
Contact Investigations of Granular Mechanical

Media in a Tumbling Sorting Machine

Von der Fakultät Maschinenbau der Universität Stuttgart

zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Abhandlung

by

Hashem Alkhaldi

geboren in Beirut (Libanon)

Hauptberichter:

Mitberichter:

Prof. Dr.–Ing. P. Eberhard

Prof. Dr. O. Abuzeid

Tag der Einreichung: 13. April 2007

Tag der mündlichen Prüfung: 19. June 2007

Institut für Technische und Numerische Mechanik
Universität Stuttgart

2007

Acknowledgements

It gives me great pleasure to take this opportunity to acknowledge my indebtedness to all

those who have helped me in one way or another in completing the present work.

First and foremost, I would like to express my deepest thanks to my supervisor, Prof.

Dr.-Ing. P. Eberhard, for his help, enthusiastic support, continuous encouragement and

guidance during my research work. I am grateful to him for providing the opportunity to

do this research under his supervision and his excellent monitoring of the study through

numerous discussions and useful advice, without which this project would never have come

to fruition. Furthermore, he is gratefully acknowledged for the real comfortable working

environment and computer availability. I also want to thank Prof. Dr. O. Abuzeid for

being the second reviewer of the thesis.

I owe special thanks to Prof. Dr.-Ing. W. Schiehlen for the helpful and enjoyable dis-

cussions I had with him. Reviewing always my annual reports and supporting me by

DAAD is highly appreciated and gratefully acknowledged. All love and gratitude for our

secretary Mrs. R. Prommersberger. They all provided me with a family-like atmosphere

and gave me warm-hearted help whenever I needed.

I am greatly grateful to my present and former colleagues, particularly Dr.-Ing. A. Eiber,

B. Muth, P. Ziegler, S. Ebrahimi, M. Ackermann and F. Fleißner, for their helpful and

fruitful discussions, and for good time we spend together. Furthermore, I would like to

to express my sincere thanks to all other colleagues at the ITM (Institute of Engineering

and Computational Mechanics) who in one way or another helped me to accomplish this

work.

I am greatly indebted to DAAD (German Academic Exchange Service) for their financial

support during my Ph.D. work in Germany, and I would like to express my deepest

appreciation and thanks to all members of DAAD for their assistance, advice and support.

Many thanks are also due to Dr.-Ing. K. Friedrich from Allgaier-Werke GmbH, Uhingen

for his assistance and cooperation.

Finally, I thank my wife for her continuous support and patience during the years I spent

on my Ph.D. work and my mother for her encouragement and continuous support.

Stuttgart, April 2007 Hashem Alkhaldi

To my mother, my wife Shahnaz,

and my children Aous, Rimaz & Rayan

with love and gratitude

I

Contents

Zusammenfassung IV

1 Introduction 1

1.1 Molecular dynamics, granular matter and parallel programming 1

1.2 Literature survey and recent research . 3

1.2.1 Classical molecular and contact dynamics 3

1.2.2 Parallel computation . 4

1.2.3 Segregation and particle separation 6

1.3 Layout of the thesis . 8

2 Basics of Granular Matter and Molecular Dynamics 10

2.1 Description of the contact problem . 11

2.1.1 Verlet algorithm . 11

2.1.2 Contact time calculation . 14

2.2 Contact forces calculation . 17

2.2.1 Discrete element method . 17

2.2.2 Penalty approach of spring-dashpot model 19

2.3 Sorting algorithms and neighbor list computations 27

2.3.1 Verlet approach . 28

2.3.2 Linked linear list approach . 30

2.4 Computational structure of the serial MD code 37

2.4.1 Code initialization . 37

2.4.2 Description of the program . 37

II Contents

3 Parallelizing Molecular Dynamics Using Spatial Decomposition 41

3.1 High performance computers . 42

3.1.1 Shared memory architecture . 44

3.1.2 Distributed memory architecture 45

3.2 Parallel virtual machine (PVM) . 46

3.3 Computational structure of the parallel MD code 48

3.3.1 Master program . 48

3.3.2 Slave programs . 49

3.3.3 Control-output program for visualization 50

3.4 Parallelized domain decomposition strategies 50

3.4.1 Replicated data method . 51

3.4.2 Hierarchical tree decomposition method 52

3.5 Spatial decomposition method (SDM) . 53

3.5.1 Qualitative overview . 54

3.5.2 Message communication pattern 55

3.5.3 Mathematical formulation . 56

3.6 Simulation results . 63

4 Screening and Particle Segregation 73

4.1 Description of the tumbler screening machine 75

4.2 Operation and machine movement . 76

4.2.1 Machine movement . 77

4.2.2 Particle movement . 77

4.3 Particle modelling and contact calculations 79

4.3.1 Particle-to-particle contact . 79

4.3.2 Particle-to-mesh contact . 79

4.3.3 Contact forces with the mesh . 86

4.3.4 Numerical time integration . 91

4.4 Parametric study and simulation results 91

4.4.1 Influence of the machine speed . 94

Contents III

4.4.2 Influence of the feeding rate . 96

4.4.3 Influence of the inclination angles 98

4.4.4 Influence of the shaft eccentricity 99

4.4.5 Influence of the barrel oscillation 100

4.4.6 Influence of the surface friction coefficient 102

4.4.7 Influence of the system size . 102

5 Conclusions and Closing Remarks 106

Appendix 109

A.1 Computational details- input and output files 109

A.1.1 Input files . 109

A.1.2 Output files . 110

Bibliography 112

Symbols 119

IV

Zusammenfassung

Aufgrund ihrer weitverbreiteten Anwendung in industriellen und technologischen

Prozessen sind granulare Medien als Inhalt dieser Arbeit von grossem wissenschaftlichen

Interesse. Ein Scherpunkt dieser Arbeit ist, einen allgemeinen Überblick über einige bere-

its existierende Methoden zur Simulation granularer Medien zu geben. Die Verkürzung

von Rechenzeiten durch die Verwendung paralleler Berechnungsansätze ist ein weiteres

Thema dieser Arbeit. Die Erweiterung bestehender Algorithmen, die Parallelisierung

eines bestehenden Simulationsprogramms, sowie die Untersuchung und Analyse einer

realen industriellen Anwendung zum Sieben von Partikeln mit einer Taumelsiebmaschine

mit verschiedenen Parameterkonfigurationen werden in dieser Arbeit vorgestellt. Diese

Ziele werden durch einen guten Überblick über die dynamischen Betriebsparameter erre-

icht, welche die Effizienz der Taumelsiebmaschinen, d.h. den Trennprozess, beeinflussen.

Zu diesem Zweck gibt Kapitel 1 eine kurze Einführung in die in granularen Medien auftre-

tenden Kontaktprobleme zusammen mit Erläuterungen zu einigen numerischen Algorith-

men die in der sequentiellen und parallelen Simulation Verwendung finden. In diesem

Kapitel wird ebenfalls ein allgemeiner und kurzer Überblick über einige Studien und die

Einflussparameter, die die Partikelsiebtechnologie beeinflussen, gewährt.

In Kapitel 2 wird eine allgemeine Beschreibung der Probleme der Molekulardynamik

gegeben und es werden die Grundeigenschaften granularer Medien erläutert. Einige der

am häufigsten verwendeten Algorithmen und Modelle, z.B. die Diskrete Element Methode

(DEM) und die Penalty-Methode mit Feder-Dämpfersystemen, werden in diesem Kapi-

tel einführt. Verschiedene Strategien serieller und paralleler Kollisionserkennung und

Kontaktkraftberechnung werden entwickelt, implementiert und untersucht. In diesem

Kapitel werden auch die bei normaler und tangentialer Kollision auftretenden Effekte,

sowie der Einfluss von Dämpfung und Adhesion auf die kollidierenden, runden Partikel

erklärt. Einige Ansätze zur Beschleunigung der Simulation von Partikelsystemen durch

die Sortierung mit geeigneten Sortierverfahren und die Nachbarschaftssuche mit Listen,

z.B. der Verlet-Ansatz und verkettete lineare Listen werden verwendet und verglichen.

Verschiedene Integrationsverfahren werden ebenfalls erläutert. Es wird beobachtet, dass

Verlet-Integratoren effizient und genau sind und damit geeignet sind zur Integration der

Bewegungsgleichungen granularer Systeme. Das Kapitel endet mit einer Beschreibung

Zusammenfassung V

der Struktur des verwendeten seriellen Molekulardynamikprograms MOLDYN und der

das Simulationsproblem beschreibenden Eingabefiles.

Da themenverwandte Untersuchungen oft auf numerischer Simulation basieren, ist die

Untersuchung numerischer Phänomene großer granularer Systeme mit Personalcomputern

mit einer CPU eine Herausforderung. In Kapitel 3 wird die räumliche Gebietsunterteilung

zur Erzeugung des parallelen Codes verwendet. Diese Methode gewährleistet Skalier-

barkeit und gute Resultate besonders in Verbindung mit Lastverteilung. Eine Vorausset-

zung für den Erfolg numerischer Berechnungen ist der Zugang zu Computersystemen, die

mächtig genug sind, um das zu untersuchende Problem zu berechnen. In diesem Kapitel

werden bestehende sequentielle Algorithmen erweitert und verändert, um sie an mod-

erne Hochleistungsrechner anzupassen. Die Bibliotheksfunktionen der Parallel Virtual

Machine (PVM) werden für die Kommunikation zwischen Prozessoren in einem System

mit verteiltem Speicher verwendet. Dieses Kapitel verdeutlicht auch den Zusammenhang

zwischen dem Speedup, dem häufig verwendeten Messwert für Programmskalierbarkeit

und der größe des Systems. Es wird beobachtet, dass die Leistung der Simulation sich

mit steigender Partikelzahl verbessert. Der Grund liegt im Kommunikations- und Daten-

fluss, der bei steigender Partikelzahl effizienter wird. In einigen Fällen wurde superlineares

Speedupverhalten beobachtet, was auf Cache-Effekte der einzelnen Prozessoren zurück-

zuführen sein könnte.

Als praktische, industrielle Anwendung granularer Untersuchungen wurde das Par-

tikelsieben in Kapitel 4 betrachtet, welches eine essentielle Technologie zur Partikeltren-

nung in vielen industriellen Bereichen ist. Dieses Kapitel stellt ein numerisches Modell

zur Untersuchung des Siebprozesses unter Verwendung der Diskrete Element Method vor,

bei dem die Bewegung der einzelnen Partikel getrennt simuliert werden. Dynamische Pa-

rameter wie Partikelpositionen, Geschwindigkeiten und Orientierungen werden in jedem

Simulationszeitschritt verfolgt. Das betrachtete Problem liegt in der Trennung runder

Partikel verschiedener Größen mit Hilfe eines taumelnden vertikalen Zylinders, in den

das Siebmaterial stetig zugeführt wird. Dieser Zylinder kann als glatter oder abgesetzter,

mehrstufiger vertikaler Behälter beschaffen sein und wird als großes Reservoir für das Sieb-

material betrachtet. Die kleineren Partikel fallen normalerweise durch die Sieböffnungen,

wohingegen die größeren Partikel zurückprallen und an konzentrischen Auslassöffnun-

gen an der Zylinderwand austreten. Während des Siebvorgangs treten sowohl Partikel-

Partikel-Wechselwirkungen als auch Partikel-Wand-Wechselwirkungen auf. Hierbei wird

ein Feder-Dämpfer Penalty-Ansatz zur Berechnung der normalen Wechselwirkungskräfte

und der Reibkräfte verwendet.

Als Folge der Kollisionen dissipiert kinetische Energie. Die Partikelverteilung, der Durch-

satz der getrennten Partikel und die Effizienz des Trennvorgangs werden untersucht. Für

bestimmte Geometriekonstellationen und Kontaktparameter wird der Partikelfluss, die

Siebgüte und die Maschineneffizienz aufgezeichnet. Es werden Siebvorgänge in glatten

VI Zusammenfassung

und gestuften Taumelzylindern untersucht. Sowohl für kontinuierliches Sieben als auch

für das Sieben fester Chargengrößen ergibt sich eine ausgeprägte Abhängigkeit des Sieb-

vorgangs von der Rotationsgeschwindigkeit der Trommel. Die Rotationsgeschwindigkeit

sollte innerhalb bestimmter Grenzen festgelegt werden, um die Anzahl sortierter Partikel

zu maximieren und den Durchsatz der verschiedenen Siebstufen zu optimieren. Zu hohe

oder zu niedrige Geschwindigkeit führt zu einem schlechten Siebergebnis.

Darüberhinaus haben die Zuführrate, der Neigungswinkel und die Exzentrizität einen

großen Einfluß auf die Effizienz der Maschine. Kleine Winkel zwischen 0.5◦ und 1◦ und

Exzentrizitäten zwischen 25 und 50 mm sind zu empfehlen. Die Siebrauheit hat eben-

falls einen Einfluss auf die Anzahl der Partikel, die in der Siebtrommel verbleiben oder

diese verlassen. Als optimaler Wert wird ein relativ geringer Reibwert vorgeschlagen.

Desweiteren haben die Schwingungen der Trommel einen signifikanten Einfluss auf den

Siebprozess. Schwingende Bewegungen der Siebtrommel führen zu besseren Ergebnissen

als rotationsfreie Bewegungen oder Bewegungen mit kontinuierlicher Rotation. Bei gle-

ichen Systemparametern liefert chargenweises Sieben bessere Ergebnisse als Sieben mit

kontinuierlicher Zufuhr.

Eine Verbesserung der Genauigkeit der Simulation erfordert eine noch realistischere Im-

plementierung der Kontaktkräfte und der zugeordneten Kontaktparameter des granularen

Systems. Physikalische Kontakte innerhalb der Taumelsiebmaschine erfordern detailierte-

re Untersuchungen. Diese Parameter können aus speziellen Experimenten gewonnen

werden. Zum besseren Verständnis des Siebevorgangs und im speziellen des Material-

transports zwischen den verschiedenen Siebstufen sind experimentelle Untersuchungen

von Nöten.

Die Arbeit endet in Kapitel 5 mit einer Zusammenfassung der vorgestellten Betrachtungen

und einem kurzen Überblick über zukünftige Erweiterungen.

1

Chapter 1

Introduction

1.1 Molecular dynamics, granular matter and paral-

lel programming

The last decades have witnessed an enormous development in the research of granular

media and particle simulation [91]. However, granular materials constitute the subject of

vast literature, their research, beside possessing a long history, is currently active both in

physics and engineering communities. Granular media studies are considered as being of

great interest and are required in many engineering processes in different fields of industry.

To improve the performance of such processes, a good understanding of the behavior of

particle motion along with the increasing of the computers power are important and will

contribute in the burgeoning of many different industrial applications of the granular

technology.

The term Molecular Dynamics (MD) refers usually to computational techniques which use

classical mechanics to analyze the structure and dynamics of molecular systems includ-

ing polymers and macromolecules but are also applied to particulate materials. Contact

phenomena are among the most interesting problems in molecular dynamics studies. Con-

tact usually involves friction, which may only be neglected for simplicity in the case where

frictional forces are small compared to the normal ones.

The complexity of a contact problem is due to at least three aspects. The first aspect

is the nonlinear boundary condition at the contact region caused by the impenetrability

constraint. The parameters of the contact region which include the sliding state, the

frictional stress distribution, the shape and the size of the region, etc. are unknown before

the analysis. The second aspect is the description of friction phenomena, which usually

has no simple solution. The third aspect is the material and geometric nonlinearity. It is

expensive and difficult to solve such a problem with geometric and physical nonlinearities.

2 1 Introduction

Molecular dynamics simulation is a commonly used tool in physics and material science

for modeling solids and liquids at the atomic level. In granular media often each particle

is treated as a rigid spherical body and Newton’s equations of motion are integrated to

track the motion of each particle. The solution is obtained numerically, since the classical

many-body problem is intractable, which means that the trajectories of the particles are

obtained as a sequence of instantaneous positions and velocities at discrete intervals in

time, i.e. timesteps. Interactions between grains are calculated with a contact algorithm

that forbids interpenetration but allows separation, sliding and rolling with friction.

The mechanically correct description and simulation of contacts between many bodies

is a very computation-time intensive topic. While by simple methods, a relatively low

number of particles can be already computed with sufficient accuracy and acceptable

computation times, there remain difficult and interesting problems as soon as elastic de-

formations, complicated particle geometries or a huge number of particles have to be

considered. Tremendous improvements in computer power and computational methodol-

ogy have accelerated the pace towards simulation of larger and larger systems, so that now

simulations of millions of particles are possible. Such advances also enable researchers to

obtain more information from their simulations.

Different parallelization techniques are developed in this field to raise up the efficiency

of the simulations. Some of them are simple, e.g. the replicated data methods, and can

be used to carry out molecular dynamics effectively, without the need for major changes

from the approach used in serial codes. Others like spatial and domain decomposition

methods are proposed as a path toward reducing inter-processor communication costs

further to produce truly scalable simulation algorithms. A successful load balancing, i.e.

each processor must have a roughly equal share of the work, and minimizing the ratio of

communication cost to computational cost are two pointers to successful parallelization.

In molecular simulation, both rise with the size of the system. However, computational

costs, which usually depend on the number of pair interactions in the system, tend to rise

quicker than communication costs as the size of the system increases. Consequently, most

parallel algorithms are reasonably efficient for huge system of particles [118].

Solids can usually be processed in granular form. If measured by tons, it is the second-

most-manipulated material by man behind water, especially coal and ordinary construc-

tion materials [21], therefore granular matter has been of central technological importance

for a long time. Applications are enormously diverse: glass production, medicine and

pharmaceuticals, maintaining railway ballasts, particle-classifying operations and many

others. Nowadays, screening and segregation, in particular, are considered as technolog-

ically important demands for developing industrial operations which handle particulate

materials. Since small reductions in energy consumption, increases in outputs and speed-

ing up production represent substantial financial benefits for such processes, numerical

simulation of these phenomena plays a significant role in this optimization procedure.

1.2 Literature survey and recent research 3

1.2 Literature survey and recent research

1.2.1 Classical molecular and contact dynamics

Contact phenomena are among the most important problems in engineering. The related

studies already began hundreds of years ago. Investigating and analyzing this phenomenon

can be enrolled under one of the three categories: analytical, iterative and mathematical

programming methods. The analytical method might be referred back to 1881 by Hertz

[44], who was a leading scientist in this area. He assumed that contacting bodies could

be regarded as elastic half-spaces with small deformations. This method can be used

in order to obtain a closed-form solution of the problem. In the iterative method, the

fundamental principle is to take the contact boundary conditions into the finite element

equations and then start looping until the contact conditions are satisfied. The third

method is the mathematical programming in which the contact problem can be treated

as the minimization of the systematic potential energy or other physical variables under

some contact constraints.

Several methods of molecular dynamics were introduced by [43] to simulate large amounts

of particles. Some of these methods are based on the exploitation of parallelization and

metacomputing. Other approaches are more stochastic, e.g. the Direct Simulation Monte

Carlo (DSMC), which simplify the calculation of collisions, positions and collision times.

In [43] the performance of the various techniques was also compared. Some benchmarks

were shown depending on the size of the system, the density of particles and the number

of the processors.

The calculation and administration of the motion and the contacts of systems that are

comprising many colliding bodies of round shape was investigated in [73]. Both, two

dimensional and three dimensional cases are analyzed. Special attention is paid to the

comparison of the efficiency of the employed algorithms with respect to calculation time.

In order to model the behavior of many particles very efficiently, various methods from

molecular dynamics are used. To reduce the high calculation time that is usually spent

on collision detection, sophisticated sorting algorithms for the neighborhood search are

required. This holds especially for large systems with many repeatedly colliding particles.

The three methods, i.e. the Verlet-Neighbor List (VL), the Linked Cell (LC), and the

Linked Linear List (LLL), are discussed and compared.

Different particle shapes are investigated by many researchers. The work in [84] proposed

a new model for the description of complex granular particles and their interaction in

molecular simulations of granular material in two dimensions. The grains are composed

of triangles and are allowed to be convex or concave. Another new, computationally

efficient model for the discrete element simulation of a certain class of non-round particles

was described in [82]. The boundaries of the particles in this model are constructed

4 1 Introduction

from the circular segments of different radii in such a way that connections between these

segments are continuous. As such, the model does not permit the simulation of arbitrarily

shaped particles, but it does allow a wide enough variety of shapes to assess the effects

of non-round shapes in an efficient manner. A direct test of the models performance

demonstrates that the model is much more efficient than other models for non-round

particles currently available and is less than two times slower than models for the same

number of round particles.

The Discrete Element Method (DEM) was used frequently for simulating different models

in granular media for frictional, non-frictional and adhesive cases, see e.g. [72, 95]. This

method is also used in [59] to examine the evolution of dense granular materials during

deformation. The approach includes both normal and tangential forces at the contacts,

since rotations of the particles are important due to friction. Several examples are pre-

sented, involving the formation of shear bands and the propagation of sound waves in

non-cohesive granular packings. The ultimate goal is to obtain from such microscopic

simulations the macroscopic constitutive laws that describe the material behavior in the

framework of a continuum theory.

Other researches concentrates on studying the damping of particles during collision. The

work e.g. in [63], concentrates on the investigation of damping phenomena during the

arising of the particle-to-wall and particle-to-particle collisions under the vibrating motion

of the structure. As a result of these collisions, the structure and the particles will

exchange momentum and thus dissipate kinetic energy due to frictional and inelastic

losses. Since the particle damping technology has been used successfully in many fields

for vibration reduction, a discrete element method is used as a computational technique

for particle damping modeling. In this study hundreds or thousands of particles as Hertz

balls were considered and a discrete element model could describe the motions of these

bodies and determine the energy dissipation.

1.2.2 Parallel computation

It is particularly suprising to know that the basics idea of parallel computers is not new.

As early as 1842 Luigi Menabrea published an important article about the ’Analytical

Engine’ which had been developed by the mathematician Charles Babbage, see [66]. He

proposed computing numerical tables by means of parallel working mechanical calculators

which have earned him a top spot in the history of early computing. As early as 1822

he speculated that a machine could be used to compute complex mathematical problems

and calculate and correct errors in logarithm tables and astronomical charts.

In the 1980s, computer researchers believed computer performance was best improved

by creating faster, more efficient processors. But this idea was challenged by the idea of

clustering and parallel processing which, in essence, means linking together two or more

1.2 Literature survey and recent research 5

computers to work together on performing functions. The goal is to develop infrastructure

so that end users do not need to know they are actually working on a cluster. Since

the early 1990s there has been an increasing trend to move away from expensive and

specialized propriety parallel supercomputers towards networks of workstations.

Basically, there are two main approaches for parallel programming. The first one is

based on implicit parallelism. This approach has been followed by parallel languages

and parallelizing compilers. The user does not specify, and thus cannot control, the

scheduling of calculations and/or the placement of data. The second one relies on explicit

parallelism. In this approach, the programmer is responsible for most of the parallelization

effort such as task decomposition, mapping tasks to processors, and the communication

structure. This approach is based on the assumption that the user is often the best

judge of how parallelism can be exploited for a particular application. The use of explicit

parallelism will obtain a better efficiency than parallel languages or compilers that use

implicit parallelism, see e.g. [16].

Three different algorithms were discussed in [98] to speed up discrete-element simulations

for granular matter. The first algorithm allows to determine neighborhood relations in

polydisperse mixtures of particles of arbitrary shapes, either discs, ellipses, or polygons.

The second algorithm allows to calculate the distance of two polygons in constant time,

independent of the complexity of the shape of the polygons. This makes fast simulations

of polygonal assemblies possible. The third method is a special type of parallelization

technique, which is optimized for workstations with shared memory.

Two parallelization techniques were also discussed in [81] to implement the Embedded

Atom Method (EAM) formalism for molecular dynamics on multiple-instruction/multiple-

data (MIMD) parallel computers. The first method is the atom-decomposition, which

is simple and suitable for small numbers of atoms. The second method is the force-

decomposition which is considered as new and particularly appropriate for the EAM be-

cause all the computations are between pairs of atoms. Both methods have the advantage

of not requiring any geometric information about the physical domain being simulated.

They also presented timing results for the two parallel methods on a benchmark EAM

problem and briefly indicated how the methods can be used in other kinds of materials

in the MD simulations.

Other resarchers, see e.g. [95], found that the numerical simulation of granular flows,

like many other particle-based methods, is computationally intensive for large-scale prob-

lems of industrial interest. Parallel computation has the potential to alleviate current

computer-based limitations, allowing much larger granular systems with greater physical

reality to be analyzed. A study of the implementation of a parallel algorithm is presented,

together with performance measurements on a commodity cluster computer system. The

results obtained validate not only the parallel algorithm, but also the potential role of

such computer systems in industrial granular flow simulations.

6 1 Introduction

Due to different factors related to the software and the hardware of the parallel environ-

ment, different speedups can be obtained for the parallel program. There is a hierarchy

of terms of different speedups adapted from [69], e.g. the superlinear, linear superunitary,

unitary, linear subunitary and sublinear speedups. These classifications depends on how

much the speedup is scalable with the number of processors in use. The initial counter-

reaction to the notion of superlinear speedup goes something like this: ’For a P-processor

algorithm, simply execute the work of each processor on a single processor, and the time

will obviously be no worse than P times greater. It will usually be less, because sources of

parallel inefficiency are eliminated’. Faber et al. [27] have used this argument as a proof

of the impossibility of superlinear speedup. The proof assumes fixed problem size, and

that a single processor has all hardware necessary to duplicate the needs of the parallel

algorithm.

A counter to this has been supplied in [77]. The idea here is that the serial processor has

loop overhead in executing something k times, whereas the k-processor computer does

not, permitting it to be more than k times faster. The idea assumes a loop is necessary to

do something k times on a serial computer, clearly not true if program memory can store

the straight-line code. Besides the latter effect, resarchers in [42] mention other apparent

sources of superlinear speedup: hidden memory latency, subdivision of system overhead,

and randomized algorithms. In the last case, independent processors traverse a solution

space with better luck or less context switching cost than a single processor. Generally,

historic explanations of superlinear speedup have turned out to be inefficiencies in the

serial version caused by a sub-optimal program or by insufficient processor hardware.

Superlinear speedup that results from inefficiency in the serial algorithm is ephemeral

and not particularly interesting. The superlinear speedup behavior could be due to the

different speeds of memory inherent in distributed memory ensembles, and/or to the shift

in time fraction spent on different-speed tasks, see [40].

1.2.3 Segregation and particle separation

Particle segregation is a very broad and complex phenomenon that can occur in various

areas in industries which handle particulate materials. Although this very ancient tech-

nique may be dated back to thousands of years ago, a computational understanding of

this has not yet been realized, due to the complicated size distribution and composition

of industrial particulate solids, and comprehensive effect of particle motion under vari-

ous operational parameters and screen configurations. The lack of advanced analytical

and experimental techniques for the study of particulate systems has also hindered the

progress in this subject area. As a result, most published information on sieve and screen

performance has been empirical in nature, see [45, 56].

Particle separation phenomena are of great importance in granular media studies. Screen-

1.2 Literature survey and recent research 7

ers, classifiers, shakers and separators are used in a large number of industrial applications

requiring separation and classification of powders or other bulk materials by particle size

as well as separation of particles by density, magnetic properties or electrical characteris-

tics. These machines are divided into different categories such as round and rectangular

screeners, magnetic separators, electrostatic separators, rotary sifters, wet or concentrat-

ing tables, rake classifiers, classifying hydrocyclones, floatation systems and trammels.

The research work of Jansen and Glastonbury [45] in 1967/1968 in studying particle

screening phenomena is among the earliest works in this field. They have tried to analyze

the dynamics of screening processes and to study the factors that affect the screening per-

formance. They have built their results on probability theories to understand the kinetics

of sieving. The effect of the non-ideal aperture distribution of sieving on the sieve residue

is studied in [46], where an algorithm for deducing an effective sieve residue from the rate

of powder passage through a sieve is described. A detailed study of the sieving kinetics

using batch sieving is described in [104] showing that the rate of sieving and its efficiency

are determined by the numerical values of the sieving rate constants of each of the particle

sizes in the feed mixture. Furthermore, they found that the near-mesh particles play a

major role in the overall kinetic process and the presence of the oversized particles in

the feed enhances the sieving rate dramatically. Continuous screening phenomena and

comparisons with batch sieving are discussed in [4, 106]. The results showed that the two

operations are comparable and the effect of the oversized particles is beneficial in speeding

up the screening of near-mesh material.

The influence of some operating variables of separating sifters has been studied in [105].

Over a certain range of operating variables, the screening efficiency of two types of particles

over a vibrating screen has been observed. The variables include the flow rate, deck angle,

angular velocity and mesh size. The results show that the separation process is sensitive

to the operating variables. Many other researchers have studied the radial and axial

segregation process of granular mixtures in rotating cylinders, see e.g. [1, 54, 74, 119].

In [48] a constitutive model for the radial segregation flux in cascading layers of rotating

cylinders is proposed. There, particle dynamics and Monte Carlo simulations for steady

flows down an inclined plane are used for studying the density segregation.

Three decades ago, the discrete element method (DEM) that describes the motion of

particles and models the behavior of dense solid assemblies in soil mechanics was proposed

[20]. The DEM was adapted in [67] to be used for the analysis of the internal dynamics

of tumbling mills. An elastic-perfectly plastic contact model was used, see [68]. Using

this model requires only material parameters that may be obtained from standard tests.

