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Abstract

Molecular dynamics of crack propagation in a quasicrystalline binary system
derived from a Tübingen triangle tiling has been studied at different temper-
atures. An original model for the simulation of crack dynamics at constant
temperature is proposed in Chapter 6, In Chapter 7 are reported original free
energy calculations used to compute the surface energies, the elastic constants
and the critical displacements involved in crack propagation. Simulations
of fracture propagation at different temperatures have been performed in a
sample of many atoms (74210). For each temperature, crack propagation has
been investigated in detail at different loads, and the results of this study
have been collected in Chapter 8. The influence of dislocation emission on
crack propagation represents one of the crucial topics in the field which are
to be tackled. In Chapter 8 by means of numerical elastic estimates based on
the results of Chapter 7, for the first time an explanation of the mechanisms
of dislocation emission and crack propagation in the range of low loads and
low temperatures is being proposed. There are features of the crack prop-
agation simulations collected in this chapter which qualitatively reproduce
some of the characteristics of experimentally observed crack propagation in
a three-dimensional quasicrystal.

9



10 ZUSAMMENFASSUNG



Zusammenfassung

Diese Arbeit beschäftigt sich mit temperaturabhängigen Molekulardynamik-
Simulationen der Rissausbreitung in einem idealen zwei dimensionalen Quasi-
kristall.

Nach der Einleitung, werden im zweiten Kapitel die physikalischen Eigen-
schaften und die mathematische Modellierung eines Quasikristalls geschildert.

Im dritten und vierten Kapitel werden die theoretischen Grundlagen für
die Elastizität des Bruches bzw. der statischen Mechanik erläutert.

Das fünfte Kapitel beschreibt das Wechselwirkungspotential, das in den
Molekulardynamik-Simulationen verwendet wird. Das sechste Kapitel erklärt
das Modell der Rissausbreitung mit Temperatur, das in den Simulationen
angewandt wird.

Das siebte Kapitel enthält die Ergebnisse der Gleichgewichtsimulationen.
Das achte bespricht die Ergebnisse der Rissausbreitungsimulationen, bevor
im neunten die Arbeit zusammengefasst wird.

Modellsystem

Quasikristalle sind Festkörper mit einer wohldefinierten Anordnung der Atome,
die sich aber nicht wie bei konventionellen Kristallen periodisch wiederholt.
Sie kann beschrieben werden als Überlagerung von mehreren Massedichtewellen,
deren räumliche Frequenzen in inkommensurablem Verhältnis zueinander ste-
hen.

Den Quasikristall, in dem die Molekulardynamik-Simulationen durchgeführt
werden, erhält man aus der Dekoration des Tübinger Dreiecksmusters mit
zwei Sorten von Atomen, großen und kleinen. Das erzeugte binäre System
ist in Abbildung 1 gezeigt. In diesem binären System sind einige große Atome
erkennbar, die zehn kleine Atome um sich haben. Diese Struktur, die sich im
System quasiperiodisch wiederholt, nennt man “Cluster”. Da ein Cluster eine

11
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Figure 1: Das binäre System, im die Simulationen durchgeführt werden.

hoch symmetrische Struktur ist, ist zu erwarten, dass ein sich bewegender
Riss die Cluster vermeidet, anstatt sie zu brechen.

Grundlagen des Bruchs

Nach der isotropen zweidimensionalen Theorie der Elastizität ist ein Riss ein
Defekt des Spannungsfeldes. Das Spannungsfeld um die Rissspitze divergiert
wie

σ(r) =
k√
2πr

(1)

wobei r der Abstand zur Spitze ist. Die Konstante k heißt Spannungsinten-
sitätsfaktor. Sie hängt nur von der Probengeometrie und von den am Rand
angewandten Kräften oder Verschiebungen ab.

Da ein Riss ein Defekt im Spannungsfeld ist, wirkt eine Kraft auf die
Rissspitze, die versucht, ihn weiter zu bewegen. Bei Rissen im Gleichgewicht
wird die auf die Rissspitze wirkende Kraft von inneren Widerstand des Ma-
terials kompensiert. Der Wert des Spannungsintensitätsfaktors, bei dem der
Riss sich bewegt, wird vom Griffith Kriterium geliefert, und lautet,
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kg = 2
√
γµ(1− ν) (2)

γ ist die Oberflächenenergie, d.h. die Energie, die notwendig ist, um eine
neue Oberfläche zu erzeugen. µ ist eine elastische Konstante, ν der Poisson
Modul.

Es gibt Risse, die durch die Emission einer Versetzung gestoppt werden.
Der Wert des Spannungsintensitätsfaktors, bei dem der Riss spontan eine
Versetzung emittiert, lässt sich mit der Theorie der Elastizität schreiben,

ke =
µ√
2πrc

b(1− ν)

sin(θ) cos(θ/2)
(3)

wobei b der Modul des Burgers Vektors der vom Riss emittierten Versetzung
und rc der Radius des Versetzungkerns sind. Die Versetzungsrichtung bildet
den Winkel θ mit der Horizontalen.

Wenn, bei gegebenen Randbedingungen,

kg < ke (4)

gilt, breitet sich der Riss aus, ohne Versetzungen zu emittieren. Wenn an-
dererseits

kg > ke (5)

ist, wird der Riss Versetzungen emittieren, die den weiteren Lauf des Risses
behindern.

Der Nosé-Hoover Thermostat

Ein hamiltonisches System mit N Freiheitsgraden wird durch N Positionen
q1, · · · , qN und N Impulse p1, · · · pN beschrieben. Das System durchläuft die
Punkte x̃ des Phasenraums,

x̃ = (q1, · · · , qN , p1, · · · pN) = (q̃, p̃). (6)
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gemäß der mikrokanonischen Verteilung.
Ein System bei einer konstanten Temperatur T durchläuft die Punkte x̃

des Phasenraums gemäß der kanonischen Verteilung

ρ(q̃, p̃) =
exp(−H(q̃, p̃)/KT )∫

exp(−H(q̃, p̃)/KT )dq̃dp̃
. (7)

Der Nosé-Hoover Thermostat ist ein System von Differenzialgleichungen,
deren Dynamik die kanonische Verteilung liefert. Die Nosé-Hoover Dynamik
lautet:


q̇i =

pi
mi

ṗi = −∂V
∂qi
− νηpi

η̇ = ν

[
T (t)

T
− 1

] (8)

Man erhält sie durch eine Änderung der hamiltonischen Bewegungsgle-
ichungen, im ein neuer Freiheitsgrad η eingefügt wird, dessen Funktion es
ist, im Gleichgewicht die Temperatur gleich T zu setzen. In (8) ist ν eine
Konstante, die Thermostatenmasse heißt, und deren Wert gleich der Einstein
Frequenz gesetzt wird.

Wechselwirkungspotenziale

Die Wechselwirkungskraft zwischen den Atomen im binären System leitet
sich aus dem Lennard-Jones Potenzial ab. In Abbildung 2 werden die Poten-
ziale zwischen gleichen (A-A und B-B) und verschiedenen Atomsorten gezeigt.

Molekulardynamik der Rissausbreitung mit Tem-

peratur

Der Thermostat wird durch einen Reibungsterm in den Newtonschen Bewe-
gungsgleichungen realisiert und greift damit an jedem einzelnen Atom an. Er
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Figure 2: Wechselwirkungspotentiale.

tut dies auch unmittelbar an der Rissspitze, wo sich durch das Brechen der
Bindungen eine extreme Nichtgleichgewichtssituation ergibt. Eine solche sit-
uation ist unrealistisch. Daher wurde eine neue Geometrie des Nosé-Hoover-
Thermostaten eingeführt. Thermostatisiert wird nun nur noch außerhalb
eines elliptischen Stadions, das die Rissspitze einschließt.

Numerische Ergebnisse

Die Rissausbreitung wurde bei verschiedenen Temperaturen und Lasten un-
tersucht. Bei jeder Temperatur wurden ein Schnitt in der Probe gemacht und
die Ränder um ∆ verschoben (Abbildung ), bis die kritische Last ∆c gefunden
war. Bei der kritischen Last wurde Die Probe relaxiert, und anschliessend
weiter um ∆c verschoben.

Das Rissausbreitungsverhalten unterscheidet sich in drei Temperaturbere-
iche.



16 ZUSAMMENFASSUNG

(a) Molekulardynamik der Rissausbreitung mit Tem-
peratur.

(b) Probenpräparation
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Niedrige Temperatur

Niedrige Versetzungsemissionsrate Bei niedrigen Temperaturen T <
31%TM , wobei TM die Schmelztemperatur ist, und niedrigen Lasten ∆ > ∆c,
wird aus der Rissspitze nur eine Versetzung emittiert (Abbildung 3). Die
Versetzungsemission ist in diesem Fall ähnlich wie bei T = 0. Die emittierte
Versetzung hinterlässt eine Phasonenwand, auf der die Oberflächenergie min-
imal ist. Der Riss stoppt eine Zeit lang und folgt dann der Versetzung. Die
Versetzungsemission kann anhand des Verhältnis von ke zu kg erklärt werden,
weil die Rissspitze während ihres Laufs eine Ebene trifft, auf der plötzlich ke
kleiner als kg ist.

Hohe Versetzungsemissionsrate Wenn die Last größer wird, werden aus
der Rissspitze viele Versetzungen emittiert, die den Riss stoppen. In diesem
Bereich ist die Rissausbreitung durch hohe nicht lineäre Effekte charakter-
isiert (Abbildung 4).

Mittlere Temperatur

Wenn die Temperatur um 41%TM liegt, bilden sich vor der Rissspitze Löcher,
die hier die Rolle der Versetzungen spielen (Abbildung 5).

Hohe Temperatur

Bei T = 52%TM findet keine Rissausbreitung mehr statt. Eine Versetzung
wird aus der Rissspitze emittiert, die den weiteren Lauf des Risses stoppt.
In diesem Temperaturbereich zeigt das Material ein duktiles Verhalten.
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(a)

(b)

Figure 3: Versetzungsemission. (a) Eine Versetzung wird emittiert. (b) Der
Riss folgt der Versetzung.
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Figure 4: Hohe Versetzungsemissionsrate. Aus der Rissspitze und der Riss-
oberfläche werden viele Versetzungen emittiert.
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Figure 5: Bei mittleren Temperaturen bildet sich ein Loch vor der Rissspitze.

Figure 6: Bei T = 52%Tm wird eine Versetzung aus der Rissspitze emittiert,
die den weiteren Lauf des Risses stoppt.



Chapter 1

Introduction

Things break. This is the everyday experience of everyone of us. Fracture
affects our life much deeper than we realize. It is obviously not relevant in
our life if a glass in the kitchen falling from our hands breaks. And the little
cracks on the walls of our apartment have in the most cases no consequences
on the stability of our house. Completely different is the case in which an
airplane fuselage tears mid-flight, like an Aloha Airlines Boeing 737 did, or
if, like during World War II, a fracture suddenly and unexpectedly destroys a
ship (see Fig. 1.1) cutting it in two pieces. Even worse are the consequences
of an earthquake, which often generates fractures at a very big size scale. The
economical interests involved in fracture problems are enormous. In 1983 the
US National Bureau of Standards placed an annual price tag of a quarter of
a trillion dollars on fracture-induced structural failures. With the advent
of the microelectronic revolution the investment increased substantially: the
impact of the development of cracks in multi-layered integrated circuits on
the rate of advance of this technology is enormous. From an engineering point
of view it would be extremely important to be able to design microstructures
of increased toughness, which is the resistance of a material to the opening
of a crack.

Apart from the interest coming from technological applications the study
of fracture and of the physical basis of material strength is a fundamental
question of condensed-matter physics.

Historically continuum theory has been the first tool used to tackle the
fracture problem. The continuum theory of fracture is a difficult task because
the stress field in the vicinity of the crack tip is highly nonlinear and decays
slowly far from the tip. Moreover the model is complicated by the presence of

21
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Figure 1.1: Photograph of the T-2 tanker that failed at its pier: ”On January
16, 1943, a T-2 tanker lying quietly at her fitting-out pier at Portland, Ore-
gon, suddenly cracked in a brittle manner ’without warning and with a report
that was heard for at least a mile’.”

dislocations, which are defects often induced in the material by the fracture.
The interaction of dislocations and cracks plays a crucial role in determining
the overall toughness of the material and the dynamics of fracture. The
classical theory of elasticity treats cracks as mathematical cuts which begin
to move when an infinitesimal extension of the crack releases more energy
than is needed to create a fracture surface [64, 31, 74]. This idea, very
successful in practice, is incomplete. In a lattice there are some velocities for
which crack solutions do not exist at all, others where cracks are unstable and
accelerate to higher velocities, and yet others for which crack tips are unstable
and break apart altogether [71]. While these conclusions are compatible with
continuum mechanics, they were not predicted by it. There are also some
experimental observations which are somewhat surprising.

• Cracks in amorphous brittle material such as glass or Plexiglas pass
almost instantaneously from quasi-static motion to motion at about
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15% of the Rayleigh wave speed1 [54, 98, 59].

• Cracks travel seldom faster than 60% of the Raleigh wave speed, al-
though according to continuum theory this is the limiting velocity
[4, 58].

• At about 40% of the Rayleigh wave speed the acceleration of cracks
slows down [49, 50].

Continuum mechanics does not explain satisfactorily these characteristics
of crack dynamics, while an atomistic model does [71]. The simulations of
crack propagation at low temperatures contained in the second part of this
work have shown, like in real experiments, both a velocity gap and a limiting
value of the crack velocity (see Chapter 8). Continuum mechanics is not
well suited to take into account microscopic processes where elastic energy
is converted to broken bonds, but nevertheless can give a useful guideline to
understand qualitatively even at the atomistic scale the phenomena observed.
And this is the reason why a big part of Chapter 3 of this work has been
devoted to the exposition of the classical results of the theory of elasticity
applied to fracture problems.

One of the tools used at the atomistic scale to investigate fracture prop-
agation is molecular dynamics (MD). MD makes it possible for the first
time to follow in great detail the dynamics of fracture in realistic and very
complicated situations where both elastic and plastic effects, like dislocation
emission, are present. The price to be payed for using such a powerful tool
is high. On one hand the great amount of data generated in a single MD
experiment may require a big investment in the development of the analysis
tools. On the other hand the lack of a “supporting” theory makes the work
often very specialized. Even if some guide lines have been outlined in years of
experience in the field, MD of crack propagation may produce effects which
are completely different and peculiar from system to system in which the
simulations are done.

Quasicrystals have been discovered in 1984 [93], and in all these years the
physics of quasicrystals has been explored in detail both from a theoretical
and an experimental point of view [29, 86, 51, 24]. All these efforts yield the
required knowledge for tailoring the properties of the known quasicrystalline

1The Rayleigh wave speed of a material is the mean velocity of the longitudinal and
transverse waves traveling on the surface of the material
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alloys for technological purposes, and in the frame of the development of a
competitive technology based on the properties of quasicrystals, the initi-
ation and propagation of fracture in these materials represents one of the
most important questions in the field which are to be addressed. Moreover,
aside from the industrial interest, crack propagation in quasicrystals opens
a completely new and interesting insight into the physics of fracture. There
are deformations of a quasicrystalline structure which correspond to a degree
of freedom, the so-called phasonic one (see Section 2.4.2 on page 35), absent
in common crystals, which plays a crucial role in the dynamics of fracture in
these materials.

Molecular dynamics of crack propagation in a quasicrystalline binary sys-
tem derived from a Tübingen triangle tiling (see Section 2.5.2 on page 39) has
been intensively studied at zero temperature [77]. The present work deals
with a molecular dynamics study of fracture propagation in the same system
at different temperatures.

The work is divided into two parts.
The first part contains the preliminaries.
Chapter 2 describes briefly the quasicrystals in general and the quasicrys-

talline binary system out of the Tübingen triangle tiling in which the numer-
ical results of the second part have been computed.

Chapter 3 deals with the physics of fracture. Even if the aim of this
work is primarily to give an atomistic description of crack propagation, the
results of the continuum theory of fracture have shown to be very useful
for the qualitative understanding of the effects observed in the simulations.
The classical results of fracture continuum mechanics are the content of the
first part of the chapter. The second part exposes a didactic description of
a simple atomistic model for crack propagation, useful for introducing the
characteristics of fracture dynamics common to all the atomistic models.
The last part contains the experimental results of crack propagation in an
icosahedral three-dimensional quasicrystal.

The standard approach of continuum theory to crack propagation in-
volves elastic energies, which, in a system at constant temperature, are equal
to free energy differences. The techniques used for simulating a system at
constant temperature and for computing free energy differences, which have
become standard tools in the field of computational statistical mechanics at
equilibrium, are the topics of Chapter 4.

In Chapter 5 the interaction potential and the model system used in the
simulations are described in detail.
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An original model for the simulation of crack dynamics at constant tem-
perature is proposed in Chapter 6.

The second part contains the numerical results of the simulations per-
formed in the quasicrystalline binary system derived from the Tübingen tri-
angle tiling.

In Chapter 7 are reported original free energy calculations used to com-
pute the surface energies, the elastic constants and the critical displacements
involved in crack propagation. The numerical reliability of the calculations,
performed in a medium size system of 4134 atoms, has been tested with two
different methods, the classical umbrella sampling (Section 4.6.3 on page 86)
and a less known method based on the phase space compressibility of the
Nosé-Hoover equation of motions (Section 4.6.1 on page 81).

Simulations of fracture propagation at different temperatures have been
performed in a sample of many atoms (74210). For each temperature, crack
propagation has been investigated in detail at different loads, and the results
of this study have been collected in Chapter 8. The influence of dislocation
emission on crack propagation represents one of the crucial topics in the field
which are to be tackled. In Chapter 8 by means of numerical elastic esti-
mates based on the results of Chapter 7, for the first time an explanation of
the mechanisms of dislocation emission and crack propagation in the range
of low loads and low temperatures is being proposed. There are features of
the crack propagation simulations collected in this chapter which qualita-
tively reproduce some of the characteristics of experimentally observed crack
propagation in a three-dimensional quasicrystal. A detailed comparison is
contained in the conclusion of the chapter.
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Chapter 2

QUASICRYSTALS

2.1 Introduction

For many years the physics of solid state has been intended to be the physics
of crystalline substances, which exhibit perfect translational symmetry. The
translational symmetry induces important selection rules which can be used
in the interpretation of the experiment and in the theoretical modeling.

In the last years interest has grown considerably in “non-crystalline” ma-
terials, which is a category of state of matter ranging from liquids or amor-
phous solids to incommensurate structures. Amorphous solids and liquids
can possess some kind of local order, typically restricted to a short arrange-
ment of atoms. The atoms of an incommensurate structure are displaced
from the periodic positions of a lattice by an amount which is itself periodic
in space, but that period and that of the underlying lattice are not in a
rational ratio.

Quasicrystals are non-crystalline materials showing a perfect long-range
order, but with no periodic ingredients [51].

2.2 The discovery of quasicrystals

In 1984 Schechtman, Blech, Gratias, and Cahn [93] discovered, by quench
from the melt of AlMn alloys, a new state of condensed matter from their
transmission electron microscopy experiments. They observed relatively sharp
Bragg peaks at positions related successively by ten, six, and twofold symme-
tries. The Bragg peaks are not reproduced by translation, and the intensity
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of the diffracted beams does not decrease in a monotonic way with the scat-
tering angle, as it should happen for a crystal (Fig. 2.1).

All these features are characteristic of long range order, which cannot be
periodic, while the diffraction patterns show rotation axes of order forbidden
symmetry for a periodic structure. The term “quasicrystal” has been given
to such structures [65].

As time went by more and more materials were discovered which did
not possess crystallographic symmetries. Ishima [46] and Bendersky [16] dis-
covered an important class of quasicrystals, the T-phases. A quasicrystalline
T-phase is made of two-dimensional quasicrystalline layers, which are packed
periodically in the z-axis perpendicular to the slide, because out of such a qua-
sicrystalline phase it is possible to build a quasicrystal of some millimeters,
and thus this quasicrystalline phase is experimentally intensively studied.

2.3 Potential applications of quasicrystals

The physical, chemical and mechanical properties of quasicrystals might have
important technological applications [29].

Transport properties Quasicrystals have peculiar electron transport prop-
erties which have been described in many books [52]. The resistivity of many
quasicrystalline alloys is typically 10-100 times bigger than that of the amor-
phous metal [17]. Moreover the resistivity decreases much with temperature.
The ratio of the resistances ρ(4K)/ρ(300K) is about 2 to 10, for crystalline
substances the same ratio is about 10−3. Thus quasicrystals have a large neg-
ative temperature coefficient of the resistivity, in addition to high resistivity
values, and might be used as temperature sensors with high sensitivity in a
broad range of temperatures.

Another use of transport properties of quasicrystals, namely heat isolation
is in pre-industrial development [27]. In this case the advantage of quasicrys-
tals is twofold. They are very efficient heat insulators in a temperature range
extending from room temperature to their melting point. Furthermore they
become plastic over 600◦ so that the interfacial stresses born at the contact
with metallic substrates are canceled out, making them interesting as very
efficient thermal barriers.
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(a) (b)

(c)

Figure 2.1: Quasicrystalline Al86Mn14 alloy: bright field of the icosahedral
phase. Diffraction patterns of the alloy with a zone axis parallel to a five (a),
three (b) and twofold axis (c). From [68].



32 CHAPTER 2. QUASICRYSTALS

Surface properties The surface energy γS of a material is often estimated
with the help of wetting experiments. It suffices to deposit a droplet of water
on the surface and to measure the contact angle between liquid and solid.
Many quasicrystalline samples, approximant and amorphous alloys exhibit a
wetting behavior to water comparable to Teflon whereas crystalline metallic
specimens do not. Application is straightforward to coatings of polymer
moulds, cooking utensils, etc., which require to keep the adherence of the
reactants to the container surface as weak as possible.

Strengthening of metallic matrices A quasicrystalline powder incor-
porated in soft metallic alloys increases their yield strength and hardness.
The tensile yield strength obtained with bulk samples is quite comparable
to that of the best aeronautic alloys whereas the deformation at rupture is
much larger. Since the specific weight is the same, these alloys form a new
competitive family of light, high strength materials.

Hydrogen storage Absorption and storage of hydrogen is of great impor-
tance for the availability of a non polluent fuel which, when combined with
oxygen, delivers energy in combustion engines. The first example of a qua-
sicrystal suitable for hydrogen storage is I− Ti45Ni17Zr38. Another example
of hydrogen storage material was found in Zr-Cu-Ni-Al glasses which trans-
form upon annealing into nanosized quasicrystals. This later material is able
of store hydrogen in large amounts, leading to a ratio of hydrogen to matrix
atoms larger than 1.6. This density is higher than in liquid hydrogen.

2.4 Modeling a quasicrystal

2.4.1 Quasiperiodicity

In a periodic structure the atomic positions are described by lattice points:

r = n1e1 + n2e2 + n3e3 (2.1)

where n1, n2, n3 are integers and e1, e2, e3 are three linearly independent vec-
tors.
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Crystal structures are determined by diffraction of electrons, X-rays, or
neutrons. Each atom in the sample may be considered as a source of sec-
ondary spherical waves whose strength is controlled by the scattering power
fi of the atom. The sample is irradiated with a monochromatic beam of
rays with wave vector k, and the intensity of scattered rays is observed along
different wave vectors k1. The rays are considered to be elastically scattered,
and therefore |k| = |k1|. The signal amplitude in the direction k1 is given
by :

F (Q) =
∑
j

fj exp(i rj ·Q) (2.2)

where the sum runs over all the lattice points, and Q = k1 − k. Absolute
maxima of Eq. 2.2 can be measured in the directions Q of the reciprocal
lattice where [8]:

exp(i rj ·Q) = 1 (2.3)

The diffraction patterns give an exact information on the underlying lat-
tice structure.

