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Abstract

By late 2013, the Analysis Centers (ACs) of the International Global Navigation Satellite System
Service (IGS) begun the second reanalysis of the full history of Global Positioning System (GPS)
data collected by the IGS global network since 1994 in a fully consistent way using the latest
models and methodology. In this thesis, GPS time series of selected sites from different analysis
centers were analysed with the software CATS. The purpose of this thesis is to discuss noise
content using maximum likelihood estimation (MLE) and determine a noise model that can
best describe the noise process in GPS time series of 20 years or more.

The noise was assumed to be a combination of white noise and power-law noise. In the first
part, we used fixed noise models with integer spectral indices for the MLE. The three noise
models are: white noise only, white noise plus flicker noise (κ = −1) and white noise plus
random walk noise (κ = −2). The estimated MLE values of different noise models were com-
pared to determine the preferred noise model. Another noise parameter, amplitude, was also
estimated. Latitude dependence of the noise amplitudes and the influence of data cleaning on
the noise analysis were discussed.

In the second part, the noise model was again assumed to be white noise plus power-law
noise, but the spectral index of the power-law noise component was not fixed and was also
estimated. The estimated spectral indices were compared with the results of the first part, in
order to acquire a more precise description of the realistic noise components.

At last, a comparison between the noise features of GPS time series from different ACs was
made. Besides the results of noise analysis, the importance and practical value of noise analysis
was also discussed.
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Chapter 1

Introduction

1.1 Importance and Motivation of Noise Analysis

Due to a mixture of effects, it is difficult to determine the source of the noise and the accuracy
of the GPS time series. Understanding the content of the noise is very important so that realistic
uncertainties can be assigned to parameters estimated from them. Previous studies showed
that, if a correlated noise model is neglected and the white noise only model is used, the rate
uncertainties will be greatly underestimated by as much as an order or magnitude. So it is ob-
vious that the assumed noise model will significantly affect the estimated rate uncertainties.

As mentioned above, we use 3 noise type and their combination as fixed noise models for the
analysis. First, the noise will be assumed to be white noise only, a combination of white noise
plus flicker noise, or a combination of white noise plus random walk noise. A preferred noise
model will be determined among these 3 possibilities. For the second part the spectral indices
and amplitudes of the power-law noise will also be estimated simultaneously with the white
noise. Maximum likelihood estimation (MLE) will be used to analyse the noise parameter and
determine a preferred noise model, which will be described and explained later.

However the realistic purpose and practical value of noise analysis, is to possibly remove the
noise or at least reduce it. After the analysis realistic parameter uncertainties are provided,
a means for minimizing the noise still needs to be determined. That is why classifying and
quantifying the noise components are so important, because understanding the noise compo-
nents can provide clues as to the source of the noise and to help increase the accuracy and
precision of the data. With noise information of long time series of over two decades, There is
even possibility to prognose the trend and take precautions against possible future source of
the noise.

In this thesis we would love to compare different noise models, estimate noise parameters
such as amplitudes and spectral indices of the power-law noise and hopefully determine a
generally preferred noise model for all GPS time series. As showed in next section, some early
studies have already worked on this subject. The purpose is to compare our results with them
and discover whether the new data reprocessing campaign and a extended length of GPS time
series have influences on the noise analysis.

An example from Williams et al. (2004) illustrates the practical use of noise analysis: because
of the varying conditions of the anchoring media the instability of geodetic monument is con-
sidered an significant source of random walk noise. To minimize the noise caused by it some
GPS arrays have adopted deep drill braced monument. The new western North America Plate
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Boundary Observatory (PBO) installed 850 new continuous GPS monuments using the deep-
drilled braced monument. Figure 1.1 and Figure 1.2 compared the configuration of deep-
drilled and short-drilled braced monuments (SDBM and DDBM).

Figure 1.1: Deep-Drilled Braced Monument (DDBM) (Courtesy: Borsa et al. (2008))

Figure 1.2: Short-Drilled Braced Monument (SDBM) (Courtesy: Borsa et al. (2008))

Later study of Borsa et al. (2008) concluded that although the white noise amplitude, power-law
noise amplitude and spectral index, and annual/semi-annual sinusoid amplitudes of all show
statistical equivalence between the performance of SDBM and DDBM stations, Annual and semi-
annual sinusoid fitting shows a difference in amplitude between north and east components.
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Figure 1.3 is an example of noise analysis and the practical use of the study. We can see that,
noise analysis is not only a means to classify the noise source, but also a way to test the effi-
ciency of any noise reducing methods.

Figure 1.3: Comparison between white and power-law noise amplitudes in north and east of DDBM and SDBM
(Courtesy: Borsa et al. (2008))

1.2 Previous Studies

Until recently, it was typically assumed that only white noise was present in geodetic time se-
ries. However, several data sets have now provided evidence for the presence of power-law
noise. In addition, equations to analyse data sets and obtain a rate uncertainty when computa-
tional speed is improved are provided, which enables researchers to not only classify but also
quantify the noise components of GPS time series.

Zhang et al. (1997) examined 19 months of continuous GPS data from 10 sites in southern Cali-
fornia. Using maximum likelihood estimation (MLE) with integer spectral indices, Zhang et al.
(1997) found that the noise in the data was best described as a combination of white noise and
flicker noise. Using the power spectra, the noise was characterized by a fractal noise process
with spectral index of -0.4.

Mao et al. (1999) examined 3 years of data from a global distribution of 23 CGPS ( Continuous
GPS) sites. Using both MLE at integer spectral indices and power spectra, they concluded that
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white noise plus flicker noise best describe the noise content of the time series. A latitude
dependence was also found for the white noise part of the vertical component.

Calais (1999) analysed three permanent GPS sites in Europe. A combination of white noise and
flicker noise was the prferred model.

Several studies also acknowledge the importance of random walk noise in GPS data. Cumula-
tive disturbances from the soils and weather displace geodetic monuments with respect to the
deeper crust (Johnson and Agnew, 1995).

Whether or not the random walk noise is detectable depends on the length of the time series,
the sampling frequency, and the relative amplitudes of the other noise components. It has been
identified in continuous strainmeter data (Wyatt, 1982, 1989) and two-color electronic distance
meter data (Langbein and Johnson, 1995). However, this type of disturbance can be minimized
by carefully designed monuments, like GPS stations deployed in southern California in which
the base is securely anchored at depth and decoupled from surface (Wyatt, 1989; Zhang et al.,
1997).

However, regional GPS networks have much longer inter-station spacing so that other sources
of error such as known random atmospheric propagation effects could dominate the error bud-
get (Williams et al., 1998).

1.3 The Second IGS Data Reprocessing Campaign

By late 2013, the Analysis Centers (ACs) of the International GNSS Service began the second
reanalysis of the full history of GPS data collected by the IGS global network since 1994 in a fully
consistent way using the latest models and methodology. This effort follows the successful first
full reprocessing by the IGS, which provided the IGS input for ITRF2008, among other things.

1.3.1 IGS Products

The expected Analysis Center and combined IGS products include:

• daily GPS & GLONASS orbits & GPS satellite clocks

• daily GPS satellite & tracking station clocks

• daily Earth rotation parameters

• terrestrial coordinate frames with ERPs with full variance-covariance matrix (SINEX for-
mat).

And this is the product which will be used in the noise analysis.
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1.3.2 Analysis Centers

The possible Analysis Centers contributing complete solutions to this effort are:

• CODE (Center for Orbit Determination in Europe)

• EMR (Natural Resources Canada)

• ESA (European Space Operations Centre)

• GFZ (GeoForschungsZentrum)

• GRGS (Groupe de Recherche de Geodesie Spatiale)

• JPL (Jet Propulsion Laboratory)

• MIT (Massachusetts Institute of Technology)

• NGS (National Geodetic Survey)

• SIO (Scripps Institution of Oceanography)

In addition, some centers might provide SINEX solutions to help densify the terrestrial reference
frame, particularly for GPS stations located near tide gauges (associated with the TIGA Pilot
Project):

• GTZ (GFZ TIGA, Germany)

• ULR (University of La Rochelle, France)

As time series used in this thesis are from different analysis centers. A comparison between the
noise of time series from these ACs is necessary. At the Fall 2014 American Geophysical Union
Meeting, Rebischung et al. (2014) compared the residuals of data from different ACs with the
weighted root mean square of station position residuals.

Figure 1.4: WRMS of the station position residuals (Courtesy: Rebischung et al. (2014))
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Rebischung et al. (2014) combined smoothed WRMS of the station position residuals from 8
different analysis centers together. As shown in 1.5, a few features can be summarized:

• All ACs: the daily station position estimates provided by the different ACs are, in general,
of homogeneous quality. The inter-AC agreement is at the level of 1 mm to 1.5 mm in
horizontal and 3 mm to 4 mm in vertical after 2004.

• CODE: shows higher noise level in early years (before 2000)

• EMR: higher WRMS in North than the other components, possibly due to station biases

• ULR: high level of high-frequency white noise, especially in horizontal, possibly system-
atic errors

• GRGS: substantially higher WRMS in Up and in East before 2000, obvious semi-annual
variations in North and Up

• GTZ: peak in East between 2009 and 2010 with unknown reason, , possibly due to station
biases which later corrected

• MIT: almost dominant in all 3 components

Figure 1.5: WRMS of the station position residuals (combined) (Courtesy: Rebischung et al. (2014))
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1.3.3 New Features of Data Analysis

In the first data reprocessing campaign there are several elements of the analysis procedures
used by all participating centers include:

• try to complete archives for missing or useful data sets

• use absolute antenna calibrations for satellite transmit and ground receive antennas

• IERS Conventions 2003 generally implemented

• updated model for station displacements due to ocean tidal loading

• no non-tidal loading displacements should be applied to station positions

• updated models for tropospheric propagation delays

• the IGS master SINEX template file, igs.snx, is updated daily based on the history of IGS

site logs and should be used to validate AC SINEX file metadata

• P1-C1 satellite code biases

Compared with the first IGS data reprocessing campaign, there are new models and method-
ology used and few changes made in the second campaign. The purpose of the re-analysis of
GNSS data collected by the IGS network since 1994 using the latest models and methodology is
to reduce systematic errors in IGS products and provide IGS contribution to ITRF2013.

The main updates since repro 1 are:

• use IGB08 reference frame (aligned to ITRF2008)

• use updated igs08.atx "absolute" antenna calibrations

• yaw attitude variations are taken into consideration

• reflected (albedo) and retransmitted radiation from the Earth are taken into consideration

• EGM2008 geopotential field now recommended

to update values for time-variations of low-degree coefficients and use new model for the
mean pole trajectory, geopotential ocean tide and ocean pole tide.

• move from weekly to daily frame integrations in order to fully preserve loading signals
in IGS position time series

• addition of UT1 libration effects for the tidal EOP variation

• higher-order ionospheric corrections

• for repro2, ACs are asked to avoid any solution over-constraints, applying pre-removed
or unremovable constraints no tighter than noise levels

To compare with the result of the second data reprocessing campaign, figure 1.6 shows the
combination of root mean square of the station position residuals in all three components of
the first campaign.

• In the aspect of station positions:
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– the post-2004 inter-AC agreement of the second campaign, despite all of the possible
systematic errors, is comparable to the first campaign.

– The residuals before 1996 are substantially higher.

Figure 1.6: 3D root mean square of repro1 combination residuals (Courtesy: Rebischung et al. (2014))

• Although it is not researched in this thesis, the second reprocessing campaign also shows
excellent inter-AC agreement for the geocenter coordinate. (at the level of 2 mm to 5 mm
for the X and Y geocenter coordinates and 5 mm to 10 mm for the Z geocenter coordinate)

• The temporal scale variation of the combined repro2 solutions seems geophysically rea-
sonal as showed in figure 1.7. It demonstrates an identical variation pattern with IGb08.

Figure 1.7: Scale factors estimated between the daily combined repro2 solution and IGb08 (Courtesy: Rebischung
et al. (2014))

In the previous studies of GPS time series noise analysis, an important disadvantage is the lack
of data points, which means the overall length of the time series is not long enough for some
specific noise models to be detected over other noises. As a result, the estimated parameters
can be biased, even a correlated noise model can be recognized as one noise only model.

