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Abstract

The first step in this study is to review the properties of surface which are inherent to the surface
and can be described without referring to the embedding space. In other words, it is a method of
differential geometry. The methods of moving frames which allows deformation of surface could be
described by its own rights as a more reliable estimate of surface deformation measures. The method
takes advantage of the simplicity of the 2D surface M

2 versus the 3D Euclidean spaces E
3 without

losing or neglecting information about the third dimension in the results. Based on this method,
deformation can be described by using tangent vectors and the unit normal basis vector (attached to
the bodies before and after deformation). However, basis vectors of the deformed configuration will
need to complete information of intrinsic properties of the deformed surface.

Through this method, regularized Earth’s surface is considered as a graded 2D surface, namely
a curved surface, embedded in a Euclidean space E

3. Thus, deformation of the surface can be com-
pletely specified by the change of the metric and curvature tensors, namely strain tensor and tensor of
change of curvature (TCC). The curvature tensor, however, is responsible for the detection of vertical
displacements on the surface.

The next step of this study is to concentrate the local basis vectors of the deformed surface
which can be formulated in terms of the local basis vectors of undeformed surface and curvilinear
components of displacement vector. This will provide a representation of the intrinsic geometry of
the deformed surface with deriving information about the displacement field. The new formulation
of base vectors (for the deformed body) produces meaningful numerical results for the TCC and its
associated invariants (mean and Gaussian curvatures). They can propose a shape-classification of the
deformed surface based upon signs of mean and Gaussian curvatures which are new tools for studying
the Earth’s deformation. To enhance our understanding of the capabilities of the proposed method
in defining new basis vectors (for deformed body), we present two examples, one with a simulated
data set and the other with a real data set. However, through a real data set we demonstrated a
comparison between the proposed method with the plane strain model (2D classical method).

Dealing with eigenspace components e.g., principal components and principal directions of 2D
symmetric random tensors of second order is of central importance in this study. In the third step
of this research, we introduce an eigenspace analysis or a principal component analysis of strain
tensor and TCC. However, due to the intricate relations between elements of tensors on one side
and eigenspace components on other side, we will convert these relations to simple equations, by
simultaneous diagonalization. This will provide simple synthesis equations of eigenspace components
(e.g., applicable in stochastic aspects).

The last part of this research is devoted to stochastic aspects of deformation analysis. In the
presence of errors in measuring a random displacement field (under the normal distribution assumption
of displacement field), stochastic behaviors of eigenspace components of strain tensor and TCC are
discussed. It is performed by a propagation of errors from the displacement vector into elements
of deformation tensors (strain and TCC). However, due to the intricacy of the relations between
tensor components (strain or TCC) and their eigenspace components, we proceeded via simultaneous
diagonalization. This part is followed by a linearization of the nonlinear multivariate Gauss - Markov
model, which links the elements of transformed tensors (obtained by simultaneous diagonalization)



ii

with the eigenspace components. Then, we set up an observation model based on a linearized model
under a sampling of eigenspace synthesis.

Furthermore, we establish linearized observation equations for n samples of independent random
vectors from transformed tensor elements (under the normal distribution assumption), each with an
individual covariance matrix. This will provide us with the second-order statistics of the eigenspace
components. Then we estimate the covariance components between transformed tensor elements by
Helmert estimator, based on prior variance information. To enhance conceptual understanding of
stochastic aspects of deformation analysis, the method is applied to a real data set of dense GPS
network of Cascadia Subduction Zone(CSZ). Comparing the results showed that, in general, after es-
timating the covariance matrix of observations (transformed tensors via simultaneous diagonalization),
variances of eigenspace components become smaller. However, in some areas this did not occur, which
can be related to an incorrect description of initial accuracies, either too optimistic or too pessimistic.
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Zusammenfassung

Der erste Schritt dieser Studie besteht darin, einen Überblick über die inhärenten Eigenschaften einer
Oberfläche zu geben, die ohne Betrachtung des umliegenden Raumes beschrieben werden können.
In anderen Worten, es ist eine Methode der Differenzial-Geometrie. Die Methode der beweglichen
Rahmen, welche die Deformation einer Oberfläche erlaubt, kann bedingt durch eigene Regeln als eine
zuverlässigere Art der Schätzung von Deformationsmaßen einer Oberfläche angesehen werden. Die
Methode nutzt die Vorteile der Einfachheit der 2D-Oberfläche M

2 gegenüber dem 3D-Euklidischen
Raumes E

3, ohne Information über die dritte Dimension in den Ergebnissen zu verlieren oder zu
vernachlässigen. Auf dieser Methode basierend kann die Deformation mit Tangenten-Vektoren und
Einheitsnormalenvektoren beschrieben werden, welche vor und nach der Deformation am Körper ange-
bracht werden. Es werden allerdings für die Basis-Vektoren der deformierten Konfiguration die Erken-
ntnisse über die inneren Eigenschaften der deformierten Oberfläche benötigt.

Unter Verwendung dieser Methode wird die regularisierte Erdoberfläche als zwei - dimension-
ale, glatte Oberfläche, genauer gesagt als gekrümmte Oberfläche, betrachtet, welche im Euklidis-
chen Raum E

3 liegt. Daher kann die Oberflächendeformation komplett durch die Veränderung der
Metriktensoren und der Krümmungstensoren, speziell des Verzerrungstensors und des Tensors der
Krümmungsänderung, beschrieben werden. Der Krümmungstensor ist jedoch verantwortlich für die
Ermittlung von vertikalen Verschiebungen auf der Oberfläche.

Der nächste Schritt der Studie besteht darin, die lokalen Basisvektoren der deformierten Oberfläche
auszurichten, welche unter Einbeziehung des lokalen Basisvektors der undeformierten Oberfläche und
der krummlinigen Komponenten des Verschiebungsvektors formuliert werden können. Dies wird eine
Vorstellung der inneren Geometrie der deformierten Oberfläche und zusätzliche Informationen über
ihr Verschiebungsfeld geben.

Die neue Formulierung der Basisvektoren (des deformierten Körpers) führt zu signifikanten nu-
merischen Ergebnissen für den Tensor der Krümmungsänderung und seine Invarianten (mittlere und
Gauss’sche Krümmungen). Eine Klassifizierung der Form der deformierten Oberfläche ist beruhend
auf den Vorzeichen der mittleren und Gauss’schen Krümmungen möglich, was somit ein neues In-
strument für die Untersuchung der Erd-Deformation darstellt. Für die Vertiefung unserer Kenntnisse
über die Möglichkeiten dieser Methode, neue Basisvektoren für einen deformierten Körper zu finden,
geben wir zwei Beispiele an, eines mit simulierten Daten und das andere mit echten Daten. Durch das
Beispiel mit echten Daten können wir zusätzlich unsere Methode mit dem ebenen Verzerrungsmodel
(klassische 2D-Methode) vergleichen.

Die Behandlung von Eigenraum - Komponenten wie beispielsweise den Hauptkomponenten und -
richtungen der symmetrischen 2D - Zufallstensoren zweiter Ordnung ist in dieser Studie von zentraler
Bedeutung . Im dritten Teil dieser Studie führen wir eine Eigenraum - Analyse (oder : Analyse der
Hauptkomponenten) des Verzerrungstensors und des Tensors der Krümmungsänderung ein. Aufgrund
der komplexen Beziehungen zwischen den Elementen des Tensors auf der einen und den Eigenraum-
Komponenten auf der anderen Seite, werden wir diese komplexen Verhältnisse mittels simultaner
Diagonalisierung in einfachen Gleichungen darstellen. Dies liefert einfache Synthese - Gleichungen für
die Eigenraum-Komponenten, welche beispielsweise für stochastische Aspekte verwendbar sind.
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Der letzte Teil dieser Studie ist den stochastischen Aspekten der Deformations-Analyse gewidmet.
In der Gegenwart von Messfehlern bei der Erfassung von zufälligen Verschiebungsfeldern (unter An-
nahme eines normalverteilten Verschiebungsfeldes) wird das stochastische Verhalten der Eigenraum
- Komponenten des Verzerrungstensors und des Tensors der Krümmungsänderung diskutiert. Dies
wird durch eine Fehlerfortpflanzung von dem Verschiebungsvektor zu den Elementen des Deformation-
stensors (Verzerrungstensor und Tensor der Krümmungsänderung) erreicht. Aufgrund der komplexen
Verhältnisse zwischen Tensorkomponenten (Verzerrungstensor und Tensor der Krümmungsänderung)
und ihren Eigenraum - Komponenten verwenden wir hierfür simultane Diagonalisierung. Diesem Teil
folgt eine Linearisierung des nichtlinearen multivariaten Gauss - Markov Modells, welches die Elemente
der durch simultane Diagonalisierung transformierten mit den Eigenraum - Komponenten verbindet.
Anschliessend stellen wir ein Beobachtungsmodell auf, welches auf einem linearisierten Modell der
Eigenraum-Synthese basiert.

Desweiteren erstellen wir linearisierte Beobachtungsgleichungen für n Stichproben von unabhängig-
en Zufallsvektoren aus den transformierten Tensorelementen (unter Annahme der Normalverteilung),
von denen jeder eine eigene Varianzmatrix besitzt. Dadurch erhalten wir die Statistiken zweiter Ord-
nung der Eigenraum-Komponenten. Anschliessend bestimmen wir die Kovarianzkomponenten zwis-
chen den transformierten Tensorelementen mittels eines Helmert - Schätzers basierend auf a-priori
Varianzinformationen. Um die konzeptuelle Kenntnis der stochastischen Aspekte der Deformations-
analyse zu verbessern, wird die Methode für reale Daten eines engmaschigen GPS Netzes der Cascadia
Subduktionszone (CSZ) angewandt. Ein Vergleich der Ergebnisse zeigt, dass im Allgemeinen nach
der Schätzung der Kovarianzmatrix der Beobachtungen (mittels simultaner Diagonalisierung trans-
formierte Tensoren) die Varianzen der Eigenraumkomponenten kleiner werden. In manchen Regionen
trat dies jedoch nicht ein, was an einer inkorrekten Beschreibung der anfänglichen Genauigkeiten liegen
kann, die entweder zu pessimistisch oder zu optimistisch waren.
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Chapter 1

Introduction

1.1 Background

Following the classical separation of established geodetic techniques, namely triangulation and trilat-
eration versus leveling, the deformation of the Earth’s surface has been separated into horizontal and
vertical components and has been treated individually. The main reason for this conventional separate
procedure is due to the horizontal and vertical networks in classical geodesy.

Later space geodesy, such as GPS, VLBI, SLR, and DORIS has changed the rules of the game of
positioning essentially. Positions of network points, containing both horizontal and vertical compo-
nents, could be determined with high precision, enough to be used as an accurate and reliable source of
information in Earth deformation studies. The great number of studies of this type using displacement
fields derived from repeated observations of space geodetic networks indicates what an important role
the space geodetic techniques play in present and future states of geodynamics.

In this concept, we make use of continuous measurements over periods of several years for crustal
deformation studies. If we do not have continuous measurements over periods of several years, the
crustal deformation studies should be carried out under separation of horizontal and vertical compo-
nents. The main reason of the separation is claimed to be the non-sufficient accuracy of the height
component of point positioning.

Crustal motions and deformations are embedded in Euclidean space E
3. Therefore, the modeling

of the problems connected with deformations in Euclidean space E
3 by computing separately the 2D

planar deformations and vertical motions cannot portray the real state of crustal deformations. Then,
there have been attempts to derive 3D deformation from surface data by forming tetrahedrons and us-
ing the 3D finite element method where homogenous deformation is assumed within each tetrahedron,
which is an extension of the similar 2D approach where triangles are formed [Dermanis and Grafarend,
1993]. However, 3D methods of Earth deformation analysis lose the simplicity of computations in 2D
spaces.

These facts indicate the need for reevaluation of the theoretical foundations of the Earth defor-
mation analysis methods. Regarding these disadvantages and difficulties as well as the fact that we
have only surface geodetic measurements in our hands, it seems that a surface approach in the Earth’s
surface deformation analysis based on 3D displacement fields is an appropriate solution.

Applications of mathematical methods of surface deformation analysis can be seen in map pro-

1
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jection studies. Interesting works have been investigated for the study of deformations induced when
original figures on a sphere or an ellipsoid, as 2D Riemann manifolds, M

2, are mapped on a plane, as
a Euclidean space E

2 (see e.g., Chovitz [1979]; Hojovec et al. [1981]; Dermanis and Livieratos [1983]).
The development of all formulae for the computation of internal and external deformation measures
with Cartesian and ellipsoidal coordinates has been performed by Altiner [1996, 1999]. Furthermore,
he developed a method of analytical surface deformation analysis of the Earth’s crustal movements.
Later, Voosoghi [2000] presented an analytical formulation and implementation of a method of Earth’s
surface deformation analysis referring to the real surface of the Earth. The Earth’s surface is consid-
ered as a curved surface, embedded in Euclidean space E

3. For description of deformation tensors, he
used tangent and normal basis vectors (attached to the bodies before and after deformation). How-
ever, for the construction of basis vectors on the deformed configuration we will need to complete
information of intrinsic properties of deformed surface.

1.2 Objectives of Thesis

The surface deformation analysis, as described by Voosoghi [2000], is the basis for this study. Im-
provements that are addressed in this study are related to the:

Basis Vectors. The local basis vectors of deformed surface are formulated in terms of the local basis
vectors of undeformed surface and curvilinear components of the displacement vector. This will
provide a representation to intrinsic geometry of the deformed surface with deriving information
about the displacement field.

Shape Classifications. The new formulation of base vectors (for deformed body) produces meaning-
ful numerical results for the tensor of change of curvature and its associated invariants (mean and
Gaussian curvatures). They can propose a shape-classification of deformed surface based upon
signs of mean and Gaussian curvatures which are new tools for studying the Earth’s deformation.

A comparison with plane strain. Through a real data set we demonstrate a comparison between
proposed method with the plane strain model (2D classical method).

Eigenspace analysis. We introduce eigenspace analysis or principal component analysis of strain
tensor and tensor of change of curvature (TCC). However, due to the intricate relations between
elements of tensors on one side and eigenspace components on the other side, we will convert
these relations to simple equations, by simultaneous diagonalization. This will provide simple
synthesis equations of eigenspace components (e.g., applicable in stochastic aspects).

Stochastic Aspects In the presence of errors in measuring the random displacement field (under the
normal distribution assumption of the displacement field), the stochastic behavior of eigenspace
components of strain tensor and TCC is discussed. We divided the context into two parts : In the
first, we considered independent random vectors of repeated transformed tensor measurements.
In the second step we considered correlations between repeated measurements (transformed
tensors) and we estimated a covariance matrix of measurements.

1.3 Outline of Thesis

This thesis is organized as follows :
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Chapter 2 deals with deterministic aspects of deformation analysis. First, we reviewed differential
geometry to describe object deformation, including comparison of the first fundamental forms, defor-
mation gradients, Cauchy-Green deformation tensors and briefly account about polar decomposition
and strain tensor. An analytical example will be given on the real surface of the Earth. Then we will
discuss in eigenspace analysis, a comparison of the second fundamental forms, mean and Gaussian
curvatures and TCC. In the final section of this chapter, we will represent two numerical examples
: one with a simulated deformation model and one with the crustal deformation field (through the
continuous GPS data).

Chapter 3 describes the stochastic aspects of deformation analysis. In this chapter the process
of error propagations, in the presence of errors in measuring a random displacement field (under the
normal distribution assumption of a displacement field) to components of strain tensor and TCC
are discussed. This chapter also covers statistical inference of eigenspace components of deformation
tensors based on random vectors of tensor measurements. The last section of this chapter is devoted
to presenting a numerical example with the crustal deformation field (through the continuous GPS
data) in Cascadia Subduction Zone (CSZ).

Chapter 4 reports the general results and conclusions, and gives recommendations for future re-
search. Proof of the first-partial derivatives of basis vectors is given in Appendix A, and Appendix B
describes briefly the 2D finite element approach.

To preserve the briefness in the symbols used, we shall denote the space coordinates with XK(K =
1, 2, 3) and coordinates on the surface with ΘΛ (Λ = 1, 2). We shall also observe the rule that lower-
case Latin indices may take values 1, 2, 3 and the Greek indices values of 1, 2. In order to simplify the
notation, partial derivatives are often represented by a comma (e.g., u,Λ = ∂u

∂ΘΛ ). Also, the quantities
associated with the undeformed body will be denoted by capital letters and those associated with
deformed body will be denoted by lowercase letters.



Chapter 2

Deformation

This chapter is concerned with an exposition of the geometry of deformation. It may be considered
as a discussion of differential geometry appropriate to deformable bodies. The main purpose is to
connect the elements of a deformable body to their original locations and measures. To describe the
positions of material points, we introduce, in section 2.1, two sets of curvilinear coordinate systems,
one for the undeformed and one for the deformed body. These coordinate systems are characterized
through their relations to any rectangular frame of reference. In this section, basis vectors essential
to the representation of vectors are introduced.

In section 2.2, the first fundamental form (FFF) for both deformed and undeformed bodies is
obtained. In this section, we also give a brief account of tensor notations. The concepts of the
deformation gradients and deformation tensors of Cauchy and of Green are given in 2.3. Furthermore,
in this section, the polar decomposition of a deformation gradient tensor is discussed briefly.

The strain tensor, as a deformation tensor of first kind, and the displacement vector are intro-
duced in the subsequent section, followed by a curvilinear component of displacement vector and one
analytical example in section 2.4. In this section we also give a detailed discussion of eigenspace
analysis and strain invariants. Due to the intricate relations between elements of strain tensor on one
side and eigenspace components on the other side, we will present a discussion on how to transform
these relations into simple equations, by simultaneous diagonalization of strain tensor with associated
metric tensor.

Comparing a second fundamental form (SFF) of deformed and undeformed bodies, likewise con-
cepts of mean and Gaussian curvatures are given in section 2.5. Tensor of changes of curvature (TCC),
as the deformation tensor of second kind is explained in section 2.6. This section is followed by giv-
ing an example and eigenspace analysis of TCC. Section 2.7 is devoted to the changes in mean and
Gaussian curvatures, due to the deformation. In the final section we will present two numerical exam-
ples : one with a simulated deformation model and one with the crustal deformation field (through
continuous GPS measurements).

Using the simulated deformation model we will explain step-by-step how to create an algorithm
based on the proposed method for the analysis of deformation. Meanwhile, through a real data set
we demonstrate a comparison between proposed method with the plane strain model (2D classical
method).

4
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2.1 Concepts

We suppose that a surface M
2
l , at certain time e.g. t = 0, occupies a certain region of the physical

space. The position of a particle M ∈ M
2
l at this time can be described by a curvilinear coordinate

system {Θ1,Θ2} attached to the surface or by position vector X measured from an origin O of the
orthogonal fixed frame {J1,J2,J3 | O} to M . In the same manner, we assume that after deformation
the position of a particle on the deformed surface m ∈ M

2
r at time t is denoted by a new set of

curvilinear coordinates {θ1, θ2} on a deformed surface or by position vector x which extends from the
origin o of the new orthogonal fixed frame {j1, j2, j3 | o} to m.

Following the conventions of literature in deformation analysis, we shall call coordinates which refer
to undeformed surface material or Lagrangian coordinates and coordinates which refer to deformed
surface spatial or Eulerian coordinates. However, in map projection conventions, coordinates of surface
before deformation are so-called left coordinates, and coordinates of surface after deformation are so-
called right coordinates.

Hence, the quantities associated with the undeformed body will be denoted by capital letters and
those associated with deformed body will be denoted by lowercase letters. The motion of the surface
can carry various material points through various spatial points. This is expressed by

θφ = θφ(ΘΦ, t) vs. ΘΦ = ΘΦ(θφ, t) (2.1)

Thus each point m on M
2
r at time t comes from a point M in M

2
l at time t = 0. We assume that

the mappings (2.1) are single-valued and have continuous partial derivatives with respect to their
arguments. Furthermore each member of (2.1) is the unique inverse of the order in a neighborhood of
the material point M . A unique inverse of the first part of (2.1) exists, at least in a δ neighborhood
of m, if and only if the determinant of the Jacobian matrix is not equal to zero, e.g.,

det[
∂θφ

∂ΘΦ
] := det







∂θ1

∂Θ1
∂θ1

∂Θ2

∂θ2

∂Θ1
∂θ2

∂Θ2






6= 0 |θφ − Θφ| < δ

Equation of motion (2.1) shifts every region into region, every surface into surface and every curve
into curve. Furthermore, it implies the indestructibility of matter as well as impenetrability of matter.
No region of positive, finite volume is deformed into one of zero or infinite volume. Also, one portion
of a matter never penetrates into another.

Following the Fig. 2.1, the position vector X of a point M on surface M
2
l and position vector x of

a point m on deformed surface M
2
r, referred respectively to orthogonal fixed frames XK and xk, could

be expressed by

X = JKX
K(Θ1,Θ2) vs. x = jkx

k(θ1, θ2)

where the summation convention over the repeated index K and k are applied. Here, the basis vectors
of rectangular coordinate systems XK and xk are specified by JK and jk, respectively.

Tangent basis vectors dX in M
2
l and dx in M

2
r may be expressed as

dX =
∂X

∂ΘΛ
dΘΛ = AΛdΘ

Λ vs. dx =
∂x

∂θλ
dθλ = aλdθ

λ (2.2)
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X

x

2

l
M

3A

t

M

1A

1a

3a
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2A

1J

1j
1

X

1
x

2
X

m

2
x

3
x

3
X

2J

2j

3J

3j

Q

q

q

Q
1

1

2

2

2

r
M

Figure 2.1: Deformation of surface M
2
l into another surface M

2
r .

where as

AΛ :=
∂X

∂ΘΛ
= JK

∂XK

∂ΘΛ
vs. aλ :=

∂x

∂θλ
= jk

∂xk

∂θλ
(2.3)

are the tangent basis vectors to the coordinates {Θ1,Θ2} and {θ1, θ2} respectively.

The unit normal vectors, often simply called the normals, to M
2
l and M

2
r can be expressed with

cross products of tangential basis vectors by

A3 =
A1 × A2

‖A1 × A2‖
vs. a3 =

a1 × a2

‖a1 × a2‖
(2.4)

2.2 Comparison of the First Fundamental Forms

The first fundamental form (FFF), or squares of infinitesimal lengths, in M
2
l and M

2
r are respectively

I(Θ1,Θ2) :=< dX, dX > vs. I(θ1, θ2) :=< dx, dx >

where the use of (2.2) yields

I(Θ1,Θ2) = AΛΦdΘ
ΛdΘΛ vs. I(θ1, θ2) = aλφdθ

λdθλ (2.5)

which

AΛΦ =< AΛ,AΦ > vs. aλφ =< aλ,aφ > (2.6)

in which AΛΦ and aλφ are the coordinates of the covariant metric tensor of the M
2
l and M

2
r respectively.

The matrix representation of these tensors can be expressed by

Al := [AΛΦ] =

[

A11 A12

A21 A22

]

=

[

E F
F G

]

vs. Ar := [aλφ] =

[

a11 a12

a21 a22

]

=

[

e f
f g

]

(2.7)
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where we set

E =< A1,A1 > vs. e =< a1,a1 >

F =< A1,A2 > vs. f =< a1,a2 >

G =< A2,A2 > vs. g =< a2,a2 >

The matrices [AΛΦ] and [aλφ] are symmetric and positive-definite [Visconti, 1992]. In general, curvi-
linear coordinates are not mutually orthogonal since

< AΛ,AΦ >= AΛΦ 6= 0 vs. < aλ,aφ >= aλφ 6= 0 (2.8)

that means A12 and a12 are not zero. The reciprocal basis vectors AΛ and aλ are the solution of the
systems

< AΦ,AΛ >= δΦΛ vs. < aφ,aλ >= δφ
λ (2.9)

where the Kronecker symbols δΦΛ and δφ
λ take value 1 or 0 depending on whether the indices are

identical or not. It can be verified that the unique solutions of (2.9) are

AΦ = AΦΛAΛ vs. aφ = aφλaλ (2.10)

are the coordinates of contravariant metric tensors associated with coordinates of covariant metric
tensors. In matrix form they can be represented by

[AΦΛ] = [AΦΛ]−1 vs. [aφλ] = [aφλ]−1

From (2.10), by taking the scalar product, we find that

AΦΛ =< AΦ,AΛ > vs. aφλ =< aφ,aλ >

When curvilinear coordinates are orthogonal, then the directions of AΦ and AΦ and similarly directions
of aφ and aφ will coincide. Hence, AΦΛ = AΦΛ = 0 as well aφλ = aφλ = 0.

