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A B S T R A C TA B S T R A C TA B S T R A C TA B S T R A C T     

GOCE data and gravity field model filter comparison 
 
 
New approaches with respect to space borne gravity observations are expected to significantly improve the 
overall knowledge of the Earth’s gravity field and its geoid. The Gravity field and steady-state Ocean 
Circulation Explorer (GOCE) is the first Core Earth Explorer Mission of the ESA Living Planet Programme. 
This new satellite mission based on the concept of satellite gradiometry is designed to support applications 
in Earth physics, oceanography and geodesy with an accurate and detailed global model of the Earth’s 
gravity field and its geoid.  
 

One of the main problems in the use of the GOCE data is that the retrieval algorithms need along-track 
filtering on one hand and/or the implementation of spherical filters on the other. The match between these 
along-track one-dimensional filters and the spherical two-dimensional ones is far from obvious. Thus, the 
objective of this study is to investigate the influences of these two filter types by analyzing the differences 
between simulated GOCE reference and filtered data. Apart from closed-loop tests in order to check the 
consistency and correctness of the data and software used, the testing procedure for along-track as well as 
spherical filtering is implemented as follows. First, a global reference model is used for data generation 
which yields a reference signal along the orbit. By applying a one-dimensional along-track filter to these 
synthetic satellite data, a filtered global model is retrieved. On the other hand, the synthetic satellite data can 
be also generated after applying spherical filters to the global reference model. The outcome is a filtered 
global model estimated from these synthetic satellite data. The influences of both filter types are assessed by 
comparing the reference and filtered signals along the orbit as well as by comparing the reference and 
filtered models on the ground. Additionally, the properties of both filter types can be varied. 
In order to examine the empirical relation between along-track and spherical filters, transfer functions of the 
filters are investigated in a second step of this study. The transfer function for the spherical filter in the 
model domain is the ratio between reference and filtered signal which represents a corresponding one-
dimensional along-track filter in the signal domain. On the other hand, computing the ratio between 
reference and filtered model estimated from the along-track filtered signal relates the one-dimensional filter 
in the signal domain to a two-dimensional spherical filter in the model domain. 
 

The outcome of the study will be very useful for explaining some of the differences between current global 
model retrieval philosophies and will also be applicable to other satellite missions and data types in the 
future. 
 
Keywords: 
satellite gradiometry · closed-loop tests · along-track filtering in signal domain · spherical filtering in model 
domain ·  empirical transfer functions 
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Vergleich zwischen „along-track“ und isotropen Spektralfiltern im Rahmen der GOCE–Datenprozessierung 
 
 

Neue satellitengestützte Ansätze zur Beobachtung des Schwerefelds werden beträchtlich zur Verbesserung 
der Kenntnisse über das globale Schwerefeld der Erde und des Geoids beitragen. Der „Gravity field and 
steady-state Ocean Circulation Explorer” (GOCE) gehört zur ersten „Core Earth Explorer Mission” des 
“ESA Living Planet Programme”. Diese neue Satellitenmission, die auf dem Konzept der 
Satellitengradiometrie basiert, wird ein genaues und detailliertes globales Model des Erdschwerefelds und 
des Geoids liefern, das hauptsächlich Anwendungen in der Geophysik, Ozeanographie und Geodäsie finden 
wird. 
Eines der grundlegenden Probleme bei der Prozessierung von GOCE Daten mit verschiedenen 
Lösungsansätzen ist einerseits der Bedarf an „along-track“ Filterung und / oder andererseits die Anwendung 
von isotropen Spektralfiltern. Die Beziehung zwischen diesen eindimensionalen „along-track“ und den 
zweidimensionalen isotropen Filtern liegt nicht unmittelbar auf der Hand. Das Ziel dieser Studienarbeit ist 
deshalb zunächst die Untersuchung der Einflüsse der beiden Filter hinsichtlich der Differenzen zwischen 
simulierten Referenzdaten von GOCE und den gefilterten Daten.  
Um die Konsistenz und Richtigkeit der verwendeten Daten und Software zu überprüfen, werden zunächst 
sogenannte closed-loop Tests durchgeführt. Im Anschluss werden verschiedenen Testverfahren für die 
„along-track“ und die isotrope Filterung wie folgt implementiert. Der erste Schritt ist die auf einem globalen 
Referenzmodell basierende Generierung eines synthetischen Referenzsignals entlang des Orbits. 
Anschließend wird ein eindimensionaler „along-track“ Filter auf dieses Signal angewandt und daraus ein 
gefiltertes globales Modell berechnet. Alternativ kann das synthetische Satellitensignal auch erst generiert 
werden, nachdem das globale Referenzmodell isotrop gefiltert wurde. Basierend auf diesem Satellitensignal 
wird dann ein neues gefiltertes globales Modell geschätzt. Die Einflüsse der beiden Filter können durch 
einen Vergleich zwischen synthetischen Referenz- und gefilterten Signalen entlang des Orbits sowie 
zwischen Referenz- und gefilterten Modellen beurteilt werden. Zusätzlich, können die Eigenschaften der 
beiden Filter variiert werden. 
Im zweiten Teil dieser Arbeit werden die empirischen Transferfunktionen der Filter hergeleitet, um die 
empirische Relation zwischen „along-track“ und isotropen Filtern zu überprüfen. Die Transferfunktion der 
isotropen Filter im Modellbereich kann über das Verhältnis zwischen Referenz- und gefiltertem Signal 
berechnet werden und entspricht einem eindimensionalen „along-track“ Filter im Signalbereich. Die 
Herleitung des Verhältnisses zwischen Referenz- und gefiltertem Modell auf der anderen Seite, erlaubt die 
Herstellung eines Zusammenhangs zwischen einem ein-dimensionalen Filter im Signalbereich und einem 
zwei-dimensionalen Filter im Modellbereich. 
Das Ergebnis dieser Studienarbeit könnte beispielsweise dazu verwendet werden, um einige Unterschiede 
zwischen den momentan gebräuchlichen Auswertestrategien des globalen Modells zu klären. Die 
vorgestellten Testverfahren könnten in Zukunft auch für andere Satellitenmissionen und Datentypen 
eingesetzt werden. 
 

Schlüsselwörter: 
Gradiometrie · closed-loop Tests · „along-track” Filterung im Signalbereich · isotrope Filterung im 
Modellbereich · empirische Transferfunktionen 
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Solid-Earth Physics: 
Physics of the interior 
structure of the Earth 

Geodesy 
Precise orbit determination 
and unification of height 
systems 

Oceanography 
Dynamics of the oceans 
with respect to absolute 
ocean circulation and 
interactions of continents, 
ice and ocean in sea-level 

1 INTRODUCTION 
The global Earth’s gravity field and its geoid are the key components in the investigation of 
structure and dynamics of the Earth’s interior system. The determination of a highly accurate 
gravity field with high spatial resolution contributes in answering many theoretical and practical 
problems which appear in the following applications: 
 
 
 

 
 

 
 
 
Satellites provide the means to obtain a global and homogeneous gravity field within a reasonable 
time period. As before other satellite gravity observation missions such as CHAMP and GRACE, 
the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) will provide a global 
model of the Earth’s gravity field and of its geoid on a global scale. The geoid (the surface of equal 
gravitational potential of a hypothetical ocean at rest) serves as the classical reference for all 
topographical features. The objective of these new missions is to use specific observation 
techniques in order to improve the geoid in terms of spatial resolution and accuracy. The main 
drawback of such a space mission, so far, is the attenuation of the gravity field at satellite altitude. 
The driving innovation of GOCE will be a gradiometer which counteracts the attenuation effect by 
measuring the second derivatives of the Earth’s gravitational potential, the so-called gravity 
gradients. The attenuation effect can be seen as applying a “lowpass” filter to the gravitational 
potential on the ground and can be reversed by applying a “differentiator” to the signal measured at 
satellite altitude. 
 

 
 

Earth's gravity field 
(geoid) as it will be 
seen by GOCE 
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There are mainly two approaches to determine an approximation of the Earth’s gravitational field 
in terms of spherical harmonics from satellite gradiometry (Rummel et al., 1993): 
 

• In the time-wise approach, the gravitational field estimation is based on the solution of the 
equations of motion by linear least-squares adjustment whereas the measurements are 
viewed as a discrete time series.  

• The space-wise approach solves the gravitational field by means of a geodetic boundary 
value problem related to the Earth’s surface. The measurements are considered as only 
being dependent on the position and they are interpolated into a regular grid on a reference 
sphere beforehand.  

 
In both approaches, the measurements need to be modified in certain ways. For example, in the 
space-wise approach the measurements need to be interpolated on a regular grid which yields a 
loss of information due to the smoothing property of the interpolation. It is comparable to the 
application of a lowpass filter to the data set. Consequently and in general, the usage of one 
particular retrieval algorithm will result in an inherent modification of the data. The same effect 
can be simulated by either along-track filtering of a one-dimensional signal or by a spherical filter 
in the spectral domain and thus the relation can be better understood by investigating such filters. 
However, the connection between one-dimensional along-track and two-dimensional spherical 
filters is far from obvious. 
 
Thus, the objective of this study is to investigate the influences of these two filter types by 
analysing the differences between simulated GOCE reference and filtered data. Before the filters 
can be investigated, a closed-loop simulation forms the computational framework of this work. 
Naturally, it needs to be assured that the closed-loop errors lie within the numerical accuracy of the 
computer. The first task is the application of one-dimensional along-track filters to a time series of 
synthetic gradiometer data and the assessment of its influence on the time series itself and on the 
corresponding spherical harmonic spectrum. Similarly, the effects of a spherical filter in the 
spectral domain need to be investigated. Additionally, the properties of both filter types can be 
varied. The final task is the direct relation of both filter types which is theoretically possible in an 
analytical way but practically tedious. Therefore, in an attempt to bypass these difficulties the link 
is established by empirical transfer functions, instead. 
 
The study is organized in the following way: 
 

• Background: Section 2 provides a short overview of the mathematical description of the 
Earth’s gravitational field and will introduce the most important aspects about the Gravity 
Field and Steady-State Ocean Circulation Explorer (GOCE) mission. In order to understand 
the different effects caused by the filters, the basics of along-track and spherical filtering 
will also be explained shortly with respect to two different filter types which are the ideal 
boxcar and the Butterworth filter.  

 
• Testing procedures: After describing the software and the input dataset, the actual 

implementation of the closed-loop, along-track filtering and spherical filtering tests is 
shown by means of flowcharts. The explanation of the empirical connection of the transfer 
functions for along-track and spherical filtering will be also part of section 3. 
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• Discussion of Results: Finally, the results of the implemented filters will be analysed with 
respect to various quantities in section 4. These include the square rooted power spectral 
density (PSD) estimates of the filtered signal compared to those of the reference signal. The 
differences between filtered and original data with respect to spherical harmonics and other 
quantities such as geoid heights, gravity anomalies and gravity gradients, will be also 
investigated. The comparison between the different filters is based on different aspects as 
for example the varying effects if using different filter types applied to along-track, cross-
track or radial signal components or if changing the filter cut-off frequencies or degrees. 
The most revealing results are shown in section 4. For completeness, the interested reader 
can find difference plots of all kinds of different test scenarios in the appendix.  
The second part of section 4 deals with the derivation of filter transfer functions in order to 
examine the relation between along-track and spherical filters empirically. In the case of 
along-track filtering, computing the proportion between reference and filtered spherical 
harmonic coefficients leads to the corresponding spherical filter transfer function. For 
spherical filtering, it is the other way round. The relation between reference and filtered 
time series represents the along-track filter transfer function due to applying a spherical 
filter.  
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2 BACKGROUND 

2.1 Theory and mathematical background 
As already mentioned in the introduction, the Earth’s gravity field is one of the most important 
sources of information needed for the determination of the structure and dynamics of the Earth. 
Consequently, scientists aim to derive models for the global gravity field which are as accurate as 
possible. This section gives an overview of the mathematical background of gravity field 
determination. For more details, the reader is referred to Hofmann-Wellenhof and Moritz (2005). 
 
The quantity describing the global gravity field is the gravity potential W which is the sum of the 
gravitational potential V due to the gravity of all masses and the centrifugal potential Z due to Earth 
rotation:  
 
W V Z= +  (2.1) 
 
Here, the more dominant gravitational potential [m2/s2] is of main interest. It can be represented by 
a spherical harmonic (SH) series (Hofmann-Wellenhof and Moritz, 2005): 
 

( )
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( , , ) (cos ) cos sinθ λ θ λ λ
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= =

 = + 
 

∑ ∑
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l l l

l

m m m
m
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V r P C m S m

R r
 (2.2) 

 
where the spherical coordinates of the spacecraft in satellite applications are θ, λ and r = R+h with 
the satellite altitude h, GM the gravitational constant (G) times mass (M) of the Earth with its mean 
radius R, mP

l
 the normalized Legendre function and mC

l
 and mS

l
 the dimensionless spherical 

harmonic (SH) coefficients. The first summation runs from the zero degree l  to infinity but is 
usually truncated at the maximum resolvable degree l =Lmax. This degree corresponds 
approximately to the spatial resolution of D[km] = 20000/Lmax half-wavelength in kilometres.  
The second summation runs from a zero order m up to the actual degree l  which means that 
m≤ l .  
 
Let us assume that the SH coefficients mC

l
 and mS

l
 are known. Then the gravitational potential V 

can be computed by Eq. (2.2), which is generally referred to as spherical harmonic synthesis. 
Other gravity quantities can be derived by small variations of this equation, such as taking 
derivatives for instance. These gravity functions include the geoid heights N (measured in metres 
above the reference ellipsoid), the gravity anomalies ∆g (measured in milligal, where 1mGal = 10-
5m/s2) as well as the second-order derivatives of the gravitational potential with respect to three 
spatial directions, also known as gravitational gradients (measured in Eötvös, where 1E = 10-9s-2). 
 
In reality, the coefficients up to degree and order Lmax of the spherical harmonic series are the 
fundamental gravity unknowns. Their determination is based on the satellite measurements of the 
gravitational potential along the orbit. The SH coefficients can be derived by a spherical harmonic 
analysis: 
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For the sake of better visualization, it is common to represent the SH coefficients mC

l
 and mS

l
 in 

the form of a triangle (Figure 2.1) where the vertical axis of the triangle represents the degrees l  
of the SH coefficients (or the corresponding spatial resolution D). The horizontal axis refers to the 
order ≤ lm  with the cosine mC

l
 coefficients on the right and the sine mS

l
 coefficients on the left 

side. Coefficients of order zero are called zonal harmonics, those of same degree and order m=l  
sectorial harmonics and all the other coefficients tesseral harmonics. The colour code of the 
triangles refers normally to the logarithm of the absolute coefficients.  
 

 
Figure 2.1: Triangular representation of SH coefficients 

 
One of the limits in the resolution of these models is the field attenuation with increasing altitudes 

h of the satellite, expressed by the attenuation factor ( ) 1
/R R h

++ l

 in Eq. (2.2). 

This effect can be counteracted on the one hand by using an orbit as low as possible and on the 
other hand by the principle of gradiometry which does not measure the gravitational potential itself 
or its gradient but rather its second-order derivatives ∂2V/∂xi∂xj in along-track, cross-track and 
radial direction. The resulting outcomes are nine gravitational gradients which can be arranged in a 
second-rank 3x3 signal tensor: 
 

{ } { }              for , , , ,
xx xy xz

ij yx yy yz

zx zy zz

V V V

V V V i x y z j x y z

V V V

 
 Γ = = ∧ = 
 
 

 (2.4) 

 
This matrix is symmetrical and due to the Laplace equation, the trace must sum to zero, i.e.,        
Vxx + Vyy + Vzz = 0. 
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S21 C20 C21 S22 C22 

C30 S31 S32 C31 C32 S33 C33 

sectorial sectorial tesseral tesseral zonal 
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A ‘differentiation factor’ caused by the differentiation counteracts the attenuation factor caused by 
the satellite altitude. This relation is visualized in the following mathematical scheme (Figure 2.2), 
the so-called Meissl scheme (Rummel and van Gelderen, 1995), which shows the three 
fundamental gravity quantities. These are the geoid, the gravity anomaly and the gravity gradient 
measurements. They are presented as potential V

l
, its first rV∂

l
 and second-order 2rrV∂

l
 derivatives 

dependent on the degree l  of the spherical harmonic coefficients. At satellite altitude, all three 

quantities are dampened by the attenuation factor ( )/R r
l

 which can be counteracted by a factor 

( 1)( 2)+ +l l  by measuring gravity gradients. 
 
 

 
Figure 2.2: Relationship between satellite altitude and derivatives of gravitational potential V (ESA, 1999) 

 
 
More details on the principles of satellite gradiometry are given in ESA (1999) and Hofmann-
Wellenhof and Moritz (2005). 
 

2.2 GOCE – Gravity Field and Steady-State Ocean Circulation 
Explorer 

Satellite gradiometry is the primary measurement principles of the Gravity Field and Steady-State 
Ocean Circulation Explorer (GOCE) which is planned to be launched in May 2008. As this report 
deals with the GOCE signal, i.e., the second order derivatives of the gravitational potential, the 
most important aspects of this mission will be explained in section 2.2.2 after providing a short 
overview of the new satellite gravity missions and their mission concepts (section 2.2.1). 
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2.2.1 OVERVIEW OF NEW SATELLITE GRAVITY MISSIONS 

In the context of the accurate determination of the Earth’s gravity field, the two other gravity field 
satellite missions preceding GOCE should not fall into oblivion. They are currently operational in 
space and have already provided significantly improved gravity models. It should be noticed that 
each of the three missions is based on different innovative measurement concepts (Hofmann-
Wellenhof and Moritz, 2005).  
 
• CHAMP (Challenging Minisatellite Payload): 

This German satellite, operating since 2000, utilizes the measurement concept of satellite-to-
satellite tracking in high-low mode (SST-hl). The low Earth orbiting (LEO) satellite CHAMP 
at an altitude of approximately 400km is continuously tracked by the high GPS satellites. 
Additionally, the included accelerometer in the LEO satellite measures three-dimensional 
perturbing but non-gravitational accelerations along the orbit. This principle can be considered 
as ‘in-situ’ determination of 3-D positions, velocities and accelerations of a LEO and allows to 
accurately determine the long-wavelength features of the static Earth gravity field. Significant 
improvements were made for example in the polar regions which were difficult to access prior 
to CHAMP. For more information, the reader is referred to http://op.gfz-potsdam.de/champ. 

 
• GRACE (Gravity Recovery and Climate Experiment): 

This US-German mission, launched in 2002, is based on the satellite-to-satellite tracking 
concept in low-low mode (SST-ll). Placing GRACE twin satellites in the same LEO orbit (ca. 
400km altitude) and ca. 220km apart from each other, the concept of line-of-sight measurement 
of range, range rate and range acceleration between two low-orbiting satellites is realized. The 
satellite positions are determined by the GPS. Ranges and range rates are influenced by gravity 
field variations and can be measured very accurately. In combination, this leads to differences 
of the accelerations over a long baseline. Additionally, micro accelerometers are situated in the 
centre of mass of each satellite, they measure only non-gravitational accelerations on the 
satellites caused by e.g. air drag or solar radiation pressure. GRACE provides temporal gravity 
variations, such as monthly changes in the gravity field, as well as a global high-resolution 
gravity field of the Earth with high accuracy features for a scale of about 600–1000km. More 
information is provided at http://op.gfz-potsdam.de/grace. 