Periodicity is not the only condition under which a system may show long
range order. Let us consider for example a single one dimensional lattice
whose points density is given by:

ρ(x) =
∑
n

δ(x− na) (2.4)

where a is the lattice spacing. If we superimpose to the density ρ another
density with a different periodicity:

ρ =
∑
n

δ(x− na) +
∑
m

δ(x− αma) (2.5)

and if the ratio of the two periods α is not a rational number, the system is
still long-range ordered, but not anymore periodic. A very interesting exam-
ple of long-range ordered structure is the Fibonacci chain. One considers two
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segments S, the short one, and L, the large one, and builds a quasiperiodic
system using an iterative procedure. At every iteration every segment L or S
is replaced by the segment LS or L respectively. For an appropriate “initial
condition”, for example L, the produced sequence of segments is:

L
LS
LSL
LSLLS
LSLLSLSL
LSLLSLSLLSLLS

The ratio of L/S converges to the irrational number τ = (1 +
√

5)/2,
and thus the sequence has no repetition distance and builds the canonical
Fibonacci chain. In this case if an atom is placed at every junction of two
segments, the system would possess a perfect long-range order, because every
atomic position can be uniquely determined, but no periodicity at all. If the
atoms are all of the same type, the structure factor Eq. 2.2 for a Fibonacci
chain is labeled by two integers h, h′, even if the structure is one dimensional,
and it can be demonstrated to be:

F (Q) =
∑
h,h′

Fh,h′δ(Q−Qh,h′) (2.6)

where:

Qh,h′ =
2πτ 2

τ 2 + 1
(h+ h′) (2.7)

The peaks are still very sharp, like for a periodic structure, but they form
a dense pattern. The brightest intensity spots are the maxima of Fh,h′ , for
which no analytical expression is given here [51], and they are reached at the
values of h/h′ close to τ , that is, when h and h′ are the Fibonacci integers
(1,1),(2,1),(3,2),(5,3). Outside this sequence the intensities decrease strongly.
A system possessing such a structure factor is called a quasicrystal.
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Figure 2.2: Cut and projection method for a one dimensional quasicrystal.
The points of a two dimensional cubic lattice are projected on the E|| line.
The width of the strip defining the acceptance domain is chosen so to have a
cross section in E⊥ equal to that of the unit cell W 2.

2.4.2 Quasiperiodicity by projection from a higher di-
mensional space

As mentioned, the characteristics of a quasiperiodic structure arise from the
fact that their symmetries are not compatible with the space groups accepted
in the physical space, but these symmetries could be accepted at the cost of
increasing the dimension of the space.

In a simple square lattice in two dimensions, whose mass density is the
function:

ρ(x, y) =
∑
n,m

δ(x− na)δ(y −ma) (2.8)

let us consider two straight lines perpendicular to each other, E|| and E⊥

(see Fig. 2.2). The line E|| is called the parallel space and E⊥ the orthogonal
space. If we project the lattice points on E|| two situations can arise.

When the slope of E|| is rational, the projected one dimensional structure
is a discrete periodic set of points. The better α approximates an irrational
number, the longer becomes the repetition length of the periodic set of points,
which takes the name of periodic approximant.
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When the slope is irrational, the projected structure is not anymore pe-
riodic, and it is dense in E||. The set of projected points becomes discrete if
one restricts the points of the lattice which can be projected to those belong-
ing to an acceptance strip. The width of the strip is chosen so as to have a
cross section in E⊥ equal to that of the unit cell. The projected structure is
now made of two segments of length a cosα = L and a sinα = S, where α is
the value of the slope of E||. If α = τ the distribution of the segment (L, S)
is the Fibonacci sequence.

By means of the cut and project procedure deformations of a quasicrys-
talline material may be defined which are unusual in a crystalline structure.
Generally a deformation of the higher dimensional space has two components:

• When the deformation in the higher dimensional space has only com-
ponents parallel to the physical space, the sequence of the projected
points remains the same, but their relative length may change. The
degree of freedom of such a movement of the projected structure is
called phononic.

• When the deformation has a component in the perpendicular space a
completely new situation can take place. Some points could leave the
acceptance strip and new ones could enter, and as a result the sequence
of the projected points may change. For example in Fig. 2.3 the point
labeled 1 leaves the strip and the point labelled 2 enters it, if the lattice
is shifted in the direction of the vector b. As a result we would observe
locally a change of the sequence SL to LS. Such a sudden change is
called flip, and the degree of freedom associated to such a change of
the quasicrystalline structure is called phasonic.

2.5 Examples of two dimensional quasicrys-

tals

2.5.1 The Penrose and Tübingen tilings

In this section two important 2-dimensional tilings are presented: the Penrose
tiling and the Tübingen triangular tiling. From the Tübingen triangular
tiling, by means of a decoration procedure, the binary system is obtained in
which all the simulations of this work have been done.
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Figure 2.3: The flip of an atom with the cut and projection method. The
point labeled 1 leaves the strip and the 2 enters it, if the lattice is shifted in
the direction of the vector b.

Figure 2.4: Projection of the canonical basis of the cubic lattice in 5 dimen-
sions on the physical space (left) and on the orthogonal (right).
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Figure 2.5: Acceptance domains of the Penrose tiling.

The tilings are built using the cut and projection procedure. The higher
dimensional space is a five dimensional cubic lattice E5, which is spanned by
the five basis vectors ki, i = 1, .., 5. E5 can be decomposed into three disjoint
subsets, which are invariant under the action of the cyclic permutation group
C5: two two dimensional subsets and one one dimensional [33, 99].

A rotation of 72o in one of the two dimensional subspaces is seen as one
of 144o in the other. The basis vectors ki are projected onto the two 2-
dimensional subspaces, and the physical subspace is the one in which the
transformation of ki into ki+1 is seen as a rotation of 72o. In Fig. 2.4 are
represented the vectors g⊥i of the perpendicular space and g|| of the physical
one from the projection of the basis vectors ki. Not all the points of E5 are
projected, but only those belonging to the root lattice A4. A4 is the subset
of the points E5 for which the sum of the coordinates is equal to 0. The
acceptance domain for the projection method is built using the Voronoi cell
of A4 . The Voronoi cell of a point p in A4 is made out of all the points whose
distance from p is the smallest.

The acceptance domain of the Penrose tiling is the projection onto the
perpendicular space of the dual of the the Voronoi cell of A4, the Delaunay
domain. The projection gives four pentagons lying on the coordination classes
T=1,2,3,4. A coordination class T = n is the subset of E5 made out of all
the points for which the sum of the coordinates is equal to n. In Fig. 2.5 the
acceptance domains of the Penrose tiling are represented. The vertices of the
tiling are the projection of the points whose projection to the perpendicular
space is in the acceptance domain (see Fig. 2.8).

The acceptance domain in the perpendicular space for the Tübingen tiling
is represented in Fig. 2.6. A particular procedure described in [13] is needed
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Figure 2.6: Acceptance domain for the Tübingen triangular tiling.

to build the vertices of the tiling (Fig. 2.7).

2.5.2 The decoration of the Tübingen tiling

A binary system can be obtained by decorating the Tübingen triangular
lattice with two types of atoms, one big and the other small. The big atoms
are placed on the vertices of the tiling, and the small ones are to the center
of the isosceles triangles. Fig. 2.9 shows the bond representation of the
Tübingen triangular tiling decoration. The bond representation is obtained
by connecting each atom of the binary tiling with its nearest neighbors.
The bond representation gives useful information about the structure of the
Tübingen tiling (see Section 5.2 on page 93). In this binary tiling there
are clusters of one atom surrounded by two concentric rings of ten atoms.
A cluster is a highly symmetric structure, and its toughness may be very
high. A fracture propagating in such a material is expected to move between
the clusters instead of trying to break one of them. The cluster centers are
situated on five families of parallel lines, mutually rotated by 36◦ with a large
and small separation within each family, arranged in a Fibonacci sequence
[77].

The next chapter deals with the physics of fracture and it is divided into
two parts. The first part exposes the essential classical results of continuum
theory of fracture, which are relevant in the qualitative analysis of the re-
sults of the simulations. The second part contains a didactic description of
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Figure 2.7: Tübingen triangular tiling.

Figure 2.8: Penrose tiling.
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Figure 2.9: Bond representation of the Tübingen triangular tiling decoration.
The bond representation is obtained by connecting each atom of the binary
tiling with its nearest neighbors.
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Figure 2.10: Binary system obtained by decorating the Tübingen triangular
tiling.
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a simple atomistic model for crack propagation, useful for introducing the
characteristics of fracture dynamics common to all the atomistic models.
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Chapter 3

THEORY OF FRACTURE

In the first part of this chapter the ideal modeling of the three basic modes
for the opening of a crack is presented. The second part is devoted to an
introduction of the basic notions of the continuum theory of cracks and dislo-
cations and of their mutual interaction [96]. The third part is a brief review
of the atomistic models for crack propagation.

The reader is supposed to be familiar with the linear theory of elasticity,
and with the concept of dislocation.

An excellent treatise of the physics of dislocations in crystals can be found
in [81, 55], and dislocations in quasicrystals have been intensively studied in
[76, 75, 69, 62, 20, 47].

Quasicrystals are non-crystalline materials showing a perfect long-range
order, but with no periodic ingredients [51]. The physics of crack propagation
in non-crystalline materials will not be treated in this work. The reader can
find an interesting treatise of statistical models for disordered media in [38].

3.1 Fracture modes

A crack is a three-dimensional defect whose fracture plane may be a very
rough surface. Nevertheless for analytical purposes a crack is always modeled
as a one-dimensional line defect on a flat cleavage plane. There are three basic
modes of loading a crack, corresponding to the orientation of the stress with
respect to the cleavage plane (see Fig. 3.1). The combination of these modes
describes any ideal opening mode of a crack. In Mode I the force acting on
the crack is perpendicular to the cleavage plane. Mode II is characterized

45



46 CHAPTER 3. THEORY OF FRACTURE

MODE IIIMODE I MODE II

Figure 3.1: The three modes of a fracture. In Mode I the force is exerted
normal to the cleavage plane. In Mode II the force lies in the cleavage plane
and is normal to the crack line. In Mode III the force is again in the cleavage
plane but is parallel to the crack line.

by a force which lies on the cleavage plane and is perpendicular to the crack
line. The force acting on the crack for Mode III is again in the cleavage plane
and is parallel to the crack line.

3.2 The elastic fields of cracks and disloca-

tions

3.2.1 Introduction

The continuum theory of cracks and dislocations is a high specialized and very
difficult field. A detailed derivation of the analytical expression of the force
fields of cracks and dislocations would require for the reader the knowledge
of complex potentials, conformal mappings and singular integral equations
which are out the scope of this work and must be addressed by specialized
books [14, 89, 15, 34, 64]. The aim of this section is just to highlight the
contents and the results of the theory in the very simple case of the penny
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Figure 3.2: Geometry of the crack. A three dimensional infinite isotropic
medium is cut from −a ≤ x1 ≤ +a on the axis x1 of a system (x1, x2, x3) of
Cartesian coordinates.The lips of the free surface S are represented in figure
separated for sake of clearness, but they are to be intended to be initially one
touching the other.

crack, skipping all the calculations which the interested reader can find in
[79]. Moreover the basic equations of theory of elasticity are restricted here
to the isotropic case, and no anisotropic effects will be taken into account
even if in real applications they cannot be neglected [25, 48].

3.2.2 General equations

The geometry of the crack we are interested in is depicted in Fig. 3.2, the
so called penny crack. A three dimensional indefinite isotropic medium is
cut from −a ≤ x1 ≤ +a on the axis x1 of a system (x1, x2, x3) of Cartesian
coordinates. The lips of the free surface S are represented in the figure
separated for sake of clearness, but they are not: they are initially one beside
the other, and only when a load is applied they may separate. The crack
cleavage plane is contained in the x1 − x2 plane.

The equilibrium of the elastic medium requires that at every point inside
the material:
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Figure 3.3: Two load systems for a penny crack. In Problem II the load is
applied on the crack surface. In Problem I the crack is loaded very far away
from the crack.

∂σij
∂xj

= 0 (3.1)

where σij is the stress tensor and the summation convention over repeated
indices is assumed.

There are two ways a crack can be loaded. In the so-called Problem I
the load is applied at infinity far away from the crack, and in the Problem
II the forces are exerted on the lips of the cut surface (see Fig. 3.3). For
Problem I the crack surface S is free and the boundary condition of Eq. 3.1
for σ on S reads:

σijnj = 0 (3.2)

where nj are the components of the outer normal to S. For Problem II the
values of σ on S must satisfy the condition:

σijnj = Fi (3.3)
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where Fi are the components of the loads applied on S.
In the linear theory of elasticity the components of σ are connected with

the derivative of the displacement through Hooke’s law:

σij = λ
∂ul
∂xl

δij + µ(
∂ui
∂xj

+
∂uj
∂xi

) (3.4)

λ and µ are the elastic coefficients, δ is the Kronecker function, and ui(x1, x2, x3)
are the components of the displacement field u. It is nearly impossible
to solve analytically the full three-dimensional problem for general three-
dimensional boundary conditions. We will make the hypothesis that the
external loads applied on the system do not depend on the coordinate x3.
This does not mean that the external forces have no component on x3, but
simply that the load assumes the same values at different heights. In such a
simplified situation one can make the reasonable hypothesis that the stress
tensor σ and the components of the displacement field u are independent on
x3 too. Under this hypothesis Eq. 3.4 inserted into Eq. 3.1 splits into two
separate equations:

∂2u3

∂2x1

+
∂2u3

∂2x2

= 0 (3.5)

(λ+ µ)
∂2uj
∂xi∂xj

+ µ
∂2uj
∂2xj

= 0 i, j = 1, 2. (3.6)

The strain given by the solutions u3 of the first equation is called anti-
plane strain, and that of the second equation is called plane strain.

3.2.3 The elastic field of a single crack

The Mode III crack

In Mode III the only applied force is in the x3 direction. In this case it is
reasonable to assume that the only non zero component of the displacement
field is u3. This non zero component does not depend on the coordinate x3,
because the load is independent from the height. Thus the only non zero
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components of σ are σ31 and σ32. It can be shown using Eq. 3.1 that the
complex function σ(z), where z = x1 + ix2:

σ(z) = σ32 + iσ31 (3.7)

is holomorphic in the complex plane with the cut. The solution of Problem
II is found to be:

σ(z) =
1√

z2 − a2

∫ a

−a
FIII(t)

√
a2 − t2
t− z

dt (3.8)

where FIII(t) is the force applied along the contour of the penny crack. Eq.
3.8 is singular at z = ±a, and the expansion of σ(z) around the crack tip
z = a is:

σ(z) =
1√
2π

KIII√
(z − a)

+O

(
z − a
a

) 1
2

(3.9)

where KIII is a factor giving the intensity of the stress field around the crack
tip. The general expression for KIII is:

KIII =
1√
πa

∫ a

−a
FIII

(
a+ t

a− t

) 1
2

dt (3.10)

and becomes in the case of a constant force FIII :

KIII = FIII
√
πa. (3.11)

Eq. 3.11 gives a central result in the linear elastic theory of fracture.
Around the crack tip the stress distribution is singular and diverges like
1/
√
z. The strength KIII of the singularity is called the stress intensity

factor, and depends upon both the crack geometry and the applied load.
The solution for the Problem I is the same as for Problem II provided

FIII is intended to be the component of the load at infinity.
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The Mode I and Mode II crack

The component along x3 of the forces loading a crack in Mode I and Mode
II is always zero. Thus it is reasonable to assume that the sample will not
be strained in the x3 direction, and that u3 and σ32,σ33 are identically zero.
The non zero components of the stress tensor σ can be expressed in terms of
two holomorphic functions Φ(z) and Ω(z):

σ11 + σ22 = 2[Φ(z) + Φ̄(z)]
σ22 − σ11 + 2iσ12 = 2[z̄Φ′(z) + Ω(z)]

(3.12)

defined on the complex plane z = x1 + ix2 with the cut. The explicit ex-
pression of Φ(z) and Ω(z) is complicated and not important for the scope of
this brief review. It will be sufficient to say that, in analogy with Mode III,
both Φ(z) and Ω(z) diverge like 1/

√
z when z approaches a and −a. The

expansion of Φ(z) around a reads for both Problem I and Problem II :

Φ(z) = K̄
2
√

2π(z − a)
+O

(√
(z − a)/a

)
K = K1 + iK2

(3.13)

and is used to define the stress intensity factors K1 and K2for Mode I and II.
The complex constant K in Problem I depends on the load applied on the
crack surface through the formula:

K = 1√
πa

∫ a

−a
F (t)

(
a+ t

a− t

)
dt

F (t) = FI(t) + iFII(t)
(3.14)

where FI(t) and FII(t) are respectively the x1 and x2 components of the load
for Mode I and Mode II. When the applied load is constant Eq. 3.14 reads:

K = F
√
πa. (3.15)

The real and imaginary part of K in Eq. 3.15 define the stress intensity
factors for Mode I and Mode II. In complete analogy with Mode III the stress
intensity factors for Mode I and Mode II depend linearly on the applied load.

Eq. 3.15 defines the stress intensity factors for Problem II as well, pro-
vided that F is intended to be the stress applied at infinity.
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3.2.4 The stress intensity factor of a crack with a dis-
location distribution

The presence of a dislocation distribution changes the stress field of a crack,
and therefore changes its stress intensity factor [53, 56, 57]. We consider a
distribution of screw dislocations with dislocation line parallel to the axis x3.
The position of each dislocation is defined by a point in the plane x3 = 0 or
equivalently by a complex number ζ in the complex plane z = x1 + ix2.

Mode III crack

The stress field around the tip of a crack loaded in Mode III in presence of
a dislocation distribution has the usual form:

σ(z)z→0 =
kIII√
2πz

(3.16)

but the stress intensity factor reads now:

kIII = KIII −
µ

2

∑
j

(
bj√
2πζj

+
bj√
2πζ̄j

)
(3.17)

where KIII is the stress intensity factor of the crack with no dislocation and
bj is the Burgers vector of the dislocation at the position ζj.

Mode I and Mode II crack

In Mode I and II the stress field diverges around the crack tip like Eq. 3.13:

Φ(z)z→0 =
k̄

2
√

2πz
(3.18)

but the stress intensity factor is modified by the presence of the dislocation
as:

k̄ = K̄ − µ

2i(1− ν)

∑
j

(
bj√
2πζj

+
bj√
2πζ̄j

+
πb̄j(ζj − ζ̄j)

(2πζ̄)3/2

)
(3.19)
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where K is the complex stress intensity factor defined for the crack with
no dislocation in Eq. 3.13. The real part of the complex number bj is the
Burgers vector of the dislocation j interacting with a crack in Mode I. The
imaginary part of bj is the Burgers vector of the dislocation j interacting
with a crack in Mode II.

3.2.5 Final remarks

In the previous sections the expressions of the stress intensity factors for
constant loads applied to a crack with no dislocations, and the character of
the divergence of the stress tensor around the crack tip, have found to be the
same for all the modes and for both Problem I and Problem II (cf. Eq. 3.11
and Eq. 3.15). This might seem to be a coincidence but it is not. The stress
intensity factors and the stress distribution around the crack tip obey very
general principles independently on how the crack is loaded (Mode I,II,II)
and where (Problem I and Problem II).

For a distribution of finite cuts in the plane under an uniform (constant)
load:

• the stress tensor around the crack tip diverges like 1/
√
r, where r is

the distance from the tip

• the strength of the divergence is called the stress intensity factor and
depends linearly on the applied load.

Concerning the interaction of crack and dislocations, two important con-
siderations can be made looking at Eq. 3.17 and Eq. 3.19.

The stress intensity factor of a crack interacting with dislocations having
positive Burgers vector is smaller than that of the crack with no dislocation.
Dislocations with positive Burgers vector are said to be shielding dislocations
because their presence weakens the influence of the external field on the
crack. On the contrary dislocations with negative Burgers vector enhance
the influence of the external field on the crack, and therefore they are said
to be anti shielding dislocations.

Not only the term ζj but also the term ζ̄j is present in the expression of
the stress intensity factor of a crack interacting with a dislocation. The term
ζ̄j corresponds to an image of the dislocation at ζj. The canceling effect of
image dislocations makes the dislocation part of stress field decay stronger
than the normal 1/z field.
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3.3 The elastic forces on cracks and disloca-

tions

3.3.1 Introduction

In the linear theory of elasticity the total force FV exerted on a closed volume
V inside an elastic body is:

FV =

∫
S

σ · nds (3.20)

where S is the surface of the volume and n is the outer normal of the surface.
The total force FV can be written using Stokes theorem as:

FV =

∫
S

σ · nds =

∫
V

divσdv (3.21)

and in absence of external body forces is zero because divσ = 0. If the volume
includes singularities of the elastic field Stokes theorem does not hold in the
form of Eq. 3.21 and thus FV might not be zero anymore. An important
analog can be found in electromagnetism. The flux of the electric field E is
zero over any closed surface containing no electric charge. But as soon as the
volume includes electric charges, which are singularities of the electric field,
the flux of E is not zero anymore.

Cracks and dislocations are singularities of the elastic field. For that
reason there is a net force acting on them. Historically the elastic force on
a dislocation was worked out for the first time by Peach and Kohler, who
found that this force is zero [78]. Irwin derived a similarly classic result for
the force on a crack loaded in Mode I in two-dimensional elasticity [45]. Later
Eshelby enunciated for the first time a general theorem giving the force on
an elastic singularity in terms of the energy momentum tensor of the elastic
field [28]. This second approach opened the way to the treatise of the force
on an elastic singularity in terms of complex potentials [88, 44]. Some years
later Eshelby Rice developed an alternative way to solve the problem based
on the the continuum plasticity theory [89, 90, 91], which has become the
standard continuum-mechanics approach to cracks in a deformation field.

In the language of the complex potentials the force on a elastic singularity
depends on the residue of the singularity in σ(z)2. The stress field of a
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Figure 3.4: Crack geometry used for calculating the interaction force of a
crack with a dislocation. The crack extends indefinitely along the negative x1

axis and interacts with a dislocation placed at ζ.

crack around the crack tip is of the form 1/
√
z, and the square of such a

singularity has a residue which is not zero, and therefore the force on a crack
with no dislocations is not zero. The stress field of a dislocation with no
crack around the dislocation core has the form 1/z, and the square of such a
singularity contributes no residue. For that reason the force on a dislocation
with no crack is zero. In any other mixed situation, crack with dislocation
and dislocation with dislocation, the netto force on the singularities is not
zero. The goal of this section is that of giving the expression of the such a
force.

The geometry considered here is different from that of the other sections.
The crack tip is in the origin and the crack surface extends infinitely along
the negative x1 axis (see Fig. 3.4). The crack interacts with a distribution
of dislocations intersecting the plane at ζj.

3.3.2 Mode III crack

Force on a crack with no dislocation

Let us consider a crack with no dislocation loaded in Mode III. The net force
acting on the crack has only a component in the positive x1 direction whose
expression is [94, 95]:
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fc =
K2
III

2µ
(3.22)

and therefore the crack can only open in the positive x1 direction. The
intensity of the force depends quadratically on the stress intensity factor.

