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Abstract
A  gravity  field  model  has  been  estimated  based  on  reduced  dynamic  and

kinematic  state  vectors  of  CHAMP.  Newton  Interpolation  has  been  used  to

calculate accelerations and Least-Squares Collocation to estimate the spherical

harmonic coefficients.

During data preprocessing positions and velocities of  the reduced dynamic and

kinematic state vectors are synchronized so that two corresponding data sets of

one month (July 2002) with a sampling rate of 30s are achieved. Observations

where the kinematic velocity is rejected due to edge effects or GPS observation

discontinuities are deleted in both data sets.

A comparison  of  the  two  sets  of  state  vectors shows  that  the  majority  of  the

differences in magnitude of position and velocity are in the range between ±0.2m

and ±0.5mm/s respectively. Observations outside these boundaries are declared

outliers and deleted. This reduces the data sets by approximately 0.7%.

Newton Interpolation approximates the velocity vectors which are transformed into

an  inertial  system  by  a  polynomial.  Tests  ascertain  that  the  use  of  seven

interpolation points achieves good results. The first derivative with respect to time

of these polynomials gives the acceleration vector of each observation.

One-third of the reduced dynamic and kinematic observations have been utilized

for  the  estimation  of  spherical  harmonic  coefficients.  The  Least-Squares

Collocation  is  based  on  gravity  disturbances  derived  from  the  magnitudes  of

accelerations. EGM96 up to a degree and order of 24 is used for the “remove-

restore” method so that data become statistically more homogenised.

A comparison of the reduced dynamic and kinematic accelerations to those based

on EGM96 up to a degree and order of 360 shows that the kinematic data are

more influenced by noise than the reduced dynamic. The standard deviations of

differences in accelerations calculated from EGM96 minus reduced dynamic or



kinematic are 0.3mgal and 1mgal respectively.

These  results  are  also  reflected  in  the  quality  of  the  spherical  harmonic

coefficients.  The  standard  deviations  of  differences  in  coefficients  between

EGM96 and reduced dynamic data are always lower than those between EGM96

and kinematic data.

Up to degree 60, both types of standard deviations are lower than the standard

deviations of EGM96 coefficients themselves. The estimated gravity field model

therefore provides information consistent with EGM96 up to degree 60. The model

shows also an improvement with respect to coefficients which are derived by the

energy conservation method utilizing the same data.
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1  Introduction

1.1  Motivation
Gravity is not a constant. Its magnitude depends on the place and time so that

one should refer to gravity as a field instead of as a constant term. 

Due to the earth's rotation, the body of the earth is flattened at the poles. This

results in different values of gravity especially when one compares the gravity at

the poles to the gravity at the equator. 

However, the flattening of the earth is not the only impact on the figure of the earth

which could otherwise simply be described as an ellipsoid. Varying masses and

their different distributions inside the earth as well as different kinds of topography

result  in  a  gravity  field similar  to  the  one  shown in the  exaggerated  figure 1.

Variations over time are caused by the movements of rocks, ice and oceans.

The  global  gravity  field  forms  the  basis  for  various  research  interests.  The

knowledge of the gravity field reveals for example information in geophysics about

the structure of the earth's continental and oceanic lithosphere. Oceanographer

can determine the global ocean circulation which is an indicator for global climate

changes while in geodynamics the gravity field is used to observe time varying

- 1 -

figure 1: exaggerated geoid model © GFZ
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phenomena such as the post glacial uplift or the sea level changes [Seeber 1993].

In  geodesy,  the  equipotential  surface  of  the  gravity  field  defines  a  reference

system of heights.

Several gravity field models have been obtained from a combination of  satellite

tracking data, local terrestrial gravity measurements and satellite altimetry data. 

Inaccuracies occur in case of the satellite tracking data as the utilised satellites

have  been  designed  for  purposes  other  than  gravity  measurements.  These

satellites have therefore a high altitude. The higher a satellite, the lower the signal

which means that less information about the gravity field can be obtained.   

Terrestrial gravity measurements and satellite altimetry, on the other hand, have

the disadvantage that they are not globally distributed. Terrestrial gravimetry only

takes place at a local level while the altimeter data are restricted to oceans.

In  order  to  solve  these  problems  three  different  satellite  missions  have  been

designed, CHAMP, GRACE and GOCE. They all have in common a low earth

orbiting satellite.  Due  to  the low altitude  an improvement  of  the  accuracy and

resolution of existing gravity field models can be achieved. This improvement is

essential for all fields of research interests. The three satellite missions have also

the advantage that they each cover almost the whole earth so that problems of

combining different  satellite tracking data sets are dissolved.

1.2  Task and Structure
Within the described background the task of this study thesis is the computation of

a gravity field model  using data from a low orbiting satellite. Furthermore,  this

gravity field model should be based on the accelerations of the CHAMP satellite.

A  common  way  of  deriving  accelerations  is  to  compute  either  the  second

derivative of  the positions or  the first derivative of  the velocities. Differentiating

means  that  two  sequent  points  of  an  orbit  are  included  in  the  computation.

However, in order to increase the accuracy of the accelerations, more than two

points should be included. This improvement can be achieved by using Newton

Interpolation.
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A different approach for the estimation of a gravity field model is based on the

energy conservation method which was carried out within an earlier project. This

method does not use the accelerations and should therefore be less influenced by

noise.

One more task of the study thesis is to draw a comparison between the gravity

field model based on the energy conservation method and the gravity field model

which will be derived from accelerations. 

This comparison will  show if the gravity field model  based on accelerations is

similar  to  or  even  better  than  the  gravity  field  model  based  on  energy

conservation. It will also be possible to determine which problems depend on the

satellite measurements and which problems result from a certain method.  

The  method  of  resolution  in  this  study  thesis  is  therefore  in  a  first  step  to

preprocess  and compare two different CHAMP data sets,  reduced dynamic and

kinematic. Second, accelerations of each data set will be computed by Newton

Interpolation  and  finally  Least-Squares  Collocation  will  provide  the  estimated

gravity field.  The  reduced  dynamic and  kinematic gravity  field  models  will  be

compared to the gravity field model which is based on the energy conservation

method (Chapter 6). 

The course of action is illustrated in figure 2.
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Chapter 2 gives a short summary of the basic properties which occur within this

study as well as an introduction to the satellite mission CHAMP. 

The data preprocessing step is described in Chapter 3. 

In Chapter 4 and 5 one can read about the main computational steps, namely the

Newton Interpolation and the Least-Squares Collocation.

Some  basic  information  about  the  energy  conservation  method  are  given  in

Chapter 6.

Chapter  7  presents  the  results  of  the  computations  which  are  carried  out  in

Chapter 4 and 5.

Chapter 8 finally gives the conclusion and some ideas of what might be done in

future work.
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2  High-resolution gravity field

2.1  Basic properties of the gravity field
This section gives a short introduction to some basic properties of the gravity field.

Only those properties which occur within this study are described.

Gravitational potential

A gravity field is characterized by its gravitational potential  V. This fundamental

property may be expressed by equation 2.1 [Mortiz 1980] where P is a point given

in x, y and z coordinates, Q is a point inside the earth which at the same time

presents  the  centre  of  the volume  element  dvQ and  l represents  the  distance

between  the  two  points  P and  Q.  G stands  for  the  Newtonian  gravitational

constant (equation 2.2).

V P = G∭
earth

Q
l

dvQ  (2.1)

with G = 6.672∗10­6 [ m3

s2 kg]  (2.2)

Figure 3 illustrates the parameters of equation 2.1. However, considering a global

scale  this equation is only valid in theory  as  it  requires full  knowledge  of  the

detailed density distribution ρ(P) within the earth. These details are unknown and

cannot be easily modelled.
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In practice the advantage is used that  the gravitational potential  is a harmonic

function  and  can  therefore  be  expressed  as  a  series  expansion  of  spherical

harmonic  coefficients.  Equation  2.3  shows  this  expansion  which  also  gives  a

solution to Laplace‘s differential equation (equation 2.4) in the exterior space.

V P = GM
r p [ 1 ∑

i=1

∞  a
r p

i ∑
j=­i

i Pij sinp {cos j p cij

sin j p sij
} ] if j 0

if j 0

 

(2.3)V = 0  (2.4)

V(P) defines the gravitational potential of an arbitrary point  P with the spherical

coordinates λ,φ,r. M is the mass of the earth while rp  being the radial distance of

the point  P. The parameter  a stands for  the semi-major  axis of  the  reference

ellipsoid, Pij sin p are the fully normalized Legendre functions of the first kind

and finally cij  and sij present the spherical harmonic coefficients. The set of these

coefficients characterises the gravity field.

Gravity potential and gravity

The  gravity  potential  W  (equation  2.5)  contains  the  sum  of  the  gravitational

potential  V and the centrifugal potential Φ (equation 2.6) which is caused by the

rotation of the earth. Here ω stands for the constant angular velocity of the earth.
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W x , y , z = V x , y , z  (2.5)

with  = 1
2
2x2y2  (2.6)

The gradient of  W is called gravity vector and has the direction of the vertical or

plumb line [Moritz 1980]. Gravity g is the magnitude of the gravity vector (equation

2.7).

g = ∥grad W∥  (2.7)

The geoid which approximates the mean sea surface has a constant W and is at

every point perpendicular to the gravity vector.

Normal potential and normal gravity

The gravity potential W of the earth can be approximated by a normal potential U

of a reference surface such as a sphere or an ellipsoid. The reference surface of

U is also an equipotential surface like the geoid.

U is defined as a sum containing the normal  gravitational  potential V and the

centrifugal potential Ф (equation 2.8).

U x , y , z = V x , y , z  (2.8)

The  gradient  of  U is  called  normal  gravity  vector.  Normal  gravity  γ is  the

magnitude of the normal gravity vector (equation 2.9). = ∥grad U∥  (2.9)

Anomalous potential

The subtraction of  the normal potential  U from the gravity potential  W is called

anomalous  potential  T (equation  2.10).  It  presents  the  residual  of  the  gravity

- 7 -
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potential which cannot be approximated by the reference surface.

 

T = W­U  (2.10)

The centrifugal potential Ф is eliminated by the subtraction of equation 2.10 under

the assumption that gravity and normal potential both contain the same constant

angular velocity ω of the earth.

Gravity anomaly and gravity disturbance 

Considering equation 2.3 to equation 2.10 potentials always refer to the same

point  P.  However,  when  introducing  the  gravity  anomaly  it  is  important  to

distinguish between the point P on the geoid and a corresponding point Q located

on the reference surface. The normal gravity vector in P intersects the reference

surface  in  Q (figure  4)  whereby  the  normal  potential  in  Q  equals  the  actual

potential in P.

The gravity anomaly ∆g is defined as the difference between the measured gravity

in P and the normal gravity in Q (equation 2.11).

- 8 -
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­2
r

T  (2.11)

The gravity disturbance δg on the other hand is defined as the difference between

measured gravity and normal gravity both referring to the point P (equation 2.12). g = g P­P = ­∂T P∂ r P
 (2.12)

Equation  2.11  and  equation  2.12  also  show how gravity anomaly  and  gravity

disturbance are related to the anomalous potential T.

Spherical coordinates

Since the position vectors of CHAMP are initially given as x, y and z components

these coordinates have to be transformed into the spherical longitude λ, latitude φ
and radius r at some points. This transition is realised by equation 2.13 to 2.15. = arctan  y

x
  (2.13) = arctan z x2y2  (2.14)

r = x2y2z2  (2.15)

Outside the earth

The above formulas of this section are valid for a point  P on the surface of the

earth as well as for a point  P at satellite altitude. However, one has to consider

that a satellite is usually described in an inertial frame where the rotation of the

earth has no influence and therefore no centrifugal forces occur.
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2.2  CHAMP mission
This section is based on  the information given by the GeoForschungsZentrum

(GFZ) website [GFZ 2004] where also further details about CHAMP can be found.

The  abbreviation  of  the  satellite  mission  CHAMP  stands  for  CHAllenging

Minisatellite Payload. This mission is managed by GFZ in Potsdam.

The main task of the satellite (figure 5) which was launched on the 15th of July

2000 is to collect data for geoscientific and atmospheric research. The aim is to

create a global model of the earth which leads to a better understanding of the

structure and composition of this planet. This understanding refers to an earth not

only being static but also being a dynamic system that varies over time (compare

section 1.1).

All  fields  of  research  interests  can  be  divided  into  three  parts:  1.  Gravity,  2.

Magnetics and 3.  Atmosphere  and Ionosphere.  In order to obtain the required

- 10 -
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data the payload of the CHAMP satellite contains a GPS receiver, a laser retro

reflector, a three-axes accelerometer, a magnetometer, a star sensor and an ion

drift meter.

As the task of this study is the modelling of a gravity field, only data from the first

classification are needed. Via satellite-to-satellite tracking (SST), the GPS receiver

continuously monitors the orbit of the CHAMP satellite. Perturbations of this orbit

indicate  varying  gravity.  At  the  same  time,  the  high-precision  accelerometer

provides measurements  of  the non-gravitational  accelerations.  Non-gravitational

accelerations are those which are not caused by the attraction of the planet but by

atmospheric drag (see section 4.5) for example. The GPS and accelerometer data

are used to model the gravity field of the earth.

The CHAMP satellite has an inclination of 87° which cor responds to an almost

circular  and  near-polar  orbit.  This  has  the  advantage  of  getting  an  almost

homogeneous and complete global coverage of the earth.

The initial  satellite  altitude is set  to around 454km.  Several  considerations are

taken into account when this altitude was chosen.

First,  the  mission  should last  for  at  least  five  years so  that  the  earth can be

observed as a dynamic system. Due to atmospheric drag and solar activity the

altitude of the satellite  decreases over time. A certain initial altitude is therefore

necessary to guarantee a lifetime of several years before the satellite enters the

atmosphere.

Second,  for  magnetic  research,  the  chosen  altitude  is  ideal  but  for  gravity

purposes a lower  initial altitude would be preferred. Geodesists and geophysicists

are  in  particular  interested  in  the  high-frequency  information  of  a  low orbiting

satellite because the low-frequency information have already been observed many

times by former missions utilising satellites at higher altitudes.

Third,  scientists  who  analyse  the  atmosphere  and  ionosphere  need  an  initial

altitude at least above the atmospheric layers and would desire an even higher

satellite altitude.

- 11 -
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The initial CHAMP altitude is relatively low but it is also a compromise between the

interests of different fields of research.

The  CHAMP  satellite  has  a  mean  period  of  93.55min  which  results  in

approximately 15.4 revolutions per day. During this time, 141MByte of data are

collected  consisting  mainly  of  research  data  but  also  of  house-keeping  data.

These data are downloaded to the two ground stations of the German Aerospace

Center (DLR) in Neustrelitz and Weilheim. The raw data are then processed at

GFZ Potsdam so that different products depending on the level of processing can

be provided for scientific research.

- 12 -
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3  Preprocessing of CHAMP data

3.1  Reduced dynamic and kinematic data
CHAMP data files consist of information about the satellite orbit given in form of

state vectors. A state vector includes the position vector and the velocity vector of

the  CHAMP  satellite  given  according  to  the  three  components  in  x,  y  and  z

direction. The three coordinates refer to the earth-fixed Conventional  Terrestrial

System CTS.

