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Abstract

The knowledge of the decomposition numbers of Hecke algebras associated to Weyl

groups is very useful in the representation theory of finite groups of Lie type since

the decomposition matrix of such an algebra embeds into that of the corresponding

group. In the investigation of the Hecke algebras themselves, generic constructions

— that is, constructions independent of the coefficient ring and the parameters —

are a helpful tool. This thesis contributes to those two aspects of the theory of

Hecke algebras.

The first part of this thesis is concerned with decomposition numbers of blocks

of Hecke algebras of type A. In particular, we consider blocks having core (0) and

weight 3. First, we derive an upper bound for the decomposition numbers of an

arbitrary block. This is used to show that all the decomposition numbers of a block

having core (0) and weight 3 are 0 or 1. That result in turn enables us to describe

a combinatorial algorithm for their calculation. Furthermore, we show that the

decomposition numbers of a block having core (0) and weight 3 depend only on the

ordinary and the quantized characteristic of the coefficient field. Moreover, if the

ordinary characteristic is neither 2 nor 3 then they are already determined by the

quantized characteristic alone.

In the second part of this thesis, we construct generic Specht series for Hecke

algebras of type A and generic bi-Specht series for Hecke algebras of type B. These

are series of right ideals in those algebras such that all subquotients are Specht

modules respectively bi-Specht modules. The construction of the Specht series

generalizes ideas from Dipper and James for symmetric groups and Hecke algebras

of type A. In particular, generic bases for the so-called PK-modules are introduced.

The derivation of the bi-Specht series makes use of the Specht series and general

methods from Dipper and James for the investigation of Hecke algebras of type B.
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Zusammenfassung

Die Kenntnis der Zerlegungszahlen von mit Weyl-Gruppen assoziierten Hecke-Al-

gebren ist sehr nützlich in der Darstellungstheorie endlicher Gruppen vom Lie-Typ,

da die Zerlegungsmatrix einer solchen Algebra in die der entsprechenden Gruppe

eingebettet ist. Zur Untersuchung der Hecke-Algebren selbst sind generische — das

heißt vom Koeffizientenring und den Parametern unabhängige — Konstruktionen

hilfreich. Die vorliegende Arbeit trägt zu diesen beiden Aspekten der Theorie der

Hecke-Algebren bei.

Der erste Teil dieser Arbeit beschäftigt sich mit Zerlegungszahlen von Blöcken

von Hecke-Algebren vom Typ A. Insbesondere werden Blöcke mit Kern (0) und

Gewicht 3 betrachtet. Zunächst wird eine obere Schranke für die Zerlegungszahlen

eines beliebigen Blocks hergeleitet. Damit wird gezeigt, daß die Zerlegungszahlen

eines Blocks mit Kern (0) und Gewicht 3 nur die Werte 0 und 1 annehmen. Dies

ermöglicht die Beschreibung eines kombinatorischen Algorithmus zu ihrer Berech-

nung. Weiter wird gezeigt, daß die Zerlegungszahlen eines Blocks mit Kern (0)

und Gewicht 3 nur von der gewöhnlichen und der quantisierten Charakteristik des

Koeffizientenkörpers abhängen. Wenn die gewöhnliche Charakteristik weder 2 noch

3 ist, sind sie sogar bereits durch die quantisierte Charakteristik bestimmt.

Im zweiten Teil dieser Arbeit werden generische Specht-Serien für Hecke-Alge-

bren vom Typ A und generische Bi-Specht-Serien für Hecke-Algebren vom Typ B

konstruiert. Dabei handelt es sich um Reihen von Rechtsidealen, bei denen alle

Subquotienten Specht-Moduln beziehungsweise Bi-Specht-Moduln sind. Die Kon-

struktion der Specht-Serien verallgemeinert Ideen von Dipper und James für sym-

metrische Gruppen und Hecke-Algebren vom Typ A, insbesondere werden gene-

rische Basen für die sogenannten PK-Moduln bestimmt. Die Herleitung der Bi-

Specht-Serien benutzt die Specht-Serien und allgemeine Methoden von Dipper und

James zur Untersuchung von Hecke-Algebren vom Typ B.
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Introduction

Hecke algebras associated to Weyl groups are involved in various branches of math-

ematics and physics. Hecke algebras of type A are employed in knot theory for

the construction of topological invariants (see [JON]) and also occur in statistical

mechanics (see [JIM1], [JIM2]). In the theory of quantum groups, they play the

part of the symmetric group algebras in the quantized version of classical Schur-

Weyl reciprocity between general linear groups and symmetric groups (see again

[JIM2]). Furthermore, the Hecke algebras associated to Weyl groups are a valuable

tool in the representation theory of algebraic groups and finite groups of Lie type

(see [IWA] and [KL]). In particular, they are very useful for the determination of

the decomposition numbers of finite groups of Lie type, namely their decomposition

matrices embed into the decomposition matrices of the corresponding groups (see

[DIP] and [DJ3]).

