
Reduced Order Modeling and Analysis

of Cellular Signal Transduction

Von der Fakultät für Konstruktions-, Produktions- und

Fahrzeugtechnik der Universität Stuttgart zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von

Markus Koschorreck

aus Mutlangen

Hauptberichter: Prof. Dr. E. D. Gilles

Mitberichter: Prof. Dr. O. Sawodny

Prof. Dr. P. Scheurich

Tag der mündlichen Prüfung: 17.03.2009
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Abstract

Cellular signal transduction is crucial for the regulation of many physiological processes.

Understanding the signaling systems is of high medical interest because malfunctions can

result in severe disorders such as cancer and diabetes. The behavior of these systems however,

is often nonlinear and cannot be predicted intuitively. Therefore, mathematical modeling is

necessary to understand and to analyze the system level properties of cellular signaling.

Insulin is a hormone that has a major role in the regulation of glucose concentration in

the blood and the cellular energy metabolism. This thesis provides a mathematical model

describing hepatic insulin receptor activation as well as insulin degradation and synthesis in

vivo. Model analysis shows that insulin clearance and the relative contributions of the liver

and the kidney to insulin degradation are highly dependent on insulin concentration. At low

concentrations, insulin is mainly degraded by the liver, whereas renal insulin degradation

is predominant at high insulin concentrations. Insulin clearance is therefore only a valid

measure for the state of the insulin metabolism when corresponding insulin concentrations

are taken into account, which is not the case in many experimental studies.

Building comprehensive models of complete signaling systems is in many cases impeded

by combinatorial complexity. The association and modification of a few proteins can re-

sult in an enormous amount of feasible complexes and an equivalent amount of differential

equations, when applying the conventional modeling approach. For example, 1.5 · 108 differ-

ential equations would be required to describe in detail the insulin signaling system, thereby

establishing the need for a reduced order description.

This thesis introduces layer-based modeling, a new approximative method for the mod-

eling of cellular signaling systems. Layer-based modeling provides high reduction of the

model size and simultaneously a high quality of approximation. The errors introduced by

the approximation are dynamically and ultimately bounded. In special cases, the reduced

model is exact for steady states or even represents an exact minimal realization of the sys-

tem. Layer-based models show a pronounced modularity and the state variables have a

direct biochemical interpretation. Reduced order model equations can be generated directly

employing a procedure quite similar to conventional modeling. The preceding generation of

a potentially very large conventional model is not necessary, which allows for the modeling

of systems not accessible previously.

Furthermore, the computer program Automated Layer Construction (ALC) is presented.

Using ALC highly simplifies the generation of the model equations. The models are defined

in terms of a rule-based model definition that utilizes a simple but powerful syntax. ALC

allows the modeler to define layer-based models of very large systems with a relatively short

and simple model definition. The output files of ALC are ready-to-run simulation files in
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Abstract

the formats C MEX, MATLAB, Mathematica and SBML. ALC also provides the model

equations in LATEX and plain text format to simplify their publication or presentation.

The application of ALC and layer-based modeling is demonstrated for a model definition

for a layer-based model of insulin signaling with 51 ordinary differential equations (ODEs)

approximating a conventional model with 1.5 · 108 ODEs.
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Zusammenfassung

Alle Zellen eines Organismus sind durch Membranen von ihrer Umgebung getrennt. Den-

noch müssen die Zellen auf Signale aus ihrer Umgebung reagieren, um ihre Aktivitäten an

die Umweltbedingungen und den Bedarf des Organismus anzupassen. Diese Signale werden

in vielen Fällen durch die Konzentration von Botenstoffen, zum Beispiel Hormonen wie Insu-

lin, dargestellt. Die zelluläre Signalübertragung hat die Funktion, Signale aus der Umgebung

in die Zelle zu übertragen, sie gegebenenfalls zu verstärken und die Aktivität von Zielmo-

lekülen zu beeinflussen. Die ordnungsgemäße Funktion der Signalübertragungssysteme ist

von höchster Wichtigkeit für das Überleben und die Gesundheit des Menschen. Fehlfunk-

tionen können schwerwiegende Krankheiten wie Krebs und Diabetes mellitus verursachen.

Obwohl viele Komponenten der Signalübertragungssysteme bekannt sind und charakterisiert

wurden, sind die Funktionsweise und das Verhalten der Netzwerke in vielen Fällen noch nicht

vollständig verstanden. Die Ursache dafür ist, dass die Interaktion von Komponenten mit

gut charakterisierten Eigenschaften zu neuen, oft unerwarteten Eigenschaften auf der Syste-

mebene wie zum Beispiel Oszillationen oder Bistabilitäten führen kann.

Die mathematische Modellierung ist eine systematische Herangehensweise, um diese ver-

steckten Systemeigenschaften zu erkennen und zu verstehen. Ein Problem bei der Verwen-

dung des konventionellen Modellierungsansatzes ist aber, dass die Assoziation von einigen

wenigen Proteinen zu einer sehr hohen Anzahl von möglichen Komplexen und derselben

Anzahl von für die Systembeschreibung notwendigen Differentialgleichungen führen kann.

Diese kombinatorische Komplexität stellt ein enormes Problem bei der Modellierung von

vielen Signalübertragungssystemen dar.

Die vorliegende Niederschrift gibt einen Einblick in die zelluläre Signalübertragung und

zeigt die auftretende kombinatorische Komplexität am Beispiel des Insulinsignalsystems. Der

konventionelle Modellierungsansatz wird vorgestellt, und seine durch die kombinatorische

Komplexität bedingten Beschränkungen werden aufgezeigt.

Aufgrund der kombinatorischen Komplexität kann das Insulinsignalsystem nur dann auf

konventionelle Weise modelliert werden, wenn die Komplexbildung stark vereinfacht darge-

stellt wird und sich die Modellierung auf wenige Prozesse beschränkt. Ein solches konventio-

nelles Modell, das die Dynamik des Insulinrezeptors in Leberzellen und die daran gekoppelte,

durch den Abbau und die Synthese von Insulin verursachte Dynamik der Insulinkonzentra-

tion im Blut beschreibt, wird in dieser Arbeit vorgestellt und analysiert. Es wird gezeigt,

dass die relativen Beiträge von Leber und Nieren zum Insulinabbau in hohem Maße von der

Insulinkonzentration abhängen.

Die Insulin Clearance ist ein häufig verwendeter Indikator für den Zustand des Insulinstoff-

wechsels. Es wird gezeigt, dass auch die Insulin Clearance aufgrund von Nichtlinearitäten
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Zusammenfassung

des Insulinabbaus von der Insulinkonzentration im Blut abhängt. Daraus folgt, dass die Ver-

wendung der Insulin Clearance nur zu sinnvollen Aussagen führen kann, wenn die zugehörige

Insulinkonzentration angegeben wird. Viele Publikationen erfassen die Insulinkonzentration

nicht, daher ist die Aussagekraft der betreffenden Studien als begrenzt einzuschätzen.

Die konventionelle Modellierung von Signalsystemen mit auftretender kombinatorischer

Komplexität führt zu extrem umfangreichen Modellen, wenn umfassende mathematische

Beschreibungen der Systeme erwünscht sind. Eine sinnvolle und handhabbare Beschreibung

dieser komplexen Systeme ist nur mit Modellen reduzierter Ordnung möglich.

Im mittleren Teil der Arbeit wird eine Einführung in die Modellreduktion gegeben. Da

biologische Systeme im Allgemeinen nichtlinear sind, liegt der Schwerpunkt dabei auf Me-

thoden für nichtlineare Systeme. Es werden allgemeine systemtheoretische Methoden für

die Modellreduktion vorgestellt, die jedoch für große Systeme sehr rechenaufwändig sind

und in den meisten Fällen zu Zustandsgrößen ohne physiologische Bedeutung führen. Des

weiteren werden spezielle Modellierungs- und Modellreduktionsmethoden für chemische und

biologische Systeme vorgestellt. Ein Schwerpunkt liegt auf der oft verwendeten intuitiven

Modellreduktion, die auf der Annahme einer zeitlichen Reihenfolge der Prozesse basiert. Es

wird aufgezeigt, dass diese Methode oft durch eine unzureichende Approximationsgenauigkeit

gekennzeichnet ist. Im Gegensatz dazu erlauben die Annahmen von schnellem Gleichgewicht

und Quasistationarität in vielen Fällen eine Reduktion der Systemordnung bei gleichzeitig

hoher Approximationsqualität. Die diesen Annahmen zugrunde liegenden Konzepte und ihre

Anwendung werden vorgestellt.

Ein schwerwiegender Nachteil aller systematischen, auf gewöhnlichen Differentialgleichun-

gen beruhenden Methoden ist, dass ein konventionelles Modell generiert werden muss, bevor

eine Reduktion der Modellgröße möglich ist.

In dieser Arbeit wird eine neue approximative Modellierungsmethode (layer-based mode-

ling) beschrieben, die in hohem Maße für die Modellierung von Signalsystemen mit auftre-

tender kombinatorischer Komplexität geeignet ist. Diese Methode zeichnet sich durch eine

starke Verringerung der Systemordnung bei gleichzeitig hoher Approximationsgenauigkeit

aus. Die resultierenden Modelle weisen eine ausgeprägte modulare Struktur auf, und die

Zustandsgrößen haben eine direkte physiologische Bedeutung. Ein wesentlicher Unterschied

zu anderen Modellreduktionsmethoden ist, dass das möglicherweise extrem große konventio-

nelle Modell nicht erstellt werden muss, da das reduzierte Modell direkt generiert werden

kann. Die für die Erstellung des reduzierten Modells notwendige Vorgehensweise weist große

Ähnlichkeiten zur konventionellen Modellierung auf. Durch die direkte Erstellung der Model-

le reduzierter Ordnung wird es möglich, Systeme zu modellieren, die zuvor nicht zugänglich

waren.

Die Reduktion der Modellgröße gründet auf einer makroskopischen Zustandsbeschrei-

bung und der impliziten systematischen Annahme von schnellem Gleichgewicht für virtuelle,

zusätzlich eingeführte Reaktionen, die Diagonalreaktionen genannt werden. Die der Appro-

ximation zugrunde liegenden Gleichungen können alternativ auch aus Unabhängigkeitsan-

nahmen für Prozesse aus verschiedenen Modulen, die nicht direkt interagieren, hergeleitet

werden. Die Diagonalreaktionen müssen nicht explizit definiert werden, ihre Definition erfolgt

12



Zusammenfassung

implizit bei der direkten Erstellung des reduzierten Modells. Die Approximationsfehler fol-

gen Differentialgleichungen erster Ordnung, die die Entfernung der Diagonalreaktionen vom

Gleichgewicht beschreiben, und sind dynamisch sowie stationär begrenzt. In Spezialfällen

stellen die reduzierten Modelle eine stationär oder sogar dynamisch exakte Reduktion des

entsprechenden konventionellen Modells dar.

Die Erstellung von reduzierten Modellen für komplexe kombinatorische Systeme wird

durch das in dieser Arbeit vorgestellte Computerprogramm ALC (Automated Layer Con-

struction) in hohem Maße vereinfacht. Die Modelle werden durch eine regelbasierte Mo-

delldefinition in einer leicht verständlichen, aber mächtigen Syntax definiert. Die modulare

Struktur der reduzierten Modelle spiegelt sich in den Modelldefinitionen wider. Diese werden

einer Vielzahl von Konsistenzkontrollen unterzogen, was dazu führt, dass die meisten Fehler

in den Modelldefinitionen leicht zu finden und zu beseitigen sind. ALC ist frei verfügbar und

kann lokal oder über die ALC-Webseite ausgeführt werden. Die durch die Modelldefinitionen

definierten Modelle werden in verschiedenen Formaten (C MEX, MATLAB, Mathematica

und SBML) als direkt verwendbare Simulationsdateien ausgegeben. Des weiteren werden die

Modellgleichungen auch in LATEX und Textformat ausgegeben, um die Veröffentlichung und

Präsentation der Modelle zu vereinfachen.

Durch die Verwendung von ALC ist es möglich, reduzierte Modelle von Systemen mit

auftretender kombinatorischer Komplexität mittels einer relativ kurzen und einfachen Mo-

delldefinition zu erstellen. Das Leistungsvermögen von ALC wird anhand verschiedener Mo-

delldefinitionen demonstriert. Unter anderem wird eine Modelldefinition für ein Modell des

Insulinsignalsystems vorgestellt, die die kombinatorische Komplexität berücksichtigt. Diese

Modelldefinition führt zu einem reduzierten Modell mit 51 Differentialgleichungen, welches

ein konventionelles Modell mit 1, 5 · 108 Differentialgleichungen approximiert.
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1 Introduction

Cellular signal transduction systems enable cells to adapt their physiological processes to the

needs of the organism and to regulate many physiological processes. Though many of their

components have been characterized, the signal transduction networks are not yet completely

understood. An understanding of these systems is of high medical relevance because malfunc-

tions can result in severe disorders such as cancer and diabetes. Mathematical models can

be used to understand and to analyze cellular signaling systems.

Section 1.1 gives an introduction to cellular signal transduction and its biological rele-

vance, while the conventional approach to model cellular signaling systems is described in

Section 1.2. A challenge for conventional modeling of signal transduction networks is that

the association of a few proteins may result in an enormous amount of complexes and an

equivalent amount of necessary differential equations in the corresponding models. This phe-

nomenon, called combinatorial complexity, is described in Section 1.3 and leads to enormous

problems in the modeling of cellular signal transduction systems which are outlined in Sec-

tion 1.4. A first step to overcome the problems associated with combinatorial complexity is

rule-based modeling which is introduced in Section 1.5. At the end of this chapter, Section 1.6

gives an outline of this thesis.

1.1 Cellular signal transduction

The interior of eukaryotic cells is separated from the environment by the plasma membrane,

a membrane consisting of a lipid bilayer and membrane proteins [1]. However, cells need to

monitor their environment as they have to react to changing conditions and demands of the

organism by adapting their activities, in particular the metabolism and the gene expression.

Many of these changes and demands are sensed by receptor proteins in the plasma mem-

brane that initiate the intracellular transduction of extracellular signals. Receptor-mediated

signal transduction plays an important role in biology since it influences many crucial physi-

ological processes such as differentiation, cell division, cell death and the regulation of blood

glucose [2]. Defects in signal transduction systems can result in severe implications for the

human organism, e.g. diabetes mellitus, obesity and cancer.

Signaling systems sense extracellular signals, transmit them to the interior of the cell,

amplify the signals and distribute them to their cellular targets [1,2]. Such a signal is in most

cases the concentration of a relatively small molecule, for example a peptide hormone like

insulin, in the cellular environment. In some cases, this signaling molecule can directly cross

the cellular membrane, whereas in many other cases a receptor, a transmembrane protein,

binds the signaling molecule (which is a ligand of the receptor) outside the cell. This ligand
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1 Introduction 1.1 Cellular signal transduction

binding induces changes, e.g. phosphorylation of binding sites, in the intracellular part of

the receptor. A typical scenario is that other proteins (effectors) are recruited to activated

binding sites and build a signaling complex at the receptor. These proteins can be scaffolds

providing binding sites for other signaling proteins. Cellular signaling cascades which often

strongly amplify the extracellular signal transmit it to its intracellular targets.

Though many biochemical details of several signal transduction systems are known to-

day [1], an intuitive understanding of the entire signaling systems is rarely possible. The

intuitive understanding is impeded by system level properties that are not apparent from

the characteristics of the components [3]. This lack of understanding is the motivation for

the emerging discipline of systems biology which aims at a holistic understanding of phys-

iological processes using mathematical models [3, 4]. These models integrating the current

state of biological knowledge are analyzed to reveal and understand the system properties.

The models may also provide information about components of the system which are not

yet described, but necessary to explain a certain observed system behavior.

Before describing the conventional modeling approach and its limitations, we give an in-

troduction to blood glucose regulation and insulin signaling, a cellular system of tremendous

physiological relevance that will be considered within several parts of this thesis.

1.1.1 The regulation of blood glucose

It is crucial for the organism that blood glucose concentration remains within relatively

narrow bounds. Both, too high and too low glucose concentrations can cause serious problems

up to death. Therefore, the glucose concentration is controlled by a complex regulation

system, which is an interesting example for the importance of cellular signal transduction.

The β-cells of the pancreas secrete insulin if the glucose concentration in the blood is

too high [5]. This usually occurs after a meal when the food is digested. Insulin induces

glucose uptake of other cells, mainly in the fat and muscle tissue, which lowers the glucose

concentration in the blood. The control signal of elevated insulin concentrations is turned

off by insulin-sensitive cells taking up insulin and by the kidney which constitutively filters

insulin out of the blood [6, 7]. Insulin removal and degradation is discussed in more detail

in Section 2.1.

Over night or during exercise, the blood glucose concentration declines because muscles

and other tissues consume glucose to maintain their function. If the glucose concentration

in the blood is too low, glucagon is secreted by α-cells of the pancreas [5], which induces a

reaction in other cells. Hepatocytes of the liver break down the intracellular glucose polymer

glycogen and secrete glucose. The liver acts as a buffer for glucose as in the case of high

glucose concentration in the blood, e.g. after a meal, glucose is taken up independently of

insulin and partly stored as glycogen.

Both previously introduced mechanisms for sensing extracellular signals are present in

the regulation of blood glucose. Pancreatic β-cells let the signal molecule glucose traverse

the membrane and enter the cytoplasm. Transmembrane receptors for insulin and glucagon

specifically bind their ligands outside the cell and transmit the signals to the interior of the
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cells. The insulin signaling system is described in more detail below.

1.1.2 Insulin signaling

Insulin is a peptide hormone that is produced in the β-cells, which are specialized cells located

in the islets of Langerhans in the pancreas. The insulin concentration in the blood is not only

an important control signal for cellular glucose uptake but also for the energy metabolism [5,

8–10]. Insulin is also involved in gene expression, cell survival and differentiation [11].

The insulin signaling system transduces the information about extracellular insulin con-

centration inside the cell, amplifies it and routes it to different cellular targets [5,9,12,13]. A

major compound of this signaling system is the insulin receptor. It is located at the plasma

membrane and has an extracellular part that can bind insulin and an intracellular part that

transduces the extracellular signal into the cell. Insulin binding to the receptor induces

autophosphorylation of numerous intracellular sites on the receptor. The attachment of sev-

eral signaling proteins to phosphorylated binding sites on the receptor is the first step in the

intracellular amplification and transduction of the signal. This complex formation at the

insulin receptor is described in Section 1.3 where the occurring combinatorial complexity is

also shown. The activated receptor complexes induce several cellular signaling cascades (e.g.

MAP kinase cascade and PI3K pathway) that result in the activation of cellular kinases such

as PKB/Akt, PKC and ERK [2]. Finally, these signaling cascades lead to an adaptation of

the cellular metabolism such that excessive glucose is broken down and for example used as

a precursor for the synthesis of glycogen, fat and proteins [5].

Defects in the insulin signaling system can give rise to insulin resistance, obesity and type

II diabetes mellitus [14–16], all of which provide severe implications for the organism. These

diseases are widely spread in the western hemisphere and intense efforts are made to improve

the corresponding therapies [17–20].

1.2 Modeling of chemical reaction networks

Biochemical systems can be considered as a special case of chemical reaction networks where

the components, e.g. proteins, may have multiple binding sites and other complex functional

properties. There is a well-established theory for the mathematical modeling of chemical

reaction systems based on the use of ordinary differential equations (ODEs) [21], which can

be applied to biochemical systems [22].

This section introduces the conventional approach for the modeling of chemical reaction

networks which consists in describing the system by a set of chemical reaction equations and

describing the dynamics of each component by a first order ordinary differential equation.

This approach is also used and extended in this thesis to describe the dynamic behavior of

cellular signaling systems.
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1.2.1 Underlying assumptions

Cellular components show temporal and spatial dynamics [23] implying that partial differ-

ential equations should be used for an exact description. However, diffusion is quite fast for

short distances [21]. Assuming that each cellular compartment is well stirred is therefore

usually a good assumption that allows for the use of ODEs. Assuming fast diffusion is not

appropriate when describing spatially distributed phenomena such as morphogenic gradi-

ents. Special solutions are required for these cases, however, the vast majority of systems

can be adequately described by ODEs.

If the volumes of the compartments and the concentrations of the cellular substances

are very low, the inherent stochastic behavior of chemical processes at the molecular level

becomes important. This stochastic behavior is described by the chemical master equation,

a set of first order differential equations describing the dynamics of the probabilities of

all possible states of the system [24]. However, if the concentrations and the volumes are

high enough, the system dynamics exhibits deterministic behavior which can be described by

ODEs [24]. Additional requirements for the use of ODEs are equally distributed temperature

and pressure within each compartment.

Altogether, using ODEs to describe the deterministic system dynamics requires the im-

plicit assumptions that each compartment is well stirred and that the volumes and concen-

trations are high enough. This will always be assumed in this thesis.

1.2.2 Reactions

Chemical reactions are represented by chemical reaction equations [25]. In a general reaction

equation

a A+ b B... ⇌ c C + d D... (1.1)

the stoichiometric coefficients (a, b, c and d) are natural numbers assigned to the species (A,

B, C and D) participating in the reaction. The stoichiometric coefficients define how many

molecules of the corresponding species are converted by the reaction. A species is a specific

configuration of a molecule or a complex.

Notations for species consist of the molecule name followed by the comma-separated se-

quence of site configurations within one pair of squared brackets. As an example, the species

R[L, P ] is a specified configuration of the molecule R where the ligand L is bound to the

first site and the second site is phosphorylated. This indexing of species as configurations of

a molecule is extremely valuable in the context of rules which are generalized reactions (see

Section 1.5) and is widely used in Chapters 4 and 5. Another possibility for species notation

is to use descriptive notations. As an example, the unphosphorylated and phosphorylated

molecule E could be denoted as E and Ep, respectively. This descriptive notation is espe-

cially useful when describing systems with a relatively low number of species or reactions

and is used in Chapter 2.

Reaction equations containing the reaction symbol ‘⇌’ define reversible reactions. A

reversible reaction formally consists of two irreversible reactions. The forward reaction pro-
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ceeds from the left hand side to the right hand side of the reaction equation; the backward

reaction proceeds from the right hand side to the left hand side of the reaction equation.

Reactions may also be irreversible which can be indicated by a reaction symbol that indicates

the sole direction of the reaction (‘→’ or ‘←’ instead of ‘⇌’).

All processes of a chemical or biochemical system can be described by a set of chemical

reaction equations (or more shortly: reactions) which is called reaction network. The reaction

network gives structural information about the corresponding system. The following section

describes how information about reaction dynamics can be included in the reaction network

to get a representation that uniquely defines the ODEs describing the dynamic behavior of

the corresponding system.

1.2.3 Generalized mass action kinetics

If chemical systems are modeled at the molecular level, mass action kinetics are often a good

description of the chemical processes [22] and are therefore frequently used to assign reaction

rates to reaction equations. To include dynamic information, we rewrite Equation 1.1.

a A+ b B... ⇌ c C + d D... ki k−i (1.2)

The kinetic parameters of the forward and backward reactions are ki and k−i, respectively.

According to the law of mass action [22], the reaction rate ri for this reaction (Equation 1.2)

has the unit M · s−1 and is given as

ri = ki · A
a ·Bb...− k−i · C

c ·Dd... (1.3)

where A, B, C and D are the concentrations of the corresponding species. For the sake of

simplicity, the same notations are used for species and their concentrations. The standard

unit for concentrations is molar (M). A concentration of 1 M = 1 mol · l−1 means that

there are one mol (≈ 6.022 · 1023) molecules of this substance per liter [25]. Concentrations

of cellular signaling components are often in the nanomolar (1 nM = 10−9 mol · l−1) or

micromolar (1 µM = 10−6 mol · l−1) range.

The units of the rate constants ki and k−i (Equations 1.2 and 1.3) depend on the sum of

the stoichiometric coefficients of the corresponding side of the reaction. The units of ki and

k−i are given as M−fr ·s−1 and M−br ·s−1, respectively. The exponents fr and br (associated

to the forward and backward reactions, respectively) are defined as fr = a+ b+ ...− 1 and

br = c+ d+ ...− 1.

One side of a reaction equation may be empty (fr = −1 or br = −1). This allows for the

realization of synthesis and degradation reactions. Irreversible reactions are indicated by a

reaction parameter that equals zero or a reaction symbol that indicates the direction of the

reaction (‘→’ or ‘←’ instead of ‘⇌’). In the latter case, only one kinetic parameter has to

be given.

The information given in the parameterized reaction equations Ri defines the differential

equations describing the dynamics of the concentrations of the species Sj. For the formal

discussion, we denote the stoichiometric coefficient of the species Sj in the reaction Ri as sij.
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The reaction rates ri have to be considered with the correct factor fij when balancing the

species Sj. This factor is the negative stoichiometric coefficient (fij = −sij) for reactants

(species at the left hand side of the chemical reaction equation) and the positive stoichio-

metric coefficient (fij = sij) for products (species at the right hand side). If the species Sj

occurs on both sides of the reaction equation, it holds that fij = sij,right− sij,left. The factor

fij equals zero if the species Sj does not occur in the reaction Ri or shows no net turnover.

In the case of constant volume the ODE for the concentration of each species Sj is given as

d

dt
Sj =

∑

Ri

fijri. (1.4)

The following simple example illustrates how the ODEs are generated from parameterized

reactions using the law of mass action.

A+B ⇌ 2 C k0 k−0

A ⇌ k1 k−1

C → k2

(1.5)

These reactions proceed with the reaction rates

r0 = k0 · A ·B − k−0 · C
2

r1 = k1 · A− k−1

r2 = k2 · C

(1.6)

and define the differential equations

d

dt
A = −r0 − r1

d

dt
B = −r0

d

dt
C = 2 · r0 − r2.

(1.7)

In the classical law of mass action for ideal mixtures, the kinetic parameters are con-

stants [22] whose values only depend on the temperature and on the pressure [21]. The

generalized law of mass action reviewed by Heinrich and Schuster [22] allows for a wide

range of possible kinetics because both constant kinetic parameters of a reaction are multi-

plied by a common positive nonlinear function.

The generalized law of mass action used in this thesis is more general, since each reaction

parameter may be an arbitrary nonlinear function. Note that these nonlinear functions

may depend on the concentrations of species. A frequently occurring case in which a single

reaction parameter depends on concentrations of reacting substances is shown in Section 3.6.3

for enzyme kinetics, which can be described by the generalized law of mass action.
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1.3 Combinatorial complexity

The association and modification of a few proteins can result in an enormous amount of pos-

sible protein complexes [26,27]. This phenomenon is referred to as combinatorial complexity.

There are four possible sources of combinatorial complexity in signaling systems that can

also occur in combination with each other.

• Binding of several molecules to scaffold proteins with more than one binding site

• Modification (e.g. phosphorylation) of proteins with several sites

• Oligomerization (as a special case: dimerization) of proteins

• Chain formation

The complexity of the insulin signaling system results from a combination of the first three

items listed above.

The insulin receptor is constitutively dimerized [28–30]. For the sake of simplicity however,

we analyze the complexity for a virtual monomer. The receptor monomer can bind an

insulin molecule and has intracellular binding sites for the signaling proteins IRS and Shc.

Both intracellular sites of the receptor become phosphorylated before effector binding [12].

Shc becomes phosphorylated and binds Grb2. Grb2 can bind SOS, which in turn can be

phosphorylated. IRS has four binding sites for PI3K (in fact it has at least nine binding sites

for PI3K; each p85 subunit of PI3K occupies two binding sites), one for Grb2 and one for

SHP2 [31]. All these binding sites can be phosphorylated. The number of feasible species

is 17,038 for the receptor monomer and 145,156,469 in the total network including receptor

dimers. These numbers can be calculated as shown in Figure 1.1. The facts that the insulin

receptor and IRS (in fact there exist several different IRS molecules) can be phosphorylated

on several regulatory sites and have additional binding partners [12,32,33] are not considered.

This accounts for a further dramatic increase in complexity.

Many other signaling systems, e.g. the EGF signaling system, also show combinatorial

complexity [26]. In some cases the complexity results from the association of a few proteins

with a very limited amount of binding sites each. An extreme example for this is chain

formation where a ligand with two binding sites for the receptor binds to a receptor with

two binding sites for the ligand. Theoretically, the number of feasible complexes is infinitely

high if there are no spatial constraints [27]. However, an upper bound for the theoretical

complex size is given by the (bounded) number of cellular receptor molecules. There are

also cases in which the possible modifications of only one protein can reach extremely high

numbers, e.g. if this protein has many regulatory sites that can be phosphorylated.

As outlined below, one ODE is required for the balance of each possible species. This leads

to enormous problems in the modeling of systems with inherent combinatorial complexity.
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Figure 1.1: Combinatorial complexity in the insulin signaling system

A) The insulin receptor (IR) can bind insulin (Ins), Shc and IRS. IRS can bind four PI3K

molecules, SHP2 and Grb2. Grb2 can bind SOS and phosphorylated SOS. Note that each

binding process (except for the bindings of insulin to the receptor, receptor dimerization and

the binding of SOS to Grb2) requires the phosphorylation of a binding site.

B) Without considering the insulin receptor, the described associations result in 35 ·5 = 1215

different complexes of IRS. For Shc binding to the receptor monomer, there are seven possible

states of the corresponding site on the receptor, for insulin binding there are two possible

states. For IRS binding to the receptor, there are 2 + 35 · 5 possibilities for the state of

the binding site (unphosphorylated, phosphorylated but unoccupied and 35 · 5 possibilities

for the occupied binding site). Altogether, there are n = 2 · 7 · (2 + 35 · 5) = 17, 038 different

complexes of the receptor monomer. As the receptor is always a dimer (k = 2), there are(
n+k−1

k

)
=

(
17039

2

)
= 145, 155, 241 ≈ 1.5 · 108 different combinations. Free species contribute

another 1215 + 10 + 1 + 1 + 1 = 1228 possible species: 1215 for free IRS complexes, 10 for

all combinations of Shc, Grb2 and SOS and one for insulin, PI3K and SHP2 each.
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1.4 Limitations of conventional modeling

The conventional modeling approach for biochemical networks was introduced above and is

frequently applied in systems biology [34–43]. It is based upon defining a reaction equation

with corresponding rate law for each chemical reaction. When the reaction network is set

up, the balances of all species can be derived [22]. A basic feature of this approach is that

the dynamics of the concentration of each species is described by one ODE.

Conventional modeling is very powerful for small reaction systems. However, its limitations

become clearly visible when considering systems with inherent combinatorial complexity.

For these systems, the number of necessary reactions is very high [27]. In the example of

insulin signaling (Figure 1.1) there are 35 · 5 modifications of IRS that can bind to 2 · 7

modifications of the phosphorylated receptor monomer with unoccupied binding site. This

results in 35 · 5 · 2 · 7 = 17, 010 reactions describing IRS binding to the receptor monomer.

Considering receptor dimerization there are 35 · 5 modifications of IRS that can bind to

22 · 72 · (2 + 35 · 5) = 238, 532 modifications of the receptor dimer which may have bound

two insulin molecules, two Shc molecules and one IRS molecule. Altogether, there are

22 · 72 · (2 + 35 · 5) · 35 · 5 = 289, 816, 380 ≈ 2.9 · 108 reactions for IRS binding to the receptor.

The generation of such a long list of reactions is not practical. In addition, a long list

of reactions provides no simple representation of the signaling system and makes the un-

derstanding and modification of the model difficult. The number of necessary ODEs is also

tremendously high for systems with inherent combinatorial complexity [27]. As an example,

there are 1.5 · 108 different complexes in the insulin signaling system (see Section 1.3). To

get a conventional model of this system, 1.5 · 108 ODEs would be necessary.

For this reason, the modeling of systems with inherent combinatorial complexity is very

difficult, or even impossible, using the conventional modeling approach.

1.5 Rule-based modeling

A single molecular event, e.g the binding of an effector to a phosphorylated binding site of

a receptor or the phosphorylation of a site, is often described by a long list of reactions. In

the example of effector binding, a binding reaction is necessary for each modification of the

unbound effector to each modification of the receptor with phosphorylated and unoccupied

binding site (see Section 1.4).

Large subsets of these reactions or even all reactions are usually parameterized by the same

kinetic constants. Such subsets can be represented using generalized reactions called rules

which contain patterns instead of species [27,44,45]. Each rule represents a class of reactions

that are parameterized by the same kinetic constants. This representation simplifies the

description and the understanding of large reaction systems. In many cases, a relatively short

list of rules is sufficient to describe the reactions of a signaling system. Software tools exist

which automatically generate the simulation files from a rule-based model definition [45–51].

Thus, using rules highly simplifies the model representation and generation.

The usage of rules is demonstrated with the help of the following simple example, where
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the reactions represent ligand binding to a receptor that also has a phosphorylation site.

R[0, 0] + L ⇌ R[L, 0] k1 k−1

R[0, P ] + L ⇌ R[L, P ] k1 k−1
(1.8)

These reactions can be represented by a single rule

R[0, X] + L ⇌ R[L,X] k1 k−1 (1.9)

where patterns (characterized by at least one site modification ‘X’) occur on both sides of

the rule. The notation of patterns is analogous to the notation of species, with the only

difference, that the modification ‘X’ at a specific site represents all distinct modifications of

this site individually. Note that in all other cases, e.g. in the reaction parameters, a site

modification ‘X’ is interpreted as the sum of all possible modifications of this site (macrostate,

see Section 4.2).

If there are several site modifications ‘X’, it is important to note that sites with a modi-

fication ‘X’ at the same position on both sides of the rule correspond to each other. When

rules are used to generate the corresponding reactions, the species in each reaction have the

same modification at these sites on both sides of the reaction equation.

The benefit of rules becomes apparent when considering larger reaction systems. As an

example, consider a signaling protein with ten phosphorylation sites. If the phosphorylation

of each site is not influenced by the phosphorylation state of all other sites, only 10 rules are

sufficient to describe the reaction network defining 210 = 1024 ODEs. Each of these 10 rules

corresponds to 29 = 512 reactions that are parameterized by the same kinetic constants.

Rule-based modeling yields the same ODEs as conventional modeling of the system. Using

rules therefore simplifies the model generation and representation but does not lower the

order of the model. Note that rules can also be parameterized by generalized mass action

kinetics in the same way as reactions. An example for this is given in Section 5.2.2.3.

1.6 Outline of the thesis

An increasing amount of biochemical knowledge about cellular signaling systems is being

revealed. However, the behavior of these systems is often not apparent given the properties of

their components. This results in an increasing need for mathematical modeling of signaling

systems to address system level properties systematically. However, the association and

modification of a few proteins can result in an enormous amount of feasible complexes.

This phenomenon is called combinatorial complexity and leads to severe problems in the

modeling of many cellular signaling systems because one ODE is required for the balance of

each possible species.