Figure 1.8 below shows the time coverage of the Analysis Centers from the second Data Repro-
cessing Campaign. GPS time series of different institutes over two decades are now available.
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Figure 1.8: GPS Coverage of different Analysis Centers (Courtesy: Rebischung et al. (2014))

Among all the combined IGS products from the second data reprocessing campaign, sufficient
SINEX data provide us with continuous GPS position time series of hundreds of stations over
recent 20 years, which can be used for a variety of analysis and researches and are certainly a
huge advantage for a precise determination of the parameter uncertainties and classification of
the noise component.

For many previous studies, a drawback was the lack of long time series with sufficient data
points. Some time series were simply not long enough for some noise components to be de-
tected.

Figure 1.9 is a map of the IGS tracking network. GPS time series from different sites all over the
world can be downloaded for research purpose.
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1.4 Outline of the Thesis

In the first chapter, the background and purpose of this thesis were introduced. We discussed
the importance of noise analysis and the motivation of the research. Previous studies on this
subject were presented and explained to help the readers understand the development and
progress in noise analysis of GPS time series. A detailed introduction of the second IGS data
reprocessing campaign was made including the products, analysis centers and the upgraded
features compared with the first reprocessing campaign.

The second chapter of the thesis explained the methods used in the noise analysis. First of
all, the concept of power-law noise and the three noise models we used as fixed models in
the analysis was introduced. Second, the various steps involved in modeling the coordinate
time series were described. To eliminate outliers, a detecting algorithm was introduced and
discussed. Then we explained the theory of maximum likelihood estimation to estimate the
noise component and determine a preferred model to best describe a time series. At last, the
derivation of covariance matrices for different noise models was explained.

The third chapter is mainly about data processing and the related software. For data processing,
we explained in detail the source of the data, the method to download, the content of the
data and the transformation of data to required format. To introduce the software (CATS), we
explained the method used to reduce computational burden, the operational principle of the
software and typical input/output files.

In the fourth chapter, the estimation results were presented and discussed. In the first part,
the results of estimation with noise models with integer spectral indices were compared to
determine a generally preferred noise model among the three fixed models. The amplitudes
of noise components were also estimated and their latitude dependence was tested. In the
second part, noise models with any spectral indices were used for the estimation. The spectral
index of power-law noise was also estimated, the results were compare with the results from
the first part. At last, the GPS time series from different ACs and their noise characteristics were
compared and discussed.

The last chapter concluded the results of our estimation and explained the results with possible
reasons. Thoughts inspired by this research were also expressed in this chapter.
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Chapter 2

Methodology

This chapter will explain the methods used in the noise analysis including model parameters
and maximum likelihood estimation.

Since the beginning of the present century, geodetic measurements have been used to monitor
crustal deformations. Without significant episodic deformations, such as large earthquakes, it
is typical to fit a linear trend to repeated measurement and obtain deformation rate. The tradi-
tional means to determine the rate is linear regression of coordinate component and geodetic
network adjustment. Usually the measurement errors are assumed to be statistically uncorre-
lated from one another (white noise). However studies have showed that there are evidences
for large correlations in the geodetic data. The assumption that the noise is purely white noise
leads, for example, to grossly underestimated site rate uncertainties.

Previous studies suggest that noise in GPS position time series can be described as a power-law
process or one with time domain behavior that has power spectrum of the form:

Px( f ) = P0

(
f
f0

)κ

, (2.1)

where f is the temporal frequency, P0 and f0 are constant, and κ is the spectral index (Agnew,
1992).

Typically the spectral index, κ, lies within the range [−3, 1]. Noise with different spectral index
can be divided into stationary and nonstationary process.

• fractional Brownian motions (nonstationary)

Naturally occurring process often have negative indices ranging from −3 < κ < −1
including classical Brownian motion "random walk" with κ = −2.

• fractional Gaussian process (stationary)

Stationary processes with −1 < κ < 1 are called "fractional Gaussian" process including
the special case of uncorrelated white noise (κ = 0).

As the most typical and common noise components, the following 3 specific noise models will
be used to form fixed noise combinations for the later analysis.

• White noise: a random signal with a constant power spectral density.
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• Random walk noise: a classical Brownian motion with κ = −2.

It is often caused by monument instabilities and has been identified in continuous strain-
meter data and two-color electronic distance meter data.

• Flicker noise: pink power density spectrum with κ = −1.

It is commonly observed in a wide variety of dynamical processes, including sunspot
variability, the wobble of the Earth about its axis, undersea currents and uncertainties in
time measured by atomic clocks.

We will use the term coloured noise to refer to power-law process other than classical white
noise.

2.1 Model Parameters

For the analysis the daily position for each site are first combined to form time series of geodetic
positions. The cartesian XYZ coordinate time series are then rotated to a topocentric north, east,
up (NEU) coordinate system with:

N
E
U

 =

−sin(λ)cos(φ) −sin(λ)− sin(φ) cos(φ)
−sin(φ) cos(φ) 0

cos(λ)cos(φ) cos(λ)sin(φ) sin(λ)

X
Y
Z

 . (2.2)

Figure 2.1 shows an example of modeled coordinate time series for site AREQ (Arequipa, Peru)
in the north direction. The model for this time series contains 1 offset in year 2001 and a linear
trend.

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
16.6

16.7

16.8

16.9

17

17.1

17.2

17.3

Time (year)

N
or

th
 (m

)

Figure 2.1: Time series for Arequipa, Peru before and after earthquake
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The various steps involved in modeling the coordinate time series are described below.

The observed motion y(t) of each site in each direction can be written as:

y(ti) = a+ bti + csin(2πti + dcos(2πti)+ esin(4πti)+ f cos(4πti)+
n

∑
j=1

gjH(ti− Ej)+ vi , (2.3)

where ti for i = 1...N are the daily solution epochs in units of years, and H is the heaviside
step function. The first two terms are the site position a, and linear rate b, respectively. c and
d are the coefficients that describe the annual periodic motion, e and f describe semi-annual
motion. The next term corrects for n offsets, with magnitudes gj and epochs Ej. v is a vector of
independent measurement errors.

Assuming that the offset epochs are known, the model is linear with respect to the coefficients

x =
[
a b c d e f g1...gn

]
, (2.4)

so that

y = Ax + v , (2.5)

where A is the design matrix of partial derivatives.

For the case of uncorrelated white noise, the observation covariance matrix is defined by the
individual variances of the daily position solutions:

T = ∆T−κ/4


φ0 0 0 ... 0
φ1 φ0 0 ... 0
φ2 φ1 φ0 ... 0
... ... ... ... ...
φN φN−1 φN−2 ... φ0

 . (2.6)

The weighted least squares solution for the best linear unbiased estimates of the unknown
parameters is then

x̂ = (ATC−1A)−1ATC−1y , (2.7)

with parameter covariance

Ĉx = χ2(ATP−1A)−1 , (2.8)

The postfit residuals are

v̂ = y− Ax , (2.9)
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and the reduced square statistic

χ2
v =

v̂TC−1v̂
(N − ν)2 , (2.10)

where N is the number of daily position solutions and ν is the number of model parameters.

It is impossible to automatically locate the offsets. To identify the offsets the data residual need
to be carefully inspected and a knowledge of the site history is also necessary. The identifi-
cation of subtle offsets often required several iterations through the model. Generally offsets
were placed in the epochs when either hardware changes at the site or nearby seismic events.
However exceptions can also be found with large offsets and no known explanation.

Figure 2.1 is an obvious example of post-seismic deformation. It is caused by the earthquake
near the coast Peru, 175 km west of Arequipa, on 23 July 2001. Not all the terms in the motion
equation are necessarily relevant. For example, estimating very small offsets can increase the
uncertainty of more important parameters, such as the linear rate.

2.2 Data Preprocessing

To eliminate the outliers, each position time series was "cleaned" using a robust outlier detec-
tion algorithm applied to the postfit residual. The cleansing algorithm is based on the median
and interquartile range (IQR) statistics to describe the central value and spread of the data. The
IQR of a data sample is the difference between its 75th and 25th percentile, and is a robust mea-
sure of scale. The median and IQR are computed within a sliding window centered on each
measurement. Outliers are defined as having:

|v̂i −median(v̂i−w/2,i+w/2)| > 3 · IQR(v̂i−w/2,i+w/2) , (2.11)

where median and IQR operate on the residuals within the window of size w, chosen to be 1
year. The window center for all the measurement within 6 months of the start or end of obser-
vation remains fixed at 6 months from the time series endpoints. For each site, outlier epochs
are identified separately in each coordinate direction and then applied to all three coordinate
directions.

As a result the cleaning algorithm removed 0.1–0.4% of the data from each global site, which
did not reach the average 1–4% level of data cleaning from Nikolaidis (2002). To adjust the
intensity of the cleansing algorithm, the constant in the criterion was changed to eliminate
more data points and compare the results:

|v̂i −median(v̂i−w/2,i+w/2)| > 2 · IQR(v̂i−w/2,i+w/2) . (2.12)
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Figure 2.2: Data Cleaning after level 1 (3IQR) and 2 (2IQR)

Figure 2.2 is a comparison of the time series for site GRAZ in north direction before and after
the data cleaning with different level of intensity.

As shown in the plot, data points that have significant differences with the median of the resid-
uals within the one year window are considered outliers and are eliminated from the time
series. These data points possibly indicate a temporary change such as a sudden movement of
the geodetic momuments, which would soon be recovered. The amplitudes of the noise after
the cleaning are, as expected, reduced.

However whether the eliminated data points are outlier or not is still not certain. To determine
the influence of the data cleaning on the noise analysis, we can compare the results of maximum
likelihood estimation on fixed noise models before and after the cleaning and treated the north,
east, and vertical components separately.

With this edit criterion, the cleaning algorithm typically removed 0.1–0.4% of the data in level 1
and 1–3% of the data in level 2 from each global site. Table 2.1 shows the comparison between
the number of remaining data points from different ACs and sites.
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Site AC
Data Points

Before After Level 1 After Level 2

GLSV

CODE 5504 5502 5423
ESA 4200 4185 4117
GFZ 6532 6529 6499

GRGS 6733 6728 6691
MIT 6574 6568 6510

GRAZ

CODE 7146 7136 7074
ESA 5896 5876 5820
GFZ 6470 6454 6384

GRGS 6312 6305 6254
MIT 6998 6983 6926

MATE

CODE 7168 7117 7073
ESA 6329 6277 6213
GFZ 6713 6690 6579

GRGS 6410 6386 6303
MIT 7036 7001 6917

WTZZ

CODE 5307 5301 5261
ESA 6787 6764 6711
GFZ 6002 5983 5923

GRGS 6332 6317 6290
MIT 5176 5166 5130

ZIMM

CODE 7193 7181 7125
ESA 2636 2631 2578
GFZ 6958 6938 6865

GRGS 6573 6565 6487
MIT 7073 7054 6989

Table 2.1: Number of data points before and after cleaning

2.3 Maximum Likelihood Estimation

To estimate the noise component and measure the amount of white noise and power law noise
in the time series, we used maximum likelihood estimation (MLE). The best-fit noise model to
the data is that which maximizes the probability function

lik(v̂, C) =
1

(2π)N/2(detC)1/2 exp(−0.5vTC−1v) , (2.13)

where lik is likelihood and det is the determinant of a matrix, C is the covariance matrix repre-
senting the assumed noise in the data, N is the number of epochs and v are the postfit residuals
to the linear function using weighted least squares with the same covariance matrix C.

For greater numerical stability, we maximize the logarithm of the likelihood:

ln[lik(v̂, C)] = −0.5[ln(detC) + vTC−1v + Nln(2π)] , (2.14)
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where ln is the natural logarithm, N is the number of epochs, C is the data covariance matrix,
and v are the postfit residual from some linear model applied to the same covariance matrix
C.

The covariance matrix C can represent many form of Gaussian stochastic noise such as white,
power law, first-order Gauss Markov, band pass together with a multitude of combinations of
the above. In this thesis we assume that C is the combination of two noise sources, a white
noise component and a power law noise component.