The first part of this thesis contributes to that latter application of Hecke al-

gebras. Here, the decomposition matrices of certain blocks of Hecke algebras of

type A are investigated. For a more detailed description, we fix coefficient rings

and parameters. Let Q be a field and ψ be a discrete valuation on Q such that Q

is complete with respect to ψ. With that, denote by S the valuation ring of ψ in

Q, by I the valuation ideal of ψ in S, and write F = S/I for the residue class field.

Then we have the inclusion S ↪→ Q and the reduction modulo I ·̄ : S → F . Next,

fix a unit a ∈ S. Then a also is a unit in Q and ā is a unit in F . We assume that

there are natural numbers m satisfying
∑m−1

i=0 āi = 0 in F — the opposite not being

interesting — and denote by eF (ā) the minimum of these numbers. With that, we

put n = 3eF (ā) and build the Hecke algebras of type An−1 over the coefficient rings

Q, S, and F with the respective parameters a, a, and ā. We denote them by H(Q,a)
An−1

,

H(S,a)
An−1

, and H(F,ā)
An−1

(see Section 1.2). We also assume that H(Q,a)
An−1

is semisimple.

Similar to the special case of symmetric groups, the blocks of these algebras are

indexed by eF (ā)-cores of partitions of n and are divided into families according

to the eF (ā)-weights of the indexing cores. The block under consideration in this

thesis is indexed by the partition (0) of 0 and has eF (ā)-weight 3. Our choice of n

ix



x INTRODUCTION

ensures that the algebras H(Q,a)
An−1

, H(S,a)
An−1

, and H(F,ā)
An−1

indeed have such a block. This

block can be considered as the principal block of those algebras. We denote it by

B(0)(n) and its decomposition matrix by ∆Hn ((0)) (see Section 1.8).

The results obtained for the block decomposition matrix ∆Hn ((0)) are as follows.

First, it is shown that all of its entries are 0 or 1. Then, this fact and the quantized

version of the Theorem of Schaper from [JM] are used to describe a purely com-

binatorial algorithm for the calculation of ∆Hn ((0)). Finally, it is shown that the

matrix ∆Hn ((0)) depends only on the characteristic of F and the number eF (ā), and

moreover, if the characteristic of F is neither 2 nor 3 then it is already completely

determined by eF (ā). This proves a conjecture of James (see [JAM2, Section 4])

in the special case of the submatrix ∆Hn ((0)) of the decomposition matrix of the

algebras H(Q,a)
An−1

, H(S,a)
An−1

, and H(F,ā)
An−1

.

The second part of this thesis is concerned with generic features of Hecke algebras

of type A and B. Generic means that these features are independent of the choice of

the coefficient ring and the parameters for the Hecke algebra. Here, the coefficient

ring can be an arbitrary integral domain. The features in question are generic

Specht series for Hecke algebras of type A and generic bi-Specht series for Hecke

algebras of type B.

A generic Specht series for a Hecke algebra of type A means a series of right

ideals in that algebra such that all the quotients of successive ideals are isomorphic

to Specht modules (see Section 1.3) and moreover all algebra elements, ideals, and

homomorphisms occurring in the construction of this series are stable when changing

the coefficient ring. Here, the Specht modules for Hecke algebras of type A are those

from [DJ1].

Similarly, a generic bi-Specht series for a Hecke algebra of type B means a series

of right ideals in that algebra such that all the quotients of successive ideals are

isomorphic to bi-Specht modules (see Section 4.4) and moreover all algebra elements,

ideals, and homomorphisms occurring in the construction of this series are stable

when changing the coefficient ring. Here, the bi-Specht modules for Hecke algebras

of type B are a generalization of those from [DJ3].