Some other researches studied volume filling fractions of the particles charged in the

rotating drum of the separating machine, see [23]. Numerically the dynamics of the size

segregation process of binary particle mixtures in rotating drums is studied. A direct

dependency between the different particle size ratios and the final amount of the radial

8 1 Introduction

segregation flow was marked in their study.

Analytical works, e.g. [73, 71, 111], consider particles with or without cohesive, adhesive,

frictional forces between them during contact. The spring-dashpot model or penalty

method uses different contact parameters which essentially embody contact properties,

see e.g. [68]. None of these parameters are typical material properties and hence they are

difficult to determine experimentally. In [55] a numerical model for studying a screening

separation of granular mixture comprising two different sizes of particles on an inclined

surface is presented. A two-dimensional transient model has been developed to calculate

the particle motion on and through the screen using the DEM. They also discussed the

influence of the feeding rate, the depth of the particle bed and the screen inclination

on the screening efficiency, see [56]. Their analytical results were compared with some

experimental studies.

1.3 Layout of the thesis

Due to their wide usage in industrial and technological processes, granular materials have

captured great interest in this research. The aim of this study is to give a general view

of some of the already existing methods of simulating granular media. Reducing the sim-

ulation time of large granular systems by introducing parallel computation strategies is

another goal of this work. Further, a practical application of particle segregation tech-

nology, which is represented in modelling a real tumbling screening machine, is analyzed

and investigated.

In Chapter 1, a brief literature survey of granular media studies and some of their inves-

tigation methods are presented. A quick overview of the some researches in the field of

parallel programing and sorting technology is also put in hand.

In Chapter 2, a general description of the molecular dynamic problems is presented.

The contact time calculation along with different Verlet integrators are introduced in

this chapter. A detailed formulation of the Discrete Element Method (DEM) and penalty

method of the spring-dashpot model are involved. Different strategies for a concurrent and

distributed collision detection and contact force computation are developed, implemented

and investigated. In this chapter, the effect of normal and tangential collision along

with the influence of damping and adhesion of the colliding round particles are also

explained. Some basic techniques for speeding up simulations of particulate systems

by using some proper sorting algorithms and neighbor list computations, e.g. the Verlet

approach and the linked linear list method, are used and compared. Finally, the chapter

ends with a brief description of the computational structure of the used serial or sequential

molecular dynamics code, i.e. MOLDYN and the necessary input files required for the

code initialization.

1.3 Layout of the thesis 9

Since the related studies are often based on numerical simulations, it becomes quite chal-

lenging to investigate computational phenomena of large granular systems using personal

computers with single processor. In Chapter 3, the spatial decomposition method is basi-

cally used in building the parallel programing codes. Needless to say that the important

factor which affects the success of the numerical procedure is how much one has access to

a computer system which is powerful enough to handle the problem of interest. In this

chapter, existing sequential algorithms [71] are extended and modified in such a way that

modern high performance computers can be utilized for their parallel evaluation. The

library functions of the Parallel Virtual Machine (PVM) are used to handle communica-

tion between processors in a distributed memory environment. For different system sizes

and a different number of computing machines, the computational time and the speedups,

which is the usually used measure of the program scalability, are drawn and analyzed.

As a practical engineering application of granular studies, particle screening, which is

considered as an essential technology of particle separation in many industrial fields, is

selected to be investigated in Chapter 4. This chapter presents a numerical model for

studying the particle screening process using the discrete element method that considers

the motion of each particle individually. Dynamical quantities like particle positions,

velocities and orientations are tracked at each time step of the simulation. The particular

problem of interest is the separation of round shaped particles of different sizes using a

rotating tumbling vertical cylinder while the particulate material is continuously fed into

its interior. This rotating cylinder can be designed as a uniform or stepped multi level

oblique vertical vessel and is considered as a big reservoir for the mixture of particulate

material. The finer particles usually fall through the sieve openings while the oversized

particles are rebounded and ejected through outlets located around the machine body.

Particle-particle and particle-boundary collisions will appear under the tumbling motion

of the rotating structure. Herein, the penalty method, which employs spring-damper

models, is applied to calculate the normal and frictional forces.

In this chapter, the efficiency of the sorting process is determined, e.g., by counting the

number or measuring the mass of both right-sorted and undesired-gangue particles of

the whole process at the different levels of the machine. Different parameters affect the

machine performance, e.g., the machine speed, the feeding rate of particles, the barrel

inclination angles, the shaft eccentricity, the barrel oscillation, the mesh clearance and

the roughness of the sieve. Different simulations are conducted to study the effect of these

parameters. Continuous feeding processes with different flow rates as well as batch sieving

with a limited number of particles are analyzed and compared.

Finally, the thesis ends in Chapter 5 with a general summary of the presented work and

a short overview of the proposed work in the future.

10

Chapter 2

Basics of Granular Matter and

Molecular Dynamics

Molecular simulation and modeling methods are undergoing rapid development. They

are increasingly important tools for fundamental and applied research in academia and

industry in such diverse fields as design and material science. The Discrete Element

Method (DEM) [5, 6, 88] describing a classical particle molecular system as a function of

time has been used for several decades and successfully applied to understand and explain

macro phenomena from micro structures.

The classical N-body problem lacks a general analytical solution, thus numerical solutions

are needed. Solving the dynamics numerically and evaluating the interactions tends to

be computationally expensive already for a few thousand particles [64]. Especially, the

interactions are generally the computationally dominant part. For large scale Molecu-

lar Dynamics (MD) simulations, we do therefore not only require a powerful machine,

but also new algorithmic techniques and parallelization schemes to solve the problem in

reasonable time. With the introduction of novel computational algorithms (e.g., multiple

time stepping integration schemes, fast electrostatic force algorithms, etc.) and large scale

parallel computers, it became possible to study larger systems beyond billions of particles

[11, 92]. Thus, with such problem sizes certain macroscopic properties of matter can be

studied.

There is a proliferation of programs for MD and DEM [15, 22, 26, 57, 62, 75, 79, 90,

103, 112, 114], several of these are robust production codes; some with scalable paral-

lel implementations. They cover common particulate and molecular dynamics problems

and are excellent tools to perform simulations. However, many of the codes are legacy

programs that are either poorly organized or extremely complex. One important factor

is usually the large number of people that contributed to the writing of the codes and

the lack of a strong coordination to enforce design, code organization, and programming

guide-lines. Most MD applications also suffer from missing documentation that is needed

2.1 Description of the contact problem 11

to understand both the design and implementation. Furthermore, some codes have a long

history and were modified multiple times to solve different types of problems at different

points in time [64].

2.1 Description of the contact problem

2.1.1 Verlet algorithm

One of the important parts of a particle dynamics programs is the time integration algo-

rithm which is necessary to integrate the equations of motion of the interacting particles

and find their trajectories, new positions and orientations. The integrator should generally

be accurate, stable and easy to be implemented and coded. Time integration algorithms

are based on finite difference methods, where time is discretized on a finite grid and the

time step ∆t being the distance between consecutive points on the grid. Knowing the

positions and accelerations at a specified time and the positions from previous times, the

integration scheme can give the new positions and some of their time derivatives at some

later times of simulation.

Of course, these schemes are not exact and there is a kind of approximation where different

types of errors are unavoidable but can be minimized. In particular, one can distinguish

between truncation and round-off errors. Truncation errors are related to the accuracy of

the finite difference method with respect to the true solution. Finite difference methods

are usually based on a Taylor expansion truncated at some terms. These errors do not

depend on the implementation, they are intrinsic to the algorithm. Round-off errors are

related to errors associated to a particular implementation of the algorithm, for instance,

to the finite number of digits used in computer arithmetics.

Both errors can be reduced by decreasing ∆t which controls the fineness of the integration.

Larger time step decreases the computation time. But too large time step will lead to

instability and inaccuracy in the numerical integration [94, 116]. Verlet algorithms [113]

assume that velocities and accelerations are constant over a given time step which is often

set to ∆t = 10−5s in this study. A simple DEM algorithm will have to adopt a time step

short enough to handle the fastest variables. For large ∆t, truncation errors dominate,

but they decrease quickly as ∆t is decreased. For instance, the Verlet algorithm has

a truncation error proportional to ∆t4 for each integration time step. Round-off errors

decrease more slowly with decreasing ∆t, and dominate in the small ∆t limit. Using

double precision helps to keep round-off errors at a minimum.

Two popular integration methods for molecular dynamics calculations are the Verlet al-

gorithm and predictor-corrector algorithms. The Verlet algorithm is one of the most

commonly used time integration algorithms in this field and it is used as the integrator

12 2 Basics of Granular Matter and Molecular Dynamics

of the equations of motion in this study. The main idea in formulating this algorithm is

to write two forward and backward expressions for the third-order Taylor expansions of

the positions r(t). The forward expression of the Tayler series at t+ ∆t is

r(t+ ∆t) = r(t) + ṙ(t)∆t+
1

2
r̈(t)∆t2 +

1

6

...
r (t)∆t3 +O(∆t4) , (2.1)

and the backward one at t− ∆t can be written as

r(t− ∆t) = r(t) − ṙ(t)∆t+
1

2
r̈(t)∆t2 −

1

6

...
r (t)∆t3 +O(∆t4) , (2.2)

where ṙ(t) and r̈(t) are the velocity and acceleration of the moving particle at time t which

can be rewritten as v(t) and a(t), respectively. Summing and neglecting the higher order

terms, the two Equations (2.1) and (2.2) together give

r(t+ ∆t) = 2r(t) − r(t− ∆t) + a(t)∆t2 +O(∆t4) . (2.3)

As it appears from Equation (2.3) the Verlet algorithm uses positions and accelerations

at time t and the old positions from time t−∆t to calculate new positions at time t+∆t

without need to use velocities. The large popularity of this algorithm among molecular

dynamics simulators is due to its simplicity in implementation, accuracy and stability.

This version of the Verlet algorithm does not require the velocities directly. Even though

they are not needed for computing the trajectories, their knowledge is sometimes necessary

to compute the kinetic energy, whose evaluation is necessary to test the conservation of

the total energy of the granular system. These tests are very important to verify that a

MD simulation is proceeding correctly. The velocities v(t) can be calculated from the old

and new positions by using

v(t) =
r(t+ ∆t) − r(t− ∆t)

2∆t
. (2.4)

Therefore, modifications to the original Verlet scheme have been proposed to overcome

these difficulties and the velocities are handled somehow better. These schemes differ in

what variables are stored in memory and at what times. One of these is the leap-frog

scheme [83]. This algorithm defines velocities that are half a time step behind, or in front

of, the current time step ∆t. In this algorithm, the velocities are first calculated at time

t+ 1
2
∆t as

v(t+
1

2
∆t) = v(t−

1

2
∆t) + a(t)∆t . (2.5)

The velocity in Equation (2.5) is used to calculate the positions r, at the next time step

t+ ∆t as

r(t+ ∆t) = r(t) + v(t+
1

2
∆t)∆t . (2.6)

2.1 Description of the contact problem 13

In this way, the velocities leap over the positions, then the positions leap over the velocities.

The advantage of this algorithm is that the velocities are explicitly calculated, however,

the disadvantage is that they are not calculated at the same time as the positions. The

current velocities at time t can be approximated by

v(t) =
1

2

(

v(t+
1

2
∆t) + v(t−

1

2
∆t)

)

. (2.7)

An even better implementation of the same basic algorithm is the so-called velocity Verlet

scheme. This algorithm stores positions, velocities and accelerations at the same time t

and calculates them again at t+ ∆t, see e.g. [108],

r(t+ ∆t) = r(t) + v(t)∆t+
1

2
a(t)∆t2 , (2.8)

v(t+ ∆t) = v(t+
1

2
∆t) +

1

2
a(t+ ∆t)∆t , (2.9)

and the velocity at v(t+ 1
2
∆t) can be directly computed from

v(t+
1

2
∆t) = v(t) +

1

2
a(t)∆t . (2.10)

The implementation of the velocity Verlet scheme is shown graphically in Fig. 2.1.

Figure 2.1: A graphical representation of the velocity Verlet algorithm

14 2 Basics of Granular Matter and Molecular Dynamics

As an important extension of the MD method, other advanced versions of the Verlet

algorithm have been generated, i.e. a time-reversible Verlet multiple-timestep algorithm.

This scheme has the ability to tackle systems with multiple time scales: for example,

particulate materials consisting of both heavy and light particles. This time reversibility

r(t+ ∆t) ↔ r(t− ∆t) is considered as an advantage of Verlet algorithm.

2.1.2 Contact time calculation

The duration of contact between the colliding particles is now discussed. Since the size of

time step ∆t employed in the integration of the equations of motion should be carefully

chosen according to the frequency of the oscillation, or rate of damping of a typical second-

order differential equation of the simple damped harmonic oscillator of the form, see e.g.

[58]

δ̈ij + 2ηδ̇ij + ω0
2δij = 0 , (2.11)

where η = η0ω0, δij is the spring elongation which will represent later the overlap between

the two particles i and j, 2η, η0 and ω0 are the damping parameter, the damping ratio and

the undamped frequency of the system, respectively. Assuming the two rigid particles of

masses mi and mj , see Fig. 2.2, are connected by spring-dashpot system of elastic spring

constant kp and viscous damping coefficient cp, the equivalent mass of the two particles

can be expressed as
1

mij
=

1

mi
+

1

mj
, (2.12)

from which we can write

mij =
mi mj

mi +mj
. (2.13)

Figure 2.2: Spring-dashpot-mass-oscillator with two-end particles

The damping parameter and the undamped frequency can be written in terms of kp, cp
and mij as

2η =
cp
mij

, ω0 =

√

kp

mij
. (2.14)

Using the collision theory of Hertz, see e.g. [99], the material constants kp and cp can be

calculated. In order that the integrator is able to follow the system oscillation, the time

2.1 Description of the contact problem 15

step size should be smaller than the reciprocal of the natural frequency Ω which can be

given as

Ω =
√

ω0
2 − η2 =

√

kp

mij

−
cp2

4mij
2
. (2.15)

Assuming that the spring is initially unstretched δij(0) = 0 with initial relative velocity

δ̇ij(0) = v0, the solution of Equation (2.11) is

δij(t) =
v0

Ω
sin(Ωt)e−ηt , (2.16)

and the relative velocity is

δ̇ij(t) =
v0

Ω
e−ηt (Ω cos(Ωt) − η sin(Ωt)) . (2.17)

The maximum overlap δmax of the two colliding particles i and j will be reached at

the maximum time when there is no further movement of them toward each other, i.e.

δ̇ij(tmax) = 0. Thus we can obtain

δmax =
v0

ω0

e(−η/Ω) arcsin(Ω/ω0) . (2.18)

From the natural frequency in Equation (2.15), the duration of contact between the two

particles can be calculated as

Ω = 2πf =
2π

T
(2.19)

which gives

T =
2π

Ω
. (2.20)

As long as η < ω0 the contact time is considered to be the half time period of oscillation

and can be expressed as

tc =
T

2
=
π

Ω
. (2.21)

The calculation of the contact time is performed for all particle-particle contacts which

appears in the beginning of our simulations. The time step ∆t of the integration has

to be chosen clearly smaller than a typical natural oscillation of a contact. A ratio of

1 : 20 proved to give satisfying results. This means that the computational time step ∆t

is carefully selected to be at least less than the contact time tc divided by 20 to be sure

that it is small enough to capture all dynamical quantities of the particles, i.e. positions

and velocities during contact

∆t <
tc
20

. (2.22)

The normal dissipation in a collision is characterized by the coefficient of normal restitu-

tion en, which is considered as a measure of the elasticity of the collision. This coefficient

is defined as the ratio between the normal component of the relative velocity after v
(aft)
n

and before v
(bef)
n the collision,

en = |
v

(aft)
n

v
(bef)
n

| , 0 ≤ en ≤ 1 . (2.23)

16 2 Basics of Granular Matter and Molecular Dynamics

A perfectly elastic collision (with no normal dissipation) has a coefficient of restitution of

1 as in two diamonds bouncing off each other. A perfectly plastic, or completely inelastic,

collision has en = 0 as two lumps of clay that stick together without bouncing. From

Equation (2.23) the coefficient of restitution can be calculated in terms of η and Ω as

en = e−ηtc = e(−πη/Ω) . (2.24)

Note that for the linear spring-dashpot interactions, the contact time and the coefficient

of restitution are velocity independent. While for nonlinear forces, i.e. using nonlinear

Hertz models of interactions, tc and en become velocity dependent, see e.g. [61].

The calculation of the contact time between two colliding particles is clarified here through

this small example. Assume two different size spherical glass balls of masses mi = 0.0383g

and mj = 0.09g and radii ri = 1.5mm and rj = 2mm. The two masses are connected

together with an elastic spring of stiffness kp = 7.36N/m and damping element with a

coefficient of cp = 8.96 × 10−4 N
m/s

. The equivalent mass of the oscillating system is

mij =
0.0383g 0.09g

0.0383g + 0.09g
= 0.0269g = 2.69 × 10−5kg . (2.25)

Using Equation (2.14), one can find the damping parameter η

η =
8.96 × 10−4 N

m/s

2 (2.69 × 10−5kg)
= 16.65

1

s
, (2.26)

and the frequency of the elastic oscillator ω0 as

ω0 =

√

7.36N
m

2.69 × 10−5kg
= 523.07

1

s
. (2.27)

The natural frequency can be directly calculated from Equation (2.15)

Ω =
√

(523.07)2 − (16.65)2
1

s
= 522.8

1

s
. (2.28)

The duration of contact between both particles is therefore

tc =
π

Ω
=

π

522.8
≈ 0.006s . (2.29)

Using Equation (2.22), the recommendable computational time step in this case will be

∆t <
tc
20

=
0.006

20
s = 0.0003s = 3 × 10−4s . (2.30)

The coefficient of restitution can be calculated by Equation (2.24) as

en = e−(π)(16.65)/(522.8) = e−0.1 = 0.905 , (2.31)

which denotes a largely elastic collision between the glass balls.

2.2 Contact forces calculation 17

2.2 Contact forces calculation

2.2.1 Discrete element method

There are two main approaches for modelling granular materials, the continuous and

discrete modelling approaches. The continuum-based model works on the macroscopic

level where the description of the behavior of the granular material depends on the con-

stitutive equations, whose parameters are usually measured experimentally like stress,

strain, and other physical quantities describing the state of the system, see e.g. [52]. In

this kind of models the granular structure of the material is idealized with a continuum

of material points. Interactions between grains are calculated with a contact algorithm

that forbids interpenetration, but allows separation, and sliding and rolling with friction.

A separate contact detection step is not required, and the numerical cost for the con-

tact model scales linearly with the number of grains. The corresponding field equations

can be derived from the properties of a representative elementary volume (REV) in the

vicinity of the material point. Other methods like the finite-element-method (FEM) or

the boundary-element-method (BEM) are used to investigate the deformable bodies with

peculiar contact dynamics, see e.g. [24, 78].

An alternative straightforward approach to model granular material is the so called parti-

cle dynamics or discrete element method (DEM). DEM is a numerical technique pioneered

by Cundall [18] for problems in rock mechanics where the continuity between the sepa-

rate elements does not exist. This technique deals with the granular materials on the

microscopic level where the material is assumed to be composed of distinct grains that

interact with each other. Furthermore, it is capable of handling a wide range of material

behavior, inter-body interaction force laws and arbitrary geometries.

The power of DEM in simulating the real processes and in identifying the mechanisms

is evident. Thus it is a useful tool in understanding the physics of the processes and

problems. The continuum-based models can simulate deformation mechanisms in jointed

and particulate media. DEM clearly can do the same in a much simpler manner. Because

DEM can monitor internal stresses and contact behavior unobtrusively, it is significant

for use in understanding fundamental particulate material behavior. In addition, since

external stresses and stress paths can be controlled precisely it can be used for developing

and validating constitutive relationships of any particulate materials such as soil, rock,

grain or ceramic powder by using appropriate particle properties, sizes and shapes.

DEM is one of the most frequently-used tools for explaining the experimentally observed

facts from a more fundamental approach [101]. Using a micro-structural approach is

very useful to find the macroscopic state variables in terms of micro-variables such as

particle displacements, contact forces and local interactions. To do this, there are different

averaging strategies in the literature to transfer from discontinuous models to a continuum

18 2 Basics of Granular Matter and Molecular Dynamics

description, see e.g. [51].

DEM can be applied on two or three-dimensional dense systems of particles. Calculation

of the interaction between the particles is a very time consuming part of the simulation.

The computing power nowadays offers the possibility to consider even more realistic three-

dimensional systems with spheres, ellipsoids and blocks to simulate particulate materials,

which was prohibitively complex and expensive a few years ago. However, due to the

explicit nature of the algorithm, it is necessary to use a very small time step of simulation

to guarantee numerical stability and accuracy [101].

Many researchers are attempting to expose the advent of the effective use of the super-

computer and parallel computing by modifying the discrete element simulation codes.

Although both have a significant importance, some consensus is emerging on the use of a

parallel processing machine to simulate particulate materials using DEM rather than vec-

tor processing machines [19]. It may be expected that these studies will allow a major step

forward to the more realistic simulations of particulate solids and a better understanding

of the constitutive behavior of particulate materials.

There are many practical applications for the DEM where many useful results may be

obtained by applying this numerical approach including: mixing and segregation in indus-

trial blending systems, solving three-dimensional impact dynamics problems and vibrat-

ing feeders, soil-structure interaction problems, rock and ice mechanics, simulating gravity

flow of bulk solid materials in mines, bulk material transportation, fracture mechanics and

large deformation problems and many others.

DEM takes into consideration that every single particle is accounted for, and the contacts

are handled then by solving Newton’s equations of motion. This approach is applied

in this study to analyze the short-range interaction molecular dynamics between neigh-

boring particles inside the domain of the granular environment. The typical long-range

forces which have an effect on the far-distance particles even without physical contact like

electro-static forces, will not be considered in this study. If the material is dry and non-

cohesive, the only interactions between grains are friction and repulsion [35], otherwise the

attractive adhesion forces will appear. In this case, the normal contact forces modelled

by the penalty method and the transverse tangential forces using Coulomb friction are

implemented.

As a summary, Fig. 2.3 presents the DEM procedure. The starting conditions are the

initial positions of particles and their initial velocities. Using DEM and soft particle

contact, the contact forces and moments are calculated. Integrating the equations of

motion will give the new velocities, positions and orientations in the next time step. This

cycle has to be repeated for all time steps during simulation.

2.2 Contact forces calculation 19

initialize simulation environment

and particle states

find forces and moments acting

on each particle in the system

determine the linear and angular

acceleration of each particle

integrate the equations of motion to find the new

velocities, positions and orientations of the particles

make measurements and record states

in the output files

start

end ?
 stop

no

yes

Figure 2.3: Flowchart of DEM

2.2.2 Penalty approach of spring-dashpot model

1. Particle-to-particle contact

In a spatial multibody system, each free body has six degrees of freedom in trans-

lation and rotation, see [97] and [100]. In order to analyze the system, the discrete

element method is used. In this method, the motion of each single particle is con-

sidered individually. Particle positions, velocities and orientations are computed at

each time step of simulation. The equations of motion of the rigid body i is governed

by six differential equations

miai = Fi , Iiαi = Mi , (2.32)

where mi and Ii are the mass and the inertia tensor of particle i, Fi and Mi are

the force and torque vectors, ai and αi are the linear and angular accelerations.

Considering two bodies i and j in an N particle system, see Fig. 2.4a, the force Fi

and torque Mi acting on particle i can be calculated as

Fi =

N
∑

j=1, j 6=i

Fij +mig , (2.33)

Mi =

N
∑

j=1, j 6=i

Mij =

N
∑

j=1, j 6=i

ri × Fij , i = 1, ..., N , (2.34)

where ri is the vector from the center to a point on the surface of particle i and g

is the gravity vector.

The contact calculations are based on the soft-particle model which leads to a de-

terministic simulation where the state of each particle in the system and all particle

20 2 Basics of Granular Matter and Molecular Dynamics

interactions are determined using physical laws. Applying the penalty method, we

can determine the normal and frictional forces between the colliding particles, see

Fig. 2.4b. This model assumes that the contact forces result from an unphysical

overlap between the bodies in contact, see [2] and [25]. As a result of collisions, the

particles will dissipate energy due to the normal and frictional contact losses. The

total force between the two particle i and j is

Fij = Fn
ij + Ft

ij , (2.35)

where Fn
ij and Ft

ij are the normal and tangential components of Fij .

(a) vector description of particle interaction (b) spring-damper model

Figure 2.4: Particles in overlap

• Normal contact forces

The contact between a pair of bodies is considered to be distinct single-point contact.

The particles are considered to be rigid, however the contacts are deformable. The

normal force Fn
ij between two colliding particles i and j is the summation of two

parts, the elastic repulsive force of the spring and dissipative viscous force of the

damping element. This force can be formulated as

Fn
ij = (kpδij + cpδ̇ij)n . (2.36)

Defining the virtual overlap δij of the particles and the normalized line of centers of

the two particles n as follows

δij = (ri + rj) − (roi − roj)
Tn , n =

roi − roj

|roi − roj |
, (2.37)

kp, cp are the spring stiffness and damping coefficient of the penalty approach, n is

the normal unit vector between the centers of the two particles, δij and δ̇ij are the

2.2 Contact forces calculation 21

overlap and the relative velocity in the normal direction between the two colliding

particles i and j.

With a little mathematical manipulation of dissipative energy expressions [49, 53],

where the dissipated energy ∆T in the impact of two spheres may be expressed in

terms of the coefficient of restitution and the relative approach velocity as

∆T =
1

2

mimj

mi +mj

(v(bef)
n)2(1 − e2n) , (2.38)

the damping coefficient cp can be expressed in terms of the coefficient of normal

restitution en as

cp = µhδ
3/2
ij , µh =

3kp(1 − e2n)

4v
(bef)
n

, (2.39)

where µh is the hysteresis damping factor. If the damping is too large, one can

calculate the damping coefficient using the expression

cp = 2

√

mimj

mi +mj
kp = 2

√

mijkp . (2.40)

Instead of the pre-mentioned linear model of viscous dissipation, an alternative

way to introduce dissipation to the system is to use different forces for loading

and unloading [93]. This approach takes into consideration the permanent, plastic

deformation during a typical contact. In this approach the loading spring constant

kl is usually smaller than the unloading spring constant kun, i.e. the unloading path

lies below the loading one kl < kun and, thus, the energy lost is proportional to

the amount of deformation of the particles. For this case the velocity-dependent

damping cpδ̇ij will be dropped from this model. Therefore, the contact force in the

normal direction will have the form

Fij = F n
ij =

{

klδij for loading case ,

kun(δij − δ0) for un/reloading case ,
(2.41)

where δ0 is the finite penetration at which the contact force vanishes during unload-

ing, see Fig. 2.5a. This amount of overlapping can be calculated by applying the

force continuity at the maximum pentration as

klδmax = kun(δmax − δ0) . (2.42)

The dissipated energy may be identified as the surface area within the triangular

region in Fig. 2.5a which will lead to a so-called momentum restitution coefficient

εm that can be defined as

εm =
√

kl/kun , (2.43)

22 2 Basics of Granular Matter and Molecular Dynamics

where 0 < εm < 1. Therefore, Equation (2.42) can be rearranged and written again

as

δ0 = (1 − ε2m)δmax . (2.44)

During the initial loading the force increases linearly with slope kl with respect to

the penetration δ until the maximum overlap δmax is reached. This overlap is the

maximum penetration that could be reached at which the relative velocity between

the two colliding particles is zero. After this point the two particles start to move

apart from each other in the unloading process. Unloading follows down the second

linear line of slope kun until the force vanishes after a time tc while crossing the x-axis

at a finite penetration δ0, see Equation (2.44). Since there is plastic deformation,

the overlapping will not return back to zero as the force vanishes, but to δ0.

The time tc can be calculated referring to Equation (2.21) as the sum of the half

contact duration of particles with either stiffness kl and kun and can be expressed

as [58]

tc =
π

2

(√

mij

kl

+

√

mij

kun

)

. (2.45)

While the two particles are not completely separated (δ = δ0 6= 0), it could happen

that they are opposed to an external collision from one or more of the surround-

ing particles. This collision will apply an additional external force to the original

particles and let the bodies get closer again due to the reloading effect. Reloading

for 0 < δr < δ0, where δr is the overlap after which the reloading starts, will then

take place with gradient kun along the linear line of the force kun(δ − δr) until the

original loading curve is reached. Further reloading will follow up then the original

loading path with a force klδ until the maximum deformation.

The missing need of including any arbitrary damping cp and the direct analytical

prediction of the parameters εm and tc is considered as a great advantage of this

model. Furthermore, this model in hand can be easily extended to include the

adhesion effect during contact which occurs when the attractive forces are applied

instead of repulsive ones, i.e. when

FT
i nij < 0 , (2.46)

where nij is the normal unit vector from the centers of particle i to particle j. The

force law including adhesion can be reformulated to appear as

Fij = F n
ij =











klδij for loading case ,

kun(δij − δ0) for un/reloading case ,

kadδij for adhesion (unloading) case ,

(2.47)

where kad is the slope of the adhesive line which should be negative kad < 0 in case

of adhesion, see Fig. 2.5b. However, if the achieved attractive force is not strong

2.2 Contact forces calculation 23

enough to change the direction of motion of the particles, the attractive force is

increasing, see [72]. The maximum value δad of the attractive force is reached, when

the unloading path of slope kun is crossing the decreasing adhesive line of gradient

kad. Applying the similarity of triangles, one can write

δ0 − δad

kadδad
=
δmax − δ0
klδmax

, (2.48)

and the deformation δad is

δad =
(1 − ε2m)kl

kl + kadε2m
δmax . (2.49)

Further unloading forces kadδij are calculated along a negative-gradient line which

limits the maximum possible attractive forces between the particles. The reloading

effect can start again at any point in between along this third line, i.e. 0 < δr < δad

and the force increases with the positive gradient kun until reaching the new value

of δnew
max on the original loading curve. Otherwise, the reloading could not happen

and the force keeps decreasing along the adhesive line until δij = 0, the case that

the two particles do not overlap anymore.

