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Nomenclature

Roman symbols

C transported scalar

C0 mean transported scalar value on the jet centerline

c′ turbulent scalar fluctuation

CD cross-diffusion

Cjet mean transported scalar concentration on the jet exit

Cµ, Cε1, Cε2, Cε3 modeling constants of k-ε models

Cλ, Cd1, Cd2, Cp1, Cp2 modeling constants of c′2-εc and c′2-ωc models

cp heat capacity

Cw modeling constant in the law of the wall

d jet diameter in the jet in crossflow test case

D sum of the pressure diffusion and of the turbulent diffusion of the turbulent kinetic energy

Dp pressure diffusion of the turbulent kinetic energy

Dt turbulent diffusion of the turbulent kinetic energy

E energy spectrum function (energy spectral density)

ei unit vector in the ith-direction

F1, F2 blending functions of the SST k-ω model

fλ, fd1, fd2, fp1, fp2 near-wall damping functions of c′2-εc models

fµ, fε1, fε2 damping functions of low-Re k-ε models

J jet to crossflow momentum ratio, J = ρjetU
2
jet/ρcrossflowU2

crossflow

k turbulent kinetic energy, k = 1
2
u′iu

′
i, (i = 1− 3)
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Nomenclature

kmod modeled part of the turbulent kinetic energy

kres resolved part of the turbulent kinetic energy

L integral length scale

L mixing section side length in the jet in crossflow test case

L characteristic length scale in the mixing length hypothesis

Lc characteristic length scale of turbulent scalar mixing

P production rate of the turbulent kinetic energy

Pc production rate of the turbulent scalar variance

P pressure

P modified pressure in RANS or LES equations, P = P + 2
3
ρk

p′ pressure fluctuation

Q second invariant of the velocity gradient tensor

qw wall heat flux

r radial coordinate

R ideal gas constant

R radius of the mixing section in confined coaxial jets test cases

Re Reynolds number, Re = UL
ν

Ret turbulent Reynolds number, Ret =
√

kL
ν

Ry dimensionless wall distance based on k1/2, Ry = k1/2y
ν

ReT turbulent Reynolds number in the near-wall damping functions, ReT = k2

εν

R ratio of the turbulent scalar time scale to the turbulent velocity time scale, R = τc/τd

Sij strain-rate tensor Sij = 1
2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
, (i = 1− 3, j = 1− 3)

S swirl number

t time

T temperature

tL integral time scale
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Nomenclature

U0 mean axial velocity value on the jet centerline

Uabs xy mean xy-velocity in the jet in crossflow test case, Uabs xy =
√

U
2

x + U
2

y

Uabs xz mean xz-velocity in the jet in crossflow test case, Uabs xz =

√
U

2

x + U
2

z

Ucrossflow mean crossflow velocity

Ui ith-component of the velocity vector (i = 1− 3)

u′i turbulent fluctuation of the ith-component of the velocity vector (i = 1− 3)

Ujet mean jet velocity

uη dissipation (Kolmogorov) velocity scale uη = (νε)1/4

uL integral velocity scale

uτ wall friction velocity, uτ =
√

τw

ρ

U characteristic mean flow velocity

U characteristic velocity scale in the mixing length hypothesis

x position in the Cartesian coordinate system

x0 virtual origin of the free round jet

xa absolute axial coordinate for the free round jet xa = x− x0

xi ith-component of the Cartesian coordinate system (i = 1− 3)

x, y, z components of the Cartesian coordinate system

Yk specific mass fraction of k-component of a mixture

y absolute distance from the wall

y∗ dimensionless distance from the wall based on the Kolmogorov velocity scale, y∗ = uηy/ν

Greek symbols

α molecular diffusivity of the transported scalar

αt turbulent scalar diffusivity

βk, βω modeling constants of k-ω models

χp, χω non-dimensional vortex stretching measure

δ′0.5 spreading rate of the free round jet
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Nomenclature

ε dissipation rate of the turbulent kinetic energy

εc dissipation of the turbulent scalar variance

η dissipation (Kolmogorov) length scale

ηB Batchelor length scale

γ modeling constant of k-ω models

κ von Karman constant

κ reciprocal of the eddy characteristic length

µ molecular dynamic viscosity, µ = ρν

µt turbulent dynamic viscosity, µt = ρνt

ν molecular kinematic viscosity

νt turbulent kinematic viscosity

Ωij vorticity tensor Ωij = 1
2

(
∂Ui

∂xj
− ∂Uj

∂xi

)
, (i = 1− 3, j = 1− 3)

ω specific dissipation rate

ωc specific dissipation rate of the turbulent scalar variance

ωu reciprocal turbulent velocity time scale

ρ density

σh, σφ modeling constants of c′2-εc and c′2-ωc models

σ molecular Prandtl or Schmidt number, σ = ν/α

σt turbulent Prandtl or Schmidt number, σt = νt/αt

σk, σε k and ε diffusion modeling constants of k-ε models

σk, σω modeling constants of k-ω models

τ dissipation (Kolmogorov) time scale

τc turbulent scalar time scale, τc = c′2/2εc

τd turbulent velocity time scale, τd = k/ε

τλ time scale in two-equation turbulent scalar mixing models

τw surface shear stress
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Nomenclature

θw wall friction temperature, θw = qw/ρcpuτ

Superscripts

φ averaged or filtered variable

φ+ dimensionless variable normalized using uτ , ν, or θw

Abbreviations

2D two-dimensional

3D three-dimensional

AKN turbulent viscosity or turbulent scalar diffusivity model of Abe et al. [1] and [2]

BSL baseline turbulent viscosity model of Menter [83]

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy number

curv. c. streamline curvature correction of Hellsten [46]

DNS Direct Numerical Simulation

DWX turbulent scalar diffusivity model of Deng et al. [21]

exp. experimental

GT gas turbine

HB turbulent scalar diffusivity model of Huang and Bradshaw [48]

LB turbulent viscosity model of Lam and Bremhorst [71]

LES Large Eddy Simulation

LIF Laser-Induced Fluorescence

lim. limiter

NK turbulent scalar diffusivity model of Nagano and Kim [89]

PDF Probability Density Function

PIV Particle Image Velocimetry

RANS Reynolds-Averaged Navier-Stokes

ref. reference
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Nomenclature

refs. references

r. j. c. round jet correction

RMS root mean square

SAS Scale-Adaptive Simulation

SGS subgrid scale

SIMPLE Semi-Implicit Pressure-Linked Equations

SST Shear-Stress Transport turbulent viscosity model of Menter [83]

std. standard

URANS Unsteady Reynolds-Averaged Navier-Stokes

vol. volume
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Zusammenfassung

Für eine genaue numerische Simulation der Gasturbinenverbrennung ist die Qualität der Ab-
bildung von Geschwindigkeits-, Temperatur-, und Konzentrationsfeldern entscheidend. Typi-
sche Strömungsfelder der Gastubinenbrennkammer sind äußerst komplex und bestehen aus
Elementen die miteinander interagieren. Die numerische Abbildung der Turbulenz und der
Mischungsprozesse in solchen Strömungen ist daher herausfordernd. In der vorliegenden Dis-
sertation werden unterschiedliche Aspekte der Modellierung der Strömung und der turbulenten
skalaren Mischung in komplexen Strahlkonfigurationen betrachtet.

Im Rahmen der vorliegenden Arbeit werden für detailiete Studien drei Grundtestfälle aus-
gewählt: Strahl in einer Querströhmung, eingeschlossene verdrallte koaxiale Strahlströmung,
und eingeschlossene koaxiale Strahlströmung ohne Drall. Im Kapitel 1 werden die bekannten
numerischen Untersuchungen solcher Strömungen in einer Literaturstudie zusammengestellt
und diskutiert: von den Direkten Numerischen Simulationen (DNS) bis zur Reynolds-Averaged
Navier-Stokes (RANS) Modellierung. Es werden drei Hauptziele dieser Arbeit genannt. Das
erste Ziel ist ein kritischer Vergleich der hocheffizienten RANS Modelle für Turbulenz und Mi-
schung für die ausgewählen Testfälle. Das zweite Ziel ist eine detailierte Auswertung der Daten,
die in einer Large Eddy Simulation (LES) für die betrachteten Testfälle generiert werden. Dabei
können in einer LES Auswertung auch Variablen beschafft werden, die im Experiment nicht
zugänglich sind. Damit soll eine umfassende Datenbasis für die Validierung der RANS Modelle
zur Verfügung stehen. Das dritte Ziel dieser Arbeit ist die Untersuchung des Potentials der
Scale-Adaptive Simulation (SAS) und der instationären RANS (URANS) für die Mischungs-
modellierung in den betrachteten Konfigurationen. Hier soll auch geklärt werden, wie gut die
unterschiedlichen Simulationsmethoden die Flammenausbreitung nach der Selbstzündung in
einem Vormischkanal mit Querstrahleinblasung wiedergeben können.

Im Kapitel 2 wird der theoretische Hintergrund dieser Arbeit beleuchtet. Die Konzepte der
RANS und LES werden vorgestellt, wobei insbesondere auf weitverbreitete Modelle eingegangen
wird. Die wichtigsten Probleme und offene Fragen werden basierend auf einer Literaturstudie
beschrieben. Ein besonderes Augenmerk wird auf die RANS Modellierung gerichtet. Es werden
mehrere Zweigleichungsmodelle und Modellkorrekturen, sowie Konzepte für die Modellierung
der turbulenten skalaren Diffusivität beschrieben und diskutiert. Die Modelldiskussion wird
mit der Präsentation der Ergebnisse für eine ebene Kanalströmung und für einen Freistrahl
begleitet. Auf diese Weise werden die Stärken und Schwächen unterschiedlicher RANS Modelle
in akademischen Standardtestfällen und in komplexen Strahlströmungen ermittelt.

Im Kapitel 3 werden RANS Studien und die Auswertung von LES Daten für drei Haupttest-
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Zusammenfassung

fälle präsentiert. Die RANS Ergebnisse für die Mittel- und Fluktuationswerte der Geschwin-
digkeitsfelder und der skalaren Konzentrationsfelder werden experimentellen Daten und LES
Egebnissen gegenüber gestellt. Die LES ergibt meistens die beste Übereinstimmung mit den
experimentellen Daten. Viele der untersuchten RANS Modelle zeigen eine klare Tendenz zur
Unterschätzung der Turbulenz- und Mischungsintensität in den komplexen Strahlströmungen.
Der Einfluss unterschiedlicher Gleichungsterme und Korrekturen auf die Genauigkeit der RANS
Modelle wird untersucht. Für eine umfassendere Studie werden LES Daten für die Auswertung
der turbulenten Viskositäten, turbulenten skalaren Diffusivitäten, Budgetterme der Transport-
gleichungen für die turbulente kinetische Energie und die turbulente skalare Varianz einge-
setzt. Mit Hilfe dieser Daten wird auch die praktisch relevante Information über die Werte der
turbulenten Schmidtzahl in den betrachtenen Testfällen gewonnen. Die mittleren turbulenten
Schmidtzahlen aus der LES Auswertung liegen um 0.5 für den quereingedüsten Strahl und
bei 0.6 − 0.9 für die beiden eingeschlossenen koaxialen Strahlströmungen. Es wurden weitere
Größen (das Verhältnis der Produktions- und Dissipationsraten, der Modellierungskoeffizient
der Gleichung für die turbulente Viskosität, das Verhältnis zwischen der Skalaren und der
dynamischen Zeitskala) ausgewertet, die wichtig für die Validierung der verbreiteten RANS
Modellierungsannahmen sind. So wird eine umfassende Datenbasis geschaffen, die für die wei-
tere Verfeinerung der RANS Modelle im Hinblick auf die Gasturbinenapplikationen genutzt
werden kann. Weiterhin wird eine detailierte Diskussion über die Auswertungsmethoden und
die gewonnene Ergebnisse angeführt.

Im Kapitel 4 sind URANS und SAS Rechnungen der betrachteten Testfälle präsentiert. Die
Genauigkeit der SAS Ergebnisse wird mit RANS und LES Ergebnissen für die drei Haupt-
testfälle verglichen. Eine weitgehende Vergleichstudie zwischen SAS und URANS wird für die
Querstrahlkonfuguration durchgeführt. Die Validierung der Rechenmethoden mit experimentel-
len Daten wird mit einer Visualisierung der aufgelösten Wirbelstrukturen begleitet. Desweite-
ren wird der Vorgang von Selbstzündung und Flammenausbreitung für die Konfiguration eines
quereingedüsten Strahls mit Hilfe von URANS und SAS modelliert. Qualitative Differenzen in
der Flammenfrontausbreitung werden besprochen und die Überlegenheit der SAS Methode für
solche Simulationen aufgezeigt.
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Abstract

For an accurate gas turbine combustion simulation the quality of the mean and fluctuating
velocity, temperature, and species concentration field predictions is of critical importance. A
typical flow pattern of a gas turbine combustion chamber comprises several complex jet con-
figurations intricately interacting. Numerical representation of turbulence and mixing in such
flows is a challenging task. Different aspects of modeling the turbulence and turbulent scalar
mixing in complex jets are considered in this dissertation.

Three complex jet test cases are selected for a systematic investigation in the present work:
jet in crossflow, confined coaxial swirling jets, and confined coaxial jets without swirl. A com-
prehensive literature overview on the previous numerical investigations of these flows ranging
from Direct Numerical Simulations (DNS) to Reynolds-Averaged Navier-Stokes (RANS) mod-
eling is given in chapter 1. Three main goals of the present work are formulated. The first
one is the critical assessment of the widespread turbulent viscosity and turbulent scalar diffu-
sivity RANS approaches in application to the flow and mixing modeling in the selected test
cases. The second aim is a thorough evaluation of the statistical data obtained in Large Eddy
Simulations (LES) of three main test cases. This goal is set in order to provide a more compre-
hensive database for validating RANS models and to obtain variables of interest which cannot
be determined easily in experiments due to measurement instrumentation limitations. The
third aim of the present work is to understand the potential of the Scale-Adaptive Simulation
(SAS) method and of the Unsteady RANS (URANS) approach for the mixing modeling in the
considered flows. The most important question here is the clarification of the ability of different
methods to correctly predict the flame propagation processes in the practically relevant case of
autoignition in a jet in crossflow. All goals are achieved in this work and the respective studies
are presented.

Chapter 2 develops the theoretical framework of this dissertation. RANS and LES concepts
are introduced and common modeling closure approaches for both methods are discussed. The
most important problems and open questions are outlined based on a literature study. Es-
pecially high attention is paid to the challenges of modeling turbulence and mixing within
the RANS formalism. Chapter 2 describes several widespread two-equation turbulent viscos-
ity models and their additional corrections, and several turbulent scalar diffusivity modeling
approaches. A discussion on the advantages and weaknesses of different models is provided.
The model discussion is accompanied by the presentation of the results obtained for a plane
channel flow and for a free round jet test case respectively. This is included to better illustrate
the relative advantages and weaknesses of different RANS models in standard academic test
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Abstract

cases, and to provide the foundation for analyzing complex jet flows which are the primary
configurations of interest of this dissertation.

Chapter 3 is devoted to the study of the accuracy of RANS in three main test cases and
to LES data evaluation. The results of RANS mean and fluctuating velocity and scalar field
simulations are validated against experimental data and the outcome of accompanying LES
calculations. The LES results, for the most part, agree better with the respective experimental
data. Many of the tested RANS models show a clear trend of the underestimation of turbulence
and mixing in the considered complex jet configurations. The influence of different equation
terms and corrections on the RANS model accuracy is investigated. For a more thorough study,
the resolved data fields from LES are used for the evaluation of the Reynolds-averaged turbulent
viscosities, turbulent scalar diffusivities, and the main budget terms of the turbulent kinetic
energy and the turbulent scalar variance transport equations. This data is also used to extract
practically important information on the turbulent Schmidt numbers in the considered flows.
The turbulent Schmidt numbers given by LES data evaluation fluctuate around 0.5 for the jet
in crossflow case and 0.6− 0.9 for both confined coaxial jet cases. Other important quantities
needed for the validation of the common RANS modeling assumptions, such as production to
dissipation ratios, modeling coefficients of the turbulent viscosity equation, turbulent scalar to
velocity time scale ratios, are evaluated from LES data as well. This builds a comprehensive
database useful for the further refinement of RANS modeling in gas turbine applications. A
detailed discussion on the evaluation methods and on the obtained results is provided.

In chapter 4 URANS and SAS calculations of the considered complex jet flows are presented.
The accuracy of SAS is assessed on all three main test cases by comparing against the RANS and
the LES data. For a comparative study of SAS and URANS, the jet in crossflow configuration is
selected. The quantitative validation of the results against experimental data is supplemented
by the visualization of the vortex structures resolved by both methods. Furthermore, the
autoignition and the flame propagation in a jet in crossflow configuration is modeled using
both URANS and SAS and qualitative differences in the flame front propagation predictions
are assessed.

16



1 Introduction

1.1 Motivation
The importance of Computational Fluid Dynamics (CFD) in engineering has constantly grown
over the last decades. The tools of CFD have become an essential link in every development
chain in the aerospace and turbomachinery industry as well as in numerous other fields. CFD
methods used for practical applications should fulfill the requirements of reliability and of time
efficiency. Those requirements can present a challenge, especially in simulations of complex
multi-physics processes, such as gas turbine (GT) combustion.

Even not considering the topics of spray and chemical reaction modeling, an accurate repro-
duction of the flow fields and mixing processes in a GT combustion chamber is a demanding
task. The reason for this is that GT combustor flows are characterized by a high level of com-
plexity (figure 1.1.1). A typical flow pattern comprises swirling and non-swirling confined jets
and jets in crossflows interacting in intricate ways. For an accurate combustion simulation, the
employed turbulence and turbulent scalar mixing models should be able to correctly reproduce
the mean and fluctuating velocity, temperature, and species concentration fields. Different as-
pects of the computational modeling of these quantities with emphasis on GT combustor flows
are considered in this dissertation.

dilution air

intermediate air

primary air

primary air

cooling air

fuel

swirler

combustion zone

recirculation zones

Figure 1.1.1: Schematic representation of the air distribution in a typical gas turbine combustor
according to Lefebvre [73]

Reynolds-Averaged Navier-Stokes (RANS) turbulence modeling methods are well suited for
design optimization calculations due to their low computational cost. Unfortunately, they can
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Introduction

be inaccurate for complex flows. This is a consequence of the RANS formalism. Its funda-
mental idea is to model the effects of all scales of the turbulence, even the largest eddies. The
simulation output is the ensemble- or time-averaged flow field. Consequently, if the modeled
flow pattern is characterized by the presence of anisotropic, highly unsteady, large-scale struc-
tures, the reproduction of their physics by a RANS model presents a challenge. The first topic
of this work is to highlight particular difficulties connected with the application of widespread
RANS turbulence and mixing closures for complicated jet flows typical for GT combustion.
A supporting aim of this dissertation is the exploration of possible improvements of current
RANS methods.

In order to avoid the modeling of complex large-scale turbulent structures, unsteady vortex-
resolving methods such as Large Eddy Simulation (LES) or even Direct Numerical Simulation
(DNS) can be used instead of RANS. In DNS the discretized momentum and scalar transport
equations are solved by a numerical method without any additional modeling of the turbulent
content. This is without doubt the most straight-forward and accurate way of simulation, but it
implies that the full range of the length and time scales of the flow must be resolved. In actual
technical applications, often characterized by high Reynolds numbers, the range between the
largest and the smallest scales can be significant. The computational cost of DNS grows with
the turbulent Reynolds number as Ret

3 [101] (see section 2.1.2). Thus, even the academic DNS
of complex jet flows relevant in the context of the current work are a rarity [37, 88]; furthermore,
such simulations are typically characterized by unrealistically low Reynolds numbers (around
5000). A DNS of a real combustor is and will be computationally out of reach for decades
[99, 102].

In Large Eddy Simulations (LES), large to intermediate turbulent flow structures are resolved,
and the effects of the smaller eddies are modeled. Consequently, this approach allows a relatively
accurate representation of the flow physics at lower computational cost than DNS. In direct
comparison with RANS, well-resolved LES gives better results in most cases. Unfortunately,
from the point of view of practical engineering simulations, LES methods are still too expensive
to be employed in design optimization calculations. But due to their high accuracy and the
vortex-resolving ability, this class of techniques can be extremely useful for thorough numerical
studies of realistic high-Reynolds number flows. The data obtained in LES can provide an
insight into the unsteady physics of turbulence and mixing in the cases when such knowledge
can not be easily gained from experiment due to measurement instrumentation limitations or
from DNS due to computational cost restrictions. The present work employs LES to recover
practically relevant statistical information about the turbulence and mixing characteristics in
complex jet flows that can facilitate RANS model improvement.

A pragmatic alternative to LES in cases when an unsteady vortex-resolving solution is needed,
but the computational cost restrictions are severe, can be the application of hybrid RANS/LES
methods. These approaches allow the variation of the spectral resolution (from RANS to LES)
in the flow field depending on the importance of accuracy in certain regions, essential un-
steadiness of the flow, and grid resolution. Over the last decade hybrid methods have become
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immensely popular and are one of the most intensive fields of engineering turbulence modeling
development. The computational cost reduction compared to LES can be of several orders of
magnitude [114]. The argument for applying such methods in lieu of RANS is their improved
accuracy due to the resolution of complex vortical structures by LES-like calculations. The
quality of RANS modeling, however, still plays an important role in hybrid models, and the
computational cost of “pure”RANS will always be lower. Hence, successful development of
the hybrid methods does not imply that further work on RANS modeling should be slowed
down. In GT combustion computations hybrid RANS/LES methods can be indispensable for
the simulation of fundamentally unsteady processes, such as self-ignition or flame propagation.
Such processes cannot be recovered by a steady-state simulation, even if a perfectly accurate
RANS model would exist. For this reason the present work considers the application of a
hybrid RANS/LES approach for the flame propagation modeling in a jet in crossflow con-
figuration. Furthermore, a study on the relative accuracy of different turbulence simulation
methods (RANS, LES, hybrid RANS/LES) in the GT-related jet flows is presented.

1.2 Previous work on numerical simulations of complex jet

flows
Jets in crossflow, confined swirling jets, and confined non-swirling jets represent important
configurations often implemented for mixing enhancement and flame stabilization in GT com-
bustion applications. Consequently, the accuracy of the turbulence and mixing modeling for
these jet flows directly affects the accuracy of the simulation of all processes occurring in a com-
bustor. This section presents a review on previous numerical studies devoted to these flows.
Detailed theoretical background on all modeling approaches mentioned in this section can be
found in chapter 2.

1.2.1 Jet in crossflow

Jets in crossflow, also known as transverse jets, are widely used to achieve enhanced mixing in
many industrial applications as well as for flight control purposes in aerospace vehicles. In gas
turbine technology, important examples include the flows in the premixing and dilution zones
of gas turbine combustion chambers. Targeting this application area, current work focuses
primarily on the transverse jets with relatively high jet to crossflow momentum ratios J ≈ 5 to
J ≈ 100 with J defined as

J =
ρjetU

2
jet

ρcrossflowU2
crossflow

. (1.2.1)

Jets with lower momentum ratios more typical for cooling applications, are not considered here
since wall proximity effects play an important role in these cases, and the flow physics can differ
comparatively to flows with high momentum ratios.

A comprehensive review of the research on transverse jets carried out by early 1990s can
be found in the publication of Marganson [82]. The studies (mostly of experimental nature)
reviewed in ref. [82] build a basis for all later jet in crossflow research, but for the current work
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Figure 1.2.1: Vortical structures in the near field of transverse jet according to Fric and Roshko
[38]

the numerical and experimental investigations published since the mid-1990s and discussed
below are more relevant.

The experimental work of Fric and Roshko [38] made important contributions to the jet in
crossflow research by elucidating the inner vortical structure and by indicating the main types
of the coherent vortices that dominate transverse jets. It is shown by the authors that the
flow field of a jet in crossflow is characterized by its high degree of unsteadiness and by at
least four different types of the large-scale coherent vortical structures indicated in figure 1.2.1.
The presence of these vortices can explain the severe challenges in the RANS simulations of
transverse jets reported by different authors [5, 53, 54, 51, 80, 42]. In such simulations the
effects of the anisotropic, highly unsteady, large-scale structures have to be reproduced by a
steady-state turbulence model, which often additionally assumes local isotropy of the turbulent
viscosity.

Alvarez et al. [5] compared the mean and the fluctuating velocity and temperature fields
predicted by RANS using two different methods: the standard k-ε model in combination with
the constant turbulent Prandtl or Schmidt number hypothesis (the turbulent Prandtl number
value was 1.0), and a second moment closure (direct Reynolds stress and turbulent scalar
flux modeling not involving the turbulent viscosity concept). The results given by the second
moment closure were slightly better than those from the k-ε model, but the mixing predictions
were especially unsatisfactory in both cases. He et al. [45] also applied the standard k-ε
model for jet in crossflow turbulence and mixing simulations, but they varied the values of
the turbulent Schmidt number. The most accurate mixing results were obtained in ref. [45]
at σt = 0.2; furthermore, this and similar values (0.25 − 0.3) were also found to give the best
agreement with experimental data in a number of publications [53, 54, 51, 42]. In these works,
besides of the standard k-ε model, the SST k-ω model of Menter was applied for turbulence
modeling. A more thorough RANS simulation analysis made in preparation of this dissertation,
however, shows [51] that such low values of the turbulent Prandtl or Schmidt number are not
justified physically. These values help to artificially increase the level of the turbulent scalar
diffusivity, that would be under predicted when using higher turbulent Prandtl or Schmidt
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number values, since generally the level of turbulent kinetic energy and turbulent viscosity
is under predicted by the turbulence models employed in the calculations [51]. Continuing
investigations of this subject will be one of the topics of the present work.

The unsteady methods ranging from DNS to unsteady RANS (URANS) applied for the jet in
crossflow modeling show, in general, a higher degree of accuracy than the steady-state RANS
simulations, but direct comparisons are rare. Muppidi and Mahesh [88, 87] conducted DNS for
a transverse jet characterized by a relatively low Reynolds number based on the jet diameter
and velocity (Re = 5000). The flow structure analysis can be found in refs. [88, 87] as well
as important data on the budget terms of the turbulent kinetic energy balance equation in
transverse jets. Such data can not be obtained in experiments due to limitations of the mea-
surement techniques, but are extremely useful for a detailed validation of the RANS modeling
equations. Unfortunately, the low value of the Reynolds number used in these calculations
cannot be significantly raised due to the limited computational resources. At present, DNS-
based investigations of jets in crossflow at practically relevant Reynolds numbers are almost
impossible.

As a consequence of its lower computational cost combined with the ability to resolve a wide
range of spatiotemporal scales present in the flow physics, LES is much more popular than DNS
for the transverse jet simulations [130, 111, 79, 109, 120, 42, 63]. Yuan et al. [130] simulated
round transverse jets with momentum ratios of J = 4 and J = 9.9 and Reynolds numbers
of Re = 1050 and Re = 2100 (based on the crossflow velocity and jet diameter) employing a
dynamic subgrid scale (SGS) model. This publication (ref. [130]) is focused primarily on flow
visualization and on the study of the main coherent vortical structures of a jet in a crossflow.
Only a few comparisons of LES results with the statistical experimental data are made in
ref. [130]. Additionally, the experimental data used for this comparison were obtained for a
flow characterized by higher Reynolds numbers than the flow simulated by LES. Thereby, clear
conclusions about the LES prediction accuracy are not possible. Schlüter and Schönfeld [111]
in their simulations employing a Smagorinsky-type SGS models made a more comprehensive
validation of the LES flow and mixing predictions against experimental data (mean flow velocity,
turbulent kinetic energy, mean scalars). The simulations were carried out at industry-relevant
Reynolds numbers (Re = 82000 and Re = 16400). The agreement between the LES and
the experimental data was satisfactory. Additionally, in ref. [111] practically relevant grid
resolution and molecular Schmidt number dependence studies can be found as well as analysis
of the interaction mechanism of two transverse jets injected in a parallel arrangement. Majander
and Siikonen [79] used the Smagorinsky SGS model for their simulations of a jet in crossflow
with the Reynolds number of Re = 46700 based on the jet velocity and diameter and the
momentum ratio of J = 4.9. Their study presents a deep investigation on the LES scalar
and velocity field modeling quality depending on the jet exit boundary conditions (steady and
fluctuating). Reference [79] also contains some discussion on the influence of the numerical
discretization scheme and of the grid resolution on the mixing predictions. Salewski et al.
[109] performed an analysis regarding the dependence of the mixing characteristics on the jet
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nozzle geometry based on the results of LES simulations in combination with experimental
data. Furthermore, in this publication [109], the problem of counter-gradient transport in
a jet in crossflow is briefly discussed. Based on the numerical and experimental data, it is
shown that in several flow regions the turbulent scalar diffusivity αt in the gradient diffusion
hypothesis, −c′u′j = αt∂C/∂xj, becomes negative, whereas in the traditional RANS modeling
it is always assumed positive. Galeazzo et al. [42] compared the results of LES simulations
using the Smagorinsky model with the results of RANS modeling using the standard k-ε and
the SST k-ω models for a jet with Re = 20000 and J = 16. It is shown in ref. [42] that
the LES predictions, despite of some problems, are superior in comparison to RANS using
turbulent viscosity models and the constant turbulent Schmidt number approach. Finally, in
the preparation of this dissertation [50] high quality LES results were obtained by employing
the WALE SGS model [92] for the jet in crossflow with Re = 20000 and J = 36.

Despite the growing popularity of LES in academic applications, this method is still com-
putationally too expensive to be applied in engineering routine and cheaper alternatives such
as hybrid RANS/LES or URANS methods are needed. As it was shown in the publications
[47, 54, 51], URANS, which give an unsteady solution by application of RANS models, is feasible
in the case of transverse jets. The reason for this will be discussed in chapter 4. A first attempt
to apply a URANS method for the jet in crossflow simulations employing the standard k-ε model
was made by Hsu et al. [47]. As preparatory work for this dissertation URANS calculation of
jets in crossflow made using the SST k-ω model of Menter were presented in refs. [54, 51]. It
was shown in all cited publications that URANS can improve the flow and mixing prediction
accuracy in comparison to steady-state RANS simulations. However, refs. [51, 50] also revealed
that the scalar mixing predictions could be improved only slightly and the dependence on the
RANS mixing models was exceptionally strong. Dependence of the URANS predictions on the
RANS turbulence and mixing models is more thoroughly investigated in the present work.

Regarding hybrid URANS/LES methods, not many examples of their application to jet in
crossflow simulations exist [55, 51, 54, 106], which is due to their relative novelty. Rush [106]
used the Scale-Adaptive Simulation method (SAS) for the simulation of a buoyant jet in cross-
flow with results superior to those of URANS. Investigations made in preparation of this disser-
tation [51] showed that results of the SAS mixing simulations of a jet in crossflow are generally
much less dependent on the scalar mixing model than the URANS results due to resolving a
much larger part of the turbulent kinetic energy. Furthermore, in ref. [55] the SAS method
was successfully applied for the modeling of self-ignition in a practically relevant jet in cross-
flow configuration. Direct comparisons of the SAS and the RANS results in both reacting
and non-reacting cases revealed the superiority of SAS. In this dissertation the results of the
SAS self-ignition simulations are compared with URANS results in order to understand the
importance of the relative resolution depth of the turbulent vortical structures in an unsteady
simulation for the accuracy of self-ignition and flame propagation simulations.
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1.2.2 Confined swirling and non-swirling jets

Whereas jets in crossflow considered in the previous section are used mostly in the premixing
or in the dilution zones of a typical combustor, the primary fuel-oxidizer mixing often occurs
in swirling or non-swirling coaxial jet configurations. Consequently, consideration of these
flow patterns is important for a comprehensive review on the turbulence and mixing modeling
challenges in GT combustion applications.

There is a large number of experimental studies on these flow patterns. Most of them are
devoted to the investigation of the physical processes governing the mixing behavior. From
the perspective of a validation database for numerical simulations, the experimental works
of Roback and Johnson [104] and Ahmed and So [3] should be mentioned with regards to the
swirling confined jet configuration. For the non-swirling coaxial jet mixing, detailed experimen-
tal investigations with a large amount of validation data can be found in refs. [132, 58, 76, 3].
In all these works mean and fluctuating velocity and scalar field measurements are presented
for constant [104, 132, 58, 76] and variable density [3] flows.

Regarding the numerical simulations, a large amount of studies using different turbulence
modeling approaches can be found for the confined swirling and non-swirling jets. One of the
rare examples of DNS of a swirling confined jet configuration at relatively low Reynolds number
(Re = 5000) can be found in ref. [37]. A thorough analysis of the turbulent one- and two-point
correlations for both the velocity and the scalar field is presented in this publication. The
influence of the large-scale coherent vortical structures on the mixing behavior is investigated.
Unfortunately, unlike in the previously mentioned DNS simulations of transverse jets [88, 87],
a practically relevant evaluation of the budget terms of the turbulent kinetic energy balance
equation is not presented in ref. [37]. An additional disadvantage is that computational cost
restrictions do not allow the simulation at practically relevant higher values of the Reynolds
numbers.

Considering LES applications of swirling and non-swirling confined jets, a larger quantity of
studies can be found in the literature. The study of Akselvoll and Moin [4] represents, to the
author’s knowledge, the first attempt of applying LES methods to simulate the flow and mixing
in a confined non-swirling jet. Dynamic SGS models for the velocity and scalar fields were used.
The results were validated against the experiments of Johnson and Bennett [58]. Dianat et al.
[26, 25] conducted LES simulations at the experimental conditions given in ref. [76] using
the Smagorinsky SGS model for the velocity field and the constant SGS Schmidt number for
the scalar mixing modeling. In this publication good accuracy of the LES data was reported
as well as their superiority over the RANS modeling results. For the RANS simulations the
standard k-ε model in conjunction with the constant turbulent Schmidt number hypothesis was
applied in ref. [26, 25]. Another comparison between the velocity and scalar field predictions
made by several widespread RANS turbulence models and the respective LES results obtained
using the Smagorinsky SGS model for a non-swirling confined jet can be found in ref. [116].
LES, generally, displays higher accuracy than most RANS approaches. In the context of this

23



Introduction

dissertation, the LES studies of Dianat et al. [26, 25] are interesting since in those papers
an attempt to evaluate the turbulent Schmidt number from the time-averaged LES velocity
and scalar fields is presented. This is one of the rare examples of the usage of LES data in
order to obtain the knowledge potentially useful for the improvement of RANS modeling. In
the present work not only the turbulent Schmidt numbers but also further statistical data of
interest such as budget terms of the turbulent kinetic energy transport equation are evaluated
for all considered flow configurations.

The LES studies on the modeling of a swirling jet [98, 121, 110, 40] are mostly of the same
character and structure as the non-swirling confined jet investigations discussed above. Again,
LES results, although not ideal in some cases, are normally more accurate than the results
based on RANS modeling. In the RANS studies [9, 56, 77, 118, 122], a large variety of different
modeling approaches can be found. Whereas refs. [9, 77, 118] are devoted to the application of
the common two-equation turbulence models used in conjunction with the constant turbulent
Schmidt number hypothesis, the refs. [56, 122] used the turbulent Reynolds stress and scalar
flux models. The attempts of direct Reynolds stress and scalar flux modeling are motivated by
the poor turbulence and mixing prediction that often can be observed in swirling jet studies
employing two-equation RANS models [9, 56, 77, 118, 122, 52]. Particularly remarkable is the
under prediction of the level of turbulence and mixing which has been reported in ref. [52] in
preparation of this dissertation as well as by other authors [118]. Specially designed Reynolds
stress and scalar flux models help to improve the mixing predictions in swirling jets [56, 122],
but, generally, this approach is unpopular in engineering computations due to its complexity, a
large number of transport equations and many free parameters, resulting in a highly empirical
model and thus sometimes a poor degree of universality. Continuous work on the refinement
of RANS modeling is needed here as in the configurations discussed previously.

Only a few examples of the application of hybrid RANS/LES methods for the confined jet
simulations exist in the literature [123, 124, 23]. These works are devoted to the simulation of
reacting, industry-relevant flows, and the results presented in refs. [123, 124, 23] are encour-
aging. Direct comparisons with the RANS modeling results shown in ref. [123] illustrates the
high accuracy of the data obtained by the hybrid Scale-Adaptive Simulation (SAS) method
used in this publication. Additional studies involving model validation and comparison with
RANS and LES results for non-reacting flows for both swirling and non-swirling jets would
be beneficial; consequently, such a study is presented in the current dissertation among other
investigations.

1.3 Goals and outline of this work

1.3.1 Goals and outline

The literature review presented in the previous section reveals significant weaknesses in the
widespread RANS turbulence and mixing models applied to complex jet simulations. These
deficiencies are the main impetus for the current work. In order to explore possible directions
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to refine existing RANS approaches, several investigations related to different modeling aspects
were carried out in the present dissertation.

First, along with the theoretical consideration of the most common turbulent viscosity and
turbulent scalar diffusivity RANS models, examples of their application on two basic “aca-
demic”test cases (2D channel flow and free round jet) will be provided. The aim is to have a
reference regarding attainable accuracy of the RANS models for simple flows used widely for
validation purposes. Such a reference will assist in highlighting the additional challenges that
arise when applying the tested approaches on realistic engineering flows.

The assessment of all RANS models considered in this work on GT relevant complex jet
configurations (jet in crossflow, confined coaxial swirling jets, confined coaxial non-swirling
jets) will follow. The validation of the RANS results by experimental data and a comparison
with the results of LES for the same test cases will be shown. This will help to improve the
understanding about the relative accuracy of various approaches and to contrast the differences
between the possible levels of precision achievable by the steady-state RANS methods and
unsteady vortex-resolving methods represented by LES.

Next, a study on the relative influence of different RANS model equation terms and correc-
tions will be given. For this study models were considered that take into account the effects
potentially important for the flows under investigation (e.g. round jet vortex stretching, stream-
line curvature). The goal of this study is to ascertain which corrections help to improve the
simulation accuracy and to promote promising ideas that could advance model development.

A further step directed towards a more complete understanding of the statistical turbulence
and mixing properties in the considered flows is a comprehensive evaluation of the LES data. In
this evaluation, budget terms of the Reynolds-averaged turbulent kinetic energy and turbulent
scalar variance transport equations, turbulent viscosities and turbulent scalar diffusivities, and
the effective turbulent Schmidt numbers in all considered flows will be obtained. Knowledge
about the actual behavior of these statistical variables and a direct validation of the terms of
different RANS models against this data is essential for the development of an improved closure
for RANS equations.

The construction of all RANS approaches is based on the statistical analysis of the behavior
of complex model equation terms under different conditions. Mostly, data from experiments
or DNS in several simplified “academic”configurations (2D channel or pipe flows, free round
or plane jets) are used to refine the models, but the statistical properties of turbulence and
mixing in complex jet flows, such as those considered here, can be quite different. For these
flows appropriate experimental databases are not available. Only sporadic DNS data on the
variables of interest in realistic jet configurations can be found (see section 1.2). However, data
on the actual trends shown by the turbulent Schmidt numbers and by the budget terms of the
turbulent kinetic energy and the turbulent scalar variance transport equations in complex jet
flows would help significantly to refine the existing RANS modeling approaches.

In the present work, LES is used to obtain missing statistical data that can facilitate the
improvement of RANS modeling. LES results are, generally, not as accurate as DNS data.
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However, from the pragmatic engineering point of view, the increased understanding that results
from LES data analysis can be significant. Several examples of the successful application of
LES for high-Reynolds number jet flows analysis and evaluation of the variables relevant for
RANS model improvement became recently available in the literature [20, 8, 25, 26], but such
works are still rare. To the author’s knowledge, the jet in crossflow and the swirling confined
jet configurations, which are especially important in the GT application context, have not
been considered yet in such studies. The non-swirling confined jet mixing is analyzed in the
LES studies of Dianat et al. [25, 26], but in these publications only the turbulent Schmidt
numbers for the considered configuration are obtained. A thorough investigation that includes
the analysis of the main budget terms of the turbulent kinetic energy and the turbulent scalar
variance transport equations, comparison of their values evaluated from LES and given by the
RANS modeling, and evaluation of the turbulent Schmidt numbers for a variety of jet flows is
still not readily available. The present work will fill this gap.

The last aspect of turbulence and mixing simulations in complex jet flows studied in this work
is the application of the Scale-Adaptive Simulation (SAS) and of the Unsteady RANS (URANS)
approaches. To highlight the comparative advantages and weaknesses of both techniques, they
are applied to the same test cases as used for the RANS and LES calculations. The results
obtained with all considered methods are compared. Furthermore, the degree of the resolution
of the turbulent fluctuating motions in both methods will be studied. The implication of the
resolution degree to simulation quality will be shown for a non-reacting jet in crossflow and in
the, practically relevant, self-ignition case.

1.3.2 Structure

This dissertation is organized as follows. In chapter 2 an overview of the most widespread
engineering techniques for turbulent flow and scalar mixing simulations is presented. The the-
oretical background of RANS, LES, and hybrid modeling is discussed. Based on the literature
review and the validation computations of the academic test cases (2D channel flow, round
jet flow), the advantages and challenges of the considered modeling methods are analyzed. In
chapter 3, the results of RANS and LES simulations for three test cases - jet in crossflow,
confined coaxial swirling jets, and confined coaxial jets without swirl are presented. A compre-
hensive LES-based study on the budget terms of the turbulent kinetic energy and the turbulent
scalar variance balance equations, turbulent viscosities and turbulent scalar diffusivities, and
the turbulent Schmidt numbers in the considered flows can be found in this chapter. Moreover,
RANS studies on the influence of different equation terms and corrections are included in this
chapter. Chapter 4 discusses the results of the SAS and URANS computations. Finally, in
chapter 5 the conclusions of this dissertation are are summarized and discussed.
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scalar mixing

This chapter develops the theoretical framework of the dissertation. First the governing Navier-
Stokes and scalar transport equations are listed and basic turbulence background is outlined.
Then RANS and LES concepts are introduced and common closure approaches for the Reynolds-
averaged and filtered momentum and scalar transport equations are discussed. Special attention
is paid to the modeling of turbulent mixing within the RANS framework. The most important
problems and open questions are outlined and discussed based on a literature study. Models
used in the present work are specified. A discussion on the advantages and weaknesses of
different models using the results obtained for academic test cases such as 2D channel flow and
free round jet is provided.

2.1 Basic equations and turbulence theory

2.1.1 Basic assumptions and governing equations

The following assumptions about the flow conditions are made for the theoretical considerations
of the present work:

• high-Reynolds number (fully developed turbulence),

• low-Mach number (effects of pressure-based compressibility are neglected).

These conditions are typical for gas turbine combustors for both propulsion and power gener-
ation applications.

Due to combustion processes large density and temperature gradients are natural for the
target applications. However, in the numerical simulation of a flow characterized by variable
density, the modeling effects on the turbulence and on the scalar mixing are coupled. It is
rather difficult in such cases to isolate and understand the individual impact of each of the
modeled equations and their terms on the overall mixing predictions The clarification of the
individual accuracy of the turbulence and of the mixing models tested in this work is one of the
main subjects of the studies performed here. For this reason all the main test cases considered
here are constant density cases and this deviation from reality is consciously accepted. The
equations presented in this chapter are derived using the constant density assumption. There-
fore, buoyancy effects can be neglected, density fluctuations can be neglected in averaging or
filtering, transported scalars such as species concentrations or temperatures are passive.
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For the self-ignition test case studied in chapter 4 the constant density equations cannot
be used. Favre-averaged variable density equations employed in the self-ignition test case
calculations can be found in refs. [99, 43, 22]. The derivation of these equations is not given
here since it is not essential for the main theoretical considerations of this dissertation.