In this thesis, generic Specht series for Hecke algebras of type A are constructed

by generalizing ideas from [JAM1, Section 16] and [DJ1, Section 7]. In particular,

new generic bases of the intermediary modules Sµ
#µ from there are introduced (see

Section 3.10). These generic Specht series for Hecke algebras of type A are then

used to obtain generic bi-Specht series for Hecke algebras of type B by transferring

the algebra elements, ideals, and homomorphisms employed in their construction

to Hecke algebras of type B with methods from [DJ3].
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The organization of this thesis is as follows. Chapter 1 collects background

material and known facts about Hecke algebras of type A which will be used in

later chapters. It starts with an overview of the combinatorics required for the

representation theory of the Weyl groups of type A, that is, the symmetric groups.

Here, we recall — amongst other things — compositions and partitions, hooks and

rim hooks, β-sequences and abaci, cores, tableaux, Young subgroups and shortest

representatives, and finally row number lists.

The next section reviews Hecke algebras of type A. It gives generators and rela-

tions for these algebras and lists some basic facts and notions related to coefficient

rings. Section 1.3 describes the derivation of the irreducible representations of Hecke

algebras of type A over fields as carried out in [DJ1]. It also recalls the generic per-

mutation modules and Specht modules from there. The following section adapts the

account on modular reduction and decomposition numbers for group algebras given

in [CR1, §16] to the situation at hand. It fixes the notation for Grothendieck groups,

modular systems, decomposition maps, and decomposition numbers for Hecke al-

gebras of type A. Next, Section 1.5 describes the behavior of Specht modules with

respect to modular reduction and states some consequences thereof. Then, in Sec-

tion 1.6, new modular systems with nice properties are derived from a given one

and are used to examine the dependency of the decomposition numbers of Hecke

algebras of type A on the employed modular system. Section 1.7 translates the

treatment of projective indecomposable modules and the Cartan-Brauer triangle

for group algebras in [CR1, §18] to Hecke algebras of type A.

The following section collects some basic facts and notions from the block the-

ory of Hecke algebras of type A. It recalls such things as block idempotents and

block ideals, the parameterization of the blocks of Hecke algebras of type A by

cores of partitions, and the block decomposition of modules, Grothendieck groups,

projective class groups, and decomposition matrices. The next section treats in-

duction of modules from a Hecke algebra of type An−2 to the corresponding one

of type An−1. The induction of Specht modules and projective indecomposable

modules, both considered as elements of Grothendieck groups and projective class

groups, is described in more detail. This is then used to derive an upper bound

for the decomposition numbers of a block of the Hecke algebra of type An−1 pro-

vided the decomposition numbers of the Hecke algebra of type An−2 are known.

Finally, Section 1.10 gives an account on Schaper’s Theorem for Hecke algebras of

type A proved in [JM]. It introduces the required notation and states the Theorem

of Schaper. Then, it describes how this theorem can be used to obtain valuable

information on decomposition numbers.
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In Chapter 2, we investigate the decomposition matrices of blocks of Hecke

algebras of type A having core (0) and weight 3. Here and in the following, we

use the terminology and notation from above. In Section 2.1, it is shown that

all entries of ∆Hn ((0)) are 0 or 1. This is done by using the upper bound for

the decomposition numbers of an arbitrary block of the algebras H(Q,a)
An−1

, H(S,a)
An−1

,

and H(F,ā)
An−1

from Section 1.9. In the case of the block B(0)(n), this upper bound

depends on an upper bound Un−1 for the entries of the decomposition matrix ∆Hn−1

of the algebras H(Q,a)
An−2

, H(S,a)
An−2

, and H(F,ā)
An−2

(see Section 1.4) and a certain integer J(0)

determined by combinatorics involving the partitions belonging to B(0)(n). Since

every block of H(Q,a)
An−2

, H(S,a)
An−2

, and H(F,ā)
An−2

has weight less than 3, the upper bound

Un−1 can be obtained from results on such blocks in [RIC] and [JAM2].

For the evaluation of J(0), we proceed as follows. First, the partitions belonging

to B(0)(n), that is, those having eF (ā)-core (0), are divided into families according

to the shapes of the corresponding abaci as described in [MR2]. Then, the definition

of J(0) in Theorem 1.9.18 is adapted to abacus notation. Finally, J(0) is determined

through a case by case analysis of the various families of partitions lying in the block

B(0)(n). The values obtained for Un−1 and J(0) now establish the upper bound 1

for all entries of ∆Hn ((0)).