 
• GOCE (Gravity Field and Steady-State Ocean Circulation Explorer): 

The satellite of this planned ESA mission is expected to measure highly accurate, high spatial 
resolution gravity gradients in three dimensions. It is based on the principle of satellite gravity 
gradiometry (SGG) which is an analysis of the differences in gravitational acceleration 
between pairs of proof masses of an ensemble of six accelerometers inside the GOCE satellite. 
This concept is in fact very similar to the low-low-mode of satellite-to-satellite tracking. While 
the measurements of GRACE take place between two LEO satellites divided by a long baseline 
of about 220km, the GOCE gradiometer instrument measures gravitational and rotational 
acceleration differences in 3D between accelerometer units within one single satellite only      
±50cm centimetres apart. The measured signal is caused by the attracting masses of the Earth 
which are spatially varying due to the relative distribution of oceans, land and ice, ocean mass 
exchange by circulation, mountains and valleys, or via ocean ridges, subduction zones, mantle 
inhomogeneities as well as core-mantle boundary. Since non-gravitational accelerations affect 
all accelerometers of one satellite in the same way, they can ideally be neglected by taking 
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differences between two accelerometers along one baseline. Combined with high-low satellite-
to-satellite tracking (SST-hl), GOCE gradiometry will lead to high-resolution global and 
regional models of the Earth’s static gravity field improving spatial scales down to the order of 
200km. The concept is depicted in Figure 2.3. 
 

 

 
Figure 2.3: Satellite gravity gradiometry (SGG) with a three-axis gradiometer (http://www.ife.uni-hannover.de) 

 
 
In conclusion, the development of the satellite gravity mission concepts reaches from the first 
derivative of the gravitational potential (CHAMP) over the difference of first derivatives over a 
long baseline (GRACE) to the second-order derivatives (GOCE). This development implies an 
improvement of the accuracy for GOCE at medium and smaller scales of the Earth’s gravity field. 
The essential factor hereby is the decreasing distance between the test masses within the 
accelerometers which is “almost” zero for GOCE. Other advantages of GOCE compared to 
CHAMP and GRACE are the stronger signal due to the very low-earth orbit (~250km) and the 
reduced attenuation effect by applying the concept of satellite gradiometry. 
 

2.2.2 GOCE MISSION  

The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) was selected in 1999 as 
the first Core Earth Explorer Mission of the ESA Living Planet Programme and is planned to be 
launched in spring 2008. After the explanation of the mission concept of GOCE which is satellite 
gradiometry, this section will provide some further details of the GOCE mission. This information 
has been extracted from several sources such as ESA (1999), Johannessen et al. (2003), ESA 
(2006), Drinkwater et al. (2007) and for the cutting-edge information from the mission website 
http://www.esa.int/livingplanet/goce. Table 2.1 summarizes the key aspects of the GOCE mission. 
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Table 2.1: Overview of the GOCE mission (http://www.esa.int/livingplanet/goce) 

GOCE Mission overview 

Mission Duration 2 years 
Launch 2008 
Orbit Sun-synchronous, dawn-dusk 
- altitude (mean) ~ 250km 
- inclination 96.5° 
Ground Segment Kiruna: commands and acquisition 
  ESOC: flight control 

Payload 
Gradiometer: 3 pairs of 3-axis, servo controlled, 
capacitive accelerometers. 

  GPS receiver with geodetic quality 
Launcher Rockot (1000 kg payload in SSO) 
Budgets Mass: ~1000kg 
  Electric power demand: 760W 
Lifetime 20 months nominal; 30 months extended 

Operation 
Continuous data take in eclipse-free cycles; 
hibernation in long-eclipse season 

 
 
Science Objectives 
As already mentioned in the introduction, the improvement of the knowledge about the Earth’s 
gravity field and the corresponding geoid (reference equipotential surface) in accuracy and spatial 
resolution will give a better insight into the physics of the Earth’s interior and the interaction 
between continental plates. The reason is that gravity is directly linked to the mass distribution 
within the Earth. Furthermore, it will also lead to a better understanding of sea-level change and of 
the ocean circulation which plays an important role in energy exchanges around the globe. Another 
objective is the global unification of height systems which enables the direct comparison of 
mountain ranges on one continent against those on others and the usage of GPS levelling. This will 
be realized by using ‘pseudo levelled’ or orthometric heights referenced to a common GOCE-
derived geoid. Thus, the mission goal is mainly the significant improvement in solid-earth physics, 
oceanography and geodetic applications of the data.  
 
 
Mission Objectives 
In order to enable the compliance of the science objectives, gravity anomalies and geoid heights 
will be derived from the measurements. They have to fulfill the following mission requirements: 
 
• Earth’s gravity field anomalies with an accuracy of better than 1 mGal  
• Geoid (i.e., equipotential surface of a hypothetical ocean at rest) with a radial accuracy better 

than 1-2 cm 
• Gravity anomalies and geoid heights with a spatial resolution of 100 km or less (i.e., maximal 

degree and order of the spherical harmonic coefficients of at least 200 and higher) 
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Mission Elements 
The advanced gravity mission GOCE is designed as a ‘gravity measuring device’. This means that 
the satellite platform and the instrument payload (system of sensors and control elements) work as 
a unity which guarantees a stable thermal environment for the gradiometer. The mission consists of 
the GOCE satellite and three main payload instruments: 
 
• Spacecraft (S/C): 

single rigid octagonal spacecraft which is ca. 5m long and 1m in diameter with fixed solar 
wings and no moving parts, cross-section minimised in direction of flight to reduce drag, tail 
fins for passive stability, solar-illuminated side of spacecraft covered with solar cells 

 
• Electrostatic Gravity Gradiometer (EGG): 

3 pairs of 3-axis, servo-controlled, capacitive accelerometers on an ultra-stable carbon-carbon 
structure, each pair forms ‘gradiometer arm’ separated by a baseline of approximately 0.5m and 
mounted orthogonal to one another, nominal alignment of gradiometer arms in along-track, 
cross-track and radial direction (pointing towards Earth’s centre), forming a right-handed triad 
 

 
Figure 2.4: Artist’s impression of the GOCE satellite (left) and Electrostatic Gravity Gradiometer instrument 

without harness (right) (http://www.esa.int/livingplanet/goce) 

 
• Satellite-to-Satellite Tracking Instrument (SSTI): 

12-channel dual-frequency GPS receiver with dual zenith-pointing quadrifilar helix antennas, 
providing geodetic quality (~1cm) orbit determination, used for real-time on-board navigation 
and attitude-reference-frame determination 
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• Laser Retro-reflector (LRR): 
Corner-cube array acquiring satellite laser ranging (SLR) observations by existing ground-
based laser network in order to support precise orbit determination by post-processing 

 
 
Mission Profile 
The launch of GOCE is planned on a Rockot vehicle from the Eurockot Cosmodrome in Plesetsk, 
northern Russia, in spring 2008. The nominal mission duration is stated as 20 months. First, the 
spacecraft will be injected into an orbit of about 265 km altitude. As the fixed solar panels must 
face the sun, the launch orbit configuration depends on the seasonal window. Up to now, a winter 
launch configuration is expected which corresponds to a dawn-dusk orbit with a 6:00 hrs equatorial 
ascending node crossing. During the early orbit phase, global coverage outside the polar caps can 
be reached after about 30-40 days in this orbit. Moreover, the reference orbit configuration assures 
a ground track repeat period exceeding 60 days. Before reaching the operating orbit with a 
measurement altitude of around 250km and an inclination of close to 96.5°, the spacecraft is slowly 
decreasing its altitude. This controlled decay of about three months is used for an initial estimated 
commissioning of the spacecraft as well as the set-up and calibration of the gradiometer. The 
actual data acquisition with the assumed nominal instrument performance takes place during 
eclipse-free science measurement operation cycles. These phases may be separated by a long-
eclipse hibernation period of around five months duration as the satellite is in Earth shadow for 
over 25 minutes of each orbit. 
 
 
Data Products 
In order to exchange commands with the satellite and acquire data via downlink, the GOCE 
mission makes use of a single ground station in Kiruna, Sweden. Flight control and continuous 
monitoring of health status and performance of the platform and the instruments, however, is 
undertaken by the Flight Operation Segment (FOS) via ESA-ESOC in Darmstadt, Germany. The 
ground station will provide the GOCE data to the Payload Data Segment (PDS) which will 
generate scientific Level 1b products of the GOCE mission. Furthermore, the European GOCE 
Gravity Consortium (EGG-C), i.e., a group of 10 European Institutes, developed a distributed 
processing chain called High-Level Processing Facility (HPF) which will finally provide the 
following Level 2 data products to approved and registered users. These Level 2 data include: 
 
• Externally calibrated and corrected gravity gradients 
• Precise science orbit solutions 
• Global Earth gravity potential modelled as spherical harmonic series of minimal degree and 

order 200 (i.e., 100 km spatial resolution) including coefficients and error estimates  
• Geoid heights, gravity anomalies and geoid slopes (global ground-referenced and gridded)  
• Variance-covariance matrix of final Earth gravity field model provided by GOCE. 
 

2.3 Lowpass filter functions 
In order to derive different data products, GOCE data will be processed with different algorithms 
which usually implies that the data will be also filtered in some way. The problem, however, is that 
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specific filters have to be applied according to the type of the data and that varying kinds of filters 
will also have different influences on the resulting data products. On the one hand, directly filtering 
the signals received from the satellite observations along the orbit requires the so-called along-
track filtering. Spherical filters, on the other hand, are implemented in order to filter the resulting 
models if represented as spherical harmonic series. The relationship between these one-
dimensional along track filters and the two-dimensional spherical ones as well as the match of their 
outcomes is far from obvious. Thus, the objective of this study report is to investigate how both 
filter types will affect the simulated GOCE signal and the resulting models. Furthermore, it will be 
tried to empirically examine their relation. As this work applies along-track and spherical lowpass 
filters with different designs, the next sections will give a short introduction into filter theory 
where the main information is extracted from Lynn (1982), Press et al. (1992), Oppenheim and 
Schafer (1999), Ingle and Proakis (2000) and Zenner (2006). 
 

2.3.1 1D SIGNAL SLONG-TRACK FILTERING 

The nine second-order derivatives of the gravitational potential form the simulated GOCE signal 
which can be arranged in a 3x3 gravitational gradient tensor (Eq. 2.4). Since each of the nine 
gradients presents a discrete one-dimensional time series of the signal along the orbit, along-track 
filtering can be applied. This report concentrates on filtering the three main diagonal components 
of the gradient tensor in along-track Vxx, cross-track Vyy and radial direction Vzz.  
 
Let us assume that we have a discrete-time signal x with an integer number of N samples which is 
mathematical represented as a sequence of numbers in the time domain: 
 

[ ]{ },          - / 2 / 2x x n N n N= ≤ ≤  (2.5) 

 
As the sequence was created by equidistant sampling of the continuous analogue and non-periodic 
GOCE signal, the numeric value of the n-th number in the sequence x is equal to the value of the 
analogue signal, xa(t), at time n∆t: 
 

[ ] ( ),    - / 2 / 2ax n x n t N n N= ∆ ≤ ≤  (2.6) 

 
where ∆t is the sampling period, i.e., the time interval between consecutive samples. Its reciprocal 
is called sampling frequency or rate and is given in samples recorded per second corresponding to 
Hertz (Hz): 
 

1=
∆sf t

 (2.7) 

 
The total length T in seconds of a finite time series can be computed by multiplication of the 
sampling period ∆t times the total number of samples N. Its reciprocal is called fundamental 
frequency in Hz and is the lowest frequency which can be reached by a signal: 
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 (2.8) 

 
Another special type of frequency which can be computed with respect to any sampling interval ∆t 
is the so-called Nyquist frequency: 
 

1

2 2
s

Ny

f
f

t
= =

∆
 (2.9) 

 
according to the Nyquist sampling theorem of Shannon. This theorem states that the maximum 
frequency fmax in the observation signal which can be accurately represented must be smaller than 
the Nyquist frequency, i.e., less than one-half of the sampling frequency: 
 

1

2max Nyf f
t

< =
∆

 (2.10) 

 
or the sampling interval must be: 
 

1

2 max

t
f

∆ <  (2.11) 

 
If this theorem is fulfilled, the data are correctly sampled without aliasing error which is a folding 
of the signal from beyond the Nyquist frequency. This error could map into any other frequency 
inherent in the signal. Therefore, the prevention of aliasing is especially important if the sampling 
of the signal is chosen. 
 
Instead of representing a signal as a time series in the time domain, it can be also represented as a 
spectrum in the spectral or frequency domain. A spectrum shows the discrete Fourier transforms 
(DFT) of the signal at discrete frequencies with an equal spacing of 1/(N∆t) reaching from the 
fundamental frequency f0 to the Nyquist frequency fNy. The DFT is a Fourier representation of the 
finite-duration sequence x. As this time series is sampled with a fixed number of N values, 
maximal K=N values of DFTs can be computed for the spectrum. Thus, the discrete sequence of 
the sampled signal can be transformed from the time into the spectral domain by applying the 
discrete Fourier transformation, given by: 
 

1
( 2 ) /

0

[ ] [ ]exp           - / 2 , / 2
N

i kn N

n

X k x n N n k Nπ
−

−

=
= ≤ ≤∑  (2.12) 

 
and vice versa by applying the inverse DFT denoted as follows: 
 

1
( 2 ) /

0

1
[ ] [ ]exp        - / 2 , / 2

N
i kn N

k

x n X k N n k N
N

π
−

=
= ≤ ≤∑  (2.13) 
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where x[n]  is the n-th value sampled from the signal in the time domain and X[k]  is the k-th 
spectral value of the sequence in the frequency domain. 
As the GOCE signal is considered to be a real function, its spectrum is symmetric to zero with 
X[k]=X[-k] . Therefore, it only has to be determined for 0 ≤ k ≤ N/2. In order to compute the DFT 
as fast and efficient as possible, the Fast Fourier Transformation (FFT) was applied which is also 
implemented in MATLAB. The speed-up compared to the direct transformation is due to avoiding 
the multiple computations of terms which are nullifying each other.  
 
In the sequel, the simulated GOCE signals will be interpreted with respect to the square root of the 
power spectral density (PSD) estimates. The PSD measures the distribution of signal power 
(variance) of a time series over frequency domain. Mathematically, it is defined as the Fourier 
Transform of the autocorrelation sequence of the time series. Usually, the PSD is normalized by a 
proper constant term, denoted as c in the following. There are, however, several different 
conventions of normalizations. In general, the measure of the k-th amplitude of the PSD estimates 
and the squared amplitude of the DFTs [ ]X k  are proportional to each other: 

 
2

[ ]   
            - / 2 / 2k

X k
PSD N k N

c
= ≤ ≤  (2.14) 

 
The method of PSD which will be used in this study is the simple version of an estimator called 
periodogram. In this case, the PSD is normalized by the sampling frequency with c=fs. An 
implementation of this PSD estimator can be found in the function periodogram.m which is 
part of the MATLAB Signal Processing Toolbox. The PSD of the GOCE signal is given in power 
of Eötvös per Hertz (E2/Hz). In general, it is much more convenient to interpret a spectrum given in 
the unit of E/√Hz. Thus, the square root of the PSDs will be plotted instead for further investigation 
purposes. 
 
The implementation of many mathematical operations, such as filtering or convolution for 
example, can be realized much easier and with less computational effort in the spectral domain. 
Convolution is one of the elementary mathematical operators in signal processing which takes the 
corresponding values of two sequences x[n]  and h[n]  and produces a third sequence y[n]  that, in a 
sense, represents the amount of overlap between x[n]  and a reversed and translated version of h[n]: 
 

[ ] [ ] [ ] [ ] [ ]
k

y n x n h n x k h n k
∞

=−∞
= ∗ = −∑  (2.15) 

 
In this context, the convolution theorem has to be mentioned. This theorem states that the 
convolution in the time domain corresponds to the multiplication in the frequency domain and vice 
versa: 
 

[ ] [ ] [ ] [ ]x n h n X k H k∗ ⇔ ⋅  (2.16) 
 
The simple transform pair shows that the Fourier transform of the convolution x[n] *h[n] is just the 
product of the individual Fourier transforms X[k]  and H[k] . 
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If x[n] is considered as one sample of a signal sequence with its corresponding DFT value X[k]  
and if H[k]  is representing one sample of a random filter designed in the spectral domain with the 
corresponding IDFT sample h[n] , the convolution theorem in Eq.(2.16) allows two rather distinct 
ways of filtering sampled one-dimensional signals: 
 
• filtering time series in time domain by convolution of signal sequence samples x[n]  with IDFT 

sequence samples h[n] of the spectral filter: 
 

[ ] [ ] [ ]y n x n h n= ∗  (2.17) 
 
• filtering the DFT of the signal in spectral domain by direct multiplication of signal DFT 

samples X[k] with spectral filter samples H[k] : 
 

[ ] [ ] [ ]Y k X k H k= ⋅  (2.18) 
 
Both filter implementations will affect the original signal and its spectrum in exactly the same way 
and will lead to the filtered signal samples y[n]  in the time domain and its corresponding DFT 
samples Y[k]  in the spectral domain. Thus, digital filtering in the spectral domain can be facilitated 
to a simple multiplication of signal DFTs and the filter due to the convolution theorem. Along-
track filtering of the simulated GOCE signal will be always performed in the spectral domain in 
the sequel of this work. In this case, filtering can be seen as a form of weighting the signal 
spectrum with a factor [ ]H k . If modern computers are used, filtering in the spectral domain is 

very efficient for a long series of data and also much faster than filtering in the time domain. 
Furthermore, as the purpose of filtering is to modify the spectrum of the original signal, it is much 
more convenient and flexible to design the desired filter spectrum in the spectral domain. 
 
According to the filter gain [ ]H k  which specifies the amplitude of the filter for each specific 

frequency sample, there are basically four different kinds of filters: 
 
• lowpass filter:  low frequency part of the signal passes the filter and high frequency 

part(noise) is attenuated 
• highpass filter:  high frequency part of the signal passes the filter and low frequency part is 

attenuated 
• bandpass filter: specified frequency range of the signal passes the filter 
• bandstop filter: specified frequency range of the signal is rejected 
 
The amplitude spectra of these filters are visualized as amplitudes versus frequencies in Figure 2.5 
where fc, fc1and fc2 specify the different cut-off frequencies. 
 