Under the assumptions listed above the main equations governing the fluid motion in the
considered systems can be written in the following form [30]:

• continuity equation

∂Uj

∂xj

= 0, j = 1− 3, (2.1.1)

• Navier-Stokes (momentum) equations

∂Ui

∂t
+ Uj

∂Ui

∂xj

= −1

ρ

∂P

∂xi

+
∂

∂xj

[
ν

(
∂Ui

∂xj

+
∂Uj

∂xi

)]
, i, j = 1− 3. (2.1.2)

Here xi is the ith-component of the Cartesian coordinate system, Ui is the instantaneous value
of the flow velocity in the ith-direction, ν is the kinematic viscosity, and P is the instantaneous
value of pressure. Hereafter the summation over repeating indices is applied. The transport
equation for a passive conservative scalar (no source terms) C is [30]:

∂C

∂t
+ Uj

∂C

∂xj

=
∂

∂xj

[
α

∂C

∂xj

]
, j = 1− 3, (2.1.3)

where α is the molecular diffusivity of the transported scalar.

2.1.2 Scales of the turbulent motion and challenge of the direct

numerical simulation

The equations 2.1.1, 2.1.2, and 2.1.3 listed above describe flow and mixing under the chosen
conditions entirely and are true for both laminar and turbulent flow regimes. The transition
from a laminar to a turbulent state occurs when the non-linear convective terms of the momen-
tum equations 2.1.2 become much larger than viscous terms (i.e. Reynolds numbers, Re = UL

ν
,

exceed the critical values). In this case minor flow instabilities cannot be damped by viscous
forces and start to grow. Large unstable vortices are created. The size of these vortical struc-
tures can be up to the order of the characteristic geometrical parameters of the considered flow
pattern.

The large-scale whirls remove the energy from the mean flow motion. Due to instability of
the large-scale structures, a continuous breakdown of larger vortices into smaller ones occurs,
and similarly the kinetic energy is also continuously transferred from larger to smaller scales
of turbulence (energy cascade) [101, 29]. With the reduced size of the vortical structures, the
viscous effects become more important. Finally, at the level of the smallest turbulent scales
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(Kolmogorov-scales) all instabilities are damped out by the viscosity forces and the energy is
dissipated.

Although there is no strict scale separation in the turbulent flows, the following approximate
classification of turbulent scales can be applied [101, 128, 39]:

• energy-containing range - largest scales, generation of the turbulent kinetic energy,

• inertial range - transfer of the turbulent kinetic energy from the large scales to the small
ones,

• dissipation range - smallest structures, energy dissipation.

The distribution of the turbulent kinetic energy k over different vortical scales in a high-
Reynolds number fully developed homogeneous isotropic turbulent flow is indicated in figure
2.1.1 by the energy spectrum function (energy spectral density) E(κ), and k and E(κ) are
related according to

k =

∞∫
0

E(κ)dκ, (2.1.4)

where κ is the wave number (reciprocal of the eddy size). In the inertial subrange the spectrum
obeys the Kolmogorov law [101]

E(κ) ∼ ε2/3κ−5/3, (2.1.5)

where ε is the rate of energy dissipation.

energy−containing
range

inertial
subrange

viscous
range

κ

E(κ)

L−1 η−1

E(κ) ∼ ε2/3κ−5/3

Figure 2.1.1: Energy spectrum of a turbulent flow (log-log scales).

The length scales L of the energy-containing vortices (also called integral length scales) can
be defined as the distance at which two points separated in space show statistical correlations
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(correlation length) [101]∗. The length and time scales, (η and τ respectively), of the dissipation
range can be defined using dimensional analysis in the following manner [101]:

η =

(
ν3

ε

)1/4

and τ =
(ν

ε

)1/2

, (2.1.8)

where ε is the dissipation rate and ν the kinematic viscosity. The velocity scale is then
uη = η/τ = (νε)1/4. Both length and time scales become smaller with decreasing viscosity.
Furthermore, both scales decrease with increasing dissipation rate. The dissipation rate de-
pends upon the energy supply from the largest scales. If L is the integral length scale and uL

the integral velocity scale, the time scale is approximated as tL = L/uL. For the velocity scale
it can be assumed uL = O

(
(2/3k)1/2

)
[101], and for the dissipation rate ε = O (u3

L/L) [101],
thus L = k3/2/ε. Therefore, the relationship between the smallest and the largest scales of
the turbulent flow can be expressed in terms of their dependence on the turbulent Reynolds
number (Ret =

√
kL
ν

) as [101]

η

L
= O(Re

−3/4
t ) and

τ

tL
= O(Re

−1/2
t ). (2.1.9)

The separation between the smallest and largest scales grows with increasing turbulent Reynolds
number.

For a direct numerical solution of the discretized Navier-Stokes equations (equations 2.1.2),
the computational grids and time steps must resolve the smallest scales of the turbulent motion,
η and τ . The number of grid points required for η resolution in such a calculation scales as [101]

Nxyz ∼ N3
i ∼ Re

9/4
t . (2.1.10)

Considering that for explicit time integration schemes where the time steps must be reduced
proportionally to the decrease in space grid element size, the overall computational cost scales
with the turbulent Reynolds number as [101]

N ∼ Nxyz ·Ni ∼ Ret
3. (2.1.11)

To estimate the computational cost of scalar transport calculations, the dependence of the
smallest scales of the turbulent scalar fluctuations on the molecular scalar diffusivity α has to
∗ The two-point correlation is defined as

Rij(r,x, t) ≡ u′i(x, t)u′j(x + r, t), (2.1.6)

and here various integral length scales can be built, for example:

L11(x, t) ≡ 1
R11(0,x, t)

∞∫
0

R11(ex1r,x, t)dr, (2.1.7)

where ex1 is the unit vector in the x1-direction, x is the position in the Cartesian coordinate system, t-point
in time, r-distance [101].
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be taken into account. An estimation of the relation between the smallest scales of turbulence
and of turbulent scalar mixing can be obtained after the introduction of the Prandtl or Schmidt
number σ = ν/α. This is a characteristic dimensionless measure of the relation between the
momentum and scalar molecular diffusion transport (Prandtl number if the transported scalar
is temperature or Schmidt number if the transported scalars are species). For σ < 1, the
small scale scalar fluctuations are damped stronger than the small scale velocity fluctuations.
If σ > 1, the smallest scales of the scalar fluctuations are finer than the smallest scales of the
velocity fluctuations. The length scale of those fluctuations is ηB = σ−1/2η (Batchelor length
scale) [27, 39]. This scaling represents an additional challenge for DNS of turbulent scalar
mixing in fluids characterized by σ > 1.

In a typical gas turbine combustor, the Reynolds numbers at the diffuser inlets can easily
exceed 105 [73] and turbulence intensities are quite high. Thus, direct numerical simulations
of such flows are and will be for decades out of reach even with the promising trends in devel-
opment of hardware and numerical algorithms. For this reason in practical simulations of high
Reynolds number flows, the turbulent spectrum is normally not fully resolved but is partly or
completely represented by a model. Reynolds-averaged Navier-Stokes (RANS) and large eddy
simulation (LES) methods represent two different techniques to overcome the computational
cost limitations arising in DNS. As mentioned in the introduction, in the first case the turbu-
lence is completely modeled including even the largest scales, and in the second case large scales
of the turbulent motion are resolved whereas the effects of the smallest scales are represented
by a model. This is schematically depicted in figure 2.1.2. These approaches and their relative
advantages and weaknesses in application to the considered problems are discussed in the next
sections.

κ

E(κ)

modeled

(a) RANS
κ

E(κ)

modeled

resolved

(b) LES

resolved

κ

E(κ)

(c) DNS

Figure 2.1.2: Turbulence energy spectrum as a function of wave numbers (log-log scales). Re-
solved and modeled parts in RANS, LES, and DNS.

2.1.3 Reynolds averaging

From the perspective of engineering design optimization simulations of GT combustors, in most
cases the information about the time- or ensemble-averaged velocity, temperature, and species
concentration fields is sufficient, and there is no need for the deep time- and space-resolution of
the turbulent structures. Additionally, the computational costs of such simulations should be
as low as possible to facilitate the conduction of a large number of simulations within a short
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time. Therefore in such cases the application of RANS methods, which are based on the idea
of the direct modeling of the ensemble- or time-averaged flow field so to avoid resolving the
turbulent spectrum, seems to be the optimal choice.

The governing equations for the flow modeling within a RANS approach are obtained by the
splitting of a general instantaneous turbulent flow variable Φ into a statistically mean value Φ

and a stochastic part φ′ which fluctuates around the mean value and satisfies φ′ = 0 [29],

Φ = Φ + φ′. (2.1.12)

The main characteristics of this operation called Reynolds-averaging are:

• λ Φ + Θ = λΦ + Θ if λ is a constant,

• Φ = Φ,

• Φ Θ = Φ Θ.

The most widespread Reynolds averaging methods are based on [29]:

• Time averaging. The mean value is obtained by averaging over a time interval ∆t,
where ∆t has to be large enough compared to the characteristic time scales of turbulent
motions. This averaging method is primarily intended for the application to statistically
steady flows (no large-scale coherent structures or pulsations, steady-state calculations)

Φ(xi)T = lim
∆t→∞

1

∆t

∆t∫
0

Φ(xi, t)dt. (2.1.13)

• Ensemble averaging. If the flow is unsteady in the sense of large-scale coherent un-
steadiness or pulsations which can be depicted by a peak in the low wavenumber region
of the turbulent spectrum as shown in figure 2.1.3(b), time averaging is replaced by the
ensemble averaging [29, 93]. Ensemble averaging means that the values of the variable
of interest at the same relative time and space location are averaged over all members
of an ensemble. For instance, the measurements of N experiments with the same initial
boundary condition form an ensemble

Φ(xi, t)E = lim
N→∞

1

N

N∑
n=1

Φn(xi, t). (2.1.14)

It should be noted that the time averaging procedure is equal to the ensemble averaging only in
the case of a statistically steady flow [29]. If RANS simulations are conducted in the unsteady
mode (URANS), then the ensemble averaging is assumed. It should be clear that in URANS
only the deterministic motions, often representing a small part of the turbulent energy spectrum,
can be resolved as indicated in figure 2.1.3. The largest part including the inertial subrange is
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still represented by a model in contrast to the LES approach which is the subject of the next
section.

κ

E(κ)

modeled

(a) RANS
κ

E(κ)

modeled

resolved

(b) URANS
κ

E(κ)

modeled

resolved

(c) LES

Figure 2.1.3: Turbulence energy spectrum as a function of wave numbers (log-log scales). Re-
solved and modeled parts in RANS, URANS, and LES.

After the application of the Reynolds-averaging procedure to the equations 2.1.1, 2.1.2, and
2.1.3 and assuming the density is constant, the following equations can be obtained [128, 29]:

∂U j

∂xj

= 0, j = 1− 3, (2.1.15)

∂U i

∂t
+ U j

∂U i

∂xj

= −1

ρ

∂P

∂xi

+
∂

∂xj

[
ν

(
∂U i

∂xj

+
∂U j

∂xi

)
− u′iu

′
j

]
, i, j = 1− 3, (2.1.16)

∂C

∂t
+ U j

∂C

∂xj

=
∂

∂xj

(
α

∂C

∂xj

− c′u′j

)
, j = 1− 3. (2.1.17)

As a result of applying the averaging procedure to the non-linear convective terms, new
unknown correlations u′iu

′
j and c′u′j appear in the equations. These correlations represent the

turbulent transport of momentum and scalar and are called Reynolds stresses and turbulent
scalar fluxes. A set of four equations 2.1.15 and 2.1.16 contains ten unknowns: U i, P and u′iu

′
j.

To close these equations a semi-empirical formulation for six Reynolds stresses u′iu
′
j is needed.

Equation 2.1.17 consists of four unknowns: C and c′u′j and here additional modeling of the
turbulent scalar fluxes is necessary. The closure problem for the equations 2.1.15 - 2.1.17 is
discussed in detail in section 2.2.

2.1.4 Filtering

As pointed out in the previous section, the application of the Reynolds-averaging operator to
the equations 2.1.1 - 2.1.3 creates a set of equations 2.1.15 - 2.1.17 that are not capable of
a deep resolution of the turbulent spectrum. However, even in industrial simulations time-
and space-resolution of all large and intermediate turbulent structures, including those in the
inertial subrange, is often necessary for a better understanding of the fundamental flow, mixing,
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and combustion phenomena. In this case an operator different than the Reynolds-averaging
should be used that would allow the artificial decomposition of the scales of the turbulent
motion into the resolved ones (large to intermediate) and the modeled ones (small). In the LES
methods such a scale separation is realized by the application of a filtering procedure in spectral
space (components greater than a given cut-off frequency are suppressed) or in physical space
(weighted average over a given volume). The filtered quantity Φ is defined as [39, 99, 108]

Φ(x) =

∫
R3

G(x− y, ∆(x))Φ(y)dy, (2.1.18)

where x ∈ R3, G is the filter, and ∆ is the filter width. The filter G should conform to the

relationship [39, 99, 108] ∫
R3

G(x− y, ∆(x))dy = 1. (2.1.19)

The filtering operation differs from the Reynolds-averaging operation described in the pre-
vious section as follows. An averaging operation is “completed”, i.e. a time-averaged variable
does not depend on time and a space-averaged variable does not depend on a coordinate [39].
After applying the filtering operation in time or space, a time or coordinate dependence still
exists. A completed averaging operation is obtained in the limiting case of the infinite filter
width [39]; furthermore, contrary to RANS averaging, the filtered value of a LES perturbation
is not zero [39, 99, 108]

φ′ 6= 0, (2.1.20)

and filtered and double filtered values are not equal in general [39, 99, 108]

Φ 6= Φ. (2.1.21)

The advantage of filtering is that depending on the filter width the structures of different size
can be “covered”, which better represents the multiscale nature of turbulence and can be used
at the construction of the fine-scale models [39, 99, 108].

Filtering the instantaneous balance equations leads to the following equations formally similar
to the Reynolds averaged balance equations derived in the previous subsection [39]:

∂U j

∂xj

= 0, (2.1.22)

∂U i

∂t
+ U j

∂U i

∂xj

= −1

ρ

∂P

∂xi

+
∂

∂xj

[
ν

(
∂U i

∂xj

+
∂U j

∂xi

)
− (UiUj − U i U j)

]
, (2.1.23)

∂C

∂t
+ U j

∂C

∂xj

=
∂

∂xj

(
α

∂C

∂xj

− (CUj − C U j)

)
. (2.1.24)
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Here, as in the RANS equations 2.1.15 - 2.1.17, new unclosed quantities appear which require
additional modeling. In the LES terminology those quantities are called subfilter or more often
subgrid scale (SGS) variables since the filter size is typically chosen to be equal to the grid cell
size. The unclosed variables are:

• unresolved (SGS) Reynolds stresses UiUj − U i U j,

• unresolved (SGS) scalar fluxes CUj − C U j.

From a theoretical point of view, LES modeling should be less demanding than RANS. The
reason is that the small scales that are represented by the unclosed terms in the LES equations
have a more universal character than the big ones which are taken into account in the Reynolds-
averaged equations. Possible approaches for the modeling of the SGS Reynolds stresses and
scalar fluxes are discussed in the section 2.3.1.1 and in refs. [39, 99, 108].

As pointed out above the equation sets 2.1.15-2.1.17 and 2.1.22-2.1.24 have a similar form.
Taking into account the main characteristics of the Reynolds-averaging operator, the Reynolds
stresses u′iu

′
j and the turbulent scalar fluxes c′u′j in equations 2.1.15-2.1.17 can be rewritten as

u′iu
′
j = UiUj−U i U j and c′u′j = CUj−C U j. This allows considering these two sets of equations

as particular cases of a general equation set where the symbol ( ) denotes the application of a
general scale separation operator without special assumptions carried out about the nature of
this operator [108]. This similarity of the Reynolds-averaged and filtered equations motivates
the development of a coupling between these two approaches and the construction of hybrid
strategies which can potentially combine the advantages of both of them [108]. Such hybrid
approaches will be discussed in section 2.3.1.2.

2.2 RANS modeling

In this section the widespread approaches for the closure of the Reynolds-averaged equations
2.1.16 and 2.1.17 obtained in section 2.1.3 are considered. The most direct method for such a
closure is the construction of the additional transport equations for the Reynolds stress tensor
and the turbulent scalar flux vector. The derivation of the exact transport equations is described
in the works [29, 128]. The resulting equations are:

∂u′iu
′
j

∂t
+ U l

∂u′iu
′
j

∂xl

=−u′ju
′
l

∂U i

∂xl

− u′iu
′
l

∂U j

∂xl︸ ︷︷ ︸
production

−2ν
∂u′i
∂xl

∂u′j
∂xl︸ ︷︷ ︸

molecular dissipation

−1

ρ

(
u′j

∂p′

∂xi

+ u′i
∂p′

∂xj

)
︸ ︷︷ ︸

redistribution

− ∂

∂xl

u′lu
′
iu
′
j︸ ︷︷ ︸

turbulent diffusion

+ν
∂2

∂x2
l

u′iu
′
j︸ ︷︷ ︸

molecular diffusion

, (2.2.1)
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∂c′u′i
∂t

+ U j
∂(c′u′i)

∂xj

=−u′iu
′
j

∂C

∂xj

− c′u′j
∂U i

∂xj︸ ︷︷ ︸
production

−(α + ν)
∂u′i
∂xj

∂c′

∂xj︸ ︷︷ ︸
dissipation

−1

ρ
c′

∂p′

∂xi︸ ︷︷ ︸
redistribution

− ∂

∂xj

u′ju
′
ic
′︸ ︷︷ ︸

turbulent diffusion

+
∂

∂xj

(
αu′i

∂c′

∂xj

+ νc′
∂u′i
∂xj

)
︸ ︷︷ ︸

molecular diffusion

, (2.2.2)

where i, j, l = 1− 3. The interpretation of each particular term on the right-hand side of these
equations is denoted above.

It can be seen that the exact equations are not closed but contain additional terms such
as third order moments, u′lu

′
iu
′
j and u′ju

′
ic
′ as well as the velocity-pressure gradient u′i

∂p′

∂xj
and

scalar-pressure gradient c′ ∂p′

∂xi
correlations; consequently, the solution of equations 2.2.1 and

2.2.2 is impossible without additional models for these terms. Attempts to form the exact
equations for third-order moments lead to appearance of unclosed moments of higher order, thus
successive formation of the transport equations for higher moments does not achieve closure
[29]. Additionally, the velocity-pressure gradient correlation implicitly introduces the two-point
velocity correlation and non-locality to the equation [29]. The two-point correlation u′i(x)u′j(x

∗)

is generally a function of six coordinates (xl, x
∗
k), l = 1− 3, k = 1− 3. This dependence should

be reflected in the model, which would be is a difficult task. Thus using the Reynolds stress
and turbulent scalar flux equations for the closure of equations 2.1.16 and 2.1.17 adds at least
nine further equations to the system and produces a non-trivial modeling effort.

For this reason, in practical applications, a much more popular approach for constructing
closures of equations 2.1.16 and 2.1.17 is through eddy viscosity and eddy scalar diffusivity hy-
potheses. The eddy viscosity hypothesis (Boussinesq approximation) assumes that the Reynolds
stresses can be algebraically expressed in terms of the mean velocity strain-rate tensor and of
a turbulent viscosity νt, analogous to how viscous stresses in Newtonian fluids are expressed
in terms of the strain-rate tensor and the molecular viscosity ν. In contrast to ν, the eddy
viscosity νt, however, is not a material property but rather a local function of the flow field.
Neglecting the density variation effects this hypothesis can be written as [128, 29]:

− u′iu
′
j = −2

3
kδij + νt

(
∂U i

∂xj

+
∂U j

∂xi

)
= −2

3
kδij + 2νtSij, (2.2.3)

where Sij is the mean strain-rate tensor defined as

Sij =
1

2

(
∂U i

∂xj

+
∂U j

∂xi

)
. (2.2.4)
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The turbulent kinetic energy k is defined as

k =
1

2
u′lu

′
l (2.2.5)

with l = 1−3 and has been added in equation 2.2.3 to avoid an inconsistency with the continuity
equation.

The turbulent scalar diffusivity hypothesis states that the turbulent scalar fluxes are linearly
related to the mean scalar gradient [29]

− c′u′j = αt
∂C

∂xj

. (2.2.6)

Here αt is the turbulent scalar diffusivity. This hypothesis is an analogy to Fick’s law (molecular
diffusive scalar flux is linearly related to the mean scalar gradient). As in the case of the
turbulent viscosity νt, the turbulent scalar diffusivity αt is not a property of the fluid itself but
mimics the characteristics of the turbulent transport under the given local flow conditions and
the local scalar distribution.

Using both the eddy viscosity as well as the eddy diffusivity hypotheses the Reynolds-averaged
momentum and scalar transport equations can be written as:

∂U i

∂t
+ U j

∂U i

∂xj

= −1

ρ

∂P

∂xi

+
∂

∂xj

[
(ν + νt)

(
∂U i

∂xj

+
∂U j

∂xi

)]
, (2.2.7)

∂C

∂t
+ U j

∂C

∂xj

=
∂

∂xj

[
(α + αt)

∂C

∂xj

]
, (2.2.8)

where P = P + 2
3
ρk is the modified pressure. To close these equations, modeling assumptions

for νt and αt have to be made. The most widespread ones are discussed in the next sections.

2.2.1 Turbulent viscosity modeling

2.2.1.1 The k and ε equations, standard k-ε model

The mixing length hypothesis introduced by L. Prandtl in 1925 leads to a representation of the
turbulent viscosity νt as a product of the characteristic length and velocity scales [29]

νt = L U . (2.2.9)

The velocity scale can be defined using the mean turbulent kinetic energy of the flow

U ∼
√

k. (2.2.10)
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The exact transport equation for k can be obtained from equation 2.2.1 by taking i = j,
summing over i, and dividing by 2 [29, 128]. This results in

∂k

∂t
+ U l

∂k

∂xl

= −u′iu
′
l

∂U i

∂xl︸ ︷︷ ︸
production

−ν
∂u′i
∂xl

∂u′i
∂xl︸ ︷︷ ︸

dissipation

−1

ρ

∂p′u′l
∂xl︸ ︷︷ ︸

pressure diffusion

−1

2

∂u′iu
′
iu
′
l

∂xl︸ ︷︷ ︸
turbulent diffusion

+ν
∂2

∂x2
l

k︸ ︷︷ ︸
molecular diffusion

. (2.2.11)

The first term on the right-hand side of this equation (production term) is the rate at which
the turbulence is supplied with the energy taken from the mean flow

P = −u′iu
′
l

∂U i

∂xl

. (2.2.12)

Typical sources of turbulent kinetic energy generation are the flow instabilities caused by the
mean shear. Another source may be stretching and intensification of the turbulent vortices by
the mean rate of strain. Normally the average energy flow occurs in one direction from orderly
mean flow to the disorderly turbulence. This implies that P ≥ 0; however, in some cases under
the influence of strongly stabilized forces, such as centrifugal acceleration, P can also become
negative. This term can be easily closed using the Boussinesq hypothesis (equation 2.2.3).

The transport term 1
2

∂u′
iu

′
iu

′
l

∂xl
redistributes energy in space (no creation or destruction). To

close the k transport equation, the triple-correlation and pressure diffusion terms are usually
grouped together and approximated by a gradient transport model

D = Dt +Dp = − ∂

∂xl

[
1

2
u′iu

′
iu
′
l +

1

ρ
p′u′l

]
≈ ∂

∂xl

[
νt

σk

∂k

∂xl

]
. (2.2.13)

This closure is based on the assumption that the third velocity moment represents random
convection of turbulent kinetic energy which can be modeled by diffusion [29]. It is also assumed
that the pressure diffusion term is very small comparatively to other terms. The parameter
σk in equation 2.2.13 is a modeling constant. It should be pointed out here that the relation
2.2.13 is an empirical one. The assumption that the pressure diffusion term is small and can
be grouped with the turbulent transport term is based on the DNS data for simple channel
flows [128, 29]. For complex flows, such as those considered here, this hypothesis as well as the
general form of equation 2.2.13 may not hold.

With the above modeling procedure equation 2.2.11 can be rewritten as

∂k

∂t
+ U l

∂k

∂xl

=
∂

∂xl

[(
ν +

νt

σk

)
∂k

∂xl

]
+ P − ε. (2.2.14)

Only one unclosed term in the k equation remains; the rate of the turbulent kinetic energy
dissipation

ε = ν
∂u′i
∂xl

∂u′i
∂xl

. (2.2.15)

For this quantity, an exact transport equation can be obtained by applying the following oper-
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ator to the Navier-Stokes equation 2.1.2 [128]:

2ν
∂u′i
∂xl

∂

∂xl

( ). (2.2.16)

The resulting equation has the form [128, 81]:

∂ε

∂t
+ U j

∂ε

∂xj

=−ν

(
∂u′i
∂xl

∂u′j
∂xl

)(
∂U i

∂xj

+
∂U j

∂xi

)
︸ ︷︷ ︸

mixed production

−ν

(
∂u′i
∂xl

∂u′i
∂xj

)(
∂U j

∂xl

+
∂U l

∂xj

)
︸ ︷︷ ︸

production by mean velocity gradient

−2νu′j
∂u′i
∂xl

∂2U i

∂xj∂xl︸ ︷︷ ︸
gradient production

−2ν
∂u′i
∂xj

∂u′i
∂xl

∂u′j
∂xl︸ ︷︷ ︸

turbulent production

−2ν2 ∂2u′i
∂xj∂xl

∂2u′i
∂xj∂xl︸ ︷︷ ︸

dissipation

−2
ν

ρ

∂

∂xj

(
∂p′

∂xl

∂u′j
∂xl

)
︸ ︷︷ ︸

pressure diffusion

−ν
∂

∂xj

(
u′j

∂u′i
∂xl

∂u′i
∂xl

)
︸ ︷︷ ︸

turbulent diffusion

+ν
∂2ε

∂x2
j︸ ︷︷ ︸

molecular diffusion

. (2.2.17)

This equation is much more complex than the exact transport equation for k (equation 2.2.11).
It involves several new unknown double and triple correlations of fluctuating velocity, pressure,
and velocity gradients. These correlations are essentially impossible to measure. Only a few
DNS-based studies on the exact terms of the ε-equation exist [81, 65, 66], and, due to their
cost, such studies are typically restricted to the channel and boundary layer flows at moderate
Reynolds numbers.

Instead of the exact equation for ε, in engineering practice the following semi-empirical
equation is normally used [101]

∂ε

∂t
+ U j

∂ε

∂xj

= Dε︸︷︷︸
diffusion

+Cε1P
ε

k︸ ︷︷ ︸
production

−Cε2ε
ε

k︸ ︷︷ ︸
dissipation

. (2.2.18)

Historically this equation was obtained not as an attempt to model the exact terms of equation
2.2.17 but rather as a result of dimensional analysis, analogy to equation 2.2.14, and rational
considerations of the physics of turbulence [128]. If the diffusion term in the equation 2.2.18 is
closed similarly to the diffusion term of the k-equation,

Dε =
∂

∂xj

[
νt

σε

∂ε

∂xj

]
, (2.2.19)

then the final form of the ε-equation is

∂ε

∂t
+ U j

∂ε

∂xj

=
∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]
+ Cε1P

ε

k
− Cε2ε

ε

k
. (2.2.20)

This equation together with equation 2.2.14 builds the basis of the most widespread RANS
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turbulence closure - k-ε turbulence model of Jones and Launder (1972) [61] (often referred as
standard k-ε model). In this model k and ε are used to build the length scale of the mixing-
length hypothesis (equation 2.3.4) as

L ∼ k3/2

ε
. (2.2.21)

Using the relation 2.2.10 for the length scale the final formula for νt is obtained as

νt = L U = Cµ
k2

ε
, (2.2.22)

where Cµ is the modeling constant. Equations 2.2.14, 2.2.20, and 2.2.22 contain five free
parameters - modeling constants: Cµ, Cε1, Cε2, σk, σε. The standard values of these constants
are [101, 128, 29]:

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3. (2.2.23)

The established method for deriving model constants for the k-ε and other two-equation
turbulence models is by analysis of analytical solutions and experimental measurements from
relatively simple flows. In these flows some equation terms can be neglected, thereby isolating
other terms such that a unique constant value allows for a meaningful solution. The widely
studied canonical flows used for this purpose are: decaying homogeneous isotropic turbulence,
homogeneous shear layer, and the logarithmic region of a boundary layer. The derivation of
the analytical solutions of k-ε model equations for these test cases can be found in ref. [29].
Here only the main results are listed to illustrate the methodology.

The relation for the dissipation of dissipation constant Cε2 can be obtained by considering the
case of decaying homogeneous isotropic turbulence and simplification of the modeling equations
for this type of flow. As a result Cε2 can be represented by

Cε2 =
n + 1

n
, (2.2.24)

where n is the decay exponent which can be found by fitting the decay curve, k ∼ t−n, obtained
through measurements of grid turbulence in a wind tunnel. The experimental values of this
parameter are in the range n = 1.3± 0.2 [29]. The value of n = 1.3 would give Cε2 = 1.77; the
standard value in equation 2.2.23 corresponds to a rather low decay exponent n = 1.09 [29].

Another formula prescribing the relation between Cε2 and Cε1 can be obtained by analytic
solution of the modeling equations in the case of homogeneous shear flow.

Cε2 − 1

Cε1 − 1
=
P
ε

. (2.2.25)

The experimental values of P/ε in a homogeneous shear flow are approximately 1.6± 0.2 [29].
Taking P/ε = 1.6 and the standard value of Cε2 = 1.92, Cε1 = 1.58 is found. The standard
value Cε1 = 1.44 was chosen historically since it produces more accurate predictions of the
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spreading rates in mixing layers. As pointed out in ref. [29] since equation 2.2.25 can be
rewritten as

P
ε
− 1 =

Cε2 − Cε1

Cε1 − 1
, (2.2.26)

the value of Cε2−Cε1 has decisive influence on the predicted spreading rates of shear flows. This
implies that the constant Cε1 actually does not have a unique value that can be determined from
a single calibration experiment, and the established value of Cε1 = 1.44 is rather a historical
compromise.

A very important class of flows for the calibration of model constants are boundary layer
flows. The logarithmic layer is defined as the portion of the boundary layer sufficiently distant
from the surface that molecular viscosity is negligible relative to eddy viscosity, yet close enough
for convective effects to be negligible [128]. In this layer, the following relation holds for the
dimensionless near-wall velocity in the main flow direction [128, 29, 101]:

u+ =
1

κ
ln y+ + Cw, (2.2.27)

where u+ = Ux/uτ and uτ is the wall friction velocity defined as uτ =
√

τw

ρ
with the surface

shear stress τw. The dimensionless distance from the wall is defined as y+ = uτy/ν (y is the
absolute distance in the wall-normal direction) and the most widespread values of coefficients
are κ ∼ 0.41± 0.2 (von Karman constant) and Cw ∼ 5.5± 0.3 [30, 128, 29].

In the logarithmic layer Reynolds shear stress u′xu
′
y is constant and equal to the u2

τ . The
log-law can be also stated as

∂Ux

∂y
=

uτ

κy
. (2.2.28)

Moreover, in the logarithmic layer production and dissipation are locally in balance [29]

P = ε (2.2.29)

and it becomes that

P = −u′xu
′
y

∂Ux

∂y
=

u3
τ

κy
= ε (2.2.30)

has to be the relation for ε [29]. Using the eddy viscosity definition for this particular case
νt = −u′xu

′
y/

∂Ux

∂y
= κuτy and the k-ε eddy viscosity equation νt = Cµ(k2/ε), following relation

for k can be obtained
k =

u2
τ√
Cµ

(2.2.31)

or Cµ = (u′xu
′
y/k)2. The experimental value of |u′xu′y/k| is about 0.3 in the logarithmic layer

(Bradshaw constant). This results in Cµ = 0.09. Additionally to the estimation of the turbulent
viscosity modeling constant Cµ, the log-law solution can be used to obtain the σε constant (see
ref. [29] for details).

Thus with the constants derived as described above the standard k-ε model is closed and can
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be used for the practical modeling of the turbulent flows. It is evident that the model equations
and their closure coefficients are based on several assumptions and simplifications which do not
necessarily hold in complex flows. Despite of this, the standard k-ε model shows a remarkable
universality and is the basis for the large family of the engineering turbulence models created
later. The next sections will be devoted to the description of the most widespread model
refinements, variations, and improvements that may be potentially useful in the context of the
complex internal jet flows typical for the GT combustion applications.

2.2.1.2 Round jet correction for the standard k-ε model

The round jet forms the basis for all of the flow patterns considered in this dissertation. In this
context, it is of interest to consider the round jet specific corrections to the standard k-ε model
[100, 19].

It is a well-known observation that the spreading rates∗ of free round jets are typically over
predicted (by about 20%) by the standard k-ε model, even if the spreading rates of plane jets
can be reproduced well by this model. This fact is called round-jet/plane-jet anomaly in the
literature [100]. Pope [100] has proposed a modification to the ε-equation of the standard
k-ε model (equation 2.2.20) which aims to resolve the round-jet/plane-jet anomaly. In Pope
modification, the dissipation of dissipation term in the ε-equation is replaced by

Cε2
ε2

k
→ [Cε2 − Cε3χp]

ε2

k
(2.2.32)

where χp is a non-dimensional measure of vortex stretching defined as

χp =
ΩijΩjkSki

(ε/k)3
. (2.2.33)

The tensors Ωij and Sij are the mean rotation and mean strain-rate tensors defined as

Ωij =
1

2

(
∂U i

∂xj

− ∂U j

∂xi

)
and Sij =

1

2

(
∂U i

∂xj

+
∂U j

∂xi

)
. (2.2.34)

The reasoning of Pope is that the primary mechanism for the energy transfer from large to
small scales is vortex stretching. Any mechanism that enhances vortex stretching will increase
the rate of transfer and, consequently, the dissipation. Since the vortex rings are stretched
radially, in 2D flows such as a plane jet the parameter χp is zero. By contrast, the vortex
stretching parameter is nonzero for an axisymmetric mean flow such as a round jet. Using
Cε3 = 0.79 reduces the standard spreading rate of the round jet predicted by the k-ε model
from δ′0.5 = 0.120 to δ′0.5 = 0.086 which is consistent with experimental values of this parameter
[100] (the experimental spreading rate values reported by different authors for the free round
jet are δ′0.5 = 0.086− 0.096 [128, 6, 95]).

∗The spreading rate is defined as δ′0.5 = dr0.5(x)/dx where r0.5 is the radius at which the mean speed is half
its centerline value [101].
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Davidenko [19] proposed a limiter to the Pope correction that aims to increase its numerical
stability. Pope correction with the Davidenko limiter is formulated as follows:

Cε2
ε2

k
→ [Cε2 − Cε3 min (| χp |, χlim) sign (χp)]

ε2

k
, (2.2.35)

where χlim is the constant which can be adjusted depending on the target spreading rate. In
the present work the value χlim = 0.143 is adopted, which results in a compromise spreading
rate δ′0.5 = 0.094 as reported by Davidenko [19].

In order to illustrate the effect of the described round jet correction on the simulation results,
a free round jet simulation was performed at the experimental conditions of ref. [16]. The
schematic of the test case is shown in figure 2.2.1. In the experiment slightly heated air was
injected from a round pipe into a quiescent air ambient. The jet exit velocity was 11m/s, the
jet exit temperature difference to the ambient temperature was 25K (very small temperature
and density variations). The diameter of the jet nozzle was d = 25.5mm, and the Reynolds
number based on this diameter is Red = 17700.

r

x

Figure 2.2.1: Free round jet test case [16].

The simulations were carried out with the DLR THETA code described in section 2.4. Struc-
tured quasi-2D grid (1 cell in the azimuthal direction, periodic boundary conditions) comprizing
78000 points was used for the simulation. Further numerical details can be found in section
2.4. The profiles presented below are extracted in the self-similar region at x/d = 35. Using
the self-similarity of the solution the reference experimental data from ref. [16] and from the
well-known experiment of Panchapakesan and Lumley [95] could be used for a very detailed
validation. Furthermore, the data of a well-resolved LES simulation of Bogey and Bailly [8]
is used for the comparison with the RANS results in order to develop a better understanding
about the possible qualitative differences between RANS and LES accuracy discussed in the
introduction to this dissertation and earlier in the current chapter.

First, the profiles of the mean streamwise velocity, turbulent kinetic energy, and the compo-
nents of the Reynolds stress tensor are shown in figure 2.2.2. All profiles are non-dimensionalized
using the centerline velocity values U0 and the absolute axial coordinate xa = x − x0, where
x0 is the virtual origin of the jet (see for example refs. [128, 6] for the definition). The dif-
ference between the results achieved by the standard k-ε model and its round jet correction
[100, 19] is clearly seen on all profiles. The round jet correction matches the experimental
velocity profile presentend in figure 2.2.2(a) quite well, whereas the standard k-ε model over
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Figure 2.2.2: Free round jet flow. Standard k-ε model and k-ε model with Pope correction and
Davidenko limiter [100, 19]. Comparison of the simulation results and the data of
refs. [16, 95, 8].
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Figure 2.2.3: Free round jet flow. Standard k-ε model and k-ε model with Pope correction and
Davidenko limiter [100, 19]. Turbulent viscosity and budget terms of the turbulent
kinetic energy transport equation. Comparison of the simulation results and the
data of refs. [16, 95, 8].
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Figure 2.2.4: Turbulent viscosity modeling coefficient Cµ evaluated as Cµ = νt · ε/k2 using the
data of refs. [16, 95, 8].

predicts the spreading rate as reported in refs. [128, 6, 100]. The level of the turbulent kinetic
energy (figure 2.2.2(b)) and the Reynolds shear stress (figure 2.2.2(c)) is overestimated on the
peak by about 1.5 times in the standard k-ε model simulations. The round jet correction helps
to achieve results close to the experimental values. The largest differences between the exper-
imental and the round jet correction RANS profiles can be observed in figures 2.2.2(d) and
2.2.2(e) presenting the RMS values of the axial and the radial fluctuating velocities. Whereas

the
√

u′2x /U0 profile is slightly underestimated by the k-ε model with the round jet correction,

the
√

u′2y /U0 values are over predicted. This is due to the Boussinesq approximation (equation
2.2.3) which results in the similar levels of both x- and y-fluctuations when in reality these
levels are different. The standard k-ε model overpredicts both fluctuating components due to
the general overprediction of the turbulent kinetic energy. It can be, furthermore, generally
stated that regarding the mean velocity, the turbulent kinetic energy, and the Reynolds shear
stress predictions the k-ε model with the round jet correction shows the same quality as the
LES data of Bogey and Bailly [8]. The main difference is only the u′2x and u′2y predictions where
LES, which resolves the largest part of the turbulent fluctuations, is able to represent the RMS
of each fluctuating velocity component correctly.

Figure 2.2.3 presents additionally the turbulent viscosity and the budget terms of the tur-
bulent kinetic energy balance equation resulting from both considered k-ε model variants and
obtained through the evaluation of the experimental and LES data of refs. [16, 95, 8]. The
dimensionless turbulent viscosity was evaluated in ref. [16] as

νt = −
u′xu

′
y

∂Ux

∂y
+ ∂Uy

∂x

. (2.2.36)

Such evaluation was possible since the flow is quasi-two-dimensional, and u′xu
′
y can be assumed

to be the most important Reynolds stress. The turbulent viscosity evaluation procedure for
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the essentially 3D flows will be considered in chapter 3. In figure 2.2.3, as in the previous
figure 2.2.2, the superiority of the model including the round jet correction is obvious. The
level of the turbulent viscosity (figure 2.2.3(a)) as well as of the production (figure 2.2.3(b))
and the dissipation (figure 2.2.3(c)) of k is largely overpredicted by the standard k-ε model
and is represented much better by its round jet correction. The turbulent diffusion is not quite
well represented by both model variants (figure 2.2.3(d)). This can be a result of the simplified
diffusion formulation (equation 2.2.13) used in modeling as discussed earlier in section 2.2.1.1.
In contrast to RANS, LES is able to match the experimental diffusion term profile (figure
2.2.3(d)). The pressure diffusion term, normally neglected in the RANS modeling (see equation
2.2.13), was not evaluated in experiments [95]. The LES-based study (ref. [8]) showed that
this term, although small, is not negligible for the free round jet flow. The role of this term in
complex jet flows will be studied in chapter 3.

Regarding the production to dissipation ratio which peak value is about P/ε = 0.8, figure
2.2.3(e) shows that here again the profiles recovered by the model with the round jet correction
are closer to the experimental and LES data than the profiles given by the standard model.
This is especially true for the near-centerline region. Further away from the jet centerline both
models overestimate the production to dissipation ratio which drops rapidly in the experiment
and the LES. It should be, however, mentioned that the absolute values of both P and ε at
these locations are relatively small, so the impact of this discrepancy is probably not severe.

Since the aim of the Pope correction is to increase the dissipation ratio, underpredicted in
the standard k-ε model simulations, the higher P/ε obtained with the round jet correction
near to the jet centerline may seem not logical even if they match the experimental values
better. Figure 2.2.3(f), however, reveals that the dissipation per unit turbulent kinetic energy
is higher with the round jet correction, as expected, and it is also in a closer agreement with
the experimental and the LES data.

Finally here a small remark can be made on the value of the turbulent viscosity modeling
parameter Cµ in equation 2.2.22. Characteristic values of this modeling coefficient can be
obtained using the turbulent viscosity profile from ref. [16] and the k and ε profiles from refs.
[95, 8]. The resulting Cµ calculated as Cµ = νt ·ε/k2 (see equation 2.2.22) are presented in figure
2.2.4. Although these experimental/LES profiles are close to the traditional values Cµ = 0.09

used in the tested RANS models, the assumption of a constant Cµ does not hold. Furthermore,
away from the jet centerline a clear trend of the increasing of Cµ can be detected. Here probably
a better choice would be the dynamic adjustment of this coefficient based on certain criteria
or the local flow characteristics. An example of such an adjustment of the turbulent viscosity
modeling coefficient is the near-wall damping functions used in low-Re k-ε modeling considered
in the next section.

2.2.1.3 Near-wall modeling and low-Re modifications of the standard k-ε model

Near-wall modeling is often an essential element of accurate internal flow simulation. However,
in the context of k-ε type models accurate representation of the near-wall turbulence is often
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a non-trivial challenge. The main problem is that in the near-wall region (inside the viscous
sublayer and in the transitional region between the viscous sublayer and the logarithmic layer)
the formula of equation 2.2.22 gives an errorneous profile of the turbulent viscosity if the exact
values of k and ε are used [29]. Several techniques exist to overcome this restriction near to
solid boundaries, and an overview of such techniques is provided in this subsection.

A common approach often used in conjunction with the standard k-ε model are so-called wall
functions. The idea is to avoid modeling the near-wall region where the k-ε model equations
are unable to give the correct solution by setting the first near-wall computational point and
the related boundary conditions for k and ε in the region of the logarithmic layer where, as
shown above, the standard k-ε model equations are valid.