Section 2.2 first shows how the matrix ∆Hn ((0)) can be calculated explicitly and

then investigates its dependency on the employed coefficient rings and parameters.

The explicit calculation of ∆Hn ((0)) is based on the quantized version of Schaper’s

Theorem from [JM]. This theorem reveals for every entry in a row of ∆Hn ((0))

if it vanishes or not provided the earlier rows — with respect to an appropriate

ordering — are known (see Remark 1.10.9.(ii)). This fact and the upper bound 1

for all decomposition numbers of the block B(0)(n) established in Section 2.1 allow

the explicit calculation of its decomposition matrix ∆Hn ((0)) in a straightforward

inductive manner.

The second topic in Section 2.2 is the dependency of ∆Hn ((0)) on the coefficient

rings and parameters underlying the algebras H(Q,a)
An−1

, H(S,a)
An−1

, and H(F,ā)
An−1

. It turns

out that the determining values are eF (ā) and the characteristic of F . First, the

relations between these values and the parameters a and ā of the Hecke algebras are

described (see Lemma 2.2.3 to Lemma 2.2.5). We see that there are three distinct

cases to be considered. Using this distinction, the values of the valuation ψ on

quantized integers (see Definition 1.2.2.(i)) are determined. Such expressions occur

in the Theorem of Schaper. We see that these values are completely determined by

eF (ā) and the characteristic of F . This fact and the previously described method

for calculating the matrix ∆Hn ((0)) using Schaper’s Theorem now show that the
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decomposition numbers of B(0)(n) also depend only on the characteristic of F and

eF (ā).

Next, this dependency is reduced even further provided the characteristic of F is

neither 2 nor 3. With this restriction, we get a factorization of the values of ψ on the

relevant quantized integers where one factor is completely determined by eF (ā) and

the characteristic of F while the other one depends only on eF (ā) and the ordinary

integer behind the respective quantized integer. Combining this with the Theorem

of Schaper and the method for calculating the decomposition numbers of the block

B(0)(n) described above, we obtain that ∆Hn ((0)) is completely determined by eF (ā)

provided the characteristic of F is neither 2 nor 3.

Chapter 3 is concerned with the construction of generic Specht series for Hecke

algebras of type A (see above). To be more specific, let us fix a degree n, an integral

domain R, a unit q ∈ R, and with that the Hecke algebra H(R,q)
An−1

. Sections 3.1 to 3.3

provide the combinatorics required for the construction of a generic Specht series for

this algebra. Section 3.1 reviews ordering relations for row standard tableaux and

the corresponding shortest representatives. Section 3.2 discusses PKn-pairs µ#µ

and the operators Ac and Rc for them as described in [JAM1] and some related

tableaux and permutations. In short, a PKn-pair consists of a partition µ# and

a composition µ of n (see Section 1.1) satisfying certain conditions. Moreover,

if we have an index c > 1 such that the c-th and (c − 1)-th entries of µ# and

µ meet further requirements then we can apply the operator Ac to get another

partition µ#Ac and a PKn-pair µ#Acµ and also the operator Rc which gives us

another composition µRc and a PKn-pair µ#µRc. Section 3.3 treats the aspects of

row number lists employed in the construction of the Specht series. These are the

connection to PKn-pairs via good and bad entries, the ensuing organization of row

number lists into sets Zµ#µ, and maps between such sets from [JAM1], but also

ordering relations between related permutations.

Sections 3.4 and 3.5 review known modules and homomorphisms which are

used in the construction of the Specht series. Section 3.4 recalls the definition

of PKn-modules Sµ
#µ

(R,q) indexed by PKn-pairs from [DJ1] and collects some ele-

mentary facts about them. Section 3.5 gives an account on the construction of

PKn-homomorphisms

Ψ
(R,q)

µ#µc
: Mµ

(R,q) →MµRc
(R,q)

and lists some basic properties of them. Such a homomorphism is indexed by a

PKn-pair µ#µ and an integer c which allows the application of the corresponding

pair of operators Ac and Rc to µ#µ (see above). It maps the permutation module

Mµ
(R,q) (see Section 1.3) into MµRc

(R,q) and the PKn-module Sµ
#µ

(R,q) into Sµ
#µRc

(R,q) . All this
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is drawn from [DJ1].