Force on a crack with a dislocation distribution

If the crack coexists with a distribution of dislocations at ζj the force on the
crack tip has again only a component in the positive x1 direction, and reads
[96]:

fc = k2
III/2µ

kIII = KIII − µ
2
∑

j

 bj√
2πζj

+
bj√
2πζ̄j

 (3.23)

where kIII is the modified stress intensity factor of Eq. 3.17.

Force on a dislocation distribution with a crack

The force fd on the dislocation at ζi due to the interaction with the others
dislocations and with the crack is1 [96]:

fd = KIIIbi√
2πζi

− µb2
i

4π

[
1

2ζi
+ 1
ζi − ζ̄i

−
(
ζ̄i
ζi

)1/2
1

ζi − ζ̄i

]
+

∑
j 6=i

µbbj
4π

 1
ζi − ζj −

1
ζi − ζ̄j

+

(
ζj
ζi

)1/2
1

ζi − ζj +

(
ζ̄j
ζi

)1/2
1

ζi − ζ̄j


(3.24)

Three types of terms are contained in Eq. 3.24.
The first term is the direct crack-dislocation interaction. This term may

be attractive or repulsive, depending on the sign of the Burgers vector, and

1It is worth to remember that fd is in general a complex number and the force on the
dislocation has two non zero components in (x1, x2)
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goes like 1/
√
r, where r is the distance between the crack tip and the dislo-

cation core.

The second term contains expressions like ζ̄ and is relative to the self-
image interaction. The force due to the interaction of the dislocation with
its self-image depends only on the Burgers vector bi, and varies with the
distance from the crack tip as 1/r.

The third group of terms describes the dislocation-dislocation interaction.
In addition to the terms like 1/(ζi−ζj), which give the pure direct interaction
of the dislocations, there are contributions from dislocations at the image
points ζ̄j caused by the open surfaces. The sign of the force is linear in bi
in the first term, bilinear in the second and quadratic in the last. The force
can thus be attractive or repulsive in the first or third term, but is always
attractive for the self-image term.

3.3.3 Mode I and Mode II crack

The expressions for Mode I and Mode II cracks are much more complicated
than for Mode III. The force on the crack and on a dislocation in the general
case of a dislocation distribution is very complicated. The reader can find a
detailed treatise of such a case in [96].

Here some simplifying assumptions are made:

• Only the interaction of a crack with a single edge dislocation is consid-
ered.

• The slip plane of the dislocation intersects the crack tip (case of the
emitted dislocation -see Fig. 3.5).

Force on a crack with no dislocation

For the crack with no dislocation the force fc on the crack tip is [9, 21, 22]:

fc = 1− ν
2µ

(
KK̄ +

K2 − K̄2

2

)
K = KI + iKII

(3.25)

in components:
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(fc)1 = 1− ν
2µ (K2

I +K2
II)

(fc)2 = −
(

1− ν
µ

)
KIKII

(3.26)

where ν is the Poisson module. For pure Mode I and Mode II the only
non zero component of fc in Eq. 3.25 is on x1, and in this case the crack
can propagate only in the x1 direction. For a mixed situation the force on
the crack has a component in the x2 direction which might account for a
branching of the crack away from the cleavage plain.2

Force on a crack with a dislocation

When the crack coexists with a dislocation placed at ζ with Burgers vector
b, the force on the crack is the same as the one in Eq. 3.25 and Eq. 3.26,
provided that the stress intensity factor K is replaced by the expression k
[96]:

k̄ = K̄ +
µ

2i(1− ν)

(
b√
2πζ

+
b√
2πζ̄

+
πb̄(ζ − ζ̄)

(2πζ̄)3/2

)
(3.27)

General form of the force on a dislocation

The force on the dislocation is the sum of two contributions: the direct
crack-dislocation interaction, and the interaction of the dislocation with its
self image [96].

The slip plane of the dislocation intersects the crack tip forming an angle
θ with the x1 axis. The force on the dislocation interacting both the with
the crack and with its self-image, can be decomposed into two components
fslip and fclimb (see Fig. 3.5). The component fslip is in the direction of the
slip plane, and is the force changing the relative distance between the crack
tip and the dislocation core. The component fclimb is perpendicular to the
slip plane, and this force tries to let the dislocation leave the slip plane.

2A more careful analysis of the branching force made in [22] shows that the expression
of Eq. 3.26 is only an approximated form of the force needed to let a crack branch.
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Force on a dislocation with a crack

The direct crack-dislocation force has only a component fslip on the slip plane
which reads [96]:

fslip =
b

2
√

2πr
[KI sin(θ) cos(θ/2) +KII(2 cos(3θ/2 + sin(θ) sin(θ/2)))]

(3.28)

The force of Eq. 3.28 is repulsive for positive Burgers vectors and at-
tractive for negative values of b, and goes like 1/

√
r, where r is the distance

between the crack tip and the dislocation core.

The self-image force on a dislocation

The force exerted on the dislocation by its self image has both the components
fslip and fclimb, whose explicit expressions are:

fslip = −µ|b2|/4π(1− ν)r

fclimb =
µb2 tan(θ/2)(5 + 3 cos(θ))

16π(1− ν)r2

(3.29)

3.3.4 The Griffith criterion

Linear theory of elasticity is a quite straightforward working tool. For any
given value of the applied load all the expressions of the previous sections
give the force applied on the crack and on the dislocations present in the
material. In the limit of applicability of the theory, the material is supposed
to be in equilibrium, and it is implicitly assumed that the forces on the crack
and on the dislocations are balanced by the resistance of the material, and
therefore no crack can propagate and no dislocation can move. But this is far
from being true. Even in the limit of applicability of the theory, i.e. that the
system undergoes small strains, there are values of the load beyond which the
crack starts to propagate and the dislocations move, i.e. the system breaks.
A.A. Griffith has given in 1920 a criterion for the equilibrium of cracks in
brittle materials [5].

Let us consider a crack loaded in Mode I in a material with no dislocations.
The elastic force on the crack is:
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Figure 3.5: Dislocation emitted from the crack tip. The slip plane forms an
angle θ with the x1 axis. The force on the dislocation has two components
fslip and fclimb. The components fslip is in the direction of the slip plane,
whereas fclimb is perpendicular to the slip plane.

fc =
(1− ν)

2µ
K2
I (3.30)

and it is balanced by the resistance of the material as long as fc is smaller
than the force fs needed to open a new surface. The value of the surface
force depends on the surface tension γ like3:

fs = −2γ. (3.31)

Equilibrium is realized when the elastic force and the surface tension are
in balance:

KI = 2
√
γµ(1− ν). (3.32)

Eq. 3.32 is called the Griffith relation. In general the Griffith point is un-
stable, but there are some loading conditions and particular crack geometries
for which the Griffith point is stable.

3The crack must open two new surfaces when it starts to propagate, and then fs must
be two times the surface tension.
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The instability at the Griffith value is the reason why fracture is often
a catastrophic event. When the load applied to the system goes beyond
the Griffith value nothing can be done to stop the crack. The instability
in the other direction, the closure of the crack, is normally not observed in
experiments. When a new surface is formed oxide formation or irreversible
deformations are effects which change the morphology of the material and
hinder the closure of the crack.

3.3.5 Elastic estimates for dislocation emission

When a crack is loaded enough to initiate cleavage it is often in the regime
of spontaneous dislocation emission from the crack tip [3, 66]. Which event
occurs first depends on the strength of the material against shear or frac-
ture. By elastic means it is possible to give a rough criterion for dislocation
emission or fracture cleavage.

Let us consider a crack loaded in Mode I, and a dislocation emitted from
the crack tip. It is supposed that the total force fd on the dislocation has
only a component in the slip plane4, and is the sum of the direct interaction
with the crack and with the self-image dislocation:

fd =
b

2
√

2πr
KI sin(θ) cos(θ/2)− µ

4πr

b2

1− ν
(3.33)

According to Eq. 3.33 fd is attractive for values of r smaller than r0, and
repulsive for values of the distance bigger then r0, where r0 is the radius at
which the force is zero (see Fig. 3.6). In the approach of the continuum theory
the dislocation core has no finite dimension, and thus a crack will always be
stable against dislocation emission. As soon as a dislocation is forming closed
to the crack tip it would feel a very strong attractive force which brings the
dislocation back to tip. In reality a dislocation has a core of finite size. The
core of a dislocation is the region where the elastic approximation breaks
down. If the size of the dislocation core is equal or bigger then r0 dislocation
emission will always take place spontaneously. When the emitted dislocation
is well formed it will already be outside the attractive region and it will feel
only the repulsive force. If the core dimension rc of the dislocation is known

4This is actually the case in quasicrystals, where the emitted dislocation cannot leave
the slip plane, and therefore in this case fclimb must be considered as zero.
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Figure 3.6: Force exerted on a dislocation emitted from the crack tip. ro is
the distance at which the force is zero.
.

Eq. 3.33 can give the value KIE of the stress intensity factor, and thus
indirectly of the external load, at which spontaneous dislocation emission
takes place:

KIE =
µ√
2πrc

b(1− ν)

sin(θ) cos(θ/2)
. (3.34)

The Griffith criterion for cleavage gives a value KIC of the stress intensity
factor:

KIC = 2
√
µγ(1− ν) (3.35)

and the combined criterion for cleavage/emission in pure Mode I then be-
comes [72]:

KIE < KIC emission
KIE > KIC cleavage

. (3.36)
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If the external load necessary for dislocation emission to take place is
smaller than that for cleavage, no fracture propagates and only dislocation
emission will take place. In contrast if KIE > KIC as soon as a dislocation is
formed it is immediately absorbed and fracture propagates without emitting
dislocations.

3.3.6 Final remarks

The elastic force fc on a crack depends always quadratically on the stress
intensity factor K:

fc ≈ K2 (3.37)

both for a crack with no dislocation and in the presence of a dislocation
distribution, provided that in the latter case the expression of the stress
intensity factor is replaced by the shielded or anti-shielded expression of Eq.
3.17 and Eq. 3.27.

The force on a dislocation with a crack and a dislocation distribution is
the sum of two terms. The force fdc due to the interaction with the crack is:

fdc ≈
Kb√
r

(3.38)

where K is the stress intensity factor of the crack with no dislocation, b is
the Burgers vector and r is the distance of the crack tip from the dislocation
core. The interaction fdd of the dislocation with both other dislocations and
the self-images goes like:

fdd ≈
b1 b2

r
(3.39)

where b1 and b2 are the two Burgers vectors and r is the distance between
the dislocation cores.

A criterion has been proposed by Griffith under which it is possible to
estimate the load beyond which a crack start to propagate. The critical load
fcrit is found to be:
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fcrit ≈
√
γ (3.40)

where γ is the surface tension. The constant of proportionality depends only
on the elastic constants of the material.

3.4 Atomistic models for crack propagation

3.4.1 Introduction

An atomistic model for crack propagation describes the propagation of a
crack at the level of the atomic motion [35, 36, 37]. In the end a crack can
move forward only by breaking atomic bonds, and a macroscopic theory like
the theory of elasticity is not well suited to account for such a process, which
takes place at a time and space scale far beyond the limit of applicability of
the continuum model.

The simplest atomistic model of crack is shown in Fig. 3.7 [71]. Two
lines of N equally spaced atoms each, are placed at a distance equal to the
separation between the atoms. Elastic springs of identical elastic constants
of value one tie each atom with its three nearest neighbors. If the distance
between two atoms exceeds a certain limit the bond breaks. Unbreakable
weak elastic springs whose elastic constant is 1/N tie each atom of the line
to the floor and the ceiling. The distance between the ceiling and the floor
is δ. Increasing δ beyond the critical value δc the crack should theoretically
start to propagate.

In such a very simplified model two important effects, observed in any
atomistic model regardless of its complexity, can be explained: the lattice
trapping and the velocity gap.

3.4.2 Lattice trapping

For every value of the distance between the ceiling and the floor greater than
critical value δc the crack should be in an unstable situation and should start
to propagate. This is not the case. There is a range of values of δ beyond but
close to the critical one, at which the crack does not propagate. The crack is
said to be trapped [87]. To understand the origin of the lattice trapping let us
imagine to set δ exactly equal to the critical value. The crack is in principle
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Figure 3.7: Two lines of N equally spaced atoms each, are placed at a dis-
tance equal to the separation between the atoms. Elastic springs of identical
elastic constants of value one tie each atom with its three nearest neighbors.
Unbreakable weak elastic springs whose elastic constant is 1/N tie each atom
of the line to the floor and the ceiling. The distance between the ceiling and
the floor is δ.
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in an unstable equilibrium situation. Let us imagine to increase δ just a little.
Some bonds may break and during the breaking process the atoms forming
the just broken bonds move up and down generating high frequency waves.
These high frequency waves carry energy away much faster than the next
bond can break, and at the crack tip there is no more available elastic energy
for the crack to propagate further. One has to slowly keep pulling the ceiling
and the floor apart, until the needed energy becomes available and the bond
at the tip reaches its breaking point again. Scaling δ by δc and defining the
variable:

∆ =
δ

δc
(3.41)

it has been found that even in the limit N >> 1, lattice trapping persists
until ∆ = (

√
3 + 1)/

√
2 = 1.9.

3.4.3 Velocity gap

The velocity gap is a consequence of the rapid bonds snapping and it is the
dynamical counterpart of the lattice trapping [71].

Dynamic fracture is a cascade of bonds breaking, one giving way after
another. The atom which has just broken a bond has an energy excess. This
energy excess can be lost in two ways. One possibility is just to disperse
this energy in phonons, which are lattice vibrations. Another possibility is
to pass this energy to a nearest neighbor atom, which uses this energy excess
to break another bond and to form another crack surface. Which possibility
takes place depends on the ratio of the time τbond needed to break a bond,
which is the period for the forces between nearest neighbors to fall to zero,
and the vibrational period τvibr. The bigger τbond/τvibr the longer the atom
vibrates increasing the probability that the energy excess is dispersed in
phonons. To quantify this idea let Keff be the effective spring constant of
the force acting on an atom which has just broken a bond. The oscillatory
period of the atom is:

τvibr = 2π
√
m/Keff (3.42)

where m is the atom mass. If the next bond at a distance a breaks after
some fraction α of τvibr, the crack velocity is:
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v = (a/απ)
√
Keff/m. (3.43)

It is impossible to change Keff by increasing the load applied to the
boundary and thus the velocity of Eq. 3.43 represents a lower bound for the
crack velocity.

3.4.4 Crack tip instabilities

Smooth and steady state crack motion is limited to a finite range of loads
[71]. Once the load becomes too large the vibrations needed to dissipate the
energy excess become so big that they can break bonds off the main crack line.
What is observed is in general new crack formation, dislocation emission, void
formation, and in this case the crack velocity reaches a limiting value. In the
second part of this work a big part is devoted to crack tip instabilities of
fracture propagation in quasicrystals.

3.5 Experimental results of crack propaga-

tion in an icosahedral quasicrystal

This section deals with the experimental results of crack propagation in an
icosahedral three-dimensional quasicrystal, and it might be the appropriate
end of a chapter about theory of fracture. In Section 8.6 on page 169 some of
the results outlined here will be discussed and compared with the numerical
results of the molecular dynamics propagation simulations performed in a
binary system derived from a Tübingen triangle tiling.

Crack propagation near microhardness indentations on surfaces of an
icosahedral Al70Pd23Mn7 single quasicrystal exhibiting fivefold and twofold
symmetry has been studied under ambient conditions at room temperature
[23, 11, 12].

From an Al-Pd-Mn single quasicrystal a cube-shaped sample of edge
length about 5mm was cut. Surfaces perpendicular to fivefold as well as
twofold directions have been investigated varying both the rotation angle of
the indenter around the surface normal and the force applied perpendicular
to the surface. For inspection of the hardness impressions an optical, an
atomic force microscope and a laser scan microscope were used.
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Microcracks originating from the hardness impressions have been ob-
served at all applied load levels. The number of cracks and their final di-
rection seem to be stable for a given indenter-to-sample orientation but vary
considerably if this orientation is changed, because the indenter tip is not
isotropic. In order to overcome the indenter anisotropy many experiments
have been performed at the same load but with a different indenter orien-
tation around the sample surface normal. With this procedure a series of
indentations at a constant load value with isotropic indenter orientation dis-
tribution has been performed. The resulting crack orientation distribution
will now be sample specific rather than indenter induced.

According to atomic force microscopy (AFM) studies the surface near the
crack tip appears to be strained in a shear like mode parallel to a cleavage
plane, meaning that the cracks propagate in Mode III. The distribution of the
cracks directions at a constant load shows that both on a fivefold and twofold
surface the cracks tend to propagate parallel to planes of crystallographic
symmetry. That means for example that when a crack propagates on a
surface of fivefold symmetry strong meandering with angles of n×36o between
the parts of the crack is found.

When applying high indentation forces (20 N Rockwell indentation) hun-
dreds of craters nucleate along a crack path and partially grow together,
finally causing the sample to break into pieces for forces higher than 50 N.

The approach of the continuum theory to the statics and dynamics of a
crack involves elastic energies, which are equal to free energy differences in a
system at constant temperature. In Chapter 7 are reported original free en-
ergy calculations used to compute the surface energies, the elastic constants
and the critical displacements involved in crack propagation. The next chap-
ter gives a short review of the basic notions of classical statistical mechanics,
and introduces the theory of the techniques for simulating a system at con-
stant temperature and for computing free energy differences, which have been
used to compute the numerical results of Chapter 8.



Chapter 4

EQUILIBRIUM MOLECULAR
DYNAMICS

4.1 Introduction

Equilibrium statistical mechanics is a very well known and developed theory.
This theory links the macroscopic thermodynamic observables of a system to
its microscopic properties. Molecular dynamics simulations may nowadays
well describe the microscopic behavior of even very complex systems, becom-
ing therefore more and more an “indispensable” tool of statistical mechanics
in many cases of practical interest.

In Section 4.2 of this chapter we will give a short review of the basic
notions of statistical mechanics. We will summarize some aspects which are
of interest for the molecular dynamics simulations. In sections 4.3 and 4.4 a
brief report of the most popular molecular dynamics technique for systems
at statistical equilibrium will be presented. The Nosé and the Nosé-Hoover
thermostat will be described in detail. Section 4.5 describes how to optimize
the mass of the Nosé-Hoover thermostat, which is a free parameter of the
Nosé-Hoover dynamics. Section 4.6 contains some methods for free energy
calculations via a molecular dynamics simulation. Section 4.7 gives a short
explanation of the numerical methods used to solve the Hamiltonian and
Nosé-Hoover equations of motion.

69
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4.2 Basic notions of statistical mechanics

Let us consider a classical system of N particles. Of every particle the posi-
tion q̃i and the momentum p̃i are known, where i = 1, . . . , N .

The motion of the system as a whole takes place in a phase space, whose
points x̃ are:

x̃ = (q1, · · · , qN , p1, · · · pN) = (q̃, p̃). (4.1)

Even if N is small, in the cases of practical interest it is almost always
impossible to solve analytically the equations of motion of the system. We
can only observe the evolution of x̃, and this is the starting point of statistical
mechanics.

Let us consider the motion of the system over a time T and focus our
attention on a neighborhood of a point (q̃, p̃) , where we can find the system
for a time ∆T .
If the system during the motion

• is sufficiently chaotic to be able of forgetting its initial condition

• is able to visit every accessible point of the phase space

it is said to be ergodic1[60]. Under such circumstances the ratio ∆T/T for
longer and longer time T becomes more and more independent of the initial
conditions. We can thus define a density of probability ρ of finding the system
in a neighborhood of a point like [39]:

ρ(q̃, p̃)dq̃dp̃ = lim
T→∞

∆T

T
, (4.2)

and in this formalism the mean value 〈f〉 of an observable f(q̃, p̃):

〈f〉 =

∫
f(q̃, p̃)ρ(q̃, p̃)dq̃dp̃ (4.3)

can be evaluated over the trajectory of the system as:

1Ergodicity is a synonym for statistical equilibrium.
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〈f〉 = lim
T→∞

1

T

∫ T

0

f(q̃(t), p̃(t))dt. (4.4)

Let us now consider a dynamical system with a time-independent Hamil-
tonian H(q̃, p̃).

We say that the system realizes a microcanonical distribution in the phase
space if its motion takes place on a manifold of the phase space having a given
energy E. In this case ρ can be written as:

ρ(q̃, p̃) = δ(H(q̃, p̃)− E) (4.5)

For a dynamical system whose Hamiltonian is time independent the so-
lution of the Hamiltonian equations of motion:


dqi
dt

= ∂H
∂pi

dpi
dt

= −∂H
∂qi

(4.6)

forces the system to stay on the manifoldH(q̃, p̃) = H0, where H0 is the initial
energy, and thus during its motion the system realizes the microcanonical
distribution.

A system at a given temperature T is at thermodynamical equilibrium
if during its motion it spans the phase space according to the canonical
Boltzmann distribution:

ρ(q̃, p̃) =
exp(−H(q̃, p̃)/KT )∫

exp(−H(q̃, p̃)/KT )dq̃dp̃
. (4.7)

where K is the Boltzmann constant. In analogy with the microcanonical
case, the question is now whether it is possible to find a dynamics of the
system such that the probability defined in Eq. 4.2 is the canonical one.
The Hamiltonian dynamics of Eq. 4.6 describes an isolated system, which
thus +can not posses a constant thermodynamic temperature. If we want
a single system to visit the accessible points of the phase space according
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to the Boltzmann distribution, we must couple the system to some external
force being able to change the total energy. Historically many attempts have
been proposed [30, 40, 7], but only Nosé and Hoover have proposed two
modifications of the Hamiltonian equations of motion which reproduce the
canonical distribution.

4.3 The Nosé thermostat

The approach of Nosé in his seminal paper [83, 85] is to extend the canonical
system of the q̃, p̃ with two other conjugated degrees of freedom. In the
extended system a new Hamiltonian H ′ is written:

H ′ =
N∑
i=1

p2
i

2mis2
+ V (q̃) +

p2
s

2Q
+ (f + 1)KT log s (4.8)

where:

• ps and s are the two new conjugated variables. s plays the role of a
position and ps that of a momentum.

• V is the potential of the system.

• Q is a free parameter

• f is the number of degrees of freedom of the system.

