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Abstract

The knowledge of dynamical characteristics of a flight vehicle is necessary for the control
system design and realization of high fidelity flight simulators. The development of a flight
mechanical model and determination of its basic components, as for example mass properties
and the major aerodynamic terms, addresses a complex process involving various analytical,
numerical and experimental techniques.

The objective of this dissertation is a determination of the basic dynamical characteris-
tics of a research airship from the flight data. In order to achieve this objective a system iden-
tification approach is used. As the modern identification methodology requires a coordinated
treatment of tasks from multidisciplinary areas, such as modelling, parameter estimation
methods, instrumentation and flight maneuver definition, within this research framework
these topics are studied and extended with regard to the airship example.

The dynamic modelling consists of two parts. The first part is devoted to derivation of
the nonlinear flight mechanical model of the airship. It incorporates the classical laws of
newtonian mechanics used for derivation of equations of motion. In addition, the airship spe-
cific properties, like buoyancy force and the unsteady aerodynamic effects, are included in
the equations of motion. In the second part, the linearized longitudinal and lateral-directional
models are introduced. Investigations of stability and controllability under different flight
and configuration conditions are performed. The important parameters of the linearized mod-
els are then utilized in the parameter estimation.

For determining the model parameters statistical estimation methods are considered.
Their choice is motivated by airship operational properties and limitations posed by the used
instrumentation system. A particular emphasis is made on the algorithm that incorporates the
Kalman filter to obtain parameter estimates in the presence of process and measurement
noise. The process noise is used to model the uncommanded forcing function, mainly caused
by atmospheric disturbances. The measurement noise is caused by the distortions of mea-
sured channels.

A valuable effort in this research framework is devoted to the design of experiments.
This includes a realization of the onboard data acquisition system and definition of flight
maneuvers. The conventional methods used in the aircraft field are accommodated for the
experiment design.

Application of the used methodology to the flight data has shown a very good trajec-
tory matching between the model and the real airship responses. It verifies the adequacy of
the selected identification methodology for determining the dynamical characteristics of the
airship from the flight data.
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Identifizierung der flugdynamischen Eigenschaften eines Luftschiffes aus
Flugmessdaten

Die Kenntnis der flugdynamischen Eigenschaften von Fluggeräten ist notwendig für den
Entwurf von Systemen zur Flugregelung und zur Realisierung von Flugsimulatoren. Die
Erstellung eines flugmechanischen Modells und die Bestimmung von Modellkenngrößen,
wie z.B. Masse, Trägheitsmomente und aerodynamische Parameter, erfordern umfangreiche
analytische, numerische sowie experimentelle Arbeiten.

Das Ziel der vorliegenden Dissertation ist die Bestimmung von flugdynamischen
Eigenschaften eines Luftschiffes aus Flugmessdaten durch Verfahren zur Systemidentifika-
tion. Die Vorgehensweise bei modernen Verfahren zur Systemidentifikation erfordert die
Formulierung und Lösung von multidisziplinären Aufgaben. Dazu gehört die Erstellung
eines flugmechanischen Modells, die Wahl der geeigneten Parameteridentifikationsalgorith-
men, die Entwicklung des Onboard-Messsystems und die Definition von Flugmanövern. In
dieser Arbeit wird diese Vorgehensweise auf ein Forschungsluftschiff angewendet.

Die Modellbildung besteht im wesentlichen aus zwei Teilen. Im ersten Teil wird das
nichtlineare flugmechanische Modell des Luftschiffes entwickelt. Zur Bestimmung der
Bewegungsgleichungen werden die physikalische Zusammenhänge der klassischen Mecha-
nik und die spezifischen Eigenschaften von Luftschiffen, wie z. B. die aerostatische Verdrän-
gungskraft und Effekte aus der instationären Aerodynamik wie scheinbare Massen,
verwendet. Der zweite Teil konzentriert sich auf die lineare Approximation der Luftschiffdy-
namik. Dazu werden die Bewegungsgleichungen linearisiert und die Längs- und Seitenbewe-
gung entkoppelt. Dann werden die klassischen Stabilitäts- und Steuerbarkeitseigenschaften
bei verschiedenen Flug- und Konfigurationszuständen untersucht. Die wichtigsten Deriva-
tiva des linearen Modells werden in der folgenden Parameteridentifizierung bestimmt.

Die Identifizierung der Derivativa basiert auf statistischen Verfahren, deren Auswahl
anhand der Flugeigenschaften des Luftschiffes und des verwendeten Onboard-Messsystems
getroffen werden. Ein Schwerpunkt dieser Arbeit ist die Implementierung und Anwendung
eines kalmanfilterbasierten Algorithmus, dessen wesentlicher Vorteil die Möglichkeit der
Parameterschätzung mit Prozeß- und Messrauschen ist. Dem Prozessrauschen entsprechen
die unkommandierten Bewegungen des Luftschiffs aufgrund atmosphärischer Störungen,
dem Messrauschen Störungen in den Sensorsignalen.

Ein wichtiger Teil der Arbeit betrifft die Erstellung der experimentellen Testumgebung.
Dazu gehören die Hardware des entwickelten Onboard-Messsystem und die Auswahl von
geeigneten Flugmanövern. Die bekannten Flugmanöver zur Identifizierung der Dynamik von
Starrflüglern werden für die Anwendung am Luftschiff angepasst.
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Die Vorgehensweise für die Identifizierung der linearen Luftschiffmodelle zeigt eine
sehr gute Übereinstimmung zwischen dem realen Flugverhalten und dem Modellverhalten
des Luftschiffes. Der gewählte Ansatz zur Systemidentifizierung eignet sich somit gut für die
Bestimmung der flugdynamischen Eigenschaften des Luftschiffs aus Flugmessdaten.
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Chapter 1

Introduction

1.1   Motivation

The beginning of the twentieth century has started the era of airships. The airship is a flight
vehicle that gets its buoyancy from the presence of a Lighter-Than-Air gas. One of the great-
est contributions to the airship’s history was made by a german inventor Ferdinand Graf von
Zeppelin (1838-1917). He proposed a rigid structure dirigible that became known as the zep-
pelin. Zeppelins had transported people worldwide at velocities which could not be achieved
by other transportation means. However, as the technology of other types of transportation
developed, airships became too slow. The era of airships ended in the year 1921 as the “Hin-
denburg” dramatically crashed.

Nowadays, the interest in Lighter Than Air systems revives as the technology has
reached its new level in safety and reliability. Currently, there are many activities worldwide,
engaged with designing and building modern technology helium airships. There are also new
demands on transportation which cannot be satisfied by conventional aircraft. The static
buoyancy property of the Lighter Than Air vehicles has generated a number of concepts to
utilize these systems as a flying crane or as a semi-stationary station for communication and
observation services. However, this raises a question: has the current level of technological
achievements reached a point where the utilization of modern airships are economically fea-
sible? The answer to this question should be given with time by trying out different applica-
tion areas where the airships can be helpful.

Germany is probably the most airship inspired country, where the spirit of Zeppelins is
still very strong. At the University of Stuttgart at the Institute of Static and Dynamics of
Aerospace Constructions, a research team has built a solar powered airship “Lotte” [35]. Its
construction was required for two reasons. First, it was necessary to prove that an airship can
be driven by solar energy only. Second, a prototype airship would be a perfect object for ver-
ifying theoretical investigations made by researchers in this field. Hence, the fifteen meter
long airship “Lotte” illustrated in Figure 1.1 is an object of study for several research groups
from different institutes at the University. Among them, the Institute of Flight Mechanics and
Control plays one of the key roles. Its major goal is to perform an autonomous flight opera-
tion of “Lotte“.
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Figure 1.1: Research airship “Lotte” during test flight

In order to carry out the autonomous flight mission of the airship, the development of a
flight management and control system is obligatory. A vision for this approach was in utiliz-
ing a classical flight control system methodology and synthesis techniques to the control sys-
tem design of the “Lotte” airship. In this approach, several prerequisites should be fulfilled.

The baseline requirement for designing the flight control system is an extensive knowl-
edge of the flight dynamics of the vehicle. It incorporates a development of an appropriate
flight mechanical model, which represents a set of input-output relations.

An important step in developing the flight mechanical model is the model verification.
The model should adequately describe the airship dynamics, and if not, it should be adapted
in terms of its structure and internal parameters to obtain it. Several systematic approaches
can be utilized for the model verification. Among them, the aerodynamic verification is of
the primary importance, since the aerodynamic uncertainties are the most dominant. The
aerodynamic verification is usually performed using numerical computations of the fluid
dynamics (CFD) and a variety of wind tunnel experiments. However, performing only aero-
dynamic verification of the model, one can not guarantee that the complete model will be
adequate to the dynamics of the flight vehicle.

Apart from the aerodynamic verification, there are other methods available, which
allow the model adjustments to be obtained directly from flight experiments. These methods
are based on system identification theory and extensively utilized in practice. This disserta-
tion examines an application of the system identification for the determination of the
dynamic characteristics of the “Lotte” airship from flight experiments. Throughout this the-
sis, a better insight into the system identification problem and its application to the real prac-
tical problem will be introduced.
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1.2   System Identification: An Overview

The system identification is commonly referred to as the inverse problem and postulated as
“given the answer, what was the question” [45]. From the basic diagram illustrated in Figure
1.2, one observes that system identification is the field of modelling of physical processes
based on experimental data. 

Figure 1.2: Fundamental concept of system identification

The system identification has grown to a separate topic of the control theory and the
examples of its successful utilization can be found in many areas of practical applications.
These are the cases, where a verification of some mathematically described phenomena from
the experimentally derived data is required. A more expanded formulation of the identifica-
tion problem is given in [65]:

“ Identification is the determination of the basis of input and output, of a sys-
tem within a specified class of systems, to which the system under test is
equivalent”.

From this definition it follows that several items contribute to the identification process: the
input-output data, a model or set of models and a rule or criteria for model estimation.

• The input-output data is usually collected during an identification experiment, which is
designed to produce measured data with maximal information content about the
involved process. Hence, for acquiring the input-output data, the measurement instru-
mentation is required. The measurements should indicate the reaction of the system to
input signals.

• The model is the key item in the identification process. Within extensive theoretical
explorations, an a priori knowledge should be extensively applied and a number of
compromises made, so that the model is simple and distinct from one side, and to be
able to adequately describe the behavior of the physical plant from the other. The
model may be presented as a set of candidate models. Among them, there are several
families of models: the black-box models, the grey-box models, and the models with a
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predefined internal structure [39]. The black-box models do not use any prior knowl-
edge of physical relationship between input and output. The grey-box model is some
extension of the black-box class, where some a priori relations are involved in the pro-
cess, but physical interpretation of the problem is still missing. Both the black-box and
grey-box models are commonly utilized in cases where the “curve-fitting” is important
and not the physical interpretation. Apart from the two previously mentioned models,
those with a predefined internal structure are of primary interest in engineering appli-
cations. They require a physical insight about the process to be modelled and are,
therefore, more preferable in general. The models with a defined structure determine a
family of parametric models, where adjustable parameters specify the essential charac-
teristics of the physical process. If the parametric model is specified, the original sys-
tem identification problem narrows to the parameter identification problem.

• When the input-output data is available and the model has been selected, a rule accord-
ing to which the model fits the data should be defined. In the parameter identification,
where parametric models are utilized, a criteria is used for parameter estimation.
Parameter estimation, being an integral part of system identification can be easily for-
mulated as a classical optimization problem.

All above described items are basic elements, which appear in any identification problem. In
many cases, where the need exists to model the physical phenomena of the process, the prob-
lem of parameter identification is of major interest.

1.3   System Identification in Flight Mechanics

The problem of system identification has been extensively utilized in flight mechanics.
Flight mechanics, being a field of aerospace engineering, is focused on the motion of a flight
vehicle. The main objectives of flight mechanics are based on specification and modelling of
dynamic characteristics of the vehicle. The dynamic characteristics are mainly derived from
the Newtonian laws of mechanics, which suppose the motion of the vehicle (rigid body)
caused by action of externally applied forces. A classification of the external forces and
moments is typical for any flight vehicle. These are aerodynamic, propulsive, gravity forces
and, if the vehicle belongs to a class of Lighter Than Air (LTA) systems, also the static buoy-
ancy forces. In derivation of the flight mechanical model, the system identification procedure
is used as a tool for updating the aerodynamic database [12], [44].

1.3.1 Historical Overview and Current State of the Art

The first attempt to apply parameter estimation principle to a flight vehicle was performed by
Norton and Warner in 1919 [63]. The scope of their investigation was the determination of
aerodynamic parameters from various flight maneuvers, flown at certain airspeeds. They uti-
lized a basic idea of equating the lift force to the weight of the test aircraft and drag to the
thrust force, assuming that weight and thrust were known for the test aircraft.
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The evolution of system identification applied to flight vehicles has been continuously
expanding. The following sections distinguish some research groups that have contributed
greatly to the application of system identification on flight vehicles. In addition, a current
state of airship system identification will be presented.

Experience at NASA

The experience gained at NASA has the strongest influence on today’s methodology of the
flight vehicle system identification. Scientific potential governed at NASA by studying vari-
ous types of flight vehicles is very high. Evaluations made at Aimes and Dryden Flight
Research Centers have considered a whole spectrum of flight vehicles starting from remotely
controlled scaled models up to estimation of hypersonic dynamics of reentry space vehicles
[16]. With evolution of aircraft and other flight vehicles, the new requirements on system
identification have been posed. For example, the estimation of aircraft aerodynamic parame-
ters at high angles of attack has been performed by implementation of the extended Kalman
filter into the parameter estimation algorithm [17]. Additionally, estimation of aircraft
dynamics in presence of turbulence is performed [15]. These, and many other system identi-
fication problems have been examined and successfully solved at NASA.

Experience at DLR

The “Deutsches Zentrum für Luft und Raumfahrt” (DLR) has been extensively utilizing sys-
tem identification as a tool for validating flight mechanical and aerodynamic models for a
variety of flight vehicles since 1960. Many research activities have been devoted to the prob-
lem of system identification. Today’s identification efforts are made on estimating the
dynamics of an aircraft at stall regimes and extracting aerodynamic coefficients at high
angles of attack. Additional focus is concentrated on identifying nonlinear models of aircraft
[21].

Other Research Activities on Aircraft System Identification

Today many researchers utilize the system identification approach for validating different
types of models. Recent developments have considered different modifications on existing
identification algorithms, applying them to special problems where common identification
methods fail. There are, for example, a number of evaluations that concern identification of
different aircraft models using neural networks [13], [56]. Others devote their efforts to solv-
ing problems, where numerical computation problems are dominant, e.g. singular and sparse
matrices, discontinuity in the process dynamics, difficulties in evaluating numerical gradi-
ents [3], [22], [30].

Articles Related to the Airship Identification

Although a number of references exist devoted to dynamic response models for the LTA
vehicles, there are few examples where a comparison of the analytical models versus actual
flight data is performed. Some results on this area are reported in [23], where the stability
derivatives of the Skyship-500 are determined from the flight data using the frequency



6 Chapter 1    Introduction

domain fitting. However, until now no common approach for identifying airships is available
and therefore it is an attractive area for research activities.

1.3.2 Unified Approach to Flight Vehicle System Identification

In recent years the problem of flight vehicle system identification led to a consolidated meth-
odology (Quad-M ), which has been proposed by a research group from the German Aero-
space Center (DLR) and illustrated in Figure 1.3. The topology of the Quad-M  methodology
is tightly related to the basic definition of the system identification problem as pointed out in
section 1.2 and contains four basic elements, namely: Maneuvers, Measurements, Models
and Methods.

Maneuvers

The maneuvers are related to the selected flight vehicle maneuvering procedure. The control
inputs should be designed to provide maximum sensitivities of the vehicle reactions on the
unknown parameters.

Measurements

The measurement part of the Quad-M  diagram is responsible for instrumentation used in the
identification process. Measurements, delivered by variety of measurement units should
track both the input controls and the vehicle’s reaction on the given input. The quality of the
overall identification process is strongly influenced by the accuracy of the measurement
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Figure 1.3: Unified Quad-M approach of flight vehicle system identification [18].



Chapter 1    Introduction 7

equipment. The flight data, collected during experiments are further evaluated in order to
provide consistency of measured quantities from various sensors [25].

Model

Similarly to the general definition of the system identification problem, the model part plays
a central role in the flight vehicle system identification. As pointed out, the basic equations
are derived from the Newtonian laws of mechanics. Structural interconnection of the model
is usually predefined and some a priori information extensively used as indicated in Figure
1.3 as external inputs to the model. The a priori information contains for example databases
derived from wind tunnel experiments or upper-lower bounds on the parameters according to
their physical interpretation. The flight vehicle system identification utilize linearized as well
as nonlinear model realizations for parameter determination.

Methods

There are many approaches for estimating the parameters of dynamic systems that are pres-
ently available in flight vehicle system identification. Their application is based on analysis
of input-output behavior in both time and frequency domains. In the past decade however,
with the increased computation capability of modern computers, the focus has changed from
frequency domain to time domain analysis [12]. The time domain analysis addresses more
preferable advantages on the parameter estimation problem. They follow from the ability to
apply an optimal state estimation using optimal (e.g. Kalman) filters. Additional benefit is
acquired from the recent possibilities of estimating moderate nonlinear models from experi-
mental data [21]. On the other hand, the frequency domain methods work well in determin-
ing parameters of unstable linear systems and in estimation of a time periodic (helicopter)
dynamics [22]. There are also a number of realizations that are capable of performing param-
eter estimation in real time scale (online identification) [61]. Every estimation method has
particular advantages and disadvantages over the others. There is no direct answer to the best
method, its choice is dictated by the engineering anticipation of the problem. This knowledge
should be governed by an assumption made on the functionality of the flight vehicle under
test and the ability and accuracy of the measurement instrumentation.

Validation Phase

An additional important issue in the identification methodology is the model validation (see
the bottom of the Quad-M diagram). Model validation is the process of testing whether the
estimated model is sufficiently accurate for the intended purposes of its use. Here, several
answers should be given [51]. First of all, it is necessary to specify if the estimated model is
in agreement with the adopted a priori knowledge of the flight vehicle (internal verification).
The next question to answer is whether the model can provide an acceptable fit in experi-
ments, where input-output data sequences have not been used in model estimation (external
validation or cross-validation). Some indirect aid to the validation process can be taken
directly from the statistical characteristics of estimated parameters (Cramer-Rao bounds).
Altogether, the internal verification, cross-validation and the statistical characteristics of esti-
mated parameters provide the final confidence about the quality of the estimated model.
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1.4   Objectives of the Work

This thesis considers a problem of the “Lotte” airship system identification, as a tool for
determining its dynamics from the flight data. The unified approach described in section 1.3
is used as a basis for this work, which could be further utilized for designing the flight con-
trol system.

The modern identification problem poses several objectives from different multidisci-
plinary areas. Therefore, the consequent treatment of the problems is considered in the cur-
rent workframe:

• Study of airship dynamics and derivation of identification models: The study of
airship dynamics should be based on previous work, where a closed form of a generic
airship flight mechanical model is introduced [26]. Then, derivation of simplified mod-
els, which are applicable for estimation purposes should be performed and arguments
for their selection should be made.

• Parameter estimation methods: The choice of appropriate parameter estimation algo-
rithms should be motivated by airship operation properties and tightly connected with
available instrumentation used in the project.

• Measurement hardware realization: Since the system identification approach is
based on the measured data, the availability of a measurement hardware is obligatory.
For this reason the development of an appropriate measurement system is an additional
objective of the work.

• Input design: This objective implies a selection of the control input type and shape for
providing maximum sensitivities of the airship reactions on the unknown parameters.

• Flight tests, data analysis: The availability of the Lotte airship makes it possible to
carry out the flight tests with onboard instrumentation system. The issues, associated
with the flight data postprocessing as well as estimation of the model parameters from
the flight data should be examined. Finally, the reliability of the considered identifica-
tion approach should be proved through validation tests.

1.5   Structure of the Thesis

The structure of current thesis is organized in compliance with the objectives defined for the
work. Primary, the derivation of the airship flight mechanical model is performed in Chapter
2. There the input, state and the output quantities of the model are defined and their relation
to the complete airship dynamics are concluded. After the major properties of the model are
studied, Chapter 3 discusses a subclass of linear models, based on linearization of the nonlin-
ear flight mechanical model. The corresponding analysis of stability of the linearized model
is performed. With the a priori knowledge, gained about the airship dynamics, a variety of
estimation methods are considered in Chapter 4. There, the analysis of advantages and disad-
vantages of particular estimation methods is performed. Chapter 5 is devoted to the problems
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of experiment design. It involves a discussion of the experimental part of the airship identifi-
cation project, including design of control inputs and hardware realization. Chapter 6 sum-
marizes the estimation and validation results, obtained from flight experiments performed
using “Lotte” airship. Finally, Chapter 7 summarizes the achieved results and gives direc-
tions for future research.
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Chapter 2

Airship Flight Mechanical Model

2.1   Generalized Approach to Airship Modeling

The airship dynamical model used in this work originates from that developed in [26]. It is
based on the classical flight mechanical methodology for building a flight mechanical model
[6]. The modelling of the airship dynamics is constrained on a single rigid body. This incor-
porates an utilization of principles of the Newtonian mechanics for a dynamic description of
the body motion.

There are two significant additions to the classical equations of motion of a flight vehi-
cle that should be accounted for, when considering the dynamics of the lighter than air vehi-
cle. They are characterized by:

• The buoyancy force

• Aerodynamically induced virtual mass and virtual moment of inertia effects

The buoyancy force is based on the well known principle of aerostatics. The virtual mass and
moment of inertia effects are known from the potential flow theory and arise due to the fact
that the mass of the airship is being of the same order of magnitude as the mass of the dis-
placed air [62].

2.2   Definition of Reference Frames, Motion Variables and 
Controls

2.2.1 Flight Mechanical Variables

It is common in flight mechanics to define some typical variables for describing the motion
of a flight vehicle. For this purpose several vectors that determine position, velocity, and
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rotation are introduced. The vectors are naturally described through their components as pro-
jections on the axes of a predefined frame of reference:

For indicating the relative orientation of the flight vehicle with respect to a stationary frame
the Euler angles: -Bank, -Pitch and -Yaw are defined.

If the airship moves in non-steady atmosphere with wind velocity , it is necessary
to distinguish between the flight path velocity  and the airstream velocity . The air-
stream velocity represents a relative motion of the airship with respect to the surrounding air.
The velocities ,  and  are distinguished using relation:

. (2.1)

The introduced flight path, wind and airstream velocities will further appear in determination
of external forces and moments acting on the airship. The motion variables described here, as
well as forces and moments are sufficient for describing the complete motion of an airship.

2.2.2 Basic Frames of Reference

For describing the airship motion, two main frames of reference are defined. These are geo-
detic and body-fixed frames. The geodetic frame of reference is a right-handed orthogonal
frame with index  that coincides with the geodetic coordinate system. The origin of the
frame is located near the vehicle and the -axis is aligned with the north direction and the -
axis points toward the center of the Earth. The Earth is assumed to be plain and non-rotating. 
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The other frame, the natural frame of reference for most vehicle-borne description, is
regarded to be fixed with the airship as illustrated in Figure 2.1. In the body frame of refer-
ence, all motion variables and equations of motion will be treated with index . In contrast to
aircraft models, where the body fixed reference frame is traditionally placed at the center of
mass point , the airship center of reference  coincides with the center of geometrical
symmetry of the hull. The location is chosen for two reasons. First, to simplify the computa-
tion of aerodynamic forces and moments, acting on the airship. Second, the center of mass
may significantly change its location during the flight (see 2.4.1). If the body axes were fixed
to the  point, its movement would cause the change of the body axes with respect to the
airship body and consequent change of all geometrical locations.

It is common practice to describe the motion of a flight vehicle in the flight path axes,
i.e. using the true speed , angle of attack , and the sideslip angle  instead of the linear
velocity components ,  and . In the current development however, the motion descrip-
tion was restricted by considering the body linear velocities only. Because the equations of
motion expressed in  and  variables introduce numerical singularity at the operation con-
dition at the hover mode, it is advantageous to formulate the equations using velocity compo-
nents of the body reference.