The next two sections introduce ZNL-elements and describe the effect of PKn-

homomorphisms on them. In Section 3.6, we define for a composition λ of n and

every row number list ζ in the set Zλ (see Section 1.1) the corresponding ZNL-

element z(ζ)(R,q) in Mλ
(R,q). We also derive some basic facts about these elements.

We determine, for example, their representations with respect to the row standard

basis BMλ

row std(R, q) of Mλ
(R,q) (see Section 1.3). From this in turn we obtain their

linear independence. In Section 3.7, we examine for a given PKn-pair µ#µ the

images of the ZNL-elements z(ζ)(R,q) indexed by row number lists ζ ∈ Zµ#µ under

a PKn-homomorphism Ψ
(R,q)

µ#µc
: Mµ

(R,q) → MµRc
(R,q) and derive their representations

with respect to the basis BMµRc

row std(R, q) of MµRc
(R,q). We find that the z(ζ)(R,q) with

ζ ∈ Zµ#Acµ ⊆ Zµ#µ are contained in Ker Ψ
(R,q)

µ#µc
and that the z(ζ)(R,q)Ψ

(R,q)

µ#µc
with

ζ ∈ Zµ#µ \ Zµ#Acµ are linearly independent.

The following three sections establish bases of PKn-modules consisting of ZNL-

elements. In Section 3.8, we show that, given a PKn-pair µ#µ and a pair of operators

Ac and Rc for it, the set
{
z(η)(R,q)

∣∣∣ η ∈ Zµ#µRc
}

is an R-basis of the PKn-module

Sµ
#µRc

(R,q) provided
{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#µ
}

is an R-basis of Sµ
#µ

(R,q). This is done by

comparing the representations of the elements z(ζ)(R,q)Ψ
(R,q)

µ#µc
for ζ ∈ Zµ#µ \Zµ#Acµ

with respect to BMµRc

row std(R, q) to those of the elements z(η)(R,q) for η ∈ Zµ#µRc . In

Section 3.9, we consider again a PKn-pair µ#µ and a pair of operators Ac and Rc for

it and we also assume that
{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#µ
}

is an R-basis of Sµ
#µ

(R,q). Given this,

we show that
{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#Acµ
}

is an R-basis of Ker
(

Ψ
(R,q)

µ#µc

yMµ

Sµ
#µ

)
by using

the result of the preceding section and basic properties of ZNL-elements and PKn-

homomorphisms. From this in turn we easily obtain Ker
(

Ψ
(R,q)

µ#µc

yMµ

Sµ
#µ

)
= Sµ

#Acµ
(R,q) .

In Section 3.10, we remove the basis assumption of the preceding two sections

by induction along sequences of operators Ac and Rc applied to PKn-pairs. The

induction always starts with a PKn-pair ν#ν of a particular kind for which we have

Sν
#ν

(R,q) = M ν
(R,q). The main results of this section are that, given a PKn-pair µ#µ,{

z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#µ
}

is an R-basis of Sµ
#µ

(R,q) and, given a pair of operators Ac and

Rc applicable to µ#µ,

Ker
(

Ψ
(R,q)

µ#µc

yMµ

Sµ
#µ

)
= Sµ

#Acµ
(R,q) .

In the final section of this chapter, we construct generic Specht series for PKn-

modules by induction in binary trees from the leaves to the respective root. The

vertices of these trees are labelled with PKn-pairs, their edges with pairs of operators

Ac and Rc. Moreover, the labels of the leaves correspond to certain PKn-modules

which have an obvious generic Specht series. Given a PKn-pair µ#µ, we construct
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such a tree from it via repeated application of pairs of operators Ac and Rc. The

root of this tree is labelled µ#µ, and the labels of its direct successors are µ#Acµ

and µ#µRc with an appropriate pair of operators Ac and Rc. Corresponding to

this, we have the short exact sequence

0→ Sµ
#Acµ

(R,q) → Sµ
#µ

(R,q) → Sµ
#µRc

(R,q) → 0

which was established in the preceding sections. Here, the left map is the natural

inclusion and the right map is Ψ
(R,q)

µ#µc

yMµ

Sµ
#µ

. Using this sequence, we can combine

the inductively existing generic Specht series for Sµ
#Acµ

(R,q) and Sµ
#µRc

(R,q) into a generic

Specht series for Sµ
#µ

(R,q). This method also is used in [DJ1]. Since every permutation

module is a PKn-module and the right regular H(R,q)
An−1

-module is a permutation

module, this result gives us generic Specht series for PKn-modules, permutation

modules, and H(R,q)
An−1

.

