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Abstract

In the conceptual design phase for the development of aircraft cabins the question about product archi-
tectures, spatial, mechanical and functional interfaces as well as the integration into the fuselage play a
central role. While functional aspects are in the foreground for the conceptual design of cabin systems
like the air distribution system or data systems, the architectures of the cabin modules like the stowage
bins and the entire lining panels of the passenger compartment are mainly characterized by interdepen-
dencies between physical aspects, in particular between the geometrical shape, mechanical, functional
and operational behavior as well as manufacturing aspects.

The physical interfaces between the cabin modules, the fuselage structures and the attachment brackets
are of high relevancy. Tolerance management, which defines the repercussions of tolerances already in
the early conceptual phase of product development, here accomplishes important tasks. It can provide
the required interconnection between geometrical shape, manufacturing-related deviation from nominal
size, mechanical-functional behavior and the wide field of repercussions on manufacturing – in particular
on the final assembly line.

The analysis of physical aspects of cabin architectures consequently becomes a problem exceeding
pure geometrical considerations. For this reason, methods based on a geometry paradigm for the genera-
tion and analysis of product data considering only geometrical aspects reach their limits concerning their
validity for physical architecture aspects. On the other hand, the consideration of additional product data
models in parallel is time-consuming. In particular, if several technical scenarios need to be compared,
analysis methods like tolerance calculations are often omitted, since the relation between the model-
ing time and the validity of the calculation results based on values coming from heuristic or synthetic
estimation procedures seems to be too unfavorable.

In contrast, modern model-based methods, such as for instance, graph-based design languages enable
interdisciplinary product models which are customized exactly to the needs of the respective problem. In
addition to this, approaches with design languages comprising design rules offer the possibility for a fast
and reproducible generation and modification of product data models. In the context of this dissertation
so-called cabin design languages are developed that can describe and model physical aspects of cabin
architectures including tolerancing. Key aspects of these design languages are the concepts of ‘physical
components’ and ‘physical interfaces’ along with the associated aspects for physical integration like
tolerances and installation processes.

The implementation of these design languages consists of an extensive cabin-specific class diagram
and a set of graph-based rules which together allow generating and calculating multiple variants of a
technical scenario. The classes and rules also comprise synthetic estimations for component tolerances
or masses, for example. The software-based implementation additionally provides routines which trans-
form the compiled cabin models into analysis and visualization models. Amongst other, this comprises
automatized means for the preparation of tolerance analyses, the calculation of analysis parameters in
terms of ‘metrics’, the conceptual representation of manufacturing processes or the exchange of product
data models.

viii
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A use case demonstrates the practical benefit of executable design languages for the named problem.
A cabin segment including the corresponding design rules is modeled. By means of parametrical and
topological changes, several technical scenarios including the corresponding analysis and visualization
models can be generated and evaluated. The following discussion examines the applicability of the pre-
sented method for industrial praxis.

It shows, that conceptual tolerance management in conjunction with further analysis methods and
supported by design languages can play a primary role for the industrial evaluation of physical aspects
of cabin architectures in the conceptual design phase.



Kurzfassung

In der Konzeptphase der Entwicklung von Flugzeugkabinen spielen die Fragen nach Produktarchitek-
tur, nach räumlichen, mechanischen und funktionalen Schnittstellen und nach der Integration in den
Rumpf eine zentrale Rolle. Während bei der Konzeptionierung von Kabinensystemen wie der Luftver-
sorgung oder den Datensystemen funktionale Aspekte im Vordergrund stehen, ist die Architektur der
Kabinenmodule wie die der Gepäckfächer und der gesamten Verkleidungselemente des Passagierraumes
hauptsächlich gezeichnet von wechselseitiger Abhängigkeit physischer Gesichtspunkte, insbesondere
zwischen geometrischer Gestalt, mechanischem, funktionalem und operationellem Verhalten sowie Fer-
tigungsaspekten.

Von großer Bedeutung sind die physischen Schnittstellen zwischen Kabinenmodulen, der Rumpf-
struktur und den Halterelementen. Das Toleranzmanagement, welches die Auswirkungen von Toleran-
zen schon in der frühen Konzeptphase der Produktentwicklung festlegt, übernimmt hierbei wichtige
Aufgaben. Damit kann die nötige Verbindung zwischen geometrischer Gestalt, den fertigungsbedingten
Abweichungen von Nominalmaßen, mechanisch-funktionalem Verhalten und den weitreichenden Aus-
wirkungen auf die Fertigung – speziell auf die Endmontagelinie – gezogen werden.

Die Analyse physischer Architekturaspekte von Flugzeugkabinen wird damit zu einer Problemstel-
lung, die über rein geometrische Betrachtungen hinausgehen muss. Aus diesem Grund stoßen auch
Methoden basierend auf einem Geometrieparadigma zur Generierung und Analyse von Produktdaten, die
nur geometrische Aspekte berücksichtigen, an ihre Grenzen bezüglich der Aussagekraft über physische
Architekturaspekte. Die parallele Betrachtung zusätzlicher Produktdatenmodelle dagegen ist zeitaufwen-
dig. Insbesondere wenn mehrere technische Szenarien verglichen werden müssen, wird auf Analyse-
verfahren wie Toleranzberechnungen oftmals verzichtet, da das Verhältnis zwischen der Zeit für das
Modellieren und der Aussagekraft von Rechenergebnissen basierend auf Werten gewonnen aus heuris-
tischen oder synthetischen Schätzverfahren zu ungünstig erscheint.

Moderne modellbasierte Methoden, wie beispielsweise graphenbasierte Entwurfsprachen, ermöglich-
en dagegen interdisziplinäre Produktmodelle, die genau an die Bedürfnisse der jeweiligen Fragestellung
angepasst sind. Zusätzlich dazu bieten Ansätze mit Entwurfsprachen durch die Abbildung der Entwurfs-
regeln die Möglichkeit, Datenmodelle schnell und wiederholbar zu generieren und zu modifizieren.
Im Rahmen dieser Dissertation werden sogenannte Kabinenentwurfssprachen (engl. cabin design lan-
guages) entwickelt, welche physische Aspekte von Kabinenarchitekturen inklusive Toleranzmethoden
beschreiben und abbilden können. Zentrale Aspekte dieser Entwurfsprachen sind die Begriffe „physische
Komponente“ und „physische Schnittstelle“ mit den damit verbundenen physischen Integrationsaspekten
wie Toleranzen oder Installationsabläufe.

Die Implementierung dieser Entwurfsprachen beinhaltet ein umfangreiches kabinenspezifisches Klas-
sendiagramm und ein graphenbasiertes Regelwerk, welche gemeinsam ermöglichen, verschiedene Vari-
anten eines technischen Szenarios zu erzeugen und zu berechnen. Die Klassen und Regeln schließen auch
synthetische Abschätzgleichungen, zum Beispiel für Bauteiltoleranzen oder Komponentengewichte, mit
ein. Die softwarebasierte Umsetzung sieht zusätzlich Routinen vor, welche fertig kompilierte Kabinen-
modelle in Analyse- und Visualisierungsmodelle transformieren. Dies beinhaltet unter anderem auto-
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matisierte Methoden zur Vorbereitung von Toleranzanalysen, zur Berechnung von Analyseparametern
im Sinne von „Metriken“, zur konzeptionellen Darstellung der Fertigungsabläufe oder zum Austausch
von Produktdatenmodellen.

Ein konkreter Anwendungsfall demonstriert den praktischen Nutzen ausführbarer Entwurfsprachen für
die benannte Problemstellung. Dabei wird ein Kabinensegment mitsamt den dazugehörenden Entwurfs-
regeln modelliert. Mithilfe parametrischer und topologischer Veränderungen können mehrere technische
Szenarien inklusive der entsprechenden Analyse- und Visualisierungsmodelle erzeugt und ausgewertet
werden. Mit der anschließenden Diskussion wird die Anwendbarkeit der vorgestellten Methodik in der
industriellen Praxis betrachtet.

Es zeigt sich, dass konzeptionelles Toleranzmanagement in Verbindung mit weiteren Analysemetho-
den durch die Unterstützung von Entwurfsprachen eine tragende Rolle für die industrielle Bewertung
physischer Aspekte von Kabinenarchitekturen in der Konzeptphase spielen kann.



xii CONTENTS



Chapter 1

Introduction

1



2 CHAPTER 1. INTRODUCTION



CHAPTER 1. INTRODUCTION 3

1.1 Aircraft Cabin

For many aircraft operators the cabin is the place to put a unique branding to differentiate them from other
airlines. For airline customers – the passengers – the cabin is a place where they have to remain, some-
times hours, using various cabin functions. From the airplane manufacturers’ point of view, the cabin
comprises these two aspects – and many more, looking at the entire life cycle [40, 117]. On one hand,
the ‘visible’ cabin components like lining panels, overhead bins, galleys, lavatories and stowages need
to be designed so that it is possible to adapt them to the wishes of airliners, taking operational aspects
including use, maintenance and repair into consideration. On the other hand, all safety and passenger
comfort-related aspects need to be developed and integrated, including systems which are primarily ‘in-
visible’ for the passenger like those for cabin intercommunication, air distribution and emergency oxygen
along with hundreds of meters of wires and ducts. As a whole, the product aircraft cabin needs to fulfill
all functional requirements and industrial demands such as short development and reduced manufactur-
ing lead time, thus improving cost effectiveness.

Product 
planning

Design / 
Development

Production / 
Assembly /

Test

Marketing /
Consulting /

Sales

Use / 
Consumption / 
Maintenance

Disposal

Planning and
task clarification

Conceptual 
design

Embodiment 
design

Detail 
design

Figure 1.1: The product life cycle phases in general and the product development phases in detail
according to PAHL and BEITZ [117]

Similar to other products, the life cycle of an aircraft cabin can be broken down into phases such as
conceptual design and architecture, design phase, design verification phase along with the manufacturing
phase as well as the full spectrum of deployment, operation, maintenance and disposal according to
systems engineering terminology1 [40]. PAHL and BEITZ use similar definitions and cluster product
development phases into ‘planning and task clarification’, ‘conceptual design’, ‘embodiment design’ and
‘detail design’ [117] (fig. 1.1). The focus of this dissertation lies on the development of virtual means for
improvements of the conceptual design phase2.

1Systems engineering refers to a frame set of methods for design and development processes in the context of the whole
product life cycle [40, 117]. Various methods such as customer-focused requirement-based engineering (RBE), requirement
validation, function-driven design, verification and systems engineering management are linked together to give structure to
multi-disciplinary design processes and to support complex products. Among other engineering disciplines, the aerospace sector
benefits from systems engineering methods, for example in the context of design languages (see section 1.3) or model-based
engineering (MBE) approaches (see section 1.2), while software development processes make use thereof as well [167].

2The picture shown refers to the definitions by PAHL and BEITZ [117]. It represents a very generic development process
and does not imply that the process is purely sequential. With modern development processes and planning methods like
systems engineering and concurrent engineering [31, 40] used for aircraft development, the individual steps can be adjusted for
optimizations. There can be iterative loops between or within the named phases. Moreover, by making use of digital design
methods, the evolving critical paths can be reduced or new critical paths can emerge since they are pending on the execution
length of the individual steps [57, 58, 90, 134, 136] (see also subsection 1.1.3 and sections 1.2 and 1.3).
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1.1.1 Cabin Architecture and Integration

The product architecture [30] of complex products like an aircraft or its highly integrated components
like the cabin and the related systems has a manifold influence on the product development process. In
this context, describing architectures goes beyond a pure geometrical decomposition. Integrated prod-
uct development for instance includes manufacturing-related aspects [45] as well as functional descrip-
tions [124] and design constraints from multiple domains [43].

Aircraft cabin architectures have to be substantial concepts that allow integrating the entire cabin in-
cluding all modules and systems into the fuselage by keeping the entire life cycle of the complete aircraft
in mind. To maintain an overview about the multi-disciplinary problem of architecture definition and the
related integration problems, it can be helpful to use ‘parameters’ [121, 127, 129, 159] or ‘metrics’ [43]
during the design process in order to enable qualitative architecture evaluation.

The aspects of systems engineering [31, 40, 117] and of know-how reuse [134] or knowledge-based
engineering (KBE [163]) also can come into consideration at this stage, offering a wide range of means
to support architecture development and analysis.

Aircraft architecture

Cabin, cargo and systems architecture ...

Functional
cabin and systems 

architecture

Physical 
cabin and systems

architecture

Fuselage architecture

...
Physical 
fuselage 

architecture

Spatial 
architecture

DMU

Mechanical 
architecture

tolerancing, loads,
deflections

Manufacturing 
process 

architecture
manufacturing 

planning

Figure 1.2: Facets of cabin architecture work

It is possible to distinguish between different facets of architectural work, as figure 1.2 shows. Func-
tional cabin architecture deals with the functional definition of all systems and system components that
are integrated into other cabin components or directly into the fuselage. It also has a look at the imple-
mentation of the systems into the physical product and the resulting functional and operational depen-
dencies [107].

Physical cabin architecture compromises firstly the conceptual physical definition of modules or com-
ponents fulfilling the required cabin functions3 along with the corresponding space allocation for the
integration of the modules into the fuselage. This includes the accessibility for installation, maintenance
and repair, but also the consideration of tolerances for functionality, quality and installation as well as
of deflections due to in-flight movement. Secondly, it contains the mechanical aspects of the attachment
interfaces of cabin modules and system components including all brackets and corresponding functional
tolerances, masses, loads and deflections. Thirdly, it involves considering installation processes in the

3The traditional allocation of functions on modules or components is described by the ‘ATA chapter breakdown’ [3] as
discussed in the subsequent subsection.
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final assembly line (FAL) and the linking to the major component assembly (MCA) of the fuselage
segments and thus industrialization and cost aspects.

Of course, functional and physical facets are strongly interconnected and cannot be considered inde-
pendently. As the title of this dissertation suggests, this work primarily represents a contribution on the
physical aspects of cabin architectures4.

1.1.2 ATA Chapter Breakdown

Traditionally, the aerospace sector uses the ‘ATA chapter breakdown’ [3] to describe all components of an
aircraft in a standardized way throughout the whole documentation5. This comprises a unique functional
allocation of functions and aircraft systems to ATA chapters.

Passenger supply channel
ATA25-2 with integrated  
system components from 
ATA33, ATA35, ATA44, ATA92

Center stowage bin
ATA25-2

Ceiling panel 
ATA25-2 with integrated 
lights (ATA33)

Air grid 
ATA25-2 with integrated 
lights (ATA33)

Lateral stowage bin 
ATA25-2 with integrated 
air outlets (ATA21)

Galleys and lavatories 
ATA25-3 and ATA25-4

Sidewall lining panels 
ATA25-2

Passenger seats 
ATA25-2

Figure 1.3: Some cabin modules and the related ATA chapters6

ATA53 describes the fuselage structure, for instance. The systems are documented for example within
ATA33 (lights), ATA35 (oxygen), ATA38 (water/waste), ATA44 (cabin intercommunication) and ATA50
(equipment and systems for cargo). ATA25 contains all furnishing and equipment components, and is
subdivided into ATA25-2 for the cabin compartment consisting of the lining components (ceiling and
sidewall panels, door lining, door frame lining, entrance area lining as well as special customized cabin
installations), the overhead stowage bins and the passenger supply channel hosting the integrated reading
lights, call buttons, oxygen mask dispensers and individual air nozzles. ATA25-3 refers to the galleys,
ATA25-4 to the lavatories, just to name a few (see fig. 1.3).

4Links to functional aspects will be outlined in subsection 6.2.2.
5See also http://www.s-techent.com/ATA100.htm for a detailed listing, accessed Jan 2012.
6Courtesy of EUGENE YEO, see http://www.airliners.net, photo ID: 2004016, accessed Jan 2012.

http://www.s-techent.com/ATA100.htm
http://www.airliners.net
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Even though system components usually require a focus on functional design and architecture at first,
many aspects of cabin architectures are of physical nature. Due to the diverse physical interfaces of
cabin modules and components with the fuselage, many technical boundary conditions are predefined
for physical cabin design and architectures by the fuselage architecture. For example, the frame distance
of the fuselage along with the stringers plays an important role for cabin integration, since almost any
cabin and system attachment brackets need to be fixed to them. Consequently, most lining modules or
the stowage bins within the passenger compartment have length variants, which fit exactly between the
frame bays.

1.1.3 Architecture Philosophies with a Focus on Interfaces

Industrial experience tells that the attachment brackets - and therefore the physical interface between
cabin and fuselage including its functional requirements - are taken care for only in a limited way during
the early conceptual design phase. Mostly, only load-related aspects are considered, but hardly tolerance-
related aspects with all their industrial implications. The disadvantage of this working process for cabin
architectures is, that crucial fuselage decisions may be taken without the contribution and the consider-
ation of cabin-related architecture, design and industrialization aspects. Additionally, the ATA paradigm
with a strict separation of functions allocated to decoupled physical systems limits a more integrated
functional way of thinking towards new design concepts. In particular, there are no ATA chapters for
non-physical design aspects with multi-domain interdependencies, such as ‘gaps or split lines between
components’, ‘mechanical interface functions’ or ‘installation processes’.

Nowadays, in the international business environment, the need for cost reduction comes along with the
demand for leaner and faster production with stable product quality. Consequently, the focus moves to-
wards concurrent engineering and systems engineering principles [40], where multiple components need
to be developed in parallel to shorten the development phase [31, 90, 134]. GÖPFERT [57, 58] talks of
‘modularization’ of physical products and product components as a method to reduce uncertainty during
system design. In this reading, modularization strategies are considered as auxiliary means for designers
to simplify designing and integration. Uncertainties such as for instance complexity, innovation, dynam-
ics or unclear design purpose or target definitions mean, that the system designer has a lack of knowledge
about system elements or their interrelation. PAHL and BEITZ also understand product architecture as
‘[...] a scheme showing the relationship between the function structure of a product and its physical
configuration [...]’ and move it into the context of modularization strategies7 [117].

However, these frame conditions lead to highly complex products and development processes, where
many multi-domain design and product aspects link and influence each other. In 2008, the NEW YORK

TIMES published a newspaper article with the headline ‘Parts didn’t click together [...]’ [11]. It states
how an airplane manufacturer ‘[...] has ended up with a pile of parts and wires, and lots of questions
about how they all fit together [...]’. In a different context, KRIEGEL describes a very intuitive example,
where at the beginning of the development process for an office copier the systematic consideration of
interface aspects has not taken place [89]. Thus the interfaces design has been ‘improved’ several times
until an over-constraint mechanism with tight tolerance requirements evolved, which failed at last. The
author shows, that a focus on the interface’s function during the design phase gives the chance to solve
the problem pragmatically and make it even cheaper for manufacturing.

It is obvious that it is necessary to set a focus on the physical interfaces between the modules or subsys-
tems constituting an assembly [122, 162]. HILLSTÖM investigates the interfaces between modules and
where to locate these [70]. He proposes a concept to identify optimized interface locations by embed-
ding axiomatic design principles [99, 157, 158], tolerancing methods and design for manufacturing and

7Compare also with the functional decomposition approach by PIMMLER and EPPINGER [122].
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assembly (DFMA) methods. The evolving research will be discussed a bit more in detail in section 2.4.
PRICE et al. discuss the interface behavior of complex engineering systems and show, that mechanical
interface management is linked to functional descriptions [124].

In order to describe assembly processes, SCARR [138] talks of geometry features called ‘functional
surfaces’ and clusters them according to their functional behavior into ‘provides support’, ‘transmits
forces’, ‘locates the component in the assembly’, ‘provides location for other components in the assem-
bly’ and ‘transmits motion (bearing surfaces)’. In contrast to SCARR, WHITNEY [170] proposes mapping
the interface function on abstract model aspects called ‘assembly joints’ rather than on geometry features.
He differentiates between so-called ‘mate’ and ‘contact’ joints. The first one comprises an assembly step,
where two parts are geometrically located relative to each other and certain degrees of freedom are con-
strained between corresponding geometry features. The latter one plays only a supportive role in the
assembly like an additional nut fixing two parts together after they already were located relative to each
other using mate joints.

MANTRIPRAGADA incorporates the concept of joints into a classification proposal for different as-
sembly types [104]. A so-called ‘type-I assembly’ or ‘part-defined assemblies’ means that all constraints
to locate the component are defined by the geometry features themselves. During assembly, the parts
can be put together without any need for adjustment or location moves with respect to other features. In
practical tolerancing experience, such parts are called ‘positively located parts’. Consequently, ‘type-II
assemblies’ are installation processes for which the final location of a component is not implicitly pre-
defined by its geometry, but where additional assembly joints leading to adjustment steps are necessary.
MARGUET et al. take the principle of interface functions and bring it into the context of tolerancing using
assembly analysis [106].

Also for the development of conceptual aircraft architectures the role of manufacturing and industri-
alization aspects are more and more emphasized. KRAUSE et al. link modularization with innovative
aircraft cabin integration scenarios focusing on manufacturing-related aspects [88]. ATA25 modules can
be clustered in a more functional way to optimize assembly processes using DFMA methods [61]. Over-
all, modern design or development methods offer the chance to rethink traditional development processes
and technical solutions for future cabin architectures [88].

Altogether it becomes clear that methods for conceptual interface design including functional toler-
ancing and assembly aspects are ‘key players’ for cabin architectures in terms of physical integration.
These methods offer to link conceptual physical design, quality and manufacturing for architectural con-
siderations.

1.2 Current Means for Physical Integration

There is a wide field of software methods supporting the efforts of conceptual design, architecture analy-
sis and technical interface management. This section can only provide an insight looking at well-known
engineering methods along with some methods from the field of research. All contributions to this field
related to tolerancing methods are presented later in chapter 2.

1.2.1 Spreadsheet-Based Methods

Spreadsheet-based methods can be used to collect data, to process data such as making data table cal-
culations, to exchange data and to visualize data in tables or charts. One standard software for these
applications is EXCEL8.

In particular for conceptual work, spreadsheet proves to be a simple, lean and effective way for both
scientific and industrial research [2] and conceptual engineering. For instance, the aircraft weight books

8See http://office.microsoft.com/en-us/excel/, accessed Jan 2012.

http://office.microsoft.com/en-us/excel/
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can be listed and controlled in spreadsheets or product data lists such as tolerance lists9 can be maintained
and exchanged. In a certain way, this expresses the fact, that in modern, computer-oriented world, manual
calculation and simple data handling is still an important mean to manage or even solve engineering
problems – pending on the volume of the research questions.

To extend the broad bandwidth of functions and application possibilities, macros can be implemented
in spreadsheets for (semi-)automatic data processing10.

1.2.2 Computer-Aided Design and Associated Methods

Of course, computer-aided design (CAD) plays an important role in the context of conceptual engineering
for physical integration. There are many purposes of representing geometrical product data within digital
mock-ups (DMU) during the concept phase of design, such as clash detection, checks for readiness or
completeness of design data, spatial investigations for ergonomics, human factors, manufacturability and
maintainability as well as spatial interface definitions.

There are many different CAD tools in industrial use, which can be used for the above tasks supporting
the user with graphical user interfaces (GUI). Within the context of this work, CATIA V511 has been
used, due to the fact that this tool is in wide industrial use within the aerospace sector.

Modern CAD systems provide a wide portfolio of geometry-based design and analysis methods to sup-
port computer-aided engineering (CAE) [9] linked with geometrical design data. Alternatively, external
software or integrated methods often access the 3D data representation or derived data models as a basis
for data model analysis methods. Among many others, examples for such CAE methods are:

– Finite element methods (FEM) for load and stress analysis use 3D geometry data as a basis for the
generation of finite element (FE) meshes [85].

– The same applies to geometry preprocessing for computational fluid dynamic (CFD) methods [16].

– Computer-aided manufacturing (CAM) approaches can use the product data tree and the geometry
data to model assembly processes [10, 14, 130].

– Methods for computer-aided tolerancing (CAT) constitute one central topic of this dissertation and
will be described in detail in chapter 2.

– Integrated CAD applications within frameworks for preliminary aircraft design methods, for KBE
and for graph-based design languages will each be outlined below.

CAD and associated methods are usually based on a ‘geometry paradigm’ [16, 134]. This means that
the model structure consists of geometry elements and describes geometrical or physical entities. It is
not foreseen to implement design aspects beyond physics or geometry independently from geometrical
objects. Workaround solutions are possible, where virtual geometry components are created to represent
more abstract product data, literally acting as a ‘carrier bag’ for non-geometrical data or parameters.

1.2.3 Preliminary Aircraft Design Methods

Traditional preliminary aircraft design methods like those put forth by RAYMER [127], ROSKAM [129]
or TORENBEEK [159] use combinations of empirical, semi-analytical and analytical formulas and corre-
lations to make iterative estimations for design parameters or metrics. This implies the generation and use
of databases to feed the estimations with interpolations and extrapolations [121]. Nowadays, there is a

9See section 2.6 and subsection 5.1.5.
10E.g., within subsection 5.1.6 spreadsheet-based macros are used to visualize installation process charts.
11See http://www.3ds.com/de/products/catia, accessed Jan 2012.

http://www.3ds.com/de/products/catia
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tendency towards computer-based methods to support iterative, multi-disciplinary design and to speed up
or automatize processes for modeling and designing, as the tools PrADO [66] or PreSTo [2] demonstrate.

LEDERMANN [96, 97] proposes an associative-parametric method for preliminary aircraft structure
design. The hierarchical model structure is based on CAD data and offers parametric links between dif-
ferent dynamic objects. Weight, mass, cost and aerodynamic analyses can be conducted. The method
has is applied and extended for preliminary weight estimations for preliminary fuselage and wing de-
sign [83, 116, 168].

The work presented by ARMSTRONG, MAWHINNEY et al. [9, 110, 111] focuses on the implementa-
tion of simplified, parameterized geometry handling for the interaction between CAD and CAE. ARM-
STRONG presents 3D modeling requirements for different applications, proposes feature-based design
methods and derives a simulation model for preliminary aircraft design purposes [9]. MAWHINNEY in-
troduces a geometry-based approach to analysis integration for conceptual aircraft design [111] using
analysis-driven design principles [110], for which an integration framework for conceptual aircraft de-
sign based on systems engineering principles has been developed [44, 109, 125]. Various geometry-based
design disciplines are linked benefiting from the aforementioned interactions between CAD and CAE.

VAN TOOREN et al. put focus on the research about KBE methods [163] for preliminary aircraft
design [92, 161]. The concept foresees so-called ‘high-level primitives’, which are knowledge data ob-
jects [146]. They support a fast compilation of aircraft variants using a knowledge-based ‘multi model
generator’ for multi-disciplinary design analysis and optimization [91, 145].

1.2.4 Industrialization and Cost Aspects

The noted methods for DFMA [61, 88] and for assembly modeling [104, 170] or CAM [10, 14] stand
for the necessity to link designing with questions concerning industrialization and cost. CURRAN [32]
and WATSON [166] represent contributions to link preliminary aircraft design methods with a parameter-
based aircraft design cost model. PAHL and BEITZ [117] as well as EHRLENSPIEL [46] show more in
general, that modern engineering needs to consider cost-related aspects.

Manufacturer’s total cost

Life cycle cost

Manufacturing cost

Cabin  
manufacturing cost

aggregation

Cabin module  
purchasing cost

model-based cost synthesis

FAL  
installation cost

model-based cost synthesis

Figure 1.4: Cost classification according to EHRLENSPIEL [46] (left side) and potential breakdown
of cabin manufacturing cost according to PAHL and BEITZ [117] (right side)

For this purpose, EHRLENSPIEL proposes a concept which distinguishes between ‘manufacturing
cost’, the ‘total cost’ for the manufacturer and ‘life cycle cost’12 [46], as the left-hand side of figure 1.4

12The corresponding original German terms according to EHRLENSPIEL are ‘Herstellkosten’, ‘Selbstkosten’ and ‘Lebens-
laufkosten’ [46] (translations by the author of this dissertation).
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shows. The first one comprises all product-related material and manufacturing costs. The total cost is the
sum of the manufacturing cost and other cost, which cannot be assigned directly to the product, such as
administration or overhead cost, for instance. The life cycle cost summarizes all costs from development,
production and use. For physical integration and architecture analysis tasks, the cost of primary interest
is the recurring manufacturing cost [117], which can be decomposed in a simplified way as sum of the
purchasing cost for the cabin modules and its subcomponents and of the cost for the installation efforts in
the FAL (right-hand side of fig. 1.4). The mentioned literature can be used as reference for cost and price
prediction methods as well. Section 2.5 also mentions some cost synthesis methods related to tolerance
synthesis and quality assessment.

1.2.5 Model-Based Engineering

Model-driven architectures (MDA) come from software design as approach to handle software complex-
ity [60, 136]. Flexible and adaptable data models13 are used to represent and group aspects of software.
POOLE [123] describes visions, standards and emerging technologies from the field of MDA which
make use of object-oriented programming means [128], such as the differentiation between the class and
instance model level (fig. 1.5).

modeling languages

object-oriented languages

procedural languages

assembler languages

machine code

time

ab
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ct
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n

Figure 1.5: Modeling languages supporting model-based engineering approaches
(illustration according to REICHWEIN [128] and RUDOLPH [136])

Model-based approaches for software engineering problems conduct model transformations [33] to
get from one model to another. It is possible to classify the source-target relationship of these transfor-
mations into rules which update, extend, delete or replace the data source by a target. Transformations,
which generate code or text as target are called ‘model-to-code transformations’ or ‘model-to-text trans-
formations’. If both the source and the target are models, the transformation in between is called ‘model-
to-model transformation’. The source and the target model objects do not stringently need to be instances
of the same class model. Among various others, the Unified Modeling Language (UML) can be used for
formal model representation [15, 128]. The Systems Modeling Language (SysML) basically is a subset
of the UML14 with special extensions for systems engineering purposes [167].

13STACHOWIAK [155] presents a wide historical background for modeling or model-building, and also provides a frame set
for modeling approaches in general. He states that models follow three attributes, which are the attribute of reproduction, the
attribute of abbreviation and the attribute of pragmatical purpose (translations by the author of this dissertation). In order to
understand a model, it is not enough to be able to answer the question ‘of what is the model reproduced’. Since every model
serves a purpose, answers to the questions ‘for whom, when and for which purpose in relation to its pragmatical purpose is the
model made’ are required, too.

14See http://www.omg.org/spec/UML/ and http://www.omg.org/spec/SysML/ for specifications, accessed Jan 2012.

http://www.omg.org/spec/UML/
http://www.omg.org/spec/SysML/
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Nowadays there is the tendency to make use of software modeling methods to build and transform en-
gineering data models. Such approaches are called model-based engineering (MBE) [7, 136, 160]. This
knowledge transfer opens a wide field of applications for modern engineering within all product develop-
ment phases [160]. One major advantage is the possibility to overcome the geometry paradigm [16, 134]
and exchange it with a more abstract and more flexible model-based paradigm that can bring ‘designing’
closer to the modern understanding of multi-disciplinary architecture. Of course, geometry-related CAE
aspects are implemented within model structures for physical architectures.

The application possibilities of the MBE paradigm are manifold. PEAK et al. show examples for me-
chanical system models and simulation in SysML [119, 120], ABULAWI demonstrates the usage of
SysML to support CAD modeling for preliminary aircraft design [1] in the context of the already men-
tioned tool PreSTo [2]. MEHLITZ discusses how aerospace system models in UML can be checked and
verified with Java routines [115]. As ARNOLD and RUDOLPH [10] as well as BERGHOLZ [14] show, one
tendency of CAM also goes towards model-based design methods. LAUSCHER et al. [95] use SysML
to support technical specifications, in this case for railway engineering. Requirement-based engineer-
ing (RBE) methods like the ‘requirement modeling framework’ from eclipse15 or DOORS16 open the
field to requirement and function specifications. In particular for aircraft systems-related architecture as-
pects, suitable requirement preprocessing and functional approaches can form an important part of archi-
tecture design and analysis [107]. Commercial simulation modeling software like MATLAB Simulink17

for system simulation can be of help for such applications. The entire context of UML-based design
languages will be discussed in the subsequent section 1.3.

CAD data and design or product data in general is often embedded in product data management (PDM)
and product life cycle management (PLM) systems [47] with the intention to standardize product data
and to make it available in a consistent manner. Where possible, CAE methods such as CAD or CAM
access such product databases and benefit from model-based aspects. However, PDM and PLM systems
aim at the detailed design aspects during the product development phase rather than on the creation
of concept phase models. In the context of functional preprocessing methods for geometry-based mod-
els, the commercial software tool METUS (Management Engineering Tool for Unified Systems) can be
named. It visualizes the overlapping of the technical product structure and corresponding organizational
structures [57, 58]. The tool is capable of separating the physical and functional product structures. It can
map the organizational structure accordingly to the engineering object in order to optimize development
processes around a specific development project.

Also KBE approaches [163] can follow model-based approaches. For instance, the reuse of knowledge
is a key aspect of design languages [134]. RUDOLF copes with KBE for assembly planning in the ‘digital
factory’ using the automotive sector as example [130]. The KBE methods for preliminary aircraft design
from VAN TOOREN et al. have already been mentioned. Some further KBE contributions for particular
tolerancing-related applications will be named in section 2.4.

15See http://eclipse.org/rmf/, accessed Feb 2012.
16See http://www.ibm.com, accessed Jan 2012.
17See http://www.mathworks.de/products/simulink/index.html, accessed Jan 2012.

http://eclipse.org/rmf/
http://www.ibm.com
http://www.mathworks.de/products/simulink/index.html
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1.3 Design Languages

Modern approaches for designing making use of design languages simulate conceptual design processes.
ANTONSSON and CAGAN provide a good overview on design languages, distinguishing three different
types [8]:

– String-based design languages, e.g., L-systems as used by LINDENMEYER [8]

– Shape-based design languages, e.g., 3D shape grammars as used by HEISSERMAN [67, 68],
CHAU [24] or CAGAN [8]

– Graph-based design languages, e.g., grammar-based design by SCHMIDT and CAGAN [141, 142]
or graph-based design languages by RUDOLPH [90, 134]

In general, engineers or designers use the concept of ‘design rules’ with a dedicated ‘purpose’, which
achieve a certain ‘effect’ on the design object [99]. There is much research about the correlation between
design processes and human cognition. For instance, the mentioned conference series DCC [56] as well
as GEDENRYD [53] express this field of investigations. In this context, design languages are means for
computer-supported engineering design with the intention to automatize formal steps of designing and
enabling simple reuse of know-how [8, 134]. For all of the mentioned design language approaches,
software implementations have been developed accordingly [8, 24, 67, 90, 134, 142].

Graph-based design languages according to RUDOLPH share a certain level of abstraction regarding the
design objects, which are clustered in a ‘meta language’ [134] or ‘class diagram’ [128] for syntactic
definitions of the corresponding classes or the ‘vocabulary’ [136] (see fig. 1.6). The substantives of the
respective engineering domain are the candidates for the classes, which can have attributes describing
the characteristics of the classified object.
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Figure 1.6: Graph-based design languages extending the model-based paradigm
(illustration according to RUDOLPH [136])

In comparison to convenient model-based approaches, graph-based design languages additionally en-
rich data models with ‘graph-based rules’ [90], constraint processing techniques [136] and analysis ex-
tensions for engineering purposes [75], as figures 1.6 and 1.7 show. The vocabulary along with the design
rules constitute a so-called ‘semantic hull’ [135], for which syntactic correctness can be guaranteed and
validated.
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Figure 1.7: Generic working process of design languages according to RUDOLPH [136]

The rules18 represent model transformations to build up data models incrementally. Within the left-
hand side (LHS) of a rule, objects or object ‘patterns’ [134] of the design graph are traced. The right-hand
side (RHS) specifies how to modify the design graph. The model transformations can comprise parameter
changes of existing objects and their attributes, the deletion and replacement of existing objects or the
generation of all-new objects.

The kind and sequence19 of the rules is considered a modeled copy of the real design process. Decision
nodes within the rule sequence allow to develop the design according to predefined or iterative parame-
ters. Abstractions on class level allow generalizing rules in order to make them repeatable for multiple
applications. Different rules and rule sequences may lead to the same or similar models: the ‘effects’ can
be achieved with different ‘rules’ [99]. A so-called ‘design graph’ [90] – the graphical representation of
the design data – evolves during the execution of the design rules20.

After the execution of the design rules, the design models need to be interpreted in the pragmatic
context [135], as figure 1.7 sketches. At first, this can be accomplished by comparing different model-
ing results manually. Alternatively, further model transformations can convert the design graph data into
more convenient data formats, which are more ‘readable’ or ‘interpretable’ for design engineers. These
can be, for example, CAD models [16], spreadsheet visualizations, formal mathematical models or sim-
ulation models [128]. By now, various examples for case-specific software model interfaces are available
as well, such as for automotive design [62], integrated satellite design [59, 63, 64, 139], integrated air-
plane design [15, 16], FEM analyses [85, 86, 87], design and development for exhaust aftertreatment
systems [164], digital factory models [10] or initial work on aircraft cabin tolerance analysis [93].

