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Abstract

Not all secrets of the The Great Pyramid of Giza were revealed, even after centuries of
observation and research. One of the main questions concerns the construction of the
pyramid. The most popular and reasonable theory assumes the old Egyptians to use
an exterior ramp in the lower third and an interior ramp in the upper two thirds of the
pyramid on which the stones were carried upstairs. However, there is no evidence that
this is really true. Microgravimetry-measuring techniques are able to give information
about the inner mass distribution of the pyramid and hence reveal yet unknown facts
about the inner structure.

Therefore, a reference gravity signal must be computed in order to detect mass de-
viations in the inside. In this work, an approach is discussed which uses photographs to
construct a three-dimensional model of a body. It is shown that the information gained
from three-dimensional reconstruction can be used to construct a solid body.

For the computation of the gravity signal of this solid body an algorithm is applied
which transforms the volume integral in Newton’s law of gravity into line integrals,
which allows the computation of gravitational quantities for arbitrary polyhedra. With
the help of a small section of the Great Pyramid it is shown that detecting inner mass
deviations from a reference body requires detailed knowledge about the surface. As the
errors in the measured gravity signal caused by a mis-modeled body might have a high
magnitude, the signal from inner mass deviations might completely vanish. However, if
the surface of an object is well known it is indeed possible to make a statement about
the inner structure of a body based on close-mesh measurements on its surface.

Keywords: Gravity modeling, surface reconstruction, Gaussian divergence theorem,
Great Pyramid of Khufu, Polyhedron
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Zusammenfassung

Trotz jahrelanger Beobachtungen und Nachforschungen wurden nicht alle Geheimnisse
der Großen Pyramide von Gizeh gelöst. Eine der Hauptfragen betrifft den Bau der
Pyramide. Die gängigste Theorie besagt, dass die alten Ägypter im unteren Drittel
eine äußere aber in den zwei oberen Dritteln der Pyramide eine innere Rampe benutzt
haben, um die Steine nach oben zu befördern. Allerdings gibt es bisher keinen Be-
weis, ob diese Theorie der Wahrheit entspricht. Aber es wird angenommen, dass mit
mikrogravimetrischen Beobachtungen Informationen über die innere Massenverteilung
der Pyramide gesammelt werden können um dadurch bisher unbekannte Eigenschaften
über die innere Zusammensetzung aufzudecken.

Daher muss ein Referenzsignal berechnet werden um Massenabweichungen im Inneren
entdecken zu können. In dieser Arbeit wird ein Ansatz behandelt, bei dem Photogra-
phien genutzt werden, um ein drei-dimensionales Oberflächenmodell eines Körpers zu
berechnen. Es wird gezeigt, dass die bei der Rekonstruktion enstandenden Daten genutzt
werden können, um einen festen Körper zu konstruieren.

Zur Berechnung des Schweresignals dieses Körpers wird ein Ansatz genutzt, bei dem
die Volumenintegrale in Newton’s Gravitationsgesetz in Linienintegrale transformiert
werden, was die Berechnung von gravitationellen Größen beliebiger Polyhedren erlaubt.
Mit Hilfe eines kleinen Ausschnittes der Großen Pyramide von Gizeh wird gezeigt, dass
die Detektion von inneren Massenvariationen ein genaues Oberflächenmodell benötigt.
Da die durch eine unsaubere Modellierung des Objekts hervorgerufenen Fehler bereits
eine hohe Signalstärke haben können, ist es möglich dass das wahre Signal von inneren
Massevariationen komplett darin verschwindet. Allerdings ermöglichen ein genaues
Oberflächenmodell sowie engmaschige Messungen auf der Oberfläche die Detektion und
Beschreibung von Massevariationen im Inneren.

Schlüsselwörter: Schweremodellierung, Oberflächenrekonstruktion, Gauss’sches Di-
vergenztheorem, Große Pyramide von Khufu, Polyhedron
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Introduction 1

Even after many years of research and observations, not all secrets of the Great Pyra-
mid of Khufu in Egypt are revealed. One of the remaining but at the same time most
important questions concerns the construction of the pyramid. By now, most scientists
agree that it was built by moving huge stones from a quarry. However, there are still
many opinions on how the stones really got to their designated positions (see e.g. Brier
(2007)). For a long time, most of these theories assumed the Egyptians using an exte-
rior ramp or a crane to move the stones. But these theories always led to discrepancies
which could not be solved. For example, if the Egyptians really used one exterior ramp
to move the stones upstairs, this ramp had to be over one mile long to reach the top. But
there is neither enough free space on the Giza plateau nor evidence of such a massive
construction, to say nothing of the required manpower. The crane theory would have
needed an immense amount of timber, which was simply not available in Egypt. These
are only two examples of many theories which caused serious problems.

In 2000, the French architect Jean-Pierre Houdin introduced a completely new theory
(see e.g. Houdin (2006)). He argued that an exterior ramp was only used in the lower
third of the pyramid. After this part was finished, a second ramp was build in the inside
(see fig. 1.1).

Figure 1.1: Schematic demonstration of the interiour ramp theory

Unfortunately, none of the theories could be confirmed. But a French team of scientists
surveyed the pyramid in 1986 with microgravimetry. By observing the density of the
different sections of the pyramid, they wanted to detect hidden chambers in the inside.
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The team could not interpret the measured signal but when Jean-Pierre Houdin intro-
duced his new theory, their observations suddenly maked sense. The image showed a
spiral in the inside which must have been the interiour ramp.

However, as the french team could not interpret their observations at first, there is
still no reasonable proof of Houdin’s theory. Therefore, clarifying the question on how
the pyramid was build

Figure 1.2: Signal observed by a French team of scientists in 1982

would require a new mission with modern gravimeters and measuring techniques. The
interior ramp theory might be accepted if similar observations to the French scientists
can be made.

Moreover, using gravimetry to explore the inner structure of a solid body is an ele-
gant and nondestructive way to gain knowledge about density, material and anomalies
inside an object. Thus, it is an important tool to observe and examine heritage sites.
In any case, information about a reference body or forward model is needed in order
to perform a reasonable comparison of measured and predicted values which can lead
to conclusions about the inner structure of an object. The next question is how this
reference body can be constructed. Today, modern surveying techniques like laser scan-
ning allow the computation of a very detailed model of the outer surface of an object.
However, such equipment is expensive and the observation would take very long. But as
the three-dimensional modeling from photographs is on advance, this work deals with
an approach to build a reference body and its gravity purely from images. Therefore, a
method is discussed which allows the computation of potential and attraction of arbitrary
polyhedra. As it is assumed that there is no information about the interior structure
of an object, it will be shown that such polyhedra can be used to fill a reconstructed
scene from photographs with mass, i.e. to build a solid body. In the end, it is discussed
how such a detailed model might differ from a simple body in terms of gravity. The
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successive steps will be visualized with images and results from a close-up view of the
Great Pyramid. The work is thus divided in the following parts:� description of an algorithm which allows the computation of potential and attrac-

tion of arbitrary polyhedra (chapter 2),� some aspects about the implementation of the algorithm in a computer program
and the validation of such a program (chapter 3),� a step-for-step guide on how to generate a gravity model purely from photographs
(chapter 4) and� a sensitivity analysis on the magnitude of a very detailed gravity model vs. a
simplified reference body (chapter 5).
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Analytical expression for the

gravitational field of a polyhedron 2

In this chapter, a closed analytical expression for the gravitational field of an arbitrary
homogeneous polyhedron is derived. It is thus mainly based on the relations found by
Petrovic (1996), even if the beginnings of the presented method reach back to e.g. Götze
(1976). However, the successive steps are explained in detail and singularities are dealt
with more precisely.

2.1 Introduction in the evaluation procedure

By polyhedron a three-dimensional body is meant which surface consists of planar faces
connected along straight edges called segments or at points called vertices (see Fig. 2.1)
(Tsoulis, 1999).

Figure 2.1: Elements of a polyhedron

The gravitational potential and its derivatives (see e.g. Hofmann-Wellenhof & Moritz
(2006)) are given by

V = Gρ

˚

v

1

l
dv (2.1.1)

Vx,y,z = Gρ

˚

v

∂

∂x, ∂y, ∂z

1

l
dv (2.1.2)
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where

G Gravitational constant with
G = 6.67259 · 10−11m3/kg·s2

ρ density
l distance between the mass element dv and

the computation point P (x, y, z)
dv mass element

For the following derivations, it is assumed that the computation point is located at
the origin of a local Cartesian coordinate system. Then, the distance l of the mass
element dv from the computation point is

l =
√

x2 + y2 + z2 (2.1.3)

However, a direct solution of the volume integrals in equation (2.1.1) is obviously very
cumbersome due to the arbitrary shape and form of a polyhedron. By applying the
Gaussian divergence theorem, one can transform the volume integrals into surface in-
tegrals when the computation point P is projected onto the n faces of the polyhedron.
Thus, we obtain n projected computation points P ′

n. If this strategy is applied again,
the surface integral of one face transforms into m line integrals over each line segment
of the face. Therefore, the projection of P ′

n on each single line segment P ′′

n is needed. It
will be shown that there exist closed analytical solutions for these line integrals, which
can be looked up in standard integral tables. Finally, the potential and its derivatives of
the polyhedron are obtained by summing over all line segments of all faces of the body.
The geometrical quantities which will be used for these derivations are illustrated in Fig.
2.2.

Figure 2.2: Definition of the geometrical elements of a specific face of a polyhedron
which are needed for the evaluation procedure
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2.2 From volume to surface integrals

Let v be a regular body with the closed surface S which consists of finite regular faces
and N the outer unit normals to S. If v is a vector field with continuous derivatives,
the following relation holds:

˚

v

div v dv =

"

S

v · NdS (2.2.1)

where · is the inner product of the vectors v and N .