In Chapter 4, we construct generic bi-Specht series for Hecke algebras of type B

(see above) by translating the constructions from the preceding chapter to Hecke

algebras of type B. Section 4.1 provides the combinatorics required for Hecke

algebras of type B and the bi-Specht series. Let us fix a degree n for the following.

With that, the first part of this section describes the Weyl group of type Bn and

introduces so-called left inclusions and right inclusions of Weyl groups of type A into

other Weyl groups of type A and into the Weyl group of type Bn. The second part

of this section recalls bi-compositions and bi-partitions of n and then introduces

bi-PKn-pairs and operators (c)A, A(c), (c)R, and R(c) for them. Bi-compositions, bi-

partitions, and bi-PKn-pairs all depend on an additional parameter a ∈ {0, . . . , n}.
A bi-composition is a pair (λ, µ) where λ is a composition of a and µ is a composition

of n − a. A bi-partition is a bi-composition where both parts are partitions. A

bi-PKn-pair (λ#λ, µ#µ) consists of a PKa-pair λ#λ and a PKn−a-pair µ#µ. The

operators (c)A, A(c), (c)R, and R(c), indexed by integers c > 1, act on a bi-PKn-pair

(λ#λ, µ#µ) via application of the operator Ac respectively Rc to λ#λ respectively

µ#µ, if possible, to get another bi-PKn-pair.

Section 4.2 collects some general facts about Hecke algebras of type B. First,

the construction of the Hecke algebra of type Bn over an integral domain R with a

unit q ∈ R and an arbitrary element Q ∈ R via generators and relations is reviewed.

This algebra is denoted by H(R,q,Q)
Bn

. Then, the left inclusions and right inclusions

for Weyl groups of type A and B from the preceding section are adapted to Hecke

algebras of type A and B.

Section 4.3 introduces bi-permutation modules for H(R,q,Q)
Bn

and in the course of

this describes a general method for the construction of “nice” right ideals in Hecke
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algebras of type B from right ideals in Hecke algebras of type A. This method is

taken from [DJ3]. It is a translation to Hecke algebras of the corresponding method

from the well known derivation of the representation theory of Weyl groups of type

B from that of Weyl groups of type A (see, for example, [KER]). First, this section

reviews the definition of certain elements v
(R,q,Q)
a,n−a of H(R,q,Q)

Bn
with a ∈ {0, . . . , n}.

These elements are Hecke algebra analogues of certain sums over the base group

C2 × · · · ×C2 (n times) of the Weyl group of type Bn when considered as a wreath

product C2 o Sn where C2 is the cyclic group of order 2. Then, we describe a

filtration of H(R,q,Q)
Bn

with right ideals such that all the subquotients are of the form

v
(R,q,Q)
a,n−a H

(R,q,Q)
Bn

. Next, suppose we have a right ideal M in H(R,q)
Aa−1

and a right ideal

N in H(R,q)
An−a−1

with an integer a ∈ {1, . . . , n− 1} and they both have R-bases.

Denote the right inclusion of M into H(R,q,Q)
Bn

(see above) by M
a→ and the left

inclusion of N into H(R,q,Q)
Bn

(see above) by N
n−a← . With that, an R-basis for the

right ideal v
(R,q,Q)
a,n−a

(
M

a→
)(

N
n−a←
)
H(R,q,Q)
Bn

can be obtained from the R-bases of M

and N . Finally, we define bi-permutation modules for H(R,q,Q)
Bn

by applying this

to permutation modules for Hecke algebras of type A. Bi-permutation modules

are indexed by bi-compositions, and the bi-permutation module corresponding to a

bi-composition (λ, µ) is denoted by M
(λ,µ)
(R,q,Q).

In Section 4.4, we define bi-Specht modules for H(R,q,Q)
Bn

and exhibit R-bases for

them. This is done along the lines from the preceding section using Specht modules

for Hecke algebras of type A. Bi-Specht modules are indexed by bi-partitions, and

the bi-Specht module corresponding to a bi-partition (λ, µ) is denoted by S
(λ,µ)
(R,q,Q).