The Hamiltonian equations of motion of the system are:



q̇i = pi/mis
2

ṗi = ∂V/∂qi

ṗs =
N∑
i=1

p2
i /mis

3 −KT (f + 1)/s

ṡ = ps/Q

(4.9)

On a trajectory solution of Eq. 4.9 for given initial conditions, the mean
value of a quantity A(p̃/s, q̃) can be written as:
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〈A(
p̃

s
, q̃)〉 =

∫
A(p̃/s, q̃)δ(H ′ − E)dq̃dp̃dpsds∫

δ(H ′ − E)dq̃dp̃dpsds
. (4.10)

Using the transformation:

p′i =
pi
s

(4.11)

and the properties of the δ:

δ(g(x)) =
δ(x− x0)

g′(x)
g(x0) = 0 (4.12)

for the function:

g(s) =
N∑
i=1

p′i
2

2mis2
+ V (q̃) +

p2
s

2Q
+ (f + 1)KT log s− E, (4.13)

the mean value of A can be rewritten as:

〈A(
p̃

s
, q̃)〉 =

∫
A(p̃′, q̃) exp

(
− 1

KT

[∑ p′i
2m

+ V (q̃)

])
dp̃′dq̃∫

exp

(
− 1

KT

[∑ p′i
2m

+ V (q̃)

])
dp̃′dq̃

. (4.14)

The right side of Eq. 4.14 is the mean value of A(p̃′, q̃) over the canonical
ensemble. The Nosé dynamics in the extended space may then be used to
compute static canonical mean values in the space of the q̃, p̃. It is important
to notice that the only dependence on E is the left side of Eq. 4.14. This
means that the canonical mean value of an observables can be calculated on
every trajectory solution of the Nosé equations of motion, independently of
the initial condition.
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4.4 The Nosé-Hoover thermostat

Under the non canonical change of variables:



t′ =

∫ t dν

s

p′(t′) =
p(t)

s(t)
s′(t′)) = s(t)

ṗ′s =
ps(t)

s(t)

(4.15)

applied to Eq. 4.8 where f is replaced with f − 12, Hoover obtained the
equations of motion [43, 26, 84]:



q̇i =
ṗi
mi

ṗi = −∂V
∂qi
− piη

η̇ =
1

Q

[
N∑
i=1

p2
i

mi

− fKT

] (4.16)

In Eq. 4.16 the variables ps and s disappeared, replaced by η, where:


η =

ps

Q
1

s

ds

dt
= η

(4.17)

In the literature the equations 4.16 may appear under a slightly different
form:

2There is no reason a priori why f should be replaced with f −1. It is just a trick with
which everything works.
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
q̇i =

pi
mi

ṗi = −∂V
∂qi
− νηpi

η̇ = ν

[
T (t)

T
− 1

] (4.18)

where T (t) is the instantaneous temperature, defined in a system with d
spatial dimensions as:

T (t) =
1

dNKT

N∑
i=1

p2
i

mi

. (4.19)

The equations 4.18 are known as the Nosé-Hoover equations of motions.
It is important to stress that the Nosé-Hoover dynamics is not Hamil-

tonian. There is no total energy which is conserved during the motion.
Nevertheless, there is an integral of motion which is of importance in the
applications. The Nosé-Hoover dynamics conserves the quantity H:

H =
1

N

N∑
i=1

p2
i

2mi

+ V (q) + Tη2 + 2ν

∫ t

0

η(τ)dτ (4.20)

which is the sum of the total energy H of the system, of the work and of the
heat the system exchanges during its motion3.

3This can be seen from the differential form of the first principle of thermodynamics
applied to Eq. 4.20:

dU = δQ+ δW

where U is the total energy of the system and W and Q are respectively the work and the
heat. Using the time t as parametrisation of the manifold over which the motion takes
place, i.e. pulling back the 1-forms dU , δW and δQ, the first principle of thermodynamics
reads:

dU

dt
dt =

δQ

dt
dt+

δW

dt
dt
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The physical idea behind the Nosé-Hoover equations of motion is quite
straightforward and it is based on a feed-back mechanism. The system is
perturbed by a viscous term ηpi, and the viscosity coefficient η is time-
dependent. If the punctual temperature T (t) is bigger than the equilibrium
value T , the viscosity increases, brakes the system and reduces T (t). If
T (t) is smaller than T the viscosity decreases, the system is accelerated and
the punctual temperature increases. More formally under the reasonable
hypothesis that η remains bounded, the Nosé-Hoover equations of motion
guarantee that the mean value of T (t) is T . In this case the mean value of η̇
is zero4:

〈η̇〉 = ν

(
〈T (t)〉
T
− 1

)
= 0 (4.21)

and thus 〈T (t)〉 = T .
But this is not yet the solution of the problem. Eq. 4.21 only proves that

the first momentum of the temperature distribution out of a Nosé-Hoover
dynamics equals the theoretical one, but nothing more is said about all the
others. To prove that a Nosé-Hoover dynamics reproduces the Boltzmann

The differential dH is:

dH
dt
dt =

d

dt
(U + Tη2 + 2ν

∫ t

0

νdx)dt = (
dU

dt
+ 2T η̇η + 2νη)dt

and the condition dH = 0 imposes that:

dU

dt
dt = −2T η̇ηdt− 2νηdt

which can be integrated to give:

W +Q = T (η2(t2)− η2(t1)) + 2ν
∫ t2

t1

νdv

4The mean value of the derivative of a quantity η(t) which remains bounded is always
zero. This can be readily seen form the definition of the mean value of η̇:

〈η̇〉 = lim
t→∞

1
t

∫ t

0

η̇ = lim
t→∞

1
t
(η(t)− η0) = 0
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distribution, more sophisticated tools must be used. The dynamics of Eq.
4.18 leads to a distribution ρ in the phase space which is a solution of the
Liouville equation:

∂ρ

∂t
= −(∇ · ẋ)ρ (4.22)

where in this extended phase space:

 ∇· =
∑ ∂

∂pi
+

∂

∂qi
+

∂

∂η
ẋ = (ṗ1, · · · , ṗN , q̇1, · · · , q̇N , η̇)

(4.23)

In the steady-state case, which is the state in which the system is at the
statistical equilibrium, the Liouville equation for the Nosé-Hoover equations
can be written as:

ν

[
T (t)

T
− 1

]
∂ρ

∂η
+ (−dNνη)ρ+

N∑
i=1

[
−∂V
∂qi
− νηpi

]
∂ρ

∂pi
+
pi
m

∂ρ

∂qi
= 0

(4.24)

which is readily solved by the canonical distribution function in the extended
phase space:

ρ(q̃, p̃, η) = const exp

(
− 1

KT

[
N∑
i=1

p2
i

2mi

+ V +
d

2
NKTη2

])
. (4.25)

The solution Eq. 4.25 of the Liouville equation in Eq. 4.24 proves that
a Nosé-Hoover dynamics may lead to a sampling of the phase space which is
the Boltzmann distribution in the (q̃, p̃) variables.

So far it is has been proved that a Nosé-Hoover trajectory satisfies the
necessary conditions to reproduce a canonical distribution in the phase space.
But these conditions are not sufficient yet, because nothing has been said
about ergodicity. There are no analytical tools by means of which is it
possible to prove that a dynamics whatsoever is ergodic. The ergodicity of
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Figure 4.1: (a) Hamiltonian orbit for a harmonic oscillator. The abscissa is
q and the ordinate is p. (b) Long time qp trajectory for the Nosé dynamics
with q = 1, p = 1, s = 1, ps = 0 and Q = 1. (c) Same as (b) with Q = 0.1.
(d) Long time qp trajectory for the Nosé-Hoover dynamics with initial values
q = 1, p = 1, η = 0 and ν = 1. (e) Same as (d) with ν = 0.1.

a Nosé-Hoover dynamics depends essentially on the potential V and on the
free parameter ν .

A situation in which the potential plays a central role in the non-ergodicity
of the dynamics, is represented in Fig. 4.1, where the Nosé and the Nosé-
Hoover dynamics of a one dimensional harmonic oscillator are depicted in
the pq phase space. In this simple case ρ(p, q) is Gaussian both in p and in q.
The origin should thus be the point around which the probability of findig
the system is at the biggest. This is not the case: independent of the value
of Q and ν both the Nosé and the Nosé-Hoover dynamics fails to sample
correctly the phase space. In this simple case the system remains confined in
a small region containing the initial conditions and the system is not ergodic
at all. This pathological behavior is typical of situations where the potential
V is harmonic. The system is in this case very little mixing, and cannot
forget its initial conditions, whatever the value of ν is.

The influence of ν on the ergodicity of the dynamics is more delicate.
There are values of ν for which a Nosé-Hoover dynamics is trivially non-
ergodic. If ν is given a value close to zero, the term νηpi can only weakly
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influence the system, or it even disappears. Therefore the Nosé-Hoover equa-
tions of motion become the Hamiltonian ones, the system remains close to the
manifold of constant energy, and ergodicity is not realized. In the case where
ν is given a very large value, η oscillates very fast, because its time derivative
is very large. The system of the (q̃, p̃) has a frequency much smaller than the
frequency of η, and cannot react in time to the very fast change of η. The
original system can therefore only follow the mean value of η which is zero,
and once more the Nosé-Hoover equations of motion become the Hamilto-
nian ones again. In these two limiting cases the two degrees of freedom η and
(q̃, p̃) split and do not interact with each other. In the language of mechanics
the degrees of freedom of the system are said to be separable. Separability is
a very nice working condition if one aims to find the analytical solution to
given equations of motion, but in the case of the Nosé-Hoover dynamics it is
the condition under which the system is not ergodic.

The question how to find the best value of ν in practical applications is
discussed in the next section.

4.5 Optimizing the mass of the

Nosé-Hoover thermostat

In the Nosé-Hoover equations of motion there is always a Toda-demon [97]
hidden in the dynamics, which may strongly hinder the system to realize
ergodicity over a wide range of ν values. The value of ν at which the influ-
ence of the demon is at the smallest is, in systems with periodic boundary
conditions, the Einstein frequency we [18]. The Einstein frequency we is the
mean frequency with which an atom of the system oscillates as it were alone
under the influence of the mean force of the other atoms. In this model the
equation of motion of a single atom is:

ẍ = −ω2
Ex (4.26)

where x is the vector of the coordinates. A straightforward integration of
Eq. 4.26 gives as solution:

x(t) = a sin(ωEt) + b cos(ωEt) (4.27)
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where a and b are two vectors depending on the initial conditions. The mean
values of ẋ · ẋ and ẍ · ẍ from Eq. 4.27 are:

〈ẋ2〉 = (a2 + b2)ω2
E

〈ẍ2〉 = (a2 + b2)ω4
E

(4.28)

From the theorem of equipartition of the energy the mean value of the
velocity is:

1

2
m〈ẋ2〉 =

f

2
KT (4.29)

where f is the number of the spatial dimensions, m is the mass of the atom,
K is the Boltzmann constant and T is the temperature. From Eq. 4.28 and
Eq. 4.29 the Einstein frequency is found to be:

ω2
E =

〈F2〉
fKT

(4.30)

where 〈F2〉 = m2(a2 + b2)ω4
E is the square of the mean force acting on an

atom.

4.6 Free energy calculation

In this section some methods are presented for computing the free energy of
a system via molecular dynamics simulations.

Free energy differences, like all the other thermodynamic quantities, can
be defined only along a reversible transformation. In molecular dynamics
a transformation is realized by time-varying some parameters of the sys-
tem, and the reversibility can be realized under quasi-static working condi-
tions. Typical examples of transformations are dynamics with time varying
boundary conditions or time varying potentials. Generally speaking, in a
transformation the Hamiltonian H(t) of the system contains an explicit time
dependence, and varies from the value H0 at time t0 to the value H1 = H(t1)
at time t1. The conventional description of such a process uses a time de-
pendent coupling parameter λ(t), which varies from 0 at t0 to 1 at time t1
[61]. The Hamiltonian H(t) between t0 and t1 is formally decomposed as:
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H(t) = (1− λ(t))H0 + λ(t)H1 (4.31)

If λ varies between t0 and t1 sufficiently smooth and slow compared to the
characteristic time of the system, the dynamics of the system is quasi-static,
and a reversible transformation is realized.

4.6.1 Free energy via Nosé-Hoover dynamics .

Let us consider a Nosé-Hoover dynamics where the potential depends explic-
itly on time. In contrast to the preceding sections we do not consider a single
trajectory in phase space but an ensemble of trajectories. An ensemble of
trajectories is a set of independent Nosé-Hoover dynamics all with different
initial conditions. The density of trajectories ρ(q̃, p̃, t) in phase space gives
the probability of finding a system in a neighborhood of point (q̃, p̃) at the
time t, and when the system is not at equilibrium, i.e. when it undergoes a
transformation, ρ(q̃, p̃, t) depends explicitly on time .

In a system at thermodynamic equilibrium the entropy is defined as:

S = −K
∫

log(ρ(q̃, p̃))ρ(q̃, p̃)dq̃dp̃ (4.32)

where K is the Boltzmann constant and ρ(q̃, p̃) does not depend on time.

On a transformation we can define formally a quantity S resembling some-
how an “entropy” like [19, 41, 2, 1, 42]:

S(t) = −K
∫
ρ(q̃, p̃, t) log(ρ(q̃, p̃, t))dq̃dp̃ (4.33)

The quantity S(t) has in general nothing to do with the thermodynamic
entropy of Eq. 4.32: the entropy of a system is a state function intrinsically
defined under equilibrium conditions. Nonetheless, on a quasi-static trans-
formation S(t) of Eq. 4.33 can become a good approximation of the punctual
value of the entropy S at time t in Eq. 4.32.

The time derivate of S is:
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Ṡ = −K
∫

∂

∂t
ρ(q̃, p̃, t) log(ρ(q̃, p̃, t))dq̃dp̃ = −K

∫
(1 + log ρ)

∂ρ

∂t
dq̃dp̃

(4.34)

the normalization condition on ρ:

1 =

∫
ρ(q̃, p̃, t)dq̃dp̃ → 0 =

∫
∂ρ

∂t
dq̃dp̃ (4.35)

and the Liouville theorem applied to Eq. 4.34 give:

Ṡ = −K
∫

log ρ
∂ρ

∂t
dq̃dp̃ = K

∫
log(ρ)∇ · (ρũ)dq̃dp̃ (4.36)

where ũ = dx̃/dt and x̃ = (q̃, p̃). Integrating by parts two times5, the time
derivative of S(t) becomes:

Ṡ = −K
∫
ũ · ∇ρ dq̃dp̃ = K

∫
ρ∇ · ũ dq̃dp̃ (4.37)

5

The identity:

∇ · (log(ρ)ρũ) = log(ρ)∇ · ρũ+ ũ · ∇ρ

can be integrated over a finite closed volume V to give, making use of Stokes’s theorem:

∫
S

ρ log(ρ)ũ · ñ ds =
∫
V

log(ρ)∇ · ρũ dv +
∫
V

ũ · ∇ρ dv.

where S is the surface of V and ñ is the outer normal. Because of the normalization
condition on ρ, when V goes to infinity ρ goes to zero on the surface. The integral over S
disappears, and we obtain the final formula:

∫
log(ρ)∇ · ρũ dv = −

∫
ũ · ∇ρ dv.

where the integration is now performed on the entire phase space.
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Figure 4.2: Sketch of the procedure to estimate the time derivative of the
entropy via Nosé-Hoover dynamics. The thick line represents a Nosé-Hoover
equilibrium dynamics. The points (q̃, p̃)1, · · · , (q̃, p̃)M are the initial condi-
tions of a new Nosé-Hoover dynamics, represented by the dashed lines, where
at the beginning the parameter λ of Eq. 4.31 takes the value 0. On the dashed
lines λ must change sufficiently smooth and slow. The new dynamics ends
when λ reaches 1.

and using Eq. 4.18 on page 75, we obtain finally:

Ṡ = −dNKν
∫
η ρ(q̃, p̃, t) dq̃dp̃ = −dNK〈η〉ens (4.38)

where the mean value 〈η〉ens is an ensemble average, i.e. Eq. 4.38 can
give the value of Ṡ at time t if the value of η at time t can be averaged
over the entire phase space. The procedure to estimate the time derivative
of the entropy in a molecular dynamics simulation can then be summarized
as follow (see Fig. 4.2):

• The first point of every thermodynamic transformation must be at
equilibrium. Therefore a set M of points (q̃, p̃, η)i, i = 1,M is sampled
out of a equilibrium Nosé-Hoover dynamics where λ = 0.

• The M points are used as initial conditions of M new independent
Nosé-Hoover dynamics. The Hamiltonian of the system changes quasi-
statically during the motion. The M trajectories of ηi(t) are collected.
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At every time t the positions of the ηi(t) are distributed in the phase
space according to the solution ρ(q̃, p̃, t) of the time dependent Liouville
equation.

• An approximation of Eq. 4.38 on the page before can be given as:

Ṡ(t) ≈ Ṡ(t) ≈ dNK
1

M

M∑
i=1

ηi(t) (4.39)

and Ṡ can be integrated in time to give the free energy 6:

F = 〈U〉 − TS (4.42)

where U is the mean value of the internal energy.

4.6.2 Dynamics coupling-parameter methods

The free energy of a system whose Hamiltonian is time-dependent like in Eq.
4.31, can be written as:

6The numerical integration of Eq. 4.39 may give a big numerical error if made on the
ηi(t) after the dynamics. It is much better to introduce an additional degree of freedom
ξ which slightly modifies the Nosé-Hoover equations of motion as follows:



q̇i =
pi
mi

ṗi = −∂V
∂qi
− νηpi

η̇ = ν

[
T (t)
T
− 1
]

ξ̇ = νη

(4.40)

The entropy can now be immediately expressed as the mean value of ξ:

S(t) ≈ S(t) ≈ dNK 1
M

M∑
i=1

ξi(t) (4.41)

The advantage of such an approach is that η is integrated using the same numerical
scheme implemented to solve the equations of motion, reducing considerably the numerical
errors on S.
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F = −KT log

(∫
exp

(
− 1

KT
[(1− λ)H0 + λH1]

)
dq̃dp̃

)
(4.43)

where the integration in Eq. 4.43 is performed over the entire phase space
at a given fixed time, i.e. for a given value of λ. Formally Eq. 4.43 can be
derived with respect to time to give:

dF

dt
=

∫
(H1 −H0) exp

(
−H(t)

KT

)
dλ

dt
dq̃dp̃∫

exp

(
−H(t)

KT

)
dq̃dp̃

= 〈(H1 −H0)〉λ
dλ

dt
(4.44)

where 〈〉λ means a mean value for a given fixed value of λ. Eq. 4.44 can be
time-integrated to give the final formula:

F (t)− F (0) =

∫ t

0

〈H1 −H0〉λ
dλ

dτ
dτ. (4.45)

Often it is not possible to separate in a simple way the time-dependent
contribution H1 in H(t) like in Eq. 4.31 on page 81, and it is only possible
to calculate numerically the value of the Hamiltonian H(q̃, p̃, λ) for a given
parameter λ. The derivative of the free energy with respect to λ is now more
concisely written as:

dF

dλ
=

∫
∂H

∂λ
exp

(
−H(λ)

KT

)
dq̃dp̃∫

exp

(
−H(λ)

KT

)
dq̃dp̃

= 〈∂H
∂λ
〉λ (4.46)

and can be formally integrated to give:

F (λ)− F (0) =

∫ λ

0

〈∂H
∂λ′
〉λ′dλ′. (4.47)

Free energy differences by means of a dynamic coupling-parameter method
may be calculated via a Nosé-Hoover dynamics as follows:
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• A value of λ = λ̂ is chosen.

• A set M of points (q̃, p̃)i, i = 1,M is sampled out of a equilibrium
Nosé-Hoover dynamics at λ̂.

• For each of the (q̃, p̃)i λ is varied in a neighborhood of λ̂, and ∂H
∂λ̂

(q̃, p̃i, λ̂)

is estimated.

• Eq. 4.46 may now be computed like:

dF

dλ
|λ̂ =

1

M

M∑
i=1

∂H

∂λ̂
(q̃, p̃i, λ̂)) (4.48)

Eq. 4.48 can now be numerically integrated on an interval of interest to
give the free energy of Eq. 4.47.

4.6.3 Umbrella sampling

Sometimes it may be difficult to calculate even numerically the derivative of
the Hamiltonian in Eq. 4.46. The umbrella sampling is a numerically cheaper
method, which can be used alternatively to a dynamics coupling parameter
method [6].

The definition of the free energy for a given value λb of λ:

A(λb) = −KT log(

∫
exp

(
− 1

KT
H(λb)

)
dq̃dp̃) (4.49)

can be identically written as:

A(λb)

−KT
= log


∫

exp(− 1

KT
(

∆H︷ ︸︸ ︷
H(λb)−H(λa) +H(λa)))dq̃dp̃∫

exp(− 1

KT
H(λa))dq̃dp̃∫

exp(− 1

KT
H(λa))dq̃dp̃

) (4.50)
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where λa is a different value of λ, and ∆H = H(λb)−H(λa). Eq. 4.50 is:

A(λb)

−KT
= log

〈exp(− 1

KT
∆H)〉λa︷ ︸︸ ︷

∫
exp(− 1

KT
∆H) exp(− 1

KT
H(λa))dq̃dp̃∫

exp(− 1

KT
H(λa))dq̃dp̃


+ log

(∫
exp(− 1

KT
H(λa))dq̃dp̃

)
︸ ︷︷ ︸

A(λa)/(−KT )

(4.51)

and gives the final formula:

A(λb)− A(λa) = −KT log(〈exp− 1

KT
∆H〉λa) (4.52)

Eq. 4.52 might seem to be a fantastic formula for computing free energy
differences. The mean value of the energy difference ∆H = H(λb) −H(λa)
computed on the canonical ensemble for λ = λa, gives the free energy differ-
ence of two states of the system for whatsoever given values λb and λa of λ.
Unfortunately Eq. 4.52 numerically does not work when the difference of λb
and λa is too large. In this case the energy difference ∆H might be so large
that the zones of the phase space (q̃, p̃) which give the biggest contribution
to the term exp(−H(λa)/KT ) may only slightly overlap, or even be disjoint,
from those where exp(−∆H/KT ) is not zero, and the integral of Eq. 4.52
would be underestimated. The umbrella sampling works fine only if the en-
ergy difference ∆H relative to the variation of λ is small. Nevertheless, using
a step-by-step procedure, it is possible to compute energy differences even
for values λa and λb of λ corresponding to very different states of the system.
The step-by-step procedure may be as follows:

• The interval [λa, λb] is divided into N sub intervals [λi, λi+1], where:

λi=1 = λa λi=N = λb λi〈λi+1 (4.53)
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• The free energy difference ∆Ai+1,i = A(λi+1)−A(λi) is computed using
the umbrella sampling of Eq. 4.52.

• The sum of all the ∆Ai+1,i gives the free energy difference A(λb)−A(λb):

A(λb)− A(λa) =
N∑
i=2

∆Ai+1,i (4.54)

4.7 Numerical methods

The solution of the Hamiltonian and of the Nosé-Hoover equations of mo-
tion for given initial conditions can be obtained numerically using standard
methods for solution of ordinary differential equations [6]. Given the posi-
tion (q̃(t), p̃(t)) of the system in the phase space at a certain time t, it is
attempted to obtain the position (q̃(t+ δt), p̃(t+ δ)) at a later time t+ δt to
a sufficient degree of accuracy:

q̃(t+ δt) = Γq(q̃(t), p̃(t))
p̃(t+ δt) = Γp(q̃(t), p̃(t))

(4.55)

where Γq nd Γp are the discrete representations of the evolutor in the phase
space and depend on the particular choice of the algorithm. The choice of
δt, which is called the time step of the simulation, will depend somewhat on
the method of solution, but is typically much smaller than the typical time
of the system. There are many possible algorithms which could be used for
solving the Hamiltonian and the Nosé-Hoover equations of motion. A list
of the features a successful simulation algorithm should possess could be as
follows:

(a) It should be fast.

(b) It should permit the use of a long time step δt.

(c) It should approximate the classical trajectory as close as possible.

(d) It should satisfy the known conservation laws for energy.
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Point (a) is not so important. In a typical simulation of condensed matter
the time spent for the calculation of the atomic forces is much bigger than
the time used to integrate the equations of motion.

Point (b) is of crucial importance. The bigger δt is, the longer the tra-
jectory can be followed and the more accurate the calculation of all the
observables is. Obviously δt cannot be increased without a loss in accuracy
at reproducing the classical trajectory.

