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Abstract 

During the 88th and 96th Conferences of the Working Committee of the Surveying 
Authorities of the States of the Federal Republic of Germany (AdV) in 1991 and 1995 
the resolution was passed to introduce the European Terrestrial Reference System 1989 
(ETRS89) with the universal transversals Mercator projection (UTM) as map 
projection of GRS80 Ellipsoid in Germany and Europe uniformly. The task of 
transferring the existing two-dimensional Gauss-Krüger coordinates in German 
geodetic reference system (DHDN) into UTM coordinates in the ERTS89 datum arises 
from these resolutions. 

For the concrete “Introduction of ETRS89 into Baden-Württemberg” the transfor- 
mation with the two models of the 7-Parameter Helmert transformation and the 
6-Parameter Helmert transformation using the 131 collocated points (131 BWREF 
points in Baden-Württemberg) are firstly tested and discussed. Because of the special 
characteristic of the main triangle net of Baden-Württemberg (countrywide variable net 
scales, inhomogeneous point accuracies and transformation residual in the decimeter 
level) an alternative transformation procedure with the Total Least-Squares method is 
also applied in the estimation of the 7-Parameter Helmert transformation and 
6-Parameter Affine transformation based on the 131 collocated points. After the review 
of basis mathematic background of the TLS method, these methods are complemented 
with MATLAB. Furthermore, 10 selected points are as test points to study the 
influence on those points after using TLS transformation parameters. The results are 
analyzed and compared with these results from the conventional LS method, and the 
advantages and shortcomings of this TLS method are discussed.  

 

 

 

Keywords: Similarity transformation, affine transformation, Helmert transformation, 
Total Least-Squares method, DHDN, ETRS89, SVD (Singular value decomposition). 
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1. Introduction 

With the development of space geodesy, the modern geodetic reference frames are 
substantially produced by different national and international organizations, such as the 
IERS (International Earth Rotation and Reference Systems Service) etc. This brings the 
tasks to transform the classical coordinates to the new space geodesy based reference 
frames (Cai, 2006). The IAG sub-commission for the European Reference Frame 
(EUREF), following its Resolution adopted in Florence meeting in 1990, recommends 
that the terrestrial reference system to be adopted by EUREF will be coincident with 
ITRS at the epoch 1989.0 and fixed to the stable part of the Eurasian Plate. It was 
named as European Terrestrial Reference System 89 (ETRS89). 

And ETRS89 is realized through several ways, and specifically: 
1) Using ITRS realizations: For each frame, labeled ITRFyy a corresponding frame in 

ETRS89 can be computed and labeled ETRFyy. The following ETRF solutions are 
presently available: ETRF89; ETRF90; ETRF91; ETRF92; ETRF93; ETRF94; 
ETRF96; ETRF97; ETRF2000. 

2) Positioning with GPS measurements of a campaign or permanent stations: using 
recent ITRFyy station coordinates and IGS precise ephemerides. 

In Germany, the Federal Agency for Cartography and Geodesy (BKG) is involved in 
the maintenance of this system through the German Reference Network (DREF91). It 
has been carried out in April 1991 by GPS campaign, which comprises 109 sites. The 
standard deviation of the final set of three-dimensional coordinates is 1 to 2 cm 
horizontal, 2 cm vertical (Cai, 2000).  

The Primary Triangulation Net of the West Germany (DHDN) was emerged between 
1870 and 1950 from the combination of several individual networks. The Bessel 
Ellipsoid (1841) served as a reference surface. The astronomic azimuth of the triangle 
side connecting Rauenberg and Berlin-Marienkirche oriented the origin points in 
Rauenberg near Berlin and the networks. In Baden-Württemberg, there are more than 
10000 two-dimensional Gauss-Krüger coordinates in DHDN. They should be 
transformed into UTM coordinates in the ETRS89 datum with GRS80 Ellipsoid. The 
transformation possibilities with different transformation models and with different 
estimation methods have been widely discussed and developed. In most case the 
estimation of the transformation-parameters are performed with the Least Squares 
method. However, in some cases, design matrix elements are also stochastic. Usually, 
this is ignored in classical least squares and this ignorance propagates as an uncertainty 
in the solution results (Cai, 2000 and 2006). 

Total Least Squares method (TLS) is a new method of parameter estimation in linear 
models that considers errors in some or all variables. By using TLS, coordinates of 
points in two coordinate systems are considered with their error component, which lead 
to the errors in the design matrix elements of the transformation equations. By this 
means, residuals of transformation can be reduced. Especially, as the old local 
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coordinates are with lower accuracy or with some distortions. 

In this study the two transformations models (six-parameter affine transformation 
model and seven-parameter Helmert transformation mode) are firstly reviewed. They 
will be analyzed using the 131 collocated points (131 BWREF points in Baden- 
Württemberg), in which the height reference surface in Germany will be shortly 
reviewed. Then the mathematic foundations of TLS method are reviewed. Two 
different solutions (Van Huffel, 1991 and Schaffrin, 2005) are introduced. Then the 
transformation procedures with Least Squares (LS) and Total Least Squares (TLS) 
estimators are performed with the same data sets (131 collocated points). At the same 
time in order to study the influence of TLS method on the new points, 10 points are 
selected as test points. Finally, some conclusion and further studies will be given based 
on the comparison and analysis. 

2. Transformation models and appropriate analysis with 
collocated points in Baden-Württemberg 

2.1. Six parameter affine transformation models (2D) 

In the case of map coordinates, which result from the projection of the reference 
ellipsoid into plane, a two-dimensional model is more useful. For example, when 
between the respective reference systems (DHDN, Bessel and ETRS89, GRS80) no 
direct mathematical relationship exists. Two-dimensional transformation models are 
used. As a result, the Gauss-Krüger coordinates of the net points in DHDN can be 
transformed only over collocated points into UTM coordinates related to ETR89. For 
the two dimensional transformation models, there are three, four, five or six 
transformation parameters, whose number depends on the respective requirements. 
Because the models with three or five parameter can make for some problems, e.g. 
non-linear equations problem, so they will not be considered here. In most applications 
of the plane-transformation, the 6-parameter affine transformation model is used and is 
recommended by the Surveying Authorities of the States of the Federal Republic of 
Germany (AdV). Therefore, the 6-parameter affine model will be reviewed and applied 
in estimating the parameters of the plane transformation parameters based on 131 
collocated points in Baden Württemberg (Cai, 2006). 

With the planar affine transformation, where six parameters are to be determined, both 
coordinate directions are rotated with two different angles α  and β . So that not only 
the distances and the angles are distorted, but usually also the original orthogonality of 
the axes of coordinates is lost. An affine transformation preserves collinearity and 
ratios of distances. While an affine transformation preserves propor- tions on lines, it 
does not necessarily preserve angles or lengths (Cai, 2006). 

The 6-parameter affine transformation model between any two plane coordinates 
systems, e.g. from Gauss-Krüger coordinate ( , )H R  in DHDN  directly to the 
UTM-Coordinate  in ETRS89 can be written asEquation Chapter 2 Section 1 

( )G
( , )N E
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cos sin
sin cos

NH R

H R E

tN H
E R t

λ α λ β
λ α λ β

− ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
.         (2.1.1) 

Where: 

Nt ,      Translation parameters Et
α , β   Rotation parameters 

Hλ , Rλ   Scale corrections 

2.2. Seven parameter Helmert transformation models (3D) 

Several mathematical models have been developed which describe the functional 
relationship between pairs of three-dimensional coordinates. Three mathematical 
models, namely Bursa-Wolf (Bursa, 1962, Wolf, 1963), which is also usually noted as 
the seven parameter Helmert model, Molodensky-Badekas (Molodensky et.al., 1960; 
Badekas, 1969) and Veis (Veis, 1960) are noted as standard models due to their 
extensive use around the world over many years. The models differ from each other in 
several ways including a prior condition, the type of coordinate used and the 
interpretation of results. Equation Chapter 2 Section 2 

The three-dimensional conformal coordinate transformation is also known as the 
seven-parameter similarity transformation. It transfers points from one three-dimensi- 
onal coordinate system to another (Wolf and Ghilani 1997). The parameters are three 
translations (shift of origin), three rotations, and one parameter modeling a possible 
scale difference. The transformation preserves the shape of objects (Acar, 2006). 

 

 7 parameter Helmert transformation model (Bursa-Wolf model) 

1
(1 ) 1

1

G XL

G

L ZG

X TX
Y d Y

Z TZ

γ β
λ γ α

β α

−⎡ ⎤

L YT
⎡ ⎤⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

        (2.2.1) 

 

 

 Molodensky-Badekas model 

0 0

0

0 0

0
0

0
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G L Y L L L L

G L Z L L L L

X X X XX TX
Y Y T Y Y d Y Y
Z Z T Z Z Z Z
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− −−

0

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + + − − + − ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎥⎣ ⎦ ⎣ ⎦

   (2.2.2) 
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 Veis model 

0

0

0

G X L L L

G Y L L L

G Z L L L

X T X X X
Y T Y Y Y d
Z T Z Z Z

λ
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⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+

0

         (2.2.3) 

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 sin cos sin cos cos
0 sin sin cos cos sin

0 cos 0 sin

L L L L L L L L L x

L L L L L L L L L y

L L L L L L z

Z Z Y Y B L L B L
Z Z X X B L L B L
Y Y X X B B

ω
ω
ω

− − − −⎛ ⎞⎛
⎜ ⎟⎜− − −⎜ ⎟⎜
⎜ ⎟⎜− −⎝ ⎠⎝

⎞⎛ ⎞
⎟⎜ ⎟
⎟⎜ ⎟
⎟⎜ ⎟
⎠⎝ ⎠

 

The similarity of the transformation is particularly important since the conformal 
characteristics of the coordinates after the transformation are maintained. They are 
applied particular for the discrepancies between a local (e.g. DHDH related Bessel 
ellipsoid) and a global reference system (e.g. ETRS89 related GRS80 Ellipsoid) which 
are due to the differences in the geodetic datum. However, the three seven parameter 
models are expressed in different forms with different origin and parameters, their 
transformation results are completely equivalent. So 7-Parameter Helmert model is 
used most commonly (Cai, 2006). 

The further reasons for the choice of 7-Parameter Helmert transformation model are:  
1) It is the only known method which allows a direct interpretation of the origin shifts; 
2) The rotations around the “Earth-Centered, Earth-Fixed (ECEF)” Cartesian axes 

can have physical interpretations in global reference frames (Cai, 2006). 

It performs a conformal transformation, where the ratios of distances and the angles 
preserve invariantly. A “local” non-geocentric , ,L L LX Y Z  -system can be transformed 
into a “global” geocentric , ,G G GX Y Z  -system with the help of a 7-Parameter Helmert 
transformation model. 

1
(1 ) 1

1

G X L

G Y

LZG

X

L

L L

Y L

L LZ

X T

L

X
Y T d Y

ZTZ

T d X
T d Y

d Z ZT

γ β
λ γ α

β α

λ γ β
γ λ α
β α λ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦⎣ ⎦

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥≅ + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

X
Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦         (2.2.4) 

Where: 

, ,X Y ZT T T : Translation parameters 
, ,α β γ :  Differential rotation parameters 

dλ :  Scale correction 

Note that these approximations are prepared and these angles are small enough, as well 
as the scale correction, i.e., the term 
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0
0

0
d

γ β
λ γ

β α

⎡ ⎤
⎢−⎢
⎢ ⎥− −⎣ ⎦

α ⎥⎥               (2.2.5) 

is so small that it can be eliminated. In general, these parameters are unknown. 
Therefore, we must determine them by analyzing of those collocated points, and to 
solving this problem at least three collocated points in both systems are required.  