Chapter 1 gives an introduction to cellular signal transduction and shows the occurring

combinatorial complexity. A focus is on insulin signaling and the regulation of glucose

concentration in the blood. We discuss the conventional modeling approach for biochemical

systems and its limitations. Modeling by generalized reactions, called rules, simplifies the
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model generation and representation but does not lower the number of necessary ODEs.

Therefore, rule-based modeling is merely a first step to overcome the problems resulting

from combinatorial complexity.

The insulin signaling system is characterized by combinatorial complexity. It can only

be modeled in the conventional way if many known details about complex formation at

the receptor are not included in the model. A conventional model focussing on the insulin

receptor and also describing insulin degradation and synthesis in vivo is built and analyzed

in Chapter 2. It is shown that the relative contributions of the liver and the kidney to insulin

degradation and insulin clearance are highly dependent on insulin concentration. The widely

used quantity of insulin clearance is therefore only meaningful when the corresponding insulin

concentrations are taken into account. This however, is not the case in many experimental

studies.

As discussed in Chapter 1, combinatorial complexity results in extremely large models if

conventional mathematical descriptions of signaling systems are desired. This demonstrates

the need for a reduced order description of such systems. Chapter 3 gives an overview

of model reduction techniques. Since biochemical systems are highly nonlinear, we only

shortly introduce methods for linear systems and focus on techniques that can be applied to

nonlinear systems. Being a widely used technique, proper orthogonal decomposition (POD)

is presented in more detail. However, using POD for models of signaling systems has several

drawbacks including a high computational effort and state variables without direct physical

interpretation.

The focus of Chapter 3 is on specialized model reduction methods for chemical and biolog-

ical systems. The most important methods for chemical systems are the quasi-steady-state

approximation and the rapid equilibrium assumption that both allow for the reduction of

reaction systems when knowing qualitative features of reaction velocities. Apart from that,

we discuss the frequently used intuitive model reduction approach for signaling systems that

is the only non-systematic reduction technique considered. A focus of this discussion is the

often insufficient approximation quality of intuitive model reduction. Chapter 3 also reviews

domain-oriented model reduction, a special approach for signaling systems, which is based

upon the concept of rules and is in some cases able to provide a strongly reduced description

of the system. A major drawback of all systematic ODE-based approaches is that a poten-

tially very large conventional model has to be built before the reduced order model can be

generated.

Chapters 4 and 5 provide a framework for the modeling of signaling systems with inherent

combinatorial complexity. Chapter 4 introduces layer-based modeling as a new approxima-

tive, but accurate method for the modeling of signaling systems with inherent combinatorial

complexity. The method is characterized by an extremely high potential to reduce the model

size and a high approximation quality. Convenient features of layer-based modeling are that

the resulting models show a pronounced modularity and that the state variables are macro-

scopic quantities with a direct biochemical interpretation. An important difference to most

other model reduction techniques is that the generation of the potentially very large con-

ventional model to be approximated is not necessary. The reduced model equations can be
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directly generated by a procedure quite similar to conventional modeling. Therefore, layer-

based modeling allows for the mathematical description of systems not accessible previously.

The reduction of the model size is based upon an implicit systematic application of the

rapid equilibrium assumption for additionally introduced virtual reactions, called diagonal

reactions, and a macroscopic system description. A detailed analysis shows that the approx-

imation errors can be described by first order ODEs whose solutions are dynamically and

ultimately bounded.

Chapter 5 presents the computer program ALC (Automated Layer Construction) which

highly simplifies the generation of reduced order models of large systems. ALC allows the

modeler to define layer-based models of very large systems by a relatively short and simple

rule-based model definition. To demonstrate the potential of ALC, we provide several model

definitions, including a model definition for a layer-based model of insulin signaling that

accounts for combinatorial complexity. This intuitively understandable model definition

results in a layer-based model with 51 ODEs approximating a conventional model with

1.5 · 108 ODEs. ALC provides ready-to-run simulation files in different formats (C MEX,

MATLAB, Mathematica and SBML). The model equations are also given in LATEX and plain

text format simplifying publication and presentation of the model.

Chapter 6 summarizes the main results of this thesis and gives an outlook on potential

future work.

25



2 Modeling and analysis of insulin

dynamics in vivo

Insulin is a major regulator of the cellular energy metabolism and glucose concentration in

the plasma. A detailed understanding of insulin dynamics and insulin receptor activation in

the target tissues is of high medical relevance.

This chapter presents a mathematical model describing insulin receptor activation in hep-

atocytes as well as the related processes of insulin degradation and synthesis in vivo. Sec-

tion 2.1 describes the biological background necessary for the following discussions and the

state of the art in the modeling of insulin dynamics and insulin receptor activation. A de-

tailed model of insulin receptor activation and insulin dynamics in the blood is introduced in

Section 2.2. Model validation with experimental data sets from the literature is performed

in Section 2.3. The model analysis performed in Section 2.4 shows that the relative contri-

butions of the liver and the kidney to insulin degradation as well as insulin clearance highly

depend on the insulin concentration. We show that using insulin clearance, a widely used

quantity to characterize the state of insulin metabolism, is only justified if the corresponding

insulin concentration is given. The analysis of insulin degradation implies that there is an

upper bound for reasonable therapeutic insulin concentrations. Section 2.5 discusses modern

insulin therapy in the light of these results.

2.1 Biological background

Insulin is synthesized in pancreatic β-cells and released into the blood if the glucose con-

centration in the blood is too high [5]. Several tissues, in particular liver, kidney, adipose

tissue and muscle contribute to its degradation, with the liver and the kidney being con-

sidered as the most important of them [7, 52]. The kidney mainly filters the insulin out of

the blood, whereas liver cells (hepatocytes), fat cells (adipocytes) and muscle cells show a

receptor-mediated uptake of insulin and intracellular insulin degradation [5, 12].

Insulin receptors bind insulin molecules from the space of Disse [53]. The space of Disse

(perisinusoidal space) contains blood plasma and is an extracellular space between liver si-

nusoids (special blood vessels) and hepatocytes. In the space of Disse, there is also reversible

nonspecific insulin binding to hepatocytes. The complex of insulin and the receptor is in-

ternalized to endosomes, where the receptor is located in endosomal membranes [12]. In the

acidic endosomal compartment, insulin dissociates from the receptor and is degraded. The

receptor then recycles to the cell surface (which is the usual case) or is degraded [8].
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2 Insulin dynamics in vivo 2.1 Biological background

Receptors with bound insulin show a strongly elevated autophosphorylation activity. The

receptor phosphorylates its intracellular binding sites for signaling molecules and also some

regulatory sites modulating receptor activity [8, 12]. Dephosphorylation of phosphorylated

sites is performed by protein phosphatases which in this way modulate receptor activity.

The complex formation at the activated receptor is described in Section 1.3. The result-

ing signaling complexes activate several cellular signaling cascades inducing changes in the

cellular metabolism and in the gene expression [5, 8, 9, 12].

Defective insulin secretion or cellular insulin resistance may result in diabetes mellitus

which is characterized by a decreased ability to regulate the glucose concentration in the

blood [18]. Therapeutic insulin is injected to compensate for the insufficient amount of

endogenously secreted insulin [16,18,19]. The aim of insulin therapy is to achieve sufficiently

high insulin concentrations in the blood to regulate the glucose concentration. Too high

insulin concentrations however have to be avoided because an overdose of insulin results in

hypoglycemia which may cause serious complications.

Therapeutic insulin is injected into the subcutaneous tissue and traverses different com-

partments (e.g. the injection pocket and the interstitium) before entering the blood. Long

acting insulins tend to form dimers or hexamers in the subcutaneous tissue which slows

down the transition of insulin from the injection pocket to the blood. Fast acting insulin

analogues however, have a decreased ability to form oligomers and enter the circulation

rapidly. These different kinetic properties of different types of insulin are exploited in insulin

therapy [18,20]. The compensation for the glucose uptake after a meal is mainly performed

by fast acting insulins, whereas the basal insulin level is adjusted by long acting insulins or

continuous infusion of small amounts of fast acting insulins.

2.1.1 Models of insulin receptor dynamics in vitro

Several models in literature describe insulin receptor dynamics in vitro. Most of them [54–58]

focus on a subset of the occurring processes and lump several processes into single reaction

steps. The physiologic state of insulin-sensitive tissues, e.g. the activation of hepatic insulin

receptors, cannot be precisely deduced from such models as their level of detail is too low.

However, two recent in vitro models describe insulin receptor dynamics in more detail [35,43].

Sedaghat et al. combined models of insulin binding [58] and receptor internalization, recy-

cling, synthesis and degradation [57] and extended them to a mathematical model of insulin

signaling in adipocytes also describing receptor phosphorylation [35]. Model parameters were

taken from other models and in vitro experiments. A very strong coupling between insulin

binding and receptor phosphorylation is assumed. The second insulin molecule can only

bind to phosphorylated receptors. Dephosphorylation of the receptor (with simultaneous

insulin dissociation) is only possible if only one insulin molecule is bound to the receptor.

Phosphorylated receptors without insulin are therefore not part of the model.

Hori et al. described receptor phosphorylation, internalization and recycling in Fao hep-

atoma cells at 100 nM insulin [43]. They analyzed several models corresponding to different

model assumptions and different levels of detail. Model parameters were estimated using
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experimental data sets from literature. The main limitations of the models of Hori et al. [43]

are that they are only valid at 100 nM insulin (which is a supraphysiological insulin con-

centration [52]) and that insulin binding is not explicitly included. Due to the high insulin

concentration of 100 nM , all receptors at the plasma membrane are assumed to be liganded.

Hori et al. also provide a general model structure without parameterization that includes

the binding of one insulin molecule to the receptor and is intended for variable insulin con-

centrations [43]. As in the model of Sedaghat et al. [35], receptor dephosphorylation and

insulin dissociation are coupled in all models since insulin dissociation is assumed to be a

prerequisite for receptor dephosphorylation or the processes are lumped into a single step.

In addition, most processes are assumed to be irreversible.

Thus, there are many couplings between different processes in all detailed receptor mod-

els [35, 43]. Furthermore, one of the models is only valid for adipocytes [35], the other ones

are not valid for other insulin concentrations than 100 nM [43]. This demonstrates the need

for a detailed mathematical model for hepatocytes that allows for analyzing the physiological

state of these cells.

2.1.2 Insulin dynamics and insulin receptor activation in vivo

Much work has been done in past decades to study insulin kinetics in the blood [6, 59,

60]. In the last few years, efforts have been focused on analyzing the dynamics of insulin

concentration after the subcutaneous insulin injection [61–63]. The resulting models describe

insulin removal from the blood in a highly reduced way [6, 63], whereas the subcutaneous

tissue is usually modeled in more detail. Oligomer formation of insulin is included in some

models [63]. In other studies, insulin dynamics are linked with glucose dynamics [64–69].

The corresponding models describe all involved processes in a highly reduced way.

In the last few decades, different kinetics for insulin removal from the blood were proposed.

The most frequently used kinetics are linear first order kinetics, Michaelis-Menten kinetics or

a combination of both [59]. Due to the experimental investigation of narrow concentration

intervals, nonlinearity was difficult to demonstrate [70].

The presence of nonlinearities due to saturable processes is widely accepted now [7, 18].

However, insulin degradation is described as a linear first order process in most models

and insulin receptor activation is not covered. Allocation of insulin degradation to specific

tissues is not performed in the models of insulin dynamics [63]. Therefore, no model-based

analysis of the contributions of the liver and the kidney to the degradation process has been

done. In addition, the physiological state of the insulin-responsive tissues, e.g. the activation

of insulin receptors, cannot be obtained from the existing in vivo models, as their level of

detail is quite low [6, 59–63]. Consequently, there has also been no detailed analysis of the

interactions between the highly related processes of insulin turnover and insulin receptor

activation. A first step in this direction was taken by Hovorka et al. [60]. However, the

receptor part of their model only distinguishes between free receptors and receptors with

bound insulin. In addition, the focus of their study is clearly on insulin kinetics.

An in vivo model describing hepatic processes in such a detailed way as the existing in vitro
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models [35,43] while simultaneously avoiding the deficiencies of those models will contribute

to a deeper understanding and a model-based control of insulin and glucose dynamics. Ad-

ditionally, a detailed model can serve as a starting point for modeling and analysis of the

signaling cascades emerging from the hepatic insulin receptor in vivo which will further

contribute to the understanding of insulin signaling.

2.2 The model

This section presents a literature-based mathematical model of insulin dynamics and hepatic

insulin receptor activation in rats. The model consists of ordinary differential equations

(ODEs) and describes the dynamic behavior of radioactively labeled and unlabeled insulin

in the blood and the physiological state of hepatic insulin receptors. It can also be used for the

injection of only labeled or only unlabeled insulin. Compared to other models [35,43,54–58],

we describe receptor processes in more detail to get insights into the processes and into

the connections between insulin dynamics and insulin receptor activation in hepatocytes.

We decouple insulin binding and dissociation from receptor phosphorylation, as there is

experimental evidence that receptor phosphorylation does not affect insulin binding [71]. In

addition, the phosphorylation of liganded receptors is described as a reversible process.

This study uses the rat as model organism because much more parameters are known for

rats than for humans.

2.2.1 Important tissues and processes

The liver and the kidney are the most important insulin degrading tissues [7, 18]. Fat and

muscle tissues contribute to insulin degradation as well, but all peripheral tissues (excluding

the liver and the kidneys) together contribute with only about 13 % to total insulin degra-

dation [52]. By some simple calculations it can be shown that the contribution of the fat

tissue is small compared to that of the liver [72]. Since the contribution of the muscle tissue

to insulin degradation is also relatively low [52] and a qualitatively similar behavior like that

of the liver is expected, it is appropriate to focus on hepatic and renal insulin degradation.

Our model explicitly describes dynamic insulin receptor activation in hepatocytes of the

liver. Processes considered are insulin binding to the receptor, receptor autophosphoryla-

tion, internalization and recycling. Compared to other models of the insulin receptor which

also include these processes [35, 43], we provide an extended description, model the in vivo

situation and include reversible nonspecific insulin binding in the space of Disse.

The kidney’s contribution to insulin degradation mainly consists in the filtering of insulin

from the blood [7]. The filtering function of the kidney is modeled as a degradation rate

that, according to experimental data [73], does not saturate and is proportional to the insulin

concentration in the plasma.

Pancreatic insulin secretion is mainly induced by plasma glucose [5]. As we focus on insulin

degradation, glucose is not included in the model describing pancreatic insulin secretion in

a highly simplified way as a function of insulin concentration. Due to a high robustness to
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changes in the parameters for insulin secretion [72, Additional file 3], this simplification does

not lead to significant approximation errors in dynamic simulations. In addition, insulin

secretion is irrelevant for stationary model analysis at constant insulin concentrations.

Altogether, the presented in vivo model describes the following processes: intravenous

injection of radioactively labeled and unlabeled insulin, pancreatic insulin secretion, hepatic

and renal insulin degradation, hepatic insulin receptor activation and nonspecific insulin

binding by the liver.

2.2.2 Parameters, units and volumes

In vivo model parameters cannot be measured directly in most cases. Taking parameters

from in vitro experiments or models for in vivo processes is a promising alternative. It is

the only possibility if there is not sufficient experimental data and a model structure that

guarantees identifiability which is a frequently occurring situation in systems biology.

In this study, model parameters are taken from previously published in vitro experi-

ments [73–80] as well as small models of insulin binding [58], receptor internalization [56]

and nonspecific hepatic insulin binding [53]. The models from literature [53, 56, 58] were

combined and kinetic parameters for the remaining processes were taken from in vitro data

(Table 2.1 and Appendix A.3.1).

All volumes are assumed to be constant. In addition, all tissues are assumed to contact

the same total insulin concentration, which is the sum of the concentrations of labeled and

unlabeled insulin. The physiological justification of this assumption is the high heart rate of

rats (320− 480 bpm [79]) that guarantees a fast distribution of circulating insulin.

Almost all state variables in the model represent concentrations and are given in nM .

Exceptions are the state variables Insub and Ins∗,ub that represent amounts of substances

and are given in nmol. All rates are given in nM · s−1. The rates describing insulin receptor

dynamics (rj, ij and fj, j ∈ N) refer to the hepatocyte volume vhep. All other rates refer to

the blood plasma volume vp.

2.2.3 The liver

Insulin degradation and insulin receptor activation in hepatocytes are modeled in a very

detailed way. Processes considered are: successive binding of two insulin molecules to the

insulin receptor, receptor phosphorylation and receptor internalization (Figure 2.1). The

following model assumptions are supported by studies from literature.

• Insulin binding and dissociation are independent of the phosphorylation state of the

receptor. This is directly supported by experimental evidence [71].

• Only receptors with bound insulin show autophosphorylation activity. Autophosphory-

lation is induced by insulin binding [5], and autophosphorylation of receptors without

bound insulin is considerably weaker.
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• Receptor dephosphorylation is independent of insulin binding. Receptor dephosphory-

lation is performed by protein phosphatases [5]. It seems very unlikely that insulin

binding to the extracellular α-chain of the receptor induces conformational changes in

the intracellular β-chain that are large enough to significantly change the affinity of

phosphatases for their phosphorylated substrate sites.

• Insulin dissociation from endosomal receptors is irreversible. Upon internalization,

the pH in endosomes decreases rapidly, which promotes insulin dissociation from the

receptor [7]. Free endosomal insulin is degraded by proteases [7].

• Only receptors without insulin are recycled. Receptor recycling is faster if there is

no external insulin [56]. This leads to the assumption that an additional step for

receptors with bound insulin is necessary before recycling is possible. A very promising

candidate for this step is insulin dissociation from the receptor. In this case, a single

rate constant for recycling, independent of insulin concentration, is sufficient to explain

the observation.

• Phosphorylated receptors are internalized faster than unphosphorylated receptors. In

the presence of higher insulin concentrations, more insulin receptors are phosphory-

lated [5]. Receptor internalization is faster at high insulin concentrations than without

external insulin [56]. In addition, there are reports that receptor internalization de-

pends on phosphorylation [7].

• Labeled and unlabeled insulin show the same physiological characteristics. Labeling of

the insulin molecules was performed with 125I [81–83]. The size of this modification is

small compared to the size of the insulin molecule and should not change its binding

characteristics, the effect on receptor phosphorylation, the rate of nonspecific insulin

binding or the rate of renal insulin filtration.

• Degradation and synthesis of the insulin receptor is negligible. Insulin receptor degra-

dation in 3T3-L1 mouse adipocytes has a half-live of 7.5 h [84]. If protein synthesis

is inhibited, the decrease in insulin binding in foetal hepatocytes has a half-live of

13 h [85]. Assuming that receptor degradation is not significantly different in adult

hepatocytes, receptor turnover is slow compared to all other considered processes and

can be neglected.

• All processes in hepatocytes obey mass action kinetics. The processes that were adopted

from other models obey mass action kinetics [53, 56, 58]. Mass action kinetics are a

good and frequently used approximation for processes at the molecular level [22,24].

For the following assumptions there is no experimental data in literature supporting them.

These assumptions were made to keep the number of parameters as low as possible.

• Receptors with one or two bound insulin molecules show the same autophosphorylation

activity.
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Figure 2.1: Insulin receptor activation in hepatocytes

The insulin receptor is denoted as R. One or two insulin molecules can bind to the receptor

(green arrows). This is indicated by a prefix I or I2, respectively. Receptor phosphorylation

(blue arrows) is indicated by a suffix p, receptor internalization to the endosomal compart-

ment (red arrows) is indicated by a subscript en. Arrows with two heads indicate reversible

reactions, whereas arrows with one head indicate irreversible reactions. Filled arrowheads

indicate the positive direction of rates.

• Receptor recycling is independent of receptor phosphorylation.

Figure 2.1 shows the reaction scheme of processes in hepatocytes. In this figure and

in the model equations, the insulin receptor is denoted as R. The binding of one or two

insulin molecules is indicated by a prefix I or I2, respectively. A suffix p indicates receptor

phosphorylation, a subscript en indicates internalization to the endosomal compartment. All

concentrations of receptor species refer to vhep, the total volume of hepatocytes.

Rates denoted by the standard notation rj describe processes at the plasma membrane

of hepatocytes (j ∈ N) or outside the hepatocytes (j /∈ N). Rates denoted by ij describe

internal processes occurring in endosomes of hepatocytes, and rates denoted by fj describe

flows between the plasma membrane and endosomes of hepatocytes (j ∈ N).

The hepatocyte part of the model does not distinguish between labeled and unlabeled

insulin, which reduces the number of necessary ODEs. Hepatocytes have contact to the

total insulin concentration Ins that is the sum of the concentrations of labeled and unlabeled

insulin. The concentration of labeled insulin is denoted as Ins∗; unlabeled insulin (Ins −

Ins∗) has no separate notation.

Rates r1 − r4 describe insulin binding to the insulin receptor at the plasma membrane.

The values of the parameters kins, kins1d and kins2d were directly taken from the model
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of Wanant et al. [58].

r1 = kins ·R · Ins− kins1d · IR

r2 = kins ·Rp · Ins− kins1d · IRp

r3 = kins · IR · Ins− kins2d · I2R

r4 = kins · IRp · Ins− kins2d · I2Rp

(2.1)

The total contribution of the liver to plasma insulin degradation is given as

rliv = (−r1 − r2 − r3 − r4) · vhep/vp. (2.2)

The plasma volume is denoted as vp, the total hepatocyte volume is denoted as vhep. Strictly

speaking, rliv defines insulin removal from the blood, whereas insulin degradation is per-

formed in hepatic endosomes. However, rliv is the contribution of the liver to insulin dy-

namics. In steady state, the values of the rates for insulin removal and insulin degradation

are identical.

Rates r5 − r7 describe receptor phosphorylation at the plasma membrane.

r5 = kyd ·Rp

r6 = kyp · IR− kyd · IRp

r7 = kyp · I2R− kyd · I2Rp

(2.3)

Rates i1 − i4 describe insulin dissociation from the receptor in endosomes.

i1 = kins1den · IRen

i2 = kins1den · IRpen

i3 = kins2den · I2Ren

i4 = kins2den · I2Rpen

(2.4)

Rates i5 − i7 describe receptor phosphorylation in endosomes.

i5 = kyden ·Rpen

i6 = kyp · IRen − kyden · IRpen

i7 = kyp · I2Ren − kyden · I2Rpen

(2.5)

The parameter values in Equations 2.3-2.5 are taken from in vitro experiments (see Ta-

ble 2.1 and Appendix A.3.1). According to our model assumptions, unphosphorylated re-

ceptors without insulin (R and Ren) have no autophosphorylation activity. Therefore, the

reactions represented by the rates r5 and i5 are irreversible.

Rates f1 − f6 describe receptor internalization and recycling, where recycling is only pos-

sible for receptors without insulin.

f1 = intk2 ·R− reck1 ·Ren

f2 = intk2 · IR

f3 = intk2 · I2R

f4 = intk1 ·Rp− reck1 ·Rpen

f5 = intk1 · IRp

f6 = intk1 · I2Rp

(2.6)
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Table 2.1: Model parameters and initial conditions

Note that the values of mbody (body weight in g), tin (injection time in s), nin and n∗,in (amounts of injected unlabeled and labeled

insulin in nmol) depend on the analyzed scenario. Initial conditions are: Ins = 0.07, Ins∗ = 0, R = 31.619, IR = 0.430007,

I2R = 0.000696311, Rp = 0.227528, IRp = 2.07275, I2Rp = 0.00363012, Ren = 4.88528, IRen = 0.145537, I2Ren = 0.000121295,

Rpen = 0.122602, IRpen = 0.492464, I2Rpen = 0.000433466, Insub = 1.29948 · 10−6 ·mbody, Ins∗,ub = 0. The unit of Insub and

Ins∗,ub is nmol, the unit of all other state variables is nM (see Appendix A.3.1). ass.: assumption, calc.: calculation.

Parameter Value Source Meaning of the parameter

kins 10−3 nM−1s−1 [58] insulin binding to the receptor

kins1d 4 · 10−4 s−1 [58] insulin dissociation from the receptor (I1, PM)

kins2d 4 · 10−2 s−1 [58] insulin dissociation from the receptor (I2, PM)

kins1den 1.925 · 10−3 s−1 [74] insulin dissociation from the receptor (I1, EN)

kins2den 3.85 · 10−3 s−1 [75] insulin dissociation from the receptor (I2, EN)

kyd 3.85 · 10−3 s−1 [76] receptor dephosphorylation (PM)

kyden 7.22 · 10−3 s−1 [77] receptor dephosphorylation (EN)

kyp 0.0231 s−1 [77] autophosphorylation of the receptor (I1 and I2)

intk1 5.5 · 10−4 s−1 [56] internalization of phosphorylated receptors

intk2 2 · 10−4 s−1 [56] internalization of unphosphorylated receptors

reck1 1.533 · 10−3 s−1 [56] recycling of receptors without insulin

k1ub 0.35 s−1 [53] nonspecific insulin binding in the liver

k2ub 0.2 s−1 [53] dissociation of nonspecifically bound insulin

pansec 0.0016976 nM · s−1 calc.: [72] pancreatic insulin secretion

Kpan 0.5 nM ass. concentration of half-maximal insulin secretion

mliver 0.05 ·mbody [53] mass of the liver

vp 0.03375 · 10−3 l · g−1 ·mbody [79] plasma volume

ρliver 1.051 · 103 g · l−1 [78] density of the liver

vhep (mliver/ρliver) · 0.78 [86] total hepatocyte volume

vd 0.272 · 10−3 l · g−1 · vhep · ρliver [53] volume of the space of Disse

mkidney 2 · 0.85 g ·mbody/(230 g) [80] mass of the kidney

Kkidney 0.0225 · 10−3 l · (s · g)−1 ·mkidney [73] clearance of the kidney
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The value of the parameter intk1 was directly taken from a model of receptor internalization

and recycling at high insulin concentrations [56]. The values of the parameters intk2 and

reck1 are from a model of receptor internalization and recycling without insulin [56].

Altogether, the described processes (Figure 2.1) result in the following balance equations

for hepatic insulin receptor species.

Ṙ = −r1 + r5 − f1

˙IR = r1 − r3 − r6 − f2

˙I2R = r3 − r7 − f3

Ṙp = −r2 − r5 − f4

˙IRp = r2 − r4 + r6 − f5

˙I2Rp = r4 + r7 − f6

Ṙen = i1 + i5 + f1

˙IRen = −i1 + i3 − i6 + f2

˙I2Ren = −i3 − i7 + f3

Ṙpen = i2 − i5 + f4

˙IRpen = −i2 + i4 + i6 + f5

˙I2Rpen = −i4 + i7 + f6

(2.7)

The executable receptor model is given in MATLAB format in [72, Additional file 2] and

can be used for the simulation of in vitro experiments.

The liver also performs nonspecific insulin binding. This reversible process does not sat-

urate [53] and dampens rapid variations in insulin concentration. The rates rub and r∗,ub

define nonspecific binding of unlabeled and labeled insulin, respectively.

rub = (k1ub · (

unlabeled insulin︷ ︸︸ ︷
Ins− Ins∗) · vd − k2ub · Insub)/vp

r∗,ub = (k1ub · Ins∗ · vd − k2ub · Ins∗,ub)/vp

(2.8)

The values of the parameters k1ub and k2ub were directly taken from the model of Hammond

et al. [53]. The volume of the space of Disse, in which nonspecific insulin binding takes place,

is denoted as vd. The concentration of unlabeled insulin is Ins − Ins∗ (unit: nM), while

Ins∗,ub and Insub are the amounts of substance (unit: nmol) of nonspecifically bound labeled

and unlabeled insulin, respectively. Only the expressions for the forward reactions of the

rates rub and r∗,ub are multiplied by vd (unit: l) because Ins and Ins∗ (unit: nM) are

concentrations, whereas Insub and Ins∗,ub are amounts of substance (unit: nmol).

The balances of the amounts of nonspecifically bound unlabeled and labeled insulin are

given as

˙Insub = rub · vp

˙Ins∗,ub = r∗,ub · vp.
(2.9)
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In order to obtain the unit nM ·s−1 for all rates, we divide by vp within the rates rub and r∗,ub

(Equation 2.8) and multiply the rates by vp in the ODEs for Insub and Ins∗,ub (Equation 2.9),

emphasizing the need for vp.

Note that species notations with an asterisk indicate radioactively labeled insulin species.

Species with insulin whose notations do not contain an asterisk can contain labeled or un-

labeled insulin, except for Insub, which only represents unlabeled nonspecifically bound

insulin.

2.2.4 The kidney

The kidney performs insulin degradation by filtering insulin from the blood [18]. The degra-

dation rate rkid is proportional to the insulin concentration [73].

rkid = −Kkidney · Ins/vp (2.10)

Insulin clearance is defined as the quotient of the degradation rate and the insulin concen-

tration [59]. Therefore, Kkidney is the clearance of the kidney.

There are also reports that receptor-mediated transport in man contributes about one

third to total renal insulin removal [7]. This may result in a slightly nonlinear behavior of

renal insulin degradation. However, the nonlinearity resulting from receptor saturation is

not visible in the experimentally examined concentration interval [73]. Therefore, linear first

order kinetics are a good approximation of renal insulin degradation.

2.2.5 Insulin secretion and injection

Pancreatic insulin secretion is induced by plasma glucose [5], which is not included in the

model. In the model, pancreatic insulin secretion rpan is described as a function of insulin

concentration and turned off at high insulin concentrations. This corresponds to the implicit

assumption that glucose dynamics are faster than insulin dynamics. Peak concentrations in

insulin therapy are about 60− 80 µU ·ml−1 [62, 63], which is about 0.35− 0.5 nM . Insulin

secretion is assumed to be cut off smoothly at Kpan = 0.5 nM . The physiological basal

insulin concentration (0.07 nM) is guaranteed by adjusting the parameter pansec such that

the secretion rate rpan equals the sum of the stationary insulin degradation rates of the liver

and the kidney at 0.07 nM insulin [72, Additional files 4 and 5].

rpan = pansec ·

(
1−

Ins10

Ins10 +Kpan10

)
(2.11)

Intravenous injection of labeled and unlabeled insulin (u∗,in and uin) is performed during

the injection time tin with a constant injection rate that is sharply, but smoothly cut off.

uin =
nin

tin
·

(
1−

t50

t50 + t50in

)
/vp

u∗,in =
n∗,in

tin
·

(
1−

t50

t50 + t50in

)
/vp

(2.12)
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The amounts of injected unlabeled and labeled insulin are nin and n∗,in (unit: nmol), re-

spectively. Each of these parameters can be set to zero if no injection of labeled or unlabeled

insulin is desired. The corresponding input functions uin or u∗,in then equal zero.

Note that uin and u∗,in are not defined for tin = 0 s which corresponds to a very rapid

bolus injection of insulin. If tin = 0 s is nevertheless desired, this infinitely small injection

time can be realized by setting the initial conditions directly to the corresponding values.

Ins = 0.07 +
nin + n∗,in

vp

Ins∗ =
n∗,in

vp

(2.13)

The rates uin and u∗,in then have to be set to zero. Note that 0.07 nM is the basal concen-

tration of insulin.

2.2.6 Insulin concentration in the plasma

The balances of the concentrations of labeled (Ins∗) and total insulin (Ins) are given by:

˙Ins = rliv + rkid + rpan + uin + u∗,in − r∗,ub − rub

˙Ins∗ = (rliv + rkid) ·
Ins∗
Ins

+ u∗,in − r∗,ub.
(2.14)

Note that rliv and rkid refer to total insulin. Therefore, only their fractions Ins∗/Ins that

correspond to labeled insulin have to be considered in the balance of Ins∗. The distinction

between labeled and unlabeled insulin is necessary because unlabeled insulin is synthesized in

the pancreas whereas labeled insulin is not. Therefore, in experiments with labeled insulin,

the fraction of labeled insulin changes over time.

The executable complete model is given in MATLAB format in [72, Additional file 1]. All

parameter values are resumed in Table 2.1.

2.3 Model validation

Model validation is performed with experimental data sets from literature. The experimental

data sets are for rats as the parameter values of the model are also for rats. We emphasize

that the data sets used for the model validation are not used for parameter estimation

which corresponds to a strict separation of model construction and model validation. A very

remarkable result of the model validation is that the model with parameters from literature

is able to match experimental data sets.

2.3.1 Insulin dynamics

The dynamic insulin degradation behavior of the model was compared to experimentally de-

termined time courses of insulin concentration in plasma after intravenous insulin injections.
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Figure 2.2: Dynamic model validation: physiological insulin concentrations

Simulation of the concentration of radioactively labeled insulin in plasma after the injection

of a very low amount of radioactively labeled insulin is shown and compared to experimental

data [83].

Experimental data sets with extremely high [82] and extremely low [83] amounts of injected

insulin were used. The extremely low amount (1.65 · 10−6 nmol) was radioactively labeled.

Therefore, the dynamics of injected insulin can be tracked though the amount of injected

insulin is small compared to endogenous insulin. Measured concentrations of labeled insulin

were about 0.5 · 10−4 nM [83] (see Figure 2.2). In the other experiment, the extremely

high amount of injected insulin (47.5 nmol) resulted in measured insulin concentrations

above 1600 nM [82] (see Figure 2.3). Note that 1600 nM insulin are highly unphysiological

because the basal concentration of insulin is 0.07 nM and peak concentrations in insulin

therapy and physiological scenarios are below 1 nM [52, 62,63].

Simulated insulin concentrations for low amounts of injected insulin [83] are relatively close

to the experimental data set (Figure 2.2). As the absolute errors are moderate, Figure 2.2

is regarded as a semi-quantitative or at least qualitative validation of the dynamic model at

physiological insulin concentrations.

Simulation results for the injection of unphysiologically high amounts of insulin [82] are

not very close to the experimental data set (Figure 2.3). The measured insulin concen-

tration of 1600 nM is four orders of magnitude higher than peak concentrations in insulin

therapy (0.35 − 0.5 nM [62, 63]) and three orders of magnitude above physiological peak

values [52]. In this concentration range new unmodeled effects occur. As an example,
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Figure 2.3: Dynamic model validation: extremely high insulin concentrations

Simulation of plasma insulin concentration after the injection of a large amount of insulin is

shown and compared to experimental data [82]. The simulation does not match the exper-

imental data set. This results from the presence of unmodeled effects at highly supraphys-

iological insulin concentrations and limitations in the detection quality of the experiment.

Therefore, the model is not valid at these extremely high insulin concentrations.

pinocytosis (fluid-phase endocytosis) significantly contributes to hepatic insulin uptake at

high insulin concentrations [7, 87]. In correspondence to nonspecific insulin binding by the

liver, nonspecific insulin binding could also occur in other tissues. A result of this additional

nonspecific binding would be reversible insulin removal at high insulin concentrations and

subsequent insulin release at lower insulin concentrations. Furthermore, the assay of Des-

buquois et al. [82] is not able to distinguish between insulin fragments and native insulin.