In tensor analysis, so-called mixed tensors exist also, which are neither covariant nor contravariant.
At least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices
will be a superscript (contravariant). These tensors could differ from each other by the covariant or
contravariant of their indices, e.g.

CΦ
Ψ = AΦΛCΛΨ vs. CΨ

Φ = AΦΛC
ΛΨ

2.3 Deformation Gradients

Through the equation of motion (2.1) we have

dθφ = θφ
,ΦdΘ

Φ vs. dΘΦ = ΘΦ
,φdθ

φ (2.11)

where

θφ
,Φ :=

∂θφ

∂ΘΦ
vs. ΘΦ

,φ :=
∂ΘΦ

∂θφ
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are called deformation gradients. The set of deformation gradients can be described by the two
Jacobian matrices Jl and Jr, which obey the matrix relations

Jl := [
∂θφ

∂ΘΦ
] = J−1

r vs. Jr := [
∂ΘΦ

∂θφ
] = J−1

l

If we substitute (2.11) into (2.5)

I(Θ1,Θ2) = AΛΦdΘ
ΛdΦΛ = cλφdθ

λdθφ vs. I(θ1, θ2) = CΛΦdΘ
ΛdΘΦ = aλφdθ

λdθλ (2.12)

where

cλφ = AΛΦΘΛ
,λΘΦ

,φ vs. CΛΦ = aλφθ
λ
,Λθ

φ
,Φ

which are called respectively Cauchy’s deformation tensor and Green’s deformation tensor. Both of
these tensors are symmetric, and both are positive-definite. Corresponding to the Cauchy and Green
deformation tensors, new vectors cλ and Cλ may be defined by

cλ :=
∂X

∂θλ
=

∂X

∂ΘΛ

∂ΘΛ

∂θλ
= AΛΘΛ

,λ vs. CΛ :=
∂x

∂ΘΛ
=

∂x

∂θλ

∂θλ

∂ΘΛ
= aλθ

λ
,Λ (2.13)

from which it follows that

cλφ = cφλ =< cλ, cφ > vs. CΛΦ = CΦΛ =< CΛ,CΦ > (2.14)

Hence, we have two different representations for the differential vectors dX and dx, one in reference
frame XK and the other in xk, i.e.,

dX = AΛdΘ
Λ = cλdθ

λ vs. dx = CΛdΘ
Λ = aλdθ

λ

Similarly for the FFF of surfaces we have

I(Θ1,Θ2) = AΛΦdΘ
ΛdΘΦ = cλφdθ

λdθφ vs. I(θ1, θ2) = CΛΦdΘ
ΛdΘΦ = aλφdθ

λdθφ

In map projection literature, Green’s deformation tensor has been introduced as the left Cauchy-
Green deformation tensor and Cauchy’s deformation tensor as the right Cauchy-Green deformation
tensor, which can be represented by matrix notations [Grafarend and Krumm, 2006]

Cl := [CΦΛ] vs. Cr := [cφλ] (2.15)

By means of the left Cauchy-Green tensor, we have represented the right metric or the metric of the
right surface M

2
r in the coordinates of the left surface M

2
l . By means of the right Cauchy-Green tensor,

we have represented the left metric or the metric of the left surface M
2
l in the coordinates of the right

surface M
2
r.
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Theorem 2-1. (Polar Decomposition)

The deformation gradient matrix J can be decomposed using the polar decomposition theorem into a
product of two matrices

J = RU = VR (2.16)

The two matrices U and V in decomposition (2.16) are symmetric and positive definite

UT = U , VT = V

whereas R is a proper orthonormal matrix

RTR = RRT = I

The symmetric matrices U and V are called the right and left stretch matrices, and orthonormal
matrix R is called the rotation matrix. The stretch matrices are given in terms of J by

U = (JJT)
1
2 , V = (JTJ)

1
2 (2.17)

R

RU

V

Figure 2.2: Schematic description of the polar decomposition of the deformation matrix J = RU = VR.

Then by comparing (2.16) and (2.17) the rotation matrix R can be derived by

R = JU−1 = V−1J

The physical interpretation of the polar decomposition (2.16) is : the deformation of an infinitesimal
ball of material surrounding a particle can be viewed either as a symmetric stretch U followed by a
rigid rotation R, or as a finite rotation R followed by a symmetric stretched V, which are illustrated
by Fig. 2.2. The two stretch matrices are rotated versions of each other, e.g., they are related by an
orthogonal transformation : U = RTVR.

2.4 Strain Tensor: deformation tensor of first kind

The first measure of deformation is based upon differences between FFF of surfaces M
2
l and M

2
r,

namely I(θ1, θ2)− I(Θ1,Θ2), which implies a length change due to the deformation. Hence, according
to (2.12) we have
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I(θ1, θ2) − I(Θ1,Θ2) = 2EΦΛdΘ
ΛdΘΦ = 2eφλdθ

λdθφ

where

EΛΦ = EΦΛ :=
1

2
(CΛΦ −AΛΦ) vs. eλφ = eφλ :=

1

2
(aλφ − cλφ) (2.18)

are respectively called Lagrangian and Eulerian strain tensors. Following the map projection conven-
tions, the Lagrangian strain tensor is called the left Euler-Lagrange strain tensor and the Eulerian
strain tensor the right Euler-Lagrange strain tensor. The matrix representation of them are given by

El := [EΛΦ] vs. Er := [eλφ]

Unlike the Cauchy-Green deformation tensors which are positive due to the positive-definite prop-
erty of the deformation tensors, the eigenvalues of the Euler-Lagrange deformation tensors can be
negative or positive.

The displacement vector u is defined as the vector that extends from a material point in undeformed
surface M

2
l to the same material point in deformed surface M

2
r. Thus

u = x − X + t

X

x

2

l
M

3A

u

t

M

1A

1a

3a
2a

2A

1J

1j
1

X

1
x

2
X

m

2
x

3
x

3
X

2J

2j

3J

3j

Q

q

q

Q
1

1

2

2

2

r
M

Figure 2.3: Displacement vector.

which is illustrated by Fig. 2.3. If we consider the translation vector t in order of magnitude to be
smaller than vectors x and X, namely t ≪ X and t ≪ x, then deformation tensors are insensitive to
it. The displacement vector will have components ŨK referring to the curvilinear coordinate system
{Θ1,Θ1} and ũk referring to the {θ1, θ1} such that

u = ŨKAK = ŨKAK vs. u = ũkak = ũka
k (2.19)

or by splitting curvilinear basis vectors into a set of surface basis vectors and unit normal vectors, we
find

u = ŨΦAΦ + Ũ3A3 = ŨΦAΦ + Ũ3A
3 vs. u = ũφaφ + ũ3a3 = ũφa

φ + ũ3a
3
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Let us take the scalar product of (2.19) with AK and ak respectively

ŨK =< u,AK > vs. ũk =< u,ak > (2.20)

or by scalar multiplication of (2.19) with AK and ak we obtain

ŨK =< u,AK > vs. ũk =< u,ak > (2.21)

It is convenient for practical applications to express strain tensors (2.18) as a function of the
displacement vector [Sansour et al., 1997; Voosoghi, 2000; Pietraszkiewicz and Szwabowicz, 2007]

EΛΦ =
1

2
(< u,Λ,u,Φ > + < u,Λ,AΦ > + < AΛ,u,Φ >) vs. eλφ =

1

2
(< u,λ,u,φ > + < u,λ,aφ > + < aλ,u,φ >)

(2.22)

where

u,Λ =
∂u

∂ΘΛ
vs. u,λ =

∂u

∂θλ

are first-order partial derivatives of the displacement vector with respect to the material and spatial
curvilinear coordinates. A more detailed description of these derivatives and their relations is presented
in Appendix A.

2.4.1 An Analytical Example

Since the Earth is in fact flattened slightly at the poles and bulges somewhat at the equator, the
geometrical figure used in geodesy to most nearly approximate the shape of the Earth is an ellipsoid
of revolution. It is used to represent the Earth’s surface in geodetic calculations, because such calcu-
lations are simpler than those with more complicated mathematical models. It can be used also for
deformation analysis, in order to describe crustal deformations.

Hence, the embedding of an ellipsoid-of-revolution with semi-major axis A1 and A2 as a semi-minor

axis and E2 =
A2

1−A2
2

A2
1

as square of the first eccentricity, is governed by vector field [Grafarend and

Engels, 1992]

X(Λ,Φ) = J1X
1(Λ,Φ) + J2X

2(Λ,Φ) + J3X
3(Λ,Φ) (2.23)

X(Λ,Φ) = [ J1 J2 J3 ]



















( A1√
1−E2 sin2 Φ

+H(Λ,Φ))) cos(Λ) cos(Φ)

( A1√
1−E2 sin2 Φ

+H(Λ,Φ))) sin(Λ) cos(Φ)

( A1(1−E2)√
1−E2 sin2 Φ

+H(Λ,Φ))) sin(Φ)



















(2.24)

and can be considered for the representation of Earth’s surface before deformation, as a left surface
M

2
l . In Eq.(2.24), the ellipsoidal height H(Λ,Φ) is described as a function of latitude and longitude.

We can get similar Eqs. (2.23) and (2.24) for the representation of Earth’s surface after deformation,
as a right surface M

2
r by

x(λ, φ) = j1x
1(λ, φ) + j2x

2(λ, φ) + j3x
3(λ, φ)
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x(λ, φ) = [ j1 j2 j3 ]



















( A1√
1−E2 sin2 φ

+ h(λ, φ))) cos(λ) cos(φ)

( A1√
1−E2 sin2 φ

+ h(λ, φ))) sin(λ) cos(φ)

( A1(1−E2)√
1−E2 sin2 φ

+ h(λ, φ))) sin(φ)



















(2.25)

respectively. The coordinates (X1,X2,X3) and (x1, x2, x3) of the placement vectors X(Λ,Φ) and
x(λ, φ) are expressed in the left and right orthogonal fixed frames {J1,J2,J3 | O} and {j1, j2, j3 | o}
at their origins O and o.

Next, we are going to construct the tangent basis vectors in M
2
l and M

2
r. The vector field X(Λ,Φ)

is locally characterized by the field of tangent basis vectors {∂X
∂Λ ,

∂X
∂Φ }, the Jacobi map with respect to

the Λ and Φ. Namely according to Eq. (2.3) and (2.24) we have

{∂X
∂Λ

,
∂X

∂Φ
} = [ J1 J2 J3 ]













X1
,Λ X1

,Φ

X2
,Λ X2

,Φ

X3
,Λ X3

,Φ













{∂X
∂Λ

,
∂X

∂Φ
} = [ J1 J2 J3 ]











cosΦ(H,Λ cosΛ − (N +H) sinΛ) cosΛ(H,Φ cosΦ − (M +H) sin Φ)

cosΦ(H,Λ sin Λ + (N +H) cosΛ) sin Λ(H,Φ cosΦ − (M +H) sinΦ)

sin Φ H,Λ H,Φ sin Φ + (M +H) cosΦ











in addition, the vector field x(λ, φ) is locally characterized by the field of tangent basis vectors {∂x
∂λ ,

∂x
∂φ},

the Jacobi map with respect to the λ and φ, namely

{∂x
∂λ
,
∂x

∂φ
} = [ j1 j2 j3 ]













x1
,λ x1

,φ

x2
,λ x2

,φ

x3
,λ x3

,φ













{∂x
∂λ
,
∂x

∂φ
} = [ j1 j2 j3 ]











cosφ(h,λ cosλ− (n+ h) sinλ) cosλ(h,φ cosφ− (m+ h) sinφ)

cosφ(h,λ sinλ+ (n+ h) cosλ) sinλ(h,φ cosφ− (m+ h) sinφ)

sinφ h,λ h,φ sinφ+ (m+ h) cosφ











whereH,Λ, H,Φ and h,λ, h,φ denote first-order partial derivatives of the ellipsoidal height functions with
respect to the surface coordinates (Λ,Φ) and (λ, φ), respectively. The normal radiuses of curvatures
N/n and meridional radiuses of curvatures M/m of the reference ellipsoid are given by

N =
A1

(1 − E2 sin2 Φ)
1
2

vs. n =
A1

(1 − E2 sin2 φ)
1
2
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M =
A1(1 − E2)

(1 − E2 sin2 Φ)
3
2

vs. m =
A1(1 − E2)

(1 − E2 sin2 φ)
3
2

Next, we are going to identify the coordinates of the left metric tensor AΛΦ and the right metric
tensor aΛΦ, in particular through Eq. (2.6), from the inner products

<
∂X

∂Λ
,
∂X

∂Λ
>= H2

,Λ + (N +H)2 cos2 Φ =: A11 vs. <
∂x

∂λ
,
∂x

∂λ
>= h2

,λ + (n+ h)2 cos2 φ := a11

<
∂X

∂Λ
,
∂X

∂Φ
>= H,ΛH,Φ := A12 vs. <

∂x

∂λ
,
∂x

∂φ
>= h,λh,φ := a12

<
∂X

∂Φ
,
∂X

∂Φ
>= H2

,Φ + (M +H)2 := A22 vs. <
∂x

∂φ
,
∂x

∂φ
>= h2

,φ + (m+ h)2 := a22

and FFF of surfaces

I(Θ1,Θ2) = (H2
,Λ + (N +H)2 cos2 Φ) dΛ2 + (H,ΛH,Φ) dΛdΦ + (H2

,Φ + (M +H)2) dΦ2

versus

I(θ1, θ2) = h2
,λ + (n+ h)2 cos2 φ) dλ2 + (h,λh,φ) dλdφ+ (h2

,φ + (m+ h)2) dφ2

Resorting to this identification, we obtain the matrix form of the left metric tensor, i.e. Al, and the
matrix form of the right metric tensor, i.e. Ar, according to

Al := [AΛΦ] = vs. Ar := [aλφ] =

=





H2
,Λ + (N +H)2 cos2 Φ H,ΛH,Φ

H,ΛH,Φ H2
,Φ + (M +H)2



 vs. =





h2
,λ + (n+ h)2 cos2 φ h,λh,φ

h,λh,φ h2
,φ + (m+ h)2





Hence, through Eqs. (2.13), (2.14) and (2.15), Cauchy-Green deformation tensors can be derived by

CΛΦ =< CΛ,CΦ >=<
∂x

∂ΘΛ
,
∂x

∂ΘΦ
> vs. cλφ =< cλ, cφ >=<

∂X

∂θλ
,
∂X

∂θφ
>

=<
∂(u + X − t)

∂ΘΛ
,
∂(u + X− t)

∂ΘΦ
> vs. =<

∂(x − u + t)

∂θλ
,
∂(x − u + t)

∂θφ
>

=< u,Λ,u,Φ > + < u,Λ,X,Φ > + vs. =< u,λ,u,φ > + < u,λ,X,φ > −
< X,Λ,u,φ > + < X,Λ,X,Φ > vs. < x,λ,u,φ > + < x,λ,x,φ > (2.26)

To complete this example we calculate Lagrangian and Eulerian strain tensors. Then according to
Eqs. (2.18) and (2.26) we have

EΛΦ =
1

2
(< u,Λ,u,Φ > + < u,Λ,AΦ > + < AΛ,u,Φ >) vs. eλφ =

1

2
(< u,λ,u,φ > + < u,λ,aφ > + < aλ,u,φ >)

(2.27)

Hence through this analytical example we proved Eq. (2.22).
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Remark 2.1 Apart from the Cauchy-Green and Euler-Lagrange deformation tensors used to describe
the changes in the geometry of the deforming body induced by deformation, it is often convenient in
deformation analysis to employ other equivalent deformation measures. Tab. (2.1) collects the most
common deformation tensors of first kind and their definitions appearing in various applications in
deformation analysis [Grafarend and Krumm, 2006, page 38]

Table 2.1: Various measures for deformation (based on FFF).

Name Symbol Definitions

Left Cauchy − Green strain tensor E1 Cl

Right Cauchy − Green strain tensor E2 Cr

Piola E3 C−1
l

Finger E4 C−1
r

Hencky E5
1
2 lnCl

Hencky E6
1
2 lnCr

Left Euler − Lagrange strain tensor E7
1
2 (Cl − Al)

Right Euler − Lagrange strain tensor E8
1
2 (Ar − Cr)

Karni − Reiner E9
1
2(C−1

l − Al)

Karni − Reiner E10
1
2(Ar − C−1

r )

2.4.2 Eigenspace Analysis, Strain Tensor

Let us consider the matrix forms of left Euler-Lagrange strain tensor and left metric tensor are given
by

El =

[

E11 E12

E12 E22

]

Al =

[

A11 A12

A12 A22

]

where both matrices are symmetric. Finding the eigenspectra elements of matrices {El,Al} leads us
to obtaining a general eigenvector-eigenvalue problem of type

ElFl = DΛAlFl (2.28)

where Fl = [F1,F2] ∈ R
2×2 is the matrix of eigenvectors and DΛ is the diagonal matrix of eigenvalues,

namely DΛ = diag[Λ1,Λ2]. Through (2.28), eigenvalues and eigenvectors can be obtained by

ElFl − DΛAlFl = 0 =⇒ det(El − DΛAl) = 0 (2.29)

Solving (2.29) for eigenvalues of the matrices {El,Al} yields [Grafarend, 1995]

Λ1,2 =
1

2
{tr(ElA

−1
l ) ±

√

(tr(ElA
−1
l ))2 − 4det(ElA

−1
l ) , Λ1,Λ2 ∈ R (2.30)

whereas here Λ1 and Λ2 are the principal stretches. A deformation portrait when signΛ1 = signΛ2

will be the strain ellipse and as strain hyperbola if signΛ1 6= signΛ2.
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In the first case, the axes of the strain ellipse are directed along the eigenvectors of the strain ellipse;
the semi-major axis of strain ellipse is identified with the maximum principal strain, the semi-minor
axis with the minimum principal strain, constrained by signΛ1 = signΛ2. If signΛ1 = signΛ2 = +1,
we speak about extension if signΛ1 = signΛ2 = −1, we will speak of contraction. Alternatively, in the
second case, the axis of strain hyperbola are directed along the eigenvectors of deformation tensors,
indicated by the ”real axis” showing Λ1 and ’imaginary axis’ with |Λ2|, for instance [Grafarend and
Krumm, 2006].

Inserting eigenvalues (2.30) into (2.28), we can get eigenvectors by

F1 = ((E22−Λ1A22)
2A11−2(E12−Λ1A12)(E22−Λ1A22)A12+(E12−Λ1A12)

2A22)
−1/2

[

E22 − Λ1A22

−(E12 − Λ1A12)

]

F2 = ((E11−Λ2A11)
2A22−2(E12−Λ2A12)(E11−Λ2A11)A12+(E12−Λ2A12)

2A11)
−1/2

[

−(E12 − Λ2A12)
E11 − Λ2A11

]

In general, on the surface M
2
l , we have non-orthogonal conjugate axis of quadratic forms <

F1,F2 > 6= 0, contrary to the ”plane” which has orthogonal conjugate of axis < F1,F2 >= 0. Since in
E

2 or plane, metric is unit A = diag(1, 1), while 2D Riemannian Manifold M
2 or 2D surface, equipped

with natural metric which is not unit (see Eq. (2.8)) .

The orientation of semi-major axis of quadratic forms on the surface M
2
l is represented by Ψ

through Eqs. (2.31) and (2.32). Its illustration in left Euclidean space E
2
l with basis {E1,E2} is

anti-clockwise with respect to the 1-axis, namely east direction [Eisele and Mason, 1970]

Ψ = arccos(
< F1,El >

‖F1‖
) = arccos(

F 1
1

‖F1‖
) subject to ‖F1‖2 = max{‖F1‖, ‖F2‖}, ∀Ψ ∈ [−π

2
,
π

2
]

(2.31)
or

Ψ = arccos(
< F2,El >

‖F2‖
) = arccos(

F 1
2

‖F2‖
) subject to ‖F2‖2 = max{‖F1‖, ‖F2‖}, ∀Ψ ∈ [−π

2
,
π

2
]

(2.32)
Then according to (2.30) and (2.31) or (2.32), for a symmetric strain matrix El with associated

metric Al, the eigenspace components will consist of : eigenvalues Λ1 and Λ2, as well the as orientation
parameter Ψ

Y =





Λ1

Λ2

Ψ



 =
1

2



















tr(ElA
−1
l ) +

√

(tr(ElA
−1
l ))2 − 4det(ElA

−1
l )

tr(ElA
−1
l ) −

√

(tr(ElA
−1
l ))2 − 4det(ElA

−1
l )

arccos(<Fi,Ei>
‖Fi‖ )



















(2.33)

The similar procedure can be performed for the right-pair of matrices {Er,Ar}. Then right
eigenspace components will consist of



2.4. STRAIN TENSOR: DEFORMATION TENSOR OF FIRST KIND 16

y =





λ1

λ2

ψ



 =
1

2



















tr(ErA
−1
r ) +

√

(tr(ErA
−1
r ))2 − 4det(ErA

−1
r )

tr(ErA
−1
r ) −

√

(tr(ErA
−1
r ))2 − 4det(ErA

−1
r )

arccos(<fi,ei>
‖fi‖ )



















(2.34)

where {e1, e2} are basis in right Euclidean space E
2
r.

Invariants of Strain Tensor

In mathematics and theoretical physics, an invariant is that which remains unchanged under some
transformation. The invariants do not change with rotation of the coordinate system (they are ob-
jective). Obviously, any function of the invariants only is also objective. Examples of invariants in
deformation analysis include the eigenspace components of the strain tensor. The first properties of
invariants are the sum of the eigenvalues of the strain tensor; their sum defines the rate of surface
dilatation as a surface invariant by

∆ = Λ1 + Λ2 = tr(ErA
−1
r ) vs. δ = λ1 + λ2 = tr(ElA

−1
l ) (2.35)

The surface dilatation is the relative change of area. The surface dilatation of zero corresponds to
no change of area, surface dilatation of positive values relates to expansion of the area and negative
dilatations correspond to a reduction of the area.

The second properties of invariants are the differences between a pair of eigenvalues, which is a
so-called surface maximum shear strain

Υ = Λ1 − Λ2 =
√

(tr(ElA
−1
l ))2 − 4det(ElA

−1
l ) vs. υ = λ1 − λ2 =

√

(tr(ErA
−1
r ))2 − 4det(ErA

−1
r ) (2.36)

where Υ and υ are the shear across the directions of their maximum values.

The third property of invariants is the rotation around the normal which is introduced in deforma-
tion analysis [Pietraszkiewicz, 1977; Stein, 1980; Ernst, 1981; Voosoghi, 2000; Grafarend and Voosoghi,
2003]

Γ =
1

2
GΛΦRΛΦ vs. γ =

1

2
gλφrλφ (2.37)

where

[GΛΦ] =

[

0 1√
det Al

− 1√
det Al

0

]

vs. [gλφ] =

[

0 1√
det Ar

− 1√
det Ar

0

]

which matrix notation for rotation tensors RΛΦ and rλφ can be obtained via

Rl := [RΛΦ] =
1

2

[

0 ∂Ũ1
∂Θ2

− ∂Ũ2
∂Θ1

∂Ũ2
∂Θ1

− ∂Ũ1
∂Θ2

0

]

vs. Rr := [rλφ] =
1

2

[

0 ∂ũ1
∂θ2

− ∂ũ2
∂θ1

∂ũ2
∂θ1

− ∂ũ1
∂θ2

0

]

(2.38)
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Simultaneous Diagonalization

Due to the intricate relations between elements of strain tensor on one side and eigenspace components
on the other side, which are established by Eqs. (2.33) and (2.34), we convert these relations to simple
equations. Hence, in conformity with standard lemma of matrix algebra both pair matrices {El,Al}
and {Er,Ar} can be simultaneously diagonalized, separately, one matrix form of associated metrics
being the unit matrix. We briefly outline the simultaneous diagonalization of the left symmetric matrix
El relative to the left symmetric positive-definite metric Al, then drawing the same conclusion about
the right pair matrices.