 
2.3. Data preparation and the solution of transformation parame- 

ters 

In preparation of local coordinate of collocated points the Gauss-Krüger coordinates of 
DHDN will be transformed to Bessel ellipsoidal coordinates latitude ( LB ) and 
longitude ( ) through inverse conformal mapping formulas and the conversion of 
ellipsoidal coordinates (

LL
, ,L L LB L H ) to geodetic Cartesian coordinates ( , ,L L LX Y Z ) and 

the reverse conversion are accomplished through the general formula. For the global 
coordinates can be also converted with the same algorithms on the GRS80 ellipsoid. 
Then we can construct the quasi-observations with the 131 collocated points (131 
BWREF points in Baden-Württemberg) and perform the estimation of the 
transformation parameters of the 7-parameter Helmert transformation and the 6- 
parameter affine transformation. The transformation parameter solutions using above 
two models are listed in table 1 and the residuals are illustrated in figure 1 and figure 2. 

From the distribution of horizontal residuals shown in figure 1 by 3-D 7-parameter 
Helmert transformation and figure 2 by 2-D 6-Parameter affine transformation we can 
find that there are two rotational trends of the direction of the horizontal residual 
vectors, which are clockwise in the northern part and counter-clockwise in the southern 
part. The cause for it lies despite the homogeneity of the network structure in the 
remaining distortions of the DHDN, which is highly correlated over larger areas. The 
horizontal position residuals of these sites bordering the boundary of the state of 
Baden-Württemberg are larger than these inner sites. The largest residual occur in site 
130 by 0.43 m. similar results can also be found in figure 2 by 2-D 6-parameter affine 
transformation (Cai, 2006). 

After the transformation of DHDN/Gauss Krüger coordinates into ETRS89/UTM 
coordinates, the inherent traditional network distortions of the DHDN in Baden- 
Württemberg (BWREF) can be visually shown through the residuals in 131 collocated 
points. Since the special characteristic of the main triangulation network in Baden- 
Württemberg (statewide variable net scales, inhomogeneous point accuracies and 
network distortions in the decimeter level) a statewide similarity or affine transforma- 
tion parameter set cannot satisfy the requirement of the transformation accuracy in 
Baden-Württemberg (Cai, 2006). 
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Table 1 Transformation parameters and their standard deviation 

 
6-parameter affine transformation GK (DHDN) – UTM (ETRS89) 

( )
N

t m        ( )
E

t m ( )α ′′     ( )β ′′           4( 10 )Hdλ −× 4( 10 )Rdλ −×
*RMS ( )m ˆ ( )mσ

131 BWREF 
points 

437.1946   119.7567   0.1654   -0.1965     -3.9968      -3.9884         0.1187    0.1199 

 
7-parameter Helmert transformation GK (DHDN) – UTM (ETRS89) 

( )
X

T m           ( )
Y

T m ( )
Z

T m ( )α ′′    ( )β ′′    ( )γ ′′         6( 10 )dλ −× *RMS ( )m ˆ ( )mσ

131 BWREF 
points 

582.9017  112.1681  405.6031  -2.2550  -0.3350  2.0684   9.1172      0.1241     0.1026

(*RMS: quadratic means of the horizontal residuals) 
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Figure 1 Horizontal residuals after 7-parameter Helmert 

transformation in Baden-Württemberg network

Figure 2 Horizontal residuals after 6-parameter affine  

          transformation in Baden-Württemberg network 
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3. Transformation procedures based on Total Least Squares 
Estimation 

3.1. Total Least Squares (TLS): Introduction  

The total least squares method is one of several linear parameter estimation techniques 
that have been devised to compensate for data inconsistencies. The basic motivation for 
total least squares (TLS) is the following: Let a set of multidimensional data points 
(vectors) be given. How can one obtain a linear model that explains these data? The 
idea is to modify all data points in such a way that some norm of the modification is 
minimized subject to the constraint that the modified vectors satisfy a linear relation 
(Van Huffel, 1991). 

The origin of this basic idea can be traced back to the beginning of this century. It was 
rediscovered many times, often independently, mainly in the statistical and psycho- 
metric literature. However, it is only in the last decade that the technique also found 
wide use in scientific and engineering applications. One of the main reasons for its 
popularity is the availability of efficient and numerical robust algorithms, in which the 
singular value decomposition plays a prominent role. Another reason is the fact that 
TLS is an application-oriented procedure. It is ideally suited for situations in which all 
data are corrupted by noise, which is usually the case in engineering applications. In 
this sense, it is a powerful extension of the classical least squares method, which 
corresponds only to a partial modification of the data (Van Huffel, 1991). 

The problem of linear parameter estimation arises in a broad class of scientific discip- 
lines such as signal processing, automatic control, system theory and in general 
engineering, statistics, physics, economics, biology, geodesy, medicine, etc.. It starts 
from a model described by a linear equationEquation Chapter (Next) Section 1 

1 1 m my a aξ ξ= + + ,              (3.1.1) 

Where  and 1, , ma a… y  denote the variables and 1[ , , ]T
mξ ξ m= ∈ℜξ …  plays role 

of a parameter vector that characterizes the specific system (ℜ  denotes the set of real 
numbers). The basic problem is then to determine an estimate of the true but unknown 
parameters from certain measurements of the variables. This gives rise to an 
overdetermined set of  linear equations ( ): n n m>

= +y Aξ e                 (3.1.2) 

Where the i-th row of the design matrix m∈ℜA  and the vector of observations 
 contain the measurements of the variables  and , respectively. In 

the classical least squares (LS) approach the measurements  of the variables  
(the right-hand side of (3.1.2) are assumed to be free of error and hence, all errors are 
confined to the observation vector  (the left-hand side of (3.1.2)). However, this 

n∈ℜy 1, , ma a y
A ia

y
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assumption is frequently unrealistic: sampling errors, human errors, modeling errors 
and instrument errors may imply inaccuracies of the design matrix  as well. TLS is 
one method of fitting that is appropriate when there are errors in both the observation 
vector 

A

y  and the design matrix . It amounts to fitting a “best” subspace to the 
measurement data , where  is the i-th row of  To 
illustrate the effect of the use of TLS in comparison with LS, we consider here a simple 
example of parameter estimation, i.e., only one parameter (

A
( , ), 1, ,T

i iy i =A n T
iA .A

1m = ) is to be estimated. 
Hence, equation (3.1.1) reduces to the following 

y aξ= .                 (3.1.3) 

An estimate for parameter ξ  is to be found from  measurements of the variables 
 and : 

n
a y

0

0 , 1,
i i i

i i i

a a a

y y y i

= + Δ

= + Δ = …,n
            (3.1.4) 

By solving the linear system (3.1.2) with  and . 1[ , , ]T
na a=A … 1[ , , ]T

ny y=y …

iaΔ  and iyΔ  represent the random errors added to the true values  and  of the 
variables  and . If  can be observed exactly, i.e., 

0
ia 0

iy
a y a 0,iaΔ =  errors only occur in 

the measurements of  contained in the right-hand side vector . Hence, the use of 
LS for solving (3.1.2) is appropriate. This method perturbs the observation vector 

y y
y  

by a minimum amount e  so that ( )−y e  can be predicted by ξA . This is done by 
minimizing the sum of squared and differences 

2

1

(
n

i i
i

y a ) .ξ
=

−∑                (3.1.5) 

The best estimate ˆ
yξ  of ξ  follows then immediately: 

1 1

2

1

ˆ ( )

n

i i
T T i

y n

i
i

a y

a
ξ − =

=

= =
∑

∑
A A A y             (3.1.6) 

This LS estimation has a nice geometric interpretation as is shown in Figure 3(a) 

If  can be measured without error, i.e., y 0iyΔ = , the use of LS is again appropriate. 

Indeed we can rewrite as 

y a
ξ
= ,                 (3.1.7) 

and confine all errors to the measurements of  contained in the right-hand side vector a
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A  of the corresponding set of equations 1ξ −≈A y . By minimizing the sum of squared 
differences between the measured values  and the predicted values ia /iy ξ , the best 
estimate ˆ

Aξ  of ξ  is given by (see Figure 3(b)) 

2

1 1 1

1

ˆ (( ) )

m

i
T T i

A m

i i
i

y

a y
ξ − − =

=

= =
∑

∑
y y y A .           (3.1.8) 

In many applications, however, both variables are measured with errors, i.e.,  
and . If the errors are independently and identically distributed with zero mean 
and common variance 

0iaΔ ≠
0iyΔ ≠

2
vσ , the best estimate ξ̂  is obtained by minimizing the sum of 

squared distances of the observed points from the fitted line, 

i.e., 2

1

( ) /(1
n

i i
i

y a 2 )ξ ξ
=

− +∑ .            (3.1.9) 

This is in fact the solution TLSξ  we obtain by solving (3.1.2) with the TLS method for 
. Figure 3(c) illustrates the estimation. The deviations are orthogonal to the fitted 

line: it is the sum of squares of their lengths that is minimized. Therefore, this 
estimation procedure is sometimes also known as orthogonal regression (Van Huffel, 
1991). 

1m =

(a) LS

y

iy ˆ
i i yy aξ−

0a a=

ia
ˆarctan yξ

(a) LS

y

iy ˆ
i i yy aξ−

0a a=

ia
ˆarctan yξ

 

(b) LS
iy

ˆ/i A iy aξ −

a

ia
ˆarctan Aξ

0y y=

(b) LS
iy

ˆ/i A iy aξ −

a

ia
ˆarctan Aξ

0y y=
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(c) TLS

y

iy

21i i TLS TLSy aξ ξ− +

a

ia

arctan TLSξ

(c) TLS

y

iy

21i i TLS TLSy aξ ξ− +

a

ia

arctan TLSξ

 
Figure 3 Geometric interpretation of one-parameter estimation y aξ=  with errors in (a) the    

measurements  of  only (LS solution), (b) the measurements  of  Only (LS solution), and (c) 

both the measurements  of  and  of (TLS solution) (Van Huffel 1991) 
iy y ia a

ia a iy y
 

Although the name “total least squares” appeared only recently in the literature, this 
method of fitting is certainly not new and has a long history in the statistical literature, 
where the method is known as orthogonal regression or errors-in-variables regression. 
Indeed, the univariate line fitting problem (m=1) was already discussed in the previous 
century. Some well-known contributors are Adcock (1878), Pearson (1901), Koopmans 
(1937), Madansky (1959) and York (1966). The method of orthogonal regression has 
been rediscovered many times, often independently. About twenty years ago, the 
technique was extended to multivariate problems (m>1) and later to multidimensional 
problems which deal with more than one observation vector (Van Huffel, 1991). 

More recently, the TLS approach to fitting has also stimulated interests outside 
statistics. In the field of numerical analysis, Golub (1973) and Van Loan (1980) first 
studied this problem. Their analysis, as well as their algorithm, is strongly based on the 
singular value decomposition (SVD). Geometrical insight into the properties of the 
SVD brought us independently to the same concept. The algorithm of Golub (1973) and 
Van Loan (1980) was generalized to all cases in which their algorithm fails to produce a 
solution, described the properties of these so-called nongeneric TLS problems and 
proved that the proposed generalization still satisfies the TLS criteria if additional 
constraints are imposed on the solution space. This seemingly different linear algebraic 
approach is actually equivalent to the method of multivariate errors-in-variables 
regression analysis, studied by Gleser (1981). Gleser’s method is based on an 
eigenvalue-eigenvector analysis, while the TLS method uses the SVD, which is 
numerically more robust in the sense of algorithmic implementation. Furthermore, the 
TLS algorithm computes the minimum norm solution whenever the TLS problem lacks 
a unique minimizer. Gleser (1981) does not consider these extensions (Van Huffel, 
1991). 

In addition, in the field of experimental modal analysis, the TLS technique was studied 
recently. Finally, in the field of system identification, Levin (1964) first studied the 
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same problem. His method, called the eigenvector method or Koopmans-Levin method, 
computes the same estimate as the TLS algorithm whenever the TLS problem has a 
unique solution. 

