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Abstract

Knowledge about the gravity �eld allows an insight into the structure and dynamics
of the earth. It provides the geoid as the most important physical reference surface
in geodesy and oceanography. Since 2000, the CHAMP (CHallenging Mini-satellite
Payload) mission detects the structure of the global gravity �eld, followed by the launch
of GRACE (Gravity Recovery And Climate Experiment) in 2002. In 2008, �nally, the
GOCE (Gravity �eld and steady-state Ocean Circulation Explorer) satellite is supposed
to be set in orbit. These missions demonstrate satellite-based gravity �eld recovery to
be at the center of geo-scienti�c interest.
Interpretation and evaluation of satellite observations are di�cult, especially the deter-
mination of the unknown gravity �eld parameters from a huge amount of measurements.
Because of the immense demand for memory and computing time, the occurring systems
of equations pose a real numerical challenge. Therefore, High-Performance Computing
(HPC) is commonly adopted to overcome computational problems. Basically, parallel
programming with MPI and OpenMP routines allows to speed up the solution process
considerably.
In this thesis, �rstly global gravity �eld modelling by means of satellite observations
is reviewed. Secondly, the LSQR method (Least-Squares using QR factorization) is
introduced in detail in order to solve the resulting least-squares problems. Because the
LSQR method is an iterative solver, it basically can not provide the variance-covariance
information of the parameter estimate. To investigate the approximate computation of
the variance-covariance matrix, two methods are introduced. The �rst one is based on
the generalized inverse of the design matrix. The second approach applies Monte-Carlo
integration techniques. Because parallel programming is very helpful to implement such
iterative methods, it is necessary to introduce some basic principles and concepts about
HPC.

Keywords: GOCE, gravity �eld determination, parallel programming, high perfor-
mance computing, MPI, OpenMP, LSQR, covariance estimation, Monte Carlo simula-
tion.
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Zusammenfassung

Das Wissen über das Erdschwerefeld ermöglicht einen Einblick in die Struktur und Dy-
namik der Erde. Es liefert das Geoid als die wichtigste physikalische Bezugsober�äche
in der Geodäsie und Ozeanographie. Seit 2000 erfasst die CHAMP (CHallenging Mini-
satellite Payload) Mission die Struktur des globalen Schwerefeldes, gefolgt vom Start
der GRACE (Gravity Recovery And Climate Experiment) Mission im Jahr 2002. Im
Jahr 2008 ist der Start des GOCE (Gravity �eld and steady-state Ocean Circulation
Explorer) Satelliten vorgesehen. Diese Missionen zeigen, dass die satellitengestützte
Schwerefeldbestimmung im Zentrum des geowissenschaftlichen Interesses liegt.
Die Interpretation und Auswertung von Satellitenbeobachtungen sind schwierig, vor
allem die Bestimmung der unbekannten Parameter des Schwerefeldes aus einer groÿen
Anzahl von Messungen. Aufgrund der immensen Nachfrage nach Speicher und Rechen-
zeit, stellen die auftretenden Gleichungssysteme eine groÿe numerische Herausforderung
dar. Zur Behebung der rechentechnischen Schwierigkeiten kommt deshalb üblicherweise
High Performance Computing (HPC) zum Einsatz. Grundsätzlich kann die parallele
Programmierung mit MPI und OpenMP den Lösungsprozess deutlich beschleunigen.
In dieser Arbeit wird zunächst ein kurzer überblick über die satellitengestützte Schw-
erefeldbestimmung gegeben. Danach wird die LSQR Methode ausführlich eingeführt
um die resultierenden least-squares Probleme zu lösen. Da die LSQR Methode ein
iterativer Löser ist, kann das Verfahren die Varianz-Kovarianz Informationen der Pa-
rameterschätzung grundsätzlich nicht liefern. Um die approximierte Berechnung der
Varianz-Kovarianz Matrix zu untersuchen, werden zwei Methoden eingeführt. Die erste
basiert auf der generalisierten Inverse des Designmatrix. Der zweite Ansatz gründet auf
Monte-Carlo Integration. Da parallele Programmierung zweckdienlich bei der Umset-
zung solcher iterativen Methoden ist, ist es notwendig, einige grundlegende Prinzipien
und Konzepte zum Thema HPC einzuführen.

Schlüsselwörter: GOCE, Schwerefeldbestimmung, parallele Programmierung, Hochleis-
tungsrechnen, MPI, OpenMP, LSQR, Varianz-Kovarianz Matrix, Monte Carlo Simula-
tion.
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Chapter 1

Global gravity �eld recovery using the
LSQR algorithm

1.1 Determination of the global gravity �eld
Nowadays, gravity �eld determination is typically based on satellite data, since only
by satellite observations the global coverage with largely homogeneous data can be
obtained. Theoretically, it is possible to perform terrestrial gravity measurements on a
global scale, but this is not feasible due to both political and logistical reasons.
A satellite model is referred to as a gravity �eld model derived from satellite observations
only. The disadvantage of such a model is its reduced sensitivity to local gravity �eld
features with increasing orbit altitude. Observations on the surface of the earth can
overcome regional de�ciencies. A gravity �eld model based on both satellite and surface
data is referred to as combination model.

1.2 Global gravity �eld model
A global gravity �eld model is represented as a set of spherical harmonic coe�cients
{cl,m, sl,m}, The degree l and order m specify the resolution of the spherical harmonic
expansion, the dash indicates that the coe�cients refer to the fully normalized spher-
ical harmonics expansion, which is used frequently in satellite geodesy. The potential
spherical harmonic series for the external space of the earth is (Heiskanen Moritz, 1967):

V =
GM

r
+

GM

R

L∑

l=2

l∑
m=0

(
R

r

)l+1

P l,m(sin ϕ)(cl,m cos(mλ) + sl,m sin(mλ)). (1.1)

GM denotes the geocentric constant, R the earth radius and r the distance from the
geocenter to the evaluation point. λ and ϕ are the longitude and latitude of the point,
cl,m and sl,m the gravity �eld coe�cients (cf. �gure 1.1), and P l,m(sin ϕ) the fully nor-
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Figure 1.1: Spherical harmonic coe�cients

malized associated legendre functions of the �rst kind. The higher the series resolution
L, the better is the approximation to the real gravitational potential.

1.3 Observation equation
Satellite orbit tracking provides the satellite positions x(λ, ϕ, r). Satellite accelerations
ẍ(λ, ϕ, r) are derived by second-order numerical di�erentiation (Reubelt, Austen, Gra-
farend, 2003). As a matter of fact, the acceleration is just the gradient of the gravitation
potential (1.1). Thus, the observation equation becomes:

ẍ = gradV, (1.2)
and the gradient operator in spherical coordinates is de�ned as

grad = er
∂

∂r
+ eλ

1

r cos λ

∂

∂λ
+ eϕ

1

r

∂

∂ϕ
. (1.3)

Therefore, from equations (1.1) and (1.3), the gradient of gravitational potential yields:

gradV =
GM

R2

L∑

l=0

l∑
m=0

(
R

r

)l+2

[−(l + 1)P̄l,m(sin ϕ)(c̄l,m cos(mλ) + s̄l,m sin(mλ))er

+
1

cos ϕ
P̄l,m(sin ϕ)(−c̄l,mm sin(mλ) + s̄l,mm cos(mλ))eλ

+
∂P̄l,m(sin ϕ)

∂ϕ
(c̄l,m cos mλ + s̄l,m sin(mλ))eϕ]

(1.4)

Because the two components of the surface gradient contain the same information as
the radial derivative, I only consider the �rst term on the right hand side in (1.4), hence:
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∂V

∂r
=

GM

R2

L∑

l=0

l∑
m=0

(
R

r

)l+2

[−(l + 1)P̄l,m(sin ϕ)(c̄l,m cos(mλ) + s̄l,m sin(mλ))]er.

(1.5)

Equation (1.5) constitutes a linear system of equations

y = Ax, (1.6)
where y ∈ Rn×1, A ∈ Rn×u, and x ∈ Ru×1 (u denotes the number of unknowns and n
refers to the number of observations).
The vector of unknown parameters becomes

x = [c̄00, . . . , c̄L0, c̄11, . . . , c̄L1, c̄22, . . . , c̄L2, . . . , c̄LL, s̄11, . . . , s̄L1, s̄22, . . . , s̄L2, . . . , s̄LL] ,
(1.7)

As the coordinate system origin coincides with the earth's center of mass it follows

c̄10 = c̄11 = s̄10 = 0.

Therefore, expression (1.7) reduces to

x = [c̄00, c̄20, . . . , c̄L0, c̄21, . . . , c̄L1, c̄22, . . . , c̄L2, . . . , c̄LL, s̄21, . . . , s̄L1, s̄22, . . . , s̄L2, . . . , s̄LL] .
(1.8)

Thus, the number of unknowns amounts to

u = l2max + 2 · lmax − 2. (1.9)
The substitutions

KCl,m =
GM

R2

(
R

r

)l+2 (−(l + 1)P̄l,m(sin ϕ) cos(mλ)
)

KSl,m =
GM

R2

(
R

r

)l+2 (−(l + 1)P̄l,m(sin ϕ) cos(mλ)
)
,

yield

Ai(λi, ϕi, ri) = [KC00, KC20, . . . , KCL0, KC21, . . . , KCL1, . . . , KCLL,

KS21, . . . , KSL1, KS22, . . . , KSL2, . . . , KSLL],

where Ai(λi, ϕi, ri) denotes the i-th row of the design matrix A, related to position
(λi, ϕi, ri).
The total design matrix A can be expressed as follows

3



A =




A1(λ1, ϕ1, r1)
A2(λ2, ϕ2, r2)
A3(λ3, ϕ3, r3)

. . .