(a) repulsive force model (b) attractive force model

Figure 2.5: Schematic diagram of the loading and un/reloading hysteresis loop of contact

• Tangential contact forces

In this part, the implementation of the tangential forces is described. The tangential

forces are active at contacts where the relative tangential velocity of the particles is

not zero. The normal and tangential components of the relative velocity vij of the

two particles in the normal and tangential directions, n and t, are

vn
ij = δ̇ij = (vi − vj)

Tn , (2.50)

vt
ij = (vi − vj)

T t + Ωiri + Ωjrj , (2.51)

t =
vt

ij

vt
ij

, (2.52)

24 2 Basics of Granular Matter and Molecular Dynamics

where Ωi and Ωj denote the angular velocities of particles i and j, respectively

and they appeared in Fig. 2.4a. If the tangential velocity in the shearing plane

of contact is equal to zero in the beginning of a contact, the contact is head on

or normal, otherwise it is shearing or tangential. Here the tangential force Ft
ij is

connected to the normal force by the Coulomb laws of friction, namely

F t
ij =

{

F t
static ≤ µsF

n
ij , vt

ij = 0 ,

F t
dynamic = µdF

n
ij , vt

ij 6= 0 ,
(2.53)

where µs and µd are the static and dynamic friction coefficients, respectively. The ’≤’

sign that appears in Equation (2.53) means that in the case of static friction, F t
ij is

just compensating the unknown external shearing force F ext
ij applied to the contact,

so that vt
ij = 0. If F ext

ij > µsF
n
ij , one enters the dynamic friction regime where

F t
ij = µdF

n
ij applies, see e.g. [96]. The discontinuity at zero velocity is considered as

a disadvantage of the Coulomb law.

In general, the static friction is always greater than the dynamical sliding friction,

i.e. µs > µd. For simplicity, the coefficient of static and sliding friction might be

assumed equal. Therefore, the tangential shearing force can be expressed in terms

of Coulomb’s law as

Ft
ij = −µd|F

n
ij|t . (2.54)

By direct substitution of Equations (2.36) and (2.54) into Equation (2.35), the

contact force that describes this model, see Fig. 2.6a, can be written as

Fij = (kpδij + cpδ̇ij)n− µd|F
n
ij|t . (2.55)

Substitution of Fij in Equations (2.33) and (2.34) will yield the resultant contact

force and torque acting on particle i due to the particle-particle interaction.

Since Coulomb friction is a discontinuous force model, some research works made

some adjustments to the model to avoid this in the simulations, see e.g. [20, 61].

These research works introduce the shear damping to find the viscous friction force.

This force which is proportional to the tangential velocity between the two colliding

particles takes the form

Ft
ij = −ctv

t
ij , (2.56)

where ct is the shearing damping constant of the contact. Some other models con-

sider the both Coulomb and the viscous effects in determining the tangential force

[63]. In this model, the penalty method of spring-damper model is applied twice in

the normal and transverse direction of contact, see Fig. 2.6b. The contact model is

described by a set of force-displacement relationships

fn = knδn + cnδ̇n , (2.57)

ft = µdfn + ktδt + ctδ̇t (2.58)

2.2 Contact forces calculation 25

(a) penalty model in normal direction (b) penalty model in both directions

Figure 2.6: Spring-dashpot contact model in normal and/or tangential direction with a

shearing frictional force using Coulomb’s law in the tangential plane of contact

for the normal and tangential contact forces fn and ft respectively, where δn and

δt are the contact distances (overlaps) in the normal and tangential directions, δ̇n
and δ̇t are the relative velocities in these directions which have been given in Equa-

tions (2.50) and (2.51). Starting from the time t0 at which the contact was first

established, the distance δt over which the tangential spring is stretched is

δt =

∫ t

t0

vt
ij(τ)dτ . (2.59)

2. Particle-to-wall contact

The penalty principle of spring-damper model is also applied here in finding the

forces between the particles and the walls, see Fig. 2.7a. Similarly as we did in

the particle-particle contact, the particle-wall contact needs to know the amount of

overlapping with the wall during contact which can be given as

δiw = (ri +
dw

2
) − (roi − row)Tn , n =

roi − row

|roi − row|
, (2.60)

where δiw is the overlap between the particle i and the wall, dw is the wall thickness,

roi and row are the position vectors of the center point of ball i and the wall w,

respectively, and n is the normal unit vector to the wall surface in the direction of

reflection, i.e. the normal unit vector from the wall to the center of the particle i,

see Fig. 2.7b. As well as the particle becomes in touch with the wall surface, an

opposite contact force is produced. This normal force represents the summation of

26 2 Basics of Granular Matter and Molecular Dynamics

(a) spring-dashpot model (b) vector description of contact

Figure 2.7: Particle-to-wall interaction

the elastic spring and viscous damping forces assuming the linear Hertz model of

contact and is given by

Fn
iw = (kwδiw + cwδ̇iw)n , (2.61)

where kw, cw are the spring stiffness and damping coefficient with the wall and δ̇iw
denotes the relative velocity between the particle i and the wall. In case of moving

or vibrating walls, the relative normal velocity δ̇n
iw will take the form

δ̇n
iw = δ̇iwn = vn

i − vn
w , (2.62)

where vn
i and vn

w are the normal velocities of particle i and the wall, respectively.

Otherwise, the wall is stationary (vn
w = 0) and the relative velocity is equal then

the particle velocity itself in the normal direction.

The amount of viscous damping during contact is controlled by the coefficient cw.

The energy dissipation will increase as cw becomes larger and the kinetic energy

will be reduced after contact due to velocity reduction the case which will drive

the system to damp faster. The shearing force can be taken also into consideration

in the tangential plane of contact. Using the simplest form of Coulomb’s law, the

friction force Ft
iw with the wall can take the form

Ft
iw = −µd|F

n
iw|t , (2.63)

which points in the opposite direction of the shearing velocity in the tangential plane

of contact. Increasing the friction coefficient will help in damping the particles in the

tangential direction. The adhesion effect between particles, which will be discussed

later, has also a great influence on the overall damping of the colliding particles.

Different examples with different number of particles and boundary conditions are

2.3 Sorting algorithms and neighbor list computations 27

performed, see Fig. 2.8. Some of them shows the particles contact with fixed and/or

rotating walls for different levels of damping.

(a) zig-zag pattern (3893) (b) mixing process (1567) (c) outflowing hopper (1911)

Figure 2.8: Particle-wall contact with fixed and movable walls

2.3 Sorting algorithms and neighbor list computa-

tions

Since our work is focusing on studying the contact forces of particular materials of a

granular medium, the simulations are restricted to particles within some small region

surrounding the original particle i. This is typically implemented by regarding special

regions of the system using a certain surrounding distance beyond which the neighborhood

calculations and particle interactions are ignored. In a short-range force of MD simulation,

the vast majority of computation time is spent in evaluating the contact force between

colliding bodies and updating the neighboring lists, see Equation (2.33). In most cases,

the time integration typically requires only not more than 7-10% of the total time of

computation [79]. Evaluating the force sums efficiently requires knowing which particles

are within the surrounding distance at every timestep. These particles are identified as

neighbors. The key is to minimize the number of neighboring particles that must be

checked for possible interactions since calculations performed on particles outside their

surrounding distances will be wasted computation.

There are some basic techniques used to speed up simulations of particulate systems.

Representatives of these techniques are the Verlet approach and the linked linear list

approach. In this case, the aim is to construct, as efficiently as possible, a list of poten-

tial collisions between pairs of particles. The Verlet approach depends on the particles

within the cutoff distance while linked linear list approach mainly uses the bounding boxes

constructed around each particle. As the bounding boxes of two particles intersect, the

28 2 Basics of Granular Matter and Molecular Dynamics

particles are assumed to be neighbors.

For each method the neighboring particles are stored in a neighbor data-structure after

the pre-sorting has been done. Once the neighbor list is built, examining it for possible

interactions is much faster than checking all particle combinations in the system. Since

the update of these list can be optimized, the essential calculation operation for collision

detection can be reduced from O(N2) to an order proportional to the size of the system,

i.e. O(N), where N is the number of particles in the system.

2.3.1 Verlet approach

In 1967, Verlet originally proposed the idea of using the neighbor lists and he is considered

a pioneer in this field [113]. In order to reduce the computational effort, Verlet thought

in a way to avoid to do calculations for all particles in the system. Particles which are

at a large distance from each other do not interact. To utilize this property, the Verlet

neighbor lists (VL) are built [5, 88].

As shown in Fig. 2.9 a circular domain (spheres in the spatial case) is chosen around each

particle i in the system. The radius of these circles is considered as the surrounding Verlet

radius of the Verlet approach outside which all neighborhood calculations are ignored.

This radius of the Verlet circles rv is usually chosen as five times the maximum particle

radius rmax in the system, i.e.

rv = 5rmax , or in this case rv = 5r1 . (2.64)

Figure 2.9: Verlet particle circles with radius rv = 5rmax

The radius of the Verlet circle can be extended to cover wider zones around the center

particle. This optimal extension depends on the density of the whole system, the particle

2.3 Sorting algorithms and neighbor list computations 29

radii distribution and on the speed of the particles in the particular simulation. Increasing

the cutoff radius rv will increase the number of neighboring particles in the list and reduce

the frequency for which the list will need to be updated. On the other hand, the number

of force calculation operations and detection along with the contact calculation time will

increase.

Particles inside these enclosing circles are considered as neighbors to the original particle

i in the center of these Verlet circles. The neighbor list contains all the particles which

are nearly within the cutoff radius of each particle. To avoid double counting in the force

summation only neighbors where j > i are stored. In other words, particles of lower

numbers than the particular particle have not to be checked as no pair needs to be tested

twice.

To identify the particles which belong to each Verlet circle, Fig. 2.10 shows the domains

of these circles separately with their members inside. As shown in this figure, e.g. the

central particle 1 has particle 3 as a neighbor while central particle 3 has the neighbors

1, 2 and 5 within its domain and so on.

Figure 2.10: Verlet circles depicted separately with their members inside

Examining all pair separations in the granular system of N particles is computationally

expensive. To determine if contact occurs between any two particles, contact could be

30 2 Basics of Granular Matter and Molecular Dynamics

checked between all possible particle pairs. Suppose that

particle (1) needs → (N − 1) contact checks , (2.65)

particle (2) needs → (N − 2) contact checks ,

particle (3) needs → (N − 3) contact checks ,

. . .

. . .

particle (N − 3) needs → (3) contact checks ,

particle (N − 2) needs → (2) contact checks ,

particle (N − 1) needs → (1) contact check .

Therefore, the total number of contact checks is

N−1
∑

i=1

(N − i) = (N − 1) + (N − 2) + (N − 3) + ...+ 3 + 2 + 1 (2.66)

=
1

2
N(N − 1) ,

which shows that the number of necessary arithmetic operations is of order O(N2). Some

advantages result from the use of the lists of nearby pairs of particles and hence, the speed

of the simulation program is improved. Updating the lists is necessary to be done every

several time steps and they can be used for a few time steps without reconstruction. Since

in practice, the particles move just a small distance at each time step, a large fraction

of the neighbors remains the same during this time step. Therefore, it seems wasteful to

update the list at every time step of simulation. The update frequency depends on the

velocity of the particles, the density of the granulars and the size of the Verlet circles rv

around the particles. Refreshing the neighbor list e.g. every e.g. 20th time step could be

acceptable for relatively dense systems of granular media.

The example in Fig. 2.11 shows the neighbor lists of five particles (N=5). The contact

detection and force calculation has to be done on the particle pairs stored in the list. To

be neighbors is not necessary to be in contact. Using Verlet lists will reduce the number

of contact checks from ten pairs in the original system to five pairs in Verlet neighbor

contact detection scheme.

2.3.2 Linked linear list approach

The linked linear list approach (LLL) is a frequently-used and efficient searching approach

in determining the neighbor particles especially for polydisperse granular systems. Using

this approach, one can reduce the time consumption from O(N2) to O(N) what will

accelerate the simulation.

2.3 Sorting algorithms and neighbor list computations 31

Figure 2.11: Searching algorithm / particle storage in the Verlet-neighbor lists for a system

of N = 5 particles

The idea of using this method is to enclose the particles with bounding boxes in such a

way that the particles fit inside these tangential boxes. The edges of the bounding box

are aligned parallel to the system axes x, y, and z, see Fig. 2.12. Finding the neighbors is

independent on the particle shape since the particle will be enclosed by a bounding box.

The disparity in the particle sizes will just lead to different sizes of the surrounding boxes

and there polydisperse as well as momodisperse systems can be simulated efficiently.

• Creating linear lists

After the bounding boxes are laid around the particles, they are projected orthogonally to

the coordinate axes of the system. The beginning and ending limits of the bounding boxes

should be marked and stored in sequence. For particle i let the negative sign −i denote

the starting extreme and the positive sign denotes the ending extreme of the bounding

box, i.e. (−i + i), see Fig. 2.12. Two lists have to be created for the two dimensional case

while three lists are required in the case of 3D. Since the list has to store the beginning

and ending points of the particle, the length of each list is equal to twice the number of

particles in the system, i.e. 2N . The overlapping between the projections of the particles

i and j along a certain axis occurs if the starting −i, ending +i or both of particle i is in

between the starting −j and ending +j of particle j. If the two particles do overlap along

one axes, it is not necessary to have an actual overlapping in the space. The potential

spatial overlap occurs when the particles overlapped over all individual axes of the system.

Figure 2.12a shows five particles surrounded by their bounding boxes. The state of these

particles is captured at two successive time steps, i.e. t and t + ∆t and their projections

are depicted in Fig. 2.13. Since 2D case, the limits of the bounding boxes are stored at

the time t as [−5 + 5 − 4 − 2 − 1 + 4 − 3 + 1 + 2 + 3] along the x direction and

[−1 −5 −4 +5 +1 +4 −2 −3 +3 +2] along the y direction. From the sequence of these

two lists, it can observed that the particles of the group {{1,2},{1,3},{1,4},{2,3},{2,4}}

overlap together over the x-axis while the particles of the group {{1,4},{1,5},{2,3},{4,5}}

32 2 Basics of Granular Matter and Molecular Dynamics

(a) at time=t (b) at time=t+ ∆t

Figure 2.12: Bounding boxes with starting and ending limits

overlap over the y-axis. The actual intersection between the bounding boxes is represented

in the intersection between these two groups of particle pairs which will appear in the two

pairs 1/4 and 2/3.

Figure 2.13: Projection of the bounding boxes on the coordinate axes at two successive

times

2.3 Sorting algorithms and neighbor list computations 33

• Updating linear lists

Particles collide and change their locations frequently during simulation. This change

will create a dynamic list that can be updated at each time step of computation. But,

although these lists have to be frequently updated, the essential computational time can

be reduced to be proportional to the size of the granular system, i.e. O(N). Since slightly

changes happen on the locations of the colliding particles during one time step, there is

no need to damage the old neighbor list and create another new one from scratch. In this

case, updating the old list with very few changes of particle location is the proper way

to save time and speed up the simulation. That corresponds to resort again the nearly

sorted list. The changes are usually some permutations where the begin or end of one

particle jumps over the begin or end of the next one.

Figure 2.14: Exchange rules for updating the linked linear list at two successive times of

simulation

The update can be simply done by traveling through the lists sequentially and checking

for any permutations. If the order of extreme ends of two particles is unchanged, the

collision status will remain the same. In other words, if [−i − j + i + j] is the status

at time t and [−i + j − i + j] is the status at t + ∆t, the two particle i and j will

keep on overlapping. During resorting, some tests depending on some specified exchange

rules have to be performed for every particle exchange [98], see Table 2.1. A schematic

34 2 Basics of Granular Matter and Molecular Dynamics

depiction is shown in Fig. 2.14 for these four rules. that can be summarized as

I rule (1): The beginnings of the two particles are switched, which means that the

bounding boxes were in overlap at time t and keep in overlap along the specified axis at

time t+ ∆t, i.e. [−i − j + i + j] ⇒ [−j − i + i + j], where exchanged particle-ends

are denoted by the underline character, see Fig. 2.14a.

I rule (2): The ends of the two particles are switched, which means that the bounding

boxes were in overlap at time t and keep in overlap along the specified axis at time t+∆t,

i.e. [−j − i + i + j] ⇒ [−j − i + j + i], see Fig. 2.14b.

I rule (3): The beginning of particle i and the near ending of particle j are switched,

which means that the bounding boxes were in overlap at time t and the overlap has been

removed from the specified axis at time t+∆t, i.e. [−j − i + j + i] ⇒ [−j + j − i + i],

see Fig. 2.14c.

I rule (4): The ending of particle i and the following beginning of particle j are switched,

which means that the bounding boxes were not in overlap at time t and become to be in

overlap along the specified axis at time t+∆t, i.e. [−i + i − j + j] ⇒ [−i − j + i + j],

see Fig. 2.14d.

Table 2.1: Rules for updating and resorting the list of the bounding boxes in one dimen-

sion. The negative sign (-) denotes the beginning edge of the bounding box while the

positive sign (+) denoted its ending one

Rule no. Order at t Order at t+ ∆t Intersection state

(1) −i − j −j − i keep overlap

(2) +i + j +j + i keep overlap

(3) −i + j +j − i remove overlap

(4) +i − j −j + i add overlap

For the example which was shown in Fig. 2.13, the three different cases of adding, keeping

and removing overlap between the bounding boxes of the particle pairs are summarized

in Table 2.2 and in Fig. 2.15 at two successive times of simulation.

• Comparing VL and LLL approaches

A granular system of 4336 circular particles is studied. The system of particles is poly-

disperse, i.e. there are different sizes of particle diameters, and consists of 2278 particle

with radius 10mm, 1716 particles with radius 15mm and 342 particles with radius 20mm.

Each group of these particles is distributed homogeneously inside a circular container at

the beginning of the simulation, see Fig. 2.16. As shown in this figure the particles fall

under the gravity effect from the middle of the container and hit its bottom. Due to the

large impact, these particles start moving upwards from right and left in a round motion

with the wall profile until they meet together at the top of the container where they fall

2.3 Sorting algorithms and neighbor list computations 35

Table 2.2: Application of updating the list of the bounding boxes on the example of three

particle pairs shown in Fig. 2.12 and Fig. 2.13

Particle Current state at t

pair x-axis y-axis Actual intersection

1/4 overlap overlap exist

2/3 overlap overlap exist

4/5 no overlap overlap not exist

Particle Updating at t+ ∆t

pair x-axis y-axis Actual intersection

1/4 remove overlap keep overlap not exist

2/3 keep overlap keep overlap exist

4/5 add overlap keep overlap exist

(a) at time=t (b) at time=t+ ∆t

Figure 2.15: Storage of colliding bounding box pairs / linked linear list

again as showers until settle down and damp in the bottom of the tank. These particles

are divided into five different groups and simulated using the pre-mentioned approaches

of the Verlet and the linked linear lists.

The simulations are run for 4 seconds with ∆t = 10−5s using spring stiffness kp = 720N/m

and coefficient of restitution en = 0.2. For each test the corresponding computational time

is observed. The results of the computational time with respect to the number of particles

are shown in Fig. 2.17. From this curve, it is observed that the linked linear approach is

much faster than Verlet method. The situation becomes worse by using the Verlet method

36 2 Basics of Granular Matter and Molecular Dynamics

(a) at t = 0.71 s. (b) at t = 1.24 s. (c) at t = 3.30 s.

Figure 2.16: Snapshots of the simulation of a polydisperse mixture of 4336 circular par-

ticles of three sizes at different simulation times

in simulating large systems while it can be used efficiently in dealing with small systems,

for more details see [73].

Most of the computation time is spent in creating, updating and sorting the neighbor

lists and some other in finding forces and contact detection, while a very small portion

of this time is required for solving and integrating the system equations. In the example

shown in Fig. 2.16, the collision and force calculation take 82.75% and the updating lists

needs 12.7% while the integration and other operations consumes 2.46 % from the overall

computation time. For this reason, parallel computational technology becomes a main

and important demand to speed up and solve granular media problems.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

1500

2000

system size (N)

co
m

pu
ta

tio
n

tim
e

(m
in

)

Verlet list
linked linear list

Figure 2.17: Comparing the computational time of VL and LLL methods for different

number of particles

2.4 Computational structure of the serial MD code 37

2.4 Computational structure of the serial MD code

In this part, we will explain the structure of the molecular dynamics program MOLDYN,

originally written by Muth [71]. A general overview about different subrotines will be

briefly presented without much details. Only some special parts which are necessary to

understand the general communication along with the input and output files will be taken

into consideration.

2.4.1 Code initialization

MOLDYN basically consists of different consecutive parts connected to form the general

structure of the program, see Fig. 2.18. Variables, vectors, matrices and structures were

defined, allocated and set to zero at the very beginning of the program. As an initial-

ization of the code, all required data will be read from the input files and stored in the

corresponding data structures, see Appendix A.1. These files are divided into three differ-

ent categories, the control-input-file whose contents is the information about the starting

time t0 and ending time tend of the simulation, the simulation time step ∆t, the gravity

acceleration, the particles density ρ, the static µs and dynamic µd friction coefficients, the

spring stiffnesses for loading kl, unloading kun and adhesion kad contact cases, the damp-

ing constants between particles cp and with the walls cw and/or the normal coefficient of

restitution en, the particle-input-file which has all information about the particles in the

system, e.g. the initial positions, velocities, orientations, radii and the particle state if it

is movable or stationary and finally the wall-input-file which supplies information about

the number of walls, the location of the center point of the walls and the direction of the

positive norms toward where the particles should be reflected. It is also possible to define

the walls as a segments so that the norm direction of the wall segment ab is quite opposite

to the norm direction of the wall segment ba, where a and b are the end points of the wall

segment-line ab.

2.4.2 Description of the program

As a small necessary test of the defined simulation time step, the contact-time subroutine

checks if ∆t is small enough comparable with the smallest contact time tc of the colliding

particles in the system, see Equation (2.22), otherwise the program will be interrupted.

The mass of the particles can be calculated from the density and the volume of each

particle i, i.e. mi = ρiVi, where Vi = (4/3)πr3
i is the volume of the spherical particle of

radius ri. The mass of the particles is very important to estimate the contact time tc and

to determine the particle acceleration, i.e. ai = Fi/mi, see Equation (2.33).

In this stage, the main time loop starts. MOLDYN offers the choice to select between

38 2 Basics of Granular Matter and Molecular Dynamics

either the Verlet-approach or the linked-linear-lists-approach. If the Verlet-

approach is in use, the Verlet-circle subroutine is then responsible to determine and

calculate the verlet circles around the particles as five times the size of the largest par-

ticle in the system, see Equation (2.64), otherwise the linked-linear-lists-approach will

be activated. In this method the location of the bounding boxes should be determined

as they are projected on the system axes. These calculations will be performed in the

bounding-box-calculations subroutine where the particle ends have to be sequentially

stored in lists along the different axes of the system.

The neighboring particles are now known and the particle pairs have occupied specific

locations in the storage lists. But to be a neighbor is not necessary to be in contact.

Therefore, the collision-fine-test will determine if these pairs are in contact or not

by calculating the overlap between them, see Equation (2.37). If the overlap exists, a flag

is passed to the particle-particle-contact subroutine to start force calculations. The

force calculations are represented in finding the particle-penalty forces of spring and dash-

pot elements in the normal and tangential directions. In this subroutine different contact

modes of loading, unloading, adhesive and frictional forces are taken into consideration,

see Equation (2.47).

The computed particle-particle forces are stored and kept to be added later to the wall

contact forces. The particle-wall-contact subroutine is responsible to calculate the

normal and frictional tangential forces by applying the soft particle model and the simple

linear Coulomb approach, see Equation (2.61) and Equation (2.63). This force component

with the walls is added to the pre-calculated component between particles to get the overall

force acting on every particle i in the system. Since the total force acts on particle i is

now known, the acceleration ai of the particle is directly calculated by dividing it by

mass. In this stage the equations of motion of all particles are ready to be solved. The

integration-scheme subroutine offers three different choices of Verlet integrators to be

used, i.e. original Verlet, velocity Verlet and leap-frog Verlet, see Section (2.1.1). Using

the current acceleration at time t and the current and old particle position at time t−∆t,

the original Verlet integrator can explicitly solve the particle equations of motion and get

the new positions without even need to use the particle velocity, see Equation (2.3).

Once the new positions and orientations are known, the new state should be recorded on

specific output files using the record-state-and-visualization subroutine. These files

are read by some animation browsers, e.g. ANIM and XBALLS [12, 60], in order to be

visualized. Monitoring the particle collision during simulation is very useful to judge if the

simulation proceeds in the right way, otherwise it should be terminated. Calculating the

total energy dissipation of the system during simulation is also another indicator about

the accuracy and acceptability of the contact calculation results. Since the motion of the

particles is very small within two successive time steps, the presentation of the output

data will be very slow during animation. Therefore, a large amount of this data will not

2.4 Computational structure of the serial MD code 39

∆

∆

∆

Figure 2.18: Flowchart of the program MOLDYN [71]

40 2 Basics of Granular Matter and Molecular Dynamics

be saved but just the data at every certain output time steps, i.e. the simulation time step

could be 10−5s while the output time step be like 10−3s. The output time step should

be carefully selected to make the animation more fast and not to create any annoying

discontinuity in the particle motion during visualization in the same time.

At the end of every time step, the program check for the end time tend. If t ≥ tend, the

program will be terminated and all variables, vectors, matrices and structures will be deal-

located. If t < tend, the program will proceed to the next time step and all neighboring lists

will be updated. Refreshing neighboring lists by adding or removing collisions depends

on which neighboring sorting approach is used, i.e. update-Verlet-neighbor-list or

update-linked-linear-lists subroutines. The collision detection and lists updating

are the most time consuming part in the simulation. Usually, the old lists will not be lost

since it will be used in the next time step. Since these lists are mostly or nearly sorted

from the previous time step, these subroutines just run over them to add or remove the

new collisions wherever needed.

The MOLDYN is very flexible program in use and can support different choices in solving

planar and spatial granular system. The subroutines are written in general form to cover

the two and three dimensional problems. Moreover, this program can solve not only the

spherical or round-shaped particles, but also the general shape of polygonal particles with

concave and convex collisions. The variety and availability in using different damping

and adhesion effects and applying different models of frictional approaches give it a great

importance in solving efficiently different systems in granular media.

41

Chapter 3

Parallelizing Molecular Dynamics

Using Spatial Decomposition

Computer simulations of technological relevance became possible only in the past decades

due to the enormous advances in computer technology. This progress in computer technol-

ogy contributed much to the scientific interest in granular matter as a subject of research

in physics and engineering [85].

The discrete element approach is widely applied for simulation of large, complex, irregular

and data-parallel many-particle systems in many areas in physics and engineering and is

considered as a useful deterministic technique of granular simulation. The mechanically

correct description and simulation of contacts between mechanical bodies still belongs to

the most challenging and computation-time intensive questions. While, by simple meth-

ods, a relatively low number of particles can be already computed with sufficient accuracy

and acceptable computation times, there remain difficult and interesting problems as soon

as elastic deformations, complicated particle geometries or a huge number of particles have

to be considered.

In recent years there has been considerable interest in devising parallel discrete element

algorithms, see e.g. [38, 41, 102, 110]. The natural parallelism in these algorithms is,

that the force calculations and the trajectory updates can be done simultaneously for all

particles in the system. In this part of the work, existing contact algorithms are extended

and modified in such a way that modern high performance computers can be utilized for

their parallel evaluation. Appropriate load distribution schemes and different strategies

for a concurrent and distributed collision detection and contact force computation have

to be developed, implemented and investigated.

Concerning engineering applications we note that an important factor which affects the

success of the numerical procedure is how much one has access to a computer system

which is powerful enough to handle the problem of interest. Therefore, we will do our

42 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

simulation using parallel high performance computers, which are developing rapidly in the

ongoing computer revolution. So, the available current algorithms need to be redesigned

to suit the new architectures of modern parallel computers. These modified algorithms

have to be run on different machines simultaneously and the results will be collected by

a master one.

3.1 High performance computers

High performance computers (HPCs) are computers that can perform multiple, complex

digital operations within seconds. The term high performance computing often refers to

the use of parallel computers (sometimes supercomputers) and computer clusters, that

is, computing systems comprised of multiple processors linked together in a single system

with commercially available interconnects. This is in contrast to mainframe computers,

which are traditionally monolithic in nature.

High performance computing can be performed in a number of ways. The scope and effect

of HPC technologies depends on several factors, e.g. , how the computing capability is

structured, how the computing capability is used, and what is the desired result of the

computing capability. The first high-speed computers developed in the late 1950s and

the early 1960s, such as the IBM 704 and the IBM STRETCH, were single computers

performing a series of sequential, arithmetic functions (one operation per one instruction

in a sequential order). In the late 1960s and into the 1970s, improvements in computing

memory capacity and speed led to developments in which repetitive operations could be

undertaken per instruction. An HPC which performs one operation per one instruction

uses scalar speed; an HPC which performs repetitive operations per single instruction

uses vector speed, see [65]. There are two main types of HPCs: vector computers and

parallel computers.