Applying equation (2.2.1) to the present problem means to find a vector field v, which
satisfies the following relations:

div v =
1

l
(2.2.2)

div v =
∂

∂x, ∂y, ∂z

1

l
(2.2.3)

A solution of this problem can be found in Petrovic (1996) and Tsoulis (1999). Thus,
the first relation (2.2.2) is satisfied if

v =
1

2l

[

x y z
]T

= ∇ l

2
= grad

l

2
(2.2.4)

where ∇ is the Nabla operator ∇ =
(

∂
∂x

, ∂
∂y

, ∂
∂z

)

. This can be proven if one applies the

divergence operator:

div v = ∇ · ∇ l

2
= ∇ ·

[ x

2l

y

2l

z

2l

]

T

=
1

2

[

∂

∂x

( x

2l

)

+
∂

∂y

( y

2l

)

+
∂

∂z

( z

2l

)

]

=
1

2

[

l2 − x2

l3
+

l2 − y2

l3
+

l2 − z2

l3

]

=
1

l

If we look at the first derivative of the potential, a simple solution for relation (2.2.3)
would be

v =
1

l

[

δix δiy δiz

]T
(2.2.5)

where i = x, y, z and δij is the Kronecker delta, which is defined as

δij =

{

0 if i 6= j

1 if i = j
(2.2.6)
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Again, this can be proven if the divergence operator is applied:

div v = ∇ ·
(

1

l

[

δix δiy δiz

]T

)

, i = x, y, z

=































∇ ·
(

1

l

[

1 0 0
]T

)

i = x

∇ ·
(

1

l

[

0 1 0
]

T
)

i = y

∇ ·
(

1

l

[

0 0 1
]

T
)

i = z

=































∂

∂x

(

1

l

)

i = x

∂

∂y

(

1

l

)

i = y

∂

∂z

(

1

l

)

i = z

=
∂

∂x, ∂y, ∂z

1

l

Inserting these relations into equation (2.2.1), the following expression for the volume
integrals of the potential and its first derivatives is obtained:

V =
Gρ

2

"

S

1

l

[

x y z
]T · NdS (2.2.7)

Vi = Gρ

"

S

1

l

[

δix δiy δiz

]T · NdS, i = x, y, z (2.2.8)

Since |N | = 1 and thus Ni = cos (N ,ei) with i = x, y, z, equations (2.2.7) and (2.2.8)
can be written as

V =
Gρ

2

"

S

1

l
[x cos (N ,ex) + y cos (N ,ey) + z cos (N ,ez)] dS (2.2.9)

Vi = Gρ

"

S

1

l
cos (N ,ei) dS, i = x, y, z (2.2.10)

The goal of these derivations is to express the volume integral over a body in terms of
surface integrals only over its closed surface. Therefore, one can say that the surface S
of a polyhedron consists of a closed surface polygon with n faces Sp, i.e.

S =

n
⋃

p=1

Sp (2.2.11)

where each face is a plane with constant outer unit normal Np. In equations (2.2.9) and
(2.2.10) the quantity inside the brackets is the equation of a plane in Hessian normal
form. For a specific face Sp, it reads as

σphp = [x cos (Np,ex) + y cos (Np,ey) + z cos (Np,ez)] (2.2.12)
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where hp is the orthogonal distance of the computation point from that face and σp = −1
if Np points towards the half-space containing the computation point and σp = 1 if not.
There are certain singular cases when σp = 0. This will be discussed in section 2.5. As
both parameters remain constant for a specific face Sp, relation (2.2.11) can be used to
replace the ring integral over the whole surface S with the sum of the surface integrals
of the faces Sp, which simplifies equations (2.2.9) and (2.2.10) to

V =
Gρ

2

n
∑

p=1

σphp

¨

Sp

1

l
dS (2.2.13)

Vi = Gρ

n
∑

p=1

cos (Np,ei)

¨

Sp

1

l
dS i = x, y, z (2.2.14)

Thus, the evaluation of the volume integral is reduced to the evaluation of the surface
integral

Ap =

¨

Sp

1

l
dS (2.2.15)

as all other quantities can be computed directly.

2.3 From surface to line integrals

The next step will be the transformation of the surface integrals to line integrals. There-
fore, the computation point P must be orthogonally projected on each plane of the
polyhedron, which results in n projected computation points P ′. This is performed by
simply multiplying the surface normal vector with the distance of the plane from the
computation point and thus

XP ′ = −σpN · hp (2.3.1)

In the latter equation, the factor σp is used to ensure a correct orientation of the pro-
jection.

For the following derivations, P ′ will be the origin of a new rectangular local coordi-
nate system ex′ ,ey′ ,ez′ . The z−axis of this coordinate system is Np, i.e. the surface
unit normal. The x− and y− axis are arbitrary, but must be located in the plane and
complete the system to a right handed rectangular coordinate system.

The transformation of surface to line integrals is similar to the derivations in section
2.2. Thus, the Gaussian divergence theorem is applied again:

¨

Sp

div vdS =

˛

Gp

v · nds (2.3.2)

where Sp is a regular surface which is limited by the closed boundary line of the polygon
Gp, n the outer unit normals in the plane to Gp and v a vector field with continuous
derivatives.
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Again, the strategy is to find a vector field, which satisfies the following relation:

div v =
1

l
(2.3.3)

which is the integral part of equations (2.2.13) and (2.2.14). According to the definition
of the local coordinate system, the parameter r is the radial distance from the projected
computation point P ′ in the plane, i.e.

r =
√

x′2 + y′2 (2.3.4)

Thus, the reciprocal distance from the computation point P is

1

l
=

1
√

h2
p + r2

(2.3.5)

as hp is the radial distance of P ′ from P . It should be mentioned again that these
relations hold only for a specific plane (or face), i.e. the coordinates which were reduced
to a projected computation point P ′. Now, a solution for the problem in equation (2.3.3)
is according to Petrovic (1996) to express the vector field v as a gradient

v = grad

(

l +
hp

2
ln

l − hp

l + hp

)

(2.3.6)

As ∂l
∂x′ = x′

l
and ∂l

∂y′ = y′

l
, the vector field can be written as

v =
1

l

[

x′ y′
]T

+
h2

p

r2l

[

x′ y′
]T

(2.3.7)

Inserting these relations into equation (2.2.15) and using the Gaussian divergence the-
orem from equation (2.3.3), the following expression for the evaluation of the surface
integral is found:

Ap =

˛

Gp

1

l

[

x′ y′
]T · npds + h2

p

˛

Gp

1

r2l

[

x′ y′
]T · npds (2.3.8)

where each Gp is a closed (i.e. ring-) polygon which consists of m segments Gpq, i.e.

Gp =

m
⋃

q=1

Gpq (2.3.9)

with constant outer segment normals npq. Note that this procedure is very similar to
the transformation from volume to surface integrals. Thus, the sum operator can be
applied again to evaluate the integral over the whole surface:

Ap =
m

∑

q=1

ˆ

Gpq

1

l

[

x′ y′
]T · npqds + h2

p

m
∑

q=1

ˆ

Gpq

1

r2l

[

x′ y′
]T · npqds (2.3.10)
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Again, the latter expression can be rewritten as

Ap =

m
∑

q=1

ˆ

Gpq

1

l

[

x′ cos (npq,ex′) + y′ cos
(

npq,ey′

)]

ds

+ h2
p

m
∑

q=1

ˆ

Gpq

1

r2l

[

x′ cos (npq,ex′) + y′ cos
(

npq,ey′

)]

ds

(2.3.11)

Just like the equation of a plane in the three dimensional space, the term inside the
brackets can be expressed with two parameters in the plane where z′ = 0. Thus, it can
be written as

σpqhpq =
[

x′ cos (npq,ex′) + y′ cos
(

npq,ey′

)]

(2.3.12)

where hpq is the distance of the projected point P ′ from the line segment Gpq and
σpq = −1 if npq points towards the halt-plane containing P ′ and σpq = 1 if not. Just
like the parameters σp and hp for a plane, the parameters σpq and hpq remain constant
for the whole line. Again, a singular case might appear if σpq = 0 which is discussed in
section 2.5.

If equation (2.3.12) is inserted into (2.3.11), we get an expression for the surface in-
tegral (2.2.15) in terms of line integrals:

Ap =

m
∑

q=1

σpqhpq

ˆ

Gpq

1

l
ds + h2

p

m
∑

q=1

σpqhpq

ˆ

Gpq

1

r2l
ds (2.3.13)

2.4 Evaluation of the line integrals

The final gap is to find closed expressions for the two line integrals

Bpq =

ˆ

Gpq

1

l
ds (2.4.1)

Cpq =

ˆ

Gpq

1

r2l
ds (2.4.2)

in equation (2.3.13). Therefore, the point P ′, which was the orthogonal projection of the
computation point P onto a plane, must be projected on each m line segments Gpq of
face in this plane, which results in m new projected points P ′′. Every point P ′′ is taken
as the origin of a one-dimensional coordinate system. The variable in this system will be
the distance from its origin s. However, we can avoid the reduction to this coordinate
system as the radial distance r from P ′ only depends on the coordinate s:

r =
√

h2
pq + s2 (2.4.3)

Thus, the reciprocal distance can be written as

1

l
=

1
√

h2
p + h2

pq + s2
(2.4.4)
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If these relations are inserted into equations (2.4.1) and (2.4.2), we only have to find an
analytical solution for the two integrals

Bpq =

ˆ

Gpq

1

l
ds =

ˆ

Gpq

1
√

h2
p + h2

pq + s2
ds (2.4.5)

Cpq =

ˆ

Gpq

1

r2l
=

ˆ

Gpq

1
(

h2
pq + s2

)

√

h2
p + h2

pq + s2
ds (2.4.6)

According to standard integral tables like Bronstein et al. (2000) or Gröbner & Hofreiter
(1961), the solutions of the integrals are

Bpq = ln
(

s +
√

h2
p + h2

pq + s2
)

(2.4.7)

Cpq =
1

hpqhp
arctan

shp

hpq

√

s2 + h2
p + h2

pq

(2.4.8)

The integration limits are obviously the end-points of the line segment Gpq. Thus, they
will be denoted with s1pq

and s2pq
respectively. The square term in both integrals, which

is the distance of the computation point P from the end-points of the line segment,
simplifies to

l1pq
=

√

s2
1pq

+ h2
p + h2

pq and l2pq
=

√

s2
2pq

+ h2
p + h2

pq (2.4.9)

Inserting these integration limits into equations (2.4.7) and 2.4.8, we can evaluate the
integrals since

Bpq = ln
(

s2pq
+ l2pq

)

− ln
(

s1pq
+ l1pq

)

(2.4.10)

Cpq =
1

hpqhp

(

arctan
hps2pq

hpql2pq

− arctan
hps1pq

hpql1pq

)

(2.4.11)

In close analogy to Petrovic (1996) and Tsoulis (1999), the terms in equations (2.4.10)
and (2.4.11) will be abbreviated with

LNpq = ln
(

s2pq
+ l2pq

)

− ln
(

s1pq
+ l1pq

)

= ln
s2pq

+ l2pq

s1pq
+ l1pq

(2.4.12)

ANpq = arctan
hps2pq

hpql2pq

− arctan
hps1pq

hpql1pq

(2.4.13)

By replacing the line integrals in equations (2.4.1) and (2.4.2) with these analytical
expressions and inserting them into equation (2.3.13), we obtain the analytical expression
for the integral terms:

Ap =
m

∑

q=1

σpqhpqLNpq + hp

m
∑

q=1

σpqANpq (2.4.14)

and finally for the potential and its first derivatives

V =
Gρ

2

n
∑

p=1

σphp





m
∑

q=1

σpqhpqLNpq + hp

m
∑

q=1

σpqANpq



 (2.4.15)

Vi = Gρ
n

∑

p=1

cos (Np,ei)





m
∑

q=1

σpqhpqLNpq + hp

m
∑

q=1

σpqANpq



 (2.4.16)
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If it is ensured that the outer unit normal of the planes Np is a unit vector, the first
derivatives of the potential could be further simplified to

Vi = Gρ

n
∑

p=1

Npi





m
∑

q=1

σpqhpqLNpq + hp

m
∑

q=1

σpqANpq



 (2.4.17)

2.5 Singularities

It was already mentioned that we have to deal with singularities in some cases. In fact,
the presented method is not allowed in these cases. It was always assumed that P and
P ′ are both located outside the mass. This means that the vector field v has continuous
derivatives in the whole integration area. If this is not ensured, we would not be able to
apply the Gaussian divergence theorem. This becomes clear if the vector field in equation
(2.3.6) is considered again. If P and/or P ′ is located in Sp, the term r =

√

x′2 + y′2

would become zero in P ′ which means that the expression 1
r2l

is not defined in P ′. Thus,
the derivation in P ′ does not exist. The situations when this case appears are discussed
in the following.