As pointed out above in the logarithmic layer the local equilibrium hypothesis defined by
equation 2.2.30 holds. Thus ε can be expressed using the νt formulation for the k-ε model and
the log-law in the form of equation 2.2.28 as

ε = P = −u′xu
′
y

∂Ux

∂y
= νt

∂Ux

∂y

∂Ux

∂y
= Cµ

k2

ε

u2
τ

κ2y2
. (2.2.37)

The resulting solution for ε is
ε =

uτ

κy
kC1/2

µ . (2.2.38)

Comparing this formula with the previously obtained relation for ε (equation 2.2.30) we can
see that the skin-friction velocity uτ can be written as

uτ = C1/4
µ k1/2, (2.2.39)

and thus ε in the first grid point (in the logarithmic layer) can be expressed as

ε =
C

3/4
µ k3/2

κy
. (2.2.40)

For the determination of k in this case, the wall boundary condition

∂k

∂y
= 0 (2.2.41)

is used where y is the wall-normal direction. The skin friction can also be found from the log-
law applied at this point [29]. The above boundary conditions are true only in the case when
the first grid point lies in the logarithmic region (y+ = uτy/ν ≥ 40). This is an exceptionally
strong condition that does not allow the resolution of the near-wall region. It can introduce
a disadvantage when the resolution of the near-wall turbulence is needed, for example in heat
transfer problems. Additionally, the log-law does not hold in many realistic flows such as flows
with the strong adverse pressure gradients; therefore, in such flows the above relations are
incorrect and can lead to large errors.
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A way to overcome the demand for a wall function is to find an approach which modifies the
equations of the standard k-ε model in such a manner that the behavior of νt, k, and ε in the
near-wall region more closely resembles the physical reality. In practice, this can be achieved
by the application of so-called damping (low Reynolds number or low-Re) functions. With a
damping function the eddy viscosity is expressed as

νt = Cµ fµ
k2

ε
(2.2.42)

with the damping function fµ. Moreover, the production and dissipation terms of the ε-equation
are normally damped as well since the damping of νt alone is not sufficient to obtain the correct
solution in the near-wall region. The ε-equation takes the form

∂ε

∂t
+ U j

∂ε

∂xj

=
∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]
+ Cε1fε1P

ε

k
− Cε2fε2ε

ε

k
(2.2.43)

where fε1 and fε2 are near-wall damping functions. A large number of such near-wall (low-Re)
k-ε models were developed by different researchers. Literature overviews on this approach can
be found in refs. [97, 128]. In the present work two different low-Re k-ε models are used. The
first one is the Lam-Bremhorst (LB) model [71] with:

fµ = (1− e−0.0165Ry)2(1 + 20.5/ReT )

fε1 = 1 + (0.05/fµ)3

fε2 = 1− e−Re2
T . (2.2.44)

The modeling constants are the same as in the standard k-ε model (equation 2.2.23). The
dimensionless parameters, ReT and Ry, are defined as

ReT =
k2

εν
and Ry =

k1/2y

ν
. (2.2.45)

The second model is the model of Abe, Kondoh, and Nagano (AKN) [1]. The damping functions
are defined in the following manner:

fµ =
(
1− e−y∗/14

)2 [
1 +

5

Re
3/4
T

e−(ReT /200)2

]
,

fε1 = 1,

fε2 =
(
1− e−y∗/3.1

)2 [
1− 0.3e−(ReT /6.5)2

]
, (2.2.46)

where y∗ = uηy/ν is the dimensionless distance from the wall based on the Kolmogorov velocity
scale uη = (νε)1/4. The constants of this model differ slightly from the modeling constants of
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the standard k-ε model:

Cµ = 0.09, Cε1 = 1.5, Cε2 = 1.9, σk = 1.4, σε = 1.4. (2.2.47)

In the context of low-Re near-wall modeling, several combinations of the wall boundary
conditions on k and ε can be used. The natural boundary condition for k on a non-slip solid
wall is

k |wall= 0. (2.2.48)

This equation combined with another natural condition for k defined by equation 2.2.41 would
be sufficient to solve the coupled k-ε equation system; however, in practice it is easier to use
the condition k = 0 for k and a condition on ε. As the wall is approached, P → 0 and νt → 0

so that the equation 2.2.14 for k has the limiting behavior

ε = ν
∂2k

∂y2
. (2.2.49)

Integration of this equation gives

k → A + By +
εy2

2ν
. (2.2.50)

Taking into account equation 2.2.48, the integration constants are A = B = 0 and the wall
value of dissipation is [128]

ε = lim
y→0

2νk

y2
. (2.2.51)

Lam and Bremhorst proposed also a condition

∂ε

∂y
= 0 (2.2.52)

as an easier to implement alternative to equation 2.2.49 [128].

In order to illustrate the role of the low-Re corrections to the standard k-ε model, a simulation
of a 2D channel flow was conducted in the present work. The reference data for the model
validation was taken from the DNS publication of Kawamura et al. [66]. A structured grid
comprising about 200 points over the half of the channel height was used for the simulation.
The first grid point lies at y+ ≈ 0.5. More details on the numerical realization can be found in
section 2.4.

Figure 2.2.5 shows the mean and the fluctuating velocity profiles obtained by the LB and
the AKN low-Re k-ε models in comparison with the standard k-ε model results. All RANS
predictions are validated against DNS data of Kawamura et al. [66]. The positive effect of the
low-Re damping is clearly seen. Results produced by both the AKN and the LB models are
much closer to the reference DNS data than the profiles given by standard k-ε model. The
mean streamvise velocity, the turbulent kinetic energy, and the Reynolds shear stress (figures
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Figure 2.2.5: 2D channel flow. Mean and fluctuating velocity field predictions. Stan-
dard k-ε model and two low-Re k-ε models in comparison with DNS data
of Kawamura et al. [66]. All variables are non-dimensionalized using the skin-
friction velocity uτ and the molecular viscosity ν.
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Figure 2.2.6: 2D channel flow. Turbulent viscosity and budget terms of the turbulent kinetic
energy transport equation. Standard k-ε model and two low-Re k-ε models in
comparison with DNS data of Kawamura et al. [66]. All variables are non-
dimensionalized using the skin-friction velocity uτ and the molecular viscosity
ν.
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2.2.5(a), 2.2.5(b), and 2.2.5(c) respectively) are predicted well by both low-Re models. The only
drawback which can be observed in figures 2.2.5(d) and 2.2.5(e) is that, due to the turbulent
viscosity isotropy assumption common for most turbulent viscosity models, both u′2x

+
and u′2y

+

calculated via equation 2.2.3 do not reproduce the DNS profiles even if k is predicted well.

A deeper modeling analysis can be made by the validation of further statistical turbulence
quantities, such as modeled turbulent viscosity and the budget terms of the modeled turbulent
kinetic energy balance equation, against DNS data. Figure 2.2.6 presents such a validation.
First, in figure 2.2.6(a), the modeled turbulent viscosity is compared with νt evaluated from the
DNS data of Kawamura et al. [66] using equation 2.2.36. It can be seen that νt predicted by
the AKN model gives the closest agreement with the experimental data. The νt resulting from
the LB model is similar to the νt of AKN in the region y+ < 30. With increasing wall distance
the LB νt profile becomes more similar to the νt given by the standard k-ε model. This can
be explained by the weak influence of the damping functions of LB model away from the wall
illustrated in figure 2.2.7 and by the equality of the closure constants of the standard k-ε and
the LB k-ε modeling equations. Figure 2.2.6(a) also makes evident the decisive importance of
the y+ < 30 region for the accuracy of the turbulence prediction further away from the wall.
Even if νt given by the standard k-ε and the LB k-ε models at y+ > 30 are quite similar, the
resulting mean and fluctuating velocity profiles are drastically different (figure 2.2.5). Thus
a conclusion can be made that this difference is caused by the difference in νt modeling at
y+ < 30.

The modeling differences between the standard k-ε and the low-Re k-ε models become much
mode evident after the comparison of the profiles of turbulent kinetic energy production, diffu-
sion, and dissipation corresponding to the respective terms of the exact k-equation (equation
2.2.11) evaluated from the DNS data [66] and the respective terms of the modeled k-equation
(equation 2.2.14). Such a comparison is given in figures 2.2.6(b), 2.2.6(c), and 2.2.6(d). It
can be observed here that the peaks of the turbulent production, diffusion and dissipation pre-
dicted by the standard k-ε model occur at much lower wall distances than in the DNS data

Cµ · fµ

DNS data[66], νt · ε/k2

k-ε AKN, Cµ · fµ

k-ε LB, Cµ · fµ

k-ε std., Cµ

0.09

y+1 10 100
0

Figure 2.2.7: Turbulent viscosity modeling coefficient Cµ · fµ evaluated from DNS data of
ref. [66] as νt · ε/k2 and used for the modeling.
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or predicted by the low-Re models. The profiles resulting from the application of both low-Re
models also do not perfectly correspond with the DNS data but are much closer. Regarding
the production to dissipation ratio (figure 2.2.6(e)), only the LB model is able to represent its
peak of about 1.8 at y+ ≈ 10 which also causes the closest agreement of k produced by this
model with the DNS data (see figure 2.2.5(b)). Considering the dissipation per unit turbulent
kinetic energy ε/k shown in figure 2.2.9(f), it is rather difficult to make a definitive statement
about the comparative quality of different models.

The influence of the damping function fµ on the value of the turbulent viscosity modeling
coefficient Cµ ·fµ is illustrated in figure 2.2.7. It can be observed that here, as in the free round
jet case considered in the previous section, the νt modeling coefficient is not constant and takes
the values close to 0.09 only far away from the wall. Both low-Re damping functions studied
here help to recover this behavior.

It should be mentioned here that, despite of the good results shown in figure 2.2.5, prac-
tical application of the low-Re k-ε turbulence models can cause numerical instabilities in the
solution [128, 29]. Furthermore, the damping functions such as those shown above are empir-
ically derived based on the individual experience of the model developer and the initial test
cases chosen for the parameter setting. This approach thus lacks universality; consequently, an
exceptionally large number of various low-Re k-ε models exists which makes the selection for
the practical applications difficult. However, the problem of accurate near-wall turbulence res-
olution is extremely important in a variety of technical applications including those considered
in the present work. In the context of engineering RANS modeling, a popular alternative to
low-Re k-ε models is the application of of k-ω-type models, which due to special features of the
ω-equation naturally provide the desired turbulent viscosity damping in the near-wall regions.
These models, their advantages and weaknesses are discussed in the next sections.

2.2.1.4 Wilcox 1988 k-ω model

The ε-equation is a natural but not the only possibility to provide the second scale (additionally
to the velocity scale defined by k) in the mixing length hypothesis for turbulent viscosity
(equation 2.3.4) and provide a closure of the dissipation term in the turbulent kinetic energy
equation (equation 2.2.14). The most popular alternative to the ε-equation approach is the
construction of a transport equation for the specific dissipation rate per unit turbulence kinetic
energy, ω [128]. With this variable, the dissipation rate ε in equation 2.2.14 can be expressed
as

ε = βkkω (2.2.53)

with the modeling constant βk. The turbulent viscosity can be written as

νt =
Cµ

βk

k

ω
, (2.2.54)

or if βk = Cµ

νt =
k

ω
. (2.2.55)
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The ω-variable as dissipation per unit turbulent kinetic energy was introduced first by Kol-
mogorov in 1942 [70]. In the turbulence model created by Kolmogorov a differential equation
similar to the transport equation for k was also proposed for ω. Further essential contribution
to the development of the k-ω-type models was made by Wilcox. His model, proposed in 1988
[125] as well as later modifications reported by the same author [127, 128], proved their relia-
bility and accuracy in a large variety of test cases [128] and this success was decisive for the
popularity of k-ω - type models in engineering turbulence simulations. The model equations of
the Wilcox 1988 k-ω model [125] are as follows:

∂k

∂t
+ U l

∂k

∂xl

=
∂

∂xl

[(
ν + σk

k

ω

)
∂k

∂xl

]
+ P − βkkω, (2.2.56)

∂ω

∂t
+ U l

∂ω

∂xl

=
∂

∂xl

[(
ν + σω

k

ω

)
∂k

∂xl

]
+ γ

ω

k
P − βωω2, (2.2.57)

where equation 2.2.55 defines the turbulent viscosity, and the modeling constants are

βk = 0.09, σk = 0.5, σω = 0.5, βω =
3

40
, γ =

5

9
. (2.2.58)

The calibration methods for the modeling constants are essentially the same as described in
section 2.2.1.1 for the standard k-ε model (see ref. [128] for details).

2.2.1.5 Cross-diffusion and the near-wall behavior of the Wilcox 1988 k-ω model,
low-Re correction

A very important and remarkable property of the Wilcox 1988 k-ω model is its ability to
represent the near-wall velocity profile well without application of additional damping functions
on νt (discussed in section 2.2.1.3 for k-ε type models). This ability of the Wilcox 1988 k-ω
model is illustrated in figure 2.2.8(a) on the example of a 2D channel flow velocity field prediction
(the same test case as used in section 2.2.1.3). It can be observed that the velocity profile given
by the Wilcox 1988 k-ω model (blue dashed line) corresponds favorably with the DNS data of
Kawamura et al. [66] and with the predictions given by the low-Re AKN k-ε model described
in section 2.2.1.3, whereas the standard k-ε model (without damping function) is not capable
of a proper reproduction of the velocity profile. The reason for this favorable behavior of the
Wilcox model can be understood by rewriting the ε equation of the standard k-ε model in the ω

form and its comparison with the above given 1988 Wilcox ω model equation (equation 2.2.57).
The ε → ω reformulation can be made by inserting equation 2.2.53 into equation 2.2.20 and
differentiating. The result is

∂ω

∂t
+ U l

∂ω

∂xl

=
∂

∂xl

[
(ν + σ∗ωνt)

∂k

∂xl

]
+ γ∗

ω

k
P − β∗ωω2

+
ω

k

∂

∂xl

[
(σ∗ω − σ∗k)νt

∂k

∂xl

]
+ 2

(ν + σ∗ωνt)

k

∂k

∂xl

∂ω

∂xl

(2.2.59)
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where σ∗k, σ∗ω, γ∗, and β∗ω are simple functions of the k-ε closure coefficients. Assuming σ∗k = σ∗ω

for simplicity causes the first term in the second line of equation 2.2.57 to vanish; furthermore,
molecular viscosity in the last term can be neglected in the case of free shear flows. This results
in

∂ω

∂t
+ U l

∂ω

∂xl

=
∂

∂xl

[
(ν + σ∗ωνt)

∂k

∂xl

]
+ γ∗

ω

k
P − β∗ωω2 + σd

1

ω

∂k

∂xl

∂ω

∂xl

. (2.2.60)

The main difference between the ω-equation 2.2.57 of the Wilcox 1988 k-ω model and the
equation 2.2.60 is the term

CD = σd
1

ω

∂k

∂xl

∂ω

∂xl

(2.2.61)

appearing on the right-hand side of equation 2.2.60 which depends on the gradients of both k

and ω. This term is called the cross-diffusion term. In the viscous sublayer k decreases with the
wall distance while ω increases. Thus the cross-diffusion term is negative in the viscous sublayer
which lets it act as a sink of ω. The absence of such a sink, as in the case of equation 2.2.57,
causes a strong production of ω in the viscous sublayer (y+ < 10) as visualized in figure 2.2.9(f)
using ε+/k+ = 0.09 · ω+. In this figure also the values evaluated from k+ and ε+ resulting from
the standard and the low-Re AKN k-ε models are presented. It can observed that the Wilcox
1988 model gives an erroneous overestimation of ω∗ whereas the results produced by both
the standard and the low-Re k-ε models correspond well with the DNS data. However, the
overprediction of ω causes the favorable viscous sublayer damping of the turbulent viscosity νt

if the formula 2.2.55 is applied for its calculation and an accurate prediction of the turbulent
viscosity in the important region y+ < 10 (figure 2.2.9(a)). As a result the Reynolds shear
stress (figure 2.2.8(c)) is also reproduced well by the Wilcox 1988 k-ω model (see equation
2.2.3). The level of the turbulent kinetic energy, however, is strongly underestimated, and its
peak at y+ ≈ 10 cannot be reproduced. This can be disadvantageous in near-wall heat transfer
calculations [29].

Thus, the turbulent viscosity damping in the Wilcox 1988 k-ω model, resulting from the
specific behavior of equation 2.2.57, can be a useful feature in the cases when a simple stable
approach is needed that can produce a reasonably correct velocity profile in the near-wall
region. However, the Wilcox 1988 k-ω model is not suited well in the case when an accurate
representation of the near-wall turbulence is of particular interest. For the refinement of k-ω
modeling in such cases, low-Re damping functions analogous to the damping functions for k-ε
models discussed in section 2.2.1.3 can be developed. An example of such a low-Re k-ω model

∗It can be shown analytically that in the wall vicinity ω has the limiting behavior

ω → 6ν

βωy2
as y → 0. (2.2.62)
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DNS data[66]
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Figure 2.2.8: 2D channel flow. Mean and fluctuating velocity field predictions. Different RANS
models in comparison with DNS data of Kawamura et al. [66]. All variables are
non-dimensionalized using the skin-friction velocity uτ and the molecular viscosity
ν.
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DNS data[66]
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Figure 2.2.9: 2D channel flow. Turbulent viscosity and budget terms of the turbulent kinetic
energy transport equation. Different RANS models in comparison with DNS data
of Kawamura et al. [66]. All variables are non-dimensionalized using the skin-
friction velocity uτ and the molecular viscosity ν.

58



RANS modeling

can be found in ref. [126]. The modeling equations are as follows:
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]
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νt = α∗
k

ω
. (2.2.65)

The constants and the damping functions are

σk = 0.5, σω = 0.5, βω =
3

40
, (2.2.66)

α∗ =
α∗0 + Ret/Rk

1 + Ret/Rk

, Rk = 6.0, α∗0 = βω/3, Ret =
k

ων
, (2.2.67)

γ =
5

9

γ0 + Ret/Rω

1 + Ret/Rω

(α∗)−1 , Rω = 2.7, (2.2.68)

β∗k =
9

100
· 5/18 + (Ret/Rβ)4

1.0 + (Ret/Rβ)4 , Rβ = 8.0, (2.2.69)

σk = 0.5, σω = 0.5. (2.2.70)

The results produced by this model for the 2D channel flow are presented in figures 2.2.8 and
2.2.9. The results are quite similar to those produced by the low-Re AKN k-ε model. The
profiles of ω, k, P , ε, and P/ε corespond well with the DNS data. The peak of the turbulent
kinetic energy and P/ε at y+ ≈ 10 is even slightly higher than the DNS data, in contrast to
the other tested models (figure 2.2.9(e)).

Despite the improvement given by the low-Re damping functions, this approach in applica-
tion to the k-ω modeling is not a widely used one. This can be explained by two reasons. On
one hand, in the cases when the precise near-wall modeling is important, application of the
empiric damping functions for the k-ω modeling can potentially introduce the same numeri-
cal instability issues as low-Re k-ε modeling, so the damping functions do not provide much
advantage comparatively to the more established low-Re k-ε simulations. On the other hand,
in a wide range of engineering applications, the correct reproduction of the turbulent viscosity
and of the mean velocity profiles satisfies the desired accuracy requirements and there is no
need for a more precise modeling. In such cases the robustness and the simplicity advantages of
the original ω-equation are more important than the additional accuracy given by the low-Re
damping functions. For the complex flow applications in the present work, both the high- and
the low-Re models will be used and the influence of the near-wall modeling on the results will
be discussed.

It should be also mentioned here that for the traditional k-ω modeling, even if no low-Re
damping functions are applied, the first point of the computational grid should lie in the viscous
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sublayer (y+ ≤ 2) [86]. In industrial calculations such a grid quality often cannot be assured.
From an another point of view the application of the standard k-ε model with the wall-function
approach implies, as discussed above in section 2.2.1.3, the near-wall grid condition y+ ≥ 40

which allows only for much coarser meshes. Consequently, a demand for a so-called universal
wall function exists that can ensure the proper reproduction of turbulent quantities if the first
grid point lies in the intermediate range of y+, and such an approach is described, for example,
in ref. [33]. In this case ω is calculated via a blending function which depends on y+ and
combines the behavior of ω in the viscous sublayer and the logarithmic region as

ωb =
√

ω2
vis(y

+) + ω2
log(y

+), (2.2.71)

with

ωvis(y
+) =

6ν

0.075y2
, ωlog(y

+) =
uτ

0.3κy
, (2.2.72)

and for the wall friction velocity

uτ = 4

√
u4

τ(vis)(y
+) + u4

τ(log)(y
+), (2.2.73)

uτ(vis)(y
+) =

U fp

y+
, uτ(log)(y

+) =
U fp

1
κ
ln(y+) + Cw

. (2.2.74)

Here U fp is the absolute value of the flow velocity in the first near-wall grid point.

2.2.1.6 Cross-diffusion and SST k-ω model of Menter

The lack of the cross-diffusion term (equation 2.2.61) in the ω-equation (equation 2.2.57) of the
Wilcox 1988 k-ω model does not only cause strong production of ω in the viscous sublayer, as
discussed in the previous subsection, but also leads to a serious model drawback in free shear
flow simulations. The spreading rates of free shear flows can vary significantly depending on the
ω freestream boundary conditions, and the model is not reliable in flows with detached shear
layers. A detailed discussion on how this problem is related to the absence of the cross-diffusion
term in equation 2.2.57 can be found in refs. [83, 84, 128]. To overcome this drawback but still
retain the favorable ability of the k-ω model to damp the near-wall turbulent viscosity, Menter
[83] proposed a model called the BSL (baseline) k-ω model that is essentially a combination of
the Wilcox 1988 k-ω model in the near-wall region and the standard k-ε model (written in k-ω
formulation) in the detached regions [83]. Additionally, in the same publication Menter pointed
out another (minor) deficiency of the Wilcox 1988 k-ω model with regards to the occasional
overestimation of the shear stress. To address this issue a limiter on the turbulent viscosity
was proposed in [83], and the model combining both the k-ω - k-ε blending and the turbulent
viscosity limiter was created. This model called the SST (shear stress transport) k-ω model is
popular in engineering turbulence simulations due to its universality and reasonable accuracy
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in a wide range of flows. The SST model equations in their last revision [84] appear as follows:
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νt =
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, (2.2.77)

S =

√
2SijSij, P̃ = min(P , 10 · βkkω). (2.2.78)

The modeling coefficients are calculated depending on the near-wall distance as a blend of an
inner (1) and an outer (2) constant via

φ = F1φ1 + (1− F1)φ2, (2.2.79)

with the constants of the inner layer
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and the constants of the outer layer
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furthermore,
βk = 0.09, κ = 0.41, a1 = 0.31. (2.2.82)

The blending functions F1 and F2 are calculated by the following relations:
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The publications [83, 84] show that results achieved by the SST model in free shear flow
calculations are indeed independent of the ω freestream conditions whereas in the case of 1988
k-ω model of Wilcox this dependence is severe. That behavior is due to the positive influence of
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the cross-diffusion term in the ω-equation of the SST model, which is “switched on”in the free
shear flows (the walls are absent and all equations and constants are in the “outer layer”-mode).
It should be mentioned here, however, that since there is no freestream boundaries in the case
of internal flows, the sensitivity of 1988 k-ω model to the ω freestream conditions does not
represent a major problem for the applications considered in the present work.

2.2.1.7 Wilcox 1998 and 2006 k-ω models

Considering the apparent interplay between the cross-diffusion term and freestream boundary
condition sensitivity, discussed in the previous section 2.2.1.6, as well as the favorable influence
of the Pope round jet correction (see section 2.2.1.2) on the round jet k-ε predictions, Wilcox in
1998 [127] and 2006 [128] proposed two improved variants of the 1988 k-ω model. Both variants
include the Menter cross-diffusion and the Pope round jet corrections incorporated differently
into the modeling equations.

The equations of the 1998 k-ω model of Wilcox [127] are:
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with the following closure coefficients and auxiliary relations:
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and turbulent viscosity calculated as

νt =
k

ω
. (2.2.93)

The round jet correction is included in the ω-equation via the βω-coefficient in the dissipation
term and the cross-diffusion correction appears in the dissipation term of the k equation in the
β∗k-coefficient.

A later version proposed in 2006 [128], moreover, contains the strain-rate related limiter for
the turbulent viscosity also proposed earlier by Menter for the SST model (see section 2.2.1.6).
The Wilcox 2006 k-ω model equations are as follows:
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with the modeling coefficients defined as:
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The turbulent viscosity equation in this model becomes
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ω∗
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Besides of the turbulent viscosity formulation (equation 2.2.99), this model also differs from
the 1998 variant by a slightly different form of the included cross-diffusion correction as well as
by the values of the modeling constants.

Figures 2.2.10 and 2.2.11 present the validation of the k-ω models described in this section
and in sections 2.2.1.4-2.2.1.6 on the free round jet test case from section 2.2.1.2. Mean and
fluctuating velocity profiles are shown in figure 2.2.10. The data obtained by the k-ε model
employing round jet correction described in section 2.2.1.2 are presented for comparison as well.
Since the SST model is running in this case essentially in the “outer layer”mode, its predictions
are very similar to those given by the standard k-ε model (see figures 2.2.2 and 2.2.3 for com-
parison). It shows a clear trend of the over prediction of the jet spreading rate, of the turbulent
kinetic energy, and of further fluctuating quantities. The 1988 model of Wilcox overestimates
the spreading rate even more than the SST model (see figure 2.2.10(a)); consequently, the
model is the least suited of all evaluated approaches for this test case. The fluctuating velocity
profiles resulting from the 1988 k-ω model of Wilcox simulations are not shown in figures 2.2.10
and 2.2.11 since they were for the most part out of scale of the graphs (too high values).

The best k-ω model predictions are clearly achieved by two approaches employing the round
jet correction (1998 k-ω and 2006 k-ω). The 1998 Wilcox model is the most accurate one among
the k-ω type models and gives the profiles close to those obtained with the round jet correction
k-ε model discussed in section 2.2.1.2. The 2006 Wilcox model shows a slight overprediction
of turbulence in the outer jet region. This is especially clearly seen in the turbulent viscosity
profile shown in figure 2.2.11(a). However, even with this overprediction of turbulence the
model still performs better than the SST approach and much better than the 1988 k-ω model.
Thus, it can be stated that for this particular test case the 1998 and 2006 improvements to the
original k-ω 1988 model of Wilcox achieve a highly favorable effect.
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The question of the freestream boundary condition dependence of the studied k-ω models
will not be discussed here since for the further considerations of this dissertation it is not
of significant importance. Menter [84] points out that, in contrast to the SST model, the
freestream ω dependence is still quite noticeable even in the latest (2006) Wilcox model. This
was also observed in the preliminary calculations of this dissertation, but in the calculations
presented in figures 2.2.10 and 2.2.11 the freesteam ω values were chosen to be small enough
to achieve the target spreading rates allowed by the model equations.

2.2.1.8 Streamline curvature modification of the SST model

In addition to the near-wall and round jet related modeling improvements described previously,
streamline curvature related model corrections can also be of relevance for the applications
considered in this work. System rotation and streamline curvature can act as an additional
source/sink of the turbulent kinetic energy [46]. However, neither the standard k-ε nor the k-ω
type models described above are capable of reproducing this behavior. A variety of modifi-
cations exists which aim to encode the effects of rotation and streamline curvature into eddy
viscosity turbulence models. One example - the modification of the SST model developed
by Hellsten [46] is presented here. This modification replaces the original dissipation of ω

term βωω2 in the ω transport equation 2.2.76 by a term sensitive to the Richardson number
F4(Ri) βωω2 which acts as a measure of system rotation and/or streamline curvature:

Ri =
Ω

S

(
Ω

S
− 1

)
, (2.2.100)

with
S =

√
2SijSij, Ω =

√
2ΩijΩij, (2.2.101)

F4(Ri) =
1

1 + CrcRi
. (2.2.102)

The modeling constant is Crc = 3.6. The results produced by the application of this correction
for the SST model to the flows relevant for GT combustion applications will be discussed in
chapter 3 of the present work.

2.2.1.9 Concluding remarks

It is clear that the equations and models listed above in the sections 2.2.1.1-2.2.1.8 are only
a small part of the work on RANS turbulence modeling which can be found in the literature.
Reynolds stress modeling, non-linear eddy viscosity models, algebraic models, and one-equation
models are not considered here because the aim of the current work is directed towards en-
gineering applications, and the models discussed here are the most widespread ones for the
technical simulations of turbulent flows. Their popularity has been established over years and
is justified by the remarkable combination of their simplicity and robustness on the one hand
and their ability to give reasonable predictions for a large variety of flows [128, 29] on the other
hand. This does not imply, however, that the established models can not be modified and

64



RANS modeling

r/xa

Ux

U0

0
0

1

0.5

0.20.1

experimental data [16]

experimental data [95]

k-ε, round jet correction

SST k-ω

Wilcox 1988 k-ω

Wilcox 1998 k-ω

Wilcox 2006 k-ω

(a) Dimensionless mean streamwise velocity Ux/U0.

r/xa

k

U
2

0

0
0 0.1 0.2

0.07

correction

(b) Turbulent kinetic energy k/U
2

0.

r/xa

−u′

xu′

y

U
2

0

0
0 0.1 0.2

0.015

correction

(c) Reynolds shear stress −u′xu′y/U
2

0.

r/xa

√
u′2

x

U0

0
0 0.1

0.2

0.2
correction

(d) RMS of the axial velocity fluctuations
√

u′2x /U0.

r/xa

q

u′2
y

U0

0
0 0.1

0.2

0.2
correction

(e) RMS of the radial velocity fluctuations
√

u′2y /U0.

Figure 2.2.10: Free round jet flow. Different k-ω models and k-ε model with Pope correction
and Davidenko limiter. Comparison of the simulation results and the data of
refs. [16, 95].
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improved.

The modifications directed towards applications to special flow types such as given in section
2.2.1.2 for the round jet flows or in section 2.2.1.8 for the streamline curvature affected flows
indeed can help to achieve more accurate predictions in the cases for which they are designed.
This was shown, for example, in sections 2.2.1.2 and 2.2.1.7 for the free round jet flow. To
understand the general applicability of such corrections, it is important to asses them in more
complex configurations where the flow evolution is influenced by multiple factors. Such studies
will be presented in chapter 3.

For a further improvement of the considered models, a deep understanding of the mechanisms
governing the turbulence dynamics is needed. Detailed validation of the model equation terms
and of the statistical turbulence quantities produced by the models would be useful. Also
studies on the validity of some basic assumptions employed for the model equation closure
and obtaining of the modeling constants can be enlightening. For example, a question on
the variability of Cµ in equation 2.2.22 is important. The origin of the near-wall corrections
discussed in section 2.2.1.3 was the observation that inside the viscous sublayer and in the
transitional region between the viscous sublayer and the logarithmic layer Cµ does not have a
constant value of 0.09. The low-Re damping functions for νt are a practical technique to vary
Cµ in the near-wall region. In the present work, for the considered internal jet flows, the values
of Cµ in equation 2.2.22 will be evaluated based on the statistical data for k and dissipation rate
obtained from LES in the same fashion as it was done above using the literature data for the free
round jet (figure 2.2.4) and for the 2D channel flow (figure 2.2.7). This will help to improve the
understanding regarding the variability of Cµ (or its equivalent βk in k-ω models, see equation
2.2.53) in complex flows. Such a study can be used in order to make a decision if the constant
Cµ assumption is sufficient for the considered flows or whether the eddy viscosity approaches
employing a variable modeling coefficient are more appropriate. A further important parameter
is the production to dissipation ratio. Section 2.2.1 shows that the value of this parameter in
different classes of flows is used for deriving of Cµ (P/ε = 1.0 in the logarithmic layer) and Cε1

(P/ε = 1.6± 0.2 in a homogeneous shear layer) in the standard k-ε model. The same relations
are used for obtaining of the k-ω model constants. As discussed in section 2.2.1, the value of
Cε2−Cε1 has substantial influence on the predicted spreading rates of shear flows. Thus in the
shear flows where the relation P/ε = 1.6±0.2 does not hold, the spreading rate (and the whole
level of turbulence) may be incorrectly predicted. This can be observed for the free round jet,
where the peak value of P/ε is 0.8. Consequently, the spreading rate is over predicted in this
flow by the standard k-ε model as well as other models using similar assumptions for the model
constants, and the round jet correction is needed to compensate for this behavior. Employing
the statistical data obtained in the LES calculations, the value of P/ε will be evaluated in this
work for all considered flows and its relation to the observed model behavior discussed. This
and further LES-based studies on the validity of widely used RANS modeling assumptions for
complex confined jet flows are presented in chapter 3.
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2.2.2 Turbulent scalar diffusivity modeling

2.2.2.1 Turbulent mixing modeling problem, turbulent Prandtl or Schmidt number
concept

It was pointed out at the beginning of section 2.2 that if the gradient diffusion hypothesis
(equation 2.2.6) is used for the turbulent scalar flux closure a model for the determination of
turbulent scalar diffusivity αt is needed. The most widespread and simple approach for the
modeling of αt is the assumption of a linear dependence on the turbulent viscosity νt

αt =
νt

σt

(2.2.103)

where the constant σt is called the turbulent Prandtl or Schmidt number in analogy to the
formula σ = ν/α for the Prandtl or Schmidt number, σ, in molecular heat or mass transport.
This approach is reasoned by the experience that in simple shear flows the turbulent scalar
diffusivity αt is always of about the same magnitude as the turbulent viscosity νt [72]. How-
ever, the application of a constant turbulent Prandtl or Schmidt number hypothesis for the
engineering turbulent scalar mixing simulations introduces several difficulties.

Figure 2.2.12 presents the profiles of the dimensionless temperature for a 2D channel flow
and a free round jet flow (the same test cases are used in the previous sections for the turbulent
viscosity modeling validations). Turbulent viscosity is modeled by means of the AKN k-ε model
for the 2D channel flow and by means of the k-ε model with the round jet correction described
in section 2.2.1.2 for the free round jet flow. These models were chosen since they give the
best mean and fluctuating velocity field predictions in the respective cases (see sections 2.2.1.3
and 2.2.1.7). Whereas in the case of the 2D channel flow σt = 1.0 gives the closest agreement
with the DNS data, for the free round jet lower values lying between σt = 1.0 and σt = 0.7

are a better choice. Furthermore experimental and DNS studies show that, in reality, even for
these and other relatively simple shear flows the turbulent Prandtl or Schmidt number can vary
significantly in different flow regions. DNS simulations of heat transfer in the plane channel
flows [66, 65] indicate that, depending on the wall temperature conditions, the turbulent Prandtl
number can remain close to unity over the full channel height or drop from 1.0 near to the walls
to 0.5 in the core region. A review on the values of the turbulent Prandtl or Schmidt number
in several free shear flows made by Reynolds [103] gives the following variations (from core to
outer region): round jet (such as considered here) 0.73 − 1.7; round wake 0.8 − 0.3, plane jet
0.5− 1.3; plane wake 0.5− 0.7.

For complicated flows, particularly in the cases where no information is available about the
turbulent Prandtl or Schmidt number variations, the choice of a unique value of this parameter
is a non-trivial task and incorrect mixing predictions are often the case in simulations of complex
internal flows such as considered in this work. Several possibilities exist to improve simulation
accuracy within the turbulent scalar diffusivity framework. First, more information should be
gained about the actual values of the turbulent Prandtl or Schmidt number in non-academic
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Figure 2.2.12: Dimensionless transported scalar in 2D channel and free round jet flow. Different
turbulent Prandtl or Schmidt numbers.

flows, which are often not available due to measurement difficulties. This would help the
community to better understand if in such flows a definition of a “compromise”constant value
is possible and what is the dependence of the turbulent Prandtl or Schmidt numbers on the
flow type and region. This question is addressed in chapter 3. A second potential source of
improvement is the application of the turbulent scalar diffusivity models that do not involve the
turbulent Prandtl or Schmidt number ansatz. Such models are considered in the next section.

2.2.2.2 Two-equation turbulent scalar diffusivity models

The idea of two-equation turbulent scalar diffusivity modeling is essentially the same as the
one of two-equation turbulent viscosity modeling described previously in sections 2.2.1.1-2.2.1.8.
Turbulent scalar diffusivity is assumed to be a linear combination of the turbulent velocity scale
and the length scale of the turbulent scalar mixing

αt = Lc U . (2.2.104)

As in the turbulent viscosity modeling, the velocity scale is assumed to be proportional to the
square-root of the turbulent kinetic energy. Hence,

αt ∼ Lc

√
k. (2.2.105)

The length scale can be constructed using the velocity scale and the time scale Lc ∼
√

kτλ, and
in this case

αt = Cλ k τλ (2.2.106)

with the modeling constant Cλ and the time scale of scalar mixing τλ. The first model of this
type was proposed by Nagano and Kim in 1988 [89]. The time scale, τλ, can be constructed using
different arguments. If the turbulent velocity time scale τd = k/ε is used, then equation 2.2.106
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becomes essentially the same as equation 2.2.22 and the ratio Cµ/Cλ is the turbulent Prandtl
or Schmidt number. Nagano and Kim [89] proposed to use for the modeling of τλ not only
the turbulent velocity time scale τd but also a time scale which characterizes turbulent scalar
fluctuations

τc =
c′2

2 εc

, (2.2.107)

where c′2 is the turbulent scalar variance and εc its dissipation rate. This time scale can be used
directly to form τλ in equation 2.2.106 or, as in the work of Nagano and Kim, in a combination
with the turbulent velocity time scale

τλ =

√
c′2

εc

k

ε
=
√

2 τc τd =
√

2τdR1/2, (2.2.108)

with the time scale ratio
R =

τc

τd

. (2.2.109)

Formula 2.2.108 or its generalization

τλ = Cmτ l
c τ k

d = CmτdRl, where l + k = 1, (2.2.110)

was successfully adopted in turbulent scalar diffusivity calculations conducted by different re-
search groups for a variety of configurations [89, 14, 68, 11, 67, 10, 12, 129, 112]. There are
also examples of application of other forms of the mixed time scale τλ. Abe et al. [2] adopted,
following the work of Zeman and Lumley [131], the formula

τλ = Cm1

(
Cm2

τc

+
1

τd

)−1

= τd

(
Cm1R

Cm2 +R

)
, (2.2.111)

with the modeling constants Cm1 and Cm2. The question about the optimal choice of the mixing
time scale in 2.2.106 is not fully clarified and remains a subject of continuing investigations.

In order to build τc, the construction and solution of additional transport equations for the
turbulent scalar variance and its dissipation rate are required. The exact equation for c′2 can
be obtained by multiplying the transport equation for the instantaneous value of the scalar
(C + c′) by c′ and application of the ensemble averaging operator [72]

∂c′2

∂t
+ U l

∂c′2

∂xl

= −2c′u′l
∂C

∂xl︸ ︷︷ ︸
production

−2α
∂c′

∂xl

∂c′

∂xl︸ ︷︷ ︸
dissipation

−∂c′2u′l
∂xl︸ ︷︷ ︸

turbulent diffusion

+α
∂2c′2

∂x2
l︸ ︷︷ ︸

molecular diffusion

. (2.2.112)

The turbulent diffusion term can be closed using the gradient diffusion hypothesis [89],

− c′2u′l =
αt

σh

∂c′2

∂xl

. (2.2.113)
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This is the most prevalent way of modeling of the turbulent diffusion term, and this approach
was adopted in refs. [89, 2, 129, 112]. It is a direct analogy to the closure of the turbulent
diffusion term in the turbulent kinetic energy equation 2.2.13, however, other variants such as
−c′2u′l ∼ k

ε
u′lu

′
j

∂c′2

∂xj
also exist [72]. The production term can be easily closed using equation 2.2.6

for c′u′l; thereby, the last term requiring a model is the dissipation of the turbulent scalar
variance 2εc with

εc = α
∂c′

∂xl

∂c′

∂xl

. (2.2.114)

In order to model εc different approaches exist in literature [43, 72]. If the constant turbulent
Prandtl or Schmidt number hypothesis is applied (no special modeling of αt via equation
2.2.106), but the turbulent scalar variance transport is of interest (for example in the combustion
simulations), a relatively simple algebraic relation [43] can be used

εc = Ctc′2ωu, (2.2.115)

where ωu = 1/τd. The widely used value of the model constant Ct is Ct = 1, which is equivalent
to the assumption that the turbulent scalar to velocity time scale ratio is constant and is equal
to R = 0.5 [43]. The transport equation for c′2 has in this case the form

∂c′2

∂t
+ U l

∂c′2

∂xl

=
∂

∂xl

[(
α +

αt

σh

)
∂c′2

∂xl

]
+ 2Pc − 2Ctc′2ωu. (2.2.116)

This approach, however, is not applicable if equation 2.2.106 is used for the αt modeling since it
does not allow the introduction of the scalar mixing time scale independently from the turbulent
velocity time scale. Moreover, the assumption of the constant turbulent scalar to velocity time
scale ratio is a considerable simplification [119, 7]. For this reason an additional transport
equation for εc could be theoretically a more accurate way to model this quantity.

The exact transport equation for εc can be obtained by taking the derivative of the equation
for (C + c′), multiplying by 2α∂c′/∂xl, and ensemble averaging [72]

∂εc

∂t
+U l

∂εc

∂xl

= −2α
∂u′l
∂xk

∂c′

∂xk

∂C

∂xl

− 2αu′l
∂c′

∂xk

∂2C

∂xl∂xk

− 2α
∂c′

∂xl

∂c′

∂xk

∂Ul

∂xk︸ ︷︷ ︸
mean−field production

−2α
∂u′l
∂xk

∂c′

∂xk

∂c′

∂xl︸ ︷︷ ︸
fine−scale (turbulent) production

−2

(
α

∂2c′

∂xl∂xk

)2

︸ ︷︷ ︸
dissipation

−∂u′lε
′
c

∂xl︸ ︷︷ ︸
turbulent diffusion

+α
∂2εc

∂x2
l︸ ︷︷ ︸

molecular diffusion

. (2.2.117)

The terms of equation 2.2.117 are discussed in ref. [72]. It is stated that the dominant terms are
those of the fine-scale production and the dissipation whereas the mean-field generation plays
rather a minor role. The problem of closing equation 2.2.117 is quite similar to the problem of
modeling the terms of the ε equation as discussed in section 2.2.1.1. In the same way this model
derivation is essentially based on dimensional analysis and on general physical considerations.
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The task of the closure of the εc equation is actually even more challenging since the terms of
this equation depend on both velocity and scalar fields, so the possible number of parameters
is twice as large as in the case of the ε equation [72].

The turbulent diffusion term is usually [89, 2, 112, 21] closed in the same manner as the
turbulent diffusion term of the scalar variance transport equation,

− ulε′c =
αt

σφ

∂εc

∂xl

, (2.2.118)

where σφ is the model constant. Launder [72] notes, however, that the question about the
diffusion term closure is of less importance than the modeling of the creation and dissipation
terms of εc equation. Regarding the dissipation term, the common view [72, 89, 2, 112, 21, 32,
60, 91] is that the rate of dissipation is dependent on both velocity and scalar time scales. The
most obvious approximation is

− 2

(
α

∂2c′

∂xl∂xk

)2

= −Cd1
εc

2

c′2
− Cd2

εεc

k
, (2.2.119)

with modeling constants Cd1 and Cd2.