18Refer to fig. 1.9 for an example of a design rule visualized by an UML object diagram [75].
19Refer to fig. 1.8 for an example of a design rule sequence visualized by an UML activity diagram [75].
20Fig. 1.10 shows an example for the design graph before and after the execution of a design rule. Since the design graphs

shown later within this work get more and more complex (see figures 5.26, 5.30, 5.39 and 5.44), a simplified representation of
the UML instances has been selected instead of conventional UML visualization formats. This simplified visualization scheme
is already applied in fig. 1.10: each bullet within the graph represents a UML instance, the interconnecting lines correspond to
data interfaces between the UML instances.
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RUDOLPH embeds design languages in the context of similarity mechanics [133] and sets the basis
for continuous research on graph-based design languages following a model-based paradigm [136]. He
uses the free development platform eclipse21 for rule-based compilation of multi-domain models with
the software DesignCompiler 43 [75] to implement the generic working process as shown in fig. 1.7.

The modeling language UML is used as the representation format of these design objects [15, 16,
128]. Therefore software plugins are developed to provide specific functions like a rule editor, activity
diagrams, graph visualizations or constraint processing techniques [75, 133, 136]. These functions enable
the user to tailor-made the design languages including the vocabulary, the rules, the rule sequence and
the model transformation to engineering analysis models. Remarkable results already demonstrated the
applicability for various design problems [5, 63, 139].

Due to the flexible modular plugin architecture, it is possible to extend the functionalities of design
languages by further problem-specific software plugins. For instance, the plugins can be used to perform
model-to-model transformations from the design language models (saved in UML format) into software-
specific data models. The research work presented by this thesis makes use of the concept, as it will be
demonstrated in chapter 5.

Figure 1.8: Design language rule sequence including a start node (small black dot),
an end node (big black dot), rules (boxes) and a decision node (rhombus)

Fig. 1.8 shows a rule sequence visualized by an UML activity diagram. The rule sequence creates a
model of an assembly consisting of three components22. With the first rule (‘Axiom’), the three compo-
nents are added to the model, followed by a decision node (the rhombus in fig. 1.8) deciding about how
many target tolerances are added to the model. The decision is pending on a parameter which has been
set within the first rule.

The rule ‘PKC in Z’ adds a target tolerance called ‘PKCZ’ to the model, which is shown in figures 1.9
and 1.10. Within the rule, two UML objects representing two components of the assembly are searched
for. Once found, additional UML objects are created and linked, representing physical edges of the two
components as well as a gap in between23. The subsequent rules enrich the model with tolerancing data.

Once the rules shown in figure 1.8 are executed, the resulting UML data model can be transformed
into tolerance analysis models making use of software plugins developed in the context of this work24.
Due to the parametric and modular setup of this design language, multiple parametric and topological
variants could be compiled and calculated within seconds.

21See http://www.eclipse.org, accessed Jan 2012.
22The tolerancing-related data of the model will be described in detail in chapter 2. Refer to fig. 2.1, page 20, for an first

impression of the three components represented in the design language model.
23Although a gap is no physical object, it can be modeled and processed by design languages. This phenomenon shows the

flexibility of design languages compared to CAD models following a geometry paradigm as discussed in subsection 1.2.2
24See subsection 5.1.1

http://www.eclipse.org
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Figure 1.9: Rule ‘PKC in Z’. In the LHS two UML objects (representing two components of an
assembly) are searched for, in the RHS new objects are created and linked to them.

Figure 1.10: Abstract visualization of the design graph before and after the execution of the rule
‘PKC in Z’ as shown in fig. 1.9. Each bullet represents a UML instance, the inter-
connecting lines correspond to data interfaces between the UML instances. Instance
‘.*:BlockA’ from the LHS of fig. 1.9 corresponds to the light blue bullet, ‘.*:BlockB’
corresponds to the green one, ‘PKCZ:Positional_Tolerance’ from the RHS corre-
sponds to the lower red one on the RHS.
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2.1 Background and Terminology

Any measurable geometrical feature faces deviations from its specified nominal geometry. This im-
perfectness cannot be omitted and production with ‘zero deviation’ is not possible. To cope with this
phenomenon, tolerances are specified to allow for reasonable geometrical variation [82]. The manifold
implications of tolerances can be actively designed and controlled during product development.

‘Deviation’ (ISO 286-1:2010) describes the actual difference between the specified nominal dimension
and the actual, measured dimension. As every geometrical feature of every manufactured part deviates
from its specified nominal geometrical size, position and orientation, it is necessary to specify a permis-
sible variation – which is a ‘tolerance’ – for this feature and its attributes so that associated functions
can be ensured. Accordingly, ISO 286-1:2010 defines ‘tolerance’ as ‘[...] difference between the upper
limit of size and the lower limit of size [and is] an absolute quantity without sign’. At the same place,
‘tolerance limits’ are defined as ‘[...] specified values of the characteristic giving upper and/or lower
bounds of the permissible value’. The corresponding ‘tolerance interval’ is not necessarily symmetric.
Variation is the total of all possible deviations of a measurable dimension. Practically speaking, the vari-
ation should be inside the tolerance interval in order to get a capable manufacturing process.

Tolerancing methods consist of a wide field of support methods to ensure quality, functionality, manu-
facturability and thus cost minimization by paying respect to geometrical product tolerances and their
interrelation with all relevant product life cycle aspects. This work can only provide a first insight into
these methods25. To start, within this section, tolerancing-related terminology and standards are pre-
sented for tolerance specification in technical drawings.

The following sections 2.2 and 2.3 demonstrate basic tolerance calculation methods for both 1D and
3D tolerance analysis using a simple case example. During the last three decades, tolerancing and all
related aspects came more and more into focus within the international field of engineering research.
Section 2.4 provides an overview about this and outlines interrelations between multiple methods to
support product development processes. Another focus lies on tolerance synthesis methods which try to
anticipate manufacturing tolerances of single parts or components in order to enable assembly tolerance
calculation subsequently, as section 2.5 shows.

Aside methods for tolerance specification or actual tolerance calculation respectively tolerance synthe-
sis methods, tolerance management stands for the approach to deploy engineering processes embedding
tolerancing methods in the industrial product development process. Section 2.6 uses aircraft cabin toler-
ancing efforts to sketch a working process example for tolerance management activities, setting the focus
on the core aspects of the present dissertation.

2.1.1 Tolerance Specification

Every dimension with functional influence should be specified with both its nominal value and the cor-
responding tolerance value in a technical drawing [82]. According to ISO 286-1:2010 for linear and
angular measurements corresponding to features of size, so-called size tolerance specification is done
with an individual tolerance indication directly at the location of the nominal dimension or with general
tolerances (e.g. ISO 2768-1:1989).

However, size tolerance specifications can be ambiguous and do not specify shape, orientation or
location tolerances for the feature. In the example given with figure 2.1 only the hole and pin diameters
of a block and plate are specified with size tolerances26.

25KLEIN’S books [81, 82] can be recommended for a detailed overview over tolerancing methods and the associated termi-
nology including standardization.

26The example of the blocks and the plate introduced in fig. 2.1 on the next page will be used as example throughout this
whole work, in particular for the tolerance analyses in sections 2.2 and 2.3.
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Figure 2.1: Tolerance specification drawing for an assembly consisting of two blocks (upper draw-
ing) and a plate (lower drawing) using size and GPS tolerances (see appendix A for
explanations). Most dimensioning specifications are omitted for simplification.
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Tolerance specification for shape, orientation, location and run-out is preferably done with so-called
‘geometrical product specification’ (GPS, ISO/TR 14638:1995) tolerancing. GPS is a symbolic language
for engineering drawings established with ISO standards. Figure 2.2 lists some of the applicable stan-
dards for tolerancing in general and GPS tolerancing in particular. ISO 1101:2004 defines several GPS
symbols27 for geometric tolerance specification. Using GPS tolerancing symbols, it is possible to assign
a ‘tolerance zone’ to a geometrical feature. According to ISO 1101:2004, a ‘tolerance zone’ is a ‘[...]
space limited by one or several geometrically perfect lines or surfaces, and characterized by a linear
dimension, called a tolerance [...]’. The tolerance zone can be the space within a circle, the space be-
tween two concentric circles, the space between two equidistant lines or two parallel straight lines, the
space within a cylinder, the space between two coaxial cylinders, the space between two equidistant sur-
faces or two parallel planes or the space within a sphere (ISO 1101:2004). Figure 2.1 shows several GPS
tolerancing symbols to specify geometrical features of the two parts.

Standard Title

ISO 286-1:2010 ISO system of limits and fits – Part 1: Bases of tolerances, deviations and fits

ISO 1101:2004 Geometrical Product Specifications (GPS) – Geometrical tolerancing – Tolerances of 
form, orientation, location and run-out

ISO 1660:1987 Technical Drawings – Dimensioning and tolerancing of profiles

ISO 2692:2006 Geometrical product specifications (GPS) – Geometrical tolerancing – Maximum 
material requirement (MMR), least material requirement (LMR) and reciprocity 
requirement (RPR)

ISO 2768-1:1989 General Tolerances – Part 1: Tolerances for linear and angular dimensions without 
individual tolerance indications

ISO 5458:1998 Geometrical product specifications (GPS) – Geometrical tolerancing – Positional 
tolerancing

ISO 5459:2011 Technical drawings – Geometrical tolerancing – Datums and datum systems for 
geometrical tolerancing

ISO 10578:1992 Technical drawings – Tolerancing of orientation and location – Projected tolerance 
zone

ISO 10579:2010 Technical drawings – Dimensioning and tolerancing – Non-rigid parts

ISO/TR 14638:1995 Geometrical product specification (GPS) – Masterplan

ISO/TS 17450-1:2005 Geometrical product specifications (GPS) – General concepts – Part 1: 
Model for geometrical specification and verification

ISO/TS 17450-2:2002 Geometrical product specifications (GPS) – General concepts – Part 2: 
Basic tenets, specifications, operators and uncertainties

Figure 2.2: Selection of ISO-standards concerning tolerance specification

Research has been focused on the extension of ISO standards by SRINIVASAN [76, 153, 154], most
recently on a unambiguous method to express GPS including key characteristics and tolerancing by
DANTAN et al. [35, 36, 37, 38, 108]. LANTRIP [94] shows aerospace application examples of geometric
dimensioning and tolerancing28 (GD&T) for flexible contoured structures.

27For a detailed description of the different GPS tolerances and symbols, consider A. For more detailed explanations about
form and orientation tolerances the books of KLEIN [82] and HENZOLD [69] are recommended.

28While the ISO standards talk of ‘geometrical product specification’ (GPS), ASME Y14.5-2009 uses the term ‘geometrical
dimensioning and tolerancing’ (GD&T). There are differences between ISO and ASME concerning tolerance specification, but
they are minor for many applications [29, 82].
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2.1.2 Datums and Datum Systems

The fact that every geometrical feature with functional relevancy should be toleranced implies that a
suitable set of ‘datums’ must be established in order to enable unambiguous tolerance specification and
measurement using measurement machines or manual measurement means (ISO 5459:2011). A ‘datum’
is a theoretically exact geometric reference (such as axes, planes, straight lines, etc.) ‘[...] selected
to define the location or orientation, or both, of a tolerance zone [...]’ of a geometric feature (ISO
5459:2011). ‘Datum systems’ are groups of two or more separate datums used as a combined reference
for a toleranced feature. An ideal datum system of a component consists of three datums, which are
called ‘primary’, ‘secondary’ and ‘tertiary datum’ [82], as figure 2.3 shows.

Secondary 1

Primary 1

Primary 3
Primary plane

Tertiary plane

Secondary 2

Secondary plane

Primary 2

Tertiary 1

Figure 2.3: A ‘3-2-1 datum system’ according to KLEIN [82]

Datums need to be defined by one or more ‘datum features’ (ISO 5459:2011). Six datum features are
needed to define an isostatic datum system with a ‘3-2-1 datum system’ [82], as can be seen in figure 2.3.
The principle of ‘plane-line-point’ gives the name to the 3-2-1 datum system. The primary plane is con-
stituted by exactly three datum features. More than three features would lead to a hyperstatic positioning,
since only three points constitute a unambiguous definition of a plane. The primary plane blocks three
degrees of freedom (DOF): one translatory DOF normal to the plane and two rotational DOF. The sec-
ondary datum is a line defined by two datum features, blocking two further DOF. Within measurement
machines, these two points are used to span up the secondary plane perpendicular to the primary plane.
More than two points for the definition of the secondary datum would lead to a hyperstatic description of
the position within the measurement machine. The tertiary datum is one single feature (point) that blocks
the remaining translatory degree of freedom. The point is used to span up the tertiary plane perpendicular
to both other planes.

Datum features need to be a real feature of a part such as an edge, a surface or a hole to establish
the location of a datum29. ‘Theoretical’ features like the center of a cutout or a planar shape have to be
avoided as datum, because they are difficult to ‘reach’ in a unambiguous way, may require additional
tooling with additional tolerances or may be subject to additional form tolerances as well. It is therefore

29Very often, those geometry feature are used as datum features which are also used for the attachment of the component
within the assembly – e.g., brackets, holes, slots, contact planes etc. – each being a location where kinematic DOF are blocked
between the component and the assembly (see section 2.3 for more detailed explanations). Heuristics and experience tell that
this procedure minimizes assembly tolerances for most type-I assemblies [104, 170]. The cabin lining panels that are discussed
later in this thesis and which are mostly installed using type-I installation processes use this principle, as it will be shown in
chapters 4 and 5.
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important to realize that purely virtual or digital elements like coordinate systems30 in CAD files cannot
be used as datum for tolerancing.

Every single part or sub-assembly needs its own assembly datum system. During assembly, the change
of the datum systems might become necessary, which is called ‘datum shift’ according to FARMER [51].
Every change of a local datum system influences location, orientation and size of tolerance zones.

Within the example of figure 2.1, some of the mentioned GPS symbols including the datum specifica-
tions can be seen. For instance, the position symbol is used to locate the four pins relative to the primary
datum F, the secondary datum D and the tertiary datum E of the plate within a circular tolerance zone.
The surface symbol is applied to define the location and the orientation of the side surfaces of the block
relative to the primary datum C, the secondary datum A-B (constituted by two datum features) and the
tertiary datum A within a tolerance zone constituted by two equidistant surfaces. In order to simplify the
example, most dimensioning specifications are left out.

2.1.3 Key Characteristic

EN 9100:2010 proposes the concept of ‘key characteristics’. Herein, a key characteristic (KC) is defined
as an ‘[...] attribute or feature whose variation has a significant effect on product form, fit, function,
performance, service life or producibility, that requires specific actions for the purpose of controlling
variation [...]’. Among others, WHITNEY [169], LEE [98] and MARGUET [106] explain experiences
with the usage of KCs for tolerancing31.

KCs usually need to be measured throughout the whole product life cycle32. KCs and the associated
controlling processes are described in EN 9100:2010 and EN9103:2005. The concept is used to name
and identify particular geometrical features serving a functional purpose. Usually, KCs are specified
using GPS symbols and get an additional KC flag with a name tag for a unambiguous identification. The
example given with figure 2.1 also shows some KC flags.

2.2 1D Tolerance Analysis

Basically, tolerance analysis either follows a worst-case approach or statistical calculation methods for
so-called 1D tolerance stack analysis. Aside KLEIN [81, 82], the authors CHASE [22], MEADOWS [112]
and SCHOLZ [143, 144] all provide contributions to gain an overview.

2.2.1 Worst-Case Analysis

The so-called ‘worst-case analysis’ [22, 82] or also ‘1D stack analysis’ [112] is an arithmetical consid-
eration of an assembly’s tolerances. All tolerance contributors ti are summed up to the total assembly
tolerance Twc.:

Twc = t1 + t2 + · · ·+ tn (I)

Twc is the tolerance according to ISO286-1:2010 for the variation of the assembly feature. As long as the
contributing tolerances ti are centered around the nominal value N , Twc is centered as well. This means
that the final gap sizeG can vary within the measurable interval [N− T

2 ;N+ T
2 ] with the tolerance limits

30CAD coordinate systems and tolerancing datum systems are two different and independent reference systems for different
purposes. A CAD coordinate system is a virtual reference with a virtual origin point and virtual axes. It is used for CAD models
as an auxiliary concept. A tolerancing datum system is a real reference constituted by real geometry features and is used to
define an explicit and unambiguous positioning of a part for tolerance specification and measurement [82].

31See section 2.6 for some aircraft cabin-specific definitions.
32In order to reduce measurement efforts, the concept of ‘critical items’ according to EN 9100:2000 can be used instead.

Critical items only ‘[...] require specific actions to ensure they are adequately managed [...]’, which can be interpreted as
meaning that no general measurement is required.
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±T
2 . In case of non-centered tolerances, the upper and the lower worst-case limits need to be calculated

separately, as explained in detail in the above mentioned literature. For centered tolerances, mostly the
following variant of equation I is used for practice:

± Twc

2
= ±

(
t1
2
+
t2
2
+ · · ·+ tn

2

)
(II)

As long as all contributors remain within their respective tolerance, the worst-case calculation ensures
that all assembly combinations will have a deviation which is as good as or better than the calculated as-
sembly tolerance Twc. The values of the tolerance contributors ti either are based on experience including
measurement data, heuristics or on general tolerances (e.g., ISO 2768-1:1989) or have to be derived from
dedicated tolerance synthesis methods33.

Block A

Gap in x-direction 
between block A and B 
with TG = 10±3

Plate
Block B

Offset in z-direction 
between block A and B 
with TO = 0±2

Pin a
Pin b Pin c

Pin d

Figure 2.4: Assembly tolerance analyses of interest for the example introduced with fig. 2.1

Figure 2.4 shows the well-known example with the two blocks A and B fixed to the base plate P
with two interfaces, namely a ‘4-way locator’ and a ‘2-way locator’34 each. The corresponding tolerance
specifications are given in figure 2.1. Between the two blocks there is a gap with the nominal size N =
10mm. Due to appearance quality reasons, the tolerance limits ±TG

2 = ±2.0mm corresponding to a
centered tolerance interval of TG = 4mm have been specified35.

The 1D tolerance stack belonging to the Gap between block A and B starts at the lower right edge of
block A at the left side of the Gap. From here, there is a tolerance of t1 = 1.1 (specified as particular

33See section 2.5 for information about tolerance synthesis.
34These terms are used to describe the functional behavior of attachment interfaces. A ‘4-way locator’ means that at this

location relative movement between two parts is locked ‘forwards and backwards’ as well as ‘left and right’. A simple example
for such an interface is a pin-hole combination (e.g., fig. 2.1), where the tolerance zones for both the pin and the hole are
usually circular. A ‘2-way locator’ locks the movement in two directions (e.g., ‘left and right’). An example is a pin-slot
combination (e.g., fig. 2.1).

35In the following the notation of the dimension ‘millimeter’ (mm) of the tolerances will be left for simplification reasons.
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Key Characteristic named ‘KC-Block-01’ in fig. 2.1) to the far left fixation pin a. Between pin a and the
hole of plate A, a game of t2 = 0.2 is considered36. From pin a to datum D of the plate and from there to
pin c, two times a tolerance of t3 = 0.8 has been specified (‘KC-Plate-01’ valid for all pins). The game
tolerance of t4 = 0.2 is considered again at pin c, from where a tolerance of t5 = 0.6 applies from the
hole to the left edge of plate B (‘KC-Block-02’). Now, having reached the right side of the gap G, the
tolerance stack is complete. Summing up the tolerances according to equation II leads to

±
TG,wc

2
= ±

(
t1
2
+
t2
2
+ 2 · t3

2
+
t4
2
+
t5
2

)
= ±1.85. (III)

This resulting deviation is below the tolerance limit of ±2.0, which means that the requirement will
be fulfilled any time. As long as the contributing components are manufactured within their specified
tolerances ti, no assembly combination can fail.

2.2.2 Statistical Analysis

The probability that worst-case situations occur usually is very small. To reduce manufacturing costs, it
may be of interest to increase the required manufacturing tolerance limits ± ti

2 if it can be ensured that
the resulting assembly tolerance T will be within the required limits anyway – at least with an adequately
high probability.

For ‘statistical tolerancing’ [81, 82, 143, 144], which is the most prevalent method to perform manual
statistical tolerance analysis, three prerequisites are important37:

1. The tolerances’ variation has to follow a Gaussian distribution.

2. The distribution curve has to be centered.

3. The variation of the involved tolerances has to be statistically independent.

Using these assumptions, 3D assembly tolerances can be calculated with the so-called root square
sum (RSS) formula [143]:

TRSS =
√
t21 + t22 + · · ·+ t2n (IV)

Furthermore, TRSS follows a Gaussian distribution of the same σ-accuracy as the input tolerances ti. For
the most part, a ±3σ-accuracy corresponding to 99.73% of good parts is assumed for conceptual work.
Since centered contributors are prerequisites, the symmetric tolerance limits±T

2 respectively± ti
2 can be

used alternatively to the tolerance intervals T and ti, leading to

± TRSS

2
= ±

√(
t1
2

)2

+

(
t2
2

)2

+ · · ·+
(
tn
2

)2

. (V)

If statistical tolerancing is used but the mentioned prerequisites are violated, there is a high risk that
the calculation results are too optimistic. However, during the engineering design phase it is difficult
to predict robust variation and process capabilities while ensuring Gaussian distributions and statistical
independence. Therefore it proves valuable to use safety factors for the RSS for conceptual tolerancing
to decrease the probability of assembly deviations outside the calculated tolerance instead of going back

36The range of t2 = 0.2 corresponding to ± t2
2

= ±0.1 comes from the sum of the diameter tolerance (feature tolerance) of
hole a of the block with ±0.05 and the corresponding pin diameter tolerance of ±0.05, see fig. 2.1.

37In practice, manual statistical tolerance analysis is hardly done without ‘statistical tolerancing’ as method (except for some
empirical extensions or corrections of the RSS formula). Of course, it is possible to perform statistical tolerance analysis beyond
these assumptions, as it is mentioned later at the beginning of section 2.3 and in subsection 2.3.3 on simulation-based tolerance
analysis. However, the fixed term ‘statistical tolerancing’ [81, 82, 143, 144] always refers to these assumptions.
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to pure worst-case analysis. The widely-used safety factor of 1.5 is often called the BENDER-factor [143,
144]. Originally, it comes from the intention to provide a ±3σ-accuracy for the target T assuming the
input tolerances ti have a ±2σ-accuracy only [143, 144].

Within industrial practice, this factor or similar factors of comparable size are still widely used. Since
the assumption of a ±3σ-variation is convenient practice nowadays, the safety-factor or BENDER-factor
is often re-interpreted as a compensation factor for unknown mean shifts of the contribution tolerances
ti. The intention to foresee and to compensate for mean shifts depends on the toleranced object. Gaps
for aesthetic quality may still ‘work’ if their mean is not exactly their nominal value as long as the par-
allelism of the gaps is not affected. In contrast, for installation tolerances like the coincidence of a pin
and a slot this can lead to intense installation and design problems. For calculation formulas considering
distribution curves other than the Gaussian distribution and for calculations considering means-shifted
tolerances in a formal way including the meaning and the usage of the process capability indices Cp and
Cpk, one should refer to the corresponding literature like that cited at the beginning of this section. See
also section 2.5 for links to quality assessment methods.

Going back to the example given by figure 2.4, it is assumed that it has been decided to reduce the toler-
ance limits to±TG

2 = ±1.0 in order to improve the appearance quality. Additionally, it is supposed that a
synthesis approach using the worst-case algorithm has shown that smaller manufacturing tolerances are
either too expensive or are not feasible with capable manufacturing processes, but that current tolerances
can be considered as capable for centered independent ±3σ-processes. Now equation V can be used to
calculate the resulting value:

±
TG,RSS

2
=

√(
t1
2

)2

+

(
t2
2

)2

+ 2 ·
(
t3
2

)2

+

(
t4
2

)2

+

(
t5
2

)2

≈ ±0.86 < ±1.00. (VI)

Relation VI can be interpreted such, that approximately 99.73% of all assemblies are within the calcu-
lated tolerance – as long as the components stick to the named prerequisites for statistical calculations.
The percentage of good parts is even higher, as the calculated result is significantly below the specified
limits of ±1.0. If the assumption of centered distribution curves proves to be too optimistic and the rec-
ommended safety factor of 1.5 is used consequently to cover for mean shift effects, the result turns out
to be ±TG,1.5xRSS

2 = ±1.28. This result would no longer be adequate to ensure a capable process for the
updated requirement.

It has to be mentioned again that the safety factor of 1.5 here only covers a certain magnitude of the
mean shift, which hardly can be anticipated before manufacturing starts. The real uncertainty of the cal-
culated result (‘the error of the expected deviation’) may increase with the number of applied hypotheses.
Frankly, ‘tolerance analyses’ [82] here turn more into ‘tolerance estimations’ or into ‘concept checks’
rather than providing a ‘definite’ or ‘scientifically sound’ tolerance result. It is therefore recommended to
start iterative processes at this stage with calculation, measurement and design requirement adaptations
before freezing tolerance targets too early based on too many hypotheses.
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2.3 3D Tolerance Analysis

3D tolerance analysis is much more labor-intensive than 1D stack analysis. For this reason, there is
plenty of work on commercial and academic computer-aided tolerancing (CAT) tools for 3D tolerance
analysis [105, 126, 137]. WANG [165] provides a more recent overview about ongoing research, focusing
on the different modeling concepts. In the industrial context, usually two methods are in use, which are
based either on a kinematic model using small displacements [17, 26] or direct linearization38 [20, 21, 23]
or on Monte Carlo simulations [54].

Taking a look at the research sector, alternative tolerance analysis methods and models beyond sta-
tistical tolerancing are under investigation [19, 165]. SRINIVASAN et al. describe the method and tool
development work using fractal-based parameters for tolerance calculation [152]. DAVIDSON et al. build
up a mathematical model to formalize tolerance specifications using ‘tolerance-maps’ [6, 39]. BALLU

proposes a method to analyze hyperstatic mechanisms using first and second order reliability method
algorithms [13]. KHODAYGAN discusses tolerance analysis of assemblies based on ‘fuzzy logic’ [80].

Generally speaking, 1D tolerance analysis is still state of the art in the industrial context for many use
cases, often by using calculation spreadsheets. If 3D tolerances need to be considered, this still increases
calculation complexity and time compared to sole 1D analysis. Consequently, there are tendencies to-
wards more CAE interconnection and modeling automatization within commercial CAT software. The
user interfaces and the functionality of the tools are continuously extended, for instance by links to de-
formation simulation or to cost analysis. Similarly, in this thesis a method for integrated and automated
3D tolerance analysis is developed.

In order to provide a more detailed insight into the application of CAT software, subsequently two
commercial software tools will be explained a bit more closely – the first one, MECAmaster, based on
the small displacement theory [26, 113] in subsections 2.3.1 and 2.3.2, the second one, 3DCS, based on
Monte Carlo simulation algorithms [42, 52] in subsection 2.3.3.

2.3.1 Small Displacement Theory

Considering that tolerances are usually very small compared to the nominal dimensions, linearized math-
ematical methods can be applied [17, 20, 21, 23, 26]. The corresponding modeling assumptions are:

– consideration of 3D tolerance problems as directed or vectorial problems (GPS tolerances),

– representation of the attachment principle and assembly sequence by a non-ambiguous kinematic
linkage system39,

– linearized calculation of the influence coefficients cj,i, neglecting the non-linear influence of the
coefficients on each other,

– linear superposition of weighted component tolerances cj,i · ti in order to calculate the target tol-
erances Tj using linearized displacements,

– all components considered rigid,

– all components mounted with isostatic or simple hyperstatic40 attachment concepts.
38See also the web page of ADCATS (Association for the Development of Computer-Aided Tolerancing Systems),

http://adcats.et.byu.edu, accessed Jan 2012.
39Kinematic linkages are those locations of an assembly where the kinematic DOF are blocked between the components.

The kinematic linkage system of a component is consequently the set of linkages which blocks all six DOF of this component
relative to the remaining assembly.

40‘Simple hyperstatic’ can mean, e.g., that the primary attachment plane is constituted by more than three points, for which
simplifying calculation algorithms can be used [113].

http://adcats.et.byu.edu
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Without the last two assumptions, the analysis could lead to non-linearizable higher-order deformation
problems. All together, the assumptions allow to make 3D tolerance calculations with simple computa-
tional efforts. Firstly, this means that the orientation of the tolerance zone of a feature has to be consid-
ered, which is defined by its orientation relative to the corresponding datum system of the component.
As consequence, the number of contributing tolerances to a 3D tolerance stack may increase compared
to a 1D calculation41. Secondly, the contribution of a feature tolerance to a tolerance stack may be 6= 1
due to geometric lever arm effects. This is implied by the position of a feature relative to the component’s
kinematic linkage system, as shown later in the example given by figure 2.5.

Both phenomena together lead to so-called influence coefficients cj,i, with which the tolerance con-
tributors ti have to be multiplied in the linearized 3D tolerance stack for the assembly tolerance Tj . The
index i stands for the contribution tolerance and j for the tolerance target. The theory states, that any
interface between the involved components – specifically called ‘kinematic linkages’ or simply ‘link-
age’ [27, 28, 113] – with its corresponding feature tolerance(s) can contribute to any target tolerance,
depending on the influence coefficient cj,i.

This leads to the matrix equation [27]
T = C × t (VII)

or 
T1
T2
...
Tm

 =


c1,1 c1,2 · · · c1,n

c2,1 c2,2
...

...
. . .

...
cm,1 · · · . . . cm,n

×

t1
t2
...
tn

 . (VIII)

For a worst-case problem with one target tolerance (m = 1), this results in one single equation for
worst-case analysis given with
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= ±
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as well as in
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(X)

for statistical analysis assuming centered distributions.

In the 1D case, the factors ci are either equal to 1 or to 0, leading back to equation I or IV. In general,
theoretically all cj,i could be implicitly dependent on the other influence coefficients, as a tolerance-
caused shift or rotation of a part can change the geometric relations. With the linearization approach,
this phenomenon is neglected and all tolerances are superposed in a linear way. This also means that
both input and output tolerances must be considered as independent. Each tolerance ti can additionally
consist of several contributors: for instance one for the positional tolerance of the first component at the
kinematic linkage, one for positional tolerance of the second component and one or more for interface-
related tolerances, such as a game between a pin and a hole or interface flexibility due to soft materials.

41FARMER calls this phenomenon ‘datum shift’ [51].
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Going back to the previous example with the two blocks and the plate, now the offset TO in z-direction
between the two blocks at their lower inner edge points comes into focus (see fig. 2.4). The requirement
is±3. Within the assembly twelve degrees of freedom (DOF) between the three components are blocked
– six DOF per block relative to the plate. Due to the planar type of the assembly, for each block the
translational degree of freedom perpendicular to the contact plane and the two related rotational degrees
of freedom hardly have any influence in the offset TO. The corresponding influence coefficients are
almost 0 and are neglected in the following in order to simplify the calculation.

Consequently, there are six remaining kinematic linkages with influence on the offset TO and therefore
six different linearized influence coefficients need to be calculated plus one for the feature tolerances at
the measurement point itself. As only one target tolerance is investigated, m becomes m = 1 and the
influence coefficients c1,i or simply ci are referred to as

– cax for the blocked translational DOF in x-direction at pin a,

– caz for the blocked translational DOF in z-direction at pin a,

– cbz for the blocked translational DOF in z-direction at pin b,

– ccx for the blocked translational DOF in x-direction at pin c,

– ccz for the blocked translational DOF in z-direction at pin c,

– cdz for the blocked translational DOF in z-direction at pin d and

– cm for the influence of the feature tolerances at the measurement point42.

The corresponding worst-case calculation is

± TO, wc

2
=

±
(
cax ·

tax
2

+ caz ·
taz
2

+ cbz ·
tbz
2

+ ccx ·
tcx
2

+ ccz ·
tcz
2

+ cdz ·
tdz
2

+ cm ·
tm
2

)
.

(XI)

Again, the contribution tolerances ti can be read out of the drawing within figure 2.4. At pin a, block
A has its datum A in x-direction at this location, so the tolerance is 0. The interface provides a game
of ±0.1 or 0.2 in range43. The pin at the plate has a positional tolerance of 0.8 respectively of ±0.4
in x-direction44, leading to tax

2 = 0 + 0.1 + 0.4 = 0.5. Datum A also acts in z-direction, leading
to a contribution of 0, too. Again the interface and the pin contribute with ±0.1 and ±0.4 to taz

2 =
0 + 0.1 + 0.4 = 0.5. The same is valid for tbz

2 = tcx
2 = tcz

2 = tdz
2 = 0 + 0.1 + 0.4 = 0.5. The

feature tolerance at the measurement point is two times 1.0, once for each plate45. Hence, tm
2 becomes

tm
2 = 0.5 + 0.5 = 1.0.

42In general, the influence coefficient c of a measurement point can be 6= 1 since the direction of the feature’s tolerance zone
and the direction of the measurement are not always identical.

43Compare with footnote 36, page 25.
44‘KC-Plate-01’, see fig. 2.1, page 20.
45‘KC-Block-03’, see fig. 2.1, page 20
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t = 1
cbz,lin

α

x

z

l1 = 200  

l2 = 345  

cbz,exact
t = 1

point of
measurement
before
displacement

point of
linearized
measurement

point of exact
measurement

Figure 2.5: The influence coefficient cbz corresponding to the tolerance tbz in z-direction at pin b
due to the rotation by the angle α around pin a. It can be seen, that the linearization
of this specific problem does not take into consideration the small displacement [27]
in x-direction at the measurement point due to the displacement in z-direction at the
2-way locator.
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When block A rotates around pin a by the angle α due to an unit displacement tbz = 1 at pin b, the
lower right edge point moves upwards with a magnitude of cbz . If the measurement is taken at the middle
of the gap, l2 becomes l2 = 345. The exact calculation with equation XIV using equations XII and XIII
leads to cbz,exact = 1.72498 (see fig. 2.5).

sinα = cbz/l2 (XII)

tanα =
1

l1
(XIII)

cbz,exact = l2 · sin
(
arctan

1

l1

)
(XIV)

For the linearized assumptions of small displacements [27], arctanα ≈ α and sinα ≈ α are used [18],
providing a coefficient cbz,lin = l2

l1
= 345

200 = 1.725 (see eq. XV). The linearized result is only 0.00125%
larger than the exact value – an order which is negligible for most applications, especially when additional
geometry simplification assumptions are made.

cbz,lin ≈ l2 · sin
(
1

l1

)
≈ l2 ·

(
1

l1

)
=
l2
l1

(XV)

If a displacement is applied at pin a in z-direction, blockA rotates around the pin b, and the lower right
edge point moves downwards in z-direction. The linearized calculation provides caz = 145

200 = 0.725. If
there is a displacement at pin c in z-direction, the close-by lower left edge faces a displacement of
ccz =

55+200
200 = 1.275. Due to the rotation around the pin c, a displacement at pin d has a small effect on

the edge point, namely cdz = 55
200 = 0.275. In a linearized calculation, neither at pin a nor at pin c does

a displacement in x-direction have any effect on the offset in z-direction, which means that cax and ccx
become cax = ccx = 0. The influence of the feature tolerances at the measurement is cm = 1, since the
direction of the tolerance zone at this edge is in the (linearized) direction of measurement of the target
tolerance TO.

When the results for the influence coefficients ci and for the contribution tolerances ti are inserted
into equation XI, the worst-case result for TO becomes ±TO,wc

2 = ±3.00. The RSS result is ±TO,RSS

2 =

±1.177, the safety-factored result is ±TO,1.5xRSS

2 = ±1.765. Depending on design- and manufacturing-
related boundary conditions, the results now need to be interpreted and discussed in the industrial context.

This example demonstrates the efforts to conduct a simple 2D tolerance analysis. Even with the lineariza-
tion simplifications, the calculation of the influence coefficients can become sophisticated for complex
assemblies. That is why manual 3D tolerance calculation is very time intensive and is usually done with
the help of CAT software.
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2.3.2 Implementation in MECAmaster

MECAmaster [113] is a commercial CAT software using the small displacement theory as modeling
approach [27, 28]. The MECAmaster modeling concept considers the assembly sequence as the order in
which geometrical constraints are established during the different assembly steps, defining in particular
when, where and how the DOF of the assembled parts are fixed. The modeled linkage systems con-
sequently depend on the physical attachment principles and on the assembly sequence of the involved
components. However, unlike in simulation methods for tolerance analysis, the sequence is not modeled
directly or explicitly, but is reflected implicitly in the modeled kinematic linkage system.