Two matrices are said to be simultaneously diagonalizable if they are diagonalized by a same
invertible matrix. In other words, if El and Al commute ElAl = AlEl then El and Al can be
simultaneously diagonalized. In mathematical terms, we want to find a matrix F that simultaneously
diagonalizes both Al and El

FTAlF =

[

1 0
0 1

]

FTElF =

[

Λ1 0
0 Λ2

]

We express the construction of simultaneous diagonalization through the sequence of three steps
which are illustrated by Fig. 2.4.

Step 1. Let us consider two quadratic forms relative to strain and metric matrices, e.g., Q1 and Q2

respectively. A Geometrical representation of Q1 can be performed using an ellipse, in the left top side
Fig. 2.4 (a), based on the fact that the associated matrix form is positive definite. In Fig. 2.4 (b), we
represented Q2 related to symmetric matrix El, which can be illustrated by an ellipse or hyperbola.

Note that, illustrated Figs. 2.4 (a) and 2.4 (b) neither have oriented axes with respect to each
other nor are they aligned with coordinate axes, corresponding to the fact that neither El nor Al are
diagonal matrices.

Continuing the first step by finding the eigenvalue-eigenvector of matrix Al, on domain of left
Euclidean space E

2
l

AlVl = ΛAVl

where columns of matrix Vl are eigenvectors

Vl =
[

V1 V2

]

where V1 ⊥ V2

Since Vl is an orthonormal matrix, it can be represented by

Vl =

[

cosϕ − sinϕ
sinϕ cosϕ

]

, ∀ϕ ∈ [−π
2
,
π

2
]

which, indeed is a rotation matrix by a counterclockwise angle ϕ in a fixed coordinate system.

Step2. Diagonalization of matrix Al , under the rotation matrix (orthonormal) Vl. Hence, under
this diagonalization, strain and its associated metric will convert to

A′
l = VT

l AlVl E′
l = VT

l ElVl

which are illustrated by Figs. 2.4 (c) and 2.4 (d).
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Step3. Transform A′
l to become a unit circle, namely converting A′

l to unit matrix. Hence, E′
l will

change correspondingly by

A′′
l = MA′

lM = (VlM)TAl(VlM) = I E′′
l = ME′

lM = (VlM)TEl(VlM) (2.39)

or in matrix notations

A′′
l =

[

1 0
0 1

]

E′′
l =

[

E′′
11 E′′

12

E′′
12 E′′

22

]

where in (2.39) matrix M is obtainable by

M = diag(
1

√

A′
11

,
1

√

A′
22

)

which are illustrated by Figs. 2.4 (e) and 2.4 (f). The effect of this transformation is to expand or
contract length along the coordinate axes so that the metric ellipse is deformed into a unit circle.

Among three components of eigenspace, eigenvalues of matrix E′′
l with unit metric A′′

l = I, are
equal to the eigenvalues of El with associated metric Al in (2.33), respectively [Aravind, 1988]. How-
ever, orientation parameters in two cases are different. There is relation between two orientation
parameters by

tan Θ =

√
det Al

A11 +A12 tan Ψ
tan Ψ (2.40)

where the orientation parameter of the maximum principal axis of the strain matrix El with cor-
responding metric Al is considered by Ψ, while the orientation parameter of the matrix E′′

l with
corresponding unit metric is considered by Θ (see Fig. 2.5).

Hence, without loss of generality, by means of Eqs. (2.39) and (2.40), we are able to have map-
ping from eigenspectra components of {El,Al}, Eq. (2.33), onto eigenspectra components of {E′′

l , I}.
Namely





Λ1

Λ2

Θ



 =
1

2















E′′
11 + E′′

22 +
√

(E′′
11 − E′′

22)
2 + 4E′′2

12

E′′
11 + E′′

22 −
√

(E′′
11 − E′′

22)
2 + 4E′′2

12

arctan
2E′′

12

E′′

11
−E′′

22















=
1

2

















tr(ElA
−1
l ) +

√

(tr(ElA
−1
l ))2 − 4det(ElA

−1
l )

tr(ElA
−1
l ) −

√

(tr(ElA
−1
l ))2 − 4det(ElA

−1
l )

arctan(
√

det Al

A11+A12 tan Ψ tan Ψ)

















(2.41)

Similar type of procedures can be carried out as simultaneous diagonalization of the right pair of
matrices {Er,Ar}, in order to convert metric matrix into unit matrix.
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Figure 2.4: Geometrical representation of simultaneous diagonalization of matrices {El,Al}. The left side is
related to the geometrical representation of left metric, which is symmetric and positive definite. Then it can
be presented by an ellipse. The right side is related to matrix form of left Euler-Lagrange strain tensor, which
is symmetric. Illustration of it can be an ellipse or hyperbola, however we chose to present it as an ellipse.

after simultaneously diagonalization with
l l

A E

after simultaneously diagonalization with
l l

E A

1Direction of F

2Direction of F

a
b

Q
Y

Figure 2.5: Illustrates the orientation of major eigenvector of left Euler-Lagrange strain tensor on surface M
2
l

by Ψ, and on plane by Θ.
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Remark 2.2 This problem arises in the study of map projections, when one intends to learn about
the distortion of mapping from one surface onto another surface. In particular, Tissot [1881] published
an analysis of the distortion that occurs on map projections. He devised Tissot’s Indicatrix, or the
distortion circle, which when plotted on a map will appear as an ellipse whose elongation depends on
the amount of distortion by the map at that point. The angle and extent of the elongation represents
the amount of angular distortion of the map. The size of the ellipse indicates the amount that the
area is distorted.

Figure 2.6: Albers conical equal area on a reference ellipsoid with coastlines and Tissot ellipses of distortions.
The projection is free of distortion along the standard parallels. Distortion is constant along any other parallel.
This projection is neither conformal nor equidistant.

When the Tissot’s indicatrix reduces to a circle it means that, at that particular point, the scale is
independent of direction. In conformal projections, where angles are preserved around every location,
the Tissots indicatrix are all circles, with varying sizes. In equal-area projections, where area propor-
tions between objects are conserved, the Tissots indicatrix have all unit area, although their shapes
and orientations vary with location.

2.5 Comparison of Second Fundamental Forms

In deformation analysis the second fundamental form (SFF) is a symmetric bilinear form defined on
the differentiable surfaces M

2
l and M

2
r, which in some sense measure the curvatures of M

2
l and M

2
r in

embedding spaces, respectively. Meanwhile, the construction of the SFF of surfaces, requires a small
digression. Afterwards we will discuss how they relate to the curvatures of M

2
l and M

2
r.

We suppose that surfaces M
2
l and M

2
r which are governed by X = X(Θ1,Θ2) and x = x(θ1, θ2),

are surfaces of class Cm(m ≥ 2). Then for each surface point exist associated unit normal vectors A3
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and a3, with differentials dA3 = A3,1dΘ
1 + A3,2dΘ

2 and da3 = a3,1dθ
1 + a3,2dθ

2, separately. Here,
vectors A3,1, A3,2 and a3,1, a3,2 denote to first-order partial derivatives of unit normal vectors with
respect to curvilinear coordinates {Θ1,Θ2} and {θ1, θ2} respectively.

Differential forms of unit normal vectors dA3 and da3 are separately orthogonal over the unit
normal vectors A3 and a3, likewise they are parallel to tangent plane of the surfaces M

2
l and M

2
r.

Now, we consider the quantities

II(Θ1,Θ2) =: − < dX, dA3 > vs. II(θ1, θ2) =: − < dx, da3 >

By using Eq. (2.3), we obtain

II(Θ1,Θ2) = − < A1dΘ
1 + A2dΘ

2,A3,1dΘ
1 + A3,2dΘ

2 >

vs.

II(θ1, θ2) = − < a1dθ
1 + a2dθ

2,a3,1dθ
1 + a3,2dθ

2 >

According to this definitions, the SFF captures second derivative information. It can be computed
easily from Eq. (2.42) that

II(Θ1,Θ2) = L(dΘ1)2 +2M(dΘ1)(dΘ2)+N(dΘ2)2 vs. II(θ1, θ2) = l(dθ1)2 +2m(dθ1)(dθ2)+n(dθ2)2 (2.42)

where

L = − < A1,A3,1 > vs. l = − < a1,a3,1 >

M = −1

2
(< A1,A3,2 > + < A2,A3,1 >) vs. m = −1

2
(< a1,a3,2 > + < a2,a3,1 >) (2.43)

N = − < A2,A3,2 > vs. n = − < a2,a3,2 >

Left and right hand sides of the Eq. (2.43) are called SFF of corresponding surfaces M
2
l and M

2
r at

coordinates {Θ1,Θ2} and {θ1, θ2}, respectively. Since < A1,A3 >= 0 and < A2,A3 >= 0 , as well
as < a1,a3 >= 0 and < a2,a3 >= 0, it can be shown that [Prakash, 1981]

< A3,AΦ,Λ >= − < A3,Φ,AΛ > vs. < a3,aφ,λ >= − < a3,φ,aλ >

These give alternative expressions for L, M , N and l, m, n. Namely from (2.43)

L =< A1,1,A3 > vs. l =< a1,1,a3 >

M =< A1,2,A3 > vs. m =< a1,2,a3 >

N =< A2,2,A3 > vs. n =< a2,2,a3 >

Compare with the tensor notation

II(Θ1,Θ2) = BΛΦdΘ
ΛdΘΦ vs. II(θ1, θ2) = bλφdθ

λdθφ (2.44)

where coefficients BΛΦ and bλφ are coordinates of the surface symmetric tensor and given by
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Bl := [BΛΦ] =

[

B11 B12

B21 B22

]

=

[

L M
M N

]

vs. Br := [bλφ] =

[

b11 b12
b21 b22

]

=

[

l m
m n

]

which is comparable to Eq. (2.7). The SFF is invariant under a coordinate transformation in the same
sense that the FFF is invariant. It should be noted that the SFF remains invariant as long as the
coordinate transformation preserves the direction of unit normal vector, otherwise the SFF changes
its sign.

2.5.1 Mean and Gaussian Curvatures

For a M2
l surface embedded in E

3, we consider the intersection of the surface with a plane containing
the normal vector and one of the tangent vectors at a particular point. This intersection is a plane
curve and has a curvature. This is the normal curvature, and it varies with the choice of the tangent
vector, which is illustrated by Fig. (2.7). The maximum and minimum values of the normal curvature
at a point are called the principal curvatures, κ2 and κ1. The directions of the corresponding tangent
vectors are always perpendicular, and are therefore called principal directions.

Normal Vector

Tangent Plane

Planes of Principal
Curvatures

Figure 2.7: Surface with normal planes in directions of principal curvatures.

The principal curvatures measure the maximum and minimum bending of a surface at each point.
The Gaussian curvature K and mean curvature H are related to κ1 and κ2 by [Gray, 1997, pages:363-
367]

K = κ1κ2 =
LN −M2

EG− F 2
=

det[Bl]

det[Al]
:=

det[BΛΦ]

det[AΛΦ]
(2.45)

H =
1

2
(κ1 + κ2) =

EN − 2FM +GL

2(EG − F 2)
=

1

2
(BΛΦA

ΛΦ) (2.46)

This can be written as a quadratic equation

κ2 − 2Hκ+K = 0 (2.47)

which has solutions
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κ1 = H +
√

H2 −K

κ2 = H −
√

H2 −K

The metric tensor is positive-definite EG − F 2 > 0, then in Eq. (2.45) the sign of K agrees
with the sign of LN − M2. In the same manner, in Eq. (2.46) sign of H agrees with the sign of
EN − 2FM +GL. Here we adopt the convention that a curvature is taken to be positive if the curve
turns in the same direction as the surface’s chosen normal, otherwise negative. Furthermore, surface
points can be labeled as belonging to a viewpoint independent surface shape class type based on the
combination of the signs from the Gaussian and mean curvatures [Koenderink and Lisowski, 1992],
as shown in Tab. (2.2) and Fig. 2.8.

These curvatures are independent of the parametrization used, and are important tools for ana-
lyzing the surface. A wide range of their applications can be found in engineering subjects (e.g. in
shell theory, image processing, computer vision, etc). A very nice application of mean and Gaussian
curvature in studying the structure of Earth’s mantle and crust is given by Bursa and Pec [1993].

Table 2.2: Shape classification based on the signs of mean and Gaussian curvatures.

K < 0 K = 0 K > 0

H < 0 Saddle Valley Concave(Cylinder) Concave(Ellipsoid)

H = 0 Minimal Plane Impossible

H > 0 Saddle Ridge Convex(Cylinder) Convex(Ellipsoid)

Figure 2.8: Eight basic visible-invariant surface types. The surfaces are oriented by their upward normals.
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Finally, comparing the left and right mean and Gaussian curvatures, yields

K =
LN −M2

EG− F 2
=

det[Bl]

det[Al]
:=

det[BΛΦ]

det[AΛΦ]
vs. k =

ln−m2

eg − f2
=

det[Br]

det[Ar]
:=

det[bλφ]

det[aλφ]

(2.48)

H =
EN − 2FM +GL

2(EG − F 2)
=

1

2
(BΛΦA

ΛΦ) vs. h =
en− 2fm+ gl

2(eg − f2)
=

1

2
(bλφa

λφ)

2.6 Tensor of Changes of Curvature (TCC): deformation tensor of

second kind

Establishing a comparison between left- and right hand sides of the Eq. (2.42), measures the defor-
mation based upon differences between SFF of surfaces M

2
l and M

2
r, namely II(θ1, θ2) − II(Θ1,Θ2),

which implies a curvature change due to the deformation. Hence, according to (2.44) we have

II(θ1, θ2) − II(Θ1,Θ2) = KΦΛdΘ
ΛdΘΦ = kφλdθ

λdθφ (2.49)

where

KΛΦ = KΦΛ := bλφ
∂θλ

∂ΘΛ

∂θφ

∂ΘΦ
−BΛΦ vs. kλφ = kφλ := bλφ −BΛΦ

∂ΘΛ

∂θλ

∂ΘΦ

∂θφ
(2.50)

are respectively called Lagrangian and Eulerian portrait of tensor of changes of curvatures (TCC).
Following the map projection conventions, they are called left Euler-Lagrange deformation of second
kind and right Euler-Lagrange deformation of second kind, respectively. The matrix representation of
them are given by

Kl := [KΛΦ] vs. Kr := [kλφ]

Correspondent to Eq. (2.22), it is more adequate to express TCC as set a of functions of the
displacement vector. Similar relations could be formulated for the TCC, but they are more complicated
[Ernst, 1981]. We can overcome this problem by using a difference vector of unit normal vectors w in
addition to the displacement vector [Stein, 1980]. The vector w is defined as the difference of a unit
normal vector on a material point (located at the undeformed surface) M

2
l and a unit normal vector

on the same material point (located at the deformed surface) M
2
r . Thus

w = a3 − A3 (2.51)

which is illustrated by Fig. 2.9. Similar to the displacement vector, difference vector of unit normal
vectors w will have surface components W̃K referred to the curvilinear coordinate system {Θ1,Θ1}
and w̃k referred to the {θ1, θ1} given by

w = W̃KAK = W̃KAK vs. w = w̃kak = w̃ka
k (2.52)

or

w = W̃ΦAΦ + W̃ 3A3 = W̃ΦAΦ + W̃3A
3 vs. w = w̃φaφ + w̃3a3 = w̃φa

φ + w̃3a
3
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Hence, performing scalar products of (2.52) with AK and ak, respectively, define

W̃K =< w,AK > vs. w̃k =< w,ak >

or under scalar multiplication of (2.52) by AK and ak, separately, we obtain

W̃K =< w,AK > vs. w̃k =< w,ak >
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Figure 2.9: Difference of unit normal vectors w which is illustrated by dashed line.

Similar to Eq. (2.22), the expression of Eq. (2.49) as a function of displacement vector can be
described by [Sansour et al., 1997; Voosoghi, 2000]

KΛΦ = − < w,Λ,AΦ > − < w,Λ,u,Φ > − < u,Φ, A3,Λ > vs. kλφ = − < w,λ,aφ > − < w,λ,u,φ > − < u,φ,a3,Λ >

(2.53)

where

w,Λ =
∂w

∂ΘΛ
vs. w,λ =

∂w

∂θλ

are first-order partial derivatives of w with respect to the material and spatial curvilinear coordinates
(see Appendix A).

2.6.1 An Analytical Example

In reference to example (2.4.1), which deals with the determination of the TCC, from the embedding
of an ellipsoid-of-revolution as a representation of the Earth’s surface before deformation, namely by
Eq. (2.24), and consideres the representation of the Earth’s surface after deformation by Eq. (2.25). In
example (2.4.1) the tangent basis vectors, {A1,A2} and {a1,a2}, through Eqs. (2.3) were determined.
Using Eq. (2.4) we can demonstrate unit normal vectors A3 and a3, namely

A1 =











cosΦ(H,Λ cosΛ − (N +H) sin Λ)

cosΦ(H,Λ sinΛ + (N +H) cosΛ)

sinΦ H,Λ











vs. a1 =













cosφ(h,λ cos λ− (n+ h) sin λ)

cosφ(h,λ sinλ+ (n+ h) cos λ)

sinφ h,λ













(2.54)
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A2 =











cosΛ(H,Φ cosΦ − (M +H) sin Φ)

sin Λ(H,Φ cosΦ − (M +H) sinΦ)

H,Φ sin Φ + (M +H) cosΦ











vs. a2 =













cosλ(h,φ cosφ− (m+ h) sinφ)

sinλ(h,φ cosφ− (m+ h) sin φ)

h,φ sinφ+ (m+ h) cos φ













(2.55)

Then unit normal vectors can be obtained by

A3 =
A1 × A2

‖A1 × A2‖
vs. a3 =

a1 × a2

‖a1 × a2‖
The Cartesian coordinates of A3 and a3 can be determined in terms of geodetic longitudes and latitudes
of the points, at the left and right surfaces, respectively [Voosoghi, 2000; Grafarend and Voosoghi,
2003]

A3 =
1

√

det(Al)













(sin Λ(M +H)H,Λ + cosΦ cosΛ(N +H)(sin ΦH,Φ + cosΦ(M +H)))

cosΦ sin Λ(N +H)(sin ΦH,Φ + cosΦ(M +H)) − cosΛ(M +H)H,Λ

cosΦ(N +H)(sin Φ(M +H) −HΦ cosΦ)













(2.56)

versus

a3 =
1

√

det(Ar)













(sin λ(m+ h)h,λ + cosφ cosλ(n+ h)(sinφh,φ + cosφ(m+ h)))

cosφ sinλ(n+ h)(sinφh,φ + cosφ(m+ h)) − cosΛ(m+ h)h,λ

cosφ(n+ h)(sinφ(m+ h) − hφ cosφ)













(2.57)

Using (2.51), we can compute the difference vector of unit normal vectors w. Hence, by having
w and using Eq. (2.50) we compute the left and right TCC [Sansour et al., 1997; Voosoghi, 2000;
Pietraszkiewicz and Szwabowicz, 2007], namely

KΛΦ = bλφ
∂θλ

∂ΘΛ

∂θφ

∂ΘΦ
−BΛΦ vs. kλφ = bλφ −BΛΦ

∂ΘΛ

∂θλ

∂ΘΦ

∂θφ
(2.58)

where

BΛΦ = − <
∂A3

∂ΘΛ
,AΦ > vs. bλφ = − <

∂a3

∂θλ
,aφ > (2.59)

Eq. (2.59) is the so-called Weingarten equation, for which analytical proof is given in Appendix A.
Therefore, by inserting Eq. (2.59) into Eq. (2.58) we have

KΛΦ = − ∂θλ

∂ΘΛ

∂θφ

∂ΘΦ
<
∂a3

∂θλ
,aφ > −BΛΦ vs. kλφ = bλφ +

∂ΘΛ

∂θλ

∂ΘΦ

∂θφ
<
∂A3

∂ΘΛ
,AΦ >

KΛΦ = − <
∂(w + A3)

∂ΘΛ
,
∂(X + u)

∂ΘΦ
> −BΛΦ vs. kλφ = bλφ− <

∂(w − a3)

∂ΘΛ
,
∂(x − u)

∂θφ
>(2.60)

After some simple computations on Eq. (2.60) we can get
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KΛΦ = − < w,Λ,AΦ > − < w,Λ,u,Φ > − < u,Φ,A3,Λ > vs. kλφ = − < w,λ,aφ > − < w,λ,u,φ > − < u,φ,a3,λ >

(2.61)

Hence, according to this example proof of Eq. (2.53) is completed.

2.6.2 Basis Vectors on Deformed Surface in Terms of Lagrangian Coordinates

Eqs. (2.56) and (2.57) are fundamental equations for the computations of TCC, which represent the
unit normal vectors as functions of latitudes and longitudes in the left and right surfaces, respectively.
The important restriction about Eq. (2.57) is that computations need the first-order partial derivatives
of ellipsoidal height(after deformation), h(φ, λ) with respect to (φ, λ), namely h,φ and h,λ. Hence, we
shall need to have continuous function of ellipsoidal height in deformed surface M

2
l , which we have

not. Ernst [1981] proposed equations based on which, we can compute the surface basis vectors on
deformed surface {a1,a2,a3} based upon basis vectors of undeformed surface {A1,A2,A3} directly.
Namely

aλ = ℓα·λAα + ζλA3 (2.62)

where the components of the surface tensors ℓα·λ and ζλ can be given in terms of contravariant compo-
nents of displacement vector {Ũ1, Ũ2, Ũ3} by

ζλ = Ũ3
,λ +BλϑŨ

ϑ = Ũ3
,λ +Bϑ

λ Ũϑ (2.63)

ℓα·λ = δα
λ + Ũα

,λ +

{

α

λγ

}

Ũγ −Bα
λ Ũ

3 (2.64)

Hence, unit normal vector a3 can be obtained by cross production of tangent basis vectors {a1,a2}

a3 =
a1 × a2

‖a1 × a2‖
=

(ℓα·1Aα + ζ1A3) × (ℓβ·2Aβ + ζ2A3)

‖(ℓα·1Aα + ζ1A3) × (ℓβ·2Aβ + ζ2A3)‖
(2.65)

where the coefficient
{ α

λγ

}

are so-called Christoffel symbols of the second kind. They are also known
as affine connections [Weinberg, 1972, page 71] or connection coefficients [Minster et al., 1973, page
210]. A general descriptions of Christoffel symbols are presented in Appendix A, but more detailed
information about application requirements can be find in Voosoghi [2000, chap. 4].

2.6.3 Eigenspace Analysis, TCC

In comparison to eigenspace analysis in strain tensor, which is mentioned in subsection 2.4.2, the
general eigenvector-eigenvalue problem can also be applied to the pair of symmetric matrices {Kl,Al}
or {Kr,Ar}, in order to obtain the eigenspace components of TCC. Let us consider the matrix forms
of left TCC and its associated metric tensor, which are given by

Kl =

[

K11 K12

K12 K22

]

Al =

[

A11 A12

A12 A22

]

where both matrices are symmetric. Finding the eigenspectra elements of matrices {Kl,Al} leads us
to obtaining a general eigenvector-eigenvalue problem of the type
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KlF
′
l = DΛ′AlF

′
l (2.66)

where Fl = [F′
1,F

′
2] ∈ R

2×2 is the matrix of eigenvectors and DΛ′ is the diagonal matrix of eigenvalues,
namely DΛ′ = diag[Λ′

1,Λ
′
2]. Using (2.66), eigenvalues and eigenvectors can be obtained by

KlF
′
l − DΛ′AlF

′
l = 0 =⇒ det(Kl − DΛ′Al) = 0 (2.67)

Finding eigenvalues of the matrices {Kl,Al}, by (2.67), through

Λ′
1,2 =

1

2
{tr(KlA

−1
l ) ±

√

(tr(KlA
−1
l ))2 − 4det(KlA

−1
l ) , Λ′

1,Λ
′
2 ∈ R (2.68)

where Λ′
1 and Λ′

2 are change of the principal curvatures [Hontani and Deguchi, 1997]. A deformation
portrait when signΛ′

1 = signΛ′
2 will be an ellipse and will be a hyperbola if signΛ′

1 6= signΛ′
2.