The angular orientation of the body axis system with respect to the geodetic frame
depends on the orientation sequence, which is derived by rotating the geodetic axes around
azimuthal- , elevation-  and bank-  angles respectively, as illustrated in Figure 2.2. 
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This transformation can be analytically represented by a direction cosine matrix :

, (2.2)

where the matrix  is the direction cosine matrix, which is obtained by the consolidated
multiplication of rotation matrices

, (2.3)

with

, , . (2.4)

Using equation (2.2), the transformation of a vector quantity from geodetic into body fixed
axes is possible. For this transformation also valid:

. (2.5)

2.2.3 Airship Controls

The principal control of a pilot on the examined airship is achieved by two main sources.
These are aerodynamic control and propulsion control.

The aerodynamic control is performed through the change of the effective local flow
angles made by control surfaces. The control surfaces are the attached horizontal and vertical
fins as illustrated in Figure 2.3 and can act as elevator- , rudder- and aileron- .

Figure 2.3: Aerodynamic control surfaces of the airship “Lotte”
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The propulsion control is achieved by variation of the rotation rate of the propeller. In
the hardware configuration of airship “Lotte” the propeller is located at the rear part of its
body. The axis of propeller’s rotation might be changed with respect to the airship body,
changing therefore the vector of applied thrust force (thrust vectoring). The thrust vectoring
is commonly used for maneuvering and occurs during the starting and landing phases of the
flight.

2.3   Rigid Body Dynamics

2.3.1 Equations of Motion in the Body Reference Frame

From the statement of treating the airship as a rigid body given in 2.1, the classical laws of
Newtonian mechanics can be utilized. Thus, the motion of a rigid body is characterized by
the action of external forces. By applying Newton’s Second Law, the equations of motion can
be established in terms of translational and angular accelerations as a consequence of the
external forces and moments applied to the center of mass 

(2.6)

and

(2.7)

where the operator  denotes the time derivative of a vector taken in the -geodetic
frame and expressed in the body reference frame . The vectors  and  in the right hand
side of equations (2.6) and (2.7) represent resulting vectors of all externally applied forces
and moments respectively. As the equations describe the motion of the mass center of the air-
ship, all its variables - the velocity , the inertia matrix , and the summary of exter-
nal forces and moments - are determined with respect to the  point.

From similar transformations, outlined in B.1, the equations of motion (2.6), (2.7) can
be expressed in the body reference coordinates:

, (2.8)
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with all terms expressed with respect to the center of body reference :

, ,

, (2.10)

, .

In order to combine the force (2.8) and the moment (2.9) equations together, they can
be transformed into a compact block matrix form. For this purpose the vector product terms,
where the linear  and the rotational  accelerations appear, can be equivalently expressed
by a scalar multiplication involving a skewing matrix and a vector

(2.11)

where the  multiplier denotes the skewing matrix. Applying these substitutions into
equations (2.8) and (2.9) and rearranging terms, the general equation of motion yields:

(2.12)

The form of the equation (2.12) represents a state space realization of the nonlinear differen-
tial equation. Its state vector is comprised of the motion variables, i.e the linear  and the
rotational  velocities. The state space form of (2.12) can be suitably applied for simulation
purposes. The general equation of motion has three major components: the mass matrix, the
dynamics vector and the vector of net forces and moments. 

The mass matrix is a symmetrical matrix, where the mass, tensor of moments of inertia
and off-diagonal coupling terms are placed. Its expanded form is outlined in B.2. The dynam-
ics vector appears due to kinematic transformations and translation from mass center to the
body reference center (see also B.3).

The resulting vectors of external force  and moment  can now be closer exam-
ined. They can be separated by terms, which are classified by their physical nature. These are
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gravitational, aerostatic, aerodynamic and propulsive terms. All external forces and moments
are considered as a sum of nonlinear functions

(2.13)

where the superscript  corresponds to the aerodynamic component, -buoyancy, -grav-
ity and  indicates the thrust term.

The formulation of equations of motion derived until now, does not adopt the common
aerodynamic properties of airships. For the sake of simplicity in formulation, all major com-
ponents that appear in the equation (2.12) will be individually examined later in section 2.4.

2.3.2 Orientation and Position Equations

The equations of motion have been derived for an axis system fixed to the airship. However,
the position and orientation of the airship cannot be described relative to the moving body
axis frame, rather than related to the stationary (geodetic) frame. The orientation of the air-
ship can be defined in terms of rotational variables:

. (2.14)

In this relation the transformation matrix becomes singular for the pitch angle at values
. However, under normal airship operation, this singularity does not occur.

In order to determine the position of the origin of body reference  with respect to
the inertial reference frame, the following differential equation should be solved:

. (2.15)
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2.4   Airship Mass and External Forces and Moments

2.4.1 Mass Characteristics

Significant difference of a buoyant-like vehicle from a typical aircraft is that its mass charac-
teristics strongly depends on environmental conditions, i.e. the change of altitude :

, , . (2.16)

It follows from the fact that due to construction requirements, the pressure difference
between the surrounding atmosphere and the inner gas (Helium) should be kept as constant
as possible at each altitude level:

. (2.17)

This permanent pressure difference is required for maintaining the aerodynamic shape of the
envelope under most operational conditions. As the atmospheric pressure  changes
with the height  (see Figure 2.4), it should be compensated by the internal gas pressure. For
this purpose the envelope is equipped with two air-filled-ballonets, namely the fore- and the
aft-ballonets located inside the hull. The volume occupied by the inner gas and the ballonets,
represent the inner volume of the airship’s hull envelope and is nearly constant.

By filling the ballonets with the air, they displace the volume of the inner gas, increas-
ing the total pressure of the gas in the envelope. In general, the total mass of the airship can
be expressed by

, (2.18)

H

m m H( )= I I H( )= rCG rCG H( )=

∆P H( ) PG H( ) PA H( )– constant≈=

PA H( )
H

Altitude

Sea Level

PA H( )
H

Figure 2.4: Ballonet filling on variation of altitude H

m H( ) mG mB H( ) mR+ +=



Chapter 2    Airship Flight Mechanical Model 19

where  is mass of the inner gas,  is the total mass of air ballonets and  repre-
sents the mass of all internal components (skin, structure, energy sources, etc.). The mass of
the Helium  can be considered as constant if leakage through the hull’s skin is insignifi-
cant. The mass of all internal components  can be derived by accounting all elements of
the airship as a consolidation of point and distributed masses. The total sum of the internal
components  is assumed to be constant during the flight operation, since the “Lotte” air-
ship is electrically powered.

The volume of the ballonets depends on change of the atmospheric pressure gradient,
as denoted in Figure 2.4. At sea level where the atmospheric pressure is high, the ballonet
volume has its maximum level and reduces with the increased altitude. The atmospheric vari-
ation can be approximated by common laws of ideal gas. For determining the values of the
air pressure  and the air density , a model based on International Standard
Atmosphere (ISA) can be applied [10].

Variation of mass of ballonets also results in a change of the center of gravity  posi-
tion with respect to the body reference frame. Some results of the modelling of the mass vari-
ation against the altitude are presented in Figure 2.5. The ballonets play an additional role in
the airship operation. By filling the ballonets unequally, the variation of position of the center
mass  is obtained. Utilization of the unequal filling of the ballonets is commonly used for
airship trimming.
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Determination of the tensor of moments and products of inertia is performed analo-
gously to derivation of the mass characteristics and requires the analysis of point and distrib-
uted elements. In general, the tensor of inertia is expressed with respect to the mass center of
the airship . With the altitude variation the change of the inertia tensor should be also
considered as the mass characteristics of the airship change.

2.4.2 Gravity Terms

The external gravity force component exerts a force along the earth geodetic  axis and is
proportional to the total mass of the airship. Because the center of mass coincides with the
center of gravity  and is different to the center of the body reference , the gravity
force produces external moments about the body reference point. If the gravity force is to be
defined as

, (2.19)

then transformation from geodetic into body fixed reference frame is performed using equa-
tion (2.2):

(2.20)

The total mass of the airship and its center  should be computed under considerations
given in subsection 2.4.1 due to variations of the ballonets.

2.4.3 Static Buoyancy Effects

The static buoyancy terms are derived from a well known principle of aerostatics. The
upward buoyancy force of a body immersed into a media is equal to the weight of the dis-
placed media:

. (2.21)
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Transforming the buoyancy force into body fixed coordinates, as with the case of gravity
force, the components of the buoyancy are derived:

. (2.22)

As the shape of airship’s body remains unchanged, its displaced volume  and the center of
buoyancy  are regarded as constant. The point of the applied buoyancy force can be
determined by taking an integral of the volume distribution along the airship body axes. The
induced moment with respect to the center of reference is regarded as:

. (2.23)

It is fair to assume that for conventional airships the center of buoyancy  coincides with
the volumetric center of the hull . Hence, the offset  can be neglected and the
buoyancy moment results in a zero length vector .

2.4.4 Thrust Terms

The thrust force is generated from the reaction force of the air on the rotating propeller. Dur-
ing normal flight operation, vector thrusting is not applied. For simplicity, we can conclude
that the thrust force is attached only to the -axis of the body reference

. (2.24)

Due to the relatively small rotational rates of the main thrust engine, any effects of spinning
rotors can be neglected. Moreover, it is assumed that the aerodynamically induced rolling
moment of the stern propeller is small enough to not induce a significant aerodynamic rolling
moment around the body -axis [6]. Therefore, the induced thrust moment is a vector of zero
length, i.e.

. (2.25)

2.4.5 Airship Aerodynamics

An accurate modelling of aerodynamic phenomena that appears due to relative motion
between the flight vehicle and the atmosphere, is of primary importance in building of the
flight mechanical model. Throughout the motion of an airship, a complicated flow distribu-
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tion occurs along its body. There are number of existing studies that examine the aerody-
namic properties of airships [10], [24], [52].

Reference [26] is devoted to theoretical investigation of airship aerodynamics. As an
outcome, a closed form analytical aerodynamic model is derived. It is based on geometrical
characteristics of a conventional airship and a set of semi-empirical parameters. The model
covers a modelling of flow phenomena for steady linear and curvilinear flight, accelerated
motion, steady and unsteady winds. Important modelling issues are recapitulated in Appen-
dix B.4.

Accounting for Unsteady Aerodynamics

According to formulations derived in B.4, the aerodynamic description of an airship can be
divided onto two main terms. The first term accounts for a steady aerodynamics together
with unsteady wind influence, whereas the second term is used to describe the unsteady
motion:

(2.26)

The terms containing unsteady motion  and  represent the apparent
mass effects. They can be further rearranged to a linear form, describing translational and
rotational accelerations respectively

(2.27)

where the matrices , , ,  are derived from modelling the accelerated flow
around a rotation-symmetric ellipsoidal body using potential flow theory [36]. The common
representation of the apparent mass terms is

(2.28)

where , ,  and  are the hull’s geometry dependent coefficients- Munk factors and 
denotes the volume of the airship’s hull [60].
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Modification of Equations of Motion

Without a great effort, the derived aerodynamic part of the flight mechanical model can be
incorporated in the equations of motion. By substituting equations (2.26) and (2.27) into
(2.12) and rearranging the instationary aerodynamics terms (due to body acceleration) onto
left hand side, the original equation of motion yields

(2.29)

The apparent mass and inertia effects are regarded now as additional mass and inertia terms
and not as a part of the aerodynamic description of the model. The presented formulation of
the instationary aerodynamics as a part of the generalized mass matrix has become, mean-
while, a standard form for describing airship dynamics, as also reported in other studies [10],
[52].

Experimental Database from Wind Tunnel Tests

Together with the theoretical investigations on airship aerodynamics, the knowledge from
various experiments is also of a great importance. Therefore a group of researches from the
Institute of Aerodynamics and Gas Dynamics (IAG) of the University of Stuttgart have been
involved in determining the airship aerodynamics from wind tunnel experiments. The exper-
iments have been carried out with a scaled model of the “Lotte” airship.

The aerodynamic database was obtained as a result of wind tunnel tests and delivers a
set of stationary aerodynamic coefficients of forces

, 

and moments

, ,

measured at different angles of attack , sideslip angles  and at different levels of the con-
trol surfaces , . The main objectives were the determination of the main aerodynamic
coefficients, a detailed study of the three-dimensional boundary layer development, and
especially, the study of the flow behavior at the tail area of the model. Some results of these
experiments are illustrated in Figure 2.6. A detailed overview of the obtained results is given
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in [8] and [38]. One remarkable property of the airship aerodynamics is the positive gradient
of the pitching moment (see Figure 2.6(c)):

and hence the aerodynamic instability of the static pitching moment . Due to geometrical
symmetry of the airship Lotte in the horizontal-XY and the vertical-XZ plains, the aerody-
namic instability appears also for the static yawing moment  at .

The obtained aerodynamic database has been also utilized in [26] for fitting the analyt-
ically derived aerodynamic model with the experimental data at different levels of flow
angles, as illustrated in Figure 2.6.

Figure 2.6: Results of wind tunnel measurements and predictions of analytical aerodynamic model 
[26].
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2.5   Nonlinear Observation Equations

2.5.1 Requirements and Limitations

The basic requirement for selecting the measurement quantities is to get sufficient informa-
tion about the processes involved in the system dynamics. On the other hand, to provide
extensive information about the dynamics of the airship, all measurement quantities should
be classified by:

• Inertial measurements

• Relative airstream measurements

• Measurements of control variables

• Auxiliary measurements

All these items will be individually discussed in the following subsections.

It should be pointed out that availability and configuration of sensors pose additional
constraints on the measurement equipment. Requirements of the payload, power consump-
tion and sensor placement are the key issues that should be accepted for any flight vehicle.
Therefore, under given constraints, this section will be mainly focused on the “Lotte” spe-
cific measurement setup. The practical realization of the measurement equipment is provided
in Chapter 5. Figure 2.7 provides a schematic overview of main locations of measurement
instrumentation. Their geometric offsets from the reference center are given in Appendix A. 

2.5.2 Inertial Measurements

For measuring the inertial variables, accelerometers and rotational gyros are commonly uti-
lized. The relations describing acceleration with motion variables are similar to that used for
determination of dynamics in body reference frame and consist of the pure kinematic depen-
dencies

, (2.30)

CR

CS

CI CGPS CGPS

Figure 2.7: Main instrumentation locations of “Lotte” airship
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where  reference indicates the position of the inertial measurements.

Under assumption of the rigid body, the measured values of rotation rates and Euler
angles are the same at any point of airship:

, (2.31)

, , . (2.32)

Recent developments in satellite navigation have tremendously improved estimation
quality of 3D position and velocity for civil users. Due to this fact, the Lotte airship is addi-
tionally equipped with the GPS receiver for acquiring the inertial velocity measurements. As
the measurements are performed in geodetic frame, a transformation into body frame is
required:

. (2.33)

2.5.3 Airstream Measurements

The aerodynamic forces and moments are proportional to the relative airstream distribution
along the airship body. Hence, the availability of the airstream measurements is necessary for
determination of the aerodynamic part of the flight mechanical model.

The airstream velocity sensor should provide information about current flow velocity
and its direction at the measurement point . For aerodynamic purposes, it is preferable to
locate the airstream sensor at places where the free-stream velocities could be measured
avoiding interaction from the vehicle’s body. In the hardware setup of the Lotte airship, the
sensor is located at the end of the nose-boom  (see Figure 2.7)

, (2.34)

where  is the flight path velocity at the nose boom location

. (2.35)

2.5.4 Measurements of Control Variables

The control of the airship is obtained by variation of the control surfaces on the fins or by
variation of the thrust. Therefore, one of the important issues is the provision of measure-
ments of the controls during flight experiments. As defined in 2.2.3, the airship is controlled
by the surface deflections of fins and by the stern propeller.
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In the up-to-date hardware realization there are no measurement devices installed,
which directly indicate the state of the control surfaces and the thrust force. Pilot only com-
manded inputs could be stored by the flight recorder.

For handling the flap deflections it was possible to derive a model which accurately
approximates the dynamics of the flaps as a function of the pilot commands:

The actuator model is based on common servo actuator dynamics [4] and calibrated accu-
rately during ground base tests. Some testing results are illustrated in Figure 2.8, where the
model response has been compared with measured flap angles under different loads. Small
modelling errors of the fin actuators have a minor influence in the overall identification pro-
cess and hence have been ignored here.

Modelling the thrust dynamics is a much more elaborate process in comparison to that
of the fin dynamics. The complex dynamics of thrust force depends not only on the rotational
velocity of the stern propeller, but also on the airstream velocity distribution at the rear part
of the airship. Therefore, verification of the thrust model using ground tests is impossible. In
such a case the thrust measurement is achieved through measurement of strain between the
airship body and mounting points of the thrust engine. However, this possibility was not
available in the current measurement setup of the Lotte airship and, therefore, no thrust mea-
surements were available.
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Figure 2.8: Comparison of flap model responses with measured flap deflections at different loads
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2.5.5 Auxiliary Measurements

The purpose of the auxiliary measurement sources is not to deliver a direct measure of
motion and control variables. They are mainly intended to measure the thermodynamic prop-
erties of the surrounding (Air) and the inner (Helium) gases.

For determining the atmospheric density , the airship “Lotte” is equipped with the
barometric  and temperature  sensors. At any flight condition, the density can be calcu-
lated/approximated with formula:

,

where  is the gas constant .

Variations of the total mass , location of  and inertia tensor  are mainly influ-
enced by the change of atmospheric pressure. Their characteristics could be estimated during
the flight, if additional pressure and temperature measurements of the Helium are available.
For this purpose, the “Lotte” airship is equipped with inner temperature and pressure sensors.
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Chapter 3

Model Simplification for Identification
Purposes

3.1   General Remarks

3.1.1 Requirements on Identification Model

The flight mechanical model of the airship “Lotte” presented in Chapter 2 represents a very
complicated structure. The equations of motion are strongly nonlinear in terms of the model
variables. Especially the aerodynamic part of the model poses significant uncertainties in
describing the aerodynamically induced forces and moments.

Approaches for analyzing the dynamic behavior of the derived nonlinear model are
very restricted. From the other side, the goal of the system identification is determination of
the model parameters from the experimental data, and this implies a determination of the
model structure that meets two basic objectives. The first objective addresses the model
structure definition that combines the essential physics of the plant (the conformity of the
flight mechanical model to the physical processes, which appear during the flight, was estab-
lished in the previous chapter). The second requirement demands the model description, its
structure and parameterization in a simple and distinct way (as acceptable e.g. for the control
design) and will be briefly explained in the following.

The integral part of the system identification problem is the parameter optimization
procedure. During the optimization, the model parameters are adjusted in a way to provide a
trajectory fit between the model response and the experimental data. The identification prob-
lem turns at this stage into a classical optimization problem. The optimization problem is a
field of its own and is not the major topic of this thesis. However, one important extraction
from the optimization theory should be mentioned. It is well known, that along with the cho-
sen optimization method, the result also strongly depends upon formulation of the optimiza-
tion problem [7]. This means the choice of the model structure and the number of the
optimized parameters that are relevant to the chosen cost function (Figure 3.1). Otherwise, a
poorly formulated problem can not be efficiently optimized. A careful choice of the model
structure and its parametrization is one of the central problems of the system identification.
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There is no transparent theory available that helps to maintain good model integrity
whilst allowing unnecessary complications to be discarded. Regardless of its complexity, the
mathematically described model will be still not reflect the real dynamics of the plant accu-
rately. One of the most important factors in selecting a suitable model structure and its
parametrization is based on “engineering judgement” [18]. This assessment is mainly
deduced from the a priori knowledge about the physical plant. How this judgement is related
to the airship identification problem, will be discussed within the following subsection. 

3.1.2 Linear Identification of Airship Dynamics: Motivation

The emphasis of this work is on estimating the airship dynamics using linear time invariant
models. The linear system identification was dictated by the fact that many physically mean-
ingful parameters of the nonlinear flight mechanical model could not be clearly determined.
These deficits arose from:

• Uncertain mass model including the mass , the moment of inertia , and the center
mass position 

• Availability of only static aerodynamical database in terms of , , 

• Inability to provide the thrust measurements 

Although the mass can be well described in terms of internal components and a change of the
environmental conditions (see Section 2.4.1), its accurate determination in practice was not
possible. This difficulty was mainly caused by inability to derive the complete configuration
database with the weight and position information for the whole set of internal elements. For
instance, in order to determine some internal parts that constitute the nominal mass  in
equation (2.18), only a subjective estimation of weight parts was used [27]. Additional
uncertainties have been caused by limited information about the pre-launch state of the air
ballonets.

Experience gained in the aircraft identification field shows that estimation of uncertain
aerodynamic characteristics presumes a correct knowledge of the mass model [45]. A simul-
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taneous determination of the mass and aerodynamic terms of the model from flight data
leads, usually, to very poor results, mainly caused by a linear dependency between the mass
and aerodynamic coefficients (using symbolic processing tools, e.g. Mathematica, it is easy
to observe the linear dependence between mass and aerodynamic parameters). A similar
problem occurs when the thrust force of the main engine is estimated along with the aerody-
namic axial drag force.

A possibility to avoid identification of the mass and aerodynamic parts explicitly is to
estimate dimensional stability and control derivatives, i.e. the parameters of a linearized
model. This approach is justified if care of the approximation validity is taken. In this case,
small perturbations about some steady operational condition are allowed. Several advantages
benefit the linear identification of a flight vehicle:

• Using this approach, the direct methods of control system design can be utilized

• Elimination of coupling effects by considering the longitudinal and lateral-directional
motion separately reduces the model complexity and the number of its parameters

• A linear representation of the model makes the identification problem more plausible
than for a nonlinear model; in some cases the model parameters can be determined in a
single batch operation

• The linear identification is more appropriate when large amounts of the flight data need
to be evaluated, which is common in flight testing

• Additional benefit is acquired, if the system is being disturbed by signals of a stochas-
tic nature; this fact allows for a direct application of optimal (e.g. Kalman) filters to
account for such disturbances

Along with the above given advantages, several drawbacks exist which must be taken into
account when the linear identification is performed. The most general can be distinguished
by:

• Single point identification: as mentioned this approach is valid only at steady condi-
tions and small deviations from them

• Due to linearization procedure, the derived linear system often looses a physically
meaningful interpretation of its parameters; if a constrained optimization of the model
parameters is utilized, it is difficult to assign the bounds properly

• Necessity to achieve sufficient steady conditions of the flight envelope is a very time
consuming task for the test pilot and the ground crew

3.2   Linearized Dynamic and Observation Equations

Many classical references are devoted to linearization techniques of nonlinear equations of
motion of a convenient aircraft [6], [47]. The linearization of the dynamic equations of an
airship is performed in a similar manner by taking the first order derivatives of the Taylor
series expansion about the equilibrium condition.
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If an airship operates within small perturbations about some steady rectilinear motion,
then its complete dynamic behavior can be approximated by two independent sets of
dynamic equations, i.e. the well known longitudinal and the lateral-directional equations of
motion [29]. The longitudinal and the lateral-directional dynamics can be studied separately,
without accounting for the cross-coupling effects, assuming them negligible.

3.2.1 Assumptions on Flight Condition, Environmental and Configuration 

Properties

For getting a simplified form of the airship dynamics an assumption of the steady atmosphere
can be adopted at the first stage. In this case all flight path variables are identical to their rel-
ative quantities  and the effects due to an accelerated wind (see B.4.1) do not
appear.

The baseline of the model reduction concerns a consideration of a steady flight condi-
tion. For this kind of motion all linear and rotational accelerations in the equation (2.12) have
zero values:

. (3.1)

Steady flight requires an equilibrium between the kinematic coupling terms (Equation (2.12))
and the vector that represents the net external force  and moments . Such a balance
holds for two basic flight conditions: the steady rectilinear flight and steady turning flight.
Both are valid and produce stationary motion.

Similarly to the classical flight mechanics of airplanes, the steady rectilinear motion is
of major interest because of the ability to separate the total dynamics into two independent
sets of equations using linearization technique [6]. For further examination of the system
dynamics the steady turning motion of the airship will be excluded. The steady rectilinear
flight gives a rotation-free motion and zero side velocity

, . (3.2)

The subscript  denotes a condition where equilibrium is achieved. Because of the vertical
symmetry in the mass and the aerodynamics, the following simplifications are valid:

, . (3.3)
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The conditions of the equations (3.2) and (3.3) result to zero side force as well as the roll and
yaw moments respectively

, , . (3.4)

Another assumption can be made if the airship operates at nearly constant altitude. At
this operation condition, variations of the air density, the airship mass, moment of inertia and
the position of the center of gravity  can be neglected:

, , , 

, . (3.5)

Moreover, the axial offset of the center mass from the center of reference can be assumed to
have an infinitely small value

.