2.5.1 P inside the face Sp

If P is located in the face Sp, its orthogonal projection P ′ would be P itself. This means
that the distance hp from P to P ′ equals zero. In such a case, the integral Cpq which is
undefined in P ′ (see equation (2.3.13)) is multiplicated with zero. This means that for
practical considerations the non-existence of a continuous derivative in P ′ must not be
taken into account as the problematic term vanishes. Thus, no further terms for this
singularity must considered.

2.5.2 P outside the face Sp but P ′ inside the face Sp

This situation is a bit more complex. According to Tsoulis (1999), it is well known in
potential theory and a satisfactory solution can be derived. The common approach is to
divide the surface into two parts. One of them is a small area around P ′, which has the
form of a circle (Fig. 2.3a), a sector (Fig. 2.3b) or a semicircle (Fig. 2.3c), depending
on the position of P ′. The other part contains the rest of the surface. In the latter,
the Gaussian divergence theorem can be applied without difficulties. The contribution
of the area surrounding P ′ can be taken equal to the limit of the expression for the
area’s potential or the attraction as the radius of the area including P ′ approaches zero
(Kellogg, 1954).

For the beginning, we will reconsider equation (2.3.8), where the surface integral was
transformed into line integrals:

Ap =

¨

Sp

1

l
ds =

˛

Gp

1

l

[

x′ y′
]T · npds + h2

p

˛

Gp

1

r2l

[

x′ y′
]T · npds (2.5.1)

It was already mentioned that in the case of a singularity the second integral can not
be evaluated. Thus, we do not take the whole polygon at once, but divide it in an outer
part Gp and the shaded circular area Cp in Fig. 2.3, which contains P ′. This gives us a
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(a) P ′ inside Sp, ϕ = 2π (b) P ′ on a vertex, ϕ = ϑ (c) P ′ on a line segment, ϕ = π

Figure 2.3: Singular cases and definition of the circular area around P ′

new boundary, which can be expressed as

G̃p = Gp

⋃

Cp (2.5.2)

i.e. G̃p is the union of the areas with and without P ′. Due to equation (2.5.2), the
integrals of (2.5.1) can be split up into integrals over Gp and Cp:

Ãp =

˛

Gp

1

l

[

x′ y′
]T · npds + h2

p

˛

Gp

1

r2l

[

x′ y′
]T · npds

+

˛

Cp

1

l

[

x′ y′
]T · npds + h2

p

˛

Cp

1

r2l

[

x′ y′
]T · npds

(2.5.3)

where np is either the unit normal of Gp or Cp. The integrals over Cp can be evaluated
when the radius of the circular area approaches zero. Therefore, we express the coordi-
nates x′ and y′ in polar coordinates, where R is the radius of Cp and ϕ is the angular
coordinate:

x′ = R cos ϕ (2.5.4)

y′ = R sinϕ (2.5.5)

z′ = hp (2.5.6)

Writing the radial distance r, the reciprocal distance 1
l

and the line element ds in polar
coordinates gives

r =
√

x′2 + y′2 = R

√

sin2 ϕ + cos2 ϕ = R (2.5.7)

l =
√

x′2 + y′2 + z′2 =
√

R2 + h2
p (2.5.8)

ds = Rdϕ (2.5.9)

The inward unit normal to Cp in polar coordinates is

np =
[

− cos ϕ − sin ϕ
]T

(2.5.10)
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Finally, the integration limits ϑ must be discussed. They depend on the position of P ′.
Obviously, if P ′ is located inside Sp, we will have to integrate over the whole circle, i.e.
ϑ = 2π (see Fig. 2.3(a)). If P ′ is located on a vertex (see Fig. 2.3(b)), ϑ is the angle
between the line segments G1 and G2 and can be computed with the dot product:

ϑ = arccos
G2 · −G1

|G1| |G2|
(2.5.11)

If P ′ is on a line segment (see Fig. 2.3(c)) we would have to integrate over a semicircle,
i.e. ϑ = π. Furthermore, the dot product between

[

x′ y′
]

and np is obviously −R.

Now, all quantities in the integrals over Cp in equation (2.5.3) can be replaced with
the latter expressions:

˛

Cp

1

l

[

x′ y′
]T · npds =

ϑ̂

0

−R2

√

R2 + h2
p

ds =
−Rϑ

√

R2 + h2
p

(2.5.12)

h2
p

˛

Cp

1

r2l

[

x′ y′
]T · npds = h2

p

ϑ̂

0

−R2

R2
√

R2 + h2
p

ds =
−h2

pϑ
√

R2 + h2
p

(2.5.13)

As we only have to consider the location where P ′ is exactly located on a singularity,
we let R approach zero. Thus, the contribution of Cp is given by the following limiting
values of the integrals:

lim
R→0

−Rϑ
√

R2 + h2
p

= 0 (2.5.14)

lim
R→0

−h2
pϑ

√

R2 + h2
p

= −ϑhp (2.5.15)

This means, depending on the position of P ′, the following correction terms must be
taken into account, which will be denoted with SINGp

1. P ′ is located inside Sp: SINGp = −2πhp

2. P ′ is located on a vertex: SINGp = −ϑhp = − arccos
G2 · −G1

|G1| |G2|
hp

3. P ′ is located on a line segment: SINGp = −πhp

If we reconsider the final expressions for the potential and its first derivatives and insert
the latter correction terms for each plane, we get the following terms:

V =
Gρ

2

n
∑

p=1

σphp





m
∑

q=1

σpqhpqLNpq + hp

m
∑

q=1

σpqANpq + SINGp



 (2.5.16)

Vi = Gρ

n
∑

p=1

cos (Np,ei)





m
∑

q=1

σpqhpqLNpq + hp

m
∑

q=1

σpqANpq + SINGp



 (2.5.17)

Note that SINGp equals zero if P ′ is located outside Sp.
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Computational aspects and

validation 3

In the last chapter, a method was derived to compute the potential and its first deriva-
tives of an arbitrary homogeneous polyhedron. This chapter will deal with the question
how to implement the algorithm in a computer program. Furthermore, a program, which
was written during this work, is validated with similar tools.

3.1 Implementation of the algorithm

First of all, most following considerations are of geometric nature. This means that it
will be very important to adhere certain rules for a successful computation of the desired
quantities. This concerns especially the order of the vertices. It must be ensured that
the normals always point outward of the polyhedron. This can be achieved if the vertices
are arranged counterclockwise if seen from the outside of the body.

Figure 3.1: Example of a polyhedron which is used to explain the computation process

For the following steps a slightly different notation will be used:� XP → coordinates of the computation point, i.e. XP =
[

xP yP zP

]



18 3 Computational aspects and validation� X → coordinates of the vertices of a polyhedron, i.e X =









x1 y1 z1

x2 y2 z2

. . .
xn yn zn







� nop → Number of planes of the polyhedron (e.g. for the body in Fig. 3.1 nop = 6)� nov → Number of vertices of a specific plane (e.g. for the plane S1 in Fig. 3.1
nov = 4)

The index i will be used for the single planes (faces) of the body, i.e. i = 1, ..., nop. The
index j will be used for the vertices of a plane, i.e. j = 1, ..., nov.

1. Preparations: The presented method assumes that the computation point P is the
origin of a local coordinate system. Thus, the coordinates of the vertices must be
reduced to this origin:

X̃ = X − Xp (3.1.1)

2. Building the line segments Gi,j: These segments are the vectors which connect the
single vertices j of the face i (see Fig. 3.2). Thus, they can be computed by

Gi,j = X̃i,j+1 − X̃ i,j (3.1.2)

Figure 3.2: Computation of the line segments Gpq

3. Building the plane unit normals N i: The plane unit normals can be computed by
building the cross product of two line segments (see Fig. 3.3). The resulting vector
is perpendicular to both segments and points outward

N i =
Gi,1 × Gi,2

|Gi,1| |Gi,2|
(3.1.3)

4. Building the segment unit normals ni,j : The segment unit normal of a line segment
(see Fig. 3.4) can be computed by building the cross product of the line segment
Gi,j itself and the plane unit normal:

ni,j =
Gi,j × N i

|Gi,j| |N i|
(3.1.4)
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Figure 3.3: Computation of the surface unit normals N i

Figure 3.4: Computation of the segment unit normals n1,j of the face S1

5. Orientation of the plane unit normals: In equations (2.5.16) and (2.5.17) the pa-
rameter σi is −1, 1 or 0, depending on the orientation of the plane. If we evaluate
the dot product of the plane unit normal vector and the negative position vector
of a vertex, we get the projection of the position vector on the normal vector as
|N i| = 1. This means that the result is negative if N i and X̃i,1 point towards
the same half-space. If both vectors point to different half-spaces, the result will
be positive. A third case appears if N i and X̃i,1 are perpendicular. Then, the
dot product equals zero and the concerned plane is parallel to one of the three
coordinate planes.

N i ·
(

−X̃i,1

)











> 0, σi = −1

< 0, σi = 1

= 0, σi = 0

(3.1.5)

Here, X̃i,1 is the position vector of one (arbitrary) vertex of a specific face Si as
the sign of the dot product is the same no matter which vertex is chosen.

6. Projection P ′

i of P onto the plane containing Si: This step needs a closer look as
there are multiple methods how one can perform such a projection (see Fig. 3.5).
In the following, an approach is discussed which is easy to compute.

a) Determination of the parameters of a plane: A plane can be defined by three
points, which are located in this plane. Here, we are dealing with faces, which
are defined through their vertices. These points can be used to compute the
parameters of the corresponding plane. We have already computed the plane
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Figure 3.5: Projection P ′

1 of P onto the plane which contains the face S1

unit normals N i of the faces. The equation of a plane in the so-called Hessian
normal form reads as

ax + by + cz + d = 0 (3.1.6)

where a, b, c are the elements of the plane normal, i.e. N i =
[

a b c
]T

, d is
a constant factor and x, y, z the coordinates of a point on that plane. Thus,
equation (3.1.6) can be written in vector notation:

N i · Xi,1 + d = 0 ⇒ d = −N i · Xi,1 (3.1.7)

where X̃i,1 is again the position vector of an arbitrary vertex of the face Sp.

b) Computation of the distance hi: The distance of a point from a plane in
Hessian normal form is usually computed by

h =
ax + by + cz + d√

a2 + b2 + c2
, (3.1.8)

where x, y, z are the coordinates of the point of interest. In our case, this
would be the computation point P and thus x = y = z = 0 as the coordinates
of all vertices were reduced to that origin. Thus, the distance of a face Si

from the computation point P is given by

hi =
d

|N i|
. (3.1.9)

c) Perfoming the projection: We have already computed the parameter σi, which
depends on the orientation of the face Si. Thus, the coordinates of the pro-
jected point P ′

i can be computed through

XP ′

i
= σihiN i. (3.1.10)

7. Orientation of the segment unit normals ni,j: This step is very similar to the
orientation of the plane unit normals. Again, we are only interested whether the
segment unit normal ni,j points towards the half-space containing the projected
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computation point P ′

i or not. Therefore, we first subtract the coordinates of P ′

from the coordinates of the vertices, i.e. P ′

i is the new origin of a local coordinate
system (see Fig. 3.5). Now, the dot product of the segment unit normal and
the (transformed) position vector is the projection of ni,j onto the length of the
position vector. This means that the result will be negative if ni,j points towards
the half-space containing P ′

i and positive if not. Again, The third case, i.e. the
dot product equals zero, can only appear if both vectors are perpendicular which
means that P ′

i is located on the line segment i, j.

ni,j ·
(

XP ′

i
− X̃i,j

)











> 0, σi,j = −1

< 0, σi,j = 1

= 0, σi,j = 0

(3.1.11)

8. Projection P ′′

i,j of P ′

i on the line segments Gi,j: First of all, it must be checked if
P ′

i and P ′′

i,j are identical since the presented method does not work in this case.