Several approximations exist for the production terms in the εc equation [89, 21, 32, 60, 91,
72]. As mentioned above, the mean-field generation terms of equation 2.2.117 are normally
neglected [72] and only the turbulent production term is modeled. The rate of production is
in most models assumed to be sensitive to changes in both the turbulent velocity and scalar
fields. Typically the mechanical and the scalar production rates,

P = −u′iu
′
l

∂U i

∂xl

and Pc = −u′lc
′ ∂C

∂xl

(2.2.120)

respectively, are used for the modeling of εc generation. It is not immediately clear in which form
P and Pc as well as the scalar and mechanical time scales should appear in the approximation
of the εc production. The most popular approach is to use both P and Pc in the form

− 2α
∂u′l
∂xk

∂c′

∂xk

∂c′

∂xl

= Cp1
εc

c′2
Pc + Cp2

εc

k
P (2.2.121)

with the modeling constants Cp1 and Cp2 [89, 2, 112]. Some authors employ only the scalar

production rate in combination with the scalar εc/c′2 [91, 32] or mixed
√

(εεc)/(kc′2) [21] time
scale that results in

− 2α
∂u′l
∂xk

∂c′

∂xk

∂c′

∂xl

= Cp
εc

c′2
Pc or − 2α

∂u′l
∂xk

∂c′

∂xk

∂c′

∂xl

= Cp

√
εεc

kc′2
Pc. (2.2.122)

Furthermore, Jones and Musonge propose [60] the following formulation for the production
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term:

− 2α
∂u′l
∂xk

∂c′

∂xk

∂c′

∂xl

= Cp1
ε

k
Pc + Cp2

εc

k
P . (2.2.123)

Thus for the production terms no consensus solution exists and further investigations are
needed. For the calculations of the current work, three models were chosen which employ differ-
ent formulations of the time scale τλ in equation 2.2.106 and different formulations of the pro-
duction term. In order to compare their effectiveness, the model of Nagano and Kim [89] (NK),
the model of Abe et al. [2] (AKN) (variant “a”from ref. [2]), and the model of Deng et al. [21]
(DWX) are selected as representative scalar transport models. The general form of the govern-
ing equations for all models can be expressed as

∂c′2

∂t
+ U l

∂c′2

∂xl

=
∂

∂xl

[(
α +

αt

σh

)
∂c′2

∂xl

]
+ 2Pc − 2εc, (2.2.124)

∂εc

∂t
+ U l

∂εc

∂xl

=
∂

∂xl

[(
α +

αt

σφ

)
∂εc

∂xl

]
+ Cp1P1 + Cp2P2 − Cd1

εc
2

c′2
− Cd2

εεc

k
, (2.2.125)

and equation 2.2.106 is used for the calculation of the turbulent scalar diffusivity. Tables 2.1
and 2.2 summarize the modeling constants, the εθ production terms P1, P2, and τλ formulations
of all models.

Model constants presented in table 2.2 are derived using the methods similar to those which
are applied for the derivation of the constants of two-equation eddy viscosity models discussed
in section 2.2.1.1. However, as stated previously, selecting the optimal model constants is a
more difficult task here due to additional equation terms and a larger variety of options available
for the mixed time scale as well as production and dissipation terms of the modeling equations.

For example in the work of Nagano and Kim [89] (NK model), the value of Cλ in equation
2.2.106 is specified using the definitions of both turbulent viscosity and turbulent scalar diffu-
sivity and the values of the turbulent Prandtl numbers as well as thermal to mechanical time
scale ratio in the logarithmic region of the thermal flat-plate boundary layer [89]. Using the

Table 2.1: Model time scales and εθ

production terms.

Model τλ P1 P2

NK (2τcτd)
0.5 εc

c′2
Pc

εc

k
P

AKN τd

(
2R

0.5+R

)
εc

c′2
Pc

εc

k
P

DWX (2τcτd)
0.5

√
εεc

kc′2
Pc 0
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Table 2.2: Model constants.

Model Cλ Cp1 Cp2 Cd1 Cd2 σh σφ

NK 0.11 1.8 0.72 2.2 0.8 1.0 1.0

AKN 0.1 1.9 0.6 2.0 0.9 1.6 1.6

DWX 0.1 2.34 0 2.0 0.9 1.0 1.0

definition of the turbulent Prandtl number σt = νt/αt, the standard k-ε model νt definition,
and αt of NK model the following formulas can be obtained

σt =
νt

αt

=
Cµkτd

Cλk
√

2τcτd

=
Cµ

Cλ

√
2R

(2.2.126)

and
Cλ =

Cµ

σt

√
2R

. (2.2.127)

Taking into account that in logarithmic layer σt ≈ 0.9 and R = 0.4 − 0.5 (according to the
measurements of Beguer et al. [7]), Nagano and Kim choose Cλ = 0.11 [89]. This or very
similar values of Cλ are normally also used in other two-equation turbulent scalar diffusivity
models especially for near-wall heat transfer calculations. In some calculations of free shear
flows higher values of Cλ can be found (0.14 - 0.17) [117, 14, 68, 11, 67, 10, 12].

The constants Cd1 and Cd2 of the εc equation can be obtained from the measurement results
for decaying homogeneous scalar turbulence. The simplified equations for turbulence (k and ε)
and turbulent mixing (c′2 and εc) for this case can be found in refs. [89, 32, 91]. After some
algebraic operations, Nagano and Kim [89] come to the formulas

Cd1 = 2R(Cε2 − 1) and Cd2 =
1

R
(2.2.128)

where Cε2 is the dissipation of dissipation constant of the k-ε model. The experimental values
of R in homogeneous decaying scalar turbulence [119] can vary from 0.6 to 2.4 which im-
plies an uncertainty in the selection of both dissipation constants. Nagano and Kim assumed
1.13 < R < 1.25 and, following the work of Elgobashi and Launder [32], adopted the constants
Cd1 = 2.02 and Cd2 = 0.8 obtained as a result of a computer optimization for the case of ho-
mogeneous scalar turbulence. The constant Cp1 in the NK model also originates from the
work of Elgobashi and Launder whereas Cp2 was obtained by Nagano and Kim using their own
computational optimization.

The constants of two other c′2-εc models considered in the present work were derived using
similar assumptions (see refs. [2] and [21] for details). Further possibilities to obtain the
modeling coefficients are also investigated in another publication of Nagano and coworkers
[90]. Depending on the assumptions made by different authors for their simplified equations
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employed for the development of the constants, the resulting model coefficients can be slightly
different in each closure (see table 2.2).

The results achieved by three c′2-εc models summarized in tables 2.1 and 2.2 for the free
round jet mixing test case (earlier described and used for the turbulence model testing in
section 2.2.1.2) are presented in figure 2.2.13. The profiles given by the constant turbulent
Prandtl number approach (σt = 1.0 and σt = 0.7) are presented as well. The velocity field
was modeled by means of the k-ε model with the round jet correction discussed in section
2.2.1.2. The results are non-dimensionalized using the scalar and the velocity values on the jet
centerline C0 and U0 respectively (here the transported scalar is C = T − T∞ with the actual
temperature value T and the freestream temperature value T∞).

The mean transported scalar profiles are shown in figure 2.2.13(a). The AKN scalar mixing
model gives the worst results, underpredicting the mixing. The NK model returns a profile
similar to the results given by σt = 0.7, only slightly more narrow in the outer edge region.
The DWX model results in a profile similar to the one generated by σt = 1.0. The form of the
profiles achieved by the NK and the DWX models is closer to the experimental trends than the
form of the profiles given by the constant turbulent Prandtl number approach.

The turbulent scalar variance (figure 2.2.13(b)) is better represented by the NK and the
DWX models than by using equation 2.2.116 and the constat turbulent Schmidt number ap-
proach. The source of these results is probably connected to not only the variability of the
turbulent Schmidt number in the NK and in the DWX calculations but also to a more accurate
approximation of the dissipation term in the turbulent scalar variance transport equation. The
AKN model results are here unsatisfactory as previously observed for the mean scalar profiles.

The turbulent scalar flux (figure 2.2.13(c)) seems to be slightly overestimated by the NK
model and slightly underestimated by the DWX model. The turbulent scalar diffusivity
(figure 2.2.13(d)) is reproduced by the DWX model very well, and so is the turbulent Prandtl
number (figure2.2.13(e)). It follows that the NK model by over predicting αt (figure 2.2.13(d))
will underestimate σt (figure2.2.13(e)); however, the form of all profiles given by the NK model
is still closer to the experimental one than the profile form obtained using the constant turbu-
lent Prandtl number approach. The turbulent Prandtl number is clearly variable and all tested
c′2-εc models can represent the trend of increasing σt at the jet outer edge. The mixing under-
prediction displayed by the ANK model can result from the mixing time scale formulation that
differs from the one used in the NK and in the DWX models (see table 2.1). A slight mixing
overprediction shown by the NK model can originate from a higher value of the Cλ modeling
constant (0.11 vs. 0.1 in DWX); however, these hypotheses need additional investigations.

2.2.2.3 Near-wall modeling in c′2-εc models

Since most c′2-εc models were initially developed as near-wall heat transfer models, near-wall
modeling is treated with exceptional care in the corresponding publications. Analogously to
the k-ε modeling of turbulence, in order to correctly represent the near-wall behavior of αt and
εc near-wall damping functions have to be developed. Thus each of the three models considered
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Figure 2.2.13: Free round jet mixing. Mean and fluctuating scalar field predictions, turbulent
scalar diffusivity, and turbulent Schmidt numbers. Different RANS turbulent
scalar diffusivity models in comparison with experimental data of Chua and
Antonia [16]. Turbulent viscosity is modeled by means of the k-ε model with
Pope correction and Davidenko limiter.
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in the previous section (NK, AKN and DWX) has a low-Reynolds number formulation. Two
of them, AKN [2] (variant “a”from ref. [2]) and of DWX [21], are studied in the present work.
The turbulent scalar diffusivity of the ANK model in its low-Re formulation is given as follows:

αt =

[
k2

ε

(
2R

0.5 +R

)
+ 3

√
k

(
ν3

ε

)1/4 √
2R
σ

fd

] [
1− e−y∗/14

] [
1− e−

√
σy∗/14

]
(2.2.129)

with

fd = e−(ReT /200)2 , (2.2.130)

where y∗ and ReT are defined in equation 2.2.1.3. The εc equation of the AKN model is

∂εc

∂t
+U l

∂εc

∂xl

=
∂

∂xl

[(
α +

αt

σφ

)
∂εc

∂xl

]
+Cp1fp1P1 +Cp2fp2P2−Cd1fd1

εc
2

c′2
−Cd2fd2

εεc

k
(2.2.131)

with damping functions

fp1 = fd1 =
(
1− e−y∗)2

fp2 = 1

fd2 =
1

Cd2

(Cε2f2 − 1)
[
1− e−y∗/5.7

]2
f2 = 1− 0.3e−(ReT /6.5)2 , (2.2.132)

where Cε2 is the modeling constant of the corresponding k-ε model. In the DWX model, the
damping functions of εc equation are [21]

fp1 = fp2 = 1

fd1 =
(
1− e−y∗/1.7

)2
fd2 =

1

Cd2

(Cε2f2 − 1)
[
1− e−y∗/5.8

]2
f2 = 1− 0.3e−(ReT /6.5)2 , (2.2.133)

and αt is given by

αt =
[
1− e−y∗/16

]2 [
1 +

3

Re
3/4
T

]
Cλ

k2

ε

√
2R. (2.2.134)

Regarding the wall boundary conditions for c′2 and εc, different variants can be found in the
literature. The most popular condition for c′2 is

c′2 = 0 (2.2.135)
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applied in [89, 2, 64]. However, as discussed, in ref. [113] this is true only in the case of wall
heat transfer problems under the assumption of the constant wall temperature. In the cases of
constant wall heat or mass flux a more natural condition is

∂c′2

∂y
= 0 (2.2.136)

applied for example in [90, 21, 113, 129] for the walls with constant heat fluxes or adiabatic
walls. Regarding εc, the strict condition at the wall is

εc = α
∂2c′2/2

∂y2
, (2.2.137)

and it holds irrespective of the wall conditions. This equation can be replaced by a more simple
one [129]

εc = α

(
∂
√

c′2

∂y

)2

. (2.2.138)

The results of the application of all considered models for the heat transfer modeling in a 2D
channel are presented in figure 2.2.14. The results are non-dimensionalized using uτ , ν, and the
wall friction temperature θw = qw/ρcpuτ , where qw is the wall heat flux. Turbulent viscosity is
modeled by means of the AKN k-ε model. The results given by the constant turbulent Prandtl
number σt = 1.0 are presented as well. The plots show that the results produced by both c′2-εc

models using the near-wall damping functions (AKN and DWX) are much more accurate than
the NK model predictions produced without damping functions. This is a direct analogy to the
near-wall k-ε turbulence modeling discussed in section 2.2.1.3. It should be, however, stated
that the improvement over the constant turbulent Prandtl number approach is not a drastic one
since σt = 1.0 predictions are already quite accurate. Only the α+

t (figure 2.2.14(d)) and the
σt (figure 2.2.14(e)) plots reveal the difference between the constant turbulent Prandtl number
and the AKN or DWX predictions. The α+

t profile is indeed reproduced better by both low-Re
c′2-εc models. Furthermore, in the y+ > 30 region where the turbulent mixing effects become
especially important, the turbulent Prandtl number trend given by the AKN and the DWX
models is more realistic than the assumption of a constant σt (see figure 2.2.14(e)).

2.2.2.4 c′2-ωc model

Alternatively to the εc transport equation, a transport equation for the scalar dissipation rate
per unit turbulent scalar variance ωc (dimension equal to 1/t) can be derived to obtain the
time scale characterizing turbulent scalar fluctuations, which is needed for the turbulent scalar
diffusivity formulation (equation 2.2.106) and for the closure of the scalar variance transport
equation 2.2.124. This variable ωc is analogous to the ω-variable in the k-ω turbulent viscosity
models.

78



RANS modeling

DNS data[66]

σt = 1.0

c′2-εc AKN

c′2-εc DWX

NK, no damping

C
+

y+
1 10 100

0

15

(a) Mean scalar C
+

√

c′2
+

y+1 10 100
0

2

(b) RMS of the turbulent scalar fluctuations
√

c′2
+

0.5

c′u′y
+

y+

0
1 10 100

(c) Turbulent scalar flux c′u′y
+

α+
t

y+

0
1 10

50

100

(d) Turbulent scalar diffusivity α+
t

σt

y+

0

1

1 10 100

(e) Turbulent Schmidt number σt

Figure 2.2.14: 2D channel flow. Mean and fluctuating scalar field predictions, turbulent scalar
diffusivity, and turbulent Schmidt numbers. Different RANS scalar mixing mod-
els in comparison with DNS data of Kawamura et al. [66]. Turbulent viscosity
is modeled by means of the low-Re k-ε AKN approach.
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A c′2-ωc model proposed by Huang and Bradshaw in ref. [48] can be written as [18]

αt = Cλk

(
τd

1

ωc

)1/2

, (2.2.139)
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1

τd
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with following modeling constants

Cλ = 0.11; Cp1 = −0.2; Cp2 = 0.94; Cb1 = 0.2; Cd2 = 0.83; σh = 1; σφ = 2.0.

(2.2.142)
This model was derived by means of dimensional analysis and comparison with the existing
c′2-εc models. The model coefficients are obtained employing the same procedures as for the
c′2-εc model equations and additionally refined using computer optimization [48]. The wall-
limiting behavior of ωc described in [48] is as follows:

ωc →
(

1− Cd1σ

βω

)
6ν

σCd1y2
, as y → 0. (2.2.143)

where βω is the modeling coefficient of the corresponding turbulent viscosity k-ω model.

Figure 2.2.15 shows the results generated by the c′2-ωc model of Huang and Bradshaw applied
to the 2D channel flow heat transfer problem. The 1988 k-ω model of Wilcox was used for
the turbulent viscosity modeling. The results produced by σt = 1.0 are presented as well;
furthermore, the k-ε AKN, c′2-εc AKN profiles are shown for comparison. The results given
by the c′2-ωc model, although quite accurate, do not improve the σt = 1.0 predictions and are
less accurate than those produced by the c′2-εc AKN model. This is especially clearly seen in
the turbulent scalar variance predictions (figure 2.2.15(b)). The trend of underprediction of
the peak c′2 values is quite similar to the trend of underprediction of k by the 1988 k-ω model
without low-Re corrections discussed in section 2.2.1.5.

It should be also added that in this particular test case the c′2-ωc model is only capable of
producing accurate results in conjunction with the 1988 k-ω model of Wilcox (or other k-ω
models not employing the low-Re corrections). Figure 2.2.16(a) illustrates this result. In that
figure the temperature profiles given by the c′2-ωc model in conjunction with different turbulence
models are presented. Despite the fact that the low-Re k-ε and the low-Re k-ω models produce
more accurate turbulence and velocity profiles in the considered test case than the 1988 Wilcox
model, the HB c′2-ωc temperature predictions given in conjunction with low-Re k-ε models are
worse than with the 1988 k-ω model. This trend of the turbulent viscosity model dependence is
much weaker for the c′2-εc AKN model discussed in the previous section (figure 2.2.16(b)). This
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Figure 2.2.15: 2D channel flow. Mean and fluctuating scalar field predictions, turbulent scalar
diffusivity, and turbulent Schmidt numbers. Different RANS scalar mixing mod-
els in comparison with DNS data of Kawamura et al. [66].
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Figure 2.2.16: Mean transported scalar profiles in 2D channel flow given by the c′2-εc AKN
model and the c′2-ωc HB model. Dependence on the turbulence modeling ap-
proach.
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Figure 2.2.17: Mean transported scalar profiles in free round jet flow given by the c′2-εc NK
model and the c′2-ωc HB model. Dependence on the turbulence modeling ap-
proach.

study indicates that some additional attention to the choice of the turbulent viscosity model has
to be payed in the two-equation scalar mixing simulations. Not only does the accuracy of the
turbulent viscosity model play an important role, but also its compatibility with the turbulent
scalar diffusivity approach. This does not necessarily imply that the studied scalar mixing
models always have to be used in conjunction with one particular specially selected turbulent
viscosity approach. In some cases, the turbulent viscosity model dependence is mild. This is
illustrated in figure 2.2.17 that shows the turbulence model dependence for both the c′2-ωc HB
(figure 2.2.17(a)) and the c′2-εc NK (figure 2.2.17(b)) models for the free round jet flow. The
dimensionless scalar profiles obtained using quite different turbulence modeling approaches lie
close to each other.
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Figure 2.2.18: Free round jet flow. Mean and fluctuating scalar field predictions, turbulent
scalar diffusivity, and turbulent Schmidt numbers. Different RANS turbulent
scalar diffusivity models in comparison with experimental data of Chua and
Antonia [16]. Turbulent viscosity is modeled by means of the Wilcox 1998 k-ω
model.
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For the round jet test test case the c′2-ωc HB model performs with approximately the same
quality as for the 2D channel flow test case. It represents the experimental trends in the
turbulent Prandtl number profile, cannot, however, reach the accuracy of the c′2-εc NK model
(figure 2.2.18). As the NK model, the c′2-ωc HB approach tends to the overestimation of mixing
in the round jet case. This can originate from the fact that all modeling constants and equations
for the HB model were developed based on the c′2-εc NK model constants and equations.

Generally it can be stated that the c′2-ωc HB approach, although showing positive trends,
needs some improvement to capture the experimental and the DNS profiles in the test cases
considered here with the same degree of accuracy as the c′2-εc models. Its performance for the
more complex test cases will be considered later in the present work.

2.2.2.5 Concluding remarks

Despite the fact that a number of the turbulent scalar diffusivity approaches exist in literature,
it can be stated that the constant turbulent Prandtl or Schmidt number hypothesis is still the
most popular model. Unfortunately notably few measurements on the value of this parameter
in many complex flows exist. Knowledge about the actual values and the variation range of
the turbulent Prandtl or Schmidt number is essential to make practical conclusions about the
values which should be chosen for the modeling as well as about general applicability of this
hypothesis. This question will be addressed in the present work in chapter 3.

The two-equation turbulent scalar diffusivity models discussed in this dissertation were in-
cluded because of their analogy with common two-equation turbulent viscosity models and the
promising results these models displayed in the academic mixing problems considered in this
section. Additionally, the scalar variance equation often provides an input for assumed-PDF
combustion modeling. In such combustion models, a transport equation for εc is not typi-
cally solved rather scalar variance dissipation is determined by the simple relation of equation
2.2.115. It is of interest to know if the transport equation for εc helps to achieve more accurate
predictions of c′2 than does the application of equation 2.2.115. This question will be studied
for practically relevant flow configurations in the present work in chapter 3. The dissipation
as well as the other terms of the exact c′2 equation will be evaluated from the resolved LES
data for complex jet flows and will be compared with the respective terms of different modeling
approaches. Furthermore, two important parameters concerning the equation closure problems
in the two-equation turbulent scalar diffusivity approach will be evaluated: the turbulent scalar
diffusivity constant Cλ (to study the variability of its actual values), and the turbulent scalar
to velocity time scale ratio R. The last parameter is not only used in equation 2.2.115 for the
εc modeling, but it is a central physical criterion for deriving of almost all modeling constants
of the two-equation turbulent scalar diffusivity closures (see section 2.2.2.2).
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2.3 LES and hybrid RANS/LES modeling

In this section an overview will be given on the LES and hybrid RANS/LES models used in
the present dissertation. Since the development of the novel modeling approaches in this area
does not form the focus of the present work, this overview is brief and concentrated only on
significant modeling details. Deeper theoretical considerations and wider reviews can be found
for example in refs. [39, 107] for LES and in refs. [108, 41] for hybrid methods.

2.3.1 Velocity field modeling

2.3.1.1 Subgrid scale (SGS) models for LES

There are various approaches for modeling the subgrid scale terms in the filtered equations
2.1.23 and 2.1.24. (see refs. [39, 107]). The most traditional method are models based on the
same principles as RANS models. In theory, as for RANS, many different modeling approaches
and philosophies are possible including direct subgrid stress modeling, algebraic, one-equation
subgrid viscosity and scalar diffusivity models etc. However, within the LES subgrid turbulent
viscosity concept there is no need to model the turbulent (subgrid) length scale as it is already
given by the grid or more strictly speaking by filter width. The application of two-equation
turbulent viscosity or scalar diffusivity models can be regarded as unnecessary since the second
equation in such models exists to provide the length scale. Besides this, as discussed previously,
LES modeling should in theory be simpler than RANS modeling since only the fine scales which
are characterized by a more universal and isotropic character than the large ones have to be
reproduced by a model. Also the high computational cost of LES encourages simple and
inexpensive closures.

The subgrid Reynolds stresses UiUj − U i U j in the filtered momentum equations can be
modeled using the Boussinesq approximation similar to how it is commonly done in RANS
approximations.

−(UiUj−U i U j) = −2

3
kSGSδij +νSGS

t

(
∂U i

∂xj

+
∂U j

∂xi

)
= −2

3
kSGSδij +2νSGS

t Sij = −1

3
τiiδij−τa

ij,

(2.3.1)
where the deviatoric part

τa
ij = −2νSGS

t S
a

ij (2.3.2)

is the component explicitly modeled and directly appears in the solved momentum equation,
and the isotropic part,

1

3
τii =

2

3
kSGSδij, (2.3.3)

is combined with the pressure term to form a pseudo-pressure P = P + 1
3
τiiρ in the same manner

as in the RANS equation 2.2.7.

As in the case of RANS turbulent viscosity modeling, νSGS
t can be expressed via a combination
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of the velocity and length scales
νSGS

t ∼ LSGS USGS. (2.3.4)

In the LES approach, as mentioned before, the length scale LSGS is the filter width ∆. In
general, the size of a filter does not have to correspond with the grid size (actually for increased
accuracy one filter element should comprise several grid elements), but in order to reduce the
computational cost the most usual approach is to take the filter size equal to the grid size.
There are also different ways of computing the characteristic length of one grid element [39].
Typically it is the cubic root of the grid element volume V ,

LSGS = ∆ = ∆grid = V1/3. (2.3.5)

The velocity scale can be built as
USGS = ∆S, (2.3.6)

where S is the norm of the filtered strain-rate tensor,

S =

√
2SijSij. (2.3.7)

Hence, with the modeling constant Cs and the above choice of the length and velocity scales

νSGS
t = (Cs∆)2S, (2.3.8)

and
τa
ij = −2(Cs∆)2SSij. (2.3.9)

The modeling constant Cs can be derived based on the theory of the homogeneous isotropic
turbulence [39]. The most popular value is Cs = 0.18, however, other values also can be found
in the literature.

This approach (Smagorinsky model) is the most widespread one among the LES models due
to its simplicity and implementation convenience. This modeling approach is based on the
assumption of the local balance of production and dissipation of the turbulent kinetic energy
for the fine scales. Additionally, since νt in 2.3.8 is always positive, the Smagorinsky model is
a purely dissipative model because [39]

ε = −τa
ijSij = νSGS

t S2 ≥ 0. (2.3.10)

This contradicts the actual turbulent energetics since, in general, the energy transport from the
small to the large scales (backscatter) is possible. Another issue is the behavior of the model in
the laminar flows. Generally S > 0 in both laminar and turbulent regimes, so that even if no
turbulent fluctuations are present, the eddy viscosity does not vanish. This leads to problems
especially in near-wall regions where laminar conditions can be found in the viscous sublayer.
Thus in near-wall region the application of the Smagorinsky model necessitates the need for
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damping functions for the subgrid viscosity [39].

In order to avoid damping functions in the near-wall region in the present work, the so-called
WALE model (Wall-Adapted Local Eddy Viscosity) [92] is used. This model applies an im-
proved eddy viscosity formulation which assures the proper behavior of the turbulent viscosity
near to the solid walls [92]

νSGS
t = (Cw∆)2

(Sd
ijSd

ij)
3/2

(SijSij)5/2 + (Sd
ijSd

ij)
5/4

(2.3.11)

where
Sd

ij =
1

2
(g2

ij + g2
ji)−

1

3
g2

kkδij (2.3.12)

is the traceless symmetric part of the tensor g2
ij = gikgkj, and gij = ∂U i/∂xj. In the current

work the value of the eddy viscosity modeling constant Cw = 0.5 obtained in [92] on the basis
of the proper reproduction of the decay of homogeneous isotropic turbulence is adopted for all
presented calculations.

It should be mentioned that despite the improved near-wall behavior of the WALE model
there is still a general problem with wall-resolving LES which arises due to the demand of a very
fine grid resolution in boundary-layer regions since the length and time scales of the turbulent
vortical structures decrease significantly in the wall vicinity. There are several methods to
overcome these difficulties. First, wall functions can be used whose idea is similar to the idea
of wall functions for the RANS models discussed above. They avoid modeling inside of the
boundary layer and just attempt to represent the behavior of the modeled quantities at the
outer edge of the layer. However, the wall function construction for LES is a more demanding
task than for RANS because in LES the continuous exchange between the modeled and the
resolved scales exists, and the wall function not only has to model accurately the averaged shear
stress as in RANS but also to correctly represent the amount of the resolved turbulent kinetic
energy in this region [39]. Furthermore, as in RANS, the wall function method implies very
strict requirements regarding the grid construction - the first near-wall grid point should lie
exactly in the region intended by the model. Another possible method to overcome the problems
of LES wall modeling are hybrid RANS/LES approaches discussed in the next section.

2.3.1.2 Hybrid RANS/LES

As pointed out in the introduction and in the previous section, in practical engineering com-
putations LES is often not affordable because of its high grid requirements. The application
of RANS methods helps in such cases to obtain the time-averaged solutions, but often time-
resolved information is needed. In those cases URANS (Unsteady RANS) can be applied as
discussed in section 2.1.3. If URANS is not applicable (no well-defined large-scale coherent
structures or pulsations are present in the flow) or a better resolution of turbulence in some
flow regions is needed, RANS/LES methods can be applied. This class of methods has become
in the last few years a fast developing and promising technique for industrial turbulence simu-
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lations. The idea is to combine RANS and LES approaches in such a way that RANS modeling
is applied in the regions of the flow where the grid resolution demands of LES cannot be re-
alized (for example in the near-wall regions) and LES in the regions where a finer resolution
is desirable (i.e. where the RANS models fail). According to Spalart [114], the computational
cost of such methods can be about six orders of magnitude less than those of the well-resolved
wall-bounded LES. From the theoretical perspective the possibility of RANS/LES combina-
tion can raise principal questions since the Reynolds-averaging and filtering approaches are
not equivalent, as discussed above in section 2.1.4. However, inspecting the Reynolds-averaged
equations 2.1.16 and filtered equations 2.1.23 one can see that they essentially have the same
form, and if the Boussinesq approximation is applied to close both the averaged and the fil-
tered stresses, the only difference which remains is just the relation for the the eddy viscosity
modeling. This observation is the basis for most of the existing RANS/LES models. There is
a variety of methods to combine RANS and LES which differ by the target application area,
employed models, ways to handle the RANS to LES transition zones, and criteria of the RANS
to LES switching. Comprehensive overviews can be found in ref. [41] and in ref. [108].

For the calculations of the present work the Scale-Adaptive Simulation (SAS) approach was
chosen whose origin is in the RANS modeling tradition and which can be easily implemented
in an existing RANS-oriented code. The idea behind this approach is the introduction of an
additional production term QSST SAS in the ω equation of the SST k-ω model (equation 2.2.76)

QSST SAS = max

[
ζ̂κS2 Lt

LvK

− C · 2

σφ

k ·max

(
1

ω2

∂ω

∂xj

∂ω

∂xj

,
1

k2

∂k

∂xj

∂k

∂xj

)
, 0

]
. (2.3.13)

Here ζ̂ = 3.51, C = 2, κ = 0.41, and σφ = 2/3 are the model constants. The von Karman
length scale LvK is defined as

LvK = max

κ

√
2SijSij√
∂2Ui

x2
k

∂2Ui

x2
j

, Cs

√
κζ̂

βω2/βk − γ2

∆

 (2.3.14)

with the modeling constants of the k-ω SST model βω2, βk, and γ2. Cs is also a constant and
has to be calibrated in the code to represent the proper rate of decay of the homogeneous
isotropic turbulence to avoid either the accumulation or excessive dissipation of energy at the
smallest scales [85, 31]. In the current work the baseline value of Cs is Cs = 0.145.

The SAS term comes into effect when the ratio of the turbulent length scale, Lt = k1/2/ω, to
the von Karman length scale, LvK , increases [85, 31, 84]. The von Karman length scale is smaller
for an unsteady velocity profile than for a steady velocity profile (see [85, 31, 84] for details).
When the grid is fine and the flow equations are able to resolve the small-scale movements, the
SAS term detects the unsteadiness and increases the production of the dissipation rate ω. The
result is that the turbulent viscosity νt is reduced; thereby, the dissipating (damping) effect
of the turbulent viscosity on the resolved fluctuations is reduced. Eventually the momentum
equations can thus work in a “LES-like”mode. Further details concerning the SST SAS model
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as well as examples of its application can be found in refs. [31, 84].

2.3.2 Scalar transport modeling

Regarding the scalar transport modeling in LES and closure of the subgrid scalar fluxes in the
equation 2.1.24, the most widespread method is, as in RANS, the gradient diffusion hypothesis

− (CUj − C U j) = αSGS
t

∂C

∂xj

, (2.3.15)

and also, similar to RANS, the constant subgrid Prandtl or Schmidt number hypothesis is a
widespread approach to model the subgrid scalar diffusivity,

αSGS
t =

νSGS
t

σSGS
t

. (2.3.16)

Many different values of σSGS
t can be found in literature (in the range of 0.3− 1.0) [39]. In this

dissertation σSGS
t = 1.0 is applied. Additional studies on the SGS turbulent Schmidt number

dependence of the solution were accomplished for all considered test cases in preparation of
this dissertation and σSGS dependence was found to be minor (see for example ref. [50])∗.
This result can be explained by the dominance of the resolved turbulent scalar flux over the
modeled (SGS) one in the LES calculations [50]. This is a noteworthy distinction between
LES and RANS simulations where in the later the turbulent scalar flux is modeled entirely;
consequently, the turbulent scalar flux largely depends on the selected σt value.

In the hybrid URANS/LES calculations, the dependence on the turbulent Prandtl or Schmidt
number value can be expected to be more pronounced in the RANS than in the LES regions.
A study on the turbulent Schmidt number dependence for the SAS scalar mixing predictions
in a jet in crossflow test case was performed in preparation of this dissertation in ref. [51]. As
in LES, σt dependence was found to be minor. In the SAS simulations of ref. [51] the largest
part of the turbulent fluctuations was resolved. The situation can, however, be different in a
different test case where, for example, the role of the RANS region is larger than in the case
considered in ref. [51]. This problem presents a topic for the future investigations directed
towards the detailed studies of the hybrid URANS/LES scalar mixing modeling. In the present
dissertation, all SAS results shown in chapter 4 were obtained using σt = 1.0.

Regarding further possibilities of the LES scalar transport modeling not employing the con-
stant subgrid Prandtl or Schmidt number hypothesis, several publications based on the dynamic
subgrid scalar diffusivity concept can be found (see refs. [105, 115]). Also several models solving
the transport equations for the SGS scalar flux or the SGS scalar variance exist [57]; however,
since LES scalar mixing modeling is not the main topic of the present study, those models will
not be considered here.

∗This statement is not meant to imply that the results of LES are independent of the SGS scalar transport
model, but a thorough study on this subject is not the focus of the present work.
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2.4 Numerical realization
All models investigated in this dissertation were implemented in the DLR combustion CFD
research code THETA. The THETA code flow solver works on 3D unstructured grids and
is designed for the calculations of low-Mach number flows with strongly varying density and
temperature fields.

For the spatial discretization in the RANS and URANS calculations a second order lin-
ear upwind differencing scheme [34, 43] was used for all equations. In the LES and hybrid
URANS/LES calculations, the spatial discretization of the momentum and scalar transport
equations was a second order central differencing scheme [34, 43] selected in order to avoid the
strong numerical dissipation of the upwind schemes. For the scalar transport equation a total
variation diminishing-type limiter was applied [34] since the preliminary calculations revealed
its favorable influence on the scalar field results in the considered cases. For the spatial dis-
cretization of the turbulence and scalar variance transport equations, the second order linear
upwind differencing scheme was applied in SAS.

In the steady-state calculations the SIMPLE method was used for the pressure-velocity cou-
pling [34, 96], and in the unsteady calculations a projection method [34, 15] was used. A
second order backwards differentiation formula [34, 43] was selected for time discretization.
In all RANS simulations grid independence of the presented results was verified by additional
calculations on a variety of grids with different resolutions.

κ

E
(κ

)

5 10 15

0.01

0.02

0.03

0.04
0.05
0.06
0.07

t = 0 s

t = 0.87s

t = 2 sWALE, Cw = 0.5

experiment
SAS, Cs = 0.145

Figure 2.4.1: Decay of homogeneous isotropic turbulence, comparison with the reference exper-
iment of Comte-Bellot and Corrsin [17], SST SAS and WALE LES results.

To validate proper LES and SAS behavior within the THETA code numerical framework, as
recommended in [39, 31, 84], a test on the homogeneous isotropic turbulence case of Comte-
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Bellot and Corrsin [17] was conducted (see figure 2.4.1). This calculation confirmed that the
selected baseline modeling constants (Cw = 0.5 for the WALE LES model 2.3.11 and Cs = 0.145

for the SST SAS model 2.3.13) ensure a proper representation of the decay of homogeneous
isotropic turbulence.

It was assured for the presented LES calculations that more than 80% of the turbulent
Reynolds shear stresses or turbulent kinetic energy were resolved. The WALE model is turbu-
lent viscosity based and in order to obtain the SGS turbulent kinetic energy empirical formulas
(see ref. [107]) have to be used. This can introduce some uncertainty in the estimation of the
SGS turbulent kinetic energy. Thus, additionally, the resolution of the Reynolds shear stresses
was considered since the SGS Reynolds shear stresses can be reconstructed from the SGS vis-
cosity directly using the Boussinesq approximation without further empirical constants. The
resolution quality of the presented SAS results is discussed in section 4.1.

Moreover, it should be noted that, as discussed in ref. [102], the “80% - resolution”criterion,
is necessary but not sufficient for LES quality assurance. For this reason, as proposed in
ref. [102], a variety of grids were generated for every test case, and in preliminary calculations
it was assured that the solution obtained on the basic LES grid does not change drastically
with the further grid refinement.
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3 Study on the accuracy of RANS
modeling using experimental and LES
data

In this chapter the accuracy of the RANS approaches which are discussed in section 2.2 is ana-
lyzed for three complex jet flow configurations that are important in the context of gas turbine
combustion: jet in crossflow, confined coaxial swirling jets, and confined coaxial jets without
swirl. The approach of the presented investigations is the same for all three cases. First, the re-
sults of RANS mean and fluctuating velocity field simulations are validated against experimental
data and the results of accompanying LES calculations. The results obtained with different
RANS models are compared, and the influence of different equation terms and corrections is
studied. Then, using the resolved data fields from LES, the profiles of the Reynolds-averaged
turbulent viscosities and of the main budget terms of the turbulent kinetic energy transport
equation are obtained and compared with the respective output of the RANS models. This
study is done to obtain a deeper insight into the flow physics and to additionally highlight the
comparative advantages and weaknesses of different RANS approaches. Furthermore, a study
on the validity of the simplifications and approximations used for RANS equation closure is
performed. Finally, investigations on the scalar mixing modeling are presented. Mean and fluc-
tuating scalar fields given by different RANS models are compared with experimental and LES
data. The turbulent scalar diffusivities and the model equation terms of the scalar variance
transport equation are evaluated from the resolved LES fields and compared with the RANS
modeling results. Practically important question regarding turbulent Schmidt number values
in complex jet flows is clarified.

3.1 Jet in crossflow
The first flow configuration considered in this chapter is jet in crossflow. Testing of the turbu-
lence and mixing model performance for jet in crossflow is important since this configuration is
often used for the mixing enhancement in the gas turbine combustion applications. The litera-
ture study on the previous numerical work for transverse jets can be found in section 1.2.1. The
test case used for the studies performed in the present dissertation was chosen to mimic the
configurations typical for the premixing and dilution zones of gas turbine combustion chambers
and is, therefore, characterized by the relatively high jet to crossflow momentum ratio J = 36.
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Figure 3.1.1: Jet in crossflow test case [78, 13, 42]. Flow configuration, computational domain
and coordinate system.

3.1.1 Description of the basis test case and computational setup

A sketch that illustrates the basic jet in crossflow test case considered in the current study
is presented in figure 3.1.1. The respective experimental measurements are described in [78,
13, 42]. In the experiments, turbulent mixing of a round jet that is normally injected into a
crossflow channel has been studied by means of a simultaneous 2D PIV/LIF method (working
medium is air, tracer substance is NO2). The density ρ can be assumed constant. The diameter
of the jet is d = 8mm, and the main channel has a quadratic cross section with a side length
L = 108mm. The Reynolds number of the jet is Rejet = 2 · 104 (mean velocity of the jet is
Ujet = 37.7m/s). The jet turbulence intensity is about 5%. In the experimental measurements
[78, 13, 42] different jet to crossflow momentum ratios were considered. For the present study,
the case with J = 36 is selected. The turbulence intensity at the inflow of the main channel is
about 1.5%. More details about the experimental conditions and measurement techniques can
be found in refs. [78, 13, 42].

The dimensions of the basic computational domain used in the LES calculations are shown
in figures 3.1.1 and 3.1.2. For the steady-state RANS computations, a symmetry boundary
condition was applied on the jet center plane; thereby, reducing the computational domain
width from L to L/2 (see figure 3.1.3). All simulations were done on polyhedral unstructured
grids refined in the regions of high velocity gradients which were identified on the basis of
preliminary RANS calculations. The basic meshes for the LES and for the RANS are shown
in figures 3.1.2 and 3.1.3 respectively. The grid dimensions are 3 · 105 points for the RANS
computations and 1.2 · 106 points for the LES computations. Preliminary grid studies were
conducted in preparation of the current work in order to assure sufficient LES resolution (see
section 2.4) and grid independence of the RANS results for the used meshes.

The mean velocity on the main channel inlet was set as a block profile corresponding to the
experimental boundary conditions described in refs. [78, 13, 42]. For the jet pipe a preliminary
calculation using the SST k-ω model was conducted in order to obtain the velocity profile of
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(a) x/d = 0 and x/d = 15 planes

(b) z/d = 0 plane

Figure 3.1.2: Jet in crossflow test case. Basic computational domain and computational grid
for LES calculations.

Figure 3.1.3: Jet in crossflow test case. Basic computational domain and computational grid
for RANS calculations. Grid is shown in z/d = 0, x/d = 0, x/d = 7.5, x/d = 15,
and x/d = 22.5 planes.

a fully developed pipe flow with the mean velocity Ujet = 37.7m/s. This profile was imposed
on the jet pipe inlet. This was necessary since in the present computational domain the jet
pipe length comprises two pipe diameters, whereas in the experiment the pipe is much longer
and the flow at the jet exit can be assumed fully developed. In the RANS computations the
turbulence data on the jet pipe inlet was also set using the values from the preliminary pipe
flow simulation. Regarding the turbulence boundary conditions for LES, both the steady-
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state velocity profiles (without additional fluctuations) and the unsteady fluctuating boundary
conditions of Klein et al. [69] were applied in the preliminary studies on both the jet pipe and
the main channel inlets with the turbulent intensities prescribed according to the experimentally
measured values. Since the last method produced slightly more accurate results, it was chosen
for the simulations presented below.

The numerical setup of all calculations is described in section 2.4. For the LES calculations
the computational time step was 10−6s, which ensured maximal CFL numbers of around 1.1.
The time-averaging in the LES calculations started after about three characteristic flow-through
times (equal to 0.015s) for the establishing of a well-developed flow field. The time-averaging
procedure comprised an integration time of about 0.23s which is equal to more than 15 char-
acteristic flow-through times. The time convergence was assured for all mean and fluctuating
variables.

3.1.2 Velocity field modeling

3.1.2.1 Mean and fluctuating velocity field predictions

The velocity fields obtained from LES and by different RANS models discussed in section 2.2
are presented and validated against the experimental data of refs. [78, 13, 42]. The aim is
a comparison of the accuracy achieved by different turbulence modeling approaches in a jet
in crossflow configuration. Figure 3.1.4 presents the contours of the mean xy-velocity Uabs xy

(calculated as Uabs xy =
√

U
2

x + U
2

y) on the jet center plane z/d = 0. Figure 3.1.4(a) shows
the PIV measurement data; the contours obtained by LES are given in figure 3.1.4(b); the
results achieved by the SST k-ω model of Menter (section 2.2.1.6), by the 1988 k-ω model of
Wilcox (section 2.2.1.4), and by the standard k-ε model (section 2.2.1.1) are presented in figures
3.1.4(c) - 3.1.4(e) respectively. Finally, figure 3.1.4(f) assesses the numerical predictions of the
jet mean centerline trajectory against experimental data. Deviations from the measured values
can be observed in all simulations, but the degree of this inaccuracy varies strongly depending
on the used approach. The standard k-ε model gives the least accurate results: it under predicts
the jet spreading; the jet penetration depth is overestimated; a strong and large recirculation
zone can be observed in the jet wake region whereas in the experimental measurements this
zone is much less emphasized. The SST model shows better agreement with the experimental
data: the jet centerline trajectory is closer to the measured one, the jet penetration depth is
less over predicted than by the standard k-ε model. However, the size and the strength of the
recirculation zone in the jet wake are still overestimated by the SST model. The 1988 Wilcox
model reproduces this region better, but the jet velocity decay is stronger than in experiment.
In contrast to the k-ε and the SST model, the jet centerline trajectory given by the 1988 Wilcox
model (figure 3.1.4(f)) lies lower than the experimental one. Regarding the LES results, it is
observed that the jet downstream region and the recirculation zone are predicted well but the
mean xy-velocity in the jet core is overestimated. At this point in the analysis a clear statement
about the accuracy of LES data in comparison to RANS is rather difficult to formulate, but
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(a) Experimental data [78, 13, 42]. (b) WALE LES

(c) SST k-ω model (d) 1988 Wilcox k-ω model

(e) Standard k-ε model
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(f) Jet centerline trajectory.