It follows from this fact that the test pilot always performs an obligatory ground trimming
procedure before the flight takes place. Its aim is to minimize the static pitching moment at
zero pitch angles

.

In this configuration the  position does not change greatly with variation of height, as
concluded in section 2.4.1, and therefore, can be neglected for all altitude changes .

Under given conditions, the steady rectilinear motion can now be described as a projec-
tion to the vertical plane. Figure 3.2 highlights the respective forces acting on airship in
steady rectilinear flight. The remaining nonzero motion variables are now expressed by the
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Figure 3.2: Steady-state equilibrium condition in rectilinear flight
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corresponding axial and vertical velocities  and , the pitch attitude , the elevator
deflection angle  and the throttle .

The equilibrium condition in the vertical plane yields

(3.6)

3.2.2 Linearized Longitudinal Dynamic Equations

Assuming a steady condition of the rectilinear flight at the constant altitude, the perturbed
longitudinal motion involves small perturbations of motion , , ,  and control , 
variables respectively about their trimmed values. The linearized longitudinal dynamic equa-
tions are derived by linearizing the nonlinear equations of motion (2.29) and taking the parts
(motion/control terms and force/moment derivatives) which are related to the longitudinal
motion. It can be established as

(3.7)

where the state and control variables are interpreted as small deviations from the reference
flight condition ( , ). The analytical derivation of the force and moment
derivatives is outlined in B.5.

In examining particular force and moment derivatives, it was found that for a nominal
rectilinear flight, some of derivatives in equation (3.7)(3.7) can be neglected [26]. The classi-
fication of their dominance is summarized in Table 3.1.

Table 3.1: Classification of derivatives for longitudinal motion [26]

Because of the apparent mass effects are independent of trimmed velocity, they begin
to influence the dynamic response of the airship at already low velocities. These effects are

Quantity Dominant derivatives Insignificant derivativ es

Axial force , , , , , 

Vertical force , , , , 

Pitching moment , , , , , 
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appropriately modelled by the , , and  terms at the left hand side in equation
(3.7).

Two differences can be observed when comparing equation (3.7) with the aircraft’s
classical linearized equations [6]. First, due to the fact that the center of gravity  does not
coincide with the center of reference , the perturbation of pitch rate  and the perturbed
forward velocity  are coupled. Second, from the offset of the mass center from the center
of reference, the gravitational force exerts a nonzero static pitching moment and is expressed
through the  term in the moment equation.

In order to derive a conventional state space representation of the longitudinal dynam-
ics, equation (3.7) should be slightly transformed by multiplying both sides with the inverse
mass matrix

, (3.8)

with the respective state and control vectors

, , (3.9)

and the system matrices, omitting small derivatives, can be expressed by

(3.10)
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flight mechanical stability and control derivatives respectively
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Because of the kinematic coupling effect between the  and  states (induced by the
inverted mass matrix ), some stability and control derivatives result in nonzero values.
The airship stability and control derivatives are similar to the conventional aircraft deriva-
tives, but they are more complex and can not be simply interpreted. The analytical form of
the stability and control derivatives can be found in reference [26] and are outlined in B.5.

3.2.3 Linearized Lateral-Directional Dynamic Equations

The linearized lateral-directional equation of motion can be derived in a similar manner as
for the longitudinal dynamics. It involves small perturbations of motion , , , ,  and
control ,  variables respectively. In general, the yaw angle  does not exert any influence
on the dynamics, and therefore can be disregarded in lateral-directional dynamic equations.
Assuming the cross coupling effects with the longitudinal variables as negligible, the com-
mon form of the linearized lateral-directional perturbed motion of airship yields

(3.12)

where all perturbations occur around zero trim values of the lateral-directional variables
( , ). 

In the lateral-directional perturbed motion, only dominant force and moment deriva-
tives, as given in Table 3.2, are important [26].

Table 3.2: Classification of derivatives for lateral-directional motion [26]

Analogously to derivation of the longitudinal model, the lateral-directional dynamic equa-
tions can be represented using the state-space form

, (3.13)
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with the respective state and control vectors

, . (3.14)

The system matrices without small terms, can be expressed by

(3.15)

The matrices  and  contain typical lateral stabil-
ity and control derivatives:

, . (3.16)

3.2.4 Linearized Measurement Equations

In section 2.5 the nonlinear relations between the state and the measured variables have been
derived. For representation of system dynamics in the state space form, the observation rela-
tions should be also established in the linear form. The linearization of measurement equa-
tions is performed similarly to that made for nonlinear dynamic model by taking the first
order terms of the Taylor series. The measurements of airstream velocity, Euler angles, body
rotational rates and accelerations are of the primary importance.

It is common practice to transform all measured variables from the sensor locations to
the center of reference  point [18]. This can be performed using kinematic equations and
information derived from the measured velocity and rotational rates. From one side, this
transformation simplifies the model structure compared to that which accounts for the mea-
surement offsets. From the other side, the transformation of measured variables into 
point, in particular for the linear accelerations , , , requires a component of the
angular acceleration as follows from equation (2.30). In general, the numerical differentia-
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tion of a noisy measurement results in a signal with a low signal to noise ratio [44]. For this
reason it is advantageous to account for the sensor offsets within the observation model.

Longitudinal Observation Model

For the longitudinal motion the observable variables are

. (3.17)

To model the offset of the center of airstream measurements  from the center of the air-
ship reference , the necessary rotation about the body -axis is included. Therefore, lin-
earizing equation (2.34), for the longitudinal motion

(3.18)

where  and .

The axial and vertical accelerations are linearized with respect to the longitudinal state
variables and expressed by

(3.19)

The terms of linear body accelerations  and , and the angular pitch acceleration  can
be substituted from the linearized system dynamics from equation (3.2). Expanding terms,
the linearized form of the acceleration measurements is derived

(3.20)

Transferring the observation model in general state-space form yields

, (3.21)
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where the observation-  and the feedthrough-  matrices are defined respectively:

, , (3.22)

(3.23)

Lateral-Directional Observation Model

The linearized lateral-directional measurement model can be derived similarly as for the lon-
gitudinal motion. For the lateral-directional motion the observation vector consists of

. (3.24)

The observation model in the state space form

, (3.25)

where the observation-  and the feedthrough-  matrices are defined respectively:

, , (3.26)

(3.27)
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3.3   Analysis of Stability and Controllability

Using stability and controllability analysis, it is possible to determine the eigen dynamic
characteristics of the airship and its expected responses to the applied control inputs. This
information is of considerable interest not only for the controller design purposes, but also
for system identification, because it represents the a priori knowledge of the dynamics
involved.

The characteristics of stability (or instability) play an important role in selecting an
appropriate estimation algorithm [22]. Moreover, from the eigenvalues/eigenvector analysis,
one can assess a contribution of a physical state to a particular eigenmode of the system, and
therefore, the significance of the corresponding stability derivative. The information about
the mode decoupling can be utilized for reducing the order of the estimation model and, con-
sequently, reduction of the parameter space. 

Finally, based on knowledge of stability and controllability, it is possible to provide an
adequate design of the identification experiments [50], as will be additionally discussed in
Chapter 5.

3.3.1 Characteristic Eigenmodes of a Conventional Airship

The stability of a linear system is characterized by eigenvalues (poles) of the dynamic 
matrix, determined as the roots of a characteristic polynomial

(3.28)

The stability analysis for a number of conventional airships has resulted in a common
pole distribution (shown in Figure 3.3) of the linearized longitudinal and lateral-directional
models [10], [23], [26], [52]. 
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In the longitudinal dynamics they are distinguished by two real eigenvalues- for the
surge and heave modes, and one conjugate pair- for the longitudinal-pendulum mode. 

In the lateral-directional motion the typical eigendynamics is associated with two ape-
riodic modes, known as sideslip-subsidence and yaw-subsidence modes, and one oscillatory
motion, recognized as roll-oscillation mode.

3.3.2 Characterization of Eigenmodes at Different Flight Velocities

For studying the eigendynamic properties of the Lotte airship at specific flight regimes, the
nominal flight mechanical model has been utilized for trimming and linearization facilities.
Although it is possible to express the characteristic modes in analytical form using stability
derivatives, its form is too complicated to perform a comprehensive analysis. Therefore, the
stability derivatives were determined numerically.

Figure 3.4 shows the pole distribution at different flight speeds, with the forward trim
velocity ranging from  to the maximal . For numerical evaluation, the nomi-
nal flight mechanical model was assigned to a realistic buoyancy to gravity ratio

. This ratio represents the static heaviness of the airship and can be alternatively
expressed by . Usually the static heaviness varies from the “nearly neu-
tral”  to the “heavy” configurations .

In order to expand the analysis of the system dynamics, a contribution of a physical
state to a particular eigenmode of the system using modal analysis will be performed. This
involves a definition of a state space system in the modal state basis

, (3.29)
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where  is the modal state vector,  is the
modal system matrix. By using the eigenvector matrix , the transforma-
tion of the original system into the decoupled modal system is performed. Note, because the
modal analysis is very sensitive on selection of the basis of the state vector, it is preferable to
perform the analysis of a pre-scaled system (in the current case the analysis was performed in
the following units, , ,  in [m/s], , ,  in [°/s], , , , ,  in [°], 
in [%] of ).

Longitudinal Dynamics

• Surge Mode: The surge mode is distinguished by a stable aperiodic dynamics with a
large time constant. Its physical interpretation corresponds to the forward velocity
damping and can be explained as a reminder of a well known phugoid mode, when the
part due to potential energy is missing, which is a common property of lighter than air
vehicles. This mode is always stable. Studying the eigenvector diagram, shown in Fig-
ure 3.5, one also concludes that the surge mode is slightly coupled with perturbations
of the pitch angle-  and almost decoupled with the  and  states. This is mainly
because of insignificant values of stability derivatives  and .

• Heave Mode: The heave eigendynamic corresponds to a well dampened aperiodic
motion with a comparatively small time constant. It is characterized by the vertical
motion of the airship, incorporating the cross-flow aerodynamic effects. At low airship
velocities , the coupling with the vertical velocity  is dominant (see Figure 3.5).
This can be interpreted by the aerodynamic phenomena that acts in the vertical direc-
tion, where the cross flow effects are dominant. As the forward trim velocity 
increases, the influence of the fins becomes stronger. This results in a stabilizing pitch-
ing moment and, therefore, the coupling with the  and consequently with 
becomes apparent. At high trim velocities this mode is also referenced as pitch-subsid-
ence mode [29]. From the pole map diagram given in Figure 3.4, it can be seen that the
damping of the heave mode increases with increased trim velocity . The contribu-
tion of the forward velocity  perturbation is negligibly small.

• Longitudinal-Pendulum Mode: The longitudinal pendulum mode is the most critical
eigenmode in the longitudinal dynamics. At very low velocities, where aerodynamic
effects are negligible, the longitudinal pendulum mode appears as a slightly dampened
low frequency oscillation in pitch. Physically this can be interpreted as a pendulum
motion of the center of gravity  “suspended” at the center of buoyancy  [26].
As can be concluded from the eigenvector diagram (Figure 3.5), the states  and 
are dominant. With increased trim velocity , the mode starts to interact with the
heave mode throughout the  variable. The stabilizing moment of the fins increases
the damping ratio of the mode, as seen on the pole map at velocities of about .
If the velocity is further increased, the unstable aerodynamic moment  begins to
dominate over the stabilizing moment produced by fins. At a certain velocity, the
destabilizing aerodynamic moment becomes greater than the stabilizing moment due to
gravity force, and the longitudinal pendulum mode becomes unstable (see Figure 3.4).
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Lateral-Directional Dynamics

• Sideslip-Subsidence Mode: In the studied configuration, the sideslip-subsidence
mode resulted in unstable real pole on the complex plane. This instability arises from
the static destabilizing aerodynamic yawing moment , which can be approximated
by  at small angles of attack. The states  and  play a dominant role in this
unstable dynamics (see Figure 3.6). At higher trim velocities , this mode is also
slightly coupled with perturbations of the roll angle  due to centrifugal effects,
which appear in the yaw motion due to low  location. The time constant of the
sideslip-subsidence mode is very sensitive to variations of the trim velocity . The
terms  and  are negligibly small.

• Yaw-Subsidence Mode: This mode can be explained by similar physical phenomena,
as was observed for the heave mode. Due to the dominant presence of the ,  per-
turbations, concluded from Figure 3.6, the yaw-subsidence mode is strongly coupled
with the unstable sideslip-subsidence mode. With increased speed , the mode
increases its damping.
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• Roll-Oscillation Mode: The roll oscillation mode describes a lightly dampened pen-
dulum motion around the  axis of airship. Both, the aerodynamic and gravity phe-
nomena contribute to this eigenmotion. The mode is mainly composed of the  and

 states (see Figure 3.6). With increasing velocity , the rolling motion is better
dampened due to aerodynamic roll damping produced by the fins. 

3.3.3 Influence of Configuration Changes on System Dynamics

The eigendynamic characteristics of an airship do not only depend on aerodynamic phenom-
ena, but are also strongly influenced by the change of configuration properties. Variation of
static heaviness, as well as change of position of the mass center  contribute greatly in
the system dynamics of the lighter than air vehicle. For this reason, the nominal flight
mechanical model has been linearized at different configurations, including different levels
of static weight and variations of the center mass location. The linearization has been per-
formed at a reasonable trim velocity .

Figure 3.7 shows results of a numerical investigation, where eigenvalues were calcu-
lated at different buoyancy to gravity levels. The mass of airship is varied from the “neutral”

 to the “heavy” buoyancy configurations .
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Figure 3.8 shows the pole locations on variation of the vertical position of center mass
. In the numerically evaluated case, the  position of a  heavy airship has

been moved in the vertical direction at limits , with  denot-
ing the maximal thickness of the Lotte airship.

From the practical considerations described earlier, variations of the  component
assumed to be negligibly small over the whole flight and are therefore, not considered here.
A more detailed analysis of the sensitivity of the pole locations on configuration changes can
be found in reference [26].

In the following, the common longitudinal and lateral-directional modes will be ana-
lyzed individually. Because the dominance of particular states in eigendynamics does not
change significantly, the eigenvector diagrams will be omitted.
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Longitudinal Dynamics

• Surge Mode: Due to mainly aerodynamic phenomena of the surge mode, its pole loca-
tion is relatively insensitive to variations of static heaviness and center of mass posi-
tion. The perturbations of the axial velocity  remain the dominant component in this
mode.

• Heave Mode: The pole location of this mode shows that changes of the static heavi-
ness and the center of mass have very little influence on the damping properties. Only
small variations can be observed when the center mass is changed in vertical direction.

• Longitudinal-Pendulum Mode: The longitudinal-pendulum mode is mostly affected
by the static heaviness variation. In the studied configurations, the Lotte airship
acquires unstable oscillating response when the static heaviness approaches unity. Only
at heavier configurations with  does the pole migrate to the left half-plane
with increased damping ratio. Such a behavior is similar to that described for the veloc-
ity variations, where the destabilizing aerodynamic moment is compensated by
increased gravity moment. Because the  characterizes the metacentric height of the

 point above the center mass , its variation influences the frequency of the pitch
oscillation and, therefore, directly impacts the longitudinal-pendulum mode. As shown
in Figure 3.8, in the configurations with high  locations, there is not enough static
gravity moment to compensate the destabilizing aerodynamic pitching moment. There-
fore, the mode becomes unstable. Only at lower  positions  is stabil-
ity achieved.

Lateral-Directional Dynamics

• Sideslip-Subsidence Mode: The unstable sideslip subsidence eigenmode slightly
changes on variations of the static heaviness. A small migration towards the imaginary
axis at heavier configurations can be explained by the increased moment of inertia of
the airship. Variations due to center mass position change are negligibly small.

• Yaw-Subsidence Mode: Similarly to the longitudinal heave mode, the yaw subsidence
mode does not appear to be much affected by configuration changes of the airship.

• Roll-Oscillation Mode: The roll-oscillation mode behaves in a similar matter as the
changes observed for the longitudinal pendulum mode. The increase of the static heavi-
ness leads to a small increase of the damping ratio, whereas the eigenfrequency
remains nearly unchanged. With increase of the metacentric height , the frequency
of the roll oscillation becomes larger.

3.3.4 Analysis of Control Efficiency

The control efficiency of a linear system can be studied using various analysis methods, such
as Bode-plots, modal analysis or evaluating the controllability Grammians [6], [53]. From
the other hand, the analysis can be performed in a simple way, examining the eigenvector
diagrams and interpreting the physical control variables.
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Longitudinal Control

From the stability analysis it may be concluded that the axial velocity dominates upon other
states in the surge eigenmode. A substantial contribution to the change of the forward veloc-
ity can be achieved by the thrust control. Therefore, it is likely to expect that variations of the
throttle input  will mainly excite the surge eigenmode. Figure 3.9(a) illustrates numerical
values of the modal control matrix  introduced in equation (3.29). As can be seen, the first
(surge) eigenmode is best excited by the throttle perturbations . 

The eigenvector diagrams shown in Figure 3.5 illustrate that the heave and longitudi-
nal-pendulum eigenmodes are strongly coupled with perturbed states ,  and . As it
is assumed that the thrust force mainly acts along the axial direction of airship, its influence
on these states can be regarded as insignificant. On the other side, the elevator perturbations
of fins  produces additional vertical force and exerts aerodynamical pitching moment with
respect to the center of reference. The results shown in Figure 3.9(a) (modes (2) and (3)) ver-
ify these propositions.

Lateral Control

A similar argument can be extended to the lateral-directional dynamics. From the fact that
the sideslip and yaw subsidence modes (modes (4) and (5) in Figure 3.9(b)) are predomi-
nantly composed of the  and  states, the best controlling effect is expected when apply-
ing the rudder perturbations . From the other side, the roll oscillation mode, defined
mainly by the  and  states, is well exited if the aileron input  is applied.

3.3.5 Approximated Models

Having examined the dynamic stability of the longitudinal and lateral-directional motions,
several preliminary conclusions can be drawn:
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• The surge mode is largely decoupled with the rest of longitudinal system modes. This
eigenmotion can be approximated by the forward-velocity motion

 (3.30)

• The heave and the longitudinal-pendulum eigenmodes are strongly coupled. They can
be approximated by angle-of-attack-pitch equation

(3.31)

• The sideslip-subsidence and yaw-subsidence eigenmodes are strongly coupled through
the ,  states and slightly through  state due to centrifugal force. This leads to
the following approximation possibility

 (3.32)

• The roll-pendulum eigenmotion can be well approximated by

. (3.33)

The introduction of the approximated models can be desirable for the identification purposes
for two basic reasons. First, fewer unknown parameters should be estimated if the approxi-
mated models are studied separately. Second, the identification experiments (flight maneu-
vers) for the coupled modes excitations can be planned individually.

The results of the stability analysis presented above are only of a preliminary basis.
They are based on the theoretical investigations of the flight mechanical model and verified
against the results obtained in other references. How these predictions are relevant to the
“real world” operation of the Lotte airship, can be only evaluated when the flight data are
available and analyzed.

3.4   Stochastic Disturbances of the Model

An airship is subjected to various disturbances that contribute to its response as uncontrolled
(i.e. not by means of the airship controls) motion. These disturbances have different physical
origins and are typically of a random nature. Additionally, the measured responses are inevi-
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tably accompanied with the measurement noise. These facts considerably complicate the
identification problem. The following discussion is devoted to the analysis of possible distur-
bance sources, and suggestions, which adequately accommodate the estimation model to
these discomposes.

3.4.1 Wind and Turbulence

A description of flight vehicle motion in the unsteady atmosphere poses a very complicated
and analytically unsolvable problem, where interactions between the vehicle and the atmo-
sphere should be accounted for. Only some restricted turbulence models, empirically deter-
mined from numerous flight experimental data, are applicable in classical flight mechanics
[54].

Although the turbulence models, such as Dryden or von Kármán are extensively uti-
lized in the lifting body applications, their “frozen windfield” assumption [14]

(3.34)

is, in general, not valid for airships because of very low flight velocities.

It should be noticed that even with the well determined turbulence models, in the air-
craft identification field few examples exist where the dynamical model is coupled together
with a turbulence model. The turbulence is commonly attributed as a stochastic disturbance
or process noise with colored or white noise properties [19], [40]. This is done in order to
reduce the complexity of the estimation model and to account properly for the model defi-
ciencies (see discussion in section 3.1).

From the aspects described above, it was purposed to treat the wind disturbances and
possible modelling errors as an additive process in the process dynamics

, (3.35)

having zero mean  and unity white spectral density function [9]. The  matrix rep-
resents the state noise intensity.

The main requirement to the process noise disturbances is that their influence should
be apparently small to be accepted. This can be quantified by performing the compatibility
analysis of flight data (discussed later in Chapter 6) and applying parameter estimation algo-
rithms that neglect the presence of the state noise (discussed in Chapter 4).
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3.4.2 Measurement Noise

The measurements delivered by hardware are subjected to measurement errors. The plant,
whose parameters are to be estimated, is assumed to be described by the state space system
with the additive measurement  disturbances

(3.36)

where  is assumed to be white Gaussian signals, with zero mean and identity power spectral
density matrices.

3.5   Model Parametrization

3.5.1 Accounting for Nontrim Condition and Systematic Sensor Offsets

The treatment of the linearized estimation model leads to additional complications when it is
applied to fit the flight data. The equilibrium condition, defined in section 3.2.1 is very rigor-
ous. It is practically impossible to achieve a condition where the linear and angular accelera-
tions have exactly zero values. For this reason, the state equations are commonly
accompanied with an additional state bias unknown [55]:

. (3.37)

In the presence of trim errors the state bias  balances the state equation and accurately
determines the trim state. Without the state bias, the equations would integrate a small error
over the measurement interval. The state bias term is very important for long identification
maneuvers. For the longitudinal and lateral-directional models, the state bias vectors are cor-
respondingly:

. (3.38)

In addition to the state bias parameter, the observation bias vector  is applied to the
measurement equations in order to account for systematic offsets of the measured data

, (3.39)

with:

. (3.40)
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The elements of vectors  and  should be estimated together with the unknown stability
and control derivatives [55]. Introducing the state and observation bias parameters, it is also
possible to utilize directly measured input and output variables (i.e. not their perturbations) in
the estimation algorithm.

3.5.2 Initial Parametrization

So far, the dynamic models used for estimation has been derived and analyzed. The unknown
model parameters can be now summarized in a generalized parameter vector  defined for
the longitudinal model by

(3.41)

and for the lateral-directional model

(3.42)

For identification purposes, it is preferable to choose only the derivatives that contribute sig-
nificantly to the dynamics of airship. Based on stability and controllability analysis per-
formed in section 3.3, the influence of some derivatives in stability- and control-
matrices is found to be insignificant. The important derivatives in Equations (3.41) and
(3.42) are underlined. However, these assumptions should be additionally verified by closer
examination of the flight data.
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Chapter 4

Estimation Algorithms

4.1   Overview and Discussion

4.1.1 General Estimation Methods

The introductory part of the thesis set out some common approaches for estimating parame-
ters of flight vehicles from experimental data. It was pointed out that treating the input-out-
put signals has shifted from frequency domain into time domain analysis, and therefore, the
time domain methods were considered in the airship identification project.

From the theoretical point of view, all estimation algorithms can be separated into two
major classes: deterministic methods and stochastic methods or estimators [11]. The deter-
ministic estimators do, in general, solve the problem of the “best-fit” between the model and
the real system. In that sense, the fit is treated according to a deterministic measure of error
between model output and observed system output, as for example the integral of squared
errors do. Opposite to the deterministic methods, the stochastic estimators utilize a statistical
approach in interpreting the error. They do not only estimate parameters in the statistical mat-
ter, but also provide a quantitative information about the efficiency of estimation [53].

In the field of time domain flight vehicle parameter estimation, both the deterministic
and stochastic estimators are widely utilized. According to reference [12], the most common
methods are recognized as equation error, output error, filter error and filtering methods. In
the following discussion, a short description of the approaches will be presented and their
applicability to the airship identification problem is discussed.