Within this work two  different  sets  of  CHAMP data  have  been  used,  reduced

dynamic and  kinematic.  The  reduced  dynamic data  were  obtained  from  the

GeoForschungsZentrum  Potsdam  [GFZ  2004]  while  the  kinematic data  were

kindly  provided  by  Lorant  Földvary  at  the  “Institut  für  Astronomische  und

Physikalische Geodäsie“ (IAPG) of the “Technische Universität München“ (TUM).

The main difference between these two data sets is that the  kinematic data are

only based on GPS measurements while the reduced dynamic data also include

some  a  priori  information  derived  from  several  already  existing  gravity  field

models.

On one hand it is certain that the kinematic data are raw and not influenced by

any other prior observations but on the other hand one has also to consider the

fact that the GPS measurements cause noise on the data.

The time interval for  kinematic  and  reduced dynamic observations are 30s and

10s respectively hence the  reduced dynamic  observations are able to represent

the orbit of the satellite in more details.

In order to benefit from both observation methods it is recommended to use both

data sets. If these sets are compared to each other it will be possible to decide

whether certain observations are likely to be more accurate or not.  Errors can be

detected more easily if there are two sources for each state vector. However, a

- 13 -



CHAPTER   3                                                                     Preprocessing of CHAMP data  

synchronization of  the two data sets has to be carried out  before they can be

compared to each other.

3.2  Data formats
The reduced dynamic data are given in the CHAMP Orbit Format (CHORB) which

is a standard format as shown by the list below in which every tag of the list is

column tabulated.•  Time tag (10-1 d since J2000.0)•  Time tag (10-6 s since 0 hours TT)•  X coordinate of position (10-3 m)•  Y coordinate of position (10-3 m)•  Z coordinate of position (10-3 m)•  X coordinate of velocity (10-7 m/s)•  Y coordinate of velocity (10-7 m/s)•  Z coordinate of velocity (10-7 m/s)•  Roll angle (10-3 deg)•  Pitch angle (10-3 deg)•  Yaw angle (10-3 deg)•  Neutral gas density (10-16 g/cm3)•  Maneuver flag (M = yes, else blank)•  Land/Water flag (L = Land, W = Water)•  Ascending/descending arc flag (A = ascending, D = descending)•  Eclipse flag (E = satellite in earth's shadow, else blank)

This trajectory record description can be found on the GFZ Potsdam website [GFZ

2004].  The  data  are  stored  in  several  ASCII  files  of  which  each  includes

approximately 24 hours of  measurements.  The measurement  starting time can

vary from file to file.

In this research work only the day,  time,  position and velocity are a matter  of

interest and therefore the last columns of  the files are ignored.

The kinematic data,on the other hand, are given by the following format.•  Year•  Month•  Day•  s since 0 hours of the day (GPST)•  X coordinate of position (m)

- 14 -



CHAPTER   3                                                                     Preprocessing of CHAMP data  •  Y coordinate of position (m)•  Z coordinate of position (m)•  X coordinate of velocity (m/s)•  Y coordinate of velocity (m/s)•  Z coordinate of velocity (m/s) •  Velocity flag (0 = accepted, 1 = rejected)

The contents  are stored in a tabulated  form and only in one ASCII  file which

includes data of one month (July 2002).

As the  reduced dynamic data are provided for a period of one year (2002), the

corresponding files to July 2002 need to be selected.

3.3  Synchronisation
In order to analyse corresponding observations of the same time step, the type of

data and the time frames of both data sets have to be the same. For this reason,

the days in the  reduced dynamic data set which are given as Julian days since

J2000.0 are converted into days of  the month  as  given by the  kinematic orbit

format. While the  kinematic orbit is observed in GPS Time (GPST) the  reduced

dynamic observations are given in Terrestrial Time (TT). Both time frames can

easily be  transformed  into  the  common  civil  time  Coordinated  Universal  Time

(UTC) by equation 3.1 and equation 3.2.

UTC = GPST ­ 13 s  (3.1)

UTC = TT ­ 64.148 s  (3.2)

As  the  reduced  dynamic data  sampling  rate  is  three  times  higher  than  the

kinematic data  sampling rate  (10s  versus 30s)  no more  than  one third of  the

reduced dynamic observations can be taken. Nevertheless,  it is not  enough to

simply compare every third state vector of the reduced dynamic files to every state

vector  of  the  kinematic file.  Problems arise with the measurement  gaps in the

reduced dynamic data. Interruptions of the measurement sequence are likely to

occur between the change of two ASCII files or between the change of two days.
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In order to avoid errors, the day and the time of two corresponding state vectors,

reduced dynamic and  kinematic, must be the same. Assuming that the chosen

files all belong to the same year and month of that year. During the preprocessing

only those state vectors are therefore compared for which equation 3.3 is true.∥day∥  1 d ∧ ∥ time∥  1 s  (3.3)

with day = dayreduced dynamic ­ daykinematic   time = timereduced dynamic ­ timekinematic  

The synchronised data start  on the  2nd of  July 2002 as  there are  no  reduced

dynamic data on the 1st of July 2002.

Gaps do  not  only  exist  in  the  reduced  dynamic observations  but  also  in the

kinematic data set.

These gaps occur in the  kinematic velocity estimation due to GPS observation

discontinuities and  edge effects.  The  flags of  the  velocity refer  to the  velocity

estimation process  and determine  whether  the  velocity should be accepted  or

rejected. All observations for which the velocity should be rejected, that means for

which  the  flag  equals  one,  need  to  be  deleted.  The  corresponding  reduced

dynamic observations are deleted as well.

3.4  Comparison of data sets
So far up to this extent, two synchronized ASCII  files of  the same length have

been created.  One consists of  the filtered  reduced dynamic orbit data and the

other  of  the  filtered  kinematic orbit  data.  It  is  now  possible  to  calculate  the

difference in position and velocity of both observation methods.

   

The differences are calculated with respect to the x, y and z component of each

position and velocity vector (equation 3.4 and equation 3.5).
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CHAPTER   3                                                                     Preprocessing of CHAMP data  [ ∆x ∆y ∆z] position = [ x y z]reduced dynamic ­ [ x y z]kinematic  (3.4)[∆vx ∆vy ∆vz]velocity = [vx vy vz]reduced dynamic ­ [vx vy vz]kinematic  (3.5)

The results of the above subtractions show that the differences are of similar sizes

over  the  whole  period.  Most  of  the  differences in position are not  bigger than

±1dm and differences in velocity have the quantities of  approximately ±1mm/s.

However, there is a notable deviation for the last twelve hours of the month. On

the 31st of July 2002 at noon time, differences start to increase towards the end of

the  day.  Figure  6  and  figure  7  both  illustrate  the  oscillating  growing  of  the

difference in position and  velocity respectively.

      

As these differences become extremely large (up to 20km in position) there seem

to be some problems with one of the data files.

Within an earlier project scale factors for the  reduced dynamic non-gravitational

accelerations have been computed.  It  was found out  that  approximately at  the

same time as mentioned above (last twelve hours of July 2002) the scale factors

suddenly turned to be negative. Under consideration of those investigation it can

be concluded that there is a defect in the reduced dynamic observations.

Nevertheless, the 31st of July 2002 is completely taken out of the data sample so

that further investigations only refer to the period between the 2nd  and the 30th of

July 2002.

The following table 1 to table 3 present the maximum,  minimum and average
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figure 6: differences in position (2002-07-31)
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figure 7: differences in velocity (2002-07-31)
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difference in position and its empirical  standard deviation over a period of  one

day, one week and one month.

As expected,  the extreme values (maximum and minimum)  are the higher  the

longer the period becomes. However, the average difference decreases as more

data are compared.  One can therefore assume  that  there is a  stability in the

differences over a long period.

Differences in position  [m] (reduced dynamic – kinematic)

table 1

1 day x y z

max  0.12190  0.12700  0.13790

min  -0.13480  -0.17510  -0.09240

mean  0.01224  -0.02325  0.02350

std  0.05850  0.062095  0.03316

table 2

1 week x y z

max  0.27810  0.19290  0.32130

min  -0.18060  -0.23120  -0.10000

mean  0.00678  -0.01362  0.04524

std  0.07345  0.07916  0.04715

table 3 

1 month x y z

max 0.35070   0.87610    0.32130

min  -0.76970  -0.33130  -0.41410

mean -0.00420 -0.01126  0.01743

std 0.08890 0.08117   0.05795

Figure 8 shows the differences in position over a period of one month. The three

graphs represent the differences in the x, y and z coordinates. It strikes that the z

component which is the most interesting one because it gives the height of the

satellite seems also to be the most stable one. There are not such big extremes

as occur in the x and y component. Table 1 to table 3 ascertain this observation by

the fact that the z component has the lowest standard deviation during all kind of
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different periods.

Table 4 to table 6 correspond to table 1 to table 3 and present the differences in

velocity over a period of one day, one week and one month. Similar conclusions

can be drawn from those tables as from the differences in position except for the

fact that the quantities are much smaller. However, one has also to be aware that

the unit is now m/s.

 

Differences in velocity [m/s] (reduced dynamic – kinematic)

table 4

1 day vx vy vz

max 0.00117   0.00119    0.00123

min  -0.00084  -0.00094  -0.00153

mean -0.121e-05 0.072e-05 -0.086e-05

std 0.1414e-03 0.1396e-03 0.2018e-03

table 5

1 week vx vy vz

max  0.00142   0.00201   0.00234

min  -0.00202  -0.00147  -0.00160

mean 0.006e-06 -0.050e-05 -0.137e-05

std 0.1521e-03 0.1456e-03 0.2051e-03
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figure 8: differences in position (July 2002)
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table 6

1 month vx yv vz

max  0.00191   0.00373   0.00234

min  -0.00235  -0.00147  -0.00202

mean 0.422e-06  0.422e-06 -0.665e-06 

std 0.1547e-03  0.1550e-03 0.2087e-03

Figure 9 corresponds to figure 8 showing the differences in velocity. This time it

cannot be determined which component is the most stable one as the extremes

occur in x, y and z direction.

At this point the question arises if certain areas of the earth are more likely to

show high differences in position and velocity of the two data sets than others. In

order to have a closer look at the distribution of these differences, the earth is

equally gridded with a spacing of 1° in North-South and East-West direction. As

the  grid spans  over  an  area  from -90° to  +90° latitud e  and  from 0° to  360°

longitude, 18x36 = 648 blocks are defined. The standard deviations of differences

between reduced dynamic and kinematic measurements are computed per block.

In  contrast  to  the  previous  comparisons,  the  differences  between  reduced

dynamic and  kinematic are now calculated with respect to the magnitude of the

position and velocity vector and not with respect to the three components in x, y
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figure 9: differences in velocity (July 2002)
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and z direction.  The result  of  these calculations is presented in figure 10 and

figure 11 which show the standard deviation of differences per block. The left plot

is based on the position and the right plot on the velocity.

It is difficult  to draw a conclusion due to those figures.  A relationship between

particular areas of the earth, such as mountains, and high values in differences is

not obvious. It is interesting though to realize that the differences in position seem

to have a North-South pattern while the standard deviations of the differences in

velocity are rather arbitrarily spread. However, the reason of the observed North-

South pattern has not been explained yet. Further investigations are needed to

better understand the above figures.

3.5  Detection of outliers
As mentioned earlier, the advantage of two different data sets is that errors can be

detected more easily. For that reason the magnitudes of the position and velocity

vectors of the  reduced dynamic and  kinematic observations are compared. The

differences are presented in figure 12 and figure 13.

The  differences  in  position  have  a  similar  size  if  one  refers  either  to  the

magnitudes  (figure 12)  or  to  the  three x,  y and z components  (figure 8).  The

differences  in  velocity  however  are  reduced  by  approximately  a  half  if  one

considers  the  magnitudes  (figure  13)  instead  of  the  coordinate  components

(figure 9).
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figure 10: standard deviation (position)
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figure 11: standard deviation (velocity)
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From  the  above  figures,  the  conclusion  can  be  drawn  that  the  majority  of

differences  in  position  occur  between  -0.2m  and  +0.2m  while  most  of  the

differences  in  velocity  occur  between  -0.5mm/s  and  +0.5mm/s.  Observations

which lie outside these boundaries are declared outliers and deleted.

A higher difference at one  point may indicate an error or a discontinuity in at least

one of the two data files at that point. If those outliers are filtered, a more accurate

set of data can be achieved. Around 500 out of 72,000 observations in each data

set are declared outliers reducing the data sets by 0.7%.
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figure 12: detection of outliers (position)
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figure 13: detection of outliers (velocity)
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4  Calculation of accelerations

4.1  Transformation from CTS to CIS
This chapter describes how the accelerations of the CHAMP satellite are derived

from the velocities in the state vectors. 

In  order  to  achieve a  reasonable value for  the  accelerations  these  should be

described in an inertial reference system which is not fixed to the rotation of the

earth. Otherwise the accelerations would include centrifugal and Coriolis terms as

well. The satellite however is considered not to rotate with the earth and should

therefore not be influenced by centrifugal forces.

Only the accelerations in an inertial system can directly be related to the earth's

gravity field because Newton's law of motion is only valid in an inertial system. As

a consequence the velocity vectors of the  reduced dynamic and  kinematic data

sets have to be transformed from the Conventional Terrestrial System CTS to the

Conventional Inertial System  CIS.  CIS is fixed to fundamental  stars and has its

origin in the centre of  the mass of the earth.  Since the origin undergoes small

accelerations due to the annual motion of the earth around the sun, the system is

called quasi-inertial.

The  main  difference  between  the  space-fixed  and  the  earth-fixed  reference

system can be described by a rotation around the third axis, i.e. the rotation axis

of  the  earth,  around  the angle  GAST (equation 4.1).  GAST means Greenwich

Apparent  Sidereal  Time  and  gives  the  time  between  the  zero  meridian  at

Greenwich and the true vernal equinox. GAST can either be expressed in seconds

or in degrees.

R3GAST = [
cosGAST sin GAST 0­sin GAST cosGAST 0

0 0 1]  (4.1)

As  GAST changes according to the rotation of  the earth,  this angle has to be
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determined for each observation of the state vector.

The first step before one can calculate  GAST is to derive  GMST which means

Greenwich Mean Sidereal Time and defines the angle between the zero meridian

at  Greenwich  and  the  mean  vernal  equinox.  The  relation between  GAST and

GMST is shown in figure 14.

The difference in both angles is called the equation of equinoxes (equation 4.13)

and is caused by the nutation and shift in the obliquity of the ecliptic.

GMST

GMST for any particular day is defined at 0h Universal Time (UT) by equation 4.2

[Montenbruck and Gill 2001].

GMST0 hUT = 6h 41m50.s548418640184.s812866 T00.s093104 T0
2­6.s2 x10­6 T0

3  (4.2)

T0 = JD0hUT ­24514545
36525

JD : Julian Date  (4.3)

The  time  interval  T0 (equation  4.3)  contains  the  Julian  centuries  which  have
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figure 14: GMST and GAST, compare [Torge 2001]
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elapsed since the standard epoch 2000 January 1, 12h UT, at the beginning of the

day.

The definition of GMST (equation 4.4) for an arbitrary time of the day is given by a

generalization of equation 4.2  [Montenbruck and Gill 2001].

GMSTUT  = 6h 41m50.s548418640184.s812866 T 01.s002737909350795UT0.s093104 TUT
2 ­6.s2 x10­6 TUT

3 (4.4)

TUT = JDUT ­24514545
36525

JD : Julian Date  (4.5)

The time interval TUT (equation 4.5) is now specified by the Julian centuries that

have elapsed since the standard epoch 2000 January 1, 12h UT, at the arbitrary

time of the day. 