In the sequel, all tests are performed by applying lowpass filters as this is the most common form 
of filtering in signal processing in order to reduce high-frequency noise but might be also inherent 
in the data processing itself, e.g., the interpolation in the torus approach. There are several different 
designs of spectral filters such as the boxcar, the Butterworth, the Gaussian, the Chebyshev, the 
Elliptic filters, just to name a few of them.  
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Figure 2.5: Different types of filters 

 
 
The lowpass filter, shown in Figure 2.5, where the frequency response is unity over a certain range 
of frequencies and is zero at the remaining frequencies is a so-called boxcar filter or ideal 
frequency-selective filter designed in the spectral domain. Mathematically, this rectangular spectral 
window function is defined as: 
 

1    for            
[ ]

0    for  / 2
c

c

k k
H k

k k K

 ≤=  < ≤
 (2.19) 

 
where kc is the sample which corresponds to the cut-off frequency fc = kc f0. Since the k-th sample 
of the filter spectrum directly corresponds to a specific frequency value via the linear relation         
f = k f0, the definition of Eq. (2.19) can be adapted to the following frequency response: 
 

1   for       
( )

 0  for  
c

c Ny

f f
H f

f f f

 ≤=  < ≤
 (2.20) 
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with the amplitude of the filter ( )H f  being dependent on frequencies instead of on samples. As 

this boxcar filter spectrum will be multiplied with the discrete Fourier transforms of the signal, this 
definition states that the signal spectrum for frequencies f smaller than or equal to the cut-off 
frequency fc stays unmodified as it is multiplied by one. On the other hand, the signal spectrum for 
all the other frequencies up to the Nyquist frequency, i.e., higher than the cut-off frequency, is 
completely eliminated due to the multiplication with zero. If the inverse discrete Fourier 
transformation (IDFT) is applied to the samples Y[f] of the resulting spectrum, the filtered signal 
sequence y will only contain frequencies smaller than fc. That means that within the GOCE signal 
processing just these lower frequency parts will be used for computing the SH coefficients. As 
there are no higher frequencies inherent in the filtered signal any more, it will look much smoother 
compared to the original signal. The smoothness obviously is dependent on the choice of the cut-
off frequency: the lower the cut-off frequency, the more high frequencies are eliminated and 
consequently, the smoother the filtered signal will be.  
 
The main problem of implementing this ideal boxcar lowpass filter in the spectral domain is the 
radical jump at the cut-off frequency from one to zero. This becomes obvious if the impulse 
response h of the filter is computed by inverse discrete Fourier transformation (IDFT). The 
resulting sequence in the time domain will be a sampled sinc-function with one main lobe and 
infinitely long side lobes. This function is truncated due to the limited number of samples at n = 
±N/2. With increasing cut-off frequency in the filter spectrum, the width of the main and each side 
lobes in the time domain is becoming smaller and the amplitudes of the side lobes are diminished. 
This inverse relation between filter width in the spectral domain and the width of the sinc-function 
lobes in the time domain is visualized in Figure 2.6. The side lobes as a consequence of the abrupt 
jump in the filter spectrum are rather unwanted. In the case of filtering the simulated GOCE data, a 
convolution of the original signal and the boxcar filter in the time domain (which is equivalent to a 
multiplication of their spectra in the spectral domain) will cause disturbing structures of ringing 
and ripples in the resulting filtered signal and in all derived quantities such as the gravitational 
potential and its derivatives. This effect is known as Gibbs’ phenomenon. As a result, geoid 
heights of points in the direct neighbourhood are alternately weighted positive or negative by 
applying an along-track boxcar filter. 
 

 
Figure 2.6: Boxcar lowpass filters with various cut-off frequencies in the time (left) and spectral domain (right) 
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This Gibbs’ phenomenon can be moderated by using filters with a smoother transition between 
maximal and minimal amplitudes in the spectral filter design. Thus, the abrupt attenuation of 
frequencies larger than the cut-off frequency can be reduced.  
 
One of these filters with a smoother transition is the Butterworth filter which is the second form of 
filter implemented in this study. The amplitude spectrum ( )H f  of this filter is a monotonically 

decreasing function of the frequencies f, denoted by: 
 

2

1
( )

1 ( ) ⋅
=

+ order
c

H f
f f

 (2.21) 

 
where f is one of the entries in the frequency vector of the spectrum reaching from the fundamental 
frequency f0 to the Nyquist frequency fNy and where fc is the cut-off frequency. As opposed to the 
boxcar filter which is a fix rectangular function, the design of the Butterworth filter can be 
modified by varying the order of the filter. This further parameter determines the slope of the 
transition. If the order is increasing up to infinity, the transition between maximal and minimal 
amplitude becomes steeper and approaches the filter design of the boxcar filter (Figure 2.7). 
Further, it is evident that ( )H f , the amplitude of the filter in the spectral domain, is just 

converging to zero but is never actually reaching it. While the spectrum of the boxcar filter 
becomes zero at the cut-off frequency, it is always 1/√2 at f = fc for a Butterworth filter regardless 
of the filter order. However, even if the Butterworth filter does not have the abrupt jump in its 
spectrum, it should be noted that it already modifies frequencies smaller than the cut-off frequency 
in contrast to the boxcar filter.  
 

 
Figure 2.7: Comparison between boxcar and Butterworth lowpass filters with various orders in spectral domain 

 
 
Just because of these different filter characteristics, it becomes evident that the application of both 
filters to the original signal will lead to varying filter results. However, by increasing the order of 
the Butterworth filter, the resulting filtered signal will approach the outcome of applying a boxcar 
filter to an original signal.  
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2.3.2 2D SPHERICAL MODEL FILTERING 

While the previous section explained the along-track filtering of one-dimensional signals, this 
section will give a short overview of how two-dimensional models derived from the signal can be 
filtered. A second possibility of applying filters within the scope of processing simulated GOCE 
data, is filtering the models of the gravitational potential. As these two-dimensional models can be 
represented as spherical harmonic (SH) series (Eq. 2.2), spherical filtering suggests itself. In other 
words, filtering these models can be realized by multiplying the corresponding SH coefficients 

mC
l

 and mS
l

 by a certain weighting factor. This factor corresponds to the selected filter. As the SH 

coefficients are dependent on the degree l  and the order m of the SH series, they can be either 
filtered by an order or a degree filter. Since the spatial resolution of a model depends on the 
maximum resolvable degree l = Lmax, using a degree filter was deemed to be the better alternative. 
That means that all coefficients with the same order m will be multiplied with the same filter factor 
while the factor varies with increasing degree l .  
 
In the same way as for the along-track filtering, a spherical boxcar as well as a Butterworth filter 
will be applied in the sequel. The corresponding factors of the two different spherical degree filters 
with a cut-off degree lc  are computed for each degree reaching from zero to the maximum 

resolvable degree l = Lmax and are defined as follows: 
 
• spherical boxcar filter factor: 

 

 
max

1    for            

0    for  

≤
=  < ≤

l

l l

l l

c

c

b
L

 (2.22) 

 
• spherical Butterworth filter factor: 
 

 
2

1

1 ( ) ⋅
=

+
l

l l
order

c

b  (2.23) 

 
 where order denotes the order of the filter and not the order of the SH series.  
 
This becomes clearer if we take a look at the triangular representation of the degree factors for a 
spherical boxcar and a spherical Butterworth filter in Figure 2.8. 
 

 
Figure 2.8: Triangular representation of a spherical boxcar and a spherical Butterworth filter 
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In order to apply a spherical filter to a global model and to obtain filtered SH coefficients 
l

filtered
mC  

and 
l

filtered
mS , these filter factors 

l
b  have to be multiplied with the corresponding SH model 

coefficients 
lmC  and 

lmS : 

 
=

=
l l l

l l l

filtered
m m

filtered
m m

C b C

S b S
 (2.24) 

 
Thus, the implementation of along-track filters on the one hand and spherical filters on the other 
hand looks very similar on first sight. The main difference is that in the first case frequencies of a 
time series are filtered and that in the second case SH coefficients representing a geopotential 
model are filtered with respect to degrees. Both kinds of filters are applied by a multiplication of 
the filter weighting factors with the original data in the spectral domain.  
Although there seem to be quite a few similarities in the implementations, a match between these 
along-track filters and the spherical ones is far from obvious as they are dealing with completely 
different datasets. They cannot be directly compared to each other. However, the different 
influences of these filters on the reference data will be examined and compared to each other in 
several testing procedures and their relation will be investigated empirically by the comparison of 
their transfer functions in the signal and model domain. 
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3 TESTING PROCEDURES  
The main objective of this study is to compare empirically the influences of along-track and 
spherical filters. The along-track filters will be applied to simulated GOCE data on the one hand 
and the spherical filters to a global gravity field model on the other. The following sections will 
give an overview of the software used, the necessary input data and the various testing procedures 
in form of flowcharts. 

3.1 Software packages 
In order to generate synthetic data from a global model, known as synthesis step, as well as to 
estimate a new model from these simulated data which is referred to as analysis step, a FORTRAN 
software package created by Gernot Plank has been used. This program consists of two main but 
completely independent parts:  
• ‘create’ (create_new_obs_file.exe): synthesis for signal generation 
• ‘adjust’ (adjust.exe): analysis based on least squares adjustment (time-wise approach) for 

model estimation 
 
All further computations were implemented in MATLAB R2007a augmented by the additional 
Signal Processing Toolbox. Based on global geopotential models, there are mainly four quantities 
which will be taken into account for the testing procedures of this work (Figure 3.1). 
 
 

 
Figure 3.1: Different representations of a global model 
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For the sake of better visualization of the global models, it is common to represent the spherical 
harmonic coefficients in the form of a triangle which has been already explained in the background 
section 2.1. This specific triangular representation of SH coefficients is implemented in the 
MATLAB code triangle.m.  
 
Another MATLAB code called synthesis_grid.m plots the gravitational potential and its 
derivatives on a grid on the surface of the Earth with h = 0km. This time, a discrete global 
spherical harmonic synthesis is realized by the implementation of the MATLAB function 
gshsag.m which was created by Matthias Weigelt. It is an adaption of the original function 
gshs.m which belongs to the spherical harmonic MATLAB toolbox (SHBUNDLE) from Nico 
Sneeuw. The MATLAB toolbox can compute all relevant quantities from a spherical harmonic 
model such as geoid heights N in meters [m] , gravity anomalies ∆g in milligal [mGal]  and the 
second order radial derivatives, the so-called radial gravity gradients, in Eötvös [E]. 
 
On the other hand, the output from these tests will not only be the SH coefficients of global 
geopotential models but also time series of the simulated signal, either in the original or filtered 
form. Thus, the interpretation of the results also takes the square root of their power spectral 
densities (PSD) into account. This square root of the PSD given in E/√Hz is derived from a signal 
measured along the orbit at satellite height (Figure 3.2). The PSD of a signal can be computed with 
the MATLAB function periodogram.m which belongs to the signal processing toolbox.  
 

 

 
Figure 3.2: Square root of the PSD computed from satellite signal 

 
 
With respect to the implementation of filters, following MATLAB programs were used: 
 
• boxfilter.m:  boxcar filtering of simulated signal (along-track filtering) 
• Butterworth.m:  Butterworth filtering of simulated signal (along-track filtering) 
• SH_boxfilter.m:  boxcar filtering of global model (spherical harmonic filtering) 
• SH_Butterworth.m:  Butterworth filtering of global model (spherical harmonic filtering) 
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3.2 Input data 
For these tests, the EGM96 (Earth Gravity Model 1996) was chosen as full global model. The 
major reference for this model is NASA/TP-1998-206861. EGM96 is a spherical harmonic model 
of the Earth's gravitational potential truncated at a maximum degree and order of max 360=L . It is 

provided in the form of spherical harmonic coefficients in the file egm96_to360.ascii. Due 
to the high computational effort with a full global model, not all coefficients were used for the 
computations in this study. Instead, one set with maximal degree and order 50 was chosen. 
However, it should be kept in mind that the spatial resolution of a global model gets worse with 
decreasing truncation order and degree. 
In order to enable investigations prior to the launch, simulated datasets are provided. The signal on 
which this study is based on, was generated along a simulated 29-days repeat orbit of GOCE with a 
sampling rate of 5 seconds or 0.2 Hz. The simulation is based on a noise-free scenario which 
means that there is no noise inherent in the dataset. The orbit information is given in 
pos_29d_5s_sst80.estec The characteristics of the orbit are summarized in the following 
Table 3.1. The corresponding zoomed in ground-track is plotted in Figure 3.3.  
 

Table 3.1: Orbit characteristics 

orbit characteristics 

orbit length 29 days 
number of data samples 501148 
sampling rate 5 seconds 
number of revolutions 467 
inclination 96.6° 
nominal altitude ca. 250 km 
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Figure 3.3: Ground track of orbit, zoomed in 
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3.3 Testing procedures 

3.3.1 CLOSED-LOOP TESTS 

The first step before applying any filters to the data is to validate the implemented software 
package by so-called closed-loop tests. In our case, the simulated signal is generated by using the 
EGM96 model, i.e., the corresponding spherical harmonic (SH) coefficients, as an input for the 
synthesis program ‘create’. The output of the signal is given as a tensor of nine gravitational 
gradients defined in Eq. (2.4). Within this study, only the diagonal elements of the tensor will be 
used which are the components in along-track direction Vxx, in cross-track direction Vyy and in 
radial direction Vzz. 
 
The back-computation of an estimated model from the generated signal can be realized by using 
the analysis program ‘adjust’. It gives the possibility to use either all three diagonal tensor 
elements (Vall which is Vxx, Vyy and Vzz) or only one of them (Vxx, Vyy or Vzz). This leads to four 
estimated models with different spherical harmonic coefficients (SHall, SHxx, SHyy and SHzz). 

 
 
 
 
The synthesis together with the analysis forms a closed-loop which simulates a signal out of an 
original model and estimates the model back from this signal. If the two completely independent 
programs ‘create’ and ‘adjust’ work perfectly fine and if the dataset is not manipulated within this 
closed loop, the original and the estimated model, should be theoretically the same with small 
differences lying within the level of the numerical accuracy of the computer. Figure 3.4 shows the 
closed-loop test in the form of a flowchart. These kinds of flowcharts will be used in all of the 
following test scenarios. Therefore, the flowchart in this section will be explained in detail only 
once and should serve as an example for all the following sections. 
Blue rectangles represent global models, either the original EGM96 model or the estimated model. 
The green ellipse stands for any type of generated signal. Gray arrows describe the procedure 
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Figure 3.4: Flowchart for closed-loop tests 
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which is applied to the data in rectangles or ellipses. This can be a synthesis, an analysis, filtering 
or shortening of the signal. Double arrows in purple indicate which data will be compared to each 
other.  
This particular closed-loop test in Figure 3.4compares the spherical harmonic coefficients of the 
original EGM96 model with those of the estimated model. The comparison is either based on the 
triangles of the spherical harmonic coefficients or by means of the geoid heights, gravity anomalies 
and the second order radial derivatives which can be determined by applying the SHBUNDLE 
software to the models. The results will be discussed in section 4.2. 
 

3.3.2 ALONG-TRACK FILTERING 

If the closed-loop tests prove that the software provides reliable results, the next step is to test the 
influences of different kinds of filters. This section deals with the explanation of the procedure to 
test along-track filters applied to the one-dimensional simulated signal. The corresponding 
flowchart is shown in Figure 3.5.  
 
 

 
Figure 3.5: Flowchart for along-track filtering 
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At first, the signal components Vxx, Vyy or Vzz can be determined by a synthesis step. Each of these 
three data series is filtered with a boxcar or a Butterworth filter with various cut-off frequencies 
and various orders in the case of the Butterworth filter. In order to compensate for the transient 
oscillation and warm-up effects which can be seen in the of the filtered signal components Vxx

filtered, 
Vyy

filtered or Vzz
filtered, 10,000 samples are cut off in the beginning and in the end of the filtered 

signal. The subsequent analysis estimates a new model from the shortened and filtered signal 
Vxx

filtered_short, Vyy
filtered_short and Vzz

filtered_short. The output are three different sets of spherical 
harmonic coefficients SHxx’ , SHyy’  and SHzz’ . These coefficients are compared to the corresponding 
coefficients of the original EGM96 model in the form of SH triangles as well as on a grid for geoid 
heights, gravity anomalies and the radial gravity gradients. Since the data sets have been 
manipulated by a filter this time, the comparison between original and estimated model will not 
only include the closed-loop differences but also the filter effects. The influences of filtering 
signals along-track are shown in section 4.3.  
 

3.3.3 FILTERING SPHERICAL HARMONIC COEFFICIENTS 

Another testing approach deals with the filtering of spherical harmonic (SH) coefficients (Figure 
3.6).  
 

 
Figure 3.6: Flowchart for SH filtering 
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In this case, all SH coefficients of the global EGM96 model are filtered two-dimensional with a 
boxcar as well as a Butterworth filter. Based on this filtered EGM96 model (SH filtered), one can 
generate the corresponding signal tensor Γij

SHfiltered by a synthesis step. Analogously, a reference 
signal Γij can be determined based on the original global EGM96 model. By comparing this 
original with the SH-filtered signal, the effects of SH filters on the one-dimensional signal can be 
investigated. In order to determine the filter effects on the SH coefficients, an analysis of the SH-
filtered signal components makes it possible to put the original model side by side to the estimated 
model (SHxx 

SHfiltered, SHyy 
SHfiltered, SHzz 

SHfiltered). The outcome will be shown in section 4.4. 
 

3.3.4 EMPIRICAL DERIVATION OF TRANSFER FUNCTIONS 

The previous two sections explained the implementation of applying along-track filters to the 
simulated signals as well as the test procedure of applying spherical filters to the models. It is, 
however, also interesting to see how a spherical filter need to be designed in the model domain in 
order to achieve the same results as an along-track filter applied in the signal domain. Accordingly 
it will be investigated how an along-track filter should look like in the signal domain if it should 
have the same influences as a spherical filter in the model domain. This is analogue to converting 
an along-track filter into a spherical filter and vice versa. Therefore, transfer functions will be 
derived empirically. A transfer function basically transfers the reference input data into filtered 
output data. 
 
For the along-track filter in the signal domain, the corresponding transfer function in the model 
domain can be empirically derived as follows (see also Figure 3.7):  
 
1. Use of a global model estimated from closed-loop yielding reference models SHxx, SHyy and 

SHzz, where each model consists of the SH coefficients mC
l

 and mS
l

 (including closed-loop 

errors which are negligibly small) 
2. Application of 1D along-track filter to synthetic satellite data Γij  and retrieval of filtered global 

models SHxx‘ , SHyy’ and SHzz’ (SH coefficients 
l

filtered
mC  and 

l

filtered
mS ) 

3. Empirical derivation of transfer function in model domain (which corresponds to along-track 
filter in signal domain) by computing the proportion between filtered and reference global 
models: 
 

=

=

l

l

l

l

l

l

filtered
m

m
m

filtered
m

m
m

C
b

C

S
b

S

 (3.1) 

 
In other words, a new filter triangle with SH coefficients mb

l
 will be derived by calculating the 

ratio between filtered SH coefficients (
l

filtered
mC  and 

l

filtered
mS ) and reference SH coefficients (mC

l
 and 

mS
l

). The ratio comes from modifying the spherical filter equation (Eq. 2.24). This transfer 

function in the form of a new filter triangle symbolizes the spherical filter which would have to be 
applied to the reference model in order to achieve the same effects as the corresponding along-
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track filter applied to the reference signal. It should be also noted that the closed-loop errors are 
inherent in the reference model as well as in the estimated filtered model.  

 
 

 
Figure 3.7: Flowchart for empirical derivation of transfer function in model domain in the case of along-track 
filtering 

 
 
This procedure can be repeated analogously for spherical filtering in the model domain. The 
following steps explain the empirical derivation of a corresponding transfer function in the signal 
domain (see also Figure 3.8): 
 

1. Use of synthetic data generated from global model yielding reference signal Γij (represented 
by its Discrete Fourier Transform samples X[k]) 

2. Application of 2D spherical filter to same model and generation of filtered synthetic 
satellite signal Γij

SHfiltered (represented by its Discrete Fourier Transform samples Y[k]) 
3. Empirical derivation of transfer function in signal domain along the orbit (which 

corresponds to spherical filter in model domain) by computing the quotient of the DFTs of 
filtered and reference signals: 
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[ ]

Y k
H k

X k
=  (3.2) 

 
That means that modifying the along-track filter equation (Eq. 2.18) yields samples H[k]  of a filter 
sequence in the signal domain which will have the same influence on the reference data as its 
corresponding spherical filter in the model domain. 