Equation Error Method

The equation error (EE) method represents a broad class of methods that are applicable to
linear time invariant dynamic systems and based on the least squares regression method [53].
The regression approach requires a direct measurement of all state variables. It constitutes
the dynamic equations linear in terms of unknown parameters

, (4.1)y ti( ) Θ1x1 ti( ) Θ2x2 ti( ) … Θnxn ti( ) e ti( )+ + + +=
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where  denoting the time instance ,  is the independent variable, the
 is the dependant variable (state),  is the  dimensional vector of parame-

ters and  is the stochastic equation error. Having all independent  and all dependant 
variables measured in  discrete points, the equation error  can be minimized in one batch
iteration using the least squares method:

. (4.2)

This method does not require any initial parameter values and is widely utilized for obtaining
primary start-up parameters for other estimation algorithms [55]. An additional benefit of
using the equation error method is that it does not require any temporal relation between the
measured data points. It is therefore possible to concatenate several data segments in one
record. This approach, regarded as data partitioning, is utilized in estimating large amplitude
maneuvers by dividing the maneuver into several smaller portions of the flight data [1].

Within simplicity of its realization, the equation error method provides biased esti-
mates, if the measurements of the dependant (state) variables are contaminated with the mea-
surement noise [66]. Therefore, this method is advisable only if high-quality sensors are used
for measuring the system responses.

Output Error Method

The output-error (OE) method has been successfully approved for a variety of flight vehicles
using flight test data. The goodness criteria, that is usually employed with this approach is
based on the maximum likelihood criteria. The criteria uses a statistical treatment of the error
between the model and the system and provides efficient1 parameter estimations.

1.  Asymptotically unbiased, minimum covariance of estimations [53].
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Figure 4.1: Output error estimation principle.
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The experience obtained by applying the maximum-likelihood identification shows the
great adequateness of the models to the real systems, despite the poor initial knowledge of
the physical plant during experiments [12]. Furthermore, the output-error method success-
fully works on estimation of parameters of nonlinear models [20].

Filter Error Method

This approach is some extension of the output error method. Based on Kalman filter for pro-
viding the state estimations of the identified system, the filter error (FE) method has a signif-
icant advantage in providing parameter estimates in presence of the process noise. There are
several studies available, that utilize the filter error method for estimating aircraft parameters
from the flight data in presence of turbulence [15], [19], [64]. The diagram in Figure 4.2
illustrates the principle of the filter error approach, including model dynamics, the presence
of additive random process noise and random disturbances corrupting the measurements. 

Filtering Method

In the filter error approach the Kalman filter is dedicated to the state estimation only. How-
ever, it is possible to use the filter as a set up for the simultaneous estimation of the state and
the unknown parameters. This problem is successfully solved if the unknown parameters
augmented with the model state vector and Kalman filter estimates in this combination both
the state vector and parameters simultaneously. The parameters and states are combined into
a composite state vector

, (4.3)

with  for the time invariant model parameters.
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Figure 4.2: Diagram of the filter error algorithm
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This method is widely used in the real time parameter estimation applications [2], [61].
However, this approach poses some additional computation difficulties. Even if the system
dynamics is approximated by a linear model, the multiplicative nonlinearity appears due to
relation . This nonlinearity requires an implementation of the extended Kalman fil-
ter, where the system equations are linearized at each successive integration step.

4.1.2 Applicable Algorithms for Estimation of Airship Derivatives

The properties of the common estimation methods can be summarized in Table 4.1 (based on
reference publications [16], [22], [53]). Although all methods are being successfully utilized
in practical applications, only the output error and the filter error methods favor the estima-
tion of the airship dynamics.

As pointed out, the equation error method requires high accuracy measurements of the
motion variables. The actual measurement hardware realization (discussed later in section
5.3) and the high structural flexibility leave little hope that the measurements would be accu-
rate enough to produce satisfactory results in applying the equation error approach. There-
fore, in the workframe of this thesis, this method was not considered as a main parameter
estimation technique. Nevertheless, since the equation-error algorithm does not require ini-
tial parameter values, its utilization is useful for generating a startup parameterization for
other estimation methods.

Table 4.1 Advantages (+) and drawbacks (-) of common parameter estimation methods

The complexity of the filtering approach is unwanted in our case, since there is no
requirement of online identification and the model parameters are assumed to be time invari-
ant.

The output error and filter error methods are both maximum likelihood estimators and
their implementation is very similar. It will be further illustrated, that the filter error method
under certain conditions appears as a pure output error method. The power of the filter error
method is in its ability to account altogether the uncontrolled motion due to external distur-

Equation Error
Method

Output Error
Method

Filter Error 
Method

Filtering 
Method

+ Numerically stable + Optimal bias free estimators

+ No a priori parame-
ter values needed

+ Possibility of nonlinear identification

- Linear models only + Estimation of systematic sensor errors + Real-time 
identification

- Biased parameter
estimation

- Measurement
noise only

+ Estimation with process and measurement
noise sources

- Precise sensors
required

- Sensitive to 
unstable models

+ Numerically stable

- Computational complexity

A Θ( ) x⋅
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bances, the modelling errors and the measurement noise during parameter estimation. More-
over, a feedback proportional to the fit error (discussed later in equation (4.13))

,

which is used to update the state estimates, also improves the numerical stability of the algo-
rithm. This property is favorable for estimation of the unstable lateral-directional dynamics
of airship [22].

It is, nevertheless, desirable to utilize the output error method along with the filter-error
algorithm. In the output error realization, the response of the model is integrated in the open
loop mode, i.e. where only the system input is used as a control variable. In this case it is pos-
sible to provide a rough estimation of the acting process noise disturbances (atmospheric tur-
bulence and nonlinearity of the airship dynamics, see the discussion given in 3.4.1).

4.2   Maximum Likelihood Principle

4.2.1 Definition

The maximum likelihood estimation arose from the statistical estimation problem and uti-
lizes the probabilistic treatment of stochastic signals. The principle of the maximum likeli-
hood approach is to choose the values of parameters, which maximize the conditional
probability density function [11]

, (4.4)

where  notation indicates that  is the value of  that maximizes the conditional
probability density function  of observable variables , given . The parameters
are chosen in a way that the observations caused by these parameters are most likely to occur.

The probability density function is of especial interest for the maximum-likelihood
estimation. If  represents a set of independent measurement samples, then the function can
be expanded as product of conditional probabilities [53]

(4.5)

where  is the number of taken measurements. 
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As the logarithmic function has monotonic properties, the log-likelihood function is then:

(4.6)

The above given probabilistic approach can be easily applied to the estimation of parameters
of the dynamic system. If the measured responses are contaminated with an additive mea-
surement noise  and the process noise is absent (no modelling errors), then the output error
is defined by

. (4.7)

It is common practice to associate the measurement error with a random process having the
Gaussian distribution [39]. In this case, the statistical analysis simplifies greatly and the like-
lihood function becomes [55]:

(4.8)

where  denotes the length of the observation vector and  represents the covariance
matrix of the measurement noise vector. The maximization of given likelihood functional
against the unknown parameters is equivalent to minimization of its negative value, which is
a typical optimization task.

4.2.2 Limitations

The form and property of the maximum likelihood estimator strongly depends on the type of
the noise distribution, adopted for the analysis. As stated, the Gaussian distribution of the
output error is assumed. In this configuration, the efficiency of the maximum likelihood esti-
mator is obtained. If the system operates when both state and measurement disturbances
exist, the efficiency of the output error realization degrades [59].
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4.3   Filter Error Method

4.3.1 Kalman Filter State Estimation

The Kalman filter produces optimal state estimates in the presence of the process and mea-
surement noise. The objective of the Kalman filter is the minimization of process state error
covariance matrix. It is assumed that a set of unknown parameters constitute the matrices ,

,  and  of the state space model. The matrices  and  indicate a level of intensity of
the process and measurement noises respectively and are usually unknown.

The Kalman filter can be described in both continuos and discrete forms with respect to
time. The principle of its functioning lays in performing state predictions of the system
dynamics on the model basis, and corrections using measured quantities [9]. As the observa-
tions have discrete nature, it is favorable to use the discrete form of the Kalman filter. How-
ever, the individual parameters of the continuous state space formulation have more physical
meaning, than those expressed in discrete form. Therefore, an implementation of mixed con-
tinuous/discrete form was adopted according to [41], where the initial system dynamics is
continuous and the realization of the Kalman filter is discrete (see Figure 4.3).

The discrete form of the state equation yields

, (4.9)

where vector  represents the state prediction for the time stamp ,  is the estimated
state for the time stamp . The discrete transition  and control  matrices for small
sampling interval  can be approximated as

, (4.10)

. (4.11)

The predicted system output is computed as

. (4.12)

As the measurement for the time stamp  has taken place, a correction to the predicted state
estimate is performed by adding weighted residuals or innovations 

, (4.13)
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where the weighting matrix  is the Kalman gain matrix. The  matrix is found by mini-
mizing the covariance of the state estimation error [9] 

(4.14)

Computation of the state error covariance is a dual problem with the standard linear quadratic
regulators and requires a solution of the time varying Riccati equation [11]. Rather than cal-
culating the time varying form of the equation, which is elaborate and requires a definition of
the initial  matrix, it is sometimes advantageous to consider a steady form of the Riccati
equation, there the time varying term vanishes . The steady discrete-time Riccati
equation then appears as [41]:

, (4.15)

where  is the discrete form of the process noise covariance matrix [9]:

. (4.16)

Alternatively, the discrete-time realization of Riccati equation (4.15) can be effectively
approximated by the continuous time form of the Riccati equation obtained as [19]:

(4.17)

The equation (4.17) is more preferable for numerical solution techniques then equation
(4.15). Solving equation for , one obtains the Kalman gain matrix :

. (4.18)
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Figure 4.3: Structure of the discrete Kalman filter
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If the Kalman filter based model response is computed, and if the process and measurement
noises are Gaussian white, then the innovations  have also Gaussian distribution. The
Kalman filter is sometimes referenced as the whitening filter because it creates white innova-
tion samples [45]. The proof of this statement is left beyond the scope of this work and can
be found in reference [47]. This makes the likelihood criteria also tractable for the cases
where the process noise is apparent. Although the appropriate likelihood function is similar
to that formulated for the pure output error method, it has nevertheless two differences. First,
the residuals require innovations provided by applying the Kalman filter state estimation.
The second difference of the derived maximum likelihood is in introducing the weighting
matrix . This matrix represents the covariance of the residuals and can be evaluated using
the following transformation:

. (4.19)

The likelihood function in this case is evaluated as

. (4.20)

It is now easy to observe an interrelation between the filter error and the output error method.
If the process noise is disregarded, the  matrix is respectively zero and the solution of the
Riccati equation also results in zero  matrix. In the absence of the process noise, the Kal-
man gain matrix  has zero elements and the algorithm appears as the pure output error
method.

4.4   Computational Aspects of Optimization

Let us now formulate the optimization objectives for the filter error method. As in the model-
ling chapter, the unknown parameter vector contains the system state space model ( , , 
and  matrices), statistical characteristics of noise sources (intensity of the process  and
measurement  noise sources), and the bias parameters due to the unknown initial trim con-
dition of the system. This optimization setup is commonly regarded as original formulation
[41]. The goodness criteria is expressed by the negated likelihood function in equation
(4.20):

. (4.21)

Attempts to estimate the parameters of the original formulation led to enormous
numerical problems during optimization, as reported in [41]. The poor convergence of the
originally formulated optimization setup motivated the development of a number of meth-
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ods, which were able to speed up the convergence property. The emphasis of one is made on
inclusion of additional unknowns into the parameter vector and setting the optimization con-
straints [59]. Others use indirect computations of unknowns, as for example a direct estima-
tion of parameters of the Kalman gain matrix  (Equation (4.18)) [64], [39].

Early in 1980s an algorithm called MMLE3 (Marginal Maximum Likelihood Estima-
tion) was developed at NASA Dryden Flight Research Center [40]. Compilation of many
related works [59], [64] devoted to the problem of parameter estimation in the presence of
the process and measurement noise, has indicated that this algorithm can be suitably applied
to the airship identification problem. It has proven its efficiency in the variety of applica-
tions. It requires slight modifications to the original formulation. Details of its functioning
can be found in reference [41] and are shortly recapitulated in the next section.

4.5   MMLE3 Algorithm

The MMLE3 algorithm is designed to minimize a risk of divergence during minimization of
the cost function. The major idea behind this is to transform the original formulation to a
more convenient form for optimization. For this purpose, instead of direct estimation of the
measurement noise characteristics (covariance matrix ), the covariance of innovations

 is estimated. However, due to the functional dependency of the system parameters 
(included in , , ,  matrices) on the covariance of innovations  from equation
(4.19), a strong correlation between estimated variables exists. This fact slows down the con-
vergence performance of optimization. To overcome this problem, a so called relaxation
strategy is utilized [11].

4.5.1 Relaxation Strategy

The idea of the relaxation strategy lays in partitioning the entire vector of parameters into
two sets. The first set of estimated parameters  contains the system parameters along with
the  matrix, whereas the second set is regarded to the elements of the  matrix. Relaxation
strategy of optimization involves a two step iteration. At the first step the estimations of 
and  are obtained, while the covariance matrix of residuals is held fixed. In the second step,
the closed form solution of the  matrix is performed.

4.5.2 Gauss-Newton Optimization

From the variety of optimization methods the most commonly used are the Newton-like
methods [7]. They require a computation of first and second gradients of the cost function.
As the likelihood functional is strongly nonlinear in estimation parameters, the optimization
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is performed recursively. So, if there is a first phase of relaxation method, the  matrix is
constant. Hence, the first gradient of the cost function (Equation (4.21)) is computed:

. (4.22)

The numerical advantage of the Gauss-Newton method upon the pure Newton method is that
it does not require a computation of the second gradient of the cost function, rather utilizes
the approximation using first gradients of the model output:

. (4.23)

We can further expand the gradients  and write them in a pure analytic form. However,
this expansion does not accelerate greatly the computation of the second gradient. It is there-
fore favorable to use a numerical differentiation to obtain the gradient of the model output

. Using (4.22) and (4.23) one can compute the update to the estimated parameter:

, (4.24)

with

. (4.25)

Evaluations of equations (4.22) through (4.25) were computed for the system parameters,
whereas  matrix were held fixed. After each step of optimization, a revision to the covari-
ance matrix of residuals is performed, where the optimized system parameters are used. Esti-
mating  instead of  allows the explicit computation from the evaluated innovations [40]

. (4.26)

4.5.3 Optimization Constraints

The successive evaluation of the MMLE3 algorithm poses several computational constraints.
Although the estimation of the  matrix is not directly performed, its values should be nev-
ertheless physically meaningful. The physical interpretation should satisfy an assumption
that the diagonal elements of  represent the standard deviations of the measurement of ran-
dom disturbances.
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Using equation 4.19 we can express the  matrix through the estimated  matrix
and other matrices where system parameters appear. Hence, to be physically meaningful, the

 matrix should be positive definitive

. (4.27)

As it is shown in [41], the nonlinear constraint equation (4.27) can be accurately approxi-
mated by constraining the diagonal elements of the  matrix to be less than . Minimiza-
tion of the nonlinear cost functional subject to a nonlinear inequality constraint is a problem
in nonlinear programming [7]. The most common solution for such problems is to solve a
series of quadratic programming problems that locally approximate the nonlinear problem
and converge to a solution. A quadratic programming problem is a minimization of a qua-
dratic functional subject to a linear inequality constraint.

To perform the constrained optimization, we have to obtain the local linear approxima-
tions to constraints

, (4.28)

where subscript  indicates, that only diagonal elements of  matrix are taken. Expanding
the gradient of equation (4.28) yields

. (4.29)

The gradients of the equation (4.29) are three dimensional tensors and can be also found
from numerical differentiation. To solve the quadratic programming problem, first find the
unconstrained minimum, using equation (4.25):

, (4.30)

where  is the unconstrained solution of the Gauss-Newton algorithm and  stays for indi-
cation of the optimization iteration. With new obtained parameters check if any constraints
of (4.28) are violated. If none is violated, the quadratic programming problem is solved and
the iteration is complete. If, however, any diagonal elements of  is greater than  then
additional vector  and matrix  should be formed as

. (4.31)
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The elements of  and  corresponding to constraints which are not violated should be
deleted. The constrained solution is then

(4.32)

Equation (4.32) should be reevaluated with the revised constraints until the correct set of
active constraints is obtained.

4.5.4 Two-Step Iteration

The above given relaxation algorithm works well for the cases where correlation of the esti-
mates within two steps is low. However, in the adopted MMLE3 algorithm, the optimal esti-
mates of the process noise matrix  and covariance  are strongly correlated. Therefore a
heuristic weighting operation is performed to minimize the correlation between the  and 
matrices. This weighting operation is based on the fact, that after a certain number of optimi-
zation iterations, the Kalman gain is mostly induced by the change of only the  and 
matrices and insensitive to the other system matrices. This fact is utilized to provide new
estimates of the process noise matrix , after the revision of  has succeeded. The main
idea of this operation is to find such values of the  matrix, that change of the Kalman gain
matrix would be minimal before and after the revision procedure. In [41], the following heu-
ristically determined update procedure is suggested

, (4.33)

where  is the -th diagonal element of the  matrix. Since the process noise is assumed
as white gaussian noise, the  matrix reduces to diagonal form.

To summarize the functioning of the MMLE3 algorithm, the iteration steps are given
according to the computation sequences:

1. Choose an a priori  and .

2. Perform one iteration of the Gauss-Newton optimization algorithm (minimize
negative likelihood functional (4.20) w.r.t. , except for the ) using equations
(4.22) through (4.30).

3. Revise the estimate  using parameters  from step (2) using equation (4.26).

4. Evaluate the update process noise matrix  using (4.33).

5. Return to step (2), if an exit condition is not fulfilled.
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The algorithm loop is terminated on step (5) if the condition for optimality has been reached,
i.e. no more tries were successful to minimize the negative likelihood functional.

The MMLE3 algorithm utilizes not only rigorous mathematical relations, it includes
some discrete approximations and several “numerical tricks” to speed up its convergence.
The algorithm was implemented in the  simulation environment and some basic
tests have been carried out for its verification, as outlined in [32], [33].

4.5.5 Initial Values of Estimates

The MMLE3 algorithm is based on the Gauss-Newton optimization method. The conver-
gence speed of this method is strongly dependent on selection of the initial values of the
parameters. They should be chosen as close as possible to the optimal solution. In order to
achieve this, a startup evaluation of the model parameters can be utilized [55]. Based on the
regression method, this procedure produces initial estimates in one batch iteration, without a
need of a priori values. The necessary requirement for the startup procedure is a set of inde-
pendent measurements of all state variables. The system equations can be transformed as

(4.34)

with  denoting the measured state, the matrices , , ,  and vectors ,  con-
taining the parameters to be estimated, and the matrices  and  containing constant (a
priori known) coefficients. Because in the transformed system the state  and thereby the
observation  vectors are linear with the unknown parameters, their values can be deter-
mined in one iteration.

Initial values for covariance matrix of innovations  can be found by applying equa-
tion (4.26), where estimated responses of the model are based on parameters obtained from
equation (4.34).

4.6   Assessment of Estimation Quality

The maximum likelihood estimation method, being a class of the statistical estimators,
obtains not only the estimations of parameters itself, but also a level of confidence about
their accuracy and their interdependency (correlation). This information helps to get a confi-
dence of estimation for a particular parameter [43]. It also gives a direct indication if the cho-
sen model structure is overparameterized. Finally, the information of the confidence of
parameters is an additional aid in designing the future identification experiments. In this sec-
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tion, several factors are recognized, which can be obtained by applying the maximum-likeli-
hood estimator.

4.6.1 Theil’s Inequality Coefficient

One of the simplest judgements of the results of the estimation is to compare the system
response with the model output. The agreement between the model and the real system can
be well described by Theil’s Inequality Coefficient (TIC) [51]:

. (4.35)

The  inequality should be calculated for each measurement and corresponding model
channel and represents a normalized measure of fit between the system and the model. A
value of  close to zero indicates a good agreement of the measured and estimated quan-
tity, whereas a value close to unity reflects a poor estimation fit. In many cases of the flight
vehicle system identification, values of the  measure that lay in interval between  and

 are acceptable [18].

4.6.2 Cramer-Rao Bounds

The confidence of estimated parameters is typically regarded in Cramer-Rao bounds. This
measure characterizes the lower bound of the covariance of the obtained estimates. That
means that subject to some conditions, the covariance of the estimates  cannot be less than
the Cramer-Rao bound

, (4.36)

where  is the Fisher information matrix. It can be derived from approximation of the Hesse
matrix:

. (4.37)

Studying the latter equation the following conclusion can be made. In a narrow sense, the
Fisher information matrix gives a measure of the information content of the data. Qualita-
tively, it can be well interpreted by the sensitivity of the particular parameter to the system
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zi ẑi–( )2

i 1=

N

∑

z i
2

i 1=

N

∑ ẑ i
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output, as the  terms do. If the sensitivity is large, then the information content of the
parameter is also large. This should lead to a smaller Cramer-Rao bound due to inversion of
the Fisher (sensitivity) matrix. Therefore, large confidence is obtained about the estimated
parameter. Moreover, the quality of the parameter estimates are influenced by the form of the
input signal.

Because the Cramer-Rao bounds are defined under assumption of the Gaussian white
noise statistics of the state and measurement disturbances, evaluating them with a real flight
data provides normally too optimistic results [18]. This is because colored residuals exist
between the measured and simulated responses. For this reason, the estimated Cramer-Rao
bounds are commonly multiplied by fudge values  to  or scaled by a factor

, (4.38)

where  is the cut-off frequency of the applied pre-filter [43] (the measured flight data is
typically filtered before evaluating in the estimation algorithm, as discussed in section 6.1).

4.6.3 Correlation Between Parameters

The Fisher information matrix delivers an additional measure about the estimation quality. It
is attributed to the fact of interdependence of the estimated parameters in the statistical sense,
or alternatively referenced as correlation [45]. The approximation for the correlation
between two parameters  and  can be computed as follows

, (4.39)

where  denotes the correlation coefficient between the parameters. The  has values
between  (no correlation) and  (linear dependency). A consolidated treatment of all corre-
lations results in a correlation map. In the ideal case, one attempts to eliminate the correlation
between parameters, so that the estimation problem becomes orthogonal in parameter space
(diagonal form of the correlation map).

In practical applications, however, the ideal case can be reached only for a few simple
types of systems. For typical multivariable systems it is not the case. As reported in [37], the
correlation between parameters in values  can be treated as acceptable in flight vehi-
cle system identification. Therefore, this value will be regarded as a maximum allowable for
estimation parameters of the postulated airship model.
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There are two practical ways to reduce the high correlation between parameters of the
estimation model:

• Analyzing the parameter correlation map, one can modify the structure and parametri-
zation of the entire model to minimize the correlation effects

• Some reduction of the interdependency between the parameters can be achieved by
selecting an appropriate control input. In the latter case, the control input is designed to
affect only one portion of dependant parameters, holding the other parameters
unchanged [18]

4.6.4 Cross-Validation Tests

One of the most efficient way to assert the quality of the estimated model is to perform a
cross-validation check [66]. In this test the estimated model is used to predict the system
response for the data records, which were not used in the estimation (the Theil’s inequality
coefficient is an effective measure of the predictive qualities of the identified model [51]).
For critical applications the boundaries of unnoticeable dynamics are defined [12]. In gen-
eral, a successful cross-validation test is the ultimate goal of the system identification.
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 Chapter 5

Experiment Design

5.1   Introduction

The experimental part of the “Quad-M” diagram presented in Figure 5.1 recognizes three
main items: the flight vehicle (airship), the maneuvers and the measurements. In this chapter,
the discussion will be constrained to the issues applicable to the design of the identification
experiments. The emphasis will be given on the appropriate choice of the flight maneuvers
and the data acquisition system used in the airship identification project.

The design of the maneuvers and setup of the appropriate data acquisition system, are
alone sufficiently complicated and very time consuming procedures. They should strongly
incorporate the initial knowledge about the flight vehicle dynamics and take into account the
restrictions posed by practical utilization of the flight vehicle.