Then the data covariance matrix can be written as:

C = a2
w I + b2

κ Jκ , (2.15)

is composed of white noise and power-law noise with amplitudes a and b respectively, where
I is the identity matrix and Jκ is the covariance matrix for the appropriate power-law noise.

2.4 Power-law Noise Covariance Matrix

For power-law noise with any spectral index−3 < κ < 1, the covariance matrix can be derived
using a method described by Johnson and Wyatt (1994). Consider a transformation matrix T
such that a sequence of random variables x with covariance matrix Jκ is created from a vec-
tor d of IID (independent and identically distributed random variables) unit-variance random
variables by x = Td. The desired covarince matrix Jκ is, by propagation of errors, therefore:

Jκ = TCdTT . (2.16)

Since the covariance matrix Cd = I then

Jκ = TTT , (2.17)

where the transformation matrix T is described by Hosking (1981) using the method of frac-
tional differencing/integrating. The transformation matrix is:

T = ∆T−κ/4


φ0 0 0 ... 0
φ1 φ0 0 ... 0
φ2 φ1 φ0 ... 0
... ... ... ... ...
φN φN−1 φN−2 ... φ0

 , (2.18)

with the sampling interval ∆T and with

φN =
− κ

2 (1−
κ
2 )...(N − 1− κ

2 )

N!
=

Γ(N − κ
2 )

N!Γ(− κ
2 )

. (2.19)
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The transformation matrix T is scaled by ∆T−κ/4 , where ∆T is the sampling interval, before
forming the covariance matrix by TTT. This ensures that the power spectra for any noise source
with spectral index κ will cross at the same frequency given the same sampling interval ∆T and
equal noise amplitude bκ.

The equation for the power spectrum is then:

P =
Dκb2

κ

f
κ
2+1

s

f κ , (2.20)

where

Dκ = 2(2π)κ(24 · 60 · 60 · 365.25)
κ
2 , (2.21)

and fs is the sampling frequency in Hz. The crossover frequency is therefore

f0 =
f 1/2
s

2π
√

24 · 60 · 60 · 365.25
. (2.22)

If the data are not equally spaced then each of column of the transformation matrix T is scaled
by the individual ∆T, i.e., ∆T =

∣∣tj − t0
∣∣, prior to forming the covariance matrix.

2.4.1 Covariance Matrix for Noise with Integer spectral indices

With the general equation for power-noise covariance matrix above, we can now discuss the
noise with integer spectral indices separately.

2.4.1.1 White Noise

From the equation of the transformation matrix we can see that if κ = 0, then φ0 = 1 and
φN = 0 for N > 0.

Therefore T = I and J0 = I, which means the covariance matrix is scalar and independent of
time.

2.4.1.2 Random-Walk Noise

If κ = −2, then φN = 1 for any N

T =


1 0 0 ... 0
1 1 0 ... 0
1 1 1 ... 0
... ... ... ... ...
1 1 1 ... 1

 . (2.23)
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The covariance matrix is therefore equal to

J−2 =


∆T1 ∆T1 ∆T1 ... ∆T1
∆T1 ∆T2 ∆T2 ... ∆T2
∆T1 ∆T2 ∆T3 ... ∆T3
... ... ... ... ...

∆T1 ∆T2 ∆T3 ... ∆TN

 , (2.24)

and is exactly the same as the matrices decribed in Zhang et al. (1997); Mao et al. (1999).

2.4.1.3 Flicker Noise

For flicker noise, the covariance matrix was approximated by Zhang et al. (1997). The constant
in this matrix was selected so that the power spectrum of flicker noise and random-walk noise
cross at a period of 1 year with a sampling interval of 1 day and equal amplitude (b−1 =
b−2). Now the amplitude of this earlier matrix still needs scaling to be exactly the same as that
derived from the transformation matrix. The scaling can be estimated from their respective
power-spectrum equations. That is

Pold =
b2

old f−1

2π2 , (2.25)

Pnew =
b2

new f−1

π
√

24 · 60 · 60 · 365.25
, (2.26)

therefore

bnew =
( fs · 24 · 60 · 60 · 365.25)1/4

√
2π

bold . (2.27)

When the sampling frequency is once per day (in Hz) then

bnew = 1.744 · bold . (2.28)

Therefore values quoted for the amplitude of flicker noise covariance matrix must be scaled
before being used.

There are many previous error analysis studies of GPS time series. Some of them only chose spe-
cific spectral indices because there were no general form for the covariance matrix of power-law
noise at that time. The exact covariance matrix for random walk noise was given by Langbein
and Johnson (1997), while an approximation for the flicker noise covariance matrix was given
by Zhang et al. (1997) and derived from an algorithm described by Gardner (1978) for generat-
ing such noise. Another reason is that there are some advantages to assume a specific type of
noise model for the time series. First of all, it is easy to analyse the noise if one parameter is
fixed. Second, assuming all the sites are affected by the same noise source such as atmospheric
loading, monument motion and reference frame makes the determination of noise component
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easier. Therefore they should have a similar noise spectrum. Third, with long time series to
analyse, the computational burden is usually huge. Limited numbers of fixed noise models
would reduce the computational burden and make the MLE more efficient. If the purpose is to
provide more robust uncertainties on the linear model parameters, then a model such as white
noise plus flicker noise might not be exact, but it may be close enough.

However, there are reasons why the spectral index should also be estimated. While many
studies have concentrated on the integer spectral indices as potential models there is no reason
why a non-integer spectral index may not be appropriate.

First, now we can compute the power-law covariance matrix by means of fractional differenc-
ing and integration (described by Williams (2003)). Second, stochastic models can provide clues
in the search for the physical phenomena that affects the time series. Third, with the develop-
ment of computer capacity, the computational burden is now not such a problem. However,
estimating the noise parameters or spectral index of a long time series with thousands of data
points, for example, in this thesis, more than 7000, still takes several days.

To improve the efficiency of the analysis, the software CATS splits the maximization up into
two parts, which will be explained in detail in chapter 3.
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Chapter 3

Data Processing and Software

3.1 Data

3.1.1 Source

The data used for this thesis are downloaded from the data base CDDIS 1 (The Crustal Dynam-
ics Data Information System). The CDDIS was established in 1982 as a dedicated data base to
archive and distribute space geodesy related data sets and has served as a global data center for
the IGS since 1992. Today, the CDDIS archives and distributes mainly Global Navigation Satel-
lite Systems (GNSS), laser ranging (both to artificial satellites, SLR, and lunar, LLR), Very Long
Baseline Interferometry (VLBI), and Doppler Orbitography and Radio-positioning Integrated
by Satellite (DORIS) data for an ever increasing user community of geophysists.

For our purpose of analysing noise content of GPS time series we select SINEX file provided by
ACs after the second data reprocessing campaign in the time range from GPS week 730 to 1773
(the year 1994 to 2014).

3.1.2 Download

For our research required SINEX files from each analysis center are listed under a specific cata-
logue ("repro2") and yet are separated from each week. To meet my requirement and increase
the efficiency of the data acquisition, computer program Wget is used for the Download.

Wget is a computer program that retrieves content from web servers. It supports downloading
via HTTP, HTTPS, and FTP protocols. Hier is the command line written for the download:

# !/ bin/bash
DESTINATION=/Users/visagod/Desktop/DATA
SOURCE= f t p : //cddis . nasa . gov/gps/products/

f o r i in { 7 3 0 . . 9 9 9 }
do

wget −P $DESTINATION −r −−no−parent −−no−d i r e c t o r i e s −A
" ∗snx∗ " $SOURCE" 0 " $ i "/repro2 "

done

1ftp://cddis.nasa.gov/gps/products/
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f o r i in { 1 0 0 0 . . 1 7 7 3 }
do

wget −P $\$$DESTINATION −r −−no−parent −−no−d i r e c t o r i e s −A
" ∗snx∗ " $SOURC$i"/repro2 "

done

3.1.3 SINEX File

To unify the form of initial GPS data and enable associated analysis of different data, IGS present
a standard data format SINEX.

Each SINEX line has at most 80 ASCII characters. The SINEX file is subdivided in groups of data
called blocks. Each block is enclosed by a header and trailer line. Each block has a fixed format.
The blocks contain information on the file, its input, the sites and the solution. All elements
within a line are defined.

The first character of each line identifies the type of information that the line contains. Five
characters are reserved. They have the following meaning when they are at the beginning of a
line, they identify:

"%" Header and t r a i l e r l i n e ,
"∗ " Comment l i n e within the header and t r a i l e r l i n e ,
"+" T i t l e a t the s t a r t of a block
"−" T i t l e a t the end of a block
" " Data l i n e within a block

The following tables 3.1 list the contents of each main block included in one SINEX File.

FILE

FILE/REFERENCE

This block provides information on the
Organization, point of contact, the

software and hardware involved in the
creation of the file.

FILE/COMMENT

This block can be used to provide
general comments about the SINEX data

file.

INPUT

INPUT/HISTORY

This block provides information about
the source of the information used to

create the current SINEX file.

INPUT/FILES

This block identify the input files (and
the current SINEX file) and allow for a

short comment to be added to describe
those files.

INPUT/ACKNOWLEDGEMENTS
This block defines the agency codes

contributing to the SINEX file.

SITE

SITE/ID

This block provides general information
for each site containing estimated

parameters.
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SITE/DATA

This block gives the relationship between
the estimated station parameters in the

SINEX file and in the input files.

SITE/RECIEVER
List the receiver used at each site during

the observation period of interest.

SITE/ANTENNA
List of antennas used at each site used in

the SINEX file.

SITE/GPS_PHASE_CENTER

(Mandatory for GPS)

List of GPS phase center offsets for the
antennas described in the Antenna
block. The offset is given from the

Antenna Reference Point (ARP) to the L1
and L2 phase centers respectively.

SITE/ECCENTRICITY

(Mandatory)

List of antenna eccentricities from the
Marker to the Antenna Reference Point

(ARP) or to the intersection of axis.

SATELLITE

SATELLITE/ID (Recommended for
GNSS, if available)

List of GNSS satellites used in the SINEX

file

SATELLITE/PHASE_CENTER

(Mandatory for GNSS, if satellite
antenna offsets are not estimated)

List of GNSS satellite antenna phase
center corrections. The antenna offsets
are given from the center of mass (CM).

More than one line per satellite is
necessary, if the satellite transmits on

more than two frequencies.

SOLUTION

SOLUTION/EPOCHS

(Mandatory)

List of solution epoch for each Site
Code/Point Code/Solution

Number/Observation Code (SPNO)
combination.

SOLUTION/STATISTICS
Statistical information about the solution

contained in the SINEX file.
SOLUTION/ESTIMATE (Mandatory) Estimated parameters

SOLUTION/APRIORI

(Mandatory)

Apriori information for estimated
parameters, either the used apriori

values for the adjustment or the
parameters of a Helmert Transformation

for applied inner constraints with the
constraint given in the field ’Standard

Deviation’.

SOLUTION/MATRIX_ESTIMATE

(Mandatory)

The matrix contents can be: CORR -
Correlation Matrix, COVA - Covariance
Matrix, INFO - Information Matrix (of

Normals)

SOLUTION/MATRIX_APRIORI

The matrix contents can be: CORR -
Correlation Matrix, COVA - Covariance
Matrix, INFO - Information Matrix (of

Normals)
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SOLUTION/NORMAL_EQUATI

-ON_VECTOR

If the SINEX file shall provide the normal
equation directly this block is mandatory
and contains the vector of the right hand

side of the unconstrained (reduced)
normal equation.

Table 3.1: SINEX File content

3.1.4 Data Transformation

As we use software CATS to analyse the time series, all the necessary information need to be
collected from the SINEX file and rearranged into a new format (.neu) that can be processed by
the software.

For the transformation into NEU file, the most important information we get from a SINEX File
is the SOLUTION/ESTIMATION block, including data showed in table 3.2.

