundary value problem is now completed and the governing bal-
ance equations can be determined for the different representations of the dissipation func-
tion.

4.3.4.1. Model I: Rate-Independent Setting with Approximated Indicator. For
the rate-independent dissipation function with approximated indicator function (4.47), the

application of the principle of virtual power (4.58) yields the coupled balance equations
0 =div[(1—d(a))?>C:e]+

10— d@)PC el ey | o

0 = pl* Aa+ [(1—d(a)) d'(a) [[elle — e — e{d)-],

where the regularization term can be interpreted as an artificial viscous hardening term
that penalizes the energy release in the non-physical range & < 0.

4.3.4.2. Model II: Rate-Dependent Setting with Threshold Function. For the
rate-dependent over-force formulation of the dissipation function (4.53), the balance of
internal and external power (4.58) gives the governing balance equations

0 =div[(1—d(a))*C:e]+~

0 = pl> Aa+[(1 = d(a)) d(a) |le]z — 5] (4.61)

1
0 =a-— _<ﬁ_¢c>+>
Ui
where for vanishing viscosity 1 — 0 the rate-independent limit is obtained.

4.3.5. Incremental Variational Principles for Gradient-Type Damage. Follow-
ing the general concept as discussed in Section 3.9, a time-discrete incremental variational
principle is applied to the model problem of gradient-type damage mechanics, where the
solutions of the global fields at discrete solution times 0,1, %9, ...,t,, the1,..., 1 are con-
sidered. The construction of such a principle depends on the incremental energy storage,
dissipation, and load expended to the system within a typical time step [t,, t,+1]. Model
I and IT have in common the incrementally stored energy

E(u,d) = /t U Bdt = Blty,) - E(t,) = /B{ W(e) — (e Y dv (4.62)

governed by the free energy function ¢, and the incremental external work

W (u) = /t o Peyt dt = /B{'y (u—wuy,) FdV + aB{tN (u—wu,) ydA, (4.63)
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Figure 4.13: Model I: Rate-independent two-field setting with approximated indicator
function. a) Cyclic loading and stress-strain curves for b) e = 0.1, ¢) e = 1.0, and d) e = 10.0.
For small parameters ¢, the model shows non-physical hysteresis in unloading-reloading.

where no external loading associated with the damage field is considered. The construction
of the incremental dissipation bases on

tn+l
D= D dt (4.64)
t’!L

and is discussed separately for the dissipation functions (4.47) and (4.53).

4.3.5.1. Model I: Rate-Independent Two-Field Representation. The first possi-
bility to model the effective incremental potential bases on the rate-independent dissipa-
tion function with approximated indicator function (4.47). In this setting, the incremental
dissipation is approximated in the discrete time interval by the algorithmic quantity

DT(a) := /{ be (@ — an) + 2i<d —d)2Yav. (4.65)
B T
With the constitutive state (4.35), the incremental internal work density is specified to

w7 (¢ en) = 5 (1—d(@)) [lelle+ 5wl IVal* =1 (en) +1be (a—an)+%<a—an>2_. (4.66)

The incremental minimum principle (3.205) yields the algorithmic coupled Euler equations
0=div[(1 —d(a)*C:e]+~
) ) € (4.67)
0 =pl? A+ [ (1 = d(0)) (@) el — i = (o= )],
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Figure 4.14: Model I/II: Rate-independent two-field setting with approximated indicator
function and rate-dependent three-field setting with threshold function. a) Cyclic loading in
positive and negative range and b) stress-strain curve for ¢ = 10.0 and n = 1.0x 1071,

where the smooth penalty-type micro-balance (4.67), describes the damage field o driven
by the degraded strain energy d,¢ = (1 — d(«))d'(a)|/€]|2. The results of a one-
dimensional local driver test of the rate-independent two-field representation are illus-
trated in Figure 4.13, where a cyclic load in the tensile range has been considered. Clearly,
for an increasing penalty-parameter ¢, the rate-independent limit that is characterized by
the non-smooth dissipation function (4.44) is obtained. For small penalty parameters e,
the model shows a non-physical hysteresis in unloading-reloading. The results of a local
driver test for cyclic loading in the positive and negative range are depicted in Figure 4.14,
where the penalty-parameter ¢ has been chosen high enough to approximate the rate-
independent limit. Clearly, the material behaves isotropically with damage evolution in
tension and compression. More realistic material models, e.g. failure of concrete, exhibit
damage evolution preferable in tension. In such a scenario, the damage-energy coupling
(4.38); has to be modified in such a way that the resulting energetic driving force, charac-
terized by the degraded strain energy, only contains tensile contributions. This extended
formulation is discussed later in Chapter 5 on phase-field modeling of fracture.

4.3.5.2. Model II: Rate-Dependent Three-Field Representation. The second
possibility to model the incremental potential bases on the rate-dependent setting of the
dissipation function (4.53). The extended constitutive state vector

¢ :={e,a,Va,[} (4.68)

allows for the compact representation of the extended incremental internal work density
Tk ([ k., ¥ T
m (e e) = 5 (1=d(a))? [lel|E+ 5 pl? IIVQIIQ—w(Cn)Jrﬁ(a—an)—%w—@bcﬁ- (4.69)

The incremental variational principle (3.212) yields the algorithmic Euler equations
0=div[(1—d(a)*C:e]+~

0 =pl? Ao+ [(1 = d(e)) d'(a) [lel|7: — 8] (4.70)
0=a—aqa,— %<ﬂ_¢c>+’

Here, the variational derivative of the free energy —d,¢ = (1 —d(«)) d'(a) ||e]|Z + pl?* A
in (4.70) allows for the elimination of the dissipative force f = —d,1 in equation (4.70)3.
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Figure 4.15: Model II: Rate-dependent three-field setting with threshold function. a) Cyclic
loading and stress-strain curves for b) 7 = 3.0x1073, ¢) n = 2.0x1073 and d) = 1.0x107°.

Thus, the damage evolution can be reformulated
T
a=a, + 5(—&&/} — Ye)+ (4.71)

and shows via the variational derivative 0,1 an implicit dependency of the yield resistance
on the Laplacian term pl? Ac. In order to get an insight into the material’s characteristics,
a local one-dimensional driver test for the rate-dependent three-field setting is performed.
Considering a cyclic loading process in the tensile range only, the model exhibits a classical
over-force response, see the results in Figure 4.15. In contrast to model I, the underlying
viscous-over force model does not exhibit a violation of the thermodynamics for regular-
ization parameters far away from the limit case. Nevertheless the models I and II show
the same limit behavior for ¢ — oo and n — 0, respectively. For a viscosity close to the
limit case n — 0, the results of a local driver test in the tensile and compressive range
are depicted in Figure 4.14 and show a coincidence with the rate-independent limit case
for € — oco. The smooth character of the governing equations and the thermodynamic
consistency even for viscosities far away from zero make this time-regularized setting with
threshold function highly attractive for numerical implementations.

4.3.6. FE-Discretization of Incremental Variational Principle. The extended
multi-field finite element solution algorithm outlined in Section 3.9.4 is now applied to
model II of gradient-type damage mechanics. The according smooth Euler equations are
summarized in equation (4.70). Restricting to two-dimensional problems, the global un-
knowns and the extended generalized constitutive state read

u' = {u17u27 0475} with c*(u*) = {U1,17 U2, U2 + U1, O, A1, 04,275}- (4-72)



4.3 Isotropic Strain-Gradient Damage Mechanics at Small Strains 85

According to (3.226), the extended generalized displacements are approximated via

=N (x)0* with [N = and 0f = [dy,dy,a,b]], (4.73)
where identical interpolations for the macro- and microscopic partition and the driving
force are chosen, i.e. N; = M;. At node i of the finite element discretization, the generalized
displacement vector 9* contains the nodal displacements d; and ds in 1- and 2-direction,
the nodal damage variable a, and the nodal thermodynamic driving force b dual to the
damage field. In analogy to (3.231), the variation of the discrete extended constitutive
state with respect to the extended nodal degrees of freedom reads

Ny 0 N0 O 0 0]
*h __ * * : *le __ 0 NZNIO 0 0 0
dp- €' = B*(x) 60" with [B*]S = 0 0 0 NNyNyo (4.74)
0O 0 000 0 M

For the particular model problem of gradient-type damage mechanics, the compact rep-
resentations of the generalized stresses and the symmetric moduli are specified to

D 20 0 0
0, n*h 0 0 mh 0 1

S = and C*:= aalty . . 4.75
8Va 0 0 0%,o.m nh 20 ) (4.75)

In the case of elastic response for () < 0, the components of the generalized stresses
(4.75); for isotropic gradient-type damage mechanics read

demi? =(1—-d(a))*C: ¢
Oomy =—(1—d(a))d'(a) [le||Z + B

(4.76)
Ovam = pl* Va
057T;h =a—a,
and the according components of the generalized moduli (4.75), are given by
Rt =(1—d()?C
Onomy = (d%(a) — (1 = d(a))d"(a)) [l]lZ:
(4.77)

8VaVa 77 = /~Ll2 1
2 * _
%67@7 =0.
For inelastic loading ¢(f) > 0, the ramp function becomes active and the generalized
stresses and moduli have to be updated by an additional viscosity term
857rnh “= 057rnh — ;(/6 —1.) and 8§5wnh “= 8%5757}‘ — ; , (4.78)

being characteristic for the viscous over-force response of model II.
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Figure 4.16: Shear-test of squared specimen. Geometry and boundary conditions. To trigger
localization, the threshold energy 1. in the centered element is reduced by 5%.

4.3.7. Numerical Examples. Regularization of Shear Bands. The first section
with numerical examples demonstrates the main characteristics of the proposed model
for gradient-type damage mechanics by means of two representative numerical examples.
The first elementary example under consideration is a squared specimen subjected to shear
loading, where a horizontal shear-band is expected. The second example is concerned with
a rectangular specimen subjected to tensile loading, where cross-shearing is expected.

4.3.7.1. Shear-Test of Squared Specimen. In a first numerical test damage localiza-
tion in a squared specimen subjected to pure shear loading is investigated. The geometric
setup and the according boundary conditions are depicted in Figure 4.16. The boundary
value problem is discretized using 9x9, 19x19, and 29x29 three-field quadrilateral displace-
ment elements discussed in the previous section. In order to trigger damage localization in
the middle line of elements, the constitutive threshold energy 1. in the centered element
is reduced by 5%. The bulk modulus is chosen to A = 121.15 kN/mm?, the shear modulus
to u = 80.77 kN/mm?, and the threshold energy to 1. = 8.08 x 1073 kN/mm?. In order
to obtain a solution very close to the rate-independent limit, the viscosity is chosen to
n = 1x107% kN's/mm?. The parameter to control the damage function (4.33) is chosen to
v = 1.2. Regarding the local computations, the global solution strategy bases on an up-
dated normal plane method, in combination with a full Newton iteration. The application
of a continuation method, in this scenario an arc-length method, is necessary to obtain

9.0 T T T T 9.0 T T -

8.0r — 29x29 elements A 8.0r — 29x29 elements A

7.0F — 19x%19 elements - 7.0k — 19x%19 elements -
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& 5.0 & 5.0
T 4.0 RN T 4.0
=30 /0 T~ < 3.0

20t/ T 2.0

1.0 1.0

0.0 . . . . 0.0 . . . .
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a) displa.cement u [mm)] b) displacement u [mm]

Figure 4.17: Shear-test of squared specimen. Load-deflection curves for a) mesh-dependent,
local analysis with { = 0.000 mm and b) mesh-objective, nonlocal analysis with { = 0.012
mm, for computations with 9x 9, 19x 19 and 29 x 29 elements.
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Figure 4.18: Shear-test of squared specimen. Damage distribution d at a final deformation
of uw = 0.5 mm for a)—) local analysis [ = 0.000 mm, and d)—f) nonlocal analysis | = 0.012
mm. Results are plotted for the three discretizations 9x 9, 19x19, and 29 x 29 elements.

d)

f) B H H !

Figure 4.19: Shear-test of squared specimen. Deformed meshes at a final deformation of
u = 0.5 mm for a)—c) local analysis [ = 0.000 mm, and d)-f) nonlocal analysis | = 0.012
mm. Results are plotted for the three discretizations 9x 9, 19x 19, and 29 x 29 elements.
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Figure 4.20: Cross shearing of specimen in tension. Geometry and boundary conditions.
Due to the symmetry of the boundary value problem, only one quarter is discretized. To
trigger localization, the threshold energy . in the lower left element is reduced by 5%.

results that lie beyond snap-through or snap-back points in the post-critical regime of the
deformation process. A classical load- or deformation-driven solution strategy fails at these
critical points, where the load-displacement curve shows a horizontal or vertical tangent,
respectively. Unlike the local simulations, the nonlocal computations allow for a standard
displacement driven solution scheme with constant displacement increments throughout
the entire simulation. The particular structural response of the underlying boundary value
problem is depicted in Figure 4.17. For local simulations with [ = 0.000 mm and different
discretizations, the load deflection curves document a severe mesh-dependency, see Fig-
ure 4.17a). In contrast, as depicted in Figure 4.17b), nonlocal simulations with { = 0.012
mm yield mesh-objective results. The according contour plots of the damage field d for
a local analysis are depicted in Figure 4.18a)—c) and the corresponding contour plots of
a nonlocal analysis are plotted in Figure 4.18d)-f). Clearly, in the case of local solutions
for an increasing number of elements, the width of the localization zone tends to zero, i.e.
localization occurs in one row of elements. In contrast, the nonlocal solutions exhibit shear
bands with finite widths that spread over several elements. This effect is documented in
Figure 4.19a)—c) for the deformed meshes of the local solutions, and in Figure 4.19d)-f)
for the deformed meshes of the nonlocal ones. Hereby, the latter show the typical s-shaped
deformed configuration.

4.3.7.2. Cross Shearing of Specimen in Tension. The second numerical test is
concerned with a specimen subjected to tensile loading resulting into cross shearing. The
geometric setup and the loading of the boundary value problem are depicted in Figure 4.20.
Due to the underlying symmetry, only one quarter of the specimen is discretized using
9 x 20, 18 x40, and 36 x 80 alternative (Q1FE5-enhanced strain elements. In contrast to
the previous example, the shear band will not be aligned to the element edges. Thus,
the employment of an enhanced strain formulation becomes necessary in order to resolve
the more complex shear band pattern. For a detailed discussion of a Hu-Washizu-type
enhanced strain formulation that is embedded into the multi-field context, the reader is
referred to Appendix B. To trigger damage localization in the center of the specimen, the
constitutive threshold energy 1. in the lower left element of the discretization is reduced
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d) e) f)
Figure 4.21: Cross shearing of specimen in tension. Damage distribution d at a final de-
formation of u = 4.0 mm for a)—c) local analysis I = 0.000 mm, and d)-f) nonlocal analysis
[ = 0.003 mm. Results are plotted for the discretizations 9x20, 18 x40, and 36x80 elements.
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Figure 4.22: Cross shearing of specimen in tension. Deformed meshes at a final deformation
of u = 4.0 mm for a)—c) local analysis [ = 0.000 mm, and d)—f) nonlocal analysis [ = 0.003
mm. Results are plotted for the discretizations 9 x 20, 18 x40, and 36 x 80 elements.
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Figure 4.23: Cross shearing of specimen in tension. Load-deflection curves for a) mesh-
dependent, local analysis with [ = 0.000 mm and b) mesh-objective, nonlocal analysis with
[ =0.003 mm for computations with 9x 20, 18 x40, and 36 x 80 elements.

by 5%. Again, the bulk modulus is chosen to A = 121.15 kN/mm?, the shear modulus to
p = 80.77 kN/mm?, and the threshold energy to 7. = 8.08 x 1073 kN/mm?. To obtain a
solution very close to the rate-independent limit, the viscosity is chosen to n = 1x 1076
kNs/mm?. The parameter to influence the damage function (4.33) is chosen to v = 0.6.
The overall solution strategy is an updated normal plane method in combination with a full
Newton-type iteration. Again, especially for the local simulations with dense meshes, an
arc-length method becomes necessary to obtain results beyond the peak load. In contrast,
the nonlocal simulations are performed in a standard displacement driven context, where
the displacement increments are kept constant throughout the simulations. At the final
stage of the deformation process, the corresponding contour plots of the damage field d
are given in Figure 4.21. The resulting contour plots for a local analysis can be found in
Figure 4.21a)—c), those obtained for a nonlocal solution in Figure 4.21d)-f). The deformed
meshes for the three different discretizations at the final stage of the deformation are
displayed in Figure 4.22. Clearly, the local computations exhibit a localization in one
row of elements, whereas the nonlocal computations yield the typical double s-shaped
deformations. For local computations with [ = 0.000 mm, the mesh-dependent structural
response is plotted in Figure 4.23a), the mesh-objective results of computations which
involve a length scale of [ = 0.003 mm are displayed in Figure 4.23b). Obviously, the local
simulations yield unphysical, mesh-dependent results and exhibit damage localization in
regions with vanishing width. In contrast, the nonlocal simulations, which are performed
in combination with a length scale parameter [ = 0.003 mm, yield mesh-objective results
and localization zones with a finite width, independent of the discretization.
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5. Variational-Based Phase Field Modeling of Fracture

The variational-based approach to phase field modeling of fracture offers new perspectives
towards the theoretical and computational modeling of complex crack topologies. Classi-
cal numerical approaches towards the modeling of the sharp crack discontinuity, such as
cohesive zone formulations, interface element formulations, or element and nodal enrich-
ment strategies suffer when modeling three-dimensional problems with crack branching,
see for example MIEHE, GURSES & BIRKLE [123], MIEHE & GURSES [122], and GURSES
& MIEHE [61] for a sharp modeling of crack surfaces. In contrast, the phase field ap-
proach towards fracture avoids the modeling of discontinuities and can be implemented
into the multi-field finite element solution scheme as outlined at the end of Chapter 3
in a straight forward manner. The model discussed in HAKIM & KARMA [74] bases on
a Ginzburg-Landau evolution equation for the fracture phase field and is fully viscous
in nature. No differentiation is made between energy storage and dissipation. The rate-
independent approach towards brittle fracture BOURDIN, FRANCFORT & MARIGO [16]
models the irreversible character of the fracturing processes on a time-discrete level by
setting hard Dirichlet-type boundary conditions on the fracture phase field. Furthermore
both models allow for an energy release in both tension and compression yielding an un-
realistic material behavior. Only boundary value problems with tensile stresses in the full
solid domain can be considered. In general, these approaches are not thermodynamically
consistent and can only be applied to monotonous loading cases.

In the subsequent treatment of this chapter, according to the recent publication by MIEHE,
WELSCHINGER & HOFACKER [130], a thermodynamically consistent model of phase field
fracture is constructed that overcomes the aforementioned difficulties. See also the pro-
ceeding contribution by HOFACKER, WELSCHINGER & MIEHE [82]. Of particular interest
is a descriptive and comprehensive representation of the basic ingredients and its embed-
ding into the very general theory of gradient-type standard dissipative solids as outlined in
Chapter 3. From the viewpoint of material modeling, the phase field approach to fracture
is conceptually in line with the previously discussed formulation of damage mechanics.
Thus, the underlying model of fracture can be looked at as a specific gradient-type dam-
age model with a particular definition of the energy function in terms of a gradient-type
regularized surface energy. In analogy to the gradient-type damage model, an emphasis
is placed on a differentiation between energetic and dissipative mechanisms. The irre-
versibility of the fracturing/damaging process is hereby taken into account by the design
of appropriate non-smooth, rate-independent dissipation functions. Alternative smooth
representations of the dissipation functions are introduced yielding model I in a penalty-
type two-field setting and model II in a viscous over-force three-field setting. Model I is
very close to that of BOURDIN, FRANCFORT & MARIGO [16] but differentiates between
energy storage and dissipative mechanisms and takes into account the irreversibility in a
different way. Model II can be considered as a time-regularization of model I, where the
evolution equation of the fracture phase field exhibits a characteristic Ginzburg-Landau
structure. Both models describe for a vanishing length scale parameter and vanishing
viscosity Griffith’s quasi-static crack propagation in solids.

This chapter is organized as follows. First, a short review on Griffith’s energetic approach
to fracture is presented which mainly bases on the introduction of an additional energetic
term associated with the creation of new crack surfaces. A subsequent step is concerned
with the design of a phase field approximation of sharp crack topologies that circumvents
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Figure 5.1: Crack propagation. a) Continuum with fracture process zone A,,, in its con-
figuration I at time ¢. b) Continuum with cracked configuration I7 at time ¢ + dt.

the numerical treatment of sharp crack discontinuities. This approximation is based on a
reqularized crack surface functional that I'-converges for a vanishing length scale parameter
towards the sharp crack topology. Hereby, the crack functional is considered as the crack
surface itself that is only allowed to stay constant or grow in time. Dissipation functions
that satisfy this postulate are then related to the evolution of the diffusive crack topology.
As a consequence, the dissipation function depends on the rate of the fracture phase
field and its gradient, characterizing a gradient-type dissipative material. A next step
is concerned with the description of the energy storage mechanism. An isotropic and
anisotropic degradation of the free energy is introduced, where the isotropic formulation
yields unrealistic crack propagation in tension and compression and the anisotropic one
a physically motivated crack propagation in tension only. With the constitutive functions
at hand, the coupled balance equations for model I and model II are obtained from
the argument of virtual power, their algorithmic representations from the application
of the previously discussed incremental variational principle. The chapter closes with a
representative set of numerical examples.

5.1. A Review on Griffith’s Energetic Approach to Fracture

The scope of this section is to give the reader an introduction to Griffith’s energetic
approach to fracture introduced in the seminal work by GRIFFITH [58]. A comprehensive
overview over fracture mechanics in the more general case provides the book by GROSS
& SEELIG [59]. Crack propagation is accompanied by irreversible processes of breaking
bonds on the micro-scale of the material. Energies related to this fracture process are
taken into account by the introduction of additional energetic terms in the balance of
energy (2.91). This fracture-related term describes e.g. a surface energy, an energy that
is related to microscopic plastic deformations, possible chemical, or electro-magnetical
energies. Without specifying these energies in detail, they are summarized in what follows
by the quantity 7. As a consequence, the balance of energy (2.91) can be generalized to

d d
%gtot = E[K +u + T] - Pext + Qezta (51)

where IC is the kinetic energy, U the internal energy, P..;, and Q.,; the mechanical and
thermal external power. This balance principle has to be satisfied at the onset and the
continuation of the fracturing process. For irreversible crack propagation the evolution of
the fracture-related energetic term has to be positive

T7>0. (5.2)
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As depicted in Figure 5.1, fracture happens in a process zone A,., with a volume that
is small compared to the volume of the entire volume of the body B. This motivates the
split of the energy balance (5.1) into a part that is valid for the process zone

T = —Ppo (5.3)
and a part that is valid in the remaining body

d
E[K + U] = Pext + Qext + 7D]uro . (54)
The minus sign in —P,,, describes the transport of energy into the process zone. Restrict-

ing to mechanical fracture energies, this term can be defined as
P im / ¢ dA. (5.5)
Apro

Crack propagation is accompanied by a continuous creation of new surface inside the bulk
material. Thus, consider the states I and I of the fracture process evaluated at times
t and t + dt as depicted in Figure 5.1. Obviously, within this infinitesimal time dt, the
material gets separated along the crack surface dI". Material points on that surface unload
from the fully stressed state t # 0 to the stress free state t = 0. The work, i.e. the energy
transport into the process zone, is summarized by

11
AWpro = Poro dt = / / t-dudA. (5.6)
ar+ Ji1

Here dI'* indicates that the work done by the forces on both sides of the newly created
crack surface has to be considered. At the same time when dI' is created, the fracture
energy changes by d7 proportional to dI'. Imagine the fully cracked state I as fracture
surface energy distributed along the surface dI'*. Then, the relation holds

dT =T dt = 2vydl, (5.7)

where in many cases the specific fracture surface energy v is considered as material con-
stant. Note in this context the different physical meaning of 7" and Ppro- When moving
the process zone A,,, during crack propagation by dI', the energy d7 is transformed to
another type of energy, e.g. heat or surface energy, via the creation of new surfaces inside
the material. In contrast P,,, describes the action of the surrounding continuum on the
process zone A,,.,. Focus now on the special case of an elastic solid with quasi-static crack
propagation. In this setting, the process zone is identified as a small zone surrounding
the crack tip where inelastic processes occur. The fracture energy 7 contains energies re-
lated to the separation process and the inelastic deformation processes inside the process
zone Ap.,. In quasi-static deformation processes, the kinetic energy term is not present
IC = 0, restriction to mechanical loading furthermore yields Q.,; = 0. In elastic materials,
the internal energy U can be replaced by the strain energy Il;,;, the external mechanical
loads P, are assumed to possess a potential II..;. With these simplifications at hand,
the energy balance can be rewritten

il dT
dHint + dﬂext + dT =0 or E + ﬁ =0. (58)
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Figure 5.2: Sharp and diffusive crack modeling. a) Sharp crack at axial position = 0 and
b) diffusive crack at position 2 = 0 modeled with the length scale .

As a result, the change of the sum of the total potential II = II;,; + II.,; and the fracture
energy 7 at crack propagation is zero. In this context, IRWIN [85] introduced the energy
release rate ¢ = —dIl/dl’ and the critical energy release rate g. = 27 allowing for a
reformulation of the energy balance (5.8) in the sense

g =9ec- (59)

At crack initiation and for the subsequent crack propagation, the energy release rate g
has to be equal to the critical energy g..

5.2. Phase Field Approximation of Crack Topology

In view of a numerical treatment, the most challenging part in fracture mechanics is the
modeling of the crack itself, i.e. an evolving discontinuity in the solid domain. As initially
mentioned, there exist several approaches to handle this problem, but they all come along
with a strong numerical effort. Focusing on the crack as a purely geometric object first,
the crack is not considered as a sharp discontinuity, it is approximated by a smooth phase
field. It turns out that the governing equation for this phase field can be solved by a
standard finite element method, which later plays an important role when defining the
energy or the dissipation which is related to this regularized surface.