5.2   Design of Control Inputs

5.2.1 General Requirements on Control Input Design

It is well known that the accuracy of parameter estimations is very “input” dependant [39].
The maneuver design commonly used in the flight vehicle system identification, can be sum-
marized as a cyclic process as shown in Figure 5.2. Going through one iteration of the whole
design cycle can easily take months or even years in practice [49]. 

Flight Vehicle Data CollectionInput

aneuvers Measurements
yu

M

- Shape
- Duration
- Amplitude
- ...

- Sensors
- Sampling Rate
- Placement
- ...

Figure 5.1: Experimental setup in flight vehicle system identification
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By designing the control inputs for aircraft identification purposes, some general
requirements are defined [59]:

1. The frequency band of actuators and the pilot commands should be greater than the
eigenfrequencies of the system.

2. Large excitations of the physical plant from the nominal point should be avoided, if
possible.

3. The identification inputs of the multi input plant should be applied sequentially.

4. The frequency band of the input signal should cover the frequency band of the plant or
alternatively the persistency to excitation requirement [53].

The first requirement poses no additional problem in practical application of an airship
because of very slow dynamics.

For fulfilling the second requirement, it is generally true that the amplitude and dura-
tion of the control input should not deviate the plant too much from its nominal trim condi-
tion in order to keep the validity assumptions of the linear model. From the other hand, too
small perturbations of the motion variables have, in general, very low signal to noise ratio of
measured signals. Typically, these problems can be detected first after post-processing of the
flight data, requiring additional flight tests.

The third requirement is attributed mainly to safety critical applications. A typical
example is a highly unstable combat aircraft, which can not be flown without incorporating a
flight control system. In this case, the control surface deflections can not be applied individu-
ally [18]. There are no apparent constraints in fulfilling this requirement for airships.

One major factor in designing the control input for estimating the linear models is the
persistency to excitation objective. Through the design of the input shape and its duration, it
is desirable to stimulate possibly all eigenmodes of the linear system by the control input.
The “well excited” system provides high sensitivities of the model outputs to the parameters
and consequently increased accuracy of the parameter estimates (see calculation of the
Cramer-Rao bounds in section 4.6.2). This property is closely related to the eigendynamic
characteristics of the plant. The a priori knowledge of the plant dynamics is used as a starting
point for designing appropriate shapes of input signals.

design
maneuver

get scheduled
flight maneuver

vehicle
take-off

execute
flight test

vehicle
lands

analyze
test data

a priori
information

results
acceptable?stop

no

yes

Figure 5.2: Conventional input design cycle [49]
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5.2.2 Typical Input Shapes

Among a variety of identification inputs, in flight mechanics the most common are: the step,
frequency sweep, doublet and the multistep 3-2-1-1 inputs [58]. Their time domain realiza-
tions are shown in Figure 5.3.

The step input signal is used to excite very low eigenfrequencies of the plant (see Fig-
ure 5.4). Application of this input leads to a stationary system deviation from its nominal
(trim) point. For this reason, the step input signal is inadvisable for identification of the linear
systems.

The frequency sweep shape of the input signal has the widest frequency band (Figure
5.4) and usually accomplishes the persistency to excitation requirement. However, practical
utilization of this input shape is restricted by two limitations. First, generation of the sweep
shape poses for the human pilot a considerable difficulty. Second, this input requires a rela-
tively long duration for sweeping the required frequency band [50].

The multistep doublet and the 3-2-1-1 input shape maneuvers are the most widely
flown for the aircraft identification purposes. Their advantages are attributed by easy imple-
mentation in flight and a simple (re)-design phase based on the current best known modal
frequencies of the flight vehicle. To design the multistep input its step duration is selected in
such a way, that the natural frequency of the system (i.e. the frequency of undamped system)
corresponds to half the frequency band of the input (see Figure 5.4). In this case the maxi-
mum power of the input signal is concentrated at the desired system eigenfrequency and
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Figure 5.3: Realization of common inputs utilized in aircraft system identification [58]
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thereby the maximum excitation of the eigendynamics is achieved. For the doublet and 3-2-
1-1 inputs it is defined respectively [46]

, , (5.1)

where  is the natural eigenfrequency of the vehicle.

From the spectral characteristics, shown in Figure 5.4, the 3-2-1-1 shape is preferable
upon the doublet input, as it provides a broader frequency band (1:10 versus 1:3 taken at half
of the maximum amplitude) [46]. As a consequence, the 3-2-1-1 input is more robust to
errors of the a priori knowledge of the system dynamics then the doublet input. 

Several studies utilize the property of the Cramer-Rao bounds as a criteria for design-
ing the optimal input [48], [50], [59]. These techniques use a sequential input design process,
in which the inputs are based on the current best knowledge of the system dynamics. How-
ever, these “fine tuning” approaches can be only applicable, if sufficient knowledge of the
system dynamics is known.

5.2.3 Designing Flight Maneuvers for Airship Identification Purposes

Longitudinal Maneuvers

Investigations of longitudinal dynamics performed in section 3.3 are summarized in Table
5.1. It was shown that the surge mode is largely decoupled with other longitudinal modes. It
is therefore advantageous to consider two independent identification maneuvers, where the
surge motion is assumed to be determined from the throttle input maneuver, whereas the
parameters of the coupled heave and longitudinal-pendulum modes are assumed to be deter-
mined from the elevator perturbation maneuvers.

In the longitudinal dynamics, the most important eigenmotion is characterized by the
longitudinal-pendulum mode. Because the eigenfrequency and damping of the pendulum
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Figure 5.4: Power spectral density function of different input shapes [58]
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oscillation are strongly dependant on aerodynamic and configuration properties (in the exam-
ined case the predicted eigenfrequency ranges from approximately  to

), it is necessary to design the shape of the control input, which has a
possibly wide bandwidth to cover the frequencies of interest.

Table 5.1: Excitation possibility of the longitudinal eigenmodes

From the frequency bandwidth characteristics (Figure 5.4), the most attractive input
signals are of the sweep and the multistep 3-2-1-1 shapes. Having the most relevant configu-
ration of a “slightly heavy” airship  with a trim velocity of about , the
eigenfrequency of the pendulum mode is . The optimal step duration (3-
2-1-1) for exciting this frequency can be computed using equation (5.1) which result in the
duration of one step sequence .

Because of relatively small time constant of the aperiodic heave mode, it is possible to
excite this eigendynamics within the 3-2-1-1 input applied for exciting the longitudinal-pen-
dulum mode.

A specific scenario for conducting the flight with the thrust perturbations can be devel-
oped in order to excite the surge eigendynamics. A simple doublet maneuver with a period of

, where , indicating the time constant of the surge mode, can be
applied to the throttle input.

Lateral-Directional Maneuvers

Table 5.2 summarizes the dynamic analysis of the airship lateral-directional motion. The pre-
dicted instability of the sideslip-subsidence mode poses an additional challenge in estimating
the lateral-directional dynamics. In order to keep the perturbations at small values, the airship
should be flown only with the aid of a flight controller, i.e. in a closed loop operation, which,
as well known, suppresses the essential dynamics of the plant [39].

Table 5.2: Excitation possibility of the lateral-directional eigenmodes

Longitudinal Modes Physical Interpretation Excitation possibility

Surge Axial velocity damping
axial drag

Thrust input 

Heave Cross-flow/Weatherwaning Elevator 

Longitudinal-Pendulum Aerodynamic/Gravity-Buoy-
ancy interactions

Elevator 

Lateral-directional Modes Physical Interpretation Excitation possibility

Sideslip-subsidence Sideslip-  divergence due
to unsteady aerodynamic
yawing moment

Rudder 

Yaw-subsidence Cross-flow/Weatherwaning Rudder 

Roll-Pendulum Aerodynamic-Gravity-
Buoyancy interactions

Ailerons 
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From the other side, the basic dynamic characteristics itself, i.e. the open loop reactions
are of primary interest. It can be expected that the marginal instability (depending on flight
velocity the time constant ranges ) can be efficiently corrected manually by
the pilot, without incorporating the closed-loop control.

5.2.4 Experienced Practical Limitations

The critical issues in designing the flight maneuvers are often settled by practical limitations,
which can be first discovered during the flight test. The following discussion is devoted to
several constraints revealed while carrying out the test flights with the Lotte airship.

As was determined for the nominal longitudinal model, the duration of the optimally
designed 3-2-1-1 input signal with  is 49 seconds. With additional time
required for acquisition of the trim condition and subsequent transient motion, the identifica-
tion maneuver would have resulted in practically unacceptable endurance. This follows from
the fact that the Lotte airship, being a remotely controlled vehicle, can be flown only if the
line of sight between the test pilot and the airship is clear (which in our case constituted
approximately 850 meters). Figure 5.5 illustrates different flight instances of the real flight
interval, which was reconstructed from GPS data.

Fortunately, during preliminary identification flights, the test pilot experienced the
transient responses of the Lotte on the elevator inputs much shorter than it was predicted by
modelling. Due to this fact, the step length of the 3-2-1-1 input has been reduced to

. Note, the applied input was not optimal with respect to the initial model
knowledge, but became apparent from the flight testing and the pilot’s opinion. In addition to
the 3-2-1-1 input shape, the test signals of different shapes (doublet and sweep) have been
also applied during the subsequent flight tests.
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Another examination of the measured data from the trial flights has resulted in addi-
tional limitations. In the remotely controlled operation of Lotte, the test pilot was neither able
to acquire some desired trim condition with a predetermined states , , , nor repeat it
in the subsequent maneuvers. This drawback could not be eliminated during the whole test-
ing program and has significantly constrained the availability of the data at different flight
regimes.

In order to assure the validity of the assumed linear model, the initially commanded
flap deviations from the trimmed condition were limited at . However, in this case
the low signal to noise measurements made the flight data practically intractable for the iden-
tification task. For overcoming the low signal to noise problem, it was decided to carry out
all subsequent flight maneuvers at maximal amplitudes of the control surfaces, which consti-
tute .

In conducting the lateral-directional identification maneuvers, a complete authority of
the pilot was required in order to keep the airship near its rectilinear trajectory.

Of course, the most critical limitation in the flight testing program was posed by the
atmospheric conditions. If the flight tests were performed in the highly turbulent atmosphere,
even optimally designed inputs and sophisticated identification algorithms could do nothing
for improving the identification results.

5.3   Data Collection System

Realization of an appropriate flight recording system takes, in general, even more time than
the design of the flight maneuvers. During the airship identification project it was not possi-
ble to skip this elaborate process, and therefore it became necessary to deal with problems
associated with instrumentation setup and analysis of the measured data. This section will be
devoted accordingly to issues related to hardware realization.

5.3.1 Realization of Measurement Hardware

The discussion in Chapter 2 was briefly devoted to the problems of choice of measurement
quantities for the identification problem. In the airship identification project it was necessary
to develop measurement hardware which could perform required measurements in the real-
time scale. One of the most important objectives of the measurement hardware was the
accomplishment of the weight constraints and power consumption. Inasmuch as time and
financial funds were restricted, the utilization of commercially available products was con-
cluded in the project. 

An appropriate solution in choosing the measurement hardware was the use of a com-
bined device as illustrated in Figure 5.6. The unit is integrated with several elements: the 3D
accelerometer, the rate gyros, the GPS receiver and the evaluation unit. The computer evalu-
ation unit has several functional duties, such as evaluation and storage of the flight data in
real-time mode, the generation of preprogrammed identification inputs for use during flight

u0 w0 θ0

δη 5°≤

δη max 41°=
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tests, and the automatic flight control system (AFCS). In addition, the combined measure-
ment unit is equipped with several communication interfaces for collecting and exchanging
data with different measurement and actuating units, and for the online telemetry to the
ground based observation station. 

The working prototype has been continuously modernized in both hardware and soft-
ware modules. The general characteristics of the recent setup of the measurement platform
are presented in Table 5.3.

Table 5.3: Accuracy characteristics of sensors integrated in the measurement platform

Following the discussion from section 2.5, the aerodynamic measurements of airstream
velocity, air density and temperature should be available for tracking the flow properties.
These measurements should be made at the nose part of the airship to avoid the interference
effects of the airship’s body. As it is in principle difficult to combine the aerodynamic sensors
together with the inertial measurement sensors, the measurement configuration led to a dis-
tributed network. 
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Figure 5.6: Realization of a combined measurement platform
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At early stages of the identification project, the measurements of the airstream velocity
were based on a conventional multiple hole probe device. However, low operation velocities
induced a relatively small dynamic pressure and this device produced high noisy measure-
ments. It was therefore decided to replace the hole probe sensor with an ultra sonic anemom-
eter. The ultra sonic anemometer, shown in Figure 5.7 has a significant benefit in providing
accurate 3D airstream velocity measurements (see Table 5.4) at low velocities up to
30 . The anemometer delivers the airstream measurements to the main measurement
platform via a CAN (Controller Area Network) data interface. The top-level overview of the
communication network of the Lotte airship is shown in Figure 5.8.

Table 5.4: Accuracy of airstream velocities provided by ultrasonic anemometer

Along with measurements of the output variables, it was also necessary to store the
pilot commands and the control variables respectively. As pointed out, the “Lotte” airship is
normally controlled by a pilot in the remote operating mode. The pilot initiates the command
signals and distributes them onboard via remote datalink. The onboard receiver transforms
commanded signals into digital messages and distributes them via the onboard local network.
These messages are used to drive the actuators and are therefore available for recording
them. In addition, the option was included to employ preprogrammed commands to drive the
actuators. 

5.3.2 Sampling Strategy

In a computer-based acquisition system, it is unavoidable that sampling of measurements
leads to information losses. Therefore it is important to select the sampling frequency so that
these losses are insignificant for the estimation process. As with the design of the input sig-

Measurements RMS Units

Airstream velocities , , 0.4

Figure 5.7: Realization of ultrasonic anemometer for airstream velocity measurements
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nals, the sampling strategy is directly related to a priori information about the system dynam-
ics. Here, the following factors are taken into account by selecting the sampling frequency:

• According to Shannon’s theorem [11], the sampling frequency should be at least two
times higher than the system highest eigenfrequency

, . (5.2)

It is in general true that a higher sampling frequency will cause less loss of information.
However, building the discrete-time models with a very small sampling time  may
also lead to numerical evaluation problems. According to Equation (4.10) the state
transition matrix  at high sampling rates will converge to the identity matrix

, (5.3)

which leads to the pole distribution of the discrete system around the point  on
the complex plane, i.e. at the border of the stability region [9]. 

• The real-time operation mode of the data acquisition system also poses strong require-
ments on the data storage frequency. It depends on the evaluation capacity of the
onboard digital computer.
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From the above given constraints, the last one was the dominant in our case. With relatively
slow dynamics of the airship the sampling frequency of measurement signals of  was
found to be sufficient for acquiring the system response.

20[Hz]
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Chapter 6

Results and Analysis

6.1   Details of Flight Maneuvers and Postflight Analysis

6.1.1 Carrying Out the Flight Tests

In August 2002, favorable weather conditions allowed several identification flights with the
“Lotte” airship to be carried out. Altogether, 15 identification maneuvers of a duration of
approximately 60 seconds each, have been flown. Most of the flight maneuvers, were con-
ducted for the longitudinal character of motion. Some preliminary identification results were
reported in [34]. A complete overview of the flown identification maneuvers is outlined in
Appendix C.

6.1.2 Postflight Data Analysis

It is common practice to perform a number of preliminary analysis of the raw measurements,
before the flight data is accepted for parameter estimation. Their intention is to reduce
unwanted effects in the measured data and to conclude whether the flight data is relevant for
further analysis. In the current identification project the postflight data analysis consisted of:

• prefiltering

• air data correction

• data compatibility checking.

A limited choice of mounting places for the measurement equipment poses a common
vibration problem [42]. The measurements were heavily contaminated with high frequency
structural vibrations caused by the thrust propeller. For minimizing the high frequency con-
tent in the flight data, filtering is applied. This procedure is outlined in C.2.1.

The airstream measurements were corrected for the free-stream conditions in order to
eliminate the interference effects caused by the hull of the airship. These results are presented
in C.2.2.
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Utilization of the data compatibility checking procedure had two basic goals in the
postflight data analysis [18]. First, the determination of typical instrumentation errors before
the parameter estimation. Second, using this approach, a plausibility check of the flight data,
which provides a systematic judgement about the applicability of the postulated estimation
model to the flown maneuvers can be gained. The details of this procedure and the achieved
results are presented in section C.2.3.

6.2   Longitudinal Derivatives from Elevator Perturbation Flight

Estimation of parameters of the longitudinal model introduced in section 3.2, aims to deter-
mine the longitudinal stability and control derivatives. Because the output-error and the fil-
ter-error estimation algorithms are based on the Gauss-Newton optimization method, to
speed up their convergence, the initial values of parameters have been determined using the
equation-error based start up algorithm, as described in section 4.5.5.

6.2.1 Application of Output-Error Method

Just a simple visual analysis of the measured trajectories can give an initial confidence about
the dynamic behavior of the airship. Studying the measured trajectories (Figure 6.1), one
observes that the forward velocity remains nearly unchanged during the whole measurement
interval. This behavior agrees with the conclusions made in subsection 3.3.4, where the nom-
inal simulation model was considered. The elevator control input effectively excites only
vertical and rotational (pitch) variables and has almost no effect on perturbations of the axial
velocity. For this reason, the forward velocity damping derivative  will be hardly deter-
mined from this maneuver.

An additional, but less evident conclusion can be drawn when variations of the axial
velocity are analyzed at different pitch angles. Even at large values of  there is no apparent
change in the  trajectory. This behavior indicates that the airship operates at nearly neu-
tral buoyancy-gravity condition, i.e. the gravity force is almost compensated by the buoy-
ancy force. In this case, the contribution of the  and  derivatives should be negligibly
small.

In order to ensure that these conclusions are valid, a verification test was performed,
were the fully parametrized longitudinal model, having 24 unknowns 

(6.1)
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Figure 6.1: Filtered time history data of longitudinal F4S1e flight maneuver
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and a model with a reduced set of parameters, are estimated. The reduced model neglects the
, , , ,  and  derivatives in the dynamic matrix

. (6.2)

The time responses of both models, estimated using the output error algorithm, are
illustrated in Figure 6.2. As can be observed, there is a quite small difference between the
two models in estimating the forward velocity  and no apparent differences in other
response variables. Numerical values of the estimated parameters and the supplementary
information (Cramer-Rao bounds, TIC coefficients, Eigenvalues) are provided in Table C.2.

Another important indication of the parameter estimation procedure is characterized by
the algorithm convergence property. The model with the reduced number of estimation
parameters has required 29 iterations to converge, whereas the convergence of the fully
parameterized model could not be reached and has been broken after 100 iterations. As will
be shown later, this improvement arise due to reduced correlation between estimates and,
therefore, a better conditioning of the Hessian matrix (Equation (4.37)).

From this simple verification trial, one concludes that the forward velocity perturbation
state , corresponding to the surge mode, can be regarded as decoupled with the remaining
states. It follows from the structure of the dynamic matrix  (6.2) of the simplified model.
With this knowledge, it is now possible to concentrate efforts on estimating the reduced order
model without the  state. It should be noticed, that fairly similar flight phenomena was
observed not only for this particular flight record, but in all subsequent longitudinal maneu-
vers perturbed by elevator deflections. These trajectories are outlined in section C.3.

Low Order Estimation Model

The reduced plant model involves the state-space formulation as described in equation
(3.31). Altogether, there are 14 estimation parameters, including 5 stability, 2 control deriva-
tives and 7 bias unknowns respectively:

(6.3)

As can be concluded from Figure 6.3, in spite of the state reduction, the agreement between
the measured and the computed responses is still very good.

So far, only the fit between the measured and the model responses was used as a basic
goodness criteria. The trajectory fit does not, however, guarantee the fact that the estimated
parameters are reliable. This can be evident when analyzing the correlations between esti-
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mated parameters, presented in Figure 6.4(a). In spite of a good trajectory agreement, a
nearly linear dependency ( ) exists for several pairs of estimated parameters.

The adopted estimation model with highly correlated parameters should be possibly re-
parametrized in order to reduce this interdependence. The reduction of the parameter space
of the model can be done based on the following propositions:

• Because the parameters comprising the bias vectors  and  have only minor impor-
tance (e.g. for accounting for the initial condition and the sensor errors), a high correla-
tion between them can be allowed unless this does not affect the stability and control
estimation or the optimization convergence.

• If a strong dependence between any derivative and the bias parameter exists, the latter
should be fixed at some (nominal or zero) value during estimation.

These steps should be regarded as a trade off between the performance of the model and esti-
mation confidence of important derivatives.  

A serious difficulty arises from the fact that the estimated derivatives ,  and 
are highly correlated. Neglecting one of these parameters is undesired, because otherwise it
will change the essential properties of the model (such as removing of the second order
dynamics of the longitudinal pendulum motion). One advisable solution is to fix the static
pitch stability coefficient  at some nominal value during estimation. Fixing the  has a
particular advantage, because its value basically characterizes the metacentric position 
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and is quite insensitive to variations of the trimmed velocity. This derivative can be alterna-
tively calculated using approximation [23]:

. (6.4)

Therefore, the same value of  can be used for several flight segments, under supposition
that environmental conditions and configuration of the airship remain unchanged. Because
the static pitch stability derivative was not known exactly, was initially decided to use an
averaged value of the  estimations from several maneuvers.

The model with the reduced parameter space has been evaluated and compared with
the response of the model that uses the estimated  derivative for the same flight maneu-
ver. Because the bias parameters show (Figure 6.4(a)) a little correlation with important
derivatives, they have not been discarded. Figure 6.5 shows that there is almost no qualitative
difference in the time plots provided by the nominal model and the model with fixed .
Fixing this parameter also results in reduction of interdependency between  and , as
illustrated by the correlation map in Figure 6.4(b). As a consequence, estimation of the
Cramer-Rao bounds of these two derivatives ,  has been significantly reduced (see
Table C.3).

Accounting for Large Pitch Deviations

One interesting result is that the purely linear model fits the measurements even at the cases,
where nonlinear effects are evident. For example, examining the system responses shown in
Figure 6.6, one observes that the pitch angle reaches very large values . The trigo-
nometric nonlinearities, associated with these large deviations, invalidate the modelling
assumptions, given in section 3.2.1. On the other hand, even at large pitch deviations, the
aerodynamic linearity assumption is acceptable due to relatively small perturbations of the
angle of attack .
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In order to keep the physical validity of the estimation model, its basic structure estab-
lished in equation (3.31) has been slightly changed. Because the measured Euler angles are
normally subjected to a relatively small sensor noise, a directly measured value of  can be
taken for precomputing the trigonometric nonlinearity. The resulted signal is then applied to
the model as a deterministic pseudo-input. In the state-space representation, the enhanced
dynamic model yields

. (6.5)

Because the measured pitch angle was used as the pseudo control variable, the system output
was reduced to

.

In this case the observation model appears as:

. (6.6)

In this formulation, the model has been estimated using the output error method. The esti-
mated time histories are presented in Figure 6.7.

In addition to the proposed parametrization, Figure 6.8 illustrates the trajectory estima-
tions of the model that assumes the zero static pitching moment . This “worst-case”
parametrization, corresponding to the case when , , is used here to ensure
the significance of the  derivative in the system dynamics.

The estimated response of the enhanced model provides no visible improvement in tra-
jectory. However, the overall performance of the extended model is more confident with
regard to the performance of the pure linear model. The responses of the model that discards
the static pitching moment , has lead to inacceptable large model deviations from the
flight trajectories.

Application of the enhanced model, however, did not reduce the problem of a high cor-
relation between estimates. A nearly linear dependency (not shown) between the derivatives

,  and  remains unchanged. Therefore, the demand on fixing the  is actual for
this model formulation as well. 
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Figure 6.7: Estimated trajectories of the enhanced model for estimating the large pitch deviations

0 20 40 60
-40

-20

0

20

40

η 
[˚

]

time [s]
0 20 40 60

-1

-0.5

0

0.5

1

w
A

|C
S
 [m

/s
]

time [s]

flight
model

0 20 40 60
-15

-10

-5

0

5

10

q 
[˚

/s
]

time [s]
0 20 40 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

az
C

I [m
/s

2 ]

time [s]

Figure 6.8: Estimated trajectories of the model with .Mθ 0=



92 Chapter 6    Results and Analysis

6.2.2 Application of the Filter Error Method

Estimation results, obtained by using the output error algorithm, can be treated as a basis for
selecting a reliable parametrization of the longitudinal model and for acquiring the interme-
diate estimation results. Although the trajectory and parameter estimations are very encour-
aging, still some discrepancies in particular in the vertical velocity (Figure 6.7) between the
measured and estimated trajectories. These discrepancies can be classified by a presence of a
slightly turbulent atmosphere.

