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Symbols

Symbols

b unit vector of magnetic induction
B magnetic induction
B magnetic field multiplied with charge to mass ratio
c speed of light

D
(κ) κth total derivative operator

eN Euclidian error norm
E electric field
E electric field multiplied with charge to mass ratio
fα velocity distribution function of plasma species α
FL Lorentz force
F electromagnetic fields
j vector of current density

K selected formal order
m mass of particle
m0 rest mass of particle
Mα;ν mass of ν-th macro particle of species α
p relativistic impulse

q charge of particle
qnum numeric computed value
qana analytic computed value
q vector of charge and current density

Qα;ν charge of ν-th macro particle of species α
U relativistic velocity
v velocity of particle
vD drift velocity
x position of particle
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Symbols

α plasma species
ακ Runge-Kutta coefficient at intermediate stage κ
βκλ Runge-Kutta coefficient at κλ
γ Lorentz factor
γκ Runge-Kutta coefficient at intermediate stage κ
γD relativistic factor calculated with drift velocity vD
γ̂ inverse Lorentz factor
δ discretization time interval
ǫ0 electric permittivity
µ0 magnetic permeability
ρ charge density
ω angular velocity
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Abbreviations

Abbreviations

rhs right hand side
EOC effective order of convergence
FP Fokker-Planck
FV finite volume
MHD magnetohydro dynamics
MV Maxwell-Vlasov
PIC particle in cell
LF leapfrog
RK Runge-Kutta
TE Taylor series expansion
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Kurzfassung

Kurzfassung

Methode höherer Ordnung zur Bewegung von

Ladungsträgern für ein PIC-Verfahren in der numerischen

Simulation von Plasmaströmungen

Für die numerische Simulation von Plasmaströmungen mit Hilfe der Particle
in Cell (PIC) Technik wird in dieser Arbeit ein neues Verfahren zur Berech-
nung der relativistischen Bewegung von Ladungen in elektromagnetischen Feldern
vorgestellt. Diese neue explizite Einschritt-Integrationsmethode basiert auf der
Taylorreihenentwicklung der Geschwindigkeit.

Als Vergleich werden in dieser Arbeit die explizite Leapfrog-Methode nach Boris,
sowie ein explizites Runge-Kutta Verfahren verwendet. Die spezielle, aber ein-
fache Konstruktion des Leapfrog-Verfahrens nach Boris ist sehr effizient und sta-
bil. Dieses Konstruktion beschränkt das Verfahren aber auf eine Konvergenzrate
2.-ter Ordnung. Mit einem Runge-Kutta Verfahren gibt es bereits explizite Inte-
grationsverfahren höherer Ordnung, welche jedoch die hohe Ordnung nur durch
mehrfache Auswertung der Newtonschen Bewegungsgleichung an den Stützstellen
erreichen. Dazu muss der gesamten PIC-Kreislauf entsprechend häufig ausgeführt
werden, was den hohen zeitlichen Rechenaufwand begründet.

Die vorgestellte Taylorreihenentwicklung, angewandt auf die relativistische New-
tonsche Bewegungsgleichung, ist die erste explizite Einschritt-Methode höherer
Ordnung, welche zur Lösung dieser Gleichung favorisiert und angewandt wird. Die
Ausführung der Reihenentwicklung bis zur gewünschten Verfahrensordnung führt
auf höhere Ableitungen der relativistischen Geschwindigkeit, sowie des inversen
Lorentzfaktors. Die Abhängigkeit dieser Größen von Zeit und Raum, sowie der
relativistischen Geschwindigkeit selbst, führt auf einen komplizierten Ausdruck
für den Differenzialoperator. Dieser Operator kann jedoch unter Ausnutzung der
hierarchischen Struktur der totalen Ableitungen, durch ein Zusammensetzen aus
bereits bekannten Operatoren, zur Berechnung der niederen Ableitungen, gebildet
werden. Die in dem Verfahren auftretenden totalen Ableitungen der elektromag-
netischen Felder werden durch die entsprechenden Ableitungsregeln aus den par-
tiellen Ableitungen nach der Zeit und im Raum, sowie deren gemischte Ableitun-
gen gebildet. Alle dafür notwendigen Ableitungen müssen bereits durch Verfahren
höherer Ordnung zur Lösung der Maxwellgleichung gegeben sein.

Zur Bewertung der neuen Integrationsmethode und zum Nachweis der Funktion
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wird die Taylorreihenentwicklung an mehreren Beispielen getestet. Für den nicht-
relativistischen Bereich kann die Methode an Beispielen mit zeit- und raumab-
hängigen elektrischen Feldern überprüft werden. Mit dem letzten Beispiel wird
das Verhalten des Verfahrens im relativistischen Bereich untersucht, wenn der
Lorentzfaktor und deren Ableitungen existieren und für die gesamte Bewegung
nicht mehr zu vernachlässigen sind. In allen Tests konnte nachgewiesen wer-
den, dass die experimentell bestimmte Verfahrensordnung mit der theoretischen
Konvergenzordnung bereinstimmt. Mit jeder Erhöhung der Verfahrensordnungen,
konnte die Genauigkeit gesteigert werden, sowie die Effizienz der Berechnung.
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Abstract

Abstract

Numerical simulations of plasma flows based on the Particle in Cell (PIC) tech-
nique need a procedure for the integration of Newtons relativistic equation of
motion for charged particles. In this work a new explicit single step integration
method based on a Taylor series expansion of particles velocity is presented.

Up to now the most often used particle push methods are the enhanced leapfrog
scheme by J.P. Boris and the classic Runge-Kutta scheme. The special construc-
tion of the explicit Boris leapfrog scheme yields to a very efficient and robust
integration, but the scheme is limited to a second order convergence rate. For
a high order explicit integration the Runge-Kutta method is the only one and
achieves its convergence rates by evaluating Newton’s equation of motion at dif-
ferent interim stages. The calculation of the these stages with the complete PIC

cycle is the most expensive part of this scheme. Both methods serve as a reference
in this work.

The presented truncated Taylor series expansion applied on Newtons equation
of motion for charged particle is the first high order explicit single step integra-
tion method. The realization of this expansion up to the desired truncation order
yields to higher total derivatives of the relativistic velocity and the inverse Lorentz
factor. The dependency of these derivatives in time, space and the relativistic ve-
locity itself leads to a complex differential operator. To compute the higher total
derivatives of the relativistic velocity, the hierarchical structure of this procedure
is utilized to construct the operators by a rearrangement of previously defined op-
erators. Furthermore the unknown total derivatives of the electromagnetic fields
are replaced by the application of simple differentiation rules by the given high
order partial derivatives in time and space as well as the mixed derivatives. These
higher temporal and spatial derivatives of the electromagnetic fields are a prereq-
uisite of the new integration scheme and have to be calculated by a high order
Maxwell solver.

To assess and verify this new integration method the Taylor series expansion
was tested on different examples in the non-relativistic case on space and time
dependent electromagnetic fields and in the relativistic region where the Lorentz
factor with all total derivatives are present. For all examples the experimental
order corresponds to the selected formal order and a gain in accuracy and efficiency
by an increase of the selected formal order is successfully demonstrated.
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1 Introduction

This work is part of the project “Numerical Modeling and Simulation of Highly
Rarefied Plasma Flows” a cooperation between IAG (Institute of Aerodynam-
ics and Gas Dynamics, University Stuttgart) , IHM (Institute of Pulsed Power
and Microwave Technology, Research Center Karlsruhe) , IRS (Institute of Space
Systems, University Stuttgart) and HLRS (High Performance Computing Center
Stuttgart) within the lunar mission program of the IRS. In the frame of this pro-
gram a “small satellite” is under development where the thrust for the transfer
from the earth orbit to the moon is generated by electric propulsion systems only.
Of special interest for numerical simulation is the type of Pulsed Plasma Thruster
(PPT) which is characterized by its simple construction and an operation mode of
plasma pulses. The short duration of a single pulse of the order of microseconds
and the degree of rarefaction, provide a plasma regime of non equilibrium condi-
tion. This work lines in a series of recent developments of a plasma code based
on the Particle In Cell (PIC) technique for a consistent high order solution of the
complete Boltzmann equation, called PicLas.

1.1 Motivation and Scientific Context

The modular design of the PicLas code offers the opportunity of being flexible
during the development of new models for specific aspects in the field of plasma
physics and to evaluate new algorithms for selective parts of the code. The PicLas
code consists of three main building blocks as depicted in the block diagram in
Figure 1.1. The second block computes momentum and energy exchanges due to
particle collisions, without consideration of the Lorentz force, as well as chemical
reactions by means of a Direct Simulation Monte Carlo (DSMC) based method.
In the third block the Fokker-Planck module is used to model the effect of collision
relaxations of electrons and ions on their velocity field.

Four modules in the first block form a PIC cycle to compute the interactions be-
tween charged particles and electromagnetic fields. To reduce the computational
cost and to increase the accuracy at the same time a chance is open up with
the strategy of single step high order schemes. For the construction of a con-
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Figure 1.1: Different building blocks of the used plasma code, called PicLas.

sistent high order Maxwell-Vlasov block it is necessary that all modules inside
provide the same formal order. Advances in solving hyperbolic equation systems
like the Maxwell equations with high order of accuracy by applying the Cauchy-
Kovalevskaya procedure founded the need for a particle treatment which sustain
the order of the Maxwell solver.

Within particle treatment several implicit and explicit schemes are developed in
the past [16, 3] for the integration of the relativistic equation of motion. The
most commonly used methods are the Boris leapfrog method [4] proposed in 1970
and the classical Runge-Kutta integration. Both methods serve in this work as
a reference. The Boris leapfrog method is an explicit scheme and separates the
integration of Newtons equation of motion into an electric and magnetic part.
By construction this scheme is limited to a second order convergence rate. To
increase the accuracy of a simulation with the Boris scheme the discretization in
time and space has to be refined. Only with the Runge-Kutta method the option of
increasing the efficiency of a simulation by using a high order integration method
was given. The Runge-Kutta method calculates the more accurate results with
the aid of several interim stages within the given integration interval. For all
interims stages the corresponding values of the electromagnetic field are needed
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1.2 Objectives of this Work

and have to be calculated by the complete PIC cycle. In the years of 1968 to 1972
E. Fehlberg [10, 11, 12] proposed coefficients for Runge-Kutta integration which
are used in this work.

1.2 Objectives of this Work

In this work a new integration scheme of the relativistic Newton equation is pre-
sented and compared to the classical Boris leapfrog scheme and high order Runge-
Kutta integration methods. The presented new integration scheme is a high order
single step method and is capable to take advantage of the given higher temporal
and spatial derivatives of the electromagnetic field calculated naturally by a high
order Maxwell solver. To perform this Taylor series expansion, the unknown higher
total derivatives of the relativistic velocity are replaced by their lower derivatives
until the first derivative can be evaluated by Newtons equation of motion in the
manner of a Cauchy-Kovalevskaya procedure. During this procedure additional
higher total derivatives of the electromagnetic fields occur which are computed by
applying differentiation rules with the given partial derivatives in time and space.
These partial derivatives are a prerequisite of the new integration scheme.

1.3 Outline

In the following this work is structured into 4 chapters. In chapter 2 of this work
the general microscopic model based on the Boltzmann equation is described.
To compute numerically a solution of plasma flows with the strategy of the PIC

approach the essential components and their interactions are explained. The part
of particle computation in the PIC cycle is characterized in detail in chapter 3.
The working principle of the Boris leapfrog scheme and the Runge-Kutta method
for the integration of Newton’s equation of motion for charged particles is given
and followed by the presentation of the Taylor series expansion in detail. Chapter
4 presents four numeric experiments to validate and asses the schemes based
on the Taylor series expansion approach. The accuracy and efficiency of the
new integration method is compared to the classic Boris leapfrog scheme and the
Runge-Kutta process.
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2 Non Equilibrium Charged Particle Flows

To model the physics of a fluid consisting of charged particles from a macroscopic
point of view a continuous approach, as a two fluid model is appropriate. Here the
fundamental laws of conservation of mass, momentum and energy are linked with
the relations of electrodynamics and Ohm’s resistive law. Further approximations
finally result in the equations of magnetohydro dynamics [22].

The plasma flows of interest in this thesis are characterized by very low densities
and in parts of high energy particles, where relativistic effects occurs. As a conse-
quence the continuous and close-to-equilibrium assumptions operate in their limit
range and correction techniques are also hardly applicable. In these situations a
kinetic description is necessary.

If we consider only a restricted physical domain and limit in particular the num-
ber of particles and the simulation time a microscopic description is numerically
feasible. A further advantage of the transition to a microscopic point of view is
the inclusion of physical and chemical non equilibrium states into the numerical
model.

2.1 Boltzmann Equation for Rarefied Plasma Flows

To characterize the physical properties of plasma flows from the microscopic point
of view the most general description is the Boltzmann equation for the velocity
distribution function fα of plasma of a species α. The function fα defines a
probability to find a particle of species α in the phase space volume (dx, dv). The
evolution of this probability function is given by (see, for instance [26, 18])

∂fα
∂t

+ v · ∇xfα + a · ∇vfα =

(
δfα
δt

)

col

. (2.1)

The total derivative of fα on the left side consists of the temporal derivative, the
propagation of fα in the spatial domain with velocity v and in velocity space with
acceleration a. The dynamic evolution of this function is affected by the source
term on the right hand side rhs, which takes the collisional contributions of the
particles into account.
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PIC Method

2.1.1 Source Terms of the Boltzmann Equations

The sources on the rhs of (2.1) is the Boltzmann collision integral and represents
the rate of change of fα due to microscopic particle collisions. It can be written
as

(
δfα
δt

)

col

=
∑

β

nβ(x, t)

∫

d3w dΩ g Qαβ

[

fα(v
′)fβ(w

′)− fα(v)fβ(w)

]

, (2.2)

where the prime refers to the value of a quantity after a collision (v′ = v+∆v and
w′ = w + ∆w) and unprimed denotes the values before the collision. The index
β runs over all “scattering” populations (also called field particles), g = v − w is
the relative velocity, Qαβ = Qαβ(g, θ, φ) is the differential scattering cross section
between the particles of the species α and β. The element of solid angle dΩ is
given by dΩ = sin θ dθ dφ, where θ and φ denote the scattering and azimuthal
angle, respectively. In the situation of charged particle collisions the differential
cross section is given by the classical Rutherford formula. Then, for small changes
in velocity the collision integral can be approximated. After some straightforward
manipulations and reformulations one obtains the Fokker-Planck (FP) equation
(see, for instance, [24, 19])

(
δfα
δt

)

col

=
∑

β






−
∑

j

∂

∂vj

(

F
(αβ)
j fα

)

+
1

2

∑

j,k

∂

∂vk

(

D
(αβ)
jk fα

)






, (2.3)

which represents the lowest order approximations of the Boltzmann integral. The
central quantities in the latter equation are the coefficients of the dynamical fric-
tion force F

(αβ)
j = F

(αβ)
j (v, x, t) and the diffusion tensor D

(αβ)
jk = D

(αβ)
jk (v, x, t).