 
 

 
Figure 3.8: Flowchart for empirical derivation of transfer function in signal domain in the case of spherical 
filtering 

 
 
It should be noted that this section actually describes the counterpart of the two previous sections. 
Instead of designing filters and then looking at the outputs, the transfer functions of filters in signal 
or model domain are computed based on the output from the corresponding filters in the other 
domain, respectively. This makes it possible to draw an empirical comparison between along-track 
and spherical filters. Thus, along-track filters can be converted into spherical filters depending on 
their outputs and vice versa. 
In real case scenarios, the exact reference model is not available. Therefore, a priori information 
has to be used in order to compare filtered and reference signals and models. Consequently, the 
outcome could be biased towards this a priori information. This needs further investigation in the 
future. 
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4 DISCUSSION OF RESULTS 
The outcome of the testing procedures described in the previous section 3.3 is interpreted in 
various ways. 
Section 4.1 will introduce the reference dataset. This is on the one hand the reference model 
EGM96 which can be represented in different ways. It should be kept in mind that all the following 
results in the model domain will not be shown as absolute but rather as relative results in the form 
of differences to the reference model. The second kind of reference data is the simulated reference 
signal in the form of a square rooted PSD spectrum which will be directly compared to the 
spectrum of the filtered signal. 
Sections 4.2 - 4.4 mainly investigate the differences between original and estimated, possibly even 
filtered datasets, with respect to variations of the along-track, cross-track and radial component in 
the signal. Another interesting point in this context is the change between geoid heights, gravity 
anomalies and the radial gravity gradients.  
An overview of the results using different filter properties will be given in section 4.5. This can be 
either one-dimensional along-track boxcar or Butterworth filters of different orders with varying 
cut-off frequencies or it can be two-dimensional spherical boxcar or Butterworth filters of different 
orders with varying cut-off degrees. 
Finally, section 4.6 will present the results of the empirical investigation of the filter transfer 
functions in order to examine the relation between along-track and spherical filters.  
 

4.1 Reference data 

4.1.1 REFERENCE MODEL 

As already mentioned in section 3.2, the EGM96 was chosen as reference global model of the 
Earth’s gravitational potential. For the interpretation of the test cases, it was considered as suitable 
to only use spherical harmonic (SH) coefficients up to a maximum order and degree of 50 in order 
to keep the computational effort low. Using references with higher or lower maximal degrees does 
not change the final results significantly but has a considerable influence on the resolution and the 
speed of the computations. The following arrangement of plots in Figure 4.1 shows four different 
quantities based on the EGM96 with max 50=L . An overview in form of a flowchart has already 

been shown in section 3.1.  
 
a) Spherical harmonic (SH) coefficients arranged in a triangle. 

The vertical axis of the triangle represents the degrees l  of the SH coefficients. The horizontal 
axis refers to the order ≤ lm  with the cosine mC

l
 coefficients on the right and the sine mS

l
 

coefficients on the left side. The coefficients with increasing degree l  refer to decreasing 
scales of the gravity field. The colour code of the triangles represents the logarithm of the 
absolute values of the coefficients.  
For the EGM96, the absolute and logarithmic values of the SH coefficients reach from -11 to    
-4. The higher the degree, the more coefficients have smaller values up to -11. 
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b) Geoid heights, N, in meters [m] measured from the mean Earth ellipsoid. 
Due to the fact that geoid heights are primarily long-wavelength features, the plot looks very 
smooth. The values lie in an interval of around - 105 to + 79 meters. Areas coloured in red as 
for example in the Andes of Peru have a higher altitude and are indicating a stronger signal 
than blue areas as e.g. in the Indian ocean. Positive heights are situated above the reference 
ellipsoid, negative heights below.  

 
c) Gravity anomalies, ∆∆∆∆g, in milligal ( 5 21 10 /mGal m s−= ) representing the differences between 

measured and normal gravity at any point (g g γ∆ = − ). 
As the gravity g  is the magnitude of the gradient of the potential and thus proportional to the 
first derivative of the geoid heights, it can be recognized that the structures of the gravity 
anomaly plot are stressing these areas with higher changes, edges respectively, (density 
inhomogeneities, mountain ridges, etc.) in the geoid heights. The features are becoming sharper 
which can be clearly seen in the Andes, for example. Thus, differentiating the potential is 
analogous to applying a high-pass filter to the original dataset. The values of the gravity 
anomalies range from - 82 to + 103 mGal. 

 
d) Gravity gradients, Trr, in Eötvös (1E = 10-9s-2) which are the second-order radial derivatives 

of the potential and the first-order radial derivatives of the gravity vector. 
The vertical gravity gradient is usually the largest component with values up to 3000 E on 
Earth. For better visualization, however, the Earth ellipsoidal effect has been subtracted. That is 
why the gravity gradient values are only ranging from – 5 to + 6 E. Due to the characteristics of 
differentiation, the corresponding plot evinces even smaller features than the plots for the geoid 
heights and for the gravity anomalies. 
 

 
Figure 4.1: Four different representations based on the global model EGM96     
a) spherical harmonic coefficients within a triangle, b) geoid heights in [m], c) gravity anomalies in [mGal] and 
d) radial gravity gradients in [E] with b)-d) plotted on a ground level grid.  

a)       b) 

     
c)       d) 
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The geoid heights, gravity anomalies and radial gravity gradients are plotted on a grid of points at 
the Earth’s surface. These points are equi-angularly spaced with a resolution of one degree.  
 
It should be noted that if the last four plots, let it be the spherical harmonic triangle, geoid heights, 
gravity anomalies or gravity gradients, are based on any estimated model, they look very similar to 
the original plots of the complete EGM96 model. Thus, the following sections will only discuss the 
plots of the differences between these original and estimated models but will not show the full 
model results.  
 

4.1.2 REFERENCE SIGNAL 

The synthetic reference signal was generated from the reference EGM96 global model with 
maximum degree and order 50. It is a time series of noise-free observations along a simulated 29-
days repeat orbit of GOCE with a sampling rate of 5 seconds or 0.2Hz (see section 3.2) at satellite 
height.  
 

 
Figure 4.2: √PSD of reference signal for along-track component Vxx (top left), cross-track component Vyy (top 
right) and radial component Vzz (bottom) 
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All three components (Vxx, Vyy and Vzz) of the reference signal can be represented as square rooted 
power spectral density (PSD) estimates in [E/√Hz] versus frequencies ranging from the 
fundamental to the Nyquist frequency (Figure 4.2). The √PSD spectrum describes how the square 
root of the power, i.e., the amplitude, of each signal component is distributed over frequency. Due 
to better visualization, it will be presented on a logarithmic scale. The revolution frequency of the 
satellite will be additionally shown as a black line at 0.186mHz or one cycle per revolution (1cpr) 
in every square rooted PSD plot. The highest amplitudes are concentrated on a frequency band 
between approximately 0.2mHz and 0.4mHz containing two major peaks. The first peak at around 
0.2mHz falls together with the revolution frequency and the second peak at approximately 0.4mHz 
is identical to twice the revolution frequency. These peaks have magnitudes of about 12.5ME/√Hz 
and 6.8ME/√Hz for the along-track component Vxx, about 12.5ME/√Hz and 4.8ME/√Hz for the 
cross-track component Vyy and the highest magnitudes for the radial component Vzz with about 
25.0ME/√Hz and 9.6ME/√Hz. For higher frequencies up to 10mHz, the spectrum starts to oscillate 
with a generally decreasing trend. In a frequency band from about 10mHz up to the Nyquist 
frequency of 100mHz, the square rooted PSD of the reference signal is strictly monotonic 
decreasing without any oscillations. This means that the signal contains only little information in 
this band since the input model was limited to degree and order 50.  
Apart from some smaller differences, the graphs of all three components look very similar. It is, 
however, evident that the square rooted PSD of the radial component Vzz is slightly higher than 
those of the other components. This was expected as the signal is strongest in the radial direction. 
In the following sections, these reference spectra will be directly compared to the spectra of the 
simulated filtered signals.  
 

4.2 Closed-loop tests 
The purpose of implementing closed-loop tests is mainly to check the reliability and consistency of 
the software and the dataset used. If everything works fine, the differences between original and 
estimated model are expected to lie within the numerical accuracy of the computer. The 
implementation of this closed-loop test is explained in detail in chapter 3.3.1. 
As it can be seen in Figure 4.3, this section is not interested in the absolute model outcomes but in 
the differences between the original EGM96 and the estimated model which was computed by 
applying the two independent software programs ‘create’ and ‘adjust’. These differences will be 
presented in form of triangle plots ( ,∆ ∆

l lm mC S ) as well as in the form of three different quantities 

on a grid at ground level which are geoid heights (∆N), gravity anomalies (∆(∆g)) and gravity 
gradients (∆Trr). The difference plots will be arranged in the same way as it was already done for 
the reference EGM96 model in Figure 4.1. Since the estimated models within the closed-loop tests 
can be computed by either using all diagonal components of the signal tensor for the analysis step 
or only one of them (along-track Vxx, cross-track Vyy or radial Vzz), there will be shown four of these 
difference plot arrangements in the sequel of this section (Figure 4.4-Figure 4.7). 
Taking a first quick glance at these figures and the corresponding statistics in Table 4.1, it is 
evident that the differences within all of these plots lie in fact within the computational accuracy. 
The triangle plots in the figure parts a) provide difference values from 10-15 to 10-22. The 
application of the cross-track component Vyy (Figure 4.6) leads to the maximal RMS values for the 
differences in the geoid height with 0.13µm, for the gravity anomalies with 0.13nGal and for the 
radial gravity gradients with 3.30nE.  
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Figure 4.3: Flowchart for comparison of closed-loop test results 

 

Table 4.1: RMS values for closed-loop test 

signal components 
RMS of ∆N 

[nm] 
RMS of ∆(∆g) 

[pGal] 
RMS of ∆Trr 

[nE] 
all 
Vall 

2.237 0.158 0.011 

along-track 
Vxx 

1.403 0.330 0.011 

cross-track 
Vyy 

134.899 132.828 3.303 

radial 
Vzz 

83.087 80.444 2.920 

 
 
The first case, revealed in Figure 4.4, demonstrates the differences between original and computed 
model if all signal components are taken into account. In the relatively symmetric triangle plot in 
a), there is a trend of an increasing number of SH coefficients with smaller differences up to values 

on a grid at ground level (h = 0 km) 
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of 10-22 if the degree is increasing. That trend is similar to the absolute global EGM96 model 
whereas the relative values are much smaller. Another clearly visible structure is the vertical line 
along the zonal SH coefficients of zero order with slightly higher differences of up to 10-15 

compared to the relative values of the surrounding coefficients. As the orbit of GOCE is not polar 
but has an inclination of 96.6 degrees, there are no measurements above the North and South Pole. 
These so-called polar gaps have a direct influence on the zonal SH coefficients. Other similar but 
less distinct features can be seen along the vertical axes of the orders 16,32,48m= ± . The reason 
for these bands of slightly higher values is mainly due to the orbit resonance. In the case of a noise-
free scenario, the fundamental rotational frequency which is 16 revolutions per day for GOCE, 
affects the SH coefficients in the triangle with orders which are a multiple of this revolution 
number 16. 
The plots b)-d) of Figure 4.4 show that the quantities on a grid reveal clear features in west-east 
direction, i.e., almost perpendicular to the flight (along-track) direction of the satellite. This means 
that the error in 20C  is dominant. The similarity between the three subplots and the plots in Figure 

4.7 when applying the radial component only, is remarkable and is due to the fact that the radial 
signal component is dominant. Furthermore, the absolute geoid height differences between original 
and estimated models b) are smaller in regions of latitudes from about ±20 to ±35 degrees and a 
small zone on the South Pole if compared to other regions, as e.g. the North Pole and the Equator. 
These features are again ascribed to the polar gaps. The smooth long wavelength structures of the 
geoid heights get lost in the first and second derivation of the potential. As a consequence, the 
features in the plots for the gravity anomalies c) and especially for the gravity gradients d) become 
more detailed.  
 

 
Figure 4.4: Differences between original EGM96 and estimated model (analysis with all signal components) in 
closed-loop test for a) SH triangle, b) geoid heights, c) gravity anomalies and d) radial gravity gradients. 

 

a)       b) 

    
c)       d) 
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If only the along-track component Vxx is used for the analysis, then the features in the plots in 
Figure 4.5 look very different although the statistics do not differ significantly from each other 
(Table 4.1). While the RMS of the geoid height differences for the application of the along-track 
component is a little bit better with 1.4nm compared to 2.2nm for all components, it is vice versa 
for the gravity anomalies with 0.33pGal compared to 0.16pGal. The relative RMS values for the 
gravity gradients are the same for both cases with ca. 0.01nE. The corresponding plots b) – d), 
however, stress features in along-track direction which is almost a north-south feature on the Earth 
surface. The little offset between north-south and flight direction is due to the inclination of the 
satellite orbit. Analogue to the case with all components and to the reference field, the features of 
the geoid gradients are sharper than for the geoid heights and for the gravity anomalies. The 
relatively high geoid height differences on the Poles are again ascribed to the polar gaps.  
Opposite to the closed-loop test with all components, the triangle plot a) with only the along-track 
component reveals much smaller values with dominant accuracies of ca. 10-22, above all for SH 
coefficients of lower orders. The trend of increasing accuracy with increasing degrees as well as 
the lines of lower values for the SH coefficients of order zero and orders 16,32,48m= ±  as it is 
depicted in all the other closed-loop tests, can hardly be seen in this case. Instead, it seems that this 
time the sectorial SH coefficients reveal slightly higher differences and consequently a sectorial 
pattern can be seen in the plots b) – d). 
 
 

 
Figure 4.5: Differences between original EGM96 and estimated model (analysis with along-track signal 
component Vxx) in closed-loop test for a) SH triangle, b) geoid heights, c) gravity anomalies and d) radial gravity 
gradients. 

 
 

a)       b) 

     
c)       d) 
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The plot arrangements of the following two figures (Figure 4.6 and Figure 4.7) which belong to the 
two cases where the cross-track Vyy and the radial components Vzz were used in the analysis, reveal 
very similar features as in the case of applying all signal components. The triangle plots show 
again clear bands of higher differences for the SH coefficients of the orders 0, 16,32,48m= ± . For 
the cross-track case (Figure 4.6, a), the band with differences around 10-18 up to 10-15 around the 
coefficients of zero order is comparably broader and includes also coefficients of up to the tenth 
order of sine and cosine. It becomes one narrow line with larger differences of 10-15 if only radial 
components are used (Figure 4.7, a). All the other plots b) – d) of the following two figures contain 
significant horizontal structures in west-east direction as they were already visible when all 
components were taken into account (Figure 4.4).  
The corresponding statistics, however, differ a little bit. As already mentioned, applying Vyy only, 
leads to the maximal RMS values for the geoid heights, gravity anomalies and gravity gradients 
(Table 4.1). These values are only slightly improving if Vzz is used instead, with differences in the 
geoid height of 83.1nm, in the gravity anomalies of 80.4pGal and in the radial gravity gradients of 
2.9nE.  
 
 

 
Figure 4.6: Differences between original EGM96 and estimated model (analysis with cross-track signal 
component Vyy) in closed-loop test for a) SH triangle, b) geoid heights, c) gravity anomalies and d) radial gravity 
gradients. 

 

a)       b) 

      

c)       d) 
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Figure 4.7: Differences between original EGM96 and estimated model (analysis with radial signal component 
Vzz) in closed-loop test for a) SH triangle, b) geoid heights, c) gravity anomalies and d) radial gravity gradients. 

 
 
Applying all three signal components within the closed-loop tests is expected to lead to smaller 
differences between EGM96 and the estimated model than applying only one component since 
more observations are used for the analysis. However, in using the along-track component Vxx 
only, even more accurate models can be achieved within this study which deals with a noise-free 
scenario. This is mainly due to the polar gaps which have a minor influence on the along-track 
component but a greater impact on the cross-track and radial components and therefore also on the 
results of a combined solution. These effects are reflected by the more or less distinct features 
along the zonal SH coefficients in the triangle plots.  
Furthermore, the closed-loop tests also indicate that no matter which signal component is applied 
within the analysis step, the differences between original and estimated model are within numerical 
accuracy of the computer.  
In conclusion, the software packages ‘create’ and ‘adjust’ as well as the implied dataset can be 
deemed to be an appropriate basis for further investigation with respect to applied filters.  
 

4.3 Along-track filtering 
The next step of this study was to modify the generated satellite signal by applying one-
dimensional along-track filters along the orbit to each of the three main components of the signal 
output tensor (Eq. 2.4). It should be noted that we are not interested in the actual filtering as 
filtering a noise-free signal is not reasonable. This study is rather interested in the different effects 
on the signal itself caused by filters. 

a)       b) 

     
c)       d) 
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Thus, the difference plots for all four quantities on model level will be first shown for the filtering 
of the along-track signal component Vxx, followed by plots for the cross-track component Vyy and 
the radial component Vzz. This makes it possible to compare the influences of filters on different 
signal components.  
This section investigates the effects of two different filters, the boxcar and the Butterworth filter. 
For direct comparison and to keep the overview, only one filter setting with a cut-off frequency of 
one tenth of the Nyquist frequency ( 1 10 10c Nyf f mHz= ⋅ = ) and an order of two for the 

Butterworth filter, is chosen in the sequel. Both filters are shown in the spectral domain (Figure 
4.8) as amplitude values dependent on the frequencies which are running from the fundamental to 
the Nyquist frequency. These filters will be applied to the Fourier transformed signal by 
multiplication in the spectral domain (detailed description, see section 2.3.1). It is evident that the 
transition of the Butterworth filter is much smoother than the boxcar filter but also manipulates the 
signal already for smaller frequencies than the cut-off frequency in contrast to the boxcar filter.  
Further investigation on the influence of other filter settings will be presented in section 4.5.  
 

 
Figure 4.8: Along-track lowpass filter setups in spectral domain with cut-off frequency 1/10 of Nyquist 

frequency: boxcar filter (blue), Butterworth filter, order 2 (green) 

 

The algorithm of the testing procedure for along-track filtering can be found in the flowchart in 
Figure 3.5. 
 
BOXCAR FILTER      At first, the filtered data will be compared to the reference data on signal level 
for all three components by putting the spectra of both square rooted power spectral densities 
(PSDs) side by side (flowchart in Figure 4.9).  
Figure 4.10 shows the absolute square rooted PSDs in [E/√Hz] of the reference (blue) and filtered 
signal (red) for all components in the spectral domain versus frequencies ranging from the 
fundamental to the Nyquist frequency. Due to better visualization, the axes of these plots are 
presented on a logarithmic scale. 
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By comparing these spectra of the original and the filtered signal, it can be seen that the amplitudes 
within a frequency band from 10mHz (cut-off frequency) to 100mHz (Nyquist frequency) are cut-
off by the boxcar filter. For higher frequencies than the cut-off frequency, the magnitudes of the 
filtered signal have values less than 1e-20 E. For all other frequencies, the spectra of the reference 
and filtered signal are identical. 
 