Inserting eigenvalues (2.68) into (2.66), we can obtain eigenvectors

F′
1 = ((K22−Λ′

1A22)
2A11−2(K12−Λ′

1A12)(K22−Λ′
1A22)A12+(K12−Λ′

1A12)
2A22)

−1/2

[

K22 − Λ′
1A22

−(K12 − Λ′
1A12)

]

F′
2 = ((K11−Λ′

2A11)
2A22−2(K12−Λ′

2A12)(K11−Λ′
2A11)A12+(K12−Λ′

2A12)
2A11)

−1/2

[

−(K12 − Λ′
2A12)

K11 − Λ′
2A11

]

where they can prescribe the principal directions of curvature. The orientation parameter can be
obtained by

Ψ′ = arccos(
< F′

1,Kl >

‖F′
1‖

) = arccos(
F ′1

1

‖F′
1‖

) subject to ‖F′
1‖2 = max{‖F′

1‖, ‖F′
2‖}, ∀Ψ′ ∈ [−π

2
,
π

2
]

or

Ψ′ = arccos(
< F′

2,Kl >

‖F′
2‖

) = arccos(
F ′1

2

‖F′
2‖

) subject to ‖F′
2‖2 = max{‖F′

1‖, ‖F′
2‖}, ∀Ψ′ ∈ [−π

2
,
π

2
]

Hence, eigenspace components consists of

Y′ =





Λ′
1

Λ′
2

Ψ′



 =
1

2



















tr(KlA
−1
l ) +

√

(tr(KlA
−1
l ))2 − 4det(KlA

−1
l )

tr(KlA
−1
l ) −

√

(tr(KlA
−1
l ))2 − 4det(KlA

−1
l )

2 arccos(
<F′

i,Ei>
‖F′

i‖
)



















A similar procedure can be performed for the right-pair of matrices {Kr,Ar}. Therefore, the right
eigenspace components can be written as



2.7. CHANGES IN MEAN AND GAUSSIAN CURVATURES 29

y′ =





λ′1
λ′2
ψ′



 =
1

2



















tr(KrA
−1
r ) +

√

(tr(KrA
−1
r ))2 − 4det(KrA

−1
r )

tr(KrA
−1
r ) −

√

(tr(KrA
−1
r ))2 − 4det(KrA

−1
r )

2 arccos(
<f ′i ,ei>
‖f ′i‖

)



















A mapping process from eigenspace components of {Kl,Al} and {Kr,Ar} to eigenspace compo-
nents in Euclidean space E

2
l and E

2
r, respectively, can be carried out, as described in Eq. (2.41). So

we do not intend to repeat the procedure here.

2.7 Changes in Mean and Gaussian Curvatures

We calculated TCC, namely KΛΦ and kλφ in section 2.6. Hence, we can calculate the curvature tensor
after deformation based on Eq. (2.50), and finally computing the changes of mean and Gaussian
curvatures, which are introduced by Eq. (2.48), due to the deformation [Altiner, 1999; Voosoghi, 2000;
Grafarend and Voosoghi, 2003] by

k −K =
det[bλφ]

det[aλφ]
− det[BΛΦ]

det[AΛΦ]
=

det[BΛΦ +KΛΦ]

det[AΛΦ + 2EΛΦ]
− det[BΛΦ]

det[AΛΦ]
(2.69)

h−H =
1

2
(bλφa

λφ) − 1

2
(BΛΦA

ΛΦ) =
1

2
((BΛΦ +KΛΦ)(AΛΦ + 2EΛΦ) − 1

2
(BΛΦA

ΛΦ) (2.70)

Remark 2.3 In addition to the Euler-Lagrange deformation of second kind or TCC which is used to
describe the changes in the curvature of the deforming body induced by the deformation, Tab. (2.3)
collects the most common measures for deformation (based on SFF) and their definitions which appear
in various applications in deformation analysis [Stein, 1980, page 511]

Table 2.3: Various measures for deformation (based on SFF).

Name Symbol Definitions

Left Euler − Lagrange strain tensor of second kind K1 Kl

Right Euler − Lagrange strain tensor of second kind K2 Kr

Difference vector of the unit normal vectors K3 a3 − A3

Difference of mean curvatures K4 h−H

Difference of Gaussian curvatures K5 k −K

Difference of determinants of curvature tensors K6 det(Br) − det(Bl)

2.8 Numerical Examples

Here, to enhance our understanding of the capabilities of the proposed method which is presented in
this chapter, we present two examples, one with a simulated data set and the other with a real data
set.
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2.8.1 Application Using Simulated Data

As mentioned in this chapter, we suppose that surfaces (before and after deformation) are both
embedded in a 3D Euclidean space E

3. Here we do not a consider 3D deformation field, and we
define the simulated vertical displacement field without horizontal displacements, in particular, for the
following two reasons

i. To gain a closer understanding of the displacement field. Moreover, it allows an easy visualization
and evaluation of how our method can detect deformation patterns.

ii. Simplicity in comparing the 2D classical method, as due to the lack of horizontal components of
the displacement field, the results of 2D classical methods are zero.

The simulated deformation field which is embedded in 3D Euclidean space E
3 is illustrated in

Fig. 2.10.
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Figure 2.10: Rates of simulated vertical displacement field in units of m.yr−1. Note that, the values of
simulated vertical deformation are not realistic to the selected geographical areas, we used these particular
latitudes and longitudes just for governing a deformation field.

In this example, an area from N45◦ to N47◦ (latitude), and from E140◦ to E142◦ (longitude) is chosen
as the test area just for generating a deformation field. We suppose that observation points are
distributed in a regular grid over the selected latitude and longitude in resolution of, i.e., 17

′

regular
grid points over the area. Hence, we follow the procedure of intrinsic approach in deformation analysis,
using the main eleven steps:

step 1. Computing surface basis vectors {A1,A2,A3} through Eqs. (2.54) and (2.55).

step 2. Conversion of the displacement vector u to curvilinear components ŨK and ŨK , by Eqs. (2.20)
and (2.21).
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step 3. Use of two-dimensional finite element method (2D-FEM) in order to find approximate solu-
tions of first-order partial derivatives of covariant and contravariant elements of displacement
vector, namely ŨK and ŨK , with respect to ellipsoidal latitude and longitude (Φ,Λ). The op-
timal finite element meshes can be generated by the Delaunay triangulation over the test area
(see Fig. 2.11 (a)). Appendix B provides a quick reference to the 2D-FEM.

step 4. Obtaining curvature tensor, for left surface M
2
l , through left side of Eq. (2.59) for every

triangle.

step 5. Obtaining Lagrangian strain tensor, through left side of Eq. (2.27).

step 6. Getting the eigenvalues of Lagrangian strain tensor by Eq. (2.30), and computing the dilata-
tion rates, through Eq. (2.35), which is illustrated by Fig. 2.11 (b).

step 7. Computing the difference vector of unit normal vectors w, based on Eq. (2.65) and (2.51).

step 8. Conversion of the spatial difference vector of unit normal vectors w with respect to curvilinear
components W̃K and W̃K , by Eqs. (2.20) and (2.21).

step 9. Use of the 2D-FEM for finding approximate solutions of first-order partial derivatives of
covariant and contravariant elements of w, with respect to ellipsoidal latitude and longitude,
namely W̃K

,Λ and W̃K,Λ. Hence, similar to step 1, the optimal finite element meshes can be
produced by the Delaunay triangulation over the test area.

step 10. Obtaining Lagrangian TCC, through left side of Eq. (2.61).

step 11. Computing changes in Gaussian and mean curvatures, through Eqs. (2.69) and (2.70) and
finally illustration of them by Figs. 2.11 (c) and 2.11 (d).

Discussion of Results :

i. The pattern of the dilatation rate is illustrated by Fig. 2.11(b). Positive dilatation corresponds to
an increase in the occupied area (expansion), while negative dilatation corresponds to a decrease
in the occupied area (compression). A comparison of this pattern with Fig. 2.10 shows the ability
of the invariants of the surface strain tensor to uncover deformation features.

ii. Fig. 2.11(c) shows the pattern of a change of mean curvature, due to deformation, in units of
10−7 m−1.yr−1. In this figure, positive values are associated to rising regions whereas negative
values occur for sinking regions.

iii. The pattern of change of Gaussian curvature is illustrated by Fig. 2.11(d), in units of 10−9

m−2.yr−1. A comparison of these results with Fig. 2.11(c) shows that, according to Tab. 2.2, we
can have a shape-classification based upon a sign of mean and Gaussian curvatures. However,
the difference in patterns of Gaussian and mean curvatures, reflects that the pattern of Gaussian
curvature is so sensitive to height variations rather that mean curvature.

Through this example we could compare the exact pattern of the deformation field, which we have
created, with various resulting strain tensor invariants, and patterns of changes in mean and Gaussian
curvatures. Results show the ability of the patterns to uncover the upward and downward motions of
the deformed surface. It seems to be that only one of the deformation measures, namely invariants
of strain tensor or TCC, can not portray the deformation signals and must be considered together in
order to perform a deformation analysis.
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Figure 2.11: (a) Optimal Delaunay triangulation, (b) dilatation in units of yr−1, (c) change of mean curvature
in units of 10−7 m−1.yr−1, (d) change of Gaussian curvature in units of 10−9 m−2.yr−1 over the test area.
Figures are illustrated in the Albers equal-area conic projection.
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2.8.2 Application Using Real Data

This part has been dedicated to the application of the proposed model for deformation analysis, by a
real data set. The study area chosen for this research is Southern California, an area with high seismic
activities. Moreover, there exist also dense networks of GPS stations in order to monitor real-time
crustal deformations.

Plate-tectonic setting of Southern California

Southern California is a region of high seismicity and widely distributed active faulting. The relative
plate motion between the Pacific and North American cause a highly complex system of sub-parallel
transform faults to accommodate the right lateral motion of 50 mm.yr−1 (see Fig. 2.12). A model
of global plate motions ranges from 48 mm.yr−1 in terms of right lateral shear in Central California,
namely parallel to the Central San Andreas Fault [Demets et al., 1987] to only 38 mm.yr−1 on or
near San Andreas Fault. Another result of about 8 mm.yr−1 (15% of the relative plate motion) is
documented by the 50-100 km wide Eastern California Shear Zone (ECSZ) which extends N35W from
the eastern end of the Big Bend to the Owens Valley along a small circle about the Pacific-North
American pole of rotation [Savage et al., 1990].

The Southern part of the ECSZ is the site of largest seismic events, which in recent years has
hit Southern California strongest. The largest recent earthquakes occurred in the ECSZ of strength
Mw 7.3 (Landers 1992), and Mw 7.1 (Hector Mine 1999). Both of them were right lateral strike-slip
events in the direction of NNW, trending subvertical faults, close in space and time, especially in a
region where earthquakes recur every thousand years. The Landers and Hector Mine earthquakes have
indeed provided important data on post-seismic deformation. Viscoelastic models have been proposed
to explain the post-seismic relaxations following the Landers [Pollitz et al., 2000] and Hector Mine
[Politz et al., 2001] earthquakes. However, any extrapolation of the available post-seismic earthquake
data does not suggest that the velocities in the Landers array will return to their pre-Landers values
soon [Savage et al., 2003].

On January 17th in 1994, Northridge Mw 6.7 earthquake produced the largest ground motions in
the Los Angeles region. The E-W striking sedimentary basin lies just south of the Western Transverse
Ranges, a region influenced by the Big Bend in the north and characterized by E-W striking thrust
faults, N-S shortening, and substantial uplift [Namson and Davis, 1998]. Unlike the most strike-slip
earthquakes along the Northwest trending faults in ECSZ, the Northridge earthquake was a deep
thrust-type event with a strike of 122◦ and a substantial up-dip component of slip [Wald et al., 1996].
However, Stein et al. [1994] investigated possible stress triggering of the Northridge event by previous
earthquakes. Imperial Valley extends from the southern end of the San Andreas Fault (SAF) to the
United States-Mexico border. It is one of the most seismically active portions of the Pacific -North
American plate boundary.

On October 15th in 1979, a Mw 6.9 earthquake occurred in this region. A relatively fast moving
fault of estimated average slip rate along the Imperial Fault ranges from 15-20 mm.yr−1 based on
shoreline deposits [Thomas and Rockwell, 1996] to 35-43 mm.yr−1 based on conventional geodetic
surveys [Bennett et al., 1996; Wdowinski et al., 2001] was documented. Geodetic investigations indicate
that a rate of imperial Fault accommodates nearly 80% of the total plate motion between the North
American and Pacific Plates. InSAR has also been used to land subsidence associated with geothermal
fields in Imperial Valley [Massonnet et al., 1997]. Fig. 2.13 illustrates the seismicity map of Southern
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Figure 2.12: Southern California Fault summarizes: San Andreas Fault (SAF), the Garlock fault (GF), the
San Jacinto fault, the San Gabriel fault (SGF), the Elsinore fault (EF). The mountain range extend from San
Bernardino Mtns. Regions referenced in the text are the Eastern California Shear Zone (ECSZ), the Owens
Valley (OV), the Western Transverse Ranges (WTR), the Ventura Basin (VB), the Los Angeles Basin (LAB).
The figure is illustrated in Albers equal-area conic projection.
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Figure 2.13: Southern California seismic events with Mw ≥ 3 extracted from the Southern California Earth-
quake Center (January 2001 and January 2005) which are scaled by magnitude. The figure is illustrated in
Albers equal-area conic projection.
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California during the range of four years between January 2001 and January 2005, which can be
obtained from the Southern California Earthquake Center (SCEC) (http://www.scec.org). This figure
shows earthquakes with magnitude bigger than three.

GPS Arrays

GPS data are collected from Scripps Orbit and Permanent Array Center (SOPAC), which include
archive high-precision GPS data particularly for the monitoring of earthquake hazards, tectonic plate
motion, crustal deformation (http://sopac.ucsd.edu/).
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Figure 2.14: Sites of SOPAC network by individual solutions between 2001 and 2005. The figure is illustrated
in Albers equal-area conic projection.

Given positions by SOPAC are provided in ITRF2000 and WGS84, and include both horizontal
and vertical velocities and their accuracies. All the chosen stations have individual and continuous
solutions up to 4 years, between January 2001 and January 2005 and take into account the linear
velocity between those epochs. Fig. 2.14 illustrates the sites of SOPAC across Southern California.
We have chosen a dense network of stations to get various surface deformation patterns of Southern
California, which include 218 permanent GPS stations. The two factors are considered in the selection
of the GPS points on the network :

i. Average distance between the GPS points (distance between neighbor stations vary from 3 to
340 km), while the whole region should be covered by points of the network.

ii. A sufficient period of time for modeling and removing offsets and seasonal effects from the GPS
time series (specially in height component) and finally the detection of a deformation signal from
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the measurements [Nikolaidis, 2002, page 16]. In the current network we have used four years
GPS measurements (between January 2001 and January 2005).

Fig. 2.15 illustrates horizontal velocity rates across Southern California. The horizontal velocity
field reaches a value of approximately 48 mm.yr−1 in terms of right lateral shear in the central and
western part of California, roughly parallel to the central San Andreas Fault [Demets et al., 1987].
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Figure 2.15: Horizontal velocity field in units of mm.yr−1 across Southern California. The figure is illustrated
in Albers equal-area conic projection.

Horizontal velocity field are well documented in the Coast Ranges, namely larger than in the central
parts. We have made an alternative, interpreting the Earth’s discrete surface by adopting Fig. 2.16,
which illustrates the rates of vertical crustal motion in Southern California. A maximum magnitude
of the subsidence of the order -10 mm.yr−1 is shown for the Los Angeles Basin area. Another land
subsidence has been observed in Western Transverse Ranges, rather across the Coso Range and the
North West of Salton Sea, (namely) due to the geothermal activity in those regions. Notable upward
motions can be seen in the Landers and Hector Mine, probably due to post-seismic effects.

Results

Steps in computations in this subsection are similar to the steps we followed in subsection 2.8.1, except
that the deformation field is inferred from the GPS observations. Assuming that a sufficient number of
the discrete data (appropriately distributed) is available, we apply 2D-FEM for finding approximate
solutions of partial derivatives of curvilinear elements (either covariant or contravariant) of u and
w, with respect to (Φ,Λ) (for more details refer to subsection 2.8.1). Hence, optimal finite element
meshes can be generated by the Delaunay triangulation across the current GPS network of Southern
California (see Fig. 2.17).



2.8. NUMERICAL EXAMPLES 37

 120oW  118oW  116oW  114oW  112oW 

  32oN 

  33oN 

  34oN 

  35oN 

  36oN 

  37oN 

  38oN 

−10 mm/yr

Figure 2.16: Vertical velocity field in units of mm.yr−1 across Southern California. The figure is illustrated in
Albers equal-area conic projection.

As we mentioned in this chapter, for the proposed method of deformation analysis, to obtain first-
order partial derivatives of GPS height (H(Λ,Φ)), we need to attempt to find a continuous function
of GPS height (see subsections 2.4.1 and 2.6.1). The ellipsoidal height (GPS height) is the sum of
the geoid height N(Λ,Φ) and an orthometric height H̃(Λ,Φ), namely H(Λ,Φ) = H̃(Λ,Φ) +N(Λ,Φ).
Hence, using a geoidal height model and orthometric height model, we can compute ellipsoidal height.
Namely

i. Obtaining orthometric height, through the National Elevation Dataset (NED) across Southern
California, which can be freely downloaded (http://seamless.usgs.gov/website/seamless/). As
a higher-resolution product, we made use of NED 1/9 arc second, which has a resolution of
approximately 10 meters.

ii. Obtaining geoidal height N(Λ,Φ), through geoid model for United States (GEOID03), which is
freely available(http://www.ngs.noaa.gov/GEOID/GEOID03/). The GEOID03 model is known
as a hybrid geoid model, combining gravimetric information with GPS ellipsoidal heights on
leveled benchmarks. It includes combining gravimetric information with GPS ellipsoidal heights
on leveled benchmarks.

Hence, in every triangle, around the computational point we set up a grid of points of ellipsoidal
heights H(Λ,Φ). Then, the fitting surface of lowest possible degree (linear surface fitting), yields
continuous ellipsoidal height as a function of longitude and latitude.

Remark 2.4 Gridding and contouring of the data for mapping applications, is performed by MAT-
LAB. The gridding methods in MATLAB allow us to produce a reliable contour and surface from the
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Figure 2.17: Delaunay triangulation of permanent GPS network across Southern California. The figure is
illustrated in Albers equal-area conic projection.

data. The data can be randomly dispersed over the map area, and MATLAB’s script for gridding,
namely ”Griddata”, will interpolate data onto a grid. ZI = griddata (x, y, z,XI, Y I) fits a surface
of the form z = f(x, y) to the data in the (usually) non-uniformly spaced vectors (x, y, z). Griddata
interpolates this surface at the points specified by (XI, Y I) to produce ZI. The surface always passes
through the data points. XI and Y I usually form a uniform grid (as produced by meshgrid). XI can
be a row vector, in which case it specifies a matrix with constant columns. Similarly, Y I can be a
column vector, and it specifies a matrix with constant rows. [XI, Y I, ZI] = griddata (x, y, z,XI, Y I)
returns the interpolated matrix ZI as above, and also returns the matrices XI and Y I formed from
row vector XI and column vector yi. These latter are the same as the matrices returned by meshgrid.
It uses the specified interpolation method:

i. Linear : Triangle-based linear interpolation

ii. Cubic : Triangle-based cubic interpolation

iii. Nearest : Nearest neighbor interpolation

The method defines the type of surface fit to the data. The ’cubic’ methods produce smooth sur-
faces while ’linear’ and ’nearest’ have discontinuities in the first and zero’th derivatives, respectively.
All the methods are based on a Delaunay triangulation of the data. However it fails when there
are replicates or when the data has many collinear points. ”Gridfit” solves all of these problems,
although it is not an interpolant. It builds a surface, by 2D splines, over a complete lattice, extrapo-
lating smoothly into the corners. This script is freely available at Matlab’s ”Central File Exchange”
(http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do).
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Fig. 2.18 (a) represents the maximum geodetic strain-rate Λmax, in units of yr−1 as obtained from
(2.30). The maximum geodetic strain-rate

Λmax = max(|Λ1|, |Λ2|)
has the largest eigenvalue (Λ1 or Λ2 in absolute value) of the strain-rate tensor. In general, Λ1+Λ2 6= 0,
so Λmax ≥ |Λ1−Λ2

2 |, the maximum horizontal shear strain-rate Λmax offers a good representation of
total deformation where only horizontal motions are available (or accurate)[Ward, 1998a,b].

The strongest maximum of geodetic strain-rates is related to Landers area at rates of 4.7 × 10−7

yr−1, Southern part of SGF at rates of 4 × 10−7 yr−1, Salton Sea and Imperial Valley at rates of
3.8×10−7 yr−1. Most of the peaks are appearing near the SAF. However, Los Angeles and east-central
Ventura Basin also exhibit a high maximum geodetic strain-rate of the order 4.2 × 10−7 yr−1.

The pattern of surface maximum shear strain-rate in units of yr−1 is illustrated in Fig. 2.18 (b).
The surface maximum shear strain represents the anisotropic part of the strain tensor (see Eq. (2.36),
which is considered as a measure in crustal deformation. Its rate, in general, is similar to maximum
geodetic strain-rates. The surface maximum shear strain-rates have greater values than the maximum
geodetic strain-rates, due to their mathematical formulations.

The highest surface maximum shear strain-rate lies in the area containing the creeping segments
of SAF and Salton Sea area at rates of 6 × 10−7 yr−1. High surface maximum shear strain-rates are
also observed at the Southern SGF, Hector Mine, Landers, Los Angeles Basin, Ventura Basin and
Owens Valley. The regions of highest surface maximum shear strain-rate are not on the major faults
as would be expected, but rather in the regions surrounding previous earthquakes. Earthquakes in
1999 (Hector Mine, Mw 7.1), 1994 (Northridge, Mw 6.7), 1992 (Landers, Mw 7.3), 1992 (Big Bear, Mw

6.4), 1979 (Imperial Valley, Mw 6.4), 1971 (San Fernando, Mw 6.6), 1952 (Kern County, Mw 7.7), 1942
(Salton Sea aftershock, Mw 6.4), 1933 (Los Angeles Basin, Mw 6.4) and 1872 (Owens Valley, Mw 7.6)
have apparently caused the largest strain reactions. The monitoring of this pattern at regions with
high seismic activity confirms the key role of the surface maximum shear strain-rate in earthquake
studies.

Fig. 2.19 illustrates the surface dilation rates, in units of yr−1. The positive value denotes to
extension and negative value represents compression. Surface dilation represents the isotropic part of
the deformation tensor. In the surface dilatation field, notable areas of compression are documented
in the Los Angeles area about −3.2×10−7 yr−1 and for Ventura Basin about −4.2×10−7 yr−1. This
contraction extends into the Santa Barbara channel, where its rate is −2× 10−7 yr−1. Another series
of compressions appear in Southern Owens Valley at rates of −2× 10−7 yr−1. Negligible compression
can be seen in the southern part of SAF Indio at rate of −1 × 10−7 yr−1, possibly associated with
after-effects of the 1940 Imperial Valley earthquake. Notable extensions appear in Landers with the
rate of 4.3 × 10−7 yr−1, across Southern San Gabriel Fault with the rate 2 × 10−7 yr−1, and the
last one is distributed between the Southern Elsinore, San Jacinto faults and northern Imperial Valley
fault with rate 3.5 × 10−7 yr−1.