Figure 3.6: Projection pf P onto a plane (P ′) and a line segment (P ′′)

This can be ensured by looking at the orientation of the segment unit normals. If
σi,j = 0 for a specific line segment i, j, the (transformed) position vector of the
vertex and the segment unit normal are perpendicular, which means that P ′

i is
located on that line segment and P ′′

i,j = P ′

i . For all other cases, we will solve a
linear system to compute the coordinates of P ′′

i,j.

For the sake of simplicity, a different notation will be used for this step:� x′ → position vector of P ′

i� x′′ → unknown position vector of P ′′

i,j ,� r → vector of the line segment i, j, i.e. r = Gi,j,� e → vector which connects P ′

i with one of the two vertices of Gi,j� x1 → position vector of this vertex

See Fig. 3.7 for the geometric definition of the elements. The coordinates of P ′′

i,j

can be computed by solving a linear system. We use three relations which must
hold for the position of P ′′

i,j :

a) r is perpendicular to both vectors x′′ and x′

r · x′′ = r · x′ (3.1.12)
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b) x′, x′′ and r are co-planar

(r × e) · x′′ = (r × e) · x′ (3.1.13)

c) x′′ and r are co-linear

((r × e) × r) · x′′ = ((r × e) × r) · x′ (3.1.14)

Figure 3.7: Elements of the linear system to compute the coordinates of P ′′

With these properties of P ′′

i,j, we can set up a linear system to compute the unknown
coordinates. For the sake of simplicity, the following abbreviations will be used:

r = a =
[

a1 a2 a3

]T

r × e = b =
[

b1 b2 b3

]T

(r × e) × r = c =
[

c1 c2 c3

]T

The quantities which are needed to compute the coordinates of P ′′

i,j are

A =





a1 a2 a3

b1 b2 b3

c1 c2 c3



 ; x′′ =







xP ′′

i,j

yP ′′

i,j

zP ′′

i,j






= XP ′′

i,j
; y =





a · x′

b · x′

c · x′





As there are three unknowns and three equations, we can compute the position of
P ′′

i,j directly via

x′′ = A−1y (3.1.15)

A becomes rang deficient if P ′

i = P ′′

i,j . Therefore, the condition σi,j = 0 must be
checked before inversion. Otherwise, one could compute the inverse of this 3 × 3
matrix with Cramer’s algorithm (see e.g. Bronstein et al. (2000)) and perform the
check afterwards.

9. Computation of LNi,j and ANi,j: These coefficients both depend on the distance
of the end-points of a line segment and P ′′

i,j which can be computed by

s1i,j
=

∣

∣

∣
P ′

i − X̃1i,j

∣

∣

∣
; s2i,j

=
∣

∣

∣
P ′

i − X̃2i,j

∣

∣

∣
(3.1.16)
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where X̃1i,j
and X̃2i,j

are the two end-points of the line segment Gi,j . Additionally,
one needs the distances of the segment’s vertices from the computation point P

l1i,j
=

∣

∣

∣
X̃1i,j

∣

∣

∣
; l2i,j

=
∣

∣

∣
X̃2i,j

∣

∣

∣
(3.1.17)

and the length of a line segment

gi,j = |Gi,j| (3.1.18)

As the integration limits are the coordinates of the end-points of a line segment in
a one dimensional coordinate system, the relative position of these points to the
origin, i.e. P ′′

i,j is needed. Therefore, the sign of this position must be computed
correctly, which depends on the location of P , P ′

i and P ′′

i,j and the corresponding
line segment Gi,j. This can be achieved if the latter quantities s1i,j

, s2i,j
, l1i,j

, l2i,j

and gi,j are compared. Thus, the correct sing can be computed by considering the
following cases:� P ′′

i,j = P and P inside Gi,j:

s1i,j
− l1i,j

= s2i,j
− l2i,j

= 0, s1i,j
+ s2i,j

= gi,j

P ′′

i,j and P have the same coordinates and are both located inside the line
segment Gi,j. Thus, s1i,j

and l1i,j
must be multiplicated with −1 as the

coordinates (in the one dimensional coordinate system) of the first vertex
must be negative.� P ′′

i,j = P and P outside Gi,j:

s1i,j
− l1i,j

= s2i,j
− l2i,j

= 0, s1i,j
+ s2i,j

> gi,j

P ′′

i,j and P have the same coordinates and are both located outside the line
segment Gi,j.

– P ′′

i,j and P left of Gi,j:
s1i,j

< s2i,j

Both vertices are left of the origin, i.e s1i,j
, l1i,j

, s2i,j
and l2i,j

must be
multiplicated with −1

– P ′′

i,j and P right of Gi,j

s1i,j
> s2i,j

Both vertices are right of the origin, i.e s1i,j
, l1i,j

, s2i,j
, l2i,j

> 0.� P ′′

i,j 6= P and P ′′

i,j inside Gi,j:

s1i,j
6= l1i,j

, s2i,j
6= l2i,j

, s1i,j
+ s2i,j

< gi,j

P and P ′′

i,j do not have identical coordinates and P ′′

i,j is located inside the
line segment Gi,j. Thus, the coordinate (in the one dimensional coordinate
system) of the first vertex is negative, i.e s1i,j

must be multiplicated with −1.� P ′′

i,j 6= P and P ′′

i,j outside Gi,j :

s1i,j
6= l1i,j

, s2i,j
6= l2i,j

, s1i,j
+ s2i,j

> gi,j

P and P ′′

i,j do not have identical coordinates and P ′′

i,j is located outside the
line segment Gi,j .
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– P ′′

i,j left of Gi,j:

s1i,j
< s2i,j

Both vertices are left” of the origin, i.e s1i,j
and s2i,j

must be multiplicated
with −1

– P ′′

i,j ”right” of Gi,j

s1i,j
> s2i,j

Both vertices are right of the origin, i.e s1i,j
, s2i,j

> 0 .

The upper conditions are given in such way that they can be easily implemented
in a program. Now, one can compute the coefficients LNi,j and ANi,j according
to equations (2.4.12) and (2.4.13) in section 2.4.

10. Treatment of possible singularities: Finally, it must be checked if one of the singu-
larities described in section 2.5 appears. Therefore, we will have to compute some
auxiliary variables:

g1i,j
=

∣

∣

∣
P ′

i − X̃i,j+1

∣

∣

∣
(3.1.19)

g2i,j
=

∣

∣

∣
P ′

i − X̃i,j

∣

∣

∣
(3.1.20)

Depending on these quantities, the length of a line segment gi,j and the parameter
σi,j (orientation of the segment unit normal ni,j), the three singular cases are
discussed in the following:� P ′

i is located inside Si: If σi,j = 1 for j = 1, ..., nov, all segment unit normals
of the face Si point away from P ′

i . This only happens if P ′

i is located inside
Si, i.e, SINGi = −2πhi� P ′

i is located on a vertex: If σi,j = 0 and g1i,j
= 0, P ′

i is located on the second
(end) vertex of Gi,j and thus

ϑ = arctan
Gi,j · (−Gi,j+1)

|Gi,j| |Gi,j+1|
(3.1.21)

If σi,j = 0 and g2i,j
= 0, P ′

i is located on the first (start) vertex of Gi,j and
thus

ϑ = arctan
Gi,j−1 · (−Gi,j)

|Gi,j−1| |Gi,j|
(3.1.22)

In both latter cases, the correction term would be SINGi = −ϑhi. However,
if the dot product in the numerator equals zero, the successive line segments
are perpendicular and SINGi = −π

2
hi.� P ′

i is located on a line segment: If σi,j = 0, g1i,j
< gi,j and g2i,j

< gi,j , P ′

i must
be located inside the line segment Gi,j since in all other cases this condition
would not be fulfilled, i.e. SINGi = −πhi.

3.2 Data handling

An algorithm which can be easily implemented was described in the last section. How-
ever, one needs a proper input data format. In this thesis, the x−, y− and z−coordinates
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of the vertices are stored in a first matrix. A second matrix contains the indices of the
vertices which belong to one surface, and thus the topographical information. Each row
defines one face of the body. A third matrix contains the x−, y− and z−coordinates of
the computation point(s). This becomes clear if a small example is considered. In the
next section, a simple cube is used for the validation of the presented method (see Fig.
3.8). This cube has its center in the origin of a local coordinate system and a dimension
of 2 x 2 x 2 m. Thus, the vertex- and topography-matrix could be set up in the following
way:

X =

























−1 −1 1
1 −1 1
1 1 1
−1 1 1
−1 −1 −1
1 −1 −1
1 1 −1
−1 1 −1

























topo =

















1 2 3 4
5 8 7 6
1 5 6 2
2 6 7 3
3 7 8 4
4 8 5 1

















(3.2.1)

Note that the order of the vertices is arbitrary, but in the topography-matrix, the ver-
tices must be arranged counterclockwise from an outside view. This ensures that the
normal vectors always point outside.
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Figure 3.8: Example of a cube and its vertices
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3.3 Validation

The described algorithm was implemented in the Matlab-program polygrav.m which
was written for this thesis. For its validation, various tests are performed and the results
are compared with two similar programs:� accrrp.m (author: Dr. Matthias Weigelt, Geodetic Institute, University of

Stuttgart): The program calculates the acceleration of a right rectangular prism,
i.e., the first derivatives towards the x−, y− and z−direction of the potential of
the prism.� grvmag3d.m (author: Singh & Guptasarama (2001)): Program for simultaneous
computation of gravity and magnetic fields from a 3-D polyhedron.

All tests were performed on a Linux-machine with Ubuntu 9.04 and Matlab 2009b, a
2.00 Ghz Intel Core2 Duo CPU and 4Gb RAM.