In the field of Geodesy, the TLS technique, was also studied recently. Grafarend (2006) 
studied the principle of TLS and analyzed its availability in geodesy. Beside Schaffrin 
(2003) invented his method to solve TLS problem in coordinate transformation, Acar 
(2006) und Oezluedemir (2006) from turkey worked out this problem by using SVD 
method. 

Remember that TLS is only one possible fitting technique for estimating the parameters 
of a linear multivariate problem. It gives the “best” estimates (in a statistical sense) 
when all variables are subject to independently and identically distributed errors with 
zero mean and common covariance matrix equal to the identity matrix, up to a scaling 
factor. Several other and more general approaches to this problem have led to as many 
other fitting techniques for the linear as well as for the nonlinear case. 

3.2. Solving the Total Least-Squares problem with singular value 
decomposition (SVD) 

3.2.1. Notation and preliminaries 

Before starting, we introduce some notation, list the assumptions, and define the 
elementary statistical concepts used throughout this thesis.方程节 下一个( )       

 The superscript T denotes the transpose of a vector or matrix. 
 denotes the column space of matrix , and ( )R S S ( )N S  denotes the null space or 

kernel of . S
 Special notation  is convenient for diagonal matrices. If  is an  matrix 

and we write 
B B n m×

{ }1diag( , , ), min ,pb b p n m= =B . 

Then  whenever  and 0ij =B i ≠ j ii ib=B  for 1, ,i p= . 
 The  identity matrix is denoted by  or, more simply, by   n n× nI .I
 The set of  linear equations in  unknowns  is represented in matrix form 

by 
n m ξ

≈y Aξ .                (3.2.1) 

A  is the  design matrix and n m× y  is the n -dimensional vector of observations. 
Unless stated otherwise, we assume that the set of equations  is 
overdetermined, i.e., , and that all preprocessing measures on the data (such 
as scaling, whitening, centering, standardizing, etc.) have been performed in 
advance. 

≈y Aξ
n m>

 The Frobenius norm of an n m×  matrix  is defined by (“tr” denotes trace) M
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( )2

1 1

tr
n m

T
ijF

i j

m
= =

= =∑∑M M M .  

The 2-norm or Euclidean norm of an -dimensional vector  is defined by m b

2
2

1

m

i
i=

= ∑b b . 

The 2-norm of an  matrix  is defined by m n× M

2
2

0 2

sup
≠

=
b

Mb
M

b
 

and equals the largest singular value of . M
 Denote the singular value decomposition (SVD) of the n m×  design matrix , 

, in (3.2.1) by 
A

n m>

T′ ′ ′=A U Σ V               (3.2.2) 

with  

[ ]1 2;′ ′ ′=U U U , [ ]1 1, , mu u′ ′ ′=U … , [ ]2 1, ,m nu u+′ ′ ′=U … , n
iu′∈ℜ , , T

n′ ′ =U U I

[ ]1, , mv v′ ′ ′=V … , , m
iv′∈ℜ T

m′ ′ =V V I , 

1diag( , , ) n m
mσ σ ×′ ′ ′= ∈ℜΣ … 1 0m, σ ′ σ ′≥ ≥ ≥

)

, 

and denote the SVD of the ( 1n m× +  matrix [ ];A y , , in (4.2.1) by n m>

[ ]; T=A y UΣV  

with 

[ ]1 2;=U U U , [ ]1 1, , mu u=U … , [ ]2 1, ,m nu u+=U … , n
iu ∈ℜ , , T

n=U U I

[ ]
11 12

1 121 22 , ,1
1

m

m
v v

m
+

⎡ ⎤
⎢ ⎥= =⎣ ⎦

V V
V V V , 1m

iv +∈ℜ , 1
T

m+=V V I , 

1 ( 1)
1 1

2

0
diag( , , )

0
n m

mσ σ × +
+

⎡ ⎤
= = ∈ℜ⎢ ⎥
⎣ ⎦

Σ
Σ

Σ
, 

Where: 

1 1Diag( , , ) m m
mσ σ ×= ∈ℜΣ 2 1m, σ= + ∈ℜΣ  

and 1 1 0mσ σ +≥ ≥ ≥ . 

For convenience of notation, we define 0iσ =  if 1n i m< ≤ + .The iσ ′  and iσ  
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are the singular value of  and A [ ];A y , respectively. The vectors  and  
are the left singular vector, and the vectors 

iu′ iu
thi iv′  and  are the  right 

singular vector of  and [
iv thi

A ];A y , respectively. 

3.2.2. Definition of the total least squares problem 

In the following, we formulate the main principle of the TLS problem. A good way to 
introduce and motivate the method is to recast the ordinary Least Squares (LS) prob- 
lem.  

Definition 1 (The least squares problem). Given an overdetermined set of  
linear equations  in  unknowns . The least squares problem is the 
following (Van Huffel, 1991):  

n
≈y Aξ m ξ

2ˆ
ˆmin

n∈ℜy
y - y  subject to .  ˆ R( )∈y A

Once a minimizing  is found, then any  satisfying: ŷ ξ

ˆ =y Aξ                  (3.2.3) 

is called a LS solution and ˆ ˆ= −e y y  the corresponding LS correction. Above 
equations are satisfied if  is the orthogonal projection of  onto . Thus, the 
LS problem amounts to perturbing the observation vector 

ŷ y ( )R A
y  by a minimum amount  

so that  can be ‘predicted’ by the columns of . 
ê

ˆˆ = −y y e A

The underlying assumption here is that errors only occur in the vector  and that the 
matrix  is exactly known. Often this assumption is not realistic because sampling or 
modeling or measurement errors also affect the matrix . 

y
A

A

One way to take errors in  into account is to introduce perturbations in  also and 
to consider the following TLS problem. 

A A

Definition 2 (The total least squares problem). Given an overdetermined set of 
 linear equations  in  unknowns . The total least squares problem is the 

following (Van Huffel, 1991): 
n ≈y Aξ m ξ

( 1)ˆ ˆ[ ]
ˆ ˆmin [ ] [ ]

n m F× +∈ℜA;y
A;y - A;y   subject to ( )ˆˆ R∈y A .  

Once a minimizing  is found, then any  satisfying: ˆ ˆ[A;y]

]

ξ

ˆˆ =y Aξ                  (3.2.4) 

is called a TLS solution and  the corresponding TLS correct- 
ion. The TLS solution is denoted by . It is clear that the TLS problem is a genera- 
lization of the LS problem as is formulated in Definition 1. See figure 4. 

ˆˆ ˆ ˆ[ ] [ ] [A =E ;e A;y - A;y
ξ̂

 

 13



 

iye

y

iy

A

iA
ˆarctanξ

iAE

2 2
i iy Ae E+

iye

y

iy

A

iA
ˆarctanξ

iAE

2 2
i iy Ae E+

 

Figure 4 The straight line fit of total least squares ( , y = Aξ y Ay + e = (A + E )ξ ) 

In most problems, the TLS problem has a unique solution, which can be obtained from 
a simple scaling of the right singular matrix of [  corresponding to its smallest 
singular value. In this section, we will present the basic algorithm for solving the TLS 
problem. We will start with a brief review of the singular value decomposition (SVD) 
and some of its properties (Van Huffel, 1991). 

]A;y

3.2.3. The singular value decomposition 

The singular value decomposition (SVD) is of great theoretical and practical import- 
ance for the LS and TLS problems. Not only does it provide elegant geometrical and 
algebraic insights into many numerical linear algebra problems, but also at the same 
time, a numerically reliable algorithm can be devised. 

Theorem 1 (Singular value decomposition (SVD)). If n m×∈ℜC  then there exist 
orthonormal matrices 1[ , , ] n n

n
×= ∈U u u ℜ ℜ and  (Hufflel, 

1991) such that  
1[ , , ] m m

m
×= ∈V v v

1 1diag( , , ), 0T
p pσ σ σ σ= = ≥ ≥ ≥U CV Σ  and { }min ,p n m= .   (3.2.5) 

The iσ  are the singular values of  and they are collectively known as the singular 
value spectrum. The vectors  and  are the i-th left singular vector and the i-th 
right singular vector, respectively. The triplet 

C
iu iv

( , , )i i iσu v  is called a singular triplet. It 
is easy to verify by comparing columns in the equations =CV UΣ  and  
that 

T T=C U Σ V

i i iσ=Cv u  and T
i i iσ=C u v      1, ,i p= .                                 (3.2.6) 

The SVD reveals many interesting structures of a matrix. If the SVD of  is given by 
Theorem 1, and we define r by 

C

1 1 0r r pσ σ σ σ+≥ ≥ > = = =  

the number of positive singular values, then 
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1

1

1

1

rank( ) ,
R( ) R([ , , ]),
N( ) R([ , , ]),

R ( ) R( ) R([ , , ]),

N ( ) N( ) R([ , , ]).

r

r m

T
r r

T
r r

r

+

+

=
=
=

= =

= =

C
C u u
C v v

C C v v

C C u un

          (3.2.7) 

Moreover, if 1[ , , ]r r=U u u , 1diag( , , )r rσ σ=Σ , and 1[ , , ]r r=V v v , then we 
have the SVD expansion 

1

r
T

r r r i i i
i
σ

=

= =∑C U Σ V u Tv .            (3.2.8) 

Above equation, which is also called the dyadic decomposition, decomposes the mat- 
rix  of rank r  in a sum of  matrices of rank one. Also, the 2-norm and the 
Frobenius norm are neatly characterized in terms of the SVD: 

C r

{ }2 2 2 2
1

1 1

, min ,
n m

ij pF
i j

c pσ σ
= =

= = + + =∑∑C ,n m  

2
12

0 2

sup σ
≠

= =
y

Cy
C

y
. 

From (3.2.6) it follows that 

T T=C C VΣ ΣVT T

p

 and ,         (3.2.9) T T=CC UΣΣ U

Thus , are eigenvalues of the symmetric and nonnegative definite matr- 
ices  and , and  and  are the corresponding eigenvectors. Hence, in 
principle, the SVD can be reduced to the eigenvalue problem for symmetric matrices 
(Van Huffel, 1991).  

2 , 1, ,i iσ = …
TC C TCC iv iu

The SVD plays an important role in a number of matrix approximation problems. For 
our purpose the following is the most important, where we consider the approximation 
of one matrix by another of lower rank.  

Subspace problems are characterized by the following structure: A matrix  is 
formed from an overdetermined set of measurements. If the measurements are error 
free, the constraints given by the specific problem are reflected in the rank deficiency 
of this matrix, having a rank  smaller than maximum rank . But due to 
measurement errors, the measurement vectors will in general occupy a higher 
dimensional linear manifold. The task to be solved is the estimation of the underlying 
subspace. Subspace problems inherently lead to eigensystem problems; the solutions 
are directions or sets of directions in the given vector space, not single points. By this 
characteristic, they stand in sharp contrast to ordinary least squares problems, which 
are in general linear problems. One of several possibilities for identifying the 

A

k r
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directions (subspaces) where the true unperturbed (but unknown) points most 
probably are located is to employ a SVD (Mühlich and Mester, 1999). This subspace 
identification is equivalent to a rank reduction of the given matrix . The key to 
correctly performing this rank reduction is given by the Eckart-Young-Mirsky 
theorem (1936): 

A

Theorem 2 (Eckart-Young-Mirsky matrix approximation theorem). Let the 

SVD of  be given by  with n m×∈ℜC
1

r
T

i i i
i

σ
=

= ∑C u v Rank( )r = C . If k  and 

, then 

r<

1

k
T

k i i
i

σ
=

=∑C u iv 12 2rank( )
min kk kσ +=

− = − =
D

C D C C , And 

{2

rank( ) 1

min , min ,
p

k iF Fk i k
}p n mσ

=
= +

− = − = =∑D
C D C C .      (3.2.10) 

Eckart and Young originally proved the theorem for the Frobenius norm in 1936. In 
1960, Mirky proved the theorem for the 2-norm. Therefore, Theorem 2 is called the 
Eckart-Young-Mirsky Theorem (Van Huffel, 1991).  