Moreover, the pattern of surface dilatation over Southern California is generally consistent with
previous studies [Johnson et al., 1994; Snay et al., 1996; Shen et al., 1996; Shen-Tu et al., 1999]. Many
local peaks (or valleys) in the dilatation rate field occur in vicinities of recent earthquakes, which
implies that much of the rapid spatial variation in strain rate field is probably caused by transient
deformation associated with recent earthquakes [Shen et al., 1996].
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Figure 2.18: (a) Maximum geodetic surface strain-rate (b) Maximum shear strain-rate in units of yr−1 over
Southern California. Faults are represented by white dashed lines, coastlines are represented by bold solid lines
and triangles denote the permanent GPS stations. Figures are illustrated in Albers equal-area conic projection.
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Figure 2.19: Surface dilation in units of yr−1 across Southern California. Faults are represented by white
dashed lines, coastlines are represented by bold solid lines and triangles denote the permanent GPS stations.
The figure is illustrated in Albers equal-area conic projection.

The pattern of the rotation around the normal (see Eq. (2.37)) in unit of rad.yr−1 is illustrated
by Fig. 2.20 (a). The positive values indicate clockwise rotation around the normal (to the surface)
and the negative values indicate counter clockwise rotation. The pattern can detect signals of current
kinematics of the area. Large rotation rates are found along the SAF and the SJF, as expected from
active wrenching dislocations along the two faults. The highest positive rotation signals are detected
over the Landers at rates of 2.7× 10−7 rad.yr−1 and Imperial Valley at rates of 2.3× 10−7 rad.yr−1.

The highest rotation rates in the Landers and Imperial Valley rupture areas are consistent with
post-seismic motions with the same sense as the main rupture. In the Ventura Basin region, it is
monitored that the clockwise rotation are in the range between 0.1 × 10−7 and 1.5 × 10−7 rad.yr−1.
Other studies support this idea e.g., [Donnellan et al., 1993]. The eastern segment of Garlock fault
rotates clockwise at rates 1.5×10−7 rad.yr−1. A very limited area in Sierra-Nevada shows a negligible
counter clockwise rotation at rates of 0.1 × 10−7 rad.yr−1. Rather in the remote eastern part of
Mojave Desert and the Southern Mojave region, counter clockwise rotation is documented at rates
of −0.5 × 10−7 rad.yr−1. Fig. 2.20 (b) illustrates rates of absolute rotation around the normal.
Comparison between this figure and the seismicity map of the area (see Fig. 2.13) proves that the
rotation around the normal as a deformation tool can play a desirable role in earthquake investigations.

The pattern of difference between eigenvalues of TCC over Southern California is illustrated by
Fig. 2.21 (a). Referring to its definition, Eq. (2.68), the difference is almost positively like the surface
maximum shear strain rates. In general, this pattern is similar to the pattern of surface maximum
shear strain rates and can detect areas with high surface deformations. Along ECSZ in Landers and
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Figure 2.20: (a) Rotation around the normal (b) absolute rotation around the normal in units of rad.yr−1 over
Southern California. Faults are represented by white dashed lines, coastlines are represented by bold solid lines
and triangles denote the permanent GPS stations. Figures are illustrated in Albers equal-area conic projection.
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Hector Mine at rates of 1× 10−7 yr−1 is documented. The Salton Sea area and Imperial Valley areas
are covered by peaks with the rate 1.2 × 10−7 yr−1. Other notable patterns are observed in Los
Angeles areas, eastern of San Gabriel fault and Owens Valley. Interesting features are the peak of
values around the southeastern part of Basin and Range, which could not be detected by the surface
maximum shear strain rates. Moreover, a pattern of the sum of the eigenvalues of TCC is illustrated
by Fig. 2.21 (b), where the pattern could be made either positive or negative.

Fig. 2.22 (a) and 2.22 (b) illustrate changes of mean and Gaussian curvatures in units of m−1.yr−1

and m−2.yr−1, respectively. Positive and negative values of mean curvature are related to upward
and downward motions of the Earth’surface. Based on Fig. 2.22 (a) lands are undergoing subsidence
in many areas (e.g., southern part of Owens Valley, southwestern part of Sierra-Nevada, southeastern
part of Great Valley and Los Angeles). Notable rising features appear in ECSZ and the north-eastern
part of the Mojave Desert.

Fig. 2.22 (c) illustrate patterns of GPS height components (in ITRF2000) over Southern California
in units of mm.yr−1. These patterns are obtained via the Delaunay triangulation of GPS network
over Southern California (see Fig. 2.17). Positive values are connected to upward motions of the
Earth’s surface whereas negative values are related to downward motions of the Earth’s surface. The
significant subsidences are apparent in the north-western part of Salton Sea and Los Angeles Basin
with rates -2.4 mm.yr−1 and the southern part of Owens Valley with rates of -1.5 mm.yr−1. The
strongest rising peaks appear in the ECSZ and in the north part of Mojave Desert with rates of 1
mm.yr−1.

Comparisons of Figs. 2.22 (a), 2.22(b) and 2.22(c) indicate the ability which changes of mean and
Gaussian curvatures for describing the motion of the Earth’s surface. They can represent a more
reliable portraits of the deformed areas due to the following reasons:

i. As mentioned in subsection 2.5.1, as well in section 2.7, through Gaussian curvature and mean
curvature we can have a shape-classification based upon signs of mean and Gaussian curvatures.
For instance, in Southern California, consistency in sign of mean and Gaussian curvatures when
both are negative means the deformed shape is convex (ellipsoid) and consistency in sign of mean
and Gaussian curvatures when both are positive means the deformed shape is Saddle Valley (see
Fig. 2.8 and Tab. 2.2). This description of shape properties of the crust might provide new ways
of studying the structure of the Earth’s crust and its deformation.

ii. Mean and Gaussian curvatures are invariants, they do not change under a set of transformations.
In other words they reflect the inherent properties of the surface, and have geometrical meaning.
However the pattern of GPS height components (see Fig. 2.22 (c)) is variant, and will change
under set of transformations.

A Comparison with Horizontal Strain

The objective of this part is devoted to the comparison between the classical computation (plane strain
analysis) and our proposed method. The classical method of deformation analysis (2D) is based upon
extrinsic geometry which deals with the study of geometry relative to embedding spaces. We assumed
that in 2D classical method, undeformed surface and deformed surface are planes. Hence, briefly, we
describe the geometry of deformation (in plane)
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Figure 2.21: (a) Difference between eigenvalues of TCC in units of yr−1 (b) Sum of the eigenvalues of TCC in
units of yr−1 over Southern California. Faults are represented by white dashed lines, coastlines are represented
by bold solid lines and triangles denote the permanent GPS stations. Figures are illustrated in Albers equal-area
conic projection.
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Figure 2.22: (a) Change of mean curvature in units of m−1.yr−1, (b) change of Gaussian curvature in units of
m−2.yr−1, (c) patterns of GPS height components (in ITRF2000) in units of mm.yr−1 over Southern California.
Faults are represented by white dashed lines, coastlines are represented by bold solid lines and triangles denote
the permanent GPS stations. Figures are illustrated in Albers equal-area conic projection.
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i. Base vectors of undeformed surface {J1,J2} are mutually orthogonal, as well as basis vectors of
deformed surface {j1, j2} (contrary to basis vectors in proposed method which are not orthogo-
nal). Therefore, every vector can be described through material coordinates u = U1J1 + U2J2

or by spatial coordinates u = u1j1 + u2j2.

ii. Metric tensors before deformation and after deformation are the same and matrix forms of them
are equal to the identity matrix or unit matrix (contrary to the metric tensor in the proposed
method which is not diagonal).

iii. Local coordinates of an undeformed body can be illustrated by {X1,X2}, while the coordinates
system of a deformed body can be illustrated by {x1, x2}.

Based upon these assumptions, and referring to definitions of Cauchy-Green deformation tensors
(Eq. 2.15) we have

Cl =





< ∂x
∂X1 ,

∂x
∂X1 > < ∂x

∂X1 ,
∂x

∂X2 >

< ∂x
∂X2 ,

∂x
∂X1 > < ∂x

∂X2 ,
∂x

∂X2 >



 vs. Cr =





< ∂X
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∂x1 > < ∂X
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Using u = x − X and recalling the basis vectors ∂X
∂XΦ = JΦ and ∂x

∂xφ = jφ in which Φ, φ ∈ {1, 2}, we
have

Cl =
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(2.71)

which is based on the dropping or approximating of nonlinear terms ∂UΦ

∂XΦ
∂UΛ

∂XΛ and ∂uφ

∂xφ
∂uλ

∂xλ , in left and
right sides , respectively. Hence, using Eqs. (2.18) and (2.71) we can obtain strain tensors
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which are called infinitesimal strain tensors. Infinitesimal rotation tensors can be obtained by
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Application of this method in geodetic and geodynamic networks can be found in Vanicek et al. [1981];
Argus et al. [1989]; Ahjos and Uski [1992]; Dermanis and Grafarend [1993]; Heck et al. [1995]; Bada
et al. [1999]; Heck [1999]; Adam et al. [2002]; LaFemina et al. [2005]; Mazzotti et al. [2005]; Walpersdorf
et al. [2006]; Cai and Grafarend [2007a,b] and many other papers that couldn’t be included in the
print.

In order to compare our proposed method and the plane strain, we consider

i. Local Cartesian terrestrial frame (e.g., ITRF, WGS84)

ii. Infinitesimal displacements vector

Hence, we apply the plane strain method over Southern California, through the same GPS arrays
which are used in subsection 2.8.2. The principal quantities of the strain tensor (maximum shear
strain rate, dilation rate and rotation rate) are illustrated by Figs. 2.23 (a), 2.23(b) and 2.23(c),
respectively, which are derived by the plane strain method. The comparison can be divided into three
categories:

i. Comparison of the maximum shear strain rate in the classical method (Figs. 2.23 (a)) with
maximum shear strain rate by our proposed method (Fig. 2.18 (b)) suggests that along the
ECSZ, Hector Mine, Landers and Imperial Valley, roughly in eastern parts of SAF, our method
represents a high magnitude of the maximum shear-strain rate.

ii. Comparison of the dilatation rate in the classical method (Figs. 2.23 (b)) with the dilatation
rate by our proposed method (Fig. 2.19) shows additional extensions in particular areas along
the eastern parts of SAF (e.g., Landers, eastern Mojave Desert and east of the southern Sierra
Nevada).

iii. Comparison of the rotation rate in the classical method (Figs. 2.23 (c)) with the rotation rate
by our proposed method (Fig. 2.20 (a)) shows additional rotations in imperial valley and ESCZ.

It seems that the differences between corresponding patterns of two methods could be discussed from
the two points :

i. Modeling of the displacement problem which we solved the problem on the real surface of the
Earth (see Eq. (2.23) through (2.27))

ii. Effect of ignoring the height components of the deformation field in horizontal strain rates.
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Figure 2.23: Principal quantities of strain tensor derived by 2D classical method : (a) Maximum shear strain
rate in units of yr−1, (b) dilatation in units of yr−1, (c) rotation in units of rad.yr−1 over Southern California.
Faults are represented by white dashed lines, coastlines are represented by bold solid lines and triangles denote
the permanent GPS stations. The figure is illustrated in Albers equal-area conic projection.



Chapter 3

Stochastic Aspects

Stochastic behavior of eigenspace components (in strain tensor and TCC) in the presence of errors
in measuring a random displacement field (under the normal distribution assumption of displacement
field) is discussed in this chapter. The propagation of errors from the displacement vector into ele-
ments of strain tensor are formulated in section 3.1. In section 3.2 a propagation of errors from the
displacement vector into elements of TCC are discussed.

In section 3.3 we deal with error propagation for eigenspace components, using dispersion matrices
of tensor components (strain or TCC) which we derived in the previous two sections. However, due
to the intricacy of the relations between tensor components (strain or TCC) and their eigenspace
components, we proceeded via simultaneous diagonalization.

This section is followed by the linearization of the nonlinear multivariate Gauss- Markov model,
which links the elements of transformed tensors (obtained by simultaneously diagonalization) with
the eigenspace components. Then, we set up an observation model based on a linearized model
under sampling of eigenspace synthesis. Furthermore, we establish linearized observation equations
for n samples of independent random vectors from transformed tensor elements (under the normal
distribution assumption), each with individual variance matrix. This will provide us with the second-
order statistics of the eigenspace components.

In section 3.4, we estimate the covariance components between transformed tensor elements by
Helmert estimator, based on prior information of variance components (given from section 3.3). Sec-
tion 3.5 is devoted to presenting a numerical example with the crustal deformation field (through the
continuous GPS data) in Cascadia Subduction Zone (CSZ).

In this chapter, for simplicity, we will use Lagrangian coordinates (or material coordinates) and
the discussion would be the same in Eulerian coordinates.

3.1 Error Propagations for Strain Components

In the presence of errors in measuring the random displacement vectors (e.g., by GPS), we assume
that Qu be a covariance matrix of random observations in which Qu ∈ R

3×3 (under the normal
distribution assumption of displacement field). Therefore, the over all aim of this section is to discuss
the propagation of errors from displacement vector into elements of strain tensor.

Recalling the strain tensor, whose components are dependent on the first-order partial derivatives

49
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of the displacement vector with respect to material coordinates u,Λ, then dealing with dispersion
matrix D{u,Λ} makes an essential part of this section.

In the previous chapter, we could described a displacement vector u in terms of linear combinations
of vector space {A1,A2,A3} or {A1,A2,A3}. Namely

u = ŨKAK = ŨKAK =⇒ u,Λ =
∂u

∂ΘΛ
=
∂(ŨKAK)

∂ΘΛ
=
∂(ŨKAK)

∂ΘΛ
, u ∈ R

1×3 , AK ,AK ∈ R
3×1

or, in matrix notations

u,Λ =
[

A1 A2 A3

]















Ũ1
,Λ

Ũ2
,Λ

Ũ3
,Λ















+
[

A1,Λ A2,Λ A3,Λ

]





Ũ1

Ũ2

Ũ3



 =

=
[

A1 A2 A3
]













Ũ1,Λ

Ũ2,Λ

Ũ3,Λ













+
[

A1
,Λ A2

,Λ A3
,Λ

]





Ũ1

Ũ2

Ũ3





Notice that, following convention, a comma indicates partial derivatives namely ŨK
,Λ = ∂UK

∂ΘΛ , ŨK,Λ =
∂ŨK

∂ΘΛ , AK
,Λ = ∂AK

∂ΘΛ and AK,Λ = ∂AK

∂ΘΛ , where obtaining the first-order partial derivatives of local base

vectors with respect to the curvilinear coordinates, namely AK
,Λ and AK,Λ are described in Appendix

A. Now, dispersion matrix of u,Λ is

D{u,Λ} =
[

A1 A2 A3

]

QŨK
,Λ

[

A1 A2 A3

]T
+

+
[

A1,Λ A2,Λ A3,Λ

]

QŨK

[

A1,Λ A2,Λ A3,Λ

]T
= Qu,Λ

, D{u,Λ} ∈ R
3×3 (3.1)

where

ŨK =< u,AK >⇒ D{ŨK} =
[

A1 A2 A3
]

Qu

[

A1 A2 A3
]T

= QŨK , D{ŨK} ∈ R
3×3 (3.2)

However, covariance matrix of first-order partial derivatives of contravariant elements with respect to
the material coordinates QŨK

,Λ
can be obtained by propagation of errors from ŨK or ŨK into their

first-order partial derivatives (according to modeling of displacement field). More detailed discussion
is presented in Appendix B.

Analogous to Eq. (3.1), we can obtain the dispersion matrix of u,Λ through covariant components

D{u,Λ} =
[

A1 A2 A3
]

QŨK,Λ

[

A1 A2 A3
]T

+

+
[

A1
,Λ A2

,Λ A3
,Λ

]

QŨK

[

A1
,Λ A2

,Λ A3
,Λ

]T
(3.3)
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where

ŨK =< u,AK >⇒ D{ŨK} =
[

A1 A2 A3

]

Qu

[

A1 A2 A3

]T
= QŨK

, D{ŨK} ∈ R
3×3 (3.4)

Hence, using Eq. (3.1) or (3.3), dispersion matrix of strain components can be obtained by

EΛΦ =
1

2
(< u,Λ,u,Φ > + < u,Λ,AΦ > + < AΛ,u,Φ >)

D{p̃} =





A1 + u,1 0
1
2 (A2 + u,2)

1
2 (A1 + u,1)

0 A2 + u,2)





[

Qu,1
0

0 Qu,2

]





A1 + u,1 0
1
2 (A2 + u,2)

1
2 (A1 + u,1)

0 A2 + u,2)





T

= Qp̃ , D{p̃} ∈ R
3×3

(3.5)

where vector p̃ denotes to the vector-half form of symmetric strain tensor

p̃ := vh(El) =
[

E11 E12 E22

]T ∈ R
3×1

Remark 3.1 Definition (vh-operator): Let E be an arbitrary symmetric matrix of size u. The vh-
operator of E will contain 1

2u(u+ 1) distinct elements of Eij.

3.2 Error Propagations for TCC Components

In previous chapter, in section 2.6, the tensor of changes of curvature (TCC) was stated in terms of
difference across the unit normal vectors in undeformed and deformed surfaces, namely w = a3 −A3.
On the other hand, we have observed how the unit normal vectors on surfaces (deformed and unde-
formed) can be constructed by cross product of tangent basis vectors. Likewise, through Eq. (2.62), we
showed that tangent basis vectors on deformed surface depend on material basis vectors {A1,A2,A3}
and curvilinear components of displacement vector.

Then, at the first stage, existing errors in curvilinear components of displacement vector (see Eqs.
(3.2) and (3.4)) will propagate to the tangent basis vectors on a deformed surface, then to the unit
normal vectors on a deformed surface and finally will propagate to the TCC elements. First, we deal
with the error propagation in tangent basis vectors (on a deformed surface) in the presence of errors
in curvilinear components of displacement vector. Namely:

aλ = ℓα·λAα + ζλA3 =
[

A1 A2 A3

]





ℓ1·λ 0 0
0 ℓ2·λ 0
0 0 ζλ



 , AK ∈ R
3×1

D{aλ} =
[

A1 A2 A3

]







σ2
ℓ1
·λ

0 0

0 σ2
ℓ2
·λ

0

0 0 σ2
ζλ







[

A1 A2 A3

]T
= Qaλ

, D{aλ} ∈ R
3×3

where covariance components σ2
ℓ1
·λ

, σ2
ℓ2
·λ

, σ2
ζλ

could be achieved by variance propagation of curvilinear

coordinates in Eqs. (2.63) and (2.64). Hence, dispersion matrices of tangent basis vectors Qa1 and
Qa2 could be propagated to unit normal vector a3 through linearization technique
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a3 = a1×a2
‖a1×a2‖ , ak ∈ R

3×1

a3
.
= ∂a3

∂a1
a1 + ∂a3

∂a2
a2 =

[

∂a3
∂a1

∂a3
∂a2

]

[

a1

a1

]

D{a3} =
[

∂a3
∂a1

∂a3
∂a2

]

[

Qa1 0
0 Qa2

]

[

∂a3
∂a1

∂a3
∂a2

]T

Then, dispersion matrix D{a3} can be transferred to the difference vector of unit normal vectors w,
through

w = a3 − A3 ⇒ D{w} = D{a3} , D{w} ∈ R
3×3

Now, we recall the tensor of changes of curvature (TCC), which is influenced by the first derivatives
of w with respect to material coordinates w,Λ. Hence, in order to achieve dispersion matrix of TCC
components, as a first step, we should deal with the dispersion matrix D{w,Λ}. Namely, by splitting
w into its curvilinear coordinates we have

w = W̃KAK = W̃KAK ⇒ w,Λ =
∂w

∂ΘΛ
=
∂(W̃KAK)

∂ΘΛ
=
∂(W̃KAK)

∂ΘΛ
, w ∈ R

1×3

or through matrix notations

w,Λ =
[

A1 A2 A3

]















W̃ 1
,Λ

W̃ 2
,Λ

W̃ 3
,Λ















+
[

A1,Λ A2,Λ A3,Λ

]





W̃ 1

W̃ 2

W̃ 3



 =

=
[

A1 A2 A3
]













W̃1,Λ

W̃2,Λ

W̃3,Λ













+
[

A1
,Λ A2

,Λ A3
,Λ

]





W̃1

W̃2

W̃3





Therefore, dispersion matrix of w,Λ can be obtained by

D{w,Λ} =
[

A1 A2 A3

]

QW̃ K
,Λ

[

A1 A2 A3

]T
+

+
[

A1,Λ A2,Λ A3,Λ

]

QW̃ K

[

A1,Λ A2,Λ A3,Λ

]T
= Qw,Λ

(3.6)

where we have

W̃K =< u,AK >⇒ D{W̃K} =
[

A1 A2 A3
]

Qw

[

A1 A2 A3
]T

= QW̃ K , D{W̃K} ∈ R
3×3
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Correspondent to Eq. (3.6), we can obtain dispersion matrix of w,Λ through covariant elements

D{w,Λ} =
[

A1 A2 A3
]

QW̃K,Λ

[

A1 A2 A3
]T

+

+
[

A1
,Λ A2

,Λ A3
,Λ

]

QW̃K

[

A1
,Λ A2

,Λ A3
,Λ

]T
= Qw,Λ

(3.7)

where

W̃K =< w,AK >⇒ D{W̃K} =
[

A1 A2 A3

]

Qw

[

A1 A2 A3

]T
= QW̃K

, D{W̃K} ∈ R
3×3

Hence, using Eqs. (3.6) or (3.7), dispersion matrix of TCC elements can be obtained by

KΛΦ = − < w,Λ,AΦ > − < w,Λ,u,Φ > − < u,Φ,A3,Λ >

D{q̃} = T









Qu,1
0 0 0

0 Qu,2
0 0

0 0 Qw,1
0

0 0 0 Qw,2









TT = Qq̃, D{q̃} ∈ R
3×3 (3.8)

where matrix T is

T =





A3,1 + w,1 0 A1 + u,1 0
1
2(A3,2 + w,2)

1
2(A3,2 + w,2)

1
2(A2 + u,2)

1
2(A1 + u,1)

0 A3,2 + w,2 0 A2 + u,2



 , T ∈ R
3×12 (3.9)

Likewise, vector q̃ indicates the vector-half form of symmetric curvature tensor

q̃ := vh(Kl) =
[

K11 K12 K22

]T ∈ R
3×1

3.3 Error Propagations for Eigenspace Components

In this section we evaluate the dispersion effect of strain- tensor elements and TCC elements, which
are obtained through Eqs. (3.5) and (3.8), on their eigenspace components. Due to the intricacy
of relations between eigenvalues of strain tensor (or TCC) and their eigenspace components, which
are established through Eqs. (2.30)- (2.32) as well (2.68)- (2.6.3), we performed the simultaneous
diagonalization of quadratic forms for pairs {El,Al} and {Kl,Al}. Summarizing briefly :

Al El

⇓ ⇓ (3.10)

(VlM)TAl(VlM) = I E′′
l = (VlM)TEl(VlM)

and

Al Kl

⇓ ⇓ (3.11)

(VlM)TAl(VlM) = I K′′
l = (VlM)TKl(VlM)
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where Vl is the matrix of eigenvectors of metric, and M is the positive definite matrix (see Eq. (2.4.2)).
Hence, without loss of generality, using simultaneous diagonalization we mapped the eigenspectra
components of {El,Al} and {Kl,Al} into eigenspectra of {E′′

l , I} and {K′′
l , I}, respectively. Namely

Analysis vs. Synthesis











Λ1

Λ2

Θ











=
1

2













E′′
11 + E′′

22 +
√

(E′′
11 − E′′

22)
2 + 4E′′2

12

E′′
11 + E′′

22 −
√

(E′′
11 − E′′

22)
2 + 4E′′2

12

arctan
2E′′

12

E′′

11
−E′′

22













vs.













E′′
11

E′′
12

E′′
22













=













Λ1 cos2 Θ + Λ2 sin2 Θ

1
2(Λ2 − Λ1) sin 2Θ

Λ1 sin2 Θ + Λ2 cos2 Θ













(3.12)

and

Analysis vs. Synthesis











Λ′
1

Λ′
2

Θ′











=
1

2













K ′′
11 +K ′′

22 +
√

(K ′′
11 −K ′′

22)
2 + 4K ′′2

12

K ′′
11 +K ′′

22 −
√

(K ′′
11 −K ′′

22)
2 + 4K ′′2

12

arctan
2K′′

12

K′′

11
−K′′

22













vs.













