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Abstract

The knowledge of dynamical characteristics of a flight vehicle cessary for the control
system design and realization of high fidelity flight simulators. déxelopment of a flight
mechanical model and determination of its basic components, as fioplexaass properties
and the major aerodynamic terms, addresses a complex process invahiong analytical,

numerical and experimental techniques.

The objective of this dissertation is a determination of the lolgsiamical characteris-
tics of a research airship from the flight data. In order toeaehthis objective a system iden-
tification approach is used. As the modern identification methodology escuicoordinated
treatment of tasks from multidisciplinary areas, such as modglbarameter estimation
methods, instrumentation and flight maneuver definition, within thisareseframework
these topics are studied and extended with regard to the airship example

The dynamic modelling consists of two parts. The first part is devotderivation of
the nonlinear flight mechanical model of the airship. It incorportitesclassical laws of
newtonian mechanics used for derivation of equations of motion. In addlit&oairship spe-
cific properties, like buoyancy force and the unsteady aerodynamicseféeetincluded in
the equations of motion. In the second part, the linearized longitudinkdtaral-directional
models are introduced. Investigations of stability and controllability uditierent flight
and configuration conditions are performed. The important parametéeslofdarized mod-
els are then utilized in the parameter estimation.

For determining the model parameters statistical estimatidhoeh® are considered.
Their choice is motivated by airship operational properties and fioritaposed by the used
instrumentation system. A particular emphasis is made on thethigdhat incorporates the
Kalman filter to obtain parameter estimates in the presengeookss and measurement
noise. The process noise is used to model the uncommanded forcing funatrdp,caused
by atmospheric disturbances. The measurement noise is caused bstdhieonds of mea-
sured channels.

A valuable effort in this research framework is devoted to thigled experiments.
This includes a realization of the onboard data acquisition systerdedimition of flight
maneuvers. The conventional methods used in the aircraft field @m@odated for the
experiment design.

Application of the used methodology to the flight data has shown a very g tra
tory matching between the model and the real airship responsesfidisvdae adequacy of
the selected identification methodology for determining the dynamicaaiesistics of the
airship from the flight data.






Identifizierung der flugdynamischen Eigenschaften eing Luftschiffes aus
Flugmessdaten

Die Kenntnis der flugdynamischen Eigenschaften von Fluggeraten ist nogwigndien
Entwurf von Systemen zur Flugregelung und zur Realisierung von Flugsimulaiesn.
Erstellung eines flugmechanischen Modells und die Bestimmung von Modellkenngrof3en,
wie z.B. Masse, Tragheitsmomente und aerodynamische Paraanketetern umfangreiche
analytische, numerische sowie experimentelle Arbeiten.

Das Ziel der vorliegenden Dissertation ist die Bestimmung von flugdgchem
Eigenschaften eines Luftschiffes aus Flugmessdaten durch Verfahr&ystemidentifika-
tion. Die Vorgehensweise bei modernen Verfahren zur Systemidemtifikatfordert die
Formulierung und L6ésung von multidisziplinaren Aufgaben. Dazu gehort die I&nstel
eines flugmechanischen Modells, die Wahl der geeigneten Paramai&kagonsalgorith-
men, die Entwicklung des Onboard-Messsystems und die Definition von Flugnmankiver
dieser Arbeit wird diese Vorgehensweise auf ein Forschungsluftacigéwendet.

Die Modellbildung besteht im wesentlichen aus zwei Teilen. sterrTeil wird das
nichtlineare flugmechanische Modell des Luftschiffes entwickellr Bestimmung der
Bewegungsgleichungen werden die physikalische Zusammenhange der klassischan Me
nik und die spezifischen Eigenschaften von Luftschiffen, wie z. Baahestatische Verdran-
gungskraft und Effekte aus der instationdren Aerodynamik wie scheinbasseiha
verwendet. Der zweite Teil konzentriert sich auf die linegyprAximation der Luftschiffdy-
namik. Dazu werden die Bewegungsgleichungen linearisiert und die Langseitertb8we-
gung entkoppelt. Dann werden die klassischen Stabilitdts- und Steuedmgesischaften
bei verschiedenen Flug- und Konfigurationszustanden untersucht. Die weht@stiva-
tiva des linearen Modells werden in der folgenden Parameteridemtifig bestimmt.

Die Identifizierung der Derivativa basiert auf statistischerfaleen, deren Auswahl
anhand der Flugeigenschaften des Luftschiffes und des verwendeten Onbaossysidess
getroffen werden. Ein Schwerpunkt dieser Arbeit ist die Implelmemy und Anwendung
eines kalmanfilterbasierten Algorithmus, dessen wesentlicheeiMdie Mdglichkeit der
Parameterschatzung mit Prozel3- und Messrauschen ist. Dem Rrnogessn entsprechen
die unkommandierten Bewegungen des Luftschiffs aufgrund atmospharischer Stgrunge
dem Messrauschen Stérungen in den Sensorsignalen.

Ein wichtiger Teil der Arbeit betrifft die Erstellung der expeentellen Testumgebung.
Dazu gehoéren die Hardware des entwickelten Onboard-Messsystem udsdiahl von
geeigneten Flugmanovern. Die bekannten Flugmanéver zur ldentifizierung deriRyoam
Starrfliiglern werden fur die Anwendung am Luftschiff angepasst.



Vi

Die Vorgehensweise fur die Identifizierung der linearen Luftscluffelle zeigt eine
sehr gute Ubereinstimmung zwischen dem realen Flugverhalten und demvdidddien
des Luftschiffes. Der gewdahlte Ansatz zur Systemidentifizieaignget sich somit gut fur die
Bestimmung der flugdynamischen Eigenschaften des Luftschiffs aus Feaptes
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Chapter 1

Introduction

1.1 Motivation

The beginning of the twentieth century has started the era of airShpsirship is a flight
vehicle that gets its buoyancy from the presence of a Lighter-Thageéi One of the great-
est contributions to the airship’s history was made by a german invarttinand Graf von
Zeppelin (1838-1917). He proposed a rigid structure dirigible that became ksawa zep-
pelin. Zeppelins had transported people worldwide at velocities whidd oot be achieved
by other transportation means. However, as the technology of other tyjpaasplortation
developed, airships became too slow. The era of airships ended/gath921 as the “Hin-
denburg” dramatically crashed.

Nowadays, the interest in Lighter Than Air systems revives asetifaology has
reached its new level in safety and reliability. Currentlydlege many activities worldwide,
engaged with designing and building modern technology helium airships. Thelsareva
demands on transportation which cannot be satisfied by conventional aiftrafstatic
buoyancy property of the Lighter Than Air vehicles has generated a numbanaapts to
utilize these systems as a flying crane or as a semi-statistaion for communication and
observation services. However, this raises a question: has tkeatdexrel of technological
achievements reached a point where the utilization of modern aieskigeonomically fea-
sible? The answer to this question should be given with time by tryingftaredt applica-
tion areas where the airships can be helpful.

Germany is probably the most airship inspired country, where thedpd@ppelins is
still very strong. At the University of Stuttgart at the InstitofeStatic and Dynamics of
Aerospace Constructions, a research team has built a solarepoaveship “Lotte” [35]. Its
construction was required for two reasons. First, it was ne@gdassarove that an airship can
be driven by solar energy only. Second, a prototype airship would be a pbjésttfor ver-
ifying theoretical investigations made by researchers in thid. figénce, the fifteen meter
long airship “Lotte” illustrated in Figure 1.1 is an object of studystreral research groups
from different institutes at the University. Among them, theitust of Flight Mechanics and
Control plays one of the key roles. Its major goal is to perform amawrtous flight opera-
tion of “Lotte”.
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Figure 1.1: Research airship “Lotte” during test flight

In order to carry out the autonomous flight mission of the airship, théopevent of a
flight management and control system is obligatory. A vision for fhpscach was in utiliz-
ing a classical flight control system methodology and synthesis techniggtescontrol sys-
tem design of the “Lotte” airship. In this approach, several presgegishould be fulfilled.

The baseline requirement for designing the flight control systemeastansive knowl-
edge of the flight dynamics of the vehicle. It incorporates a develupofiean appropriate
flight mechanical model, which represents a set of input-outpuioresat

An important step in developing the flight mechanical model is the nvediécation.
The model should adequately describe the airship dynamics, and ifstaiuit be adapted
in terms of its structure and internal parameters to obtaBeiteral systematic approaches
can be utilized for the model verification. Among them, the aerodyneenification is of
the primary importance, since the aerodynamic uncertainties amadsiedominant. The
aerodynamic verification is usually performed using numerical computadibtise fluid
dynamics (CFD) and a variety of wind tunnel experiments. Howevegrpgrfg only aero-
dynamic verification of the model, one can not guarantee that the dempdelel will be
adequate to the dynamics of the flight vehicle.

Apart from the aerodynamic verification, there are other methodtalalega which
allow the model adjustments to be obtained directly from flight exgetisn These methods
are based on system identification theory and extensively utilized dtigaraThis disserta-
tion examines an application of the system identification for therrdetation of the
dynamic characteristics of the “Lotte” airship from flight expesnts. Throughout this the-
sis, a better insight into the system identification problem arapfcation to the real prac-
tical problem will be introduced.
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1.2 System ldentification: An Overview

The system identification is commonly referred to as the inved®#gmn and postulated as

“given the answer, what was the questidga5]. From the basic diagram illustrated in Figure
1.2, one observes that system identification is the field of modedfipdnysical processes

based on experimental data.

Input Output

Physical
Plant

Sensors -

and Meas. Output
Recorder
Meas. Adaptation
Input Tunable | model oupyt | Algorithm
Plant
Model
A 1
Model update

Figure 1.2: Fundamental concept of system identification

The system identification has grown to a separate topic of the ctimtarly and the
examples of its successful utilization can be found in many argamcifcal applications.
These are the cases, where a verification of some mathalyadiescribed phenomena from
the experimentally derived data is required. A more expanded formuddittbe identifica-
tion problem is given in [65]:

“ldentification is the determination of the basis of input and output, of a sys-
tem within a specified class of systems, to which the system testies
equivalent.
From this definition it follows that several items contributeht® identification process: the
input-output dataamodelor setof models and aule or criteria for model estimation.

» The input-output data is usually collected during an identification expetjrwhich is

designed to produce measured data with maximal information content about the

involved process. Hence, for acquiring the input-output data, the meastiiasigu-
mentation is required. The measurements should indicate the reafdiensystem to
input signals.

» The model is the key item in the identification process. Withieresive theoretical
explorations, ara priori knowledge should be extensively applied and a number of
compromises made, so that the model is simple and distinct frorsideeand to be
able to adequately describe the behavior of the physical plant fromhbe dhe
model may be presented as a set of candidate models. Among themartheeveral
families of models: thelack-boxmodels, thgrey-boxmodels, and the models with a



4 Chapter 1 Introduction

predefined internal structure [39]. The black-box models do not use anykipowi-
edge of physical relationship between input and output. The grey-box modatas s
extension of the black-box class, where some a priori relatiomsvaiged in the pro-
cess, but physical interpretation of the problem is still mis&oth the black-box and
grey-box models are commonly utilized in cases where the “curvegfits important
and not the physical interpretation. Apart from the two previously mewtiomoslels,
those with a predefined internal structure are of primary interestgineering appli-
cations. They require a physical insight about the process to be moaetlieare,
therefore, more preferable in general. The models with a definedse determine a

family of parametric modelswhere adjustable parameters specify the essential charac-

teristics of the physical process. If the parametric modgpesified, the original sys-
tem identification problem narrows to the parameter identifingiroblem.

* When the input-output data is available and the model has beendedeatke accord-
ing to which the model fits the data should be defined. In the paraitetification,
where parametric models are utilized, a criteria is useddbameter estimatian
Parameter estimation, being an integral part of system idextioin can be easily for-
mulated as a classical optimization problem.

All above described items are basic elements, which appaayimentification problem. In
many cases, where the need exists to model the physical phenonfenprotess, the prob-
lem of parameter identification is of major interest.

1.3 System ldentification in Flight Mechanics

The problem of system identification has been extensively utilizedigint fmechanics.
Flight mechanics, being a field of aerospace engineering, is focusld ortion of a flight
vehicle. The main objectives of flight mechanics are based onisp&oifi and modelling of
dynamic characteristics of the vehicle. The dynamic charaaterete mainly derived from
the Newtonian laws of mechanics, which suppose the motion of the véigite body)
caused by action of externally applied forces. A classificatiorh@feixternal forces and
moments is typical for any flight vehicle. These are aerodynanapufsive, gravity forces
and, if the vehicle belongs to a class of Lighter Than Air (Li}ems, also the static buoy-
ancy forces. In derivation of the flight mechanical model, the systentification procedure
is used as a tool for updating the aerodynamic database [12], [44].

1.3.1 Historical Overview and Current State of the Art

The first attempt to apply parameter estimation principle liglat fvehicle was performed by
Norton and Warner in 1919 [63]. The scope of their investigation was teerdeation of
aerodynamic parameters from various flight maneuvers, flown aircaitspeeds. They uti-
lized a basic idea of equating the lift force to the weight otékeaircraft and drag to the
thrust force, assuming that weight and thrust were known for thaitestft.
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The evolution of system identification applied to flight vehicles haa beatinuously
expanding. The following sections distinguish some research groups thatomawieuted
greatly to the application of system identification on flight vehidiesaddition, a current
state of airship system identification will be presented.

Experience at NASA

The experience gained at NASA has the strongest influence on todstyisdalogy of the

flight vehicle system identification. Scientific potential goverae®lASA by studying vari-

ous types of flight vehicles is very high. Evaluations made at AimdsDayden Flight

Research Centers have considered a whole spectrum of flight vedtectesy from remotely
controlled scaled models up to estimation of hypersonic dynamics ofyrepatte vehicles
[16]. With evolution of aircraft and other flight vehicles, the negureements on system
identification have been posed. For example, the estimation cdfa@erodynamic parame-
ters at high angles of attack has been performed by implementatioa éttended Kalman
filter into the parameter estimation algorithm [17]. Additionakgtimation of aircraft

dynamics in presence of turbulence is performed [15]. These, and nh@nygystem identi-
fication problems have been examined and successfully solved at NASA.

Experience at DLR

The “Deutsches Zentrum fur Luft und Raumfahrt” (DLR) has beesnsirtely utilizing sys-
tem identification as a tool for validating flight mechanical an@ddamamic models for a
variety of flight vehicles since 1960. Many research activities haea devoted to the prob-
lem of system identification. Today’s identification efforts an@de on estimating the
dynamics of an aircraft at stall regimes and extracting aerodgneoeifficients at high
angles of attack. Additional focus is concentrated on identifying nonlmedels of aircraft
[21].

Other Research Activities on Aircraft System Identificaton

Today many researchers utilize the system identification approactalfdating different

types of models. Recent developments have considered different maxhBcan existing

identification algorithms, applying them to special problems where @mnidentification

methods fail. There are, for example, a number of evaluationsdheérn identification of
different aircraft models using neural networks [13], [56]. Otldeksote their efforts to solv-
ing problems, where numerical computation problems are dominant,ngglasiand sparse
matrices, discontinuity in the process dynamics, difficultiesvaduating numerical gradi-
ents [3], [22], [30].

Articles Related to the Airship Identification

Although a number of references exist devoted to dynamic response models faiA

vehicles, there are few examples where a comparison of theiealaiybdels versus actual
flight data is performed. Some results on this area are rdpor{@3], where the stability
derivatives of the Skyship-500 are determined from the flight datay ubie frequency
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domain fitting. However, until now no common approach for identifying airskigsailable
and therefore it is an attractive area for research aesviti

1.3.2  Unified Approach to Flight Vehicle System Identificaton

In recent years the problem of flight vehicle system identiboatd to a consolidated meth-
odology (QuadWw), which has been proposed by a research group from the German Aero-
space Center (DLR) and illustrated in Figure 1.3. The topology @tlaelM methodology

is tightly related to the basic definition of the system identificaproblem as pointed out in
section 1.2 and contains four basic elements, narielyieuversM easurementdyl odels
andMethods.

—_ —_ — — - - - — - - — — — e e e = = = = =

| Experiment Evaluation |

|

: Maneuvers . , Measurements |
- - Data

| Input — Flight Vehicle |—> Collection & |
| »| Compatibility |

|
_ e —_-  —_ —_  —_— —_- ] — —_—  —_— —_— —_— —_— —_— —_— — e—— — — — —_— — ) — =
e -1
| M ethods |
| a priori Adaptation Identification |

. ) < o <—® e
| Information Algorithm Criteria |
| Parameters |
| Model Models ¢ |
| Structure ——> Adjustable |
—» Mathematical
| Model Ym '
| i Parameter Estimation |
[ Validation Phase |
| Model |
Validation

Figure 1.3: Unified Quad-M approach of flight vehicle systenendification [18].

Maneuvers

The maneuvers are related to the selected flight vehicle maneyypeocedure. The control
inputs should be designed to provide maximum sensitivities of the vehaclgores on the
unknown parameters.

Measurements

The measurement part of the Qudddiagram is responsible for instrumentation used in the
identification process. Measurements, delivered by variety of nexasuat units should
track both the input controls and the vehicle’s reaction on the given inpaguality of the
overall identification process is strongly influenced by the accuradheoineasurement
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equipment. The flight data, collected during experiments are furttadmaged in order to
provide consistency of measured quantities from various sensors [25].

Model

Similarly to the general definition of the system identification grohlthe model part plays
a central role in the flight vehicle system identification. Asfed out, the basic equations
are derived from the Newtonian laws of mechanics. Structuratarieection of the model
is usually predefined and some a priori information extensively usedliasted in Figure
1.3 as external inputs to the model. The a priori information cont@irexdmple databases
derived from wind tunnel experiments or upper-lower bounds on the paraaeterding to
their physical interpretation. The flight vehicle system identifocautilize linearized as well
as nonlinear model realizations for parameter determination.

Methods

There are many approaches for estimating the parameters of dygyateins that are pres-
ently available in flight vehicle system identification. Their aggtiion is based on analysis
of input-output behavior in both time and frequency domains. In the past decagechow
with the increased computation capability of modern computers, theliasushanged from
frequency domain to time domain analysis [12]. The time domain analydiesses more
preferable advantages on the parameter estimation problem. They flaiowhe ability to
apply an optimal state estimation using optimal (e.g. KalmaeydiltAdditional benefit is
acquired from the recent possibilities of estimating moderate nanlmedels from experi-
mental data [21]. On the other hand, the frequency domain methods woik determin-
ing parameters of unstable linear systems and in estimationimaégériodic (helicopter)
dynamics [22]. There are also a number of realizations thatpable of performing param-
eter estimation in real time scale (online identification) [&Mery estimation method has
particular advantages and disadvantages over the others. There i€hardiveer to the best
method, its choice is dictated by the engineering anticipation of theeproibhis knowledge
should be governed by an assumption made on the functionality of the flightevemhaer
test and the ability and accuracy of the measurement instrumentation.

Validation Phase

An additional important issue in the identification methodology is the madielation (see
the bottom of the Quad-M diagram). Model validation is the processstig whether the
estimated model is sufficiently accurate for the intended purposies ude. Here, several
answers should be given [51]. First of all, it is necessary tafgpkthe estimated model is
in agreement with the adopted a priori knowledge of the flight vehintkrial verification.
The next question to answer is whether the model can provide an acedptatbkexperi-
ments, where input-output data sequences have not been used in modébasgxtarnal
validation or cross-validatiof. Some indirect aid to the validation process can be taken
directly from the statistical characteristics of estirdgparameters (Cramer-Rao bounds).
Altogether, the internal verification, cross-validation and théssitadl characteristics of esti-
mated parameters provide the final confidence about the quality ddtthrated model.
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1.4 Objectives of the Work

This thesis considers a problem of the “Lotte” airship systemifabetion, as a tool for
determining its dynamics from the flight data. The unified approachibdedadn section 1.3
is used as a basis for this work, which could be further utilizeddsigning the flight con-
trol system.

The modern identification problem poses several objectives frometiffenultidisci-
plinary areas. Therefore, the consequent treatment of the prolsle@mssidered in the cur-
rent workframe:

* Study of airship dynamics and derivation of identification moded: The study of
airship dynamics should be based on previous work, where a closed forgecdrec
airship flight mechanical model is introduced [26]. Then, derivatiomgslgied mod-
els, which are applicable for estimation purposes should be perforrdegrguments
for their selection should be made.

» Parameter estimation methodsThe choice of appropriate parameter estimation algo-
rithms should be motivated by airship operation properties and tightly codveitie
available instrumentation used in the project.

* Measurement hardware realization: Since the system identification approach is
based on the measured data, the availability of a measuremenatersiwbligatory.
For this reason the development of an appropriate measurement syateadditional
objective of the work.

* Input design: This objective implies a selection of the control input type and sloape f
providing maximum sensitivities of the airship reactions on the unknown pteEn

* Flight tests, data analysis:The availability of the Lotte airship makes it possible to
carry out the flight tests with onboard instrumentation system. Boess associated
with the flight data postprocessing as well as estimation of dteehparameters from
the flight data should be examined. Finally, the reliability ofdbwesidered identifica-
tion approach should be proved through validation tests.

1.5 Structure of the Thesis

The structure of current thesis is organized in compliance witbltjeetives defined for the
work. Primary, the derivation of the airship flight mechanical madeerformed in Chapter
2. There the input, state and the output quantities of the model areddehd their relation
to the complete airship dynamics are concluded. After the major pespef the model are
studied, Chapter 3 discusses a subclass of linear models, basezhamdtion of the nonlin-
ear flight mechanical model. The corresponding analysis of stabilttyedfnearized model
is performed. With the a priori knowledge, gained about the airship dgsamvariety of
estimation methods are considered in Chapter 4. There, the anélgdimntages and disad-
vantages of particular estimation methods is performed. Chaptde%aged to the problems
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of experiment design. It involves a discussion of the experimentadfgag airship identifi-

cation project, including design of control inputs and hardware realiz&lwapter 6 sum-
marizes the estimation and validation results, obtained from #ighériments performed
using “Lotte” airship. Finally, Chapter 7 summarizes the ackieesults and gives direc-
tions for future research.
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Introduction



Chapter 2
Airship Flight Mechanical Model

2.1 Generalized Approach to Airship Modeling

The airship dynamical model used in this work originates from thalajeat in [26]. It is

based on the classical flight mechanical methodology for building a fighbhanical model
[6]. The modelling of the airship dynamics is constrained on a sirggtelrody. This incor-
porates an utilization of principles of the Newtonian mechanics dgnamic description of
the body motion.

There are two significant additions to the classical equationetdmof a flight vehi-
cle that should be accounted for, when considering the dynamics of tles tigdm air vehi-
cle. They are characterized by:

» The buoyancy force
» Aerodynamically inducedirtual massandvirtual moment of inertigffects

The buoyancy force is based on the well known principle of aerostatievirfual mass and
moment of inertia effects are known from the potential flow thendyaise due to the fact
that the mass of the airship is being of the same order of magagutie mass of the dis-
placed air [62].

2.2 Definition of Reference Frames, Motion Variables and
Controls

2.2.1  Flight Mechanical Variables

It is common in flight mechanics to define some typical varialdesiéscribing the motion
of a flight vehicle. For this purpose several vectors that deterposgion, velocity, and

11
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rotation are introduced. The vectors are naturally described througlbdhgonents as pro-
jections on the axes of a predefined frame of reference:

Position Velocity Angular rate Force Moment
X u p X L
r = y| V = il Q= ql - F = Y Q =M
z W r Z N

For indicating the relative orientation of the flight vehicle witbpect to a stationary frame
the Euler anglesp -Bank, -Pitch ad -Yaw are defined.

If the airship moves in non-steady atmosphere with wind veldGly s necessary
to distinguish between the flight path velocity and the airstreamityeldg. The air-
stream velocity represents a relative motion of the airshipregect to the surrounding air.
The velocitiesv, V, an¥,, are distinguished using relation:

The introduced flight path, wind and airstream velocities will furéppear in determination
of external forces and moments acting on the airship. The motion esr@dddcribed here, as
well as forces and moments are sufficient for describing the edpenplotion of an airship.

2.2.2 Basic Frames of Reference

For describing the airship motion, two main frames of refererecdefmed. These are geo-
detic and body-fixed frames. The geodetic frame of referenceightahanded orthogonal
frame with indexg that coincides with the geodetic coordinate syStbeorigin of the
frame is located near the vehicle andxhe -axis is alignedhdthdrth direction and the -
axis points toward the center of the Earth. The Earth is assiorbedolain and non-rotating.

yf\ q

Figure 2.1: Body axis system of an lighter than air vehicle
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The other frame, the natural frame of reference for most eehaine description, is
regarded to be fixed with the airship as illustrated in Figureli2.the body frame of refer-
ence, all motion variables and equations of motion will be treatidivdexf . In contrast to
aircraft models, where the body fixed reference frame is iwadity placed at the center of
mass poinilCG , the airship center of referede coincides wittetiter of geometrical
symmetry of the hull. The location is chosen for two reasons. trsimplify the computa-
tion of aerodynamic forces and moments, acting on the airship. Secormentiee of mass
may significantly change its location during the flight (see 2.4.1helbody axes were fixed
to theCG point, its movement would cause the change of the body axegsy#ct to the
airship body and consequent change of all geometrical locations.

It is common practice to describe the motion of a flight vehicliéae flight path axes,
i.e. using the true speddl , angle of attack , and the sideslipangstead of the linear
velocity componentst v and . In the current development however, the matwipde
tion was restricted by considering the body linear velocities onlyalecthe equations of
motion expressed i ard  variables introduce numerical singulatity aperation con-
dition at the hover mode, it is advantageous to formulate the equatings/akicity compo-
nents of the body reference.

Projection of geo-
detic frame inCR

Airship’s plane

Y9

Figure 2.2: Relationship between geodetic and body fixed frames
The angular orientation of the body axis system with respect to the igefrdate

depends on the orientation sequence, which is derived by rotating the gesdstaround
azimuthaly , elevatio® and bargk- angles respectively, as illadtmatFigure 2.2.
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This transformation can be analytically represented by a directidnreomtrifog :

X X
y = ng y| (22)
Zf Z g

where the matrifog is the direction cosine matrix, which is obthinethe consolidated
multiplication of rotation matrices

Ty = LYILEOLED, (2.3)
with
1 0 0 cosH 0-sinB cosy sing O
LS = |0 cosp sing - L§" =1 0 1 o |,L§" = |—sinpcosp q- (2.4
0 —sin@ co sin@ 0 cosB 0 0 1

Using equation (2.2), the transformation of a vector quantity from geadttibody fixed
axes is possible. For this transformation also valid:

Tig = Tgr = Tot- (2.5)

2.2.3  Airship Controls

The principal control of a pilot on the examined airship is achieved bynain sources.
These are aerodynamic control and propulsion control.

The aerodynamic control is performed through the change of the effemtaleflow
angles made by control surfaces. The control surfaces are ttteedttaorizontal and vertical
fins as illustrated in Figure 2.3 and can act as elevptor- , rddded aileroné

2y L

Figure 2.3: Aerodynamic control surfaces of the airship “Lotte”
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The propulsion control is achieved by variation of the rotation rate gdrtpeller. In
the hardware configuration of airship “Lotte” the propeller is lataethe rear part of its
body. The axis of propeller’s rotation might be changed with respebietaitship body,
changing therefore the vector of applied thrust force (thrust vectofihg)thrust vectoring
is commonly used for maneuvering and occurs during the starting and landing phthee
flight.

2.3 Rigid Body Dynamics

2.3.1 Equations of Motion in the Body Reference Frame

From the statement of treating the airship as a rigid body given ith2.t|assical laws of
Newtonian mechanics can be utilized. Thus, the motion of a rigid bathaiacterized by
the action of external forces. By applying Newton’s Second Law, theieasiaf motion can
be established in terms of translational and angular accelerasoasconsequence of the
external forces and moments applied to the center of @@ss

SUMVeal? = {Focck (2.6)

and

S cafel] = {Q%k - 2.7)

where the operatoéj—t{ }fg denotes the time derivative of a vector takba gh-geodetic

frame and expressed in the body reference frame . The véctors Q anthe right hand

side of equations (2.6) and (2.7) represent resulting vectors of athaky applied forces
and moments respectively. As the equations describe the motionnohdisecenter of the air-
ship, all its variables - the veloci¥ . ., the inertia matg, and the summary of exter-
nal forces and moments - are determined with respect ©@&e point.

From similar transformations, outlined in B.1, the equations of m¢2d), (2.7) can
be expressed in the body reference coordinates:

M(Vk + QX reg+ Qx (Vi +Qxreg)) = FZ, (2.8)

1Q+Qx (1Q) +mregx (Vk +Qx V) = Q%, (2.9)
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with all terms expressed with respect to the center of bodyerefe€CR
. _ d f . _ d f
VK - a{VK|CR}f , Q= a{QCR}f )
| = lcp, (2.10)

FZ = {F2crk . QF = {Q*cRr) -

In order to combine the force (2.8) and the moment (2.9) equations todletlyecan
be transformed into a compact block matrix form. For this purpose ther yoduct terms,
where the lineaWx and the rotatiofal  accelerations appedreauivalently expressed
by a scalar multiplication involving a skewing matrix and a vector

fea® Vi = e Vk (2.11)
Qx 1o = Heex Q= @,

where thergs; multiplier denotes the skewing matrix. Applying these futimsts into
equations (2.8) and (2.9) and rearranging terms, the general equatiomnoof yredtls:

mr¥s | ol [-Qx (1Q -(MDOrggx (Qx% Vy)) o)
OOOOO0OOdn OOO0OOOO0OO0OOO0OO0O0and o
Mass Matrix Dynamics Vector External Force

and Moments

The form of the equation (2.12) represents a state space fealizbthe nonlinear differen-
tial equation. Its state vector is comprised of the motion vasabkethe lineal, and the
rotationalQ velocities. The state space form of (2.12) can kebbuapplied for simulation

purposes. The general equation of motion has three major componentssshaatiax, the

dynamics vector and the vector of net forces and moments.