Example: Here is a SVD for  C

[ ]
1

1 2 3 2

3

40 0 0
0 40 0
0 0 0.01

T

T

T

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

v
C u u u v

v
 

The three non-zero singular values tell you that the matrix has rank three. However, 
the value 0.01 is so small that  is nearly a rank two matrix.  C

In fact, the matrix  was created by setting that last singular value to zero.   D

[ ]
1

1 2 3 2

3

40 0 0
0 40 0
0 0 0

T

T

T

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

v
D u u u v

v
 

Now the rank one decomposition of  is C

1 1 2 2 3 340 40 0.01T T= ⋅ + ⋅ + ⋅C u v u v u Tv

Tv

. 

and the rank one decomposition of  is D

1 1 2 2 3 340 40 0T T= ⋅ + ⋅ + ⋅D u v u v u . 

So  and 3 30.01 T− = ⋅C D u v 0.01
F

− =C D  

So if  has a small singular value, and then you can get a lower rank matrix  C D
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close to  by setting the small singular value to zero. C

The SVD is a powerful computational tool for solving LS problems. The reason is 
that the orthogonal matrices that transform  to diagonal form (3.2.6) do not change 
the 2-norm of vectors. We have the following fundamental result. 

C

Theorem 3 (Minimum norm LS solution of ≈y Aξ ). Let the SVD of n m×∈ℜA  
be given by (4.2.2), i.e., 

1

m
T

i i i
i

σ
=

′ ′ ′= ∑A u v , and assume that . If , 
then 

( )rank r=A n∈ℜy

1

1

r
T

LS i i i
i

σ −

=

′ ′ ′= ∑ξ v u y              (3.2.11) 

minimizes 
2

−Aξ y  and has the smallest 2-norm of all minimizers. Moreover, 

2 2
2

1

( )
n

T
LS i

i r= +

′− = ∑Aξ y u y

0

]

1 0≥

 

3.2.4. Basic Solution of TLS problem 

We now analyze the TLS problem by making substantial use of the SVD 
decomposition. We bring  into the form (Van Huffel, 1991) ≈y Aξ

[ ]
1

⎡ ⎤
≈⎢ ⎥−⎣ ⎦

ξ
A y .              (3.2.12) 

Let the SVD of  be [A;y
1

1
0

[ ] ,
n

T T
i i i m

i
σ σ σ

+

+
=

= = ≥ ≥∑A;y UΣV u v        (3.2.13) 

If 1 0mσ + ≠ ,  is of rank [A;y] 1m+  and the space  generated by the rows of 
 coincides with . There is no nonzero vector in the orthogonal complement 

of . In order to obtain a solution, the rank of  must be reduced to . Using 
the Eckart-Young-Mirsky theorem, the best rank  TLS approximation  of 

, which minimizes the deviations in variance, is given by 

S
[A;y]

]
]

]

1m+ℜ
S [A;y m

m ˆ ˆ[A;y
[A;y

ˆ ˆˆ[ ] T=A;y UΣV , with . 1
ˆ diag( , , ,0)mσ σ=Σ

The minimal TLS correction is then  

( )1 ˆ 2ˆrank [ ]

ˆ ˆmin [ ] [ ]m
m

σ +
=

= −
A;y

A;y A;y  

and is attained by 

1 1
ˆ ˆ ˆˆ[ ] [ ] [ ] T

1A m m mσ + + +− = =A;y A;y E ;e u v . 

Note that this TLS correction matrix has rank one. It is clear that the approximate set  
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ˆ ˆ ˆˆ[ ] 0 0
1 1

T T⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⇒ = ⇒ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ξ ξ
A y UΣV ΣV 0

1−
ξ

 

is now compatible and its solution is given by the only vector 1mv + (i.e., that last column 
of ) which belongs to . Thus V ˆ ˆN([ ])A;y

1 1 2 2 1 11 m m m mλ λ λ λ + +

⎡ ⎤
= + + + +⎢ ⎥−⎣ ⎦

ξ
v v v v . 

If 0, 0i iσ λ≠ = , then 

1 1 1
1, 1

1
1 m m m

m mv
λ λ+ + +

+ +

⎡ ⎤
= ⇒ = −⎢ ⎥−⎣ ⎦

ξ
v . 

The TLS solution is then obtained by scaling 1mv +  such that its last component is -1, 
i.e., 

1
1, 1

1
1 m

m mv +
+ +

⎡ ⎤ −
=⎢ ⎥−⎣ ⎦

ξ
v .             (3.2.14) 

If , then . Hence  
solves the basic TLS problem. Observe that, if 

1, 1 0m mv + + ≠ 1, 1 1, 1 , 1
ˆˆ ˆˆ 1/( ) , , R( )

T

m m m m mv v v+ + + +⎡ ⎤= = − ∈⎣ ⎦y Aξ A Â ξ̂
1mσ +  is zero, [  is of rank  and 

hence 
]A;y m

1 N([ ])m+ ∈v A;y . The following theorem gives conditions for the uniqueness 
and existence of a TLS solution. 

Theorem 4 (Solution of the basic TLS problem ≈y Aξ ). Suppose mσ ′  is the 
smallest singular value of . If A 1m mσ σ +′ > , then 

ˆ ˆˆ[ ] T=A;y UΣV  and         (3.2.15) 1
ˆ diag( , , ,0)mσ σ=Σ

with corresponding TLS correction matrix 

1 1
ˆˆ ˆ ˆ[ ] [ ] [ ] T

1A m m mσ + + += − =E ;e A;y A;y u v          (3.2.16) 

Solves the TLS problem and  

1, 1 , 1
1, 1

1ˆ [ , , ]T
m m m

m m

v v
v +

+ +

= −ξ + .          (3.2.17) 

Exists and is the unique solution to . It is interesting to note here that the 
conditions 

ˆˆ =y Aξ

1 1m m m mσ σ σ σ+ +′ > ⇔ >  and 1, 1 0m mv + + ≠  

are equivalent (Van Huffel, 1991).  

An illustration of the geometry of the TLS solution in the column space of  is 
depicted in Figure 5 for . The TLS problem is tantamount to finding a ‘closest’ 

A
2m =
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subspace  to the  columns of . Hereto, the sum of squared 
perpendicular distances from each column 

ˆ ˆR([ ])A;y 1m+ [A;y]
, n

i iA ∈ℜy  to  is minimized, 
and each column 

ˆ ˆR([ ])A;y
,i iA y  is approximated by its orthogonal projection  onto that 

subspace. 
ˆ ˆ,i iA y

0

y

1A

2A

( )R Ay′

a

0

y

1A

2A

( )R Ay′

a

0

y

1A

2A

( )R A

b

ˆ( )R A

2Â

1Âŷ

0

y

1A

2A

( )R A

b

ˆ( )R A

2Â

1Âŷ

 
Figure 5 (a) The LS solution is obtained by projecting orthogonally onto y R( )A  and solving ŷ Aξ= . 

(b) The TLS solution is obtained by approximating the columns iA  of A and  by y ˆ
iA  and  

until  is in the space 

ŷ
ŷ ˆR( )A , generated by the columns ˆ

iA , and ˆŷ Aξ= . 

A well-known and useful characterization of the TLS solution  and the minimal TLS 
correction 

ξ̂
1mσ +  is proved in the next theorem. 

Theorem 5 (Closed-form expression of the basic TLS solution). Let 
 be the SVD of . If [ ] T=A;y UΣV [A;y] 1m mσ σ +′ > , then 

2 1
1

ˆ ( )T T
mσ

−
+= −ξ A A I A y  

and 

22
1 2 2 2

1 1

( )1 min
m

Tm
i

m
i i m

σ
σ σ+

∈ℜ= +

⎡ ⎤′
+ =⎢ ⎥′ −⎣ ⎦
∑

ξ

u y Aξ − y . 

The following algorithm computes a TLS solution  of  such that 
 and 

ξ̂ ≈y Aξ
ˆ( A− = −y e A E ξ) [ ; ]A F

E e  is minimal (Van Huffel, 1991). 

Algorithm 1 (Basic TLS solution of ≈Aξ y ). 

Given:  and ; n m×∈ℜA n∈ℜy

Step 1: Compute the SVD, 

i.e., .             (3.2.18) [ ] T=A;y UΣV
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Step 2: 1, 1 1, 1 , 1
1, 1

1ˆ0 ,
T

m m m m m
m m

v v
v+ + + +

+ +

,v⎡ ⎤≠ ⇒ = − ⎣ ⎦ξ      (3.2.19) 

End 

The conditions 1m mσ σ +′ >  or, equivalently, 1m mσ σ +>  and , ensure that 
algorithm 1 computes the unique TLS solution of 

1, 1 0m mv + + ≠
≈y Aξ . These conditions are 

generally satisfied provided  is of full rank. Hence, most TLS problems that arise in 
practice can be solved by means of algorithm 1 (Van Huffel, 1991). 

A

3.3. The Euler-Lagrange approach (an alternative method) 

Recently, Schaffrin and Felus (2003) have introduced a multivariate version of Total 
Least Squares (TLS) adjustment in order to determine the optimal parameters of an 
affine coordinate transformation empirically. 方程节 下一个( )       

The following model, with full-rank matrix , is assumed (Schaffrin, 2003): A

{ }
{ }
{ } 0

( ) ( )
[ , ] 0

, 0

vec[ , ]

A

A

A

A n

E

C

D

− − − =

=

=

= ⊗

A E ξ y e
E e

E e

E e Σ I

0

1

)

            (3.3.1) 

Where  and  denote a random error vector, resp. matrix.  is a 
 matrix with an unknown variance component 

e AE 2
0 0 mσ +=Σ I

( 1) ( 1m m+ × + 2
0σ  and given identity 

matrix . The symbol  denotes the “Kronecker-Zehfuss product” of matrices, 
defined by: 

1m+I ⊗

: [ ]ijm⊗ = ⋅M N N  

For  and  arbitrary. [ ijm=M ]

)

N

The “vec” operator stacks one column of a matrix under the other, moving from left to 
right. In contrast to the Least-Squares (LS) method, this is based on the minimization of  

( ) (T T= − −e e y Aξ y Aξ .            (3.3.2) 

Under the condition , the (equally weighted) TLS principle is based on 
minimizing the objective function (Schaffrin, 2003): 

: 0A =E

(vec ) (vec ) min( )T T
A A+e e E E ξ= ,          (3.3.3) 

When performing an adjustment, it is sometimes necessary to fix some parameters to 
specific values. Here, a total least squares solution will be presented, along with an 
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iteration scheme (Schaffrin, 2003). 

In order to solve the TLS problem as presented in (3.3.3) and minimize the respective 
objective function in view of the model (3.3.1), we define the Lagrange target function 
as follows where  

2
0: vec( ) ~ (0, )

( , , , ) 2 [ ]
A A m n

T T T
A A A

σ= ⊗

Φ = + + − − +

e E I I

e e λ ξ e e e e λ y e Aξ EAξ
      (3.3.4) 

Where  denotes the  vector of Lagrange multipliers; note that  λ 1n×

( T )A n A= ⊗E ξ ξ I e ,             (3.3.5) 

thus the Euler-Lagrange necessary conditions are (Schaffrin, 2003): 

1 ˆˆ 0
2
∂Φ

= − =
∂

e λ
e

, 

1 ˆ ˆˆ ( )
2 A n

A

∂Φ
= − ⊗ =

∂
e ξ I λ

e
0 , 

1 ˆ ˆˆˆ 0
2 A
∂Φ

= − − + =
∂

y Aξ e E ξ
λ

, 

1 ˆ ˆˆ 0
2

T T
A

∂Φ
= − + =

∂
A λ E λ

ξ
. 