'Point contact'
for 2-way locators

'Spherical slider'
for 4-way locators

'Plane contact'
for planar interfaces

'Positional tolerance'
for tolerance targets

Figure 2.6: MECAmaster objects for to model kinematic linkages and tolerance targets

Figure 2.7: MECAmaster GUI to input a ‘point contact’ element and the corresponding tolerances.

The MECAmaster modeling or data elements are basically ‘linkages’ and the ‘positional tolerances’
(fig. 2.6). ‘Positional tolerances’ can be considered as ‘linkages’ without kinematic constraint, but with
a spatial distance requirement. Amongst others46 [113], the most important elements for this work are:

– Positional tolerance: tolerance target for a gap or split line between two components,

– Point contact: linkage blocking one translational DOF, e.g., used for 2-way locators,

– Spherical slider: linkage blocking two coupled translational DOF, e.g., used for 4-way locators,

– Plane contact: group of coupled linkages blocking one translational and two rotational DOF47.
46Compare also with the overview about ‘kinematic joints’ from CHASE [23] given in subsection 1.1.3.
47‘Plane contacts’ can consist of up to eight points. Mathematically, only three points are needed to span up a plane and

any further point leads to an hyperstatic condition. Hence, an internal algorithm ensures, that for each tolerance calculation the
‘most realistic’ three points are used as linkages and the others are ignored in this case.
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The working process using MECAmaster is as follows [113]:

1. GUI-based definition (e.g., fig. 2.7) of all required tolerance target values Tj (e.g., ‘positional
tolerances’ as shown in fig. 2.6, visualized as turquoise arrows in fig. 2.8 or as blue lines with label
‘PT’ in fig. 2.9), which are internally compiled in the vector T .

2. GUI-based definition of the kinematic linkages Li (e.g., ‘point contacts’ or ‘spherical sliders’ as
shown in fig. 2.6, visualized as magenta symbols in fig. 2.8 or as magenta lines with labels ‘PO’
or ‘SS’ respectively in fig. 2.9) of the assembly by reducing the kinematic DOF to zero.

3. GUI-based definition of all contributing linkage feature tolerances48 ti, which are internally com-
piled in the vector t (e.g., fig. 2.7 shows the GUI to input a ‘point contact’ and the corresponding
tolerances).

4. Automated linearized calculation

(a) Automated calculation of the influence factor matrix C containing all linearized influence
coefficients cji between every tolerance ti and every target value Tj .

(b) Automated calculation of all Tj by solving the matrix equation (eq. VIII). The weighted
tolerance values cji · ti are superposed with either the worst-case or the statistical method.

(c) Output of the linearized 3D tolerance stacks, linearized influence coefficients (see fig. 2.10)
and functional diagrams representing the modeled linkage system (e.g., see fig. 2.9).

Figure 2.8 shows the MECAmaster model of the well-known example with the blocks and the plate (see
fig. 2.1 and 2.4). The two blocks are hidden for a simpler representation. Pins a and c are modeled using
a ‘spherical slider’ (see magenta balls), while the interfaces at pins b and d are represented by ‘point
contacts’. In order to complete the full 3D model, ‘plane contacts’ are established in z-direction between
the blocks and the plate. The two tolerances targets TG and TO are modeled accordingly as ‘positional
tolerances’. Figure 2.9 shows an alternative visualization of the same model. This abstract diagram is
frequently used as basis for technical discussions about the chosen linkage systems and to check whether
correct modeling input has been defined49.

The resulting 3D stack output for the target tolerance shown in figure 2.10 validates the 1D calcula-
tion results from the previous subsection. For instance, the 3D stack for the target tolerance TO leads to
±TO,wc

2 = ±3.0,±TO,RSS

2 = ±1.177 or±TO,1.5xRSS

2 = ±1.765 respectively, which are exactly the same
results compared to the manual calculation from above. Figures 2.10 also displays a colored represen-
tation of the weighted stack contributors cji · ti. This visualization can be a very helpful mean to detect
and to understand the major contributing factors of 3D stacks50.

The calculation of MECAmaster usually does not exceed several seconds. It makes sense to check the
modeled linkage system and to compare it with modeling alternatives, if required. MECAmaster is used
together with CATIA V5, but it is not an integrated workbench and has an independent GUI [113] (e.g.,
see fig. 2.7). Additionally, all input data is saved in data files separate from the CATIA tree.

48Composite tolerances can be used for repetitive tolerances like tooling tolerances. Group tolerances for patterns of small
local tolerances are implemented.

49Fig. 6.4 on page 116 shows a much more complex model making clear why this abstraction is often used for discussions
rather than using the complete – and even more complex – 3D model.

50From a user point of view, it is an advantage of kinematic tools like MECAmaster that the influence coefficients are
calculated directly. Already without available tolerance information, the coefficients tell which feature or characteristic of
which component influences the assembly tolerance very strongly (cji >> 1) and so needs special care. It also shows which
coefficient has limited influence (cji << 1) and so even increased tolerance values would not impact the assembly. Colored
visualizations like those given with fig. 2.10 support these analyses.
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Legend
	 Tolerance	target
	 Kinematic	linkage

Figure 2.8: MECAmaster model of the block and plate example. Magenta arrows represent ‘point
contacts’, magenta spheres are ‘spherical sliders’, orange shapes are ‘plane contacts’
and turquoise arrows are ‘positional tolerances’.

BlockA

Plate

BlockB

SS XY

PO  Y

PL  
Z

SS XY

PO  Y PL  
Z

PT  X

PT  Y

Figure 2.9: Alternative visualization of the linkage system with a diagram function implemented in
MECAmaster. The white blocks represent the three components as shown in fig. 2.8,
the Magenta lines with ‘PO’ and ‘SS’ represent ‘point contacts’ or ‘spherical sliders’
respectively, orange lines with ‘PL’ are ‘plane contacts’ and blue lines with ‘PT’ are
‘positional tolerances’ in the corresponding functional directions. The MECAmaster
linkage diagrams are used as basis for technical discussions about the chosen linkage
systems and to check whether correct modeling input has been defined.
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 --|------- Name -------|------ Parts  ------| Tolerance | Influence | Contribu                     
                          blocka                    .ooo \                                           
  SS XY 4way_BlockA                              .1ooooo  x    1.ooo  =  .5ooooo                     
                          frame                  .4ooooo /                 27.0%                     
  ------------------------------------------------------------------------------                     
                          blockb                    .ooo \                                           
  SS XY 4way_BlockB                              .1ooooo  x    1.ooo  =  .5ooooo                     
                          frame                  .4ooooo /                 27.0%                     
  ------------------------------------------------------------------------------                     
                          blocka                 .55oooo \                                           
  PT X  T_G                                               x    1.ooo  =  .85oooo                     
                          blockb                 .3ooooo /                 45.9%                     
  ------------------------------------------------------------------------------                     
  ------------------------------------------------------------------------------                     
  ARITHMETICAL calcul. (sorted contrib)      Value of the tolerance   =    1.85o                     
                                                                                                     
  /  For the linkages         \   / Value due to the parts defaults   =    1.65o                     
  \  exclusively in position  /   \ Value  due to the  interfaces     =  .2ooooo                     
 
                                                                                                     
  Value of the resulting tolerance :                                                                 
                                                                                                     
  ATTENTION !   Statistical calculation for independant statist. data  (Gauss)                       
  -----------   Use the values with !!! just if you exactly know about them .                        
                                 -----------------------------------------------                     
      Value of the tolerance:    |Probability  of having the  fixed tolerances |                     
        1 of the 9 values.       |    0.9544         0.9973         0.9999     |                     
  ------------------------------------------------------------------------------                     
  Wished Probability      0.9544 |    .855862   |    .570575!!!|    .427931!!! |                     
  to get the              0.9973 |      1.284   |    .855862   |    .641897!!! |                     
  resulting tolerance     0.9999 |      1.712   |      1.141   |    .855862    |                     
  ------------------------------------------------------------------------------                     
  STATISTICAL calculation.          Classical value of the tolerance  =  .855862

Figure 2.10: MECAmaster calculation results for the offset tolerance TO as text visualization
including the complete 3D stack (top) and the corresponding graphical visualization
of the weighted influence tolerances within the GUI (bottom)
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Upon user request, the input data can be exported to a text-based m_m-file. The key elements of such
m_m-files are data blocks. All elements in the MECAmaster simulation are represented by one data
block in the m_m-file. The GUI shown in figure 2.7 represents the editor window for a ‘point contact’,
and the code fragment shown in figure 2.11 represents the corresponding data block within a m_m-file.

****  DATA number      2 
|--------.-.------|--------.-.------|--------.-.------

 Linkage type .......... POINT CONTACT

       between ......... BlockA

       and ............. Plate

 Point Contact name .... 2way_BlockA                                         

 Point of contact ......        -100.000000          0.000000         30.000000

 Direct. normal to plane           0.000000          1.000000          0.000000

 Precis. of Linkage ....         0.00000000        0.10000000        0.40000000

 !complements !.........                                                       

 ! 1s tol inf !......... Datum B                                               

 ! 2n tol inf !......... Game                                                  

 ! 3r tol inf !......... Positional Tolerance                                  

 !   criteria !.........                                                       

 !       path !......... 

Figure 2.11: MECAmaster m_m-file code for a ‘point contact’ linkage element
corresponding to the CATIA-based GUI shown in fig. 2.7

2.3.3 Monte Carlo Simulation

An alternative to the direct linearization method for 3D tolerance analysis is computer-based toler-
ance simulation, where the components are virtually assembled using Monte Carlo simulation algo-
rithms [52, 73]. The assembly is repeated thousands of times – every time with the same parts but with
different tolerances according to predefined tolerance distributions, which simulates real manufacturing
conditions. The tolerance targets are measured and captured for every assembly. Finally a statistical dis-
tribution of the virtually measured tolerance values is generated. A software implementation using this
algorithm is 3DCS51 [42]. The working process is the following [42]:

1. Definition of all required tolerance targets called ‘measurements’.

2. Definition of the so-called assembly ‘moves’ including the vector-based movement direction, re-
flecting the installation steps52.

3. Definition of all contributing feature tolerance zones53 including the direction of the zone and its
distribution, which usually is a ±3σ Gaussian distribution.

51Dimensional Control Systems, Troy, Michigan (USA), see http://www.3dcs.com, accessed Jan 2012.
52‘Moves’ are a key concept of 3DCS and are captured in a list. Step by step, the complete assembly scenario is modeled.

Due to this simulation approach, the assembly sequence is explicitly modeled and thus can be changed in order to investigate
the influences. There are several kinds of moves for various plane or line alignments, for the alignment of holes to holes and
even special bending routines.

53Comparable to the input possibilities with MECAmaster, in 3DCS the tolerances contributors ti may also be defined as
independent, grouped or composite.

http://www.3dcs.com
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4. Automated Monte Carlo simulation:
(a) Creation of component sets54 of all assembly components.
(b) Random selection of the components out of the sets and assembly according to the moves.
(c) Check, whether the assembly succeeded, followed by the measurement of the variation55.
(d) The assembly simulation is repeated until every sample in every set has been used once.
(e) Creation of simulation result visualizations, such as statistical results, distribution curves, or

deduced non-linearized influence coefficients56.

5. Post-processing of the simulation results including output to linked analysis tools57.

The Monte Carlo simulation itself can last several minutes, depending on the model size. In practice,
usually several simulations with different input values are performed in order to check if the modeled
assembly scenario works properly. The 3DCS GUI is a tool bar in CATIA [42]. The original 3D CATIA
parts are copied to the 3DCS part stack using simplified geometry representations and the entire part
is displaced during the assembly process. Every change of the CATIA parts has to be updated into the
3DCS environment. The 3DCS data is saved in the CATIA file format.

2.3.4 Comparison

The creation time for MECAmaster models is usually fast and modifications can be implemented easily.
However, as soon as the linkage system requirements get complex, for instance with interrelations be-
tween local datums or with huge influence of the assembly sequence, the manipulation time of the model
increases. This may even lead to the necessity to create independent models for single tolerance targets
and for each installation sequence variant. In such cases, modeling automatization is helpful.

As all calculations are based on independence between the contributing tolerances, no statements about
depending target tolerances can be made. For example, if two gaps are measured, it cannot be stated if
both tolerances are exceeded, or if a bad one on one side is associated with a good one on the other side.

If the attachment concept is hyperstatic, modeling workarounds have to be set up. Coupling with
FEM in order to analyze the influence of deformation due to hyperstatic conditions is complex and time
consuming and there is limited industrial experience. Within MECAmaster, load analysis algorithms for
isostatic load cases are implemented [113].

The major advantage of simulation tools like 3DCS is that the modeling flexibility of the assembly moves
is larger, as the simplifying linearization steps of kinematic tools do not apply, offering the possibility
to model more exactly and in more detail. Of course, this may also lead to higher modeling time which
makes the application questionable for the conceptual design phase, where fast trade studies are more
needed than time-consuming precise simulation results.

The simulation of hyperstatic attachments is possible where part deformation can be estimated simul-
taneous to tolerance simulation using a FE mesh-based geometry deformation theory58. This, however,
requires good knowledge about the deformation behavior of the part and about deformation calculations
in general. Additionally, the preprocessing becomes more and more difficult and time-consuming.

54The tolerance distribution of every set of each part follows the previously defined distribution. In industrial practice, usually
between 5000 and 15000 assemblies are simulated, if ±3σ results are favored.

55All variation ‘measured’ by simulation represents statistical results. No exact worst-case calculation is possible using
Monte Carlo simulation techniques. Workarounds are implemented in 3DCS, but the user has to be clear that ‘simulation’ is
different to (linearized) ‘analytical calculation’.

56Unlike in MECAmaster, in 3DCS the influence coefficients can only be calculated with a separate so-called ‘high-low-
mean’ simulation (‘sensitivity analysis’) [42], which needs all contribution tolerances to be specified before.

57E.g., 3DCS has been complemented with a tolerance-cost calculation method recently [41].
58Only geometry deformation is considered, loads and stress behavior cannot be modeled.
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Similar input
- tolerance target values
- linkage or assembly data
- tolerance specification

or

Tolerance analysis
calculation with

small displacement theory

Tolerance analysis
Monte Carlo simulation

Similar output
- tolerance results
- distribution curves
- influence coefficients

Figure 2.12: Theoretical interchangeability of CAT software within tolerance analysis processes

To summarize the following statements can be made:

– In general Monte Carlo simulation algorithms resemble the real assembly processes better than
kinematic methods using linearization methods, especially where the installation sequence has
high influence on the tolerance results.

– The precision of Monte Carlo simulation demands modeling and simulation time. For simpler
tolerancing tasks with mostly kinematic interface functions, the kinematic modeling is usually
faster and leaner than simulation approaches.

– It is important to be familiar with the simplification assumptions in MECAmaster, especially when
workarounds are necessary for linkage and assembly sequence modeling. On the other hand, un-
derstanding the complex simulation assumptions in 3DCS is also difficult. The risk for ‘believing
in the tool’ instead of ‘knowing what happens’ is given for both methods.

– Concerning accuracy in principle no significant differences have to be expected [52]. SALOMONS

[137] and PRISCO [126] provide more theoretical comparisons and come to similar conclusions.

– Input and output data types of both tool families are comparable and combined or interchanging
applications are possible (fig. 2.12). The input data files and the data stowage are different, so
exchange needs data or model transformations.

– For applications in the aircraft cabin concept phase with mostly kinematic linkages and the need
for simplification assumptions, kinematic tools like MECAmaster are preferable. The strength of
simulation software like 3DCS lies in a later application for detailed design and manufacturing.
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2.4 Research on Tolerance Analysis

WHITNEY and MANTRIPRAGADA extend tolerance analysis to assembly analysis [104, 170]. The con-
cepts of mate or contact joints respectively as discussed in chapter 1 offer to anticipate manufacturing
constraints, which can be visualized by so-called ‘datum flow chain’ diagrams [104]. These diagrams
indicate, which component of an assembly depends on which other component concerning the kinematic
degrees of freedom in between59. The classification of assemblies into type-I and type-II can help to
understand, how the functional design of physical interfaces influences manufacturing processes.

KOLLER contributes on the incorporation of contact forces into tolerance calculation models [84].
MEERKAMM and HOCHMUTH focus on the role of tolerances in the product development process and
on the development of integrated product development systems including links between CAT and FEM or
between CAT and quality methods [71, 72, 114]. LUSTIG sets focus on the integration of tolerancing and
deformation analysis [100]. GERMER [54, 55] presents an interdisciplinary approach to embed tolerance
management activities in conceptual product development. However, the back flow from research to
industrial application usually takes its time. Despite the fact that the tolerance-deformation coupling is
well-described in academic terms, it is still common industrial practice to couple CAD results and FEM
results manually.

MARGUET et al. list special aircraft tolerancing requirements [105]. On this basis, a method and a tool
called GAIA (Graphical Analysis of Interfaces for Assemblies) have been developed [49] for graphical
analysis purposes. The research aim is to represent the airframe production processes based on functions,
tolerance specification and production frame conditions [13, 34, 50, 106], following the GASAP (‘ge-
ometry as soon as possible’ [12]) principle. Key Characteristics (KC) according to EN 9100:2009 are
regarded as functional requirements and thus ask for early embedment in the design processes60.

SUH describes an axiomatic approach to design [99, 157, 158]. He develops four spaces or domains
for customer needs, functional requirements, design parameters and process variables. For each domain,
a matrix contains the corresponding parameters or variables, which need to be expressed in a formal
way. To that effect, designing is considered to be mapping or transformations between these matrices.
So-called design axioms, which propose beneficial design decisions in the context of coupled design
aspects can be consulted for robust design under consideration of design constraints. For instance, [4]
shows a basic application example for the method. RUDOLPH sets the axiomatic design approach into
the context of the evaluation hypothesis and similarity mechanics [131] and describes basic mathematical
formulations of the so-called design axioms [132].

As already mentioned before, HILLSTRÖM works with a concept of ‘interfaces’ [70] looking at spatial
and positional aspects. Further research has been conducted in the contact field of axiomatic analysis
and tolerance management by JOHANNESSON, who provides contributions extending the technical un-
derstanding of functional coupling analysis [77, 78]. SÖDERBERG proposes a method to link tolerance
management with quality and manufacturing cost analysis [147, 149]. From an axiomatic point of view,
these research contributions represent methodological linkages between the functional domain (qual-
ity), the physical domain (tolerances) and the industrialization or procedural domain (manufacturing
cost model). Furthermore, they investigate the link between functional decomposition and the result-
ing coupled tolerance chains61 axiomatically [79, 148, 150]. They propose a graph visualization for
the detection of unwanted tolerance chains, which are couplings in the sense of the axiomatic design
theory [157], leading to a method of achieving robust design from a tolerancing point of view.

59Compare also with the abstract MECAmaster visualization of ‘kinematic linkages’ shown in fig. 2.9.
60Section 2.6 will show how this is done for a cabin tolerance management process.
61As will be shown later in chapter 5 using design languages, coupled tolerance chains can be identified as closed loops in

the design graph. From this point of view, a tolerance calculation checks for the repercussions of coupled design aspects.
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2.5 Tolerance Synthesis

Manifold contributions were made to investigate correlations between tolerance management including
tolerance synthesis, manufacturing processes and capabilities or between quality and cost and to reflect
these interdependencies within product development methods and process frameworks. As mentioned
before, tolerance synthesis herein means to ‘synthesize’ or to ‘anticipate’ single tolerance values empir-
ically or (semi-)analytically in order to enable assembly tolerance analyses subsequently. For instance,
equation I can be used iteratively for the tolerance synthesis of the individual tolerance contributors ti, if
they are constituted by sub-assemblies and if the contributing sub-assemblies tolerances are known.

For the most part, tolerance synthesis is a very special technical problem associated with the individual
products and their manufacturing processes. The already mentioned standard ISO 2768-1:1989 for gen-
eral tolerances and some further standards – mostly for metal processing – constitute basic solutions for
tolerance synthesis problems. It is also common practice to use experience or ‘best engineering guess’
values and heuristics, in particular for conceptual design. For instance, FARMER proposes an empirical
formula to estimate single part manufacturing tolerances for a given dimensional value D based on a
tolerance grade factor IT representing the chosen manufacturing technology [51]:

t =
(
0.45 · 3

√
D + 0.001 ·D

)
· 10(

IT−16
5 ) (XVI)

This procedure is closely related to the aforementioned semi-empirical formulas and correlations of
preliminary aircraft design methods and shows exemplarily the need for flexible tolerance synthesis
methods for practical applications.

On one hand, generalization is difficult for complex synthesis problems with multi-disciplinary design
influences. On the other hand, experience from the aerospace sector tells that rather internal production
capability documents and databases based on experience and measurement are used for tolerance syn-
thesis methods. Published standardization for special tolerance synthesis methods are often not intended
in order to protect the industrial know-how.

Among the available more recent publications with a focus on tolerance synthesis, a clear tendency
towards expert systems and multi-disciplinary KBE methods is observable. WILHELM [171] and HAYES

[65] propose a computer method framework for tolerance synthesis integrating geometrical, functional
and knowledge-based aspects. SCHEER [140] and WITTMANN [172] present a feature-based approach
using a common database containing economical, measurement engineering, manufacturing and func-
tional data on a component level. The associated method proposes a control cycle to ensure the adequate
fulfillment of requirements coming from these disciplines.

MANARVI proposes using two geometry-based (CAD-based) databases: one containing product de-
sign and development data, the other containing methods and techniques information [102]. Based on
work about FE analysis [101], links between tolerances and deformation are incorporated. The databases
are embedded in an integrated tolerance synthesis working process for component design. STEINBICH-
LER [156] shows a recent special contribution from the field of molded-injection part design.

Already in 1973, SPOTTS [151] introduced an allocation method for tolerances to minimize manufac-
turing cost. In the late 1970s, the ‘loss function’ of TAGUCHI62 came up, which now has many applica-
tions [73, 74]. Altogether, they describe methods for links between tolerance synthesis and quality evalu-
ation. PARK introduces a method for robust design in the same context [118], while CHOUDRI describes
the introduction of methods for ‘Design for Six Sigma’ (DFSS) into the aerospace sector [25]. MAN-
NEWITZ provides investigations about the link between computer-aided design (CAD) and computer-
aided quality assurance (CAQ) methods [103], where statistical tolerancing methods are applied to enable
cost reduction.

62E.g., KLEIN [81, 82] can be consulted.
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2.6 Cabin Tolerance Management

Neither the mentioned standards nor the literature provide universal procedural advice about how to
involve tolerance management processes in industrial product development and processes. Like tolerance
synthesis, engineering processes for tolerancing – especially within complex concept and development
projects – strongly depend on the industrial branch, on the companies and on the educational background
including design traditions. Experience shows, that larger development companies within the aerospace
and automotive sector tend to write individual engineering procedures in order to control tolerance work
processes which suit the applied methods well.

For the cabin concept and design phases, tolerancing engineers do not only specify or calculate toler-
ances, but ‘manage’ them paying respect to product-related and to industrial frame conditions. The aim
of these cabin tolerance management activities is to define the repercussions of tolerances already in the
conceptual phase of the aircraft, rather than during the manufacturing phase – and to establish the links
to the neighboring design and manufacturing engineering groups like to aircraft structure and bracket
tolerancing teams. The focus is to enable suitable manufacturing processes for the FAL and to prevent
safety or quality issues during operation already in the design phase.

Cabin Tolerance Management Working Process

The cabin tolerance management activities stick to the following working process (see fig. 2.13):

1. Define performance key characteristics (PKCs) based on function and appearance requirements.

2. Define attachment system of the cabin modules and potential installation PKC tolerances.

3. Define cabin module datums and specify manufacturing key characteristics (MKCs).

4. Define cabin integration datums and corresponding aircraft assembly key characteristics (AKCs).

5. Calculate PKCs.

6. Discuss results with involved design and product teams and iterate with adequate corrective means.

The PKCs are product architecture-related assembly tolerance requirements Tj63 and have to be seen
as architectural design metrics. For cabin tolerancing, a PKC usually represents an acceptance criterion,
so PKCs have to be physically measurable. They originate in safety or certification requirements (e.g.,
minimum aisle width), appearance quality requirements (e.g., gap size or parallelism) or functional re-
quirements (e.g., clearance between movable parts). AKC and MKC tolerance specifications are sub-
ordinated tolerance requirements which serve the purpose of calculating PKC tolerances. They are the
tolerance contributors ti in 1D or 3D tolerance calculations, which the PKCs are calculated with.

Due to the long design phase of aircraft64 there is the approach to conduct several tolerance analysis
loops for different maturity levels of the design, ending when cabin module and component produc-
tion starts. In the first loop conducted at the beginning of the conceptual design phase, the major PKCs
are captured and initial datum definitions are set up. At this stage, AKCs and MKCs are usually based
on an engineering best guess, heuristics or – if available – on history data and are communicated using
spreadsheet-based KC-lists. The only prerequisites required are rough geometry definitions and some de-
sign and manufacturing input for the cabin modules respectively the aircraft structure and brackets along
with initial manufacturing tolerance estimations. The initial tolerance calculations are meant to indicate
whether the chosen architecture and design are capable of fulfilling the focused quality requirements and
of ensuring robust and convenient manufacturing processes, using the PKCs as design metrics.

63See subsections 2.3.1 and 2.3.2.
64A complete design phase may take five up to seven years.
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Figure 2.13: Aircraft cabin tolerancing working process

With the subsequent loop during the embodiment design phase, the number of the calculated PKCs in-
creases along with continuous updates of the AKC and MKC tolerance values. If design changes develop,
the implications on the PKCs, the attachment systems, the datum systems and the tolerances are propa-
gated and corrective means are initiated, as figure 2.13 shows. At the end of the detailed design phase,
just before production starts, the last analysis loop is accomplished and the tolerance requirements are
finally frozen within the technical specification documents going to the manufacturing suppliers.

If a need for change evolves due to manufacturing, time or cost implications during the production
phase, the working procedure is similar, except for the reasonable approach to limit the repercussions
locally. Where possible, production data is used for tolerance calculation updates. However, unlike for the
automotive industry, there is limited statistical data available for aircraft cabin modules and components
due to the aforementioned small batch sizes and due to the high rate of manual work.

Corrective Means for Tolerance Problems

Within all iterative loops, the following corrective means can be used to reach the tolerances:

– Change datum system: The earlier a datum system is changed, the smaller the implications are.
In the concept phase, changing datums is an appropriate instrument to optimize the overall product
performance concerning tolerance aspects. As soon as manufacturing processes are set up, it be-
comes very expensive, since datum changes usually come along with the change of manufacturing
processes and equipment. It is helpful to define datum systems providing high accuracy where it
is needed, ‘shifting’ geometrical variation to non-sensitive areas. The integration datum systems
have a high influence on the final accuracy of the interface points for FAL assembly processes.

– Change attachment system, assembly sequence or entire design: For a design or assembly se-
quence change, the same factors apply as for a change of the datums system. On top of that, there
are engineering change efforts for the product design data. Nevertheless, a design change can still
be a relatively cheap method compared to continuous quality or manufacturing problems due to an
unfavorable design. Again, necessary design changes should be identified as soon as possible to
limit the cost impact for development efforts or even for manufacturing. When adapting interfaces
and the assembly sequence, it is important to pay respect to the various interrelations of the multi-
ple interface points and the corresponding tolerances, as well as to consider the repercussions for
all involved engineering disciplines.
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– Reduce manufacturing tolerances (AKCs and MKCs): The seemingly simplest method to
achieve a tolerance target (PKC) is to reduce the contributing manufacturing tolerances according
to the 1D or 3D tolerance stack. From a manufacturing point of view, this is the most expensive one
yet. If the reduced tolerances are manufacturable at all, they are usually much more expensive65.
Especially when dealing with all-new products, it is additionally very risky to ‘bet’ on potential
manufacturing capability improvements in the field of tolerancing.

– Increase specified tolerance targets (PKCs): This ‘trivial’ change is always the simplest method
to achieve the target – but with the most repercussions on product performance. The implications
on quality and installation aspects need to be clear when increasing the tolerance specification of
a functional feature. In particular this can mean pushing the risk away from component manufac-
turing into the FAL66 (for installation-related tolerances) and could put risks on customer satis-
faction67 (for appearance quality-related tolerances). However, during the late development phase,
this is often the only way to proceed without changing the entire design or assembly concept.

Specific Cabin Tolerancing Aspects

It is thus the task of the tolerancing experts to discuss the above named corrective means with all disci-
plines involved and to push for the best one for the product – considering the whole product life cycle, in
particular including component manufacturing, assembly and customer quality concerns. Cabin module
installation in the FAL is completely different from structure component joints on the fuselage section
level (see fig. 2.14). Conceptual tolerancing aspects of the latter have already been outlined by MAR-
GUET [105]. For dedicated conceptual aircraft cabin tolerancing, however, no scientific research work
has been done up to now.

Cabin Tolerancing Structure Tolerancing

Geometry Mostly simple geometries: cabin modules of 
either planar shape (panels) or cuboid shape 
(stowage bins, monuments)

Frames, panels, complex frameworks 
and substructures incl. brackets

Types of interfaces 
and assembly 
processes

Attachment principle with brackets and 
dedicated interface points, clear installation 
sequence, manual installation

Riveting with overlapping, joining and 
assembling processes, machining, 
automated processes where possible

Installation time 
requirements

Very strict, due to high work load in  
'expensive' FAL

Focus on standardization and prevention 
of cabin customization impacts

Datum systems Cabin modules with repetitive datum 
systems. Many group tolerances and 
common zones over large areas for the 
bracket interface points

Complex section-wise datuming with the 
focus on fuselage integration

Figure 2.14: Comparison between specific cabin and structure tolerancing aspects

Due to the enormous number of KCs and due to the risk of overwhelming design changes, the toleranc-
ing processes needs to be flexible and adaptable to individual problems. Sometimes, a tolerance problem

65The above mentioned quality-related publications discuss this problem in detail. According to KLEIN [82], a very rough
rule of thumb says that a reduction of a tolerance by half the value leads to an increase of manufacturing cost by the factor four.

66For instance, if a pin-slot interface tolerance target is increased beyond the compensation capability of the slot, there is the
risk that installation fails. Thereby the apparently cheaper component manufacturing (due to the increased allowed deviation)
may lead to much more expensive assembly problems in FAL.

67If designers accept a larger gap tolerance between to cabin modules, it does not necessarily mean that the customer also
likes this solution.
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with multiple repercussions on design or even architecture aspects like time, cost, quality or performance
cannot be calculated completely due to time restrictions. On one hand, this means that tolerance engi-
neers need to be able to assess the problem based on experience and on heuristics. On the other hand,
there is the chance to deploy automatization software to speed up tolerance analysis, KC-list compilation
and the analysis model creation in particular. Especially in the context of modern engineering methods,
the latter one becomes more and more interesting for industrial reality, which is also reflected in the
recent development trends of commercial CAT software, as described above.

A current tendency goes into the direction of involving embedded tolerancing methods early in the
conceptual design phase for cabin design, architecture and integration. The aim is to prepare and evaluate
new technical cabin architecture scenarios (research and technology). However, while the role of cabin
tolerance management during the embodiment design and the detail design phases [117] is clear as
described above, there is only limited methodological experience concerning how to involve tolerancing
methods early in the conceptual design phase of cabin architectures.
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3.1 Problem Description

The overview provided by the two previous chapters showed that several methods are available, which
can be adapted and applied for the needs of physical architecture analysis during the early conceptual
cabin design phase. However, there are open questions and missing links at crucial points, which prevent
fast, brief and target-oriented analysis of technical scenarios. These can be expanded into the following
two questions A) and B):

A) Which methods and which models are needed for the evaluation of physical cabin architectures during
the early conceptual design phase and what is the role of tolerancing in this context?

In order to be able to analyze physical aspects of aircraft cabin architectures, it is mandatory to de-
fine which methods need to be considered and to show, how conceptual tolerancing can be embodied.
Traditionally, there has been limited perception for dedicated tolerance management methods in design
theories. For instance, PAHL and BEITZ [117] do not define these methods as dedicated engineering
methods, particularly not for conceptual design. In addition, industrial experience shows that tolerances
are often considered as manufacturing-related problems rather than as conceptual design parameters with
influence on the whole architecture.

But especially technical product architectures, which are widely influenced by mechanical interfaces
– such as the brackets between the cabin modules and the aircraft structure – need methods with a focus
on interface design. In particular, it is required to support architectures and design for cabin and fuselage
in parallel instead of a sequential integration of cabin after the fuselage architectures are frozen. To
close this gap, tolerancing could be involved early in the concept phase of product development, since
tolerancing methods can bridge between the interface architecture and manufacturing-related or quality-
related aspects.

B) How can the application of these methods be implemented in a fast and pragmatic as well as a
scientifically sound way?

There is the need for pragmatic implementations of these methods within a supportive software frame-
work in order to offer an alternative to intuition-based design heuristics for architecture design. In par-
ticular, there is a need for consistent and time-effective conceptual multi-domain trade studies.

A look into the status of research about dedicated tolerancing methods given with chapter 2 shows,
that CAT software is important for the given analysis task, but cannot answer the questions by itself. The
work on graphical interface analysis done by MARGUET et al. [12, 49, 105] with regard to link toleranc-
ing with assembly process modeling heads in the right direction. However, it seems that the presented
method cannot display more holistic design aspects beyond functional tolerances, and the extension to
such representations is difficult and not intended. A root cause for this is the core principle GASAP68,
which stands for a strong adherence to a geometry paradigm69. The approaches from JOHANNESSON,
HILLSTRÖM and SÖDERBERG [70, 79, 147] can be helpful support methods to analyze the role of func-
tional tolerances. The analogy to design graphs evolving from design languages is remarkable and seems
to open a research space for axiomatic tolerancing with design languages. The evolving tool [150], how-
ever, does not aim at representing arbitrary multi-disciplinary integration models beyond the axiomatic
tolerancing aspects. The mentioned tolerance synthesis and quality assessment methods focus on the
development of smaller products and thus the scalability to complex aircraft cabin is limited.

Outside the field of tolerancing, a shortcoming of the traditional methods for physical integration
discussed in section 1.2 is that they are not flexible enough to reflect the required working or analysis

68GASAP stands for ‘geometry as soon as possible’ [12], see section 2.4.
69In particular, the ‘CAD paradigm’ [16, 134] expresses the dominant role of geometry in traditional design processes and

must diminish since more and more non-geometrical features start to drive the design processes.
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processes for cabin architectures. CAD and CAD-related software implementations usually adhere to
the geometry paradigm [97]. Moreover the modeling principle of preliminary aircraft design methods is
usually geometry-based and uses geometry-focused abstractions of the aircraft [44, 91, 109, 125, 145].
For more holistic architecture analysis, it is required to overcome the shortcomings of single engineering
disciplines with their individual method and model concept constraints [93].

GÖPFERT outlines strategies to implement development methods into software and spans a bridge to
MBE approaches [58]. The required links to tolerancing as well as to manufacturing and industrialization
aspects can be incorporated into models for MBE, if the modeling philosophy is open to implementing
additional aspects. However, there is a risk of these methods ‘overtaking’ the users, as the modeling-
related aspects can be very sophisticated and abstract. Additionally, the more complex data models and
analysis methods get, the greater their implications for design processes are. A help can be to combine
MBE along with methods which support knowledge-reuse, and which can be applied ‘intuitively’ for
physical design engineers.

3.2 Solution Approach Overview

In the following, the two working hypotheses of this dissertation are unfolded:

I) Tolerancing constitutes an ‘intersecting set’ among the various analysis models and methods which
need to be involved, and therefore can be used as a key to analyze the mechanical integration aspects of
cabin design and architectures (first hypothesis of this dissertation).

It is necessary to describe an abstract scope of modeling70 which needs to be developed ‘around the
modeling concept of tolerancing’. Based on this, a specific multi-domain meta language [134] has to
be deployed, for which the scope of modeling contains analysis criteria and the corresponding analysis
methods for the special application case of conceptual cabin architecture studies. In the center of this ab-
stract model, concepts for cabin modules, for spatial and for mechanical interfaces need to be developed.

As a side aspect, it is necessary to sketch links between the scope of modeling for the requested
analysis of physical architectures and the models of further aspects beyond this initial scope, such as load
analysis or functional cabin and systems integration – the latter one in particular to prevent a irreversible
decoupling of ATA25-related and systems-related integration aspects.

II) An approach using executable design languages can be used to support the model-based creation
and the analysis of the involved product data (second hypothesis of this dissertation).

Hereby, the task should not aim at the development of ‘a generic design method’, but rather on a
pragmatic approach for the particular context of physical integration aspects of aircraft cabin design
and architecture. It has to be shown, that an approach using rule-based cabin design languages (CDL)
following a model-based paradigm [134] can provide answers to the pragmatic questions, such as how to
create and how to analyze the data models, and how to implement the proposed approach in an industrial
context. It has to be demonstrated, how the CDL offer the user to focus on the rule-based creation and
modification of digital product data and on the formal pragmatic scenario analysis and comparison as
part of a complex holistic evaluation task, rather than on the manual creation of formal models, or on
syntactic or semantic data checks.