 ,

and the observation vector as

y =




ẍr(λ1, ϕ1, r1)
ẍr(λ2, ϕ2, r2)
ẍr(λ3, ϕ3, r3)

. . .




1.4 The LSQR method
1.4.1 Motivation
In order to solve the linear system of equations (1.6), Least-Squares (LS) methods are
usually adopted (Pail & Plank, 2002; Ditmar et al., 2003; Schuh, 1996). Minimization of
squared residuals subject to min ‖r‖2 = min

x
‖Ax− y‖2 yields the best linear unbiased

estimate (Koch, 1999)

x̂ = (ATA)−1ATy = N−1ATy. (1.10)
With increasing number of satellite observations, the design matrix A and normal
matrix N enlarge accordingly. This comes along with huge memory and runtime re-
quirements. Hence, brute-force evaluation of (1.10) may not be feasible from the com-
putational point of view. Opposed to normal equation system inversion, the LSQR
(Least-Squares using QR decomposition) method solves the minimization problem

min
x
‖Ax− y‖2

iteratively. With increasing iterations k, the estimate x̂k approaches more and more
the exact least-squares solution x̂. The latter is reached after k = u iterations. For
LSQR neither the design matrix A nor the normal equation matrix N needs to be
stored. Moreover, matrix-vector products can be examined row by row. The row-
wise processing scheme causes memory requirements to be reduced dramatically. The
LSQR solver was published in detail in Paige & Saunders (1982a) and Paige & Saunders
(1982b). Its application to geodetic research is carried out in e.g. Kusche & Mayer-Gürr
(2001), Baur & Austen (2005) and Baur et al. (2007).

1.4.2 LSQR algorithm
The LSQR method treats LS problems by means of bidiagonalization and QR decom-
position (see �gures 1.2 and 1.3), in order to solve the linear system of equations (1.6)

4



Figure 1.2: Brute-force approach to solve LS problems

iteratively. According to Lanczos lower bidiagonalization (Paige & Saunders, 1982a),
the design matrix A can be split into three matrices subject to

Ak = Uk+1BkVT
k k = 1, . . . , u, (1.11)

where Ak denotes the approximation to the design matrix A in the k-th iteration, and

Uk+1 = (u1,u2, . . . ,uk,uk+1) Vk = (v1,v2, . . . ,vk) (1.12)

as well as

Bk =




α1

β2

· · ·
· · ·

· · ·
αk

βk+1




(1.13)

hold true, with ‖uk‖=‖vk‖ = 1 and

UT
k+1Uk+1 = I, VT

kVk = I.

With the initial relations

β1u1 = y, α1v1 = ATu1, (1.14)

the bidiagonalization process becomes

5



Figure 1.3: LSQR method
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βi+1ui+1 = Avi − αiui, αi+1vi+1 = ATui+1 − βi+1vi, (1.15)
where αk and βk are positive numbers. β1u1 = y can be rewritten as

Uk+1(β1e1) = y, (1.16)
where e1 corresponds to the unit vector (1, 0, · · · , 0)T . Inserting equations (1.11) and
(1.16) in min

x
‖Axk − y‖2 yields the bidiagonal minimization problem

min
ak

‖Bkak − β1e1‖2 = min
ak

∥∥∥∥∥∥∥∥∥∥∥∥∥∥




α1

β2

· · ·
· · ·

· · ·
αk

βk+1




·




â1
...
...

âk


−




β1

0
...
0




∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (1.17)

In order to solve this problem e�ciently, the matrix Bk is decomposed in Qk and
Rk using QR decomposition, where Qk is an orthogonal matrix and Rk is an upper
triangular matrix, i.e.,

QkBk =

(
Rk

0T

)
. (1.18)

The QR decomposition is performed by a set of Givens rotations. The Givens rotation
matrix is represented as

Gij(υ) =




1
. . .

1
c s

1
. . .

1
−s c

1
. . .




with c = cos(υ) and s = sin(υ).
Thereby the cos and sin terms are located at the positions (i, i), (i, j), (j, i), (j, j). The
successive multiplication of Givens matrices to the bidiagonal matrix from the left-hand
side causes its diagonalization. The �rst Givens rotation, for example, becomes

7



c1 =
α1

ρ1

s1 =
β2

ρ1

,

with

ρ1 =
√

α2
1 + β2

2 6= 0.

Thus,

G1,2

[
α1

β2

]
=

[
c1 s1

−s1 c1

] [
α1

β2

]
=

[
ρ1

0

]
.

Therefore, Qk and Rk can be computed by

Qk = Gk,k+1,Gk−1,k · · ·G1,2 (1.19)
and

Rk =




ρ1 θ1

ρ2 θ2

. . . . . .
ρk−1 θk−1

ρk




, (1.20)

with θk = sk−1αk and ρk =
√

(ck−1αk)2 + β2
k+1. Rewriting (1.18) in

QkBk =

[
Qk1

Qk2

]
Bk =

[
Rk

0T

]
(1.21)

yields the product QT
k β1e1 to become

QT
k β1e1 =

[
QT

k1

QT
k2

]
β1e1 =




φ1

φ2
...

φk−1

φk

φ̄k+1




. (1.22)

Fox example:

G1,2β1e1 =

[
c1 s1

−s1 c1

] [
β1

0

]
=

[
φ1 = c1β1

φ̄2 = −s1β1

]
.

Therefore, âk can be calculated by

8



âk = B−1
k (β1e1) = R−1

k QT
k1(β1e1) = R−1

k




φ1

φ2
...

φk−1

φk




. (1.23)

x̂k is embedded in the Krylov space κk(ATA,ATy). The vectors (u1,u2, . . . ,uk) and
(v1,v2, . . . ,vk) are the orthonormal bases of the Krylov spaces

κk(AAT ,u1), κk(ATA,ATu1),

respectively (Baur, 2007). Therefore, x̂k can be represented via the orthonormal base
(v1,v2, . . . ,vk), i.e.,

x̂k ∈ κk(ATA,ATu1)

x̂k = Vkâk = â1v1 + â2v2 + · · ·+ âkvk, (1.24)
Hence, the solution of the original minimization problem can be represented as

x̂k = VkR−1
k




φ1

φ2
...

φk−1

φk




. (1.25)

The implementation of the LSQR solver is represented in Tables 1.1 and 1.2 (Baur,
2007). Brie�y summarized, the advantages of the LSQR method are as follows: (i)
simple recursions to update the successive approximations of the model parameters
imply a minimal CPU memory requirement, (ii) Lanczos bidiagonalization suits the
numerical calculation by involving sparse matrices very well, and (iii) a good solution
in the Krylov subspace can often be obtained with a small number of iterations, making
the LSQR method very e�cient (Yao et al., 1999).

1.4.3 Preconditioning the normal equation matrix
The convergence of the iterative solution of a system of equations is dominated by
the condition number of the design matrix, the normal equation matrix respectively.
Tailored preconditioning can improve the condition number signi�cantly, and speed
up the iterative process (Benbow, 1999). In linear algebra and numerical analysis, a
preconditioner P of a matrix A is a matrix such that P−1A has a smaller condition
number than A, therefore, preconditioners are very useful when using an iterative
method to solve a large, sparse linear system, for example,

Ax = y. (1.26)

9



LSQR method for solving min ‖r‖2 = min
x
‖Ax− y‖2

Initialization
1. β1u1 = y
2. α1v1 = ATu1

3. α1 = α1

β1

4. φ̄1 = β1

5. ρ̄1 = α1

1. Iteration: k = 1 Further iterations: for k = 2 : u
6. β2u2 = Av1 − α1u1 15. βk+1uk+1 = Avk − αkuk

7. h1 = AT β2u2 16. hk = AT βk+1uk+1

8. [c1, s1, ρ1] = givrot(ρ̄1, β2) 17. θk−1 = sk−1αk

9. Φ1 = c1Φ̄1 18. ρ̄k = ck−1αk

10. Φ̄2 = −s1Φ̄1 19. [ck, sk, ρk] = givrot(ρ̄k, βk+1)
11. q1 = 1

ρ1
v1 20. φk = ckφ̄k

12. x1 = Φ1q1 21. Φ̄k+1 = −skΦ̄k

13. α2v2 = h1 − β2
2v1 22. qk = 1

ρk
(vk − θk−1qk−1)

14. α2 = α2

β2
23. xk = xk−1 + Φkqk

24. αk+1vk+1 = hk − β2
k+1vk

25. αk+1 = αk+1

βk+1

Table 1.1: LSQR method

Givens rotation [c, s, ρ] = givrot(ρ̄, β)
if β = 0.0

a. c = 1.0, s = 0.0, ρ = ρ̄
else if |β| > |ρ̄|

a. t = ρ̄/β, q =
√

1.0 + t2

b. s = 1.0/q, c = ts, ρ = qβ
else

a. t = β/ρ̄, q =
√

1.0 + t2

b. c = 1.0/q, s = tc, ρ = qρ̄

Table 1.2: Givens rotation

10



In order to reduce the condition number, equation (1.26) can be rewritten in

(P−1A)x = P−1y. (1.27)
Because P−1A has a smaller condition number than A, equation (1.27) converges faster
than equation (1.26), thus, selecting an appropriate preconditioner is very important
before solving linear systems of equations with LSQR. According to Baur (2007) an
appropriate preconditioner of the design matrix A can be obtained by Cholesky de-
composition of the symmetric, positive de�nite block diagonal approximation Nbd of
the normal equation matrix N subject to