• Vector computers

This type of computers as used since the 1970s is conceptually a parallel computer that

can be classified as SIMD machine (single instruction, multiple data). They are very

efficient for processing vectorial data and pipelining, i.e. data-parallel operations, see e.g.

[85, 87]. The computing application, the number of processors needed, the time, cost,

and other factors all play a role in how HPCs are used.

• Parallel computers

A parallel computer - as used in our work- is simply a collection of processors, intercon-

nected in a certain fashion to allow coordination of their activities and exchange of data.

Traditionally, software which is written for serial computation is run on a single computer

having a single Central Processing Unit (CPU). As the problem is broken into a discrete

series of instructions, they are executed one after another in such a way that only one

3.1 High performance computers 43

instruction may execute at any moment in time, see Fig. 3.1.

Figure 3.1: Graphical representation of serial computation

On the other hand, parallel computing is the simultaneous use of multiple compute re-

sources to solve a computational problem. The problem is usually broken into parts that

can be solved concurrently using multiple CPUs. Each part of the problem is further

broken down to a series of instructions which are executed simultaneously on different

CPUs, see Fig. 3.2. The compute resources can include a single computer with multiple

processors, an arbitrary number of computers connected by a network or a combination

of both.

Figure 3.2: Graphical representation of parallel computation

There are different ways to classify parallel computers. One of the more widely used

classifications, in use since 1966, is called Flynn’s Taxonomy [31]. Flynn’s taxonomy dis-

44 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

tinguishes multi-processor computer architectures according to how they can be classified

along the two independent dimensions of Instruction and Data. Each of these dimen-

sions can have only one of two possible states: Single or Multiple. Let SI denote the

Single Instruction Stream, MI is the Multiple Instruction Stream, SD is the Single Data

Stream and MD is the Multiple Data Stream, the Table 3.1 below defines the four possible

classifications according to Flynn, see e.g. [10].

Table 3.1: Classification matrix of the parallel computers according to Flynn’s taxonomy

Data/ SD MD

Instruction

SI SISD SIMD

Single Instruction, Single Data Single Instruction, Multiple Data

MI MISD MIMD

Multiple Instruction, Single Data Multiple Instruction, Multiple Data

Parallel computers are fundamentally divided into two main types according to their

memory architecture: the shared memory parallel computers and the distributed memory

parallel computers.

3.1.1 Shared memory architecture

The single computer with multiple internal processors is known as a Shared Memory

Multiprocessor. This multiprocessor is a natural extension of the single processor of the

conventional computer and has the ability to access all memory as global address space,

see Fig. 3.3. This means that any processor can readily have access to any memory

location without any need for copying data from one memory to another.

In a shared memory scheme, the multiple processors can operate independently but share

the same memory resources. Altering values at a given memory location should be done

carefully since cached copies of such variables also have to be updated for any processor

using that data and so the changes in a memory location effected by one processor are

visible to all other processors. Based upon the memory access times and the identity of

the different processors, shared memory computers can be divided into two main classes:

the Uniform Memory Access (UMA) and the Non-Uniform Memory Access (NUMA).

The major disadvantages of the shared memory multiprocessor are in the difficulty of

hardware implementation that can achieve fast access to all shared memory locations,

the responsibility of the programmer for synchronization constructs that insure correct

access of global memory and the high cost and complexity to design and produce shared

memory machines with an ever increasing numbers of processors.

3.1 High performance computers 45

Figure 3.3: Shared memory architecture

3.1.2 Distributed memory architecture

The set of computers interconnected through a network is known as a Distributed Mem-

ory Multicomputer or message passing multicomputer. This memory type consists of

connecting the inter-processor memory of the independent computers via an communica-

tion network as shown in Fig. 3.4. In this scheme, processors have their own local memory

and so operate independently. The memory addresses in one processor do not map to

another processor, so there is no concept of global address space across all processors.

Inter-processor communication is achieved through sending messages explicitly from each

computer to another using message passing libraries. It is usually the task of the program-

mer to explicitly define how and when data is communicated. Synchronization between

tasks is very essential and it is likewise the programmer’s responsibility. The distributed

memory multicomputer will physically scale easier than a shared memory multiprocessor,

i.e. it can more easily be extended by adding more computers to the network.

The most compelling reason for using message passing multicomputers is in its direct

applicability to existing computer networks. Scalability between the memory and the

number of processors is an advantage of the message passing multicomputer. Furthermore,

each processor can rapidly access its own memory without interference and without the

overhead incurred with trying to maintain cache coherency.

46 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

Figure 3.4: Distributed memory multicomputer

3.2 Parallel virtual machine (PVM)

Parallel Virtual Machine (PVM) as well as Message Passing Interface (MPI) are libraries

that provide functions to handle communication between processors in a distributed mem-

ory environment. PVM is a software package that permits a heterogeneous collection of

serial, parallel and vector computers which are connected to a network to appear as one

large computing resource. The function calls which are provided by the communication

library can be added to a serial program in order to convert it to a parallel program,

often with only a few modifications. PVM programs may be compiled to run in parallel

on multiple nodes of parallel computers as well as on a cluster of workstations connected

over a network.

In a distributed memory machine, a process is created for each processor taking part in

the calculation. The creation of processes can be done within the code by using PVM. In

other cases, the processes can be created with a separate program that starts the processes

on all the processors specified by the user. All the processes have the same code, which

has to be modified so that each processor knows exactly what part of the code to execute.

This is usually done based on the process identification number. Since PVM as well as

MPI have a message-passing interface, i.e. a communication library, it is the responsibility

of a software developer to initialize the communication environment, implement the data

exchanges, synchronize the execution, and terminate the communication environment.

There are three main parallel models which are usually used in parallel computations [89],

these models are

• Crowd computing model

This model consists of a collection of closely related processes, typically executing the

same code, performing calculations on different portions of the workload and usually

involving the periodic exchange of intermediate results. This computing model can be

classified into

3.2 Parallel virtual machine (PVM) 47

I Master-slave model that has a separate control program, i.e. the master, which

is responsible for spawning, initialization, collection and display of results. The slave

programs perform the actual computations on the workload allocated either by the master

or by themselves.

I Node-to-node model where multiple instances of a single program execute, with

one process taking over the noncomputational responsibilities as well as contributing to

the calculation itself.

• Tree computing model

The processes of this model are spawned (usually dynamically as the computation grows)

in a tree-like manner establishing a tree-like parent-child relationship using different com-

binatorial searching methods, e.g. branch-and-bound algorithms [7], alpha-beta search [29],

and recursive divide-and-conquer algorithms [70].

• Hybrid computing model

A hybrid or combination model possesses an arbitrary spawning structure in a way that at

any point in the application execution the process relationship may resemble an arbitrary

and changing graph. Hybrid processors usually combine two traditionally separate types

of computational devices on a single chip, see e.g. [34].

Starting PVM programming, one or more sequential programs containing embedded calls

to the PVM library have to be written. Each program corresponds to a task making up

the application. The programs are compiled for each architecture in the host pool and

the resulting object files are placed at a location accessible from machines in the host

pool. An application is executed when the user starts the master or initiating task from

a machine within the host pool. The master process subsequently starts other PVM

tasks, eventually there are a number of active tasks to compute and communicate to solve

the problem. Tasks may interact through explicit message-passing. Once the tasks are

finished they and the master task disassociate themselves from PVM by exiting from the

PVM system.

Since the application is executed on multiple processors, the application needs to be

divided into parts, which are then distributed to the processors. The purpose of load bal-

ancing is to divide the workload into optimal proportions with respect to the sizes and the

capabilities of the processors. There are two main methods for decomposing a problem

into smaller tasks to be performed in parallel: functional and domain decompositions. In

functional decomposition the problem is decomposed into different tasks, which can be

distributed to multiple processors for simultaneous execution while in domain decompo-

sition the problem’s data domain is partitioned and distributed to multiple processors for

simultaneous execution.

48 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

3.3 Computational structure of the parallel MD code

A spatial decomposition method for short-range parallel direct simulations (will be dis-

cussed later) can shorten the computation times. In this method a part of the physical

simulation domain is assigned to each processor. This processor computes the forces on

particles in its domain, determines forces from neighboring domains, and updates the

positions and velocities of all particles within its box at each time step. Each processor

tracks particles as they enter and exit its sub-domain. As the simulation progresses, pro-

cessors exchange particles as they move from one sub-domain to another. In this case,

particles are reassigned to new processors as they move through the physical domain.

PVM is based on the message-passing computing model of parallel programming. Mes-

sages are passed between tasks over the connecting networks. User’s tasks are able to

initiate and terminate other tasks, send and receive data, and synchronize with one an-

other using a library of message passing routines. Tasks are dynamic, i.e. can be started

or killed during the execution of a program, even the configuration of the virtual machine

can be dynamically configured.

In our work, the existing serial code was rearranged and modified to work in parallel using

a message passing library, see Fig. 3.5. The parallel code is divided into three main parts,

i.e. master, slave and control-output programs.

3.3.1 Master program

This part is responsible for starting the different slaves and control-output programs

and for distributing the original data to them. It collects also the output data for each

simulation time step and redistributes them to the different slaves according to the fixed

predefined physical boundaries assigned to the processors.

In the master program, we first get the task ID of the master by calling the PVM function

pvm mytid() which enrolls the process in PVM. The slave program finds the task ID of

the master by calling the function pvm parent(). The PVM system assigns each process

a unique integer called its task ID. The task ID helps in identifying the process with

which is needed to communicate. In order to write a parallel program, tasks must be

executed on different processors by creating the slave processes using pvm spawn(). As

an example of the message passing between processors, the master in Fig. 3.5 creates

the two slaves, i.e. slave(1) and slave(2), and the control-output program. The master

informs these programs through message 11 and 25 by the essential information needed for

initialization about particles positions, velocities, radii, densities, stiffness and damping

parameters and some others.

3.3 Computational structure of the parallel MD code 49

Figure 3.5: Message exchange between master, slaves and control-output codes

3.3.2 Slave programs

The slaves, which are generated according to the selected number of processors, receive

the data of the new particle positions from the master program at each simulation time

step. The neighborhood-list is generated and the contact forces are then computed. The

positions and velocities of all particles are updated and sent directly to the master program

in order to redistribute them again at the next time step. Another copy of this updated

data is sent also to the control-output program to collect and arrange them in the suitable

form of the final output file required for animation. The slaves should also communicate

with each other and exchange the data belonging to those particles, which lie in the

so-called halo region at the domain boundaries.

A message in PVM consists of basically two parts, the data and a tag that identifies the

type of the message. To send a message, it is first needed to initialize the send buffer. This

is done by calling the pvm initsend() function. Once the buffer has been initialized, we

need to put data into the buffer and encode it. So the function pvm pkstr(), pvm pkint()

and pvm pkdouble() are used to pack these different types of data into the buffer. Once

the data is packed, the function pvm send() is called to send the message. The first

argument of this function is the ID of the process to which the message is to be sent and

the second argument is the message tag. pvm mcast() is a similar function and is useful

when the same message should be sent to a set of tasks. It does the same as pvm send(),

except it takes an array of tids instead of just one.

Once the data is sent to the slave from the master or from another slave, the slave will

process it by calling pvm recv() to receive the coming data. The arguments of this function

are the task ID from which the message is expected and the tag of the expected message.

50 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

If the desired message has not yet been sent, this function waits and does not return.

Thus, in effect, the master is now waiting for the slave to process the data. Once the

message arrives, the data is still in the receive buffer. It needs to be unpacked, i.e. decoded

to get the original message. This decoding is done by the pvm upkstr() function.

In Fig. 3.5 the adjacent slaves exchange information about the location of the halo particles

through message 35 and receive back the returned forces by message 45. Each slave

integrates its equations of motions and determines the new location of its home particles.

These new locations are sent by message 77 to the master in order to be redistributed

to the different slaves through message 88. A copy of the new positions is also sent to

the control-output program by message 33 in order to be prepared for visualization. The

control-output program informs the master through message 55 if there are no further

data comes in order to finish and stop the simulation.

Before the PVM program exits, it must tell the PVM system that it is leaving the PVM

system so that resources occupied by the process can be released. This is done by calling

the pvm exit() function. Many other PVM functions which are used for data communica-

tion within the network environment can be found in detail in the PVM reference manual

[36].

3.3.3 Control-output program for visualization

This program collects the data, which is sent from the different slaves at each output time

step during simulation. These raw results are arranged in the final output file shape for

animation. It would be impossible to follow particles motion by reading the output text

files and acquiring these information especially for large systems. For a better imagination

and to know how the particles move and collide during simulation, visualization of raw

data is considered as the important interface for interaction between the user and the

computers.

3.4 Parallelized domain decomposition strategies

There are many different strategies normally used to decompose granular systems in par-

allel computations. These approaches play a significant role in maintaining on certain

level of communication/computation balance of parallel environment. Furthermore, each

of them solves the problem with different orders of time complexity depending on the size

of the system. The spatial decomposition method, which is used in our parallel simula-

tions, is a well-known method in this field. As a general overview on other methods, the

two approaches of the Replicated Data Method and the Hierarchical Tree Decomposition

Method are briefly discussed here.

3.4 Parallelized domain decomposition strategies 51

3.4.1 Replicated data method

This method is also called particle decomposition method and is one of several ways to

achieve parallelization in granular simulations. Furthermore, it is relatively simple to pro-

gram and is reasonably efficient. Its name derives from the replication of the configuration

data on each node of a parallel computer, i.e. the arrays defining the particle coordinates

ri, velocities vi and forces fi, for all N particles {i : i = 1, ..., N} in the simulated system,

are reproduced on every processing node.

For a system of N particles and P processors, each of the P processors is assigned a group

of Nk = N/P particles at the beginning of the simulation, where Nk is the number of

particles belongs to processor k and P is the number of processors. Particles in a group do

not need to have any special spatial relationship to each other. A processor will compute

forces on only its Nk particles and will update their positions, velocities and orientations

for the duration of the simulation no matter where they move in the physical domain of

the global system.

In this strategy most of the forces computations and the integration of the equations of

motion can be shared easily and equally between nodes. As the number of processors

P increases, the computation time goes down. But since we still have to communicate

the same amount of information which is proportional to the number of particles N ,

it does not scale. However, this strategy can be expensive in memory and has a high

communication overhead, but overall it has proven to be successful over a wide range of

applications. These issues are expored in more detail [86, 102].

As a representation of the computational work involved in this algorithm and due to

short-range forces, an N × N sparse force matrix F can be created [80]. The element

of Fij represents the force on particle i due to particle j. The symmetries in the forces

Fij = −Fji being computed reduce the computational effort. In two-body forces, for

example, particle i and its neighbors j forces are updated for both particles in pair when

i < j and ignored when i > j. Therefore, one computation is sufficient for each pair of

particles.

The vectors r and f of length N store the position and total force on each particle. For a

3D simulation, ri would store the three coordinates of particle i. With these definitions,

the replicated data algorithm assigns each processor a sub-block of F which consists of Nk

rows of the matrix. Processor pk computes matrix elements in the Fk sub-block of rows,

where 0 ≤ k ≤ P . It also assigns the corresponding sub-vectors of length Nk denoted by

rk and fk. To compute all the elements in Fk, processor pk needs the positions of many

particles owned by other processors. This implies that at every timestep each processor

must receive updated particle positions from all the other processors, an operation called

all-to-all communication. Various algorithms have been developed for performing this

operation efficiently on different parallel machines and architectures, see e.g. [33].

52 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

The replicated data method shows a relatively low speedup compared with the other

methods and is restricted since the distributed memory machines often do not possess

enough memory on a processing node to hold all of the data for a large job. When

the goal is to simulate an extremely large system and also to take advantage of a larger

number of processors, a different approach is needed, e.g. spatial decomposition which

will be discussed later.

3.4.2 Hierarchical tree decomposition method

The classical N -body problem simulates the evolution of a system of N particles, where

the force exerted on each one arises due to its interaction with all the other bodies in

the system. The simulation proceeds over time and the net force acts on each body

is computed at every timestep. If all pairwise forces are computed directly, this requires

O(N2) operations at each timestep. Hierarchical tree-based methods have been developed

to reduce the complexity. What we need is a supporting data structure to subdivide space,

see e.g. [30]. The octtree is used in 3-dimensional problems while the quadtree is used in

2-dimensional ones. As a brief description of the planar case, the quadtree begins with

a square in the plane; this is the root of the quadtree. This large square can be broken

into four smaller squares of half the perimeter and a quarter the area each; these are the

four children of the root. Each child can in turn be broken into four subsquares to get its

children, and so on, see Fig. 3.6.

Figure 3.6: A complete quadtree with four levels, each line type represents a new gener-

ation of children

There are several approaches that have looked at parallel implementations of these tree-

based methods, e.g. the Barnes-Hut algorithm (BHA) [9] and Greengard’s Fast Multipole

Algorithm (FMA) [37]. The primary difference between these algorithms is that the BHA

algorithm computes particle-cell interactions, whereas the FMA computes cell-cell interac-

tions, thereby reducing its complexity. The Barnes-Hut algorithm solves the problem with

time complexity of O(NlogN) while the FMA approximates the solution with bounded

error in time O(N).

3.5 Spatial decomposition method (SDM) 53

The Barnes-Hut algorithm solves the problem cleverly by using a divide-and-conquer

approach. It is very popular, as it is not too complex to implement, and tends to have

fast execution. It uses a quadtree for representing the particles inside the two-dimensional

space (or octtree for the corresponding three-dimensional case). Each node in the tree

represents a cell enclosing a certain area within the space. A quadtree is constructed by

recursively subdividing the root node of the tree, which represents the whole 2D space

containing all the particles, into four nodes representing four sub-cells with equal sizes,

until each sub-cell has at most one particle. Each cell contains the total mass and the

position of the center of mass of all the particles in the subtree below.

After a quadtree (or octtree) is constructed, the tree is traversed from its root once

per particle to compute the net force acting on it. The tricky point here for improving

performance is that at each step of traversal, if the cell represented by that node is well

separated from the particle, we can consider that the forces acted on the particle resulting

from the particles inside that cell come from a single point of source. In that case, we

just use the center of mass approximation to compute the force on the particle due to the

entire subtree under that cell. Otherwise, if the cell is close enough, each of its subcells

has to be visited. A cell is considered to be well separated from a particle if its size,

divided by its distance of its center of mass from the particle, is smaller than a certain

parameter called theshold, which controls the accuracy of the approximation, see e.g. [8].

On the other hand, the Fast Multipole Algorithm is a linear-time algorithm. It performs

a computation over a hierarchically decomposed space, and has distinct computations for

near and far bodies. Similar to that of the Barnes-Hut algorithm, FMA also uses an

octtree for spatial 3-dimensional case where the root encompasses the entire space with

each of its children encompassing equal-size octants of the space, repeatedly down to the

leaves. After the tree is built, it has a top-down phase in which the local expansion of the

parent cell is shifted to the center of each child, and added to the multipole expansions

of the cell in the childs’s interaction list to form its local expansion. Finally, the local

expansions at the leaf cell, along with direct interactions with particles in neighboring cells

gives the local force on each particle. The number of terms in the multipole expansions

controls the accuracy of the algorithm, see [14, 76].

3.5 Spatial decomposition method (SDM)

In 1995, a classication of the decomposition techniques was proposed by Wilson [117],

namely:

I Geometric decomposition: The problem domain is broken up into smaller domains

and each process executes the algorithm on each part of it.

I Iterative decomposition: Some applications are based on loop execution where each

iteration can be done in an independent way. This approach is implemented through a

54 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

central queue of tasks, and thus corresponds to the task-farming paradigm.

I Recursive decomposition: This strategy starts by breaking the original problem

into several subproblems and solving these in a parallel way. It clearly corresponds to a

divide and conquer approach.

I Speculative decomposition: Some problems can use a speculative decomposition

approach, i.e. k solution techniques are tried simultaneously, and k−1 of them are thrown

away as soon as the first one returns a plausible answer. In some cases this could result

optimistically in a shorter overall execution time.

I Functional decomposition: The application is broken down into many distinct

phases, where each phase executes a dierent algorithm within the same problem. The

most used topology is the process pipelining, see [16].

The spatial decomposition method which is also called geometric decomposition method

[28] will be discussed in detail in this section since it is used in our parallel simulations.

In this method, to each processor a portion of the physical simulation domain is assigned

which is considered as a sub-division of the overall workload of the system. The proces-

sor boundaries remain fixed in space as particles moves through them. Each processor

computes only the forces on particles in its sub-domain. As the simulation progresses

processors exchange particles as they move from one sub-domain to another.

3.5.1 Qualitative overview

The homogeneity in particle distribution along with the expected shape of particles move-

ment plays a significant role in differentiating between these different patterns. The gen-

eral headlines of the SDM can be described in the following steps:

• step(1): The physical volume is divided into a regular grid which are parallel slices in

the case of one dimensional decomposition, see Fig. 3.7.

• step(2): Each grid cell is assigned to a processor. This processor is responsible for

performing the force calculations and state updates for all particles (nominally) within

the cell.

• step(3): Force computation requires state information for some particles owned by

other processors, i.e. the particles located in so-called halo regions at the borders of the

processors. These are acquired by a communication phase between slaves at the start of

each computational step.

• step(4): Particles will occasionally drift across processor boundaries. These processors

remain the responsibility of the original parent processor during the basic (communicate,

update) cycle outlines in steps 2 and 3. Reassignment of particles to processors according

to the cell boundaries is done periodically by the master program.

For neighbor-list computations, each processor computes neighbor list for its local parti-

cles using the same algorithm as in the sequential code. The decision to recompute the

3.5 Spatial decomposition method (SDM) 55

Figure 3.7: Spatial decomposition of the particles domain into parallel vertical slices, each

processor is responsible for one of the sub-domains

neighbor list is taken differently in the two implementations. In parallel implementation

the neighbor list is recomputed based only on changes in positions of local particles. Also,

if a neighboring processor recomputes its neighbor list due to local changes, then particles

within a distance of the halo region are sorted, and the neighbor list recomputed. This

is needed to ensure that neighboring processors have a consistent view of their particles.

When a neighbor list computation is required due to local changes, a processor informs

the neighbors of this, along with the message that sends the boundary data, so that the

neighbors too can recompute their lists. This scheme assumes that particles stored in

each processor span a range of at least the halo region width 2rmax, in order to ensure

correctness.

3.5.2 Message communication pattern

Since force calculations and position updating are done locally, at each time step every

processor needs to communicate with neighboring processors the updated positions of its

halo particles which are located on their boundaries. In this case each processor acquires

all information necessary for force computation in each step. PVM provides two modes

of communication - blocking and non-blocking, see e.g. [32].

In the blocking mode of communication the send operation does not complete until the

buffer is empty and the receive operation does not return until buffer is full. Whereas

the non-blocking communication operations return immediately with request handles that

can be waited upon and queried. Thus the use of non-blocking communication provides

an opportunity to overlap computation with communication. Using this scheme could

56 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

sometimes create some improvements in the communication cost.

The sending and receiving is only related to the particles which lie near a physical bound-

ary of the processors, i.e. the particles which belong to one processor and have the possi-

bility to be in contact with the other particles in the next domain of the other processor.

Let us define the particles which belong to processor pk and lie inside its physical do-

main as the home particles of pk. On the other hand, let the particles which belong to

processor pk and specifically lie inside the area of its halo region hk be defined as the

immigrant particles of pk. These particles will travel or immigrate to the neighboring

processor pk−1, where k 6= 1. This immigrant particles of processor pk will be received by

processor pk+1 and considered as visiting particles to this host processor, where k 6= P .

The sending-receiving loop of processor pk is depicted in Fig. 3.8.

Figure 3.8: Message communication pattern of processor pk. Each processor sends and

receives attributes of buffer data to and from left and right neighboring processors

In the communication pattern described above, several attributes, i.e. positions, velocities,

particle radii, particle densities, ...etc., of buffer particles need to be sent to the neigh-

boring processors. Sending individual messages for each array is not desirable because it

will cause significant message startup cost irrespective of the amount of data to be sent.

Instead, several arrays can be packed together in each communication step, so that we

can send just one long message instead of several smaller ones.

3.5.3 Mathematical formulation

By subdividing the physical volume among processors into P domains, where P is the

number of processors, the one dimensional decomposition method of parallel slices can

be geometrically described as shown in Fig. 3.9. The kth processor pk is responsible for

3.5 Spatial decomposition method (SDM) 57

particles whose x-coordinates lie in the range of its local domain

k−1
∑

i=0

Li ≤ x < Lk +

k−1
∑

i=0

Li , (3.1)

where 0 ≤ k ≤ P and L0 = 0. In this case the values pk are not equally spaced along the

overall width L and each has a local width Lk. Adjusting this width during simulation

leads to dynamic processor boundaries which is useful for the load balance of the problem.

Dynamical load balance nearly maintains the same number of particles assigned to each

processor and, therefore, an almost equal computation load distribution among the slaves.

On the other hand, when the particles distribution is nearly homogeneous along the x-

direction and hence the size of movements of the particles between any two adjacent

processors is almost identical, the processors are assumed to be equally spaced of fixed-

defined boundaries and identical widths Lk, i.e.

Li =
L

P
, (3.2)

and therefore Equation (3.1) becomes

(k − 1)
L

P
≤ x < k

L

P
. (3.3)

Similarly, each processor pk has a so-called halo-region hk, k 6= 1, at its boundaries, where

h2, h3, ..., hP are the halo regions of the processors p2, p3, ..., pP , respectively, see Fig. 3.9.

The minimum width of the halo-region is usually selected to be as twice as the maximum

radius of the particles in the system 2rmax. This selection is to maintain on all contact

possibilities of those particles on the borders and belong to different processors. The

width of the halo-regions bk can be assumed to be identical, i.e.

bi = 2rmax, 2 ≤ i ≤ P . (3.4)

Therefore, the particle is assumed to belong to the halo-region hk of processor pk if the

x-coordinate of its center lies in the range of the halo-region extremes, i.e.

(k − 1)
L

P
≤ x < (k − 1)

L

P
+ 2rmax . (3.5)

Its always true that Mk ≤ Nk, where Nk is the local number of particles of processor pk

and Mk is the number of particles belongs to the halo-region hk; k 6= 1. Assuming an

equally particle distributed scheme, Nk = N/P for 1 ≤ k ≤ P .

Message communication and exchanging data between different processors of the slaves

and the master can be summarized in the following steps:

• step(1): For each processor pk, where 1 ≤ k ≤ P , construct the matrix H of the

individual home particles, i.e. the particles with (k − 1)L/P ≤ rk
x < k L/P

Hk =
[

gkT

h rkT

x rkT

y rkT

z vkT

x vkT

y vkT

z rkT

x,old rkT

y,old rkT

z,old rkT

ρ
kT
]T

Nk×12
, (3.6)

58 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

Figure 3.9: Geometrical description of the processors dimensions in a slice spatial decom-

position method

where gh is the vector of the global indices of home particles, rx, ry and rz are the vector

of particles positions along the three coordinate axes x, y and z, respectively, rx,old, ry,old

and rz,old are the vectors of old-particle positions along those axes, vx, vy and vz are the

vector of particles velocities along the main coordinate axes, r is the vector of particles

radii and ρ is the vector of particles mass density.

• step(2): Construct the matrix I of the immigrant particles for each processor k, where

k 6= 1, as

Ik =
[

gkT

i rkT

x rkT

y rkT

z vkT

x vkT

y vkT

z rkT

x,old rkT

y,old rkT

z,old rkT

ρ
kT
]T

Mk×12
, (3.7)

where gi is the vector of the global indices of the immigrant particles. These par-

ticles are located inside the halo region hk of processor k, i.e. the particles with

(k − 1)L/P ≤ rk
x < (k − 1)L/P + 2rmax, where rmax is the maximum particle radius

in the system. These immigrant particles which belong to processor pk and are stored

in the matrix Ik should be sent in a buffer to the left neighboring processor pk−1 using

PVM library commands. This particle exchange will lead to an extra communication

cost relative to the sequential programming.

• step(3): This buffer which holds data of the matrix Ik of the immigrant particles

from processor pk will be received by processor pk−1 and stored in a matrix allocated for

receiving the visiting particles Vk−1, i.e.

Vk = Ik+1 and Vk−1 = Ik , (3.8)

3.5 Spatial decomposition method (SDM) 59

Figure 3.10: Sending halo-particles (locations, velocities,...etc) to the neighboring proces-

sors; sending the particles data in I and receiving it in V

for k 6= 1, see Fig. 3.10.

• step(4): Now processor pk is ready to simulate its home particles of Hk together with

the visiting particles of Vk. These two matrices can be merged together in a new matrix

Ek as

Ek =

[

Hk

Vk

]

=

[

Hk

Ik+1

]

=
[

HkT

Ik+1T
]T

. (3.9)

The size of this matrix is extended to be the sum of the sizes of both entire matrices Hk

and Ik+1, i.e. (Nk +Mk+1) × 12.