The mass matrix is a symmetrical matrix, where the nbassor of moments of inertia
and off-diagonal coupling terms are placed. Its expanded form is outliBed. The dynam-
ics vector appears due to kinematic transformations and translatiomfass center to the
body reference center (see also B.3).

The resulting vectors of external forée and mon@ht can now be ekes®r
ined. They can be separated by terms, which are classified bypltlgsical nature. These are
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gravitational, aerostatic, aerodynamic and propulsive terms. Atredtforces and moments
are considered as a sum of nonlinear functions

EA+EB+FG +FT

QM +QB+Qe+QT,

|:Z

o (2.13)

where the superscrigf  corresponds to the aerodynamic compBnent, -bu&yayrey- -
ity and T indicates the thrust term.

The formulation of equations of motion derived until now, does not adopt thea@omm
aerodynamic properties of airships. For the sake of simplicity mutation, all major com-
ponents that appear in the equation (2.12) will be individually examinedriaection 2.4.

2.3.2  Orientation and Position Equations

The equations of motion have been derived for an axis system fixedaiostie. However,

the position and orientation of the airship cannot be described relatitie moving body

axis frame, rather than related to the stationary (geodetimoefr&he orientation of the air-
ship can be defined in terms of rotational variables:

1 singtan® cosptand

_e -

0O co —sin P
8 = 0P ? gl (2.14)
_ 0 sing COS(p
Y cosH cosh

In this relation the transformation matrix becomes singular forpttod angle at values
8 = £90° . However, under normal airship operation, this singularity does not. occur

In order to determine the position of the origin of body referéhiee esbect to
the inertial reference frame, the following differential equashould be solved:

X Uk
y = Tarlvi (2.15)
z

g WKf
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2.4 Airship Mass and External Forces and Moments

241 Mass Characteristics

Significant difference of a buoyant-like vehicle from a typicalraiitds that its mass charac-
teristics strongly depends on environmental conditions, i.e. the chanigéuded :

m=mH,l =I(H), reg = regH). (2.16)

It follows from the fact that due to construction requiremetiie, pressure difference
between the surrounding atmosphere and the inner gas (Helium) should be ¢@pstant
as possible at each altitude level:

AP(H) = Pg(H)—PA(H) = constan. (2.17)
This permanent pressure difference is required for maintainingetbdyaamic shape of the
envelope under most operational conditions. As the atmospheric présgite hanges
with the heightH (see Figure 2.4), it should be compensated by the lg@saessure. For
this purpose the envelope is equipped with two air-filled-ballonets, Ipdhefore- and the

aft-ballonets located inside the hull. The volume occupied by the inner gdsednallbnets,
represent the inner volume of the airship’s hull envelope and is meadyant.

Altitude H 4
Pa(H)

_
—  —<

= =3
D
<1
Sea Level . ."

Figure 2.4: Ballonet filling on variation of altitudéd

By filling the ballonets with the air, they displace the volume ofither gas, increas-
ing the total pressure of the gas in the envelope. In general, the&sts of the airship can
be expressed by

m(H) = mg+ mg(H) +mg, (2.18)
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wheremg is mass of the inner gas;(H) is the total mass of laneés andm; repre-
sents the mass of all internal components (skin, structure, ermenges, etc.). The mass of
the Heliummg can be considered as constant if leakage through theskilis insignifi-
cant. The mass of all internal componemis can be derived by accaalhttgments of
the airship as a consolidation of point and distributed masses. Theuimtaf the internal
componentsng is assumed to be constant during the flight operation, sificettagair-
ship is electrically powered.

The volume of the ballonets depends on change of the atmospheric pressara,gra
as denoted in Figure 2.4. At sea level where the atmospheric préessugh, the ballonet
volume has its maximum level and reduces with the increased alfltad@tmospheric vari-
ation can be approximated by common laws of ideal gas. For deterrthieinglues of the
air pressureP,(H) and the air densjiy(H) , @ model based on Internatianala®&i
Atmosphere (ISA) can be applied [10].

1.25 T T T 140
135
“E . 130
~ E
2 =125
= IS
Q
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Q
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Figure 2.5: Variation of atmospheric densitg , the total massand CG position against the
altitude-H change. Simulation case with ISA atmosigch@odel

Variation of mass of ballonets also results in a change of theradrgravityCG posi-
tion with respect to the body reference frame. Some results pfdtielling of the mass vari-
ation against the altitude are presented in Figure 2.5. The balpagtn additional role in
the airship operation. By filling the ballonets unequally, the vanatf position of the center
massCG is obtained. Utilization of the unequal filling of the ballmetommonly used for
airship trimming.
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Determination of the tensor of moments and products of inertia fierpexd analo-
gously to derivation of the mass characteristics and requires tlysiamd point and distrib-
uted elements. In general, the tensor of inertia is expresfedespect to the mass center of
the airshipCG . With the altitude variation the change of the intxtisor should be also
considered as the mass characteristics of the airship change.

2.4.2  Gravity Terms

The external gravity force component exerts a force along the eartktigez&daxis and is
proportional to the total mass of the airship. Because the centeassf coincides with the
center of gravityCG and is different to the center of the body referé€mt, the gravity
force produces external moments about the body reference point. |&thity §orce is to be
defined as

0
Fé=|0] . (2.19)

mgg

then transformation from geodetic into body fixed reference framefierped using equa-
tion (2.2):

G

F~ =T,FG
. R (2.20)
Q” =regx FC.
The total mass of the airship and its cer@&s should be computed wmdatecations

given in subsection 2.4.1 due to variations of the ballonets.

2.4.3  Static Buoyancy Effects

The static buoyancy terms are derived from a well known principleeafstatics. The
upward buoyancy force of a body immersed into a media is equal to the wethktdis-
placed media:

FB=| o |. (2.21)
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Transforming the buoyancy force into body fixed coordinates, as with theotasavity
force, the components of the buoyancy are derived:

FB = T, FB. (2.22)

As the shape of airship’s body remains unchanged, its displaced v@lumethe amhter of
buoyancyCB are regarded as constant. The point of the applied buoyancy fotoe can
determined by taking an integral of the volume distribution along the alvsdipaxes. The
induced moment with respect to the center of reference is regasded

B

Q” =regx FB. (2.23)
It is fair to assume that for conventional airships the centeu@yancyCB coincides with
the volumetric center of the hullV = CR . Hence, the offsg! can blected and the
buoyancy moment results in a zero length ve§®r= 0

2.4.4  Thrust Terms

The thrust force is generated from the reaction force of thanahre rotating propeller. Dur-
ing normal flight operation, vector thrusting is not applied. For simpligie can conclude
that the thrust force is attached only to xhe -axis of the body nefere

xT
FT=o. (2.24)

0

Due to the relatively small rotational rates of the main thengtne, any effects of spinning
rotors can be neglected. Moreover, it is assumed that the aerodgiyammduced rolling
moment of the stern propeller is small enough to not induce a signéiessdynamic rolling
moment around the body -axis [6]. Therefore, the induced thrust momergatoa of zero
length, i.e.

QT = repx FT = (2.25)

© O O

2.4.5  Airship Aerodynamics

An accurate modelling of aerodynamic phenomena that appears due teeratation
between the flight vehicle and the atmosphere, is of primary imperianauilding of the
flight mechanical model. Throughout the motion of an airship, a comgdidldw distribu-
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tion occurs along its body. There are number of existing studies thainexthe aerody-
namic properties of airships [10], [24], [52].

Reference [26] is devoted to theoretical investigation of airshigdgeamics. As an
outcome, a closed form analytical aerodynamic model is derivedbdtsed on geometrical
characteristics of a conventional airship and a set of semiieaiparameters. The model
covers a modelling of flow phenomena for steady linear and curvilihght, faccelerated
motion, steady and unsteady winds. Important modelling issues are ukxtagdiin Appen-
dix B.4.

Accounting for Unsteady Aerodynamics

According to formulations derived in B.4, the aerodynamic descripti@m @frship can be
divided onto two main terms. The first term accounts for a steadydgnamics together
with unsteady wind influence, whereas the second term is used tobdete unsteady
motion:

FA = FA(VA, Q, VW)+FA(\7K, Q)

. . (2.26)
QA = QAVa Q V) + QA(Vk, Q).
The terms containing unsteady motiBft(Vk, Q) Vi, Q) represent the apparent
mass effects. They can be further rearranged to a linear d@suribing translational and
rotational accelerations respectively

FA(Vk, Q) = —pFVk—pF,Q
| | 11. 12. (2.27)
QAVk, Q) = —pF, Vk —pFQ,

where the matrice&,;, F,, F,; F,, are derived from modelling the exatet flow
around a rotation-symmetric ellipsoidal body using potential flow theory T3&.common
representation of the apparent mass terms is

k, 0 0
0 0 kg
(2.28)
0 0 O
F21 = 0, F22 =10 kl|yy 0 ,
0 0 KI

wherek; Kk, k; andk are the hull's geometry dependent coefficients- Maties and/
denotes the volume of the airship’s hull [60].
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Modification of Equations of Motion

Without a great effort, the derived aerodynamic part of the fligithanical model can be
incorporated in the equations of motion. By substituting equations (2.26) and i(8®7)
(2.12) and rearranging the instationary aerodynamics terms (due to betraion) onto
left hand side, the original equation of motion yields

[mE+pF11 —mréG] [V] — —Qx (Vg +Qxreg)m N
2

Mg 1+PFy | Q]  |-Qx (1Q) —(MDOrggx (Qx Vy))
(2.29)

FE+FC+FT+FA(V, Q V)

QB+ QC+QT+QA(V, Q Vw)

The apparent mass and inertia effects are regarded now as atlditasisaand inertia terms
and not as a part of the aerodynamic description of the model. Thatpoefamulation of
the instationary aerodynamics as a part of the generalized mass lmaa become, mean-
while, a standard form for describing airship dynamics, as alsaeeparother studies [10],
[52].

Experimental Database from Wind Tunnel Tests

Together with the theoretical investigations on airship aerodynarhegknowledge from
various experiments is also of a great importance. Therefore a gfoegearches from the
Institute of Aerodynamics and Gas Dynamics (IAG) of the Univeddi$tuttgart have been
involved in determining the airship aerodynamics from wind tunnel experintfdrgsxper-
iments have been carried out with a scaled model of the “Loti&iipi

The aerodynamic database was obtained as a result of wind tunaa@nestelivers a
set of stationary aerodynamic coefficients of forces

CD(G! B! rl)v CL(G! B! rl)

and moments

Cm(a, B, ), cyla, B, €),

measured at different angles of attack , sideslip ariyles  @ifteagnt levels of the con-
trol surfacesn ( . The main objectives were the determinatidgheomain aerodynamic
coefficients, a detailed study of the three-dimensional boundary layetogenent, and
especially, the study of the flow behavior at the tail area ofnib@el. Some results of these
experiments are illustrated in Figure 2.6. A detailed overvielWweobbtained results is given
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in [8] and [38]. One remarkable property of the airship aerodynanties [gositive gradient
of the pitching moment (see Figure 2.6(c)):

d
—c.(a, 3, n=0)>0 at aj <10°

and hence the aerodynamic instability of the static pitching moment ue td>geometrical
symmetry of the airship Lotte in the horizontal-XY and the verficalplains, the aerody-
namic instability appears also for the static yawing morognt | 3 [at 10°

The obtained aerodynamic database has been also utilized in [26]rigrtfie analyt-
ically derived aerodynamic model with the experimental data atrehffdevels of flow
angles, as illustrated in Figure 2.6.
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Figure 2.6: Results of wind tunnel measurements and predictibasalytical aerodynamic model
[26].
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2.5 Nonlinear Observation Equations

2.5.1 Requirements and Limitations

The basic requirement for selecting the measurement quarditeget sufficient informa-
tion about the processes involved in the system dynamics. On the othetchanolide
extensive information about the dynamics of the airship, all measotemeantities should
be classified by:

* |nertial measurements
» Relative airstream measurements
* Measurements of control variables
* Auxiliary measurements
All these items will be individually discussed in the following subees.

It should be pointed out that availability and configuration of sensors poseaaldi
constraints on the measurement equipment. Requirements of the payloadcposump-
tion and sensor placement are the key issues that should be acoeptey flight vehicle.
Therefore, under given constraints, this section will be mainly focasethe “Lotte” spe-
cific measurement setup. The practical realization of thesunement equipment is provided
in Chapter 5. Figure 2.7 provides a schematic overview of maindasatif measurement
instrumentation. Their geometric offsets from the referencecan given in Appendix A.

T

Cl CGPS CGPS

Figure 2.7: Main instrumentation locations of “Lotte” airship

252 Inertial Measurements

For measuring the inertial variables, accelerometers anibrabgyros are commonly uti-
lized. The relations describing acceleration with motion variablesimilar to that used for
determination of dynamics in body reference frame and consist of th&ipeneatic depen-
dencies
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whereCl reference indicates the position of the inertial measmtem

Under assumption of the rigid body, the measured values of rotatiorarateSuler
angles are the same at any point of airship:

Qe = Q, (2.31)

@ = ¢,0¢c =6, U, =y (2.32)

Recent developments in satellite navigation have tremendously improvedtest
quality of 3D position and velocity for civil users. Due to this fd#w, Lotte airship is addi-
tionally equipped with the GPS receiver for acquiring the inerti@oitgl measurements. As
the measurements are performed in geodetic frame, a transtorm@b body frame is
required:

{VKICGPS}g = Tyt AV + Q% regpd - (2.33)

2.5.3 Airstream Measurements

The aerodynamic forces and moments are proportional to the relasitrean distribution
along the airship body. Hence, the availability of the airstreaasanements is necessary for
determination of the aerodynamic part of the flight mechanical model.

The airstream velocity sensor should provide information about currenvvétogity
and its direction at the measurement p&s&t . For aerodynamic purpaseseferable to
locate the airstream sensor at places where the freestrelacities could be measured
avoiding interaction from the vehicle’s body. In the hardware setupeofatte airship, the
sensor is located at the end of the nose-bG@n (see Figure 2.7)

Vaics = Vkies—Vwes: (2.34)

whereV, s is the flight path velocity at the nose boom location

254 Measurements of Control Variables

The control of the airship is obtained by variation of the control sigfanehe fins or by
variation of the thrust. Therefore, one of the important issudgiprovision of measure-
ments of the controls during flight experiments. As defined in 2.2.3itsleip is controlled

by the surface deflections of fins and by the stern propeller.
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In the up-to-date hardware realization there are no measuremeoedavstalled,
which directly indicate the state of the control surfaces anththst force. Pilot only com-
manded inputs could be stored by the flight recorder.

For handling the flap deflections it was possible to derive a modehvddcurately
approximates the dynamics of the flaps as a function of the pilot codsma

¢ = ¢(9¢ pijot)
N = (3, pilot )
€ = &(5 pijot)-

The actuator model is based on common servo actuator dynamics [4] ilnatedlaccu-
rately during ground base tests. Some testing results are ikastraFigure 2.8, where the
model response has been compared with measured flap angles undertddéete. Small
modelling errors of the fin actuators have a minor influence in thalbiegentification pro-
cess and hence have been ignored here.

Part load Full load

60

— measurements
= = model
— pilot command

— measurements
= = model
— pilot command

0 10 20 30 40 20 30 40 50
time [s] time [s]

Figure 2.8: Comparison of flap model responses with measuegadeflections at different loads

Modelling the thrust dynamics is a much more elaborate process in meonp® that
of the fin dynamics. The complex dynamics of thrust force depends not ottlg ootational
velocity of the stern propeller, but also on the airstream velda@tyibution at the rear part
of the airship. Therefore, verification of the thrust model using graestd ts impossible. In
such a case the thrust measurement is achieved through measurestiemt dfetween the
airship body and mounting points of the thrust engine. However, this possimlgynot
available in the current measurement setup of the Lotte ainstijreerefore, no thrust mea-
surements were available.
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2.5.5 Auxiliary Measurements

The purpose of the auxiliary measurement sources is not to deliveeca iieasure of
motion and control variables. They are mainly intended to measure thethymamic prop-
erties of the surrounding (Air) and the inner (Helium) gases.

For determining the atmospheric dengity  , the airship “Lotte” isppeuai with the
barometricP, and temperatufg  sensors. At any flight condition, theydesis be calcu-
lated/approximated with formula:

I:)A
PATRTA

whereR, is the gas constaRt = 287 [J/(kgK)]

Variations of the total mass |, location Gf5 and inertia tehsaie mainly influ-
enced by the change of atmospheric pressure. Their characteostidde estimated during
the flight, if additional pressure and temperature measuremetits bfelium are available.
For this purpose, the “Lotte” airship is equipped with inner temperatuil pressure sensors.



Chapter 3

Model Simplification for Identification
Purposes

3.1 General Remarks

3.1.1 Requirements on Identification Model

The flight mechanical model of the airship “Lotte” presented inp@&ha represents a very
complicated structure. The equations of motion are strongly nonlineaims of the model
variables. Especially the aerodynamic part of the model posesiGaghifincertainties in
describing the aerodynamically induced forces and moments.

Approaches for analyzing the dynamic behavior of the derived nonlinear medel ar

very restricted. From the other side, the goal of the systemfidatitin is determination of

the model parameters from the experimental data, and this svglkiketermination of the
model structure that meets two basic objectives. The first tblgeaddresses the model
structure definition that combines the essential physics of the (lentonformity of the
flight mechanical model to the physical processes, which appear dheifigght, was estab-
lished in the previous chapter). The second requirement demands thedemidgition, its
structure and parameterization in a simple and distinct way¢aptable e.g. for the control
design) and will be briefly explained in the following.

The integral part of the system identification problem is thenpetex optimization
procedure. During the optimization, the model parameters are adjustedhy to provide a
trajectory fit between the model response and the experimental atalentification prob-
lem turns at this stage into a classical optimization probldma.optimization problem is a
field of its own and is not the major topic of this thesis. Howewae, important extraction
from the optimization theory should be mentioned. It is well known, tbagawith the cho-
sen optimization method, the result also strongly depends upon formulatienaydtimiza-
tion problem [7]. This means the choice of the model structure anduttder of the
optimized parameters that are relevant to the chosen cost furtétiome(3.1). Otherwise, a
poorly formulated problem can not be efficiently optimized. A cardiioice of the model
structure and its parametrization is one of the central proléthe system identification.

29
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There is no transparent theory available that helps to maintain good imiedgity
whilst allowing unnecessary complications to be discarded. Regaddléssomplexity, the
mathematically described model will be still not reflect &l dynamics of the plant accu-
rately. One of the most important factors in selecting a ldaitenodel structure and its
parametrization is based on “engineering judgement” [18]. This assessa mainly
deduced from the a priori knowledge about the physical plant. How this judgesmelated
to the airship identification problem, will be discussed withinftilewing subsection.

Value of criteria )

7
’

.~ — Interdependency

/7
’ between model parameters
05T

Performance Index (scaled)

Number of parameters

Figure 3.1: Optimization criteria and parameter interdependevessus number of model
parameters [59]

3.1.2 Linear Identification of Airship Dynamics: Motivation

The emphasis of this work is on estimating the airship dynamics uis@ay time invariant
models. The linear system identification was dictated by thalfattany physically mean-
ingful parameters of the nonlinear flight mechanical model could noehdycdetermined.
These deficits arose from:

» Uncertain mass model including the mass , the moment of ineréiad the center
mass position

+ Availability of only static aerodynamical database in terms, ofc ,,C,,
« Inability to provide the thrust measuremehRts

Although the mass can be well described in terms of internal comp@mehéschange of the
environmental conditions (see Section 2.4.1), its accurate detdonimapractice was not
possible. This difficulty was mainly caused by inability to derivectbraplete configuration
database with the weight and position information for the whole seteshal elements. For
instance, in order to determine some internal parts that conshtutgominal massn;  in
equation (2.18), only a subjective estimation of weight parts was @3¢dAdditional
uncertainties have been caused by limited information about the pre-lstatetof the air
ballonets.

Experience gained in the aircraft identification field shows tei@tnation of uncertain
aerodynamic characteristics presumes a correct knowledge oa#isernodel [45]. A simul-
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taneous determination of the mass and aerodynamic terms of the fnomdelight data
leads, usually, to very poor results, mainly caused by a linear depgrisineen the mass
and aerodynamic coefficients (using symbolic processing tools, e.geMatica, it is easy
to observe the linear dependence between mass and aerodynamic psyadetanilar
problem occurs when the thrust force of the main engine is estialategi with the aerody-
namic axial drag force.

A possibility to avoid identification of the mass and aerodynamic papicitly is to
estimate dimensional stability and control derivatives, i.e. thanpeters of a linearized
model. This approach is justified if care of the approximation validitaken. In this case,
small perturbations about some steady operational condition are alloewstal advantages
benefit the linear identification of a flight vehicle:

* Using this approach, the direct methods of control system design caihZssl

* Elimination of coupling effects by considering the longitudinal and laterectional
motion separately reduces the model complexity and the number of itsgpers

* A linear representation of the model makes the identification probtere plausible
than for a nonlinear model; in some cases the model parametdrs datermined in a
single batch operation

* The linear identification is more appropriate when large amounie dfight data need
to be evaluated, which is common in flight testing

» Additional benefit is acquired, if the system is being disturbeddnats of a stochas-
tic nature; this fact allows for a direct application of optirfeay. Kalman) filters to
account for such disturbances

Along with the above given advantages, several drawbacks exist whiclbentadten into
account when the linear identification is performed. The most gecemabe distinguished

by:

« Single point identification: as mentioned this approach is valid onégeaidy condi-
tions and small deviations from them

* Due to linearization procedure, the derived linear system oftenslag#hysically
meaningful interpretation of its parameters; if a constrained @atiron of the model
parameters is utilized, it is difficult to assign the bounds prgperl

* Necessity to achieve sufficient steady conditions of the flight epeek a very time
consuming task for the test pilot and the ground crew

3.2 Linearized Dynamic and Observation Equations

Many classical references are devoted to linearization techndueslinear equations of
motion of a convenient aircraft [6], [47]. The linearization of the dyicaequations of an
airship is performed in a similar manner by taking the first odéeivatives of the Taylor
series expansion about the equilibrium condition.
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If an airship operates within small perturbations about some steeatiljnear motion,
then its complete dynamic behavior can be approximated by two independemtf sets
dynamic equations, i.e. the well knovamgitudinal and thdateral-directionalequations of
motion [29]. The longitudinal and the lateral-directional dynamics catuaked separately,
without accounting for the cross-coupling effects, assuming them negligible

3.2.1  Assumptions on Flight Condition, Environmental and Configuation
Properties

For getting a simplified form of the airship dynamics an assumptitireafteady atmosphere
can be adopted at the first stage. In this case all flight patibles are identical to their rel-
ative quantitiesV, = V, and the effects due to an accelerated wind(4el§ do not
appear.

The baseline of the model reduction concerns a consideration ofig 8iglat condi-
tion. For this kind of motion all linear and rotational acceleratiorise equation (2.12) have
zero values:

Ug p 0
Vel = g = |0]- (3.1)
Wi r 0

Steady flight requires an equilibrium between the kinematic couplingstéequation (2.12))
and the vector that represents the net external fetce and mo@venBuch a balance
holds for two basic flight conditions: the steady rectilinear fligit ateady turning flight.
Both are valid and produce stationary motion.

Similarly to the classical flight mechanics of airplanes stieady rectilinear motion is
of major interest because of the ability to separate the totahdgmanto two independent
sets of equations using linearization technique [6]. For further exaamnaf the system
dynamics the steady turning motion of the airship will be excluded. Ea€\stectilinear
flight gives a rotation-free motion and zero side velocity

Po =0y =Trg =0, vy =0. (3.2)

The subscripD denotes a condition where equilibrium is achieved. Bechtlse vertical
symmetry in the mass and the aerodynamics, the following simpbinsaare valid:

® =0, (=&;=0. (3.3)
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The conditions of the equations (3.2) and (3.3) result to zero sideafoweell as the roll and
yaw moments respectively

Y2 =0,LZ=0,N>=0. (3.4)
Another assumption can be made if the airship operates at nearlgntadstude. At
this operation condition, variations of the air density, the airshgsmaoment of inertia and

the position of the center of graviyG  can be neglected:

pp= consl, m= consi, | = cons,
Xcg = const, Z-5= cons.. (3.5)

Moreover, the axial offset of the center mass from the centefefence can be assumed to
have an infinitely small value

‘XCG‘ «1.
It follows from this fact that the test pilot always perforamsobligatory ground trimming

procedure before the flight takes place. Its aim is to minithi@estatic pitching moment at
zero pitch angles

IM(8)l]g -, ) min.

In this configuration thex.; position does not change greatly with variatibreight, as
concluded in section 2.4.1, and therefore, can be neglected fditatleathanges-;= 0

\\\\\\\\\{jwo -
/%

Figure 3.2: Steady-state equilibrium condition in rectilinebglft

Under given conditions, the steady rectilinear motion can now be desaslagolrojec-
tion to the vertical plane. Figure 3.2 highlights the respective facesg on airship in
steady rectilinear flight. The remaining nonzero motion variabllesiaw expressed by the



34 Chapter 3 Model Simplification for Identification Purposes

corresponding axial and vertical velocitiag amgl , the pitch attibydehe elevator
deflection angley, and the throtflg

The equilibrium condition in the vertical plane yields

Z% = 0 = ZA(ug, Wy, Ng) —(B—G)cosh, (3.6)

3.2.2 Linearized Longitudinal Dynamic Equations

Assuming a steady condition of the rectilinear flight at the constéihide, the perturbed
longitudinal motion involves small perturbations of motionw ,q ,0 , and conirdl
variables respectively about their trimmed values. The linehltmayitudinal dynamic equa-
tions are derived by linearizing the nonlinear equations of motion (2.29akind the parts
(motion/control terms and force/moment derivatives) which areecklat the longitudinal
motion. It can be established as

(m—X,,)0u + M7 500 =-mwydq + X, ,0u + X,,060 + X008 +X, 0T

(m-2,)0Ww= muydq + Z,, 0w + Z,q6q + 7,400 +Z,n6r]

3.7
MZegdu+(lyy—M,4)00=—MZcW,dq + M, ,0u + M, dw + M,,60 + M,508 +M, on (3-7)

8= 3q,

where the state and control variables are interpreted as dewétions from the reference
flight condition @u = u-u,, ...). The analytical derivation of the force and moment
derivatives is outlined in B.5.

In examining particular force and moment derivatives, it was founddahatnominal
rectilinear flight, some of derivatives in equation (3.7)(3.7) candogected [26]. The classi-
fication of their dominance is summarized in Table 3.1.

Table 3.1: Classification of derivatives for longitudinal mani[26]

Quantity Dominant derivatives Insignificant derivatives
Axial force X Xog Koy  Xeg  Xop Xow: X,q , X’ﬂ
Vertical forceZ Z,y Ly ,Z,q ’Z’ﬂ Z,y, ZigZg

Pitching momeniVi M.q My My Mg My | My, Mys

Because of the apparent mass effects are independent of trimloeitlvéhey begin
to influence the dynamic response of the airship at already low vesodihese effects are
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appropriately modelled by th¥,, Z,, , aMi
(3.7).

Two differences can be observed when comparing equation (3.7) with ¢hesftair
classical linearized equations [6]. First, due to the facthigatenter of gravitC G  does not
coincide with the center of referen€R |, the perturbation of piteltdep and the perturbed
forward velocitydu are coupled. Second, from the offset of the neasrcfrom the center
of reference, the gravitational force exerts a nonzero statlimit moment and is expressed
through theM,406 term in the moment equation.

\q terms at the left hand sidquigtion

In order to derive a conventional state space representation of thieidiomaji dynam-
ics, equation (3.7) should be slightly transformed by multiplying both sidasha inverse
mass matrix

Xlon = (Mllon)_lAllonXI0n+ (Mllon)_lBllonulon = Alonxlon+ BIonulon J (3'8)
with the respective state and control vectors
T T
Xion = [8U dw 8q 8] + Uion = [8n3T] (3.9)

and the system matrices, omitting small derivatives, can bessgurbdy

m-X, O MZ-g 0
1 — O m—Z, ~0 O
M lon ™ v '
Mmze ~0 1,y—-M4,0
0 0 0 1
- _ _ (3.10)
X’U ~0 _mWO X,e ~0 X,T
AIIon = -0 Z’W Z,q+mU0 -0 ) Bllon = Z’n -0 :
~0 M,, M,gmZ Wy Mg M,, ~0
10 O 1 0 10 0

The obtained matriced,, = (M',;))*A",, al,, = (M',,,)*B',,  contain typical
flight mechanical stability and control derivatives respectively

Xy Xy Xq Xg X, X
A _|-02Z, Z, ~0 e _Z, 0
Aon = M'ighA'on = w , Bion = M'itBion = |1 . (3.11)
My M, Mg Mg My, M
0 0 1 0 0 0]
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Because of the kinematic coupling effect betweenuhe @nd  giatkesed by the
inverted mass matriM'i;t, ), some stability and control derivativestri@snonzero values.
The airship stability and control derivatives are similar to theventional aircraft deriva-
tives, but they are more complex and can not be simply interpreteé@n@hgical form of
the stability and control derivatives can be found in reference [26]rar@llined in B.5.

