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Zusammenfassung

Die vorliegende Arbeit befaßt sich mit der Formulierung und den numerischen Meth-

oden für das robuste Design von Strukturen mit stochastischen Parametern. Die

Theorie und die numerischen Methoden der Strukturoptimierung haben sich in den

letzten zwei Jahrzehnten stark entwickelt. Ausserdem ermöglichen die schnell wach-

senden Berechnungsmöglichkeiten die Berücksichtigung der Ungewissheiten im opti-

malen Strukturdesign. Die vorliegende Arbeit soll zu einem besseren Verständnis der

Strukturoptimierung beitragen, indem man den Einfluß der stochastischen Streuung

auf die Designrobustheit unter realistischen Bedingungen betrachted.

Robustes Strukturdesign bietet zuverlässige, quantitativ bestimmbare und leistungs-

fähige Methoden an, Produkte und Prozesse zu entwerfen, die gegenüber System-

schwankungen unempfindlich sind. Robustes Design kann in verschiedenen Phasen

des Strukturdesigns, wie im Konzeptdesign, Parameterdesign und Toleranzdesign,

erreicht werden. In dieser Arbeit wird das robuste Parameterdesign mit der Technik

der Strukturoptimierung durchgeführt.

In der vorliegenden Arbeit wird das robuste Design der Struktur als ein multi-

objektives Optimierungsproblem formuliert, in dem nicht nur der Mittelwert, son-

der auch die Standardabweichung des strukturellen Verhaltens zu minimieren sind.

Die Robustheit der Nebenbedingungen wird behandet, indem man die Standard-

abweichung der ursprünglichen Beschränkungsfunktionen miteinbezieht. Das Prob-

lem der Multikriterienoptimierung wird dann in ein skalares Optimierungsproblem

durch eine gewichtete Summe der beiden Designkriterien umgewandelt. Das Op-

timierungsproblem des robusten Designs lässt sich mit den Algorithmen für das

mathematische Programmieren lösen.

Die auf Perturbation zweiterordnung basierende stochastische Finite-Elemente-

Analyse wird für das Auswerten des Mittelwertes und der standardabweichung der

Strukturantwort im Problem des robusten Designs verwendet. Die auf Perturbation

basierte Methode wird auch auf die stochastische Analyse der wegabhängigen Struk-

turen erweitert. Dabei wird eine entsprechende inkrementalle Lösung verwendet.

Ausserdem werden die Sensitivitäten der statistischen Momente bezüglich der En-
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twurfsvariablen im Rahmen der auf Perturbation basierten stochastischen Analyse

bestimmt. Diese Sensitivitäten werden in den gradientenbasierten Optimierungsal-

gorithmen zur Lösung des Optimierungsproblems des robuste Designs eingesetzt.

Die Anwendbarkeit der vorgestellten Methode wird durch numerische Beispiele

bestätigt. Die Ergebnisse zeigen, daß die Methode auf Pareto Optima des robusten

Designproblems führen. Die numerischen Unterzuchungen zeigen auch, dass das

Vermindern der Güteschwankungen des Strukturverhaltens häufig durch eine Ver-

schlechterung entsprechender Mittelwerte erreicht wird.

Im letzten Teil dieser Abhandlung, wird das Problem des robusten Designs für in-

elastische Prozesse behandelt. Die auf Perturbation basierte stochastische Finite-

Elemente Methode wird für die Analyse der inelastischen Prozesse erweitert, indem

ein iterativer Algorithmus für das Lösen der Perturbationsgleichungen eingesetzt

wird. Die numerischen Beispiele, einschliesslich der Auslegung des Werkzeugs für

einen Extrusionsprozess und eines Metallvorformprozesses, zeigen die Eigung der

vorgeschlagenen Methode für das robuste Design industrieller Umformungsprozesse.



Abstract

In this thesis, the formulation and the numerical method for the structural robust

design are addressed. The theory and numerical techniques of structural optimiza-

tion have seen a significant progress in the last two decades. Moreover, the rapidly

increasing computational capabilities allows the structural optimal design to incor-

porate system uncertainty. The present study is intended to contribute to a better

understanding of the structural optimization by putting emphasis on the design

robustness in the presence of random noise under realistic conditions.

Robust structural design offers reliable, quantifiable and efficient means to make

products and processes insensitive to sources of variability. Robust design may be

attained in various stages of structural design, such as concept design, parameter de-

sign and tolerance design. In this study, the robust parameter design is accomplished

using structural optimization techniques.

In the present study, the structural robust design problem is formulated as a multi-

criteria optimization problem, in which not only the mean structural performance

function but also its standard deviation is to be minimized. The robustness of the

constraints are accounted for by involving the standard deviation of the original

constraint function. The multi-criteria optimization problem is then converted into

a scalar optimization problem by a performance function containing the weighted

sum of the two design criteria. The robust design optimization problem can be then

solved with mathematical programming algorithms.

The second-order perturbation based stochastic finite element analysis is used for

evaluating the mean value and the variance of the structural response in the robust

design problem. The perturbation based approach is also extended to the stochastic

analysis of path-dependent structures, in accordance with the incremental integra-

tion scheme employed for the corresponding deterministic analysis. Furthermore,

the moments sensitivity analysis for structural performance functions are developed

based on the perturbation based stochastic finite element analysis. This sensitivity

information is used in the gradient based optimization algorithms for solving the

robust design optimization problem.
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The feasibility of the presented method is demonstrated by truss benchmarks. As

shown by the obtained results, the Pareto optima of the robust design problem can

be obtained using the this method. The results also reveal that the diminishing of

the structural performance variability is often attained at the penalty of worsening

its expected mean value.

In the last part of the thesis, the robust design problems of inelastic deformation

processes are addressed, with applications to the design of an extrusion die and of

a metal preform. The perturbation technique is used for the stochastic analysis

of the inelastic process, where an iterative algorithm is employed for solving the

perturbation equations. The numerical examples show the potential applicability of

the proposed method for the robust design of industrial forming process, too.



Nomenclature

a - Vector of acceleration

b - Vector of random variables

c - Vector of transformed random variables

C - Coefficient of Coulomb friction

Cov(x, y) - Covariance

C - Damping matrix

d - Vector of design variables

dL - Lower bound of the design variables

dU - Upper bound of the design variables

D - Viscosity matrix

DT - Tangential viscosity matrix

eij - Strain rate

ē - Effective strain rate

E - Young’s modulus

E( ) - Mean (expected) value

f - Objective function

f̃ - Desirability function

g - Constraint function

K - Stiffness matrix

KT - Tangential stiffness matrix

KG - Geometrical stiffness matrix

M - Mass matrix

n - Number of degrees of freedom

p - Hydrostatic pressure

p - Vector of external force

q - Number of random variables

q̂ - Number of reduced random variables
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r - Vector of residual force

s( ) - Standard deviation of the samples

s - Vector of internal force

T - Temperature

u - Vector of displacement

v - Vector of velocity

Var( ) - Variance

x - Geometry

α - Weighting factor

β - Feasibility index

λV - Penalty factor for incompressibility

µ - Coefficient of viscosity

ν - Coefficient of Coulomb friction

σ - Stress

σ′ - Deviatoric stress

σf - Flow stress

σH - Hydrostatic stress

σ( ) - Standard deviation

Σ - Covariance matrix

τ - Time increment

τc - Friction shear stress

ζ - Time integration parameter

[̄ ] - Mean value of the samples
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Chapter 1

Introduction

1.1 Motivation and background

Structural optimization is seeking the best set of design parameters defining a struc-

tural system. This technique provides a powerful tool to improve the engineering

structural design in a rational manner and has been proved to be much more effi-

cient than the conventional trial-and-error design process. Due to the developments

of faster digital computers, more sophisticated computing techniques and more fre-

quent use of finite element methods, structural optimization techniques have found

their way into many facets of engineering practice for the sake of design improve-

ment during the past decades. To some extent, design optimization has become a

standard tool in many industrial fields and covers applications in civil engineering,

mechanical engineering, vehicle engineering and more.

Particularly, structural optimization techniques have been intensively employed in

the design practice of aerospace and aeronautical engineering. Typical space struc-

tures are often characterized by large structural scales, light weight designs, high

flexibility and extreme environment conditions. Consequently, the structural be-

haviour under static and transient loads are usually important concerns in the design

process. Numerical optimization methods have been applied to the optimal struc-

tural design of satellites, spacecrafts, aircraft fuselages and similar for the purpose

of reducing the structural weight and satisfying the design requirements on struc-

tural properties such as improving the structural stiffness and strength, reducing

the vibration levels, adjusting the natural frequencies and increasing the buckling

loads[1][2][3][4].



2 1 Introduction

In real engineering, the structural design problem may be subject to uncertainties.

As an inherent characteristic of the nature, uncertainties appear everywhere and

can not be avoided. Uncertainties may enter every aspects of engineering problems,

such as model validation, model verification, design improvement, and so on. Par-

ticularly, in the problems of engineering structural design, uncertainties may arise

from fluctuation and scatter of external loads, environmental conditions, boundary

conditions, geometrical parameters and material properties. Some of these uncer-

tainties are rather uncontrollable in practice. Nevertheless, incomplete knowledge

about the parameters that enters the design process as well as the model errors are

usually also considered as uncertainties.

For a structural system, uncertainties may be involved in four stages of its life-

cycle, namely in system design, in manufacturing process, in service time and in

the aging process (Fig. 1.1). In the stage of structural design, uncertainties may

be introduced due to model errors as well as vague or incomplete knowledge about

the system. In the manufacturing process, process non-uniformity, manufacturing

tolerance and material scatter usually result in unit-to-unit variations. The external

load fluctuation, temperature changes, boundary condition changes and the human

error factor are major sources of variability in the service time of a structural system.

As a structural system ages, the deterioration of material properties may become

crucial to performance variability. These uncertainties will give rise to structural

performance variations during its whole life-cycle.

So
ur
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rt
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nt
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Model error

Computational

Incomplete
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Loading fluctuation

Operation error

Boundary condition variation

Material
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Material
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error

Manufacturing Life cycleAging
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Figure 1.1: Sources of uncertainty

In conventional design procedures, it is a common practice to neglect the uncertainty

when setting up the analysis model of a structural system. Then a deterministic
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model of the structural system is established, where only ideal / nominal values of

parameter are considered. The structural performance is calculated based on de-

terministic structural analysis. To compensate for performance variability caused

by system variations, a so-called safety factor defined as the ratio of capacity to

demand is introduced. Larger safety factors are correlated with higher levels of

uncertainty. Typical safety factors can range between two to five, or even exceed

ten for some important structural components. In practical engineering designs, the

value of the safety factor is mainly determined by corresponding design codes or

by relative importance of the structural components of structural systems, rather

than by a scientific consideration of the nature behind the design problem. It is

well recognized that the safety factors specified in current design practice may be

either too conservative or too dangerous due to lack of knowledge about the scatter

of structural performance. Under an ever increasing demand on efficiency and re-

liability of the design process, the shortcomings of conventional design procedures

need to be overcome by the computer aided structural optimization techniques.

Conventional structural optimization problems are formulated under deterministic

assumptions and the uncertainties involved in the problem are not addressed in a

rational way. In such a formulation, the objective function and the constraints are

calculated with nominal values of the parameters. Based on results of the deter-

ministic analysis of the idealised numerical model, the so-called optimal design can

be attained with optimization tools. Although the deterministic optimum signifies

the best performance in theory, practical implementation exactly in accordance with

such a design is not feasible, due to manufacturing tolerances, for example. More-

over, the parameters of the structural system might be subject to changes during the

service stage, due to, for instance, thermal action or material deterioration. Such

variations about the nominal value of the parameters will result in the scatter of the

actual system performance, so that the real system may behaviour far worse than

predicted by the ideal mathematical model. Therefore, a design candidate having

the best performance under nominal conditions may yield less than optimum per-

formance in the presence of system uncertainties, whereas another design candidate

with less optimal performance under nominal conditions may be less sensitive (more

robust) to parameter variations and thus would be a more rational choice in the

decision making process of structural design. For this reason, one is not sure to

arrive at the most cost effective solutions by using the deterministic optimization

techniques.

On the other hand, it is also meaningful to reduce the variations of structural per-

formance in many engineering applications. From an engineering perspective, a



4 1 Introduction

higher performance variation not only increases the probability of failure, but also

increases significantly the structural life-cycle costs, including inspection costs, re-

pair costs and other maintenance costs. Well-designed structures minimize these

costs by performing consistently.

With an increasing demand for more rational designs which are optimized under the

aspect of costs and performance, there arises the need to account for design robust-

ness in the optimal design problems. Compared with conventional design methods

which completely neglect uncertainties, design methods based on the knowledge of

the system behaviour under uncertainties are more advantageous in reducing main-

tenance costs, extending component life and improving the system performance.

Therefore, it becomes highly important to acquire an understanding of the system

performance under uncertain conditions in the structural optimization problems.

Design improvements for performance robustness by conventional trial-and-error

approaches are rather difficult if the system has multiple design parameters and re-

strictions. Therefore, various systematic methods of robust structural design have

been developed for the past decade. Engineering robust design has traditionally

been implemented experimentally following Taguchi’s methodology of using orthog-

onal experimental arrays [5]. Such techniques have found a wide range of applica-

tions especially where laboratory experiments are used for evaluation of a product/

process design. However, a combination of the finite element analysis techniques

and the structural optimization techniques, which have been widely adopted in the

structural design disciplines, makes it possible to accomplish robust design on the

basis of numerical simulations. We call such an approach analytical robust design

optimization. Compared with traditional robust design methods, analytical robust

design optimization is much faster, more cost effective, more accurate and more in-

sightful. However, this subject is still less frequently considered in structural design

optimization studies.

This study attempts to consider the structural optimization under uncertainty from

a broader perspective and to develop mathematical formulations as well as compu-

tational algorithms for robust design optimization of products and process. Unlike

some other formulations usually considered in non-deterministic structural design

problems such as Reliability Based Design Optimization, the robust structural design

aims to reduce the variability of structural performance caused by regular fluctua-

tions rather than to avoid occurrence of catastrophe in extreme events. Mathemat-

ically formulated, the structural robust design optimization proposed in the present

study is to find a set of design variable values which fulfill the requirement of both
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improving structural performance and minimizing its variability under observance

of constraint conditions. In the framework of the perturbation based stochastic

finite element method, numerical algorithms for sensitivity analysis are developed

and then the structural robust design problems are solved by optimization tech-

niques. The perturbation based finite element analysis is also extended to problems

with path-dependent nonlinearities for applications of robust design of materially

nonlinear structures. Finally, the proposed methods are further extended to the

robust design optimization of industrial forming process characterized by inelastic

deformation.

It should be noted here, that although the robust design of deformation processes

is also a subject of this study, its focus is confined to the size and shape design,

similarly as in the structural optimal design problems. Therefore, the term structural

optimization is used throughout the thesis.

1.2 Outline of the thesis

This thesis is divided into nine chapters and structured as follows:

– In chapter 2, an overview of the foundations of structural optimization is pro-

vided, with the focus on the conventional deterministic optimization problems.

Particularly, the issues closely related to this study are addressed, including

the multi-criteria optimization and the sensitivity analysis

– Chapter 3 deals with the review of structural optimization problems under

consideration of system uncertainty. Several relevant formulations are pre-

sented. The fundamental differences between the frequently used Reliability

Based Design Optimization (RBDO) and the robust design are discussed and

the practical advantages of structural robust design is underlined. The last

part of this chapter presents a review on the current state of the research on

structural robust design.

– Chapter 4 exposes the existing perturbation based stochastic finite element

methods (SFEM) for linear and path-independent nonlinear problems. A com-

parison between the perturbation based approaches and the Monte Carlo sim-

ulation is made.
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– In Chapter 5, the structural robust design is mathematically formulated as a

multi-criteria optimization problem. The proposed formulation is then com-

pared with those based on Taguchi’s orthogonal array concept.

– In Chapter 6, a response moment sensitivity analysis algorithm based on direct

differentiation is developed and the robust design problem of linear structures is

solved with a gradient-based optimization method. Several numerical examples

are presented.

– Chapter 7 extends the perturbation based stochastic finite element analysis to

the path-dependent nonlinear problems, where an incremental scheme consis-

tent with the primary (background) deterministic analysis is proposed. The

method has been applied to the robust design problems with material and

geometrical nonlinearities.

– In Chapter 8, the first-order perturbation based stochastic finite element anal-

ysis for inelastic deformation process is developed based on an iterative scheme.

The proposed method is applied to the robust design of an extrusion die and

to a metal preform design problem. Numerical results show the potentials of

the present method for applications regarding the robust design of industrial

forming process.

– Chapter 9 contains a summary of the performed research, and proposals for

future research work.



Chapter 2

Fundamentals of structural

optimization

In this chapter, the conventional structural optimization methods are reviewed. The

focus is put on the topics closely associated with the present study on structural

robust design, including the theoretical and computational aspects of multi-criteria

optimization and sensitivity analysis.

2.1 Conventional structural optimization

Methods of structural optimization are widely used in the design of engineering

structures for the purpose of improving the structural performance and reducing

their costs. The use of structural optimization has rapidly increased during the past

decades, mainly due to the developments of sophisticated computing techniques and

the extensive applications of the finite element method. Considerable progress has

been made in the field of structural optimization.

In a structural optimization problem, the free parameters that need to be determined

to obtain the desired structural performance are referred to as the design parameters.

The function for evaluating the merits of a design is called the objective function.

Generally, a number of restrictions must be satisfied in a structural design problem.

These restrictions define the feasible domain in the design variable space and are

referred to as the design constraints. Additionally, bound limits may be imposed to

the design variables and they are known as side constraints. In a design optimization
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problem, the objective function and the constraints are often expressed as implicit

functions of the design variables and the evaluation of these functions generally

involve numerical simulation such as by the finite element method.

The classical statement of structural optimization problem is mathematically ex-

pressed as

find d

minimizing f(d)

subject to gi(d) ≤ 0 (i = 1, 2, ..., k),

dL ≤ d ≤ dU (2.1)

where d ∈ Rn+1 is the vector of design variables, f the objective function,

gi (i = 1, 2, ..., k) the inequality constraint functions, dL and dU denote the lower

and upper bound limits of the design variables, respectively. The design variables

can be structural design parameters such as the parameters defining the geometrical

dimensions, the shape or the topology of the structure. In practical applications, it

is usual to make use of the design variable linking technique to reduce the number of

the independent design variables by imposing a relationship between coupled design

parameters. The objective function and the constraint functions can be the struc-

tural cost, the material volume/structural weight, structural performances such as

structural compliance, nodal displacements, stresses, natural frequencies, buckling

loads and similar. Since they are typically implicit functions of the design variables,

we need to perform structural analysis (e.g. finite element analysis ) whenever their

values are required.

In the deterministic formulation of the structural optimization problems, the de-

sign variables and other structural parameters are assumed deterministic and the

objective function as well as the constraints are referred to their nominal values.

According to the types of design parameters to be considered, the structural opti-

mization problems can be broadly classified into three categories:

– Sizing optimization: design variables are geometrical dimensions such as

cross sectional areas of truss members, beam section parameters and plate

thickness.

– Shape optimization: design variables are the geometry parameters describ-
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ing the shape of the designed parts [6].

– Topology and layout optimization: the number and locations of voids in a

continuous structure or the number and connectivity of members in a discrete

structure (e.g. truss and frame structure) are to be determined [7].

The research on the methods and applications of structural optimization has in-

creased rapidly during the past decades. A variety of numerical techniques have

also been developed and applied to both linear and nonlinear problems ( e.g. [8][9]).

Basically, the solution methods for structural optimization problems can be classified

into Optimality Criteria (OC) methods and mathematical programming methods.

In the Optimality Criteria methods [10][11], the optimality conditions for a given

type of problems are derived based on Karush-Kuhn-Tucker condition or by heuris-

tic assumptions and then the optimal design satisfying these conditions are to be

sought using different forms of resizing rules. Such methods are recognized to be

especially efficient for problems involving a large number of design variables. The

most frequently used traditional OC approach is the Stressed Ratio (SR) method

for the fully stressed design. It uses the intuitive optimality condition that all the

member in the optimal design should reach the permissible stress. Examples of

more recently developed OC methods are the Continuum-based Optimality Criteria

method (COC) and the Discretized Optimality Criteria methods (DOC). Since some

intuitive optimality conditions turn out to be misleading and closed-form expressions

of optimality conditions are not always available, the applications of this approach

are restricted to only a small number of specialized problems.

The dominating methods for the optimal design of structures are the mathematical

programming methods, where the problem is treated as linear or nonlinear Math-

ematical Programming (MP). Different standard optimization algorithms can be

used to seek the optimum, often in a iterative manner. Examples of such meth-

ods include the steepest descend method, conjugate gradient, trust domain method,

SLP (Sequential Linear Programming) method and SQP (Sequential Quadratic Pro-

gramming) method. In the context of structural optimization problems, a variety

of programming methods can be employed, including gradient based algorithms and

some direct search methods based on functional evaluations. Particularly, the SLP

and SQP are two of the most frequently used methods.

SLP and SQP methods are both standard general purpose mathematical program-

ming algorithms for solving Non-Linear Programming (NLP) optimization problems.
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They are also considered to be the most suitable optimization algorithms in the

structural optimization discipline. These approaches make use of derivatives of the

function with respect to the design variables to construct an approximate program-

ming model of the initial problem. A searching direction is then determined based

on this model. By performing a line search along this direction, a new design point

which produces a decrease of the merit function can be found. The procedures are

repeated, until a local optimum is obtained. These methods present a satisfactory

local convergence rate, but can not assure that the global optimum can be found.

However, this shortcoming can be to some extend remedied by starting from multiple

initial designs.

Some special techniques are needed for the discrete structural optimization problem

when the mathematical programming optimization methods are employed. Such

algorithms rely on the sensitivity calculation of the objective function and the con-

straints with respect to the design variables. Therefore, continuous functions repre-

senting the objective and constraints defining the optimization problem are required.

For some engineering design problems, the design parameters are discrete variables

by nature, if their values can only be chosen from a limited set. In these circum-

stances, an approximate continuous representation of the relationships between the

discrete allowable values of design parameter and the desired structural properties

must be set up and a round-off procedure is usually needed to present a allowable

design using the optima obtained with gradient based methods.

Apart from the aforementioned methods, experimental designs are also used to set

up approximate design performance models, for instance by the Response Surface

methodology. Therein, the optimization problem is formulated based on these ap-

proximate performance models instead of the computationally expensive finite ele-

ment model of the real structure. As results, the original structural optimization

problems are transformed into more manageable problems.

In addition to these conventional methods, some innovative approaches using analo-

gies of physics and biology, such as simulated annealing, genetic algorithms and

evolutionary algorithms (Papadrakakis et al. [12], Deb [13]), are also employed for

the solution of global optimization problems. These approaches are characterized

by gradient-free methods and utilize only function values. Generally, they require a

large number of function evaluations to achieve convergence and thus have limited

use in applications involving complicated structures.
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2.2 Multi-criteria optimization and Pareto opti-

mum

The principles of multi-criteria optimization (also known as multi-objective opti-

mization or vector optimization) are different from that of a single-objective one.