Point (c) is very delicate and contains a request which in principle cannot
be satisfied. Under very general assumptions on the atomic forces two tra-
jectories of the same classical system, whose initial conditions are very close
to each other, diverge exponentially with time. In the same way any very
little perturbation, even associated with the tiny error due to the finite arith-
metic, will let any computer-generated trajectory diverge from the classical
one, even if they have the same initial condition. No integration algorithm
will provide an exact solution for a long time.

But it is not needed to reproduce the classical trajectory over an infinite
time. In doing molecular dynamics simulations we are interested in calculat-
ing mean values of observables on statistical ensembles. These mean values
are computed by averaging dynamical quantities over a trajectory which es-
sentially must only reproduce the statistics of interest. If one is interested
in computing averages in the microcanonical ensemble, the first requirement
which must be fulfilled is that the trajectory of system remains on the man-
ifold of constant energy, which is the requirement of point (d). Even for the
Nosé-Hoover dynamics the most important requirement which must be ful-
filled is that the energy of Eq. 4.20 on page 75 is conserved. In this case all
the points of the computer generated dynamics belong generally to different
exact Nosé-Hoover dynamics, because the manifold H = const contains all
the possible Nosé-Hoover trajectories. Therefore if our algorithm satisfies
the condition of (d), but fails to reproduce a single classical trajectory, the
statistic of the dynamic will be the right one (see Fig. 4.3).

The interaction potential and the model system in which the simulations
have been performed is contained in the next chapter.



90 CHAPTER 4. EQUILIBRIUM MOLECULAR DYNAMICS

H=const

e
c d

a b

Figure 4.3: Nosé-Hoover dynamics on the manifold H = const of Eq. 4.20.
The classical trajectory (a) and the computer-generated (b) have the same
initial condition, and diverge for long time. If the trajectory (b) remains on
the manifold, it will meet other Nosé-Hoover dynamics, different from the
initial one ((c) (d) and (e) in the figure), and the statistics of the system will
nonetheless be the canonical one.



Chapter 5

INTERACTION POTENTIAL
AND MODEL SYSTEM

In this chapter the model system of the simulations which are discussed in
the next chapters is presented. In the first part the potential used in the
numerical calculations is defined. In the second part it will be discussed how
the parameters of the potential are tuned for the atomic system obtained by
decorating the Tübingen triangle tiling.

5.1 Interaction potential

In a system containing N atoms the potential energy V can be divided into
terms depending on the coordinates of individual atoms, pairs, triplets, etc.:

V =
∑
i

v1(qi) +
∑
i

∑
j>i

v2(qi, qj) +
∑
i

∑
j>i

∑
k>j

v3(qi, qj, qk) + .... (5.1)

where qi is the coordinate of the atom i. The potential used in our simulations
is the Lennard-Jones potential (LJ). The LJ potential contains only the
pair potential terms, which depend on the magnitude of the pair separation
|ri− rj| = rij. Even if the LJ potential was developed for describing crystals
of noble gases [8], it is widely used also in molecular dynamics simulations
of condensed matter. The analytical form of the LJ potential VLJ :

VLJ = ε[(
σ

rij
)12 − 2(

σ

rij
)6] (5.2)
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Figure 5.1: Lennard-Jones potential for ε = σ = 1.

depends on two parameters ε and σ, which give, respectively, the depth and
the position of the minimum of the potential energy (see Fig. 5.1).

The LJ potential is not a long-range potential. The interaction between
atoms at a distance bigger than 3σ is almost zero. Thus, in computing
the potential energy and forces, only pairs are considered whose distance is
smaller than a cut-off radius rc, which is normally set to 2.5σ − 3.0σ. This
procedure reduces the number of interactions to be computed and speeds up
significantly the forces and potential energy calculation.

The truncation of the potential at a cut-off distance can introduce some
difficulties in the calculation of the potential energy and of the forces. The
potential energy and the force on a particle, which leaves or enters the cut-off
interaction sphere of another, suffer a discontinuity. The discontinuities of
the potential energy and of the force are due respectively to the discontinuity
of the values and of the first derivative of the potential at rc. Both these
problems can be avoided by adding a small linear term and a constant one
to the potential, whose analytical form is modified as follows [6]:

V̂LJ =

VLJ(rij)− vc − (rij − rc)
(
dVLJ(rij)

drij

)
rij=rc

rij ≤ rc

0 rij > rc

(5.3)
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Interaction A-A A-B B-B
σ 1.1755 1.0 0.6180
ε 1.0 2.0 1.0

Table 5.1: Values of σ and ε for the system obtained by decorating the
Tübingen triangle system.

5.2 Model system

All the simulations whose results are contained in the next chapters have
been performed in the system obtained by decorating the Tübingen triangle
tiling (see Section 2.5.2 on page 39). The decoration is made with two atom
types. The big ones (atoms A) are placed on the vertices of the tiling, and the
small ones (atoms B) at the center of the isosceles triangles. The potential
of the system is the sum of three terms:

VLJ = VAA + VAB + VBB (5.4)

accounting for the interaction of the atoms of the same kind (VAA, VAB),
and of different kind (VAB). To avoid that an atom A could change its
place with one of type B, the minimum potential energy ε is set to 1 for the
interaction between atoms of the same kind, and to 2 for atoms of different
kind. The value of σ is set to the geometric distance of neighboring atoms
in the decoration (see values reported in Table 5.1).

The atomic system which is obtained with such a choice of the potential
parameters has some mechanical properties, which can be qualitatively easily
understood.

In the decoration of the tiling there are clusters of one atom A (the big
one) surrounded by two concentric rings of ten atoms. The inner ring is
of atoms of type B, and the outer of atoms of type A (see Fig. 5.2). A
cluster is a highly symmetric structure and its toughness may be very high.
A fracture propagating in such a material is expected to move between the
clusters instead of trying to break one of them.

The cluster centers are situated on five families of parallel lines, mutually
rotated by 360 with a large and small separation within each family, arranged
in a Fibonacci sequence [77].
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Figure 5.2: Clusters formed by a big atom (in the center) surrounded by ten
little ones.
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Line 1

Line 2
Line 4
Line 3

Figure 5.3: The four lines on which the surface energies have been computed

In the tiling there are other four families of parallel lines which are im-
portant for the scopes of this work (see Fig. (5.3)).

Line 1 The lines 1 connect the centers of the clusters, and the distances be-
tween two consecutive lines form a Fibonacci sequence.

Line 2 The line 2 is between two lines 1, which lie at the small separation of
the Fibonacci sequence.

Line 3 The line 3 is between two lines 1, which lie at the big separation of the
Fibonacci sequence. On line 3 there is a high concentration of partially
broken clusters.

Line 4 The line 4, like line 3, is between two lines 1, which lie at the big
separation of the Fibonacci sequence. Contrary to line 3, on line 4
there is a low concentration of partially broken clusters.

Preferred cleavage planes, the “easy lines” for fracture, are the lines 2,3
and 4, because the fracture can propagate along this direction without break-
ing any cluster. The surface energy is not the same for each of these lines.



96 CHAPTER 5. INTERACTION POTENTIAL AND MODEL SYSTEM

The lines possessing the lowest surface energy are those in between the clus-
ters separated by the biggest distance (see Fig. 5.3) [77].

Furthermore these lines have the lowest “unstable stacking fault energy”,
which is the increase when the two half are shifted relative to each other,
and therefore these directions are preferred for dislocation emission.

The next chapter is divided into two parts. The first part describes the
procedure used to prepare the initial condition of the crack propagation dy-
namics. The second part presents an original model for crack propagation
with temperature.



Chapter 6

MOLECULAR DYNAMICS OF
FRACTURE

In this chapter the molecular dynamics model of crack propagation in the
presence of temperature is presented.

6.1 Definition of the system and preparation

of the simulation

The system in which all the simulations are performed is a rectangular con-
figuration of atoms, with a single edge crack inside loaded in Mode I by
applying a constant displacement on the long side of the rectangle.

Any molecular dynamics simulation needs an initial configuration for the
dynamics. In the molecular dynamics study of crack propagation a dynamics
starting from an initial configuration which is not carefully prepared, may
produce effects which are not due to the physics of crack propagation, but
are originating by the badly posed initial conditions.

The operating procedure to prepare a good initial condition for the molec-
ular dynamics of crack propagation at a given temperature T is divided in
two steps.

The first step consists in equilibrating the configuration with the edge
crack at the critical value of the displacement, using the following procedure:

1. A cut is made in a stress free rectangular configuration along a line 4
in the sample.
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2. The atoms of the configuration are linearly displaced in the direction
of the small side of the rectangle, so that the atoms lying on the long
side are moved to the critical displacement ∆c (see Fig. (6.1).(a)).

3. The configuration so obtained (see Fig. 6.1.(b)) is given as initial con-
dition of an equilibrium Nosé-Hoover dynamics, where the atoms of
two strips lying along the longest side of the rectangle are not allowed
to move. During the dynamics no crack propagation takes place and
the system relaxes towards a minimum of the free energy.

In the second step a configuration of a crack displaced at a value of ∆
beyond the critical one can be obtained with the following procedure:

4. The displacement field uc of the relaxed configuration at the critical
value of ∆c with respect to the stress free configuration is computed.

5. The initial condition for the dynamics of crack propagation is obtained
by applying a new displacement field u = (1 + ε)uc, where ε > 0, to
the initial stress free reference configuration with no cut.

6.2 Modeling crack propagation with temper-

ature

In reality it would be conceptually straightforward to prepare an experiment
of crack propagation in the presence of temperature. The sample is put in
a oven for a sufficiently long time to equilibrate at the given temperature,
afterwards a load beyond the critical one is applied to the system, and crack
propagation is observed. During crack propagation the temperature may
not be uniform in the sample. A crack may loose energy in form of shock
waves, which are typically emitted from the crack tip, and which may induce
a temperature gradient in the material when the crack reaches a steady state
of propagation. The velocity of these waves, and therefore the influence they
have on crack propagation by taking energy away from the crack tip, may
depend on the temperature of the system. In the material only the atoms
close to the surface have the possibility of exchanging a surplus of heat with
the surroundings, eventually coming from the crack tip in form of shock
waves, and thus only these atoms in the sample are at constant temperature.



6.2. MODELING CRACK PROPAGATION WITH TEMPERATURE 99

Figure 6.1: (a) A cut is made in a stress free configuration and the atoms of
the configuration are linearly displaced in the direction of the small side of the
rectangle. (b) Initial configuration for an equilibrium Nosé-Hoover dynamics
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In a molecular dynamics simulation such a realistic situation might be
modeled by dividing a rectangular sample into two zones, separated by a
ellipse whose center is in the center of the rectangle (see Fig(6.2)). The
atoms outside the ellipse, which are those close to the surface of the sample,
move according to the Nosé-Hoover dynamics. In the Nosé-Hoover dynamics,
which is a tool used to simulate a system at constant temperature, every
atom is coupled with the heath bath via a viscosity (see Section. 4.3 on
page 72), which can locally change the energy distribution, in order to drive
the system towards a state of globally constant temperature. Using a Nosé-
Hoover dynamics a temperature gradient is smoothed out as fast as possible.
This is exactly the right dynamics for the atoms close to the surface of the
sample, but is not appropriate for the atoms inside the ellipse, which move
according to the Hamilton dynamics to allow for a temperature gradient close
to the crack tip.

Chapter 7 is the first of the second part of this work, and it contains
important results of the equilibrium molecular dynamics at constant tem-
perature. The calculations of the surface energies, of the elastic constants
and of the critical displacements in the Tübingen binary system are the orig-
inal results exposed in the next chapter. These results have shown to be very
useful to understand qualitatively the influence of dislocation emission on
crack propagation observed during crack propagation at low loads and low
temperatures.
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Figure 6.2: Model for crack propagation in the presence of temperature. The
rectangular sample is divided into two zones separated by an ellipse. The
atoms outside the ellipse move according to the Nosé-Hoover dynamics. The
atoms inside are subjected to Newton’s law.
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Part II

NUMERICAL RESULTS

103





Chapter 7

RESULTS OF EQUILIBRIUM
MOLECULAR DYNAMICS

In this chapter the results of the equilibrium molecular dynamics simulations
performed on the Tübingen triangle lattice are presented.

The first part deals with the optimization of mass for the Nosé-Hoover
thermostat. The second part contains the results of free energy calculations.

7.1 Temperature dependence of the Nosé-Hoover

mass constant ν

In Section 4.5, the Eq. 4.30 on page 80 defines the value of the Einstein
frequency ωE for a system composed of a single atom type1:

ν2 = ω2
E =

< F2 >

fKT
(7.1)

which it is found to be the best value for the Nosé-Hoover mass ν. The
value of ν depends on the mean value < F2 > of the force F exerted on the
atom. The question is now on which ensemble the mean value of Eq. 4.30
should be computed. If one aims at measuring the temperature dependence
of ν the mean value of F should be computed in the canonical ensemble.

1If the system is composed of more atom types, the optimal value of ν is the mean
value of the Einstein frequency of every atom type.
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The problem is that there is so far no operatively working computational
tool for computing averages on the canonical ensemble. The Nosé-Hoover
dynamics is well suited for such a problem, provided that the right value of ν
has been found, which is exactly the problem we have to tackle. A solution
may be to use a Monte Carlo algorithm [82, 92, 73, 10] which is the standard
alternative way to the molecular dynamics for simulation in the canonical
ensemble. Another cheaper solution would be to compute the mean value
of Eq. 4.30 in the microcanonical ensemble. It can be demonstrated that
in the thermodynamic limit of infinite size, the mean value of an observable
< A >NV E in the microcanonical ensemble, and that < A >NV T in the
canonical, are equal [6]:

< A >NV E=< A >NV T (7.2)

provided that the mean values of the total energy H are equal:

< H >NV E=< H >NV T (7.3)

In the finite size case, which is the only case considered in the simulations,
Eq. 7.2 should be corrected with terms of order O(1/N), where N is the
number of degrees of freedom. With a number of particles of the order of
thousands these corrections are already negligible.

The iterative procedure which may be used for computing ν at a temper-
ature T0 looks as follows:

1) A set of initial positions is chosen.

2) The initial velocities for the Hamiltonian dynamics are sampled out of
the Maxwell distribution at the temperature T0.

3) The average values < H >NV E, < T >NV E and < F2 >NV E are com-
puted.

4) A test value of ν̂ is calculated as:

ν̂ =
< F2 >NV E

fKT
(7.4)
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5) A Nosé-Hoover dynamics is started at the temperature T0 using ν̂.

6) The equilibrium mean value < H >NV T is computed.

7) If | < H >NV T − < H >NV E | > ε, where ε is a chosen tolerance, the
method starts back at 2), with a different initial temperature.
If < V >NV T is smaller than < V >NV E, where V is the potential energy
of the system, the starting temperature must be bigger than T0, smaller
otherwise.

In practice in a condensed matter system below the melting temperature,
the differences of < H >NV T and < H >NV E of point (7) are normally not so
big, and the value of ν̂ of Eq. 7.4 already at the first step is a good working
value for ν.

The values of ν for a rectangular system with free boundaries of 4134
particles of a Tübingen triangle tiling have been measured in a range of
temperatures below the melting temperature TM , and are reported in Table
7.1. Values of ν for very small temperatures have been measured, too, even
if the Nosé-Hoover thermostat for temperatures close to zero may not work.
A system at a very low temperature moves around a local minimum of the
potential, and therefore the potential energy becomes a sum of harmonic
terms. Under such conditions even a very complicated chaotic potential
becomes very simple, and the system may not anymore be ergodic (cf. Section
4.4).

The fit of the values of ν against the function f(T ) = a
√
T gives for the

parameter a the value:

a = 22.2477± 0.1004 (±0.4512%) (7.5)

and the function:

ν(T ) = 22.2
√
T (7.6)

reproduces the measured values very well (see Fig. 7.1).
The systems where crack propagation is investigated have typically no

periodic boundary conditions, but nevertheless we seems still to be a good
value of ν at which ergodicity is realized at a reasonable computing time.



108 CHAPTER 7. EQUILIBRIUM RESULTS

T/TM ν
1.65e-10 1.078e-4

0.015 1.49
0.031 2.11
0.046 2.59
0.077 3.35
0.102 3.86
0.188 5.27
0.312 6.84
0.422 8.01
0.489 8.66
0.640 10.00
0.704 10.54
0.798 11.31
0.886 11.98
0.953 12.48

Table 7.1: Values of ν for the Tübingen triangle tiling at different tempera-
tures.
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Figure 7.1: Measured values of ν (points) with the function ν(T ) = 22.2
√

(T ),
for different temperatures.
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Figure 7.2: Distribution of the temperature T for a quasi-crystalline system
of 4134 Lennard-Jones particles at 30% of the melting temperature TM of
the system. The line represents the theoretical Maxwell distribution. The
points represent the distribution out of 100.000 time steps of a Nosé-Hoover
dynamics with ν = we.

This is mainly due to the fact that the value of ν is proportional to the
mean force exerted on one atom, and this force depends strongly on the local
arrangement of the atoms, weakly on the boundary conditions, and not at
all on the system size. Fig. 7.2 represents the theoretical distribution of
temperature and the distribution computed out of a Nosé-Hoover dynamics
for a quasi-crystalline system of 4134 Lennard-Jones particles for ν = we.
The agreement of the computed and the theoretical distribution is satisfac-
tory, and the system is ergodic already after some vibrational periods of the
frequency we.
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7.2 Critical displacement via free energy cal-

culations.

7.2.1 An empirical formulation of the Griffith crite-
rion.

The Griffith criterion of Section 3.3.4 can be reformulated in an empirical
way, which is much more adequate for a molecular dynamics simulation than
the definition by Eq. 3.32 on page 60.

Let us consider a stress free elastic body, which hereafter is called the
reference configuration, and let us suppose to apply a force or a displacement
field to the boundary or to a part of it. The direction of the force or displace-
ment field is that of the outer normal, the intensity is constant and depends
on a parameter ∆ (see Fig. 7.3(a)). The body increases its elastic energy
E(∆) for non zero values of ∆, and the energy increase depends quadratically
on ∆ in the linear elastic regime.

Let us now suppose to gently cut the reference configuration along a line
inside the body (see Fig. 7.3(b)) in such a way that the configuration with
the cut is again a stress free elastic body2. This cutting transformation is
not free, and some energy Ecut must be given to the system in order to form
a new free surface.

The value of ∆c at which E(∆) is equal to Ecut is called the critical value
for crack propagation of the parameter ∆. No crack propagates if the system
is partially cut along the line, and meanwhile strained or loaded at values
of ∆ smaller than ∆c, because in this case the elastic energy of the body is
smaller than the energy needed to form a new surface (see Fig. 7.4). When ∆
exceeds ∆c, the elastic energy stored in the system is bigger than the energy
needed to cut the body along the line. Therefore the system may find it
convenient to release all its elastic energy excess to the formation of a new
free surface, and to relax again to a stress free configuration which is a local
minimum of the elastic energy, eventually converting some residual energy
in elastic waves.

2If the cut is made too fast there can be some plastic effects coming about, like dislo-
cation formation and so on.
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∆

∆

(a) (b)

Figure 7.3: a) Part of the boundary (thick line) of a stress free body is loaded
with a constant displacement or a constant force, whose intensity depends on
a parameter ∆. The rest of the boundary is free. b) A cut is made inside the
body (dashed line).
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Figure 7.4: The critical value ∆c for crack propagation at which E(∆) is
equal to Ecut.

7.2.2 The thermodynamical meaning of the elastic en-
ergy

In the preceding section an empirical formulation of the Griffith criterion has
been given based on the comparison of elastic energies. The question now
arises, what the elastic energy is and what its thermodynamical meaning
is. Only by answering this question it is possible to bridge the gap between
the continuum theory of elasticity and the molecular dynamics modeling of
condensed matter at equilibrium.

The basic equations of the theory of elasticity do not require the exis-
tence of an elastic energy. The requirement that a body possesses a ther-
modynamically well defined macroscopic elastic energy is an additional very
strong hypothesis on the system, and the materials which have an elastic
energy are called superelastic [32]. In the following it is demonstrated that
an elastic body at constant temperature has an elastic energy, and that the
differences of elastic energy are the differences of free energy, even if in this
case the elastic energy is not the free energy [67].

The theory of elasticity considers only two kinds of forces: the long range
body forces and the short range contact forces. Mathematically the different
interaction scale is expressed requiring that the body forces are acting on
volumes, while the contact forces are acting on surfaces. Let f : R3 →
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R3, f = f(x),x ∈ R3 be the vector field of the body forces density. The force
F acting on a punctual mass δm at a point x is defined as:

F(x) = (δm)f(x) (7.7)

and for the density π of the surface forces a similar definition can be used.
Let V be the closed volume occupied by an elastic body possessing a mass

density ρ : V → R, ρ = ρ(x), and let u(t) : V ×R→ R3,u(t) = u(x, t),x ∈ V
be the displacement field expressing the deformation undergone by the body
at time t. During the deformation the external forces acting on the volume
(the body and the contact ones) are performing a work, the kinetic energy of
the body is changing and the system is exchanging heat with the surrounding:
the system is undergoing a thermodynamic transformation. We will express
the differential of some thermodynamic properties of interest only as the
differential of the time.3

The differential of the body forces f density is the 1-form 4:

df = fi(x)dxi. (7.10)

The 1-form df on each curve u(x, t), being x thought of as a fixed point
of the volume V , is expressed by:

df = fi(u(x, t))
∂ui
∂t
dt x ∈ V (7.11)

3This is always possible for every thermodynamic transformation. A thermodynamic
transformation can be thought of as a curve in a phase space, being the time the parameter
of the curve. The differential of a thermodynamic property is now involving only the
differential of the time. For example, be S = S(V, T ) the entropy of a system defined only
by its temperature and volume. The differential dS of S is the 1-form:

dS =
∂S

∂V
dV +

∂S

∂T
dT (7.8)

whose pull-back defined by a generic thermodynamic transformation γ(t) = (V (t), T (t))
is:

dS = (
∂S

∂V

dV

dt
+
∂S

∂T

dT

dt
)|γdt. (7.9)

4The convention of summation over repeated indexes is assumed.
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Under the hypothesis that the deformation is small, we can assume that
the force density and the mass density remain equal to their values on the
initial volume V . For this reason Eq. 7.11 can be rewritten as:

df = (fi(x)
∂ui
∂t

)dt x ∈ V (7.12)

and by integration on the volume V it can be obtained the differential dF of
the work of the body forces:

dF = (

∫
V

ρ(x)fi(x)
∂ui
∂t
dv) dt (7.13)

For the work dΠ of the contact forces a similar expression can be written,
where now the integration must be performed on the surface:

dΠ = (

∫
S

ρπi
∂ui
∂t
ds) dt (7.14)

dropping in Eq. 7.14 the explicit dependence of ρ and π on x. From π = σn,
being σ the stress tensor and n the outer normal to the surface, we can write:

dΠ = (

∫
S

σijnj
∂ui
∂t
ds) dt (7.15)

and using the symmetry of σ and the Stokes theorem:

dΠ = (

∫
S

njσji
∂ui
∂t
ds) dt = (

∫
V

div(σji
∂tui
∂t

)dv) dt (7.16)

Writing in indexes the integrand in Eq. 7.16:

div(σji∂tui) = ∂j(σji∂tui)

= (∂jσji)∂tui + σji∂t∂jui

= div(σ)∂tu +
1

2
(σji∂t∂jui + σi,j∂t∂iuj)

= div(σ)∂tu + σ∂tε
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where again use has been made of the symmetry of σ. The expression of dΠ
becomes then:

dΠ = (

∫
V

(div(σ)∂tu + σ∂tε)dv)dt (7.17)

Under the hypothesis that the deformation of the volume remains at any
time small, we can express as a first approximation the kinetic energy per
unit of volume as5:

ρT = ρ
1

2
(∂2
t ui)

2 (7.18)

and by integrating over the volume we obtain the differential of the kinetic
energy:

dWT = (

∫
V

dρT
dt

dv) dt = (

∫
V

ρ∂2
t ui∂tuidv) dt (7.19)

Let us consider now the first principle of thermodynamics. In the contin-
uum approximation the internal energy can be written as:

U =

∫
V

(T + V )dv (7.20)

where T is the kinetic energy per unit of volume, and V is the potential
energy per unit of volume. It is not possible to give an analytic expression
for V , but we assume this function to exist. The differential form of the first
principle is:

dU = δQ+ δW (7.21)

Expressing all the differential quantities involved as time differentials, we
can write Eq. 7.21 as:

5If the deformation were not small, the density would change as well.
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kinetic energy︷ ︸︸ ︷∫
V

(ρ∂2
t ui∂tuidv) dt+

potential energy︷ ︸︸ ︷∫
V

dV dv =

heat︷︸︸︷
δQ +

(

∫
V

(div(σ)∂tu + σ∂tε)dv)dt︸ ︷︷ ︸
work of the contact forces

+ (

∫
V

ρ(x)fi(x)
∂ui
∂t
dv)dt︸ ︷︷ ︸

work of the body forces

(7.22)

using the fundamental equation of the theory:

div(σ) + ρf = ρ
∂2u

∂t2
(7.23)

we arrive at the final formula:

(

∫
V

σ∂tεdv)dt =

∫
V

dV dv − δQ (7.24)

The differential of the 0-forms εij, which are the components of strain,
can be approximated as:

dεij = ∂kεijdxk + ∂tεijdt = ∂tεijdt (7.25)

because the terms ∂kεijdxk in the linear approximation are set to zero, and
Eq. 7.23 becomes then:

∫
V

σdεdv =

∫
V

dV dv − δQ (7.26)

Let us now distinguish two cases.
If the system performs an adiabatic transformation, δQ is zero, the 1-form∫

V
σdεdv is equal to an exact form, and therefore it is itself an exact form.
If the system performs an isothermal reversible transformation, δQ is an

exact differential equal to TdS where S is the entropy of the system. In this
case Eq. 7.26 can be written as follows:
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∫
V

σdεdv =

∫
V

dV dv − TdS (7.27)

In both cases there must exist a 0-form W defined on V so that :

∫
V

dW =

∫
V

σdεdv (7.28)

and for this last equation to hold it must be:

∂W

∂εij
= σij (7.29)

By direct integration of the forms defining the elastic energy, we can
identify W , apart from a gauge transformation, for an adiabatic and for an
isothermal transformation respectively as:

W = V (7.30)

and

∫
V

Wdv =

∫
V

V dv − TS (7.31)

The energy defined in Eq. 7.31 is not the free energy of the system. The
free energy is defined as:

F = U − TS (7.32)

where on the right hand side of Eq. 7.31 there is TS, but instead of the
internal energy there is only the potential one. Nevertheless the differences
of the elastic energy in Eq. 7.31 are the differences of the free energy if the
temperature is constant.
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7.2.3 Modeling the system

We want now to face the problem of how to compute the critical parameter
δc of Section 7.2.1 via a molecular dynamics simulation.

