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Abstract

Since its launch in the year 2002, the space satellite mission grace provides spheri-
cal harmonic coefficients, which can be used to observe the time-variable part of the
Earth’s gravity field. It was initially assumed that the derived gravitational quantities
from these coefficients are of high accuracy and would thus deliver reliable large scale
mass estimates. However, the provided coefficients of higher harmonic degree and order
turned out to be seriously contaminated with noise, yielding an unrealistic signal of mass
variations in form of massive north-south stripes.

In this work, two methods are investigated, which add stochastic constraints to time-
variable grace coefficients. It is assumed that these techniques are able to reduce the
noise level in the monthly datasets by assimilating the grace coefficients with more
reliable data. Both approaches need prior estimates of a signal and error covariances.
Hence, the signal covariance of the time-variable gravity field is assumed to be of isotropic
nature and is thus computed as a Kaula-type power law, which is fit into the part where
the signal degree variances of the grace solutions linearly attenuate. The error covari-
ance is estimated according to the energy balance approach which allows the simulation
of a fully populated grace covariance matrix.

Stochastic constraining in the spectral domain combines both signal and error covari-
ance estimates in a Bayesian type regularization procedure, which constrains the monthly
grace solutions with the modelled signal covariance. It is shown that Bayesian type
regularization can be used to build a spectral filter kernel. Furthermore, the weight
between both grace coefficients and the regularization term is estimated by a variance
component estimation. Tests with a full, block diagonal and diagonal covariance matrix
are performed, as it is widely believed that full covariance information can be sufficiently
approximated by a block diagonal matrix. Furthermore, the Bayesian type regulariza-
tion filter is tested with three different monthly grace solutions and compared with
other widely used filtering techniques.

The second approach constrains the time-variable grace coefficients with hydrological
observations, which are provided as monthly precipitation and run-off values on basin
scale. Both the grace and hydrological observation group are assimilated in one linear
model, which is solved by sequential least squares estimation, yielding an agreement
between mass estimates from grace and observed hydrology.

Keywords: Sequential estimation, time-variable gravity field, Bayesian type regular-
ization, hydrological constraints, stochastic filters
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Zusammenfassung

Seit ihrem Start im Jahr 2002 liefert die Satellitenmission grace Kugelfunktionskoef-
fizienten, welche zur Untersuchung des zeit-variablen Anteils des Schwerefeldes der Erde
genutzt werden können. Ursprünglich wurde angenommen, dass die von solchen Koef-
fizienten abgeleiteten Schweregrößen hochgenau sind und somit verlässliche grossflächige
Masseschätzungen erlauben. Jedoch stellte sich heraus, dass vor allem die Koeffizienten
höheren Grades und höherer Ordnung einen hohen Rauschanteil aufweisen, welcher sich
in einem unrealistischem Signal der Massevariationen in Form von Nord-Süd-Streifen
äußert.

Diese Arbeit beschreibt zwei Methoden, welche die zeit-variablen grace-Koeffizienten
mit stochastischen Bedingungsgleichungen kombinieren. Es wird angenommen, dass
diese Techniken den Rauschanteil in den monatlichen Datensätzen durch Angleichung
mit genauerem Datenmaterial reduzieren können. Beide Ansätze benötigen voraus-
gehende Informationen über die Signal- und Fehler-Kovarianzen. Daher wird hier
angenommen, dass die Signal-Kovarianz des zeit-variablen Schwerefeldes isotrop ist und
somit als eine Art Kaula’sches Potenzgesetz berechet werden kann, welches in linear
abnehmende Gradvarianzen des Signals der grace-Koeffizienten geschätzt wird. Die
Fehler-Kovarianz ergibt sich anhand des energy balance approach berechnet, der die
Simulation einer voll besetzten Kovarianzmatrix ermöglicht.

Das Hinzuziehen von stochastischen Bedingungsgleichungen im Frequenzbereich kom-
biniert Signal- und Fehler-Kovarianzen in einer Bayes’schen Regularisierung, welche
die modelliere Signal-Kovarianz als Bedingungsgleichung hinzuzieht. Es wird gezeigt,
dass die Bayes’sche Regularisierung als spektraler Filter verwendet werden kann. Das
Gewicht zwischen den grace Koeffizienten und dem Regularisierungsterm wird durch
eine Varianzkomponentenschätzung bestimmt. Es werden Tests mit einer vollen, block-
diagonalen und diagonalen Fehlermatrix durchgeführt, da allgemein angenommen wird,
dass eine voll besetzte Kovarianzmatrix ausreichend durch eine Block-Diagonalmatrix
genähert werden kann. Des Weiteren wird der Bayes’sche Regularisierungsfilter mit drei
weiteren Monatslösungen von grace getestet und mit anderen weit verbreiteten Filtern
verglichen.

Der zweite Ansatz benutzt Beobachtungen von monatlichen Niederschlags- und
Oberflächenabflusswerten als zusätzliche hydrologische Bedingungsgleichungen. Sowohl
die grace-Koeffizienten als auch die hydrologischen Beobachtungen werden in einem
linearen Modell zusammengeführt, welches durch eine sequentielle Kleinste-Quadrate-
Ausgleichung gelöst wird. Dadurch wird eine Übereinstimmung zwischen Mass-
eschätzungen von grace und den hydrologischen Beobachtungen erzwungen.

Schlüsselwörter: Sequentielle Ausgleichung, zeit-variables Schwerefeld, Bayes’sche
Regularisierung, hydrologische Bediungungsgleichungen, Stochastische Filter
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Introduction 1

Since the year 2000, a new generation of space satellite missions like champ (challenging
mission payload), grace (gravity recovery and climate rxperiment) and goce (gravity
field and steady-state ocean circulation explorer) allow observations of the earth’s grav-
ity field with unprecedented spatial and temporal resolution. Thereafter, the data,
delivered by the satellites, became the focus of many scientific tasks, e.g. climatology,
oceanography and hydrology, as it allows the study of time dependent changes in the
dynamic system of the Earth. Such changes are mainly caused by large scale mass re-
locations in the hydrosphere, which extends about 15 km up into the atmosphere and
about 1 km down into the lithosphere, the crust of the earth (Chow et al., 1988). Some
of the origins of these changes and their spatial dimension are summarized in figure 1.1,
where their possible detection is assigned to the three satellite missions champ, grace
and goce.

It is shown, that grace delivers the highest temporal resolution and is thus able to
observe monthly mass variations with a spatial resolution of less than 1000 km. Besides
variations in the atmosphere, oceans and land masses, such effects mainly come from
hydrological phenomena like changes in the groundwater, soil moisture or changes in
large scale continental water basins. In (Wahr et al., 1998) it was predicted that grace
would be able to measure these effects with an accuracy of about 2 mm of water equiv-
alent heights.

Unfortunately, the initially considered accuracy could not yet be achieved for the time-
variable gravity field (Wahr et al., 2004), which is due to a very high noise content in
the coefficients of short-wavelength, delivered by grace. Thus, it is essential to apply
certain filtering techniques. But it is a matter of common knowledge, that filtering not
only reduces the noise content, but good signal as well. This is especially the case for so
called deterministic averaging operators, which smooth the gravity field without consid-
eration of the signal itself. Such filters are widely used to smooth the derived quantities
from grace solutions.

Since the launch of these new space gravity missions, modern tailormade filters
for smoothing gravitational satellite data were presented (e.g. Han et al., 2005;
Swenson & Wahr, 2006; Sasgen et al., 2006; Kusche, 2007), which take e.g. the errors of
the signal into account or use information about correlations in the spectral domain in



1 Introduction 2

order to reduce the noise level in the output signal. The filtering process mainly happens
by constraining the noisy signal to tend to a desired output signal, which can be done
in the spatial or the spectral domain.

In this work, two methods will be discussed, which add stochastic constraints in form of
a priori information to time-variable grace solutions, based on a desired output signal
in the spectral and the spatial domain. In the first case, the spectrum of grace data
is constrained with fundamental characteristics of spherical harmonic coefficients, which
are mainly based on the well known Kaula’s rule. A similar approach was already inves-
tigated in (Kusche, 2007), where the constraints are based on geophysical models. This
work will discuss an alternative, which uses grace-data only to reduce the noise-content
in the grace coefficients.

The second approach is based on the fact, that even after filtering, mass estimates
from grace show differences to observed values. As such observed data is obviously
more reliable than some mathematical models, the second method tries to constrain the
grace-coefficients with hydrological observations, yielding an output signal, which is
not only consistent with models, but with observed hydrological data as well.

Figure 1.1: Temporal and spatial scales of geoid signals associated to solid Earth (or-
ange), ocean (green) , ice (dark blue) and continental hydrology (light blue)
processes. The red lines show the spatial and temporal resolution limits of
the champ, grace and goce missions (Flury & Rummel, 2004).



3 1 Introduction

This work is divided into the following sections:

� Chapter 2 contains a short review of the space gravity mission grace and discusses
the relationship between gravity and surface mass. Additionally, the problems of
monthly unfiltered grace coefficients are discussed.

� In chapter 3, an overview and a short analysis of modern spherical harmonic fil-
tering techniques is presented, which consists of the Gaussian, Wiener and decor-
related error filter. Additionally, a method which is frequently used for stabilizing
ill-posed systems of normal equations, the regularization, and its application to
filtering spherical harmonic coefficients is derived.

� Chapter 4 discusses the estimation of a signal variance model from monthly grace
solutions, which is needed for the stochastic filters. Additionally, as these filters
allow the consideration of a full covariance matrix, a method to simulate such a
matrix for grace coefficients is presented. Afterwards, the signal variance model
and the simulated covariance matrix is used as input in the regularization. The
chapter will further discuss the impact of different covariance matrix structures as
well as the time-dependancy of the presented regularization filter.

� In chapter 5, the regularization filter is compared with the other discussed filters
from chapter 3. Therefore, the filtering performance is analyzed in the spectral
and spatial domain. Additionally, the filtered grace solutions are validated with
observed and modeled hydrological data.

� In chapter 6 the method of assimilating monthly grace solutions with observed
hydrological data is discussed, which can be seen as spatially constraining the
grace coefficients. This approach is tested with unfiltered and regularized grace-
coefficients and the results are analyzed in the spatial and spectral domain.

� Chapter 7 provides a brief summary and highlights the important results of this
thesis. It also talks about the possible extensions to this work in the future.
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GRACE and time-variable gravity 2

2.1 The Gravity Recovery And Climate Experiment

The gravity recovery and climate experiment (grace) satellite mission was launched
on the 17th of March in 2002 as a joint partnership between the National Aeronautics
and Space Administration (NASA) and the Deutsches Zentrum für Luft- und Raumfahrt
(DLR). Furthermore, it is the second mission under the NASA Earth System Science
Pathfinder (ESSP) program. The mission was originally intended to last for five years,
but is still in orbit.

The space segment consists of two identical satellites, which are fundamentally based on
the champ satellite. These two satellites fly about 220 km apart in a near circular, near
porlar obit (i = 89◦) with an altitude of about 500 km. Both satellites are equipped with
a high-accuracy K-band distance measuring unit, yielding a low-low satellite-to-satellite
tracking constellation. This system detects the distance between the satellites with an
accuracy of about 1µm. The absolute position, altitude and orientation of each space-
craft is determined by a GPS-receiver and a twin star camera, whereas non-gravitational
accelerations are detected by a precise accelerometer and can thus be removed from the
integral sum of the observed gravity yielding a signal that is dominated by the Earth’s
gravity field.

As variations in the gravity field impacts on both satellites at different times, such
deviations cause a change in the inter-satellite range, which is measured with very high
accuracy from the K-band measurement unit. The measured inter-satellite range can
be transformed into changes in the Earth’s gravity field (Han, 2003), which is described
with the Stokes coefficients C̃lm and S̃lm.

The virtue of the grace satellites is the temporal resolution, as every 30 days a complete
set of such coefficients is delivered which can be used to estimate a model of the geoid.
Initially, it was assumed that the gravity field estimates from grace would have a spatial
resolution of about 150 km of half wavelength with a maximal degree of expansion being
lmax = 120 (Reigber et al., 2002). This was truly realized in e.g. (Mayer-Gurr, 2007),
where a static gravity field model was computed until degree and order 180 from 57
monthly grace solutions. On the other hand, the time variable part used only spherical
harmonic coefficients up to degree and order 40.
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The grace coefficients can be obtained from four different institutes: the Geo
Forschungs Zentrum (GFZ) in Potsdam, Germany, the Center of Space Research (CSR)
in Austin, Texas, the Centre National D’Etudes Spatiales (CNES) in Toulouse, France
and the Jet Propulsion Laboratory (JPL) in Pasadena, California. A detailed discussion
about the differences between the monthly solutions is given in e.g. (Zenner, 2006).
In this thesis, all computations were done with the fourth release of the grace coef-
ficients from the CSR. In agreement with the computations which were done by the
CSR (Bettadpur, 2007), the degree 0 and degree 1 coefficients were removed during the
following computations.

2.2 Computation of time-variable GRACE coefficients and
their connection to derived mass variations

2.2.1 Relation between the geoid shape and mass variations

The shape of the geoid, i.e. the distance between the reference ellipsoid and the geoid
surface N , can be expanded in a sum of spherical harmonics:

N(θ, λ) = R
∞∑

l=0

l∑

m=0

P̃lm(cos θ)(C̃lm cosmλ + S̃lm sinmλ) (2.2.1)

where

N(θ, λ) geoid height at a point with the spherical coordinates (θ, λ)
R radius of the Earth (i.e. 6378.137 km)
P̃lm normalized associated Legendre functions of degree l and order m

C̃lm, S̃lm normalized Stokes coefficients

As the only time-variable parameters in the upper equation are the spherical harmonic
coefficients C̃lm and S̃lm, a time-dependent change in the geoid heights ∆N is reflected
by a difference between these coefficients. This difference can be obtained by subtract-
ing two sets of coefficients from different dates to determine e.g. a change in the geoid
heights over a certain period, by subtracting one set from a temporal mean or by forming
any other reasonable kind of difference. One has to keep in mind that this only expresses
the difference of the geoid heights between two points in time. Thus, it actually gives no
information about the rate, with which these variations happen. In either case, equation
(2.2.1) then reads as

∆N(θ, λ; t) = R
∞∑

l=0

l∑

m=0

P̃lm(cos θ)(∆C̃lm(t) cosmλ + ∆S̃lm(t) sin mλ) (2.2.2)

By assuming that ∆N(θ, λ; t) 6= 0, it becomes clear that there had to be a change in
the Earth’s gravity field. Such a change is caused by mass fluctuations in, on and above
the Earth’s surface and is thus denoted as a change in the Earth’s density distribu-
tion ∆ρ(r, θ, λ, t). Wahr et al. (1998) found a connection between this quantity and its
representation in the spherical harmonic coefficients C̃lm and S̃lm:

{
∆C̃lm(t)
∆S̃lm(t)

}
=

3
4πRρave (2l + 1)

∫ ∫
∆ρ(r, θ, λ; t)P̃lm(cos θ) (2.2.3)

×
( r

R

)l+2
{

cosmλ
sinmλ

}
sin θdθdλ
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where r is the distance of the computation point from the center of the Earth and ρave is
the average density of the Earth (i.e. 5.515 g/cm3). However, an accurate determination
of ∆ρ(r, θ, λ; t) is nearly impossible, as it requires prior knowledge about the inner den-
sity distribution of the Earth. But on the other hand, all short-periodic mass variations,
which might be detectable by the grace satellites, can be assumed to happen only in a
thin layer, which is located on the Earth’s surface. This layer has to be thick enough to
include those portions of the atmosphere, oceans, ice caps, and groundwater storage with
significant mass fluctuations. Thus the thickness is mostly determined by the thickness
of the atmosphere and is of the order of 10–15 km (Wahr et al., 1998). Moreover, this
thin-layer assumption allows one to obtain surface mass changes from geoid changes and
vice versa.

The change in the so called surface density ∆ρS is defined as the radial integral of
∆ρ through this layer:

∆ρS(θ, λ; t) =
∫

thin layer
∆ρ(r, θ, λ; t)dr (2.2.4)

As the layer is thin enough that (r/R)l+2 ≈ 1, equation (2.2.3) can be simplified to
{

∆C̃lm(t)
∆S̃lm(t)

}

surf mass

=
3

4πRρave (2l + 1)

∫ ∫
∆ρS(θ, λ; t) (2.2.5)

×P̃lm(cos θ)
{

cosmλ
sinmλ

}
sin θdθdλ

which connects the density redistribution in this layer ∆ρS(θ, λ; t) with the spherical
harmonic coefficients ∆C̃lm(t) and ∆S̃lm(t). Thus, it describes the contribution to the
geoid from the direct gravitational attraction of the surface mass (Wahr et al., 1998).
But mass fluctuations on the surface also deform the underlying Earth, which impli-
cates a change in the gravitational potential, and thus a change in the geoid shape, as
well. This effect is considered by the so called Love numbers kl, which were derived
from Han & Wahr (1995). They are based on the Preliminary Reference Earth Model
(PREM) by Dziewonski & Anderson (1981). The contribution from the deformed solid
earth may then be written as

{
∆C̃lm(t)
∆S̃lm(t)

}

solid Earth

=
3kl

4πRρave (2l + 1)

∫ ∫
∆ρS(θ, λ; t) (2.2.6)

×P̃lm(cos θ)
{

cosmλ
sinmλ

}
sin θdθdλ

The total geoid change is obtained by adding equations (2.2.5) and (2.2.6):
{

∆C̃lm(t)
∆S̃lm(t)

}
=

{
∆C̃lm(t)
∆S̃lm(t)

}

surf mass

+
{

∆C̃lm(t)
∆S̃lm(t)

}

solid Earth

(2.2.7)

Inserting (2.2.7) into (2.2.2) leads to the so called isotropic transfer coefficients, which
define the quantity of a spherical harmonic series expansion. In the case of a surface
mass density [kg/m2], they are simply defined as

Λl =
Rρave

3
2l + 1
1 + kl

(2.2.8)
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If these coefficients are multiplied with the right-hand side of the spherical harmonic
synthesis formula (A.8) in the appendix, an expression for the surface mass density in
terms of the spherical harmonic coefficients is received:

∆ρS(θ, λ) =
Rρave

3

∞∑

l=0

2l + 1
1 + kl

l∑

m=0

P̃lm(cos θ)(∆C̃lm cosmλ + ∆S̃lm sinmλ) (2.2.9)

However, it is usual to convert the surface mass density into water equivalent heights,
which are commonly used in many other scientific areas. These heights assume the
Earth’s surface to be covered with a thin layer of water, which reacts to changes in the
gravity field. The relation between the water equivalent heights on the surface mass
density is given through

hW(θ, λ) =
∆ρS(θ, λ)

ρW
(2.2.10)

(2.2.11)

where ρW is the average density of water (i.e. ρW = 1 g/cm3) and thus

hW(θ, λ; t) =
Rρave

3ρW

∞∑

l=0

2l + 1
1 + kl

l∑

m=0

P̃lm(cos θ) (2.2.12)

×(∆C̃lm(t) cosmλ + ∆S̃lm(t) sinmλ) (2.2.13)

This means a change in the surface mass density of 1 kg/m2 is equal to 1 mm in water
equivalent heights. For the sake of simplicity, the intricate formulation (2.2.12) can be
eased to

Rρave

3ρW

2l + 1
1 + kl

= Λl isotropic spectral transfer coefficients

P̃lm(cos θ)
(
cosmλ sinmλ

)T = Ỹlm(θ, λ) normalized surface spherical harmonics(
∆C̃lm(t) ∆S̃lm(t)

)T = ∆K̃lm(t) normalized Stokes coefficients

Equation (2.2.12) reads now as

hW(θ, λ; t) =
∞∑

l=0

Λl

l∑

m=0

Ỹlm(θ, λ)∆K̃lm(t) (2.2.14)

This formulation could be used to observe deviations from a monthly or annual mean
value in terms of water equivalent heights, which is often used to validate grace data
with hydrological models. However, this work will compare the estimated mass variations
with observed hydrological data, which is given as rate of change of water storage in
specific catchments. This would require differentiation of the quantity (2.2.14) with
respect to time, which can be done by applying numerical differentiation.

2.2.2 Numerical differentiation of gravitational quantities

If the expansion of a function f(θ, λ; t) in terms of Legendre functions and spherical
harmonic coefficients on the sphere is regarded, it becomes clear that the only time-
dependant parameters are the Stokes coefficients K̃lm(t), as the Legendre functions and
the isotropic transfer coefficients are obviously constant in time:

f(θ, λ; t) =
∞∑

l=0

l∑

m=0

flmỸlm(θ, λ)K̃lm(t) (2.2.15)
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and thus

ḟ(θ, λ; t) =
df(θ, λ; t)

dt
=

∞∑

l=0

l∑

m=0

flmỸlm(θ, λ) ˙̃Klm(t) (2.2.16)

An approximate time derivative of the Stokes coefficients (i.e. the grace monthly
solutions) can be computed according to the numerical differentiation by a three-point
mid-point formula:

˙̃Klm =
K̃lm(t + ∆t)− K̃lm(t−∆t)

2∆t
(2.2.17)

=
1
2

(
K̃lm(t + 1)− K̃lm(t− 1)

)
for ∆t = 1

However, this formula needs values before and after the instant of differentiation t, in fact
K̃lm(t + ∆t) and K̃lm(t−∆t). If the derivative needs to be evaluated at the beginning
or the end of an interval, where no left and right values exist, one can use the methods
of forward- and backward-differences:

� Forward difference: ˙̃Klm =
K̃lm(t + ∆t)− K̃lm(t)

∆t

� Backward difference: ˙̃Klm =
K̃lm(t)− K̃lm(t−∆t)

∆t

which use the function value before and after the instant of differentiation t respectively.
If this method of numerical differentiation is applied to the expression for water equiva-
lent heights from the last section, one obtains a rate of mass variations in terms of water
equivalent heights

ḣW(θ, λ; t) =
∞∑

l=0

Λl

l∑

m=0

Ỹlm(θ, λ) ˙̃Klm(t) (2.2.18)

which can be re-written in matrix-notation:

ḣW = Y ΛK (2.2.19)

where

ḣW k × 1 vector containing the rate of change of water equivalent
heights of k datapoints

Ỹ k × (L + 1)2 vector (or matrix) with assiciated normalized Legendre functions
Λ (L + 1)2 × (L + 1)2 matrix with isotropic transfer coefficients
˙̃K(t) (L + 1)2 × 1 vector with normalized time-variable Stokes coefficients

The computation of the area weighted rate of change of water equivalent heights for one
particular region χ, defined by a set of k grid cell centers (θj , λj), j = 1, ..., k, can be
done according to

ḣ(χ, t) =
k∑

j=1

a(θj , λj)
a(χ)

∞∑

l=0

Λl

l∑

m=0

Ȳlm(θj , λj)
˙̃Klm(t) (2.2.20)
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where

ḣW(χ, t) rate of mass change in catchment χ
k number of data points in the catchment
a(θj , λj) area of the grid cell j
a(χ) total area of the catchment χ

The area of a grid cell depends on the latitude of the grid center in the following way:

a(θj , λj) =

θj+
n
2∫

θj−n
2

λj+
n
2∫

λj−n
2

R2 sin θdλdθ

= nR2

θj+
n
2∫

θj−n
2

sin θdθ (2.2.21)

= nR2(cos(θj − n

2
)− cos(θj +

n

2
))

where n is the spherical side length of a grid cell. Then

a(χ) =
k∑

j=1

a(θj , λj) (2.2.22)

It is more common, though, to write (2.2.20) in matrix notation as well:

hW(χ, t) = SY ΛK (2.2.23)

where S is a 1× k vector which contains the ratios
a(θj , λj)

a(χ)

However, it should be mentioned that the time-derivative of water equivalent heights
is not a completely different quantity than equation (2.2.14). It is just an other repre-
sentation of spherical harmonic coefficients in the spatial domain (cf. figure 2.3). Thus,
even if the discussed methods are only tested with differentiated grace coefficients, they
can be adopted to e.g. the deviations from a mean as well.