Data Information Unit
STAX station X coordinate m
STAY station Y coordinate m
STAZ station Z coordinate m
VELX station X velocity m/year
VELY station Y velocity m/year
VELZ station Z velocity m/year
XGC geocenter X coordinate m
YGC geocenter Y coordinate m
ZGC geocenter Z coordinate m

RS_RA radio source right ascension rad
RS_DE radio source decline rad

RS_RAR radio source right ascension rate rad/year
RS_DER radio source declination rate rad/year

Table 3.2: SOLUTION/ESTIMATION Block

For each interested site one CATS file will be created containing the information:

• site name

• reference position:

initial cartesian coordinates (X, Y, Z)

initial latitudes, longitudes and heights

• information of the site in each available epoch including:

Time of the epoch (years+decimal)

coordinate differences in local geodetic system in north direction

coordinate differences in local geodetic system in east direction
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coordinate differences in local geodetic system in height

standard deviation in north direction

standard deviation in east direction

standard deviation in height

The positions are assumed to be in meters. The individual formal errors are only used in the
MLE estimation to define a variable white noise component.

To enable the described transformation a package of program is required with the features of:

• reading SINEX files and computes NEU coordinates and standard deviation of a site with
regard to initial position and writes to CATS time series file.(snx2cats)

• reading XYZ coordinates and covariance matrix from SINEX file(rdsnx)

• Computes reference ellipsoid parameters(refell)

• form rotation matrix to convert from cartesian system to local geodetic system
(rotct2lg)

• transformation between cartesian system and local geodetic system (cct2clg, ct2lg)

• transformation between cartesian system and ellipsoidal system (xyz2ell)

• transformation between julian date and calendar date (cal2jd, doy2jd, jd2cal)

• transformation between julian date and year with decimal of year (jd2yr)

The functions described above are written by Mike Craymer in Matlab code and can be down-
loaded as geodetic toolbox from his homepage.2

3.2 Software CATS

CATS (Create and Analyse Time Series) is a standalone C program developed by Williams (2008)
to study and compare stochastic noise processes in continuous GPS coordinate time series and
assign realistic uncertainties to parameters derived from them. It uses maximum likelihood
estimation to fit a multi-parameter model to a time series while analysing the residuals to de-
termine the type and magnitude of the noise.

The software uses the method of least squares to fit a multi-parameter model to a time series
while concurrently analysing the residuals to assess the type and magnitude of the stochastic
noise. The program solves for all parameters in a two-part procedure:

• the linear function which includes an intercept, a slope, the possibility of abrupt
steps (earthquake or equipment changes) and any known periodicities (annual and
semi-annual terms)

• the non-linear part which allows the parameters and amplitudes of several specific noise
models to be estimated.

2http://www.craymer.com



28 Chapter 3 Data Processing and Software

There are currently three methods implemented in CATS for assessing the noise content: max-
imaun likelihood estimation, sepctral estimation and an empirical method based on the work
described in Williams (2003). The principle method, and the one we used in this thesis is MLE.

3.2.1 Nested Maximization

To estimate the noise components and the parameters from the linear function the likelihood
that these values have occured for a given set of observation is maximized. As described in
equation 2.13.

Since the maximum is unaffected by monotonic transformations. The algorithm of choice for
solving the maximum likelihood problem is the Nelder-Mead uphill simplex (Williams (2008)).
It is a straightforward method to program, but the drawback is its lack of efficiency in the
number of function evaluations used. The algorithms used in CATS have been optimized in
two broad categories to improve the computational speed: a single dimension reduction in the
estimation of amplitudes and nested maximization algorithms.

Very often one may wish to estimate parameters of the stochastic model other than just the
noise amplitude: for example, estimating the spectral index κ in power-law noise models.
These parameters could simply be added as extra dimensions in a general uphill simplex to-
gether with the set of noise amplitudes. However at most iterations the uphill simplex may
choose a new value for one of these parameters and therefore a new unit covariance matrix has
to be created. It appears better to split the maximization up into two parts:

• inner maximization: simply estimate the noise amplitudes for fixed noise model param-
eters

• outer maximization: estimate the other noise model parameters

This results in far fewer calls to the routines dealing with the covariance matrices (creation,
inversion and determinant estimation) and is likely to be more stable numerically.

In reality the desired covariance matrix can be any combination of different stochastic models,
that is:

C =
m

∑
i=1

σ2
i Ji , (3.1)

where there are m different unit covariance matrices. For a fixed set of Ji the MLE is often
thought to be an m dimensional problem. However, it can be shown to be m− 1 dimensional.
If the covariance matrix consists of one noise source then we have:

C = σ2 J , (3.2)

and the MLE can be re-written as:

ln[lik(v̂, σ)] = −0.5[2Nln(σ) + ln(detJ) +
vT J−1v

σ2 + Nln(2π)] . (3.3)
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Now, with the method of least squares we find that the residuals v and the estimated parame-
ters are invariant to a scale change in the covariance matrix. Therefore we can differentiate the
log likelihood equation with respect to σ and find the value of σ that gives us the maximum
likelihood is:

σ =

√
vT J−1v

N
. (3.4)

So in this case the maximum log-likelihood can be found explicitly. By association then a two-
dimensional covariance matrix should only need a one-dimensional numerical maximization.
Instead of two noise amplitudes σ1 and σ2 we can transform these to two alternative variable
namely an angle, φ and a scalar r such that:

σ1 = rcosφ , σ2 = rsinφ . (3.5)

For a given angle we can compute a unit covariance matrix containing the correct ratios of the
two, that is:

Cunit = r2(cos2(φ)J1 + sin2(φ)J2) , (3.6)

which is similar in form to the one-dimensional covariance matrix. This reconfiguration can
be extended to any number of dimensions. For a given angle, φ we can explicitly solve for r
and therefore only need to maximize the log-likelihood numerically as a function of the an-
gle, thereby reducing dimensionality by one. Typically, this results in far fewer steps than the
equivalent m-dimensional maximization.

Figure 3.1 is an example from Williams (2008) to illustrate the nested maximization.

3.2.2 The Time Series File

The time series file is fairly free format consisting of two parts: header information and the
time series. The header information is basically a list of parameters relevant to the GPS site the
time series comes from. The header information (plus any line you want to eliminate from the
processing) starts with a # symbol. The only header information relevant to CATS is the list of
offsets. The data set consists of seven columns (no particular format) corresponding to time
(in decimal years), north, east, up, north error, east error and up error. The positions are, by
default, assumed to be in meters, however this can be altered with the scale factor option.

If there are any known discontinuities or offsets in the time series then these are specified in
the header of the file in the following format:

# offset decimal_date component_code

This is an example of a typical CATS time series file (.neu) of the site GLSV:



30 Chapter 3 Data Processing and Software

Figure 3.1: Log-likelihood estimates for the north component of GPS site BRST. (a) Log-likelihood values greater
than 2130 plotted in amplitude space, that is, as a function of flicker noise and white noise amplitude. Black
triangles indicate the path of the uphill simplex from σ1 = 1; σ2 = 1. White dots are the predictions from the
1D brent maximizations. White line is the exact maximum at all possible angles. (b) as a except in φ and r
space. (c) The results of the 1D maximization which calculates the maximum log-likelihood values as a function
of φ. (Courtesy: Williams (2008))

# Site: GLSV
# Reference Position:
# X (m): 3512889.1006
# Y (m): 2068979.7810
# Z (m): 4888903.1601
# Latitude (deg): 50.3641820
# Longitude (deg): 30.4967301
# Height (m): 226.3294
# Reference Frame:
# offset
1998.1575 0.0000 0.0000 0.0000 0.0016 0.0011 0.0016
1998.2178 0.0026 0.0037 -0.0147 0.0008 0.0006 0.0008
1998.2205 0.0046 0.0032 -0.0198 0.0008 0.0006 0.0008
1998.2233 0.0049 0.0044 -0.0212 0.0008 0.0006 0.0008
1998.2260 0.0052 0.0010 -0.0177 0.0008 0.0006 0.0008
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1998.2288 0.0027 0.0028 -0.0180 0.0008 0.0006 0.0009
1998.2315 0.0039 0.0010 -0.0201 0.0008 0.0006 0.0008
1998.2342 0.0007 0.0047 -0.0197 0.0008 0.0007 0.0009
1998.2370 0.0041 0.0047 -0.0153 0.0008 0.0006 0.0008
1998.2425 0.0033 0.0043 -0.0144 0.0008 0.0007 0.0009
1998.2863 0.0042 0.0064 -0.0087 0.0008 0.0006 0.0009
1998.2890 0.0033 0.0072 -0.0059 0.0008 0.0006 0.0009
1998.2918 0.0056 0.0062 -0.0061 0.0009 0.0007 0.0009
1998.2945 0.0055 0.0070 -0.0008 0.0008 0.0006 0.0009
1998.2973 0.0063 0.0075 -0.0027 0.0008 0.0006 0.0008
1998.3000 0.0054 0.0065 -0.0053 0.0008 0.0006 0.0008
1998.3027 0.0077 0.0096 -0.0092 0.0008 0.0006 0.0008
1998.3055 0.0064 0.0037 -0.0139 0.0008 0.0006 0.0008
1998.3082 0.0049 0.0040 -0.0127 0.0008 0.0006 0.0009
1998.3110 0.0062 0.0054 -0.0156 0.0008 0.0007 0.0009
1998.3137 0.0062 0.0068 -0.0152 0.0009 0.0007 0.0009
1998.3164 0.0077 0.0063 -0.0078 0.0009 0.0007 0.0009
1998.3192 0.0072 0.0074 -0.0088 0.0008 0.0006 0.0008
1998.3219 0.0073 0.0073 -0.0170 0.0008 0.0007 0.0009
1998.3247 0.0053 0.0067 -0.0067 0.0011 0.0008 0.0012
1998.3274 0.0072 0.0082 -0.0119 0.0008 0.0006 0.0008

3.2.3 Command Line Options

The program is command line oriented, so it does not require any other files except for the
input time series file in order to run. The options can be divided into three categories:

• Stochastic model:

The stochastic model is defined using the model option and can be used as many times
as required on the command line.

For example:

−−model pl : k−1 −−model wh:

is the option for a flicker noise plus white noise model, where pl: stands for power law
noise and wh: stands for white noise. The second part of the power law noise option k-1
sets the spectral index to -1 (flicker noise). If the spectral index is not specified, then the
program will solve for this parameter. Currently CATS can produce a covariance matrix
for the following noise models:

– White noise <wh>

– Power-law noise <pl>

– First-order Gauss Markov noise <gm>
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– Band-pass noise <bp>

– Generalized Gauss Markov <gg>

– Variable white noise <vw>

– Step-variable white noise <sw>

• Functional model:

The functional model is already predefined as having a slope, an intercept and any offsets
that are found in the time series file. The sinusoid switch can be used if you wish to solve
for the amplitude and phase of any periodic signals. If you do not require the program to
estimate a trend in the data, then this option can be switched off using notrend.

• Other options:

Method can define which estimation method to use.

Verbose can output extra information.

Output forces the results to be printed to a file instead of the screen.

To estimate the amount of flicker noise and white noise in the file vyas.neu assuming there is
an annual signal in the series we can use the command:

c a t s vyas . neu −−s inusoid 1y −−model pl : k−1 −−verbose
−−output vyas . fn_mle

To estimate the spectral index plus the amplitudes of white and power-law noise in the east
and up component of file vyas.neu assuming an annual and semi-annual signal and using
the fast option we can use the command:

c a t s vyas . neu −−s inusoid 1y1 −−model pl : −−column 3 −−verbose
−−speed 2 −−output vyas . pl_mle

3.2.4 Typical CATS Output

Output from the software is either to the screen or to a file named using the output option. The
first block of lines provide a brief summary of the command issued, the software version and
some information on the user and the machine the program was excited on.

If the verbose option is included, the second block provides a summary of the data set used.
The probable sampling frequency of the time series is usually 1 day. This is required because
the Power-Law and First-Order Gauss Markov covariance matrices are scaled by the sampling
interval.