As  the  synchronised  state  vectors  have  a  time  statement  in  Universal  Time

(compare Chapter 3),  TUT can be derived by adding the seconds of the specific

day converted into Julian centuries to T0. 

GAST

Once GMST is known, the correction to GAST should be determined. This is done

by a linear approximation which is valid for 50 years either side of J2000.0. The

used formulas (equation 4.6 - equation 4.14) can be found on the paper “Sidereal

time formulas and spreadsheet to navigation accuracy“.

(http://www.xylem.f2s.com/kepler/siderial.html) = 125.04452­1934.136261 TUT [° ]  (4.6)

L = 280.466536000.7698 TUT [°]  (4.7)

L1 = 218.3165481267.8813 TUT [° ]  (4.8)

e = 23.439­00000004 TUT [° ]  (4.9)

The equations above give an approximation to the following parameters:– Ω, the longitude of the ascending node of the moon's mean orbit
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CHAPTER   4                                                                          Calculation of accelerations  –  L, the mean longitude of the sun–  L1, the mean longitude of the moon–  e, the mean obliquity of the ecliptic

In a further step ∆Ψ (equation 4.10) and ∆ε (equation 4.12) are computed where∆Ψ  being the change in the ecliptic longitude due to nutation and  ∆ε  being the

shift in angle between the ecliptic and the equator. = ­17.2 sin ­1.32 sin 2 L­0.23 sin 2 L10.21 sin 2
3600

[° ] (4.10)e = 9.2 cos0.57 cos2 L0.1 cos2 L1­0.9 cos2
3600

[° ]  (4.11) = ee [° ]  (4.12)

Finally, the equation of  the equinoxes (equation 4.13) is added to  GMST as a

correction (equation 4.14).

equationof theequinoxes=  cos [° ]  (4.13)

GAST = GMST equation of theequinoxes [° ]  (4.14)

The above expressions are all derived in degrees.

The transformation from CTS to CIS includes in fact not just one rotation around

GAST but  a  sequence  of  rotation  matrices  which  account  for  the  precision,

nutation and polar motion of the earth as explained on page 14 in [Seeber 1993].

The influences of  those rotation matrices are,  however,  considered to be  very

small and are therefore neglected in the following calculations.

This leads to the equation 4.15 which transforms a vector x of size 3x1 from CTS

to CIS.

xCIS = R3GAST xCTS  (4.15)
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Since in this case the vector x does not contain the coordinates of the position but

of the velocity one has first to consider the influence of the earth's rotation on the

measured velocities before the above rotation is carried out. The earth rotation

terms which influence the x and y components of the velocity vector in CTS can

be derived from equation 4.16 and 4.17 where  r  is computed  by the  x and  y

component  of  the  position vector  in  CTS,  λ is  the  spherical  longitude  of  the

observation and ω is the earth's angular velocity. 

vex = ­r sin   (4.16)

vey = r cos   (4.17)

with r = xCTS
2 yCTS

2 ∧  = 7.2921151467e­5 1
s

If vex and vey are added to the original values of the velocity vector, the rotation of

equation 4.15 can be computed. 

4.2  Newton Interpolation

4.2.1  General introduction
The idea  is to  change the  point-wise  state  vectors  into  a  continuous  function

through  Newton  Interpolation.  An  interpolation  requires  that  the  point-wise

measurements are at these points equal to the function which approximates them.

After  an appropriate approximation function  is found,  the accelerations can be

calculated by a differentiation of the continuous function.

Newton Interpolation is carried out by a polynomial of following structure (equation

4.18) where Φ being the interpolated value in x and c being the coefficients which

describe the polynomial [Keller 2002]. The task is to determine the coefficients c.x = c0c1x­x0c2x­x0x­x1  cnx­x0x­xn  (4.18)
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The major advantage of Newton Interpolation in comparison to other interpolation

methods is that the polynomial coefficients c can be easily derived from following

difference scheme (table 7). This scheme requires only few numerical operations

and if an interpolation point should later on be added only one more line has to be

included to the scheme.

table 7

k = 0 k = 1 k = 2 ⋯
x0 f0 = f[x0]

f[x0,x1]

x1 f1 = f[x1] f[x0,x1,x2]

f[x1,x2] ⋯
x2 f2 = f[x2]⋮ ⋮ ⋮ ⋮ ⋮

The  contents  of  table  7  are  computed  by  the  formula  of  equation  4.19  and

equation 4.20 [Keller 2002].

f [ xi ] := f i := f xi   (4.19)

f [ xi , xi1 , , xik ] := f [ xi1 , , xik ]­ f [ xi , , xik­1 ]
xik­xi

 
(4.20)

The polynomial coefficients c are now provided by the upper value of each column

of table 7 which leads to table 8.

      table 8

c0 f[x0]

c1 f[x0,x1]

c2 f[x0,x1,x2]⋮ ⋮
- 28 -
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Beside  the  advantage  of  the  difference  scheme,  Newton  Interpolation  also

struggles with problems which generally occur with polynomial interpolations. The

main problem is to determine how many interpolation points should be utilised. If

there are not enough interpolation points, significant details will be missing and

cannot be described. If there are on the other hand too many interpolation points,

the  interpolating  polynomial shows  a  high  oscillating pattern  between  the

interpolation points, especially on the edge.

The  next  section  will  briefly  discuss  the  different  possibilities  of  Newton

Interpolation.

4.2.2  Choice of interpolation function
Austen  and  Reubelt,  who  also  worked  with  a  CHAMP  data  set,  tested  and

discussed several variations of Newton Interpolations within their thesis [Austen

and  Reubelt  2000].  The  variations  consider  different  amounts  of  interpolation

points and different data that means accelerations were either derived from using

positions or from using the velocities of the satellite.

A three-point, a five-point, a seven-point and a nine-point interpolation was carried

out.

Austen  and  Reubelt  found  out  that  the  seven-  and  the  nine-point  Newton

Interpolation deliver the best results in the case of a low orbiting satellite with a

data sampling rate of 10 to 30 seconds. They also come to the conclusion that

accelerations derived from velocities are more accurate than those derived from

positions as only one differentiation instead of two has to be done.

The equations of  the Newton Interpolation  programmed for their thesis [Austen

and Reubelt 2000] are written in MATLAB and are also used within this study

thesis. However, before the program is used for real data, the influence of the

different MATLAB functions have been tested by using simulated data.

The simulation data are from the satellite mission GOCE (see Chapter 1) and can

be downloaded from the website of the University of Bonn, Institute for Theoretical

Geodesy (http://www.geod.uni-bonn.de/index.html). GOCE data are useful as they
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do  not  only contain positions  and  velocities  of  the satellite  but  also the  three

components of  the accelerations. A comparison of  these accelerations and the

computed  accelerations  allows  to  determine  the  quality  of  the  Newton

Interpolation.

The seven-point and the nine-point Newton Interpolation have both been tested

with position and velocity vectors of GOCE. The results are shown below in table 9

and table 10.

Differences: interpolated accelerations – simulated accelerations [m/s2]

table 9

7-point (position) 7-point (velocity)

max 1.2192e-04 5.9209e-05

min -2.0202e-04 -1.0098e-04

mean 1.99e-09 6.80e-10

std 1.5155e-04 7.5829e-05

table 10

9-point (position) 9-point (velocity)

max  1.1849e-04 5.9266e-05

min -2.0211e-04 -1.0102e-04

mean 1.55e-09 4.53e-10

std 1.5166e-04 7.5829e-05

The tables present the maximum, minimum, mean value and standard deviation of

the  differences,  simulated  accelerations  subtracted  from  interpolated

accelerations. The magnitudes of the acceleration vectors are compared. These

results confirm Austen‘s and Reubelt‘s observation that computing accelerations

from velocities is more accurate than from positions [Austen and Reubelt 2000].

The results of the nine-point and seven-point interpolation are almost of the same

quality because the standard deviations of  the differences are equal  up to 10-

9m/s2. Since the nine-point interpolation is more complex and time-consuming than
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the seven-point interpolation,  only the  seven-point  interpolation will  be used to

compute the accelerations from the reduced dynamic and kinematic velocities.

4.2.3  Seven-point Newton Interpolation
Seven-point  indicates,  as mentioned above, that  seven interpolation points are

used. The most important interpolation point is the observation in the middle. Its

value is interpolated by using up to three observations before and after the middle

point. The interpolation formula can bee seen as a filter which is shifted over each

interpolation point. Seven points are needed to calculate one acceleration.

Austen and Reubelt assume that the interpolation points are equidistant, implying

that  the  observations  have  a  constant  sampling  rate  ∆t.  In  the  case  of  the

synchronised reduced dynamic and kinematic data this sampling rate is 30s.

Bearing this in mind equation 4.18 can be simplified to equation 4.21 (compare

[Austen and Reubelt 2000]). The vector X contains the velocity components in x,

y, and z direction of CIS.

X t  = X 0∑
i=1

n i /2
i = X 0s

11 /21s
21

2s
33 /23 ⋯ s

nn/2n (4.21)

with s = t t

The parameter s will always be constant because of the constant sampling rate. In

case of the seven-point interpolation s equals three while t represents the time.

The vector  ∆  includes the differences of the velocity vectors  X according to the

difference scheme of equidistant observations.

These differences ∆ are obtained from the general equation 4.22 and in case of

the seven-point  Newton Interpolation  they look like equation 4.23  [Austen  and

Reubelt 2000]. n/2
n = ∑

i=0

n ­1n1n
i X i  (4.22)
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1 = X 1­X 01
2 = X 2­2 X 1X 03/23 = X 3­3 X 23 X 1­X 02
4 = X 4­4 X 36 X 2­4 X 1X 05 /25 = X 5­5 X 410 X 3­10 X 25 X 1­X 03
6 = X 6­6 X 515 X 4­20 X 315 X 2­6 X 1X 0

 (4.23)

Equation 4.21 defines a function which calculates an interpolated velocity vector at

any given time. The first derivative of this function with respect to time gives an

acceleration vector at any time (equation 4.24). Only s depends on time.

Ẋ t  = s
1

' 1/21s
2

' 1
2s

3
' 3 /23 ⋯ s

n
' n/2

n= 1 t {1/2
1 2 s­1

2 !
1

23 s2­6 s2
3 !

3 /23  ⋯  1
n!
∑
k=0

n­1∏
i=0

n­1 s­i 
s­k

n/2
n }  (4.24)

Ẋ t  are finally the acceleration vectors which are needed for the computations

of the gravity field (Chapter 5). If the input data X, however, were not velocities but

positions then the accelerations would be given by the second derivative of the

polynomial  function  (equation  4.21),  that  means  Ẍ t  would  have  to  be

calculated.  Since  the  second  derivative  causes  some  additional  inaccuracies

(compare previous section 4.22) only velocities are utilised as input data.

4.2.4  Application to reduced dynamic and kinematic data sets
Due to the fact that CHAMP data are not  continuous and that even more gaps

occur after data preprocessing (Chapter 3), the  reduced dynamic and  kinematic

data sets have to be divided into blocks of equidistant observations. If the time to

a following observation lasts longer than 30s, a new block will be created starting

with this following observation.

Seven-point Newton Interpolation is carried out for each velocity vector except for
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the velocities on the edge of a block. Since seven interpolation points are needed

per observation,  no  interpolation  can be  calculated for  the  first  and  last  three

observations of a block. These edge observations are omitted so that the reduced

dynamic and  kinematic data  files  only  consist of  state  vectors  wich  have

corresponding accelerations.

4.3  Comparison to reference model
After  the  accelerations  were  derived from the  reduced dynamic and  kinematic

velocities, it is interesting to find out how well they fit to a reference model. The

Earth Gravity Model 96 (EGM96), is chosen as reference model [Lemoine et al.

1998]. EGM96 is a gravity model which exists of spherical harmonic coefficients

up to a degree and order of 360.

The reduced dynamic and  kinematic magnitudes of accelerations are subtracted

from  those  accelerations  which  are  derived  from  EGM96.  The  maximum,

minimum, mean and standard deviation of the differences that occur within July

2002 are shown in table 11 (reduced dynamic) and table 12 (kinematic).

table 11

Differences in acceleration [m/s^2] (EGM96 – reduced dynamic)

max min mean std

2.589e-05 -1.632e-05  -7.144e-08 3.169e-06

table 12

Differences in acceleration [m/s^2] (EGM96 – kinematic)

max min mean std

8.368e-05 -8.933e-05 -8.077e-08 1.038e-05

The majority of the differences in both cases are of size 10-5m/s2, i.e. around a few

mgals. The  reduced dynamic accelerations are more consistent to EGM96 than

the  kinematic although  reduced  dynamic and kinematic differences have similar

sizes. This is supported by the differences in standard deviations (0.3mgal versus

1mgal)  which  emphasizes  that  the reduced  dynamic data  are  slightly  more

accurate than the kinematic.
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The  above  calculated  differences  are  plotted  in  figure  15.  Here  the  same

conclusions are drawn as before. The reduced dynamic accelerations (red) show

smaller  amplitudes,  that  means  these  accelerations  have  less  differences  to

EGM96 than the kinematic accelerations (blue).

The main problem of the kinematic data is probably that the GPS measurements

cause too much noise. As a result, an orbit described by the  reduced dynamic

data becomes smoother than the kinematic orbit.

Nevertheless, both data sets are used to derive a gravity field model.

 

Another conclusion drawn from figure 15 is that the differences show a kind of an

oscillating pattern. This could be caused by additional accelerations which cannot

directly be  derived from the earth‘s  gravity field.  These accelerations are  also

called  perturbing  accelerations.  Possible  improvements  of  this  problem  are

discussed in section 4.4 and 4.5.

4.4  Correction due to tide
The accelerations so far are influenced by tidal accelerations and should therefore

be corrected.

Tidal accelerations are caused by the superposition of  lunisolar gravitation and
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orbital accelerations due to the motion of the earth around the barycentre of the

respective  two-body  system  [Torge  2001].  The  gravitational  impact  of  other

planets is usually neglected as it is too small. One considers the moon due to its

close distance to the earth and the sun due to its enormous size.

The earth's gravity field is symmetrically deformed by these tidal effects which are

both time- and latitude-dependent. The tidal correction is greatest at low latitudes

and has a strong periodic component with period on the order of 12 hours [Blakely

1996] due to the rotation of the earth about its axis. 

Formulas exist [Longman 1959] which calculate the tidal correction for any point

on the earth at any time. The same formulas are now used to calculate the tidal

effect on the satellite. That means the point of interest does not lie on the surface

of the earth but in the satellite. This change however does not alter the formulas

that are utilised. 

table 13

Tidal correction in m/s2

max min mean std
1.797e-06 -9.311e-07 -1.545e-07 5.878e-07

Table 13 shows the result of the tidal corrections which should be applied to the

reduced  dynamic and  kinematic data  sets.  As  shown  in  the  table  above,  the

maximum,  minimum  and  mean  value  of  the  tidal  corrections  as  well  as  the

standard deviation are in the range of  10-7m/s2.   These values are too small to

show a significant improvement to the accelerations. Regarding table 11 and table

12, it can be stated that 10-7 is a size which lies within the noise of the data. For

that reason the tidal accelerations are not considered in the following process. 