2.3 The unfiltered GRACE monthly solutions

The space satellite mission grace delivers spherical harmonic coefficients C̃lm and S̃lm

up to degree and order 120, depending on the used dataset. For instance, the Center for
Space Research (CSR) provides coefficients and their standard deviations up to degree
and order 60. However, a major problem in the determination of gravitational quantities
from time-variable grace data is the noise level in the coefficients with high degree and
order, i.e. the coefficients of short-wavelength. It was shown in various studies with
true and simulated grace data (e.g. Zenner, 2006; Becker, 2004) that the noise level in
these monthly grace solutions increases with increasing degree. Kaula (1966) already
showed that the signal strength should theoretically attenuate with increasing degree.
However, the Stokes coefficients from grace paint a different picture.
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Figure 2.1: Signal (blue) and error (red) degree variances of 71 monthly grace solu-
tions

In figure 2.3, the degree variances (i.e. the total spectral power of the signal per degree,
cf. (C.2)) of 71 monthly solutions from the fourth CSR-dataset release are presented.
The signal strength increases for degrees larger than 25. However, such a characteristic
is not reasonable for spherical harmonic coefficients from satellite gravity missions. The
satellites are less sensitive to short-wavelength mass variations on the Earth. Conversely,
the measurable signal strength of such variations decreases with increasing distance from
the Earth’s surface. As such variations are represented by spherical harmonic coeffi-
cients with large degree and order (i.e. higher-frequency coefficients), the spectral signal
strength should theoretically attenuate with increasing degree, whis was already stated
by Kaula (1966).

(a) Deviation from mean (b) Differentiated field

Figure 2.2: Water equivalent heights (left) and rate of change of water equivalent
heigths (right) for January 2003, derived from unfiltered grace data

Using unfiltered spherical harmonic coefficients from grace yields unrealistic gravity
estimates, which can easily be told from the very high signal strength and the spatial
characteristic of the derived field (fig. 2.3). The map shows massive north-south stripes
with a maximal amplitude of more than 4000mm and 4000 mm/month respectively, yield-
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ing a signal of alternating sign and amplitude in longitude direction. These stripes have
their maximal amplitude in near equatorial and equatorial regions, whereas the near
polar regions show a rather small signal strength.

The origins of these artifacts are, amongst others, the reduced observability of the secto-
rial and near-sectorial coefficients from grace’s polar orbit configuration (Klees et al.,
2008) and uncertainties in the atmospheric and oceanic dealiasing models. These mod-
els were assumed to be error-free, which is not true. This issue is investigated by
Zenner & Gruber (2008) and it has been stated that uncertainties in these models have
a direct impact on the monthly grace solutions. Furthermore, the true content of good
signal or noise in the grace coefficients is still not known yet, which makes it necessary
to postprocess the satellite data with low-pass filter techniques in order to attenuate the
contribution of the noisy higher frequency coefficients.



Stochastic and deterministic
filtering of time-variable GRACE

data 3

3.1 Spatial averaging: 2-D convolution on a sphere

The spatial average f̄(θ, λ) of a function is obtained by spatially convolving the unfiltered
signal f(θ, λ) (e.g. water equivalent heights computed from grace monthly solutions)
with an averaging function on a sphere:

f̄(θ, λ) = f(θ, λ) ∗ w(θ, λ) = (f ∗ w)(θ′, λ′) (3.1.1)

=
∫

Ω

f(θ′, λ′)w(θ, λ, θ′, λ′)dΩ

where

(θ, λ), (θ′, λ′) spherical colatitude and longitude of two points
w(θ, λ, θ′, λ′) averaging function
f(θ′, λ′) input signal
f̄(θ′, λ′) output signal, averaged

and
∫
Ω

dΩ denotes integration over a sphere.

The representation of the spatial input and output signal respectively in terms of a
spectral function and spherical harmonics reads as

{
f(θ, λ)
f̄(θ, λ)

}
=

∞∑

l=0

l∑

m=0

{
Flm

F̄lm

}
Ỹlm(θ, λ) (3.1.2)

where

Flm input signal
F̄lm output signal, averaged
Ỹlm surface spherical harmonics
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The spatial averaging procedure is usually performed by multiplicating the function
itself with a so called averaging kernel wlm

l′m′ , in the following also referred as averaging
operator, averaging function or simply filter, in the spectral domain:

f̄(θ, λ) =
∞∑

l=0

l∑

m=0

∞∑

l′=0

l′∑

m′=0

wlm
l′m′FlmỸlm(θ, λ) (3.1.3)

Equation (3.1.3) can be rewritten in matrix notation for a more simple computation:

f̄ = Y WF (3.1.4)

where

f̄ M × 1 vector of the filtered signal with M being the number of data points
Y M × (L + 1)2 matrix of spherical harmonics
W (L + 1)2 × (L + 1)2 matrix with filter coefficients
F (L + 1)2 × 1 vector with the input signal in the spectral domain

The averaging kernel wlm
l′m′ is initially of anisotropic nature and thus adept to the geo-

graphical latitude and therefore to the data density of a satellite mission (Kusche, 2007).
This means that it considers correlations between the spherical harmonic coefficients or,
conversely, depends on the position of two points in space in the spatial domain. Its
transformation from the spectral to the spatial domain reads as

w(θ, λ, θ′, λ′) =
∑

lm

∑

l′m′
P̃lmP̃l′m′ [(wlmc

l′m′c cosm′λ′ + wlmc
l′m′s sinm′λ′) cos mλ

+(wlms
l′m′c cosm′λ′ + wlms

l′m′s sinm′λ′) sinmλ] (3.1.5)

Such averaging functions are called anisotropic vector filters, the appropriate filter matrix
W is fully populated. However, most filters neglect the correlations between the spherical
harmonic coefficients, i.e. wlmc

l′m′s = wlms
l′m′c = 0 and wlmc

l′m′c = wlms
l′m′s = 0 if l 6= l′ and m 6=

m′, yielding a diagonal filter matrix with degree and order dependent filter coefficients.
Such operators are called anisotropic scalar filters. Their propagation to the spatial
domain reads as

w(θ, λ) =
∞∑

l=0

l∑

m=0

P̃lm(cos θ)(wc
lm cosmλ + ws

lm sinmλ) (3.1.6)

where the spectral filter coefficients are given through
{

wc
lm

ws
lm

}
=

1
4π

∫

Ω

w(θ, λ)P̃lm(cos θ)
{

cosmλ
sinmλ

}
dΩ (3.1.7)

Such a propagated kernel in the spatial domain still depends on both longitude and
latitude of a single point in space. However, most simple averaging operators are of
isotropic nature, i.e. isotropic filters. This means that they do not depend on a specific
position, but on the spherical distance between two points in space:

w(θ, λ, θ′, λ′) = w(α) with cosα = cos θ cos θ′ + sin θ sin θ′ cos(λ− λ′) (3.1.8)
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An expansion of such a function in terms of Legendre polynomials reads as

w(α) =
∞∑

l=0

2l + 1
2

wlPl(cosα) (3.1.9)

Thus, such an operator is of isotropic nature, as it only depends on its the degree l and
is thus independent of the position in the spatial domain. Its spectrum is defined as

wl =

π∫

0

w(α)Pl cos(α) sinαdα (3.1.10)

Such averaging functions can be normalized and thus vary from values between 1 at
the computation point (e.g. w(α = 0) = 1) and 0 at a point with a greater spherical
distance than the maximal smoothing radius. This maximal distance depends on the
used averaging kernel. However, the function f̄(θ, λ), filtered with an isotropic filter, can
be seen as an average over a spherical cap, centered at the point (θ, λ) (Becker, 2004),
whereas the shape of the anisotropic filter kernels in the spatial domain might change
with latitude and longitude.

These basic formulae for spatial averaging of spherical harmonic coefficients hold for
each presented filter in this work. This allows one to easily compare the efficiency of
isotropic, anisotropic scalar and anisotropic vector filters.

The covariance of a filtered signal is given via the covariance propagation law

Qf̄ = WQFW T (3.1.11)

where QF is the covariance-variance matrix of the function in the spectral domain and
W is an arbitrary filter matrix.

3.2 Deterministic averaging

3.2.1 The isotropic and anisotropic Gaussian filter

The Gaussian filter is widely used for noise reduction in digital image processing. It
smoothes a signal by attenuating the power of high-frequencies, which results in a soft-
focused image. This characteristic is also used in physical geodetic problems, where the
gravity signal is represented by a set of degree and order dependent Stokes coefficients
C̃lm and S̃lm. The high frequency coefficients from grace, i.e. these coefficients with
large degree and order, are highly contaminated with noise, yielding a higher signal
strength than the low frequency coefficients (cf. figure 2.3). Thus, the Gaussian filter
attenuates the influence of these coefficients with degree dependent weight factors wl.
These weights are computed without any knowledge about the gravity signal itself. This
means that the filter coefficients are easily computable, but do not take any information
about the signal or its stochastics into account. They only depend on an averaging ra-
dius r, which defines the smoothing level.
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The spectral (wl) and spatial (w(α)) filter coefficients are computed according to the
formulae proposed in (Jekeli, 1981):

w(α) =
b

2π

e−b(1−cos α)

1− e−2b
(3.2.1)

with b =
ln(2)

1− cos(r 1
2
/R)

Equation (3.2.1) is the spatial representation of the filter with r 1
2

being the distance
on the Earth’s surface at which w(α) has dropped to half its value at α = 0. Thus,
the averaging radius is also called halfwidth radius and is used to describe the Gaussian
averaging operator. In the spectral domain, the Legendre spectrum of the averaging
function can be calculated recursively:

w0 =
1
2π

(3.2.2)

w1 =
1
2π

[
1 + e−2b

1− e−2b
− 1

b

]

wl+1 = −2l + 1
b

wl + wl−1

By choosing a large or small averaging radius, one can choose the level of smoothing. As
the previous averaging coefficients (3.2.2) are isotropic, i.e. they depend only on their
degree and are thus independent from the position in the spatial domain, Han et al.
(2005) presented an anisotropic filter, based on the Gaussian type averaging method.
The operator basically depends on an averaging radius as well, but in both longitude and
latitude direction. Thus, it also depends on the order m, which explains its anisotropic
characteristic. The formulae for its computation read as

wlm = wl(r 1
2
(m)) (3.2.3)

with r 1
2
(m) =

r1 − r0

m1
m + r0

Here, the parameters r0 and r1 respectively are the averaging radii, applied for zonal
harmonics (m = 0) and for order m1 harmonics (m = m1), and wl are the isotropic
averaging coefficients from (3.2.2). Obviously, if r0 = r1, one obtains the isotropic
Gaussian smoothing operator. The spatial resolution of the averaging function depends
on

� r0 in latitude and

� r1 and m1 in longitude direction

where r1 is usually chosen to be r1 = 2r0, which yields a better resolution in latitude
direction than the isotropic Gaussian filter. In contrast to its isotropic counterpart,
the anisotropic Gaussian filter passes the higher degree and lower order coefficients and
rejects undesired higher order coefficients (Han et al., 2005). In figure 3.1 the filter co-
efficients of both isotropic and anisotropic Gaussian averaging operators are presented.
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Figure 3.1: Filter coefficients in the spectral domain of the anisotropic and isotropic
Gaussian averaging operator

In either case, the larger the chosen r 1
2
/(r0 and r1), the less the weight is given to the

high frequency coefficients.

The Gaussian averaging operator indeed reduces the noise level of the time-variable
gravity signal, and delivers usable results, depending on the averaging radius. However,
one of its disadvantages is the dependency of this radius. If the maps in figure 3.2 are
compared, it becomes clear that the filter also reduces the power of the good signal and
thus reduces the spatial resolution, which is obvious e.g. in the Amazon basin. There, all
four maps show a large continuous basin, but the observed mass variations are different.
On the other hand, the filter has theoretically no impact on the erroneous north-south-
stripes. Swenson & Wahr (2006) found out that correlations in the spherical harmonic
coefficients with m > 7 cause spatial correlations, i.e. the stripy artifacts. The Gaussian
filter attenuates the contribution of high frequency coefficients, yielding a significantly
reduced signal strength of these errorneous stripes.

Thus, the right choice of the averaging radius is a bit tricky, as a large radius results in
a heavily filtered field, which indeed possesses less noisy artifacts, but has a very limited
spatial resolution. On the flipside, averaging with a too small radius would deliver a
field with a still unrealistic magnitude of mass variations (cf. figure 3.2a, c)
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(a) r1/2 = 400 km (b) r1/2 = 800 km

(c) m = 15; r0 = 250 km; r1 = 2r0 (d) m = 15; r0 = 500 km; r1 = 2r0

Figure 3.2: Derived maps from time variable grace solutions smoothed with
anisotropic (bottom row) and isotropic (top row) Gaussian averaging op-
erators

Like in the isotropic case, the anisotropic Gaussian averaging operator needs a minimal
filter radius to successfully remove the noisy artifacts from the grace-derived maps. But
filtering with r0 = 500 km already shows results, which could be used without any further
modifications. However, through its deterministic origin, the quality and the reliability
of filtered Stokes coefficients depend on a careful choice of the averaging radii, whereas
the anisotropic Gaussian filter yields a generally higher spatial resolution, combined with
a bigger signal strength than its isotropic counterpart.

3.2.2 The correlated error filter

As mentioned before, Gaussian filtering indeed reduces the noise level in maps of geophys-
ical quantities, but removes the erroneous north-south stripes only for large averaging
radii, which yields an attenuation of the good signal as well. However, Swenson & Wahr
(2006) found out that these stripes come from correlations in the high-frequency Stokes
coefficients. It was stated that coefficients of even or odd parity with the same order are
highly correlated. On the other hand, this characteristic could not be observed with co-
efficients with the same degree. Thus, they designed a filter, which isolates and removes
smoothly varying coefficients of like parity (Swenson & Wahr, 2006) by smoothing the
Stokes coefficients for a particular order m with a quadratic polynomial in a moving
window centered about degree l:

K̄lm =
p∑

i=0

w∑
ω=−w

Q(l+2ω),m;i(l + 2ω)i (3.2.4)
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(a) Correlated error filter, no Gaussian (b) Correlated error filter, 500 km Gaus-
sian

Figure 3.3: grace derived maps of water equivalent heights per month, filtered with
a correlated error filter with m0 = 8; m1 = 60; l0 = 8; l1 = 60; p = 2

(a) Correlated error filter, no Gaussian (b) Correlated error filter, 500 km Gaus-
sian

Figure 3.4: Propagated averaging functions at θ = 90◦, λ = 90◦

where

K̄lm filtered sh-coefficient
w window size
Q(l+2ω),m;i degree i coefficient of the polynomial fit
p order of the polynomial (here: p = 2)
l, m degree and order

Applying this filter and transforming the smoothed coefficients in the spatial domain
yields a field with massive north-south artifacts around the equator. Thus, such a de-
rived field must be further filtered with e.g. a Gaussian filter (cf. figure 3.3).

The effect of this filter is clearly recognizable when the operator is propagated to the
spatial domain (cf. figure 3.4). The averaging function is evaluated at the location
θ = 90◦, λ = 90◦ and presented before and after the convolution with the Gaussian



3 Stochastic and deterministic filtering of time-variable GRACE data 20

filter. The correlated error filter weighs the regions north and south of the kernel nega-
tively, while increasing the contribution of the eastern and western regions. If one thinks
about the north-south stripes in the maps from unfiltered grace coefficients, it becomes
obvious that the signal in the stripes with the same phase is seriously attenuated, while
the signal in stripes which are out-of-phase is increased. The successful removal of the
north-south stripes emphasizes the assumption of the spherical harmonic coefficients
with the same order and parity being correlated. Thus, one speaks of decorrelation or
destriping in this context.

3.3 Stochastic averaging

3.3.1 The Wiener filter

The Wiener filter, named after its inventor Norbert Wiener, is widely used to reduce the
noise level in signal processing tasks. The basic idea behind this operator is to minimize
the deviations between the filtered signal and a desired output signal in a least squares
sense. Therefore, the filter takes the errors of the measured signal into account, which
yields the term stochastic (in contrast to the deterministic filter, which only depends
on an averaging radius). However, the filter needs prior knowledge about the desired
signal, which is not the case for the spherical harmonic grace coefficients. But on the
other hand, Sasgen et al. (2006) designed a filter, which uses certain characteristics of
spherical harmonic coefficients to roughly approximate a desired output signal. In this
work, it has the form of a power law and is also referred to as a Kaula-type rule for
time-variable gravity (cf. section 4.1).

A degree variance model for grace data is approximated in such way that the spectral
signal power attenuates with increasing degree. This attenuation comes from the lower
sensivity of the satellites on variations of short wavelength in the gravity field, yielding
a lower spectral power of the appropriate high frequency spherical harmonic coefficients.
The deviations of the measured signal degree variances from such a model are assumed
to be noise.

The Wiener filter basically miminizes these deviations in a least squares sense:

f̄lm : min
∥∥f̄lm − slm

∥∥ (3.3.1)

where

f̄lm filtered output signal
slm desired output signal

The unfiltered input signal flm is assumed to consist of the uncontaminated desired
signal slm and an additive noise nlm

flm = slm + nlm (3.3.2)
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In the case of filtering spherical harmonic coefficients, the desired signal is assumed to
be an estimated degree variance model, and the additive noise are the deviations of the
mean spectral power from this model:

n2
l =

l∑

m=0




√
〈σ2

l 〉
2l + 1

−
√

s2
l

2l + 1




2

(3.3.3a)

nlm =
√

n2
l

2l+1 (3.3.3b)

where

n2
l degree variances of deviations

nlm rms of deviations
〈σ2

l 〉 mean power of a time series (e.g. annual, monthly, etc.)
s2
l degree variance model

However, it was shown from Devaraju & Sneeuw (2007) that using a combination of
the estimated errors and their deviations as noise yields a better resolution:

εlm =

√
n2

l

2l + 1
+ ε2

lm, ε2l = n2
l + ε2

l (3.3.4)

where ε2
lm are the variances of the simulated grace covariance matrices in the anisotropic

case or their error degree variances ε2
l in the isotropic case respectively.

Considering the minimal deviations from the filtered signal and the desired signal (equa-
tion (3.3.1)), the Wiener filter kernels are defined as follows:

� isotropic Wiener filter, assuming the same weight for all coefficients with the same
degree

Wl =
s2
l

s2
l + ε2l

(3.3.5)

� anisotropic scalar Wiener filter, assuming different weights for each degree and
order

Wlm =
s2
l

2l+1

s2
l

2l+1 + ε2lm

(3.3.6)

� anisotropic vector Wiener filter, assuming correlations between the filter coeffi-
cients

W Q =
QS

QS + Qε

(3.3.7)

with QS = diag[slm],m = 0, 1, ..., L; l = m,m + 1, ..., L and Qε = n + Qε where
Qε is a simulated full covariance matrix and n = diag[n2

lm],m = 0, 1, ..., L; l =
m,m + 1, ..., L

Thus, the numerator of these operators is always the signal covariance, whereas the
denominator is defined as the sum of this signal covariance and the noise covariance.
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3.3.2 The Bayesian type regularizaion as a spectral filter

Introduction

This section deals with an averaging method, which is similar to the presented filter in
(Kusche, 2007). The fundamental idea is to use prior information to constrain the noisy
grace coefficients within a least squares estimation procedure. However, the concept of
the so-called Bayesian type regularizaion (Koch & Kusche, 2002) is usually applied to
stabilize an ill-posed system of normal equations by adding prior stochastic information
about the yet unknown parameters as constraint. Usually, this information is stored
in a positive definite diagonal matrix. In (Kusche, 2007) it was found out that such a
filter bears very promising results. However, the filter itself uses stochastic data from
geophysical models. But the following derivations will show that such an averaging
operator works as well with stochastics, derived from grace data.

Regularized least squares estimation

The fundamental linear model for the presented method reads as

E {y} = Ax D {y} = σ2Q = P−1 (3.3.8)

where

y m× 1 vector of observations
A m× n design matrix
x n× 1 vector of unknowns
σ2 scalar variance component
Q m×m covariance matrix of the observations

It is usual, though, to write equation (3.3.8) as an observation equation:

y + e = Ax with E {e} = 0 and D {e} = D {y} = σ2Q = P−1 (3.3.9)

where e is a m×1 vector of the observation errors. The unknowns are usually estimated
by minimizing the squared residuals

x : min ‖Ax− y‖2
P (3.3.10)

which is achieved by the unbiased least squares estimator

x̂ =
(
ATPA

)−1
ATPy (3.3.11)

with the parameter covariance

Qx̂ =
(
ATPA

)−1
(3.3.12)

However, many geodetic problems, especially the determination of the gravity field
(Bouman & Koop, 1998; Xu, 1992), are ill-posed problems due to a bad condition of
the normal matrix

N = AT PA (3.3.13)

which is due to the following four characteristics of gravity data from space satellite
missions.
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� irregular data distribution due to polar gaps or non-continuous data tracking

� insufficent information about the gravity field in the observable itself

� downward continuation

� bad condition due to stochastic model (e.g. the instrument is unable to measure
in the whole specral domain)

Such an ill-conditioned matrix denies a stable solution of the minimization problem. In
other words, the normal matrix has information about the unknowns, but not enough
for inversion. A widely used method is to regularize the ill-posed system of normal
equations (Bouman & Koop, 1998; Xu, 1992; Koch & Kusche, 2002). This happens by
adding prior information about the unknown parameters. Such data is of stochastic
nature and is thus defined through its expectation value and dispersion:

E {x0} = x D {x0} = σ2
KK = P−1

K (3.3.14)

where x0 is a vector with prior information and K its appropriate covariance. σ2
K is

again a yet unknown variance component, which is discussed later. This modifies the
minimization problem (3.3.10) to

x : min ‖Ax− y‖2
P + λ ‖x− x0‖2

P K
(3.3.15)

where λ is a positive real number, defined as the ratio between the variance components
of the observation groups. It thus describes the compromise between the constraint and
the minimization of the observation error (Bouman & Koop, 1998).

λ =
σ2

σ2
K

(3.3.16)

Obviously, the parameters are estimated under the constraint that the squared residual
between the a priori values and the estimated parameters is minimal. However, it is
common to assume the observations x0 to be zero and their appropriate weight matrix
P K to be a positive definit diagonal matrix with its elements being inversely proportional
to a degree variance model (Koch & Kusche, 2002). Additionally, it is assumed in this
work that this degree variance model is considered as independent observation, which
allows to combine expectancy value and dispersion of (3.3.8) and (3.3.14) in a sequential
estimation scheme:

E

{(
y
x0

)}
=

(
A
I

)
x; (3.3.17)

D

{(
y
x0

)}
=

(
σ2Q 0

0 σ2
KK

)
(3.3.18)

(3.3.19)

which is solved by minimizing the squared residuals

x : min ‖Ax− y‖2
P + λ ‖x‖2

P K
(3.3.20)

Such a regularization constrains the unknown Stokes coefficients to be minimal (i.e.
equal to zero) and to vary according to the a priori variance matrix K and is solved by
the unbiased estimator

x̂ =
(
AT PA + λP K

)−1
(AT Py) (3.3.21)
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with the parameter covariance

Qx̂ =
(
AT PA + λP K

)−1
= N−1 (3.3.22)

A widely used method to improve the condition for static gravity field determinations is
to use the Kaula rule (Kaula, 1966) as a priori degree variance model, which constrains
the coefficients to attenuate with increasing degree according to a power law:

σ̂2
l ≈

10−10

l4
(2l + 1) (3.3.23)

This method differs from the so called Tikhonov-regularization (Tikhonov & Arsenin,
1977), which is often used to improve the stability of an ill-posed system of normal
equations as well. There, the basic idea is to constrain the solution of the least squares
estimation to be finite, which is achieved by strengthen the main diagonal of the normal
matrix, e.g. by adding an identity matrix. Here, prior information in form of modelled
signal variances is added as constraint, which allows unbiased sequential estimation.
However, the term unbiased estimation needs a bit of discussion in this context. In (Xu,
1992; Bouman & Koop, 1998; Bouman, 2000) it was mentioned that regularization must
be considered as biased estimation, as the solution seriously depends on the quality of
the prior information K. The regularization matrix K is filled with elements from a
signal variance model (e.g. Kaula’s rule) and not with error variances. But according to
(Sneeuw, 2000), this would lead to too optimistic error estimates. Moreover, this variance
model is introduced as an idependent observation group, which assumes the time-variable
Stokes coefficients to be equal to zero with their appropriate variance. This might
sound a bit confusing but can be explained with gravity potential theory. According to
equation A.10 the gravity potential consists of a constant part, the normal field, and the
disturbing potential. The influence of the normal field is usually removed from spherical
harmonic coefficients, as it is known by its definition. The remaining disturbing potential
is normal distributed with an expectation value of zero. This means conversely that the
time-variable spherical harmonic coeffients have an expectation value equal to zero as
well, as they are the only stochastic factor in the series expansion of a gravitatonal
quantity in terms of Legendre functions. Their errors, i.e. their variances, are given
through a model, where the spectral signal power of the error degree variances usually
attenuate with increasing degree. Furthermore, the Tikhonov-regularization would not
allow to estimate the yet unknown variance components. Using an identity matrix with
a regularization parameter as regularization term can not be assumed to be a seperate
observation group and thus does not allow the combination in one linear model by setting
up a sequential estimation scheme.