5.2.1. Motivation. One-Dimensional Cracked Bar. In order to motivate the smooth
approximation of crack topologies, consider an infinitely expanded bar with cross-section
A, occupying the domain B = I'x L with L = [—00, 4+00] and the axial position L € x.
Assume at position © = 0 a crack of the bar, where I is the fully broken crack surface.
This sharp crack topology is captured by an auxiliary field variable d(z) € [0, 1] with

1 forz =0
dz) = { 0 otherwise, (5.10)

characterizing for d = 0 the unbroken state and for d = 1 the fully broken state of
the material, see Figure 5.2a) for an illustration. In the following, the auxiliary variable
d(x) is denoted the crack phase field. Clearly, this interpretation is directly related to
the continuum theory of damage, where the scalar valued parameter d describes in a
homogenized macroscopic sense the development of micro cracks and micro voids, see
also the definition (4.30). Based on these ideas, the non-smooth fracture phase field (5.10)
is approximated via the exponential function

d(z) = e lelt, (5.11)
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It diffusively spreads the crack over the axial domain L of the bar and thus represents
a regularized or diffusive crack topology, see Figure 5.2b). The degree of regularization
is governed by the length scale parameter [ and gives for [ — 0 the non-smooth crack
topology (5.10). The exponential function (5.11) possesses the property

d(0)=1 and d(£o0)=0 (5.12)
and represents the solution of the homogeneous differential equation
d(x) —I?d"(z) =0 in B, (5.13)

subjected to the Dirichlet-type boundary conditions (5.12). Note that this differential
equation is the Euler equation of the variational principle

{d} = arg{ diez% II(d)} with W;:={d|d(0)=1,d(£o0) =0}, (5.14)
d
expressed in terms of the functional
I(d) = %/{dQ +12d?} dV . (5.15)
B

This functional can easily be obtained by integrating a Galerkin-type weak form of the
differential equation (5.13). The exponential function (5.15) together with dV = T'dx
yields

II(d = e "V =T, (5.16)

relating the functional II to the crack surface I'. As a consequence, the functional

Iy(d) := S1I(d) = 2%/{& +12d?} dV (5.17)
B

is introduced as an alternative to the functional (5.15). Obviously, the minimization of
this functional also gives the regularized crack topology (5.11) illustrated in Figure 5.2b).
As a consequence of the scaling by the factor [, the functional can be considered as the
crack surface itself. In the underlying one-dimensional problem, the evaluation of I';/(d) at
the solution point x = 0 gives for arbitrary length scale parameters [ the crack surface I'.
Thus, the crack surface functional I'; is considered as a main component of the subsequent
modeling of diffusive fracture. A convergence study of the crack surface functional towards
the sharp crack surface in the sense of I'-convergence is discussed in BRAIDES [18]. The
[-limit of the crack surface functional (5.17) for [ — 0 yields the crack surface itself

Iy(d) —T with F::/dA. (5.18)
T

Thus, the functional (5.17) provides the basis for an elliptic regularization of the free
discontinuity problem of brittle fracture. BOURDIN, FRANCFORT & MARIGO [16] already
used this type of functional to approximate the regularized surface energy in Griffith-type
fracture. However, in the representation (5.17), the functional has been introduced in the
purely geometric context with regard to the definition of a dissipation potential.
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Figure 5.3: Sharp and diffusive crack topology. a) Sharp crack surface I' embedded into
the solid and b) regularized crack surface I';(d) as a functional of the crack phase field d.

5.2.2. Variational Problem of Regularized Crack Topology. The approximation
of crack topologies outlined above can easily be extended to the multi-dimensional case.
Let B C R? be the reference configuration of a material body and 0B C R? its surface,
see Figure 5.3. To study cracks evolving inside the solid within the time range 7 C R,
the time-dependent crack phase field

[ BxT —[0,1]
d(z,1) : {(aft) ~ dl.t) (5.19)

is defined on the solid domain B. A multi-dimensional extension of the regularized crack
surface functional (5.17) reads

ry(d) = /B (d, Vd)dV (5.20)

where the crack surface density function per unit volume of the solid

1 !
v(d, Vd) = ﬂd2 + §|Vd|2 (5.21)

has been introduced. This function depends on the crack phase field d and its spatial
gradient Vd and plays a critical role in the subsequent modeling of crack propagation. As
illustrated in Figure 5.3a), consider a sharp crack surface topology T'(t) C R? embedded
into the solid B at time ¢. In analogy to the one-dimensional variational principle (5.14),
the regularized crack phase field d(x,t) in B is obtained from the minimization principle
with the Dirichlet-type boundary conditions

{d}:arg{die%dﬂ(d)} with Wy :={d|d=1 onT}. (5.22)

For an illustration see Figure 5.3b). The Euler equations of this variational principle are
d—PFAd=0in B with Vd-n=0ondB, (5.23)
where Ad is the Laplacian of the fracture phase field and n the outward normal on 0B.

5.2.3. FE-Discretization of Variational Problem. The general numerical treatment
is now applied to solve for the scalar valued crack phase field only. Restricting to two-
dimensional problems, the discrete counterpart to the constitutive state

wi={d} and c(u):={dd,ds} (5.24)
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Figure 5.4: Approximation of crack topology. Squared domain with sharp crack I' = 0.5.

has to be considered. In a global finite element solution procedure, the nodal fracture
phase field is obtained in one solution step via

0= ([ - Tls (5.25)

based on the linear residual and the tangent matrix

rh, = /B (BT0ur]}dV and Tl = /Bh{ B[00y B} dV . (5.26)
The approximation matrix for the constitutive state reads
[B]¢ = [N N, Na, . (5.27)
At node 7 of the finite element mesh, the generalized displacement vector is defined by
2, =1[d);, (5.28)
containing the nodal value of the fracture phase field d only.

5.2.4. Numerical Example. Approximation of Crack Topology. The following
numerical example demonstrates the regularization of a crack topology for an elementary
model problem. As depicted in Figure 5.4, consider a two-dimensional continuum with a
sharp crack surface I' from the left side to the center of the specimen. On the exterior
boundary 0B, the natural Neumann-type boundary condition (5.23), is prescribed on the
crack surface I', the Dirichlet-type boundary condition d = 1 is set for the crack phase
field. Consider the finite element computation of the crack phase field d in the domain B
according to the linear solution procedure (5.25), in combination with given values of the
length scale parameter [. The finite element mesh needs a certain minimum element size h
in order to resolve this length scale. This is demonstrated in Figure 5.5 for finite element
meshes with a constant element size h consisting of four node quadrilateral elements. This
elementary study shows that an element size

h>1/2 (5.29)

is needed in order to resolve the regularized crack surface I'j(d) such that we have I'j(d) ~ T"
in the finite element approximation. Clearly, this resolution is only needed in subdomains
close to the crack surface. Hence, an h-adaptive finite element solution procedure with
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Figure 5.5: Minimum size of finite elements. A reasonable accuracy of the crack topology
approximation I'; = T needs for quadrilateral element meshes an element size h > /2.

a minimum element size close to (5.29) is appropriate. Figure 5.6 shows finite element
simulations for different length scales [ = {0.20,0.10,0.007 } based on a very fine mesh
with constant mesh size h = 0.0035 consisting of 90000 four node quadrilaterals. The
large length scale [ = 0.20 yields the approximated regularized crack surface I'; = 0.5944
depicted in Figure 5.6a). The smallest length scale [ = 0.007 gives I'; = 0.5090 ~ I" = 0.5
as shown in Figure 5.6¢).

5.3. A Framework for Diffusive Fracture at Small Strains

5.3.1. Basic Kinematics and State Variables. Aiming at a continuum mechanical
description of diffusive fracture at small deformations, besides the macroscopic displace-
ment field w the scalar valued crack phase field d is introduced

uw:={u} and u:={d}. (5.30)

In accordance with the basic kinematics of damage mechanics (4.31), the fracture phase
field can also be interpreted as a scalar quantity that describes in a homogenized sense
the gradual deterioration process of the microstructure via micro-crack and micro-void

a) b) c)
Figure 5.6: Regularized crack surfaces I';(d) governed by the crack phase field d for different
length scales. a) [ = 0.20 with T'; = 0.5944, b) [ = 0.10 with T'; = 0.5507, and ¢) [ = 0.007
with I'; = 0.5090 obtained with a mesh of size h = 0.0035.
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nucleation. Recalling the regularized crack surface functional (5.20) that bases on the
crack surface density function, the constitutive state

c:={¢,d,Vd} (5.31)

contains not only the strain tensor € := V,u, but also the fracture phase field and its
gradient. This set of state variables builds the basis for the further development.

5.3.2. Dissipation Functions for Crack Evolution. The above outlined definition
of the regularized crack surface is exploited to model the time dependent crack evolution,
which is governed by some energetic driving forces. Hereby, the crack is considered to be
fully dissipative in nature. One basic feature is the irreversibility of the cracking process.
As a consequence, the regularized crack surface is only allowed to grow or to stay constant
in time

Iy(d:d) = %Fl(d(m,t)) >0. (5.32)

Making use of the regularized crack surface functional (5.20), this postulate is reformulated

Iy(d;d) = /Bvdv = /B((m)ddv >0, (5.33)

expressed in terms of the variational derivative of the crack surface density function

57 = Oy — div]dgan] = %[d ~2Ad]. (5.34)

The irreversibility constraint of the crack evolution can be satisfied by locally ensuring a
positive variational derivative of the crack surface function and a positive evolution of the
fracture phase field

64y>0 and d>0. (5.35)

The former condition is satisfied by a constitutive assumption relating the functional
derivative to a positive energetic driving force. The latter condition guarantees the non-
reversible character of the fracture phase field. According to the general consideration in
Section 3.5.5, a dissipation functional is constructed

D(d;d) = /ng(e; ¢)dV = /B&gb(t;c)-édV:D(d; d), (5.36)

which describes a rate-independent process, where the dissipation potential functional D
is identical to the dissipation D. Hereby, the dissipation function ¢ bases on the possible
additive decomposition

B ¢) = do(did) + dnon(Vd; Vd) (5.37)
h icro-di inh. micro-di

allowing for a separate discussion of the contributions that arise from homogeneously and
inhomogeneously distributed rates of the fracture phase field.
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5.3.2.1. Model I: Canonical Two-Field Setting. The first canonical approach to
model the dissipative mechanism that a priori fulfills the growth condition (5.35)s bases
on the rate-independent or non-smooth constitutive dissipation function per unit volume

é(¢;¢) = gA4(d, Vd; d, d) + 1.(d). (5.38)

The material constant g. is a constitutive threshold related to the critical Griffith-type
fracture energy. Here, the first term indicates the local energy release due to the crack
evolution and I, (z) is the non-smooth indicator function for the set R, of positive real
numbers. The latter has been introduced in the context of damage mechanics, it reads

(5.39)

Lr(x):{ 0 ifz>0

+00 otherwise

and ensures a positive evolution of the fracture phase field. For a visualization see Fig-
ure 4.11a). An approximation of the non-smooth indicator function is given by

I5(r) = S (5.40)
based on the ramp function (x)_ := (Jz| — z)/2 of the set R_ of negative real numbers,
see Figure 4.11d). Obviously, the regularization parameter e exactly ensures for € — oo
the growth condition (5.35)s. All representations of the dissipation function discussed in
the sequel have in common the nonlocal term

Gnon(Vd; Vd) = (g:IVd) - Vd, (5.41)

they only differ in the formulation of the local term. The first possibility bases on the
purely rate-independent dissipation function

Oroe(d: d) = o(d)d + I, (d) with t.(d) = %d (5.42)

that can alternatively be given as a penalty-type regularized dissipation function

Bhoe(ds d) 1= e(d) d + S{d)2 (5.43)

The latter one is used as a first model approach towards regularized fracture.

5.3.2.2. Model II: Extended Three-Field Setting. An alternative formulation of
the dissipation function that a priori satisfies the growth condition (5.35), of the fracture
phase field is constructed by introducing the dissipative thermodynamic driving force dual
to the rate of the fracture phase field

f=1{s}. (5.44)

For rate-independent processes this force field is constrained by the threshold function

p(B;d) =B —ve(d) <0, (5.45)
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characterizing for ¢(3;d) < 0 an elastic domain without diffusive crack accumulation.
Note that in contrast to the threshold function used in damage mechanics (4.49), this
threshold function also depends on the current fracture phase field d. An appropriate
dissipation function is obtained by the constrained optimization problem

ézoc(d;d)zgg%[ﬁd] with E:={8]p(3d) <0}. (5.46)

This fully rate-independent constrained optimization problem is solved by means of a
Lagrange-multiplier method

Proc(d; d) = sup [Bd — Xp(B;d)], (5.47)
B,2>0

which bases on the introduction of the Lagrange multiplier A. The necessary condition of
this local constrained optimization problem identifies the Lagrange parameter A = d with
the evolution of the fracture phase field and results into

d>0 and [ <i(d) and d(8—1.(d)=0. (5.48)

These conditions determine the local evolution d of the phase field in terms of the local
driving force 3 and the phase field d itself. Furthermore, (5.48); includes explicitly the ir-
reversibility condition. A viscous reqularization of the above rate-independent formulation
is founded on the following unconstrained optimization problem

B d) = sup[ B — (5~ buld))2 ], (549)
B Ui

where (), := (|Jz|+x)/2 is the ramp function of the set of positive real numbers R, see
Figure 4.11¢). The necessary condition of this unconstrained optimization problem reads

i= %w C(d))s (5.50)

and satisfies the irreversibility constraint (5.35)s. The viscosity 7 characterizes a viscous
over-force response governing the evolution of the fracture phase field. For n — oo, the
rate-independent model (5.47) is recovered. The Lagrange-multiplier \ is identified

A= %<ﬁ—w0<d>>+. (5.51)

Due to the limit character of the smooth over-force setting (5.49), this formulation is
highly attractive for a numerical implementation and is considered as a second approach
to model diffusive fracture. A graphical interpretation of the four different dissipation
functions is given in Figure 5.7. In the sense of convex analysis, the local non-smooth
dissipation functions (5.42) and (5.47) are identical, where in the latter one the dual
dissipation function ¢} (3;d) = A@(8;d) can be identified. In Figure 5.7, these dual
functions are displayed in dotted lines, their regularized counterparts are shown in solid
lines.
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Figure 5.7: Dissipation functions for regularized fracture. Canonical penalty-type repre-
sentation ¢f,, evaluated for a) d = 0 and ¢) d € [0,1]. Viscous over-force representation
o= %(ﬁ — tp(d))?% evaluated for b) d = 0 and d) d € [0,1]. The corresponding self-dual

loc

non-smooth counterparts ¢o. and QVSZ‘OC are depicted in dotted lines.

5.3.3. Degradation of Energy in Fracturing Solids. In what follows, the focus is
put on the constitutive modeling of the material’s bulk response. Due to the fracturing
process, a degradation of energy occurs that can be modeled in two different ways. Either
in a simple, isotropic way where fracture occurs in tension and compression, or in a more
realistic, anisotropic way where fracture occurs in tension only. According to the general
definition (3.28);, the free energy stored in the solid B is given by

E(u,d) = /B W(e)dV (5.52)

where the free energy function consists of a contribution that arises from elastic distortions

(€)= tele,d) . (5.53)

elast. macro-dist.

As indicated before, this contribution has to be specified for isotropic and anisotropic
material behavior in the sequel.

5.3.3.1. Isotropic Degradation of Stored Bulk Energy. In the scenario of an
1sotropic degradation process of the stored energy, only the local macroscopic term in
the decoupled representation (5.52) has to be specified

7vEloc(€7 d) = (g(d> + k) ¢0(€) ’ (554>

where € = V,u is the small strain tensor. In this multiplicative ansatz, the ground state
energy g is the standard free energy function of an uncracked elastic solid, i.e.

Yo(e) = 1A tr2[e] + pu trfe?], (5.55)

in terms of the bulk modulus A and the shear modulus p. In (5.54), g(d) is a monotonically
decreasing function characterizing the degradation of stored energy due to the evolution
of cracks. It possesses the properties

g(0)=1 and ¢(1)=0 and g¢'(1)=0. (5.56)
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The first two conditions include the limit cases for the unbroken and fully broken state.
The last condition ensures that the elastic driving force 3¢ := 9,9 converges to a final
value when the fracture phase field converges to the fully broken state d = 1. A function
that possesses these properties is defined by

g(d) = (1 —d)? (5.57)

and is used for the subsequent treatment. In (5.54), the remaining parameter k ~ 0 avoids
the complete degradation of the stored energy by leaving an artificial elastic rest energy
density kio(e) at a fully broken state d = 1 of the material. Later, in the numerical
analysis it is chosen as small as possible to keep the algebraic conditioning number of the
discrete problem well posed. According to (3.39), the rate of the energy storage

E(e, d e, d) = %/sz(c) dV = /B{ (00) < €+ (6q00)d } dV (5.58)
is governed by the total stresses and the elastic driving force
o= O = [(1—d)? + k] oo(e) and 5= o = —2(1 — d)ole)  (5.59)
in terms of the stress tensor of a fictitious undamaged solid
oo = A tr[e]1 +2ue. (5.60)

Note that the elastic driving force 3¢ is strictly negative and converges to a final value if
the fracture phase field converges to the fully broken state d = 1.

5.3.3.2. Anisotropic Degradation of Stored Bulk Energy. In the scenario of an
anisotropic degradation process of the stored energy, only the local macroscopic term in
the decoupled representation (5.52) has to be specified

Yioc(e, d) = (g(d) + k) ¥ (€) + g (€) - (5.61)

It bases on the additive decomposition of the stored energy in the undamaged solid

tho(€) = Ug (e) + g (¢) (5.62)

into a positive part ¢g related to tension and a negative part 1, related to compression.
Note that in (5.61) the degradation function g(d) acts on the tension part of the stored
energy only. Thus, the model is able to predict crack closing for different loading paths in
the case when the strains enter the fully compressive range. The definition of the positive
and negative parts of the stored energy bases on the spectral representation of the strains

3
€= Z EaMNg DNy, (5.63)
a=1

where {e,}4=123 are the principal strains and {n,},—123 the principal strain directions.
The energy storage function of an isotropic undamaged solid

Yo(e) = A (e1+ea+es)’ + (el +e;+e3) (5.64)
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Figure 5.8: Two-field problem of phase field fracture. The displacement field w and the
fracture phase field d are defined on the solid domain B, the gradients of the latter account for
the length scale [. 4 is a prescribed body force field. a) The displacement field is constrained
by Dirichlet and Neumann boundary conditions u = up on 9B, and o -n = ty on 0B,
with 9B, NdB = 0. b) The fracture phase field is constrained by the possible Dirichlet-type
boundary condition d = 1 on I' and the Neumann-type boundary condition Vd - n = 0 on
the full surface 9B.

can be expressed in terms of the principal strains. Based on this form of the energy storage
function, the positive and negative parts of the energy storage function are defined by

Uy (€)== 3 A (e +ea+e3)i + u((e)d + (e2) + (e3)1) (5.65)

in terms of the ramp function (z), of the set of positive real numbers R, depicted in
Figure 4.11c) and the ramp function (z)_ of the set of negative real numbers R_ de-
picted in Figure 4.11d). Here, the positive/negative parts of the energy storage function
describe contributions due to positive/negative volumetric deformations and due to posi-
tive/negative principal strains. For this anisotropic energy storage function, the evolution
of the energy storage (5.58) contains the total stresses and the elastic driving force

o =00 =[(1-d?*+k]laf(e)+a,(e) and °:= 60 =—2(1—d)yg(e) (5.66)

in terms of the positive and negative parts of the stress tensor

3
o7 = Z[)\ (e1+eo+e3)s +2u(e)+ ] Ma @My (5.67)
a=1

in a fictitious undamaged solid. In this expression, the result d.e, = n, ® n, has been
employed. Note that in the anisotropic setting the elastic driving force (3¢ is related to the
positive part of the energy storage function only. The stress degradation only affects the
positive part of the stress tensor.

5.3.4. Governing Balance Equations of Coupled Problem. In this section, the
governing balance equations for the isotropic and anisotropic model in combination with
two different representations of the dissipation function are derived. These equations de-
termine the displacement field w of the solid and the fracture phase field d. The extended
multi-field formulation additionally incorporates the local driving force field 5 dual to d.
Regarding the displacement field, the boundary of the body is decomposed into a part
0B, where the displacements are prescribed by the Dirichlet condition

u = up on OB, (5.68)
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and a part 0B; where the tractions ¢y are prescribed by Neumann boundary conditions,
see Figure 5.8. Clearly, the common set of these boundaries is zero, i.e. 9B, N IB; = 0.
The external mechanical loading is defined by the external power functional

Pem(u>:/7.udv+/ ty -t dA (5.69)
B OBt

with a given body force field « per unit volume. For the fracture phase field, the Dirichlet-
type boundary condition is considered

d=1onl, (5.70)

where [' C B is a possible a priori given sharp crack surface. The fracture phase field d
is looked at to be driven by the displacement field u of the solid. Thus, no prescribed
external loading associated with the fracture phase field is considered. Having the external
load functional (5.69), the rate of the energy storage functional (5.58), and the dissipation
functional (5.36) at hand, the balance equations are obtained from the standard argument
of virtual power

E(t,d) +D(d) — Pegy(tr) = 0. (5.71)

This principle has to be valid for admissible rates @ and d of the displacement and the
fracture phase field satisfying the homogeneous form of the Dirichlet boundary conditions

weW, ={iu|u=00mdB,} and deW,:={d|d=0onT}. (5.72)

The full boundary value problem is now completely described. It only remains to specify
the coupled balance equations for the different dissipation functions.

5.3.4.1. Model I: Rate-Independent Setting with Approximated Indicator. For
the rate-independent model of diffusive fracture with a regularized dissipation function
(5.43), the balance of internal and external power (5.71) yields

0 = div[((1 — d)> + k) deho(e) | + v

Je 9 - (5.73)
0 =T [d—1Ad] —[2(1 - d) do(e) + e{d)- |
for the isotropic representation of the free energy function and
0 = div[((1 — d)* + k) 91y (€) + Oethg (€) ] +
(5.74)

0 = %[d— 2Ad] - [2(1 — d) ¥ (€) + eld)_ ]

for the anisotropic formulation of the energy storage function.

5.3.4.2. Model II: Rate-Dependent Setting with Threshold Function. For the
rate-dependent over-force formulation of the dissipation function (5.49), the balance of
internal and external power (5.71) yields

0 = div[((1 —d)? + k) 9ctho(e) ] +
0 = glAd+2(1 —d)vo(e) — 38 (5.75)

<1
0 =d- 5<ﬁ—wc(d)>+
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for the isotropic ground state energy and

0 = div[ (1 — d)? + k) D (€) + Oty (€) ]+
0 = gdAd +2(1 - d) i (e) - 3 (5.76)

.1
0=d- 5<ﬂ—¢c(d)>+

for the anisotropic case. Due to the presence of the local driving force field 3, this setting
is a three field formulation. In the case of loading, (5.76); may be recast into

gy +nd =21 —d)ypf >0 for d>0, (5.77)

which proves the positive evolution of the fracture phase field (5.35). Note that equation
(5.76)3 can be interpreted as a Ginzburg-Landau-type evolution equation for the fracture
phase field if the driving force [ is eliminated by (5.76)5. See e.g. GURTIN [62] for a general
discussion and HAKIM & KARMA [74] for an application to fracture mechanics. When
defining the specific work function for the present model

w(e,d,Vd) = (e, d) + gey(d, Vd) (5.78)

based on the energy density function (5.53) and the crack surface density function (5.21),
equation (5.76)3 can be recast into the Ginzburg-Landau-type evolution equation

nd = (—d,w(e,d, Vd))s . (5.79)

expressed in terms of the variational derivative of the specific work function and the kinetic
coefficient that controls the rate of energy dissipation in the process zone 7. In contrast
to the model of HAKIM & KARMA [74], the formulation under focus contains explicitly
the regularized crack surface and differentiates between energy storage and dissipation.
However, the proposed three-field formulation (5.76) bases on a more transparent ther-
modynamic derivation of (5.79) that also includes the dissipation of the kinematic term
with viscosity 7.

5.3.5. Incremental Variational Principles for Phase Field Fracture. The general
incremental variational framework discussed in Section 3.9 is now applied to the model
problem of phase field fracture. In this setting, the state variables at the discrete solu-
tion times 0,ty,%s,...,ty, the1, ..., are obtained by the application of an incremental
variational principle. The setup of such a principle critically depends on the incremental
dissipation, energy storage, and load expended to the system within the characteristic
time interval [t,,,+1]. Based on either the dissipation function with local penalty-type
character (5.43) or with viscous over-force character (5.49), two representations of the
incremental dissipation are obtained via
trt1
D™= D dt (5.80)

tn

and are discussed separately. Both models have in common the incrementally stored energy

B (u,d) = /t Bt = B(ty) — B(t,) = /Bw(c) (e YV, (5.81)
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specified as a function of the current displacements w and the fracture phase field d
governed by the free energy function 1. The incremental work

(2}
W (u) = / Pyt dt = /B'y (u—uy,)dV + /azs ty - (u—u,)dA (5.82)
tn t

is a function of the current displacements u for prescribed volume loads ~ and surface
loads ty. This functional has been obtained by a time integration of the functional (5.69),
where obviously no external loading related to the fracture phase field is considered.

5.3.5.1. Model I: Rate-Independent Setting with Approximated Indicator. As
denoted before, the first possibility to model the incremental potential bases on the canon-
ical penalty-type setting of the dissipation function with the local contribution (5.43). In
this scenario, the incremental dissipation associated with the discrete time interval is
considered to be the algorithm

DI(@) = gulNd) =) + 5= [ (a=do)? av (5.83)

as a function of the current fracture phase field d governed by the crack surface func-
tional (5.20). Together with the extended constitutive state vector (5.31), the incremental
internal work density can now be expressed in the compact explicit representation

7765 60) = (0) — lea) + Soldt + PIVAI — g+ 5o ld—d) L (534)

where either the isotropic or anisotropic representation of the free energy function (5.54)
and (5.61) is chosen. Evaluation of the incremental minimum principle (3.205) gives with
Gauss’ and localization theorem the algorithmic Euler equations for the isotropic case

0 = div[((1 — d)? + k) Ocbo(e) ] +

5.85
0 = %[a— PAd] ~ [2(1 - d)vole) + S{d—d,)- o)
and the algorithmic coupled Euler equations for the anisotropic case
0 = div[((1 — d)* + k) 9t (€) + Oetdy (€) ] +
(5.86)

0 = %[d—z%d] ~[2(1— d) Y (e) + §<d—dn>_].