The main goal in a single-objective optimization is to find a solution that minimizes

the objective function. However, a multi-criteria optimization problem has more

than one objectives and it is often characterized by conflicting objectives. There-

fore, a multi-criteria optimization gives rise to a set of optimal solutions, instead

of one optimal solution. In this solution set, no one solution can be considered

to be better than any other with respect to all objective functions. These opti-

mal solutions are known as Pareto Optima (also known as non-inferior solutions or

non-dominated solutions) [14].

A common practice in solving multi-criteria optimization problems is to convert the

multiple objectives into one objective function and thus a substitute scalar opti-

mization problem is constructed, which can be handled using standard optimization

routines. There exist a number of methods [14] addressed in the literature for ac-

complishing this task: weighted sum approach, ε- perturbation method, min-max

method, goal programming method, and others. Multiple Pareto-optimal solutions

can be obtained by setting different parameters when using these optimization al-

gorithms.

The basic ideas for some multi-criteria optimization algorithms are given here:

– In the ε - perturbation (ε - constraints) method, one of the objectives is selected

at a time and that objective is minimized while the other objectives are treated

as constraints. By optimizing all the objectives one at a time, the Pareto set

can be generated.

– In the Min-max method, the Pareto optima are obtained by minimizing a

generalized distance between objective function values and their maximum

possible values or target values set by the designer.

– In the goal programming method, the goals for each objective are set by the

designer as constraints. The optimization is performed on the objective with

highest priority first with other objectives considered as constraints. Then the

procedure is applied to the objective with lower priority with an additional

requirement that the solution must meet the optimum value of the objective
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with higher priority. This procedure is repeated for all the objectives and thus

a Pareto optimum can be obtained.

– The weighted sum approach is a familiar method for solving multi-criteria

optimization problems. Thereby each objective is given a weighting factor and

a scalar merit function is formulated as a sum of all the weighted objectives.

The weights are normalized, so that the sum of all the weighting factors is equal

to 1.0. The values of the weighting factors for each objective are determined

based on the priorities of the designer. By changing the weighting factors in a

systematic manner, the Pareto optima can be generated.

– Besides the conventional approaches mentioned above, a relatively new method

known as Parameter Space Investigation (PSI) has been proposed by Statnikov

and Matusov [15]. In this method, a set of trial designs covering the entire

design space are generated. The objective function values for these designs

are analyzed and suitable constraints on the objective functions are then de-

termined. As a last step, a feasible region under these constraints is set up so

that a set of Pareto optima can be selected. Then the task of the structural

optimization becomes seeking the best design from a family of feasible designs.

2.3 Approximation concepts and sensitivity anal-

ysis

Typically, much computational effort is required for the prediction of the struc-

tural response for successive modifications in the design. In general, the computer

implementation effort involved in the structural optimization can be substantially

reduced when approximation techniques are used. Hence, researchers often use nu-

merical methods to develop approximate relationships between the functional value

of the objective/ constraints and the design variables. Subsequently, several most

common approximation methods are addressed, while special emphasis is put on the

sensitivity analysis.

Response surface model

Response Surface Methodology (RSM), introduced by Box and Wilson [16], is a

technique to construct a global or midrange approximate mathematical model (sur-
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rogate model) by systematically sampling in parameter space. Such a model is used

for the prediction of the performance function of an input-output system, where the

function values are determined either experimentally or by numerical analysis. In

structural optimization problems, the response surface model is specially useful in

applications where the direct analysis is computationally expensive, or the design

sensitivity information is difficult or impossible to compute.

The response surface method has been used in some studies to replace the origi-

nal finite element model and it works well when the number of input variables is

small. However, it has been criticised for its inaccuracy and inefficiency in real scale

applications with a large number of input variables.

Approximate structural re-analysis

Structural re-analysis is a frequent task in the optimal design. Approximate re-

analysis methods are intended to predict the response of a structure after modifica-

tion using the result of a single exact analysis. The computational effort involved in

a re-analysis is typically much less than a complete analysis [17]. Reviews of existing

structural reanalysis methods can be found in the literature [18].

Sensitivity analysis

Sensitivity analysis is employed to evaluate the gradient of the structural perfor-

mance with respect to the design variables. These derivatives are used to construct

approximate explicit expressions and to solve the optimization problems when gra-

dient based methods are employed. Therefore, cost efficient sensitivity analysis of

the structural response is always of concern.

We denote the vector of the structural displacements by u, the vector of the design

variables by d. Then, the design sensitivity of a structural performance functional

f(u(d),d) with respect to the ith design variable is defined as

df

ddi

=
df(u(d),d)

ddi

. (2.2)

There exist a variety of methods for structural sensitivity analysis in the litera-

tures. The simplest approach for response sensitivity analysis is the finite difference
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method, in which the derivative of the function with respect to the design variable

is approximated by a differential quotient obtained for a small perturbation to the

design variable. For instance, the sensitivity can be approximated with the forward

finite difference

df

ddi

≈ f(u(d + δdiei),d + δdiei)− f(u(d),d)

δdi

. (2.3)

where ei = {0...1...0} is an unit vector with the rth component being 1 and the

other components zero.

This method is actually applicable to both linear and nonlinear problems. How-

ever, the method suffers from the drawback of inefficiency due to lengthy structural

re-analysis for each design variable. Moreover, the results of the method depend

strongly on the perturbation values and the accuracy can not be ensured.

Recently, the techniques of automatic differentiation (AD) has also been used as a

tool for structural response sensitivity analysis [19]. In this approach, a new source

code for calculating the derivatives explicitly is produced by an AD package from the

function evaluation source code using the chain rule of differentiation. The imple-

mentation of this approach requires considerable memory usage and computational

effort.

A considerable amount of research work on more sophisticated design sensitivity

analysis methods has been done for the past decades. The existing numerical meth-

ods for sensitivity analysis fall into two categories: discrete sensitivity analysis and

variational sensitivity analysis. In the former methods, the sensitivity equations are

derived based on the discrete formulation (finite elements) of the primary problem,

whereas in the latter methods, the response gradient is set up from the variational

principle and then discretized with the finite element method. Theoretically, both

methods should yield the same numerical results. It is also pointed out that the

computational effort required for the implementation of both methods is compara-

ble [20].

From the computational point of view, numerical methods for linear structural prob-

lems have been successfully developed, cf. the review papers [21][22]. The prevailing

methods for linear structures are the aforementioned discrete sensitivity analysis

methods, among which semi-analytical methods [23][24] are most frequently used

and well known in the literature. In these methods, the sensitivity equation is de-

rived by the analytical differentiation of the discrete governing equation, and the
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derivatives of the coefficients are calculated on the basis of finite differences, often

at the element level. According to the type of the variables appearing in the sensi-

tivity equations, the semi-analytical methods can be further classified as the direct

method and the adjoint method.

– Direct method

The direct method is derived by differentiating the governing equations of the fi-

nite element analysis with respect to the design variables. Taking the linear static

structural problem

Ku = p (2.4)

as an example, the sensitivity equations are expressed as

K
du

ddi

=
dp

ddi

− dK

ddi

u, (2.5)

and

df

ddi

=
∂f

∂u

du

ddi

+
∂f

∂di

. (2.6)

where the differentiation of the stiffness matrix K and the external load p with

respect to the design variable are evaluated either analytically or by finite differences

(as in the semi-analytical method).

– Adjoint method

When the number of the design variables is much greater than the number of func-

tions to be differentiated, the adjoint method can lead to substantial reduction of

computational effort.

For a problem governed by Eq. (2.4), the procedures are described as follows:

Kλ =

(
∂f

∂u

)t

, (2.7)
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df

ddi

= λt

(
dp

ddi

− dK

ddi

u

)
, (2.8)

where λ is the vector of adjoint variables.

As can be seen from Eqs. (2.5) and (2.8), the sensitivity analysis does not require

re-factorization of the stiffness matrix, and this is beneficial for both the direct and

the adjoint methods.

In contrast to the sensitivity analysis of linear problems, the methods for structures

with material and/or geometrical nonlinearities become more complicated and are

much less well developed. The difficulties arise from the fact that the methods for

linear problems can not directly be applied to the nonlinear ones due to the essen-

tial difference of the problems [25]. Particularly, for problems involving elastoplastic

material, the sensitivity analysis must be formulated in consistency with the incre-

mental scheme used in the primary analysis so as to account for the path-dependent

nature of the problem. This issue has been addressed in a number of previous works,

some of which are listed below.

Lee and Arora [26] studied the design sensitivity analysis of structural systems

having elastoplastic material behavior using the continuum formulation. A com-

putational procedure based on the response obtained by the load incrementation

approach is developed by considering design variations in the equilibrium equation.

In this procedure, iterations are required at each load step to obtain the sensitiv-

ity results but the stiffness matrix is kept unchanged. Schwarz [27] presented a

variational and direct formulation for the analytical sensitivity analysis of struc-

tures involving elastoplastic material behavior as well as geometrical nonlinearities.

The study reported underlines the importance of the incremental formulation in

the problem of concern. Kim et al. [28] presented a continuum-based shape design

sensitivity formulation for elastoplasticity with a frictional contact condition. The

direct differentiation method (DDM) is used to compute the displacement sensitiv-

ity. The path-dependence of the sensitivity equations due to the constitutive relation

and friction is discussed. It should be noted that the sensitivity analysis for path-

dependent problems can be also performed using adjoint method. Nevertheless, it

is revealed that such a method appears less attractive due to its inefficiency [26].

Recently, the sensitivity analysis of inelastic deformation process has also gained

a considerable attention. The computations are usually performed by direct dif-

ferentiation techniques, where either the equations of the continuum problem are

design-differentiated and then discretized, or the discrete equations of the problem
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are design-differentiated. The first approach is termed as Continuum Sensitivity

Method (CSM) and has been used by Zabaras and colleagues [29] for the sensitivity

analysis of metal forming problems. Doltsinis and Rodic [30] addressed the discrete

method of sensitivity evaluation for isothermal and non-isothermal deformation with

respect to time-dependent parameters using. The numerical procedures of the direct

method and the adjoint method were described.
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Chapter 3

Structural optimization under

uncertainty

This chapter presents an overview of structural optimization considering uncertainty

and an insight into the structural robust design problem. First, several mathematical

models of uncertainty in engineering are introduced. Then, we present an overview

on existing formulations of non-deterministic structural optimization problems. In

section 3.3, we discuss in detail the concept of structural robust design, as well

as the fundamental differences between the structural robust design and another

commonly used non-deterministic formulation - the Reliability-based Design Opti-

mization (RBDO). In the last part of this chapter, we present a review on the current

research state of the structural robust design.

3.1 Mathematical models of uncertainty

The formulation of a structural optimization problem under uncertainty is closely re-

lated to the modeling of the uncertainty. There exist various mathematical models

of uncertainty when dealing with structural design problems. The existing mod-

els can be classified into probabilistic model e.g. stochastic randomness and non-

probabilistic models including interval set, convex modeling, fuzzy set and leveled

noise factors. A short introduction to these uncertainty models is given below.
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Randomness

The prevailing model for uncertainties in structural engineering is stochastic random-

ness [31][32]. The Probability Density Function (PDF) and Cumulative Distribution

Function (CDF) are used to define the occurrence properties of uncertain quantities

which are random in nature. Randomness accounts for most of the uncertainties in

engineering problems. In computational engineering problems, the model errors and

the uncertainties that arise from incomplete knowledge about the system are often

regarded as random uncertainties as well.

In the practical structural engineering problems, randomness of the uncertain pa-

rameters are often modeled as a set of discretized random variables. The statistical

description of a random variable X can be completely described by a cumulative

density function F (x) or probability density function (PDF) f(x) defined as

FX(x) = P (X ≤ x) ≡
∫ x

−∞
fX(x)dx, (3.1)

where P ( ) is the probability that an event will occur.

The probability distribution of the random variable X can be also be characterized

by its statistical moments. The most important statistical moments are the first

and second moment known as mean value µ(X), also referred to as expected value

and denoted by E(X), and variance denoted by Var(X) or σ2(X), respectively, as

given by

µ(X) = E(X) =

∫ ∞

−∞
xdFX(x) =

∫ ∞

−∞
xfX(x)dx, (3.2)

and

σ2(X) =

∫ ∞

−∞
(x− µ(X))2dFX(x) =

∫ ∞

−∞
(x− µ(X))2fX(x)dx. (3.3)

In structural engineering, distributions types such as lognormal, Weibull and uniform

are the most commonly used ones [33].

Nevertheless, precise information on the probabilistic distribution of the uncertain-

ties are sometimes scarce or even absent. Moreover, some uncertainties are not

random in nature and can not be defined in a probability framework. For these rea-
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sons, non-probabilistic methods for modeling of uncertainties have been developed

in recent years. These methods do not require apriori assumptions on PDFs for the

description of uncertain variables.

Interval set

Interval set is used to model uncertain but non-random parameters. These un-

certainties are assumed to be bounded within a specified interval and the small

variation of the interval parameter is treated as a perturbation around the midpoint

of this interval, allowing to use the interval perturbation method for the analysis

of the structural performance variation (e.g. [34][35]). Using the so-called anti-

optimization techniques, the least favourable response can be determined under

assumption of small variations. The term anti-optimization is referred to the task

of finding the worst-scenario of a given problem. The methods based on interval set

do not allow for distinction on more or less probable occurrence of the variables.

Moreover, it is difficult to consistently define bounded intervals for the uncertainties

without a confidence level.

Convex modeling

To overcome the difficulties when data are insufficient to permit a reliability analysis

using conventional probabilistic approaches, the worst-case scenario analysis based

on Convex Modeling can be formulated [36][37]. The Convex Modeling is connected

to uncertain-but-bounded quantities. In this method, the uncertainty which has

bounded values is assumed to fall into a multi-dimensional ellipsoid or hypercube. In

some sense, the convex model can be regarded as a natural extension of the interval

set model. In virtue of the Convex Model theory, the worst-case performance of

the structure is determined using the anti-optimization technique. This method has

been proved to be advantageous to the traditional worst-case approach, where all

the possible combinations of extreme values of the uncertain parameters need to be

examined so that the worst case scenario can be determined [38].

Fuzzy set

Fuzzy set theory has been developed as a mathematical tool for quantitative mod-

eling of uncertainty associated with vagueness in describing subjective judgements
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using linguistic information. In the fuzzy set method for engineering design prob-

lems, the uncertainty is modelled as fuzzy numbers rather than random values with

certain distribution [39]. In other words, the fuzzy set theory presents a possibility

rather than probability description of the uncertainty. The fuzzy analysis method

has been used to deal with certain problems such as structural analysis under un-

certain loading conditions [40].

Leveled noise factors

In Taguchi’s robust design methodology [41], the system uncertainties are modeled

as leveled noise factors. Here no a priori assumptions on the statistics of the un-

certainties are required. Following the method of experimental design, the system

outputs are examined at planed combinations of the discrete levels of these noise

factors. Thus the interactions between system performance and noise factors can be

explored.

3.2 Overview of problem formulations

Conventional structural design procedures accounting for system uncertainties are

based on safety factors. This method has been criticised as lacking systematical

background and often furnishing to too conservative designs. Moreover, in the design

of novel structures or products, little prior knowledge for determining an appropriate

safety factor is available.

In the past decades, more sophisticated formulations incorporating system uncer-

tainty into design optimization have been proposed on the basis of various mathe-

matical models of uncertainty [42], as given below.

3.2.1 Reliability based design optimization (RBDO)

In the present treatise, the term reliability-based design optimization (RBDO) is

referred, in a narrow sense, exclusively to the optimal design where the cost function

of the problem is to be minimized under observance of probabilistic constraints

instead of conventional deterministic constraints [43][44]. Until recently, the RBDO
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has been the only way of taking account of uncertainty in structural optimization

problems.

When the occurrence of catastrophic failure of the system or component is crucial

in a structural system, the design optimization problem is usually characterized as a

problem of reliability-based design optimization. In this framework, the probability

of structural failure is involved in the constraint conditions of the design optimization

problems. The failure of a structural system or a structural component is defined

with limit state functions.

From the theoretical point of view, reliability-based design optimization has been a

well-established concept. Mathematically, RBDO [45] can be stated as

find d

minimizing f(d)

subject to P (gi(d) ≤ 0)− Φ(−βi) ≤ 0 (i = 1, 2, ..., k).

dL ≤ d ≤ dU (3.4)

where P (gi(d) ≤ 0) is the failure probability, Φ is the integral of the (0,1) standard-

ized normal distribution and βi is the so-called safety-index.

The statistical description of the failure of the performance functions gi(d) (i =

1, 2, ..., k) requires a reliability analysis. Prior to the reliability analysis, the statisti-

cal characteristics of the random quantities are first defined by suitable probability

distributions. Then the probability of failure is evaluated by numerically stable and

affordable procedures.

For the purpose of the probability integration in the structural reliability analysis,

various methods have been developed [46]. In the direct Monte Carlo simulation or

Importance Sampling method, the probability of failure is derived from the test data

of a large amount of samples. In the First Order Reliability Method (FORM), the

Second Order Reliability Method (SORM) or the Advanced Mean Value method,

an additional nonlinear constrained optimization procedure is required for locating

the Design Point or Most Probable Point of failure (MPP) and thus the reliability-

based design optimization becomes a two-level optimization process with lengthy

calculations of sensitivity analysis in the inner loop for locating the MPP.

Generally, the reliability based design is computationally expensive, typically re-

quiring much more function evaluations than a corresponding deterministic design
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optimization problem. Therefore various numerical techniques have been proposed

for reducing the computational cost in the reliability design optimization [47]. For

example, Kaymaz et al. [48] used the response surface as a substitution of the

real finite element model and combined the response surface method with Monte

Carlo simulation to overcome the difficulty of the reliability calculation in terms

of computational cost for the optimization problems, especially when highly non-

linear performance functions are involved. Kleiber et al. [49] discussed problems of

the interactive reliability-based design optimization of geometrically nonlinear truss

structures, in order to overcome the convergence difficulties of the fully automated

approach for large nonlinear structures. The techniques used by the authors are

interactive control over the parameters of the finite element iterative algorithm and

the convergence parameters of the optimizer, post-buckling response approximation,

interactive adding/removing constraints, interactive modifying status of variables,

and so on.

It is worth remarking, besides the construction costs or the loss directly caused by

catastrophic failure, some metrics related to the overall costs of the structural system

have been taken into considerations in the reliability based design optimization. Wen

[50] has studied the design optimization of structures against multiple hazards based

on considerations of minimization of expected life-cycle cost, including those incurred

in construction, maintenance and operation, repair, damage and failure consequence,

etc.. A close form solution of the expected total life-cycle cost is obtained for use in

the optimization process.

Reliability-based design optimization exhibits severe limitations related mostly to

low computational efficiency or convergence problems. Moreover, only in a small

number of specialized cases, the complete statistical information about structural

parameters and loads is available. As pointed out in [37], inadequate assumptions on

the probabilistic distribution may lead to substantial errors in the reliability analysis.

In this sense, RBDO might be of less practical value if information about the random

uncertainty is not available or not sufficient to permit a reliability analysis.

3.2.2 Worst case scenario-based design optimization

In some non-deterministic structural optimization problems, the design against

structural failure is based on the worst case analysis. In practical applications of this

approach, the convex model or interval set can be used to model the system uncer-

tainties. In these approaches, the anti-optimization strategy is adopted to determine
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the least favourable combination of the parameter variations [51] and the problem

is then converted into a deterministic Min-max optimization. Here no probability

density function of the input variables are required. Elishakoff et al.[52] applied this

method to the structural optimal design problem considering bounded uncertainty.

Yoshikawa et al. [36] presented a formulation to evaluate the worst case scenario

for homology design caused by uncertain fluctuation of loading conditions using the

convex model of uncertainty. The validity of the proposed method is demonstrated

by applications to the design of simple truss structures. Lombardi and Haftka [53]

combined the worst case scenario technique of anti-optimization and the structural

optimization techniques to the structural design under uncertainty. The proposed

method is suitable in particular for uncertain loading conditions.

Since a complete optimization routine needs to be nested for the worst case analysis

at each structural optimization cycle, this approach may become prohibitively ex-

pensive when many uncertain parameters are present in the problem. Additionally,

this design technique often results in too conservative designs.

3.2.3 Fuzzy set based design optimization

In the fuzzy set based structural optimization [54], the vague quantities which can

not be clearly defined in a structural system are characterized by membership func-

tions. In this context the possibility of structural failure is restricted in the optimal

design. Since this method is featured as a non-probabilistic description of system

reliability, it can be regarded as a possibility based approach. In a similar way as in

RBDO, this approach focuses exclusively on the issue of the structural safety with

the purpose of avoiding system catastrophe in the presence of parameter uncertain-

ties.

Fuzzy set theory has been initially used by Rao [55][40] to handle structural opti-

mization under uncertainties. A random set approach has been proposed by Tonon

and Bernardini [42] as an extension of the fuzzy set method for structural optimiza-

tion problem which is characterized by imprecise or incomplete observations on the

uncertain design parameters. Gerhard and Haftka [56] used the fuzzy set theory

for modeling the uncertainty associated with the design with future materials in

the aircraft industry. The design problem involves maximizing the safety level of a

structure. Response surface methodology is also used throughout the design process

to reduce the computational effort.
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3.2.4 Robust design

Apart from the aforementioned formulations, robust design, in which the structural

performance is required to be less sensitive to the random variations induced in

different stages of the structural service life cycle, has gained an ever increasing

importance in recent years. In the next section, the structural robust design will be

further addressed.

3.3 Structural robust design

3.3.1 Concept of structural robust design

Robust design is an engineering methodology for optimal design of products and pro-

cess conditions that are less sensitive to system variations. It has been recognized

as an effective design method to improve the quality of the product/process. Three

stages of engineering design are identified in the literatures: conceptual design, pa-

rameter design and tolerance design. Robust design may be involved in the stages

of parameter design and tolerance design.

For design optimization problems, the structural performance defined by design

objectives or constraints may be subject to large scatter at different stages of the

service life-cycle. It can be expected that this might be more crucial for structures

with nonlinearities. Such scatters may not only significantly worsen the structural

quality and cause deviations from the desired performance, but may also add to

the structural life-cycle costs, including inspection, repair and other maintenance

costs. From an engineering perspective, well-designed structures minimize these

costs by performing consistently in presence of uncontrollable variations during the

whole life-cycle. In other words, excessive variations of the structural performance

indicate a poor quality of the product. This raises the need of structural robust

design. To decrease the scatter of the structural performance, one possible way is to

reduce or even to eliminate the scatter of the input parameters, which may either

be practically impossible or add much to the total costs of the structure; another

way is to find a design in which the structural performance is less sensitive to the

variation of parameters without eliminating the cause of parameter variations, as in

robust design.

The concept of robustness is schematically illustrated in Fig. 3.1. The horizontal axis
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represents the value of a structural performance function f , which is required to be

minimized. The two curves show the distributions of the occurrence frequency of the

value of f corresponding to two individual designs, when the system parameters are

randomly perturbed from the nominal values. In the figure, µ1 and µ2 represents

the mean values of the performance function f for the two designs, respectively.