The system we consider is a rectangle, in which we want to compute
the critical parameter δ when the longest sides are displaced and a cut is
made along a straight line (see Fig. 7.6 on page 120). The dimension of the
longest side is a and of the smallest is b. The experiment we want to make
is depicted is Fig. 7.7. A stress free reference configuration undergoes two
thermodynamic transformations, on which the free energy difference between
the final configurations and the reference configuration is computed. On
one transformation the reference configuration is reversibly pulled by slowly
changing the value of δ. On the second transformation a reversible straight
cut is made inside the material.

The reference configuration Technically a stress free reference config-
uration at a given temperature is easily realized. It is sufficient to run a
Nosé-Hoover dynamics with the appropriate value of ν for a sufficiently long
time to obtain an equilibrated configuration, which is also stress free.

The pull transformation In a molecular dynamics simulation a pull
transformation is realized by moving at every time step two strips of atoms
lying on the longest sides (see Fig. 7.6) so as to displace at the end of the sim-
ulation the longest sides of the rectangle to the wanted amount. The atoms
on the strip are not allowed to move during the dynamics, and at every time
step the strip is moved by a quantity ∆(t) with respect to its initial position.
If ∆(t) reaches a maximum value ∆f which is some percentage of the small-
est side of the rectangle, the transformation is quasistatic, and reversibility
is realized. It should be emphasized that the atoms of the strips do not enter
the dynamics of the system, their presence only modifies the potential of the
nearby atoms. No dynamical quantity involves their positions, and therefore
their presence induces no temperature gradient in the system.

The cut transformation It is not easy to make a reversible cut in a
molecular dynamics simulation. The first very simple idea one could have
is to make a little cut in the system, to displace it till a crack starts to
propagate and cuts the material. Such a transformation is obviously not a
quasistatic one, and under such conditions no thermodynamic quantity can
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VBB

VAA
VAB

Figure 7.5: Interaction potentials in a cut experiment. The reference con-
figuration is divided in two zones, A and B. The interaction potentials are
VAA and VBB accounting for the interaction between particles belonging to the
same zone, and VAB for particles of different zones..

be computed. Another possibility would be to prepare a configuration with
the cut, to relax it, and to draw up the two lips of the crack as to restore
the original configuration. If the two parts are drawn up very slowly one
may expect to realize a reversible transformation. Unfortunately in practice
when the distance of the two free surfaces reaches a critical value, suddenly
the cut heals very fast. What is observed is essentially a fracture propagating
backwards instead of forwards. A good possibility to realize a reversible cut
is to add a time-varying term in the potential. The reference configuration is
divided in two zones, A and B, ideally divided by the cut line (Fig. 7.5). Each
interaction potential VAA and VBB for the particles belonging to the same
zone is the potential V of the system, and does not depend on time. The
interaction of the particles of different zones is modulated in time through
an explicit time dependence of the potential VAB(t). At the beginning of the
transformation the potential is equal to V and goes gradually to zero when
the time of the dynamics reaches to final time tend . The general form for
VAB(t) is:

VAB(t) = κ(t)V (7.33)

where κ(t) is a function sufficiently smooth and differentiable (see next Sec-
tions) defined as:



120 CHAPTER 7. EQUILIBRIUM RESULTS

cut

∆

∆

a

b

Figure 7.6: A rectangle in which the longest sides are displaced and a cut is
made along a straight line. The atoms in the black strip are kept fixed during
the molecular dynamics simulation.

κ(0) = 1

κ(t) < 1 0 < t < tend

κ(tend) = 0

(7.34)

7.2.4 Results via a Nosé-Hoover dynamics.

In this section we present the results of the pull and cut simulations performed
in a system of 3889 atoms out of a Tübingen triangle tiling at a temperature
T = 30%TM , where TM is the melting temperature of the system. The free
energy differences are computed using a Nosé-Hoover dynamics (see Section
4.6.1).

The following operating procedure has been implemented to compute free
energy differences. A stress free reference configuration has been taken as
initial condition of a Nosé-Hoover equilibrium dynamics. Every Neq time
steps, and for Ntot times6, the actual positions and velocities of the atoms

6Ntot is the M defined in Section 4.6.1
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Figure 7.7: Cut and pull experiment. A stress free reference configuration is
pulled and cut.
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are taken as initial condition of a Nosé-Hoover dynamics in which either VAB
changes as defined in Eq. 7.33 or the system is pulled. The transformation
takes Nprod time steps to reach the duration time tend. The transformation
velocity vprod is defined as:

vprod =
1

∆tNprod

(7.35)

where ∆t is the simulation time step. When the transformation has finished
the system is relaxed over an equilibrium Nosé-Hoover dynamics for further
Nrelax time steps. The Ntot values of η(t) are collected not only on the Nprod

steps, but for the entire ΞN = Neq +Nprod +Nrelax steps. The entropy differ-
ence ∆S per particle over the entire transformation can now be approximated
as (see Eq 4.38 on page 83 ):

∆S = S(t)− S(0) = −2Kν
1

Ntot

Ntot∑
i=1

∫ t

0

ηi (7.36)

and the entropy difference ∆S is expected to have the following behavior:

• It should be zero on the first Neq steps.

• It should change on the next Nprod steps.

• It should remain constant on the last Nrelax steps.

The physical meaning of the N can be summarized as follows:

• Neq is the frequency at which the initial conditions of the transforma-
tion dynamics are sampled out of the equilibrium Nosé-Hoover dynam-
ics. Neq should be given a not too small value if one wants to have
statistically uncorrelated initial configurations.

• Nprod is the crucial parameter tuning the transformation velocity. If
Nprod is given a too little value the dynamics may become too fast
loosing the quasistaticity and consequently the transformation is not
anymore reversible.
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• Nrelax is the number of relaxation time steps. Nrelax should be given
a large enough value to detect oscillation on ∆S which may be due to
non reversible effects occurring in the transformation.

• Ntot is the number of trajectories on which ∆S is computed, and the
larger Ntot the better is the statistics on ∆S.

The cut simulation

In the cut simulation the influence of the transformation velocity and of the
different expressions for the function κ have been investigated.

Linear A linear form of κ:

κ(t) = − t

Nprod

+ 1 t ∈ [0, Nprod] (7.37)

has been used in the simulations for different values of Nprod corresponding
to different transformation velocities. In Fig. 7.8 are shown the entropy
S, free energy A and potential energy V in a cut simulation for different
values of Neq,Nprod,Nrelax and Ntot. First of all it should be noticed that the
entropy is two order of magnitude smaller than the potential energy, and
therefore in a cut simulation the free energy is substantially the potential
energy. The entropy in Fig. 7.8(a), Fig. 7.8(c) and Fig. 7.8(e), has been
calculated for progressively decreasing values of the transformation velocity.
In Fig. 7.8(a), which is relative to a value vprod = 0.00142wE, where wE
is the Einstein frequency, the entropy starts to oscillate at the beginning
of the relaxation steps with an amplitude which is much bigger than the
statistical error. The entropy of Fig. 7.8(e) has been calculated on a process
three times slower than the slowest of Fig. 7.8(a), but nevertheless there
are residual oscillations in the relaxation regime. This oscillating behavior
indicates that the transformation is too fast and non reversible. The reason
of the nonreversibility lies not in the velocity of the cut process, but depends
on the analytical form of κ. For a linearly decreasing potential the cut
transformation is always non reversible, independently from its velocity.

Quadratic The quadratic form of κ:
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Figure 7.8: Entropy S, free energy A and potential energy V in a cut sim-
ulation for a linear decrease of κ and for different values of vprod and Ntot.
The x axis is in ΞN units.
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κ(t) =
1

N2
prod

t2 − 2

Nprod

t+ 1 t ∈ [0, Nprod] (7.38)

has been chosen to test the permanence of the oscillations detected in the
linear case.

Even if in the relaxation regime the oscillations of the entropy, calculated
at the highest velocity, are smaller (see Fig. 7.9.(a)), they are nevertheless
present, and the quadratic form of κ does not seem to eliminate the irre-
versible behavior.

A nine degree polynomial A polynomial of nine degree:

κ(t) = 1− τ 5(70τ 4 − 315τ 3 + 540τ 2 − 420τ + 126)

τ =
t

Nprod

t ∈ [0, Nprod]
(7.39)

already used in other similar free energy calculations [80], has given very
satisfactory results.

The entropy of Fig. 7.9.(c), which has been calculated at the same highest
velocity of Fig. 7.8.(a), has a much smoother behavior. The entropy increases
very mildly at the beginning of the transformation, and reaches its plateau
value already before the beginning of the relaxation phase.

The pull transformation.

Like for the cut case, also in the pull simulation the influence of the trans-
formation velocity and of different expressions of the function ∆ have been
investigated.

Linear A linear form for ∆ has been tested:

∆(t) =
t

Nprod

∆f (7.40)

for ∆f = 2.047%b, and where b is the longest side of the rectangle (see Fig.
7.6). At the very high velocity vprod = 0.00237wE the system shows already
a reversible behavior even for a linearly decreasing pulling function ∆(t) (see
Fig(7.10)).
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Figure 7.9: Entropy S, free energy A and potential energy V in a cut sim-
ulation for a parabolic ((a) and (b)) and a nine degree polynomial ((c) and
(d)) decrease of κ, and for different values of vprod and Ntot. The x axis is
in ΞN units.
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Figure 7.10: Entropy S, free energy A and potential energy V in a pull
simulation for a linear ((a) and (b)) and a nine degree polynomial pulling
function ∆ ((c) and (d)), and for different values of vprod and Ntot. The x
axis is in ΞN units.
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A nine degree polynomial The nine degree polynomial:

∆(t) = τ 5(70τ 4 − 315τ 3 + 540τ 2 − 420τ + 126)∆f

τ =
t

Nprod

t ∈ [0, Nprod]
(7.41)

used to pull the sample gives essentially the same results of the linear pulling
function (see Fig(7.10)). In the pull simulation the system shows a reversible
behavior already for very fast velocities and independently from the analyt-
ical form of ∆(t).

7.2.5 Results via an umbrella sampling.

In this section the results of the simulations performed in the same system
and temperature of Section 7.2.4 are presented. The free energy differences
are computed using an umbrella sampling.

The umbrella sampling method for computing free energy differences is
intrinsically different from a method based on a Nosé-Hoover dynamics. In
the umbrella sampling the system is always at equilibrium (cf Section 4.6.3).
There is neither production dynamics, nor a relaxation phase. The only free
variable is the number of points in which the variation domain of the ther-
modynamic parameter can be subdivided. Therefore there are no problems
due to the non reversibility of the process, but eventually only to a lack of
statistics if the discretization is too coarse grained.

The following operating procedure has been implemented to compute
free energy differences for both the cut and pull simulation. The variation
domain of the thermodynamic parameter is divided into N points. In the
cut simulation this is equivalent to choose N values for κ between 0 and 1:

0 ≤ κi ≤ 1 κi < κi+1 i = 1, · · · , N
κ1 = 0 κN = 1

(7.42)

and for ∆ in the pull:

0 ≤ ∆i ≤ 1 ∆i < ∆i+1 i = 1, · · · , N
∆1 = 0 ∆N = ∆f

(7.43)
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A stress free reference configuration has been taken as initial condition
of a Nosé-Hoover equilibrium dynamics, on which the thermodynamic pa-
rameter assumes the N values of Eq. 7.42 and Eq. 7.43. As soon as the
thermodynamic transformation has made the new step i, with 1 ≤ i ≤ N ,
the dynamics runs for Ntot = Nout+NfNprod time steps. The system is given
a sufficient number of Nout time steps to equilibrate. Then for Nprod times
and every Nf time steps the energy difference of Eq. 4.50 on page 86 is com-
puted on the actual values of positions and velocities by only giving the free
parameter the next (i + 1)th value. In the pull simulation this is equivalent
to calculate the energy difference on a equilibrated configuration of positions
and velocity at a displacement ∆i, with the configuration obtained by dis-
placing only the atoms of the strip to the next value of ∆i+1. The Nprod

energy differences ∆Hk are used to approximated the free energy difference
of Eq. 4.52:

∆Ai,i+1 = Ai+1 − Ai = −KT log(
1

Nprod

Nprod∑
k=1

exp(−1/KT∆Hk)) (7.44)

All the N − 1 contributions of Eq. 7.44 are summed up to give the free
energy difference on the entire transformation:

AN − A1 =
N−1∑
i=1

∆Ai,i+1 (7.45)

where AN is the free energy of the configuration cut, or displaced of ∆f ,
and A1 is the free energy of the stress free configuration.

The statistical meaning of N , Nout, Nf and Nprod can be summarized as
follows:

• The parameter N is the crucial parameter of the umbrella sampling.
If N is given a too large value, the energies ∆Hk may become too
high, and the free energy ∆Ai,i+1 may become underestimated (cf. Sec-
tion 4.6.3 on page 86).

• When the transformation enters the ith step the system should have
enough Nout time steps to equilibrate.
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• Nf is the frequency at which the energy difference ∆Hk is computed.
If Nf is too small the values of the ∆Hk may be too correlated.

• Nprod is the number of independent and uncorrelated energies ∆Hk.
The bigger Nprod, the better becomes the statistics on the free energy
difference of Eq. 7.44

Let us now analyze the numerical results of the umbrella sampling method.

The cut simulation In the cut simulation the free energy difference has
been found to be practically the same for two values N = 50 and N = 100
(see Fig. 7.11.(a)).

The pull simulation In the pull simulation the free energy difference has
been calculated using three values N = 50, N = 100 and N = 200. The
free energy in this case is affected by the number of the points in which the
thermodynamic free parameter is divided (see Fig. 7.11.(b)).

7.2.6 Comparison of the two methods.

The methods based on the Nosé-Hoover dynamics and on the umbrella sam-
pling for the calculation of the free energy of Section 7.2.4 and Section 7.2.5
give numerically equivalent results (see Fig. 7.12).

Computationally the Nosé-Hoover free energy calculation is much more
expensive than the umbrella method. In Table 7.2 the time for the pull and
cut simulations for the two different methods are reported. The umbrella
sampling for such calculations should be doubtless preferred to a Nosé-Hoover
method, which may nevertheless find a good and competitive applicability
in all the situations where one aims at computing the entropy on a trans-
formation where the temperature is a varying parameter. In such a case an
umbrella sampling method, which has been defined under the assumption
that the temperature is constant, cannot be applied, meanwhile in deriving
the expression of the entropy in the Nosé-Hoover method no restrictions on
the temperature have been made.
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and pull simulation (b) for different values of N . The axis in (a) is the
parameter κ. The axis in (b) is in units of 1/∆f .
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Figure 7.12: Free energy computed with the umbrella sampling and the Nosé-
Hoover dynamics in the pull (a) and cut (b) simulation. In (a) the x axis is
the κ function. The x axis in (b) is in units of 1/∆f .
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NH dynamics (hours) Umbrella (hours) NH/Umbrella
CUT 95.35 4.51 21.14
PULL 60.67 8.25 7.35

Table 7.2: Timing in hours of the pull and cut simulation for the two free
energy simulations performed with a Nosé-Hoover method and an umbrella
sampling.

7.3 Results at various temperatures

In this section we present the results of the simulations for the estimation
of the surface free energy, the pull energy and the elastic constants in a
binary system of 4134 atoms derived from a Tübingen triangle tiling. The
simulations have been performed at various temperatures below the melting
temperature TM of the system. All the free energies have been computed
using the umbrella sampling.

7.3.1 Surface energies

In two dimensions the surface energy γ of a line L inside a material is one
half7 the energy per unit length necessary to make a cut along L, and it can be
measured with a cut simulation. In a cut simulation the free energy difference
∆Acut of a system cut along L with respect to the reference configuration
can be measured. If l is the length of the line L the surface energy γ is:

γ =
1

2

∆Acut
l

. (7.46)

The dimensions of γ are those of a force, and γ is actually the force the
material offers when it is cut along L. The free energy difference ∆Acut can
be viewed as the work an external force Fcut has to perform on the system
to make the cut. If the material is homogeneous and the cut is straight
∆Acut depends linearly on the length of the cut. In this case the force Fcut

is constant, has the direction of the line but it opposes to the creation of a
free surface. The value of Fcut is then:

7One half because two free surfaces are formed in a cut, and each of them contributes
in equal part to the energy variation of the system.
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Fcut = −2γ (7.47)

which is the same force of Eq. 3.31 on page 60.
Four cut simulations have been performed in the quasicrystal along the

lines 1,2,3 and 4 of Fig. 5.3. The last three lines are easy lines for dislocation
emission, and the first is the line connecting the centers of the ten atoms
clusters. The values of γ per particle on the different lines and at various
temperatures are reported in Table 7.3 and in Fig. 7.13.

The surface energy on the line 1 connecting the clusters is the biggest. It
costs more energy to make a cut breaking the clusters than opening a surface
between them. The lowest surface energy is on the line 4, which is in the
middle of the biggest separation between lines of type 1, i.e. it costs the
lowest energy to open a surface remaining the farthest away from the dense
packed clusters.

On the same line a linear dependence of γ:

γ = α
T

TM
+ β (7.48)

has been fitted against the data of Table 7.3, giving a good agreement with
relative errors of at most 5%. The results of the fit are collected in Table 7.3.

The surface energy on the same line decreases with temperature, even
if the temperature dependence is not strong. The surface energy at the
highest temperature is always around 12% less than the energy at the lowest
temperature.

7.3.2 The elastic constants

In the linear theory of elasticity the density of energy in two dimensions per
unit of volume stored in a material is:

2W = (λ+ 2µ)

[(
∂u

∂x

)2

+

(
∂v

∂y

)2
]

+ µ

(
∂u

∂y
+
∂v

∂x

)2

+ 2λ

(
∂u

∂x

)(
∂v

∂y

)
(7.49)
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γ/10−4 line 1 line 2 line 3 line 4
15%TM 6.2447 6.0338 5.6838 5.1834
31%TM 6.0787 5.8804 5.5413 5.0319
47%TM 5.9647 5.7719 5.4470 4.9604
63%TM 5.8163 5.6409 5.2824 4.8134
78%TM 5.6556 5.4625 5.1230 4.6763
94%TM 5.4355 5.3557 4.9371 4.5781

α/10−5 -9.9907 -8.73159 -9.42215 -7.75369
β/10−4 6.41229 6.16842 5.85109 5.29795

Table 7.3: Surface energy γ per particle for various temperatures and on
different lines.

where u and v are respectively the x and y components of the displacement
field.

The elastic constants can be calculated using the analytical expression of
the elastic energy fitted against the free energy in a pull and in an expand
experiment.
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Figure 7.13: Surface energies on different lines versus T/TM .
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Pull experiment

The displacement components in a pull experiment, where the longest sides
of the rectangle in Fig. 7.6 are displaced by an amount ∆, read:

u = x
∆

b
v = 0

(7.50)

where b is the length of the shortest side of the rectangle. The density of Eq.
7.49 integrated over the volume V of the rectangle gives the elastic energy
E stored in the sample:

E =
1

2
(λ+ 2µ)(

∆

b
)2 V. (7.51)

In a pull experiment the free energy, whose differences are at constant
temperature the elastic energy of Eq. 7.51, can be measured as a function of
the displacement ∆.