Figure 3.1.4: Mean absolute xy-plane velocity (Uabs xy =
√

U
2

x + U
2

y) and positions of the ex-
tracted profiles on the jet center plane z/d = 0. LES and different RANS models
in comparison with experimental data.
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this ambiguity is clarified in the paragraphs that will follow.
Figure 3.1.5 presents the contours of the mean absolute xz-plane velocity calculated as

Uabs xz =

√
U

2

x + U
2

z in three different y/d planes. The locations of these planes are indicated
by the white dashed lines in the contour plots of figure 3.1.4. The experimental and the LES
data are compared to the 1988 k-ω and the SST modeling results. The k-ε model predictions
are not included in this comparison since, as already indicated by figure 3.1.4, their quality is
poor. LES produces more accurate results than the two presented RANS k-ω models especially
at y/d = 5 and y/d = 7. Figure 3.1.5 shows that, although at the y/d = 3 plane the SST model
seems to be more accurate than the 1988 k-ω model, at the higher y/d locations the quality of
the SST predictions decreases, whereas the 1988 k-ω model shows more realistic results. Thus,
for this particular case, the 1988 k-ω approach results in a more accurate velocity field modeling
than the SST k-ω and the standard k-ε models.

A more detailed evaluation can be made by the comparison of one-dimensional profiles of
mean and fluctuating velocities. The profiles were extracted at the jet center plane, z/d = 0,
along the white dashed lines shown in figure 3.1.4. Figure 3.1.6 first presents the validation
of the mean x- and y-velocity components against experimental data. With regards to the
RANS models, superiority of the 1988 Wilcox model predictions over the standard k-ε and the
k-ω SST results can be observed. The standard k-ε model tends to give the worst agreement
with experiment. Seen particularly clearly is the overestimation of the recirculation zone in the
Ux plots. LES reproduces the x-velocity exceptionally well, and in the y-velocity profiles the
overestimation of the local maxima of Uy at y/d = 5 and y/d = 7 can be observed. The general
agreement of the LES mean velocity field predictions with experimental data is nevertheless
better than in RANS.

The fluctuating velocity field data are compared in figures 3.1.7 and 3.1.8. For LES the
resolved fluctuations obtained in the time-averaging process are presented. For RANS the
Reynolds stresses are calculated using the Boussinesq approximation (equation 2.2.3). The
profiles of the turbulent kinetic energy, k, shown in figure 3.1.7(a) reveal that the level of this
characteristic turbulence parameter is extremely low in the standard k-ε model results. The
k-ω SST model also shows a slight underestimation of k but not as strong as the standard
k-ε model. The predictions made by the 1988 Wilcox model show a better agreement with
experimental data. However, it is seen at y/d = 5 that the 1988 Wilcox model underestimates
k in the downstream locations, even if its level is well predicted in the jet core, and at y/d = 7

it shows instead an overestimation of k. LES gives here the best agreement with experimental
data. Only at y/d = 3, in the region downstream of the jet injection location, k is slightly
overestimated by LES. At y/d = 7 the peak values of k given by LES may be too high, but
in this region no measurement data for k are available in the locations upstream of the jet
centerline. For the additional quantification of the LES and RANS data, other fluctuating
variables are considered below.

Figures 3.1.7(b) and 3.1.8(a, b) present the xy-, xx-, and yy-components of the Reynolds
stress tensor. The differences between the SST model and the Wilcox 1988 k-ω model can be
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(a) Experimental data, y/d = 3. (b) Experimental data, y/d = 5. (c) Experimental data, y/d = 7.

(d) WALE LES, y/d = 3. (e) WALE LES, y/d = 5. (f) WALE LES, y/d = 7.

(g) 1988 k-ω, y/d = 3. (h) 1988 k-ω, y/d = 5. (i) 1988 k-ω, y/d = 7.

(j) SST k-ω, y/d = 3. (k) SST k-ω, y/d = 5. (l) SST k-ω, y/d = 7.

Figure 3.1.5: Mean absolute xz-plane velocity (Uabs xz =

√
U

2

x + U
2

z) , different y/d planes. LES
and different RANS models in comparison with experimental data.
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Figure 3.1.6: x- and y-components of the flow velocity vector. z/d = 0. LES and different
RANS turbulence models in comparison with experimental data.
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Figure 3.1.7: Turbulent kinetic energy and Reynolds shear stress. z/d = 0. LES and different
RANS turbulence models in comparison with experimental data. [42, 78, 13].
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Figure 3.1.8: RMS fluctuations of the x- and y-components of the flow velocity vector. z/d = 0.
LES and different RANS turbulence models in comparison with experimental data.
[42, 78, 13].
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clearly seen in figure 3.1.8 in the jet upstream region where the Wilcox 1988 k-ω model gives a
good estimation of the velocity fluctuations whereas the SST model under predicts their level.
The standard k-ε model shows here again a strong underestimation of all fluctuating velocity
components. LES results, apart from the slight overestimation of the peaks of u′y

2 at y/d = 7

and of u′xu
′
y at y/d = 5, show good agreement with experimental data.

A positive aspect for the RANS modeling in this flow configuration is the observation that,
due to the flow complexity, equation 2.2.3 is not reduced to −u′iu

′
i = −2

3
k for the u′x

2 and u′y
2

components of the Reynolds stress tensor, and these quantities can be realistically predicted if
k and νt are reproduced accurately. This is in contrast to the u′x

2 and u′y
2 given by RANS in

simple quasi 2D flows such as a plane channel discussed in section 2.2 where the variances of
all three velocity components have the same levels in contrast to the experimental evidence.

3.1.2.2 Further studies on the accuracy of RANS models for the velocity field
predictions

The previous subsection shows that the accuracy of RANS simulations for a jet in crossflow
configuration can differ drastically depending on the selected modeling approach. Among the
three models tested above only the Wilcox 1988 k-ω was able to reproduce the mean and the
fluctuating velocity fields with a satisfactory degree of accuracy. The standard k-ε and the SST
model demonstrated an under prediction of turbulence. This trend is especially strong for the
standard k-ε model which delivers the worst results. Such an outcome can be slightly surprising
considering the results for a free round jet flow discussed in sections 2.2.1.2 and 2.2.1.7. For that
academic test case, the level of turbulence was overestimated by all three models considered
here - modestly by the standard k-ε and the SST k-ω models and largely by the Wilcox 1988
k-ω model. In order to obtain a more complete understanding of the reasons for such different
behavior between the free jet and the jet in crossflow as well as to find a path to improve the
RANS simulation quality for jets in crossflow, a study involving several additional turbulence
models described earlier in section 2.2.1 is performed in this section.

3.1.2.2.1 Different variants of the Wilcox k-ω model First, the 1988, 1998, and 2006
variants of the Wilcox k-ω model (see sections 2.2.1.4 and 2.2.1.7) are compared. Figure 3.1.9
presents the profiles of the x-component of the flow velocity vector and of the turbulent kinetic
energy given by these approaches. Additionally, the profiles produced by the SST k-ω model
are presented. Both later versions of the Wilcox k-ω model (1998 and 2006) overestimate the
recirculation zone and show an under prediction of turbulence (the level of k too low, the
jet spreading rate is less than in the experimental data). The 2006 version produces the worst
results. The profiles generated by the 1998 version are of equivalent quality as the profiles given
by the SST model. In contrast to the 1998 and 2006 Wilcox models, the earlier 1988 version
tends rather to a slight overestimation of the turbulence in the jet core region, particularly
visible at y/d = 7. The differences between the predictions given by different versions of
the Wilcox model are caused by the modifications introduced in the 1998 and 2006 model
versions and absent in the original (1988) formulation. The individual effects of each of these
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kinetic energy. z/d = 0.
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Figure 3.1.10: Influence of the round jet correction in different turbulence models. x-component
of the flow velocity vector and turbulent kinetic energy. z/d = 0.

modifications on the simulation results are discussed in detail in the next sections.

3.1.2.2.2 Influence of the round jet correction The influence of the round jet correction
initially created by Pope for the standard k-ε model (see section 2.2.1.2) and later introduced
by Wilcox for both the 1998 and the 2006 variants of his k-ω model (see section 2.2.1.7) is
discussed first. Figure 3.1.10 shows in solid lines the profiles of the x-component of the flow
velocity vector and of the turbulent kinetic energy given by the 1998 and the 2006 k-ω models
of Wilcox as well as by the standard k-ε model with the limited version of the Pope correction
described in section 2.2.1.2. Dashed lines present the profiles obtained by the same models but
without the round jet correction terms (Pope vortex stretching measure χω or χp deliberately
set to zero values). The absence of the round jet correction increases the level of k and thus
the prediction accuracy for all approaches tested here. The reason is in the mechanism and
the aim of this correction. It was initially created in order to prevent the over prediction of
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k observed in the free round jet flow simulations. The model equation terms related to the
round jet correction always work towards increasing the dissipation of k. This produces rather
a negative effect in the jet in crossflow case since here the level of k tends to be underestimated
even by the equations not including the χω- or χp-related terms (see figure 3.1.10(b)).

The negative influence of the round jet correction revealed here does not imply that its
incorporation in the modeling equations is a wrong choice or that in the jet in crossflow case
the vortex stretching effects are neglectable. More probable, additional physical effects not yet
encoded into the studied models are dominant in the considered flow. These effects should
be identified and a suitable model developed in order to improve the simulation quality and
turbulence model universality.

3.1.2.2.3 Influence of the streamline curvature correction One of the effects that can play
an important role in the considered flow configuration is streamline curvature. As discussed
in ref. [46], streamline curvature can enhance both the production and the dissipation of the
turbulent kinetic energy in the flow. Its effects are not taken into account by any of the models
studied in the previous sections. For this reason a curvature correction to the SST model
created by Hellsten [46] is tested here (see section 2.2.1.8 for description).

The results are presented in figure 3.1.11. Although, theoretically, the correction of Hellsten
can act as both a source and a sink of turbulence, figure 3.1.11 shows clearly that the source
effects are dominant in this case. The correction increases the level of the turbulent kinetic
energy that is underestimated by the Menter SST model. This is a desirable effect, however,
at the high y/d positions the model tends to “overreact”as shown in the profiles of figure
3.1.11. Whereas at the y/d = 5 position the SST model with the curvature correction gives
more accurate predictions than the original SST formulation, at y/d = 7 the magnitude of
k obtained with the model employing the curvature correction becomes too high. This also
causes an unphysically flat velocity profile at the higher position.

For a better illustration of the driving mechanism of the curvature correction in this case,
figure 3.1.12 shows the values of the function F4(Ri) modifying the dissipation term of the
ω transport equation (see equation 2.2.102). F4(Ri) = 1 implies that the dissipation of ω is
equivalent to the values produced by the original SST model without the curvature-related
modifications; F4(Ri) > 1 leads to higher dissipation of ω that, consequently, increases the
turbulent kinetic energy; F4(Ri) < 1 leads to the increase of ω and higher dissipation of k. The
impact of the curvature correction is obviously directed mostly towards increasing ω dissipation
and is particularly strong at y/d > 5. Hence, these regions are characterized by higher levels
of turbulent kinetic energy.

The observed improvement in the turbulent kinetic energy predictions indicates that the
application of the curvature correction is a step in the right direction. However, it is evi-
dent that further validation and calibration of the parameters governing the behavior of the
correction term is needed. For the most part the streamline curvature-related modifications
proposed in the literature are validated on cases quite different from the current flow pattern
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Figure 3.1.11: Influence of the streamline curvature correction on the SST model predictions.
x-component of the flow velocity vector and turbulent kinetic energy. z/d = 0.

Figure 3.1.12: Curvature correction. Contours of F4(Ri), see equation 2.2.102. z/d = 0.
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Figure 3.1.13: Influence of the shear stress viscosity limiter in the SST and the Wilcox 2006 k-ω
models. x-component of the flow velocity vector and turbulent kinetic energy.
z/d = 0.

(see ref. [46]). Obviously a more intensive testing on jets in crossflow is needed in order to
improve the correction behavior for the considered flow type∗.

3.1.2.2.4 Influence of the shear stress turbulent viscosity limiter After the discussion on
the round jet and the streamline curvature corrections presented in two previous sections, this
and the next section will examine more closely the Wilcox 2006 and the Menter SST k-ω model
equations. The objective is to study the specific terms differentiating these two models from the
original 1988 k-ω model of Wilcox. It should be clarified why the Menter SST model and the
Wilcox 2006 model (even without the round jet correction) tend to under predict the level of
turbulence in the considered case whereas the 1988 k-ω model shows a slightly opposite trend.

∗Additional studies made in preparation of this dissertation have shown that a simple variation of the modeling
constant Crc in the equation 2.2.102 does not help to improve the results significantly; therefore, more
intensive work on the form of the correction is probably needed.
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(a) Wilcox 2006 k-ω model (b) SST k-ω model

Figure 3.1.14: Turbulent viscosity shear stress limiter correction in the Wilcox 2006 and the
Menter SST k-ω models. νtlim/νt where νtlim is calculated using equations 2.2.99
and 2.2.77 respectively and νt = k/ω. z/d = 0.

(a) Blending function F1 (equation 2.2.83) (b) Blending function F2 (equation 2.2.86)

Figure 3.1.15: Blending functions F1 and F2 of the Menter SST k-ω model in the considered
jet in crossflow test case. z/d = 0.

First, the influence of the shear stress transport related turbulent viscosity limiter is studied.
The limiter is described in sections 2.2.1.6 and 2.2.1.7 (equations 2.2.77 and 2.2.99). Figure
3.1.13 compares the profiles of the x-component of the flow velocity vector and of the turbulent
kinetic energy given by the SST model and by the Wilcox 2006 k-ω model without round
jet correction (black and light-blue solid lines). The profiles given by both approaches are
similar. This is not surprising since, neglecting the round jet correction employed in the Wilcox
model, the other equation terms of both approaches are similar. Only the form of their model
specification and the values of the modeling constants are slightly different. However, the study
presented here and in the next section will reveal that these differences can become important
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if the influence of individual equation terms is considered closely.

The dashed lines show the results produced by same models without the turbulent viscosity
limiters (turbulent viscosity calculated simply as νt = k/ω). A large difference between the
reaction of the SST model and the reaction the Wilcox 2006 model on the absence of the
turbulent viscosity limiter can be observed. Whereas the SST model without the shear stress
limiter (essentially the BSL model from the Menter’s publication [83]) returns almost the same
profiles as the original SST model, the predictions given by the Wilcox 2006 model without the
round jet correction and without the shear stress limiter are quite different to those produced
with the limiter. The level of turbulence is increased without the limiter which has a favorable
effect on the modeling accuracy. The profiles returned by the Wilcox 2006 model without the
round jet correction and without the viscosity limiter are quite similar to the profiles given by
the 1998 k-ω model of Wilcox without the round jet correction shown in figure 3.1.10. This
observation is easy to explain since the 1998 and 2006 models of Wilcox are very similar, and
the presence of the shear stress viscosity limiter in the 2006 version of the model is the most
important difference between them.

Although the influence of the limiter is not seen in the Ux and k predictions given by the
SST model (figure 3.1.13), the contour plot 3.1.14(b) identifies that in the jet upstream region
the limiter nevertheless has influence on the turbulent viscosity produced by the SST model.
In figures 3.1.14(b) and 3.1.14(a) the ratio of the limited turbulent viscosity calculated by the
SST and the Wilcox 2006 models via equations 2.2.77 and 2.2.99 to the νt obtained as νt = k/ω

is presented. Consequently, νtlim/νt < 1 indicates the regions where the shear stress limiter
works. Figure 3.1.14(a) shows, that in contrast to the SST model, the shear stress limiter of
the Wilcox 2006 model impacts not only in the jet upstream region but also in the jet shear
layers and in the downstream region on the lee side of the jet. This causes the limiter to have
a strong influence on the mean and fluctuating velocity fields produced by the Wilcox 2006
model.

The different influence the shear stress turbulent viscosity limiter had on the Wilcox 2006
and the SST model predictions can be explained by how the limiter appears in equations
2.2.99 and 2.2.77 of the respective models. Whereas in the Wilcox 2006 model the limiter
coefficient remains the same everywhere (see equation 2.2.99), equation 2.2.77 of the SST
model is constructed such that the limiter influence decreases with the decreasing values of
the blending function F2 (equation 2.2.86). Figure 3.1.15(b) shows that this function reaches
its maximum values of F2 = 1 in the region upstream of the jet. In the same locations the
influence of the limiter is seen in figure 3.1.14(b). Further downstream and especially in the jet
core, F2 decreases to values close to zero, so the limiter does not have any effect. This explains
the extreme similarity of the results given by the SST model with and without limiter in figure
3.1.13. Since the turbulent viscosity limiter impacts negatively the predictions of the Wilcox
2006 model by further decreasing the turbulence, incorporating the limiter into a turbulence
model via blending functions, as done in the SST model, is more favorable in this case.
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Figure 3.1.16: Influence of the of the cross-diffusion term in the SST and the Wilcox 2006 k-ω
models. x-component of the flow velocity vector and turbulent kinetic energy.
z/d = 0.

3.1.2.2.5 Influence of the cross-diffusion term Figure 3.1.13 discussed in the previous sec-
tion reveals that, in contrast to the Wilcox 2006 model, the turbulence under prediction shown
by the SST approach in the considered case is not even partly a consequence of the turbulent
viscosity limiter. In the case of the SST model, the cross diffusion term generates a much
stronger turbulence damping effect than the turbulent viscosity limiter. This is clearly seen
from the plots presented in figure 3.1.16. The dashed lines represent the x-velocity and the k

profiles generated in the studies of the previous section: the SST and the Wilcox 2006 models
without the turbulent viscosity limiter (and without the round jet correction for the Wilcox
2006 model). The solid lines represent the profiles generated by the same equations but after
the additional elimination of the cross-diffusion terms. The SST model results change drasti-
cally. Without the cross-diffusion term the equations largely over predict the level of turbulence
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(a) Wilcox 2006 k-ω model (b) SST k-ω model

Figure 3.1.17: Cross-diffusion correction in the Wilcox 2006 and the Menter SST k-ω models.
Ratio of the cross-diffusion term to the ω production term. z/d = 0.

and produce completely inaccurate profiles. The predictions made by the Wilcox 2006 model
change as well in the absence of the cross-diffusion term but the model reaction is much weaker.
However, here the overestimation of turbulence is also evident. The reason for the observed
behavior of both models is in the different magnitude of the cross-diffusion coefficient and in
the different modeling constants of the ω equation.

In the Wilcox 2006 approach (see section 2.2.1.7, equation 2.2.95) the coefficient of the cross-
diffusion term is more than an order of magnitude lower than in the SST model (0.125 vs. 1.7).
In the SST model this coefficient is scaled using the (1 − F1) blending function (see section
2.2.1.6), but figure 3.1.15(a) shows that in the considered case F1 = 0 in all essential flow
regions and so in these regions the cross-diffusion coefficient has its standart high value. Thus
it is not surprising that the reaction of the model equations on the absence of this term is much
stronger for the SST approach.

The difference between the impact of the cross-diffusion term in the Wilcox 2006 k-ω model
and the SST model is additionally illustrated in the contour plots presented in figure 3.1.17. It
shows the ratio of the cross-diffusion term to the ω production in equations 2.2.76 and 2.2.95.
For the Wilcox 2006 k-ω model the values of the cross-diffusion term are comparable to the
ω production values only in the narrow region of the upstream shear-layer. In the case of the
SST model the impact of the cross-diffusion term can be observed in the full jet body.

It should be furthermore taken into account that the modeling constants of the ω production
and dissipation terms in both studied models are different. As discussed in section 2.2.1.1, the
difference between the dissipation and the production constants of the dissipation equation has
deceptive influence on the predicted spreading rates of shear flows. The SST model employs
in the outer region the constants of the standard k-ε model Cε1 = 1.44 and Cε2 = 1.92, which
leads to γ2 = 0.44 and βω2 = 0.0828 after rewriting the ε-equation in SST k-ω terms. Similarly,
reformulating the ω equation of the Wilcox 2006 model in k-ε fashion will result in a constant
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set of Cε1 = 1.52 and Cε2 = 1.78. The difference between the dissipation of dissipation and
the production of dissipation constants is much smaller in this case than in the SST model;
consequently, the turbulence level predicted by the Wilcox 2006 model equations is generally
lower (see discussion in section 2.2.1.1). That is the reason why even with the very small cross-
diffusion coefficient or in its total absence the Wilcox 2006 model does not overestimate the
turbulence drastically.

The above discussion also elucidates the mechanisms responsible for creating the significant
differences observed between the standard k-ε and the Wilcox 1988 k-ω profiles shown in section
3.1.2.1. In the standard k-ε model simulations the damping effect of the cross-diffusion is present
in the full flow field since the cross-diffusion is naturally present in the ε equation (see discussion
in sections 2.2.1.5, 2.2.1.6). Therefore the turbulence damping effect is even stronger than in
the SST model where it is partly weakened by the blending functions. In contrast, the Wilcox
1988 k-ω model does not contain the cross-diffusion term at all. Thus the level of turbulence
generated by this model is much higher. Moreover, its modeling constants, similar to those
employed in the Wilcox 2006 model, prevent the 1988 Wilcox model from a strong turbulence
over prediction. This results in quite accurate profiles shown by the 1988 Wilcox model in
section 3.1.2.1.

The present discussion is not meant to imply that using models without a cross-diffusion
term is the best choice for jet in crossflow simulations. Many results available in the literature
[83, 84, 128] show the positive effect of the cross-diffusion term for the modeling accuracy in
a large variety of cases. The elimination of this term or its simple ad hoc adjustment just
based on the present case in order to compensate for the under predicted turbulence levels
would reduce the universality of the model and probably cause unsatisfactory results for other
applications. A more rigorous approach would be the incorporation of additional corrections
reacting to jet in crossflow specific flow physics such as streamline curvature correction tested
in section 3.1.2.2.3.

3.1.2.2.6 Influence of the low-Re damping functions The influence of near-wall modeling
in the k-ε case is the final topic investigated in this section. The justification for this study is
that the computational grid was made with the aim to resolve the boundary layer, i.e. y+ < 5

was assured in the important regions. Such a grid is well suited for the k-ω calculations, but
for the k-ε model with the wall functions as employed for generation of the results presented
in section 3.1.2.1, it may be an additional source of uncertainty. The models with near-wall
viscous damping, theoretically, should be better suited for this grid (see discussion in section
2.2.1.3). However, figure 3.1.18 shows that the absence of the viscous damping functions is not
the reason why the standard k-ε model produces results of a poor accuracy. It is seen that
the low-Re AKN k-ε model, discussed in section 2.2.1.3, does not give more accurate results.
The additional viscous damping also does not alter the significantly more accurate results of
the Wilcox 1988 k-ω model as the comparison with the low-Re k-ω model, described in section
2.2.1.5, reveals. Thus, acknowledging the importance of near wall resolution, the mean field
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Figure 3.1.18: Study on the wall damping function influence. x-component of the flow velocity
vector and turbulent kinetic energy. z/d = 0.
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turbulence modeling plays in this case, apparently, a more important role.

3.1.2.3 Evaluation of LES data

The aim of this section is to obtain additional knowledge about the actual values of the tur-
bulent viscosity in the considered configuration. As a further matter, the budget terms of
the k transport equation should be evaluated and compared with the RANS modeling results.
Turbulence closures based on the turbulent viscosity hypothesis rely on several assumptions
and simplifications, as discussed in the theory section 2.2. The deviation of these simplifica-
tions from the physical reality can cause inaccuracies. A careful validation of single terms in
the model equations against their actual values in a variety of test cases can help to define
directions for improvement of the modeling. Unfortunately neither the turbulent viscosity nor
the budget terms of the modeling equations can be easily evaluated from experimental data
because three-dimensional mean and fluctuating velocity fields are needed. In the experiments
of refs. [78, 13, 42] only two velocity components (x and y or x and z) were measured in the
respective planes; hence, derivatives in the third direction are difficult to determine. Moreover,
the evaluation of the first and especially of the second derivatives of the measured variables in
the post-processing often lead to strong spurious oscillations in the obtained data fields.

Since a DNS of the considered test case is also not feasible because of the high Reynolds
numbers, the LES data shown in the previous sections will be used for the evaluation. Although
the agreement of the LES results with the experimental data is not ideal (the main problem is
the overestimation of the y-direction velocity), the overall accuracy of the LES is much better
than of the Wilcox 1988 k-ω model, which shows the best results of all RANS models used
in this work. LES gives a more realistic representation of the trends in the behavior of the
turbulent velocity field. Thus, the statistical data gained from the LES post-processing can
help to obtain additional information needed to elucidate the weaknesses of the considered
RANS modeling approaches.

3.1.2.3.1 Turbulent viscosity

3.1.2.3.1.1 Evaluation from the time-averaged LES data fields First, the turbulent vis-
cosity νt field is analyzed based on LES data. The primary objective of the analysis is to
provide the νt values that can be used to validate RANS models. In the evaluations of the
experimental data for quasi 2D flows, for instance, channel flow or the axisymmetric round
jet (see for example ref. [16]), the turbulent viscosity is usually obtained by employing the
Boussinesq approximation (equation 2.2.3) for the Reynolds stress component assumed to be
the most important for momentum modeling accuracy (for example u′xu

′
y). In a 3D flow, such

as the one considered here, determination of the most important Reynolds stress component
is a rather difficult task, and this is illustrated in figure 3.1.19 which compares the LES data
for three different components of the Reynolds stress tensor for jet in crossflow∗. Only near
to the jet symmetry plane (z/d = 0.1, figure 3.1.19(a)) is the u′xu

′
y stress clearly larger than

∗The diagonal components of the Reynolds stress tensor are not included for the sake of the plot clarity.
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the u′xu
′
z and u′yu

′
z stresses and can be assumed to be a “safe”choice for the evaluation of the

characteristic turbulent viscosities. With the increasing distance from the jet symmetry plane
(z/d = 1.0, figure 3.1.19(b)), the relative magnitude of the u′xu

′
z and especially of the u′yu

′
z

components grows significantly. In those locations, the νt estimate based only on the u′xu
′
y

stress is not as easily justified.

x/d

0

0 1.5

10

−10

u′xu′y
u′xu′z
u′yu′z

u′iu
′
j

(a) z/d = 0.1

x/d

0

0 1.5

10

−10

u′xu′y
u′xu′z
u′yu′z

u′iu
′
j

(b) z/d = 1.0

Figure 3.1.19: Different components of the Reynolds stress tensor u′iu
′
j in dependence on the

z/d distance from the jet symmetry plane. y/d = 5.
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Figure 3.1.20: Dimensionless turbulent viscosity νt/ν evaluated from LES data using different
Reynolds stresses and via least-square fit (equation 3.1.1). Dependence on the
z/d distance from the jet symmetry plane. y/d = 5.

Figure 3.1.20 compares the turbulent viscosities obtained using the anisotropic components
of the Reynolds stress and the strain-rate tensors using equation 2.2.3. Here several important
observations can be made. First, νt varies depending on the employed Reynolds stress. Second,
the νt profiles obtained from the larger components of the Reynolds stress tensor (such as u′xu

′
y)

are naturally much less serrated than the profiles obtained from the smaller components (such
as u′xu

′
z). Third, the νt profiles obtained from the larger components of the Reynolds stress

tensor are much closer to each other than to the profiles given by the smaller components.
This is shown in figure 3.1.20(b) where the νt profiles given at z/d = 1.0 by the u′xu

′
y and
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the u′yu
′
z stress components are quite similar. As discussed previously, at this location both

the u′xu
′
y and the u′yu

′
z stresses play much more important role than u′xu

′
z. It can be seen here

particularly clearly that the disparities between different νt values start to grow at the locations
at which the respective Reynolds stresses become smaller. The last observation is a positive
indicator for the RANS turbulent viscosity modeling. It implies that using the same νt in the
modeling of the most important asymmetric components of the Reynolds stress tensor will
not introduce large errors into the simulation. However, for the evaluation of the νt from LES,
DNS, or experimental data it presents the challenge of an a-priori identification of the dominant
Reynolds stress at every location. Otherwise, the νt obtained in the data post-processing cannot
be considered suitable for the RANS model evaluation. For example at z/d = 1.0, if the νt

values obtained from LES using the u′xu
′
z stress component would be applied to model the other

Reynolds stresses via equation 2.2.3, than this would lead to a clear overprediction of u′xu
′
y and

u′yu
′
z. Therefore, the comparison of such νt with the turbulent viscosity given by the RANS

model would not yield a viable quality metric of the RANS model.
To overcome this problem, it is proposed here to evaluate the turbulent viscosity from the

overdetermined system of the Boussinesq approximation equations 2.2.3 using a least-square fit
over all resolved Reynolds stresses

νt =

(
−u′iu

′
j + 2

3
kδij

)
·
(

∂Ui

∂xj
+

∂Uj

∂xi

)
(

∂Uk

∂xl
+ ∂Ul

∂xk

)
·
(

∂Uk

∂xl
+ ∂Ul

∂xk

) , (3.1.1)

with the summation over the repeating indices i, j, k, and l = 1−3, and the operator ( ) denotes
the variables obtained from the resolved LES data fields after the time-averaging. This method
aims to minimize the error in the νt solution of the overdetermined system of equations 2.2.3.
The turbulent viscosity obtained by this method represents an optimal value of the assumed
isotropic modeled νt thereby providing the best possible closure of the Reynolds stress tensor.

Figure 3.1.20 compares the turbulent viscosity profiles given by equation 3.1.1 with the
profiles computed earlier using several individual stress components. The profiles obtained
using the least-square approximation are close to the profiles given by the dominant Reynolds
stresses in the regions where those can be clearly identified. This makes νt given by equation
3.1.1 a “safe”choice for the estimation of the effective turbulent viscosity in a flow, particularly in
the cases when the relative importance of different Reynolds stresses varies strongly depending
on the location.

In the following sections the profiles of the turbulent viscosity given by equation 3.1.1 on
the jet symmetry plane z/d = 0 at the locations y/d = 5 and y/d = 7 will be used for the
comparison with the RANS results. These profiles are shown in figure 3.1.21. For the further
presentation and studies of the present work, these profiles are slightly smoothed as shown
in figure 3.1.21. The smoothing is made by averaging over the short coordinate distances
corresponding to about 1/20 of the characteristic integral length. This is done for the sake of
figure clarity, and, as it will be seen below in the context of comparison with the RANS modeling
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results, does not influence the validity of the conclusions. The same smoothing procedure is
also applied to LES-based evaluation of other variables presented below in this dissertation
(budget terms of the turbulent kinetic energy transport equation, turbulent scalar diffusivity,
etc.).
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Figure 3.1.21: Dimensionless turbulent viscosity νt/ν profiles, raw and smoothed, evaluated
from LES data using equation 3.1.1. z/d = 0.

3.1.2.3.1.2 Comparison with the RANS modeling results The profiles recovered from LES
data are compared in figure 3.1.22 with the results of RANS simulations using the Wilcox 1988
k-ω model, the SST model of Menter, and the SST model additionally employing the curvature
correction of Hellsten. The performance of these models is discussed in section 3.1.2.2. As an
immediate observation, around the jet core location the magnitude of the turbulent viscosity
given by equation 3.1.1 for LES data is comparable to the turbulent viscosity levels resulting
from RANS modeling. The peak of the evaluated jet viscosity lies between the value given by
the SST model and the value given by the Wilcox 1988 k-ω model. The modeled νt resulting
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Figure 3.1.22: Dimensionless turbulent viscosity νt/ν evaluated from LES data and resulting
from RANS modeling. z/d = 0.

from the SST model with the curvature correction are much higher. This agrees with the results
shown in section 3.1.2.2 where it was demonstrated that the level of turbulence is obviously over
predicted by the SST model with the curvature correction, under predicted by the standard
SST model, and actually at the higher y/d locations is under the level given by the Wilcox
1988 model.

It should be noted that whereas the maxima of the turbulent viscosity evaluated from the
LES data and given by both SST-type models are located on the experimental jet centerline,
the Wilcox 1988 k-ω model produces the maximal values of the the turbulent viscosity in the jet
upstream region. This excessive level of the turbulent momentum diffusivity on the upstream
side of the jet is responsible for the shift of the jet centerline downstream of its actual location
observed in figure 3.1.6. The high turbulent viscosity values given by the Wilcox 1988 k-ω
model in the outer shear-layer regions can be explained by the absence of the cross-diffusion
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Figure 3.1.23: Dependence of the turbulent viscosity on different terms of the 2006 Wilcox k-ω
model. Comparison with the values νt/ν evaluated from LES data. z/d = 0.

term and of the turbulent viscosity limiter discussed in sections 3.1.2.2.5 and 3.1.2.2.4. This
is illustrated in figure 3.1.23 where the influence of different modeling equation terms and
corrections discussed in sections 3.1.2.2.2-3.1.2.2.5 on the produced turbulent viscosity values is
shown for the example of the Wilcox 2006 model. In the original model the level of the turbulent
viscosity is strongly underestimated but its peak is located near to the position predicted by
LES. The absence of the round jet correction just slightly increases the general level of the
turbulent viscosity. In contrast, the absence of the shear stress turbulent viscosity limiter and,
especially, of the cross-diffusion term leads to excessively large values of νt in the upstream
shear-layer region. This is not surprising since, as shown in sections 3.1.2.2.5 and 3.1.2.2.4,
both corrections have their maximal impact in this region.

Figures 3.1.24 and 3.1.25 additionally present 2D plots of νt non-dimensionalized by the
molecular viscosity values in the planes z/d = 0 and y/d = 7. The same conclusions as in the
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(a) WALE LES (b) k-ω Wilcox 1988

(c) k-ω SST (d) k-ω SST & curv. c.

Figure 3.1.24: Dimensionless turbulent viscosity νt/ν evaluated from LES data and resulting
from RANS modeling in z/d = 0 plane. The regions of νt/ν < −100 are blanked.

last paragraphs can be reached from these figures. The level of νt is given correctly by the
Wilcox 1988 model, but the peaks are incorrectly shifted towards the outer shear layer. LES
shows much higher levels of the turbulent viscosity in the downstream locations than all RANS
models. Comparisons of the fluctuating velocity field in this region made in section 3.1.2.1
indicate that the higher values given by LES are appropriate whereas the RANS models gave
too low of turbulence levels.

A significant difference between the profiles given by the RANS models and evaluated from
LES is that the turbulent viscosities found from LES post-processing take negative values
on the downstream side of the jet (see figures 3.1.22, 3.1.24(a), and 3.1.25(a)); however, in
RANS the turbulent viscosity is always positive by definition. The appearance of regions of
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(a) WALE LES (b) k-ω Wilcox 1988

(c) k-ω SST (d) k-ω SST & curv. c.

Figure 3.1.25: Dimensionless turbulent viscosity νt/ν and xz- streamlines evaluated from LES
data and resulting from RANS modeling in y/d = 7 plane. The regions of the
negative νt/ν are blanked.

negative turbulent viscosity can be caused by the complex structure of the velocity and the
pressure fields in this flow pattern. First, the negative turbulent viscosity appears in the region
where the xy-streamline curvature becomes especially strong. It is a well-known observation
that the streamline curvature can lead to the negative turbulent viscosities evaluated from
u′xu

′
y Reynolds stress (see ref. [29] for the explanation of the reasons). Second, the region of

the negative turbulent viscosity corresponds most likely with the vortex roll-up region of the
counter-rotating vortex pair (see figure 1.2.1). This is indicated in figure 3.1.25(a), where the
black lines visualize the instantaneous xz-streamlines and the blanked zones indicate the area
of the negative turbulent viscosity. It is seen that the location of this area correlates with
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the appearance of a strong vortex that is probably a part of the counter-rotating vortex pair
temporally evolving on the downstream side of the jet. The relative impact of both the xy-
streamline curvature and the vortex roll-up of the counter-rotating vortex pair on the sign of
the turbulent viscosity needs to be clarified in future investigations.

3.1.2.3.2 Turbulent kinetic energy budget

3.1.2.3.2.1 Evaluation from the time-averaged LES data As a supplement to the discus-
sion on turbulent viscosity, the budget terms of the turbulent kinetic energy transport equation
obtained from LES are presented in figure 3.1.26. In this plot all results are non-dimensionalized
using the jet diameter d and the jet mean velocity Ujet. The time evolution term of equation
2.2.11 is not relevant here since the statistical steadiness of the flow is assumed. The convection
term being transfered to the right-hand side of equation 2.2.11 becomes −U i

∂k
∂xi

. This term
appears in the RANS models in the same form as in the exact k-equation and presents rather
a minor interest for the RANS model evaluation.

The production term shown in figure 3.1.26 is defined by equation 2.2.12 and can be easily
computed in the post-processing of the resolved velocity field from LES. The production profile
evaluated from LES data is characterized by two peaks - a larger one on the upstream side of
the jet and a smaller one on the lee side. These peaks are corresponding to the shear layer
regions. At the location y/d = 7 the peak on the lee side has almost vanished.

The turbulent diffusion Dt presented in figure 3.1.26 is evaluated from LES using the exact
three-point correlation term −1

2

∂u′
iu

′
iu

′
l

∂xl
of equation 2.2.11. Figure 3.1.26 reveals that although

the magnitude of the turbulent diffusion term in the considered case is generally lower than
the magnitude of the turbulent production, the impact of the diffusion process in the creation
and destruction of energy can become significant particularly at higher y/d locations. Conse-
quently, questions regarding the accuracy of the turbulent diffusion modeling in RANS cannot
be neglected.

Figure 3.1.26 similarly presents the pressure diffusion term Dp = −1
ρ

∂p′u′
l

∂xl
of equation 2.2.11.

A typical assumption widely used in the RANS modeling is that the pressure-diffusion term
is small and can be grouped with the turbulent transport term Dt (see equation 2.2.13). This
assumption is essentially based on the DNS data for simple channel flows [128, 29]. The current
evaluation reveals that the impact of the pressure diffusion term, although smaller than the
impact of other components of the turbulent kinetic energy balance equation (equation 2.2.11),
is certainly not neglectable.

The last term presented in figure 3.1.26 is the dissipation of the turbulent kinetic energy −ε.
It should be noted here that this term is not directly obtained from LES using the formula
2.2.15, but determined indirectly from the imbalance of other terms of the exact k-equation.
This method allows to omit the separate evaluation of the viscous and the subgrid scale dissi-
pation, which is needed for the estimation of −ε from the LES data [20]. In the same manner
the dissipation term is also often evaluated in experiments [95]. The profile of the turbulent
dissipation, similar to the production profile, shows two peaks corresponding to the upstream
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Figure 3.1.26: Main budget terms of the turbulent kinetic energy balance equation evaluated
from LES. All terms are non-dimensionalized using the jet diameter d and the
mean velocity at the jet inlet Ujet. z/d = 0.

and the lee side shear layers. The peak on the lee side is more than twice lower than the peak
on the upstream side and becomes flat at the higher location y/d = 7.

It can be generally observed that the absolute magnitude of all budget terms drops rapidly
with the increasing y/d position. The level of the local maxima of the budget terms at y/d = 7

is about five times lower than at y/d = 5.

3.1.2.3.2.2 Comparison with the RANS modeling results The budget terms obtained in
the LES data evaluation are compared in the present section with the respective terms of the k

transport equation returned by the Wilcox 1988 k-ω model, the SST model of Menter, and the
SST model with the curvature correction of Hellsten for the studied test case. All presented
results are, for the sake of clarity, non-dimensionalized using the jet diameter d and Uymax -

124



Jet in crossflow

x/d

x/d

0
0

0
0

3

3

Pdl

Pdl

0.15

0.25

evaluated from LES
k-ω 1988

k-ω SST

k-ω SST & curv. c.

y/d = 5

y/d = 7

exp. centerline

exp. centerline

Figure 3.1.27: Dimensionless production of the turbulent kinetic energy Pdl evaluated from LES
data and resulting from RANS modeling. All values are non-dimensionalized
using the jet diameter d and Uymax - the respective maximal vertical velocity at
the extraction plane, Pdl = P · d/U

3

ymax. z/d = 0.

the respective maximal vertical velocities at the extraction plane in each simulation.

First the production terms are compared in figure 3.1.27. The trends shown by the SST
model and by its curvature correction are not surprising when considering the results presented
in sections 3.1.2.2.3 and 3.1.2.3.1.2. Whereas the original SST model underestimates the level
of the turbulent production, the SST model employing the curvature correction largely over
predicts this term. The location of the production peaks on the upstream jet side is the same
as in LES. The peaks on the lee side given by the SST model are slightly shifted towards the
upstream direction in comparison to the LES peaks. The opposite situation can be observed
considering the downstream side production peaks of the SST model employing the curvature
correction. This behavior can be explained by the under prediction of the jet spreading in the
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Figure 3.1.28: Dimensionless diffusion of the turbulent kinetic energy evaluated from LES data
and resulting from RANS modeling. All values are non-dimensionalized using
the same variables as in figure 3.1.27. z/d = 0.

SST simulations and its overestimation in the SST curvature correction calculations.

In the results shown by the Wilcox 1988 k-ω model, the magnitude of the production maxima
correlates well with the results given by LES. However, their x/d locations are strongly shifted
further downstream in comparison with the LES data. This corresponds to the observations
made in section 3.1.2.3.1.2 and figure 3.1.4(f) that the jet centerline in the Wilcox 1988 k-ω
model calculations is shifted in the downstream direction as a consequence of too high turbulent
viscosity in the upstream shear layer.

The profiles of the turbulent kinetic energy diffusion are compared in figure 3.1.28. Regarding
the LES data, two profiles are shown. The first one is the turbulent diffusion Dt = −1

2

∂u′
iu

′
iu

′
l

∂xl
,

and the second one is the sum of the turbulent and the pressure diffusion D = Dt + Dp (see
equation 2.2.13). The second profile is given since, as shown in the previous section, the impact
of the pressure diffusion is not neglectabe in the considered case. As in the case of production,
the diffusion levels are overestimated by the SST model employing the curvature correction of
Hellsten. This over prediction becomes especially drastic at y/d = 7. Since the level of the

126



Jet in crossflow

x/d

x/d

0
0

0
0

3

3

0.25

0.15

evaluated from LES
k-ω 1988

k-ω SST
k-ω SST & curv. c.

y/d = 5

y/d = 7

εdl

εdl

exp. centerline

exp. centerline

Figure 3.1.29: Dimensionless dissipation of the the turbulent kinetic energy evaluated from LES
data and resulting from RANS modeling. All values are non-dimensionalized
using the same variables as in figure 3.1.27. z/d = 0.

modeled diffusion of k directly depends on the calculated turbulent viscosity shown in figure
3.1.22, the high diffusion levels obtained here are expected. The underestimation of the turbu-
lent diffusion by the SST model is expected as well because, as figure 3.1.22 shows, the turbulent
viscosity given by the SST model is too low. The Wilcox 1988 k-ω model underestimates the
level of the turbulent diffusion at y/d = 5, especially considering the pressure diffusion impact
predicted by LES. At the position y/d = 7 the level of the turbulent diffusion is reproduced by
the Wilcox model better, but the location of the peak values is again strongly shifted in the
downstream direction.