Using the regularization as spectral filter for time-variable grace coefficients

However, the task in this work is not to solve an ill-posed system of normal equation,
but such a degree variance model can used to constrain the grace solutions as well, as it
provides an upper bound on the uncertainties in spherical harmonic coefficients at high
degrees. Thus, equation (3.3.11) can be rewritten as a spectral filter, if it is used to re-
estimate a set of spherical harmonic coefficients. Then, A becomes the identity matrix,
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P G the inverse covariance matrix of the spherical harmonic coefficients (e.g. a simulated
full covariance matrix for grace coefficients) and y the coefficients themselves:

x̂ =
(
ATP GA + λP K

)−1
ATP Gy (3.3.24)

= (IP GI + λP K)−1 ATP Gy

= (P G + λP K)−1 P Gy

The covariance matrix of the regularized parameters is the inverse normal matrix:

Qx̂ = (P G + λP K)−1 (3.3.25)

Obviously, the structure of this filter operator is similar to the Wiener filter from chapter
3.3.1. But the filtering characteristics are different, as the Wiener filter minimizes the
deviations of the filtered signal degree variances (i.e. the measured signal) and a desired
output signal (i.e. an estimated degree variance model) in a least squares sense. The op-
erator 3.3.24, on the other hand, constrains the signal power to decrease with increasing
degree by using the measured signal y as observations and a degree variance model K
as constraints, based on a least squares estimation procedure. However, both averaging
operators allow the consideration of a full covariance matrix of the grace coefficients.

Variance component estimation

It was already mentioned that the regularization parameter λ is defined as the ratio
between the variance components σ2

G and σ2
K of the observation groups. But these vari-

ance components are initially unknown and must be estimated by a so called Variance
Component Estimation (VCE). This step is not allowed if one uses the Tikhonov-type
regularization, as the regularization matrix does not necessarily contain observed or
modeled prior information. It simply strengthens the stability of a normal matrix by
constraining the least squares solution to be finite. In this case here, the regularization
matrix contains a degree variance model, which is assumed to be a separate observation
group. Thus, one is able to compute the weight factors between these groups by the VCE.

Variance components can be estimated through different approaces. A few of them
are

� Mimimum norm quadratic unbiased estimator (MINQUE)

� Best invariant quadratic unbiased estimator (BIQUE)

� Least squares variance component estimator (LS-VCE)

� Restricted maximum likelihood estimator (REML)

� Bayesian approach to VCE

A detailed review of each of these methods would go beyond the scope of this work. Thus,
the reader is referred to further literature (e.g. Fotopoulos, 2003). In this thesis, only the
least squares variance component estimator is discussed, or rather the modified version
from (Koch & Kusche, 2002), which is proposed for estimating weight factors within a
regularization procedure. Here, the inverse weight factors (i.e. the variance components)
of the different observation groups are defined as the ratio between their mean squared
error and their contribution to the overall redundancy. Thus, an observation group gets
a bigger weight if
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� the corresponding observations are very accurate, which results in a small mean
squared error and/or

� it has only little contribution to the result, which is reflected by a large redundancy
number.

In section 3.3.2 the contribution of an observation group to the estimated parameters was
only defined by their inverse a priori covariance; their particular variance component
was assumed to be one (which is often done in least squares estimation). But the weight
matrices P G and P K consist more precicely of a known part, which actually is the
inverse a priori covariance and a yet unknown variance component, which describes how
a particular observation group fits into the linear system. This was already formulated
in equation (3.3.8) and (3.3.14), but not further discussed. If the estimator (3.3.24) is
modified in such way, it reads as

x̂ =
(

1
σ2

G

P G +
1

σ2
K

P K

)−1 1
σ2

G

P Gy (3.3.26)

which is actually the same as (3.3.24), if one assumes that λ = σ2/σ2
K . However, this

point is a bit delicate. The conversion from equation (3.3.24) to (3.3.26) reads as follows:

x̂ = (P G + λP K)−1 P Gy (3.3.27)

=
(

P G +
σ2

G

σ2
K

P K

)−1

P Gy

=
(

1
σ2

G

P G +
σ2

G

σ2
Gσ2

K

P K

)−1 1
σ2

G

P Gy

=
(

1
σ2

G

P G +
1

σ2
K

P K

)−1 1
σ2

G

P Gy

Thus, there is a difference in the normal matrix, as both versions (P G + λP K)−1 and(
1

σ2
G

P G + 1
σ2
K
P K

)−1
actually differ by the factor 1

σ2
G

. This divergence does not play a
role if one assumes the variance components to be one. In the case of estimated variance
components, the normal matrix (P G + λP K)−1 must be divided by σ2

G to obtain the true
a posteriori error level. Otherwise the errors would be biased, depending on the variance
component σ2

G. Thus, it is recommended to use the parameter λ only for comparison
purposes, but consider both variance components for the computation of the covariance
matrix of the estimated parameters:

Qx̂ =
(

1
σ2

G

P G +
1

σ2
K

P K

)−1

(3.3.28)

The estimation of the variance components is an iterative process, in which the unknown
weight factors are estimated with respect to the a posteriori errors and the rednundancy
number of the different obervation groups. This is achieved by the four following steps,
which are repeated until the variance components converge:

1. Estimation of the unknown parameters according to equation (3.3.26)

2. Computation of the residuals in the different observation groups

ê = x̂− y; êK = x̂ (3.3.29)
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3. Computation of the partial redundancies, i.e. the contributions of the observations
and prior information to the overall redundancy (Koch & Kusche, 2002)

rG = u− tr
(

1
σ2

G

P GN−1

)
(3.3.30a)

rK = u− tr
(

1
σ2

K

P KN−1

)
(3.3.30b)

In equation (3.3.30a) and (3.3.30b) u is the number of observations, which is in
this case the number of available grace coefficients, i.e. u = (Lmax + 1)2 − 4,
as the degree 0 and 1 coefficients were removed. The values tr

(
1

σ2
G

P GN−1
)

and

tr
(

1
σ2
K
P KN−1

)
respectively are the sum of the single redundancy elements from

the redundancy contribution (cf. section C.2.3). They are a measure for the
amount of information (from the corresponding observation group) which con-
tributes to the result x̂

4. Computation of the variance components for each observation group

σ̂2
G =

êT
GP GêG

rG
(3.3.31a)

σ̂2
K =

êT
KP KêK

rK
(3.3.31b)

In the first iteration, it is assumed that σG = σK = 1. Thus, the estimated parameters
x̂ of the first iteration equal the regularized parameters without variance component
estimation. The number of iterations until the results converge are a measure of the
compatibility of the observations and the mathematical model. In other words, if the
a posteriori errors in an observation group are still too large after few iterations, or
the observation group does not significantly contribute to the least squares solution, the
process might need many iterations, yielding a mis-modelled linear system.

Note: The estimation of the variance components is a time-consuming process. The
normal matrix usually has a size of (Lmax +1)2×(Lmax +1)2, which would be in the case
of the CSR dataset a 3721× 3721 matrix, if one uses the GFZ dataset a 14641× 14641
matrix, as the GFZ provides coefficients up to degree and order 120. Its iterative in-
version and the computation of the redundancy numbers might thus need quiet long,
if e.g. a few iterations are not enough for the variance components to converge. In
(Koch & Kusche, 2002), a method is discussed which avoids the inversion of N and uses
a stochastic trace estimation for the computation of the variance components. But such
an approach is not further discussed in this work. As the following results are based on
the fourth release of the CSR datasets, the maximal degree and order of the coefficients
Lmax = 60, yielding a 3721 × 3721 normal matrix. Thus, it was decided to use the
straightforward method, which was discussed in this chapter.

An other often used method for an iterative update in the variance component esti-
mation is to use an updated weight matrix P i+1 = 1

σ2
i
P i in every iteration step instead

of the product of the basic weight matrix and the inverse variance component. Then, one
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would iterate until the single variance components are equal to one. But as the weight
factors are a good measure for the quality of the observation groups and their contri-
bution to the overall redundancy, the upper method gives an “on the fly” impression
during the computation process, as to how the different observation groups fit together
and is thus preferred in this work.



Constraining GRACE coefficients
with a Kaula-type rule 4

4.1 Estimation of a Kaula rule for time-variable gravity

The Wiener filter and the Bayesian type regularization showed that stochastic filters
need prior information about the unfiltered coefficients. In the case of a Wiener filter,
such information is used as a desired output signal, whereas the regularization constrains
the amplitude of the errors of spherical harmonic coefficients with an upper bound. How-
ever, it was already said that such data actually does not exist in the case of grace
coefficients. Thus, various approaches were made in order to determine such an a priori
signal variance (e.g. Klees et al., 2008; Kusche, 2007), which is often based on geophys-
ical models (e.g. Seo et al., 2006; Kusche, 2007). In (Klees et al., 2008), a method was
discussed which uses solely grace data for building the a priori signal variance.

A similar approach is discussed here. In (Kaula, 1966) it was mentioned that the degree
variances of a spherical harmonic signal spectrum can be roughly approximated by a
power law and thus decrease linearly in the logarithmic scale. This knowledge is used as
stochastic a priori data in ill-posed systems of normal equations for static gravity field
determinations, and thus constraining the solution of such a regularized least squares
parameter estimation to have a finite total signal power (Bouman & Koop, 1998). Un-
fortunately, the Kaula rule is only defined for the static gravity field. But its power
law behaviour allows a simple estimation of a fitting power law (i.e. a degree variance
model) for other kinds of spherical harmonic coefficients, e.g. the time derivative of the
monthly grace solutions. The basic equation for such a power law reads as

σ2
l = 10alb (4.1.1)

where

σ2
l Signal degree variances

a, b unknown parameters of the power law

A power law is represented by a straight line in a log-log-graph, i.e. a first-order poly-
nomial. Thus, (4.1.1) is transformed into the equation of a line:

log(σ2
l ) = a + b log(l) (4.1.2)
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Equation (4.1.2) can be used for fitting a power law to the time-variable gravity field.
In order to minimize the influence of erroneous monthly solutions or random errors, it is
common to approximate not the degree variances of a single monthly solution, but the
mean of a time series, which can be the same month in different years (cyclostationary)
or all available grace data (stationary):

〈σ2
l 〉 =

1
N

N∑

n=1

σ2
l (n) (4.1.3)

where

N length of the time series
σ2

l (n) degree variances

The parameters of the power law are estimated by a least squares estimation:

y = Ax + e (4.1.4)

where

y = log(〈σ2
l 〉) observation vector

A = [Al] = [1 log(l)] , l = 2 : Lreg design matrix
x = [a b] parameters of the power law
e residuals

and thus

x̂ = (ATA)−1ATy (4.1.5)

The parameter Lreg is the highest degree of approximation. The signal degree variances
from unfiltered grace coefficients usually attenuate until a certain degree, after which
they amplify again. Choosing Lreg too large would result in a only meagerly attenuating
degree variance model, which would assume a too high spectral power of the higher de-
gree coefficients. Thus, the degree variances of the signal must be approximated in the
band where the signal power linearly attenuates. The upper limit of this band is given
by the degree, where the signal degree variances stop decaying and start to amplify. This
becomes clear, if figure 4.1 is regarded, where the maximal degree of approximation is
marked with a black dashed vertical line. The lowest degree of approximation is often
set to 2, as the degree 0 and 1 coefficients are defined to be zero, which is done in this
work as well. On the basis of the derived formulae, power laws for different time series
of 70 months of time-variable CSR-4 grace coefficients (see (2.2.18)) were computed,
which are shown in figure 4.1. Their appropriate parameters are presented in table 4.1.
It must be mentioned that the coefficients of April 2004 were excluded, as they showed
completely different spectral characteristics. In figure 4.1a, the power law was estimated
with coefficients from January 2003 only, whereas the other two consider the mean over
a certain time period, which is the mean of all available monthly solutions for January
(figure 4.1b) and the mean of all available grace solutions (figure 4.1c).

In figure 4.1, the degree variances of the single dataset of January 2003 differ clearly
from the mean. The signal power already rises from degree 12 and, compared to the
monthly and annual mean respectively, is much higher in the high frequency coefficients.
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(a) Single dataset of Jan-
uary 2003

(b) Monthly mean of
January

(c) Mean of 70 monthly
solutions

Figure 4.1: Signal (blue), noise (red), mean (black) and power law (cyan) degree vari-
ances of the CSR-4 coefficients

Table 4.1: Parameters of fitted power laws from different time series, where Lreg is set
to the point of inflection of the signal degree variances

Data Lreg a b

mean of all available data 22 −19.8283 −1.3847

monthly mean of January 21 −19.6989 −1.4311

single dataset of January 2003 12 −19.7209 −1.3670

single dataset of January 2005 26 −19.7946 −1.3740

single dataset of January 2007 28 −19.7961 −1.3580

annual mean of 2003 21 −19.9131 −1.2164

annual mean of 2005 21 −19.7097 −1.5724

annual mean of 2007 24 −19.7897 −1.4445

The other two show a decreasing power until degree 21 (monthly mean) and 22 (annual
mean) respectively. An analysis of all available grace datasets from the fourth CSR
dataset showed that these large signal degree variances are typical for coefficients from
the years 2002 and 2003. This is even more obvious, if figure 4.1a and 4.1b are com-
pared. The signal power from January 2003 is higher than the other months, especially
in the high frequency coefficients. This leads to the assumption that the noise level in
time-variable grace coefficients is not constant. From this it should follow that the
estimation of a mean power law must not hold for all available monthly solutions, but
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only for the regarded time series. This means that even a mean power law could change,
if new data is added. But on the other hand, the parameters of the estimated power laws
(see table 4.1) paint a different picture. One has to keep in mind that the power law is
only defined by the parameters a and b. An approximation up to the point of inflection
of the degree variances results in very similar coefficients, no matter which data is used,
which agrees with the three presented power laws in figure 4.2a and table 4.1. This is
actually an important effect, as the theoretical signal strength, defined by the estimated
power laws, seems to be stationary, yielding a more or less constant signal strength in
each single monthly grace solution.

However, a further interesting point would be the impact of a varying maximal degree
of approximation. This would mean that the power law is mis-modelled, as it assumes a
too low or too high spectral signal power. Thus, two further power laws were estimated
with their maximal degree of approximation being Lreg = 12 and Lreg = 32 respectively,
using the mean of 70 monthly CSR-4 solutions. The results are presented in figure 4.2b
and table 4.2.

(a) Different time-series,
approximated until the
point of inflection of the
signal degree variances

(b) Same time-series,
approximated until dif-
ferent degrees

Figure 4.2: Comparison of different power laws

According to figure 4.2b the slope of the power law obviously changes if it is estimated
within the same power spectrum, but different maximal degrees of approximation. The
green power law crosses the mean signal variances after the point of inflection, assum-
ing a too high signal power in the coefficients with high degrees. On the other side,
it shows a lesser power in the low degree signal variances, which actually do not agree
with the mean variances. This actually means that such a power law would constrain
the low-degree coefficients with a too low signal power, whereas obviously allows a little
contribution of noise in the higher degree coefficients. On the other hand, the red power
law, which is only approximated until degree 12, assumes a lower signal power than
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the blue power law, which was approximated until the point of inflection. This means
that one would eliminate usable signal by considering it as noise (through its deviation
from the power law). Thus, the following analysis will concentrate on the impact of a
varying maximal degree of approximation of a mean power law. The models which were
approximated until degree 12 and 32 respectively should not be considered as realistic
estimates, as they would constrain the grace coefficients with a too smooth or too noisy
power spectra, respectively.

Table 4.2: Parameters of fitted power laws with a varying maximal degree of approxi-
mation

Data Lreg a b

mean of all available data 12 −19.6361 −1.6669

mean of all available data 22 −19.8283 −1.3847

mean of all available data 32 −20.1641 −0.9904

4.2 Simulation of a full covariance matrix for time-variable
GRACE coefficients

The stochastic filters, both the Wiener filter and Bayesian type regularization, require
a full covariance matrix of grace coefficients. The data centers usually provide only
formal and calibrated standard deviations of the grace data. But it is assumed that
correlations between the coefficients, represented by a full or at least block diagonal
covariance matrix, have a serious impact on the filtering procedures. It was shown in
different papers, (e.g. Kusche, 2007; Devaraju et al., 2008) that a full covariance matrix
can be simulated according to the energy balance approach.

WA −WB = ∆TAB

∆TAB =
L,l∑

l,m

ΛlỸlm(θA, λA)K̃lm −
L,l∑

l,m

ΛlỸlm(θB, λB)K̃lm

=
L,l∑

l,m

Λl

(
Ỹlm(θA, λA)− Ỹlm(θB, λB)

)
K̃lm

=
L,l∑

l,m

Λl∆ỸlmK̃lm

∆TAB = YΛK ⇒ QS =
(
ΛTYTYΛ

)−1

(4.2.1)

where

W(·) Potential observed by the satellites grace A and B
∆TAB Difference in disturbing potential
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Figure 4.3: Simulated full covariance matrix for grace coefficients

Ỹlm,Y Surface spherical harmonics, Y contains ∆Ỹlm

K̃lm,K Spherical harmonic coefficients
Λl, Λ Isotropic transfer coefficients, and
QS Simulated covariance matrix

One has to keep in mind that QS represents the covariance matrix for pure monthly
grace coefficients, but in this work, the simulated covariance matrix must be differenti-
ated as well. This happens again according to the presented formula of central differences
introduced in section 2.2.2, but with consideration of the covariance propagation law:

QG =
1
4
(QS(t + 1) + QS(t− 1)) (4.2.2)

The presented full covariance matrix in figure 4.2 is simulated with data for January
2003. It is arranged orderwise for an easier computation process. Obviously, it has a very
strong block diagonal characteristic. Thus, there are indeed strong correlations within
the blocks, i.e. the coefficients with the same order. On the other hand, coefficients
with the same degree and different order are less correlated. These characteristics agree
with the assumption from Han (2003) that the block diagonal structure approximates
a full covariance matrix with satisfactory accuracy, especially in the case of spherical
harmonic coefficients from grace. Kusche (2007) found the maximum correlation of
0.89 in a block for order m = 34 (degrees 38 and 40), whereas the maximum correlation
across the order blocks is much less with 0.07 for degree/order 18/15 and 61/61.
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However, there are obviously correlations between tesseral coefficients. Thus, in this
thesis the presented methods are tested with different kinds of covariance matrix struc-
tures to observe the impact of correlations. On the basis of these formulae, full covariance
matrices for January 2003, May 2005 and September 2006 are simulated. In order to use
such a matrix in the computation process, the magnitudes of the simulated matrix and
the coefficients from the data centers themselves must agree. Therefore, the simulated
covariance matrices are scaled by multiplying QG with the ratios of the outer products of
the formal errors from the data centers and the standard deviations from the simulated
matrices (i.e. the square root of their main diagonal elements).

4.3 Using a Kaula-type rule as stochastic constraint in a
sequential estimation

It was mentioned in section 3.3.2 that a degree variance model can be used as a priori
information about Stokes coefficients, which is usually done in the context of regular-
ization of ill-posed systems of normal equations in satellite geodesy. In this work, such
a model, which was estimated according to the formulae in section 4.1, is used as a
stochastic constraint for an upper limit of the errors in monthly time-variable grace
solutions. Thus, the squared inverse RMS-values of such a power law are stored in a
diagonal matrix for both cos- and sin-part of the spectrum:

KC
lm =

σ2
l

2l + 1
, l = m, m + 1, ..., L, m = 0, 1, ..., L (4.3.1a)

KS
lm =

σ2
l

2l + 1
, l = m, m + 1, ..., L, m = 1, 2, ..., L (4.3.1b)

Remark: The signal variances σ2
l in equations (4.3.1a) and (4.3.1b) should not be mis-

taken for the pure signal degree variances from the grace coefficients, which are denoted
by σ2

l as well. In this context here, the values are given by the estimated power laws
from secion 4.1.

Afterwards, these submatrices are combined in a diagonal (L + 1)2 × (L + 1)2 a pri-
ori variance matrix:

QK =
(

KC 0
0 KS

)
(4.3.2)

The inverse of this matrix P K = Q−1
K is used as regularization term in the derived

formulae from section 3.3.2:

x̂ = (P G + λP K)−1P Gy (4.3.3)

where P G is the inverse of the simulated covariance matrix from section 4.2 and y is a
vector of monthly grace coefficients. In a first step the regularization parameter λ = 1,
giving both observation groups an a priori weight defined by P G and P K respectively.
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Spectral domain

The regularized spectra are analyzed first, as the regularization of the time-variable
grace coefficients happens in the spectral domain. Here, the degree variances of signal
and error are introduced as a measure of the total signal and noise content per degree
in the regularized coefficients.

Figure 4.4: Degree variances of signal (thin solid line), noise (dashed line) and power
law (bold dash dotted line), where the power law was approximated until
Lreg = 12 (red), Lreg = 22 (blue) and Lreg = 32. The grace coefficients
and errors before regularization (grey) are plotted as reference.

Figure 4.4 shows that regularization successfully forces the spectral signal power to de-
crease with increasing degree. Moreover, it holds that the coefficients until degree 13
are not influenced by the regularization term, as the signal degree variances agree in
this band with the approximated power law. Additionally, it shows an important char-
acteristic of the regularized spectrum. The relative magnitude of the degree variances
is not influenced, which means that information about small scale features, which are
hidden in high frequency coefficients, are not eliminated by regularizing, but the signal
power of the appropriate coefficients is drastically decreased. This happens differently,
depending on the used power law. The green power law, which was approximated until
a degree after the point of inflection of the mean signal variances results in a higher
spectral power of signal and noise. Moreover, the degree variance curves diverge with
increasing degree, which means that the regularized Stokes coefficients differ especially
the high frequency part of the spectrum.

Unfortunately, figure 4.4 also shows that even if the regularized error spectrum tends to
converge with the power law, the signal degree variances possess a spectral power still
too high, which is most obvious for degree 28. This indicates that the influence of the
regularization term on the noisy grace coefficients was not strong enough to reduce the
signal strength to a realistic level.

The spectral redundancy contribution (see equation (C.6) in the appendix) in figure
4.5 yields the percentage impact of the regularization term on each single regularized
Stokes coefficient. It becomes clear that the regularization term mainly influences the
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Figure 4.5: Redundancy contribution of the regularization term in the spectral domain

high frequency coefficients, as the unfiltered coefficients with small degree and order
agree with the estimated power law. Furthermore, the contribution of the regulariza-
tion term to the estimated parameters increases with increasing order. The sectorial
coefficients are seriously influenced by degree and order 20. This effect comes from the
isotropic nature of an estimated degree variance model, which constrains the pure grace
coefficients in two ways. It primarily makes the spectral signal power to attenuate with
increasing degree by keeping the noise degree variances under the upper bound, given by
the power law. This happens mainly by decreasing the power in the near sectorial and
sectorial part of the spectrum, as unregularized coefficient show a high spectral power
density in this section.

Spatial domain

The high spectral power in the sectorial and near sectorial coefficients caused an un-
realistic spatial signal strength, represented by the massive north-south stripes. By
attenuating the power of this part of the spectrum, one would theoretically decrease the
amplitude of the north-south stripes, which agrees with figure 4.6, where the regularized
coefficients were transformed into a rate of change in terms of water equivalent heights
according to equation (2.2.18).