3.2.3 Linearized Lateral-Directional Dynamic Equations

The linearized lateral-directional equation of motion can be derivedsimilar manner as
for the longitudinal dynamics. It involves small perturbations of motiop, r,, ¢, ¢ and

control  ,& variables respectively. In general, the yaw afgle rdes<ert any influence
on the dynamics, and therefore can be disregarded in lateral-dirédymaanic equations.
Assuming the cross coupling effects with the longitudinal variableeglsgible, the com-
mon form of the linearized lateral-directional perturbed motionrehaa yields

(M=Y,y)OV—mZ0p = —-mWdp + myor +Y,,0v +Y,,0p +Y,.0r +Y, 00 +Y,;0(

—MZo OV +1,,0P + 1,0 = —MZcgWo0p + M7z gUgdr +L, 0v+L,.0p +...

+ L, 31 +L, Do+ L, 8

140+ (1= N, )3 = N, BV + N, 8p + N, 8r +N, 5+ N,

3¢ = dp + tanddr,

(3.12)

where all perturbations occur around zero trim values of the lalieeakional variables
(Vg =0, ...).

In the lateral-directional perturbed motion, only dominant force and miodeziva-
tives, as given in Table 3.2, are important [26].

Table 3.2: Classification of derivatives for lateral-directadrmotion[26]

Quantity Dominant derivatives Insignificant derivativ es
Side forceY Yo Yoy Yo ’Y’Z Y,p, Y’E
Rolling momentL L,ID ,L,(p ’L’E L., L,
Pitching momeniVl N,, N, N’Z N,p, N,(p

Analogously to derivation of the longitudinal model, the lateral-directidgabmic equa-
tions can be represented using the state-space form

XIat = (Mllat)_lAllatXIat + (Mllat)_lBllatuIat = Alatxlat + BIatulat ’ (3'13)
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with the respective state and control vectors

37

T T
Xiat = [ov 8p &r 8¢+ Upar = [82 58] - (3.14)
The system matrices without small terms, can be expressed by
m-Y,-mzs; ~0 O
M\, = —MZeg iy lyz 0’
~0 Ixz Izz_N’r 0
0 0 0 1
~ l . ) ) (3.15)
Y.y mw, Y, -my, -0 Y O
A, = ~0 L,,—mz Wy L, + MZ Uy L,(p’ B, = 0 L,
N,, ~0 N, ~0 N,, ~0
| 0 1 ~0 0] 0 O
The matricesA,, = (M' ) 1A', and, = (M',)1B', contain typical lateral stabil-
ity and control derivatives:
Yy Yp Y Y(p Y, O
1 _ |L, L, L L  1er 1O L
Alat =M IaltAIat - v.oR e Blat =M IaltBIat = &, (316)
Ny Np N, N(p N, O
10 1 ~0 0 0 0

3.2.4 Linearized Measurement Equations

In section 2.5 the nonlinear relations between the state and theretkaariables have been
derived. For representation of system dynamics in the state spacdle observation rela-
tions should be also established in the linear form. The linearzafimeasurement equa-
tions is performed similarly to that made for nonlinear dynamic mbgabking the first
order terms of the Taylor series. The measurements of airstrelocity, Euler angles, body
rotational rates and accelerations are of the primary importance.

It is common practice to transform all measured variables fin@nsensor locations to
the center of referend@R  point [18]. This can be performed using &tiee@guations and
information derived from the measured velocity and rotational ratesn Bne side, this
transformation simplifies the model structure compared to thatwducounts for the mea-
surement offsets. From the other side, the transformation ofuneelagariables intaCR
point, in particular for the linear acceleratiang., ayg, azg, , requaresmponent of the
angular acceleration as follows from equation (2.30). In generahutmerical differentia-
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tion of a noisy measurement results in a signal with a low signmadise ratio [44]. For this
reason it is advantageous to account for the sensor offsets witloibsrevation model.

Longitudinal Observation Model
For the longitudinal motion the observable variables are

T
|

Yion = [6UA|CSGWA|CS 0q 68 axg, azCJ (3.17)

To model the offset of the center of airstream measuren@&®tsom tie center of the air-
ship referenc€€R , the necessary rotation about the ypody -axis is inCligdfore, lin-
earizing equation (2.34), for the longitudinal motion

OUajcs = OU+ Zc50q

(3.18)
OWp cs = OW — X <00,

The axial and vertical accelerations are linearized withe&tqo the longitudinal state
variables and expressed by

axe) = 0u+wqydq + Z-,0q

azc

(3.19)

The terms of linear body accelerations and |, and the angular pitelerationdq can
be substituted from the linearized system dynamics from equation Ex@anding terms,
the linearized form of the acceleration measurements is derived

axg, = X0u+ (X, +2z5M,,)ow + (X, +zc Mg +Wp)dq + (Xg + 2 Mg)00 + ...
+ (Xn+ ZCan)6ﬂ+ (X6)6T (320)
azq = (ZW—xC|MW)6W+(Zq_xC|Mq—uo)6q—xC|M969+(Zn—xC|Mn)6n.

Transferring the observation model in general state-space form yields

ylon = Clonxlon + I:)Ionulon’ (3-21)



Chapter 3 Model Simplification for Identification Purposes

where the observatio@;,,, and the feedthrolyf); matrices are definediredpec
1 0 zg O 0o o |
00 1 O 0 0
C,..= , D .= : (3.22)
lon 0 0 0 1 lon 0 0
C51 C52 Cs3 Cog Xs My
161 C62 Co3 Co4l |70 Zy=XcMy |
Cs1 = Xy +Zg My, Co1 = XMy,
Csp = Xy + 2| My, Coo = Zw—XciMy, (3.23)
Csg = Xq+ 2 My + W, Coz = Zq—XciMq— Uy, '
Csq = Xg 2 M, Coa = —Xc M-

Lateral-Directional Observation Model

The linearized lateral-directional measurement model can beedegimilarly as for the lon-
gitudinal motion. For the lateral-directional motion the observatiotoveonsists of

-
Yiat = [5VA|CS op or o ayCJ : (3.24)
The observation model in the state space form
Yiat = Clatxlat+DIatuIat J (3-25)
where the observatio@;,, and the feedthroilgh- matrices are definediresdpec
0O 1 0 O 0 0
Cat=|0 0 1 0|, D= 0 0o |, (3.26)
0O 0 0 1 0 0
Cs1 Cs2 Cs3 Csyf (Y7 =2ciLg + XciNg) (Ze/My)]
Cs1 = Yy=Zgiby + XNy,
Ccr = Y, —2Z~ L, + XN, — W,
52 p~Zcibp t XcNp —Wo (3.27)

Cs3 = Yr—Zgiby + XN + Uy,

Csq = Yo—Zcibot XN

¢ ¢
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3.3 Analysis of Stability and Controllability

Using stability and controllability analysis, it is possible to deiee the eigen dynamic
characteristics of the airship and its expected responses tppledacontrol inputs. This
information is of considerable interest not only for the controllergdegurposes, but also
for system identification, because it represents the a priori lkdgel of the dynamics
involved.

The characteristics of stability (or instability) play an impotteole in selecting an
appropriate estimation algorithm [22]. Moreover, from the eigenvaigesieector analysis,
one can assess a contribution of a physical state to a paréigdamode of the system, and
therefore, the significance of the corresponding stability derivafiwe.information about
the mode decoupling can be utilized for reducing the order of the astimaddel and, con-
sequently, reduction of the parameter space.

Finally, based on knowledge of stability and controllability, it is fbsgo provide an
adequate design of the identification experiments [50], as will bei@ually discussed in
Chapter 5.

3.3.1 Characteristic Eigenmodes of a Conventional Airship

The stability of a linear system is characterized by eigenvghass) of the dynamié\
matrix, determined as the roots of a characteristic polynomial

det(E-A) = 0. (3.28)
The stability analysis for a number of conventional airships hasedsnla common

pole distribution (shown in Figure 3.3) of the linearized longitudinal atedaladirectional
models [10], [23], [26], [52].

Longitudinal modes:
@ Surge

@

" (@ Heave/Pitch-subsidence

| (® Longitudinal-pendulum
Lateral-directional modes:

Imag Axis

® @ Sideslip-subsidence

(® Yaw-subsidence

® @ © @

Real Axis
Figure 3.3: Characteristic pole locations of longitudinal aatktal-directional dynamics[26]

(® Roll oscillation
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In the longitudinal dynamics they are distinguished by two real eigenvdbrethe
surgeandheavemodes, and one conjugate pair- for libregitudinal-pendulunmode.

In the lateral-directional motion the typical eigendynamics is@ated with two ape-
riodic modes, known asideslip-subsidencandyaw-subsidencenodes, and one oscillatory
motion, recognized asll-oscillation mode.

3.3.2 Characterization of Eigenmodes at Different Flight Velocies

For studying the eigendynamic properties of the Lotte airship at spéight regimes, the
nominal flight mechanical model has been utilized for trimming anddination facilities.
Although it is possible to express the characteristic modes in @ahlfigrm using stability
derivatives, its form is too complicated to perform a compreheiasialy/sis. Therefore, the
stability derivatives were determined numerically.

%4/ ongitudinal’ "3 x 20 [|_ateral-directional
| X | I X X
0.3 4 1.5 x x8 A 3
/ 12
(%] X (%]
202 Ug[m/s] 8 x1 %10/ \
o 12 o
g g Ug[m/s]
0.1 1 0.5 / \
12 8 4 3-12 2 8 4 3 312
[0 e S SN 4 J— 0 0o X X % £} XX
1.4 -1.2 -1.0 -0.8 -06 -04 -0.2 0 0.2 14 -12 -1 -0.8 -06 -04 -0.2 0 0.2
Real Axis Real Axis

Figure 3.4: Root locus of longitudinal dynamics at differenttivelocity Uy,

Figure 3.4 shows the pole distribution at different flight speeds,thattiorward trim
velocity ranging from4[ m/g to the maximdPR[ m/q . For numerical evaluationntmai-
nal flight mechanical model was assigned to a realistic buoyancy awatygrratio

B/ G=0.98. This ratio represents the static heaviness of the airshipaarttkalternatively
expressed byB/ G= (pV)/m . Usually the static heaviness varies from the y'mear
tral” B/ G=1 to the “heavy” configuration8/ G = 0.85

In order to expand the analysis of the system dynamics, a contributiophySeal
state to a particular eigenmode of the system using modal anallydie werformed. This
involves a definition of a state space system in the modal s&ite ba

[=EY

2 _ e - g
X S|:| ASX + S B&lu’ (329)

010
A

w:[]
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where X = S-1x is the modal state vectoh = SAS™ = diag(A,, A, ... A,) is the
modal system matrix. By using the eigenvector marix [v;, V,, .., V] , the tranaform
tion of the original system into the decoupled modal system is perfohoggl. because the
modal analysis is very sensitive on selection of the basis ofdteev&ctor, it is preferable to
perform the analysis of a pre-scaled system (in the currentheaaealysis was performed in
the following units,du dv dw in[m/sPpp &q dr in[°/shp &0 & on o n ], dT

in [%]of T

max)'

Longitudinal Dynamics

» Surge Mode: The surge mode is distinguished by a stable aperiodic dynamics with a

large time constant. Its physical interpretation corresponds toothard velocity

damping and can be explained as a reminder of a well known phugoid mode, when the

part due to potential energy is missing, which is a common propeightén than air
vehicles. This mode is always stable. Studying the eigenvector diagjnamn in Fig-
ure 3.5, one also concludes that the surge mode is slightly coupled wtittbagons
of the pitch angle3® and almost decoupled withdge  &md statessThanly
because of insignificant values of stability derivati¥gs ng

» Heave Mode: The heave eigendynamic corresponds to a well dampened aperiodic

motion with a comparatively small time constant. It is chareeeé by the vertical
motion of the airship, incorporating the cross-flow aerodynamic effattew airship
velocitiesu, , the coupling with the vertical velociyy ~ is dominane (Sigure 3.5).
This can be interpreted by the aerodynamic phenomena that acts intited deec-
tion, where the cross flow effects are dominant. As the forwamd velocity u,
increases, the influence of the fins becomes stronger. Thissresalstabilizing pitch-
ing moment and, therefore, the coupling with tbe and consequently d@ith
becomes apparent. At high trim velocities this mode is alscerefed apitch-subsid-
ence mod§29]. From the pole map diagram given in Figure 3.4, it can be sdahéeha
damping of the heave mode increases with increased trim velggityhe cdntribu-
tion of the forward velocitypu perturbation is negligibly small.

* Longitudinal-Pendulum Mode: The longitudinal pendulum mode is the most critical
eigenmode in the longitudinal dynamics. At very low velocities, wheredgramic
effects are negligible, the longitudinal pendulum mode appears ghtystiampened
low frequency oscillation in pitch. Physically this can be interprate@ pendulum
motion of the center of gravit€ G “suspended” at the center of buoyaiy [26].
As can be concluded from the eigenvector diagram (Figure 3.5), ths &jatanddo
are dominant. With increased trim velocityy , the mode startatégaict with the
heave mode throughout tlkev ~ variable. The stabilizing moment of thafireases
the damping ratio of the mode, as seen on the pole map at velocéilesubfi m/g .
If the velocity is further increased, the unstable aerodynamic mokiénbegins to
dominate over the stabilizing moment produced by fins. At a certainityeltoe
destabilizing aerodynamic moment becomes greater than the stalmiaingnt due to
gravity force, and the longitudinal pendulum mode becomes unstable (se= Fjur
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@ jo} u, = 3[m/s] JO4 yy = 11[m/s]
ow ow
du 5q| 50 o du dq| 08 0
@ jot u, = 3[mis] jwt u, = 11[m/s]
ou R ou R
ow 36(3q G dw 0P 5q o
® jof uy = 3[mis] JO y = 11[mis]
oq 5qr dw
ow
ou 30 o ou 00 G

Figure 3.5: Eigenvector diagrams of longitudinal modes

Lateral-Directional Dynamics

» Sideslip-Subsidence Mode:In the studied configuration, the sideslip-subsidence
mode resulted in unstable real pole on the complex plane. This ingtabdies from
the static destabilizing aerodynamic yawing monmgfit |, which can be apptexi
by MA at small angles of attack. The stabes and play a dominanirtiis
unstable dynamics (see Figure 3.6). At higher trim velociiies s, nfude is also
slightly coupled with perturbations of the roll angle due to centrifuffatts,
which appear in the yaw motion due to I&G location. The time constaheof
sideslip-subsidence mode is very sensitive to variations of thevédiogity u, . The
termsYID and\((p are negligibly small.

» Yaw-Subsidence ModeThis mode can be explained by similar physical phenomena,
as was observed for the heave mode. Due to the dominant presencéwfdheer-
turbations, concluded from Figure 3.6, the yaw-subsidence mode is stronghed
with the unstable sideslip-subsidence mode. With increased speed mothes
increases its damping.
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@ jw Up = 3[mis] jw} Ug = 11[m/s]
8¢ R o9 .
dv p or o ov op  or o
® jot Uy = 3[m/s] jwt  uy = 11[m/s]
op or _ op | ar _
op dv o 3 o O
® jot  u, = 3[mis] jot u, = 11[m/s]
b0 oQ
Mo op o 5v[5r op o

Figure 3.6: Eigenvector diagrams of lateral-directional modes

* Roll-Oscillation Mode: The roll oscillation mode describes a lightly dampened pen-

dulum motion around th& axis of airship. Both, the aerodynamic and gravity phe-

nomena contribute to this eigenmotion. The mode is mainly composed &b thed
o¢ states (see Figure 3.6). With increasing veloogy , the rolliogom is better
dampened due to aerodynamic roll damping produced by the fins.

3.3.3 Influence of Configuration Changes on System Dynamics

The eigendynamic characteristics of an airship do not only depend on aeradphamom-
ena, but are also strongly influenced by the change of configuration prapéatiesion of
static heaviness, as well as change of position of the mass C&hteontribute greatly in
the system dynamics of the lighter than air vehicle. For thisorgahe nominal flight
mechanical model has been linearized at different configuratimelading different levels
of static weight and variations of the center mass location. iibarization has been per-
formed at a reasonable trim velocity = 8[m/s]

Figure 3.7 shows results of a numerical investigation, where eigeavakre calcu-
lated at different buoyancy to gravity levels. The mass of airshigriesd from the “neutral”
B/ G = 1 to the “heavy” buoyancy configuratio®® G = 0.85
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Figure 3.7: Root locus of longitudinal dynamics at differentlimess conditions

Figure 3.8 shows the pole locations on variation of the vertical positioenter mass
CG. In the numerically evaluated case, & position Bf& = 0.98 heawairas

been moved in the vertical direction at lim#s; 0 [0.2d ., 0.5d,.,J ., wih,,  denot-
ing the maximal thickness of the Lotte airship.

From the practical considerations described earlier, variatiott®eof.; component
assumed to be negligibly small over the whole flight and are thereforepnsidered here.
A more detailed analysis of the sensitivity of the pole location®ohiguiration changes can
be found in reference [26].

In the following, the common longitudinal and lateral-directional modésb@iana-
lyzed individually. Because the dominance of particular statesggndynamics does not
change significantly, the eigenvector diagrams will be omitted.
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Figure 3.8: Root locus of longitudinal dynamics at differentdtds of center of gravity
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Longitudinal Dynamics

» Surge Mode:Due to mainly aerodynamic phenomena of the surge mode, its pole loca-
tion is relatively insensitive to variations of static heavireass center of mass posi-
tion. The perturbations of the axial velocy remain the dominant compiontang
mode.

» Heave Mode: The pole location of this mode shows that changes of the static heavi-
ness and the center of mass have very little influence on the damppegtj@s. Only
small variations can be observed when the center mass is changdal deection.

* Longitudinal-Pendulum Mode: The longitudinal-pendulum mode is mostly affected
by the static heaviness variation. In the studied configurations, thte hoship
acquires unstable oscillating response when the static heavapesaehes unity. Only
at heavier configurations witB/ G <0.95 does the pole migrate to the Iéfplzale
with increased damping ratio. Such a behavior is similar to thetilded for the veloc-
ity variations, where the destabilizing aerodynamic moment is contpengy
increased gravity moment. Because zhg characterizes theemteitabeight of the
CB point above the center maG$  , its variation influences the freqaétiey pitch
oscillation and, therefore, directly impacts the longitudinal-pendulum rdsdshown
in Figure 3.8, in the configurations with highG  locations, there is not enstagh
gravity moment to compensate the destabilizing aerodynamic pitching mdrherg-
fore, the mode becomes unstable. Only at loGer posiigrs 0.2d,,.. is stabil
ity achieved.

Lateral-Directional Dynamics

* Sideslip-Subsidence Mode:The unstable sideslip subsidence eigenmode slightly
changes on variations of the static heaviness. A small migrati@rdewhe imaginary
axis at heavier configurations can be explained by the increased monesrtiaf of
the airship. Variations due to center mass position change are biggiigiall.

» Yaw-Subsidence ModeSimilarly to the longitudinal heave mode, the yaw subsidence
mode does not appear to be much affected by configuration changes ofttipe airs

* Roll-Oscillation Mode: The roll-oscillation mode behaves in a similar matter as the
changes observed for the longitudinal pendulum mode. The increase ofithecstei-
ness leads to a small increase of the damping ratio, whdreasigenfrequency
remains nearly unchanged. With increase of the metacentric lrgighthe frequency
of the roll oscillation becomes larger.

3.3.4  Analysis of Control Efficiency

The control efficiency of a linear system can be studied using vamalgsis methods, such
as Bode-plots, modal analysis or evaluating the controllability Gransx{6], [53]. From
the other hand, the analysis can be performed in a simple way,naxgrtie eigenvector
diagrams and interpreting the physical control variables.
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Longitudinal Control

From the stability analysis it may be concluded that the axial ¥gldominates upon other
states in the surge eigenmode. A substantial contribution to the chathgefafward veloc-

ity can be achieved by the thrust control. Therefore, it is likebxpect that variations of the
throttle inputdT will mainly excite the surge eigenmode. Figure 3iB¢ajrates numerical

values of the modal control matr  introduced in equation (3.29). As caedpe the first

(surge) eigenmode is best excited by the throttle perturbaiibns
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Longitudinal eigenmodes Lateral-directional eigenmodes
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Figure 3.9: Excitation of the airship eigendynamics

The eigenvector diagrams shown in Figure 3.5 illustrate that the hadvengitudi-
nal-pendulum eigenmodes are strongly coupled with perturbed dtate®] , 00 afd it
is assumed that the thrust force mainly acts along the axiatidiref airship, its influence
on these states can be regarded as insignificant. On the otheéhesidksvator perturbations
of fins dn produces additional vertical force and exerts aerodynamiching moment with
respect to the center of reference. The results shown in (s (modes (2) and (3)) ver-
ify these propositions.

Lateral Control

A similar argument can be extended to the lateral-directional dgsafiom the fact that
the sideslip and yaw subsidence modes (modes (4) and (5) in Figure &r@(pyedomi-
nantly composed of th&v add  states, the best controlling effeqiasted when apply-
ing the rudder perturbation§( . From the other side, the roll osmillatiode, defined
mainly by thedp andq@ states, is well exited if the aileron iddutis applied.

3.3.5  Approximated Models

Having examined the dynamic stability of the longitudinal and laterattthreal motions,
several preliminary conclusions can be drawn:
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» The surge mode is largely decoupled with the rest of longitudinal systetas. This
eigenmotion can be approximated by thevard-velocitymotion

B0 = XU+ X5 8T (3.30)

* The heave and the longitudinal-pendulum eigenmodes are strongly coupled. They can
be approximated bgngle-of-attack-pitclequation

W Z, Zy ~Ollaw| |Z,
oq| = |M,, My Mg||8q| * M, ON (3.31)
30 0 1 098 0

» The sideslip-subsidence and yaw-subsidence eigenmodes are strongly doopighl t
the dv, or states and slightly througlp  state due to centrifugal folce.leads to
the following approximation possibility

v _ | WY M + | e (3.32)
o [Ny N Lar] [N

* The roll-pendulum eigenmotion can be well approximated by

P = Lol Fj +|belae (3.33)
O 1 0|0 0
The introduction of the approximated models can be desirable for thdiaian purposes
for two basic reasons. First, fewer unknown parameters shouldilatest if the approxi-

mated models are studied separately. Second, the identificapenreents (flight maneu-
vers) for the coupled modes excitations can be planned individually.

The results of the stability analysis presented above are only elimipary basis.
They are based on the theoretical investigations of the flight meahamiclel and verified
against the results obtained in other references. How these yesliate relevant to the
“real world” operation of the Lotte airship, can be only evaluated wiherilight data are
available and analyzed.

3.4 Stochastic Disturbances of the Model

An airship is subjected to various disturbances that contributeressgiense as uncontrolled
(i.e. not by means of the airship controls) motion. These disturbhagedifferent physical
origins and are typically of a random nature. Additionally, the medsesponses are inevi-
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tably accompanied with the measurement noise. These facts coblyidsomplicate the
identification problem. The following discussion is devoted to the aisabygossible distur-
bance sources, and suggestions, which adequately accommodate theoastimdtl to
these discomposes.

3.4.1 Wind and Turbulence

A description of flight vehicle motion in the unsteady atmosphere posay @omplicated
and analytically unsolvable problem, where interactions between thadevahd the atmo-
sphere should be accounted for. Only some restricted turbulence nemdpiscally deter-
mined from numerous flight experimental data, are applicable isicédlight mechanics
[54].

Although the turbulence models, such as Dryden or von Karman are extengively
lized in the lifting body applications, their “frozen windfield” assuioip{14]

%Vw(r, t) + (0 Viy(r, )TV, O (0 Vi (r, 9)TV, (3.34)

OO
O|VK»VW

2(Vy(r, 1) =

=

is, in general, not valid for airships because of very low flight vitsc

It should be noticed that even with the well determined turbulence maouéhe air-
craft identification field few examples exist where the dynahmtadel is coupled together
with a turbulence model. The turbulence is commonly attributed axlaastic disturbance
or process noise with colored or white noise properties [19], [40% i§hilone in order to
reduce the complexity of the estimation model and to account properlyefonadel defi-
ciencies (see discussion in section 3.1).

From the aspects described above, it was purposed to treat the stinbahces and
possible modelling errors as an additive process in the process dynamics

X = AXx+Bu+Fn, (3.35)

having zero mea&{n} = 0 and unity white spectral density function [9]FThe rixme-
resents the state noise intensity.

The main requirement to the process noise disturbances is thahtheince should
be apparently small to be accepted. This can be quantified by perdotinei compatibility
analysis of flight data (discussed later in Chapter 6) and applyingnetaiaestimation algo-
rithms that neglect the presence of the state noise (discusSadpter 4).



50 Chapter 3 Model Simplification for Identification Purposes

3.4.2 Measurement Noise

The measurements delivered by hardware are subjected to measwrenmesntThe plant,
whose parameters are to be estimated, is assumed to be debygrthe state space system
with the additive measurement disturbances

y = Cx+Du+Hv

3.36
wherev is assumed to be white Gaussian signals, with zero me &eatity power spectral
density matrices.

3.5 Model Parametrization

3.5.1  Accounting for Nontrim Condition and Systematic Sensor Ofets

The treatment of the linearized estimation model leads to additomgplications when it is
applied to fit the flight data. The equilibrium condition, defined inieac3.2.1 is very rigor-
ous. It is practically impossible to achieve a condition wherdrbar and angular accelera-
tions have exactly zero values. For this reason, the state equat®@nsommonly
accompanied with an additionsthte biasunknown [55]:

X = AXx+Bu+b,. (3.37)

In the presence of trim errors the state lbas balancesateeesfuation and accurately
determines the trim state. Without the state bias, the equatmuid integrate a small error
over the measurement interval. The state bias term is verytampdor long identification
maneuvers. For the longitudinal and lateral-directional models,dteelsts vectors are cor-
respondingly:

T

-
bx, lon — [bu by, bq bé} ) bx, lat = [b\-, bp b, bj (3.38)

In addition to the state bias parameter,dhservation biaS/ectorby is applied to the
measurement equations in order to account for systematic off§btsmeasured data

y = Cx+Du +by : (3.39)

with:

T T
by, 10n= by by, by b bay by by, 1ax = [by by by by b, - (3.40)

ax Ta
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The elements of vectols, abg should be estimated together with the mngiadoity
and control derivatives [55]. Introducing the state and observation biasgiars, it is also
possible to utilize directly measured input and output variables ¢t éheir perturbations) in
the estimation algorithm.

352 Initial Parametrization

So far, the dynamic models used for estimation has been derived &medn@he unknown
model parameters can be now summarized in a generalized paraentte© defined for
the longitudinal model by

Qon = X X X Xo Zy 2y 2 Zo My My, Mo Mg X7 X, 2, M,

(3.41)
...b, by bq be b, by bq D, Paz Uo WO]T ,
and for the lateral-directional model
Qu = [\& Ypir Y‘PLVIE L, I__(p&, Np l\_lr N‘Pﬁ YE LZ L_E N_Z NE
(3.42)

by by by b by by by by by g ol T

For identification purposes, it is preferable to choose only the tiggsahat contribute sig-
nificantly to the dynamics of airship. Based on stability and controtiaanalysis per-
formed in section 3.3, the influence of some derivatives in stalilitghd controlB
matrices is found to be insignificant. The important derivativesqguonakons (3.41) and
(3.42) are underlined. However, these assumptions should be additiondigdvgy closer
examination of the flight data.
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Chapter 4

Estimation Algorithms

4.1 Overview and Discussion

41.1 General Estimation Methods

The introductory part of the thesis set out some common approachesnatiag parame-
ters of flight vehicles from experimental data. It was pointediatttreating the input-out-
put signals has shifted from frequency domain into time domain anaysisherefore, the
time domain methods were considered in the airship identificatioaqbroj

From the theoretical point of view, all estimation algorithmshsaseparated into two
major classesdeterministicmethods andtochasticmethods or estimators [11]. The deter-
ministic estimators do, in general, solve the problem of the fiiébetween the model and
the real system. In that sense, the fit is treated accomliagiéterministic measure of error
between model output and observed system output, as for example the oitegpahred
errors do. Opposite to the deterministic methods, the stochdstass utilize a statistical
approach in interpreting the error. They do not only estimate paranmetieesstatistical mat-
ter, but also provide a quantitative information about the efficienegtohation [53].

In the field of time domain flight vehicle parameter estimatbmwth the deterministic
and stochastic estimators are widely utilized. According toeeéer [12], the most common
methods are recognized @guation erroyoutput erroy filter error andfiltering methods. In
the following discussion, a short description of the approaches wildsented and their
applicability to the airship identification problem is discussed.