The indices j and k runs over all three space dimensions and denote the compo-
nents of corresponding quantities. Very recently the FP collision operator (2.3)
for elastic electron-electron and electron-ion Coulomb scattering in a plasma has
been solved numerically on the basis of PIC methods [7].

2.1.2 The Maxwell-Vlasov Equation

A class of plasma flows characterized by dominating collective effects when indi-
vidual events of particle interactions become less significant, the collision term in
(2.1) can be neglected, and one obtains the Vlasov equation (see, e.g. [20] and
references given therein) where the total derivative d/dt of function fα vanishes.
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2.1 Boltzmann Equation for Rarefied Plasma Flows

In this case function fα is conserved and (2.1) is a transport equation of function
fα

∂fα
∂t

+ v · ∇x fα +
FL

mα
· ∇p fα = 0 , x ∈ D ⊂ R

3, p ∈ R
3, t > 0 . (2.4)

Here, (x, p) is a point in phase space D × R
3, ∇p denotes the derivative with

respect to the relativistic momentum

p = mα γ v (2.5)

where the relativistic Lorentz factor γ is defined as γ2 = 1 +
(

p

mα c

)2

with the

speed of light in vaccuum c (see Appendix B for more details). The Lorentz force
FL is given by

FL(v, x, t) = qα
[

E(x, t) + v ×B(x, t)
]

. (2.6)

The evolution of the electromagnetic fields which appear in the Lorentz force is
given by the full set of Maxwell equations in vacuum. This system consists of the
two hyperbolic evolution equations

∂E

∂t
− c2 ∇x ×B = − ǫ−1

0 j , (2.7)

∂B

∂t
+∇x × E = 0 , (2.8)

and the elliptic part established by Gauss law and the divergence-free condition
for the magnetic induction

∇x · E = ǫ−1
0 ρ , (2.9)

∇x · B = 0 , (2.10)

where ρ and j denote the charge and current density, respectively. To extend
Maxwells equation system to the evolution of the electromagnetic fields in mate-
rials, a substitution is needed of the electric and magnetic field in equation (2.7)
and the divergence condition (2.9) by D = ǫE and B = µH . Here µ and ǫ denote
the electric permittivity and the magnetic permeability of the material. With the
values in vacuum µ0 and ǫ0 the speed of light in vacuum is define by ǫ0 µ0 c

2 = 1.

The self consistent interplay of the particle distribution function with the electro-
magnetic fields is manifested by calculating the lowest moments of all distribution
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PIC Method

functions:

ρ(x, t) =
∑

σ

qσ

∫

R3

d3p fσ(p, x, t) , (2.11)

j(x, t) =
∑

σ

qσ

∫

R3

d3p v(p) fσ(p, x, t) , (2.12)

where the sums run over all species in the plasma. These source terms for the
Maxwell equations (2.7),(2.9) together with the conservation equation (2.4) for
the distribution function fα set up the time dependent non linear Maxwell-Vlasov
(MV) problem.

2.1.3 The Maxwell-Lorentz Equation

A highly effective and powerful strategy to tackle the MV equations numerically
is based on particle methods [16, 3]. Here, the (continuous) solution fα of the
Vlasov equation (2.4) is approximated by a set of Nα discrete fluid elements,
usually called macroparticles. The macroparticles are centered at the phase space

coordinates
(

xν(t), pν(t)
)

1≤ν≤Nα

and possess (constant) weights ων which may

be interpreted as the number of elementary constituents of the νth particle. This
particle approximation f̃α consists of a linear combination of Dirac functions in
phase space and reads as

f̃α(p, x, t) =

Nα∑

ν=1

ων δ
[

p− p
ν
(t)
]

δ
[

x− x ν(t)
]

. (2.13)

Note, that this discrete distribution function also satisfies the Vlasov equation (2.4)
(in the sense of distributions; see, e.g. [21]). For this, one applies the theory of
characteristics to the Vlasov equation and obtains that the macroparticles are
transported according to the classical laws of dynamics

d

dt

[

γ ν(t) v ν(t)
]

=
Qα; ν

Mα; ν

[

E
(

x ν(t), t
)

+v ν ×B
(

x ν(t), t
)]

, (2.14)

dx ν(t)

dt
= v ν(t) (2.15)

with given initial data x ν(0) and v ν(0) along the characteristics, where γ ν(t)
denotes the relativistic factor. These equations – also called Lorentz equations –
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2.2 A Numerical Model for Computational Plasma Physics

describe the evolution of the ν-th macroparticle with mass Mα; ν = ωv mα and
charge Qα; ν = ωv qα in phase space due to the external and/or self fields E and B.
It is noteworthy to mention that the number of elementary constituents cancels
out in equation (2.14) and the motion of a macroparticle is the same as a single
charge of species “α”. Finally, using the discrete distribution function (2.13) to
perform the integrations in (2.11) and (2.12), the source terms of the Maxwell
equations now read as

ρ(x, t) =
∑

σ

Nσ∑

ν=1

Qσ; ν δ
[

x− x ν(t)
]

(2.16)

j(x, t) =
∑

σ

Nσ∑

ν=1

Qσ; ν v ν(p ν
) δ
[

x− x ν(t)
]

. (2.17)

The Maxwell equations with these source terms and the Lorentz equations form
together the Maxwell-Lorentz model, the starting point of numerical approxima-
tions.

2.2 A Numerical Model for Computational Plasma Physics

Studying kinetic effects, in particular, in plasma physics a sufficiently large amount
of macroparticles is necessary. However, the calculation of all direct particle-
particle Coulomb forces is hardly possible even on nowadays supercomputers.
Especially for very large systems, a tractable way to circumvent this difficulty is
the PIC method [16, 3] which has a history over more than five decades [2].
The peculiarities of the PIC method are the powerful particle-mesh techniques (see
Fig. 2.1) that couple an Eulerian grid based model for the solution of Maxwell
equation with a Lagrangian particle based solver for the laws of dynamics (2.14)
and (2.15). To explain a PIC cycle run for one timestep of ∆t (see Fig. (2.1)) the
starting point is set to module Assignment. This module transfers particle based
data of charge and current density from Lagrangian into the Eulerian space. At
first a localization for each particle is necessary to get the cell that contains it,
then the charge and current density may also be assigned to surrounding nodes
or cells according to the chosen shape function.
With the sources at the current time level the evolution of the electromagnetic
fields up to time level t+∆t is obtained by the numerical solution of the Maxwell
equations in the module Maxwell Solver.
With module Interpolation the electromagnetic fields calculated in the Eulerian
space are transfered to the Lagrangian space by interpolating the fields onto par-
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Figure 2.1: Different building blocks of the classical PIC-approach.

ticle positions. When the electromagnetic force on particle positions is known, the
new phase space coordinates are determined by solving numerically the Lorentz
equations in module Lorentz Solver.

2.2.1 Exchange of Mesh and Particle Based Information

In order to obtain ρ(x, t) and j(x, t) everywhere in the space, at the nodes or center
of cells of the computational grid (where the Maxwell equations are solved) some
kind of regularization is necessary. The regularization is established by a convo-
lution of the charge and current density with the (shape) function S according
to

ρh(x, t) =

∞∫

−∞

d3uS (x− u) ρ(u, t) =
∑

σ

Nσ∑

ν=1

Qσ; νS
(

x− x ν(t)
)

(2.18)

and

j
h
(x, t) =

∞∫

−∞

d3uS (x− u) j(u, t) =
∑

σ

Nσ∑

ν=1

Qσ; ν v ν S
(

x− x ν(t)
)

, (2.19)
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respectively, where the subscript indicates the assignment to a grid cell h. It is
common to use for the shape function B-splines of fixed order [16]. In the following
we introduce discrete B-splines which are interesting for numerical purposes. For
this we start with the right side normalized rectangular “top hat” function defined
as

β
[0]

[i,i+1]
(x) = β

[0]

[xi,xi+1]
(x) =

{
1 , if x ∈ [xi, xi+1)
0 , otherwise

. (2.20)

Then, the higher-order discrete B-splines are constructed recursively according to

β
[k]
[i,...,i+k+1](x) =

x− xi

xi+k − xi
β
[k−1]
[i,...,i+k](x)

+
xi+k+1 − x

xi+k+1 − xi+1
β
[k−1]
[i+1,...,i+k+1](x) . (2.21)

It can be shown by induction [23] that these splines have the following properties

β
[k]
[i,...,i+k+1](x) = 0 , x /∈ (xi, xi+1) , k ≥ 1 , (2.22)

β
[k]

[i,...,i+k+1](x) ∈ (0, 1] , x ∈ (xi, xi+1) , (2.23)

∞∑

i=−∞

β
[k]
[i,...,i+k+1](x) =

k∑

i=j−k

β
[k]
[i,...,i+k+1](x) = 1 , ∀x ∈ [xj , xj+1] .(2.24)

Applying the recursion relation (2.21) with (2.20), one explicitly obtains for the
discrete B-splines up to third order

β
[1]

[i,i+1,i+2](x) =
x− xi

H
β
[0]

[i,i+1](x) +
xi+2 − x

H
β
[0]

[i+1,i+2](x) , (2.25)

β
[2]

[i,i+1,i+2,i+3](x) =
(x− xi)

2

2H2
β
[0]

[i,i+1](x)

+

[
(x− xi+1)(xi+2 − x)

H2
+

1

2

]

β
[0]
[i+1,i+2](x)

+
(xi+3 − x)2

2H2
β
[0]

[i+2,i+3]
(x) (2.26)
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and

β
[3]

[i,i+1,i+2,i+3,i+4]
(x)

=
(x− xi)

3

6H3
β
[0]

[i,i+1](x)

+

[
(x− xi+1)

2(xi+2 − x)

2H3
+

(x− xi+1)

2H
+

1

6

]

β
[0]

[i+1,i+2](x)

+

[
(x− xi+2)(xi+3 − x)2

2H3
+

(xi+3 − x)

2H
+

1

6

]

β
[0]
[i+2,i+3](x)

+
(xi+4 − x)3

6H3
β
[0]

[i+3,i+4](x) , (2.27)

respectively, where equidistant grid spacing, H = xi+1 − xi, ∀i, is assumed.
If the ν-th particle is located at time t in the interval xν(t) ∈ [xj , xj+1], we obtain
from the partition of unity property (2.24) for the B-spline of order one that

β
[1]

[j−1,j,j+1](xν) + β
[1]

[j,j+1,j+2](xν) = 1 (2.28)

holds, where the first and second spline is centered around xj and xj+1 (“trian-
gle” function), respectively. As a consequence of the basic B-spline (2.20), one
concludes that the assignment weights to these nodes are given by

Wj =
xj+1 − xν

H
and Wj+1 =

xν − xj

H
, (2.29)

resulting in, for instance, a charge density assignment of ρj+1 = (Wj Qσ; ν)/H
and ρj(Wj+1 Qσ; ν)/H . Vice versa, when the numerical solution of the Maxwell
equations is available in the nodes of the computational grid, then, for example,
the electrical field at the particle position xν(t) is given by

E(xν , t) = β
[1]

[j−1,j,j+1](xν)Ej + β
[1]

[j,j+1,j+2](xν)Ej+1

= Wj Ej +Wj+1 Ej+1 , (2.30)

which represents a linear interpolation of the field onto the particle location. Note
however, that in the case of B-spline kernels greater than one, the determination
of the electromagnetic fields at the particle position is no longer an interpolation,
because the fields enter with additional, not position dependent weightings. For
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instance, a B-spline of order three yields

E(xν , t) =
(xj+1 − xν)

3

6H3
Ej−1

+

[
(xν − xj)(xj+1 − xν)

2

2H3
+

(xj+1 − xν)

2H
+

1

6

]

Ej

+

[
(xν − xj)

2(xj+1 − xν)

2H3
+

(xν − xj)

2H
+

1

6

]

Ej+1

+
(xν − xj)

3

6H3
Ej+2 . (2.31)

Finally, we remark that the B-spline approach can be extended in straightforward
manner when a structured computational grid is available. For example, in two
spatial dimensions the first order B-spline kernel provide the well-known area-
weighting method for squares and rectangles which can be further augmented to
the linear volume weighting technique [8].

2.2.2 Finite Volume Solver for the PIC Cycle

In order to sketch out briefly the finite volume (FV) approach for the Maxwell
equations, it is convenient to use the conservation form of the Maxwell equations
which is the system of linear hyperbolic evolution equations

∂u

∂t
+

3∑

i=1

K
i

∂u

∂xi
= s , (2.32)

where

u(x, t) =
(

Ex, Ey, Ez, Bx, By, Bz

)T

(2.33)

and ∂/∂xi abbreviates the derivation with respect to space. The block structured
matrices K

i
∈ R

6×6 are given by

K
i
=

(

0 c2M
i

MT

i
0

)

i = 1, 2, 3 (2.34)

with the 3× 3 matrices

M
1
=





0 0 0
0 0 1
0 −1 0



 , M
2
=





0 0 −1
0 0 0
1 0 0



 , (2.35)
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M
3
=





0 1 0
−1 0 0
0 0 0



 . (2.36)

For more details concerning the Maxwell equations in conservation form we refer
the reader to Appendix C. The source term on the right hand side of equation
(2.32) reads as

s(x, t) = −ǫ−1
0

(

jx, jy, jz , 0, 0, 0
)T

, (2.37)

where the components of the current density enters only.

We assume that the domain of computation Q is discretized by N non-overlapping

grid cells Ci – that is Q =
N⋃

i=1

Ci – each with Fi, α, α = 1, . . . , σi, faces and volume

Vi. Then, the integration of the conservation equation (2.32) over the space time
volume Ci × [t0, t], t > t0, yields the evolution equation

Vi

[

ui(t)− ui(t0)
]

+

σi∑

α=1

t∫

t0

∫

Fi,α

[
3∑

j=1

n
(i,α)
j K

j
u(x, t)

]

dF dt

=

t∫

t0

∫

Vi

s(x, t) dV dt (2.38)

for the cell averaged state variable

ui(t) =
1

Vi

∫

Vi

u(x, t) dV , (2.39)

where Gauss law is already used to “shift” the divergence and n
(i,α)
j are the compo-

nents of the outwards directed unit normal at face Fi,α. To obtain the numerical
solution ui(t

n+1) at t = tn+1 from the given one ui(t
n) at t = tn we apply the

second order accurate Strang splitting in time in the following form.