70In the context of this thesis, the term ‘scope of modeling’ is intended to indicate that at first analysis methods along with
their corresponding abstract modeling principles [155] have to be identified constituting an abstract modeling space, which can
later provide explicit vocabulary [136] for design languages. In particular, the step to roughly outline the scope of modeling for
physical cabin architectures on an abstract schematic level (discussed in section 4.1) needs to be differentiated from the detailed
implementation-focused definition of the cabin design language class diagram (discussed in section 4.2).
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Although recently the link between design languages and digital factory models came into the fo-
cus [10], until now only little research has been conducted concerning links to tolerancing activities [93].
However, tolerance target definitions, attachment system definitions, datum definitions, tolerance defini-
tion or even tolerance synthesis as well as the actual tolerance calculation (steps 1 through 5 according to
fig. 2.13) are promising candidates for an implementation approach with the CDL. The principle of semi-
analytical and empirical methods as used for preliminary aircraft design can be a helpful contributor for
rule-based design parameter synthesis such as for AKC and MKC tolerances.

3.3 Structure of the Thesis

To develop the concept of the cabin design languages (CDL) within chapter 4, section 4.1 at first provides
the mentioned scope of modeling outlining those analysis methods that need to be involved (fig. 3.1). On
the basis of this, an UML-based class diagram is developed within section 4.2, which contains the CDL
vocabulary. With section 4.3, a set of architecture analysis parameters (AAPs) for CDL models are
presented, and section 4.4 closes the more theoretical aspects with the description of a framework for
implementations into software.

In chapter 5 the implementation of the CDL within the DesignCompiler 43 environment is discussed.
As mentioned, until now there is no software interface between design languages and tolerancing soft-
ware. To compensate for this shortcoming, a software interface is developed along with a set of plugins
for the CDL-specific implementations, which is documented in section 5.1. Section 5.2 introduces a use
case for the CDL and section 5.3 demonstrates how several trade studies within this use case can be
executed using graph-based executable design languages.

Chapter 6 comprises the results and discusses them in the context of the two mentioned hypotheses.
More specifically, section 6.1 focuses on the technical results of the use case and section 6.2 on the
methodological aspects. With section 6.3, implications for working processes in the industrial context
are considered.
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Figure 3.1: Structure of this dissertation
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4.1 Scope of Modeling

As expressed in chapter 3, cabin design and architecture analysis is a multi-domain problem [93] and can
benefit from a supporting multi-domain meta language [134] like a design language following a model-
based paradigm. In order to describe the demanded scope of modeling for conceptual design purposes of
physical cabin architectures, the following aspects can be outlined71:

– What needs to be modeled: model of cabin modules or system components, of interfaces and of
adjacent structure components

– When is it modeled: after complete installation in FAL, ready for flight72

– For whom is it modeled: for cabin architects

– For which purpose is it modeled: to support the analysis, comparison and evaluation of different
technical scenarios

Consequently, the investigated scope of modeling is considered the accumulation of those analysis
methods [134] with their corresponding modeling concepts which play an important role for the out-
lined conceptual cabin architecture analysis task and thus should contribute to the evolving cabin design
languages.

Architecture
analysis

parameters
Digital mock-up

Cost estimation

Mass estimation Installation 
processes

Mechanical 
interface 

management
Functional tolerancing

Figure 4.1: The scope of modeling of the cabin design languages

Figure 4.1 depicts the involved methods as well as their interdependency with the modeling concept for
tolerancing. Of course, not all detail aspects of the named methods need to be considered, but those that

71In line with the four questions about models according to STACHOWIAK [155], see footnote 13, page 10.
72‘When’ has to be read as the status or the system state of the cabin within the life cycle reflected by the model. In particular,

the CDL models do not represent a flying aircraft, but an aircraft standing on the ground with a completely installed cabin.
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interact with other methods and therefore may lead to multi-disciplinary design repercussions if changed
during a technical trade study.

The digital mock-up (DMU) for conceptual physical architecture and integration purposes comprises
the cabin modules and the cabin and aircraft system components with an appropriate level of details,
schematic attachment brackets visualizations and some primary structure components. The purpose of
the conceptual DMU is to prepare the spatial integration or DMU integration tasks. Spatial objects can
be clustered into subcomponents. A weight estimation method is needed to provide the link between the
cabin modules and the aircraft total weight report. According to the modeling depth as required for the
DMU, the mass of the cabin modules and of the attachment brackets can be assessed using appropriate
estimation methods.

The purpose of conceptual mechanical interface management is to get a grasp on the physical design
and architecture complexity, to ensure the industrial feasibility of chosen technical concepts, to ensure a
certain level of appearance quality as well as to set limits to in-flight deflections. Within the context of
this thesis, tolerancing with the corresponding meta language vocabulary [134, 136] is considered as the
key for conceptual mechanical interface management. Taking up the considerations from section 1.2, the
vocabulary required for these tasks is:

– Functional geometry features of the cabin modules, the system components and of those aircraft
structure components, which are relevant for the physical integration of the cabin and system
components.

– Gaps and split lines between the cabin modules (appearance PKCs).

– Functional descriptions of attachment concepts which locate and fix the cabin modules and of
potential installation PKCs.

– Definitions of the datum system of the cabin modules and of the cabin integration datum systems.

– Tolerance estimations for the considered functional geometry features.

To link aspects out of the wide field of installation process planning methods, the modeling objects of
primary interest for cabin architecture analysis are:

– Ability to harmonize FAL and MCA manufacturing strategy on global level

– Overview of FAL installation sequence

– Type of installation per cabin module

– Number of installation steps including preliminary estimation of time per step

Based on these aspects, initial working time estimations and an overall installation sequence planning
can be made. In order to be able to make statements about the detailed process length and about parallel
work, very detailed information is required. As such data usually is difficult to obtain, the focus of the
architectural analysis goes towards a more global anticipation of the repercussions of a chosen design
and architecture for the installation processes. For conceptual cost estimations in the context of the given
architecture analysis task, the cabin module-related manufacturing cost can be broken down as proposed
in figure 1.4, chapter 1.

Using these concepts, both architecture complexity analysis using architecture analysis parameters
(AAPs, see section 4.3) as well as tolerance calculations are possible. FEM-based load and deformation
analysis, which aims at the sizing of the detailed geometry and at the analysis of the in-flight deflection
behavior is not required for now. Nevertheless, except for an automated FE meshing of the cabin modules
and of the structure components, the information required to launch the FEM analysis has to be part of
the model.
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4.2 CDL Class Diagram

Within this section, the key concepts of the afore-introduced scope of modeling are transferred into UML
classes [128]. This follows the proposed concept of design languages with a model-based paradigm
according to hypothesis II (chapter 3). At this level, the CDL class diagram does not yet comprise case-
specific classes, but only generic ones in the style of a ‘generic model kit’. Specific classes are intended
to be defined in special case-specific class diagrams. Figure 4.2 shows the main aspects of the CLD class
diagram including most class attributes and associations73.

Figure 4.2: The CDL class diagram

In the following, the individual classes shown in fig. 4.2 will be described. The main classes are
PhysicalComponents and MechanicalInterfaces. Most other classes either inherit from these two classes
or are linked with them74.

The semantic hull [135] of concrete analysis models is constituted by the CDL class diagram including
inheriting case-specific classes and by the design rules considered for creating the models, which will be
outlined in section 4.4.

73See appendix B for the full CDL class diagram including all attributes, inheritance relations and detailed explanations.
74The creation of a class diagram represents a major intellectual effort for which a deterministic procedure is not yet know.

Therefore, the establishment of a class diagram is skill reflecting individual preferences. Its structure is a compromise between
general validity, specialization for individual applications and the available implementation in software [136].
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4.2.1 Physical Components, Datum Systems and Process Steps

Taking up the modular way of thinking according to MBE [136] and systems engineering [40, 117], each
physical entity forming part of the aircraft can be considered a ‘physical component’, such as cabin mod-
ules, system components and aircraft structure components. The generic classifier PhysicalComponent
can represent any object within the DMU. Therefore, it inherits from the abstract class Position, which
provides attributes for Cartesian coordinates and rotation angles75.

Along with a mass and a manufacturing cost attribute (PCmass and PCcost), further standard attributes
are the center of gravity (PCCoG ), as well as three boolean attributes to specify, if the instances are
left-hand, right-hand or symmetrical within the DMU (PCisLH, PCisRH, PCisSymmetric). In order to
model the individual design aspects for concrete cabin modules, additional attributes can be appended
by creating inheriting special cabin module classes.

The CAD geometry data is not intended to be mapped on the PhysicalComponent classes, but on as-
sociated SubComponent classes. SubComponent instances are a model container for DMU visualization
geometry along with some geometry and mass estimation parameters. The mass of a PhysicalComponent
is calculated as the sum of the masses of all Subcomponents belonging to it.

For tolerancing-related and interface-related aspects, the PhysicalComponent class has to act as the
datum system in the sense of ISO 5459:2011 for all corresponding geometry features, even if the explicit
definition of the datum features is not yet established. Therefore, the PhysicalComponent class inherits
from the abstract class DatumSystem, as can be seen in figure 4.2.

If DatumFeature objects are additionally used to model the datum system of a PhysicalComponent
in an explicit manner, these model objects can constitute a primary, a secondary and a tertiary datum
plane. In this case, it is necessary to check for the pragmatic correctness of the definitions. Completely
automated datum feature definitions are neither required nor foreseen at this stage.

4.2.1.1 Cabin Modules

Within the CDL model, each individual ATA25 module gets a corresponding CabinModule instance (see
figures 4.3 and 4.4). In addition to the attributes of the PhysicalComponent class, from which it inherits
directly, the CabinModules have the boolean attribute isLoaded. It indicates whether a cabin module is
heavy enough to make adjacent components fail due to clashes caused by in-flight or crash deflection
movements. This attribute is used later to define the minimum gap sizes around the cabin module. At this
stage load-stability is taken for granted for the cabin modules76. For the scenario-dependent definition
of the architectural position within the fuselage section, individual attributes can be added by using the
inheritance principle again77.

For production planning purpose, the CabinModule class inherits from the ProcessStep class. This
class provides slots for the installation order (a number saved in the slot PSorder), for the total in-
stallation time of the CabinModule and the corresponding preparation time (PSInstallationTime and
PSPreparationTime)78, the number of the FAL workers involved (PSWorkers), the installation place
(PSInstallationPlace with ‘FAL’ as the default value for CabinModules), as well as the slot PScost for
the process step cost (fig. 4.3). For cost analysis, cost synthesis functions can be added to the individual
cabin module classes, which is preferably done within the case-specific class diagram.

75In addition to pure geometrical data, there can be case-specific architectural position and shape parameters. Such case-
specific UML attributes, however, are not part of the generic CDL class diagram, but of case-specific class diagrams.

76 The definition of the minimum gap requirements is the linking point to implement effects of dynamic deformation of the
fuselage, e.g., by linking the model with FEM analysis. However, meshing data for FEM is considered more detailed design
data and is not needed in the CDL model, but could be added any time after the geometry definitions (see subsection 6.2.2).

77For instance, an attribute could indicate the position of the frame to which a cabin module is related.
78This attribute stands for the time in FAL, which is needed, e.g., to carry the cabin module into the fuselage or to pre-

assemble the cabin module outside the fuselage.
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CabinModule
(inheriting from ProcessStep)

PCmass  = aggregation of SubComponent mass
PCcost  = estimation based on
  SubComponent cost estimation,
  module design parameters, …
PScost  = estimation based on
  Installation time estimation,
  module FAL parameters, …
PSInstallationTime  = aggregation of InstallationSteps
PSPreparationTime = estimation based on parameters

SubComponent

mass  = estimation based on
  SubComponent design parameters
cost  = estimation based on
  SubComponent design parameters

MechanicalInterface
(inheriting from InstallationStep)

ISTime  = estimation based on parameters
ISCost  = estimation based on
  ISTime, number of involved workers,
   parameters,  ...

Figure 4.3: The CabinModule class with the implementation of mass, installation time and cost
synthesis on the CDL class level

lateral overhead 
stowage bin

sidewall 
modules

center overhead 
stowage bin

ceiling panel

air grid panel

Figure 4.4: Examples for cabin compartment (ATA25-2) modules
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4.2.1.2 System Components and Structure Components

Any part or module that does not belong directly to ATA25, but belongs to any of the aircraft or cabin sys-
tems can be specified using the classifier SystemComponent. It is possible to model the physical aspects
of systems components in a way comparable to that used for cabin modules. The StructureComponent
instances can be considered a placeholder for detailed aircraft structure design aspects from a DMU point
of view. For tolerancing and manufacturing-related aspects, the Structure Component instances act as an
integration datum system. They are a kind of container for FunctionalGeometryFeatures for interfaces to
CabinModules or SystemComponents and the datum for the structure tolerances (AKCs).

Lateral crown area

Central crown area

Floor level and/or seat rails

Side shell area

Figure 4.5: Examples for cabin integration datums

The StructureComponents (or cabin integration datums) can be, for instance, the floor level, the side
shell area or the crown area, as figure 4.5 shows. Similar to the CabinModules, the 3D geometry data
is not mapped on the StructureComponents directly. Instead, attachment brackets or substructure com-
ponents like tie rods are considered SubComponents and are linked to the StructureComponents. The
datum features of the StructureComponents are not modeled explicitly in the CDL models because they
are detail aspects of the fuselage architecture. For cabin tolerance management it is more important that
the integration datums exist rather than knowing their exact definition features.

The linkages between the StructureComponents and the fuselage section datum do not need to be
modeled explicitly. The corresponding attachments between the frames, the stringers, the shell plates,
the floor beams and the crown area substructures and their functional descriptions are very complex and
are not explicitly needed for a cabin architecture model. Hence, both virtual linkage coordinates as well
as the tolerances between the integration datums and the fuselage section datum are stored in the slots
P1x through P4z (see fig. 4.2) in the StructureComponent instances. The virtual coordinates may depend
on the mentioned architecture geometry parameters, so the equations for the coordinates can be defined
on the class level within a scenario-specific class diagram.



CHAPTER 4. CABIN DESIGN LANGUAGES (CDL) 59

4.2.2 Mechanical Interfaces and Installation Steps

Aside the concept of the PhysicalComponent, the second key aspect with manifold multi-domain cor-
relations are the MechanicalInterfaces. The discussion in chapter 1 about the role of interfaces for ar-
chitectures as well as in chapter 2 about the role of tolerancing indicate that the existing interface con-
cepts [70, 104, 106, 170] can be extended to describe interfaces not only for assembly analysis, but for
more general interface modeling purposes within the context of this thesis [93]. Consequently, a cluster-
ing of interfaces for mechanical integration aspects according to their interface function is proposed:

– interfaces fulfilling a spatial distance function

– interfaces fulfilling a locating function

– interfaces fulfilling a fixing function

The MechanicalInterfaces are hereby considered abstract functional objects with different interpreta-
tions for different aspects, depending on the mapped function. Consequently, a mechanical attachment
interface can be either a kinematic linkage (locating function) or a tolerance target called PKC (spa-
tial distance function) for tolerance analysis [27, 28, 93] or a load interface (fixing function) – or even
combinations of the three79, as can be seen in the CDL class diagram (see fig. 4.2).

Each MechanicalInterface instance can be interpreted as an installation step and therefore as an im-
plicit design constraint for the installation sequence in FAL80. For this purpose, it inherits from the class
InstallationStep. In this context, an InstallationStep is considered a single working step during the instal-
lation process of a PhysicalComponent with the corresponding sequence number (slot ISNumber) and
working time and cost (slots ISTime and ISCost). The latter ones can for instance be synthesized with
empirical estimation formulas (see fig. 4.3), or static values are applied. Additionally, the Mechanical-
Interface objects have slots for special naming and numbering conventions. Each MechanicalInterface in-
stance is likened to two FunctionalGeometryFeatures belonging to the interfacing PhysicalComponents.

From an architectural point of view, the overall number of interfaces within a technical cabin integra-
tion scenario can be used as architecture analysis parameters (AAPs) to measure design complexity, as
will be described in section 4.3.

4.2.2.1 PKC (Performance Key Characteristics)

A PKC (performance key characteristic) is an interface of an assembly located at gaps or a split line. The
two interfacing components are not in contact, but their geometrical shapes are bound to a function. Thus,
it serves a spatial distance function81. The function can either be appearance-related (e.g., a split line
between two cabin modules), operations-related (gap for a flap mechanism, e.g., of a overhead stowage
bin door) or installation-related (e.g., pin-hole coincidence). Speaking with tolerancing language, a PKC
needs to have a nominal value and a tolerance specification according to ISO 286-1:2010.

On top, it can reflect a dynamic in-flight deflection limitation requirement between two Functional-
GeometryFeature objects. To ensure these functions, the tolerance (slot PKCtoleranceRequirement) and
a minimal gap width (PKCminimalGapRequirement) are specified. The type of the PKC is saved in the
attribute PKCfunction. There is an attribute for the nominal size within the slot PKCnominalValue.

79The mentioned supporting features [138] and the contact joints [104] usually are only LoadInterfaces without being
KinematicLinkages in parallel. Conventional mate joints [104] consequently are MechanicalInterfaces which fulfill both the
locating function and the fixation function, and which are implicitly constrained by the design. To complete the listing,
MechanicalInterfaces which are only KinematicLinkages are mates that are free to be chosen for the manufacturing pro-
cess [170]. However, this means that they require adjustment or tooling and thus imply type-II assembly processes.

80This represents a comparable concept to the ‘assembly joints’ [170].
81PKC does not inherit from KeyCharacteristic since it is a mechanical interface and not a feature tolerance. Here, common

terminology is not consistent with the ontology, leading to pragmatic class diagram definitions (refer to footnote 74, page 55).
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4.2.2.2 Kinematic Linkages

A KinematicLinkage is an abstract point in space where the position of two PhysicalComponents is
determined relative to each other. This is accomplished by blocking one ore more kinematic DOF in
between. This represents the aforementioned locating function. The functional directions of the blockings
can be described explicitly within the slots called FunctionalDirection1 and FunctionalDirection2 82. The
special type of the KinematicLinkage describes which combination of DOF is blocked (see fig. 4.6):

– A 2wayLocator blocks one translational DOF.

– A 4wayLocator blocks two orthogonal translational DOF, which usually contribute to the compo-
nents’s secondary and tertiary datum plane.

– A Rotated4wayLocator serves the same function as the 4wayLocator, but one functional direction
belongs to the primary datum plane.

– Locally, a LocatorPlaneElement behaves like a 2wayLocator, but three or more LocatorPlane-
Elements act together and lock one translational and two coupled rotatory DOF.

Figure 4.6: The KinematicLinkage classes required for the CDL class diagram

As already mentioned in chapter 2, most cabin lining panels have a linkage system that uses the same
geometry features as their corresponding component datum system83. The lining panels which are mod-
eled within this work use a 3-2-1 linkage system (fig. 4.7) and a 3-2-1 datum system respectively. Within
the CDL implementation, the 3-2-1 linkage system consists of three or more LocatorPlaneElements,
which together block the first translational and the first two rotatory DOF of the panel installed in the
fuselage. If more than three LocatorPlaneElements are modeled (which is usually the case to prevent
edges from hanging down and from fluttering), this results in an over-constrained system in the pri-
mary direction, for which however simple calculation workarounds are possible within the convenient
CAT software. Additionally, a combination of one 4wayLocator and one 2wayLocator for the remaining
three DOF is needed. Both together block the remaining rotatory DOF and one translational DOF. The
4wayLocator also blocks the last translational DOF.

Further special linkage systems are the lateral stowage bin linkage system and the center stowage bin
linkage system (fig. 4.8). The lateral stowage bin linkage systems consists of two Rotated4wayLocators
and two LocatorPlaneElements for the primary linkage plane (one translational DOF, two rotatory DOF)

82See fig. B.18 in Appendix B, page 146, for the inheritance relationship.
83A datum system describes the way a component is fixed on a measurement machine to measure its tolerances (e.g., see

fig. 2.3). The linkage system describes how a component is installed within an assembly concerning its kinematic DOF. For
most cabin components the datum system and the linkage system use the same geometry features since engineering heuristics
and experience show that this usually minimizes the assembly tolerances. The comparison of figures 4.7 and 4.9 shows this
principle. See sections 2.1 and 2.3 for more detailed explanations.
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LocatorPlaneElement
contact planes of a pin in a box

LocatorPlaneElement
contact planes of a pin in a box

LocatorPlaneElement
contact plane

LocatorPlaneElement
contact plane

2wayLocator
pin for a pin-slot interface

4wayLocator
pin for a pin-hole interface

Lining panel

Figure 4.7: 3-2-1 linkage system of a cabin furnishing ceiling panel (top) and the abstraction us-
ing CDL vocabulary in UML (bottom). The class CLNG represents a ceiling panel as
particular cabin module and inherits from the class CabinModule (see Appendix C).
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and for the secondary linkage axis (one translational and one rotatory DOF), as well as of one 2way-
Locator to block the remaining translational DOF of the module. The center stowage bin linkage system
comprises four linked Rotated4wayLocators for the primary linkage plane and for the secondary linkage
axis (middle axis), together with one 2wayLocator. For all of these linkage systems, an individual setup
is required concerning the position and orientation of the FunctionalGeometryFeatures and the linked
MechanicalInterfaces) for each individual cabin module.

Rotated4wayLocator
two times on the front side, two times in the 
middle (over-constrained, slot not shown), 
two times on the aft side (not shown)

LoadInterface
tie-rod attachment, used to fix box 
in x-direction

Rotated4wayLocator
one on the front side, one in the middle 
(over-constrained, slot not shown), 
one on the aft side (not shown)

LocatorPlaneElement
tie-rod attachment in Y-direction,
also one on the back side

2wayLocator
edge used to locate box 
in x-direction

LoadInterface
tie-rod attachment on the back 
side (not shown), used to fix box 
in x-direction

front side

back side

2wayLocator
edge used to locate 
box in x-direction

Figure 4.8: Special linkage systems for stowage bins

4.2.2.3 Load Interfaces

A LoadInterface is an abstract point in space where two PhysicalComponents are interconnected so that
loads and momentums can be transferred between them (fixing function). Comparable to the Kinematic-
Linkage, the type and the direction of the transmissible linear forces and the momentums need to be
described explicitly within the slots called FunctionalDirection1 and FunctionalDirection2.
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For CDL models, the modeling of LoadInterfaces is primarily needed for architecture evaluations us-
ing architecture analysis parameters (AAPs, see section 4.3). But – if required – they could be used as
boundary conditions for FEM models. Within the context of the CDL, there are only static Physical-
Components and no movable parts, such as for example flaps, rudders or landing gear kinematics. Nev-
ertheless, dynamic in-flight deflections can occur, and the load interfaces play an important role here for
potential FEM based load and deformation analysis.

If a MechanicalInterface is classified as LoadInterface and as KinematicLinkage at the same time, it
locally fulfills both the fixing and the locating function. This superposition is required for all mechanical
interfaces of a physical component in order to get type-I assembly processes without any adjustability
during installation. This is the case for the cabin compartment modules following the 3-2-1 linkage
system (e.g., see fig. 4.7). The x-location84 and the x-fixation of the lateral and center stowage bins
modules are situated at two different locations using two different MechanicalInterface objects. Thus,
the installation of these modules has to be classified as type-II assembly.

4.2.3 Functional Geometry Features and Datum Features

The functions of MechanicalInterface objects take effect at the so-called FunctionalGeometryFeature
objects which are special geometry features of a PhysicalComponent85. Figure 4.9 shows the detailed 3D
geometry and the the abstraction of FunctionalGeometryFeatures with a focus on the physical integration
aspects. As can be seen in figure 4.7, FunctionalGeometryFeatures are linked to MechanicalInterfaces.

Lining Panel

Planar 
FunctionalGeometryFeature/
DatumFeature
contact surface in the box Planar 

FunctionalGeometryFeature/
DatumFeature
contact surface in the box

Planar 
FunctionalGeometryFeature/

DatumFeature 
contact surface around the pin

Planar 
FunctionalGeometryFeature/
DatumFeature
contact surface around the pin

Linear 
FunctionalGeometryFeature
edge  at split line/gap

Linear 
FunctionalGeometryFeature
edge  at split line/gap

Linear 
FunctionalGeometryFeature/
DatumFeature
pin in slot

Circular 
FunctionalGeometryFeature/
DatumFeature
pin in hole

Figure 4.9: FunctionalGeometryFeatures of a ceiling panel acting either as datum features or
having MKC tolerances. See fig. 4.7 for the corresponding KinematicLinkages.

84As convention, the x-direction of an aircraft’s CAD coordinate system (see footnote 30, page 23) goes backwards along
the longitudinal axis, the y-direction goes transverse, while the z-direction goes upwards.

85E.g., WHITNEY talks of ‘assembly features’ [170] for assembly functions.



64 CHAPTER 4. CABIN DESIGN LANGUAGES (CDL)

The level of implementation of the CDL foresees a simplification of the features to a single point.
Despite this initial definition, it is possible to extend this simplification with special feature definitions
representing, for example, planes, lines or circles with the correspondingly needed geometry parameters
in a potential data library for FunctionalGeometryFeatures. The positional and directional attributes of
the FunctionalGeometryFeatures can be subject to tolerance by linked KeyCharacteristic objects or can
be declared as DatumFeature of the corresponding PhysicalComponent respectively DatumSystem.

DatumFeatures are special FunctionalGeometryFeatures representing a datum feature object accord-
ing to ISO 5459:2011. Using these objects, the explicit datum system of a PhysicalComponent can be
implemented into the CDL model. For conventional lining panels following a type-I assembly, the at-
tachment features often are used as datum features. The comparison of figures 4.7 and 4.9 shows this
principle. For type-II assemblies like overhead stowage bins, other features need to be used, such as for
instance surfaces. Those FunctionalGeometryFeatures which are not classified as DatumFeature usually
get the classifier KeyCharacteristic.

4.2.4 Key Characteristics and Tolerances

CDL objects of the type KeyCharacteristic have to be interpreted as geometric tolerances representing
key characteristics (KCs) according to EN 9100:2010 and EN 9103:2005. They inherit from the class
Tolerance, which is used in the sense of ISO 286-1:2010, and therefore has attributes for the tolerance
range, the mean shift and for the distribution curve (PlusMinus, MeanShift, DistributionType). In order
to separate between cabin and structure-related tolerances, the manufacturing tolerances of cabin mod-
ules are called MKCs (manufacturing key characteristics), while AKCs (assembly key characteristics)
describe the position and orientation tolerances of FunctionalGeometryFeatures on the aircraft side. The
type of the KeyCharacteristic along with an unique identification number is saved in the slot KCname.

The KeyCharacteristic objects are mapped to a datum, since any tolerance has to be seen relative to
its datum. Those FunctionalGeometryFeatures, which are not specified as DatumFeature can have asso-
ciations to KeyCharacteristics. This way, the GPS tolerance of a geometry feature is specified relative to
a datum using UML objects. In order to model group tolerances, the classifier ToleranceRefinement can
be chosen additionally, providing additional attributes for the tolerance range, mean shift and distribution
type of the group refinement, which are PlusMinusRefinement, MeanShiftRefinement, DistributionType-
Refinement.

4.3 Architecture Analysis Parameters (AAPs)

The implicit meaning of each CDL model object has been outlined in the previous section. The main
purpose of CDL models, however, is to allow for a joint analysis of all model objects together, enabling
the comparison and the evaluation of technical scenarios which consist of multiple objects. In this con-
text, the formal analysis of cabin architecture models with CDL can be considered the measurement
of design and architecture complexity using suitable metrics [43], here called architecture analysis pa-
rameters (AAP). In principle, this can comprise any computing of analysis parameters out of structured
formal data, such as building the sum of values or counting the total of a certain kind of design objects.
If comparison data is available, it is possible to set these measured system parameters in relation to other
reference parameters.

A couple of such AAPs are proposed below. These parameters should neither be considered as ‘the
only suitable’ parameter set, nor as a ‘complete’ description – especially not as independent and di-
mensionless similarity numbers being evaluation parameters in the sense of the pi-theorem [131, 133].
Nevertheless, these analysis parameters allow to describe physical integration aspects of cabin architec-
tures in a pragmatic way.



CHAPTER 4. CABIN DESIGN LANGUAGES (CDL) 65

4.3.1 AAPs related to Cabin Modules

Number of cabin compartment chain module types The more different cabin compartment chain
module types exist, the more development and NRC efforts including efforts for detailed design, stress
analysis, qualification and documentation have to be taken. Additionally, the integration complexity
increases, meaning for instance more correlations between cabin modules such as PKCs. In contrast,
fewer cabin compartment module types can mean that the modules get larger, which can be difficult for
manufacturing including for the manufacturing tolerances and for the installation.

Total number of cabin compartment modules The total number of cabin compartment modules in-
dicates the DMU integration efforts. Without a consistent standardization of the mechanical and system
interfaces, more modules also means more development efforts. As an alternative, the parameter can be
expressed in relation to the overall length of the cabin or cabin segment, to get comparable values for
different aircraft with different cabin compartment lengths.

Mass of cabin compartment modules / mass of attachment brackets / total mass / ratio Like for any
other system or component of the aircraft, the mass of the cabin compartment modules, the mass of the
corresponding attachment brackets and their total mass are key aspects of cabin architectures. Certainly,
these mass values need to be considered and evaluated together with the corresponding aircraft structure
mass values, as only both together can be used to evaluate the mechanical architecture efficiency with
regard to the overall aircraft mass performance86.

The ratio of both values expresses how well cabin modules and attachment brackets are physically
decoupled [157]. A low ratio indicated an architecture that needs a large substructure mass to integrate the
cabin modules. This can go back for instance to requirements like self-locking brackets, which increase
mass due to additional functional requirements for the brackets. A high ratio indicates a weight-optimized
bracket application, which however may impact cabin module manufacturing costs or installation time
and cost.

Overhead stowage bin loading volume The total overhead stowage bin loading volume is one in-
dicator for the cabin compartment performance87. Airlines favor large overhead stowage space, as the
passengers often prefer to have their hand luggage within reach. The smaller the stowage bin compart-
ments are, for instance, due to short fuselage frame distances or due to a stowage compartment module
architecture with short modules, the more unusable space in the gaps and split lines is wasted.

4.3.2 AAPs related to Mechanical Interfaces

Number of generic PKC types This AAP indicates in general the quantity of different PKCs, which
lead to both tolerance management efforts during the development phase (non-recurring engineering
cost) as well as to individual checking and measurement processes in the FAL (recurring manufacturing
cost).

Total number of PKC applications This AAP summarizes the effects of generic PKC diversity and
of the cabin (segment) length and quantifies the explicit FAL checking and measurement steps. The AAP
can be set in relation to the cabin (segment) length in order to make length-independent conclusions.

86For instance, if cabin modules contributed to the stiffness of the fuselage, they would have an increasing mass. Conven-
tionally, this is regarded as a poorer design than cabin modules without this function. On the other hand, this could lead to
reduced loads impacting the primary structure and thus also to potentially reduced fuselage mass. Consequently, both cabin and
fuselage mass should only be evaluated jointly concerning aircraft mass performance.

87See chapter 6 for a discussion of this AAP.
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Total number of optical PKC / Total number of installation PKC / ratio The first parameter indi-
cates how many optical PKCs there are in the cabin segment. It can be considered an analysis criteria
for how good the industrial design ‘forgives’ tolerances: the more optical PKCs there are, the more gaps
and transitions are visible and not hidden. The total number of installation PKC is a measurement pa-
rameter for the number of tolerance compensation features such as slots and oblong holes, which need
to be toleranced in order to ensure installability. It will be high for type-I installations, and will be lower
for type-II installations. These parameters can also be checked on the cabin module level to compare
different module concepts directly.

The ratio of both can tell how the cabin architecture is driven by industrialization requirements (instal-
lation PKC) in relation to customer requirements (appearance PKC). An architecture with many type-I
cabin modules and ‘tolerance-forgiving design’ will have a larger number than an architecture with sev-
eral type-II cabin modules with many visible tolerances: higher numbers are better for FAL processes,
but need a tolerance-proof design, whereas lower values are worse for FAL processes, but may have less
restrictive tolerance requirements.

Number of interface types with mechanical functions This AAP is an indicator for the overall de-
sign complexity and in particular for the generic development efforts. It depends on the number of cabin
compartment chain module types, but additionally expresses the efforts for mechanical integration. More
interfaces may lead to more non-recurring development costs, but also to increased recurring manufac-
turing costs in the FAL.

Total number of kinematic linkages The parameter indicates the complexity of the mechanical in-
terface architecture between the cabin compartment modules and the aircraft structure concerning DMU
integration efforts including customization efforts. For a length-independent comparison of different
cabin architectures, the ratio per cabin (segment) length can be used.

Number of cabin-to-cabin interfaces / number of cabin-to-structure interfaces / ratios These
AAPs aggregate the number of cabin-to-structure and cabin-to-cabin interfaces as the sub-sum of the
total number of interfaces. Cabin-to-cabin interfaces are functional couplings between cabin modules in
the design graph and can lead to tolerance restrictions and additional load paths. Cabin-to-structure inter-
faces are attachments between cabin modules and the fuselage. The smaller the ratio between these two
numbers, the more cabin-to-cabin interrelations there are, leading to an increasing design complexity.

Total number of ‘only fixing’ interfaces / total number of ‘only locating’ interfaces / ratio to total
number of mechanical interfaces These AAPs indicate how many mechanical interfaces only serve
the fixing function or only serve the locating function respectively. If type-I installation processes are
aimed at, which are free of adjustment steps and free of installation loads (e.g., push the part into the
final position), ‘locating-only’ interfaces must be avoided, since they require an additional step for the
implementation of the fixing function. The example of the stowage bins (fig. 4.8) shows this situation.

If the ratio of the locating-only interfaces in reference to the total number of mechanical interfaces is
0%, then all cabin compartment modules are installation type-I. Formally, the number of interfaces is then
minimized, due to a maximal coupling of the mechanical functions. However, a very good cooperation
of tolerance management, stress and deflections is required to enable type-I installations in FAL for all
cabin modules. If the ratio is larger than 0%, the architecture contains some type-II installation processes
for cabin modules. This reduces the functional coupling between stress, tolerances and deflections and
may simplify some complex technical scenarios.
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4.3.3 AAPs related to Tolerances

Total number of different integration datums If a fuselage comprises too few integration datums
for cabin integration (e.g., only the floor level as z-reference), this increases the functional tolerances:
long distances to the datum features mean that the positional tolerances of the structure interface points
get larger along with their contribution in the 3D tolerance stack. On one hand, more integration datums
reduce the distance between toleranced feature and datum, which can deflate this phenomenon. On the
other hand, the efforts for the fuselage architecture as well as the design and manufacturing complexity
increases. Additionally, those PKCs which are between modules linked to different integration datums
are impacted by datum shift tolerances.

Number of different AKC types Each AKC type represents a generic manufacturing constraint due
to a functional tolerance requirement (PKC). The more different AKC types there are, the more complex
the definition of the structure component manufacturing processes.

Total number of AKC applications Each AKC represents an individual manufacturing constraint and
needs to be controlled during manufacturing, which is associated with impacts on manufacturing time,
cost and quality. The more AKCs, the more complex is the definition of the manufacturing processes.
Additionally, every AKC leads to recurring manufacturing cost. The ratio per cabin (segment) length
indicates the number of length-independent manufacturing constraints.

Total number of AKC applications with a link to an appearance PKC / ratio to total number of
AKC applications Unlike MKCs, the number of AKCs does not necessarily decrease if the number of
appearance-related PKCs is reduced, as AKCs are often required for installation PKCs only. The larger
the ratio, the higher the influence of appearance requirements is on the aircraft structure design. The
smaller the ratio, the higher the influence of cabin installation-related requirements is on fuselage and
secondary structure design.

Total number of AKC cabin-to-cabin / total number of AKC cabin-to-structure / ratios Cabin-to-
cabin AKCs are restrictions for FAL installation processes. The more interfaces there are between cabin
modules, the more complex the requirement interdependency in the design graph is and thus the more
complex the design is. This means that when the ratio is smaller, less cabin-to-cabin interactions lead to
an increasing design complexity: the larger this number, the larger the design complexity of the design
graph representing the cabin architecture scenario.

Number of AKC cabin-to-structure with refinements This sub-sum of the overall AKCs indicates
how many tolerance requirements are locally coupled and therefore add constraints and complexity to the
manufacturing processes. If too many tolerance refinements need to be specified, the integration datums
probably have not been defined well looking at the functional needs88.