It is obvious that regularizing drastically scales down the magnitude of the signal-power
in the high frequency coefficients, which was already expected from the signal degree
variances in figure 4.4. This agrees with the derived statistics from the maps, presented
in table 4.3, as well. Although the north-south stripes are still visible, these artifacts
have a much lower amplitude, which makes features visible, if e.g. South America is con-
sidered. As the Amazon basin is one of the regions with the largest mass-fluctuations
due to hydrological effects, it was assumed that there will be a strong signal, which is
clearly visible in all three solutions. But there is a relatively high signal strength in the
equatorial regions compared to the overall signal, which is an effect of the high signal
power in the sectorial and near sectorial coefficients as well.

The differences of the solutions, visualized in figure 4.6, show that the maximal de-
gree of approximation of the used power law controls the strength of regularization.
This becomes clear if figure 4.4 is taken into focus again. A steep power law yields a
lesser signal strength after regularizing. This assumption is emphasized by the derived
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(a) CSR-4 January 2003 (b) Lreg = 12

(c) Lreg = 22 (d) Lreg = 32

(e) Difference between b) and c) (f) Difference between b) and d)

Figure 4.6: Derived maps in rate of change equivalent water heights for January 2003,
computed from grace coefficients before and after regularizing

statistics in table 4.3. Even if the mean values of all three regularized fields are similar,
the rms is drastically reduced if a steep power law is used as constraint. Thus, the
power law, used as a regularization term, has a similar function than e.g. the Gaussian
averaging radius, but is less illustrative: using a steep power law results in a heavier
filtered field, whereas a smoothly attenuating power law is similar to a small Gaussian
averaging radius, yielding a less filtered field.

4.4 The efficiency of the regularization with estimated weight
factors

4.4.1 The impact of different power laws as stochastic constraints

The results in section 4.3 were still contaminated with noise, even if the signal strength
of the stripes was drastically reduced. However, the variance component estimation from
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Table 4.3: Statistics of the derived maps from figure 4.6

field RMS mean min max

[mm/month]

unfiltered 783.824 2.563 -4982.904 5315.985

filtered with Lreg = 12 64.978 2.410 -427.613 424.141

filtered with Lreg = 22 82.034 2.404 -601.839 573.938

filtered with Lreg = 32 110.823 2.273 -885.387 819.804

section 3.3.2 is a method to increase the contribution of a observation group in a linear
model, if it has smaller variances than the other group. Figure 4.4 showed that the signal
strength of the grace coefficients is still to high, especially in the higher degrees. The
variance level of the regularization term is defined by the power law, which assumes in
all three cases Lreg = 12, 22 and 32, a lower signal power than the regularized solutions.
Thus, estimating variance components should increase the weight of the regularization
term.

The convergence criterion was set to
∣∣∣∣1−

σ2(i)
σ2(i− 1)

∣∣∣∣ < 10−5 (4.4.1)

which must hold for both the grace coefficients and the regularization term.

Spectral domain

The variance components converged for all three versions, i.e. Lreg = 12, Lreg = 22 and
Lreg = 32 respectively, after seventeen (Lreg = 12) and sixteen (Lreg = 22, 32) iterations.
The appropriate weight factors for the grace coefficients and the regularizing term are
presented in table 4.4 and figure 4.7.

Table 4.4: Estimated variance components of the different regularization terms

Lreg 1/σ2
G 1/σ2

K λ = σ2
G/σ2

K

12 0.071 1.232 17.275

22 0.071 1.627 22.750

32 0.071 2.061 28.773

The estimated weight factors for both observation groups agree with the assumption
that the contribution of the Kaula matrix should be increased through the VCE, as it
gained more weight than the grace coefficients in all three cases. Moreover, the inverse
variance components are very similar for the grace coefficients, even if the influence
of the Kaula matrix differs. The different weight factors for the regularization matrices
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Figure 4.7: Value of the regularization parameter λ after each iteration for different
regularization terms

come from the characteristics of the used power laws. If Lreg = 32, the group needs more
weight to seriously influence the spectral signal power to attenuate with increasing de-
gree. On the other hand, the power law with Lreg = 12 constrains the grace coefficients
stronger, and needs thus less weight. One has to keep in mind that the regularization
term expects the coefficients to vary around zero. Thus, the steeper the attenuation of
the power law, the less the weight is needed to bring the estimated coefficients on that
level.

Figure 4.8: Comparison of the spectral signal (solid line) and noise power (dashed
line) of the regularized coefficients with Lreg = 12 (blue),Lreg = 22 (red),
Lreg = 32 (green) before (left) and after (right) VCE

More about the characteristics of the regularized coefficients can be told from the sig-
nal and error spectrum, presented in figure 4.8, where all three versions are plotted
against their unweighted counterparts. Through the weighting with the estimated vari-
ance components the regularization term has attenuated the spectral signal power of the
high frequency coefficients. This is trivial as regularization assumes the coefficients to be
zero, with respect to the variances from the regularization matrix, which is the expected
effect of an unbiased regularization with zero observations. The relative magnitude of
the three versions in figure 4.8 show similar characteristics with and without estimated
variance components. This again emphasizes that the used power law can be compared
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to an averaging radius, which is used for deterministic filters. However, the errors in
the regularized solution are bigger than the appropriate signals from degree 20. This is
actually an effect of the regularization technique. The a priori noise level of the grace
coefficients, represented by the main diagonal of the simulated covariance matrix, is in-
creased by adding the regularization term. If one thinks of the inverse proportionality
of its elements to a degree variance model, it becomes clear that the elements get bigger
with increasing degree and order, whereas the elements of the inverse covariance matrix
of the grace coefficients, i.e. the weight matrix, attenuate with increasing order and
degree, which yields usually lesser weight to these coefficients with low accuracy. But
through regularization, the errors in the high frequency part of the spectrum gain more
influence in the linear model. This effect becomes clearer in figure 4.9.

Initially, the signal strength is overall higher than the errors. This holds even after
regularization without estimated variance components (cf. figure 4.8). But as the high
frequency errors are increased through regularization, the signal is stronger constrained
than the noise. The a priori error degree variances cross the modelled degree variances
at degree 30. If the spectral redundancy contribution is regarded again, it becomes
evident that the regularization term starts to dominate the solution in this part of the
spectrum. After regularizing, the noise is bigger than the signal from degree 20, which
actually means that, according to Kaula’s rule, the signal beyond degree 20 contains a
signal-to-noise-ratio SNRl < 1 and is thus dominated by noise.

Figure 4.9: Signal (solid lines), noise (dashed lines) and modelled (bold dash dotted
line) degree variances of the grace coefficients before and after regulariz-
ing with the mean power law approximated until Lreg = 22

This is a very important effect of the regularization. Kaula’s rule is used to roughly
approximate an upper bound for the error degree variances of Stokes coefficients. The
latter observations showed that the coefficients with l > 20 contain more noise than
useable signal. This actually means that grace delivers only noisy time-variable infor-
mation from degree 20, if one uses the estimated power law as degree variance model.
This maximal degree yields a spatial resolution of about 1000 km of half wavelength1.
These findings agree with those found by Klees et al. (2008), as they state that a dis-
tinction between true mass variations and errors in areas smaller than 106 km2 is not
possible.

1spat. resolution [km] ≈ U/2L where U = 2πR is the circumference of the earth
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Figure 4.10: Spectral redundancy contribution of the regularization term

The spectral redundancy contribution (cf. figure 4.10) agrees with the assumption that
the estimation of weight factors increases the influence of the regularization term on
the grace coefficients. In the first case, where no VCE was applied, the regulariza-
tion matrix affected only these coefficients with their degree being larger than 40. Now,
the power law already has an impact on zonal coefficients with l > 25. Moreover, the
influence increases with increasing order, which is a logical consequence if the spec-
trum of unfiltered grace coefficients is regarded (cf. figure 4.11). The zonal and near
zonal coefficients show an almost constant signal power, which seriously increases in the
near sectorial and sectorial part. As the regularization technique constrains the signal
strength to attenuate with increasing degree, the regularization matrix has to impact
exactly on this part of the signal which causes the high signal strength. Additionally,
there is a distinct contribution to the near sectorial coefficients with m = l − 1 recog-
nizeable, dominating the solutions from degree 8.

Figure 4.11: grace coefficients before and after regularization

Figure 4.11 shows the grace coefficients before and after the regularization. The un-
regularized coefficients possess a stronger dependency from their order than from their
degree, which is counteracted by the isotropic nature of the constraining power law.
Thus, all three regularized spectra show on the one hand a drastically decreased signal
power and on the other hand a more or less isotropic characteristic. But the degree
variances in figure 4.8 already showed a slight difference in the regularized coefficients,
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which is visible here again. The steeper the chosen constraining power law, the lower
becomes the signal power in the high frequency coefficients.

Spatial domain

If these coefficients are used to derive fields of water equivalent heights per month, it
becomes obvious that an increased weight of the regularization term eliminated most of
the noisy artifacts (cf. figure 4.12). All three maps show distinct areas with a high signal
strength in South- and Central America or South and Central Africa. These areas are
completely independent from the initially noisy structures, which were spread over the
whole globe, as they possess different spatial characteristics. Over the oceans, especially
in the northern Pacific, there are slight signals visible, as well as in Northern Africa or
Russia. Due to the spatial characteristics of these large-scale signals, one might assume
that these do not come from errors in the grace coefficients, but should be caused by
changes in the earth’s gravity field. This holds, even if there are still some stripy artifacts
visible, especially in the equatorial regions. In contrast to the signals in the near-polar
oceanic regions, the artifacts in the equatorial pacific and northern Indian ocean might
come from remaining errors in the grace coefficients, as they possess stripy shapes,
with their maximal amplitude being near the equator.

However, the statistics in table 4.5 agree with the latter positive findings. The max-
imal and minimal value can be recognized in Central and South America with a signal
strength about −130 mm/month (Venezuela) and 150 mm/month (Amazon basin) in all three
regularized fields. Thus, figure 4.12 and table 4.5 show another interesting effect of the
regularization of time-variable grace coefficients. Even if the regularized spectra (cf.
figure 4.8) varied in the high frequency part, the derived maps show nearly no visible
differences: the deviations in the spectral domain are negligible when propagated to the
spatial domain. This can be explained by the fact that remaining differences usually
have such a low spectral signal power. The unweighted solutions already showed that
the differences between the derived maps are mainly caused by differences in the high
frequency part of the spectrum. And exactly this part is now drastically attenuated,
which yields the slight deviations between the maps in figure 4.12.

Table 4.5: Statistics of the derived maps from figure 4.12

field RMS mean min max

[mm/month]

filtered with Lreg = 12 25.7 0.3 -129.6 149.8

filtered with Lreg = 22 26.2 -0.2 -129.6 151.2

filtered with Lreg = 32 27.5 -0.8 -129.6 152.6

Difference between a) and b) 2.3 0.5 -14.9 14.8

Difference between a) and c) 5.8 1.1 -41.1 41.4
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(a) Lreg = 12 (b) Lreg = 22

(c) Lreg = 32 (d) Difference between a) and b)

(e) Difference between a) and c)

Figure 4.12: Regularized coefficients with VCE, transformed to changes in equivalent
water heights for January 2003

In figure 4.13 the difference between a derived map with and without estimated vari-
ance components is presented. Obviously, the increased weight has its biggest impact
on equatorial regions. This is actually again an effect of the power-law regularization.
Without the VCE, the regularization term mainly influenced high frequency near secto-
rial and sectorial coefficients. On the other side, the spectral redundancy contribution
after using estimated variance components showed that there is an increased contribu-
tion in the higher degree (l > 25) zonal and the degree 2 coefficients as well. Such a
stronger constraint in these parts of the spectrum explains the decreased signal strength
in the equatorial regions.

Figure 4.13 shows another noticeable characteristic of both derived maps. If e.g. the
Amazon basin is considered, there is only a slight signal loss after the proper weight
factors were applied, even if the overall signal strength in the equatorial regions is dras-
tically reduced. This comes from two effects of increasing the weight of the regularization
term. On the one hand, the regularization technique has a decorrelation effect (that will
be analyzed in a following section), which successfully removes the north-south stripes.
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(a) Derived map after VCE (b) Derived map without VCE

(c) Difference between a) and b)

Figure 4.13: Visualized difference between the regularized solution with and without
estimated variance components

On the other hand, the deviations between both maps are mainly caused by differences
in the high frequency part of their appropriate spectum. This can be told from the
spatial characteristics of the differences, as they are mainly narrow north-south stripes
which is obvious especially in the equatorial regions.

4.4.2 The regularization filter with different covariance matrix structures of
the GRACE solutions

The regularization filter was designed with a full covariance matrix for the spherical
harmonic grace coefficients. However, it was already discussed in section 4.2 that
such a matrix has a strong block diagonal structure. It is widely believed that a full
covariance matrix can be well approximated by a block diagonal matrix, which considers
correlations between coefficients of the same order, but not of the same degree. This holds
especially for spherical harmonic grace coefficients. In figure 4.14 the simulated error
covariances of the cos-coefficients up to degree and order 21 are presented to emphasize
these assumptions. Therefore, a block diagonal matrix and diagonal matrix of grace
errors are computed according to the already discussed energy balance approach. These
matrices are further used as prior error estimates for the time-variable grace coefficients.
It is assumed that the variance component estimation can be used to perform a quick
and reasonable comparison between the impact of different covariance matrix structures.



4 Constraining GRACE coefficients with a Kaula-type rule 46

Figure 4.14: Covariance matrix of the cos-coefficients with l, m = 0, 1, 2, ..., 21

Spectral domain

The VCE converged after 16 iterations for all three covariance matrices. The estimated
weight factors are presented in figure 4.15 and table 4.6. Using a full and a block di-
agonal covariance matrix yields very similar variance components and thus a similar
contribution of the regularization term.

Figure 4.15: Convergence of the parameter λ for different covariance matrix structres

Table 4.6: Estimated variance components using different covariance matrix structures

Covariance matrix 1/σ2
G 1/σ2

K λ = σ2
G/σ2

K

full 0.071 1.627 22.750

block diagonal 0.071 1.616 22.630

diagonal 0.072 1.533 21.262
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On the other hand, the diagonal variance matrix causes slight differences compared
to the other two solutions, giving less weight to the regularization term. But these dif-
ferences should be negligible when compared with the weight factors in table 4.4.

Figure 4.16: Spectral redundancy contribution of the regularization term, using differ-
ent covariance matrix structures of grace errors

Again, the contribution of the stochastic constraints is analyzed with the spectral re-
dundancy contribution (cf. figure 4.16). The regularization matrix contributes to the
solutions in all three cases especially in the zonal coefficients with l > 30 and l = 2,
even if using only variance information yields a larger contribution from order m > 17.
Moreover, the sectorial coefficients are influenced from degree and order l, m > 8, which
is not the case for the full and block diagonal covariance matrix. However, one has to
keep in mind that using variance information about the grace coefficients gives less
weight to the regularization matrix, whereas its contribution in the spectral domain is
larger, compared to the solutions which consider correlations between the coefficients.

Figure 4.17: Signal (solid line) and noise (dashed line) degree variances of unregluar-
ized and regularized spectra, using different covariance matrix structures
of grace errors
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The similarities between the consideration of the different covariance matrix structures
holds for the regularized signal and error degree variances as well. Again, the full and
block diagonal covariance matrices cause equal spectral signal and noise power, both
blue and red lines are congruent in figure 4.16. Using only variances result in slightly
larger a posteriori error degree variances and smoother signal degree variances. These
findings indicate that there are indeed correlations between coefficients with the same
order. But considering correlations between the coefficients with the same degree does
not seem to have any impact.

Spatial domain

Propagation of the filter operators to the spatial domain yields the averaging character-
istics for a certain point in space. As the regularization filter is designed as anisotropic
vector operator, such a propagation must be done for different latitudes, as the filtering
characteristics might change with their position. The distance from the Kernel center
is computed across the λ = 90◦-meridian for the north-south sections and across the
appropriate parallels θ = 90◦, 60◦, 30◦ for the east-west sections to maintain a proper
scale between both N-S and E-W cross sections.

Full covariance Block diagonal diagonal

Figure 4.18: North-south (blue) and east-west (red) cross sections of the normalized
regularization filter kernels, computed at λ = 90◦, θ = 30◦ (top row),
λ = 90◦, θ = 60◦ (middle row), λ = 90◦, θ = 90◦ (bottom row). The
isotropic 800 km Gaussian filter (gray) is given as reference
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According to the cross sections in figure 4.18 all kernels are tighter in longitude direc-
tion, yielding lesser smoothing and thus a higher spatial resolution. This effect comes
from the error structure in the grace covariance matrix (Kusche, 2007). Additionally,
they possess more or less distinct negative sidelobes, which gives these regions a nega-
tive weight in the convolution process: the field which is correlated in N-S direction due
to track direction is decorrelated (Kusche, 2007). This means that both types of the
regularization operator remove the erroneous north-south stripes in the unfiltered field.
These stripes usually change their phase in east-west direction. A decorrelating kernel
smoothes the field in this direction similar to a Gaussian filter, i.e. the off-phase regions,
but weight the adjactend in-phase regions negatively. But even if the kernels are based
on the regularization filter, they differ especially with changing latitude. Using vari-
ances only yields a stronger smoothing in E-W direction in equatorial and mid-latitude
regions, while the operator tends to isotropy in near polar regions (i.e. both east-west
and north-south cross section are equal). Moreover, the east-west cross section is very
similar to the 800 km Gaussian operator. The regularization kernel with full and block
diagonal covariance information seems to be more or less independent from its position,
as its spatial characteristics change only slightly in the N-S direction.

Full covariance Block diagonal diagonal

Figure 4.19: Propagated regularization filter Kernels at λ = 90◦, θ = 30◦ (top row),
λ = 90◦, θ = 60◦ (middle row), λ = 90◦, θ = 90◦ (bottom row), using
different covariance matrix structures
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A better overview of the discussed kernels is given in figure 4.19, which emphasizes
the independence of the full covariance regularization kernel from its position in space,
even if the near polar regions are more strongly smoothed in longitude direction. Using
variances only results in a latitude dependent kernel, which has a very elliptic shape in
the near polar regions.

Moreover, figure 4.19 clearly shows that using a full or block diagonal covariance matrix
does not change the filtering characteristics significantly. Both kernels possess similar
spatial characteristics, whereas the smoothing radii of the variance matrix kernels are
generally larger. This will lead to a heavier filtered field, i.e. the maximal amplitudes will
be smaller, compared to the full or block-diagonal matrix kernel. This actually means
that using a full and block-diagonal matrix leads to a better spatial resolution of the
filtered field. Using only variances reduces the spatial resolution especially in longitude
direction due to the elliptic shape of the kernel.

These findings hold for derived maps in terms of rate of change of water equivalent
heights as well (cf. figure 4.20). Even if the regularization with full and block-diagonal
covariance information yield an equal result, using a variance matrix shows other signal
patterns. This holds especially for the equatorial (e.g. eastern Pacific) and near polar
oceanic regions (e.g. northern Atlantic). Additionally, the overall signal strength is
slightly attenuated. This is obvious in e.g. South and Middle America, where figures
4.20a and 4.20b show a signal of about 150 mm/month in the Amazon basin, which is not
reached in 4.20c. However, there are larger artifacts visible in the polar regions, whereas
the mid-latitude structures are streched in longitude direction.

But in spite of these differences, the spatial characteristic of the signal patterns over
land are very similar, even if the signal strength in figure 4.20c is lower. This could
indicate that the mass variations over the oceans are caused by errors in the grace
coefficients and are thus assumed to be noise, whereas the signal over continental re-
gions comes from changes in the Earth’s gravity field, yielding mass relocations due to
hydrological phenomena.

The derived statistics in table 4.7 emphasize these observations. A global rms of
0.9 mm/month of the differences between the full covariance and block diagonal covariance
solution is negligible, whereas the differences between a full and a diagonal covariance-
variance matrix reach up to ± 80 mm/month. However, these maxima are mainly caused
by differences in the polar regions, which was already visible in figure 4.20. Moreover,
this effect must be caused by a larger contribution of the regularization matrix in the
spectral domain, when only variances are considered.

Table 4.7 shows a further interesting effect of the three different kernels. The statis-
tics of the solutions with full and block-diagonal covariance matrices are very similar,
whereas the derived values of the diagonal variance solution are generally smaller. This
actually means that the appropriate kernel has stronger filtering characteristics, when
only variances are considered. This is emphasized by the figures 4.18 and 4.19, as the
filter kernel is generally larger when correlations between the coefficients are neglected.
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(a) Full covariance (b) Block-diagonal

(c) Diagonal (d) Difference between a) and b)

(e) Difference between a) and c)

Figure 4.20: Visualized difference between the regularized solution, using a full, block-
diagonal and diagonal covariance-variance matrix

Table 4.7: Statistics of the derived maps from figure 4.20

field RMS mean min max

[mm/month]

unfiltered 783.8 2.6 -4982.9 531.6

full covariance 26.2 -0.2 -129.6 151.2

block diagonal covariance 26.3 -0.2 -129.7 149.5

diagonal variance 25.7 -0.1 -106.6 131.7

Difference between a) and b) 0.9 0.0 -7.5 5.6

Difference between a) and c) 12.2 -0.1 -69.8 79.5
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4.4.3 Regularization of different monthly GRACE solutions

The whole method is now tested with data from May 2005 and September 2006 as well.
Again, a mean power law of 70 time-variable CSR-4 solutions approximated until degree
22 is used as stochastic constraint and the noise information of the grace coefficients
is taken from a fully populated simulated and scaled covariance matrix.

Spectral domain

The VCE converged already after 12 (May 2005) and 16 (September 2006) iterations.
In both cases, the regularization term gained more weight compared to the grace co-
efficients. However, the variance components from January 2003 differ obviously from
the other two solutions. Through the lesser weight of the regularization term, one can
assume that the coefficients and their appropriate errors of May 2005 and September
2006 show a better agreement with the power law than the dataset from January 2003.
This means conversely, that the datasets of May 2005 and September 2006 might be of
better quality, as the VCE gives less weight to the regularization matrix, yielding a bet-
ter agreement between the pure grace coefficients and the modelled degree variances.

Table 4.8: Estimated variance components of different monthly solutions

month 1/σ2
G 1/σ2

K λ = σ2
G/σ2

K

January 2003 0.071 1.627 22.750

May 2005 0.244 2.910 11.917

September 2006 0.264 3.369 12.737

This lesser weight of the regularization matrix has obviously consequences for the contri-
bution to the regularized Stokes coefficients (cf. figure 4.21). In May 2005 and September
2006, the lesser weight yields lesser influence of the regularization matrix. The solution
is only dominated in zonal coefficients with l > 49. Again, this influence increases with
increasing order. The sectorial part of the spectrum has a major contribution of the
regularization matrix from degree and order 19, whereas January 2003 showed this con-
tribution from degree and order 8.

These observations indicate that the monthly grace solutions possess a high noise
content especially in the near sectorial and sectorial coefficients. This was already men-
tioned, when the unregularized coefficients were considered (cf. figure 4.11). Further-
more, in contrast to January 2003, the solutions from May 2005 and September 2006
show no contribution of the regularization term in the low frequency part of the spec-
trum.

The reason for the different contribution of the regularization becomes clear from figure
4.22, where the degree variances of the three months are plotted before and after the
regularization. It is obvious that the signal strength of the data set from January 2003 is
one order of magnitude higher than the other two solutions for coefficients with l > 10.
This holds for the errors as well, even if the deviations are smaller. However, this differ-
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Figure 4.21: Spectral redundancy contribution of the regularization term, using grace
data from different months

(a) (b) (c)

Figure 4.22: Signal- (straight lines), error (dashed lines) and modelled (bold dash dot-
ted lines) degree variances before and after regularizing, the power law is
approximated until the point of infliction of the signal degree variances
of 70 monthly grace solutions.

ent signal and noise level leads to interesting effects. In January 2003, the unregularized
noise variances curve crosses the signal curve at degree 20, which happens for the other
two months at degree 27. If one thinks about the singal to noise ratio in this context,
such a characteristic means that the signal of January 2003 is dominated by noise in the
spectral part with l > 20, whereas May 2005 and September 2006 have a snrl > 1 until
degree 27.