• step(5): Each processor pk computes the overall contact forces acting on each particle

of its merged home-visiting matrix Ek. These particles are of two kinds, i.e. home parti-

cles belong to the processor pk itself and visiting particles coming from the neighboring

processor pk+1. It should be noticed that these visiting particles are also considered as

home particles with respect to the processor pk+1. In this case and to avoid replication

of force calculations between the visiting-visiting (v-v) particles, these calculations are

done once in their home processor pk+1 and not in the host processor pk. This strategy

will ensure reduction in the additional computation cost. On the other hand, the host

processor pk does the force calculations only between its home-home (h-h) particles and

home-visiting (h-v) particles.

The contact forces acting on the home particles of processor pk due to h-h and h-v

interactions are stored the matrix Pk
h as

Pk
h =

[

gkT

h fkT

x fkT

y fkT

z

]T

Nk×4
, (3.10)

where fx, fy and fz are the vector of the contact forces of home particles along the three

coordinate axes x, y and z, respectively.

• step(6): On the other hand, the contact forces acting on the visiting particles in

processor pk, k 6= P , due to h-v interactions are stored in the matrix Pk
v as

Pk
v =

[

gk+1T

i skT

x skT

y skT

z

]T

Mk+1×4
, (3.11)

60 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

where sx, sy and sz are the vector of the contact forces of visiting particles along the main

coordinate axes x, y and z, respectively.

• step(7): This force matrix Pk
v which stores the contact forces between the home par-

ticles of processor pk and the visiting particles of processor pk+1 should be returned back

in a reverse sending process to its original home processor pk+1. Processor pk will receive

this force matrix and store it in Gk+1
v , i.e.

Gk+1
v = Pk

v =
[

gk+1T

i skT

x skT

y skT

z

]T

Mk+1×4
, (3.12)

for k 6= P , and similarly

Gk
v = Pk−1

v =
[

gkT

i skT

x skT

y skT

z

]T

Mk×4
. (3.13)

It should be recognized that step(7) is quite opposite to step(3). In step(3), the buffer

is sent in a forward direction to processor pk holding a data about some dynamical and

geometrical information of the immigrant particles, while in this step the direction of the

sending data is reversed. The buffer holds back the information about the contact forces

of these particles but in the backward direction, compare Fig. 3.10 and Fig. 3.11.

Figure 3.11: Receiving back the halo-particle forces from the neighboring processors;

sending the force data in Pv and receiving it in Gv

• step(8): Each processor pk has now in hand the contact forces acting on its own

particles inside its physical domain. These forces are summed up in the overall contact

force matrix Fk
h taking into consideration that the forces which are summed together are

only for the particles of identical global indices, i.e.

Fk
h =











Pk
h + Gk

v if gk
h(j) = gk

i (l), ∀ 1 ≤ j ≤ Nk,

∀ 1 ≤ l ≤Mk,

Pk
h else,

(3.14)

where j and l are the local particle indices of the home and immigrant particles, respec-

tively. The addition of P and G in Equation (3.14) is only for the identical particles

which have the same global indices in the both matrices. Matrix Fk
h has a size of Nk × 4.

• step(9): Since the contact forces applied on the particles are computed, the corre-

sponding accelerations are directly found by dividing each of the forces of Equation (3.14)

3.5 Spatial decomposition method (SDM) 61

by the mass of the particle. Each processor pk will solve the equations of motion of its

home particles by integrating them explicitly using the Verlet approach which was previ-

ously discussed in Section 2.1.1. This integration will update the data of the old particles

situtation and give their new positions, velocities and orientations.

• step(10): Save the output data coming from all slaves and arrange them in the proper

requested form of the animation output files in which they have to be sorted globally

according to their identities. This sorting process along with some file arrangements are

done at each time step through a control-output program to be ready for visualization.

• step(11): As the master receives the data about the new particle locations from all

slaves, it will directly generate the new updated matrices as in Equations (3.6) and (3.7)

in order to proceed further in a new simulation time step. Starting again in a loop from

step(1), it will be recognized that all vectors and matrices belong to the slaves have to be

dynamically allocated due to the variety in the number of particles simulated by slaves

at each time step.

Since in the following example we deal with particles which are almost homogeneously

distributed along the width of the domain, the parallel slice decomposition is quite ac-

ceptable to divide the physical domain of the system. Especially it does not need a lot of

dynamic load balancing between processors. Increasing number of processors in the paral-

lel environment will increase communication but decrease computation between particles

where they have to be optimized.

In order to show how the pre-mentioned steps are applied to construct the different neces-

sary vectors and matrices and send them in a communication scheme between processors,

a small quantitative example of ten particles is created in Fig. 3.12. The data matrices of

the home particles of the three processors p1, p2 and p3 can be built using Equation (3.6)

as

H1 =







0 x0 z0

3 x1 z1

5 x2 z2







1

3×12

, H2 =







2 x0 z0

6 x1 z1

7 x2 z2







2

3×12

, and

H3 =











1 x0 z0

4 x1 z1

8 x2 z2

9 x3 z3











3

4×12

. (3.15)

The immigrant particles in the halo-regions of processors p1 and p2 are stored in the

matrix I of Equation (3.7) as

I2 =
[

7 x2 z2
]2

1×12
, I3 =

[

4 x1 z1

8 x2 z2

]3

2×12

. (3.16)

62 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

Accordingly, the visiting particles of the host processors p2 and p3 are stored in the matrix

V of Equation (3.8) as

V1 = I2 =
[

7 x2 z2
]2

1×12
, V2 = I3 =

[

4 x1 z1

8 x2 z2

]3

2×12

. (3.17)

The home particles in Equation (3.15) and the visiting particles in Equation (3.17) are

merged in one matrix E as showed in Equation (3.9)

E1 =











0 x0 z0

3 x1 z1

5 x2 z2

7 x3 z3











1

4×12

, E2 =















2 x0 z0

6 x1 z1

7 x2 z2

4 x3 z3

8 x4 z4















2

5×12

, and

E3 =











1 x0 z0

4 x1 z1

8 x2 z2

9 x3 z3











3

4×12

, (3.18)

Figure 3.12: Particle immigration between processors using spatial decomposition method

3.6 Simulation results 63

where x1
3 = x2

2, z
1
3 = z2

2 , x
2
3 = x3

1, z
2
3 = z3

1 , x
2
4 = x3

2 and z2
4 = z3

2 .

According to Equation (3.10), the contact forces acting on the home particles of the three

processors due to h-h and h-v interactions are

P1
h =







0 fx0 fz0

3 fx1 fz1

5 fx2 fz2







1

3×12

, P2
h =







2 fx0 fz0

6 fx1 fz1

7 fx2 fz2







2

3×12

, and

P3
h =











1 fx0 fz0

4 fx1 fz1

8 fx2 fz2

9 fx3 fz3











3

4×12

. (3.19)

Using Equations (3.12) and (3.13), the returning force matrix Gv of the visiting particles

which will be received by processors p2 and p3 is

G2
v = P1

v =
[

7 sx0 sz0
]2

1×12
, G3

v = P2
v =

[

4 sx0 sz0

8 sx1 sz1

]3

2×12

. (3.20)

The resulting overall contact forces that act on the home particles of each processor are

computed in matrix Fh according to Equation (3.14) as

F1
h =







0 fx0 fz0

3 fx1 fz1

5 fx2 fz2







1

4×12

, F2
h =







2 fx0 fz0

6 fx1 fz1

7 (fx2 + sx0) (fz2 + sz0)







2

3×12

, and

F3
h =











1 fx0 fz0

4 (fx1 + sx0)) (fz1 + sz0)

8 (fx2 + sx1)) (fz2 + sz1))

9 fx3 fz3











3

4×12

. (3.21)

This force of Equation (3.21) will be explicitly integrated to extract the new positions

and velocities of the particles.

3.6 Simulation results

In general, parallel applications are much more complex than corresponding serial appli-

cations. Not only there are multiple instruction streams executing at the same time, but

also the data flowing between them. The primary intent of parallel programming is to

decrease execution wall-clock time.

Due to the need of data replication and to the overheads associated with parallel support

libraries and subsystems, the amount of memory required can be greater for parallel codes

64 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

than for serial ones. However, adding more computers to the parallel environment will

generally increase the performance of the parallel coding in a so-called speedup of the par-

allel program. Furthermore, the hardware factors play a significant role in scalability, e.g.

memory-CPU bus bandwidth, communications network bandwidth, amount of memory

available on any given machine and the processor clock speed.

In our work, a Linux-Cluster of about 25 Pentium 4 computers, speed of 2.8 ÷ 3 GHz,

cache-memory of 0.5÷2 MByte and RAM of 1÷2 GByte is used. Different problem sizes of

various number of particles are simulated on different processors. These processors could

belong to a single computing machine of a single CPU with a main memory as shown in

Fig. 3.3, or belong to different machines each of which has a single or multiple processors.

In our computations, parallel simulations are performed either on multi-processes of a

single machine or on processors of multiple machines in a distributed memory system, see

Section 3.1.2.

Performance is of paramount importance in parallel programming. Measuring the per-

formance of a parallel program is a way to assess how well and how efficient our efforts

have been at dividing the application into modules cooperating with each other in par-

allel. The most visible metric of performance is the execution time. By measuring how

long the parallel program needs to run to solve our problem, we can directly measure its

effectiveness. To find out how much better our program does on the parallel machine,

compared to a program running on only one processor, taking the ratio of the two is a

natural solution. This measure is called the speedup, and is associated with the number of

processors in the machine. So, the speedup is a measure of how much faster the program

runs on the parallel machine than it does on a serial machine. It is important, of course,

that the program with the serial time be measured on the same hardware we are using

to run the parallel implementation. Therefore, the speedup is simply defined as the serial

execution time of a sequential code over the parallel processing time, as

speedup τ =
serial execution time

parallel execution time
=
ts
tp
, (3.22)

where ts is execution time of the sequential program and not that of the parallel program

of one processor t1. The time t1 is not comparable with ts since the parallel program

running with P = 1 may have much overhead and therefore t1 > ts.

Table 3.2 shows the execution times and the speedup τ of the parallel code of two numbers

of particles over different number of processors. The speedup curves, which describe the

relation between the speedup and the number of processors, are plotted in Fig. 3.13a.

From these curves, it can be recognized that the job can be simulated faster as it is

distributed to a large number of processors regardless if they are on a single or multiple

machines. The algorithm may have inherent limits to scalability, i.e. at some point, adding

more resources causes performance to decrease. Most parallel solutions demonstrate this

characteristic at some point. From the speedup curves, it can be also recognized that

3.6 Simulation results 65

the speedup increases as the number of processors increases until the maximum optimum

value is reached. This optimum value is a value after which the increment of the number

of processing machines will contribute nothing in improving the speed of the parallel

simulation. This happens due to that communication time between processors is highly

increased with respect to the computation time. In this computations the value reached

is about P = 20 processors.

Table 3.2: The computation wall-clock time and the corresponding speedup of two differ-

ent system sizes of 916 and 9000 particles simulated on processors of different computing

machines for a simulation time of 0.1 s and simulation time step ∆t = 10−5 s.

number of N=916 particles N=9000 particles

processors time (h) speedup τ time (h) speedup τ

1 15.3 1 6.43 1

2 – – 2.05 3.1

3 5.2 2.9 1.22 5.3

5 3.8 4.0 – –

6 – – 0.37 17.5

10 2.7 5.7 0.22 29.0

15 2.5 6.1 0.18 35.1

18 – – 0.18 36.1

21 2.6 5.9 – –

22 – – 0.19 34.0

23 2.9 5.3 – –

24 – – 0.20 33.1

On the other hand, the computations show a usual slowdown and superlinear behavior in

the speedup of parallel algorithm. The superlinear improvement means that a program on

k processors is more than k times faster than the equivalent uniprocessor. An important

factor for the superlinear speedup is that when the whole problem is divided into several

small problems, each processor get a smaller amount of data so that the cache hit ratio

could become higher with the smaller data size, which will lead to higher computation

speed. After the number of processors reaches a certain level that the entire dataset of a

subdomain problem can be contained in the cache, further increase of machine size will

not improve the computation speed but only increases the percentage of communication

time, which will lower the efficiency, see e.g. [39, 77].

The computation measurements which is represented in Table 3.3 are performed on a

system of N = 14884 particles. The parallel simulations show that the simulations can

be performed in a time less than that of the sequential simulation. Moreover, it can be

recognized that the job can be simulated faster as it is distributed to a larger number of

66 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

0 5 10 15 20 25
0

10

20

30

40

number of processors (P)

sp
ee

du
p

(τ)

N=9000, multiple machines
N=916, multiple machines

(a) speedups measured on multiple machines

0 5 10 15 20 25
0

5

10

15

20

25

number of processes (P)

sp
ee

du
p

(τ)

N=144400, single machine
N=14884, single machine

(b) speedups measured on a single machine

Figure 3.13: The speedup of parallel simulation of different problem sizes of 916, 9000,

14884 and 144400 particles measured on different processors of single and multiple com-

puting machines. The superlinear speedup behavior appears over the 45◦-ideal line

processors regardless if they are on a single or multiple machines. Performance of parallel

computations can be measured by several ways, they mainly are

• execution-time curve: This curve presents the execution time required for parallel

compution for different number of processors, see Fig. 3.14a. This figure shows the usual

and the superlinear behavior above and below the ideal computation line, respectively.

This kind of figures give some insight, but it is not the best representation of the results.

• speedup curve: This curve is a direct representation of Equation (3.22) which gives

much more insight and makes the increment of the speed much easier to be readable, see

Fig. 3.14b. The speedup is normally bounded in a slowdown speedup within the interval

0 ≤ τ ≤ P . For a superlinear behavior τ > P . In this figure, the superlinear behavior

3.6 Simulation results 67

Table 3.3: Computation wall-clock time and corresponding speedup of 14884 particles

simulated on processors located on the single and different computing machines for a

simulation time of 0.3 s and simulation time step ∆t = 10−5 s.

number of single computing machine multiple computing machines

processors time (h) speedup τ time (h) speedup τ

1 75 1 75 1

3 27.8 2.7 10.5 7.1

5 16.1 4.7 3.8 19.7

6 – – 3.0 25.0

8 12.9 5.8 2.5 30.0

10 – – 1.9 39.5

12 10.3 7.3 1.6 46.9

16 9.2 8.2 1.5 50.0

18 7.5 10.0 1.3 57.3

19 7.0 10.7 1.4 54.4

20 7.0 10.7 1.5 51.7

21 7.0 10.7 – –

22 7.1 10.6 1.5 50.7

25 7.2 10.4 – –

in the speedup τ appears again when the simulation is done over distributed machines

of different processors and individual cache memories which will contribute in decreasing

the communication cost effect and improving the performance.

• efficiency curve: The efficiency η of a parallel program is defined as the fraction of

the total computing power that is usefully employed. Using Equation (3.22), the efficiency

of the parallel program η is defined as

η =
τ

P
=

ts
Ptp

, (3.23)

where P is the total number of processors. This efficiency is normally bounded in a nor-

mal speedup within the interval 0 ≤ η ≤ 1, while η > 1 is for the superlinear behavior.

The parallel efficiency η first increases to above 100 % and then decrease after a certain

number of processors, see Fig. 3.14c. This is supported by the testing case of P > 15 pro-

cessors where each processor gets only a very small amount of data within its subdomain,

and communication cost becomes substantial compared to computation time.

• normalized cost: It is also called the inefficiency and is defined as the ratio be-

tween the time of the parallel program and the time of a perfectly parallelized version of

the sequential program. The normalized cost ν can be written as the reciprocal of the

68 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

0 5 10 15 20 25
0

20

40

60

80

number of processors (P)

pa
ra

lle
l c

om
pu

ta
tio

n
tim

e
t

p (
h) N=14884, multiple machines

N=14884, single machine
ideal case

(a) computation-time curves

0 5 10 15 20 25
0

10

20

30

40

50

60

number of processors (P)

sp
ee

du
p

(τ)

N=14884, multiple machines
N=14884, single machine
ideal case

(b) speedup curves

0 5 10 15 20 25
0

1

2

3

4

5

number of processors (P)

ef
fic

ie
nc

y
(η

)

N=14884, multiple machines
N=14884, single machine
ideal case

(c) efficiency curves

Figure 3.14: Parallel computation-time, speedup and efficiency curves of parallel simula-

tion of N=14884 particles measured on different processors of single and multiple com-

puting machines

3.6 Simulation results 69

efficiency

ν =
Ptp
ts

=
P

τ
=

1

η
. (3.24)

• overhead: Normally it is defined as ν−1. The overhead in parallel simulations usually

consists of the load imbalance, synchronization and communication times.

Table 3.4: Computation wall-clock time and corresponding speedup of 144400 particles

simulated on processors located on the single and different computing machines for a

simulation time of 0.16 s and simulation time step ∆t = 10−5 s.

number of single computing machine multiple computing machines

processors time (h) speedup τ time (h) speedup τ

1 2600 1 2600 1

2 – – 732.6 3.6

3 943.6 2.8 377.2 6.9

5 – – 160.6 16.2

7 444.4 5.9 69.2 37.6

10 – – 38.9 66.9

14 211.6 12.3 21.0 123.6

16 184.1 14.1 15.8 164.6

18 – – 13.9 187.2

22 159.5 16.3 11.2 231.5

25 – – 12.8 203.3

Going further on in increasing the problem size, N = 144400 particles are then simulated

on single and multiple computing machines, see Table 3.4. It is observed that running

this simulation on multi-processors belong to a single machine will keep the speedup in

the usual range below the ideal case, see again Fig. 3.13b, while changing to multiple

machines will enable the simulation to take advantage from the speed of the individual

cache memories located locally on each machine. Therefore, the scalability of the com-

putations will increase to exceed the ideal case to the superlinear behavior due to the

same pre-mentioned reasons, see Fig. 3.15a. Figure 3.15b allows comparison for different

problem sizes. Enlarging the problem size will improve the granularity and minimize the

overhead, the case which will decrease the computation time and increase the speedup of

the problem computations.

To present our results, we insert them to XPVM for analyzing and monitoring, see

Fig. 3.16. XPVM is a graphical console and monitor for PVM and provides a graphical

interface to the PVM console commands and information, along with several animated

views to monitor the execution of PVM programs. These views provide information

70 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

0 5 10 15 20 25
0

50

100

150

200

250

number of processors (P)

sp
ee

du
p

(τ)

N=144400
N=14884
N=9000
N=916

(a) influence of the problem size (N)

0 5 10 15

x 10
4

0

50

100

150

200

250

number of particles (N)

sp
ee

du
p

(τ)

P=3
P=6
P=10
P=15
P=22

(b) influence of the number of processors (P)

Figure 3.15: The speedup of parallel computations for different number of particles per-

formed on different processors of multiple computing machines

about the interactions among tasks in a parallel PVM program, to assist in debugging

and performance tuning.

For comparison purposes, one can see that the performance as well as the speedup of

running 9000 particles on 10 machines is much better than that of 916 particles on the

same number of machines. The reason is that the communication and data flow are more

efficient between the different tasks as the number of particles increases and hence, the

relative communication cost will decrease. The decrease in performance of the small size

problems compared to the large parallel implementations is due to the disparity of the

overhead costs and the communications which can comprise a significant portion of the

total execution time of the parallel task.

3.6 Simulation results 71

(a) N=916 particles

(b) N=9000 particles

Figure 3.16: Data-message exchange among 10 processors in XPVM

72 3 Parallelizing Molecular Dynamics Using Spatial Decomposition

The strong dependency of the speedup of parallel simulations on the problem size N

is recognized in Fig. 3.15b. In Fig. 3.16, if the computational state is represented by

scanned areas of the green strips, the overheading by the yellow strips and the waiting

state for messages among processors by white ones, then the ratio of these areas with

respect to each other represents the size of granularity of the system and how much it is

fine or coarse. Each of these strips is a direct representative of the performance of any of

the working processors in the system. Therefore, the green color appears much more in

Fig. 3.16b of 9000 particles than it does in Fig. 3.16a of 916 particles. This means that

the performance, and then the speedup, improves with increasing the system size.

73

Chapter 4

Screening and Particle Segregation

As a practical application of the granular materials, a classification of dry particles ac-

cording to their size is selected to be investigated and analyzed. Sieving or screening

has been widely used both in industries, as a unit operation for large scale separation

of particles according to size, and in laboratories, as a tool for the analysis of particle

distribution, usually at a small scale [17, 56].

One of the key operations in the processing of quality particulate solids is the separation of

particles according to their size. Hundreds of millions of tons of particulate materials are

subjected to industrial screening each year and an understanding of the kinetics involved

clearly has a great economic significance, see [104]. To date most size separation methods

are still dominated by the conventional sieving or screening techniques, which usually

employs a screen mesh as multiple go/no-go gauges to separate particles.

In this chapter a mathematical and numerical investigation of the particulate motion on

an inclined tumbling screen using the discrete element method will be presented. Special

attention will be paid to the implementation of the sieve holes, their boundaries and the

suggested approaches for allowing particles to pass through apertures or to rebound when

approaching the screen surface. A parametric study of different operational variables

of the machine and the screen and its influence on the screening efficiency has been

conducted. The computational study shows the advantage of using the discrete element

method to understand the complex granular separation process.

The operation of particle separation is divided into two main categories, continuous and

batch operations. In continuous operation, the particles are continuously fed into the

separation unit during the whole separation process. This type of particle separation is

usually called ’screening ’. On the other hand, batch operation is used if the particulate

material is charged only once. This kind of batch separation is commonly described by

the term ’sieving ’.

Screens can be classified into three groups according to their mode of particle movement,

74 4 Screening and Particle Segregation

see [115]. These groups are: (a) vibrating screens in which the particulate material

moves relative to the screen in a vertical plane, (b) flat screens in which the particulate

material moves relative to the screen in the plane of the screen and (c) rotating screens

in which the screen surface is cylindrical and the particulate material cascades over the

inner surface as the screen is rotated. Furthermore they differ in their shapes, number

of decks, screen configurations and design according to what kind and specifications of

materials prepared to be screened. In Fig. 4.1 pictures are presented for different models

of the TSM machines, see the Allgaier-Werke GmbH website www.allgaier.de.

illustration of TSM six-deck machine

fixing sieves continuous screening

machines in field pharmaceutical TSM

Figure 4.1: Picture gallery of different models of the TSM’s, see www.allgaier.de

4.1 Description of the tumbler screening machine 75

Screeners, which are in the focus of our research, are sifting units which are rotated as

material is fed into their interior. The finer particles should fall through the sieve opening

and oversized particles are ejected out through certain outlets. Screeners are available in

three main types: drum sifter, rectangular deck, and round deck. A rotary round deck

separating machine for screening round particles of different sizes is the main problem of

interest in this study. To reach our goal of better understanding the processes, a tumbler

screening machine has been modelled as a multibody system [97] and investigated in our

discrete element simulation program.

4.1 Description of the tumbler screening machine

The investigated tumbler screening machine (TSM) consists of several main parts, see

Fig. 4.2a.

1. Driving motor: It runs in different speeds which should be selected depending on

the type of material to be separated.

2. Machine foundation: It is heavy enough to hold the machine structure and to

isolate the environment against vibrations.

3. Holder and adjustable plates: The holder plate is horizontal and held by the

main rotating shaft of the machine. To create the tumbling motion, an adjustable

plate is fixed over the holder plate with certain tilt angles α and β. The overall sifting

unit is connected to the adjustable plate by an auxiliary shaft. The inclination angles

are chosen to obtain the best efficiency of the separation process.

adjustable plate

auxiliary shaft

holder plate

main shaft
machine foundation

sifting cylinder

β

ω

c c

z
x̄

z̄

x

ȳ

yα

ε

(a) main parts of the machine (b) internal cross section

Figure 4.2: Tumbler screening machine

76 4 Screening and Particle Segregation

4. Rotating shafts: The main shaft is driven by a V-belt connected to the driving

electrical motor. This shaft and the auxiliary shaft have a certain margin of eccen-

tricity in between and they hold the entire body of the machine and transmit the

motion to the main sifting unit.

5. Sifting meshes: These separating units consist of a group of potentially different-

sized sieves along the successive decks of the machine, see Fig. 4.2b. The undersized

particles may pass through the holes. The oversized particles with some of the

undersized ones will be rebound from the mesh plane when they strike the obstructed

portion of the screen. Of course, the mesh widths are decreasing from the top to

the bottom.

6. Sifting vessel: The main cylinder is charged with the bulk material. This vertical

rotating vessel can be designed as a uniform or stepped multi level oblique barrel,

see Fig. 4.3a. The number of these levels depends directly on the particles to be

separated and on the process. Different exits are distributed at each sorting level

and located at the outer periphery around the body of the machine, see Fig. 4.3b. A

wide variety of machine sizes is available, e.g. produced from Allgaier-Werke GmbH,

Uhingen, Germany. Diameters are ranging in their machines from 60cm to 290cm.

7. Mounting springs: These springs are attached directly to the body of the sifting

vessel. Due to these springs, this vessel is almost prevented from rotation and kept

in a very low frequent oscillation mode about its rotation axis. Otherwise, and if

there are no springs, the barrel would completely rotate in a full circle around its

own axis while the machine is running. Depending on the stiffness of the springs

along with the machine speed, the magnitude of oscillation can be determined. Due

to the attached springs the barrel hardly rotates.

8. Feeding container: In the simulation of continuous screening operation, the TSM

is charged by the particle flow through a feeding container. The size of the exit

nozzle of the container determines the particle flow rate, see Fig. 4.3. The machines

are charged from the top and in the middle of the highest level of the sifting unit.

4.2 Operation and machine movement

The machine is modelled as a multibody system [97]. It consists basically of the machine

itself with different layers of sieves and the particulate material to be screened and clas-

sified. It will be useful to point out here that the term particulate material refers to a

granular material used in industry such as rocks, minerals, gravel, grain, seed, medical

tablets or other similar matter in this wide family of alternatives.

4.2 Operation and machine movement 77

(a) stepped barrel shape (b) uniform barrel shape

Figure 4.3: Stepped and uniform TSM models

4.2.1 Machine movement

The basic motion of the tumbler screening machine is gyratory, see Fig. 4.4. The angular

velocity ω is assumed to be constant during the separation process. Since the barrel of

the machine is constrained by a system of four springs, it will prevent rotation around its

axis. Therefore, and depending on the spring stiffnesses, the barrel will slightly oscillate

around its axis in an oscillatory motion of frequency ωb.

Using a special axially spring-mounted graphic recorder, the spatial movement of the

machine can be represented on paper as a curve of ellipse-like profile for repeatable ad-

justments. The recording of the screening action permits the optimum operating data to

be reproduced, which will assist quality assurance.

4.2.2 Particle movement

The TSM can be used for materials with particle sizes between micrometers and millime-

ters, such as those used in the chemical, pharmaceutical, foodstuffs and plastics industries.

The complicated three-dimensional screening motion of the machine is mainly indepen-

dent of the material load. This screening motion is adjustable to improve the separation

process where experiments are necessary to find optimal process parameters.

As the screening material is continuously fed into the center of the top screen, it is

distributed over the entire screening surface from the center towards the periphery. The

particles will often travel in a spiral motion, see Fig. 4.5, due to the combination of the

78 4 Screening and Particle Segregation

t=0.23st=0.15st=0.07st=0

t=0.56st=0.48st=0.40st=0.32s

Figure 4.4: Motion of tumbler screening machine

tangential and radial inclination of the screen and to the friction between the particles

and the surface area of the mesh, see e.g. [109].

3D view2D view

Figure 4.5: Spiral motion of the bulk material over the screen surface

In the center, many fine particles will pass through the mesh holes to produce fine-sized

fractions. Towards the outside and as the material is fed on to the center of the top screen,

the horizontal and vertical accelerations are increasing, causing the oversized particles to

move to the periphery of the screen to be discharged through a tangential outlet. These

particles are carried to the outlets and guided by adjustable deflectors which influence

their flow. This process is repeated on every screen deck.

For a dry particulate classification, the particle segregation flowchart, see Fig. 4.6, clarifies

the particle transportation between the different layers of the rotating sifting unit, particle

movement, reflections, falling and sorting of the oversized and undersized types of particles

inside the tumbling machine during the separation process.

Increasing the rate of the feeding material and adjusting well the screening pattern by

4.3 Particle modelling and contact calculations 79

start

touch with

mesh

surface?

undersized

particle?

contact with

surrounding

walls?

within the

area of

exits?

reflect by

applying

forces

eject outside

the machine

contact with

ceiling

surface?

reflect up

from the

mesh surface

particle

center over

a hole?

fall down

through the

mesh holes

stay inside

the layer

yes

yes

no

no

no

no

no

yes

yes

yes
 no

yes

Figure 4.6: Flowchart of the segregation process

controlling and altering the inclination angles and/or the shaft eccentricities, will increase

the horizontal and the vertical component of the motion over the screen. Increasing the

horizontal component of the motion will usually cause the oversized particles to discharge

at a faster rate. On the other hand, the increment in the vertical component along with

using some rubber balls under the screen will often reduce the effect of the particle-screen

blocking especially for the near-sized particles which will help in dislodging particles that

may be held in the interstices of the screen.

4.3 Particle modelling and contact calculations

4.3.1 Particle-to-particle contact

The contact between particles along with the neighborhood search and the contact force

computations using the penalty approach are all discussed in detail in Sections 2.2 and

2.3.

4.3.2 Particle-to-mesh contact

In order to derive the mathematical formulation of the system, a global inertial system

Kg{o, x
g, yg, zg} and a local rotating coordinate system Kl{c, x

l, yl, zl} are defined. The

body fixed coordinate system Kl is rotating with the tumbling cylinder with its origin

80 4 Screening and Particle Segregation

located at the base of the auxiliary shaft on the inclined adjustable plate, see Fig. 4.7.