Observe that the regularization term can be interpreted as artificial viscous hardening
that penalizes the energy release in the non-physical range d < 0. The parameter € is an
artificial parameter with no direct physical meaning. In the numerical analysis it has to
be chosen according to the conditioning number of the global FE system. The material
characteristic of model I for cyclic loading in the tensile range for different regularization
parameters e is illustrated in Figure 5.9. Clearly, for a small penalty parameter ¢ = 0.01,
the model exhibits non-physical hysteresis. For a discussion of the material response of
model I for cyclic loading in tension and compression for the isotropic and anisotropic
formulation, see Figure 5.10.
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Figure 5.9: Model I: Rate-independent formulation with approximated indicator func-
tion. a) Cyclic loading and stress-strain curves for b) e = 0.01, ¢) e = 0.05, and d)
e = 2.0. For small penalty parameters €, the model shows a non-physical hysteresis in
unloading/reloading.

5.3.5.2. Model II: Rate-Dependent Setting with Threshold Function. The sec-
ond possibility to model the incremental potential bases on the extended viscous over-force
setting of the dissipation function with the local contribution (5.49). Here, the incremen-
tal dissipation associated with the discrete time interval is considered as the algorithmic

expression
- T s gel 2 2
Dy(d.0) = [ (8= o) = 5 (6= beldn) 2+ (VA = Ve } av  (557)
B n

as a function of the current fracture phase field d and in addition the dissipative force
field 3. Thus, consider in addition to ¢ := { &,d, Vd } the extended constitutive state

¢ :={e,d,Vd,p} (5.88)

allowing to express the incremental internal work density in the compact explicit form
*T * * T gcl
my (€75 ¢,) = ¥(e) =d(en) +5(d—dy) — 2 (B=te(dn) )1+ S IVA = IV, (5.89)

where either the isotropic or anisotropic representation of the free energy function (5.54)
and (5.61) is chosen. Evaluation of the incremental variational principle (3.212) gives with
Gauss’ and localization theorem the coupled Euler equations for the isotropic case

0 = div[ (1 —d)®+ k) d-to(e)] +
0 = glAd +2(1 —d)y(e) — (5.90)
0 —d—d, — %w — e(dn))
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Figure 5.10: Model I/II: Rate-independent formulation with approximated indicator func-
tion and rate-dependent formulation with threshold function. Model Ia/Ila: Isotropic damage
evolution in compression and tension with a) cyclic loading in positive and negative range
and b) stress-strain curve for ¢ = 2.0 and n = 1x1075. Model Ib/IIb: Anisotropic dam-
age evolution in tension only with ¢) cyclic loading in positive and negative range and d)
stress-strain curve for € = 2.0 and n = 1x107°.

in a time-discrete setting and the coupled Euler equations for the anisotropic case

0 = div[ (1 — d) + k) 007 (€) + 0=ty (€)] +
0 = glAd +2(1 —d) g (e) — 3 (5.91)
0 = d—dn— (5 = t(da))

Recall that for n — 0 the rate-independent case is obtained. The material characteristic
of model II for cyclic loading in the tensile range for different viscosities n is illustrated
in Figure 5.11. For a large viscosity nn = 1.25x107%, the model shows the typical effect of
viscous over-stresses. For a discussion of the material response of model II for cyclic loading
in tension and compression for the isotropic and anisotropic formulation, see Figure 5.10.

5.3.6. FE-Discretization of Incremental Variational Principle. The numerical
solution procedure of the coupled multi-field problem for both the two- and three-field
setting has been discussed in full length in Section 3.9.4. It only remains to specify the
approximation matrices, the nodal unknowns, and the generalized stresses and moduli.

5.3.6.1. Model I: Canonical Two-Field Setting. The multi-field finite element treat-
ment is now applied to model I. When restricting to two-dimensional problems only, the
global unknowns and the constitutive state in the continuous setting read

U= { U1, Ug, d} with c(u) = { Up,1,U2,2, U1 2 + U2.1, d, d71, d’g } . (592)
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Figure 5.11: Model II: Rate-dependent formulation with threshold function. a) Cyclic
loading and stress-strain curves for b) n = 1.25x107%, ¢) n = 5.0x107%, and d) n = 1x107°.
For large viscosity 7, the model shows the typical effect of viscous over-stresses.

The generalized displacement is approximated according to (3.217) and reads

and 0; = [dy,dy,all, (5.93)

N
u' =MN(x)d with [N]= |0
0

00
N 0
0N,
where identical interpolations V; for the macro- and microscopic partition are chosen. At
node 7 of the finite element discretization, the generalized displacement vector 9; contains
the nodal displacements d; and ds in 1- and 2-direction and the nodal damage variable a.
In full analogy to (3.222), the variation of the discrete constitutive state with respect to
the generalized nodal unknowns exhibits the discrete structure

Ni 0 Ny0O O 077

Soc" = B(x) 60 with [B]°=|0 Ny N; 0 0 0| . (5.94)
0 0 0 NN;N,

<A

For the model problem of phase field fracture, the compact representations of the gener-
alized stresses and symmetric generalized moduli are specified to

Ot o2l 0 0

S = | Ogn! and C:=| 0 947" 0 : (5.95)

€
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For the case of an inactive ramp function for d < d,,, the components of the generalized
stresses (5.95); for the isotropic and anisotropic case can be summarized by

der = ((1—d)? + k) oole) der = ((1—d)? + k) o (e) + o3 (e)
Oam¢ =ve(d) —2(1—d)vo(e) or Oam® =e(d) —2(1 —d) ¥ (e) (5.96)
Ovarh = g1 Vd Ovamh =gl Vd
and the according components of the generalized moduli (5.95), by
OZeme  =((1—d)*+k) Co OZeme  =((1—d)* +k) Cf + Ty
Tt ="+ 2u(e) or Ryt =%+ 20(e) (5.97)
O%avame =gel 1 O3avame =gel 1 .

In the case of an active ramp function for d > d,, the generalized stresses and moduli
have to be updated by an additional penalty term related to the ramp function

Oyl = Oy + E(al —d,) and O3m" < 03"+ < (5.98)
T T
for both, the isotropic and anisotropic model. In (5.96), the elasticity moduli
Co=0.00 or Cf =0.0f and C; = 0.0, (5.99)

have been introduced as the derivatives of the stresses (5.60) and (5.67) with respect to
the strains. For an algorithmic treatment of the anisotropic moduli (5.99) 3 as derivatives
of the stresses (5.67) formulated in terms of the principal strains and principal strain
directions with respect to the total strain, see MIEHE [115].

5.3.6.2. Model II: Rate-Dependent Three-Field Setting. The extended multi-
field finite element treatment is now applied to model II. Restricting to two-dimensional
problems only, the global unknowns and the extended constitutive state read

w = {u,ugd, f} with ¢ (u) :={u1,ue0,u12+us1,d,dy,d2, 5} (5.100)
In line with (3.226), the extended generalized displacements are approximated via

N OO0 O
*h * * . *]e N * T
W= (@) with )= |0 and 0 = [dy,dy,a,b]T . (5.101)
0

0
M

%

0 0
00N
0 0
where identical interpolations for the macro- and microscopic partition and the driving
force are chosen, i.e. N; = M;. At node i of the finite element discretization, the extended
generalized displacement vector 0* contains the nodal displacements d; and ds in 1- and
2-direction, the nodal damage variable a, and the nodal thermodynamic force b. In agree-
ment with (3.231), the variation of the discrete extended constitutive state with respect
to the extended nodal unknowns reads

5o €1 = B*(x) 60 with [B*]¢ = (5.102)
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For the model problem of phase field fracture, the compact representations of the gener-
alized stresses and symmetric generalized moduli are specified to

Dery" 2Zmt 0 0 0
O 0 0> mh 0 1
* a’ln * aa’'n
S . 8Va7'(';h and C . 0 0 a%avaﬂ';;h 0 . (5103)
8ﬁ7r;;h 0 1 0 8§ﬁ7r;;h

For the case of elastic loading for ¢(3;d,) < 0, the components of the generalized stresses
(5.95); for the isotropic and anisotropic case can be summarized by

ey =((1—d)* + k) oo(e) demi? =((1—d)* + k) oy (e) + oy ()
Qam =0 —2(1—d)o(e) damy =0 —2(1—d) g (e)
or (5.104)
8Vd7r;h =¢g.Vd 8Vd7rj;h =¢g.1Vd
857r;h :d—dn 857r;;h :d—dn,

and the according components of the generalized moduli (5.95), by

R =(1—-d)*+k)Co Rt =(1-d)’+k)Cy + Cy
Oy =2uo(e) Oy =g (e)
) . or , , (5.105)
Oava™, = 9gel 1 OavaTy = el 1
Pgmi =0 Pemit =0.

In the case of inelastic loading for ¢(f3;d,) > 0, the generalized stresses and moduli have
to be updated by an additional penalty-type viscosity term related to the ramp function

Dpmh = 9t — Z(B—1u(dy)) and Pmih = Oy — % (5.106)
n
for both, the isotropic and anisotropic model. For a definition of the moduli Cy, C;", and
Cy , see equation (5.99).

5.3.7. Numerical Examples. Crack Propagation in Solids. In this section, the
performance of the proposed model of phase field fracture is demonstrated by means
of some representative numerical examples. In particular, the focus is put on a detailed
discussion of the material’s characteristics for model I and model II. The influence of the
length scale parameter [, the penalty parameter €, and the viscosity n is analyzed. The first
numerical example is concerned with a single edge notched tension test, where a horizontal
crack propagation is expected. The second numerical test focuses on a pure shear test of a
notched specimen. Here, the difference between the isotropic and anisotropic formulation
is elucidated. Another numerical study is concerned with the classical benchmark of a
symmetric three point bending test. For this test, meaningful results are only obtained
with the anisotropic formulation. The section closes with an asymmetric notched three
point bending test that nicely demonstrates the evolution of a curved crack pattern.
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Figure 5.12: Single edge notched tension test. Geometry and boundary conditions.

5.3.7.1. Single Edge Notched Tension Test. At first, a squared plate is investigated
that possesses a horizontal notch placed at middle height from the left outer surface to
the center of the specimen. The geometric setup is depicted in Figure 5.12. In order to
capture the crack pattern properly, the mesh is refined in areas where the crack is expected
to propagate, i.e. in the center strip of the specimen. For a discretization with 20000
elements an effective element size of h ~ 1.0x 1072 mm, for a discretization with 30000
elements an effective element size of h ~ 0.6 x 1073 mm in the critical zone is obtained.
The elastic constants are chosen as A = 121.15 kN/mm? and p = 80.77 kN/mm?, the
critical energy release rate as g. = 2.7x1073 kN/mm. The computation is performed in a
monotonic displacement-driven context with constant displacement increments Au = 1.0x
107° mm. In order to point out the effects that arise due to the length scale parameter [ and
the viscosity n, different simulations with the anisotropic model in its rate-independent
penalty-type setting (5.86) and in its rate-dependent over-force representation (5.91) are
performed. Obviously, the underlying boundary value problem is subjected to tensile
loading, a difference between isotropic and anisotropic material response is not visible.
For fixed length scale parameters {; = 0.0375 mm and /5 = 0.0075 mm the influence of
the viscosity in model II is analyzed. The resulting load-deflection curves are depicted
in Figure 5.13. Here, for vanishing viscosity n — 0 the structural response approaches

0.8 : ———— 0.8 —————
| — n=23x10" | — 1 =3x10"

07T n =2x10"96 07 n = 2x10~6
— 0.6 — p=1x10-6 1 — 0.6 — p=1x10"6
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Figure 5.13: Single edge notched tension test. Load-deflection curves for simulations with
length scale parameters a) I; = 0.0375 mm and b) lo = 0.0075 mm obtained for different
viscosities  with rate-dependent model (5.91). Results are compared to the rate-independent
limit case given by the two-field formulation (5.86) for e = 10.0 kN's/mm?.
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Figure 5.14: Single edge notched tension test. Crack pattern of the three-field formulation
(5.91) at a displacement of a) u = 5.5x1072 mm, b) u = 5.9x107% mm, and ¢) u = 6.3x1073
mm for a length scale of [; = 0.0375 mm. Diffusive crack topology at the deformation stages
d) u=>55x10"3 mm, e) u = 5.9x 1073 mm, and f) u = 6.3x 1073 mm for a length scale of
{5 = 0.0075 mm.

the rate-independent limit, characterized by the two-field model (5.86). Comparison of
the incremental internal work densities (5.84) and (5.89) yields the relation between the
regularization parameters € and 7 used in the subsequent simulations

7.2 7_2

nrR — & ex—. (5.107)
€ n

The resulting crack patterns at different stages of the deformation are illustrated in Figure
5.14. As expected, the sharpest crack pattern is obtained for the smallest length scale
parameter [, = 0.0075 mm. The last study of this boundary value problem analyzes the
influence of the discretization on the overall global response. For a discretization with

20000 elements, an approximate effective element size in the critical zone of h ~ 1.0x1073

0.7F — h ~ 1.0x10~3
| — h~06x10"3 \

|

load F [kN]
o
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Figure 5.15: Single edge notched tension test. Objective load-deflection curves for simula-
tions with 20000 and 30000 elements with identical viscosity = 4x 1075 kN's/mm?.
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Figure 5.16: Pure shear test of notched specimen. Geometry and boundary conditions.

mm is obtained. In order to verify mesh-objectivity, the same simulation as discussed
in Figure 5.13b) is repeated with a finer discretization of 30000 elements. With the fine
discretization, an effective element size of h ~ 0.6x10~2 mm in the critical zone is obtained.
As depicted in Figure 5.15, the global structural responses of both computations coincide.
As a consequence, the finite element simulations provide mesh-independent results.

5.3.7.2. Pure Shear Test of Notched Specimen. The phase field formulation of
fracture is now applied to a shear test of a rectangular notched specimen. In literature,
this test has been numerically studied by BOURDIN, FRANCFORT & MARIGO [16]. The
boundary value problem depicted in Figure 5.16 is discretized using 30000 triangular
elements. A pure shear deformation u is applied, where the displacement load direction has
the angle a = 0° towards the horizontal plane. In the aforementioned reference, this system
has been analyzed for different displacement angles o, where for 0° < o < 7° unphysical
crack branching has been observed. Throughout the analysis, the Lamé constants are
chosen to A = 121.15 kN/mm? and p = 80.77 kN/mm?, the critical energy release rate to
ge = 2.7x 1073 kN/mm, the length scale parameter to [ = 0.01 mm, and the viscosity to
n = 2.5x1075 kN's/mm?. The specimen is subjected to a displacement-driven deformation
by prescribed incremental displacements of Au = 1.0x10~* mm in the first 100 iterations.
The subsequent deformation demands an adjustment of the displacement increments to
Au = 1.0x107% mm up to the final deformation. In Figure 5.17, the crack evolution at
different stages of the deformation is displayed for the viscous isotropic and anisotropic
models (5.90) and (5.91), respectively. The isotropic formulation of phase field fracture
reproduces the aforementioned unphysical crack branching, the according diffusive crack
topology that exhibits a crack propagation in regions with compression and tension is
depicted in Figure 5.17a)—d). This phenomenon is related to the fact that in (5.90)s the
crack propagation is driven by the entire energetic state 1. This drawback motivates
the improvement of the isotropic model to an anisotropic one, where the energetic crack
driving force only contains contributions that are related to a tensile stress state. Thus, the
improved anisotropic model (5.91) contains in (5.91) only the positive part of the energy
Y as crack driving force. The evolving crack topology for the anisotropic formulation
can be found in Figure 5.17e)-h). Clearly, the unphysical effect of crack branching has
vanished. Crack propagation takes only place in regions with a tensile stress state. Thus,
the improved anisotropic model (5.91) represents the physically realistic approach.

5.3.7.3. Symmetric Three Point Bending Test. This benchmark represents a three
point bending test of a simply-supported notched beam. The geometric setup and the load-
ing conditions are illustrated in Figure 5.18. The discretization is refined in subdomains
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d) h)

Figure 5.17: Pure shear test of notched specimen. a)-d) Crack patterns of viscous, isotropic
model (5.90) and e)-h) viscous, anisotropic model (5.91) at the deformation states u =
9.0x1073 mm, v = 11.0x 1073 mm, u = 15.0x 10~2 mm, and v = 17.0x 1073 mm.

where the crack is expected to propagate, yielding a discretization with 20000 elements
and an effective element size of h ~ 0.8 x 1072 mm. The elastic parameters are chosen to
A = 12.00 kN/mm? and g = 8.0 kN/mm?, the critical energy release rate to g. = 5.0x107*

I TTTEe e s =a=es — 1 T
0.4 A i

—

40— 40—+

Figure 5.18: Symmetric three point bending test. Geometry and boundary conditions.
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Figure 5.19: Symmetric three point bending test. Results of the two-field model (5.86) are
depicted on the left hand side at the deformation state a) u = 4.0x10~2 mm, b) u = 4.2x10~2
mm, ¢) u = 5.0x 1072 mm, and d) u = 7.1x 1072 mm. Results of the viscous three-field
formulation (5.91) are shown on the right hand side at the deformation state e) u = 4.0x1072

mm, f) v =42x10"2 mm, g) u = 5.0x10"2 mm, and h) v = 7.1x 1072 mm.

kN/mm. The computation is performed in a monotonic displacement-driven context with
constant displacement increments Au = 1.0 x 1072 mm in the first 40 iteration steps.
A continuing simulation then demands an adjustment of the displacement increment to
Au = 1.0x107° mm. The resulting contour plots of the two-field formulation (5.86) with
¢ = 10 kNs/mm? and the extended three-field formulation (5.91) with n = 1.0x107°
kNs/mm?, in combination with a length scale parameter [ = 0.03 mm, are shown in Fig-
ure 5.19. Blue and red colors correspond to the undamaged and the fully-cracked material,
respectively. Note that for this boundary value problem the isotropic models fail, the ef-
fects discussed above cannot be obtained. Figure 5.20 compares the global response of the

0.04 T T
L — =10
n = 1x10"6
0.031 — p=2x10"9
— n=3x10"6
— from [122]

load F' [kN]
S
o
S

0.01 - ‘I-L\‘\\‘-
0.00 . . . n
0.00 0.02 0.04 0.06 0.08 0.10

displacement u [mm]

Figure 5.20: Symmetric three point bending test. Load-deflection curves of the two-field
formulation (5.86) and the extended three-field formulation (5.91) with a length scale pa-
rameter [ = 0.03 mm obtained for different viscosities . Both formulations are compared to

the material force based fracture algorithm, see MIEHE & GURSES [122].
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Figure 5.21: Asymmetric notched three point bending test. Geometry, loading, and bound-
ary conditions from BITTENCOURT, WAWRZYNEK, INGRAFFEA & SOUSA [15]. The three
holes have a diameter of 0.5.

system with results obtained from a fracture model that is based on configurational-force-
driven crack propagation, initially introduced by MIEHE & GURSES [122] for a simulation
with 10360 elements. For a length scale parameter [ = 0.03 mm, Figure 5.20 compares the
solutions obtained by the rate-independent two-field formulation (5.86), involving the pa-
rameter ¢ and the extended viscous three-field formulation (5.91), involving the viscosity
7. Clearly, the load deflection curves of the three-field formulation depend on the viscosity
parameter 7. Observe that for a small viscosity n = 1.0x 107% kN's/mm? the results of
the three-field formulation almost coincide with those of the two-field formulation, n plays
the role of a numerical stabilization parameter with almost no visible physical effect. In
the post-critical range, the results of the phase field model differ from those of the sharp
crack model. This effect can be related to the remaining artificial rest energy kg which
is present in the diffusive modeling of fracture.

5.3.7.4. Asymmetric Notched Three Point Bending Test. Aim of this benchmark
problem is the investigation of curved crack patterns in an asymmetric notched beam
with circular holes. This asymmetric three point bending test has been analyzed experi-
mentally and numerically in BITTENCOURT, WAWRZYNEK, INGRAFFEA & SOUSA [15].
As depicted in Figure 5.21, the boundary value problem consists of an asymmetrically
notched beam with three circular holes. For the analysis, the elastic constants are chosen
to A = 12.0 kN/mm? and p = 8.0 kN/mm?, the critical energy release rate to g. = 1.0x1073
kN/mm, and the viscosity to n = 2.5x107° kN 's/mm?. In a first study, the influence of the
mesh density in combination with the respective minimum length scale parameter [ on the
crack pattern is investigated. Hereby, according to the relation (5.107), the length scale
parameter [ is always chosen to be approximately twice the element size h. Figure 5.22
shows the resulting crack trajectories for computations with different discretizations and
length scale parameters. For a coarse mesh with a large length scale parameter crack
initiation at the first hole can be observed. This crack path does not agree with the
experimental observation. With increasing mesh density in combination with decreasing
length scale parameter, the crack initiation at the first hole disappears. The crack pattern
converges to the accurate experimentally observed path. This demonstrates the dramatic
influence of the length scale parameter [ on the results. Observe furthermore that an
extremely fine mesh is needed to resolve the crack pattern properly, an h-adaptive so-
lution procedure is desirable to obtain an efficient algorithm. Figure 5.23 compares the
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Figure 5.22: Asymmetric notched three point bending test. Crack topology of the viscous
three-field formulation (5.91) for different discretizations and corresponding minimum length
scale parameters. a) 20000 elements with [ = 0.15 mm b) 25000 elements with { = 0.05 mm,
¢) 35000 elements with [ = 0.035 mm, d) 58000 elements with [ = 0.025 mm, and e) 79000
elements with [ = 0.01 mm.

simulations with reasonable length scale parameters with the experimental crack trajecto-
ries obtained by BITTENCOURT, WAWRZYNEK, INGRAFFEA & SOUSA [15]. The contour
plots displayed in Figure 5.23a)-c) are based on the three-field viscous model (5.91), Fig-
ure 5.23d) shows the result of the configurational force based model discussed in MIEHE &
GUERSES [122], and Figure 5.23¢) exhibits the experimental result documented by BIT-
TENCOURT, WAWRZYNEK, INGRAFFEA & SOUSA [15]. The first two pictures illustrate
the contour plots of the crack topology obtained by simulations with 58000 elements in
combination with the viscosities n = 2.5x107° kN's/mm? and = 0.1x107° kN's/mm?.
In the first picture, a slight crack initiation at the first hole can be observed. This can be
prevented by repeating the computation with the same viscosity n = 2.5x107° kN 's/mm?,
but with a higher mesh density in combination with a smaller length scale parameter. The
results are depicted in Figure 5.23c). This behavior again shows the strong influence of
both, the mesh density in combination with the minimum length scale parameter as well
as the viscosity on the resulting crack pattern. Nevertheless, a comparison of the results in
Figure 5.23b)-e) documents that both models capture the curved crack pattern very well.
The configurational force based model with an adaptive reorientation of the segments at
the crack tip yields appropriate crack trajectories for quite rough meshes. Figure 5.24
shows the evolution of the contour plots of the mesh with 79000 elements. Again, blue
and red colors correspond to the undamaged and the fully damaged /cracked material, re-

o

o /
e)
Figure 5.23: Asymmetric notched three point bending test. Crack topology of the viscous
three-field formulation (5.91) for a) 58000 elements with n = 2.5x107° kN's/mm?, b) 58000
elements with 7 = 1.0x107% kN's/mm?, and c) 79000 elements with 7 = 2.5x10~°kN s/mm?.

d) Crack trajectories numerically obtained by MIEHE & GURSES [122] and e) experimentally
obtained crack patterns by BITTENCOURT, WAWRZYNEK, INGRAFFEA & SoOUSA [15].
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Figure 5.24: Asymmetric notched three point bending test. a)-d) Evolving crack topology
for a mesh with 79000 elements with length scale parameter [ = 0.01 mm.

spectively. However, the modeling of discrete fracture in the sense of the aforementioned
publications is of limited applicability, because it cannot be applied to the modeling of
crack initiation in solids free of defects and does not allow for the prediction of crack
branching. These problems can be overcome by phase field modeling of fracture.
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6. Material-Force-Based h-Adaptive Phase-Field-Type Fracture

As it turned out in the previous chapter, it is evident that for phase field modeling of frac-
ture an h-adaptive finite element scheme has to be considered to reduce the computational
costs. As intensively discussed in (5.29), for a given length scale parameter [ the fractured
zone has to be resolved at least by two elements of the size h. When performing compu-
tations with a static number of elements, this restraint results into finite element systems
with many unknowns. Clearly, it makes sense to adapt the mesh locally with ongoing crack
propagation. In order to control the mesh adaption during the computation, global and lo-
cal mesh refinement indicators have to be set up. In what follows indicators are introduced
that solely depend on discrete configurational forces. Hereby, the concept of configura-
tional mechanics describes the effect of forces acting on singularities, inhomogeneities,
and defects. The probably most prominent application of configuration mechanics can be
found in the description of material configurational forces acting on crack tip singularities
in the sense of ESHELBY [39, 40| and RICE [152], see also MAUGIN [111], GURTIN [63, 64],
KIENZLER & HERRMANN [92], GURTIN & PODIO-GUIDUGLI [72, 73|, and STEINMANN
& MAUGIN [167] for a broader context. An exploitation of these configurational forces
to model brittle crack propagation processes is discussed in MIEHE & GURSES [122].
Even in the absence of true material inhomogeneities, in phase field modeling of fracture
the evolving smooth crack topology is considered as a possible source of inhomogeneity
that contributes to the resulting configurational forces. Parts of the material forces that
are related to the diffusive surface created during crack propagation are considered as
true material forces acting on an inhomogeneity. Thus, in a continuous setting the forces
inside the bulk of a homogeneous fracturing solid have to vanish, whereas forces on the
diffusive surface remain. When regarding the discrete solutions obtained by a finite ele-
ment method, i.e. the satisfaction of the equilibrium in physical space, spurious discrete
configurational forces even in the bulk domain remain. These spurious forces in the bulk
domain can be related to an insufficient discretization which violates the equilibrium in
material space. As a consequence, these spurious bulk forces are considered as a measure
for the quality of the current finite element discretization and are exploited as global and
local refinement indicators for an h-adaptive solution algorithm. Such h-adaptive schemes
have been intensively discussed in the work by ZIMMERMANN [184] for local elastic and
inelastic material response. Follow up work in this spirit with application to gradient-type
standard solids can be found in BAYDOUN [8], see also the proceeding contribution by
WELSCHINGER & MIEHE[176].