4.5  Correction due to non-gravitational forces
Non-gravitational  forces  acting  on  the  satellite  are  responsible  for  the  non-

gravitational accelerations. As previously mentioned in Chapter 2, accelerometers

are  placed  on  board  of  CHAMP  in  order  to  measure  those  non-gravitational
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accelerations.

The two main causes which effect these accelerations are the atmospheric drag

and the solar radiation pressure.

Atmospheric forces are the largest  non-gravitational  perturbations which act  on

low orbiting satellites such as CHAMP. These forces are caused by the interaction

of the satellite with particles in the atmosphere and depend on following elements

[Seeber 1993]:– geometry of the satellite– velocity of the satellite– orientation of the satellite with respect to the flow– density, temperature and composition of the atmospheric gas.

The disturbing forces are biggest when the satellite is close to the earth during

daytime.

Solar radiation pressure on a satellite results from the absorption or reflection of

photons that  are continuously emitted  by the sun. The magnitude of  the force

depends on [Montenbruck and Gill 2001]:– effective satellite surface area– reflectivity of satellite surface– solar flux– distance between satellite and sun

The magnitudes of  non-gravitational  accelerations which  occurred in July 2002

were derived and their maximum, minimum, mean value and standard deviation

calculated (table 14).

table 14

Non-gravitational accelerations in m/s2

max min mean std
1.736e-06 0 3.887e-07 1.431e-07

The non-gravitational  accelerations in table 14 have  similar quantities than the
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tidal corrections in table 13 with the specification that they are all positive as they

only decelerate the satellite.

From that,  one  can  conclude  that  non-gravitational  accelerations  are  also  too

small to be taken into account within this study. Again corrections lie within the

range of noise of data and are therefore rejected in the following processes.
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5  Calculation of spherical harmonic
coefficients

5.1  Theory of Least-Squares Collocation
The  aim  of  this  Chapter  is  to  describe  the  prediction  of  spherical  harmonic

coefficients using Least-Squares Collocation. The method of collocation was first

derived  around  the  1970s.  Its  original  task  was  to  determine  the  anomalous

gravity  field  using  geodetic  measurements  of  arbitrary  quantities,  which  must

however be related to the anomalous potential. The anomalous potential  T is of

special interest as it may be represented by a series which contains the spherical

harmonic coefficients.

First of all, one can present T in equation 5.1 where λ,φ,r are again the spherical

coordinates  of  an  arbitrary  point  P,  with  G being  the  universal  gravitational

constant, M the earth‘s mass and a the semi-major axis of the reference ellipsoid.

A spherical approximation is used throughout the following calculations although

the equations refer to a.

Due to the fact that  T(P) is a square integrable and harmonic function it can be

expanded  into  a  series  of  surface  spherical  harmonics  (equation  5.1)  wherePij sinp are the fully normalized Legendre functions of the first kind. These

functions multiplied by sine or  cosine of the longitude are the surface spherical

harmonics (equation 5.2).  The development of the anomalous potential starts at i

= 2 because it is assumed that the masses of the earth and the reference sphere

are equal, and that the centre of the earth‘s masses coincides with the centre of

the reference sphere. 

T P = T p ,p , r p  (5.1)= GM
r p
∑
i=2

∞  a
r p

i ∑
j=­i

i Pij sin p {cos  jp cij

sin  j p sij
} if j 0

if j 0
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Vij  , = Pij sin {cos j 
sin  j } if j 0

if j 0

 
(5.2)

This series development (equation 5.1) is only correct outside a sphere bounding

all  masses.  However,  it  has  been  shown  (Runge  theorem)  that  T  may  be

approximated everywhere outside a sphere which is enclosed in the earth by a

similar series development. The summation of that series development goes up to

some  degree  N  depending  on  how  well  the  anomalous  potential  should  be

approximated.

 

The equation of the anomalous potential can be rearranged into an equation of

the spherical harmonic coefficients cij and sij (equation 5.3).

GM
a {cij

sij
}  (5.3)= 1

4 ∬=­
2
=0


2

2 Pij sin p T P {cos  j p
sin  j p} cospdd if j 0

if j 0

In order to calculate the spherical harmonic coefficients either T(P) must be given

as for example mean or point value in a grid or an approximation to T(P) has to be

found. In this case the task is to find an approximation. This can be achieved by

Least-Squares Collocation which in general looks for the best estimation of  T(P)

on the basis of the measured data  l. Best estimation means that the squares of

the  differences  between  the  observations  and  the  model  T(P) have  to  be

minimized. The connection between T(P) and the data l is thereby expressed in

terms of  covariance matrices.  Equation 5.4 illustrates this relationship in matrix

notation [Moritz 1980].
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C21 C22 ⋯ C2 N⋮ ⋮ ⋮
CN1 CN2 ⋯ CNN

]
­1

[
l1

l 2⋮
l N

]  (5.4)

The anomalous potential  T in a point  P equals the products of  the covariance

vector Cpi between P and the measured quantities, of the inverse cross-covariance

matrix Cij between each measurement and of the vector l which holds the values

of  the measurements.  The  inverse of  the  so-called normal  equation  matrix  Cij

exists as all covariance matrices are positive definit and have therefore full rank.

This requires that  no  observation  occurs  more  than  once which  implies linear

independence. The index N stands for the number of measurements.

The same expression (equation 5.4) can also be written as a series (equation 5.5)

in a slightly different notation [Tscherning 2001].

The elements bk are the solutions of the normal equations and are constant.T P = ∑
k=1

N

bk covT P ,obsk
with {bi} = {covi , j }­1 {obsj}  (5.5)

The  abbreviation obs stands for observation. Within this study the observations

are chosen to be the gravity disturbance δg because of their simple relation to the

anomalous  potential  T.  Furthermore,  δg  are  invariant  under  rotation  of  the

coordinate system. The input (equation 5.6) of the following computations are the

normal gravities γ subtracted from the magnitudes of the accelerations  accel or

gravities g which are derived as explained in the previous Chapter 4.g = ∥accel∥­ with ∥accel∥ = g  (5.6)

 

At this point it should be reminded that a spherical approximation is used.

The question arises through which function the covariances should be obtained.
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Equation 5.7 defines the covariance function of the anomalous potential T in two

different arbitrary points, P and Q, by a spherical harmonic expansion [Tscherning

2001]. This is considered as the basic covariance function.

covT P ,T Q = ∑
i=2

∞  i
2  RB

2

r p r k


i1

Pi cosp , k  (5.7)

However,  as  shown  in  equation  5.5  a  covariance  function  is  needed  which

describes the covariances between T and the observations obs. This demanded

function can easily be derived by multiplying one more factor to the basic function

since the observations consist  of  gravity disturbances (equation 5.8). Compare

equation 2.12 or 5.6.

  

covT P , obsk = ∑
i=2

∞  i
2 i1

r k
 RB

2

r p r k


i1

Pi cos p , k  (5.8)

The  radius  RB is  the  so-called  Bjerhammar  sphere.  The  so-called  degree

variances are represented by σi
2 which are calculated by using fully normalized

harmonic coefficients that are here a priori known from the EGM96 (equation 5.9)

[Moritz 1980].  i
2 = GM

a 
2∑

j=0

i [ cij
2sij

2 ]  (5.9)

Pi are  the  usual  Legendre  polynomials  which  only  depend  on  the  spherical

distance, namely the angle  ψ between two radius vectors. The indices  p and  k

signify that  these  two  radius vectors  belong to  a  point  P  where T  should  be

predicted  and  to  a  point  K where  the  observation  obsk   takes  place.  This  is

demonstrated by figure 16.
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As  stated  above,  the  usual  Legendre  polynomials  can  also  be  expressed  by

surface spherical harmonics (equation 5.2). Equation 5.10 shows the relationship

between the Legendre polynomials and the surface spherical harmonic functions

which depend on the spherical coordinates λ and φ of the point P as well as of the

observation  obsk. This equation is called the decomposition formula or addition

theorem for spherical harmonics [Moritz 1980].

 

Pi cosp , k = 1
2 i1

∑
j=­i

i

V ij p ,p V ij k ,k  (5.10)

Now that  an  approximation  for  the  anomalous  potential  has  been  found  this

solution can be substituted into equation  5.3.  The  result  of  this substitution is

shown below (equation 5.11).

GM
a

cij = ∑
k=1

N

bk

1
4∬ covT P , obsk V ij p ,pd  (5.11)

The subscript sigma at the integral sign indicates that the integral is extended over

the whole unit sphere with respect to equation 5.12 [Heiskanen and Moritz 1996].∬ °d = ∬ , °cosdd
 (5.12)

If  the covariance function is substituted as well, the equations of  the spherical

harmonic coefficients will have the form as shown in equation 5.13.
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GM
a

cij = ∑
k=1

N

bk  i
2 i1

r k
 RB

2

a r k


i1

1
2 i1

V ij k ,k  (5.13)

The double integral and the spherical harmonics of the point P dissolve due to the

orthogonality relation of  the  surface  spherical  harmonics.  This means  that  the

integral  over  a  product  of  two  equal  normalized  spherical  harmonics  is  4π
(equation 5.14) [Heiskanen and Moritz 1996].

1
4∬ V ij  ,2 d = 1  (5.14)

 The radius rp of the point P is set to a which is defined by the semi-major axis of

the  reference  ellipsoid.  If  one  prefers  to  calculate  the  spherical  harmonic

coefficients referring to the Bjerhammar  sphere instead,  rp will  be of  the same

quantity as RB and will therefore be crossed out.

Only the elements which depend on the observations obsk such as bk and  λk, φk,

rk influence the spherical harmonic coefficients. Since all observations are known

these  elements  are  constants.  At  this  point  it  is  possible  to  compute  the

coefficients of the earth‘s gravity field.

As yet however,  it has not  been considered that  the observations, namely the

gravity disturbances, are influenced by noise. In order to take this fact into account

the variance-covariance matrix D should be added to the normal-equation matrix

Cij. Equation 5.4 is altered to the form as shown by equation 5.15 [Moritz 1980].T P = [C p1 C p2 ⋯ C pN ] [ C11D11 C12D12 ⋯ C1 ND1 N

C21D21 C22D22 ⋯ C2 ND2 N⋮ ⋮ ⋮
CN1DN1 CN2DN2 ⋯ CNNDNN

]
­1

[
l 1

l 2⋮
l N

]
 

(5.15)

The matrix D is a variance-covariance matrix of the same form as would be used

in an ordinary Least-Squares Adjustment.
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If  all  observed  data  are  uncorrelated  and  have  the  same  variances,  which  is

assumed for the gravity disturbances, then D will be reduced to a diagonal matrix

with a constant factor n (equation 5.16).

Dnn=[
n2 0⋱
0 n2]  (5.16)

Finally, the error estimation can be evaluated by equation 5.17 where  C0 is the

autocovariance of the predicted anomalous potential  T, and  E are the standard

errors of the prediction.

E2 = C0­{covT P , obsk}T {covi , j }­1 {covT P , obsk}  (5.17)

5.2  Reducing data
After processing the steps in Chapter 3 and 4 the number of  observations has

been reduced from approximately around 86000 down to 70000. However, if the

collocation steps are computed with all these observations it will still  be a very

time-consuming  process  especially  when  solving  the  normal  equations  which

would become a large system of equations. For that reason it has been decided to

thin out the data set and to reduce its amount down to one third of it. 

The simplest procedure to achieve this reduction is to take every third observation

and to delete the others. The total number of observations is then 23200.

In a second set-up the idea comes to account that those orbits which are close to

another orbit should be deleted as they hardly deliver any new information. By

using this method it might be achieved to get an equal distribution of data over the

earth.  

In order to realize this,  the observations are divided into 403 revolutions while

each revolution lasts for 93.55min which is the average time of a CHAMP satellite

revolution (see Chapter 2). 
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It is tried to judge the similarity of two revolutions by looking on their distance on

the  equator.  If  the  latitudes  of  two  revolutions  are  zero  similar  longitudes  will

indicate that these two orbits are close to each other (figure 17). Assuming that

the size of the orbits for each revolution are almost the same.

As the revolution is not given in a continuous form but only by the observed points,

the latitude will unlikely become exactly 0°. For that  an interval along the equator

of  ±1° is defined. The latitude which lies within t hese borders is found for each

revolution. However, 5% of the revolutions do not have an observation point close

to  the  equator  and  are  therefore  deleted  in  advance.  The  corresponding

longitudes  to  the  selected  latitudes  are  then  compared  to  each  other.  If  the

difference in longitude of two orbits are within the interval of ±2° only one of the

orbits will be kept for later calculations.  Finally, 28% of the 403 revolutions are

selected.

The result of the two methods, taking every third observation and comparing the

orbits, can be seen on the two following maps (figure 18 and figure 19) created

with  GMT  [Wessel  and  Smith  1998].  The  source  file  of  the  GMT  program is

enclosed in appendix A.
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Both figures present the distribution of the selected data sets. Each observation is

illustrated as a small blue circle on the map. Surprisingly, several data gaps occur

in the map of the second method (figure 19) while  the first map (figure 18) shows

an equally spread distribution of observations over the whole map, except for the

polar regions.
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figure 18: ground tracks (method one)

figure 19: ground tracks (method two)
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Two of the major problems of the second method are probably that the compared

longitudes  are  not  exactly  located  on  the  equator  but  only  within  the  defined

borders.  This  leads  to  inaccuracies.  Secondly,  several  gaps  appear  in  the

observations so that some orbits are deleted although they are the only data in

certain areas.

 

It can be concluded that comparing the revolutions only at the equator is a weak

method  to  filter  useful data.  However,  as  the  results  of  the  first  method  are

satisfying enough, no more considerations are put into this process. Further work

will only utilise data reduced by the first method.

5.3  GRAVSOFT program GEOCOL
The program which computes the Least-Squares Collocation is the GRAVSOFT

[Tscherning et  al.  1994]  program GEOCOL [Tscherning 1974].  It  is  written  in

FORTRAN  and  is  based  on  the  formulas  presented  above  (section  5.1).  As

GEOCOL is designed to solve many different applications, concerning for example

the data types in the input and output files, the user has to set several parameters

with  boolean  or  qualitative values  to  get  the  demanded  results.  These  user-

defined parameters can be filled into a so-called job-file. The job-file which was

used for this work is given in appendix B.

A  detailed  description  of  GEOCOL  and  its  parameters  can  be  found  on  the

website http://www.gfy.ku.dk/~cct/geocol16v2.html.

5.3.1  Input and output
In  this  case  the  input  file  of  GEOCOL  contains  five  columns  for  the  23200

observations. The first column holds a sequence number such as the seconds of

the  month,  the  second  to  the  fourth  column  are  filled  with  the  x,  y  and  z

components of the position vector of the satellite given in CTS and finally the fifth

column contains the observations, namely the gravity which is later on converted

into gravity disturbances within GEOCOL utilising equation 2.12.

The output file of the program contains a list and description of the parameters

- 47 -



CHAPTER   5                                              Calculation of spherical harmonic coefficients  

which have been predefined by the user and several  values which result  from

different computation steps. The last part of the output  consists of the spherical

harmonic coefficients sorted by their degree and  order.  Appendix B shows an

output file in order to give more details about its contents and structure. At some

points this file has been shortened in contrary to the original one.