 
Figure 4.9: Flowchart for comparison of simulated signal from EGM96 model and from along-track filtered 
signal based on square root of power spectral densities (√PSD) 

 

 
Figure 4.10: √PSD of along-track boxcar filtering of Vxx (top left), Vyy (top right) and Vzz (bottom) with cut-off 
frequency 1/10 of Nyquist frequency at signal level 
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In contrast to the comparison of absolute values on signal level, the assessment of the filter 
influences on geoid model level is based on interpreting the differences between original and 
estimated filtered models in the form of difference plots (see section 4.1 and Figure 4.11). 
 
 

 
Figure 4.11: Flowchart for comparison of along-track filtering effects based on global models on the ground 

 
 
The filtered signal had to be shortened on both sides of the time series in order to attenuate the 
transient phenomenon of the filter. An evidence of this effect can still be seen in the plots b) – d) in 
Figure 4.12. These plots reveal the differences of geoid heights, gravity anomalies and gravity 
gradients between the original EGM96 model and the model estimated from the boxcar filtered 
signal component Vxx. In all three cases, these effects appear mainly along the zero meridian with 
maxima and minima at a latitude of ca. 60 degrees on the North and South hemisphere. Since Vxx is 
the along-track component, the structures in the plots b) – d) as well as the maxima and minima are 
in alignment with the orbit and are therefore a little bit inclined with respect to the meridian. Due 
to the polar gaps and this inclination of the orbit, the South and the North pole are also evincing 
slightly higher differences between EGM96 and estimated model. The magnitudes of the peaks are 
approximately ±80µm for the geoid height, ±400nGal for the gravity anomaly and ±30µE for the 
gravity gradient. The RMS values of differences between original and filtered model (Table 4.2) 
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are about one order of magnitude smaller with 2.9µm, 16.1nGal and 1.2µE, respectively. It seems 
that the actual filter effects of this specific boxcar filter with a cut-off frequency of one tenth of the 
Nyquist frequency are smaller than the warm-up effects. If using filters with smaller cut-off 
frequencies and thus higher influences on the signal, it is expected that the warm-up effects will be 
hidden by the filter effects.  
The SH coefficient triangle in Figure 4.12 a) is mainly divided into two zones. The coefficients of 
orders between 30 and 50 show differences between the EGM96 and estimated model of 10-15 and 
smaller. On the other hand, there is an area of slightly higher differences up to 10-13 for lower order 
coefficients. As this difference triangle seems to be dependent on the SH order, one could get the 
impression that applying a one-dimensional boxcar filter to the signal is analogous to applying a 
two-dimensional spherical order filter to the model. This last assumption, however, has to be 
revised in the case of filtering the cross-track component Vyy of the signal.  
 

 
Figure 4.12: Along-track boxcar filtering of Vxx with cut-off frequency 1/10 of Nyquist frequency at model level 

 

Table 4.2: RMS values for along-track boxcar filtering with cut-off frequency 1/10 of Nyquist frequency 

signal components 
RMS of ∆N 

[µm] 
RMS of ∆(∆g) 

[nGal] 
RMS of ∆Trr 

[µE] 
along-track 
Vxx 

2.950 16.087 1.181 

cross-track 
Vyy 

7.221 48.453 3.774 

radial 
Vzz 

16.356 32.759 1.648 

 

a)       b) 

        
c)       d) 
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Table 4.2 shows higher differences in the RMS values for the cross-track than for the along-track 
component. The RMS of the differences in geoid height between EGM96 and estimated model is 
increasing from 2.95µm for Vxx to 7.22µm for Vyy. In the case of the gravity anomaly, there is an 
increase from 16.1nGal for Vxx to 48.5nGal for Vyy and with respect to the gravity gradients, using 
the cross-track component leads to a rise from1.18µE for Vxx up to 3.77µE for Vyy. 
As it was already mentioned in the discussion of the closed-loop tests, these higher differences in 
the RMS values are rather due to the lower power of the cross-track component of the signal 
compared to the along-track component, but less due to the influences of the boxcar filter. Little 
differences between the components Vxx and Vyy can be also recognized in Figure 4.13. Firstly, if 
the Vyy component is filtered, the maxima and minima in the plots b) – d) have significantly higher 
amplitudes with approximately ±100µm for the geoid heights, ±600nGal for the gravity anomalies 
and ±45µE for the gravity gradients. Secondly, the features of the remaining transient filter 
oscillation are oriented in cross-track direction of the orbit instead of in along-track direction and 
therefore show a west-east trend. The triangle plot a) also presents a different structure which leads 
back to the refusal of the assumption that a one-dimensional boxcar filter could be analogously 
implemented as a two-dimensional order filter. The features in the SH triangle are looking more 
randomly for the filtered cross-track component with very small differences of up to 10-20 for the 
sectorial coefficients of degree and order higher than 15. 
 

 
Figure 4.13: Along-track boxcar filtering of Vyy with cut-off frequency 1/10 of Nyquist frequency at model level 
 
 
The third component to discuss is the radial component Vzz of the signal. If we take a look at Table 
4.2, it can be noted that the boxcar filter seems to have the biggest influence on the radial 
component with respect to the geoid heights. Compared to the other components, the RMS of the 
differences in the geoid heights between EGM96 and filtered model becomes maximal with a 
value of 16.36µm. The reason is that the boxcar filter completely eliminates the signal for all 
frequencies higher than the cut-off frequency. Thus, as the radial component has the highest 

a)       b) 

    
c)       d) 
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average power, filtering this signal component with a boxcar filter will have the most significant 
impact on the filtered signal itself and with it on the differences between EGM96 and the estimated 
model. As the gravity anomalies and gravity gradients are derivatives of the potential and thus, the 
higher frequencies are amplified, it is consequently expected that more signal is filtered. This 
would cause even higher differences for gravity anomalies and gravity gradients if the radial 
component is used. However, the RMS values for both quantities lie between the RMS values for 
the along-track and cross-track components with respect to the gravity anomalies with 32.76nGal 
and with respect to the gravity gradients with 1.65µE.  
The corresponding plots in Figure 4.14 b) – d) show similar structures as in the plots of the filtered 
along-track component Vxx with peaks in small regions along the orbit around the meridian at 
latitudes of ±60 degrees. The graph d) for the radial gravity gradients rr zzV V=  is actually the only 

one which visualizes the estimated model in the same direction in which the signal has been 
filtered. It should be also noted that the minimum at the South Pole as well as the maximum at the 
North Pole have increased their magnitudes in all three quantities. The SH triangle of Vzz looks 
very similar to this of Vyy with a band of lower differences of ca 10-20 along the sectorial 
coefficients and with higher differences of up to 10-13 along the zonal coefficients.  
 
 

 
Figure 4.14: Along-track boxcar filtering of Vzz with cut-off frequency 1/10 of Nyquist frequency at model level 

 
 

a)       b) 

       
c)       d) 
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BUTTERWORTH FILTER      The second part of the along-track filtering investigation deals with the 
application of a Butterworth filter of order two. The different effects will be discussed again on 
signal and on model level. The same cut-off frequency of one tenth of the Nyquist frequency 
(10mHz) is used. 
Table 4.3 shows the RMS values of the differences between the original EGM96 model and the 
model which is estimated from the Butterworth filtered signal components Vxx, Vyy and Vzz with 
respect to geoid heights ∆N, to gravity anomalies ∆(∆g) and to the radial gravity gradients ∆Trr.  
In comparison to the result of the boxcar filter in Table 4.2, it sticks out that the RMS values are 
about four orders of magnitudes higher. This time, filtering the radial signal component Vzz leads to 
the maximum differences with 14.4cm for the geoid height and 0.21mGal for the gravity anomaly. 
The maximum difference for the gravity gradient with 0.014E was achieved by filtering the along-
track component Vxx. On the other hand, filtering the cross-track component Vyy leads to the 
minimum differences for all three quantities on a grid with 2.62cm, 0.17mGal and 0.012E. 
 
 

Table 4.3: RMS values for along-track Butterworth filtering (order 2) with cut-off frequency 1/10 of Nyquist 
frequency 

signal components 
RMS of ∆N 

[cm] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 
along-track 
Vxx 

3.479 0.193 0.014 

cross-track 
Vyy 

2.618 0.165 0.012 

radial 
Vzz 

14.411 0.206 0.013 

 
 
From Table 4.3 it can be firstly concluded that the Butterworth filter is much more aggressive than 
the boxcar filter. This fact can be also seen in the corresponding plots of the PSDs for all three 
components of the reference and filtered signal in Figure 4.15. Although the Butterworth filter 
itself does not hold such a sharp edge as the boxcar filter (Figure 4.8) at the cut-off frequency of 
10mHz, it already starts to modify the signal and reduces the amplitude for frequencies smaller 
than the cut-off frequency where the √PSD amplitude of the signal is strongly oscillating. The 
boxcar filter, however, only cuts the relatively low and monotonic √PSD part of the signal for 
frequencies higher than 10mHz. That is the reason for achieving significantly higher differences 
between original and estimated model.  
The second point of the conclusion is that filtering the cross-track component will have the 
smallest influence on the estimated model. The reason is that this signal component Vyy has the 
lowest power compared to the other components and thus, the power loss by filtering will be less. 
This is especially the case for the Butterworth filter since most of the √PSD is concentrated in the 
band of frequencies lower than 10mHz. 
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Figure 4.15: √PSD of along-track Butterworth filtering (order 2) of Vxx (top left), Vyy (top right) and Vzz (bottom) 
with cut-off frequency 1/10 of Nyquist frequency at signal level 

 
 
Figure 4.16 shows again the differences between the original EGM96 and the estimated model 
derived from the Butterworth filtered along-track signal component with respect to the four 
different quantities. The features in all four subplots look more random compared to those of the 
boxcar filtered results in Figure 4.12 since all frequencies are affected equally. The differences 
with values up to 10-9 presented in the SH triangle with respect to Butterworth filtering are 
essentially higher for nearly all degrees and orders. Moreover, the sectorial coefficients have 
slightly smaller values with 10-11 to 10-10. Few coefficients reach minimum differences of about  
10-14 which is about six magnitudes worse than applying the boxcar filter.  
In the differences of the geoid heights (subplot b), there are also much finer features inherent 
distributed over the whole grid of the Earth with maxima and minima of up to ±0.9m which can be 
mainly seen in the Himalaya region, in the Caucasus Mountains and along the Andes. These 
features are even getting finer with every further derivation of the potential, i.e., for the gravity 
anomalies (subplot c) and the radial gravity gradients (subplot d). 
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Figure 4.16: Along-track Butterworth filtering (order 2) of Vxx with cut-off frequency 1/10 of Nyquist frequency 
at model level 

 

 
Figure 4.17: Along-track Butterworth filtering (order 2) of Vyy with cut-off frequency 1/10 of fNy at model level 

a)       b) 

     
c)        d) 

     

a)       b) 

       
c)       d) 

      



 

GOCE data and gravity field model filter comparison 

 

page 48 of 110 

 

  

s 

 
Figure 4.18: Along-track Butterworth filtering (order 2) of Vzz with cut-off frequency 1/10 of fNy at model level 

 
 
The both previous graphs for the other cases, where the Butterworth filter was applied to the cross-
track component Vyy (Figure 4.17) as well as to the radial component Vzz (Figure 4.18), are evincing 
similar features compared to the results from filtering the along-track component Vxx. As it was 
shown in Table 4.3, mainly the statistics are different.  
In Figure 4.18, it is evident that the differences for the geoid heights are relatively high. The reason 
is that the effects of the Earth ellipsoidal field start to show up. These effects are even increased if 
a Butterworth filter of lower cut-off frequency is chosen as it will be revealed for a cut-off 
frequency of 1/200 of the Nyquist frequency in section 4.5.1. This problem can be solved by 
filtering the disturbing potential instead of the full gravitational potential. 
 

4.4 Spherical filtering 
The third test scenario, apart from the closed-loop tests and test for the one-dimensional along-
track filtering of the simulated signal, is the two-dimensional spherical filtering of the EGM96 
model. This step was implemented by designing a spherical boxcar filter on the one hand and a 
spherical Butterworth filter of order 2 on the other hand which are supposed to work as so-called 
degree filters. That means that the spherical harmonic coefficients of the original EGM96 model 
will be modified by applying these filter functions to the corresponding SH triangle depending on 
the degree of the coefficients. The testing procedure itself has been already explained in section 
3.3.3.  
 
At first, the effects of the filters will be examined in the spectral domain with respect to square 
roots of the power spectral densities (√PSD in E/√Hz) of the three different signal components, 

a)       b) 

       
c)       d) 
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along-track Vxx, cross-track Vyy and radial Vzz. The simulated signal tensor based on the original 
model is compared with the spherical filtered EGM96 model (Figure 4.19). 
Furthermore, the difference plots between both models will be also analysed. The relationship of 
the corresponding quantities is visualized in the flowchart in Figure 4.20 and details can be found 
in the explanation of the reference data in section 4.1. 
 

 
Figure 4.19: Flowchart for comparison of simulated signal from EGM96 model and from spherical filtered 
model based on square root of power spectral densities (√PSD) 

 
 

 
Figure 4.20: Flowchart for comparison of spherical harmonic filtering effects based on global models on the 
ground 
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As it was already done for the along-track filters, only one filter setup is chosen within this section 
in order to investigate the different influences of the two filter types and the effects on the varying 
signal components. The cut-off for both filters was chosen at 35 degrees in the case of an EGM96 
model of maximal degree and order of 50. 
The boxcar as well as the Butterworth filter are presented in Figure 4.21 based on the SH 
coefficients within a triangle plot. In the same way as it was recognized for the along-track filters, 
it is obvious that the Butterworth filter has a smoother transition than the boxcar filter but also 
manipulates the coefficients already for lower degrees. While the SH filter coefficients of the latter 
are either unaltered or zero which will therefore lead to a sharp edge on the cut-off degree of 35, 
the SH filter coefficients of the Butterworth filter are slowly decreasing from 1.0 to 0.45 with 
increasing degrees from 1 to 50. Since both filters are not order but degree filters, the coefficients 
of same order will all have the same filter value. These spherical filters will be applied to the 
spherical harmonic coefficients of the EGM96 model by multiplication (detailed description, see 
section 2.3.2). 
Further investigation on the influence of other filter settings will be presented in section 4.5.  
 
 

 
Figure 4.21: Spherical lowpass filter setups as SH coefficient triangles with cut-off degree of lc=35: boxcar filter 
(left), Butterworth filter, order 2 (right) 

 
 
BOXCAR FILTER      Let us first have a look at the three square rooted PSD plots (Figure 4.22) of 
the three different signal components. This signal has been simulated based on the spherical boxcar 
filtered EGM96 model with the cut-off degree lc=35. The first aspect which attracts attention is 
that for the lower frequencies of up to approximately the second peak at 0.4 mHz, the √PSD of the 
estimated signal from the EGM96 model is hardly modified by filtering the SH coefficients. 
Especially for the along-track component Vxx, the √PSD differences between simulated original 
and filtered signal are minimal in this frequency band. The second point is that the strictly 
monotonic decreasing non-oscillating tails for frequencies of about 10 mHz up to 100 mHz are 
almost identical for the original and the filtered signal. The cut-off degree of lc=35 mainly reduces 
the power of the original signal for frequencies from the second peak at around 0.4 mHz on and 
depresses the oscillation of the original signal from ca. 7 mHz on. Thus, a spherical lowpass degree 
filter in the boxcar form seems to have an influence on the reference signal which is comparable to 
applying an along-track bandstop filter. 
Since not every signal component was filtered separately as it was done for the along-track 
filtering but are simply derived from the simulated signal tensor based on an overall filtering of all 
SH coefficients up to degree and order of 50, this type of filtering influences all three signal 
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components in the same way. This assumption can not only be confirmed by the three very similar 
√PSD plots, but also by the following statistics in Table 4.4 and the corresponding difference plots.  
 

 
Figure 4.22: √PSD of simulated signal components Vxx (top left), Vyy (top right) and Vzz (bottom) based on 
spherical boxcar filtering of the EGM96 model with cut-off degree of lc=35 

 
 
Table 4.4 presents the RMS values of the differences in geoid heights, gravity anomalies and radial 
gravity gradients for each component which have been derived from the original EGM96 model 
and from the estimated model. In fact, the statistics of all three signal components are very close to 
each other. For example, the change in the RMS value of the geoid height if using the cross-track 
instead of the along-track component is only around 20nm. The very small changes between the 
signal components are probably caused by the closed-loop and lie within the numerical accuracy of 
the computer. The RMS values for the geoid heights are approximately 26.4cm, for the gravity 
anomalies 1.68mGal and for the gravity gradients 0.12E. With respect to the absolute values of the 
corresponding EGM96 quantities, these differences are still smaller than 3%. 
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Table 4.4: RMS values for spherical boxcar filtering with cut-off degree of lc=35 

signal components 
RMS of ∆N 

[cm] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 
along-track 
Vxx 

26.366 1.676 0.123 

cross-track 
Vyy 

26.366 1.676 0.123 

radial 
Vzz 

26.366 1.676 0.123 

 
 

 
Figure 4.23: Spherical boxcar filtering (Vxx) with cut-off degree of lc=35 at model level 

 
 
With respect to the corresponding difference plots for geoid height b), gravity anomaly c) and 
gravity gradient d) in Figure 4.23 - Figure 4.25, it is evident that the occurring features are virtually 
identical for all three signal components. Some small variations between the components can be 
seen in the triangle plots a), although these plots are more influenced by the high differences of up 
to 10-8 in the SH coefficients from degrees 30 up to 50. For lower orders, the differences are 
smaller with values from 10-22 to 10-18 but present maxima of 10-16 for coefficients of order zero, 
±16 and ±32 due to orbit resonances. For the cross-track component (Figure 4.24 a), however, 
these features are spreading out to the neighbouring SH coefficients. 
The difference plots b) – d) on the grid show some striking features of maxima and minima, for 
example above the Himalaya and the Andes, with magnitudes of about ±8 m for the geoid heights, 
±50 mGal for the gravity anomalies and ±3 E for the gravity gradients. These features are very fine 
with higher frequencies inherent. This characteristic is enhanced by the filter design since the 

a)       b) 

        
c)       d) 
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spherical boxcar filter completely cuts the SH coefficients of the EGM96 from degree 35 to 50 and 
lets the other ones unchanged. Thus, by plotting the differences between EGM96 and estimated 
model, the resulting features on the grid directly reflect the EGM96 model for coefficients of order 
35 to 50 together with the very small differences resulting from the closed-loop. 
 

 
Figure 4.24: Spherical boxcar filtering (Vyy) with cut-off degree lc=35 at model level 

 

 
Figure 4.25: Spherical boxcar filtering (Vzz) with cut-off degree lc=35 at model level 

a)       b) 

    
c)       d) 
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c)       d) 
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BUTTERWORTH FILTER      Another interesting aspect of the spherical harmonic filtering tests is the 
comparison of the results from the two different filter types: the Butterworth and the boxcar filter. 
In comparison with the effects of the boxcar filter, the Butterworth filter of order 2 seems to be less 
aggressive. 
The square rooted PSD plots for all three signal components in the following Figure 4.26 show that 
the spherical Butterworth filter decreases more and more the range of √PSD oscillations of the 
simulated original signal for frequencies between 0.4mHz and 100mHz. In contrast to the spherical 
boxcar filter, it does not completely depress the oscillations from ca. 7 mHz on (Figure 4.22). The 
reason is that the Butterworth filter design is much smoother and does not lead to an abrupt and 
complete cut-off as it is caused by a boxcar filter (Figure 4.21).  
Therefore, the boxcar filter directly applied to the SH coefficients seems to have a higher influence 
on the reference data than the Butterworth filter. 
 