To this end, the configurational setting of phase field fracture is introduced, the consti-
tutive functions modified to take into account structural changes, and finally the gov-
erning balance equations in physical and material space are derived. Without changing
the discretization, the evolution of discrete configurational forces in phase field fracture
is discussed, where the aforementioned split of the material forces into a bulk and a dif-
fusive surface part can be observed. This chapter closes with the setup of the h-adaptive
algorithm and the discussion of a representative set of numerical examples.

6.1. Configurational Setting of Phase Field Fracture

The focus of this section is put on the formulation of phase field fracture when struc-
tural changes of the material are considered. Starting with the kinematic description of
structural changes, their influence on the constitutive equations is investigated. The fo-
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W Bo, B

Figure 6.1: Configurational mechanics for the two-field problem of phase field fracture.
Structural changes @ = E(0,t) € B are observed from time-invariant positions 6 € By
allowing for a reparametrization of a) the displacement field u(x,t) = w(2(0,t),t) = U(0,t)
and b) the fracture phase field d(z,t) = d(E(0,t),t) = D(0,1).

cus hereby lies on model II that has intensively been discussed in the previous chapter.
Finally, the governing dual balance equations in physical and material space are obtained
from the standard argument of virtual power.

6.1.1. Basic Kinematics with Structural Changes. The first step towards config-
urational mechanics bases on the assumption that the reference coordinate is not fixed
in time, the interior of the entire reference configuration is allowed to change. When
analyzing small deformations only, these time-dependent structural changes read

2(0,t) = X(0,t) = E(6,1) (6.1)

and are observed from a time-invariant coordinate @ € B, that belongs to a time-invariant
configuration By. For an illustration see Figure 6.1. As a consequence, the global fields
can either be expressed in terms of the convecting, time-variant coordinates @ € B or
in terms of the time-invariant coordinates @ € By. In the canonical two-field setting, the
global fields are re-parametrized via

U(0,t) = w(E(0,1),t) = u(z,t) and D(O.t) = d(EO,1),t) = d(x.t),  (6.2)

where u is the displacement field constrained by the Dirichlet and Neumann boundary
conditions u = up on 9B, and o-n = ty on 9B; with 0B, NOB; = (). The fracture phase
field d is constrained by possible Dirichlet-type boundary conditions d = 1 on I' and the
natural Neumann-type condition Vd -n = 0 on the full surface B. The spatial gradients

oU _ouoE 0D _ 0dIE

20 " oz00 ™ 26 ~ =70 (6.3)

are simply obtained by considering the chain rule operation.

6.1.2. Time Derivatives of Kinematic Objects. As will be seen in the sequel, the re-
parametrization (6.1) dramatically influences the time derivatives of the basic kinematic
objects. Due to the parametrization in the time-invariant coordinates @, the total and
partial time derivative of the reference coordinate commute, i.e.

_8_:13 and '—8—3
Ot ot

(11

i (6.4)
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If the displacement and fracture phase field are defined on the time-independent configu-
ration By with coordinates @, their total and partial time derivatives commute. When the
global fields are expressed in terms of the time-dependent, convecting coordinates @ € B,
their rates have to be computed via

_0U_udE  Ou ,_ 0D _0d0=  0d
Ot dx Ot Ot Ot ox ot Ot

Identification of the gradients Vu = du/0x and Vd = 0d/dx yields the representation

(6.5)

ou=U—-VuE and 9d=D—VdE. (6.6)

Notice hereby the classical split into a local and convective part. The total time derivatives
of the gradients (6.3) follow by application of the chain rule

00U _d[ouds] ouwooE - 00D _d[odIE] 0 9OE
= oo M ot o0 dt

5100 — di |92 98 =o0| T aioe 07

When in this expression the total time derivative is not performed explicitly, a simple
reformulation yields the representation

Vi =VU —VuVE and Vd=VD-VdVE. (6.8)

The total time derivative of a volume element dV in the time-dependent reference config-
uration B is characterized by the relation

dV = (1:Va)dV, (6.9)

whereas the temporal change of a volume element dVj living in the time-invariant config-
uration By vanishes.

6.1.3. Dissipation Function for Crack Evolution. Point of departure to set up a
dissipation function that takes into account structural changes is the temporal change of
the diffusive crack topology (5.32). Together with the re-parametrization (6.2), it reads

Uy(d, @ d, @) = %Fl(d(E(e,t),t)) >0. (6.10)

Insertion of the regularized crack functional (5.20) and the temporal change of the volume
element (6.9) allows for the reformulation

I“l(d,:b;d,ac):/ﬁdV%—/vdV:/{8d7d+8Vd7-Vd+71 Vi }dV >0. (6.11)
B B B

Replacement of the rate (6.8)s yields the re-parametrization of the crack topology evolu-
tion

FI(D,E;D,E):/{8d7D+8vw~VD— (Vd® dygy —v1) : VE} AV >0. (6.12)
B

Note that for a time-independent configurational setting & = const, which is the case
in the subsequent staggered solution scheme, the irreversibility of the cracking process is
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guaranteed by a positive variational derivative of the crack surface density and a positive
evolution of the fracture phase field

6y = Ogy — div[dyay] >0 and D >0. (6.13)

According to (5.36), a dissipation functional for rate-independent processes is constructed
D(D.E:D) = [{6lé6) ~ (Vd® oy —11): VE} AV =D(D.ED),  (614)
B

where the dissipation function is positively homogeneous of degree one with the property
o(€;¢) = 0:6(¢; ¢) - ¢ and the dissipation potential functional D is identical to the dis-
sipation D. Here, ¢ denotes the generalized constitutive state as defined in (5.31). The
dissipation function is additively decomposed via

3(€;¢) = Gioc(D; D) + Pnon(VD; VD) (6.15)

hom. micro-diss. inh. micro-diss.

allowing for a separate discussion of homogeneous and inhomogeneous contributions. In-
stead of discussing the canonical two-field setting and the extended three-field setting, see
Section 5.3.2.1 and Section 5.3.2.2, the focus is put on the latter one including its viscous
regularized counterpart. To this end, the nonlocal term in (6.15) is specified to

Gnon(VD; VD) = (gIVD) - VD. (6.16)

In the extended setting of the dissipation function, the thermodynamic force § dual to
the fracture phase field D is introduced. This dissipative driving force is bounded by the
threshold function

9(3;D) =3 — (D) <0 with (D)= %D (6.17)

and characterizes the local part of the dissipation function (6.15) as the constrained
optimization problem

G1oc(D; D) = 583150[51? —Xo(3;D)]. (6.18)

It is solved by means of a Lagrange multiplier method involving the parameter \. Accord-
ing to (5.48), the necessary condition yields the evolution equations

D>0 and B<t.(D) and D (8—1e(D))=0. (6.19)

The viscous regularization of (6.18) is given by the unconstrained optimization problem

G D) = sup[ 8D — (8~ (D)) (6.20)
B n

where the corresponding necessary condition determines the evolution of the phase field
-1
D= (6= 4D)): (6.21)

which satisfies the desired irreversibility property (6.13),. For n — 0, the model degener-
ates to the rate-independent model considered above.
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6.1.4. Anisotropic Degradation of Stored Bulk Energy. As it turned out in the
previous chapter, the anisotropic formulation of the degrading bulk energy yields physi-
cally more reasonable results, where crack propagation in compression is excluded. The
free energy stored in the entire solid B reads

Blu,d,z) = /B o(e, @) dV | (6.22)

where the dependency of the free energy function 1) on the position @ indicates a possible
inhomogeneous body. According to (5.53), the free energy function consists of a single
contribution related to elastic distortions

¢(c,w) = @Eloc(vsuady w) (623)
_/_/

elast. macro-dist.

that has to be specified for anisotropic bulk response. In agreement with (5.61) it reads

Voe(Vsu, d, ) = (g(d) + k) g (Veu, ) + vy (Viu, x) . (6.24)

For a definition of the ground state energy i and the degradation function g(d), see
Section 5.3.3.2. The evolution of the stored energy is expressed by

. d . .

Sl dauda)=2 [vav=[dav+ [ ¢dv

dt/ﬁ /B /B (6.25)

:/{(%Su@b:Vsu+8d¢d+8m¢-¢+w1 Vi) dv.
B

Exploitation of the kinematic relations introduced in Section 6.1.2 leads the representation

E(U,D,Z,U,D,E) :/B{avsuzp - VU + 04D } dV
(6.26)
—/B{(vTu.avsqu—wz) VE —0yp-E}dV,

where possible structural changes are taken into account.

6.1.5. Governing Balance Equations in Physical and Material Space. The scope
of this section is to derive the governing balance equations for phase field fracture for
both in physical and material space. These equations govern the displacement field U,
the fracture phase field D, the driving force field 3, and the structural configuration Z. In
view of the displacement field, the boundary of the solid is decomposed into a part 0B,
with prescribed Dirichlet boundary condition

U =Up on 0B, (6.27)

and a part 0B with prescribed Neumann tractions ty. The common set of these bound-
aries is zero, i.e. OB, N OB; = (). The power of external mechanical load is defined by

Pewt(Oyu) = / ~ - O dV + / ty - OudA (6.28)
B oB
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with the prescribed volume body force v and the partial rate 0;u that also takes into
account the convective contributions, see equation (6.6);. In the sense of (6.12) and (6.26),
a re-parametrization of the external power is obtained

Pext(Uaa):/')’UdV—‘—/ tNUdA
p o (6.29)

—/(vTu-»y)-EdV—/ (Viu-ty) - ZdA.
B 0By

Regarding the fracture phase field, the Dirichlet-type boundary condition
D=1onT (6.30)

is considered, where I' C B is a possible a priori given sharp crack surface. Furthermore,
for the fracture phase field the natural Neumann-type boundary condition VD -n = 0 on
the entire boundary 9B is postulated. The fracture phase field is assumed to be driven by
the displacement field of the solid. Thus, no external power associated with the fracture
phase field is considered. Having the dissipation functional (6.14) with local dissipation
function (6.20), the rate of the energy storage functional (6.25), and the power of external
loading (6.29) at hand, it remains to evaluate the argument of virtual power

EWU,D,E)+D(D,E) - P (U,E) =0 (6.31)

valid for the admissible rates U and D of the displacement and the fracture phase field
satisfying the homogeneous form of the Dirichlet boundary conditions in physical space

UecW, ={U|U=00ndB,} and DeW;:={D|D=0onl} (6.32)
and the rate  of the structural configuration satisfying the homogeneous form of the
Dirichlet boundary condition in material space

EcW, ={E|E=00ndB}. (6.33)

This condition states that the material positions & on the entire material surface 0B
are constant, i.e. the shape of the solid is not allowed to change. The global balance
equilibrates the external and internal virtual power for the quasi-static setting. Insertion
of the previously discussed functionals, application of Gauss’ theorem, taking into account
the admissible rates (6.32) and (6.33), and the natural Neumann-type constraint Vd-n = 0
on 0B gives the explicit representation

o:/lg{<—div[avsu¢]—7>-U}dv+/a (Oeath 11— t) - U dA

Bt

+ / { (= div]gVd] + [0as + B) D} dV
B (6.34)

’ /B{ (—div[(¥1 = VTu - 0g,ut) + (971 — 9.Vd @ gay)]) - E} dV

+/{(8mw+VTu-'y)~E}dV.
B
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Application of the localization theorem finally yields the coupled balance equations for
the three-field setting of phase field fracture in physical space

0 = div[((1 — d)? + k) Oy, (Vou) + Ov.utby (Vi) | +
0 = gdAd+2(1—d) g (e) — 3 (6.35)

o1
0 =d- 5(6—wc(d)>+

in combination with the Neumann-type boundary conditions for the displacement field
and the fracture phase field

Ovu n=tyondBy and Vd-nmn=0ondB. (6.36)

The balance (6.35); specifies the macroscopic equilibrium condition and (6.35)25 may
be considered as the microscopic evolution subproblem of the fracture phase field. In
configurational space, the balance equation can be deduced

div[(1 — VT - Ov,utb) + (971 — g.Vd @ Ovay)] + [0 — Viu-~v] = 0. (6.37)
In this expression, the generalized Eshelby tensor is identified and consists of two parts
¥ .= y1 —Viu-0gu and 2= gyl — ¢.Vd® dvay, (6.38)

the elastic bulk part 37 and the surface part X', see also KuHN & MULLER [95]. Fur-
thermore, the generalized configurational volume force vector can be extracted

=0, —V©iu-~. (6.39)

Note that the aforementioned additive split of the generalized Eshelby tensor (6.38) into
a bulk and a surface term later plays an important role when setting up global and local
mesh refinement indicators for an h-adaptive finite element solution scheme.

6.2. Algorithmic Incremental Variational Principle

The subsequent treatment focuses on a staggered solution scheme of the balance equations
in physical and material space. In this scenario, the structural configuration is frozen in
time, the balance equations in physical space are solved in a standard procedure, and
the balance equation in material space is simply evaluated. Having this understanding in
mind, an algorithmic incremental variational statement can be set up.

6.2.1. Time-Discrete Field Variables in an Incremental Sense. The coupled bal-
ance equations for phase field fracture in physical and material space can alternatively
be obtained from an incremental variational principle. To this end consider the time-
discrete solutions of the field variables at discrete times 0, t1,to, ..., ty, thit, ..., 1 within
the process interval [0, 7']. Within a typical time step [t,, t,,+1], the time step length reads

Tn4+1 = tn+1 - tn > 0. (640)

In what follows, all field variables at time t,, are assumed to be known. The global fields at
time t,,1 are derived based on a variational principle valid for the current time interval.
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Regarding a compact notation, the subscript n + 1 is dropped, all variables without
subscript are meant to be evaluated at the time ¢, ;. In particular one can write

x:=x(0,t,1) =E5(0,t,11) and =z, :=x(0,t,) =E(0,t,) (6.41)
for the structural configuration. In the exact same manner
u:=u(x(0,t,i1),th) =U(0,t,11) and wu, :=u(x(0,t,),t,) =U(0,t,) (6.42)
for the displacement field and finally
d:=d(x(0,ty+1),tni1) = D(0,t,11) and d, :=d(x(0,t,),t,) = D(0,t,) (6.43)

for the fracture phase field at the solution times ¢, 1 and ¢,. As a consequence, the rates
of the global fields are constant quantities within the time increment under focus, i.e.

w:=(u—u,)/r and d:=(d—d,)/T. (6.44)
In the extended three-field setting under focus, the dissipative driving force

B = ﬁ(w(ea tn+1)> tn-i-l) = B(0> tn-i-l) (645)
evaluated at time t,,., has additionally to be provided.

6.2.2. Incremental Energy, Dissipation, and Work Functionals. The setup of
incremental variational statements critically depends on the definition of internal and
external incremental work done to the system within a typical time step. In what follows,
ideas from Section 5.3.5 are extended to take into account the effects of structural changes.
Within the discrete time interval [¢,,t,.1], the incremental energy is defined by

tnt1 .
E = / Edt = E(tys1) — E(t,) (6.46)
tn

expressed in terms of the energy functional (6.22). The incremental energy is considered
as a functional depending on the current field variables

E™(u,d, x) ::/ (e, x)dV — (e, xy,) dV,

B ; Bn (6.47)

= [ {5 vlew) — vlenm) ) Vi
Bn n

Here, the relationship between the volume element dVj of the time-invariant configuration
By and the current and previous volume elements are given by dV = det[J]| dV, =: J dV}
and dV,, = det[J,]dVy =: J,dV,, where the fundamental mappings J := VpE and
J, := VpE, are introduced. The incremental dissipation in the solid is defined by

tn+l
D= Ddt. (6.48)

tn

For the three-field model characterized by the rate-dependent dissipation function (6.20),
the following algorithmic expression is constructed for the incremental dissipation

T ol
Dy(d,8,@):= | {B(d = du) = 5 (8 = el d)} + 21Vl ~ [ Vdu|*]} Vi,
By n (6.49)

J
+ {gc[J—%—vn]}an~
Bn n
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The incremental work of the external actions of the multi-field problem associated with
the discrete time interval can be given by
tn+1

W7 = Pt dt (6.50)

tn

Finally, the algorithmic representation of the incremental external work

WT(u,a:)::/ 7-udV+/ tN-udA—/ 7-unan—/ ty - u, dA,
" ;o S OB (6.51)
= {7-[J—u—un]}an+ {tN-[J—'u,—un]}dAn
Bn n OBy, n
is introduced. Note that due to the essential boundary condition & = const on 9B no
structural changes on the entire surface are permitted.

6.2.3. Incremental Variational Principle in Physical and Material Space. An
extended incremental variational principle of phase field fracture is now constructed that
takes into account possible structural changes of the material. This principle bases on the
incremental potential

T (u,d, 6, @) i= B (w,d,2) + Dy (d, 3, 2) ~ W (u,2) (6.52)

- )

v '
potential energy dissipation work

and contains the incremental energy storage (6.47), the incremental dissipation (6.49),
and the incremental external work (6.51). Regarding a compact notation of the four-field
setting, the generalized constitutive state and displacement vector

() = {Vou,d,Vd, ) with u*:={u,d 3} (6.53)

are introduced. The former contains the strains, the fracture phase field, its gradient,
and the dissipative driving force. With this compact notation at hand, the incremental
potential (6.52) may be reformulated

J
I (w*, ) ::/ {m (e, @) — [J—'u, —u,| }dV,
B n
—/ tN-[iu—un]dAn.
aBtn Jn

The local quantity m;" is denoted incremental internal work density for solids undergoing
structural changes and is defined by the expression

(6.54)

J
W;T(C*vw; C:L,-’Bn) = J_nw(cvm> - w(cmwn>
+ 0= dy) = -3 )t + SLIVAP = V] (655)

J
+ QC[J_’Yn - /Vn] .

The stationary principle in a finite step sized incremental setting reads

{u,d, 3,z } = arg{ inf i%f supinf IT)" (u, d, 3, x) } (6.56)
u IB T



130 6 Material-Force-Based h-Adaptive Phase-Field-Type Fracture

and determines the displacement field u, the fracture phase field d, the dissipative driving
force (3, and the structural configuration x at current time ¢, as the saddle point of the
incremental potential (6.54). The necessary condition reads

0 = 0117 = 6, T17 + GuI17 = G, I1T + S4ILT + 65117 + G,IT (6.57)
phys. space mat. space

and can be split into a part related to the equilibrium in physical space and a part related
to the equilibrium in material space. The former one can be given in the compact form

J J
o117 = / {Oem)T - €™ — = ou } dV, — / J_tN -ou dA, , (6.58)
Bn, n ¢

Btn n

where d,c* contains the admissible variations du* := { du,dd, 63 }* with du € W, and
0d € W,. Performing the variation explicitly and application of Gauss’ theorem yields

7
5 TL7 = /B (2 (divlorv] + ) - Gu ) dV,

+ <Jiad¢ LB gdAd]6d} AV,
o : (6.59)
+ 5 { (d - dn - ;(6 - ¢c(dn)>+) 56} dvn

J
+ [ {0t n—ty) Su}dA,.
0By, JIn

The equation (6.59); describes the macroscopic equilibrium and the equations (6.59)q 3
characterize the evolution subproblem of the fracture phase field. Application of localiza-
tion theorem finally yields the algorithmic representation of the governing field equations

0= Ji div[ (1 d)” + k) dv,uthq (Vsu) + Og,uty (Vew) | + Ji7

n n

0 = glAd+ Ji2(1 _d) () — 3 (6.60)

n

0 =d—d,— %w — e(dn))

in physical space together with the Neumann boundary conditions (6.36). According to
(6.57), the equilibrium condition in material space is determined by

*T )T J J
o117 = i { 0zm)” — J—n'y -Vu-ox — J—n('y ~u)l :Vix }dV,. (6.61)
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Performing the variation explicitly and application of Gauss’ theorem yields

5,17 = /B ( [—Jin(div[ﬁvsuw] +v) -Vl bz} dV,
g [(Jiad¢ 48— gAY -6z} dV,
B n

+ A= du - %w — (d))) V] - ba } AV,

7 . (6.62)
+ {J—[aw¢+v w-v] oz} dV,
Bn n
J J
Bn n n

+ / {[Jigwu — g IVd®Vd] : Véz } dV,.
Bn n

In this expression, the equations (6.62); 23 are identified as the equilibrium in physical
space as presented in (6.59). The remaining balance in material space takes the form

J J J
0= div[J—(wI —V¥iu- avsu¢)+(J—gc%1 —9.IVd® Vd)] — J—[awvau -~]. (6.63)
In this algorithmic setting, the Eshelby tensor for phase field fracture takes the structure
B J A I J
37 = J—@DI — J—V u- Oy and X0 = J—gc%l —g9.I/Vd® Vd, (6.64)

where again the additive split into a bulk 37 and surface part X' is considered. Further-
more, the configurational volume force vector is identified

T = —Ji[8m¢ —V%Tu-~]. (6.65)
Note that for the specific choice of the incremental potential (6.55), the algorithmic repre-
sentation of the governing balance equations in physical (6.60) and material space (6.63)
contain the term J/J, that is related to the fact that the domain of integration changes
from time ¢, to t,.;. Hereby, only interior points of the solid are affected, structural
changes on the boundary of the solid are not permitted, see the boundary restraint (6.33).

6.3. Finite Element Formulation of Incremental Variational Principle

In this section, the focus is put on the discretization of the previously discussed incremental
variational statement. First of all, the interpolation matrices for the primary fields in
physical and material space are introduced. In a second step, a staggered solution scheme
for the physical and material space is investigated which finally allows for the computation
of discrete configurational forces.

6.3.1. Discrete Variational Principle in Physical and Material Space. The ex-
tended multi-field finite element method has to be generalized to take into account possi-
ble structural changes. Restricting to two-dimensional problems, the physical subproblem
consists of the global fields and the related generalized constitutive state

u' = {uh Uy, d, 6} and c*(u*) = {U1,1,U2,2, Uy + U2 1, d, d,1, d,mﬂ} . (6-66>
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In complete analogy to Section 3.9, the generalized deformation vector (6.66); and the
variation of the generalized constitutive state vector (6.66)s are approximated via

w =(0)0* and Jp.c = B*(9) 50*. (6.67)

The generalized displacement vector * and the generalized matrices [DT*]§ and [2B*|¢
have been defined at the end of the previous chapter, see equations (5.100), (5.101), and
(5.102). The problem in material space consists of the structural configuration and its
gradient

xr . — {Il, T } and V:c = {1’1’1, 25272, LELQ, 1’2,1 } y (668)

the discrete representations of the corresponding variations are defined by
z"(0) = N(0) D with Vz"(0)=B(0)D. (6.69)
These expressions contain the discrete nodal values of the structural configuration
D; =Dy, D]} (6.70)

in 1- and 2-direction and the approximation matrices for the primary field and its gradient

(6.71)

7

T
e |INO e N1 0 Ny O
[N]¢ = [O NL and [B]{ = l 0 N, 0 N, ], .

Based on these discretizations of physical and configurational objects, the discrete version
of the necessary condition (6.57) can be introduced

0 =8I = 0yl + 0L = I - 60 + 113, - 6D (6.72)

For arbitrary variations in physical §0* and material space 0 D, the discrete residuals

0=11".= | {B7[S"(0 D) -N"g}dV, - / Nty dA,
B OB (6.73)
_ T1*h TrNVB (% | R T *
0=1L", = B}L{B X7 D)+ % (0,D)]— N'T'(d",D) } dV,
have to vanish. The generalized stresses are S*(9% D) := Jc-m,7(9% D), the components
of the Eshelby tensor ¥7(9* D) and X' (9* D), and the configurational volume force T’

are defined in equation (6.64) and (6.65). Note hereby the dependency on the current
physical and configurational nodal unknowns ?* and D.

6.3.2. Staggered Computation of Discrete Configurational Nodal Forces. The
computation of discrete configurational nodal forces does not imply the solution of the
fully coupled problem (6.73). When freezing the reference coordinate in time

xr = E(O, t)|t:const = 0, (674)

the volume map of the current and previous structural configuration simply take the unit
value. Thus, the domain of integration is constant during the deformation process

det[J] = det[J,] =1 and dV = dV, = dVj. (6.75)
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Box 1: Computation of Discrete Configurational Nodal Forces.

1. Finite Element Interpolations for Physical Space. Approximate generalized dis-
placement vector and variation of constitutive state in physical space

w =0 (x)0F and  Sp-c = B*(z) 60*.

2. Solve equilibrium in physical space. Solve algebraic coupled system

0=1II". = / {378 Mg} aV — Nty dA
Bh oBy

for generalized displacement vector %, based on the generalized stress vector, the
generalized body forces, and surface tractions
S*:=0cm" and g:=[v,0]" and ty:=[ty,0]".

3. Finite Element Interpolations for Material Space. Approximate the structural con-
figuration and its gradient in configurational space

" .= N(x)D and Va":=B(z)D.

4. Evaluate Configurational Nodal Forces. With known generalized displacements 9*
evaluate the discrete nodal material forces within a postprocessing step via

R":=1I", = / {B'[2f + 3] - N'T}dV
Bh
in terms of the Eshelby stress tensor for phase field fracture
5 =91 —VTu- -0y and X' = gy,1 — gIVd® Vd
and the configurational volume force vector

=00 —Viu-~.