Equation Error Method

The equation error (EE) method represents a broad class of methodsethaplicable to
linear time invariant dynamic systems and based on the least sppgresssion method [53].
The regression approach requires a direct measurement of @lvVatetbles. It constitutes
the dynamic equations linear in terms of unknown parameters

Y(t) = OXq () + OX,(t) + ..+ O, (1) +e(t), (4.1)

53
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where t; denoting the time instandg i = 1...N v, is thdependentvariable, the

X, k= 1...n is thedependanwariable (state)@ isthe dimensional vector of parame-
ters ande is the stochastic equation error. Having all indepegdent allatependani
variables measured N  discrete points, the equation@rror camipgized in one batch
iteration using the least squares method:

0= (xTx)xTy . (4.2)

This method does not require any initial parameter values and igywidieded for obtaining
primary start-up parameters for other estimation algorithms EbJadditional benefit of
using the equation error method is that it does not require any temglatal between the
measured data points. It is therefore possible to concatenatalsgatar segments in one
record. This approach, regardeddasa partitioning is utilized in estimating large amplitude
maneuvers by dividing the maneuver into several smaller portions digtiediata [1].

Within simplicity of its realization, the equation error method pravil&sed esti-
mates, if the measurements of the dependant (state) variebmngaminated with the mea-
surement noise [66]. Therefore, this method is advisable only if hightygsehsors are used
for measuring the system responses.

Output Error Method

The output-error (OE) method has been successfully approved for & ehfieht vehicles
using flight test data. The goodness criteria, that is usuallyogegblwith this approach is
based on the maximum likelihood criteria. The criteria usestigtstal treatment of the error
between the model and the system and provides efﬁqjammeter estimations.

:
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ALGORITHM CRITERIA

Figure 4.1: Output error estimation principle.

1. Asymptotically unbiased, minimum covarianceesfimations [53].
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The experience obtained by applying the maximume-likelihood identificationsstimwv
great adequateness of the models to the real systems, desmi®ot initial knowledge of
the physical plant during experiments [12]. Furthermore, the output-egthrochsuccess-
fully works on estimation of parameters of nonlinear models [20].

Filter Error Method

This approach is some extension of the output error method. Based omHKidtiendor pro-
viding the state estimations of the identified system, the éltenr (FE) method has a signif-
icant advantage in providing parameter estimates in presence obtesgpnoise. There are
several studies available, that utilize the filter errorhm@tfor estimating aircraft parameters
from the flight data in presence of turbulence [15], [19], [64]. Thgrdma in Figure 4.2
illustrates the principle of the filter error approach, including rhdgleamics, the presence
of additive random process noise and random disturbances corrupting theemeassir
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Figure 4.2: Diagram of the filter error algorithm

Filtering Method

In the filter error approach the Kalman filter is dedicatechéostate estimation only. How-
ever, it is possible to use the filter as a set up for thelsineous estimation of the state and
the unknown parameters. This problem is successfully solved if the unknoamgbers
augmented with the model state vector and Kalman filter essnratlis combination both
the state vector and parameters simultaneously. The paraardestates are combined into
a composite state vector

x=[xo|, (4.3)

with ® = 0 for the time invariant model parameters.
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This method is widely used in the real time parameter estimapplications [2], [61].
However, this approach poses some additional computation difficultres. iEthe system
dynamics is approximated by a linear model, the multiplicative nonilipegrpears due to
relationA(®) x . This nonlinearity requires an implementation of the exteikdidan fil-
ter, where the system equations are linearized at each suedategration step.

4.1.2  Applicable Algorithms for Estimation of Airship Derivatives

The properties of the common estimation methods can be summariadert.1 (based on
reference publications [16], [22], [53]). Although all methods are bsilegessfully utilized
in practical applications, only the output error and the filter enethods favor the estima-
tion of the airship dynamics.

As pointed out, the equation error method requires high accuracy meastsreffribe
motion variables. The actual measurement hardware realizatewugded later in section
5.3) and the high structural flexibility leave little hope that thasneements would be accu-
rate enough to produce satisfactory results in applying the equation goroaeh. There-
fore, in the workframe of this thesis, this method was not considezea main parameter
estimation technique. Nevertheless, since the equation-error lalgatdes not require ini-
tial parameter values, its utilization is useful for generasirgjartup parameterization for
other estimation methods.

Table 4.1 Advantages (+) and drawbacks (-) of common paranestimation methods

Equation Error Output Error Filter Error Filtering
Method Method Method Method

+ Numerically stable | + Optimal bias free estimators

+ No a priori parame{ + Possibility of nonlinear identification
ter values needed

- Linear models only | + Estimation of systematic ssresrors + Real-time
identification
- Biased parameter | - Measurement + Estimation with process and measurement
estimation noise only noise sources
- Precise sensors - Sensitive to + Numerically stable
required unstable models
- Computational complexity

The complexity of the filtering approach is unwanted in our case, fiece is no
requirement of online identification and the model parameters swenad to be time invari-
ant.

The output error and filter error methods are both maximum likelihoodatsts and
their implementation is very similar. It will be further 8liwated, that the filter error method
under certain conditions appears as a pure output error method. The paveefilodr error
method is in its ability to account altogether the uncontrolled motionadeetérnal distur-
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bances, the modelling errors and the measurement noise during paestietation. More-
over, a feedback proportional to the fit error (discussed later inieqyd.13))

which is used to update the state estimates, also improves thegalistability of the algo-
rithm. This property is favorable for estimation of the unstabrd&tirectional dynamics
of airship [22].

Itis, nevertheless, desirable to utilize the output error metbad avith the filter-error
algorithm. In the output error realization, the response of the nedekgrated in the open
loop mode, i.e. where only the system input is used as a control gatratlis case it is pos-
sible to provide a rough estimation of the acting process noise distesh@timospheric tur-
bulence and nonlinearity of the airship dynamics, see the discussionrg®dnli).

4.2 Maximum Likelihood Principle

42.1 Definition

The maximum likelihood estimation arose from the statisticanasbn problem and uti-
lizes the probabilistic treatment of stochastic signals. Timeipte of the maximum likeli-
hood approach is to choose the values of parameters, which maximizenii&onal

probability density function [11]

o(z) = argmax p(Z|0) , (4.4)

whereargmay, notation indicates th@® s the valu@of that maxintieesonditional
probability density functionp(Z|©) of observable variables , gi@&n . The paeasne
are chosen in a way that the observations caused by these paraneetesst likely to occur.

The probability density function is of especial interest for the maxirhkelihood
estimation. IfZ represents a set of independent measuremgsiesathen the function can
be expanded as product of conditional probabilities [53]

p(Z|©)

p(z, z, ..., ZN‘@)
N

[r(z]9), (4.5)

i=1

whereN is the number of taken measurements.
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As the logarithmic function has monotonic properties, the log-likelihoodiumis then:

é(Z) argmaxglnp(Z|©)
N

argmaxg z In p(zi‘@). (4.6)
i=1

The above given probabilistic approach can be easily applied to thetestiofgparameters
of the dynamic system. If the measured responses are contaminigteh \additive mea-
surement noisg and the process noise is absent (no modelling émeorshe output error
is defined by

V, = Z-7 . 4.7

It is common practice to associate the measurement erroawathdom process having the
Gaussian distribution [39]. In this case, the statisticalyarsasimplifies greatly and the like-
lihood function becomes [55]:

L(Z, © = Inp(Z|©)
N
-1 PRTIS  VAN\ 7 _N (4.8)
= 2i:zl[(zi z) (HHT) “(z-2)] 2|n|HH | 2m|n2n,
wherem denotes the length of the observation vectorH-ard represectwvdhiance

matrix of the measurement noise vector. The maximization of gikehhibod functional
against the unknown parameters is equivalent to minimization of itéveegalue, which is
a typical optimization task.

422 Limitations

The form and property of the maximum likelihood estimator strongly dementlee type of
the noise distribution, adopted for the analysis. As stated, the i@awsstribution of the
output error is assumed. In this configuration, the efficiency of #e@mum likelihood esti-
mator is obtained. If the system operates when both state and emeastdisturbances
exist, the efficiency of the output error realization degrades [59].
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4.3 Filter Error Method

4.3.1 Kalman Filter State Estimation

The Kalman filter produces optimal state estimates in theepcesof the process and mea-
surement noise. The objective of the Kalman filter is the maatian of process state error
covariance matrix. It is assumed that a set of unknown parametestitute the matrice&
B, C andD of the state space model. The matfices Hand indileatel af intensity of
the process and measurement noises respectively and are usually unknown.

The Kalman filter can be described in both continuos and discrete Watmsespect to
time. The principle of its functioning lays in performing state mtaoiis of the system
dynamics on the model basis, and corrections using measured quantitfestft§ observa-
tions have discrete nature, it is favorable to use the didoreteof the Kalman filter. How-
ever, the individual parameters of the continuous state space faomdilave more physical
meaning, than those expressed in discrete form. Therefore, an empéion of mixed con-
tinuous/discrete form was adopted according to [41], where the isys&¢m dynamics is
continuous and the realization of the Kalman filter is discsse Figure 4.3).

The discrete form of the state equation yields
~ - 1
X, O ®x, _,+ LIJBé(ui +U,_q), (4.9)

where vectorx; represents the state prediction for the timepstamy _, is the estimated
state for the time stamp-1 . The discrete transitton  and cowtnolatrices for small
sampling intervalAt can be approximated as

2
®=eAAtDE+AAt+A2%tI—+.., (4.10)
At At?
W= Io Atdt DEAt+AS: +... (4.11)

The predicted system output is computed as

~

Z

= C%+Du,. (4.12)

As the measurement for the time stamp has taken place eataorrto the predicted state
estimate is performed by adding weighted residuailsnmvations(z; — z;)

X, = X +K(z-2), (4.13)
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Figure 4.3: Structure of the discrete Kalman filter

where the weighting matriK is the Kalman gain matrix. Rhe ima&rfound by mini-
mizing the covariance of the state estimation error [9]

P
K

E{(x—Xx)(x=x)T}

: (4.14)
min(tracgP)).

Computation of the state error covariance is a dual problem wisitahdard linear quadratic
regulators and requires a solution of the time varying Riccati eqafiprRather than cal-
culating the time varying form of the equation, which is elaborateeandres a definition of
the initial P, matrix, it is sometimes advantageous to consideaalys form of the Riccati
equation, there the time varying term vanisties® = 0 . The steady disoret®iccati
equation then appears as [41]: toe

O(P-PCT(HHT+ CPCT)ICP+)®" = 0, (4.15)
wherel™ is the discrete form of the process noise covariancix fdtr
0 At At TD
I = E{nnT} = EEEIOGDFn(r)dT %IOGDFn(y)dy Egz At[FFT.  (4.16)
Alternatively, the discrete-time realization of Riccati e (4.15) can be effectively

approximated by the continuous time form of the Riccati equation obtasr{é8]a

1

AP+ PAT - =PCT(HHT+ CPCT)ICP + FFT = 0 (4.17)

The equation (4.17) is more preferable for numerical solution techntheesequation
(4.15). Solving equation fd? , one obtains the Kalman gain mitrix

K = PCT(HHT + CPCT). (4.18)
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If the Kalman filter based model response is computed, and if tloegs and measurement
noises are Gaussian white, then the innovatfansz;) have also Galissiaation. The
Kalman filter is sometimes referenced as the whitening bikeause it creates white innova-
tion samples [45]. The proof of this statement is left beyond the sfdpes work and can
be found in reference [47]. This makes the likelihood criteria téstable for the cases
where the process noise is apparent. Although the appropriate likelihodidriuscsimilar

to that formulated for the pure output error method, it has nevertteleskfferences. First,
the residuals require innovations provided by applying the Kalman filieg sstimation.
The second difference of the derived maximum likelihood is in introduti@gveighting
matrix R . This matrix represents the covariance of the residmal€an be evaluated using
the following transformation:

E{(z-%)(z—%)T} = CPCT+HHT = R . (4.19)

The likelihood function in this case is evaluated as
1 N T -1 N N
L(Z, © = _éi;[(zi_zi) R “(z-7)] —Eln|R|—§mIn2n : (4.20)

It is now easy to observe an interrelation between the filter and the output error method.
If the process noise is disregarded, Bhe  matrix is respectigadyand the solution of the
Riccati equation also results in zédPo  matrix. In the absentteegirocess noise, the Kal-
man gain matrixKk has zero elements and the algorithm appears @sr¢heutput error
method.

4.4 Computational Aspects of Optimization

Let us now formulate the optimization objectives for the filteoremethod. As in the model-
ling chapter, the unknown parameter vector contains the systerssaateemodelA B C
and D matrices), statistical characteristics of noise ssymotensity of the proceds and
measurementl  noise sources), and the bias parameters due to the unkrawim con-
dition of the system. This optimization setup is commonly regardedgisal formulation
[41]. The goodness criteria is expressed by the negated likelihood functieguation
(4.20):

N
Q) = -L(Z, O = % S “3) RNz 7)) + %Ilan| + %'mmzn. (4.21)

Attempts to estimate the parameters of the original formuldgdnto enormous
numerical problems during optimization, as reported in [41]. The poor comeer@é the
originally formulated optimization setup motivated the development of a muofilreeth-
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ods, which were able to speed up the convergence property. The emplasissoinade on
inclusion of additional unknowns into the parameter vector and setting th@zZsiton con-

straints [59]. Others use indirect computations of unknowns, as fopéxandirect estima-
tion of parameters of the Kalman gain matix  (Equation (4.18)) [84],

Early in 1980s an algorithm called MMLE3 (Marginal Maximum LikelihocstitBa-
tion) was developed at NASA Dryden Flight Research Center [40]. Qatropi of many
related works [59], [64] devoted to the problem of parameter eghimiat the presence of
the process and measurement noise, has indicated that this alganithra suitably applied
to the airship identification problem. It has proven its efficiencyhie variety of applica-
tions. It requires slight modifications to the original formulatioetdils of its functioning
can be found in reference [41] and are shortly recapitulated in theewtidn.

4.5 MMLES3 Algorithm

The MMLES algorithm is designed to minimize a risk of divergence dumimgmization of
the cost function. The major idea behind this is to transform thenaritprmulation to a
more convenient form for optimization. For this purpose, instead aftcistimation of the
measurement noise characteristics (covariance niatix )otlagiance of innovations
R is estimated. However, due to the functional dependency of the spsiameter®D
(included inA ,B ,C ,D matrices) on the covariance of innovatigns frquaten
(4.19), a strong correlation between estimated variables eksssfact slows down the con-
vergence performance of optimization. To overcome this problem, alleal elaxation
strategyis utilized [11].

45.1 Relaxation Strategy

The idea of the relaxation strategy lays in partitioning the entceonvef parameters into
two sets. The first set of estimated parameé)ars contansystem parameters along with
the F matrix, whereas the second set is regarded to the elevhd@®R matrix. Relaxation
strategy of optimization involves a two step iteration. At the &tgp the estimations @
andF are obtained, while the covariance matrix of residuals igixetd In the second step,
the closed form solution of tiR  matrix is performed.

45.2 Gauss-Newton Optimization

From the variety of optimization methods the most commonly used arnsetvon-like
methods [7]. They require a computation of first and second gradierite 0bst function.
As the likelihood functional is strongly nonlinear in estimation parametiee optimization
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is performed recursively. So, if there is a first phase lafkation method, th&®  matrix is
constant. Hence, the first gradient of the cost function (Equation Y4s2Zl)mputed:

@, R) = z(; 2)T(R) 7, . (4.22)

i=1

The numerical advantage of the Gauss-Newton method upon the pure Newtod m¢hat
it does not require a computation of the second gradient of the cosofymather utilizes
the approximation using first gradients of the model output:

0230, R) 0 ZD@zT(R)'lﬂe; - (4.23)
i=1

We can further expand the gradiel:?g§2i and write them in a pure ariafyti. However,
this expansion does not accelerate greatly the computation of the seadiettyit is there-
fore favorable to use a numerical differentiation to obtain the gradfethe model output
Deii . Using (4.22) and (4.23) one can compute the update to the estimataeteara

ek+1 q<+Ae (4.24)
with

0= (0236, R) IO, R)). (4.25)

Evaluations of equations (4.22) through (4.25) were computed for the systemepars,
whereasR matrix were held fixed. After each step of optimoizag revision to the covari-
ance matrix of residuals is performed, where the optimizedrsysdeameters are used. Esti-
matingR instead oH allows the explicit computation from the evaluatevations [40]

(4 z)(z-2)T . (4.26)

;U)
le—‘
IIMZ

4.5.3 Optimization Constraints

The successive evaluation of the MMLES3 algorithm poses several cdropat@onstraints.

Although the estimation of thd  matrix is not directly performedyaues should be nev-
ertheless physically meaningful. The physical interpretation shoulsfysaim assumption
that the diagonal elementsldf  represent the standard deviationsrddsarement of ran-
dom disturbances.
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Using equation 4.19 we can express khid T matrix through the estiRatedrix m
and other matrices where system parameters appear. Hencghtgstmally meaningful, the
HHT matrix should be positive definitive

HHT = R—-CPCT>0. (4.27)

As it is shown in [41], the nonlinear constraint equation (4.27) can eadely approxi-
mated by constraining the diagonal elements okiGe matrix to bth&ass . Minimiza-
tion of the nonlinear cost functional subject to a nonlinear inequalityreamst a problem
in nonlinear programming [7]. The most common solution for such probleross@vte a
series of quadratic programming problems that locally approximate thmewmmproblem
and converge to a solution. A quadratic programming problem is a minonizdta qua-
dratic functional subject to a linear inequality constraint.

To perform the constrained optimization, we have to obtain the loearlapproxima-
tions to constraints

(KC); + Do [(KC)1(@-8) < 1, (4.28)

where subscript  indicates, that only diagonal elemert<of megrbaleen. Expanding
the gradient of equation (4.28) yields

0o (KC) = (DoK)C+K([EC) . (4.29)

The gradients of the equation (4.29) are three dimensional tensorsrabé eéso found
from numerical differentiation. To solve the quadratic programming probfiest find the
unconstrained minimum, using equation (4.25):

Or1 = O~ (023(O, R) UL IO, R)) (4.30)

where® is the unconstrained solution of the Gauss-Newton algorithik aagls far indi-
cation of the optimization iteration. With new obtained parametezskcif any constraints
of (4.28) are violated. If none is violated, the quadratic programmuotgem is solved and
the iteration is complete. If, however, any diagonal elemenkMfs grelater thal then
additional vectopn and matrix  should be formed as

K = 1—(KC)y;, = (i, ) = LIKC);]. (4.31)
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The elements oft and  corresponding to constraints which are not disladeld be
deleted. The constrained solution is then

Ok+1= Oke1— -

A A ~ A . (4.32)
.~ (0336, R)YI=T[Z(BFI(O, RY'ZTTHE O+ 1—H).

Equation (4.32) should be reevaluated with the revised constraints untibriteet set of
active constraints is obtained.

454  Two-Step Iteration

The above given relaxation algorithm works well for the cases wherglation of the esti-
mates within two steps is low. However, in the adopted MMLES3 dlguarithe optimal esti-
mates of the process noise matfix  and covaridhce  are strongdiatsr Therefore a
heuristic weighting operation is performed to minimize the corogldietween th& arid
matrices. This weighting operation is based on the fact, thatattertain number of optimi-
zation iterations, the Kalman gain is mostly induced by the change ottenfy andR
matrices and insensitive to the other system matrices. Tétissfaitilized to provide new
estimates of the process noise maffix , after the revisidd bés succeeded. The main
idea of this operation is to find such values offhe  matrix, tregdof the Kalman gain
matrix would be minimal before and after the revision procedure. Intldd following heu-
ristically determined update procedure is suggested

L
icﬁi gﬁ'd /glt()ld/ gl?eWE

Frew = Foldg c (4.33)
0 ZC% g
O C

where g, is th&k -th diagonal element of Re  matrix. Since the ggousse is assumed
as white gaussian noise, the  matrix reduces to diagonal form.

To summarize the functioning of the MMLES algorithm, the iteratieps are given
according to the computation sequences:

1. Choose an a prio® arkl

2. Perform one iteration of the Gauss-Newton optimization algorithimirtnze
negative likelihood functional (4.20) w.r® , except for Bhe ) using emst
(4.22) through (4.30).

3. Revise the estimat®  using parame@rs from step (2) usingoaq4a26).
4. Evaluate the update process noise métrix  using (4.33).

5. Return to step (2), if an exit condition is not fulfilled.
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The algorithm loop is terminated on step (5) if the condition for ofityrtaas been reached,
i.e. no more tries were successful to minimize the negakigkhlood functional.

The MMLES algorithm utilizes not only rigorous mathematical relatignscludes
some discrete approximations and several “numerical tricks” tad 9g@éts convergence.
The algorithm was implemented in tivatlab™ simulation environment and some basic
tests have been carried out for its verification, as outlined in [32]

455 Initial Values of Estimates

The MMLE3 algorithm is based on the Gauss-Newton optimization methee cdnver-
gence speed of this method is strongly dependent on selection of thevailiies of the
parameters. They should be chosen as close as possible to the spliiah. In order to
achieve this, a startup evaluation of the model parameters caitizezl §65]. Based on the
regression method, this procedure produces initial estimates in twhetbaation, without a
need of a priori values. The necessary requirement for the staotcgdpre is a set of inde-
pendent measurements of all state variables. The system eqeatidms transformed as

u
X = Agx+[B AY| | +b,
m
- (4.34)
_ u
y = Cox + [D CJ y +by,
BL
with x,, denoting the measured state, the matrkesC, .B D , andwegtdn, con-

taining the parameters to be estimated, and the matiges B g@ndntainag constant (a
priori known) coefficients. Because in the transformed systemtdkexs, and thereby the
observationy vectors are linear with the unknown parameters, the@svean be deter-
mined in one iteration.

Initial values for covariance matrix of innovatioRs  can be found by applgug-e
tion (4.26), where estimated responses of the model are based oetpasavbtained from
equation (4.34).

4.6 Assessment of Estimation Quality

The maximum likelihood estimation method, being a class of thetis@tiestimators,

obtains not only the estimations of parameters itself, but alsgeh ¢f confidence about
their accuracy and their interdependency (correlation). This infamhglps to get a confi-
dence of estimation for a particular parameter [43]. It alssd@wdirect indication if the cho-
sen model structure is overparameterized. Finally, the infawmadf the confidence of
parameters is an additional aid in designing the future idenitiicakperiments. In this sec-
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tion, several factors are recognized, which can be obtained by applyimgaxmaum-likeli-
hood estimator.

4.6.1 Theil's Inequality Coefficient

One of the simplest judgements of the results of the estimatimndsmpare the system
response with the model output. The agreement between the model agal thestem can
be well described by Theil’'s Inequality Coefficient (TIC) [51]:

N A~
|3 (3-2)?
TIC = 22 (4.35)

The TIC inequality should be calculated for each measurement and corregporatiel
channel and represents a normalized measure of fit between thm syl the model. A
value of TIC close to zero indicates a good agreement of the measurestiaraded quan-
tity, whereas a value close to unity reflects a poor estimétidn many cases of the flight
vehicle system identification, values of th&C measure thanlayerval betwee® and
0.3 are acceptable [18].

4.6.2 Cramer-Rao Bounds

The confidence of estimated parameters is typically regardedameZiRao bounds. This
measure characterizes the lower bound of the covariance of thaeob&stimates. That
means that subject to some conditions, the covariance of the est®nhaannot be less than
the Cramer-Rao bound

cov(@) = (LY , (4.36)

whereL is the Fisher information matrix. It can be derived frppr@&imation of the Hesse
matrix:

N
L = 02)(©) = ZEbEiTR—ltbii . (4.37)

Studying the latter equation the following conclusion can be made. Imr@wmsense, the
Fisher information matrix gives a measure of the information coofetite data. Qualita-
tively, it can be well interpreted by the sensitivity of the patéir parameter to the system
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output, as thélgz; terms do. If the sensitivity is large, then tloeniation content of the

parameter is also large. This should lead to a smaller GRaeebound due to inversion of
the Fisher (sensitivity) matrix. Therefore, large confidencebtsined about the estimated
parameter. Moreover, the quality of the parameter estimaesfarenced by the form of the
input signal.

Because the Cramer-Rao bounds are defined under assumption of tharGatigs
noise statistics of the state and measurement disturbancestexpthem with a real flight
data provides normally too optimistic results [18]. This is becaok®ed residuals exist
between the measured and simulated responses. For this reasatintated Cramer-Rao
bounds are commonly multiplied by fudge val&es 1@o or scaled by a factor

1

k = ,
2f At

(4.38)

wheref_ is the cut-off frequency of the applied pre-filter [43] (treasured flight data is
typically filtered before evaluating in the estimation algorithndiasussed in section 6.1).

4.6.3 Correlation Between Parameters

The Fisher information matrix delivers an additional measure abhewstimation quality. It
is attributed to the fact of interdependence of the estimated etm@nn the statistical sense,
or alternatively referenced aworrelation [45]. The approximation for the correlation
between two paramete& a@pl can be computed as follows

o = — (i (4.39)

N () RO

where Pjj denotes the correlation coefficient between the parax;métmpij has values
between0 (no correlation) aldd (linear dependency). A consolidatéuérgaof all corre-
lations results in a correlation map. In the ideal case, ogrjaiis to eliminate the correlation
between parameters, so that the estimation problem becomes orthagmun@ameter space
(diagonal form of the correlation map).

In practical applications, however, the ideal case can be reanhefbr a few simple
types of systems. For typical multivariable systems it is notdise. As reported in [37], the
correlation between parameters in valpﬁg 0.9 can be treatedepsadnte in flight vehi-
cle system identification. Therefore, this value will be rdgdras a maximum allowable for
estimation parameters of the postulated airship model.



Chapter 4 Estimation Algorithms 69

There are two practical ways to reduce the high correlation betparameters of the
estimation model:

* Analyzing the parameter correlation map, one can modify the steuatur parametri-
zation of the entire model to minimize the correlation effects

» Some reduction of the interdependency between the parameters cdmebvedby
selecting an appropriate control input. In the latter case, theotomgut is designed to
affect only one portion of dependant parameters, holding the other pasameter
unchanged [18]

4.6.4 Cross-Validation Tests

One of the most efficient way to assert the quality of the astienmodel is to perform a
cross-validationcheck [66]. In this test the estimated model is used to préulicsytstem

response for the data records, which were not used in the estitfitagohheil’s inequality

coefficient is an effective measure of the predictive qualdfethe identified model [51]).

For critical applications the boundaries of unnoticeable dynamicdedireed [12]. In gen-

eral, a successful cross-validation test is the ultimateajdlaé system identification.
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Chapter 5

Experiment Design

5.1 Introduction

The experimental part of the “Quad-M” diagram presented in Figureebdgnizes three
main items: the flight vehicle (airship), the maneuvers and tlesunements. In this chapter,
the discussion will be constrained to the issues applicable to tigm déshe identification
experiments. The emphasis will be given on the appropriate choibe @ifight maneuvers
and the data acquisition system used in the airship identificatiorcproje

Maneuvers M easurements
u . } y
Input > Flight Vehicle »| Data Collection
- Shapg - Sensors
- Duration - Sampling Rate
- Amplitude > - Placement

Figure 5.1: Experimental setup in flight vehicle system iddnéfion

The design of the maneuvers and setup of the appropriate data acquystison, @re
alone sufficiently complicated and very time consuming procedures. Theyd sstouhgly
incorporate the initial knowledge about the flight vehicle dynamics andrtekaccount the
restrictions posed by practical utilization of the flight vehicle.

5.2 Design of Control Inputs

5.2.1 General Requirements on Control Input Design

It is well known that the accuracy of parameter estimationerig “input” dependant [39].
The maneuver design commonly used in the flight vehicle system idatdificcan be sum-
marized as a cyclic process as shown in Figure 5.2. Going throughratientef the whole
design cycle can easily take months or even years in prigdjce

71
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a priofi design get scheduled vehicle execute
information %  maneuver ™ flight maneuver || take-off [®| flight test

analyze vehicle
< test data lands

Figure 5.2: Conventional input design cycle [49]

results
acceptable?

By designing the control inputs for aircraft identification purposes, sgemeral
requirements are defined [59]:

1. The frequency band of actuators and the pilot commands should be draatdret
eigenfrequencies of the system.

2.Large excitations of the physical plant from the nominal point shoulddodeal, if
possible.

3. The identification inputs of the multi input plant should be applied seqllgnti

4. The frequency band of the input signal should cover the frequency band of ther plant

alternatively theersistency to excitatiorequirement [53].

The first requirement poses no additional problem in practical appticaf an airship
because of very slow dynamics.

For fulfilling the second requirement, it is generally true thatatimglitude and dura-
tion of the control input should not deviate the plant too much from its notimatondi-
tion in order to keep the validity assumptions of the linear model. BErerother hand, too
small perturbations of the motion variables have, in general, vergigmal to noise ratio of
measured signals. Typically, these problems can be detecteaftBrspost-processing of the
flight data, requiring additional flight tests.

The third requirement is attributed mainly to safety critical iappbns. A typical
example is a highly unstable combat aircraft, which can not be flothowt incorporating a
flight control system. In this case, the control surface deflesttan not be applied individu-
ally [18]. There are no apparent constraints in fulfilling this neguent for airships.