 
Figure 4.26: √PSD of simulated signal components Vxx, Vyy and Vzz based on spherical Butterworth filtering 
(order 2) of the EGM96 model with cut-off degree of lc=35 

 
As it is shown in Table 4.5, the RMS values of the differences between original and estimated 
model quantities are indeed becoming smaller in the case of applying the spherical Butterworth 
instead of the boxcar filter with about 15.4 cm for the geoid heights, 0.88 mGal for the gravity 
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anomalies and 0.062 E for the radial gravity gradients. Again, the spherical Butterworth filter 
affects all signal components in almost the same way. 
 

Table 4.5: RMS values for spherical Butterworth filtering (order 2) with cut-off degree of lc=35 

signal components 
RMS of ∆N 

[cm] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 
along-track 
Vxx 

15.436 0.885 0.062 

cross-track 
Vyy 

15.436 0.885 0.062 

radial 
Vzz 

15.436 0.885 0.062 

 
 
These RMS values have been computed based on the differences between the original EGM96 and 
the estimated model. Regarding the corresponding features plotted as geoid heights, gravity 
anomalies and gravity gradients on a grid at ground level in Figure 4.27 - Figure 4.29, it can be 
deduced that also the Butterworth filter will influence all signal components in a very similar way. 
There are no visible differences between these plots as well as in the triangle plots of the SH 
coefficients. Apart from the significantly smaller magnitudes, the features in the subplots b) – d) 
look similar to those of applying the spherical boxcar filter even though the latter might be slightly 
coarser. As already mentioned, the reason is that the Butterworth filter design circumvents a sharp 
edge and thus reduces higher frequency ripples and ringing (Gibbs’ phenomenon) throughout the 
grid plots. Even the dense regions of alternating minima and maxima, for example in the Himalaya 
and in the Andes, seem to be more blurry for the Butterworth filter. In these areas, the magnitudes 
are fluctuating between values of about ±5 m for the geoid heights, ±25 mGal for the gravity 
anomalies and ±2 E for the gravity gradients. Even though these peaks and the RMS values are 
lower for the Butterworth than for the boxcar filter, it is the other way round for the triangle plots 
in the subplots a). They show much higher differences of up to 10-8 for almost all SH coefficients 
in the case of a Butterworth filter. Beside some rare coefficients in between with minimum values 
of 10-15, only some coefficients with a degree smaller than approximately 10, present a slight 
decrease in differences with values of about 10-11. 
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Figure 4.27: Spherical Butterworth filtering (order 2, Vxx) with cut-off degree lc=35 at model level 

 
 

 
Figure 4.28: Spherical Butterworth filtering (order 2, Vyy) with cut-off degree lc=35 at model level 

a)       b) 

    
c)       d) 

 

a)       b)  

    
c)       d) 
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Figure 4.29: Spherical Butterworth filtering (order 2, Vzz) with cut-off degree lc=35 at model level 

 

4.5 Comparison of different filter properties 
The discussion of the results from the closed-loop tests, the along-track filtering and the spherical 
filtering in the previous sections was mainly focused on the investigation of filter influences with 
respect to different quantities, such as the square root of the PSDs, the SH triangles, geoid heights, 
gravity anomalies and radial gravity gradients. Furthermore, the different effects caused by 
applying filters to one of the three signal components were analysed as well as the influences of 
using a Butterworth instead of a boxcar filter.  
This section, however, will investigate how these results are influenced by modifying the filters. 
These specific modifications include the variation of the cut-off frequencies for along-track 
filtering (section 4.5.1) and of the cut-off degrees for spherical filtering (section 4.5.2) as well as 
the variation of the Butterworth filter orders (section 4.5.3). 
All three sections will first show the actual filter properties, either in the spectral domain for along-
track filters or as SH triangles for spherical filters. Afterwards, the square rooted PSDs of the 
reference and filtered signals will be shown. Finally, tables will give an overview of the RMS 
values which are based on the differences between reference and filtered models. Since the results 
for all three signal components are basically very similar, the following sections will only interpret 
the results for the radial component Vzz because it is the component with the maximum signal 
power. The interested reader is referred to the appendix which shows the difference plots and 
statistics for all three signal components and all different filter properties. 
 

a)       b) 

    
c)       d) 
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4.5.1 VARIATION OF THE CUT-OFF FREQUENCY FOR ALONG-TRACK 
FILTERING 

Figure 4.30 reveals the filter properties in the spectral domain in the form as they will be applied 
along-track to the simulated signals. The left side shows the boxcar filter design and the right side 
the Butterworth filter design of order 2.  

 

Figure 4.30: Along-track lowpass filter setups in spectral domain with varying cut-off frequencies (left: boxcar, 
right: Butterworth, order 2) 

 
 
Four different cut-off frequencies fc given as fractions of the Nyquist frequency fNy were chosen for 
both filters: 
 

- fc = 1/200 fNy =   0.5 mHz 
- fc =   1/20 fNy =   5.0 mHz 
- fc =   1/10 fNy = 10.0 mHz 
- fc =     1/5 fNy = 20.0 mHz 

 
The smaller the cut-off frequency, the more aggressive is the filter. That means that for high cut-
off frequencies such as 20mHz only high frequencies are dampened by the filter. With decreasing 
fc, the filtered signal will contain less and less high frequencies and will become smoother.  
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Figure 4.31: √PSD of along-track boxcar filtering of Vzz with cut-off frequencies 1/5 (top left), 1/10 (top right), 
1/20 (bottom left) and 1/200 (bottom right) of Nyquist frequency at signal level 

 

BOXCAR FILTER      Figure 4.31 demonstrates the effects of decreased cut-off frequencies on signal 
level for along-track boxcar filtering. The square root of the PSDs of reference signal (blue) and 
filtered signal (red) are compared in each of the four plots on a logarithmic scale. While the √PSD 
of the reference signal is the same in all four plots, the √PSD of the filtered signal always contains 
a jump to numerical zero due to the elimination of frequencies higher than the cut-off frequency 
caused by the boxcar filter.  
It should be noted that the boxcar filters at the two cut-off frequencies 10mHz and 20mHz are 
eliminating parts of the signal which contain only little information due to the choice of a EGM96 
model with Lmax = 50. Therefore, it is expected that the application of these two filters will not 
have a major influence on the reference signal. 
This fact is proven by the first two rows of the following Table 4.6. The differences between 
reference and estimated models and their derived quantities respectively are very small. For 
instance, the difference in geoid heights for a cut-off frequency of 10mHz is only around 16µm and 
even less for 20mHz with a difference of less than 0.5µm. However, even if these differences are 
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very small they are still mainly caused by the filters whereas the effects of the closed-loop errors 
are also inherent in these differences with around 0.08µm for the radial component. 
In contrast, filters with smaller cut-off frequencies such as 0.5mHz significantly modify the 
reference signal. This is reflected by an error of almost 4.5m for the geoid heights, 3.28mGal for 
the gravity anomalies and 0.19E for radial gravity gradients. 
 

Table 4.6: RMS values for along-track boxcar filtering with different cut-off frequencies for Vzz 

cut-off frequencies 
RMS of ∆N 

[m] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 

1/5 fNy = 20.0 mHz -74.931 10⋅  -61.492 10⋅  -89.420 10⋅  

1/10 fNy = 10.0 mHz -51.636 10⋅  -53.276 10⋅  -61.648 10⋅  

1/20 fNy = 5.0 mHz 0.799 1.963 0.122 

1/200 fNy = 0.5 mHz 4.382 3.283 0.186 

 

 
BUTTERWORTH FILTER      If applying the Butterworth filter (order 2) instead of the boxcar filter, 
similar conclusions can be drawn. By decreasing the cut-off frequency of a filter, it will have a 
bigger influence on the reference signal (Table 4.7). That is why the differences between reference 
and estimated filtered model will also increase for the Butterworth filter. Thus, the Butterworth 
filter with a cut-off frequency of 20mHz leads to a minimum difference in geoid height of ca. 
1.3cm as opposed to a filter with a very small cut-off frequency of 0.5mHz which leads to a 
significantly higher RMS values in geoid heights of around 1.80m. The statistics for the gravity 
anomalies and gravity gradients are also increasing for the application of filters with smaller cut-
off frequencies. 
Comparing the statistics of Table 4.6 for the boxcar filter and Table 4.7 for the Butterworth filter, it 
can be recognized that the RMS values for the two higher cut-off frequencies (10mHz and 20mHz) 
in the first two rows of the tables are higher for the Butterworth than for the boxcar filter and vice 
versa for the two lower cut-off frequencies (0.5mHz and 5mHz). In general, it is expected that the 
boxcar filter causes more side effects than the Butterworth filter due to the jump from one to zero 
at the cut-off frequency which is inherent in the boxcar filter design. This jump is reduced to a 
smoother transition in the Butterworth filter design (Figure 4.30). However, as it can be also seen 
in the √PSD plots in Figure 4.32 the Butterworth filter already starts to modify the reference signal 
for frequencies smaller than the cut-off frequencies. Thus, it is by all means possible that the 
Butterworth filter has a bigger influence on the signal than the boxcar filter depending on the 
signal itself and where fc is chosen. At the same time, a big advantage of the missing jump in the 
case of the Butterworth filter can be seen in the difference plots in the appendix. The remarkable 
ringing and ripple structures as well as the features of the transient oscillation effects in the case of 
applying the boxcar filter (e.g. Figure 6.9) are significantly reduced if the Butterworth filter is used 
instead (Figure 6.12). 
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Figure 4.32: √PSD of along-track Butterworth filtering (order 2) of Vzz with cut-off frequencies 1/5 (top left), 
1/10 (top right), 1/20 (bottom left) and 1/200 (bottom right) of Nyquist frequency at signal level 

 

Table 4.7: RMS values for along-track Butterworth filtering (order 2) with different cut-off frequencies for Vzz 

cut-off frequencies 
RMS of ∆N 

[m] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 

1/5 fNy = 20.0 mHz 0.013 0.017 -31.066 10⋅  

1/10 fNy = 10.0 mHz 0.144 0.206 0.013 

1/20 fNy = 5.0 mHz 0.438 1.011 0.066 

1/200 fNy = 0.5 mHz 1.790 2.627 0.165 
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At this point, it has to be emphasized that the computations leading to the results in the last row in 
Table 4.7 for a Butterworth filter of cut-off frequency 0.5mHz are based on the disturbing potential 
instead of the full global potential. In order to understand this step, the next paragraph will give a 
short expansion of the mathematical background given in section 2.1. 
The full global gravity potential W is the sum of the gravitational potential V and the centrifugal 
potential Z (see Eq. (2.1)). It can be split into an ellipsoidal model part, i.e., the normal potential U 
and the disturbing potential T: 
 
W U T= +  (4.1) 
 
The normal potential U can be simplified to an SH series which only depends on the first zonal SH 
coefficients ,0c

l
 with the even degrees 0,2,4,6,8=l : 
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where θ  is the co-latitude of the satellite and r = R+h with the satellite altitude h. GM is the 
gravitational constant (G) times mass (M) of the Earth with its mean radius R. (cos )P θ

l
 is the 

normalized Legendre polynomial of degree l . 
The normalized zonal SH coefficients with the even degrees 0,2,4,6,8=l  are computed as 
follows: 
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+
l

l

l
 (4.3) 

 
where J

l
 are the GRS80 physical constants (Rummel, 1992). 

 
 
As the disturbing potential represents the difference between any gravity related observation and 
the corresponding quantity derived from the normal gravity field, it can be computed by 
subtracting the normal potential from the gravity potential which leads to the following SH series: 
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where m m mC C c∆ = −

l l l
 and m mS S∆ =

l l
.  

 
The simulated signal generated by a synthesis using the EGM96 global model is composed of the 
normal potential and the disturbing potential. Oversimplified, it can be stated that the normal 
potential is mainly responsible for the two peaks of the square rooted PSD spectrum of the signal. 
These peaks are at around 0.2mHz and 0.4mHz. The full gravity potential and the disturbing 
potential are shown for the radial signal component Vzz as square rooted PSD plots in Figure 4.33. 
The disturbing potential is distributed with a relatively constant oscillation range over almost the 
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whole spectrum. It seems to be responsible for the oscillation features in the full gravitational 
potential which appear for frequencies between around 0.4mHz and 10mHz. 
 

 
Figure 4.33: √PSD spectra of full gravity potential (left) and of disturbing potential (right) for Vzz 

 
 
All filter operations can be theoretically applied to the disturbing potential instead of to the full 
gravity potential. If none of the two peaks is significantly diminished by a filter and if we are only 
interested in the filter effects, it does not make a big difference whether the filter is applied to one 
or the other. The reason is that when the full potential is used, the normal potential should be fully 
cancelled out in the end by taking the differences between reference and filtered model in order to 
show the filter effects and not the effects of the Earth ellipsoidal. Therefore, as soon as one of the 
peaks is significantly modified by a filter, the disturbing potential should be used instead. 
For the application of Butterworth filters, the effects of the Earth ellipsoidal field are always 
slightly present in the difference plots between reference and filtered dataset and will increase with 
decreasing cut-off frequencies. The reason is that Butterworth filters are modifying all frequencies 
in the signal spectrum. As, however, these effects were very small for the cut-off frequencies of 
5mHz, 10mHz and 20mHz, all Butterworth and boxcar filters of these higher cut-off frequencies 
implemented in the study were applied to the full gravity potential.  
 
Filters with the specific cut-off frequency of 0.5mHz or with even smaller cut-off frequencies have 
to be handled differently. Since the cut-off frequency of 0.5mHz is still higher than the frequency 
of the second peak with 0.4mHz, this peak is not modified by a boxcar filter. The boxcar filtered 
models still contain the normal potential which is fully cancelled out in the model difference plots. 
However, the Butterworth filter with the same cut-off frequency of 0.5mHz already starts to 
diminish the spectrum of the signal for frequencies smaller than the cut-off frequency including the 
second peak at around 0.4mHz. In other words, parts of the normal potential will be also filtered 
out. This leads to a filtered model of maximal degree and order 50 with geoid heights reaching 
from around -400m to +700m. Thus, the differences between reference and filtered model are even 
higher than the reference model itself with geoid heights in a range from ca. -105m to +80m. 
Therefore, this Butterworth filter has to be applied to the disturbing potential instead of to the full 
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gravity potential in order to avoid these unacceptable huge features in the difference plots which 
are caused by filtering the normal potential. 
 
In general, it can be said that decreasing the cut-off frequencies of along-track filters will lead to 
higher differences between reference and filtered data. The question is if this is also true for the 
decrease of cut-off degrees if applying spherical filters. This will be discussed in the next section. 
 

4.5.2 VARIATION OF THE CUT-OFF DEGREE FOR SPHERICAL 
FILTERING 

According to the tuning of the cut-off frequencies of along-track filters, the cut-off degrees of 
spherical filters can be modified as well. The influence on the reference data by applying a filter 
with cut-off degree lc = 35 has been already discussed in section 4.4. This section 4.5.2 deals with 
the effects if the cut-off degree is increased to lc = 40. The corresponding spherical filter designs in 
form of filter factors represented in SH triangles are shown in Figure 4.34 for the boxcar filter and 
in Figure 4.36 for the Butterworth filter. 
 
Analogue to the case of along-track filtering, it can be stated that the reference data will be more 
influenced by a spherical filter with lower cut-off degrees. Obviously, more degrees of the original 
model are cut-off for lc = 35 than for lc = 40 which leads to a loss of information.  
 
BOXCAR FILTER      Applying a boxcar filter of cut-off degree lc to the EGM96 model with 
maximum degree and order Lmax = 50 followed by a synthesis to compute the simulated signal is 
simply the same as generating the synthetic signal from a model of Lmax = lc instead of Lmax = 50. 
That is why in the square rooted PSD plot (Figure 4.35) the end of the oscillations in the reference 
signal (blue) is just shifted to smaller frequencies for the filtered signal. With decreasing cut-off 
degrees, the shift will continue in direction to even smaller frequencies. The non-oscillating part of 
the spherical filtered signal stays coincident with the reference signal in contrast to applying along-
track filters which dampen this tail to numerical zero for frequencies higher than the cut-off 
frequency. Thus, one could assume that applying a spherical boxcar lowpass filter seems to have a 
similar influence on the reference data as applying an along-track bandstop filter. 
 

 

Figure 4.34: Spherical boxcar filter setups with cut-off degrees lc=35 (left) and lc=40 (right) 
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Figure 4.35: √PSD of spherical boxcar filtering of Vzz with cut-off degrees lc=35 (left) and lc=40 (right) at signal 
level 

 
The RMS values in Table 4.8 verify that the differences between reference and filtered models are 
higher if a boxcar with a lower cut-off degree is chosen. A decrease of the cut-off degree from 40 
to 35 yields an increase in the RMS values for the geoid heights from 18.8cm to 26.4cm, for the 
gravity anomalies from 1.27mGal to 1.68mGal and for the gravity gradients from 0.10E to 0.12E. 