This system is simplified into: 

ˆ

ˆ ˆ ˆ ˆ( ) ( )(1T T T

v

= + +A A ξ A y ξ λ λ ξ ξˆ ˆ)T  

1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ( )(1 ) ( )(1T
A

−= − + = − +λ e E ξ ξ ξ y Aξ ξ ξ 1)T −        (3.3.6) 

Note that 

ˆ ˆ( ) ( ) ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆˆ ( )(1 ) min(ˆ ˆ(1 )

T
T T T T

A AT
v − −
= = + = +

+
y Aξ y Aξ λ λ ξ ξ e e E E ξ )= ξ

ξ ξ
   (3.3.7) 

is Rayleigh’s quotient for the matrix  

T T

T T

⎡ ⎤
⎢
⎣ ⎦

A A A
⎥

y
y A y y

               (3.3.8) 

with as the vector argument. Rayleigh’s quotient defines the minimum 
eigenvalue of the augmented matrix, based on the corresponding eigenvector (see, e.g., 

ˆ , 1
T

T⎡ −⎣ξ ⎤
⎦
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G. Strang, 1988) (Schaffrin, 2003). 

Using these equations the following algorithm had been developed by Schaffrin (2003) 
to solve the TLS problem (Schaffrin, 2003): 

1) Compute the LS solution: 

1 1ˆ ( )T −=ξ A A A yT  (for )  0ˆ : 0v =

2) Insert the solution of step (1) as the initial value for the following iterative process: 

1 1
ˆ ˆ( ) (ˆ ˆ( ) [ ˆ ˆ(1 ( ) )

i T i
i T T i

i T i
+ −= +

+
y - Aξ y - A )]ξξ A A A y ξ

ξ ξ
       (3.3.9) 

3) End when 1ˆ ˆi i ε+ − <ξ ξ . Then  

2
0

ˆˆ
( )

v
n m

σ =
−

              (3.3.10) 

The algorithm seems to converge to the TLS solution in most cases although its effic- 
iency (convergence rate, convergence radius, etc.) still needs to be further investigated. 
Nevertheless, the establishment of equivalence between the Euler-Lagrange approach 
and the minimum eigenvalue method, provides an insight into the process that will 
support future developments. 

Example: The following 6-parameter coordinate transformation problem was used to 
test the procedure and compare it with the standard least-squares approach. 

No. 1y 2y 1x  2x  

1 20 20 275 160 

2 80 20 403 70 

3 80 100 550 210 

4 20 100 390 310 

Mean value 50 60 404.5 187.5

 (Data Quelle: Schaffrin 2005) 
 

Here, the coordinates set 1

1

⎡ ⎤
⎢ ⎥
⎣ ⎦

x
y

 is transformed into the second coordinates set 2

2

⎡ ⎤
⎢ ⎥
⎣ ⎦

x
y

, 

thus: 
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2 1 1 1

2 1 1 1

0 0 1 0
0 0 0 1

a
b

a b e c
c d f d

e
f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= + ⇒ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎣ ⎦

x x x y
y y x y

 

Because there is no error that belongs to design matrix element “1”, the translation 
parameters shall disappear by centering the equation. 

2 1

2 1

a b
c d

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

x x
y y

 

with 

2 2 2 1 1 1 2 2 2 1 1 1mean( ), mean( ), mean( ), mean( )= − = − = − = −x x x x x x y y y y y y   

Then, the four parameters of the affine transformation matrix are estimated 
individually with the approaches from Van Huffel and Schaffrin. 

 

Parameter a  b  c  d  

TLS solution with SVD 2.4214 1.6418 -1.590 1.8111 

TLS solution by Schaffrin 2.4214 1.6418 -1.590 1.8177 

Standard LS solution 2.40 1.6375 -1.583 1.8125 

The resulting TLS sum of squares is: 

ˆ ˆˆ 18.37T T
TLS TLS A A+ =e e E E  

The resulting LS sum of squares is: 

ˆ ˆ 281.0T
LS LS =e e  

From above, it is clearly that the two TLS approaches have the same results.  

3.4. Properties of the Total Least Squares problem 

Let us now discuss some of the main properties of the TLS method. The properties of 
TLS are best understood by comparing them with those of LS. First, a lot of insight can 
be gained by comparing their analytical expressions, given by:  

LS:              (3.3.11) 1
LS ( )T −=ξ A A A yT

TTLS:           (3.3.12) 2 1
TLS 1( )T

mσ −
+= −ξ A A I A y
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With  of full rank and A 1mσ +  the smallest singular value of the augmented design 
matrix  (Van Huffel and Lemmerling, 2002). [A;y]

From a numerical analyst’s point of view, these formulas tell us that the TLS solution is 
more ill conditioned than the LS solution since it has a higher condition number. This 
implies that errors in the data more likely affect the TLS solution than the LS solution. 
This is particularly true under worst-case perturbations. Hence, TLS can be considered 
as a kind of deregularizing procedure. However, from a statistical point of view, these 
formulas tell us that TLS is doing the right thing in the presence of independently and 
identically-distributed (i.i.d.) equally sized errors since it removes (asymptotically) the 
bias by subtracting the error covariance matrix (estimated by 2

1m Iσ + ) from the data 
covariance matrix . Secondly, while LS minimizes a sum of squared residuals, 
TLS minimizes a sum of squared normalized residuals, expressed as follows: 

TA A

LS:    2min −
ξ

Aξ y             (3.3.13) 

TLS: 
[ ] 2 2

2
1

min min
1⎡ ⎤=⎢− ⎥⎣ ⎦

−
= 2 +ξ ξz

A;y z Aξ y
z ξ

        (3.3.14) 

From a numerical analyst’s point of view, we say that TLS minimizes the Rayleigh 
quotient. From a statistical point of view, we say that we normalize the residuals by 
multiplying them with the inverse of their covariance matrix (up to a scaling factor) in 
order to derive consistent estimates (Van Huffel and Lemmerling, 2002). 

Other properties of TLS, which were studied in the field of numerical analysis, are its 
sensitivity in the presence of errors on all data. Differences between the LS and TLS 
solution are shown to increase when the ratio ([ ]) / ( )m mσ σA;y A  is growing. This is 
the case when the set of equations ≈y Aξ  becomes less compatible, when the Vector 
y  is growing in length and when  tends to be rank-deficient. Assuming i.i.d. 
equally sized errors, the improved accuracy of the TLS solution compared to that of 
TLS is maximal when the orthogonal projection of  is parallel with the  singular 
vector of , corresponding to its smallest singular value 

A

y thn
A ( )mσ A . Additional algebraic 

connections and sensitivity properties of the TLS and LS problem, as well as many 
more statistical properties of the TLS estimators, based on knowledge of the 
distribution of the errors in the data, are analyzed in the two books on TLS (Van Huffel 
and Lemmerling, 2002). 
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4. Case studies: Applications of the TLS method in Baden- 
Württemberg 

4.1. Six parameter Affine transformation models (2D) 

We apply here the TLS solution to the centralized 6-parameter affine transformation 
model where the translation parameters are vanished. Let rewrite the 6-parameter affine 
transformation in six parameters as Equation Chapter (Next) Section 1 

cos sin
sin cos

NH R

H R E

tN H
E R t

λ α λ β
λ α λ β

− ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
 

11

21

3111 21 12

3212 22 22

31

32

0 0 1 0
:

0 0 0 1
H H R
R H R

ξ
ξ
ξξξ ξ
ξξξ ξ
ξ
ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

     (4.1.1) 

Because there is no error that belongs to design matrix element “1”, the translation 
parameters shall disappear by centering this equation. Thus, after the centering the 
coordinates in the midpoint, the translation parameters  and  will automatically 
vanish. Then the observation and old coordinates are centered on their average values 
in the form: 

Nt Et

11 21

12 22

:
N H
E R

ξ ξ
ξ ξ
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

             (4.1.2) 

with 

mean( ), mean( )
mean( ), mean( )

N N N E E E
H H H R R R
= − = −
= − = −

  
  

 

For the  couple of coordinates we have the transformation model, which is suited for 
the application of TLS solution 

n
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1 1 1

11

21

1 1 12

22

0 0
... ... ... ... ...

0 0
0 0

... ... ... ... ...
0 0

n n n

n n

N H R

N H R
E E

E H R

E H R

1

n

ξ
ξ
ξ
ξ

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

        (4.1.3) 

( ) ( )A− =y e A - E ξ               (4.1.4) 

min( , , )T T
A A A+ =e e E E e E ξ             (4.1.5) 

Solution of the TLS problem by using the singular value decomposition (SVD). 

2 1
1( )T

TLS mσ −
+= −ξ A A I A yT             (4.1.6) 

with 1mσ +  the smallest singular value of the augmented design matrix : [ ; ]A y
1

0

[ ; ]
m

T T
i i i

i

σ
+

=

= =∑A y UΣV u v , 1 1 0mσ +≥ ≥ ≥

1

. σ

The best TLS approximation  of [ ;  is give by ˆ ˆ[ ; ]A y ]A y

ˆ ˆˆ[ ; ] T=A y UΣV , with  1
ˆ diag( , , ,0)mσ σ=Σ

and with corresponding TLS correction matrix 

1 1
ˆˆ ˆ ˆ[ ; ] [ ; ] [ ; ] T

A m m mσ + + += − =E e A y A y u v . 

with MATLAB function [U,S,V] = svd(X) these procedures can be implemented 
easily. 

Through the TLS solution where the errors in the design matrix  are considered the 
remaining transformation coordinate residuals of collocated DHDN points in Baden- 
Württemberg are reduced from 11.8 cm to 3.9 cm, which are illustrated in figure 8 in 
comparison with figure 2 in detail. The statistics of these residual and the 
transformation parameters in comparison with LS methods are listed in Table 2 and 
Table 3. The following statistical terms shows us the difference between the quadratics 
sums of the residuals  related LS and  related TLS, together with the 
quadratics sums of the errors of vectorized design matrix: 

A

LS LSˆ ˆTe e TLS TLSˆ ˆTe e
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2

2

2

2

ˆ ˆ 3.678308 (m )
ˆ ˆ 0.409136 (m )
ˆ ˆ 0.817619 (m )

ˆ ˆˆ ˆ 1.226756  (m )

T
LS LS
T
TLS TLS

T
A A

T T
TLS TLS A A

=

=

=

+ =

e e

e e

E E

e e E E

 

Table 2 Numerical comparison of 6-P affine transformation with LS and TLS estimator 
Transformation 

models 

Collocated 

sites 

Absolute mean  

Residuals (m) 

[VN]   [VE] 

Max. of absolute 

residuals (m) 

[VN]   [VE] 

RMS

(m) 

Standard deviation of 

unit weight (m) 

LS B-W 131 0.1049  0.0804 0.3288  0.3226 0.1187 0.1199 

TLS B-W 131 0.0350  0.0268 0.1097  0.1076 0.0396 0.0400 

 
Table 3 Comparison of 6-p affine transformation parameters with LS and TLS 

131 BWREF 
points 

6-parameter affine transformation GK (DHDN) – UTM (ETRS89) 

                ( )
N

t m ( )
E

t m ( )α ′′        ( )β ′′             4( 10 )Hdλ −× 4( 10 )Rdλ −×

LS 437.194567   119.756709    0.165368    -0.196455       -3.996797         -3.988430 

TLS 437.194554   119.756712    0.165368    -0.196455       -3.996797         -3.988430 

TLS-LS -0.000013    0.000003          0           0             0                 0 

 
In order to test the practicality of the TLS method in Baden-Württemberg, we select 10 
points as checkpoints from the 131 points. Then transformation parameters are 
estimated depending on the rest 121 points.  