Ratio of total number of AKC in relation to total number of interfaces with mechanical function
The higher the ratio, the more complex the design is. In particular, a high ratio can indicate that there is a
highly integrated design with the intention to reduce the number of mechanical interfaces. For instance,
this can be a weight-optimized and very modularized design, but the manufacturing and installation
processes can be more difficult than for a design with a smaller ratio.

88Large tolerance groups can be considered as local integration datums for functional purposes alternatively. For large groups
it may make sense defining a real additional integration datum rather than tightening manufacturing tolerances with over-
constraint group tolerances.
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Number of different MKC types Each MKC type represents a generic manufacturing constraint due
to a functional requirement (PKC). The more MKC types there are, the more complex the definition of
the cabin module manufacturing processes becomes. ‘Tolerance-forgiving’ design in this case means a
low number of different MKC types.

Total number of MKC applications The more MKCs, the more final measurement efforts need to be
taken, influencing time, cost and quality of the cabin module manufacturer. The ratio per cabin (segment)
length indicates the number of length-independent manufacturing constraints for the cabin modules.

Total number of MKC applications with a link to an appearance PKC / ratio to total number of
MKC applications If type-I installation processes are dominant, MKCs are mostly needed for ap-
pearance PKCs. Values smaller than 100% indicate, that the cabin modules are designed to have type-II
installation processes in FAL. Consequently, some MKC tolerances need to be controlled during man-
ufacturing just to ensure installability. The corresponding cabin architecture is more complex than one
without MKC tolerances for installation purposes. Similar to the AKCs, the ratio to the total number of
MKC applications indicates, how many tolerancing efforts are needed.

4.3.4 AAPs related to Installation Aspects and Costs

FAL Mh estimation bottom-up An important AAP concerning the FAL installation processes is the
estimation for the overall working time needed to install the cabin into the aircraft. Modern cabin ar-
chitectures aim at limited installation time. However, this time needs to be considered and evaluated in
conjunction with the installation time and cost for the fuselage at MCA.

Installation Mh / work preparation Mh / ratio of both This is on one hand the sum of all installation-
related working time in FAL, on the other the sum of all preparation-related working time in FAL (carry
modules into the aircraft, fetch tools and jigs etc.). The corresponding ratio reflects, whether there is
high preparation work, for instance due to many tool-based installation processes. The higher the ratio,
the more optimized the architecture concerning smart installation processes is. However, if the ratio is
very high, the design and manufacturing repercussions for MCA - for instance strict tolerance or process
requirements - need to be considered.

Total number of FAL installation steps This parameter counts all individual steps to install all cabin
compartment modules. Therefore, each mechanical interface is considered as one installation step. To
eliminate the influence of the length, the parameter can also be set in relation to the overall length of the
cabin or cabin segment.

Rate of cabin compartment chain modules with type-I installation The more type-I installations
designed, the fewer the expected installation efforts in the FAL, but the tolerances (MKC and AKC)
need to be stricter in order to enable these installation processes. Alternatively, the PKCs for optical
aspects could be increased with the corresponding impact on the appearance quality.

Cabin compartment manufacturing cost / module and bracket purchasing cost / installation cost
As proposed before, the cabin compartment-related manufacturing cost can be broken down into the
modules’ and brackets’ purchasing cost and into the FAL installation cost as primary recurring cost
indicators. As an analysis, the corresponding cost budgets can be summarized.
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4.4 Generic CDL Modeling and Analysis Process

The following methodological framework explains how models using the CDL vocabulary can be built
up in a generic way and how technical scenarios can be analyzed using the CDL models. Since the
tolerancing-related model aspect are the largest contributors to the final model space, it is helpful to
choose the rule sequence in dependence on the tolerancing process as presented within section 2.6.
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Execution	Date	/	Time	 -	 2012-01-31	/	19:46:25
Frame	distance	 mm	 530
Lenght	of	F2F	Segment	 mm	 7950
Lenght	of	F2F	Segment	(frame	bays)	 -	 15
F2F	frame	architecture	1	 -	 4,0
F2F	frame	architecture	2	 -	 2,0
	 	

Cabin Module and Structure Component Data	 	
Number	of	different	Cabin	Module	types	 -	 X
Number	of	Cabin	Modules	 -	 X
Total	number	of	Cabin	Modules	per	m	 1/m	 X,X	 	
Number	of	different	StructureTopNodes	types	 -	 X
Total	number	of	considered	StructureTopNodes	 -	 X	 	

Mechanical Interface Data	 	
Generic	number	of	different	mechanical	interfaces	 -	 X
Generic	number	of	different	mechanical	interfaces	per	m	 1/m	 X,X	 	
Total	number	of	Kinematic	Linkages	 -	 X
thereof:	Number	of	Cabin-to-Structure	Interfaces	 -	 X
thereof:	Number	of	Cabin-to-Cabin	Interfaces	 -	 X
Ratio	of	Cabin-to-Cabin	interfaces	in	relation	to	Cabin-to-Structure	interfaces	 -	 X,X
Number	of	Kinematic	Linkages	per	m	 1/m	 X,X	 	
Total	number	of	Load	Interfaces	 -	 X
Number	of	Load	Interfaces	only	(no	Kinematic	Linkage)	 -	 X
"Ratio	of	coupled	mechanical	interfaces	(Kinematic	Linkage	and	Load	Interface)	 	
				in	relation	to	overall	number	of	mechanical	interfaces	(Kinematic	Linkage	and	Load	Interface)"	 -	 X,X	 	
Number	of	different	PKC	types	 -	 X
Number	of	PKC	applications	(to	be	checked	by	FAL-Q)	 -	 X
thereof:	number	of	optical	PKC	 -	 X
thereof:	number	of	Installation	PKC	 -	 X
ratio	of	installation	PKC	per	optical	PKC	 -	 X,X
Number	of	PKC	applications	per	m	 1/m	 X,X
Number	of	PKC	applications	per	PKC	types	 -	 X,X

AKC and MKC Data	 	
Number	of	different	AKC	types	 -	 X
Number	of	AKC	applications	(to	be	checked	by	ME-Q)	 -	 X
thereof:	number	of	AKC	Cabin-to-Structure	 -	 X
thereof:	number	of	AKC	Cabin-to-Structure	with	refinements	 -	 X
thereof:	number	of	AKC	Cabin-to-Cabin	 -	 X
Number	of	AKC	applications	per	m	 1/m	 X,X
Ratio	of	total	number	of	AKC	applications	with	PKC	link	 -	 X,X
Ratio	of	total	number	of	AKC	in	relation	to	total	number	of	Mechanical	Interfaces	 -	 X,X	 	
Number	of	different	MKC	types	 -	 X
Number	of	MKC	applications	(to	be	checked	by	ME-Q)	 -	 X
Number	of	MKC	applications	per	m	 1/m	 X,X
Ratio	of	total	number	of	MKC	applications	with	PKC	link	 -	 X,X	 	

Mass Data 	
Mass	estimation	bottom-up	total	 kg	 X,X
thereof:	mass	estimation	bottom-up	ATA25	F2F	 kg	 X,X
thereof:	mass	estimation	bottom-up	ATA53	Brackets	 kg	 X,X
ratio	of	mass	ATA25	in	relation	to	mass	ATA53	Brackets	 -	 X,X	 	

FAL Data	 	
FAL	Mh	estimation	bottom-up	 Mh	 X,X
thereof:	installation	Mh	 Mh	 X,X
thereof:	work	preparation	Mh	 Mh	 X,X
ratio	of	Installation	Mh	in	relation	to	overall	FAL	Mh	 %	 X
Average	installation	Mh	per	installation	steps	 -	 X,X	 	

Cost Data	 	
Manufacturing	cost	 EUR	 X
thereof:	purchasing	cost	for	Cabin	Modules	 EUR	 X
thereof:	installation	cost	in	FAL	 EUR	 X

Performance Data	 	
Stowage	bin	loading	volume	 l	 X,X
Stowage	bin	loading	volume	per	m	 l/m	 X,X

Figure 4.10: Generic CDL modeling and analysis working process (compare with fig. 1.7, page 13)

To start it is necessary to create a case-specific class diagram inheriting from the generic CDL class
diagram. The class diagram should be enriched by CAD data in the required granularity linked to the
corresponding classes. As described by figure 4.10, the following synthetic compilation of the analysis
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models consists of four phases. The first and second phase are the actual modeling phase – the phases, in
which the design graph consisting of CDL vocabulary grows rule-based using model-to-model transfor-
mations (first two steps in fig. 4.10).

Within the first phase, the technical design and architecture framework needs to be set up. This com-
prises the compilation of spatial architecture aspects like the definition of architecture input parame-
ters (e.g., definition of the frame length or of comparable geometry patterns), a conceptual arrangement
of the CabinModule objects within the virtual fuselage, the definition of the structure integration da-
tums (StructureComponents) and the definition of gaps (PKCs) with product performance relevance
including tolerance requirements and deflection limitations.

The second phase is the detailing of the model, which comprises the compilation of mechanical and
manufacturing process-related architecture aspects. In particular, this means the application of Sub-
Components and geometry data to increase the level of granularity of cabin modules, structure integration
datums and brackets to the required depth, the application of MechanicalInterfaces with the needed me-
chanical functions and the corresponding FunctionalGeometryFeatures. Additionally, the model can be
enriched with further domain data (mass, cost, manufacturing process information etc.).

Ensuring syntactic, semantic and pragmatic correctness of the data models constitutes a key aspect of
design languages in use [135]. Syntactic correctness needs to be ensured by the compilation algorithms
during the rule execution. Only rules which are syntactically correct should to be executable [135].
Semantic correctness, however, depends on the individual data models and on the corresponding class
models. Therefore phase three for model checks is used after the design graph has reached its final size
and before the analysis transformations are conducted. For instance, it is necessary to check whether
all required class definitions are set, whether all required instances and slots exist and whether all slot
values have the correct data type and format. Additionally, manual pragmatical model checks should be
performed by the user before going into the analysis phase.

The fourth phase starts when the design graph representing a cabin architecture scenario is finished
and checked. The corresponding analysis transformations have to be a reasonable combination of model-
to-model and model-to-text transformations, depending on the explicit software implementation. The
analysis methods are constituted by the scope of modeling as proposed in section 4.1 and comprises the
following analysis methods89:

– Calculation of the AAPs

– Compilation of DMU data

– Tolerance analysis models

– Compilation of KC-lists for bi-directional exchange

– Compilation of FAL process overview charts

After the initial model analysis as described above is finished, further analysis methods outside the
initial scope of modeling can be consulted. Considering methods like FEM-based load and deflection
analysis, implementing links to functional systems analysis models, more detailed cost prediction or
manufacturing planning methods or ergonomics analyses all depend on design- and scenario-specific
technical or functional circumstances. If needed, the CDL data models therefore could be transformed
into further data models, as soon as the correlations between the CDL class model and the new target
class model are described.

89These analyses can be considered as part of the checks for pragmatic model correctness [135].
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5.1 Software Interfaces

For this thesis, the representation of graph-based design languages in UML format has been chosen
for the software-based implementation example of the CDL model framework [15, 128]. To fulfill the
intended analysis task of mechanical cabin architectures including tolerancing, it is necessary to deploy
some new software interfaces called plugins for the required information processing90 [75]:

– Plugin constituting a software link to CAT software following a kinematic modeling approach

– Plugin to establish the scenario-independent CDL class model including some general routines

– Plugins to transform the CDL models to analysis and visualization models

Figure 5.1 introduces the new plugins that have evolved accordingly and indicates their hierarchical
dependency in the software environment. The following subsections will provide an overview about these
new software interfaces.

DesignCompiler 43

including various
software interface plugins

CAT plugin to MECAmaster

de.bl.uml2mecamaster

CDL plugin

de.bl.cdl

AAP analysis charts
de.bl.cdl2analysis

MECAmaster models
de.bl.cdl2mm

KC-lists
de.bl.cdl2kclists

FAL chart
de.bl.cdl2fal

Model exchange
de.bl.cdl2exchange

Figure 5.1: Software interfaces for the software DesignCompiler 43 [75]
to enable CDL modeling including tolerance analysis

5.1.1 Interface for MECAmaster Models

The plugin uml2mecamaster is a new process chain for the aforementioned CAT software MECA-
master91 and has been developed in the context of this thesis92. Unlike the following plugins with CDL-
related functionalities, it can be used standalone with DesignCompiler 43 in oder to create m_m-files
for MECAmaster calculations. It consists of two major packages called uml2mecamaster.profile and
uml2mecamaster.create_m_m.

90E.g., see fig. 1.7, page 13.
91See subsection 2.3.2.
92The decision for the software interface to MECAmaster as CAT software is based on the fact that cabin tolerancing has to

cope with simple kinematic interfaces which can be modeled in a fast and pragmatic way using MECAmaster. In addition to
that, it is easy to create the m_m-files using model-to-text transformations, as will be shown in this subsection.
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Figure 5.2: Schematic overview of the MECAmaster class diagram in UML demonstrating
the diversity of the class definitions needed to cover the full modeling range of
MECAmaster [113]



CHAPTER 5. IMPLEMENTATION 75

5.1.1.1 Packages and Routines

uml2mecamaster.profile The package uml2mecamaster.profile provides the definition of a UML pro-
file for MECAmaster-specific classes (see fig. 5.2). In contrast to the DesignCompiler 43 interface to CA-
TIA V5 used in other applications [16], no UML stereotypes are used in the MECAmaster UML profile,
but MECAmaster-specific UML classes are defined, leading to a comprehensive class diagram (fig. 5.2).
Any of the specific MECAmaster elements [113] mentioned in chapter 2.3.2 has a corresponding spe-
cific class in the UML profile, which inherits from the abstract class MmMechanicalInterface. Objects of
this classifier can be regarded as empty container without any specific data. Specific data like the names
of the interfacing datums (which are physical components), like coordinates, vectors and tolerances are
stored in a modular way in separate instances linked to the MmMechanicalInterface. These classes are
named MmDatum, MmCoords, MmDir and MmTolerance accordingly.

The modular object-oriented dependency allows flexibility concerning the data topology of each indi-
vidual MECAmaster element (which is an instance of a class inheriting from MmMechanicalInterface)
and the corresponding data block. The differentiation is supported by using the different associations
between the objects to distinguish between different functions.

uml2mecamaster.create_m_m The package uml2mecamaster.create_m_m offers a set of model-to-
text transformation routines. These routines transform a UML model consisting of MECAmaster UML
instances into a valid MECAmaster input file (fig. 5.3). At first they generate the header of the m_m-file93.
Then a loop transforms all MmMechanicalInterface instances and the associated data objects into corre-
sponding data blocks. The data blocks can be created independent from others, which allows a sequential
processing within the loop. The text output can be individualized for each MmMechanicalInterface in-
stance. Interdependencies between the data blocks are consistent due to the modular data structure of
the MECAmaster UML class model. During the transformation, syntax checks are performed to ensure
syntactic correctness of the outcome.

MECAmaster
objects
in UML

Text-based
MECAmaster

input file
Model-to-text transformation
1. Create m_m header
2. Create object data blocks
 including interdependencies

****  DATA number      2 
|--------.-.------|--------.-.------|--------.-.------

 Linkage type .......... POINT CONTACT

       between ......... BlockA

       and ............. Plate

 Point Contact name .... 2way_BlockA                                         

 Point of contact ......        -100.000000          0.000000         30.000000

 Direct. normal to plane           0.000000          1.000000          0.000000

 Precis. of Linkage ....         0.00000000        0.10000000        0.40000000

 !complements !.........                                                       

 ! 1s tol inf !......... Datum B                                               

 ! 2n tol inf !......... Game                                                  

 ! 3r tol inf !......... Positional Tolerance                                  

 !   criteria !.........                                                       

 !       path !......... 

Figure 5.3: Working principle of the plugin uml2mecamaster

5.1.1.2 Creation of MECAmaster UML Models

The MECAmaster UML instances can be created in two different ways. First of all, the user can apply
the MECAmaster profile directly in the context of design rules embedded in a design language. This
way, the MECAmaster classes are used as design language, of which case-specific specific classes can
inherit, or which can be used directly within rules. For instance, figures 1.8 through 1.10 in chapter 1
correspond to a MECAmaster design language model of the well-known example with the two blocks

93Subsection 2.3.2 shows a code example (fig. 2.11 on page 36).
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and the plate. The rule as shown in figure 1.9 on page 15 is used to insert a Positional_Tolerance for
the measurement of the offset TO between the two blocks. Figure 5.4 below shows the rule ‘A-2way’94

which adds a Point_Contact linked to the instance ‘BlockA’. This Point_Contact corresponds to the one
shown in the GUI in figure 2.7 (page 32) as well as to the m_m-file code shown in figure 2.11 (page 36).

Figure 5.4: Rule for inserting a ‘point contact’ in y-direction linked to block A

Alternatively, the MECAmaster UML instances are created automatically by model transformations
initiated by other plugins. For instance, the CDL implementation as described later works this way.

In any case, the plugin uml2mecamaster has to ensure that the resulting m_m-file is consistent and
that its syntax is correct [135], so that it can be read in and proceeded by MECAmaster without errors.
Therefore, multiple error handling routines are implemented directly during the generation of the data
blocks. Among others things, the routines check if the slots of the MECAmaster UML instances have
the correct data format and check if all required data objects are available by verifying that the required
MECAmaster UML instances exist.

Using specific text formatting routines, the plugin ensures that the created text adheres to the sensitive
m_m-file format rules. Any error is reported in an error log file, and the plugin only creates an m_m-file
if no syntax error has been detected. This harsh error handling is especially useful if the plugin is used to
transform automatically created MECAmaster UML instances. It has to be prevented that any mistakes
or even systematic errors within such models propagate into the MECAmaster simulation. Due to the
fast execution time of the plugin, it can be used as an error checking routine for automated MECAmaster
UML model generation: if the error log file reports no errors and if the m_m-file is written out at the
end, the automatically created MECAmaster UML instances are syntactically and semantically correct.
If not, the originating model needs to be error-checked itself.

Of course, the plugin cannot ensure the pragmatic correctness [135] of the model – for instance, if the
positions of the linkages are ‘good’ for the technical problem, or if the tolerance measurements are taken
at the ‘right’ position. These tasks cannot be generalized and need to be handled by the generator of
the UML model – be it an DesignCompiler 43 user or any other automatized software for MECAmaster
UML model generation.

94See fig. 1.8 on page 14 for the corresponding rule sequence.
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5.1.2 Interface for CDL

The core plugin of the CDL implementation is called cdl and consists of several packages:

cdl.profile Within the package cdl.profile, the plugin contains the UML implementation of the generic
CDL class diagram as derived in chapter 4 as the major element (see fig. 4.2). The generic class attributes
and associations are implemented accordingly.

cdl.operations According to the fact that not every model-to-model transformation can be easily ex-
pressed in graphical form, it is possible to write design rules using Java code [128]. This code is then
either called by a graphical element in the activity diagram («javaRule» [75, 136]) or can be executed
manually after the complete execution of the design rules. Such operations are not specified directly
in the UML class model, but are programmed in the separate but attached Java code. The CDL class
operations are class-specific computation algorithms written in Java:

– For the mass budget of CabinModule instances, a Java routine checks for linked Subcomponent
classes. If it finds one or more, their masses – which were calculated before by the implemented
constraint processing technique of the design compiler – now are aggregated and saved to the slot
PCmass. Comparable routines follow similar algorithms for the slots PSCost, PSPreparationTime
and PSInstallationTime.

– The datum system of a PhysicalComponent can be modeled explicitly by applying the classifier
DatumFeature to FunctionalGeometryFeature objects. In this case, a routine checks if the defined
DatumFeatures lead to a valid datum system, where no unblocked DOF remain.

– For the MechanicalInterface objects, the position and orientation slots95 are calculated using the
corresponding position and orientation information of the associated FunctionalGeometryFeatures.

– Furthermore, it has to be checked if the explicitly modeled kinematic linkage system blocks all
DOF in order to provide an explicit and non-ambiguous positioning of the component. Therefore,
the functional direction slots of the KinematicLinkage objects are compared and it is determined
whether the blocking directions are independent.

– The slot KCname of the KeyCharacteristic instances as well as the slot IFname of the Mechanical-
Interface instances are set according to special naming conventions.

cdl.validations These Java functions perform some model validations on UML model level, for in-
stance to ensure that slots values match with the required data type, to report wrong defining features or
empty association member ends, or to ensure that specific associations required between CDL instances
are made.

cdl.errorLog This code is used to output the error and warning messages, which are created during the
execution of cdl.validations and cdl.operations.

cdl.common The public Java functions within this package are library routines like getter and setter
routines for CDL objects. The package is published and therefore can be called for instance from the
cdl2x plugins.

95The classifier MechanicalInterface inherits the slots dx, dy, dz, FunctionalDirection1, FunctionalDirection2 from the clas-
sifier DirectedPosition, as can be seen in appendix B.
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Model	Name	 -	 Baseline
Trade	Number	 -	 1000
Execution	Date	/	Time	 -	 2012-01-31	/	19:46:25
Frame	distance	 mm	 530
Length	of	F2F	cabin	compartment	segment	 mm	 7950
Length	of	F2F	cabin	compartment	segment	(frame	bays)	 -	 15
F2F	frame	architecture	1	 -	 4,0
F2F	frame	architecture	2	 -	 2,0
	 	

Cabin	Module	and	Structure	Component	Data	 	
Number	of	different	Cabin	Module	types	 -	 X
Number	of	Cabin	Modules	 -	 X
Total	number	of	Cabin	Modules	per	m	 1/m	 X,X	 	
Number	of	different	StructureTopNodes	types	 -	 X
Total	number	of	considered	StructureTopNodes	 -	 X	 	

Mechanical	Interface	Data	 	
Generic	number	of	different	mechanical	interfaces	 -	 X
Generic	number	of	different	mechanical	interfaces	per	m	 1/m	 X,X	 	
Total	number	of	Kinematic	Linkages	 -	 X

thereof:	number	of	cabin-to-structure	interfaces	 -	 X
thereof:	Number	of	cabin-to-cabin	interfaces	 -	 X

Ratio	of	cabin-to-cabin	interfaces	in	relation	to	cabin-to-structure	interfaces	 -	 X,X
Number	of	Kinematic	Linkages	per	m	 1/m	 X,X	 	
Total	number	of	Load	Interfaces	 -	 X
Number	of	Load	Interfaces	only	(no	Kinematic	Linkage)	 -	 X
Ratio	of	coupled	mechanical	interfaces	(Kinematic	Linkage	and	Load	Interface)	 	
in	relation	to	overall	number	of	mechanical	interfaces	(Kinematic	Linkage	and	Load	Interface)	 -	 X,X	 	
Number	of	different	PKC	types	 -	 X
Number	of	PKC	applications	(to	be	checked	by	FAL	quality	department)	 -	 X

thereof:	number	of	optical	PKC	 -	 X
thereof:	number	of	Installation	PKC	 -	 X

Ratio	of	installation	PKC	per	optical	PKC	 -	 X,X
Number	of	PKC	applications	per	m	 1/m	 X,X
Number	of	PKC	applications	per	PKC	types	 -	 X,X

AKC	and	MKC	Data	 	
Number	of	different	AKC	types	 -	 X
Number	of	AKC	applications	(to	be	checked	by	quality	department)	 -	 X

thereof:	number	of	AKC	cabin-to-structure	 -	 X
thereof:	number	of	AKC	cabin-to-structure	with	refinements	 -	 X
thereof:	number	of	AKC	cabin-to-cabin	 -	 X

Number	of	AKC	applications	per	m	 1/m	 X,X
Ratio	of	total	number	of	AKC	applications	with	PKC	link	 -	 X,X
Ratio	of	total	number	of	AKC	in	relation	to	total	number	of	Mechanical	Interfaces	 -	 X,X	 	
Number	of	different	MKC	types	 -	 X
Number	of	MKC	applications	(to	be	checked	by	quality	department)	 -	 X
Number	of	MKC	applications	per	m	 1/m	 X,X
Ratio	of	total	number	of	MKC	applications	with	PKC	link	 -	 X,X	 	

Mass	Data	 	
Mass	estimation	bottom-up	total	 kg	 X,X

thereof:	mass	estimation	bottom-up	ATA25	F2F	 kg	 X,X
thereof:	mass	estimation	bottom-up	ATA53	brackets	 kg	 X,X

Ratio	of	mass	ATA25	in	relation	to	mass	ATA53	brackets	 -	 X,X	 	

FAL	Data	 	
FAL	Mh	estimation	bottom-up	 Mh	 X,X

thereof:	installation	Mh	 Mh	 X,X
thereof:	work	preparation	Mh	 Mh	 X,X

Ratio	of	installation	Mh	in	relation	to	overall	FAL	Mh	 %	 X
Average	installation	Mh	per	installation	steps	 -	 X,X	 	

Cost	Data	 	
Manufacturing	cost	 EUR	 X

thereof:	purchasing	cost	for	Cabin	Modules	 EUR	 X
thereof:	installation	cost	in	FAL	 EUR	 X

Performance	Data	 	
Stowage	bin	loading	volume	 l	 X,X
Stowage	bin	loading	volume	per	m	 l/m	 X,X

Figure 5.5: Spreadsheet-based visualization chart of AAPs generated by the plugin cdl2analysis
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5.1.3 Interface for AAP Charts

As mentioned before, the calculation of the AAPs as proposed in section 4.3 can be very time-intensive
and error-prone. Due to the fact that the calculation methods for each parameter can be described for-
mally, it is simple to embed the methods into re-executable software, which creates repeatable and con-
sistent results. This plugin calculates and outputs the AAP into spreadsheet charts, as figure 5.5 shows.
For each AAP, the corresponding calculation method is embedded96.

After the data is written into the spreadsheet chart, any preformatted design is overwritten. So the
plugin automatically opens the spreadsheet and an internal spreadsheet macro reformats the overview
table. For comparative trade studies, multiple overview tables for different scenarios can for instance
be used together with MS Excel-based visualization charts. Examples for such charts will be shown in
chapter 6, where representative technical results are discussed making use of this visualization plugin.

5.1.4 Interface for Transformations from CDL to MECAmaster Models

When repetitive linkages and linkage patterns need to be reproduced [134], an automatized generation
of MECAmaster input files can be beneficial. This plugin aims at providing this support. It is no ‘general
MECAmaster input generator’, but is specialized for the transformations required within the context of
cabin architecture analyses.

MECAmaster
objects
in UML

M2M M2T Text-based
MECAmaster

input file

GUI to select 
CDL objects 

in UML

                                                                               ****  DATA number      2 |--------.-.------|--------.-.------|--------.-.------
 Linkage type .......... POINT CONTACT
       between ......... BlockA
       and ............. Plate
 Point Contact name .... 2way_BlockA                                         
 Point of contact ......        -100.000000          0.000000         
30.000000
 Direct. normal to plane           0.000000          1.000000          
0.000000
 Precis. of Linkage ....         0.00000000        0.10000000        
0.40000000
 !complements !.........                                                       
 ! 1s tol inf !......... Datum B                                               
 ! 2n tol inf !......... Game                                                  
 ! 3r tol inf !......... Positional Tolerance                                  
 !   criteria !.........                                                       
 !       path !......... 

Figure 5.6: Transformations between CDL in UML, MECAmaster in UML
and text-based MECAmaster input files

As a first step (see first box in fig. 5.6), a GUI offers to choose those PKCs from a list of available PKC
instances which are to be calculated. Figure 5.7 shows the corresponding GUI whose code is contained in
the package cdl2mm.common. After that, the routines from the package cdl2mm.transformations conduct
a topological and parametrical search for certain linkage system patterns in the CDL model97. To do so,
the plugin scans the CDL model for the KinematicLinkage instances constituting the linkage system
of each individual CabinModule. If the linkage system matches one of the three patterns as described in
figure 5.8, the plugin creates MECAmaster UML objects and compiles them to patterns corresponding to
the CDL linkage system (fig. 5.6). The required attributes are either copied from the CDL UML instances
to the MECAmaster UML instances, or are calculated and converted accordingly.

96Speaking formally, the information content of the model is not increased by these transformations. But for visualization,
comparison and evaluation purposes it is easier to have explicitly visualized data, rather than sophisticated UML models using
abstract UML diagrams [128].

97As mentioned in subsection 4.2.2, cabin compartment modules usually share three different linkage system patterns, which
are a 3-2-1 linkage system and special lateral stowage bin or center stowage bin linkage systems. The main difference between
these systems is the number and the arrangement of the different elementary KinematicLinkages they use.
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Figure 5.7: GUI of the plugin cdl2mm to select instances for the data export to MECAmaster

M2M3-2-1 linkage system
in CDL

'Plane contact' 
+ 'spherical slider' 
+ 'point contact'
in MECAmaster UML

M2MLateral stowage bin
linkage system

in CDL

'Plane contact' 
+ two 'point contacts' 

+ 'point contact'
in MECAmaster UML

M2MCenter stowage bin
linkage system

in CDL

'Plane contact' 
+ four linked 'point contacts' 

+ 'point contact'
in MECAmaster UML

Figure 5.8: Implemented topology transformations between CDL linkage systems
and predefined MECAmaster linkage patterns
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As second step (see second box in fig. 5.6), the plugin loops over the StructureComponents in the
CDL model and establishes MECAmaster linkages between the different StructureComponents acting as
integration datum systems. Since the linkage systems between the StructureComponents are not modeled
explicitly in the CDL models, the plugin assumes a 3-2-1 system and uses the virtual interface points P1x
through P4z and the tolerances in between as foreseen in the StructureComponent class98.

In a third and last step (see last box in fig. 5.6), the MECAmaster UML instances are transformed
into a MECAmaster input file by calling the transformation routines from the plugin uml2mecamaster.
Of course, topological changes still can be made in MECAmaster in the sense of a standalone CAT
environment. But after the results are obtained, the whole CDL model has to be re-executed using adapted
input to reflect the investigated changes. A round trip99 for topological changes at this point is neither
recommended – due to the multi-domain repercussions, which can only be handled in the CDL model
itself – nor is it simple to realize such complex bidirectional transformations of topologies. A round trip
method for pure tolerance value updates is possible as presented in the subsequent subsection.

5.1.5 Interface for Tolerance Lists

The initial tolerance values come from estimation algorithms or from fix estimation values, which are
implemented in use case-specific class diagrams directly in the CDL model. However, the initially spec-
ified tolerances often need to be adapted in a fast way during tolerance analyses. This should not happen
inside the standalone tolerancing software, which is decoupled from the CDL model. Especially if one
tolerance appears at multiple places, such manual updates can also be time-intensive and can lead to data
inconsistency. Instead, manual changes should be fed back into the CDL model right away in order to en-
able a consistent reproduction of the tolerancing software input files and to ensure a later harmonization
with the remaining CDL objects, which might face repercussions due to the changed tolerance values.

KC objects
in UML

M2M M2T
CDL objects

in UML
Spreadsheet-based

KC-list

Figure 5.9: Round trip engineering between CDL objects in UML, KC objects in UML
and spreadsheet-based KC-lists

Thus, a round trip process (fig. 5.9) is of interest at this specific point to cut back the execution time of
a mono-disciplinary tolerance trade study and to ensure data consistency. Therefore, the routines within
the package cdl2kclist.transformations collect all KC objects (PKC, AKC or MKC objects) in the CDL
model and transform them into specific UML-based KC objects by model-to-model transformations.
The corresponding UML profile for the KC-list classes is published under cdl2kclist.profile. The KC-
list objects are then output into spreadsheets by model-to-text transformations. Additionally, the plugin

98See subsection 4.2.1 for further descriptions.
99‘Round trip engineering’ or a ‘round trip’ process mean that software enables ‘back and forth’ model-to-model transfor-

mations between two data models.
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offers the possibility to read back updated tolerance values from these spreadsheets into the KC-list
objects and then into the CDL model. In this way, the spreadsheet-based KC-lists can be exchanged with
neighboring engineering teams for updates and for analysis of repercussions.

This round trip engineering is possible for value updates between the spreadsheet, the KC-list objects
and the CDL object with a well-defined bidirectional relation. It is not foreseen to append additional
lines with new KC data into the spreadsheet and transform them into new CDL objects. Such topological
changes should be managed within the CDL model at a higher level of abstraction or a different moment
in the design compilation phase during the processing.

5.1.6 Interface for Installation Process Charts

The plugin cdl2fal (fig. 5.10) searches for all ProcessStep instances within a CDL model and writes
them into a spreadsheet using model-to-text transformations using some sorting algorithms. Afterwards,
a macro is executed within the spreadsheet file, which visualizes the sequential FAL installation steps in
bar diagrams in a simple manner. To keep the algorithms simple, no differentiation between sequential
and parallel working steps is made. All working steps are summed up to the AAP ‘overall needed working
time in FAL’ as proposed in section 4.3.

This plugin has to be considered a prototype status to provide a simple example for extracting manu-
facturing information. In order to simplify the programming efforts, no model-to-model transformations
from CDL to digital factory design languages [10] are made. Due to the modular plugin architecture
of the CDL plugins, this plugin could be extended or replaced by model-to-model transformations, if a
deeper involvement of manufacturing planning methods for cabin architecture analysis is needed.

Spreadsheet-based
installation / process

step list

M2T Macro
CDL objects

in UML
Spreadsheet-based

bar diagrams
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Figure 5.10: Model-to-text transformation between CDL in UML and spreadsheet-based
installation process bar diagrams

5.1.7 Interface for Model Exchange

The plugin cdl2export (fig. 5.11) offers to select instances according to individual criteria with a GUI
(fig. 5.12) and then creates 1:1 copies of these instances into a new UML model in a separate data file.
There is no foreseen possibility to check the pragmatic sense of the model extract, as such checks require
a clear purpose definition of the target model. At this stage, this cannot be described in a generic way.

Comparable to the previous plugin cdl2fal, this plugin has to be seen as prototype bridge to show the
general feasibility of the requested multi-domain data exchange. Generally speaking, round trip methods
are feasible, at least as long as there are no topological modifications within the model extract. This can
enable consulting even further engineering groups with the data used by the CDL analysis model. For
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instance, a potential link between CDL models and FEM can be set up using this plugin, but also cabin
and aircraft systems models can be connected100.

Object extract
in separate
UML model

M2MCDL objects
in UML

Figure 5.11: Extraction of selected objects from a CDL model in UML

Figure 5.12: GUI of the plugin cdl2export to select classes and instances for a data export

100 See subsection 6.2.2 for a more detailed discussion of these aspects.
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5.2 Use Case Description

This section introduces a use case model named CDL_LR (cabin design languages for a long range
aircraft). It contains some stowage bins, ceiling modules and sidewall modules of the constant cross
section area including the corresponding attachment brackets, some crucial split lines as well as some
structure components. Subject of investigations are three trade studies comprising several different tech-
nical scenarios, which will be compared against a baseline scenario (fig. 5.13). The trade studies aim at
demonstrating the applicability range of the CDL_LR model for parameter and topology trade studies.

Baseline scenario

Model of a segment of 
the A330-300 cabin 
compartment with 
corresponding (sub-)
structure components

Frame architecture 
scenario

The original 4/2/1
cabin compartment 
frame architecture 
varied with 3/2/1, 3/1 
and 2/1 architectures

Frame distance 
scenario

The original 530mm 
frame distance varied 
between 400mm and 
700mm for a cabin  
segment of constant 
length

25mm gap scenario

The 10mm standard 
gap between cabin 
compartment modules 
increased to 25mm

Figure 5.13: The investigated cabin architecture scenarios within the CDL_LR use case

Baseline scenario The baseline scenario is used as a reference for all successive comparative trades. It
represents a segment of 15 frames length of a constant fuselage segment (see fig. 5.14). The baseline sce-
nario uses a 4/2/1 frame architecture, which means that the stowage bins have a 4-frame length as a basis,
followed by 2-frame or 1-frame modules to fill the chain gaps. For the lining panels, 2-frame (basis) and
1-frame modules are implemented. Figure 5.14 indicates the modeled cabin segment, while figure 5.15
shows the corresponding CAD data of the cabin modules and the structure components.

Figure 5.14: The investigated cabin segment for the CDL_LR use case

Trade study ‘frame architecture’ Besides the 4/2/1 frame architecture of the baseline scenario, the
following alternative scenarios are investigated:

– A 3/2/1 frame architecture, where both the stowage bin modules and the lining modules have a
3-frame module as a basis. The full frame gaps at the cabin compartment chain ends are filled with
either 2-frame or 1-frame modules.

– A 3/1 frame architecture, also with a 3-frame basis for all cabin compartment chain modules, but
with only 1-frame modules to fill chain interruptions.

– A 2/1 frame architecture, where all cabin compartment chain modules have a 2-frame module as a
basis and a 1-frame module as filler.
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Figure 5.15: DMU representation of the baseline scenario (top) – DMU with structure components
hidden (middle) – DMU with loaded MECAmaster model (bottom)



86 CHAPTER 5. IMPLEMENTATION

These trades aims at demonstrating the various repercussions of the different standard module frame
lengths as examples for a topological trade study of the baseline scenario within multiple domains. Along
with the full cabin module adaptations including interfaces, tolerances and weight, the geometry-related
repercussions for the attachment brackets and for the substructure components concerning positioning
and bracket mass need to be considered as well. However, secondary sizing and snowball effects for
structure components such as for example the influence on primary structure mass, dynamic deflections
and manufacturing-related topics are not modeled.