The dimensionless dissipation profiles are presented in figure 3.1.29. For the RANS k-ω
models used in this study, ε is evaluated using equation 2.2.53. This parameter together with
the turbulent viscosity is extremely important for the assessment of RANS modeling quality.
Whereas accurate modeling of the production and diffusion of k is a consequence of the turbulent
viscosity equation, accurate representation of the dissipation term measures the quality of the
ε or ω evolution equation. Figure 3.1.29 demonstrates that none of the tested models is able
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Figure 3.1.30: Dimensionless dissipation per unit turbulent kinetic energy εdl/kdl evaluated from
LES data and resulting from RANS modeling. All values are non-dimensionalized
using the same variables as in figure 3.1.27. z/d = 0.

to represent the dissipation of k correctly. At the y/d = 5 location all considered RANS
approaches under predict the dissipation level, and at the higher location y/d = 7 the SST
model shows a quite accurate estimate whereas the SST model with the curvature correction
of Hellsten and the Wilcox 1988 model over predict the dissipation level.

For a better understanding of the influence of the dissipation and production values shown
above on the turbulence prediction in the studied flow, a consideration of the dissipation ratio
per unit turbulent kinetic energy ε/k and of the production to dissipation ratio P/ε can be
useful. These profiles are presented in figures 3.1.30 and 3.1.31. First, figure 3.1.30 demon-
strates clearly that the dissipation per unit turbulent kinetic energy is strongly underestimated
by the SST model employing the curvature correction. This additionally suggests that the
curvature correction, as discussed in section 3.1.2.2.3, “overreacts”here and decreases the level
of dissipation too strongly. The Wilcox 1988 model gives adequate ε/k ratios. The SST model
overestimates ε/k at y/d = 5 at the upstream side of the jet. This is an indicator of excessively
strong turbulence damping. At the y/d = 7 location the SST model gives a good agreement
with the ε/k levels given in the LES data evaluation.
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Figure 3.1.31: Production to dissipation ratio evaluated from LES data and resulting from
RANS modeling. z/d = 0.

The production to dissipation ratios given by LES data alternate around P/ε = 1.0 at
y/d = 5 and decrease to lower values at y/d = 7. This indicates the dominance of dissipation
at the higher locations. The P/ε ratios are overestimated by the Wilcox 1988 model and by
the SST model with curvature correction especially at the upstream locations. These results
are in agreement with the observations revealing the turbulence over prediction by these two
models made before in sections 3.1.2.1, 3.1.2.2.3, and 3.1.2.3.1.2.

Finalizing the studies devoted to the evaluation of the turbulent viscosity and of the turbulent
kinetic energy budget terms from LES data, the turbulent viscosity modeling coefficient Cµ is
obtained as Cµ = νt ·ε/k2. This coefficient Cµ (or βk in the k-ω type models, see equations 2.2.53
and 2.2.55) is assumed to be Cµ = 0.09 in all models studied in the present dissertation. Figure
3.1.32 reveals that in the present test case the value of this coefficient, although fluctuating
around Cµ = 0.09, is highly variable. Its magnitude reaches Cµ > 0.18 in the upstream jet
region and drops to the values of an order of magnitude lower downstream of the jet centerline.
Furthermore, resulting from the negative νt on the downstream side of the jet demonstrated in
figure 3.1.21, in the regions not included in the plot 3.1.32, Cµ also can be negative. Failure to
account for these observations in the modeling can negatively influence the quality of the RANS
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Figure 3.1.32: Turbulent viscosity modeling coefficient Cµ evaluated as Cµ = νt · ε/k2 using the
LES data. z/d = 0.

predictions. One of the possible solutions may be the employment of the turbulent viscosity
models using a variable or a dynamically adjusted Cµ.

It can be additionally observed, that the curvature correction of Hellsten, considered in this
work (see section 3.1.2.2.3 and figure 3.1.12), is actually responding correctly to the underly-
ing flow physics since it increases the turbulence level exactly in the same regions in which
Cµ evaluated from LES becomes larger (upstream side of the jet) and decreases it at the same
locations where Cµ becomes smaller (lee side of the jet). Instead of incorporation of the stream-
line curvature related terms in the ω-equation as proposed by Hellsten, adjustment of the Cµ

coefficient based on the same streamline curvature detector may be favorable for the turbulence
model improvement.

3.1.3 Scalar mixing modeling

3.1.3.1 Mean and fluctuating scalar field predictions

In this section the scalar mixing predictions for the jet in crossflow test case obtained from
RANS simulations will be presented and compared with appropriate LES results. Dependence
of the results on the RANS turbulence model used and on the selected turbulent Schmidt
number value will be discussed. Furthermore, the mean and the fluctuating scalar profiles
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obtained by the two-equation turbulent scalar diffusivity models not employing the constant
turbulent Schmidt number approach will be analyzed.

3.1.3.1.1 Dependence on the turbulent viscosity model The experimental scalar measure-
ments of [78, 13, 42] were made only in xz-planes; hence, only contour plots obtained in these
planes are shown. The y/d locations of these planes are y/d = 5 and y/d = 7. Figure 3.1.33
presents the mean dimensionless scalar contours obtained by means of LES, the 1988 k-ω model
of Wilcox, and the SST model. These contours are compared with experimental data. In the
RANS simulations, the constant value of the turbulent Schmidt number σt = 1.0 was used.
The same value of the analogous SGS modeling parameter was chosen for LES. Despite of some
differences between LES and experimental data, figure 3.1.33 clearly demonstrates the supe-
riority of this method over the RANS approaches employed here. The 1988 model of Wilcox
gives better predictions than SST but the agreement is still unsatisfactory.

A more detailed comparison can be performed based on the profiles of the mean dimensionless
scalar presented in figure 3.1.34 (the profile locations are indicated by the black dashed lines
in figure 3.1.33). It should be noted that for the profiles along the z-axis both the positive
and the negative directions are presented together since the experimental results are slightly
asymmetric. The profiles produced by the Wilcox 1988 k-ω model are indicated by blue dashed
lines, and the profiles given by the SST model are shown in black solid lines. Additionally, the
results given by the standard k-ε model (green dash-dot-dot lines) and by the SST k-ω model
with the curvature correction of Hellsten (black dash-dot lines) are presented. Here different
trends can be observed depending on the chosen RANS model. The standard k-ε and the SST
models underestimate the mixing. The Wilcox 1988 k-ω model shows the same trend of mixing
under prediction at y/d = 5, but at y/d = 7 the scalar profiles are represented quite well. The
SST model employing the curvature correction also under predicts the mixing at y/d = 5 but
largely over predicts it at y/d = 7.

The LES returns very accurate scalar profiles along the z-axis (agreement with the experi-
mental data is better than for all RANS models), but the LES data displays well defined peaks
of the scalar concentration at y/d = 5, z/d = 0 and y/d = 7, z/d = 0 which are absent in
the experimental profiles. Considering the velocity modeling results discussed above and the
accurate mixing predictions along the z-axis, it is concluded that these peaks in LES scalar
profiles are probably not caused by a deficiency of the scalar SGS model used in LES, but by
the failure to properly capture the y-velocity (see figure 3.1.6) at these positions. Even taking
into account this issue of the presented LES calculations, their overall mixing predictions are
more accurate than given here by RANS, as figures 3.1.33 and 3.1.34 reveal.

With regards to RANS, a clear connection between the scalar mixing results and the accuracy
of the turbulence modeling, discussed in sections 3.1.2.1 and 3.1.2.2.3, can be observed. The
standard k-ε and the SST k-ω models gave the most obvious underestimation of the turbulent
velocity fluctuations (see section 3.1.2.1) and also produced the least accurate mean scalar
profiles. The Wilcox 1988 k-ω model displayed the best results of all RANS models in section
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(a) Experimental data, y/d = 5. (b) Experimental data, y/d = 7.

(c) WALE LES, y/d = 5. (d) WALE LES, y/d = 7.

(e) 1988 k-ω, y/d = 5. (f) 1988 k-ω, y/d = 7.

(g) SST k-ω, y/d = 5. (h) SST k-ω, y/d = 7.

Figure 3.1.33: Mean transported passive scalar and positions of the extracted profiles at differ-
ent y/d planes. LES and different RANS turbulence models in comparison with
experimental data.
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Figure 3.1.34: Mean values of the transported passive scalar. LES and different RANS turbu-
lence models in comparison with experimental data.

3.1.2.1, and here it also shows more satisfactory agreement with the experimental mixing data.
Finally, the SST k-ω model with the curvature correction largely overestimated the level of the
turbulent kinetic energy at y/d = 7 (see section 3.1.2.2.3), so it is not surprising it over predicts
the mixing at the same location. That said, it cannot be assumed that only the quality of the
turbulence model defines the mixing prediction accuracy. The influence of the scalar mixing
modeling approach in RANS is considered in the next two sections.

3.1.3.1.2 Dependence on the turbulent Schmidt number values The constant turbulent
Schmidt number approach and its accuracy in the present calculations are discussed first. For
this discussion, two turbulence models (the Menter SST model and its variation employing the
curvature correction of Hellsten) are selected to perform turbulent Schmidt number dependence
studies. The results from this study are shown in figure 3.1.35. The mean scalar profiles
produced by both models at three different turbulent Schmidt numbers (σt = 1.0, σt = 0.5,
and σt = 0.25) are presented. Figure 3.1.35(a) reveals that σt = 0.25 is an optimal value for
modeling mixing in this jet in crossflow configuration when used in conjunction with the SST
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Figure 3.1.35: Mean values of the transported passive scalar. Dependence of the RANS results
on the turbulent Schmidt numbers σt values. z/d = 0.

closure. A different situation with regards to the turbulent Schmidt number can be observed
in figure 3.1.35(b) for the mixing modeling in conjunction with the SST model with curvature
correction. Here the optimal value at y/d = 5 is σt = 0.5 whereas at y/d = 7 it is rather
σt = 1.0. Smaller values of σt largely over predict the mixing.

As discussed previously (section 3.1.2.1), the SST model generally underestimates the level
of turbulence. The low value of the turbulent Schmidt number σt = 0.25 produces αt necessary
to compensate for the deficits of the turbulence model and thus leads to satisfactory mixing
predictions in this case. The SST model with curvature correction reproduces the level of the
turbulent kinetic energy more accurately than the SST model at y/d = 5 (see section 3.1.2.2.3)
and largely over predicts the level of the turbulent fluctuations at y/d = 7. Consequently,
at y/d = 5 the SST model with curvature correction does not need large adjustment of αt

to compensate for an underestimated level of turbulence, so σt = 0.5 gives accurate mixing
predictions. To correct for the excessive turbulence level at y/d = 7, higher values of σt have
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to be used in conjunction with the SST model with curvature correction.

Thus, the values of the turbulent Schmidt numbers giving the optimal mixing predictions in
conjunction with different RANS turbulence models do not necessarily resemble the physical
reality but are more often an artificial correction for poor turbulence modeling. That is certainly
the case with regards to the values of σt = 0.2 − 0.3 found to be optimal for jet in crossflow
calculations in refs. [45, 53, 54, 51, 80, 42]. In the studies of these publications either the
standard k-ε or the SST k-ω model were used. As shown in section 3.1.2.1, the standard k-ε
model returns even lower levels of turbulence in the considered test case than the SST model.
From the results presented here, it can be concluded that the actual turbulent Schmidt numbers
in the considered configuration are higher than σt = 0.25. Section 3.1.3.2.1.1 presents a more
thorough investigation on the actual turbulent Schmidt number values in the considered test
case by evaluating σt from the time-averaged LES data fields.

3.1.3.1.3 Two-equation turbulent scalar diffusivity models Generally speaking, the em-
ployment of the constant turbulent Prandtl or Schmidt number hypothesis can always be a
source of inaccuracy in the mixing calculations. This is argued by the experimental and DNS
observations that the turbulent Prandtl or Schmidt numbers are not constant even in such
simple configurations as the plane channel and the round jet flows considered in the theoretical
background section (section 2.2.2). For this reason, the two-equation turbulent scalar diffu-
sivity models described in section 2.2.2.2 and not employing the constant turbulent Schmidt
number concept are also evaluated for modeling jet in crossflow mixing in this work.

Figure 3.1.36 presents the mean scalar profiles obtained by the c′2-εc model of Nagano and
Kim[89] (NK), the c′2-εc model of Abe et al.[2] (AKN), the c′2-εc model of Deng et al.[21]
(DWX), and the c′2-ωc model of Huang and Bradshaw [48] (HB). The turbulent viscosity was
modeled by means of the Wilcox 1988 k-ω model since this model in the present case returned
the most accurate mean and fluctuating velocity fields among all tested RANS approaches (see
section 3.1.2.1). The mixing results obtained employing a constant turbulent Schmidt number
of σt = 1.0 are presented in figure 3.1.36 as well.

It is seen that the two-equation turbulent scalar diffusivity models do not bring significant
improvement in the scalar field predictions comparatively to the constant turbulent Schmidt
number approach. The NK, the HB, and the DWX models produce quite similar results which
are almost identical to the predictions given by σt = 1.0. The AKN model yields levels of
mixing significantly less than the values observed in experiments. This model displayed similar
behavior in the free round jet mixing calculations (see figure 2.2.13). This leads to the conclusion
that the AKN model being developed primarily for near-wall heat transfer simulations is at the
same time not well suited for modeling jet mixing. The fact that the three other models tested
did not improve the jet in crossflow mixing results can potentially be explained by two different
reasons. The first reason could be the slightly incorrect computation of the turbulent velocity
time scale τd by the Wilcox 1988 k-ω model. This deficiency can be seen in figure 3.1.30
presenting the reciprocal dimensionless profiles of τd obtained by different RANS models and
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Figure 3.1.36: Mean values of the transported passive scalar. k-ω 1988 turbulence model, dif-
ferent turbulent scalar diffusivity models in comparison with experimental data
and σt = 1.0. z/d = 0.

resulting from LES data evaluation. Since the turbulent velocity time scale is actively used in
the turbulent scalar diffusivity formulation and in the εc or ωc equations (see section 2.2.2.2),
its incorrect computation can lead to the deficiencies observed in the scalar mixing predictions.
The second reason for the mediocre performance of the studied two-equation mixing models
could be the fundamental structure of the modeling equations and their constants. Being
primarily formulated for near-wall heat transfer computations (see section 2.2.2), these models
may not be optimal for the application considered here. Additional studies on this subject are
presented in section 3.1.3.2.

3.1.3.1.4 Turbulent scalar variance and turbulent scalar flux For a more thorough analysis
of mixing prediction accuracy, the fluctuating variables - turbulent scalar variance and turbulent
scalar fluxes - have to be validated against experimental data. Such validation for RANS and
LES is presented in figures 3.1.37 and 3.1.38. Figure 3.1.37 shows the profiles generated by
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two different RANS turbulence models (Wilcox 1988 and SST k-ω) in conjunction with the
constant turbulent Schmidt number σt = 1.0. In this case the scalar variance is calculated
using equation 2.2.116. Furthermore, the results obtained using the c′2-ωc HB and the c′2-εc

NK models are shown, and here the Wilcox 1988 k-ω model is used for the turbulent viscosity
calculation. None of the tested approaches shows a satisfactory degree of accuracy. The results
generated by the SST model and σt = 1.0 show the worst agreement with experimental data.
As figure 3.1.38 additionally demonstrates, this situation can be marginally improved if a lower
turbulent Schmidt number value of σt = 0.25 is used in the SST model calculations. The results
generated by the HB model are almost identical to the profiles given by the Wilcox 1988 k-ω
model with σt = 1.0. The turbulent scalar variance is recovered the worse by the NK model
than by all other approaches.

The LES achieves much more accurate scalar flux profiles than RANS, as shown in figures
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3.1.37(b) and 3.1.38(b). Regarding the scalar variance no clear statement can be made about
the quality of the LES data. The LES results differ from the RANS predictions and the LES
scalar variance profiles are more similar to the experimental ones. However, the magnitude of
the scalar variance is lower than given in the experimental measurements. In the experimental
works [78, 13, 42], no error bars are shown, so the uncertainties in the scalar variance mea-
surements are difficult to quantify. In summary, besides of the scalar variance all mean and
fluctuating variables obtained in the present LES calculations show satisfactory agreement with
experimental data. Moreover, LES of two additional test cases studied in this work (see section
3.2.3.1) show good agreement with the experimental scalar variance data. Thus here a decision
was made to use the present LES scalar variance data for the further evaluations since at least
the trends shown by this data can be assumed to be more realistic than given by RANS.
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3.1.3.2 Evaluation of LES scalar mixing data

As shown in the previous section, the mean and fluctuating scalar fields obtained in LES
simulations do not perfectly recover the experimental data. However, they are generally closer
to the measured fields than the RANS results. The accuracy of scalar mixing within the
RANS framework depends heavily on both the choice of the turbulence model and on the
approach for the turbulent scalar flux closure. The aim of the following sections is to gain a
more complete understanding of the actual trends of the turbulent scalar diffusivity, turbulent
Schmidt numbers, and budget terms of the turbulent scalar variance transport equation in the
considered flow. This study is accomplished by post-processing the resolved LES data. The
comparison of the obtained results with the results and assumptions of the RANS scalar mixing
modeling should help to define future directions for model improvement.

3.1.3.2.1 Turbulent scalar diffusivity

3.1.3.2.1.1 Evaluation from the time-averaged LES data fields First, the Reynolds-averaged
turbulent scalar diffusivity, αt, will be recovered from the LES data and compared with the
values given by the RANS models. As in the case of the turbulent viscosity evaluation (see
section 3.1.2.3), a problem arises in this complex flow because of the anisotropy of αt and of
the difficulty in selecting the dominant scalar flux. This problem is addressed here in detail
and supported by figures 3.1.39 - 3.1.41.

Figure 3.1.39 compares the turbulent scalar fluxes in different directions (LES data) in de-
pendence on the distance from the jet symmetry plane. In the location near to the symmetry
plane (z/d = 0.1, figure 3.1.39(a)), u′xc

′ and u′yc
′ clearly dominate the scalar transport, whereas

the u′zc
′ component is negligibly small. The scalar flux in the z-direction has greater relative

influence on the scalar field with increasing distance from the jet symmetry plan (z/d = 1.0,
figure 3.1.39(b)), and the magnitude of the other two fluxes, particularly u′yc

′, drops.
It should be noted that the relative gradient of the mean transported scalar in the y-direction

is small comparatively to the gradient in the x-direction even at z/d = 0.1 and becomes
especially small at z/d = 1.0 (see figure 3.1.40). In combination with the large scalar fluxes in
the y-direction, this scalar gradient distribution leads to high absolute values of the turbulent
scalar diffusivities obtained as −u′yc

′/∂C
∂y

, drastically so at z/d = 1.0 as seen in figure 3.1.41.
The absolute values of αt evaluated as −u′xc

′/∂C
∂x

and −u′zc
′/∂C

∂z
are smaller and lie closer to

each other. The problem of the anisotropy of αt appears here to be even more severe than
the problem of the anisotropy of νt discussed in section 3.1.2.3.1.1. For the turbulent viscosity,
the strong anisotropy was observed when evaluating the Reynolds stresses characterized by a
relatively low magnitude. In the current evaluation, the flux u′yc

′ s quite large particularly at
z/d = 0.1; however, the employment of αty = −u′yc

′/∂C
∂y

for the closure of equation 2.2.6 in
x- and z-directions would clearly overestimate u′xc

′ and u′zc
′ and the overall scalar transport.

Thus, for the comparison with the RANS models which use a unique, scalar, αt for all three
fluxes the data obtained from LES or experiment in only one direction could be misleading.
For that reason, analogously to the calculation of the turbulent viscosity (see section 3.1.2.3),
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αt is evaluated in this work using the least-squares fit over all turbulent scalar fluxes,

αt =
−c′u′j · ∂C

∂xj(
∂C
∂xl

)(
∂C
∂xl

) , (3.1.2)

with the summation over repeating indices j = 1− 3 and l = 1− 3. This formulation yields a
direction-independent αt that minimizes the error in the solution of the overdetermined system
of equations 2.2.6. Practically, such an αt represents a compromise value needed in RANS
models to provide the best possible approximation of the turbulent scalar transport in equation
2.1.17, if anisotropic closures are not under consideration∗.

The turbulent scalar diffusivities obtained using equation 3.1.2 at different locations are
shown in figures 3.1.41 and 3.1.42. Figure 3.1.42 presents αt on the jet symmetry plane which
will be used in the next sections for the comparison with the RANS results. Here, as in the
previous figure 3.1.41, a comparison is also made with αtx = −u′xc

′/∂C
∂x

and αty = −u′yc
′/∂C

∂y
.

∗It should be, however, noted that taking into account the results demonstrated in figures 3.1.39 - 3.1.41, an
anisotropic model for αt would be extremely useful.
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It can be seen in both figures 3.1.41 and 3.1.42 that αty evaluated from u′yc
′ tend to take

negative values on the lee side of the jet. The same behavior was observed for this parame-
ter in the evaluation of the experimental and LES jet in crossflow data which was made by
Salewski et al. [109]. This phenomenon probably has the same origin as the negative values of
νt in this region discussed in section 3.1.2.3.1.2, but in contrast to the averaged νt, αt evaluated
according to equation 3.1.2 does not become negative here.

3.1.3.2.1.2 Comparison with the RANS modeling results The profiles of αt found from
equation 3.1.2 are compared with the modeled αt of RANS in figures 3.1.43 and 3.1.44. The
profiles are non-dimensionalized using the molecular scalar diffusivity α. First figure 3.1.43
validates the turbulent scalar diffusivities resulting from the SST model and the SST model
with the curvature correction of Hellsten at three different turbulent Schmidt numbers. The
corresponding mean scalar profiles are discussed in section 3.1.3.1.2. As it can be expected from
the scalar profiles presented in figure 3.1.35, the value of αt given by the SST model and σt = 1.0

is much lower than needed for a correct mixing prediction. Only the extremely small σt = 0.25

value recovers the αt levels similar to those obtained from LES (figure 3.1.43(a)). A different
situation can be observed in the αt given by the SST curvature modification at different σt

(figure 3.1.43(b)). Here the optimal αt, as it was already proposed in section 3.1.3.1.2, can be
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obtained with σt = 0.5 in the y/d = 5 location and σt = 1.0 in the y/d = 7 location. Since only
at y/d = 5 does the SST model with curvature modification represent the turbulent velocity
field with the satisfactory degree of accuracy, only the optimal value of σt in this location can
be considered close to the actual one.

Validation of the αt obtained in the RANS simulations employing other approaches discussed
in section 3.1.3.1 against LES data is presented in figure 3.1.44. The most noticeable feature
of the profiles given by the Wilcox 1988 k-ω model in conjunction with the constant turbulent
Schmidt number and with the c′2-ωc HB model is the location of the local maxima of αt.
Whereas the peaks of αt predicted by LES and by the SST model (with and without the
curvature correction) coincide with the experimental jet centerline location, the local maxima
given by the Wilcox 1988 k-ω model with σt = 1.0 or c′2-ωc HB model are located further
upstream. The c′2-εc NK approach even in conjunction with the Wilcox 1988 k-ω model shows
the local turbulent scalar diffusivity maximum on the jet centerline.

For the constant σt approach used with the Wilcox 1988 k-ω model, the upstream location of
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the turbulent scalar diffusivity maximum can be easily explained since the form of αt profiles
just replicates the form of the turbulent viscosity profile shown in figure 3.1.22. As discussed in
section 3.1.2.3, this νt shape given by the Wilcox 1988 k-ω model is rather unrealistic, so it may
be one of the sources of inaccuracy in the turbulent mixing modeling. The differences between
the predictions given by the HB and the NK models originate from the different formulation
of the model equations. As in the case of the turbulent viscosity modeling, the εc equation of
the NK model being rewritten in the ωc formulation will not be identical to the ωc equation
of Huang and Bradshaw model. The terms analogous to the cross-diffusion term of the k-ω
turbulence models discussed in section 3.1.2.2.5 will appear. These terms are not included in
the ωc equation of the Huang and Bradshaw model. The influence of these terms has to be
further studied, but most likely, analogous to the cross-diffusion terms of the turbulent viscosity
models (see section 3.1.2.2.5), they produce here additional turbulent scalar variance damping
in the upstream locations resulting in the lower level of αt given by the NK model but the
correct location of the local maxima of αt.

In summary, none of the assessed RANS approaches recovers in this jet in crossflow config-
uration either the functional form or the magnitude of the turbulent scalar diffusivity profiles
given by LES. Although the shape of the profile given by the SST model in conjunction with
the constant turbulent Schmidt number hypothesis agrees well with the profile evaluated from
LES (see figure 3.1.43), reproducing the magnitude of αt correctly requires the variation of σt

values. In this context a question regarding the actual values of the turbulent Schmidt number
in the considered flow and on their differences compared to the values used in the modeling
arises. This question is clarified in the next section.

3.1.3.2.2 Turbulent Schmidt numbers The actual values of the turbulent Schmidt number
in the considered flows can be obtained from LES data by division of the least-square mean
turbulent viscosities evaluated in section 3.1.2.3.1.1 by the least-square mean turbulent scalar
diffusivities shown above in figure 3.1.42. These turbulent Schmidt numbers evaluated from LES
data are presented in figure 3.1.45. Besides σt profiles which, as anticipated, vary in space, the
averaged values of σt in every respective location are also shown in this figure. The averaged
values fall in the 0.53 - 0.55 range. Not surprisingly considering the discussion in section
3.1.3.1.2, these values are higher than σt = 0.25 needed by the SST model to attain accurate
mixing predictions. The values around 0.2 - 0.3 can be observed only in the jet centerline region
and certainly do not represent the averaged σt in this flow.

It can be furthermore observed in figure 3.1.45 that the turbulent Schmidt numbers evaluated
from LES data become negative on the lee side of the jet. This is a direct consequence of the
negative values of νt present in this region which are discussed in section 3.1.2.3. Such behavior
cannot be represented by the most widespread RANS approaches for turbulent scalar diffusivity
modeling; consequently, studies on alternative models are needed.

Figure 3.1.46 compares the turbulent Schmidt numbers evaluated from LES with the results
given by the Wilcox 1988 k-ω model in conjunction with the c′2-εc NK and the c′2-ωc HB

144



Jet in crossflow

x/d

x/d

0
0

0
0

0
0

0
0

1

1

1

1

1

1

3

3

σtσt

σtσt

z/d

z/d

y/d = 5, z/d = 0

y/d = 7, z/d = 0

y/d = 5, x/d = 1.6875

y/d = 7, x/d = 2.925

exp. centerline

exp. centerline

σt = 0.53

σt = 0.54

σt = 0.55

σt = 0.55

evaluated from LES data

Figure 3.1.45: Turbulent Schmidt number σt evaluated from LES data.

x/d

x/d

0
0

0
0

1

1

3

3

σt

σt

y/d = 5

y/d = 7

exp. centerline

exp. centerline

c′2-εc NK

c′2-ωc HBfrom LES data

Figure 3.1.46: Turbulent Schmidt number σt evaluated from LES data and resulting from RANS
modeling. z/d = 0.

145



Study on the accuracy of RANS modeling using experimental and LES data

x/d

x/d

0

0

0

0

3

3

0.025

0.025

−0.025

−0.025

L
o
ss

L
o
ss

G
a
in

G
a
in

production 2Pc · d/(UjetC
2
jet)

dissipation −2εc · d/(UjetC
2
jet)

turbulent diffusion Dc · d/(UjetC
2
jet

convection −Ui
∂c′2

∂xi
· d/(UjetC

2
jet)

y/d = 5

y/d = 7

exp. centerline

exp. centerline

Figure 3.1.47: Main budget terms of the scalar variance transport equation evaluated from
LES data. All terms are non-dimensionalized using the jet diameter d, the mean
jet exit velocity Ujet, and the mean scalar concentration on the jet exit (here
Cjet = 1.0). z/d = 0.

approaches. The values of σt obtained in the RANS modeling are greater than the values given
by LES and fluctuate around σt = 1.0 for the HB model and are even higher for the NK model.
This result explains the similarity of the scalar profiles obtained by both studied two-equation
scalar mixing models and the constant turbulent Schmidt number approach at σt = 1.

3.1.3.2.3 Budget terms of the turbulent scalar variance transport equation

3.1.3.2.3.1 Evaluation from the time-averaged LES data In the final part of the present
LES data evaluation, the budget terms of the turbulent scalar variance transport equation
2.2.112 obtained from the resolved scalar field of LES are visualized, discussed, and compared
with the RANS modeling results. First, figure 3.1.47 presents the main budget terms of equation
2.2.112 obtained from LES solutions. As for the evaluation of the budget terms of the turbulent
kinetic energy balance equation (see section 3.1.2.3.2), all terms besides of the dissipation are
computed directly from the time-averaged LES scalar and velocity fields. The dissipation is
computed indirectly from the imbalance of other terms. All terms are non-dimensionalized
using the jet diameter d, the mean jet exit velocity Ujet, and the mean scalar concentration on
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the jet exit (here Cjet = 1.0).

The profile shape of the production, dissipation, and the turbulent diffusion terms are similar
to the profile shape of the respective terms of the turbulent kinetic energy balance equation
discussed in section 3.1.2.3.2. All profiles are characterized by two peaks - the larger one lying
on the upstream side and the smaller one lying on the lee side of the jet. At the higher location
y/d = 7 the peaks on the lee side are almost vanished. The absolute magnitude of all budget
terms drops with the increasing y/d position.

3.1.3.2.3.2 Comparison with the RANS modeling results Figures 3.1.48, 3.1.49, and 3.1.50
show the individual comparison of the production, the turbulent diffusion, and the dissipation
terms evaluated from LES data with the respective terms of the scalar variance transport
equations of different RANS scalar mixing models. For the turbulence modeling here the Wilcox
1988 k-ω approach is employed and the scalar mixing models under study are: the constant
turbulent Schmidt number of σt = 1.0 with equation 2.2.116 employed for the modeling of the
turbulent scalar variance, the c′2-εc NK model, and the c′2-ωc HB model.
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The main disagreement between the data evaluated from LES and the results of RANS
modeling is the location of the peaks of all budget terms. Whereas in LES both the positive
and the negative peaks are located on the upstream side of the experimental jet centerline,
in RANS they lie further downstream on the x-axis. This difference, however, can be easily
explained by the discrepancy in the jet trajectory given by LES and the RANS 1988 Wilcox
model simulations (see figures 3.1.4 and 3.1.6). Since in the Wilcox model simulation, the jet
shear layer lies further downstream on the x-axis, the peaks of the budget terms also tend to be
shifted in this direction. The magnitudes of the modeled production and the modeled turbulent
diffusion terms are lower than those evaluated from LES. This corresponds with the trend of
underestimated turbulent mixing shown by the studied RANS approaches in section 3.1.3.1.
The profiles generated by all considered RANS modeling approaches are similar.

As discussed in section 2.2.2.2, in the scalar variance transport equation 2.2.116 used in
conjunction with the constant turbulent Schmidt number approach, the dissipation term is
typically closed using the scalar turbulent time scale obtained as τc = Rτd. Here τd is the
turbulent velocity time scale and R is the constant turbulent scalar to velocity time scale ratio
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Figure 3.1.50: Dimensionless dissipation of the turbulent scalar variance
2εcdl = 2εc · d/(UjetC

2
jet) evaluated from LES data and resulting from RANS

modeling. Equation 2.2.116 is used in conjunction with the constant σt. For
turbulence modeling in RANS k-ω 1988 approach in employed. z/d = 0.

commonly assumed to be equal R = 0.5. By contrast, in the two-equation turbulent scalar
diffusivity models, the dissipation term is modeled using the εc or the ωc equation, so τc is
obtained as τc = c′2/2εc. Figure 3.1.51 compares the scalar time scales τc evaluated from LES,
the values given by both two-equation turbulent scalar diffusivity models, and τc obtained as
τc = Rτd with τd returned by the Wilcox 1988 k-ω model. Surprisingly, though the NK model
gives slightly worse scalar mixing predictions than those produced by the HB model and the
constant turbulent Schmidt number approach (see figures 3.1.36, 3.1.37), it closely reproduces
the turbulent scalar time scale evaluated from LES (figure 3.1.51(a)). The model of Huang and
Bradshaw gives the values close to those obtained using R = 0.5 (employed in equation 2.2.116
for the constant turbulent Schmidt number calculations). Figure (figure 3.1.51(b)) shows that
R = 0.5 is a relatively good approximation of the turbulent scalar to velocity time scale ratio
in the current case. The contours of R given by the HB model show a good representation of
the LES data on this parameter. The NK model underestimates the R value.

The final study regarding the two-equation turbulent scalar diffusivity models accomplished
in this section is the evaluation of the turbulent scalar diffusivity coefficient Cλ from equation 2.2.106.
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This coefficient is a direct analog to the turbulent viscosity coefficient Cµ of the turbulent vis-
cosity models. Both the NK and the HB models employ the value Cλ = 0.11. From the
present LES data Cλ can be computed as Cλ = αt/(kτλ) where τλ is the mixed time scale. As
discussed in section 2.2.2.2, different variants for the construction of τλ exist. In the present
evaluation this time scale is computed using the formulation from the NK and the HB models,

τλ =
√

(c′2/εc)(k/ε). The profile of the resulting Cλ is presented in figure 3.1.52. The Cλ

obtained from LES fluctuates around the values slightly higher than Cλ = 0.11 and drastically
increases in the region upstream of the jet centerline. The trends observed here correspond
with the observations of refs. [117, 14, 68] in which the values higher than Cλ = 0.11 (0.14 -
0.17) were needed in order to obtain correct mixing predictions in free shear flows. Taking into
account the variability of the Cλ coefficient observed here, a conclusion can be made that either
the models not employing the constant Cλ value would be a superior choice or an improved
formulation of the τλ time scale is needed.

3.2 Confined coaxial jets

Complementing the studies regarding turbulence and mixing modeling for jet in crossflow, pre-
sented in the first part of this chapter, the second part is devoted to the analogous investigations
for the swirling and non-swirling confined jets. These configurations are widely implemented
for the primary fuel-oxidizer mixing in gas turbine combustors. Consequently, the accuracy
of the mixing predictions for such flows is of extreme importance for the reliability of the gas
turbine combustion simulations. A literature study on the previous numerical work for swirling
and non-swirling confined coaxial jets can be found in section 1.2.2. In the same section also a
more detailed motivation discussion is presented.

3.2.1 Description of the test cases and computational setup

The experimental data concerning confined jets used in this work comes from the studies of
Roback and Johnson [104] and of Johnson and Bennett [58, 59]. In ref. [104] comprehensive
measurements of the mean and fluctuating velocity and scalar field in confined coaxial swirling
jets were reported. In the studies presented in refs. [58, 59] analogous measurements for non-
swirling coaxial jets were performed. The test rig geometry and the boundary conditions in
both test cases under investigation are similar. The geometry was chosen to mimic the confined
coaxial jet combustor configuration (figure 3.2.1). The fuel is injected from the main central
inlet and is mixed with the coflow in the mixing section after a sudden expansion. In the case
of the swirling flow, the swirl is generated in the coflow channel. The swirl number which can
be defined as

S =

R0∫
0

r2UV θdr

R0

R0∫
0

rU
2
dr

(3.2.1)
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is S = 0.41. Here R0 is the radius of the swirler nozzle and U and V θ are the components of
mean velocity in the axial and tangential directions respectively. The expansion ratio of the
mixing section defined as (R/(R − h)) is 2.1. Here R is the radius of the mixing section and
h is the expansion step height. The radius of the mixing section is R = 0.061m; the length
of the main annulus is L = 0.775m; the outer radius of the main inlet is ri = 0.0153m. The
Reynolds numbers of the main inlet based on its diameter di = 2ri is Re = 15900. The Reynolds
number of the coflow based on the height of the coflow channel is Re = 23700. The bulk coflow
velocity is about 3 times higher than the bulk inner jet velocity. The mass flow of the main
jet is 0.391kg/s, and the mass flow of the coflow is 3.331kg/s. In the experiments [104, 58]
water was used as the working fluid and dye was injected to visualize the mixing of the main
jet; consequently, the density in the considered test cases is constant and the mixed scalar is
passive and conservative.

x

y

z

l

hc
R

ri

coflow

swirler

main inlet

(a) Swirling flow case [104]

x

y

z

l

hc
R

ri

coflow

main inlet

(b) Non-swirling flow case [58]

Figure 3.2.1: Schematic of the considered flow configurations.

(a) Swirling flow grid (b) Non-swirling flow grid

Figure 3.2.2: Inlet region of the computational domain. Tetrahedral elements of the grids com-
prising 60% less points than used in the present LES calculations are shown.
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All calculations were done on polyhedral unstructured adapted grids with hexahedra-layers
on the walls (figure 3.2.2). For the case of a swirling flow, the geometry of the swirler was
reproduced in the computational grids according to the geometry description given in ref. [104].
The grids are refined in the regions of high velocity gradients based on the results of preliminary
RANS calculations. The basic computational grids, on which the LES results presented below
were obtained, consisted of approximately 3.5M points. The RANS grids consisted of only
around 0.18M points, which is about 18 times less than the basic LES grids. Due to the axial
periodicity/symmetry of the considered flows, the angular grid dimension was not 2π as in LES
but π/4 with periodic boundary conditions applied on the xr-planes. The grid independence of
the RANS simulations was confirmed. Several additional grid studies were performed for LES
to exclude the possibility of large variability of the obtained results with further grid refinement.
The computational time step in the LES calculations was chosen in order to ensure maximal
CFL numbers of around 5. The temporal convergence of all presented results was confirmed in
the computations.

The mean velocity at the coflow inlets in both cases was set by a block profile according
to the experimental boundary conditions described in refs. [104, 58]. On the main inflow a
fully developed pipe flow velocity profile according to the experimental mass flow rate was
imposed. The profile was calculated in a preprocessing step by the SST k-ω model. In the
RANS computations the turbulence data on the jet pipe inlet was also set using the values
from the preprocessing pipe flow simulation. In the preliminary LES studies, two different
types of the turbulence boundary conditions for both the main inlet and the coflow were inves-
tigated. The first approach (less time-consuming) is the setting of steady-state velocity profiles
without additional fluctuations. The second approach is the prescription of the unsteady fluc-
tuating boundary conditions according to Klein et al. [69]. Here the turbulent intensities were
prescribed according to the values reported in refs. [104, 58]. The application of the latter
boundary condition led to a slight increase in the computational cost because at every time
step a new velocity field was calculated in a separate routine and then interpolated onto the
inlet planes. Since the effect of the fluctuating boundary conditions was rather small, the main
results, which required long time averaging, were obtained with the steady-state inlet velocity
profiles.

3.2.2 Velocity field modeling

3.2.2.1 Mean and fluctuating velocity field predictions

For the purpose of flow visualization, the time-averaged 2D xy-streamlines from the LES calcu-
lations for both test cases are presented in figure 3.2.3. The flow character is clearly different in
the swirling and the non-swirling case. In the swirling jet (figure 3.2.3(a)) a vortex breakdown
occurs directly after the mixing section expansion, and a large central recirculation zone is
formed. A second smaller recirculation zone is located in the corner of the mixing section. In
the non-swirling case (figure 3.2.3(b)) the flow is characterized by a long jet core and a long
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annular corner recirculation zone.

Figures 3.2.4 - 3.2.9 present the profiles of the mean and fluctuating velocities for both test
cases. The experimental profiles are given along with the results of LES and RANS simulations.
For the initial comparison of the RANS results, three of the most widespread models were
selected: standard k-ε, k-ω SST, and Wilcox 1988 k-ω. The axial measurement positions of
the presented radial profiles are indicated in figure 3.2.3.

Regarding the mean axial flow velocity Ux profiles presented in figure 3.2.4, both LES and
RANS show a good agreement with the experimental data. The differences between the LES
results and the results obtained by different RANS models are barely recognizable. LES shows a
slightly better reproduction of the velocity profile form in the swirling case at the axial position
x = 0.051m (figure 3.2.4(a)) as well as at the downstream locations in the non-swirling case
(figure 3.2.4(b)).

Figure 3.2.5 shows the profiles of the y-velocity component. The experimental data is rather
noisy and the absolute level of Uy in the non-swirling case appears to be under predicted in
all simulations. As in the Ux predictions, the differences between RANS and LES can be
observed primarily at the position x = 0.051m for the swirling flow (figure 3.2.5(a)) and at
x = 0.152 − 0.203m for the non-swirling case (figure 3.2.5(b)). LES again is slightly more
accurate than all tested RANS models. The differences in the predictions given by three
different RANS models are negligible.

When considering only the mean velocity profiles, no statement can be made about the clear

(a) Swirling flow

(b) Non-swirling flow

Figure 3.2.3: 2D xy-streamlines and positions of the presented profiles.
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Figure 3.2.4: Axial component of the mean flow velocity Ux. Swirling and non-swirling confined
jets. RANS and LES in comparison with experimental data.

superiority of LES. RANS also predicts the x- and y-velocities reasonably well at much lower
computational cost, in the current simulations at least 120 times more efficient than LES. Only
the fluctuating velocity profiles can elucidate the qualitative differences between RANS and
LES.

The radial profiles of the turbulent kinetic energy are presented in figure 3.2.6. For the
swirling flow, figure 3.2.6(a) reveals a strong underestimation of k in all RANS simulations. In
contrast to RANS, LES shows here a much better trend and under predicts the level of the
turbulent kinetic energy only slightly. In the non-swirling case (figure 3.2.6(b)), LES even tends
to overestimate k, especially in the high shear regions in two first profiles. RANS predicts k

reasonably well at the initial measurement stations but further downstream has a tendency
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Figure 3.2.5: Vertical component of the mean flow velocity Uy. Swirling and non-swirling con-
fined jets. RANS and LES in comparison with experimental data.

to under predict k as in the swirling case. Here again no significant difference between the
considered RANS modeling approaches can be observed. The Wilcox 1988 k-ω model performs
slightly worse in the non-swirling case and slightly better in the swirling case. The profiles
given by the SST and the standard k-ε models are almost identical.