5.3.2  Remove-restore
The created job-file for this work causes that a remove-restore procedure takes

place within GEOCOL. Remove-restore means that a known gravity field model, in

this case EGM96, is subtracted from the observed data before the calculations

start and is later on added again to the results. The low degree coefficients of the

earth‘s  gravity  field  are  supposed  to  be  well  known  and  are  therefore  not

necessary to be calculated. Due to that the gravity disturbances based on EGM96

up  to  a  degree  and  order  of  24  are  subtracted  from  the  observed  gravity

disturbances.  The  differences  rather  than  the  full  values  are  then  used  as

observations obsk.

This has the positive effect that only the improvements of the set of coefficients up

to degree and order 24 and not their total values need to be determined. Another

advantage is that using the differences instead of the full values results in a better

and more uniform signal-to-noise ratio which is important for the filtering within the

Least-Squares  Collocation.  Another  important  purpose  is  to  statistically

homogenize the data which means that the variances of the observations become

smaller. This leads to an improvement of the linearisation during collocation.

The spherical harmonic coefficients in the output file do therefore not contain the

observed  EGM96  components  up  to  degree  and  order  24.  These  observed

coefficients  need  to  be  added again in order  to complete  the  resulting set  of

coefficients

24 has proved to be a reasonable number for the a priori gravity field but this as

well as the model itself can be changed to any other in the job-file.

5.3.3  Error propagation
One more comment should be made on the equation of the covariances 5.8. This
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expression can only be used if all  degree variances are known. As mentioned

above, the degree variances can be computed from EGM96. However, this is only

reasonable up to degree 24. EGM96 is not accurate enough to calculate degree

variances of  higher degree than 24.  For that  reason covariance propagation is

used. This means that  equation 5.8 is split into two series where the first  part

consists of known degree variances up to degree 24 while the second part uses a

model for the degree variances (equation 5.18).

covT P , obsk = a∑
i=2

24  i
2 i1

r k
 RB

2

r p r k


i1

Pi cosp ,k∑
i=25

∞
Ai­1i­2i4 i1

r k
 RB

2

r p r k


i1

Pi cosp , k

 (5.18)

In order to solve equation 5.18 the parameters a, RB and A have to be determined

within GEOCOL.  While the  constant  factor  a is  directly known,  RB and  A are

indirectly given as R-RB and as cov(∆gp,∆gp). The three values of a, R-RB and cov

(∆gp,∆gp) must be entered into the job-file of GEOCOL.

R-RB presents the depth of the Bjerhammar sphere. As the radius of the earth is

known it is possible to calculate the radius of the Bjerhammar sphere RB.

As demonstrated by equation 5.19, cov(∆gp,∆gp) defines the covariance of gravity

anomalies. The value of A is calculated so that equation 5.19 becomes true for a

certain value of cov(∆gp,∆gp).

cov g p , g p = a∑
i=2

24  i
2 i­12

r k
2  RB

2

r p r k


i1

Pi cosp ,k∑
i=25

∞
Ai­1i­2i4 i­12

r k
2  RB

2

r p r k


i1

Pi cosp , k

 (5.19)

The three input values for the job-file of  GEOCOL which were used within this

study are listed in table 15.  They had  been determined  by a Fortran program

called COVFIT [Knudsen 1987]. This program is based on the iterative fitting of
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covariances by a curvature.

            table 15

a 1.03

R-RB 1.561 km

cov(∆gp,∆gp) 540.9 mgal2

5.3.4  Error estimation
The influence of noise should also be considered as explained in section 5.2. For

that reason the constant factor n of the error variance-covariance matrix (equation

5.16)  is set  equal to the common  standard deviation of  the observations. This

standard deviation is chosen to be 0.3mgal in case of the reduced dynamic data

and to be 1.0mgal in case of the kinematic data. These numbers are taken from

the standard deviations obtained by a comparison of EGM96 in table 11 and 12

which  give  an  approximation  for  the  correct  values.  To  be  more  correct  the

standard deviation of the accelerations should have been calculated by an error

propagation  with  respect  to  the  standard  deviation  of  the  velocities  which  is

known.

After the coefficients are computed an error estimation is carried out. Since the

error estimation of the spherical harmonic coefficients are more interesting than

the  errors  of  the  anomalous  potential  itself,  equation  5.17  is  converted  into

equation 5.20. C0 are now the autocovariances of GM/acij.

E2 = C0­{covGM
a

cij , obsk}T {covi , j }­1 {covGM
a

cij , obsk}  (5.20)

During the calculations of the coefficients the N solutions of the normal equations

system  bk (equation 5.5) and the Cholesky decomposition of  the inverse of  the

normal-equation matrix Cij are stored in several binary files which can be used for

later  computations.  The  following computation of  the covariances between the

coefficients and the observations  obsk is fastened up due to the advantage that

the stored Cholesky reduced matrix can be reused.
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E finally gives the errors of the predicted spherical harmonic coefficients.

In order to carry out  the error estimation the original  job-file has to be slightly

altered. The new job-file is also included in appendix B. 
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6  Energy Conservation
The  energy  conservation  method  has  been  carried  out  within  earlier  projects

[Howe et al. 2003] to estimate a gravity field model. As that model will later be

compared to the results of this work it is worth to give a short introduction of the

idea of the method.

The energy conservation method uses the state vector of the satellite as well as

measurements of non-gravitational forces to  determine the gravitational potential

of the earth.

The gravitational potential can be expressed by equation 6.1 as the kinetic energy

of the satellite ½ v2 minus the loss of energy [Howe et al. 2003].

V = 1
2

v2­V sun­V moon­xvy­yvx­F­E0­U  (6.1)

Vsun and Vmoon are the tidal potentials of the sun and moon corresponding to a rigid

earth  [Longman  1959].  The  potential  rotation  term  ω(xvy-yvx) considers  the

rotation of the earth‘s potential in an inertial frame [Jekeli 1999]. F accounts for the

non-gravitational forces and E0 stands for an integration constant. The last term U

is the earth‘s normal potential without the centrifugal term.

Based  on  the  results  of  the  energy  conservation  method  a  Fast  Spherical

Collocation has finally estimated the spherical harmonic coefficients [Sansó and

Tscherning 2003].
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7  Results
This Chapter is divided into two parts. The first part has a close look at the derived

gravity  disturbances  while  the  second  part  deals  with  the  spherical  harmonic

coefficients that result from collocation. These coefficients are also compared to

the coefficients derived from the energy conservation method.

7.1  Gravity disturbances
Reduced dynamic and kinematic accelerations create the input of GEOCOL and

are calculated to gravity disturbances within that program (compare section 5.1).

These gravity disturbances are declared as observations.

The gravity disturbances which are derived from EGM96 are on the other hand

referred to as predictions.

The differences between predictions and observations are given in the output file

of GEOCOL (appendix C). Due to them it is possible to understand the distribution

of  these  data  that  are  treated  as  input  observations  for  the  collocation.  It  is

important to make sure that the data are normal distributed since this is desired

for  the  concluding  error  estimation  (equation  5.20).  Data  that  follow a  normal

distribution allow a usual interpretation of the error estimation.

The following figure 20 and figure 21 present the distribution of the differences in

gravity  disturbances.  Figure  20  is  based  on  data  of  EGM96  subtracted  from

reduced dynamic data while figure 21 shows the difference, EGM96 subtracted

from kinematic data.

The differences are plotted on the horizontal axis with unit mgal and the height of

each bar indicates how often a certain difference occurs. The width of each bar

equals 0.8, so that the centre bar, for example, counts the differences between

±0.4mgal.
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The form of a normal distribution can immediately be seen in both figures although

there  is  not  an  exact  normal  distribution  which  would  be  axis-symmetrical.

However,  the above distributions  fulfill the requirements  of  the error  estimation

which interprets data as normal distributed.

The higher the magnitude of difference the lesser it occurs. This can be stated for

both  histograms (figure  20  and  figure  21).  On  the  other  hand  it  can  be

distinguished  that  reduced  dynamic data  are  more  similar  to  EGM96  than

kinematic. Approximately 8500 versus 6000 differences occur  respectively in the

centre interval.

It should be mentioned that similar distributions to figure 20 and figure 21 appear if

the data are presented  on  a weekly scale instead  of  using data of  the  whole

month. This strengthen the statement that the data can be interpreted as normal

distributed.

The exact values of the gravity disturbances and their differences to EGM96 are

described in mgal as mean, standard deviation, maximum and minimum values in

table 16 and table 17. Those tables show a section of the GEOCOL output file

where the last four digits have been eliminated (appendix C). The first table is

derived  from  reduced  dynamic calculations,  the  latter  one  from  kinematic

calculations.

- 54 -
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figure 21: distribution of gravity disturbances
(kinematic)
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table 16

COMPARISON OF PREDICTIONS AND OBSERVATIONS 

DATA TYPE = 12

NUMBER: 23200

OBSERVATIONS     PREDICTIONS      DIFFERENCE

MEAN                               -0.58                     -0.59                      0.01        0.3

ST.DEV.                           14.05                    14.02                     1.01         0.0

MAX                                 37.41                    36.28                     6.68         0.3

MIN                                 -53.46                   -52.24                    -7.84         0.3

table 17

COMPARISON OF PREDICTIONS AND OBSERVATIONS

    DATA TYPE = 12

NUMBER: 23200

OBSERVATIONS     PREDICTIONS      DIFFERENCE

MEAN                               -0.56                     -0.59                      0.03         1.0

ST.DEV.                           14.09                    14.02                      1.41         0.0

MAX                                 37.82                    36.28                      9.26         1.0

MIN                                 -53.00                   -52.24                     -8.22         1.0

DATA TYPE holds the code number 12 which states that gravity disturbances are

presented.  NUMBER declares the total number of observations. The last column

contains the standard deviation of differences to EGM96 which was predefined by

the user (compare section 4.3 and table 11 and table 12).

These  standard  deviations  are  lower  than  the  standard  deviations  of

DIFFERENCEs in column three although they should be almost identical. This

aberration can be explained by the fact that the  DIFFERENCEs are differences

with respect to EGM96 to degree 24 while the last column are values derived from

EGM96 to  degree  360.  The predefined  standard deviations were however not

altered during the processing of the program.

The  differences  in  gravity  disturbance  compared  to  EGM96,  as  computed  in

GEOCOL, can be presented in a map of the earth. Figure 22 has been created
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with GMT [Wessel and Smith 1998] (appendix A).  The upper map shows how

reduced dynamic gravity disturbances  vary from the reference model while the

lower map presents the same comparison with kinematic data.

Most parts of the maps are green in colour which indicates that the differences lie

in between -0.5mgal and 1.5mgal.  The  kinematic data show higher differences

than the  reduced dynamic data.  As  these differences do  not  create a specific

pattern  but  are  mostly  equally  spread  they  are  assumed  to  be  noise.  Those

observations ascertain the results from table 11 and table 12 in section 4.3.

Both  maps  of  figure  22  have  in  common  that  certain  areas,  such  as  the

Himalayas,  Antarctica and the Andes show extreme differences (either  around

4mgal  or  -5mgal).  All  these  specific  areas  are  difficult  to  access  due  to

topographical  reasons.  Not  many  gravity  measurements  have  therefore  taken

place in those areas.  Since this lack of  data  is reflected in EGM96 it  can be
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assumed that gravity disturbances derived from CHAMP observations are more

accurate than from the reference model in those places. Large differences appear

as a consequence. Figure 22 encourages the idea that low orbiting satellites are

generally able to provide information which would otherwise be very difficult to

gain.

7.2  Spherical harmonic coefficients
Spherical  harmonic coefficients are obtained by using collocation. An important

question is now if these coefficients are consistent to the known. A consistency

requires that the standard deviations of coefficient differences (CHAMP – EGM96)

are smaller than the standard deviations of the coefficients of EGM96 themselves.

In  order  to  judge  the  results  of  collocation,  figure  23  represents  data  of  the

GEOCOL output file. The standard deviation is plotted on the vertical axis while

the degree of coefficients is plotted on the horizontal axis. The standard deviations

of coefficients are combined to one standard deviation per degree.

Following graphs are shown (figure 23):– in red: standard deviations of coefficient differences (reduced dynamic-EGM96)– in blue: standard deviations of coefficient differences (kinematic-EGM96)– in  green:  standard  deviations  of  coefficients  from  the  energy  conservation

method– in brown: standard deviations of coefficients of EGM96– in cyan: standard deviation of estimated error of reduced dynamic coefficients– in black: standard deviation of estimated error of kinematic coefficients 

Up to degree 24, EGM96 has been removed from all data (compare section 5.3.2)

therefore  the  standard  deviation  of  EGM96  initially  becomes  zero  and  the

standard deviations of the other data are very small for the first 24 degrees. It is

obvious  that  only the residual  standard  deviations from degree  one to 24  are

calculated because only residual coefficients of those degrees are regarded.
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At degree 25 the standard deviation of EGM96 (brown graph) shows its maximum.

From that point on, the standard deviations of EGM96 coefficients decreases.

 

The opposite appears for the difference between EGM96 and CHAMP data (red

and  blue  graph).  The  higher  the  degree  the  more  oscillating errors  can  be

observed in the coefficients derived from CHAMP data.  As a consequence the

standard deviation of  differences to EGM96 increases towards higher degrees.

However, this increase is slower than the decrease of the standard deviation of

EGM96 coefficients (brown graph).

As  long  as  the  red  and  the  blue  graph  are  lower  than  the  brown  graph,  a

consistency in comparison to EGM96 is achieved. Calculations are carried out up

to degree 60. At this degree, there is an intersection between the blue and brown

graph which means that the kinematic data do not give information for a better

resolution than 60 degree. The reduced dynamic differences, however, are always

smaller  than  the  kinematic and  could as  a  consequence  go a bit  further  than

degree 60.
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The results of the energy conservation method (green graph) refer to the reduced

dynamic data  set.  Their  standard  deviations  are  similar  to  those  derived  from

accelerations (red graph) but always a bit higher. The energy conservation method

has also  a noticeable  problem with  the  low degree  coefficients.  The standard

deviations of differences are high in the beginning bearing in mind that EGM96 is

removed. This problem does not occur for the graphs based on accelerations (red

and blue).

Error estimation

Figure 23 also shows the results of the error estimations in GEOCOL (equation

5.20). In both cases, reduced dynamic (cyan) and kinematic (black), the standard

deviations of the errors are too optimistic in comparison to the evaluated standard

deviations of the differences  between EGM96 and CHAMP observations.

This can be partly explained by the fact that within the error estimation EGM96 is

expected to have a standard deviation of zero while the calculated differences of

standard deviations from EGM96 and CHAMP data  are influenced by the real

standard deviations of EGM96.

However, the main reason why the error estimation of the reduced dynamic data

(cyan) is much too optimistic is that the user predefined noise of 0.3mgal (table

11) was too low.

Asides from these observations, the errors and standard deviations of differences

are consistent.

If one takes a closer look at the error estimation of spherical harmonic coefficients

that all belong to the same degree, the result will look like figure 24. It shows the

errors of  coefficients  belonging  to  degree  35  and  based  on  reduced  dynamic

observations. Coefficients of other degrees or based on  kinematic data result in

similar figures.
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Figure 24 shows that the minimal error occurs around order zero. The higher the

magnitude of the order, the more the error increases. This kind of  curvature is

caused by the lack of satellite measurements in polar regions. Simulations exist

which show that the errors of coefficients will present a horizontal line if they are

derived from data which are fully distributed over the whole earth. Since CHAMP

does not completely cover the poles, one must keep in mind that coefficients of

higher orders have higher errors.
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8  Conclusion
The  main  task  to  calculate  a  gravity  field  model  using  CHAMP  data  has

successfully been carried out. The combination of Newton Interpolation and Least-

Squares Collocation presents satisfying results. A reasonable gravity field model

up to degree 60 has been created.