One major factor in designing the control input for estimating therlimealels is the
persistency to excitation objective. Through the design of the input ahdgés duration, it
is desirable to stimulate possibly all eigenmodes of the line&amyisy the control input.
The “well excited” system provides high sensitivities of the modedudstto the parameters
and consequently increased accuracy of the parameter estimegesalsulation of the
Cramer-Rao bounds in section 4.6.2). This property is closely rdtatib@ eigendynamic
characteristics of the plant. The a priori knowledge of the plant dgeasnused as a starting
point for designing appropriate shapes of input signals.
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5.2.2  Typical Input Shapes

Among a variety of identification inputs, in flight mechanics the nsostmon are: thstep
frequency sweeploubletand themultistep 3-2-1-Iinputs [58]. Their time domain realiza-
tions are shown in Figure 5.3.

1 1
05| 1 , 05
| Q.
& 3
R 7 °
-0.5 1 -0.5
-1t 1
0 20 40 60 0 20 40 60
time [s] time [s]
1f -
1
5 05 ’ os| | 3XTaon 1x
— ‘_| oo
o)
3 o0 N -
o ™
2 T '
os | doublet ] 05 2X 1x |
-1 q
1t ]
0 20 40 60 0 20 40 60
time [s] time [s]

Figure 5.3: Realization of common inputs utilized in aircrafstem identification [58]

The step input signal is used to excite very low eigenfrequencibs pfant (see Fig-
ure 5.4). Application of this input leads to a stationary system davidbm its nominal
(trim) point. For this reason, the step input signal is inadvisablééntification of the linear

systems.

The frequency sweep shape of the input signal has the widest frequendyiganel
5.4) and usually accomplishes the persistency to excitation requirddoevetver, practical
utilization of this input shape is restricted by two limitatidfisst, generation of the sweep
shape poses for the human pilot a considerable difficulty. Seconthghtsrequires a rela-
tively long duration for sweeping the required frequency band [50].

The multistep doublet and the 3-2-1-1 input shape maneuvers are the helst wi
flown for the aircraft identification purposes. Their advantagesatributed by easy imple-
mentation in flight and a simple (re)-design phase based on the doestrknown modal
frequencies of the flight vehicle. To design the multistep inputefs duration is selected in
such a way, that the natural frequency of the system (i.e cipedincy of undamped system)
corresponds to half the frequency band of the input (see Figure 5.4). taskithe maxi-
mum power of the input signal is concentrated at the desired sygjenfrequency and
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thereby the maximum excitation of the eigendynamics is achieved. Fdoubéet and 3-2-
1-1 inputs it is defined respectively [46]

_ T _om
Taoublet = @ T3o1p = Z}“% ’ (5.1)

wherew, is the natural eigenfrequency of the vehicle.

From the spectral characteristics, shown in Figure 5.4, the 3-@1Age is preferable
upon the doublet input, as it provides a broader frequency band (1:10 versusriia teké
of the maximum amplitude) [46]. As a consequence, the 3-2-1-1 input B noloust to
errors of the a priori knowledge of the system dynamics then the daylét i

step i
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Figure 5.4: Power spectral density function of different inghtipes [58]

Several studies utilize the property of the Cramer-Rao boundsréer& for design-
ing the optimal input [48], [50], [59]. These techniques use a sequiaptidldesign process,
in which the inputs are based on the current best knowledge of the slystamics. How-
ever, these “fine tuning” approaches can be only applicable, if suffikhowledge of the
system dynamics is known.

5.2.3 Designing Flight Maneuvers for Airship Identification Puposes

Longitudinal Maneuvers

Investigations of longitudinal dynamics performed in section 3.3 are supehan Table
5.1. It was shown that the surge mode is largely decoupled withlotiggiudinal modes. It
is therefore advantageous to consider two independent identification maneuvere the
surge motion is assumed to be determined from the throttle input manetreeeas the
parameters of the coupled heave and longitudinal-pendulum modes are asshmddter-
mined from the elevator perturbation maneuvers.

In the longitudinal dynamics, the most important eigenmotion is chaestdy the
longitudinal-pendulum mode. Because the eigenfrequency and damping of the pendulum
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oscillation are strongly dependant on aerodynamic and configuration progarties €xam-

ined case the predicted eigenfrequency ranges from approximag|y, = 0.15[rad/s to
Wy p= 0.35[rad/s)), it is necessary to design the shape of the control input, whica has
possibly wide bandwidth to cover the frequencies of interest.

Table 5.1: Excitation possibility of the longitudinal eigenmexi

Longitudinal Modes Physical Interpretation Excitation possibility
Surge Axial velocity damping Thrust inputd T

axial drag
Heave Cross-flow/Weatherwaning Elevatpr
Longitudinal-Pendulum Aerodynamic/Gravity-Buoy-| Elevatorn

ancy interactions

From the frequency bandwidth characteristics (Figure 5.4), the ricstti?e input
signals are of the sweep and the multistep 3-2-1-1 shapes. Havingsheslevant configu-
ration of a “slightly heavy” airshiB/ G = 0.98 with a trim velocity of abd{im/s] the
eigenfrequency of the pendulum modewg, p= 0.23[rad/s . The optimal step duration (3-
2-1-1) for exciting this frequency can be computed using equation (5.1) velsich in the
duration of one step sequentg,_ , ;= 7[s]

Because of relatively small time constant of the aperiodic heade, it is possible to
excite this eigendynamics within the 3-2-1-1 input applied for excitingptiggtudinal-pen-
dulum mode.

A specific scenario for conducting the flight with the thrust pertuwbhatcan be devel-
oped in order to excite the surge eigendynamics. A simple doublet mamngtivamperiod of
Taoublet™ 2 Tsy» WhereTg ;= 10[s] , indicating the time constant of the surge mode, can be
applied to the throttle input.

Lateral-Directional Maneuvers

Table 5.2 summarizes the dynamic analysis of the airship lalieeational motion. The pre-
dicted instability of the sideslip-subsidence mode poses an additioahgean estimating

the lateral-directional dynamics. In order to keep the perturbati@nsadl values, the airship
should be flown only with the aid of a flight controller, i.e. in@sed loop operation, which,
as well known, suppresses the essential dynamics of the plant [39].

Table 5.2: Excitation possibility of the lateral-directiondgenmodes

Lateral-directional Modes Physical Interpretation Excitation possibility

Sideslip-subsidence Sideslp- divergence durudder(
to unsteady aerodynamic
yawing moment

Yaw-subsidence Cross-flow/Weatherwaning Rud€er

Roll-Pendulum Aerodynamic-Gravity- Ailerons &
Buoyancy interactions
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From the other side, the basic dynamic characteristics iteelfhe open loop reactions
are of primary interest. It can be expected that the margirtabitity (depending on flight
velocity the time constant rangégg = 7..20[s] ) can be efficiently correctatlaily by
the pilot, without incorporating the closed-loop control.

5.2.4  Experienced Practical Limitations

The critical issues in designing the flight maneuvers are oftdadsby practical limitations,
which can be first discovered during the flight test. The followingudision is devoted to
several constraints revealed while carrying out the test fligititstiae Lotte airship.

As was determined for the nominal longitudinal model, the duration adgtieally
designed 3-2-1-1 input signal witfi;, ;= 7[s] is 49 seconds. With additional time
required for acquisition of the trim condition and subsequent transier@mtite identifica-
tion maneuver would have resulted in practically unacceptable endurdacé&lbws from
the fact that the Lotte airship, being a remotely controlled velaale be flown only if the
line of sight between the test pilot and the airship is clearctwim our case constituted
approximately 850 meters). Figure 5.5 illustrates different fligbtances of the real flight
interval, which was reconstructed from GPS data.

Identification maneuver

Trim acquisition

200

h [m]

Launch phase
: 1400

1000
1200

Figure 5.5: Reconstruction of flown trajectory of the Lotteskiip

Fortunately, during preliminary identification flights, the test p#ajperienced the
transient responses of the Lotte on the elevator inputs much shontérwaes predicted by
modelling. Due to this fact, the step length of the 3-2-1-1 input has teeleiced to
T5.5.1.1= 4[s]. Note, the applied input was not optimal with respect to the limit@del
knowledge, but became apparent from the flight testing and the pilot'®opiniaddition to
the 3-2-1-1 input shape, the test signals of different shapes (doublstvaad) have been
also applied during the subsequent flight tests.
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Another examination of the measured data from the trial flightsdsadted in addi-
tional limitations. In the remotely controlled operation of Lotte, test pilot was neither able
to acquire some desired trim condition with a predetermined sigfes, , 6, , nor repeat it
in the subsequent maneuvers. This drawback could not be eliminated dunvigptadest-
ing program and has significantly constrained the availability of thee atadlifferent flight
regimes.

In order to assure the validity of the assumed linear model, thalyntommanded
flap deviations from the trimmed condition were limited & <5° . Howewethis case
the low signal to noise measurements made the flight data pligahtactable for the iden-
tification task. For overcoming the low signal to noise problem, & eecided to carry out
all subsequent flight maneuvers at maximal amplitudes of the coutfatss, which consti-
tute [On|, ., = 41°.

In conducting the lateral-directional identification maneuvers, a ampluthority of
the pilot was required in order to keep the airship near itsinectiltrajectory.

Of course, the most critical limitation in the flight testinggmam was posed by the
atmospheric conditions. If the flight tests were performed in tpgyhturbulent atmosphere,
even optimally designed inputs and sophisticated identification algorithuhd do nothing
for improving the identification results.

5.3 Data Collection System

Realization of an appropriate flight recording system takes, in degeesm more time than
the design of the flight maneuvers. During the airship identificatiore@rdjwas not possi-
ble to skip this elaborate process, and therefore it becamesapcés deal with problems
associated with instrumentation setup and analysis of the meastaedtda section will be
devoted accordingly to issues related to hardware realization.

531 Realization of Measurement Hardware

The discussion in Chapter 2 was briefly devoted to the problems of dfawweasurement
guantities for the identification problem. In the airship identifozaproject it was necessary
to develop measurement hardware which could perform required measa&midet real-
time scale. One of the most important objectives of the measuatenardware was the
accomplishment of the weight constraints and power consumption. Inasmtiate asnd
financial funds were restricted, the utilization of commergiallailable products was con-
cluded in the project.

An appropriate solution in choosing the measurement hardware was thfeausem-
bined device as illustrated in Figure 5.6. The unit is integratddssiteral elements: the 3D
accelerometer, the rate gyros, the GPS receiver and the ealuait. The computer evalu-
ation unit has several functional duties, such as evaluation and stdrdngeflight data in
real-time mode, the generation of preprogrammed identification inputssé during flight
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Accelerometer/ Data acquisition AFCS Wireless LAN
Gyro Box system computer adapter

ths GPS Remote ethernet Interface Devices
antenna Receiver antenna

Figure 5.6: Realization of a combined measurement platform

tests, and the automatic flight control system (AFCS). In aaddithe combined measure-
ment unit is equipped with several communication interfaces fagativly and exchanging
data with different measurement and actuating units, and for the deleraetry to the
ground based observation station.

The working prototype has been continuously modernized in both hardware and soft-
ware modules. The general characteristics of the recent sethp nfeasurement platform
are presented in Table 5.3.

Table 5.3: Accuracy characteristics of sensors integratetiémteasurement platform

Measurement RMS Units
AccelerationsaX @y az 0.003 [m/s]
Rotation rate ¢ [ 0.003 [deg/d
Euler anglesp 0 ] 0.2 [deg/H?
GPS velocity 3B Uy, Vi , W 0.2 [m/s]

a. Specified drift rate of the measured Euler angle
b. For a stationary user

Following the discussion from section 2.5, the aerodynamic measurevhairgream
velocity, air density and temperature should be available for trackndglow properties.
These measurements should be made at the nose part of the aieslopltthe interference
effects of the airship’s body. As it is in principle difficidt¢combine the aerodynamic sensors
together with the inertial measurement sensors, the measureonéguration led to a dis-
tributed network.
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Compass

Ultrasonic
anemometer

Figure 5.7: Realization of ultrasonic anemometer for airstraesocity measurements

At early stages of the identification project, the measurenoénite airstream velocity
were based on a conventional multiple hole probe device. However, lowioperlocities
induced a relatively small dynamic pressure and this device produced hsghnmeasure-
ments. It was therefore decided to replace the hole probe satisanwltra sonic anemom-
eter. The ultra sonic anemometer, shown in Figure 5.7 has aaghifienefit in providing
accurate 3D airstream velocity measurements (see Table t5léavelocities up to
30 [m/s] . The anemometer delivers the airstream measurementsrt@ithe@neasurement
platform via a CAN (Controller Area Network) data interfatlee top-level overview of the
communication network of the Lotte airship is shown in Figure 5.8.

Table 5.4: Accuracy of airstream velocities provided by ultnais anemometer

Measurements RMS Units
Airstream velocitiedly, Vo Wp 0.4 [m/s]

Along with measurements of the output variables, it was also @egdssstore the
pilot commands and the control variables respectively. As pointetheut,.otte” airship is
normally controlled by a pilot in the remote operating mode. The pilatedtthe command
signals and distributes them onboard via remote datalink. The onboanreacansforms
commanded signals into digital messages and distributes them via theddiolbabnetwork.
These messages are used to drive the actuators and are theveitadele for recording
them. In addition, the option was included to employ preprogrammed commahd&tthe
actuators.

5.3.2  Sampling Strategy

In a computer-based acquisition system, it is unavoidable that sanoplmgasurements
leads to information losses. Therefore it is important to stlecdampling frequency so that
these losses are insignificant for the estimation processitAshe design of the input sig-
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Figure 5.8: Basic communication network of “Lotte” airship

nals, the sampling strategy is directly related to a priori indtion about the system dynam-
ics. Here, the following factors are taken into account by sefgttie sampling frequency:

b =

("'b,max<

% = 210,
2 %

2At”

MOE+AAt+ATE-

» According to Shannon’s theorem [11], the sampling frequency should easatiwo
times higher than the system highest eigenfrequency

_ 21T

=4 (5.2)

It is in general true that a higher sampling frequency will casselbss of information.
However, building the discrete-time models with a very small sagppime At may
also lead to numerical evaluation problems. According to Equation (hé&Qgtate
transition matrix® at high sampling rates will converge to the ijemiatrix

2

+.=E, (5.3)

21

which leads to the pole distribution of the discrete system around thie(fdi) on
the complex plane, i.e. at the border of the stability region [9].

* The real-time operation mode of the data acquisition system ales giwsng require-
ments on the data storage frequency. It depends on the evaluatiortycapahe
onboard digital computer.
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From the above given constraints, the last one was the dominant iaseuiV¢dith relatively
slow dynamics of the airship the sampling frequency of measuremenssf2@[Hz] was
found to be sufficient for acquiring the system response.
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Chapter 6

Results and Analysis

6.1 Details of Flight Maneuvers and Postflight Analysis

6.1.1  Carrying Out the Flight Tests

In August 2002, favorable weather conditions allowed several identictights with the
“Lotte” airship to be carried out. Altogether, 15 identification masmes of a duration of
approximately 60 seconds each, have been flown. Most of the flight manengesscon-
ducted for the longitudinal character of motion. Some preliminary idsatidn results were
reported in [34]. A complete overview of the flown identification manesig outlined in
Appendix C.

6.1.2 Postflight Data Analysis

It is common practice to perform a number of preliminary analydiseofaw measurements,
before the flight data is accepted for parameter estimationr irtiention is to reduce
unwanted effects in the measured data and to conclude whether thddtigld relevant for
further analysis. In the current identification project the postfligitd analysis consisted of:

» prefiltering
* air data correction
» data compatibility checking.

A limited choice of mounting places for the measurement equipment aasgsmon
vibration problem [42]. The measurements were heavily contaminatedigh frequency
structural vibrations caused by the thrust propeller. For minimikhiedigh frequency con-
tent in the flight data, filtering is applied. This procedure isied in C.2.1.

The airstream measurements were corrected for the fesaysttonditions in order to
eliminate the interference effects caused by the hull of tekipi These results are presented
in C.2.2.

83
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Utilization of the data compatibility checking procedure had two bgeats in the
postflight data analysis [18]. First, the determination of typizstrumentation errors before
the parameter estimation. Second, using this approach, a plaustdy of the flight data,
which provides a systematic judgement about the applicability of the gtestidstimation
model to the flown maneuvers can be gained. The details of this precetlthe achieved
results are presented in section C.2.3.

6.2 Longitudinal Derivatives from Elevator Perturbation Hight

Estimation of parameters of the longitudinal model introduced in seg@®raims to deter-
mine the longitudinal stability and control derivatives. Because the eettpartand the fil-

ter-error estimation algorithms are based on the Gauss-Newtonizgtkom method, to
speed up their convergence, the initial values of parameters havddieenined using the
equation-error based start up algorithm, as described in section 4.5.5.

6.2.1  Application of Output-Error Method

Just a simple visual analysis of the measured trajectorieg\eaan initial confidence about
the dynamic behavior of the airship. Studying the measured trajectbiigse 6.1), one
observes that the forward velocity remains nearly unchanged during themdederement
interval. This behavior agrees with the conclusions made in subse&iénv@here the nom-
inal simulation model was considered. The elevator control inputtigf§c excites only
vertical and rotational (pitch) variables and has almost no @ffeperturbations of the axial
velocity. For this reason, the forward velocity damping derivaye ill be hardly deter-
mined from this maneuver.

An additional, but less evident conclusion can be drawn when variatiohe akial
velocity are analyzed at different pitch angles. Even at largesvafige there is no apparent
change in themA|CS trajectory. This behavior indicates that the awplenates at nearly neu-
tral buoyancy-gravity condition, i.e. the gravity force is almost congiedsby the buoy-
ancy force. In this case, the contribution of ¥ Apd derivativesdsheulegligibly
small.

In order to ensure that these conclusions are valid, a verifidasbrvas performed,
were the fully parametrized longitudinal model, having 24 unknowns
0= [ Xy Xy Xgq Xg Zyy Zq Zg My My, My Mg X Z M, ...

ax ~az

.
..by by by b, b, by, by b by b J (6.1)
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Figure 6.1: Filtered time history data of longitudinal F4S1ligtit maneuver
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Figure 6.2: Time histories of measured and estimated (OutprdgrEresponses, of the full ste
longitudinal models
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and a model with a reduced set of parameters, are estimhteteduced model neglects the
Xos Xq» Xg 1 Z, 1 Zg andM,, derivatives in the dynamic matrix

X, 0 0 0]
02,2 0
A= %w4 O 6.2)
0 M, My M,
0 0 1 0

The time responses of both models, estimated using the output gaadthah, are
illustrated in Figure 6.2. As can be observed, there is a qua# difierence between the
two models in estimating the forward velocity s~ and no apparent diffeseincother
response variables. Numerical values of the estimated paranagigrthe supplementary
information (Cramer-Rao bounds, TIC coefficients, Eigenvalueg)rakeded in Table C.2.

Another important indication of the parameter estimation procedahaiacterized by
the algorithm convergence property. The model with the reduced numbetino&ties
parameters has required 29 iterations to converge, whereas thegemoeeof the fully
parameterized model could not be reached and has been broken afteratiddstefs will
be shown later, this improvement arise due to reduced correlatioedre®gtimates and,
therefore, a better conditioning of the Hessian matrix (Equation §4.37)

From this simple verification trial, one concludes that the falwatocity perturbation
statedu , corresponding to the surge mode, can be regarded as decouplled rethaining
states. It follows from the structure of the dynamic maiix,  2)(6f the simplified model.
With this knowledge, it is now possible to concentrate efforts omattig the reduced order
model without thedu state. It should be noticed, that fairly sinflight phenomena was
observed not only for this particular flight record, but in all subsedoegttudinal maneu-
vers perturbed by elevator deflections. These trajectories direeduh section C.3.

Low Order Estimation Model

The reduced plant model involves the state-space formulation asbedsani equation
(3.31). Altogether, there are 14 estimation parameters, includitadpifitg, 2 control deriva-
tives and 7 bias unknowns respectively:

.
o= [;N Zy M, My Mg Z, M, b, by by b, b by b, ucﬂ . (6.3)

As can be concluded from Figure 6.3, in spite of the state redudteagteement between
the measured and the computed responses is still very good.

So far, only the fit between the measured and the model resporseasedaas a basic
goodness criteria. The trajectory fit does not, however, guarantéacthtbat the estimated
parameters are reliable. This can be evident when analyzing tie¢éations between esti-
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Figure 6.3: Time histories of measured and estimated (OutprdfrEresponse, of the reducec
order longitudinal models

mated parameters, presented in Figure 6.4(a). In spite of a ggectama agreement, a
nearly linear dependencpi{ >0.98 ) exists for several pairs of estirpatatcheters.

The adopted estimation model with highly correlated parameters shopbssibly re-
parametrized in order to reduce this interdependence. The reductiua mdrameter space
of the model can be done based on the following propositions:

» Because the parameters comprising the bias vetgors byand havararynmpor-
tance (e.g. for accounting for the initial condition and the sensmsgra high correla-
tion between them can be allowed unless this does not affecathitystand control
estimation or the optimization convergence.

» If a strong dependence between any derivative and the bias paraxisttertiee latter
should be fixed at some (nominal or zero) value during estimation.

These steps should be regarded as a trade off between the perfarfrtheaaodel and esti-
mation confidence of important derivatives.

A serious difficulty arises from the fact that the estimakeavativesM,, M, and!
are highly correlated. Neglecting one of these parameters is @tjdscause otherwise it
will change the essential properties of the model (such as removitig ;lecond order
dynamics of the longitudinal pendulum motion). One advisable solution is tbefistatic
pitch stability coefficientMy at some nominal value during estimaftoting theMy has a
particular advantage, because its value basically charactdv@@setacentric position.
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and is quite insensitive to variations of the trimmed velocity. @hrsvative can be alterna-
tively calculated using approximation [23]:

MYz
My= —— 2 6.4
° (lyy_M,q) ©4)

Therefore, the same value gy can be used for several flighes¢gminder supposition
that environmental conditions and configuration of the airship remain unchdeEalise
the static pitch stability derivative was not known exactly, vmitgally decided to use an
averaged value of theéy,  estimations from several maneuvers.

The model with the reduced parameter space has been evaluated padedowith
the response of the model that uses the estinMjed derivatihe fearne flight maneu-
ver. Because the bias parameters show (Figure 6.4(a)) acbttlelation with important
derivatives, they have not been discarded. Figure 6.5 shows that thieness no qualitative
difference in the time plots provided by the nominal model and the motiefined Mg .
Fixing this parameter also results in reduction of interdependencydrete andMq , as
illustrated by the correlation map in Figure 6.4(b). As a consequestimation of the
Cramer-Rao bounds of these two derivatils Mq, has been significadtiged (see
Table C.3).

Accounting for Large Pitch Deviations

One interesting result is that the purely linear model fits thasorements even at the cases,
where nonlinear effects are evident. For example, examining trersyssponses shown in
Figure 6.6, one observes that the pitch angle reaches very large®alyes85’ . The trigo-
nometric nonlinearities, associated with these large deviatiomalidate the modelling
assumptions, given in section 3.2.1. On the other hand, even at largeeuitatons, the
aerodynamic linearity assumption is acceptable due to relatively penturbations of the
angle of attacka| < 8°

Ocr 617

0 10 20 30 40 50 60
time [s]

Figure 6.6: Measured pitch deviations and angle of attack duBi2-1-1 identification maneuvet
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In order to keep the physical validity of the estimation model, it€ lsasicture estab-
lished in equation (3.31) has been slightly changed. Because the meadereahgles are
normally subjected to a relatively small sensor noise, a direwthsured value & can be
taken for precomputing the trigonometric nonlinearity. The resulted sgjttan applied to
the model as a deterministic pseudo-input. In the state-spaesertation, the enhanced
dynamic model yields

n
Z Z 0 b
W _ | 4w Zaf[dw| |40 O Bl gl (6.5)
oq M,, M,| 59 M, Mg b 1
Because the measured pitch angle was used as the pseudo contstd, theasystem output
was reduced to

y = [WA|CSq aZcJT'

In this case the observation model appears as:

0 0 b

Wajc 1 —Xcs 5w wil n
q|=| o 1 LS(J o0 0 by||sing|- (6:6)
arzc) Zy*ciMy, - Zgxc Mg Ug Z,XcMy =X Mg bg L 1

In this formulation, the model has been estimated using the outputhetbod. The esti-
mated time histories are presented in Figure 6.7.

In addition to the proposed parametrization, Figure 6.8 illustratésafbetory estima-
tions of the model that assumes the zero static pitching mdvhert 0 his “vlorst-case”
parametrization, corresponding to the case when= 0 z-5,= 0 , Is used hemte e
the significance of th!y  derivative in the system dynamics.

The estimated response of the enhanced model provides no visible improwetraent
jectory. However, the overall performance of the extended modebie oonfident with
regard to the performance of the pure linear model. The responsesnobtlel that discards
the static pitching momently , has lead to inacceptable large medetions from the
flight trajectories.

Application of the enhanced model, however, did not reduce the problemgbf ednt
relation between estimates. A nearly linear dependency (not showw®eethe derivatives
M, My andMy remains unchanged. Therefore, the demand on fixirld ¢he isfactual
this model formulation as well.
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6.2.2  Application of the Filter Error Method

Estimation results, obtained by using the output error algorithm, ciedted as a basis for
selecting a reliable parametrization of the longitudinal model andcfipuiring the interme-
diate estimation results. Although the trajectory and paramdisratisns are very encour-
aging, still some discrepancies in particular in the verticaloil (Figure 6.7) between the
measured and estimated trajectories. These discrepanciesaassifeed by a presence of a
slightly turbulent atmosphere.

The filter error algorithm is applied to the measured dataderdo minimize the neg-
ative effect of this uncontrolled motion on parameter estimatidms.nfodel has been used
which accounts for the large pitch variations. To minimize theaiskumerical instability
during optimization, the unknown disturbances are regarded as two uncdrveltie gaus-
sian processes that affect the and  states

F = [q” j. (6.7)
0 ¢

The filter error algorithm incorporates these two parameterdi@ually to estimate the
intensity of the process noise. The parameter vector is then dbfined

©= |z, 2, M, My Z, M, b, b b, b, by, g, crq]T . (6.8)

Estimation results using the filter error method are presenttabie C.4 and the time
plots are shown in Figure 6.9. The agreement between the measurettiraatkd trajecto-
ries is now nearly perfect. This improvement of the trajectorgido affects the confidence
of the estimated parameters. Most of them were estimatbdeduced Cramer-Rao bounds,
comparing to estimations derived by the output-error method. Estimh@ngrécess noise
parametersy, ¢, , along with other model unknowns, did not lead toknitierdepen-
dencies between parameters.

The performance of the filter-error algorithm is more effigiartten the model param-
eters are estimated from maneuvers conducted at a higher turdelexic€igure 6.10 illus-
trates the time histories of the model estimated with both #igwsi i.e. the output-error and
the filter-error methods. Not only large residuals in trajeesorbut also inadequate numeri-
cal values of some estimated parameters have been obtained, wbatpthesrror method
was used. Although the evaluation time was not the central fadtoe gurrent analysis, the
slow convergence speed has indicated serious numerical difficultiag dptimization.

A better performance has been observed when the filter error me#isodpplied. In
almost all performance characteristics, i.e. the trajgditiothe plausibility of parameter esti-
mates, Cramer-Rao bounds and convergence properties, a signifipesmtament has been
achieved. The numerical values of estimated derivatives are tosmse, obtained for
records at very calm atmospheric conditions.
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Even though the maneuvers flown in severe turbulence, in general, did nahgass
data compatibility check (see results in C.2.3), a better peafurenof the filter-error algo-
rithm is apparent over the output error method. For this reason, naughbé estimation
results are expected also for “calm air” maneuvers.

6.3 Estimation of Lateral Derivatives

Unfortunately, having focused on the examination of the longitudinal dynattméss, were

almost no flight maneuvers carried out in order to determine gr@latirectional dynamics.
Figure 6.11 shows the time histories of a single lateral maneuvere two multistep pertur-
bation sequences were applied to the rudder controls.

From the analysis of the flight trajectories it becomes app#ranthe roll oscillations
are tightly coupled with the yawing motion, excited by rudder perturbad®nshis charac-
ter of motion implies the use of the full state lateral-dioea model (Equations (3.16),
(3.26)) for parameter estimation.

As in the case of the longitudinal estimations, the fully parametedateral-direc-
tional model has also lead to very poor estimation results due to kigbgndant parame-
ters. The initial anticipation of the importance of a particatability/control derivative was
acquired by studying the components of the nominal model (discussed in G3)afiemm
the analysis of magnitude of the dynamic  and corBrol  matrix termgfien (3.16))
follows, that the derivative¥,;, Y, L, L, N, N, abhgd could be replacedimsan
the state and control matrices without significantly affectingdgheamics of the linearized
model.

Inspection of magnitudes of the flight determined parameters (stadamhtrol deriva-
tive multiplied with a corresponding recovered state/control ti@jgchas confirmed the
insignificance onID ,Y(p L, NID derivatives. However, as pointed out prelyidhe rudder
perturbations effectively excite the rolling oscillations. It tuons to be reasonable to esti-
mate alsothé, and, derivatives. In this parametrization, thel inasiproduced the best
fit to the flight data without encountering convergence problems. Theparametrization
of the lateral-directional model yields

by D,y U Wol T, (6.9)

The evaluated trajectories of the new parametrized model agianfiight data are
shown in Figure 6.12. The correlation map of the estimated paramsetrswn in Figure
6.13. Numerical values of estimated parameters are given in Caldle

Although the correlation among the parameters contributing to the penduluonmoti
appears to be not as critical as in the longitudinal maneuvers, aedirghation among many
other stability derivatives exist. Because the high correlation Exialmost all parameters
that constitute the model’s state equations, resolving for it wegjgine a fixing of several
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important derivatives, which is unwanted in this case. Therefwed)igh correlation among
parameters was accepted here.