Though the first design exhibits a smaller mean value of the performance function,

the second design is preferable from the robustness point of view, since it is much

less sensitive to variations in the uncertain system parameters.
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Figure 3.1: Concept of robust design

The principle behind the structural robust design is that, the merit or quality of

a design is justified not only by the mean value but also by the variability of the

structural performance. For the optimal design of structures with stochastic param-

eters, one straightforward way is to define the optimality conditions of the problems

on the basis of expected function values resp. mean performance. However, the

design which minimizes the expected value of the objective function as a measure

of structural performance may be still sensitive to the fluctuation of the stochastic

parameters and this raises the task of robustness of the design.

For illustration purposes, we study here the simple displacement minimization prob-

lem of a four-bar truss structure shown in Fig. 3.2. The fourth node of the truss is

subjected to a horizontal static load with value P = 1. The Young’s modulus for

the first and the third bar, E1 and for the second and the fourth bar, E2, are as-

sumed as uncorrelated random variables with mean or expected values E(E1) = 210,

E(E2) = 100, standard deviation σ(E1 ) = 21 and σ(E2) = 5. The cross sectional

areas of the first and the third bar A1 and of the second and the fourth bar A2

are considered as design variables. The mass density of the materials is ρ = 1.0.
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The nodal displacement u is to be minimized under constraint of structural weight

expectationE(w) ≤ 5.0.

(2) (3)

1.0

1.
0

(4)4

(1)

1 2 3

P u
5

1.0

Figure 3.2: The four-bar truss

In this problem, the structural weight constraint must be active in the optimal

design, which implies that A2 = 5/2 −
√

2A1 and therefore only one independent

design variable A1 needs to be determined. The variation of mean and the standard

deviation of the concerned displacement u versus the design variable A1 are presented

in Fig. 3.3. It is seen from the figure that the optimal design minimizing the

expected value of the objective u is A
′
1 = 1.7678, associated with A

′
2 = 0. To

examine the scatter of u at this design point, a Monte Carlo simulation with n = 106

realizations is performed, where the stochastic input parameters are assumed to be

normal distributed. The result is depicted in Fig. 3.4-a.

For comparison, the Monte Carlo result for an alternative design with A∗
1 =

0.3531, A∗
2 = 2.0006, which minimizes the standard deviation of u (cf. Fig.3.3),

is also shown. The mean values of u for the two designs are 3.848 × 10−3

and 3.969 × 10−3, respectively, whereas the standard deviations 3.97 × 10−4 and

1.78 × 10−4. As can be seen from the simulation results in Fig. 3.4-b, the latter

design leads to a higher expected value but a much smaller range of variation of the

concerned displacement. This implies that the latter design is superior in terms of

robustness, since the corresponding structural performance is less sensitive to the

parameter variation and has a smaller scatter.

In fact, as a robust optimum design as pursued in the following chapters, the latter

design aforementioned suggests a different topology than the familiar deterministic
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Figure 3.3: Mean value and standard deviation of u vs. A1
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Figure 3.4: Occurrence frequency distribution of u (by Monte Carlo simulation)

design (Fig. 3.5). With this illustrative example, we also show that the robustness

of a structural performance against random variations of the system can be substan-

tially improved both by adjusting the member sizes and by changing the structural

topology.
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(a) Deterministic optimal design (b) Robust optimal design

Figure 3.5: Robust optimum vs. deterministic optimum for the four-bar truss

3.3.2 Differences between structural robust design and

RBDO

Compared with RBDO, robust design is a relatively new issue in structural engi-

neering. As representative non-deterministic structural optimization formulations,

both of them aim at incorporating random performance variations into the optimal

design process, and therefore they are sometimes not clearly distinguished in the

literature. However, the two approaches differ in some fundamental aspects, despite

the fact that the optimal solution of the robust design often exhibits an increased

reliability.

First of all, the structural robustness is assessed by the measure of the performance

variability around the mean value, most often by its standard deviation, whereas

reliability is connected to the probability of failure occurrence (Fig.3.6). In general,

RBDO is concerned more with satisfying reliability requirements under known prob-

abilistic distributions of the input, and less concerned with minimizing the variation

of the performance function, while the robust design aims to reduce the system

variability to unexpected variations. In RBDO, the objective function is to be

minimized under observance of probabilistic constraints. However, in robust design

optimization, the objective function usually involves the performance variations, and

the design constraints may be simply defined by the variance. Actually, RBDO is

usually accomplished by moving the mean of the performance as depicted in Fig.

3.7, whereas the robust design is often implemented by diminishing the performance

variability, as shown in Fig. 3.8.
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Secondly, in RBDO particular care is paid on the issue of structural safety in the

extreme events, while in robust design more emphasis is put on the structural be-

havior under everyday fluctuations of the system during the whole service life. Zang

et al. [57] presented the different scenarios concerned in the two types of problems

as shown in Fig. 3.9.
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Figure 3.9: Different scenarios concerned in robust design and RBDO

For the same reason, the expected loss considered in RBDO problems is typically

associated with the damages directly or indirectly induced by the catastrophic failure

of the structural system, whereas the expected loss in robust design problems usually

consists of the expense caused by poor quality of the structural performance, such

as costs occurring in the maintenance and monitoring, or loss due to quality defects

of the product.

Moreover, the applicability of RBDO relies on the availability of the precise descrip-

tion on the distributions of the stochastic parameters, which makes RBDO strongly

depending upon the assumptions on the probabilistic distribution of the random

variables [37]. However, a precise description of the overall statistics of the struc-

tural performance is not of concern in the formulation of robust design problem,

as it is in the reliability based design problems. Additionally, the computer imple-

mentation of RBDO is known for the tedious reliability analysis, whereas robust

design usually involves only prediction of basic characteristics of the performance

variability, such as its standard deviation.

Finally, in the RBDO problems, a limit state function is required to define the failure

of the structural system. However, an adequate limit state function can not always



3.3 Structural robust design 33

be given explicitly in practical engineering problems. In such circumstances, it might

be more realistic to seek a design reducing the performance scatters, as by robust

design.

To summarize, we list the differences between typical formulations of the structural

robust design and RBDO in Table 3.1.

Table 3.1: A comparison between robust design and RBDO

Robust design RBDO

Description of input Mean and variability PDF / CDF

Design objective Variability reduction Minimization under Proba-
bilistic constraints

Analysis type Variation analysis Reliability analysis

Strategy Reducing variation (more often) Moving the mean

3.3.3 Current state of research on structural robust design

Before the review of the structural robust design, it is useful to present a short

introduction to the Taguchi’s methodology.

Taguchi’s robust design methodology

The conventional method of engineering robust design was proposed by Dr. Genichi

Taguchi with the motive of improving the quality of a product or process by not

only achieving performance target but also minimizing the performance variation

without eliminating the cause of variations [5]. In the last two decades, Taguchi’s

methods have been applied to a wide variety of engineering design problems and

have been proved effective in reducing the number of physical experiments for design

improvement. A review of Taguchi’s robust design methodology was given by Tsui

[41].

Taguchi’s methodology for robust design is based on orthogonal array experiments.

Therein, two types of input that may affect the system performance are defined:
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– Control factors: control factors are those parameters whose nominal settings

can be specified during the design process. Control factors can be adjusted to

meet the target performance and to diminish the performance variability. The

combination of different levels of the control factors forms an orthogonal array

termed as the Inner Array.

– Noise factors: noise factors represent the parameters that are impossible or

to expensive to control. Noise factors cause the performance to deviate from

the target and thus result in quality loss. The level combination of the noise

factors is represented by the orthogonal array called the Outer Array.

– Loss function: the loss induced by the performance deviation of a product

from its target performance. In Taguchi’s methodology, the loss is defined as

a quadratic function of the performance deviation.

Another essential concept in the Taguchi’s methodology is the Signal/Noise (S/N)

ratio. The S/N ratio, defined as a summary statistic calculated across the outer

array for each row of the inner array, is a metric of product/process robustness and

serves as an objective for optimization. Three types of S/N ratios can be defined:

Larger the Best (LTB), Smaller the Best (STB) and Nominal the Best (NTB). By

maximizing the S/N ratio, the loss function can be minimized.

In Taguchi’s robust design, the noise factors are varied in designed experiments along

with the control factors. The levels of the control factors are then chosen to attain a

mean response that is not only close to the desired target but also robust to changes

of the noise factors, thus reducing the variability of the response. Taguchi’s robust

design consists of the following procedures:

1. Stating the problem and the objective;

2. Identifying the control factors and the noise factors as well as their levels;

3. Planing the orthogonal array matrix experiment;

4. Conducting the planned experiment, predict the optimal levels and perfor-
mance;

5. Performing the verification of the obtained design;

6. If the design objective is not achieved, return to step 2; otherwise, the design
is accepted.
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Though Taguchi’s robust design methodology has been very popular in practical

engineering, there is still critique on it. For example, as pointed out by Schmidt and

Launsby [58], Taguchi’s robust design methodology has the drawback that it does not

provide any information on what direction to take for improving the design beyond

the range of the control factor levels considered. As a consequence, the results are

confined to the factor ranges tested in the experiments. Thus this approach relies

greatly on the selection of the factor levels. Moreover, it has been recognized that the

Taguchi’s method is weak in handling interactions between control factors (Lucas

[59]).

Structural robust design

In recent years, robust design has also attracted attention in structural design stud-

ies. However, a direct application of Taguchi’s method to the structural design

problem is rarely found in the literature. The reason may be due to the following

facts: (1) the Taguchi method is based on experimental design techniques and thus

not favorable for the structural design problem where usually a finite element model

is employed; (2) generally, the relations between the structural behaviour and the

design variable or the random variables are highly nonlinear. Thus more rational

methods other than the Taguchi’s orthogonal arrays are needed to explore the in-

teractions between the performance functions and these variables; (3) conventional

robust design treats design parameters with leveled control factors and therefore

does not offer adequate flexibility in the sense that design parameters in a structural

design problem can be usually selected from a continuous range.

In what follows, a brief review on the computational methods of the structural robust

design optimization is presented.

In general, the existing methods for structural robust design fall into two categories:

the methods using Taguchi’s concept based on Design of Experiments (DOE) and

the methods based on minimization of performance function variation measures such

as the sensitivity.

In the former approaches, the uncontrollabe uncertainties are considered as leveled

noise factors. Systematically selected numerical experiments are conducted with

reference to different levels of the noise factors and then the design variables are

adjusted with the purpose of maximizing the Signal/Noise ratio defined by Taguchi.

Some approximate models such as the neural network and the response surface
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have been adopted to replace the expensive computer analysis for improving the

computational efficiency.

Makkapati [60] has developed a technique based on the Artificial Neural Network

(ANN). The technique involves evaluation of the response at selected design points,

and then training a neural network using this data as examples. Once the network

is properly trained, it can be used as a replacement of the finite element model

for response prediction. An exhaustive research is then carried out for a global

optimum that maximizing the S/N ratio. In this study, only influence of variations

of the design parameters is accounted for. The sample size for training the neural

network is expected to increase dramatically as the number of the design variables

increases.

Chen et al. [61] have incorporated the concept of Taguchi’s robust design into a

multi-level optimization procedure for the robust design of thick laminated compos-

ite structures. The response surface model has been used for improving the efficiency.

The study shows that the computational time for optimization with approximations

is much smaller than the time required for the optimization using the original finite

element model.

In the work of Lautenschlager and Eschennauer [62], the randomness of the struc-

tural parameters is modeled as leveled noise factors. Using the experimental design

method, a response surface model is built for approximation of the structural perfor-

mance and its variance. Based on the response surface model, the robust structural

design is obtained with an optimization algorithm. The results obtained show the

necessity for considering robustness during structural optimization. In their work,

the shortcomings the Taguchi’s original crossed-array approach are also discussed.

Chi and Bloebaum [63] described applications using the Taguchi’s orthogonal arrays

to solve structural optimization problems with continuous and discrete variables.

Using the orthogonal arrays, Lee et al. [64] treated the unconstrained optimization

problem with discrete design variables. Numerical results for robust design of simple

truss structures were illustrated.

In another type of approach, the robustness is measured by the performance sen-

sitivity or by some other measures of the performance variability and the optimal

setting of the design variables are determined by minimizing these measures, or a

combination of them and the nominal performance, using optimization techniques.

In these methods, the structural performance variations are estimated using either
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local derivative information or Monte Carlo simulations.

In the work of Latalski [65], the fact that the sensitivity of some structural response

to small variations of design variables increases rapidly for near-optimal structures

are underlined. The author presented an approach accounting for the manufactur-

ing tolerance of member cross sections and lengths in the optimal design of truss

structures. In this approach, the possible worst-case condition is approximately

evaluated by introducing the product of the tolerance value and the sensitivity of

the structural response (displacement and member stress) with respect to it as a

penalty to the nominal response value in the inequality constraints of the primary

optimization problem.

Anthony and Elliott [66] use Genetic algorithms to seek the robust optimal design

of a planar truss structure with the design objective of reducing the vibration trans-

mission. The robustness of the designs are achieved by minimizing the spreads of

the frequency response, which can be depicted in a histogram, with the purpose of

reducing the variation of the objective function with respect to small changes in the

structural geometry.

Lee and Park [67] defined the robust design problem as a revised deterministic op-

timization problem. In the problem, the objective function is defined by a weighted

sum of the performance mean and the performance variation represented by the tol-

erance bands of the design parameters and the performance sensitivity with respect

to the design variables. A penalty factor is introduced to accounts for the worst-case

variation of the constraint functions within the tolerance bands. A robust optimum

of the minimum weight design problem was obtained by mathematical programming.

Hereby, the random parameters other than the design variables were not considered.

Monte Carlo simulation was applied by Sandgren and Cameron [68] in a genetic

optimization algorithm to produce an output distribution for objective function and

constraints in order to locate a design which was less sensitive to fluctuations.

Gumber et al. [69] presented reliability results for the robust design optimization of

a flexible wing under geometric uncertainty. The robust design was conducted incor-

porating first order approximations based on automatic differentiation in previous

work of the authors. The paper also discussed the conceptual difference between

robust design and RBDO underlining the utility of structural robust design.

The current state of the art on the subject of structural robust design optimization

problem is summarized as follows:



38 3 Structural optimization under uncertainty

– Compared with the robust design in other engineering disciplines, such as the

automobile production and the consumer electronics fabrication, the robust

design of structures has been much less frequently addressed in the literature.

Generally speaking, numerical analysis methods for structural robust design

are less well developed, despite the widely adopted sophisticated optimization

techniques in conjunction with finite elements in the discipline of engineering

structural design.

– In contrast to the case of probabilistic definitions used in the well developed

theory of Reliability Based Design Optimization, there has not been an unified

mathematical definition of the metric for the structural robustness, though the

concept of robust design has been widely recognized. Commonly used metrics

of the structural robustness include the Taguchi’s signal-to-noise ratio and the

performance variation measure represented by sensitivities.

– There exist a variety of approaches based on Taguchi’s robust design method-

ology or Design of Experiments (DOE). In concerned studies, the DOE tech-

niques originally proposed for conducting cost effective laboratory experiments

are directly transplanted into structural optimization problems based on nu-

merical models. These approaches lack of a theoretical background and the

interactions among design the parameters and the random parameters are not

studied enough, however. Moreover, the constraints are not well treated in the

methods using Taguchi’s concept.

– Some approximate models such as Response Surface and Artificial Neural Net-

work (ANN) are used as substitutes of the Finite Element model of the real

system for prediction of the structural response characteristics. Robust design

is implemented on the basis of such models in conjunction with optimization

techniques. These approximate models are usually subject to either accuracy

or efficiency shortcomings in most practical engineering applications. In par-

ticular, in cases where strong nonlinearities are present, the methods based on

experimental designs or response surface might fail to reproduce the relations

between the response and the design variables. Additionally, whether these

models are capable of modeling the interactions among the design variables

and other parameters is still an open question. Large discrepancies between

the approximate performance model and the complete analysis will lead to

sub-optimal results and constraint violations.

– Most of the currently known research using the sensitivity or variance measures

take into account only variations of the design variables, while the variability
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of other parameters and loads are not accounted for in the problem statements.

A unified approach which is capable of treating variations both in design pa-

rameters and in other parameters needs to be developed for the robust design

problems of engineering practice.

– The reported methods based on the sensitivity or variance measures address

the nominal performance instead of the statistical mean performance as a

merit of the design. The latter might be of more practical value in the design

of structures with stochastic parameters, however.

– From the computational point of view, existing methods require further re-

finements with respect to efficiency, accuracy and applicability. For example,

the methods utilizing the DOE techniques or Monte Carlo simulations exhibit

some disadvantages regarding efficiency or accuracy. The methods based on

sensitivity measures need to be extended to applications with nonlinear struc-

tural behaviour.

– The random input variables may be statistically correlated in practical prob-

lems. However, the potential correlations have not been accounted for in avail-

able robust design methods.

To summarize, the state of the art reported in the literatures indicates a need for a

more concise problem formulation and a systematic computational methodology for

practical engineering applications.
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Chapter 4

Perturbation based stochastic

finite element method (SFEM)

The numerical analysis of the structural response to random input is a prerequi-

site for the robust design proposed in this study. The methodology of stochastic

structural analysis is introduced in this chapter. First, an overview of the exist-

ing methods is given, including statistical methods and non-statistical methods, is

given. Then the perturbation based stochastic finite element method exposed in the

literature is briefly introduced.

4.1 Overview of stochastic structural analysis

As the computational stochastic structural analysis receives considerable attention,

extensive research has been done on this subject. In general, the prevalent methods

of stochastic structural analysis are classified into two major categories: statistical

methods and non-statistical methods. In what follows, a brief introduction to both

approaches is outlined. A more comprehensive review on recent developments of the

structural stochastic analysis can be found in the work of Schueller [32].

4.1.1 Statistical methods

The statistical methods, e.g. the direct Monte Carlo simulation (MCS) [70] and its

variants, employ repetitive tests over a sufficiently large amount of sampling.
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In the Monte Carlo simulation, the information on the probabilistic distribution

of the stochastic input variables is required. The statistical samples are generated

according to the prescribed probabilistic characteristics. Each realization of these

random input variables produces one realization of the problem itself through deter-

ministic analysis. From the analysis of the simulation results, the overall statistics

can be summarized, as schematically represented [71] in Fig. 4.1, and the accuracy

of the estimation of population characteristics can be improved by increasing the

sample size.

(a) Input sample (b) Output sample

Figure 4.1: Statistical Monte Carlo simulation

An alternative approach [72] to the conventional Monte Carlo simulation is to con-

duct the sampling on the basis of an approximate performance model, such as a

response surface. The evaluations of the approximate response function are much

less expensive, making the Monte Carlo simulation more efficient. The disadvan-

tages are that the number of random variables are limited and the approximation

may become highly inaccurate.

4.1.2 Non-statistical methods

Some other methods such as stochastic finite element methods (SFEM) based on sec-

ond order perturbation techniques [73], method of Neumann series expansion [74][75]

and mesh-less perturbation method [76] are based upon an analytical treatment of

the uncertainty and known as non-statistical methods. These methods employ ap-

proximations for the prediction of the probabilistic response under system changes
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and the basic statistical characteristics, such as the mean and the variance of the

response are obtained on the basis of the approximate models.

A well-known non-statistical approaches for stochastic structural analysis is the per-

turbation based stochastic finite element method, where the random quantities are

expanded via Taylor series about their mean values. The perturbation based stochas-

tic finite element method is regarded a powerful tool for the analysis of structures

with moderate parameter variability. In the framework of this approach, the ran-

dom or uncertain structural parameters are treated as random variables or random

fields, which can be further discretized into a set of uncorrelated random variables

[77][78]. These basic random variables are described with up to the second statis-

tical moment, regardless of the type of the actual distribution. Typically, at most

second order Taylor series expansion is employed for derivation of the perturbed

equilibrium equations. By consecutively solving these equations, the zeroth, first

or second-order solutions are obtained and then the mean value and the covariance

matrix of structural response variables such as nodal displacement, elemental stress

and structural natural frequencies can be approximated. The principle of this ap-

proach is illustrated in Fig. 4.2. As reported in the literature, the perturbation

based approach has also been extended to the stochastic analysis of structures hav-

ing path-independent nonlinear behaviors [73].

(a) Input (mean and variance) (b) Output (mean and variance)

Figure 4.2: Non-statistical perturbation based stochastic finite element

Due to its analytical nature, perturbation based stochastic finite element method

generally attains a higher efficiency than the statistical methods. This approach pro-

vides an affordable algorithm for the analysis of problems with moderate parameter

variability. It is now widely recognized that a satisfying accuracy can be achieved

in cases where the coefficients of variation are up to COV=0.15-0.2.
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4.1.3 A comparison between Monte Carlo simulation and

Perturbation based method

Monte Carlo simulation and the perturbation based stochastic finite element analy-

sis are both Representative approaches for structural analysis under random uncer-

tainty. Here, the differences between the two approaches are discussed.

– Monte Carlo simulation

Monte Carlo simulation relies on the statistical approximation of the proba-

bility distribution. The accuracy of the approximation depends on the sample

size and the computational effort of the implementation is proportional to the

sample size, regardless of the extent of the input scatter or the number of the

random variables entering the problem.

The advantage of Monte Carlo simulation is that accurate solutions can always

be obtained with a sufficiently large number of realizations provided that the

deterministic solution of the problem is available. As a rule, Monte Carlo sim-

ulation can be utilized as long as the deterministic solution is analytically or

numerically available and it requires no modifications of an existing algorithm

for structural analysis. Actually, Monte Carlo simulation is the only universal

method that can provide accurate solutions of stochastic analysis problems.

For this reason, the Monte Carlo simulations is often used to evaluate the ac-

curacy of other more sophisticated stochastic analysis methods and to verify a

new technique. Due to its intrinsic parallelism, Monte Carlo simulation can be

implemented in parallel or distributed computing environment. In structural

design problems, Monte Carlo simulation can be used to explore the design

space of the problem and to assess the robustness of a certain design. However,

despite the fact that the availability of High Performance Computing resources

enables implementations of large scale Monte Carlo simulations, the high com-

putational cost limits its applications in engineering practice, especially with

regard to complicated structures.

– Perturbation based stochastic finite element analysis

As an alternative approach to the Monte Carlo simulation, perturbation based

finite element analysis provides an elegant tool for stochastic structural anal-

ysis. This approach relies on a functional approximation of the random re-

sponse about the mean input whereby the smoothness and the derivability of

the performance function are required. Unlike the Monte Carlo simulations,

the computational cost involved in this approach is proportional to the number
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of the random variables. Nevertheless, the perturbation based stochastic finite

element analysis is generally much more efficient than Monte Carlo simulation.

In case of small parameter variations, perturbation based stochastic finite el-

ement method may satisfy the needs of practical engineering. Moreover, the

optimal numerical approaches have to be able to determine the impacts of each

single random variables, since this information may serve as indicators for im-

proving the structural performance effectively and will be of great importance

in the process of structural design optimization under consideration of parame-

ter randomness. In this connection we should point out that the perturbation

based method is more capable of revealing the approximate contribution of

each random variable to the system response variations.