After a few minutes however, insulin fragments contribute significantly to total insulin, as

shown for the injection of small amounts of labeled insulin [83, Figure 3]. Assuming that

this also holds for the injection of high amounts of insulin, the assay of Desbuquois et al.

overestimates insulin concentrations at later points in time.

The effects of pinocytosis and additional nonspecific insulin binding at high insulin con-

centrations are not quantified in literature and not included in the model. Neglecting these

processes (and maybe others that are important at high insulin concentrations) leads to an

incorrect model structure for high insulin concentrations. Therefore, the model is not valid

at extremely high insulin concentrations.
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Figure 2.4: Dynamic model validation: receptor internalization

Simulation results for receptor internalization at 100 nM insulin (blue) as well as those

without insulin (red) are shown and compared to experimental data [56]. Surface receptors

were radioactively labeled at t = 0 s. This was simulated by taking the receptor model

(Equation 2.7) and setting the initial conditions such that all receptors are in the state R

at the plasma membrane. The assay can be simulated with this choice of initial conditions

because the receptor model is linear for a constant insulin concentration.

2.3.2 Hepatic insulin receptor internalization

Simulation results for hepatic insulin receptor internalization at 100 nM insulin as well as

those without insulin were compared to experimental data from literature [56]. As it can be

seen in Figure 2.4, simulation results match the experimental data sets very well. Assuming

that simulated insulin binding to the receptor mirrors physiological processes well (we show

in Section 2.3.3 that it does), receptor internalization can be used as a direct indicator for

hepatic insulin degradation.

The experimental data sets for receptor internalization result from experiments with Fao

cells that are tumor cells of hepatic origin. Though simulations match the experimental data

sets almost quantitatively, this can only be regarded as a qualitative model validation for

hepatocytes.

2.3.3 Insulin binding and receptor phosphorylation

Simulation results for stationary insulin receptor phosphorylation and insulin binding were

compared to experimental data sets [81] to validate the receptor part of the model.

Klein et al. determined cell-associated radioactively labeled insulin as a function of the
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Figure 2.5: Stationary model validation: insulin binding and receptor phosphorylation

A) Cell-associated radioactively labeled insulin is shown as a function of the stationary

concentration of unlabeled insulin and compared to experimental data [81, Figure 4 A].

Almost no labeled insulin should bind to receptors at maximal concentrations of unlabeled

insulin. Therefore, the experimentally determined value for the highest concentration of

unlabeled insulin was treated as background and subtracted from all values.

B) The fraction of phosphorylated receptors is shown as a function of the stationary insulin

concentration and compared to experimental data for receptor activation [81, Figure 4 B].

We regard receptor phosphorylation as a good indicator for receptor activity.
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concentration of unlabeled insulin [81, Figure 4 A]. This was done in a competition as-

say with a constant concentration of radioactively labeled insulin (0.01 nM) and variable

concentrations of unlabeled insulin Insunlab. In steady state, cell-associated labeled insulin

Inscell is given as

Inscell =
0.01 nM

0.01 nM + Insunlab

· (IR + 2 · I2R + IRp+ 2 · I2Rp) (2.15)

if one assumes the same binding characteristics for labeled and unlabeled insulin. Only the

labeled insulin attached to the surface of the cells was measured. Labeled insulin bound to

internalized receptors is neither considered in the experiment nor in Equation 2.15.

The stationary model equations (Equation 2.7 with one ODE being replaced by a con-

servation relation for the insulin receptor and all derivatives set to zero) were solved for

the concentrations of the species under the assumption of a constant insulin concentration.

Inserting the solution into Equation 2.15 leads to a (cumbersome) expression for Inscell as

a function of the concentration of unlabeled insulin in steady state. This in silico reproduc-

tion of the assay and projection of the result on the experimental data set results in a high

accordance (Figure 2.5 A).

Klein et al. also determined the stationary dependency of receptor activity on the insulin

concentration [81, Figure 4 B]. We regard receptor activity as an indicator for receptor

phosphorylation. The stationary fraction of phosphorylated receptors in the model is given

as

Fp = (Rp+ IRp+ I2Rp+Rpen + IRpen + I2Rpen)/Rtot (2.16)

where Rtot = 40 nM is the constant total concentration of the receptor [88] (see Ap-

pendix A.3.1). The projection of the experimental data set for receptor activity on Fp

shows a high accordance (Figure 2.5 B).

Altogether, the model is able to match the experimental data sets for receptor activity and

insulin binding very well. The model parameters were not estimated to get these results.

2.4 Model analysis

2.4.1 Insulin degradation

The fractions of insulin that are degraded by the liver and the kidney were investigated in

several studies. Values for the relative contribution of the liver to insulin degradation in man

range from below 50 % to 70 %, and those for the kidney from 30 % to above 50 % [6,7,18].

We investigate the reason for this diversity by stationary model analysis.

Renal insulin degradation does not saturate [7, 73], whereas hepatic insulin degradation

saturates [7, 18, 89]. The physiological situation is mirrored by the model, where hepatic

insulin degradation (−rliv) saturates, whereas renal insulin degradation (−rkid) does not

(Figure 2.6 A). It can be clearly seen that the relative contributions of the liver and the kidney

to total insulin degradation strongly depend on the insulin concentration (Figure 2.6 B).
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In stationary model analysis, the relative contribution of the liver to overall insulin degra-

dation ranges between 81 % for insulin concentration tending to zero and 0 % for insulin

concentration tending to infinity. The relative contribution of the kidney ranges between

19 % and 100 %. A significant part of these changes happens beyond physiological insulin

levels. However, the fractions vary strongly in the physiological range of insulin concentra-

tion. Between 0 nM and 1 nM insulin, the relative contribution of the liver is between 81 %

and 63 %, while the contribution of the kidney is between 19 % and 37 % (Figure 2.6 B).

Only the liver and the kidney are considered in the analysis of insulin degradation. Other

insulin degrading tissues, in particular fat and muscle, are neglected. Therefore, the sum of

the relative contributions of the liver and the kidney to insulin degradation is one (100 %).

Note that changes in tin or in the parameters for the pancreas do not affect the results of

stationary model analysis, as the system is analyzed at constant insulin concentrations. The

rate of nonspecific insulin binding equals zero in the unique steady state. Therefore, it also

has no influence on stationary insulin degradation. The stationary analysis of degradation

rates and relative contributions to insulin degradation is also independent of the parameter

mbody. All stationary calculations are given in [72, Additional file 4].

Altogether, the relative contributions of the liver and the kidney to insulin degradation

depend on the insulin concentration. At low insulin concentrations, hepatic insulin degra-

dation is predominant, whereas at high insulin concentrations overall insulin degradation is

mainly performed by the kidney. Therefore, different results for the relative contributions

of the liver and the kidney to insulin degradation are expected for different experimental

settings.

2.4.2 Insulin clearance

The quotient of insulin degradation rate and insulin concentration is denoted as insulin clear-

ance c [59], which is a widely used quantity to characterize the state of insulin metabolism.

c =
(−rliv − rkid) · vp

Ins
= cliv + ckid (2.17)

The value of insulin clearance corresponds to the volume of plasma from which insulin

is completely removed (or cleared) per unit of time [52]. The physiological range of insulin

clearance in man (70 kg) is 700−3350ml·min−1 [6,59]. Most determined values from healthy

individuals are in the interval 840−1050 ml ·min−1, but also values as low as 140 ml ·min−1

are sometimes measured [52]. Two frequently used methods to measure insulin clearance are

described in Appendix A.4. One of the methods guarantees a constant insulin concentration

during the measurement whereas the insulin concentration is not constant when using the

other one. For nonlinear insulin dynamics, applying both methods results in different values

for insulin clearance (Appendix A.4).

We use stationary model analysis to investigate why the measured values of insulin clear-

ance vary in such wide ranges.

Renal insulin clearance ckid = Kkidney is independent of the insulin concentration, as the

degradation rate rkid is proportional to the insulin concentration (Equation 2.10). Therefore,
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Figure 2.6: Stationary analysis of renal and hepatic insulin degradation

A) Stationary insulin degradation rates of the liver (red) and the kidney (blue) and the total

insulin degradation rate (black) are shown as functions of insulin concentration.

B) Stationary relative contributions of the liver (red) and the kidney (blue) to total insulin

degradation depend on the insulin concentration. Note that these fractions are slightly

lower in reality because other tissues, in particular fat and muscle, also contribute to insulin

degradation but are not analyzed here. The fractions in this plot refer to the sum of the

degradation rates of liver and kidney.
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Figure 2.7: Stationary analysis of renal and hepatic insulin clearance

Insulin clearance is defined as the quotient of insulin degradation rate and insulin concentra-

tion (Equation 2.17). Total stationary insulin clearance (black) is a function of insulin con-

centration because hepatic insulin clearance (liver, red) depends on the insulin concentration,

whereas renal insulin clearance (kidney, blue) is independent of the insulin concentration. A

body weight of mbody = 200 g was used in the computations.

the quotient of rate and concentration is constant. A different situation occurs in the case

of hepatic insulin clearance cliv = −rliv · vp · Ins
−1 where the insulin degradation rate rliv

is nonlinear in the insulin concentration. The effect of Ins−1 strongly dominates the effect

of the saturating degradation rate rliv (compare Figures 2.6 A and 2.7). Therefore, hepatic

insulin clearance decreases for increasing insulin concentrations and tends to zero for insulin

concentration tending to infinity.

Altogether, due not nonlinearities in insulin degradation, insulin clearance strongly de-

pends on the insulin concentration (Figure 2.7). As an example, in a rat whose body weight

is 200 g, insulin clearance ranges between 10.7 ml ·min−1 for insulin concentration tending

to zero and 2.0 ml ·min−1 for insulin concentration tending to infinity [72, Additional file 4].

Insulin clearance is often used to characterize the state of insulin metabolism. This is

justified in the analysis of linear first order processes such as renal insulin degradation,

where insulin clearance is independent of insulin concentration (Figure 2.7). However, the

usefulness of insulin clearance for the analysis of processes that are dominated by saturable

components, in particular hepatic insulin degradation, is very limited. A strong dependence

on the insulin concentration hampers precise analyses, especially if the insulin concentration

is not constant during the experiment.

An implication from this analysis is that insulin clearance should always be measured

with methods that keep the insulin concentration constant during the experiment. In addi-

tion, the corresponding insulin concentration is necessary to asses the meaning of the value.

Unfortunately, the corresponding insulin concentration is not given in most experimental
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Figure 2.8: Sensitivity of simulation results to changes in k1ub and k2ub

Simulations for each combination of (0.8, 0.9, 1, 1.1, 1.2) · k1ub and (0.8, 0.9, 1, 1.1, 1.2) · k2ub

are shown. A) Simulation of the concentration of radioactively labeled insulin in plasma after

the injection of a very low amount of radioactively labeled insulin is shown and compared

to experimental data [83]. B) Simulation of plasma insulin concentration after the injection

of a large amount of insulin is shown and compared to experimental data [82].

studies from literature.

Altogether, the strong dependency of insulin clearance on the insulin concentration is able

to explain the wide range of reported values.

2.4.3 Parameter estimation

We investigate whether the model structure is able to reproduce the experimental data set

for high amounts of injected insulin (Figure 2.3). The parameters estimated to match the

experimental data set for high amounts of injected insulin [82] were chosen by the following

considerations. Insulin degradation at high insulin concentrations is mainly performed by

the kidney (Figure 2.6). Nonspecific insulin binding dampens rapid variations in insulin

concentration at all insulin concentrations (Figure 2.8). Therefore, the most important

parameters at high insulin concentrations are those for the kidney and nonspecific insulin

binding.

It was possible to get simulation results much closer to the experimental data set for high

amounts of injected insulin by changing the values of k1ub, k2ub and Kkidney simultane-

ously or only the value of Kkidney [72, Additional file 3]. From a physiological point of view
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Figure 2.9: Sensitivity of simulation results to changes in Kkidney

The value of Kkidney was varied in the interval 0.8 ·Kkidney ≤ Kkidney ≤ 1.2 ·Kkidney.

A) Simulation of the concentration of radioactively labeled insulin in plasma after the in-

jection of a very low amount of radioactively labeled insulin is shown and compared to

experimental data [83]. The differences between the distinct simulations vanish due to the

thickness of lines. B) Simulation of plasma insulin concentration after the injection of a

large amount of insulin is shown and compared to experimental data [82].

however, the better matching of experimental data and simulation results using estimated

parameter values does not reflect increased model quality. As discussed above, in the pres-

ence of high insulin concentrations there are unmodeled effects which are not important at

physiological insulin concentrations. Additionally, the assay of Desbuquois et al. [82] also de-

tects insulin fragments. As a result, the estimated parameter values also include the effects of

processes not explicitly described in the model and detection errors of the assay. Therefore,

the model analysis was performed using the parameter values from literature (Table 2.1).

2.4.4 Sensitivity analysis

Since the model fails to match the experimental data set for high amounts of injected insulin

(Figure 2.3), we investigate if small changes in the parameter values have a significant impact

on the simulation results of the dynamic model validation. The focus is on the parameters

for the kidney and nonspecific insulin binding which are most important at high insulin

concentrations.

Increasing or decreasing the values of k1ub and k2ub by 20% results in moderate differences
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in the simulation results for the injection of high and low amounts of insulin (Figure 2.8).

Changing Kkidney by 20% has practically no effect on simulation results for the injection of

small amounts of insulin, whereas it results in moderate differences in the simulation results

for the injection of high amounts of insulin (Figure 2.9). All simulation results with changed

parameter values match the experimental data set for low amounts of injected insulin in

an acceptable way (Figures 2.8 and 2.9). On the other hand, the values of k1ub, k2ub and

Kkidney cannot be arbitrarily chosen. A nice example for this is that simulation results

using an estimated parameter set (nsq, [72, Additional file 3]) fail to match the experimental

data set for small amounts of injected insulin. Therefore, the values from literature are at

least acceptable estimates for the parameterization of the processes they represent.

The parameters for the pancreas (pansec, Kpan, Hill coefficient) are chosen to guarantee

that insulin secretion is turned off at peak concentrations in insulin therapy. They have

negligible influence on the simulation results for insulin dynamics, as long as the physiological

basal level of insulin (0.07 nM) is guaranteed by adjusting pansec. For detailed descriptions

and simulation results see [72, Additional file 3].

Simulation results for high amounts of injected insulin are robust to changes in the pa-

rameters for the liver because the fractional contribution of the liver to insulin degradation

is almost zero for such high insulin concentrations. In contrast to that, simulation results

for insulin receptor internalization in vitro (Figure 2.4) only depend on the parameters for

the liver.

Changes in the parameter tin have little influence on the simulation results for high

amounts of injected insulin. Simulation results for small amounts of injected insulin however,

are sensitive to changes in tin (Figure 2.10). If one assumes that t = 0 s corresponds to the

end of insulin injection, simulation results are in each case relatively close to the experimen-

tal data set. However, if one assumes that insulin injection starts at t = 0 s, simulation

results for slow injections (high values of tin) are not close to the experimental data set any

more (Figure 2.10). Unfortunately, the exact procedure of injection is not described in either

study [82,83]. We assume a bolus injection at t = 0 s for both experiments.

Altogether, simulation results for insulin dynamics are sensitive to changes in tin but

robust to changes in the other parameters. The deviations of the simulation results for

high amounts of injected insulin from experimental data cannot be significantly reduced by

small changes in the parameter values. As discussed above, these deviations result from an

incorrect model structure at extremely high insulin concentrations.

2.5 Therapeutic insulin concentrations

The aim of insulin therapy is to achieve sufficient glucose uptake with minimal amounts

of insulin [18, 19, 90]. An interesting question is whether an upper bound for reasonable

insulin concentrations exists. We investigate this by combining the results of stationary

model analysis and experimental studies from literature.

At about 10 nM insulin, the insulin receptor in hepatocytes of rats is almost maximally

phosphorylated (Figure 2.5). Stationary model analysis shows that almost 80 % of insulin is
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Figure 2.10: Sensitivity of simulation results to changes in tin
The value of tin (duration of the injection) was varied in the interval 0 s ≤ tin ≤ 45 s. In

the plots A and B, the point in time t = 0 s denotes the end of insulin injection. Therefore,

simulations start with the beginning of insulin injection at t = −tin. In the plots C and D,

the point in time t = 0 s denotes the beginning of insulin injection. A,C) Simulation of

the concentration of radioactively labeled insulin in plasma after the injection of a very low

amount of radioactively labeled insulin is shown and compared to experimental data [83].

B,D) Simulation of plasma insulin concentration after the injection of a large amount of

insulin is shown and compared to experimental data [82].
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degraded by the kidney and does not contribute to insulin receptor activation. The fraction of

insulin that is degraded by the kidney further increases with increasing insulin concentration.

Half-maximal insulin receptor phosphorylation in rat adipocytes is at 7±1 nM insulin [91].

Glucose uptake in adipocytes is half-maximal at 170 pM insulin and saturates at about 3 nM

insulin [91]. These findings are expected to hold qualitatively also for human adipocytes.

Therefore, an upper bound for therapeutic insulin concentrations in man seems to exist.

This upper bound is the insulin concentration above which a higher insulin concentration

does not result in a higher glucose uptake but only leads to increased insulin degradation.

Characteristics of glucose uptake in rat adipocytes imply that this upper bound is at about

3 nM and not at about 10 nM as implied by the characteristics of hepatic insulin receptor

phosphorylation.

We consider therapeutic insulin levels in the light of these findings. Overnight control of

glucose concentration is performed with basal insulins that show slow absorption kinetics or

with continuous injection of short acting insulins [18]. In both cases, only insulin concentra-

tions close to the physiological basal concentration are expected, which is far below the upper

bound. In contrast to this, relatively large amounts of insulin or insulin analogues are injected

or infused in postprandial glucose control. This mimics the physiological response of healthy

individuals to rising glucose concentrations in the blood [20, 92]. Insulin concentrations in

physiological scenarios are usually lower than 150 µU ·ml−1 (≈ 0.93 nM) [52]. Postprandial

plasma insulin concentration after a standard meal peaks at 60−80 µU ·ml−1 [62,63], which

is about 0.35 − 0.5 nM and also below the proposed upper bound. Additionally, hepatic

insulin degradation is predominant below 1 nM insulin (Figure 2.6) and glucose uptake of

adipocytes is strongly, but not fully activated [91].

Therefore, the theoretical upper bound for reasonable therapeutic insulin concentrations

in rats (about 3 nM) lies significantly above therapeutic insulin levels in humans (about

0.5 nM). We suppose that the upper bound for reasonable therapeutic insulin concentrations

in man is relatively close to the value postulated for rats.

Altogether, mathematical analysis and experimental results indicate that peak concentra-

tions in insulin therapy are below the upper bound where a higher insulin concentration does

not result in a stronger physiological effect.

2.6 Conclusions

The presented dynamic model describes in vivo insulin dynamics and hepatic insulin receptor

activation in the rat. Model parameters are taken from in vitro experiments and other

models. Using these parameter values, the model is able to reproduce experimental data

sets from literature without parameter estimation.

The vast majority of statements about insulin degradation and insulin clearance in the

literature is given without explicitly defining the corresponding insulin concentration, and

the reported values widely vary. Mathematical analysis shows that relative contributions of

the liver and the kidney to total insulin degradation highly depend on the insulin concentra-

tion. At low insulin concentrations, insulin is mainly degraded by the liver, whereas renal
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insulin degradation is predominant at high insulin concentrations. This explains variations

in reported values of relative contributions to insulin degradation.

Mathematical analysis also shows that insulin clearance strongly depends on the insulin

concentration, which explains variations in literature data. Due to the concentration depen-

dence of insulin clearance, measurements should always be performed at a constant insulin

concentration and the insulin concentration during the measurement should also be given.

This however is uncared-for in many studies from the literature.

The analysis of the relative contributions to insulin degradation and the dose-response

characteristics of insulin receptor activation and glucose uptake imply the existence of an

upper bound for reasonable therapeutic insulin concentrations. Higher insulin concentrations

do not result in higher glucose uptake and additional insulin is degraded without having ther-

apeutic effect. However, the upper bound for reasonable therapeutic insulin concentrations

is above peak concentrations in insulin therapy.

The model presented here can be used as a starting point for in vivo modeling and anal-

ysis of the signaling cascades emerging from the hepatic insulin receptor (e.g. MAP kinase

cascade and PI3K pathway). This will significantly contribute to understanding the effect

of insulin on hepatocytes. In particular, insulin signaling is modulated by feedback phos-

phorylation of several sites on the receptor and IRS [33]. To understand these effects in

vivo, much more detailed models reflecting complex formation at the receptor and regu-

latory phosphorylation are necessary. However, due to combinatorial complexity in signal

transduction (Section 1.3), it is only possible to model the insulin signaling system in such

detail if a reduced order description is performed.

The next chapter gives an introduction to model reduction which aims at replacing large

models by smaller ones while preserving a high approximation quality. However, the pre-

sented methods are only partly applicable to biological signal transduction systems and even

the existing specialized techniques cannot address all systems. In particular, a major draw-

back of most model reduction methods is that a potentially very large conventional model

is required before the reduced order model can be generated.

Layer-based modeling, a new approximative but accurate technique, was developed to

overcome the limitations resulting from combinatorial complexity. After the introduction to

model reduction (Chapter 3), layer-based modeling is introduced in Chapter 4.
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Conventional deterministic models of biological systems often consist of many ODEs. As

shown in Section 1.3, this holds in particular for models of signaling systems with inher-

ent combinatorial complexity. Using such large models to perform many numerical simula-

tions, e.g. for the estimation of parameter values or for model analysis, is extremely time-

consuming and rarely possible. This demonstrates the need for reduced order models with

a high approximation quality allowing the modeler to perform simulations with acceptable

computational effort.

This chapter gives an introduction to model reduction, i.e. the approximation of a large-

scale dynamic system by a reduced order model, and introduces the most important techniques

for the reduced order modeling of cellular signaling systems.

A frequently applied method for the modeling of signaling systems is that of intuitive model

reduction. Section 3.1 discusses this heuristic approach and its often insufficient approxi-

mation quality. Formal considerations about systematic model reduction are given in Sec-

tion 3.2. This introduction is followed by Section 3.3 containing a short review of matrix

decomposition methods which are the basis of many model reduction approaches.

Some methods for the reduction of linear systems are shortly introduced in Section 3.4.

As biological signal transduction systems are usually nonlinear, these techniques can only be

applied to linearized systems, which may have lost interesting dynamic properties and are not

a valid global description. Section 3.5 introduces proper orthogonal decomposition (POD),

which can also be applied to nonlinear systems, and shows that it is in most cases not suited

for the modeling of signaling systems. Model reduction methods basing on time hierarchy

are introduced in Section 3.6. A focus in these descriptions is on the assumptions of rapid

equilibrium and quasi-steady-state that are of high importance in the modeling of biochemical

systems.

Domain-oriented model reduction allows for an exact description of macroscopic quantities

with a reduced order model. This specialized model reduction technique for biological signal

transduction systems is introduced in Section 3.7.

3.1 Intuitive model reduction

A frequently used approach for the modeling of cellular signaling systems is to simplify

the combinatorial variety by focusing on small subsets of the possible reactions and com-

plexes [34–41]. In most cases, a temporal order of the considered processes is assumed which

leads to highly branched signaling networks being simplified to ordered pathways.
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This method can work well, but there are also cases in which the simulations show a poor

accuracy when compared to those of a model considering all possible complexes and reactions.

As apparently well-founded assumptions may result in large approximation errors [93], it is

very difficult to decide which reactions and complexes can be neglected.

In intuitively reduced models, most processes only occur if certain preconditions are ful-

filled. As an example, it is often assumed that a binding site on a receptor can only be

phosphorylated if a ligand is bound to the receptor or if the receptor is dimerized [39–41].

This strongly reduces the number of necessary state variables and reactions, since a highly

branched reaction network is replaced by a reaction chain. However, there may be dramatic

consequences for the approximation quality (see below).

Kholodenko et al. [39] applied the intuitive model reduction approach to EGF signal-

ing. They replaced parts of this highly branched reaction network by a chain of reversible

reactions. Receptor activation is described by the sequence: EGF binding to the recep-

tor monomer, dimerization of liganded receptors, receptor dimer phosphorylation, effector

binding. At the first glance, this sequence corresponds to biological knowledge. However,

implications of this reaction chain are that EGF dissociation from the receptor is not pos-

sible as long as the receptor is dimerized and that dissociation of the receptor dimer is not

possible as long as the receptor is phosphorylated. Some of the model assumptions are ques-

tionable, however, simulation results are comparable to those of a model that accounts for

combinatorial complexity [94].

It was also shown for a model of FcǫRI signaling [95] that for some parameter values

(including the nominal ones) an intuitively reduced model can be a good approximation

of a conventional model considering all possible protein complexes and reactions [96]. The

structure of the reduced order model (i.e. the temporal order of the processes) however

depends on the parameter values of the reaction network [96]. An enormous problem is that

these parameter values are often not known and can only be estimated after the set-up of

the model equations (for which they are necessary).

3.1.1 Exemplification of intuitive model reduction

In an example system also used in other chapters, a receptor can bind a ligand L and

perform autophosphorylation. An effector E can bind to the phosphorylated binding site on

the receptor. To simplify the discussion, the receptor is denoted as D in the conventional

detailed model and as R in the reduced order model. A conventional model contains six

receptor species connected by seven reactions.

D[0, X] + L ⇌ D[L,X] k1 k−1

D[0, 0] ⇌ D[0, p] k2 k−2

D[L, 0] ⇌ D[L, p] k3 k−3

D[X, p] + E ⇌ D[X,E] k4 k−4

(3.1)

The first rule expands to three reactions and the second rule corresponds to two reactions.

Note that the second and the third reaction are no rules.
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Applying the intuitive reduction approach, it is assumed that the processes only take place

in the temporal order: ligand binding, receptor phosphorylation, effector binding.

R + L ⇌ RL k1 k−1

RL ⇌ RLp k3 k−3

RLp+ E ⇌ RLE k4 k−4

(3.2)

Describing the system by this chain of three reactions including only four receptor species

neglects ligand dissociation from phosphorylated receptors as well as phosphorylation and

dephosphorylation of unliganded receptors. The problematic (implicit) assumption in this

reaction chain is that receptor phosphorylation prevents ligand dissociation.

We perform a stationary model analysis to investigate the consequences of these sim-

plifications. The stationary concentrations of the species can be obtained from the ODEs

describing the dynamics of the systems which can be derived as discussed in Section 1.2.3.

After replacing one ODE of each model by a conservation relation for the receptor and set-

ting all derivatives to zero, the equations can be analytically solved for the concentrations

of the species. For the sake of simplicity, we assume that the concentrations of L and E are

constant.

As degrees of occupancy are important characteristics of such a system [97], we look at the

fraction of liganded receptors FL, whose stationary value is given by relatively simple analytic

expressions in both models. In the stationary analysis of FL, only the equilibrium constants

Ki, which are the quotients of the kinetic parameters ki and k−i, occur. As the expressions

for FE (fraction of receptors with a bound effector) and Fp (fraction of phosphorylated

receptors) in the conventional model are quite cumbersome and also depend on ki and k−i,

we do not give the equations here and only discuss FL.

The stationary fraction of liganded receptors FL,c in the conventional model is given as

FL,c =
D[L, 0] +D[L, p] +D[L,E]

Rtot

=
K1L

1 +K1L
= 1−

1

1 +K1L
(3.3)

where Rtot is the constant sum of all receptor species. The fraction of liganded receptors

FL,r in the intuitively reduced model is

FL,r =
RL+RLp+RLE

Rtot

=
K1L(1 +K3 +K3K4E)

1 +K1L(1 +K3 +K3K4E)

= 1−
1

1 +K1L(1 +K3 +K3K4E)
.

(3.4)

It is obvious that in most cases FL,c 6= FL,r. Nevertheless, FL,c = FL,r holds in some

scenarios. FL,c = FL,r = 0 holds for K1 = 0 or L = 0. For L or K1 going to infinity, the

limit of the degree of occupancy FL equals one in both models.

The conditions K1 = 0 and L = 0 are trivial and indicate that FL equals zero if there is

no ligand binding or no ligand. It is also trivial that the limit of FL is one for L → ∞ or

K1 →∞, as in these cases ligand binding is infinitely strong.

For K3 = 0, i.e. if there is no receptor phosphorylation, it holds that FL,c = FL,r,

independently of the (finite) values of the other equilibrium constants. This results from
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Figure 3.1: Stationary approximation error of intuitive model reduction

The stationary approximation error FL,r − FL,c is shown as a function of K1 · L and K3.

Note that L and K1 occur in FL,r −FL,c only as their product (Equations 3.3 and 3.4). The

same holds for K4 and E. Several scenarios characterized by different assumptions for E ·K4

are analyzed. A) Approximation error for E ·K4 = 10−4 ·K3. B) Approximation error for

E ·K4 = 10−2 ·K3. C) Approximation error for E ·K4 = K3. D) Approximation error for

E ·K4 = 102 ·K3. E) Approximation error for E ·K4 = 104 ·K3. F) Approximation error

for E ·K4 = 106 ·K3.
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Figure 3.2: Stationary approximation error for parameter values from literature

Parameter values for insulin signaling were taken from literature (Table 4.1 on page 83)

to investigate the stationary approximation error FL,r − FL,c in a realistic situation. The

relevant values are: K1 = 2.5 nM−1, K3 = 6, K4 = 0.29204 nM−1 and E = 250 nM .

the reaction chain in the reduced order model (Equation 3.2) where the dissociation of L

is not possible for receptors that have a phosphorylated binding site. Therefore, receptor

phosphorylation induces a potentially very large approximation error.

The difference between FL,r and FL,c is in the interval 0 ≤ FL,r − FL,c < 1 and increases

with increasing values of K3, K4 and E. Furthermore, it holds that

lim
K3→∞

FL,r = lim
K4→∞

FL,r = lim
E→∞

FL,r = 1 (3.5)

independently of the (nonzero and finite) values of the other equilibrium constants and

concentrations. Obviously, this does not hold for FL,c which is independent of K3, K4 and

E (Equation 3.3).

A detailed analysis of the stationary approximation error FL,r−FL,c is shown in Figure 3.1.

If one looks at fixed values of K3 and K4 ·E, the approximation error is small for extremely

low and extremely high values of K1 ·L, which correspond to the trivial situations of almost

no ligand binding and almost complete ligand binding. For intermediate values of K1 · L,

the approximation error can be very large. For constant values of K1 ·L, the approximation

error increases with increasing values of K3 and K4 ·E. This results from the reaction chain

in the reduced order model where receptor phosphorylation prevents ligand dissociation

(Equation 3.2). For increasing values of K3 and K4 ·E, more receptors are trapped in states

where ligand dissociation is not possible.

Peak values of the stationary approximation error FL,r−FL,c almost equal 1 which means

that almost all receptors in the reduced order model are liganded, whereas the vast majority

of receptors in the conventional model is not. This is the theoretical worst case and occurs

in many different scenarios (Figure 3.1).
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The stationary approximation error FL,r−FL,c was investigated for insulin signaling where

L corresponds to insulin (Figure 3.2). Parameter values from literature were taken for all

equilibrium constants and the concentration of E, corresponding to Shc or IRS (Table 4.1

on page 83). For physiological insulin concentrations (below 1 nM [52]), the stationary

approximation error FL,r − FL,c is quite high, whereas it is lower for supraphysiological

insulin concentrations.

Altogether, the analysis of a small example system shows that the intuitive model reduction

approach can have a very high approximation error. The approximation quality strongly

depends on the kinetic parameters and the concentrations of the participating signaling

proteins. No other satisfying method than comparing the simulation results with those of

a conventional model has been proposed to decide if the intuitively reduced model is an

adequate representation of the system [96]. Therefore, this approach should only be used

after a careful preceding analysis requiring knowledge about the parameter values.

3.2 General considerations about model reduction

The starting point of common model reduction techniques is a conventional model

ẋ = f(x, u) , y = h(x, u) (3.6)

where x ∈ R
n denotes the state vector, u ∈ R

m the system inputs and y ∈ R
q the system

outputs. The objective of model reduction is to find another mathematical representation

of the dynamic system which allows one to approximately describe the output variables by

a reduced state vector [98]. In order to achieve this reduction, one has to transform the

original dynamic system to new coordinates z ∈ R
n where z = φ(x). It is required that this

generally nonlinear transformation is a diffeomorphism, which means that the function φ is

invertible and smooth and that φ(0) = 0. Additionally, we require that the transformation

separates the states z1 that have a strong impact on the output variables from the states z2

that have only little influence on them. The transformed system is given as
[
ż1

ż2

]
=

[
g1(z1, z2, u)

g2(z1, z2, u)

]

y = h∗(z1, z2, u).

(3.7)

If g1 and h∗ only depend on z1 and not on z2, the differential equations for z2 can simply

be omitted. In this case, it is guaranteed that the reduced order model has exactly the

same input/output behavior as the original model (Equation 3.6). However, such an exact

reduction is only possible in a restricted number of cases [93, 99]. Therefore, the states z2

usually have to be approximated from the states z1. If such an approximation z2 ≈ ψ(z1) is

found, a reduced order model with y∗ ≈ y is given as

ż1 = g1(z1, ψ(z1), u)

y∗ = h∗(z1, ψ(z1), u).
(3.8)

In the next section, we review matrix decomposition methods which are the basis for

several model reduction techniques.
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3.3 Matrix decomposition

Some of the model reduction techniques presented in the following sections base on matrix

decomposition. We shortly review the eigenvalue decomposition (EVD) and the singular

value decomposition (SVD) to simplify the understanding of these methods.

3.3.1 Eigenvalue decomposition (EVD)

A nonzero vector vi ∈ C
n is an eigenvector of a matrix A ∈ R

n×n if it satisfies the eigenvalue

equation

Avi = λivi ⇐⇒ (A− λiIn)vi = 0 (3.9)

where λi ∈ C is the eigenvalue corresponding to vi and In ∈ R
n×n is the identity matrix [100].

Nontrivial solutions for the vectors vi (vi 6= 0) exist only if (A− λIn) is singular. Therefore,

the eigenvalues λi can be computed as solutions of the characteristic equation

det(A− λIn) = 0. (3.10)

The corresponding eigenvectors can be computed by Equation 3.9.

If there are n linearly independent eigenvectors vi, the matrix T = [v1 . . . vn] can be used

for a similarity transformation

Λ = T−1AT (3.11)

where Λ ∈ R
n×n is a diagonal matrix with the diagonal elements λi [100]. This is widely

used for the diagonalization of linear systems [98] (see Section 3.6).

3.3.2 Singular value decomposition (SVD)

The singular value decomposition (SVD) of a rectangular matrix X ∈ R
n×m, n ≤ m is given

as

X = UΣV T =
n∑

i=1

σiuiv
T
i (3.12)

where U = [u1 . . . un] ∈ R
n×n and V = [v1 . . . vm] ∈ R

m×m are orthogonal (or unitary in the

case of complex matrices), i.e. UUT = In and V V T = Im [98, 100].