The filter error algorithm is applied to the measured data, in order to minimize the neg-
ative effect of this uncontrolled motion on parameter estimations. The model has been used
which accounts for the large pitch variations. To minimize the risk of numerical instability
during optimization, the unknown disturbances are regarded as two uncorrelated white gaus-
sian processes that affect the  and  states

. (6.7)

The filter error algorithm incorporates these two parameters additionally to estimate the
intensity of the process noise. The parameter vector is then defined by

. (6.8)

Estimation results using the filter error method are presented in Table C.4 and the time
plots are shown in Figure 6.9. The agreement between the measured and estimated trajecto-
ries is now nearly perfect. This improvement of the trajectory fit also affects the confidence
of the estimated parameters. Most of them were estimated with reduced Cramer-Rao bounds,
comparing to estimations derived by the output-error method. Estimating the process noise
parameters , , along with other model unknowns, did not lead to a critical interdepen-
dencies between parameters. 

The performance of the filter-error algorithm is more efficient, when the model param-
eters are estimated from maneuvers conducted at a higher turbulence level. Figure 6.10 illus-
trates the time histories of the model estimated with both algorithms, i.e. the output-error and
the filter-error methods. Not only large residuals in trajectories, but also inadequate numeri-
cal values of some estimated parameters have been obtained, when the output-error method
was used. Although the evaluation time was not the central factor in the current analysis, the
slow convergence speed has indicated serious numerical difficulties during optimization.

A better performance has been observed when the filter error method was applied. In
almost all performance characteristics, i.e. the trajectory fit, the plausibility of parameter esti-
mates, Cramer-Rao bounds and convergence properties, a significant improvement has been
achieved. The numerical values of estimated derivatives are close to those, obtained for
records at very calm atmospheric conditions.
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Figure 6.9: Filter error method applied for estimation of the F4S1 longitudinal maneuver
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Even though the maneuvers flown in severe turbulence, in general, did not pass the
data compatibility check (see results in C.2.3), a better performance of the filter-error algo-
rithm is apparent over the output error method. For this reason, more plausible estimation
results are expected also for “calm air” maneuvers.

6.3   Estimation of Lateral Derivatives

Unfortunately, having focused on the examination of the longitudinal dynamics, there were
almost no flight maneuvers carried out in order to determine the lateral-directional dynamics.
Figure 6.11 shows the time histories of a single lateral maneuver, where two multistep pertur-
bation sequences were applied to the rudder controls.

From the analysis of the flight trajectories it becomes apparent that the roll oscillations
are tightly coupled with the yawing motion, excited by rudder perturbations . This charac-
ter of motion implies the use of the full state lateral-directional model (Equations (3.16),
(3.26)) for parameter estimation.

As in the case of the longitudinal estimations, the fully parameterized lateral-direc-
tional model has also lead to very poor estimation results due to highly dependant parame-
ters. The initial anticipation of the importance of a particular stability/control derivative was
acquired by studying the components of the nominal model (discussed in Chapter 3). From
the analysis of magnitude of the dynamic  and control  matrix terms (Equation (3.16))
follows, that the derivatives , , , , ,  and  could be replaced by zeros in
the state and control matrices without significantly affecting the dynamics of the linearized
model.

Inspection of magnitudes of the flight determined parameters (stability/control deriva-
tive multiplied with a corresponding recovered state/control trajectory) has confirmed the
insignificance of , , ,  derivatives. However, as pointed out previously, the rudder
perturbations effectively excite the rolling oscillations. It turns out to be reasonable to esti-
mate also the  and  derivatives. In this parametrization, the model has produced the best
fit to the flight data without encountering convergence problems. The final parametrization
of the lateral-directional model yields

(6.9)

The evaluated trajectories of the new parametrized model against the flight data are
shown in Figure 6.12. The correlation map of the estimated parameters is shown in Figure
6.13. Numerical values of estimated parameters are given in Table C.14.

Although the correlation among the parameters contributing to the pendulum motion
appears to be not as critical as in the longitudinal maneuvers, a high correlation among many
other stability derivatives exist. Because the high correlation exist for almost all parameters
that constitute the model’s state equations, resolving for it would require a fixing of several
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important derivatives, which is unwanted in this case. Therefore, the high correlation among
parameters was accepted here.

During the lateral-directional maneuver, small discerpancies of the side velocity 
exist, which could not be followed by the model. The objective of the filter error algorithm
was to perform an efficient maximum likelihood estimations in spite of these discrepancies.
The process noise matrix incorporates the estimation of three state noise components

. (6.10)

The updated set of parameter vector consists of 24 unknowns:

(6.11)

The time histories of the model estimated by the filter error method are shown in Figure 6.14.
As expected, the filter error algorithm provides a better estimation trajectories. The numeri-
cal values of the estimated parameters are given in Table C.14.    
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Figure 6.11:Lateral-directional maneuver with rudder perturbations
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Figure 6.12:Estimations of lateral-directional maneuver using Output-Error method

1

0.98

0.91

0.98

1

0.96

0.82

1

1

0.89

0.87

0.89

1

1

0.98

0.92

0.98

1

0.96

0.91

0.96

1

0.83

0.87

1

0.92

0.96

1

0.82

0.83

1

1

1

0.92

0.91

1

0.98

0.92

1

0.8

0.98

1

0.91

0.8

1

1

1

1

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.13:Correlation map of lateral-directional parameter estimations

Yv Yr Lp Lr Lφ Nv Nr Yζ Lζ Nζ bv· bp· br· b
φ·

bv bp br bφ bay u0 w0

Yv

Yr

Lp

Lr

Lφ

Nv

Nr

Yζ

Lζ

Nζ

bv·

bp·

br·

b
φ·

bv

bp

br

bφ

bay

u0

w0



Chapter 6    Results and Analysis 97

6.4   Validation Results

6.4.1 Cross-Validation Tests

To finalize the identification methodology applied for determining the airship dynamics, the
cross-validation test, as outlined in section 4.6.4, has been utilized. In this technique, the pre-
dictive ability of the estimated model is studied: as already pointed out, the important prereq-
uisite for the cross-validation test is a repeatability of the flight maneuvers. This means that if
the model was estimated from a particular flight record, it can be compared with the different
record only if the latter is taken under similar trim and configuration conditions as the first
one.

Because repeatability of the flight maneuvers for the remotely operated airship has
posed serious difficulties for the pilot, each identification maneuver had a slightly different
trim condition. In order to overcome this problem, it was decided to use the model structure,
where the main stability and control derivatives were held at fixed estimated values, whereas
the bias parameters  and  were freely adjustable. In this approach, “freezing” the main
derivatives does not change the essential properties of the model, whereas “freeing” the bias
parameters can compensate for the uncertainties of the trim condition. This is allowed only at
limited extent, because the stability and control derivatives also vary with the change of the
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Figure 6.14:Estimations of lateral-directional maneuver using Filter-Error method
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trim condition. In the current investigation, the cross-validation test has been applied only to
“nearly similar” flight records.

Figure 6.15 shows the model responses on the doublet elevator input compared with
the corresponding measured quantities of the flight record F4S5e. Numerical values for the
stability and control derivatives were taken from estimates obtained from the record F4S1e.
using filter error algorithm. The vector comprising of bias parameters

(6.12)

has been adjusted in order to account for the different trim condition of the doublet maneu-
ver. The model with parameters estimated by the filter error algorithm provides very good
predictions of the flight data. The successful result of the cross-validation test is also owing
the fact that both flight records are taken in extremely calm air. It might be therefore con-
cluded, that the model adequately describes the airship motion under examined flight and
configuration conditions. 

6.4.2 Other Validation Results

The lack of additional lateral-directional flight maneuvers makes the application of the cross-
validation test irrelevant for the analysis. In this case, a slightly different validation test can
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Figure 6.15: Longitudinal model predictive abilities in cross-validation test
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be performed, where the model is being estimated on the half interval of the data record, and
these results are used to predict the rest of the data [59].

Figure 6.16 shows this validation strategy applied for predicting the lateral-directional
dynamics. The model parameters have been estimated based on the first 25 seconds of the
data record and then extrapolated to the rest of the record. As can be observed, the predicted
model trajectory agrees well with the measured airship responses. There are no visible differ-
ences between estimated (Figure 6.12) and predicted (Figure 6.16) model outputs in the last
15 seconds of the flight record. This indicates that a sufficient content of the lateral-direc-
tional dynamics could be gained from the first 25 seconds of data used for parameters estima-
tion. 

6.5   Estimated Parameters Versus a priori Model Predictions

Sections 6.2-6.4 were mainly focused on system identification issues for estimating and vali-
dating dynamical models from the flight data. This section will be devoted to the comparison
between the modelled and the flight determined parameters. The eigendynamic properties
which are characterized by the stability derivatives will be examined first. Subsequently, the
nondimensional aerodynamic coefficients will be extracted from the identified parameters
and compared with the wind tunnel data. The nominal configuration data of the Lotte airship
outlined in Appendix A has been taken for this analysis.
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6.5.1 Examination of Eigendynamic Properties

Longitudinal Dynamics

One of the central issues in estimating the stability derivatives of a linear model is a charac-
terization of its eigendynamics. A summary of pole distribution (heave and longitudinal-pen-
dulum modes) determined from several flight segments with respect to the model predictions
is illustrated in Figure 6.17(a). Although each flight record correspond to a slightly different
trim condition, the poles tend to concentrate around some definite locations. As can be seen
from this distribution, some disagreement between the expected and flight determined pole
locations exist.

The damping of the aperiodic heave mode increases with increased trim velocity  as
agrees well with the preliminary analysis performed in Chapter 3. However, the estimated
time period of the heave mode is shorter than expected, which is predominantly conditioned
by large negative values of the estimated pitch damping derivative . The estimated value
of  is greater then the modelled value by an approximate factor of three. Because the
physical interpretation of the heave mode is tightly connected with the stabilizing effect of
the fins (see section 3.3), their influence during the flight is greater then expected.

The identified longitudinal-pendulum mode tends to be well dampened as well. The
estimated damping ratio of the longitudinal-pendulum mode ranges from 0.83 to 1.0, which
is overpredicted comparing to the nominal model. The natural frequency of the oscillatory
motion decreases with increased forward velocity  and at certain velocity a mode transi-
tion to subsidence aperiodic motion takes place. This well dampened characteristics agrees
well with the pilot’s opinion, experiencing a very stable motion of the airship even at maxi-
mum velocities ( ). There are two factors which contribute to this stability.
First, the static pitching derivative  has been estimated at values higher than expected.
According to equation (6.4) this could be caused either by incorrect specification of the mass
properties (metacentric position, mass, moment of inertia) or wrong estimation of the appar-
ent moment of inertia due to potential flow . Second the large estimated values of 
explain the transition from oscillatory to aperiodic motion at higher velocities.

Lateral-Directional Dynamics

The strong correlation between lateral parameters detected during estimation, shows that the
parameters could be obtained with a relatively small confidence. At the same time, the a pri-
ori acquired values of the lateral coefficients also largely deviate from the flight determined
ones, as can be seen from Table C.14. Especially the estimated values of damping derivatives

 and  show the largest divergence from the nominal model which confirms the strong
influence of the fins also on the lateral-directional stability.

The existence of large differences between the model predicted and determined stabil-
ity derivatives leads also to a different characterization of eigendynamics of the lateral-direc-
tional motion, as shown in Figure 6.17(b). Analogously to the longitudinal case, the
eigenfrequency and damping ratio of the roll pendulum mode have been slightly overesti-
mated. A significant difference, however, is that the expected yaw divergence motion has
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been estimated by a stable aperiodic dynamics. The main contribution to this stability is
made by the large negative value of the  derivative. Unfortunately, availability of only a
single lateral flight maneuver does not allow a more extended examination of this phenom-
ena. More lateral-directional flight maneuvers are required to make a definite statement
about the stability of the yaw dynamics.

6.5.2 Extraction of Nondimensional Aerodynamic Coefficients

The relationship between stability and control derivatives and nondimensional aerodynamic
coefficients is given in section B.6. Under assumption of correctly specified configuration
data (predominantly airship mass, moment of inertia and center mass), it is possible to com-
pute the flight determined aerodynamic parameters and compare them with the wind tunnel
database. For this purpose, the coefficients from the wind tunnel database should be first
transformed in the body fixed axes as shown in Figure 6.18 using transformation equations
(B.51) and (B.52).

For extracting the aerodynamic coefficients from the flight determined derivatives, the
reference length and configuration data were taken from the nominal parameter set as out-
lined in Appendix A. The geometry dependent Munk factors and the derivatives due to insta-
tionary flow phenomena have been computed analytically using information about the hull
profile of the Lotte airship.

There are two major constraints on comparison between the wind tunnel and flight data
should be noticed. First, because the wind tunnel aerodynamic database contains only sta-
tionary coefficients, no information about the aerodynamic damping coefficients can be
gained. Second constraint arise due to the fact that estimation of the axial derivatives, like

, form the flight data was not confident due to the perturbations of only elevator control
. Therefore, the analysis has been reduced to comparison of the  and  coefficients.
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The coefficients  and  represent the slopes of the  and  curves respectively,
taken at the nominal . Using numerical differentiation it is possible to compute the rate of
change of the static lift and pitching moment aerodynamic coefficients over the whole range
of measured  as illustrated in Figure 6.19. In addition, also displayed are the aerodynamic
coefficients evaluated from the flight determined stability derivatives. Due to noticed limita-
tions of the flight test experiments, the achieved trim conditions were at nearly zero angle of
attack. This explains a small distribution of the flight determined coefficients over the 
range.

Comparing the wind tunnel value of the static  coefficient with its flight determined
counterpart (Figure 6.19(a)) it can be said that the normal aerodynamic force of the Lotte air-
ship tends to be more sensitive on variations of . There are relatively small variations of the
identified  derivative with changed trim velocity . One interesting fact is that due to
symmetric property of the airship in  and  planes, the curves  and  are identi-
cal as follows from equation (B.62). It is therefore possible to verify the flight determined
longitudinal aerodynamic derivatives against their lateral counterparts. Thus, the computed
non dimensional side force derivative  has less negative value then the longitudinal coef-
ficients. It can be explained by reduced side force derivative due to asymmetric flow as a
result of the combined yawing and rolling motion.

Figure 6.19(b) shows the flight determined moment coefficient  versus wind tunnel
estimations. As can be seen the resulting aerodynamic pitching moment is less than predicted
by the wind tunnel experiments. The reduced destabilizing moment might be caused by a
stronger contribution of the fins (under supposition of correct configuration properties of the
Lotte airship). Similarly to the static force example the stationary pitching moment coeffi-
cient  can be effectively comparable with the stationary yawing moment coefficient

. The same is valid also for the derivatives  and , which have the same magni-
tude but the opposite sign as follows from equation (B.63).

30 20 10 0 10 20 30
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

c z

α [˚]

approximation
measurements

30 20 10 0 10 20 30
0.06

0.04

0.02

0

0.02

0.04

0.06

c
m

α [˚]

approximation
measurements

Figure 6.18:Static normal force and pitch coefficients in body fixed axes

czα
cmα

cz cm
α

α

α

czα

α
czα

u0
X-Z X-Y czα

cyβ

cyα

cmα

cm α( )
cn α( ) cmα

cnβ



Chapter 6    Results and Analysis 103

6.5.3 Variation of Initial Values of Parameters

Because the gradient-like optimization method used in the estimation algorithm do not guar-
antee the global minima and the start-up algorithm was utilized to acquire the initial parame-
ters, some additional parameter evaluation runs have been performed. Their aim was to
ensure that the estimated parameters correspond to the global minima of the likelihood func-
tion. In these tests, different initial values of parameters (including the model predicted
derivatives) were used. As a consequence, the number of iterations needed to converge has
slightly increased, but this did not lead to different values of the final estimations. These
results confirm the validity of the obtained parameters.

6.5.4 Cause of Large Deviations

As a consequence of the performed analysis it can be said that although all identified stability
and control derivatives were obtained from good fits between the measured and computed
data, there are large deviations between the predicted and estimated dynamic characteristics
of the Lotte airship. These inconsistencies can be caused by three main factors:

• Uncertainties of the mass properties: Because the mass characteristics play a domi-
nant role in overall system dynamics, its primary inaccuracy could lead to a significant
difference of results.

• Aerodynamic phenomena: It was found that the flight determined aerodynamic coef-
ficients can be different to these derived from the modeling or wind tunnel experi-
ments. This difference can be classified by the scaling problems, i.e geometric
differences of the real airship with respect to the scaled model and the incomplete aero-
dynamic database. Thus, the dynamic characteristics of the real airship was found to be
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more stable than predicted. Surely, this well dampened behavior could be explained by
incorrect mass properties. From the other side, the lateral directional instability is less
sensitive to changes of the mass properties of the airship, being mainly conditioned by
the aerodynamic phenomena.

• Experiments: The imperfections during the experimental phase cause a negative influ-
ence on the final estimation results. As pointed out, the plausible flight data could be
only derived at large amplitudes of the control inputs. The most elevator perturbation
maneuvers, flown under 3-2-1-1 input shape, resulted in a substantial pitch deviations
of the airship, where trigonometric nonlinearities were evident. The large pitch varia-
tions also lead to inevitable altitude changes, and thereby additional changes in aerody-
namic, buoyancy, mass and thrust properties. Although all these changes are supposed
to be insignificant (the computed variation was within 4%), the absolute time invari-
ance of the model parameters can not be guaranteed.
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Chapter 7

Conclusions and Perspectives

7.1   Conclusions

The system identification approach for determining a dynamical characteristics of the
research airship Lotte, is the central objective of this thesis. The widely utilized identification
methodology from the classical aircraft flight mechanics was taken as a basis for the frame-
work. Since the methodology requires a consolidated treatment of several different problems,
such as selection of the model structure, appropriate estimation methods, experiment design
and evaluation of the flight data, these have been closely investigated in this work.

The model is the fundamental part of the airship identification problem. From the theo-
retical investigations given in the previous study it was possible to formulate a closed form
analytical flight mechanical model, based on physically meaningful parameters. However,
for the identification purposes, a linearized form of the airship dynamics was taken and the
emphasis was made on estimation of basic stability and control derivatives. Estimating the
linearized dynamics was necessary from the limited a priori confidence of the main compo-
nents of the flight mechanical model. In addition to that, a separate consideration of the lon-
gitudinal and lateral-directional dynamics simplifies the model considerably in terms of
structure and the number of unknown parameters.

The algorithmic part of this thesis is devoted to the examination of the methods of
parameter estimation. Among a large number of estimation algorithms available in aircraft
system identification, only two of them have been attentively considered in airship identifi-
cation. Both algorithms use the time domain representation of the parameterized models and
corresponding measured signals. One of them is the Output-error method that is based on the
probabilistic likelihood criteria and provides the unbiased estimation of parameters in pres-
ence of measurement noise. The second algorithm was based on Filter Error method. It
applies to the optimal state estimation using the Kalman filter. Its utilization was preferable
for the airship identification, because this method effectively estimates the model parameters
in presence of the proces (wind disturbance, modelling errors) and measurement noise
sources.

One of the most critical and the most difficult parts of the airship identification project
was devoted to the experiment design problem. Designing the flight test maneuvers and find-
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ing an adequate measurement setup are the central issues of the experimental part. While
evaluating the identification project, both issues had to be designed along with severe practi-
cal limitations. Weather condition, remote operation of the airship, small payload, altogether
have significantly complicated the acquisition of the flight data.

The acquired flight data have allowed a separate estimation of three low-order approx-
imate models, i.e. the angle-of-attack-pitch, the forward velocity and the lateral-directional
models. Based on flown trajectories and estimated parameters of the models, several impor-
tant conclusions of the Lotte dynamics can be drawn:

• The perturbations of the elevator controls can be widely approximated by the angle-of
attack-pitch model without the axial velocity state. Even maximal control elevator
deviations do not lead to large perturbations of the axial velocity.

• Due to low center mass location, the rudder controls effectively excites not only the
sideslip and subsidence modes, but also the roll oscillation mode. In this case an utili-
zation of the full order lateral-directional model was required.

• The estimated pole locations of the longitudinal dynamics greatly deviate from the pre-
dicted ones. The longitudinal-pendulum mode is effectively dampened. The predicted
instability of the longitudinal-pendulum mode does not occur even at maximal flight
velocities.

• The sideslip subsidence mode does not appear to be unstable in the lateral-directional
dynamics. The latter fact, however could not be verified due to a lack of the lateral-
directional flight maneuvers.

It is also shown, that a relatively simple form of the linear model can accurately approximate
the motion of the airship.

Although the results obtained by utilizing the system identification approach can be
treated as satisfactory in describing the dynamics of the airship, they are different to the pre-
dictions made out of wind tunnel experiments and from the physical flight mechanical
model. This justifies the importance of flight test program and, in particular, system identifi-
cation in the flight control system design.

7.2   Future research

Although the achieved results can be effectively utilized for the controller design in order to
achieve an autonomous operation of the Lotte airship, several unsolved problems still exist
which should be examined in future studies.

The main disadvantage of the models used to approximate the airship dynamics is that
their parameters describe the system dynamics as a whole, i.e. it is impossible to extract the
aerodynamic derivatives and compare them with the wind tunnel data unless the mass model
is accurately known. In order to achieve this, an accurate determination of the basic mass
model is obligatory.
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The obtained results can be effectively utilized for future experiment design. It would
be interesting here to examine the unsteady aerodynamic effects. For this purpose, new
experiments can be designed including accelerated flight, mass drops and inclusion of thrust
vectoring.

There is a great potential in improving the hardware capability in order to track the
basic dynamic variables. An effective IMU/GPS integration algorithm should be imple-
mented in order to track the flight path velocity. Utilization of multiple airstream sensors will
allow the measurement of the flow distribution along the airship hull, yielding the involve-
ment of the approximated wind/turbulence models. Additionally, the thrust measurements
are required for estimation of the axial drag components.

Finally, with improved confidence in the mass model and systematic improvement of
the measurement hardware, estimation of the basic components of the nonlinear aerodynamic
model will be possible. However, additional research is required in order to obtain a plausi-
ble model parametrization, involving an extensive sensitivity analysis.
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Appendix A

LOTTE Airship: Technical Data

Figure A.1: Lotte airship at starting phase of test flight
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dimensions:

length [m] 15

max. thickness [m] 4

hull volume [ ] 107.42

span width [m] 4.6

fin area [ ] 2.88

estimated mass and elements of :

mass (at altitude 200m) [ ] 136.8

 [ ] 213

 [ ] 3310

 [ ] 3211

 [ ] -88

estimated center of mass wrt. :

(at altitude 200m)

 [m] 0

 [m] 0

 [m] 0.45

important reference points wrt. :

 [m] 0.11

 [m] 0

 [m] 1.88

 [m] 8.13

 [m] 0

 [m] -0.2

electrical engine:

max thrust [ ] 120

performance:

max. velocity [m/s] 12

max. payload [kg] 12

energy sources:

solar panels/rechargeable batteries

m3

m2

ICG

kg

Ixx kgm2

Iyy kgm2

Izz kgm2

Ixz kgm2

CR

xCG

yCG

zCG

CR
xCI

yCI

zCI

xCS

yCS

zCS

N
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Figure A.2: Three-view of the Lotte airship with major dimensions shown
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Appendix B

Annotations to Derivation of Flight 
Mechanical Model

B.1   Similarity Transformations

The basic force and moment equations of motion established in Chapter 2 are

(B.1)

and

. (B.2)

It is further necessary to apply two similarity transformations on these two equations in order
to derive the motion variables with respect to the center of body reference . First, the
transformation of the time derivative of vector variables given in the body reference (super-
script ) is required. For this purpose, a rule of expressing the time derivative of a vector in a
rotating reference frame is requested [6]:

. (B.3)

Applying this rule to the left hand side of the force equation yields

(B.4)

td
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g
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and analogously for the moment equation

(B.5)

The second transformation of the equations of motion requires a translation of all its
terms from the mass center  to the center of body reference . For this purpose, the
velocity at the mass center can be expressed by

, (B.6)

Henceforward, the subscripts of all variables that related to the center of reference will be
omitted ( , , etc.). Moreover, the rates of change of the airship mass

 in equation (B.4), moment of inertia  in equation (B.5) are insignificantly small with
regard to other motion variables and can be therefore neglected:

 (B.7)

Substituting transformed velocity from equation (B.6) into equation (B.4) and equating
the latter with (B.1), one obtains:

. (B.8)

The translation of the net force from the  point to the  is done straightforwardly, since
for the force valid .