4.2 Perturbation based SFEM for linear struc-

tures

As a prerequisite for response moment analysis in the structural robust design, the

perturbation based stochastic finite element method for linear structures under static

or transient loads is briefly outlined in this section.

4.2.1 Perturbation equations for static problems

The stochastic analysis referred to here is confined to the first two statistical mo-

ments (i.e. the mean and the variance) of the displacement response. As will be

shown in following chapters, it is very easy to calculate the moments of other quan-

tities such as stresses and the structural compliance given that the moments of the

displacements are already known.

To begin with, we write the virtual work principle for the linear static deformation

problem under random uncertainty in matrix form as∫
Ω

σt(b)δε̃dΩ−
∫

Ω

f t(b)δũdΩ−
∫

Γt

tt(b)δũdΓt = 0, (4.1)

where σ = E(b)ε is the stress tensor and ε̃ is the strain tensor, E is the elasticity

tensor, ũ represents the virtual displacement field, f is the body force and t the
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traction force acting on the surface Γt. The symbol b ∈ Rq×1 denotes the vector of

random variables. In this formulation, the components of b can be random variables

for material properties such as Young’s modulus, for geometrical parameters such

as member dimensions or spatial positions and for environmental conditions such as

magnitude of applied loads.

In the context of the finite element method, after the spatial discretization using

the shape function N we obtain the discrete equilibrium equations from the virtual

work principle

K(b)u = p(b), (4.2)

where u ∈ Rn×1 is the vector of nodal displacement, p ∈ Rn×1 is the vector of

external load

p(b) =

∫
Γt

Nt(b)f(b) +

∫
Ω

Nt(b)t(b)dΓt, (4.3)

and K ∈ Rn×n is the global stiffness matrix

K(b) =

∫
Ω

Bt(b)E(b)B(b)dΩ, (4.4)

where B is the matrix relating the strain field with the nodal displacements.

Since structural responses such as nodal displacements and member stresses are

complex functions of the random variables, an analysis of their complete probability

distributions is practically impossible. However, if the functions of the responses are

smooth and the fluctuations of the random variables are moderate, the perturbation

method that utilizes a second-order expansion of the response can be applied for an

approximation of the first two moments [73].

The basic idea of the perturbation-based finite element analysis method as exposed

in [73] is to expand the stiffness matrix K, the nodal displacement vector u and the

external load vector p in Eq. (4.2) about the mean of the random input variables

via second-order Taylor series:

K = K +

q∑
i=1

Kbi
dbi +

1

2

q∑
i,j=1

Kbibj
dbidbj + ..., (4.5)
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u = u +

q∑
i=1

ubi
dbi +

1

2

q∑
i,j=1

ubibj
dbidbj + ..., (4.6)

and

p = p +

q∑
i=1

pbi
dbi +

1

2

q∑
i,j=1

pbibj
dbidbj + ..., (4.7)

By substituting Eqs. (4.5), (4.6) and (4.7) into Eq. (4.2) and equating the terms of

the same order, we have the following (q + 2) perturbation equations :

Zeroth-order equation:

K̄ū = p̄ , (4.8)

First-order equations:

K̄ūbi
= p̄bi

− K̄bi
ū (i = 1, 2, ..., q) , (4.9)

Second-order equation:

K̄ū2 =

q∑
i,j=1

(
1

2
p̄bibj

− 1

2
K̄bibj

ū− K̄bi
ūbj

)
Cov(bi, bj) , (4.10)

with

ū2 =
1

2

q∑
i,j=1

ūbibj
Cov(bi, bj) . (4.11)

Here the terms with subscripts bi and bibj denote first-order derivatives with respect

to the i-th random variable and the mixed or second-order partial derivatives with

respect to the i-th and the j-th random variables, respectively. The upper bars

indicate that the corresponding quantities are evaluated at the mean or expected

values of the stochastic parameters. For instance,

Kbr =
∂K

∂br

∣∣∣∣
b

(4.12)

Once Eqs. (4.8), (4.9) and (4.10) are solved, we have the second order approximate

mean value and the first-order covariance of the nodal displacements
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E2(u) = ū + ū2,

and

Cov(ur, us) =

q∑
i,j=1

ūr
bi
ūs

bj
Cov(bi, bj) . (4.13)

If the second order term in Eq. (4.6) is also neglected, we get the first order approx-

imate mean displacement:

E1(u) = ū. (4.14)

When describing the scatter of the structural parameters, especially when discretiz-

ing stochastic fields, correlated random variables may be involved. In order to reduce

the computational efforts caused by the double summations in evaluating the terms

on the right hand side of the second-order equation, the original random variables b

can be transformed into a set of uncorrelated random variables c through principal

component analysis [79] by the linear transformation:

c = Atb . (4.15)

The transformation matrix A is obtained by solving a standard eigenvalue problem

defined as

ΣA = AΛ (4.16)

where Σ is the covariance matrix of the original set of random variables, A is the

matrix consisting of the q normalized eigenvectors, Λ comprises the eigenvalues and

is the variance matrix of the transformed random variables:

Λ =



Var(c1) 0 · · · 0

Var(c2) · · · 0

. . .
...

sym. Var(cq)


.

Usually, only the eigenvectors corresponding to a small number of the highest eigen-



4.2 Perturbation based SFEM for linear structures 49

values are needed to capture the major variability characteristics of a certain type

of original random variables. Thus, a reduced set of uncorrelated random variables

ci can be defined as

ci =

q∑
j

Ajibj , i = 1, 2, ..., q̂,

where q̂ (q̂ � q) is the number of the eigenvectors involved in the transformation of

the random variables.

In terms of the transformed uncorrelated random variables ci, the perturbation equa-

tions are then expressed as

Zeroth-order equation:

K̄ū = p̄ , (4.17)

First-order equations:

K̄ūci
= p̄ci

− K̄ci
ū (i = 1, 2, ..., q̂) , (4.18)

Second-order equation:

K̄ū2 =

q̂∑
i=1

(
1

2
p̄cici

− 1

2
K̄cici

ū− K̄ci
ūci

)
Var(ci) , (4.19)

where

ū2 =
1

2

q̂∑
i=1

ūcici
Var(ci) . (4.20)

Here the terms with subscripts ci and cici denote first-order and the second-order

partial derivatives with respect to the ith random variables, respectively. The deriva-

tives of the stiffness matrix K and load vector p can be determined analytically or

by finite differences on the elemental level.

After solving the perturbation equations as in Eqs. (4.17), (4.18) and (4.19), the

first-order and the second-order mean of nodal displacements are obtained using the

solutions of these equations:
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E1(u) = ū , (4.21)

and

E2(u) = ū + ū2 , (4.22)

respectively, and the first-order approximate covariance of the nodal displacements

is expressed as

Cov(ur, us) =

q̂∑
i=1

ūr
ci
ūs

ci
Var(ci) . (4.23)

Particularly, the approximate variance of the rth component of the nodal displace-

ment vector is given by

Var (ur) =

q̂∑
i=1

(ūr
ci
)2Var(ci) . (4.24)

As can be seen from above, the perturbation equations required to be solved have

the same coefficient matrix as the primary deterministic analysis, thus only forth-

and backward substitutions are involved in the solution of these equations. For this

reason, the perturbation based stochastic analysis has substantial advantages over

the Monte Carlo simulations as regarding computational efficiency.

The above approach relies on a roughly quadratic resp. linear involvement of the

fluctuations in the structural response, and the assumption that the scatter of the

stochastic structural parameters is small, such that the use of the first-order covari-

ance is considered adequate for engineering applications.

4.2.2 Perturbation based stochastic analysis for transient

problems

The perturbation technique can be analogously applied to to stochastic analysis of

the transient response problem as expressed by
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M(b)a + C(b)v + K(b)u = p(b, t), (4.25)

where M ∈ Rn×n, C ∈ Rn×n, a ∈ Rn×1 and v ∈ Rn×1 denote the mass matrix, the

damping matrix, the nodal acceleration vector and the velocity vector, respectively.

It is assumed here that the random input vector b is time invariant.

The derivation of the perturbation equations is straightforward and therefore omit-

ted here in favour of conciseness of the presentation. We write here directly the

zeroth, first and second order perturbation equations in terms of transformed ran-

dom variable c [73][79]:

Zeroth-order equation:

M̄ā + C̄v̄ + K̄ū = p̄ , (4.26)

First-order equations:

M̄āci
+ C̄v̄ci

+ K̄ūci
= p̄ci

− K̄ci
ū− C̄ci

v̄ − M̄ci
ā (i = 1, 2, ..., q̂) , (4.27)

Second-order equation:

M̄ā2 + C̄v̄2 + K̄ū2 =

q̂∑
i=1

(
1

2
f̄cici

− 1

2
M̄cici

ā− 1

2
C̄cici

v̄ − 1

2
K̄cici

ū

− M̄ci
āci

− C̄ci
v̄ci

− K̄ci
ūci

)
Var(ci) . (4.28)

The first two moments of the probability distribution of the transient structural

response can be calculated after the perturbation equations (4.26), (4.27) and (4.28)

are solved. For example, the mean value and the covariance of the nodal acceleration

are given by

E(a(t)) = ā(t) + ā2(t), (4.29)



52 4 Perturbation based stochastic finite element method (SFEM)

and

Cov(ai(t), aj(t)) =

q̂∑
r=1

āi
cr

(t)āj
cr

(t)Var(cr). (4.30)

It should be noted that the above perturbation equations can be solved by the same

step-wise time integration scheme as in the corresponding deterministic transient

analysis.



Chapter 5

Formulation of structural robust

design

As stated in Chapter 3, the task to be performed in structural robust design is to

reduce the variability of the structural performance while improving its mean level.

In this chapter, the mathematical statement of the structural robust design problem

is given. Several aspects related to the problem are first discussed. Then the robust

design of structures is formulated as a multi-criteria optimization problem. In the

last part of this chapter, a conceptual comparison between the present formulation

and those based upon conventional Taguchi’s methods is given. A comparative

numerical study with reference to a simple truss design problem is also presented.

5.1 General considerations

Before setting up a framework for the structural robust design optimization prob-

lem, it is convenient to discuss first several aspects associated with the problem

formulation.

5.1.1 Uncertainty and design variables in the problem

A main difficulty that restricts the application of structural robust design optimiza-

tion is the expensive computation not only for the mean value and the variability of

the performance function but also for their sensitivity information which allows for
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gradient based optimization algorithms. This issue is connected to the treatment of

the uncertainty present in the structural system.

The basic idea behind the present statement of the robust design is that a stochastic

representation of the uncertainty is used. However, it is practically not always pos-

sible to acquire the entire probabilistic distribution characteristics of the stochas-

tic parameters and to obtain the whole insight into the scatter of the structural

performance. Therefore, the uncertain input and the structural performance are

quantified by the first two statistical moments, namely the mean values and the

variances in the present study. In other words, the uncertainty of the random input

and the objective function/ constraints are described in a probabilistic way, as by

the perturbation based stochastic finite element method. This facilitates an efficient

numerical analysis of the stochastic response characteristics as well as their sensi-

tivity with respect to the design variables in the framework of perturbation based

stochastic finite element method.

We now classify the variables entering the non-deterministic structural design prob-

lem. Typically, we have :

– Random variables

In the present study, random variables are referred to the structural pa-

rameters or loads that vary about their nominal values. These variables

include both discrete system parameters and variables which are introduced

by discretion of random fields. The random variables may be independent or

correlated. As we do in the previous chapters, we denote the random variables

by

b = [b1, b2, ..., bq].

– Design variables

Design variable are the controllable design parameters that need to be de-

termined by the designer. Depending on the problem, design variables can

be member sizes, geometrical shape parameters, nodal positions, composite

material properties, and similar. The vector of the design variables is denoted

by

d = [d1, d2, ..., dn].

In the present formulation, we assume that the design variables themselves

can be non-deterministic, which implies, the vector of design variables d may
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also contain components that correspond to the random parameters present

in the vector b. If this is the case, the design variable can also be the mean

or variance (or standard deviation) of the concerned parameters. The latter

case bases on the fact that cost-effective designs are always associated with

reasonable specifications on the manufacturing or assembling tolerances of the

product. Such tolerances are suitably represented by the standard deviations

of the geometrical dimensions.

5.1.2 Numerical representation of structural robustness

Robust design addresses both the design objective robustness, where the variability

of the objective function is to be minimized, and the design feasibility robustness,

where the constraint conditions are required to be satisfied as possible in presence

of parameter variations.

As mentioned in Chapter 3, there has not been an unified numerical representation

of structural robustness in the literature. In general, when the robustness of the

design is considered in structural optimization problems, the scatter of the structural

performance defined by the objective function and the constraints are of primary

concern. Basically, the variability of the structural performance can be roughly

described by its standard deviation. Hence, in this study, we use the standard

deviation of the performance as a measure of the structural robustness.

Unlike some other approaches, such as those based on Taguchi’s methodology, we

use here a continuous description of the robustness. By virtue of this, we are able

to employ analytical tools, such as perturbation techniques and sensitivity analysis,

in the computer implementation of the robust design.

5.1.3 Employment of the perturbation based stochastic fi-

nite element analysis

In the present study, the objective function and the constraint contain not only

the mean values but also the standard deviations of the performance functions by

definition. Several aspects favor the employment of perturbation based stochastic

finite element method for the analysis of those response moments required by the

proposed robust design. These are:
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1. Compared with Monte Carlo simulation approaches, the perturbation based

stochastic structural analysis is substantially more efficient for computation of

the response mean and variance required by the proposed formulation.

2. In structural-, mechanical-, and aerospace engineering the deviations of the

random parameters from their nominal values can be controlled in a number

of cases within coefficients of variation less than 0.2. In such circumstances, the

perturbation based finite element method is considered sufficiently accurate for

stochastic structural analysis in the robust design problem.

3. Most important, the analytical nature of the perturbation based approach

allows for a cost effective sensitivity analysis of the response moments and thus

facilitates the employment of gradient based optimization algorithms in the

structural robust design problem, as can be seen in the subsequent chapters.

Based on these considerations, we propose the formulation for structural robust

design optimization problems.

5.2 Problem formulation

The task of robust structural design optimization is to improve the design by min-

imizing the variance of the structural performance while meeting the requirements

of optimum performance. In this study, the structural robust design problem is

stated as an optimization problem with the objective to diminish the performance

variability and to improve the mean. With employment of structural optimization

techniques, the optimal set of design variables is to be determined in a rational way.

5.2.1 Mathematical formulation

In the present statement, the mean value of the response functions, instead of their

nominal values, as well as the standard deviations are used to define the objective

functions and the constraints. Thus the mathematical model of the robust design

problem is cast as a multi-criteria optimization problem
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find d,

minimizing {E (f(d)) , σ (f(d))},
subject to E (gi(d)) + βiσ (gi(d)) ≤ 0 (i = 1, 2, ..., k),

σ (hj(d)) ≤ σ+
j (j = 1, 2, ..., l),

dL ≤ d ≤ dU, (5.1)

where f(d) and gi(d) (i = 1, 2, ..., k) are the objective function and the constraint

functions as in the corresponding deterministic optimization problem, hj(d) (j =

1, 2, ..., l) represent constraints on standard deviations of the response. The quantity

βi > 0 is a prescribed feasibility index for the ith original constraint and σ+
j denotes

the upper limit for the standard deviation of structural performance.

In this formulation, the robust structural design optimization problem is shown to

be a vector optimum problem, in which two criteria namely the statistical mean

E(f) and the standard deviation σ(f) =
√

Var(f) of the goal performance are to be

minimized.

In some special cases, the structural robust design can also be stated on the basis

of cost/ loss function measures. If a function c that represents the loss induced by

variation in goal performance, or the costs related to material volume and manu-

facturing tolerance is given explicitly, an alternative statement of structural robust

design can be given by rewriting the optimization criterion in Eq. (5.1) as

find d,

minimizing c = c (E(f(d)), σ(f(d)), d) ,

subject to E(gi(d)) + βiσ(gi(d)) ≤ 0 (i = 1, 2, ..., k),

σ(hj(d)) ≤ σ+
j (j = 1, 2, ..., l),

dL ≤ d ≤ dU, (5.2)

Particularly, if variabilities of uncertain parameters such as manufacturing tolerances

are also considered as design variables and the cost-versus-tolerance relations are

taken into account, Eq. (5.2) represents the tolerance optimization problem for

minimum cost under performance variability constraints.
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A schematic representation of the first type of constraints defined in (5.1) and (5.2)

is given in Fig. 5.1. Therein, g is the structural performance function and p(g) is

the probability density function of g. In Fig.5.1, we show a structural design (d1)

satisfying the constraint and another one (d2) violating the constraint.

g(d1)][βσ

g(d1)][

[g(d )]2βσ

[g(d )]2E gE

p(g)

0

Figure 5.1: Constraint in robust design

In Eqs. (5.1) and (5.2), the first k constraints are equivalent to

γi ≥ βi (i = 1, 2, ..., k) (5.3)

where γi = −E(gi(d))/σ(gi(d)) can be interpreted as the safety index of the ith

constraint condition. The constraint in Eq. (5.3) is expressed in a similar form as in

RBDO employing the First Order Second Moment (FOSM) method for reliability

analysis, whereas in the latter formulation the response moments are evaluated at

the most probable failure point (MPP), by which a sub-optimization loop is required

for locating such a point. As mentioned above, the exact probability of failure is

not of concern in this context, however, a larger value of βi generally requires the

corresponding performance to be more robust to the system variability. It should

be noted that the inequality (5.3) may still serve as a probabilistic constraint under

the assumption that the probabilistic distribution of the function value gi(d) is

normal. In such a case, if β is set to be 3.0, for instance, the probability that the

original constraint condition will be satisfied is required to be higher than 0.9987.

From the engineering point of view, the assumption of the structural performance

to be normal is often reasonable. Thus the feasibility index is considered here an
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appropriate measure of the robustness related to the design restrictions.

In the robust design problem stated in Eq. (5.1), the two design criteria often conflict

with each other. Pareto optimality is one possible way of defining optimal solutions

for such a multi-criteria resp. vector optimization problem. As the definition of the

Pareto optimum implies, a movement from a Pareto optimal point in the criteria

space must increase the value of at least one criterion. Therefore, a rational trade-off

between the two sub-objectives is necessary for robust design problems.

5.2.2 Computational aspects

Solution strategy for the multi-criteria optimization

In order to obtain a Pareto optimum of the multi-criteria optimization problem as

in Eq. (5.1), it is a common practice to replace the vector of design objective by a

scalarized objective function (see Chapter 2).

Though other methods can be employed for seeking of Pareto optimal solutions, a

straightforward scalarization approach is the linear combination method, in which

the minimum of a weighted linear combination of the individual objectives is re-

garded as Pareto optimal. In this approach, the relative weights to put on the

different objective functions can be easily specified by a prescribed factor, which

enables the designer to investigate the trade-offs between the individual objectives.

Then the problem of structural robust design expressed in Eq. (5.1) is formulated

in terms of a desirability function f̃ as follows:

find d,

minimizing f̃ = (1− α)E(f(d))/µ∗ + ασ(f(d))/σ∗,

subject to E(gi(d)) + βiσ(gi(d)) ≤ 0 (i = 1, 2, ..., k) ,

σ(gj(d)) ≤ σ+
j (j = 1, 2, ..., l),

dL ≤ d ≤ dU. (5.4)

Here 0 < α < 1 is the factor weighting the two objectives, µ∗ and σ∗ are normaliza-

tion factors. The problem expressed by Eq. (5.4) can be converted to a pure mean

value minimization problem for α = 0 or a pure standard deviation minimization



60 5 Formulation of structural robust design

problem for α = 1.

Since the weighted sum approach is used to solve the multi-criteria optimization

problem in this study, the problem of choosing the weighting factors arises. Unfor-

tunately, a systematic method for such a purpose is not yet available. However, this

can be amended by setting different weighting factors at each optimization process.

Thus the present method provides a possibility of generating a set of Pareto optima

in a cost-effective manner, but the final decision should be made by the designer

based on the subjective judgement on design priorities.

The linear combination that forms the desirability function performs well in this

study, as will be shown by the numerical examples. But it may present some diffi-

culties in tracing the Pareto curve when the feasible region in the objective function

space is not convex. This appears seldom in actual applications, however. In such a

particular case, other techniques (e.g. the physical programming method [80]) need

to be employed for the purpose of locating all the Pareto optima in a robust design

problem.

The robust design optimization problem defined by Eq. (5.4) (or Eq. (5.2)) can

be efficiently solved with gradient-based mathematical programming methods iter-

atively. In the present study, the optimization package CFSQP [81], which is an

implementation of two algorithms based on Sequential Quadratic Programming, is

used to solve the optimization problem.

Flowchart of the computer implementation

The proposed numerical method for structural robust design has been implemented

(see Chapter 6, 7 and 8), as shown in the flowchart of the computational procedure

in Fig. 5.2. The Finite Element Programming System (FEPS [82][83]) developed by

the Institute for Computer Application (ICA) at the University of Stuttgart provides

a platform for this study, on which the stochastic finite element analysis and the

sensitivity evaluation are further implemented.
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Figure 5.2: Flowchart of the developed robust design method
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5.2.3 Comparison with formulations based on Taguchi’s

methodology

The basic ideas of Taguchi’s methodology for robust design have also been adopted

in some studies on the structural robust design. Here, a brief comparison between

the present formulation and the formulations based on Taguchi’s methodology is

summarized in Table 5.1.

Table 5.1: A comparison between the present formulation and those based on
Taguchi’s methodology

Present Based on Taguchi’s
method

Description of input Mean, variance Leveled noise factors

Description of output Mean, variance Leveled control factors

Design objective Minimizing objective/ de-
sirability function

Maximizing S/N ratio

Design constraints Including performance vari-
ance

Difficult to consider

Objective/constraints
evaluation

Perturbation SFEM Experimental design

A comparative numerical study on robust design using Taguchi’s method

For the sake of comparison, a case study with reference to the four-bar truss

problem considered in Section 3.3 is performed using both the Taguchi’s robust

design method and the present formulation. In the problem there is only one

independent design parameter A1 serving as a control factor and nine candidate

levels for it are selected, which are A1 = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6.

These control factor levels are tested for seeking the best one furnishing the robust

design for minimization of the nodal displacement u. The noise factors (Young’s

moduli E1 and E2) are divided into 3 levels. The levels of the noise factors are

determined by the mean values and the standard deviations of the corresponding

random parameters, as
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Llow(E1) = E(E1)− 3σ(E1) = 147,

Lmedium(E1) = E(E1) = 210,

Lhigh(E1) = E(E1) + 3σ(E1) = 273.

The levels for E2 are defined analogously and amount to: Llow(E2) =

85, Lmedium(E2) = 100, Lhigh(E2) = 115.

Since the objective of the design is to minimize the nodal displacement u, the S/N

ratio for the Smaller-the-best problem is used for evaluating the robustness of the

designs. A full factorial design, with n = 32 numerical experiments for each level of

the control factor, is conducted and the performance function value (u) for all the

experiments are listed in Table 5.2.