To check the contacts and calculate forces, the particle positions and velocities should be

expressed in this coordinate system.

• Translation vector and rotation matrix

Since we will write the particle position ri and the particle velocity vi in terms of the

rotating coordinate system Kl, it is required to derive the translation vector and the

rotation matrix based on the geometrical parameters of the inclined plate α and β and

on the angular velocities of the machine ω around a vertical axis of rotation and of the

barrel ωb around its inclined axis.

Figure 4.7: Vector description of particles inside the machine

The general form of the translation vector rg
oc from point o to point c given in the coor-

dinate system Kg is derived using the NEWEUL software [50] as

rg
oc =















u cos(ωt) − u cos(ωt) cosβ + e sin(ωt) − ε sin(ωt)+

u sin(ωt) sinα sin β − e sin(ωt) cosα

u sin(ωt) − u sin(ωt) cosβ − e cos(ωt) + ε cos(ωt)−

u cos(ωt) sinα sin β + e cos(ωt) cosα

u sin β cosα + e sinα















, (4.1)

where u and e are two geometrical dimensions related to the adjustable inclined plate, ε

is the eccentricity between the fixed main shaft and the rotating auxiliary one.

Similarly, the general form of the rotation matrix Alg between the coordinate systems can

4.3 Particle modelling and contact calculations 81

be written as

Alg =







A11 A12 A13

A21 A22 A23

A31 A32 A33






, (4.2)

where the matrix components Aij : i, j = 1, 2, 3, are

A11 =cos(ωb − ω)t cos(ωt) cosβ − cos(ωb − ω)t sin(ωt) sinα sin β − (4.3)

sin(ωb − ω)t sin(ωt) cosα,

A12 =cos(ωb − ω)t sin(ωt) cosβ + cos(ωb − ω)t cos(ωt) sinα sin β +

sin(ωb − ω)t cos(ωt) cosα,

A13 =− cos(ωb − ω)t cosα sin β + sin(ωb − ω)t sinα,

A21 =− sin(ωb − ω)t cos(ωt) cosβ + sin(ωb − ω)t sin(ωt) sinα sin β −

cos(ωb − ω)t sin(ωt) cosα,

A22 =− sin(ωb − ω)t sin(ωt) cosβ − sin(ωb − ω)t cos(ωt) sinα sin β +

cos(ωb − ω)t cos(ωt) cosα,

A23 =sin(ωb − ω)t cosα sin β + cos(ωb − ω)t sinα,

A31 =cos(ωt) sinβ + sin(ωt) sinα cosβ,

A32 =sin(ωt) sin β − cos(ωt) sinα cosβ and

A33 =cosα cosβ .

From this general case where the machine rotates with ω around the axis of the main

shaft while the barrel additionally rotates with ωb around its own axis which is assumed

to be constant, three special cases can be concluded

I case (1): The barrel freely rotates around its own axis in absence of the effect of the

attached springs with a speed similar to the machine speed, i.e. ωb = ω. The translation

vector rg
oc from point o to point c is independent on ωb and stays the same as in Equation

(4.1), while the rotation matrix Alg between the coordinate systems can be recalculated

using Equation (4.2) as

Alg =







cos(ωt) cosβ − sin(ωt) sinα sin β sin(ωt) cosβ + cos(ωt) sinα sin β − cosα sin β

− sin(ωt) cosα cos(ωt) cosα sinα

cos(ωt) sinβ + sin(ωt) sinα cosβ sin(ωt) sinβ − cos(ωt) sinα cosβ cosα cosβ






,

(4.4)

where α and β are the two inclination angles of the adjustable plate of the machine.

I case (2): The barrel does not rotate around its own axis, i.e. ωb = 0, but it does

around the axis of the main shaft. This constraint appears due to effect of the attached

82 4 Screening and Particle Segregation

springs around the machine. The translation vector rg
oc again stays the same while the

rotation matrix Alg can be expressed by its components using Equations (4.3) as

A11 =cos2(ωt) cosβ − sin(ωt) cos(ωt) sinα sin β + sin2(ωt) cosα, (4.5)

A12 =sin(ωt) cos(ωt) cosβ + cos2(ωt) sinα sin β − sin(ωt) cos(ωt) cosα,

A13 =− cos(ωt) cosα sin β − sin(ωt) sinα,

A21 =sin(ω)t cos(ωt) cosβ − sin2(ωt) sinα sin β − sin(ωt) cos(ω)t cosα,

A22 =sin2(ωt) cosβ + sin(ωt) cos(ωt) sinα sin β + cos2(ωt) cosα,

A23 =− sin(ωt) cosα sin β + cos(ωt) sinα,

A31 =cos(ωt) sinβ + sin(ωt) sinα cosβ,

A32 =sin(ωt) sinβ − cos(ωt) sinα cosβ and

A33 =cosα cosβ .

I case (3): The barrel rotates back and forth in an oscillatory motion around its own

axis while in the same time keeps rotating and tumbling around the main machine axis.

This oscillatory motion can be run on different frequencies. Normalizing the oscillation

frequency ωb by defining the oscillation factor K = ωb/ω, one can study the influence of

this motion on the performance of the screening operation.

In this study a linear triangular oscillation mode of the machine cylinder is assumed. This

model is investigated as an approximation of the real motion and not to fit exactly the

real machine. In this kind of motion the barrel will rotate counterclockwise in the forward

direction until ψ = ψmax and return back in clockwise direction until ψ = 0 and so on,

where ψ is the angular displacement of the barrel, therefore

ψ = ωbt, ωb = Kω, ψmax =
1

2
ωbtp , (4.6)

where tp is period of oscillation, see Fig. 4.8. The barrel displacement function ψi of the

ith period of oscillation can be given as

ψi =

{

ωb(t− tsi
) tsi

≤ t ≤ tsi
+ n∆t ,

−ωb(t− tsi
) − 2n∆t tsi

+ n∆t < t ≤ tsi
+ 2n∆t ,

(4.7)

where tsi
= 2i(n∆t) is the starting time of the ith cycle of oscillation. Therefore, the

oscillation period tp = 2(n∆t), i.e. the barrel changes its rotational direction every (n)

time steps of simulation.

• Particle location

After defining the rotating coordinate system Kl and finding the related translation vector

and rotation matrix, the position of any particle i inside the rotating vessel, see again

Fig. 4.7, can be expressed as

rg
ci = rg

oi − rg
oc or rl

ci = Alg(r
g
oi − rg

oc) . (4.8)

4.3 Particle modelling and contact calculations 83

Figure 4.8: Linear triangular oscillation mode of the machine cylinder

Knowing the particle positions in the new coordinate system, the neighboring list is then

constructed and, therefore, the overlapping and the contact forces can be determined

using Equations (2.37) and (2.36).

• Particle velocity

Similarly, the particle velocity can also be expressed with respect to the rotating coordi-

nate system by differentiating Equation (4.8) once relative to time

ṙl
ci = Alg(ṙ

g
oi − ṙg

oc) + Ȧlg(r
g
oi − rg

oc) . (4.9)

Substituting vl
i = ṙl

ci and vg
i = ṙg

oi in Equation (4.9) for particle velocity we get

vl
i = Alg(v

g
i − ṙg

oc) + Ȧlg(r
g
oi − rg

oc) . (4.10)

The terms ṙg
oc and Ȧlg in Equation (4.10) represent the rate of change of the translation

vector and the rotation matrix with respect to time. By direct differentiation of Equations

(4.1) and (4.2), respectively, the rate of the translation vector is given as

ṙg
oc = ω















−u sin(ωt) + u sin(ωt) cosβ + e cos(ωt) − ε cos(ωt)+

u cos(ωt) sinα sin β − e cos(ωt) cosα

u cos(ωt) − u cos(ωt) cosβ + e sin(ωt) − ε sin(ωt)+

u sin(ωt) sinα sin β − e sin(ωt) cosα

0















(4.11)

84 4 Screening and Particle Segregation

and for the rotation matrix as

Ȧlg =
d

dt
Alg =







Ȧ11 Ȧ12 Ȧ13

Ȧ21 Ȧ22 Ȧ23

Ȧ31 Ȧ32 Ȧ33






, (4.12)

where the matrix components Ȧij : i, j = 1, 2, 3, are

Ȧ11 =[−ω cos(ωb − ω)t sin(ωt) − (ωb − ω) cos(ωb − ω)t cos(ωt)] cosβ − (4.13)

[ω cos(ωb − ω)t cos(ωt) − (ωb − ω) sin(ωb − ω)t sin(ωt)] sinα sin β −

[ω sin(ωb − ω)t cos(ωt) + (ωb − ω) cos(ωb − ω)t sin(ωt)] cosα,

Ȧ12 =[ω cos(ωb − ω)t cos(ωt) − (ωb − ω) sin(ωb − ω)t sin(ωt)] cosβ +

[−ω cos(ωb − ω)t sin(ωt) − (ωb − ω) cos(ωb − ω)t cos(ωt)] sinα sin β +

[−ω sin(ωb − ω)t sin(ωt) + (ωb − ω) cos(ωb − ω)t cos(ωt)] cosα,

Ȧ13 =(ωb − ω) sin(ωb − ω)t cosα sin β + (ωb − ω) cos(ωb − ω)t sinα,

Ȧ21 =−[−ω sin(ωb − ω)t sin(ωt) + (ωb − ω) cos(ωb − ω)t cos(ωt)] cosβ +

[ω sin(ωb − ω)t cos(ωt) + (ωb − ω) cos(ωb − ω)t sin(ωt)] sinα sin β −

[ω cos(ωb − ω)t cos(ωt) − (ωb − ω) sin(ωb − ω)t sin(ωt)] cosα,

Ȧ22 =−[ω sin(ωb − ω)t cos(ωt) + (ωb − ω) cos(ωb − ω)t sin(ωt)] cosβ −

[−ω sin(ωb − ω)t sin(ωt) + (ωb − ω) cos(ωb − ω)t cos(ωt)] sinα sin β +

[−ω cos(ωb − ω)t sin(ωt) − (ωb − ω) cos(ωb − ω)t cos(ωt)] cosα,

Ȧ23 =(ωb − ω) cos(ωb − ω)t cosα sin β − (ωb − ω) sin(ωb − ω)t sinα,

Ȧ31 =−ω sin(ωt) sinβ + ω cos(ωt) sinα cosβ,

Ȧ32 =ω cos(ωt) sin β + ω sin(ωt) sinα cosβ and

Ȧ33 =0 .

In the case of ωb = ω, direct differentiation of Equation (4.4) will give

Ȧlg = ω







− sin(ωt) cosβ − cos(ωt) sinα sin β cos(ωt) cosβ − sin(ωt) sinα sin β 0

− cos(ωt) cosα − sin(ωt) cosα 0

− sin(ωt) sinβ + cos(ωt) sinα cos β cos(ωt) sin β + sin(ωt) sinα cosβ 0






.

(4.14)

Similarly, the case of the no local rotation of the barrel, i.e. ωb = 0, direct differentiation

4.3 Particle modelling and contact calculations 85

of Equation (4.5) will give

Ȧ11 =−ω cos(2ωt) sinα sin β + ω sin(2ωt)[cosα− cosβ], (4.15)

Ȧ12 =−ω sin(2ωt) sinα sin β − ω cos(2ωt)[cosα− cosβ],

Ȧ13 =ω sin(ωt) cosα sin β − ω cos(ωt) sinα,

Ȧ21 =−ω sin(2ωt) sinα sin β − ω cos(2ωt)[cosα− cosβ],

Ȧ22 =sin2(ωt) cosβ + sin(ωt) cos(ωt) sinα sin β + cos2(ωt) cosα,

Ȧ22 =ω cos(2ωt) sinα sin β − ω sin(2ωt)[cosα− cosβ],

Ȧ23 =−ω cos(ωt) cosα sin β − ω sin(ωt) sinα,

Ȧ31 =−ω sin(ωt) sinβ + ω cos(ωt) sinα cosβ,

Ȧ32 =ω cos(ωt) sinβ + ω sin(ωt) sinα cos β and

Ȧ33 =0 .

Since the tumbling screening machine consists from four parts collected together to form

the assembled shape of the machine, i.e. the base, the horizontal holder plate, the inclined

adjustable plate and the barrel of the machine, the rotation matrices and translation

vectors of the first three parts are also derived using the NEWEUL software [50] as

I upper adjustable plate: The translation vector is

rg
oc =















u cos(ωt) − u cos(ωt) cosβ + e sin(ωt) − ε sin(ωt)+

u sin(ωt) sinα sin β − e sin(ωt) cosα

u sin(ωt) − u sin(ωt) cosβ − e cos(ωt) + ε cos(ωt)−

u cos(ωt) sinα sin β + e cos(ωt) cosα

u sin β cosα + e sinα















, (4.16)

where u and e are two geometrical dimensions related to the adjustable inclined plate,

ε is the eccentricity between the fixed main shaft and the rotating auxiliary one. The

rotation matrix can be also written as

Alg =







cos(ωt) cosβ − sin(ωt) sinα sin β sin(ωt) cosβ + cos(ωt) sinα sin β − cosα sin β

− sin(ωt) cosα cos(ωt) cosα sinα

cos(ωt) sinβ + sin(ωt) sinα cosβ sin(ωt) sinβ − cos(ωt) sinα cosβ cosα cosβ






.

(4.17)

I lower holder plate: Similarly, the translation vector rg is

rg =







0

0

0






, (4.18)

and the corresponding rotation matrix is

Alg =







cos(ωt) sin(ωt) 0

− sin(ωt) cos(ωt) 0

0 0 1






. (4.19)

86 4 Screening and Particle Segregation

I machine foundation: The translation vector is simply rg = 0 and the corresponding

rotation matrix is Alg = I, where I is the identity matrix.

4.3.3 Contact forces with the mesh

After all positions and velocities of the particles are determined in the rotating coordinate

system Kl, the contact forces have to be calculated. The particle interactions inside

the machine could be as particle-particle, particle-walls and particle-mesh contacts, see

Fig. 4.9. The first two types were discussed in detail in Section 2.2. In this section we

will focus on the contact with the machine sieves.

Figure 4.9: Particle contact models with walls, ceilings and sieves of the machine

The particle transportation through the mesh depends directly on the position of the

specified particle with respect to the hole boundaries, see [3]. In reality, the mesh is

built of a combination of intersecting wires over which the particles will have contact.

It happens that the particle contacts with the mesh wires and is reflected in different

directions around the hole. This will depend on the exact point on the wire where the

particle hits. Taking into consideration all those precise contacts with the mesh wires

will lead to many calculations and infeasible computational efforts. In order to reduce

these computations while still reaching physical results, another less computationally

expensive approach is suggested. This approach depends on defining a reduced mesh

hole which is only used in simulation, to consider all contact possibilities and adjust the

number of passed and reflected particles in a heuristic way. This method assumes that

the undersized particles pass through the mesh if they are small enough and their centers

are over the reduced hole, otherwise they are reflected. The mesh thickness is set to zero.

4.3 Particle modelling and contact calculations 87

The reduction in the mesh hole diameter can be adjusted to agree with actual sieving

observations of the real machine.

Two different models for defining the reduced mesh hole are suggested, these models are

I model (1): In this model the radius of the undersized particle r is taken into

consideration. In this model the undersized particle will not fall down if its center is on

the perimeter of the reduced hole ghij, but it should be at least at a distance of r inside

the periphery in order to fall, i.e. the center of the particle have to be inside the square

area klmn, see Fig. 4.10a. The adjustable hole clearance b is a parameter defined to be

used as a simulation parameter to adjust the size of the mesh openings and can be written

as

b = ζ(w − r) , 0 ≤ ζ ≤ 1 , (4.20)

where ζ is a non-dimensional scaling factor which keeps the value of the parameter b

within certain limits, i.e. 0 ≤ b ≤ (w − r).

I model (2): This model is a special case of the previous model where r = 0. It takes

into consideration the position of the undersized particles with respect to the boundaries

of the reduced hole, see Fig. 4.10b. The undersized particle will fall down only if its center

is on or inside the perimeter of the reduced square hole ghij, otherwise it reflects. The

value of b can be written as

b = ζw , 0 ≤ ζ ≤ 1 . (4.21)

The value of b is within the limits 0 ≤ b ≤ w. For ζ = 0 the hole is maximally opened as

in the hole cdef and, therefore, all particles over it will fall. In the case of ζ = 1 the hole

will be totally closed and hence no sieving will occur.

Although that using of the first model is more precise than second one, we can not consider

the second model be far from the correctness. Some of our simulations are performed to

investigate these two models. It was found that value of b = 0.6w, for example, in the

second model could mostly be equivalent or almost close to a value of b = 0.8(w − r) in

the first model. Therefore, some of our results are based on the first model while others

are considering the second model for simulating the screening operation.

The direction of the velocity vector of the particles has without doubt a major effect

on the reflected particles and then on the number of the particles which will pass down

through the mesh holes. The direction of the velocity vector will determine the exact

point where the particle will touch the plane of the mesh.

The contact forces with the machine walls and the ceiling are computed analoguely to the

particle-particle forces. More interesting is the contact with the mesh surface. For practi-

cal purposes, sifters can be designed in many shapes according to the desired holes having

e.g. circular, square or polygonal shapes. Here we are interested in square-patterned

meshes. The number of holes of barrel k in a square mesh depends directly on the mesh

88 4 Screening and Particle Segregation

(a) first model (r 6= 0) (b) second model (r = 0)

Figure 4.10: Different models of the reduced hole construction. Black balls will fall down

while the white ones reflect from the mesh surface.

radius Rk, the width of the holes 2w and width of the solid part g between the different

rows of the holes, see Fig. 4.11,

mk =
Rk

2wk + gk
+ 1 , (4.22)

where mk is the number of holes along the radius of the mesh plate. Since the radial

number of holes is always an integer, mk should be rounded to the nearest integer nk.

Figure 4.11: Geometrical description of the square mesh

The mesh plate consists of (2nk −1) aisles of square holes in the x̄ direction and the same

number of aisles holes in the ȳ direction. It also consists of (2nk − 2) aisles of gaps and

the identical number of aisles in both xl and yl directions, respectively.

The particle-mesh contact should be detected in both directions xl and yl. The particle

will be considered to be reflected if it is in contact with the mesh surface and its center

4.3 Particle modelling and contact calculations 89

is over the solid part and not over a reduced hole, otherwise it will fall through the mesh

if it is small enough. At any level k, consider the points a and b on the borders of two

successive holes on the mesh surface, see Fig. 4.12,

xl
a = w + j(2w + g) , xl

b = xl
a + g , j = −(nk − 1), ..., j = (nk − 2) , (4.23)

where j is an integer counter over the number of the gap aisles in the mesh surface along

the xl direction. To check the particle position with respect to the mesh holes in xl

direction, a flag integer cx is defined as

cx =

{

0 if (xl
a − b) ≤ rl

x ≤ (xl
b + b),

1 else,
(4.24)

where rl
x is the x-coordinate of the particle position in the xl direction. Reduced holes

with adjustable clearance b help in controlling the falling particles through the mesh

holes during the simulation process. The adjustable parameter b is selected to adjust

the simulation results in order to be in a good agreement with experimental observations

which allow predictions for further computations. To run the simulations and check our

codes, always a value of b = 0.8w is used in our study. It will be most interesting for the

future comparisons to see how this value must be chosen correctly.

Figure 4.12: Contact detection with mesh surface

In the same way, the yl direction is investigated yielding cy. In order to determine the

contact forces with the mesh surface, it is checked if the particle is in direct contact with

90 4 Screening and Particle Segregation

the solid part of the mesh or if it is over a hole

cxcy =

{

1 particle potentially falls down,

0 particle is reflected.
(4.25)

All oversized particles will definitely reflect up from the mesh surface. Some of the un-

dersized particles will reflect also upward when they hit the solid part of the mesh and

not a hole, otherwise they will fall down.

In case of friction, the approaching angle of contact between the particle and the mesh

is different from the reflection angle over the surface of the mesh. The direction of the

particle velocity with respect to the machine at the instant of contact determines the

direction of the frictional force in the tangential plane of the mesh surface. Therefore, the

reflection angle is determined according to the normal and frictional force components

between the particle and the mesh plane.

The friction force affects the particles and tries to reduce their velocities. Here, the friction

force between the particle and the mesh surface is usually in the direction of their relative

velocity. The tangential component of the relative velocity of particle j in the mesh plane

can be written as

vtj =
√

v2
xl

j

+ v2
yl

j

. (4.26)

The unit vector of tangential velocity can be expressed for vl
tj
6= 0 as

tj =







txl

tyl

0







j

=
1

vl
tj







vl
xl

vl
yl

0







j

. (4.27)

The force between particle j and the mesh surface in the normal direction to the mesh

plane can be written as

Nl
j = Njnj = |fzl

j
|nj , (4.28)

where Nl
j and nj are the normal contact force and normal unit vector to the mesh plane

in the Kl coordinate system, respectively. Using Coulomb’s law, the tangential friction

force T is

Tl
j = −µdNjtj =

−µd|fzl
j
|

vl
tj







vl
xl

vl
yl

0







j

=
−µd

vl
tj

|kwδmj
− cwv

l
zl
j
|







vl
xl

vl
yl

0







j

, (4.29)

where µd is the dynamic coefficient of friction between particles and the mesh surface,

δm is the particle-mesh overlap, kw and cw are the elastic spring stiffness and the viscous

damping coefficient with the mesh plane, respectively. Using Equations (4.28) and (4.29),

the overall contact force Fl
j between particle j and the mesh surface measured in the

4.4 Parametric study and simulation results 91

rotating coordinate system Kl is then

Fl
j = Nl

j + Tl
j = |kwδmj

− cwv
l
zl
j
|











−µd

vl
t

vl
xl

−µd

vl
t

vl
yl

SIGN(kwδm − cwv
l
zl)











j

, (4.30)

where the function SIGN(q) is 1 for q > 0 and otherwise -1. This force can be also

expressed in the global coordinate system Kg as

Fg
j = AglF

l
j = AT

lgF
l
j , (4.31)

where Agl = A−1
lg = AT

lg is due to the orthogonality of the rotation matrix.

4.3.4 Numerical time integration

To solve the differential equations numerical time integration is necessary. To calculate

the trajectories of particles and determine their new positions and orientations, different

integrators can be used. Algorithms developed by Verlet in 1967 are among the most pop-

ular in molecular dynamics, i.e. Verlet integration, velocity-Verlet and leapfrog-Verlet, see

Section 2.1.1. These integrators offers better stability than the simpler Euler integration

methods with often sufficient accuracy and stability. The new position and orientation of

particle i at the time step (m+ 1) are

Ym+1
i = 2Ym

i − Ym−1
i + h2Ÿm

i , (4.32)

where Yi denotes the generalized coordinates of body i and h is the integration time step.

4.4 Parametric study and simulation results

Different simulations have been performed to investigate screening phenomena in the ro-

tating tumbling machine. Particle distribution and sifting rates of the separated particles

have been studied. Screening phenomena are very sensitive to the machine parameters,

e.g., plate inclinations, shaft eccentricities and size of the mesh openings and rotational

speed of the machine.

Due to the complicated motion of the particles over the screen surface and the various

factors that influence such a motion, the understanding of the actual mechanisms involved

in screening is still in its infancy. Attempts in the past to describe the performance of

screening processes mathematically have adopted either a probabilistic approach or a

kinetic approach [47]. Most of the attempts have been limited to defining the frequency

92 4 Screening and Particle Segregation

and amplitude of vibration, and possibly the direction of motion of the screen surface

[107].

In our work, the particles have been tested for both batch and continuous feeding in a

uniform and a stepped multi level oblique vertical cylinder. For continuous screening, a

package of 3483 particles has been tested and the efficiency of machine has been recorded

for different machine conditions, see Fig. 4.13a. Our simulation codes have also been tested

for a higher number of particles which requires greater computational effort and more

simulation time. These simulations are observed carefully through animations which show

an acceptable separation process over the different layers of the machine, see Fig. 4.13b,c.

The finer particles frequently fall through the sieve openings while the oversized particles

should be ejected through certain outlets located around the machine body. Some of

the undersized particles are unintentionally forced to travel outside the machine together

with the sorted ones. Those unavoidable and also undesired particles, which we call here

gangue particles reduce the efficiency of the machine. For an efficient separation process,

the selection of proper operating conditions reduces the number of these gangue particles.

(a) continuous, 3483 bodies (b) batch, 27130 bodies (c) batch, 7688 bodies

Figure 4.13: Continuous and batch screening using a TSM

Mathematically, to measure machine efficiency, either the number-of-particles or the mass-

of-particles can be adopted. Depending on the number of particles, the characteristic value

c, which is a kind of measure of the machine performance, can be expressed as

c =
100

M

M
∑

i=1

ci , ci =
si

si + gi
, (4.33)

where ci is the individual efficiency of layer i of the machine, si and gi are the number

of the oversized sorted and the undersized gangue particles at level i of the machine,

respectively, M is the total number of barrels in the machine where i = 1 is the lowest

level and i = M the highest one, see Fig. 4.14. Since there are no gangue particles in the

4.4 Parametric study and simulation results 93

lowest level, we have g1 = 0, therefore Equation (4.33) can be written as

c =
100

M

(

1 +

M
∑

i=2

ci

)

. (4.34)

Figure 4.14: Screening process using tumbling machine of M-decks. The sorted particles

are to the right while the undesired gangue particles are to the left of the machine

If the mass-of-particles is adopted as the base of efficiency calculation, then Equation

(4.33) should be built again upon the mass measurements as

c =
100

M

M
∑

i=1

ci , ci =
msi

msi
+mgi

, (4.35)

where msi
and mgi

are the total mass of the oversized sorted and the undersized gangue

particles at level i of the machine, respectively. These masses can be calculated as

msi
=

si
∑

k=1

ρVsk
=

4

3
πρ

si
∑

k=1

ρr3
sk
, (4.36)

where rsk
is the radius of the sorted particle k assuming round-shaped particles. The

radius rsk
is always constant for any layer i since the sorted particles are identical in size,

therefore Equation (4.36) can be written as

msi
=

4

3
πρsir

3
sk
, 1 ≤ i ≤M , (4.37)

94 4 Screening and Particle Segregation

where ρ is the mass density of the particles in the machine assuming they are of the same

material. On the other hand, the total mass of the gangue particles of the layer i can be

similarly written as

mgi
=

gi
∑

k=1

ρVgk
=

4

3
πρ

gi
∑

k=1

ρr3
gk
, 2 ≤ i ≤M , (4.38)

where rgk
is the radius of the gangue particle k assuming spherical particles. It can be

easily recognized that the mass of the gangue particles in the lowest level is not counted

since always g1 = 0.

The machine efficiency c would be 100% if the number of gangue particles is gi = 0 in the

different layers of the machine. Although some decks of the machine are more efficient

than others during the sorting process, it is difficult to find a clear prediction explaining

this disparity. The weight and size ratio of the different particles in the mixture, the

material properties and the operation conditions influence this phenomenon.

Continuous screening operation and batch sieving are simulated. Larger particle numbers

can be investigated but the focus is first put to the basic mechanisms and relations. These

particles consists of a mixture of five different sizes with their numbers and radii as: (1210,

10mm), (832, 12mm), (611, 14mm), (467, 16mm) and (363, 18mm). Four squared-pattern

sieves of hole dimensions w = {11, 13, 15, 17}mm are used in a uniform-radius TSM with

R = 80cm. The ratio w/g = 1 for the sieve wires for all decks of the machine, i.e.

g = {11, 13, 15, 17}mm.

4.4.1 Influence of the machine speed

The tumbling screening machine has the ability to run in a range of angular velocities.

This angular speed of the machine ω, which is assumed as being constant during the

sorting operation process, has a great influence on the sifting rate of the mixed particles

at each of the different sorting levels of the machine. These simulations are run for ωb = ω.

Using computer simulation enables us to change the machine speed ω over a wide range

in order to study its effect on the machine performance.

The angular velocity ω should not be too high in order to avoid too fast motion of particles.

Too high velocities of the particles will decrease the separation rate of the mixture and

reduce the chance for undersized particles to fall down through the mesh openings. On

the other side the rotational speed should not be too slow since low separation rates and

a big number of undesired gangue particles can then be expected. This is due to the

fact that the particles experience not enough mixing due to their small velocities. This

insufficient mixing reduces the chance of the undersized particles to fall through the mesh,

see Fig. 4.15.