The  conclusion  can  be  drawn  that  the  computation  of  spherical  harmonic

coefficients  based  on  accelerations  show an  improvement  of  the  gravity  field

model based on energy conservation. 

One has also seen that the  reduced dynamic data are less influenced by noise

than  the  kinematic data  if  EGM96  is  defined  as  a  reference.  It  is  therefore

advisable to use the combination of  reduced dynamic and kinematic data during

the preprocessing step and then to carry on with only the filtered reduced dynamic

data set.

However,  the  above  conclusions  are  only  derived  from  one-third  of  the

observations  of  one  month.  More  reliable  conclusions  can  be  drawn  if  more

observed data are involved. 

As  the  Least-Squares  Collocation  cannot  handle  much  larger  data  sets,  one

possibility is to use Fast Spherical Collocation instead. This requires that the data

are converted into gridded values of the same height. 

Further investigations accounting for  larger data sets should be done to see if

similar results, to the one in this study, will be observed and more importantly, if a

higher  accuracy  and  resolution  of  the  estimated  gravity  field  model  can  be

achieved. 
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Appendix  A
GMT source files



# source file of figure 19

#!/bin/csh -f

gmtset ANOT_FONT Times-Bold ANOT_FONT_SIZE 10

gmtset LABEL_FONT Times-Bold LABEL_FONT_SIZE 6

gmtset DEGREE_FORMAT 3

set region = -180/180/-90/90   # define the conside red area

set output = tracks.ps         # name the output fi le

# Make a file withthe tracks to plot

   awk  '{print  $3,$2}'  /disk1/tin/GMT_track/GMT_inp ut_mod2_rd.txt  >!

track

#  Initiate the plot with lat/lon limits and add co ast lines:

         pscoast -R$region -JX20c/10c -B30WenS -A0. 25 -G230/250/220 -K

>! $output

# add some text to the figure

pstext  -R  -JX -N -O -K -G0/150/0 << END >> $outpu t

0 100 12 0 0 CT CHAMP GROUND TRACK, 1 Month.

END

# add the tracks to the figure

psxy  track  -R  -JX -O  -Sc0.05 -G0/0/250  >> $out put

#ps2epsi $output     

     

     \rm .gmtcommands track



# source file of figure 22

#!/bin/csh

gmtset ANOT_FONT Helvetica ANOT_FONT_SIZE 8p

gmtset LABEL_FONT Helvetica LABEL_FONT_SIZE 8p

gmtset PAPER_MEDIA A4

set region = -180/180/-90/90

set output = "anomalies_rd_k.ps"

awk '{print $3,$2,$6}' /disk1/tin/GMT_grav/anomalie s_total_k.dat | \

 xyz2grd -Gucph-egm96.grd -R-180/180/-87.5/87.5 -I2 .5

 

awk '{print $3,$2,$6}'  /disk1/tin/GMT_grav/anomali es_total_rd.dat| \

 xyz2grd -Gucph-eigen2.grd -R-180/180/-87.5/87.5 -I 2.5

makecpt -Crainbow -T-5.0/4.3/0.1 -Z >! champ.cpt

grdimage ucph-egm96.grd -JX10c/6c -R$region -B30Wen S -Cchamp.cpt \

 -K -P >! $output

psscale -Cchamp.cpt  -D10.5/6/10c/0.4c -B1 -B0.5:"m gal": -O -K >> $output

pscoast -JX -R -Dc -O -W3 -B30WenS -A10000 -K >> $o utput

grdimage ucph-eigen2.grd -JX10c/6c -R$region -B30We nS -Cchamp.cpt \

 -K -O -Y7c >> $output

pscoast -JX -R -Dc -O -W3 -B30WenS -A10000 -K >> $o utput

echo  "0  90  11  0  0  CT  Gravity  disturbances  from  redu ced  dynamic  and

kinematic" | \pstext -JX -R -O -Y1c >> $output

gv anomalies_rd_k.ps

ps2epsi $output

#/rm ucph-egm96.grd ucph-eigen2.grd champ.cpt



Appendix  B
GEOCOL job-files



/cct/dgravsoft/geocol16<<!

t

t f t t f f f f

4

/scratch/tin/neq1

40 300

/scratch/tin/neq2

41 300

/scratch/tin/neq3

42 300

/scratch/tin/neq4

43 300

f t f f f f f f f

t

5

EGM96 TO DEGREE 24

3.986004415E+14  6378136.3 0.0 24 f f t f f

(2i4,2d20.12)

/cct/cctf/EGM96

2

4

-1.561  540.9  24 f F t F

-1 2 1.03

/cct/dgravsoft/egm96.edg

t

 -1 2 3 5 4  5 0  12 -1 413000.0 f f F T f t t f f t

/disk1/tin/geocol_input3.txt

29

2.5

1.0E5 0.0 t

0.3

t

t f

f f

t f t t

3 0

60 60 

/disk1/tin/EGM96_25

(2i4,2d20.12)

t

t



/cct/dgravsoft/geocol16<<!

t

t f t t f f f f

4

/scratch/tin/neq1

40 300

/scratch/tin/neq2

41 300

/scratch/tin/neq3

42 300

/scratch/tin/neq4

43 300

f t f f f f f f f

t

5

EGM96 TO DEGREE 24

3.986004415E+14  6378136.3 0.0 24 f f t f f

(2i4,2d20.12)

/cct/cctf/EGM96

2

4

-1.561  540.9  24 f F t F

-1 2 1.03

/cct/dgravsoft/egm96.edg

t

 -1 2 3 5 4  5 0  12 -1 413000.0 f f F T f t t f f t

/disk1/tin/geocol_input3.txt

29

2.5

1.0E5 0.0 t

0.3

t

t t

t 23200

f f

t t t t

33 -33

40 40 

/disk1/tin/EGM96_25

(2i4,2d20.12)

t

t



Appendix  C
GEOCOL output file



 GEODETIC COLLOCATION, VERSION 2003-03-11 RELEASE 1 6 REV. 11 exp (LINUX) 
 Thu Dec  2 10:10:31 2004                                                

 NOTE THAT IF SPHERICAL APPROXIMATION IS USED
 MEAN RADIUS = RE = 6371 KM AND MEAN GRAVITY 981 KG AL USED.

 MAX NUMBER OF OBS PER RECORD = 5600, MAX NUMBER OF  PARAMETERS= 2500
 MAX NUMBER OF DATA DEPENDING ON TILT-PARAMETER  10 0002
 SIZE OF NORMAL EQ. BLOCKS= 399120, SIZE OF POT.COF F. BLOCK= 3243602
  INTERACTIVE INPUT (T/F)
  BUFFER SIZE MAXO9 =       403200
 INPUT: LSPHER, TRUE IF SPHERICAL APPROXIMATION IS USED.
        LTRAN, TRUE IF NON-STANDARD REF. SYSTEM IS USED
        LPOT,  TRUE IF SPHERICAL HARMONIC EXPANSION  IS USED
        LTEST, TRUE IF TEST-OUTPUT IS NEEDED
        LLEG,  TRUE IF LEGEND IS TO BE OUTPUT
        LPARAM,TRUE IF PARAMETERS ARE TO BE DETERMI NED
        LNCOL, TRUE IF COLLOCATION IS NOT USED
        LIOSOL,TRUE IF SOLUTION IS STORED OR RECOVE RED
  SPHERICAL APPROXIMATION IN USE. 
           21 BLOCKS IN EACH FILE NEEDED 
  INPUT NUMBER OF FILES TO HOLD NEQ 
  INPUT NAME OF FILE WITH NORMAL EQ.
 NAME OF FILE HOLDING NORMAL EQUATIONS=/scratch/tin /neq1
  INPUT FORTRAN UNIT NO (> 20) AND SIZE IN  BLOCKS
           40         300
  INPUT NAME OF FILE WITH NORMAL EQ.
 NAME OF FILE HOLDING NORMAL EQUATIONS=/scratch/tin /neq2
  INPUT FORTRAN UNIT NO (> 20) AND SIZE IN  BLOCKS
           41         300
  INPUT NAME OF FILE WITH NORMAL EQ.
 NAME OF FILE HOLDING NORMAL EQUATIONS=/scratch/tin /neq3
  INPUT FORTRAN UNIT NO (> 20) AND SIZE IN  BLOCKS
           42         300
  INPUT NAME OF FILE WITH NORMAL EQ.
 NAME OF FILE HOLDING NORMAL EQUATIONS=/scratch/tin /neq4
  INPUT FORTRAN UNIT NO (> 20) AND SIZE IN  BLOCKS
           43         300
 INPUT: LONEQ, TRUE IF COEFFICIENTS ARE OUTPUT,
        LTIME: TRUE, IF TIMING IS MADE (ONLY UNIX)
        LTCOV: TRUE, IF OUTPUT FROM COV. CALCULATIO N
        LCZERO: TRUE, IF  FINITE COVARIANCES ARE US ED 
                IN NORMAL EQUATIONS.
        LCOERR: TRUE, IF DATA ERRORS ARE CORRELATED .
        LFULLO: TRUE, IF V, ALL COM. OF DG OR DDG A RE OUTPUT 
  ARE ALL PARAMETERS OK ?
 INPUT CODE FOR BASIC REFERENCE SYSTEM:
 0: USER DEFINED, 1: ED50 NORTH SEA, 2: ED50/EDOC,
 3: NAD1927 /NEW MEXICO, 4: GRS67, 5:  GRS80, 6: NW L9D,
 7: BEST CURRENT, 8: BEST CUR. FAROE ISL, 9: ED50 F OR SF,
 10: IAG-75, 11: KRASSOWSKY, DDR, 12: GERMAN DHDN, BESS.

 REFERENCE SYSTEM:
+                   GRS1980.

 A   = 6378137.00 M
 1/F = 298.2572204
 GM= 0.3986005000E+15
 REF.GRAVITY AT EQUATOR =   978032.6772 MGAL
 POTENTIAL AT REF.ELL.  = 62636860.8504 M**2/SEC**2

  INPUT NAME OF POT.COEFF. SET



 SOURCE OF THE POTENTIAL COEFFICIENTS USED:
 EGM96 TO DEGREE 24                                                      
 INPUT: GM, SEMI-MAJOR AXIS (M), C(2,0), MAX. DEGRE E
  LFM, TRUE IF COEFF. IN INPUT STREEM AND *1.0D6
  LBIN, TRUE IF ON BINARY FORM
  LFORM, TRUE IF FORMAT IS INPUT
  LINT, TRUE IF STORED AS INTEGERS
  LSKIPL, TRUE IF DUMMY LINES IN FRONT OF FILE

     GM             A       COFF(5)  MAX.DEGREE
 0.39860044E+15  6378136.3    0.0000   24
  INPUT FORMAT (2I4,2D18.0) F.EX.
  INPUT NAME OF FILE HOLDING COEFF.
 NAME OF FILE HOLDING COEFFICIENTS: /cct/cctf/EGM96
  COEFFICIENTS UP TO N=5 
    2   0 -0.484165360E-03  0.000000000E+00
    2   1 -0.186987630E-09  0.119528010E-08
    2   2  0.243914360E-05 -0.140016690E-05
    3   0  0.957254200E-06  0.000000000E+00
    3   1  0.202998880E-05  0.248513150E-06
    3   2  0.904627770E-06 -0.619025970E-06
    3   3  0.721072640E-06  0.141435620E-05
    4   0  0.539873840E-06  0.000000000E+00
    4   1 -0.536321640E-06 -0.473440250E-06
    4   2  0.350694110E-06  0.662671600E-06
    4   3  0.990771810E-06 -0.200928370E-06
    4   4 -0.188560800E-06  0.308853170E-06

 START OF COLLOCATION I:
  INPUT DEGREE-VARIANCE MODEL NO. (1,2,3)
  INPUT DENOMINATOR(S) IN MODEL

 THE MODEL ANOMALY DEGREE-VARIANCES ARE EQUAL TO
 A*(I-1)
+        /((I-2)*(I+   4)).
 INPUT PARAMETERS DESCRIBING COV. FCT.
 R - NEG. DEPTH TO BJ.SPHERE IN KM OR RATIO RB/RE
 GRAVITY ANOMALY VARIANCE IN MGAL**2
 MAX. DEGREE OF LEGENDRE FCT. EXPANSION (E.G. 180, 360)
 LZERO - TRUE IF FIRST COEFF. ALL ARE ZERO
 LTABLE - TRUE IF COV.FCT. IS TABULATED IN 2D
 LMODEL - TRUE IF DEGREE-VAR. FROM PREDEFINED MODEL
 LTABH - TRUE IF 1D TABULATION
 HCMAX =  1000000.0 M. 
  INPUT MODEL NO., START DEGR. & SCALE FACT.
 MODEL  -1 USED FROM DEGREE   2 TO  24 WITH SCALE F ACTOR=  1.030000
  INPUT NAME OF FILE WITH DEGR.VAR.
  DEGREE-VARIANCES INPUT FROM FILE 
 /cct/dgravsoft/egm96.edg                                                
  MULTIPLICATIVE FACTOR USED 

 RATIO R/RE                              =       0. 999755
 DEPTH TO BJERHAMMAR SPHERE (R-RE)       =   -1561. 00 M
 VARIANCE OF POINT GRAVITY ANOMALIES     =     540. 90 MGAL**2
 THE FACTOR A, DIVEDED BY RE**2 IS       =     144. 23 MGAL**2
  ARE ALL PARAMETERS OK ?

 TIME USED=    0.000 SEC, ELAPSED TIME =     0.000 SEC

  OBSERVATIONS:



 INPUT DATA LINE AND OUTPUT SPECIFICATIONS
 POSITION OF STATION NUMBER (0: NO NUMBER, -1: NO O UTPUT U6)
 POSITION OF LATITUDE AND LONGITUDE (E.G. 2 , 3)
 TYPE OF ANGULAR UNITS USED (1: DD MM SS.S, 2: DD M M.M 3: DD.D)
 4: GRADES, 5: X,Y,Z (CTRS) 
 POSITION OF HEIGHT (0: NO HEIGHT)
 POSITION OF OBSERVATION 1 AND 2 (0 IF NO OBS. 1 OR  2)
 DATA OR COMPUTATION QUANTITY TYPE CODE (11: GEOID,
   13: GRAVITY, 15: TZZ, 26: (KSI,ETA), NEGATIVE: R EF.SUBTR.)
 COORD.SYST. CODE, -1 INDICATE GLOBAL SYSTEM, +100 REVERSE TR.
 HEIGHT (IN M OR KM), ONLY USED IF NO INPUT HEIGHT
 (USED AS HEIGHT ABOVE MEAN EARTH SPHERE IF LSPHER IS TRUE !)
 LPUNCH - TRUE IF OUTPUT OF RESULT TO FILE
 LWLONG - TRUE IF LONGITUDE POSITIVE EAST
 LMEAN  - OBS. OR COMPUTED QUANTITY IS A MEAN VALUE
 LSA    - TRUE IF ALL ERROR ESTIMATES ARE IDENTICAL
 LKM    - TRUE IF HEIGHT IN KM
 LADMU  - TRUE IF UNREDUCED OR CONSTANTS * OR +
 STAT   - TRUE IF STATISTICS OF RESULT WANTED
 LAREA  - TRUE IF DATA ONLY INSIDE SPECIFIC AREA AR E USED
 LFORM  - TRUE IF FORMAT OF DATA IS INPUT
 LIN4   - TRUE IF DATA NOT IN INPUT STREAM (FROM FI LE)
  INPUT NAME OF FILE HOLDING DATA
  INPUT FORTRAN UNIT NUMBER

 DATA INPUT FROM UNIT 29, FILE=/disk1/tin/geocol_in put3.txt
  INPUT SAMPLING INTERVAL SIZE
 INPUT MULTIPLICATIVE AND ADDITIVE CONSTANT AND
 LMEGR, TRUE IF VALUE INPUT OR COMPUTED IS UNREDUCE D
 DM=      0.10000D+06, DA=      0.00000D+00, LMEGR=   T
  INPUT COMMON STANDARD DEVIATION OF OBSERVATIONS
 COMMON ST.DEV. OF OBS =   0.3000
  ALL SPECIFICATIONS OK ?