Table 5.2: Experimental design results (×10−3)

E1 = 147 147 147 210 210 210 273 273 273

E2 = 85 100 115 85 100 115 85 100 115

Run A1

1 0 4.706 4.000 3.478 4.706 4.000 3.478 4.706 4.000 3.478

2 0.2 4.779 4.124 3.626 4.584 3.977 3.513 4.404 3.841 3.406

3 0.4 4.854 4.255 3.788 4.468 3.955 3.548 4.139 3.695 3.337

4 0.6 4.932 4.395 3.964 4.358 3.933 3.584 3.903 3.559 3.271

5 0.8 5.013 4.545 4.157 4.253 3.911 3.621 3.693 3.433 3.207

6 1.0 5.096 4.705 4.370 4.153 3.890 3.658 3.505 3.315 3.146

7 1.2 5.182 4.877 4.607 4.058 3.869 3.696 3.334 3.206 3.087

8 1.4 5.271 5.062 4.870 3.967 3.848 3.736 3.180 3.103 3.030

9 1.6 5.363 5.262 5.165 3.880 3.827 3.775 3.039 3.007 2.975

10 1.7678 5.442 5.442 5.442 3.810 3.810 3.810 2.930 2.930 2.930

11 0.3531 4.837 4.224 3.748 4.495 3.960 3.540 4.198 3.728 3.353

The output data obtained in the designed experiments are analyzed, giving the mean



64 5 Formulation of structural robust design

and S/N ratio for each level of the control factor shown in Table 5.3.

Among all the candidate levels for the control factor, the fourth (A1 = 0.6) and

the fifth level (A1 = 0.8) present a maximum S/N ratio suggesting the most robust

design, whereby the fifth level yields a lower mean. Therefore the best settings for

robust design are A1 = 0.6 and A1 = 0.8 based on the experimental results. Both

designs are verified with Monte Carlo simulations (sample size: 3000), which reveals

the mean value and the standard deviation of the samples are u = 3.9431 × 10−3,

s(u) = 1.8932× 10−4 for the former design and u = 3.9224× 10−3, s(u) = 2.1197×
10−4 for the latter. Here and in what follows, the Monte Carlo simulations are

always conducted under the assumption of normal distributions of the random input

variables.

Table 5.3: Mean values and S/N ratio by Taguchi’s robust design method

(The figures in bold denote the maximum mean values and the maximum S/N
ratios)

Run A1 Mean u

(×10−3)
S/N ratio Note

1 0 4.061 -12.240

2 0.2 4.028 -12.158

3 0.4 4.010 -12.118

4 0.6 3.989 -12.079 Max. S/N ratio

5 0.8 3.981 -12.079 Min. mean and Max.
S/N ratio

6 1.0 3.982 -12.105

7 1.2 3.991 -12.157

8 1.4 4.007 -12.234

9 1.6 4.033 -12.339

10 1.7678 4.061 -12.448

11 0.3531 4.009 -12.115

For comparison, a set of Pareto optima with the present robust design formulation

have been obtained using the numerical techniques that will be presented in the
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following chapters, as shown in Table 5.4. The stochastic analysis results listed

in Table 5.4 have been verified by Monte Carlo simulations (MCS, sample size:

3000) and are shown to agree well with the simulation results. The optima for

the minimum mean (A1 = 1.7678) and for the minimum standard deviation of the

concerned displacement (A2 = 0.3531) are also checked by the Taguchi’s procedure

for the S/N ratio analysis, with the results listed in Table 5.2 and Table 5.3.

Table 5.4: Optimal solutions by the present robust design formulation

Design var. α = 0.0 α = 0.05 α = 0.1 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

A1 1.7678 1.6659 0.6493 0.4738 0.3974 0.3731 0.3607 0.3531

A2 0.0000 0.1440 1.5817 1.8300 1.9381 1.9724 1.9900 2.0006

E(u) (×10−3) 3.848 3.854 3.937 3.955 3.963 3.966 3.968 3.968

(MCS) (3.841) (3.849) (3.938) (3.957) (3.966) (3.969) (3.970) (3.971)

σ(u) (×10−4) 3.810 3.611 1.924 1.798 1.780 1.772 1.772 1.771

(MCS) (3.971) (3.750) (1.939) (1.810) (1.787) (1.785) (1.784) (1.784)

As can be seen, in this simple problem the Taguchi’s signal-to-noise method presents

really sub-optimal designs, whereas a wide set of Pareto optima corresponding to

different weighting factors can be obtained with the present formulation of robust

design. Moreover, the statistics extracted from the results of the designed experi-

ments fail to predict the actual mean value of the performance, despite the fact that

a full factorial design has been employed. Even worse is that, these experimental

results can not predict the trend of changes of the performance mean with respect

to the design parameter successfully, as seen from Table 5.3 and Table 5.4.
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Chapter 6

Robust design of linear structures

In this chapter, the robust design optimization for linear structures is addressed.

First, the numerical analysis of response moments sensitivity is presented. The

method is developed using direct differentiation in conjunction with the perturbation

based stochastic finite element analysis. Then numerical examples are given to

demonstrate the proposed method.

6.1 Response moments sensitivity analysis

In the derivation of perturbation equations for response moment analysis, the struc-

tural displacements are suitably expressed as a function of the random input vari-

ables, as shown in previous chapters. For design problems, however, the design vari-

ables also enter the problem. The objective function and the constraints are defined

by functions of response moments (mean value and variance/ standard deviations)

in the present structural robust design optimization problems. Consequently, the

sensitivity expressions of the response moments with respect to these design vari-

ables are of great importance for solving the present problem by gradient-based

mathematical programming algorithms.

Subsequently, in the framework of the perturbation based stochastic finite element

analysis, the computational scheme for structural response moments analysis is de-

veloped for use in the structural robust design problem with the direct differentiation

method [84][85].
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We first consider the sensitivity analysis of the static displacement response mo-

ments.

Sensitivity of displacement response moments

Considering the implicit dependence of the terms upon the design variables, differ-

entiation of Eqs. (4.17), (4.18) and (4.19) with respect to the kth design variable dk

leads to the following equations:

K̄ū,dk
= p̄,dk

− K̄,dk
ū , (6.1)

K̄ūci,dk
= p̄ci,dk

− K̄ci,dk
ū− K̄ci

ū,dk
− K̄,dk

ūci (i = 1, 2, ..., q̂) , (6.2)

and

K̄ū2,dk
= −K̄,dk

ū2 +
1

2

q̂∑
i=1

(p̄cici,dk
− K̄cici,dk

ū− 2K̄ci,dk
ūci

− K̄cici
ū,dk

−2K̄ci
ūci,dk

)Var(ci) +
1

2

q̂∑
i=1

(p̄cici
− K̄cici

ū− 2K̄ci
ūci

)
∂Var(ci)

∂dk

, (6.3)

where the subscript dk with a preset comma indicates the derivatives with respect

to the kth design variable.

By solving the above equations, the sensitivities of the mean value and the covariance

of displacements with respect to dk can be obtained as:

∂E(u)

∂dk

= ū,dk
+ ū2,dk

, (6.4)

and

∂Cov(ur, us)

∂dk

=

q̂∑
i=1

(ūr
ci,dk

ūs
ci

+ ūr
ci
ūs

ci,dk
)Var(ci) +

q̂∑
i=1

ūr
ci
ūs

ci

∂Var(ci)

∂dk

. (6.5)

Equations (6.3) and (6.5) are obtained by noting the fact that the design variables
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can affect the covariance of the structural response in two ways, namely, by changing

its derivatives with respect to the random parameters and by changing the covariance

or variance of the random parameters itself.

Since the system coefficient matrices of Eqs. (6.1)-(6.3) have been decomposed in

the previous solution steps, the solutions of Eqs. (6.1), (6.2) and (6.3) involve only

forward reductions and backward substitutions. However, the computational costs

for sensitivity analysis are still extremely high due to the lengthy calculation of the

third-order derivatives on the right hand side of Eq. (6.3). Noting that the second

term on the right hand side of Eq. (6.4) consists of only second order variations

of basic random variables and thus can be ignored in case of small scatter of input

variables, a first-order approximation for the sensitivity of the expected value of the

displacement is obtained with

∂E(u)

∂dk

≈ ū,dk
. (6.6)

Evaluation of moments and their sensitivities for a general-

ized performance function

A generalized structural performance function Φ defined as an explicit function of the

nodal displacements, the random variables and the design variables can be written

as:

Φ = Φ (u(b),b,d) . (6.7)

Before addressing the sensitivity analysis, we here consider the moments calculations

of a generalized structural performance function as defined in Eq. (6.7). Expanding

the function Φ in a Taylor series about b̄, the mean value of the random variables,

and truncating the series at the linear terms, one obtains the first-order approximate

mean value and variance of Φ, as

E(Φ) = Φ(ū, b̄,d) , (6.8)
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Var(Φ) =

q∑
i,j=1

(
∂Φ

∂u

∣∣∣∣
b

ūbi
+ Φ̄bi

)(
∂Φ

∂u

∣∣∣∣
b

ūbj
+ Φ̄bj

)
Cov(bi, bj) . (6.9)

Alternatively, in terms of uncorrelated random variables c, Eq. (6.9) approximately

reduces to

Var(Φ) =

q̂∑
i=1

(
∂Φ

∂u

∣∣∣∣
b

ūci
+ Φ̄ci

)2

Var(ci). (6.10)

By including the second-order terms in the Taylor series, the second-order approxi-

mate expected value of Φ can be given by

E(Φ) = Φ̄ +
1

2

q∑
i,j=1

(
ūt

bi
H̄Φ(u)ūbj

+ 2
∂Φbi

∂u

∣∣∣∣
b

ūbj
+

∂Φ

∂u

∣∣∣∣
b

ūbibj
+ Φ̄bibj

)
Cov(bi, bj)

≈ Φ̄ +
1

2

q̂∑
i=1

(
ūt

ci
H̄Φ(u)ūci

+ 2
∂Φci

∂u

∣∣∣∣
b

ūci
+

∂Φ

∂u

∣∣∣∣
b

ūcici
+ Φ̄cici

)
Var(ci)

= Φ̄ +
∂Φ

∂u

∣∣∣∣
b

ū2 +
1

2

q̂∑
i=1

(
ūt

ci
H̄Φ(u)ūci

+ 2
∂Φci

∂u

∣∣∣∣
b

ūci
+ Φ̄cici

)
Var(ci),(6.11)

where HΦ(u) is the Hessian matrix of Φ with respect to u. The derivatives of Φ

can be easily obtained from the explicit dependence on displacement and random

parameters.

Differentiating Eqs. (6.8) and (6.10) with respect to dk, one obtains the first-order

approximate sensitivity of the mean and variance of the performance function Φ:

∂E(Φ)

∂dk

=
∂Φ

∂u

∣∣∣∣
b

ū,dk
+ Φ̄,dk

, (6.12)

∂Var(Φ)

∂dk

=

q̂∑
i=1

2

(
∂Φ

∂u

∣∣∣∣
b̄

ūci
+ Φ̄ci

)(
ūt

,dk
H̄Φ(u)ūci

+
∂Φ

∂u

∣∣∣∣
b̄

ūci,dk
+

∂Φ,dk

∂u

∣∣∣∣
b̄

ūci

+
∂Φci

∂u

∣∣∣∣
b̄

ū,dk
+ Φ̄ci,dk

)
Var(ci) +

q̂∑
i=1

(
∂Φ

∂u

∣∣∣∣
b

ūci
+ Φ̄ci

)2
∂Var(ci)

∂dk

.

(6.13)
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In the case of transient response, the approximate expected value and variance of

the generalized structural performance function, and their sensitivity with respect

to the design variables can be obtained similarly.

It is worth remarking here, though the adjoint variable method can be used in sensi-

tivity analysis of the deterministic response, it is not recommended for the sensitivity

analysis of response moments in this study, since the method can hardly be extended

to the purpose of the second-order perturbation based stochastic analysis.

6.2 Numerical examples

Robust compliance minimization problem of a three-bar truss

structure

x
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Figure 6.1: The three-bar truss

The three-bar truss structure is shown in Fig. 6.1. The Young’s modulus of the

i-th bar Ei, the horizontal position of the fourth node X4 and the cross sectional

areas of the bars are random variables and their mean and variances or coefficients

of variation (COV) are shown in Table 6.1. All random variables are assumed

independent. The cross sectional areas of each bar Ai (i = 1, 2, 3) and the horizontal

position of the fourth node are taken as design variables. The loads acting on the

structure are px = 1.5, py = −10.0. The mass density of the material is ρ = 1.0.

The constraints considered in this problem include: (a) structural weight constraint
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Table 6.1: Random variables for the three-bar truss

Variable Mean COV Standard deviation

E1 = E3 4.0× 103 0.1 /

E2 1.0× 103 0.1 /

X4 / / 0.05

A1 / 0.1 /

A2 / 0.1 /

A3 / 0.15 /

w ≤ 6.0; (b) nodal displacement constraints u ≤ 0.05, v ≤ 0.05; (c) member stress

constraints: (E(σi)− 5.0)/σ(σi) ≤ −3.0 (i = 1, 2, 3); (d) bound limits for the design

variables: 1.0−6 ≤ Ai ≤ 6.0 (i = 1, 2, 3), −0.3 ≤ X4 ≤ 0.3.

Table 6.2: Optimal solutions for the three-bar truss

Des. var. Init. Determ. α = 0.0 α = 0.25 α = 0.5 α = 0.75 α = 1.0

A1 2.500 2.835 2.837 2.147 2.048 1.924 1.938

A2 0.800 0.249 0.249 2.398 2.487 2.742 2.680

A3 1.500 1.387 1.387 0.530 0.551 0.481 0.510

X4 0.0 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300

w 6.457 6.000 6.000 6.000 6.000 6.000 6.000

E(f)× 10−2 1.590 1.408 1.407 1.441 1.450 1.460 1.464

(MCS) (1.593) (1.420) (1.419) (1.455) (1.457) (1.467) (1.470)

σ(f)× 10−3 1.839 1.852 1.851 1.483 1.470 1.461 1.461

(MCS) (1.881) (1.899) (1.896) (1.492) (1.481) (1.476) (1.477)

The solutions of the optimization are shown in Table 6.2. The results of the Monte

Carlo simulation (with 3000 realizations under assumption of normal distribution

of the random inputs) corresponding to each design are also listed in the table. It

can be seen from the results that in the deterministic formulation resp. mean value

minimization the mean value of the structural compliance is notably lowered but its
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standard deviation is still very high. In contrast, not only the mean value but also

the standard deviation of the objective function are reduced in the optimal solutions

obtained with robust formulation. Moreover, in the optimum obtained, the standard

deviation of the objective function decreases as the weighting factor increases and

vice versa.

Structural compliance optimization of a 25-bar space truss

structure

The structural compliance, defined as the inner product of the applied load vector

and the nodal displacement vector (ptu), of a 25-bar truss structure ( as depicted

in Fig. 6.2) resembling a power transmission tower is to be minimized.
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Figure 6.2: The 25-bar space truss

The nodal coordinates of the finite element model are given in Table 6.3. The design

variables are bar cross sectional areas. Six independent design variables are selected

by linking various member sizes, and the member grouping information is given in

Table 6.5. The mass density of the material is ρ = 0.1. Four nodal forces with
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values p1y = p2y = p1z = p2z = −1.0 × 104 are imposed at the first and the second

nodes and two nodal forces with random values at the third and the sixth nodes.

Additionally, forces with random values are applied to the nodes number 3 and 6

along x-direction. The nodal forces applied at the nodes 3 and 6, the Young’s moduli

and the cross-sectional areas for the grouped bars are considered as random variables

with mean values and standard deviations or coefficients of variation (COV) shown

in Table 6.4.

Table 6.3: Nodal coordinates of the 25-bar truss

Node X Y Z

1 -37.5 0.0 200.0

2 37.5 0.0 200.0

3 -37.5 37.5 100.0

4 37.5 37.5 100.0

5 37.5 -37.5 100.0

6 -37.5 -37.5 100.0

7 -100.0 100.0 0.0

8 100.0 100.0 0.0

9 100.0 -100.0 0.0

10 -100.0 -100.0 0.0

In this example, the structural weight constraint E(w) ≤ 750.0, the member stress

constraints E(|σi|) + 3σ(σi) ≤ 5000.0 (i = 1, 2, ..., 25), the lower and upper bounds

of design variables 0.05 ≤ Aj ≤ 10.0 (j = I,II,...,VI) are observed.
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Table 6.4: Random variables for the 25-bar truss

No. Variables Mean Standard deviation COV

1–5 EI – EV 1.0× 107 2.0× 105

6 EVI 1.0× 107 1.5× 106

7 p3x 5.0× 102 50.0

8 p6x 5.0× 102 50.0

9–14 AI –AVI 0.05

The optimal solutions corresponding to different weighting factors are listed in Table

6.6. Compared with the mean value minimization solution (α = 0), the standard

deviation of the structural compliance is decreased by 14.3 - 22.7% in the robust

solutions, which means a considerable improvement of robustness of the design.

Moreover, in the obtained optimum, the standard deviation of the objective function

decreases and the mean value increases as the weighting factor increases and vice

versa (Fig. 6.4). This conflict between the two sub-objectives reveals the essential

characteristic of Pareto solutions.

Table 6.5: Group membership for the 25-bar truss

Group number Members

I 1

II 2,3,4,5

III 6,7,8,9

IV 10,11,12,13

V 14,15,16,17,18,19,20,21

VI 22,23,24,25

The optimal solutions are fairly well verified by the results of Monte Carlo simu-

lations with 3000 realizations given in Table 6.6 (in parentheses). The numerical

results of the goal performance are shown to be in good agreement, while the com-

puting time for such a Monte Carlo simulation on a Pentium 4-2.0 GHz computer
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Figure 6.3: Iteration history of the robust design for the 25-bar truss (α = 0.5)

is 12.82 seconds, and for a perturbation based analysis only 0.25 second.

Table 6.6: Optimal solutions for the 25-bar truss

Des. var. Init. α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1.0

AI 2.300 0.050 0.050 0.050 0.114 0.147

AII 2.300 0.050 0.075 0.207 0.558 0.672

AIII 2.300 5.740 4.882 4.280 3.685 3.465

AIV 2.300 1.718 0.950 0.628 0.575 0.566

AV 2.300 1.054 1.179 1.151 0.925 0.822

AVI 2.300 5.574 6.328 6.940 7.704 8.048

E(f) (×103) 7.768 5.328 5.478 5.775 6.044 6.196

(MCS) (7.763) (5.322) (5.477) (5.771) (6.035) (6.184)

σ(f) (×103) 0.540 0.357 0.308 0.285 0.277 0.276

(MCS) (0.557) (0.377) (0.323) (0.297) (0.289) (0.287)

E(w) (×102) 7.607 7.500 7.500 7.500 7.500 7.500
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Figure 6.4: The mean and standard deviation of objective function f vs. weighting
factor α

Cost minimization problem of a three-bar truss

The cost minimization problem of the three-bar truss structure shown in Fig. 6.1 is

considered. The Young’s modulus of the first and third bar is EI = 4000 and of the

second bar EII = 1000. The loads applied on the structure are px = 20, py = −40.0.

The mass density of the material is ρ = 1.0. The cross sectional areas of each bar

Ai (i = 1, 2, 3) are independent random variables. The joint position X4 and the

mean values E(Ai) as well as standard deviations σ(Ai) of bar cross sectional areas

are taken as design variables. The cost function as defined in Eq. (6.14) consists of

material cost and manufacturing cost

c = 10w +
3∑

i=1

(
ζi +

ηi

t(Ai)

)
,

ζi =

 0.05, i ∈ {i|Ai > (Ai)L}

0, i ∈ {i|Ai = (Ai)L}
, ηi =

 0.3, i ∈ {i|Ai > (Ai)L}

0, i ∈ {i|Ai = (Ai)L}
(6.14)
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where w is the structural weight, t(Ai) ≡ 3σ(Ai) is the manufacturing tolerance of

the ith bar and (Ai)L is the lower bound of the ith bar cross sectional area.

The constraints considered in this problem include: (a) nodal displacement con-

straints E(|u|)+3σ(|u|) ≤ 0.01, E(v)+3σ(|v|) ≤ 0.01; (b) member stress constraints:

E(|σi|) + 3σ(σi) ≤ 45.0 (i = 1, 2, 3); (c) bound limits for the mean values and the

standard deviations of the cross sectional areas: 1.0−6 ≤ E(Ai) ≤ 5.0 (i = 1, 2, 3),

5.0 × 10−3 ≤ σ(Ai) ≤ 0.2 (i = 1, 2, 3); (d) bound limit for the coordinate design

variable −0.2 ≤ X4 ≤ 0.2.

The solutions of the optimization are shown in Table 6.7. As a comparison, the

optimal result obtained with fixed tolerance of member dimensions are also presented

in the table. It is shown that the value of the cost function is further reduced by

adjusting the tolerance (or standard deviations) of cross sectional areas through

optimal design.

Table 6.7: Optimal solutions for the minimum cost optimization of the three-bar
truss

Des. var. Init. Fixed tolerance Designed tolerance

X4 -0.2 -0.2 -0.2

E(A1), σ(A1) 1.3, 0.15 1.218, (0.15) 1.011, 0.068

E(A2), σ(A2) 1.3, 0.15 1.821, (0.15) 1.661, 0.066

E(A3), σ(A3) 1.3, 0.15 10−6, (0.15) 10−6, 0.005

c 52.36 35.60 32.97

E(u), σ(u) (×10−3) 5.42, 0.75 5.01, 1.66 6.93, 1.02

E(v), σ(v) (×10−3) 7.87, 0.69 8.19, 0.60 9.06, 0.31

E(σmax), σ(σmax) 29.76, 3.10 29.75, 3.64 35.62, 2.38

Minimum displacement problem of a ten-bar truss structure

subject to impulse loads

The objective of the optimization problem is to minimize the peak value of the

vertical displacement response of the fifth node of the planar ten-bar structure shown

in Fig. 6.5, which is subject to rectangular impulse excitations acting on the two
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nodes of the structure. The Young’s modulus of the material, the value of the

impulses, the Y-coordinate of the fourth node and the cross sectional areas of the

bars are considered as independent random variables. The coefficients of variation

for the cross sectional areas are 0.1 for bars 5-8 and 0.2 for the other bars. The

means and variances or coefficients of variation of other random variables are shown

in Table 6.8, where EI denotes the Young’s modulus for bars 5-8, EII the Young’s

modulus for other bars and Y4 the Y-coordinate of the fourth node. The cross

sectional areas of the bars are considered as design variables. They are grouped into

four design variables, which are A1 for bars 1 and 2, A2 for bars 3 and 4, A3 for bars

5-8 and A4 for bars 9 and 10. The mean structural weight constraint E(w) ≤ 30.0 kg

is to be observed.
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Figure 6.5: The planar ten-bar truss

The optima obtained with different weighting factors α are summarized in Table 6.9.

As can be seen from the results, when the weighting factor increases, the optimal

solution results in a larger mean value but smaller standard deviation of the objective

function.