The matrix Σ ∈ R
n×m has the diagonal elements Σii = σi, i = 1, . . . , n and zeroes

elsewhere. These diagonal elements σi (σ1 ≥ σ2 ≥ · · · ≥ 0) are called singular values of X.

The columns ui and vi of the matrices U and V are called left and right singular vectors of

X, respectively.

The singular vectors ui and vi are the eigenvectors of XXT and XTX, respectively, and

the singular values of X are the square roots of the corresponding eigenvalues of XXT [98].

σi =
√
λi(XXT ) (3.13)

The matrix X can be approximated by a matrix of rank k < n, optimally in the 2-induced

norm, as

X = UΣV T ≈ UkΣkV
T
k =

k∑

i=1

σiuiv
T
i (3.14)
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where Uk ∈ R
n×k and Vk ∈ R

m×k contain the first k < n columns of U and V , respectively,

and Σk ∈ R
k×k is a diagonal matrix with σi, i = 1, . . . , k as the diagonal elements [98]. The

error of this approximation is very small if the singular values σj for some j > k are much

smaller than the other ones.

3.4 Methods for linear systems

Several methods exist for the reduction of linear systems.

ẋ = Ax+Bu

y = Cx+Du
(3.15)

A detailed introduction is given in the textbook of A. C. Antoulas [98], a more condensed

review is given in [101]. As biological signal transduction systems are nonlinear, we only

provide a very short overview about these linear techniques.

SVD-based methods: Two SVD-based model reduction techniques, namely balanced

truncation and Hankel norm approximation, base on the observation that there is a set of

invariants belonging to every time-invariant stable linear system. These invariants are called

Hankel singular values σi and determine the complexity of the reduced order system. Hankel

singular values are a measure for the contribution of the states in a balanced representation

to the energy transfer from the system inputs to the outputs. Their values are given as the

square roots of the eigenvalues of PQ, where P andQ are the controllability and observability

gramians, respectively.

P =

∞∫

0

eAtBBT eAT tdt , Q =

∞∫

0

eAT tCTCeAtdt (3.16)

In balanced truncation, a state space transformation x = Tz is used to get equal and diago-

nal gramians P̂ = Q̂ = diag(σ1 . . . σn). The transformed system is a balanced representation

of the original system (Equation 3.15) and is given as

[
ż1

ż2

]
=

[
Â1,1 Â1,2

Â2,1 Â2,2

] [
z1

z2

]
+

[
B̂1

B̂2

]
u

y = Ĉ1z1 + Ĉ2z2 +Du.

(3.17)

Model reduction is possible by neglecting the parts of the model that belong to the smallest

Hankel singular values. This means that all states z2 are neglected that both are difficult to

control and difficult to observe. The states z2 can be set to zero resulting in a reduced order

model

ż1 = Â1,1z1 + B̂1u

y = Ĉ1z1 +Du.
(3.18)
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These SVD-based methods preserve stability and guarantee global error bounds. However,

they are characterized by a high computational effort [98]. Balanced model reduction

was modified for nonlinear systems leading to the method of empirical gramians which is

characterized by an enormous computational complexity [98,101].

Krylov-based methods: In contrast to the SVD-based methods, Krylov-based methods

(or moment matching-based methods) do not rely on the computation of singular values.

They are iterative in nature and base on moment matching of the impulse response of the

system. Their aim is to find a reduced order model whose transfer function gives a series

expansion around a specific frequency such that the first coefficients have the same values as

those of the original system. Two widely used Krylov methods are the Lanczos and Arnoldi

processes which can be applied to very large systems. Both methods have the drawbacks

that stability of the reduced order model is not necessarily preserved and that there is no

global error bound [98,101]. An extension of these methods (implicit restart) however, pre-

serves stability.

Another class of methods tries to combine the advantages of the SVD-based methods and

the Krylov methods and is referred to as SVD-Krylov-based approximation methods [101].

3.5 Proper orthogonal decomposition (POD)

POD is an application of the SVD to the approximation of general dynamic systems [98].

The starting point of the model reduction procedure is a trajectory of the original system

(Equation 3.6) subjected to an input signal u(t). A matrixX ∈ R
n×N (N ≫ n) is constructed

whose columns are samples of the state x at given points in time ti which are referred to as

snapshots x(ti).

X = [x(t1) x(t2) . . . x(tN)] (3.19)

To approximate the system, the SVD of the snapshot matrix X (Equation 3.12) is computed.

A reduced order system with UT
k Uk = Ik, Uk ∈ R

n×k and z1 ∈ R
k, k < n is given as

ż1 = UT
k f(Ukz1, u)

y = g(Ukz1, u)
(3.20)

where the approximation z1 evolves on a k-dimensional subspace spanned by the leading k

left singular vectors of X [101].

The order k of the reduced system is chosen such that σk ≫ σk+1. The (approximative)

transformation between the lower-dimensional state z1 and the original state x is given by

z1 ≈ UT
k x

x ≈ Ukz1.
(3.21)

Note that the SVD of X and the resulting reduced order model depend on the chosen input

function u(t) and the points in time at which the snapshots x(ti) are taken.
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The reduced order model (Equation 3.20) is not always able to approximate other tra-

jectories than the one taken for the generation of the snapshot matrix X. To improve the

ability of the reduced order model to approximate the system behavior for different input

functions, s matrices of time-snapshots Xi corresponding to different input functions can be

combined to a larger matrix X.

X = [X1 . . . Xs] (3.22)

However, this improved approximation quality often comes at the price of a higher order of

the reduced model.

A basic feature of the POD is that a model of the system (with all parameter values being

known) has to be simulated before the reduced order model can be generated because the

singular values and the matrix Uk depend on the parameters of the system. Therefore, it

is not possible to use the reduced order model (Equation 3.20) for parameter identification.

As it will be shown below, this is possible when applying other model reduction techniques.

Another disadvantage of the POD is that outputs corresponding to concentrations which per

se have positive values can become negative.

Altogether, POD is highly valuable for many applications. However, it is usually not

suited for the modeling of biochemical signaling systems, since in many cases parameter

estimation is necessary and negative concentrations are physically impossible.

3.6 Model reduction based on time hierarchy

The processes defining the dynamics of a system can usually be clustered by their velocity

into three classes [22], which can be exploited for model reduction.

The slow class comprises the processes that can be neglected because they have almost no

impact on the system dynamics in the time frame of interest. For instance, if one is interested

in the fast dynamics of the metabolism or cellular signaling which have time constants of

minutes or seconds, the dynamics of gene expression having time constants of hours can be

neglected. In the following discussions, we assume that all state variables that show very

slow dynamics are already eliminated from the model by setting them to constant values.

The fast class comprises the processes that are so fast that their dynamics are not visible

in the time scale of interest because their transient behavior declines instantaneously. This

is used for model reduction by applying the quasi-steady-state approximation (Section 3.6.1)

and the rapid equilibrium assumption (Section 3.6.2). The necessary stability conditions for

this rapid decline are given by Tikhonov’s theorem [22]. If they are not satisfied, there can

also be very fast oscillations or other complex behavior which may get lost if one assumes a

rapid decline of the transient behavior of the fast processes.

The central class comprises the processes moving on the time scale of interest which should

be included in the model.

Simulation of a system is very difficult if there are processes on different time scales. During

the simulation of such stiff systems, numerical instability can occur if the step size is not

chosen to be sufficiently small. Removing the extremely fast dynamics does not only lower
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the order of the model, but also reduces its stiffness and simplifies numerical simulations.

We exemplify model reduction based on time scales for linear systems, before we introduce

the quasi-steady-state approximation and the rapid equilibrium assumption which both are

highly suited for the reduction of chemical reaction systems.

A linear system (Equation 3.15) can be diagonalized by a similarity transformation x = Tz

if the dynamic matrix A has n linearly independent eigenvectors [98] (see Section 3.3.1).

[
ż1

ż2

]
=

[
Â1 0

0 Â2

] [
z1

z2

]
+

[
B̂1

B̂2

]
u

y = Ĉ1z1 + Ĉ2z2 +Du

(3.23)

The diagonal matrices Â1 and Â2 have the eigenvalues of A as diagonal elements and it holds

that Â = T−1AT , B̂ = T−1B, Ĉ = CT and z(0) = T−1x(0).

Let us assume that the transformation is chosen such that the states z2 show much faster

dynamics than the states z1. If one is only interested in the dynamics of the central class

of processes, the system can be approximated by setting ż2 = 0. This corresponds to the

assumption of a rapid decline of the (stable) dynamics of z2 to a value given by z2 = −Â−1
2 B̂2u

and results in a reduced order system

ż1 = Â1z1 + B̂1u

y = Ĉ1z1 − Ĉ2Â
−1
2 B̂2u+Du.

(3.24)

3.6.1 The quasi-steady-state approximation

A general nonlinear system is given as

[
ẋ1

ẋ2

]
=

[
f1(x1, x2, u)

f2(x1, x2, u)

]

y = h(x1, x2, u).

(3.25)

Assume that changes in the values of the state variables x2 are dominated by processes of

the fast class whose transient behavior rapidly declines. Model reduction can be performed

by assuming that the state variables x2 are quasi-stationary. This is done via a singular

perturbation, i.e. by setting ẋ2 = 0. Setting ẋ2 = 0 corresponds to the assumption of a

rapid decline of the dynamics of x2 and does not necessarily mean that the value of x2 is

constant. If the equation f2(x1, x2, u) = 0 can be solved for x2 = ψ(x1, u), the reduced order

model is given as

ẋ1 = f1(x1, ψ(x1, u), u)

y = h(x1, ψ(x1, u), u).
(3.26)

In reaction networks, the quasi-steady-state approximation can be applied on components

with low concentrations that are subjected to large fluxes [21]. This typically occurs if

the production of a species is performed by processes that are significantly slower than
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the consumption processes. In this case, the consumption of this species approximately

equals its production and the concentration of this species is low. The quasi-steady-state

approximation is often used to simplify rate laws of complex mechanisms [21], e.g. in enzyme

kinetics (Section 3.6.3).

In a simple example, A is irreversibly converted to B which is converted to C. The first

order constants of the reactions are k1 and k2.

A
k1→ B

k2→ C (3.27)

The ODEs for the concentrations of the three compounds are given as

d

dt
A = −k1 · A

d

dt
B = k1 · A− k2 ·B

d

dt
C = k2 ·B.

(3.28)

If k1 ≪ k2 almost all molecules of B that are synthesized are immediately degraded.

k1 · A ≈ k2 ·B (3.29)

The resulting approximation for the concentration of B shows that the concentration of B

is much smaller than the concentration of A.

B ≈
k1

k2

· A (3.30)

Equations 3.28 and 3.29 imply d
dt
B ≈ 0. However, the concentration of B is only constant

if the concentration of A is constant. In all other cases, the concentration of B very rapidly

equals a value defined by Equation 3.30. Using the quasi-steady-state approximation for B

(Equation 3.30), one can simplify Equation 3.28 to a reduced order system

d

dt
A = −k1 · A

d

dt
C = k1 · A

(3.31)

where the dynamics of C only depends on k1, the rate constant of the slow process.

Altogether, the quasi-steady-state approximation allows for an approximative model re-

duction by eliminating species with low concentrations that show a strong turnover.

3.6.2 The rapid equilibrium assumption

If the parameters ki and k−i of a reaction

... ⇌ S
ri

⇌ P ⇌ ...

ri = ki · S − k−i · P
(3.32)
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are much larger than the parameters of the remaining reactions, the quotient P/S will, after

a short period of time, approximately equal the equilibrium constant [22].

P

S
≈

ki

k−i

= Ki (3.33)

Due to the high values of ki and k−i, this does not mean that the flux ri is small. Equa-

tion 3.33 can be used to replace one ODE of the system. The resulting reduced order model

provides a good approximation of the dynamics after a short initial time span (or for all

times if the initial conditions already fulfill Equation 3.33) [22]. Rapid equilibrium can be

assumed for all fast reactions of a network, which may lead to a significant reduction of the

system order.

In many cases, the rapid equilibrium assumption and the quasi-steady-state approxima-

tion lead to similar results. An example also showing a major difference between the two

approximation methods is given in Section 3.6.3. For applying the quasi-steady-state ap-

proximation one needs to know the values of all kinetic parameters, whereas for the rapid

equilibrium assumption it is sufficient to know the equilibrium constants of the fast reac-

tions. If only qualitative features about the reaction velocities are known whereas the values

of the kinetic parameters are not, model reduction can nevertheless be performed if certain

reactions are fast compared to the others (rapid equilibrium) or if there are strong fluxes

through components with low concentrations (quasi-steady-state). In this case, the reduced

order model can be used for parameter estimation.

Both methods are highly suited for the reduction of cellular signaling systems. However,

they have the drawbacks that a potentially very large conventional model is necessary and

that each application of the rapid equilibrium assumption or the quasi-steady-state approx-

imation only leads to an order reduction of one which necessitates many assumptions.

3.6.3 Enzyme kinetics

A simplified formal description of enzyme activity that bases on mass action kinetics was

introduced by L. Michaelis and M. Menten [21, 22]. They assumed that a substrate S

associates with an enzyme E and forms an enzyme-substrate complex ES. The enzyme

converts S to the product P and releases P .

S + E ⇌ ES k1 k−1 (3.34a)

ES → E + P k2 (3.34b)

Assuming that ES is quasi-stationary and introducing the constant total enzyme concen-

tration Etot = E + ES as well as the Michaelis constant KM = k
−1+k2

k1
results in a reaction

rate which is a saturable function of the substrate concentration S and only depends on the

constants KM and rmax = k2 · Etot.

r = rmax ·
S

KM + S
(3.35)
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The maximal rate of product formation is rmax, and KM is the substrate concentration at

which the reaction rate r equals 0.5 · rmax. A reaction following Michaelis-Menten kinetics

can be formulated according to the generalized law of mass action (see Section 1.2.3)

S → P
rmax

KM + S
(3.36)

which leads to a reaction rate defined by Equation 3.35. There exist several extensions of

Michaelis-Menten kinetics that can also be formulated according to the generalized law of

mass action [22].

Almost the same result can be obtained if one applies the rapid equilibrium assumption

on the reaction describing substrate binding (Equation 3.34a), which for KM = k
−1

k1
also

leads to Equation 3.35. Since it usually holds that k−1 ≫ k2, the difference in the resulting

kinetics for both assumptions is small. Additionally, in vitro studies usually determine KM

directly so that it is not necessary to specify the underlying assumption.

3.7 Domain-oriented model reduction

Domain-oriented model reduction is a specialized technique for cellular signal transduction

systems. State variables in domain-oriented models are macroscopic quantities, such as levels

of occupancy or degrees of phosphorylation. They represent the state of domains (functional

components of proteins) which are the fundamental elements of signal transduction [97].

Domain-oriented model reduction is also referred to as exact model reduction because the

dynamics of macroscopic quantities are exactly preserved. In the last few years, two domain-

oriented techniques have been developed [93,99].

Borisov et al. proposed the first macroscopically exact approach to reduce the enormous

amount of possible model equations [99]. The starting point is a rule-based model defini-

tion from which the reduced order model is directly generated. The method exploits the

independence of distinct sites of a scaffold protein. It provides a strongly reduced model

if combinatorial complexity results from complex formation at one large scaffold binding

several proteins. Note that the method does not lead to a strongly reduced model if these

proteins are again scaffolds. Therefore, the method of Borisov et al. [99] is very valuable for

describing complex formation at one large scaffold protein, however, it cannot be applied to

many real signaling systems.

Conzelmann et al. [93] extended and generalized this approach such that it can be applied

to a large class of systems. However, for the application of this method it is necessary to

evaluate the rule-based model definition and to use a conventional ODE model as the starting

point. The conventional ODE model (that can be very large) is subjected to a hierarchically

structured linear state space transformation which results in the domain-oriented model if the

unobservable states are omitted. The formal procedure presented by Conzelmann et al. [93]

has recently been extended and improved [102, 103]. The modified approach facilitates the

generation of the exactly reduced model equations and does not require the former generation

of a complete combinatorial model any more.
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Borisov et al. automated a modification of the domain-oriented approach not requiring a

state space transformation [104]. This advantage however comes at the price of incorrectly

reduced models in some cases.

We exemplify domain-oriented model reduction according to Conzelmann et al. [93] on a

small example system with four species and two rules.

R[0, X] ⇌ R[1, X] k1 k−1

R[X, 0] ⇌ R[X, 1] k2 k−2

(3.37)

These two rules correspond to four reactions.

R[0, 0] ⇌ R[1, 0] k1 k−1

R[0, 1] ⇌ R[1, 1] k1 k−1

R[0, 0] ⇌ R[0, 1] k2 k−2

R[1, 0] ⇌ R[1, 1] k2 k−2

(3.38)

The conventional model of this system is given as

r0 = k1 ·R[0, 0]− k−1 ·R[1, 0]

r1 = k1 ·R[0, 1]− k−1 ·R[1, 1]

r2 = k2 ·R[0, 0]− k−2 ·R[0, 1]

r3 = k2 ·R[1, 0]− k−2 ·R[1, 1]

(3.39)

d

dt
R[0, 0] = −r0 − r2

d

dt
R[0, 1] = −r1 + r2

d

dt
R[1, 0] = r0 − r3

d

dt
R[1, 1] = r1 + r3.

(3.40)

As the total concentration of R is constant, one ODE could be replaced by a conserva-

tion relation for R. According to Conzelmann et al. [93], the hierarchical and reversible

transformation is given as

zXX = R[0, 0] +R[1, 0] +R[0, 1] +R[1, 1]

z1X = R[1, 0] +R[1, 1]

zX1 = R[0, 1] +R[1, 1]

z11 = R[1, 1]

(3.41)

where zXX is the overall constant concentration of R, z1X and zX1 are the degrees of occu-

pancy of the first and the second site, and z11 is a mixed degree of occupancy where both

sites are occupied.
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By differentiating the transformation equations, we get the transformed system

d

dt
zXX = 0

d

dt
z1X = r0 + r1 = k1 · (R[0, 0] +R[0, 1]︸ ︷︷ ︸

zXX−z1X

)− k−1 · (R[1, 0] +R[1, 1]︸ ︷︷ ︸
z1X

)

d

dt
zX1 = r2 + r3 = k2 · (R[0, 0] +R[1, 0]︸ ︷︷ ︸

zXX−zX1

)− k−2 · (R[0, 1] +R[1, 1]︸ ︷︷ ︸
zX1

)

d

dt
z11 = r1 + r3 = k1 · R[0, 1]︸ ︷︷ ︸

zX1−z11

+k2 · R[1, 0]︸ ︷︷ ︸
z1X−z11

−(k−1 + k−2) ·R[1, 1]︸ ︷︷ ︸
z11

.

(3.42)

If one is only interested in the degrees of occupancy z1X and zX1, the ODE for z11 can be

omitted because z11 has no influence on z1X and zX1. The ODE for zXX is also not necessary

as the total concentration of R is constant. Therefore, the domain-oriented model consists

of only two ODEs.

As in the approach of Borisov et al. [99], the performance of the extended approach [93,103]

strongly depends on the interactions in the network. Enormous reduction is possible in some

cases whereas in other cases no reduction is possible [105]. In many cases, the resulting

reduced order models still consist of too many ODEs for efficient simulation or analysis.

3.8 Conclusions

Model reduction aims at replacing a mathematical model by a reduced order model with

approximately the same input/output behavior.

The intuitive model reduction approach is frequently used in systems biology. It allows

for a strong reduction of the system order. However, as shown for an example system, it

may result in a model providing a very low approximation quality.

Very powerful model reduction techniques are available for linear systems, however, biolog-

ical systems are usually nonlinear. A frequently used technique for the reduction of nonlinear

systems is proper orthogonal decomposition (POD). Using POD for the reduction of biolog-

ical systems has several drawbacks which make the method unsuitable for this application.

In particular, POD requires a conventional model and the knowledge of all parameter values.

In addition, negative concentrations, which are physically impossible, cannot be excluded.

The quasi-steady-state approximation and the rapid equilibrium assumption are highly

suited for the reduction of biochemical systems if there is at least qualitative knowledge

about parameter values and if the necessary stability conditions are fulfilled. A drawback

of these methods is that a conventional model of the system is necessary. In addition, each

application of one of these assumptions only leads to an order reduction of one which makes

many assumptions necessary to get sufficiently small models.

In contrast to the approximative techniques, domain-oriented model reduction allows for

an exact description of macroscopic quantities. However, this method may require a high

computational effort and the resulting models can still be very large.
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Altogether, model reduction in biology is an emerging field and many problems are not

yet solved. In particular, there are many cases in which reduced order models of cellular

signaling systems showing a high approximation quality are difficult to obtain.

In the next chapter, we introduce layer-based modeling, an approximative but accurate

technique providing a solution of the model reduction problem for a large class of biological

signal transduction systems.
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4 Layer-based modeling

Layer-based modeling is a reduced order modeling technique with a high approximation qual-

ity. It is well suited for the mathematical modeling of signaling systems with inherent com-

binatorial complexity. The number of state variables in the simulation equations is highly

reduced and the resulting dynamic models show a pronounced modularity. Layer-based mod-

eling allows for the modeling of systems not accessible previously.

Section 4.1 gives a brief overview of layer-based modeling. The detailed description of

layer-based modeling starts with Section 4.2 providing some definitions and a formal intro-

duction to general concepts. In particular, it provides a precise notation of the used variables

and introduces the concepts of processes and interactions. These concepts are applied in

the construction of interaction graphs, which define the modularity of layer-based models.

Section 4.3 describes the modeling of layers and the definition of their connections. A small

example system is discussed in detail and serves to illustrate the main concepts of layer-based

modeling. Advanced strategies which often allow for a further reduction of the model size are

discussed in Section 4.4.

The mathematical background of layer-based modeling and a general discussion of the

approximation quality are given in Section 4.5. Layer-based modeling of two larger systems

is described in Section 4.6. Section 4.7 describes the most common scenarios where a strong

reduction of the model size is possible.

4.1 Introduction to the layer-based approach

Layer-based modeling allows for a macroscopic and highly reduced description of signaling

systems with inherent combinatorial complexity. A graph visualizing all processes and in-

teractions of the considered system serves to define the modules of the reduced order model

which are called layers. Layers can be modeled separately from each other once their con-

nections are defined. This strongly reduces combinatorial complexity because a significantly

decreased number of processes has to be considered in each single layer. Processes belonging

to the same layer in most cases describe the dynamics of one or two signaling proteins. The

binding of effectors to phosphorylated binding sites of these proteins is most often not ex-

plicitly considered as these dynamics are described in other layers. The different layers are

connected in a highly standardized way. Two layers either are not connected or exchange

signals that correspond to macroscopic variables describing phosphorylation and occupancy

of binding sites.

In conventional modeling, binding or modification events are often represented by a huge

number of reactions, since the involved proteins can exist in a high number of feasible
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configurations (see Section 1.3). Due to the modular structure of layer-based models and

the use of macroscopic state variables, a highly reduced number of reactions defines the

reaction network.

The number of necessary ODEs in layer-based models is dramatically reduced as well. As

an example, modeling of the insulin signaling system is possible with only 214 ODEs, instead

of the 1.5 · 108 ODEs resulting from conventional modeling (Section 1.3). Only 51 ODEs are

sufficient if additional conditions concerning the equivalence of binding sites are fulfilled.

An advantageous feature of layer-based models is that their state variables have a direct

physiological meaning. In addition, layer-based models can be directly obtained, without

the preceding generation of potentially very large conventional models. However, there

also exists a mathematical formalism to derive the reduced order model equations from a

corresponding conventional model.

Layer-based models are characterized by a high approximation quality. For physiological

parameter values, they provide a highly accurate description of the corresponding signal-

ing networks. Though layer-based modeling is an approximative technique, macroscopic

quantities are described stationarily or even dynamically exact in special cases.

4.2 Important concepts

4.2.1 Definitions

Molecule definitions: A molecule definition represents the class of possible modifica-

tions of a certain protein (or any other molecule). It consists of the molecule name that is

optionally followed by the successive definition of all sites (if there are any). A site defini-

tion consists of a comma-separated sequence of all possible modifications of this site (e.g.

unphosphorylated and phosphorylated), enclosed by curly brackets.

As an example for a molecule definition, R{0,L}{0,P} defines the receptor molecule R

with a binding site for the ligand L and a phosphorylation site. The possible modifications

(or configurations) of R are ‘0’ and ‘L’ at the first site as well as ‘0’ and ‘P’ at the second

site. The modification ‘L’ of the first site indicates the binding of L, the modification ‘P’

of the second site indicates phosphorylation. The absence of bound L or a phosphate group

is indicated by the modification ‘0’ at the corresponding site. Note that we allow for the

consideration of a bound ligand (e.g. L) as a site configuration of another molecule (e.g. R).

There can also be molecules that exist in only one configuration. Their conversion performed

by reactions results in new molecules.

Species and concentrations: Species correspond to a specific configuration of a molecule

and can be considered as instances of the corresponding molecule definitions. Notations for

species consist of the molecule name followed by the comma-separated sequence of site

configurations within one pair of squared brackets. As an example, the species R[L, P ] is a

specified configuration of the molecule R. The ligand L is bound to the first site, the second

site is phosphorylated. The species R[0, 0] defines the unphosphorylated receptor without
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ligand. If a molecule A can occur in just one state (i.e. the molecule definition is A), this

single species is also denoted as A. For the sake of simplicity, we use the same notation for

species and their concentrations.

Macroscopic variables: In domain-oriented model reduction [93,99,103] (see Section 3.7)

and layer-based modeling, variables can correspond to sums of species of a corresponding

conventional model. We call such variables macroscopic variables. Note that species can be

macroscopic variables (or macroscopic species).

Microscopic species: All species that are not macroscopic variables are microscopic

species. Microscopic species correspond to a distinct modification of a molecule and do not

represent a pool of chemical molecules or complexes with common properties. Microscopic

species are species that could also occur in a conventional model.

Macrostates and patterns: Macrostates describe macroscopic variables, e.g. degrees

of phosphorylation or occupancy, which correspond to sums of species. Their notation is

analogous to that for species, with the sole difference being that the modification ‘X’ at a

specific site indicates that all distinct modifications at this site are included. Therefore, a

site modification ‘X’ of a molecule indicates the sum of all possible modifications of this site.

As an example, the macrostate ERB[L,X,X] defines the sum of all species of the molecule

ERB that have a bound ligand at the first site, regardless of the state of the other sites.

Macrostates in rules are interpreted as patterns. Each species of the class defined by

the pattern occurs in a separate reaction when the rule is evaluated. Therefore, patterns

do not represent sums of species (as macrostates do) but each of the corresponding species

individually (see Section 1.5). Like species, macrostates can also be considered as instances

of the corresponding molecule definitions.

Note that the term macrostate is used with a slightly different meaning in other contri-

butions [93, 99], where it represents what we call a macroscopic variable (or macroscopic

species). We reserve the term macrostate for sums of species that are defined by at least one

site modification ‘X’.

Complexes: Complexes result from the association of species. A complex is represented

by a list of comma-separated species within curly brackets where the binding partner is

indicated at each occupied binding site. Indices have to be used if it is required to achieve

uniqueness.

As an example, consider the binding of a molecule R with n sites and a molecule S

with k sites. The complex of R and S is {R[m1, .., S, ...,mn], S[m1, ..., R, ...,mk]}, where

mi denotes the modification at the site position i. If we also consider another molecule

T that has q sites, the complex of R, S and T , where S and T bind to R, is denoted

as {R[m1, .., S, ..., T, ...,mn], S[m1, ..., R, ...,mk], T [m1, ..., R, ...,mq]}. This definition of com-

plex notation is very general but cumbersome in many cases.
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We introduce a simplified notation that will be used from now on. In many cases, this

notation is less cumbersome and more intuitive than the general one. Consider the case

that the molecules S and T both have only one site which is a binding site for R. The

complex of R, S and T then is R[m1, .., S, ..., T, ...,mn] and can be treated as a species of

the molecule R. If S and T have more sites, the configurations of S and T in the complex

with R can be indicated by introducing additional site modifications of the corresponding

sites on R. Another possibility is to define the class of possible complexes by a new molecule

definition which consists of a new molecule name and the sequence of site definitions of the

corresponding molecule definitions for the monomers. We exemplify this for the general case

where R has a binding site for S and n other sites, while S has a binding site for R and k

other sites. A species representing a complex of R and S is RS[mR
1 , ...m

R
n ,m

S
1 , ...m

S
k ], where

the superscripts indicate the origin of the sites. Dimerization can be treated analogously.

Due to the modular structure of layer-based models, this simplified notation is usually

more convenient than the general one, even if the signaling network is highly branched and

contains many interacting scaffold proteins.

Summary: Species and macrostates are instances of molecule definitions which in turn

define classes of species. Species can be microscopic species that correspond to a distinct

modification of a chemical molecule or complex. Species can also be macroscopic variables

that correspond to sums of microscopic species. Macrostates are macroscopic variables that

correspond to sums of species and whose hallmark is that they must contain at least one

site modification ‘X’. Patterns occurring in rules have the same notation as macrostates and

define classes of species. Each species of such a class occurs in a separate reaction when the

rule is evaluated. Following the simple notation of complexes, they are treated as species of

one of the participating molecules or as species of newly defined molecules.

4.2.2 Processes and interactions

In combinatorial reaction networks, the same molecular event often occurs in many different

reactions. The high number of reactions results from the high amount of different species

that participate in the reactions. All reactions that describe the same molecular event define

the corresponding process. For example, all reactions that change the level of occupancy or

the degree of phosphorylation of a specific site belong to the same process. Note that the

inverse molecular event also belongs to the same process, which means for example that the

process of effector binding also contains all reactions describing effector dissociation.

The reactions of a process may either be parameterized by the same or by different kinetic

constants depending on the presence of process interactions. Interactions between processes

result in different parameter values for different reactions of the same process. This means

that the reactions of a process that is influenced by other processes are not parameterized by

the same kinetic constants. If the reaction parameters of a process depend on a modification

that is performed by another process, these two processes interact with each other. If the

reaction parameters of two processes do not depend on the state of the corresponding other
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Figure 4.1: Types of interactions between processes

Reactions are indicated by arrows. The reaction rate for each reaction is according to the

generalized law of mass action (Section 1.2.3). It is denoted as di and parameterized by ki

and k−i. A) Visualization of a graded interaction or no interaction between the processes

of L binding and D phosphorylation. A graded interaction is present if at least one of

the conditions k1 = k3, k−1 = k−3, k2 = k4 and k−2 = k−4 is violated. If all conditions

are fulfilled, the processes do not interact. B) Visualization of an all-or-none interaction

between the processes of binding site phosphorylation and E binding. E can only bind to

phosphorylated sites, while the dephosphorylation of D is only possible in the absence of

a bound effector. C) The reaction cycle degenerates to a reaction chain, as the species

D[0, 0, E] does not exist. In this case, the notation can be simplified by describing binding

site phosphorylation and E binding as modifications of the same site.

process, these two processes do not interact.

Identifying the processes of the system as well as their interactions is the first step in layer-

based modeling and finally defines the modularity of the model (see Section 4.2.3). There

exist three structurally different types of interactions between processes: graded interaction,

all-or-none interaction or no interaction.

Graded interaction: Processes that undergo graded interactions can influence each other

in arbitrary ways. A typical case is the binding of a ligand that influences the kinetic param-

eters for receptor phosphorylation (Figure 4.1 A). Graded interactions can be unidirectional

or mutual. In the example shown in Figure 4.1 A, receptor phosphorylation may, but does

not have to influence the kinetic parameters for ligand binding. If each process is defined by

two reactions, these four reactions can be arranged as a reaction cycle. If the processes are

defined by more reactions, there are also more cycles.
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All-or-none interaction: All-or-none interactions are a limiting case of graded interac-

tions, where both processes can only occur under certain preconditions, provided by the

other process. A typical case is the interaction of the processes of binding site phosphory-

lation and effector binding (Figure 4.1 B). The effector can only bind if the binding site is

phosphorylated. Additionally, the dephosphorylation of the binding site is only possible if

the site is not occupied. A hallmark of all-or-none interactions is the degeneration of reaction

cycles to reaction chains (Figure 4.1 C).

Phosphorylation and effector binding are the most common examples of processes that

undergo an all-or-none interaction. To simplify the discussion, and without loss of gener-

ality, we will always assume that the processes that undergo all-or-none interactions are

phosphorylations and effector bindings.

No interaction: The third type of interaction, also a limiting case of graded interactions,

is that the processes do not interact. Kinetic parameters of each process are not influenced

by the other process (Figure 4.1 A).

4.2.3 The interaction graph and layers

The interaction graph is a systematic visualization of the considered processes and their

interactions. After identifying the processes and their interactions, building the interaction

graph is the second step in layer-based modeling. In the interaction graph, boxes representing

the processes are connected by lines indicating their interactions. All-or-none interactions

are represented by green lines, graded interactions are represented by red lines. Figure 4.2

shows the interaction graphs of two example systems discussed in Sections 4.3.6 and 4.6.1.

The third step in layer-based modeling consists in determining the modularity of the model

from the interaction graph. All processes that are directly or indirectly connected by graded

interactions (represented by red lines) form a module that is called layer. The set of these

processes can be directly obtained from the interaction graph. Note that layers may only

contain a single process, and that there may be many layers.

The connectivity of the layers is defined by all-or-none interactions between the processes of

different layers. After the definition of the connections, the layers are modeled independently

from each other, as if all processes belonging to other layers do not exist.

In contrast to other modularization techniques [106–109], where the modularity is deduced

from the entire model, layers can be modeled independently from each other once their con-

nections are defined. This may give the impression that the modeler defines the modularity,

however, the modularity is uniquely defined by the interaction graph. Once the modeler

has defined which processes interact in which way, there is only one way of influencing the

modularity, which is to merge two or more layers into a larger one.
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phosphorylation
binding site

phosphorylation
regulatory

binding
ligand

ligand binding

phosphorylation
binding site

all−or−none
graded

E binding

phorylation

E binding

E phos−

F binding

A

B

Figure 4.2: Interaction graphs of two example systems

All processes (white boxes) that are coupled by graded interactions (red lines) are described

in the same layer (blue boxes). Processes of different layers are only connected by all-or-

none interactions (green lines) or do not interact. A) Interaction graph of a small example

system which is discussed in Section 4.3.6. Processes considered are ligand binding, binding

site phosphorylation and effector binding. B) Interaction graph of an extended example

system (discussed in Section 4.6.1) illustrating the successive arrangements of layers.

4.2.4 Mass flow and signal flow

In this subsection, we discuss the characteristics of mass flows and signal flows, and their

occurrence in layer-based modeling. This helps in the understanding of basic principles of

layer-based modeling, as the flows within layers and between layers are qualitatively different.