 SELECTED GEOCENTRIC SYSTEM USED.

   NO      LATITUDE     LONGITUDE     H    GRA.DIST . MGAL
            DEGREES       DEGREES      M
+                                              ST.D EV.=    1.168280
                                                                   POT
+                                              OBS    DIF    ERR
 ONLY STATION NUMBERS OUTPUT:
      118877     118967     119057     119147     1 19237     119327
      119417     119507     119597     119687     1 19777     119867
      119957     120047     120137     120227     1 20317     120407

[...]

      654287     654377     654467     654557     6 54647     654737
      655187     655277     655367     655457     6 55547     655637
      655727     655817     655907     655997     6 56087     656177
 NUMBER OF OBSERVATIONS REQUIRE STORAGE ON UNIT 14 AND 16
  ROTSATX   0.0000000000000000E+000  0.000000000000 0000E+000
  3 BLOCK            1 WRITTEN, LSATAC=  F
      656267     656357     656447     656537     6 56627     656717
      656807     656897     656987     657077     6 57167     657257
      657347     657437     657527     657617     6 57707     657797

 
[...] 

     2591027    2591117    2591207    2591297    25 91387    2591477



     2591567    2591657    2591747    2591837
  INPUT LSTOP, LRESOL _ READ SOLUTION
0COMPARISON OF PREDICTIONS AND OBSERVATIONS
0DATA TYPE = 12
 NUMBER: 23200
0         OBSERVATIONS     PREDICTIONS     DIFFEREN CE
 MEAN       -0.579111       -0.591064        0.0119 53        0.300000
 ST.DEV.    14.049431       14.015602        1.0102 06        0.000000
 MAX        37.414601       36.276459        6.6800 18        0.300000
 MIN       -53.460592      -52.239471       -7.8400 71        0.300000
0DISTRIBUTION OF DIFFERENCES, UNITS:  2.500000
   0  0  0  0  0  0  0  9 69********* 62  3  0  0  0  0  0  0  0       0
 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8  9 10 OUTSIDE

 NUMBER OF DIFF. REPEATED 
     0     0     0     0     0     0     0     9    69  1871 19100  2086
62     3     0     0     0     0     0     0     0     0
            5 BLOCKS STORED 

 TIME USED=    1.170 SEC, ELAPSED TIME =     1.220 SEC
  FILE           40 OPENED FOR NEQ 
  FILE           41 OPENED FOR NEQ 
  FILE           42 OPENED FOR NEQ 
  FILE           43 OPENED FOR NEQ 
            4 FILE(S) OPENED FOR NEQ 

    688 RECORDS USED FOR NORMAL EQUATIONS.

          100 BLOCKS WRITTEN 
          200 BLOCKS WRITTEN 
          300 BLOCKS WRITTEN 
          400 BLOCKS WRITTEN 
          500 BLOCKS WRITTEN 
          600 BLOCKS WRITTEN 
 TIME USED= 849.680 SEC, ELAPSED TIME= 947.510 SEC
  REDUCED BLOCK            1 WRITTEN, LAST CO.          878
  REDUCED BLOCK            2 WRITTEN, LAST CO.         1252
  REDUCED BLOCK            3 WRITTEN, LAST CO.         1538

 [...]

  REDUCED BLOCK          687 WRITTEN, LAST CO.        23187
  REDUCED BLOCK          688 WRITTEN, LAST CO.        23201
  1 BLOCK            1 WRITTEN 
  1 BLOCK            2 WRITTEN 
  1 BLOCK            3 WRITTEN 
  1 BLOCK            4 WRITTEN 
  1 BLOCK            5 WRITTEN 

 SOLUTIONS TO NORMAL EQUATIONS:

 BLK            1 10 READ FOR TRANSFER B TO C.
 BLK            1 11 READ FOR TRANSFER B TO C.
 ONLY FIRST   20 SOLUTIONS OUTPUT.
  0.473534491E+01 0.283777113E+01 0.528241753E+01 0 .460102119E+01
  0.184944313E+01 0.351367335E+01 0.251701313E+01 0 .223070890E+01
  0.286572101E+01 0.275005284E+01 0.229883985E+01 0 .261306913E+01
  0.251107169E+01 0.282136379E+01 0.289944247E+01 0 .262643399E+01
  0.387554148E+01 0.464294867E+01 0.308888872E+01 0 .371346221E+01

 NUMBER OF EQUATIONS =  23200
 NORMALIZED SQUARE-SUM OF OBSERVATIONS        = 0.1 73482E+05



 NORMALIZED DIFFERENCE BETWEEN SQUARE-SUM OF
 OBSERVATIONS AND NORM OF APPROXIMATION       = 0.4 85372E+04

 TIME USED=******** SEC, ELAPSED TIME=******** SEC
  NUMBER OF BLOCKS USED =          688
 INPUT LCREF, TRUE IF ANOTHER COLLOCATION SOLUTION IS NEEDED
       LNEWDA, TRUE IF PARAMETERS ARE TO BE DETERMI NED 
  LTEST  T
  PREDICTIONS: <

 INPUT: LGRID - TRUE IF COMPUTATIONS IN A GRID
  OR WHEN LSPHAR IS TRUE ALL COEFF. LE THE DEGREE 
  LERR - TRUE IF ERROR ESTIMATES ARE TO BE COMPUTED
            OR REPRODUCED IN OUTPUT
  LCOMP- TRUE IF COMPUTED VALUES ARE SUBTRACTED FROM OBSERVED
  LSPHAR - TRUE IF COEFFICIENTS OF SPHERICAL HARMON ICS ARE
            TO BE PREDICTED
  INPUT INITIAL DEGREE AND ORDER 
  INITIAL DEGREE AND ORDER            3           0
  INPUT DEGREE & ORDER OF COEFF. TO BE PREDICTED 
  LCOMP - OBS-PRED CALCULATED  T
  INPUT NAME OF COEFF. FILE FOR COMPARISON 
  INPUT DATA FORMAT 
(2i4,2d20.12)                                                           
  GRAVITY ANOMALY AND POTENTIAL DEG.VAR. DEG 3-200 
   0.0000   0.0000   0.0000   0.0000   0.0000   0.0 000   0.0001   0.0001
   0.0002   0.0004   0.0004   0.0006   0.0007   0.0 010   0.0011   0.0015
   0.0017   0.0020   0.0023   0.0025   0.0029   0.0 034   0.0041   5.1239
   4.9421   4.7727   4.6144   4.4663   4.3272   4.1 966   4.0734   3.9573

[...]

   0.0003   0.0003   0.0003   0.0002   0.0002   0.0 002   0.0002   0.0002
   0.0002   0.0002   0.0002   0.0002   0.0002   0.0 002   0.0002   0.0002
   0.0002   0.0002   0.0002   0.0002   0.0002   0.0 002
   3   0    0.20265D-11    0.00000D+00    0.20265D- 11
   3   1   -0.30350D-10    0.00000D+00   -0.30350D- 10
   3   2   -0.71487D-11    0.00000D+00   -0.71487D- 11
   3   3    0.31209D-10    0.00000D+00    0.31209D- 10
 MEAN, STDV, VARI=     -0.60905D-12     0.18017D-10      0.16692D-10
 MEAN COLL ERR=      0.00000D+00 COEFF. STDV.      0.00000D+00

   4  -4    0.50792D-11    0.00000D+00    0.50792D- 11
   4  -3   -0.12031D-10    0.00000D+00   -0.12031D- 10
   4  -2   -0.20574D-10    0.00000D+00   -0.20574D- 10
   4  -1   -0.93529D-10    0.00000D+00   -0.93529D- 10
   4   0    0.13577D-09    0.00000D+00    0.13577D- 09
   4   1    0.37368D-10    0.00000D+00    0.37368D- 10
   4   2    0.14226D-10    0.00000D+00    0.14226D- 10
   4   3    0.29587D-11    0.00000D+00    0.29587D- 11
   4   4   -0.21308D-11    0.00000D+00   -0.21308D- 11
 MEAN, STDV, VARI=      0.74599D-11     0.60090D-10      0.57143D-10
 MEAN COLL ERR=      0.00000D+00 COEFF. STDV.      0.00000D+00

   5  -5    0.30012D-10    0.00000D+00    0.30012D- 10
   5  -4   -0.17304D-10    0.00000D+00   -0.17304D- 10
   5  -3    0.20753D-10    0.00000D+00    0.20753D- 10
   5  -2   -0.10262D-10    0.00000D+00   -0.10262D- 10
   5  -1   -0.80934D-10    0.00000D+00   -0.80934D- 10
   5   0   -0.63810D-10    0.00000D+00   -0.63810D- 10
   5   1   -0.56693D-10    0.00000D+00   -0.56693D- 10
   5   2   -0.35792D-10    0.00000D+00   -0.35792D- 10
   5   3   -0.88163D-11    0.00000D+00   -0.88163D- 11



   5   4    0.68400D-10    0.00000D+00    0.68400D- 10
   5   5   -0.44764D-10    0.00000D+00   -0.44764D- 10
 MEAN, STDV, VARI=     -0.18110D-10     0.44728D-10      0.46332D-10
 MEAN COLL ERR=      0.00000D+00 COEFF. STDV.      0.00000D+00

   6  -6    0.18608D-10    0.00000D+00    0.18608D- 10
   6  -5   -0.16632D-11    0.00000D+00   -0.16632D- 11
   6  -4    0.22768D-10    0.00000D+00    0.22768D- 10
   6  -3    0.16972D-10    0.00000D+00    0.16972D- 10
   6  -2    0.34813D-10    0.00000D+00    0.34813D- 10
   6  -1   -0.27102D-09    0.00000D+00   -0.27102D- 09
   6   0    0.24761D-09    0.00000D+00    0.24761D- 09
   6   1    0.16890D-09    0.00000D+00    0.16890D- 09
   6   2    0.54584D-10    0.00000D+00    0.54584D- 10
   6   3   -0.95426D-11    0.00000D+00   -0.95426D- 11
   6   4    0.52054D-10    0.00000D+00    0.52054D- 10
   6   5    0.37226D-11    0.00000D+00    0.37226D- 11
   6   6   -0.23482D-10    0.00000D+00   -0.23482D- 10
 MEAN, STDV, VARI=      0.24178D-10     0.11705D-09      0.11503D-09
 MEAN COLL ERR=      0.00000D+00 COEFF. STDV.      0.00000D+00

[...]

  35 -35   -0.55418D-08   -0.50123D-08   -0.52951D- 09
  35 -34    0.31985D-08    0.26672D-08    0.53132D- 09
  35 -33   -0.26688D-08   -0.30774D-08    0.40861D- 09
  35 -32   -0.84140D-08   -0.74186D-08   -0.99543D- 09
  35 -31    0.35824D-08    0.40412D-08   -0.45883D- 09
  35 -30    0.24453D-08    0.28737D-08   -0.42843D- 09
  35 -29    0.29271D-08    0.34014D-08   -0.47432D- 09
  35 -28   -0.15440D-07   -0.15367D-07   -0.72237D- 10
  35 -27   -0.13867D-07   -0.13381D-07   -0.48565D- 09
  35 -26    0.50943D-08    0.46149D-08    0.47943D- 09
  35 -25    0.10583D-08    0.19978D-08   -0.93955D- 09
  35 -24    0.50576D-08    0.63850D-08   -0.13274D- 08
  35 -23   -0.29348D-08   -0.22244D-08   -0.71042D- 09
  35 -22    0.55059D-08    0.57230D-08   -0.21708D- 09
  35 -21    0.84565D-10   -0.81766D-09    0.90222D- 09
  35 -20   -0.18090D-08   -0.11357D-09   -0.16954D- 08
  35 -19   -0.35684D-08   -0.34185D-08   -0.14984D- 09
  35 -18   -0.11776D-07   -0.11471D-07   -0.30523D- 09
  35 -17   -0.89931D-08   -0.88292D-08   -0.16394D- 09
  35 -16   -0.69204D-08   -0.73683D-08    0.44791D- 09
  35 -15    0.81308D-08    0.87598D-08   -0.62910D- 09
  35 -14   -0.59856D-08   -0.70274D-08    0.10417D- 08
  35 -13    0.61267D-08    0.30285D-08    0.30982D- 08
  35 -12   -0.64008D-08   -0.64323D-08    0.31544D- 10
  35 -11   -0.36229D-08   -0.31151D-08   -0.50785D- 09
  35 -10    0.11396D-07    0.11444D-07   -0.48085D- 10
  35  -9    0.42055D-09   -0.10878D-08    0.15084D- 08
  35  -8    0.11848D-07    0.92149D-08    0.26330D- 08
  35  -7    0.26861D-08    0.47139D-08   -0.20278D- 08
  35  -6    0.83781D-08    0.79014D-08    0.47672D- 09
  35  -5   -0.11023D-07   -0.11548D-07    0.52463D- 09
  35  -4    0.10233D-07    0.92067D-08    0.10261D- 08
  35  -3    0.24147D-08    0.34997D-08   -0.10850D- 08
  35  -2    0.86051D-08    0.74732D-08    0.11320D- 08
  35  -1   -0.10129D-07   -0.10358D-07    0.22825D- 09
  35   0    0.76096D-08    0.86044D-08   -0.99485D- 09
  35   1   -0.12109D-07   -0.10763D-07   -0.13463D- 08
  35   2   -0.17858D-07   -0.14817D-07   -0.30410D- 08
  35   3    0.25217D-08    0.18862D-08    0.63549D- 09
  35   4   -0.32450D-08   -0.28234D-08   -0.42162D- 09



  35   5   -0.88534D-08   -0.72369D-08   -0.16165D- 08
  35   6    0.57152D-08    0.32871D-08    0.24281D- 08
  35   7   -0.48857D-08   -0.34583D-08   -0.14274D- 08
  35   8    0.18907D-08    0.41591D-08   -0.22684D- 08
  35   9   -0.51098D-09   -0.78358D-09    0.27260D- 09
  35  10   -0.23260D-08   -0.26308D-08    0.30480D- 09
  35  11    0.29442D-08    0.31135D-08   -0.16929D- 09
  35  12    0.96077D-08    0.81043D-08    0.15033D- 08
  35  13   -0.10396D-08   -0.16087D-08    0.56911D- 09
  35  14   -0.62146D-08   -0.71651D-08    0.95050D- 09
  35  15   -0.14536D-07   -0.15369D-07    0.83347D- 09
  35  16   -0.55850D-08   -0.68977D-08    0.13128D- 08
  35  17    0.45733D-09    0.70376D-09   -0.24643D- 09
  35  18   -0.61512D-08   -0.55525D-08   -0.59869D- 09
  35  19   -0.44360D-09   -0.10711D-08    0.62753D- 09
  35  20    0.49227D-09    0.99270D-09   -0.50043D- 09
  35  21    0.12630D-07    0.12933D-07   -0.30307D- 09
  35  22    0.65168D-08    0.75148D-08   -0.99801D- 09
  35  23   -0.82173D-08   -0.81639D-08   -0.53340D- 10
  35  24    0.37631D-08    0.27844D-08    0.97874D- 09
  35  25    0.73267D-08    0.71686D-08    0.15815D- 09
  35  26   -0.41013D-08   -0.47030D-08    0.60166D- 09
  35  27    0.11478D-07    0.10960D-07    0.51773D- 09
  35  28    0.73666D-08    0.78816D-08   -0.51504D- 09
  35  29    0.74887D-08    0.77079D-08   -0.21915D- 09
  35  30   -0.46773D-08   -0.40519D-08   -0.62542D- 09
  35  31    0.82893D-08    0.78414D-08    0.44793D- 09
  35  32   -0.35209D-08   -0.31627D-08   -0.35826D- 09
  35  33    0.54855D-08    0.58610D-08   -0.37547D- 09
  35  34   -0.86193D-09   -0.12163D-08    0.35440D- 09
  35  35   -0.57840D-08   -0.58787D-08    0.94705D- 10
 MEAN, STDV, VARI=     -0.31954D-10     0.10569D-08      0.10499D-08
 MEAN COLL ERR=      0.00000D+00 COEFF. STDV.      0.71715D-08

[...]