As a crucial consequence, the governing equations in physical space (6.60) take the identi-
cal representation as initially discussed in the previous chapter, see equation (5.91). With
frozen configuration, the computation of discrete configurational nodal forces simply re-
duces to an evaluation procedure. In the first step of the staggered solution algorithm,
the equilibrium in physical space

0 =11, = / (B[S (0%)] - Mg} dV — [ Mty dA (6.76)
Bh B

has to be solved. This nonlinear algebraic system of equations is solved for the generalized
nodal displacements 0*. For a detailed discussion of the numerical solution scheme with
the according generalized stresses and moduli see Section 5.3.6.2. Having the solution in
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Figure 6.2: Single edge notched tension test. Geometry and boundary conditions.

physical space at hand, the material forces are evaluated in a post-processing step via
0 # 10, = / {BT[=5(0") + =" (") - N"T(®") }dV. (6.77)
Bh

Together with the frozen reference coordinates, the consequence (6.75) allows for the
representation of the generalized Eshelby stress tensor

5 .=y1 —VTu 0y and T' = g,1 —¢IVd® Vd, (6.78)

where again the additive split into a bulk 37 and surface part X' is considered. Further-
more, the configurational volume force vector is identified

I''=—-0,0—Viu-~. (6.79)
The staggered computation of discrete configurational forces is summarized in Box 1.

6.3.3. Numerical Example. Evolving Discrete Material Forces. In the following
treatment a numerical example is investigated in order to demonstrate the evolution of
material forces in phase field modeling of fracture mechanics. Taking into account the
additive decomposition of Eshelby’s stress tensor, the discrete configurational forces read

RPM = B}{BT[EB]—NTI‘}dV and R"" .= B}{BT[EF]}dV, (6.80)

where the relation R" := R®" + R"™ holds. Regarding a homogeneous body without any
body force loading one obtains I' = 0. The characteristics of the evolving configurational
forces are discussed for a boundary value problem representing a squared plate with
horizontal notch which is placed at middle height and is running from the left outer
surface to the center of the specimen. The geometric setup is depicted in Figure 6.2. For
the analysis the bulk modulus is chosen to be A = 12.00 kN/mm?, the shear modulus
p = 8.00 kN/mm?, and the critical energy release rate g. = 5.0 x 107 kN/mm. The
simulation is performed in a monotonic incremental displacement driven context with
constant displacement increments of Au = 1.0x107% mm. The contour plot of the fracture
phase field, the evolution of configurational forces related to the bulk terms R®" and the
configurational forces acting on the newly created diffusive crack surface R'" at different
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Figure 6.3: Single edge notched tension test. a)-d) Evolution of diffusive crack topology,
e)-h) internal material forces R®", and i)-1) material forces on the crack surface R™".

stages of the deformation are illustrated in Figure 6.3, where only interior parts of the
configurational forces are displayed. One important characteristic lies in the different
behavior of the two contributions. The bulk part R®" moves along the diffusive crack tip,
whereas the surface part R™" acts on the diffusive crack surface. This difference will be
exploited in a configurational-force-driven h-adaptive refinement procedure.

6.4. Material-Force-Based h-Adaptive Algorithm for Phase Field Fracture

6.4.1. Configurational-Force-Based Indicators for Mesh-Refinement. The spa-
tial discretization violates the equivalence between the material and spatial balance equa-
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tions which is given in the continuous setting. Due to an insufficient discretization nu-
merically caused spurious nodal forces occur. To this end, consider the residual R}} in
the configurational space as a quantity defined at the nodal points I. As discussed in
the previous numerical example, the total material forces are split into a part resulting
from bulk contributions le’h and a part related to the growing diffusive crack surface
Rl;’h. Possible inhomogeneities and body force loads are not treated in the sequel. For an
optimal mesh with optimal nodal positions in the reference configuration, vanishing bulk
material forces are postulated

RV =0 for Ieint T (6.81)

at interior nodes of the current triangulation 7,». Configurational forces acting on the
approximated crack surface are physically motivated and preserve the shape of the solid

R" 40 for IeintT", (6.82)

they do not vanish at interior nodes of the current triangulation Z,®. Regarding a non-
optimal mesh, the bulk material forces do not vanish at interior nodal points

RPM£ 0 for Ieint T, (6.83)

which plays a crucial role as the key measure for the setup of global and local mesh
refinement indicators. In the proposed h-adaptive strategy, these forces are treated as an
energetic misfit of the non-optimal mesh. Based on this idea, a global refinement indicator

RB’h

int

rBh(REM = <r with RPM= > |RP (6.84)

I eint Tth

is introduced, expressed in terms of the current total number of internal nodal points
Nini. This means that an averaged sum of all nodal bulk material force norms TB’h(RB ’h)
is introduced that depends on the current state of the system. This global indicator has
to be less or equal than an absolute given permissible tolerance r*°!. If condition (6.84);
is violated, a mesh refinement procedure of the finite element triangulation is performed,
based on the nodal ratio

B.h
R,

fratol

£ = for I ¢cint T, (6.85)
For & > 1 the current norm of the nodal residual exceeds the permissible norm and as a
consequence a local mesh refinement is enforced. A possible mesh coarsening for &; < 1
is not considered for phase field modeling of brittle fracture. Regarding the derivation of
a statement for the change of the mesh size at node I, the asymptotic convergence rate
criterion is exploited where the following proportionality is assumed

IR ~ (K} (6.86)

between the current norm of the residual at node I and the current element size k% powered
by the polynomial order p of the element approximation functions. In order to improve
the mesh quality in problems with singularities, the exponent p can be interpreted as
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singularity parameter which lies in the range p € [0.5, 1.0], see ZIENKIEWICZ, TAYLOR &
ZHu [183]. Focusing on two meshes h and h + 1, the following relation holds

[R7"| = c(kp)? and  |RP"™| = c(ki™)P, (6.87)
where a simple reformulation yields the estimate
|Rl137h+1| o k?+l 8 6 88
B\ K 05
1

for the ratio of the material forces for two mesh sizes k% and k}™, evaluated at an

interior nodal point /. An alternative representation of equation (6.88) follows from the
replacement of |Rtf’h+l| by the given permissible norm 7

—1/p
RB,h
Kt = <| - |> ki (6.89)

and determines the local mesh refinement exclusively defined in terms of the bulk material
force vector RP™ of the finite element triangulation.

6.4.2. Staggered Solution Algorithm for Physical and Material Balances. In
analogy to Section 6.3.2, the fully coupled problem in physical and material space is not
treated monolithically. The reference coordinates are frozen in time, the coupled problem
in physical space is solved for the generalized displacements, and the material forces are
evaluated in a post-processing step. The proposed h-adaptive algorithm combines this
staggered scheme with the previously discussed material-force-based indicators for mesh
refinement and builds the basis for an efficient h-adaptive frame for regularized brittle
fracture. Within one typical time step of the simulation, the staggered solution algorithm
for the physical and material balances in the sense of an h-adaptive procedure can be
summarized as follows. In an initializing step, the time is set t < t,, + 7 and the external
loads g(t) and ty(t) are applied. In this context, all variables without subscript are meant
to be evaluated at time t = ¢,,.1. The discretization counter that counts the number of
refinement steps within the time interval [t,,,t] is set to zero h = 0 and the discretization
D! is initialized according to

Of =Dl = { T, M (@), B* (2", N(a), B(a') } (6.90)

consisting of the triangulation 7" which was valid for the previous time interval, in com-
bination with the according number of refinement steps h,,, the generalized interpolation
matrices in physical space Dt*(z") and B*(z"), the interpolation matrices in configu-
rational space IN(z"") and B(z""), and the nodal positions 2. Note that regarding an
h-adaptive procedure, these quantities are dynamically growing fields. In the subsequent
step, the equilibrium in physical space is solved, based on the compact representation
(6.76) of the fully coupled problem

0 =1L/ = /h{ B ()8 — T (x)g} dV — ) N (x")ty dA. (6.91)
T; oT;

A Newton solution method of the nonlinear system provides the generalized increments
ADF" and the trial solution is updated via

o =orh 4 A" (6.92)
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The next step is concerned with an evaluation of the equilibrium in configurational space.
Based on the frozen discretization D} and the trial solution d " the discrete material
bulk forces are evaluated

RPM = / { BT (z")[2F] - NT(z")T'} aV (6.93)
int T,

at internal nodal points of the discretization. Based on these discrete bulk material forces
RP"™ a norm-type global refinement criterion is computed

’I“B’h(RB’h; @?) < rtol (694)

and has to be smaller than a given tolerance r*, for a more detailed interpretation see
equation (6.84). If the global criterion is not violated then exit and increase the time
counter. Otherwise a mesh density function based on the material bulk forces is set up

X" = Dens(RP"; D) (6.95)

controlling the local mesh adaption. A closer look at the density function is taken in the
subsequent section. Based on this mesh density function a new mesh is generated

DM = Mesh(x!; D" (6.96)

which is locally adapted to the local nodal norm of the bulk material forces R®". In
a last step the mapping of state variables dﬁ” of the previous time step onto the new
discretization D" is performed

5L = Map(d:n DI DY (6.97)

The trial solution 9 " is discarded, the mesh adaption counter increased h <= h + 1, and
the computation of the same time step is repeated with the adapted discretization ®"+?
until the global criterion is satisfied. The solution procedure is summarized in Box 2.

6.4.3. Mesh Generation and Mapping of State Variables. Whenever the current
triangulation 7;* is identified to be inappropriate for the current load step, the mesh
has to be adapted according to some local refinement rules. As already pointed out in
the previous section, the local meshing procedure is driven by a so-called mesh density
function x" = Dens(R®"; ©D}). The function x"(x") lives at every nodal point " of the
current triangulation and is defined in the range x7 € [0, 1]. It is proportional to the local
mesh size. Based on the standard shape functions N;(z"), the density function reads

‘RB’h| —1/p
X'(@)= > Ni(@)k}™" with k}’“zk?( L ) (6.98)

,rtol
I €int ’Z;h

and is exclusively determined by the nodal material bulk forces R? M at the interior nodes
I. A subsequent mesh generation algorithm that bases on an initial Delaunay-triangulation
in combination with a successive point insertion algorithm has been discussed in full length
by KocH [93]. Here, new nodes are inserted into the triangulation Z,"™* until the local
meshing criterion (6.98) is satisfied everywhere in the solution domain. All elements in
the new discretization have an equivalent radius of circumcenter which is less or equal
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Box 2: Staggered Solution Algorithm for Physical and Material Balances.

1. Initialization. Update time t < t,, + 7, loads g(t), and tractions ty(t). Set refine-
ment counter h =0, start with discretization D", and counter h,, of time ¢,

D = Dl = { T}, 9 (a), B (), N(z™), B(z) }.

2. Solve Equilibrium in Physical Space. At frozen discretization D" solve algebraic
coupled system of diffusive fracture in physical space

0 =1, = /} { BT (z")[S*] — N (xM)g} dV — } N (x")ty dA
77" T}

for the generalized increments Ad;" and update the solution 9" = =" + Ad;".
3. Evaluate Equilibrium in Configurational Space. For the discretization ®} with
generalized displacements 0} " evaluate the discrete material bulk forces

RBM = / { BT (z")[2F] - NT(2"T'} aV
int’]}h

and compute norm-type global refinement indicator
If [r5"(RP"; ®h) < vl exit and go to step 1.

4. Compute Mesh Density Function. Based on the discretization D} determine the
mesh density function for local mesh adaption

X" = Dens(RP"; D).
5. Refine Discretization. Generate triangulation based on mesh density function /!
DT = Mesh(x;;Dr).
6. Map State Variables. Map generalized displacements 9/ on current discretization
0, = Map(0;"; D, D).

Discard trial solution 0} ’h, set discretization counter h <= h + 1, and go to step 2.

than its unrefined correspondent, weighted by the distribution function (6.98);. Once the
mesh is generated, the generalized solution vector of the previous time step 9% has to
be mapped onto the current discretization. To this end, consider a newly created nodal
point I of the discretization ;"' where the solution vector [0%"]; has to be transferred
to. In a first step the element e of the discretization D" containing this point has to
be located. Following KocH [93], a quadtree-algorithm is employed that guarantees an
effective element search. When the element e is located, the element coordinates of point [
are determined and the solution vector [0%""]; is computed by an interpolation procedure
on element level e with the aid of the element’s shape functions.



140 6 Material-Force-Based h-Adaptive Phase-Field-Type Fracture

—

<
[

<
o

|
| \
LR |
T —

Figure 6.4: Tension test of specimen with circular hole. Geometry and boundary conditions
for a) geometry I and b) geometry II.
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6.4.4. Numerical Examples. h-Adaptive Phase Field Fracture. Two numerical
examples are discussed that demonstrate the performance of the proposed h-adaptive
solution scheme. The first example is concerned with a tension test of a notched specimen
with circular hole. In this test two geometries are investigated, where depending on the
hole’s position two different crack patterns are obtained. The second numerical test focuses
on the benchmark of an L-shaped specimen subjected to tensile loading.

6.4.4.1. Tension Test of Notched Specimen with Circular Hole. The first numer-
ical study deals with crack propagation in a two-dimensional compact tension specimen
which is loaded by a dead displacement u at the left edge in upper and lower direction.
The boundary value problem was conceptually discussed by MULLER & MAUGIN [136] in
the context of discrete configurational-based crack propagation. For a detailed visualiza-
tion of the problem see Figure 6.4. In order to examine a curved crack pattern, a circular
hole with radius r = 0.05 and a vertical distance to the lower edge of 0.63 is introduced
at two positions in the specimen. For geometry I the center of the circular hole is placed
at an horizontal distance to the left edge of 0.60 and of 0.74 for geometry II, respectively.
For the analysis the bulk modulus is chosen to A = 12.00 kN/mm?, the shear modulus
to ;1 = 8.00 kN/mm?, and the critical energy release rate to g. = 5.0 x 10™* kN/mm.
The simulation is performed in a displacement driven context with constant displace-
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Figure 6.5: Tension test of specimen with circular hole. Evolution of global refinement
criterion TB’h(RB ’h) and permissible norm 7! for a) geometry I and b) geometry II.
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d) e) f)

Figure 6.6: Tension test of specimen with circular hole. Discretizations at different stages
of the deformation with 103 to 11228 elements for geometry I.

' c)=
e)= f)=

Figure 6.7: Tension test of specimen with circular hole. Evolution of diffusive crack topology
at different stages of the deformation for geometry I.
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Figure 6.8: Tension test of specimen with circular hole. Discretizations at different stages
of the deformation with 107 to 10698 elements for geometry II.
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Figure 6.9: Tension test of specimen with circular hole. Evolution of diffusive crack topology
at different stages of the deformation for geometry II.
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Figure 6.10: Tension test of L-shaped specimen. Geometry and boundary conditions.

ment increments of Au = 5.0x 107° mm. For both geometries Figure 6.5 illustrates the
evolution of the global refinement criterion 75" during the computation. Every time the
current global criterion reaches the permissible value 7 a mesh refinement is enforced.
Starting with an initial triangulation with 103 elements ongoing h-adaptive computation
ends with a final discretization of 11228 elements. For geometry I, the evolution of the
discretization at different stages of the deformation is displayed in Figure 6.6. Comparing
the mesh adaption with the diffusive crack pattern displayed in Figure 6.7, one can observe
that the configurational-force-based h-adaptive procedure yields a local mesh refinement
which resolves the diffusive crack zone very properly. As observed in the aforementioned
publication for geometry I, the crack tip does not change its direction rapidly enough to
reach the hole and passes the hole. In contrast, for geometry II the crack is attracted by
the hole. This is documented in Figure 6.8, where the evolution of the mesh during the
computation is illustrated. In this example the total number of elements ranges from 107
to 10698 elements. In Figure 6.9 the according evolution of the crack phase field at the
same deformation steps is displayed. Again, the material force based h-adaptive scheme
yields an adequate discretization in critical regions with diffusive crack propagation and
allows for the employment of very fine length scale parameters.

6.4.4.2. Tension Test of L-Shaped Specimen. The next numerical test is concerned
with a benchmark problem of fracture mechanics which is very often discussed in litera-
ture. For a recent discussion of this boundary value problem in the context of energy-based
crack propagation with the help of the extended finite element method see e.g. MESCHKE
& DUMSTORFF [113]. The geometry and the loading conditions are illustrated in Fig-
ure 6.10. For the analysis the bulk modulus is chosen to A = 12.00 kN/mm?, the shear
modulus to g = 8.00 kN/mm?, and the critical energy release rate to g. = 5.0x 107
kN/mm. The simulation is performed in a displacement driven context with constant
displacement increments of Au = 1.0x 107 mm. In order to control the h-adaptive al-
gorithm a permissible norm 7% = 2.6 x 107°kN m of the interior material bulk forces is
chosen. The adaption of the discretization during the computation is given in Figure 6.11.
The proposed h-adaptive solution strategy enforces a mesh refinement in areas where the
crack evolves, allowing for the usage of a very small length scale parameter. This makes
the algorithm extremely efficient and renders the phase-field-modeling of diffusive frac-
ture to an attractive alternative. The evolution of the fracture phase field in the L-shaped
specimen is shown in Figure 6.12, where the resulting curved crack pattern is in a very
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d) c) £)

Figure 6.11: Tension test of L-shaped specimen. Adaption of the discretization at different
stages of the deformation with triangulations ranging from 141 to 11956 elements.

a)1 b)1 ¢) I
d) I e) I f)

Figure 6.12: Tension test of L-shaped specimen. Evolution of diffusive crack topology at
different stages of the deformation.




6.4 Material-Force-Based h-Adaptive Algorithm for Phase Field Fracture 145

0.30

0.25F
0.201
0.15f

0.10f 1
T,B,h(RB,h) — |

T.tol JR—

0.05f

criterion rB:"[x10~5kN m]

0.00 1 1 1 1
0.000 0.005 0.010 0.015 0.020 0.025
displacement u [mm]

Figure 6.13: Tension test of L-shaped specimen. Evolution of global refinement criterion
B (RB™") and permissible norm .

good agreement to the aforementioned publication. The evolution of the global criterion is
displayed in Figure 6.13. Obviously, ongoing deformation causes growing configurational
forces in the bulk material that are caused by an insufficient triangulation. The mesh
density function at three stages of the deformation is displayed in Figure 6.14. In Fig-
ure 6.14a) the initial triangulation is obtained for a unit distribution function y =1 in
the domain B", a local mesh adaption is obtained for 0 < X? < 1, see Figure 6.14b) and
¢), and a maximum refinement is obtained for y' = 0.

i u)‘i"’ '1 / |
b))

“’;7 A

Figure 6.14: Tension test of L-shaped specimen. Mesh density functions y} (RB ’h) to control
local mesh adaption at different stages of the deformation. a) Uniform initial discretization
for x» =1 in the domain B", b) discretization at the onset of crack propagation, and c) at
the end of the process. Maximum mesh refinement for x? = 0 and no refinement for x? = 1.
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7. Variational-Based Gradient-Type von Mises Plasticity

The main focus of this chapter lays on the development of phenomenological plasticity
at small and large deformations with gradient-type hardening that is embedded into the
variational-based framework of gradient-type standard dissipative solids. Formulations
conceptually similar can be found in the works by GURTIN [67], GUDMUNDSON [60], and
ANAND, GURTIN, LELE & GETHING [3], where additional microstructural fields with
according microscopic balance equations are considered. Hereby, the microscopic balance
equations characterize the evolution of the order-parameter fields.

A first part of this chapter is devoted to the introduction of the basic kinematics and the
state variables. In addition to the global displacement and hardening fields, the local field
of plastic strains is introduced. Subsequently, the constitutive equations in the context
of small deformations are introduced. An emphasis is thereby put on a rate-independent
formulation of the dissipation function yielding model I and its viscous regularized coun-
terpart yielding model II. Both representations are based on the classical yield function
of phenomenological plasticity. For the smooth model II, a fast update algorithm for the
local plastic strains is discussed. The application of the incremental variational framework
for gradient-type solids with local history then provides the governing balance equations
and delivers a unified finite element treatment of the coupled system. The numerical anal-
ysis of some elementary boundary value problems confirms mesh-independent results. The
developed model of gradient-type plasticity is extended to the case of large deformations
by an additive approach to finite plasticity in the logarithmic strain space in the spirit of
MIEHE [116, 117] and MIEHE, APEL & LAMBRECHT [121]. To this end, a brief review of
additive finite plasticity in the logarithmic strain space is given and a modular structure is
introduced that consists in its core of the initially introduced small strain material model
for gradient-type plasticity. This logarithmic core is framed by purely geometric pre- and
post-processing steps. This kinematic approach is embedded into the proposed variational
framework for gradient-type standard dissipative solids. The application of this general
framework then allows for an extremely compact notation and the unified numerical treat-
ment of the resulting symmetric problem. Several numerical tests are discussed at the end
of this chapter. They are mainly concerned with the regularization of shear bands and
the prediction of the well-known Hall-Petch effect.

7.1. Gradient-Type von Mises Plasticity at Small Strains

This section is dedicated to the embedding of the classical phenomenological von Mises
plasticity into the variational framework for gradient-extended dissipative continua. In
a first step, the basic kinematics and the state variables are introduced that govern the
material response. The necessary incremental potential is specified and the resulting gov-
erning equations are discussed. Hereby, besides the global strong equations, an effective
local update algorithm is proposed to solve for the local plastic strains. A suitable numer-
ical solution scheme is set up and finally some elementary numerical tests are discussed.

7.1.1. Basic Kinematics and State Variables. Aiming at a continuum mechanical
description of von Mises plasticity with isotropic gradient-type hardening at small strains,
besides the macroscopic displacement field u, a scalar-valued microscopic quantity « is
introduced, describing on a phenomenological level an isotropic hardening process of the
microstructure due to the accumulation of dislocations. In addition, the macroscopic plas-
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tic strain e is introduced as local history
uw:={u} and w:={a} and T :={e"}. (7.1)

The macroscopic strain € = Vu can be additively decomposed into an elastic and inelastic
part, allowing for the introduction of the stress producing elastic strain

ef=e—¢€P. (7.2)

It is used as state variable for the description of an energy storage mechanism that is
related to elastic macro-distortions of the material. Additional energy storage mechanisms
are related to homogeneously distributed microscopic hardening effects, captured by the
hardening variable «, and to inhomogeneously distributed microscopic hardening effects,
specified by the micro-gradient V. Thus, the constitutive state can be summarized by

c:={e,a Va,e’} (7.3)
and builds the kinematic framework for the formulation of the constitutive equations.

7.1.2. Energy Storage Mechanism. In the sequel, the constitutive equations for a
model problem of phenomenological gradient-type von Mises plasticity are introduced.
According to (3.178)1, the energy stored in the entire solid reads

E(u,a,e?) = /B@D(c) av'. (7.4)

The free energy function 1 exhibits contributions arising from macroscopic elastic dis-
tortions, characterized by the stress producing strain €¢, and from homogeneously and
inhomogeneously distributed dislocations, characterized on the phenomenological level by
the scalar hardening field o and its gradient Va. A decoupled representation of the free
energy function is assumed to be governed by the form

?/)(C) = Q/_)loc(ge(ga Ep)) + 'J)loc(a) + 'J)non(va) . (75)
N—— SN—— N——
elast. macro-dist. hom. micro-hard. inh. micro-hard.

For the specific model under focus, the energetic contributions take the particular form

Dioc(€(€,€7)) = G tr’e] + || deve(e, e”)]|?
1@06(04) = %hoz2 (7.6)
Pron (V) = sul?|Val?,

where the bulk modulus «, the shear modulus p, the isotropic hardening modulus A, and
the internal length scale parameter [ have been introduced. With these definitions at hand,
the rate of energy storage

E(g,a,eP;e, a,el) = %/@D(c) v = /{052/) D€+ 0 &+ Ortp 1 €P } AV (7.7)
B B

contains the total stresses

o = 0 = K tr[e]1 + 2u dev[e — €”] (7.8)
and the elastic driving forces for the hardening field and the plastic strain field
3= 0,0 = ha — pl> Aa and B° := 0t = —2u dev]e — e”]. (7.9)

Note hereby that the Laplacian term pl? A« renders the elastic driving force 3¢ nonlocal.
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7.1.3. Threshold-Type Dissipation Functions. Having the free energy function
at hand it remains to specify the dissipation function ¢. For rate-independent processes,
the dissipative material response is characterized by

D(cv, eP;a, €P) = / (e ¢)dV = / O:p(¢;¢) - €dV = D(a, er; a, €P) (7.10)
B B

where for positively homogeneous dissipation functions ¢ the dissipation potential func-
tional D is identical to the dissipation D. The dissipation function

o(c;¢) = gzgloc(d, eP; a, Ep), (7.11)

Vv
hom. micro-diss.

is assumed to be influenced by homogeneously distributed hardening and plastic strains
only. According to the considerations in Section 3.7.7, the thermodynamic dissipative
driving forces dual to the global hardening field a and the local plastic strain e are
introduced

f={p} and F:.={B}. (7.12)
An elastic domain E in the space of dissipative forces is bounded by the threshold function
p(B, ) = || dev[B]|| = v/2/3(yo — 5) , (7.13)

characterizing for ¢(B, ) < 0 an elastic domain, without an evolution of hardening o and
plastic strains €P. The constrained optimization problem defines the dissipation function

Gelise) = swp [Bi&’+04] with Eim{(B.9)|o(B.f) <0}, (T19)
B,3)eE

also known as principle of maximum dissipation. The fully rate-independent constrained
minimization problem (7.14); is solved by a Lagrange solution method

Droc(€;¢) = Bs[}lgo[B CEP + Ba— Ap(B, f)] (7.15)

involving the Lagrange multiplier A\. The necessary condition of this local constrained
optimization problem yields the evolution of the hardening and the plastic strain

dev|[B]

d:)\\/ﬁ and &P = \n with n:z&Bgo(B,/@):ma
A%

(7.16)

where the direction of plastic evolution n is identified. The non-smooth evolutions (7.16)
are supplemented by the loading/unloading conditions

A>0 and ¢(B,3) <0 and Ap(B,3)=0, (7.17)

also known as Karush-Kuhn-Tucker conditions. A wviscous regularization of the rate-
independent dissipation function (7.15) bases on the over-force formulation

Fu(60) = sup[ B 1" + 56— o (o(B,6))2]. (715)
B,3 n
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In this setting the ramp function (), := (|x|+2)/2 of the set R of positive real numbers
has been employed, for an illustration see Figure 4.11c). The necessary condition of the
smooth unconstrained optimization problem (7.18) gives the evolution equations

6= L(p(B.3) V2B and & = (o(B.g))m. (7.19)

expressed in terms of the direction of plastic evolution m. The viscosity stands for a
viscous over-force response which governs the evolution of the hardening field and the
plastic strain, respectively. For n — 0, the model degenerates to the rate-independent
setting (7.15). In the viscous setting, the Lagrange-multiplier A is identified by

A= %<w<B,ﬁ>>+ >0, (7.20)

being characteristic for rate-dependent loading. Due to the limit character of the smooth
viscous over-force formulation and the well-posed setting of the power-type formulation
(7.18), this formulation is of particular interest for numerical implementations.