The process is summarized here: 
1) Calculate transformation parameters (121 points) 

UTM coordinates (ETRS89)
Nordwert OstwertN E

Transformation parameters
(TLS, LS)

GK-coordinates (DHDN)
Hochwert H         Rechtswert R

UTM coordinates (ETRS89)
Nordwert OstwertN E

UTM coordinates (ETRS89)
Nordwert OstwertN E

Transformation parameters
(TLS, LS)

GK-coordinates (DHDN)
Hochwert H         Rechtswert R

 
Figure 6 Calculation of the transformation parameters  

2) Use the following formula to calculate the estimated UTM coordinates: (10 points) 

3111 21

3212 22

ˆ
ˆ
N H

RE
⎡ ⎤ ξξ ξ ⎡⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ξξ ξ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

⎤            (4.1.7) 
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Estimated UTM coordinates (ETRS89)
Nordwert OstwertN̂ Ê

Transformation parameters

GK-coordinates (DHDN)
Hochwert H         Rechtswert R

Estimated UTM coordinates (ETRS89)
Nordwert OstwertN̂ Ê

Estimated UTM coordinates (ETRS89)
Nordwert OstwertN̂ Ê

Transformation parameters

GK-coordinates (DHDN)
Hochwert H         Rechtswert R

 
Figure 7 Calculation of the estimated UTM coordinates (ETRS89) 

3) Compare with the original value (10 points) 
ˆ ˆ

ˆ
dN N N

dE E E

⎡ ⎤ ⎡ −
=⎢ ⎥ ⎢

−⎢ ⎥ ⎢⎣ ⎦ ⎣ ˆ
⎤
⎥
⎥⎦

             (4.1.8) 

The results are in table 4. 

Table 4 Numerical comparison between LS and TLS 
 LS  (m) TLS  (m) 

Points number ˆdN  ˆdE  ˆdN  ˆdE  

652000308 +0.0920 +0.1934 +0.0920 +0.1934 

672500108 -0.1465 +0.0357 -0.1465 +0.0357 

701600288 +0.1289 -0.0213 +0.1289 -0.0213 

722000300 +0.0551 +0.0003 +0.0551 +0.0003 

722600208 -0.1468 -0.1983 -0.1468 -0.1983 

751300208 +0.0218 -0.0409 +0.0218 -0.0409 

761900108 +0.1243 +0.1138 +0.1243 +0.1138 

792311808 +0.0406 -0.0141 +0.0406 -0.0141 

811300108 -0.0875 -0.0945 -0.0875 -0.0945 

811800108 -0.1544 +0.1293 -0.1544 +0.1293 
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Figure 8 Horizontal residuals after 6-P affine transformation with TLS  

      estimator in Baden-Württemberg Network (a) LS (b) TLS 

It should be pointed out, though the residuals are reduced with TLS solution, the 
estimated 6 transformation parameters with TLS method haven’t significant difference 
in comparison with those with LS methods. For these points with classic DHDN 
Gauss-Krüger coordinates, which are not collocated with new global technique, such as 
GPS, the so-called new points in coordinate transformation. When they are transfor- 
med with the estimated parameters with TLS method, the residuals of transformation 
are also remain larger, which are in the level of the residuals after transformation with 
LS method. 

From table 4 we find that the residuals after transformation with LS and TLS method 
are almost identical and less than 2 dm. i.e., in practical situation TLS method hasn’t 
obvious advantage in comparison with LS method.   

For clearly display, these selected 10 points are transformed and their residuals are 
shown in the figure 9(b) with red color. 
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Figure 9 Horizontal residuals of 10 check points (a) LS (b) TLS 

 

4.2. Seven parameter Helmert transformation model (3D) 

The following formula has been used for the estimation of the parameters in 
seven-parameter Helmert transformation:Equation Section (Next) 

1
(1 ) 1

1

1
1

1

G L X

G L

L ZG

Y

L

G L L

X X T
Y d Y T

Z TZ

γ β
λ γ α

β α

γ β
λ γ α

β α

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥= + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥−⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠
−⎡ ⎤

⎢ ⎥= − +⎢ ⎥
⎢ ⎥−⎣ ⎦

X X T

        (4.2.1) 

Where λ  is scale factor, α , β , γ  are rotation angels. The translation terms 
 are the coordinates of the origin of the 3-D network. , ,X Y ZT T T

After the linearization, the formula is rewritten: 
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1 0 0 0
0 1 0 0
0 0 1 0

i i

X

Y

G L L Z

G L L L

G L Li i

T
T

X Z Y T
Y Z X Y
Z Y X Z

L

L

X
δα
δβ
δγ
λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y A

η

       (4.2.2) 

i i=Y A η                 (4.2.3) 

After centering the coordinates in the midpoint, the translation parameter  
will disappear, and then the observations and old coordinates are centered on their 
average values. This will be assumed in the following: 

, ,X Y ZT T T

0
: 0

0
ii

g l l l

g l l l

g l l l ii

x z y x
y z x y
z y x z

δα
δβ
δγ
λ

⎡ ⎤
⎡ ⎤ −⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎢ ⎥= −⎢ ⎥ ⎢ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦⎣ ⎦

⎣ ⎦Ay
ξ

⎥
⎥           (4.2.4) 

i i= ⋅y A ξ                 (4.2.5) 

mean , mean
g G G l L

g G G l L L

g G G l Li i i ii

L

L i

x X X x X
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X
     (4.2.6) 

Then, we have the transformation model which is suited for the application of TLS 
solution: 
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      (4.2.7) 

( ) ( )A− = −y e A E ξ              (4.2.8) 

min( , , )T T
A A A+ =e e E E e E ξ ,           (4.2.9) 
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Solution of the TLS problem by using the singular value decomposition (SVD). 

2 1
1( )T

TLS mσ −
+= −ξ A A I A yT            (4.2.10) 

with 1mσ +  the smallest singular value of the augmented design matrix : [ ; ]A y
1

0

[ ; ]
m

T T
i i i

i

σ
+

=

= =∑A y UΣV u v , 1 1 0mσ +≥ ≥ ≥

1

. σ

The best TLS approximation  of [ ;  is given by ˆ ˆ[ ; ]A y ]A y

ˆ ˆˆ[ ; ] T=A y UΣV , with  1
ˆ diag( , , ,0)mσ σ=Σ

and with corresponding TLS correction matrix 

1 1
ˆˆ ˆ ˆ[ ; ] [ ; ] [ ; ] T

A m m mσ + + += − =E e A y A y u v . 

with MATLAB function [U,S,V] = svd(X) these procedures can be implemented 
easily. 
Through the TLS solution where the errors in the design matrix  are considered the 
remaining transformation coordinate residuals of collocated DHDN points in Baden- 
Württemberg are reduced from 12.4 cm to 6.2 cm, which are illustrated in figure 13 in 
comparison with figure 1 in detail. The statistics of these residuals and the 
transformation parameters in comparison with LS methods are listed in Table 5 and 
Table 6. The following statistical terms shows us the difference between the quadratics 
sums of the residuals  related LS and  related TLS, together with the 
quadratics sums of the errors of vectorized design matrix: 

A

LS LSˆ ˆTe e TLS TLSˆ ˆTe e

2

2

2

2

ˆ ˆ 4.063234 (m )
ˆ ˆ 1.015790 (m ) 
ˆ ˆ 1.015808 (m )

ˆ ˆˆ ˆ 2.031598  (m )

T
LS LS
T
TLS TLS

T
A A

T T
TLS TLS A A

=

=

=

+ =

e e

e e

E E

e e E E

 

Table 5 Numerical comparison of 7-P Helmert transformation with LS and TLS estimator 
Transformation 

models 

Collocated 

sites 

Absolute mean  

Residuals (m) 

[VN]   [VE] 

Max. of absolute 

residuals (m) 

[VN]   [VE] 

RMS

(m) 

Standard deviation of 

unit weight (m) 

LS B-W 131 0.1055  0.0839 0.4211  0.3553 0.1241 0.1026 

TLS B-W 131 0.0527  0.0420 0.2105  0.1777 0.0621 0.0513 

 
Table 6 Comparison of 7-p Helmert transformation parameters with LS and TLS  

131 BWREF 
points 

7-parameter Helmert transformation GK (DHDN) – UTM (ETRS89) 

( )
X

T m                ( )
Y

T m ( )
Z

T m ( )α ′′      ( )β ′′      ( )γ ′′      6( 10 )dλ −×

LS 582.901711  112.168080  405.603061  -2.255032  -0.335003  2.068369   9.117208 

TLS 582.901702  112.168078  405.603051  -2.255032  -0.335003  2.068369   9.117210 

TLS-LS -0.000009   -0.000002   -0.000010          0          0         0  0.000002 
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Similarly, we select 10 points as checkpoints out from the 131 points. Then trans- 
formation parameters are calculated depending on the rest 121 points.  

The process is summarized as follows: 
1) Calculate transformation parameters (121 points) 

GK-coordinates (DHDN)
Hochwert H         Rechtswert R

“Local” ellipsoidal
coordinates (DHDN)
BL               LL             HL

“Local” three dimensional cartesian 
Coordinates (DHDN)

XL YL ZL

NN-Undulation
NNN

Inverse Gauss krueger transformation

Ellipsoidal geometry

“global” three dimensional cartesian 
Coordinates (ETRS89)
XG YG ZG

Transformation parameters
(TLS, LS)

GK-coordinates (DHDN)
Hochwert H         Rechtswert R

“Local” ellipsoidal
coordinates (DHDN)
BL               LL             HL

“Local” three dimensional cartesian 
Coordinates (DHDN)

XL YL ZL

NN-Undulation
NNN

Inverse Gauss krueger transformation

Ellipsoidal geometry

“global” three dimensional cartesian 
Coordinates (ETRS89)
XG YG ZG

Transformation parameters
(TLS, LS)

 
Figure 10 Calculation of the transformation parameters 

2) Firstly, transfer the Gauss-Krüger coordinate system into , ,L L LX Y Z  coordinate 
system.  