In order to reach the best rate of particle separation, we have to find the rotational speed

4.4 Parametric study and simulation results 95

0 5 10 15
0

20

40

60

80

100

120

140

time (s)

nu
m

be
r

of
 p

ar
tic

le
s

level 2, gangue
level 3, gangue
level 4, gangue
level 5, gangue
level 1, sorted
level 2, sorted
level 3, sorted
level 4, sorted
level 5, sorted

(a) ω=1rpm

0 5 10 15
0

100

200

300

400

500

time (s)

nu
m

be
r

of
 p

ar
tic

le
s

level 2, gangue
level 3, gangue
level 4, gangue
level 5, gangue
level 1, sorted
level 2, sorted
level 3, sorted
level 4, sorted
level 5, sorted

(b) ω=50rpm

0 5 10 15
0

50

100

150

200

250

300

350

time (s)

nu
m

be
r

of
 p

ar
tic

le
s

level 2, gangue
level 3, gangue
level 4, gangue
level 5, gangue
level 1, sorted
level 2, sorted
level 3, sorted
level 4, sorted
level 5, sorted

(c) ω=150rpm

0 5 10 15
0

100

200

300

400

500

time (s)

nu
m

be
r

of
 s

or
te

d
pa

rt
ic

le
s 1 rpm

30 rpm
40 rpm
50 rpm
70 rpm
100 rpm
150 rpm
200 rpm
250 rpm

(d) lowest sorting level

Figure 4.15: Influence of rotational speed on the particle sifting rates at different sorting

levels of the machine in continuous screening operation, α = 1◦, β = 0.65◦, w/g = 1,

b = 0.8w and feeding rate 147 particles per second.

of the machine which maximizes the number of sorted particles and minimizes the gangue

ones. In order to do this, we simulate our problem for different angular velocities and

measure the efficiency of each set of geometrical, contact and material parameters. It is

observed that the sorting under very low rotational velocity leads to very bad separation

rates. The main reason for this is that the mesh is blocked soon. This would be a

disastrous situation for an industrial process. The number of undesired gangue particles

are even much higher than those of desired sorted ones in most of the machine levels, see

Fig. 4.15a. Low efficiency of c = 40% is recorded for this case.

On the other hand, a relatively high velocity of 150rpm leads to better results and higher

efficiency of about c = 72%, see Fig. 4.15c. Going further, the very high velocity of

250rpm will decrease the efficiency again to c = 58%. It is observed that the intermediate

speed of 50rpm gives the best sifting rates with maximum efficiency about c = 78% during

the continuous screening process, see Fig. 4.16. From this figure, it is also clear that for

96 4 Screening and Particle Segregation

all machine speeds the efficiency starts low and approaches its steady operating mode in

about 10 ÷ 20s.

0 5 10 15
20

30

40

50

60

70

80

time (s)

ef
fic

ie
nc

y
c

(%
)

1 rpm
30 rpm
40 rpm
50 rpm
70 rpm
100 rpm
150 rpm
200 rpm
250 rpm

0 50 100 150 200 250
40

50

60

70

80

speed (rpm)

ef
fic

ie
nc

y
c

(%
)

Figure 4.16: Efficiency of TSM machine for different speeds in the continuous screening

operation mode, α = 1◦, β = 0.65◦, w/g = 1, b = 0.8w and and feeding rate 147 particles

per second.

4.4.2 Influence of the feeding rate

We next study the effect of the feeding rate of the mixed particulate material on the

machine efficiency. Increasing the size of the output nozzle of the feeding container will

increase the feeding rate of the particle flow. Since the number of particles in the feeding

container is limited, the feeding rate of the particles through a relatively large orifice will

not be kept constant through the whole simulation process. In this case, most of the

particles in the feeding container will fall down continuously and in a constant rate just

only in the beginning of the simulation, see Fig. 4.17a. For small orifice size, e.g. 30mm,

the flow rate will stay constant at 147 particle/s over the whole simulation since there is

enough material in the feeding cylinder which keeps the particles flow through the feeding

nozzle constant after a few seconds. This constant flow rate is used in our simulation

study for continuous screening operations.

Continuous screening and batch sieving are studied. In continuous screening, it is observed

that low feeding rates with nozzle radius of 30mm will lead to a low screening performance.

There, the sorted particles travel slowly to the machine exits together with some of the

undesired gangue ones, see Fig. 4.15b. The rate of the sorted particles is observed to

improve with increasing feeding rate. Opening the nozzle output further will increase

the feeding rate of the particle flow and improve the screening efficiency of the machine

during the constant rate feeding period, see Fig. 4.17b.

In case of batch sieving, 3483 particles have been tested. The machine was started running

4.4 Parametric study and simulation results 97

0 5 10 15
0

1000

2000

3000

4000

time (s)

nu
m

be
r

of
 p

ar
tic

le
s

th
ro

ug
h

or
ifi

ce

200mm
30mm
35mm
45mm

ca. 147 particle/s

(a) flow rate for different nozzle radii

0 2 4 6 8 10
0

100

200

300

400

500

600

700

time (s)

nu
m

be
r

of
 p

ar
tic

le
s

level 2, gangue
level 3, gangue
level 4, gangue
level 5, gangue
level 1, sorted
level 2, sorted
level 3, sorted
level 4, sorted
level 5, sorted

(b) nozzle radius 200mm

0 2 4 6 8
0

100

200

300

400

500

600

700

time (s)

nu
m

be
r

of
 p

ar
tic

le
s

level 2, gangue
level 3, gangue
level 4, gangue
level 5, gangue
level 1, sorted
level 2, sorted
level 3, sorted
level 4, sorted
level 5, sorted

(c) batch sieving

0 5 10 15
0

100

200

300

400

500

600

700

time (s)

nu
m

be
r

of
 s

or
te

d
pa

rt
ic

le
s 30 mm

45 mm
60 mm
100 mm
200 mm
batch

(d) lowest sorting level

Figure 4.17: Influence of the feeding rate on the sorted number of particles at different

sorting levels of TSM machine in batch sieving and continuous screening operation modes,

α = 1◦, β = 0.65◦, w/g = 1, b = 0.8w and ω = 50rpm.

with a big number of particles in the very beginning of the operating process. Those

particles are fed immediately inside the machine barrel. Due to these heavy packed

particles and the partially blocked mesh, it is observed that the gangue particles will

rapidly accumulate in the beginning of the simulation. Many collisions between different

particles will happen and force many of these particles to travel rapidly through the

machine exits without even touching the mesh. It is not surprising that one of the most

dangerous situations is blocking of the mesh and one has to ensure that the feeding rate is

not so high that this can happen. As the time proceeds, the rate of the gangue particles

will decrease to be steady after 5s simulation time, see Fig. 4.17c. Fewer gangue particles

will then travel outside the machine exits since most of the particles are already separated

at the different levels inside the machine. In the meantime, only the right-sized-particles

will be sorted and directly run away through the machine exits, which improves the

performance of the separation process.

98 4 Screening and Particle Segregation

As an indication of the influence of the feeding rates on the machine efficiency, the number

of sorted particles in the lowest level of the sifting unit is recorded, see Fig. 4.17d. The

lowest-level-particles are usually opposed to many collisions and face different obstacles

during their way from the top until they reach their final destination in the lowest deck

of the machine. It is observed that very low feeding rates are not recommended in the

case of continuous screening, see Fig. 4.18. Increasing the rate of the feeding material

will increase the machine efficiency. Although batch sieving might reveal better sorting

efficiency compared to the continuous screening as long as no blocking occurs, it is not

commonly used in industrial processes and screening technology since most processes have

to run without interruption for a long time.

There exist detailed investigations about practical feeding rates for certain nozzle open-

ings, see e.g. [13]. Since this depends highly on the used material and many more aspects,

it would require detailed investigations to carefully compare this by our simplified simu-

lation model.

0 2 4 6 8
20

30

40

50

60

70

80

time (s)

ef
fic

ie
nc

y
c

(%
)

30 mm
45 mm
60 mm
100 mm
200 mm
batch

0 50 100 150 200
58

60

62

64

66

68

70

72

74

76

feeding nozzle radius (mm)

ef
fic

ie
nc

y
c

(%
)

continuous screening
batch sieving

Figure 4.18: Efficiency of TSM machine for different openings of the feeding nozzle in

batch sieving and continuous screening operation modes, α = 1◦, β = 0.65◦, w/g = 1,

b = 0.8w and ω = 50rpm.

4.4.3 Influence of the inclination angles

The inclination angles α and β of the sifting unit have a great influence on the machine

performance. To study their effect, we fix one of them and change the other. It is observed

that the steady state of machine efficiency will be reached after 13 s of simulation time,

see Fig. 4.19a, c. For an inclination condition of α = 0◦, it is noticed that increasing the

angle β will improve the machine performance. The maximum efficiency of c = 76% will

be obtained when β = 0.65◦, see Fig. 4.19b.

The inclination angles should be selected to achieve the best separation rates and the

4.4 Parametric study and simulation results 99

maximum performance of the machine. For continuous screening of 147 particles/s,

speed of 50rpm and our setup it was followed that α = 1◦ and β = 0.65◦ are the optimal

values for a maximum efficiency of c = 78.2% of the TSM machine, see Fig. 4.19d.

0 5 10 15
20

30

40

50

60

70

80

time (s)

ef
fic

ie
nc

y
c

(%
)

β=0
β=0.65
β=1
β=2

(a) α = 0◦

0 0.5 1 1.5 2
71

72

73

74

75

76

77

β (deg)

ef
fic

ie
nc

y
c(

%
)

(b) α = 0◦

0 5 10 15
20

30

40

50

60

70

80

time (s)

ef
fic

ie
nc

y
c

(%
)

α=0
α=0.5
α=1
α=1.25
α=2

(c) β = 0.65◦

0 0.5 1 1.5 2
73

74

75

76

77

78

79

α (deg)

ef
fic

ie
nc

y
c(

%
)

(d) β = 0.65◦

Figure 4.19: Efficiency of TSM machine for different inclination angles α and β of the

sifting unit, w/g = 1, b = 0.8w, ω = 50rpm and feeding rate 147 particles per second.

4.4.4 Influence of the shaft eccentricity

The eccentricity between the main vertical and the inclined holder shafts of the machine

has a clear influence on the efficiency of the machine. In order to get a quantitative idea

about this influence, the number of sorted particles in the lowest sorting level of the ma-

chine is recorded. It is found that small eccentricities will often be better than to work

with large shaft eccentricities. High range eccentricities of ε = 300mm (which are techno-

logically infeasible) show a small number of 200 sorted particles in comparable with the

100 4 Screening and Particle Segregation

0 5 10 15
0

100

200

300

400

500

time (s)

nu
m

be
r

of
 s

or
te

d
pa

rt
ic

le
s ε=0

ε=30
ε=50
ε=100
ε=150
ε=300

(a) lowest sorting level

0 50 100 150 200 250 300
55

60

65

70

75

80

ε (mm)

ef
fic

ie
nc

y
c

(%
)

(b) overall efficiency

Figure 4.20: Influence of the shaft eccentricity on the sorted number of particles and on

the machine efficiency, α = 1◦, β = 1◦, w/g = 1, b = 0.8w, ω = 50rpm and feeding rate

147 particles per second.

number of about 500 particles obtained using small range of eccentricities, see Fig. 4.20a.

It is clear that a large eccentricities reveal bad performance. Small eccentricities less than

ε = 100mm appear good performance behaviour where ε = 40mm leads to a maximum

screening performance of about 80%, see Fig. 4.20b.

4.4.5 Influence of the barrel oscillation

The vibratory motion of the machine cylinder is also investigated. As the machine tumbles

and rotates with ω around its main axis, the sorting process is measured while the barrel

can move in three possible cases, i.e. rotating around its axis with ωb, oscillating back

and forth around its axis with different magnitudes of oscillation factor K = ωb/ω and

blocking case without any rotation ωb = 0.

In this five-deck example the barrel is allowed to rotate with the same speed of the

machine, i.e. ωb = ω = 150rpm. For this case the sorting efficiency is measured to be

relatively low, see Fig. 4.21. The continuous motion of the barrel will give the particles

more energy and let them not damp easily. A low efficiency about c = 58% is recorded

for this case during a continuous screening process.

On the other hand, a significant improvement is observed when the barrel is prevented

to rotate around its individual axis of rotation. In this case of ωb = 0 or K = 0, the

efficiency increases to about c = 69% due to the tumbling action of the machine, see

Fig. 4.21b. Going further by allowing the sifting unit to oscillate around its axis, the

results are better. Increasing the oscillation factor to about K = 0.7 for the applied

triangular-mode oscillation described in Section 4.3.2 will obtain a maximum optimal

efficiency of c = 75%, see Fig. 4.21b. The medium oscillatory motion proves to be useful

4.4 Parametric study and simulation results 101

for improving the separation process of particles. This improvement is due to the chance

of little shaking that the particles can be opposed during the process. This shaking motion

helps the particles to fit in a proper way over the holes of the sieves and to run to the

exists of the machine.

0 5 10 15
20

30

40

50

60

70

80

time (s)

ef
fic

ie
nc

y
c(

%
)

rotation
K=0
K=0.7
K=1
K=4

(c) machine efficiency

0 1 2 3 4
55

60

65

70

75

K

ef
fic

ie
nc

y
c(

%
)

rotating barrel

oscillating barrel

(d) oscillation factor K = ωb/ω

Figure 4.21: Influence of the barrel oscillation on the machine efficiency, α = 1◦, β = 0.65◦,

ζ = 0.6, w/g = 1, ω = 150rpm, oscillation period 0.02 second and the feeding rate 147

particles per second.

For further investigations, another example of 775 glass particles has been simulated.

These round particles consists of two different ball-sizes with almost equal numbers but

different radii as: (389, 1.5mm) and (386, 2mm). A uniform-radius TSM with R = 30cm

with a single sieve of hole dimension w = 1.575mm and g = 0.8mm. In this example the

efficiency of the two-deck machine is measured depending on the mass of particles and

not on their numbers as it was in the first example. Referring to Equation (4.36), the

machine efficiency can be calculated as

c =
100

2

2
∑

i=1

ci = 50

2
∑

i=1

msi

msi
+mgi

= 50

(

1 +
ms2

ms2
+mg2

)

, (4.39)

where mg1
=0 in the lowest deck of the machine. The rate of the overall outlet particles

from both layers is also measured as

ρu =
ms2

+mg2

t
and ρl =

ms1

t
, (4.40)

where ρu and ρl are the rate of the overall outlet particles of the upper and lower layers,

respectively. The percentage G of how much undesired gangue particles are being among

the sorted ones, can be also determined by

G = 100

(

mg2

ms2
+mg2

)

. (4.41)

Depending the mass-based evaluation in measuring the machine performance will be

adopted in the following subsections.

102 4 Screening and Particle Segregation

4.4.6 Influence of the surface friction coefficient

The roughness of the mesh surface a noticeable influence on the sorting operation. The

friction between the particles and the sieve affects the motion of the particle through the

driving tangential force acts on it. The influence of the degree of roughness is studied in

this problem by changing the friction coefficient µd of Equation (4.30) and recording the

corresponding machine efficiencies and sorting rates, see Fig. 4.22.

The frictional force plays a significant role in determining the particles movement. With

no doubt, a high friction coefficients will hold the particles over the sieve inside the

machine while low ones will increase the smoothness of the sieve surface and give more

freedom to the particles to move with the help of the tumbling action away from the

center towards the machine periphery. This fact is shown by the results in Fig. 4.22b,c.

For a high friction coefficient of µ = 0.3 the rate of the outlet particles is zero or almost

zero from the upper and lower decks of the machine. The smaller the friction coefficient

the higher the output rates.

On the other hand, decreasing the friction coefficient to a minimum is not always the

solution for increasing the machine performance. The reason is that both the good and

the bad particles will have the same chance to be driven towards the outlets. This appears

in Fig. 4.22d. For e.g. µ = 0, the percentage of the undesired gangue particles is higher

than for µ = 0.04 or µ = 0.06. An optimal value of µ should exist to balance between

a high sorting efficiency c, maximum output rates ρ and minimum percentage of gangue

particles G. According to Fig. 4.22, this value is close to µ = 0.06 for this example. The

value which is used in simulations for the friction coefficient has to match the reality.

Therefore, some special material and smoothness tests should be performed in order to

get this kind of information about the friction coefficients.

4.4.7 Influence of the system size

To study the influence of the number of particles N on the performance of the screening

operation and on the requested computation time, three system sizes are considered. The

system sizes of 775, 4950 and 9900 glass balls of two equal particle groups of diameters

3mm and 4mm are simulated. A uniform machine radius of R = 30cm with a single

sieve of hole dimension w = 1.575mm and g = 0.8mm. A continuous feeding process of a

constant feeding rate of 357 particles per second is applied, see Fig. 4.23a. The machine

barrel tumbles and rotates around the main shaft with ω = 180rpm but is constrained to

rotate around its own axis.

Increasing the number of particles of the system will make the machine need more time to

reach to its steady state, see Fig. 4.23b. This state is much more interesting and essential

to be studied and investigated than the transient state. Since the number of particles

4.4 Parametric study and simulation results 103

0 5 10 15
60

70

80

90

100

time (s)

ef
fic

ie
nc

y
c(

%
)

µ=0
µ=0.04
µ=0.06
µ=0.1
µ=0.3

(a) machine efficiency

0 5 10 15
0

0.5

1

1.5

2

2.5
x 10

−3

time (s)

ou
tle

t p
ar

tic
le

s−
up

pe
r

de
ck

ρ u (

kg
/s

)

µ=0
µ=0.04
µ=0.06
µ=0.1
µ=0.3

(b) output flow rate (upper deck)

0 5 10 15
0

0.5

1

1.5
x 10

−3

time (s)

ou
tle

t p
ar

tic
le

s−
lo

w
er

 d
ec

k ρ l (
kg

/s
)

µ=0
µ=0.04
µ=0.06
µ=0.1
µ=0.3

(c) output flow rate (lower deck)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

time (s)

ga
ng

ue
 p

ar
tic

le
s

G
(%

) µ=0
µ=0.04
µ=0.06
µ=0.1
µ=0.3

(d) gangue particles

Figure 4.22: Influence of the mesh roughness of a non-rotating barrel on the sorted number

of particles, α = 0.6◦, β = 0.5◦, ζ = 0, w/g = 1.97 and ω = 180rpm.

used in simulation is not as much as that in the real experiments, the transient state

can be measured more easily in simulation. On the contrast, this state is difficult to be

measured in the field during the very beginning of the running operation. The vice versa

is correct, the steady state can be observed well and measured in reality compared with

the short-range simulation processes.

In order to reach to the steady state behavior in simulating high number of particles

in a continuous screening operation, the simulation time have to be extended as long as

possible to allow the particles in the feeding vessel to fall inside the machine, and therefore

the computations will be then quite expensive. As shown in Fig. 4.23f, a simulation of

775 particles for 20s needs about 2.5h to be simulated. Increasing the system size to 4950

particles in the feeding vessel for 25s will increase the computation time to 36h. Going

further by enlarging the system size to 9900 particles and accordingly the simulation time

to 45s, the computations needs 153h, i.e. almost one week, to be done. Increasing the

104 4 Screening and Particle Segregation

0 20 40 60
0

2000

4000

6000

8000

10000

12000

time (s)

nu
m

be
r

of
 p

ar
tic

le
s

th
ro

ug
h

or
ifi

ce

775 balls
4950 balls
9900 balls

(a) flow rate for different container capacity

0 20 40 60
50

60

70

80

90

100

time (s)

ef
fic

ie
nc

y
c(

%
)

775 balls
4950 balls
9900 balls

(b) machine efficiency

0 20 40 60
0

0.005

0.01

0.015

time (s)

ou
tle

t p
ar

tic
le

s ρ
u (

kg
/s

)

775 balls
4950 balls
9900 balls

(c) output flow rate (upper deck)

0 10 20 30 40 50
0

1

2

3

4

5
x 10

−3

time (s)

ou
tle

t p
ar

tic
le

s ρ
l (

kg
/s

)

775 balls
4950 balls
9900 balls

(d) output flow rate (lower deck)

0 20 40 60
0

0.2

0.4

0.6

0.8

1

time (s)

ga
ng

ue
 p

ar
tic

le
s

G
(%

) 775 balls
4950 balls
9900 balls

(e) gangue particles

775 4950 9900
2.5

36

153

co
m

pu
ta

tio
n

tim
e

(h
)

number of particles

25
45 si

m
ul

at
io

n
tim

e
(s

)computation time
simulation time

(f) computation/simulation time

Figure 4.23: Curve extrapolation of the number of particles, α = 0.6◦, β = 0.5◦, w/g =

1.97, ζ = 0.6 and ω = 180rpm.

4.4 Parametric study and simulation results 105

number of particles by enlarging the system size N will often scale up the output-rates

curves in a nonlinear manner, see Fig. 4.23c,d. Increasing the number of particles more

to reach that numbers of hundreds of millions as it is in the real machine, will probably

extrapolate these curves in order to match those obtained from the real experiments.

But, unfortunately, this numbers could be very difficult or even impossible to be simulated

sequentially on a single computer especially if these simulations have to be rerun frequently

for many times when looking to do a parametric study of the machine variables. Therefore,

and since screening operation is a dynamic process, some effort on spatial decomposition

with movable-boundary domains can be paid to parallelize the problem and therefore

reduce the corresponding computation time of the simulations.

106

Chapter 5

Conclusions and Closing Remarks

The behavior of granular media is investigated in this thesis. Extending existing algo-

rithms, parallelizing the molecular serial codes and supporting this with studying and

analyzing a physical industrial application of particle screening technology using a tum-

bling screening machine under various operational parameters and screen configurations

are illustrated in this study. The goal is achieved by having a good overview of the op-

erational and dynamical parameters which affect the TSM efficiency and the separation

process. Reaching to different scalability factors by speeding up the simulations using

spatial decomposition approach is also achieved.

For this purpose, Chapter 1 briefly introduced some contact problems in granular media

with some computational procedures used in sequential and parallel computations. A

general overview of some studies and the influence parameters which affect the particle

screening technology were presented in this introductory chapter.

Going further, Chapter 2 concentrated on clarifying the basics of the granular media and

some frequently-used algorithms and models, e.g. the discrete element method and the

penalty approach for contact detection and force computations. This chapter introduced

dealing with particle-to-particle and particle-to-wall contacts under different conditions

of damping, friction and adhesion. The searching algorithms and neighborhood compu-

tations were disscussed and compared. It was found that here the Linked Linear List

approach is more efficient than the Verlet approach. Different integration approaches was

also discussed. It was found that Verlet integrators are efficient, accurate and appropriate

to solve the equations of motion of the granular systems.

No doubt that one of the main obstacles for granular media computations is the long

computation time of simulations, especially for large-sized system of particles. Chapter

3 introduced some parallel strategies and concentrated on the spatial decomposition ap-

proach using message-passing libraries for solving the parallel task. This method allows

scalability and good results especially when load balancing is done.

5 Conclusions and Closing Remarks 107

In this chapter, the efficiency of computations is observed to be kept within normal ranges

and below the ideal behavior when different processes are run in parallel on one machine.

On the other hand, a superlinear behavior is recorded when using different computers with

many processors due to the individual cache memory effect of each of the machines used in

the network. This chapter also underlined the relation between the speedup and the size

of the system. It was found that the performance improves with increasing the number

of particles. The reason is due to the communication and data flow which become more

efficient between the different tasks as the number of particles increases and therefore,

the communication cost will directly decrease and accordingly, the computational speedup

will increase.

In Chapter 4, as a practical industrial application, the particle screening phenomenon over

a rotary tumbling screen is studied. The discrete element method is applied and used as a

simulation tool for the separation process. This method proves its ability to be a powerful

numerical modeling tool for solving problems in granular media. In an attempt to better

understand the mechanism of the particle transport between the different layers of the

sifting system, different computational studies for achieving optimal operation have been

performed.

As a result of collisions, the particles dissipate kinetic energy due to the normal and

frictional contact losses. The particle distribution, sifting rate of the separated particles

and the efficiency of the segregation process have been studied. For specific geometrical

and contact parameters particle transportation, sifting rates and machine efficiency are

recorded. Particles are simulated in uniform and stepped models of tumbling cylinders.

For both continuous screening and batch sieving, it was found that the segregation process

is very sensitive to the rotational speed of the machine. This speed should be selected to

be within certain limits to maximize the number of sorted particles and to improve the

sifting rates for the different machine levels. Too high and too low speeds will lead to a

bad screening performance.

Furthermore, the particle feeding rates, inclination angles and shaft eccentricity have a

great influence on the machine efficiency. Small angles between 0.5◦ to 1◦ and eccentric-

ities between 25 to 50mm are recommended. The sieve roughness has also an influence

on the number of particles that stay or leave the machine. An optimal value of rela-

tively medium friction coefficient is recommended. Moreover, the barrel oscillation has

a significant influence on the sorting process. Oscillatory motion of the barrel showed

better performance relative to the non-rotating or even continuous-rotating motion. For

the same operating conditions, batch sieving shows better results compared to continuous

screening.

Improving the accuracy of the simulation requires to be more realistic in implementing the

contact forces and the associated contact parameters of the dynamical system of the gran-

ular system. Physical contacts inside the TSM require some more detailed investigations.

108 5 Conclusions and Closing Remarks

These parameters can be obtained from special experiments. For better understanding

of the particle sorting and transportation between the different layers of the machine,

experimental studies have to be performed.

For future investigations of this work the following points may be mentioned:

I Regarding to the presented approach in Chapter 2, different particle shapes, e.g. polyg-

onal, elliptical, etc. can be modelled and analyzed under various loading conditions of

damping, friction and adhesion.

I The spatial decomposition method which was used in Chapter 3 can be extended from

the strip-pattern model to the spatial-cubic model involving more number of particles.

Comparing this method with other parallel techniques is quite recommendable.

I For future modifications of the presented approach in modelling the tumbling screening

machine in Chapter 4, following points are noticeable:

• Using different shapes of particulate materials rather than spherical balls together

with different mesh configurations.

• Extending the operational running time of the machine by screening much more par-

ticles in continuous and batch screening operations. This will need to run the simulations

in parallel environment for time consuming purposes.

• Using much more realistic and precise approaches to check the contacts between balls

and sieve wires should be used rather than depending only on the probabilistic approach.

Designing the deflector in a proper way will help the particles to be guided much close to

that in reality.

• Performing real experiments to observe and measure the transient and steady state

modes of the screening operation and use them for comparison purposes.

109

Appendix

A.1 Computational details- input and output files

In this section a general overview of the input and output files of the program MOLDYN

is given and described, see also [71].

A.1.1 Input files

The input files should be constructed in a proper way that they contain all necessary

information required to describe the whole system of particles. The three-used input

files, i.e. the control-input file, the particles-input file and the walls-input file are briefly

described.

I control-input file: This file describes the control variables which are necessary for

formulas and mathematical calculations in the program. This file has the name extension

(*.cin) and looks like

times.t0 0.00

times.tend 10.0

times.dt 1.0e-5

control.grav -9.81

control.rho 20.0

control.mue_s 0.45

control.mue_d 0.45

sd.stiff_lo 7.25e3

sd.stiff_k_un 7.25e3

sd.stiff_adh -3.00e2

sd.damp_particle 0.00

sd.damp_wall 0.38

sd.e 0.27

In this file the start and end simulation times along with the simulation time step are

defined. The other variables represents the gravity acceleration, the mass density, the

110 Appendix

static and dynamic friction coefficients, the loading/unloading and adhesive stiffness coef-

ficients, the particle-particle and particle-wall damping coefficients and finally the normal

coefficient of restitution.

I particle-input file: This file contains the initial locations, velocities, orientations and

angular velocities of the particles. It has the name extension (*.pin) and looks like

3257

-1.7 0.0 2.2 0.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.13 1

1.5 0.3 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.15 0

-2.6 0.4 2.1 0.0 1.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.15 1

3.5 0.2 2 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17 0

3.5 0.2 4.1 2.4 1.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.13 1

4.2 0.3 2.8 0.6 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.15 1

. . .

In this file the total number of particles appears in the very beginning. Columns from 1 to

3 represent the location of the particle in the three coordinates x,y and z. Columns from 4

to 6 denote the linear velocity of the particle. Columns from 7 to 12 represent the angular

position and angular velocity of the particles. The radii of the particles are located one

column before the last one. The state of motion of the particles during simulation appears

as a flag in the last column, i.e. 1 for the movable particle while 0 for the stationary one.

I wall-input file: The location of the walls and the direction of their positive normals

are identified in this file which has the extension (*.win) and appears as

6 0.0030

1.0000 0.0000 0.0000 -0.0050 0.0855 0.0855

-1.0000 0.0000 0.0000 0.1715 0.0855 0.0855

0.0000 1.0000 0.0000 0.0855 -0.0005 0.0855

0.0000 -1.0000 0.0000 0.0855 0.1715 0.0855

0.0000 0.0000 1.0000 0.0855 0.0855 -0.0005

0.0000 0.0000 -1.0000 0.0855 0.0855 0.1715

This file represents a box of 6 walls with a wall thickness of 3 mm. The first three columns

are the normal components in the direction of the three coordinate axes, while the last

three are the coordinates of the center points of the wall, see Fig. 2.7b. The walls can

also be defined by their end points from which the normals can be computed.

A.1.2 Output files

The results of simulations are stored in output files. These files contains data about

coordinates and velocities of the trajectories at selected predefined output times. These

Appendix 111

files should be written in a certain format to be read from the particle animation tools,

e.g. ANIM for 3D [12] and XBALLS for 2D [60]. In case of ANIM, the file extension is

usually used as (*.str) while as (*.xb) in case of XBALLS. The (*.xb) output file looks

like

3257 0.030 0.0 0.0 0.1710 0.1710

0.050000 0.120000 0.000000 -0.000098 0.004000 0.000000

0.070000 0.070000 0.000000 -0.000098 0.004000 0.000000

0.099996 0.004000 0.000000 -0.000098 0.004000 0.000000

...

3257 0.430 0.0 0.0 0.1710 0.1710

0.29056 0.119508 0.000000 -0.098296 0.004000 0.000000

0.40440 0.069402 0.000000 -0.088594 0.004000 0.000000

...

3257 1.650 0.0 0.0 0.1710 0.1710

0.330045 0.616286 0.000000 -0.495609 0.004000 0.000000

0.763331 0.679008 0.000000 0.208233 0.004000 0.000000

...