Mass flow: Each reaction defines a transition between species whose quantity is given by

the reaction rate. We refer to these transitions as mass flows. Mass flows occur within layers

and do not cross layer boundaries.

In a technical block diagram, a reaction is represented by a converter connected to storages

whose potentials represent the concentrations of the reactants and products. The potentials

75



4 Layer-based modeling 4.3 Modeling of layers

are transmitted to the converter where the reaction rate is determined. The converter trans-

mits signals representing fluxes to the storages where the concentrations are balanced. Con-

sidering mass flows as transitions between species implicitly includes the signals transferring

potentials and fluxes between converters and storages. Such signals are not considered as

signal flows in the following discussions.

Signal flow: Signal flows define information transfers. In contrast to mass flow, signal

flow is not associated to reactions and does not change the content of storages, i.e. the

concentrations of species. In layer-based modeling, signal flows occur between layers and can

be represented by macroscopic variables, usually sums of species with phosphorylated binding

sites xi and corresponding sums of species with occupied binding sites xib. These signals

are exchanged between layers containing processes that interact via all-or-none interactions.

This will be discussed in detail below.

Note that signal flow in a biological context is often interpreted as a sequence of molecular

events transmitting a signal through a signaling system. Unless otherwise noted however,

we will always refer to signal flow as an information transfer to which a value is associated.

Flows and layers: Layers are either only connected by signal flows or are not connected

at all. No mass flows cross layer boundaries as no reactions transport substance from one

layer to the other. Within layers, mass flows are defined by reaction equations and the

corresponding rates as in conventional modeling.

The connections between layers show retroactivity [108] because the signal flow is bidi-

rectional. However, changes in a layer (e.g. the introduction of an additional regulatory

site) that do not affect the notation of xi and xib do usually not necessitate changes in

other layers. Therefore, the layers can be modeled separately from each other as long as the

notations of the signal flows between the layers are defined.

4.3 Modeling of layers

In the fourth step of layer-based modeling, the signal flows between the layers are defined and

the layers are modeled separately from each other. Modeling within layers shows remarkable

similarities to conventional modeling, however, there are differences that mainly result from

the presence of all-or-none interactions between processes of different layers.

4.3.1 Phosphorylation of binding sites

All-or-none interactions between binding site phosphorylations and the corresponding ef-

fector bindings account for much of the reduction potential of layer-based modeling. An

all-or-none interaction implies that a phosphorylated binding site remains phosphorylated

while the effector is bound, and that the effector binds only to phosphorylated binding sites.

The phosphorylation of a binding site is often described in a different layer than effector

binding to this site. However, if there are graded interactions that connect the binding site
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phosphorylation and effector binding processes indirectly, these two processes have to be

described in the same layer. It is obvious that the phosphorylation of binding sites to which

effector binding is described in another layer has to be treated differently than the phos-

phorylation of regulatory sites or the phosphorylation of binding sites to which the effectors

bind in the same layer.

To indicate the phosphorylation of a binding site to which effector binding is described in

another layer, the site notation (uppercase) ‘P’ is used. The phosphorylation of other sites

can be indicated by other notations, e.g. (lowercase) ‘p’. Species with a site modification

(uppercase) ‘P’ comprise microscopic species with a phosphorylated but unoccupied binding

site as well as microscopic species with a phosphorylated and occupied binding site.

Effector binding to phosphorylated binding sites in other layers does not directly change

the concentration of species with a site modification ‘P’, because ‘P’ represents both unoc-

cupied and occupied binding sites. The signal flows between the layers are used to guarantee

that only unoccupied binding sites are dephosphorylated (see below).

4.3.2 Reactions

The processes of each layer are described by reactions as if there were no other layers. This

also holds for the phosphorylation of binding sites to which effector binding is described in

another layer. The sole difference is that the phosphorylation of binding sites to which the

effectors bind in other layers has to be indicated by a site modification (uppercase) ‘P’.

Effectors can only bind to a subset of phosphorylated binding sites, namely those that are

not occupied. Effector binding to such a binding site in another layer is performed by intro-

ducing a new species that represents the sum of all microscopic species with phosphorylated

but unoccupied binding sites. This new species acts as a binding partner for the effector

and is defined by an algebraic equation. It is defined as the difference of the sum of species

with phosphorylated binding sites xi and the corresponding sum of species with occupied

binding sites xib. These sums define the signal flows between the layers and are discussed in

the next subsection.

4.3.3 Layer connections

For the realization of all-or-none interactions between processes of different layers, signal

flows have to be exchanged between the layers. These signal flows are typically defined

by the sums of species with phosphorylated binding sites xi and the corresponding sums of

species with occupied binding sites xib. Note that the signal flows xi and xib often correspond

to experimental readouts. These signals are used to compute correction terms assuring that

only unoccupied binding sites are dephosphorylated (see below, e.g. Equation 4.1). Their

differences define the concentrations of binding partners for effectors whose binding site

phosphorylations are described in other layers.
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4.3.4 Reaction rates and ODEs

Reaction rates are assigned to reactions as in conventional modeling. In most cases gen-

eralized mass action kinetics are used, however, the layer-based approach also allows for

other kinetics. The sole exception from this analogy is the dephosphorylation of binding

sites with a site modification ‘P’. Without a special treatment of these dephosphorylation

reactions, generalized mass action kinetics result in an overestimation of the rates for the

dephosphorylation, as occupied binding sites are also dephosphorylated. Remember that the

site modification ‘P’ represents the phosphorylation of a binding site without distinguishing

if an effector is bound or not and that only unoccupied binding sites can be dephosphory-

lated. Therefore, a correction term ci has to be introduced for the dephosphorylation of each

binding site with a modification ‘P’.

ci =
xi − xib

xi

(4.1)

It approximates the fraction of species with phosphorylated binding sites that are not oc-

cupied. The need for these correction terms results from the loss of information and the

corresponding reduction of the model size that is due to the modularization of the net-

work. The correction terms always have the same structure, however, different xi and the

corresponding xib are taken for each binding site.

The rate for each dephosphorylation reaction of a binding site with a site modification ‘P’

is multiplied by the appropriate ci which guarantees that only unoccupied binding sites are

dephosphorylated.

All dephosphorylation rates for a specific site with a modification ‘P’ are multiplied by the

same ci. The implicit assumption behind this is that all species with this phosphorylated

binding site (that all count to the same xi) have the same fraction of unoccupied phosphory-

lated binding sites. This is the core of the approximation and the reduction and is formally

discussed in Section 4.5.

The ODEs are generated as they would be in conventional modeling. Note that no ODE is

necessary for the binding partners in binding reactions that are defined by algebraic equations

as differences of xi and xib. The sums xi and xib are also defined by algebraic equations.

4.3.5 Choice of initial conditions

During the assignment of initial conditions, one has to assure that xi ≥ xib and xi > 0 hold

for all i. The condition xi > 0 ∀ i has to be fulfilled because negative concentrations are not

possible and initial conditions leading to xi = 0 result in division by zero in the correction

term ci (Equation 4.1). A value very close to zero can be taken if zero is the desired initial

condition for xi. The condition xi ≥ xib ∀ i has to be fulfilled because phosphorylation is a

necessary precondition for effector binding. Therefore, it is not possible that more binding

sites are occupied than phosphorylated. Violating a condition xi ≥ xib results in a negative

concentration of the binding partner defined by xi − xib.
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Figure 4.3: Conventional reaction network of the small example system

A receptor D has two sites and is defined as D{0,L}{0,p,E}. The first site is a binding

site for the ligand L, the second site is a binding site for the effector E that has to be

phosphorylated before E can bind. Reactions are indicated by arrows. The reaction rate for

each reaction is denoted as di. All reactions are reversible, filled arrowheads indicate positive

directions of rates.

4.3.6 A small example system

Layer-based modeling is demonstrated on a small example system where a receptor (e.g. the

insulin receptor) has two sites. The first is a binding site for the ligand L (e.g. insulin),

the second is a binding site for the effector E (e.g. Shc or IRS). This binding site has

to be phosphorylated before E can bind and the binding of E protects the binding site

from dephosphorylation. To simplify the discussion, the receptor is denoted as D in the

conventional detailed model and is denoted as R in the layer-based reduced order model.

A conventional model of these processes comprises eight microscopic species and can be

described by five ODEs due to conservation relations for the receptor D and the effector E.

The concentration of the (extracellular) ligand L is considered as the input of the system.

Figure 4.3 shows the reaction network of the conventional model.

The conventional model is given as

d1 = k1 · L ·D[0, 0]− k−1 ·D[L, 0]

d2 = k2 ·D[0, 0]− k−2 ·D[0, p]

d3 = k1 · L ·D[0, p]− k−1 ·D[L, p]

d4 = k3 ·D[L, 0]− k−3 ·D[L, p]

d5 = k4 · E ·D[0, p]− k−4 ·D[0, E]

d6 = k4 · E ·D[L, p]− k−4 ·D[L,E]

d7 = k1 · L ·D[0, E]− k−1 ·D[L,E]

(4.2a)
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d

dt
D[0, 0] = −d1 − d2

d

dt
D[L, 0] = d1 − d4

d

dt
D[0, p] = d2 − d3 − d5

d

dt
D[0, E] = d5 − d7

d

dt
D[L,E] = d6 + d7

(4.2b)

D[L, p] = totR− (D[0, 0] +D[L, 0] +D[0, p] +D[0, E] +D[L,E])

E = totE − (D[0, E] +D[L,E])
(4.2c)

where totR and totE are the total concentrations of the receptor and the effector, respectively.

Building the layer-based model requires to identify the processes and their interactions (see

Section 4.2.2). In the small example system, there are three processes: ligand binding, bind-

ing site phosphorylation and effector binding. The processes of ligand binding and binding

site phosphorylation perform a graded interaction (Figure 4.1 A). The processes of binding

site phosphorylation and effector binding undergo an all-or-none interaction (Figure 4.1 B)

since receptor phosphorylation is a precondition for effector binding and dephosphorylation

is only possible if the effector is not bound. This knowledge about processes and interac-

tions allows one to build the interaction graph (see Section 4.2.3) from which the modularity

of the layer-based model is derived. The interaction graph of the small example system is

given in Figure 4.2 A. As all processes that are coupled by graded interactions belong to the

same layer, the layer-based model consists of two layers. The receptor layer describes the

processes of ligand binding and binding site phosphorylation, the effector layer describes the

process of effector binding. Once the signal flows between the layers (given by the sum of

phosphorylated binding sites x and the sum of occupied binding sites xb) are defined, both

layers can be modeled as if the corresponding other layer does not exist. Figure 4.4 shows

the reaction network of the layer-based model.

The model equations of the receptor layer are given as

r0 = k1 · L ·R[0, 0]− k−1 ·R[L, 0]

r1 = k1 · L ·R[0, P ]− k−1 ·R[L, P ]

r2 = k2 ·R[0, 0]− k−2 · ((x− xb)/x) ·R[0, P ]

r3 = k3 ·R[L, 0]− k−3 · ((x− xb)/x) ·R[L, P ]

(4.3a)

d

dt
R[0, P ] = −r1 + r2

d

dt
R[L, 0] = r0 − r3

d

dt
R[L, P ] = r1 + r3

(4.3b)

R[0, 0] = totR− (R[0, P ] +R[L, 0] +R[L, P ]). (4.3c)
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xb = RXE
RXp = x − xb

xb

x

x = R[0,P]+R[L,P]

RXE

R[L,0]

R[0,0] R[0,P]

R[L,P]

RXp
LL E

r1r0

r2

r3

r4

Figure 4.4: Layer-based reaction network of the small example system

The receptor layer (left) describes the processes of ligand binding and binding site phos-

phorylation by two reactions each. Note that the receptor is defined as R{0,L}{0,P}. The

effector layer (right) describes the effector binding process by one reaction. The signals be-

tween the layers are the sum of species with a phosphorylated binding site x and the sum of

species with an occupied binding site xb (which in this case is only the species RXE). Black

arrows indicate reactions, green arrows indicate signal flows. All reactions are reversible,

filled arrowheads indicate positive directions of rates.

In this layer we see two important characteristics of layer-based models that do not occur

in conventional models. The first characteristic is the occurrence of sites with a modification

(uppercase) ‘P’. As described in Section 4.3.1, a site modification ‘P’ indicates the phos-

phorylated state of a binding site to which effector binding is described in a different layer.

There is no distinction if the effector is bound to this site or not, both possibilities are in-

cluded. Such a macroscopic description of phosphorylation however requires to approximate

the fraction of phosphorylated binding sites that are not occupied, since only unoccupied

binding sites can be dephosphorylated. This approximation is given by the correction term

(x− xb)/x occurring in the rates r2 and r3.

Describing effector binding in a different layer and using a correction term in the dephos-

phorylation rates necessitates signal flow between the layers given by x and xb, where x

is the sum of species with phosphorylated binding sites and xb is the sum of species with

occupied binding sites.

x = R[X,P ] = R[0, P ] +R[L, P ]

xb = RXE
(4.4)

Omitting the factor (x − xb)/x in the dephosphorylation rates would result in too high

dephosphorylation rates since the site modification ‘P’ represents both unoccupied and oc-

cupied phosphorylated binding sites. The microscopic receptor species D[0, p] and D[L, p]

(see Figure 4.3) represent receptor molecules with phosphorylated but unoccupied binding

sites. They are approximated from the species R[0, P ] and R[L, P ] that due to the site mod-

ification ‘P’ also comprise microscopic receptor species with bound E. Using the correction
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term (x − xb)/x in the rates r2 and r3 therefore guarantees that only unoccupied binding

sites are dephosphorylated.

D[0, p] ≈
x− xb

x
·R[0, P ]

D[L, p] ≈
x− xb

x
·R[L, P ]

(4.5)

The underlying assumption is that the processes of ligand binding and effector binding do

not interact, which results in the same fractions of R[0, P ] and R[L, P ] having a bound

effector E. According to the interaction graph, this (approximative) assumption is justified

because E binding only depends on binding site phosphorylation (Figure 4.2 A), but not

on ligand binding. However, there is an indirect interaction between these processes since

ligand binding influences the phosphorylation of the binding site for the effector which may

lead to an approximation error. A formal discussion about the nature and the quality of the

approximation in layer-based modeling is given in Section 4.5.

Altogether, it is assumed that effector binding only depends on binding site phosphory-

lation but not on other modifications of the receptor. This leads to the same fractions of

occupied phosphorylated binding sites for R[0, P ] and R[L, P ].

The aggregation of R[0, P ] and R[L, P ] into the signal x allows for the modularization

of the system since the only information necessary for effector binding in the effector layer

is the sum of phosphorylated binding sites. Transferring the signal xb, which represents

the sum of species with occupied binding sites, from the effector layer to the receptor layer

is necessary for building the correction terms in dephosphorylation rates guaranteeing that

only unoccupied binding sites are dephosphorylated.

The model equations of the effector layer are

r4 = k4 ·RXp · E − k−4 ·RXE (4.6a)

d

dt
RXE = r4 (4.6b)

RXp = x− xb

E = totE −RXE
(4.6c)

where RXE represents the sum of all microscopic receptor species with bound E. The

binding partner for an effector whose binding site phosphorylation is described in a different

layer is defined by signals exchanged between the layers (see Section 4.3.2). RXp is such a

binding partner representing the sum of microscopic receptor species with phosphorylated

but unoccupied binding sites.

The analogy of layer-based modeling and conventional modeling can be clearly seen in the

effector layer as the reaction rate, the ODE and the conservation relation for the effector

(Equation 4.6) could also occur in a conventional model describing the association of two

species.

Note that the letter ‘X’ only indicates a macrostate if it is a site configuration (as is the

case for R[X,P ]). In the species RXE and RXp, the ‘X’ is a part of the molecule name.
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Table 4.1: Kinetic parameters and initial conditions for the small example system

Initial conditions were 40 nM for D[0, 0] [88] (see Appendix A.3.1), 250 nM for E and

10−20 nM for all other species of the conventional model. Initial conditions for the layer-

based model were determined according to the transformation equations (Equation 4.25).

The ligand concentration was set to 100 nM , which is a typical concentration for in vitro

insulin stimulation. The parameters k4 and k−4 originally describe p85 (a PI3K subunit)

binding to its phosphorylated binding site on IRS [110], and the concentration of E (250 nM)

is the value for Shc in a model of EGFR signaling in hepatocytes [40].

Parameter Literature value Unit Source

k1 0.001 nM−1s−1 [58]

k−1 4 · 10−4 s−1 [58]

k2 0 s−1 assumption

k−2 0.00385 s−1 [76]

k3 0.0231 s−1 [77]

k−3 0.00385 s−1 [76]

k4 0.033 nM−1s−1 [110]

k−4 0.113 s−1 [110]

Therefore, RXE and RXp are not macrostates. However, both are macroscopic species

since they correspond to sums of microscopic species. Note that R[0, P ] and R[L, P ] are

macroscopic species as well.

If we compare the reactions of the layer-based model (Figure 4.4) and the reactions of the

conventional model (Figure 4.3), we find

r0 =̂ d1 r1 =̂ d3 + d7 r2 =̂ d2

r3 =̂ d4 r4 =̂ d5 + d6.
(4.7)

The corresponding reaction rates and in particular the reaction rates that are merged to-

gether (d3 and d7 as well as d5 and d6) are parameterized by the same kinetic constants.

Altogether, the small example system shows that layer-based modeling provides a reduced

order description of the system where macroscopic species are connected by macroscopic

fluxes. The resulting model has a modular structure defined by the interaction graph. The

modules (called layers) are connected by signal flows representing phosphorylation and oc-

cupancy of binding sites which are macroscopic characteristics of the system. All layers can

be modeled independently from each other once their connections are defined.

4.3.6.1 Approximation quality

The transformation equations between the layer-based model and the conventional model

(see Section 4.5.2) allow for the comparison of the simulation results. Simulation with

parameter values from literature (Table 4.1) shows that the approximation error of the
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Figure 4.5: Simulation results for the small example system

Simulation results of the layer-based model and the conventional model are shown for pa-

rameter values from literature (Table 4.1). The differences vanish due to the thickness of

lines, showing that the approximation error of the layer-based model is negligible. A prefix

r or d of the species notation indicates that this species is computed from the states of the

(reduced) layer-based or conventional (detailed) model, respectively, according to the trans-

formation equations (see Section 4.5.2). The axis of abscissae indicates time in s, the axis

of ordinates indicates concentration in nM .

layer-based model is negligible (Figure 4.5). Even the approximation of the state variables

of the conventional model is possible with a high accuracy. This also holds for the variation

of each parameter in a wide range (not shown).

In contrast to the insufficient approximation quality of the intuitively reduced model

(Section 3.1.1, Figures 3.1 and 3.2), the stationary fraction of liganded receptors in the layer-

based model FL,l = (R[L, 0]+R[L, P ])/totR equals FL,c, the value of the conventional model

(Equation 3.3), independently of the parameter values. Since receptor phosphorylation does

not influence ligand binding, FL,l is even dynamically exact (not shown).
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4.3.7 Synthesis, degradation and transport of proteins

Up to now it has been assumed that there is no protein synthesis or degradation. How-

ever, synthesis and degradation of free unmodified proteins are easy to handle as they are

performed like in conventional modeling.

Degradation of complexes often requires additional effort. If a scaffold protein or a receptor

with phosphorylated binding sites is to be degraded, one has to observe that there may exist

species in several layers that correspond to complexes including this scaffold or receptor. One

has to decide if only the specific protein is to be degraded (which leads to the liberation of

all binding partners) or if all binding partners attached to the corresponding protein are also

degraded. In both cases, the degradation of a protein in a certain layer also has implications

on other layers which demands additional signals between the layers. Therefore, the same

rates multiplied by different factors (to reflect complex composition) occur in distinct layers.

Transport between different compartments can be handled as degradation of species in one

compartment and synthesis of the same species with the same rates (corrected for the volume)

in the other.

Altogether, degradation and transport of species can be realized in layer-based models.

4.3.8 Step by step procedure: layer-based modeling

This step by step procedure can be used for efficient and standardized layer-based modeling.

1. Identify all processes and their interactions.

2. Draw the interaction graph.

3. Deduce from the interaction graph how many layers are in the model and which pro-

cesses form part of which layer. All processes that are coupled by graded interactions

are part of the same layer. Processes of different layers are coupled by all-or-none

interactions or do not interact.

4. Model each layer separately as if the processes of all other layers do not exist.

a) Define rules and reactions, as in conventional modeling. The site modification

(uppercase) ‘P’ is reserved for indicating the phosphorylation of binding sites to

which effectors bind in other layers. A different notation (e.g. lowercase ‘p’ ) has

to be used to indicate the phosphorylation of other sites.

b) Define all sums of species with phosphorylated binding sites xi and all sums of

species with occupied binding sites xib. This only has to be done for binding

sites with a site modification ‘P’. Note that xib has the same notation as the

corresponding xi, followed by (lowercase) ‘b’.

c) Use algebraic equations to define the concentrations of the species that act as

binding partners in effector binding to binding sites whose phosphorylation is

described in other layers. These species are defined as differences of xi and xib.
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d) Assign a rate to each reaction, as in conventional modeling. A special case is the

dephosphorylation of binding sites with a site modification (uppercase) ‘P’. The

rate expressions for these dephosphorylation reactions have to be multiplied by

the appropriate correction term ci = (xi − xib)/xi. Using the correction terms ci
guarantees that dephosphorylation is only possible for unoccupied binding sites.

e) Conservation relations can be used to replace one ODE for each conserved moiety

(e.g. a protein that is not degraded or synthesized).

f) Use reactions and rates, as in conventional modeling, to derive the ODEs for all

species that are not defined by an algebraic equation.

g) Assign initial conditions guaranteeing xi > 0 (prevents division by zero) and

xi ≥ xib ∀ i (prevents negative concentrations of binding partners).

4.4 Advanced strategies

Using the descriptions provided above, it is possible to model a large class of systems. Here

we introduce advanced strategies that allow for an additional reduction of layer-based models.

Examples for the application of these strategies can be found in [111, Additional file 2].

4.4.1 Equivalent binding sites

If n binding sites on a molecule are exactly equivalent and do not influence each other (and

if this molecule is not an oligomer whose dissociation separates the sites) it is sufficient to

model only one binding site. Note that this holds only if the initial conditions for these sites

(i.e. the initial degrees of phosphorylation) are also identical. In this case, the xi for this

binding site results from multiplying the sum of species with phosphorylated binding sites by

n, e.g. xi = n ·R[P ]. For linear phosphorylation or dephosphorylation kinetics, the rate law

is equivalent to the case where each site is modeled separately. If the factor n is considered

in the definition of xi one needs not to consider this factor in any reaction. For nonlinear

phosphorylation or dephosphorylation kinetics, e.g. Michaelis-Menten kinetics, n times the

concentration of the corresponding species has to be used as the substrate concentration in

the rate laws.

rtot =
rmax · n ·R[0]

n ·R[0] +KM

(4.8)

In addition, the total rate rtot has to be divided by n because rtot is the sum of the rates for

all n sites and we only consider one of them.

r =
rtot

n
(4.9)

The rate r describes the kinetics of the phosphorylation of R[0] to R[P ]. According to the

generalized law of mass action (Section 1.2.3), the reaction and its parameterization is given

as

R[0]→ R[P ]
rmax

n ·R[0] +KM

. (4.10)
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If it is desired to have a model output representing the sum of all phosphorylated binding

sites (for both linear and nonlinear kinetics), the factor n has to be considered and the

output is n ·R[P ].

Equivalent sites that are not binding sites and that do not influence each other can be

treated in an analogous way. The equivalence of binding sites can be exploited to exactly

reduce the model of insulin signaling with 214 ODEs to 51 ODEs (see Section 4.6.2 and

Appendix A.8).

4.4.2 One effector binding to different binding sites

Assume that m different binding sites (not necessarily belonging to the same molecule)

are equivalent with respect to effector binding but may have different phosphorylation

characteristics. Frequently occurring examples for this scenario are homodimerization and

heterodimerization of receptors. In the example of homodimerization, phosphorylation of

monomers could be parameterized by different kinetic constants than the phosphorylation

of dimers, whereas the process of effector binding is not influenced by the dimerization. In

these cases, a common xi for all m binding sites can be used. This xi equals the sum of all

sums of species with phosphorylated binding sites for the effector, xi = xi1 + ...+ xim .

As an example, assume that a receptor R1 can dimerize to R2. If the binding of an effector

E to a phosphorylated binding site on the receptor depends on binding site phosphorylation,

but not on receptor dimerization, a common xi can be used.

xR = R1[P ] +R2[P,X] +R2[X,P ]

xRb = E[R]

RXp = xR − xRb

(4.11)

RXp represents the sum of all phosphorylated but unoccupied binding sites on the dimers

and monomers of the receptor. The binding of E[0] to RXp leads to E[R].

The correction term cR for the dephosphorylation of all binding sites is cR = (xR−xRb)/xR.

This corresponds to the assumption that the same fractions cR of phosphorylated binding

sites are occupied for all considered sites with a site modification ‘P’.

This strategy also prevents negative concentrations in the effector layers that may occur if

e.g. receptor dimerization is faster than effector dissociation and phosphorylated monomers

rapidly ‘vanish’ due to dimerization. In an example (where the actual advanced strategy is

not applied) xR1 = R[P,X, ...] is the sum of monomers with phosphorylated binding sites

and the corresponding xR1b represents all effectors that are bound to receptor monomers.

Let the system be in a state where a large fraction of the binding sites is occupied, i.e.

xR1 − xR1b ≈ 0. Assume that an external stimulus induces the rapid dimerization of the

receptor which rapidly lowers the value of xR1 because the dimers are not included in xR1.

Note that the dimerization has no direct influence on xR1b. Therefore, it is possible that

the concentration of the species R1Xp = xR1 − xR1b representing all receptor monomers

with phosphorylated but unoccupied binding sites becomes smaller than zero. As mentioned
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above, this problem can and should be avoided by using a common xi for corresponding sites

on the monomers and dimers.

4.4.3 Additional signals between layers

Additional signals between layers are allowed as long as no graded interactions are intro-

duced by them. In a typical example, the processes of receptor activation and receptor

phosphorylation are described in the receptor layer, whereas the binding and phosphoryla-

tion of effectors is described in different layers. The phosphorylation of effectors that are

bound to receptors is performed by activated receptors. It is important that one specific ac-

tivated receptor protein does not selectively phosphorylate effector molecules that are bound

to it. This would introduce a graded interaction between the processes of receptor activation

and effector phosphorylation and therefore disrupt the modular structure of the model. A

different situation occurs if the pool of activated receptors acts as an enzyme and phospho-

rylates receptor-bound effectors. In this case, the signal representing receptor activity can

be transferred to the effector layers as an additional signal.

In general, the additional coupling between processes of different layers must occur in

the form of a mean-field assumption. This means that the rate of a certain event (e.g.

effector phosphorylation) is proportional to the average value of some property computed

from another layer (e.g. receptor activation).

4.4.4 Domain-oriented reduction of layer-based models

A special case of macroscopically exact reduction of layer-based models was introduced in

Section 4.4.1 where the equivalence of sites is exploited. Macroscopically exact reduction

is also possible for more general scenarios by applying the original domain-oriented model

reduction approach [93] (see Section 3.7) to each layer of the layer-based model separately.

It can also be applied to selected layers only. Natural candidates are layers with occurring

combinatorial complexity that may for example describe large scaffold proteins with many

binding sites. The procedure consists of two steps. In the first step, the complete layer-

based model is generated, in the second step domain-oriented reduction is applied. Such a

procedure is demonstrated in [105, Additional files 7 and 8] for the 214 ODE model of insulin

signaling which results in only 56 ODEs providing a macroscopically exact reduction.

The recent extension of domain-oriented model reduction [102,103] can also be applied. It

suggests a more simple procedure in which independent subsystems are modeled separately

before the model equations are transformed and redundant information is omitted.

The ideal scenario for domain-oriented reduction of layer-based models is the occurrence

of molecules with many sites that do not (or only scarcely) interact. In this case, domain-

oriented model reduction allows for a strong reduction of the layer-based model.
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4.5 Mathematical background

Layer-based modeling fits into the general procedure of model reduction (Section 3.2). Fol-

lowing this procedure, one has to define the state variables of the reduced order model z1

and the state variables z2 that have only little influence on the outputs. Algebraic equations

can be used to approximate z2 ≈ ψ(z1) in the ODEs for z1 (Equation 3.8 on page 57).

The definition of z1 is quite simple, since the layer-based approach makes clear statements

about the state variables of the reduced order model (see the step by step procedure in

Section 4.3.8). In the small example system discussed in Section 4.3.6, the state vector

z1 includes R[0, P ], R[L, 0], R[L, P ] and RXE (Equations 4.3 and 4.6). As shown in Sec-

tion 4.5.2, this definition of z1 leads to a linear transformation z1 = φ1(x̂) (Equation 4.25).

To avoid confusion with xi (signal flows representing sums of species with phosphorylated

binding sites), we deviate from the standard notation x for state variables of the conventional

model (used in Chapter 3) and refer to them as x̂.

The state variables z2 (in the small example system: one state variable z2) have to be

chosen such that the transformation z = φ(x̂) is invertible. Interestingly, the layer-based

approach does not make any statement about how to choose z2 and the layer-based model

can be directly generated without considering z2. As long as the transformation is invertible,

the choice of the additional states z2 has no influence on the model equations which can be

proven by some simple considerations.

Assume that a certain z2 was chosen and that there is a model as shown in Equation 3.7.

There are some algebraic equations for the approximation step z2 = ψ(z1) and a resulting

layer-based model

ż1 = g1(z1, ψ(z1), u) (4.12)

(see Equation 3.8). Assume that another representation of z2, namely z̃2, is chosen. This

can be realized by using a linear transformation
[
z̃1

z̃2

]
= T ·

[
z1

z2

]
where T =

[
I 0

T1 T2

]

and T−1 =

[
I 0

−T−1
2 T1 T−1

2

] (4.13)

which transforms the states z2 of Equation 3.7 to the new states z̃2. Since I is the identity

matrix, it holds that z̃1 = z1 and z2 = −T−1
2 T1z̃1 + T−1

2 z̃2 which leads to the ODEs of the

transformed system. [
˙̃z1

˙̃z2

]
=

[
g1(z̃1,−T

−1
2 T1z̃1 + T−1

2 z̃2, u)

g̃2(z̃1, z̃2, u)

]
(4.14)

The algebraic equations z2 = ψ(z1) transformed to the new coordinates are given by

z̃2 = T1z̃1 + T2ψ(z̃1). (4.15)

If one uses Equation 4.15 to replace z̃2 in Equation 4.14 and considers z̃1 = z1, the resulting

model is again Equation 4.12. This means that the model structure is completely determined

by defining the state variables z1 and dim(z2) algebraic equations for the approximation step.
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For building the layer-based model it is not necessary to postulate the algebraic equations

explicitly as they are implicitly contained in the model equations. The derivation of these

equations which are the basis of the approximation is shown in the next section. They can

be used for a formal derivation of the layer-based model which is described in Section 4.5.3.

4.5.1 The nature of the approximation in layer-based modeling

The approximation z2 = ψ(z1) results from algebraic equations Ψ(x̂) = 0 transformed to z

coordinates. These equations can be derived by two considerations, described below, which

both lead to the same result. Ψ(x̂) = 0 is also used to derive the inverse transformation

x̂ = φ−1(z1) which allows one to approximate the state variables of the conventional model

from the state variables z1 of the layer-based model. The dimension of Ψ(x̂) is given by

dim(Ψ(x̂)) = dim(z2) = dim(x̂)− dim(z1).

4.5.1.1 Independence of processes

Borisov et al. [99, 112] discussed algebraic constraint equations in combinatorial reaction

networks that can be used to derive the equations Ψ(x̂) = 0. Consider a scaffold protein

with a large number of independent binding sites where the binding of a ligand to the scaffold

has no influence on all other binding sites. In this case, the independent binding sites can be

described separately in a strongly reduced model that only provides information about the

levels of occupancy of the different domains [99, 112]. The information about the detailed

(microscopic) complex composition can be reconstructed using the calculus of probability.

This reconstruction is exemplified for a scaffold S{0,1}{0,1} with two independent binding

sites where a site modification ‘1’ indicates an occupied binding site. Due to the independence

of binding sites, the calculus of probability suggests that the concentration of the scaffold

with both domains occupied can be calculated as

S[1, 1] =
S[1, X] · S[X, 1]

S[X,X]
. (4.16)

Borisov et al. showed that if this equation is fulfilled at a time point t0, it will hold for all

times t > t0 [99, 112].

We show that the findings of Borisov et al. can be used to derive the equations Ψ(x̂) = 0

which define the approximation in layer-based modeling. Equation 4.16 can be simplified by

elementary transformations to

S[0, 0] · S[1, 1]− S[1, 0] · S[0, 1] = 0. (4.17)

Analogous considerations for the small example system, where it is assumed that the pro-

cesses of L binding and E binding are completely independent, lead to

D[0, p]

D[L, p]
=
D[0, E]

D[L,E]
⇔ D[0, p] ·D[L,E]−D[L, p] ·D[0, E] = 0 (4.18)
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which is the basis of the approximation in the small example system (Section 4.3.6). It

is an approximation because there is an indirect interaction between these processes (Fig-

ure 4.2 A on page 75). The independence assumption given by Equation 4.18 leads to the

same fractions of R[0, P ] and R[L, P ] having a bound effector E. In larger models, indepen-

dence assumptions between processes of different layers that do not interact directly lead

to the same correction term (xi − xib)/xi being used in the dephosphorylation rates of all

species with the same binding site phosphorylated. This approximation corresponds to the

assumption that effector binding depends on binding site phosphorylation, but not on other

modifications of the scaffold providing the binding site.

In both the example here and in Figure 4.3, the four species occurring in the equation

representing the independence assumption (Equations 4.17 and 4.18) form a reaction cycle.

These cycles consist of reactions of two processes of different layers which do not interact

directly, e.g. ligand binding and effector binding. Each branched reaction network which is

decomposed into layers includes such independent cycles. All corresponding pairs of processes

are described in distinct layers and do not interact directly. Indirect interactions with at

least one all-or-none interaction in-between are possible, but not necessary.

For each of these reaction cycles one can formulate an independence assumption like

Equation 4.18. Each independent equation decreases the number of states of the reduced

order model by one. All independent equations together define Ψ(x̂) = 0 which is the basis of

the approximation. The next section describes how the same equations can also be derived

from the assumption of rapid equilibrium.

4.5.1.2 Diagonal reactions

Another possibility for deriving the equations Ψ(x̂) = 0 is to assume rapid equilibrium [22]

for virtual reactions connecting processes of different layers that do not interact directly.

We demonstrate this for the small example system where a reaction cycle is formed by the

reactions describing the bindings of L and E to the phosphorylated receptor (Figures 4.3

and 4.6). There are four equilibrium conditions for this reaction cycle.