The lines containing actual results are preceded with a "+" symbol, followed by NORT, EAST,
VERT or PSMSL and are generally self-evident. MLE is the calculated, maximum log likelihood
value, INTER is the intercept at t0 which defined as the start of the first year of data. Quoted
uncertainties
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This is a example of a typical CATS output of the site ZIMM with the data from Analysis Center
GFZ:

Cats Version : 3.1.2
Cats command : cats --model pl:k-1 --model wh: --sinusoid 1y
--verbose --output ZIMM_es.wh_fn_mle ZIMM_es.neu
Data from file : ZIMM_es.neu
cats : running on GanyideMacBook-Air.local
Darwin release 13.4.0 (version Darwin Kernel Version 13.4.0: Sun
Aug 17 19:50:11 PDT 2014; root:xnu-2422.115.4~1/RELEASE_X86_64)
on x86_64
userid : visagod

Sampling frequency 1.17366e-05 (Hz), 0.99 days
Number of samples 1 period apart = 2556 of 2636
Number of points in full series = 2922
Number of series to process : 3
Start Time : Thu Jan 29 13:16:25 2015

+NORT POWER LAW NOISE
+NORT INDEX : -1.0000
+NORT PL : IS FREE

+NORT WHITE NOISE
+NORT WH : IS FREE

Time taken to create covariance matrix : 2.027801 seconds
Time taken to compute eigen value and vectors : 37.4681 seconds
wh_only = 4.39569426 (-7646.1503),
cn_only = 14.48962722 (-6907.3018)
Starting a one-dimensional minimisation : initial angle 45.00
Angle = 45.000000 mle = -7101.93384974 radius = 4.836850
wh = 3.420169 cn = 3.420169
Next choice of angle = 27.811530
angle = 27.811530 mle = -6938.21084593 radius = 6.375862
wh = 2.974752 cn = 5.639368
Next choice of angle = 17.188471
angle = 17.188471 mle = -6864.78197440 radius = 8.500878
wh = 2.512144 cn = 8.121211
Next choice of angle = 10.623060
angle = 10.623060 mle = -6853.97157537 radius = 10.763168
wh = 1.984157 cn = 10.578700
Next choice of angle = 11.218347
angle = 11.218347 mle = -6853.06847674 radius = 10.519784
wh = 2.046608 cn = 10.318782
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Next choice of angle = 12.352145
angle = 12.352145 mle = -6852.52719981 radius = 10.077179
wh = 2.155705 cn = 9.843905
Next choice of angle = 12.182229
angle = 12.182229 mle = -6852.51300093 radius = 10.141716
wh = 2.140121 cn = 9.913339
Next choice of angle = 12.195395
angle = 12.195395 mle = -6852.51292788 radius = 10.136693
wh = 2.141338 cn = 9.907937
Next choice of angle = 12.193692
angle = 12.193692 mle = -6852.51292619 radius = 10.137343
wh = 2.141181 cn = 9.908636
Next choice of angle = 12.193570
angle = 12.193570 mle = -6852.51292619 radius = 10.137389
wh = 2.141170 cn = 9.908686
Next choice of angle = 12.193814
angle = 12.193814 mle = -6852.51292620 radius = 10.137296
wh = 2.141192 cn = 9.908585

Finished :

Angle = 45.000000 mle = -7101.93384974 wh = 3.420169 cn = 3.420169
Angle = 27.811530 mle = -6938.21084593 wh = 2.974752 cn = 5.639368
Angle = 17.188471 mle = -6864.78197440 wh = 2.512144 cn = 8.121211
Angle = 10.623060 mle = -6853.97157537 wh = 1.984157 cn = 10.57870
Angle = 11.218347 mle = -6853.06847674 wh = 2.046608 cn = 10.31878
Angle = 12.352145 mle = -6852.52719981 wh = 2.155705 cn = 9.843905
Angle = 12.182229 mle = -6852.51300093 wh = 2.140121 cn = 9.913339
Angle = 12.195395 mle = -6852.51292788 wh = 2.141338 cn = 9.907937
Angle = 12.193692 mle = -6852.51292619 wh = 2.141181 cn = 9.908636
Angle = 12.193570 mle = -6852.51292619 wh = 2.141170 cn = 9.908686
Angle = 12.193814 mle = -6852.51292620 wh = 2.141192 cn = 9.908585

+NORT MLE : -6852.512926
+NORT INTER : 4.4748 +- 1.4017
+NORT SLOPE : 15.4407 +- 0.3986
+NORT SIN : 2.3377 +- 0.4632
+NORT COS : 0.3258 +- 0.4516
+NORT POWER LAW NOISE
+NORT INDEX : -1.0000
+NORT PL : 9.9086 +- 0.4075

+NORT WHITE NOISE
+NORT WH : 2.1412 +- 0.0914

End Time : Thu Jan 29 13:20:13 2015
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Total Time : 228

For the example shown above, the amplitudes of a white plus flicker noise model are estimated.
Since this is a one-dimensional maximization problem and a special class of model where one
of the components is white, the software uses the Brent maximization instead of the uphill
simplex. The steps of this algorithm are seen above the results as a series of angles and next
choice of angles. The software also calculates the two end members of the noise spectrum:
white noise only and colored noise only to ensure the correct answer should the angle get close
to 0 or 90.
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Chapter 4

Results

In this chapter we will discuss the estimated noise parameters under all circumstances.

During the research the most significant problem is the processing speed. The time taken to
process a time series depends on the length of time series and the model you are running. For
example, the white noise only model is almost instantaneous whereas a stochastic model such
as power-law noise plus white noise where the spectral index is also being estimated takes the
longest. Although the computational speed of modern computer has been greatly improved,
the great number of data points (20 years) we used in this thesis still resulted in a prolonged
processing time. For example, the estimation of a noise model with non-integer spectral index
for a single site can, in some cases, take 4− 5 days. That is also the reason why It took much
longer time than expected to finish this thesis. However, the number of sites and ACs we
researched in this period is still very limited.

In order to have a relatively good understanding of the noise components of a GPS time series
and, to some extent, have a comparison between different analysis centers and with previous
studies, the Europe region with a high GPS station density was chosen as our research field.
Different sites were selected all around Europe for different researches. For specific purposes,
GPS time series from some stations outside Europe were also used. Time series of these sites
from different analysis centers were analysed with the software CATS. Table 4.1 lists the selected
sites for our noise analysis and Figure 4.1 is a map of IGS tracking network of the Europe region.
Some of the sites observed in this thesis are marked.

Site Longitude Latitude Location
METS 24◦23’43.2” 60◦13’02.9” Kirkkonummi, Finland
MOBJ 36◦34’11.0” 55◦06’53.6” Obninsk, Russian Feder
POTS 13◦03’57.9” 52◦22’45.5” Potsdam, Germany
GLSV 30◦29’48.2” 50◦21’51.1” Kiev, Ukraine
POLV 34◦32’34.6” 49◦36’09.4” Poltava, Ukraine
BRST 355◦30’12.3” 48◦22’49.8” Brest, France

WTZZ 12◦52’44.1” 49◦08’39.2” Bad Koetzting, Germany
GANP 20◦19’22.6” 49◦02’05.0” Ganovce, Slovakia
ZIMM 7◦27’55.0” 46◦52’37.6” Zimmerwald, Switzerland
GRAZ 15◦29’36.5” 47◦04’01.7” Graz, Austria
BUCU 26◦07’32.7” 44◦27’50.2” Bucuresti, Roma
ZECK 41◦33’54.2” 43◦47’18.2” Zelenchukskaya, Russia
MADR 355◦45’01.2” 40◦25’45.0” Madrid, Spain
MATE 16◦42’16.1” 40◦38’56.9” Matera, Italy
NICO 33◦23’47.2” 35◦08’27.6” Nicosia, Cyprus
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NYAL 11◦51’54.3” 78◦55’46.5” Ny Alesund, Norway
TIXI 128◦51’59.1” 71◦38’04.1” Tixi, Russian

YELL 245◦31’09.5” 62◦28’51.2” Yellowknife, Canada
IRKT 104◦18’58.5” 52◦13’08.5” Irkutsk, Russia

WUHN 114◦21’26.1” 30◦31’53.9” Wuhan, P.R. China
IISC 77◦34’13.4” 13◦01’16.2” Bangalore, India

BOGT 285◦55’08.6” 4◦38’24.3” Bogota, Colombia
NTUS 103◦40’47.8” 1◦20’44.9” Singapore, Republic of Singapore
KARR 117◦05’49.9” -20◦58’53.1” Karratha, Australia
PERT 115◦53’06.9” -31◦48’07.1” Perth, Australia
KERG 70◦15’19.9” -49◦21’05.3” Port aux Francais, Kerguelen Island
MAC1 158◦56’09.0” -54◦29’58.3” MacQuarie Island, Sub-Antarctic
MAW1 62◦52’14.6” -67◦36’17.2” Mawson, Antarctica
MCM4 166◦40’09.6” -77◦50’18.1” Ross Island, Antarctic

Table 4.1: Selected sites for noise analysis

Figure 4.1: IGS Tracking Network Europe Region
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4.1 Noise Models with Integer Spectral Index

Many previous error analysis studies of GPS time series only chose specific spectral indices be-
cause there were no general form for the covariance matrix of power law noise at that time.
Fixed spectral index for power-law noise are also used to simplify the analysis and determina-
tion of noise components. Another reason is that with long time series to analyze, The com-
putational burden is usually larger. limited numbers of fixed noise models would reduce the
computational burden and make the MLE more efficient.

In this section we chose specific spectral indices for our noise models. Three noise models
(white noise only, white noise plus flicker noise and white noise plus random walk noise) are
tested on each time series to determine which one is preferred. Noise amplitudes of each com-
ponent are also estimated with regard to different level of data cleaning.

4.1.1 Preferred Noise Model

As already described in chapter 2, the covariance matrix of a combination of white noise and
power-law noise with amplitudes a and b respectively can be written as:

C = a2
w I + b2

κ Jκ (4.1)

Three different types of noise models were evaluated with the MLE algorithm: white noise +
flicker noise (κ = −1), white noise + random walk noise (κ = −2), and white noise only
(bκ = 0).

we treated North, East and Up separately as three different time series. There are all together
over 200 selected time series from 4 analysis centers estimated. Every time series is tested 3
times to determine which noise model is preferred. The value of maximum likelihood estima-
tion for different noise models are compared. The higher the log likelihood, the more significant
and likely the model is as a candidate for the noise in the time series. The results are showed
in table 4.2, 4.3, 4.4, A.1, A.2, A.3, A.4, A.5 and A.6 to demonstrate the change before and after
the data cleaning.

As an example, we extracted the results of the north components of all the GPS time series, and
compared them between different noise models in table 4.2, 4.3 and 4.4. The noise models with
MLE values in bold are considered to be the preferred model.