  60 -60    0.19067D-08    0.39298D-09    0.15137D- 08
  60 -59   -0.36884D-09    0.12059D-08   -0.15747D- 08
  60 -58    0.14457D-08    0.23163D-08   -0.87060D- 09
  60 -57    0.24104D-09   -0.32249D-09    0.56353D- 09
  60 -56   -0.14207D-08   -0.35420D-08    0.21213D- 08
  60 -55    0.15836D-08    0.28937D-08   -0.13102D- 08
  60 -54   -0.11497D-08   -0.27101D-08    0.15604D- 08
  60 -53    0.24584D-08    0.56805D-08   -0.32220D- 08
  60 -52    0.32412D-08    0.53687D-08   -0.21275D- 08
  60 -51   -0.24093D-08   -0.58027D-09   -0.18290D- 08
  60 -50    0.26119D-08    0.38470D-08   -0.12351D- 08
  60 -49   -0.16094D-08   -0.44639D-08    0.28545D- 08
  60 -48   -0.15742D-08   -0.37264D-08    0.21523D- 08
  60 -47    0.17281D-08    0.19792D-08   -0.25113D- 09
  60 -46    0.19289D-09    0.34886D-09   -0.15597D- 09
  60 -45   -0.27428D-08   -0.39178D-08    0.11749D- 08
  60 -44   -0.16353D-09   -0.80850D-09    0.64497D- 09
  60 -43   -0.40075D-11    0.79634D-09   -0.80035D- 09
  60 -42    0.20289D-08    0.31044D-08   -0.10755D- 08
  60 -41    0.10303D-08   -0.10469D-08    0.20771D- 08
  60 -40   -0.23847D-09    0.95447D-09   -0.11929D- 08
  60 -39   -0.21413D-08   -0.53656D-08    0.32243D- 08
  60 -38   -0.10706D-08   -0.13266D-10   -0.10573D- 08
  60 -37    0.17903D-08    0.71265D-09    0.10777D- 08
  60 -36   -0.35641D-09   -0.49168D-10   -0.30724D- 09
  60 -35    0.18009D-09    0.56185D-09   -0.38177D- 09
  60 -34   -0.76969D-09   -0.23693D-08    0.15996D- 08



  60 -33    0.16908D-08    0.40229D-08   -0.23320D- 08
  60 -32   -0.46162D-09   -0.31556D-09   -0.14605D- 09
  60 -31    0.13116D-08    0.46785D-09    0.84376D- 09
  60 -30   -0.20857D-08   -0.25926D-08    0.50689D- 09
  60 -29    0.53903D-09    0.29396D-08   -0.24006D- 08
  60 -28   -0.25816D-08   -0.15190D-08   -0.10626D- 08
  60 -27    0.11087D-08    0.20053D-08   -0.89665D- 09
  60 -26    0.96373D-09    0.40365D-08   -0.30728D- 08
  60 -25   -0.30964D-09    0.56998D-09   -0.87962D- 09
  60 -24   -0.26082D-09    0.12049D-08   -0.14657D- 08
  60 -23    0.96187D-10   -0.26684D-08    0.27646D- 08
  60 -22    0.13262D-08    0.38219D-08   -0.24957D- 08
  60 -21    0.36631D-09   -0.46549D-08    0.50213D- 08
  60 -20   -0.15748D-08    0.47165D-10   -0.16220D- 08
  60 -19   -0.21637D-08   -0.21165D-08   -0.47181D- 10
  60 -18   -0.51469D-09   -0.26543D-08    0.21396D- 08
  60 -17    0.10861D-08    0.16382D-08   -0.55213D- 09
  60 -16   -0.17949D-09   -0.89059D-09    0.71110D- 09
  60 -15   -0.15896D-08    0.13127D-09   -0.17209D- 08
  60 -14    0.88393D-09   -0.13718D-08    0.22557D- 08
  60 -13    0.11455D-08   -0.74640D-09    0.18919D- 08
  60 -12   -0.60802D-09   -0.31579D-08    0.25499D- 08
  60 -11    0.21756D-08    0.42679D-08   -0.20923D- 08
  60 -10   -0.26677D-09   -0.26364D-08    0.23696D- 08
  60  -9    0.61296D-09    0.21530D-08   -0.15400D- 08
  60  -8   -0.42761D-09   -0.11297D-08    0.70208D- 09
  60  -7   -0.20593D-08   -0.25316D-08    0.47225D- 09
  60  -6   -0.90436D-10   -0.29507D-08    0.28603D- 08
  60  -5    0.29316D-08   -0.50840D-09    0.34400D- 08
  60  -4    0.29509D-08    0.54279D-11    0.29455D- 08
  60  -3   -0.23483D-09    0.28230D-10   -0.26306D- 09
  60  -2    0.44988D-08   -0.20962D-08    0.65949D- 08
  60  -1    0.30339D-08    0.22733D-09    0.28066D- 08
  60   0    0.55763D-09   -0.43711D-09    0.99474D- 09
  60   1   -0.21584D-08    0.13504D-08   -0.35087D- 08
  60   2   -0.25921D-08    0.35415D-08   -0.61336D- 08
  60   3    0.28527D-08    0.29425D-08   -0.89796D- 10
  60   4    0.25132D-08    0.71391D-08   -0.46259D- 08
  60   5    0.19224D-08   -0.21465D-08    0.40689D- 08
  60   6    0.37624D-08   -0.43110D-08    0.80735D- 08
  60   7   -0.33096D-09   -0.18526D-08    0.15216D- 08
  60   8    0.13209D-08    0.25776D-08   -0.12567D- 08
  60   9   -0.14444D-08    0.62251D-09   -0.20669D- 08
  60  10   -0.21790D-09    0.43547D-09   -0.65337D- 09
  60  11   -0.11928D-09    0.26528D-08   -0.27721D- 08
  60  12    0.19093D-08    0.91953D-09    0.98973D- 09
  60  13    0.23151D-09   -0.51419D-09    0.74570D- 09
  60  14    0.61202D-09   -0.24719D-08    0.30839D- 08
  60  15    0.16145D-08    0.10960D-08    0.51843D- 09
  60  16   -0.15319D-08   -0.33491D-08    0.18172D- 08
  60  17   -0.33473D-09   -0.49659D-08    0.46312D- 08
  60  18    0.22665D-09   -0.23156D-08    0.25423D- 08
  60  19    0.17648D-08    0.35848D-08   -0.18200D- 08
  60  20   -0.32402D-09   -0.96528D-09    0.64126D- 09
  60  21   -0.22330D-09    0.11374D-08   -0.13607D- 08
  60  22    0.15517D-08    0.31923D-08   -0.16406D- 08
  60  23    0.12287D-08    0.64705D-08   -0.52417D- 08
  60  24    0.26963D-09   -0.19127D-08    0.21823D- 08
  60  25    0.11062D-08    0.14109D-08   -0.30473D- 09
  60  26    0.23474D-08    0.36992D-08   -0.13519D- 08
  60  27   -0.37904D-08   -0.43367D-08    0.54625D- 09
  60  28   -0.60458D-09    0.14033D-08   -0.20079D- 08
  60  29    0.13661D-08    0.20521D-08   -0.68596D- 09



  60  30   -0.43386D-08   -0.44107D-08    0.72156D- 10
  60  31    0.53863D-10    0.39545D-08   -0.39007D- 08
  60  32    0.18099D-08   -0.65322D-09    0.24631D- 08
  60  33   -0.23961D-08   -0.47283D-08    0.23322D- 08
  60  34    0.24070D-08    0.45903D-08   -0.21832D- 08
  60  35   -0.48628D-09    0.14297D-08   -0.19160D- 08
  60  36   -0.42360D-10    0.87163D-09   -0.91399D- 09
  60  37   -0.92577D-09   -0.29002D-08    0.19744D- 08
  60  38    0.55293D-09    0.13159D-08   -0.76301D- 09
  60  39    0.51645D-09   -0.22431D-08    0.27595D- 08
  60  40    0.21455D-09   -0.60066D-09    0.81521D- 09
  60  41    0.50222D-09   -0.78934D-09    0.12916D- 08
  60  42    0.12289D-08    0.17109D-08   -0.48198D- 09
  60  43    0.13255D-08    0.44354D-08   -0.31100D- 08
  60  44    0.19997D-08    0.14306D-08    0.56908D- 09
  60  45    0.32494D-08    0.41394D-08   -0.89000D- 09
  60  46    0.14490D-08    0.11871D-08    0.26189D- 09
  60  47    0.10233D-08    0.77945D-09    0.24382D- 09
  60  48   -0.25406D-08   -0.44791D-08    0.19385D- 08
  60  49    0.28313D-08    0.59407D-08   -0.31094D- 08
  60  50    0.16628D-08    0.35671D-08   -0.19043D- 08
  60  51   -0.17462D-08   -0.29579D-08    0.12117D- 08
  60  52    0.23659D-08    0.33330D-08   -0.96712D- 09
  60  53   -0.91780D-09   -0.89012D-09   -0.27683D- 10
  60  54    0.27149D-08    0.47513D-08   -0.20365D- 08
  60  55    0.18673D-08    0.23881D-08   -0.52080D- 09
  60  56   -0.78634D-09   -0.14553D-08    0.66891D- 09
  60  57   -0.12148D-08   -0.17442D-08    0.52939D- 09
  60  58   -0.10528D-08   -0.14409D-08    0.38809D- 09
  60  59   -0.20947D-08   -0.23204D-08    0.22576D- 09
  60  60    0.19504D-08    0.42307D-08   -0.22803D- 08
 MEAN, STDV, VARI=      0.91208D-10     0.22501D-08      0.22426D-08
 MEAN COLL ERR=      0.00000D+00 COEFF. STDV.      0.28349D-08

  61 -61   -0.33387D-09    0.00000D+00   -0.33387D- 09
  61 -60   -0.22644D-08    0.00000D+00   -0.22644D- 08
  61 -59   -0.74328D-09    0.00000D+00   -0.74328D- 09
 MEAN, STDV, VARI=     -0.27167D-10     0.21617D-09      0.21699D-09
 MEAN COLL ERR=      0.00000D+00 COEFF. STDV.      0.00000D+00

  DEG,     STDV OBS-PRED    STDV-COEFFICIENTS  
    3   0.1669169D-10   0.0000000D+00
    4   0.5714272D-10   0.0000000D+00
    5   0.4633225D-10   0.0000000D+00
    6   0.1150253D-09   0.0000000D+00
    7   0.1034789D-09   0.0000000D+00
    8   0.1676590D-09   0.0000000D+00
    9   0.1925885D-09   0.0000000D+00
   10   0.2073778D-09   0.0000000D+00
   11   0.2678199D-09   0.0000000D+00
   12   0.2054967D-09   0.0000000D+00
   13   0.2872450D-09   0.0000000D+00
   14   0.2733462D-09   0.0000000D+00
   15   0.3240719D-09   0.0000000D+00
   16   0.2604716D-09   0.0000000D+00
   17   0.3762456D-09   0.0000000D+00
   18   0.2637849D-09   0.0000000D+00
   19   0.3481893D-09   0.0000000D+00
   20   0.3532846D-09   0.0000000D+00
   21   0.3138026D-09   0.0000000D+00
   22   0.3007600D-09   0.0000000D+00
   23   0.2992825D-09   0.0000000D+00



   24   0.3398748D-09   0.0000000D+00
   25   0.1061678D-08   0.1077005D-07
   26   0.8871900D-09   0.8917749D-08
   27   0.1212142D-08   0.7126836D-08
   28   0.1141220D-08   0.8888525D-08
   29   0.1210495D-08   0.7753920D-08
   30   0.1199174D-08   0.7782810D-08
   31   0.1375060D-08   0.7128380D-08
   32   0.1350909D-08   0.6770942D-08
   33   0.1332935D-08   0.6876457D-08
   34   0.1323530D-08   0.7557858D-08
   35   0.1049923D-08   0.7171514D-08
   36   0.1167867D-08   0.6257407D-08
   37   0.1149589D-08   0.6222925D-08
   38   0.1177703D-08   0.5477743D-08
   39   0.1132304D-08   0.5554505D-08
   40   0.1321917D-08   0.4920234D-08
   41   0.1308930D-08   0.5008565D-08
   42   0.1368833D-08   0.5033405D-08
   43   0.1213304D-08   0.4547051D-08
   44   0.1159546D-08   0.4376185D-08
   45   0.1354511D-08   0.4526116D-08
   46   0.1386464D-08   0.4634816D-08
   47   0.1504823D-08   0.4412879D-08
   48   0.1571695D-08   0.3971595D-08
   49   0.1296415D-08   0.3541803D-08
   50   0.1644465D-08   0.3971641D-08
   51   0.1913897D-08   0.3534316D-08
   52   0.1748287D-08   0.3499428D-08
   53   0.1774672D-08   0.3818174D-08
   54   0.1863751D-08   0.3539692D-08
   55   0.1860052D-08   0.3222357D-08
   56   0.2114715D-08   0.3439972D-08
   57   0.2212071D-08   0.3328182D-08
   58   0.2096276D-08   0.2899005D-08
   59   0.2391840D-08   0.3090424D-08
   60   0.2242639D-08   0.2834854D-08
   61   0.2169945D-09   0.0000000D+00
  END OF COMPUTATIONS (T/F) 

 TIME USED=23361.219 SEC, ELAPSED TIME = 23407.499 SEC
 TOTAL CPU TIME USED=    49600.139 SEC 
  GEOCOL TERMINATED AT:
 Fri Dec  3 05:10:54 2004                                                