 

Table 4.8: RMS values for spherical boxcar filtering with different cut-off degrees lc for Vzz 

cut-off degree 
RMS of ∆N 

[cm] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 

35 26.369 1.676 0.123 

40 18.753 1.268 0.098 

 
 
 
BUTTERWORTH FILTER      The spherical Butterworth filter of order 2 has a considerably smaller 
influence on the reference dataset than the boxcar filter with the same cut-off degree. This can be 
validated by the smaller differences revealed in Table 4.9. The RMS values of applying a 
Butterworth filter with a cut-off degree 35 are 15.4cm for ∆N, 0.89mGal for ∆(∆g) and 0.06E for 
∆Trr. They are even smaller than those resulting from the application of a boxcar filter with a 
higher cut-off degree of 40. By comparing the square rooted PSDs of the reference signal (blue) 
and the signal (red) filtered by a spherical Butterworth filter of order 2 (see Figure 4.37), it 
becomes evident that this filter type has a smaller influence. The end of the oscillation is not 
completely shifted as for the boxcar filter but only slightly dampened in magnitude. The reason is 
that the transition in the Butterworth filter design (Figure 4.36) is much smoother without jump 
and that coefficients with a degree higher than the cut-off degree are not completely dampened to 
zero as it is done for the boxcar filter.  
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Figure 4.36: Spherical Butterworth (order 2) filter setups with cut-off degrees lc=35 (left) and lc=40 (right) 

 
 

 

Figure 4.37: √PSD of spherical Butterworth (order 2) filtering of Vzz with cut-off degrees lc=35 (left) and lc=40 
(right) at signal level 

 
 

Table 4.9: RMS values for spherical Butterworth filtering (order 2) with different cut-off degrees lc for Vzz 

cut-off degree 
RMS of ∆N 

[cm] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 

35 15.436 0.885 0.062 

40 11.288 0.663 0.047 
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4.5.3 VARIATION OF ORDER OF BUTTERWORTH FILTER 

Another parameter which can be modified for the along-track as well as spherical filtering is the 
filter order in the case of a Butterworth filter. The order determines the slope of the transition from 
maximum to minimum amplitude in the filter design. As visible in Figure 4.38, the slope is 
becoming steeper with increasing order and is therefore approaching a boxcar filter design. 
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Figure 4.38: Along-track Butterworth filter setups in spectral domain with a cut-off frequency of 1/10 of 

Nyquist frequency and varying Butterworth filter orders (2, 6, 12) 

 
 
ALONG-TRACK BUTTERWORTH FILTERING      In the square rooted PSD plots in Figure 4.39, it can 
be seen that Butterworth filters independent of the order but with a cut-off frequency of 10mHz are 
mainly attenuating the non-oscillating tail of the reference signal spectrum. Note that the vertical 
axes of the plots are scaled differently. The spectrum of the signal filtered by a Butterworth filter 
of order 12 is attenuated to approximately 10-12E/√Hz at the Nyquist frequency while the spectrum 
of the signal filtered by a Butterworth filter of order 6 is only attenuated to ca. 10-8E/√Hz. 
Increasing the order of a Butterworth filter, leads to a slightly steeper attenuation. In other words, 
these filters of higher orders are diminishing the amplitude of the √PSD of the reference signal 
within a shorter frequency interval which almost appears like a jump similar as in the boxcar 
filtered spectrum. As a consequence, the RMS values of Butterworth filters with increasing orders 
are expected to approach the values resulting from applying a boxcar filter with the same cut-off 
frequency. Since the boxcar filter with a cut-off frequency of 10mHz yields smaller RMS values 
than the corresponding Butterworth filter of order 2, it is anticipated that the RMS values for 
Butterworth filters of increasing orders are decreasing. This assumption can be actually confirmed 
by the statistics of Table 4.10. The differences are diminished in all three quantities by choosing 
higher filter orders. The RMS of the geoid heights, for example, is reduced from 14.41 cm for a 
filter order of 2 to 5.11cm for a filter order of 12. The RMS of the corresponding boxcar filtered 
results is, however, still much smaller with ca. 16µm. 
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Figure 4.39: √PSD of along-track Butterworth filtering (right: order 6; left: order 12) of Vzz with cut-off 
frequencies 1/10 of Nyquist frequency at signal level 

 

Table 4.10: RMS values for along-track Butterworth filtering with varying orders and with cut-off frequency 
1/10 of Nyquist frequency for Vzz 

Butterworth filter order 
RMS of ∆N 

[cm] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[mE] 

2 14.411 0.206 13.373 

6 8.511 0.109 5.035 

12 5.114 0.060 2.514 

 
 
SPHERICAL BUTTERWORTH FILTERING      Accordingly, the order of the spherical Butterworth 
filter can be varied. As a consequence, the filter design of order 12 and cut-off degree 35 looks 
already very similar to the boxcar filter design. The transition is becoming narrower for a filter 
order 6 and is limited to a small band around the cut-off degree for filter order 12 as depicted in 
Figure 4.40. 

 

Figure 4.40: Spherical Butterworth filter setups with cut-off degree lc=35 and varying orders (left: order 6, 
right: order 12) 
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Figure 4.41: √PSD of spherical Butterworth filtering (right: order 6; left: order 12) of Vzz with cut-off degree 
lc=35 at signal level 

 
Using higher filter orders for spherical Butterworth filters also affects the spectrum of the filtered 
signal (Figure 4.41). Slightly more √PSD values of the oscillating part of the reference spectrum 
are reduced if the Butterworth filter of order 12 is applied. This reduced information is reflected in 
the increasing differences for higher filter orders in Table 4.11. The RMS of the geoid heights is 
increasing from 15.4cm for a filter order of 2 to 23.6cm for a filter order of 12. This trend can also 
be stated for the gravity anomalies with a rise from 0.89mGal to 1.51mGal and for the gravity 
gradients rising from 0.06E to 0.11E. In this case, the Butterworth filter of order 12 leads to RMS 
values which are only slightly smaller than those of the boxcar filter with 26.4cm for the geoid 
heights, 1.68mGal for the gravity anomalies and 0.12E for the gravity gradients, respectively. 
 

Table 4.11: RMS values for spherical Butterworth filtering with varying orders and with cut-off degree lc=35 
for Vzz  

Butterworth filter order 
RMS of ∆N 

[cm] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 

2 15.436 0.885 0.062 

6 19.408 1.230 0.091 

12 23.643 1.507 0.111 

 

Obviously, the increase of the Butterworth filter order will amplify the high-frequency ringing and 
ripple structures in the model difference plots on a grid (see Figure 6.36 in appendix) as they have 
already been discovered for the boxcar filter (Figure 4.25). The reason is that the transition within 
the Butterworth filter design is becoming steeper for higher filter orders (Figure 4.40) and is 
approaching the boxcar filter design.  
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4.6 Empirical transfer functions 
Up to now, the influences of applying the along-track as well as spherical filters have been 
assessed relatively independent of each other. Therefore, this section will try to find a relationship 
between one-dimensional along-track and two-dimensional spherical filtering. For the sake of this 
objective, empirical filter transfer functions have to be investigated as explained in section 3.3.4. 
Even though an explicit analytical relation between these two filter types seems to be far from 
obvious, these transfer functions make it at least empirically possible to express an along-track 
filter in the signal domain as a corresponding spherical filter in the model domain and a spherical 
filter in the model domain as a corresponding along-track filter in the signal domain.  
 

4.6.1 TRANSFER FUNCTIONS IN THE MODEL DOMAIN (ALONG-TRACK 
FILTERING) 

In the case of along-track filtering applied to the simulated GOCE signal along the orbit, it is very 
interesting to know how a corresponding spherical filter would look like. This can be empirically 
solved by computing the ratio of along-track filtered and reference model (see Eq. 3.1). This ratio 
is referred to as empirical transfer function in the model domain. It represents the empirical 
realization of a spherical filter which has to be applied to the global model in order to achieve the 
same filter effects as its associated along-track filter applied to the synthetic signal.  
 
The empirical transfer functions have been computed for all different along-track filter properties 
introduced in section 4.5, i.e., for boxcar as well as Butterworth filters with varying cut-off 
frequencies and varying filter orders. They are shown in the form of SH triangles in the following 
figures according to the triangular representation of spherical filter factors. For comparison 
purposes, it should be carefully noted that some of the plots have differently ranged colorbars and 
that the values of the transfer functions in the triangles are shown as they are. They are not 
presented as logarithmic values as it was done for the difference triangular plots above. 
 
Applying along-track filters in the signal domain is realized by multiplying the DFTs of the signal 
with filter factors lying in a range from one to zero. The spectrum of the signal is modified and 
some frequencies are attenuated. Thus, it is expected that applying the corresponding transfer 
function in the model domain to a reference model, will also only attenuate some coefficients but 
will never amplify them. This would mean that the transfer function also contains values between 
one and zero. If we take a look at the following figures (Figure 4.42 - Figure 4.46), it is however 
evident that some values are even higher than one. Filtering one specific frequency of the reference 
signal does not automatically mean that only one specific coefficient of the reference model will be 
influenced. It is likely that the along-track filter will affect more than one SH filter coefficient. 
Some coefficients will be amplified while others will be attenuated. Consequently, some filter 
factors in the transfer functions are higher than one and others are lower than one. 
 
The following paragraphs will analyse the transfer function plots in the model domain (Figure 
4.42- Figure 4.46) which were computed based on different along-track filter properties. 
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For the transfer functions of the boxcar and Butterworth filters (order 2) and a cut-off frequency of 
20mHz (Figure 4.42), it can be stated that most of the SH filter factors have values which are very 
close to one. This corresponds to the fact that the signal is not significantly filtered by applying this 
filter design with a relatively high cut-off frequency of 20mHz. Since the differences between 
reference and global models are also very small with geoid height differences at µm level, it can be 
easily understood why especially the boxcar filter factors are not much deviating from one. If they 
are applied to the reference global model, in fact, very small differences will be achieved. In the 
case of the Butterworth filter, significant structures can be seen in the triangles. Most of the 
sectorial coefficients as well as some other tesseral coefficients running in a parallel tight band are 
also very close to one. The other tesseral coefficients seem to form semi circles of decreasing 
values running concentrically to a midpoint at degree 50 and order zero. Thus, the model 
coefficients of a high degree and a low order will be attenuated mostly. Particularly in the plot for 
the radial component Vzz and also a little bit less for the along-track component, slightly higher 
values can be recognized for the zonal coefficients. Some are even bigger than one. All in all, the 
Butterworth filter factors are more diverging from one than the boxcar filter factors.  
 
 

 
Figure 4.42: Transfer functions in model domain for along-track filtering in signal domain (left: boxcar, right: 
Butterworth, order 2) with cut-off frequency 1/5 of Nyquist frequency (20mHz) for Vxx, Vyy, Vzz (top to bottom) 
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Decreasing the cut-off frequency to 10mHz leads to the empirical transfer functions in Figure 4.43. 
Their structures are very similar to those of the filters with a cut-off frequency of 20mHz. The only 
difference for the boxcar filter is that there are now more values which are deviating from one. In 
the plot for the radial component Vzz, one can even assume a structure of higher values for the 
zonal coefficients. For the Butterworth filter, it can be recognized that the range of deviations is 
increasing and is still much bigger than the range of deviations for the boxcar filter. 
 

 
Figure 4.43: Transfer functions in model domain for along-track filtering in signal domain (left: boxcar, right: 
Butterworth, order 2) with cut-off frequency 1/10 of Nyquist frequency (10mHz) for Vxx, Vyy, Vzz (top to bottom) 

 
 
For a cut-off frequency of 5mHz (Figure 4.44), this trend of higher deviations for the Butterworth 
filter than for the boxcar filter is reversed. The maximum values for the boxcar filter are higher 
than those for the Butterworth filter and its minimum values are smaller, respectively, but the 
overall structures in the boxcar transfer functions become very similar to the structures in the 
Butterworth triangles. However, the transition from maximum to minimum values is much 
smoother for the Butterworth than for the boxcar filter where almost a sharp edge from values 
close to one to values close to zero can be recognized. This edge follows a semi-circle passing a 
degree of about 25 for zero order. 
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Figure 4.44: Transfer functions in model domain for along-track filtering in signal domain (left: boxcar, right: 
Butterworth, order 2) with cut-off frequency 1/20 of Nyquist frequency (5mHz) for Vxx, Vyy, Vzz (top to bottom) 

 
 
If the cut-off frequency is further reduced to 0.5mHz, the corresponding plots of the transfer 
functions in Figure 4.45 start to look rather random. They are dominated by values close to zero 
which means that these transfer functions reduce many SH coefficients of the filtered model to 
zero. This corresponds to a radical along-track filter. For lower degrees, the Butterworth transfer 
functions contain values that are all in all slightly higher than those of the boxcar filter. This means 
that the Butterworth filter affects the reference model a little bit less which can be also recognized 
in the corresponding statistics of the differences between reference and filtered models. If the plots 
of the different signal components are compared to each other, it can be seen that the values for the 
along-track component are in general closer to zero than those of the cross-track and radial 
components. The feature of values higher than one for some zonal coefficients is still vaguely 
present in the boxcar transfer function for the radial component. 
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Figure 4.45: Transfer functions in model domain for along-track filtering in signal domain (left: boxcar, right: 
Butterworth, order 2) with cut-off frequency 1/200 of Nyquist frequency (0.5mHz) for Vxx, Vyy, Vzz (top to 
bottom) 

 
Figure 4.46 shows the transfer functions based on Butterworth filters with filter orders of 6 and 12 
and a cut-off frequency of 10mHz. It can be seen that by increasing the order, more and more 
coefficients are approaching the value one. The concentric features of decreasing values are limited 
to just a few values of around zero order and maximum degree of 50 for a filter order of 12. If we 
compare these plots with the transfer functions of the boxcar filter with the same cut-off frequency 
in Figure 4.43, it becomes evident that the transfer functions of Butterworth filters with increased 
order are approaching those ones of the boxcar filter.  
 

      

    

    

    



 

GOCE data and gravity field model filter comparison 

 

page 75 of 110 

 

  

s 

 
Figure 4.46: Transfer functions in model domain for along-track filtering in signal domain (left: Butterworth, 
order 6; right: Butterworth, order 12) with cut-off frequency 1/10 of Nyquist frequency (10mHz) for Vxx, Vyy, Vzz 
(top to bottom) 

 
In conclusion, the empirical investigation of the transfer functions in the model domain give 
information of how a spherical filter needs to be designed in order to achieve the same filter effects 
as a corresponding along-track filter. However, it becomes also evident that it is very difficult to 
implement such empirical transfer functions in practice. Alternatively, the only other way is to 
derive an analytical expression for these transfer functions in order to find an explicit conversion 
from an along-track filter into a spherical filter. 

 

4.6.2 TRANSFER FUNCTIONS IN THE SIGNAL DOMAIN (SPHERICAL 
FILTERING) 

This section deals with the counterpart of the previous section. It derives an empirical along-track 
transfer function in the signal domain which is based on the application of a spherical filter to the 
reference model. By computing the ratio of the √PSD of the spherical filtered signal to the √PSD 
of the reference signal, the resulting transfer function determines how an along-track filter in the 
signal domain would have to be designed so that it affects the reference data in the same way as a 
corresponding spherical filter applied in the model domain. 
 
The along-track transfer functions have been computed empirically for all different spherical filter 
properties introduced in section 4.5 and are put together in the following figures. These include 
boxcar as well as Butterworth filters with varying cut-off degrees (Figure 4.47 and Figure 4.48) 
and increasing orders for the Butterworth filter (Figure 4.49). All plots are presented in the form of 
amplitudes over frequencies ranging from the fundamental to the Nyquist frequency on a 
logarithmic scale. Due to better visualization of possible trends, the amplitudes of each transfer 
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function will be additionally smoothened by a moving average. The original transfer function is 
shown in blue and the smoothened transfer function in red. 
 
In all plots, oscillating features in the frequency range from 0.1mHz to 10mHz are present. The 
amplitudes before and after these oscillations are situated on a relatively constant line of values 
close to one. By smoothing the transfer functions, a slightly decreasing trend of the oscillations can 
be stated in all plots. This corresponds to the attenuation of SH coefficients if applying spherical 
lowpass filters in the model domain. Consequently, as these transfer functions in the signal domain 
only significantly modify a limited frequency band, one could assume that applying a spherical 
lowpass filter in the model domain leads to an along-track bandstop filter in the signal domain. For 
the signal component Vxx, the oscillations are generally starting a little bit later than for the other 
components but are achieving amplitude maxima in the same range as the other components at 
around 10mHz. This is why the trend curve (red) shows a slightly steeper decreasing curve in this 
frequency region. The oscillating features are achieving amplitudes of almost 10-3 to 103 with 
increasing range for increasing frequencies up to around 10mHz. Thus, the empirical along-track 
transfer function in the signal domain contains amplitudes higher than one, although the 
corresponding spherical filter design only holds values between one and zero. This is similar to the 
spherical transfer functions with inherent filter factors which are higher than one. The reason for 
this phenomenon is again that a two-dimensional spherical filter can not be converted into a one-
dimensional along-track filter by a simple one to one conversion. That means that modifying one 
coefficient of the reference model by spherical filtering will not just yield the modification of one 
specific value in the spectrum of the reference signal. It will rather introduce changes over the 
whole spectrum.  
 
As the oscillations for the Butterworth filters are smaller than for the boxcar filters, it is assumed 
that this effect is partly due to the Gibbs’ phenomenon. This phenomenon is particularly introduced 
by the boxcar filter design which contains an abrupt jump from one to zero. Since the transition is 
smoother for the Butterworth filters, the range of the oscillations will be obviously smaller. As it 
was expected, the range is increasing with increasing filter orders as the Butterworth filter of 
higher orders is approaching the features of a boxcar filter (Figure 4.49). Varying the cut-off 
degree, on the other hand, does not significantly change the overall range of the oscillations, but 
rather some single amplitudes (compare Figure 4.47 and Figure 4.48). 
 
It should be kept in mind that the application of these empirical transfer functions to the reference 
signal will cause the same filter effects as the corresponding spherical filters applied to the 
reference model. In summary, it can be stated that these transfer functions can be derived 
empirically if the spherical filter influences on the synthetic reference signal are known. However, 
it seems to be a very difficult task to find a corresponding analytical solution.  
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Figure 4.47: Transfer functions in signal domain (blue: before smoothing, red: after smoothing) for spherical 
filtering in model domain (left: boxcar; right: Butterworth, order 2) with cut-off degree lc=35 for Vxx, Vyy, Vzz 
(top to bottom)
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Figure 4.48: Transfer functions in signal domain (blue: before smoothing, red: after smoothing) for spherical 
filtering in model domain (left: boxcar; right: Butterworth, order 2) with cut-off degree lc=40 for Vxx, Vyy, Vzz 
(top to bottom) 
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Figure 4.49: Transfer functions in signal domain (blue: before smoothing, red: after smoothing) for spherical 
filtering in model domain (left: Butterworth, order 6; right: Butterworth, order 12) with cut-off degree lc=35 for 
Vxx, Vyy, Vzz (top to bottom) 
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5 CONCLUSIONS AND FUTURE WORK 
This final chapter summarizes the main contents and achievements of this study. Additionally, 
some suggestions for further investigations with respect to the GOCE data processing are provided.  
 
The main objective of this work was to investigate the different influences of one-dimensional 
along-track and two-dimensional spherical filters on simulated GOCE data. Furthermore, an 
empirical relation between these two filter types was investigated. All computations were based on 
the EGM96 reference model and the synthetic reference signal which was generated along a 
simulated GOCE orbit.  
 
CLOSED-LOOP TESTS      In order to prove the consistency and correctness of the software used and 
the dataset, closed-loop tests were implemented. They indicate that the differences between the 
reference EGM96 and the estimated model are within the numerical accuracy of the computer. 
This is true no matter which signal component (Vall, Vxx, Vyy or Vzz) is used for the analysis step.  
For the cross-track component, the RMS values of the differences are slightly higher than for the 
other signal components. Even in this case, however, the closed-loop error still lies below the 
noise-level of GOCE and can just be recognized in the noise-free scenario within these testing 
procedures. Consequently, the software packages ‘create’ and ‘adjust’ as well as the implied 
dataset can be deemed to be an appropriate basis for the further application of filters. It should be 
kept in mind that all resulting differences between unfiltered and filtered data contain filter effects 
as well as closed-loop errors whereas the latter are negligibly small. 
One interesting outcome of these tests is that using the along-track component in a noise-free 
scenario leads to more accurate models than using a combined solution with all signal components. 
It is likely that this effect is caused by the polar gaps which could be probably reduced by using 
weighting for different signal components within the analysis step. This outcome needs further 
investigation and could be part of a future work based on the presented closed-loop results  
 
ALONG-TRACK FILTERING       The purpose of the one-dimensional along-track filtering tests was 
to modify the synthetic satellite signal by applying one-dimensional along-track filters to each of 
the three main signal components. First, the effects of a boxcar and a Butterworth filter (order 2) 
with a cut-off frequency of one tenth of the Nyquist frequency were investigated. The conclusions 
of a comparison between various filter properties will be presented later on.  
Applying along-track filters introduces transient oscillation or so-called warm up effects which can 
be reduced by cutting-off the filtered signal at the beginning and at the end. The transient effect is 
even stronger for the boxcar than for the Butterworth filter and can not be totally eliminated by 
shortening the signal. This introduces an additional error source for the analysis. 
As the radial component of the signal has the highest power, the signal itself and its estimated 
model are more influenced than the other components by applying an along-track filter. This leads 
to higher RMS values if taking the difference between the original EGM96 and the estimated 
filtered model. 
Thus, the variations in the features of relative geoid heights, gravity anomalies and gravity 
gradients between the three different signal components are mainly caused by the transient filter 
effects and by the different power levels of the components. It should be noted that this is 
especially the case for cut-off frequencies higher than 1/10 of the Nyquist frequency. 
It is evident that the Butterworth filter design of low order is much smoother than the boxcar filter 
design. It does not contain such a jump in contrast to the boxcar filter. That is why the triangle 
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plots of the Butterworth filtered SH coefficients present a much more homogenous surface than 
those of the boxcar filtered SH coefficients. Therefore, it is expected that the application of the 
boxcar filter has a bigger influence on the reference data than the Butterworth filter. However, it 
should be kept in mind that the Butterworth filter manipulates already frequencies smaller than the 
cut-off frequency. Thus, depending on the power of the signal in the modified frequency band that 
can have the consequence that the Butterworth filter is more aggressive than the boxcar filter. This 
is indubitably the case for this specific cut-off frequency of 1/10 of the Nyquist frequency.  
 