Robust design optimization of an antenna structure

In this example, the design optimization problem of an antenna structure is consid-

ered. The finite element model of the antenna consists of a membrane skin and a

complex truss structure, as shown in Fig. 6.6. The structure is subjected to quasi-
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Table 6.8: Random variables for the ten-bar truss

Variables Mean COV Variance

EI (N/m2) 6.9× 1010 0.1 /

EII (N/m2) 2.1× 1011 0.2 /

Y4 (m) 2.00 / 0.01

p3y (N · s) -500 0.1 /

p5x (N · s) 800 0.1 /

p5y (N · s) -500 0.1 /

Table 6.9: Optimal solutions for the ten-bar truss

Des. var. Lower Upper Initial α = 0.0 α = 0.5 α = 1.0

A1 (×10−6m2) 50.00 1500.00 200.00 50.00 193.77 283.57

A2 (×10−6m2) 50.00 1500.00 200.00 257.23 283.93 282.88

A3 (×10−6m2) 50.00 1500.00 250.00 617.23 443.04 352.44

A4 (×10−6m2) 50.00 1500.00 200.00 50.00 50.00 50.00

E(w) (kg) / 30.00 26.36 30.00 30.00 30.00

E(f) (×10−3m) / / 4.429 2.662 2.974 3.333

σ(f) (×10−3m) / / 0.484 0.519 0.390 0.389

static wind loads, which induce deformation and thus causes loss of shape accuracy

and pointing accuracy of the reflection of surface. The bars forming the truss struc-

ture are divided into five groups according to their positions and directions. The

spatial distribution of the skin thickness is modeled with four basic random variables.

The Young’s moduli of the materials of the skin and the five groups of bars are also

assumed to be uncorrelated basic random variables. The design variables considered

are the skin thickness t and the cross sectional areas A1, A2, A3, which correspond to

the bars supporting the skin along perimetric, radial and skew direction, respectively.

The design objective is to minimize the maximum radial displacement at the upper

edge of structure under the constraint of mean structural weight E(w) ≤ 300.0 kg.
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The optimum solutions corresponding to the different weighting factors α are listed

in Table 6.10. Compared with the initial design, a more robust design is obtained

when the weighting factor α is set to be 0.5 or 1.

Figure 6.6: The antenna structure

Table 6.10: Optimal solutions for the antenna structure

Des. var. Lower Upper Initial α = 0.0 α = 0.5 α = 1.0

A1 (×10−6m2) 10.00 25.00 15.00 11.00 19.83 20.14

A2 (×10−6m2) 10.00 25.00 15.00 11.22 19.83 20.15

A3 (×10−6m2) 10.00 25.00 15.00 10.53 19.81 19.23

t (×10−3m) 2.00 3.50 2.60 2.74 2.50 2.51

E(w) (kg) / 300.00 291.47 300.00 300.00 300.00

E(f) (×10−3m) / / 8.45 8.28 8.56 8.57

σ(f) (×10−3m) / / 0.54 0.49 0.37 0.36
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6.3 Remarks

The stochastic structural analysis and sensitivity analysis have been implemented

in conjunction with the perturbation based stochastic finite element method, which

is efficiently applicable to considerably large scale problems. As a result, the pro-

posed method is capable of covering a wide range of practical applications, where

the system variations are relatively small. The feasibility of the proposed method

and its adequacy have been demonstrated by numerical applications in some exem-

plary cases. As shown by the obtained results, in the robust optimum problems

where the mean value as well as the variance of the structural performance func-

tion are of importance, the optimal design may yield different parameter values or

even different structural topology than mean value minimization or deterministic

optimization problem. The parameterised Pareto optima obtained in the numerical

examples also reveal that the reduction of the variance of the structural performance

is frequently achieved at the penalty of worsening its expected value. Bearing this

in mind, the solution of the robust optimum design problem provides the engineer

with the possibility of selecting a feasible structural design out of the set of Pareto

optima obtained with different weighting factors in the compound objective resp.

desirability function.



Chapter 7

Robust design of nonlinear

structures with path dependence

This chapter deals with the robust design of structures with path-dependent be-

haviours. First, the perturbation based stochastic finite element analysis is extended

to the path-dependent nonlinear problems, where an incremental scheme in consis-

tence with the primary deterministic analysis is proposed. The associated sensitivity

analysis is also presented. The method has been illustrated by examples of the robust

design problems with material and geometrical nonlinearities.

7.1 Stochastic finite element analysis for nonlin-

ear structures with path dependence

The perturbation based stochastic finite element method has been adapted to the

analysis of path-independent nonlinear problems [73][86]. In this section, the per-

turbation based algorithms are extended to path-dependent nonlinear problems [87],

where a rational scheme is proposed for the incremental stochastic analysis.

In vector form, the finite element equations of quasi-static structural problems with

random parameters may be expressed as

s(σ,x,b, t) = p(b, t), (7.1)
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where s denotes the internal force vector (stress resultants at the nodal points) as

a function of the stress state σ and geometry x =0 x + u(t), and p is the vector

of applied loads as a function of time t. The parameters that define the functional

dependence of the resultants s on the stress σ like material moduli and member

dimensions may exhibit random fluctuations as may do the time varying applied

loads. The vector b ∈ Rq×1 collects all the random parameters. For the sake of

simplicity, it is assumed here that the load vector p is independent of the geom-

etry. The extension of the following derivations to deformation-dependent loading

conditions is straightforward.

For structures having path-dependent nonlinear behaviour, such as in elastoplastic-

ity, the internal force depends not only on the total displacements, but also on the

deformation history. Therefore the equilibrium equation is expressed in an incre-

mental form for the pseudo-time step (k + 1)

k+1∆s(ku, k+1∆u,b) = k+1∆p(b) (k = 0, 1, 2, ...,m), (7.2)

where
k+1∆s =

∫
Ω

Bt(ku,b)∆σ(k+1∆u,b)dΩ, (7.3)

and the displacement is advanced by

k+1u = ku + k+1∆u (k = 0, 1, 2, ...,m). (7.4)

In the above, ku is the vector of nodal displacements at time step k, k+1∆u, k+1∆s

and k+1∆p are the vectors of incremental nodal displacements, incremental internal

force and incremental external load at time step (k + 1), respectively.

For linear and path-independent nonlinear problems, the governing equations for

deterministic analysis are set up based on either the initial configuration (for linear

problems) or the current deformation state (for path-independent nonlinear prob-

lems) in the updated Lagrange formulation using the total nodal displacements,

which means the perturbation equations can be set up by Taylor series expansion

of the total displacements, as reported in [73]. By such problems, the perturbation

equations need to be solved only once at the last loading step, independent of the

number of the increments taken to achieve this final state of deformation process in

the deterministic analysis. For problems with path-dependence, however, in order

to be consistent with the incremental scheme employed in the deterministic anal-

ysis so as to reveal the path-dependent nature of the response, the perturbation
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based stochastic analysis should also be formulated in an incremental form [88], as

proposed in what follows.

To begin with, the incremental internal force vector k+1∆s is expanded about the

mean value of the random variables via Taylor series:

k+1∆s(ku, k+1∆u,b) = ∆s +

q∑
r=1

d(k+1∆s)

dbr

∆br (7.5)

+
1

2

q∑
r,s=1

d2(k+1∆s)

dbrdbs

∆br∆bs + ...,

where ∆br = br − br denotes the deviation of the rth random vector br from the

mean br and the upper bar indicates that the corresponding quantity is evaluated

at the mean values of the random parameters.

The differentiation of the incremental internal force is further expressed as

d(k+1∆s)

db
=

∂(k+1∆s)

∂(ku)

d(ku)

db
+k+1 K

d(k+1∆u)

db
+

∂(k+1∆s)

∂b
. (7.6)

Here, k+1K is the tangential stiffness matrix and is defined as

k+1K( ku, k+1∆u,b) =
∂(k+1∆s)

∂(k+1∆u)
. (7.7)

The first term on the right-hand side of Eq. (7.6) represents the incremental in-

ternal force variation caused by the changing geometry and is much more difficult

to calculate than other terms from a computational point of view. Recalling Eq.

(7.3), we see that this term is usually of higher order of the incremental nodal dis-

placements. Therefore it is neglected in this study under the assumption that the

incremental internal force change related to the fluctuating geometry is relatively

small compared with those caused by the variation of the incremental displacements.

Consequently, the total differentiation of the incremental internal force takes place

at constant displacement ku. Thus we have

d(k+1∆s)

db
= k+1K

d(k+1∆u)

db
+

∂(k+1∆s)

∂b
. (7.8)
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By substituting Eq. (7.8) into Eq. (7.5), we have

k+1∆s( ku, k+1∆u,b) = k+1∆s +

q∑
r=1

(
k+1K k+1∆ubr +k+1 ∆sbr

)
∆br

+
1

2

q∑
r,s=1

(
d(k+1K)

dbr

∣∣∣∣∣
b̄

k+1∆ubs +k+1 K k+1∆ubrbs

+ k+1Kbr

k+1∆ubs +k+1 ∆sbrbs

∆br∆bs + ....(7.9)

Here again, the terms with subscripts br and brbs denote first-order derivatives with

respect to the r-th random variable and the mixed or second-order partial deriva-

tives with respect to the r-th and the s-th random variables, respectively. As the

same notation we use in the previous chapters, an upper bar indicates that the cor-

responding quantities are evaluated at the mean values of the random input variable

b.

Analogously the expression for k+1∆p is

k+1∆p = ∆p +

q∑
r=1

k+1∆pbr∆br +
1

2

q∑
r,s=1

k+1∆pbrbs∆br∆bs + .... (7.10)

It is noted that the total derivative of the tangential stiffness matrix k+1K is involved

in the Taylor expansion of the internal force vector k+1∆s since k+1K( ku,k+1 ∆u,b)

is determined by both k+1∆u and b in nonlinear problems and this term accounts

for the dependence of k+1K on both the change in structural deformation and the

other random variables. Neglecting the dependence of the tangential matrix upon

the structural deformation as in [73] when deriving the perturbation equations for

the nonlinear problems may result in loss of accuracy in geometrical as well as in

material nonlinear problems.

Substituting Eqs. (7.9) and (7.10) into Eq. (7.2) and equating the terms with the

same orders, one obtains the zeroth-, first- and second-order perturbed equations

expressed as:

Zeroth-order equation:
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k+1∆s(k+1∆u,b) =k+1 ∆p, (7.11)

First-order equations:

k+1K k+1∆ubr =k+1 ∆pbr −k+1 ∆sbr (r = 1, 2, ..., q), (7.12)

Second-order equation:

k+1K k+1∆u2 =
1

2

q∑
r,s=1

(
k+1∆pbrbs −

d(k+1K)

dbr

∣∣∣∣
b

k+1∆ubs

− k+1Kbr

k+1∆ubs −k+1 ∆sbrbs

)
Cov(br, bs). (7.13)

where k+1∆u2 is the second order correction to the mean incremental displacement

defined by

k+1∆u2 ≡
1

2

q∑
r,s=1

k+1∆ubrbsCov(br, bs). (7.14)

In Eqs. (7.12)–(7.13), the partial derivatives of k+1∆p, k+1K and k+1∆s with respect

to the random vector b can be determined analytically or by finite differences on the

element level. The total derivatives of the tangential stiffness matrix with respect to

the random variables are evaluated with the finite difference approximation, where

a sensitivity-based first-order estimation of the perturbed displacement vector is

involved:

d(k+1K)

dbr

∣∣∣∣
b̄

≈
K
(

k+1∆u(b + δbrer),b + δbrer

)
−K

(
k+1∆u,b

)
δbr

≈ K(k+1∆u + (k+1)∆ubrδbr,b + δbrer)−K(k+1∆u,b)

δbr

(r = 1, 2, ...., q),

(7.15)

where δbr is a small perturbation of the rth random variable and er = {0...1...0} de-

notes the incidence vector with the rth component being 1 and the other components

zero.

Once Eqs. (7.11)-(7.13) are solved, one obtains the first-order and the second-order
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approximate mean values of the incremental displacements, as shown in Eqs. (7.16)

and (7.17), respectively:

E1(
k+1∆u) =k+1 ∆u, (7.16)

E2(
k+1∆u) =k+1 ∆u +k+1 ∆u2. (7.17)

The mean value of the total displacements at time step (k + 1) reads:

E(k+1u) = E(ku) + E(k+1∆u). (7.18)

The first-order approximation for the covariance/ variance of the nodal displace-

ments can also be obtained using the solutions of the perturbation equations. Par-

ticularly, the first-order approximate variance of the ith total displacements at time

step k + 1 is

Var(k+1ui) = Var(kui)+

q∑
r,s=1

(k+1∆ui
br

k+1∆ui
bs +2kui

br

k+1∆ui
bs)Cov(br, bs). (7.19)

Using the above expressions as in Eqs. (7.18) and (7.19), the mean value and the

variance of the total nodal displacements u at any stage can be evaluated in a

step-wise procedure.

In order to reduce the computational efforts caused by the double summations in

evaluating the terms on the right hand side of the second-order equation, the original

random variables b can be transformed into a set of uncorrelated random variables

c through the principal component transformation, as addressed in the case of linear

structures.

As shown above, for a path-dependent nonlinear system, the response moments must

be determined by an incremental procedure in consistency with the path-following

strategy employed in the deterministic finite element analysis. However, no extra

computational efforts are involved in additionally decomposing the stiffness matrix

for the solution of the perturbation equations in each loading step. Additionally, the
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perturbation equations are solved after the deterministic response analysis for each

loading step has converged and therefore do not require any convergence iterations.

In this sense, the perturbation based stochastic finite element analysis retains its

advantage to Monte Carlo simulation techniques in terms of computational efficiency.

7.2 Response moment sensitivity analysis

Sensitivity of displacement response moments

To begin with, the sensitivity analysis of the mean and the variance/ covariance of

nodal displacements with respect to design variables is first considered.

Taking the lth design variable dl as the independent variable and differentiating the

left-hand side of Eq. (7.11) with respect to dl yields

∂(k+1∆s)

∂dl

=k+1 K
∂(k+1∆u)

∂dl

+
∂(k+1∆s)

∂dl

∣∣∣∣
k+1∆u=const

, (7.20)

and

k+1K k+1∆u,dl
= k+1∆p,dl

− k+1∆s,dl
, (l = 1, 2, ..., n). (7.21)

Analogously from Eq. (7.12),

k+1K k+1∆ubr,dl
= k+1∆pbr,dl

−k+1 ∆sbr,dl
−k+1 Kbr

k+1∆u,dl

−d(k+1K)

ddl

k+1∆ubr (r = 1, 2, ..., q; l = 1, 2, ..., n).

(7.22)

The subscript following by a comma denotes partial differentiation with respect to

the design variable as in

k+1∆u,dl
≡ ∂(k+1∆u)

∂dl

. (7.23)
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Similarly as in Eq. (7.15), the total derivative in Eq. (7.22) can be calculated by

finite differences based on the first-order approximation of nodal displacements.

The first-order approximate sensitivities of the mean value and the variance of total

displacements are then expressed as

∂E(k+1u)

∂dl

=k u,dl
+k+1 ∆u,dl

, (7.24)

and

∂Var(k+1ui)

∂dl

=
∂Var(kui)

∂dl

+ 2

q∑
r,s=1

(
k+1∆ui

br,dl

k+1∆ui
bs

+ kui
br,dl

k+1∆ui
bs

+k ui
br

k+1∆ui
bs,dl

)
Cov(br, bs)

+

q∑
r,s=1

(
k+1∆ui

br
∆ui

bs
+ 2kui

br

k+1∆ui
bs

) ∂Cov(br, bs)

∂dl

,

(7.25)

where the last term in Eq. (7.25) results from the dependence of the parameter

variability upon the design variable.

Evaluation of moments and their sensitivities for a general-

ized performance function

Consider a structural performance functional f defined as an explicit function of the

nodal displacements u, random variables b and the design variables d:

f = f(u,b,d) . (7.26)

Expanding the functional f in a Taylor series about b̄, the mean value of the random

variables, and truncating the series at the linear terms, one obtains the first-order

approximate mean and variance of f , as

E(f) ≈ f(u,b,d) , (7.27)
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Var(f) =

q∑
r,s=1

(
∂f

∂u

∣∣∣∣
b̄

ubr + f̄br

)(
∂f

∂u

∣∣∣∣
b̄

ubs + f̄bs

)
Cov(br, bs) . (7.28)

By including the second-order terms in the Taylor series, the second-order approxi-

mate mean of f can be given by the expectation

E(f) = f +
∂f

∂u

∣∣∣∣
b̄

u2 +
1

2

q∑
r,s=1

(
ut

br
Hf (u)ubs + 2

∂fbr

∂u

∣∣∣∣
b̄

ubs + f brbs

)
Cov(br, bs),

(7.29)

where the vector u2 comprises the sum over the incremental steps of the second order

corrections to the mean incremental displacements, Hf (u) is the Hessian matrix of

f with respect to u. The derivatives of f can be easily obtained since f is an explicit

function of displacement and random parameters.

Differentiating Eqs. (7.27) and (7.28) with respect to the design variable dl, one

obtains the first-order approximate sensitivity of the mean and variance of the per-

formance function f , respectively

∂E(f)

∂dl

≈ ∂f

∂u

∣∣∣∣
b̄

ū,dl
+ f̄,dl

, (7.30)

and

∂Var(f)

∂dl

≈
q∑

r,s=1

2

(
∂f

∂u

∣∣∣∣
b̄

ubr + f br

)(
ut

,dl
Hf (u)ubs +

∂f,dl

∂u

∣∣∣∣
b̄

ubs

+
∂f

∂u

∣∣∣∣
b̄

ubs,dl
+

∂fbs

∂u

∣∣∣∣
b̄

u,dl
+ f̄bs,dl

)
Cov(br, bs)

+

q∑
r,s=1

(
∂f

∂u

∣∣∣∣
b̄

ubr
+ f̄br

)(
∂f

∂u

∣∣∣∣
b̄

ubs + f̄bs

)
∂Cov(br, bs)

∂dl

. (7.31)

Similarly as in the case of response moment analysis, the computational efforts

involved in sensitivity analysis of response moment can be also reduced notably by

using transformed uncorrelated variables.
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7.3 Numerical examples

Stochastic analysis and robust optimum design of a planar

ten-bar truss structure with material and geometrical non-

linearity

The method has been tested on the exemplary case of a well-known planar ten-

bar cantilever truss structure shown in Fig. 7.1. Two steadily increasing forces

of magnitude p applied vertically at nodes number 3 and number 5 induce large

displacements in the truss. The material is assumed to be elastic–plastic with the

yield stress being 250.0 and the stress–strain relationship in the linear elastic and

the plastic hardening range reading

dσ =

 1.0× 104dε (|ε| ≤ 0.025)

(250.0/ε)dε (|ε| > 0.025).

The mass density of the material is ρ = 1.0.

(1) (2)

(5)

(4)(3)

360

5y

(6) 36
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2 64

p p3y
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Figure 7.1: The planar ten-bar truss
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The horizontal position of node number 4, denoted by x4, the elastic moduli EI

(for bars 1,2), EII (for bars 3,4), EIII (for bars 5,6), EIV (for bars 7,8,9,10) and

the cross-section areas of the bar members are considered as random variables with

the following mean values, standard deviation or coefficient of variation (COV):

E(x4) = 360.0, σ(x4) = 20.0, E(EI) = E(EII) = E(EIII) = E(EIV) = 1.0 × 104,

σ(EI) = σ(EII) = σ(EIII) = 3.0 × 102, σ(EIV) = 1.0 × 103, E(Ai) = 5.0 (i =

1, 2, ...10), COV(Ai) = 0.05, (i = 1, 2, ..., 6), COV(Ai) = 0.1 (i = 7, 8, ..., 10).

Figure 7.2: The mean and the standard deviation of the nodal displacement v5

To examine the accuracy of the stochastic analysis method set forth, the results

for the second-order means and first-order standard deviations of the vertical nodal

displacement v5 and maximum member stress for various values of p are shown in

Fig. 7.2 and Fig. 7.3, where 10 equidistant incremental loading steps are considered.

For comparison, results from synthetic Monte-Carlo sampling with 3000 realizations

are also presented. It is seen from the figures that the numerical results obtained

with the present method are in good agreement with those of the Monte-Carlo

simulations. The deviations in the variance may arise because the present approach

neglects the accumulated scatter in the geometry.

The results for the sensitivity of mean value and standard deviation of the quantity

v5 with respect to the cross-section area of bar number 5 are shown in Fig. 7.4.

For comparison, the results obtained with finite difference approximations, where

Monte-Carlo sampling with 3000 realizations is used for stochastic analysis, are also
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Figure 7.3: The mean and the standard deviation of the maximum member stress

shown in Fig. 7.4. As seen from Fig. 7.4, though the disparity of displacement sen-

sitivity results between the present method and Monte-Carlo simulations increases

to some extent as higher external loads are applied and much stronger nonlineari-

ties are induced, the results still agree well with those obtained with Monte-Carlo

simulations. This indicates that the proposed method works better when moderate,

respectively structural nonlinearities are present.

Figure 7.4: Sensitivity of mean and standard deviation of displacement v5
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The design objective in this example problem is to minimize the vertical dis-

placement v5 at node number 5, under the loading condition p = 1000.0. A

structural weight constraint E(w) ≤ 1.8 × 104 and member stress constraints

(E(|σi|) − 400)/σ(σi) ≤ −3 (i = 1, 2, ..., 10) are imposed in this problem. The

design variables are the mean cross-section areas of the bars with lower and upper

bound limits 0.05 ≤ Ai ≤ 10.0 (i = 1, 2, ..., 10).

Table 7.1: Optimal solutions for the ten-bar truss

Des. var. Init. (Determ.) α = 0 α = .25 α = .5 α = .75 α = 1.0

A1 4.00 (9.14) 9.54 8.34 7.15 6.73 6.19

A2 4.00 (0.05) 0.05 0.05 0.58 0.60 0.81

A3 4.00 (8.83) 8.02 7.83 7.98 7.89 7.76

A4 4.00 (6.05) 4.92 4.82 4.21 3.61 3.13

A5 5.00 (0.05) 0.31 0.27 0.05 0.05 0.05

A6 5.00 (0.05) 0.05 0.05 0.54 0.61 0.78

A7 4.00 (4.07) 4.80 4.93 5.54 5.65 5.75

A8 4.00 (7.61) 6.90 7.30 6.85 7.26 7.21

A9 4.00 (6.54) 7.42 7.96 7.46 7.51 7.45

A10 4.00 (0.05) 0.05 0.06 1.01 1.15 1.70

E(f) 92.35 (56.30) 59.30 59.62 61.68 62.66 64.51

σ(f) 6.13 (3.53) 3.76 3.55 3.38 3.30 3.27

E(w) ×104 2.16 (1.80) 1.80 1.80 1.80 1.80 1.80

The optimal solution obtained with different weighting factors α in the design desir-

ability function are shown in Table 7.1, where α = 0 corresponds to the stochastic

mean value minimization and α = 1.0 to the purely variance minimization problem.