This indicates that grace provides a time-variable signal of varying signal strength.
After regularizing, the error variances from January 2003 already cross the signal curve
at degree 20. May 2005 and September show a snrl > 1 until degree 27. This means
conversely that, if one assumes a power law as degree variance model and zero observa-
tions, the data quality of the grace coefficients is better in May 2005 and September
2006 and thus changes over time.



4 Constraining GRACE coefficients with a Kaula-type rule 54

January, 2003 May, 2005 September, 2006

Figure 4.23: Propagated regularization filter kernels at λ = 90◦, θ = 30◦ (top row),
λ = 90◦, θ = 60◦ (middle row), λ = 90◦, θ = 90◦ (bottom row), using
grace data from three different months

Spatial domain

The smoothing characteristics in the spatial domain are again analyzed by propagating
the filter function at three points in space with changing latitude (cf. section 4.4.2).
Even if using different covariance matrices changed the regularization filter kernel in the
spatial domain, figure 4.24 shows that the kernel differs only slightly if grace data from
other months is used for its construction. The kernels from May 2005 and September
2006 are little tighter than their counterpart from January 2003. Additionally, the side-
lobes are less distinct, which actually means that these months needed lesser smoothing
to satisfy the constraints, given by the regularization matrix.

The propagated kernels show one deciding characteristic of the regularization technique.
Its filtering performance seriously depends on the a priori signal strength of the grace
coefficients. If there is no need for a strong regularization, which means that the regu-
larization matrix gained lesser weight in the linear model, the propagated kernels show
smaller patterns in both latitude and longitude direction, yielding a higher spatial reso-
lution than e.g. the kernel from January 2003. However, all three kernels possess similar
spatial characteristics. First of all, their size increases with increasing latitude, yielding
heavier filtering in near polar regions. The sidelobes show ther maximal amplitude in
mid-latitude regions, where the shape of the patterns is nearly circular near the equator.
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January 2003 May 2005 September 2006

Figure 4.24: North-south (blue) and east-west (red) cross sections of the normalized
regularization filter kernels from three different months, computed at λ =
90◦, θ = 30◦ (top row), λ = 90◦, θ = 60◦ (middle row), λ = 90◦, θ = 90◦

(bottom row). The isotropic 800 km Gaussian filter (gray) is taken as
reference

The smaller kernels of May 2005 and September 2006 theoretically result in a less filtered
field. This is a logical consequence of the lesser signal power of these months, as the
signal is less constrained. Thus, the deciding factor which impacts on the size of the
kernel is the a priori signal strenght of the pure grace coefficients, as the same con-
straint, i.e. the same power law, is assumed for each month due to the stationarity of the
time-variable gravity field. This is actually a very positive finding, as the computation
of the filter kernel deicides how much weight must be given to the regularization matrix
to meet the constraints.

These phenomena gain deciding influence, if the regularized coefficients are used to
derive maps in terms of water equivalent heights per month (cf. figure 4.25). A vi-
sual statement can immediately be made, if the equatorial regions of the fields of May
2005 and September 2006 are considered. Even if Central and South America as well
as Central and South Africa again show a large signal strength, there are more stripes
recognizable, compared to January 2003. However, these maps again show noise reduced
fields, whose spatial characteristics are assumed to be caused by changes in the Earth’s
gravity field. Furthermore, the colorscale of the maps in this work is chosen in such
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(a) January 2003 (b) May 2005

(c) September 2006

Figure 4.25: Results of the regularization filter for different monthly solutions

Table 4.9: Statistics of the derived maps from figure 4.25

field RMS mean min max

[mm/month]

January 2003 26.2 -0.2 -129.6 151.2

May 2005 25.4 -1.6 -167.5 158.7

September 2006 22.6 -1.2 -163.8 121.6

way, that small variations are visible as well. The stripes generally have an amplitude
of ±25 mm/month. Other similar publications neglect such variations, yielding a field with
subjectively less noise. Thus, one should concentrate on the large continuous signal pat-
terns.

It was already mentioned that the smaller kernels in May 2005 and September 2006
will produce less filtered fields. However, table 4.9 shows a different characteristic.
The maximal amplitudes of the three different fields have about the same magnitude,
which actually means that the regularization filter attenuates the signal in such way
that it agrees with the constraining degree variance model. Thus, the filter is only as
strong as needed. Table 4.9 on the other hand supports the assumption of a stationary
time-variable field, which was a finding of the comparison of the different power laws.
Obviously, the minimal and maximal estimated signal changes from month to month,
but the global rms stays more or less constant, which indicates that the time-variable
gravity field is stationary.



Comparison of stochastic and
deterministic averaging operators 5

It was shown in different publications (see below) that the isotropic and anisotropic
Gaussian as well as the decorrelated error filter, convolved with an isotropic Gaussian
filter, show promising results when they are used to smooth the time-variable gravity
field, derived from grace solutions. However, the characteristics of these filters are very
different, especially if one considers the Bayesian type regularization and the anisotropic
vector Wiener filter as well. Thus, this chapter deals with the comparison of the filtering
characteristics in the spatial and spectral domain of the following averaging operators:

� the isotropic Gaussian filter with r1/2 = 800 km (Chen et al., 2005)

� the anisotropic Gaussian filter with r0 =500 km, r1 = 2r0, m1 = 15 (Han et al.,
2005)

� the correlated error filter with m0 = 8,m1 = 60, l0 = 8, l1 = 60, p = 2, convolved
with a 500 km isotropic Gaussian (Swenson & Wahr, 2006)

� the anisotropic vector Wiener filter using a mean power law (4.1.1) with
a = −19.8283 and b = −1.3847

� the regularization filter from section 3.3.2, where a mean power law (4.1.1) with
a = −19.8283 and b = −1.3847 is used as stochastic constraint.

Furthermore, the results are validated with modelled mass variations, given by the
Global Land Data Assimilation System (GLDAS) from the NASA. This model com-
bines satellite- and ground-based observations to provide an accurate global model of
e.g. continental water equivalent heights every three hours on a 1-degree grid. This high
temporal resolution allows a reasonable validation of the derived fields from smoothed
grace solutions. One has to mention that the provided data from the GLDAS is abso-
lute, i.e. it must be differentiated with respect to time, if it is used as background model
for validation purposes. Therefore, the formula of central differences (2.2.18) is applied
here as well.

5.1 Filtering performance in the spectral domain

The degree rms of the averaging functions are here introduced as a rough measure for
the weight which is given to coefficients with a certain degree. It must be said that a
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presentation of degree rms of the regularization and the anisotropic vector Wiener filter
do not consider correlations between the coefficients. Thus, figure 5.1 should be seen as
brief impression of the filtering characteristics in the spectral domain. Moreover, a com-
plete presentation of anisotropic vector filters in the spectral domain is rather difficult
due to their pure size. Thus, it was decided to concentrate on the averaging coefficients
wlm

l′m′ with l = l′ and m = m′, which actually are the main diagonal elements of a filter
matrix.

Figure 5.1: Degree rms of the isotropic Gaussian (cyan), anisotropic Gaussian (red),
full covariance Wiener (green) and regularization (blue) averaging opera-
tors

The coefficients of the Gaussian filters smoothly attenuate and remove the high frequency
coefficients completely. The Wiener type filter shows only little attenuation until degree
30. This actually comes from the noise level of the unfiltered grace coefficients. In sec-
tion 4.4.1 it was discussed that the unfiltered noise degree variances cross the modelled
signal variance, given by the power law, at degree 30. The coefficients of the Wiener
filter suddenly drop to a weight of 0.5 between degree 30 and 32, after which they slowly
attenuate until degree 60. However, the coefficients are still larger than these from the
other filters, yielding a poorer smoothing effect.

Even if the regularization uses the power law and the simulated error estimates as well,
the filter coefficients attenuate similar to the 800 km Gaussian with little deviations in
the low-degree part of the spectrum, especially in the degree 2 coefficients. A large con-
tribution of the regularization term in these coefficients was already noticed in section
4.4.1. Additionally, nearly the whole spectrum is used, as only coefficients with l > 55
are removed, which is in contrast to e.g. the Gaussian filter coefficients.

The unfiltered spectrum of the grace coefficients usually shows a rapid increase of
spectral signal power with increasing order. Furthermore, even the low frequency sec-
torial coefficients possess a relatively high signal power. This leads to the assumption
that the high noise level in the high frequency coefficients is concentrated in the near
sectorial, sectorial and high frequency tesseral coefficients. Thus, an averaging operator
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Figure 5.2: Filtered grace coefficients for January 2003

should remove this characteristic, to seriously decrease the noise-level which is success-
fully done by all the filters presented in figure 5.2.

All averaging operators attenuate the signal power in the near sectorial and sectorial
part of the signal and make distinct boundaries between the degree (isotropic) and or-
der bands clearly visible. However, even the isotropic Gaussian filtered spectrum shows
a slight tendency towards anisotropy, as the magnitude of coefficients with the same
degree increase with increasing order. This is also the case for the other filtered spec-
tra. Moreover, the regularization and correlated error filter show a further interesting
effect. Both allow a higher signal strength in the sectorial part of the spectrum with
larger degree and order, yielding more high-frequent information in the filtered spectrum.

The total spectral power of the coefficients is again analyzed with their degree vari-
ances, presented in figure 5.3. The degree variances of the Gaussian filtered coefficients
show a very rapid attenuation, yielding only slight contribution of the high frequency
part of the spectrum to a derived field. Additionally, the anisotropic Gaussian filtered
degree variances oscillate heavily with increasing degree. This is actually an unrealis-
tic behavior, as the degree variance spectrum should theoretically decay smoothly (e.g.
isotropic Gaussian). On the other hand, the Wiener filter does not successfully con-
strain the signal power to attenuate with increasing degree, yielding the largest spectral
power, compared to the other filtered spectra. The degree variances of the regularized
coefficients show similar relative magnitudes, compared to the Wiener and decorrelated
error filter, which is obviously not the case for the Gaussian filtered spectra.
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Figure 5.3: Degree variances of the the filtered signals (lines) and errors (dashed lines)

The filtered noise shows a different characteristic. The propagated errors usually con-
verge with the attenuating signal, which does not hold for the regularized errors. But it
was already mentioned that these errors were the output from a parameter estimation
and this effect is a logical consequence of the choice of the degree variance model for
regularization. The other filters simply attenuate the spectral power of the errors as
well, which causes the smaller noise degree variances. However, in the low frequency
part of the spectrum, the degree variances of each filtered signal are very similar.

5.2 Filtering performance in the spatial domain

Each filter function is validated along the λ = 90◦-meridian at θ = 90◦, 60◦ and 30◦

respectively, according to the propagation formulae given in the appendix. The cross-
sections of the filter kernels are presented in figure 5.4 and a top view in 5.5. The
distance from the Kernel center is computed across the λ = 90◦-meridian for the north-
south-sections and across the appropriate parallels θ = 90◦, 60◦ and 30◦ for the east-west
sections to receive a proper scale between the smoothing radii in both directions. The
isotropic 800 km Gaussian kernel is plotted as reference.

In figure 5.4 and 5.5, the anisotropic Gaussian, decorrelated error and regularization
filter kernels are tighter in north-south direction, yielding a stronger filtering in the east-
west direction. However, the anisotropic Gaussian filter shows the same effect, which
is caused by the different averaging radii in both longitude and latitude direction. The
Wiener filter shows only slight difference between the N-S and the E-W cross section and
a tighter kernel than the other averaging operators. This actually explains its insufficient
smoothing effect.
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Regularization Anisotropic Gaussian Anisotropic vector Decorrelated error
Wiener with Gaussian

Figure 5.4: North-south (blue) and east-west (red) cross sections of the normalized
filter kernels, computed at λ = 90◦, θ = 30◦ (top row), λ = 90◦, θ =
60◦ (middle row), λ = 90◦, θ = 90◦ (bottom row). The isotropic 800 km
Gaussian filter (gray) is taken as reference

But the decorrelated error, anisotropic vector Wiener and regularization filter respec-
tively show an important difference to the Gaussian filters. All of them possess negative
sidelobes in latitude direction, which counteracts the north-south stripes from unfiltered
grace coefficients. Additionally, the Wiener filter shows a similar effect in east-west di-
rection as well, which indicates isotropic filtering characteristics and is thus independent
from the latitude. However, the decorrelation effect attenuates for the correlated error
filter with increasing latitude. In the near polar regions, it shows similar characteristics
to the anisotropic Gaussian filter.

On the other hand, the regularization has its maximal decorrelating effect in mid-latitude
regions. If the Gaussian filters are regarded from the point of view of decorrelation, it
becomes clear why it indeed smoothes the gravity signal, but maintains the north-south
stripes in the filtered field: the Gaussian averaging functions have no negative side-lobes
at all and thus do not decorrelate the field. Its filtering effectiveness comes only from
a proper choice of the averaging radii and thus an attenuation of the signal strength of
short-wavelength coefficients. However, the anisotropic Gaussian filter yields a better
resolution in north-south direction through its smaller averaging radius.
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Regularization Anisotropic Gaussian Anisotropic vector Decorrelated error
Wiener with Gaussian

Figure 5.5: Propagated filter kernels at λ = 90◦, θ = 30◦ (top row), λ = 90◦, θ = 60◦

(middle row), λ = 90◦, θ = 90◦ (bottom row)

The regularization kernel shows similar characteristics, compared to the decorrelated
error filter, even if both averaging functions are based on totally different approaches
(stochastic and deterministic filtering). A further effect is the tendency towards isotropy
of the full covariance Wiener filter, which agrees with the cross section in figure 5.4. Ob-
viously, the Wiener filter shows isotropic characteristic in the equatorial and near polar
regions, as there is only little difference between the N-S and E-W cross sections. The
Gaussian kernel clearly shows the effect of a two different averaging radii, as it shows
a broader stretch in E-W direction, which yields a better resolution in the latitude di-
rection. However, the size of the Kernel differs completely from the other presented
functions, which should lead to an overall lower spatial resolution.

5.3 Comparison with modeled and observed hydrology

The filtered coefficients are used to compute fields in terms of water equivalent heights
per month for January 2003, May 2005 and September 2006 to validate the latter results
with modelled mass variations, derived from the GLDAS. The maps are presented in
figure 5.6, the appropriate statistics in table 5.1.

It suddenly catches the eye that all filters successfully reduce the signal strength of
the noisy north-south stripes to a level, where the observable signals are assumed to
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come from mass relocations mostly due to hydrological phenomena, as each map shows
strong similarities to the field, which was derived from the GLDAS, even if the signal
strength varies. The Gaussian filters successfully remove the noise structures by attenu-
ating the highly noise-contaminated coefficients. Thus, especially the isotropic Gaussian
filter still shows slight stripy artifacts in the equatorial regions. On the other hand, the
anisotropic Gaussian filter shows especially in this part of the filed only slight stripes.
This actually comes from a stronger attenuation of the spectral signal power in near
sectorial and sectorial coefficients. The remaining stripes in the decorrelated error fil-
tered field can be ascribed to this characteristic as well through its convolution with an
isotropic Gaussian filter.

All filtered maps show similar spatial patterns with a large signal in middle- and South
America, in Africa and in northern Australia, which are thus strongly assumed to come
from hydrological phenomena. On the other hand, the origin of the signal over the
oceans is unknown, as the influence of the oceans is removed from the CSR4-coefficients.
Thus, one can assume that such a signal either comes from true mass variations in the
oceans, which would indicate uncertainties in the dealiasing model or from residual noise
in the grace coefficients themselves. This becomes even more complex, if one thinks
about the difficult determination of patterns with a size less than 106 km2 as signal or
noise.

Additionally, the estimated signal strength varies, depending on the used filter. The
isotropic Gaussian shows a signal with a maximal amplitude of about 100 mm/month in
the Amazon basin in January 2003, whereas the maximum of its anisotropic counterpart
is between 100 and 150 mm/month, which agrees with the correlated error filter. However,
both stochastic filters show a much larger signal of 150–200 mm/month in the Amazon
basin. These differences hinder a statement about the magnitude of the true mass vari-
ations in these regions.

All filtered fields show similar patterns, compared to the GLDAS field. On the other
side, the isotropic and anisotropic Gaussian as well as the decorrelated error filtered fields
show only a large area in central Africa with a mass change between 25 and 50 mm/month.
The regularized field shows a larger signal in the near equatorial regions, which is visible
in the GLDAS field as well. A similar situation is visible e.g. near the east coast of North
America. Moreover, the regularized field shows patterns which are the most consistent
with the GLDAS field. This is emphasized by the fields for September 2006, even if the
overall signal seems much lower compared to May 2005 or January 2003. However, this
might come from lesser mass variations during the autumn months, as the GLDAS-field
shows only small patterns as well.

Unfortunately, even if there are clear similarities between the modelled mass variations
and the derived fields from grace, a clear identification of a signal pattern as mass
change might still be difficult. It was already mentioned that a distinction of signal pat-
terns from noise artifacts, which are smaller than 106 km2, is not possible. If one regards
such an area as maximal radius of half wavelength, this would mean that the grace
coefficients with l > 20 do not contain reasonable information due to a dominating noise
level.
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January, 2003 May, 2005 September, 2006

Figure 5.6: Mass variations in January 2003, May 2005 and September in [mm/month],
derived from (top to bottom) GLDAS hydrology model and grace co-
efficients, filtered with regularization filter, 800 km isotropic Gaussian fil-
ter, anisotropic Gaussian filter, decorrelated error filter convolved with a
500 km Gaussian filter and anisotropic vector Wiener filter
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The derived statistics from the maps in figure 5.6 are presented in table 5.1. The Gaus-
sian filtered fields generally show the smallest signal amplitudes. This indicates that
the Gaussian type operators attenuate the signal strength the most. This holds for the
decorrelated error filter as well, as its successfull approach needs the additional convo-
lution with a Gaussian type filter. On the other hand, even if the maps, derived from
regularized grace coefficients, usually show noise-reduced fields, they possess the largest
amplitudes, compared to the other solutions, which is indeed a positive characteristic of
the regularization filter.

Table 5.1: Statistics of the derived maps from figure 5.6 in [mm/month] for January 2003,
May 2005 and September 2006

Field RMS mean min max

January, 2003

GLDAS 16.5 2.5 -246.6 216.5

Regularization 26.2 -0.2 -129.6 151.2

Isotropic Gaussian 19.7 2.5 -75.4 90.5

Anisotropic Gaussian 20.9 2.4 -84.0 107.2

Decorrelated error + Gaussian 23.9 2.4 -111.0 123.1

Anisotropic vector Wiener 62.5 1.9 -370.6 424.7

May, 2005

GLDAS 18.0 -3.4 -261.6 216.2

Regularization 25.4 -1.6 -167.5 158.7

Isotropic Gaussian 16.7 -3.4 -75.9 67.1

Anisotropic Gaussian 18.3 -3.3 -90.5 75.9

Decorrelated error + Gaussian 19.4 -3.3 -106.6 100.5

Anisotropic vector Wiener 34.3 -2.9 -188.2 183.1

September, 2006

GLDAS 10.4 0.6 -143.7 247.9

Regularization 22.6 -1.2 -163.8 121.6

Isotropic Gaussian 15.9 -3.9 -59.4 63.4

Anisotropic Gaussian 16.8 -4.0 -65.4 68.0

Decorrelated error + Gaussian 17.7 -4.0 -87.7 91.2

Anisotropic vector Wiener 34.5 -3.6 -184.1 154.2
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The rms-values of the fields show another interesting characteristic. It was already
mentioned that the rms-values of the regularized solutions of January 2003, May 2005
and September 2006 are more or less constant, which indicates stationarity of the time-
variable gravity field. This holds as well for the other solutions, which were derived from
grace coefficients. The deviation of the Wiener filtered solution in January 2003 might
be caused by the remaining noise content due to a too weak filtering performance. The
GLDAS must be neglected in this context, as it does not provide global values and thus
neglects e.g. mass variations in the oceans.

A further validation of the presented averaging operators is done by comparing the es-
timated mass variations with the estimates from the GLDAS on basin scale. Therefore,
the averaged mass variations of the Amazon basin, Central Africa and Eastern Australia
are computed from the filtered maps and the GLDAS field respectively. The concern-
ing regions are marked in figure 5.7 and the appropriate mass variations are presented
in table 5.2. However, this validation is completely based on such observations which
are mapped from the GLDAS. This conversely means that there are indeed many other
effects, which are not considered by that model and still influence the grace solutions.
Thus, such a comparison should only be seen as rough validation of the filtered fields.

Figure 5.7: Catchments for validation of the filtered fields with the GLDAS

Table 5.2: Mass variations of January 2003, May 2005 and September 2006 in
[mm/month] for Amazon (1), Central Africa (2) and Eastern Australia (3),
cf. figure 5.7

January, 2003 May, 2005 September, 2006

Field 1 2 3 1 2 3 1 2 3

GLDAS 26.6 -10.6 12.5 -23.6 -13.7 -1.3 -11.4 -11.2 -7.8

Regularization 30.0 -16.2 11.2 -29.9 -9.8 9.1 12.7 46.8 -6.0

Isotropic Gaussian 13.3 -16.4 19.9 -16.4 -4.4 5.9 15.1 38.8 0.6

Anisotropic Gaussian 18.9 -19.4 22.2 -21.0 -4.6 7.7 15.4 45.3 1.2

Decorrelated error 24.2 -19.7 19.4 -34.9 -17.7 21.2 15.7 58.1 14.2

with Gaussian

Anisotropic vector 23.2 -25.9 -0.3 -26.8 -10.4 3.5 17.0 51.3 -7.8

Wiener
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If one considers table 5.2 one has to keep in mind that it was expected that grace
would detect mass variations with an accuracy of about 2 mm in terms of water equiva-
lent heights. Even if this objective is obviously not achieved, most mass variations lie in
range of ±10 mm/month around the predicted value from the GLDAS. However, the mass
estimate for Central Africa in September 2006 shows a huge difference to the GLDAS-
value. This was already visible in figure 5.6. If one takes the similarities of the grace
estimates and the modeled mass variations into account, it could be argued that this
signal indeed came from a change in the gravity field, but not due to hydrological effects,
as it was not mapped from the GLDAS. Such differences make it even more difficult to
use such models on the one hand and the grace satellites on the other as reliable source
for estimates of mass variations.

Finally, the modeled and filtered fields from GLDAS and grace coefficients are com-
pared with observed storage changes. Section 6.1 discusses the method how these values
are computed. In this section here, they are assumed to be the most accurate estimates
of mass variantions on basin scale. The values are computed in the three regions North
China, Western Sahara and Yukon, which is visualized in figure 5.8.

Figure 5.8: Catchments for validation of the filtered fields with observed hydrology

Table 5.3: Mass variations of January 2003 in [mm/month] for Yukon (1), Western Sahara
(2) and North China (3), cf. figure 5.8

Field 1 2 3

Observed hydrology 3.2 2.6 23.7

GLDAS -0.3 -1.2 11.4

Regularization -6.1 2.1 28.9

Isotropic Gaussian 0.4 -1.9 19.3

Anisotropic Gaussian -1.5 -0.6 24.1

Decorrelated error -2.2 1.5 20.6

with Gaussian

Anisotropic vector -11.3 -12.0 53.1

Wiener
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If the deviations of the estimated from the observed values are considered (cf. table
5.3), it becomes clear that none of the presented methods is able to reach the predicted
accuracy of 2 mm. However, there is a good agreement between the estimates in the
three catchments, as the maximal deviation from the observed value is about 5 mm (the
Wiener filter is not taken into account here due to its insufficient filtering performance).
Unfortunately, the GLDAS shows e.g. in Yukon a bigger deviation from the observed
value than the derived fields from the grace solutions. This emphasizes the assumption
that modeled mass variations might be partly inaccurate as well or do not consider all
effects which influnce such variations. Thus, comparing the filtered grace solutions
with such a model is not sufficient to provide a reasonable validation.