In Fig. 7.14 is depicted the elastic energy E/V ∗ 106 per particle versus
∆/b. The elastic energy stored in the sample when it is pulled of the same
amount ∆/b decreases with increasing temperature. A material becomes
softer when its temperature is increased, therefore it must be more strained
to load the same elastic energy. A quadratic dependence of E on ∆/b has
not well fitted the experimental data. A third degree polynomial function:

E/V = α(
∆

b
)2 + β(

∆

b
)3 (7.52)

describes very well the elastic energy for the values of α and β reported in
Table 7.4. The value of the displacement ∆anela beyond which the quasicrys-
tal elastic energy has not any more the linearized form of Eq. 7.51 can be
found by imposing that:

E/V = α(
∆

b
)2 + β(

∆

b
)3 = α(

∆

b
)2

(
1 +

β

α

∆

b

)
≈ α(

∆

b
)2 (7.53)

which in terms of ∆anela means:



7.3. RESULTS AT VARIOUS TEMPERATURES 137

-1
0
1
2
3
4
5
6
7
8

-0.01 -0.005 0 0.005 0.01

T=0.05
T=0.10
T=0.15
T=0.25
T=0.30

(a)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-0.005 0 0.005

T=0.05
T=0.10
T=0.15
T=0.25
T=0.30

(b)

Figure 7.14: Pull (in (a)) and shear (in (b)) elastic energy per unit of volume
and per particle in unit of 10−6 versus ∆/b.
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α ∗ 102 ∆α ∗ 102 β ∗ 102 ∆β ∗ 102 ∆anela/b
15%TM 9.02415 0.0216 (0.2394%) -1.15558 0.0124 (1.078%) 0.007809
31%TM 8.08589 0.0124 (0.1534%) -0.92758 0.0071 (0.771%) 0.008717
47%TM 7.43432 0.0082 (0.1107%) -0.81061 0.0055 (0.682%) 0.009171
63%TM 7.12151 0.0121 (0.1706%) -0.83107 0.0090 (1.095%) 0.008569
78%TM 6.72678 0.0100 (0.1500%) -0.83568 0.0060 (0.726%) 0.0080494
94%TM 6.25072 0.2179 (0.3486%) -0.82345 0.0218 (2.653%) 0.007590

Table 7.4: Coefficients α and β with relative errors.

β

α

∆

b
≈ ε ε << 1. (7.54)

In Table 7.4 the values of ∆anela for various temperatures and for ε = 0.1
are reported. The quasicrystal enters the anelastic regime even for relatively
small values of the displacement ∆/b. The cubic term in the elastic energy
becomes important already when ∆ is around 1% of the dimension along
which the material is strained . It should be stressed that the material has
undergone no plastic deformation, for no dislocation has appeared somewhere
in the sample during the transformation.

The shear experiment

With a simple pull experiment it is possible to measure the sum of the elastic
constants λ and µ. A second deformation is needed in order to separate the
contributions of the two constants in the elastic energy. The value of µ can be
measured in a shear experiment, where the two longest sides of the rectangle
are shifted by the same amount ∆ with respect to each other (see Fig. 7.15).

The displacement field for this transformation reads:

u = 0

v =
2x

b
∆

(7.55)

where b is the shortest side of the rectangle8. The elastic energy per unit of
8It would be theoretically equivalent to keep one side fixed and to shift the other by

2∆. Numerically such a transformation might produce too high shears in the sample and
can easily induce dislocation emission.
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∆ ∆

Figure 7.15: In a shear transformation the two longest sides of the rectangle
are shifted by the same amount ∆ with respect to each other

volume depends only on the elastic constant µ:

E/V = 2µ

(
∆

b

)2

(7.56)

The elastic energy per unit of volume and per particle of Eq. 7.56 has
been measured as a function of ∆ at different temperatures, and is depicted
in Fig. 7.14(b). Once again the elastic constant µ decreases upon increasing
the temperature. The elastic energy has been fitted against the third degree
polynomial:

E/V = σ(
∆

b
)2 + ς(

∆

b
)3 (7.57)

and the values of the fit parameters with the relative errors are reported in
Table 7.5.

It is reasonable that the value of ∆anela, beyond which the anelastic con-
tribution to the elastic energy becomes important, is much bigger than in
the pull experiment. In a shear experiment the relative distance between the
atoms changes less with ∆ than when the sample is compressed or expanded
of the same amount. Therefore the system must be more sheared to enter
the same anelastic zone of the potential which accounts for the anelastic
contribution to the energy of Eq. 7.57.
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σ ∗ 102 ∆σ ∗ 102 ς ∗ 102 ∆ς ∗ 102 ∆anela/b
15%TM 2.32313 0.001803 (0.0776%) -3.81895 0.2203 (5.768%) 0.060831
31%TM 2.26713 0.002576 (0.1136%) -6.90823 0.3147 (4.555%) 0.032817
47%TM 2.21787 0.002039 (0.0919%) -5.65358 0.2491 (4.407%) 0.039229
63%TM 2.15920 0.001511 (0.0699%) -7.19595 0.1846 (2.565%) 0.030005
78%TM 1.93986 0.001257 (0.0648%) -5.89387 0.1540 (2.613%) 0.032913
94%TM 1.71668 0.006326 (0.3212%) -3.06499 0.1313 (4.282%) 0.006426

Table 7.5: Coefficients α and β with relative errors.

µ ∆µ λ ∆λ
15%TM 45.1730 0.035039 611.553 1.75
31%TM 44.0841 0.050090 540.749 1.06
47%TM 43.1266 0.039628 491.989 1.71
63%TM 41.9856 0.029361 469.938 2.99
78%TM 37.7205 0.024422 447.767 1.82
94%TM 33.3804 0.123009 419.416 2.44

Table 7.6: Elastic constants λ and µ at different temperatures.

The elastic constants

The values of the elastic constants λ and µ at different temperatures can be
easily calculated from the values of the coefficients α and σ in the Table 7.5
and Table 7.4, and are reported in Table 7.6.

A linear dependence of λ and µ versus T/TM (see Fig. 7.16) does not
fit the measured data. It should be necessary to thicken the measures of
the elastic constants versus the temperature to gain a more precise idea of
their analytical temperature dependence. A full extensive analysis of the
temperature dependence of the elastic constants is not the primary objective
of this work, and it might be the subject of a future work.

7.3.3 The critical displacement

The critical displacement ∆C is the value of ∆ at which the elastic energy of
Eq. 7.52 equals the energy necessary to cut the sample along a line:

E(∆C) = ∆Acut (7.58)
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Figure 7.16: Elastic constants µ and λ (in (a) and (b)) versus T/TM

where Acut is the free energy of Eq. 7.46 on page 133. The critical displace-
ment can be found by solving numerically the equation:

V

(
α

(
∆C

b

)3

+ β

(
∆C

b

)2
)

= 2γl (7.59)

where V is the volume of the sample, α and β are the coefficients of E in
Eq. 7.52 on page 136, γ is the surface energy and l is the length of the cut
(see Section 7.3.1 on page 133).

The Eq. 7.59 has been solved for the various temperatures at which the
surface energy and the coefficients α and β have been computed. The values
of ∆C/b for the lines 1,2,3 and 4 are reported in Table 7.7, and in Fig. 7.17
is depicted the critical displacement on the different lines as a function of
temperature.

A linear dependence of ∆C/b on the temperature:

∆C

b
= ς

T

TM
+ χ (7.60)
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has been fitted against the values reported in the table, and has given a
satisfactory accord within 5%. The values of ς and χ are reported in Table
7.7.

line 1 line 2 line 3 line 4
15%TM 0.021563 0.021111 0.020355 0.019256
31%TM 0.022138 0.021702 0.020946 0.019788
47%TM 0.022787 0.022344 0.021589 0.020434
63%TM 0.023371 0.022936 0.022038 0.020842
78%TM 0.024176 0.023649 0.022717 0.021474
94%TM 0.025150 0.024904 0.023614 0.022501

ς 0.0045043 0.0046442 0.0040332 0.0039663
χ 0.0207342 0.0202345 0.0196708 0.0185467

Table 7.7: Values of ∆C/b, ς and χ on different lines versus T/TM .

It is reasonable that the critical displacement increases with the increase
of temperature. A material at high temperature becomes softer, and a bigger
load is needed to store in the system the same amount of elastic energy (see
Section 7.3.2 on page 134). Conversely the surface energy does not depend
much on temperature, and therefore the sample has to be more loaded in
order to reach the same amount of elastic energy needed to form the cut.

7.3.4 Numerical check of the critical displacement

The critical displacement computed in the previous section has been numer-
ically checked on the system where it has been computed.

Two simulations of a long Nosé-Hoover dynamics at T = 15%TM have
been performed. In both simulations a crack has been put in the system
using the procedure of Section 6.1 on page 97. In the first simulation the
crack lies on the line 4 and the atoms on the longest side of the rectangular
sample have been displaced at the critical displacement on line 4. In the
second simulation the crack lies on line 1 and the atoms on the upper and
lower boundary have been displaced at the critical displacement of line 1.

In Fig. 7.18(a) the final configuration of the crack lying on line 4 shows
that the crack is in equilibrium. The crack does not propagate further, and
no dislocation has been emitted.
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In Fig. 7.18(b) the final configuration of the crack shows that also in
this case the crack is in equilibrium. The crack does not propagate further,
but from the crack tip a dislocation has been emitted, in accord with the
expectations of the linear theory of elasticity (see Section 8.2.2 on page 147).

The next chapter contains the results of the simulations of fracture prop-
agation at different temperatures performed in a sample of many atoms
(74210). For each temperature, crack propagation has been investigated
in detail at different loads. In Chapter 8 by means of numerical elastic esti-
mates based on the results of this chapter, for the first time an explanation of
the mechanisms of dislocation emission and crack propagation in the range
of low loads and low temperatures is being proposed.
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Figure 7.17: Values of ∆C/b on the different lines versus the temperature.
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(a)

(b)

Figure 7.18: (a) Crack at the critical displacement on line 4 (a) and on line
1 (b). In (a) the lines connecting the clusters in front of the crack tip are
intact, and therefore no dislocation has been emitted from the crack tip. In
(b)the lines connecting the clusters in front of the crack tip are broken and
shifted. A dislocation has been emitted from the crack tip.



Chapter 8

RESULTS IN A BIG SAMPLE

8.1 Introduction

In this chapter we will present the results of the crack propagation simulations
performed at different temperatures below the melting temperature TM of a
sample of 74210 atoms out of a Tübingen triangle tiling.

The chapter is divided into two parts: a preliminary part devoted to the
peculiarities of dislocation emission in quasicrystals, and one containing the
simulations performed at low and high temperatures.

The division in low, intermediate and high temperatures comes from the
characteristic of crack propagation in this three regimes.

For low temperatures crack propagation takes place with much ease. At
temperatures below T = 41%TM a crack always propagates when it is loaded
beyond its critical load. The dynamics can be composed by lot of effects,
which are the subject of the next section, but the brittleness of the material
always supports crack propagation.

When the temperature goes beyond T = 41%TM the material suddenly
shows a high toughness. At certain temperatures propagation takes place
with much difficulty because the crack tip emits a dislocation at any load
beyond the critical one and stops. When the temperature becomes very
high the crack prepared with the procedure of Section 6.1 on page 97 never
propagates, for any value of the applied load, and under these circumstances
it is even difficult to justify the existence of a critical load.

145
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8.2 Dislocation emission and crack propaga-

tion in quasicrystals

8.2.1 Influence of dislocation emission on crack prop-
agation

Dislocation emission generally plays an important role in crack propagation
(cf. Chapter 3). In quasicrystals dislocation emission has a peculiar influence
on crack propagation due to the very special quasicrystalline structure.

A dislocation moving in a periodic lattice leaves behind a perfectly re-
constructed lattice, and therefore the lattice structure around the crack tip
which has emitted a dislocation is intact. The crack and the tip interact only
through their elastic fields, but the direction of crack propagation may be in
general different from that of dislocation emission.

In a quasicrystal the situation is completely different. A dislocation glid-
ing through a quasicrystal leaves behind a phason wall, which possesses a
surface energy lower than that of any of the easy lines 3 and 4 defined in
Section 5.2 on page 93 [77]. Thus the direction of propagation of a crack in
a quasicrystal will be that of the phason wall of the dislocation emitted from
the crack tip.

The only kind of a dislocation emitted from the tip of a crack propagating
in the Tübingen triangle tiling during the simulation of crack propagation,
is depicted in Fig. 8.11. In Fig. 8.1(a) and Fig. 8.1(b) the tiling with
no crack and no dislocation is represented. The atoms A, B, C and D of
Fig. 8.1(b) lie on one of the easy lines for dislocation emission. In Fig.
8.1(c) the tip of a crack has emitted a dislocation. The slip plane of the
dislocation is the easy plane for dislocation emission on which the atoms A,
B, C and D lie, and the dislocation core is close to atom E. The atoms A,
B, C and D during dislocation emission have moved to new positions. In
Fig. 8.1(d) the movements of the quasicrystal atoms are represented which
would locally reconstruct the original structure before dislocation emission.
All the atoms A, B, C and D should be shifted by the same amount on the
slip plane, meanwhile the atoms of the cluster close to the crack tip should be
rotated as indicated in figure. Therefore the Burgers vector b of the emitted
dislocation has only a component on the slip plane, and has a positive value.

1In all the figures the big atoms are depicted as small atoms and viceversa for sake of
clarity.
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The force due to the interaction of the dislocation with the crack in Mode I
of Eq. 3.28 on page 59 is thus repulsive.

8.2.2 Numerical elastic estimates for dislocation emis-
sion in quasicrystals

In Section 3.3.5 on page 61 elastic estimates have been given under which a
crack loaded at the critical load either emits a dislocation or propagates.

The value of the stress intensity factor KIE by which spontaneous emis-
sion takes place involves the values of the Burgers vector b, of the dislocation
core radius rc, and of angle θ formed by the slip line with the cleavage direc-
tion (see Eq. 3.34 on page 62).

The value of the Burgers vector b for this kind of dislocation has been
computed elsewhere [76], and reads:

b =

√
2− 4 cos(

2π

5
) (8.1)

It might be not so easy to give a value to the dislocation radius rc. In
Fig. 8.2(a) a dislocation emitted from the tip of a crack is represented. The
dislocation core is somewhere between the atoms A, B, C, and D, which form
a rhombus in the tiling. The dislocation core might be better localized in one
of the triangles which form the rhombus (see Fig. 8.2(b)), and to the dislo-
cation radius rc might be given the value of the radius of the circumference
inscribed in the triangle. The dislocation radius can be easily calculated and
has the value:

rc =
sin(π

5
) cos(π

5
)

1 + cos(π
5
)
. (8.2)

Dislocations are emitted during propagation preferably on the easy lines
for dislocation emission, which form an angle θ = π

5
with the direction of

crack cleavage.
In Table 8.1 the values of KIE and of KIC of Eq. 3.34 on page 62 are

reported for different temperatures and on the lines on which the surface
energy γ has been computed.

It is worth to remark that the values of KIE and KIC give only a cri-
terion for the statics of the crack. For example, the value of the critical
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(a) (b)

(c) (d)

Figure 8.1: (a) and (b) Tübingen triangle tiling with no crack and no dislo-
cation. The atoms A, B, C and D lie on one of the easy lines for dislocation
emission. (c) The tip of a crack has emitted a dislocation. The atoms A, B, C
and D during dislocation emission have moved to new positions. The disloca-
tion core is close to atom E. (d) Movements of the quasicrystal atoms which
would locally reconstruct the original structure before dislocation emission.
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KIE
KIC

line 1 line 2 line 3 line 4
15%TM 7.0739 7.5155 ✦ 7.3875 ✦ 7.1701 ✦ 6.8472 ✄

31%TM 7.5187 7.6445 ✦ 7.5188 ✦ 7.2988 ✄ 6.9552 ✄

47%TM 7.8263 7.7259 ✄ 7.6000 ✄ 7.3830 ✄ 7.0455 ✄

63%TM 7.7434 7.5887 ✄ 7.4734 ✄ 7.2320 ✄ 6.9035 ✄

78%TM 6.6169 6.9174 ✦ 6.7982 ✦ 6.5836 ✄ 6.2900 ✄

94%TM 5.5764 6.2255 ✦ 6.1796 ✦ 5.9332 ✦ 5.7134 ✦

Table 8.1: Values of KIE and KIC at different temperatures and on the lines
on which the surface energy has been computed. The symbols ✄ and ✦

indicate respectively propagation and dislocation emission.

stress intensity factor KIC at the temperature T = 15%TM on a line 4 is
smaller the KIE at the same temperature. Thus a quasicrystal cut on a
line 4 strained just above the critical displacement would rather propagate
than emit a dislocation. Conversely the same crack at the much higher tem-
perature of T = 94%TM would rather emit a dislocation than propagate.
At temperatures T bigger than a transition temperature TD, which can be
roughly estimated to be:

TD = 89.27%TM (8.3)

the value of KIE becomes smaller than KIC on all the lines. In this ranges of
temperatures and at any load bigger than the critical one the stress intensity
factor is bigger than KIC , because K increases linearly with the load (see
Section 3.2.5 on page 53), and therefore no more propagation is possible and
only dislocation emission can take place. The value of TD could be a rough
estimate of a brittle-ductile transition. In the simulations the value of the
temperature at which no propagation is observed anymore is much smaller
than TD.

The values of KIE and KIC collected in Table 8.1 can be helpful to un-
derstand qualitatively crack propagation at low temperatures.
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(a)

rc

(b)

Figure 8.2: Dislocation emitted from the tip of a crack (a). The dislocation
core is between the atoms A, B, C, and D, which form a rhombus. The
dislocation core might be more precisely located in one of the triangles which
form the rhombus (b).

8.3 Low temperatures

8.3.1 Crack length and crack velocity

In this section we present the results of the simulations performed at T <
31%TM for different loads ∆ = e∆c above the critical load ∆c. For each
value of the load the length of the crack and the crack velocity have been
computed.

In Fig. 8.3, Fig. 8.4 and Fig. 8.5 the crack length in LJ units is depicted
versus the time step of the simulation for different values of e and temper-
ature. In Table 8.2 the crack velocities are collected and the relative errors
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Figure 8.3: Crack length in LJ units versus the simulation time for different
values of e at T = 18%TM .
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Figure 8.4: Crack length in LJ units versus the simulation time for different
values of e at T = 25%TM .
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Figure 8.5: Crack length in LJ units versus the simulation time for different
values of e at T = 31%TM .
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computed by fitting the crack length lC versus the time of the simulation
using the linear function:

lC = vC t (8.4)

where vC is the crack velocity.
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Figure 8.6: Crack length in LJ units versus the simulation time in the low
dislocation emission regime at a load ∆c = 1.15∆C. The three modes of
crack propagation. Mode I: the steady state. Mode II: The crack propagates
emitting a dislocation which is immediately followed by the crack. Mode III:
The crack emits a dislocation which covers a big distance and stops for a long
time.

8.3.2 Low and high dislocation emission regimes

Dislocation emission plays a crucial role in the dynamics of a crack, and
may influence strongly the crack velocity. A close inspection to Fig. 8.3 and
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T = 18%TM
e vC ±∆vC

1.10 103.354 1.12 (1.09%)
1.12 131.021 1.34 (1.02%)
1.20 162.521 1.11 (0.68%)
1.25 222.419 1.64 (0.73%)
1.30 256.979 1.81 (0.70%)
1.30 108.447 1.06 (0.98%)

T = 25%TM
e vC ±∆vC

1.10 63.99 1.13 (1.77%)
1.15 97.94 1.74 (2.07%)
1.20 151.21 2.50 (2.34%)
1.25 121.72 2.05 (1.85%)
1.30 146.43 2.85 (1.94%)
1.35 215.29 4.92 (1.82%)
1.40 244.80 4.46 (2.11%)
1.45 295.80 4.46 (2.11%)
1.50 256.59 5.00 (1.949%)
1.55 235.53 3.83 (1.627%)

T = 31%TM
e vC ±∆vC

1.10 110.116 1.54 (1.42%)
1.15 145.538 1.28 (0.81%)
1.20 181.035 1.68 (0.93%)
1.25 243.843 2.01 (0.85%)
1.30 242.093 2.26 (0.93%)
1.40 314.32 9.52 (3.03%)
1.45 258.51 2.37 (0.91%)

T = 41%TM
e vC ±∆vC

1.25 0.99101 0.011 (1.228%)
1.30 0.65697 0.019 (2.154%)
1.35 1.54972 0.016 (1.167%)
1.40 1.50780 0.016 (1.190%)
1.45 1.04407 0.022 (2.434%)
1.50 1.06873 0.024 (2.385%)

Table 8.2: Crack velocities in LJ units/time of the s imulation. In boldface
are the loads at which the the crack is in the high dislocation emission regime.
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Table 8.2 shows that the crack velocity and the crack length increase with
an increasing load for values of ∆ below ∆ = 1.30∆C . In these load values
range the dynamics of the crack behaves like one would expect by intuition.
The common sense would find reasonable that the more a crack is loaded, the
longer is the distance it can cover in the same time. And this is exactly what
is measured in the simulations for values of the load below ∆ = 1.30∆C . As
soon as the load becomes too large, as for the value e = 1.35 in Fig. 8.3,
the crack behavior becomes less intuitive because the crack velocity suddenly
drops to a value which is much smaller than the expected one. This behavior
is present in every crack propagation simulation at low temperature, and at
high loads dislocation emission prevails over crack propagation. The number
of dislocations which are emitted from the crack tip is such that they are
able of taking away much more energy than a single dislocation could do,
and they may damp crack propagation.

The number of emitted dislocations justifies the division of the crack
dynamics into two regimes, a low dislocation emission regime (LDER), and
a high dislocation emission regime (HDER). The peculiarities of dislocation
emission and crack propagation at low and high loads are analyzed in detail
in the next two sections.

Low dislocation emission regime

In the LDER the distance covered by the crack (see for example Fig. 8.3)
is not a continuous function of time. At any load the crack starts to move,
stops, waits for a certain time, moves and stops again. The movement of the
crack is made of a sequence of stop and go steps. This intermittent regime
of crack propagation has already been observed in simulations performed
at zero temperature [77, 63], and is alway present in the LDER at all the
low temperatures. The intermittent behavior of crack propagation is mainly
due to dislocation emission. During propagation the crack may emit from
its tip only one dislocation on one of the easy lines for dislocation emission
and stops. If the distance of the dislocation core and the crack tip does not
become too large, because for example the dislocation has hit an obstacle
which cannot be bypassed, suddenly the crack may start to propagate again
along the phason wall left by the dislocation. The process made of:

1. dislocation emission

2. stop
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3. propagation along the phason wall

forms the intermittent regime. If the dislocation succeeds in reaching a big
distance from the crack tip crack propagation stops definitively.

Crack propagation in the LDER can be subdivided essentially in three
modes, depicted in figure as phase I, phase II, and phase III.

Phase I. Steady motion In phase I the crack propagates in a steady
state without emitting any dislocation on one of the horizontal lines 4, and
essentially does not change its direction of propagation. This is qualitatively
in good agreement with the theory of elasticity, which predicts that the force
on a crack in Mode I has only a component in the positive direction (see
Eq. 3.25 on page 57). The distance covered by the crack tip is almost a
linear function of time, and the only underlying mechanism of propagation is
the classical snapping of bonds connecting neighboring atoms (see Fig. 8.7).

The crack during its motion on one line 4 may meet some inhomogeneities
which may locally increase the toughness and thus make the crack deviate.
When the crack has changed direction it enters the phase II or III.

Phase II. “Zero temperature” like dislocation emission In phase II
the crack tip is suddenly on one of the lines 1 or 2 2. The crack propagates
emitting a dislocation of the same kind of the dislocations observed in the
simulations performed previously at zero temperature [77]. The emitted dis-
location remains close to the crack tip (See Fig. 8.9) and within little time
it is followed by the crack, which, aided by the dislocation emission, is able
to change its direction of propagation to that of the easy line on which the
emission takes place. The path covered by the emitted dislocation is very
short, and therefore the crack stops only for a short time.

The mechanisms of dislocation emission might be qualitatively under-
stood by elastic means.