NN−1
bd ≈ I (1.28)

and the Cholesky decomposition

Nbd = LT
NLN. (1.29)

The structure of Nbd is



cHL−1
0

cHL−1
1

cHL−1
2

cHL−2
3

. . .
cH1

L

sHL−1
1

. . .
sH1

L




, (1.30)

where L = lmax and c,sHp
l (∈ Rp×p, p < L) are blocks along the diagonal. The blocks of

Nbd are consisted of the elements of the series expansion under the same order, thus
most elements of the resulting matrix are zero. Opposed to the full matrix, the memory
requirement is reduced considerably, as well as the requirement of computing time, LN

and its inverse L−1
N can be obtained by block-wise decomposition and inversion. With

(1.29), the equation

Ax = y + r (1.31)
becomes

AL−1
N LNx = y + r, (1.32)

with L−1
N LN = I. Through the substitutions AN = AL−1

N and z = LNx, equation (1.32)
can be rewritten as

ANz = y + r. (1.33)
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Figure 1.4: PCA-LSQR

Obviously, the solution of equation (1.31) is

x̂ = L−1
N ẑ. (1.34)

The preconditioned LSQR algorithm is referred to as PCA-LSQR (see �gure 1.4), and
for its implementation, the iterative steps

v1 = AT
Nu1 (1.35)

βk+1uk+1 = ANvk − αkuk (1.36)
αk+1vk+1 = AT

Nuk+1 − βk+1vk, (1.37)

must be rewritten as

v1 = (L−1
N )TATu1 (1.38)

βk+1uk+1 = AL−1
N vk − αkuk, (1.39)

αk+1vk+1 = (L−1
N )TATuk+1 − βk+1vk. (1.40)

The whole processes are represented in Table 1.3, and because equation (1.33) has a
faster convergence than (1.31), a satisfying solution can be obtained with only a few
iterations. The main computational costs are

12



PCA-LSQR method: supplement to Table 1.1
Solution of min ‖r‖2 = min

x
‖Ax− y‖2

Initialization
1a. compute Nbd = LT

NLN and the inverse Cholesky factor L−1
N

2a. v1 = (L−1
N )Tv1

5a. v1 = L−1
N v1

1. Iteration: k = 1 Further iterations: for k = 2 : u
7a. h1 = (L−1

N )Th1 16a. hk = (L−1
N )Thk

12. z1 = Φ1q1 23. zk = zk−1 + Φkqk

12a. x1 = L−1
N z1 23a. xk = L−1

N zk

14a. v2 = L−1
N v2 25a. vk+1 = L−1

N vk+1

Table 1.3: PCA-LSQR method

• the construction of Nbd as well as

• the additional calculations of the matrix-vector products L−1
N vk, (L−1

N )Thk and
L−1

N zk.

In general, the costs are comparatively low and all calculations can be implemented eas-
ily and quickly using BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear
Algebra PACKage), which will be introduced in chapter 3.
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Chapter 2

Solutions of the LSQR
variance-covariance matrix ploblem

2.1 Motivation
In addition to the estimated vector x̂, the quality of the LS result is also important,
which is typically expressed in terms of the variance-covariance matrix D(x̂). Generally,
it can be calculated via the generalized inverse A−g of the design matrix A (Menke,
1984) subject to

A−g = (ATA)−1AT (2.1)
x̂ = A−gy (2.2)

D(x̂) = A−g(A−g)T . (2.3)

As LSQR is an iterative method, the generalized inverse A−g can not be computed
explicitly, hence the quality of the parameter estimate can not be provided by the
straightforward evaluation of (2.3). Thus, searching a suitable method to approxi-
mate the variance-covariance information is necessary. Yao et al. (1999) and Schuh &
Alkhatib (2007) recommended two independent approaches for the approximate com-
putation of D(x̂). The method according to Yao et al. (1999) is here referred to as the
LSQR internal method, whereas Schuh & Alkhatib (2007) use an approach based on
Monte Carlo simulation. In the following sections, the two methods will be reviewed.

2.2 LSQR internal method
The LSQR internal method is based on the explicit calculation of the generalized inverse
A−g. According to

min
ak

‖Bkak − β1e1‖2 , (2.4)

it yields

14



Bkâk = β1e1 (2.5)
BT

kBkâk = BT
k β1e1. (2.6)

From above, we get

âk = (BT
kBk)

−1BT
k β1e1 = B−g

k β1e1. (2.7)
Moreover, according to the relation (1.16)

Uk+1β1e1 = y⇐⇒ β1e1 = UT
k+1y, (2.8)

the parameter estimate becomes

x̂k = Vkâk = VkB−g
k UT

k+1y. (2.9)
The comparison between equation (2.9) with equation

x̂k = A−g
k y (2.10)

yields

A−g
k = VkB−g

k UT
k+1. (2.11)

According to equation (2.3), one obtains with the generalized inverse of an overdeter-
mined LS problem (2.1)

D(x̂) = A−g(A−g)T

= A−g(AT )−g

= (ATA)−1AT (AAT )−1A
= (ATA)−1AT (AT )−1A−1A
= (ATA)−1

= N−1.

(2.12)

Hence, from equation (2.11), the approximation of the variance-covariance matrix N−1

after k iterations can be written as

N−1
k = A−g

k (A−g
k )T

= VkB−g
k UT

k+1(VkB−g
k UT

k+1)
T

= VkB−g
k UT

k+1Uk+1(B−g
k )TVT

k ,

(2.13)

and with the assumption that Uk+1 keeps always good orthogonality, i.e., UT
k+1Uk+1 =

I, the above equation (2.13) can be consequently reduced to
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Solution of min ‖r‖2 = min
x
‖Ax− y‖2 and approximation of N−1

Reorthogonalization: supplement to Table 1.1
Initialization
1. Iteration: k = 1 Further iterations: for k = 2 : u

15. u∗k+1 = Avk − αkuk

15a. βk+1uk+1 = u∗k+1 −Uk(UT
ku∗k+1)

24. v∗k+1 = hk − β2
k+1vk

24a. αk+1vk+1 = v∗k+1 −Vk(VT
k v∗k+1)

Computation of the VCM: supplement to Table 1.1
After k iterations, Bk and Vk are kept in memory. So,

26. N−1
k = Vk(BT

kBk)
−1VT

k

Table 2.1: LSQR internal method for VCM computation

N−1
k = Vk(B−g

k (B−g
k )T )VT

k = Vk(BT
kBk)

−1VT
k . (2.14)

Therefore, in order to calculate the variance-covariance matrix N−1
k , the matrices Vk

and Bk must be kept in the memory, requiring additional storage space. From the
implementation point of view, only small changes are required to the original LSQR
code. It is important to note that the quality of the variance-covariance matrix is
heavily dependent on the number of iterations k, and commonly the convergence of
N−1

k is slower than the convergence of the parameter estimate x̂k (Yao et al., 1999).

Reorthogonalization
In practice, orthogonality of the matrix Uk+1 will be destroyed after only a few iter-
ations, i.e., UT

k+1Uk+1 6= I holds true, falsifying the results considerably. Therefore,
reorthogonalization of the matrices Uk+1 and Vk is necessary. Referring to Yao et al.
(1999), in terms of reorthogonalization, (1.15) can be rewritten as follows

u∗k+1 = Avk − αkuk (2.15)
Reorthogonalization: βk+1uk+1 = u∗k+1 −Uk(UT

ku∗k+1) (2.16)
v∗k+1 = ATuk+1 − βk+1vk (2.17)

Reorthogonalization: αk+1vk+1 = v∗k+1 −Vk(VT
k v∗k+1). (2.18)

In addition to the matrices Vk and Bk, matrix Uk+1 must be also kept in memory.
Due to the increasing storage requirements, memory allocation and reallocation must
be carefully performed. The steps to implement both reorthogonalization and the ap-
proximate variance-covariance matrix (VCM) are summarized in Table 2.1 as well as in
�gure 2.1.
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Figure 2.1: LSQR internal method for VCM computation

2.3 Monte Carlo method
2.3.1 Introduction
The Monte Carlo (MC) method was developed in the 1940s, when it was used at �rst
in the simulation of random processes for the construction of the atomic bomb, in order
to theoretically predict the interaction between neutrons and matter. The name is
an allusion to the famous gambling city. Today Monte Carlo methods belong to the
most important numerical (and non-numeric) procedures, which was applied to many
scienti�c, technical and medical problems with great success 1.

2.3.2 Monte Carlo algorithm
The MC method allows to approximate the VCM (N−1) by means of random samples
s(i)
l , . . . , s(M)

l . For the sake of simplicity, the observations are assumed to be uncorrelated
and equal in accuracy. Hence, sl ∼ N(0, I) holds true. The transformation

s(i)
x = Bs(i)

l , i = 1, . . . , M (2.19)

yields the samples s(i)
x , . . . , s(M)

x to be distributed according to
1http://www.exp.univie.ac.at
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Input: linear system y = Ax
A . . . design matrix

Output: N−1

1. Generate samples s(i)
l , i = 1, . . . , M with

sl ∼ N(0, I).
2. Transform the sample vectors s(i)

l into s(i)
x

by solving the linear systems of equations
As(i)

x = s(i)
l + r(i)

with LSQR.
3. Estimate the VCM by

N−1 = D̂(x̂) = 1
M

∑M
i=1 ŝ(i)

x ŝ(i)T
x , i = 1, . . . , M.