K ′′
11

K ′′
12

K ′′
22













=













Λ′
1 cos2 Θ′ + Λ′

2 sin2 Θ′

1
2 (Λ′

2 − Λ′
1) sin 2Θ′

Λ′
1 sin2 Θ′ + Λ′

2 cos2 Θ′













(3.13)

where {Λ1,Λ2} are eigenvalues of E′′
l with related orientation parameter Θ, although {Λ′

1,Λ
′
2} are

eigenvalues of K′′
l with related orientation parameter Θ′.

Hence, considering the dispersion matrices of vector-half forms of El and Kl on one side (see
Eqs. (3.5) and (3.8)) and transformed matrices (via simultaneously diagonalization) on the other side
(see Eqs. (3.10) and (3.11)), we can obtain the dispersion matrices of elements of transformed matrices
in terms of dispersion matrices of strain tensor and TCC, respectively. Namely

D



































E′′
11

E′′
12

E′′
22



































=





S2
11 2S11S21 S2

21

S11S12 S11S22 + S12S21 S21S22

S2
12 2S12S22 S2

22



Qp̃





S2
11 2S11S21 S2

21

S11S12 S11S22 + S12S21 S21S22

S2
12 2S12S22 S2

22





T

(3.14)
and

D



































K ′′
11

K ′′
12

K ′′
22



































=





S2
11 2S11S21 S2

21

S11S12 S11S22 + S12S21 S21S22

S2
12 2S12S22 S2

22



Qq̃





S2
11 2S11S21 S2

21

S11S12 S11S22 + S12S21 S21S22

S2
12 2S12S22 S2

22





T

(3.15)
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where

S =

[

S11 S12

S21 S22

]

subject to S = VlM

Our aim was the computing of dispersion matrices of eigenvalues of strain tensor and TCC. It can
be obtained by propagating dispersion matrices (3.14) and (3.15) into their eigenvalues through the
right sides of Eqs.(3.12) and (3.13). However, due to the nonlinearity of equations, propagation of
dispersion matrices into eigenvalues will need linearization in equations, which following subsection
covers.

3.3.1 Setup of Linear Observation Model

This section is devoted to :

i. Linearization of the nonlinear equation between elements of transformed matrix (E′′
l ) and its

eigenspace components, which has already been established by Eq. (3.12). In this case we set
up an observation model based on a linearized model under the sampling eigenspace synthesis.

ii. Establishing linearized observation equations for n samples of independent random vectors from
transformed tensor elements (under the normal distribution assumption), each with an indi-
vidual variance matrix. Then we estimate the eigenspace component and dispersion matrix of
eigenspace component.

Let us start this section by recalling the vector-half form of symmetric matrix E′′
l.i which could be

represented as [Xu and Grafarend, 1996a,b]

y′′
i := vh(E′′

l.i) =













E′′
11.i

E′′
12.i

E′′
22.i













=













Λ1.i cos
2 Θ + Λ2.i sin2 Θ

1
2(Λ2.i − Λ1.i) sin 2Θ

Λ1.i sin
2 Θ + Λ2.i cos

2 Θ













, y′′
i ∈ R

3×1

with the first- and second moments

E{y′′
i } = E



































E′′
11.i

E′′
12.i

E′′
22.i



































, D{y′′
i } = D



































E′′
11.i

E′′
12.i

E′′
22.i



































= Qy′′

i

where second moments can be obtained by Eq.(3.14).

Suppose that n samples of E′′
l , namely E′′

l.1, E′′
2.1, . . ., E′′

n.1 have been observed, where vector-half
forms of them are y′′

1 , y′′
2 , . . ., y′′

n. Then we can design an array of of vector-half forms of y′′1.i = E′′
11.i,

y′′2.i = E′′
12.i and y′′3.i = E′′

22.i indexed to the number of samples. Namely by

Y′′ = [y′′
1,y

′′
2, . . . ,y

′′
n] =













y′′1.1 . . . y′′1.n

y′′2.1 . . . y′′2.n

y′′3.1 . . . y′′3.n













, Y′′ ∈ R
3×n (3.16)



3.3. ERROR PROPAGATIONS FOR EIGENSPACE COMPONENTS 56

with the first- and second moments

E{Y′′} = E{[y′′
1 y′′

2 . . . y′′
n]} , E{Y′′} ∈ R

3×n

D{vec(Y′′)} =











Qy′′

1
0 . . . 0

0 Qy′′

2
. . . 0

...
...

. . .
...

0 0 . . . Qy′′

n











, D{vec(Y′′)} = Qvec(Y′′) ∈ R
3n×3n (3.17)

where y′′
1 y′′

2 . . . y′′
n are considered independent 3 × 1 random vectors, each with the 3 × 3 variance

matrix Qy′′

i
.

Remark 3.2 Definition (vec-operator): In mathematics, especially in linear algebra and matrix the-
ory, the vectorization of a matrix is a linear transformation which converts the matrix into a column
vector. Specifically, the vectorization of an mn matrix A, denoted by vec(A), is the mn × 1 col-
umn vector obtained by stacking the columns of the matrix A on top of one another: vec(A) =

[A11, ..., Am1, A12, ..., Am2, ..., A1n, ..., Amn]T . For example, for the 2× 2 matrix A =

[

A11 A12

A21 A22

]

, the

vectorization is vec(A) = [ A11 A12 A21 A22 ].

Let us consider a special nonlinear multivariate Gauss- Markov model for sampling the eigenspace
synthesis [Cai, 2004]

Y′′ = F(ξ)1T + VY′′ (3.18)

where 1 denotes the n× 1 ”summation vector” consisting of ones and

F :=





f1

f2

f3



 =













Λ1 cos2 Θ + Λ2 sin2 Θ

1
2(Λ2 − Λ1) sin 2Θ

Λ1 sin2 Θ + Λ2 cos2 Θ













=













ξ1 cos2 ξ3 + ξ2 sin2 ξ3

1
2(ξ2 − ξ1) sin 2ξ3

ξ1 sin2 ξ3 + ξ2 cos2 ξ3













(3.19)

where













ξ1

ξ2

ξ3













:=













Λ1

Λ2

Θ













,













f1

f2

f3













:=













E′′
11

E′′
12

E′′
22













Moreover, parameters ξ, E{Y′′} and Y′′ −E{Y′′} = VY′′ are unknown. Hence, by the Taylor series
linearization of nonlinear model Eq. (3.4), up to order one

F(ξ) = F(ξ0) + J(ξ0)(ξ − ξ0) +O[(ξ − ξ0) ⊗ (ξ − ξ0)] (3.20)
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where ⊗ denotes to Kronecker-Zehfuss product [Grafarend, 2004]. For the first set of observations
[y′′1.1 y′′2.1 y′′3.1]

T = [E′′
11.1 E′′

21.1 E′′
22.1]

T we have

ξ0 :=













Λ1.1

Λ2.1

Θ.1













=
1

2















E′′
11.1 + E′′

22.1 +
√

(E′′
11.1 − E′′

22.1)
2 + 4E′′2

21.1

E′′
11.1 + E′′

22.1 −
√

(E′′
11.1 − E′′

22.1)
2 + 4E′′2

21.1

arctan
2E′′

21.1
E′′

11.1−E′′

22.1















(3.21)

and the Jacobi matrix is

J(ξ0) =















∂f1

∂Λ1

∂f1

∂Λ2

∂f1

∂Θ

∂f2

∂Λ1

∂f2

∂Λ2

∂f2

∂Θ

∂f3

∂Λ1

∂f3

∂Λ2

∂f3

∂Θ















ξ=ξ0

=













cos2 Θ.1 sin2 Θ.1 (Λ2.1 − Λ1.1) sin 2Θ.1

1
2 sin 2Θ.1 −1

2 sin 2Θ.1 −(Λ2.1 − Λ1.1) cos 2Θ.1

sin2 Θ.1 cos2 Θ.1 −(Λ2.1 − Λ1.1) sin 2Θ.1













The above results are based on the assumption of using the Taylor series linearization, then we
will apply the Gauss- Newton iteration scheme with an initial point ξ0. The term ξ0 is determined by
solving once the eigenvalue analysis through the Eq. (3.21) for the first sample. Based on Eq. (3.20 )
we establish a special linearized multivariate Gauss- Markov model for the eigenspace synthesis

Y′′ = F(ξ0)1
T + [J(ξ0)∆ξ]1

T + VY′′ (3.22)

which in vectorized form is

vec(Y′′) = vec(Y′′
0) + A∆ξ + vec(VY′′) , A = [1 ⊗ J(ξ0)] (3.23)

vec(Y′′
0) = 1⊗ F(ξ0) (3.24)

First moments :
E{vec(Y′′)} = A∆ξ + vec(Y′′

0) , vec(Y′′) ∈ R
3n×1

Second moments :

D{vec(Y′′)} = Qvec(Y′′) , rank Qvec(Y′′) = 3n

With the assumption of observation of random tensors, we will estimate the eigenvalue components
ξ of the type ”Best Linear Uniformly Unbiased Estimator” (Σ − BLUUE) in the special linearized
multivariate Gauss- Markov model [Grafarend, 2006]

∆ξ̂ = ξ̂ − ξ0 = L(vec(Y) − vec(Y′′)) = (ATQ−1
vec(Y′′)A)−1ATQ−1

vec(Y′′)(vec(Y) − vec(Y′′)) (3.25)

subjected to the related dispersion matrix

D{ξ̂} = (ATQvec(Y′′)A)−1 = Qξ̂ (3.26)



3.3. ERROR PROPAGATIONS FOR EIGENSPACE COMPONENTS 58

Then, estimated residual vectors and observations are:

vec(Ŷ′′) = A(ATQ−1
vec(Y′′)A)−1ATQ−1

vec(Y′′)vec(Y
′′) (3.27)

vec( ˆVY′′) = vec(Y′′) − vec(Ŷ′′) = D(σ) vec(Y′′) (3.28)

D(σ) = (I − A(ATQ−1
vec(Y′′)A)−1ATQ−1

vec(Y′′)) (3.29)

However, an estimation of eigenspace components TCC and their dispersion matrix can be per-
formed in a similar approach, while the dispersion matrix of tensor elements can be obtained by
Eq. (3.15) .

Hence, by the estimation of eigenspace components of random deformation tensors and their
dispersion matrices, we are able to start the statistical validation of eigenspace components based
upon the assumption of a Gauss- Laplace normal distribution of the observed (or derived) deformation
tensor elements.

Remark 3.3 Two sets of statistical tests are performed for testing results :

i. Multivariate test for all eigenspace components : tests for eigenspace parameter ξ = ξ0 with
estimated covariance matrix Qξ̂. The quadratic form φ = (ξ̂ − ξ0)

TQ−1

ξ̂
(ξ̂ − ξ0) represents

an equation of ellipsoidal, centered at ξ̂. Its distribution can be approximated by Fisher’s
distribution : (ξ̂ − ξ0)

TQ−1

ξ̂
(ξ̂ − ξ0) ∼

3
n−3F3,n−3 and hypothesis test can be performed using

the tabulated F values. For example, for H0 : ξ = ξ0 vs H1 : ξ 6= ξ0 we would reject H0 if
computed φ exceeds 3

n−3Fα,3,n−3 at the α level of significancy [Mikhail and Ackermann, 1976,
page 299].

ii. Test for a distinct element of eigenspace components : Let us consider diagonal elements of
estimated covariance matrix Qξ̂ with σ̂2

1 , σ̂
2
2 , σ̂

2
3 as estimated variances for Λ1, Λ2 and Θ, respec-

tively. Separate tests about the eigenspace components in ξ0 = [Λ1.1 Λ2.1 Θ.1]
T with associated

statistics : t1 = Λ̂1−Λ1.1
σ̂1

, t2 = Λ̂2−Λ2.1
σ̂2

and t3 = Θ̂−Θ.1
σ̂3

can be performed. Under the null
hypothesis, these statistics follow t-distributions with n− 1 degrees of freedom.

Therefore, α confidence intervals for the eigenvalues and orientation parameter of semi-major axis
could be obtainable through the estimated values and suitable statistical tests (see Fig. 3.1).
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Figure 3.1: (a) The α confidence intervals for the eigenvalues Λ1 and Λ2. (b) The α confidence intervals for
the eigen-direction Θ.
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3.4 Variance-Covariance Estimation of Helmert type

The eigenspace components are typically processed using the least-squares method (e.g., which we
have performed in the previous section). To obtain reliable least-squares estimates, however, both the
functional model and the stochastic model must be adequately defined. In the previous section we
developed a functional model between the transformed strain tensor or TCC obtained by simultaneous
diagonalization (such as observations), and eigenspace components (unknowns). We used n samples
of independent 3 × 1 random vectors y′′

1 , y′′
2 , . . ., y′′

n, each with the 3 × 3 variance covariance matrix
Qy′′

i
.

Hence, the covariance matrix of observations (components of transferred tensors) is partly known,
and incomplete knowledge of the covariance matrix of the observations may lead to unreliable results.
An appropriate statistical model is needed to arrive at a proper description of the estimator quality.
Methods for estimating covariance components have been intensively investigated in the statistical
and geodetic literatures (e.g., Helmert [1907]; Grafarend et al. [1980]; Hartung [1981]; Persson [1981];
Grafarend [1984]; Malley [1986]; Rao and Kleffe [1988]; Rao [1997]; Satirapod et al. [2001]). The
PhD Thesis of Shaffrin [1983] gives a critical review of a state-of-the-art in (co)variance component
estimation.

Let us consider the special linearized multivariate Gauss- Markov model with n measurements and
three unknowns, which is established in the previous section (Eqs. (3.23)) :

vec(Y′′) = vec(Y′′
0) + A∆ξ + vec(VY′′)

where vec(Y′′) ∈ R
3n×1 and VY′′ ∈ R

3n×1 are the vector measurements (of the random tensor) and
residuals, respectively; A = [1 ⊗ J(ξ0)] ∈ R

3n×3 is the design matrix; vec(Y′′
0) = [1 ⊗ F(ξ0)] ∈ R

3n×1

is the vectorized version of tensor values at evaluation point ξ0; ∆ξ ∈ R
3n×1 is a vector of unknowns.

Partitioning the full covariance matrix of measurements into p groups of matrices by

D{vec(Y′′)} =

p̄
∑

j=1

Qjjσ
2
j +

p̄−1
∑

j=1

p̄
∑

k=j+1

Qjkσjk =























σ2
1Q11 σ12Q12 . . . σ1p̄Q1p̄

σ12Q
T
12 σ2

2Q22 . . . σ2p̄Q2p̄

...
...

. . .
...

σ1p̄Q
T
1p̄ σ2p̄Q

T
2p̄ . . . σ2

p̄Qp̄p̄























= Qvec(Y′′) ∈ R
3n×3n

(3.30)

with p = p̄(p̄+1)
2 variance and covariance components. Here, we assumed that symmetric matrix Qjk

is known and has order 3n× 3n. We can design an array consisting of matrices Qjk by

Q :=
[

Q11 Q12 Q22 Q13 Q23 Q33 . . . Qp̄−1p̄ Qp̄p̄

]

(3.31)

=
[

Q1 Q2 . . . Qp

]

in whichD{vec(Y′′)} is positive definite and its diagonal elements priority are given (e.g., by Eq. (3.17)).

We consider that p̄ second moments σ2
j of type variance and the p̄(p̄−1)

2 second moments of type co-
variance are unknown, which are collected in the array



3.4. VARIANCE-COVARIANCE ESTIMATION OF HELMERT TYPE 61

σ =
[

σ2
1 σ12 σ2

2 σ13 σ23 σ2
3 . . . σp̄−1p̄ σ2

p̄

]T
(3.32)

Then, Eq.(3.30), will be represented by

Qvec(Y′′) =

p
∑

j=1

Qjσj

Now, let us set up an estimator of Helmert type [Helmert, 1907], based upon the idea that least squares
residuals vec( ˆVY′′) are invariant with respect to the transformation vec(Y′′) → vec(Y′′) + Aξ. The
shifting variate is the squared norm of the least-squares residuals. Its expectation , through Eqs .(3.27),
can be given as

E{vec( ˆVY′′)TQ−1
vec(Y′′)vec(VY′′)} = E{vec(VY′′)TDT

(σ)Q
−1
vec(Y′′)D(σ)vec(VY′′)} =

= tr(DT
(σ)Q

−1
vec(Y′′)D(σ)Qvec(Y′′))

Grafarend et al. [1980] used a block-structured covariance matrix: Qvec(Y′′) =
∑p

j=1 Qjσj with the

multinomial inverse of the form : Q−1
vec(Y′′) =

∑p
i=1 Kiσi. He gave a simple example how to obtain

Ki’s. When the covariance matrix D{vec(Y′′)} has a block-diagonal structure one can also simply
obtain Ki’s. Substituting these two terms in the proceeding equation yields

p
∑

i=1

E{vec( ˆVY′′)TKivec( ˆVY′′)} =

p
∑

i=1

p
∑

j=1

tr(DT
(σ)KiD(σ)σjQj)

From the expectation of the ith term one obtains

E{vec( ˆVY′′)TKivec( ˆVY′′)} =

p
∑

j=1

tr(DT
(σ)KiD(σ)Qj)σj , i = 1, . . . , p.

The proceeding equation can be written in a compact form as E{q} = Hσ with the p × p matrix H
(Helmert matrix) and p-vector q as

hij = tr(DT
(σ)KiD(σ)Qj) , i, j = 1, . . . , p

qi = vec( ˆVY′′)TKivec( ˆVY′′)

If H is regular, an unbiased estimator of (co)variance components reads

σ̂ = H−1q (3.33)

If the Helmert matrix is a regular matrix then it has the block structure and estimated variances
are unbiased and invariant [Grafarend et al., 1980; Grafarend, 1984]. However, Crocetto et al. [2000]
stated that since the (normal) matrix may not have full rank, the pseudo-inverse can be used to solve
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the system. Recently, Xu et al. [2006] extended the estimation of variance components in linear models
to that of linear inverse ill-posed problems. The most clearly stated results may be found in Qu [1989]
and later in Xu et al. [2007] who found that if r2 ≥ p, all the variance and covariance components are
estimable, where r is the number of redundant measurements and n the numbers of all measurements.

Remark 3.4 The selection of estimator and appropriate technique should be based on the desired es-
timator properties, namely translation invariance, unbiasedness, minimum variance, non-negativeness,
computational efficiency and fluency of implementation. In some cases, not all of these properties can
be retained for a particular estimator. A prevalent example can be found in Hartung [1981], where
the property of unbiasedness was sacrificed for a guaranteed estimation of non-negative variances.
In Persson [1981], the existence of simultaneous non-negative estimates of variance components was
investigated and it was demonstrated that one reason for a non-negative minimum norm of quadratic
unbiased estimators is limited knowledge of the magnitude of the variance components. Another rele-
vant reason, probably, is that the assumed variance component model is not correct or the observation
vector contains gross errors. In a realistic model with a large number of degree of freedom negative
estimates seldom occur.

In general, the decisions which estimator properties to retain must be made on a case-by-case basis
depending on the data and the specific application. The over-riding property that is usually sought
after is computational efficiency, which arises due to the massive quantities of data that are used for
the estimation of many (co)variance components. In fact, the main criticism of traditional (co)variance
estimation, VCE, methods is that they involve repeated inversions of large matrices, intensive compu-
tational efforts and large storage requirements for lots of unknowns. For these reasons, one may opt
for entirely different estimation procedures. In other cases, mathematical manipulations or simplifica-
tions are made to the rigorous algorithm in order to reduce the computational burden involved with
inverting large dimensional matrices [Satirapod et al., 2001].

3.5 A Numerical Example

In this section, the proposed methodology (in this chapter) is illustrated using a real data set. It
is performed under the normal distribution assumption of tensor measurements (strain and TCC).
Moreover, we present a numerical solution of the statistical induction of eigenspace components.

The geodynamic setting of the Cascadia Subduction Zone (CSZ) is briefly reviewed in this section.
In addition, we investigate the network of permanent GPS stations covering our study area, called
PANGA (Pacific Northwest Geodetic Array), which carries information in the observed horizontal
and vertical displacements. Hence, we illustrate the patterns of the eigenspace components associated
with random deformation tensors (strain and TCC) based on both the a-priori variance component
information and a posteriori variance information of tensor measurements.

3.5.1 Tectonic Setting of the Cascadia Subduction Zone

The Cascadia Subduction Zone (CSZ), located between two migrating triple junctions, deforms in
response to superimposed forces of North America, Juan de Fuca, and Pacific boundary interactions
which is illustrated by Fig. 3.2. It is generally accepted that a potential megathrust earthquakes would
be the result of a slip on a locked portion of the subduction interface, although the size and location
of the seismogenic zone is unclear [Verdonck, 2005].
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This area is known to be one of the most seismically active areas in western Canada and on the
northwest Pacific coast of North America. There is strong evidence supporting the claim that major
megathrust earthquakes repeatedly occurred throughout history in this region [Chen, 1998]. To help
assess the potential major earthquake hazard and study the tectonic mechanisms in the region, many
geodetic measurements have been conducted in the past, ranging from conventional techniques to
GPS. These measurements, combined with theoretical deformation models, provide the means and
foundation for earthquake studies.
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Figure 3.2: Tectonic map of the Cascadia Subduction Zone. The figure is illustrated in Albers equal-area conic
projection.

Geodetic, GPS, and strain data provide evidence for active crustal strain build up throughout the
region. Based on the models of crustal deformation, the potential for an earthquake with magnitude 9
event has been suggested [Hyndman, 1995]. Historically, as inferred from paleoseismicity data, major
megathrust earthquakes have occurred on the Cascadia margin at irregular intervals ranging from 300
to 600 years, most recently about 300 years ago [Meghan-Miller et al., 2001].

However, although low-level seismicity is extensive in the entire region and two major (Mw > 7)
earthquakes have been observed on central Vancouver Island during this century (1918 and 1946),
there have been no megathrust earthquakes on the Cascadia margin, not even small ones, during the
past 200 year written historical period [Dragert, 1987; Wang et al., 1987]. In a comparison between
the Cascadia margin and other convergent margins around the world, Rogers [1988] noted that this
unusual lack of seismicity might well imply a potential risk for forthcoming megathrust earthquakes.
This being the case, the Cascadia margin has entered the second half of an earthquake cycle or perhaps
even has approached the recurrence of the very large event.

Fig. (3.3) illustrates the seismicity map of the in the Pacific Northwest Seismic events with Mw ≥ 3
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from the Northern California Earthquake Catalog Search (http://www.ncedc.org/ncedc/catalog-
search.html) during 1969 to 2006 which are scaled by magnitude.
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Figure 3.3: Pacific Northwest seismic events with M ≥ 3 from the Northern California Earthquake Catalog
Search (1969 to 2006) which are scaled by magnitude. The figure is illustrated in Albers equal-area conic
projection.

3.5.2 GPS Arrays

GPS measurements to determine crustal strain rates were initiated in the Cascadia region (US Pacific
Northwest and south-western British Columbia, Canada) more than a decade ago, with the first
campaign measurements in 1986 [Kleusberg et al., 1988] and the establishment of permanent stations
in 1991 [Dragert et al., 1994, 1995].

Nowadays, continuous GPS data from the Pacific Northwest Geodetic Array is processed by the
geodesy laboratory (at Central Washington University Research), which serves as the data analysis
facility for the Pacific Northwest Geodetic Array (PANGA). This organization has deployed an exten-
sive network of continuous GPS sites aim to measure crustal deformation along the CSZ. Considered
network includes 33 permanent GPS stations, which have nearly daily solutions through the period
January 1996 to January 2006. The current network of stations along CSZ area is illustrated through
Fig. (3.4).