7.1.4. Governing Balance Equations of Coupled Problem. In this section the
governing balance equations are derived that determine the displacement field u, the
hardening field a with its thermodynamic driving force (3 as global fields, and the plastic
strain e? with its driving force B as local fields. Regarding the displacement field, the
surface of the solid is decomposed into a part 0B,,, where the displacements are prescribed
by Dirichlet boundary conditions

u=up on 0B,, (7.21)

and a Neumann part 0B; with prescribed tractions ty. Clearly, the common set 9B, N
OB; = () of these boundaries is empty. The power of external mechanical load reads

Pem(u):/'y-udV—l—/ ty - wdA (7.22)
B 0B

expressed in terms of a prescribed body force field v per unit volume. For the hardening
field no Dirichlet-type boundary conditions are set, the natural Neumann-type conditions
Va-n = 0 on the full surface 9B are chosen. The hardening field « is considered to be
driven by the macroscopic deformation u of the solid. As a consequence, no prescribed ex-
ternal loading associated with the hardening field is considered. The local plastic strains P
have no field character, thus no boundary conditions have to be specified. With the power
of external load (7.22), the rate of energy storage (7.7), and the dissipation functional
(7.10) at hand, it remains to evaluate the standard argument of virtual power

E(t, v, €P) + D(c, €P) — Poyi(wt) = 0 (7.23)

for admissible rates @ of the displacement field that satisfy the homogeneous form of the
Dirichlet boundary conditions

W E Wy ={u|i= 0 ondB,}. (7.24)

The boundary value problem is now fully described, the principle (7.23) is evaluated for
the two dissipation functions (7.15) and (7.18) under focus.
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7.1.4.1. Model I: Rate-Independent Setting with Threshold Function. For the
rate-independent dissipation function with threshold function (7.15), the application of
the principle of virtual power (7.24) yields the coupled balance equations

0 =div[k trle]1 + 2u devie — eP]| +~

0 =pl?> Aa — [ha + 3]

0=d—\2/3 (7.25)

0=2u devle —e?’] — B

0=ec? —\n,
valid in combination with the time discrete loading/unloading conditions

A>0 and ¢(B,[) <0 and Mp(B,3)=0. (7.26)

The direction of plastic evolution m has been defined in equation (7.16).

7.1.4.2. Model II: Rate-Dependent Setting with Threshold Function. Evalua-
tion of the balance of internal and external power (7.23) for the rate-dependent over-force
representation of the dissipation function (7.18) yields the coupled balance equations

0 =div[k trle]1 + 2u dev]e — €] ] +~
0 =pul* Aa — [ha + ]

0 —d— %< | dev[B)|| — /273 (50 — ) )+ /23 (7.97)
0 =2u devie —e?] — B

0=er - %<||dev[B1|| VB B))an.

where for vanishing viscosity 7 — 0 the rate-independent limit (7.25) is obtained.

7.1.5. Incremental Variational Principle for Gradient-Type Plasticity. The pre-
viously discussed incremental variational principle is now applied to the model problem of
gradient-type von Mises plasticity. Thus, the state variables at the discrete solution times
0,t1,t2, ..., tn,tuy1, ..., 1T are considered. Hereby, the setup of the incremental potential
depends on the energy storage, the dissipation, and the external load that is expended to
the system within the typical time step [t,,t,.+1]. Recalling the non-smooth and smooth
representations of the dissipation function (7.15) and (7.18), the incremental dissipation
possesses different forms, yielding two models that are discussed separately.

7.1.5.1. Model I: Rate-Independent Four-Field Setting. The first possibility to
model the incremental potential bases on the rate-independent representation of the dis-
sipation function (7.15) and demands the solution of a constrained optimization problem.
Regarding a Lagrange-multiplier solution, the extended constitutive state vector and the
local solution pair are summarized

cy:={e,o,Va,5,A\} and p:={e" B}, (7.28)
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allowing for the compact formulation of the incremental internal work density
T (€3, P €5 P) = 5 t1%[e] + || deviet (e, )] ||
+ 3 ha? + 5l [Val® = i(c,)
+08(a—ay)+B: (e’ —¢€b)
— 7 (|| dev[B]l| - /273 (3o - B))

Application of the Lagrange multiplier type representation of the incremental variational
principle (3.133) for small deformations gives the algorithmic Euler equations

(7.29)

0 =div[k trle]1 + 2u devie — ]| +~
0 =pl? Aa — [ha + 3]

0=a—a,—TA/2/3 (7.30)
0=2u devle —e?’| — B
O0=¢eP —el —TAn,
coming in combination with the time discrete loading/unloading conditions
TA>0 and 7¢(B,5)<0 and 7TAp(B,[)=0. (7.31)

Reformulation of equation (7.30)5 together with the property ||n|| = 1 yields the relation
TA = ||e? — e|| and identifies in (7.30)3 the hardening variable « as the equivalent plastic
strain. Thus, the evolution of the hardening field can be reformulated

a=a,++2/3| e’ —er]. (7.32)

Solving (7.30)s for the thermodynamic force 5 and insertion into the yield function (7.13)
gives the alternative representation of the yield function

x = || dev[B]|| — v/2/3 (3o + ha — ul* Aa) . (7.33)
Accordingly, the loading/unloading conditions (7.31) are reformulated to
a>a, and x <0 and (a—a,)x=0 (7.34)

and a model of strain-gradient plasticity in the sense of Aifantis is obtained, where the
yield resistance is modified by the Laplacian term ul? Aa.

7.1.5.2. Model II: Rate-Dependent Three-Field Setting. The second possibility
to approach the incremental potential bases on the rate-dependent formulation of the
dissipation function (7.18). For the solution of the smooth problem, the constitutive state

¢ :={e,a,Va,f} and p:={e" B} (7.35)
is introduced, allowing for the compaction of the incremental internal work density
m(e* e pa) = 5k tr’le] + || dev[et(e, e”)] |7
+ Lha? 4+ Ll || Vol ~ u(c,)
+08(ae—ay)+B: (e’ —¢€b)

- 21n<||dev[Bu| — V2B (g —B))2.

(7.36)
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Application of the small strain version of the incremental variational principle (3.133)
provides the algorithmic Euler equations

0 =div[k tr[e]|1 + 2u dev]e — €] | +~
0 =ul* Aa — [ha + 3]

0=a—a, - %<||dev[B]|| — V273 (o — B) )4 /273 (7.37)
0 =2u devie —e?] — B

.
0=er—ei— LUl devIBlll = v2/3(5o = B) )+ m.
Combination of (7.30)2 3 allows to reformulate the evolution of the equivalent plastic strain

a=a,+ %< | dev[B|| — v/2/3 (o + ha — pl>Aa) )4 v/2/3, (7.38)

and shows again the dependency of the yield resistance on the Laplacian term pl?Aa.
The smooth character of the governing equations makes this time-regularized setting with
threshold function highly attractive for a numerical implementation.

7.1.6. Fast Update Algorithm for Local Plastic Strains. Aiming at a first step
towards a numerical implementation, the focus is put on the previously discussed rate-
dependent three-field setting of model II. Based on the state variables

c'(u) :={e,a,Va,B} with u :={wu,a,f} and p:={e’, B}, (7.39)
the local evolution subproblem (7.37),5 can be rewritten as residual

21 devle —e?] — B

. ~0, 7.40
o~ et~ (llaes Bl -~ V2B 0~ 9))- m (r40)

T (', p) =

see also the discrete expression (3.165). From equation (7.40);, the thermodynamic dissi-
pative driving force can be identified as

B =2y dev(e — €”]. (7.41)

Equation (7.40), determines the local update rule of the plastic strain
T
" = eht (|l dev[B]| V23 (o ~ B))em (7.42)

expressed in terms of the direction of plastic evolution n. Making use of the decomposition
of the plastic strain into its volumetric and isochoric part e? = % tr[e?]1 + dev[e?] and
further demand plastic incompressibility tr[e?] = 0, the update (7.42) can be recast into

dev[e?] = dev[el] + Ay?n  with A4P := %( | dev[B]|| — v/2/3 (yo — 8) )+, (7.43)

where the scalar valued plastic increment A+? is introduced. Insertion of the deviatoric
plastic strain (7.43); into equation (7.41) yields the deviatoric driving force

dev[B] = dev[B"]| — 2uAy*n  with dev[B"] :=2u dev]e — €”], (7.44)
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where the deviatoric thermodynamic trial force dev[B"] has been introduced. A simple
reformulation of (7.44); gives the alternative representation

d Btr
| dev[B]|| n = || dev[B"]| n" — 24 AP n  with n' = Lt] . (7.45)
| dev[B™]]|
By comparing coefficients, one can easily obtain the following conclusions
| dev[B]|| = || dev[B"]|| — 2uAy* and mn=mn"". (7.46)

This means that the update equation for the tensorial plastic strains is solely determined
by the computation of a scalar plastic increment A~P, the direction of plastic evolution n
is computed based on known values. Insertion of (7.46); into the definition of the plastic
increment (7.43) yields the governing equation

AP = %< | dev[B"]|| — 20 A9 — /273 (yo — B) )+ (7.47)

which is a linear equation that has to be solved for the plastic increment A~P. Assuming
plastic loading first, a trial value of the plastic increment can be introduced

.
2uT +n

APt = (1 dev[B]|l = v/2/3(yo = 8) )+ - (7.48)
This trial state has to be checked backwards in order to approve or discard the plastic
loading case. Thus, the actual plastic increment is determined by the closed form solution

A { AP if o(B, B) > 0

(7.49)
0 otherwise .

An iterative solution in the sense of (3.170) is not required. With known plastic increment
A~P and flow direction n = n'", the total plastic strain ” can easily be updated according
to (7.43)1, where the plastic incompressibility tr[e?] = 0 is a priori preserved by the
deviatoric structure. The thermodynamic driving force B is determined according to
(7.41). Note that the update algorithm for the local solution pair p := { &?, B } implicitly
depends on the global fields, becoming of particular importance when computing the
algorithmic sensitivities within a finite element formulation. For a more detailed discussion
of this update algorithm see also the thesis by WIDMER [178].

7.1.7. FE-Discretization of Incremental Variational Principle. The general nu-
merical multi-field treatment as intensively discuss in Section 3.9.4.2 is specified for model
II whose strong form is summarized in equation (7.37). Focusing on two-dimensional
boundary value problems, the generalized displacements and the constitutive state read

u = {u17u27 0475} with c*(u*) = {U1,17 U2, U2 + U1, O, A1, 04,275}- (7-50>

Following (3.226), the extended generalized displacements are approximated by

u’ = M (x)0* with DU)S = and 0} =[dy,dy,a,b]] . (7.51)

co o =2
oo Z2o
o Zoo
S ooco

%
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To keep things simple, the same shape functions N; and M; are chosen. At node ¢ of the
finite element discretization, the generalized displacement vector 0* contains the nodal
1- and 2-displacements d; and ds, the nodal hardening variable a, and the nodal ther-
modynamic driving force b. According to (3.231), the variation of the discrete extended
constitutive state with respect to the extended nodal unknowns reads

Ni 0 NyO O 00
s . e | O NaNLO O 0O
O™ =: B*(x) 60" with [B]{ = 0 0 0 NNNpoO| - (7.52)

00 000 0 M,

T

For the model problem of gradient-type von Mises plasticity, the generalized stresses and
the symmetric generalized moduli take the specific form

Oemy” xR0 0  OmT
O™ 0o P 7 0 1
* a’ln * aa''n
S Dgar” and C*: 0 0" BRogur 0 : (7.53)
pmy” DT 1 0  O03myT

In the case of elastic response for (B, [3) < 0, the single unspecified components of the
generalized stresses (7.53); are summarized by

OemyT =k trle]1 + 2p devle — P
Do =ha + 3

(7.54)
IvamT = pl* Vo
Opm,T =a —ay,
the according components of the generalized moduli (7.53), are given by
R =r1@142u PV
8§QW;T =h
DRovam =pl* 1 (7.55)
8%57T;;T =0
Rgmim =0.

In the case of inelastic loading for ¢(B,3) > 0, the ramp function becomes active and
the generalized stresses (7.54) have to be updated according to

L1 devBIl = V273 (40— 9)) V2/3. (7.56)

The generalized moduli (7.55) have to be updated by additional softening terms that arise
from the local update algorithm and the penalty-type ramp function, i.e.
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Figure 7.1: Bar under axial loading. Geometry and boundary conditions. Due to the sym-
metry of the boundary value problem only one half is discretized. To trigger localization,
the yield limit yq in the left element is reduced by 3%.

where the fourth order symmetric deviatoric projection tensor P*¥™ = [*¥™ — % 1®1
and the direction of plastic loading n'" have been employed.

7.1.8. Numerical Examples. Regularization of Shear Bands. In this section, the
performance of the proposed model for von Mises plasticity with gradient-type hardening
at small deformations is demonstrated by means of some representative numerical ex-
amples. The first elementary example is concerned with a bar subjected to axial loading.
Note that this problem has been introduced in Section 4.1.2 to motivate the phenomena
of localization and mesh sensitivity, even though for a more simple material model with
local linear strain softening behavior. The second numerical test is concerned with cross
shearing in a perforated plate under tensile loading. For both examples, the regularizing
effect of the additional gradient term on the shear band width is investigated.

7.1.8.1. Bar under Axial Loading. The first numerical test under focus is concerned
with a bar that is subjected to axial tensile loading. The geometric setup and the cor-
responding boundary conditions are depicted in Figure 7.1. Due to the symmetry of the
boundary value problem, only one half of the bar is discretized using 20, 40, and 80 ele-
ments. The analysis is carried out using the bulk modulus x = 164.21 kN/mm?, the shear
modulus g = 80.19 kN/mm?, the hardening (softening) parameter h = —0.129 kN/mm?,
the initial yield stress yo = 0.45 kN/mm?, and the viscosity 7 = 1 x 107> kN s/mm?. In
order to trigger localization in the centered strip of the bar, the yield stress gy in the first
element is reduced by 3%. The computations are performed in a monotonic displacement
driven context with constant displacement increments of Au = 1 x 1072 mm. The struc-
tural responses for this elementary boundary value problem obtained for computations
with two different length scales are depicted in Figure 7.2a) and Figure 7.2b), respectively.
Clearly, for a length scale [ = 0 mm the results are completely mesh dependent, whereas

6 T 6
80 elem. —

5F 40 elem. — 1 5r
A = 80 elem. —
24T 2 4r 40 elem. — |
~ 3| 3l 20 elem. — |
3 3
g2 82

1 1

. . . . 0 . . . .
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5

a) displacement u [mm] b) displacement u [mm]

Figure 7.2: Bar under axial loading. a) Mesh dependent load-deflection curves for compu-
tations with a length scale [ = 0 mm and b) objective structural response for [ = 3 mm.



7.1 Gradient-Type von Mises Plasticity at Small Strains 157

Il H
I I .
1 | B hEEn

Figure 7.3: Bar under axial loading. Equivalent plastic strains « for discretizations with 20,
40, and 80 elements for a)—c) a local analysis with [ = 0 mm and d)—f) a nonlocal analysis
with [ = 3 mm evaluated at a deformation stage of u = 0.55 mm.

for a length scale | = 3 mm the responses are mesh objective. The corresponding con-
tour plots of the equivalent plastic strains «, at a deformation stage of v = 0.55 mm are
depicted in Figure 7.3, again for the local and nonlocal analysis. Obviously, in the local
analysis localization occurs in one single element, whereas for [ = 3 mm the equivalent
plastic strains spread over a region with a size proportional to the length scale parameter /.

7.1.8.2. Perforated Plate under Tensile Loading. The second example under focus
describes a squared specimen with centered circular hole. The geometric setup and the
boundary conditions are illustrated in Figure 7.4. Due to the symmetry of the boundary
value problem, only one quarter is discretized using 622, 2393, and 9556 elements in a
structured mesh. For the analysis, the bulk modulus is chosen to x = 164.21 kN/mm?, the
shear modulus to g = 80.19 kN/mm?, the hardening (softening) parameter to h = —0.129
kN/mm?, the initial yield stress to 3y = 0.45 kN/mm?, and the viscosity to n = 1 x 107°
kNs/mm?. The deformation is applied in a deformation driven context with constant
displacement increments of Au = 1 x 107° mm. The corresponding contour plots of the
equivalent plastic strain « for three exemplary discretizations with 622, 2393, and 9556
elements, evaluated at a deformation stage of u = 0.025 mm are displayed in Figure 7.5.
Obviously, for the local analysis with [ = 0.000 mm, see Figure 7.5a)—c), the equivalent
plastic strain localizes in a zone with vanishing width for decreasing element size. In a
local analysis, the finite element method tries to resolve the evolving discontinuity as

.

Figure 7.4: Perforated plate under tensile loading. Geometry and boundary conditions.
Due to the symmetry of the boundary value problem, only one quarter is discretized.
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d)]

Figure 7.5: Perforated plate under tensile loading. Equivalent plastic strain a for a)—c)
an analysis with [ = 0.000 mm and d)-f) an analysis with [ = 0.004 mm obtained for
discretizations with 622, 2393, and 9556 elements at a deformation stage of v = 0.025 mm.

Figure 7.6: Perforated plate under tensile loading. Deformed meshes for a)—c) an analysis
with [ = 0.000 mm and d)-f) an analysis with [ = 0.004 mm obtained for discretizations
with 622, 2393, and 9556 elements at a deformation stage of v = 0.025 mm.
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Figure 7.7: Perforated plate under tensile loading. a) Mesh dependent load-deflection curves
for a length scale [ = 0.000 mm and b) objective structural response for I = 0.004 mm.

accurately as possible which yields the concentration of the localized zone within one row
of elements. In contrast, the nonlocal analysis with a length scale parameter [ = 0.004
mm, see Figure 7.5d)-f), yields a localized zone which spreads over several elements,
independent of the discretization that has been employed. The deformed meshes at the
same stage of the analysis are illustrated in Figure 7.6a)—c) for the local solution and in
Figure 7.6d)-f) for the nonlocal computations. The structural response of the boundary
value problem under focus is illustrated in Figure 7.7. Clearly, the local analysis for [ =
0.000 mm yields mesh dependent results in the post-critical regime, whereas an analysis
with [ = 0.004 mm yields mesh objective results.

7.2. Additive Finite Plasticity in the Logarithmic Strain Space

In literature, the construction of a kinematic approach to finite inelasticity is still con-
troversially discussed. A wide-spreading access to this broad field of research is given by
the overview works by NAGHDI [139] and X1A0, BRUHNS & MEYERS [180]. Roughly
speaking, the different kinematic approaches may be subdivided into two classes: i) Fol-
lowing KRONER [94] and LEE [96], a multiplicative decomposition of the deformation
gradient F' = F°F? is introduced, often denoted as Krdoner-Lee decomposition. This ap-
proach is widely used to model micro-mechanically-based crystalline or phenomenological
plasticity theories. ii) Starting with GREEN & NAGHDI [57], the key kinematic measure
to describe inelastic large deformations bases on the introduction of a Lagrangian plastic
deformation measure EP. This so-called Green-Naghdi theory has been further developed
by MIEHE [116, 117]. In these works a strong emphasis is put on the geometric inter-
pretation of the kinematic ingredients and the notion of an evolving plastic metric G”
is introduced. Inspired by the Lagrangian plastic metric, an additive kinematic frame is
introduced by MIEHE, APEL & LAMBRECHT [121] which is defined in the logarithmic
strain space. In the aforementioned reference, a comparison of the additive approach in
the logarithmic strain space with the multiplicative approach is performed. Numerical
tests confirm a very good agreement.

7.2.1. Strain Measures based on Current Metric and Plastic Metric. In agree-
ment with the multiplicative Kroner-Lee decomposition of the total deformation gradient
F = F°F? into an elastic and plastic part, an objective strain measure is introduced

g = f,.(C) with C:=FTCFr! (7.58)

based on the elastic right Cauchy-Green tensor C as a function of the right Cauchy-Green
tensor C := F7gF. The elastic strain measure (7.58) can be identified as a mapping
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Figure 7.8: Mapping properties of metric and stress tensors. a) The right Cauchy-Green
tensor C = FTgF as current metric g in the Lagrangian configuration and the convected
plastic metric c? = F~TGPF~T as reference plastic metric GP in the Eulerian configuration.
b) Two-point first Piola-Kirchhoff stress P, Eulerian Kirchhoff stress 7, and Lagrangian
second Piola-Kirchhoff stress S.

between the tangent and co-tangent spaces of an intermediate configuration that is char-
acteristic for the multiplicative Kroner-Lee approach to finite inelasticity and enters the
constitutive free energy function to model the energy storage mechanism. In this mul-
tiplicative setting, the plastic part of the deformation gradient F? is considered as an
internal variable that characterizes the plastic flow in crystalline materials. The isotropic
tensor function f,, describes the Seth-Hill family of generalized strain measures with

)_{ LA™? — 1) for m#0

m(A
Tl 5 In[A] for m=0

(7.59)

for all symmetric tensors A, see SETH [158] and HiLL [81]. In MIEHE [116, 117] it is
intensively discussed that for isotropic and anisotropic materials with preferred structural
directors which deform with the material, the plastic map enters the energy storage func-
tion only through the plastic metric GP := FPTGFP? in terms of the standard metric
G associated with the intermediate configuration. Using the plastic metric G” a priori
as an internal variable, the intermediate configuration becomes insignificant and can be
dropped, see Figure 7.8a). The plastic metric G is a symmetric, positive definite tensor
field which restricts the models a priori to six-dimensional flow rules and develops within
the elastic-plastic deformation process starting from the initial condition

G(ty) == G, (7.60)

where G is the time invariant Lagrangian metric. A Lagrangian elastic strain measure
is introduced that bases on the particular dependency on the right Cauchy-Green tensor
and the Lagrangian plastic metric in the additive format

& = Fm(C) = f(G). (7.61)

For the Green-Lagrangian strains with m = 2 the invariants of (7.58) coincide with
those of (7.61) when the latter are computed with respect to the plastic metric, i.e.
tr[(€5)°] = tr[(eSGP~1)?] for a = 1,2, 3. This makes clear for an isotropic integrity basis
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that the use of the Lagrangian elastic strain measure (7.61) is in general consistent with
the ansatz (7.58) only if the energy storage function depends on € and G*. However,
choosing m = 0 in (7.58) and (7.61) yields €; = & for the special case of coaxial total
and plastic deformations where C' and G” commute and the plastic map is identified by
FP = GP'/2. In this sense, the logarithmic strain measure

e’ = L In[C] - ¢ (7.62)

2

brings the additive ansatz (7.61) at least close to the multiplicative ansatz (7.58). Here,
the logarithmic plastic strain e? := % In[G”] may be considered as the internal variable
that enters the formulation.

7.2.2. Geometric Pre-Processing of the Logarithmic Strain Space. A key point
in the setting up of a framework for finite plasticity is the definition of an elastic strain
measure €°. This variable enters the constitutive function that describes the macroscopic
energy storage. This strain measure is assumed to be a function of the above introduced
Lagrangian current and plastic metric tensors, i.e.

e(C,G") = 1 In[C] — &”. (7.63)

As sketched briefly above, there exist several conceptual possibilities for the definition of
the elastic strain measure. In the remaining part of this chapter, the focus is put on the
elementary additive form

gfi=e—¢€v, (7.64)

according to (7.62) in terms of the logarithmic Lagrangian total and plastic strains

e:= s In[C] and &’:= i m[G"], (7.65)

respectively. The logarithmic tensor function maps the multiplicative characteristics of
large strain elasto-plasticity to the additive structure of the geometrically linear theory.
In particular, observe the relationship for the plastic Jacobian

JP = /det[G?] = expltr[e?]] (7.66)

that governs the change of volume due to the plastic part of the deformation. In the
context of metal plasticity, the plastic incompressibility is one main characteristic, which
is in the underlying context described by

det[GP] =1 & trfe’] =0. (7.67)

The multiplicative constraint on the determinant of the plastic metric G in context
with an isochoric plastic flow is described by the additive constraint on the trace of the
logarithmic plastic strain €?. Due to the one-to-one relationship (7.65); between G” and
eP, the logarithmic plastic strain measure € is chosen as an internal variable alternative
to G”. In what follows €? is considered as a variable that lives exclusively in a constitutive
box associated with the logarithmic strain space defined below. Of key importance for the
subsequent treatment is the sensitivity of the strain measure (7.65); with respect to a
change of the deformation

e:=P, :C with P, :=0ce (7.68)
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and the sensitivity of the projection tensor [P, with respect to a change of the deformation
P, :=IL,:C with I, :=0d%q€. (7.69)

Insertion of the inverse form of (7.68); into the stress power with respect to the unit
volume of the reference configuration of the material (2.74) yields the identification

P=S: %C:SZ(%PL_lié)::O':é with o:=18:P,". (7.70)

It identifies the Lagrangian stress tensor o as a work-conjugate quantity to the logarithmic
strain measure €. The symmetric Lagrangian tensors o and € provide a convenient pair of
dual variables of the local material element associated with the logarithmic strain space.