To summarize the latter results it can be said that all filters successfully attenuate
the signal strength of the erroneous north-south stripes. The Gaussian filters simply
decrease the spectral power of the spherical harmonic coefficients of short wavelength,
whereas the decorrelated error filter impacts especially on the correlations between the
coefficients to remove the stripes. The regularization and anisotropic vector Wiener filter
use stochastic information and a least squares estimation procedure to build the filter
kernel. The Wiener filter has a too weak filtering performance to successfully remove the
north-south stripes. Thus, the derived fields still possess unrealistic magnitudes of mass
variations. The regularized solution shows similar signal patterns if compared with the
GLDAS. However, even if the filtered fields show only little remaining noisy artifacts,
there are indeed differences between the mass variations, which were derived from the
GLDAS and the grace estimates. These differences could come from remaining errors
in the grace coefficients or even from gravity changes which were not mapped by the
GLDAS. Moreover, a comparison with observed hydrology shows that even the GLDAS
seems to provide inaccurate mass estimates. If one considers table 5.3 in this context
again, it might be said that the mass estimates from filtered grace data are at least of
similar accuracy.



Constraining monthly GRACE
solutions with hydrological mass

estimates 6

The previous sections discussed several methods to decrease the noise-content in time-
variable grace coefficients. But even if the filters delivered promising results, their
appropriate operators are based on either an averaging radius (Gaussian type) or on em-
pirical degree variance models (Wiener type and regularization). Thus, the outcome of
the filtering procedure depends on a proper choice of the input parameters. Moreover,
this choice is mainly based on theoretical knowledge, but does not take into account
true empirical data, e.g. terrestrial observations. Furthermore, the Gaussian averaging
operator also showed that the strength of “good signal” is attenuated as well, depending
on the halfwidth radius, which is obviously an unwanted secondary effect. On the other
side, the Wiener filter and regularization use a degree variance model and simulated
error estimates to build the filter kernel. Thus, the filtering performance of such kernels
is mainly based on the quality of the input data.

However, it is a matter of common knowledge that a large contribution to the time-
variable gravity signal comes from continental hydrological mass relocations, which
should be (theoretically) detectable with the grace satellites. But the noise level in
unfiltered coefficients from grace showed a very high noise content in the high fre-
quency part of the signal, which should contain information about short-period and/or
small scale mass variations. This high noise-level led to unrealistic estimates of storage
changes, which made filtering of the pure grace coefficients inevitable.

It was shown in chapter 5 that there are deviations, when one compares mass varia-
tions, derived from grace solutions, with observed values. Thus, this section describes
a method to make both grace estimates and observed hydrology consistent by using
these hydrological observarions as constraints in a sequential least squares estimation.

6.1 Continental hydrology and GRACE

The redistribution of water within the oceans, between the oceans and continents, and
over the continental surface, can cause changes in the Earth’s gravity field (Wahr et al.,
1998). Such mass variations, caused by hydrological phenomena, mainly happen in the
so called hydrosphere, which extends about 1 km down into the lithosphere and about
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15 km up into the atmosphere. In this area, water assumes different states of aggregation
and circulates through manifold paths of the hydrologic cycle (cf. figure 6.1). A concise
description of this schematic graphic is given in (Chow et al., 1988): Water evaporates
from the oceans and the land surface to become part of the atmosphere; water vapor is
transported and lifted in the atmosphere until it condenses and precipitates on the land
or the oceans; precitipated water may be intercepted by vegetation, become overland
flow over the ground surface, infiltrate into the ground, flow through the soil as subsur-
face flow and discharge into streams as surface runoff.

Figure 6.1: Hydrologic cycle (source: http://www.ucmp.berkeley.edu)

However, even if this concept is rather simple, an accurate acquistion of data for one
particular effect is very complex. If one thinks about precipitation, it is obvious that
the amount of rainfall is neither constant in time, nor in space. Observing phenomena
like groundwater discharge or infiltration is very difficult due to the manifold number
of possible flow paths. Additionally, even if the total amount of water in the hydrologic
cycle remains constant, the contribution to the different subsystems changes over time
and depends on the concerning regional and local characteristics.

Due to these reasons, the observation of hydrological effects is mainly restricted to local
or regional areas. On the other hand, large scale hydrological data can only be obtained
from models like the GLDAS. Such models are always based on certain parameters,
assumptions and input data and thus contain uncertainties and errors (Zenner, 2006).
This is actually the point where modern space borne gravity missions come into play.
As the impact of the oceans and the atmosphere is usually removed from the satellite
data, the provided Stokes coefficients could be directly connected to mass variations due
to continental hydrological effects and thus allow accurate estimates of mass variations
from large areas down to e.g. river basins. Such measurements would be very helpful
to improve existing hydrological models. In (Wahr et al., 1998), it was predicted that
grace would be able to deliver monthly values with an accuracy of about 2mm in equiv-
alent water thickness over land. However, this accuracy has not yet been achieved (cf.
section 5.3). The reasons are mostly the large errors in spherical harmonic coefficients
of short-wavelength, i.e. the coefficients with large degree and order (Han et al., 2005;
Klees et al., 2008). But on the other hand, it was shown in many publications that the
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Stokes coefficients from grace indeed contain hydrological signals (e.g. Wahr et al.,
2004; Zenner, 2006) as the monthly solutions from grace showed a good agreement
with mass variations from hydrological models. The findings in chapter 5 agree with
these assumptions, as there are similarities with the GLDAS and observed hydrology,
even if the achieved accuracy is less than it was initially predicted.

However, it was already mentioned that the accuracy of these models depends on many
factors. Thus, it would be interesting to compare the estimates from grace with ob-
served hydrological data. Therefore, the monthly storage change of a particular catch-
ment is given through the water balance equation:

P −R− ETa =
∂S

∂t
(6.1.1)

where

P Precipitation
R Surface run-off
ETa actual Evapotranspiration
∂S/∂t total water storage change

This is illustrated in figure 6.1, where precipitation either infiltrates into the ground
or remains on the surface. The water on the surface might discharge through surface
run-off or evapotranspirate. At this point, a digression concerning hydrology must be
made. The average duration of a water molecule to pass through a subsystem of the
hydrologic cycle is given through

Tr =
S

Q
(6.1.2)

where

T average residence time
S volume of water
Q flow rate

This actually means that the average residence time of a certain hydrological effect
must be smaller than 30 days to seriously impact on monthly grace solutions. In
(Chow et al., 1988), a few quantities of such effects are listed. It is mentioned that
e.g. fresh groundwater has a global volume of about 10 530 000 km3 and a flow rate of
2200 km3/year. This means that fresh groundwater remains on average 4786 years under
the surface of the earth and thus does not impact on monthly mass variations. On
the other hand, the residence time for e.g. atmospheric moisture is 8.2 days until the
molecule precitipates, for surface run-off through rivers about 17 days. Thus, precipita-
tion, surface run-off as well as evapotranspiration are those effects, which influence the
Earth’s gravity field in short periods and thus impact on the grace solutions. However,
these values are very rough measures and vary in time and space.

From equation (6.1.1) it now becomes obvious that the considered effects actually deter-
mine mass variations within a monthly time period. Unfortunately, the observation of
large-scale evapotranspiration is very difficult, as it depends on both time and position.
However, some catchments have certain geographical and climatical characteristics that
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evapotranspiration can be completely neglected. These catchments could be used to
determine accurate storage changes, as the water balance equation can be simplified to

P −R ≈ ∂S

∂t
(6.1.3)

If the grace solutions are used to compute mass changes in these catchments, both
storage changes from hydrological observations, i.e. (6.1.3), and grace can be compared
as

∂S

∂t
≈ ḣ(t) (6.1.4)

where ḣ(t) denotes estimates of mass variations, derived from monthly grace solutions.

Regions with negligible evapotranspiration are

� arctic and arctic tundra areas with sub-zero temperatures in winters

� dry areas like deserts with very meagre precipitation

� semi-arid regions fed by seasonal rivers which run dry if there is no precipitation

If there occur sub-zero temperatures over a prolonged period of time, the surface is
assumed to be frozen. Thus, precipitation would remain as snow or ice. Additionally,
some catchments show only very little precipitation in these periods. On the other hand,
dry desert regions are suitable as well, as there cannot be evapotranspiration without
rain. The third point becomes clear, if large river basins are regarded. There are certain
periods, where they completely run dry due to a very meagre precipitation. This holds
especially for semi-arid regions with less vegetation.

Data for precipitation and run-off can be obtained from the Global Precipitation Cli-
matology Center (GPCC) and the Global Runoff Data Centre (GRDC) respectively. In
this work, the hydrological data containts precipitation and run-off values for 167 catch-
ments since January 1975. In order to select the catchments which met the condition
of negligible evapotranspiration, precipitation and run-off of each of these catchments
are plotted for a time-series of one year. For desert catchments, precipitation has to be
smaller than 15 mm/month, while arctic and arctic tundra catchments exceed this value,
when the surface run-off is approximately zero.

About 60 catchments met the requirements for a negligible evapotranspiration for Jan-
uary 2003. However, only 28 of them are usable in the computation process due to
data gaps. Figure 6.2 shows the precipitation and run-off values for some of the selected
catchments and covers all three criteria for a negligible evapotranspiration:

� The Churchill basin, which is located in Central Canada, shows approximately zero
surface run-off, even when there is precipitation. This indicates frozen conditions.

� Western Sahara features only little precipitation and surface run-off, which leads
to a negligible evapotranspiration

� Rio Santiago shows very high precipitation values during an annual period, whether
surface run off is meagre. However, the period from December to April indicates
a drying out of the river basin due to leaking precipitation. If there is no rainfall
for a prolonged period of time there is no water to evapotranspirate, which holds
especially for a semi-arid region like Rio Santiago.
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Figure 6.2: Precipitation (blue) and surface run-off (red) values for an arctic (top), a
desert (middle) and a seasonal river basin (bottom), which met the con-
straints for a negligible evapotranspiration

Figure 6.3: Catchments with negligible evapotranspiration during January 2003

An overview of the selected catchments is given in fig 6.3, which shows that most regions
are located in the vast desert and near polar regions. One has to keep in mind that the
selection of catchments with negligible evapotranspiration depend on the climatic con-
ditions over a period of a month. Thus, the data from the mentioned regions has to be
evaluated for each single month separately. A further way could be to use a monthly
mean instead of the data of a single month, which would reduce the influence of potential
errors in precipitation and run-off values.
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Catchment Area P R ∂S/∂t std(∂S/∂t)

[106 km2] [mm/month]

Amur 1953841 16.7 2.1 14.6 12.0

Anabar 79964 6.7 0.0 6.7 4.4

Aravalli (India) 180384 2.6 0.0 2.6 1.1

Churchill 300063 26.6 1.1 25.5 3.0

Gobi 2104175 4.9 0.0 4.9 1.7

Highland of Tibet 522766 2.3 0.0 2.3 2.1

Kazan 41037 7.7 9.1 -1.4 5.0

Kemijoki 53883 81.9 17.8 64.1 26.3

Lake Chad 3187889 2.5 0.0 2.5 1.9

Mackenzie 1669813 36.4 6.2 30.2 3.0

Mezen 54246 83.8 5.1 78.7 19.0

Nelson 1129006 16.6 8.0 8.6 10.7

Neman 90007 59.6 9.3 50.3 19.2

North China 62093 3.2 0.0 3.2 1.0

Northern Sahara 3474075 14.3 0.0 14.3 3.6

Olenek 200170 13.6 0.1 13.5 2.5

Pechora 305353 62.9 10.1 52.8 5.5

Rio Santiago 129863 6.0 1.5 4.5 17.7

Saudi Arabia 2403512 10.1 0.0 10.1 10.1

Severnaya Dvina 331450 78.0 8.2 69.8 16.9

Somalia 371005 0.7 0.0 0.7 6.0

South Iran 125039 9.6 0.0 9.6 25.1

Tarim 886074 0.9 0.0 0.9 1.9

Thelon 171730 6.2 8.7 -2.5 11.1

Western Sahara 1809508 2.6 0.0 2.6 0.6

Winisk 84716 17.6 8.7 8.9 19.1

Yana 221444 14.5 0.2 14.4 3.2

Yukon 821474 29.6 5.9 23.7 1.6

Table 6.1: Hydrological data for each constraining catchment from January 2003
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Table 6.1 shows the storage changes and the residuals as well as the appropriate area of
each of the catchments which met the requirements for a negligible evapotranspiration.
It is here assumed that mass variations have an annual period. Thus, the variance of
the data is defined as the difference of the observed precipitation and run-off value from
a certain month and the mean of all available data of a certain catchment:

σ2
H(χJan 2003) = σ2

P(χJan 2003) + σ2
R(χJan 2003) (6.1.5)

where

σ2
P(χJan 2003) = (P̄ (χJan)− P (χJan2003))2 standard deviation of precipitation

σ2
R(χJan 2003) = (R̄(χJan)−R(χJan2003))2 standard deviation of run-off

The values P̄ (χJan) and R̄(χJan) are the mean values of precipitation and run-off in
January, computed from all available hydrological data.

6.2 Assimilating the GRACE solutions with hydrological mass
estimates

6.2.1 A linear model for the hydrologic constraints

On the one hand, section 2.2 stated that storage changes can be expressed in water
equivalent heights, which can be calculated by a set of spherical harmonic coefficients
˙̃Klm. On the other hand, equation (6.1.3) holds that this deviation is simply the dif-

ference between precipitation and run-off and could be computed in terms of Legendre
functions as

∂S

∂t
(χ) ≈ ḣ(χ, t) =

∞∑

l=0

Λl

l∑

m=0

Ỹlm(χ) ˙̃Klm(t) (6.2.1)

where

˙̃Klm time-variable Stokes coefficients
Λl Isotropic spectral transfer coefficients
Ỹlm(χ) Legendre polynomials for the area χi

ḣ(χ) Difference between precipitation and run-off of the catchment i

As observations for precipitation and run-off are available for 28 catchments χ, a linear
model can be set up, in which the unknowns are the spherical harmonic coefficients ˙̃Klm

and the observations are the storage changes ḣ(χ, t). For the sake of simplicity, the
following formulae are written in matrix notation:

E
{

ḣ
}

= Ax; D
{

ḣ
}

= σ2
HQH = P−1

H (6.2.2)

where

E {·} expectation operator
D {·} dispersion operator
A =

[
ΛlỸlm(χ)

]
design matrix

σ2
H variance component of the hydrologic observations

QH covariance matrix of the hydrologic observations
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As (6.2.2) is overdetermined, the unknown parameters x̂ can be obtained by minimizing
the squared residuals

x̂ : min
∥∥∥Ax− ḣ

∥∥∥
2

P H

(6.2.3)

This is achieved by the unbiased least squares estimator

x̂ =
(
ATQ−1

H A
)−1

ATQ−1
H ḣ (6.2.4)

However, equation (6.2.15) won’t deliver satisfactory solutions due to a very bad condi-
tion of the system of normal equations

N = ATQ−1
H A (6.2.5)

This bad condition can be explained by the fact that the sampling of the available
hydrological data is very sparse. It was already mentioned that the data only covers less
than 20% of the land mass and leads thus to a very inhomogenuous spatial distribution,
which is concentrated in the vast desert and arctic regions. These characteristics of the
underlying linear model deny an independent solution, as spherical harmonic analysis
would require a data distribution throughout the Earth. However, this linear model can
be used as stochastic constraint and thus adds further information to monthly grace
solutions.

6.2.2 Combination of hydrologic storage changes and GRACE solutions

As a next step, the hydrological linear model from the last section needs to be combined
with the time variable grace coefficients, which is achieved by formulating an equal-
ity constrained least squares problem, set up in a sequential estimation scheme. This
approach is common in tasks, where one has to combine large scale linear systems in
one model or when a linear model needs to be constantly updated with new data. The
advantage is that old data needs not to be stored, but the linear model can be updated,
as soon as new data flows in. Moreover, the single datasets need not to be processed
together, but can be sequentially assimilated into the system. Now, one can combine
the hydrologic observable model and the grace coefficients in one linear model:

E

{(
ḣ
xG

)}
=

(
A
I

)
x;

D

{(
ḣ
xG

)}
=

(
σ2

HQH 0
0 σ2

GQG

) (6.2.6)

where

x unknown coefficients
A design matrix
QH covariance matrix of hydrologic observations
ḣ vector of hydrologic observations
xG vector with grace coefficients
QG covariance matrix of the grace coefficients

The unknown coefficients are estimated by minimizing the squared residuals

x̂ : min
∥∥∥Ax− ḣ

∥∥∥
2

P H

+ ‖x− xG‖2
P G

(6.2.7)
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which is done by the least squares estimator

x̂ =
(
ATQ−1

H A + Q−1
G

)−1
(ATQ−1

H ḣ + Q−1
G xG) (6.2.8)

The appropriate covariance of the estimated coefficients is the inverse normal matrix:

Qx̂ =
(
ATQ−1

H A + Q−1
G

)−1
(6.2.9)

The solving of (6.2.8) has important advantages in two respects. On the one hand,
the condition of the normal matrix (6.2.5) improves by adding further information to
the linear model about the unknowns, which makes it possible to invert the system of
hydrological normal equations with satisfactory results. On the other hand, the areas,
where terrestrial observations are available, constrain the noisy grace coefficients in
such a way that a series expansion with the estimated parameters will be consistent
with the observed values in these regions and thus are assumed to impact on that part
of the signal, which is initially contaminated with lots of noise.

6.2.3 Sequential estimation and variance component estimation

As most estimation problems in physical geodesy, the solving of (6.2.8) can’t be done
straightforward due to the huge dimension of the design matrix. Therefore, each catch-
ment, which is used as constraint, is treated separately. This approach equals the so
called Multi-Observable Model (Sneeuw, 2000), where different kinds of observations can
be used for estimating the same parameters.

Usually, the sequential estimation is applied in the estimation process of large-scale
geodetic networks, as it allows to constantly add new information or measurements
without the necessity to store old data. Thus, the parameters can be re-estimated, every
time new data comes in which normally happens in a temporal sense. On the other hand,
the process could be regarded in a spatial sense as well. Hence, the mass deviation of
each single catchment is treated as an independent observation group. This modifies the
linear system (6.2.6) to

E








ḣ1

ḣ2
...

ḣn

xG








=




A1

A2
...

An

I




x;

D








ḣ1

ḣ2
...

ḣn

xG








=




σ2
HQH,1 0 . . . 0

0 σ2
HQH,2 0

...
. . .

...
σ2

HQH,n 0
. . . σ2

GQG




(6.2.10)
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As each of the 28 constraining catchments χ is represented by a whole set of k grid-cell
centers (θj , λj); j = 1, 2, ..., k, the design matrix for a certain catchment is

Ai = Λl




Ỹlm(θ1, λ1)
Ỹlm(θ2, λ2)

...
Ỹlm(θk, λk)




The storage changes from hydrological estimates are area weighted averages. Thus, each
computation point in one certain catchment is assumed to possess the same observation
value, yielding the observation vector

ḣ(χ) = ḣ(χ)
(
1 1 . . . 1

)T (6.2.11)

where the unit vector has the size of the number of computation points in the concerning
catchment χ.

To solve the linear system (6.2.10) it is possible, though, to compute a single normal
matrix Nχ for each catchment:

Nχ = AT
χQ−1

H,χAχ (6.2.12)

Furthermore, the normal matrix of the hydrological constraints NH is obtained by adding
up all specific normal matrices Nχ:

NH =
∑
χ

Nχ (6.2.13)

This modifies the estimator (6.2.8) to the sequential estimator

x̂ =

(∑
χ

AT
χQ−1

H,χAχ + Q−1
G

)−1 (∑
χ

AT
χQ−1

H,χḣ(χ) + Q−1
G xG

)

=
(
NH + Q−1

G

)−1

(∑
χ

AT
χQ−1

H,χḣ(χ) + QGxG

)
(6.2.14)

By keeping in mind that the hydrologic observation group consists of a separate obser-
vation group for each of the 28 catchments, the notation from section 6.2.2 will be used
for the rest of this thesis:

x̂ =
(
ATQ−1

H A + Q−1
G

)−1 (
ATQ−1

H ḣ + Q−1
G xG

)
(6.2.15)

In section 3.3.2 a method was discussed to estimate weight factors between different ob-
servation groups in one linear model. The same method is used here again to compute
weight factors between the hydrological constraints and the grace coefficients. In this
work, the same variance component is used for all hydrological constraints. A further
method would be to estimate a seperate variance component for each single catchment
in order to increase the contribution of catchments, where the observations are very
accurate. But that is not further discussed here.
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Again, the VCE is applied by iterating the following four steps until the variance com-
ponents converge:

1. Estimation of the unknown parameters according to equation (6.2.15)

2. Computation of the residuals in the different observation groups

êH = Ax̂− ḣ; êG = x̂− xG (6.2.16)

3. Computation of the partial redundancies

rH = n− tr
(

1
σ2

H

P HN−1

)
(6.2.17a)

rG = u− tr
(

1
σ2

G

P GN−1

)
(6.2.17b)

The parameter n is the number of available data points of hydrological observa-
tions, u is again the number of Stokes coefficients

4. Computation of the variance components for each observation group

σ̂2
H =

êT
HP HêH

rH
(6.2.18a)

σ̂2
G =

êT
GP GêG

rG
(6.2.18b)

The convergence criterion is again set to
∣∣∣∣1−

σ2(i)
σ2(i− 1)

∣∣∣∣ < 10−5 (6.2.19)

for both the variance components of the hydrological constraints and the grace coeffi-
cients.

6.3 Numerical experiments

Spectral domain

In the following, the described method is tested with pure grace coefficients and reg-
ularized coefficients, which are filtered according to the formulae given in chapter 4.
Their appropriate errors are taken out of the inverse normal matrix of the regularization
procedure.

For both regularized and unregularized coefficients the variance components converge
after 12 iterations, yielding a bigger weight for the hydrological constraints (cf. table
6.2). Obviously, if pure grace coefficients are used, the weight of their appropriate
observation group is drastically decreased. This point is trivial, as the hydrological ob-
servations usually consist of values less than 100 mm/month. On the flipside, the grace
coefficients yield mass variations with a magnitude of about 4500 mm/month. Thus, for a
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serious impact of the constraints, the contribution of the grace coefficients must be de-
creased. This agrees with the weight factors, when regularized coefficients are used. As
they possess a much lower signal in the spatial domain, they gain more weight through
the variance component estimation. This means conversely that the constraints do not
need a large weight factor to seriously contribute to the solution.

Coefficients 1/σ2
H 1/σ2

G λ = σ2
G/σ2

H

unregularized 5.180 0.08 0.016

regularized 4.772 2.658 0.557

Table 6.2: Estimated variance components of the grace coefficients and the hydrolog-
ical constraints

However, it was already mentioned that the hydrological observations contain not enough
information, to invert the appropriate normal matrix in a stable way. Thus, the first
question will be whether the combination of hydrological constraints and grace coef-
ficients possesses a well-posed system of normal equations. This can be analyzed by
looking at the eigenvalues of both observation groups and the resulting condition num-
ber.

Figure 6.4: Eigenvalues of the normal matrix from the hydrological constraints (black)
and the constrained grace coefficients (red and blue) with (straight lines)
and without (dashed lines) estimated variance components

In figure 6.4, the eigenvalues of the hydrological constraints (black) and the constrained
normal matrix (red and blue) are presented. The rapid decay towards zero of the eigen-
values of the normal matrix from the hydrological constraints NH = ATQ−1

H A as well
as the resulting large condition number agrees with the assumption that NH is ill-posed
and can not be inverted in a stable way. Moreover, the sudden gap at about 2500 coeffi-
cients indicates rank-deficiency, which means that the hydrologic normal matrix does not
contain enough information. On the other hand, all constrained normal matrices show
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Condition number

Matrix pure grace coefficients regularized grace coefficients

ATQ−1
H A 5.399× 1020 5.399× 1020

Q−1
G 16042 2856

ATQ−1
H A + Q−1

G 1.003× 105 1.189× 105

1
σ2

H

ATQ−1
H A +

1
σ2

G

Q−1
G 6.245× 106 2.073× 105

Table 6.3: Condition numbers of the single matrices, which are involved in the linear
model

a much smoother decay. Thus, one can assume the constrained least squares problem to
be well-posed.

But figure 6.4 and table 6.3 show another interesting effect. If pure grace solutions are
used, applying estimated variance components actually increases the condition number.
This is trivial if the weight factors in table 6.2 are considered again. The grace coef-
ficients gain very little weight, compared to the hydrological constraints. If one thinks
about the ill-possessness of the appropriate normal matrix, it becomes clear that by
increasing the weight of an ill-posed observation group, one introduces some of these
uncertainties in the solution. On the other hand, the condition number increases only
slightly with estimated variance components, if one uses regularized grace solutions.
This can be explained with the weight factors of the hydrologic constraints as well. The
contribution of the regularized grace coefficients is much larger than of pure grace
coefficients. Thus, the introduced ill-possessness from the hydrologic normal matrix is
compensated.