For the sake of comparison, the deterministic optimum (nominal values, no random-

ness) is also presented, but it results in a violation of the stress constraints (for

instance, the mean and standard deviation of the member stress for the 7th bar are

375.3 and 40.0, respectively, such that (375.3-400)/40.0 > -3). The stochastic mean

value minimization design exhibits a standard deviation of the objective function

σ(f) = 3.76, which is reduced to σ(f) = 3.27 for the most robust design (α = 1).

At the same time, the mean value increases from E(f) = 59.30 to E(f) = 64.51,
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respectively. By setting different values of the weighting factor α in the desirability

function, Pareto optima with a trade-off between the two conflicting sub-objectives

are obtained. The results show that robust design (α > 0) indeed diminishes the

variability of the demanded structural performance. It is worth noting that the

optimal solution obtained in the robust design may suggest a different topology of

the truss than the optimum for mean response (α = 0) if the bars assuming minor

values of cross-section area are removed. This underlines the fact that additional

members help improve the structural robustness.

Robust optimum design of an elastoplastic 25-bar space truss

structure under non-monotonic loading

The nodal displacement minimization problem of a elastoplastic 25-bar truss, as

shown in Fig. 6.2 is considered here. The design variables are bar cross-section

areas. Using the design variable linking technique, six design variables are defined.

The nodal coordinates and the member grouping information are given in Tables 6.3

and 6.5, respectively. The material in the bars is assumed to be elastoplastic and

isotropic hardening, with the stress–strain relationship for the elastic and hardening

deformation as represented in Fig. 7.5. Following the loading path depicted in

Fig. 7.6, four nodal forces with magnitude p1x = p2x = 750, p1y = p2y = 3000

are ultimately imposed at nodes number 1 and number 2. Additionally, forces with

random values are applied to the nodes number 3 and 6 along the x-direction in the

same manner.

ET

σs

σs

ET

E

σ

 

=1.0e3

ε

E=1.0e6
=5.0e5

ρ=0.1

Figure 7.5: The elastoplastic material property
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Figure 7.6: The loading history

Table 7.2: Random variables for the 25-bar truss

No. Variable Mean Standard deviation COV

1-5 EI, EII, EIV, EV 1.0× 106 2.0× 104

6 EIII, EVI 1.0× 106 1.5× 105

7 p3x 750 75

8 p6x 750 75

9-14 AI ∼ AVI 0.05

In this example, the nodal forces applied at the nodes number 3 and 6, the elastic

moduli and the cross-section areas for the grouped bars are considered as random

variables with mean values and standard deviations resp. coefficients of variation

as shown in Table 7.2. In the design problem, the nodal displacement of the first

node along x−direction u1 is to be minimized and the structural weight constraint

E(w) ≤ 850, the nodal displacement constraints on the second node E(u2) ≤ 0.4 and

E(v2) ≤ 0.4, the lower and upper bounds of design variables 0.05 ≤ Aj ≤ 10.0 (j =

I,II,...,VI) are to be observed.

The deterministic optimum and the optimal solutions for different values of the

weighting factor α are listed in Table 7.3. The mean values and the standard devi-

ations of the objective function for the Pareto optima obtained are depicted in Fig.

7.7. Compared with the mean value minimization solution (α = 0), the standard

deviation of the structural compliance is notably decreased in the robust solutions

(α > 0), which means a remarkable improvement in robustness of the design.
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Figure 7.7: Objective function values of the Pareto optima for the 25-bar truss

Table 7.3: Optimal solutions for the 25-bar truss

Des. var. Init. (Determ.) α = 0 α = .25 α = .5 α = .75 α = 1

AI 2.000 (0.050) 0.050 0.539 0.915 1.050 1.108

AII 2.000 (4.706) 4.650 4.168 4.042 3.841 3.648

AIII 2.000 (4.090) 4.161 3.691 3.708 3.608 3.558

AIV 2.000 (0.050) 0.050 0.058 0.091 0.177 0.141

AV 3.000 (1.435) 1.437 1.506 1.524 1.610 1.694

AVI 3.000 (4.109) 4.108 4.698 4.687 4.697 4.674

E(f) (×10−1) 4.254 (1.076) 1.076 1.407 1.490 1.552 1.607

σ(f) (×10−1) 0.403 (0.509) 0.510 0.182 0.166 0.162 0.161

Robust optimum design of an antenna space structure with

large deformation

The algorithm is applied to the design optimization problem of the antenna structure

as shown in Fig. 6.6 where geometrical nonlinearity resulting from large deformation

is encountered. The structure is subjected to quasi-static wind loads inducing large

nodal displacements, which cause the loss of shape accuracy as well as pointing
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accuracy of the reflection surface. The finite element model of the antenna consists

of a complex truss structure extending in three-dimensional space, which is covered

by a membrane skin, as depicted in Fig. 6.6. The uncertain parameters having

major effects are considered as uncorrelated random variables, among which are

five random variables for the elastic moduli of the grouped bar members, one for

the elastic modulus of the skin material, and four for the spatial distribution of

the skin thickness. The mean values of the elastic moduli are 7.1 × 1010 N/m2

and the coefficients of variation are 0.1 for all the random quantities. The design

variables considered are the skin thickness t and the cross-section areas A1, A2,

A3, which correspond to the bars supporting the skin along perimetric, radial and

skew direction, respectively. The design objective is to minimize the maximum

displacement in the radial direction at the upper edge of the antenna structure under

the constraint of total structural weight E(w) ≤ 350.0 kg. The optimum solutions

corresponding to different values of the weighting factor α are listed in Table 7.4.

Compared with the initial design and the mean value minimization design (α = 0),

a more robust design is obtained when the weighting factor α is given the value of

0.5 or 1.0, where the standard variation of the concerned displacement is remarkably

reduced.

Table 7.4: Optimal solutions for the antenna structure

Des. var. Lower Upper Init. α = 0.0 α = 0.5 α = 1.0

A1 (×10−6m2) 10.00 25.00 15.00 13.30 25.00 25.00

A2 (×10−6m2) 10.00 25.00 15.00 13.62 18.47 19.15

A3 (×10−6m2) 10.00 25.00 15.00 12.53 18.63 18.08

t (×10−3m) 2.00 3.50 2.80 3.02 2.68 2.65

E(w)(kg) / 350.0 331.5 350.0 350.0 350.0

E(f) (×10−3m) / / 102.7 87.28 90.56 91.27

σ(f) (×10−3m) / / 7.4 6.9 5.9 5.8
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7.4 Discussions and remarks

It can be expected that the structural performance variability may become more

significant for structures exhibiting nonlinear properties. Therefore, it might be

of particular importance to take the design robustness into consideration in the

optimization of nonlinear structures. In this chapter, the basic idea of the robust

design method presented in the previous chapter is extended to the path-dependent

nonlinear problems.

The nature of path-dependent response implies incrementation of the loading pro-

cess. The proposed procedure for stochastic finite element analysis and sensitivity

analysis is consistent with the incremental path-following strategy employed in the

deterministic analysis. The incremental scheme, however, raises the issue of sta-

bility and accuracy. The method employed here makes use of explicit integration,

which is particularly sensitive to the step size. Implicit integration, known to be

less sensitive, must be employed in association with iterative solution techniques

that complicate the computational algorithm and the theoretical exposition [89]. It

should be of interest to extend step size considerations familiar from deterministic

response analysis to the solution of mean and variance, which has not been the

objective of the present study, however.

Incrementation enters the algorithms also at a different point, since the derivatives

of the tangent stiffness matrix with respect to the random variables are computed

by a finite difference approximation where analytical computing schemes are not

available. In order to ensure accuracy in the computational examples, the quality

of the approximation has bee studied for a varying increment size of the random

variables. In this connection, the step sizes adopted in the finite difference approx-

imations appeared not to have significant influence on both the response and the

sensitivity analysis for a reasonable range of values. This statement refers to the

range from 0.1% to 1% of the design variable intervals resp. the standard deviations

of random parameters.



Chapter 8

Robust design of inelastic

deformation processes

Concurrent engineering characterized by an integration between design and manu-

facturing raises the need for studying process robust design. In this chapter, the

perturbation-based stochastic finite element analysis and the robust design opti-

mization of deformation processes of inelastic solids are developed. The proposed

method is applied to the design of an extrusion die for robustness with respect to

friction variability, and to a workpiece preform design problem.

8.1 Introduction

In a number of industrial forming processes, particularly in bulk metal forming op-

erations such as hot extrusion and forging, elasticity has not an appreciable effect on

the deformation. Under this aspect an elastic material constituent can be neglected,

and the deformation process is modeled as inelastic in the numerical simulation

based on the viscous, viscoplastic or plastic constitutive approach to the material

behaviour. Elasticity may nevertheless be of importance in determining the stress

state in the solid [90].

Deformation processes often involve random uncertainties in several parameters,

such as loading conditions, material properties, boundary conditions, and geomet-

rical dimensions. For instance, friction is one significant source of uncertainty in

the modeling of metal forming processes. The actual friction coefficient frequently
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exhibits large scatter about the nominal value due to variation of the actual manu-

facturing conditions such as the surface roughness and the lubricant condition. The

deformation process in concern may reflect the variability of the parameters to an

extent inducing undesirable effects on the product quality. The concept of process

robust design, aims at reducing such a variability without eliminating the source of

uncertainties by seeking a design that is less sensitive to the scatter of the system

parameters.

Perturbation based stochastic finite element analysis has been extended recently

to the variability analysis of forming processes. Sluzalec [91], and Grzywinski and

Sluzalec [92] presented stochastic finite element analysis of rigid-viscoplastic and

rigid-thermo-viscoplastic deformation. The authors adopt the second-order pertur-

bation technique for the incorporation of system uncertainties into the finite element

equations. However, the perturbation equations are derived based on linearized

matrix expressions in which the implicit dependence of the system matrix upon

the velocity field is neglected. Doltsinis [89] presented a theoretical formulation of

perturbation based stochastic analysis for deformation processes of viscous solids.

Thereby, both the geometry and other random variables at the current instant are

considered as random input, which enables the formalism to account consistently

for random variables evolving during the course of the deformation.

In engineering practice, a variety of requirements may be imposed on the design

of deformation processes of solids. For example, an important issue in the design

of an extrusion die is the pressure distribution in the workpiece material. In a

different task, the preform design, the initial shape of the workpiece material is to

be determined in such a way that a final product with the desired material state and

geometry is achieved. Conventional process design techniques usually employ trial-

and-error procedures or approaches based on the Design of Experiments (DOE),

such as Taguchi’s robust design methodology. The developed state of computer

process simulation and of engineering optimization, enables cost effective conception

of industrial forming processes by computer aided design.

In the literature, much work is reported on the optimal design of forming processes,

but rarely addressing non-deterministic optimization. Studies on process design in

metal forming under deterministic assumptions can be found in the papers by Byon

and Hwang [93], Badrinarayanan and Zabaras [94], Antonio et al. [95], Doltsinis

and Rodic [30]. Non-deterministic design optimization has been employed by Kok

and Stander [96] for the optimal design of a sheet metal forming process.
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In the present study, the perturbation equations for the first-order approximate mean

and variance of the process state variables (velocity and geometry) are presented on

full account of the non-linearity of the problem, for both steady-state and non-

stationary conditions [97]. In the latter problems, an iteration scheme based on the

secant operator is given for the solution of the perturbation equations. The robust

design of the forming process is stated as a multi-criteria optimal design problem and

is solved using optimization techniques in conjunction with the stochastic moment

analysis. To illustrate the applicability of the proposed technique, two numerical

examples of robust design in industrial forming processes are given, one regarding

the die design in steady-state extrusion, and the other referring to a preform design

problem.

8.2 Quasi-static deformation of inelastic solids

8.2.1 Constitutive law

For an isotropic inelastic material the constitutive equation relating the deviatoric

stress σ
′
ij and deformation rate e′ij is

σ′ij = 2µe′ij, (8.1)

where µ(ē), the viscosity coefficient, is stated as a function of the equivalent defor-

mation rate

ē =

(
2

3
e′ije

′
ij

) 1
2

. (8.2)

Equation (8.1) formally covers rigid-plastic solids as well in which elastic effects are

discarded. In such a case the coefficient µ is obtained as

µ =
σf(ε̄)

3ē
. (8.3)

In the above, σf denotes the flow stress of the material as a function of the accumu-

lated equivalent strain

ε̄ =

∫ t

0

ēdt. (8.4)
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For rigid-viscoplastic materials the flow stress in Eq. (8.3) obeys a relationship of

the form σf(ε̄, ē) that accounts for deformation rate effects in addition to strain

hardening [98].

The complete stress reads

σij = σ′ij + σHδij, (8.5)

where σH, the mean normal stress, defines the hydrostatic part and δij is the Kro-

necker delta.

The deformation rate

eij = e′ij + eVδij, (8.6)

is assumed isochoric, such that the volumetric part

3eV = eii (8.7)

strictly vanishes. Here the Einstein convention of summing over the repeated indices

is used.

In a penalty approach to incompressibility the volumetric deformation rate supplies

the hydrostatic stress as

σH = 3(λV µ)eV, (8.8)

the pseudo constitutive parameter λV being a penalty factor, which relaxes the

strict isochoric condition. It has to be chosen from the numerical point of view in

compliance with the physics of the problem.

On the body surface, it is assumed that the boundary conditions can be described by

prescribed normal stress, prescribed velocity or by contact conditions in conjunction

with Coulomb friction. According to the Coulomb’s friction law, the friction shear

stress is expressed by a relation of the form

τc = −C |σn|
∆vt

|∆vt|
, (8.9)

where C denotes the friction coefficient, σn is the normal stress, and ∆vt the sliding

velocity (tangential velocity difference) at the contact point.

The contact conditions are treated using a suitable penalty method extending over

a kinematic approach to friction [99], which is effective on the system matrix for
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enforcing the non-penetration constraints and eventually sticking.

The following addresses problems where material parameters, friction coefficients,

and boundary conditions may exhibit scatter.

8.2.2 The equilibrium equations and computational aspects

After spatial discretization of the solid by finite elements, the equilibrium condition

during the course of an inelastic deformation process with random uncertainties can

be presented as the vector equation

r(v,x,b) = s(v,x,b)− p(t,x,b) = 0, (8.10)

which refers to nodal point quantities. The vector x denotes the geometry, v the

velocity, r, s, p are the residual vector function, the internal force vector and the

vector of the applied loads, respectively. The vector b collects the discretized random

variables describing stochastic input such as material properties, friction coefficients

and load parameters. It is assumed independent of the solution of the evoluting

deformation problem. In view of the material constitutive law, the internal force

(stress) vector can be presented as

s = D(x,v,b)v. (8.11)

where D is the material viscosity matrix comprising the effect of contact as by

the penalty approach. In the following elucidation of the background, or primary

algorithm employed for the numerical process simulation the random variables in

the vector b are considered frozen, resp. they represent a single realization of the

input.

Steady-state problems

For steady-state problems, Eqs. (8.10) and (8.11) assume the form:

r(v,b) = s(v,b)− p(b) = 0, (8.12)

and
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s = D(v,b)v. (8.13)

Equation (8.12) that governs the velocity can be solved iteratively by the modified

Newton-Raphson method based on the secant operator D from Eq. (8.13):

D(k)∆v(k+1) = r(k+1), (8.14)

and

v(k+1) = v(k) + ∆v(k+1). (8.15)

Alternatively, Eq. (8.12) can be solved by the Newton-Raphson method with the

tangential operator DT of the system, which is given by the derivative of the internal

force vector s with respect to the velocity vector v:

DT =
∂r

∂v
=

∂s

∂v
. (8.16)

Non-stationary problems

In the numerical simulation of the non-stationary process, the equilibrium condition,

Eq. (8.10) is considered at distinct instants as

r(cv, cx,b) = s(cv, cx,b)− p(ct, cx,b) = 0, (8.17)

and the deforming geometry cx is advanced incrementally according to the time

integration scheme

cx(b) = ax(b) + (1− ζ)τ av(b) + ζτ cv(b), 0 ≤ ζ ≤ 1. (8.18)

The superscript c marks the quantities at the current instant ct and the superscript

a stands for those at the previous instant at, the beginning of the incremental time

step, τ is the time increment and ζ is the collocation parameter specifying the time

integration. For the implicit time integration scheme, we have ζ > 0.

Equation (8.17) can be solved for the velocity by the modified Newton-Raphson
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method similar to Eq. (8.12) using the decomposition of the viscosity matrix

D(cx, cv,b) appertaining to the current solution state. Alternatively, the method

can be applied in the original form, in which the correction to the velocity at the

(k + 1)th iteration step is computed with the tangential operator derived for the

deforming system

D̃T =
∂(cr)

∂(cv)
+

∂(cr)

∂(cx)

d( cx)

d( cv)

= DT + ζτ KG, (8.19)

where KG, accounts for changes of the internal force induced by geometry variations

at constant velocity [100]:

KG =
∂(cs)

∂(cx)

∣∣∣∣
cv

. (8.20)

It differs therefore from the geometric stiffness matrix of elastic structures, which is

taken at constant stress. In Eq. (8.19) additional contributions arise if the applied

load is actually geometry dependent and are covered by the so-called load correction

matrix.

In both the modified Newton method and the original Newton Raphson method, the

contact forces are updated from the previous iteration during the solution process

and added to the internal forces s. The iteration process is continued until the

convergence criterion measured by the mean quadratic norms for the residual forces

or for the velocity corrections for the current instant is achieved.

8.3 Stochastic finite element analysis of inelastic

deformation processes

8.3.1 Steady-state problems

It is observed that the equation governing the steady-state viscous problem resembles

that for the static finite element analysis of structures with nonlinear elasticity,

except that the unknowns are the velocities but not the displacements. Therefore,
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with reference to the actually random input vector b the perturbation technique

used in the stochastic analysis of nonlinear elastic structures can be applied also

to the steady-state problems of viscous solids. In what follows, the perturbation

equations for the first order approximate mean value and variance are derived with

similar procedures as in the formulation of the stochastic finite element analysis of

structures [85].

The nodal velocity v, the internal force s and the external force p are expanded

via first-order Taylor series about the mean value of the q random variables in the

vector b = E(b):

v(b) = v +
dv

db

∣∣∣∣
b

∆b + ..., (8.21)

s(v,b) = s +

(
DT

dv

db

∣∣∣∣
b

+
∂s

∂b

∣∣∣∣
b

)
∆b + ..., (8.22)

and

p(b) = p +
dp

db

∣∣∣∣
b

∆b + ..., (8.23)

where an over-bar denotes that the corresponding quantities are evaluated at b, for

instance the internal force

s = s
(
v(b),b

)
= D

(
v(b),b

)
v = Dv. (8.24)

Substituting Eqs. (8.22) and (8.23) into Eq. (8.12), collecting the terms of the

same order, and with Eq. (8.24) we obtain the following zeroth-order and first-order

perturbation equations :

Zeroth-order equation:

s
(
v(b),b

)
= Dv = p , (8.25)

First-order equation:
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DT
dv

db

∣∣∣∣
b

=
dp

db

∣∣∣∣
b

− ∂s

∂b

∣∣∣∣
b

. (8.26)

Equation (8.25) is solved for the velocity vector v = v(b) as usually, Eq. (8.26)

for the q columns ∂v/∂br|b of the derivative matrix dv/db|b . It is observed that

in the first-order equation the tangential operator of the velocity problem appears,

which suggests to base the zeroth-order solution on the original Newton–Raphson

iteration. If the solution algorithm for the primary analysis employs the secant

matrix D, however, the first-order equation should also be based on the secant

operator and requires then an iterative technique as outlined subsequently for the

non-stationary case.

By definition, the mean value and the covariance of the nodal velocity v are expressed

as

E(v) =

∫ ∞

−∞
v fPDF(b)db, (8.27)

and

Cov(vi, vj) =

∫ ∞

−∞
( vi − vi)( vj − vj) fPDF(b)db, (8.28)

where fPDF(b) is the joint probability density function of the random vector b, vi

is the ith degree of freedom of v.

Substituting Eq. (8.21) into Eqs. (8.27) and (8.28), the first order approximate

mean value and the covariance matrix of the nodal velocities are expressed using the

solutions of the perturbation equations as:

E(v) ≈ v, (8.29)

and

Σv ≈
dv

db

∣∣∣∣
b

Σb
dv

db

∣∣∣∣t
b

. (8.30)
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8.3.2 Non-stationary problems

For the stochastic finite element analysis of non-stationary viscous deformation pro-

cesses, the situation becomes more complicated due to the evolutionary geometry

during the deformation process. In order to reveal the history-dependence of the

non-stationary deformation process, perturbation based stochastic finite element

analysis must be formulated in consistency with the time integration procedure of

the background, or primary process simulation.

Therefore, the geometry is considered as an implicit variable depending on the ran-

dom input rather than an independent random variable. The process variations

caused by the geometry variations are accounted for by tracing the dependence of

the velocity field upon the updated geometry and the derivatives of the accumulated

deformation with respect to the random variables.

The state of the solid at instant ct is governed by Eq. (8.17 ) along with Eq. (8.18 )

for the incremental transition. It is assumed that the random input variables b do

not evolve in the course of the deformation process.

The first-order Taylor series expansion of the internal force vector s and the external

load vector p about the mean b yields

s(cv, cx,b) = cs +

(
DT

d( cv)

db

∣∣∣∣
b

+ KG
d( cx)

db

∣∣∣∣
b

+
∂( cs)

∂b

∣∣∣∣
b

)
∆b + ...,(8.31)

and

p(b) = cp +
d( cp)

db

∣∣∣∣
b

∆b + .... (8.32)

To not complicate the formal presentation, the applied loads are assumed to not

depend on the deforming geometry.

The first-order Taylor series expansion of the velocity cv about the mean value of

the random variable b reads

cv(b) = cv +
d( cv)

db

∣∣∣∣
b

∆b + ..., (8.33)



8.3 Stochastic finite element analysis of inelastic deformation processes 111

and analogously for geometry

cx(b) = cx +
d( cx)

db

∣∣∣∣
b

∆b + .... (8.34)

Differentiating Eq. (8.18) for the incremental transition with respect to b, the

derivative of the current geometry cx with respect to the random input vector be-

comes

d( cx)

db

∣∣∣∣
b

=
d( ax)

db

∣∣∣∣
b

+ (1− ζ)τ
d( av)

db

∣∣∣∣
b

+ ζτ
d( cv)

db

∣∣∣∣
b

. (8.35)

Utilization in Eq. (8.31) furnishes

s(cv, cx,b) = cs +

(
(DT + ζτKG)

d( cv)

db

∣∣∣∣
b

+ KG
d( ax)

db

∣∣∣∣
b

(8.36)

+ (1− ζ)τKG
d( av)

db

∣∣∣∣
b

+
∂( cs)

∂b

∣∣∣∣
b

)
∆b + ....

Substituting Eqs. (8.32) and (8.36) into Eq. (8.17) and equating terms of the same

order, the zeroth-order and the first-order perturbation equations are obtained as

follows.