The derivation of the moment equation with respect to the center of body requires a
simultaneous transformation of both sides of the equation (B.2), because the tensor of inertia

td
d
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f

g

td
d
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f
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Figure B.1: Definition of reference vector  in transformation rCG QCG
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and the summary moment are expressed in center mass point. The transformation of the
moment to the  point can be obtained using common relation (See Figure B.1): 

. (B.9)

Then the expanded moment equation yields

(B.10)

or equivalently

. (B.11)

If the externally acting net force  in the latter equation will be substituted by the equation
(B.8), then the moment equation with some rearrangements appears as follows:

(B.12)

This equation can be further simplified, if an inertia matrix transformation from the mass
center  to the center of reference  is applied according to formula

, (B.13)

with the  multiplier representing the identity matrix. Using (B.13) and properties of a vec-
tor product, the first two rows in (B.12) may be simplified by

(B.14)

Finally, after all substitutions done, the moment equation becomes:

. (B.15)

It should be noticed, that the moment of inertia matrix  is now expressed with respect to the
center of body reference  and not with respect to the mass center .
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B.2   Mass Matrix

The mass matrix in equation (2.12) includes the definition of airship’s total mass  and ten-
sor of moments of inertia . In the expanded form, the matrix is

. (B.16)

Airships are generally symmetrical with respect to the vertical plane. Therefore, the mass
matrix in the equation (B.16) is expressed for the cases where this symmetry is valid

 and .

B.3   Dynamics Vector

The dynamics vector in the right hand side of equation (2.12) appears due to kinematical
transformations of the system coordinates. It contains only stationary (non-accelerated) terms
of the flight path and the rotational velocities

. (B.17)

Along with linear and rotational velocities, the dynamic matrix also comprises of the total
mass of the airship, position of the mass center and moment of inertia. The dynamic vector
equation (B.17) in its expanded form yields

. (B.18)
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B.4   Aerodynamic Model

This section summarizes the generic aerodynamic model of a conventional airship developed
in [26]. The analysis of the original model was performed by the author in [31]. The model
utilizes the structure shown in Figure B.2.

The derivation of the aerodynamic model is divided onto two main parts. The first part
describes the aerodynamics of the bare hull of the airship and defined as hull model, whereas
the second part deals with description of aerodynamics of the tail area.

Approaches describing the model are based on formulation of the potential flow
around the hull area, and a classical profile theory for the tail area. Separation and friction
effects, which are usually to expect are modelled through viscosity and cross-flow terms for
both the hull and the fin areas.

B.4.1 Hull Aerodynamics from Potential Flow Theory

For modelling the hull aerodynamics from the theory of potential flow, an assumption is
made that the shape of the bare hull can be approximated by an ellipsoidal body. This allows
to apply a closed analytical form of the velocity potential [36]

, (B.19)

where ,  and  are the geometry dependant Munk-factors of the potential of the distur-
bance of the flow around the ellipsoidal body.

Complete Aerodynamic Model
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Figure B.2: Topology of the aerodynamical model [26]
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For computing the net forces and moments, it is advantageous to consider the bare hull
as a combination of infinitely thin segments, as illustrated in Figure B.3. The force and the
moment are first determined for the entire segment and then integrated along the length of
the body.

The study of hull aerodynamics due to potential flow should cover three basic opera-
tional cases. These are the accelerated motion of airship, the steady motion and the case
where the airship operates in the unsteady atmosphere.

Figure B.3: Representation of the hull segment

Potential Flow due to Accelerated Motion

The flow distribution due to the accelerated motion incorporates the time differential of the
velocity potential:

. (B.20)

Applying (B.20) in the unsteady Bernoulli equation the forces acting on the segment of hull
can be computed. This leads to the following relations:

 (B.21)
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and

. (B.22)

Potential Flow due to Steady Motion

In the steady motion, the forces due to potential flow can be calculated using the pressure
distribution around the segment calculated from the steady Bernoulli equation. The velocity
distribution required for evaluating the Bernoulli equation can derived from the velocity
potential introduced in (B.19). This gives the distributed force and moment in the form

(B.23)

with the  defined as geometry dependant variables:
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(B.24)

with  indicating the inclination of the hull’s surface at  point with respect to the 
direction

. (B.25)

In the steady but rolling motion, the lateral and vertical components of the velocity
vector are in permanent change due to the roll rate. In order that this change is not recognized
as accelerated motion, the roll induced change in lateral and vertical velocities needs to be
compensated. For the unaccelerated rolling motion the induced accelerations are expressed:

. (B.26)
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Applying these induced accelerations directly into equations (B.21) and (B.22) yields

, (B.27)

. (B.28)

Aerodynamics of Airship in Unsteady Atmosphere

For expressing the aerodynamic forces and moments in the unsteady atmosphere, a formula-
tion introduced in [60] can be applied. Its main principle is based on expanding the acceler-
ated flow  through the flight path and wind accelerations, i.e.

. According to his formulation, it is sufficient to distinguish the
effects caused by the flight path acceleration  together with the rotational acceleration

 of the body, the stationary flow with  and , and the accelerated wind . In
the latter statement, the wind acceleration is translated from the earth fixed into the body
fixed coordinates using approximation [26]

(B.29)

where the operator  denotes the substantial derivative of the wind velocity field
derived and expressed in the earth fixed frame. In (B.29) the rotational motion of the wind
velocity is included in the wind acceleration vector, therefore the  term is omitted.

In expressing the hull aerodynamics in the unsteady atmosphere, the equations related
to the steady state motion (equations (B.22), (B.23), (B.27) and (B.28)) should appear with
the relative velocity-  variables. The terms responsible for the accelerated motion (equa-
tions (B.21), (B.22)) appear twice to account for the airship and the wind accelerations
respectively, although in the latter case they appear with negative sign and without the rota-
tional acceleration (see equation (B.29)).

There is a difference in treating the airship that accelerates in the air from the case
where the airship moves in the accelerated wind. The accelerated wind is always associated
with a pressure gradient. The gradient itself produces an aerostatic buoyancy force in direc-
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tion of the acceleration of the air. This phenomena is usually known as the horizontal buoy-
ancy effect. It can be computed from the Bernoulli equation under a condition where the
local pressure gradient is constant over the circumference of the segment of the hull

, (B.30)

(B.31)

An important consequence of the analysis given in [26] is that the flow effects from acceler-
ated body motion, accelerated wind and the steady aerodynamics can be treated indepen-
dently as a sum of their respective contributions to the airship aerodynamics.

Integration of Distributed Forces due to Potential Flow

The net force and moment due to potential flow is determined through integration of the seg-
ment forces and moments along the axial length of the hull. Studying the hull aerodynamics
in Equations (B.21) through (B.31), one can observe that the forces and moments acting on
the segment are proportional to the geometrical characteristics concentrated in the 
terms. For simplicity, this property can be expressed in the following general form:

(B.32)

Therefore, for determination of the net force and moment the motion variables can be taken
out of the integration delimiter.

In deriving the integral of the moment one has to take into account an offset of the seg-
ment from the center of reference  (see Figure B.3). The contribution of one segment to
the total moment is given by

(B.33)
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There are two principal limits selected for the integration of the distributed hull forces
and moments. Their definition follows from the discussion of validity regions of the potential
flow theory and can be found in the related work [24]. It is decided, that all normal forces and
moments of the hull due to steady flow should be integrated along the region from the lead-
ing edge of the fins  to the nose of the airship  (see Figure B.4). From the other hand,
the axial force and moment, as well as all apparent mass and horizontal buoyancy forces and
moments can be integrated along the total length of the hull ( ). 

Table B.1 summarizes the analytical form of the geometrical integrals. Note, equation
(B.37) was taken into account for derivation of the moment integrals .

Table B.1: Time invariant integrals as functions of geometrical properties of the hull

Integrals along the whole airship length ( )

, ,  

, 

,  

, , 

Integrals from the leading edge of the fins to the nose ( )
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Figure B.4: Definition of integration limits for the distributed hull forces due to potential flow
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Hence, the integrated aerodynamic force due to potential flow theory appears as

(B.34)

and the net moment

 (B.35)

B.4.2 Hull Aerodynamics due to Viscous Effects

Along with the potential flow effects, the viscous effects are important for a correct estima-
tion of the drag of the airship. Because of the complexity of the boundary layer of the skin
friction, only semi-empirical models can be applied for describing it. The parameters for
these models are partly determined from experimental data (wind-tunnel tests) or the CFD
simulations.
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The viscous effects are commonly modelled by examination of axial and cross flow
effects. Classical formulation of the axial drag is expressed by

. (B.36)

For computing the cross flow drag, the theory of flow around a slender body of revolution is
used [57]. Its principle is based on examination of the forces and moments acting on the
infinitesimally thin segment of the hull, analogously to that used for the potential flow.

According to Figure B.5, the lateral and vertical moments of the segment can be
approximated by

(B.37)

and the pitch and yaw moments expressed with respect to center of reference are respec-
tively:

(B.38)

Integrating equations (B.37) and (B.38), the cross flow terms of forces and moments due to
viscous effects can be obtained. The integration limit for this case constitutes the interval
from the nose of the hull till the attachment of the fins.
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B.4.3 Model of the Tail Area

The fins of the airship can modeled in a classical way by using the lifting line theory [57].
For this purpose the flow phenomena can be first modelled for the two dimensional flow for
rudders and elevators and then consequently expanded into three dimensional flow. For the
2D aerodynamics, the reference area includes not only fins, but also a rear part of the hull.

A classical profile theory includes a description of the following aerodynamic phenom-
ena: the circulation, the induced, the profile and the cross-flow drag [62]. The last two effects
appear due to viscous effects and separation and are similar to the viscous effects discussed
for the hull. They are expressed by an axial  and cross-flow drag  coefficients
respectively.

According to classical lifting body theory [57], the lift  and induced drag
 coefficients for a profile of the finite length can be approximated by the following

formula

(B.39)

where  represents the aspect ratio of the tail area. The variable  denotes the effective
local flow angle of the fin and is defined below in equation (B.48).

Both, the circulation and the induced drag terms can be classified by the attached flow
effects and appear with index . Terms due to viscous effects and separation have index .
Hence, applying the coefficients from equation (B.39) and the effects due to the profile and
the cross flow drag, the fin forces in two dimensional flow for small angles  appear:

(B.40)

Based on these forces the resulting moment of the tail about the reference point  is calcu-
lated as

. (B.41)
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To notice is the lever arms  and  having different distance from the center of reference
because of the different attachment point of the attached and cross-flow forces.

Expanding the fin forces and moments into the three-dimensional flow, it is necessary
to describe the flow in terms of the local angles of attack and sideslip for the horizontal and
vertical fins respectively. They are expressed together with their corresponding dynamic
pressures:

, (B.42)

. (B.43)

Applying these developments into 2D flow equations () and accounting for the similarity of
the  and  flow the fin forces due to 3D flow can be calculated.

Additional factor in calculating aerodynamics of the fin area arise due to rolling
motion. The rolling motion induces local angle of attack at the fin edges

(B.44)

and the local dynamic pressure

, (B.45)

where  is the span of the fins. The computed induced angle of attack and the local dynamic
pressure are used for determination of the roll moment of the fins

. (B.46)

The first term  indicates the aerodynamic roll efficiency factor of the fins and is usually
derived from corresponding reference tables given, for example, in reference [6].

There are additional aerodynamic effects that lead to the roll induced moment. They
appear due to the asymmetrical flow around the fins and modeled by using aerodynamic
moment coefficients  for the horizontal fins and  for the vertical fins:

. (B.47)
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The detailed treatment of the roll moment due to asymmetrical flow of the fins can be also
found in reference [6].

For closing the aerodynamics of the tail area, the changes of the aerodynamic proper-
ties of the fins against the control surfaces of the horizontal and vertical fins are modelled.
The control of the airship is achieved by change of the effective local flow angles of the fins

(B.48)

The surface efficiency factors , ,  and their numerical approximations
are referenced in [6], [57].

B.4.4 Integrated Aerodynamic Model

Since the model of the hull and the model of the fins are derived separately, an extra
enhancement of the complete model has been performed based on the proposition given in
reference [24]. It is known, that at rear part of the hull there are aerodynamic interference
effects between the hull and the fins. The aerodynamic components of the hull are influenced
by fins and vice versa. Introducing an additional scaling factor  helps to account the influ-
ence of the fins on the flow around the hull and is appeared as a multiplicative term in
describing the potential force and moment respectively. The influence of the fins on the hull
aerodynamics in the instationary flow is negligible and therefore  appears only with the
stationary force and moment terms. The opposite interaction of the hull aerodynamics on the
fin aerodynamics is described by  term and appear as multiplicative coefficient of the fins
forces and moments.

At present, there is no analytical approach for describing  and  is available.
They are therefore determined in [24] from static wind tunnel experiments for a number of
typical airships. Similar approach for the accounting the mutual interconnections is adopted
for building the current aerodynamic model. The numerical values for these coefficients are
also provided through the aerodynamic model fit against curves generated by wind tunnel
experiments.

B.4.5 Aerodynamic Coefficients

As noticed in section 2.4.5 (aerodynamic part of the flight mechanical model) the parameters
of the analytical aerodynamic model were adjusted by means of nondimensional aerody-
namic coefficients determined from the wind tunnel experiments. The aerodynamic coeffi-
cients have been extracted at different values of free-stream velocity and flow angles  and
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. For a conventional airship they are defined as non dimensional force and moment coeffi-
cients:

 and , (B.49)

with  denoting the free-stream velocity, -air density and -volume of the hull.  is the
span of the fins and  is the reference length of the airship.

The aerodynamic coefficients determined by the wind tunnel are usually given in the
wind tunnel axes (e.g. drag-  and lift-  coefficients) and additional transformation is
needed for transforming them into the airship body fixed frame. It can be performed using
directional cosine transformation matrix  with arguments of longitudinal-  and lateral-
incidence angles:

, (B.50)

The transformed aerodynamic forces yield

(B.51)

and the moments

. (B.52)

The subscripts  and  denote the body fixed and wind tunnel axis respectively.  and
 are the aerodynamic drag and lift forces respectively. Using equations (B.51) and (B.52) it

is possible to perform the forward and back transformation from the wind tunnel to the body
coordinates.
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B.5   Force and Moment Derivatives

B.5.1 Approximated Form

The force and moment derivatives represent the coefficients of the Taylor row expansion
when linearization of external forces and moments takes place. Using analytical representa-
tion of the gravity, buoyancy and aerodynamic forces and moments, it is possible to perform
the linearization analytically in terms of physically meaningful parameters. The obtained
force and moment derivatives are summarized in equations (B.53)-(B.58):

(B.53)

(B.54)

(B.55)
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(B.56)

(B.57)

(B.58)

B.5.2 Dominant Force and Moment Derivatives

By studying the equilibrium point condition and numerical order of some individual parts of
the aerodynamic derivatives, it is also possible to make some simplifications of the deriva-
tives, by neglecting the smallest of them. Thus, all derivatives, that have the multiplier 
can be neglected from the analysis because of negligibly small value of the trimmed vertical
velocity . Moreover, numerical values of the geometry dependant integrals: , ,

, , were found to be negligibly small and can be therefore neglected. For the rectilin-
ear flight, the dominant derivatives are presented in Table B.2.
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Table B.2 Significant force and moment derivatives

B.5.3 Relationship Between Force and Moment Derivatives and Aerodynamic 

Coefficients

It is easy to establish the analytical relationship between major aerodynamic derivatives and
their non dimensional coefficients. All important aerodynamic coefficients can be computed
from the corresponding force and moment derivatives under assumption of small steady
angle of attack ( ). Under this condition the following approximations are valid:

 and (B.59)

Using this approximation the aerodynamic coefficients are related to the force and moment
derivatives as follows:

 and (B.60)
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Note that the rotational variables in equation (B.60) are expressed in nondimensionalized
form:

(B.61)

The aerodynamic coefficients yield

(B.62)

and the moment coefficients are given by

(B.63)
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B.6   Stability and Control Derivatives

B.6.1 Extraction of Aerodynamic Coefficients

In order to extract the aerodynamic relevant data from the flight determined parameters, it is
first necessary to transform the identified stability and control derivatives into force and
moment derivatives. Subsequently, the calculated derivatives are used for derivation of aero-
dynamic coefficients.

The baseline for evaluation of the force and moment derivatives from the flight deter-
mined stability and control derivatives is introduced in Chapter 3. Using back transformation
of equations, it is possible to compute the force and moment derivatives from the estimated
stability and control derivatives. Thus in examining the longitudinal and lateral-directional
dynamics, the matrices , , ,  contain dimensional force and moment
derivatives, computed by:

 (B.64)

and

 (B.65)

with  and  denoting the mass matrices together with apparent mass terms of the
instationary aerodynamics (Munk factors). The dynamic ,  and control , 
matrices contain the estimated stability and control derivatives respectively. The expanded
form of the system matrices is summarized in Table B.3 separately for the longitudinal and
lateral-directional dynamics. It is easy to observe the importance of configuration properties
(i.e. the mass , mass center , the moment of inertia matrix ) of an airship on computa-
tion of the aerodynamic coefficients. Moreover the derivatives which are related to the appar-
ent mass effects ( , , etc.) are also required for accurate determination of the major
aerodynamic coefficients.
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Table B.3 System matrices of Longitudinal and Lateral-directional dynamics

Substituting the corresponding matrices from Table B.4 in transformation equations
(B.64) and (B.65), one obtains the expanded form of the force and moment derivatives. The
dominant derivatives are summarized in Table B.4.

Table B.4 Relationship between force and moment derivatives and flight determined parameters

Longitudinal Dynamics Lateral-Directional Dynamics

Force/Moment 
Derivative

Derivation using stability 
and control derivatives

M'lon

m X,u·– 0 mzCG 0
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Force/Moment 
Derivative

Derivation using stability 
and control derivatives

Z,η m Z,w·–( )Zη

M,w Iyy M,q·–( )Mw mzCGXw+ Iyy M,q·–( )Mw≈
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Appendix C

Flight Data Evaluation Results

C.1   Summary of Flight Maneuvers

The maneuvers presented in Table C.1 have been taken for the parameter estimation of the
postulated dynamical models. In order to perform the maneuver, the pilot has manually
acquired a steady flight condition. Its indication was a directional flight of the airship with
unchanged control inputs. Instantaneously after acquisition of the trimmed condition, a per-
turbed motion was initiated by the controls. The control perturbations were partly performed
by the pilot and partly generated by the onboard computer. The flight maneuvers have been
performed under limitations discussed in section 5.2.4.

Table C.1: Summary of identification flight records

Flight record 
Acronym

Flight 
date

Duration 
[s]

Used controls
type/shape/mode

F4S1e 15.08.2002 55 elevator 3-2-1-1 automatic

F4S2e 15.08.2002 53 elevator 3-2-1-1automatic

F4S3e 15.08.2002 53 elevator 3-2-1-1automatic

F4S4e 15.08.2002 43 elevator doublet automatic

F4S5e 15.08.2002 38 elevator doublet automatic

F4S6e 15.08.2002 57 elevator 3-2-1-1 automatic

F4S7e 15.08.2002 80 elevator sin manual

F5S9e 14.08.2002 51 elevator sweep manual

F5S12e 14.08.2002 60 elevator 3-2-1-1 manual

F3S2e 15.08.2006 52 elevator 3-2-1-1 automatic

F7S6r 15.08.2002 45 rudder 2x doublet



144 Appendix C    Flight Data Evaluation Results

C.2   Flight Data Analysis

C.2.1 Data Prefiltering

Figure C.1 illustrates the raw measurements from a typical longitudinal maneuver. Applying
the power spectral density function to the measured data, the vibration disturbances can be
effectively observed in the frequency domain, as shown in Figure C.2. One noticeable peak
can be detected near  for the acceleration and angular rate measurements. The effect
causing this peak are vibrations induced by the stern propeller rotating at approximately

.

Since the indicated measurement disturbances have nonwhite nature, they cannot be
directly utilized in the estimation algorithm based on likelihood criteria for parameter deter-
mination (see discussion in 4.2.2). Formally, if the disturbance model were known, it would
be easy to design a prefilter based on the inverted noise model. Although this approach is
favored and does not invalidate the likelihood function, its practical utilization is very
restricted. It is in general very difficult to model all disturbance factors which appear in the
flight vehicle during the flight. Even if it is possible to derive a parameterized disturbance
model, its determination requires significant evaluation efforts and is often conflicting with
the plant model [39].

In the practical applications, the high frequency disturbances in the flight data are rem-
edied by a low pass filtering [12]. It is based on supposition, that the eigendynamic character-
istics of the flight vehicle are concentrated at lower frequencies than the structural
oscillations. This assumption is also valid in the current analysis of the airship dynamics.

For evaluation of the airship flight data, a digital FIR (Finite Impulse Response) filter,
based on linear combination of input values was used. The filter equation yields

(C.1)

with

, , , , , , .

The filter incorporates a low pass characteristics with the cutoff frequency designed to be at
. The advantage in utilizing this symmetrical filter is that it does not introduce

any lag in the filtered values. The filtering has been applied to all measurements, except the
GPS and the control indications of the pilot commands. The time histories of the filtered sig-
nals are shown in Figure C.3.     
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Figure C.1: Raw measurements of airstream and inertial components (acceleration due to gravity is
removed)
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C.2.2 Airdata Correction

In addition to the data prefiltering, the airstream measurements were corrected for the free-
stream conditions in order to eliminate the interference effects caused by the hull of the air-
ship. The interference effects were computed at different flow angles using CFD computa-
tions, as shown in Figure C.4. As can be seen, the applied corrections lead to increase of the
axial airstream velocity  of about 20%. The corrected airstream velocities are then uti-
lized for the subsequent processing. 

C.2.3 Checking for Compatibility

The data compatibility procedure is based on the flight path reconstruction algorithm, where
signals from different sensors are compared using kinematic relations. The detailed overview
of this approach can be found in references [25], [28].

The flight path reconstruction algorithm involves a set of two state and two observation
equations. The first state equation represents the attitude of the airship in terms of rotational
variables and was already introduced in the equation (2.14)

. (C.2)

The measured ,  and  signals are assumed to be corrupted by systematic bias constants
,  and  respectively.

The second reconstruction equation utilizes the measured linear accelerations ,
, , measured angular rates , , , and in equation (C.2) reconstructed Euler

angles  and 

, (C.3)

with ,  and  indicating the flight path velocity components at center
of inertial measurements . The unknowns , ,  are the respective bias compo-
nents of the acceleration measurement signals ,  and . It is advantageous to
formulate equation (C.3) using flight path velocity in  location because it avoids the
unmeasured rotational accelerations.
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The output equations relate the reconstructed trajectories with the measured ones

(C.4)

and

. (C.5)

By means of the state and observation equations given in equations (C.2)-(C.5), the
data consistency procedure can be reformulated to a standard identification problem. Mini-
mizing the error between the measured and reconstructed trajectories, the unknown bias ,

, , , , , , ,  and initial state parameters , ,  can
be estimated. As a criteria, the maximum-likelihood function can be utilized

, (C.6)

where elements of the error vector  are

(C.7)

and the elements of the covariance matrix  were taken from the specifications of the mea-
surement components. In this formulation, the identification problem requires an extensive
computational effort, involving an extended Kalman filter to account for the unknown forc-
ing functions caused by wind and the sensor noise.