First, we consider the influence of the source over a half time step according to

u
⋆1
i (tn+1/2) = u

⋆1
i (tn) +

tn+1/2
∫

tn

∫

Vi

s(x, t) dV dt (2.40)

30



Field Solver

with initial values u
⋆1
i (tn) = ui(t

n). Afterwards, the solution of the homogeneous
evolution equation over the full interval [tn, tn+1] is computed from

u
⋆2
i (tn+1) = u

⋆2
i (tn)−

1

Vi

σi∑

α=1

tn+1
∫

tn

∫

Fi,α

[
3∑

j=1

n
(i,α)
j K

j
u

⋆2
i (x, t)

]

dF dt , (2.41)

where the initial data are now given by u
⋆2
i (tn) = u

⋆1
i (tn+1/2). In the final step,

once again the influence of the source term is taken into account for another half
time step. With the initial values u

⋆3
i (tn) = u

⋆2
i (tn+1) one obtains

u
⋆3
i (tn+1) = u

⋆3
i (tn) +

tn+1/2
∫

tn

∫

Vi

s(x, t) dV dt , (2.42)

which yields the desired solution at t = tn+1, namely, un+1
i = u

⋆3
i (tn+1).

In the context of FV approximation one defines the numerical flux as an appropri-
ate approximation of the time-averaged physical flux through the boundary face
Fi,α and writes for the integrals occurring in (2.41)

G
n+1/2
i, α ≈

1

∆

tn+1
∫

tn

∫

Fi,α

A
i, α

u⋆2
i (x, t) dF dt , (2.43)

where the abbreviation

A
i, α

=

3∑

j=1

n
(i,α)
j K

j
(2.44)

is introduced (see Appendix C). With this definition the explicit FV scheme takes
the compact form

u
⋆2
i (tn+1) = u

⋆2
i (tn)−

∆t

Vi

σi∑

α=1

G
n+1/2
i, α (2.45)

for element Ci of the computational grid. Clearly, the numerical flux (2.43) de-
pends on the state vector u

⋆2
i at the common face of two elements and is only well

defined for continuous and smooth variable vectors. In the case of discontinuous
data at the interface of two elements, the numerical flux results from the solution
of a Riemann problem as shown by Godunov [14]. The construction of a Riemann
solver for the Maxwell equations from piecewise constant averaged initial data is
described in Appendix D.
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3 Particle Push Methods

Starting from the Lorentz force (2.6), we consider here the equations of particle
motion in the form

d

dt
p = q (E + v ×B) , (3.1)

d

dt
x = v , (3.2)

where the relativistic momentum p is given by p = mα γ v . In the following we
consider only one species and drop the subscript α for simplicity.
With an integration of equation (3.1) the new velocity is obtained and the second
integration leads to the corresponding new position in space. The most often
used explicit integrators are the Boris leapfrog (LF) approach and the Runge-
Kutta (RK) method. In the context of the present work we introduce a new,
explicit single step technique based on Taylor series expansion (TE). For a more
clear comparison with the new TE approach the construction of the classic schemes
and the interplay with the complete PIC cycle is described in detail.

3.1 The leapfrog scheme of Boris

For the sake of completeness we briefly recall here the basic features of the leapfrog
scheme introduced by Boris [4], which takes into account the special structure
of the Lorentz force. The discretization of the relativistic equations of motion
(3.1,3.2) has been described extensively in the literature [4, 16, 3, 28, 9] and can
be written with the time centered velocity v and the relativistic velocity U as

(

Un+1/2 − αEn
)

−
(

Un−1/2 + αEn
)

=
2α

γn
Un ×Bn , (3.3)

xn+1 − xn = ∆t vn+1/2 , (3.4)

where α = q∆t
2m

and the relativistic velocity is computed from

U(t) = γ v(t) (3.5)
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with

γ2 =
1

1− |v|2

c2

= 1 +
|U |2

c2
. (3.6)

Furthermore, ∆t is the time step size and n denotes the actual time level. Note,

u
n − 1/2

u
n + 1/2

u −

u +

u ’

αE
n

αE
n

u −
x t

u x t’
1 + t

2

2

Figure 3.1: Geometrical illustration of the second order accurate Boris scheme.

that the electromagnetic fields are given at position xn. Obviously, the right-hand
side (rhs) of (3.4) is time-centered around tn+1/2 = (n+1/2)∆t while that of (3.3)
has to be computed at tn = n∆t, leading to a second order accurate integration
scheme. For the following it is convenient to introduce the quantities

u− = Un−1/2 + αEn , (3.7)

u+ = Un+1/2 − αEn , (3.8)

where Un is replace by its average value 1
2

(

Un−1/2 + Un+1/2
)

. The relativistic

Lorentz factor is approximated by γn ≈ γ− =
√

1 + |u−|2/c2 with velocity u−,
obtained after the first “half-acceleration” described by (3.7). Then, equation (3.3)
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can be recast into the form

u+ − u− =
(
u+ + u−

)
× t , (3.9)

where the auxilary vector t is defined by

t =
α

γ−
|Bn| bn , bn =

Bn

|Bn|
. (3.10)

For the latter relation (3.10) it is easy to prove that t ·u+ = t ·u− and |u+| = |u−|.
In order to determine u+ from (3.10), we introduce an additional velocity vector
defined by

u′ = u− + u− × t , (3.11)

which is the sum of u− and the “half-rotation” of u− around the magnetic induction

Bn, having a length of |u′|2 =
(
1 + |t|2

)
|u−|2 −

(
u− · t

)2
(see Fig. 3.1). A further

“half-rotation” but now of u′ around Bn yields

u′ × t = u+ × t+ |t|2u+ −
(
u+ · t

)
t (3.12)

= u− × t− |t|2u− +
(
u− · t

)
t (3.13)

From this relation and equation (3.9) we find that u+ is obtained from

u+ = u− +
2

1 + |t|2
u′ × t . (3.14)

After a second “half-acceleration” by ∆t/2 with the electrical field En, we finally
get the solution of equation (3.3), namely, the velocity at the time level t = tn+1/2

Un+1/2 = u+ + αEn , (3.15)

and from this result and relation (3.4) the new particle position at t = tn+1 is
computed. For the special case where t is orthogonal to u− the outlined Boris LF

scheme can be illustrated geometrically as it is shown in Figure (3.1).

The interplay between the Boris LF scheme and the PIC cycle is schematically
depicted in Figure 3.2. At the beginning the localized postion of the particles

within the grid and their time shifted velocity vn− 1
2 are given as well as the grid

based electromagnetic fields En, Bn from the previous iteration step or by the
initialization routine, see below. In module 1hthe mesh based electromagnetic
fields are interpolated onto particles position. With these updated values and the
velocity at time tn−1/2 the particle push module 2hcalculates the velocity up to
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2 Lorentz Solver
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Figure 3.2: Particle push method proposed by Boris with leapfrog technique and
time centered particle velocity.

tn+1/2 and according to the isochronous leapfrog method the velocity at time tn

is computed by a linear averaging of vn−1/2 and vn+1/2. With an integration over
∆t of velocity vn−1/2 the position at time tn is obtained. Based on the position
and velocity the sources for each particle are calculated. In the next step the
module 3hlocalizes the particle and assigns the contribution to the source from
each particle to the corresponding nodes. With the updated values of the source
terms the field solver module 4hcomputes the evolution of the electromagnetic
fields up to time tn+1. Now the cycle is closed and starts again with module 1h

at time tn+1.
The first time step is calculated by the initialization routine to obtain the time
shifted velocity field. For that reason the electromagnetic field is temporarly
calculated up to time tn+1/4 with the sources at time tn. With these temporarly
fields the leapfrog scheme in the particle push module 2hcalculates the velocity
up to tn+1/2. A further integration over ∆t of velocity vn+1/2 yields the position
at time tn+1. With the given sources at time tn the electromagnetic fields are
computed up to time tn+1 and the cycle of the leapfrog scheme is initialized.
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3.2 Runge-Kutta Method

The classical Runge-Kutta (RK) approach is a multi-stage method that offers
the possibility to integrate ordinary differential equations numerically with a con-
vergence rate higher than two. Here, these methods are applied to the Lorentz
equations (2.14) and (2.15), where in contrast to the Boris LF scheme the position
and velocity are now defined at the same value of time. The common formulation
of a µ-stage RK scheme for the integration of the scalar differential equation

dy

dt
= e(t, y) (3.16)

reads as

y = y0 +∆t

µ∑

κ=0

γκeκ , (3.17)

where the intermediate stages are defined by

eκ = e(tκ, yκ) (3.18)

tκ = t0 + ακ∆t (3.19)

yκ = y0 +∆t

κ−1∑

λ=0

βκλeλ , κ = 1, 2, 3, . . . . (3.20)

with the initial value κ = 0 with e0 = e(t0, y0). In the context of the present
work we used for the coefficients ακ, βκλ, γκ the values published by Fehlberg
[10, 11, 12]. The peculiarity of Fehlbergs Runge-Kutta integration scheme arises
from the purpose of step size control based on a complete coverage of the leading
local truncation error term. To achieve this he used two equations, the first one
for the solution of the differential equation with the selected formal order and the
second one to estimate the truncation error of one order higher approximation.
For example the two equations for a second order scheme read as

y = y0 +∆t

2∑

κ=0

γκeκ , (3.21)

ŷ = y0 +∆t
3∑

κ=0

γ̂κeκ . (3.22)
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To solve this set of equations, where the coefficients of ακ, βκλ have to be the
same in both formulas, while γκ satisfy a second order approximation and γ̂κ a
third order truncation error estimation, more evaluations per steps are required
than for the known classical Runge-Kutta formulas. The Taylor expansion of
equation (3.21) and (3.22) up to the order of the truncation error exhibit all
needed coefficients. The conditions of the Runge-Kutta coefficients, described
in [5] emerging an equation system and its solution with the technique of Fehlberg
leads to the coefficients of a second order scheme listed in table 3.1. The classic

a
a λ 0 1 2
κ ακ βκλ γκ γ̂κ

0 0 0 5
18

5
18

1 1
2

1
2

1
6

0

2 3
4

3
16

9
16

5
9

8
9

3 1 5
18

1
16

5
9

− 1
6

Table 3.1: Coefficients of Fehlbergs second order RK integration scheme with two
interims stages and three stages for an error estimation step

third order Runge-Kutta schemes computes with two interims stages the solution
of the differential equation, Table 3.2) while Fehlbergs construction of a second

a
a λ 0 1 2
κ ακ βκλ γκ

0 0 0 1
4

1 1
3

1
3

0

2 2
3

0 2
3

3
4

Table 3.2: Coefficients of classical third order RK integration scheme with two
interims stages

order schemes already consist of two stages as the classic third order scheme. The
increased number of evaluations improves the accuracy and will also effect the
rate of convergence as observed for different examples in chapter 4.
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In the following we briefly discuss the interplay of a second order RK scheme
proposed in [10], with the full PIC cycle, as depicted in Figure 3.3. To do this,
it is assumed that the electromagnetic fields are given at time t = tn either by
the initial step or the previous iteration as well as the phase space coordinates
of the particles with their location in the grid based domain. In the first step in
module 1hthe fields of En;Bn are interpolated onto the positon of the particles.
The first intermediate stage of velocity v1 and position x1 of the particles is
calculated by the Lorentz solver in module 2h. With module 3h the particle
based charge and current density at time tn is assigned to grid points needed
to compute the electromagnetic fields at intermediate time level t1 by the field
solver in module 4h. The first intermediate stage is now complete and this

nt n+1t      =      +   tnt ∆2 nt 2t   =     +       tα  ∆1 nt α  ∆1t   =     +       t 

2 Lorentz Solver 2 Lorentz Solver 2 Lorentz Solver
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_

_
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_

Figure 3.3: Second order Runge-Kutta integration method proposed by Fehlberg
with two interim stages for the purpose of step size control.

procedure starts again to reach the stages t2 and finally the new time level tn+1.
The number of needed intermediate stages depends on the selected order and
the chosen type of integration (e.g. with or without step size control). Up to
order four for the classic RK schemes and the fifth order for the Fehlbergs family
of RK integration the increase of evaluation steps corresponds to the increase
of the selected formal order. Beyond this formal order the number of required
intermediate stages increases more rapidly than the convergence rate which is
known as the Butcher [6] barrier. We point out clearly that the necessity to
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run through the complete PIC cycle for each intermediate stage even the most
expensive particle parts of the cycle causes a tremendous increase of effort of the
RK method with a convergence rate higher than two.
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3.3 Taylor Series Expansion

An alternative particle push method with a higher convergence rate than two is
the new truncated Taylor series expansion TE approach. The most interesting
advantage results from the one step construction, whereby costs of several runs
through the PIC cycle as for the RK intermediate stages is saved. The mandatory
requirements for the TE based schemes are the higher derivatives in space and
time of the electromagnetic fields at time tn. However with the development of
high order method for the numerical solution of the Maxwell equations [25, 27]
all needed derivatives are computed naturally by these schemes. In Figure 3.4 the
algorithm is schematically depicted. Compared to RK method, the TE scheme is
very similar to a calculation of one RK intermediate stage.

nt
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∂
∂

κ

κ
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κ
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∂
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_

Figure 3.4: Single step Taylor series expansion within the PIC cycle calculates
the new phase space components with higher temporal and spatial
derivatives of the electromagnetic fields.

The initial situation for this algorithm is the same as for the previously described
RK methods, providing the existence of grid-based electromagnetic fields at time
tn and the localized position of the particle within the grid and its phase space
coordinates. The algorithm starts at first with module 1hto interpolate the electro-
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magnetic fields and their derivatives onto the position of the particle. Afterwards,
with these informations the Lorentz equations can be integrated numerically by
a high order TE scheme implemented now in module 2hto obtain particles new
velocity and position at time level tn+1. In module 3hparticles are localized in
the grid domain for the assignment of charge and current density at time level
tn to the mesh which are used as sources for the high order computation of the
evolution of the electromagnetic fields up to time level tn+1 in module 4h.

To describe the mode of operation of the TE technique we once again revisit the
characteristics of the Vlasov equation, but now in the convenient form

U̇ =
dU

dt
= E(x, t) + γ̂ U(t)× B(x, t) , (3.23)

ẋ =
dx

dt
= γ̂ U(t) (3.24)

where the charge to mass ratio q/m is absorbed in the electromagnetic fields, i.e.
E = q

m
E(x, t) and B = q

m
B(x, t). Furthermore, the velocity v of the charged par-

ticle is replaced by the space component of the 4-velocity U [17] (called relativistic
velocity in the following) according to

v = γ̂ U , γ̂(U) =

(

1 +
U · U

c2

)−1/2

, (3.25)

where γ̂ denotes the inverse relativistic Lorentz factor and c is the speed of light.
Note from (3.23), that the “acceleration” of the charge depends on position and
time as well as the relativistic velocity: U̇ = U̇(U, x, t). Observe further from this
relation that

U · U̇ = U · E (3.26)

holds, because the scalar product of U with U × B vanishes. In the subsequent
analysis we will consider U , x and t as independent variables. For this it is
advantageous to replace the total time derivative of a quantity Ψ = Ψ(U, x, t) – a
scalar or the components of a vector function – by

dΨ

dt
= D(Ψ) = Dc(Ψ) +DU (Ψ) , (3.27)

where the convective derivative

Dc =
∂

∂t
+ v · ∇x =

∂

∂t
+ γ̂ U · ∇x (3.28)
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acts on space and time dependent quantities while

DU = U̇ · ∇U =

3∑

j=1

U̇j
∂

∂Uj
(3.29)

acts only on relativistic velocity dependent expressions. Furthermore, we assume
smooth particle trajectories without discontinuous changes in the phase space
coordinates like reflection on walls or particle collisions, which will be treated
seperately in modules for boundary conditions , collisions or chemistry. As well,
we suppose that the electromagnetic fields are continuous along the particle trajec-
tory. To obtain a numerical approximation of the phase space coordinates (v, x)
with the same order of accuracy as the electromagnetic field solution given from
the Maxwell solver, we perform a truncated Taylor series expansion in time up to
order P of the particle velocity according to

v(t) =
P∑

κ=0

(t− t0)
κ

κ!