Trade study ‘frame distance’ The variation of the standard frame distance can be considered an ex-
ample for an input parameter trade study with multi-domain repercussion. Starting from the baseline
frame distance of 530mm, several scenarios between 400mm and 700mm are analyzed. Similar to the
frame architecture trade study, no secondary effects for structure components are considered.

Trade study ‘repercussions of a 25mm gap’ The conceptual modification of the standard nominal
gap width from 10mm to 25mm along with a tolerance optimization premise is an example for a multi-
disciplinary iterative trade study. A combination of increased AKCs and MKCs enabling a similar level
of the relative appearance PKC tolerances is searched, and the repercussions for installation PKCs are
checked.

Figure 5.16: Definition of the lateral stowage bin classes in the CDL_LR class diagram

The case-specific CDL_LR class diagram101 makes use of the UML generalization concept. The spe-
cial CDL_LR classes inherit their functional behavior and their attributes from the generic CDL classes.
Additionally, they are extended by individual features. To demonstrate the principle, figure 5.16 shows
an example of a CDL_LR class for a stowage bin module called OHSCL. This class inherits from the

101Figure 5.17 provides a tabular overview about the content of the CDL_LR model. The full CDL_LR class diagram in UML
can be seen in appendix C.
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Possible module frame 
architectures 4,3,2,1 4,3,2,1 3,2,1 3,2,1 3,2,1 3,2,1 3,2,1 -

3D geometry (simplified) Y Y Y Y Y Y Y N

Mass synthesis Y Y Y Y Y Y Y N

Cost synthesis C C C C N N N N

Definition of
kinematic linkages Y Y Y Y N N N N

Definition of
load interfaces Y Y Y Y N N N N

Definition of functional 
geometry features Y Y Y Y N N N N

Explicit definition of 
module datum Y Y Y Y N N N N

Synthesis of MKC  
tolerances Y Y Y Y N N N N

Definition of FAL 
installation sequence Y Y Y Y N N N N

Cabin module-related classes

Attachment brackets and related classes

Airframe, substructures and related classes

3D geometry (simplified) Y Y Y Y N N N N

Mass synthesis Y Y Y Y N N N N

Cost synthesis C C C C N N N N

Definition of
kinematic linkages Y1 Y1 Y1 Y1 N N N N

Definition of
load interfaces Y1 Y1 Y1 Y1 N N N N

Definition of functional 
geometry features Y1 Y1 Y1 Y1 N N N N

Synthesis of AKC  
tolerances Y1 Y1 Y1 Y1 N N N N

Linking of AKCs to 
integration datums Y Y Y Y N N N N

3D geometry (simplified) Y2

Specification of 
integration datums Y3

center lateral ceiling 
panel

air
grid

light
cover

window
panel

dado
panel

e.g., ATA21,
ATA92

Stowage bin  
modules  

Ceiling
modules  

Sidewall
modules

System
components

Y Available in CDL_LR model.     
C Cost data and results not shown or discussed to keep information confidential.     
N Not modeled.
Y1 KinematicLinkages, LoadInterfaces, FunctionalGeometryFeatures and AKCs modeled between brackets and cabin modules. 
 Corresponding objects between the brackets and the airframe and substructures not modeled according to the CDL philosophie.
Y2 Airframe, substructure, and A-/B-brackets are only implemented as simplified 3D representation.    
Y3 Implemented integration datums: center substructure datum, lateral substructure datum, side shell datum, floor level datum.

Figure 5.17: Overview of the content of the CDL_LR class diagram
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CDL class CabinModule. Some attributes and equations are appended, for instance for empirical param-
eterized mass estimations or for calculating the spatial location of related FunctionalGeometryFeatures.
The individualized SubComponent classes have UML stereotypes [16] for CATIA V5 geometry visual-
ization. The 3D data has been simplified and the calculation or estimation algorithms of the embedded
design parameters are kept elementary.

As the overview table given with figure 5.17 shows, the model also contains a generic monument,
which terminates the cabin compartment module chain. Concerning the airframe, aside from the attach-
ment brackets mentioned and some substructure elements, the major fuselage structure components in-
cluding the corresponding integration datums have their representations in the model. The implemented
gap or split line types are shown in figure 5.18. Additionally, some installation PKCs are modeled.

PKC-A-001: x-gap between two subsequent ceiling panels

PKC-A-002: x-gap between two subsequent air grids

PKC-A-003: y-gap between adjacent ceiling panels and air grids

PKC-A-004: x-gap between two subsequent lateral stowage bins

PKC-A-005: x-gap between two subsequent center stowage bins

PKC-A-006: x-gap between the last lateral stowage bin and the subsequent generic monument

PKC-A-007: y-flush between inboard edges of two subsequent ceiling panels

PKC-I-100: Installation tolerance for up-long hole (2-way locator) of ceiling panel (not shown)

PKC-I-101: Installation tolerance for up-long hole (2-way locator) of air grid (not shown)

PKC-A-005

PKC-A-004

PKC-A-003PKC-A-007

PKC-A-002 PKC-A-006

PKC-A-001

Figure 5.18: PKCs implemented in the use case
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Some cabin compartment aspects are omitted for the use case to reduce complexity. For instance,
only the left hand side of the cabin segment is represented, since for the given level of granularity, the
cabin compartment can be considered symmetrical. Furthermore, the modeled fuselage segment does
not contain a door and entrance area and therefore neither the corresponding door and door frame lining
modules nor the structure elements. Passenger seats are not implemented due to negligible influence in
the mechanical architecture of the remaining cabin modules. For the generic monument only abstract
geometry data and some tolerancing-related aspects are contained in the CDL_LR class diagram such
that it is possible to simulate the interruption of the cabin compartment chain. Aircraft systems and
system components are left out accordingly to focus on the mechanical integration of the cabin modules
in advance. The influence of these simplifications on the architecture analysis task will be discussed in
chapter 6. In order to keep information confidential, cost data and results will not be shown and discussed
in this dissertation.

All classes and all design rules to compile the investigated scenarios build up the semantic hull of the
CDL_LR model. The implemented rules will be discussed in detail subsequently in section 5.3.

5.3 Use Case Implementation

According to the concept formulated in section 4.4, the global rule sequence should be chosen such that
it follows a tolerance management process. Therefore, the programs and Java rules of the CDL_LR root
program102 pay respect to the global rule sequence as shown in figure 5.19.

Figure 5.19: The CDL_LR root program

The first four programs of figure 5.19 consist of scenario-specific rules with graph-based model trans-
formations for CDL vocabulary. The first two programs constitute a design and architecture frame-
work (first phase according to section 4.4, described in sections 5.3.1 and 5.3.2), while the third and
the fourth program build up the phase for the detailing of the model (second phase according to sec-
tion 4.4, described in sections 5.3.3 and 5.3.4). The second but last step comprises the mentioned model
checks (third phase), followed by the transformation of the CDL model into analysis models103 (fourth
phase), both summarized in section 5.3.5.

102The ‘root program’ is the top level of the rule sequence for graph-based design languages [75]. Consequently, a ‘subpro-
gram’ or simply ‘program’ comprises a set of several rules and can be considered a ‘program in a program’, which can be
re-executed every time it is referenced [10].

103The UML stereotype «javaRule» on the last two steps in fig. 5.19 indicates that they are realized by Java rules [75, 136].
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5.3.1 Architecture Rules

According to the conventional design language concept, the first rule (green colored rule in fig. 5.20) is
the ‘axiom’ [136], here called ‘Axiom LR’.

Figure 5.20: The CDL_LR architecture rules

This initial rule generates the instance ‘TopNode’ of the class LRholisticModel, which inherits from
the generic CDL class HolisticModel. ‘TopNode’ owns several scenario-specific architecture input pa-
rameters as well as three index variables (var1, var2 and string1 ), as figure 5.21 shows.

The architecture parameters are the main ‘adjustment screws’ for the various scenarios, which can
be created with this design language model. The first input parameters are the name and the aircraft
program of the scenario along with a trade number to distinguish between the different trades. Among the
major technical input parameters are the frame distance of the fuselage section, some specific geometric
dimensions like the y- and z-coordinates of the floor level and of the crown area, as well as the length of
the cabin compartment segment. The cabin compartment module frame length architecture is defined by
two parameters. The different gap or split line types between loaded and unloaded cabin modules both
get a definition of the nominal gap size as well as of the required minimum gap size to cover in-flight
deflection movements.

The user can input the parameters in a spreadsheet-based input mask (see fig. 5.22) instead of changing
them directly in the rule editor window of the rule ‘Axiom LR’. This offers the possibility to create
multiple input files for different scenarios in advance, which can be compiled and executed one after
another – for example by the support of batch files. The import of the parameter values is performed
directly after the rule ‘Axiom LR’, followed by a first calculation of the derived model parameters (first
two white rules in fig. 5.20).



CHAPTER 5. IMPLEMENTATION 91

Figure 5.21: Graphical representation of the initial rule (‘Axiom LR’)

UML Model Naming	 	
A/C	Program	 ACProgram	 Long	Range
Name	of	Model	 ModelName	 Baseline
Trade	Number	 TradeNumber	 9000
	 	
	 	
Key Geometry Parameters	 	
Frame	Distance	 FrameDist	 530
Z-Height	of	Floor	Level	 ZheightFloorLevel	 0
Y-Distance	of	Meeting	Point	between	Floor	Level	and	Side	Shell	 YrefFloorLevel	 2705
Z-Height	of	CTR	Crown	Area	Z-Reference	 ZrefCrownArea	 1927,3
Y-Distance	of	Meeting	Point	between	CTR	Crown	Area	and	Side	Shell	 YrefCrownArea	 1785,8
	 	
F2F Architecture Parameters	 	
F2F	length	of	module	chain	in	frame	bays	 F2FchainFrameLength	 6
F2F	Frame	Architecture	1	 F2FframeArchitecture1	 4
F2F	Frame	Architecture	2	 F2FframeArchitecture2	 2
	 	
Monument Architecture Parameters	 	
Monument	length	in	frame	bays	 MonumentFrameLength	 2
	 	
Tolerancing, Gaps and Deflections	 	
Unloaded	to	unloaded	Component	nominal	gap	width	 NominalGapUnloaded2Unloaded	 10
Unloaded	to	unloaded	Component	minimal	gap	width	(in-flight	deflections)	 MinimalGapUnloaded2Unloaded	 5
Loaded	to	unloaded	Component	nominal	gap	width	 NominalGapLoaded2Unloaded	 25
Loaded	to	unloaded	Component	minimal	gap	width	(in-flight	deflections)	 MinimalGapLoaded2Unloaded	 17
Loaded	to	Loaded	Component	nominal	gap	width	 NominalGapLoaded2Loaded	 25
Loaded	to	Loaded	Component	minimal	gap	width	(in-flight	deflections)	 MinimalGapLoaded2Loaded	 17
Name	of	Global	Section	Datum	 GlobalSectionDatum	 FuselageSection
Standard	Interface	Tolerance	 stdIFtol	 0,25
Standard	Tooling	Tolerance	 stdToolTol	 0,8

Figure 5.22: Spreadsheet-based input for the CDL_LR architecture parameters
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Now follows a large loop of rules in order to insert the cabin module instances. The actual architectural
rules to insert the cabin compartment chain modules into the fuselage segment can be expressed verbally
as follows:

Fill the cabin segment with the length of F2FchainFrameLength frame bays with the largest
possible module size (F2FframeArchitecture1) starting at the first frame.

Once the largest module size no longer fit into the remaining gap, use the next possible
module size (F2FframeArchitecture2).

Once this size no longer fits into the remaining gap, reduce the module size by 1 and continue
to fill in as much as possible. Repeat this procedure until the segment is completely filled.

Consider that the largest module size for the lining panels is 3 frame length, while stowage
bins can have a length up to 4 frames. This means that if F2FframeArchitecture1 is set to 4,
the lining panels need to start with the length as specified in F2FframeArchitecture2 (‘lining
panel maximal length exception’).

The correspondingly chosen design language rule algorithm reads as follows:

1. The Java rule ‘SetIndices’ (first rule marked in gray, see fig. 5.20) sets the index variable var1 to
the frame length of the cabin compartment segment (F2FchainFrameLength) and var2 to the first
frame length architecture parameter (F2FframeArchitecture1 ).

2. The following two decision nodes check if var2 > 0 and then if var1− var2 ≥ 0.

(a) If var1− var2 < 0, var2 is reduced to the next frame architecture length
(F2FframeArchitecture2 for the first time, var2− 1 for the other cases).

(b) If var2 = 0, the loop quits.

3. If the conditions from step 2 are fulfilled, a loop to insert the cabin modules is entered. Within the
loop, for each CabinModule to be insert, three rule steps are followed:

(a) Within the rules named ‘Create X Module’ (red rules in fig. 5.20), the LHS searches for
the instance ‘TopNode’ classified by LRholisticModel 104 (fig. 5.23). On the RHS, a specific
cabin module instance with all slots is inserted into the model and is linked to ‘TopNode’.
The slot inWork is flagged as ‘true’, which means that the instance can be considered as
activated. In addition, the slot isLoaded is set according to the module’s load behavior.

(b) The following Java rule ‘UpdateIndices3’ sets the slot FWDframePosition of the activated
cabin module instance to F2FchainFrameLength - var1. The slot lengthInFrames is set to
var2, if var2 equals or is smaller than the maximal allowed module length. Otherwise, var2
is set to F2FframeArchitecture2, which is the next valid module frame length in this case.

(c) The rule ‘Deactivate Module’ (orange rules in fig. 5.20) searches for all CabinModule in-
stances whose slot inWork is ‘true’ and sets the slots to ‘false’ (see fig. 5.24).

4. Once all CabinModule instances of the loop are inserted and positioned, two decision nodes
check whether the ‘lining panel maximal length exception’ occurred. If so, a Java rule called
‘UpdateIndices1a’ reduces the value of var1 by F2FframeArchitecture2 and repeats the rules 3a
through 3c for the lining panels.

5. After that, the loop goes again to the decision nodes as described in step 2.

104Since only one instance of the classifier LRholisticModel exists, the rule shown in fig. 5.23 searches for ‘TopNode’.
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Figure 5.23: Rule ‘Create LRLatBin Module’ to insert a lateral stowage bin module

Figure 5.24: Rule ‘Deactivate Cabin Module’ to deactivate a cabin module

The rule ‘Create MON Module’ (last red rule in fig. 5.20) inserts the generic monument, if the user
opted for a monument within the architecture parameter input mask. The rule is similar to the previous
‘Create X Module’ rules. Again, a decision node performs the corresponding check.

The rule ‘Insert Airframe’ (light blue rule in fig. 5.20) is the last architecture rule. It inserts the Struc-
tureComponents for the global section datum called ‘Fuselage Section’ and for the cabin integration
datums called ‘FloorLevel’, ‘SideShellLH’, ‘LATSubstructureLH’ and ‘CTRSubstructure’ (fig. 5.25).
To simplify the data model, the right-hand datums are not modeled. The tolerances in global x-/y-/z-
direction as well as the coordinates of the virtual linkages between these datums are defined within slots
inside the StructureComponent instances. The virtual linkage coordinates depend on the architecture ge-
ometry parameters and are to be calculated subsequently.

After the execution of the architecture rules, the design graph (see fig. 5.26 on next page) does not yet
have any loops or complex tree structure105. All PhysicalComponents are linked back to the instance
‘TopNode’ (red bullet in the center of fig. 5.26 on next page) to have access to the architecture geometry
parameters.

105Compare fig. 5.26 with the design graph in fig. 1.10 (page 15) containing one loop due to a modeled tolerance stack.
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Figure 5.25: Rule ‘Insert Airframe’ to insert structure component instances
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Figure 5.26: Design graph of the baseline scenario after the execution of the architecture rules
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5.3.2 Gap Rules

Verbally expressed, the generic rule for the PKC implementation into the model reads as following:

If a gap or a split line is important for the overall cabin quality and therefore leads to
possible requirement repercussions for installability and manufacturability aspects, it needs
to be modeled explicitly.

Figure 5.27: The CDL_LR gap (PKC) rules

The gaps and split lines as mentioned in figure 5.18 in section 5.2 match this classification. For this
reason, the following algorithm is run through (fig. 5.27):

1. Before entering the first loop, the affected Cabin Modules are set to ‘pending’ using a graphical
rule (rule ‘X pending’, see orange rules in the first column in figure 5.27).

2. After that, the Java rule ‘Activate next CM X’ searches for two directly subsequent CabinModules
within those set to ‘pending’. Due to the generic set up, the rule can be used for any activation
task independent from the explicit type of the CabinModule classifier. The routine grabs the first
CabinModule of the chain and checks if its slot framePositionAFT has the same value as the
slot framePositionFWD of a second candidate. The search compares any pair of pending Cabin-
Modules until either a valid pair is found or until the end of the list has been reached without a
further finding. If a valid pair is found, the two candidates are activated by setting the slot inWork
of the forward module to ‘true1’ or the one of the aft module to ‘true2’.
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3. A decision node now checks if there are any activated CabinModules. If so, a loop is entered:

(a) Within the loop, at first a new PKC instance is inserted into the model and activated (red rules
in fig. 5.27), as figure 5.28 on the next page shows for the example of the x-gap between two
adjacent ceiling panels (PKC-001).

(b) Now this newly inserted instance has to be linked to the corresponding CabinModules (violet
rules in fig. 5.27). The rule ‘Insert PKC-X’ therefore searches for the two activated Cabin-
Modules and for the activated PKC instance on the LHS. On the RHS, two new instances
are inserted and are classified as FunctionalGeometryFeature and as MKC. The coordinates
and the tolerances either are specified manually in the rule or are calculated using formulas
which are part of the corresponding case-specific class definition.
In the specific example of PKC-001, the FunctionalGeometryFeature and MKC instances
represent dedicated points at the edge of the ceiling panels with a tolerance in x-direction
(fig. 5.29 on the next page) which is synthesized using module parameters. The datum sys-
tem itself has not yet been modeled explicitly. However, as the CabinModule instance is
always classified Datum System as well, there is no definition gap at this stage: up to now,
the datum definition is implicit.

(c) The Java rule ‘Deactivate’ (gray rule in fig. 5.27) deactivates the PKC and the forward Cabin-
Module instance. The aft CabinModule is set back to ‘pending’, as it could still be part of a
new pair of CabinModules between which a gap needs to be inserted.

(d) The rule ‘Activate next CM X’ (gray rule) is called again to try to activate the next pair of
CabinModules. It leads back to the initial decision node.

4. Once the loop is left, all CabinModules are set inactive.

5. Steps 3 and 4 are executed in a similar way for each PKC type.

6. As second to last step within the gap rules program, there is a decision node to check whether the
optional monument module is in the model. If so, one further PKC is implemented representing
the x-gap between the last lateral overhead stowage bin and the monument in a similar way as
described with steps 1 through 4 above.

7. The gap rules program is finished by a Java rule named ‘Set NominalGap and MinimumGap’. For
each PKC instance it checks, if the corresponding CabinModules are loaded modules by reading
the value of the slot isLoaded. The nominal gap size and the minimal gap size of each PKC are
thus set corresponding to the architecture parameter definitions.

After these steps, the design graph now contains loops, as can be seen in figure 5.30106 (see next page).
These are the graphical representation of the over-constraining tolerance requirements SÖDERBERG al-
ready describes as axiomatically coupled tolerance chains [148].

106Compare this design graph with the one representing the model after the architecture rules shown in fig. 5.26 (page 95).
The red bullet in the center is the instance ‘TopNode’ containing the architecture parameters and thus linking all model objects.
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Figure 5.28: Rule ‘Create PKC-001’ to create a PKC instance

Figure 5.29: Rule ‘Insert PKC001’ to link a PKC instance with two ceiling panels
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Figure 5.30: Design graph of the baseline scenario after the execution of the gap (PKC) rules
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5.3.3 Cabin Module Rules

The purpose of the cabin module rules (fig. 5.31) is to enrich the model with the following aspects:

– 3D geometry for the visualization of the CabinModule instances

– Mass estimation methods

– FunctionalGeometryFeatures of the CabinModules for the explicit definition of the cabin modules’
datum system or for tolerance definitions, for the definition of the kinematic linkage system (as far
as possible) and for the definition of the load interface system (as far as possible)

– FunctionalGeometryFeatures on the aircraft-side as a counterpart for MechanicalInterfaces includ-
ing tolerances linked to the corresponding integration datum system (as far as possible)

– Brackets on aircraft-side (as far as possible)

Figure 5.31: The CDL_LR cabin module rules

The cabin modules program starts with a rule setting all CabinModules to ‘pending’ (first gray rule
in fig. 5.31). A loop follows, at the beginning of which a pending Cabin Module instance is activated.
Within the loop, every CabinModule instance is processed with a subprogram corresponding to the cabin
module’s class specification. In this loop the datum system will be made explicit and the linkage system
will be deployed. Generally, it can be said that completely generic definitions of the datum and linkage
systems are difficult to realize and are not pragmatical. But it is possible to create linkages in a KBE
manner individually per cabin module.

To demonstrate the principle, the cabin module rules for the lateral overhead stowage bin detailing
process are shown in figure 5.32 and are subsequently described in detail.
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Figure 5.32: Design rules for the lateral overhead stowage bin module

The first red rule in figure 5.32 called ‘Create OHSCL Geometry’ is a graphical rule for enriching the
CabinModule with a linked SubComponent instance classified by OHSCL_GD with a UML stereo-
type for DMU visualization purposes (fig. 5.33). Some module-internal geometry parameters (num-
berYZBracket, numberXBracket) are not yet set, as they depend on the characteristic frame length of
the respective module. The number of the stowage bin doors depends on the individual module’s frame
length. A decision node checks for the value and leads to the corresponding rule ‘Door 1x’ to insert either
one door (for bin lengths up to 2 frames) or two doors (rule ‘Door 2x’).

Figure 5.33: Rules to insert visualization geometry data for a lateral overhead stowage bin

The following four green rules (see fig. 5.31) serve the purpose to link the CabinModule instance with
FunctionalGeometryFeatures. In contrast to the gap rules, the FunctionalGeometryFeatures now reflect
attachment interface locations – instead of gap or PKC locations – and are linked to MechanicalInterface
instances classified as both KinematicLinkages and LoadInterfaces. Figure 5.34 shows an example for a
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rule inserting a y-tie rod attachment between the stowage bin and the aircraft structure. It can be seen, that
the FunctionalGeometryFeature of the stowage bin module is directly linked to a specific Mechanical-
Interface instance representing one lower y-attachment interface (fig. 5.34). The MechanicalInterface
is linked to a second FunctionalGeometryFeature belonging to the StructureComponent instance ‘LAT-
Substructure’ acting as integration datum. The two y-/z-interfaces are implemented accordingly.

Figure 5.34: Rules to insert functional geometry features data for a lateral overhead stowage bin

The FunctionalGeometryFeatures created in the first four green rules (fig. 5.32) are all classified as
DatumFeatures. All together, they constitute the explicit datum system of the CabinModule. The z-datum
features are the two YZ-Bearings, which constitute the secondary datum. Together with the two lower
y-tie rod attachment holes, they are also y-datum features and altogether act as primary datum plane. The
stowage bin’s x-datum is represented by a special FunctionalGeometryFeature, which is not automati-
cally linked to any MechanicalInterface, and is inserted by the rule ‘OHSCL X-Datum’ (fig. 5.35).

Figure 5.35: Rules to insert the x-datum feature for a lateral overhead stowage bin
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In parallel to the explicit definition of the module’s datum system, the kinematic linkage system and
the load interface system also develop step by step with the green rules. The special lateral stowage bin
linkage systems is used here. Therefore the MechanicalInterfaces are classified as KinematicLinkages107

and also as LoadInterfaces (fig. 5.34). These interfaces fulfill both the locating functions as well as the
fixation functions – in y-/z-direction in the case of the YZ-Bracket, in y-direction in the case of the y-tie
rod attachment. When the instances are created, their slot inWork is set to ‘true’. These four interfaces
lock five DOF of the stowage bin. The missing locating function in x-direction depends on the relative
position of the stowage bin in the chain. The x-locating MechanicalInterface thus has to be inserted later
with the structure subcomponent rules.

Figure 5.36: Rules to set the value of the slot numberYZBracket of a lateral overhead stowage bin

The fifth green rule in figure 5.32 has a decision node put in front which checks for the frame
length of the specific module. The subsequent violet rule assigns the correct value to the slot num-
berYZBracket (fig. 5.36). If the stowage bin has the length of four frames, a third y-/z-interface and a
x-tie rod interface are implemented, which are classified as load interface only.

Figure 5.37: Rules for linking locating interfaces of a lateral overhead stowage bin to one common
AKC tolerance

107To be precise, in the example of fig. 5.34, the MechanicalInterface is classified as a special KinematicLinkage, a Locator-
PlaneElement. The MechanicalInterface of the YZ-Brackets is classified as Rotated4WayLocator.
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With the rule ‘Link OHSCL PrimaryPlane’, the Functional Geometry Features on the aircraft side of
all four mentioned locating interfaces are linked together to one AKC group tolerance including a group
tolerance refinement. This coupling will later show its effect in the context of tolerance analysis calcula-
tions. On the LHS of the named rule, the four involved active MechanicalInterfaces, the corresponding
FunctionalGeometryFeatures on the aircraft side and the ‘LATSubstructureLH’ instance are searched.
On the RHS, the AKC tolerance108 is inserted and linked to the four FunctionalGeometryFeatures and
to the ‘LATSubstructureLH’ as the corresponding datum (fig. 5.37).

Figure 5.38: Rules for inserting functional geometry features for a lateral overhead stowage bin

Where possible, FunctionalGeometryFeatures belonging to the aircraft structure are directly linked
with brackets (StructureSubcomponent instances) resembling the physical counterpart on the aircraft
side. The rule discussed for the y-tie rod shown in figure 5.34 as well as those for the YZ-Bearing do not
yet implement such a bracket instance. The reason is that the same bracket is needed for another stowage
bin module, and therefore should only be created and linked after the other cabin module instances
exist. However, at some places it is possible: figure 5.38 shows the rule ‘OHSCL FGF04 X-Bearing’ for
inserting and linking a MechanicalInterface for the x-tie rod (also see fig. 5.32). As this bracket fixes
one single stowage bin module, the corresponding bracket instance can be inserted and linked to the
corresponding FunctionalGeometryFeature directly here.

108For the AKCs constant tolerance values are used. Alternatively, synthesis equations could be implemented to calculate the
AKC tolerances depending on design parameters, as it is done for the MKC tolerances.
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Within the design graph, further loops are established between the CabinModules, the Kinematic-
Linkages or the LoadLinkages and the corresponding integration datum109 (fig. 5.39). While the cycles
including the PKC instances reflected the coupled tolerance chains, these cycles here resemble the link-
age system. In the particular case of the lateral stowage bin, the loops are even coupled. This means, they
are parametrically depending on each other, because the FunctionalGeometryFeatures on the aircraft side
of the y- and z-locating MechanicalInterfaces constitute a tolerance group as described above.

Figure 5.39: Design graph of the baseline scenario after the execution of the cabin module rules

109Compare with the design graph after the execution of the architecture rules (fig. 5.26, page 95) or after the gap (PKC)
rules (fig. 5.30, page 99) respectively. The increasingly comprehensive design graph indicates the complexity of the data model.
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5.3.4 Aircraft Structure Rules

The aircraft structure rules (fig. 5.40) complement the cabin module rules. These rules have the task of
inserting any required but open aspect into the model such as

– implementing 3D visualization data of the section frames

– finalizing the definition of the mechanical interfaces110 for the CabinModules

– finalizing the implementation of FunctionalGeometryFeatures on the aircraft-side including AKC
tolerances and including associations to KinematicLinkages

– implementing the brackets (SubComponents of the StructureComponents) on the aircraft-side.

Figure 5.40: The CDL_LR aircraft structure rules

In some cases the brackets and their FunctionalGeometryFeatures cannot be assigned directly to one
single CabinModule, for instance if a bracket or parts of it are multi-functional attachment brackets to lo-
cate and fix several parts. For these cases, the structure components program fulfills the same task as the
cabin modules program and inserts and links the missing MechanicalInterfaces, FunctionalGeometry-
Features and SubComponents or brackets on the structure-side.

The difference from the cabin module rules is that for the aircraft structure rules the iteration runs
over the fuselage frames using the frame number instead of iterating over the CabinModule instances.
In particular, this is required for the center substructure for the attachment of the center stowage bins,
for the lateral stowage bin attachment brackets as well as for the ceiling panel and air grid attachment
brackets.

110In particular this means the finalization of the definition of the kinematic linkage system and of the load interface system
for each CabinModule.
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5.3.4.1 Center Stowage Bin Structure Rules

The center substructure consists of an attachment bracket (OHSCCYZBracket to locate and fix the
stowage bins two times in y-/z-direction) for the stowage bins at every second frame (valid for 4-frame
and 2-frame modules). In the case of 3-frame stowage bins, the concepts foresees a bracket at every third
frame. For 1-frame units at the end of the chain, both frames need a bracket (fig. 5.41).

Figure 5.41: Rule for inserting OHSCCYZBracket-instances into the model

Any pair of subsequent OHSCCYZBrackets has to be interconnected with a plate (CSSPlate, see rule
shown in fig. 5.42111). The first and the last center stowage bin are linked and fixed respectively to the
first or the last OHSCCYZBracket in x-direction. Any other stowage bin in the chain is linked to the two
adjacent stowage bins using an inter-bin connection plate.

Figure 5.42: Rule for inserting subcomponents of the central crown area substructure

111The central substructure (here abbreviated by ‘CSS’) in the central crown area is used for the center stowage bin attachment.
The ‘CSS plates’ mentioned form part of this substructure and are used to attach several system components including tubing,
ducting and electrical wires.
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5.3.4.2 Ceiling Panel and Air Grid Structure Rules

Ceiling panel and air grid attachment share one bracket at the junction of the two split lines. This bracket
either has two FunctionalGeometryFeatures to attach the first or last pair in the chain (fig. 5.43), or it
has four FunctionalGeometryFeatures to attach two pairs at any frame within the chain. The tolerance of
the two or four features respectively is datumed back to ‘LATSubstructureLH’, and the features form an
entity with a group tolerance.

Figure 5.43: Rule for inserting ceiling panel and air grid attachment bracket

5.3.4.3 Lateral Stowage Bin Structure Rules

The attachment rules for the lateral stowage bins are comparable to those for the center stowage bins.
The brackets for the lateral y-/z-attachment come every second frame for 4- and 2-frame modules, every
third frame for 3-frame modules and every frame for 1-frame modules. The x-locating also follows the
same principle as for the center bins. Additionally, the lower y-tie rod attachment has to be applied at
every front or aft edge of the stowage bin. In the case of directly adjacent bins, there is only one y-tie
rod. The implemented design rule sequence shown in figure 5.40 reads in detail as follows:

1. The program starts with a calculation all required variables.

2. A first loop iterates over the total number of frames within the investigated segment, which includes
the cabin compartment module chain (F2FchainFrameLength ) and the length of the implemented
monument (MonumentFrameLength ). Within the loop, one rule (red rule in fig. 5.40) links a new
instance classified by Frame. The loop’s control variable is assigned to its slot FrameNumber. This
parameter contributes to an equation to calculate the explicit x-location of the frame within the
global coordinate system.

3. The second loop iterates over F2FchainFrameLength.

(a) The Java rule ‘Activate OHSCCFrameParts’ scans the model for center stowage bin instances
which either start at, end at or cross the frame number as indexed with the current value of
the control variable. The corresponding MechanicalInterfaces of this module are activated.
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(b) Of the next four violet rules, a maximum of one rule will find the LHS topology pattern [134].
Either two center stowage bins meet at the current frame location, then the LHS of the rule
‘OHSCC YZBracket Dual’ will find a match and the corresponding RHS will be executed or
one of the three others – ‘OHSCC YZBracket FDW’, if only a bracket before the first mod-
ule is required, ‘OHSCC YZBracket AFT’, if only a bracket after the last module is required
or ‘OHSCC YZBracket middle’, if the center stowage bin crosses the frame position and
gets a thirds pair of interfaces with a load support function. Within each of these four rules,
an instance of the type OHSCCYZBracket is created and linked to the FunctionalGeometry-
Features of the correspondingly activated MechanicalInterface instances. By default, the new
instance is set inactive.

(c) The Java rule ‘Activate CSSParts’ checks if one of the instances classified by OHSCCYZ-
Bracket is marked (with the first iteration, this condition cannot be fulfilled). If none is
marked, it marks the instance with the same frame position as the loop control variable. If it
finds an marked instance, the slot inWork of the two instances is set to ‘true1’ and ‘true2’
respectively.

(d) On the LHS of the rule ‘CSS Plates’, two OHSCCYZBracket-instances with corresponding
inWork slot values are searched. If found, the RHS inserts CSSPlate-objects representing the
corresponding 3D visualization data and links it to the two corresponding OHSCCYZBracket
instances. The length of these plates will later be calculated parametrically.

(e) The following Java rule ‘Activate OHSCCParts 2’ checks whether the current frame is the
first or the last frame of the cabin compartment module chain, or if it is one frame in between.
Accordingly, the neighboring stowage bin modules are activated.

(f) Comparable to the first four rules, the following three violet rules represent a selection list.
Only the RHS of the rule, which has a LHS corresponding to the activated module(s), is
executed. It inserts the FunctionalGeometryFeatures and the MechanicalInterface instances
according to the position within the chain.

(g) The last rule deactivates the activated cabin module(s) and leads back to the loop’s entrance
described in step 3.

4. The third loop again iterates over F2FchainFrameLength.

(a) The Java rule ‘Activate CLNGParts’ activates the MechanicalInterface objects at the frame
location similarly to within the previous loop for the center stowage bin modules.

(b) Either the rule ‘CLNG Brackets Dual’ or ‘CLNG Brackets Single’ inserts the CLNGBracket
instance with the required parameters. In particular, the slot NumberOfInterfaces can be
set to ‘2’ or ‘4’. The slot has the UML stereotype «CATIAparameter» [16] and influences
the geometrical appearance of the corresponding 3D data as well as the mass calculation
for the bracket accordingly. Additionally to the bracket object, the rule links the involved
FunctionalGeometryFeatures, using a tolerance refinement to establish the required group
tolerance. The active MechanicalInterfaces are automatically deactivated, so the rule can
immediately lead back to the decision node at the entrance of the loop described by step 4.

5. The implementation of the lateral stowage bin structure rules is similar to that of the center
stowage bins. The only difference is that the four violet rules to insert the OHSCLYZBracket-
instances (‘OHSCL YZBracket Dual’, ‘OHSCL YZBracket FWD’, ‘OHSCL YZBracket middle’,
‘OHSCL YZBracket AFT’) are followed by three violet rules for the OHSCLYTieRod instances,
which are implemented accordingly.

6. The structure rules close with a final calculation of the design parameters.
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5.3.5 Model Finalization and Analysis Transformations

After the execution of the aircraft structure rules, the CDL_LR design graph is fully developed (see
fig. 5.44). The data model now is ready for the CDL model finalization and transformation rules. The sec-
ond but last step of the root program (fig. 5.19) is a Java routine named ‘CDL Model Finalization’, which
executes the validation routines within cdl.validation, the class operations within cdl.operations and fi-
nally once again the calculation of the design parameters. This corresponds to the phase ensure model
quality (third phase according to section 4.4). At the end, the Java rule ‘CDL Model Transformations’ au-
tomatically executes several model transformation plugins within the phase analyze model (fourth phase)
in order to generate the models for analysis and visualization purposes.

Figure 5.44: Design graph of the baseline scenario after the execution of the aircraft structure rules
indicating the size and complexity of the CDL_LR model (cabin compartment modules
reduced to six frame bays to reduce data size). See fig. 5.15 for the corresponding
DMU visualization.
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6.1 Use Case Results

The step from a scientific engineering analysis to technical evaluation is an industrial work step and
can only be outlined here. Within this section the analysis possibilities using the software interfaces
introduced above shall be demonstrated and the industrial evaluation of the results can be sketched.

6.1.1 Trade Study ‘Module Frame Architecture’

To analyze the multi-disciplinary repercussions of the different sets of cabin compartment frame archi-
tecture parameters, the 3D visualization (fig. 6.1) and the AAPs (fig. 6.2) can be consulted.

Baseline scenario
4/2/1 frame architecture

3/2/1 scenario

2/1 scenario

Figure 6.1: Comparison of the 3D visualization indicating the different split line concepts of the
module frame architecture scenarios. The 4-frame bins of the 4/2/1 scenario are not
visible since they are hidden behind the 2-frame bin doors.