For the practical use, however, it is recommended to admit several simplifications. One
of them is to neglect the process noise and to make an open loop integration of the state equa-
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tions. In this approximation, a reasonable fit between the measured and the reconstructed tra-
jectories can be achieved only if the wind and other unknown disturbances (predominantly
sensor noise) have only a minor presence, i.e. do not distort greatly the effectively measured
signals. Therefore, the goodness of the fit between the measured and reconstructed velocities
can be taken as the plausibility criteria for selecting the flown maneuvers for the subsequent
estimation purposes.

Since the sensor errors also appear as bias parameters ,  within the estimation
model (Equations (3.37) and (3.39)), their determination from the data consistency procedure
is not of the primary importance. Important here is to show that throughout the selection of
the appropriate bias constants, a compatibility of measured quantities can be achieved. Equa-
tion (C.4) does not consider any drift errors of the measured Euler angles. It can be neglected
due to the fact, that duration of the identification record is normally does not exceed 60 sec-
onds. Within this interval, the drift effects in the measured Euler angles can be neglected.
Moreover, because of relatively small outer dimensions of the Lotte airship, it is assumed
that all sensor positions could be accurately determined and not changing during the flight.
The time delays between signal acquisition of the IMU platform and the ultrasonic anemom-
eter are assumed to be negligibly small and neglected.

For the longitudinal maneuvers, it is preferable to perform the data compatibility check
using only longitudinal variables:

, , . (C.8)

This reduced formulation is used to ensure that not only the wind, but also unavoidable
cross-coupling effects, altogether have only insignificant influence on the longitudinal
motion.

In the next, several results of application of the data compatibility check to three differ-
ent longitudinal maneuvers will be presented. In the first example illustrated in Figure C.5, a
very poor fit between the measured and reconstructed velocities is achieved. The large veloc-
ity magnitudes can be explained by the existence of a strong turbulence field. Although at the
beginning of record, all control inputs were held constant, the airstream velocity measure-
ments indicate a large deviations from their mean/trimmed values. The same behavior is
observed during and at the end of the record.   

The second example, shown in Figure C.6, illustrates a trajectory reconstruction for the
flight record with relatively smooth airspeed measurements. In this case, the trajectory fit is
still unsatisfactory. Not only the linear velocities , , but also the reconstructed
pitch angle  does not match the corresponding measured quantities. The reason for such a
large discrepancies arise from the dominance of the cross-coupling effects. Because of rela-
tively small aerodynamic rolling moment of the fins, in some flight instances the induced roll
oscillations (due to ) could not be effectively dampened. This leads to the noticed
poor matching in trajectories.

Finally, the last example demonstrates a case, where a good agreement between the
measured and reconstructed quantities is achieved. As can be seen from Figure C.7, the dis-
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Figure C.5: Compatibility results for identification maneuver taken at severe turbulence conditions
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tortions of the wind, as well as cross-coupling and other unwanted effects were at minimum
level. It can be also concluded from the measurements itself, i.e relatively smooth trajectories
and from the fact that the airship shows an ability to return to a nearly the same trim condi-
tion it held before the perturbation maneuver has began. Some errors in matching the veloc-
ity components are acceptable because of unavoidable atmospheric disturbances. 

Obviously, only these flight records, where the data compatibility analysis was suc-
cessful, have been further utilized for estimation of the model parameters. 

Although it seems to be advantageous to utilize also the GPS measurements in the
flight path reconstruction procedure, in the current evaluations the velocity estimations from
the GPS receiver were not used directly in the data reconstruction. There were two reasons
for not doing it. First, the reconstruction using GPS velocity can not be performed using lon-
gitudinal variables only, because it requires the transformation from the geodetic to the body
frame of reference (equations (2.4) and (2.33)). Second, the velocity estimations provided by
GPS receiver have apparent, but unknown time delay , which should be
accounted properly in the data processing. All these factors lead to increase of the number of
unknown parameters. In fact, by trying out this setup, serious convergence problems of the
numerical optimization algorithm have been encountered. Moreover, no repeatability of the
obtained parameter values was acquired. It should be also noticed that although the GPS data
were not used directly in the data consistency procedure, its absolute values of the estimated
velocity vector  were used for comparison with the absolute value of the airsream
velocity  in order to provide a raw estimation of the wind intensity.
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C.3   Estimation Results of Elevator Input Maneuvers

C.3.1 Flight Record F4S1e

Table C.2: Estimated parameters of the full state longitudinal model

Parameter Model Value
(B/G=0.98)

Fully parametrized
(C-R boundsa)

Reduced 
parametrization

(C-R bounds)

-0.099 -0.009 (0.235) -0.0006 (0.120)

-0.419 0.108 (0.37) b

-0.023 -0.002 (2.67)

-0.249 -0.140 (0.330)

-0.005 (0.023)

-0.390 -0.805 (0.353) -0.88 (0.042)

3.937 4.212 (4.372) 4.507 (0.37)

0.015 0.147 (0.629)

-0.004 0.0073 (0.029)

0.108 0.076 (0.76) 0.068 (0.016)

-0.620 -1.209 (0.48) -1.313 (0.092)

-0.137 -0.201 (0.066) -0.198 (0.009)

0.172 -0.10 (0.148) -0.15 (0.038)

-1.242 -0.498 (0.233) -0.513 (0.057)

-0.430 -0.183 (0.108) -0.188 (0.08)

- -0.075 (0.033) 0.012 (0.007)

- -0.009 (0.140) 0.017 (0.072)

- 0.0006 (0.012) 0.0001 (0.006)

- 9.519 (0.1055) 9.509 (0.09)

- 0.134 (0.059) 0.057 (0.126)

- -0.006 (0.009) -0.006 (0.012)

- 0.035 (0.010) 0.04 (0.010)

- -0.050 (0.016) -0.037 (0.016)

- 0.047 (0.194) 0.056 (0.011)

9.5 9.531 9.284 (0.26)

- -0.06 (0.35) 0.0376 (0.48)

Iterations 100c 21
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Eigenvalue -0.07
-1.15

0.042 +/- 0.2i

-0.015
-1.491 

-0.258 +/- 0.173i

 -0.0006 
-1.590 

  -0.317 +/- 0.083i

Taylor Inequality 
Coefficient (TIC):

0.23
0.08
0.048
0.017
0.29
0.056

0.52
0.08
0.032
0.020
0.23
0.056

a. Multiplied with a correction factor specified in Equation (4.38)

b. Not estimated

c. Manually stopped

Parameter Model Value
(B/G=0.98)

Fully parametrized
(C-R boundsa)

Reduced 
parametrization

(C-R bounds)

u
w
q
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axCI
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Table C.3: Summary of longitudinal parameter values estimated with reduced state model

Parameter Model Value
Output Error (C-R bound)

 estimated
Output Error (C-R bound)

 fixed

-0.390 -0.572 (0.041) -0.581 (0.041)

3.937 2.602 (0.356) 2.650 (0.368)

-0.108 0.073 (0.023) 0.680 (0.002)

-0.620 -1.41 (0.113) -1.42 (0.016)

-0.137 -0.184 (0.011) -0.18a

a. Fixed value

-1.24 -0.498 (0.056) -0.504 (0.056)

-0.430 -0.242 (0.009) -0.242 (0.003)

- 0.0008 (0.073) -0.001 (0.072)

- -0.002 (0.006) -0.002 (0.005)

- -0.003 (0.010) -0.003 (0.010)

- 0.064 (0.128) 0.078 (0.125)

- -0.001 (0.013) -0.002 (0.005)

- 0.030 (0.015) 0.029 (0.015)

- -0.016 (0.145) -0.015 (0.143)

9.5 9.640 (0.253) 9.642 (0.253)

Iterations 18 6

Eigenvalue -1.15
0.042 +/- 0.2i

-1.48
-0.23 +/- 0.121i

-1.5
-0.25 +/- 0.08i

TIC:
0.088
0.046
0.019
0.069

0.088
0.046
0.019
0.069

Mθ Mθ
Zw

Zq

Mw
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Mθ
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Mη
bw·
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b
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Table C.4: Summary of longitudinal parameter values estimated with extended model

Parameter Model Value Output Error Filter Error

-0.390 -0.615 (0.044) -0.703 (0.060)

3.937 2.54 (0.393) 3.101 (0.240)

-0.108 0.079 (0.018) 0.072 (0.03)

-0.620 -1.41 (0.151) -1.39 (0.051)

-0.137 -0.182 (0.016) -0.18 (0.037)

-1.24 -0.570 (0.061) -0.552 (0.073)

-0.430 -0.236 (0.011) -0.205 (0.014)

- 0.0005 (0.073) -0.001 (0.048)

- 0.007 (0.008) 0.002 (0.010)

- 0.064 (0.128) 0.103 (0.025)

- -0.001 (0.013) -0.0004 (0.012)

- -0.016 (0.145) -0.020 (0.125)

9.5 9.375 (0.279) 9.608 (0.23)

- - 0.030 (0.007)

- - 0.003 (0.0008)

Iterations 15 8

Eigenvalue -1.15
0.042 +/- 0.2i
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-0.25 +/- 0.09i
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C.3.2 Fight Record F4S2e 
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Figure C.8: Filtered measurements during F4S2e flight maneuver
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Table C.5: Summary of longitudinal parameter values estimated with extended model

 

Parameter Model Value Output Error Filter Error

-0.404 -0.728 (0.049) -0.825 (0.058)

4.118 3.147 (0.483) 3.960 (0.619)

0.114 0.091 (0.018) 0.081 (0.016)

-0.641 -1.623 (0.072) -1.634 (0.144)

-0.016 -0.192 (0.021) -0.28

-0.135 -0.714 (0.079) -0.652 (0.076)
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Figure C.9: Estimation results of F4S2e maneuver (Output-Error algorithm)
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Figure C.10:Estimation results of F4S2e maneuver (Filter-Error algorithm)
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C.3.3 Fight Record F4S3e
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Figure C.11:Filtered measurements during F4S3e flight maneuver
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Table C.6: Parameter values estimated from F4S3e record with extended longitudinal model

 

Parameter Model Value Output Error Filter Error

-0.376 -0.608 (0.038) -0.672 (0.022)

3.742 2.252 (0.37) 2.702 (0.313)

0.102 0.080 (0.006) 0.075 (0.007)

-0.599 -1.45 (0.049) -1.41 (0.07)

-0.137 -0.176 (0.018) -0.18

-1.128 -0.617 (0.052) -0.582 (0.021)

-0.391 -0.244 (0.013) -0.219 (0.010)

- -0.021 (0.076) 0.031 (0.025)
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Figure C.12:Estimation results of F4S3e maneuver (Output-Error algorithm)
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Figure C.13:Estimation results of F4S3e maneuver (Filter-Error algorithm)
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C.3.4 Flight Record F4S4e
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Figure C.14:Filtered measurements of F4S4e flight maneuver
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Table C.7: Parameter values estimated from F4S4e record with extended longitudinal model

 

Parameter Model Value Output Error Filter Error

-0.3916 -0.659 (0.061) -0.721 (0.088)

3.95 2.757 (0.524) 3.256 (0.474)

0.109 0.069 (0.005) 0.067 (0.033)

-0.622 -1.379 (0.053) -1.299 (0.274)

-0.137 -0.184 (0.021) -0.18

-1.25 -0.597 (0.069) -0.547 (0.082)

-0.433 -0.225 (0.007) -0.205 (0.033)

- -0.007 (0.050) -0.010 (0.029)

- 0.012 (0.004) 0.008 (0.003)

- 0.020 (0.078) 0.032 (0.025)

- -0.008 (0.007) -0.005 (0.008)

- 0.078 (0.084) 0.034 (0.087)

9.67 9.693 (0.276) 9.572 (0.314)

- - 0.015 (0.005)

- - 0.002 (0.008)

Iterations - 15 12

Eigenvalue -1.10
0.035 +/- 0.204i

-1.48
-0.27 +/- 0.08i

-1.46
-0.28 +/- 0.1i

TIC:
0.090
0.025
0.049
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0.003
0.021
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Figure C.15:Estimation results of F4S4e maneuver (Output-Error algorithm)

0 10 20 30 40 50
-30

-20

-10

0

10

20

30

40

η 
[˚

]

time [s]
0 10 20 30 40 50

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

w A
|C

S [m
/s

]

time [s]

flight
model

0 10 20 30 40 50
-8

-6

-4

-2

0

2

4

6

q 
[˚

/s
]

time [s]
0 10 20 30 40 50

-1

-0.5

0

0.5

1

1.5

az
C

I [m
/s

2
]

time [s]

Figure C.16:Estimation results of F4S4e maneuver (Filter-Error algorithm)
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C.3.5 Flight Record F4S5e
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Figure C.17:Filtered measurements during F4S5e flight maneuver
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Table C.8: Parameter values estimated from F4S5e record with extended longitudinal model

 

Parameter Model Value Output Error Filter Error

-0.393 -0.692 (0.072) -0.833 (0.089)

3.977 2.939 (0.648) 3.065 (0.639)

0.11 0.069 (0.006) 0.067 (0.022)

-0.625 -1.402 (0.065) -1.492 (0.130)

-0.137 -0.186 (0.021) -0.18

-1.266 -0.641 (0.087) -0.530 (0.091)

-0.438 -0.240 (0.008) -0.219 (0.021)

- 0.043 (0.061) 0.024 (0.033)

- 0.011 (0.004) 0.008 (0.005)

- -0.047 (0.089) -0.035 (0.019)

- -0.003 (0.007) 0.001 (0.008)

- 0.066 (0.089) 0.073 (0.121)

9.7 9.74 (0.318) 9.712 (0.29)

- - 0.015 (0.005)

- - 0.001 (0.0006)

Iterations - 14 8

Eigenvalue -1.11
0.035+/-0.203i

-1.52
-0.26+/-0.05i

-1.57
-0.16
-0.60

TIC:
0.098
0.026
0.061
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Figure C.18:Estimation results of F4S5e maneuver (Output-Error algorithm)
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Figure C.19:Estimation results of F4S5e maneuver (Filter-Error algorithm)
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C.3.6 Flight Record F4S6e

0 10 20 30 40 50-50

0

50

η 
[˚

]

0 10 20 30 40 50-0.5

0

0.5

1

th
ro

ttl
e 

[-
]

0 10 20 30 40 506

8

10

12

u A
|C

S [m
/s

]

0 10 20 30 40 50

-1

0

1

w A
|C

S [m
/s

]

0 10 20 30 40 50

-10

0

10

q 
[˚

/s
]

0 10 20 30 40 50-40

-20

0

20

40

θ 
[˚

]

0 10 20 30 40 50-0.5

0

0.5

ax
C

I [m
/s

2
]

time [s]

0 10 20 30 40 50-2

0

2

az
C

I [m
/s

2 ]

time [s]

time [s] time [s]

time [s] time [s]

time [s] time [s]

Figure C.20:Filtered measurements of F4S6e flight maneuver



Appendix C    Flight Data Evaluation Results 169

Table C.9: Parameter values estimated from F4S6e record with extended longitudinal model

 

Parameter Model Value Output Error Filter Error

-0.321 -0.52 (0.031) -0.448 (0.039)

2.931 1.519 (0.231) 1.997 (0.220)

0.076 0.054 (0.004) 0.057 (0.011)

-0.517 -1.117 (0.028) -1.028 (0.093)

-0.137 -0.187 (0.015) -0.18

-0.674 -0.505 (0.047) -0.418 (0.041)

-0.233 -0.162 (0.006) -0.145 (0.012)

- -0.059 (0.038) -0.013 (0.012)

- -0.011 (0.014) -0.008 (0.006)

- -0.034 (0.135) -0.054 (0.012)

- 0.007 (0.009) 0.009 (0.009)

- -0.076 (0.087) -0.092 (0.089)

7.4 7.385 (0.197) 7.504 (0.374)

- - 0.013 (0.004)

- - 0.001 (0.0005)

Iterations - 33 12

Eigenvalue -0.807
-0.031+/-0.224i

-1.08
-0.27+/-0.12i

-1.04
0.21 +/- 0.18i

TIC:
0.074
0.044
0.074
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Figure C.21:Estimation results of F4S6e maneuver (Output-Error algorithm)
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Figure C.22:Estimation results of F4S6e maneuver (Filter-Error algorithm)
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C.3.7 Flight Record F4S7e

0 20 40 60-50

0

50

η 
[˚

]

0 20 40 60-0.5

0

0.5

1

th
ro

ttl
e 

[-
]

0 20 40 606

8

10

12

u A
|C

S [
m

/s
]

0 20 40 60-1

0

1

w
A

|C
S [m

/s
]

0 20 40 60

-10

0

10

q 
[˚

/s
]

0 20 40 60-40

-20

0

20

40

θ 
[˚

]

0 20 40 60-0.5

0

0.5

ax
C

I [m
/s

2
]

time [s]

0 20 40 60-2

0

2

az
C

I [m
/s

2
]

time [s]

time [s] time [s]

time [s] time [s]

time [s] time [s]
80

80

80

80

80

80

80

80

Figure C.23:Filtered measurements of F4S7e flight maneuver
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Table C.10:Parameter values estimated from F4S7e record with extended longitudinal model

Parameter Model Value Output Error Filter Error

-0.402 -0.702 (0.033) -0.775 (0.044)

4.096 2.84 (0.360) 3.59 (0.238)

0.113 0.074 (0.007) 0.081 (0.012)

-0.638 -1.622 (0.077) -1.683 (0.117)

-0.137 -0.181 (0.139) -0.18

-1.338 -0.67 (0.048) -0.580 (0.023)

-0.464 -0.262 (0.009) -0.226 (0.014)

- 0.004 (0.063) 0.004 (0.131)

- 0.003 (0.009) 0.004 (0.006)

- -0.016 (0.103) -0.045 (0.026)

- 0.005 (0.013) 0.002 (0.008)

- -0.072 (0.162) -0.076 (0.110)

10.0 10.028 (0.155) 9.997 (0.256)

- - 0.020 (0.004)

- - 0.002 (0.0008)

Iterations - 20 14

Eigenvalue -1.14
0.0417+/-0.201i

-1.72
-0.43
-0.17

-1.85
-0.43
-0.18

TIC:
0.067
0.037
0.052
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Figure C.24:Estimation results of F4S7e maneuver (Output-Error algorithm)
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Figure C.25:Estimation results of F4S7e maneuver (Filter-Error algorithm)
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C.3.8 Flight Record F5S9e
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Figure C.26:Filtered measurements of F5S9e flight maneuver
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Table C.11: Parameter values estimated from F5S9e record with extended longitudinal model

 

Parameter Model Value Output Error Filter Error

-0.368 -0.664 (0.062) -0.737 (0.052)

3.63 2.187 (0.621) 3.116 (0.728)

0.099 0.060 (0.008) 0.060 (0.012)

-0.587 -1.237 (0.083) -1.299 (0.113)

-0.016 -0.192 (0.021) -0.18

-1.065 -0.629 (0.063) -0.540 (0.059)

-0.369 -0.223 (0.014) -0.174 (0.012)

- 0.124 (0.105) 0.132 (0.084)

- 0.018 (0.017) 0.012 (0.018)

- 0.047 (0.144) 0.011 (0.044)

- -0.005 (0.023) -0.001 (0.037)

- 0.137 (0.26) 0.100 (0.28)

9.0 8.881 (0.275) 8.941 (0.549)

- - 0.035 (0.11)

- - 0.003 (0.001)

Iterations - 16 14

Eigenvalue -1.01
0.014 +/- 0.210i

-1.29
-0.30 +/- 0.09i

-1.43
-0.30 +/- 0.07i

TIC:
0.134
0.058
0.081
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Figure C.27:Estimation results of F5S9e maneuver (Output-Error algorithm)
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Figure C.28:Estimation results of F5S9e maneuver (Filter-Error algorithm)
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C.3.9 Flight Record F5S12e 
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Figure C.29:Filtered measurements of F5S12e flight maneuver
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Table C.12:Parameter values estimated from F5S12e record with extended longitudinal model

Parameter Model Value Output Error Filter Error

-0.389 -0.667 (0.074) -0.710 (0.068)

3.919 3.107 (0.781) 3.327 (1.031)

0.108 0.072 (0.013) 0.078 (0.021)

-0.618 -1.413 (0.138) -1.493 (0.206)

-0.137 -0.193 (0.031) -0.18

-1.23 -0.489 (0.094) -0.479 (0.085)

-0.426 -0.231 (0.020) -0.189 (0.026)
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Figure C.30:Estimation results of F5S12e maneuver (Output-Error algorithm)
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Figure C.31:Estimation results of F5S12e maneuver (Filter-Error algorithm)
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C.3.10 Flight Record F3S2: High Turbulence
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Figure C.32:Filtered measurements of F3S2e flight maneuver
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Table C.13:Parameter values estimated from F3S2e record with extended longitudinal model

 

Parameter Model Value Output Error Filter Error

-0.422 -1.34 (0.156) -0.851 (0.075)

4.361 8.645 (1.291) 3.145 (0.934)

0.121 0.096 (0.007) 0.090 (0.041)

-0.668 -0.916 (0.200) -1.693 (0.026)

-0.137 -0.031 (0.023) -0.18

-1.507 -0.481 (0.257) -0.455 (0.085)

-0.522 -0.503 (0.164) -0.191 (0.026)

- 0.042 (0.143) 0.124 (0.105)

- -0.004 (0.013) -0.004 (0.015)

- 0.030 (0.216) 0.08 (0.055)

- 0.014 (0.018) 0.010 (0.020)

- -0.115 (0.227) 0.093 (0.138)

10.6 10.608 (1.34) 10.53 (1.21)

- - 0.047 (0.119)

- - 0.003 (0.001)

Iterations - 38 9

Eigenvalue -1.22
0.056+/-0.195i

-0.028
-1.11+/-0.412i
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-0.16
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0.088
0.046
0.069

0.012
0.003
0.021

Zw

Zq

Mw

Mq

Mθ
Zη
Mη
bw·

bq·

bw

bq

baz

u0
σw·

σq

w
q

azCI



182 Appendix C    Flight Data Evaluation Results

0 20 40 60
-50

-25

0

25

50

η 
[˚

]

time [s]
0 20 40 60

-1

-0.5

0

0.5

1

1.5

w
A

|C
S [m

/s
]

time [s]

flight

0 20 40 60
-10

-5

0

5

10

q 
[˚

/s
]

time [s]
0 20 40 60

-2

-1

0

1

2

az
C

I [m
/s

2
]

time [s]

model

Figure C.33:Estimation results of F3S2e maneuver (Output-Error algorithm)
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Figure C.34:Estimation results of F3S2e maneuver (Filter-Error algorithm)
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C.4   Estimation Results of Lateral-Directional Maneuver

Table C.14:Estimated parameters of the lateral-directional model

Parameter Model value
Output Error 
(C-R bounds)

Filter-Error 
(C-R bounds)

-0.416 -0.429 (0.356) -0.525 (0.431)

-3.985 -1.059 (2.877) -1.076 (1.77)

-1.493 -1.483 (0.264) -1.492 (0.156)

1.36 4.503 (0.835) 4.602 (0.832)

-2.545 -3.436 (0.467) -3.496 (0.443)

-0.131 -0.059 (0.052) -0.06 (0.031)

-0.584 -1.522 (0.411) -1.541 (0.425)

1.455 0.738 (0.243) 0.711 (0.245)

0.213 0.361 (0.092) 0.372 (0.104)

-0.495 -0.282 (0.038) -0.282 (0.025)

- -0.017 (0.118) -0.021 (0.100)

- 0.002 (0.091) 0.001 (0.121)

- -0.004 (0.030) 0.002 (0.028)

- 0.005 (0.041) 0.002 (0.067)

- -0.094 (0.207) -0.082 (0.204)

- -0.005 (0.041)( -0.001 (0.053)

- 0.015 (0.018) 0.021 (0.024)

- 0.044 (0.027) 0.038 (0.011)

- 0.077 (0.245) 0.079 (0.210)

- 10.26 (0.835) 10.46 (0.791)

- 0.194 (0.750) 0.205 (0.643)

- - 0.023 (0.032)

- - 0.002 (0.0002)

- - 0.001 (0.0001)

Iterations - 38 12

Eigenvalue 0.234
-1.24

-0.744+/-1.42i

-0.037
-1.60

-0.740+/-1.69i

-0.046
-1.61

-0.746+/-0.172i

TIC:
0.17
0.13
0.07
0.12
0.11

0.012
0.003
0.021
0.017
0.004
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