[

D
(κ)(γ̂ U

)]

t0

, (3.30)

where (3.25) is used and

D
(κ)(γ̂ U) =

{

Dc +DU

}(κ)

(γ̂ U) . (3.31)

Note that the first expansion coefficient
[

D
(0)
(
γ̂ U
)]

t0

is nothing else than v0 =

v(t0). A straightforward integration over the time interval [t0, t] yields the charged
particle position

x(t) = x0 +

t∫

t0

v(s) ds

= x0 +
P∑

κ=0

(∆t)κ+1

(κ+ 1)!

[

D
(κ)(γ̂ U

)]

t0

, (3.32)

where x0 = x(t0) is the initial position and ∆t = t − t0. It is obvious from
the expressions (3.30) and (3.32) that the series expansion up to order P results
in a local truncation error of O

(
∆t(P+1)

)
and O

(
∆t(P+2)

)
for the velocity and

position, respectively.
What remains now to do is to compute simply the κth derivative of γ̂ U by applying
operator (3.27) at t = t0. This is, in principle, a straightforward exercise but
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implies cumbersome and lengthy calculations because the operator D(.) itselfs
depends on (relativistic) velocity, space and time. In the remaining part of this
chapter we develop a strategy which allows a recursive computation of high order
derivatives of the particle velocity. All high order derivatives of a product of two
functions – at t = t0 – are computed in a common manner by the Leibniz rule as

D
(κ)(γ̂ U) =

κ∑

ν=0

(
κ
ν

)

D
(ν)(γ̂)D(κ−ν)(U) , (3.33)

where

(
κ
ν

)

= κ!
ν! (κ−ν))!

. Clearly, for an evaluation of (3.33) all higher derivatives

of the inverse Lorentz factor and the relativistic velocity are needed, which are
calculated separately in recursive manner. The first conclusion which can be
drawn from equation (3.33) is, that if all derivatives on the rhs of (3.33) are
known up to order k < κ, the next order k+1 ≤ κ requires only the computation
of two additional derivatives, namely, D(k+1)(γ̂) and D

(k+1)(U). This is shown in
the following for the first three derivatives of γ̂U :

D
(0)(γ̂ U) = γ̂U

D
(1)(γ̂U) = D

(1)(γ̂)U + γ̂D(1)(U)

D
(2)(γ̂U) = D

(2)(γ̂)U + 2D(1)(γ̂)D(1)(U) + γ̂D(2)(U)

D
(3)(γ̂U) = D

(3)(γ̂)U + 3D(2)(γ̂)D(1)(U) + 3D(1)(γ̂)D(2)(U) + γ̂D(3)(U).

Now, we first follow the path of high order derivative computations of the inverse
Lorentz factor and afterwards present that one for the relativistic velocity.

3.3.1 High Order Derivatives of the Inverse Lorentz Factor

Since the inverse Lorentz factor (3.25) depends only on the relativistic velocity,
we immediately obtain for the first application of operator (3.27) to γ̂ the result

D
(1)(γ̂) = DU (γ̂) = −

γ̂3

c2
U · E , (3.34)

where relation (3.26) has already been used. Note, that all quantities on the rhs

of the latter expression are given at the initial time. Higher order derivatives, i.e.
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3.3 Taylor Series Expansion

2 ≤ ν ≤ κ, can easily be determined recursively according to

D
(ν)(γ̂) = D

(ν−1)
(

D
(1) (γ̂)

)

(3.35)

= −
1

c2
D

(ν−1) (γ̂3 U · E
)

= −
1

c2

ν−1∑

λ=0

(
ν − 1
λ

)

D
(λ)(γ̂3)D(ν−1−λ)(U · E) , (3.36)

where the Leibniz rule has been applied once again. The discussion of the third
term on the rhs of (3.36) is postponed to the next section. However, the recursive
character of determining the derivatives of U · E is obvious at this stage. To treat
the second term on the rhs of (3.36) we use relations (3.25) and (3.26) and observe
first that

D
(1) (γ̂n) = −

n

c2
γ̂n+2 U · E ; n = 1, 2, . . . (3.37)

holds. Then, we proceed in the usual manner to find

D
(λ)(γ̂m) = D

(λ−1)
(

D
(1) (γ̂m)

)

= −
m

c2

λ−1∑

σ=0

(
λ− 1
σ

)

D
(σ)(γ̂m+2)D(λ−1−σ) (U · E) , (3.38)

where the result (3.37) has been applied. Now we turn to show the structure of
determing high order relativistic velocity derivations.

3.3.2 High Order Derivatives of the Relativistic Velocity

Similar as in the previous section, we first consider the case where the operator
(3.27) is applied to the relativistic velocity U . However, this is equivalent to
consider the third term on the rhs of (3.33) at ν = κ − 1. A short calculation
yields for the derivation

D
(1)(U) = DU (U) = U̇ , (3.39)

which is equal to the rhs of (3.23) at the initial time t0. In the spirit of the
recursive procedure, derivatives of U in the range 0 ≤ ν ≤ κ− 2 are given by

D
(κ−ν)(U) = D

(κ−ν−1)
(

D
(1) (U)

)

= D
(κ−ν−1) (E) +D

(κ−ν−1) (γ̂ U ×B)

= D
(κ−ν−1) (E)

+

κ−ν−1∑

µ=0

(
κ− ν − 1

µ

)

D
(µ) (γ̂ U)×D

(κ−ν−1−µ) (B) , (3.40)
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where the result (3.39) with the acceleration (3.23) is taken into account. In
fact, the latter relationship nicely reveals that only low order derivatives of γ̂ U
enter in the computation for all ν and, furthermore, high order derivatives of
the electromagnetic fields F ∈ {E , B} are now required. The first derivative, i.e.
ν = κ− 2, of the fields simply reads as

D
(1) (F) = Dc (F) =

{
∂

∂t
+ γ̂ U · ∇x

}

F , (3.41)

because they depend only on position and time. However, this derivation of
electromagnetic fields depends now also on the relativistic velocity U . To find
systematic expressions for high order derivatives of the electromagnetic fields, we
notice that the commutator relations

[
∂

∂t
, D

]

(Ψ) =
∂

∂t
D (Ψ)−D

(
∂Ψ

∂t

)

=
∂U̇k

∂t

∂Ψ

∂Uk
(3.42)

and
[

∂

∂xj
, D

]

(Ψ) =
∂

∂xj
D (Ψ)−D

(
∂Ψ

∂xj

)

=
∂U̇k

∂xj

∂Ψ

∂Uk
(3.43)

for Ψ = Ψ(U, x, t) holds, where the usual summation convention - that is, repeated
indices are summed - is applied. Since the fields do not depend on the relativistic
velocity, we obtain

[
∂

∂t
, D

]

(F) =

[
∂

∂xj
, D

]

(F) = 0 , (3.44)

which means that the order of differentiation can be interchanged. Due to this
fact, higher order derivatives of relation (3.41) are given by

D
(m+1) (F) =

∂

∂t
D

(m) (F)

+
m∑

i=0

(
m
i

)

D
(i) (γ̂ U) · ∇xD

(m−i) (F) , (3.45)

where m = 1, 2, . . . . Clearly, since D
(i) (γ̂ U) and D

(m−i) (F) are already deter-
mined in the previous “step”, a recursive sequence of the derivation of the fields by
the complicated operator D(.) is established by (3.41) and (3.45) while the high
order time and space derivatives of E and B are provided by the Maxwell solver.
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3.4 General Aspects of Implementation

The accuracy of the proposed high order scheme achieves very fast the compu-
tational double precision already with a formal fifth order scheme. The sum of
small rounding errors during the algorithm may cause the failure of the expected
experimental order of convergence during the tests.

Such a precision problem, for instance, arise in the calculation of the ν-th deriva-
tive of the inverse Lorentz factor γ̂ described by equation (3.36). During the
computation, the factor of 1/c2 is multiplied ν − 1 times with lower derivative

inside the sum and, hence, temporarily the factor of
(
1/c2

)ν−1
≈ [1.1 · 10−17]ν−1

occurs. The opposite part of this very small term arise from the derivatives of
the product U · E where the factor of q/m delivered by E is multiplied with the ν
derivative of U . The derivative is described in equation (3.40) and contains ν − 1
times field derivatives with the factor of charge mass ratio and, hence, in case of
an electron temporarily a factor of (q/m)ν−1 ≈ [1.76 ·1011 ]ν−1 occurs. The loss of
accuracy is caused by performing the addition of positive and negative terms of the
in equation (3.36) without paying specific attention to rounding errors caused by
the extreme factors. To take care of the problem a simple modifaction in the order
of calculation is done. In all parts of the sum the factor

(
q

mc2

)ν
≈ [1.96 · 10−6]ν

is calculated at first and afterwards the rest of the sum.

A further important aspect is the recursive construction of the derivative opera-
tors. This technique offers the possibility to obtain the next higher total derivative
of field quantity F only by a rearrangement of previously defined operators ap-
plied to given partial derivatives in time and space of the electromagnetic fields
components. For example a third order TE scheme as given in Appendix A needs
the second total derivative of all field components Fi and the formulas can be
written as

D
0(Fi) = Fi (3.46)

D
1(Fi) =

∂

∂t
Fi + v∇xFi (3.47)

D
2(Fi) = D

1(
∂

∂t
Fi) +D

1(v)∇xFi + vD1(∇xFi) . (3.48)

The operator to calculate the first total derivative (3.47) uses the folder “Data
of Derivatives of Field Component F1” see Figure 3.5, where all needed partial
derivatives are given and stored at the first level of the folder. The first total
derivative, consist of a sum of the temporal derivative and the product of the
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partial derivatives in space and the velocity.
The second total derivative operator (3.48) consist of three terms. To calculate
the first one, the operator D

1 uses the folder of the first partial derivative in time
called “Data of Derivatives of Field Component F1,t” which contains itself the
needed partial derivatives in time and space to compute the first total derivatives
of F1,t.
The second term can immediately be evaluated because of the given derivative of
the velocity by equation (3.33) and the given partial derivatives in space of Fi.
For the third term in (3.48) the D

1 operator is applied to the vector of spatial
derivatives of Fi by performing the calculation for each component separately.
For this the D

1 operator works on each folder called “Data of Derivatives of Field
Component F1,x, F1,y and F1,z” where all needed data of the second partial
derivatives of the field components F1,x, F1,y and F1,z are stored. Afterwards the
scalar product with velocity v is computed. The extension to higher operators D3,
D

4 and so on, is always realized by defining four new subfolders, where all needed
data are stored in the same structure. For example, the operator D

3 contains
D

2( ∂
∂t
Fi). To calculate the second total derivative, operator D

2 needs all second
partial derivative of F1,t, stored in four new subfolders “Data of Derivatives of
Field Component F1,tt, F1,tx, F1,ty and F1,tz”.
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Figure 3.5: Data structure of field component Fi to sustain the recursive operator
construction.
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4 Approximation Characteristics and Validation

of the Taylor Series Expansion Method

In this section the method of truncated Taylor series expansion is validated and
assessed on different examples and compared with results obtained by the two
other integration methods introduced in chapter 3. Quantitative statements about
the convergence rates are made on examples where an analytic solution is available.
For this we compute at the end of the simulation time te for a given number of
discretization points δ the discrete Euclidian or L2-norm of error according to

eN(q, δ) =
∣
∣
∣

∣
∣
∣q

num
− q

ana

∣
∣
∣

∣
∣
∣

(δ)

2
, (4.1)

where q
num

and q
ana

are the numerical and analytical value of quantity q at
time t = te. The effective or experimental order of convergence (EOC) for two
calculations is determined by

EOC = − log

(

eN(q, δ1)

eN(q, δ0)

)

/ log

(
δ1
δ0

)

, (4.2)

where δ0, δ1 denotes the number of discretization points used for the computation
with a coarse and refined time interval.
The initial minimum number of δ = 40 discretization points is successively in-
creased by a factor of 2. With the given number of δ the time step is calculated
by ∆t = te/(δ − 1). To obtain results also for the high order experiments for
different refinement levels, which are not affected by machine rounding errors, the
computer accuracy is set to quadruple precision for all calculations.
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4.1 Non-relativistic Charged Particle Motion

In the first numerical example the properties of the Taylor series expansion scheme
is studied for a non relativistic motion, i.e. with a Lorentz factor γ = 1. For
vanishing magnetic induction, Newton’s equation of charged particle motion (3.23)
with q = m = 1 in a spatially constant electric field is given by

v̇(t) = E(t) . (4.3)

Each component of the applied oscillating electric field has the form

Ei(t) = E0 sin (ωi t+ φ0) ; i = 1, 2, 3 ,

where the amplitude E0 and the phase shift φ0 in all coordinate directions are fixed
and equal to one and 1/2π , respectively, and the frequencies are chosen to be ω1 =
2π, ω2 = 2/3π and ω3 = 3/2π. Clearly, by construction this problem decouples
in the coordinates and the simple equation of motion (4.3) can be immediately
integrated. The analytic solution of the phase space coordinates are given by

vi(t) = −
E0

ωi
cos (ωi t+ φ0) + C1,i (4.4)

xi(t) = −
E0

ω2
i

sin (ωi t+ φ0) +C1,i t+ C2,i , (4.5)

where the integration constants are determined from the prescribed initial values
vi(t0) and xi(t0) at time t0 = 0 to be C1,i = E0

ωi
cos(φ0) + vi(t0) and C2,i =

E0

ω2
i
sin(φi) + xi(t0), respectively. In this example no spatial derivatives of the

electric field occur and the total derivative operator reduces to D = ∂/∂t. Hence
with the TE approach the new velocity (3.30) and location (3.32) of a particle is
calculated only with temporal derivatives of the electric field :

v(t) = v0 +∆t E(t0) +
∆t2

2
[∂tE ]t0 +

∆t3

6

[
∂2
t E
]

t0
+ . . . (4.6)

x(t) = x0 +∆t v0 +
∆t2

2
E(t0) +

∆t3

6
[∂tE ]t0 +

∆t4

24

[
∂2
t E
]

t0
+ . . . , (4.7)

where ∂t abbreviates ∂/∂t and ∆t = t− t0.
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4.1.1 Set up of the Numerical Experiment and Results

In order to perform the numerical experiments we fixed the charge q and mass
m of the particle equal to one and choose for the initial condition the values
x0 = (0, 0, 0)T and v0 = (0, 0, 0)T . Furthermore, the final simulation time is
set to te = 10 · TP , with a period of time TP = 2π. To get an insight of the

x

y

0 0.025 0.05 0.075 0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4.1: The non-relativistic analytic particle motion (line) and the numerical
solution (dots) after 10 periods calculated with a formal 5th order TE

scheme.

solution characteristics we plot the particle coordinate y = x2(t) as a function of
z = x3(t) and get the Lissajou figure depicted in Figure 4.1. It is obvious from
that plot that the numerical result obtained from a formal 5th order TE scheme
(filled circles) is in good agreement with the analytical solution (full line). In
order to obtain quantitative information, we calculate the Euclidian norm (4.1)
of particle position with the analytic solution (4.5). This norm for position as
a function of discretization points δ is plotted in the convergence diagram seen
in Figure 4.2. Each of the curves (with numbers) represents the result from a
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different formal order TE scheme, P = 2, . . . , 8. As a reference Boris LF scheme
is plotted as a red line marked with crosses “x”. The slopes of the curves in the
double-log scale representation is a measure for the effective convergence rate of
the corresponding formal order scheme. For all curves seen in Figure 4.2 the EOC
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Figure 4.2: The Euclidian error norm of particles position versus the number of
discretization points of LF method and different TE schemes.

tends to the selected design (formal) order for all TE as well as for the Boris LF

schemes. Furthermore, it is clear from this plot that for a fixed discretization δ the
accuracy of the results increases by increasing the formal order of the TE methods.
Note, that the increase of accuracy between the formal 4th and 5th order as well
as 6th and 7th order schemes is less pronounced. Moreover, the observed decrease
of accuracy for discretization points δ > 105 of the 8th order TE scheme is due to
machine precision.
Roughly the same global convergence behavior is observed from the curves in
Figure 4.3, where the Euclidian norm of the particle velocity in dependence of
the discretization points δ is shown. A further detailed study of the L2 error
norm and EOC for particles location and velocity is given in the Tables 4.1, 4.2
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and 4.3 for the 4th order TE calculation, the second order Boris LF scheme and
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Figure 4.3: The Euclidian error norm of particles velocity versus the number of
discretization points of LF method and different TE schemes.