The file shows a system of 3257 particles with their locations and velocities for three output

time steps, i.e. at t = 0.03s, t = 0.43s and t = 1.65. The components of the particle

location are printed in the first three columns, while the particle velocity components

appear in the next three columns. Information about the wall dimensions is also appeared

in the first line of the output file. Furthermore, the translation vector and the rotation

matrix of all particles and walls are added to the ANIM output (*.str) file while other

data about particle locations are stored similar to the XBALLS output file. The (*.str)

output file appears as

0.01 999 12

-0.078490 0 0.996915 0 1 0 -0.996915 0 -0.078490 1.987678 0.000000 0.156497

-0.233537 0 0.972348 0 1 0 -0.972348 0 -0.233537 1.938696 0.000000 0.465635

...

1 0 0 0 1 0 0 0 1 -0.981598 0.000000 0.830000

1 0 0 0 1 0 0 0 1 -0.961598 0.000000 0.830000

...

In this file the first nine columns represent the nine elements of the rotation matrix

while the last three columns are the elements of the particle location represented in the

translation vector.

112

Bibliography

[1] Alexander, A.; Shinbrot, T.; Muzzio, F.: Granular Segregation in the Double-Cone
Blender: Transitions and Mechanisms, Physics of Fluids, Vol. 13, No. 3, pp. 578-587,
2001.

[2] Alkhaldi, H.; Eberhard, P.: Computation of Screening Phenomena in a Vertical
Tumbling Cylinder, Proceedings in Applied Mathematics and Mechanics (PAMM),
Berlin, Germany, 2006, submitted for publication.

[3] Alkhaldi, H.; Eberhard, P.: Particle Screening Phenomena in an Oblique Multi-
Level Tumbling Reservoir - A Numerical Study Using Discrete Element Simulation,
Granular Matter, 2007, accepted for publication.

[4] Alkhaldi, H.; Eberhard, P.: Segregation of Particulate Material Using the Discrete
Element Method, Proceedings in Symposium on Computational Contact Mechanics
(IUTAM), Hannover, Germany, 2006, submitted for publication.

[5] Allen, M.; Tildesley, D.: Computer Simulation of Liquids, Oxford: Clarendon, 1987.

[6] Andrew R. Leach: Molecular Modelling: Principles and Applications, Reading:
Addison-Wesley Longman, 1996.

[7] Aversa, R.; Martino, B.; Mazzocca, N.; Venticinque, S.: A Hierarchical Distributed-
Shared Memory Parallel Branch & Bound Application with PVM and OpenMP for
Multiprocessor Clusters, Parallel Computing, Vol. 31, pp. 1034-1047, 2005.

[8] Barnes, J.: A Modified Tree Code: Don’t Laugh, It Runs, Journal of Computational
Physics, Vol. 87, No. 1, pp. 161-170, 1990.

[9] Barnes, J.; Hut, P.: A Hierarchical O(NlogN) Force Calculation Algorithm, Nature,
Vol. 324, No. 4, pp. 446-449, 1986.

[10] Barney, B.: Introduction to Parallel Computing,
see: http://www.llnl.gov/computing/tutorials/parallel comp, (July 2006).

[11] Beazley, D.; Lomdahl, P.: Message-Passing Multi-Cell Molecular Dynamics on the
Connection Machine 5, Parallel Computing, Vol. 20, pp. 173-195, 1994.

[12] Bestle, D.; Eberhard, P.: NEWOPT/ANIM 2.2 - Ein Programmpaket zur Ana-
lyse und Optimierung von mechanischen Systemen (in German), Institut B für
Mechanik, Universität Stuttgart, AN-35, 1994.

[13] Beverloo, W.; Leniger, H.; Velde, J.: The Flow of Granular Solids through Orifices,
Chemical Engineering Science, Vol. 15, pp. 260-269, 1961.

[14] Blelloch, G.; Narlikar, G.: A Practical Comparison of N-Body Algorithms, Parallel
Algorithms, Series in Discrete Mathematics and Theoretical Computer Science, Vol.
30, pp. 1-16, 1997.

Bibliography 113

[15] Brooks, B.; Bruccoleri, R.; Olafson, B.; States, D.; Swaminathan, S.; Karplus, M.:
CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics
Calculations, Journal of Computational Chemistry, Vol. 4, pp. 187-217, 1983.

[16] Buyya, R.: High Performance Cluster Computing: Programming and Applications,
Englewood Cliffs: Prentice-Hall, 1999.

[17] Coulson, J.; Richardson, J.: Chemical Engineering Volume 2, Particle Technology
and Separation Process, 4th edition, Oxford: Pergamon, 1991.

[18] Cundall, P.: A Computer Model For Simulating Progressive Large Scale Movements
in Block Rock Systems, Symposium of the International Society of Rock Mechanics,
Nancy, France, pp. 129-136, 1971.

[19] Cundall, P.; Hart, R.: Numerical Modelling of Discontinua, Engineering Computa-
tion, Vol. 9, pp. 101-113, 1992.

[20] Cundall, P.; Strack, O.: A Discrete Numerical Model for Granular Assemblies,
Geotechnique, Vol. 29, pp. 47-65, 1979.

[21] de Gennes, P.: Granular Matter: A Tentative View, Reviews of Modern Physics,
Vol. 71, pp. 374-382, 1999.

[22] Dudek, M.; Ponder, J.: Accurate Modeling of the Intramolecular Electrostatic En-
ergy of Proteins, Journal of Computational Chemistry, Vol. 16, pp. 791-816, 1995.

[23] Dury, C.; Ristow, J.: Competition of Mixing and Segregation in Rotating Cylinders,
Physics of Fluids, Vol. 11, No. 6, pp. 1387-1394, 1999.

[24] Eberhard, P.: Kontaktuntersuchungen durch hybride Mehrkörpersystem/ Finite El-
emente Simulationen (in German), Aachen: Shaker Verlag, 2000.

[25] Eberhard, P.; Alkhaldi, H.: Efficient Computation of Colliding Particles in a Verti-
cal Tumbling Sorting Machine, Proceedings Second International Congress on Com-
putational Mechanics and Simulation (ICCMS), Vol. 1, pp. 81-87, I.K. Publishing
House, New Delhi, India, 2006.

[26] Eichinger, M.; Grubmüller, H.; Heller, H.; Tavan, P.: FAMUSAMM: An Algorithm
for Rapid Evaluation of Electrostatic Interactions in Molecular Dynamics Simula-
tions, Journal of Computational Chemistry, Vol. 18, pp. 1729-1749, 1997.

[27] Faber, V.; Lubeck, O.; White, A: Superlinear Speedup of an Efficient Sequential
Algorithm is Not Possible, Parallel Computing, Vol. 3, pp. 259-260, 1986.

[28] Fincham, D.: Parallel Computers and Molecular Simulation, Molecular Simulation,
Vol. 1, pp. 1-45, 1987.

[29] Finkel, R.; Fishburn, J.: Parallelism in Alpha-Beta Search, Artificial Intelligence,
Vol. 19, pp. 89-106, 1982.

[30] Fleißner, F.; Eberhard, P.: Dynamical Particle Simulation with Parallel Cache-
Aware Domain Decomposition Strategies, PAMM Proceedings in Applied Mathe-
matics and Mechanics, Vol. 5, No. 1, Luxemburg, pp. 657-658, 2005.

[31] Flynn, M.: Very High-Speed Computing Systems, Proceedings of the IEEE Publi-
cation, New York, pp. 1901-1909, 1966.

[32] Foster, I.: Designing and Building Parallel Programs, Boston: Addison-Wesley
Longman Publishing Corporation, 1995.

[33] Fox, G.; Johnson, M.; Lyzenga, G.; Otto, S.; Salmon, J.; Walker, D.: Solving
Problems on Concurrent Processors: General Techniques and Regular Problems,
Volume I, Englewood Cliffs: Prentice-Hall, 1988.

114 Bibliography

[34] Gao, G.: An Efficient Hybrid Dataflow Architecture Model, Journal of Parallel and
Distributed Computing, Vol. 19, No. 4, pp. 293-307, 1993.

[35] Garcia-Rojo, R.; McNamara, S.; Herrmann, H.: Discrete Element Methods for
the Micro-Mechanical Investigation of Granular Ratcheting, European Congress
on Computational Methods in Applied Sciences and Engineering, ECCOMAS,
Jyväskylä, pp. 1-8, 2004.

[36] Geist, A.; Beguelin, A.; Dongarra, J.; Jiang, W.; Manchek, R.; Sunderam, V.: PVM
3 User’s Guide and Reference Manual, Oak Ridge, Tennessee: Oak Ridge National
Laboratory, 1994.

[37] Greengard, L.; Rokhlin, V.: A Fast Algorithm for Particle Simulation, Journal of
Computational Physics, Vol. 73, pp. 325-348, 1987.

[38] Gupta, S.: Computing Aspects of Molecular Dynamics Simulation, Computer
Physics Communication, Vol. 70, pp. 243-270, 1992.

[39] Gustafson, J.: Reevaluating Amdahl’s Law, Communications of the ACM, Vol. 31,
No. 5, pp. 532-533, 1988.

[40] Gustafson, J.; Montry, G.; Benner, R.: Development of Parallel Methods for a 1024-
Processor Hypercube, SIAM Journal on Scientific and Statistical Computing, Vol.
9, No. 4, pp. 609-638, 1988.

[41] Heller, H.; Grubmüller, H.; Schulten, K.: Molecular Dynamics Simulation on a
Parallel Computer, Molecular Simulation, Vol. 5, pp. 133-165, 1990.

[42] Helmbold, D.; McDowell, C.: Modeling Speedup(n) greater than n, IEEE Transac-
tions Parallel and Distributed Systems, Vol. 1, No. 2, pp. 250-256, 1990.

[43] Herrmann, H.; Müller, M.: Simulations of granular media, Conference Proceedings
from the Workshop ’Molecular Dynamics on Parallel Computers’, World Scientific,
pp. 1-10, 1999,
see also: http://www.hlrs.de/people/mueller/papers/parallelMD99/parallelMD.html.

[44] Hertz, H.: Über die Berührung fester elastischer Körper (in German), Journal für
die reine und angewandte Mathematik, Vol. 92, pp. 156-171, 1882.

[45] Jansen, M.; Glastonbury, J.: The Size Separation of Particles by Screening, Powder
Technology, Vol. 1, pp. 334-343, 1967.

[46] Kaye, B.; Robb, N.: An Algorithm for Deducing an Effective Sieve Residue from the
Rate of Powder Passage through a Sieve, Powder Technology, Vol. 24, pp. 125-128,
1979.

[47] Kelly, E.; Spottiswood, D.: Introduction to Mineral Processing, New York: Wiley-
Interscience, 1999.

[48] Khakhar, D.; McCarthy, J.; Ottino, M.: Radial Segregation of Granular Mixtures
in Rotating Cylinders, Physics of Fluids, Vol. 9, No. 12, pp. 3600-3614, 1997.

[49] Khulief, Y.; Shabana, A.: A Continuous Force Model for the Impact Analysis of
Flexible Multibody Systems, Mechanism and Machine Theory, Vol. 22, pp. 213-224,
1987.

[50] Kreuzer, E.; Leister, G.: Programmsystem NEWEUL (in German), Institut B für
Mechanik, Universität Stuttgart, AN-32, 1991.

[51] Kuhl, E.; D’Addetta, G.; Herrmann, H.; Ramm, E.: A Comparison of Discrete
Granular Material Models with Continuous Microplane Formulations, Granular
Matter, Vol. 2, pp. 113-122, 2000.

Bibliography 115

[52] Lätzel, M.; Luding, S.; Herrmann, H.: From Discontinuous Models Towards a Con-
tinuum Description, International Symposium on Continuous and Discontinuous
Modelling of Cohesive Frictional Materials, Springer Verlag, Berlin, pp. 215-230,
2001.

[53] Lankarani, H.; Nikravesh, P.: A Contact Force Model with Hysteresis Damping for
Impact Analysis of Multibody Systems, Journal of Mechanical Design, Vol. 112, pp.
369-376, 1990.

[54] Lee, J.; Ladd, A.: Axial Segregation of a Settling Suspension in a Rotating Cylinder,
Physical Review Letters, Vol. 95, No. 1-4, 2005.

[55] Li, J.; Webb, C.; Pandiella, S.; Campbell, G.: A Numerical Simulation of Separation
of Crop Seeds by Screening-Effect of Particle Bed Depth, Institution of Chemical
Engineers IChemE Part C, Vol. 80, pp. 109-117, 2002.

[56] Li, J.; Webb, C.; Pandiella, S.; Campbell, G.: Discrete Particle Motion on Sieves -
A Numerical Study Using the DEM Simulation, Powder Technology, Vol. 133, pp.
190-202, 2003.

[57] Lindahl, E.; Hess, B.; van der Spoel, D.: GROMACS 3.0: A Package for Molecular
Simulation and Trajectory, Journal of Molecular Modeling, Vol. 7, pp. 306-317, 2001.

[58] Luding, S.: Collisions and Contacts between two Particles, Physics of Dry Granular
Media, E350-NATO ASI series, Dordrecht, Kluwer Academic Publishers, pp. 285-
314, 1998.

[59] Luding, S.: The Micro-Macro Mechanics of Granular Materials, GACM report 2,
pp. 22-28, 2003.

[60] Luding, S.: XBALLS: Animation Software,
see: http://www.icp.uni-stuttgart.de/∼lui/, (December 1994).

[61] Luding, S.; Clement, E.; Blumen, A.; Rajchenbach, J.; Duran, J.: Anomalous
Energy Dissipation in Molecular Dynamics Simulations of Grains, Physical Review
E, Vol. 50, pp. 4113-4122, 1994.

[62] Lyubartsev, A.; Laaksonen, A.: MDynaMix - A Scalable Portable Parallel MD
Simulation Package for Arbitrary Molecular Mixtures, Computer Physics Commu-
nications, Vol. 128, pp. 565-589, 2000.

[63] Mao, K.; Xu, Z.; Wang, M.; Chen, T.: Efficient Computation of Particle Motions in
Discrete Element Modeling of Particle Damping, Eighth International Symposium
on Plasticity and Impact Mechanics, New Delhi, India, pp. 994-1005, 2003.

[64] Matthey, T.: Framework Design, Parallelization and Force Computation in Molecu-
lar Dynamics, Ph.D. thesis, Department of Informatics, University of Bergen, Nor-
way, 2002.

[65] McLoughlin, G.; Fergusson, I.: High Performance Computers and Export Control
Policy: Issues for Congress, Report for Congress, The Library of Congress, Wash-
ington, pp. 1-28, 2003.

[66] Menabrea, L.: Notions sur la Machine Analytique de M. Charles Babbage (in
French), Bibliothèque Universelle de Genève, Vol. 41, pp. 352-376, 1842.

[67] Mishra, B.; Rajamani, R.: The Discrete Element Method for the Simulation of Ball
Mills, Applied Mathematical Modelling, Vol. 16, pp. 598-604, 1992.

[68] Mishra, B.; Thornton, C.: An Improved Contact Model for Ball Mill Simulation
by the Discrete Element Method, Advanced Powder Technology, Vol. 13, No. 1, pp.
25-41, 2002.

116 Bibliography

[69] Miya, E.: Suggestion on Superlinear Speed Up Terminology, Network News Posting,
December 1988.

[70] Mou, G.; Hudak, P.: An Algebraic Model for Divide-and-Conquer Algorithms and
Its Parallelism, Journal of Supercomputing, Vol. 2, pp. 257-278, 1988.

[71] Muth, B.: Simulation von Kontaktvorgängen einfacher Körper mit Methoden der
Molekulardynamik (in German), DIPL-87, Institute B of Mechanics, University of
Stuttgart, Germany, 2001.

[72] Muth, B.; Eberhard, P.; Luding, S.: Contact Simulation for Many Particles Consid-
ering Adhesion, Mechanics Based Design of Structures and Machines, Vol. 31, No.
3, pp. 433-457, 2003.

[73] Muth, B.; Müller, M.; Eberhard, P.; Luding, S.: Contacts Between Many Bodies,
Machine Dynamics Problems, Vol. 28, No. 1, pp. 101-114, 2004.

[74] Nakagawa, M.: Axial Segregation of Granular Flows in a Horizontal Rotating Cylin-
der, Chemical Engineering Science, Vol. 49, No. 15, pp. 2540-2544, 1994.

[75] Nelson, M.; Humphrey, W.; Gursoy, A.; Dalke, A.; Kale, L.; Skeel, R.; Schulten, K.:
NAMD : A Parallel, Object-Oriented Molecular Dynamics Program, International
Journal of Supercomputer Applications and High Performance Computing, Vol. 10,
No. 4, pp. 251-268, 1996.

[76] Nyland, L.; Prins, J.; Reif, J.: A Data-Parallel Implementation of the Adaptive
Fast Multipole Algorithm, DAGS/PC Symposium, Dartmouth College, Hannover,
pp. 1-12, 1993.

[77] Parkinson, D.: Parallel Efficiency can be Greater than Unity, Parallel Computing,
Vol. 3, pp. 261-262, 1986.

[78] Pfister, J.; Eberhard, P.: Frictional Contact of Flexible and Rigid Bodies, Granular
Matter, Vol. 4, No. 1, pp. 25-36, 2002.

[79] Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics, Jour-
nal of Chemical Physics, Vol. 117, pp. 1-19, 1995.

[80] Plimpton, S.; Hendrickson, B.: A New Parallel Method for Molecular Dynamics
Simulation of Macromolecular Systems, Journal of Computational Chemistry, Vol.
17, pp. 326-337, 1996.

[81] Pimpton, S.; Hendrickson, B.: Parallel Molecular Dynamics with the Embedded
Atom Method, Material Research Society Symposium Proceedings MRS-291, Pitts-
burgh, pp. 37-42, 1993.

[82] Potapov, A.; Campbell, C.: A Fast Model for the Simulation of Non-Round Parti-
cles, Granular Matter, Vol. 1, pp. 9-14, 1998.

[83] Potter, D.: Computational Physics, New York: Wiley, 1972.

[84] Pöschel, T.: Molecular Dynamics of Arbitrarily Shaped Granular Particles, Journal
of Physics I France 5, Vol. 5, pp. 1431-1455, 1995.

[85] Pöschel, T.; Schwager, T.: Computational Granular Dynamics, Models and Algo-
rithms, Heidelberg: Springer-Verlag, 2005.

[86] Pütz, M.; Kolb, A.: Optimization Techniques for Parallel Molecular Dynamics Using
Domain Decomposition, Computer Physics Communication, Vol. 113, pp. 145-167,
1998.

[87] Rapaport, D.: Large-Scale Molecular Dynamics Simulation Using Vector and Par-
allel Computers, Computer Physics Reports, Vol. 9, pp. 1-53, 1988.

Bibliography 117

[88] Rapaport, D.: The Art of Molecular Dynamics Simulation, Cambridge: Cambridge
University Press, 1995.

[89] Rea, A.: An Introduction to PVM,
see: http://www.pcc.qub.ac.uk/tec/courses/pvm/ohp22/PVM-slides22.doc 1.html,
(Sep. 1995).

[90] Refson, K.: Moldy: A Portable Molecular Dynamics Simulation Program for Serial
and Parallel Computers, Computer Physics Communications, Vol. 126, No. 3, pp.
309-328, 2000.

[91] Rhodes, M.: Introduction to Particle Technology, Chichester: Wiley-Interscience,
2005.

[92] Roth, J.; Gähler, F.; Trebin, H.R.: A Molecular Dynamics Run with 5.180.116.000
Particles, International Journal of Modern Physics, Vol. 11, No. 2, pp. 317-322,
2000.

[93] Sadd, M.; Tai, Q.; Shukla, A.: Contact Law Effects on Wave Propagation in Par-
ticulate Materials Using Distinct Element Modeling, The International Journal of
Non-Linear Mechanics, Vol. 28, No. 2, pp. 251-265, 1993.

[94] Sanz-Serna, J.; Calvo, M.: Numerical Hamiltonian Problems, London: Chapman
and Hall, 1994.

[95] Sawley, L.; Cleary, W.: Parallel Discrete-Element Method for Industrial Granular
Flow Simulation, Csiro Mathematical & Information Sciences, Clayton, 1999.

[96] Schäfer, J.; Dippel, Wolf, D.; Force Schemes in Simulations of Granular Materials,
Journal de Physique I, Vol. 6, pp. 5-20, 1996.

[97] Schiehlen, W.; Eberhard, P.: Technische Dynamik (in German), Stuttgart: Teub-
ner, 2004.

[98] Schinner, A.: Fast Algorithms for the Simulation of Polygonal Particles, Granular
Matter, Vol. 2, pp. 35-43, 1999.

[99] Severens, I.: DEM Simulations of Toner Behavior in the Development Nip of the Oce
Direct Imaging Print Process, PhD thesis, Faculty of Mathematics and Computing
Science, Eindhoven University of Technology, The Netherlands, 2005.

[100] Shabana, A.: Dynamics of Multibody Systems, New York: Wiley-Interscience, 1989.

[101] Sitharam, T.: Numerical Simulation of Particulate Materials Using Discrete Ele-
ment Modelling, Current Science, Vol. 78, No. 7, pp. 876-886, 2000.

[102] Smith, W.: Molecular Dynamics on Hypercube Parallel Computers, Computer
Physics Communications, Vol. 62, pp. 229-248, 1991.

[103] Smith, W.; Forester, T.: DL POLY 2.0: A General-Purpose Parallel Molecular
Dynamics Simulation Package, Journal of Molecular Graphics and Modelling, Vol.
14, No. 3, pp. 136-141, 1996.

[104] Standish, N.: The Kinetics of Batch Sieving, Powder Technology, Vol. 41, pp. 57-67,
1985.

[105] Standish, N.; Bharadwaj, A.; Hariri-Akbari, G.: A Study of the Effect of Operating
Variables on the Efficiency of a Vibrating Screen, Powder Technology, Vol. 48, pp.
161-172, 1986.

[106] Standish, N.; Meta, I.: Some Kinetic Aspects of Continuous Screening, Powder
Technology, Vol. 41, pp. 165-171, 1985.

118 Bibliography

[107] Subasinghe, G.; Schaap, W.; Kelly, E.: Modelling the Screening Process: A Proba-
bilistic Approach, Powder Technology, Vol. 59, pp. 37-44, 1989.

[108] Swope, H.; Andersen, W.; Berens, P.; Wilson, K.: A Computer Simulation Method
for the Calculation of Equilibrium Constants for the Formation of Physical Clusters
of Molecules: Application to Small Water Clusters, Journal of Chemical Physics,
Vol. 76, pp. 637-649, 1982.

[109] Takahashi, Y.; Kataoka, M.; Uekusa, M.; Terumichi, Y.: Behavior of Three Kinds
of Particles in Rotary Barrel with Planetary Rotation, Multibody System Dynamics,
Vol. 13, No. 2, pp. 195-209, 2005.

[110] Tamayo, P.; Mesirov, J.; Boghosian, B.: Parallel Approach to Short Range Molec-
ular Dynamics Simulations, Proceedings of Supercomputing 91, IEEE Computer
Society Press, pp. 462-470, 1991.

[111] Tsuji, Y.; Tanaka, T.; Ishida, T.: Lagrangian Numerical Simulation of Plug Flow
of Cohesionless Particles in a Horizontal Pipe, Powder Technology, Vol. 71, pp.
239-250, 1991.

[112] Van Gunsteren, W.; Berendsen, H.: Computer Simulation of Molecular Dynamics:
Methodology, Applications and Perspectives in Chemistry, Chemie-International
Edition, Vol. 29, pp. 922-1023, 1990.

[113] Verlet, L.: Computer Experiments on Classical Fluids, Physical Review, Vol. 159,
pp. 98-103, 1967.

[114] Weiner, P.; Kollman, P.: AMBER: Assisted Model Building with Energy
Refinement- A General Program for Modeling Molecules and their Interactions,
Journal of Computational Chemistry, Vol. 2, pp. 287-303, 1981.

[115] Wessel, J.: Siebmaschinen (in German), Aufbereitungstechnik, Vol. 2, pp. 449-456,
1963.

[116] West, M.; Kane, C.; Marsden, J.E.; Ortiz, M.: Variational Integrators, The New-
mark Scheme, and Dissipative Systems, International Conference on Differential
Equations, Berlin, pp. 1009-1011, 1999.

[117] Wilson, G.: Parallel Programming for Scientists and Engineers, Cambridge: MIT
Press, 1995.

[118] Wilson, R.; Ilnytskyi, J.: Parallel Computer Simulation Techniques for the Study
of Macromolecules, Computer Simulations of Liquid Crystals and Polymers, Kluwer
Academic Publishers, pp. 335-356, 2004.

[119] Yamane, K.; Nakagawa, M.; Tanaka, T.; Tsuji, Y.: Steady Particulate Flows in
a Horizontal Rotating Cylinder, Physics of Fluids, Vol. 10, No. 6, pp. 1419-1427,
1998.

119

Symbols

In this part, the basic symbols and parameters used in this thesis are explained. Here,

only the main ones are mentioned.

ax,ay,az acceleration vector given in the inertial frame

b adjustable hole clearance of sieve holes

bk width of the halo region of processor k

c overall TSM efficiency

ci individual efficiency of layer i of TSM

cn normal damping coefficient of contact

cp viscous damping coefficient among particles

ct tangential damping coefficient of contact

cw viscous damping coefficient with walls

cx,cy flag integers in the x and y directions

dw wall thickness

e geometrical dimension on the adjustable inclined plate of TSM

en coefficient of normal restitution

g global coordinate system, width between sieve aisles, number of gangue particles

g vector of gravity acceleration

gh vector of global indices of the home particles

gi vector of global indices of the immigrant particles

h time integration step

hk halo region of processor k

i counter

j counter

k counter

kad adhesive spring coefficient

kl loading spring coefficient

kn normal spring constant

kp elastic spring constant among particles

kt tangential spring constant

kun unloading spring coefficient

kw elastic spring constant with walls

l local (rotating) coordinate system

120 Symbols

m particle mass, unrounded number of holes, unit of length: meter

mg mass of gangue particles

mij equivalent mass of particles i and j

ms mass of sorted particles

n rounded number of holes in the radial direction of the sieve

n normal unit vector

pk processor k

r particle radius

rg radius of gangue particle

rmax radius of the largest particle

rs radius of sorted particle

rv radius of the Verlet circle

r vector of particles radii

rold old position vector given in the inertial frame

rx,ry,rz position vectors given in the inertial frame

ṙx,ṙy,ṙz velocity vector given in the inertial frame

r̈x,r̈y,r̈z acceleration vector given in the inertial frame

s number of sorted particles, unit of time: second

s vector of contact forces due to home-visiting interactions

t time

t0 starting time of simulation

tc time of contact

tend ending time of simulation

tmax maximum time of penetration

tp parallel execution time, period of oscillation

ts serial execution time, starting time

t tangential unit vector

u geometrical dimension on the adjustable inclined plate of TSM

v0 initial velocity

v
(aft)
n normal velocity after collision

v
(bef)
n normal velocity before collision

vx,vy,vzvelocity vector given in the inertial frame

w half width of the square hole of the TSM sieve

xyz axes of the reference coordinate system

Aij element of matrix A of i row and j column

Agl rotation matrix from local to global coordinate system

Alg rotation matrix from global to local coordinate system

E merged matrix of the home and visiting particles

f vector of contact forces due to home-home and home-visiting interactions

F contact force

Symbols 121

Fn normal contact forces

Ft tangential contact forces

G percentage of gangue particles

Gv received contact force matrix of visiting particles due to home-visiting contacts

H matrix of the individual home particles

I matrix of the immigrant particles, inertia tensor

K oscillation factor

Kg global (inertial)coordinate system

Kl local (rotating)coordinate system

L width of the overall particle domain

Lk width of the particle donmain of processor k

M number of decks of the TSM

Mk number of particles belongs to the halo-region hk

M vector of applied torques

N overall number of particles, unit of force: Newton

Nk number of particles of processor k

N normal contact force

P number of processors

Ph force matrix of home particles due to home-home & home-visiting interactions

Pv contact force matrix of visiting particles due to home-visiting interactions

R barrel radius of the TSM

T time period of oscillation

T tangential friction force

V particle volume

Vg volume of gangue particle

Vs volume of sorted particle

V matrix of the visiting particles

Y generalized system coordinates

α inclination angle in the frontal direction

α vector of angular acceleration

β inclination angle in the transverse direction

δ spring elongation, penetration during overlap

δ̇ relative velocity

δ̈ relative acceleration

δ0 maximum overlap after unloading

δm particle-mesh overlap

δmax maximum overlap

δr overlap at start reloading

δt stretching of the tangential spring

ε shaft eccentricity

122 Symbols

εm momentum restitution coefficient

η efficiency of parallel simulation, damping parameter

η0 damping ratio

µd dynamic friction coefficient

µh hysteresis damping factor

µs static friction coefficient

νd normalized cost of parallel simulation

π pi: 22/7

ρ particle mass density, rate of outlet particles

ρ vector of particles density

τ speedup of parallel simulation, dummy variable

ω angular velocity of the TSM

ω0 undamped frequency

ωb barrel angular velocity around its inclined axis

ψ barrel angular displacement

ζ non-dimensional scaling factor

∆t integration time step

∆T dissipative energy in impact

Ω natural frequency, particle angular velocity