Fig. (3.5) illustrates the horizontal velocity field along the Cascadia margin assuming a stable North
American plate. Continuous GPS results in the Pacific Northwest provide a remarkably coherent view
of along-strike variation in Cascadia margin deformation, which is characterized by different tectonic
domains. Coastal stations in the northern and central parts of the margin are strongly entrained in the
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JDF-North America convergence direction, although the northward component of station velocities
increases from north to south. Inland stations show smaller motions; consistent with their structural
domains from south to north while the California- southern Oregon boundary reflects a composite
velocity model.

Fig. (3.6) illustrates the estimated rates of vertical deformation (i.e., after removing the seasonal
variation) throughout the CSZ, which is derived from the GPS arrays. The vertical deformation
rate varies significantly along the coast with the highest deformation occurring to the north. At
latitude 450N, there is little vertical deformation at either the coast or inland. The lack of the vertical
deformation across central Oregon represent a transition in subduction behavior between northern
and southern segments [Verdonck, 2004]. In addition, the pattern of the vertical deformation, which is
derived from permanent GPS in the period of 1996-2006, is consistent with vertical crustal deformation
from leveling data by [Verdonck, 2004]. There are some minor differences, which seem to be related
to lack of dense networks of permanent GPS stations in that area.
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Figure 3.4: Pacific Northwest Geodetic Array (PANGA) which have nearly daily solutions through the period
of 1996-2006. The figure is illustrated in Albers equal-area conic projection.

3.5.3 Data Processing Strategy

In this subsection, a central requirement is the numerical solution of statistical induction of eigenspace
components, while the deterministic part of model is discussed in detail through two numerical exam-
ples in the previous section. Suppose that we have a certain number of permanent GPS stations, and
each of them has observed n samples of velocities. Note that, we assume the recording of observations
is performed at the same time for all the stations.
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Figure 3.5: GPS-determined horizontal velocity field by Pacific Northwest Geodetic Array (PANGA). Velocity
vectors plotted with respect to the station at Calgary (PRDS). The figure is illustrated in Albers equal-area
conic projection.

Hence, performing the following steps to estimate the eigenspace components and their dispersion
matrices (in strain tensor) for ith set of GPS velocities and their error variances (over a certain time):

step 1. Computing the curvilinear coordinates of the displacement vector ŨK and ŨK and deriving
their covariance matrices QŨK

or QŨK , in the presence of GPS velocity errors, though Eqs. (3.2)
or (3.4) for every station.

step 2. Using the Delaunay triangulation method for solving ŨK
,Λ or ŨK,Λ as well as finding their

dispersion matrices D{ŨK
,Λ} or D{ŨK,Λ}, based on the error propagation law (see Appendix B),

for kth triangle (see Fig. 3.7)

step 3. Computing the local basis vectors based on centroid coordinates of the kth triangle and
deriving the metric tensor Al, based upon the height information in the associated triangle.

step 4. Computing first-order partial derivatives of the displacement vector u,Λ and its dispersion
matrix D{u,Λ} through Eqs. (3.1) and (3.1), for the kth triangle.

step 5. Obtaining strain tensor El and the dispersion matrix of its components by Eqs.(2.22) and
(3.5), for the kth triangle.

step 6. Simultaneous diagonalization of {El,Al} according to Eq. (3.10), deriving the vector-half
form of the transformed strain tensor y′′

i = [E′′
i.1 E′′

i.2 E′′
i.3]

T and its dispersion matrix through
Eq. (3.14) for the kth triangle.
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Figure 3.6: GPS-determined vertical velocity field by Pacific Northwest Geodetic Array (PANGA). Velocity
vectors plotted with respect to the station at Calgary (PRDS). The figure is illustrated in Albers equal-area
conic projection.

step 7. Repetition of the algorithm from Step 1 until the step 6, for the whole set of measurements
n in the kth triangle.

step 8. Setup of an observation model based on the linearized multivariate Gauss- Markov model for
eigenspace synthesis (see Eq. (3.23)), namely a system of 3 × n equations and three unknowns
(eigenspace components).

step 9. Estimation of eigenspace components and their dispersion matrices by Eqs. (3.25) and (3.26)
for the kth triangle. This step is performed based upon n samples of independent 3× 1 random
vectors y′′

1 , y′′
2 , . . ., y′′

n, each with the 3 × 3 variance covariance matrix Qy′′

i
.

step 10. Estimation of the covariance matrix for n set of measurements y′′
1 , y′′

2 , . . ., y′′
n and repeating

the estimation of eigenspace components and their dispersion matrix for the kth triangle.

The above algorithm can be applied to the estimation of eigenspace components of TCC and their
dispersions. In this case we should deal with the difference vector of unit normal vectors w and its
dispersion matrix (see section 3.2).

Remark 3.5 As we mentioned in previous chapter, for the proposed method of deformation analysis,
we should construct the real surface of the Earth. Similar the previous chapter, it could be performed
through the combination of geoid height N(Λ,Φ) and orthometric height H̃(Λ,Φ), namely H(Λ,Φ) =
H̃(Λ,Φ) + N(Λ,Φ). Hence, using a geoidal height model and orthometric height model, we could
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Figure 3.7: Optimal Delaunay triangulations over the Pacific Northwest Geodetic Array (PANGA). The figure
is illustrated in Albers equal-area conic projection.

computed ellipsoidal height which closely fit the Earth’s surface. These computations are performed
by:

i. Obtaining orthometric height, through the Centre for Topographic Information over the western
Canada, which can be freely downloaded (http://www.cits.rncan.gc.ca). As a higher-resolution
product, we made use of a resolution of approximately 20 meters (1:50 000 based on a collection
of ground or reflective surface elevations.).

ii. Obtaining geoidal height N(Λ,Φ), through the Canadian Gravimetric Geoid 2005 (CGG05),
which is freely available(http://www.geod.nrcan.gc.ca/). The Canadian Gravimetric Geoid 2005
(CGG05) is based on GRACE data up to degree 90 and supplemented with terrestrial information
for the higher frequencies. A GPS-leveling comparison indicates a standard deviation of 10.2 cm
for CGG05 [Huang and Véronneau, 2005].

3.5.4 Results

The numerical results of the above algorithm for k = 1, 2, ..., 58 triangles over CSZ area are performed
for the strain tensor and TCC which are shown in the following parts:

Estimated eigenspace components of strain tensor based on a-priori variance component
information of transformed strain tensor

The Pattern of eigenspace components, namely eigenvalues and eigendirections, of the surface strain-
rate tensor and their 95% confidence intervals, in unit of 10−7 yr−1 is illustrated in Fig. 3.8. Extensions
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are represented by solid lines (red color) and contractions are illustrated by dashed lines (blue color).
Tab. 3.1 also shows numerical results of estimated eigenspace components for the strain tensor (based
on a-priori variance component information).
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Figure 3.8: Pattern of eigenspace components of the surface strain-rate tensor and their 95% confidence
intervals, in unit of 10−7 yr−1. Extensions are represented by solid lines (red color) and contractions are
illustrated by dashed lines (blue color) and triangles denote the permanent GPS stations. The figure is illustrated
in Albers equal-area conic projection.

The highest contraction regions are in the forearc nearly parallel to the plate convergence. In other
words, contraction rates are highest in networks close to the CSZ deformation front, namely: on the
northern California coast, north of Cascadia also Vancouver Island, Seattle and decrease with distance
from it becoming indistinguishable to zero at the most distant networks in the east of Oregon. An
interesting feature of the pattern is a peak of high values around regions in the vicinity of JDF plate
with North American plate in northern California. According to our model, perhaps both horizontal
and vertical deformations of these regions are responsible for the high values of strain rate in these
regions. The pattern of the surface strain rate confirms that most of areas are under contraction
except regions in the west of Oregon which are under the extension. Perhaps additional deformations
are responsible for these anomalies, such as post-eruption volcanic deformation [Murray and Lisowski,
2000].

The larger errors, namely 95% confidence intervals of eigenvalues and eigendirections of the surface
strain rate is detected obviously in Seattle and west of Portland. That in return results from the variety
of surface strain- rate observations in nearly daily solutions through the period of 1996-2006. These
effects also reflect that the deformation patterns in those triangulations were not stable during the
period of 1996-2006. By comparing the surface strain-rate pattern in Fig. 3.8 with seismicity maps
(see Fig. 3.3), it can be concluded that in general our estimation of eigenspace components of surface
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strain-rate tensors are consistent with the tectonic setting.

Estimated eigenspace components of TCC based on a-priori variance component infor-
mation of transformed TCC

A pattern of eigenspace components namely eigenvalues and eigendirections, of TCC and their 95%
confidence intervals is illustrated by the Fig. (3.9).
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Figure 3.9: Pattern of eigenspace components of TCC and their 95% confidence intervals, in unit of 10−7

m−1.yr−1. Positive eigenvalues are represented by solid lines (red color) and negative eigenvalues are represented
by dashed lines (blue color). Triangles denote the permanent GPS stations. The figure is illustrated in Albers
equal-area conic projection.

The estimated confidence intervals of eigenvalues and eigendirections of TCC over Pacific North-
west region indicates that deformation is spread over the whole region along the CSZ from the north
of the California to the north of Vancouver Island, but along the coasts has highlighted values. The
pattern indicates that, in general, Inland stations have insignificant deformations. However, the rates
appear to vary significantly along the coast with the highest deformation occurring in the northern
California and southern Oregon boundary, which is the most significant zone of seismicity in this
region.

Estimated eigenspace components of strain tensor based on estimated covariance matrix
of transformed strain tensor (via simultaneous diagonalization)

The estimated eigenspace components of strain tensor based on estimation of covariance matrix of
transformed strain tensor (via simultaneous diagonalization) are illustrated in Fig. 3.10. Also, numeri-
cal values of them are presented in Tab. 3.3. A comparison of Figs. 3.10 and 3.8 shows that, in general
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Table 3.1: Estimated eigenvalues and eigendirections of the strain tensor in 95% confidence intervals based on a-priori
variance component information. The eigenvalues and related accuracies are given in units 10−8 yr−1 and orientation
parameter and its standard deviation is given in degree.

N Triangles Λ̂1 σ̂Λ1
Λ̂2 σ̂Λ2

Θ̂ σ̂Θ

1 nano-will-holb -7.95 0.91 0.64 0.57 43.59 4.76
2 uclu-nano-holb -20.11 1.41 0.97 0.78 33.02 3.03
3 pabh-uclu-chzz -1.30 1.27 0.69 1.13 41.24 20.63
4 wslr-nano-will -76.77 5.44 3.99 3.38 44.30 3.85
5 wslr-chwk-will 29.27 1.76 -18.93 0.75 11.26 2.95
6 cabl-cme1-holb -32.14 2.69 1.08 1.67 19.33 2.35
7 cabl-uclu-holb -8.31 0.52 1.97 0.79 28.34 3.52
8 cabl-uclu-chzz -5.55 1.79 2.51 1.95 39.60 8.78
9 shin-shld-garl 9.94 0.69 -1.15 0.69 -33.14 5.82
10 shin-cme1-garl -6.33 2.44 0.64 4.08 33.46 14.32
11 shin-ybhb-cme1 -9.82 0.79 1.03 0.55 -30.99 3.49
12 neah-uclu-nano -39.50 2.07 0.47 2.73 5.72 6.03
13 neah-pabh-uclu -27.52 3.13 9.42 4.00 3.64 6.44
14 albh-wslr-nano -75.38 3.23 1.57 1.46 28.79 15.62
15 albh-neah-nano -70.20 2.44 18.19 2.41 26.64 3.73
16 albh-neah-pabh -20.23 1.07 0.08 1.14 38.12 2.70
17 redm-shin-shld -0.97 0.19 0.51 0.27 22.62 6.75
18 redm-shin-ybhb 6.03 0.43 -3.63 0.44 -6.53 2.27
19 fts1-pabh-chzz -38.98 15.52 1.62 5.58 1.29 29.87
20 burn-shld-garl 15.15 1.80 -4.87 2.24 -19.37 6.64
21 burn-redm-shld 4.30 0.28 -0.77 0.40 -1.67 8.84
22 burn-redm-gobs -3.96 0.52 0.41 0.55 42.79 3.07
23 drao-will-prds -3.05 0.10 -0.43 0.09 38.96 1.31
24 drao-chwk-will -11.67 0.24 1.28 0.26 37.99 0.81
25 drao-burn-prds 1.46 0.07 0.19 0.09 -15.05 2.61
26 drao-burn-gobs 8.43 -0.41 -0.42 0.26 -19.41 3.22
27 ptsg-cabl-cme1 -33.84 1.90 -4.49 29.53 -22.35 6.78
28 ptsg-cabl-ybhb 20.82 1.02 -8.98 1.71 3.43 4.62
29 whd1-wslr-chwk -1.00 0.46 0.20 0.76 11.68 17.29
30 whd1-albh-wslr -16.74 1.37 4.88 2.00 26.21 2.76
31 burn-redm-gobs -10.93 0.91 5.03 0.65 21.29 2.36
32 trnd-ybhb-cme1 -41.02 5.79 1.92 6.08 41.78 10.23
33 trnd-ptsg-cme1 -16.87 1.91 4.81 2.75 -34.74 5.92
34 trnd-ptsg-ybhb 5.29 0.34 -0.70 0.52 -32.56 8.32
35 seaw-drao-gobs 9.80 0.39 -2.48 0.38 -2.06 2.99
36 corv-gwen-redm -1.78 0.41 0.32 0.25 30.86 9.32
37 corv-cabl-chzz -9.42 0.48 0.73 0.53 41.03 1.73
38 corv-cabl-ybhb 17.81 0.67 -9.78 0.61 17.04 1.20
39 corv-redm-ybhb -17.24 1.82 0.57 1.47 30.65 6.32
40 sedr-whd1-chwk -3.27 6.04 0.90 8.22 5.26 12.88
41 sedr-seaw-whd1 -5.08 1.68 0.15 1.25 20.58 7.38
42 sedr-drao-chwk -0.54 0.31 0.41 0.11 21.17 18.02
43 sedr-seaw-drao -17.51 0.53 3.26 0.90 6.04 2.39
44 jro1-corv-gwen 36.07 0.58 1.68 0.60 -16.58 0.74
45 rpt1-whd1-albh -6.15 0.61 0.71 0.69 11.93 3.93
46 rpt1-albh-pabh -12.22 1.15 1.11 0.64 23.57 3.15
47 rpt1-jro1-gwen -14.47 2.73 8.83 2.05 8.03 6.40
48 rpt1-gwen-gobs -12.54 2.62 0.58 2.64 38.99 3.65
49 rpt1-seaw-gobs -12.04 2.10 4.39 1.90 25.88 5.52
50 kels-corv-chzz -17.90 0.77 8.72 0.67 17.65 1.16
51 kels-jro1-corv 79.79 2.08 4.64 2.34 -41.37 1.11
52 kels-fts1-chzz -14.93 1.08 5.31 1.55 27.16 11.07
53 kels-rpt1-jro1 -2.24 0.66 1.75 1.54 6.62 9.48
54 kels-fts1-pabh -17.23 1.52 11.54 1.59 6.84 3.29
55 kels-rpt1-pabh -13.90 0.77 1.00 1.31 13.16 2.13
56 seat-seaw-whd1 -18.92 6.02 5.10 5.05 25.43 3.72
57 seat-rpt1-whd1 -13.99 6.84 8.71 6.22 25.10 2.44
58 seat-rpt1-seaw -113.44 7.92 21.22 6.17 -5.37 20.55
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Table 3.2: Estimated eigenvalues and eigendirections of TCC in 95% confidence intervals based on a-priori
variance component information. The eigenvalues and related accuracies are given in units 10−8 yr−1 and
orientation parameter and its standard deviation is given in degree.

N Triangles Λ̂′

1 σ̂Λ′

1

Λ̂′

2 σ̂Λ′

2

Θ̂′ σ̂Θ′

1 nano-will-holb -19.27 0.60 4.01 0.64 34.09 1.62
2 uclu-nano-holb -25.59 1.34 3.18 0.86 45.29 2.14
3 pabh-uclu-chzz -1.42 0.58 0.22 0.30 15.41 0.89
4 wslr-nano-will -96.03 10.59 59.17 8.93 5.19 2.49
5 wslr-chwk-will 17.79 0.09 -6.13 0.24 -2.01 0.22
6 cabl-cme1-holb -49.43 0.67 0.86 0.58 6.00 1.13
7 cabl-uclu-holb -19.44 0.40 1.46 0.35 45.01 0.85
8 cabl-uclu-chzz -8.57 0.58 0.98 0.44 44.87 1.83
9 shin-shld-garl 0.47 0.16 -0.23 0.16 -31.13 1.35
10 shin-cme1-garl -3.58 0.01 0.03 0.50 -29.00 24.36
11 shin-ybhb-cme1 -2.49 0.15 0.17 0.05 -2.18 1.10
12 neah-uclu-nano 3.78 0.03 -0.56 0.04 -10.62 0.65
13 neah-pabh-uclu -5.00 0.37 3.78 0.10 15.16 0.40
14 albh-wslr-nano 2.17 0.00 -0.59 0.01 -5.76 1.76
15 albh-neah-nano 5.69 0.46 -0.27 0.03 -21.06 2.11
16 albh-neah-pabh 5.31 0.19 -0.17 0.68 -23.73 2.52
17 redm-shin-shld -2.37 0.12 1.12 0.08 0.12 0.33
18 redm-shin-ybhb 0.14 0.08 -0.13 0.27 -42.53 2.69
19 fts1-pabh-chzz -48.98 7.85 9.98 5.95 24.67 2.32
20 burn-shld-garl 27.64 0.39 -0.52 0.31 -44.36 0.24
21 burn-redm-shld 4.92 0.27 -0.12 0.24 -44.34 1.05
22 burn-redm-gobs -1.93 0.17 0.87 0.04 20.77 1.78
23 drao-will-prds -21.29 0.03 -0.74 0.03 0.32 0.16
24 drao-chwk-will -3.19 0.11 0.43 0.26 37.36 2.08
25 drao-burn-prds 2.41 0.02 0.08 0.02 -6.76 0.92
26 drao-burn-gobs 6.89 0.20 -0.98 0.16 -19.07 2.35
27 ptsg-cabl-cme1 -48.55 8.14 -4.14 22.52 -4.89 1.00
28 ptsg-cabl-ybhb 19.52 0.35 -9.96 0.28 3.27 2.34
29 whd1-wslr-chwk -3.86 0.37 0.06 0.17 40.00 4.49
30 whd1-albh-wslr -6.34 3.19 5.77 3.40 29.72 0.47
31 burn-redm-gobs -9.39 0.43 3.89 0.46 25.72 1.52
32 trnd-ybhb-cme1 -48.78 0.82 0.81 0.76 35.00 0.14
33 trnd-ptsg-cme1 -28.08 6.71 -13.03 5.09 -20.78 1.44
34 trnd-ptsg-ybhb 6.86 0.29 -0.37 0.32 -41.07 2.64
35 seaw-drao-gobs 7.66 0.76 -6.58 0.07 12.63 2.13
36 corv-gwen-redm -4.05 0.38 0.55 0.23 33.93 1.71
37 corv-cabl-chzz -9.61 0.21 0.92 0.29 40.27 1.06
38 corv-cabl-ybhb 11.75 0.41 -4.22 0.22 23.63 1.02
39 corv-redm-ybhb -0.53 0.54 0.13 0.29 37.06 1.67
40 sedr-whd1-chwk -32.08 1.53 2.88 1.53 30.00 2.51
41 sedr-seaw-whd1 -11.32 0.29 1.66 0.08 30.01 2.34
42 sedr-drao-chwk -1.85 0.11 0.07 0.04 32.00 2.95
43 sedr-seaw-drao -5.62 0.45 5.60 0.26 10.11 1.52
44 jro1-corv-gwen 4.70 0.36 1.16 0.93 -2.43 1.00
45 rpt1-whd1-albh -0.15 0.43 0.05 0.11 40.00 1.32
46 rpt1-albh-pabh -5.74 0.08 0.35 0.18 46.61 1.94
47 rpt1-jro1-gwen -17.39 0.31 9.77 1.04 26.15 3.91
48 rpt1-gwen-gobs -3.35 0.88 0.62 2.63 20.00 1.51
49 rpt1-seaw-gobs -19.98 1.10 16.03 2.24 13.60 1.83
50 kels-corv-chzz -23.42 0.70 6.05 0.34 27.73 1.47
51 kels-jro1-corv 27.31 2.35 14.42 0.63 -4.15 1.15
52 kels-fts1-chzz -23.76 0.78 0.30 0.61 15.00 3.51
53 kels-rpt1-jro1 -20.07 0.36 5.07 0.77 31.89 1.73
54 kels-fts1-pabh -1.77 0.88 1.17 1.20 20.00 1.31
55 kels-rpt1-pabh -18.91 1.30 4.75 0.12 20.02 1.78
56 seat-seaw-whd1 -100.90 6.77 4.23 4.68 25.02 1.16
57 seat-rpt1-whd1 -1.92 2.17 0.75 2.00 25.72 1.79
58 seat-rpt1-seaw -113.44 7.12 21.22 6.17 -11.10 2.05
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after estimating the covariance matrix of transformed strain tensor (via simultaneous diagonalization)
variances of eigenspace components become smaller.

In general, estimating the covariance matrix of observations (transformed strain tensor), should lead
us to minimum variance, but in some triangles it did not occur. To discuss the effect of unspecific
results, let Qvec(Y′′) be the correct covariance matrix of observations (transformed strain tensor) and
Q′

vec(Y′′) be an incorrect one. If the least-squares estimation of ξ is done with the Q′
vec(Y′′), then

ξ̂ = (ATQ′−1
vec(Y′′)A)−1ATQ′−1

vec(Y′′)vecY is still an unbiased estimator of ξ and

ξ̂ = (ATQ′−1
vec(Y′′)A)−1ATQ′−1

vec(Y′′)Q
−1
vec(Y′′)Q

′−1
vec(Y′′)A(ATQ′−1

vec(Y′′)A)−1

is the correct covariance matrix of estimator ξ̂. Therefore, if one uses Q′
ξ̂ = (ATQ′−1

vec(Y′′)A)−1 as the

matrix of estimator ξ̂ one will have an incorrect precision of ξ̂ description which can be too optimistic
if Qξ̂ ≥ Qξ̂′, but also too pessimistic if Qξ̂ ≤ Qξ̂′. For a more detailed discussion see Amiri-Simkooei

[2007, page 135].
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Figure 3.10: Pattern of eigenspace components of the surface strain-rate tensor and their 95% confidence inter-
vals, in unit of 10−7 yr−1 based on estimated covariance matrix of transformed strain tensor (via simultaneous
diagonalization). Extensions are represented by solid lines (red color) and contractions are illustrated by dashed
lines (blue color). Triangles denote the permanent GPS stations. The figure is illustrated in Albers equal-area
conic projection.

Estimated eigenspace components of TCC based on estimated covariance matrix of trans-
formed TCC (via simultaneous diagonalization)

In the same manner we perform the illustration of eigenspace components of TCC and their 95%
confidence intervals, based on estimation of covariance matrix of transformed TCC (via simultaneous
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Table 3.3: Estimated eigenvalues and eigendirections of strain tensor in 95% confidence intervals based on
estimated covariance matrix of transformed strain tensor (via simultaneous diagonalization). The eigenvalues
and related accuracies are given in units 10−8 yr−1 and orientation parameter and its standard deviation is
given in degree.