3.3.1 Simple body, point-wise validation

First, the acceleration of a simple cube is computed with all three programs. The main
focus will be on the singularities, i.e. when the computation point is located on an
edge or vertex of the cube. Therefore, this cube has its center in the origin of a local
coordinate system and a dimension of 2 x 2 x 2 m. The density will be 2670 kg/m3, which
will be used for all bodies in this work. For the test, the acceleration of points on a
vertex, edge, surface and in and outside of the body are computed. The coordinates of
the vertices (X) and the computation points (Xp) (see Fig. 3.9) and the topography
matrix (topo) are defined in such way, that the following values can be easily recomputed
as they can be directly used as input parameters for polygrav.m. Thus, they are set up
in the following way:

X =

























−1 −1 1
1 −1 1
1 1 1
−1 1 1
−1 −1 −1
1 −1 −1
1 1 −1
−1 1 −1

























topo =

















1 2 3 4
5 8 7 6
1 5 6 2
2 6 7 3
3 7 8 4
4 8 5 1

















Xp =













−1 −1 −1
0 −1 1
0 −1 0
0 0 0
0 2 1.5













The differences between the acceleration computed by the three programs are shown
in Tab. 3.1. The differences between the single results have a magnitude of less than
10−16 mGal, which means that they might be caused by the limiting accuracy of double
values and are thus negligible. Furthermore, these deviations are far off the the read-
ing accuracy of a gravimeter, which is e.g. about 1µGal for the Scintrex CG-5. Thus,
this validation was successful as all three programs assume identical accelerations in the
computation points.
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Figure 3.9: Location of the computation points for point-wise validation

Difference Point Nr. ∆V x ∆V y ∆V z

1 3.2·10−17 3.2·10−17 3.2·10−17

polygrav.m 2 0 -9.2·10−18 -1.9·10−17

- 3 -7.9·10−18 5.6·10−17 0
accrrp.m 4 -4.0·10−18 -5.9·10−18 0

5 2.0·10−17 -1.4·10−17 9.3·10−18

1 -1.4·10−17 -1.4·10−17 -1.4·10−17

polygrav.m 2 0 9.2·10−18 -9.2·10−18

- 3 -7.9·10−18 5.6·10−17 0
gravmag3d.m 4 0 0 0

5 2.4·10−17 -2.3·10−18 -4.9·10−17

Table 3.1: Difference of the computed acceleration between polygrav.m and accrrp.m

and gravmag3d.m respectively in [mGal]

3.3.2 Simple body, line-wise validation

The next step is to analyze a line of computation points above, top of and inside the
body. Therefore, three lines were defined, where the x− values go from -2 to +2 (see
Fig. 3.10) and the z−value is 1.5, 1 and 0.5 respectively. The results for further lines
are shown in the Appendix B.

The x−, y− and z−component of the attraction in each single point of the three lines
is computed with all three programs. The results from polygrav.m are shown in Fig.
3.11. These will be the reference for this validation. The x−component of the attraction
is decreasing until the line approaches the body (x = −1). Inside the body, the signal
increases up to a value of 0.02 mGal when the line reaches the right face of the
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Figure 3.10: Location of three lines parallel to the x−axis with varying z−component
along which the acceleration is computed

cube (x = 1), after which it decreases again. This characteristic is reasonable if we as-
sume that only the potential of the cube affect the computation lines. As the attraction
always opposites the direction of the maximum potential increase (which in this case
always points towards the cube), the attraction is negative (positive) for computation
points left (right) of the cube. This holds as well for the z−component. As all lines are
located above the center of the cube, the direction of the maximum potential increase
points downwards. Thus, the attraction has to be positive and must increase by ap-
proaching the cube. As the y−values of all three lines are zero, the y−component of the
attraction in all points has to be zero by theory, which agrees with the illustrated results.

The differences between the results from polygrav.m and accrrp.m (see Fig. 3.12)
and gravmag3d.m (see Fig. 3.13) are considered. A magnitude of the deviations of
about 5 · 10−17 mGal in the plots agrees with the point-wise validation. Furthermore,
the deviations showed in Fig. 3.12 can be assumed to be noise due to computational
inaccuracies. But the lower left plot in Fig. 3.13 shows a negative drift. Thus, it can be
concluded that both programs polygrav.m and accrrp.m produce similar results but
differ slightly from gravmag3d.m.

These comparisons were performed for six further lines with varying y− and z−component.
The results are presented in the Appendix B and confirm the latter findings. The devi-
ation between polygrav.m and accrrp.m seem to be pure noise. Thus, both programs
are assumed to be of similar accuracy.
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of the acceleration along line 1 (top row), line 2 (middle row) and line 3
(bottom row)
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Figure 3.13: Difference between the acceleration computed with polygrav.m and
gravmag3d.m along line 1 (top row), line 2 (middle row) and line 3 (bot-
tom row)

3.3.3 Complex body, area-wise validation

Finally, a complex body is considered for the validation. This body is inspired by the
stair-structure of a pyramid, which will be explained more clearly in the next chapter.
Due to the intricate handling of such bodies with gravmag3d.m and a very long compu-
tation time, only polygrav.m and accrrp.m are used for validation.

Figure 3.14: Complex
body for
validation

The body is constructed in the following way: Its di-
mension in x− and y−direction is 15 x 15 m and the
height of the steps is successively increased by 1 m. The
density of the whole body is 2670 kg/m3. The computa-
tion points are located on the surface of the body with
a distance between the points of 5 cm in both x− and
y−direction which makes a total of 90000 points. Now,
the x−, y− and z−component of the attraction in each
computation point is computed with polygrav.m and
accrrp.m. The results of polygrav.m are shown in Fig.
3.15, the difference between polygrav.m and accrrp.m

is shown in Fig. 3.16. The statistics of the evaluation
areas are presented in Tab. 3.2.

First of all, we see a similar characteristic compared
to the line-wise validation. Both programs compute
the attraction with a maximal deviation of about ±2 ·
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Figure 3.16: Difference of the attracion of the body between polygrav.m and
accrrp.m

10−14 mGal, which was already considered as computational inaccuracies. However, the
maximal deviations mostly occur on edges or vertices of the body while all other regions
show smaller differences. This might come from the different computation principles
but should not be taken too serious as the dimension of the deviations is far off the
measurable magnitude. This holds as well for the other statistics. Even a comparison
of the RMS-values shows that both programs produce equivalent results.

The latter findings confirm two assumptions. The presented approach of calculating
the gravitational quantities of an arbitrary polyhedron were calculated by transforming
the volume integral into line-integrals with a closed analytical solution, produces identi-
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cal results compared to the closed expressions of a right rectangular prism. Furthermore,
the values which were computed with polygrav.m (i.e. the program which was written
for this work) are of identical accuracy compared to two programs which compute the
same quantities but with different strategies. By considering this successful validation,
polygrav.m can be used to compute the gravitational quantities of arbitrary bodies
which can be defined in terms of faces and vertices.

Component mean min max RMS
[mGal]

∆Vx 2.0 · 10−17 2.3 · 10−14 2.3 · 10−14 1.8 · 10−15

∆Vy 5.0 · 10−17 2.2 · 10−14 2.1 · 10−14 1.2 · 10−15

∆Vz −8.6 · 10−17 2.0 · 10−14 1.8 · 10−14 1.4 · 10−15

Table 3.2: Statistics of the differences between the three components of the attraction
derived from polygrav.m and accrrp.m

3.4 Case study: Signal strength of a varying mass distribution

As the functionality of the algorithm is validated, the next step is to analyze how changes
in the inner mass distribution of a reference body affect the gravity signal on the surface.
It should be mentioned that these experiments assume an accurate knowledge about the
bodies surface. Furthermore, all exterior effects are ruled out and the computation
points have a distance of 5 cm. The following results shall give an impression about the
characteristics of the gravity signal of comparatively small bodies. Therefore, a reference
body is created in the form of a stair model with a dimension of 10x10x10 m consisting
of 10 steps with the height of 1 m and a density of 2670 kg/m3. For this analysis, four
different experiments are performed to evaluate the effect of a� descending hole (Fig. 3.17a),� contracting hole (Fig. 3.17a),� growing empty column (Fig. 3.17b) and� growing vacuty (Fig. 3.17c).

Thus, the case study shall give an impression about the signal characteristics of a mass
deviation which is resized in one or more dimensions or translated in vertical direction.
In all cases, the deviation is considered to be an empty space, i.e. to have a density
equal zero. But it should be mentioned that the following findings hold only for the
presented conditions. If other bodies, mass deviations with a varying density or dimen-
sion or multiple deviations are considered, the results might look different. However, a
detailed analysis of all possible cases would go beyond the scope of this thesis, which
will be emphasized by the following findings.

The presented graphics (Fig. 3.18 - 3.21) are titled with the volume of the deviation
and the z−component (i.e. the height) hm of the center of the hole. Every graphic
shows the difference between the z−component of the attraction of a model without and
with such mass deviations. The right graphics show the extent and location in y− and
z−dimension whereas the x−component of the holes center is always 5 m.
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(a) Descending/contracting hole (b) Growing column (c) Growing vacuty

Figure 3.17: Location and extent of the removed elements in the reference body

Descending hole

For the beginning, the removal of a stone near the surface of the model is simulated (Fig.
3.17a). Afterwards, a hole in the body with the same volume as this removed stone is
created in the inside. This hole is successively moved to the bottom of the model and
each step, the acceleration on the surface is computed (see Fig. 3.18).

We see that the signal strength of the missing stone is decreasing the deeper it is located
in the model. On the lowest step, it has such a small signal that it might not be de-
tectable with a high-accuracy gravimeter. This means that an inner mass distribution
must have a certain dimension, depending on its location, so it can be detected on the
surface. Furthermore, it was assumed that there is a hole (i.e. a cuboid with a density
equal zero) in the body. If this cuboid would be of a different material with a higher
density, a detection on the surface might be even more difficult as the difference between
the attraction of the bodies with and without a mass deviation gets smaller when the
density of the deviation approaches the density of the surrounding body.

Contracting hole

The second experiment is the simulation of a contracting hole on the surface. This shall
give an impression about the impact of a small deviation on the surface (e.g. a miss-
ing stone, etc.). Furthermore, this already indicates the required accuracy of a surface
model which is transformed to a gravity model (see chapter 4 and 5). The hole has the
form of a cube and its size (and thus its volume) is successively reduced. Each step, the
acceleration on the surface is computed (see Fig. 3.19).

The first hole has a dimension of 50x50x50 cm (top graphics of Fig. 3.19). We see
a point-shaped signal with a strength up to 24 µGal. This this means that the deviation
is detectable, if we observe the location exactly above the hole. On the other hand, if
the deviation was caused by a mis-modeled surface (i.e. the hole is not considered in a
model), it already produces an erroneous signal which is significant. The next hole (mid-
dle graphic of Fig. 3.19) has a dimension of 35x35x35 cm. Even if the signal strength is
lower, the deviation is still detectable by a gravimeter, if we assume a measuring accu-
racy of 4-5 µGal. However, this holds only for the location directly above the hole.
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Figure 3.18: Signal of a successively descending hole on the attraction on computation
points located on the surface of the stair model
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Figure 3.19: Signal of a successively contracting hole on the attraction on computation
points located on the surface of the stair model
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The third hole (bottom graphic of Fig. 3.19) considers a hole with a dimension of
20x20x20 cm. Only now we get a signal which might not be significant. However, if
the dimension of this deviation is considered, this experiment shows that already small
deviations on the surface of a body might produce a significant signal. In other words,
we need detailed knowledge about the surface of a body as a mis-modeled surface might
cause an erroneous signal, which leads to improper assumptions about the bodies mass
distribution.

