Contouring by electronic speckle pattern interferometry with quadruple-beam illumination

Y. Zou, H. Diao, X. Peng, and H. Tiziani

Institute of Applied Optics, University of Stuttgart, Pfaffenwaldring 9, 7000 Stuttgart 80, Germany.
Received 16 October 1991. 0003-6935/92/316599-04$05.00/0. © 1992 Optical Society of America.

We present a new arrangement for contouring by electronic speckle pattern interferometry with four illumination beams, thereby making it unnecessary to move anything during the measurement.

Key words: Contouring, interferometry, speckle phenomena, metrology

Optical contouring techniques applied on a rough surface by means of electronic speckle pattern interferometry (ESPI) have been developed for three-dimensional shape analysis and topography measurement.1-5 Correlation fringes are shown after the subtraction or addition of the video signals from two speckle patterns. One can obtain the contour data from the correlation fringes by using a phase-shifting method and algorithm.6 The existing contouring methods by ESPI consist of using two-wavelength illumination1 or altering the object illumination beam2,3 in a conventional ESPI system with a smooth interference reference beam and altering the object4 or shifting the illumination beams5 in a dual-beam system.

We present an inexpensive ESPI arrangement where nothing is moved to obtain contour fringes. Once this system is well adjusted, it can be used simply and practically, e.g., in a black box with a complete program package for fringe analysis. The schematic of such an arrangement is shown in Fig. 1. The collimated laser beam is split by the first beam splitter BS1, then combined again with the second prism beam splitter BS2 with a small angle difference. Mirror M3 plays the role of a direction compensator for forming correct contour planes.5 The first speckle pattern is taken by the CCD camera when shutter S1 is open and shutter S2 is closed and then subtracted from the second
speckle pattern when \(S_1 \) is closed and \(S_2 \) is open. The resulting correlation fringes are displayed on a TV monitor, and the fringe video signals are taken and processed by the computer incorporating an image frame grabber board for fringe analysis when the phase-shifting method is used.

The geometry for forming the correlation fringes is similar to that in Ref. 7. The intensity difference at viewpoint \(P \) (see Fig. 2) between these two speckle patterns is

\[
\Delta \Gamma = 4(I_1 I_2)^{1/2} \sin[(\phi_{s1} - \phi_{s2}) + (\Psi_m + \Psi_m')/2] \times \sin(\Delta \Psi_m / 2),
\]

where \(I_1 \) and \(I_2 \) are the intensities of two illumination beams scattered from point \(M \) in the object for one speckle pattern, \(\phi_{s1} \) and \(\phi_{s2} \) are the random phases of these two beams, \(\Psi_m \) and \(\Psi_m' \) are the phase differences between these two beams caused by the object shape for the two speckle patterns, respectively, and \(\Delta \Psi_m = \Psi_m - \Psi_m' \). \(I_1, \phi_{s1}, \phi_{s2}, \) and \(\phi_{s2} \) are assumed to have undergone no change in the two speckle patterns. The sin term with the random phases \(\phi_{s1} \) and \(\phi_{s2} \) in Eq. (1) disappears after averaging and high-pass filtering while the signal is displayed on the monitor. Hence the correlation fringes depend on only the phase term \(\Delta \Psi_m \). \(\Delta \Psi_m \) can be determined from the discussion below.

In Fig. 2 \(K_1 \) and \(K_2 \) are the unit direction vectors of the two illumination beams during the first exposure, \(K_1' \) and \(K_2' \) are those at the second exposure, \(\Delta \theta \) is the angle difference between the illumination beams for the two speckle patterns, \(\theta \) is the illumination angle of both illumination beams if they are set at the same angle with respect to the view direction \(Z \), \(r_m \) is the position vector from point \(P \) to point \(M \), \(\beta \) is the angle between \(r_m \) and the \(Z \) axis. If we ignore the constant optical paths of the two illumination beams from the light source to viewpoint \(P \), the phase advances of the two illumination beams scattered from \(M \) to \(P \) for the first speckle pattern are

\[
\begin{align*}
\phi_{m1} &= \frac{2\pi}{\lambda} (r_m + r_m \cdot K_1), \\
\phi_{m2} &= \frac{2\pi}{\lambda} (r_m + r_m \cdot K_2),
\end{align*}
\]

respectively, where \(\lambda \) is the wavelength of the illuminating light and \(r_m \) is the scalar magnitude of \(r_m \). Therefore

\[
\Psi_m = \phi_{m1} - \phi_{m2} = \frac{2\pi}{\lambda} r_m \cdot (K_1 - K_2).
\]