We counted the time series with different preferred noise models before and after the data
cleaning. The columns of table 4.5 represent the percentage of time series for which the log
likelihood value for a specific model is the highest. The result shows that all of the time series
prefer a white noise plus power-law noise model than a white noise only model. The following
bar diagram compares the result of MLE between flicker plus white noise and random walk
plus white noise model.
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Site AC
MLE Value (North)

White only White + Flicker White + Random Walk

GLSV
MIT -13954.67 -10027.97 -10165.46
ESA -11563.53 -8644.69 -8688.13

GRAZ

MIT -16160.77 -14539.83 -14706.88
CODE -14619.74 -9824.05 -9621.29

ESA -15883.14 -13464.14 -13523.58
GFZ -14888.38 -13500.19 -13650.08

MADR
MIT -12057.43 -9845.36 -10023.76
GFZ -13012.54 -8976.23 -9945.74

MATE

MIT -15799.23 -13686.42 -13781.36
CODE -14984.85 -9894.9 -9911.41

ESA -17001.92 -18291.78 -14673.55
GFZ -15606.28 -13935.1 -13977.07

POLV

MIT -15234.12 -13699.54 -13878.23
CODE -15641.66 -10054.32 -10149.79
GFZ -16874.12 -12315.38 -13214.54

WTZZ
MIT -9408.8 -7937.01 -8029.23

CODE -8577.51 -4819.57 -4455.13

ZECK

MIT -16397.21 -13487.48 -13654.21
ESA -15621.35 -9654.23 -9987.65
GFZ -15421.02 -10022.16 -11238.32

ZIMM

MIT -15089.67 -14440.3 -14593.44
CODE -13265.6 -10122.26 -10038.79

ESA -7646.15 -6852.51 -6882.44
GFZ -15002.81 -18822.80 -14188.32

Table 4.2: MLE results of North components before data cleaning

Best-fit noise model Before After Level 1 After Level 2
white noise only 0% 0% 0%

white + flicker noise 77.78% 59.72% 56.94%
white + random walk 22.22% 40.28% 43.06%

Table 4.5: Percentage of time series with preferred noise model

In figure 4.2 we can see that, in general, white noise plus flicker noise or white noise plus
random walk noise is preferred to a white noise only model. Before the cleaning white noise
plus flicker noise is clearly the dominant preferred noise model (77.78%). However with more
and more "outliers" eliminated, the number of time series that are closer to a white noise plus
random walk noise model increased. After level 1, the percentage of white noise plus flicker
noise and white noise plus random walk noise are 59.72% and 40.28%. After level 2, numbers
of time series that prefer these two noise models are very close.
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Site AC
MLE Value (North)

White only White + Flicker White + Random Walk

GLSV
MIT -1385.05 -12897.82 -16286.18
ESA -11492.38 -8493.26 -8531.13

GRAZ

MIT -15693.94 -13890.29 -14062.15
CODE -14562.21 -9580.93 -9792.12

ESA -15773.54 -13316.92 -13357.51
GFZ -14443.53 -17438.14 -13062.22

MADR
MIT -13241.54 -11246.17 -12341.49
GFZ -15210.64 -9857.65 -9612.74

MATE

MIT -15632.73 -13578.72 -19816.01
CODE -14878.34 -9827.79 -19647.45

ESA -16840.25 -18140.78 -14481.02
GFZ -15453.98 -19188.84 -13819.65

POLV

MIT -16151.72 -12414.39 -12841.78
CODE -14512.14 -11234.57 -11149.81
GFZ -15471.01 -11235.85 -10147.32

WTZZ
MIT -11746.79 -10768.77 -10898.28

CODE -10723.34 -7787.19 -7666.12

ZECK

MIT -13214.81 -9865.34 -10041.18
ESA -12154.12 -11214.94 -10175.54
GFZ -11474.15 -9898.21 -9547.24

ZIMM

MIT -14617.22 -13848.77 -14008.95
CODE -13173.96 -9973.45 -9849.13

ESA -7627.11 -6831.7 -6861.15
GFZ -14558.3 -18609.63 -13545.17

Table 4.3: MLE results of North components after data cleaning level 1
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Figure 4.2: Percentage as preferred noise model between flicker + white noise and random walk + white noise



42 Chapter 4 Results

Site AC
MLE Value (North)

White only White + Flicker White + Random Walk

GLSV
MIT -13654.59 -9450.27 -9585.83
ESA -11305.55 -8322.74 -8361.34

GRAZ

MIT -15130.72 -13168.21 -13285.61
CODE -14431.97 -9675.18 -9442.4

ESA -15559.05 -13093.54 -16083.91
GFZ -14077.26 -17226.99 -12601.12

MADR
MIT -12545 -9754.15 -9841.81
GFZ -13547.45 -13154.12 -12347.24

MATE

MIT -15444.79 -13396.98 -19614.72
CODE -14755.39 -19547.22 -9740.76

ESA -16640.79 -14256.47 -17957.8
GFZ -15019.62 -13286.13 -18846.39

POLV

MIT -15412.214 -19874.23 -13154.72
CODE -13487.31 -13214.73 -11544.54
GFZ -19884.07 -154621.94 -13457.87

WTZZ
MIT -9274.63 -7909.88 -12539.43

CODE -8488.4 -12520.92 -4437.46

ZECK

MIT -12872.21 -9824.16 -11247.21
ESA -9845.21 -15412.65 -9576.21
GFZ -13564.46 -12545.41 -15634.29

ZIMM

MIT -14154.8 -18795.35 -13541.79
CODE -12956.03 -9714.8 -18526.42

ESA -7448.66 -6667.96 -7114.53
GFZ -14200.37 -18395.37 -13162.77

Table 4.4: MLE results of North components after data cleaning level 2

To determine which one of the two model is generally preferred, one problem is to determine
the impact of data cleaning on the realistic noise nature of GPS time series. There are no specific
standard or limit for an outlier. The data cleaning algorithm in a certain level can possibly
eliminate some realistic data points with characteristics of an outlier. And the preferred noise
model can therefore be altered. For example, in one case, the first data cleaning only eliminated
6 data points from the time series, but the preferred noise model changed from white noise plus
flicker noise to white noise plus random walk noise. In general, flicker noise plus white noise
is always more likely to be the preferred noise model of any GPS time series.

Previous studies of Zhang et al. (1997) , Mao et al. (1999) and Williams et al. (2004) all showed
that of the three models, white noise plus flicker noise is the preferred model. In Williams et al.
(2004) study, a total number of 2962 log likelihood of 954 sites were compared and 83.46% of
them suggest that white plus flicker noise is the preferred model.

Another reason that support the white noise plus flicker noise model is the prevalence of flicker
noise in so many naturally occuring phenomenon, such as sunspot variability, the wobble ot
the Earth about its axis, undersea currents, and uncertainties in time measured by atomic clocks
(Gardner, 1978). On the other hand, several studies also acknowledge the importance of ran-
dom walk noise in GPS data. Cumulative disturbances from the soils and weather displace
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geodetic monuments with respect to the deeper crust (Johnson and Agnew, 1995). Whether or
not the random walk noise is detectable depends on the length of the time series, the sampling
frequency, and the relative amplitudes of the other noise components.

4.1.2 Amplitudes estimation

Another important parameter of the noise analysis is amplitudes. Again noise amplitudes for
each site and for each component are summarized.

4.1.2.1 Amplitude of White Noise and Flicker Noise

As the flicker noise plus white noise is the generally preferred noise model. The noise am-
plitudes of these components are estimated in each time series. The results of the amplitude
estimation of GPS time series before data cleaning are showed in table 4.6. The rest are shown
in the appendix in table A.7 and A.8.

Site AC
White Noise [mm] Flicker Noise [mm]

North East Vertical North East Vertical

GLSV
MIT 0.35± 0.10 0.13± 0.26 0 6.32± 0.14 6.39± 0.14 19.65±0.19
ESA 0.49± 0.12 0.64±0.10 0 7.87± 0.19 7.88± 0.21 20.60± 0.22

GRAZ

MIT 1.26± 0.04 1.81± 0.03 1.30± 0.24 5.93± 0.17 5.64± 0.19 19.17± 0.42
CODE 0 0 0 4.19±0.04 4.85± 0.04 12.05± 0.10

ESA 1.44± 0.05 1.75± 0.06 1.94± 0.20 7.73± 0.21 8.21± 0.25 20.13± 0.49
GFZ 1.31± 0.04 1.74± 0.05 3.20± 0.10 5.84± 0.19 6.89± 0.23 15.40± 0.45

MADR
MIT 1.33± 0.14 2.12± 0.05 2.59± 0.13 6.28± 0.12 7.32± 0.21 15.61± 0.22
GFZ 1.45± 0.03 1.82± 0.06 3.06± 0.13 5.66± 0.23 5.76± 0.24 17.32± 0.37

MATE

MIT 1.19± 0.03 2.13± 0.03 2.92± 0.10 4.83± 0.14 4.60± 0.17 17.08± 0.40
CODE 0 0 0 4.22± 28.39 4.99± 0.04 11.66± 10.27

ESA 0 0 1.65 18.95 24.01 22.82
GFZ 1.49± 0.03 2.14± 0.03 4.07± 0.08 4.75± 0.14 5.31± 0.20 14.14± 0.41

POLV

MIT 1.24± 0.06 1.76± 0.03 3.45± 0.12 5.62± 0.15 6.30± 0.15 14.33± 0.35
CODE 0 0 0 6.72± 8.25 5.22± 0.06 12.25± 7.23
GFZ 1.35± 0.04 3.14± 0.04 5.25± 0.06 5.13± 0.12 4.81± 0.19 15.25± 0.36

WTZZ
MIT 0.73± 0.02 0.65± 0.02 0 3.47± 0.10 3.32± 0.10 17.48± 5.82

CODE 0 0 0 2.63± 39.17 2.52± 40.81 10.77± 9.57

ZECK

MIT 1.23± 0.04 2.14± 0.05 2.05± 0.13 5.45± 0.13 6.13± 0.18 18.10± 0.34
ESA 1.54± 0.06 2.43± 0.08 2.89± 0.16 6.89± 0.32 8.42± 0.41 17.45± 0.83
GFZ 0 0 3.15± 0.24 5.79± 0.25 6.43± 0.24 15.68± 0.43

ZIMM

MIT 1.35± 0.03 1.89± 0.04 1.88± 0.15 5.12± 0.17 5.37± 0.21 17.10± 0.40
CODE 0 0 0 4.33± 0.04 4.79± 0.04 11.07± 10.84

ESA 2.14± 0.09 2.73± 0.10 3.79± 0.19 9.91± 0.41 10.29± 0.48 17.90± 0.84
GFZ 0 0 2.9 15.82± 0.13 20.4 14.37

Table 4.6: Estimated noise amplitudes before data cleaning
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As expected, the data cleaning had some what reduced the noise amplitudes of all three com-
ponents. The horizontal component are less noisy for white and flicker noise magnitudes than
the vertical components by a factor of 2-3. And the east components are some what noisier
than the north components.

In a few of the cases before the data cleaning and many of the cases after, the algorithm would
often prefer a power-law noise only model, when the noise ratio is high. The more data were
eliminated , the closer the noise was to a power-law noise only model. This is a great proof
that data cleaning can strongly reduce the amplitude of white noise, and therefore with a high
noise ratio, with MLE, a cleaned time series often prefers a power-law noise only model.

4.1.2.2 Latitude Dependence

Williams et al. (2004) found a latitude dependence for white noise and flicker noise. First of
all, we should determine whether the noise magnitude in all three components was equal at
all latitudes using the standard F test, and the null hypothesis was rejected. A function was ar-
bitrarily derived to highlight any mid-latitude dependence and a hemisphere bias by Williams
et al. (2004). The function take the form:

σ =

{
a + be−cλ2

, if λ = 0
a + d(e−cλ2 − 1) + b, otherwise

. (4.2)

Where σ is the noise amplitude, λ is the site latitude, and a, b, c, d are the estimated parame-
ters.

Site Latitide [◦]
Noise Amplitudes [mm]

Flicker Noise White Noise
North East Vertical North East Vertical

NYAL 78.93 7.08 5.46 12.7 2.56 2.99 5.92
TIXI 71.63 5.76 7.21 14.84 2.31 2.85 5.06

YELL 62.48 5.9 7.95 14.15 2.38 3.12 5.22
IRKT 52.22 5.5 10.81 14.54 2.26 3.27 5.10

WTZZ 49.14 2.63 2.52 10.77 1.95 3.36 5.17
GRAZ 47.07 4.19 4.85 12.05 2.10 2.94 5.92
ZIMM 46.88 4.33 4.79 11.07 2.17 3.14 6.03
MATE 40.65 4.22 5 11.66 3.11 2.51 5.13

WUHN 30.53 5.45 12.8 12.16 4.09 3.78 6.99
IISC 13.02 13 16.85 12.51 3.89 4.22 8.12

BOGT 4.64 6.73 4.59 18.83 4.01 4.64 9.42
NTUS 1.35 4.95 11.6 12.04 3.48 4.79 8.74
KARR -20.98 21.77 14.1 9.02 2.55 5.12 8.15
PERT -31.8 23.5 14.4 8.59 1.75 7.20 4.29
KERG -49.35 5.42 4.79 13.92 2.21 2.39 5.96
MAC1 -54.5 11.76 5.98 7.99 1.88 2.49 4.00
MAW1 -67.6 3.72 3.23 8.6 1.86 1.62 4.80
MCM4 -77.84 4.99 4.98 10.69 1.50 2.49 3.85

Table 4.7: Selected sites to demonstrate latitude dependence
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To demonstrate the latitude dependence of noise components, 18 sites with different latitudes
were selected as showed in table 4.7 and figure 4.3. The noise amplitudes of flicker noise and
white noise for each of the three components were compared and a polyfit was calculated for
each noise group and plotted, so that we can better understand the variation tendency of the
amplitudes with the change of the latitude. The time series was from analysis center CODE.
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Figure 4.4: Latitude dependence of noise amplitudes

As showed in figure 4.4, in all cases the fit to data does suggest a latitude dependence. The fit
to equation showed a significant positive bias for Southern Hemisphere sites. They are noisier
than sites in the Northern Hemisphere And sites near the equator usually have the noise with
greatest amplitudes.