Growing column

Now, an empty column on the bottom of the model is assumed (see Fig. 3.17b). The
volume is successively increased by increasing the dimension in the z−direction and
keeping its dimension in x− and y−direction constant (i.e. 1x1 m). Every step, the
attraction of the body is computed on the surface of the stair model (see Fig. 3.20).
The first graphic shows only a very small signal on the surface of the body, even if the
column has a volume of 4 m3. The latter findings showed that on the surface a hole
with a volume of 1 m3 has a much higher signal which is in the measuring tolerance of
a gravimeter. This means that with increasing distance from the computation points,
it gets even more difficult to detect and identify mass deviations. On the other hand,
if the volume of the empty column is increased, the signal on the surface increases as
well. By keeping in mind that the dimension in x− and y−direction of the column is
1 m, the shape of the signal differs completely from the hole on the surface. The first
signal was more or less concentrated on a very small area whereas the signal of the
column shows a larger spread. Thus, even if the maximal signal strength is similar,
such a column can be distinguished from a hole on the surface if this surface is perfectly
known. Otherwise, the error in the computed gravity signal caused by a miss-modeled
surface would superimpose the signal caused by inner mass deviations and thus denies
reasonable conclusions about the inner mass distributions. This becomes even clearer if
another experiment is performed.

Growing vacuity

Again, a hole on the bottom of the body is constructed (see Fig. 3.17c). Its volume is
increased by successively increasing its dimension in the x− and y−direction and keeping
the z−coordinates constant (see Fig. 3.21). The first graphic shows that such deviations
need a minimal volume so it can be detected on the surface. But in contrast to the empty
column, the signal of such a cubic with increasing volume on the bottom has a much
wider signal spread even if the maximal signal strength is similar to the removed stone
or the empty column.

In conclusion, the latter findings clearly show that the detection of mass deviations
inside a body needs detailed knowledge about the surface. Otherwise, the signal of mass
deviations would disappear in the error caused by a mis-modeled surface. On the other
hand, if we have very detailed knowledge about the surface of an object and a close-
mesh grid of computation points, we can detect inner mass deviations if they have a
certain minimal signal which depends on the volume and density of the deviation and
the characteristics of the surrounding object. Furthermore, different deviations have
different signal signatures (i.e. spread, maximal strength, etc.) which means that we
can conclude (to a certain extent) from the signal on the inner mass deviation. This
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problem is generally known as inverse modeling as we observe gravity but want to model
the metric dimension and location of such deviations. The latter findings showed that
this is possible if we have knowledge about the surface, dimension and density of the
surrounding object and keep the impact of exterior effects as small as possible.
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Figure 3.20: Signal of a successively growing empty column on the attraction on com-
putation points located on the surface of the stair model
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Figure 3.21: Signal of a successively growing vacuity on the attraction on computation
points located on the surface of the stair model
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From photography to a solid body 4

In the last chapters, an approach was presented to compute the potential and its first
derivatives from an arbitrary polyhedron. Now, we use photographs to build a surface
model, which will be filled with such polyhedra to construct a solid body. This allows
the computation of gravitational quantities for arbitrary objects. In this chapter, the
successive steps from photography to the final solid body are discussed.

4.1 Creating a three-dimensional surface model

First, the three-dimensional reconstruction of a scene from photographs is discussed.
A detailed consideration of each single step or the mathematical derivations would go
beyond the scope of this work but can be found in e.g. Maarten & Van Gool (2006) or
Zheng (2008).

4.1.1 Taking the photographs

The first step is to take photographs of the object of which a gravity model should be
computed. In fact, this step is of crucial importance for the following computations
as bad or improper photographs inhibit a successful creation of a three-dimensional
model. Thus, the procedure should be planed in a well-considered way and the following
guidelines must be taken care of:

1. The object should be photographed from all sides with multiple photographs in
such way, that there exist enough identical points in the pictures. This can be
achieved by only making small steps around the object and keeping the scene
always in frame (see Fig. 4.1).

2. Panning or zooming from the same location should be avoided as such sequences
do not contain enough three-dimensional information for reconstruction.

3. Dead spaces (i.e. spaces where the object overlaps itself or is covered from other
objects, e.g. trees) should be avoided as there is only little chance that these parts
can be reconstructed correctly.

4. It is not recommended to use a object with a uniform surface as feature points are
only hardly detectable. Furthermore, a moving object can not be reconstructed.
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Figure 4.1: Optimal image sequence for reconstruction

5. Ensuring that the scene allows a proper georeferencation can be very important,
depending on the purpose of modeling. This can be achieved by observing at least
three points e.g. with GPS. Another method is to use a higher-level model, with
which the scene can be linked on the basis of identical points. In both cases, the
user must be able to identify these points in the reconstructed scene which makes
a wise choice of these locations very important. This means on the one hand,
that the points should be located close to the edges or corners of the scene with
a proportionately great distance between them. On the other hand, they must be
clearly distinguishable from their surrounding area in both the reconstructed and
real scene.

Additionally, it is of advantage if the scene contains an area or object, of which a
scale factor can be derived. This allows a proper scaling by comparing the size of
the reconstructed and real area or object.

If these rules are followed properly, a sequence of about 6 images is enough for a very
detailed reconstruction of the scene. Fig. 4.2 shows such an image sequence which will
be used to reconstruct a close-view of the steps of the Great Pyramid. However, a closer
look shows that the upper guidelines are not completely fulfilled. For example the parts
on the top of the blocks are not visible due to the recording angle. Furthermore, the
texture of the scenery is very uniform, which makes an extraction of feature points diffi-
cult. But it will be shown that (at least in this case here) the presented methods turned
out to be very robust and allow a proper reconstruction of the scene.

It should be mentioned that even if numerous photographs of the pyramid are avail-
able, a reconstruction of the whole pyramid was not possible due to missing reference
points. Furthermore, the tools and programs which were used in this work do not allow
the processing of photographs from multiple cameras or the combination of multiple
image sequences. The free web application Photosynth1 from Microsoft would allow
such combinations but post-processing of the reconstructed scene is difficult as it is not
intended to download the model (or pointcloud) for other applications. Furthermore,
the presented approach turned out to be the best compromise between a very detailed
reconstruction, a short computation time and user-friendly data handling.

1http://photosynth.net/
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Figure 4.2: Image sequence of a close-up view of the Great Pyramid in Gizeh

4.1.2 Using a web-service for 3D-modelling

The creation of a three-dimensional model from photographs is a popular task of mod-
ern photogrammetry as it allows a detailed three-dimensional visualization of an object
without the need of expensive surveying instruments like laser scanners. Thus, there
are many programs available to reconstruct a scene from different images. In this work,
it was decided to use the web-service ARC3D1 and the open-source software Meshlab2,
which offers many features for processing three-dimensional meshes. A similar approach
is described in Cignoni et al. (2008). It turned out that this web-service does a great
job in reconstructing a scene from photographs. Furthermore, it does not need any user-
input besides the images. After uploading the images to ARC3D via the provided upload
tool, all other computations are performed automatically and the user is able to down-
load the finished model. These computationally intensive calculations are performed
on a network of many computers which drastically improves and speeds up the whole

1http://homes.esat.kuleuven.be/~visit3d/webservice/v2/
2http://meshlab.sourceforge.net/

http://homes.esat.kuleuven.be/~visit3d/webservice/v2/
http://meshlab.sourceforge.net/
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process. A detailed description of the web-service can be found in Maarten & Van Gool
(2006). Here, only a short overview of the service is given.

The server-side computation (i.e. after the upload of the images) of a three-dimensional
model from photographs with ARC3D can be roughly split up in four successive steps:

1. Image matching and subsampling: This step aims for a correct ordering of image
pairs as the photographs can be uploaded in any order. Therefore, an algorithm is
implemented which is called Global Image Comparison algorithm, which uses a nor-
malized cross-correlation to compare pairs of images. Afterwards, only the image
pairs with a sufficient cross correlation are used for image matching. Furthermore,
the images are subsampled for stability and efficiency reasons.

2. Pairwise and projective triplet matching and self-calibration: First, feature points,
i.e. points which can be clearly distinguished from their neighbors, are extracted
from the images. These points are matched between the image pairs from the
first step and an epipolar geometry is computed. Now, image triplets are cre-
ated, based on the matching results. For these triplets a projective reconstruc-
tion is computed in the form of three projective cameras and a set of 3D points
(Hartley & Zisserman, 2003; Maarten & Van Gool, 2006). With the latter results,
a first self-calibration is performed to obtain the intrinsic parameters of the camera.

3. Euclidean reconstruction and upscaling: Euclidean projection matrices, 3D points
for the full-scale images and radial distortion parameters are computed using an
upscaling algorithm. This algorithm uses a Robust Euclidean Bundle Adjustment
Maarten & Van Gool (2006) to obtain these parameters. With the distortion pa-
rameters, more matching points can be found in the images which increases the
total amount of 3D-points and thus the quality of the reconstruction. In the end,
this Euclidean reconstruction provides a set of 3D-points and camera parameters.

4. Dense matching: This step provides pixel-wise depth maps for every image. There-
fore, two different methods are suggested: the linked pair stereo, which uses a
stereo algorithm (see Van Meerbergen et al. (2002) or Pollefeys et al. (2004) for
further information), and the multi-view stereo algorithm, which seeks to recon-
struct the 3D shape of a scene directly from a combination of more than two image
(Maarten & Van Gool, 2006). The first approach performs the dense matching
with high precision whether the second method puts its emphasis on speed.

4.1.3 Download, processing and visualization of the model

After the reconstruction from ARC3D is finished, the model, which is provided in the
.V3D-format1, can be downloaded. It should be mentioned that the .V3D-file does not
contain the finished model but informations about the parts which are needed to create
the scene. Thus it is needed to build the model in an extra program. In this thesis, the
model viewer which is provided by the ARC3D web service is used for this step.

After opening the .V3D-file with the viewer, the user can set some reconstruction param-
eters. It is suggested to set the subsample-parameter to 2. Thus, only little information

1Visual3D.NET Data File, contains data used by Visual3D.NET - a shader-based 3D engine and design
toolset built on Microsoft .NET and XNA.
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Figure 4.3: Parameters of the model-creation in the model viewer provided by ARC3D

is lost during the reconstruction while keeping the memory usage and computation time
on a acceptable level. Furthermore, a minimum-count value of 3 is used, which means
that only pixels are considered which appear in at least three images. The parameter
angle is set to 90◦, i.e. no triangles are discarded during the reconstruction. After the
model is created, it is saved in the .ply-format1, which contains informations about the
vertices and topology of the triangulated surface.

This file can be imported in the open-source software Meshlab, where the model is post-
processed. The first step is to trim the scene until a more or less closed surface remains.
Therefore, it is useful to use the implemented straighten-up tool, which allows to orient
the coordinate system in such way, that the axes correspond to the geometry of the scene.