Table 2.2: Monte Carlo algorithm for VCM estimation

sx ∼N(0,N−1). (2.20)

Consequently, for the VCM holds (Schuh & Alkhatib, 2007):

D(x̂) = E

{(
sx − E{sx}

)(
sx − E{sx}

)T
}

(2.21)

= E
{
sxsT

x

}
(2.22)

≈ 1

M

M∑
i=1

s(i)
x s(i)T

x , i = 1, . . . , M. (2.23)

Hence, for M < ∞ random samples, the VCM can be approximated by

D̂(x̂) =
1

M

M∑
i=1

s(i)
x s(i)T

x , i = 1, . . . , M. (2.24)

Each individual sample s(i)
x , i = 1 · · ·M is derived from the solution of the linear system

As(i)
x = s(i)

l + r(i),

i.e., B = (ATA)−1AT = A−g holds true and LSQR has to be applied to M + 1 right
hand sides, namely y, s(1)

l , . . . , s(M)
l , in order to compute M+1 estimates of the unknown

vectors x, s(1)
x , . . . , s(M)

x . The algorithm is summarized in Table 2.2.
The augmented vectors X = [x, s(1)

x , s(2)
x , . . . , s(M)

x ] and Y = [y, s(1)
l , s(2)

l , . . . , s(M)
l ] have

dimensions u ·(M +1) and n ·(M +1), respectively. Therefore, the memory requirement
is driven by the number of samples M . From �gure 2.2 it can be seen that the MC
method is very well suited for parallel computing. The original LSQR process (see
Table 1.1) can be supplemented by the Monte Carlo method as outlined in Table 2.3.
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Solution of min ‖r‖2 = min
x
‖Ax− y‖2 and approximation of N−1

Monte Carlo method: supplement to Table 1.1
Initialization
Create a set of random samples s(i)

l with normal distribution, i = 1, . . . , M.

1. Y = [y, s(1)
l , s(2)

l , . . . , s(M)
l ]

1a. β1u1 = Y
1. Iteration: k = 1 Further iterations: for k = 2 : u

12. X1 = Φ1q1 23. Xk = Xk−1 + Φkqk

12a. X1 = [x1, s(1)
x1 , s(2)

x1 , . . . , s(M)
x1 ] 23a. Xk = [xk, s(1)

xk , s(2)
xk , . . . , s(M)

xk ]
Compute the VCM: supplement to Table 1.1

26. N−1
k = 1

M

∑M
i=1 s

(i)
xks

(i)T
xk

Table 2.3: Monte Carlo method for VCM estimation

Figure 2.2: Flowchart of the Monte Carlo method
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Referring to Schuh & Alkhatib (2007), the accuracy of the MC method primarily de-
pends on the number of samples M . As pointed out there, the convergence to the exact
VCM by increasing the number of samples is very slow. An alternative way to improve
the accuracy of the method is given by stepwise estimation by conditioning (Schuh &
Alkhatib, 2007), as pointed out next.

2.3.3 Stepwise estimation by conditioning
First, the normal equation matrix N is divided into p× p blocks subject to



N11 . . . Ni1
... . . . ...

N1j . . . Nij


 i, j = 1, . . . , p. (2.25)

According to (1.30), N can be approximated by a symmetric, positive de�nite block
diagonal matrix Nbd and it can be inverted block-wise as follows




N−1
bd1 . . .

N−1
bdk . . .

N−1
bdp




k = 1, . . . , p. (2.26)

New vectors (ŝ(i)
x̄ )k result from the vectors (ŝ(i)

x )k with the transformation
(
s(i)
x̄

)
k

=
(
s(i)

x

)
k
−N−1

bdk

(
AT s(−1)

l

)
k
, (2.27)

where subscript k denotes the kth part of a vector or the kth block of a diagonal block
matrix. After the (ŝ(i)

x̄ )k are calculated completely, the diagonal blocks of the VCM can
be obtained by using the equation

D(x̂)kk = N−1
bdk

+
1

M

M∑
i=1

(
s(i)
x̄

)
k

(
s(i)

x̄

)T

k
(2.28)

and in order to compute the remaining blocks o� the diagonal, the equation

D(x̂)kj =
1

M

M∑
i=1

(
s(i)
x̄

)
k

(
s(i)
x

)T

j
j = k + 1, . . . , p. (2.29)

is applied. Because the matrix D(x̂) is a symmetric matrix, the VCM becomes

N−1 = D(x̂) = D(x̂)kk + D(x̂)kj + D(x̂)T
kj k = 1, . . . , p; j = k + 1, . . . , p (2.30)

The algorithm for conditioning is presented in Table 2.4. Table 2.5 outlines the MC
method including conditioning.
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Input: Nbdk
. . . blocks of the normal equations

(s(i)
x )k . . . subvectors of the samples

Output: N−1

k = 1, . . . , p
1. Invert the diagonal block Nbdk

N−1
bdk

= INV(Nbdk
).

2. Transform the vectors
(
s(i)
x

)
k
in

(
s(i)

x̄

)
k
with(

s(i)
x̄

)
k

=
(
s(i)

x

)
k
−N−1

bdk

(
AT s(−1)

l

)
k
.

3. Compute the diagonal blocks of the VCM
N−1

kk = D̂(x̂)kk = N−1
bdk

+ 1
M

∑M
i=1

(
s(i)
x̄

)
k

(
s(i)
x̄

)T

k
.

4. Compute the o� diagonal blocks of the VCM
N−1

kj = D̂(x̂)kj = 1
M

∑M
i=1

(
s(i)
x̄

)
k

(
s(i)
x

)T

j
.

j = k + 1, . . . , p.
END k

Table 2.4: Conditioning

Solution of min ‖r‖2 = min
x
‖Ax− y‖2 and approximation of N−1

Monte Carlo method with conditioning: supplement to Table 1.1
Initialization
Create a set of random samples s(i)

l with normal distribution, i = 1, . . . , M.

1. Y = [y, s(1)
l , s(2)

l , . . . , s(M)
l ]

1a. β1u1 = Y
2a. M = ATu1

1. Iteration: k = 1 Further iterations: for k = 2 : u
12. X1 = Φ1q1 23. Xk = Xk−1 + Φkqk

12a. X1 = [x1, s(1)
x1 , s(2)

x1 , . . . , s(M)
x1 ] 23a. Xk = [xk, s(1)

xk , s(2)
xk , . . . , s(M)

xk ]
Compute the VCM: supplement to Table 1.1
26. Calculate the blocks Nbdk

and inverses N−1
bdk

, k = 1, . . . , p

27.
(
s(i)

x̄

)
k

=
(
s(i)
x

)
k
−N−1

bdk

(
M

)
k

28. N−1
kk = N−1

bdk
+ 1

M

∑M
i=1

(
s(i)

x̄

)
k

(
s(i)
x̄

)T

k

29. N−1
kj = 1

M

∑M
i=1

(
s(i)
x̄

)
k

(
s(i)
x

)T

j
, j = k + 1, . . . , p

30. N−1 = N−1
kk +N−1

kj + (N−1
kj )T

Table 2.5: Monte Carlo method with conditioning
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Chapter 3

High performance computing (HPC):
Parallel programming

3.1 High performance computing and computers
High performance computing is increasingly important in scienti�c computing as a tool
for calculating, modeling and simulation of complex systems as well as for processing
huge amounts of data. Such applications can be found today in all areas of natural
and technical sciences; typical application areas are meteorology and climatology, as-
tronomers and particle physics, systems biology, genetics, �ow and quantum mechanics.
Even in commercial computing, there are applications of the high performance com-
puting. Many of them are scienti�c origin (such as weather forecasting, crash test
simulation, �uid dynamics in the aircraft), but there are also applications without sci-
enti�c character, for example, in the production of animation �lms.
High performance computers are computer systems that are suitable for tasks of the
high performance computing. On high performance computers, di�erent scienti�c ap-
plication programs, math libraries, compilers and programming tools are installed. A
typical characteristic of a modern high performance computer is its large number of
processors, common peripherals and a partially shared memory.
High performance computers are based on di�erent processor architectures. Vector
processors can complete a calculation simultaneously on many data (in a vector or ar-
ray). Clusters consist of a large number of (mostly cheap) individual central processing
units (CPUs), assembled to a large computer networks. Compared to vector comput-
ers, the cluster nodes have own peripherals and exclusively use their own local memory.
High performance computers are programmed generally in 64-bit, and programming
languages are Fortran and C. The fastest high performance computers are listed in the
top-500 list1 according to their performance.

1http://www.top500.org
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3.1.1 System architectures, Flynn's taxonomy
Michael J. Flynn created one of the earliest classi�cation systems for parallel (and
sequential) computers and programs, now known as Flynn's taxonomy. Flynn classi�ed
programs and computers by whether they were operating using a single set or multiple
sets of instructions, whether or not those instructions were using a single or multiple
sets of data (Flynn (1972)).

SISD (Single instruction, single data) SISD computers are understood as tradi-
tional single computers, which do their tasks sequentially. SISD computers are built
according to the von Neumann or Harvard architecture (e.g. Personal computers (PCs)
or workstations). In this case, a single processor, an uniprocessor, executes a single
instruction stream, to operate on data stored in a single memory (see �gure 3.1).