GK-coordinates (DHDN)
Hochwert H         Rechtswert R

“Local” ellipsoidal
coordinates (DHDN)
BL               LL             HL

“Local” three dimensional cartesian 
Coordinates (DHDN)

XL YL ZL

NN-Undulation
NNN

Estimated “global” three dimensional cartesian 
coordinates (ETRS89)

Inverse Gauss krueger transformation

Ellipsoidal geometry

Transformation parameter

ˆ
GX ˆ

GY ˆ
GZ

GK-coordinates (DHDN)
Hochwert H         Rechtswert R

“Local” ellipsoidal
coordinates (DHDN)
BL               LL             HL

“Local” three dimensional cartesian 
Coordinates (DHDN)

XL YL ZL

NN-Undulation
NNN

Estimated “global” three dimensional cartesian 
coordinates (ETRS89)

Inverse Gauss krueger transformation

Ellipsoidal geometry

Transformation parameter

ˆ
GX ˆ

GY ˆ
GZ

 
Figure 11 Calculation of the 3-D cartesian coordinates (ETRS89) 
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Then by using the transformation parameters, we calculate the  

ˆ

ˆ ( , , )
ˆ

G L X

G L

L Z LG

X X T
Y Y

Z TZ

λ α β γ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

R YT+         (4.2.11) 

by the inverse transformation we can obtain the estimated UTM coordinate syste- 
m ( ) (10 points) ˆ ˆ,N E

Estimated “global” three dimensional cartesian 
coordinates (ETRS89)

ˆ
GX ˆ

GY ˆ
GZ

Estimated “global” ellipsoidal coordinates (ETRS89)

ˆ
GB ˆ

GL ˆ
GH

Ellipsoidal geometry

UTM transformation

Estimated UTM coordinates (ETRS89)
Nordwert OstwertN̂ Ê

Estimated “global” three dimensional cartesian 
coordinates (ETRS89)

ˆ
GX ˆ

GY ˆ
GZ

Estimated “global” three dimensional cartesian 
coordinates (ETRS89)

ˆ
GX ˆ

GY ˆ
GZ

Estimated “global” ellipsoidal coordinates (ETRS89)

ˆ
GB ˆ

GL ˆ
GH

Estimated “global” ellipsoidal coordinates (ETRS89)

ˆ
GB ˆ

GL ˆ
GH

Ellipsoidal geometry

UTM transformation

Estimated UTM coordinates (ETRS89)
Nordwert OstwertN̂ Ê

 
Figure 12 Calculation of the estimated UTM coordinates (ETRS89) 

3) Compare with the original value (10 points) 
ˆ ˆ

ˆ ˆ
dN N N

dE E E

⎡ ⎤ ⎡ −
=⎢ ⎥ ⎢

−⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥⎦

            (4.2.12) 

The results are in table 7. 
Table 7 Numerical comparison between LS and TLS 

 LS  (m) TLS  (m) 

Points number ˆdN  ˆdE  ˆdN  ˆdE  

652000308 -0.1353 +0.3165 -0.1353 +0.3165 

672500108 -0.2147 +0.2435 -0.2147 +0.2435 

701600288 -0.1503 +0.2967 -0.1503 +0.2967 

722000300 -0.0860 -0.3590 -0.0860 -0.3590 

722600208 +0.3374 +0.0763 +0.3374 +0.0763 

751300208 +0.4139 -0.0714 +0.4139 -0.0714 

761900108 +0.4164 +0.0786 +0.4164 +0.0786 

792311808 -0.0801 +0.2510 -0.0801 +0.2510 

811300108 +0.0184 +0.2470 +0.0184 +0.2470 

811800108 +0.1787 +0.2680 +0.1787 +0.2680 
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Figure 13 Horizontal residuals after 7-P Helmert transformation with TLS  

 

From table 7 we can make the same conclusion as 6-parameter affine transformation. 
The residuals after transformation with LS and TLS method are almost identical and 
less than 4.5 dm. i.e., in practical situation TLS method has not obvious advantage for 
new points in comparison with LS method. See Figure 14. That is since that the 
estimated transformation parameters  and  in table 6 are almost identical.  ˆ

TLSξ ˆ
LSξ

To sum up, as long as the data satisfy the assumed EIV (error-in-variables) model, TLS 
gives better estimates of the true model parameters  than does LS, regardless of the 
common error distribution, and should be preferred to LS. For small sample sizes, small 
errors, or small , there is not much difference between TLS and LS: the mean squared 
error of the LS estimates may be slightly larger than that of the TLS estimates but, on 
the other hand, TLS is less robust than LS and has larger variances. However, when the 
sample size is increased, the TLS estimates are clearly more accurate than the LS 
estimates. When the data significantly violate the assumptions of the model, e.g., 
when outliers are present, the TLS estimates are very unstable and their accuracy is 
strongly affected. LS also encounters stability problems, although less dramatically. In 
these situations, robust procedures, which are quite efficient and rather insensitive to 
outliers, should be applied (Van Huffel, 1991).  

ξ

ξ
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Figure 14 Horizontal residuals of 10 check points (a) LS (b) TLS 
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5. Conclusions and further studies 

The traditional techniques used for solving the linear estimation problems are based on 
classical LS. Even though some robust methods based on -norm do exist, either the 
LS or robust estimation techniques assume that only the observation vector contains 
errors. However, this assumption is not valid for every case. One example for such a 
problem is the coordinate transformation (Acar and Özlüdemir, 2006). Considering the 
coordinate transformation between two coordinate sets, we can easily see that the 
observations and the partly the design matrix of the transformation are erroneous. One 
solution to this problem is the application of TLS method for estimation of the 
transformation parameters. TLS method considers the erroneous design matrix as well 
as their covariance information in computations. 

1L

For the concrete “Introduction of ETRS89 into Baden-Württemberg” has an alternative 
transformation procedure with the Total Least Squares method been applied in the 
transformation with the models of the 7-parameter Helmert transformation and 
6-parameter affine transformation using the 131 collocated points, and the results have 
been tested and discussed here. The results have been also analyzed and compared with 
these results of the conventional LS method. Based on these analyses and comparisons 
with different estimation methods the following points can be concluded (Cai, 2006): 

 TLS method is mathematically rigorous, especially for the coordinate 
transformations. With Van Huffel’s SVD method, TLS is simply implemented 
through MATLAB and allows meaningful application in data analysis. Moreover, 
if we use Schaffrin’s algorithm, the calculation of SVD is unnecessary. 

 In our case study, the TLS solution is not differ from the standard LS solution, 
since the estimated transformation parameters ˆ

TLSξ  and ˆ
LSξ  almost identical. 

There are no significant differences between the residuals after transformation 
with LS and TLS method, i.e., for new points the application of TLS method 
should be carefully considered.  

 For further studies, we should study how to apply the observation weights in TLS. 

Finally, it is hoped that this study will aid and stimulate the reader to apply TLS in his 
or her own applications and problems.  
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Appendix I 
Matlab-Program 
 
1. function [t,r,k,VPV,w,A,res]=affine_TLS(N,E,H,R) 

% calculate the affine transformation parameters with TLS method 

%------------------------------------------------------------------------------------------------------ 

%  | N |     | cos(alpha) -sin(beta) || m1  0 | | H |   | tN | 

%  |   | =   |                       ||       | |   |   |    | 

%  | E |     | sin(alpha)  cos(beta) || 0  m2 | | R |   | tE | 

% 

%               | m1 cos(alpha) -m2 sin(beta) | | H |   | tN | 

%        =      |                             | |   | + |    | 

%               | m1 sin(alpha)  m2 cos(beta) | | R |   | tE | 

% 

%               |       a              b      | | H |   | tN | 

%        =      |                             | |   | + |    | 

%               |       g              f      | | R |   | tE | 

%------------------------------------------------------------------------------------------------------ 

%  intput               :  N ... northvalue in UTM system 

%                          E ... eastvalue in Gauss-Krueger system 

%                          H ... hochwert in Gauss-Krueger system 

%                          R ... rechtwert in Gauss-Krueger system 

%  output               :  t ... 2 x 1-Vektor of Translation parameter 

%                          r ... 2 x 2-Rotationsmatrix 

%                          k ... 2 x 1-Vektor mit dem Mass-Staeben 

%                          VPV.. square residual (e*eT+EA* EA
T) 

%                          w ... 3 x 1-Vektor mit w(1)=Rotationswinkel, w(2)=Rotationswinkel 

%                                                 w(3)=Gewichtseinheitsfehler(sigma0)  

%                          A ... 2 x 2-Matrix mit den Parametern a,b,g,f 

%                          res   2 x n-Matrix, row 1 are northvalue residuals 

%                                              row 2 are ostvalue residuals 

 

n=size(N,1); 

%  Schwerpunktzentrierte Koordinaten 

Ns=mean(N); 

Es=mean(E); 

Hs=mean(H); 

Nq=N-Ns; 

Eq=E-Es; 

Hq=H-Hs; 

Rq=R-fix(R/1e6)*1e6; 

Rs=mean(Rq); 

Rq=Rq-Rs; 

% TLS method 

TLY=[Nq;Eq]; 
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   for i=1:n 

   TLA(i,:)=[Hq(i),Rq(i),0,0,Nq(i)]; 

   TLA(i+n,:)=[0,0,Hq(i),Rq(i),Eq(i)]; % A Matrix  

   end 

[UE,SE,VE]=svd(TLA); % Singulaerwertzerlegung(SVD) 

[mm,nn] = size(VE); 

mmm=mm-1; 

TLX=-(1/VE(mm,mm))*VE(1:mmm,mm)';  

TLX=TLX'; 

TLEA=SE(mm,mm)*UE(:,mm)*VE(:,mm)' ; 

[mm,nn]=size(TLEA); 

TLE=TLEA(:,nn);      % e 

TLEA3=[TLEA(:,1),TLEA(:,2),TLEA(:,3),TLEA(:,4)]; 

anzahl=2*n*4; 

TLEA=reshape(TLEA3,anzahl,1);   % EA 

XX=reshape(TLX,2,2); 

t=[Ns;Es]-XX'*[Hs;Rs]   ;       % 2 x 1-Translationsvektor tH,tR 

 

   X(1,1)=t(1); 

   X(1,2)=t(2); 

   X(2,1)=TLX1(1); 

   X(3,1)=TLX1(2); 

   X(2,2)=TLX1(3); 

   X(3,2)=TLX1(4); 

   

m1=sqrt(X(2,1)^2+X(2,2)^2);           % m1=sqrt(a^2+g^2): Mass-Stab m1 für die H-Achse  m1=sqrt(a^2+g^2) 

m2=sqrt(X(3,1)^2+X(3,2)^2);           % m2=sqrt(b^2+f^2): Mass-Stab m2 für die R-Achse 

k=[m1;m2];                            %                 : 2 x 1-Mass-Stabsvektor m1,m2 

w(1)= atan2(X(2,2),X(2,1));             % w(1)= atan(g/a) : Rotationswinkel [rad] für die H-Achse 

w(2)=-atan2(X(3,1),X(3,2));             % w(2)=-atan(b/f) : Rotationswinkel [rad] für die R-Achse 

r(1,1)=X(2,1)/m1;                     % =a/m1   2 x 2-Rotationsmatrix 

r(1,2)=X(3,1)/m2;                     % =b/m2 

r(2,1)=X(2,2)/m1;                     % =g/m1 

r(2,2)=X(3,2)/m2;                     % =f/m2 

A=X;                                  % Koeffizientenmatrix 

if n > 3 

res1=reshape(TLE,n,2);   

res=res1';                           % das ist nun eine 2 x n-Matrix, die zurück gegeben werden kan 

                                     % Zeile 1 sind Nord- bzw. Hochwertresiduen 

                                     % Zeile 2 sind Ost- bzw. Rechtswertresiduen 

VPV=TLE'*TLE+TLEA'*TLEA;  

w(3)=sqrt(VPV/(2*n-6)); 

else 

    w(3)=NaN; 

 41



 

   res=zeros(2,n);  

end 

 

2. function [tx,rotx,massstabx,winkelx,resx,VPV,SIGMAo]=TrafPara_TLS(xg,yg,zg,xl,yl,zl) 

% 7 parameter Hermelt transformation with TLS method  

%------------------------------------------------------------------------------------------------------ 

%                  | XG |                   | XL |   | TX | 

%                  | YG | =  Scalar * Rot * | YL | + | TY | 

%                  | ZG |                   | ZL |   | TZ |L 

%------------------------------------------------------------------------------------------------------ 

% input                          :    xg,yg,zg     global three dimensional cartesian coordinates XG YG ZG..