Points eN(v) EOC eN(x) EOC

1280 1.143e-08 8.893e-09

2560 6.991e-10 4.06 4.356e-10 4.52

5120 4.321e-11 4.03 2.346e-11 4.35

10240 2.686e-12 4.02 1.349e-12 4.21

20480 1.674e-14 4.01 8.064e-14 4.12

Table 4.1: Euclidian error norm of x and v in detail and the result-
ing EOC obtained with a formal 4th order TE scheme
for the non-relativistic particle motion.
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Points eN(v) EOC eN(x) EOC

1280 4.743e-5 4.840e-6

2560 1.195e-5 1.99 2.486e-6 0.96

5120 3.000e-6 1.99 7.809e-7 1.67

10240 7.512e-7 2.00 2.152e-7 1.86

20480 1.880e-7 2.00 5.629e-8 1.93

Table 4.2: Euclidian error norm of x and v and the resulting EOC

obtained from the Boris LF calculation for the non-
relativistic particle motion.

the 4th order RK method. It is striking that for all integration methods the
euclidian error norm in particle position converge slightly faster than for particles
velocity. With a sufficient number of points for the Boris LF scheme the rate of
convergence increases up to the second order as for the velocity. By contrast the
rate of convergence of the high order RK and TE schemes is evolving down to
a final order over the complete range of discretization points (see Tab. 4.1 and
4.3). A comparison between higher order RK (4,5 and 6) and TE (4,5,6,7 and 8)

Points eN(v) EOC eN(x) EOC

1280 2.242e-11 6.858e-11

2560 1.522e-12 3.88 3.280e-12 4.56

5120 9.894e-14 3.94 1.735e-13 4.39

10250 6.302e-15 3.97 9.863e-15 4.24

20480 3.976e-16 3.99 5.857e-16 4.14

Table 4.3: The L2 error norm of x and v and the resulting EOC

computed with a RK method of formal 4th order for
non-relativistic particle motion.

schemes is given in Figure 4.4, where the Euclidian error norm of particle location
is plotted against the number δ of discretization points. It is conspicuous that the
TE scheme of a certain order is always less accurate than the corresponding RK

integrators. However, a certain systematic behavior is visible, namely that the
accuracy of 4th order RK agrees with 5th order TE scheme. A similar behavior
is found for the 6th order RK and 8th order TE approach while the 5th order

56



4.1 Non-relativistic Charged Particle Motion

RK scheme is nearly bounded by the 6th and 7th order TE integrators. For the
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Figure 4.4: Comparison of accuracy between high order RK (4,5 and 6) and TE

(4,5,6,7 and 8) schemes.

assesment of the schemes the accuracy is additional related to the needed CPU
time for two different cases. In the first "stand alone" case only the module is
running to compute particles trajectory separated from all other modules of the
PIC cycle. In Figure 4.5 the L2 error norm of particle position is plotted versus
the needed CPU time for each computation in the "stand alone" case. In the
second case the complete PIC cycle with 1000 particle is used and the needed
CPU time is plotted in Figure 4.6. As one would expect, the Boris LF scheme is
only competitive with the other approaches for a low accuracy range. In general
this plot reveals that higher order RK (5 and 6) integrators are more efficient than
their TE (5 and 6) counterparts for the present test problem.

57



Characteristics & Validation

x
x

x
x

x x x x x
x

x
x

x
x

x
x

x
x

4

4

4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

4

4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

CPU time [s]

x
eu

cl
.N

or
m

[-]

10-3 10-2 10-1 100 101 102 103 10410-32

10-27

10-22

10-17

10-12

10-7

10-2

103

LF
RK O4
RK O5
RK O6
TE O4
TE O5
TE O6

x
4
5
6
4
5
6

Figure 4.5: Efficiency plot of the LF, RK and TE method in "stand alone" mode.
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Figure 4.6: Efficiency plot of the LF, RK and TE method test in complete PIC

cycle with 1000 particles.
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4.2 Particle Motion in a Space and Time Dependent E-Field

For a further assessment of the integration methods introduced in the previous
chapter, we consider a one dimensional, non-relativistic test problem where the
electric field represents a wave propagating along the x-axis with given frequency
ω and wavenumber k (see also [13]). The evolution of phase space coordinates (v,
x) of the particle is obtained from

v̇ =
dv

dt
=

|q|

m
E0 sin (ω t− k x) (4.8)

ẋ =
dx

dt
= v , (4.9)

where E0 denotes the applied constant electrical field, q and m the charge and
mass of the particle. In order to get the solution of the nonlinear dynamical
system (4.8), (4.9) it is advantageous to use the dimensionless variables

ξ = k x− ω t (4.10)

η =
k

ω
v − 1 . (4.11)

It is immediately obvious from (4.10, 4.11) that ∂ξ
∂t

= kv − ω and ∂η
∂t

= k
ω
v̇ hold.

With these intermediate results and (4.8) we obtain the autonomous equations

−η̇ = F1(ξ, η) :=
ω2
B

ω
sin(ξ) , (4.12)

ξ̇ = F2(ξ, η) := ω η (4.13)

where the bounce frequency ω2
B = (k |q|E0)/m is introduced. Multiplying both

sides of equation (4.12) by ξ̇ and using (4.13), we immediately get

ω η η̇ = −
ω2
B

ω
sin(ξ) ξ̇ . (4.14)

After a further rearrangement, namely dividing by ω and multiplication by dt, the
integration of the latter expression yields the result

η2(t) =
[

η2
0 − 2 Y 2 cos(ξ0)

]

+ 2 Y 2 cos(ξ) , (4.15)

where the abbreviation Y = ωB/ω is used (comprises all quantities defining the
problem in equation (4.8)) and ξ0 = ξ(t0) and η0 = η(t0) denote the initial
data of the dimensionless variables (ξ, η) at time t = t0. Note, that the “forces”
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Figure 4.7: Separatrix (blue lines) distinguishes between an open (red lines) and
closed (black lines) particle trajectory. The solution for a closed par-
ticle trajectory is periodic and exist only for certain values of (ξ, η)
pairs.

F1 = ∂V/∂ξ and F2 = ∂V/∂η occurring in the expressions (4.12),(4.13) can be
derived from the “potential”

V (ξ, η) =
ω

2
η2 −

ω2
B

ω
cosξ , (4.16)

which is a measure of the energy of the particle in the reference frame of wave.
Furthermore it can be shown that the area element ∂ξ∂η in phase space does not
change in time because ∂F2/∂ξ = ∂F1/∂η = 0. It is a well known fact [15] that
the separatrix (blue line in Fig. 4.7) in the (ξ, η)-plain characterized by

ηS = ±Y
√

2 [1 + cos(ξ)] (4.17)

is the limiting curve which distinguishes between open (“rotation type”) and close
(“libration type”) trajectory solutions [15]. This means, for instance, that initial
data (ξ0, η0) chosen outside the separatrix (4.17) leads to open trajectories indi-
cated by the red curves in Figure 4.7. However, for initial values from the interior
of the separatrix closed orbit solutions are expected (black curves in Fig. 4.7).
Ideally, a particle will trace the closed orbit indefinitely, however, loss of stability
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4.2 Particle Motion in a Space and Time Dependent E-Field

and accuracy of the integration procedure will lead to departures of the exact
trajectory. In the following an experimental nonlinear stability analysis and the
results of the convergence rate tests are presented.

4.2.1 Set up of the Numerical Experiment and Results

In contrast to the previous example this experiment is suitable to check the TE

approach in case of space and time dependent electric field where all convective
derivatives are required. This numerical test consist of two parts, the experimental
stability analysis and the convergence rate experiment. For both tests, we assume
a non-relativistic particle motion, i.e. γ = 1, where the charge and mass of the
particle are set to one. The results presented below are obtained with amplitude
E0, wavenumber k and an angular velocity ω equal to one. The particle is always
initialized at ξ0 = 0, η0 = 3/2 and the exact trajectory is obtained by inserting
these values into expression (4.15) and reads as

ηex = ±
1

2

√

1 + 8 cos(ξ) . (4.18)

For the long term stability analysis in the first part a constant final simulation
time of te = 800.0 is used and is equivalent to about 100 orbits of the particle. The
effect in stability for different formal orders of the RK and TE schemes compared
to the second order Boris LF scheme is considered with a constant timestep of
∆t = te/(δ− 1) = 0.8, which means that the used number of discretization points
is δ = 1001.
The second part of this experiment concerns with the evaluation of the conver-
gence rates and for this the final simulation time is selected to te = 80.0 of about
10 periods. The number of timesteps ∆t is successive increased by a factor of two.
For the purpose of orientation, the exact trajectory (4.18) with the separatrix
(4.17) and the result from the Boris LF integration are plotted in all viewgraphs,
where the particle trajectory is analyzed.

First we emphasize that the error of the Boris LF scheme is nearly independent of
the number of iterations. Auerbach & Friedman [1] have found out that trapped
particle trajectories from the Boris LF integrator exhibit outstanding long-term
stability property due to the existence of an invariant which forces the numerical
solution to be stable.
The result of the long range third order TE computation is depicted in Figure
4.8. In contrast to the Boris LF integrator (red full line) which keeps the error
constant for all times, the particle trajectory computed with the third order TE
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scheme is strongly damped to the center of the (ξ, η)-plain. Clearly, this result
considerably deviates from the exact solution (black inner curve in Fig. 4.8) and,
hence, the TE scheme of order three is not applicable in practice. A similar and
also not satisfactory behavior is found for the RK scheme of order three in the
long range limit as it is shown in Figure 4.9. There we see that the third order
RK result leads to a damped solution where the energy of the particle decreases.
Increasing the formal order to four improves cleary the results and reduces the
effect of accumulated errors in the calculation with the TE scheme. The trajectory
in Figure 4.10 is still damped and moves - less pronounced than in Figure 4.8 -
towards to the center of the coordinate system. The result for the fourth order
RK scheme calculation, plotted in Figure 4.11 is only slightly improved. A “fan
tracery” behavior to the separatrix is still visible. By using formal orders greater
than equal to five deviations from the exact solution (inner trajectory) are no
longer obvious for both the RK and TE method as it is demonstrated by the Figures
4.12 and 4.13. In essence, the second order Boris LF scheme shows excellent long
term stability properties for simulation times up to te = 800 compared to the
low order RK and TE methods. However, it has been demonstrated that the lack
of stability could be considerably alleviated if multi-stage RK and single step TE

schemes with orders greater than equal to five are used.
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Figure 4.8: Analytic solution (black line) and Boris scheme (red line) compared
to the oriental ornament like particle trajectory calculated with third
order TE scheme (green dots), which is damped over time to the center
of coordinate system.

ξ

η

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 4.9: The third order RK scheme tends to calculate a damped solution with
a set of coefficients proposed by Fehlberg.
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Figure 4.10: Deviation to the analytic solution with a fourth order TE scheme
calculation for te = 800 is reduced but still a visible damped solution
occurs.
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Figure 4.11: The fourth order RK scheme tends to calculate a “fan tracery” solution
with a set of coefficients proposed by Fehlberg.