SIMD (Single instruction, multiple data) SIMD computers, also known as array
processors or vector processor, serve for the rapid execution of similar calculations of
available input data streams and are used mainly in the processing of video, audio and
video data (see �gure 3.2).
Many modern microprocessors (such as PowerPC and x86) have now SIMD Extensions,
which means additional speci�c instruction sets. With one command call several similar
processes can be implemented simultaneously.

MISD (Multiple instruction, single data) The assignment of systems to this
class is di�cult, so it is controversial. Many people are of the opinion that such systems
should not be existent (see �gure 3.3).

MIMD (Multiple instruction, multiple data) MIMD computer implement var-
ious operations at the same time and deal with di�erent kind of input data streams.
Moreover, the distribution of tasks to the available resources is managed mostly by one
or more processors. Each processor has access to the data of other processors (see �gure
3.4).
There are closely coupled systems and loosely coupled systems. Closely coupled systems
are multi-processor system, while loosely coupled systems multicomputer systems.
Multi-processor systems share the available memory and are therefore also a shared
memory system. These shared-memory systems can be divided further in UMA (uni-
form memory access), NUMA (non-uniform memory access) and COMA (cache-only
memory access) .
The principal idea using MIMD systems is to split a huge problem in several smaller
parts. Doing so, the di�erent parts of the problem must be synchronized with each
other.
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Figure 3.1: SISD Figure 3.2: SIMD

Figure 3.3: MISD Figure 3.4: MIMD

3.1.2 Parallel computers
A parallel computer is a computer, in which operations will be distributed simultane-
ously on multiple CPUs to advance the working speed. A massively parallel computer
is a single computer with many networked processors. They have usually far more than
100 processors. In a massively parallel computer, each CPU contains its own memory
and copy of the operating system and application. Application examples can be found
in computational physics or in weather forecast. For the e�cient performance of a par-
allel computer, the computations must be distributed on the CPUs. In principle, this
is a logistical problem. The scarce resources - computer time, memory accesses, date
buses - must be exploited e�ectively. Always, the sequential program overhead should
be minimal (Amdahl's Law).
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Amdahl's Law Amdahl's Law (named after Gene Amdahl) is a model in computer
science for the acceleration of program by parallel execution. According to Amdahl
the speed increase depends especially on the sequential parts of the parallel problem
(Amdahl (1967)). If P is the number of parallel processors and a is the sequential
(non-parallelized) part of the program, then the maximum speedup s is:

s =
1

a + o(P ) + 1−a
P

≤ 1

a

It should be noted that the acceleration with increasing number of processor depends
on both the sequential part of the algorithm and the processor communication.
The larger the number of CPUs, the faster the communication costs increase in a parallel
computing environment. The relationship is not linear.

3.1.3 Memory access principles
Shared Memory Shared memory denotes a certain kind of interprocess communica-
tion (IPC). In this case, two or more processes can use a certain part of the communal
memory. For all involved processes, this shared memory area are located just in the
address space, it can be used and changed with normal memory access operations. Most
of this are implemented by paging mechanisms, in which both processes use the same
page descriptors. Most modern operating systems provide mechanisms to use shared
memory.

Distributed Memory In computer science, distributed memory refers to a multiple-
processor computer system in which each processor has its own private memory. This
requires computational tasks to be distributed to the di�erent processors for process-
ing. Afterward the data must be reassembled. Various network topologies are used to
connect the multiple processors in distributed memory systems, including ring, mesh,
tree, etc.

Distributed Shared Memory Distributed shared memory (DSM) is an intermedi-
ate form well-known distributed memory and shared memory architectures. In general,
a DSM is considered as a virtual shared memory, it means that the user has the sight
of a shared memory architecture. However, the real memory is distributed on a number
of di�erent, separate and independent physical memory. So, a DSM system provide a
mediation layer between users and hardware.

3.1.4 Classes of parallel computers
Parallel computers can be roughly classi�ed according to the level at which the hardware
supports parallelism. This classi�cation is broadly analogous to the distance between

25



basic computing nodes. These are not mutually exclusive; for example, clusters of
symmetric multiprocessors are relatively common2.

Multicore computing
A multicore processor is a processor that includes multiple execution units. These
processors di�er from superscalar processors, which can issue multiple instructions per
cycle from one instruction stream (thread); by contrast, a multicore processor can
issue multiple instructions per cycle from multiple instruction streams. Each core in a
multicore processor can potentially be superscalar as well, that is, on every cycle, each
core can issue multiple instructions from one instruction stream.

Symmetric multiprocessing
A symmetric multiprocessor (SMP) is a computer system with multiple identical pro-
cessors that share memory and connect via a bus. Bus contention prevents bus ar-
chitectures from scaling. As a result, SMPs generally do not comprise more than 32
processors.

Distributed computing
A distributed computer (also known as a distributed memory multiprocessor) is a dis-
tributed memory computer system in which the processing elements are connected by
a network. Distributed computers are highly scalable.

Cluster computing
A cluster is a group of loosely coupled computers that work together closely, so that
in some respects they can be regarded as a single computer. Clusters are composed
of multiple standalone machines connected by a network. The most common type of
cluster is the Beowulf cluster, which is a cluster implemented on multiple identical com-
mercial o�-the-shelf computers connected with a TCP/IP Ethernet local area network.
The vast majority of the TOP500 supercomputers are clusters.

Massive parallel processing
A massively parallel processor (MPP) is a single computer with many networked pro-
cessors. MPPs have many of the same characteristics as clusters, but they are usually
larger, typically having "far more" than 100 processors. In an MPP, each CPU contains
its own memory and copy of the operating system and application. Each subsystem
communicates with the others via a high-speed interconnect.
Blue Gene/L, the fastest supercomputer in the world according to the TOP500 ranking
(August 2008), is an MPP.

2http://en.wikipedia.org/wiki/Parallel_computing
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Grid computing
Grid computing is the most distributed form of parallel computing. It makes use of
computers communicating over the internet to work on a given problem. Because of the
low bandwidth and extremely high latency available on the internet, grid computing
typically deals only with embarrassingly parallel problems.

3.2 Parallel programming (MPI, OpenMP)
3.2.1 MPI
Message passing is a paradigm used widely on certain classes of parallel machines, es-
pecially those with distributed memory. Although there are many variations, the basic
concept of processes communicating through messages is well understood. Over the
last ten years, substantial progress has been made in casting signi�cant applications
in this paradigm. Each vendor has implemented its own variant. More recently, sev-
eral systems have demonstrated that a message passing system can be e�ciently and
portably implemented. It is thus an appropriate time to try to de�ne both the syntax
and semantics of a core of library routines that will be useful to a wide range of users
and e�ciently implementable on a wide range of computers3.
Message Passing Interface (MPI) is a standard, which describes the message exchange in
parallel computing on distributed computer systems. It de�nes a collection of operations
and semantics, i.e. a programming interface, but there is no speci�c protocol and no
implementation.
An MPI application usually consists of several processes communicating with each other,
which starts at the beginning of the parallel program execution. Then all these processes
work together on a problem and use the messages to exchange data, which is sent
explicitly from one to the other process.
One advantage of this principle is that the message exchange works ignoring computer
boundaries. MPI parallel programs are executable both on PC clusters4, as well as on
dedicated parallel computers5.
The aim of the message passing interface can be simply explained to design a widely
used standard for writing message-passing programs. As such an interface it should be
a practical, portable, e�cient and �exible standard for message passing.

3.2.2 Some useful MPI routines
Header �le
#include <mpi.h>

3http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
4in this case the exchange of messages works e.g. via TCP
5The message exchange works here e.g. via the common main memory
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Initializing MPI
int MPI_Init(int *argc, char ***argv)

#include<mpi.h>
int main(int argc, char **argv)
{
MPI_Init(&argc, &argv);
...

Starting the MPI program
mpirun -np number_of_processes ./executable

Communicator MPI_COMM_WORLD
All processes of one MPI program are combined in the communicator

MPI_COMM_WORLD.

It is a prede�ned handle in mpi.h. Each process has its own rank in a communicator.

Rank
The rank identi�es di�erent processes and is the basis for any work and data distribu-
tion.

int MPI_Comm_rank(MPI_Comm comm, int *rank)

Size
It denotes how many processes are contained within a communicator.

int MPI_Comm_size(MPI_Comm comm, int *size)

Exiting MPI
MPI_Finalize

�nalizes the MPI programming environment. Further MPI-calls are forbidden and
especially reinitialization with

MPI_Init

is forbidden.
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3.2.3 OpenMP
OpenMP (Open Multi Processing) is a programming interface, which is developed
jointly by various hardware manufacturers and compiler since 1997. This standard
is used for shared memory programming on multi-processor computers. It is portable
across any shared-memory architectures and allows incremental parallelization6.
The OpenMP standard de�nes special compiler directives, e.g. the processing of a for-
loop is distributed on several threads or processors. However, there are also library
functions and environment variables for OpenMP programming.
In modern super computers, OpenMP and MPI are often used together. Then OpenMP
works on shared memory nodes, which exchange with MPI.

3.2.4 Some useful OpenMP routines
OpenMP parallel region construct
#pragma omp parallel
structured block
/*omp end parallel*/

OpenMP parallel region construct syntax
#pragma omp parallel [clause [[,] clause] ...] new-line
structured-block

clause can be one of the following:

• private(list)7

• shared(list)8

OpenMP directive format
#pragma omp directive_name [clause[[,] clause ]...] new-line

OpenMP runtime library
Include �le for library routines:

#include <omp.h>

The function
6http://de.wikipedia.org/wiki/OpenMP
7declares the variables in list to be private to each thread in a team
8makes variables that appear in list shared among all the threads in a team
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int omp_get_num_threads(void)

returns the number of threads currently in the team executing the parallel region.