The impact of the constraints in the spectral domain is again roughly analyzed with
the signal and error degree variances (cf. figure 6.5). The overall characteristic of the
constrained spectrum is similar to the derived spectrum from the pure grace coeffi-
cients. However, one can see a little attenuation in the high frequency coefficients with
l > 55. It was already mentioned that hydrologic constraints are assumed to have an im-
pact especially on this part of the signal. On the other hand, the error degree variances
are larger than before. This actually comes from the drastically increased weight of the
hydrologic constraints. According to figure 6.4, the normal matrix of the constraints is
ill-posed, yielding large errors after its inversion. Adding the grace covariance matrix
as prior information stabilizes this system and allows one to invert the regularized nor-
mal matrix. However, the large weight of the constraints, compared to the drastically
reduced weight of the grace coefficients, brings back some of this ill-possessness to the
resulting normal matrix, which actually increases the a posteriori errors. This is empha-
sized by figure 6.5b, where the regularized degree variances before and after constraining
are presented. It was already mentioned that regularized grace coefficients gain more
weight in the linear model, when variance components are estimated, than pure grace
coefficients. This actually means that the hydrologic constraints can improve the so-
lution, while the ill-posedness of their appropriate normal matrix does not impact on
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the solution. By keeping in mind that the regularized grace coefficients gained about
half the weight of the hydrological constraints, the constrained degree variances show an
deviation from the power law behavior from degree 40, while the overall noise power is
attenuated. This actually is a positive effect, as the constraints obviously added some
information, while the ill-possessness of their normal matrix does not impact on the so-
lution. Moreover, the smaller errors in the constraints reduced the errors in the grace
coefficients.

(a) Not regularized (b) Regularized

Figure 6.5: Degree variances of signal (straight line) and noise (dashed line) before
and after constraining with pure grace coefficients (left) and regularized
coefficients (right)

Unfortunately, the unfiltered and constrained signal and noise spectrum in figure 6.5a
still shows a drastic increase with increasing degree. This already indicates that apply-
ing hydrological constraints indeed attenuates the signal-power in the high frequency
coefficients, but the impact is not strong enough to seriously reduce the signal power
amplification in the high frequency part of the unfiltered grace spectrum.

On the flipside, adding constraints to regularized coefficients yields an overall atten-
uation of the errors, which leads to two conclusions. The hydrological observation group
needs a low signal strength of the grace coefficients to seriously impact on the solution.
The increasing signal strength in the high frequency part comes only from the constraints
and is thus assumed to have a very low noise level. Additionally, the relative magnitude
of the errors did not change, but the regularized and constrained overall noise power.
However, one has to keep in mind that the regularized errors depend on the power law
assumption. Nevertheless, the constraints are now strong enough, to reduce this power.
These two points indicate that adding hydrological constraints seriously improves the
quality of the grace coefficients by reducing the errors and adding reliable information
in the high frequency part of the spectrum.

The already introduced redundancy contribution clearly indicates which of the estimated
coefficients are mainly influenced by the hydrological constraints. Figure 6.6 confirms
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Figure 6.6: Spectral redundancy contribution of the hydrologic constraints when using
pure grace (left) and regularized (right) coefficients

the assumption of an impact on the high frequency part of the signal, as the constraints
mostly contribute to those coefficients with their degree being higher than 50 in both
cases. Additionally, a closer look shows also a large contribution to the degree 2 coeffi-
cients.

However, the pure grace coefficients are more influenced than their regularized coun-
terparts, especially in the tesseral part of the spectrum, which is in agreement with
the estimated weight components. It was already mentioned that the constraints would
need more weight to seriously impact on unfiltered grace coefficients. But the slight
contribution of the constraints on regularized coefficients is not understood yet, as the
degree variances painted a different picture.

Figure 6.7: Constrained and unconstrained spherical harmonic coefficients

Figure 6.7 shows that the constraints amplify the signal strength, when regularized coef-
ficients are used. This was already predicted by the degree variances, as they increased
from degree 40. This effect causes the larger coefficients in the constrained and regular-
ized spectrum. Moreover, the unconstrained regularized coefficients possess an almost
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isotropical attenuation. Their constrained counterparts show a more or less constant
spectral power in coefficients with their degree being larger than 20. On the other side,
the constraints reduce the power of unfiltered grace coefficients, as the spectral signal
strength of the tesseral coefficients with m > 10 is slightly lower after constraining. This
leads to the assumption that the true signal strength of the hydrological observations
must lie somewhere in between.

Spatial domain

Propagating the spectral redundancy contribution to the spatial domain yields the ap-
propriate weight for each pixel in space and thus shows the spatial impact of the hydro-
logical observation group. This can be done according to the error propagation formula
(B.5) if one normalizes the propagated values in the spatial domain.

Figure 6.8 shows that the constraints mainly impact on their appropriate catchments.
As the overall solution in these regions is influenced to nearly 80 - 90 %, it can be as-
sumed that the noisy grace signal is nearly replaced. One has to keep in mind that
unconstrained grace coefficients estimated mass variations with a magnitude of about
4500 mm/month. On the flipside, the hydrological observations mainly consist of rates of
change smaller than 100 mm/month. If these values shall be recovered from the derived
maps, it becomes obvious that the overall solution yields only little contribution of the
grace coefficients in these catchments.

Figure 6.8: Propagated redundancy contribution of the hydrological observations for
the constrained (left) and regularized and constrained (right) solution

The border regions are influenced as well, but the impact drops rapidly beyond the catch-
ments, yielding a small global contribution of less than 20 %. However, the constraints
seem strong enough to dominate in the vast continuous area between Northern Africa
and Eastern Asia. This is also noticeable in the Northern American catchments, even
if these areas are not completely covered with constraining catchments. Furthermore,
using regularized coefficients results in large areas, where the hydrological constraints
do not contribute at all.

These observations hold for both regularized and unregularized coefficients. This leads
to an important conclusion. Even if the hydrological constraints gained more weight
through the VCE, they have only very little influence on the regions beyond the con-
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straining catchments. Their rapid attenuation could indicate that the observations can
not be propperly expanded in terms of Legendre functions, or, on the other hand, better
modelling is needed.

The redundancy contribution of the unregularized solution already gave a rough im-
pression that the regions beyond the involved catchments are still dominated with the
regularized and unregularized grace coefficients. But propagating the estimated pa-
rameters to the spatial domain yields a complete recovery of the catchments, which were
considered as constraining catchments (cf. figure 6.9). This can be concluded from the
large continuous regions with a signal strength lower than 100 mm/month. Thus, the con-
straints really reduce the massive signal, which is assumed to be highly contaminated
with noise.

(a) unconstrained (b) Regularized

(c) constrained (d) Regularized and constrained

(e) Difference between a) and c) (f) Difference between b) and d)

Figure 6.9: Derived maps from a) unconstrained, b) regularized, c) constrained and d)
regularized and constrained coefficients

This happens actually in the constraining catchments, as well as in their border regions,
which is obvious if e.g. the large continuous region from Northern Africa to Eastern
Asia is regarded. Even if this area not completely consists of constraining catchments,
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Table 6.4: Statistics of the derived maps in figure 6.9, in [mm/month]

field RMS mean min max

unconstrained solution (6.9a) 783.8 2.6 -4982.9 5135.6

constrained (6.9b) 688.7 1.5 -4651.0 4850.6

constrained - unconstrained (6.9c) 446.5 1.1 -3351.4 3099.5

regularized (6.9d) 26.2 -0.2 -129.6 151.2

constrained and regularized(6.9e) 27.6 1.1 -132.3 155.0

constrained - unconstrained (6.9f) 10.2 -1.3 -78.6 73.1

it shows everywhere a signal less than 100 mm/month in terms of water equivalent heights
per month, which can be assumed as an realistic estimate. Moreover, the borders of the
constraining regions are well identifiable, if e.g. the Northern African catchments are
regarded. This effect will be analyzed in a following section. But even if the constrained
result still possesses an unrealistic signal strength beyond the involved catchments, the
procedure has a global impact, which can be told from 6.9c. This is consistent with the
statistical values, given in table 6.4. Thus, the smaller statistics from the constrained
solutions do not only come from the low signal in the constraining catchments, but also
from a global reduction of the signal strength, which agrees with figure 6.8, as even the
constraints slightly influence the regions beyond the involved catchments as well.

Figure 6.9f gives a rough impression about the spatial impact of the constraints. By
regarding the Northern African catchments again, the constraints cause obviously circu-
lar artifacts, which spread with an oscillating amplitude. This indicates that they could
be caused by the Gibbs phenomenon, which can be observed in the neighborhood of a
saltus from a function, which is transformed in a finite sum of Legendre functions. If the
figures 6.9b and 6.9d are compared, one can see that these deviations even influence the
Amazon basin. Further experiments showed that this effect comes from the increased
weight of the hydrological constraints through the variance component estimation. Thus,
these artifacts should be further investigated, as they could give information about im-
portant characteristics of hydrologic constraints.

It was already shown that the spectral redundancy contribution can be propagated to the
spatial domain, which yields the percentage contribution in each pixel of the concerning
observation group (cf. equation (B.5)). Propagating a full covariance matrix basically
allows to consider correlations between different points in space, but in this work, only
the variances or rather the standard deviations in each pixel are regarded. The two maps
in figure 6.10 show the standard deviations of pure and regularized constrained grace
coefficients. Unfortunately, these figures can only be hardly compared, as the scales are
completely different. However, using the same scale in both graphics would not have
been representative.

The errors in the derived fields show similar characteristics, compared with the propa-
gated signal itself. The constraining catchments are completely revealed and show much
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(a) Pure grace coefficients (b) Regularized coefficients

Figure 6.10: Propagated errors of the constrained solutions. Attention should be paid
to the different color scales.

smaller errors than the regions beyond these catchments. However, using pure grace co-
efficients seems to attenuate the errors beyond the catchments as well. This is obviously
not the case for regularized coefficients. It was already discussed that the contribution
of hydrologic constraints is even more concentrated in the catchments, when regularized
coefficients are used. The standard deviations paint a similar picture. The attenuation
of errors happens only locally in the constraining catchments, while the global error level
remains at about 30 mm/month. However, figure 6.10 shows a further interesting effect.
Both graphics show a clear amplification of the errors in North Africa at zero longitude.
This is even more obvious in 6.10a, where a circular continuation of these artifacts is
visible near Western Europe. However, the origin of these patterns is not known yet.

The latter observations lead to two general conclusions. The major contribution of
the constraints in the involved catchments is needed to seriously reduce the immense,
and thus unrealistic, signal strength of unfiltered and unconstrained grace coefficients
to the level of the hydrological observations. This explains the complete recovery of the
involved catchments in the derived maps. But from the viewpoint of parameter esti-
mation, this indicates that the both observation groups do not agree very well, which
is trivial if the magnitude of the grace derived estimates and the hydrological obser-
vations are taken into account. If one uses regularized coefficients, both models should
theoretically fit together, as the hydrological observations show similar values like the
estimates from grace. Unfortunately, the constraints mainly impact on the involved
catchments and cause circular artifacts around these regions. This effect and the slight
global contribution could indicate that other base functions than the Legendre functions
should be used to assimilate the grace solutions with hydrological observations.

The computed area weighted storage changes in the constraining catchments (cf. equa-
tion 2.2.20) are presented in figure 6.11. The constrained values are consistent with the
hydrological observations, no matter if the coefficients are regularized or not. There
is only a slight deviation in the Mezen and Thelon catchments due to their geograph-
ical position. This effect is explained in more detail in the following. These results
are promising as no further filtering was applied to the constrained Stokes coefficients.
However, one has to keep in mind that the hydrological constraints have a major con-
tribution in these regions (cf. figure 6.8), and thus almost replace the grace coefficients.
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Figure 6.11: Estimated storage changes in water equivalent heights per month

Furthermore, it was mentioned in section 5.3 that the regularized mass estimates from
grace agree with the predicted values from the GLDAS and observed hydrology in
three of the catchments. Here, the solutions are validated with observed values from
28 catchments, and even if there are some differences, one recognizes a trend from the
grace estimates to the observations. The occurring deviations might be caused by the
size of the appropriate catchments, as a larger catchment generally has a higher influence
on the solution and thus on adjacent catchments. Thus, it is sure to say that grace is
able to detect mass variations, caused by hydrological phenomena.

Cross validation of the results

The initial question was whether the hydrological constraints are strong enough to im-
prove the quality of mass estimates from grace globally. It was already shown that the
constraints mainly impact on their appropriate catchments and the adjacent regions.
Thus, the involved catchments were completely recovered. The comparison of the esti-
mated mass variations in figure 6.11 indeed showed consistency of the observations and
the estimates. But there was an uncommon deviation from the observed value in some of
the regions, i.e. Mezen and Thelon. Thus, some of the catchments, including these two,
are removed from the observation vector. Afterwards, the estimated mass variations are
compared with the observed hydrological data. If the discussed method should succeed,
the values should be at least roughly consistent. It is obvious that this is not true for
unfiltered grace coefficients, if e.g. the geographical location of the Rio Santiago basin
is regarded. Thus, this experiment is only done with the regularized solution.

The catchments are now successively removed from the observation vector of the hy-
drological constraints. Therefore, they are selected in such a way that in each step one
region of every large continuous constraining areas is removed, i.e. a North American
catchment, a Central African Catchment, a catchment in Northern Europe and a catch-
ment in Central Eurasia. A total of 11 catchments were removed in 3 steps, which are
visualized in figure 6.3. First, Rio Santiago, Thelon, Northern Sahara and Mezen were
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Figure 6.12: Chatchments which are removed for cross validation

removed (red areas), followed by Yukon, Western Sahara, Northern China and Severnaya
Dvina (blue areas). Finally, Saudi Arabia, Gobi and the Churchill basin were removed
(orange areas). The remaining catchments are printed as green areas. Now, the whole
procedure, which was discussed in section 6.2.2, is repeated with the modified observa-
tion vectors.

The constrained solutions are now used to derive maps of rates of change of water
equivalent heights. These maps are presented in figure 6.13 and their differences in 6.14.
Primarily, there are only slight differences between the single fields. However, espe-
cially the difference plots show again circular artifacts around the removed catchments
(e.g. around North Africa), which might be caused by the already mentioned Gibbs
phenomenon due to their oscillating signal and circular spread. These artifacts reach
regions, which are located far beyond the constraining catchments. Thus, there is e.g. a
little difference in the Amazon basin visible, if one compares the four maps in figure 6.13.

However, it can be assumed that this influence does not come from an improvement
of the grace solution. It is rather a logical consequence of the way the constraints are
applied. The catchments are represented through observed mass variations in very dis-
tinct regions. If such regions are transformed into terms of Legendre functions, the Gibbs
pheonemon causes the signal in the derived field to oscillate. The amplitude increases
with decreasing distance from the constraining region. This effect is visible around each
large continuous area of constraining catchments, even if the amplitude differs. The
maximum and minimum is visible in Saudi Arabia and Northern Europe, where the
grace solution predicts a completely different mass variation than the observed values.

The derived statistics in table 6.5 show another interesting effect. There is obviously
no trend towards the unconstrained solution visible, when the constraining catchments
are successively removed, even if the deviations between the different constrained solu-
tions increase, the more catchments are removed. This actually means that the global
solution is independent from the amount, i.e. the area, of constraining catchments. If
one constraints the grace solution, one recovers the used catchment and the regions
beyond the catchments are influenced by the Gibbs phenomenon, which was caused by
the transformation of this distinct area into terms of Legendre functions.
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(a) All catchments (b) 4 catchments removed

(c) 8 catchments removed (d) 11 catchments removed

Figure 6.13: Derived maps from constrained monthly grace solutions with varying
constraining catchments.

Table 6.5: Statistics of the derived maps in figure 6.13 and 6.14

field RMS mean min max

[mm/month]

Regularized 26.2 -0.2 -129.6 151.2

All catchments 27.6 1.1 -132.3 155.0

4 catchments removed 27.9 1.6 -136.5 149.1

8 catchments removed 27.2 0.7 -138.1 156.7

11 catchments removed 27.5 1.4 137.2 148.6

Difference between a) and b) 6.9 -0.5 -101.6 62.6

Difference between a) and c) 8.3 0.3 -70.5 84.1

Difference between a) and d) 9.5 -0.3 -105.2 110.6
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(a) Difference between a) and b) (b) Difference between a) and c)

(c) Difference between a) and d)

Figure 6.14: Differences between the derived maps in figure 6.13. Attention should be
paid to the different color scales

A better look at the mentioned effects is given in figure 6.15, where the different solutions
are again used to derive area averaged storage changes of the 28 catchments, which were
used as constraints.

Figure 6.15 primarily shows a positive aspect of the discussed method. It seems as
if the mass estimates in the remaining catchments are not influenced by the removal
of some of them. This actually means that it does not matter how many catchments
are used as hydrological constraints, but the observed mass estimates are always recov-
ered. However, the estimate in Rio Santiago extremely differs if the catchment is used
as constraint or not. This effect is visible in other catchments as well, e.g. Saudi Arabia
or Severnaya Dvina. On the other hand, e.g. Churchill, Gobi and even Mezen show
only little differences. This can be explained with the geographical position of these
catchments. It was already mentioned that the hydrological constraints influence not
only the appropriate catchments, but adjacent regions as well, even if the global impact
is rather small. Those catchments which show only little differences if they are used as
constraints or not are located near other constraining catchments, whereas e.g. Saudi
Arabia or Rio Santiago are more or less separated regions. In other words, the mass
estimate of a region tends to the observed value, if a constraining catchment is located
nearby, otherwise it tends to the unconstrained solution.

This becomes even clearer if the three adjacent catchments Severnaya Dvina, Mezen
and Pechora are considered. The observed value of Mezen is not reached, even if the
catchment is used as constraint. It rather shows a mass estimate, which would agree
with the observed value from Severnaya Dvina. After removing Mezen, the solution pre-
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Figure 6.15: Estimated storage changes in water equivalent heights per month, the
color at the bottom shows the step, in which the appropriate catchment
was removed

dicts a mass variation of about 60 mm/month, which can be seen as a compromise between
the value of Severnaya Dvina and Pechora. This can be assumed as both catchments
are about the same size. In the next step, Severnaya Dvina is removed. Thus, the
value of Mezen further reduces approximately to the observed storage change of Pechora
(50 mm/month) but not to the unconstrained estimate (20 mm/month).

This effect clearly indicates that the hydrological constraints do not improve the grace
solutions globally, but replace the mass estimate from grace in constraining catch-
ments and adjacent regions with the observed value. Even if the storage changes of
adjacent catchments are in some way correlated, one can not assume that this leads to
realistic mass estimates, which agree with observed values. This leads to the general
conclusion that adding constraints influences the regional estimates in such way that the
signal beyond the involved catchments attenuates very rapidly, if no further constraining
catchments are adjacent, yielding a negligible influence on far-off regions. In the border
regions of two constraining catchments the resulting signal power is a superimpose of
the observed hydrological storage changes from the concerning catchments, where vast
regions generally dominate the results.
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In this thesis, two methods of adding stochastic constraints to time-variable grace
coefficients are discussed. The first method uses a degree variance model, which was
computed according to the power-law theory of Kaula, to constrain the signal degree
variances of monthly grace solutions to attenuate with increasing degree. The second
approach constrains the grace solutions with hydrological observations in catchments
with negligible evapotransporations. As both methods need prior error information
about the grace coefficients, a method is presented to simulate a fully populated error
covariance matrix.

Furthermore, a compilation of modern averaging functions is presented. Since the launch
of the space gravimetry mission grace in the year 2002, some efficient tailormade fil-
ters for smoothing the signal from such missions were invented. Thus, three of the
most commonly used filters are discussed which basically use very different functional
principles:

� The isotropic and anisotropic Gaussian filter

� The Wiener filter

� The decorrelated error filter

In section 3.3, a method is presented which is usually applied if one needs to invert an
ill-posed system of normal equations, the regularization. It is shown that this approach
can be used as a spectral filter, based on an equality constrained least squares estimation.
However, the regularization and the Wiener filter need a priori knowledge about a de-
sired output signal. The Wiener filter minimizes the deviations between the desired and
the filtered signal whereas the regularization gives the variances of the Stokes coefficients
an upper bound through such a desired signal. In this work, a method is discussed to
estimate the desired signal, based on Kaula’s rule. This means that the spectral signal
power attenuates linearly with increasing degree in the logarithmic scale, according to a
simple power law. Thus, one speaks of a degree variance model, as it depends only on
the spherical harmonic degree. Such a power law is usually estimated by approximating
the signal degree variances of a given spherical harmonic spectrum in a well defined band
until the point, where the degree variances stop to attenuate and amplify again. It is
shown that this approach results in very similar power law parameters, no matter which
time series is chosen. This actually means that, according to the power law behavior,
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even if the monthly signal degree variances from grace show varying characteristics,
their theoretical power, given by the estimated degree variance model, i.e. the power
law, remains more or less constant.

Thus, the following section concentrates on the impact of different power laws, which
approximate the same time-series, but different maximal degrees. It is shown that espe-
cially the maximal degree of approximation is a similar parameter like e.g. the Gaussian
averaging radius, even if it is less demonstrative. Approximating in a narrow low fre-
quency band constrains the grace coefficients with a very steep power law, which gives
lesser influence to higher frequency coefficients than a power law, which was approx-
imated until a higher degree. However, it is shown that such a regularization indeed
reduces the signal strength of the north-south stripes, but is not strong enough to pro-
duce a field, which possesses realistic amplitudes of mass variations.

As this whole approach assumes a weight between the grace coefficients themselves
and the regularization term, which only depends on the appropriate a priori covari-
ances, proper weight factors are estimated through a variance component estimation.
These factors are defined as ratio between the a posteriori errors of a certain obser-
vation group and its contribution to the solution, represented through its redundancy
number.

This technique is tested with different power laws as constraints, different grace covari-
ance matrix structures as well as different monthly solutions. If one applies estimated
variance components, the impact of different maximal degrees of approximation of the
regularizing power law becomes of second order, as the remaining differences between
the regularized solutions usually occur in the high frequency part of the spectrum and
are thus negligible when propagated to the spatial domain.

However, the structure of the used grace covariance matrix indeed influences the solu-
tion. The approach is tested with a full, block diagonal and diagonal covariance matrix,
which is obtained through the already mentioned energy balance approach. It is shown
that using a full or block diagonal matrix shows nearly no differences neither in the
spectral nor in the spatial domain. If one uses only variances, i.e. a diagonal covariance-
variance matrix, the spectral quantities show only slight deviations to the other two
versions but the derived fields are smoother in the equatorial regions, whereas using full
and block diagonal covariance information yields smoother polar regions.

However, the regularized signal and error variances do not show such positive results,
when the initially assumed accuracy of the grace mission is considered. According
to the discussed approach, grace does not deliver useful time-variable information in
coefficients with l > 20, as the rest of the spectrum is dominated with errors, yielding
a maximal spatial resolution of about 1000 km of half wavelength. These findigs agree
with e.g. (Klees et al., 2008), where it was stated that an unambiguous distinction be-
tween signal and errors in areas with less than 106 km2 is not possible.

In chapter 5, the latter results of the regularization technique are compared with other
already mentioned tailormade filters. Furthermore, a reference model is taken from the
GLDAS to validate the filtered fields. It is shown that the smoothed maps show similar
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large scale signal characteristics and agree with the modelled mass variations from the
GLDAS. However, the regularization filtered field shows signal amplitudes in very small
areas as well, which agree with the GLDAS, which actually means that using this filter
yields a better spatial resolution and a lesser soft-focussing effect than e.g. the Gaussian
averaging operators. Unfortunately, it is also shown that there are some differences be-
tween the modelled and filtered mass variations. This means that it is still not possible,
to use time-variable mass estimates from grace as reliable base observation. However,
one has to keep in mind that grace is able to detect mass variations, which are not
mapped by e.g. the GLDAS, due to their origin. Furthermore, one can assume that
the models, which are used to remove the influence of the atmosphere and the oceans
contain errors and uncertainties, yielding remaining contribution of these phenomena to
the grace solutions. From that point of view, it is difficult to compare the time-variable
estimates from grace with any other values. This problem is avoided in many other
publications by validating the grace estimates with modelled quantities. However, it
was initially assumed that grace would deliver data, which can be used to improve
these models. Thus, such a validation must be handled with care, as the reliability of
grace estimates is evaluated with quantities, which are modelled from partly inaccurate
or disparate sources. It is shown that even the widely used GLDAS hydrology model
shows differences to observed storage changes, given by hydrological data.