D[0, E]

D[0, p] · E
= K4

D[L, p]

D[0, p] · L
= K1

D[L,E]

D[L, p] · E
= K4

D[L,E]

D[0, E] · L
= K1

(4.19)

As the Wegscheider condition [22] is fulfilled for this reaction cycle, the equilibrium can be

described by only three independent equations. Instead of using three of the four equations

of Equation 4.19, one can also choose another representation including a parameter-free

equation. This parameter-free equation is of special interest and represents Ψ(x̂) = 0.

D[0, p] ·D[L,E]−D[L, p] ·D[0, E] = 0 (4.20)

It corresponds to a rapid equilibrium assumption for the reaction

D[0, p] +D[L,E] ⇌ D[L, p] +D[0, E] (4.21)
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E

D[0,p]

D[L,p]

L

D[L,E]

D[0,E]

E

L

Figure 4.6: Reaction cycle and diagonal reaction

The diagonal reaction (Equation 4.21) whose equilibrium assumption is the basis for model

reduction of the small example system is symbolized in the middle of the reaction cycle.

which is not part of the reaction network (Figure 4.3) and where the equilibrium constant

equals one. This reaction fills the diagonals of the square representing the reaction cycle

(Figure 4.6). Therefore, we refer to this kind of fast virtual reaction as a diagonal reaction.

As Equation 4.20 is only one of three independent equilibrium conditions, assuming equi-

librium for the diagonal reaction is a weaker assumption than assuming equilibrium for the

whole reaction cycle.

In a general system, each independent equilibrium assumption for a diagonal reaction

like Equation 4.20 reduces the number of necessary ODEs by one. All independent equilib-

rium assumptions for diagonal reactions connecting processes of different layers that do not

interact directly together define Ψ(x̂) = 0, which is the basis of the approximation.

4.5.1.3 Non-uniqueness of diagonal reactions

The set of diagonal reactions (or independence assumptions) is not unique. In almost all

larger models there are several conditions such as Equation 4.18, which lead to

q1 = q2 = ... = qn (4.22)

where qi are quotients of microscopic species of the conventional model (for an example

see [105, Additional file 4, p. 3]). Equation 4.22 provides n − 1 independent equations. It

is obvious that the equations Ψ(x̂) = 0 depend on the choice of the n − 1 independent

equations resulting from Equation 4.22. However, the set of microscopic species connected

by the diagonal reactions (or independence assumptions) is unique.

When choosing components of Ψ(x̂) = 0, one should pay attention that the corresponding

diagonal reactions belong to reaction cycles where all transitions are given by single reac-
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tions. This highly simplifies the derivation of the equations for the approximation errors

(Section 4.5.4) and the interpretation of the underlying independence assumptions.

4.5.2 Reversible transformation

There are two equivalent possibilities to approximate the state variables of a conventional

model from the state variables of the corresponding layer-based model. The first is to set up

the linear transformation equations

z1 = φ1(x̂). (4.23)

This is done by summing up the corresponding species of the conventional model for each

species of the layer-based model. When considering the equations Ψ(x̂) = 0 and all con-

servation relations, Equation 4.23 can be analytically solved for the state variables of the

conventional model resulting in

x̂ = φ−1(z1). (4.24)

Using the nonlinear equations Ψ(x̂) = 0 makes the reverse transformation nonlinear. Note

that Equations 4.23 and 4.24 define no diffeomorphism as one needs the equations Ψ(x̂) = 0

and all conservation relations to solve Equation 4.23 for x̂.

We demonstrate this method on the small example system. Calculating the variables of the

layer-based model from variables of the conventional model follows a linear transformation

R[0, 0] = D[0, 0]

R[L, 0] = D[L, 0]

R[0, P ] = D[0, p] +D[0, E]

R[L, P ] = D[L, p] +D[L,E]

RXp = D[0, p] +D[L, p]

RXE = D[0, E] +D[L,E]

rE = dE

(4.25)

where rE and dE represent E in the layer-based model and the conventional model, respec-

tively. Note that z1 = φ1(x̂) for the small example system is given by Equation 4.25 but does

not contain equations for R[0, 0], E and RXp as these variables are not defined by ODEs

(see Equations 4.3 and 4.6). Due to

R[0, P ] +R[L, P ] = RXp+RXE (4.26)

the equations in Equation 4.25 are linearly dependent and Equation 4.25 cannot be inverted.
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Ψ(x̂) = 0 (Equation 4.20) is used to get the inverse transformation.

D[0, 0] = R[0, 0]

D[L, 0] = R[L, 0]

D[0, p] =
x− xb

x
·R[0, P ]

D[L, p] =
x− xb

x
·R[L, P ]

D[0, E] =
R[0, P ]

x
·RXE

D[L,E] =
R[L, P ]

x
·RXE

dE = rE

(4.27)

Note that x̂ = φ−1(z1) is given by Equation 4.27 but does not contain equations for D[L, p]

and E as these variables are not defined by ODEs (Equation 4.2). For the inverse transfor-

mation (Equation 4.27) the definition of the signal flows (Equation 4.4) was used. Note that

the expressions for D[0, p] and D[L, p] are part of the rates r2 and r3 of the layer-based model

(Equation 4.3), where they are used to approximate the corresponding microscopic species

of the conventional model (Equation 4.5). The derivation of the transformation equations is

also shown for an extended example system (Section 4.6.1) in [105, Additional files 1 and 4].

This method to approximate variables of the conventional model is a brute force possibility,

where all equations Ψ(x̂) = 0 (about 145 millions for insulin signaling) have to be explicitly

formulated. Additionally, inversion is difficult for such highly nonlinear systems that may

contain many equations.

The second possibility for the approximation of variables of the conventional model from

variables of the layer-based model is more effective if only a few variables of the conventional

model are to be approximated. The starting point of the approximation of a variable is an

arbitrarily chosen species of the layer-based model containing this variable. The species of

the layer-based model is multiplied by factors specifying the characteristics of the desired

variable. For the small example system, we consider the approximation of D[0, p], which is

contained in R[0, P ]. The fraction of phosphorylated binding sites that is not occupied is

(x− xb)/x. The approximation is therefore given by D[0, p] ≈ R[0, P ] · (x− xb)/x.

More detailed descriptions about the approximation of selected variables can be found

in [105, Additional file 4]. This method is also demonstrated in Section 4.6.1.1 for the

approximation of two variables of an extended example system. Note that this method is

implicitly applied by using correction terms to guarantee that only unoccupied binding sites

are dephosphorylated (see Equation 4.5).

The approximated variables can be used in layer-based models. Such variables may be of

physiological importance and for example represent activated effectors. The approximation of

selected variables provides additional information about the system not explicitly contained

in the layer-based model. However, it demands additional signal flows between the layers

necessary for the factors in the approximation.
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4.5.3 Formal derivation of layer-based models

The step by step procedure for layer-based modeling (Section 4.3.8) describes how layer-

based models can be directly generated. This is a comfortable possibility not requiring

the preceding generation of a conventional model. Another procedure is according to formal

considerations about model reduction (Section 3.2) and leads to the same layer-based model.

It requires a conventional model ˙̂x = f(x̂, u) and an interaction graph of the system.

1. Use the interaction graph to determine which processes form part of which layer (see

Section 4.2.3) and specify the state variables of each layer.

2. Derive the transformation equations z1 = φ1(x̂) by assigning the corresponding sum of

species of the conventional model to each state variable of the layer-based model.

3. The equations Ψ(x̂) = 0 representing the approximation (see Section 4.5.1) follow from

assuming that all processes of different layers not interacting directly are independent.

Ψ(x̂) = 0 is given by the set of resulting independent equations like Equation 4.18.

4. Solve z1 = φ1(x̂) and Ψ(x̂) = 0 for x̂ to obtain the inverse transformation x̂ = φ−1(z1).

5. Differentiate the transformation equations z1 = φ1(x̂) and insert x̂ = φ−1(z1) as well

as ˙̂x = f(x̂, u) to get the layer-based model ż1 = g1(z1, ψ(z1), u) (Equation 4.12).

4.5.4 Approximation quality

4.5.4.1 Dynamics of the approximation error

In order to analyze the error of the approximation Ψ(x̂) = 0, a reaction cycle with four

different in-fluxes Ji is considered (see Figure 4.7). This is a general case because the effect

of all reactions not considered in the cycle is represented by the in-fluxes Ji. According to

Borisov et al. [99], the equation Ψ(x̂) = 0 provides an exact approximation if the processes

whose reactions form the cycle interact neither directly nor indirectly and if the initial

conditions already fulfill the equation (see Section 4.5.1.1). In all other cases, Ψ(x̂) = 0 is

an approximation.

Each pair of processes of different layers that forms such reaction cycles leading to equa-

tions Ψi(x̂) = 0 does not interact directly. However, there may be indirect interactions

between the considered processes realized by all-or-none interactions between processes of

different layers. The presence of other processes results in external in-fluxes Ji as shown in

Figure 4.7. Therefore, the relations like Equation 4.18 may become erroneous.

We introduce a measure for the approximation error g(t) as the deviation from Equa-

tion 4.18.

D[0, p] ·D[L,E]−D[L, p] ·D[0, E] = g(t) (4.28)

The error g(t) quantifies the distance of the diagonal reaction (Equation 4.21, Figure 4.6)

from equilibrium. It follows a first order ODE

ġ = −a(t) · g + u(t) , g(0) = g0 (4.29)
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Figure 4.7: Typical reaction cycle with in-fluxes

The reaction cycle is composed of four reactions that belong to two processes of different

layers that do not interact directly. As there is no direct interaction between the processes,

the reactions belonging to the same processes are parameterized by the same kinetic con-

stants. Like in the small example system, L binding is parameterized by k1 and k−1, and E

binding is parameterized by k4 and k−4.

where u(t) = J1 · D[L,E] − J2 · D[L, p] − J3 · D[0, E] + J4 · D[0, p] (see Figure 4.7). The

coefficient a(t) is given as a(t) = k1 · L + k−1 + k4 · E + k−4 and it holds that a(t) > 0 ∀ t.

If there is no L or E entering the reaction cycle, the corresponding parameters in a(t) (k1

and k4, respectively) are not multiplied by L or E, which may lead to a(t) ≡ a. A detailed

derivation of Equation 4.29 is given in Appendix A.5.

In the small example system (Figure 4.3) it holds that J2 = J4 = 0 and therefore

u(t) = d2 ·D[L,E]− d4 ·D[0, E]. Equation 4.29 gives the analytical solution

g(t) = e−A(t)



g0 +

t∫

0

eA(τ)u(τ)dτ



 , A(t) =

t∫

0

a(τ)dτ. (4.30)

The following calculations provide an upper bound for the approximation error g(t). If

one considers
d

dτ
A(τ) ·

1

amin

≥ 1 (4.31)

where amin = min
0≤τ≤t

(a(τ)) and assumes u(t) ≥ 0 ∀ t, one obtains

g(t) ≤ e−A(t)



g0 +

t∫

0

d

dτ
A(τ) ·

1

amin

· eA(τ)u(τ)dτ



 (4.32)

where eA(τ) · d
dτ
A(τ) is easy to integrate. For u(t) ≥ 0 ∀ t and g0 ≥ 0, an upper bound for

the dynamic error is given by

g(t) ≤ g0 · e
−amin·t +

umax

amin

·
(
1− e−amax·t

)
(4.33)
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where

umax = max
0≤τ≤t

(u(τ))

amin = min
0≤τ≤t

(a(τ)) ≥ k1 · min
0≤τ≤t

(L(τ)) + k−1 + k4 · min
0≤τ≤t

(E(τ)) + k−4

amax = max
0≤τ≤t

(a(τ)) ≤ k1 · max
0≤τ≤t

(L(τ)) + k−1 + k4 · max
0≤τ≤t

(E(τ)) + k−4.

(4.34)

Note that A(t) = a · t if a(t) ≡ a = amin = amax.

A very important result from Equation 4.33 is that the approximation error declines and is

bounded because u(t) is bounded from above and a(t) is bounded from both below and above.

Similar expressions to Equation 4.33 can be given for u(t) ≤ 0 and g0 ≤ 0. Equation 4.33

shows that both the steady state error and the upper bound of the dynamic error decrease

for increasing values of a, which corresponds to increasing values of the kinetic parameters

k1, k−1, k4 and k−4. Both errors go to zero for one of these parameter values going to infinity.

For each diagonal reaction i, an error equation like Equation 4.29 (with gi, ai and ui)

can be given. In the most simple case, ai equals the sum of the four kinetic parameters of

the reaction cycle. In each case, ai is large if the reaction parameters in the corresponding

cycle are large, and ui is a weighted sum of fluxes (that can be positive or negative) entering

the reaction cycle. When unbalanced (ui(t) 6= 0), these incoming fluxes can lead to virtual

fluxes through the diagonal reactions that lower the approximation quality. However, there

are also cases in which ui may reduce the error gi, in particular if ui is positive while gi is

negative or vice versa.

4.5.4.2 Input-to-state stability of the approximation error

An important stability property is input-to-state stability which guarantees that the state

g(t) is bounded for any bounded input u(t). Direct consequences of input-to-state stability

are that the system is globally uniformly asymptotically stable for u ≡ 0 and that the state

g finally goes to zero in the case of a vanishing input, i.e. lim
t→∞

g = 0 for lim
t→∞

u = 0 [113].

This section shortly reviews input-to-state stability and shows input-to-state stability of

the approximation errors gi in layer-based modeling. The following theorem is taken from

the textbook of H. K. Khalil [113, Theorem 4.19] and gives a sufficient condition for input-

to-state stability of the system

ġ = f(t, g, u), g ∈ R
n, u ∈ R

m, t ≥ 0 ∈ R. (4.35)

The necessary assumptions concerning f (piecewise continuous in t and locally Lipschitz in

g and u) and u (piecewise continuous in t and bounded) are usually fulfilled for models of

cellular signaling systems. In particular, they are fulfilled for Equation 4.29.

Theorem (input-to-state stability): Assume that there exists a continuously differen-

tiable function V(t,g) that satisfies

α1(||g||) ≤ V (t, g) ≤ α2(||g||) (4.36a)
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V̇ =
∂V

∂t
+
∂V

∂g
·
∂g

∂t
≤ −W (g) ∀ ||g|| ≥ ρ(||u||) > 0 (4.36b)

∀ (t, g, u) where α1 and α2 are class K∞ functions, W (g) is a continuous positive definite

function on R
n and ρ is a class K function. Then, the system (Equation 4.35) is input-to-

state stable and the solution g(t) is ultimately bounded by γ = α−1
1 ◦ α2 ◦ ρ(||u||).

Remarks:

• A continuous function α(||g||) belongs to class K if it is zero for ||g|| = 0 and strictly

increasing [113, Definition 4.2].

• A class K∞ function α(||g||) is of class K and has the additional property α(||g||)→∞

for ||g|| → ∞ [113, Definition 4.2].

• A solution g(t) is ultimately bounded if it is bounded after a transient period has

passed.

• A function V (g) that is not a function of t satisfies Equation 4.36a if it is positive

definite (V (0) = 0, V (g) > 0 ∀ g 6= 0) and radially unbounded (V (g) → ∞ for

||g|| → ∞) [113, Lemma 4.3]. If α1(||g||) = V (g) = α2(||g||), the solution g(t) is

ultimately bounded by γ = ρ(||u||).

In the following paragraph, we show input-to-state stability of the approximation error g(t)

(Equation 4.29). A Lyapunov function candidate for the approximation error is V (g) = 1
2
g2

which satisfies α1(||g||) = V (g) = α2(||g||). The derivative of V along the trajectory of the

system (Equation 4.29) is given as

V̇ =
∂V

∂g
·
∂g

∂t
= −a(t)g2 + gu

≤ −amin|g|
2 + |g| |u|

(4.37)

where amin = min
0≤τ≤t

(a(τ)) > 0. Introducing θ with 0 < θ < 1 leads to

V̇ ≤ −amin(1− θ)|g|2 − aminθ|g|
2 + |g| |u|

≤ −amin(1− θ)|g|2︸ ︷︷ ︸
−W (g)

∀ |g| ≥
|u|

aminθ︸ ︷︷ ︸
ρ(||u||)

(4.38)

which shows input-to-state stability of the approximation error g (Equation 4.29). Further-

more, the approximation error is ultimately bounded by γ = |uss|
aminθ

where uss is the stationary

value of u(t) and θ can be chosen close to one. Input-to-state stability of each approximation

error gi(t) can be shown by analogous calculations.

Equation 4.33 provides the ultimate bound umax

amin
for the approximation error g in the case

of u(t) ≥ 0 ∀ t. The ultimate bound γ is less conservative than umax

amin
since uss ≤ umax. It

follows from input-to-state stability [113] that the approximation error g finally goes to zero

if the input u equals zero or goes to zero.
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4.5.4.3 Evaluation of the approximation quality

Formal aspects: All ui(t) vanish in thermodynamic equilibrium where all fluxes van-

ish [22]. Note that a system is able to reach thermodynamic equilibrium if the Wegscheider

condition [22] is fulfilled for the entire reaction network and if no species or fluxes are set to

a constant value (or follow an externally imposed trajectory). All ui(t) also vanish if there

are no graded interactions. This follows from the work of Borisov et al. [99, 112] because in

this case the processes forming the reaction cycles are independent.

Therefore, layer-based modeling provides an exactly reduced model if there are no graded

interactions (i.e. if all processes are connected by all-or-none interactions or do not interact)

or if the layers containing graded interactions are not coupled to the other layers. Both

scenarios lead to ui(t) ≡ 0 ∀ (i, t). Note that an isolated layer containing graded interactions

corresponds to a conventional model of a subsystem and causes no approximation error. In

both cases, the initial conditions of the corresponding conventional model have to fulfill the

equilibrium conditions for the diagonal reactions Ψ(x̂) = 0 (e.g. Equation 4.20). If they do

not, the approximation is only stationarily exact.

If all domains are completely independent, the initial conditions may not fulfill Ψ(x̂) = 0,

but the reduction is nevertheless exact.

The approximation is also stationarily exact if all fluxes vanish in the stationary case, i.e.

if the system reaches thermodynamic equilibrium which for t → ∞ leads to ui(t) → 0 ∀ i.

Another possibility for stationary exactness is the presence of a stationary flux distribution,

characterized by ui(t) ≡ 0 ∀ i even if the system does not reach equilibrium.

Altogether, the approximation is stationarily exact if ui(t)→ 0 ∀ i for t→∞. This is for

example the case if the system is able to reach thermodynamic equilibrium where all fluxes

vanish. Layer-based models provide dynamically exact descriptions if in addition the layers

containing graded interactions (if there are any) are not coupled to the other layers and if

the initial conditions fulfill Ψ(x̂) = 0, the equilibrium conditions for the diagonal reactions.

In all other cases, layer-based modeling is an approximative method. However, for typical

scenarios the approximation error is very small. This is demonstrated for an extended

example system (Section 4.6.1) where the approximation quality is high within wide ranges

around parameter values from literature [105].

Note that there are cases in which some macroscopic variables are described exactly

whereas others are approximations. Assume that a subsystem S fulfills the conditions for

stationary or dynamic exactness. This subsystem may unidirectionally influence processes

of other subsystems but is not influenced by processes of other subsystems. In this case,

the macroscopic variables describing the state of the processes of S are exactly described.

As an example, the process of ligand binding in the small example system (Section 4.3.6) is

not influenced by any other process since the graded interaction with the process of receptor

phosphorylation is unidirectional. Therefore, the corresponding degree of occupancy FL is

exactly described in the layer-based model.

Unfortunately, there is no easy method to quantify the approximation error of large layer-

based models. A very laborious method (which is not applicable for very large systems)
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is to build the conventional model and compare typical simulation results for macroscopic

variables with those of the layer-based model. Another method which also needs to simulate

the corresponding conventional model is to check all errors gi. If all gi decline rapidly, the

approximation quality is high. However, even for large errors gi a layer-based model may

provide very good approximations of the states z1 (Equation 4.12). This is the case if the

erroneous states z2 that are approximated have only little influence on z1, which is closely

related to the concept of observability [114]. However, since in most cases even the state

variables of the conventional model x̂ = φ−1(z1) are approximated quite well, this shall not

be discussed in detail. More qualitative checks, described below, can be performed in order

to assess the approximation quality.

Qualitative checks: In the typical case, effector binding and the corresponding binding

site phosphorylation are described in different layers. If the process of effector binding is

relatively fast (as the binding of most effectors is) and in particular equilibrates faster than

binding site phosphorylation, the approximation quality is usually high. If there are fast

processes in the layer describing the binding site phosphorylation that connect all or most

of the different phosphorylated species, the approximation quality is usually high as well.

High parameter values for these fast processes result in high values of the exponents ai and

therefore in a high approximation quality (Equation 4.33). The process of ligand binding is

a candidate for such a fast process in the small example system (Figures 4.3 and 4.4).

If the binding process of an effector is slow, it should be considered to merge the layers

describing this effector binding and the corresponding binding site phosphorylation to a

single one. In this case, the potentially erroneous rapid equilibrium assumptions are not

introduced and do not lead to an approximation error (but do also not contribute to the

model reduction).

If one is not sure about the approximation quality resulting from certain parameter com-

binations, one could build a conventional model of a subsystem comprising the processes

belonging to the considered parameters and all processes that directly or indirectly interact

with them via graded interactions. The approximation error can be analyzed quantitatively

for the comparison of simulation results for macroscopic quantities of the conventional sub-

system with those of a corresponding layer-based model. This can be done for different

constant input signals xi and all xjb (i 6= j) entering the model from the environment set to

zero. The initial conditions of the conventional model have to be set such that the effect of

the external (constant) xi entering the system is mirrored adequately. If the approximation

quality is high, the analysis can be extended to time-variant input signals

xi(t) =

tend∫

0

fxi
(t)dt (4.39)

guaranteeing xi ≥ xib ∀ i. External fluxes fxi
that reflect the changes in xi have to be

included in the conventional model. Each flux fxi
adds or removes the corresponding species

with phosphorylated and unoccupied binding site from the conventional model. Note that
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this species is defined by xi−xib in the layer-based model. The velocity with which a certain

xi may change depends on the kinetic parameters for phosphorylation and dephosphorylation

of the corresponding binding site.

4.6 Modeling and analysis of larger systems

Applying the step by step procedure given in Section 4.3.8, layer-based modeling of large

systems is easily possible. This section discusses layer-based modeling of two systems. The

extended example system discussed in Section 4.6.1 mainly serves to show that the approx-

imation quality is also high for larger systems. It also serves to demonstrate the approxi-

mation of selected variables of a corresponding conventional model. The models of insulin

signaling with 51 ODEs and 214 ODEs discussed in Section 4.6.2 replace a conventional

model of insulin signaling with 1.5 ·108 ODEs. This demonstrates that layer-based modeling

of extremely large systems usually results in models that can be used for efficient simulation

or parameter estimation.

4.6.1 An extended example system

Assume that a receptor R can bind L (e.g. insulin) and perform autophosphorylation on

two sites, one being a binding site for the scaffold E (e.g. IRS) and one being a regulatory

phosphorylation site whose phosphorylation negatively affects autophosphorylation of the

binding site. Unphosphorylated scaffold proteins that are bound to the receptor can be

phosphorylated. An effector F (e.g. PI3K) can bind to the phosphorylated scaffold E. The

concentration of the ligand L is considered as the input of the system.

A conventional model of this system consists of 24 ODEs. If there is no protein synthesis or

degradation, three of these 24 differential equations can be replaced by conservation relations

for the receptor, E and F , leading to 21 differential equations for the conventional model

which are given in [105, Additional file 4].

The interaction graph of this system is given in Figure 4.2 B on page 75. A layer-based

model of this system consists of three layers, the reaction network is shown in Figure 4.8.

The receptor layer contains the processes of L binding and receptor phosphorylation, the

E layer describes binding and phosphorylation of E. The binding of F is described in the

F layer. The receptor layer consists of 8 differential equations, the E layer of four and the

F layer of two. Three of these 14 differential equations can be replaced by conservation

relations, leading to 11 ODEs for the layer-based model (see Appendix A.6). The signal

flows between the layers are: x (sum of all receptor species phosphorylated on the binding

site for E), xb (sum of all species of E bound to the receptor), x2 (sum of all species of E

phosphorylated on the binding site for F ), x2b (sum of all species of F bound to E), and

Ractive (sum of catalytically active receptor species).

Simulation with parameter values from literature (Appendix A.6, Table A.1) was per-

formed and showed a very high approximation quality of the layer-based model (Figure 4.9).
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Figure 4.8: Layer-based reaction network of the extended example system

The left box shows all reactions of the receptor layer, the upper right box shows all reactions

of the E layer, and the lower right box shows all reactions of the F layer. The molecule

definition of the receptor is R{0,L}{0,p}{0,P}, the molecule definition for receptor-bound

E is RXE{0,P} and that of E not bound to the receptor is E{0,P}. RXp and XEp represent

sums of species with phosphorylated but unoccupied binding sites. Arrows with two heads

indicate reversible reactions, whereas arrows with one head indicate irreversible reactions.

Filled arrowheads indicate the positive direction of rates.

Simulation and optimization studies showed that the approximation quality is high within

wide parameter ranges [105].

4.6.1.1 Approximation of variables

The approximation of selected variables of the corresponding conventional model is demon-

strated for the variables D[X,X,F ] and D[L, p, F ] which both have no direct counterpart

in the layer-based model. D[X,X,F ] corresponds to the sum of all microscopic species of F

that are bound to the receptor via phosphorylated E and may be of physiological relevance.

D[L, p, F ] is used to demonstrate the approximation of microscopic state variables of the

conventional model. It represents liganded receptors that are phosphorylated on both sites.

F is bound to the receptor via phosphorylated E.

As discussed in Section 4.5.2, a variable of the conventional model is approximated by mul-

tiplying a species of the layer-based model containing the variable to be approximated by fac-

tors specifying the characteristics of the desired variable. The approximation of D[X,X,F ]

from variables of the layer-based model is as follows. D[X,X,F ] is contained in XEF , a

state variable of the F layer (Figure 4.8) which corresponds to the sum of all microscopic

species of F bound to E. The fraction of phosphorylated E that is bound to the receptor is
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Figure 4.9: Simulation results for the extended example system

For parameter values from literature (Appendix A.6, Table A.1), the deviations of the sim-

ulation results of the layer-based model from those of the corresponding conventional model

are negligible. As demonstrated for D[L, p, F ], the approximation of state variables of the

conventional model is possible with a high accuracy. A prefix r or d of the species notation

indicates that this species is computed from the states of the layer-based or conventional

model, respectively, according to the transformation equations [105, Additional file 4]. The

axis of abscissae indicates time in s, the axis of ordinates indicates concentration in nM .

RXE[P ]
x2

, which is multiplied by XEF to approximate D[X,X,F ].

D[X,X,F ] = XEF ·
RXE[P ]

x2
(4.40)

D[L, p, F ] is contained in R[L, p, P ]. The fraction of R[L, p, P ] that has an occupied binding

site is xb
x
. The fraction of receptor-bound E that is phosphorylated is RXE[P ]

xb
. The fraction

of phosphorylated E that is bound to F is x2b
x2

.

D[L, p, F ] = R[L, p, P ] ·
xb

x
·
RXE[P ]

xb
·
x2b

x2
(4.41)
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Note that the approximation can be performed starting from each species of the layer-

based model containing the variable to be approximated. In the example of D[L, p, F ],

approximation is also possible starting from RXE[P ] or XEF . All possibilities give identical

results which can be verified by considering x2b = XEF .

4.6.2 Layer-based modeling of insulin signaling

A conventional model of insulin signaling including all processes mentioned in the introduc-

tion would consist of 1.5 · 108 ODEs (see Section 1.3). In contrast to that, a layer-based

model consists of only 64+128+4+11+5+2 = 214 ODEs. An interaction graph of insulin

signaling that is the basis of the layer-based model is shown in Figure 4.10.

The 214 ODEs of the layer-based model form part of the different layers as follows. 26 = 64

equations in the receptor layer describe the bindings of two insulin molecules and the phos-

phorylation of four binding sites (two for Shc and two for IRS). The insulin concentration is

considered as the input of the system. The 27 = 128 equations of the IRS layer result from

the presence of six binding sites, each of which can be phosphorylated and unphosphorylated.

In addition, IRS can be bound to the receptor and unbound. The Shc layer is described by 4

ODEs (Shc binding to the receptor and Shc phosphorylation). All binding and modification

processes of SOS and Grb2 are described in a common layer which consists of 11 ODEs (six

ODEs describing the binding of complexes of Grb2 and SOS to IRS and Shc, five ODEs for

free species). The PI3K layer consists of 5 ODEs (binding to four binding sites) and the

SHP2 layer of 2 (binding to IRS). Free species are considered in all effector layers.

The two binding sites on the receptor for Shc and IRS are in each case assumed to be

equivalent with respect to effector binding. This leads to a reduction of the model size as

described in Section 4.4.2. Without exploiting this equivalence, the IRS layer would consist

of 3 · 26 = 192 ODEs and the Shc layer of 6. A layer-based model of the system is given

in [105, Additional files 3 and 6].

The number of ODEs can be strongly reduced if it is assumed that the four binding sites

for PI3K on IRS are equivalent and that the two binding sites each for IRS and Shc on the

receptor are also equivalent. As described in Section 4.4.1, it is only necessary to model

each qualitatively different binding site once. The IRS layer can be described by 24 = 16

ODEs instead of 27 = 128, the receptor layer can be described by 24 = 16 ODEs instead of

26 = 64, and the PI3K layer can be described by 2 instead of 5 ODEs. This results in 51

ODEs for the final model. A layer-based model definition for the 51 ODE model is given in

Appendix A.8. Evaluating this model definition with ALC (presented in Chapter 5) results

in documentation files and ready-to-run simulation files in different formats.

4.7 Reduction of the model size

A typical situation in cellular signaling is that there are multiple sites within the same

protein. In this case, the size of the conventional model is a product of the number of states

of each site, where each possible state of a binding partner must be considered as a separate
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Figure 4.10: Interaction graph of insulin signaling

All processes (white boxes) that are coupled by graded interactions (red lines) are described

in the same layer (blue boxes). Processes of different layers are only connected by all-or-none

interactions (green lines) or do not interact. The green boxes x = x1 + x2 indicate that the

corresponding binding sites are equivalent with respect to effector binding (see Section 4.4.2).

According to the definition of layers, each process of PI3K binding to a binding site on IRS

should be described in a separate layer. However, merging the four PI3K layers (done for

graphical reasons) has no impact on the model equations. This figure shows a simplified

scenario where the different phosphorylation sites of the same molecules do not interact.

Such interactions would neither change the modular structure of the model nor the number

of necessary ODEs.

state of the site. In the layer-based model however, each binding site that is phosphorylated

has usually two states (unphosphorylated and phosphorylated). The states of the binding

partner are modeled in a separate module (layer) and do not increase the number of states

of the original protein. Another typical case is that binding partners are phosphorylated on

binding sites and bind other effectors. In this case, the same argumentation can be applied

to each additional effector in such an association chain. Both scenarios lead to implicitly

assumed equilibrium conditions for diagonal reactions (or independence assumptions) that

are the basis of the approximation in layer-based models (see Section 4.5).
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Table 4.2: Number of ODEs necessary for models of the insulin signaling system

Layer-based modeling, domain-oriented model reduction and their combination are compared

in three scenarios. The insulin concentration is considered as the input of the system, and

the two binding sites on the receptor for Shc and IRS each are assumed to be equivalent

with respect to effector binding. All binding site phosphorylations and the corresponding

effector bindings undergo all-or-none interactions. 1) All binding sites on the same molecule

may perform graded interactions. 2) The phosphorylation state of the binding sites does not

influence the phosphorylation of other binding sites on the same molecule. 3) As scenario

2), but all binding sites for the same effectors are assumed to be equivalent.

Scenario Conventional Domain-oriented Layer-based Combination

modeling model reduction modeling

1 145 156 468 145 156 468 214 214

2 145 156 468 212 214 56

3 145 156 468 60 51 39

The exponential growth of the number of state variables with the number of binding

sites and binding partners in conventional models is partly replaced by linear growth with

the number of layers. Within the layers there is still exponential growth with respect to

the number of molecular sites included in the layer. Applying the advanced strategies of

layer-based modeling (Section 4.4) may strongly reduce the exponential growth within the

layers.

Combinatorial complexity increases if there are additional modification and binding events

(see Section 1.3). However, the reduction potential of layer-based modeling strongly increases

with increasing combinatorial complexity. For the small example system (Section 4.3.6),

where a layer-based model with 4 ODEs approximates a conventional model with 5 ODEs,

the number of ODEs is decreased by 20%. For the extended example system (Section 4.6.1),

where 11 ODEs approximate 21 ODEs, the number of ODEs is decreased by 48%.

Table 4.2 shows how many ODEs are necessary to model the insulin signaling system as

described in Section 1.3. Conventional modeling, domain-oriented model reduction [93,103],

layer-based modeling and a combination of the reduction techniques are compared in three

scenarios. Scenario 1 is a very general setting where all sites of a protein may interact. In

scenario 2 it is assumed that all phosphorylation sites of the same protein do not interact, and

in scenario 3 it is additionally assumed that all binding sites on a protein for the same effector

are equivalent. In scenarios 1 and 2, a layer-based model consists of 214 ODEs, whereas

only 51 ODEs are necessary in scenario 3 (see Section 4.6.2). Considering the model with

214 ODEs, this means that the number of necessary equations is decreased by 99.99985 %.

Scenario 3 allows the modeler to exploit the equivalence of binding sites (Section 4.4.1) which

reduces the number of ODEs to 51. This corresponds to a total decrease in the number of

necessary ODEs by 99.99996 %.
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Domain-oriented model reduction [93, 103] (Sections 3.7 and 4.4.4) allows for a further

reduction of the model size in scenarios 2 and 3. In scenario 2, the 214 ODEs can be reduced

to 56 ODEs [105, Additional files 7 and 8], whereas in scenario 3 the 51 ODEs can be reduced

to 39 ODEs (not shown). Note that the reduction is macroscopically exact in both cases.

The 214 ODE model and its domain-oriented reduction are given in [105, Additional files 6-

8]. A model definition for the 51 ODE model is given in Appendix A.8. Evaluating this

model definition with ALC (see Chapter 5) results in documentation files and executable

simulation files.

Altogether, layer-based modeling allows for a strong reduction of the model size compared

to conventional modeling. Even large systems can be described by a model of acceptable

size.

4.8 Conclusions

The layer-based approach allows for a macroscopic description of cellular signaling systems

with inherent combinatorial complexity. It is an approximative modeling technique that

results in a reduced order model with a pronounced modular structure. Layer-based models

are characterized by a high approximation quality. They can be directly built, the preceding

generation of a conventional model is not necessary.

An interaction graph representing the interactions between the considered processes defines

the modularity of the model. The resulting modules, called layers, are connected by signal

flows and can be modeled separately from each other once their connections are defined.