Figure 6.2 on the next page shows some AAPs of the three scenarios mentioned: the 4/2/1 scenario,
which is baseline, has the blue bars. The bars of the 3/2/1 scenario are colored dark red, and those of
the 2/1 scenario are yellow. As can be seen, the 3/2/1 scenario is the most promising one concerning the
cabin compartment complexity aspects. Especially the number of Mechanical Interfaces including the
number of gaps or split lines is below the baseline scenario, which can also be anticipated in figure 6.1
showing the corresponding DMU. The number of cabin module and aircraft structure tolerances (MKCs
and AKCs) is less for the 3/2/1 scenario, too. In both fields, the 2/1 scenario has the worst values.

The mass budgets for the cabin compartment modules and the attachment brackets lead to almost
similar values. The relative mass increase for the brackets of the 2/1 scenario is associated with only small
absolute values. The stowage volume as the chosen indicator for the cabin compartment performance
shows limited differences for the three scenarios. The working time in the FAL seems to improve with the
3/2/1 scenario compared to the baseline scenario, while it increases for the 2/1 scenario. This goes back
to a change of both the number of installation steps and a change of the number of cabin compartment
modules, which need to be carried into the fuselage for installation.
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Figure 6.2: Comparison of some AAPs of the module frame architecture scenarios

After calculating and checking the AAPs, initial tolerance calculations are made to check for a con-
sistent level of appearance quality and installation tolerances for comparable scenarios within the trade
study family presented. While the rules for the synthesized MKC tolerances have been implemented into
the model in the style of KBE data, the aircraft structure tolerance assumptions (AKCs) are implemented
as fixed constant values only at this stage of modeling. Hence, before making final conclusion on the
PKC calculation results, it should be crosschecked whether the aircraft structure tolerance assumptions
match for the different substructure geometries, or if manual updated of the AKCs need to be made prior
to making the final calculations.

This can be done by making use of the KC-list export feature provided by the plugin cdl2kclist. If an
update of the AKC tolerances – or also of the MKC tolerances – is required, the data can be read back
into the UML model using the re-import function of the same plugin. Then the plugin cdl2mm creates the
updated MECAmaster input sheets and the PKC tolerances can be calculated by MECAmaster, followed
by a detailed evaluation of the results (fig. 6.3).

– The calculations show a slight increase for PKC-002, which is the x-gap between two adjacent air
grids. This increase’s root cause is the increased airgrid manufacturing tolerances (MKCs) due to
the larger panel size.

– Even though the larger ceiling panels face a similar increase in manufacturing tolerances, the final
PKC-001 measuring the x-gap between two ceiling panels is reduced with the 3/2/1 scenario. The
reason for this unexpected behavior lies in a reduced geometry factor of the ceiling attachment.
The longer the panel gets, the smaller the rotational tolerances in x-direction are due to deviations
in y-direction. Thus, the gap calculated with PKC-001 is ‘more parallel’ than the one of the other
two scenarios – a good example of multi-domain repercussions of an architecture change being
different than what has been expected.
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– The y-gap tolerance between the ceiling panels and the adjacent air grids (PKC-003), the step in
y-direction between two adjacent ceiling panels (PKC-007) and the installation tolerances at the
pin-slot interfaces of the ceiling and air grid panel (PKC-100 and PKC-101) do not vary. The reason
is that the input data including the parameters and the influencing topology have not changed for
this aspect of the ceiling panels compared to the baseline.

– While the x-gap between the overhead stowage bins remains constant (PKC-004 and -005), the
chain compensation tolerance seems to differ. However, the calculation of this particular tolerance
in x-direction strongly depends on the number of contributors and on the resulting statistical dis-
tribution, as well as on the geometrical influence coefficient of the last stowage bin, which itself
depends on its individual frame length. Especially the latter one differs between the three scenar-
ios, resulting in the given differences. If the MKC tolerances can be controlled appropriately and
can be kept constant for different module lengths, this effect can be compensated.

– The same applies to the gap between the last lateral overhead stowage bin and the monument (PKC-
006), which is also influenced mostly by the varying geometrical influence coefficient of the
stowage bin.

0%

20%

40%

60%

80%

100%

120%

140%

nu
mbe

r of
ca

bin
 m

od
ule

s

tot
al

nu
mbe

r o
f k

ine
mati

c lin
ka

ge
s

tot
al

nu
mbe

r o
f lo

ad
 in

ter
fac

es

nu
mbe

r of
PKC ap

pli
ca

tio
ns

nu
mbe

r of
op

tic
al 

PKC

nu
mbe

r of
ins

tal
lat

ion
PKC

nu
mbe

r of
AKC ap

pli
ca

tio
ns

nu
mbe

r of
MKC ap

pli
ca

tio
ns

mas
s es

tim
ati

on
tot

al

mas
s es

tim
ati

on
ATA25

F2F

mas
s es

tim
ati

on
ATA53

Brac
ke

ts

FAL M
h e

sti
mati

on
 bo

tto
m-up

ins
tal

lat
ion

 M
h

work
 pr

ep
ara

tio
n M

h

sto
wag

e b
in 

loa
din

g v
olu

me

C
om

pa
ris

so
n 

to
 B

as
el

in
e 

[%
]

4/2/1-Frame-Architecture (Baseline) 3/2/1-Frame-Architecture 2/1-Frame-Architecture

0%

20%

40%

60%

80%

100%

120%

140%

PKC-001 PKC-002 PKC-003 PKC-004 PKC-004
(compensation

gap)

PKC-005 PKC-005
(compensation

gap)

PKC-006 PKC-007 PKC-100 PKC-101

C
om

pa
ris

so
n 

to
 B

as
el

in
e 

[%
]

4/2/1-Frame-Architecture (Baseline) 3/2/1-Frame-Architecture 2/1-Frame-Architecture

Figure 6.3: Comparison of the PKCs of the module frame architecture scenarios

In addition to the consideration of the AAPs, the MECAmaster linkage diagrams112 are used to demon-
strate the design complexity of the mechanical architecture aspects and can be the basis for technical dis-
cussions about the chosen linkage systems. On Moreover, the diagrams can be used to check if any model

112For explanations about the MECAmaster linkage diagrams also consider the corresponding notes at fig. 2.9 in subsec-
tion 2.3.2.
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transformation error occurred or if a wrong input has been defined. Figure 6.4 provides an example for
the MECAmaster linkage graphs for the baseline scenario.
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Figure 6.4: MECAmaster linkage graph of the baseline scenario (extract of six frame bays) used for
technical discussions about the linkage systems and for pragmatic modeling checks

These formal facts compiled during the execution of the CDL can be interpreted so that for the con-
sideration of cabin integration needs alone, the 3/2/1 scenario is the least complex one. For a new archi-
tecture and design this would mean that the complexity of the development work concerning mechanical
cabin integration efforts can be reduced for the 3/2/1 scenario compared to the others with the given tech-
nical frame conditions. This conclusion is supported by a comparative look at the MECAmaster linkage
graphs. These statements, however, neither pay respect to potential repercussions for the part number
variety due to customization needs, nor can any conclusions be made concerning the different aircraft
structure development efforts, as these aspects are not modeled or simulated.

Concerning the mass parameters, it needs to be recorded that altogether the deviation between the
scenarios is of the same magnitude as the uncertainty of the chosen mass estimation methods and there-
fore no significant technical difference between the scenarios can be found. The same applies to the
stowage volume estimation. This means that for two key aspects of the cabin compartment (mass and
performance) no difference has to be expected between the three frame architecture scenarios. However,
it needs to be pointed out that the stowage volume as chosen the indicator for the stowage space is per-
haps not as precise as a concrete number of standardized bags or trolleys fitting into the stowage bins.
A future task could be extending the CDL analysis methods with a more meaningful method to evaluate
the stowage bin performance.

The handling of panels with increasing size may lead to additional work preparation time per mod-
ule (see fig. 6.5, e.g.). When the installation time contributors have been modeled, this aspect has not
been considered, but it may influence the overall required installation time. From a quality point of view,
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the 3/2/1 scenario seems to lead to the best appearance tolerances. Additionally, neither the baseline
scenario nor the alternative scenarios appear to lead to installation tolerance difficulties.
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Figure 6.5: Extract of the spreadsheet-based installation time and sequence visualization of the
baseline scenario (extract of six frame bays) using the software interface cdl2fal

6.1.2 Trade Study ‘Frame Distance’

Altogether, 14 models with different frame lengths have been created varying between 400mm and
700mm (see fig. 6.6 on next page). In order to maintain a comparable length of the fuselage segment,
frames have been added or removed compared to the baseline scenario with 530mm frame distance and
15 frame bays length. This leads to a variation of the overall segment length of ±3, 8%, which has to
be considered for the evaluation and the comparison of the AAPs. Also here the AAPs are the first in-
dicators for the differences between the 14 scenarios (see fig. 6.7 on next page). Even though there are
some non-linear discontinuous effects between the smallest and the largest investigated scenario, only
the extreme scenarios are shown to simplify the visualization.

The different frame distances lead to huge differences concerning the quantitative design complexity,
as the corresponding AAPs tell: the smaller the frame distance, the more interfaces and all correlated
elements such as brackets, tolerances to be controlled and installation steps. The qualitative design com-
plexity, however, can be considered to remain at the same level, as only the number of features increases,
while the interdependencies are generically the same on class level.

The relative mass of the cabin modules increases for larger frame distances, as both the panels as
well as the stowage bins need reinforcement applications to withstand the increasing bending and torsion
loads. The mass of all cabin attachment brackets decreases due to the fact that larger frame distances lead
to fewer interface points and thus to fewer brackets. An ‘optimum’ for the individual parts together with
the brackets cannot be simulated here, as the mass calculation formulas are rough estimations only. In
any case, the tendency becomes clear. Still, aircraft structure masses need to be considered in parallel to
make final conclusive statements beyond a pure optimization of the cabin mass.
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400mm frame
distance scenario

Baseline-scenario
530mm frame distance

700mm frame distance scenario

Figure 6.6: Comparison of the 3D visualization indicating the different frame distances
of the frame distance scenarios
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Figure 6.7: Comparison of some AAPs of the frame distance scenarios
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As already mentioned, the installation time goes down with a reduced number of mechanical inter-
faces, but the repercussions of larger modules on the handling efforts may absorb a bit of the anticipated
installation time gain. Both the quality-related PKCs as well as the installation PKCs show no significant
change within the investigated frame length interval. Beyond the 700mm frame bay, however, increasing
installation and quality issues need to be expected, if comparable tolerance behavior of the modules and
of the aircraft structure is premised.

A conclusive qualitative statement for the frame distance scenarios is that varying the frame length
means playing with the quantitative design complexity versus the mass. When searching for a ‘local op-
timum’ (cabin-only) or even a ‘global optimum’ (cabin and fuselage) for these two aspects of mechanical
cabin compartment architectures, one should consider the potential benefits of combining the variation
of the frame length and module architecture. Figure 6.7 comprises a combined scenario which supports
this assumption.

6.1.3 Trade Study ‘Repercussions of a 25mm Gap’

The iterative trade study about the repercussions of a 25mm gap starts with a change of the architecture
parameter ‘NominalGapUnloaded2Unloaded’ from 10mm of the baseline scenario to 25mm. The first
results from the AAPs are that the mass of the cabin compartment modules is reduced slightly due to the
larger gap. The stowage space of the overhead bins is reduced in parallel. Using the adapted 3D geometry
generated automatically by the software interface to CATIA V5, DMU investigations can take place to
check if the gained space between the stowage bins can contribute to significant installation handling
simplifications and therefore to a potential reduction of the corresponding installation step time.

Additionally, it should be investigated if the spatial changes offer to locate functional applications in
the gaps such as system or wire routings, which could improve the design at other locations. By the
aid of the automated tolerance calculation preparation (fig. 6.8) it can be demonstrated that the relative
appearance PKC tolerances113 improve (see fig. 6.9 on the next page). The installation PKC tolerances
do not face any impact. Thereby it is assumed that the MKC and AKC tolerances remain at the same
level. Globally seen, neither recurring nor non-recurring cost repercussions have to be expected with this
scenario alongside the mentioned loss of stowage space and the light cabin mass reduction.

CDL objects
in UML

Spreadsheet-based
KC-List

updated
KC-List

CDL objects
in UML

export import
manual
updates

UPDATET

Figure 6.8: Round trip process for AKC and MKC tolerance updates

Based on the assumption that increasing tolerance limits can reduce manufacturing cost, an iteration
loop to the first scenario is performed (fig. 6.8). Now the aim is to increase the AKC and MKC tolerance
limits of the 25mm gap scenario such that the relative PKC tolerances are still equal or better than the
original baseline values, and also that a manufacturing cost reduction is tangible.

113Relative tolerances are the PKC tolerance values divided by the corresponding nominal gap size.
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Figure 6.9: Comparison of PKCs of the 25mm gap scenarios: while absolute PKC tolerances
increase, the relative PKC tolerances for a 25mm gap decrease even with increased
AKCs and MKCs (AKCs +50%, MKCs +20%).
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During discussion loops with the corresponding manufacturing and tolerancing experts for the cabin
modules and the aircraft structure, a tolerance increase of 50% for both the AKCs and the MKCs has been
judged as significant for cost improvement. The changed tolerance values can now be read back into the
CDL_LR UML model by using the round trip function of the plugin cdl2kclist (fig. 6.8), followed by a
re-compilation of the MECAmaster input file. The calculations showed that the relative PKC tolerances
are still below the baseline (fig. 6.9). Nevertheless, PKC-100 and PKC-101 representing installation
tolerances are also impacted: the uplong holes for the ceiling panel and air grid attachment are no longer
large enough to compensate for the tolerances and need to be enlarged by approximately 50%. The
corresponding brackets now face a size increase and therefore the mass of the brackets increases as well.

The size increase is incorporated into the CDL_LR model in the corresponding rules by changing a
design parameter of the associated SubComponent instances. After re-executing the entire CDL_LR rule
set, a corresponding mass increase evolves. Neither the stowage space nor any relevant spatial aspects
are affected.

The conclusion for this iterative study is that a 25mm gap between the cabin modules could contribute
to an improved tolerance-related appearance and even to a small but remarkable weight reduction along
with the potential to cut back some tolerance-related recurring manufacturing cost. The price for these
improvements is the loss of some stowage volume and larger nominal gaps which may create general
appearance problems.

6.1.4 Further Possible Scenarios

Besides the discussed scenarios, further scenarios based on the present CDL_LR model could be:

– Any combination of the described scenarios The semantic hull built by the case study model in
conjunction with the generic CDL class model can be used to create further consistent scenarios
using the same model data. Due to the fact that the design rules used are generalized and therefore
are independent from the input parameters, it is possible to overlay any combination of the pre-
viously described scenarios directly without any further modeling efforts by choosing the proper
input parameter combination.

– Modification or replacement of an entire cabin module It is possible to exchange an entire cabin
module by a modified or an all-new cabin module with a different topological composition, for
instance with alternative attachment brackets including different interface functions and locations
or with different geometrical shape with different split lines and gaps. The latter can comprise trade
studies for different industrial design contours and the analysis of the corresponding repercussions.
The required modeling efforts include exchanging the encapsulated design rules for the cabin
module with new rules and parameters and adapting the corresponding substructure rules.

– Implementation of additional cabin modules and system components Omitted cabin compart-
ment modules like the sidewall panels and the dado panels, door frame and entrance area lining
panels or even monuments and crew rest compartments could be implemented as well as cabin and
aircraft system components like air distribution ducts or cabin data system computers. The cor-
responding physical integration aspects can be considered in the same way as those of the cabin
modules. Besides some additions to the architecture rules, it would be required to extend the cabin
module and aircraft structure rules accordingly.

– Change or extension of the current structure integration datums If the allocation of mechani-
cal interfaces to structure components and of AKCs to their respective integration datums change
(for example, if additional integration datums are incorporated) it would be necessary to adapt the
substructure rules so that the mechanical interfaces and the AKCs are linked to the correct objects.
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– Implementation of a cross section parameterization It would be necessary to model all para-
metrical and topological repercussions in the cabin modules split lines and structure components.
In particular the complex architecture differences between a single aisle and a double aisle air-
craft (the first one without center stowage bins and therefore without the center substructure) re-
quire several additional architecture rules. The gap rules, the cabin module rules and the aircraft
structure rules, however, would only need extensions or modifications like the interchange of 3D
data or an upgrade of the geometry and tolerance parametrization.

6.2 Methodological Results

6.2.1 The Implementation with Design Languages

The CDL and the subsequent implementation process as presented in this work are not ‘artificial intel-
ligence’ approaches [48, 131] and cannot randomly create new design proposals. It is and remains the
task of the involved engineers to develop concepts or images of cabin architectures and then use mod-
eling techniques such as design languages to capture and analyze the concepts with the aid of software-
implemented data models.

On top of representing the scenario-related classes within the class diagram, the chosen approach with
design languages additionally offers an automated design processing which helps the engineers to focus
on the development of concepts and on the collection of data rather than on complex design compilation,
affirming the second hypothesis from chapter 3 concerning the model generation aspects.

The selected working process resembling a tolerance management process (see section 4.4) implicitly
guides the modeling engineers to the question of ‘which data is required’ in order to provide answers to
the analysis questions, which proves the first hypothesis from chapter 3 valid. The work processing leads
to the necessity to cluster the design rules. Such clustering, however, implies that repetitive and iterative
calculations need to be performed.

In the CDL_LR model, equations need to be solved several times and some calculations are even
decoupled. In fact, this inhibits the reversibility of these calculations in particular, but due to the def-
inition of a certain rule sequence as modeling philosophy these reverse calculations are not required
anyway. Within the chosen implementation, the modeling sequence of the four main phases cannot be
interchanged114, but subprograms such as for instance the compilation rules of a single cabin module can
be exchanged in a modular way.

The fourth phase of modeling according to section 4.4 consists of model transformations for analysis pur-
poses, which are conducted by the plugins introduced. In this respect, the plugin uml2mecamster can be
considered as more or less ‘complete’ and ready for wider testing. All MECAmaster model elements find
their corresponding routines within the plugin. Any model which can be created with the MECAmaster
GUI can be created with a graph-based design language using MECAmaster vocabulary, too.

Due to the similarity of the required input data, it is possible to exchange the kinematic tool MECA-
master by other kinematic CAT software or even with Monte Carlo simulation-based software, such as
for instance 3DCS. This independence from commercial analysis models ensures flexibility for potential
software changes and stands for the implementation-independent definition of the CDL class diagram.
Since both kinematic tolerance analysis and tolerance simulation using Monte Carlo algorithms require
similar data input, the decision to go with one specific CAT tool family does not have to be considered
as a one-way solution, but leaves the door open for later software implementation changes or extensions.

114It has to be noted that the sequence of a ‘manual’ compilation and execution of such multi-domain trade studies including
the creation of tolerancing models and tolerance calculations – which also had to follow the descriptions of fig. 4.10 from
section 4.4 – could not be interchanged, neither.
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The CDL-related plugins have to be considered as a test case. At this point in time, application expe-
rience needs to be collected. The embedded range of functionality for class-related operations within the
plugin cdl fulfills the required spectrum which has been described by the scope of modeling (section 4.1).
Of course, the operations can be adapted at any time, if the scope of modeling needs to be extended. The
working of the analysis plugin cdl2analysis has been very helpful. Also here, code changes are required
only if further AAPs are defined and need to be calculated in an automatized way.

The model-to-model transformation routines of the plugin cdl2mm currently only ‘know’ three differ-
ent linkage patterns [134] for the cabin modules plus the linkage systems for structure components. For
these, the conversion works properly according to the tests. If an extension is needed to further linkage
systems, like those for cabin monuments or for detailed structure modeling, additional patterns and the
corresponding transformation rules need to be programmed. Especially the transformations from CDL
UML vocabulary to MECAmaster UML vocabulary are a good example for complex model transforma-
tions with a high level of abstraction, where design languages using a model-based paradigm unfold their
full strength compared to pure text-to-text transformations. Without this high level of abstraction, such
generalized transformations are difficult to realize.

The plugin cdl2knlist fulfills all needs for a round trip plugin between the CDL model in UML and
the spreadsheet-based KC-lists. As already mentioned, topological changes should not be managed by
such model-to-text and text-to-model round trips, but by the rule-based model generation itself in or-
der to ensure repeatability, automated calculation of multi-domain repercussions and data consistency.
The FAL plugin cdl2fal is exemplary. If using this plugin and its automated visualization scheme with
spreadsheet-based bar diagrams works out, it is possible to extend it to parallelized installation steps. Due
to the modular data structure, it is also easy to exchange this plugin with an interface to more professional
process visualization models or even to digital factory models [10].

The export plugin cdl2export only aims at demonstrating the flexible possibilities to exchange any
modeled CDL data with any target application. For transformations to product databases or PDM systems
for industrial work, similar transformation algorithms can be applied, but case-specific model validations
need to be performed, which cannot be implemented in a generic way.

Altogether, the plugins can fulfill the requested tasks and thus verify the model analysis aspects of
the second hypothesis from chapter 3. Even though there is no primary focus on the GUI, but more on
the running model implementation, the resulting user interface performs in the way which is needed
for conceptual studies. The data import of the input architecture parameters for the axiom within the
plugin cdl has been realized with a spreadsheet-based interface, which, however, is fully in line with
industrial practice. The same applies for the output visualization of the analysis plugin cdl2analysis,
of the FAL plugin cdl2fal and of the KC-list plugin cdl2kclist. Especially the last one matches directly
with the industrial practice of maintaining KC-lists within spreadsheets. It is only for the transformation
plugins cdl2mm and cdl2export that simple GUIs have been developed, because here user interaction is
mandatory for the selection processes.

Depending on the concrete modeling need, the user can choose between graphical rule implementations
or Java-based coded rules. In particular for the creation of new data objects and for the search of simple
topology patterns [134], the graphical rules were revealed to be a fast and pragmatic procedure. The
graphical rules only come to a limit if complex object patterns need to be searched and if a mixed
topology and parameter search is required. In such cases, it proved to be helpful to mark single objects
as ‘objects in work’ with the help of Java rules115. In a following graphical rule, this marked object can
now be processed in a simple way. The necessity to be able to retrieve instances and instance patterns
has to be considered when the corresponding instances are created. This means that rule-based modeling
sometimes is not a linear creation process, but rather an iterative process.

115The CDL implementation foresees the slot inWork to mark individual instances, as has been explained in chapter 5.



124 CHAPTER 6. RESULTS AND DISCUSSION

Fully generic rules, which do not use CDL_LR classes but only generic CDL classes could easily
generate and extend topology. But such generic rules are weak for linking specific instances with specific
other instances and for adapting the design parameters to specific values. So the chosen concept of a case-
specific class diagram – the CDL_LR class diagram of the presented case study – is a helpful method.

The implemented CDL_LR design rules follow a modeling philosophy of a balanced mixture between
generic and individualized rules as a pragmatic approach. The case-specific classifiers are taken for the
model creation – the more abstract CDL classifiers which the case-specific classes inherit are considered
for model analysis and generic model transformations within the model-to-model transformation plug-
ins (cdl2x). It is interesting to note that the case-specific class diagram together with case-specific rules
could also be interpreted as a rule-based knowledge representation in the sense of KBE databases.

6.2.2 Links to Further Analysis Models

The chosen scope of modeling has been selected as a pragmatic approach to provide answers to questions
in the context of physical aircraft cabin architectures. Of course, a larger scope could have been chosen,
implementing further disciplines with their methods. One upper limit surely comes up, if one single
engineer cannot control the entire span of involved methods and models. This aspect and related issues
are discussed within section 6.3. Some analysis methods ‘in the methodological neighborhood’ of this
cabin architecture analysis approach are left out for pragmatic reasons. While FEM-based load and stress
analysis is required to shape physical components and to calculate the acting loads, it would be overdone
to implement these analyses already during the working loops conducted with this methods.

The same applies for the question of whether to model aspects related to total cost and life cycle
cost. The execution of load and stress analyses or extended cost modeling can be considered after the
creation of initial CDL models. Therefore, the generated data models can be used as a basis together
with the provided export plugin cdl2export. For the studies like the given CDL_LR trade study, a link to
functional system models is not required at this stage, because the interrelations between cabin modules
and system components mostly comprise physical aspects only – at least on an architecture level.

Having the chosen chosen scope of modeling and its purpose in mind, the analysis models, which are
outlined subsequently are interesting candidates for further software interconnections beyond the initial
purpose [155] of CDL models.

6.2.2.1 FEM-Based Load Analysis

Using the definition of Mechanical Interface objects, the CDL model already contains much of the rele-
vant data needed for load analyses with FEM. Together the center of gravity and the mass, the locations
and the functional descriptions of the LoadInterfaces provide boundary conditions required for FEM
models. The missing information concerns a suitable meshing of the geometry data including a model to
describe the material behavior and the definition of load cases, which will impact the cabin module.

CDL model
	 –		 Geometry	model
	 –		 Load	interfaces
	 	 incl.	geometrical	and
	 	 functional	description
	 –		 Center	of	gravity,	mass

FEM model
for	load	and	

stress	analysis

Additional modeling data
	 –		 Geometry	meshing
	 –		 Material	modeling
	 –		 Load	cases

Figure 6.10: Data transfer from a CDL model to a FEM model
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Meshing data is considered as more detailed design data. It is not implemented in the CDL model
directly and is also outside the scope of this work. As mentioned, load-stability is taken for granted for
the investigated cabin modules. If FEM analyses are planned after the execution of CDL analysis, it is
possible to append meshing data to CabinModule classes in the same way as it is done for geometry
data. After that, FEM simulation input data can be compiled directly. Figure 6.10 sketches the potential
data transfer from a CDL model to a FEM model, where the dark blue arrow represents a potential
standardized model-to-model transformation. Experience has already been gained incorporating meshing
data into design processes using design languages [64].

The software link between design languages and FEM software already exists [85, 86, 87]. KORMEIER

demonstrates the flexible functionality for topology synthesis [86] and material modeling [87] and shows
first examples for embedded FEM analysis in conceptual design processes supported by design lan-
guages [64]. It is possible to think of comparable rule sets and algorithms for the synthesis of the inner
topology and of the material models for Cabin Module FEM studies. For instance, knowledge-based
automatized meshing algorithms could be deployed [64].

6.2.2.2 Functional Cabin and Systems Integration

It is possible to think of architecture concepts for cabin modules and systems, which are different from
the CDL_LR example and where functionalities of aircraft systems are closely coupled with mechanical
cabin module integration. For instance, cabin modules could contain integrated system subcomponents,
where the system behavior directly influences cabin module design parameters and therefore the cabin
module architecture.

For such cases, it is possible to create system-specific classes, which inherit from the CDL class
diagram and which are extended with additional system-specific classes116. This could for instance be
classes representing physical objects like wires, connectors, ducts or hoses, but of course also classes for
functional system modeling linked to corresponding analysis or simulation software [107, 128].

white objects:  instances of conventional CDL classes
red objects:  instances of special system-related classes
blue objects:  instances of CDL classes overloaded with special system-related functions

Figure 6.11: Design graph with CDL objects and special systems-related objects

The simple example given with figure 6.11 shows that looking at physical aspects of cabin architectures
does not fade out systems-related, functions-related or operations-related architecture aspects. In spite

116The overlaying of UML instances with multiple UML classifiers is common practice for multi-domain modeling.
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of the chosen CDL analysis methods for physical aspects of ATA25 modules (section 4.4) separate from
cabin systems and functions analyses, the need for joint evaluation or even model coupling as expressed
with the first hypothesis from chapter 3 can be fulfilled.

6.2.2.3 Link to Digital Factory Models

Based on the work of ARNOLD [10], it is possible to link design languages in general – and therefore
also CDL models in particular – to digital factory models. The installation sequence of the modules and
all installations steps including the sequence already form part of the CDL class definitions and are used
for the visualizations based on the plugin cdl2fal.

Comparable to the addition of systems-related data, additionally required assembly data can be added
to the CDL objects [130]. Therefore, the CDL objects can be overloaded within the scenario-specific class
diagrams. A transformation plugin would be needed to add the missing information using databases or
by user input.

6.2.2.4 Links to Databases, KBE Systems or PDM Systems

In the example of the CDL_LR model, some spreadsheet-based input data has been imported. This
principle of data base implementation can be extended to larger data base applications and even to the
extent of knowledge-based input. This knowledge-representation can either be realized with libraries for
graph-based or Java-based rules or even with complex design patterns [134] or high-level primitives [92].

The transition between a data model for analysis purposes and a multi-domain product data model
for PDM and PLM purposes can be considered as smooth concerning data transformation and handling.
The geometry data within CDL data models, for instance, can be resorted in a rule-based manner to
match PDM structures [16], and the same applies to any other structured data object domain. To fill the
aforementioned gap between manufacturing cost and total cost or life cycle cost respectively, further
analytical decomposition and synthesis approaches would have to be linked with the CDL model.

It is possible to think of overlaying classifiers similar to the potential embedding of systems analysis
and simulation data. Of course, here is the possibility for a close link to the aforementioned digital factory
data model to estimate the total cost. A mapping of executable product requirements on the design model
in the style of RBE methods is currently not implemented explicitly. Due to the CDL and UML model
flexibility, it is possible to extend the current modeling domains by requirement data and a link to RBE
methods including the corresponding data models is possible.

It should be mentioned that data round trip processes between the CDL model and a PDM system
are possible, as long as the model-to-model transformations only extract data without changing the data
object structure. The demonstrated plugin cdl2export can handle the export functions in a generic way.
However, the transformation backwards from PDM to the CDL models becomes very sophisticated as
soon as structural or topological modifications have taken place inside the PDM.

6.3 Way of Working in Industrial Context

In the industrial context, any new method needs to be proven to be applicable. Even though in theory
methods should drive the working processes, in reality industrial frame conditions slow down or even
block the introduction of new methods. In other words: sometimes, processes drive methods.

Rule-based design languages offer to ‘design’ the methodological sequences flexibly for such prob-
lems [90, 134]. Subsequently, some requirements for a pragmatic industrial implementation of the pro-
posed cabin design, architecture and integration analysis method using the CDL are outlined, making
use of this advantage.
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6.3.1 Role of Cabin Architect and Expert Group

For CDL-based analyses, the role of cabin architects is integrating the multi-disciplinary results and
attempting a holistic evaluation of the analysis data.

– The cabin architects need to be familiar with the full bandwidth of the involved disciplines in-
cluding their methods. This comprises technical understanding about the analysis models evolving
from the fifth phase of the working process according to figures 2.13 or 4.10 respectively.

– Together with a data management engineer (see following subsection), knowledge is required
about the limits of the CDL model. This comprises the knowledge about the data depth, about
the simplifications and assumptions on a technical level based on semi-analytical, empirical or
even heuristic methods.

– Additionally, particular knowledge about the scope of modeling is mandatory for robust and valid
model results.

– Generally speaking, design language-based iterative trade studies can comprise two levels: the
iterative recompilation of the design data in order to find a suitable input value to reach a desired
output value, as well as the iterative extension of the class diagram and of rules – and therefore the
iterative extension of the semantic hull or even of the scope of modeling in order to improve the
pragmatic sense of the design language model117.

– The CDL models and the corresponding AAPs should be considered as indicators of tendencies
and not as autonomous or holistic evaluation statements – especially not in the sense of the pi-
theorem [133]. The same applies to any other model result parameter like PKC tolerance results
or installation time estimations. The model’s purpose is to support the cabin architect with his
or her judgment and to prove heuristics with profound model results, not to replace intuition and
technical expertise.

– In addition, knowledge is required about non-formal product data such as industrial design or cabin
customization aspects, which cannot be modeled explicitly. Aspects which are not in the model,
but are important anyway should be considered ‘in the old way’. However, with the presented
method it does not require much time to reproduce various trades with different industrial design
geometries or with alternative attachment concepts to light implications for customization and
industrialization.

– The final holistic evaluation about a technical cabin integration scenario is not ‘the sum of all
analysis parameters’, but a holistic consideration of the modeled formal results along with the
omissions of formal and non-formal nature. It needs to be clear that in order to know how to
evaluate, it is necessary to know what to evaluate. A frequent ‘hermeneutic dilemma’ for this
point is that in order to know what to evaluate, it is necessary to have an idea about how to do
it. This means that as cabin architect it is mandatory to challenge both the technical results on
instance level and the class diagram with the corresponding analysis criteria representing the scope
of modeling.

117For example, when the installation PKCs of this scenario had been calculated using the new tolerance values, the results
showed the need to increase the sliding features of the brackets to compensate for the increased installation tolerances. There-
fore, the mass calculation formula for the brackets has been extended by a parameter for the length of the sliding features as
a second iterative step. The original value leads to the bracket mass as it has been used in all previous scenarios; hence the
consistency of this model with the previous ones is guaranteed.
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Where needed, the cabin architect can consult an expert group supporting the modeling and analysis
phases (fig. 6.12):

– An engineering expert for cabin-related interface and tolerancing issues like PKC definition, MKC
capabilities, interface functions, etc.

– An engineering expert for cabin module design and manufacturing including FAL processes re-
sponsible for the design data of the cabin modules and of the attachment brackets

– An engineering expert for aircraft structure-related interface, tolerancing and manufacturing issues
like AKC capabilities, brackets, structure manufacturing process possibilities etc.

– A engineering expert for cabin, bracket and aircraft structure stress and loads aspects

– A data management engineer [93] who is responsible for implementing the modeling and the
model transformation methods including the software interfaces to any required analysis methods

Cabin interface and 
tolerancing expert

	 –	PKCs	(tolerances		
	 	 and	deflections)
	 –	MKC	capabilities
	 –	Interface	functions

Aircraft structure
interface and
tolerancing expert	
	 –	AKC	capabilities
	 –	Brackets
	 –	Manufacturing	
	 	 process	possibilities	

Cabin architect

	 –	Integration	of	
	 	 involved	disciplines
	 –	Analysis	and		
	 	 holistic	industrial		 	
	 	 evaluation	of	results

Cabin design expert

	 –	Cabin	module	design	
	 	 and	manufacturing
	 –	Cabin	FAL

Stress and loads expert

	 –	For	cabin	modules,	
	 	 brackets	and	
	 	 aircraft	structure

Data management expert

	 –	Rule-based	design		 	
	 	 languages
	 –	Multi-domain	
	 	 transformations
	 –	Data	integrator

Figure 6.12: Industrial working group for the cabin architecture analysis tasks
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6.3.2 Industrial Challenges

Based on the experience gained with this research work, it can be said, that three types of users can be
distinguished with different levels of knowledge about design languages:

– Simple design language execution and parameter changes require a basic know-how about the
involved class diagram respectively the vocabulary along with the existing rules and model trans-
formations. Basic training can enable design engineers to perform such tasks.

– Advanced parameter trade studies with a modular exchange of rules and objects require advanced
user experience with associated training needs.

– Adaptations to the generic CDL class diagram, the scope of modeling or the model-to-model
transformations for analysis and visualization purposes require expert knowledge about design
languages, the model-based paradigm and about the specific engineering disciplines. Aside deeper
trainings, working experience with design languages in the range of several months is a prerequisite
for such modifications.

In order to enable multi-disciplinary work, a common standardization of vocabulary [136] such as the
definition of the term ‘mechanical interface’ is required, including the corresponding overlapping of the
different conceptual ideas of these classes. The proposed functional differentiation from chapter 4 can be
seen as examples fulfilling this need. It is necessary that the people involved in the working group under-
stand the core principle of CDL with the rule-based paradigm and with model-to-model transformations
for data analyses. This comprises adequate training and first working experience with design languages
in order to be able to execute design language models. Additionally, chances and limitations of design
languages using a model-based paradigm need to be communicated in general to create awareness for
changes and for a pragmatic and fruitful use of design languages:

– Design languages are no kind of ‘magic artificial intelligence’118.

– Only formally understood problems can be modeled exactly.

– Semi-analytical or empirical aspects of models need to be outlined.

– In particular, ‘fuzzy’ aspects like industrial design may be crucial for cabin architecture decisions,
but are difficult to be modeled and analyzed in an explicit manner.

– It needs to be made clear to any user or any involved person providing expertise that models can
only answer to dedicated questions. No phenomenon which has not been modeled will ‘evolve’ or
‘emerge’ out of the model.

The method proposed using CDL focuses on a restricted purpose, which is conceptual architecture
analysis. It lies in the nature of design languages to think about an embedment in a larger working
context involving further and more detailed transformation and analysis methods. From a data handling
point of view, it is possible to use design language models for the transition of research concepts to the
start of an aircraft project and maybe even further. However, from a working process point of view, this
means that more people will need to be involved and that the data management efforts will increase.
Additionally, the detailed what and when of the individual working steps may change, as a new analysis
as well as new evaluation methods and front-loaded processes can be realized.