The function

int omp_get_thread_num(void)

returns the thread number. The master thread of the team is thread 0. Wall clock time
is measured with

MPI_WTIME

A simple OpenMP example is given next:

#pragma omp parallel private(f)
{
f = 7;
#pragma omp for
for (i = 0; i < 20; i++)
a[i] = b[i] + f*(i+1);

}
/*omp end parallel*/

3.3 Parallel libraries
BLAS - Basic Linear Algebra Subroutines:
Basic Linear Algebra Subprograms (BLAS) is a defacto application programming inter-
face standard for publishing libraries to perform basic linear algebra operations such as
vector and matrix multiplication9. They were �rst published in 1979, and are used to
build larger packages such as LAPACK. Heavily used in high-performance computing,
highly optimized implementations of the BLAS interface have been developed by hard-
ware vendors such as by Intel as well as by other authors (e.g. ATLAS is a portable
self-optimizing BLAS). The LINPACK benchmark relies heavily on DGEMM, a BLAS
subroutine, for its performance.

BLAS-1

• vector × vector

• data transfer 3*n

• operations 2*n-1
9http://www.netlib.org/blas/
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BLAS-2

• matrix × vector

• data transfer n*n+2*n

• operations n*(2*n-1)

BLAS-3

• matrix × matrix

• data transfer 3*n*n

• operations n*n*(2*n-1)

LAPACK - Linear Algebra PACKage
LAPACK provides routines for solving systems of simultaneous linear equations, least-
squares solutions of linear systems of equations, eigenvalue problems, and singular value
problems10. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur,
generalized Schur) are also provided, as are related computations such as reordering of
the Schur factorizations and estimating condition numbers. Dense and banded matrices
are handled, but not general sparse matrices. In all areas, similar functionality is
provided for real and complex matrices, in both single and double precision.
LAPACK routines are written so that as much as possible of the computation is per-
formed by calls to the Basic Linear Algebra Subprograms (BLAS). LAPACK was de-
signed at the outset to exploit the Level 3 BLAS and the solution of triangular systems
with multiple right-hand sides. Because of the coarse granularity of the Level 3 BLAS
operations, their use promotes high e�ciency on many high-performance computers,
particularly if specially coded implementations are provided by the manufacturer.

10http://www.netlib.org/lapack/
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Chapter 4

Case studies

4.1 NEC Xeon EM64T cluster (cacau)
In order to study the VCM estimation methods, which were introduced in chapter 2,
the NEC Xeon EM64T cluster supported by the high performance computing center
Stuttgart (HLRS) was chosen as computing platform (see �gure 4.1). This platform
consists of one front node for interactive access (cacau.hww.de) and 200 nodes for
execution of parallel programs. Each of the 200 nodes consists of two 3.2 GHz Xeon
EM64T CPUs with either 1GB or 2GB memory on each node. Table 4.1 lists some of
the architecture parameters.

Figure 4.1: NEC Xeon EM64T cluster
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Peak Performance: 2.5 TFlops
Processors: 400 Intel Xeon EM64T CPUs (3.2GHz)
Memory: 160 nodes * 1 GB + 40 nodes * 2 GB
Disk: 1.2 TB distributed scratch, 1 TB shared HOME
Number of Nodes: 200 compute, 1 frontend
Node-node interconnect: In�niband 1000 MB/s

Table 4.1: NEC Xeon EM64T cluster

4.2 Operating procedure
Access to the platform is provided by secure shell:

ssh -X cacau.hww.de,

where, �cacau.hww.de� is the frontend node of the NEC cluster. Workspace has to be
allocated individually. For example, the command

ws_allocate myWorkspace 30

allocates a new workspace entitled �myWorkspace� and with a lifetime of 30 days.
Because the new allocated space will be released after 30 days, it is very important to
back up the output data in time and upload the input data once more. The command

ws_list

lists all allocated workspaces with their names, paths as well as remaining lifetime. To
release the workspace �myWorkspace� the command

ws_release myWorkspace

can be used. Before submitting a job to the batch system, the environment variables
have to be set correctly. The following modules are needed:

mpi:openmpi-1.2.4
compiler:intel9.0
mkl:8.0

They are selected via the `switcher' command subject to

switcher mpi = openmpi-1.2.4
switcher mkl = 8.0
switcher compiler = intel9.0.

Finally, a batch job gets started with
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qsub <options>.

For example: to submit a job running for two hours on 5 cluster nodes with 2G memory,
the following command has to be used:

qsub -I -l nodes=5:mem2gb,walltime=2:00:00.

The �ag �-I� denotes that the job will be executed interactively, and �mem2gb� de�nes
the node memory (see Table 4.2). �walltime� de�nes the runtime. If the true runtime
exceed this limit, the job will be stopped automatically. The higher the runtime limit,
the lower the job priority. It is important to mention that the nodes of the cluster are
exclusive, i.e., one node can be used only by one user at the same time.

Feature Nodes
mem1gb 1GB per node available
mem2gb 2GB per node available

Table 4.2: Feature of nodes

Compilation on the fronted node is carried out with the commands

make clean;
make all.

After submitting a job successfully, the required nodes are ready and the program can
be executed by

mpirun -np <number of nodes> <program name>.

4.3 Numerical results
4.3.1 A simple example
Before applying the program to larger systems of equations, a simple example is ex-
amined �rst. The test data set consists of 10 000 satellite observations of type SST
(Satellite to Satellite Tracking, see �gure 4.2). It is based on a simulated GOCE-like
orbit with orbit parameters according to Table 4.3.
The data is generated using the EGM96 model up to degree and order 10. Hence,
the objective of data analysis is to resolve the spherical harmonic coe�cients up to
degree lmax = 10 and to evaluate the appropriate VCM. According to equation (1.9),
the number of unknowns is

u = l2max + 2 · lmax − 2 = 102 + 2 · 10− 2 = 118. (4.1)
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Orbit element Initial value
Semi-major axis a 6628 000 m
Eccentricity e 0.001
Inclination I 96.6o

Right ascension of the ascending node Ω 0o

Argument of perigee ω 0o

Mean anomaly M 0o

Table 4.3: Initial values for orbit simulation

Figure 4.2: SST observation principle
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Preconditioning
According to section 1.4.3, preconditioning is an ideal method to improve the conver-
gence of the LSQR solver and thus to reduce the number of iterations. Figures 4.3 and
4.4 show the parameter estimation results after 30, 60, 90, 110 and 118 iterations with
and without preconditioning.

Figure 4.3: Power spectrum with preconditioning

In the �gures, Sl
k denotes the RMS1 value of the spherical harmonic coe�cients with

degree l, i.e.,

Sl
k =

√√√√ 1

2l + 1

l∑
m=0

(c2
l,m + s2

l,m).

From the �gures, it is obvious that without preconditioning the solution converges
much more slowly towards the EGM96 model than with preconditioning. After 110
iterations the solution without preconditioning starts covering the EGM96 curve, while
the solution with preconditioning covers the EGM96 model very well after only 60
iterations. To show the performance more clearly, �gures 4.5 and 4.6 show up the
di�erences ∆Sl

k between the LS results and the EGM96 model, according to

∆Sl
k =

√√√√ 1

2l + 1

l∑
m=0

((cl,m − cl,m;EGM96)2 + (sl,m − sl,m;EGM96)2).

1Root Mean Square
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Figure 4.4: Power spectrum without preconditioning

Figure 4.5: Degree variances with preconditioning
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Figure 4.6: Degree variances without preconditioning

From these �gures, it can be realized that the di�erences ∆Sl
k with preconditioning are

smaller than 10−13 after 60 iterations, while the di�erences ∆Sl
k without preconditioning

are smaller than 10−13 only after 118 iterations. The di�erences ∆Sl
k decrease very

slowly from ∆S30 to ∆S90 without preconditioning, therefore it can be con�rmed that
the convergence with preconditioning is obviously faster than without. This means also
that with preconditioning runtime can be reduced.

Reorthogonalization
According to section 2.2, it is known that the LSQR internal method for VCM com-
putation requires reorthogonalization. To verify that, �gures 4.7 and 4.8 illustrate the
absolute di�erences ∆N−1

k according to

∆N−1
k = N−1

k −N−1
ref (4.2)

after k = 118 iterations. N−1
ref is the exact VCM obtained by brute-force inversion of

the normal equation matrix.
The absolute di�erences ∆N−1

k with reorthogoanlization are smaller than there ones
without reorthogonalization, by approximately ten orders of magnitude. Additionally,
�gures 4.9 and 4.10 show the relative relative di�erences δN−1

k according to

(δN−1
k )i,j =

(∆N−1
k )i,j

(N−1
ref )i,j

i, j = 1, · · · , 118, (4.3)
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118 with
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118 without
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118 with
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Figure 4.10: δN−1
118 without

reorthogonalization
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again after k = 118 iterations.
The relative di�erences δN−1

118 improve considerably with reorthogonalization. δN−1
118

with reorthogonalization has 99.7% values smaller than 10−10, while there are only
42.3% values smaller than 1 without reorthogonalization. The numerical comparisons
are represented in Table 4.4.