The signal flows between the layers are macroscopic quantities representing phosphorylation

and occupancy of binding sites.

In the derivation of the modules from the interaction graph one has to distinguish between

graded interactions and all-or-none interactions. The layers are chosen such that processes

of different layers only interact via all-or-none interactions. All processes of the same layer

are directly or indirectly connected via graded interactions. A detailed reaction network

comprising all processes of the current layer but neglecting all other processes is built for

each layer. The reaction rates and the ODEs are derived from these reactions like in con-

ventional modeling. Subsequently, dephosphorylation rates of binding sites to which effector

binding is described in different layers are modified by correction terms guaranteeing that

only unoccupied binding sites are dephosphorylated.

The basis of the approximation are rapid equilibrium assumptions for virtually introduced

reactions, called diagonal reactions. These virtual reactions connect processes of different

layers that do not interact directly. A different interpretation of the same equations leads

to independence assumptions for the corresponding processes. The approximation errors

follow linear first order ODEs and are characterized by input-to-state stability. Dynamic

and ultimate bounds for the approximation errors are given.

The approximation is stationarily exact under certain conditions, e.g. if the system is

able to reach thermodynamic equilibrium. Layer-based models are dynamically exact rep-

resentations of the corresponding systems if in addition graded interactions do not occur
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in layers that are coupled to other layers and if the initial conditions fulfill the equilibrium

conditions for the diagonal reactions. If a subsystem fulfills the conditions for stationary or

dynamic exactness and is not influenced by processes of other subsystems, the macroscopic

variables describing the state of the processes of this subsystem are exactly described. In

all other cases, layer-based modeling is a purely approximative method characterized by a

small approximation error for physiologically relevant parameter values.

Layer-based modeling allows for an enormous reduction of the number of necessary ODEs

compared to a conventional model. As an example, it is possible to model the insulin signal-

ing system with only 214 ODEs compared to the 1.5 · 108 ODEs needed for a conventional

model. If certain equivalence conditions for binding sites are fulfilled, 51 ODEs are sufficient.

The strong reduction and the high approximation quality clearly demonstrate the suit-

ability of layer-based modeling for description and analysis of cellular signaling networks.

However, building large models is laborious and sometimes also error-prone. To facilitate

layer-based modeling, the next chapter introduces ALC (Automated Layer Construction), a

tool for automated layer-based modeling that performs the laborious and error-prone parts

of the model generation automatically.
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5 ALC: Rule-based automation of

layer-based modeling

ALC (Automated Layer Construction) is a computer program that converts model definitions

for layer-based models into ready-to-run simulation files in different formats as well as into

documentation files. This highly simplifies layer-based modeling since the laborious and error-

prone steps of the model generation are performed automatically.

Section 5.1 provides a short introduction to the main features and the architecture of ALC.

The syntax and the preparation of the model definitions are described in Section 5.2. One of

the error-prone steps in manual layer-based modeling is the assignment of correction terms

guaranteeing that only unoccupied binding sites are dephosphorylated. ALC automatically

performs this assignment following an algorithm presented in Section 5.3. ALC can be used

offline or online. Both possibilities are described in Section 5.4 which also provides a step

by step procedure and a description of the output files.

5.1 Introduction to ALC

ALC (Automated Layer Construction) is a computer program highly simplifying the rule-

based generation of layer-based models. The user has to prepare a model definition specifying

the reaction network of each layer and the signal flow between the layers. Such a model

definition only contains the minimal information uniquely defining the model equations.

The intuitive syntax of model definitions is simple, but powerful and supports the concepts

of rules, macrostates and modularity. Generating a model definition is much simpler and

faster than generating the corresponding model equations manually. After running ALC,

the resulting model files can be directly used for simulations and model analysis.

ALC performs detailed syntax checks and consistency checks on the model definition. It

is checked if all molecule definitions, rules, reactions, assignments and outputs match the

corresponding general format. In addition, it is verified that each used variable is uniquely

defined. There are numerous more specific checks, described in the ALC user guide [111,

Additional file 1], which result in informative error messages and warnings ensuring that most

errors are easy to find and easy to correct. Critical inconsistencies result in error messages

indicating the nature and the location of the errors. In this case, the model generation is

not continued. Minor inconsistencies, e.g. undefined initial conditions or parameter values,

result in detailed warnings. The model generation is continued and the model files will be

executable.
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5 Automation of layer-based modeling 5.2 Preparing the model definition

The output files of ALC are ready-to-run simulation files in the formats C MEX, MATLAB

(The MathWorks), Mathematica (Wolfram Research) and SBML [115]. The models are

also provided in LATEX [116, 117] and plain text format to simplify their publication or

presentation. ALC can be used offline or via a form on the ALC website [118]. The program

is freely available and published under the GNU Lesser General Public License.

5.1.1 Architecture and flow diagram

ALC is written in the programming language Perl [119, 120]. When used offline, the model

definition is read in by the script file ALC.pl which also starts the modeling procedure.

The source code necessary for the generation of output files is organized in three sepa-

rate Perl modules. The Perl module Procedures.pm contains procedures that guide the

application through the general steps of the model generation process. The Perl mod-

ule Functions.pm contains functions that are called by the procedures from the module

Procedures.pm and functions that are called by other functions from the same module. The

Perl module Output.pm contains procedures that generate all output files after the model

generation process is finished.

The form on the ALC website [118] is linked to a Perl CGI script that is running on an

Apache web server [121]. This CGI script extracts the model definition from the uploaded

model definition file or from the text field in which the model definition was pasted and

starts the model generation. It also displays the results and provides the download links for

the output files. The model generation and the generation of the output files is performed

by the same Perl modules that are used offline.

ALC processes the following tasks, which constitute the most important steps in the

generation of the output files from the model definition.

• Syntax checks on the model definition

• Consistency checks on the model definition

• Generation of reactions from rules

• Generation of reaction rates

• Generation of ODEs from reactions and reaction rates

• Output of the simulation files and documentation files in different formats

The sequence of steps and the assignment of these steps to the most important procedures

of the Perl module Procedures.pm is shown in more detail as a flow diagram in Figure 5.1.

5.2 Preparing the model definition

The model definition uniquely defines the resulting model equations. It is prepared in plain

text and consists of distinct sections that are encapsulated by #name and #end name, where
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Figure 5.1: Flow diagram of ALC

The green boxes represent the different possibilities when starting ALC. The gold boxes

represent procedures of ALC (stored in the Perl module Procedures.pm) that initiate the

general processes from reading in the model definition to generating the finished model files.

The red arrows represent the input and the output of the procedures. A short description

of the processes that are initiated by the procedures is given in the cyan boxes. The white

boxes define the principle class of the output files, while the magenta boxes define the format

of the output files.
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‘name’ is the name of the section. All sections may occur as often as desired in the model

definition. Therefore, each layer can be defined separately, supporting the modular structure

of layer-based models (see e.g. Equations 4.3 and 4.6).

The layer-based model definition for the small example system (Figure 4.4) is shown in

Figure 5.2. The model definition for the 51 ODE model of insulin signaling is given in

Appendix A.8. Model definitions for other example systems, including the model definition

for the layer-based model of insulin signaling with 214 ODEs [105], can be found in [111,

Additional file 3] and on the ALC website [118].

Note that ALC can also be used for conventional (Section 1.2) and rule-based modeling

(Section 1.5). Using the site modification ‘P’ is not allowed in these cases since it is a special

feature of layer-based modeling associated with signal flows between the layers.

The syntax of ALC and the distinct sections are introduced below. More detailed descrip-

tions can be found in the ALC user guide. A tutorial demonstrates the generation of the

model definition for an example system in detail. The first releases of the user guide and

the tutorial are given in [111, Additional files 1 and 4], recent releases are available on the

ALC website [118] and on the ALC project page on SourceForge.net [122].

5.2.1 Molecule definitions: the section ‘#molecules’

All molecule definitions are given in the section #molecules (Figure 5.2). A molecule defi-

nition consists of the molecule name that is optionally followed by the successive definition

of all sites (see Section 4.2.1). The molecule name has to start with a capital letter which

is optionally followed by an arbitrary sequence of alphanumeric symbols (letters, digits and

underscores are allowed). Each site definition consists of a comma-separated sequence of

all possible modifications which is encapsulated by curly brackets. A site modification is

defined by a sequence of alphanumeric symbols. The definition of a site modification ‘X’ is

forbidden, since ‘X’ is reserved for indicating macrostates and patterns. A site modification

‘P’ has a predefined meaning. It marks the site as a binding site to which effector binding

is described in another layer. In this case, ‘P’ indicates the phosphorylated state.

As an example, a molecule definition R{0,L}{0,P} defines the molecule R that can have

the modifications ‘0’ and ‘L’ at the first site and the modifications ‘0’ and ‘P’ at the second

site. If a molecule is defined, its instances (e.g. species like R[L, 0] or macrostates like

R[X,P ]) can be used in other sections of the model definition.

Complexes: ALC supports the simple notation of complexes introduced in Section 4.2.1.

Complexes of species can be treated as species of one of the corresponding molecule defini-

tions, or as species of new molecules that are defined for complexes of the molecules. As an

example, the species R[L, 0] is the complex of the species L and R[0, 0] as this is already

contained in the molecule definition R{0,L}{0,P}, whereas the dimer of R{0,L}{0,P} has

to be explicitly defined, e.g. as R2{0,L}{0,P}{0,L}{0,P}.
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############################

## receptor layer

#molecules

R{0,L}{0,P}

L

#end molecules

#parameters

totR=40

k1=0.001

k1d=4*10ˆ(-4)

k2=0

k2d=0.00385

k3=0.0231

k3d=0.00385

#end parameters

#initial conditions

R[L,0]=0.1

#end initial conditions

#clamped concentrations

L=10

#end clamped concentrations

#reactions

L+R[0,X]<->R[L,X] k1 k1d

R[0,0]<->R[0,P] k2 k2d

R[L,0]<->R[L,P] k3 k3d

#end reactions

#layer connections

x=R[X,P]

#end layer connections

#molecular balances

R[0,0]=totR-R[X,X]+R[0,0]

#end molecular balances

############################

## effector layer

#molecules

E

RXE

#end molecules

#initial conditions

RXE=0

#end initial conditions

#parameters

totE=250

kE=0.033

kEd=0.113

#end parameters

#reactions

RXp+E<->RXE k4 k4d

#end reactions

#layer connections

xb=RXE

RXp=x-xb

#end layer connections

#molecular balances

E=totE-RXE

#end molecular balances

########################

#output

R[L,X]

RXE

#end output

Figure 5.2: Model definition for the small example system

Default values which can be freely chosen are assigned to all initial conditions and parameters

that are not given (see Section 5.4.2 and Appendix A.7). Note that for all non-zero default

values this model definition guarantees x ≥ xb and x > 0 for the initial conditions. When

running the C MEX, MATLAB and Mathematica models, the simulation results for R[L,X]

and RXE are visualized since they are defined as outputs. The simulation results for RXp,

x and xb are also visualized as this is automatically done for all variables defined in the

section #layer connections.
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5.2.2 Defining rules and reactions: the section ‘#reactions’

All rules and reactions are defined in the section #reactions (Figure 5.2). The standard

format of a rule or reaction is: chemical reaction equation, tab, parameter of the forward

reaction, tab, parameter of the backward reaction.

aA+bB <-> cC+dD︸ ︷︷ ︸
reaction equation

tab︷︸︸︷
parameter︸ ︷︷ ︸

forward

tab︷︸︸︷
parameter︸ ︷︷ ︸

backward

(5.1)

The reaction symbol is ‘<->’ for reversible reactions and ‘->’ or ‘<-’ for irreversible reac-

tions. For irreversible reactions only one parameter has to be given. ALC generates the

corresponding rates following the generalized law of mass action where the parameters can

be general nonlinear functions (Section 1.2.3).

If a reaction describes the transition of a site modification ‘P’ to anything but ‘P’ (i.e. the

dephosphorylation of a binding site to which effector binding is described in another layer),

the reaction rate has to be modified using a correction term ci to guarantee that only the

unoccupied fraction of binding sites with a site modification ‘P’ becomes dephosphorylated.

ALC automatically searches the corresponding xi and xib in the model definition and con-

siders ci = (xi − xib)/xi in the rate laws for dephosphorylation. As the correction terms ci
in the reaction rates are automatically assigned by ALC, one need not include them in the

reaction parameters. The algorithm for this assignment is described in Section 5.3.

5.2.2.1 Defining rules

A rule represents a class of reactions with common properties (see Section 1.5). In particular,

all reactions of this class are parameterized by the same kinetic constants. The hallmark of

rules is that they must contain at least one pattern in the reaction equation. Note that the

sole occurrence of macrostates (which have the same notation as patterns) in the parameter

part of a reaction does not result in a rule, as at this position macrostates represent the

sums of all corresponding species.

As an example, for R{0,L}{0,P}{0,p} the rule

R[0,X,X]+L <-> R[L,X,X] k0 k1 (5.2)

represents four reactions.

R[0, 0, 0] + L ⇌ R[L, 0, 0] k0 k1

R[0, 0, p] + L ⇌ R[L, 0, p] k0 k1

R[0, P, 0] + L ⇌ R[L, P, 0] k0 k1

R[0, P, p] + L ⇌ R[L, P, p] k0 k1

(5.3)

Rules may also be used for association reactions, as exemplified for dimerization in the

rule

Rmon[X]+Rmon[X] <-> Rdim[X,X] k0 k1 (5.4)
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which for Rmon{0,L} and Rdim{0,L}{0,L} is evaluated to

Rmon[0] + Rmon[0] ⇌ Rdim[0, 0] k0 k1

Rmon[0] + Rmon[L] ⇌ Rdim[0, L] k0 k1

Rmon[L] + Rmon[0] ⇌ Rdim[L, 0] k0 k1

Rmon[L] + Rmon[L] ⇌ Rdim[L,L] k0 k1.

(5.5)

Stoichiometric coefficients can be used in rules. As an example, the evaluation of the rule

2 Rmon[X] <-> Rdim[X,X] k0 k1 (5.6)

leads to the same results as the evaluation of the rule given by Equation 5.4.

Note that compared to the binding of L, binding sites for the aggregation of two larger

molecules (e.g. the dimerization of Rmon) do not have to be defined. In this case, the

complex (e.g. Rdim) is defined as a new molecule whose site definitions are the sequence of

the site definitions of the reactants.

5.2.2.2 Symmetric reaction rules

ALC deals with the problem of symmetric reaction rules correctly. In Equation 5.5, the

second and the third reaction are symmetric to each other. If the two sites on Rdim are

really equivalent, Rdim[0, L] and Rdim[L, 0] are indistinguishable species. Rdim with one

bound L is represented by Rdim[0, L] + Rdim[L, 0]. Therefore, the rate constant for the

association of Rmon[0] and Rmon[L] is twice the nominal rate constant k0.

This parameterization differs from the one used by BioNetGen 2 [47], where homodimeriza-

tion is parameterized by 0.5 times the nominal rate constant. Both solutions are equivalent

but differ by a constant factor of two in the parameterization.

5.2.2.3 Generalized mass action kinetics for rules

Following the generalized law of mass action (Section 1.2.3), rules can be parameterized by

complex kinetic laws in the same way as reactions. This is demonstrated for the degradation

of a molecule M that has the molecule definition M{0,1,...,q} representing the species

M [i], i ∈ [0, q]. The degradation follows macroscopic Hill kinetics for M [X].

M[X] -> kmax*M[X]ˆ(n-1)/(M[X]ˆn+kmˆn) (5.7)

Applying the generalized law of mass action, this results in the rates

ri =
kmax ·M [i] ·M [X]n−1

M [X]n + kmn
(5.8)

which together are

rtot =

q∑

i=0

ri =
kmax ·M [X]n

M [X]n + kmn
. (5.9)

It can be seen that the macroscopic rate rtot is correctly allocated to the species M [i].

ri =
M [i]

M [X]
· rtot (5.10)

Michaelis-Menten kinetics can be realized using n = 1 in Equation 5.7.
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5.2.2.4 Advanced association rules

A very strong restriction for rule definitions is that corresponding sites with a modification ‘X’

must have the same site definitions (Section 1.5). The evaluation of rules to reactions is not

uniquely defined if this constraint (checked by ALC) is violated. Defining rules which describe

the association of two molecules can be problematic if site modifications of a molecule include

other molecules which can be modified themselves. An important example is the association

of a ligand L1 to a receptor R which is defined by the rule

R[X,0]+L1[X] <-> R[X,X] k1 k2. (5.11)

This rule can only be evaluated to reactions if the second site of the receptor has the same site

definition as the sole site of the ligand L1. In addition, the option StrictRS=0 slightly relax-

ing the syntax checks for rules (see ALC user guide) has to be set in the file Config ALC.txt

or via the command line when executing ALC (see Section 5.4.2 and Appendix A.7). The

required identity of site definitions implies that a possible site modification of the ligand L1

has to be ‘0’ and that the evaluation of the rule also leads to reactions defined by

R[X, 0] + L1[0] ⇌ R[X, 0] k1 k2. (5.12)

This is in most cases not the desired result since such reactions are degradation reactions

for L1[0]. A possible solution of this problem is to define L1 in a special way and to remove

the species L1[0] completely. Using the section #remove allows for the complete removal

of defined species from the model. This includes the removal of all reactions where these

species occur and the omission of these species in all macrostates. We illustrate this on an

example. The model definition

#molecules

R{0,1}{0,L1,L12,L123}

L1{0,L1,L12,L123}

#end molecules

#reactions

R[X,0]+L1[X]<->R[X,X] k1 k2

#end reactions

defines the association of R and L1 but also leads to reactions defined by Equation 5.12.

Let us consider the species L1[L1] as the molecule L1 having the configuration ‘L1’ which

indicates that it is not modified. In this case, the species L1[0] (usually representing what

in this example is represented by L1[L1]) is not necessary any more. Adding

#remove

L1[0]

#end remove

to the model definition completely removes L1[0] from the system and results in the reactions
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R[0, 0] + L1[L1] ⇌ R[0, L1] k1 k2

R[0, 0] + L1[L12] ⇌ R[0, L12] k1 k2

R[0, 0] + L1[L123] ⇌ R[0, L123] k1 k2

R[1, 0] + L1[L1] ⇌ R[1, L1] k1 k2

R[1, 0] + L1[L12] ⇌ R[1, L12] k1 k2

R[1, 0] + L1[L123] ⇌ R[1, L123] k1 k2.

(5.13)

In addition, the macrostate L1[X] does also not contain L1[0] and is defined as

L1[X] = L1[L1] + L1[L12] + L1[L123]. (5.14)

If the section #remove contains macrostates, all corresponding species are removed. Ob-

viously, this makes only sense for molecules with more than one site.

Modeling the association of complexes is very error-prone if there are no strict consistency

checks and in particular the condition that corresponding sites with a site modification ‘X’

need to have the same site definition. The solution proposed here, which is defining a species

in the corresponding molecule definition, subsequent removal of the same species and specific

relaxation of syntax checks, may seem intricate. However, it is an efficient possibility allowing

for a rule-based description of advanced association processes. The used syntax allows for

consistency checks avoiding erroneous model definitions.

5.2.3 Defining signal flows: the section ‘#layer connections’

The signal flow between the layers is defined in the section #layer connections (Figure 5.2).

Notations of the sums of species with a phosphorylated binding site xi have to start with a

lowercase ‘x’ and are optionally followed by a sequence of letters and digits. Notations of the

sums of species with occupied binding sites xib start with the notation of the corresponding

xi and end with a lowercase ‘b’. Note that notations of xi are not allowed to end with a

lowercase ’b’.

The phosphorylation of binding sites (site modification ‘P’) and the corresponding effector

bindings are described in different layers. In this case, the binding partners for the effectors

are defined by algebraic equations, typically as differences of xi and xib. The definition of

these binding partners, which represent sums of microscopic species with phosphorylated but

unoccupied binding sites, is also done in the section #layer connections. Their notation

is analogous to that for species, however, the binding partners do not have to be defined in

the section #molecules.

5.2.4 Defining parameters: the section ‘#parameters’

The section #parameters is used to define parameter values (Figure 5.2). In contrast to

species notation, parameter notations have to start with a lowercase letter (which must not

be ‘r’ or ‘x’, as these letters are reserved for the notation of reaction rates and layer connec-

tions, respectively). Parameters can also be functions of other parameters (e.g. k1=k2/k3).

Parameters for which no value is assigned, are set to the default value (the value of the
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option Param) that can be defined in the file Config ALC.txt or via the command line when

running ALC (see Section 5.4.2 and Appendix A.7). A warning is given for each omitted

parameter definition.

5.2.5 Defining initial conditions: the section ‘#initial conditions’

The section #initial conditions is used to define initial conditions (Figure 5.2). Each

species that is not defined by an algebraic equation requires an initial condition. An initial

condition for a species is defined by an equation that assigns a value to the species. Note

that initial conditions can be functions of parameters (e.g. R[0,P]=a/b+1).

Initial conditions for which no value is assigned, are set to the default value (the value

of the option InCond) that can be defined in the file Config ALC.txt or via the command

line when running ALC (see Section 5.4.2 and Appendix A.7). A warning is given for each

undefined initial condition. Setting the default value for initial conditions to zero may result

in division by zero in the correction terms ci. To avoid this, initial conditions for some

phosphorylated species have to be set manually to a non-zero value. Alternatively, one can

use a default value very close to zero (e.g. 10−20). During the assignment of initial conditions,

one has to assure that xi ≥ xib and xi > 0 hold for all i (see Section 4.3.5).

5.2.6 Constant concentrations: ‘#clamped concentrations’

Concentrations of species can be set to a constant value (which can be a function of pa-

rameters) in the section #clamped concentrations (Figure 5.2). In this case, no ODE is

generated for these species. Note that clamping the concentration of a protein species results

in a non-constant overall concentration of this protein if there is no conservation relation.

In the small example system, clamping L leads to a non-constant sum L+R[L,X].

5.2.7 Defining conservation relations: ‘#molecular balances’

Conserved moieties are chemical entities that participate in a reaction system without loss

of integrity and always remain in the system [22]. The total concentration of conserved

moieties is constant, if the volume is constant. As an example, the sum of all species of a

protein that is not degraded or synthesized is a conserved moiety. Conservation relations

(molecular balances) allow the modeler to replace the ODE of one species for each conserved

moiety by an algebraic equation, and can be defined in the section #molecular balances

(Figure 5.2). ALC does not generate ODEs for these species. Considering R{0,L}{0,P}, an

example for a conservation relation is

R[0,0]=totR-R[0,P]-R[L,0]-R[L,P] (5.15)

where totR is a parameter defining the total (constant) concentration of R. A conservation

relation can be defined using macrostates and the species whose ODE is to be replaced by

this conservation relation. Therefore,

R[0,0]=totR-R[X,X]+R[0,0] (5.16)
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is also allowed. ALC replaces the used macrostates by the corresponding sums of species.

Subsequently, the species whose concentration is defined by this conservation relation is

removed from the right hand side of the assignment. From this it follows that using

R[0,0]=totR-R[X,X] (5.17)

leads to the same result as the assignments above.

The automatic removal of the species defined by the conservation relation from the right

hand side of the assignment allows for the usage of macrostates, which highly simplifies the

definition of conservation relations.

5.2.8 Defining algebraic assignments: ‘#algebraic relations’

The section #algebraic relations allows for the assignment of arbitrary algebraic expres-

sions (that may contain species, macrostates, numerical values and parameters) to variables

whose notation is analogous to that of a species. Variables defined in this section may

simplify the usage of recurrent expressions in the parameterization of reaction rates. They

can also be used to provide the output of lengthy algebraic expressions with a short and

meaningful plot legend (see Section 5.2.9). The notations of variables that are defined in

this section have to match the restrictions on species notation (Section 4.2.1). However,

variables that are defined in this section (by assigning an algebraic expression to them) do

not have to be defined in the section #molecules.

5.2.9 Defining model outputs: the section ‘#output’

The section #output allows for the declaration of species, macrostates, variables from the

section #algebraic relations, or arbitrary algebraic expressions as outputs. The simu-

lation results of all outputs and all variables defined in the section #layer connections

are visualized in the resulting Mathematica, C MEX and MATLAB models. In the SBML

model, the outputs are defined as Outputi. Note that the lines of this section do not contain

equations, but algebraic expressions (see Figure 5.2).

The lines of the section #output are the legends of the plots when executing the simulation

files. If more descriptive legends are preferred, new variables can be defined in the section

#algebraic relations (e.g. Out1=...) and subsequently declared as outputs in the section

#output (e.g. only Out1 within one line).

The automatic addition of all variables defined in the section #layer connections to

the output list is performed as they correspond to macroscopic quantities that are often of

interest. It can be disabled by setting OutLC=0 in the file Config ALC.txt or in the command

line when running ALC (see Section 5.4.2 and Appendix A.7).

5.2.10 Order of assignments

The order of the sections in the model definition is irrelevant. The sections where algebraic

assignments can be defined are evaluated in the following order: #parameters, #clamped
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concentrations, #molecular balances, #layer connections, #algebraic relations.

This means for example that all variables whose values are defined in the other sections can

be used in the section #algebraic relations. Variables defined in the section #algebraic

relations, however, cannot be used in all the other sections (but of course in the sections

#output and #reactions).

Variables which are defined and used within the same section have to be defined in a row

that is above their first usage. The sole exception is the section #parameters where this

strict rule is slightly relaxed. All parameter definitions where other parameters occur on the

right hand side of the assignment are moved to the end of the parameter list. This is done

in the order they are defined. All other parameter assignments are sorted alphanumerically

and placed above.

The order of assignments is irrelevant when using the Mathematica model, which results

from the repeated insertion of all assignments into the ODEs.

5.3 Automated assignment of correction terms

This section describes the conditions that are checked in order to decide whether a correction

term ci is necessary and if so, the algorithm to find the appropriate correction term. ALC

detects the need for a correction term in the rate law of a reaction if the following two

conditions are simultaneously fulfilled:

• A molecule M occurs on both sides of the reaction equation.

• The site modification of the molecule M is ‘P’ at the jth site on one side of the reaction

equation and not ‘P’ on the other side of the reaction equation.

As an example, these conditions are fulfilled for the second and for the third reaction in

Figure 5.2, whereas they are not fulfilled simultaneously in the remaining reactions.

ALC uses the following algorithm to find the appropriate correction term:

1. Replace macrostates by the corresponding sums in each definition of xi.

2. Count for all xi how often the molecule M occurs with a site modification ‘P’ at the

jth site (factors preceding species or macrostates are not considered).

3. Take the xi with the highest score and use ci = (xi − xib)/xi as the correction term.

This algorithm is implemented much faster than described above. The first step is only

performed once. The second step is performed simultaneously for all molecules and positions

with the site modification ‘P’ that occur in at least one xi. This is done by building a hash

(an associative array, a major data type in Perl) [119] which has the keys: molecule name

and position. The values are the corresponding xi having the highest score. Using this hash,

the third step is trivial.
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Consider a certain xM,j representing the sum of all species of the molecule M with phos-

phorylated jth site. Assume that effector binding depends on binding site phosphorylation

but not on other modifications of M (which is the normal situation). In this case, the

algorithm always leads to the desired correction term (xM,j−xM,jb)/xM,j for the dephospho-

rylation of the jth site of M . The reason is that the sum xM,j contains more species of the

molecule M with phosphorylated jth site than the other xi describing the phosphorylation

of other sites. As an example consider the molecule M{0,P}{0,P}..., where the first two

sites are binding sites to which effector binding is described in different layers. The sums

of species with a phosphorylated binding site are x1 = M [P,X, ...] and x2 = M [X,P, ...]

where the dots represent a sequence of site modifications ‘X’. Applying the algorithm above

leads to the correction term (x1− x1b)/x1 in all dephosphorylation rates of the first site and

(x2 − x2b)/x2 for those of the second site. Note that all species with phosphorylated first or

second site are included in x1 or x2, respectively, but not all of them occur in the other xi.

Ignoring the factors preceding species or macrostates in Step 2 allows for the application

of the advanced strategy of equivalent binding sites (Section 4.4.1). Otherwise, such factors

could dominate the analysis and lead to wrong correction terms for the dephosphorylation

of other sites.

5.4 Using ALC

5.4.1 Step by step procedure: using ALC

This step by step procedure is a modification of the step by step procedure for layer-based

modeling (Section 4.3.8) that can be applied when using ALC.

1. Identify all processes and their interactions.

2. Draw the interaction graph.

3. Deduce from the interaction graph how many layers are in the model and which pro-

cesses form part of which layer. All processes that are coupled by graded interactions

are part of the same layer. Processes of different layers are coupled by all-or-none

interactions or do not interact.

4. Model each layer separately as if the processes of all other layers do not exist.

a) Define all molecules in the section #molecules (e.g. R{0,L}{0,P}). The site mod-

ification (uppercase) ‘P’ is reserved for indicating the phosphorylation of binding

sites to which the effector binds in another layer. A different notation (e.g. low-

ercase ‘p’ ) has to be used to indicate the phosphorylation of other sites.

b) Define rules and reactions, as in conventional modeling, in the section #reactions

(e.g. R[0,X]+L<->R[L,X] k1 k2). Variables representing frequently used

expressions in the parameter part of the reactions can be defined in the section

#algebraic relations.
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c) Define all sums of species with phosphorylated binding sites xi (e.g. x=R[X,P])

and all sums of species with occupied binding sites xib (e.g. xb=RXE) in the section

#layer connections. Note that xib has the same notation as the corresponding

xi, followed by (lowercase) ‘b’.

d) Define the binding partners for effectors whose binding sites are phosphorylated

in other layers in the section #layer connections (e.g. RXp=x-xb).

e) Assign values to parameters in the section #parameters (e.g. k1=3). Undefined

parameters are set to the default value (the value of the option Param) which can

be defined in the file Config ALC.txt or via the command line.

f) Assign initial conditions in the section #initial conditions (e.g. R[0,0]=2).

Undefined initial conditions are set to the default value (the value of the option

InCond) which can be defined in the file Config ALC.txt or via the command

line. The initial conditions have to guarantee xi > 0 and xi ≥ xib ∀ i.

g) Concentrations of species can be set to a constant value in the section #clamped

concentrations (e.g. L=10).

h) Conservation relations (e.g. R[0,0]=totR-R[X,X]+R[0,0]) can be defined in the

section #molecular balances. Using macrostates which may also contain the

species whose ODE is to be replaced highly simplifies this step.

5. Define outputs (observables) to be visualized in the C MEX, MATLAB and Mathemat-

ica models in the section #output. The simulation results of all variables defined in the

section #layer connections are visualized in the C MEX, MATLAB and Mathematica

models without declaring them as outputs. This can be disabled by changing the value

of the option OutLC which can be defined in the file Config ALC.txt or via the com-

mand line.

6. Store the model definition in a file, e.g. ‘layer.alc’, which is the default file name for

the model definition file.

7. Run ALC offline or use the form on the ALC website.

5.4.2 Running ALC

There are two possible ways of running ALC. The first is to use the form on the ALC

website [118], where ALC can be accessed using a browser without any additional software.

The second possibility is to download the latest release of ALC from the same website [118],

from SourceForge.net [122], or to use the first release that is given in [111, Additional file 5].

Perl (freely available, e.g. [120]) is required for the offline use. For the installation of ALC

it is only necessary to unpack the file ‘download ALC.zip’ (or [111, Additional file 5]) in the

directory where the model definition files will be stored. If ALC is installed, store the model

definition in the file ‘layer.alc’, open a command line interface, go to the ALC directory and
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type

ALC.pl

followed by the return key. The equivalent command

perl ALC.pl

can also be used. These commands execute ALC with default values, e.g. for undefined

parameters or initial conditions and for the filenames of the model definition file and the

resulting model files. Without changing the default values, the model definition has to be

stored in the file ‘layer.alc’, and the names of the resulting output files start with ‘model’.

All default values can be changed in the file Config ALC.txt or via the command line for

each call of ALC separately. A detailed description of default values and command line

parameters is given in Appendix A.7. Note that all options have their equivalent as text

fields or select elements in the form on the ALC website [118].

5.4.3 Resulting model files

The resulting model is given in MATLAB (default: modelM call.m and modelM.m), C MEX

(default: modelC call.m, modelC mdl.mdl and modelC.c), Mathematica notebook (default:

model.nb) and Mathematica input file (default: model.mma.m) formats as directly exe-

cutable files. They include the visualization of the simulation results for the user-defined out-

put variables and (unless OutLC=0) all variables defined in the section #layer connections.

The core of the C MEX model is a MATLAB S-function written in C, which results in a

much faster simulation of the model compared to the standard MATLAB format. A recent

release of MATLAB (earliest version successfully tested: 7.0.4.352) is required for using the

C MEX models. The Mathematica input file contains the same code as the notebook file,

but simplifies the integration of layer-based models into existing Mathematica code.

The model is also given in SBML (default: model.xml), LATEX (default: model.tex) and

plain text (default: model.txt) formats, which allows for the direct usage of model equations

for presentations or publications. Additionally, the model definition is converted to the

LATEX format (default: model.input.tex).

Note that the SBML standard [115] allows for explicit algebraic assignments, which are

used in layer-based models. However, some SBML-supporting tools will not work with layer-

based SBML models as these tools do not support algebraic assignments. An important tool

that works with layer-based SBML models is MathSBML [123] (release 2.7.0.3 or higher).

5.4.4 Computational aspects

The output files for small layer-based models are generated in less than one second on a

desktop PC. The generation of larger layer-based models that can correspond to extremely

large conventional models is also very rapid. As an example, the output files for the layer-

based model of insulin signaling (214 ODEs) that replaces a conventional model with 1.5 ·108
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ODEs are generated in about one second on a desktop PC. A few thousand ODEs are usually

generated within seconds.

The model size in the offline version of ALC is only restricted by CPU time, disk space

and memory capacity. The online version of ALC which is accessible via a form on the ALC

website [118] provides full functionality, but is restricted to model definitions that define no

more than 500 species. This is done to keep the traffic and the processor load on the server

at a reasonable size.

5.5 Conclusions

ALC converts model definitions given in a simple, but powerful rule-based syntax to compu-

tational models in different formats, as well as documentation files. The model definition is

divided into distinct sections and can be structured to mirror the modularity of the model.

A main benefit of ALC is that it dramatically simplifies layer-based modeling and reduces

the risk of creating erroneous model equations.

The assignment of the correction terms ci to dephosphorylation rates of binding sites to

which effector binding is described in different layers is one of the more difficult and error-

prone steps in manual layer-based modeling. ALC performs these assignments automatically,

such that errors in this step are avoided. This strengthens the analogy of layer-based mod-

eling to conventional modeling and rule-based modeling as the reaction network within each

layer can now be defined using rules without considering correction terms.