During the lateral-directional maneuver, small discerpanciesedite velocity, g
exist, which could not be followed by the model. The objective of thex &itror algorithm
was to perform an efficient maximum likelihood estimations in gfitthese discrepancies.
The process noise matrix incorporates the estimation of threensigae components

g, 00
0cg,00
Flat = P (6.10)
00gO
00O
The updated set of parameter vector consists of 24 unknowns:
©= 1Y, Y, Lo Le Lo Ny Np Yz L Ng o
(6.11)

.+ by by b, b by, by by by byy Ug Wy G, G ol

The time histories of the model estimated by the filter erethod are shown in Figure 6.14.
As expected, the filter error algorithm provides a better esbmé&ajectories. The numeri-
cal values of the estimated parameters are given in Table C.14.
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Figure 6.11:Lateral-directional maneuver with rudder perturbas
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6.4 Validation Results

6.4.1 Cross-Validation Tests

To finalize the identification methodology applied for determining th&hgardynamics, the
cross-validation test, as outlined in section 4.6.4, has been utlinzéials technique, the pre-
dictive ability of the estimated model is studied: as already gbog the important prereq-
uisite for the cross-validation test is a repeatability oflightfmaneuvers. This means that if
the model was estimated from a particular flight record nttsacompared with the different
record only if the latter is taken under similar trim and configomatonditions as the first
one.

Because repeatability of the flight maneuvers for the remotely tepeership has
posed serious difficulties for the pilot, each identification manebadra slightly different
trim condition. In order to overcome this problem, it was decided ttheseodel structure,
where the main stability and control derivatives were held at 8séchated values, whereas
the bias parametets, abg were freely adjustable. In this appfé@ezing” the main
derivatives does not change the essential properties of the modataw/ltieeeing” the bias
parameters can compensate for the uncertainties of the trimioanditis is allowed only at
limited extent, because the stability and control derivatives alyowith the change of the
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trim condition. In the current investigation, the cross-validationnastbeen applied only to
“nearly similar” flight records.

Figure 6.15 shows the model responses on the doublet elevator input comphared wi
the corresponding measured quantities of the flight record F4S5e. Nahwvatiges for the
stability and control derivatives were taken from estimates olotdroen the record F4Sle.
using filter error algorithm. The vector comprising of bias pararset

.
o= [bw b by by by by ucﬂ (6.12)

has been adjusted in order to account for the different trim conditithre @foublet maneu-
ver. The model with parameters estimated by the filter etgarithm provides very good
predictions of the flight data. The successful result of the sfalg$ation test is also owing
the fact that both flight records are taken in extremely calnitainight be therefore con-
cluded, that the model adequately describes the airship motion undeneddtight and
configuration conditions.

6.4.2 Other Validation Results

The lack of additional lateral-directional flight maneuvers makespplication of the cross-
validation test irrelevant for the analysis. In this caseigat} different validation test can
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Figure 6.15: Longitudinal model predictive abilities in crosakdation test
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be performed, where the model is being estimated on the half intétiwa data record, and
these results are used to predict the rest of the data [59].

Figure 6.16 shows this validation strategy applied for predicting thallateectional
dynamics. The model parameters have been estimated based ort & $esonds of the
data record and then extrapolated to the rest of the record. As oasdyeed, the predicted
model trajectory agrees well with the measured airship respdriga®. are no visible differ-
ences between estimated (Figure 6.12) and predicted (Figure 6.18)autpgs in the last
15 seconds of the flight record. This indicates that a sufficienecbof the lateral-direc-
tional dynamics could be gained from the first 25 seconds of data ugeddaneters estima-
tion.
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Figure 6.16Validation result of lateral-directional maneuver

6.5 Estimated Parameters Versus a priori Model Prediabns

Sections 6.2-6.4 were mainly focused on system identification issuestimating and vali-
dating dynamical models from the flight data. This section will vetdel to the comparison
between the modelled and the flight determined parameters. Thelaigenic properties
which are characterized by the stability derivatives will be éxadnfirst. Subsequently, the
nondimensional aerodynamic coefficients will be extracted from thdifigel parameters
and compared with the wind tunnel data. The nominal configuration datalaoftteeairship
outlined in Appendix A has been taken for this analysis.
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6.5.1  Examination of Eigendynamic Properties

Longitudinal Dynamics

One of the central issues in estimating the stability derivatif’edinear model is a charac-
terization of its eigendynamics. A summary of pole distribution (headdongitudinal-pen-
dulum modes) determined from several flight segments with resptwt model predictions
is illustrated in Figure 6.17(a). Although each flight record correspmadstightly different
trim condition, the poles tend to concentrate around some definiteologafis can be seen
from this distribution, some disagreement between the expected gimdd#itermined pole
locations exist.

The damping of the aperiodic heave mode increases with increaseatkocity u, as
agrees well with the preliminary analysis performed in Chaptefo8:ever, the estimated
time period of the heave mode is shorter than expected, which is pneghbipniconditioned
by large negative values of the estimated pitch damping deri\MH've esliheated value
of Mq is greater then the modelled value by an approximate factor ef tBezause the
physical interpretation of the heave mode is tightly connected withtdh@izng effect of
the fins (see section 3.3), their influence during the flight iatgrehen expected.

The identified longitudinal-pendulum mode tends to be well dampened asTwell
estimated damping ratio of the longitudinal-pendulum mode ranges from 0.8B which
is overpredicted comparing to the nominal model. The natural frequenhyg oktillatory
motion decreases with increased forward veloaojy and at certimicityea mode transi-
tion to subsidence aperiodic motion takes place. This well dampenetttehnestics agrees
well with the pilot’'s opinion, experiencing a very stable motion of trehig even at maxi-
mum velocities (,,,,= 12[ m/d ). There are two factors which contribute todfaibility.
First, the static pitching derivatively  has been estimatedla¢s/digher than expected.
According to equation (6.4) this could be caused either by incorrectisgegon of the mass
properties (metacentric position, mass, moment of inertia) angvestimation of the appar-
ent moment of inertia due to potential fIcM(q . Second the large asiihvalues oMq
explain the transition from oscillatory to aperiodic motion at highkcitees.

Lateral-Directional Dynamics

The strong correlation between lateral parameters detected dstim@teon, shows that the
parameters could be obtained with a relatively small confidertabefame time, the a pri-
ori acquired values of the lateral coefficients also largely teeiam the flight determined
ones, as can be seen from Table C.14. Especially the estimitesl @adamping derivatives
L, andN, show the largest divergence from the nominal model which cortfievstrong
influence of the fins also on the lateral-directional stability.

The existence of large differences between the model predictedbterchined stabil-
ity derivatives leads also to a different characterizationggfrelynamics of the lateral-direc-
tional motion, as shown in Figure 6.17(b). Analogously to the longitudinal, ¢hse
eigenfrequency and damping ratio of the roll pendulum mode have been slightgtover
mated. A significant difference, however, is that the expecteddpa@rgence motion has
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Figure 6.17:Flight determined pole locations against modetifptéons

been estimated by a stable aperiodic dynamics. The main contriboitibis stability is
made by the large negative value of tile derivative. Unfortunatelalality of only a
single lateral flight maneuver does not allow a more extended examidithis phenom-
ena. More lateral-directional flight maneuvers are required tkenaadefinite statement
about the stability of the yaw dynamics.

6.5.2  Extraction of Nondimensional Aerodynamic Coefficients

The relationship between stability and control derivatives and nondimenagnoalynamic

coefficients is given in section B.6. Under assumption of corregicified configuration

data (predominantly airship mass, moment of inertia and cente), maspgossible to com-
pute the flight determined aerodynamic parameters and compare thethewvind tunnel

database. For this purpose, the coefficients from the wind tunraddadat should be first
transformed in the body fixed axes as shown in Figure 6.18 using transtorreqtiations

(B.51) and (B.52).

For extracting the aerodynamic coefficients from the flight detexdhderivatives, the
reference length and configuration data were taken from the nominatgiaraset as out-
lined in Appendix A. The geometry dependent Munk factors and the derivdtieds insta-
tionary flow phenomena have been computed analytically using information aboouilt
profile of the Lotte airship.

There are two major constraints on comparison between the wind taafégat data
should be noticed. First, because the wind tunnel aerodynamic databésesonly sta-
tionary coefficients, no information about the aerodynamic damping ceeticican be
gained. Second constraint arise due to the fact that estimatibe ekial derivatives, like
X, form the flight data was not confident due to the perturbations ofedeNyator control
on. Therefore, the analysis has been reduced to comparisoncgz the cmaamjafficiecnts.
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Figure 6.18:Static normal force and pitch coefficients in bdoked axes

The coefficientscza andm represent the slopes otthe cgnd cuspestieely,
taken at the nominat . Using ‘numerical differentiation it is posgidoicompute the rate of
change of the static lift and pitching moment aerodynamic coefficoetetsthe whole range
of measuredx as illustrated in Figure 6.19. In addition, also disptagethe aerodynamic
coefficients evaluated from the flight determined stability dekreat Due to noticed limita-
tions of the flight test experiments, the achieved trim conditioms atenearly zero angle of
attack. This explains a small distribution of the flight determioeelfficients over thex
range.

Comparing the wind tunnel value of the staqac coefficient witHight determined
counterpart (Figure 6.19(a)) it can be said that the normal aerodyfaane of the Lotte air-
ship tends to be more sensitive on variations of . There areeffagmall variations of the
identified C,, derivative with changed trim velocityy, . One interesfan is that due to
symmetric property of the airship XvZ  aldY planes, the curyes cyande ideauti-
cal as follows from equation (B.62). It is therefore possibleetify the fllght determined
longitudinal aerodynamic derivatives against their lateral counterddmtss, the computed
non dimensional side force derlvatltzg has less negative value thiengitadinal coef-
ficients. It can be explained by reduced side force derivative dugytonaetric flow as a
result of the combined yawing and rolling motion.

Figure 6.19(b) shows the flight determined moment coeffmﬁ]nt versustunnel
estimations. As can be seen the resulting aerodynamic pitching misrtesg than predicted
by the wind tunnel experiments. The reduced destabilizing moment miglatubedcby a
stronger contribution of the fins (under supposition of correct configurationntiespef the
Lotte airship). Similarly to the static force example thei@tary pitching moment coeffi-
cientc.(a) can be effectively comparable with the stationary yawing mbouoefficient
c,(a). The same is valid also for the der|vat|\¢§$ apd , Which Hreeveadme magni-
tude but the opposite sign as follows from equatlon (B. 63)
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6.5.3  Variation of Initial Values of Parameters

Because the gradient-like optimization method used in the estimémnitlan do not guar-
antee the global minima and the start-up algorithm was utilizecttgra the initial parame-
ters, some additional parameter evaluation runs have been perforheedaiin was to
ensure that the estimated parameters correspond to the globalrofrine likelihood func-
tion. In these tests, different initial values of parametersluding the model predicted
derivatives) were used. As a consequence, the number of iteratemedni® converge has
slightly increased, but this did not lead to different values of te &stimations. These
results confirm the validity of the obtained parameters.

6.5.4  Cause of Large Deviations

As a consequence of the performed analysis it can be said thagaldlbidentified stability

and control derivatives were obtained from good fits between the meéaswtecomputed
data, there are large deviations between the predicted and edtoiyabimic characteristics
of the Lotte airship. These inconsistencies can be caused by thireéantors:

» Uncertainties of the mass propertiesBecause the mass characteristics play a domi-
nant role in overall system dynamics, its primary inaccuracy ceaftito a significant
difference of results.

» Aerodynamic phenomena:lt was found that the flight determined aerodynamic coef-
ficients can be different to these derived from the modeling or windetl experi-
ments. This difference can be classified by the scaling probleenggeometric
differences of the real airship with respect to the scaled naodehe incomplete aero-
dynamic database. Thus, the dynamic characteristics of therstab avas found to be
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more stable than predicted. Surely, this well dampened behavior coetghlaened by
incorrect mass properties. From the other side, the lateeatidinal instability is less
sensitive to changes of the mass properties of the airship, beinly m@nditioned by
the aerodynamic phenomena.

Experiments: The imperfections during the experimental phase cause a negative infl
ence on the final estimation results. As pointed out, the plausiih data could be
only derived at large amplitudes of the control inputs. The mostteleparturbation
maneuvers, flown under 3-2-1-1 input shape, resulted in a substantiadgiiations

of the airship, where trigonometric nonlinearities were evident.|dige pitch varia-
tions also lead to inevitable altitude changes, and thereby additiongleshia aerody-
namic, buoyancy, mass and thrust properties. Although all these chamgepposed

to be insignificant (the computed variation was within 4%), the absbioteinvari-
ance of the model parameters can not be guaranteed.
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Conclusions and Perspectives

7.1 Conclusions

The system identification approach for determining a dynamical ckasticss of the
research airship Lotte, is the central objective of this th€ees widely utilized identification
methodology from the classical aircraft flight mechanics wastakea basis for the frame-
work. Since the methodology requires a consolidated treatment of séifferaint problems,
such as selection of the model structure, appropriate estimattbodagexperiment design
and evaluation of the flight data, these have been closely investigdtes work.

The model is the fundamental part of the airship identification proliteom the theo-
retical investigations given in the previous study it was possible noufate a closed form
analytical flight mechanical model, based on physically meaningful gdeasn However,
for the identification purposes, a linearized form of the airship diygsawas taken and the
emphasis was made on estimation of basic stability and contreétiees. Estimating the
linearized dynamics was necessary from the limited a priorid@mde of the main compo-
nents of the flight mechanical model. In addition to that, a sepavatederation of the lon-
gitudinal and lateral-directional dynamics simplifies the model idensbly in terms of
structure and the number of unknown parameters.

The algorithmic part of this thesis is devoted to the examinatioheofrtethods of
parameter estimation. Among a large number of estimation algordkeasble in aircraft
system identification, only two of them have been attentively considerairship identifi-
cation. Both algorithms use the time domain representation of theg@rized models and
corresponding measured signals. One of them is the Output-error ntehadltased on the
probabilistic likelihood criteria and provides the unbiased estimatigammeters in pres-
ence of measurement noise. The second algorithm was based orEfdtemethod. It
applies to the optimal state estimation using the Kalman fiteeutilization was preferable
for the airship identification, because this method effectivelynasts the model parameters
in presence of the proces (wind disturbance, modelling errors) andine@@mnt noise
sources.

One of the most critical and the most difficult parts of tinehgp identification project
was devoted to the experiment design problem. Designing the flightaasuners and find-

105



106 Chapter 7 Conclusions and Perspectives

ing an adequate measurement setup are the central issues of timmespé part. While
evaluating the identification project, both issues had to be designed atbrsgwere practi-
cal limitations. Weather condition, remote operation of the airshiall payload, altogether
have significantly complicated the acquisition of the flight data.

The acquired flight data have allowed a separate estimation eflthweorder approx-
imate models, i.e. the angle-of-attack-pitch, the forward vel@nt the lateral-directional
models. Based on flown trajectories and estimated parametirs wiodels, several impor-
tant conclusions of the Lotte dynamics can be drawn:

* The perturbations of the elevator controls can be widely approximatée layg)le-of
attack-pitch model without the axial velocity state. Even maxicoaltrol elevator
deviations do not lead to large perturbations of the axial velocity.

* Due to low center mass location, the rudder controls effectiwaliges not only the
sideslip and subsidence modes, but also the roll oscillation modes lcatte an utili-
zation of the full order lateral-directional model was required.

» The estimated pole locations of the longitudinal dynamics greatly ddwaah the pre-
dicted ones. The longitudinal-pendulum mode is effectively dampened. Tdietpde
instability of the longitudinal-pendulum mode does not occur even at magighl
velocities.

* The sideslip subsidence mode does not appear to be unstable in dieliegetional
dynamics. The latter fact, however could not be verified due tokaofthe lateral-
directional flight maneuvers.

It is also shown, that a relatively simple form of the lineadet can accurately approximate
the motion of the airship.

Although the results obtained by utilizing the system identification approan be
treated as satisfactory in describing the dynamics of the aitebipare different to the pre-
dictions made out of wind tunnel experiments and from the physical fligichamical
model. This justifies the importance of flight test program angarticular, system identifi-
cation in the flight control system design.

7.2 Future research

Although the achieved results can be effectively utilized for the @tertdesign in order to
achieve an autonomous operation of the Lotte airship, several unsolveehmsdadtill exist
which should be examined in future studies.

The main disadvantage of the models used to approximate the airship dyrsathat
their parameters describe the system dynamics as a whoieisi.impossible to extract the
aerodynamic derivatives and compare them with the wind tunnel data thdesass model
is accurately known. In order to achieve this, an accurate detéionimd the basic mass
model is obligatory.
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The obtained results can be effectively utilized for future expatimesign. It would
be interesting here to examine the unsteady aerodynamic effectthis-qurpose, new
experiments can be designed including accelerated flight, mass dbpskusion of thrust
vectoring.

There is a great potential in improving the hardware capability inr eod&ack the
basic dynamic variables. An effective IMU/GPS integration allgorishould be imple-
mented in order to track the flight path velocity. Utilization of tiplé airstream sensors will
allow the measurement of the flow distribution along the airship Yielkling the involve-
ment of the approximated wind/turbulence models. Additionally, the thmassurements
are required for estimation of the axial drag components.

Finally, with improved confidence in the mass model and systenmapiovement of
the measurement hardware, estimation of the basic componentsiohtimear aerodynamic
model will be possible. However, additional research is requireddier to obtain a plausi-
ble model parametrization, involving an extensive sensitivity analysis.
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Appendix A
LOTTE Airship: Technical Data

Figure A.1: Lotte airship at starting phase of test flight
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dimensions:

estimated mass and elements dfCG

estimated center of mass wrtCR :

important reference points wrt. CR:

electrical engine:

performance:

energy sources:

length [m]

max. thickness [m]
hull volume [m3 ]
span width [m]

fin area m? ]

mass (at altitude 200mkdg

|y [kgm?]
lyy [kgm?]
|, [kgn?]
|, [kgm?]

(at altitude 200m)
Xcg [m]
yCG[m]
Zcg [m]

Xc) [m]
yC|[m]
Zcy [m]
Xcg [m]
st[nﬂ

Zcs [m]

max thrust N ]

max. velocity [m/s]
max. payload [kg]

]

AppendixA

15

107.42
4.6
2.88

136.8
213
3310
3211
-88

0.45
0.11
1.88
8.13
0
-0.2

120

12
12

solar panels/rechargeable batteries
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6.93 5.18

A
\
A

Vv Xipuaddy
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All dimensions in meters

Figure A.2: Three-view of the Lotte airship with major dimensisshown
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Appendix B

Annotations to Derivation of Flight
Mechanical Model

B.1 Similarity Transformations

The basic force and moment equations of motion established in Chapter 2 a

LMV cal? = Freeh (B.1)

and

%{lceQCG}fg = {Q%ca); - (B.2)

It is further necessary to apply two similarity transformationthese two equations in order
to derive the motion variables with respect to the center of bodsenefeCR . First, the
transformation of the time derivative of vector variables given irbtuy reference (super-
scriptf ) is required. For this purpose, a rule of expressing tieed@mvative of a vector in a
rotating reference frame is requested [6]:

vie= Svifrox vy (B.3)

Applying this rule to the left hand side of the force equation yields

d g_d
giMVcek = a{mVK|CG}ff+QCGX (MVico) (B.4)

= m(Vkice* Qco X Vkco) + MV co

119



120 Appendix B Annotations to Derivation of Flight Mechanical Model

and analogously for the moment equation

d d
a“CGQCG}fg = E{ICGQCG}:"' Qx (Ieefo)

= legfce+ Qg * (IeeQcs) +eelcq -

(B.5)

The second transformation of the equations of motion requires a t@mglaall its
terms from the mass cent€G to the center of body refel@Rce or thik purpose, the
velocity at the mass center can be expressed by

Viice = Vkiert Qr* fear Qe = er- (B.6)
Henceforward, the subscripts of all variables that relatedeaénter of reference will be
omitted Qcg = Q, Vi cr = Vi . €IC.). Moreover, the rates of change of the airshgs

m in equation (B.4), moment of inertlgg  in equation (B.5) are insagmifly small with
regard to other motion variables and can be therefore neglected:

mOo, IcgOO. (B.7)

Substituting transformed velocity from equation (B.6) into equation (Bd eguating
the latter with (B.1), one obtains:

M(Vk + QX reg+ Qx (Vi +Qx reg)) = FZ. (B.8)

The translation of the net force from tG& point to@te is donigsti@rwardly, since
for the force validF-5 = F .

Yt

folc

$cc

Figure B.1: Definition of reference vectar.5 in transformatidjg(z:G - Q2

The derivation of the moment equation with respect to the center of bqdiyas a
simultaneous transformation of both sides of the equation (B.2), babausasor of inertia
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and the summary moment are expressed in center mass point. Therransn of the
moment to theCR  point can be obtained using common relation (See Figyre B.

Q* = Qg +rce* FEo- (B.9)
Then the expanded moment equation yields
lca@ce + Qg * (Iceca) +lceQcg = QF—Teg X FX (B.10)
or equivalently

lceQco+ Qe * (Icece) +lceQcs +reg* F2 = Q2. (B.11)

If the externally acting net fordé>  in the latter equation wilsblstituted by the equation
(B.8), then the moment equation with some rearrangements appéalsves

legQ+Mreg* (QX reg)
+ QX (1o +mrogx Q% (Qx reg) (B.12)

This equation can be further simplified, if an inertia matrixigfarmation from the mass
centerCG to the center of referenC® Is applied according to formula

with the E multiplier representing the identity matrix. Using (B.43)l properties of a vec-
tor product, the first two rows in (B.12) may be simplified by

legQ+Mregx (Qx reg) =1Q

(B.14)
Ox (IcgQ) +mrogx Qx (Axreg)=Qx (19Q).
Finally, after all substitutions done, the moment equation becomes:
1Q+Qx (1Q) +mrogx (Vk+Qx V) = Q. (B.15)

It should be noticed, that the moment of inertia mdtrix is now exgdesith respect to the
center of body referend@R  and not with respect to the mass C#ater
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B.2 Mass Matrix

The mass matrix in equation (2.12) includes the definition of airstof@gémassn and ten-
sor of moments of inertia . In the expanded form, the matrix is

m 0 0 0 mzs O
0 m 0 Mz 0 mxg
M = 0 0 m 0 —-Mmxg O (B.16)
0 -Mmzg 0 lix 0 lyz
Mz 0 -mx, O lyy 0
0 mxg O |y, 0 l,,

Airships are generally symmetrical with respect to the vérpitame. Therefore, the mass
matrix in the equation (B.16) is expressed for the cases whereswmmetry is valid

Yeg = O andl,, =1,=0.

B.3 Dynamics Vector

The dynamics vector in the right hand side of equation (2.12) appears #ueernatical
transformations of the system coordinates. It contains only statior@maccelerated) terms
of the flight path and the rotational velocities

—Qx (Vy +Qx
K = (Vi fcam B.17)

—Ox (1Q—-(m-g x (Qx V))

Along with linear and rotational velocities, the dynamic matrixo alemprises of the total
mass of the airship, position of the mass center and moment ad.ifdré dynamic vector

equation (B.17) in its expanded form yields

I m(rv—qw+ (g2 + r?)Xeg —Przeg)
—M(ru—pw+ paxeg +arzeg)

K = m(qu— pv=prXeg+ (P + 9% Zcg) . (818)
-pql,,+ quyy—quzz+ M(ruz.g—pPwWz-g)
—prIXX+(p2—r2)IXZ+ pri,,—m(qu¥g—PVXcg—IVZeg+ QWZ )
paly, + quxz—pquy—m(ruxCG—pWXCG)
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B.4 Aerodynamic Model

123

This section summarizes the generic aerodynamic model of a conveatrshag developed
in [26]. The analysis of the original model was performed by the auth{8d]. The model
utilizes the structure shown in Figure B.2.

Complete Aerodynamic Model

%, Introduction of Interference
ol effects between hull and fins
Hull model Model of the Tail

Integration of Distributed Model Aerodynamic forces due to 3D flow
S 2D Flow 3D Flow
Sd F(x)dx Effects Effects
Potential Flow Viscosity Effects Circulation & Viscosity Effects
- Induced Drag
7 .
- “mE— L
- AV-Y A /
'
'
'
....................
Bod Accelerated ’ Control Surface
Acceleration Wind Relative Flow Deflections
L . T
v,Q v v, Q [&n.q

...........

...........

Figure B.2: Topology of the aerodynamical model [26]

The derivation of the aerodynamic model is divided onto two main partdir$heart

describes the aerodynamics of the bare hull of the airship and defihed enodel, whereas

the second part deals with description of aerodynamics of thedail ar

Approaches describing the model are based on formulation of the potémtial f
around the hull area, and a classical profile theory for thereal &eparation and friction
effects, which are usually to expect are modelled through viscositgrasstflow terms for
both the hull and the fin areas.

B.4.1

Hull Aerodynamics from Potential Flow Theory

For modelling the hull aerodynamics from the theory of potential flonassumption is
made that the shape of the bare hull can be approximated by an ellipsaigal his allows
to apply a closed analytical form of the velocity potential [36]

DX, ¥, 2 = =K xu—=Kyv-K,zw+K;xzg— kxyr,

wherek; k, andk;

bance of the flow around the ellipsoidal body.

(B.19)

are the geometry dependant Munk-factors of the potertialdv$tur-
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For computing the net forces and moments, it is advantageous to consitiard hull
as a combination of infinitely thin segments, as illustrated in Eig§uB. The force and the
moment are first determined for the entire segment and then iret@giang the length of
the body.

The study of hull aerodynamics due to potential flow should cover threedysesia-
tional cases. These are the accelerated motion of airshigtethdy motion and the case
where the airship operates in the unsteady atmosphere.

AK) )
4z, (0

> dNA (%)

pot

z

Figure B.3: Representation of the hull segment

Potential Flow due to Accelerated Motion

The flow distribution due to the accelerated motion incorporatesmigedifferential of the
velocity potential:

%d)(x, Y, 2 = —kXu—=KyV—K,ZW+ K3xzg—K;xyr. (B.20)

Applying (B.20) in the unsteady Bernoulli equation the forces acting on gmeese: of hull
can be computed. This leads to the following relations:

- A -

dXx X dA(X)_ .
hpot— acc( ) _kl—a'(x_)XUK

dx (B.21)

N—r

A = —
P eX) = dvﬁpopacc(x - P KoyA(X)V + KgA(X)XT
dzﬁpot— acc(x) kZA( X)WK - k3A( X)Xq
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and

At 0
hpot—acc k k
A _ KodA(X 2 K3d A(X )
dM, () = dMﬁpoHcc(X) = p|m % g OO+ ST ()X gy - (B.22)
A KodA(X) Kad A(X
dN X = 2y 3 2
L hpot—acc( )_ i 2 dx r(X) Vg 2 dx r(X) Xr

Potential Flow due to Steady Motion

In the steady motion, the forces due to potential flow can be ca&dulsing the pressure
distribution around the segment calculated from the steady BernoulliGguEtie velocity
distribution required for evaluating the Bernoulli equation can derived thanvelocity
potential introduced in (B.19). This gives the distributed force and mamére form

A
dX 2 .2 2 2 2
. Moot (Ui + Vie + W )a (X)—Uya, + (Vi + Wg)ag(X)
thpOt(X) = dYﬁpm =P UVae(X)—Ura7(X)
uwagg(x) —u X
a7, | 3(X) —ugay(x)
+ Wy qay(X) + G ag(X) — Viray(x) + r2ag(x)
- dx
diy, 0
A
dMpy () = [dMp | = P |—UWic@g(X) + U qag(x)| dx,
pot
q Uk Vg 8g(X) + ugrag(x)
L hPOI_
(B.23)

with the a,(x) defined as geometry dependant variables:



126

Appendix B Annotations to Derivation of Flight Mechanical Model
a,(x) = %D %qu
ay(x) = kg 0 cof8(x) O %Xl()
a5(x) = 3 0K 0 foa(x) 0 9400 42000
8,0 = x0 9800, 2ky(ks ~ 1)1 () c0sB()sinB () 25 — 2, (kg + 1)r () oo (xIE — 2x4AXD
ag(x) = —-(k2 1)xr(x)cose(x)sme(x)ﬂl‘2+ o) S|n29(x)M +1(2k3—k§)r(x)2cosze(x)%xlq
420000 LEX 1 2k +16) 0 il cogp (PR 2,20 H0D
ag(x) = szcosze(x)%le
a,(%) = A(X) + kg (ks — 1) COB(X)A(X) + %kl(k3 4 1)co§6(x)x%xlq
ag(x) = lekzsine(x)cose(x)r(x)M
2000 = 20072809 4 Ly 1~ k) 020001 (0072800 + L (ks + k) sin () cos(xr(0 0L,

(B.24)

with 6(x) indicating the inclination of the hull's surface»t point witspect to thex
direction

B(x) = atanc—l%)%g | (B.25)

In the steady but rolling motion, the lateral and vertical componentseofelocity
vector are in permanent change due to the roll rate. In order thah#dnge is not recognized
as accelerated motion, the roll induced change in lateral andalertiocities needs to be
compensated. For the unaccelerated rolling motion the induced acoakeeat expressed:

Uing
Vind
Wing

p| |Y 0 Pind pl |p 0
o] X |vg| = | PWk and Qingl = 10/ % |g| = | pr|- (B.26)
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Applying these induced accelerations directly into equations (B.21) a2®)(Belds

X (%) 0

pot—ind dA X dA X
A — ___(_) .__.(_)
AP o) = |dYy ()] =P U T0x DPWctke™gXPdax |, (B.27)
dA(X) dA(X)
_dzﬁpot—ind(x)_ L k2 D dX D rVK - k3 dX Xpr i
— A _ — 0 B
dthot—ind(X) dA X dA X
A — __(_.2 2 ___(_.2 2
dMp 0= [dMp (x| = | dx )TV e T TP g (B.28)

pot—ind

dA(X dA(X
_dNﬁ ()] kz—(ﬁ)r(x)zpr + kg—(ﬁ(—)r(x)zqu

pot—ind

Aerodynamics of Airship in Unsteady Atmosphere

For expressing the aerodynamic forces and moments in the unsteady ateaspbrenula-
tion introduced in [60] can be applied. Its main principle is based on exygatid acceler-
ated flow Va(X) through the flight path and wind accelerations, i.e.
Va(x) = Vk(X) =Vw(X). According to his formulation, it is sufficient to distinguish the
effects caused by the flight path acceleratiu{x) together witlotaganal acceleration

Q of the body, the stationary flow witti,(x) ar@ , and the accelerated Wij,(x) . In

the latter statement, the wind acceleration is translated the earth fixed into the body
fixed coordinates using approximation [26]

Uy(X) 5
V() = [vy(9)| = Trr V()38 Q% Yy (¥, (B8.29)
Wy (X) f

where the operatoD/Dt  denotes the substantial derivative of the windityefield
derived and expressed in the earth fixed frame. In (B.29) the rofatnmti@n of the wind
velocity is included in the wind acceleration vector, therefor€Xheerm is omitted.