7.2.3. Constitutive Model in the Logarithmic Strain Space. Now assume a con-
stitutive model of plasticity that is exclusively restricted to the logarithmic strain space.
This model is considered as a constitutive box, its input is given by the logarithmic strain
measure € and a set of internal variables Z := {e?,...} consisting of the logarithmic
plastic strain tensor €? and some additional hardening variables. The output of the box
is the current stress o dual to the logarithmic strain and the corresponding elastic-plastic
tangent moduli E

{e, I} = MODEL = {o,E7}. (7.71)

In the continuous setting, the tangent moduli exist for rate-independent theories of plas-
ticity and govern the rate of the stress with respect to the rate of the logarithmic strain

G=FE":¢é. (7.72)

The attractive feature of the constitutive model is that it preserves the structure of plas-
ticity models of the geometrically linear theory. Thus, the model may adopt standard
constitutive structures of the small strain theory.

7.2.4. Geometric Post-Processing of Lagrangian Objects. Once the stresses and
tangent moduli in the logarithmic strain space have been obtained from the constitutive
box (7.71) they are mapped to the initial Lagrangian space by a straightforward appli-
cation of the transformation rules for Lagrangian objects introduced in Section 7.2.2.
According to (7.68) and (7.69), the stresses and moduli are mapped onto the Lagrangian
second Piola-Kirchhoff stress tensor and corresponding moduli via

S=20:P, and C?=4P':E":P,+40:1L,. (7.73)

In this expression, the fourth-order Lagrangian elastic-plastic tangent moduli C;* govern
the sensitivity of the symmetric second Piola-Kirchhoff stresses

S=cr:icC (7.74)

with respect to the Lagrangian rate %C of deformation. The transformation tensors IP,
and [, in (7.73) play a crucial role for the underlying treatment, closed-form algorithmic
approaches to these kind of tensors have been outlined in MIEHE & LAMBRECHT [125]
in a more general context for the class of Seth-Hill strain measures.
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7.3. Gradient-Type von Mises Plasticity at Large Deformations

The underlying model problem addresses a phenomenological model of gradient plasticity
at large strains that extends in an elementary format the established von Mises theory.
One main ingredient of the proposed model is the kinematic framework for additive finite
elasto-plasticity, recently published by MIEHE, APEL & LAMBRECHT [121]. This frame-
work exploits ideas of the so-called additive metric plasticity which exhibits a structure
very similar to the geometrically linear plasticity theory. The large strain implementation
is based on a modular kinematic setting, consisting in its core of a constitutive model
which is formulated in the logarithmic strain space. In this setting, the elastic part E¢ of
the Lagrangian Hencky strain E := In[C]/2 is defined as E° := E — In[G?]/2 = E — E*
with the right Cauchy-Green tensor C. Following MIEHE [116, 117], the reference plastic
metric G* is directly considered as internal variable. The constitutive core in the logarith-
mic strain space is then framed by purely geometric pre- and post-processing steps. In the
following treatment, a focus is put on the kinematic embedding of the previously discussed
model of gradient-type plasticity at small deformations into the theory of generalized con-
tinua at large deformations. Details of the numerical implementation are elucidated and
finally a representative set of numerical examples is presented.

7.3.1. Basic Kinematics and State Variables. The central kinematics for the de-
scription of a model problem of von Mises plasticity with gradient-type hardening within
the context of generalized continua is summarized by the set of independent state variables

@:={u} and ¢:={a} and I:={G"}. (7.75)

Here, the macro-motion is described by the displacement field u := x — X as a function of
the nonlinear deformation map ¢ = @, the micro-motion is identified as the global harden-
ing field «, and the plastic metric G, characterizing the inelastic deformation process, is
treated as local history field. For an intense discussion of formulations of finite inelasticity
that base on the notion of a plastic metric, the reader is referred to MIEHE [116]. Aiming
at a Lagrangian approach to the modeling of the inelastic material response, a symmet-
ric and positive definite tensor is introduced as the pull-back of the constant Eulerian
standard metric g to the Lagrangian manifold

C =F"gF, (7.76)

often denoted as right Cauchy-Green tensor. In the purely Lagrangian setting, the con-
stitutive state for the model problem under focus can be summarized by

¢ . ={e(C),a,Vxa,e’(G?) }, (7.77)
and builds the kinematic framework for setting up the objective constitutive equations.

7.3.2. Incremental Variational Principle. This section is concerned with a straight-
forward extension of the rate-dependent variational formulation of model II discussed in
Section 7.1.5.2 to the large strain setting. Here, the extended constitutive state reads

¢ ={e(C),a,Vxa,f} and p:={e’(G"),B}, (7.78)

where the thermodynamic dissipative driving forces dual to the global Lagrangian hard-
ening field a and the dissipative driving force dual to the local logarithmic Lagrangian
plastic strain e are introduced

f:={B} and F:={B}. (7.79)
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For the sake of simplicity, throughout Chapter 3 only the macroscopic two-point formu-
lation has been introduced. However, a modification of the large strain incremental vari-
ational principle (3.133) to the macroscopic Lagrangian setting can easily be obtained, a
summary is given in Appendix A. It bases on the incremental internal work density
(e, 95 €L ) = 5k tr¥[e] + | devel(e, €”)] |2
+ 2ha? + § pLl? || Vxal|? — ¢(c.,)
+p(a—oy,)+B:(ef —€b)

T

5l 4evIBl| /273 ( ~ )%

(7.80)

Roughly speaking, this representation contains the small strain internal work density,
where the input €(C') and e?(G”) has been converted to the logarithmic strain space.
Furthermore, a Lagrangian nonlocality with the length scale parameter L is introduced
that describes a constant amount of material points inside the nonlocal domain of influence
independent of the deformation. Application of the incremental variational principle (A.8)
for the macroscopic Lagrangian problem and taking into account the local dependency
on p in the sense of (3.133) provides the algorithmic Euler equations

0 =DIV[2gF (k tr[e]1 + 2u dev|e — eP]) : P, ]
0 =pl?Axa —[ha + 5]

0 :a—an—%(Hdev[B]H—\/%(yo—ﬁ)h 2/3 (7.81)
0=2u devle — e’ — B

0=¢— et = (|| dev[B]| = v/2/3 (40— 0) )+ .

Note that in this representation the latter two equations describe the evolution subproblem
of the local history variables that exist exclusively in the logarithmic strain space. In
contrast, the stresses o = k tr[e]1 4+ 2u dev[e — eP] that are dual to the logarithmic total
strain € are brought to the initial Lagrangian setting via the projection tensor [P,. For
a definition of this projection tensor as a result of a chain-rule operation, see equation
(7.68). Combination of (7.81),3 yields the evolution of the equivalent plastic strain

a=an+ %( | dev[B]|| — v/2/3 (yo + ha — pL*Axa) )4 /2/3 (7.82)

and shows again the dependency of the yield resistance on the Laplacian term pL?Axa.
The smooth character of the governing equations makes this time-regularized setting with
threshold function highly attractive for a numerical implementation.

7.3.3. Finite Element Discretization of Incremental Variational Principle. The
general finite element treatment of the variational principle for gradient-type solids in
a macroscopic Lagrangian setting has been discussed in full length in Appendix A.2. It
is now specified for the model problem of gradient-type plasticity. Restricting to two-
dimensional problems, the generalized displacements and constitutive state are given by

w = {u,u, o, B} with ¢ (u") :={Cyy,Co, Cro,, 1,00, 0}. (7.83)
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According to (A.12), the generalized primary variables are approximated via

u’ = 9(X) 0" with [D]¢ =

N 0
o and 07 = [dy,d, a,b]7. (7.84)
00

S ocoo

0
0
N
0 i
For simplicity, identical interpolations are chosen for the macro- and microscopic prob-
lem N; = M;. In this scenario, the generalized nodal unknowns 9* consist of the nodal
displacements in 1- and 2-direction d; and ds, the nodal hardening variable a, and the
nodal thermodynamic force b dual to the hardening field. In agreement with (A.16), the

variation of the discrete extended constitutive state with respect to the generalized nodal
unknowns needed for the coupled residual (A.17) is defined by

S = B (X)) 60" (7.85)

in terms of the approximation matrix

2Flzf’1\f1 2F{L26N2 2(F{L1N2+F{L2N ) 00 0 0]"
[%M]i - 0 0 0 N Nl N2 0 (786)
0 0 0 00 0 M

i

The symmetric monolithic tangent matrix of the global finite element solution algorithm
(A.19) contains a geometric contribution characterized by the geometric element matrix
and the macroscopic stresses in matrix notation. They are specified to

Ny 0 N, 0] dopms™ 0 om0
e |0 Ny O Ny . 0 doumy 0 doumy
Bli=10 0 0 0 and  37= 0012 0 deprm 0 (7.87)
0 0 0 0 i 0 8012 7T;;T 0 8(;11 71';;7—

Observe that in (7.87); only the macroscopic slots are affected by the additional contri-
bution. The hardening and the driving force field are not influenced. For the underlying
model problem of gradient-type Jo-plasticity the components of the generalized stresses
and the non-zero components of the generalized moduli

dcm,’ Igem,” 0 0  Oggmy7
O™ 0 0> 0 1
Sr= 1" and C := aa Tty (7.88)
O aﬂ.*r L 0 0 a2a N T 0
avﬂ’”n Rom™ 1 : v0 K 02 T
By BC"'n BB n

have to be specified. Taking into account the formulation of the macroscopic subproblem
in the logarithmic strain space, the macroscopic components of the stresses and moduli

dcm,” = 0.m, i P, and Ogem,” = ey P+ Oy Iy (7.89)

ssn

and the coupling off-diagonal terms in the generalized moduli
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Figure 7.9: Rotation of Rigid Plate. Geometry and boundary conditions. The rigid plate
is rotated around its hinged support at the upper left corner.

have to be treated according to the transformation rules (7.68), and (7.69),. The single
components of the stresses and moduli are identical to those of the small strain setting, for
a definition see equations (7.53)—(7.55). In order to describe more complex localization
phenomena, the proposed multi-field finite element formulation has to be enhanced by
an incompatible mode formulation. A detailed discussion of an enhanced assumed strain
formulation with multi-field character in a macroscopic Lagrangian setting can be found
in Appendix B.2, see also WIDMER [178].

7.3.4. Numerical Examples. Regularization of Shear Bands. This section demon-
strates the performance of the proposed variational framework for gradient-type standard
dissipative solids by means of several numerical tests. Different simulations are investi-
gated that document the gradient-type regularization of shear bands. The first test is con-
cerned with the rotation of a rigid plate in an elasto-plastic matrix yielding a curved shear
band. A second test discusses Prandtl’s indentation test, where a more complicated shear
band pattern occurs. Both tests approve the mesh-objectivity of the gradient-extended
model that incorporates an intrinsic length scale.

7.3.4.1. Rotation of Rigid Plate. The first numerical test is concerned with a squared
elasto-plastic specimen as illustrated in Figure 7.9. The horizontal and vertical displace-
ments along the right edge, the lower edge, and the lower third of the left edge are con-
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a) displacement w [mm] b) displacement u [mm]

Figure 7.10: Rotation of Rigid Plate. Load-deflection curves for a) mesh-dependent, local
analysis with L = 0.00 mm and b) mesh-objective, nonlocal analysis with L = 0.04 mm for
computations with 24 x 24, 48 x 48, and 96 x 96 bulk elements.
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Figure 7.11: Rotation of Rigid Plate. Deformed meshes at a)—c) the corresponding final
deformations of the local analysis L = 0.00 mm and d)-f) the deformation v = 1.0 mm of
the nonlocal analysis L = 0.04 mm obtained for computations with 24 x 24, 48 x 48, and
96 x 96 elements.

Figure 7.12: Rotation of Rigid Plate. Equivalent plastic strain « for a)—c) a local anal-
ysis with L = 0.00 mm and d)-f) a nonlocal analysis with L = 0.04 mm obtained for
computations with 24 x 24, 48 x 48, and 96 x 96 elements.
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Figure 7.13: Prandtl’s indentation test. Geometry and boundary conditions. Due to the
symmetry of the boundary value problem, only one half of the geometry is discretized.

strained. The rigid plate is hinged at the upper left support and indents the solid material
in a rotational movement. The boundary value problem is discretized using 24x24, 48x48,
and 96x96 multi-field Q1 F4-elements, for a detailed discussion of an enhanced strain for-
mulation at large deformations see Appendix B.2. For the numerical simulation, the bulk
modulus of the material is chosen to k£ = 16.67 kN/mm?, the shear modulus to u = 3.57
kN/mm?, the isotropic hardening (or softening) modulus to & = —0.10 kN/mm?, and the
yield limit to yo = 0.10 kN/mm?. The viscosity is chosen to n = 1x107° kN 's/mm? which
guarantees a solution very close to the rate-independent limit. The structural response
for the local analysis with L = 0.00 mm is given in Figure 7.10a), which documents the
obvious mesh dependence of the simulation. Figure 7.10b) shows the mesh-objective load
deflection curves for the nonlocal simulations with L = 0.04 mm. The deformed meshes,
and the corresponding contour plots of the hardening field « for the local and nonlocal
computations are illustrated in Figure 7.11 and Figure 7.12, respectively.

7.3.4.2. Prandt!’s Indentation Test. A further numerical test is concerned with an in-
dentation problem of a rigid indenter into an elasto-plastic medium. Initially, this problem
has been discussed analytically by PRANDTL [151], using the so-called theory of gliding
lines. The geometric setup and the according boundary conditions are illustrated in Fig-
ure 7.13. Here the displacements along the vertical edges are restrained in horizontal and
free in vertical direction. The lower edge is restrained in vertical and horizontal direction.
Due to the symmetry of the boundary value problem, only one half of the geometry is
discretized, using 60x36, 80x48, and 100x60 multi-field Q1 F4-elements. For a detailed dis-
cussion of an enhanced strain formulation at large deformations, the reader is referred to
Appendix B.2. The computation is performed in a displacement driven context, for both
the local and the nonlocal analysis. Throughout the computation, the bulk modulus of the
material is chosen to k = 160.00 kN/mm?, the shear modulus to x = 80.00 kN/mm?, the
isotropic hardening (or softening) modulus to & = —0.16 kN/mm?, and the yield limit to
Yo = 0.50 kN/mm?2. Aiming at solutions that are very close to the rate-independent limit,
the viscosity is chosen to n = 1x107° kN's/mm?. The resulting deformed meshes for the
local and nonlocal computations obtained for the different discretizations are illustrated
in Figure 7.14a)—c) and Figure 7.14d)-f), respectively. The distribution of the equivalent
plastic strain is given in Figure 7.15a)—c) and Figure 7.15d)—f) for the local and nonlocal
analysis. The according structural responses of the computations can be found in Fig-
ure 7.16. Clearly, the local simulations with L = 0.00 mm yield mesh-dependent results,
see Figure 7.16a), and the nonlocal computations with L = 0.06 mm yield mesh-objective
results, see Figure 7.16b).
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c) )

Figure 7.14: Prandtl’s indentation test. Deformed meshes at a)—c) the corresponding final
deformations of the local analysis L = 0.00 mm and d)-f) the deformation v = 1.8 mm of
the nonlocal analysis L = 0.06 mm obtained for 60 x 36, 80 x 48, and 100 x 60 elements.

c) £)

Figure 7.15: Prandtl’s indentation test. Equivalent plastic strain « at a)—c) the correspond-
ing final deformations of the local analysis L = 0.00 mm and d)—f) the deformation u = 1.8
mm of the nonlocal analysis L = 0.06 mm obtained for 60x36, 80x48, and 100x60 elements.
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Figure 7.16: Prandt!’s indentation test. Load-deflection curves for a) mesh-dependent, local
analysis with L = 0.00 mm and b) mesh-objective, nonlocal analysis with L = 0.06 mm for
computations with 60 x 36, 80 x 48, and 100 x 60 elements.

7.3.5. Numerical Examples. Hall-Petch Effect. The application of the proposed
model for gradient-type Jo-plasticity is not restricted to the regularization of shear bands
only, it can also be employed to model the so-called Hall-Petch effect. In HALL [75] and
PETCH [150] the authors observed that the yield strength of a polycrystalline metallic
specimen scales linearly with the inverse square root of the grain size. This grain size can
be considered as an intrinsic length scale parameter that takes into account the increasing
yield strength with decreasing specimen size. In the underlying model of gradient-type
Jo-plasticity, the micro-mechanics of plastic deformations is not investigated, a relation
between the length scale parameter L and the grain size is not provided. However, instead
of modifying the specimen’s dimension, an increasing length scale parameter L yields
a stiffer response. This behavior is documented in the following numerical test that is
concerned with a shear-test of a composite material.

7.3.5.1. Shear-Test of Composite Material. In the subsequent numerical test, shear-
ing of a two-dimensional specimen made up of a composite material with elastic reinforce-
ments in an elasto-plastic matrix is analyzed. In literature, this boundary value problem
has been investigated to compare dislocation-based plasticity models and continuum crys-
tal plasticity models. The former contain a characteristic length scale, i.e. the Burgers
vector, the latter ones have no intrinsic length scale parameter and thus are unable to re-
produce the size effects that are documented e.g. in CLEVERINGA, VAN DER GIESSEN &

T
.00 / j /

l / ] /

= 1.73

X

Figure 7.17: Shear-test of composite material. Geometry and boundary conditions of unit
cell with double-periodic array of elastic particles with width w and height h taken from
CLEVERINGA, VAN DER GIESSEN & NEEDLEMAN [28].
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Figure 7.18: Shear-test of composite material. Load-deflection curves a) for geometry (i)
and b) for geometry (ii) obtained for computation involving length scale parameters ranging
from L = 0.000 mm to L = 0.006 mm.

NEEDLEMAN [28]. The same boundary value problem has been adopted by BECKER [11]
to predict the size effect with the aid of a gradient-extended theory for crystal plastic-
ity that incorporates an intrinsic material length scale. The main observation that has
been made by the aforementioned authors is the so-called Hall-Petch effect: the smaller
the specimen’s dimensions, the stiffer the structural response. Instead of varying the size
of the specimen with constant intrinsic length scale, i.e. the Burgers vector, the dimen-
sions of the specimen are kept constant and the length scale parameter L is varied. The

)

Figure 7.19: Shear-test of composite material. Distribution of equivalent plastic strain «
in geometry (i) for a)—c) a length scale parameter L = 0.002 mm, and d)-f) a length scale
parameter L = 0.006 mm, plotted at the deformation stages © = 0.06 mm, v = 0.12 mm,
and v = 0.18 mm.
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Figure 7.20: Shear-test of composite material. Distribution of equivalent plastic strain «
in geometry (ii) for a)—c) a length scale parameter L = 0.002 mm and d)—f) a length scale
parameter L = 0.006 mm plotted at the deformation stages v = 0.06 mm, v = 0.12 mm,
and v = 0.18 mm.

geometric setup and the boundary conditions are depicted in Figure 7.17. According to
CLEVERINGA, VAN DER GIESSEN & NEEDLEMAN [28], two geometries of the elastic in-
clusion are investigated: (i) square particles h = w = 0.416, and (ii) rectangular particles
h = 2w = 0.588, both exhibiting an area fraction of f = 0.200. The periodicity of the
unit cell is taken into account by setting proper boundary and linking conditions: at the
lower edge the horizontal and vertical displacements are constrained, at the upper edge
the horizontal displacement is prescribed and the vertical displacement is constrained, the
horizontal and vertical displacements of the left and the right edge are linked. For the
microscopic degrees of freedom, the natural boundary conditions are chosen, the upper
and lower, as well as the left and the right edge are microscopically linked. The bulk
modulus of the elasto-plastic matrix is chosen to x = 74.51 kN/mm?, the shear modu-
lus to p = 28.57 kN/mm?, the isotropic hardening modulus to & = 0.70 kN/mm?, and
the yield limit to yo = 0.208 kN/mm?. In order to obtain a solution which is very close
to the rate-independent limit, the viscosity is chosen to n = 1x107° kNs/mm?. The
bulk modulus of the elastic particles is chosen to £ = 215.66 kN/mm? and the shear
modulus to g = 182.48 kN/mm?. This set of material parameters is representative for
an aluminum matrix with silicon-carbide particles. The boundary value problem is dis-
cretized with 60x104 Q1 FE4-elements. For a detailed discussion of the multi-field enhanced
strain formulation at large strains see Appendix B.2. The computation is performed in a
displacement-driven context using an automated time-stepping procedure. The structural
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responses for the two geometries (i) and (ii) are given in Figure 7.18a) and Figure 7.18b).
Clearly, for an increasing length scale parameter L the response becomes stiffer. For ge-
ometry (i), where the inclusions do not overlap, the overall behavior is softer, whereas for
geometry (ii) the inclusions overlap and cause a stiffer material response. This characteris-
tic can considerably be observed in the corresponding contour plots of the hardening field
a. Figure 7.19 displays the evolution of the hardening field @ in geometry (i) for a)—c)
the length scale L = 0.002 mm and d)-f) the length scale L = 0.006 mm. Obviously,
for the larger length scale L the hardening field o spreads over a larger neighborhood,
causing the stiffer response. A similar characteristic is shown in Figure 7.20 for geometry
(ii). Here, the stiffer structural response is caused by hardening accumulation in a region
surrounding the inclusions, whose size is proportional to the length scale parameter L.
Clearly, the larger the length scale parameter L, the stiffer the response.
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8. Conclusion

This thesis is concerned with a wunifying theoretical and numerical development of a
variational-based framework for gradient-type standard dissipative solids. Throughout the
present work three applications of the developed framework have been discussed: (i) a
gradient-type formulation of damage mechanics, (i1) phase field modeling of fracture, and
(111) a phenomenological model for plasticity with gradient-type hardening.

The theoretical foundation of the framework for continua with substructure has been laid
and a precise geometric interpretation of the basic kinematic ingredients has been given.
An intense focus is put on the strict duality of macro- and microscopic motions allowing
for a compact representation of the main ingredients of gradient-type standard dissipative
solids, namely the free energy function and the dissipation function. The latter constitu-
tive function is chosen to describe rate-independent processes resulting into a non-smooth
dissipation function that is positively homogeneous of degree one. Several alternative rep-
resentations of this dissipation function are elucidated yielding a penalty-type two-field
formulation, a conjugate dissipation function that is based on a Lagrange-multiplier so-
lution in a four-field setting, and the viscous regularization of the conjugate dissipation
function in a three-field setting. For all these representations incremental variational prin-
ciples are introduced that characterize the algorithmic balance equations of the fully cou-
pled symmetric systems. A unifying finite element treatment for these symmetric systems
is suggested, where details of the necessary matrix notation are highlighted.

A first application of the proposed general framework for gradient-type standard dissipa-
tive solids has been discussed in the context of gradient-type damage mechanics. Starting
with a canonical version of the rate-independent dissipation function alternative dual
representations are derived based on a Legendre transformation. Hereby, the relation-
ship between the dual dissipation function and a classical threshold-type formulation is
highlighted. The unified numerical treatment is specified for two-dimensional problems
allowing for the discussion of several numerical tests. Problems like mesh-dependent sim-
ulations arising with standard local damage formulations are overcome by the damage-
gradient enhancement of the constitutive functions that incorporates an intrinsic length
scale parameter. The analysis of some elementary boundary value problems documents the
performance of the proposed method with regard to shear band formation and approves
the mesh-independence of the results.

A further application of the proposed frame for gradient-type standard dissipative solids
also covers phase field modeling of fracture. The formulation of such models of fracture
are closely linked to the previously discussed models of gradient-type damage mechanics.
Starting with a purely geometric, approximate description of crack topologies, a dissi-
pation function for rate-independent processes is introduced. This dissipation function
contains not only the rate of the fracture phase field, but also its gradient. As a con-
sequence, the model of phase field fracture can be considered as a specific gradient-type
damage formulation with a particular dissipation function. In analogy to the model of
gradient-type damage mechanics, alternative representations of the dissipation function
are discussed. Regarding the energy storage mechanism, an anisotropic degradation of
the stored bulk energy based on a spectral representation of the strains has been intro-
duced, which restricts the crack evolution in tensile regions of the solid domain. The
application of the incremental variational frame and specification of the finite element
matrices yield the governing symmetric FE-system. Several numerical benchmark tests
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document the performance of the proposed model. The suggested model of phase field
modeling of fracture offers the possibility for further research. Follow up work with an
emphasis on an effective staggered numerical scheme can be found in MIEHE, HOFACKER
& WELSCHINGER [124]. The modular structure of phase field fracture makes this the-
ory highly attractive for the description of more complex fracturing processes in coupled
problems of continuum mechanics. An extension of the phase field modeling of fracture
towards electromechanical fracture processes can be found in the recent work by MIEHE,
WELSCHINGER & HOFACKER [129].

Another part of this thesis is concerned with an improvement of the numerical efficiency
of phase field modeling of fracture. To this end, an h-adaptive finite element solution pro-
cedure has been introduced that is exclusively driven by discrete configurational forces. In
a first step, the configurational setting of phase field fracture has been investigated. The
governing balance equation in configurational space are derived, where an algorithmic
counterpart of the balance in configurational space can alternatively be obtained by the
design of an incremental variational principle. In order to obtain the discrete configura-
tional forces, a numerical staggered solution scheme is introduced which allows for the
discussion of the evolution of discrete configurational forces in phase field modeling of
fracture. Hereby, the discrete configurational forces consist of two contributions. A bulk
part that originates from bulk terms and a surface part that originates from the evolving
diffusive crack surface inside the solid domain. The forces acting on the diffusive surface
are considered as physically motivated forces, whereas the material bulk forces are re-
lated to an insufficient discretization. Thus, the material bulk forces have been employed
to define global and local mesh refinement indicators needed in an h-adaptive solution
strategy. A representative set of numerical examples is discussed that demonstrates the
performance of the proposed solution algorithm.