When the crack has just changed direction of propagation the elastic field
around the crack tip is not the one predicted by the linear theory of elasticity
of Section 3.2 on page 46, the so called k-field, because the region close to
the crack has not relaxed yet. The k-field is a solution of the linear theory
of elasticity, and thus, at least at low loads, the k-field is a minimum of the

2It is not possible for the crack to reach a line 3 from a line 4 without passing through
lines 1 and/or 2
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Figure 8.7: Bond representation of a crack in a steady state of propagation.
The lines connecting the centers of the rings lying on a line perpendicular to
an easy line for dislocation emission are intact, and therefore no dislocation
has been emitted from the crack tip. The crack propagates only by snapping
atom bonds.

free energy. For that reason the crack, also during its motion, tries to realize
a pure k-field around its tip, and to relax to an equilibrium configuration of
a crack alone. The stress intensity factor raises from zero to the value K(∆),
which is the value predicted by the theory of elasticity when the sample is
strained at ∆ above ∆C . There is no theory which gives the quantitative
dependence of K on ∆, and thus the exact value of the crack intensity factor
is unknown. Only the critical values KIC on the different lines are known
from Table 8.1. The question whether K(∆) is bigger or smaller than the
corresponding equilibrium value KIC can be easily answered. When ∆ is
equal to the critical displacement ∆C of Table 7.7 on page 142 the stress
intensity factor KIC on the different lines assumes the values collected in
Table 8.1 on page 149. When ∆ is bigger than ∆C the intensity factor K
increases, because K depends linearly on the applied load (see Section 3.2.5
on page 53). In all our simulations crack propagation has been studied for
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values of ∆ bigger than 1.1∆line4
C , where ∆line4

C is the critical displacement on
the line 4 3. In Fig. 8.8 is represented 1.1∆line4

C /∆line1
C , where ∆line1

C is the
critical displacement on line 1, computed using the linear dependence of ∆C

on T of Eq. 7.60 on page 141. At any temperature already the smallest value
of ∆ = 1.1∆line4

C at which crack propagation has been studied is bigger than
the critical displacement on the line 1, which is the biggest among all the crit-
ical displacements (see Fig. 8.8). The stress intensity factor K of the crack
will always be bigger than KIE, and thus when the crack changes direction
of propagation crossing one of the lines 2, 3 or 4, it emits a dislocation.

In phase II after emission the dislocation does not cover a long distance
from the crack tip and it is immediately stopped by an obstacle (see Fig.
8.9). The stress intensity factor K of the crack in the quasicrystal is certainly
changed by dislocation emission. The theory of elasticity predicts that when
a dislocation reaches a big distance from the crack tip the reciprocal influence
of the crack and of the dislocation goes to zero. Quantitatively this means
that the crack stress intensity factor K, which would be shielded by the pres-
ence of a dislocation with positive Burgers vector ( see Eq. 3.19 on page 52),
raises again to the value of the crack with no dislocation. Thus, when the
dislocation is far away enough from the crack tip, either crack propagation
begins again, or a new dislocation is emitted. In a quasicrystal the situation
is different because the dislocation leaves behind a phason wall. The phason
wall changes the quasicrystal structure in the vicinity of the crack tip and
consequently also the stress distribution around the crack. The stress inten-
sity factor K of a crack which has emitted a dislocation in a quasicrystal
might not be that of Eq. 3.19 on page 52, and the deviation of K from the
theoretical value might depend on the crack-dislocation distance. From the
simulations it is doubtless clear that when the dislocation remains close to
the crack tip K reaches at least the value necessary to propagate along the
phason wall.

Phase III. Long dislocation path and stop time In phase III the
crack emits a dislocation which covers a relatively long distance from the
crack tip, and it is stopped on its motion by an obstacle lying on the easy
line of emission far away from the crack tip (Fig. 8.10(a)). The crack stops
for a long time (see phase III.a in Fig. 8.7), and suddenly starts to propagate
again (phase III.b and Fig. 8.10(b)). These dislocations, which cover a long

3At smaller values of ∆ lattice trapping has inhibited crack propagation.
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Figure 8.8: Value of 1.1∆line4
C /∆line1

C versus T/TM for T < 31%TM .

distance and nevertheless aid crack propagation, are a new feature of crack
propagation in the presence of temperature. In the simulations performed
at zero temperature only dislocations of the kind observed in phase I are
present, and if a dislocation was able to reach a long distance then crack
propagation was definitively stopped.

The dislocation emission in phase III takes place for the same reasons like
in phase II, with the difference that in phase III the obstacle stopping the
dislocation lies away from the crack tip. The long stop time cannot be easily
explained, and only a guess can be hazarded. The intermittency behavior
might be a feature characteristic of a quasicrystal. The simulations show that
when the dislocation covers a big distance from the tip the stress intensity
factor drops to a value smaller than the one needed to propagate along the
phason wall, and crack propagation stops definitively. On the contrary when
the distance crack-dislocation remains bounded the crack stops for a long
time and then propagates again. It might be that some time is needed for the
system in order to settle down to a relaxed configuration, where K reaches
again a big enough value so that the crack may propagate further. This
time needed by the system to relax might be the origin of the intermittent
behavior.
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Figure 8.9: Bond representation of a crack emitting a “zero like” dislocation.
One of the lines connecting the centers of the rings lying on a line perpen-
dicular to a easy line for dislocation emission immediately close to the crack
tip is broken. The crack tip emits and immediately follows a dislocation on
one of the easy lines for dislocation emission. The dislocation is immediately
stopped by an obstacle.

High dislocation emission regime

The characteristics of crack propagation in the high dislocation emission
regime cannot be so easily and clearly classified. This regime is highly unsta-
ble, and the analysis of the crack dynamics is complicated by the overlapping
of many effects which take place simultaneously. When the load reaches high
values many dislocations may be emitted from the crack tip because the
stress intensity factor becomes more and more bigger than KIE. After dislo-
cation emission the crack propagates further because K remains bigger than
the minimal values necessary for propagation. The main feature of crack
propagation at high loads is the presence in the sample of many dislocations
which are emitted from:

• the crack tip, but never in number bigger than three
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(a)

(b)

Figure 8.10: Bond representation of a crack in phase III of propagation. In
(a) a dislocation has been emitted from the crack tip, and it covers a relatively
long distance before stopping. In (b) the crack follows the dislocation along
the phason wall.



8.3. LOW TEMPERATURES 163

Figure 8.11: Bond representation of a crack loaded at very high loads which
emits many dislocations (regions marked in figure). Two dislocations have
been emitted from the crack tip, and three from the crack surface.

• the crack free surface

• the edges of the rectangle.

At not too high loads the emission of numerous dislocations is still initi-
ated only from the crack tip and from the crack free surface (see Fig. 8.11).
The dislocations emitted from the crack tip take lot of energy away from the
tip and account for an immediate slowing down of the crack velocity (see
Fig. 8.3 for e = 1.35). At these loads the only dislocations responsible for a
crack dynamics dumping are those emitted from the crack, and therefore it
is still possible to define and measure a crack velocity.

At higher values of the load dislocations may be emitted from the edges
of the rectangle, and these dislocations are able to travel inside the material.
From the core of a dislocation which has stopped, often a new crack is initi-
ated (see Fig. 8.12). The formation of a new crack releases a lot of energy
and generally inhibits further crack propagation.
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Figure 8.12: A dislocation emitted from the edges of the rectangle has stopped
and nucleated a new crack from its core.

It is very hard to characterize quantitatively the dynamics of a crack in
this regime. The many dislocations in the sample and the eventual formation
of new cracks strongly influence the crack velocity, which is not anymore
characteristic of a plain crack dynamics, but is the result of the influence
of those independent side effects. The only crack propagation we can try
to analyze is in the low dislocation emission regime, where bonds are broken
and few dislocations are emitted under very well reproducible conditions, but
at so high loads it becomes very difficult to distinguish whether a crack has
stopped because a dislocation has been emitted from its tip, or conversely
because a new crack has formed somewhere in the sample. Under these
working conditions it becomes very hard to define where the “crack tip” is,
and thus it is practically impossible to define a crack velocity.
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Figure 8.13: At T = 41%TM and at low loads a defect is formed in front of
the crack tip. The void relaxes the elastic energy around the tip and inhibits
crack propagation.

8.4 Intermediate temperatures

The simulations performed at the intermediate temperature of 41%TM have
shown a very peculiar behavior of crack propagation, and it is worth to
analyze them in detail.

8.4.1 Low loads

For values of ∆ = 1.05, 1.10, 1.15, 1.20%∆C no crack propagation takes place.
The lack of propagation is very clearly not due to lattice trapping effects. As
soon as the crack is displaced above ∆C in front of the crack tip a void is
formed (see Fig. 8.13). The void does not come from the core of a dislocation,
but it is on the contrary a well defined defect which relaxes the elastic energy
around the tip and inhibits propagation.

8.4.2 High loads

At higher loads the crack starts to propagate. In Fig. 8.16 is depicted
the crack length for values of ∆ above 1.25%∆C . The crack velocities are



166 CHAPTER 8. RESULTS IN A BIG SAMPLE

collected in Table 8.2.
At this intermediate temperature the crack velocity is around one hun-

dredth of the velocity at low temperatures. There is no relation anymore
between crack velocity and applied load. When the load increases the crack
does not move necessarily faster. The crack length is still made of a collec-
tion of stop and go movements. But there are important differences to the
propagation at lower temperatures:

1. The crack may stop for a long time, and the stop is rarely due to
dislocation emission.

The intermittent behavior at this temperature, which has been ob-
served at every load, finds its origin in a completely new effect. In
contrast to the low temperature intermittency, no dislocation is emit-
ted from the tip. In front of the crack the same kind of void observed
at low loads is formed (Fig. 8.14), and the crack does not move for a
long time. The behavior of the crack seems to be completely analog to
what happens at low loads, but with the difference that the crack in
this load regime has only temporarily stopped.

2. No dislocation is emitted anymore to make the crack change its direc-
tion of propagation.

In contrast to the low temperature case the crack is able of changing its
direction of propagation without emitting a dislocation. In Fig. 8.15(a)
and Fig. 8.15(b) the crack propagates beside one of the clusters. The
new crack surface is not formed by following a dislocation along the
phason wall left by dislocation behind, but by the coming unstuck of
the atoms around the cluster.

3. If a dislocation is emitted it is followed. In contrast to the low tempera-
ture case the entire phason wall and the dislocation core are separating
by the formation of voids.

When a dislocation is emitted the crack still follows it. In contrast to
the low temperatures, where the propagation was due to a consecutive
snapping of bonds from the crack tip to the dislocation core, at this
temperature the crack is made propagate further by voids which are
formed on the phason wall and in the dislocation core (Fig. 8.15(c)
and (d)).
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Figure 8.14: At T = 41%TM the crack emits a void in front of the tip and
stops for a long time.

4. During propagation often in front of the tip a void is formed, which
becomes the new crack surface. The old crack may occasionally stop,
and a bridge is formed between the crack surfaces.

The formation of voids in front of the tip seems to be one of the most
important propagation workings at this temperature (Fig. 8.17(a) and
(b)). Occasionally at low loads a dislocation may still be emitted, which
covers a very short distance and is immediately followed by the crack,
like the low loads and low temperature case. But this mechanism dis-
appears as soon as the load is increased to make place to the formation
of voids. The extension of the voids depends on the load. The bigger
the load the more extended are the defects.

5. The crack may stop by emitting a dislocation or forming a void.
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8.4.3 Some remarks

Theory of elasticity predicts that at the intermediate temperature around
41%TM almost no dislocation emission should take place, and only propa-
gation is favored (see Table 8.1 on page 149). The simulations show that
at this temperature the formation of voids seems to be more favored than
crack propagation. The theory of elasticity fails in predicting the formation
of such defects because a void is not anymore a topological defect to which
it is possible to associate an elastic field. At this temperature we are far
beyond the limit of applicability of the continuum model.

8.5 High temperatures

The simulations performed at temperatures T higher than 52%TM have
shown practically always the same behavior. In this regime of tempera-
ture almost no crack propagation takes place. At high temperatures the
quasicrystal shows even no critical load at all.

8.5.1 T = 52%TM

The system at this temperature still possesses a critical load. There exists
a value of the load ∆c defined in Section 6.1 on page 97 where the crack
does not propagate, the system is in a minimum of the free energy, and no
dislocation is emitted from the crack tip. The behavior of crack propagation
is analyzed at different loads.

∆C < ∆ < 1.25∆c When the crack is strained beyond the critical load
and under ∆ = 1.25∆C , the crack tip emits immediately one dislocation and
stops (see Fig. 8.18).

1.25∆C < ∆ < 1.30∆c At the value ∆ = 1.30∆C the crack propagates for
a very short distance, emits two dislocations, and stops. From the core of
one dislocation a new crack surface is initiated. The new crack covers a very
short distance and stops again (Fig. 8.20).

∆ > 1.30∆c For values of ∆ bigger than 1.30∆C the quasicrystal shows a
glass like behavior for crack propagation. In front of the crack tip a new
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crack is nucleated and, contrary to propagation in glasses, the crack does not
advance anymore (see Fig. 8.19). At high loads it has been observed the
formation of new crack surfaces from the core of dislocations emitted from
the rectangle edges.

Some remarks

Even at this temperature the elastic theory predicts a plain crack propagation
regime with no dislocation emission at all (see Table 8.1 on page 149). On
the contrary the system shows something similar to a ductile behavior, at
least at loads ∆ < 1.40∆C .

8.5.2 T = 87%TM

At the very high temperature of T = 87%TM no crack propagation takes
place, and there does not exist even a critical load anymore. The configura-
tion of step 3 in Section 6.1 on page 97 never propagates at any value of the
displacement ∆c. No dislocations are emitted, neither from the crack tip nor
from the rectangle edges. The crack simply relaxes its exceeding energy by
forming voids in front of its tip. Under these circumstances it is very difficult
to justify the existence of a critical load. The system is much mollified, but
does not exhibit a ductile behavior. There is no dislocation emission at all,
and dislocation emission is the primary way for a ductile crack to dissipate
its energy and stop. It seems that the temperature is so high that the sys-
tem has enough energy to rearrange the atoms close to the crack tip in a
minimum of the free energy instead of emitting a dislocation.

8.6 Comparison with experimental results

Mainly two results of the numerical simulations of crack propagation collected
in this chapter are qualitatively in accord with the experiments reported in
Section 3.5 on page 67.

Firstly the relation between crack propagation and dislocation emission.
Crack propagation on surfaces of an icosahedral Al70Pd23Mn7 single qua-
sicrystal takes place along directions parallel to planes of crystallographic
symmetry. The propagation pattern of a crack moving on a surface of fivefold
symmetry shows strong meandering with angles of n×36o between the parts
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of the crack. Wollgarten et al. [70] in straining experiments performed in the
same quasicrystal have found that the planes of crystallographic symmetry
correspond also to planes of dislocation motion. Thus in this quasicrystal
the planes of crack propagation are the planes on which dislocations glide.
This experimental evidence is qualitatively confirmed by our simulations.
Our results show at any temperature that the propagation pattern of a crack
moving in a two-dimensional quasicrystal is piecewise, and most of the pieces
of the crack pattern are on the easy planes for dislocation emission. Unfor-
tunately the dislocation free path predicted by the computer simulations is
less than or equal to a nanometer [77], and thus the authors of [23] cannot
observe a direct relation between dislocation emission and change of crack
propagation direction. This effect could be a characteristic of fracture prop-
agation in quasicrystals predicted by the simulations but not measurable in
real experiments.

At intermediate temperatures (cf. Section 8.4 on page 165) the formation
of voids seems to be the underlying mechanism for crack propagation. When
the applied load is high on a phason wall of an emitted dislocation lot of voids
are forming contemporary (Fig. 8.15(c) and (d)), which are responsible for
further crack propagation. In the experiments a similar behavior has been
observed. When applying high indentation forces on the quasicrystal surface
hundreds of craters nucleate along a crack path and partially grow together,
finally causing the sample to break into pieces [23].

The next chapter contains the conclusions of this work. It summarizes the
main results obtained so far, and outlines the topics of future developments
of this work.
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(a) (b)

(c) (d)

Figure 8.15: At T = 41%TM the crack changes its direction of propagation
without emitting a dislocation (a) and (b). The crack has emitted a disloca-
tion. On the phason wall and in the dislocation core voids are formed which
make the crack propagate further (c) and (d).
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Figure 8.16: Crack length in LJ units versus the simulation time for different
values of e at T = 41%TM .
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(a) (b)

Figure 8.17: At T = 41%TM the crack propagates by forming voids in front
of the tip. A bridge is left behind the crack.

Figure 8.18: A dislocation is emitted from the crack tip at T = 52%TM and
remains close to the tip for values of the load ∆C < ∆ < 1.25∆c.
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Figure 8.19: A new crack surface is formed in front of the crack tip at T =
52%TM and ∆ > 1.40∆c.

Figure 8.20: A new crack surface is formed from the core of a dislocation
emitted from the tip of a crack at T = 52%TM and ∆ = 1.30∆C.



Chapter 9

Conclusions

The numerical results of this work deal with the computation of the equilib-
rium properties and with the crack propagation in the Tübingen triangle
tiling.

Equilibrium properties

In this work much effort has been devoted to the calculation of the equi-
librium properties in the Tübingen triangle tiling, which have shown to be
important for the qualitative understanding of crack propagation in the pres-
ence of temperature.

Temperature dependence of the Nosé-Hoover ν The temperature
dependence of the Nosé-Hoover thermostat mass ν has been measured. The
Nosé-Hoover dynamics has shown to successfully reproduce the canonical
statistics with the computed values of ν (Section 7.1 on page 105).

Free energy difference calculation Two different methods for comput-
ing free energy differences have been applied for the first time to the calcu-
lation of static properties of cracks. The two methods have been compared,
and the free energy calculations based on the phase space compressibility of
the Nosé-Hoover dynamics have been proved to be numerically equivalent to
the classical umbrella sampling.

The umbrella sampling is much faster than the phase compressibility
method, and it has to be preferred in constant temperature calculations

175
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(Section 7.2 on page 110), whereas the second may be still competitively
used in entropy differences calculations at non constant temperature.

Surface energies, elastic constants, and critical displacements The
umbrella sampling has been used to calculate the surface energies, the elastic
constants, and the critical displacements of a quasicrystal at various temper-
atures (Section 7.3 on page 133), which have allowed to calculate the stress
intensity factor of a crack both for a pure Griffith propagation, and for a
spontaneous dislocation emission (Section 8.2.2 on page 147).

Crack propagation

Modeling crack propagation in the presence of temperature An
original model of crack propagation in the presence of temperature has been
proposed. The sample in which propagation takes place is ideally divided
by an ellipse into two zones. The atoms inside the ellipse, which contains
the crack tip as well, move accordingly to the Hamilton dynamics to allow
for a temperature gradient, while the atoms outside are kept at constant
temperature by means of a Nosé-Hoover dynamics.

Crack propagation has been studied in a big sample and in a range of
temperatures below the melting temperature TM of the system.

Low temperatures

At low temperatures ( T < 41%TM ) crack propagation takes place with
ease. In this temperatures range the number of dislocations emitted during
propagation justifies the division of the crack dynamics into two regimes,
a low dislocation emission regime (LDER), and a high dislocation emission
regime (HDER).

Low dislocation emission regime In the LDER crack propagation takes
place by means either of a pure snapping of bonds or of the emission of one
dislocation. When a dislocation is emitted crack propagation shows an inter-
mittent behavior, which has been observed also in the simulations performed
at zero temperature. In this regime of propagation an explanation of the dis-
location emission based on elastic estimates has been proposed (Section 8.3.2
on page 156).
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High dislocation emission regime In the HDER the characteristics of
crack propagation cannot be easily and clearly classified. This regime is
highly unstable, and the analysis of the crack dynamics is complicated by the
overlapping of many effects which take place simultaneously (Section 8.3.2
on page 161).

Intermediate temperatures

Crack propagation at the intermediate temperature of 41%TM has shown a
very peculiar behavior (Section 8.4 on page 165).

Low loads At low loads no crack propagation takes place, because in front
of the crack tip a void is forming, which does not come from the core of a
dislocation.

Higher loads At higher loads the crack starts to propagate very slowly,
compared to the typical velocities at lower temperatures. Still an intermittent
regime is present, but the role of the dislocation is taken by the void. The
crack is able of changing its direction of propagation without emitting a
dislocation.

At this temperature the material seems to be much mollified but still
brittle, because there is a range of loads at which the crack propagates,
and the formation of voids seems to be a new underlying mechanism of
propagation.

High temperatures

At high temperatures crack propagation does not take place anymore.

T = 52%TM The system at the temperature T = 52%TM has shown a
typical ductile behavior. At low loads beyond the critical one, the crack emits
immediately a dislocation and stops. When the load increases the crack still
opposes to the propagation by emitting two dislocation or forming a new
crack surface from a dislocation core. At high loads it has been observed the
formation of new crack surfaces from the core of dislocations emitted from
the rectangle edges, and in front of the crack tip a new crack is nucleated.
At this temperature the material might have become ductile, because at low
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loads dislocation emission prevails over propagation. Crack propagation at
high loads does not contradicts the ductile evidence at low loads. There is
obviously always a load regime beyond which even a ductile material breaks
down, because no material can bear a too huge strain.

T = 87%TM At the very high temperature of T = 87%TM there does not
exist a critical load anymore. Even at high loads no crack propagation takes
place, and the material seems to be very much mollified.

Future developments

The numerical results of this work have opened many directions in which the
investigation of crack propagation in quasicrystals might be intensified.

Dislocation emission in the LDER

At low temperatures and in the LDER the dislocation emission has been
explained by means of elastic estimates. Two points should be further inves-
tigated.

Dependence of the surface energy on the length of the cut On the
lines 3 and 4, the dependence of surface energy on the length of the cut should
be computed. This could explain whether the partially broken clusters which
are placed on these lines are responsible for a local increase of surface energy
with a consequent change of crack propagation.

Estimation of the dislocation radius rc The second important point is a
precise estimation of the dislocation radius rc. The stress intensity factor KIE

at which dislocation emission takes place is very sensible to the dimensions
of rc, and a precise measure of rc is the necessary condition under which the
elastic estimates of Section 8.2.2 on page 147 might doubtless explain the
dislocation emission phenomena.

The simulations of crack propagation at low temperatures and in the
LDER have doubtless shown that crack propagation after dislocation emis-
sion takes place on a direction (the phason wall) which is forbidden by the
linear theory of elasticity.

This effect could have essentially two origins.
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Fluctuations on the phason wall A less likely possibility is that some
fluctuations casually induce the break of some bonds on the phason wall,
allowing for a further crack propagation.

Stress intensity factor for quasicrystals Another possibility is that
the phason wall of a dislocation in a quasicrystal changes the stress intensity
factor of a crack in a way which could not be predicted by the usual elasticity
theory. A theory of elasticity suited for quasicrystals could take into account
the presence of the phason wall, and could give a new expression of the stress
intensity factor of a crack. The force on a crack might have a component
along the phason wall, and this could explain why the crack follows the
dislocation.

Void formation The voids, observed in the simulations performed at T =
41%TM , are completely new defects which support crack propagation. Their
formation could be taken into account by a continuum model, if they were
modeled as holes. Till now a continuum theory has been developed for a crack
with a dislocation distribution, but none has given the expression of the stress
intensity factors of a crack which coexists with holes. Such an analytical
work could help in having an insight in these new effects observed in the
simulations. It might be that at this temperature the elastic energy, i.e. the
free energy, of a crack with holes is less than that of a crack with dislocations,
and thus void formation could be preferred to dislocation emission.

Ductile transition The apparent ductile behavior observed at T = 52%TM
should be better investigated in order to understand whether the material
has really undergone a ductile transition.
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