64



4.2 Particle Motion in a Space and Time Dependent E-Field

ξ

η

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 4.12: Particle trajectory calculated with fifth order TE scheme with no
visible errors after tE = 800.
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Figure 4.13: The fifth order RK scheme calculation is in accordance with given
analytic solution.
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In Figure 4.14 the Euclidian error norm (4.1) of the total particle energy - the sum
of kinetic and potential energy (see equation (4.16)) - is plotted for the Boris LF

integrator (red line) and for the TE schemes from formal order two up to eight as
a function of points resolution δ. Clearly, this convergence diagram reveals that
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Figure 4.14: The Euclidian error norm of particles energy versus the number of
discretization points for the Boris LF scheme and the TE method.

the accuracy of the calculation may be improved either with more discretization
points or by an increase of the formal order of the TE scheme. The slopes of
all graphs evolve for high numbers of discretization points to a constant value
(until machine precision) and the experimental order of convergence (4.2) agrees
well with the formal order of the schemes. This is also underscored by Table 4.4,
where a detailed convergence study (in the energy norm) for the second order LF

and a fifth order RK and TE scheme is listed. Furthermore one reads from plot
4.14 that for the discretization of, for instance, δ = 104 points the accuracy spans
from ≈ 10−5 for the second order up to ≈ 10−20 for the eight order scheme. Vice
versa this means, that for a desired accuracy less discretization points and, hence
less iterations are
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Points eN(E)LF EOC eN(E)RK EOC eN(E)TE EOC

640 3.981e-3 2.070e-07 8.825e-07

1280 9.816e-4 2.02 6.743e-09 4.94 2.705e-08 5.03

2560 2.445e-4 2.01 2.130e-10 4.98 8.352e-10 5.02

5120 6.106e-5 2.00 6.676e-12 5.00 2.593e-11 5.01

10240 1.526e-5 2.00 2.088e-13 5.00 8.074e-13 5.01

Table 4.4: Convergence rates of energy norm for particle motion in space and time
dependent electric field calculated with Boris LF scheme on the left, RK

method in the middle and the TE method on right part.

necessary for a high order TE scheme. In Figure 4.15 a comparison between the
high order RK and TE (black lines) methods is given. The second order Boris LF

scheme (red line) is plotted for orientation. As observed in the first test case in
section 4.1, the RK method shows again in parts a higher convergence rate than
expected. For instance, the 6th order RK scheme reveals an experimental order of
convergence of about seven. This unexpected - more accurate - behavior may be
attributed to the special set of coefficients proposed by Fehlberg in [10, 11, 12].
He suggested to use the same number of stages of evaluations but with different
coefficients for an error estimation with one order higher than the main integration,
as described in section 3.2. Moreover, the convergence rates for the 4th and 5th
order RK and TE schemes are roughly comparable, however, the accuracy of RK

method is slightly higher than for the TE approach. Finally, in Figure 4.16 the L2

error norm of the particle energy is plotted versus the CPU time. It is obvious
that the LF scheme is only efficient for low accuracy requirements and cannot
keep up with the RK and TE methods in the high accuracy range. As already
observed previously the high order RK (5th and 6th order) schemes are more
efficient for “stand alone” test cases than the TE schemes. For example for an
accuracy requirement of 10−17, the 6th order RK need ≈ 1s CPU time and the
5th order RK ≈ 10s CPU time while the 6th order TE scheme requires ≈ 30s.
However, additional costs, for instance, for particle localization in the PIC cycle
in each interim stage of the RK are not included. Note, these cost, accrue only
once for the TE schemes. The computational cost for a complete PIC cycle with
all particle routines and the field solver is plotted in Figure 4.17. The situation
changes between the RK and TE methods due to the multiple run of the complete
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Figure 4.15: EOC rate of Boris LF scheme (red line) compared to RK method (blue
lines) of order 4,5,6 and the TE approach (black lines) of order 4 to
7.

PIC cycle for a RK method to calculate the interim stages. The 5th order TE

method is about four times faster than the 5th order RK method for all accuracy
ranges. For very high accurate results with an error lower than 10−25 the 6th
order RK becomes about two times faster than the 6th order TE scheme.
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Figure 4.16: Efficiency plot of TE method 4 to 6 compared to Boris LF scheme
and RK method 5 and 6.
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Figure 4.17: Efficiency plot of TE method 4 to 6 compared to Boris LF scheme
and RK method 5 and 6. The computational cost of multiple run of
complete PIC cycle reduces the efficiency of RK method.
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4.3 Relativistic Particle Motion in a B-Field

The following analytically solvable lable example is chosen to investigate the be-
havior of the integration schemes under relativistic conditions. The relativistic
motion of a positron in a static field of magnetic induction is characterized by
an absolute value of velocity and hence, the energy of the particle is conserved.
In this case the constant Lorentz factor γ(t0) = γ0 is determined by the initial
velocity v0 and Newton’s equation of motion (3.23) can be simplified to

v̇ = Ω v × b = Ω b v , (4.19)

where b = B
|B|

, Ω = q |B|
γ0 m

and the matrix b is given by

b =





0 b3 −b2
−b3 0 b1
b2 −b1 0



 . (4.20)

The ordinary differential equation system can be solved for any given vector of
constant magnetic induction B and the solution reads as

v(t) =





b21 + (1− b21)C b1b2 (1− C) + b3S b1b3 (1− C)− b2S
b1b2 (1− C)− b3S b22 + (1− b22)C b2b3 (1− C) + b1S
b1b3 (1− C) + b2S b2b3 (1− C)− b1S b23 + (1− b23)C



 v0 ,

(4.21)
where C = cos(Ω t) and S = sin(Ω t) and v0 denotes the initial velocity. To
obtain the particle position a further integration of (4.21) can be straightforward
performed and yields x(t)(see Appendix B.2.1). The resulting trajectory of a
charged particle in a constant magnetic induction can always be splitted into a
perpendicular and parallel part related to vector b. This property is founded by the
cross product in (4.19), where only the perpendicular part is leading to a constant
circular motion while the parallel part has no effect and constant rectilinear motion
parallel to vector b occurs. The superposition of both independent parts leads to
the classic guiding center motion of a helix like trajectory around a streamline of
the magnetic induction with the frequency of gyration of Ω, a periode of time of
Tp = 2π/Ω and a Larmor radius of rL = |v⊥|/Ω. Finally note, that the present
test problem is essentially approximated by the TE approach according to

[
dν

dtν
v

]

t0

= (−1)νΩν b× . . .× b
︸ ︷︷ ︸

ν−times

×v ; ν = 1, 2, . . . . (4.22)
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4.3.1 Set up of the Numerical Experiment and Results

In the present numerical experiment the particle starts from the position xT
0 =

(0.0; 0.0; 0.0)m with an initial velocity vT0 = (0.2 · 109; 0.0; 0.4 · 104)m/s which
corresponds to a Lorentz factor γ(t) ≈ 1.34. The constant magnetic induction is
fixed equal to BT = (0.0; 0.0; 0.1)V s/m2. All computations are performed up to
the final simulation time te = 10TP with a period of time TP ≈ 0.479 · 10−9s. A
first comparison between analytic solution and numerical result which is obtained
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Figure 4.18: The analytic solution (green line) and the numerical result (dots) af-
ter 10 periods with 160 discretization points calculated with a formal
6th order TE scheme.

with a formal 6th order TE scheme is depicted in Figure 4.18. Obviously, the
analytic helix like trajectory (green line) with a rotation in the xy-plane and a
constant movement in z-direction is well resolved by the numerical result (black •).
A quantitative insight of the approximation characteristics is given in Figure 4.19,
where the Euclidian error norm of particle position is plotted versus the number
of discretization points δ for the LF integrator (red line) and for TE schemes
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Figure 4.19: The Euclidian error norm versus the number of discretization points
for the Boris LF (red line) and different TE schemes up to order eight.

Points eN(v) EOC eN(x) EOC

40 1.750e+6 1.046e-4

80 3.260e+3 9.07 1.938e-7 9.08

160 2.700e-0 10.24 1.534e-10 10.30

320 1.004e-2 8.07 6.390e-13 7.91

640 7.933e-5 6.98 4.909e-15 7.02

1280 3.877e-7 7.68 2.385e-17 7.69

2560 1.665e-9 7.86 1.022e-19 7.87

5120 6.798e-12 7.94 4.171e-22 7.94

Table 4.5: Resulting EOC of the Euclidian error norm in x and
v obtained from a formal 8th order TE calculation of
particles motion in constant B-field.

73



Characteristics & Validation

from 2nd up to 8th order. From the slopes of the curves we found that in all
cases the experimental order of convergence is very close to the formal or design
order of the schemes. This is also underlined by the detail study listed in Table
4.5, where the Euclidian error norm of particle position and velocity is used to
determine the EOC of a formal 8th order TE scheme. Note that the result of the
Boris LF scheme (red line in Fig. 4.19) benefits in this example from the special
construction to calculate the cross product in Lorentz force with a slightly more
accurate result for all point resolutions compared to the 2nd order TE scheme.
The comparison of the approximation behavior between the high order RK and TE
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Figure 4.20: Comparable accuracy after 10 periods computed with RK method
(blue line) and the TE method (black line) up to order 6.

method is shown in Figure 4.20. Obviously, both high order approaches produce
roughly comparable results. A closer look reveals that the RK methods achieve
always slightly more accurate results compared to the TE schemes for all selected
orders up to six. It is interesting to note that for the present test problem the
6th order RK scheme does not coincide with the 7th order TE scheme as in the
previous example. A further numerical result is seen in Figure 4.21, where the L2
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error norm of particles position is plotted against the needed CPU time. Clearly,
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Figure 4.21: Efficiency plot of TE method 4 to 6 compared to Boris LF scheme
and RK method 5 and 6. For the stand alone operation mode the
most efficient calculation of particles motion in constant B-Field is
performed by RK method with a 6th formal order.

the LF scheme cannot compete with the high order methods. Furthermore, we
recognize the trend that the 5th and 6th order RK schemes are more efficient
than their TE counterparts. However, the efficiency gain, for instance of the 6th
order RK compared to the 6th order TE scheme has to be set against the effort
of intermediate stage computations for the RK scheme in the environment of PIC

simulations. The final test of this example includes the cost of all modules of
a PIC cycle. The results are plotted in Figure 4.22 and demonstrate clearly the
power of high order methods independent from their different constructions. For
example for an accuracy requirement of eN ≈ 10−7 both high order methods are
at least 10 times faster than the LF scheme.
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Figure 4.22: Efficiency plot of TE method 4 to 6 compared to Boris LF scheme and
RK method 5 and 6. The most efficient calculations in this example
where all modules of a PIC cycle are active is performed by TE method
with a 6th formal order.
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4.4 Relativistic E×B Drift

The relativistic particle motion in a perpendicularly crossed electric and magnetic
field which are constant in time and space can be separated into the cases of
c|B| < |E| and c|B| > |E| where an analytic solution is described in detail in [17].
The first case leads to a curved and continuously accelerated motion towards the
electric field strength. In the present considerations the second case is assumed
which is known as the E×B drift. Particles velocity oscillate up to relativistic
region, for that reason this example is suitable to test the nonlinear effect of
the relativistic Lorentz factor and, especially to check the operator of calculating
the higher derivatives of this factor in the TE scheme. For instance that may
be illustrated on the first two derivatives of product γ̂U , see relation (3.33) and
Appendix A:

D
(1)(γ̂ U) = D

(1)(γ̂)U + γ̂ E + γ̂2 E × B

D
(2)(γ̂ U) = D

(2)(γ̂)U + 2D(1)(γ̂)(E + γ̂ × B) + γ̂2 ×B + γ̂3 × B × B .

The analytic solution is calculated with the auxiliary coordinate system K′ which
moves with the drift velocity vD relative to the original system K and is defined
as

vD =
E ×B

B2 . (4.23)

The electromagnetic fields in the frame of reference K′ are given by the relation
in Appendix B.2. According to these transformations with respect to the drift
velocity vD, the electric field vanishes (E′ = 0) in the reference frame K′ while
the magnetic induction has only a perpendicular component (B′

‖ = 0 and B′
⊥ =

B′ = 1/(γB)). Then, similar to the previous experiment in section 4.3, we obtain
in the coordinate system K′ the equation of motion

dv′(t′)

dt′
= Ω′ v′ × b′ , (4.24)

where b′ = B′

|B′|
and Ω′ = q |B|

γ′

0
m

with γ′
0 = γ′(t′0). The solution in K′ is essentially

given by expression (4.21) and (B.21). In the original frame of reference system
K the solution is immediately given by the inverse transformation from K′ → K
(see eq. (B.11) and (B.11)) by interchanging primed and unprimed quantities and
setting β → −β.
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4.4.1 Set up of the Numerical Experiment and Results

The simulations for the present example were performed with the same parti-
cle constants (m and q) as used in the previous section 4.3. Here, the con-
stant electromagnetic fields are fixed to ET = (0.0; 0.1 · 107; 0.0) V/m and BT =
(0.0; 0.0; 0.01) V s/m2. The initial particle position is set to xT

0 = (0.0; 0.0; 0.0)m
and the velocity was initialized with 99% of the speed of light in y-direction vT0 =
(0.0; 0.99c; 0.0)m/s, resulting in a Lorentz factor of γ(t0) ≈ 7.1. The drift veloc-
ity for the considered field configuration is given by vTD = (0.1 · 107; 0.0; 0.0)m/s
leading to a helical trajectory in xy-plane in the reference frame K with clockwise
rotation. This is seen in Figure 4.23, where the analytical solution (green line)

+

+

+

+

+

+
+
+
+
++
++++

+
+
+
+

+

+

+

+

+

+

+
+
++

+

+

+

+

+

+

+

+

+
+
+
+
++
++++

+
+
+
+

+

+

+

+

+

+

+
+
++

+

+

+

+

+

+

+

+

+
+
+
+
++
++++

+
+
+
+

+

+

+

+

+

+

+
+
++

+

+

+

+

+

+

+

+

+
+
+
+
++
++++

+
+
+
+

+

+

+

+

+

+

+
+
++

+

+

+

+

+

+

+

+

+
+
+
+
++
++++

+
+
+
+

+

+

+

+

+

+

+
+
++

+

+

+

+

+

+

+

+

+
+
+
+
++
++++

+
+
+
+

+

+

+

+

+

+

+
+
++

+

+

+

+

+

+

+

+

+
+
+
+
++
++++

+
+
+
+

+

+

+

+

+

+

+
+
++

+

+

+

+

+

+

+

+

+
+
+
+
++
++++

+
+
+
+

+

+

+

+

+

+

+
+
++

+

+

+

+

+

+

+

+

+
+
+
+
++
++++

+
+
+
+

+

+

+

+

+

+

+
+
++

+

+

+

+

+

+

+

+

+
+
+
+
++
++++

+
+
+
+

+

+

+

+

+

+

+
+
++

+

+

+

+

x

y

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4.23: Plot of the analytic solution (green line) in reference system K and
the numerical results (crosses) after 10 periods with 320 discretization
points calculated with a formal 6th order TE scheme.

is compared with the result of a formal 6th order TE scheme (black dots) after
10 periods for 320 discretization points. The convergence behavior obtained for
the E×B problem with the TE technique from order two to eight is depicted in
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Figure 4.24: Results of the EOC test on E×B drift example for the Boris LF scheme
and different TE schemes up to order eight.