%                                :    xl,yl,zl     local three dimensional cartesian coordinates XL YL ZL

% output                         :    tx           3X1 TranslationsArray 

%                                :    rotx         3X3 Rotations matrix [rad] 

%                                :    massstabx    same Massstab for three axises (Scalar) 

%                                :    winkelx      3X1 rotation angles alfa,betta,gama [Rad]  

%                                :    resx         nX3 (n=number of points). Residuals of control points 

vx,vy,vz [m] 

%                                :    VPV          square residual (e*eT+eA* eA
T) 

%                                :    SIGMA0       standard deviation of unit weight [m]  

 

n=max(size(xg)); 

n1=max(size(xl)); 

if n~=n1 

    error('Anzahl der localen Punkte und globalen Punkte nicht gleich!') 

end 

[x,SIGMAo,VPV,e,ea]=Helmut_TLS(xg,yg,zg,xl,yl,zl,n); 

 

tx=[x(1),x(2),x(3)]'; 

rot=[0,-x(6),x(5); 

   x(6),0,-x(4); 

   -x(5),x(4),0]; 

 

rotx=-rot+eye(3).*x(7)+eye(3);      % 3X3 Rotationsmatrix [rad] 

winkelx=[x(4),x(5),x(6)]';           % winkelx 

massstabx=x(7);           % massstabx 

dummy=reshape(e,n,3); 

resx=dummy;            % resx 
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3. function [x,SIGMAo,VPV,TLE,TLEA]=Helmut_TLS(xg,yg,zg,xl,yl,zl,n) 

% sub-function for 7 parameter Hermelt transformation with TLS method  

%------------------------------------------------------------------------------------------------------ 

%             y=Ax                          y      observation 

%                                           A      disign matrix 

%                                           x      transformation parameters 

%             [UE,SE,VE]=svd(TLA)           singular value decomposition. 

%                                           TLA    design matrix with TLS method TLA=[A;y] 

%                                           UE     left singular vector 

%                                           VE     right singular vector 

%                                           SE     singular value matrix 

%------------------------------------------------------------------------------------------------------ 

 

%   input                     :    xg,yg,zg     global three dimensional cartesian coordinates XG YG ZG.. 

%                             :    xl,yl,zl     local three dimensional cartesian coordinates XL YL ZL

%                             :    n            number of points 

%   output                    :    x            7 transformation parameters : 3 translation, 3 rotation, 

%                                               1 scale 

%                             :    SIGMA0       standard deviation of unit weight [m] 

%                             :    VPV          square residual (e*eT+EA* EA
T) 

%                             :    TLE          residuals of observation y 

 

L=[xg;yg;zg]; 

%Schwerpunktzentrierung 

R=[xg yg zg xl yl zl]; 

R1=mean(R); 

TLL=[xg-R1(1);yg-R1(2);zg-R1(3)];; 

%design matrix 

zlq=zl-R1(6); 

ylq=yl-R1(5); 

xlq=xl-R1(4); 

% TLS method 

   for i=1:n 

   TLA(i,:)=[0,-zlq(i),ylq(i),xlq(i),TLL(i)]; 

   TLA(i+n,:)=[zlq(i),0,-xlq(i),ylq(i),TLL(i+n)]; 

   TLA(i+2*n,:)=[-ylq(i),xlq(i),0,zlq(i),TLL(i+2*n)];   % A Matrix  

   end 

[UE,SE,VE]=svd(TLA);          % Singulaerwertzerlegung(SVD) 

[mm,nn] = size(VE); 

mmm=mm-1; 

TLX=-(1/VE(mm,mm))*VE(1:mmm,mm)'; 

TLX=TLX'; 

TLEA=SE(mm,mm)*UE(:,mm)*VE(:,mm)' ;    

[mm,nn] = size(TLEA); 
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TLE=TLEA(:,5);             % e 

TLEA3=[TLEA(:,1),TLEA(:,2),TLEA(:,3),TLEA(:,4)]; 

anzahl=3*n*4; 

TLEA=reshape(TLEA3,anzahl,1);        % EA 

TLXX=[TLX(4),TLX(3),-TLX(2);-TLX(3),TLX(4),TLX(1);TLX(2),-TLX(1),TLX(4)]; 

TLT=[R1(1);R1(2);R1(3)]-TLXX*[R1(4);R1(5);R1(6)];     % 3 x 1-Translationsvektor  

VPV=TLE'*TLE+TLEA'*TLEA; 

SIGMAo=sqrt(VPV/(3*n-7)); 

x=[TLT(1);TLT(2);TLT(3);TLX(1);TLX(2);TLX(3);(TLX(4)-1)]; 
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Appendix II 
 
Data output 
 

%------------------------------------------------------------------------------------------------------ 

%  residuals:       ( ) ; ( ) ( , ) ( ) ( ) ( ); ;T T T T T

A A A A A A
vv e vv ea vv e ea VPV vv e ea= = = = + + = +e e e e e e e e e e e e+

%------------------------------------------------------------------------------------------------------ 

 
1. Transformationsparameter des Gesamtnetzes aus Affine2D （6-P 121 Punkte mit LS） 

=================================================================================== 

tN      :   437.389561 [m]  

tE      :   119.889076 [m]  

Alpha   :     0.159846 ["]  

Beta    :    -0.207380 ["]  

massstab1:     0.9996002792      

massstab2:     0.9996011784        

Sigma0(e)         :     0.120751 [m] 

vv(e)             :     3.441096 [m] 

 

Statistische Angaben Ueber die 121 Passpunkte nach der Transformation 

==================================================================================================== 

Feld    Punkte           Abs.Mittel (m)                 Abs.Max (m)             QMR (m)    Sigma0 (m)  

                       [VN]        [VE]            max[VN]     max[VE]                         

==================================================================================================== 

         121         0.105315    0.080063        0.334795      0.320312         119492       0.120751   

 

 

2. Transformationsparameter des Gesamtnetzes aus Affine2D （6-P 121 Punkte mit TLS） 

=================================================================================== 

tN      :   437.389548 [m]  

tE      :   119.889079 [m]  

Alpha   :     0.159846 ["]  

Beta    :    -0.207380 ["]  

massstab1:    0.9996002792      

massstab2:    0.9996011784        

Sigma0(e)         :     0.040272 [m] 

vv(e)             :     0.382751 [m] 

vv(ea)            :     0.764891 [m] 

vv(e,ea)           :     1.147643 [m] 

vv((e+ea))         :     1.530394 [m] 
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Statistische Angaben Ueber die 121 Passpunkte nach der Transformation 

==================================================================================================== 

Feld    Punkte          Abs.Mittel (m)            Abs.Max (m)              QMR (m)    Sigma0 (m)  

                    [VN]        [VE]           max[VN]     max[VE]                 

==================================================================================================== 

121      0.035124     0.026702       0.111658      0.106828       0.039852    0.040272   

 

 

3. Transformationsparameter des Gesamtnetzes aus Affine2D （6-P 131 Punkte mit LS） 

=================================================================================== 

tN      :   437.194567 [m]  

tE      :   119.756709 [m]  

Alpha   :     0.165368 ["]  

Beta    :    -0.196455 ["]  

massstab1:    0.9996003203      

massstab2:    0.9996011570        

Sigma0(e)         :     0.119868 [m] 

vv(e)             :     3.678308 [m] 

 

Statistische Angaben Ueber die 131 Passpunkte nach der Transformation 

==================================================================================================== 

Feld    Punkte        Abs.Mittel (m)           Abs.Max (m)            QMR (m)    Sigma0 (m)  

                    [VN]        [VE]         max[VN]     max[VE]                 

==================================================================================================== 

131     0.104860     0.080369       0.328825      0.322622     0.118715    0.119868   

 

 

4. Transformationsparameter des Gesamtnetzes aus Affine2D （6-P 131 Punkte mit TLS） 

=================================================================================== 

tN      :    437.194554 [m]  

tE      :    119.756712 [m]  

Alpha   :      0.165368 ["]  

Beta    :     -0.196455 ["]  

massstab1:      0.9996003203      

massstab2:      0.9996011570        

Sigma0(e)         :     0.039977 [m] 

vv(e)             :     0.409136 [m] 

vv(ea)            :     0.817619 [m] 

vv(e,ea)          :     1.226756 [m] 

vv((e+ea))        :     1.635892 [m] 
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Statistische Angaben Ueber die 131 Passpunkte nach der Transformation 

==================================================================================================== 

Feld    Punkte        Abs.Mittel (m)              Abs.Max (m)           QMR (m)    Sigma0 (m)  

                    [VN]        [VE]           max[VN]      max[VE]                 

==================================================================================================== 

131     0.034972     0.026804        0.109667      0.107598       0.039593    0.039977   

 

5. Transformationsparameter des Gesamtnetzes aus Helmert3D （7-P 121 Punkte mit LS） 

==================================================================================================== 

Tx      :   582.953910 [m]  

Ty      :   112.260037 [m]  

Tz      :   405.722189 [m]  

Alpha   :    -2.260711 ["]  

Beta    :    -0.336845 ["]  

Gamma   :     2.065813 ["]  

Massstab:    9.096290e-006        

   

Sigma0(e)             :     0.103619 [m] 

vv(e)                 :     3.822341 [m] 

   

Statistische Angaben Ueber die 121 Passpunkte nach der Transformation 

==================================================================================================== 

Feld    Punkte       Abs.Mittel (m)         Abs.Max (m)             QMR (m)    Sigma0 (m)  

                   [VN]        [VE]           max[VN]     max[VE]                 

==================================================================================================== 

        121      0.106692    0.083776       0.415881      0.357934     0.125309     0.103619   

 

 

6. Transformationsparameter des Gesamtnetzes aus Helmert3D （7-P 121 Punkte mit TLS） 

=================================================================================== 

Tx      :   582.953900 [m]  

Ty      :   112.260036 [m]  

Tz      :   405.722178 [m]  

Alpha   :    -2.260711 ["]  

Beta    :    -0.336845 ["]  

Gamma   :     2.065813 ["]  

Massstab:    9.096293e-006        

   

Sigma0(e)          :     0.051809 [m] 

vv(e)              :     0.955568 [m] 

vv(ea)             :     0.955585 [m] 

vv(e,ea)            :     1.911153 [m] 

vv((e+ea))          :     3.822306 [m] 

    

 47



 

Statistische Angaben Ueber die 121 Passpunkte nach der Transformation 

=================================================================================== 

Feld    Punkte        Abs.Mittel (m)              Abs.Max (m)          QMR (m)    Sigma0 (m)  

                    [VN]        [VE]           max[VN]     max[VE]                 

=================================================================================== 

        121      0.053345     0.041887       0.207939     0.178965       0.062654    0.051809   

 

7. Transformationsparameter des Gesamtnetzes aus Helmert3D （7-P 131 Punkte mit LS） 

=================================================================================== 

Tx      :   582.901711 [m]  

Ty      :   112.168080 [m]  

Tz      :   405.603061 [m]  

Alpha   :    -2.255032 ["]  

Beta    :    -0.335003 ["]  

Gamma   :     2.068369 ["]  

Massstab:    9.117208e-006        

   

Sigma0(e)             :     0.102599 [m] 

vv(e)                 :     4.063234 [m] 

   

Statistische Angaben Ueber die 131 Passpunkte nach der Transformation 

=================================================================================== 

Feld    Punkte        Abs.Mittel (m)              Abs.Max (m)          QMR (m)    Sigma0 (m)  

                  [VN]        [VE]             max[VN]     max[VE]                 

=================================================================================== 

         131     0.105497     0.083931       0.421063      0.355342      0.124101     0.102599   

 

 

8. Transformationsparameter des Gesamtnetzes aus Helmert3D （7-P 131 Punkte mit TLS） 

=================================================================================== 

Tx      :   582.901702 [m]  

Ty      :   112.168078 [m]  

Tz      :   405.603051 [m]  

Alpha   :     -2.255032 ["]  

Beta    :     -0.335003 ["]  

Gamma   :      2.068369 ["]  

Massstab:    9.117210e-006        

   

Sigma0(e)          :     0.051299 [m] 

vv(e)              :     1.015790 [m] 

vv(ea)             :     1.015808 [m] 

vv(e,ea)            :     2.031598 [m] 

vv((e+ea))          :     4.063197 [m] 
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Statistische Angaben Ueber die 131 Passpunkte nach der Transformation 

==================================================================================================== 

Feld    Punkte        Abs.Mittel (m)              Abs.Max (m)            QMR (m)    Sigma0 (m)  

                   [VN]        [VE]             max[VN]     max[VE]                 

==================================================================================================== 

        131      0.052748      0.041965      0.210530     0.177669        0.062050      0.051299   
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