In the sixth chapter, a method is discussed which aims exactly at these problems. The
monthly grace estimates are combined with observed hydrological data in an equally
constrained least squares estimation procedure. Therefore, precipitation and run-off
values from about 167 catchments are analyzed. 28 of these catchments met the char-
acteristics of a negligible evapotranspiration for January 2003. Thus, the actual storage
change of a certain catchment is given through the difference between precipitation and
surface run-off. These regions are used to constrain monthly grace solutions. Again,
the weight factors between the grace coefficients and the hydrological constraints are
estimated by the already discussed variance component estimation.

It is shown that using unfiltered grace coefficients yields a field, in which the constrain-
ing catchments are clearly recoverable. Furthermore, the border regions are smoothed as
well, but the unconstrained regions still show erroneous north-south stripes. However,
the overall signal strength is indeed attenuated. In a further experiment, the method is
tested with regularized coefficients. The result is very similar, as the constraining catch-
ments are clearly recoverable. Analyzing the spatial redundancy contribution shows
that the hydrologic constraints replace the grace signal in the constraining catchments,
whereas their contribution drops suddenly beyond the borders. In the spectral domain,
these constraints impact mainly on the higher frequency part of the spectrum, i.e. on
coefficients with l > 50. These findings agree with a comparison of storage changes from
the constrained grace solutions and observed hydrology. There are only very slight
differences, when such constraints are used.

In a next step, the constraining catchments are successively removed. The constrained
solutions are still consistent in the remaining catchments, but the removed catchments
show a signal which tends to the unconstrained solution, if no further constraining region
is adjacent. Otherwise, the signal in the removed regions is strongly influenced by the
observed storage changes of the adjactend constraining catchments in such a way that
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the observed storage change is assumed in the removed catchments as well. Moreover,
it is shown that adding such constraints causes strong Gibbs phenomena around these
catchments, which is obviously an unwanted effect.

Thus, it can be said that even if the first results looked quite promising, the method
of adding hydrological constraints to monthly grace solutions does not yet seriously
improve the quality of the grace estimates. However, it must be said that the basic
principles of this method can be transposed to all kinds of different constraints. Thus, it
is proposed to further investigate this method and use such constraints in cases, where
observed quantities are of superior accuracy compared to the grace estimates. Addi-
tionally, the Gibbs phenomena around the constraining catchments could indicate that
the discussed method should be tested with other base functions than the Legendre
functions as well.

As a conclusion of this thesis it can be said that the time-variable grace solutions still
do not meet the predicted accuracy, due to an unknown noise content in the provided
data. Using averaging operators indeed improve the spatial characteristics of derived
fields of e.g. a rate of change of water equivalent heights and show consistency with
modelled mass variations and observed hydrological data. Unfortunately, a reasonable
validation of mass variations, derived from the grace satellites, is still hardly realiz-
able due to lacking global reference values. However, adding stochastic constraints is a
promising method to improve the monthly grace solutions as it allows to add reliable
information in such cases, where more accurate data is available.
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Mathematical description of the
geoid A

The gravity potential W of an arbitrary point defined in the Cartesian coordinate system
P (x, y, z) can be described as the sum of the gravitational potential V and the centrifu-
gal potential Vc (Torge, 2001)

W (x, y, z) = V (x, y, z) + Vc(x, y, z)

= G

∫ ∫

Ω

∫
ρ(x, y, z)

r
dxdydz +

1
2
ω2(x2 + y2) (A.1)

with

x, y, z cartesian coordinates of the computation point
G gravitational constant G = 6.672 · 10−11m3s−2kg−1

ρ(x, y, z) local density
r distance between the computation point and the center

of the mass, i.e. the radius of the earth
ω angular velocity of the rotation of the earth.

Although the centrifugal acceleration, and thus the centrifugal potential, is determinable
with high accuracy, the density is, if at all, known only at the surface of the earth. Ad-
ditionally, the density distribution inside the earth is not homogeneous. This makes the
determination of this parameter very difficult.

For a point (x, y, z) outside the earth, the Laplace equation must hold:

∆V (x, y, z) = 0 (A.2)

If this equation is written in spherical coordinates, it reads as

∆V (r, θ, λ) = r2 ∂2V

∂r2
+ 2r

∂V

∂r
+ cot θ

∂V

∂θ
+

1
sin2 θ

∂2V

∂λ2
= 0 (A.3)

The set of base-functions which satisfy equation A.2 are called Surface spherical har-
monics

Ỹlm(θ, λ) = P̃lm(cos θ)
{

cosmλ
sinmλ

}
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with

θ, λ spherical coordinates of the computation point
P̃lm(cos θ) associated normalized Legendre functions of the 1st kind (see below)
l, m spherical harmonic degree and order

These functions can be divided into three categories (Sneeuw, 2005):

� m = 0: zonal spherical harmonics: the sine-part vanishes, and the cos-part be-
comes cos 0λ = 1. This means that no variation occurs in longitude. The earth is
divided into zones

� l = m: sectorial spherical harmonics: there are 2l sign-changes in longitude direc-
tion and zero in latitude direction; the earth is divided into sectors

� l 6= m: tesseral spherical harmonics: they result in a pattern of tiles with alter-
nating sign.

(a) l=4, m=0 (b) l=2, m=2 (c) l=4, m=3

Figure A.1: zonal, sectorial and tesseral surface spherical harmonics

The Legendre functions P̃lm(cos θ) can be calculated in different ways. In this work,
only a numerical, recursive method is explained, which delivers a stable solution and is
easily implementable into computer-algebra-systemys.

The strategy to calculate a certain P̃lm(cos θ) is to use the sectorial recursion to ar-
rive at P̃mm(cos θ). Then use the second recursion to increase the the degree (Sneeuw,
2005):

P̃00(cos θ) = 1
P̃mm(cos θ) = Wmm sin(θ)Pm−1,m−1(cos θ) (A.4)

P̃lm(cos θ) = Wlm

[
cos θP l−1,m(cos θ)−W−1

l−1,mP l−2,m(cos θ)
]

with

W11 =
√

3, Wmm =

√
2m + 1

2m
, Wlm =

√
(2l + 1)(2l − 1)
(l + m)(l −m)

(A.5)

These functions can be divided into odd and even functions, depending on the parity
of (l − m) : Plm(−t) = (−1)l−mPlm(t). The odd functions are equal to zero at the
equator (θ = 90). A further important feature of the surface spherical harmonics is their
orthonomality:

1
4π

∫∫

σ

Y lm(θ, λ)Y nk(θ, λ) = δlnδmk (A.6)
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The δij is called Kronecker delta funcion which is defined as

δij =
1 if i = j
0 if i 6= j

(A.7)

With these properties, it is possible, to express every function, which is defined on the
surface of a sphere, as a combination of their spectral coefficents C̃lm and S̃lm. The
relation between the coefficients and the function itself is given through the synthesis
and analysis formulae:

synthesis: f(θ, λ) =
∞∑

l=0

l∑

m=0

P̃lm(cos θ)(C̃lm cosmλ + S̃lm sinmλ)

analysis:
{

C̃lm

S̃lm

}
=

1
4π

∫ ∫
f(θ, λ)Ỹlm(θ, λ)dσ

(A.8)

As the gravity potential can be regarded as a two-dimensional funcion on the surface
of a sphere, i.e. the earth, as well, it can be expressed in terms of the surface spherical
harmonics. In this case, one speaks of spherical harmonic Stokes coefficients C̃lm and
S̃lm.

V (r, θ, λ) =
GM

R

∞∑

l=0

(
R

r

)l+1 l∑

m=0

P̃lm(cos θ)(C̃lm cosmλ + S̃lm sinmλ) (A.9)

where

r, θ, λ Spherical coordinates of the computation point
G Gravitational constant
M Mass of the earth
R Radius of the earth
P̃lm(cos θ) Associated, normalized Legendre functions
C̃lm, S̃lm Dimensionless spectral coefficients

Normally, the spectral coefficients have the same dimension as the function, i.e. the
potential, itself. It is customary, though, to use dimensionless coefficients, which is
achieved by the constant factor GM/R (Sneeuw, 2005).

Normal potential and geoid heights

The Geoid The geoid is defined as equipotential surface of the earth’s gravity field,
which coincides with the mean sea level of the oceans (Torge, 2001). This definition
assumes the water masses to be temporally invariant and only affected by the gravity.
Thus it can be imagined as surface of the idealized oceans which is continued underneath
the continents. According to Gauss-Listing, it is defined as the equipotential surface of
the Earth’s gravity field which best fits, in a least squares sense, global mean sea level.
This is actually the adopted definition of the National Geodetic Survey (NGS).

The normal field It is obvious, that this definition makes an exact analytical mathe-
matical description of the geoid nearly impossible. Therefore, a new surface is invented,
the so called normal field. This field is an ellipsoidal approximation to the real gravity
field (Sneeuw, 2005). It is usually described through 4 parameters:
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� Semi major axis a

� Flattening f = a−b
a

� Potential at the surface of the field U0

� Angular velocity ω

Depending on the application, there are many different realizations of such a normal
field. For global tasks, one would choose an ellipsoid which approximates the real geoid
best, whereas for local applications, an ellipsoid is chosen which optimally approximates
the geoid in a local area.

The potential that deviates from the normal potential is called disturbing potential.
In other words, the gravity potential can be described using the normal potential witl
potential deviations vrom W treated as disturbances:

W = U + T (A.10)

where

W full gravity potential
U normal potential
T disturbing potential

As the normal potential is known, the next step is to describe the disturbing poten-
tial, which can be formulated in terms of the spherical harmonics as well:

T =
GM

r

∞∑

l=0

(
R

r

)l+1 l∑

m=0

P̃lm(cos θ)(∆C̃lm cosmλ + ∆C̃lm sinmλ) (A.11)

Here, ∆C̃lm and ∆S̃lm are defined as the difference between the coefficients of the real
potential C̃lm, S̃lm, which can be obtained by measuring the orbit pertubations of satel-
lites, and the coefficients of the normal potential c̃lm, s̃lm.

The connection between this disturbing potential and the geoid heights is given through
the equation of Bruns:

N =
T

γ
(A.12)

This means that the normal-height, i.e. the metric distance between the geoid and
the normal-ellipsoid, is given through the quotient of the disturbing potential and the
normal potential at the computation point. A formula for the normal-heights in terms
of spherica harmonics is easily found if equation A.11 is inserted into equation A.12:

N =
GM

γr

∞∑

l=0

(
R

r

)l+1 l∑

m=0

P̃lm(cos θ)(∆C̃lm cosmλ + ∆S̃lm sinmλ) (A.13)

By knowing that γ = GM
r2 , and assuming that the computation point is on the surface

of the earth, equation A.13 becomes

N = R
∞∑

l=0

l∑

m=0

P̃lm(cos θ)(∆C̃lm cosmλ + ∆S̃lm sinmλ) (A.14)
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With this equation we have the possibility to compute a complete geoid model only from
the spherical harmonic coefficients C̃lm and S̃lm.

There are further methods available for the computation of a geoid, e.g. the so called
Stokes integration. For a detailed illustration of this approach, see (Sneeuw, 2005).
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Error propagation B

The errors in monthly grace solutions are usually provided as standard deviations of
the Stokes coefficients. However, section 4.2 dealed with a method to simulate a fully
populated error matrix for grace coefficients. As it is evident to regard the noise level
in the spatial domain as well, the spectral error covariance needs to be propagated to the
spatial domain, yielding the variance in each grid point of a derived field. This theory
is mainly based on (Haagmans & Van Gelderen, 1991), where such a propagation was
done to derive the spatial errors in geoid computations.

A function f , which is defined in the spectral domain, i.e. f = [flm] is usually propagated
through

f(θ, λ) = Ỹ (θ, λ)f (B.1)

which actually reads as

f(θ, λ) =
∑

l,m

βlmP̃lm(cos θ)
(
C̃lm cosmλ + S̃lm sinmλ

)
(B.2)

where

blm eigenvalues, e.g. isotropic transfer coefficients
f(θ, λ) functional in the spatial domain
P̃lm(cos θ) normalized associated Legendre functions
C̃lm, S̃lm spherical harmonic coefficients

The error covariance of the functional flm is defined as Qf = [Qlml′m′ ]. Thus, it contains
not only the errors of one particular spherical harmonic coefficients, but the appropriate
correlations between coefficients as well. The propagation to the spatial domain can be
written as

Qf(θ,λ,θ′,λ′) = Ỹ (θ, λ)Qf Ỹ (θ, λ)T (B.3)

According to equation B.2, the two-dimennsional Fourier expansion for the error covari-
ances (Bouman, 2000; Haagmans & Van Gelderen, 1991) one may write

cov(θ, λ, θ′, λ′) =
L∑

m=0

L∑

k=0

[Amk cosmλ cos kλ + Bmk sinmλ cos kλ′ (B.4)

+Cmk cosmλ sin kλ′ + Dmk sinmλ sin kλ′]
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with the Fourier coefficients of the Fourier expansion of the error covariances

Amk =
L∑

l=m

L∑

n=k

βlβncov
(
C̃lm, C̃nkP̃lm(cos θ)P̃nk(cos θ′)

)
(B.5)

Bmk =
L∑

l=m

L∑

n=k

βlβncov
(
S̃lm, C̃nkP̃lm(cos θ)P̃nk(cos θ′)

)

Cmk =
L∑

l=m

L∑

n=k

βlβncov
(
C̃lm, S̃nkP̃lm(cos θ)P̃nk(cos θ′)

)

Dmk =
L∑

l=m

L∑

n=k

βlβncov
(
C̃lm, S̃nkP̃lm(cos θ)P̃nk(cos θ′)

)

Depending on the structure of the covariance matrix, these equations can be simplified.
If one neglects correlations between coefficients with different order, one obtains a block
diagonal covariance matrix and thus Bmk = Cmk = 0 and m = k. The propagated error
is now denoted as var(θ, λ), since it is a function of one point only (Bouman, 2000):

var(θ, λ) =
L∑

m=0

[Am cos2 mλ + Dm sin2 mλ] (B.6)

with

Am =
L∑

l=m

L∑
n=m

βlβnvar
(
C̃lm, C̃nmP̃lm(cos θ)P̃nm(cos θ)

)
(B.7)

Dm =
L∑

l=m

L∑
n=m

βlβnvar
(
C̃lm, S̃nmP̃lm(cos θ)P̃nm(cos θ)

)

The errors can be reduced down to the level of error degree variances, which simplifies
indeed the computational effort, but neglects all correlations between the coefficients
and is thus not proposed.



Methods for a spherical harmonic
error analysis C

C.1 Eigenvalue analysis for measuring ill-possessness

One problem of solving least squares problem is the inversion of the normal matrix with
stable solutions due to its bad condition. It would be helpful, though, if one would be
able to ”measure” the ill-conditioning of such a matrix. This can be done by an eigen-
value analysis.

First, it must be decided, if the matrix is really ill-conditioned, or rank deficient. There
are two criteria which must be met, if a least squares problem is ill-posed:

� the eigenvalues of the normal matrix gradually decay towards zero,

� the normal matrix has a large condition number

� the normal matrix must be of full rank

This condition number is the ratio between largest and smallest eigenvalue and gives
information about the maximal amplification of an error in the input-data, i.e. a large
condition number means that a small error in the input-data can result in a large error
in the output-data. Its logarithm determines the loss of valid digits due to noise ampli-
fication.

Its computation is based on the singulay value decompositon of a matrix A, which
is usually defined as

A = UΣV ∗ (C.1)

where

A complex m× n matrix
U unitary m×m matrix
V ∗ adjoint n× n matrix of the unitary matrix V
Σ real valued m× n matrix with the singulary values σi of A

Then, the condition number is given through

κ =
maxσi

minσi
(C.2)
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C.2 Spectral error analysis

C.2.1 Absolute Error Measures

The inverse of the normal matrix Qx̂ = N−1 allows conclusions, if and to what extend
the equalization brought improvements to the accuracy of the estimated parameters.
As this matrix is the variance-covariance matrix of the unknown parameters, its main
diagonal contains the the variances per coefficient:

diagQx̂ = σ2
lm (C.1)

An adequate way to display this spectrum is the spherical harmonic triangluar schmeme,
which will be used in the analysis of the results.

Figure C.1: Triangular scheme of spherical harmonic coefficients

But it is obvious, though, that such a visualization only allows a rough analysis. Thus,
further measurements are intended for the purpose of comparison. As we assume the
error spectrum to be isotropic, i.e. the spectrum is independent from the order m, there
are two one-dimensional, degree-dependand error measures:

� The degree variances

σ2
l =

l∑

m=−l

σ2
lm (C.2)

This value is the total error power of a certain degree l. It is simply the sum of all
elements in one row in the spherical harmonic triangular scheme.

� root-mean-square per degree (RMSl)

rmsl =

√
1

2l + 1
σ2

l =

√√√√ 1
2l + 1

l∑

m=−l

σ2
lm (C.3)

The RMS can be seen as average standard deviation, which is expected for each
single coefficient. Its square would be the mean variance per degree.

C.2.2 Relative Error Measures

The upper two error measures are both absolute values as they represent the absolute
error in the coefficients. But in many cases, it is useful to regard the error as a relative
value. Thus, two further measures are often applied to evaluate the quality of estimated
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parameters, which can either be computed as one-dimensional, i. e. isotropic, or two-
dimensional error measures:

� Signal-to-noise-ratio (SNR)

1D : snrl =
cl

σl
2D : snrlm =

|Klm|
σlm

(C.4)

� Gain

1D : gl =
σold

l

σnew
l

2D : glm =
σold

lm

σnew
lm

(C.5)

Gain gives information about the amplification of an error spectrum relative to
another spectrum, e.g. an a priori spectrum.

These error measures allow the determination of the part of a given spetrum, which
delivers useful information and the part, which is dominated by noise. In fact, a signal
is assumed to be dominated with noise if snrl < 1.

C.2.3 Redundancy Contribution

In a multi-observables-model, it would be interesting, to what extend each of the observ-
ables contribute to the final solution and which parameters were affected the most. This
comes from the fact, that, depending on the a priori covariance, the observation groups
in one linear model might gain too much or not enough contribution. Therefore, one
can compute the so called redundancy contribution of the different observables. In this
case, it is even possible to compare the influence of the hydrological mass constraints,
the prior information, i.e. the grace-coefficients and the Kaula rule.

To be distinguished from the already discussed redundancy numbers, which give in-
formation about the contribution to the effective dimension of parameter space, for each
each subset yn a contribution matrix is defined (Sneeuw, 2000; Bouman, 2000)

Rn = N−1Nn (C.6)

The diagonal of Rn with diag(Rn) = rn
lm gives information about the partial contribu-

tion of each subset to the resulting parameters Klm. Thus, each rn
lm is the procentual

contribution of the subset Rn to a single sperical harmonic coefficient Klm.

If one assumes estimated variance components σ2
n between the single observation groups,

the equation reads as

Rn =
1
σ2

n

N−1Nn (C.7)

These quantities can be propagated in the spatial domain, according to the formulae of
chapter B. Then, the result shows the contribution of a observation group to each point
in space.
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List of MATLAB programs and
output data D

Simulation of an error covariance matrix

blddsgn.m Builds a design matrix for given satellite positions (B.
Devaraju)

blockinv.m Computes the block inverse of a matrix (B. Devaraju)
cart2spher.m Transformation of cartesian into spherical coordinates
covar scale.m Scales a simulated covariance matrix with formal or cali-

brated errors, which were provided by the CSR
grcnrml.m Simulates the grace covariance matrix based on the po-

sition of the two satellites (B. Devaraju)
readpos.m Reads position data from the grace files, which was con-

verted by the grace read software

Validation functions

area.m Compuation of the area of a pixel
diagdmdt.m Creates a bar diagram of mass estimates where the hy-

drological observations are plotted as reference
error spectrum.m Computes degree variances and degree rms of a signal or

error matrix
stats.m Calculates the rms, mean, minimal and maximal value of

a given field
spherdist.m Calculates the spherical distance between two points on

a sphere

Filter functions

dstrpngmtrx Filters spherical harmonic coefficients with a decorrelated
error filter (B. Devaraju)

gaussfilter.m Computes the filter coefficients of an isotropic Gaussian
filter, depending on the halfwidth radius

hannoniso.m Computes the filter coefficients of an anisotropic Gaussian
filter (B. Devaraju)

Wiener.m Computes the filter coefficients of an isotropic, anisotropic
scalar or anisotropic vector Wiener filter
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Data modification functions

coeff remove.m Removes the degree 0 and 1 coefficients from any given
input

coeff restore.m Adds zeros as degree 0 and 1 coefficients to any given
input

colomboQ.m Orders a varaiance-covariance matrix, ordered in degree
ordering, in Colombo/order-wise ordering (B. Devaraju)

cs2sc.m Converts spherical harmonic coefficients in c\s format
into the rectangular /s|c\format (B. Devaraju)

sc2cs.m Converts spherical harmonic coefficients in rectangular
/s|c\format into the c\s format (B. Devaraju)

grid2gmt.m Transforms a coordinate grid into a format, which is read-
able by GMT

mat2vec Transforms a matrix in c\s format with spherical
harmonic coefficients in a Colombo/order-wise ordered
column-vector

mssvr.m Calculates the area-averaged mass change of a field in a
certain catchment, depending on the catchment id

sh sort.m Arranges a vector with spherical harmonic coefficients in
either c\s or /s|c\format

Signal- and error-propagation

gshscov.m Propagates the covariance information of a spherical har-
monic field to the spatial domain (B. Devaraju)

gshscovfn.m Computes the covariance function in the spatial domain
for a given point in space (B. Devaraju)

itc.m Computes isotropic transfer coefficients of a selectable
gravitational quantity

lovenr.m Computes degree-dependant Love numbers
plm.m Computes the fully normalized associated Legendre func-

tions (N. Sneeuw)
synth fld.m Spherical harmonic synthesis function which computes a

field of a selectable gravitational quantity
synth ctch.m The function computes the storage change of a certain

catchment from spherical harmonic coefficients
spec2spat.m Propagates an isotropic filter operator from the spectral

to the spatial domain
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Regularization filter

mn pwr.m Computes the average logarithmic power of a selectable
period of the CSR-4 coefficients

plfit.m This function computes the parameters of a power law
kaulamatrix.m Fits a power law into the signal degee variances of given

spherical harmonic coefficients and arranges them as a
diagonal weight matrix

reg filt.m Constrains the grace solutions with an estimated degree
variance model

Hydrological constraining functions

hydconst.m Constrains the grace-solutions with hydrological obser-
vations

ctch crd.m Computes coordinates of the pixel centers of the data
points with the catchment id

Input and output data

Folder Filename Description
GLDAS tws*.nc GLDAS-data for different months
grace data csr4matJul08.mat Structure variable containing a modified

CSR-4-grace-dataset with spherical har-
monic coefficients and their errors (B. De-
varaju)

QJan.mat Simulated and scaled full covariance ma-
trix of the grace-data from January 2003

Hydrological
data

hyddata.mat Structure variable containing the hy-
droligcal data with precipitation and run-
off values (B. Devaraju)

Position data pos*.tar.gz Position data of the grace satellites for
different months

Regularization regotpt.mat Structure variable containing the regular-
ized dataset of January 2003 with spheri-
cal harmonic coefficients, their full covari-
ance matrix, variance components, weight
matrices and the filter kernel

Hyd. Const. hydconstotpt.mat Structure variable containing the hydro-
logical constrained dataset of January
2003 with spherical harmonic coefficients,
their full covariance matirx, the normal
matrix of hydrological observations, vari-
ance components, degree variances and
rms values