Zeroth-order equation:

s(cv, cx,b) = D cv = cp, (8.37)

First-order equation:

(DT + ζτKG)
d( cv)

db

∣∣∣∣
b

= −KG
d( ax)

db

∣∣∣∣
b

− (1− ζ)τKG
d( av)

db

∣∣∣∣
b

− ∂( cs)

∂b

∣∣∣∣
b

+
d( cp)

db

∣∣∣∣
b

. (8.38)

Equation (8.37) for the velocity is conveniently solved using the secant matrix D

in the iteration. In contrast, the solution of Eq. (8.38) requires the geometric

stiffness matrix KG as well as the system tangential matrix DT. Therefore, an

alternative first-order equation is derived with reference to the secant form of the
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internal force: s = D(x,v,b)v. The expansion about the mean random input can

then be symbolized as

s(cv, cs,b) = D cv +

(
D

d( cv)

db

∣∣∣∣
b

+

(
d(D cv)

db

∣∣∣∣
v

)
b

)
∆b + ..., (8.39)

where the notation |v indicates that the explicit dependence of the internal force

s on the velocity v is discarded and thus the differentiation applies to the implicit

appearances of the velocity in D(x,v,b) due to non-linearity in the constitutive law.

While the above leaves the zeroth-order equation unchanged, the appertaining first-

order form is

D
d( cv)

db

∣∣∣∣
b

= −
(

d( cs)

db

∣∣∣∣
v

)
b

+
d( cp)

db

∣∣∣∣
b

. (8.40)

Solving Eq. (8.40) rather than Eq. (8.38) is preferable from the computational

perspective of the primary simulation algorithm. In this context, dcv/db| b can be

determined using the following iteration strategy:

D
d( cv)

db

∣∣∣∣(k+1)

b

= −
(

d( cs)

db

∣∣∣∣
v

)(k)

b

+
d( cp)

db

∣∣∣∣
b

. (8.41)

In Eq. (8.41), the first term on the right-hand side is approximated using a finite

difference scheme. To be specific

(
d( cs)

dbr

∣∣∣∣
v

)(k)

b

=

(
d(D cv)

dbr

∣∣∣∣
v

)(k)

b

≈ ∂( cs)

∂br

∣∣∣∣
b

+
D
(

cx + (δcx)(k), cv + (δcv)(k),b
)

cv −D
(

cx, cv,b
)

cv

δbr

,

(8.42)

where δbr is the small difference imposed on the rth random variable br, (δcx)(k)

and (δcv)(k) represent the associated geometry change and the velocity change cal-

culated with the velocity derivative obtained from the last iteration, respectively, as

expressed by
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(δcx)(k) =

q∑
r=1

(
d( ax)

dbr

∣∣∣∣
b

+ (1− ζ)τ
d( av)

dbr

∣∣∣∣
b

+ ζτ
d( cv)

dbr

∣∣∣∣(k)

b

)
δbr, (8.43)

and

(δcv)(k) =

q∑
r=1

d( cv)

dbr

∣∣∣∣(k)

b

δbr. (8.44)

It should be noticed at this place, that the operations with the system matrix in Eqs.

(8.39) and (8.42) stand merely for a transparent symbolic, but the computations

actually take place on the element level.

Since the coefficient matrix has been decomposed in the primary analysis, the solu-

tion of Eq. (8.41) requires only back- and forth substitutions. It is worth noticing

that the computation converges if ζτ is sufficiently small. As shown by numerical

investigations, solutions which are accurate enough for practical applications can be

obtained after a few iterations in most cases. At this point we recall that the original

form, Eq. (8.38) offers a direct solution for the first-order terms, and is favoured

if the zeroth-order solution by the primary analysis algorithm bases on the tangent

operator for the velocity system given in Eq. (8.19 ).

After solving the perturbation equations, one gets the first order approximations for

the mean velocity and the mean geometry

E(cv) ≈ cv, (8.45)

and

E(cx) ≈ cx. (8.46)

The first order covariance matrix of the velocity, and of the geometry are obtained

as

cΣv ≈
d( cv)

db

∣∣∣∣
b

Σb
d( cv)

db

∣∣∣∣t
b

, (8.47)

and
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cΣx ≈
d( cx)

db

∣∣∣∣
b

Σb
d( cx)

db

∣∣∣∣t
b

. (8.48)

The approximate covariance matrix of the geometry is completely determined by

Eq. (8.48). In order to show the involvement of historical terms in the incremental

transition, however, use of Eq. (8.35) gives

cΣx ≈ aΣx + (1− ζ)2τ 2 aΣv + ζ2τ 2 cΣv + 2(1− ζτ)
d( ax)

db

∣∣∣∣
b

Σb
d( av)

db

∣∣∣∣t
b

+2(1− ζ)ζτ 2 d( av)

db

∣∣∣∣
b

Σb
d( cv)

db

∣∣∣∣t
b

+ 2ζτ
d( ax)

db

∣∣∣∣
b

Σb
d( cv)

db

∣∣∣∣t
b

.

(8.49)

Equation (8.49) indicates the evolution of the geometry covariance matrix.

8.4 Robust design of deformation processes

8.4.1 Optimization for process robust design

The process robust design is cast into an optimization problem:

find d,

minimizing f̃ = (1− α)f1 (E(u), E(v),d) /η1 + αf2 (σ(u), σ(v),d) /η2,

subject to gi (E(u), E(v), σ(u), σ(v),d) ≤ 0 (i = 1, 2, ..., k) ,

dL ≤ d ≤ dU, (8.50)

where d is the vector of design variables, dL and dU denote the lower and upper

bound limits of the design variables, f1 and f2 represent the objective functions

related to the mean and the standard deviation of the system state variables (defor-

mation and velocity field), respectively, gi (i = 1, 2, ..., k) are the constraint functions

regarding the mean and the variability of the performance. The desirability function

f̃ is defined as a weighted sum of the two objective functions, with 0 ≤ α ≤ 1 being

the weighting factor. The two quantities η1 and η2 are prescribed normalization

factors.
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Compared with the conventional, deterministic formulation, the variability of the

system response is involved in the design objective of the robust design. The op-

timization problem stated in Eq. (8.50) is solved with the optimization package-

FSQP, where the sensitivity of the objective function and the constraints with re-

spect to the design variables are evaluated with the finite difference method imple-

mented in the package.

8.4.2 Numerical examples

Die design for steady-state extrusion

As a numerical example, the die profile design for the extrusion process described

in Fig. 8.1 is considered. The extrusion speed is v = 10 mm/sec. The die profile is

represented as a B–spline curve, specified by four control points (P1–P4) on it. Since

the hydrostatic pressure is known to be one of the most important factors regarding

the defects of the final product, the vertical positions of the four control points

are to be determined, such that the maximum level of the hydrostatic pressure in

the material is minimized. Assuming symmetry, one half of the problem domain is

discretized with quadrilateral plane strain elements in the interior and line elements

along the contact boundaries, as shown in Fig. 8.1.
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Figure 8.1: Design of extrusion die (Dimensions in mm)
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Table 8.1: Random variables for the extrusion die design problem

Random variables Mean value Standard deviation

µ [Mpa s] 120.0 12.0

C 0.3 0.03

The material is assumed linear viscous. The random variables for the present prob-

lem are the material viscosity µ and the coefficient of Coulomb friction C between

the die and the workpiece material. Their mean values and standard deviations are

collected in Table 8.1.

In the initial design, where the shape of the die profile is a straight line segment,

the mean value of the maximum hydrostatic pressure is E(pmax) = 108.72 Mpa and

its standard deviation amounts to σ(pmax) = 15.81 MPa. The distribution of the

mean hydrostatic pressure is shown in Fig. 8.2. This result has been verified by

a Monte Carlo simulation with 300 realizations, by which the mean value and the

standard deviation of hydrostatic pressure at the same location are predicted to

be p̄max = 105.5 Mpa and s(pmax) = 15.82 MPa. The computational time is 12.7

seconds for the present method and 3059.4 seconds for the Monte Carlo simulation,

respectively.

As a reference design, the optimum corresponding to the conventional deterministic

optimization statement is first obtained (see Table 8.2), where the design objective is

to minimize the value of the maximum hydrostatic pressure based on nominal input

values. An optimal solution obtained by the developed robust design algorithm is

also listed in the table. The distribution of the mean hydrostatic pressure for the

two designs is given in Fig. 8.3 and Fig 8.4.

Table 8.2: Objective function values for the optima of the extrusion die design

Objective function Initial Determ. Robust

E(pmax) [MPa] 108.72 86.65 87.71

σ(pmax) [MPa] 15.81 12.83 9.33

The results show that the variability of the maximum hydrostatic pressure has been

reduced using the robust design methodology. At the same time the mean value

increases only slightly in conjunction with the employed objective function f̃ =

(1− α)E(pmax)/η1 + ασ(pmax)/η2, where η1 = 108.72, η2 = 15.81 and α = 0.9.
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Figure 8.2: Hydrostatic pressure distribution for the initial design

Figure 8.3: Hydrostatic pressure distribution for the design with nominal values

Axisymmetric metal preform design problem

In the metal preform design, it is of practical interest to find an appropriate work-

piece shape that will produce the required profile of the final product after forging

(Fig. 8.5).

In this example, the optimal shape of the workpiece material is to be determined

such that the shape requirements on the final product will be satisfied as in Fig.

8.6. The height of the initial workpiece is 600 mm. A constant die speed of 100
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Figure 8.4: Hydrostatic pressure distribution for the robust design

v

initial

after forging

Figure 8.5: The geometry before and after forging
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mm/sec is imposed for a 50% reduction. The shape of the final product is required

to be a cylinder with 300 mm in height and 100 mm in radius. Stating the problem

symmetric with respect to midlength the upper half of the workpiece is modeled with

10 × 10 quadrilateral axisymmetric elements. The 11 boundary nodes (P1–P11) of

the initial mesh are the control points determining the workpiece profile and their

horizontal positions are considered as the design variables.

The material of the workpiece is AISI 8260 steel. The rate-dependence of the ma-

terial properties is considered by the flow stress which at the temperature of about

1100 oC is given by

σf = 75.92 ē0.134 (1.275− 2.5× 10−4T ) MPa,

where T is the temperature of the workpiece.

The coefficient of friction between the workpiece and the tool C and the operation

temperature T are assumed to be random variables, with mean values and standard

deviations as given in Table 8.3.

Figure 8.6: The workpiece and the prescribed contour of the final product (upper
half)

The shape error of the final product is measured by the distances between the actual

radial positions of the control points and the prescribed value, as expressed by

∆ri = ri − r∗ (i = 1, 2, ..., 11),
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Table 8.3: Random variables for the preform design problem

Random variables Mean value Standard deviation

T [oC] 1100.0 110.0

C 0.2 0.02

where ri = 0ri + ui (i = 1, 2, ..., 11) are the final positions of the control points and

r∗ the prescribed radius of the final product.

As an initial design, a cylindrical workpiece geometry is considered with a radius

of 70 mm. For this design the numerical simulation of the process with 10 time

incremental steps predicts that the upper edge of the workpiece has both, the max-

imum shape error and the maximum variability in the deformed geometry. The

mean value and the standard deviation of the final displacement at this point are

E(u) = 8.93 mm and σ(u) = 1.528 mm, associated with max[|E(∆ri)|] = 21.07 mm

and max[σ(∆ri)] = 1.528 mm. The initial shape of the workpiece and the final

product are shown in Fig. 8.7 . The perturbation results are verified by a Monte

Carlo simulation with 300 realizations. The Monte Carlo simulation furnishes a

mean value ū = 9.11 mm and the standard deviation s(u) = 1.552 mm for the nodal

displacement of the upper edge. As regards the computation, the average time for

the Monte Carlo simulation amounts to 237.5 seconds, whereas perturbation based

analysis is performed within 8.2 seconds.

For the nominal design, which is based on mean input values an optimal solution

is obtained by seeking the set of initial control point positions that minimize the

maximum absolute shape error max(|∆ri|). The appertaining objective function is

f̃ = max[|E(∆ri)|].

Such a design is shown in Fig. 8.8. With the maximum mean shape error

max[|E(∆ri)|] = 0.202 mm, this design yields almost exactly the final shape as pre-

scribed, but it exhibits a maximum standard deviation max[σ(ui)] = 0.601mm,

however.

In order to seek a more robust design of the initial geometry of the workpiece, which

will reduce the shape variability of the final product with respect to the actually
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Figure 8.7: Workpiece and final product for the initial design

Figure 8.8: Workpiece and final product for the design with nominal values
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random input, a term relating to the boundary shape variations is introduced into

the objective function. Thus the objective function is defined as

f̃ = (1− α) max[|E(∆ri)|]/η1 + α max[σ(∆ri)]/η2,

where η1 = 21.07, η2 = 1.528.

The Aggregate Function method [101] is employed to improve the convergence of the

optimization. To this end, an exponential penalty function is used to approximate

the Min-max objective function, regarding the mean, for instance,

max[|E(∆ri)|] =
1

p
ln

(
11∑
i=1

ep |E(∆ri)|

)
,

where p is a given large number.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Weighting factor α

m
ax

[|E
(∆

r i)|]
  (

m
m

)

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

0.65

m
ax

[σ
(∆

r i)]
  (

m
m

)

max[|E(∆r
i
)|]  (mm)

max[σ(∆r
i
)]    (mm)

Figure 8.9: Maximum absolute value of mean and maximum standard deviation of
the distance ∆ri (i = 1, 2, ..., 11) versus the weighting factor α
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Table 8.4: Objective function values for the optima of the preform design

Objective function Initial α = 0 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9

max[|E(∆ri)|] [mm] 21.07 0.202 0.232 0.256 1.094 1.864 1.912

(MCS) (20.89) (0.152) (0.241) (0.282) (1.121) (1.820) (1.869)

max[σ(∆ri)] [mm] 1.528 0.601 0.596 0.588 0.530 0.488 0.487

(MCS) (1.552) (0.664) (0.654) (0.653) (0.579) (0.538) (0.531)

A set of robust designs is obtained by solving the modified optimization problem with

different weighting factors. The values of the objective function for these designs

are listed in Table 8.4. The results of Monte Carlo simulations (MCS) are also given

for comparison. In the table, the case of α = 0 corresponds to the aforementioned

nominal design. In the robust design optima (α > 0), the shape accuracy of the final

product is still satisfactory, but the maximum standard deviation of the deformation

of the controls points has been reduced. One of these robust designs obtained with

α = 0.5 is shown in Fig. 8.10.

Figure 8.10: Workpiece and final product for the robust design with α = 0.5

In this specific problem, the robust design results reveal that the shape variability

of the product can not be significantly diminished beyond the optimal design that

uses nominal input parameters. While the nominal design does not care about the
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variability, it has improved also the robustness. For this reason the shape variability

of the final product can not be notably reduced by adjusting the initial shape of the

workpiece. This is an explorative result of the employed design methodology.

8.5 Discussions and remarks

The chapter describes the extension of the stochastic perturbation technique to

the optimum design of robust deformation processes of inelastic solids. To this

end, the perturbation method for the finite element analysis of the evolving process

is developed and enters the optimization procedure for robust design. The latter

compromises the requirements on mean value and variance resp. standard deviation

of the objective function that measures the performance of the deformation process.

Accordingly, the optimum of the expected outcome and its variability depends on

the functional relationship between these two quantities. The proposed methodology

has been demonstrated by two applications from metal forming: one referring to the

steady-state of an extrusion operation, the other to the deformation process as it

evolutes in upsetting.

The methodology developed for the stochastic analysis of the deformation process

adapts the perturbation technique to the simulation algorithm available in the Fi-

nite Element Programming System (FEPS) [90][82][83]. The simulation algorithm

employs the secant operator resp. the viscosity matrix of the system in solving the

momentary velocity problem in conjunction with an incremental scheme for the ad-

vancement of the deformation process with progressing time. On this background,

since tangent operators are not provided by the system, the mean of the stochastic

response is not approximated but to the first order. The numerical results obtained

show, however, a fairly good agreement with the outcome of alternative Monte Carlo

simulations. For the same reason, the computational tools available for the primary

process simulation, the procedure employed for the optimum robust design utilizes

the finite difference options offerred in the optimization package FSQP [81] for the

computation of the sensitivity of the objective function. An optimization that makes

use of analytical sensitivity expressions, instead, should improve the computational

efficiency, and is planned as an extension of the present work.

In the formulation of the stochastic analysis for deformation processes, the current

geometry at each instant can also be treated as random input, as proposed in [89].

Such a formulation is capable of treating random variables evolving during the course
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of the deformation but requires the computation of the derivatives of the nodal

velocities with respect to the geometry, which may become awkward and inefficient

for practical applications. The present method considers random input variables that

are invariant with time. The random variation of the geometry, however, is traced

using the derivatives the accumulated deformation with respect to the random input

variables at each time increment.

In the simulation algorithm, the contact conditions are treated with the penalty

method, so is the constraint of incompressibility. Thus the problem arises of a trade-

off between the model accuracy and the numerical stability in the solution especially

for the first-order perturbation equations. Though larger penalty factors will impose

more accurate incompressibility and contact conditions, they may cause numerical

difficulties depending on the computer arithmetics. Particularly, in case of a too large

penalty factor for the contact conditions, the loss of computational accuracy will

occur in the evaluation of some derivative terms when the finite difference method is

used. Moreover, the first order perturbation equations are seen to be more sensitive

to an ill-conditioned system matrix as compared with the original, zeroth order, finite

element equations. Therefore, particular care is required in selecting the penalty

factors in order to avoid possible numerical difficulties. In the present study, a

penalty factor of 102 − 103 for the incompressibility constraint is recommended in

conjunction with the computer accuracy of 16 digits. The choice of the penalty

factor for the contact conditions relies on the norm of the viscosity matrix. The

numerical investigations indicate that a value of 106 − 108 is appropriate for the

situations considered.





Chapter 9

Summary and outlook

9.1 Summary

Structural optimization has experienced a significant progress in the past twenty

years and is now commonly used in engineering design. The conventional determin-

istic design optimization may lead to a design which perform well under specified

conditions. However, the stochastic nature of the structural parameters raises the

need of accounting for the system variations in the optimal design problem. In par-

ticular, robust design has become a recent subject in the structural optimization

research.

In the present treatise, the current state of research on structural optimization con-

sidering uncertainty is first reviewed and conceptual differences between the struc-

tural robust design and other non-deterministic structural optimization approaches

are revealed. In reliability based design optimization problems, assumptions on the

probability distribution must be made if data for the statistics of the random pa-

rameters are insufficient. It has been reported that this may yield large errors in

computations of the probability of failure, which diminishes the validity of this ap-

proach. To overcome this drawback when information about the uncertainties is not

available or not sufficient to permit a reliability analysis, alternative approaches have

been developed within the context of convex modeling, interval set and fuzzy set.

As another formulation of the design optimization problem with uncertainty, robust

design is conceptually different from the well developed probabilistic approaches

(e.g. reliability based design optimization) and possibility approaches (e.g. Fuzzy

set method) since it puts more emphasis on reducing performance variability.
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The structural robust design problem is formulated as a multi-criteria optimization

problem, in which not only the mean structural performance function but also its

standard deviation is to be minimized. An alternative statement is also presented,

where a merit function accounting for the costs associated with the variability (such

as the tolerance) of the design parameter is introduced. The robustness of the

constraints are accounted for by introducing the standard deviation of the original

constraint function and a so-called feasibility index into the constraint conditions.

The larger the feasibility index is set, the more robust the feasibility of the corre-

sponding constraint condition is required to be. The present formulation requires no

priori assumptions on the distribution types of the random uncertainties, and makes

use of only the first two statistical moments, which are much easier to obtain.

For scalarization of the proposed multi-criteria optimization for structural robust

design, a weighted convex sum of the two design criteria is used to form the objec-

tive or desirability function. In this way, the two-criteria optimization problem is

converted into a scalar minimization problem, whose optimal solution corresponds

to a Pareto solution of the original optimization problem. The weighting factor of

the desirability function defines the relative importance of each sub-criterion. By

changing the weighting factor, one obtains a set of trade-off solutions - the Pareto

solution set so as to allow the decision-making task easier for the designer.

The stochastic structural analysis techniques including the Monte Carlo simulation

and the second-order perturbation based stochastic finite element analysis are dis-

cussed. The latter is used for evaluating the mean value and the variance of the

structural response in the robust design problem. The perturbation based approach

is also extended to the stochastic analysis of path-dependent structures, in accor-

dance with the incremental scheme used for the corresponding deterministic analysis.

Furthermore, the moments sensitivity analysis for structural performance functions

are developed based on the perturbation based stochastic finite element analysis.

This sensitivity information is used in the gradient based optimization algorithms

for solving the robust design optimization problem.

The feasibility of the presented method has been demonstrated by numerical ex-

amples, involving both static and transient, linear and path-dependent nonlinear

structural behaviours. As shown by the obtained results, in the robust optimization

problems where the mean value as well as the variance of the structural perfor-

mance functions are accounted for, the optimal design may yield different design

parameter or even different structural topology as in the case of a deterministic op-

timization formulation. The Pareto optima of the numerical examples also revealed
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that the decrease of the variance of the structural performance is often obtained at

the penalty of worsening its expected value. However, the solution of the robust

design optimization problem provides the possibility for the designers to choose a

feasible structural design from the set of Pareto solutions obtained with different

weighting factors in the objective function.

In the last part of the treatise, the method for the robust design of processes is devel-

oped. The perturbation technique is used for the stochastic analysis of the inelastic

deformation process, where an iterative algorithm based on the secant operator is

employed for solving the perturbation equations. Numerical examples regarding two

typical industrial forming processes are specifically addressed. The obtained results

show the potential applicability of the proposed method for the robust design of

industrial forming.

Though the robustness of the design needs to be strengthened in structural opti-

mization problems, the importance of conventional design optimization techniques

should not be underestimated in practice. As a matter of fact, our case studies

reveal that the conventional deterministic optimization does improve to some extent

the robustness of the design as well in most problems. In this sense, the investiga-

tions actually support the conventional optimality and the proposed robust design

method can in some cases be regarded as a procedure to examine the relevance,

which provides the designer a deeper insight into the optimal solutions of the design

problem. For the same reason, the technique of robust structural optimization was

developed with the intention to extend the applicability of the techniques used in

conventional deterministic optimization by incorporating system uncertainties.

9.2 Outlook

In the present stage of the work, we have gained more understanding of the structural

optimization problems considering system uncertainty. The importance of account-

ing for design robustness in such problems is highlighted through the present study.

It is also shown that the conventional optimization techniques, in conjunction with

the stochastic structural analysis methods, can be extended to the robust design

problems. Within the present framework of structural robust design, the stochastic

analysis techniques and the optimization techniques developed in this research pro-

vide a foundation for future studies. The following remarks are made with regard

to continuation of extent of this research.
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– The present study focuses on local optima of the structural robust design

problems. The global optimal design for such problems is an interesting and

challenging target as well. Using the perturbation based approaches described

in the literature or developed in this work as an analysis tool, the global

optimization techniques such as Genetic Algorithm and Simulated Annealing

can be employed for this purpose.

– The robust design of deformation processes of solids as encountered in metal

forming or in the safety task of crashworthiness, requires considerable com-

putational effort. It might be of interest to combine the use of midrange or

global approximate model such as response surface model with the developed

optimization techniques in order to obtain cost effective optimal designs.
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