A last application of the framework for gradient-type standard dissipative solids is found
in the description of size effects in a model of phenomenological plasticity with gradient-
type hardening. In a first step, a version of this model has been developed for the case of
geometrically small deformations. The exploitation of the incremental variational proce-
dure for gradient-type solids with local internal variables yields the governing algorithmic
balance equations. The unified finite element treatment is specified for two-dimensional
problems which finally allows for the analysis of two elementary examples regarding the
reqularization of shear bands. In a second step, this small strain model is embedded into
the logarithmic core of a large deformation formulation. Mesh-independent numerical sim-
ulations on the one hand side are performed to demonstrate the regularization of shear
band formation in more complex boundary value problems and on the other hand side to
predict the so-called Hall-Petch effect.
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A. Gradient-Type Continua in Macroscopic Lagrangian Setting

In this chapter, the focus is laid on the variational formulation of generalized continua in
the macroscopic Lagrangian setting that a priori fulfills the invariance property. Regarding
a straightforward numerical implementation, the rate-dependent principle with threshold
function is investigated. As defined in (3.37)1, the generalized constitutive state for models
in the macroscopic Lagrangian setting is defined by

c.(u):={C,p,F} with u:={@ ¢} (A1)

in terms of the generalized displacement vector u. Aiming at a rate-dependent variational
principle with threshold function, the extended generalized constitutive state is introduced

¢;(u;) ={C,p,F.f.} with uj:={@ ¢} (A.2)

based on the extended generalized displacement vector u; that additionally contains the
thermodynamic dissipative force array

fo ::{E,f,j:}. (AB)

Here, the thermodynamic force F, is dual to the macroscopic right Cauchy-Green ten-
sor C, the force f dual to the microscopic deformation ¢, and the force F dual to the
microscopic deformation gradient F. In contrast to Chapter 3, solely the over-force rep-
resentation of the viscous dissipation function

olsie) = slf, &, - % (o(fu;c))? ] (A4)

is discussed. Formulations that base on this smooth representation of the dissipation
function are highly attractive for a numerical treatment.

A.1. Time-Discrete Rate-Dependent Variational Principle

In what follows, an incremental variational principle for gradient-type standard dissipative
solids is set up that bases on the extended dissipation function (A.4). In the macroscopic
Lagrangian setting, the variational principle is governed by the incremental potential

H;T(¢7 Sb7 fL) = ET(@? ¢) + D;T(¢7 ¢7 fL) - WT(@u sz : (A5)
——— ——r P - ~
potential energy dissipation work

Based on the generalized deformation vectors (A.1), and (A.2),, the generalized consti-
tutive state vector (A.2);, the generalized volume force vector (3.94), and the generalized
surface traction vector (3.95), the incremental potential (A.5) may be reformulated

7 () = / (R () — g (u—w) } dV — / Ctyewew)dd (A)

expressed in terms of the extended incremental internal work density

~{p(fus )2, (A7)

W;T(ti; i) = U(er) = P(epn) + o (e — €1p) — oy
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Table A.1: Rate-dependent balances of gradient-type solids.

Macroscopic equilibrium condition

0 = DIV[2gF (9 + F.) ]+ 74, in B
gTy = gF (201 +2F,)- N on 9B;
Microscopic evolution equation

0 =DIV[0pth + F]— [0 + 1+ 4, in B
gTy = (0p¢+ F)- N on 0B;

Inverse smooth definition of dissipative driving forces with A := % (o(frie))+

C =)0z ¢ and QE:)\@;QD and F:)\aj_-(p in B

and is determined by the constitutive free energy function ¢ and the yield function ¢,
respectively. In this manner, the finite step sized incremental stationary principle reads

1% @.f. } = arg{infinf Sup IL7 (@, ¢.f.) } (A.8)
L

It uniquely determines the current macro- and microscopic deformation ¢ and ¢ and
the dissipative thermodynamic driving force §, as the saddle point of the incremental
functional (A.7). The variation of this incremental potential yields the smooth necessary
condition

OILT = 0pl11T + 011 + 05, ILT = 0. (A.9)

The single components can be summarized by the explicit expressions
OplL;" = / {[0cv + F] : (2F"gVx0@) — 4, - 6 } dV
B
— / gTN - 6pdA
0B;
Solty = [ (050 + 1 Wb+ [0+ F =] -0} 4V (A.10)
— / gTy - dp dA
OB;
-
357 [ (e = 6un = )] 57, ) dV

in terms of the admissible variations d¢@ € Wg,, dp € Wg, and 0f, of the current macro-
and microscopic deformation and the dissipative forces. Note that the variation of the
macroscopic right Cauchy-Green tensor 6C = QSym[FTQVX(SCo] enters the macroscopic
balance (A.10);, where due to the symmetry property of the stresses dz1 and the forces
F, it is sufficient to consider the non-symmetric part only. The Euler equations of the
stationary principle (A.8) evaluated at current time ¢, are summarized in Table A.1.
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Such a formulation is particularly convenient due to the smooth nature of the viscous
dissipation function.

A.2. Finite Element Discretization of Variational Principle

Focusing on a discrete representation of the extended incremental variational principle
(A.8), the discrete counterpart to the extended generalized deformation vector in a macro-
scopic Lagrangian formulation has to be introduced

Nel

-4 [Z 0 A 17 ] ALY & [E) s wn

e=1 i=1 i e=1

This expression contains the element matrix [D]§ defined in equation (3.141) and an
additional approximation matrix [A]¢ for the thermodynamic forces. Regarding a compact
notation, both are summarized by the global matrix 91*, where the nodal unknowns are

o, =00 £ =lddf], (A.12)

namely the nodal displacements d, the nodal microscopic deformation d, and the ther-
modynamic forces f,. According to the representation (3.143), the constitutive state in
the macroscopic Lagrangian setting is given by the expression

ne, [C(d) L
")) = A | [Bl‘d® | with C"(d°) = F" (d°)gF"(d"). (A.13)
e=1 [A]Efe

The macroscopic right Cauchy-Green tensor C(d¢) is evaluated on element level as a
nonlinear function of the discrete macroscopic deformation gradient F"¢(d°), see also
equation (3.153) for more details. With the discretizations (A.11) and (A.13) at hand, the
extended potential (A.6) is reformulated

R e ACICHEP R LR a)}dV—/thtN-*)T(b—bn)dA (A.14)

allowing finally for the discrete representation of the incremental stationary principle

{9 } = arg{ s’%gt H;;h(bj) }. (A.15)

It identifies the generalized nodal displacements ® and the nodal thermodynamic forces f,
of the discrete problem at time ¢,, ;. Starting with the variation of the discrete constitutive
state (A.13) with respect to the nodal generalized displacements

o [ na [2By(d)]s 0 0 sdl¢
sy =AY | 0 Bl 0| |ad| | =myX)e, (A0
SUEL 0 o] s,

7

the necessary condition of the discrete variational principle (A.15) reads

=10%, = / {8,718 ] —-d'g}aV — th‘ﬁTtN dA  with S} := deum;. (A1T)
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This coupled system of nonlinear equations is solved iteratively in a Newton solution
scheme that bases on the update algorithm

o =0 — [ 7 - I until [T || < tol. (A.18)

This expression contains the symmetric monolithic tangent matrix

*h * T * * *T 1 Qxh * . * . 02 *h
Mty = /B (BT BT EIB AV with O = gt (A1)
that contains material and geometric contributions. The geometric term arises, because
the approximation matrix B,,(d°) in (A.16) is a function of the actual macroscopic de-
formation d°. Thus, its increment has to be taken into account via

Nen

B:= A [i: (B¢ 0]] = K [Bl° 0] and S = 28Ch7r;h (A.20)

e=1 1,1 e=1

based on the macroscopic stresses $; that are restored in matrix format. The matri-
ces By and B} depend on the geometric dimension and the nature of the material’s
microstructure.
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B. Enhanced Multi-Field Finite Element Formulations

The numerical simulation of strain softening effects in damage mechanics at small strains
discussed in Section 4 or in phenomenological plasticity at small and large deformations
presented in Section 7 necessitates the development of an enhanced strain formulation
that is embedded into the multi-field framework for generalized continua. Standard dis-
placement formulations fail in situations with highly distorted elements in shear bands
and exhibit the severe effect of locking. In general, the enhanced strain formulation can
be traced back to the method of incompatible modes as introduced by WILSON, TAY-
LOR, DOHERTY & GHABOUSSI [179] and TAYLOR, BERESFORD & WILSON [169]. A
variational-based approach to an enhanced strain formulation at small strains that bases
on a Hu-Washizu principle can be found in SiMO & RIFAI [165]. For a more general
treatise of the Hu-Washizu variational principle, see WASHIZU [174]. An extension of the
Simo-Rifai element to the large strain setting is discussed in SIMO & ARMERO [160] and
SIMO, ARMERO & TAYLOR [161] which is conceptually in line with MIEHE [114].

B.1. Enhanced Strain Formulation for Geometrically Linear Problems

This section aims at the construction of an enhanced strain formulation that is embedded
into the multi-field framework for continua with microstructure. Following the work by
SIMO & RIFAI [165] and SiMO & HUGHES [162], the central idea of an enhanced strain
formulation bases on a re-parametrization of the actual macroscopic strain field in the
form

g(u,e%) =Vsu+e”, (B.1)

where Viu is the symmetric part of the gradient of the displacement field and " the
enhanced part of the actual strain field. The actual macroscopic strain (B.1) then enters
the generalized constitutive state for the description of continua with microstructure.

B.1.1. Time-Discrete Incremental Variational Formulation. According to the
kinematic enhancement (B.1), the generalized constitutive state (3.200) is rewritten

c(u, &%) = {&(u,e"),u,Vu} with w:={w,u}. (B.2)

Restricting to a formulation of the incremental dissipation in its rate-dependent setting
with threshold-function (3.196), the extended constitutive state (3.209) has to be adjusted

¢ (u, 8°) = {&(w, &%), w, Vaa,f} with u* = {@ @i}, (B.3)

containing in addition the thermodynamic driving forces §. This extended constitutive
state then enters the incremental potential

IL7(w", g%, o) = /B{ (e e) —g-(uw—u,) }dV — /63 ty - (u—u,)dA (B.4)

founded on the extended incremental internal work density that is macroscopically ex-
tended in the sense of a Hu-Washitsu principle

w;T(c*; c)=u(c)—a:e°—Y(c,)+ o, +F (¢ —¢,) — % (o(F; cn))i. (B.5)
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It is governed by the free energy function ¢ as a function of the enhanced constitutive
state (B.2);, the yield function ¢, and the actual stress tensor &. The stationary principle

{u,u,f " o} =arg{infinfsup inf sup I (u,a,§,&", o)} (B.6)
u w5 E &

determines the macro- and microscopic displacement w and @, the dissipative thermody-
namic driving force f, the enhanced part of the strains €7, and the actual stresses o as
the saddle point of the incremental functional (B.3). The necessary condition reads

OILT = G I1T + 0ze LT + 6,117 = 0. (B.7)

The generalized displacements u* allow for the compact formulation

S TIiT = /{ eTT] B¢ — g ou}dV — /tN~(5udA
OBy

ol = / {[0er” — 5] : 66" } dV (B.8)

5,117 /{ |1 66} dv.

Here, the variation of the constitutive state (B.3) with respect to the generalized defor-
mation vector u* is given by the expression

Oy €™ = { Vou, du, Vou, of } . (B.9)

Equation (B.8); represents in a compact format the Euler equations of the stationary
principle (B.6). The strong form of the balance equations evaluated at current time ¢,
is summarized in Table 3.4. The local form of the enhanced subproblem (B.8), 3 reads

o =0(c)+F and E"=0. (B.10)

The first expression describes the actual stresses &, the second one enforces vanishing
enhanced strains €” = 0 in the domain B. This is obv1ous in the continuous setting, but
is not satisfied within a finite element approximation, i.e. £*" # 0 in B".

B.1.2. Algorithmic Finite Element Discretization of the Weak Form. Prior
to the discretization of the weak form (B.6), the Lo-orthogonality between the discrete
stresses 6" and the enhanced part of the strains £°" is exploited

SonII" = — Bh{éEh L0ah Y} dV = —/Bh{&h 0P Y aV =0, (B.11)
where the explicit term [0p7,7] : 66 = —€” : 6 has been used. In the discrete setting
this equation is identically satisfied if the last term in equation (B.8)y vanishes. Thus, the
Ly-orthogonality between the stresses and the enhanced strains eliminates the stress field
from the finite element equations. The reduced set of discrete equations is obtained

6u*;LH;;h = [ {[0cnT ] Spnc — g oul} dV — /th ty - ou dA

B (B.12)
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This reduced weak form is a priori chosen as starting point for a numerical treatment. To
this end, in (B.12); the discrete variation of the generalized deformation vector

w AL 2] AR A5 e

and the discrete variation of the enhanced constitutive state vector with respect to the
generalized deformation

nen [0 [[Bl; 007 [4d]"
Sure™ = A |D_ | 0 [Bs 0 | |od| | = B (z)50* (B.14)
e=lli=t | 0 0 [Af] |of

g i

have to be considered, see also equations (3.226) and (3.231). These expressions contain
the approximation matrices for the coupled problem [D]¢, [B]¢, [B]S, and [A]¢ initially
presented in Section 3.9.4 in combination with the variations of the nodal unknowns 60*.
In (B.12),, the variation of the enhanced strains is approximated on element level by

Nen

se” = A[G° da° = G(z) da (B.15)

e=1

based on the variation of the nodal incompatible modes da in combination with the

element approximation matrix [G]¢. Making use of these discretizations, the reduced weak
form (B.12) can be recast into its discrete counterpart

H;},LD* = h{ %*T[(‘)c*hﬂ-;h] _ s)’tTg } dV — ) ‘)?TtN dA
B o (B.16)
* L ~T «h
), = Bh{G [Oen] 3 dV

This system of nonlinear equations can alternatively be rewritten as residual in the sense

~-0. (B.17)

It is solved by a Newton iteration scheme that is based on the Taylor series expansion of
the residual with truncation after the linear terms

Ao Hz*a*a* Z*a*a
Linr(®%a):=r(®%a)+K(0"a)- with K (0% a) := . Lo, (BIS)
Aa H;kz ao* ;ki aa

where the symmetric tangent matrix is introduced containing the second derivatives

T pei= [ B[O cny" B} AV
T o= h{ B0 am" |G} dV
5 (B.19)
* ~1 * *
Hn?ﬁ,ﬁ* = Bh{ G [8§hc*hﬂnh]% }dV

= (G057 |G Y} dV .
Bh

n,aa gh’in
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Here, in full analogy to the discrete variations (B.14) and (B.15), the discrete increments
have been expressed by the approximations

Apnc™ = B*(z) Ad* and Ae™ = G(z) Aa. (B.20)

In order to eliminate the incompatible modes a from the global finite element equations,
a static condensation is performed, yielding the condensed residual

ra(d) == H,’;’fa* - H;;’jm : [H;;’jm]—l : H;;’fd =0. (B.21)
The condensed version of the linearization (B.18) can then be expressed by
Linr5(0", Ad") :=r5(0") + Ki5(d") - Ad*, (B.22)
and bases on the modified stiffness matrix
Kja(?") = H;}fa*a* - H;;},La*a ) [H;}faa]_l 'H;;},laa* ‘ (B.23)

The solution of the reduced residual is performed in a classical Newton iteration scheme,
where the according update directive is given by the expression

0 =0 - K (07)  7a(0) until [ria(07)]| < tol. (B.24)

Note that regarding a finite element implementation, no inter-element continuity of the
enhanced strains £7" has to be enforced. Thus, the static condensation can be performed
locally on element level B¢. For two-dimensional problems, the enhanced incompatible
modes are approximated directly on element level via the element matrix

~ det[J"]
~ det[J]
based on the element matrices [Fy]¢ and [E]¢ describing a transformation law to connect

the parameter space with the physical space and a matrix containing the shape functions
for the enhanced strains. According to SIMO & RIFAI [165], they can be specified to

G]°: [Fol” [E] (B.25)

Tt Iy Jhda 000 &6
[Fo]ez J?2J102 Jgr]gz J?2ng and [E]e: 0& 00 —&& |, (B.26)
200y 1y 203, 3 Yy 3+ TR Ty 00&& &8

where the components JZ-O]- are the entries of the Jacobian J, evaluated at the local element
coordinates €& = 0. The overall solution algorithm is summarized in Box 3.

B.2. Enhanced Strain Formulation for Geometrically Nonlinear Problems

This section shortly outlines the multi-field implementation of an enhanced assumed strain
method in the macroscopic Lagrangian setting. Following SIMO & ARMERO [160] and
SiMO, ARMERO & TAYLOR [161], the current macroscopic displacement gradient

H = Vxu + Vxu” (B.27)

is re-parametrized by a compatible and an enhanced displacement gradient Vxu and Vxu”.
Thus, the actual macroscopic deformation gradient F' = 1 + H can be rewritten

F(Q_O, ’l_l,E) = Vxp+ Vxa® with Vxe =1+ Vxu (B28)

as a function of the compatible deformation map ¢ and the enhanced displacement field
u”. In a macroscopic Lagrangian formulation, the macroscopic right Cauchy-Green tensor

C(p,u”) = F'gF (B.29)

contains the re-parametrization (B.28) and enters the generalized constitutive state.
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Box 3: Solution procedure of enhanced strain formulation.

1. Compute enhanced residual IT;" _ on element level by equation (B.16); or (B.46)s,
evaluated at time ¢,,, and update incompatible modes a® according to

. [H*he ]— [H*he . D H*he ] )

' n,aa N n,a0* M n,a

2. Compute modified residual by static condensation on element level

7€ ( ) — H=kh"i . H=kh"i . [H*he,,]_l X H=kh"i

n\a M n,0* N n,0*a N n,aa Mn,a’

3. Compute modified tangent by static condensation on element level

e . *h® *h¢ *h¢ *h¢
n|a( ) Hnnb o Hﬁnb* ’ [Hn n,(za] Hnnab* ’
4. Assemble global residual and tangent arrays

Tn\a n A *e and Kn|a n A

5. Solve for increments and update solution in Newton scheme

<=0 — K 1(3*) Toa(0y) until ||7,a(9))[ < tol.

nla

B.2.1. Time-Discrete Incremental Variational Principle. The re-parametrization
of the macroscopic right Cauchy-Green tensor (B.29) is employed to modify the general-
ized constitutive state (A.1) in a macroscopic Lagrangian setup

c.(w.a”):={C(p,a"),p,F} with u:={@.p}. (B.30)

In order to formulate the rate-dependent variational principle with threshold function,
the extended constitutive state (A.2) in the re-parametrized version is employed

(") = {C(@.a"), @ F.f,} with uj:={p ¢ f.} (B.31)

in terms of the thermodynamic driving forces (A.3). It enters the incremental potential

H;;T(u;,uE,P):/{W;T(c;;c;n)—g-(u—un)}dv—/ ty - (u—wu,)dA. (B.32)
B 0Bt

In contrast to (A.7), this incremental potential bases on an extension of the Hu-Washitsu
principle to the underlying multi-field problem. Its main ingredient is the extended incre-
mental internal work density

mr(eric;,) = v(e) — gP : Vxu” — P(er,) + gPy : Vxa,,
. L (B.33)
+ fL ' (cL - an) - % <30(va an)>+
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governed by the free energy function ¢ as a function of the enhanced constitutive state
(B.30)4, the yield function ¢, and the actual stress P. The variational principle

{p, @, f.,u”, P} = arg{ igfil}fsupi if sup I (@, @.f., " P)} (B.34)
P

P fp uw

determines the macro- and microscopic deformation map ¢ and @, the dissipative ther-
modynamic driving force f,, the enhanced displacements w”, and the actual stresses P
as the saddle point of the incremental functional (B.32). The necessary condition reads

OILT = 0y IJT + 0ge 1T + 0pILT =0, (B.35)
where the generalized unknowns u} allow for the compact representation

0 17 o= /B{ [0cz7r;T]-5uzcz—g-5u}dV—/aB ty - OudA

op Tl = / {[0en?"] - 62C — gP : Vxbu" } dV (B.36)
B
opllyT = /B{ [0pm] : 6P} dV

Here, the variation of the enhanced constitutive state (B.31) with respect to the general-
ized deformation vector u; can be summarized by

Su: €5 == { 2sym[F"gVx 6], 0@, Vx @, 6f. } . (B.37)

Similarly, the variation of the right Cauchy-Green tensor with respect to the enhanced
displacement field #” can be specified

6q2C = 2sym[FTgVxou"] . (B.38)

Note that due to the specific re-parametrization (B.29) only the macroscopic entries are
affected. Equation (B.36); represents in a compact format the Euler equations of the
stationary principle (A.10) whose strong form is summarized in Table A.1. The local form
of the enhanced modes subproblem (B.36), 3 is given by

P =2F0g¢(c,) +F,) and Vxu”=0. (B.39)

The first equation describes the actual stress P, the second one enforces vanishing en-
hanced strains Vxu” = 0 in the solution domain B. This is obvious in the continuous
setting, but is violated by a finite element approximation, i.e. Vxu”" # 0 in B".

B.2.2. Finite-Element Discretization of Weak Form. Before discretizing the weak
form, the Ly-orthogonality of the discrete actual stresses P" and the discrete enhanced
displacement gradient Vxa”" is exploited. Thus, consider the discretized version of (B.35);

Spnlll" = — | {gVxa™ :6P"}dV = —/ {gP": Vxou"™"}dV =0, (B.40)
Bh Bh

where the explicit expression [Jpm,7] : dP = —gVxu” : 6P has been employed. As a
consequence, equation (B.40) is identical satisfied in the discrete setting, if the last term
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in (B.36), vanishes. Thus, the Lo-orthogonality effectively eliminates the stress field from
the finite element equations, the reduced set of discrete equations is obtained

5u*L;LH;;h = / { [8czhﬂ';;h] “Owr ¢t —g-ou}dv — / ty - ou" dA

B OB (B.41)
5ﬂEhH;h = { [8@;L7T;h] : 5,]15 Ch } dv .

Bh

Instead of discretizing the entire variational principle as discussed in Section A.2 for
the general FE-treatment, the discretization starts with the reduced weak form (B.41).
According to (A.11), the discrete generalized displacements are approximated via

) A L?H AR A ] e ma

i=1 i e=1

In addition to the discrete generalized displacements u:", the discrete version of the en-

hanced displacement field is defined by the approximation

§ : ~e
G,’ a,
=1

that bases on the incompatible shape functions G; and the incompatible modes a;. Note
that the summation is not performed over the number of nodes per element n., it is
performed over the number of fictitious internal nodes ny;. In line with (A.16), the discrete
variation of the generalized constitutive state is given by

(B.43)

Eh Nen
w = A
e=1

e

weo [, [2Bu(dia); 0 07 [od
duel = A D 0 Ble 0 | |6d]| | = B (X)d0;. (B.44)
0 0 [Alf] [4f.

7

The discrete variation of the generalized constitutive state with respect to the nodal
incompatible modes takes the form

nen [ B
Sacth = A} [Z 2G,, (d", &e)]féaf] = Gyu(X)da. (B.45)
€= i=1

Based on these discretizations, the weak form (B.41) can be recast into

H;ha* = / { %LT[ﬁc*hﬂ-;h] - ng } dV — / ’)”(TtN dA
o Bh - oBh
* (B.46)
* ~T %
mr = /B {Ghloem } v

This system of nonlinear algebraic equations can alternatively be reformulated as residual

r(9/,a) =

H*h .
"’“L] =0. (B.47)
I
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The first step towards a Newton iterative solution scheme bases on a Taylor series expan-
sion of the residual with truncation after the linear terms

* xh *h
. . _ . . Ad; . . Hﬁaa*Hna*
Linr(d/,a) =r(9,/,a) + K(9/,a) - with K(9;,a) :=| " (B.48)
Aa Hn ad; ",aa
consisting of the symmetric tangent matrix of the finite element system
0 = / (9,08 o), + BT (B }
H;ha*- = / { %;IT[afzhC‘hW;h]GM + %ET[EB';]GG jxiA%
(B.49)
L / {G[0%: e T 1B + Go[S:B ) dV
1, = [ (GG + GLISIG, v
’ B

In analogy to the tangent matrix (A.19) material and geometric terms occur. The geomet-
ric term is related to the approximation matrices [2B,,(d¢ a®)]¢ and [G,,(d% a®)]¢ that are
(linear) functions of the actual macroscopic deformation d® and the incompatible modes
a‘. For a definition of the geometric approximation tensors 28} and the macroscopic
stresses in matrix notation $} see equation (A.20). In addition to (A.19), the enhanced
increment has to be taken into account via

&= A [Z [G]f] - Aler. (B.50)

In analogy to the small strain setting, the nodal incompatible modes a are eliminated
by a static condensation procedure. Regarding a finite element implementation, no inter-
element continuity of the enhanced displacement field @”" has to be enforced. Thus, the
static condensation is performed locally on element level B¢. For setting 9* := 9, in equa-
tions (B.21)-(B.24) and in Box 3, this solution procedure is recovered. For two-dimensional
problems, the matrices for the approximation of the enhanced gradients (B.45) and the
geometric tangent contributions (B.50) can be specified

FlvG, F{‘ZG (FheG o+ FlsG )" e [Gi0 Gy 0]
Culi=Fiec, Fiscy (FiecyrFiscy)), ™ G5 a, 0 ) - B
In line with MIEHE [114], the enhanced shape functions and the incompatible modes are
% (53 — 1) and a; = [C_ll, C_lg]z—‘ for = 1, ceey Mg (B52)

for the number of fictitious internal nodes per element ny; = 2. Thus, in total there
are 4 element parameters for the approximation of the incompatible modes on element
level. In (B.52), the derivatives of the shape functions G; with respect to the Lagrangian
coordinates are obtained by the relation

det [J 0]
det[J]

Nel

VeGiJy' with J:=Vez" =) VN, (B.53)

VG =

in terms of the Jacobian J evaluated at the local element coordinates & = 0, the standard
isoparametric shape functions NN;, and the local coordinates x; of the element.
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