SPHERICAL FILTERING       The two-dimensional spherical filtering of the EGM96 model was 
implemented by designing a spherical boxcar filter and a spherical Butterworth filter of order 2 
with a cut-off degree of 35. Applying these spherical filters leads to major differences between 
reference and filtered data which do not significantly change if one or the other signal component 
is used. The reason for this behaviour is that the slightly varying spectra of the signal components 
do not play a role as the filter is not applied directly to the signal but to the SH coefficients. This is 
also the reason why filtering SH coefficients does not suffer from transient oscillation effects. 
Thus, visible features in the geoid heights, gravity anomalies and radial gradients based on taking 
the difference between EGM96 and estimated filtered model, are all directly coming from applying 
a spherical filter to the SH coefficients. 
In the same way as it was already recognized for the along-track filters, it is obvious that the 
Butterworth filter is much smoother than the boxcar filter but also manipulates the coefficients 
already for smaller degrees. Since the Butterworth filter, however, is applied to the relative 
homogenous SH coefficients and not directly to a varying signal spectrum, its influence is much 
smaller than the one of the boxcar filter. Consequently and in the case of spherical filtering, the 
boxcar filter is always more aggressive than the Butterworth filter.  
An aggressive boxcar filter with a cut-off degree of 35 can cause geoid height differences of 
almost 26.5 cm. 
 
COMPARISON OF DIFFERENT FILTER PROPERTIES       In order to get a better general view, further 
filter properties with varying cut-off frequencies (1/5fNy = 20mHz, 1/10fNy = 10mHz 1/20fNy = 
5mHz and 1/200fNy = 0.5mHz) in the case of along-track filtering and cut-off degree of 40 in the 
case of spherical filtering were analysed. Additionally, the orders of the Butterworth filters were 
changed from 2 to 6 and 12. The filters with the relatively high cut-off frequencies of 10mHz and 
20mHz have a minor influence on the reference data as they filter parts of the signal spectrum 
which only contain little information.  
With decreasing cut-off frequencies, the filters get more aggressive. This means that the filtered 
signal will contain less and less high frequencies and will therefore become smoother which leads 
to higher differences between reference and filtered data. These differences reach a maximum of 
about 4.4m in geoid heights for the boxcar filter with a cut-off frequency of 0.5mHz. 
For the two lower cut-off frequencies (5mHz and 0.5mHz), the boxcar filters leads to higher 
differences than the Butterworth filter but vice versa for the higher cut-off frequencies (10mHz and 
20mHz). The reason is that the Butterworth filter design does not contain such an abrupt jump 
between the maximum and minimum amplitude, but rather a smoother transition. However, the 
Butterworth filter modifies all frequencies in some way. Thus, depending on the signal spectrum, it 
can actually happen that the Butterworth filter starts to filter parts of the signal which contain more 
information than the parts which are attenuated by a corresponding boxcar filter. It also has to be 
mentioned that this aggressive edge in the boxcar filter design leads to the so-called Gibbs’ 
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phenomenon. This effect causes features of ringing and ripples in the geoid heights, gravity 
anomalies and gravity gradients which are partly reduced by applying a Butterworth filter instead. 
Varying the cut-off degree in the case of spherical filtering leads to similar conclusions as varying 
the cut-off frequency in the case of along-track filtering. If the cut-off degree is decreased, the 
filter has a higher influence on the reference data and therefore yields increasing differences for 
geoid heights, gravity anomalies and gravity gradients. Furthermore, the spherical Butterworth 
filter of order 2 has a considerably smaller influence on the reference dataset than the boxcar filter 
with the same cut-off degree. The reason is that the transition in the Butterworth filter design is 
much smoother without inherent jump and that none of the coefficients is completely attenuated as 
it is the case in the boxcar filter design. 
In general, it can be said that the increase of the filter orders in the Butterworth filter design, will 
approach the boxcar filter design. That is why Butterworth filters of high orders affect the 
reference data in a similar way as a boxcar filter. 
Moreover, filtering the GOCE dataset, either by applying along-track or spherical filters, can lead 
to differences which can not be neglected and are far above the noise-level. 
 
EMPIRICAL TRANSFER FUNCTIONS       Finally, an empirical relation between along-track and 
spherical filters was investigated. For this purpose, transfer functions of the filters have been 
derived as the ratio between reference and filtered model. They represent spherical filters in the 
model domain which correspond to one-dimensional along-track filters in the signal domain. On 
the other hand, computing the ratio between reference and filtered signal estimated from the 
spherical filtered reference model converts the two-dimensional filters from the model domain into 
one-dimensional along-track filters in the signal domain. The spherical transfer functions presented 
as filter factors in the form of coefficient triangles show rather random structures. Modifying one 
specific frequency of the signal spectrum by applying an along-track filter does not automatically 
mean that only one specific coefficient of the transfer function in the model domain will be 
affected. It is evident that the along-track filter effect will be mapped into more than one value of 
the transfer function which even leads in some cases to values larger than one. Other coefficients in 
the model domain are reduced. That makes it very difficult to find an explicit relation between the 
derived spherical transfer function and the corresponding along-track filter design. 
In a second attempt, along-track transfer functions are derived empirically in the signal domain. 
They are representing an along-track filter design which has to be applied to the reference signal in 
order to achieve similar filter effects as its corresponding spherical filter applied to the reference 
model. Apart from some random oscillating structures, there are again no obvious features visible 
in these transfer functions. In general, it is possible to find an empirical way of expressing 
spherical filters in the form of transfer functions in the signal domain. However, there cannot be 
made any assumptions about an explicit analytical relation between these along-track transfer 
functions and a corresponding spherical filter. 
 
In conclusion, this study assessed the influences of various one-dimensional along-track and two-
dimensional spherical filter properties on a time-series of synthetic gradiometer data as well as on 
the corresponding spherical harmonic spectrum. Empirical transfer functions were established in 
order to find a link between both filter types.  
The derivation of a direct relation in an analytical way is theoretically possible and could be part of 
a future work based on the presented results. One way to try to solve this objective could be for 
example the application of inclination functions and torus approaches. Other topics which need 
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further investigation with respect to the results of this study and the processing of GOCE data are, 
for example, the implementation of along-track and spherical testing procedures for real scenarios 
including noise and for scenarios following HPF processing chains. Additionally, it is also possible 
to apply the presented tests to other data types and satellite missions, such as SWARM for 
example. The development and assessment of new mathematical approaches, as for instance 
wavelets for regional models instead of spherical harmonic series, could provide an alternative for 
presenting and filtering the gravity field. Finally, the outcome of the study might also be helpful 
for explaining some of the differences between current global model retrieval philosophies in the 
future. 
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6 APPENDIX 
This appendix is a subsidiary arrangement of the difference plots and tables for various filter 
properties at model level. It visualizes the results which were analysed in section 4.5. In each 
figure, the differences between reference and filtered model will be presented with respect to the 
following quantities: 
 
- top left: spherical harmonic (SH) coefficient triangles 
- top right: geoid heights, N, in meters [m]  
- bottom left: gravity anomalies, ∆g, in milligal [mGal]  
- bottom right: gravity gradients, Trr, in Eötvös [E]  
 
For each filter property, three different figures are shown: one for the along-track component, the 
next one for the cross-track component and the last one for the radial component. After these three 
plots, a table will present the corresponding RMS values for all signal components. 
This arrangement of three figures with a summarizing table in the end will be repeated for every 
single filter design. 
 
Appendix A shows the differences between reference and estimated models for along-track 
filtering with varying cut-off frequencies fc in the following order: 
 
-  boxcar filter and Butterworth (order 2) filter with fc = 1/200 fNy = 0.5 mHz 
-  boxcar filter and Butterworth (order 2) filter with fc = 1/20 fNy = 5.0 mHz 
-  boxcar filter and Butterworth (order 2) filter with fc = 1/5 fNy = 20.0 mHz 
 
Appendix B shows the differences between reference and estimated models for the application of 
a spherical boxcar and a spherical Butterworth filter (order 2) with a cut-off degree of lc = 40. 
 
Appendix C shows the differences between reference and estimated models for the application of 
along-track and spherical Butterworth filters with varying filter orders as follows: 
 
- along-track Butterworth filter with fc = 1/10 fNy = 10.0 mHz and filter order 6 
- along-track Butterworth filter with fc = 1/10 fNy = 10.0 mHz and filter order 12 
- spherical Butterworth filter with lc = 35 and filter order 6 
- spherical Butterworth filter with lc = 35 and filter order 12 
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APPENDIX A: VARIATION OF CUT-OFF FREQUENCY FOR ALONG-
TRACK FILTERING 

 

 
Figure 6.1: Along-track boxcar filtering of Vxx with cut-off frequency 1/200 of Nyquist frequency at model level 

 
 
 

 
Figure 6.2: Along-track boxcar filtering of Vyy with cut-off frequency 1/200 of Nyquist frequency at model level 
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Figure 6.3: Along-track boxcar filtering of Vzz with cut-off frequency 1/200 of Nyquist frequency at model level 

 

 
 

Table 6.1: RMS values for along-track boxcar filtering with cut-off frequency 1/200 of Nyquist frequency 

signal components 
RMS of ∆N 

[m] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 
along-track 
Vxx 

4.186 3.534 0.176 

cross-track 
Vyy 

8.979 10.628 0.298 

radial 
Vzz 

4.382 3.283 0.186 
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Figure 6.4: Along-track Butterworth filtering (order 2) of Vxx with cut-off frequency 1/200 of fNy at model level 

 
 
 

 
Figure 6.5: Along-track Butterworth filtering (order 2) of Vyy with cut-off frequency 1/200 of fNy at model level 
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Figure 6.6: Along-track Butterworth filtering (order 2) of Vzz with cut-off frequency 1/200 of fNy at model level 

 

 
 

Table 6.2: RMS values for along-track Butterworth filtering (order 2) with cut-off frequency 1/200 of Nyquist 
frequency 

signal components 
RMS of ∆N 

[m] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 
along-track 
Vxx 

2.060 2.792 0.172 

cross-track 
Vyy 

1.896 2.627 0.162 

radial 
Vzz 

1.790 2.627 0.165 
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Figure 6.7: Along-track boxcar filtering of Vxx with cut-off frequency 1/20 of Nyquist frequency at model level 

 
 
 

 
Figure 6.8: Along-track boxcar filtering of Vyy with cut-off frequency 1/20 of Nyquist frequency at model level 
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Figure 6.9: Along-track boxcar filtering of Vzz with cut-off frequency 1/20 of Nyquist frequency at model level 

 
 
 

Table 6.3: RMS values for along-track boxcar filtering with cut-off frequency 1/20 of Nyquist frequency 

signal components 
RMS of ∆N 

[m] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 
along-track 
Vxx 

0.384 1.961 0.130 

cross-track 
Vyy 

0.245 1.473 0.105 

radial 
Vzz 

0.799 1.963 0.122 
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Figure 6.10: Along-track Butterworth filtering (order 2) of Vxx with cut-off frequency 1/20 of fNy at model level 

 
 
 

 
Figure 6.11: Along-track Butterworth filtering (order 2) of Vyy with cut-off frequency 1/20 of fNy at model level 

    

   

    

   



 

GOCE data and gravity field model filter comparison 

 

page 92 of 110 

 

  

s 

 
Figure 6.12: Along-track Butterworth filtering (order 2) of Vzz with cut-off frequency 1/20 of fNy at model level 

 
 
 

Table 6.4: RMS values for along-track Butterworth filtering (order 2) with cut-off frequency 1/20 of Nyquist 
frequency 

signal components 
RMS of ∆N 

[m] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 
along-track 
Vxx 

0.202 1.026 0.070 

cross-track 
Vyy 

0.157 0.885 0.061 

radial 
Vzz 

0.438 1.011 0.066 

 

    

   



 

GOCE data and gravity field model filter comparison 

 

page 93 of 110 

 

  

s 

 
Figure 6.13: Along-track boxcar filtering of Vxx with cut-off frequency 1/5 of Nyquist frequency at model level 

 

 
 

 
Figure 6.14: Along-track boxcar filtering of Vyy with cut-off frequency 1/5 of Nyquist frequency at model level 
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Figure 6.15: Along-track boxcar filtering of Vzz with cut-off frequency 1/5 of Nyquist frequency at model level 

 
 
 

Table 6.5: RMS values for along-track boxcar filtering with cut-off frequency 1/5 of Nyquist frequency 

signal components 
RMS of ∆N 

[µm] 
RMS of ∆(∆g) 

[nGal] 
RMS of ∆Trr 

[µE] 
along-track 
Vxx 

0.687 2.407 0.152 

cross-track 
Vyy 

0.890 4.225 0.309 

radial 
Vzz 

0.493 1.492 0.094 
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Figure 6.16: Along-track Butterworth filtering (order 2) of Vxx with cut-off frequency 1/5 of fNy at model level 

 
 
 

 

Figure 6.17: Along-track Butterworth filtering (order 2) of Vyy with cut-off frequency 1/5 of fNy at model level 
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Figure 6.18: Along-track Butterworth filtering (order 2) of Vzz with cut-off frequency 1/5 of fNy at model level 

 
 
 

Table 6.6: RMS values for along-track Butterworth filtering (order 2) with cut-off frequency 1/5 of Nyquist 
frequency 

signal components 
RMS of ∆N 

[mm] 
RMS of ∆(∆g) 

[µGal] 
RMS of ∆Trr 

[mE] 
along-track 
Vxx 

2.655 14.957 1.131 

cross-track 
Vyy 

1.974 12.632 0.945 

radial 
Vzz 

13.001 17.246 1.066 
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APPENDIX B: VARIATION OF CUT-OFF DEGREE FOR SPHERICAL 
FILTERING  

 

Figure 6.19: Spherical boxcar filtering (Vxx) with cut-off degree of lc=40 at model level 

 

 

Figure 6.20: Spherical boxcar filtering (Vyy) with cut-off degree of lc=40 at model level 
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Figure 6.21: Spherical boxcar filtering (Vzz) with cut-off degree of lc=40 at model level 

 
 
 

Table 6.7: RMS values for spherical boxcar filtering with cut-off degree of lc=40 

signal components 
RMS of ∆N 

[cm] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 
along-track 
Vxx 

18.753 1.268 0.098 

cross-track 
Vyy 

18.753 1.268 0.098 

radial 
Vzz 

18.753 1.268 0.098 
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Figure 6.22: Spherical Butterworth filtering (order 2, Vxx) with cut-off degree lc=40 at model level 

 
 
 

 

Figure 6.23: Spherical Butterworth filtering (order 2, Vyy) with cut-off degree lc=40 at model level 
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Figure 6.24: Spherical Butterworth filtering (order 2, Vzz) with cut-off degree lc=40 at model level 

 
 
 

Table 6.8: RMS values for spherical Butterworth filtering (order 2) with cut-off degree of lc=40 

signal components 
RMS of ∆N 

[cm] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 
along-track 
Vxx 

11.288 0.663 0.047 

cross-track 
Vyy 

11.288 0.663 0.047 

radial 
Vzz 

11.288 0.663 0.047 
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APPENDIX C: VARIATION OF ORDER OF BUTTERWORTH FILTER  
 

 
Figure 6.25: Along-track Butterworth filtering (order 6) of Vxx with cut-off frequency 1/10 of fNy at model level 

 

 

 
Figure 6.26: Along-track Butterworth filtering (order 6) of Vyy with cut-off frequency 1/10 of fNy at model level 
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Figure 6.27: Along-track Butterworth filtering (order 6) of Vzz with cut-off frequency 1/10 of fNy at model level 

 
 
 

Table 6.9: RMS values for along-track Butterworth filtering (order 6) with cut-off frequency 1/10 of Nyquist 
frequency 

signal components 
RMS of ∆N 

[mm] 
RMS of ∆(∆g) 

[µGal] 
RMS of ∆Trr 

[mE] 
along-track 
Vxx 

10.220 53.563 4.297 

cross-track 
Vyy 

5.178 36.016 2.858 

radial 
Vzz 

85.113 109.088 5.035 
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Figure 6.28: Along-track Butterworth filtering (order 12) of Vxx with cut-off frequency 1/10 of fNy at model level 

 

 
 

 
Figure 6.29: Along-track Butterworth filtering (order 12) of Vyy with cut-off frequency 1/10 of fNy at model level 
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Figure 6.30: Along-track Butterworth filtering (order 12) of Vzz with cut-off frequency 1/10 of fNy at model level 

 
 
 

Table 6.10: RMS values for along-track Butterworth filtering (order 12) with cut-off frequency 1/10 of Nyquist 
frequency 

signal components 
RMS of ∆N 

[mm] 
RMS of ∆(∆g) 

[µGal] 
RMS of ∆Trr 

[mE] 
along-track 
Vxx 

5.153 20.495 1.428 

cross-track 
Vyy 

1.460 10.392 0.841 

radial 
Vzz 

51.140 60.129 2.514 

 
 

      

  



 

GOCE data and gravity field model filter comparison 

 

page 105 of 110 

 

  

s 

 

Figure 6.31: Spherical Butterworth filtering (order 6, Vxx) with cut-off degree lc=35 at model level 

 

 
 

 

Figure 6.32: Spherical Butterworth filtering (order 6, Vyy) with cut-off degree lc=35 at model level 
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Figure 6.33: Spherical Butterworth filtering (order 6, Vzz) with cut-off degree lc=35 at model level 

 
 
 

Table 6.11: RMS values for spherical Butterworth filtering (order 6) with cut-off degree of lc=35 

signal components 
RMS of ∆N 

[cm] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 
along-track 
Vxx 

19.408 1.230 0.091 

cross-track 
Vyy 

19.408 1.230 0.091 

radial 
Vzz 

19.408 1.230 0.091 
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Figure 6.34: Spherical Butterworth filtering (order12, Vxx) with cut-off degree lc=35 at model level 

 

 
 

 

Figure 6.35: Spherical Butterworth filtering (order 12, Vyy) with cut-off degree lc=35 at model level 
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Figure 6.36: Spherical Butterworth filtering (order 12, Vzz) with cut-off degree lc=35 at model level 

 
 
 

Table 6.12: RMS values for spherical Butterworth filtering (order 12) with cut-off degree of lc=35 

signal components 
RMS of ∆N 

[cm] 
RMS of ∆(∆g) 

[mGal] 
RMS of ∆Trr 

[E] 
along-track 
Vxx 

23.643 1.507 0.111 

cross-track 
Vyy 

23.643 1.507 0.111 

radial 
Vzz 

23.643 1.507 0.111 
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