N Triangles Λ̂1 σ̂Λ1
Λ̂2 σ̂Λ2

Θ̂ σ̂Θ

1 nano-will-holb -3.62 0.82 0.64 0.82 -24.10 1.85
2 uclu-nano-holb -7.06 2.42 0.62 2.92 11.67 1.91
3 pabh-uclu-chzz 14.82 2.78 -9.22 2.32 41.41 6.31
4 wslr-nano-will -2.20 5.87 1.61 6.24 37.51 3.34
5 wslr-chwk-will 4.56 1.55 -4.05 0.96 43.43 6.97
6 cabl-cme1-holb -26.29 15.71 17.17 13.29 40.52 1.99
7 cabl-uclu-holb -4.96 3.29 4.32 2.93 -41.98 1.79
8 cabl-uclu-chzz -4.39 0.29 2.44 0.62 36.45 3.27
9 shin-shld-garl 4.98 0.27 -3.42 0.58 -45.03 3.70
10 shin-cme1-garl -18.32 27.37 3.56 0.00 17.86 25.36
11 shin-ybhb-cme1 -16.37 2.18 4.75 3.14 26.92 2.45
12 neah-uclu-nano -6.52 3.17 15.81 2.77 28.21 4.97
13 neah-pabh-uclu -4.94 4.11 0.86 4.33 28.07 2.06
14 albh-wslr-nano -2.13 4.38 2.49 2.78 43.36 2.11
15 albh-neah-nano -9.88 2.42 6.83 3.58 52.22 6.57
16 albh-neah-pabh -10.01 2.18 5.36 1.98 34.36 1.98
17 redm-shin-shld -2.31 0.31 2.17 0.50 37.14 2.68
18 redm-shin-ybhb -1.77 0.38 1.46 0.56 35.25 2.55
19 fts1-pabh-chzz 6.91 4.25 -5.31 6.45 -41.72 4.14
20 burn-shld-garl 0.86 0.75 -0.24 0.48 -40.11 3.85
21 burn-redm-shld 1.25 0.27 -0.36 0.25 -45.64 2.67
22 burn-redm-gobs 1.36 0.24 -0.83 0.24 41.68 1.96
23 drao-will-prds -1.62 0.26 1.76 0.27 38.78 1.25
24 drao-chwk-will 0.38 0.37 0.07 0.31 -37.31 4.72
25 drao-burn-prds 1.33 0.09 -0.84 0.24 -45.81 1.84
26 drao-burn-gobs 1.03 0.17 -0.21 0.18 -36.34 5.11
27 ptsg-cabl-cme1 -68.03 33.70 57.24 25.60 44.19 5.05
28 ptsg-cabl-ybhb 6.04 1.57 -5.72 1.37 -40.20 5.13
29 whd1-wslr-chwk -5.44 1.88 4.52 0.90 45.50 10.68
30 whd1-albh-wslr -1.57 1.83 1.25 0.46 38.09 3.21
31 burn-redm-gobs 1.06 0.75 -0.61 0.83 40.03 8.26
32 trnd-ybhb-cme1 -23.14 9.47 0.91 10.37 -16.96 3.39
33 trnd-ptsg-cme1 -44.45 41.66 33.82 29.09 40.72 4.35
34 trnd-ptsg-ybhb -10.60 3.03 3.10 1.78 28.23 4.35
35 seaw-drao-gobs 2.14 0.70 -1.28 0.36 -43.00 1.82
36 corv-gwen-redm 4.17 0.61 -4.12 0.56 45.03 1.47
37 corv-cabl-chzz -8.37 2.64 7.05 1.70 40.92 3.22
38 corv-cabl-ybhb -8.62 1.35 7.58 1.53 43.96 1.90
39 corv-redm-ybhb 4.18 0.41 -4.58 0.69 -40.60 3.02
40 sedr-whd1-chwk 12.79 4.25 -7.22 2.56 -41.60 3.56
41 sedr-seaw-whd1 -8.17 3.06 5.53 5.21 35.38 3.23
42 sedr-drao-chwk -0.42 0.94 0.30 0.44 -22.29 11.95
43 sedr-seaw-drao -2.37 0.82 0.69 0.81 -18.13 1.79
44 jro1-corv-gwen 4.48 0.78 -4.45 0.78 -44.34 1.06
45 rpt1-whd1-albh -1.26 1.16 1.16 0.90 38.85 2.49
46 rpt1-albh-pabh -11.27 1.92 5.77 1.82 35.39 1.90
47 rpt1-jro1-gwen -5.53 2.60 5.46 2.97 39.92 1.87
48 rpt1-gwen-gobs 2.23 0.82 -0.39 1.05 -29.64 12.58
49 rpt1-seaw-gobs -7.84 2.45 5.15 1.22 42.38 6.69
50 kels-corv-chzz 6.91 0.53 -6.65 1.36 41.08 3.37
51 kels-jro1-corv -2.52 1.79 2.00 1.67 43.54 1.16
52 kels-fts1-chzz 9.24 1.64 -7.01 1.49 -45.69 3.67
53 kels-rpt1-jro1 2.76 1.77 -2.47 1.65 44.54 2.66
54 kels-fts1-pabh 8.58 1.88 -7.15 1.59 -43.00 1.83
55 kels-rpt1-pabh 8.83 1.61 -6.72 1.69 -41.45 1.85
56 seat-seaw-whd1 4.06 13.37 -1.17 12.25 31.24 3.72
57 seat-rpt1-whd1 -11.28 3.99 16.09 3.61 40.23 4.31
58 seat-rpt1-seaw -16.67 39.50 8.47 35.32 -36.27 2.32
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diagonalization) by Fig. 3.11. Also, numerical values of them are presented in Tab. 3.4. Comparing
Figs. 3.11 and 3.9 shows the estimated covariance components have influence on the confidence intervals
of eigenspace components.
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Figure 3.11: Pattern of eigenspace components of the TCC and their 95% confidence intervals, in unit of 10−7

yr−1 based on estimated covariance matrix of transformed TCC (via simultaneous diagonalization). Positive
eigenvalues are represented by solid lines (red color) and negative eigenvalues are represented by dashed lines
(blue color). Triangles denote the permanent GPS stations. The figure is illustrated in Albers equal-area conic
projection.
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Table 3.4: Estimated eigenvalues and eigendirections of TCC in 95% confidence intervals based on estimated co-
variance matrix of transformed TCC (via simultaneous diagonalization). The eigenvalues and related accuracies
are given in units 10−8 yr−1 and orientation parameter and its standard deviation is given in degree.

N Triangles Λ̂′

1 σ̂Λ′

1

Λ̂′

2 σ̂Λ′

2

Θ̂′ σ̂Θ′

1 nano-will-holb -2.25 0.64 0.70 0.06 -23.68 1.44
2 uclu-nano-holb -8.24 0.59 0.62 0.03 13.76 3.04
3 pabh-uclu-chzz 11.95 3.26 -9.07 0.31 41.40 0.17
4 wslr-nano-will -2.16 0.37 1.98 0.42 40.02 0.05
5 wslr-chwk-will 4.36 0.28 -4.08 0.20 44.47 0.64
6 cabl-cme1-holb -26.64 6.47 17.46 6.38 39.30 9.02
7 cabl-uclu-holb -4.90 0.43 4.39 4.18 -42.50 0.14
8 cabl-uclu-chzz -4.15 0.29 2.69 0.62 38.33 3.27
9 shin-shld-garl 4.89 0.27 -3.61 0.58 -42.73 3.70
10 shin-cme1-garl -18.15 1.91 3.59 0.25 24.13 1.52
11 shin-ybhb-cme1 -16.56 0.86 4.16 0.13 27.00 6.06
12 neah-uclu-nano -6.23 6.26 1.56 6.26 25.39 18.96
13 neah-pabh-uclu -4.95 1.01 0.99 0.81 23.29 1.18
14 albh-wslr-nano -2.14 13.84 2.05 15.04 41.27 0.71
15 albh-neah-nano -9.61 0.48 6.78 0.86 39.63 0.71
16 albh-neah-pabh -10.56 6.55 5.25 6.54 35.09 28.64
17 redm-shin-shld -2.51 0.29 2.24 0.10 40.23 2.14
18 redm-shin-ybhb -1.55 0.24 1.39 0.22 39.00 4.24
19 fts1-pabh-chzz 6.90 6.17 -5.59 0.61 -42.23 0.62
20 burn-shld-garl 0.87 0.06 -0.21 0.06 -43.42 14.45
21 burn-redm-shld 1.23 0.06 -0.39 0.24 -40.27 2.19
22 burn-redm-gobs 1.32 0.06 -0.84 0.05 44.02 0.80
23 drao-will-prds -1.17 0.09 1.01 0.11 35.41 2.06
24 drao-chwk-will 0.40 0.03 0.07 0.26 -39.73 37.14
25 drao-burn-prds 1.62 0.13 -0.84 0.15 -42.87 3.30
26 drao-burn-gobs 1.09 0.06 -0.27 0.05 -39.47 0.57
27 ptsg-cabl-cme1 -66.73 1.63 56.05 1.65 42.84 0.92
28 ptsg-cabl-ybhb 6.96 1.57 -5.07 1.37 -41.29 5.13
29 whd1-wslr-chwk -5.51 0.50 4.95 0.50 42.37 7.48
30 whd1-albh-wslr -1.51 0.08 1.25 0.02 37.85 0.97
31 burn-redm-gobs 1.05 1.11 -0.64 1.18 43.11 0.25
32 trnd-ybhb-cme1 -27.52 37.99 1.00 29.39 -11.84 2.37
33 trnd-ptsg-cme1 -47.39 5.69 35.40 5.41 41.19 0.22
34 trnd-ptsg-ybhb -11.31 0.54 3.35 4.43 28.36 1.83
35 seaw-drao-gobs 2.13 0.11 -1.13 0.83 -40.85 2.67
36 corv-gwen-redm 4.16 1.15 -4.12 0.03 43.45 0.15
37 corv-cabl-chzz -8.01 0.42 7.38 0.49 43.53 6.70
38 corv-cabl-ybhb -8.04 0.42 7.93 0.42 44.23 2.88
39 corv-redm-ybhb 4.09 0.70 -3.35 0.66 -43.89 0.08
40 sedr-whd1-chwk 11.10 8.06 -8.92 7.91 -42.61 0.06
41 sedr-seaw-whd1 -8.16 18.36 6.42 18.42 40.70 25.22
42 sedr-drao-chwk -0.43 0.01 0.32 0.11 -17.23 1.80
43 sedr-seaw-drao -2.59 1.46 0.63 1.40 -20.68 0.23
44 jro1-corv-gwen 4.95 0.53 -4.45 0.62 -44.66 0.04
45 rpt1-whd1-albh -1.53 0.05 1.15 0.05 36.47 0.09
46 rpt1-albh-pabh -10.37 0.09 5.27 0.24 35.08 1.73
47 rpt1-jro1-gwen -5.53 0.04 5.50 0.57 44.23 0.52
48 rpt1-gwen-gobs 2.35 0.07 -0.39 0.40 -28.97 1.51
49 rpt1-seaw-gobs -7.32 2.41 5.66 0.02 40.24 1.47
50 kels-corv-chzz 6.93 0.09 -6.77 0.11 44.73 2.04
51 kels-jro1-corv -2.59 2.14 1.96 2.15 37.84 1.17
52 kels-fts1-chzz 8.84 6.40 -7.44 0.07 -43.00 4.39
53 kels-rpt1-jro1 2.67 4.10 -2.49 4.11 42.89 10.24
54 kels-fts1-pabh 8.90 1.93 -7.91 1.63 -43.70 1.37
55 kels-rpt1-pabh 8.79 0.89 -7.20 0.83 -42.72 6.15
56 seat-seaw-whd1 4.04 0.63 -1.21 6.69 31.88 2.61
57 seat-rpt1-whd1 -13.28 0.92 10.44 9.29 41.00 4.20
58 seat-rpt1-seaw -15.00 2.35 8.31 0.24 -35.91 0.04



Chapter 4

Concluding Remarks

4.1 Discussion

Intrinsic deformation analysis with aspects of deterministic and stochastic models has been shown
to be a reliable and powerful tool for detecting deformation patterns. On the basis of the presented
theory and the numerical results obtained with simulated and real data-set, the following conclusions
can be drawn:

i. The local basis vectors of deformed surface are formulated in terms of the local basis vectors of
undeformed surface and curvilinear components of the displacement vector. This will provide a
representation to intrinsic geometry of a deformed surface with deriving information about the
displacement field.

ii. According to differential geometry, Gaussian and mean curvatures are invariants under the
transformation of coordinate systems. Hence, intrinsic geometric properties of the deformed
surface can be described in terms of changing mean and Gaussian curvatures. They can propose
a shape classification of a deformed surface based upon signs of mean and Gaussian curvatures
which are new tools for studying the Earth’s deformation.

iii. Employing simultaneous diagonalization to pairs of strain and metric tensors or pairs of tensor
of change of curvature (TCC) with associated metrics leads to establishing a mapping between
eigenspace components and transformed tensors (suitable for statistical inference of eigenspace
components).

iv. Comparison of the proposed method with plane strain, shows capabilities of this method in
areas with high variations in vertical components (height components). The differences between
corresponding patterns of two methods could be discussed from the modeling of the displacement
problem which we refereed to the real surface of the Earth as well as the effect of ignoring the
height components of the deformation field in horizontal strain rates.

v. In the presence of errors in measuring a random displacement field (under the normal distribu-
tion assumption of displacement field), stochastic behaviors of eigenspace components of strain
tensor and TCC are discussed. We divided the context into two parts : In the first, we con-
sidered independent random vectors of repeated tensor measurements. In the second step we
considered correlations between repeated measurements and we estimated a covariance matrix
of measurements.
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Stochastic behaviors of eigenspace components with repeated measurements are applied by a numerical
example with the crustal deformation field (through the continuous GPS data) in Cascadia Subduction
Zone (CSZ). It is performed based on a-priori given variance component information (which we derived
based on propagation of variances from GPS velocity to tensor elements) and a posteriori (co)variance
information (through a estimated covariance matrix) of tensor measurements. Comparing the results
showed that, in general after estimating the covariance matrix of observations (transformed tensors
via simultaneous diagonalization) variances of eigenspace components become smaller. However, in
some areas it did not occur. They can be related to incorrect descriptions of initial accuracies, either
too optimistic or too pessimistic.

4.2 Outlook

Mathematically, the FEM is used for finding an approximate solution of partial differential equations
(PDE). It is a good choice for solving partial differential equations over scattered domains. For
instance, in simulating the deformation field of crust, it is more important to have reliable predictions
over the areas which we have dense networks of GPS stations than over less dense areas, a demand
that is achievable using the FEM. The optimal finite element meshes can be generated by Delaunay
triangulation over the test area. However, in some cases, the biggest disadvantage of this method is
producing a subdivision made of triangles with elongated shapes that leads to inaccuracies in numerical
interpolation. An undesirable feature of these types of implementation, can be verified by using other
methods of interpolations and modelings. An example could be the use of smooth surface splines on
deformation field instead of using FEM.

Further efforts should be undertaken to establishment of stress-strain relations in Earth surface
deformation analysis based on the theoretical foundation provided here. Such verification points can
be used in dealing with seismic activities, while seismic sources are governed by the stress tensor field.
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List of Abbreviations

FEM . . . . . . Finite Element Method

FFF . . . . . . First Fundamental Form

SFF . . . . . . Second Fundamental Form

TCC . . . . . . Tensor of Changes of Curvature

TCM . . . . . . Tensor of Changes of Metric
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List of Symbols

Deterministic Aspects

M
2
l left surface

M
2
r right surface

{Θ1,Θ2} curvilinear coordinates in left surface
{θ1, θ2} curvilinear coordinates in right surface
X position vector on left surface
x position vector on right surface
{J1,J2,J3 | O} orthogonal fixed frame in left surface
{j1, j2, j3 | o} orthogonal fixed frame in right surface
AK local base vectors on left surface
ak local base vectors on right surface
AΛΦ left metric tensor
aλφ right metric tensor
Al matrix form of left metric tensor
Ar matrix form of right metric tensor
I(Θ1,Θ2) first fundamental form on left surface
I(θ1, θ2) first fundamental form on right surface
Jl matrix form of left deformation gradient
Jr matrix form of right deformation gradient
CΛΦ Cauchy’s deformation tensor or left Cauchy-Green deformation tensor
cλφ Green’s deformation tensor or right Cauchy-Green deformation tensor
Cl matrix form of left Cauchy-Green deformation tensor
Cr matrix form of right Cauchy-Green deformation tensor
EΛΦ left strain tensor
eλφ right strain tensor
El matrix form of left strain tensor
Er matrix form of right strain tensor
u displacement vector

ŨK covariant elements of displacement vector referred to left surface

ŨK contravariant elements of u referred to left surface
ũk covariant elements of u referred to right surface
ũk contravariant elements of u referred to right surface
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List of Symbols 87

u,Λ first-order partial derivatives of u w.r.t left curvilinear coordinates
u,λ first-order partial derivatives of u w.r.t right curvilinear coordinates
H(Λ,Φ) ellipsoidal height (before deformation) as a function of left curvilinear coordinates
h(λ, φ) ellipsoidal height (after deformation) as a function of right curvilinear coordinates
Λ1,Λ2,Ψ eigenspace components of left pair of matrices {El,Al}
λ1, λ2, ψ eigenspace components of right pair of matrices {Er,Ar}
∆ dilatation referred to left curvilinear coordinates
δ dilatation referred to right curvilinear coordinates
Υ maximum shear strain referred to left curvilinear coordinates
υ maximum shear strain referred to right curvilinear coordinates
Γ rotation around the normal referred to left curvilinear coordinates
γ rotation around the normal referred to right curvilinear coordinates
RΛΦ left rotation tensor
rλφ right rotation tensor
Rl matrix form of left rotation tensor
Rr matrix form of right rotation tensor
E′′

l left strain tensor after simultaneous diagonalization (transformed strain tensor)
K′′

l left TCC after simultaneous diagonalization (transformed TCC)
Λ1,Λ2,Θ eigenspace components of transformed strain tensor (via simultaneous diagonalization)
Λ′

1,Λ
′
2,Θ

′ eigenspace components of transformed TCC (via simultaneous diagonalization)
II(Θ1,Θ2) second fundamental form on left surface
II(θ1, θ2) second fundamental form on right surface
BΛΦ left curvature tensor
bλφ right curvature tensor
Bl matrix form of left curvature tensor
Br matrix form of right curvature tensor
KΛΦ left TCC
kλφ right TCC
Kl matrix form of left TCC
Kr matrix form of right TCC
w difference vector of unit normal vectors

W̃K covariant elements of w referred to left surface

W̃K contravariant elements of w referred to left surface
w̃k covariant elements of w referred to right surface
w̃k contravariant elements of w referred to right surface
Λ′

1,Λ
′
2,Ψ

′ eigenspace components of left pair of matrices {Kl,Al}
λ′1, λ

′
2, ψ

′ eigenspace components of right pair of matrices {Kr,Ar}
{

α
λγ

}

Christoffel symbols of the second kind
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Stochastic Aspects

vec vector operator
vh vector-half operator
E{.} expectation operator
D{.} dispersion operator
Q cofactor matrix
1 denotes the n× 1 summation vector consisting of ones
⊗ denotes to Kronecker-Zehfuss product
n number of epochs in tensor measurments

σ array of covariance components σ = [σ2
1 , σ12, . . . , σ

2
3n]T ∈ R

3n(3n+1)
2

y′′
i vector-half form of ith transformed strain tensor (E′′

l.i)
Y′′ an array of vector-half forms [y′′

1,y
′′
2, . . . ,y

′′
n]

E′′
l.i ith sample of E′′

l

H Helmert matrix



Appendix A

Partial Derivatives of Local Basis
Vectors

We assume a surface M
2 of class Cm(m ≥ 2) which is governed by vector X = X(Θ1,Θ1). Then base

vectors AK are functions of class C1 and have continuous derivatives AK,Λ. The base vectors are
linearly independent, then we can write

AΦ,Λ =

{

Ψ

ΦΛ

}

AΨ + αΦΛA3 (A.1)

A3,Λ = βΨ
Λ AΨ + γΛA3 (A.2)

where coefficients
{ Ψ

ΦΛ

}

, γΛ, αΦΛ, βΨ
Λ are to be determined. Since A3 is of unit length, A3,Λ is

orthogonal to A3. From Eq. (A.2) we clearly have

< A3,Λ,A3 >= βΨ
Λ < AΨ,A3 > +γΛ < A3,A3 >= 0

Hence γΛ = 0. It can be easily verified from Eq. (A.2) that

−BΩΛ =< AΩ,A3,Λ >= βΨ
Λ < AΩ,AΨ >=⇒ βΨ

Λ = −BΩΛA
ΩΨ (A.3)

Therefore, Eq. (A.2) will be obtained through

A3,Λ = −BΩΛA
ΩΨAΨ = −BΨ

Λ AΨ (A.4)

Eq. (A.4) is called Weingarten equation which expresses that the first derivatives of the unit normal
vector depend on both the first and second fundamental coefficients.

Consequently, taking a scalar product of both sides of the Eq. (A.1) with the vector A3, we can derive
coefficients αΦΛ. Namely

BΦΛ =< AΦ,Λ,A3 >= αΦΛ

Hence, Eq. (A.1) will be denoted by

AΦ,Λ =

{

Ψ

ΦΛ

}

AΨ +BΦΛA3 (A.5)
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Eq. (A.5) is called the Gauss equation. It remains to determine the coefficients
{ Ψ

ΦΛ

}

. Hence, from
Eq. (A.5) we have

< AΦ,Λ,AΩ >=

{

Ψ

ΦΛ

}

< AΨ,AΩ > +BΦΛ < A3,AΩ > (A.6)

Using the Eq. (A.6) and the fact that vectors A3 and AΩ are orthogonal to each other, we obtain

{

Ψ

ΦΛ

}

= AΨΩ < AΦ,Λ,AΩ >=
1

2
AΨΩ(AΩΛ,Φ +AΦΩ,Λ −AΦΛ,Ω) (A.7)

The coefficients
{ Ψ

ΦΛ

}

are so-called Christoffel symbols of the second kind. We can see in Eq. (A.7)

that the
{ Ψ

ΦΛ

}

depend only upon the FFF coefficients and their derivatives. It can be verified that
{

1
21

}

=
{

1
12

}

and
{

2
12

}

=
{

2
21

}

, then
{

Ψ
ΦΛ

}

=
{

Ψ
ΛΦ

}

. The Christoffel symbols may be used for performing
practical calculations in differential geometry (e.g., solving the geodesic equations).



Appendix B

2D Finite Element Method

A method for solving an equation by approximating continuous quantities as a set of quantities at
discrete points (on the surface), often regularly spaced into a so-called grid or mesh. The optimal
finite element meshes can be generated by Delaunay triangulation over the data set. The algorithm
creates triangles by drawing lines between data points. The original points are connected in such a
way that no triangle edges are intersected by other triangles. The result is a patchwork of triangular
faces over the extent of the grid. This method is an exact interpolator. Each triangle defines a plane
over the grid nodes lying within the triangle, with the tilt and elevation of the triangle determined by
the three original data points defining the triangle. All grid nodes within a given triangle are defined
by the triangular surface. Because the original data are used to define the triangles, the data are
honored very closely.

In deformation analysis we use the Delaunay triangulation (in finite element scope) for approx-
imating discrete displacement field. The sparse points(e.g., GPS stations) could be connected with
a Delaunay triangulation within each triangle reconstructed by interpolation. Then in every tri-
angle (element), we have linear interpolation of velocity field with respect to the local coordinates
{L,B}. Let us assume that a triangle is constructed by three vertices (coordinates) : {LK , BK} where
K ∈ {1, 2, 3}. Then for every triangle we consider a centroid (as a reference point {L0, B0}), from
which

U(L1, B1) = U(L0, B0) +
∂U

∂L
(L1 − L0) +

∂U

∂B
(B1 −B0)

U(L2, B2) = U(L0, B0) +
∂U

∂L
(L2 − L0) +

∂U

∂B
(B2 −B0) (B.1)

U(L3, B3) = U(L0, B0) +
∂U

∂L
(L3 − L0) +

∂U

∂B
(B3 −B0)

then

X =

















U(L0, B0)

∂U
∂L

∂U
∂B

















=





1 L1 − L0 B1 −B0

1 L2 − L0 B2 −B0

1 L3 − L0 B3 −B0





−1 



U(L1, B1)
U(L2, B2)
U(L3, B3)



 (B.2)
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In the presence of errors in the measurements, we assume that QU be a covariance matrix of measure-
ments, then the covariance matrix of unknown coefficients can be obtained by

D{X} =





1 L1 − L0 B1 −B0

1 L2 − L0 B2 −B0

1 L3 − L0 B3 −B0





−1

QU











1 L1 − L0 B1 −B0

1 L2 − L0 B2 −B0

1 L3 − L0 B3 −B0





−1






T

(B.3)
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