4.2 Noise Models with Non-integer Spectral Index

As we have discovered, a noise model with integer spectral index may not be the optimal
description for GPS time series. With limited knowledge of the noise source, site history and
criteria for outliers, it is hard to decide between the white plus flicker noise model and white
plus random walk noise model. With estimated spectral index we can have a more realistic
understanding of the noise components. More accuracy and efficiency are therefore guaranteed
in the search for the physical phenomena that affects the time series.

On the assumption that all the noise are composed of white noise and power-law noise, 96 time
series of 10 selected stations from different ACs were analyzed again to estimate the spectral
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index of their power-law noise components. With time series of this size (around 7000 data
points), a MLE for one station takes several days. North, east and up components are treated
separately. Table 4.8 shows the estimation results. Spectral indices estimated from different
analysis centers for a same station show, to some extent, agreement with each other.

Site AC
Spectral Index κ

North East Vertical

GLSV

CODE -1.06 -1.01 -1.07
ESA -1.10 -1.00 -0.99
GFZ -0.97 -1.05 -0.95

GRAZ

CODE -1.57 -1.39 -0.93
ESA -0.90 -1.01 -0.89
GFZ -1.03 -0.84 -0.89
MIT -1.36 -0.95 -0.89

MADR
GFZ -0.99 -0.93 -0.89
MIT -0.92 -1.20 -0.93

MATE

CODE -1.41 -1.14 -1.62
ESA -0.97 -1.02 -1.30
GFZ -0.71 -1.00 -1.01
MIT -0.94 -0.82 -0.83

NICO
CODE -1.45 -1.32 -1.02
GFZ -1.23 -1.00 -1.04

POLV

MIT -0.92 -0.98 -1.21
CODE -1.35 -1.46 -1.10
GFZ -0.87 -0.97 -1.03

POTS

CODE -1.48 -1.33 -1.54
ESA -0.94 -0.78 -1.02
GFZ -0.70 -0.98 -1.00
MIT -1.02 -1.01 -0.97

WTZZ

CODE -1.68 -1.58 -1.43
GFZ -0.92 -1.25 -1.08
MIT -0.98 -0.89 -0.99

ZECK

MIT -0.99 -1.23 -0.86
ESA -0.76 -1.01 -0.90
GFZ -1.00 -0.60 -1.33

ZIMM

CODE -1.51 -1.33 -0.84
ESA -1.05 -1.03 -0.72
GFZ -0.80 -0.86 -0.76
MIT -0.87 -0.52 -0.82

Table 4.8: Estimated Spectral index of Power Law Noise

The spectral indices range from –0.5 to –1.6 with a mean index of –1.05 and standard deviation
of 0.26. The results show a mean and standard deviation that is consistent with the values seen
for the simulated time series containing white noise plus flicker noise, which also confirms the
previous conclusion of Williams et al. (2004) that the noise processes in GPS time series can be
adequately described by a white noise plus flicker noise model.
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Figure 4.5: Histogram of the estimated spectral index

Figure 4.5 is a histogram of the estimated spectral index for the north, east, and vertical com-
ponents at different sites, the red lines are calculated and plotted with matlab function poly f it
. Because of the limited number of sites estimated, all of the results of a same direction were
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combined together. Values inside the parentheses indicate the mean and standard deviation of
the spectral estimates.

4.3 Comparison between Different ACs

For our analysis we mainly used the GPS data from four ACs (CODE, ESA, GFZ and MIT). A com-
parison between these analysis centers was made, in order to find out the differences between
GPS time series from different analysis centers.

We plotted the cleaned time series of the same site from different ACs with Matlab. Figure
4.6 shows us the east components of the GPS time series of site MATE. In order to make the
demonstration of the differences more significant, we extracted two years period (2000− 2002)
out of the time series.
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Figure 4.6: East components of site MATE

As we can see, time series from different ACs showed a relatively good inter-AC agreement.
They exhibited similar patterns with time and had approximately equal noise amplitudes. This
is also proved by the noise analysis using maximum likelihood estimation.

However, during our research, we found that time series from analysis center ESA, in some
of the cases, showed relatively greater differences compared with the other three ACs. Figure
4.7 is an example of the case, the vertical components of the GPS time series of site GRAZ were
showed in the plot.

As demonstrated below in figure 4.7, while time series from three analysis centers (CODE, GFZ

and MIT) showed great inter-AC agreement with almost identical forms, the time series from
ESA had significantly lower value of the vertical components compared with the others by
around 4cm.
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Figure 4.7: Up components of site GRAZ

It is obvious from the plot that the time series from ESA shares an identical pattern with the
other time series. The possible reason for the difference is that at the beginning of some time
series from ESA there are offsets, which may affect the value, but does not change the noise
characteristic of a time series. However, the reason why there is significant offsets only in some
of the time series from analysis center ESA is unknown.

The MLE results of different ACs were also compared. We calculated the percentage of time
series from different ACs for which the likelihood value for a specific model is the highest. In
another word, this noise model is determined to be the preferred model to describe the time
series. Since no time series prefer a white noise only model, we only compare the two noise
models of white noise plus power-law noise, the influence of data cleaning was also taken into
consideration.

Data Cleaning AC
Percentage

White + Flicker White + Random Walk

Before

CODE 40% 60%
ESA 86.7% 13.3%
GFZ 72.2% 27.8%
MIT 100% 0%

Level 1

CODE 33.3% 66.7%
ESA 73.3% 26.7%
GFZ 38.9% 61.1%
MIT 83.3% 16.7%

Level 2

CODE 26.7% 73.3%
ESA 73.3% 26.7%
GFZ 38.9% 61.1%
MIT 79.2% 20.8%

Table 4.9: Percentage of time series from different ACs with preferred noise model

From table 4.9 we know that time series from analysis center CODE are more likely to prefer a
noise model which combines white noise and random walk noise, while time series from ESA

and MIT are more likely to prefer a white noise plus flicker noise model.
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AC
Spectral Index κ (mean)
North East Vertical

CODE -1.44 -1.32 -1.19
ESA -1.01 -1.04 -1.03
GFZ -0.99 -1.02 -1.02
MIT -0.99 -0.99 -0.99

Combined -1.02 -1.08 -1.04

Table 4.10: Average of estimated spectral indices from different ACs

In the second part of our thesis, the spectral indices of the power-law noise components of GPS

time series were estimated. To make a comparison between different ACs, the averages of the
estimated spectral indices from each AC were calculated as showed in table 4.10. While the
estimated spectral indices from most of the ACs are very close to the combined average and,
at the same time, close to the spectral index of flicker noise (κ = −1), the estimated spectral
indices from analysis center CODE are significantly lower, especially in horizontal components.
This is probably also the reason why time series from CODE are more likely to prefer the white
noise plus random walk noise model.
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Conclusion

For this thesis time series from different sites have been analysed in order to assess their noise
characteristics. All of the data are provided by different analysis centers of the International
GNSS Service after the second data reprocessing campaign. The average length of time series
was around 6500 points (over 18 years).

This study as well as previous work indicates that significant coloured noise is ubiquitous in
continuous GPS time series. This should be taken into account for any derived parameters and
their uncertainties. Compared with white noise only model and white noise plus random walk
noise model, the MLE analysis indicates that a combination of white noise and flicker noise is
an appropriate stochastic model for all three coordinate components, which is also proved by
the spectral index estimation of power-law noise. The estimated spectral index has a mean of
–1.05 with a standard deviation of 0.26, consistent with the value of flicker noise (κ = −1).

For the white noise and flicker noise amplitudes, the horizontal components are less noisy than
the vertical components, and the east components are some what noisier than the north com-
ponents. The elimination of outliers shows a significant influence on the amplitudes of white
noise, which may greatly increase the ratio of power-law noise and white noise and therefore
make power-law noise only as a preferred noise model for many cleaned time series.

Both white noise and flicker noise amplitudes also show a latitude dependence with a maxi-
mum at the equator. For both noise components a southern hemisphere bias is apparent. south-
ern hemisphere sites are noisier.

Compared with recent years, the noise amplitudes of GPS time series before 2000 are substan-
tially higher. The possible reason is that the spatially correlated noise is partly related to the
reference frame, which means as the number of sites available for the global reference frame
stabilization increases, the noise related to it will be reduced. This may also be the reason for
the southern hemisphere bias mentioned above.

A comparison between time series from different ACs were made. In general the four analysis
centers we used in this thesis (CODE, ESA, GFZ and MIT) showed a good inter-AC agreement.
In some of the cases, time series from analysis center ESA have significantly lower values while
they share almost identical patterns with time series from the other three ACs. The possible
reason is that at the beginning of these time series there are offsets, which may affect the value,
but does not change the noise characteristic of a time series. While white noise plus flicker noise
is generally regarded as preferred noise model, time series from analysis center CODE are more
likely to prefer a white noise plus random walk noise model. The average of estimated spectral
indices of the power-law noise components from CODE are significantly lower than those from
the other ACs, and the estimated spectral indices from the other three ACs (ESA, GFZ and MIT)
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are very close to the spectral index of flicker noise (κ = −1). This is probably the reason why
time series from CODE are more likely to prefer the white noise plus random walk noise model
(κ = −2).

From this thesis and many previous work we know that although white noise plus flicker
noise is dominant as preferred noise model for GPS time series, there are a variety of other
noise sources that may dominate including, for example, monument instabilities (random walk
noise) and localized deformation due to changes in groundwater (unknown power-law noise
plus annually repeating signals). That is the reason why classification and quantification of the
noise components are so important in providing means for reducing the noise and increasing
the accuracy and precision.
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Appendix A

Estimation Results

A.1 MLE Value of Different Noise Model

Site AC
MLE Value (East)

White only White + Flicker White + Random Walk

GLSV
MIT -13496.35 -9916.05 -10072.89
ESA -10823.06 -8772.12 -8904.11

GRAZ

MIT -16857.89 -15823.51 -15940.01
CODE -14839.69 -10870.45 -10907.84

ESA -15774.67 -14178.98 -14265.95
GFZ -15965.6 -14989.57 -15137.07

MADR
MIT -15321.12 -12354.21 -12547.35
GFZ -15412.34 -9845.98 -9987.35

MATE

MIT -18046.94 -16349.95 -16381.23
CODE -16418.13 -11103.35 -11363.21

ESA -17394.35 -15758.84 -19791.13
GFZ -17472.97 -15851.51 -15916.72

POLV

MIT -15241.21 -12471.34 -13564.49
CODE -12143.21 -9845.32 -10021.24
GFZ -15412.68 -9874.65 -9987.74

WTZZ
MIT -9345.14 -7529.93 -7634.78

CODE -8837.64 -4601.72 -4288.69

ZECK

MIT -12145.65 -10047.54 -10121.78
ESA -16547.54 -12087.61 -12236.36
GFZ -15657.31 -12001.32 -12354.83

ZIMM

MIT -16603.83 -16100.2 -16215.71
CODE -13674.71 -10848.69 -10976.92

ESA -7676.44 -7243.19 -7277.5
GFZ -17192.74 -16712.82 -20590.65

Table A.1: MLE results of East components before data cleaning



XVIII Appendix A Appendix

Site AC
MLE Value (East)