Further validation of the fluctuating velocity field predictions can be found in figures 3.2.7 -
3.2.9. The trends observed in the validation of k discussed in the last paragraph are also present
here; however, there is a difference in the prediction quality of different fluctuating variables.
The variance of the axial velocity u′2x is for the most part underestimated by RANS in both
cases (figure 3.2.7). For u′2y (figure 3.2.8) this underestimation is seen only in the swirling jet
case in the first three locations, and further downstream the fluctuation levels given by RANS
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Figure 3.2.6: Turbulent kinetic energy k. Swirling and non-swirling confined jets. RANS and
LES in comparison with experimental data.

correspond well with the measured values and exceed the levels predicted by LES. For the non-
swirling case the underestimation of u′2y by RANS can be observed only at x = 0.152− 0.203m

in the regions close to jet centerline. LES over predicts u′2x in the non-swirling jet, but it shows
a high degree of accuracy for u′2x in the swirling jet and for u′2y in both cases. The shape of all
profiles is well reproduced by LES (better than in RANS). Thus, generally, LES is here again
more accurate than RANS; furthermore, fluctuations of Uy are represented by both methods
better than fluctuations of Ux.

The validation of the modeled Reynolds shear stresses u′xu
′
y is presented in figure 3.2.9.

Unfortunately, the statement about the relative quality of different approaches is here rather
hard to make due to noisy experimental data, particularly in the swirling jet case. Based on
the profiles in the locations near to jet exit, a conclusion can be made that LES data tends
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Figure 3.2.7: RMS fluctuations of the axial component of the mean flow velocity
√

u′2x . Swirling
and non-swirling confined jets. RANS and LES in comparison with experimental
data.

to lie above the experimental values of u′xu
′
y in the shear regions. This trend is seen especially

clear in the non-swirling case and much less for the swirling jet.

Considering all presented data, it is concluded that although the selected RANS models are
able to give satisfactorily predictions of the mean velocity field, the overall accuracy given by
LES is higher. The main weakness of RANS is a strong under prediction of the turbulent
kinetic energy, most clearly revealed for the swirling flow and in the downstream locations of
the non-swirling flow. The under prediction of k in the RANS simulations of the swirling jets
was also observed by other authors [118] which used different types of the RANS models. In
the RANS models used, k is directly linked to the turbulent viscosity νt and, consequently, to
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Figure 3.2.8: RMS fluctuations of the vertical component of the mean flow velocity
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u′2y .
Swirling and non-swirling confined jets. RANS and LES in comparison with
experimental data.

the turbulent scalar diffusivity αt. Thus the failure to capture k accurately can also negatively
influence the scalar mixing simulation results. This situation was already pointed out in section
3.1 for the jet in crossflow case. The consequences of the underestimation of k for the mixing
modeling in both confined coaxial jet cases will be discussed in section 3.2.3.1.

3.2.2.2 Further studies on the accuracy of RANS models for the velocity field
predictions

The profiles presented in the previous section did not reveal any significant differences in the
results of three different RANS models. This is in contrast to the jet in crossflow results
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Figure 3.2.9: Reynolds shear stress u′xu
′
y. Swirling and non-swirling confined jets. RANS and

LES in comparison with experimental data.

considered in section 3.1.2.1 where the difference between the predictions given by the standard
k-ε model, the SST k-ω model of Menter, and the 1988 k-ω model of Wilcox were quite severe.
In this subsection further studies related to the accuracy of different k-ω-type models are
presented. The aim is to gain additional knowledge about the dependence of the RANS results
in the considered cases on the various model equation terms and corrections.

3.2.2.2.1 Different variants of the Wilcox k-ω model First, the 1988, 1998, and 2006
variants of the Wilcox k-ω model (see sections 2.2.1.4 and 2.2.1.7) are compared. Figures
3.2.10 and 3.2.11 present the profiles of the x-component of the flow velocity vector and of the
turbulent kinetic energy given by these approaches for both the swirling and the non-swirling
flow. Moreover, the profiles produced by the SST k-ω model are presented. In both cases the
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Figure 3.2.10: Swirling flow. Different k-ω models. Axial component of the flow velocity vector
and turbulent kinetic energy.

later versions of the Wilcox model (1998 and 2006) show a more drastic under prediction of
turbulence than the 1988 k-ω model or the SST model. This is clearly seen not only in the
turbulent kinetic energy profiles, but for the swirling jet case also in the Ux velocity profiles
presented in figure 3.2.10(a). The central jet penetration depth is over predicted at x = 0.051m.
The next sections will present additional investigations on the reasons for such behavior of the
2006 and the 1998 k-ω models.

3.2.2.2.2 Influence of the round jet correction This section is devoted to the study of
the influence of the round jet correction term first introduced by Pope for the standard k-ε
model and later adapted by Wilcox for his 2006 and 1998 k-ω models (see sections 2.2.1.2 and
2.2.1.7). Figures 3.2.12 and 3.2.13 show for both considered flow configurations in solid lines
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Figure 3.2.11: Non-swirling flow. Different k-ω models. Axial component of the flow velocity
vector and turbulent kinetic energy.

the profiles of the x-component of the flow velocity vector and of the turbulent kinetic energy
given by the 1998 and the 2006 k-ω models of Wilcox as well as by the standard k-ε model
with the limited version of the Pope correction (described in section 2.2.1.2). Dashed lines
present the profiles obtained by the same models but without the round jet correction terms
(Pope vortex stretching measure χω or χp deliberately set to zero values). The absence of the
round jet correction increases the level of the turbulent kinetic energy and thus the prediction
accuracy for all approaches tested here. For the k-ε model this effect is much weaker than for
both k-ω models because of the limiter appearing in the correction version used for the present
calculations (see section 2.2.1.2).

The results presented in figures 3.2.12 and 3.2.13 are not surprising since, as discussed in
section 3.1.2.2.2 for jet in crossflow, the implemented round corrections always act as a sink of
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Figure 3.2.12: Swirling flow. Influence of the round jet correction. Axial component of the flow
velocity vector and turbulent kinetic energy.

turbulence reacting on the round shape of the jet nozzle. It is clearly seen, however, that even
in the absence of the round jet correction the models under consideration tend to underestimate
the turbulence. Here, as in the jet in crossflow test case, the assumption can be made that in
the considered flows probably additional physical effects not yet accounted for by the studied
models play an important role. Even the flow dynamics of the non-swirling confined coaxial jet
case studied in this chapter is quite different than the academic free round jet case considered
in sections 2.2.1.2 and 2.2.1.7. The coflow velocities in the confined coaxial jet case are higher
than the velocities of the central jet. As shown in the experimental work [59], the coflow
dominance influences the turbulent momentum and scalar diffusion characteristics in this case
(see sections 3.2.3.1.3 and 3.2.3.2.1 for a detailed discussion). This fact, as well as the effects of
swirl in the second case considered here, are not replicated by the tested modeling approaches.
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Figure 3.2.13: Non-swirling flow. Influence of the round jet correction. Axial component of the
flow velocity vector and turbulent kinetic energy.

A more suitable model has to be developed that can encode these effects in order to improve
simulation quality.

3.2.2.2.3 Influence of the streamline curvature correction In this section the influence of
the streamline curvature correction developed by Hellsten (ref. [46]) for the SST model of
Menter is studied. For the jet in crossflow test case considered earlier (see section 3.1.2.2.3),
this correction showed a promising trend by increasing the under predicted level of turbulence.
Figure 3.2.14 shows the results obtained after the application of the Hellsten correction to the
swirling confined jet case. This correction decreases the level of k near to the jet centerline.
In contrast, in the main shear layer region at x = 0.051m the level of turbulence is becoming
higher. The overall effect of the SST correction of Hellsten is mixed and no definitive statement
about its advantage or disadvantage can be made. Either an improved streamline curvature
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Figure 3.2.14: Swirling flow. Influence of the streamline curvature correction. Axial component
of the flow velocity vector and turbulent kinetic energy.

correction is needed or other physical effects should be taken into account in the modeling of
this test case. For the non-swirling case the curvature correction did not have any noticeable
effect and for this reason the results of its application for this flow are not presented.

3.2.2.2.4 Influence of the shear stress turbulent viscosity limiter In this section the in-
fluence of the shear stress turbulent viscosity limiter in the SST k-ω and of the Wilcox 2006
k-ω models is studied. An analogous study was presented in section 3.1.2.2.4 for the jet in
crossflow test case. In the jet in crossflow configuration the turbulent viscosity limiter caused
a strong νt damping in the Wilcox 2006 model. In contrast, for the flows considered in this
section the influence of the turbulent viscosity limiter is marginal for both tested k-ω models.
Only the turbulent kinetic energy profiles presented for both test cases in figure 3.2.15 show a
slight difference in the results obtained with and without limiter (all figure notations are the
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Figure 3.2.15: Swirling jet and non-swirling jet. Turbulent kinetic energy k. Influence of the
shear stress turbulent viscosity limiter.

same as used in section 3.1.2.2.4). The mean velocity profiles are not presented since for both
models the produced profiles with and without limiter are extremely similar.

3.2.2.2.5 Influence of the cross-diffusion term Figures 3.2.16 and 3.2.17 present a study
on the influence of the cross-diffusion term in the SST and the Wilcox 2006 k-ω models. An
analogous study for the jet in crossflow test case can be found in section 3.1.2.2.5. All notations
in figures 3.2.16 and 3.2.17 are the same as used in section 3.1.2.2.5. From the analysis presented
here, the same conclusions as in section 3.1.2.2.5 can be drawn about the role of the cross-
diffusion term in both models. For the Wilcox 2006 model the profiles obtained in the absence
of the cross-diffusion term are quite similar to the profiles given when this term is present. This
can be explained by the relatively small value of the cross-diffusion term constant (see discussion
in section 3.1.2.2.5). For the SST model, where the modeling constant of the cross-diffusion
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Figure 3.2.16: Swirling flow. Influence of the cross-diffusion term. Axial component of the flow
velocity vector and turbulent kinetic energy.

term is more than an order of magnitude higher than in the Wilcox 2006 model, the damping
influence of this term is much more evident. All additional conclusions on the influence of the
dissipation equation modeling constants reached in section 3.1.2.2.5 for the jet in crossflow case
are also applicable here for both confined coaxial jet flows.

Although for the coaxial flows considered in this section, as in the jet in crossflow test case,
the absence of the cross-diffusion term partly produces a favorable effect by increasing the under
predicted level of turbulence, it does not imply that this term should be generally omitted in the
modeling. Many results available in the literature [83, 84, 128] demonstrate the positive effect of
the cross-diffusion term for modeling accuracy in a large variety of cases. The elimination of this
term or its simple ad hoc adjustment in order to compensate for the under predicted turbulence
levels would reduce the model’s universality and probably cause unsatisfactory results for other
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Figure 3.2.17: Non-swirling flow. Influence of the cross-diffusion term. Axial component of the
flow velocity vector and turbulent kinetic energy.

applications. A more rigorous approach would be the incorporation of additional corrections
reacting to the flow physics specific for the considered flow types.

3.2.2.3 Evaluation of LES data

The validation of the simulation results presented in the previous sections reveals that for both
confined coaxial jet cases, as earlier for the jet in crossflow, the LES data reproduces experi-
mentally measured turbulent velocity field statistics more accurately than the RANS models
tested in the present work. Thus, additional analysis of LES data regarding the statistical
turbulence characteristics can be useful in order to isolate the sources of poor RANS model
performance. Such analysis for the jet in crossflow test case was presented in section 3.1.2.3
and will be extended in this section for both considered confined coaxial jet configurations. The
turbulent viscosity and the budget terms of the turbulent kinetic energy balance equation are
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Figure 3.2.18: Dimensionless turbulent viscosity νt/ν evaluated from LES data in two different
ways.

evaluated from the time-averaged LES data fields and compared with the respective quantities
obtained in the RANS modeling.

3.2.2.3.1 Turbulent viscosity

3.2.2.3.1.1 Evaluation from the time-averaged LES data fields First, the turbulent vis-
cosity is evaluated using the time-averaged LES data. This parameter is calculated here in
the same way as described in section 3.1.2.3.1.1 (equation 3.1.1), i.e. all components of the
Reynolds stress and of the strain-rate tensor are used and a single least-square mean turbulent
viscosity value νt is obtained. The profiles of this variable evaluated from LES data for both
jets are given in figure 3.2.18. Furthermore, a comparison is made with the turbulent viscosity
values obtained as νtxy = −u′xu

′
y/
(

∂Ux

∂y
+ ∂Uy

∂x

)
using only the u′xu

′
y Reynolds stress. This is

done to illustrate that for the cases when one particular Reynolds stress can be assumed to be
the most important one for the RANS model accuracy (here u′xu

′
y for the non-swirling case)
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Figure 3.2.19: Dimensionless turbulent viscosity νt/ν evaluated from LES data and resulting
from RANS modeling.

the mean νt evaluated using the least-square fit becomes similar to the νt obtained using this
dominant Reynolds stress (see discussion in section 3.1.2.3.1.1). In contrast, for the swirling
jet case, the evaluation based on just one Reynolds stress gives the turbulent viscosity values
quite different from those obtained by equation 3.1.1. Generally, as already discussed in section
3.1.2.3.1.1, for the essentially three-dimensional flow the evaluation based on just one Reynolds
stress raises the question on the justification of employing of this particular Reynolds stress to
obtain the characteristic νt values. Thus, here as for the jet in crossflow test case the evaluation
of νt using equation 3.1.1 is preferred since it gives a single νt value that can be directly com-
pared with the RANS modeling results. These turbulent viscosities will be used for all further
investigations presented in the next sections.

3.2.2.3.1.2 Comparison with the RANS modeling results In this section a comparison
is made between the results obtained in the LES evaluation of the turbulent viscosity by
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equation 3.1.1 and the turbulent viscosities resulting from the RANS modeling. Modeled tur-
bulent viscosities of the Wilcox 1988 k-ω model, Menter k-ω SST model, and the SST model
employing the curvature correction of Hellsten are presented in figure 3.2.19. This plot reveals
that the modeled turbulent viscosities generally tend to be lower than those obtained from
the LES data for both test cases. This corresponds with the underestimation of the turbulent
kinetic energy in all RANS models used for evaluation.

For the swirling coaxial jets the agreement between νt evaluated from LES and modeled by
RANS improves towards the end of the mixing section (at the x = 0.152m). Unfortunately this
location occurs downstream of the critically important region of the flow - the jet breakup loca-
tion and the edge of the central recirculation zone. Consequently, the quality of the turbulent
viscosity reproduction in the downstream regions does not influence the overall model accuracy
in this case. The Wilcox 1988 k-ω model shows the best agreement between the modeled νt

and the values evaluated from LES (see the x = 0.051m profile); however, the general accuracy
is still unsatisfactory

In the non-swirling case, the largest differences between RANS and LES can be observed in
the corner recirculation zone at the locations near to the jet injection point and in the shear-
layer regions. Figure 3.2.6(b) shows that in the recirculation zones LES results correspond with
the experimental turbulence data better than the results of RANS modeling. Thus, it can be
also assumed that the turbulent viscosity values obtained from the LES evaluation reproduce
the actual physical behavior in these regions better than the RANS models. Slightly higher
circumspection is needed regarding the turbulent viscosity values evaluated from LES data in
the shear layer regions. As pointed out above in the discussion on figure 3.2.6(b), the LES tends
to the over prediction of the turbulence levels in the shear layers in the present case. However,
at the locations x = 0.102m and x = 0.152m in figure 3.2.6(b) the agreement between the
experimental data and LES is very good. Consequently, the turbulent viscosities evaluated in
these locations probably represent the physical reality well. In contrast to LES, RANS at the
locations x = 0.102m and x = 0.152m (see figures 3.2.6(b) - 3.2.9) produces rather poor results,
which is in agreement with the turbulent viscosity underestimation shown in figure 3.2.19.

The negative values of the turbulent viscosity obtained by post-processing the LES data in the
centerline region at x = 0.152m for the non-swirling case (figure 3.2.19(b)) can be explained
by the specific eddy structure of the considered confined jet flow discussed in the reference
experimental paper of Johnson and Bennett [59]. This specific vortex structure, which is caused
by the dominance of the coflow velocity, and its consequences for the momentum and the scalar
transport in the present test case are discussed in detail in sections 3.2.3.1.3 and 3.2.3.2.1.

3.2.2.3.2 Turbulent kinetic energy budget

3.2.2.3.2.1 Evaluation from the time-averaged LES data Main budget terms of the exact
turbulent kinetic energy transport equation (equation 2.2.11) evaluated from the LES data in
the same manner as described in section 3.1.2.3.2 are presented in figure 3.2.20. All terms are
non-dimensionalized using the radius of the mixing section R and the mean exit velocity of the
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Figure 3.2.20: Main budget terms of the turbulent kinetic energy balance equation evaluated
from LES. All terms are non-dimensionalized using the radius of the mixing
section R and the mean exit velocity of the inner jet Ujet.

inner jet Ujet. The form of the budget terms and their spatial evolution are quite different in the
swirling and the non-swirling case. In the swirling flow budget terms two main features can be
observed: the important role of the turbulent diffusion term Dt = − ∂

∂xl

[
1
2
u′iu

′
iu
′
l

]
in the shear

layers, and the abrupt drop of the level of all budget terms in the region downstream of the edge
of the central recirculation zone (x > 0.051m). The turbulent diffusion in the swirling jet partly
exceeds the dissipation. Such dominance of the turbulent diffusion term can not be observed
in the budgets of other flows considered in this work (2D channel and round free jet shown in
the theoretical background section 2.2, jet in crossflow discussed in section 3.1.2.3.2). This fact
emphasizes the significant importance of adequately representing the turbulent diffusion term
in the RANS modeling of the swirling jets. The exceptionally low magnitude of budget terms
downstream of the jet breakup location confirms the hypothesis of the decisive importance of
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Figure 3.2.21: Dimensionless production of the turbulent kinetic energy Pdl evaluated from LES
data and resulting from RANS modeling. All values are non-dimensionalized
using the radius of the mixing section R the and Uxmax - the respective maximal
axial velocities at the extraction planes, Pdl = P ·R/U

3

xmax.

the zone upstream of the jet breakup point for the turbulence and mixing characteristics in the
swirling flow. The impact of the pressure-diffusion term is relatively small but not negligible.

The behavior of the budget terms of the non-swirling confined jet is similar to the behavior
of the respective terms of other round jet flows (free jet, jet in crossflow). Two peaks can be
observed: the first one corresponds to the shear layer between the main jet and the coflow, the
second one is located in the shear layer at the outer edge of the coflow. Turbulent diffusion
in the non-swirling confined jet, although still relatively large, does not exceed the level of
dissipation. The absolute magnitude of all terms decreases slowly in the downstream direction.

3.2.2.3.2.2 Comparison with the RANS modeling results Direct comparison between the
budget terms evaluated from LES data and the respective terms of the modeled k-equation of
different RANS approaches is given in figures 3.2.21-3.2.23. For the sake of clarity, all profiles
are non-dimensionalized using the radius of the mixing section R and the maximal axial velocity
Uxmax at the respective extraction planes.

In the swirling jet case the production term is highly underestimated by all studied models
(see figure 3.2.21(a)), and this can be explained by the underestimation of the turbulent viscosity
level by RANS. The curvature correction helps to increase the production level slightly at
x = 0.051m. That is captured in the k profiles shown in figure 3.2.14. In the non-swirling case
(figure 3.2.21(b)) the production is slightly under predicted by RANS at x = 0.051m and the
discrepancy grows further downstream.

The turbulent diffusion terms are shown in figure 3.2.22. Here for both the swirling and
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Figure 3.2.22: Dimensionless turbulent diffusion of the turbulent kinetic energy Ddl evalu-
ated from LES data and resulting from RANS modeling. All values are non-
dimensionalized using the radius of the mixing section R the and Uxmax - the
respective maximal axial velocities at the extraction planes, Ddl = Dt ·R/U
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Figure 3.2.23: Dimensionless dissipation of the turbulent kinetic energy εdl evaluated from LES
data and resulting from RANS modeling. All values are non-dimensionalized
using the radius of the mixing section R the and Uxmax - the respective maximal
axial velocities at the extraction planes, εdl = ε ·R/U
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Figure 3.2.24: Dimensionless dissipation per unit turbulent kinetic energy εdl/kdl evaluated from
LES data and resulting from RANS modeling. All values are non-dimensionalized
using the radius of the mixing section R the and Uxmax - the respective maximal
axial velocities at the extraction planes.

the non-swirling case the level of the turbulent diffusion is highly underestimated in RANS
calculations. Different explanations of this RANS modeling failure are possible. First, it can be
a consequence of the underestimation of the turbulent viscosity observed previously in figure
3.2.19. A second possible reason can be the poor choice of the turbulent diffusion model-
ing constant or potentially the entire modeling approach defined by equation 2.2.13. Further
investigations on this subject are needed.

The dissipation profiles are presented in figure 3.2.23. For the RANS k-ω models used in
this study, ε is evaluated according to equation 2.2.53. The absolute level of the dimensionless
dissipation is represented by the studied models better than the level of the production and of
the diffusion. However, figure 3.2.24 presenting the dimensionless dissipation per unit turbulent
kinetic energy shows that for the swirling case at x = 0.051m the level of the dimensionless
dissipation is over predicted by all RANS models. That indicates excessive turbulence damping
that exists in RANS and implies the necessity of improving the ω-equation for swirling jets.

The next flow quantity evaluated is the production to dissipation ratio shown in figure 3.2.25.
The discrepancy between the P/ε profiles given by RANS and by LES is much larger in the
swirling case. In the non-swirling jet P/ε values fluctuating around 1.0 are observed. These
values are very similar to the P/ε rates employed in the standard k-ε model closure (see section
2.2.1.9). In contrast, the maximum values of P/ε obtained for the swirling jet (P/ε > 4) are
much higher. This result can be an important reason of the turbulence modeling deficiencies for
this flow because all turbulence models considered here are created assuming lower production
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Figure 3.2.25: Production to dissipation ratio evaluated from LES data and resulting from
RANS modeling.
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Figure 3.2.26: Turbulent viscosity modeling coefficient Cµ evaluated as Cµ = νt · ε/k2 using the
LES data. Cµ = 0.09 is indicated by the dotted lines. Note the logarithmic scale
on the Cµ axis.
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to dissipation ratios (see discussion in section 2.2.1.9).

Finalizing the analysis devoted to the evaluation of the turbulent viscosity and of the budget
terms of the turbulent kinetic energy transport equation from LES data, the turbulent viscosity
modeling coefficient Cµ is obtained as Cµ = νt · ε/k2. Figure 3.2.26 reveals that for both test
cases studied here Cµ (or its analog βk for the k-ω modeling, see equations 2.2.53 and 2.2.55)
is highly variable. In figure 3.2.26 the logarithmic scale on the Cµ axis has to be noted. It can
be observed that in the non-swirling case Cµ fluctuates around the value Cµ = 0.09 typically
prescribed in the modeling, but for the swirling case Cµ are for the most part lower, especially
at x = 0.051m. This observation calls additional attention to the deficiencies of the dissipation
modeling in the RANS approaches since even using a higher value of the turbulent viscosity
modeling coefficient does not correct the under predicted turbulent viscosity in the swirling jet
case. Furthermore, a general conclusion can be made that for the confined coaxial jet flows
considered here, as in the jet in crossflow test case, the turbulent viscosity models employing a
variable Cµ can be useful in order to improve the RANS prediction accuracy.

3.2.3 Scalar mixing modeling

3.2.3.1 Foundational study on the mean and fluctuating scalar field modeling

3.2.3.1.1 Dependence on the turbulent viscosity model The mean radial profiles of the
dimensionless transported passive scalar concentration are presented in figure 3.2.27. For the
RANS models, the Wilcox k-ω 1988 model, the SST model, and the SST model with curvature
correction are employed in conjunction with the constant turbulent Schmidt number value of
σt = 1.0. For the swirling flow the mixing is underestimated in the RANS simulations at
x = 0.013m and at x = 0.025m. At the position x = 0.051m (at the edge of the central
recirculation zone), the mixing intensity suddenly becomes over predicted by RANS. This can
be explained by the incorrect position of the central recirculation zone in these simulations.
In the non-swirling flow, the mixing is strongly underestimated in the downstream region. A
comparison with the turbulent kinetic energy profiles, shown in figure 3.2.6, reveals that the
under prediction of the mixing occurs at the same locations where the RANS models produce
turbulent kinetic energy levels that are too low. The differences between the mixing predictions
given by different RANS models are not significant. The curvature correction of the SST model
brings a slight improvement to the swirling jet mixing predictions comparatively to both other
models. The Wilcox k-ω 1988 model underestimates the mixing at the downstream locations
of the non-swirling jet slightly more than both variants of the SST model. LES reproduces the
experimental values of C exceptionally well.

3.2.3.1.2 Dependence on the turbulent scalar transport model It was discussed previously
that the variation of the turbulent Prandtl or Schmidt number is a popular method for mixing
enhancement in RANS simulations. A study on the influence of this parameter on the mixing
predictions in confined jets is presented in figure 3.2.28. For the turbulent viscosity modeling the
Wilcox k-ω 1988 approach is chosen. Three different values of the turbulent Schmidt number
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Figure 3.2.27: Dimensionless transported passive scalar concentration. Swirling and non-
swirling confined jets. RANS and LES in comparison with experimental data.
σt = 1.0.

are applied: σt = 1.0, σt = 0.5, and σt = 0.25. Additionally, the same figure 3.2.28 shows the
results given by the c′2-ωc model of Huang and Bradshaw, which avoids the constant turbulent
Schmidt number hypothesis by directly modeling the turbulent scalar diffusivity. The results
obtained with the other turbulent scalar diffusivity models considered in this work (AKN,
NK, DWX) are not presented since, as for jet in crossflow (see section 3.1.3.1.3), preliminary
calculations did not reveal their significant superiority over HB results in the present test cases.

In the swirling flow the variation of σt only has a small effect on the mixing at the positions
upstream of x = 0.051m (see figure 3.2.28(a)). Further downstream the intensive mixing is
caused by the flow field structure rather than by the shear layer vortices, and the variation
of the turbulent Schmidt number does not have any influence on the results. It seems to be

178



Confined coaxial jets

0000
0

0 11111

0.05

x = 0.013m x = 0.025m x = 0.051m x = 0.102m x = 0.152m

C

y,m

HB

(a) Swirling flow.

experimental data

0000
0

0 11111

0.05

x = 0.013m x = 0.051m x = 0.102m x = 0.152m x = 0.203m

C

y,m

σt = 1.0 σt = 0.5
σt = 0.25c′2-ωc HB

(b) Non-swirling flow.

Figure 3.2.28: Dimensionless transported passive scalar concentration. Study on the influence
of the turbulent scalar mixing modeling approach. Swirling and non-swirling
confined jets. Wilcox k-ω 1988 used for the turbulent viscosity modeling.

more important here to predict the axial position of the central recirculation zone correctly,
which is not achieved in the present RANS turbulent viscosity simulations. In the non-swirling
case, the lower values of the turbulent Schmidt number help to increase the mixing, which was
underestimated by σt = 1.0. However, depending on the profile position different σt values
give better predictions. Furthermore, in the downstream region, as it was shown in figure
3.2.6, the level of the turbulent kinetic energy is underestimated by the underlying RANS
turbulence model. Thus, the physical eligibility of the low turbulent Schmidt number values is
questionable. As in the jet in crossflow case (see section 3.1.3.1.2), the low values of σt may
only act as an artificial method to compensate for the errors of the turbulence modeling.

The c′2-ωc model of Huang and Bradshaw (HB) does not improve the mixing predictions
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Figure 3.2.29: Turbulent scalar fluctuations
√

c′2. LES and RANS using different scalar mixing
modeling approaches. Swirling and non-swirling confined jets. Wilcox k-ω 1988
used for the RANS turbulent viscosity modeling. Equation 2.2.116 is used in
conjunction with the constant σt approach.

comparatively to the constant turbulent Schmidt number approach. As for the jet in crossflow
results considered in section 3.1.3.1.3, the HB model gives here the scalar profiles very similar to
those achieved by σt = 1.0. The errors in the velocity field modeling, discussed in section 3.2.2.1,
probably restrict the potential of the scalar mixing model to improve simulation accuracy.
Acknowledging the turbulence model deficiencies, the Huang and Bradshaw approach itself
may have some weaknesses responsible for the mixing underestimation.

3.2.3.1.3 Turbulent scalar variance and turbulent scalar fluxes For a better quantification
of the scalar mixing prediction accuracy achieved by LES and by different RANS methods, their
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Figure 3.2.30: Turbulent scalar flux in y - direction u′yc
′. LES and RANS using different scalar

mixing modeling approaches. Swirling and non-swirling confined jets. Wilcox
k-ω 1988 used for the RANS turbulent viscosity modeling.

computed scalar variance and turbulent scalar fluxes are validated against experimental data.
Figure 3.2.29 presents the profiles of the turbulent scalar fluctuations

√
c′2. As for the mean

scalar field, LES shows good agreement with experimental data and superiority over all RANS
results. Here and in all validations presented below, the RANS profiles are obtained using
σt = 1.0, σt = 0.25, and the c′2-ωc model of Huang and Bradshaw. Calculations employing
the turbulent Schmidt number of σt = 1.0 or the c′2-ωc model underestimate the RMS values
of the transported passive scalar fluctuations. This behavior is in agreement with the trend of
the mixing under prediction shown for the confined jets for both approaches. A lower value
of the turbulent Schmidt number (σt = 0.25) improves the accuracy; however, the general
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Figure 3.2.31: Turbulent scalar flux in x - direction u′xc
′. LES and RANS using different scalar

mixing modeling approaches. Swirling and non-swirling confined jets. Wilcox
k-ω 1988 used for the RANS turbulent viscosity modeling.

agreement with experimental data is still unsatisfactory and worse than for LES. Only one
weakness of LES that can be observed in figure 3.2.29 is a slight underestimation of the RMS
scalar fluctuations in the jet core region for the non-swirling case.

Figure 3.2.30 shows the turbulent scalar fluxes u′yc
′ in the (radial) y-direction. As with the

scalar variance, σt = 1.0 and the c′2-ωc model generally underestimate the scalar flux. A lower
value of the turbulent Schmidt number leads to a strong over prediction of the u′yc

′ scalar flux
in the upstream locations in both test cases, but it helps to achieve better agreement with
experimental data in the downstream locations of the non-swirling jet.

182



Confined coaxial jets

With regard to the flux in the axial direction, u′xc
′, the situation with RANS modeling is

much worse than for u′yc
′. Figure 3.2.31 shows the results for this scalar flux component.

Particularly in the non-swirling case (figure 3.2.31(b)), the flux values obtained in the RANS
post-processing as u′xc

′ = −αt∂C/∂x are not only considerably underestimated but also fail to
reproduce the negative direction of the axial scalar flux. This is caused by the fact that the
gradients of the scalar in the axial direction are small, about an order of magnitude smaller
than the gradients in the y-direction, and negative because scalar concentration is decaying
in the downstream direction. Thus according to the gradient diffusion hypothesis (equation
2.2.6), u′xc

′ scalar fluxes should be positive and about an order of magnitude smaller than the
u′yc

′ fluxes if the same values of the turbulent scalar diffusivity αt are used for their calculation.
However, the experiments of Johnson and Bennett [58, 59] and the present LES data indicate
that the axial scalar fluxes are of about the same magnitude as the radial fluxes (at some
locations even larger) and additionally are negative, i.e. in this case axial counter-gradient
transport is present [59]. The counter-gradient transport in this case is explained in the paper
of Johnson and Bennett [59] by the eddy structure associated with the momentum transport.
The mean velocity of the annular jet is higher than the mean velocity of the inner jet. Thereby,
the inner jet is accelerated by the coflow, and the large eddies in the velocity shear layer near
the centerline are “rolling”with the negative fluctuating axial velocities near the inner jet fluid.
Thus, the preferred rotational orientation of these large eddies retards the flow and results
in u′xc

′ < 0; hence, countergradient mass transport can occur∗. This phenomenon cannot be
reproduced within the chosen RANS modeling framework and will be discussed again in section
3.2.3.2.1.

In the swirling jet case, the swirl-related effects are dominant, so the flow structure is different.
However, at the positions at which a well-defined central jet core is present (x = 0.013m and
x = 0.025m) the u′xc

′ flux is largely underestimated due to low scalar gradients in the axial
direction. At the location immediately after the jet breakup (x = 0.051m) the situation changes
and the level of u′xc

′ in the central recirculation zone region is predicted by RANS better than
further upstream. LES at this position tends to overestimate the turbulent scalar flux. In the
downstream locations almost no mixing occurs in the swirling case and all scalar fluxes are
small.

In summary, significant differences between RANS and LES are evident in the scalar mixing
simulations. The assessed RANS models in general poorly represent the jet mixing in the con-
sidered cases. Additionally, as a consequence of the gradient diffusion hypothesis, the modeled
scalar fluxes in the axial direction are clearly incorrect. Altogether the RANS results, regardless
of scalar closure, are not satisfactory. LES, in contrast, despite of some discrepancies between
experiment and simulation in the c′2 profiles for the non-swirling flow or in the u′yc

′ profiles in
the regions of strong shear is able to give accurate results.

∗The two last sentences repeat the explanation from ref. [59].
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Figure 3.2.32: Dimensionless turbulent scalar diffusivity αt evaluated from LES data in two
different ways. The profiles are non-dimensionalized using the molecular scalar
diffusivity and the molecular Schmidt number.
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Figure 3.2.33: Evaluation of the turbulent scalar diffusivity for the non-swirling jet case at the
position x = 0.152m.
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3.2.3.2 LES data evaluation for scalar mixing modeling

It was discussed above that the deficiencies of the turbulent mixing modeling in RANS can
be caused by both errors of the underlying turbulent viscosity model and the errors of the
scalar mixing model. Simple variation of the turbulent Schmidt number cannot be a reliable
method for the improvement of the simulation accuracy. This leads to the question regarding
the actual turbulent Schmidt numbers in the considered test cases. Answering this question
could help to increase the understanding of whether the constant turbulent Schmidt number
approximation is justified in the considered flows and which values of σt could be optimal for
accurately representing turbulent mixing. Moreover, this knowledge can guide future turbulence
and scalar mixing modeling improvement. In order to collect such information, the accurate
LES data on turbulent scalar mixing for both considered test cases can be post-processed in the
same manner as it was done in section 3.1.3.2 for jet in crossflow configuration. Furthermore
the LES data can be used in order to gain additional information about the budget terms of
the scalar variance transport equation and about the accuracy of their representations by the
studied RANS mixing models. All these questions are addressed in the present section.

3.2.3.2.1 Turbulent scalar diffusivity

3.2.3.2.1.1 Evaluation from the time-averaged LES data fields First, the turbulent scalar
diffusivity is evaluated from the same approximation as applied in section 3.1.3.2 (least-square
fit over all scalar fluxes, equation 3.1.2). The obtained profiles of αt are shown in figure 3.2.32,
and the αt profiles evaluated from just the u′yc

′ scalar flux are also presented for comparison.
It is seen, that for the non-swirling jet case (figure 3.2.32(b)) where the scalar flux in the
y-direction can be assumed to be dominant, the variations between αt evaluated in different
ways are not strong with exception of the recirculation zone regions. The situation changes
significantly for the swirling jet case where u′yc

′ cannot be assumed to be the dominant scalar
flux direction. The differences between the least-square mean αt and αt obtained from u′yc

′

are remarkable. The same situation could be observed in the jet in crossflow turbulent scalar
diffusivity evaluation presented in section 3.1.3.2 where, as for the swirling jet case, the mixing
process does not have a clearly defined dominant direction but is highly three-dimensional.

An additional remark should be made here about the negative turbulent scalar diffusivity
values returned by the equation 3.1.2 for the non-swirling case in the centerline region (see figure
3.2.32(b)). The reason for the appearance of negative αt in this case can be easily explained by
the presence of the counter-gradient diffusion in the axial direction, discussed in the previous
section. This is illustrated in figure 3.2.33. First, the turbulent scalar fluxes and the mean
scalar gradients in the x- and the y-direction evaluated from LES are shown in figures 3.2.33(a)
and 3.2.33(b). It is clearly seen that whereas the fluxes and the gradients in the y-direction
have different signs, the fluxes and the gradients in the x-directions are negative in the region
of intensive mixing. This generates negative values of αt when evaluated as αtx = −u′xc

′/∂C
∂x

.
Moreover since the gradients in the x direction are much lower than the gradients in the y-
direction, the absolute values of αtx obtained from the u′xc

′ fluxes is about an order of magnitude
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larger than the absolute values αty obtained from the u′yc
′ fluxes (see figure 3.2.33(c)). Due

to scalar gradients a of generally small magnitude in the x-direction, αtx does not have much
influence on the αt values obtained using the least-square approximation, and it is important
only in the regions where the gradients in the y-direction become comparably small, on the jet
centerline and in the near-wall region.
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Figure 3.2.34: Comparison of the turbulent scalar diffusivity αt evaluated from LES data and
obtained in RANS modeling. The profiles are non-dimensionalized using the
molecular scalar diffusivity and the molecular Schmidt number.

3.2.3.2.1.2 Comparison with the RANS modeling results Figure 3.2.34 compares the least-
square mean αt evaluated from LES data with the values of this quantity given by the different
RANS scalar mixing modeling approaches. The underestimation of αt by both σt = 1.0 and
the c′2-ωc model in conjunction with the k-ω 1988 model for the turbulent viscosity is evident.
It can also be seen that σt = 0.25 only partly leads to the improvement in the αt predictions.
In some regions this value of the turbulent Schmidt number leads to excessively high values of
αt.

3.2.3.2.2 Turbulent Schmidt numbers The turbulent Schmidt numbers obtained using the
least-square mean turbulent viscosities and the least-square mean turbulent scalar diffusivities
evaluated from LES data are presented in figure 3.2.35. It can be observed that the actual
values of σt are far from being constant. Averaging of these turbulent Schmidt numbers over
the combustor radius can deliver a number that can be directly compared with the values
used in the RANS modeling. The black dashed lines in figure 3.2.35 indicate such averaged
σt in the presented axial locations. In both cases the values given by the LES data evaluation
fluctuate around 0.6-0.8. Furthermore, for both cases a trend of increasing averaged turbulent
Schmidt number in the downstream direction is revealed. Similar values of turbulent Schmidt
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Figure 3.2.35: Turbulent Schmidt number σt evaluated from LES data.
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Figure 3.2.36: Turbulent Schmidt number σt evaluated from LES data and obtained in the
RANS modeling.

numbers and their tendency to increase in the downstream direction was also reported in the
non-swirling confined jet LES study performed by Dianat et al.[25], in which the radial scalar
fluxes were used for the αt evaluation (in contrast to the least-square averaged αt employed in
the current study). It was shown in the previous section that the radial scalar fluxes and the
scalar gradients in the radial direction, with some exception in the jet centerline region, mainly
define the characteristic αt values in the non-swirling confined flow. This fact allowed Dianat et
al.[25] to perform their σt evaluation based on just one dominant turbulent scalar flux and one
dominant Reynolds stress to obtain the turbulent viscosity. For the swirling flow configuration
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as well as for the jet in crossflow, where no dominant scalar fluxes and Reynolds stresses can be
defined, the evaluation using the least-square mean turbulent scalar diffusivities and turbulent
viscosities proposed in the present work is clearly preferable.

Figure 3.2.36 presents the comparison of the turbulent Schmidt number values evaluated
by LES and given by the c′2-ωc model of Huang and Bradshaw. The c′2-ωc model produces
σt fluctuating around unity. This explains the similarity of the mean and fluctuating scalar
profiles given by this approach to the profiles returned by σt = 1.0 (see section 3.2.3.1). It
should be noted here that σt = 1.0 is not much higher than the values obtained in the LES
data evaluation especially in the downstream locations. Thus probably the under prediction of
the turbulent scalar mixing in both considered cases is primarily caused by the deficiencies of
the turbulent viscosity modeling and not by a poor choice of the mixing modeling approach.

3.2.3.2.3 Budget terms of the turbulent scalar variance equation

3.2.3.2.3.1 Evaluation from the time-averaged LES data For the further refinement of
the c′2-ωc model as well as for the improvements in the modeled scalar variance transport
equation 2.2.116 used in conjunction with the constant turbulent Schmidt number hypothesis,
a validation of the c′2 equation terms by their values evaluated from LES is performed. For
both confined jet cases, the budget terms of the scalar variance balance equation, obtained from
LES data in the same way as for the jet in crossflow case (see section 3.1.3.2), are presented
in figure 3.2.37. All presented profiles are non-dimensionalized using the radius of the mixing
section R, the exit bulk velocity of the inner jet Ujet, and and the scalar concentration at the
inner jet inlet (here Cjet = 1.0). For the swirling jet, the abrupt drop of the magnitude of all
budget terms downstream of the central recirculation zone can be observed. In the non-swirling
case, the level of all budget terms decreases slowly in the downstream direction and is generally
lower than the peak values for the swirling case.

3.2.3.2.3.2 Comparison with the RANS modeling results Figures 3.2.38 - 3.2.40 present the
comparison of the individual terms of the turbulent scalar variance balance equation evaluated
from LES data with the same terms modeled by RANS. For the turbulence modeling, here
the Wilcox 1988 k-ω approach is employed, and the scalar mixing models under study are
the following: the constant turbulent Schmidt numbers σt = 1.0 and σt = 0.25 with equation
2.2.116 employed for the modeling of the turbulent scalar variance, and the c′2-ωc HB model.

In the non-swirling case the production level is given almost correctly by all used models
(figure ), but in the swirling case the production in the near-centerline region is largely under
predicted by RANS (figure 3.2.38(a)). The turbulent diffusion (figure 3.2.39) is reproduced
poorly for both test cases by all used RANS approaches. The discrepancies are particularly
evident in the swirling case at x = 0.051m. In the non-swirling case, σt = 0.25 gives a good
prediction at x = 0.051m, but its quality drops further downstream. Regarding the turbulent
scalar dissipation (figure 3.2.40), in the swirling case the same trends as in the production
modeling can be observed. In the non-swirling case the dissipation level given by RANS models
is generally higher than evaluated in LES. It can be observed that for all terms studied here

188



Confined coaxial jets

00
0

0

0.05

x = 0.025m x = 0.051m x = 0.152m

LossLossLoss GainGainGain
y,m

0.30.30.3 −0.3−0.3−0.3diffusion

(a) Swirling flow.

00
0

0

0.05

x = 0.051m x = 0.102m x = 0.152m

LossLossLoss GainGainGain

0.30.30.3 −0.3−0.3−0.3

production dissipation turbulent diffusion
convection

y,m

(b) Non-swirling flow.

Figure 3.2.37: Main budget terms of the turbulent scalar variance balance equation evaluated
from LES. All values are non-dimensionalized using the radius of the mixing
section R, the mean exit velocity of the inner jet Ujet, and the mean exit scalar
concentration of the inner jet (here Cjet = 1.0).

the profiles given by σt = 1.0 and by the c′2-ωc HB model are nearly indistinguishable from
each other.