After trimming and cleaning up (i.e. removing small artifacts, etc.) a Poisson re-
construction (see e.g. Kazhdan et al. (2006)) can be performed. This step has two
purposes:� Simplification: The presented model has (even after trimming) 2371116 vertices

and 4322102 faces. The Poisson reconstruction simplifies the scene to 23130 vertices
and 45667 faces but tries to keep as much relevant information as possible

1Polygon File Format, a format for storing graphical objects that are described as a collection of
polygons



46 4 From photography to a solid body� Closing the surface: Due to the recording angle of the photographs there might
be dead spaces in the reconstructed scene, i.e. parts where no points exist. The
Poisson reconstruction fills these holes with estimated data points. However, this
is a delicate task as the Poisson reconstruction creates points in areas which could
not be reconstructed by the web-service, i.e. areas of which no information exist.
This means that the estimated points might lead to an erroneous model as it is
improbable, that such a reconstructed area considers all details of the real object.
The sensitivity analysis from chapter showed, that already small deviations in
the surface might produce a significant signal in terms of gravitational quantities.
Thus, the Poisson reconstruction is an error source for the modeling and should
thus be evaluated in a future work.

Thus, the reconstruction creates a closed simplified triangulated surface which has much
less data than the original model by keeping most of the necessary information. A
detailed description of the parameters of this step can be found in Kazhdan et al. (2006).
Here, an Octree Depth1 of 8 and a Solver Divide value2 of 8 is used which turned out to
be a good compromise between computational time and accuracy. Finally, some minor
corrections can be performed which mainly improve the optical correctness of the model.
The finished model is now imported into Matlab via the program plyread.m3 for further
computations. This program creates two parameters of which one contains the surface
topology information and the other the coordinates of the vertices. Thus, each row of
the first parameter contains the indices of the three vertices of a single triangle in such
way, that built-in functions like trisurf.m can be used to visualize the model.

4.1.4 Orientation of the 3D-model

The reconstructed scene might have a wrong orientation which means that a coordinate
transformation must be performed. Depending on the scene there are multiple possibil-
ities to bring the model to a correct orientation (including a scale factor). If three or
more feature points in the scenery are known in a higher-level coordinate system (e.g.
observed with GPS), one could simply perform a Helmert transformation to orient the
model. Unfortunately, this is not the case for the presented model. But as a pyramid
has a more or less simple geometry, an alternative approach can be used. The model can
roughly be approximated with a tilted plane of which the orientation of the normal vec-
tor is used to rotate and tilt the surface. The scale factor can be estimated if the height
of a step in the model is compared with values from literature. We know that the sides of
the Great Pyramid are sloped by 51.843◦ and the orientation of the four sides correspond
roughly to the four cardinal directions. The set of photographs which is used during this
thesis shows a section of the eastern side of the pyramid. If elevation and azimuth of the
normal vector of the approximated plane is computed, one can simply rotate the model
in such way, that the normal vector has an elevation of 90◦ − 51.843◦ = 38.157◦ and an
azimuth of 270◦. Now, the baseline of the scene is roughly parallel to the x−axis with
the face of the pyramid pointing east and the model is sloped by 51.843◦.

Finally, a scale factor must be considered. Meshlab provides a tool to measure distances
in 3D-models. The measured heights and their corresponding target value (beginning

1The octree depth defines in how many cubes the whole scene is subdivided for reconstruction
2The solver divide value defines the depth at which a block Gauss-Seidel solver is used to solve the

Laplacian equation
3http://www.mathworks.com/matlabcentral/fileexchange/5459

http://www.mathworks.com/matlabcentral/fileexchange/5459
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(a) Oriented and trimmed scene

(b) Scene after applying the Poisson Reconstruction

Figure 4.4: Preprocessing of the reconstructed scene in Meshlab
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with the bottom step) are displayed in tab. 4.1. It should be mentioned that due to the
very bumpy surface of the model an exact measurement of the step heights is difficult.
Therefore, the displayed values should be considered as mean heights over the whole
width of a step in the model. As a statement of the exact height of each step can not
be made, a mean scale factor of 1.6 is assumed for the whole model.

Step measured height [m] target height [m] scale factor

1 1 1.49 1.5
2 0.85 1.25 1.5
3 0.80 1.22 1.5
4 0.75 1.12 1.5
5 0.70 1.02 1.5
6 0.65 0.97 1.5
7 0.60 1.00 1.6
8 0.55 0.96 1.8
9 0.50 0.93 1.9
10 0.50 0.86 1.7
11 0.45 0.75 1.7
12 0.40 0.76 1.9

Table 4.1: Measured and target heights of the steps with the estimated scale factor

Here, a further effect appears which is caused by the recording angle of the photographs.
As the photographs were recorded from the bottom of the pyramid, the upper steps
are hidden behind the lower steps, which becomes clear if Fig. 4.5 is regarded. Even if
all steps of the real object have the same height, the visible part of the steps from the
viewpoint of the camera (the red areas in Fig. 4.5) gets smaller with increasing height.
Thus, the reconstruction assumes the height of the steps to decrease which is obviously
not true for the real object. Again, this is an error source which must be taken care
of as such hidden areas not only make a reconstruction difficult, but might produce a
distorted object.

Figure 4.5: Hidden areas caused by the recording angle

The final reconstruction of the scene is presented in Fig. 4.6. We can clearly recognize
the single stones of the real scene. Furthermore, the reconstruction shows a very bumpy
surface, which agrees with the real object as well. Thus, it can be concluded that the
parameters were chosen properly, and the presented method is able to produce a detailed
model of real objects.



4 From photography to a solid body 49

Figure 4.6: Finished reconstruction of the scene

4.1.5 Building a solid body from a surface model

In the last section a three-dimensional model was created which surface consists of trian-
gles. The next step is to fill the inside of the object of which the surface was reconstructed
with mass, i.e. to build a solid body. In this work, the body is filled with columns of
constant density. Their top covers are the triangles given from the surface reconstruc-
tion whereas the base plates are the projections of the surface triangles in the plane
z = 0. The implementation is quite simple as the topology matrix was already created
during the import of the .ply file. As each column has the same geometry (i.e. it is
constructed from two triangles on the top and at the bottom and three rectangles at the
sides), a loop can be used to build the body. Fig. 4.7 shows an example surface and the
corresponding definition of the columns.

As these columns are all polyhedra, the methods which were derived and discussed
in chapter 2 and 3 can be used to compute the gravity and attraction of such a body.
Beforehand, two checks have to be done:
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Figure 4.7: Example of a solid body constructed from a triangulated surface� There might be regions where the model overlaps itself (see Fig. 4.8). These parts
must be considered in some way as the application of the presented method would
assume the empty spaces below the overhang to be filled with mass as well, which
is obviously not correct. This means we need only the attraction of the solid areas
above and/or below the empty space. As the total potential or attraction in a
certain point is computed as the sum over the contribution of each single column,
we can simply assume a negative density for these columns which represent the
lower boundary of the overhang (the red areas in Fig. 4.8). This means that the
contribution of such an overlapping region is removed when the summation over all
columns is performed. To check if there are such areas in the model we can consider
the orientation of the normal vectors of the faces (i.e. triangles). Normal vectors
with a negative elevation point ”downward”, which means that the corresponding
faces would produce an empty column.

Figure 4.8: Side-view of an overhanging area and the corresponding elevation of
the normal vectors



4 From photography to a solid body 51� The triangulation might produce some purely vertical triangles. Their projection
in the (z = 0)-plane would be a line. Thus, the corresponding ”column” has no
volume. Such parts can be identified if the x− and y−coordinates of the vertices
are checked for equality. If two vertices have identical x− and y−coordinates, the
corresponding triangle should be removed from the computation process.

The program which was written for this work constructs the solid body automatically
during the computation of the gravity model. It only needs the topology-information,
which is generated when the model is imported with the program plyread.m.
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Sensitivity analysis 5

In the last chapter, an approach to generate a solid body from a surface model was
described. Now, the findings from chapter 2 and 3 are used to compute the three
components of the attraction of such a solid body. For the evaluation of this model, a
reference model is generated. A comparison of the gravitational quantities derived from
both models will give information about two things:� the correctness of a signal computed with the line integration approach (chapters

2 and 3) and� the overall magnitude of the gravity signal of such a model, i.e. if the difference
between the reconstructed model and the simple body is measurable.

Therefore, this chapter will give information about the need of a detailed surface model
if the inner mass distribution of an object shall be observed. It can be considered that
a gravimeter can observe the z−component of the attraction with a maximal accuracy
of about 1 µGal if all exterior effects (attraction from surrounding bodies, measurement
errors, etc.) can be ruled out. Thus, a more realistic estimate would be an accuracy of
4-5 µGal. This means it must be discussed if the difference between the gravity signal
of the detailed and reference model has a significant magnitude, i.e. is larger than 4-
5 µGal. If this would be the case, one can conclude that the surface of an object must
be well known in order to make accurate conclusions about the inner mass distribution.
Otherwise, the error, which is caused by improper modeling, inhibits the detection of a
(usually very small) signal of inner mass deviations.

5.1 Generation of a reference model

The values for the construction of the reference body are taken from literature (see Tab.
4.1 for the height-values). The outer dimensions are chosen in order to fit with the
reconstructed model from chapter 4. In Fig. 5.1 both bodies are compared. It should
be mentioned that for the detailed model, only the surface is displayed. A proper view
of the whole solid body is not possible due to the parts where steps are overlapping.
However, one has to keep the approach from last section in mind, where the triangles
on the surface were projected in the (z = 0)-plane which allowed to fill the model with
columns to create a solid body.
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(a) West view (b) East view

(c) Top view (d) Front view

(e) South-West view (f) South-East view

Figure 5.1: Different views of the detailed and simplified model



5 Sensitivity analysis 55

X [m]

Y
 [m

]

∆ h

 

 

1 3.5 6 8.5 11

1

3.5

6

8.5

[m
]

−1

0

1

2

3

4

Figure 5.2: Height differences between the surface of the detailed and simplified model

Figure 5.3: Plane in which a grid of computation points with a distance of 5 cm is
created

We see that both models match very well. This actually indicates that the reconstruction
of the scene from photographs was successful and that the values from literature agree
with the real pyramid. Those parts where the simple body overlaps seem to come from
erosion or other external influences. The lower left part shows the biggest differences
between both bodies. Obviously, there are some stones missing. This is visualized in
Fig. 5.2, where the height differences between the simple and the detailed model are
presented1. It should be mentioned that the black regions can be ignored as in these

1A grid of points on the surface of the detailed model can be computed via the built-in matlab functions
griddata or TriScatteredInterp
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areas the detailed model has no data points. If one considers that the surface is the
upper bound of the solid bodies, these differences might already give an impression how
and where the gravity signals of both models will differ as they indicate where the mass
distributions differ.

5.2 Direct comparison detailed vs. simple model

First, the gravity signals of both models are compared. For this, the attraction at com-
putation points, which are located in a plane, is computed. This plane should be defined
in such way, that it is on the one side very close to the models (i.e. only little signal is
lost due to the vertical distance between the model and the computation points) but on
the other side outside of all masses (as we can only measure the signal on the surface).
Therefore, the plane is estimated into the simple stair model and translated in positive
z−direction until it intercepts neither the detailed nor the simple body (see Fig. 5.3).
For the following analysis, only the z−component of the attraction is considered as the
x− and y−components are mostly compensated by surrounding masses and not mea-
surable by a gravimeter.