Points eN(~v) EOC eN(~x) EOC

1280 4.374e+02 5.613e-07

2560 7.452e-00 5.88 1.023e-07 5.78

5120 1.215e-01 5.94 1.719e-10 5.89

10240 1.938e-03 5.97 2.784e-12 5.95

20480 3.060e-05 5.99 4.426e-14 5.97

Table 4.6: Euclidian norm of x and v and resulting EOC ob-
tained from a formal 6th order TE calculation of E×B

example.
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Figure 4.24, where the result of the Boris LF scheme (red line) is plotted as a
reference. Furthermore the EOC for the 6th order TE scheme for the first five
refinement levels is listed in Table 4.25. In both representations (Fig. 4.24 and
Tab. 4.25) the final rate of experimental convergence corresponds to the formal
design order of the schemes. It is obvious from Figure 4.24, that a design order
greater equal than four for the TE method is needed to get a noticeable advan-

x x x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

4

4
4

4

4

4

4

4

4

4

4
4

4
4

4
4

4
4

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

7

7

7

Points [-]

x
eu

cl
.N

or
m

[-]

101 102 103 104 105 106 107 10810-32

10-27

10-22

10-17

10-12

10-7

10-2

103

LF
RK O4
RK O5
RK O6
TE O4
TE O5
TE O6
TE O7

x
4
5
6
4
5
6
7

Figure 4.25: Achieved accuracy after 10 periods computed with RK method (blue
line) and the Taylor series expansion (black line) up to order 7. The
Boris LF scheme result (red line) serve as orientation.

tage in accuracy compared to the Boris LF approach in the coarse discretization
region. A comparison between the RK (blue line) and TE (black line) method
for the present model problem is given in Figure 4.25, where the results of the
LF scheme (red line) serve as orientation. We observe from this plot that lower
formal order RK schemes (4,5 and 6) coincide systematically with TE results of
formal order 5,6 and 7 respectively. This gap in accuracy is a further hint of the
special approximation characteristics of the RK schemes of the Fehlberg family
due to the increased number of interims stages for one order higher estimation of
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the truncation error. The efficiency of the integrators is compared in Figure 4.26,
where the L2-norm of error in position is plotted as a function of the needed CPU
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Figure 4.26: Efficiency plot of TE method 4 to 7 compared to Boris LF scheme
and RK method 5 and 6.

time for a certain problem size defined by the number of discretization points and
formal order. Clearly, for the present "stand alone" problem the RK approach is
definitely more efficient than the TE method. In the context of a complete PIC

cycle with 1000 particles the advantage of the RK methods is diminish for the
benefit of the TE technique see Fig.4.27. In this case the efficiency of 5th order
TE scheme is equal to the 5th order RK method.
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Figure 4.27: Efficiency plot of TE method 4 to 6 compared to Boris LF scheme
and RK method 5 and 6.
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4.5 Assessment of the Numerical Results

In this section we investigated the approximation behavior of the single-step Tay-
lor expansion schemes from formal 2nd up to 8th order. For this purpose we
performed numerical experiments for test problems with which different aspects
of the numerical approximation of the TE technique could be examined. Further-
more, this new single-step approach for charged particle transport is compared
with the classical Boris leapfrog scheme - the “working horse” for the PIC method
- and high order (4,5 and 6) Runge-Kutta schemes in the manner of construction
proposed by Fehlberg.

The first test problem deals with the non-relativistic motion of a charged particle
in time varying electric field only and hence, is appropriate to verify the inclusion
of high order temporal derivatives of the electromagnetic fields for the numerical
approximation. To get quantitative information from the Lissajou trajectory of
the particle, we compute the L2 error norm for the position and the velocity of the
charge as a function of different discretizations of the simulation interval. From
the slopes of the curves in the double-log representation we extract the experi-
mental order of convergence and found that this order agrees very well with the
formal order (two to eight) of the TE schemes. As it is expected, the second order
Boris LF integrator cannot compete in view of accuracy and efficiency with the
TE schemes of formal order greater equal than four. The investigation of the RK

schemes for the present test case reveals a systematic shift in accuracy compared
to the TE integrators, for instance, the accuracy of the 4th order RK scheme co-
incides roughly with the 5th order TE-based scheme. This observation may be a
hint to the peculiar construction of the RK schemes of the Fehlberg family. Fur-
thermore, the results show that the RK integrators are more efficient compared to
their TE counterparts.

The second test example considers also the non-relativistic motion of a charge
but now in a traveling-wave like electric field (which depends on space and time)
and is designed to study the approximation behavior when high order convective
derivatives are needed in the TE approach. First, we were interested to study
the long term stability properties of the Boris integrator as well as the RK- and
TE-based schemes experimentally. It is well known that the Boris scheme shows
excellent stability properties also for intermediate time step size in the long time
limit while the particle trajectory computed with both lower order (three and
four) RK and TE integrators indicate less pronounced robustness. Only if the for-
mal order is greater than equal to five, the RK as well as the TE schemes produce
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the same satisfactory results which do not visibly deviate from the exact solution.
Afterwards, we are concerned with the effective order of convergence of the TE

schemes with the design order up to eight, where the Euclidian error norm of total
particle energy is used here. For all tested formal orders of the TE approach the
measured rate of convergence confirmed the expectation. In general, the compar-
ison of the TE schemes with the Fehlberg RK integration methods shows similar
characteristics in EOC and accuracy as already observed for the previous numer-
ical experiment. However it is conspicuous that the curves of the fifth order RK

and TE computations for this test problem coincide in the convergence diagram.
In view of the efficiency for a complete PIC cycle with 1000 particles we observed,
that the TE methods of formal order four and five are more efficient than the
RK-based schemes.

The relativistic particle motion in a constant B -field is ideal to asses the approx-
imation characteristics in situations where high order derivatives with respect to
the relativistic velocity are necessary for the TE method. In order to get quanti-
tative insight in the approximation properties for this case, we perform the usual
convergence study which confirm that all formal orders of the TE schemes are
met experimentally. Also the second order Boris LF integrator which is due to its
special construction - namely, the decoupling of the electrical and magnetic force
contribution and the resulting conservation properties for B -field rotation - also
the benchmark for such kind of problems. The comparison between the high order
(4,5 and 6) TE and RK schemes reveals that their experimental order of conver-
gence nearly coincide for the present class of problems what was not observed in
the previous numerical experiments. Furthermore, we once again found out that
the TE schemes of order four to six are more efficient than their multi-stage RK

counterparts when the coupling with 1000 particles to the full PIC exist.

The final test problem is concerned with the relativistic motion of a charge in a
crossed E ×B configuration for constant electromagnetic fields and tie up to the
latter numerical experiment. Here, besides the high order derivatives with respect
to the relativistic velocity and, hence the electromagnetic fields, the TE approach
requires high order derivatives of the Lorentz factor for the numerical solution of
the equations of motion. The quantitative comparison of numerical results with
the analytical solution first reveals for all selected formal orders of the TE-based
schemes the corresponding rate of convergence. Furthermore, we next observe
that the low order (two and three) TE schemes as well as the Boris LF integrator
need a certain fineness of the simulation interval in order to deliver acceptable
accuracy. However, for formal orders greater than equal to four the accuracy of
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the TE integrators is notably higher than that of the Boris scheme. The compari-
son of the TE schemes with the Fehlberg RK family shows the expected behavior.
The TE-based results agree approximately with those of the RK method of one
order lower, for instance, the EOC of the 7th order TE scheme coincide with the
6th order RK integration method. Finally, we found from the efficiency diagram
the common circumstance, that for the demanding “stand-alone” test problem and
the test with the complete PIC cycle with 1000 particles the 6th order RK scheme
introduced by Fehlberg is more efficient than those based on the TE approach.

In all previous tests the method of truncated Taylor series expansion applied on the
relativistic Newtons equation of motion for charged particles demonstrated for all
selected formal orders the corresponding experimental order of convergence. The
accuracy and efficiency with a selected formal order of greater than equal four
is always higher than for the second order Boris LF scheme. Compared to the
RK (5 and 6) methods the accuracy is comparable but the efficiency of the TE

scheme is significantly less for all tests of in the “stand-alone” operation mode.
The application of the RK scheme in the frame of a complete PIC cycle with 1000
particles induce additional cost caused in repeated execution of the expensive
localization of the particle and effect the efficiency in parts for the benefit of the
TE method.
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5 Conclusion and Outlook

In this work a new high order method for the integration of the relativistic equation
of motion for charged particles has been developed and tested successfully on
different examples for which analytical solutions are available. This new approach
represents the first technique which calculates the new phase space coordinates in
a high order single step manner based on a Taylor series expansion TE of particles
velocity and position.
The recursive determination of the unknown higher total derivatives of parti-
cles velocity is feasible due to the observation that high order derivatives of the
relativistic velocity and the inverse Lorentz factor can be computed from the
information of the previous derivation order, by the application of simple differen-
tiation rules and from the given high order temporal and spatial as well as mixed
derivatives of the electromagnetic fields.
The accuracy of the schemes based on the TE approach depends on the selected
truncation order of the Taylor series expansion which is only limited by the pro-
vided field derivatives of the Maxwell solver. On different test problems it has
been shown that the convergence rate and hence the consistency of the schemes
based on this new method agree very well with the selected formal order. Fur-
thermore, a gain in efficiency has been observed by each increase of the selected
formal order. Since the TE approach is a type of a single step calculation it saves
the costs for multiply passing the whole PIC cycles during one timestep which is
necessary for high order Runge-Kutta based algorithms.
The near future goal is to adopt the data structure of the Maxwell-Lorentz solver
for the implementation of the TE based schemes. For this it is necessary to develop
a high order source term treatment for the numerical solution of the Maxwell
equation system. To assess the property of the new high order single step PIC

cycle, the interplay of all components have to be investigated under the condition
of a simulation where all parts of the program are involved.
With an extension to compute in parallel on several processors an ideal tool for
the simulation of non-equilibrium plasma flows is expected. Especially this new
high order tool is appropriate to simulate the complex collective plasma dynamics
of a PPT. This could help to understand the working principles of such a PPT

and to assist the design and optimization process.
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A Details on Particle Push Methods

A.1 General Order of Calculation Steps for Taylor Series
Expansion

In contrast to a RK scheme a TE scheme increases the rate of convergence only
by adding a further derivative terms of γ̂U to the previously calculated. To
evaluate the next term one can reuse interims results of the evaluation steps
before. The general order of evaluation of the next higher derivatives of term
D

(κ)(γ̂U) depending on κ consist of the following steps.

1) field derivative D
(κ−1)(E)

2) term of D(κ−1)(γ̂n)

3) (κ− 1)-th derivative of product U E

4) κ-th derivative of inverse Lorentz factor γ̂

5) field derivative D
(κ−1)(B)

6) derivative of crossproduct D
(κ−1)(U × B)

7) κ-th derivative of relativistic velocity D
(κ)(U)

8) κ-th derivative of Taylor term D
(κ)(γ̂U)

9) expand Taylor series of particles velocity v and position x
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A.2 TE Method first Order Terms

In the following the order of calculation for all needed terms for a TE scheme
with K = 1 is presented. With the given initial values of particles velocity v one
can immediately evaluate the first terms of the Taylor series expansion formula
D

(0)(γ̂U) = γ̂U . To calculate the second term D
(1)(γ̂U) we set κ = 1.

1) D
(κ−1)(E) = E

2) D
(κ−1)(γ̂3) = γ̂3

3) D
(κ−1)(U E) = U E

4) D
(κ)(γ̂) = − 1

c2
γ̂3 U E

5) D
(κ−1)(B) = B

6) D
(κ−1)(U × B) = U × B

7) D
(κ)(U) = E + γ̂U × B

8) D
(κ)(γ̂U) = D

(1)(γ̂)U + γ̂D(1)(U)

9) v = γ̂U + ∆t D
(1)
t0

(γ̂U)

x = x0 +∆tγ̂U + ∆t2

2
D

(1)
t0

(γ̂U)
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A.3 TE Method second Order Terms

A.3 TE Method second Order Terms

Based on already calculated products and terms one can perform for a TE scheme
with K = 2 ;κ = 2 the same order of calculation as presented before.

1) D
(κ−1)(E) = ∂1

t (E) +∇xE x(1)

2) D
(κ−2)(γ̂5) = γ̂5

D
(κ−1)(γ̂3) = − 3

c2
γ̂5 U E

3) D
(κ−1)(U E) = D

(1)(U) E + U D
(1)(E)

4) D
(κ)(γ̂) = − 1

c2

(

D
(1)(γ̂3)U E + γ̂3

D
(1)(U E)

)

5) D
(κ−1)(B) = ∂1

t (B) +∇xB x(1)

6) D
(κ−1)(U ×B) = D

(1)(U)× B + U ×D
(1)(B)

7) D
(κ)(U) = D

(1)(E) +D
(1)(γ̂)U × B + γ̂D(1)(U × B)

8) D
(κ)(γ̂U) = D

(2)(γ̂)U + 2D(1)(γ̂)D(1)(U) + γ̂D(2)(U)

9) v = γ̂U +∆tD
(1)
t0

(γ̂U) + ∆t2

2
D

(2)
t0

(γ̂U)

x = x0 +∆tγ̂U + ∆t2

2
D

(1)
t0

(γ̂U) + ∆t3

6
D

(2)
t0

(γ̂U)
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A.4 TE Method third Order Terms

Steps for a TE method with K = 3 ;κ = 3

1) D
(κ−1)(E) = ∂2

t (E) +D
(0)(∇xE)D

(1)(γ̂U)

+ D
(1)(∇xE)D

(0)(γ̂U)

2) D
(κ−3)(γ̂7) = γ̂7

D
(κ−2)(γ̂5) = − 5

c2
γ̂7 U E

D
(κ−1)(γ̂3) = − 3

c2

(

D
(1)(γ̂5)U E + γ̂5

D
(1)(U E)

)

3) D
(κ−1)(U E) = D

(0)(U)D(2)(E)

+2D(1)(U)D(1)(E)

+ D
(2)(U)D(0)(E)

4) D
(κ)(γ̂) = − 1

c2

(

D
(0)(γ̂3)D(2)(U E)

+2D(1)(γ̂3)D(1)(U E)

+ D
(2)(γ̂3)D(0)(U E)

)

5) D
(κ−1)(B) = ∂2

t (B) +D
(0)(∇xB)D

(1)(γ̂U)

+ D
(1)(∇xB)D

(0)(γ̂U)

6) D
(κ−1)(U × B) = D

(0)(U)×D
(2)(B)

+2D(1)(U)×D
(1)(B)

+ D
(2)(U)×D

(0)(B)

7) D
(κ)(U) = D

(2)(E) + D
(0)(γ̂)D(2)(U ×B)

+2D(1)(γ̂)D(1)(U × B)

+ D
(2)(γ̂)D(0)(U × B)

8) D
(κ)(γ̂U) = D

(0)(γ̂)D(3)(U)

+3D(1)(γ̂)D(2)(U)

+3D(2)(γ̂)D(1)(U)

+ D
(3)(γ̂)D(0)(U)

9) v = γ̂U + ∆tD
(1)
t0

(γ̂U) + ∆t2

2
D

(2)
t0

(γ̂U) + ∆t3

6
D

(3)
t0

(γ̂U)

x = x0 +∆tγ̂U + ∆t2

2
D

(1)
t0

(γ̂U)

+ ∆t3

6
D

(2)
t0

(γ̂U)

+ ∆t4

24
D

(3)
t0

(γ̂U)
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A.5 Coefficients of Runge-Kutta Integration Schemes

a
a λ 0 1 2 3
κ ακ βκλ γκ γ̂κ

0 0 0 79
490

229
1470

1 2
7

2
7

0 0

2 7
15

77
900

343
900

2175
3626

1125
1813

3 35
38

805
1444

− 77175
54872

97125
54872

2166
9065

13718
81585

4 1 79
490

0 2175
3626

2166
9065

1
18

Table A.1: Coefficients for a third order RK integration scheme

a
a λ 0 1 2 3 4
κ ακ βκλ γκ γ̂κ

0 0 0 25
216

16
135

1 1
4

1
4

0 0

2 3
8

3
32

9
32

1408
2565

6656
12825

3 12
13

1932
2197

− 7200
2197

7296
2197

2197
4104

28561
56430

4 1 439
216

−8 3680
513

− 845
4104

− 1
5

− 9
50

5 1
2

− 8
27

2 − 3544
2565

1859
4104

− 11
40

2
55

Table A.2: Coefficients for a fourth order RK integration scheme
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a
a λ 0 1 2 3 4 5 6
κ ακ βκλ γκ γ̂κ