In expressing the hull aerodynamics in the unsteady atmosphere, thersjuslated
to the steady state motion (equations (B.22), (B.23), (B.27) and [BR2&)Id appear with
the relative velocityv, variables. The terms responsible for ¢belerated motion (equa-
tions (B.21), (B.22)) appear twice to account for the airship andvihe accelerations
respectively, although in the latter case they appear with negajivand without the rota-
tional acceleration (see equation (B.29)).

There is a difference in treating the airship that accekeiat¢he air from the case
where the airship moves in the accelerated wind. The accelevatd is always associated
with a pressure gradient. The gradient itself produces an aerdmiagiancy force in direc-
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tion of the acceleration of the air. This phenomena is usually knowre herizontal buoy-
ancy effect. It can be computed from the Bernoulli equation under a conditiene the
local pressure gradient is constant over the circumference afgheesat of the hull

) s a0 %8 005
P o® = |dYy (0] = 0 dx— |0 1 g O (TrPw)AM)dx, (B.30)
dzﬁw, W(X) 0 001
L 9 000
A, 00 = [dM2 (9| =[0-1 0 D(Dfpw)r(X)Zd—%(X—X)dx. (B.31)
dNﬁmatfw(X) 00 -1

An important consequence of the analysis given in [26] is that the ffeatefrom acceler-
ated body motion, accelerated wind and the steady aerodynamics aaatbd tndepen-
dently as a sum of their respective contributions to the airship aersyma

Integration of Distributed Forces due to Potential Flow

The net force and moment due to potential flow is determined throughaitivegof the seg-
ment forces and moments along the axial length of the hull. Studying theehadynamics
in Equations (B.21) through (B.31), one can observe that the forces anchte@ucing on
the segment are proportional to the geometrical characteristicemtrated in they,;(X)
terms. For simplicity, this property can be expressed in the foitpgeneral form:

de 2% = f(Vy, Q V, Vi) i (x)dx. (B.32)

Therefore, for determination of the net force and moment the moti@ables can be taken
out of the integration delimiter.

In deriving the integral of the moment one has to take into accountsat ofthe seg-
ment from the center of referenGR (see Figure B.3). The loontm of one segment to
the total moment is given by

X
dQAcR(¥) = QA+ [of X dFAX). (B.33)

0
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Xn 0 X, X

Figure B.4: Definition of integration limits for the distribudehull forces due to potential flow

There are two principal limits selected for the integratiorhefdistributed hull forces
and moments. Their definition follows from the discussion of validityans of the potential
flow theory and can be found in the related work [24]. It is decidedatharmal forces and
moments of the hull due to steady flow should be integrated along the fiegiothe lead-
ing edge of the fing, to the nose of the airshjp (see Figure Both the other hand,
the axial force and moment, as well as all apparent mass amdritatibuoyancy forces and
moments can be integrated along the total length of thexyull &, ).

Table B.1 summarizes the analytical form of the geometricadjiats. Note, equation
(B.37) was taken into account for derivation of the moment integyals

pot

Table B.1: Time invariant integrals as functions of geometrjpaperties of the hull

Integrals along the whole airship length ¥ - X;, )

Xn ﬂA‘ X! Xn Xn
X = wo= q =
Xpot le kl dx xax ! lme IX| k2 D\( X) ax ) |me le k3 D\( X)XdX

™ J, koL 8809 62+ A 19, = | kﬂigﬂ‘x)f(x)zxﬂ“(xﬁm

Xn

Xn
| uvw :I a, (x)dx, I)‘(me:I a,(x) dx
X X,

pot
|

Xq Xn Xn
VW — w( = q =
prot Ixflig(X)dx, prm IX|a4(x)dx, |Xpm leas(x)dx

Integrals from the leading edge of the fins to th@ose &, - X, )

Xn Xn
uw — ug =
P IX ag(x)ax , 139 Ixa7(x)dx
h h

X

| uw _.[ (ag(x) + xag(x)) X wa = | " (ag(X) + Xay (X)) dx

ot
P Xp
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Hence, the integrated aerodynamic force due to potential flow theorsragse

—|u
prmuK
FA o= —p|IW v, +19 r|+...
hpmz p lzpva+|mer
W
Iz WK+|g q

pot pot

2 2 2\Juvw_ 21U 2 2\ | VW _ w 2 2
(Ug +Vvg +WA)IXpm UA'xpj[(VA*‘WA)'xpm*(WAq vA)IXp‘jt+(q +r )|;gpm
Lt uw 4 ugq + woo_ q B.34
p UpV,pl ftu Al 2 PW, 2.~ Pg Ime ( )

uw 4 uq + W _prld
uAWAIme quIme vaIme pris

pot

=13 Ow
° DVy cr
P Ig | PV oy

w
Iz WW

pot

and the net moment

0
— W
Qﬁ > T _p _lmpotWK+|rCTI1potq *

pot
w +14
I mpva I mpmr

0
— uw 4 ug 4+ W +prld
P TUAWAlRY +UAQIRD + VPl +prig (B.35)

uw ug 4 woo_ q
_uAvAImpm uArIrnpm WApImpm pqlmpm

0 0
LA p|Im Ww| + (0|
W vy | (O

pot

B.4.2 Hull Aerodynamics due to Viscous Effects

Along with the potential flow effects, the viscous effects arpartant for a correct estima-
tion of the drag of the airship. Because of the complexity of the bouralgey ¢f the skin

friction, only semi-empirical models can be applied for describinhte parameters for
these models are partly determined from experimental data (wimelttests) or the CFD

simulations.
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dFA (x)
~ “dzﬁc (x)
dYZ\C(x) VA({';)
Wa(X) .
P S |

JVA(X)2 + Wy (x)2
Figure B.5: Definition of vertical and side flow velocity for mdeling the cross-flow force

The viscous effects are commonly modelled by examination of axialrasd flow
effects. Classical formulation of the axial drag is expressed by

XA = —guA\uA\cdo’ ZES (B.36)

For computing the cross flow drag, the theory of flow around a slender boeyoddtion is
used [57]. Its principle is based on examination of the forces and n®meintg on the
infinitesimally thin segment of the hull, analogously to that usechtopotential flow.

According to Figure B.5, the lateral and vertical moments of tigegneet can be
approximated by

dYp (X) = —pVA(X) JVA(X) + WE(X)Cq_ p Or (x)dx

dZp (x) = —pWa(X) JVA(X) +WZ(X)Cq_  OF (x)dx

and the pitch and yaw moments expressed with respect to centeerehoef are respec-
tively:

(B.37)

dMﬁc(x) = —X Edzlzﬁc(x)

(B.38)
dNﬁc(x) = xEdJIYhAC(x).
Integrating equations (B.37) and (B.38), the cross flow terms ofd@icé moments due to
viscous effects can be obtained. The integration limit for thie casstitutes the interval
from the nose of the hull till the attachment of the fins.
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B.4.3 Model of the Tail Area

The fins of the airship can modeled in a classical way by usindgftihg line theory [57].
For this purpose the flow phenomena can be first modelled for the tvemsimnal flow for
rudders and elevators and then consequently expanded into three dimensiorfabifithe.
2D aerodynamics, the reference area includes not only fins, buti@ap @art of the hull.

A classical profile theory includes a description of the followinmgpagnamic phenom-
ena: the circulation, the induced, the profile and the cross-flogv[@i2). The last two effects
appear due to viscous effects and separation and are similarisdbes effects discussed
for the _huII. They are expressed by an a)d@O! f and cross-flow a:j)rcgg ficoas
respectively.

According to classical lifting body theory [57], the It ; (o) and induced drag
Ca._, f (a;) coefficients for a profile of the finite length can be approximéatethe following
formula

dg , :
c ¢ (0f) = do sina; = Cjq ¢ SIiNOg
=0 (B.39)
ot (ap) _
if \Mp) _ oo f
LAY LAY

Cq 1 (a) = sirfo; = Cq, o 1 sirfay ,

where A represents the aspect ratio of the tail area. Thableaoic denotes the effective
local flow angle of the fin and is defined below in equation (B.48).

Both, the circulation and the induced drag terms can be classifiéx laytached flow
effects and appear with indéx . Terms due to viscous effects pachgen have indek,
Hence, applying the coefficients from equation (B.39) and the effeetso the profile and
the cross flow drag, the fin forces in two dimensional flow forlsemalesa; appear:

Xp = Xp+Xp
= qUCq, t —Cq_a,f cosay) sirfoy S —q (€4, 1 U?S
2t + 2f

ZfA

—q [dcyq ¢ oSO+ Cy o ¢ SIMPO) SiNOL S — qllicy_¢ [sinoy| +Cq_ ¢ COSO) SNy § .

(B.40)

Based on these forces the resulting moment of the tail about ¢nenet poinCR is calcu-
lated as

MA = =X Z —% Z; . (B.41)



Appendix B Annotations to Derivation of Flight Mechanical Model 133

To notice is the lever armg ~ amgd  having different distance froroethieer of reference
because of the different attachment point of the attached andfloredstces.

Expanding the fin forces and moments into the three-dimensional flmmetessary
to describe the flow in terms of the local angles of attack ateslgy for the horizontal and
vertical fins respectively. They are expressed together with tioeresponding dynamic

pressures:

Wa,
o; = oe(X) = atana—-, (o

Ar

%(u/%f +WR), (B.42)

- - Va, Ruz +v2
Bs = Bs(x) = atanJ—, Ot 2(uAf +V3)- (B.43)

Af
Applying these developments into 2D flow equations () and accounting fonthargy of

the YA andz flow the fin forces due to 3D flow can be calculated.

Additional factor in calculating aerodynamics of the fin area adise to rolling
motion. The rolling motion induces local angle of attack at the fin edges

_ pb
a, ¢ = atar%2u 0 (B.44)
A
and the local dynamic pressure
b
Ay ¢ = g 2+ pég, (B.45)

whereb is the span of the fins. The computed induced angle of attattiedodal dynamic
pressure are used for determination of the roll moment of the fins

Léf = —r|_‘)2bqlo’f((clao’f + Cg, £)SIN20L, ¢ +Cy_¢ SINC, 4 \sinap’ DS - (B.46)

The first termrLp indicates the aerodynamic roll efficiencydaof the fins and is usually
derived from corresponding reference tables given, for example, remeé&e[6].

There are additional aerodynamic effects that lead to the roll eddomoment. They
appear due to the asymmetrical flow around the fins and modeled by usbalyreamic
moment coefficients, ,  for the horizontal fins ang for the verfinal

Lap, f = Yar (CLaOf + CLpB) S (B.47)
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The detailed treatment of the roll moment due to asymmetrmal df the fins can be also
found in reference [6].

For closing the aerodynamics of the tail area, the changes ofrttya@mic proper-
ties of the fins against the control surfaces of the horizontal atidaldins are modelled.
The control of the airship is achieved by change of the effectiveflovahngles of the fins

o = a(x) +n (N M
Bs = B(xp) + ()4 (B.48)
pf= Op s +ng (&) L£.

a

The surface efficiency factorqn(rl) (0 Ne(€) and their numerical appietioms
are referenced in [6], [57].

B.4.4 Integrated Aerodynamic Model

Since the model of the hull and the model of the fins are derivedaselgaran extra
enhancement of the complete model has been performed based on the progestitiom
reference [24]. It is known, that at rear part of the hull tlaeeeaerodynamic interference
effects between the hull and the fins. The aerodynamic componehéstaflt are influenced
by fins and vice versa. Introducing an additional scaling fagtor  heklusctunt the influ-
ence of the fins on the flow around the hull and is appeared as a icafitigl term in
describing the potential force and moment respectively. The infludrtbe fins on the hull
aerodynamics in the instationary flow is negligible and therefpre eppealy with the
stationary force and moment terms. The opposite interaction of thaehotlynamics on the
fin aerodynamics is described oy term and appear as multiplicaftcient of the fins
forces and moments.

At present, there is no analytical approach for describipg mnd vaislle.
They are therefore determined in [24] from static wind tunnel expetsrfor a number of
typical airships. Similar approach for the accounting the mutuakcormeections is adopted
for building the current aerodynamic model. The numerical values fee teefficients are
also provided through the aerodynamic model fit against curves generataddotumnel
experiments.

B.4.5 Aerodynamic Coefficients

As noticed in section 2.4.5 (aerodynamic part of the flight mechamiwadé!) the parameters
of the analytical aerodynamic model were adjusted by means of nondiméresondy-
namic coefficients determined from the wind tunnel experiments.aéhedynamic coeffi-
cients have been extracted at different values of free-strelagityeand flow anglesx and
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3. For a conventional airship they are defined as non dimensional forcecanent coeffi-
cients:

_ _2XA _ 2LA
C, = C = —
o U c>20\/2/3 o U c>20\/2/3bR

_ _2YA _ __2MA

& 7 puaver ad Em T Chavem (B.49)

A A

€, = 22Z 213 Cn = 22N2/3
pULV puULV< I

with U, denoting the free-stream velocify, -air density ¥nd -voluntieeohull.b, is the
span of the fins anlj; is the reference length of the airship.

The aerodynamic coefficients determined by the wind tunnel are usuadly i the
wind tunnel axes (e.g. dragy  and ldt-  coefficients) and additiomaistormation is
needed for transforming them into the airship body fixed frame. It caetbermed using
directional cosine transformation matifx,  with arguments of longitudinahd lateral3
incidence angles:

cosucosd —cosasinB —sina
Tia = sinp cosB 0|, (B.50)
sinacos3 —sinasinf}  cosa

The transformed aerodynamic forces yield

XA -D —p
YAl =T Y] = Tfa%Uo%Vm Cy (B.51)
ZA f -L a _CL a

and the moments
LA LA C/bg
MA = Tia|MA| = Tfa%Uc,%VZ’3 Colal - (B.52)
NA f NA a CnIR a

The subscript§ ] and ], denote the body fixed and wind tunnel axis respe@ivaiyl
L are the aerodynamic drag and lift forces respectively. Usingieqsi@B.51) and (B.52) it
is possible to perform the forward and back transformation from the twnnel to the body
coordinates.
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B.5 Force and Moment Derivatives

B.5.1 Approximated Form

The force and moment derivatives represent the coefficients dfalyier row expansion
when linearization of external forces and moments takes plaagg dsalytical representa-
tion of the gravity, buoyancy and aerodynamic forces and moments, isiblpds perform
the linearization analytically in terms of physically meaningfulapseters. The obtained
force and moment derivatives are summarized in equations (B.53)-(B.58)

- 213
Xy = PUg(=Cy, nV="=Cq ¢ S—Alg  + 27

pot

X = PW(RI0+ 2010 1y (Cy ke, )S)

Xig = PWo(ilZ, +1(Cy, 1 —NiCq,, 1)S%) (B.53)
X, = (B=G)cosH,
Xin = PUWoNg (Clao,f_nfcdmd, SN,
X5 = X5.(X0)
Y — Z —_ |UW 1‘ D
o "W puo%]k Zpot_znfclao’fSD
Y., = pkVwy,
1
Y,r = puo%]klgpgt—énf Clao*f S Xfa% (B-54)
Y,(p = (G-B)cosHy,= 0
1
Y = —péugﬂfclao,fsfrlz’
Z —_ |UW 1‘ D
o= pwo%k zpm_znfclao,foD
1
Z’W = Y!V = puo%klgp\g_énfclao,fgg
(B.55)

1
q = puo%‘”k'iqum*‘ 5" Clao,fsf XfE

Z,y = (B=G)sinBy= 0

1
Zy= _péucz)nfclao,f SNy
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L,

p:

1
—5PUMkC 1S n. bf
0

L.y = (BZgg—Gzg)coH,

L.

M,

u

¢
N,

N

1
= —péug i, t S Pene

1
pWoE‘”k I, 200, 1 M S XfE
N = ou.ln juw 41 0
v = PUo Mk Imy, * 261, f N S X,

1
N, = P%%k'r‘#ﬁoﬁécl%,f rlfoXéE

= (Bz.g—Gz-g)cog8,) + (Gx-g—BX:p)sing,

1
épucz)clao,fnf S$X Ny

= X5, (X)ZcT

puo%lk Mhe fnfsfxfajj
1
puo%llqu —54, frlfoXfD

pot

(GXcg—BXcg)coshy= 0

_ 1
= _épugclao,f N S X Ng

16_',:

B.5.2 Dominant Force and Moment Derivatives

137

(B.56)

(B.57)

(B.58)

By studying the equilibrium point condition and numerical order of some individutd of
the aerodynamic derivatives, it is also possible to make somef&atmns of the deriva-
tives, by neglecting the smallest of them. Thus, all derivatiteshave the multipliepw,

can be neglected from the analysis because of negligibly small vatlue wimmed vertical
velocity w,, . Moreover, numerical values of the geometry dependant mtel;ﬁ‘&@s v

IVW 1YW, were found to be negligibly small and can be therefore negletctemeFrectllln-
ear fl|g?1t the dominant derivatives are presented in Table B.2.
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Table B.2 Significant force and moment derivatives

Component Dominant Derivatives
Axial force X Xou KXoy X.s1
Side forceY Yo Yo Yoy Y’Z
Vertical forceZ Z,y Ly ,Z,q Z’ﬂ
Rolling momentL L,p ,L,ID ,L,(p L’E
Pitching momeniM M.q My, Myg Myg M.,
Yawing momentN N,, N, N, N’Z

B.5.3 Relationship Between Force and Moment Derivatives and Aslynamic
Coefficients

It is easy to establish the analytical relationship betweearraayodynamic derivatives and
their non dimensional coefficients. All important aerodynamic caeffts can be computed
from the corresponding force and moment derivatives under assumption bfstradly
angle of attackd, «1 ). Under this condition the following approximationyaire:

W,
aomu—o andsa 0 spod (B.59)

0 Ug Ug

Using this approximation the aerodynamic coefficients are relatégk tiorce and moment
derivatives as follows:

Y.V = Y uedp = Suc, v2%sp, MW = Suge,, V2131 3,
orl ogl
- R2c 23R = By2c vem IR
Y, or = 2uocer U ! M,,0q = 2uocmqv Ir U
and (B.60)
Z,, 0w = Z, uda = gugczavmesa, N, 0V = F%ugc,mVZ/?’IRES[i
ogl orl
- Puzc 23R = Byzc v2/3 —R
2,409 = 2uoczqv Uy | N, or = 2UoCan Ir U
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Note that the rotational variables in equation (B.60) are expressedndimensionalized
form:

oq - oqlg/ ug (B.61)
& - dplg/Uy. '
The aerodynamic coefficients yield
o = 2Y,,  _ 2l €, f S
Ye puyV2/3 Vv2/3
2Y,, 2N 13—y €y, f S X,
c. = =
27 2N 2N =ne ¢ 1 S
C - W - pot (]O - C
Z TAVEIE V 2/3 Ve
. - 22, _ _anlgpl;-'-nfclao,f S X, e
Z pUOVZ/is \/2/3|R Yr
and the moment coefficients are given by
o = 2M,, = 2N Iy + 1 Sfclao,fxfa
My onV 2/3|R \/2/3|R
2M,, 2N =M S €, f X¢
(of = =
my pro 2/3||% \/2/3|R (B 63)
2N,, 2N, — e S €l t %t |
c. = = = —C
Mg plgu,V2/3 V213 My
2N 2n I NS¢ £ XF
c i — po ag a =c
m,

n =
2.V 2/3 2\/2/3
" oplguyV gV
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B.6 Stability and Control Derivatives

B.6.1 Extraction of Aerodynamic Coefficients

In order to extract the aerodynamic relevant data from the fligatrdeted parameters, it is
first necessary to transform the identified stability and contravateves into force and
moment derivatives. Subsequently, the calculated derivativeseddarslerivation of aero-
dynamic coefficients.

The baseline for evaluation of the force and moment derivativestfrerlight deter-
mined stability and control derivatives is introduced in Chapter 3. Wsiok transformation
of equations, it is possible to compute the force and moment derg/ftore the estimated
stability and control derivatives. Thus in examining the longitudinal aedaladirectional
dynamics, the matrice®\',,, B'\,, A'lar B'lar  contain dimensional force and moment
derivatives, computed by:

AIIon = Mllonmlon ’ BIIon = MllonlzBlon (B.64)
and

Alat = M'iar By s Blat = M'jq[Biat » (B.65)
with M" ,,, andM" |, denoting the mass matrices together with apparent enassdf the

instationary aerodynamics (Munk factors). The dynafig, A, and cdaypl B ;
matrices contain the estimated stability and control derivatessectively. The expanded
form of the system matrices is summarized in Table B.3 depafar the longitudinal and
lateral-directional dynamics. It is easy to observe the importahcenfiguration properties
(i.,e. the massn , mass cen@G |, the moment of inertiaxmgtaf an airship on computa-
tion of the aerodynamic coefficients. Moreover the derivatives whechetated to the appar-
ent mass effectsX , Y, , etc.) are also required for accdeségmination of the major
aerodynamic coefficients.
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Table B.3 System matrices of Longitudinal and Lateral-directil dynamics

Longitudinal Dynamics Lateral-Directional Dynamics
m-X, O Mz O _m—Y,\., -mz.c ~0
. 0 m-2 ~0 . _|-m I I 0
M lon W M lat = ZCG XX Xz
Mz ~0 I,y—M, 0 ~0 I, 1,,-N, 0O
0 0 0 ) 0 0
_X,u ~0 —-mw, X, _Y,V mw, Y, =My, ~0
A = |0 Zw Zgtmy 0 Ay, = |70 BpmMicaWo) (Ly +Mzeglo) Lyg
~0 M, ( M,gmzzaWp) Mg N,, ~0 N, ~0
[0 0 1 0 |0 1 ~0 0
-0 X,; Y, 0
. _ 12,0 . 0 L,
BIon - 4 Blat - 5
M,n 0 N’Z ~0
0 O 0 O
Xy Xy Xq Xg Yy, Yp Y, Y(p
A = ~0 Z,, Z, ~0 A L, Ly Ly Ly
My My, Mg Mg N, N, N, N
0 0 1 O 0 1-~00
X X5 Y, 0
Z. 0 0L
BIon N Blat N
M, M5 N, 0
0 0 00
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Substituting the corresponding matrices from Table B.4 in transfamatjuations
(B.64) and (B.65), one obtains the expanded form of the force and momeatidesi. The
dominant derivatives are summarized in Table B.4.

Table B.4 Relationship between force and moment derivativiesfight determined parameters

Force/Moment Derivation using stability
Derivative and control derivatives
X0 (M—=X )X+ (lyy=M,4)ZccM = (M=X))X,
X,5T (m=X,,) X5
Zow (m=2)2Z,
Z,q (Mm-2)Z,—my,
Z,g (m=2Z,)Z,
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Force/Moment Derivation using stability
Derivative and control derivatives
Z, (m-2,)Z,
M, (lyy =M, )M, + MZ X, = (I, =M, )M,
M.q (lyy =M, g)Mg + MZ X, + M7 Wi = (1 — M, )My + Mz W
M,g (lyy=M,g))Mg + MZXg = (lyy—M,;)Mg
Mo (lyy =M. M+ mzecXy= (lyy =M g)M,
¥ (m=Y,)Y,—mzgL,
Yip (M=) Y, —MZ gl —mwy,
Y, (M=Y,,))Y, —mzcL, + my,
Yo (M=) Yo~ MZclg
Y. (M=Y,,) Y, —mzcl,
Lo Libp = MZegYp + 1 Ny + MZo Wy
L., I Ly —MZgY, + 1N, —mZ- U,
Lo ik o= MZe Yot LN
L. lyxle —MZgYe + 1, N;
N (1= NN, + 1L,
N, (1,—N N, +1, L,
N, (1= NN+ 1L, L,
N, (1= NNz + 1y,
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Flight Data Evaluation Results

C.1 Summary of Flight Maneuvers

The maneuvers presented in Table C.1 have been taken for the paestietation of the
postulated dynamical models. In order to perform the maneuver, thehpgomanually
acquired a steady flight condition. Its indication was a directidigdit fof the airship with
unchanged control inputs. Instantaneously after acquisition of the trinonedion, a per-
turbed motion was initiated by the controls. The control perturbatiores pegtly performed
by the pilot and partly generated by the onboard computer. The flight manbaverbeen
performed under limitations discussed in section 5.2.4.

Table C.1: Summary of identification flight records

Flight record Flight Duration Used controls
Acronym date [s] type/shape/mode

F4Sle 15.08.2002 55 elevator 3-2-1-1 automatic
F4S2e 15.08.2002 53 elevator 3-2-1-lautomatic
F4S3e 15.08.2002 53 elevator 3-2-1-lautomatic
F4S4e 15.08.2002 43 elevator doublet automatic
F4S5e 15.08.2002 38 elevator doublet automatic
F4S6e 15.08.2002 57 elevator 3-2-1-1 automatic
F4S7e 15.08.2002 80 elevator sin manual
F5S9%e 14.08.2002 51 elevator sweep manual
F5S12e 14.08.2002 60 elevator 3-2-1-1 manual
F3S2e 15.08.2006 52 elevator 3-2-1-1 automatic
F7S6r 15.08.2002 45 rudder 2x doublet

143
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C.2 Flight Data Analysis

C.2.1 Data Prefiltering

Figure C.1 illustrates the raw measurements from a typicaltlahgal maneuver. Applying
the power spectral density function to the measured data, the vibd&tiarbances can be
effectively observed in the frequency domain, as shown in Figure C.2a@iceable peak
can be detected near3[ HZ for the acceleration and angular rate emeasts. The effect
causing this peak are vibrations induced by the stern propeller rotatajgpraximately

360 rpm .

Since the indicated measurement disturbances have nonwhite natyrearthet be
directly utilized in the estimation algorithm based on likelihood caiteor parameter deter-
mination (see discussion in 4.2.2). Formally, if the disturbance megtel known, it would
be easy to design a prefilter based on the inverted noise model. Althosigipproach is
favored and does not invalidate the likelihood function, its practicakattdn is very
restricted. It is in general very difficult to model all disturba factors which appear in the
flight vehicle during the flight. Even if it is possible to derive aapaeterized disturbance
model, its determination requires significant evaluation effortsioften conflicting with
the plant model [39].

In the practical applications, the high frequency disturbances inghéedata are rem-
edied by a low pass filtering [12]. It is based on supposition, thaigeadynamic character-
istics of the flight vehicle are concentrated at lower frequentian the structural
oscillations. This assumption is also valid in the current anadysiee airship dynamics.

For evaluation of the airship flight data, a digital FIR (Finitgolilse Response) filter,
based on linear combination of input values was used. The filter @qyaids

1
Yi = p(-8sUi_s—ayli_g—8gUi_g=8Ui_p—alj_; +aU; + ... (C.1)

tagUi, g T, tagli L3 T U, 4 tasY; L 5),
with
ay, = 74,a, = 67,8, =46,a3=21,a, =3 ,a5 = -5,b = 216.

The filter incorporates a low pass characteristics with theffcfrequency designed to be at
f. = 1[Hz]. The advantage in utilizing this symmetrical filter is thadoes not introduce
any lag in the filtered values. The filtering has been applied toedlsurements, except the
GPS and the control indications of the pilot commands. The time bstirihe filtered sig-
nals are shown in Figure C.3.