In Fig. 5.4, the z−component of the attraction of both bodies is presented. First of all,
we see that both models produce a gravity signal with a magnitude up to 300 µGal at
the upper part of the steps whereas the signal is nearly 0 µGal at the bottom stairs.
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Figure 5.4: z−component of the attraction induced by the detailed (left) and simplified
(right) stair model, evaluated at computation points in a plane above the
bodies

Obviously, the signal increases with the height of the steps as the mass, which is located
directly under the computation points, increases as well. This shows that the mass pro-
duces an attraction of which the z−component mainly impacts on the regions directly
above it but has only little influence on surrounding areas.
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Figure 5.5: Difference between the z−component of the attraction in the computation
points induced by the detailed and simplified model

Significant differences occur in the left area. If the height differences (and thus the differ-
ent mass distributions) between both bodies are reconsidered (see Fig. 5.2), it becomes
clear that this deviation is caused by those areas where the models differ. Therefore,
Fig. 5.5 shows the differences between the attractions of both bodies. It is obvious
that the difference between both models is significant as the attraction differs up to a
magnitude of 50 µGal. If the black areas in Fig. 5.5 (the bottom steps) are compared
with the height differences in Fig. 5.2, we see that the detailed model exceeds the simple
model in these areas. Even if the height difference is less than 1 m, the attraction differs
about 50 µGal. The bright areas at the upper left edge correspond to a large hole in
the detailed model (see Fig. 5.1). Here, we see a difference in the attraction of about
50 µGal as well. Even if there are indeed some areas where only small differences in the
attraction are identifiable, most parts show a significant deviation.

If the case study from section 3.4 is reconsidered in this context, it becomes obvious
that the occurring differences due to missing stones, erosion, etc. between the detailed
and simple model definitely cause a significant difference in the gravity signal. As a
small hole on the surface already produced a signal with a strength up to 24 µGal it is
obvious that using the simple body instead of the detailed model for analyzing inner
mass deviations would produce large errors in the gravity signal due to mis-modeling.
By comparing the signal strength of the differences in Fig. 5.5 and the signal strength
of inner mass deviations from section 3.4, it can be said that and these errors due to
mis-modeling would deny any conclusion about the inner mass distribution of a model.
In other words, we need detailed knowledge about the surface of a body if we want to
gain reasonable information about inner mass deviations.

However, a minimum level of detail of the model is hard to specify as it depends on
the dimension, shape, density and inner mass distribution of an object. But if the find-
ings from the case study in section 3.4 are considered, one should be able to appraise
the required accuracy of a model if inner mass deviations shall be observed with micro-
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gravimetry.

To come back to the initial question it can be concluded that a detailed surface model
of the Great Pyramid would allow the observation of inner mass deviations. But if such
a model is not available, the impact (i.e. the error) of a simplified surface model would
be so large that the signal of mass deviations in the inside can not be separated.



Summary and outlook 6

The objective of this thesis is to discover the influence of the outer boundary, i.e. the
surface, of a solid body on its gravity signal. It was discussed if a detailed model is
needed if we want to gain information about the inner structure of an object. Therefore,
a model of a small section of the Great Pyramid in Giza was reconstructed with the
web-application ARC3D. This model was preprocessed with the open-source software
Meshlab to get a detailed, properly scaled and oriented stair model. By using the infor-
mation gained from the three-dimensional surface triangulation, this yet empty hull was
filled with columns of constant density to build a solid body. Finally, the gravitational
quantities of this body were computed and compared with a reference model.

Therefore, an approach was discussed which basically transformed the volume integrals
in Newton’s law of gravity into line integrals by applying the Gaussian divergence theo-
rem twice. A program which is based on this algorithm was written and validated with
similar tools. The results showed that the approach can be used for the computation
of gravitational quantities of solid bodies as the differences between the presented ap-
proach and other tools were caused by computational inaccuracies and thus far off the
measuring accuracy of a gravimeter.

In the following case study the impact of a varying mass distribution in a body on
its gravity signal was examined. It is shown that already small deviations near the sur-
face of a body might produce a measurable signal. Thus, we need detailed knowledge
about the surface if we want to make conclusions about the inner mass distribution of
a body. In this section, only a few cases were considered. As general knowledge about
the gravity signal of arbitrary bodies would be interesting, further investigations should
deal with bodies and mass deviations with varying size, shape and density. This would
allow general statements about the impact and signal characteristics of the inner mass
distribution of arbitrary objects.

In chapter 4, the successive steps from photographs to the solid body were discussed.
Therefore, some guidelines about the optimal characteristics of photographs for the
presented approach were given. It is shown that the web-service ARC3D provides high-
detailed reconstructions even if the used input photographs do not fulfill all of the de-
scribed guidelines. As there were no reference points in both the model and a higher-level
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system or model available, matching or georeferencing of the reconstructed scene was
not possible. This is an important point as the observation with microgravimetry needs
knowledge about the exact location of the observed object. Thus, for future projects it
must be ensured that feature points are observed in order to perform a proper georefer-
encation.

The reconstructed model was filled with columns of constant density to create a solid
body. However, using a constant density for the hole body is improper as most objects
have a varying mass distribution. If the findings from the case study are reconsidered
in this context, it should be cleared in further investigations to what extend a varying
density impacts on the gravity signal of a body.

In chapter 5, the z-component of the gravitational attraction of the detailed model
and a simplified reference model on computation points located in a plane closely to
the surface was computed. The resulting signals showed great differences which were
caused by the differing dimension of both bodies. It is shown that the mass deviations
caused by missing stones, erosion, etc. produce a significant gravity signal which denies
the replacement of the detailed model with a simple reference model. Thus, we need
a detailed surface model if we want to gain reasonable information about the interior
mass distribution. The signal caused by deviations of the surface had a magnitude which
would superimpose the signal from inner mass deviations and the needed signal would
vanish in the errors caused by mis-modeling of the body.

To conclude these findings it can be said that the observation of a small object with
microgravimetry requires detailed knowledge about its outer surface. This might be e.g.
a surface model like in this thesis or, if we are dealing with a simple body, it can be
constructed with elements like cubics or polyhedra while the minimum level of detail
depends on the size, shape and density of the object of interest. Thus, future investiga-
tions should deal with general characteristics of the gravity signal of small bodies. As
this work only considered a small section of the Great Pyramid and some bodies which
were derived from the stair structure of the pyramid, the presented results hold only for
these objects. However, it would be of advantage if the gravitational characteristics of a
body can be appraised at an early stage. This would allow reasonable statements about
the required level of detail of a model if it shall be observed with microgravimetry.
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Attraction and potential of a solid

body A

Two bodies with the masses m1 and m2 attract each other, according to Newton’s law
of gravitation, with the force

F = G
m1m2

l2
(A.1)

where

F gravitational force
G Newtonian graitational constant with G = 6.67259 · 10−11m3/kg·s2

m1, m2 masses of the bodies
l distance between m1 and m2

Usually, one assumes the mass m1 (m2) to have the coordinates ξ, η, ζ (x, y, z) in a
fixed Cartesian coordinate system. Thus, the distance l between both masses is given
through

l =

√

(x − ξ)2 + (y − η)2 + (z − ζ)2 (A.2)

Although the masses m1 and m2 attract each other in a completely symmetrical way, it
is convenient to call one of them the attracting mass and the other the attracted mass
(Hofmann-Wellenhof & Moritz, 2006). In the following, the attracted mass located at
P (x, y, z) is set equal to unity and the attracting mass is denoted by m. As the force F
is represented by a vector F with magnitude F in a 3d-coordinate system xyz (see fig.
A), its three components can be written as

X = −F cos α = −Gm

l2
x − ξ

l
= −Gm

x − ξ

l3
(A.3)

Y = −F cos β = −Gm

l2
y − η

l
= −Gm

y − η

l3
(A.4)

Z = −F cos γ = −Gm

l2
z − ζ

l
= −Gm

z − ζ

l3
(A.5)

If it is assumed that there is not only one point mass but a system of several point
masses m1,m2, ...,mn, the force acting on the unity mass located at P is given through
the principle of superposition and thus

F = G

n
∑

1

mi

l2i
(A.6)
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Figure A.1: Components of the gravitaional force vector

Again, the three components of F can be expressed in terms of the coordinates of P and
mi:

X = −G
n

∑

i=1

mi
x − ξi

l3i
(A.7)

Y = −G

n
∑

i=1

mi
y − ηi

l3i
(A.8)

Z = −G

n
∑

i=1

mi
z − ζi

l3i
(A.9)

Assuming the point masses mi to be distributed continuously over a body with volume
v (see fig. A) and the density

ρ =
dm

dv
(A.10)

where

dv element of volume (i.e. dv = dξdηdζ)
dm element of mass

the continuous expression of equation (A.6) reads as

F = G

˚

v

dm

l2
= G

˚

v

ρ

l2
dv (A.11)

However, for this work it is adequate to assume a constant density over the whole body.

By introducing a scalar function

V =
Gm

l
(A.12)
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Figure A.2: Force vector of an element of mass

which is called the potential of gravitation, the components of the force vector F are
given through the first derivatives of this function:

X =
∂V

∂x
, Y =

∂V

∂y
, Z =

∂V

∂z
(A.13)

This is obvious since the derivative of the reciprocal distance in is given through

∂

∂x

1

l
= − 1

l2
∂l

∂x
= − 1

l2
x − ξ

l
= −x − ξ

l3
(A.14)

Just like the attraction, the potential can be expanded for a continuous body as well:

V = G

˚

v

dm

l
= Gρ

˚

v

1

l
dv (A.15)

It was already shown in equation (A.13) that the elements of the force vector F are simply
the first derivatives of the potential. This is also true for the continuous expression of
the potential (A.15):

X =
∂V

∂x
= Gρ

∂

∂x

˚

v

1

l
dv = Gρ

˚

v

∂

∂x

1

l
dv = −Gρ

˚

v

x − ξ

l3
dv (A.16)

This relation holds of course for the y− and z−component of the force vector as well.
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Line-wise validation, further

results B

Like in chapter, 6 further lines are created, along which all three components of the
acceleration are computed. Each line consists of 4000 data points. Thus, a comparison
allows a reasonable statement about the accuracy of all three programs. We see similar
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Figure B.1: Location of further lines parallel to the y− and z− axis with varying z−
and x−component along which the acceleration is computed

results compared to the lines parallel to the x−axis. The deviations of accrrp.m and
grvmag3d.m from polygrav.m seem to be pure noise which is caused by computational
inaccuracies due to double values. However, the deviations from grvmag3d.m seem to be
a bit larger. As the computation procedure in accrrp.m is purely based on analytical
solutions and the deviations from polygrav.m are very small, it can be concluded that
using the transformation of the volume- to line-integrals for the evaluation of gravita-
tional quantities from a solid body is valid and produces results of similar accuracy.
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Figure B.6: Difference between the acceleration computed with polygrav.m and
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