118While RUDOLPH [131] outlines the relation between computer-aided design and ‘artificial intelligence’ methods,
ERASME [48] can be consulted for an overview about changes and risks related to ‘artificial intelligence’ approaches.
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Currently, there is only limited experience beyond small project teams programming and using the
CDL models and the analysis results in parallel. The needs for robust ways of working with larger project
teams and one central design language-based data model are a research question beyond pure software
development and modeling problems.

Especially when it comes to a product project start, where product data and documentation tend to
explode, further design language experts119 and PDM systems must be involved. On one hand, this
touches the question of how to involve PDM systems (fig. 6.13). On the other hand, and not by accident,
the conference series ‘Design Computing and Cognition’ (DCC) also involves cognitive, work procedural
and even sociological aspects when thinking about design and design computing [56]. Such aspects along
with the level of know-how of the involved engineers with respect to design languages play an important
role when considering a wider implementation of innovative design methods.
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Product Project
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Figure 6.13: Limited scalability of way of working

Giving consideration to the industrial challenges and limitations mentioned, an extension of the pro-
posed cabin architecture analysis method framework is possible step by step, if the need rises to involve
further analysis methods. However, this growth cannot be infinite without implications for the way of
working with design languages (fig. 6.13). In particular, this comprises training and working experience
with design languages in a wider scope.

119See the beginning of this section for a definition of user skill levels.
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7.1 Results

This thesis copes with physical aspects of aircraft cabin architectures. It sets the focus on conceptual
design aspects needed to integrate the cabin into the fuselage (chapter 1). Therefore, tolerancing methods
have been outlined (chapter 2) and it shows that tolerancing can play a key role for physical cabin
architectures and integration. However, some methodological shortcomings are identified (chapter 3).
Firstly there is no clear description of the role of tolerancing for conceptual cabin design, secondly there
are no implemented holistic methods available which can support this proceeding in an industrial context.

Within chapter 4, so-called cabin design languages (CDL) are introduced to bridge these gaps. There-
fore a scope of modeling is proposed which is constituted by methods such as analysis of a digital mock-
up, tolerancing models used for mechanical interface management, preliminary FAL process planning
along with mass and cost estimation methods. Out of this scope of modeling, the multi-domain CDL
‘vocabulary’ is unfolded. The concepts of physical components and of mechanical interfaces turned out
to be key aspects of the models. Furthermore, the consideration of a physical component as a toleranc-
ing datum system in parallel opens the door to tolerancing methods and to assembly process modeling.
The proposed definition of mechanical interface functions is rendered more precisely into classes for
toleranced gaps (fulfilling a spatial distance function), into kinematic linkages (fulfilling the locating
function) and load interface (fulfilling the load transmission or fixation function). Additionally, several
architecture analysis parameters (AAPs) are proposed, acting as architecture ‘metrics’. Along with the
mentioned analysis methods, these AAPs are used to analyze or ‘measure’ the investigated cabin archi-
tectures. To build up the CDL data models, a generic working process based on a tolerance management
process is proposed.

Using this preparatory work, an implementation of CDL has been conducted (chapter 5) for the mod-
eling and execution of several important aspects of physical cabin architectures, proving the key role
of tolerancing for this task. Firstly, the process chain has been extended by a software plugin to create
input files for tolerance analysis software using design languages. Secondly, a plugin containing the CDL
class definitions and several analysis plugins have been introduced. The analysis plugins automatically
calculate the AAPs, transform CDL models into design language-based tolerance analysis models and
compile spreadsheet charts for further analyses. This includes files and models of tolerancing data for
exchanging data with the involved fuselage design teams to enable joint ‘tolerance design’ rather than
the unilateral ‘top-down definition of tolerances’ and their design implications.

A use case demonstrates the application using a segment of a long range aircraft fuselage including
some cabin compartment modules. In the sense of design languages, graphical rules have been deployed
to compile design model of several trade-off studies comprising the required design aspects, which is
followed by automatized model transformations to analysis models.

Chapter 6 shows the technical result of the exemplary use case. It can be demonstrated how data models
can be generated fast and effectively for the required analysis task, and how the reproduction of the
CDL data models and the various analysis models can be accomplished if input parameters change. Key
aspects of the mentioned tolerance management working process could be automatized and it turns out as
expected that conceptual tolerancing can be used to support a more holistic definition and analysis of the
interface between the cabin and the fuselage. The chosen AAPs prove to be a helpful means to analyze
and evaluate technical cabin integration scenarios. This enables a new method of fast trade studies with
multi-disciplinary evaluation for physical aspects of cabin architectures including tolerancing methods
using data models basing on graphical design languages.

Moreover, it is sketched how further analysis methods such as FEM-based load and stress analysis or
functional models of systems could be applied while making use of the abstract UML-based CDL data
models. Finally, the repercussions for the way of working for conceptual trade studies in an industrial
context have been outlined.
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7.2 Outlook

The architecture analysis parameters (AAPs) as introduced within this dissertation represent a pragmatic
approach to evaluate cabin architectures. In order to be able to apply these parameters, it is necessary to
build up databases for different technical scenarios comparable to those for preliminary aircraft design
purposes. Of course, for this data mining effort the proposed approach using design language models can
be used as a supporting method. In addition, it is necessary to question the sense of each parameter and
to extend the list by further findings. For instance, it may be interesting to investigate some more specific
manufacturing-related parameters such as for the description of the work share philosophy between the
major component assembly and final assembly line levels.

Heuristics-based methods are often used in engineering to reduce design complexity of huge systems,
but tend to become ‘unwritten law’. Thus it can be interesting to investigate architecture and design
heuristics for cabin integration, which are for instance the convenient cabin compartment module ar-
rangement or the attachment principles. For these purposes, different architecture concepts could be
modeled and compared accordingly. On top of that, cabin customization aspects have not yet been con-
sidered in detail. Even though it is possible to model different customer layouts, there could be a certain
need to have a deeper look into these aspects.

A part of this work’s focus is to describe the term ‘mechanical interface’ in the context of physical
aircraft cabin integration. The proposed concept of functional separation between spatial distance func-
tion, locating function and fixation function does not claim to be generally valid. Further research could
be directed on a more general definition of physical and mechanical interfaces, which is a ‘meeting
place’ for many analysis methods for architectures and conceptual design. Due to the modular concept
of graph-based design languages, it is possible to exchange or extend the used ‘vocabulary’ with more
detailed concepts. For instance, the functional geometry features used to model the mechanical inter-
faces between physical components could be extended to parameter-based geometry descriptions such
as three-dimensional splines or shapes.

With the current research status, it would still be difficult to automatize the definition of complex
tolerancing datum systems for general purposes. The decisions rules for datum system generation and
optimizations are complex and even within a single field of application like aircraft cabin tolerancing
no generally valid rules could be specified until now. The automatization of entire iteration loops for
complex tolerance optimization processes such that there is a benefit in time and cost for engineering at
short notice is also still difficult. However, these aspects have not been in the focus of this thesis and the
research gap could be closed with future work.

But despite the challenge to express ‘generally valid’ design rules, it is possible to direct further re-
search in the abstraction of cabin architectures and design, making use of the achievements of the pre-
sented cabin design language (CDL) approach.

At this point, extending or complementing the CDL models towards aircraft systems can come into
focus. This can lead to considering approaches using design languages for a wider scope beyond specific
physical architecture tasks, such as aircraft systems analysis or even detailed design aspects. A further
question in this respect is the potential link or exchange of design language models with PDM or PLM
systems. Additionally, it showed that using design languages as design support method requires specific
skills of the involved engineers, which may differ to those needed for conventional engineering means.
Three different levels of user skills have been named, which rises the need for specific trainings and for
efforts to integrate design processes using design languages into existing ways of working. However,
these investment may pay of well in the long term or to say it in other words: ‘there is no such thing as a
free lunch’120 when engineering complex systems.

120See http://en.wikipedia.org/wiki/There_ain’t_no_such_thing_as_a_free_lunch, accessed Feb 2012.

http://en.wikipedia.org/wiki/There_ain't_no_such_thing_as_a_free_lunch
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Figure A.1: Explanations and references for the tolerance specification symbols
shown in fig. 2.1, page 20
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Datum Feature
According to ISO 5459:2011

Figure A.2: Explanations and references for the tolerance specification symbols
shown in fig. 2.1, page 20
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Figure B.1: The full CDL class diagram in UML from the plugin de.bl.cdl

Class name PhysicalComponent

Description Physical entity or system in terms of systems engineering.
Contains related architecture parameters (e.g., positional data, size parameters),
manufacturing data (e.g., production capabilities, cost).
Also contains parameters for the description of the installation or assembly process.

Model interfaces SubComponent, FunctionalGeometryFeature

Inherits from HolisticElement, DatumSystem, ProcessStep, Position

Inheritors CabinModule, StructureComponent, SystemComponent

Operations -

Figure B.2: CDL class ‘PhysicalComponent’
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Class name DatumSystem

Description Reference system of a PhysicalComponent used in the sense of ISO 5459:2011 for
tolerancing purposes.
Consists of a primary, a secondary and a tertiary datum plane, which are not
always modeled explicitly.
If DatumFeature objects are modeled explicitly for a PhysicalComponent, the
model needs to be checked for pragmatic correctness.

Model interfaces DatumFeature [0..*]

Inherits from -

Inheritors PhysicalComponent

Operations -

Figure B.3: CDL class ‘DatumSystem’

Class name ProcessStep

Description Installation or assembly process in order to install a PhysicalComponent.
Contains the preparation and installation time and cost as attributes and can
consist of multiple individual InstallationStep objects.

Model interfaces InstallationStep [0..*]

Inherits from -

Inheritors PhysicalComponent

Operations Calculation of slot for installation time/cost (PSInstallationTime/PSInstallationCost) as 
sum of installation time/cost of the corresponding InstallationSteps

Figure B.4: CDL class ‘ProcessStep’

Class name CabinModule

Description Special PhysicalComponent fulfilling one or more cabin functions.

Model interfaces -

Inherits from PhysicalComponent

Inheritors Scenario-specific classes

Operations Calculation of slots for mass/cost (PCmass/PCcost) as sum of SubComponent  
masses/costs.
Definition of functional directions of corresponding FunctionalGeometryFeatures  
according to the functional directions of the linked MIFs. If necessary, the coordinates 
and directions are transformed into the coordinate system of the CabinModule.
Check if the explicit datum definition using DatumFeatures is valid according to ISO 
5459:2011 (the functional directions are compared and it is checked, if the constitute 
independent vectors to span up a 3-2-1 system). If not, a error message is created in 
the error log file.
Check, if the linkage system is isostatic (the functional directions are compared and it 
is checked if the constitute independent vectors to span up a 3-2-1 system). If not, an 
error message is created in the error log file.

Figure B.5: CDL class ‘CabinModule’
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Class name SystemComponent

Description Special PhysicalComponent fulfilling one or more aircraft system functions.

Model interfaces -

Inherits from PhysicalComponent

Inheritors Scenario-specific classes

Operations -

Figure B.6: CDL class ‘SystemComponent’

Class name StructureComponent

Description Special PhysicalComponent fulfilling one or more aircraft structure functions.
Acts as integration datum system for structure tolerances.
Links FunctionalGeometryFeatures of the aircraft structure.

Model interfaces -

Inherits from PhysicalComponent

Inheritors Scenario-specific classes

Operations Calculation of slots for mass/cost (PCmass/PCcost) as sum of SubComponent 
masses/costs

Figure B.7: CDL class ‘StructureComponent’

Class name SubComponent

Description 3D geometry data for DMU visualization and mass data estimation corresponding
to a PhysicalComponent including all required parameters.

Model interfaces Special links to other SubComponent of FunctionalGeometryFeature objects

Inherits from HolisticElement, Position

Inheritors Scenario-specific classes

Operations -

Figure B.8: CDL class ‘SubComponent’

Class name MechanicalInterface

Description Interconnection between two FunctionalGeometryFeature objects belonging to two 
different PhysicalComponents.
Serves a dedicated functional purpose described explicitly by the inheritor
classes.

Model interfaces FunctionalGeometryFeatures

Inherits from InstallationStep, HolisticElement, DirectedPosition

Inheritors PKC, KinematicLinkage, LoadLinkage

Operations -

Figure B.9: CDL class ‘MechanicalInterface’
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Class name InstallationStep

Description Single working step during the installation process of a PhysicalComponent
with the corresponding working time and cost.

Model interfaces ProcessStep

Inherits from -

Inheritors MechanicalInterface

Operations -

Figure B.10: CDL class ‘InstallationStep’

Class name PKC (Abbr. for 'Performance Key Characteristic')

Description A static tolerance requirement according to ISO 286:2010 nomenclature.
Fulfills a 'spatial distance function' (see ch. 4.2.2).
Additionally can be a dynamic in-flight deflection limitation requirement between
two FunctionalGeometryFeature objects.
Serves a dedicated function indicating the functional quality (e.g. optical requirement
for a gap, minimum-distance requirement, installability check).

Model interfaces (see MechanicalInterface)

Inherits from -

Inheritors -

Operations Definition of naming in slot MIFname according to nomenclature.
Definition of coordinates as center point of the two corresponding FunctionalGeometry-
Features.

Figure B.11: CDL class ‘PKC’

Class name KinematicLinkage

Description Functional kinematic relation between two FunctionalGeometryFeature objects
applying restrictions to the kinematic degrees of freedom between these
objects.
Fulfills a 'locating function' (see ch. 4.2.2).
Establishes a linkage system for the corresponding PhysicalComponents.

Model interfaces (see MechanicalInterface)

Inherits from MechanicalInterface

Inheritors 2wayLocator, 4wayLocator, Rotated4wayLocator, LocatorPlaneElement

Operations Definitions of naming in slot MIFname according to nomenclature.
Definition of coordinates according to those of the FunctionalGeometryFeatures of the 
corresponding CabinModule (coordinates in the local CabinModule coordinate system 
are transformed into global coordinates).

Figure B.12: CDL class ‘KinematicLinkage’
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Figure B.13: Special ‘KinematicLinkage’ classes

Class name LoadInterface

Description Functional mechanic relation between two FunctionalGeometryFeature objects
enabling static or dynamic force or moment transfer between these objects.
Fulfills a 'fixation function' (see ch. 4.2.2).
Often coupled with KinematicLinkage.

Model interfaces (see MechanicalInterface)

Inherits from MechanicalInterface

Inheritors -

Operations same as for KinematicLinkages

Figure B.14: CDL class ‘LoadInterface’

Class name FunctionalGeometryFeature

Description Geometry feature of a PhysicalComponent with a functional purpose needed
to realize a mechanical interface to another FunctionalGeometryFeature of another
PhysicalComponent.
Can be toleranced by a KeyCharacteristic or can be declared as DatumFeature
of the corresponding PhysicalComponent respectively DatumSystem.
Can be linked to a SubComponent for visualization and parameter calculation
purposes.

Model interfaces PhysicalComponent, MechanicalInterface, KeyCharacteristic, SubComponent

Inherits from DirectedPosition

Inheritors Library of standard features (e.g., point, plane, line, circle), if required

Operations Routines to define coordinates and functional direction depending on the associated  
PhysicalComponents and MechanicalInterfaces

Figure B.15: CDL class ‘FunctionalGeometryFeature’

Class name DatumFeature

Description Specialization for a FunctionalGeometryFeature forming part of the Datum-
System of the corresponding PhysicalComponent.
Used in the sense of ISO 5459:2011.

Model interfaces -

Inherits from -

Inheritors -

Operations -

Figure B.16: CDL class ‘DatumFeature’
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Class name KeyCharacteristic

Description Used in the sense of EN 9100:2010 for special positional attributes of a
FunctionalGeometryFeature, which have influence on architecture evaluation
parameters.

Model interfaces DatumSystem

Inherits from Tolerance

Inheritors AKC and MKC as special KeyCharacteristics for CabinModules and aircraft
StructureComponents

Operations Special routines for MKCs and AKCs to set naming in slot KCName according to 
nomenclature

Figure B.17: CDL class ‘KeyCharacteristic’

Figure B.18: CDL class diagram ‘Basics’
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Class name HolisticModel

Description Top node or placeholder for the whole model.
Contains global model parameters, which have to be available to any model
element classified as HolisticElement.
Acts as global coordinate system for the model.
Only one instance per scenario (instance is referred to as HMinst).

Model interfaces To any instance of classifier HolisticElement

Inherits from -

Inheritors Scenario-Specific class with individualized and extended global parameters

Operations -

Figure B.19: CDL class ‘HolisticModel’

Class name HolisticElement

Description Abstract classifier for any multi-disciplinary CDL model element, which needs
a link to the HMinst.

Model interfaces To HMinst

Inherits from -

Inheritors PhysicalComponent, SubComponent, MechanicalInterface

Operations -

Figure B.20: CDL class ‘HolisticElement’

Class name Position

Description Set of Cartesian coordinates and Euler angles to describe the position and the
orientation of a geometry object relative to a coordinate system.

Model interfaces -

Inherits from -

Inheritors PhysicalComponent, SubComponent, DirectedPosition

Operations Transform local coordinates into global coordinates upon need

Figure B.21: CDL class ‘Position’

Class name DirectedPosition

Description Special position definition describing the functional direction(s) for directed
functional model elements.

Model interfaces -

Inherits from -

Inheritors MechanicalInterface, FunctionalGeometryFeature

Operations Transform local coordinates and functional  directions into global ones upon need

Figure B.22: CDL class ‘DirectedPosition’
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Class name Tolerance

Description Used in the sense of ISO 286:2010.
Contains tolerance value, mean shift value and statistical distribution
information.

Model interfaces -

Inherits from -

Inheritors KeyCharacteristic

Operations Check if the slot PlusMinus contains a valid value (signed number or number 
with ±-sign). If not, an error message is created in the error log file.

Figure B.23: CDL class ‘Tolerance’

Class name ToleranceRefinement

Description Similar to Tolerance, except for the fact that it represents a group tolerance
according to ISO 1101:2004

Model interfaces -

Inherits from -

Inheritors KeyCharacteristic

Operations Check if the slot PlusMinus contains a valid value (signed number or number 
with ±-sign). If not, an error message is created in the error log file.

Figure B.24: CDL class ‘ToleranceRefinement’
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Figure C.1: The full CDL_LR class diagram in UML

Figure C.2: The ‘basic classes’ of the CDL_LR class diagram in UML. ‘LRCabinModule’, ‘LR-
SubComponent’ and ‘LRStructureComponent’ inherit from ‘CabinModule’, ‘Structure-
Component’ and ‘CabinModule’ respectively.
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Figure C.3: The ‘lateral OHSC classes’ of the CDL_LR class diagram in UML. ‘OHSCL’ inherits
from ‘LRCabinModule’, the others inherit from ‘LRSubComponent’.

Figure C.4: The ‘center OHSC classes’ of the CDL_LR class diagram in UML. ‘OHSCC’ inherits
from ‘LRCabinModule’, the others inherit from ‘LRSubComponent’.
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Figure C.5: The ‘ceiling panel classes’ of the CDL_LR class diagram in UML. ‘CLNG’ inherits
from ‘LRCabinModule’, ‘CLNG_GD’ inherits from ‘LRSubComponent’.

Figure C.6: The ‘air grid classes’ of the CDL_LR class diagram in UML. ‘AIRG’ inherits from
‘LRCabinModule’, ‘AIRG_GD’ inherits from ‘LRSubComponent’.
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Figure C.7: The ‘sidewall lining classes’ of the CDL_LR class diagram in UML. ‘SWL’ inherits
from ‘LRCabinModule’, the others inherit from ‘LRSubComponent’.

Figure C.8: The ‘monument classes’ of the CDL_LR class diagram in UML. ‘MON’ inherits from
‘LRCabinModule’, ‘MON_GD’ inherits from ‘LRSubComponent’.
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Figure C.9: The ‘aircraft structure classes’ of the CDL_LR class diagram in UML. The top five
classes inherit from ‘LRStructureComponent’, the others inherit from ‘LRSubCompo-
nent’.
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[108] MATHIEU, L., AND BALLU, A. GEOSPELLING: a common language for specification and
verification to express method uncertainty. In Proceedings of the 8th CIRP Seminar on Computer
Aided Tolerancing, 2003, Charlotte, North Carolina (2003).

[109] MAWHINNEY, P., PRICE, M. A., ARMSTRONG, C. G., CURRAN, R., EARLY, J., MURPHY, A.,
BENARD, E., AND RAGHUNATHAN, S. Design and analysis integration using systems engineer-
ing for aircraft structural design. In 4th AIAA Aviation Technology, Integration and Operations
(ATIO) Forum, 2004, Chicago, Illinois, AIAA 2004-6204 (2004), American Institute of Aeronau-
tics and Astronautics, pp. 20–29.

[110] MAWHINNEY, P., PRICE, M. A., ARMSTRONG, C. G., OU, H., MURPHY, A., GIBSON, A.,
AND CURRAN, R. Using idealised models to enable integration and analysis driven design. In 3rd
AIAA Aviation Technology, Integration and Operations (ATIO) Forum, 2003, Denver, Colorado,
AIAA 2003-6747 (2003), American Institute of Aeronautics and Astronautics, pp. 302–309.

[111] MAWHINNEY, P., PRICE, M. A., CURRAN, R., BENARD, E., MURPHY, A., AND RAGHU-
NATHAN, S. Geometry-based approach to analysis integration for aircraft conceptual design.
In 5th AIAA Aviation Technology, Integration and Operations (ATIO) Forum, 2005, Washington,
D.C., AIAA 2005-7481 (2005), American Institute of Aeronautics and Astronautics, pp. 1699–
1707.



BIBLIOGRAPHY 165

[112] MEADOWS, J. D. Tolerance stack-up analysis: for plus and minus tolerancing, for geometric
dimensioning and tolerancing. James D. Meadows & Associates, Hendersonville, Tennessee,
2001.

[113] MECAMASTER SARL. MECAmaster user manual for MECAmaster version 7.2. Released with
MECAmaster software distribution, MECAmaster SARL, 64 chemin des mouilles, 69134 Ecully
CEDEX, France, 2010.

[114] MEERKAMM, H., AND HOCHMUTH, R. Integrated product development based on the design
system MFK. In Proceedings of the 5th International Design Conference (Design 98), 1998,
Dubrovnik (1998).

[115] MEHLITZ, P. Trust your model – verifying aerospace system models with Java pathfinder. In
Proceedings of IEEE Aerospace Conference, 2008, Big Sky, Montana (2008).

[116] OLTMANN, K. M. Virtual engineering models for aircraft structure weight estimation. In Pro-
ceedings of SAWE 66th Annual International Conference on Mass Properties Engineering, 2007,
Madrid, No. 3418, Category No. 10 (2007).

[117] PAHL, G., BEITZ, W., FELDHUSEN, J., GROTE, K. H., WALLACE, K. (ED.), AND BLESSING,
L. (ED.). Engineering design: a systematic approach. Springer-Verlag, London, 2007.

[118] PARK, G. J., LEE, T. H., LEE, K. H., AND HWANG, K. H. Robust design: an overview. AIAA
Journal 44, 1 (2006), 181–191.

[119] PEAK, R. S., BURKHART, R. M., FRIEDENTHAL, S. A., WILSON, M. W., BAJAJ, M., AND

KIM, I. Simulation-based design using SysML – part 1: a parametrics primer. In Proccedings of
INCOSE International Symposium, 2007, San Diego, California (2007).

[120] PEAK, R. S., BURKHART, R. M., FRIEDENTHAL, S. A., WILSON, M. W., BAJAJ, M., AND

KIM, I. Simulation-based design using SysML – part 2: celebrating diversity by example. In
Proccedings of INCOSE International Symposium, 2007, San Diego, California (2007).

[121] PFAFF, J. M. Parameterreduktion zur ähnlichkeitsmechanischen Gewichtsprognose im Flugzeug-
vorentwurf am Beispiel des Tragflügels. Dissertation, Universität Stuttgart, 2008.

[122] PIMMLER, T. U., AND EPPINGER, S. D. Integration analysis of product decompositions. In
Proceedings of the ASME Design Technical Conferences, 1994, Minneapolis, Minnesota (1994),
American Society of Mechanical Engineers.

[123] POOLE, J. D. Model-driven architecture: vision, standards and emerging technologies. In Pro-
ceedings of the 15th European Conference on Object-Oriented Programming ECOOP, 2001, Bu-
dapest (2001).

[124] PRICE, M., EARLY, J. M., CURRAN, R., BENARD, E., AND RAGHUNATHAN, S. Identifying
interfaces in engineering systems. AIAA Journal 44, 3 (2006), 529–540.

[125] PRICE, M., RAGHUNATHAN, S., AND CURRAN, R. An integrated systems engineering approach
to aircraft design. Progress in Aerospace Sciences 42 (2006), 331–376.

[126] PRISCO, U., AND GIORLEO, G. Overview of current CAT systems. Integrated Computer-Aided
Engineering 9 (2002), 373–387.



166 BIBLIOGRAPHY

[127] RAYMER, D. P. Aircraft design: a conceptual approach. AIAA Education Series. American
Institute of Aeronautics and Astronautics, 1999.

[128] REICHWEIN, A. Application-specific UML profiles for multidisciplinary product data integration.
Dissertation, Universität Stuttgart, 2006.

[129] ROSKAM, J. Airplane design, part I through VIII. Design Analysis & Research Corporation,
1989.

[130] RUDOLF, H. Wissensbasierte Montageplanung in der Digitalen Fabrik am Beispiel der Automo-
bilindustrie. Dissertation, Technische Universität München, 2006.

[131] RUDOLPH, S. A Methodology for the Systematic Evaluation of Engineering Design Objects.
Dissertation (translation into english of the original german thesis), Universität Stuttgart, 1994.

[132] RUDOLPH, S. Upper and lower limits for ‘The principles of design’. Research in Engineering
Design 8 (1996), 207–216.

[133] RUDOLPH, S. Übertragung von Ähnlichkeitsbegriffen. Habilitation thesis, Universität Stuttgart,
2002.

[134] RUDOLPH, S. Know-how reuse in the conceptual design phase of complex engineering products.
In Proceedings of Conference on Integrated Design and Manufacturing in Mechanical Engineer-
ing (IDMME), 2006, Grenoble (2006), pp. 23–39.

[135] RUDOLPH, S. A semantic validation scheme for graph-based engineering design grammars. In
Design Computing and Cognition ’06 – Proceedings of the 2nd International Conference on De-
sign Computing and Cognition (DCC’06), 2006, Eindhoven (Dordrecht, 2006), Springer, pp. 541–
560.

[136] RUDOLPH, S. Digital Engineering – digitale Methoden für Entwurf und Fertigung komplexer
Systeme. Lecture Notes, Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen,
Universität Stuttgart, 2011.

[137] SALOMONS, O. W., VAN HOUTEN, F., AND KALS, H. Current status of CAT systems. In
Proceedings of the 5th CIRP Seminar on Computer-Aided Tolerancing, 1997, Toronto (1998),
pp. 438–452.

[138] SCARR, A., JACKSON, D., AND MCMASTER, R. Product design for robotic and automated
assembly. In Proceedings of IEEE International Conference on Robotics and Automation, 1986
(1986), vol. 3, pp. 796–802.

[139] SCHAEFER, J., AND RUDOLPH, S. Satellite design by design grammars. Aerospace Science and
Technology 9 (2005), 81–91.

[140] SCHEER, A. W., WITTMANN, M., WEBER, C., AND THOME, O. Toleranz-Wissensbasis zur
Unterstützung der integrierten Produktentwicklung. VDI-Z 141, 11/12 (1999), 18–20.

[141] SCHMIDT, L. C., AND CAGAN, J. Recursive annealing: a computational model for machine
design. Research in Engineering Design 7 (1995), 102–125.

[142] SCHMIDT, L. C., AND CAGAN, J. GGREADA: a graph grammar-based machine design algo-
rithm. Research in Engineering Design 9 (1997), 195–213.



BIBLIOGRAPHY 167

[143] SCHOLZ, F. Tolerance stack analysis methods. Boeing Information & Support Services, Seattle,
Washington, 1995.

[144] SCHOLZ, F. Tolerance stack analysis methods – a critical review. Boeing Information & Support
Services, Seattle, Washington, 1995.

[145] SCHUT, E. J. Conceptual design automation – abstraction complexity reduction by feasilisation
and knowledge engineering. Dissertation, Delft University of Technology, 2010.

[146] SCHUT, E. J., AND VAN TOOREN, M. J. L. Engineering primitives to reuse design process
knowledge. In Proccedings of 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynam-
ics, and Materials Conference, 2008, Schaumburg, Illinois, AIAA 2008-1804 (2008), American
Institute of Aeronautics and Astronautics.

[147] SÖDERBERG, R. Robust design by tolerance allocation considering quality and manufacturing
cost. ASME Advances in Design Automation, DE-Vol. 69-1 (1994), 219–226.

[148] SÖDERBERG, R., AND JOHANNESSON, H. Tolerance chain detection by geometrical constraint
based coupling analysis. Journal of Engineering Design 10, 1 (1999), 5–24.

[149] SÖDERBERG, R., AND LINDKVIST, L. Two-step procedure for robust design using CAT tech-
nology. In Proceedings of the 6th CIRP Seminar on Computer-Aided Tolerancing, 1999, Twente
(1999), pp. 231–240.

[150] SÖDERBERG, R., AND LINDKVIST, L. Geometrical coupling analysis in assembly design. In
Proceedings of 2nd International Conference on Axiomatic Design ICAD, 2002, Cambridge, Mas-
sachusetts (2002).

[151] SPOTTS, M. F. Allocation of tolerances to minimize cost of assembly. Journal of Engineering
for Industry 95, 3 (1973), 762–764.

[152] SRINIVASAN, R. S., AND WOOD, K. L. Geometric tolerancing in mechanical design using
fractal-based parameters. Journal of Mechanical Design 117 (1995), 203–206.

[153] SRINIVASAN, V. ISO deliberates statistical tolerancing. In Proceedings of the 5th CIRP Seminar
on Computer-Aided Tolerancing, 1997, Toronto (1998), pp. 25–35.

[154] SRINIVASAN, V., AND JAYARAMAN, R. Geometric tolerancing: 2. conditional tolerances. IBM
Journal of Research and Development 33, 2 (1989), 105–124.

[155] STACHOWIAK, H. Allgemeine Modelltheorie. Springer-Verlag, Wien – New York, 1973.

[156] STEINBICHLER, G. Methoden und Verfahren zur Optimierung der Bauteilentwicklung für die
Spritzgießfertigung. Dissertation, Universität Erlangen-Nürnberg, 2008.

[157] SUH, N. P. The principles of design. Oxford University Press, New York, 1990.

[158] SUH, N. P. Axiomatic design of mechanical systems. Journal of Vibration and Acoustics 117
(1995).

[159] TORENBEEK, E. Synthesis of subsonic airplane design. Springer Netherland, 1982.

[160] TUDORACHE, T. Employing ontologies for an improved development process in collaborative
engineering. Dissertation, TU Berlin, 2006.



168 BIBLIOGRAPHY

[161] VAN TOOREN, M. J. L., LA ROCCA, G., KRAKERS, L., AND BEUKERS, A. Design and tech-
nology in aerospace – parametric modeling of complex structure systems including active com-
ponents. In Proccedings of the 13th International Conference on Composite Materials, 2003, San
Diego, California (2003).

[162] VAN WIE, M. J., GREER, J. L., CAMPBELL, M. I., STONE, R. B., AND WOOD, K. L. Inter-
faces and product architecture. In Proceedings of the ASME International Design Engineering
Technical Conferences (IDETC) & Computers and Information in Engineering Conference (CIE),
2001, Pittsburgh, Pennsylvania, DETC01/DTM-21689 (2001), American Society of Mechanical
Engineers.

[163] VERHAGEN, W. J. C., AND CURRAN, R. Knowledge-based engineering review: conceptual
foundations and research issues. In New world situation: new directions in concurrent engineering
– Proceedings of the 17th ISPE International Conference on Concurrent Engineering (Advanced
Concurrent Engineering), 2010, Cracow (London – Dortrecht – Heidelberg – New York, 2011),
Springer-Verlag, pp. 239–248.

[164] VOGEL, S., DANCKERT, B., AND RUDOLPH, S. Knowledge-based design of SCR systems using
graph-based design languages. MTZ 73 (2012), 50–56.

[165] WANG, Y. Semantic tolerance modeling. In Proceedings of the ASME International Design En-
gineering Technical Conferences (IDETC) & Computers and Information in Engineering Confer-
ence (CIE), 2006, Philadelphia, Pennsylvania, DETC2006/DAC-99609 (2006), American Society
of Mechanical Engineers.

[166] WATSON, P., CURRAN, R., MURPHY, A., COWAN, S., HAWTHORNE, P., AND WATSON, N. A
cost estimating model for aerospace procurement Pro-COST EST. In 4th AIAA Aviation Technol-
ogy, Integration and Operations (ATIO) Forum, 2004, Chicago, Illinois, AIAA 2004-6237 (2004),
American Institute of Aeronautics and Astronautics.

[167] WEILKIENS, T. Systems Engineering mit SysML/UML – Modellierung, Analyse, Design.
dpunkt.verlag, 2006.

[168] WENZEL, J. Structural sizing for weight estimation in preliminary aircraft design. In Proceedings
of SAWE 66th Annual International Conference on Mass Properties Engineering, 2007, Madrid,
No. 3421, Category No. 10 (2007).

[169] WHITNEY, D. E., GILBERT, O. L., AND JASTRZEBSKI, M. Representation of geometric vari-
ations using matrix transforms for statistical tolerance analysis in assemblies. Research in Engi-
neering Design 6 (1994), 191–210.

[170] WHITNEY, D. E., MANTRIPRAGADA, R., ADAMS, J. D., AND RHEE, S. Designing assemblies.
Research in Engineering Design 11 (1999), 229–253.

[171] WILHELM, R. G., AND LU, S. C. Y. Computer methods for tolerance design. World Scientific,
Singapore, 1992.

[172] WITTMANN, M., AND SCHEER, A. W. FIT: featurebasiertes integriertes Toleranzinformations-
system, vol. 167 of Veröffentlichungen des Instituts für Wirtschaftsinformatik (IWi) im Deutschen
Forschungszentrum für Künstliche Intelligenz. Institut für Wirtschaftsinformatik, Saarbrücken,
2000.


	Introduction
	Aircraft Cabin
	Cabin Architecture and Integration
	ATA Chapter Breakdown
	Architecture Philosophies with a Focus on Interfaces

	Current Means for Physical Integration
	Spreadsheet-Based Methods
	Computer-Aided Design and Associated Methods
	Preliminary Aircraft Design Methods
	Industrialization and Cost Aspects
	Model-Based Engineering

	Design Languages

	Tolerancing Methods
	Background and Terminology
	Tolerance Specification
	Datums and Datum Systems
	Key Characteristic

	1D Tolerance Analysis
	Worst-Case Analysis
	Statistical Analysis

	3D Tolerance Analysis
	Small Displacement Theory
	Implementation in MECAmaster
	Monte Carlo Simulation
	Comparison

	Research on Tolerance Analysis
	Tolerance Synthesis
	Cabin Tolerance Management

	Physical Aspects of Cabin Architectures using Tolerancing Methods
	Problem Description
	Solution Approach Overview
	Structure of the Thesis

	Cabin Design Languages (CDL)
	Scope of Modeling
	CDL Class Diagram
	Physical Components, Datum Systems and Process Steps
	Mechanical Interfaces and Installation Steps
	Functional Geometry Features and Datum Features
	Key Characteristics and Tolerances

	Architecture Analysis Parameters (AAPs)
	AAPs related to Cabin Modules
	AAPs related to Mechanical Interfaces
	AAPs related to Tolerances
	AAPs related to Installation Aspects and Costs

	Generic CDL Modeling and Analysis Process

	Implementation
	Software Interfaces
	Interface for MECAmaster Models
	Interface for CDL
	Interface for AAP Charts
	Interface for Transformations from CDL to MECAmaster Models
	Interface for Tolerance Lists
	Interface for Installation Process Charts
	Interface for Model Exchange

	Use Case Description
	Use Case Implementation
	Architecture Rules
	Gap Rules
	Cabin Module Rules
	Aircraft Structure Rules
	Model Finalization and Analysis Transformations


	Results and Discussion
	Use Case Results
	Trade Study `Module Frame Architecture'
	Trade Study `Frame Distance'
	Trade Study `Repercussions of a 25mm Gap'
	Further Possible Scenarios

	Methodological Results
	The Implementation with Design Languages
	Links to Further Analysis Models

	Way of Working in Industrial Context
	Role of Cabin Architect and Expert Group
	Industrial Challenges


	Summary
	Results
	Outlook

	Symbols for Tolerance Specification
	CDL Class Diagram
	CDL_LR Class Diagram
	Bibliography