Diagonal only Full matrix
Reorthogonalization with without with without
Percentage (δN−1

k )i,j < 1 100% 79.7% 100% 42.3%
< 0.1 100% 11.9% 100% 1.03%
< 10−10 100% 11.9% 99.7% 1.03%

Table 4.4: Impact of reorthogonalization

Conditioning
According to section 2.3.3, the MC method for VCM computation can be improved by
conditioning. In order to verify its feasibility, I set the number of random samples to
M = 800 and plot the absolute di�erence ∆N−1

k as well as the relative di�erences δN−1
k

after k = 118 iterations, cf. �gures 4.11 to 4.14.
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Figure 4.11: ∆N−1
118 with conditioning

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

110

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−6

Figure 4.12: ∆N−1
118 without conditioning

In �gure 4.11 there are more values near to zero than in �gure 4.12, i.e., the absolute
di�erences ∆N−1

118 with conditioning are better than without. From �gures 4.13 and
4.14, it is clear that δN−1

118 is improved by conditioning with success. The relative
di�erences δN−1

118 with conditioning come up with 88.4% of the values smaller than 1,
while there are only 74.5% of the values smaller than 1 without conditioning. At the
same time 49.9% of the values with conditioning are smaller than 0.1, opposed to only
33.3% of the values without conditioning. The numerical comparisons are represented
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Figure 4.13: δN−1
118 with conditioning

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

110

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.14: δN−1
118 without conditioning

in Table 4.5. It is important to note that 7.5% of the values are smaller than 0.01
with conditioning, but only 4.3% of the values without conditioning. On the diagonal,
however, 61.5% of the values are smaller than 0.01 with conditioning and only 15.3%
of the values without conditioning. This means that the results on the diagonal are
improved by conditioning better than o� the diagonal.

Diagonal only Full matrix
Conditioning with without with without
Percentage (δN−1

k )i,j < 1 100% 100% 88.4% 74.5%
< 0.1 100% 98.3% 49.9% 33.3%
< 0.01 61.0% 15.3% 7.5% 4.3%

Table 4.5: Impact of conditioning

Comparisons between di�erent numbers of iterations
Figures 4.15 to 4.19 illustrate the relative di�erences δN−1

k using the LSQR internal
method for VCM computation after k=30, 60, 90, 110, 118 iterations, respectively.
After 110 iterations 85.6% of the values are smaller than 1, For 90 and 60 iterations
the number drops to 79.6%, 80% respectively, cf. Table 4.6. Hence, the LSQR in-
ternal method has a rather poor convergence behavior. Therefore, the LSQR internal
method is not suitable to be applied to large systems of equations, which need to be
resolved only after a few iterations. The results become even worse without adapting
reorthogonalization, cf. �gures 4.20 to 4.24.
Compared to the �gures with reorthogonalization, it can be seen that after 30, 60 iter-
ations the results are almost the same as without reorthogonalization. This is because
the orthogonality of Uk+1 is not destroyed yet. But after 90, 110 and 118 iterations the
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Figure 4.17: δN−1
90 with

reorthogonalization
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110 with

reorthogonalization
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Figure 4.19: δN−1
118 with

reorthogonalization
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Figure 4.22: δN−1
90 without
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Figure 4.23: δN−1
110 without

reorthogonalization
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Figure 4.24: δN−1
118 without

reorthogonalization
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Percentage
#iterations (δN−1

k )i,j < 1 (δN−1
k )i,j < 0.1

Diagonal only 30 100% 0%
60 100% 31.3%
90 100% 37.3%
110 100% 78.8%
118 100% 100%

Full matrix 30 45.5% 1.2%
60 80.0% 56.1%
90 79.6% 56.4%
110 85.6% 62.5%
118 100% 100%

Table 4.6: Quality of VCM using the LSQR internal method with reorthogonalization

results become much worse without reorthogonalization. The orthogonality of Uk+1 is
destroyed at that stage, cf. Table 4.7.

Percentage
#iterations (δN−1

k )i,j < 1 (δN−1
k )i,j < 0.1

Diagonal only 30 100% 0%
60 100% 31.4%
90 100% 5.1%
110 80.5% 6.8%
118 79.7% 11.9%

Full matrix 30 45.5% 1.1%
60 80.4% 55.6%
90 41.7% 1.1%
110 42.7% 1.1%
118 42.3% 1.0%

Table 4.7: Quality of VCM using the LSQR internal method without
reorthogonalization

According to the investigations above, �gures 4.25 to 4.29 depict the relative di�erences
δN−1

k using the MC method for VCM estimation after k=30, 60, 90, 110 and 118
iterations based on 800 random samples. Conditioning is applied.
From the �gures, it can be seen that the results after 60, 90 and 110 iterations are
similar to the result after 118 iterations. In Table 4.8, 88.4% of the values are smaller
than 1 after 60, 90, 110 and 118 iterations. This means that the MC method converges
after only a few iterations.
Finally, �gures 4.30 to 4.34 show the relative di�erences δN−1

k without conditioning.
According to Table 4.9, the result without conditioning after 60 iterations has only
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Figure 4.25: δN−1
30 with conditioning
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Figure 4.26: δN−1
60 with conditioning
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Figure 4.27: δN−1
90 with conditioning
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Figure 4.28: δN−1
110 with conditioning
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Figure 4.29: δN−1
118 with conditioning
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Figure 4.30: δN−1
30 without conditioning

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

110

Figure 4.31: δN−1
60 without conditioning
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Figure 4.32: δN−1
90 without conditioning
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Figure 4.33: δN−1
110 without conditioning
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Figure 4.34: δN−1
118 without conditioning

46



Percentage
#iterations (δN−1

k )i,j < 1 (δN−1
k )i,j < 0.1

Diagonal only 30 100% 49.1%
60 100% 100%
90 100% 100%
110 100% 100%
118 100% 100%

Full matrix 30 73.9% 5.3%
60 88.4% 49.9%
90 88.4% 49.9%
110 88.4% 49.9%
118 88.4% 49.9%

Table 4.8: Quality of VCM using the MC method with conditioning

74.5% of the values smaller than 1, while there are 88.4% of the values smaller than 1
with conditioning, cf. Table 4.8. It can be con�rmed that the results without condition-
ing are worse than with conditioning. In general, the MC method for VCM estimation
has a better convergence than the LSQR internal approach.

Percentage
#iterations (δN−1

k )i,j < 1 (δN−1
k )i,j < 0.1

Diagonal only 30 100% 45.8%
60 100% 98.3%
90 100% 98.3%
110 100% 98.3%
118 100% 98.3%

Full matrix 30 64.9% 3.4%
60 74.5% 33.3%
90 74.5% 33.3%
110 74.5% 33.3%
118 74.5% 33.3%

Table 4.9: Quality of VCM using the MC method without conditioning

Comparisons between the LSQR internal method and the Monte Carlo
method
The comparison between Tables 4.6 and 4.8 shows that the results from the LSQR in-
ternal method become very accurate after 118 iterations. 100% of the values are smaller
than 0.1, opposed to only 49.9% using the MC method. To sum up, if the LSQR internal
method has full iterations, the exact VCM can be computed. However, if the number
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of iterations is small, the results become poor. The quality of the MC method mainly
depends on the number of random samples M . Theoretically M should be expanded
to in�nity. Because the size of the multiple solution vector X = [x, s(1)

x , s(2)
x , . . . , s(M)

x ]

is u · (M + 1), and the multiple observation vector Y = [y, s(1)
l , s(2)

l , . . . , s(M)
l ] needs

n · (M + 1) · 82 byte storage space, M has to be kept rather small to avoid memory
runo�.

4.3.2 A more advanced example
This section deals with the problem of solving a system of equations with n = 256 000
unknowns and a spectral resolution of lmax = 50, i.e., the number of unknowns is

u = l2max + 2 · lmax − 2 = 502 + 2 · 50− 2 = 2598. (4.4)

Therefore, the augmented vector X = [x, s(1)
x , s(2)

x , . . . , s(M)
x ] needs u · (M + 1) · 8 =

2598 · 801 · 8 = 16 647 984 byte ≈ 15.9 MB and the augmented observation vector Y =
[y, s(1)

l , s(2)
l , . . . , s(M)

l ] needs n·(M +1)·8 = 256 000·801·8 = 1640 400 000 byte ≈ 1.5 GB.
The simulated SST data is based on the EGM96 model up to degree and order 300.

Parallel computing
In order to test the performance of the parallel implementation, 1, 2, 4, 8, 16 and 32
nodes are used to compute the spherical harmonic coe�cients and the di�erences ∆Sk

between the estimate after 50 iterations and the reference EGM96 model. The results
using MPI, OpenMP respectively, are summarized in the �gures 4.35 and 4.36.
In the �gures, the results with 1, 2, 4, 8, 16 and 32 nodes are identical, i.e., ∆SMPI=1 =
∆SMPI=2 = ∆SMPI=4 = ∆SMPI=8 = ∆SMPI=16 = ∆SMPI=32 and ∆SOpenMP=1 =
∆SOpenMP=2 = ∆SOpenMP=4 = ∆SOpenMP=8 = ∆SOpenMP=16 = ∆SOpenMP=32.
Moreover, �gure 4.37 proves the consistency between the MPI and OpenMP imple-
mentation. The results are identical, i.e., ∆SMPI = ∆SOpenMP holds true. Hence, the
program works correctly.
Figure 4.38 shows the di�erences ∆Sk between the estimated spherical harmonic coef-
�cients and the EGM96 model after 10, 20, 30, 40 and 50 iterations.
All results are smaller than 10−8 and ∆S10 = ∆S20 = ∆S30 = ∆S40 = ∆S50 holds true,
i.e., the convergence is very good. The �nal spherical harmonic coe�cients are obtained
with less than 10 iterations.