Appendix C Flight Data Evaluation Results 145

10 2
@ 9 @
E E
8 8
S - §<
50 10 20 30 40 50 60 60
Q)
=
60 405 10 20 30 20 50 60
&
Y
£
3
N
©
1o 10 20 30 40 50 60 20 10 20 30 40 50 60
time [s] time [s]
Figure C.1: Raw measurements of airstream and inertial compger(anceleration due to gravity

removed)

= N
e 5
@ o
= o
8 - n
Q- a

80 : I 80 s :

102 10" 10° 10" 102 10* 10° 10"
Frequency [Hz] Frequency [Hz]
0 . . 20 . .

= “20p E 0F
I = -20f
@ 40 S
= E‘ -40F
-60} -
o 0 -60f-
n o
o -80f- 8ol
-100 . . -100 - -
102 10t 1° 10t 10° 107 1° 10t
Frequency [Hz] Frequency [Hz]
0

B = R

N -20} - T

T <

@ 3

T, -40 =

a ?

D -60} - o
-80 : : -80 — : :

102 10t 10° 10t 102 10t 10° 10t

Frequency [Hz] Frequency [Hz]

Figure C.2: Power Spectral Density (PSD) function of the ranam@ements



146 Appendix C Flight Data Evaluation Results

Wacs [m/s]

q['/s]
0[]

0 10 20 30 40 50

>0 10 20 30 40 50 0 10 20 30 40 50
time [s] time [s]
Figure C.3: Filtered IMU and airstream measurements

12
— measured
11 L _
@ 0 — corrected
= S ey
05 | n ~ A~ 7 X - <
g o 9 N '—
%4 <
03 ;_ = 8 W
02 H 7L . i
01 H : : : : :
E 6
0 0 10 20 | 30 40 50
1 E time [s
os | . g
02 — measured
03 1 = s — "corrected| ]
0.4 H =
g E
Rl Y YT VYA IYTYY FYNTA FNTE NYTY RN VYA IYTYY FNETA FNTE NYTY Y YT FYTYY FYUVY OO 8
-14-13-12-11 -1 -09-0.8-0.7-0.6-05-04-03-02-0.1 0 0.1 0.2 0.3 ( ;z
o=5.0° Xcor
-1.5

0 10 20 30 40 50
time [s]

Figure C.4: Computation of interference effects of the hulthe CS location and correction of t
airstream measurements.



Appendix C Flight Data Evaluation Results 147

C.2.2 Airdata Correction

In addition to the data prefiltering, the airstream measurements corrected for the free-
stream conditions in order to eliminate the interference eféattsed by the hull of the air-
ship. The interference effects were computed at different dlogles using CFD computa-
tions, as shown in Figure C.4. As can be seen, the applied corrdetdrts increase of the
axial airstream velocityl, o of about 20%. The corrected airstreiatities are then uti-
lized for the subsequent processing.

C.2.3 Checking for Compatibility

The data compatibility procedure is based on the flight path reconstradgorithm, where
signals from different sensors are compared using kinematioredalihe detailed overview
of this approach can be found in references [25], [28].

The flight path reconstruction algorithm involves a set of two statévao observation
equations. The first state equation represents the attitude aifshe in terms of rotational
variables and was already introduced in the equation (2.14)

1 singtan® cosptan® p_bp
— |0 cosp —sing q—bq . (C.2)

sing CoSsp
¥ |0 cos cos0 |7 P

¢

D-

r

The measure¢p q amd signals are assumed to be corrupted by sgdbdmsatonstants
bp, bq andb, respectively.

The second reconstruction equation utilizes the measured lineagratioglsax:, ,
ayq,,» az;, measured angular rates g, r, , and in equation (C.2) recondtiticker
anglesgo and

Uk|ci 0 r—b,  —(q-by)| | Ukci —_gsin® axc;— b,y
VK|C| = _(r_br) 0 p_bp VK|C| + gCOSGSin(p + ayc|_bay! (C3)
Wk |ci q-b, —(p—b)) O Wy | 9c0s9cosp) |az, —b,,

with Uy \cy» Vi, rjcr @ndwy ¢, indicating the flight path velocity components at center

of inertial measurement&§! . The unknovwns b,, b,, are the respedwedmpo-
nents of the acceleration measurement sigagls ayg, aand . It istageaus to
formulate equation (C.3) using flight path velocity @i location bec#@uagoids the

unmeasured rotational accelerations.



148 Appendix C Flight Data Evaluation Results

The output equations relate the reconstructed trajectories witheii®ured ones

¢ = @+b,
6 =0+bg (C.4)
W= Y+b
and
Uk|cs Ukci 0 r—=b, —(aq—-Dby)| |Xc)—Xc
Vk|cs Vgier] —|(r=b;) 0 P—by ||Yei—Yc (C.5)
Wkic Wk|ci q-by; —(p-Dy) 0 Zc1~Zcs

By means of the state and observation equations given in equationsG®G)2)tte
data consistency procedure can be reformulated to a standard idemtifim@blem. Mini-
mizing the error between the measured and reconstructed traggctioei@inknown bialsID ,
by, by, by, b,y 0y, .0, b by, and initial state parametess, ¢, Vieici Wkoci can

y L az H
be estimated. As a criteria, the maximum-likelihood functionbeantilized

N
J(© = ZeiTR—lei, (C.6)
i=1

where elements of the error vectpr  are

G — @
6,,—6
e =| WV (C.7)

Uajcs~Yk|cs

Vajcs—Vk|cs

| Wajcs™Wk|cs

and the elements of the covariance maRix  were taken from thdicgteons of the mea-
surement components. In this formulation, the identification problemresgan extensive
computational effort, involving an extended Kalman filter to account®munknown forc-

ing functions caused by wind and the sensor noise.

For the practical use, however, it is recommended to admit $sira@ifications. One
of them is to neglect the process noise and to make an open loop iotegf#tte state equa-
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tions. In this approximation, a reasonable fit between the measwteédeareconstructed tra-
jectories can be achieved only if the wind and other unknown disturbancésnmantly
sensor noise) have only a minor presence, i.e. do not distort greadiyeitievely measured
signals. Therefore, the goodness of the fit between the measurextansitructed velocities
can be taken as the plausibility criteria for selecting the flmaneuvers for the subsequent
estimation purposes.

Since the sensor errors also appear as bias pararbgteln§ hin that estimation
model (Equations (3.37) and (3.39)), their determination from the datstemty procedure
is not of the primary importance. Important here is to show that througteselection of
the appropriate bias constants, a compatibility of measured quacsitidse achieved. Equa-
tion (C.4) does not consider any drift errors of the measured Egkrsalt can be neglected
due to the fact, that duration of the identification record is noyndakes not exceed 60 sec-
onds. Within this interval, the drift effects in the measured rEabgles can be neglected.
Moreover, because of relatively small outer dimensions of the ho#Rip, it is assumed
that all sensor positions could be accurately determined and not changmg) terflight.
The time delays between signal acquisition of the IMU platform laadtrasonic anemom-
eter are assumed to be negligibly small and neglected.

For the longitudinal maneuvers, it is preferable to perform thecdatgatibility check
using only longitudinal variables:

X = [u WB]T, u= [axm azg q}T’ y = [UA|CSWA|CSGJT : (C.8)

This reduced formulation is used to ensure that not only the wind, butisds@idable
cross-coupling effects, altogether have only insignificant influence onotigatudinal
motion.

In the next, several results of application of the data compatitiigck to three differ-
ent longitudinal maneuvers will be presented. In the first exantpétrdted in Figure C.5, a
very poor fit between the measured and reconstructed velocitidgeseat. The large veloc-
ity magnitudes can be explained by the existence of a strong turbulgdcéfihough at the
beginning of record, all control inputs were held constant, the amstvebocity measure-
ments indicate a large deviations from their mean/trimmed valles.same behavior is
observed during and at the end of the record.

The second example, shown in Figure C.6, illustrates a trajeetopstruction for the
flight record with relatively smooth airspeed measurements. drctse, the trajectory fit is
still unsatisfactory. Not only the linear velocitieg s Wy ,cs . bubalse reconstructed
pitch angle6 does not match the corresponding measured quantities. Jore fozasuch a
large discrepancies arise from the dominance of the cross-coufiéints eBecause of rela-
tively small aerodynamic rolling moment of the fins, in some fligktances the induced roll
oscillations (due taCcG# CB ) could not be effectively dampened. This |eattte thoticed
poor matching in trajectories.

Finally, the last example demonstrates a case, where a gosshemt between the
measured and reconstructed quantities is achieved. As can beosedfigure C.7, the dis-
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Figure C.7: Compatibility results for identification maneuvdilized for estimation purposes

tortions of the wind, as well as cross-coupling and other unwantexdseffere at minimum

level. It can be also concluded from the measurements itegi]atively smooth trajectories
and from the fact that the airship shows an ability to return t@dynthe same trim condi-
tion it held before the perturbation maneuver has began. Some emoatcinng the veloc-

ity components are acceptable because of unavoidable atmospheric digirbanc

Obviously, only these flight records, where the data compatibilityysisalvas suc-
cessful, have been further utilized for estimation of the modahpeters.

Although it seems to be advantageous to utilize also the GPS meastgamthe
flight path reconstruction procedure, in the current evaluations thdatyetstimations from
the GPS receiver were not used directly in the data reconstrutliere were two reasons
for not doing it. First, the reconstruction using GPS velocity can npetiermed using lon-
gitudinal variables only, because it requires the transformationtfirergeodetic to the body
frame of reference (equations (2.4) and (2.33)). Second, the velsiimagons provided by
GPS receiver have apparent, but unknown time delgys>1[s] , wWhich should be
accounted properly in the data processing. All these factors leacté@ase of the number of
unknown parameters. In fact, by trying out this setup, serious convengertems of the
numerical optimization algorithm have been encountered. Moreover, ratabpigy of the
obtained parameter values was acquired. It should be also noticatfltbagh the GPS data
were not used directly in the data consistency procedure, its absalluts of the estimated
velocity vector|Vgpd4 were used for comparison with the absolute value dirtsream
velocity \VA\ in order to provide a raw estimation of the wind intensity.
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C.3 Estimation Results of Elevator Input Maneuvers

C.3.1 Flight Record F4Sle

Table C.2: Estimated parameters of the full state longitudmatel

Reduced
Parameter Model Value Fully parametrized parametrization
(B/G=0.98) (C-R bounds) (C-R bounds)
Xu -0.099 -0.009 (0.235) -0.0006 (0.120)
X -0.419 0.108 (0.37) -b
Xq -0.023 -0.002 (2.67) -
Xe -0.249 -0.140 (0.330) -
Zu -0.005 (0.023)
ZW -0.390 -0.805 (0.353) -0.88 (0.042)
Zq 3.937 4.212 (4.372) 4.507 (0.37)
Ze 0.015 0.147 (0.629) -
Mu -0.004 0.0073 (0.029) -
MW 0.108 0.076 (0.76) 0.068 (0.016)
MO| -0.620 -1.209 (0.48) -1.313 (0.092)
Me -0.137 -0.201 (0.066) -0.198 (0.009)
Xn 0.172 -0.10 (0.148) -0.15 (0.038)
Zn -1.242 -0.498 (0.233) -0.513 (0.057)
Mn -0.430 -0.183 (0.108) -0.188 (0.08)
bu - -0.075 (0.033) 0.012 (0.007)
by, - -0.009 (0.140) 0.017 (0.072)
bq - 0.0006 (0.012) 0.0001 (0.006)
b, - 9.519 (0.1055) 9.509 (0.09)
by, - 0.134 (0.059) 0.057 (0.126)
bO| - -0.006 (0.009) -0.006 (0.012)
be - 0.035 (0.010) 0.04 (0.010)
baX - -0.050 (0.016) -0.037 (0.016)
b, - 0.047 (0.194) 0.056 (0.011)
Ug 9.5 9.531 9.284 (0.26)
Wy - -0.06 (0.35) 0.0376 (0.48)
Iterations 106 21
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Reduced
Parameter Model Value Fully parametrized parametrization
(B/G=0.98) (C-R bounds$) (C-R bounds)
Eigenvalue -0.07 -0.015 -0.0006
-1.15 -1.491 -1.590
0.042 +/- 0.2i -0.258 +/- 0.173i -0.317 +/- 0.083i

Taylor Inequality
Coefficient (TIC):

u 0.23 0.52
w 0.08 0.08
q 0.048 0.032
0 0.017 0.020
axc, 0.29 0.23
az;, 0.056 0.056

a. Multiplied with a correction factor specified Bguation (4.38)

b. Not estimated
c. Manually stopped
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Table C.3: Summary of longitudinal parameter values estimatitd reduced state model

Output Error (C-R bound) Output Error (C-R bound)
Parameter Model Value Mg estimated Mg fixed
ZW -0.390 -0.572 (0.041) -0.581 (0.041)
Zq 3.937 2.602 (0.356) 2.650 (0.368)
MW -0.108 0.073 (0.023) 0.680 (0.002)
Mq -0.620 -1.41 (0.113) -1.42 (0.016)
Me -0.137 -0.184 (0.011) -0.78
Zn -1.24 -0.498 (0.056) -0.504 (0.056)
Mn -0.430 -0.242 (0.009) -0.242 (0.003)
bW - 0.0008 (0.073) -0.001 (0.072)
bq - -0.002 (0.006) -0.002 (0.005)
bé - -0.003 (0.010) -0.003 (0.010)
by, - 0.064 (0.128) 0.078 (0.125)
bo| - -0.001 (0.013) -0.002 (0.005)
be - 0.030 (0.015) 0.029 (0.015)
b, - -0.016 (0.145) -0.015 (0.143)
Uy 9.5 9.640 (0.253) 9.642 (0.253)
Iterations 18 6
Eigenvalue -1.15 -1.48 -1.5
0.042 +/- 0.2i -0.23 +/- 0.121i -0.25 +/- 0.08i
TIC:
wW 0.088 0.088
q 0.046 0.046
0 0.019 0.019
az:, 0.069 0.069

a. Fixed value
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Table C.4: Summary of longitudinal parameter values estimatill extended model

Parameter Model Value Output Error Filter Error

ZW -0.390 -0.615 (0.044) -0.703 (0.060)
ZO| 3.937 2.54 (0.393) 3.101 (0.240)
MW -0.108 0.079 (0.018) 0.072 (0.03)
MO| -0.620 -1.41 (0.151) -1.39 (0.051)
Me -0.137 -0.182 (0.016) -0.18 (0.037)
Zn -1.24 -0.570 (0.061) -0.552 (0.073)
Mn -0.430 -0.236 (0.011) -0.205 (0.014)
bW - 0.0005 (0.073) -0.001 (0.048)
bq - 0.007 (0.008) 0.002 (0.010)
bW - 0.064 (0.128) 0.103 (0.025)
bo| - -0.001 (0.013) -0.0004 (0.012)
b, - -0.016 (0.145) -0.020 (0.125)
Ug 9.5 9.375 (0.279) 9.608 (0.23)
Oy - - 0.030 (0.007)
g, - - 0.003 (0.0008)

Iterations 15 8
Eigenvalue -1.15 -1.51 -1.54
0.042 +/- 0.2i -0.25 +/- 0.09i -0.27 +/- 0.08i
TIC:

wW 0.088 0.026
q 0.046 0.025

az:, 0.069 0.006
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C.3.2 Fight Record F4S2e
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Table C.5: Summary of longitudinal parameter values estimatitll extended model

Parameter | Model Value Output Error Filter Error
ZW -0.404 -0.728 (0.049) -0.825 (0.058)
ZO| 4.118 3.147 (0.483) 3.960 (0.619)
MW 0.114 0.091 (0.018) 0.081 (0.016)
MO| -0.641 -1.623 (0.072) -1.634 (0.144)
Me -0.016 -0.192 (0.021) -0.28
Zn -0.135 -0.714 (0.079) -0.652 (0.076)
Mn -0.468 -0.271 (0.015) -0.229 (0.023)
by, - 0.016 (0.011) 0.011 (0.030)
bq - 0.005 (0.013) 0.006 (0.005)
by, - -0.011 (0.14) -0.011 (0.009)
bo| - 0.005 (0.020) 0.003 (0.017)
baZ - -0.049 (0.269) -0.033 (0.263)
Ug 10.0 10.091 (0.338) 10.107 (0.22)
Oy - - 0.022 (0.008)
Ty - - 0.002 (0.001)
Iterations - 21 14
Eigenvalue -1.15 -1.78 -1.85
0.052+/-0.16i -0.18 -0.19
-0.32 -0.41
TIC:
wW 0.122 0.012
q 0.058 0.003
az; 0.083 0.021

157
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C.3.3 Fight Record F4S3e
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Figure C.11:Filtered measurements during F4S3e flight maneuver
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Table C.6: Parameter values estimated from F4S3e record widnded longitudinal model

Appendix C Flight Data Evaluation Results

Parameter Model Value Output Error Filter Error
ZW -0.376 -0.608 (0.038) -0.672 (0.022)
ZO| 3.742 2.252 (0.37) 2.702 (0.313)
MW 0.102 0.080 (0.006) 0.075 (0.007)
My -0.599 -1.45 (0.049) -1.41 (0.07)
Me -0.137 -0.176 (0.018) -0.18
Zn -1.128 -0.617 (0.052) -0.582 (0.021)
Mn -0.391 -0.244 (0.013) -0.219 (0.010)
bW - -0.021 (0.076) 0.031 (0.025)
bq - 0.006 (0.009) 0.008 (0.008)
by, - -0.021 (0.144) -0.029 (0.034)
bq - 0.003 (0.014) 0.0004 (0.011)
b, - -0.027 (0.15) 0.011 (0.136)
Ug 9.20 9.16 (0.26) 9.09 (0.25)
Oy - - 0.036 (0.008)
0, - - 0.002 (0.001)
Iterations 14 10
Eigenvalue -1.04 -1.53 -1.52
0.021 +/- 0.208i | -0.24 +/- 0.017i -0.25 +/- 0.08i
TIC:
wW 0.117 0.012
q 0.040 0.003
az- 0.066 0.021
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C.3.4 Flight Record F4S4e
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Figure C.14Filtered measurements of F4S4e flight maneuver
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Table C.7: Parameter values estimated from F4S4e record witnded longitudinal model

Parameter Model Value Output Error Filter Error
ZW -0.3916 -0.659 (0.061) -0.721 (0.088)
Zq 3.95 2.757 (0.524) 3.256 (0.474)
MW 0.109 0.069 (0.005) 0.067 (0.033)
Mq -0.622 -1.379 (0.053) -1.299 (0.274)
Me -0.137 -0.184 (0.021) -0.18
Zn -1.25 -0.597 (0.069) -0.547 (0.082)
Mn -0.433 -0.225 (0.007) -0.205 (0.033)
bW - -0.007 (0.050) -0.010 (0.029)
bq - 0.012 (0.004) 0.008 (0.003)
bW - 0.020 (0.078) 0.032 (0.025)
bo| - -0.008 (0.007) -0.005 (0.008)
baz - 0.078 (0.084) 0.034 (0.087)
Ug 9.67 9.693 (0.276) 9.572 (0.314)
Oy - - 0.015 (0.005)
0, - - 0.002 (0.008)
Iterations - 15 12
Eigenvalue -1.10 -1.48 -1.46
0.035 +/- 0.204i -0.27 +/- 0.08i -0.28 +/- 0.1i
TIC:
wW 0.090 0.012
q 0.025 0.003
az; 0.049 0.021
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Table C.8: Parameter values estimated from F4S5e record witnmded longitudinal model

Appendix C Flight Data Evaluation Results

Parameter Model Value Output Error Filter Error
ZW -0.393 -0.692 (0.072) -0.833 (0.089)
Zq 3.977 2.939 (0.648) 3.065 (0.639)
MW 0.11 0.069 (0.006) 0.067 (0.022)
Mq -0.625 -1.402 (0.065) -1.492 (0.130)
Me -0.137 -0.186 (0.021) -0.18
Zn -1.266 -0.641 (0.087) -0.530 (0.091)
Mn -0.438 -0.240 (0.008) -0.219 (0.021)
bW - 0.043 (0.061) 0.024 (0.033)
bq - 0.011 (0.004) 0.008 (0.005)
bW - -0.047 (0.089) -0.035 (0.019)
bo| - -0.003 (0.007) 0.001 (0.008)
baz - 0.066 (0.089) 0.073 (0.121)
Ug 9.7 9.74 (0.318) 9.712 (0.29)
ay - - 0.015 (0.005)
0, - - 0.001 (0.0006)
Iterations - 14 8
Eigenvalue -1.11 -1.52 -1.57
0.035+/-0.203i -0.26+/-0.05i -0.16
-0.60
TIC:
wW 0.098 0.012
q 0.026 0.003
az- 0.061 0.021
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C.3.6 Flight Record F4S6e
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Table C.9: Parameter values estimated from F4S6e record witnded longitudinal model

Parameter Model Value Output Error Filter Error
ZW -0.321 -0.52 (0.031) -0.448 (0.039)
ZO| 2.931 1.519 (0.231) 1.997 (0.220)
MW 0.076 0.054 (0.004) 0.057 (0.011)
MO| -0.517 -1.117 (0.028) -1.028 (0.093)
Me -0.137 -0.187 (0.015) -0.18
Zn -0.674 -0.505 (0.047) -0.418 (0.041)
Mn -0.233 -0.162 (0.006) -0.145 (0.012)
bW - -0.059 (0.038) -0.013 (0.012)
bq - -0.011 (0.014) -0.008 (0.006)
by, - -0.034 (0.135) -0.054 (0.012)
bo| - 0.007 (0.009) 0.009 (0.009)
baZ - -0.076 (0.087) -0.092 (0.089)
Ug 7.4 7.385 (0.197) 7.504 (0.374)
Oy - - 0.013 (0.004)
g, - - 0.001 (0.0005)
Iterations - 33 12
Eigenvalue -0.807 -1.08 -1.04
-0.031+/-0.224i -0.27+/-0.12i 0.21 +/- 0.18i
TIC:
wW 0.074 0.012
q 0.044 0.003
az:, 0.074 0.021
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Table C.10:Parameter values estimated from F4S7e record witnded longitudinal model

Parameter Model Value Output Error Filter Error
ZW -0.402 -0.702 (0.033) -0.775 (0.044)
Zq 4.096 2.84 (0.360) 3.59 (0.238)
MW 0.113 0.074 (0.007) 0.081 (0.012)
MO| -0.638 -1.622 (0.077) -1.683 (0.117)
Me -0.137 -0.181 (0.139) -0.18
Zn -1.338 -0.67 (0.048) -0.580 (0.023)
Mn -0.464 -0.262 (0.009) -0.226 (0.014)
bW - 0.004 (0.063) 0.004 (0.131)
bq - 0.003 (0.009) 0.004 (0.006)
bW - -0.016 (0.103) -0.045 (0.026)
bo| - 0.005 (0.013) 0.002 (0.008)
b, - -0.072 (0.162) -0.076 (0.110)
Ug 10.0 10.028 (0.155) 9.997 (0.256)
ay - - 0.020 (0.004)
0, - - 0.002 (0.0008)
Iterations - 20 14
Eigenvalue -1.14 -1.72 -1.85
0.0417+/-0.201i -0.43 -0.43
-0.17 -0.18
TIC:
wW 0.067 0.012
q 0.037 0.003
az; 0.052 0.021
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C.3.8 Flight Record F5S9e
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Table C.11: Parameter values estimated from F5S9e record witnded longitudinal model

Parameter Model Value Output Error Filter Error
ZW -0.368 -0.664 (0.062) -0.737 (0.052)
ZO| 3.63 2.187 (0.621) 3.116 (0.728)
MW 0.099 0.060 (0.008) 0.060 (0.012)
MO| -0.587 -1.237 (0.083) -1.299 (0.113)
Me -0.016 -0.192 (0.021) -0.18
Zn -1.065 -0.629 (0.063) -0.540 (0.059)
Mn -0.369 -0.223 (0.014) -0.174 (0.012)
by, - 0.124 (0.105) 0.132 (0.084)
bq - 0.018 (0.017) 0.012 (0.018)
by, - 0.047 (0.144) 0.011 (0.044)
bq - -0.005 (0.023) -0.001 (0.037)
baZ - 0.137 (0.26) 0.100 (0.28)
Ug 9.0 8.881 (0.275) 8.941 (0.549)
Oy - - 0.035 (0.11)
0, - - 0.003 (0.001)
Iterations - 16 14
Eigenvalue -1.01 -1.29 -1.43
0.014 +/- 0.210i| -0.30 +/- 0.09i -0.30 +/- 0.07i
TIC:
wW 0.134 0.012
q 0.058 0.003
az:, 0.081 0.021
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Table C.12:Parameter values estimated from F5S12e recordextdnded longitudinal model

Parameter Model Value Output Error Filter Error
ZW -0.389 -0.667 (0.074) -0.710 (0.068)
ZO| 3.919 3.107 (0.781) 3.327 (1.031)
MW 0.108 0.072 (0.013) 0.078 (0.021)
Mq -0.618 -1.413(0.138) -1.493 (0.206)
Me -0.137 -0.193 (0.031) -0.18
Zn -1.23 -0.489 (0.094) -0.479 (0.085)
Mn -0.426 -0.231 (0.020) -0.189 (0.026)
by, - 0.042 (0.143) 0.124 (0.105)
bq - -0.004 (0.013) -0.004 (0.015)
bW - 0.030 (0.216) 0.08 (0.055)
bq - 0.014 (0.018) 0.010 (0.020)
b, - -0.115 (0.227) 0.093 (0.138)
Ug 9.6 9.559 (0.282) 9.536 (0.21)
Oy - - 0.047 (0.119)
0, - - 0.003 (0.001)
Iterations - 13 9
Eigenvalue -1.09 -1.54 -1.66
0.031+/-0.020i -0.27 +/- 0.1i -0.27 +/- 0.04i
TIC:
wW 0.141 0.012
q 0.043 0.003
az; 0.065 0.021
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C.3.10 Flight Record F3S2: High Turbulence
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Table C.13:Parameter values estimated from F3S2e record witnded longitudinal model

Parameter Model Value Output Error Filter Error
ZW -0.422 -1.34 (0.156) -0.851 (0.075)
Zq 4.361 8.645 (1.291) 3.145 (0.934)
MW 0.121 0.096 (0.007) 0.090 (0.041)
Mq -0.668 -0.916 (0.200) -1.693 (0.026)
Me -0.137 -0.031 (0.023) -0.18
Z, -1.507 -0.481 (0.257) -0.455 (0.085)
Mn -0.522 -0.503 (0.164) -0.191 (0.026)
by, - 0.042 (0.143) 0.124 (0.105)
bq - -0.004 (0.013) -0.004 (0.015)
bW - 0.030 (0.216) 0.08 (0.055)
bq - 0.014 (0.018) 0.010 (0.020)
b, - -0.115 (0.227) 0.093 (0.138)
Ug 10.6 10.608 (1.34) 10.53 (1.21)
Oy - - 0.047 (0.119)
0, - - 0.003 (0.001)
Iterations - 38 9
Eigenvalue -1.22 -0.028 -1.87
0.056+/-0.195i -1.11+/-0.412i -0.16
-0.51
TIC:
wW 0.088 0.012
q 0.046 0.003
az:, 0.069 0.021
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C.4 Estimation Results of Lateral-Directional Maneuver

Table C.14:Estimated parameters of the lateral-directional ehod

183

Output Error Filter-Error
Parameter Model value (C-R bounds) (C-R bounds)
YV -0.416 -0.429 (0.356) -0.525 (0.431)
Y, -3.985 -1.059 (2.877) -1.076 (1.77)
LID -1.493 -1.483 (0.264) -1.492 (0.156)
Lr 1.36 4.503 (0.835) 4.602 (0.832)
L(p -2.545 -3.436 (0.467) -3.496 (0.443)
NV -0.131 -0.059 (0.052) -0.06 (0.031)
N, -0.584 -1.522 (0.411) -1.541 (0.425)
Y, 1.455 0.738 (0.243) 0.711 (0.245)
LZ 0.213 0.361 (0.092) 0.372 (0.104)
NZ -0.495 -0.282 (0.038) -0.282 (0.025)
b, - -0.017 (0.118) -0.021 (0.100)
bp - 0.002 (0.091) 0.001 (0.121)
br - -0.004 (0.030) 0.002 (0.028)
b{.n - 0.005 (0.041) 0.002 (0.067)
b\: - -0.094 (0.207) -0.082 (0.204)
bID - -0.005 (0.041)( -0.001 (0.053)
b, - 0.015 (0.018) 0.021 (0.024)
b(p - 0.044 (0.027) 0.038 (0.011)
bay - 0.077 (0.245) 0.079 (0.210)
Ug - 10.26 (0.835) 10.46 (0.791)
Wo - 0.194 (0.750) 0.205 (0.643)
0, - - 0.023 (0.032)
Op - - 0.002 (0.0002)
o - - 0.001 (0.0001)
Iterations - 38 12
Eigenvalue 0.234 -0.037 -0.046
-1.24 -1.60 -1.61
-0.744+/-1.42i -0.740+/-1.69i -0.746+/-0.172i
TIC:
v 0.17 0.012
p 0.13 0.003
r 0.07 0.021
(0) 0.12 0.017
aye, 0.11 0.004
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