The differences between the constant turbulent Schmidt number approach and the HB model
are more noticeable in figure 3.2.41. This plot compares the scalar time scales τc evaluated from
LES, the values of this time scale given by the HB model, and the results obtained employing
the constant turbulent scalar to velocity time scale ratio of R = τc/τd = 0.5 with the turbulent
velocity time scale τd returned by the Wilcox 1988 k-ω model. The assumption of the constant
ratio between the turbulent scalar and velocity time scales is applied for the modeling of the
turbulent scalar variance dissipation ratio in equation 2.2.116. This equation is employed for
the calculation of the turbulent scalar variance in conjunction with the constant turbulent
Schmidt number approach; R = 0.5 is the value exceptionally often used in this equation. It
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Figure 3.2.38: Dimensionless turbulent scalar variance production evaluated from LES data and
resulting from RANS modeling. equation 2.2.116 is used in conjunction with the
constant σt. All values are non-dimensionalized using the same quantities as in
figure 3.2.37.
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Figure 3.2.39: Dimensionless turbulent diffusion of the scalar variance evaluated from LES data
and resulting from RANS modeling. Equation 2.2.116 is used in conjunction with
the constant σt. All values are non-dimensionalized using the same quantities as
in figure 3.2.37.
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Figure 3.2.40: Dimensionless turbulent scalar variance dissipation rate evaluated from LES data
and resulting from RANS modeling. Equation 2.2.116 is used in conjunction with
the constant σt. All values are non-dimensionalized using the same quantities as
in figure 3.2.37.
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Figure 3.2.41: Dimensionless turbulent scalar time scale evaluated from LES data and resulting
from RANS modeling. Wilcox 1988 k-ω model is used for the turbulence mod-
eling. All values are non-dimensionalized using the same quantities as in figure
3.2.37.
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Figure 3.2.42: Turbulent scalar to velocity time scale ratio R evaluated from LES data and
resulting from RANS modeling.
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Figure 3.2.43: Turbulent scalar diffusivity modeling coefficient Cλ evaluated as Cλ = αt/(kτλ)

with τλ =
√

(c′2/εc)(k/ε) using the LES data.

192



Concluding remarks

can be observed that τc given by the HB model lies slightly closer to the LES values than τc

given by R = 0.5.
Figure 3.2.42 additionally compares the values of the turbulent scalar to velocity time scale

ratio R obtained from LES data and given by the HB model. The popular constant approxi-
mation value R = 0.5 used for c′2 calculations by equation 2.2.116 is indicated as well by the
blue dashed lines. The values of R obtained from LES are generally lower than R = 0.5. The
two-equation turbulent scalar diffusivity HB model reproduces this trend correctly.

The final analysis regarding the two-equation turbulent scalar diffusivity models that is ac-
complished in this section is the evaluation of the turbulent scalar diffusivity coefficient Cλ from
the equation 2.2.106. This evaluation is presented in figure 3.2.43. As with the jet in crossflow
test case (see section 3.1.3.2.3.2, figure 3.1.52), Cλ evaluated from LES data is highly variable.
Here again a conclusion can be made that either the models not employing the constant Cλ

value would be a better choice or an improved formulation of the τλ time scale is needed for
the more accurate turbulent scalar diffusivity modeling within the two equation c′2-εc or c′2-ωc

approach.

3.3 Concluding remarks
The results presented in this chapter revealed several deficiencies of the tested widespread RANS
modeling approaches regarding the turbulence and mixing predictions in complex jet flows. A
clear trend of the turbulence and mixing underestimation was revealed for the standard k-ε and
SST k-ω models as well as for the Wilcox 1998 and 2006 k-ω models. This trend was observed
in all test cases considered in this chapter. This is in contrast to the free round jet test case
investigated earlier in chapter 2 for which the turbulence was overestimated by the standard k-ε,
SST k-ω, and Wilcox 1988 k-ω models, and the vortex-stretching related round jet correction
was necessary to improve the accuracy by introducing additional turbulence damping. It can
be concluded that, probably, in the complex jet flows considered here physical effects not yet
taken into account by the studied models are significant, for example, the streamline curvature,
the effects of swirl, and the effects of acceleration of the central jet by the coflow. These effects
should be identified and a suitable model developed in order to improve the simulation quality
and turbulence model universality.

The evaluation of LES data revealed that the RANS turbulent viscosity modeling coefficient
Cµ (or its analog βk for the k-ω type models, see equation 2.2.53) is not constant in all presented
cases and can be much larger or smaller than the value Cµ = 0.09 traditionally used in all
considered models. An introduction of a variable turbulent viscosity modeling coefficient would
probably seriously improve the results. It should be mentioned here that even the traditional
linear eddy-viscosity models often use a variable turbulent viscosity modeling coefficient in order
to improve the prediction quality in the near-wall regions (see discussion on the low-Re models in
chapter 2). Thus, introduction of an additional flow-type based prefactor function may help to
achieve a more accurate representation of Cµ in the model and should be considered in future
development. Moreover, the presented investigations on the budget terms of the turbulent
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kinetic energy transport equation revealed that improvements in the turbulent kinetic energy
dissipation term are necessary, especially in the case of the swirling flow.

Regarding the mixing predictions here further work on the model improvement is also needed.
The obtained turbulent Schmidt number profiles show high variability of this parameter in the
considered flows. Models not employing the constant turbulent Prandtl or Schmidt numbers
should be more intensively studied in the future. The two-equation turbulent scalar mixing
models assessed in this dissertation did not show significant improvement over the constant
turbulent Prandtl or Schmidt approach predictions. It should be, however, noted that all of
these models were initially developed for the near-wall heat transfer predictions; hence, more
effort should be devoted to their adjustment for other applications. The correct turbulent
Prandtl number trend prediction for the free round jet shown in chapter 2 or the respectable
prediction of the turbulent scalar to velocity time scale ratios in the cases considered in this
chapter should be viewed as promising results encouraging further investigations of the two-
equation turbulent scalar diffusivity models.

Finally, it should be mentioned here that the present data evaluation indicated some phe-
nomena that cannot be reproduced within the Boussinesq hypothesis and the gradient diffusion
hypothesis framework. A vivid example of this is the counter-gradient axial transport in the
confined coaxial jet test case discussed in sections 3.2.3.2.1 and 3.2.3.1.3 and confirmed by the
experiments of Johnson and Bennett [59]. Such phenomena can be captured only by the direct
Reynolds stress and scalar flux modeling or by the vortex-resolving methods such as LES or
hybrid RANS/LES approaches which are considered in the next chapter.

194



4 Application of alternative unsteady
vortex-resolving methods

Complementing the studies on RANS modeling and the LES data evaluation for complex
jet configurations presented in the last chapter, this chapter is devoted to Unsteady RANS
(URANS) and Scale-Adaptive Simulation (SAS) calculations of the flows under consideration.
The motivation for this study and a short review on previous attempts to apply hybrid un-
steady methods for complicated jet flows can be found in section 1.2. Both the URANS and
the SAS methods were chosen taking into account the fact that the most computational codes
used for industrial applications were historically established as RANS codes. Consequently,
URANS and “second-generation URANS”, as SAS may be called, see ref. [41], are a natural
choice since these methods require minimal modifications to existing codes. A short description
of both methods, and a discussion on their range of applicability as well as on their numerical
setup requirements can be found in section 2.3.1.2.

4.1 Scale-Adaptive Simulations (SAS)
In this section the results from applying the SST SAS model to all three main test cases of
this work are presented, and direct comparisons are made with the results of RANS and LES
calculations discussed in the previous chapter. Computational grids in the SAS were of the same
dimensions as used for the LES calculations. Technically, for a comprehensive investigation on
the advantages of using hybrid methods comparatively to LES, numerous grid studies have
to be conducted and the accuracy of both methods on the grids with different resolutions
compared. Since, for example, in the SST SAS calculations two more transport equations have
to be solved than in algebraic turbulent viscosity LES models such as the WALE model used
here, employment of SST SAS model would only make practical sense if it could give solutions
of a better quality than LES on relatively coarse grids. Such a grid study, however, would be
relatively computationally expensive and hybrid method development is not the subject of the
current work. Instead this study just aims to answer the important question if SAS would give
results of at least similar quality as LES on the grids fine enough for LES to obtain an accurate
solution.

First, the results obtained for the jet in crossflow test case are presented in figures 4.1.1
and 4.1.2. Mean velocities, turbulent kinetic energy (in SAS reconstructed as a sum of the
resolved and the modeled parts), and the mean transported scalar profiles are validated against
experimental data and compared with the results of RANS calculations employing the SST
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Figure 4.1.1: Jet in crossflow. x- and y-components of the flow velocity vector. z/d = 0. RANS,
LES, and SAS in comparison with experimental data.

model and of WALE LES. The profiles given by both unsteady methods capture the flow
physics more accurately than the SST RANS modeling results. Only small deviations can be
observed when comparing the SAS and the LES data. The quality of the predictions given by
both methods is approximately equivalent and they reproduce the experimental measurements
well. Therefore, the necessary applicability condition of SAS - the ability to produce the results
at least as accurate as LES on the same grid is fulfilled for this case, but the computational
time on the same grid was about 30% higher with SAS. Hence, additional studies are needed
to clarify if the computational time can be strongly reduced in SAS by using coarser grids.

The results for the confined non-swirling jet are presented in figure 4.1.3, and SAS here
also gives exceptionally accurate predictions that are comparable to the LES profiles. For the
swirling confined jet case (figure 4.1.4), the results obtained by SAS are slightly less satisfac-
tory than for both other configurations. Although the profiles of the mean axial velocity (figure
4.1.4(a)) and the turbulent kinetic energy (figure 4.1.4(b)) do not reveal significant difference
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Figure 4.1.2: Jet in crossflow. Turbulent kinetic energy and transported passive scalar. z/d = 0.
RANS, LES, and SAS in comparison with experimental data. σt = 1.0 is used for
the mixing modeling.

between the SAS and the LES results, the mean scalar profiles (figure 4.1.4(c)) show excessive
central jet penetration at the edge of the central recirculation zone (x = 0.051m), so a consid-
erable under prediction of the mixing occurs in this region. RANS predicts the jet breakup too
early in this case and only LES is capable of giving correct results. With further inspection
of the Ux and k - profiles (figures 4.1.4(a) and 4.1.4(b)), additional indicators of the jet over-
penetration can be recognized: a stronger velocity peak at x = 0.051m and the under prediction
of k in the jet centerline region at x = 0.025m and x = 0.051m. The deficits in the turbulence
modeling are more visible in the mean scalar profiles than in the mean velocity profiles. The
same trend could be observed earlier in the RANS results for all considered flows. That can
be explained by considering the form of the momentum and of the scalar transport equations
solved in the simulations. In the scalar transport equation (see equation 2.1.17) the modeled
turbulent diffusion term essentially governs the right hand side of the equation. In contrast,

197



Application of alternative unsteady vortex-resolving methods

experimental data

00000 00 0 11111

0.05

x = 0.013m x = 0.051m x = 0.102m x = 0.152m x = 0.203m

Ux

y,m

SST SASSST RANS LES

(a) Axial component of the mean flow velocity Ux.

experimental data

0000000

0.05

0.10.10.10.10.1

x = 0.013m x = 0.051m x = 0.102m x = 0.152m x = 0.203m

k

y,m

SST SASSST RANS LES

(b) Turbulent kinetic energy k.

experimental data

0000
0

0

0.05

11111C

x = 0.013m x = 0.051m x = 0.102m x = 0.152m x = 0.203m

y,m

SST SASSST RANS LES

(c) Transported passive scalar.

Figure 4.1.3: Non-swirling flow. RANS, LES, and SAS in comparison with experimental data.
σt = 1.0 is used for the mixing modeling.
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Figure 4.1.4: Swirling flow. RANS, LES, and SAS in comparison with experimental data.
σt = 1.0 is used for the mixing modeling.
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the Navier-Stokes equations contain also the pressure term on the right hand side (see equation
2.1.16) which makes the relative impact of the turbulent diffusion term less significant.

To provide additional insight into the nature of differences in the SAS prediction quality
in all three test cases, figure 4.1.5 presents the 2D plots of the ratio of the resolved to the
total turbulent kinetic energy kres/(kres + kmod). According to Pope [102], at least 80% of
the turbulent kinetic energy of the flow should be resolved in LES. This criterion of “80% -
resolution”can be chosen to identify the “LES”zones of the SAS solutions (see figure 4.1.5).
In all cases the jet core regions in the locations directly after injection still remain in the
“RANS”mode (i.e. more than 90% of k are modeled). For jet in crossflow and for the non-
swirling coaxial jets, the transition from the “RANS”to the “LES”mode takes about one jet
diameter (or one coflow annulus height as in the coflow of the non-swirling jet), and for the
swirling jet flow in both main jet and the coflow region the transition occurs much faster. This
can be explained by the observation that the SAS model automatically decreases the level of
the modeled turbulent viscosity if a possible flow unsteadiness is detected (see section 2.3.1.2).
Thus for the considered swirling flow on the grid employed here it may “overreact”and start
to decrease the modeled turbulent viscosity too quickly. This can lead to a situation in the
transitional region where the level of the modeled turbulence drops abruptly, but the resolved
fluctuating part is not fully developed yet. This causes an underestimation of the total turbulent
kinetic energy of the flow as shown in figure 4.1.4(b) (the total turbulent kinetic energy of SAS
has lower values than the resolved turbulent kinetic energy in LES) and, consequently, to the
over prediction of the jet penetration depth and to the under prediction of mixing. More
investigations on this hypothesis are needed in future.

It can be generally observed that the RANS/LES transition zones in all three cases studied
here are relatively short. SAS acts here almost like a zonal model switching from a “full

(a) Jet in crossflow.

(b) Non-swirling flow.

(c) Swirling flow.

Figure 4.1.5: Ratio of the resolved to the total turbulent kinetic energy in SAS kres/(kres+kmod).
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(a) RANS (b) SAS (c) LES

Figure 4.1.6: Jet in crossflow. Ratio of the modeled (SGS for LES) turbulent viscosity to the
molecular viscosity νt/ν in RANS, SAS, and LES.

(a) RANS

(b) SAS

(c) LES

Figure 4.1.7: Non-swirling flow. Ratio of the
modeled (SGS for LES) turbu-
lent viscosity to the molecular
viscosity νt/ν in RANS, SAS,
and LES.

(a) RANS

(b) SAS

(c) LES

Figure 4.1.8: Swirling flow. Ratio of the
modeled (SGS for LES) turbu-
lent viscosity to the molecular
viscosity νt/ν in RANS, SAS,
and LES.

201



Application of alternative unsteady vortex-resolving methods

RANS”to a “full LES”solution very rapidly. That explains the high similarity of the SAS and
the LES solutions for the jet in crossflow and for the confined jet. The main difference with the
zonal approaches specially designed to act in such a manner (see examples in ref. [41] and in
ref. [108]) is the absence of an algorithm for the generation of the fluctuating turbulent content
on the edges of the RANS/LES zones. In the jet in crossflow and in the confined jet case that
obviously does not influence the quality of the solution, but in the swirling case it delays the
breakup process for the central jet, thereby significantly reducing the accuracy. The advantage
of the SAS comparatively to the zonal RANS/LES models is the automatic switching from the
RANS to the LES mode which does not require any additional user input.

In addition to the presented plots of the resolved part of the turbulent kinetic energy in SAS,
figures 4.1.6, 4.1.8, and 4.1.7 compare the mean turbulent viscosity levels in all simulations. For
LES the sub-grid scale (SGS) turbulent viscosities are presented (not to be confused with the
Reynolds-averaged turbulent viscosities obtained from the resolved data fields in the previous
chapter). RANS, as expected, gives the highest levels. In the SAS simulations the νt returned
by the model is only slightly lower than in RANS in the jet cores directly after the injection
locations, but it drops drastically in the main flow regions when the SAS term comes into effect.
In LES simulations the SGS turbulent viscosity level is very low in the jet and in the coflow
pipes and only starts to grow with the shear development. In the downstream regions the
SGS turbulent viscosities given by LES can even exceed the levels of the SAS νt. One possible
explanation is the fact that LES explicitly depends on both the velocity gradients and the grid
cell size. In the current calculations the grids start to coarsen in the downstream regions, but
the velocity gradients may still remain high; hence, the νt values given by the model increase.
In SAS such explicit dependence on the grid cell size is not present, so the turbulent viscosity
levels remain low.

4.2 Unsteady RANS simulations (URANS) of jet in crossflow
Following the SAS investigations of different complex jet flows presented above, the applicability
of the unsteady RANS (URANS) method for jet in crossflow simulations is considered in the
present section. Theoretical background of this method was discussed in section 2.1.3. Practical
experience shows [28, 93] that running the RANS models in an unsteady mode and obtaining a
time-dependent solution is possible if the flow is characterized by a presence of the essentially
unsteady large-scale coherent vortical structures or periodic flow pulsations. Due to its inner
structure, jet in crossflow configuration is perfectly suited for URANS simulations. As discussed
in section 1.2, this flow pattern is characterized by the presence of at least four different types
of large-scale unsteady coherent vortices. The steady-state solutions presented in section 3.1
were achieved by the application of a symmetry boundary condition in the jet center plane.
Such a condition has a stabilizing effect on the RANS solution. If the symmetry boundary
condition is removed and the full domain is simulated (as it is done in LES), unsteady flow
motions can be resolved by URANS as well.

In the current work, the SST RANS model was applied for the URANS simulations on the
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Figure 4.2.1: Jet in crossflow. x- and y-components of the flow velocity vector. z/d = 0. SST
RANS, URANS, and SAS in comparison with experimental data.

grid with the same resolution as used in the LES and SAS presented in the previous sections.
The results of this URANS calculations are presented in figures 4.2.1 and 4.2.2. In the same
figures, the profiles obtained in RANS and SAS using the same model are also provided for
comparison. Figures 4.2.1 and 4.2.2 show that running the SST model in an unsteady mode
noticeably increases the accuracy of jet in crossflow simulations as it was already reported in
[54, 51]. The accuracy level of SAS, however, can not be reached by URANS∗.

The extent of the turbulent spectrum resolution in URANS is not as deep as in SAS. This is
illustrated in figures 4.2.3 and 4.2.4 showing the vortical structures of a different jet in crossflow
test case discussed in ref. [54] that was also considered in the framework of this dissertation.
In figure 4.2.3 the main vortices resolved in both URANS and SAS calculations are illustrated
with isosurfaces of the second invariant of the velocity gradient tensor, Q = 1

2
(‖ Ω ‖2 − ‖ S ‖2)

∗An advantage of URANS over SAS can be a potentially much lower grid resolution demand, but thorough
grid dependence studies for both methods are not the focus of this work.
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Figure 4.2.2: Jet in crossflow. Turbulent kinetic energy and transported passive scalar. z/d = 0.
SST RANS, URANS, and SAS in comparison with experimental data. σt = 1.0
is used for the mixing modeling.

where Ω is the vorticity and S is the strain-rate tensor. The positivity of Q is a criterion
for the vortex identification according to ref. [49] (see also ref. [39] for the review on the
vortex-visualization methods).

The vortical structures obtained in both URANS and SAS show a resemblance to the results
of the experimental visualizations given in refs. [38, 75] and to the LES-based visualizations
of refs. [130, 111]. All four main types of the jet in crossflow vortices indicated in figure 1.2.1
can be observed in both simulations. The horseshoe vortices are seen in figure 4.2.3 in the
main channel boundary layer upstream of the jet injection location. The shear layer vortices
are clearly seen in the same figure on the upstream side of the jet but, as further visualization
of ref. [54] reveals, are also present on the lee side. The wake vortices are especially clearly
seen in the URANS results at the downstream side of the jet (figure 4.2.3(a)). Finally, the
counter-rotating vortex pairs are visualized in figure 4.2.4.
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(a) SST URANS (b) SST SAS

Figure 4.2.3: URANS and SAS of the jet in crossflow test case considered in ref. [54]. Isosurfaces
of Q = 4 · 105s−2

(a) SST URANS (b) SST SAS

Figure 4.2.4: URANS and SAS of the jet in crossflow test case considered in ref. [54]. 2D
streamlines based on instantaneous velocity.

The flow structure given by SAS is much more intricate than in URANS. This can be observed
in both figures 4.2.3 and 4.2.4. For example, in figure 4.2.4, URANS shows the counter-rotating
vortex pair as two uniform large-scale structures in all presented slices. In the SAS visualization
of figure 4.2.4, the first slice near to the jet injection location indicates more the complex
characteristic kidney-shaped vortices. As described in the experimental work of ref. [75], this
form is typical for the early stage of a counter-rotating vortex pair formation and results from
the merge of the side arms of the upstream and the lee side shear layer vortices. This process
could not be resolved by URANS.

It should also be mentioned here that the URANS results can also differ in their resolution
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Figure 4.2.6: Ratio of the resolved to the total turbulent kinetic energy kres/(kres + kmod) in
URANS of jet in crossflow.

depth depending on the underlying RANS model. This is illustrated in figures 4.2.6 and 4.2.5
where the results of URANS employing the SST and the Wilcox 1988 k-ω models are compared.
Figure 4.2.5 shows the mean x-velocity and the turbulent kinetic energy predictions. The results
of the steady-state RANS calculations with both models are presented as well. Furthermore,
figure 4.2.6 shows the ratio of the resolved to the total turbulent kinetic energy in both cases.
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It can be observed in figure 4.2.5 that, in contrast to the SST URANS simulations, URANS
with the Wilcox 1988 k-ω model yields worse predictions than its steady-state RANS variant.
URANS over estimates the momentum diffusion. The reason is that the Wilcox 1988 k-ω model
when run in an unsteady mode increases the level of the total turbulent kinetic energy, which is
already slightly over predicted in the RANS k-ω simulations. For the SST model, which under
predicts the level of k in RANS, additional resolved turbulent kinetic energy has a positive
effect.

The magnitude of the resolved kinetic energy kres increase found in URANS depends on the
selected RANS momentum closure. Here, for example, the level of the resolved energy kres is
different for the Wilcox 1988 k-ω and the SST model. This can be seen in both figure 4.2.6 and
in figure 4.2.5(b). Figure 4.2.6 shows that the resolved part of k in simulations with the 1988
k-ω model is much less than in simulations with the SST model and both of them are much
less than the resolved part of k in SAS, see figure 4.1.5(a). This behavior can be explained
easily. Since RANS SST model a-priori tends to have smaller k values, thereby, producing
lower νt values, the unsteady motions can develop much easier than with the Wilcox k-ω model
which produces more unsteadiness damping turbulent viscosity. In this comparison the main
principle of the SAS concept, resolution of the unsteadiness achieved by decreasing νt, can
be observed. In practical applications, this can lead to the curious result that some models
producing poor quality results in steady-state simulations perform better in URANS mode
than the more accurate RANS approaches. The high dependence of the URANS results on the
employed turbulence model has to be taken into account when applying this method. Studies
on the comparative dependence of RANS, URANS, SAS, and LES jet in crossflow scalar mixing
predictions on the employed turbulent Schmidt number value were performed in the framework
of this dissertation as well. The results are published in refs. [51, 50]. These results also show
that, in contrast to LES and SAS, the URANS mixing results decisively depend on the choice
of σt.

4.3 Practical application: self-ignition simulation in jet in

crossflow

This section is devoted to a practical gas turbine combustion application of time-resolving
turbulence modeling methods. Unsteady methods are a necessity for the modeling of transient
processes like self-ignition and flame propagation. The numerical simulation of a self-ignition
process using the SAS and URANS methods was performed in the present work in order to
test the applicability of such methods for this problem type.

The test case selected is related to the injection of H2-rich fuels in the premixing duct of a lean
premixed combustion system. Such fuels introduce special challenges due to a lower autoigni-
tion temperature and lower flashback margins compared to natural gas [74]. In the present
work the particular case of a reheat, or sequential, combustion system such as ALSTOM’s
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GT24r and GT26r∗ family[62, 44] was considered. This combustion concept is characterized
by two fuel injection and energy conversion steps in two separate combustion chambers with
an expansion step in a high-pressure turbine stage in between. The mixing zone of the reheat
combustor is characterized by high gas temperatures (above 1000 K). Therefore, the ignition
delay times, which depend on temperature and on reacting species concentration, are extremely
short. Prediction of the ignition delay times as well as of the subsequent flame propagation by
numerical simulations presents a significant challenge since such simulations involve a highly
complex interplay of turbulence, mixing, and combustion modeling effects. In the present work
the influence of the turbulence modeling approach is studied.

Figure 4.3.1: Computational domain.

4.3.1 Test case description

The computations are performed for the conditions of experiments on a research reheat com-
bustor [36, 35] that were conducted at the Institute of Combustion Technology of the German
Aerospace Center (DLR) in Stuttgart. A detailed description of the test rig and of the experi-
mental setup can be found in refs. [36, 35]. For the current simulations the mixing section of
the experimental setup is the object of interest, so the mixing section is completely reproduced
in the chosen computational domain as shown in figure 4.3.1.

At the inlet of the mixing section the high temperature flue gas from a hot gas generator
enters a square duct with a cross-section of 25×25mm. The description of the hot gas generator
operating conditions can be found in [36, 35]. The temperature (above 1000K) and the O2

content (about 15%vol.) of the hot gas are typical for reheat combustors. The total hot gas
mass flow rates on the mixing section inlet are between 260− 550g/s, which leads to velocities
of above 150m/s. In the calculations a constant mass flow rate that was identical to the
experimental values was set at the mixing section inlet (with a constant velocity distribution
over the inlet cross-section). The pressure in the mixing section is 15bar. The main channel
of the mixing section includes an exhaust hot gas emission probe and a thermocouple probe
located upstream of the fuel injection. Both are reproduced in the computational domain

∗GT24r and GT26r are registered trademarks of ALSTOM Technology Ltd.
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(figure 4.3.1).

The fuel is injected from the lower wall of the mixing section via a jet in crossflow configu-
ration as shown in figure 4.3.1. The diameter of the fuel injector is 5.6mm. A carrier medium
(nitrogen) is injected together with the fuel in order to achieve the desired jet to crossflow mo-
mentum flux ratio and hence the desired penetration depth. The carrier to fuel mass flow ratios
are equal to 1 : 1 in the considered test case, and the fuel/carrier temperature is 313K. In the
simulations presented below the fuel is a H2/N2 mixture with the hydrogen concentration of
80%vol. which corresponds to the setpoint fuel blend in the autoignition experiments [36]. The
jet to crossflow momentum flux ratio in this configuration is about J ≈ 1.4. It should be noted
that in the experiment the setpoint hydrogen concentration has never been reached since the
autoignition occurred already at the lower concentrations (about 50%vol.) [36]. Furthermore in
the presented simulations the crossflow temperature is slightly higher than it was in experiment
(around 15%).

In the experiments the optically accessible mixing section parts were convectively air-cooled
and the metal parts were water-cooled. The total heat losses in the mixing section were es-
timated to be about 6% in the experiments [36]. The heat losses were accounted for in the
simulation by the application of negative heat fluxes in the respective cooled zones according
to the experimental estimation.

4.3.2 Details of the numerical simulation.

The governing equations in the current simulation differ from the form given in the theory
section (section 2.1) because of the strongly varying density and temperature due to ignition
and flame propagation. Thus, the simplifications related to the constant density assumption
can not be made. The form of the governing equations in such case can be found, for example,
in refs. [99, 43, 22]. All turbulence and mixing modeling details remain essentially the same.
To obtain the results presented below, Menter SST k-ω model is applied for both URANS and
SAS computations. Turbulent Prandtl and Schmidt numbers σt = 1.0 are used for the mixing
modeling.

4.3.2.1 Combustion modeling

For the combustion modeling in the reacting flow simulations, a finite-rate combustion model
was used in combination with an assumed joint PDF (probability density function) approach.
A detailed description of the used combustion modeling technique can be found in ref. [24].

The employed reaction mechanism is the 9-species 21-steps scheme of O’Conaire et al. [94]. It
has been validated against experimental data of ignition delay times in the ranges of 0.05− 87

bar pressure, 298 − 2700 K temperature and 0.2 − 6.0 equivalence ratio in ref. [94]. This
mechanism is widely accepted for the combustion simulations at a large range of temperatures
and pressures.
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4.3.2.2 Computational grids and time stepping

All calculations were performed on polyhedral unstructured grids with hexahedra-layers on the
walls (figure 4.3.2). The grid for both URANS and SAS had around 950 000 points (see figure
4.3.2). The grid is refined in the jet shear layer regions based on the results of preliminary
calculations using the local velocity differences criterion.

The time step in the current unsteady calculations was about 10−7s, which leads to maximal
CFL numbers of 2. All time-averaged results presented below are obtained after integrating
over about 5 residence times (5L/Ucf ).

Figure 4.3.2: Computational grid for the SAS simulations. Cross-sections in different positions
along the mixing zone of the main channel.

4.3.3 Results

The RANS calculations of the studied mixing and self-ignition arrangement performed in the
framework of this dissertation are published in ref. [55]. In the same publication also the direct
comparison of the RANS and SAS results against experimental data for a non-reacting fuel
mixture is presented. These results again demonstrate the superiority of the SAS method in
terms of accuracy over RANS. In the following the differences between the SAS an the URANS
predictions in the reacting flow simulations will be elucidated.

In both URANS and SAS autoignition simulations, a pure N2 jet was injected first into a
crossflow with the desired mass flow ratio. After establishing a fully developed turbulent flow
field under the given conditions, the pure N2 was exchanged by the N2/fuel blend mixture. From
that moment on data “snapshots”were taken in order to observe the autoignition phenomena.
Such a procedure is similar to the time-ramping of the H2 mass flow rate which was applied in
the autoignition experiments [36, 35].

In the present study isosurfaces of the OH mass fraction, YOH , were selected as the flame front
indicator. The isosurface of YOH = 0.0001 at different time instants of the SAS is presented in
figure 4.3.3 and the same time instants of the URANS simulation can be seen in figure 4.3.4. The
first data snapshots in all figures were taken shortly after the first occurrence of ignition kernels.
This time point is chosen to be a reference time point. In both SAS and URANS the ignition
starts at the beginning of the second third of the distance L between the jet injection location
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Practical application: self-ignition simulation in jet in crossflow

(a) t = 0ms

(b) t = 0.1ms

(c) t = 0.3ms

(d) t = 1ms

(e) t = 2.5ms

(f) Stable flame isosurface (time-averaged)

Figure 4.3.3: Isosurfaces of YOH = 0.0001.
Different time points. SAS.

(a) t = 0ms

(b) t = 0.1ms

(c) t = 0.3ms

(d) t = 1ms

(e) t = 2.5ms

(f) Stable flame isosurface (time-averaged)

Figure 4.3.4: Isosurfaces of YOH = 0.0001.
Different time points.
URANS.
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Application of alternative unsteady vortex-resolving methods

Figure 4.3.5: SAS results. Isosurfaces of YOH = 0.001 (red) and of U ′ = 0.15 ·U crossflow (green).

Figure 4.3.6: SAS results. Instantaneous 2D xy-streamlines and OH mass fractions on the
symmetry plane of the considered configuration.

and the end of the mixing section. Similar axial positions of the ignition kernels were reported
in the experimental study by Fleck at al. [36]. Next the flame starts to propagate downstream
along the jet shear layer as seen in both figures 4.3.3 and 4.3.4. In the SAS simulations the flame
shape is much more wrinkled than in URANS, but the characteristic times of the downstream
propagation given by both methods are similar. At the time t = 0.1ms, the flame is located
almost entirely between 1/3L and 2/3L in both cases. The same situation was observed in the
experiments [36] at the same time point.

Not only downstream but also upstream flame propagation can be observed here. This fact
becomes evident in the SAS calculations at a later point in time between 1 and 2.5ms (figures
4.3.3(d) and 4.3.3(e) respectively). Here the flame propagation upstream of the initial ignition
location can be observed especially near to the lower wall of the mixing section. This behavior
has also been observed in the experiments[36]; however, in the experiments, this phenomenon
could not be described in detail because of the limited optical access in the boundary layer
region. The present SAS simulation reveals the upstream transport of the flame in the boundary
layer. The reasons for the upstream near-wall flame propagation could not be clarified in the
present work. A possible explanation can be the transport of the flame along the complex
vortical structures formed in the jet in crossflow configuration [38] and their interaction with
the wall boundary layer.
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Concluding remarks

The hypothesis of the vortex-related flame propagation is supported by figures 4.3.5 and
4.3.6. The first one shows that the SAS isosurfaces of YOH = 0.001 are perfectly aligned with
the large-scale vortices of the flow which in this case are visualized by the instantaneous absolute
velocity fluctuation isosurface U ′ = 0.15 · U crossflow. In the second figure, where also the SAS
data are analyzed, the instantaneous xy-streamlines indicate the transfer of the flame surfaces.

Such a tight dependence of the flame front on the resolved vortical structures is probably
the main reason of the differences between the flame shapes given by SAS and by URANS (see
figures 4.3.3 and 4.3.4). In URANS, the near-wall flame is never present in the first third of
the mixing section (figure 4.3.4). However, the experimental investigations have reported the
existence of the flame in this region in the stabilized combustion phase have been reported in
the experimental investigations [36], and the flame in this upstream region is clearly seen in the
time-averaged SAS results (figure 4.3.3(f)). Therefore, the results given by the SAS method,
providing a deeper resolution of the present spatiotemporal complexity than URANS, resemble
the physical flow field better.

4.4 Concluding remarks
The results presented in this chapter show that especially SAS or similar hybrid URANS/LES
methods have great potential for unsteady gas turbine combustion simulations. In two of
three basic test cases the SST SAS model showed the same degree of accuracy as WALE LES.
Furthermore, in the self-ignition simulations accurate reproduction of the upstream and the
downstream flame propagation processes was achieved with SAS.

Two main directions of further SAS-related investigations can be identified here. The first
one are the grid dependence studies. These studies are needed to clarify the potential of SAS to
get accurate time-resolved solutions at the computational costs lower than in LES. The second
main effort should focus on a thorough study and improvement of the SAS mode switching
mechanism, from RANS to scale-resolving mode, which can be potentially a cause of the less
than optimal results obtained here in the confined swirling jet case.

Regarding URANS, it can be stated that this method also deserves its niche in the industrial
computations. Jet in crossflow simulations presented here show that in such cases, indeed,
improvement over RANS results can be achieved. However, it is also determined that URANS
cannot be the method of choice for a thorough analysis of the flow structure and furthermore
high attention has be payed to its strong turbulence and mixing model dependence.
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5 Summary and conclusions

In the present work a comprehensive study is accomplished regarding several aspects of turbu-
lence and mixing modeling in complex jet flows relevant for gas turbine combustion applications.
The results of RANS, LES, URANS, and SAS computations were compared for three different
flow types: jet in crossflow, confined swirling coaxial jets, and confined non-swirling coaxial
jets. Furthermore, RANS results obtained for two standard academic test cases (plane channel
flow and free round jet flow) are presented for the purposes of model validation and a more
complete model assessment.

The results presented for the RANS velocity field simulations employing a variety of widespread
modeling approaches reveal serious weaknesses of all models tested. The models exceptionally
often used for applied computations - the standard k-ε model and the SST k-ω model of Menter,
underestimate the turbulent kinetic energy of the flow in all complex jet test cases considered.
The 1988 k-ω model of Wilcox performs better in the jet in crossflow test case but not in the
confined coaxial jets. Moreover, additional studies reveal that the better accuracy of the Wilcox
1988 model in the jet in crossflow case originates mainly from the absence of the cross-diffusion
term in the ω-equation. The lack of the cross-diffusion term in the Wilcox 1988 k-ω approach
causes several issues in the modeling of free shear flows, as pointed out by Menter in ref. [83].
Furthermore, the validation of the turbulent viscosity profiles obtained in the Wilcox 1988 k-ω
model computations of jet in crossflow against LES data shows that the location of the turbu-
lent viscosity peaks is represented inaccurately by the Wilcox 1988 k-ω model. This issue can
be also explained by the absence of the cross-diffusion term in this RANS model. Thus, none
of three tested, most widespread, two-equation turbulence models can guarantee a satisfactory
degree of accuracy in the simulations of complex jet flows.

The analysis of various corrections often implemented in RANS two-equation modeling pro-
vides additional practically important information. The corrections attempting to reduce the
turbulent viscosity or the turbulent kinetic energy, such as shear stress turbulent viscosity lim-
iter or the round jet correction of Pope, resulted in a decrease of accuracy for three main test
cases. It should be pointed out that these corrections have been initially developed for the
free shear flows where the flow physics and the model challenges can be different from those
of the applications considered here. For example, the round jet correction of Pope applied
for the standard k-ε model or in the 1998 and 2006 k-ω models of Wilcox indeed helps to
achieve more accurate predictions for the academic test case of a free round jet. The reason is
that in the absence of the round jet correction the tested models would overestimate the level
of the turbulent kinetic energy in this free shear flow. A different situation can be observed
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Summary and conclusions

in three complex jet cases. The turbulent content of these flows is obviously influenced by
their complicated structure which is not taken into account in the standard models (streamline
curvature, effects of swirl, effects of acceleration of the central jet by the coflow). Neglecting
these effects leads to the underestimation of the turbulence level in the studied flows even by
the models not employing the round jet correction and to worse results in the presence of this
dissipation-increasing term. The curvature correction of Hellsten for the SST model shows a
positive trend by increasing the turbulence in the jet in crossflow simulations. However, further
work on refinement of this technique is needed. In the form implemented in the present work,
the correction tends to “overreact”to the curvature of a jet in crossflow that then causes a
strong over prediction of turbulent kinetic energy.

Regarding the LES results presented in this dissertation, their overall accuracy, as anticipated,
was higher than in RANS simulations, but the computational costs were more than 150 times
higher than the costs of RANS. In the present work LES was applied to collect additional
validation data for RANS and for a thorough study of the legitimacy of different RANS modeling
assumptions in the considered jet flows. The Reynolds-averaged turbulent viscosities and the
budget terms of the turbulent kinetic energy balance equation were evaluated from LES data
fields and compared to the respective turbulent quantities resulting from the RANS modeling. A
method to obtain representative values of turbulent viscosities from an overdetermined system
of the Boussinesq approximation equations using the least-square fit over all stress directions is
proposed in the present work. The value obtained from the LES data using the least-square fit
is consistent with the idea of the RANS turbulent viscosity modeling where a unique νt is used
to model all Reynolds stresses. Especially in complex tree-dimensional flows where no dominant
Reynolds stress can be determined, the turbulent viscosity estimated using the least-square fit
is much more suitable for the comparison with the RANS output than the values obtained in
the LES data evaluation using just one Reynolds stress in a certain direction.

A direct comparison of the evaluated turbulent viscosity with the results of RANS modeling
helps further to reveal the advantages and weaknesses of different models. The magnitudes
and the curve trends in the evaluated and the modeled νt profiles are mostly comparable.
The profiles evaluated from LES data show larger variability in space. For jet in crossflow, a
relatively large region of negative turbulent viscosities along the shear layer on the lee side of
the jet was revealed by evaluation of LES data. For the confined non-swirling jet, negative
turbulent viscosities were observed in the narrow region near to the jet centerline. In both
cases the appearance of such regions can be explained by the complex vortical structure and its
corresponding influence on the momentum transport discussed in the respective result sections.
These negative turbulent viscosities cannot be reproduced by the existing two-equation RANS
models which represents one of the possible sources of modeling uncertainty. Furthermore,
the evaluation of the turbulent viscosity modeling coefficient Cµ using LES data shows that
this coefficient is highly variable in all considered flows and can be sufficiently higher or lower
than Cµ = 0.09 used in all tested RANS models. This implies a probable advantage of using
the turbulent viscosity approaches which do not employ the concept of the constant turbulent
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viscosity coefficient for the modeling of considered flows.

In addition to the turbulent viscosity evaluation, the budget terms of the turbulent kinetic
energy balance equation were recovered by post-processing the LES data. A comparison with
the budget terms of the k equation of the studied RANS models is presented. Production
to dissipation ratios and the reciprocal dynamic turbulent time scales were evaluated and
compared as well. This study helped to further asses the advantages and weaknesses of different
RANS modeling approaches and their correlation with the actual trends of different budget
terms.

Another focus of the present work is the modeling of turbulent scalar mixing. Dependence
of the RANS mixing predictions on the dynamic turbulence model, turbulent Schmidt number
values, two-equation turbulent scalar diffusivity modeling approaches were investigated. Fur-
thermore, the turbulent scalar diffusivity and the budget terms of the turbulent scalar variance
transport equation were evaluated from the scalar fields given by LES. The turbulent scalar
diffusivity was obtained from an overdetermined system of the gradient diffusion hypothesis
equations using the least-square fit over all scalar flux directions. As in the study on the tur-
bulent viscosity, a comparison of the least-square profiles with the turbulent scalar diffusivity
profiles obtained using just one scalar flux in any particular direction reveals that the least-
square based evaluation has to be performed for a direct comparison with the RANS model
results.

The RANS mixing results show that the scalar mixing modeling quality is highly depen-
dent on the underlying dynamic turbulence modeling approach. Scalar profiles react to the
weaknesses of the turbulent viscosity models more sensitively than the velocity profiles. Scalar
mixing in the RANS simulations was underestimated everywhere in the regions of under predic-
tion of k and of the turbulent viscosity. Artificially decreasing the turbulent Schmidt numbers
as a method to enhance the mixing in RANS simulations was found to be without physical jus-
tification. The LES data evaluation demonstrated that the averaged turbulent Schmidt number
values in the considered flows vary in the range 0.5−0.9 and not 0.2−0.3, which are the values
commonly used to improve the mixing predictions in RANS calculations.

The turbulent Schmidt number profiles obtained in the LES data evaluation show the high
variability of this parameter. For this reason the application of the models not employing the
constant turbulent Prandtl or Schmidt number approach can be potentially favorable for the
mixing modeling accuracy. Unfortunately, the two-equation turbulent scalar diffusivity models
tested in the present work on the complex jets gave predictions close to those with a fixed
turbulent Schmidt number of 1.0. No significant improvements over the constant turbulent
Schmidt number calculations could be observed. However, it was shown that these models are
able to represent the turbulent scalar time scale more accurately than the constant scalar to
dynamic time scale ratio R = 0.5. Thus, the two-equation turbulent scalar diffusivity mod-
els show some potential to improve the mixing predictions but further intensive development
work is needed, and their refinement for the modeling of mixing in complex flows cannot be
accomplished without an accurate underlying turbulent viscosity model.
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In the final chapter of this dissertation the scale-adaptive simulation (SAS) and the unsteady
RANS (URANS) methods were applied to the considered test cases. The SAS results for the
jet in crossflow and the confined non-swirling jet were of similar accuracy as the data obtained
from LES, but for the swirling jet the accuracy of SAS was worse than that of LES. URANS
applied for jet in crossflow simulations showed less accurate results than SAS. This could be
observed not only in the non-reacting flow predictions, but also in the reproduction of the flame
front propagation in autoignition simulations. The flame front shape could not be correctly
reproduced in URANS in contrast to the SAS calculations. It was also observed that the results
of URANS, in general, are extremely dependent on the turbulence model used. From the SAS
autoignition simulations accomplished in this dissertation, a conclusion can be drawn that such
unsteady vortex-resolving methods represent a promising technique for the applied studies of
the unsteady flame propagation mechanisms. Capable of capturing the inner vortical structure
of the flow, the SAS method in the present application was able to reproduce the upstream flame
propagation phenomenon not displayed in the URANS simulations but observed in experiments.

In summary, it can be concluded that the further development of turbulence and mixing
modeling approaches should comprise the improvement of all simulation methods considered in
the present dissertation. The knowledge gained in the present work regarding the advantages
and weaknesses of several RANS models in complex jets can be used for the further refinement of
RANS modeling in gas turbine applications. Also extremely beneficial for practical applications
are the results regarding the turbulent Schmidt numbers and the statistical turbulence and
mixing fields characteristics obtained in the present work using LES. The vortex-resolving
methods, such as LES and hybrid URANS/LES, should be also further developed in order to
increase their accuracy and time-efficiency. Such methods are indispensable when a thorough
physical analysis of the flow and mixing processes is needed or fundamentally transient processes
have to be reproduced in the simulation.
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