Runtime results
The command

t=MPI_Wtime()
2the size of a double value is 8 byte
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Figure 4.35: Degree variances ∆S50 using MPI for parallelization

Figure 4.36: Degree variances ∆S50 using OpenMP for parallelization
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Figure 4.37: Degree variances ∆S50 using either MPI or OpenMP

Figure 4.38: Degree variances ∆Sk
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is used to get the runtime results. The total runtime becomes

ttotal = tend − tstart,

where tstart denotes the starting time and tend denotes the ending time. The total
runtime results of the LSQR internal method for VCM estimation are presented in
Table 4.10, the achievements using the Monte Carlo method in Table 4.11.

#nodes 32 16 8 4 2 1
Runtime MPI [s] 865 1264 2016 2064 3638 6826
Runtime OpenMP [s] 488 656 1027 1044 1838 3414

Table 4.10: Total runtime results of the LSQR internal method for VCM estimation
(50 iterations)

#nodes 32 16 8 4 2 1
Runtime MPI [s] 2909 4750 8560 8894 16 601 31 158
Runtime OpenMP [s] 2386 4059 7155 7939 15 732 27 020

Table 4.11: Total runtime results of the Monte Carlo method for VCM estimation (50
iterations)

For both implementations satisfying scaling results could be achieved (except for the
step from 4 to 8 CPUs). Basically, runtime for the MPI implementation is roughly twice
as high than for OpenMP. This is because OpenMP uses 2 CPUs per node opposed to
1 CPU for MPI. The additional runtime requirement for VCM estimation compared to
the original LSQR method (without VCM estimation) is examined as follows:

tLSQR internalmethod = tLSQR internalmethod
total − tLSQRmethod

total ,

tMCmethod = tMCmethod
total − tLSQRmethod

total .

For example, the total runtime of the LSQR method with MPI on 1 CPU is 6774 s, i.e.,
tLSQRmethod
total = 6774 s. From Tables 4.10 and 4.11 it is known that

tLSQR internalmethod
total = 6826 s

tMCmethod
total = 31 158 s.

Therefore, one gets

tLSQR internalmethod = 6826 s− 6774 s = 52 s

tMCmethod = 31 158 s− 6774 s = 24 384 s

Obviously, the MC method needs much more runtime than the LSQR internal method.
The major reason lies in the additional e�ort to treat the 800 random samples (i.e.,
solving the system of equations for 800+1 observation vectors).
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VCM comparisons
In this section, the VCM (N−1

k ) of both methods presented before will be compared by
analyzing their relative di�erences δN−1

k . In order to verify whether the exact VCM
(N−1) can be obtained after a few iterations, the results after 10, 20, 30, 40 and 50
iterations are investigated. Figure 4.39 to 4.43 present the relative di�erences δN−1

k

results from the LSQR internal method.
From the �gures, it can be stated that the achieved accuracy is rather poor. To get
a deeper inside in the performance of the method, the relative di�erences δN−1

k are
numerically presented in Table 4.12.

Percentage
#iterations (δN−1

k )i,j < 1 (δN−1
k )i,j < 0.1

Diagonal only 10 100% 0%
20 100% 0%
30 100% 0%
40 100% 0%
50 100% 0%

Full matrix 10 39.3% 1.6%
20 31.2% 1.9%
30 25.3% 1.8%
40 21.2% 1.6%
50 18.5% 1.5%

Table 4.12: LSQR internal method with reorthogonalization

Only 39.3% of the values are smaller than 1 after 10 iterations. The results after 20, 30,
40 and 50 iterations become even worse. Hence, it is not possible to get the accurate
VCM information with the LSQR internal method after only a few iterations.
The results using the MC method (with 800 random samples) are outlined in �gures
4.44 to 4.48, in Table 4.13 respectively. The results are identical for any number of
iterations performed.
Table 4.13 con�rms that only 7% of the total values are smaller than 1, while 100%
on the diagonal. In fact, all values on the diagonal are even smaller than 0.01, i.e.,
the results on the diagonal are much better than o� the diagonal. The results will not
change, unless the number of samples increase, but, according to Schuh & Alkhatib
(2007), the accuracy of the MC method is proportional to 1√

M
. The square root de-

creases very slowly, therefore the results from the MC method converge very slowly to
the exact values by increasing the number of samples. On the other hand, if the number
of samples M increases, memory requirement increase accordingly.
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Figure 4.41: δN−1
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Figure 4.43: δN−1
50 with

reorthogonalization
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Figure 4.44: δN−1
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Figure 4.45: δN−1
20 with conditioning
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Figure 4.46: δN−1
30 with conditioning

 

 

500 1000 1500 2000 2500

500

1000

1500

2000

2500
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Figure 4.48: δN−1
50 with conditioning

54



Percentage
#iterations (δN−1

k )i,j < 1 (δN−1
k )i,j < 0.1 (δN−1

k )i,j < 0.01
Diagonal only 10 100% 100% 100%

20 100% 100% 100%
30 100% 100% 100%
40 100% 100% 100%
50 100% 100% 100%

Full matrix 10 7.0% 1.2% 0.2%
20 7.0% 1.2% 0.2%
30 7.0% 1.2% 0.2%
40 7.0% 1.2% 0.2%
50 7.0% 1.2% 0.2%

Table 4.13: Monte Carlo method with conditioning

Impact of reorthogonalization and conditioning
Here, the impact of reorthogonalization and conditioning is addressed once more. Fig-
ures 4.49 and 4.50 show the corresponding results without these performance tools after
50 iterations.
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50 without
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Figure 4.50: δN−1
50 without

conditioning

The comparison of the �gures 4.49 and 4.43 identi�es no large di�erences. This is
because the orthogonality ofUk+1 is not destroyed yet after 50 iterations. The numerical
values in Table 4.14 con�rm the �ndings.
In contrast, the MC method performs much better with conditioning than without,
cf. �gure 4.50 opposite to �gure 4.48, Table 4.15 respectively. There are more values
smaller than 1 with conditioning than without. Especially on the diagonal, all values are
smaller than 0.01 with conditioning, but only 16.2% of the values without conditioning.
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Diagonal only Full matrix
Reorthogonalization with without with without
Percentage (δN−1

k )i,j < 1 100% 100% 18.5% 18.5%
< 0.1 0% 0% 1.5% 1.5%

Table 4.14: Impact of reorthogonalization

Diagonal only Full matrix
Conditioning with without with without
Percentage (δN−1

k )i,j < 1 100% 100% 7.0% 1.8%
< 0.1 100% 95.8% 1.2% 0.3%
< 0.01 100% 16.2% 0.2% 0.1%

Table 4.15: Impact of conditioning

The runtime requirements for reorthogonalization and conditioning are shown in the
Tables 4.16 and 4.17.

#iterations (16 nodes) 10 20 30 40 50
Reorthogonalization [s] 0.181 0.561 1.136 1.908 2.888

Table 4.16: Runtime requirement for reorthogonalization

#iterations (16 nodes) 10 20 30 40 50
Conditioning [s] 553.892 551.779 559.155 554.629 555.809

Table 4.17: Runtime requirement for conditioning

Table 4.16 shows that if the number of iteration increases, the runtime requirement for
reorthogonalization will also increase. This is due to the extension of the matrices Uk

and Vk. In Table 4.17, the runtime requirements for conditioning are identical. They
are independent on the number of iteration, cf. Table 2.5.

LSQR internal method versus MC method
Inspecting Tables 4.12 and 4.13 it turns out that the LSQR internal method outper-
forms the MC method as long as the whole VCM is concerned. On the diagonal only,
however, the MC methods clearly provides better results. On the other hand, runtime
requirements for the MC method are much higher than for the LSQR internal method.
Hence, for small problems the LSQR internal method computes the VCM e�ciently.
However, large LS problems should be treated with the MC method.
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Chapter 5

Discussion

Modern satellite missions (such as GOCE) are very e�ective for the determination of
the global gravity �eld. However, due to the large number of observations it is a chal-
lenging task to solve the resulting systems of equations. In order to solve such problems
e�ectively, the LSQR method is used. The iterative LS solver is characterized by a good
convergence and it is suited well for parallel computing. In addition to the spherical
harmonic coe�cients themselves, their quality is also important. Therefore it is neces-
sary to approximate the variance-covariance matrix of the parameter estimate (N−1).
Two methods are introduced to solve the VCM problem. First, the LSQR internal
method which is directly deduced from the LSQR method. It has a bad convergence
behavior. Its results become accurate only after the full set of iterations. Contrarily,
the Monte Carlo method has a better convergence. The VCM is computed by a series
of random samples.
To sum up, both VCM evaluation methods have their advantages and disadvantages.
The LSQR internal method requires only small memory availability and has a very
good accuracy after the full set of iterations. Moreover, it is easy to implement. On
the other hand, however, it converges very slowly. Above all, the VCM estimates show
a completely di�erent convergence behavior compared to the gravity �eld parameters
(spherical harmonic coe�cients). Opposed to the LSQR internal method, the Monte
Carlo approach is more appropriate for VCM estimation concerning convergence issues.
The number of iterations has small in�uence on the results, but the method works on
the premise that the approximation to the exact VCM is good enough. As the achieved
accuracy depends on the number of normal distributed random samples, it is very costly
in terms of runtime, and a huge memory is required to store those random samples.
It turns out that the variances can be approximated with better accuracy than the
covariances. The implementation of the Monte Carlo method is complex.
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