Similarly, for the second speckle pattern we have

\[
\Psi_m' = \frac{2\pi}{\lambda} r_m \cdot (K_1' - K_2').
\]

Then

\[
\Delta \Psi_m = \frac{2\pi}{\lambda} r_m \cdot (\Delta K_1 - \Delta K_2)
\]

\[
= \frac{2\pi}{\lambda} |r_m| |\Delta K_1 - \Delta K_2| \cos \beta,
\]

where \(\Delta K_1 = K_1' - K_1 \) and \(\Delta K_2 = K_2' - K_2 \). It can be found from Fig. 2 that \(|\Delta K_1| = |\Delta K_2| = |\Delta \theta| |K_1| = |\Delta \theta| |K_2| = |\Delta \theta| \), where \(|K_1| = |K_2| = 1 \) and from Fig. 3 that \(|\Delta K_1 - \Delta K_2| = 2 \sin \theta |\Delta K_1| = 2 \sin \theta |\Delta K_2| = 2 \sin \theta |\Delta \theta| \). Finally we have

\[
\Delta \Psi_m = \frac{2\pi}{\lambda} (2 \sin \theta) |\Delta \theta| h,
\]

\[
h = r_m \cos \beta,
\]

where \(h \) is the depth of the object along the view direction \(Z \) when the angle changes of \(K_1 \) and \(K_2 \) are antisymmetric (see Fig. 2). Therefore the contour interval is as follows:

\[
d = \frac{\lambda}{(2 \sin \theta) |\Delta \theta|}.
\]
The sensitivity can be controlled by altering the size of Δθ in our arrangement as we did in Fig. 1 by tilting mirror M₁ or mirror M₂.

A 10-mW He–Ne laser was used as a coherent illumination source. The test object was a pyramid with an apex angle of 120°. The CCD camera was a Sony XC-77CE with a resolution of 11 μm. The illumination angle θ was 30°, and the angle difference Δθ was 0.77 mrad. Note that we used a cube (prism) beam splitter BS₂ in the arrangement to simplify the adjustment of the four beams. The piezoelectric-transducer-(PZT)-driven mirror M₅ introduced phase shifting during the second exposure for phase evaluation. The images were processed by an Epson host computer with a FG-100-AT frame grabber board. Three interferograms with a shifted phase of π/2 with respect to one another were used for evaluating the phases. A 30 × 29 sampling array with a gray level of 10 was employed to digitize the interferograms; 3 × 3 and 5 × 5 convolution filtering was used sequentially to smooth the speckles in the interferograms. Figure 4(a) shows the contour fringes of the object surface. Figures 4(b), 4(c), and 4(d) show the phase map, the three-dimensional plot, and the contour map evaluated from the three phase-shifted intensity data, respectively.

Fig. 4. Results obtained when the illumination angle θ is 30° and the angle difference Δθ is 0.77 mrad: (a) contour fringes, (b) phase map, (c) three-dimensional plot, (d) contour map.

A naturally supplemental result is shown by a similar arrangement with three illumination beams. One beam plays only the role of a reference wave to form the interference speckle patterns. The other two beams with small angle differences, which are the illumination waves for the first and second exposures, respectively, should be at incident angles of ~90° to the view direction so that contour fringes can be obtained.

The new ESPI arrangement presented above has obvious advantages. The setup is relatively stable during the process because there is no further mechanical movement after adjustment; thus fast automatic processing results. The sensitivity can be selected during the adjustment and corrected for further measurements.

The authors thank G. Padrini for helpful discussions. The financial support from the Alexander von Humboldt Foundation to X. Peng is gratefully acknowledged.

References

2. B. D. Bergquist and P. Montgomery, “Contouring by electronic

1 November 1992 / Vol. 31, No. 31 / APPLIED OPTICS 6601