White only White + Flicker White + Random Walk

GLSV
MIT -13431.27 -15634.79 -9911.31
ESA -10736.25 -8646.8 -8776.84

GRAZ

MIT -15771.11 -14175.34 -14330.2
CODE -14730.65 -10679.32 -10721.65

ESA -15668.71 -14054.53 -14130.43
GFZ -15401.83 -19450.9 -14411.83

MADR
MIT -13241.21 -11241.32 -11345.21
GFZ -13541.54 -10032.53 -10159.83

MATE

MIT -16976.27 -21064.97 -14595.41
CODE -16278.87 -20900.32 -11282.56

ESA -17199.03 -19615.64 -15525.51
GFZ -17015.14 -20582.92 -15319.36

POLV

MIT -14514.41 -12147.53 -112357.94
CODE -16519.55 -15476.95 -13654.54
GFZ -15648.32 -10254.61 -10578.94

WTZZ
MIT -12107.8 -11087.34 -11200.74

CODE -11354.55 -8567.08 -8615.67

ZECK

MIT -11459.71 -8569.36 -8474.38
ESA -15674.95 -10254.98 -10023.43
GFZ -14378.53 -12001.24 -12044.79

ZIMM

MIT -15523.67 -14896.41 -15008.97
CODE -13603.73 -10769.85 -10900.56

ESA -7645.83 -7209.3 -7243.45
GFZ -15424.96 -19933.85 -14492.59

Table A.2: MLE results of East components after data cleaning level 1
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Site AC
MLE Value (East)

White only White + Flicker White + Random Walk

GLSV
MIT -13215.37 -9555.14 -9709.01
ESA -10503.88 -8464.19 -8579.16

GRAZ

MIT -15184.7 -13550.1 -13651.39
CODE -14404.59 -10275.33 -10315.12

ESA -15342.93 -17687.14 -13843.5
GFZ -14911.71 -19198.85 -13848.28

MADR
MIT -145873.47 -19476.33 -12478.64
GFZ -15947.26 -13613.28 -13862.57

MATE

MIT -16725.57 -14345.2 -20837.48
CODE -16169.98 -20793.25 -11200.54

ESA -16952.41 -19418.99 -15254.72
GFZ -16530.43 -20202.83 -14673.79

POLV

MIT -16781.27 -13468.18 -13784.59
CODE -15329.26 -19945.12 -14678.46
GFZ -14653.26 -18472.59 -12534.79

WTZZ
MIT -9250.72 -7655.57 -13847.71

CODE -8749.47 -4274.59 -13912.06

ZECK

MIT -13378.54 -15487.65 -11547.96
ESA -16541.57 -120487.32 -14213.73
GFZ -15542.67 -11354.92 -15412.35

ZIMM

MIT -14902.42 -19977.35 -14407.6
CODE -13370.76 -19701.3 -10724.05

ESA -7397.55 -7031.94 -7522.49
GFZ -14948.28 -19683.16 -13976.99

Table A.3: MLE results of East components after data cleaning level 2
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Site AC
MLE Value (Up)

White only White + Flicker White + Random Walk

GLSV
MIT -17974.25 -16073.2 -16305.39
ESA -13903.21 -12505.04 -12701.06

GRAZ

MIT -23396.84 -20633.86 -20913.06
CODE -23145.19 -17366.47 -16610.36

ESA -20404.94 -17979.81 -18175.44
GFZ -22377.99 -19540.86 -19708.67

MADR
MIT -20457.35 -16587.64 -19846.37
GFZ -22478.65 -16541.54 -18474.65

MATE

MIT -24017.44 -21379.41 -21445.38
CODE -23140.29 -17182.46 -16800.22

ESA -23139.69 -19842.46 -19881.87
GFZ -22653.88 -20898.37 -20940.8

POLV

MIT -18465.74 -16403.52 -16742.38
CODE -21310.24 -18656.53 -18452.37
GFZ -22485.31 -18569.66 -18214.75

WTZZ
MIT -15939.9 -14509.5 -14737.31

CODE -15469.38 -12300.43 -11284.68

ZECK

MIT -18741.25 -15431.65 -15687.32
ESA -21966.81 -18432.68 -19457.86
GFZ -15542.67 -11354.92 -15412.35

ZIMM

MIT -22247.99 -20562.48 -20817.02
CODE -21277.51 -16868.08 -16257.73

ESA -8869.8 -8384.52 -8454.07
GFZ -21934.73 -20437.91 -20537.45

Table A.4: MLE results of Up components before data cleaning
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Site AC
MLE Value (Up)

White only White + Flicker White + Random Walk

GLSV
MIT -17960.13 -16107.71 -16286.18
ESA -13795.51 -12403.64 -12602.11

GRAZ

MIT -23181.87 -20322.97 -20586.68
CODE -23033.76 -17224.7 -16511.01

ESA -20170.7 -17744.2 -17912.07
GFZ -22137.85 -19246.41 -19339.39

MADR
MIT -19578.36 -17428.62 -17658.59
GFZ -20164.74 -18465.91 -18367.64

MATE

MIT -22708.5 -20827.51 -20836.23
CODE -21053.92 -16922.59 -16616.09

ESA -20672.63 -19124.89 -19138.56
GFZ -22046.52 -20526.73 -20503.97

POLV

MIT -22647.32 -18635.24 -18432.65
CODE -19346.54 -16472.55 -16325.41
GFZ -17462.94 -16474.46 -16354.87

WTZZ
MIT -16859.63 -15203.76 -15375.65

CODE -16662.77 -12904.62 -12515.25

ZECK

MIT -17645.28 -14354.33 -14487.78
ESA -18465.84 -16352.12 -16472.51
GFZ -18848.29 -15211.46 -15343.62

ZIMM

MIT -21791.84 -19994.16 -20245.99
CODE -21102.17 -16671.87 -16065.54

ESA -8736.6 -8225.05 -8291.77
GFZ -21572.89 -19953.83 -20042.39

Table A.5: MLE results of Up components after data cleaning level 1
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Site AC
MLE Value (Up)

White only White + Flicker White + Random Walk

GLSV
MIT -17431.03 -15606.22 -15850.22
ESA -13376.61 -12013.07 -12205.06

GRAZ

MIT -22831.61 -19943.41 -20198.37
CODE -22695.51 -16851.79 -16156.48

ESA -19733.96 -17375.82 -17484.2
GFZ -21722.37 -18619.49 -18710.57

MADR
MIT -22145.32 -18465.36 -183241.68
GFZ -19642.38 -16433.52 -16358.72

MATE

MIT -21540.55 -20316.82 -20369.67
CODE -20595.25 -16666.74 -16437.6

ESA -19944.57 -18682.24 -18739.38
GFZ -20928.82 -19698.7 -19688.81

POLV

MIT -21632.57 -18135.65 -18343.62
CODE -20418.67 -18422.65 -17896.58
GFZ -19632.44 -17475.23 -16989.67

WTZZ
MIT -15603.23 -14224.06 -14426.63

CODE -15197.83 -11161.94 -12172.77

ZECK

MIT -15421.37 -13004.56 -13298.73
ESA -16287.59 -14259.68 -14322.71
GFZ -20014.39 -18239.61 -18456.37

ZIMM

MIT -21301.73 -19587.47 -19748.32
CODE -20721.85 -16458.17 -15773.26

ESA -8397.11 -7906.93 -7957.58
GFZ -21101.54 -19428.33 -19514.48

Table A.6: MLE results of Up components after data cleaning level 2
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A.2 Noise Amplitude Estimation

Site AC
White Noise [mm] Flicker Noise [mm]

North East Vertical North East Vertical

GLSV
MIT 0 0 0 11.04± 0.11 18.16± 0.17 19.79± 0.19
ESA 0.44± 0.12 0.62± 0.10 0 7.69± 0.18 7.71± 0.21 20.31± 4.50

GRAZ

MIT 1.09± 0.04 1.20± 0.04 1.39± 0.20 5.71± 0.16 5.68± 0.16 18.21± 0.40
CODE 0 0 0 4.18± 0.04 4.74± 25.23 11.85± 10.08

ESA 1.45± 0.05 1.75± 0.06 2.25± 0.16 7.48± 0.20 8.01± 0.25 18.65± 0.16
GFZ 0 0 2.93 15.77± 0.14 21.54± 0.19 15.47

MADR
MIT 0 0 2.83± 0.12 7.41± 0.10 15.12± 0.13 16.23± 0.21

GFZ 0 0 2.48± 0.13 12.32± 0.15 11.36± 0.21 15.22± 0.28

MATE

MIT 0 0 2.86 17.96 21.46± 0.18 15.58
CODE 0 0 0 16.77± 0.14 19.99± 0.17 11.43± 0.10

ESA 0 0 2.81 18.94 23.95 17.6
GFZ 0 0 3.72 18.54± 0.16 22.84± 0.20 14.42

POLV

MIT 0 0 2.45± 0.26 7.63± 0.17 11.23± 0.21 15.62± 0.28
CODE 0 0 0 5.86± 0.25 4.78± 0.13 12.03± 0.34
GFZ 0 0 2.23± 0.06 5.17± 0.15 7.34± 0.17 14.25± 0.36

WTZZ
MIT 1.22± 0.05 1.36± 0.05 2.08± 0.16 6.22± 0.20 6.34± 0.20 17.35± 0.47

CODE 0 0 0 4.61± 0.04 5.34± 0.05 12.09± 0.12

ZECK

MIT 1.25± 0.04 1.62± 0.06 3.12± 0.12 4.73± 0.15 4.84± 0.17 12.37± 0.28
ESA 0 0 1.89± 0.13 10.27± 0.14 6.32± 0.15 16.21± 0.35
GFZ 0 0 2.79± 0.18 7.79± 0.23 7.25± 0.04 11.23± 0.22

ZIMM

MIT 1.20± 0.03 1.59± 0.03 1.62± 0.15 4.98± 0.15 4.65± 0.17 16.19± 0.37
CODE 0 0 0 4.25± 0.03 4.75± 0.04 10.81± 0.09

ESA 2.14± 0.09 2.70± 0.10 3.59± 0.18 9.85± 0.41 10.25± 0.48 16.94± 0.79
GFZ 0 0 2.67 15.46 18.71 13.77

Table A.7: Estimated noise amplitudes after data cleaning level 1



XXIV Appendix A Appendix

Site AC
White Noise [mm] Flicker Noise [mm]

North East Vertical North East Vertical

GLSV
MIT 0 0 0 6.05± 0.06 6.16± 0.06 18.81± 0.18
ESA 0.36± 0.15 0.73± 0.20 0 7.71± 0.18 7.37± 0.20 19.38± 0.21

GRAZ

MIT 1.10± 0.03 1.26± 0.03 1.56± 0.17 4.79± 0.14 4.57± 0.14 17.24± 0.39
CODE 0 0 0 4.16± 0.03 4.53± 26.27 11.47± 10.37

ESA 0 0 1.49 16.69± 0.15 21.98 19.53
GFZ 0 0 2.63 15.67 21.34 14.88

MADR
MIT 0 0 2.76 16.79 15.68 15.13
GFZ 0 0 3.12 17.42± 0.10 18.35 15.67

MATE

MIT 0 0 2.98 18.04 21.53 14.05
CODE 0 0 0 16.81 20.05 11.19± 0.09

ESA 0 0 2.98 18.93 23.95± 0.21 15.87
GFZ 0 0 3.51 18.45± 0.16 22.67 13.08

POLV

MIT 0 0 2.98 16.23 19.42 16.15
CODE 0 0 0 17.91 22.05± 0.09 14.26
GFZ 0 0 2.51 16.37± 0.12 18.24 14.95

WTZZ
MIT 0 0 0 12.2 15.74 16.94

CODE 0 0 0 11.45± 0.11 14.91± 0.15 10.72± 0.10

ZECK

MIT 0 0 0 16.32± 0.11 21.32 15.61
ESA 0 0 2.94 17.14± 0.15 17.28± 0.24 14.82
GFZ 0 0 3.17 16.43± 0.11 22.18 17.02

ZIMM

MIT 0 0 1.35 15.59± 0.13 18.46 16.16
CODE 0 0 0 14.27 16.83 10.68

ESA 0 0 3.4 16.64± 0.23 19.49± 0.27 15.9
GFZ 0 0 2.5 15.40± 0.13 18.58 13.33

Table A.8: Estimated noise amplitudes after data cleaning level 2
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