0 0 0 31
384

7
1408

1 1
6

1
6

0

2 4
15

4
75

16
75

1125
2816

3 2
3

5
6

− 8
3

5
2

9
32

4 4
5

− 8
5

144
25

−4 16
25

125
768

5 1 361
320

− 18
5

407
128

− 11
80

55
128

5
66

0

6 0 − 11
640

0 11
256

− 11
160

11
256

0 5
66

7 1 93
640

− 18
5

803
256

− 11
160

99
256

0 1 5
66

Table A.3: Coefficients for a fifth order RK integration scheme
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a
a

λ
0

1
2

3
4

5
6

7
8

κ
α
κ

β
κ
λ

γ
κ

γ̂
κ

0
0

0
7
7

1
4
4
0

1
1

8
6
4

1
2 3
3

2 3
3

0

2
4 3
3

0
4 3
3

0

3
2 1
1

1 2
2

0
3 2
2

1
7
7
1
5
6
1

6
2
8
9
9
2
0

4
1 2

4
3

6
4

0
−

1
6
5

6
4

7
7

3
2

3
2

1
0
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2 3

−
2
3
8
3
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8
6
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1
0
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2
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3
1
2

1
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1
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1
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1
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0
1
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5
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0
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6 7

1
0
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2
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9
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0
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−
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0
7
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1

1
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0
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0

7
1

−
7
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3

1
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6
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−
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1
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0
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0
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5
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2

1
8

1
1

−
1
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1
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1
0
2
9

1
8
3
0
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0
1
1

2
7
0

9
1

−
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B Some Results of Special Theory of Relativity

In this appendix we list some basic results from special theory of relativity [17]
which are important to comprehend the equations given in the main text (see
Section 5.4). For this we consider in the following arbitrary contravariant and
covariant 4-vectors (or tensors of rank one) defined by

Aµ =
(

A0, ~A
)

and Aµ =
(

A0, − ~A
)

, (B.1)

where A0 = A0 and ~A are the time and space part of the 4-vector, respectively.
The scalar product between Aµ and Bµ which is a Lorentz invariant is given by

Aµ Bµ = A0 B0 − ~A · ~B . (B.2)

B.1 Transformation of Tensors of Rank one (4-vectors)

Assume that the frame of reference K′ is moving with velocity ~u = c ~βu (in
arbitrary direction) relative to the inertial reference frame K. An arbitrary 4-

vector W µ ′ in system K′ is obtained from that one W µ =
(

W 0, ~W
)

in frame

K according to the transformation

W 0 ′ = γu
(

W 0 − ~βu · ~W
)

(B.3)

~W ′
‖ = γu

(
~W‖ − ~βu W 0

)

(B.4)

~W ′
⊥ = ~W⊥ , (B.5)

where ~W‖ = 1
β2
u

(
~βu · ~W

)
~βu , ~W⊥ = ~W − ~W‖ and γ−2

u = 1 − |~βu|
2. The latter

two equations may be combined to one equation which reads as

~W ′ = ~W +
γu − 1

β2
u

(
~W · ~βu

)
~βu − γu W 0 ~βu . (B.6)

With the relations (B.3)-(B.5) one can further easily verify that A0 ′ B0 ′− ~A ′· ~B ′ =

A0 B0− ~A · ~B holds. Note, that the inverse transformation K′ → K is determined
from (B.3)-(B.5) by interchanging primed and unprimed quantities and setting
~β → −~β.
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B.1.1 Basic 4-vectors

• The time and space 4-vector:

xµ =
(
x0, ~x

)
(B.7)

with x0 = c t.

• The energy-momentum 4-vector:

pµ = mUµ =
(
p0, ~p

)
, (B.8)

where p0 = mγ c and ~p = mγ ~v. The scalar product

pµ pµ = m2 Uµ Uµ = m2 c2 (B.9)

is an Lorentz invariant.

Other important first-rank tensors are the 4-vector potential and the 4-vector of
charge and current density.

B.2 Transformation of electromagnetic Fields

Since the electromagnetic fields are components of the second-rank, antisymmetric
field-strength tensor Fµ ν , the transformation from system K to reference frame
K′ is more difficult. One obtains for the fields in frame K′

~E′ = γu
[
~E + c

(
~βu × ~B

)]

−
γ2
u

γu + 1

(
~E · ~βu

)
~βu (B.10)

~B′ = γu

[

~B −
1

c

(
~βu × ~E

)]

−
γ2
u

γu + 1

(
~B · ~βu

)
~βu , (B.11)

where ~βu = ~u/c and γ−2
u = 1 − |~βu|

2. The inverse transformation from K′ to K
is found similar as described above for a 4-vector.

B.2.1 Solution of the Energy-Moment Equation in K’

Since the laws of nature must be covariant, that is invariant in form, under Lorentz
transformation we obtain for the energy change and force equations:
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B.2 Transformation of electromagnetic Fields

• In the reference coordinate system K

dp 0

dt
=

q

c
~E · ~v ⇔

d

dt

(
mc2 γ

)
= q ~E · ~v (B.12)

and
d~p

dt
= q

(
~E + ~v × ~B

)

, (B.13)

• and in reference frame K′

d

dt ′
(
mc2 γ ′

)
= q ~E ′ · ~v ′ (B.14)

d~p ′

dt ′
= q

(
~E ′ + ~v ′ × ~B ′

)

(B.15)

where γ ′, ~v ′ and ~p ′ depend now on t ′ and ~E and ~B denote the constant
external electric field and magnetic induction in K.

In the following we are interested in the situation

c−1 | ~E| < | ~B|

and choose the velocity ~u perpendicular to the orthogonal vectors ~E and ~B ( ~E· ~B =
0) according to

~u =
1

| ~B|2
~E × ~B . (B.16)

In this case the fields (B.11)-(B.11) in the reference frame K′ take the simple form

~E ′ = ~E‖
′ = ~E⊥

′ = 0 (B.17)

and
~B‖

′ = 0 , ~B ′ = ~B⊥
′ = γ−1

u
~B , (B.18)

where ‖ and ⊥ means parallel and perpendicular to ~u and γ2
u = c2 |~B|2

c2 |~B|2−|~E|2
.

Consequently, the equations of motion in K′ now reads as

d

dt ′

(
mc2 γ ′

)
= 0 ⇒ γ ′(t0

′) = γ0
′ (B.19)

d~v ′

dt′
= Ω ′ ~v ×~b ′ , (B.20)
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where Ω ′ = q | ~B ′|
γ0 ′m

and ~b ′ = ~B ′/| ~B ′| = (b1, b2, b3)
T . The analytical solution

of the latter equation is already given in equation (4.21) in section 4.3. With a
further integration over time t one obtains the analytic solution of position x ′(t ′).

x ′(t ′) =

1

Ω





b21Ωt + (1− b21)S b1b2 (Ωt− S)− b3C b1b3 (Ωt− S) + b2C
b2b1 (Ωt− S) + b3C b22Ωt+ (1− b22)S b2b3 (Ωt− S)− b1C
b3b1 (Ωt− S)− b2C b3b2 (Ωt− S) + b1C b23Ωt+ (1− b23)S



 v ′
0

+
1

Ω





0 b3 −b2
−b3 0 b1
b2 −b1 0



 v ′
0 + x ′

0 . (B.21)
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C Some Properties of the Maxwell Equations

Here, we start from the linear system of conservation laws (2.32) and note first
that any linear combination of the matrices K

i
(2.34)

K =
3∑

j=1

nj K
j

=











0 0 0 0 n3 c −n2 c
0 0 0 −n3 c 0 n1 c
0 0 0 n2 c −n1 c 0
0 −n3 n2 0 0 0
n3 0 −n1 0 0 0
−n2 n1 0 0 0 0











(C.1)

with n · n =
3∑

i=j

n2
j = 1, can be diagonalized and all eigenvectors rj , j = 1, . . . , 6,

are real. Therefore, the Maxwell equations form a linear, hyperbolic system of
conservation laws. Furthermore, this system of partial differential equations is
called strictly hyperbolic, if it is hyperbolic and the right eigenvectors

R
K

=
(

r1, . . . , r6

)

=











c l1 cm1 c n1 0 c l1 cm1

c l2 cm2 c n2 0 c l2 cm2

c l3 cm3 c n3 0 c l3 cm3

−m1 l1 0 n1 m1 −l1
−m2 l2 0 n2 m2 −l2
−m3 l3 0 n3 m3 −l3











(C.2)

of K form a basis of R6, i.e. these eigenvectors exists and are linear independent.
Consequently this means, that

Λ
K

= R−1

K
K R

K
=

(

λ1 . . . , λ6

)

=
(

−c, −c, 0, 0, c, c
)

(C.3)
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holds, where the λk’s are the eigenvalues of K and the inverse matrix of R
K

is
given by

R−1

K
=

1

2 c











l1 l2 l3 −cm1 −cm2 −cm3

m1 m2 m3 c l1 c l2 c l3
2n1 2n2 2n3 0 0 0
0 0 0 2 c n1 2 c n2 2 c n3

l1 l2 l3 cm1 cm2 cm3

m1 m2 m3 −c l1 −c l2 −c l3











. (C.4)

For the sake of simplicity we introduced in (C.2) and (C.4) two additional unit

vectors, namely, l =
(
l1, l2, l3

)T
and m =

(
m1, m2, m3

)T
with the properties

n · l = 0 and m = n× l.
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D Exact Riemann solver for Maxwell System

of Equations

D.1 General Aspects

In the following we consider the one-dimensional system of conservation laws given
by

∂u

∂τ
+K

∂u

∂ζ
= 0 , (D.1)

where u = u(ζ, τ ) ∈ R
6 denotes the vector of state variables (2.33) and K ∈ R

6×6

is the constant matrix (C.1). Furthermore, ζ is the space coordinate in direction of
the unit vector n and τ is the scaled time obtained from τ = t−t0 with t0 ≤ t ≤ t1.
Then the RP is defined as an initial value problem for the conservation equation

τ

ζ

λ
λ

λ

v
L

= v
0

0

1

2

3v
v

v

1
2

R
= v

3

Figure D.1: (ζ, τ )-diagram of the solution of the local RP where v ∈ R
3. Obvi-

ously, the solution consists of four constant states vL, v1, v2 and vR
separated by three characteristics.
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(D.1) with piecewise constant initial data of the form

u(ζ, 0) =

{
uL for ζ < 0
uR for ζ > 0

}

, (D.2)

which are separated by a single discontinuity at ζ = 0. Here, uL ∈ R
6 and uR ∈ R

6

denote the constant left and right state vector with respect to the discontinuity.
To obtain the solution of the RP for the strictly hyperbolic Maxwell equations, we
take into account that there exists a non-singular matrix R

K
of right eigenvectors

(C.2), so that (C.3) holds. By introducing the characteristic variables

v(τ, ζ) = R−1

K
u(τ, ζ) (D.3)

and multiplying the conservation system (D.1) from the left with R−1

K
, we get the

decoupled system
∂v

∂τ
+ Λ

K

∂v

∂ζ
= 0 , (D.4)

of six linear transport equations, where matrix of the eigenvalues Λ
K

is given

by (C.3). For the sake of convenience we recast the latter expression into the
component form

∀k ∈ [1, 6] :
∂vk
∂τ

+ λk
∂vk
∂ζ

= 0 (D.5)

and assume for the moment that all eigenvalues λk to be non-zero. The solution
of the linear advection equations (D.5) is immediately found to be

∀k ∈ [1, 6] : vk(ζ, τ ) = v
(0)
k (ζ − λk τ ) (D.6)

with the initial values obtained from

v(0)(ζ) = R−1

K
u(ζ, 0) , (D.7)

where u(ζ, 0) is given by the initial data (D.2) (see Fig. D.1). From these relations
we conclude, that the characteristic variables at the origin ζ = 0 are given by

∀k ∈ [1, 6] : v(0, τ ) = v(0)(−λk τ ) =

{
vR; k if λk < 0
vL; k if λk > 0

}

, (D.8)

where the constant values vR; k and vL; k are computed from

vL = R−1

K
uL and vR = R−1

K
uR , (D.9)
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τ

ζ
0v

L
v

R

λ3 λ1λ2

(τ , ζ )

Figure D.2: Different building blocks of a typical PIC simulation program.

respectively. By back transforming of (D.8) according to

u(0, τ ) = R
K

v(0, τ ) , (D.10)

the solution of the RP (D.1), (D.2) at the origin ζ = 0 is determined. Clearly, the
global space-time solution of the RP reads as

u(ζ, τ ) = R
K

v(ζ, τ ) =
6∑

k=1

vk(ζ, τ ) rk , (D.11)

where rk is the kth eigenvector of K with eigenvalue λk and the coefficients vk(ζ, τ )
are the solution of the linear advection equation.

REMARK: The solution u(0, τ ) is a priori not defined if there exists an eigenvalue
λk0

= 0. However, since the jump of the solution across a characteristic curve
is finite, the solution at the characteristic may be explained as an average value
of the left and right hand side solution. It can be shown that the definition of
the state u(0, τ ) in the case where eigenvalues vanish has no influence to the flux
calculation.
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D.2 Calculation of the Physical Flux

The physical flux function F ∈ R
6 of the stricly hyperbolic Maxwell system at the

origin ζ = 0 is given by

F
(

u(0, τ )
)

= K u(0, τ ) = R
K

Λ v(0, τ ) , (D.12)

where relations (D.10) and (C.3) already have been taken into account. Before
proceeding we make the observation that the eigenvalues of K can be written in
the following form

∀k ∈ [1, 6] : λk = λ+
k + λ−

k =
1

2

(

λk + |λk|
)

+
1

2

(

λk − |λk|
)

(D.13)

with

λ+
k =

{
λk , λk > 0
0 , else

}

and λ−
k =

{
λk , λk < 0
0 , else

}

(D.14)

Obviously, this property transfers to the diagonal matrix (C.3) which then reads
as

Λ = Λ+ + Λ− with Λ± =
1

2

(

Λ± |Λ|
)

, (D.15)

where Λ+ and Λ− are the diagonal matrices of the positive and negative eigenval-
ues of K, respectively. Inserting the decomposition (D.15) in the last equation of
(D.12) and using the relations (D.8) and (D.9), we obtain the intermediate result

R
K

Λ v(0, τ ) = R
K

Λ+ R−1

K
uL +R

K
Λ− R−1

K
uR . (D.16)

With the definition

K± =
1

2

(

K ± |K|
)

with |K| = R
K

|Λ| R−1

K
, (D.17)

we finally obtain the flux-vector splitting formulation of the total physical flux
function at the origin ζ = 0:

F
(

u(0, τ )
)

= K u(0, τ ) = K+ uL +K− uR . (D.18)

This relation reveals that the total flux vector may be regarded as a decomposition
into a flux to the “right” – K+ uL – and into a flux to the “left” – K− uR – having
respectively only positive and only negative eigenvalues.
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