ALC also supports the usage of macrostates. This highly simplifies the definition of the

signals between the layers (xi and xib) as well as the definition of conservation relations and

the use of enzyme kinetics for rules and reactions.

In many cases, it is comfortable to have the model in different formats. As an example,

SBML [115] is becoming the de facto standard for model representation in systems biology.

Though by far not all modeling and simulation projects use SBML, it is often desired to

provide SBML models for publications. In addition, the model equations in plain text are

often part of the manuscript or provided as supplementary material. The manual format

conversion of models however is probably the major reason for errors in published model

descriptions. ALC prevents this problem since it automatically exports the models to several

formats (C MEX, MATLAB, Mathematica and SBML) and provides the model equations in

LATEX format as well as in plain text format, which simplifies the presentation and publication

of the models.

ALC is optimized for building layer-based models. It supports features of layer-based

modeling that are not present in conventional or rule-based modeling, and that are not

supported by other tools. Though it is not its main application, ALC is also well suited for

rule-based or conventional modeling of reaction networks.

Altogether, ALC highly simplifies the generation of layer-based models. ALC is freely

available and can be used offline or via a form on the ALC website [118].
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Mathematical modeling of cellular signaling systems and subsequent model analysis is a

promising way to a deeper understanding of physiological processes and to improved ther-

apies for severe disorders such as cancer and diabetes mellitus. However, combinatorial

complexity complicates the modeling of many signaling systems because the association of a

few proteins can result in an enormous amount of feasible complexes and reactions. As one

ODE is necessary for the balance of each feasible complex, conventional modeling of these

systems is rarely possible. A potential solution is to simplify the description of complex

formation at the receptors by focussing on the processes assumed to dominate the systems

behavior.

This strategy was applied to the modeling of insulin dynamics and hepatic insulin receptor

activation in vivo. Model analysis showed that insulin clearance and the relative contribu-

tions of the liver and the kidney to insulin degradation are highly dependent upon the insulin

concentration. At low insulin concentrations, insulin is mainly degraded by the liver, whereas

at high insulin concentrations insulin degradation is mainly performed by the kidney. Exper-

imentally determined values of insulin clearance and relative contributions of the different

tissues to insulin degradation are therefore only meaningful when the corresponding insulin

concentrations are taken into account. This however is not considered in many experimen-

tal studies resulting in a wide variation of the reported values. As a consequence, insulin

clearance and the relative contributions of the different tissues to insulin degradation should

always be measured at a constant insulin concentration given in the resulting publications.

Due to combinatorial complexity, comprehensive modeling of many signaling systems is

only possible if a reduced order modeling technique is applied. This thesis introduces layer-

based modeling, a reduced order modeling technique for cellular signaling systems which

is characterized by a high approximation quality. Layer-based models of signaling systems

show a pronounced modular structure and provide a macroscopic description, with state

variables that have a direct biochemical interpretation. Due to the macroscopic description,

the number of necessary ODEs is highly decreased compared to conventional models. In

contrast to most other model reduction techniques, a layer-based model can be directly

generated by a procedure quite similar to conventional modeling. The preceding generation

of a potentially very large conventional model is not necessary. Nevertheless, it is also possible

to derive layer-based models from conventional models applying a formal procedure.

At the beginning of the direct model generation, the modularity of the model is deduced

from a graph of all processes and their interactions. Then, the resulting modules, called

layers, are modeled separately from each other and their connections are defined. The

connections are given by signal flows representing phosphorylation and occupancy of binding
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sites which are important physiological characteristics of signaling systems.

The approximation in layer-based modeling is based upon the implicit systematic as-

sumption of rapid equilibrium for additionally introduced virtual reactions, called diagonal

reactions. These assumptions are equivalent to independence assumptions for processes

of different layers that do not interact directly. The approximation errors in layer-based

modeling represent the distances of the diagonal reactions from equilibrium. They can be

described by first order ODEs, characterized by input-to-state stability, whose solutions are

dynamically and ultimately bounded. For physiologically relevant parameter values, the ap-

proximation error is very small. Qualitative checks allow for evaluating the approximation

quality of layer-based models without comparing simulation results to those of a conven-

tional model. In well-defined special cases, layer-based models describe the dynamics of the

corresponding signaling systems in a stationarily or even dynamically exact way.

Altogether, layer-based modeling is a powerful technique for the modeling of signaling

systems with inherent combinatorial complexity. It is the only applicable method if both a

conventional model (which may be the result of rule-base modeling) and a domain-oriented

model are too large for efficient simulation or parameter estimation. Layer-based modeling is

especially suited for comparing many model variants, since in most cases only a few equations

in a single layer have to be changed.

Though providing a macroscopic description, layer-based modeling of large systems may

be time-consuming. To simplify the generation of layer-based models and to prevent errors

in the modeling procedure, this thesis presents the computer program Automated Layer

Construction (ALC). Using this tool, models can be defined in a simple, but powerful syntax

supporting the concepts of rules and macrostates. The structure of a model definition mirrors

the modularity of the model, as deduced from the interaction graph. Model definitions for

ALC only contain the minimal information necessary for uniquely defining the models and

simultaneously allow for numerous automated consistency checks. Layer-based models of

very large systems are in most cases defined by relatively short and simple model definitions.

ALC is freely available and can be used offline or via a form on the ALC website. Run-

ning ALC results in directly usable simulation files in the formats C MEX, MATLAB,

Mathematica and SBML. The model equations are also given in LATEX and plain text format

which simplifies their publication and presentation.

Layer-based modeling and automated model generation, as provided by ALC, highly sim-

plify the modeling of signaling systems with inherent combinatorial complexity. Even the

modeling of highly branched signaling networks requires in most cases only a moderate effort.

Potential future applications of layer-based modeling and ALC involve the modeling of

mammalian signal transduction systems whose malfunctions may give rise to severe diseases.

A promising possibility is to extend the in vivo model for insulin dynamics and hepatic insulin

receptor activation presented here in close collaboration with experimental biologists. Such

a model could cover the signaling cascades emerging from the hepatic insulin receptor and

the effect of feedback phosphorylations. Model analysis can be expected to significantly

contribute to understanding the effect of insulin on hepatocytes and the entire organism,

and finally contribute to improved therapies for diabetes mellitus.
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A Appendix

A.1 Scientific contribution of this thesis

The main results presented in Chapters 2, 4 and 5 were published in peer-reviewed journals.

The article [72] describes the results presented in Chapter 2. The main results of Chapter 4

were published in [105] and [111], and the results of Chapter 5 were published in [111]. The

results were presented at international conferences (SBMC 2006, FOSBE 2007, SBMC 2008).

A.2 Software

The software package Mathematica (Wolfram Research) was used for all stationary and

analytic computations. Dynamic simulations were performed with the software package

MATLAB (The MathWorks). ALC was written in the programming language Perl [119,120].

This thesis and all publications were drafted using LATEX [116,117] on a Linux System.

A.3 Insulin dynamics and insulin receptor activation

A.3.1 Model parameters and initial conditions

This section provides additional information about the derivation of parameter values and

initial conditions given in Table 2.1. In vitro insulin receptor autophosphorylation has a

half-life of about 0.5 min (Figure 1 in [77]). Assuming linear first order kinetics, this corre-

sponds to a rate constant of kyp = 0.0231 s−1. In vitro insulin receptor dephosphorylation

at the plasma membrane has a half-life of about 3 min (Figure 2 in [76]). Assuming lin-

ear first order kinetics, this corresponds to a rate constant of kyd = 0.00385 s−1. In vitro

insulin receptor dephosphorylation at endosomal membranes has a half-life of 1.6 min (Fig-

ure 2 in [77]). Assuming linear first order kinetics, this corresponds to a rate constant of

kyden = 0.00722 s−1.

Weights of livers and bodies given in literature [53] were compared. In average, the liver

contributes about 5 % to the body weight of rats. There are 105 insulin receptors per

hepatocyte [88]. Assuming that the hepatocyte is a sphere with a diameter of 20 µm, this

corresponds to a total receptor concentration of Rtot = totR = 40 nM . The basal insulin

concentration in fasted mice is 0.3− 0.5 ng ·ml−1 (Gisela Drews, personal communication).

As the molecular weight of insulin is 5.7 kDa (computed from Swiss-Prot entry P01317),
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0.4 ng ·ml−1 corresponds to 0.07 nM . The same basal insulin concentration was assumed

for rats. All other parameters were directly taken from the cited references.

The stationary model equations (all derivatives set to zero) were solved for the state

variables at the constant basal insulin concentration to get initial conditions that correspond

to the basal insulin concentration (Additional files 4 and 5 in [72], Table 2.1).

A.3.2 Dynamic model validation

Kruse et al. [83] used rats with a body weight of 238 ± 20 g. Insulin injection was 100 µl

of 12− 21 pM radioactively labeled insulin. A body weight of mbody = 238 g and an insulin

injection of n∗,in = 100 µl · 16.5 pM = 1.65 · 10−6 nmol and nin = 0 nmol were used for the

simulation of this experiment. The experimental data set is given in % dose per ml serum.

Multiplied by the amount of injected labeled insulin and divided by 100, these values give

the concentrations of labeled insulin in plasma (unit: nmol/ml).

Desbuquois et al. [82] used rats with a body weight of 180− 200 g. Insulin injection was

25 nmol/100 g body weight. A body weight of mbody = 190 g and an insulin injection of

nin = 47.5 nmol and n∗,in = 0 nmol were used for the simulation of this experiment. The

experimental data set is already given as concentration values. As the procedure of injection

is not exactly described in either study, it was assumed that the injection had been given as

a bolus at t = 0 s.

Backer et al. investigated insulin receptor internalization in Fao hepatoma cells [56].

Surface receptors were radioactively labeled at low temperature (on ice), stopping receptor

internalization. Incubation at 37 ◦C initiated receptor internalization in the assay. This

experiment was simulated by setting initial conditions such that all receptors are at the

surface (R = 40). If the insulin concentration is constant, the receptor model is linear and

the superposition principle holds. Therefore, the assay can be simulated with this choice of

initial conditions.

A.4 Measuring insulin clearance

There are several methods available to measure insulin clearance [52]. This section shortly

describes the two most important techniques.

A.4.1 Analysis of plasma insulin concentration after insulin

administration

In many studies, exogenous insulin is administered as a bolus. The insulin concentration

Ins(t) is measured at as many time points a possible. Subsequently, a continuous curve is

fitted to the data points and interpolated to zero (if necessary) and infinity. Insulin clearance

c is determined as the quotient of the injected amount (dose) of insulin and the area under
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the concentration curve which are referred to as ID and AUC, respectively [52].

c =
ID

AUC
, AUC =

∞∫

0

Ins(t) dt (A.1)

Only in some special cases however, this method leads to results in accordance with the

formal definition of insulin clearance as the quotient of insulin degradation rate and insulin

concentration [59]. In addition, AUC is only defined if Ins(t) → 0 for t → ∞, which only

holds if there is no endogenous insulin synthesis.

Assume that there is neither endogenous insulin synthesis nor basal insulin, and that

insulin is injected as a bolus at t = 0. In this case, it holds that Ins(0) = ID
vp

and Ins(t)→ 0

for t → ∞. In addition, the insulin degradation rate r(t) is the negative derivative of the

insulin concentration. Assume that the time course of the insulin concentration is given by

an exponential function

Ins(t) =
ID

vp

· e−k·t (A.2)

implying linearity of insulin degradation.

r(t) = k · Ins(t) = k ·
ID

vp

· e−k·t (A.3)

Under these assumptions, the two definitions are identical.

c =
r(t) · vp

Ins(t)
=
k · ID · e−k·t · vp

ID · e−k·t
=

∞∫
0

r(t) dt · vp

∞∫
0

Ins(t) dt

=
ID

AUC
(A.4)

However, Equation A.4 does not hold in realistic scenarios. Assuming linearity of insulin

degradation results in insulin clearance not depending on the insulin concentration, which is

in contrast to a main result of Chapter 2. Note that linearity of insulin degradation is only

a good approximation when analyzing a small concentration interval. However, for small

amounts of injected insulin (ID), the neglected endogenous insulin becomes important.

Altogether, this method does not give reliable results for insulin clearance according to its

formal definition [59].

A.4.2 Continuous insulin infusion: euglycemic insulin clamp

Another technique to measure insulin clearance is called euglycemic insulin clamp [52] and

requires a continuous insulin infusion with a constant flux qIns (unit: mol · s−1). After

a transient time, the insulin concentration in the plasma Ins (unit: mol · l−1 ) remains

constant. In the resulting steady state, the rate of insulin degradation equals the rate of

insulin infusion plus the rate of endogenous insulin synthesis. Neglecting endogenous insulin
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synthesis, insulin clearance can be calculated according to its formal definition [59] as the

quotient of insulin degradation rate (which equals qIns) and insulin concentration.

c =
qIns

Ins
(A.5)

If large amounts of insulin are infused, the simultaneous administration of glucose is necessary

to avoid a strong decrease in plasma glucose concentration. If qIns is not large compared

to endogenously secreted insulin, it is necessary to correct Equation A.5 for endogenous

insulin which can be assessed by the additional measurement of the C-peptide1 concentration

Cp [52]. According to [52], insulin clearance in the steady state is given as

c =
qIns

Ins− Insbasal ·
Cp

Cpbasal

(A.6)

where an index basal indicates the basal value of the corresponding concentration and en-

dogenous insulin is approximated as Insbasal ·
Cp

Cpbasal
.

A.5 Approximation error g(t)

In this section, the ODE for the error g(t) (Equation 4.29) is derived for the reaction cycle

shown in Figure 4.7. The four reactions forming the reaction cycle are given as

D[0, E] + L ⇌ D[L,E] k1 k−1

D[0, p] + L ⇌ D[L, p] k1 k−1

D[0, p] + E ⇌ D[0, E] k4 k−4

D[L, p] + E ⇌ D[L,E] k4 k−4

(A.7)

and, according to the law of mass action (Section 1.2.3), proceed with the reaction rates

r0 = k1 ·D[0, E] · L− k−1 ·D[L,E]

r1 = k1 ·D[0, p] · L− k−1 ·D[L, p]

r2 = k4 ·D[0, p] · E − k−4 ·D[0, E]

r3 = k4 ·D[L, p] · E − k−4 ·D[L,E].

(A.8)

The balances of the concentrations of the species forming the reaction cycle are given as

d

dt
D[0, p] = −r1 − r2 + J1

d

dt
D[0, E] = −r0 + r2 + J2

d

dt
D[L, p] = r1 − r3 + J3

d

dt
D[L,E] = r0 + r3 + J4

(A.9)

1Prior to the secretion of insulin, proinsulin is proteolytically processed to insulin (consisting of an A-chain

and a B-chain) and C-peptide. The endogenous formation of one insulin molecule is therefore associated

with the formation of one C-peptide [1].
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where Ji are the in-fluxes into the reaction cycle (Figure 4.7). The diagonal reaction of this

cycle is

D[0, p] +D[L,E] ⇌ D[L, p] +D[0, E] (A.10)

(see Equation 4.21). In the next step, we assume rapid equilibrium (see Section 3.6.2) for

this virtual reaction. As the processes of L binding and E binding do not interact directly

and are assumed to be independent, we assume an equilibrium constant of one.

D[0, p] ·D[L,E]−D[L, p] ·D[0, E] = 0 (A.11)

The error g(t) is introduced as the distance of the diagonal reaction from equilibrium.

g(t) = D[0, p] ·D[L,E]−D[L, p] ·D[0, E] (A.12)

Differentiating Equation A.12 leads to

ġ(t) = D[0, p]·
d

dt
D[L,E]+D[L,E]·

d

dt
D[0, p]−D[L, p]·

d

dt
D[0, E]−D[0, E]·

d

dt
D[L, p] (A.13)

which together with Equations A.8 and A.9 results in

ġ(t) =J1 ·D[L,E]− J2 ·D[L, p] +D[0, p](J4 −D[L,E](k−1 + k−4 + k4 · E + k1 · L))

+D[0, E](−J3 +D[L, p](k−1 + k−4 + k4 · E + k1 · L))

=− (k−1 + k−4 + k4 · E + k1 · L)(D[0, p] ·D[L,E]−D[L, p] ·D[0, E])

+ J1 ·D[L,E]− J2 ·D[L, p]− J3 ·D[0, E] + J4 ·D[0, p].

(A.14)

If one defines

a(t) = k−1 + k−4 + k4 · E + k1 · L

u(t) = J1 ·D[L,E]− J2 ·D[L, p]− J3 ·D[0, E] + J4 ·D[0, p]
(A.15)

Equation A.14 simplifies to Equation 4.29 which is given as

ġ = −a(t) · g + u(t). (A.16)
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A.6 Layer-based model of the extended example

system

According to the interaction graph (Figure 4.2 B), the layer-based model of the extended

example system (Section 4.6.1) consists of three layers which can be modeled independently

from each other once their connections are defined. The reaction network within the layers

is shown in Figure 4.8, parameters and initial conditions are given in Table A.1.

A.6.1 The receptor layer

The receptor layer describes the processes of ligand binding and receptor phosphorylation.

The receptor R{0,L}{0,p}{0,P} has three sites. The first site is a binding site for the ligand

L. The second site is a regulatory phosphorylation site whose phosphorylation negatively

affects autophosphorylation of the third site, which is a binding site for the effector E.

r1 = k1 · L ·R[0, 0, 0]− k−1 ·R[L, 0, 0]

r2 = k1 · L ·R[0, 0, P ]− k−1 ·R[L, 0, P ]

r3 = k1 · L ·R[0, p, 0]− k−1 ·R[L, p, 0]

r4 = k1 · L ·R[0, p, P ]− k−1 ·R[L, p, P ]

r5 = k2 ·R[0, 0, 0]− k−2 ·R[0, p, 0]

r6 = k2 ·R[0, 0, P ]− k−2 ·R[0, p, P ]

r7 = k3 ·R[L, 0, 0]− k−3 ·R[L, p, 0]

r8 = k3 ·R[L, 0, P ]− k−3 ·R[L, p, P ]

r9 = k2 ·R[0, 0, 0]− k−2 ·
x− xb

x
·R[0, 0, P ]

r10 = k4 ·R[0, p, 0]− k−4 ·
x− xb

x
·R[0, p, P ]

r11 = k3 ·R[L, 0, 0]− k−3 ·
x− xb

x
·R[L, 0, P ]

r12 = k5 ·R[L, p, 0]− k−5 ·
x− xb

x
·R[L, p, P ]

(A.17)

The signal x represents the sum of all phosphorylated binding sites on the receptor.

x = R[X,X, P ] (A.18)

Note that x represents both occupied and unoccupied phosphorylated binding sites. The

correction term (x − xb)/x represents the fraction of phosphorylated binding sites that is

not occupied. Using the same correction term in all dephosphorylation rates of the binding

site corresponds to the assumption that the same fraction of phosphorylated binding sites is

occupied in all species with a site modification (uppercase) ‘P’.
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d

dt
R[0, 0, 0] = −r1 − r5 − r9

d

dt
R[0, 0, P ] = −r2 − r6 + r9

d

dt
R[0, p, 0] = −r3 + r5 − r10

d

dt
R[0, p, P ] = −r4 + r6 + r10

d

dt
R[L, 0, 0] = r1 − r7 − r11

d

dt
R[L, 0, P ] = r2 − r8 + r11

d

dt
R[L, p, 0] = r3 + r7 − r12

d

dt
R[L, p, P ] = r4 + r8 + r12

(A.19)

Ractive is an additional signal representing receptor activity transferred to the E layer,

where the activated receptor mediates the phosphorylation of E.

Ractive = R[X, p,X] (A.20)

The signal Ractive fulfills the conditions for additional signals between layers given in Sec-

tion 4.4.3 as it introduces no graded interaction between processes of different layers.

A.6.2 The E layer

The E layer describes the processes of E binding to the receptor and E phosphorylation.

Receptor-bound E is defined by RXE{0,P}, E not bound to the receptor is defined by E{0,P}.

The binding partner RXp represents the sum of all microscopic receptor species with phos-

phorylated and unoccupied binding site for E.

r13 = k6 · E[0] ·RXp− k−6 ·RXE[0]

r14 = k7 ·Ractive ·RXE[0]− k−7 ·
x2− x2b

x2
·RXE[P ]

r15 = k6 · E[P ] ·RXp− k−6 ·RXE[P ]

r16 = k−7 ·
x2− x2b

x2
· E[P ]

(A.21)

The signal x2 represents the sum of all species of E phosphorylated on the binding site

for F .

x2 = RXE[P ] + E[P ] (A.22)

Using the correction term (x2−x2b)/x2 in the dephosphorylation rates of RXE[P ] and E[P ]

(Equation A.21) corresponds to the assumption that the same fractions of phosphorylated

binding sites are occupied in both receptor-bound E and E not bound to the receptor.
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Table A.1: Kinetic parameters and initial conditions for the extended example system

Initial conditions were 40 nM for R[0, 0, 0], 250 nM for E[0] and 50 nM for F . All other

initial conditions were about 10−20 nM and determined according to the transformation

equations [105]. L is set to 100 nM , a typical insulin concentration for in vitro experiments.

Autophosphorylation of the receptor with bound ligand and without regulatory phosphory-

lation is parameterized by k3. Autophosphorylation in the absence of ligand and regulatory

phosphorylation is parameterized by k2 = k3 · fins. Autophosphorylation without ligand but

with regulatory phosphorylation is parameterized by k4 = k3 · fins · freg. Autophosphoryla-

tion with bound ligand and regulatory phosphorylation is parameterized by k5 = k3 · freg.

It is assumed that dephosphorylation of the receptor does not depend on other receptor

modifications: k−2 = k−3 = k−4 = k−5. It is further assumed that E and F bind with the

same kinetic constants to their respective binding sites: k6 = k8 and k−6 = k−8.

Parameter Literature value Unit Source

k1 0.001 nM−1s−1 [58]

k−1 4 · 10−4 s−1 [58]

k3 0.0231 s−1 [77]

k−3 0.00385 s−1 [76]

k6 0.033 nM−1s−1 [110]

k−6 0.113 s−1 [110]

k7 10−5 nM−1s−1 [124]

k−7 0.000385 s−1 assumption

fins 0.1 - assumption

freg 0.1 - assumption

The signal xb represents the sum of all species of E bound to the receptor.

xb = RXE[X]

RXp = x− xb
(A.23)

Note that the letter ‘X’ in the molecule names of RXE and RXp represents two sites,

namely the ligand binding site and the regulatory phosphorylation site. RXE[0], RXE[P ]

and RXp are not macrostates. The ‘X’ in their notations is not a site configuration but a

part of the molecule name. RXE[X] however is a macrostate (see Section 4.2.1).

d

dt
RXE[0] = r13 − r14

d

dt
RXE[P ] = r14 + r15

d

dt
E[0] = −r13 + r16

d

dt
E[P ] = −r15 − r16

(A.24)
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A.6.3 The F layer

The F layer describes the process of F binding. The binding partner XEp represents the

sum of all microscopic species of E with phosphorylated and unoccupied binding site for F .

XEF represents the sum of all microscopic species of F bound to E.

r17 = k8 ·XEp · F − k−8 ·XEF (A.25)

The signal x2b represents the sum of all species of F bound to E.

x2b = XEF

XEp = x2− x2b
(A.26)

The letter ‘X’ in the notations of XEp and XEF indicates that E may be bound to the

receptor or not, without considering other sites of the receptor. XEp and XEF are not

macrostates as the ‘X’ in their notations is a part of the molecule name.

d

dt
XEF = r17

d

dt
F = −r17

(A.27)

A.6.4 Conservation relations

Three ODEs can be replaced by conservation relations for R, E and F .

Rtotal = R[X,X,X]

Etotal = E[X] +RXE[X]

Ftotal = F +XEF

(A.28)

141



A Appendix A.7 Command line parameters for ALC

A.7 Command line parameters for ALC

Section 5.4.2 showed how ALC can be run in a shell with default values. As a short repe-

tition, the commands ‘ALC.pl’ or ‘perl ALC.pl’ execute ALC with default values, e.g. for

undefined parameters or initial conditions and for the filenames of the model definition file

and the model files.

The default values can be changed via the command line or in the form on the ALC

website for each call of ALC separately. Changing the default values via the command line

is done by appending a sequence of assignments to the call of ALC.pl. This sequence may

contain assignments for the parameter default value (Param), the initial condition default

value (InCond), the path and the filename of the model definition file (Source), the path and

the start of the filenames of the model files (Target), and the simulation time for the model

files (SimTime). The visualization of uncritical warnings (not defined initial conditions or

parameters and balanced species without turnover, Warn), model equations (Show), and the

time consumption of the modeling steps (Time) in the shell can be enabled or suppressed.

Additionally, it can be decided if the simulation results for the variables defined in the

section #layer connections are automatically visualized in the model files (OutLC), and

if very strict consistency checks are performed on rules (StrictRS). As an example, the

command

perl ALC.pl InCond=”0.5*10ˆ(-3)” Source=”input.alc” Target=”output”

calls ALC and sets all undefined initial conditions to 0.5 · 10−3. In this example, the model

definition is read in from the file ‘input.alc’, and the notation of the model files starts with

‘output’.

The order of the assignments is arbitrary. Default values defined in the file Config ALC.txt

are taken for all omitted assignments (Table A.2). If this file does not exist (or is not

changed), the values given in Table A.2 are taken. Changing the default values in the file

Config ALC.txt is an efficient possibility if the same default values are taken for several

models.

All default values can also be easily set in the form on the ALC website.
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Table A.2: ALC: command line parameters and default values
The default values defined in the file Config ALC.txt are taken for all options not defined
in the command line. The inverted commas encapsulating the values of the options can be
omitted if there are no special characters (e.g. ‘̂ ’) inside.

Option Description Default Example

Source Name of the model definition file1 layer.alc Source=input.alc

InCond Value for undefined initial conditions2 0.001 InCond=”3.1*10ˆ2”

Param Value for undefined parameters 1 Param=”2.5*10ˆ3”

SimTime Simulation time for the model files 100 SimTime=10

Target Start of the names of the model files3 model Target=output

OutLC Add (1) or do not add (0) variables defined in the 1 OutLC=0

section #layer connections to the output list

Warn Show (1) or do not show (0) warnings for 1 Warn=0

undefined initial conditions and parameters

and for balanced species without turnover

Show Show (1) or do not show (0) model equations 0 Show=1

Time Show (1) or do not show (0) the time 0 Time=1

consumption of the modeling steps

StrictRS Perform (1) or do not perform (0) very 1 StrictRS=0

strict consistency checks on rules4

1A relative path can also be given. Source=”test/layer.alc” or Source=”test\layer.alc” for example

direct ALC to use ‘layer.alc’ in the directory ‘test’ as the model definition file. Use your system-specific

notation for the relative path5.
2Setting InCond=0 may result in division by zero when simulating the model. Initial conditions have to

guarantee xi > 0 ∀ i to avoid this problem. Initial conditions also have to guarantee xi ≥ xib ∀ i to

prevent negative concentrations of binding partners.
3A relative path can also be given, e.g. Target=”test/model” or Target=”test\model” where ‘test’ is a

directory and ‘model’ is the start of the names of the model files. Use your system-specific notation for

the relative path5. The directories in the path have to exist, ALC will not create them.
4StrictRS=1 minimizes the probability of errors in the definition of rules. For StrictRS=0, only the

minimal syntax requirements that are necessary to successfully finish the modeling procedure are checked.

StrictRS=0 is necessary when using functionalities provided by the section #remove (Section 5.2.2.4).
5Assigning the relative path will not always work if the filename or the names of the directories include

special characters. If the actual directory is desired as the relative path, give the filename (Source) or

the start of the filenames (Target) directly.
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A.8 The 51 ODE model of insulin signaling

This section provides a model definition for a layer-based model of insulin signaling approxi-

mating a conventional model with 1.5 ·108 ODEs (see Section 4.6.2). The advanced strategy

of equivalent binding sites (Section 4.4.1) is applied in the receptor layer and the IRS layer.

The binding sites for IRS and Shc on the receptor represent two equivalent sites each and

the binding site for PI3K on IRS represents four equivalent sites.
Note that the symbol ‘%’ labels the remainder of the line as a comment which is ignored

by ALC.

%## receptor layer #######################################

#molecules

R{0,I}{0,I}{0,P}{0,P} % 2 binding sites for insulin, one for IRS, one for Shc

Ins

#end molecules

#initial conditions

R[0,0,0,0]=40

#end initial conditions

#clamped concentrations

Ins=100 % Input of the system

#end clamped concentrations

#reactions

% Insulin binding:

R[0,0,X,X]+Ins<->R[I,0,X,X] ki1 ki1d

R[0,0,X,X]+Ins<->R[0,I,X,X] ki1 ki1d

R[I,0,X,X]+Ins<->R[I,I,X,X] ki2 ki2d

R[0,I,X,X]+Ins<->R[I,I,X,X] ki2 ki2d

% Phosphorylation of the binding site for IRS:

R[0,0,0,X]<->R[0,0,P,X] kp10 kp10d

R[I,0,0,X]<->R[I,0,P,X] kp11 kp11d

R[0,I,0,X]<->R[0,I,P,X] kp11 kp11d

R[I,I,0,X]<->R[I,I,P,X] kp12 kp12d

% Phosphorylation of the binding site for Shc:

R[0,0,X,0]<->R[0,0,X,P] kp20 kp20d

R[I,0,X,0]<->R[I,0,X,P] kp21 kp21d

R[0,I,X,0]<->R[0,I,X,P] kp21 kp21d

R[I,I,X,0]<->R[I,I,X,P] kp22 kp22d

#end reactions

#layer connections

% Each phosphorylation site on the receptor represents two equivalent sites

xRIrs=2*R[X,X,P,X]

xRShc=2*R[X,X,X,P]

#end layer connections
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%## IRS layer #######################################

#molecules

IRS{0,R}{0,P}{0,P}{0,P} % Binding sites for the receptor, PI3K, SHP2 and Grb2

#end molecules

#initial conditions

IRS[0,0,0,0]=250

#end initial conditions

#reactions

% Binding of IRS to the receptor:

RXpIrs+IRS[0,X,X,X]<->IRS[R,X,X,X] kbirs kbirsd

% Phosphorylation of unbound IRS:

IRS[0,0,X,X]<->IRS[0,P,X,X] kirsp1 kirsp1d

IRS[0,X,0,X]<->IRS[0,X,P,X] kirsp2 kirsp2d

IRS[0,X,X,0]<->IRS[0,X,X,P] kirsp3 kirsp3d

% Phosphorylation of receptor-bound IRS:

IRS[R,0,X,X]<->IRS[R,P,X,X] kirsbp1 kirsbp1d

IRS[R,X,0,X]<->IRS[R,X,P,X] kirsbp2 kirsbp2d

IRS[R,X,X,0]<->IRS[R,X,X,P] kirsbp3 kirsbp3d

#end reactions

#layer connections

xRIrsb=IRS[R,X,X,X]

RXpIrs=xRIrs-xRIrsb

% The binding site for PI3K represents four equivalent sites

xIrsPi3k=4*IRS[X,P,X,X]

xIrsShp2=IRS[X,X,P,X]

xIrsGrb2=IRS[X,X,X,P]

#end layer connections

%## Shc layer ##################################

#molecules

Shc{0,R}{0,P} % Binding sites for IRS and Grb2

#end molecules

#initial conditions

Shc[0,0]=250

#end initial conditions

#reactions

% Binding of Shc to the receptor:

RXpShc+Shc[0,X]<->Shc[R,X] kbshc kbshcd

% Phosphorylation of Shc:

Shc[0,0]<->Shc[0,P] kshcp kshcpd

Shc[R,0]<->Shc[R,P] kshcbp kshcbpd

#end reactions
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#layer connections

xRShcb=Shc[R,X]

RXpShc=xRShc-xRShcb

xShc=Shc[X,P]

#end layer connections

%## Grb2 layer ##################################

#molecules

Grb2{0,Shc,IRS}{0,SOS,SOSp} % Binding site for IRS and Shc, binding site for SOS

SOS{0,p} % Regulatory phosphorylation site

#end molecules

#initial conditions

Grb2[0,0]=40

SOS[0]=40

#end initial conditions

#reactions

% Grb2 binding to IRS:

IrsXpGrb2+Grb2[0,0] <->Grb2[IRS,0] kbirsgrb2 kbirsgrb2d

IrsXpGrb2+Grb2[0,SOS] <->Grb2[IRS,SOS] kbirsgrb2sos kbirsgrb2sosd

IrsXpGrb2+Grb2[0,SOSp]<->Grb2[IRS,SOSp] kbirsgrb2sosp kbirsgrb2sospd

% SOS binding to Grb2:

Grb2[X,0]+SOS[0]<->Grb2[X,SOS] kbsos kbsosd

Grb2[X,0]+SOS[p]<->Grb2[X,SOSp] kbsosp kbsosdp

% Grb2 binding to Shc:

ShcXp+Grb2[0,0] <->Grb2[Shc,0] kbshcgrb2 kbshcgrb2d

ShcXp+Grb2[0,SOS] <->Grb2[Shc,SOS] kbshcgrb2sos kbshcgrb2sosd

ShcXp+Grb2[0,SOSp]<->Grb2[Shc,SOSp] kbshcgrbsosp2 kbshcgrb2sospd

% Phosphorylation of SOS bound to Grb2:

Grb2[0,SOS] <->Grb2[0,SOSp] kpgrb2sos kpgrb2sosd

Grb2[IRS,SOS]<->Grb2[IRS,SOSp] kpirsgrb2sos kpirsgrb2sosd

Grb2[Shc,SOS]<->Grb2[Shc,SOSp] kpshcgrb2sos kpshcgrb2sosd

% Phosphorylation of free SOS:

SOS[0]<->SOS[p] kpsos kpsosd

#end reactions

#layer connections

xIrsGrb2b=Grb2[IRS,X]

IrsXpGrb2=xIrsGrb2-xIrsGrb2b

xShcb=Grb2[Shc,X]

ShcXp=xShc-xShcb

#end layer connections
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%## PI3K layer ##################################

#molecules

PI3K{0,IRS} % Binding site for IRS

#end molecules

#initial conditions

PI3K[0]=40

#end initial conditions

#reactions

% Binding to IRS:

IrsXpPi3k+PI3K[0]<->PI3K[IRS] kbpi3k kbpi3kd

#end reactions

#layer connections

xIrsPi3kb=PI3K[IRS]

IrsXpPi3k=xIrsPi3k-xIrsPi3kb

#end layer connections

%## SHP2 layer ##################################

#molecules

SHP2{0,IRS} % Binding site for IRS

#end molecules

#initial conditions

SHP2[0]=40

#end initial conditions

#reactions

% Binding to IRS:

IrsXpShp2+SHP2[0]<->SHP2[IRS] kbshp2 kbshp2d

#end reactions

#layer connections

xIrsShp2b=SHP2[IRS]

IrsXpShp2=xIrsShp2-xIrsShp2b

#end layer connections
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