Section 4.5 introduces bi-PKn-modules for H(R,q,Q)
Bn

, describes R-bases thereof,

and discusses elementary relations between them and bi-permutation modules and

bi-Specht modules. The construction of the bi-PKn-modules employs PK-modules

for Hecke algebras of type A and is based again on the method described in Sec-

tion 4.3. Bi-PKn-modules are indexed by bi-PKn-pairs, and the bi-PKn-module

corresponding to a bi-PKn-pair (λ#λ, µ#µ) is denoted by S
(λ#λ,µ#µ)
(R,q,Q) .

In Section 4.6, we define bi-PKn-homomorphisms and describe their effect on

bi-PKn-modules. Such a homomorphism is indexed by a bi-PKn-pair (λ#λ, µ#µ)

and an integer c which allows the application of the corresponding pair of operators
(c)A and (c)R respectively A(c) and R(c) to (λ#λ, µ#µ) (see above). By definition, bi-

PKn-homomorphisms map bi-permutation modules into bi-permutation modules.

They are denoted by

(c)Ψ(λ#λ,µ#µ)(R, q,Q) : M
(λ,µ)
(R,q,Q) →M

(λRc,µ)
(R,q,Q)
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and

Ψ
(c)

(λ#λ,µ#µ)
(R, q,Q) : M

(λ,µ)
(R,q,Q) →M

(λ,µRc)
(R,q,Q) .

These homomorphisms are derived from PK-homomorphisms for Hecke algebras of

type A in a way compatible with the construction of bi-permutation modules from

permutation modules for Hecke algebras of type A. This enables us to determine

the images and kernels of bi-PKn-homomorphisms when applied to bi-PKn-modules.

We get (
S

(λ#λ,µ#µ)
(R,q,Q)

)
(c)Ψ(λ#λ,µ#µ)(R, q,Q) = S

(λ#λ,µ#µ)(c)R
(R,q,Q)

and

Ker
(

(c)Ψ(λ#λ,µ#µ)(R, q,Q)
yM(λ,µ)

S(λ#λ,µ#µ)

)
= S

(λ#λ,µ#µ)(c)A
(R,q,Q)

and analogous statements for homomorphisms Ψ
(c)

(λ#λ,µ#µ)
(R, q,Q).

In Section 4.7, we use the definitions and results from the preceding sections

to construct generic bi-Specht series for bi-PKn-modules. These comprise generic

bi-Specht series for bi-permutation modules as special cases which in turn lead to

a generic bi-Specht series for the right regular H(R,q,Q)
Bn

-module. The construction

of generic bi-Specht series for bi-PKn-modules is an adaption of the construction of

generic Specht series for PK-modules from Section 3.11 to the situation at hand.

Given a bi-PKn-module S
(λ#λ,µ#µ)
(R,q,Q) , we build a binary tree from the bi-PKn-pair

(λ#λ, µ#µ) via repeated application of pairs of operators (c)A and (c)R and also A(c)

and R(c). We use induction on the vertices of this tree from the leaves to the root

which is labelled (λ#λ, µ#µ) and finally employ the exact sequence

0→ S
(λ#λ,µ#µ)(c)A
(R,q,Q) → S

(λ#λ,µ#µ)
(R,q,Q) → S

(λ#λ,µ#µ)(c)R
(R,q,Q) → 0

respectively

0→ S
(λ#λ,µ#µ)A(c)

(R,q,Q) → S
(λ#λ,µ#µ)
(R,q,Q) → S

(λ#λ,µ#µ)R(c)

(R,q,Q) → 0

(see above) where the left map is the natural inclusion and the right map is

the restricted bi-PKn-homomorphism (c)Ψ(λ#λ,µ#µ)(R, q,Q)
yM(λ,µ)

S(λ#λ,µ#µ)
respectively

Ψ
(c)

(λ#λ,µ#µ)
(R, q,Q)

yM(λ,µ)

S(λ#λ,µ#µ)
to combine the inductively existing generic bi-Specht

series for S
(λ#λ,µ#µ)(c)A
(R,q,Q) and S

(λ#λ,µ#µ)(c)R
(R,q,Q) respectively S

(λ#λ,µ#µ)A(c)

(R,q,Q) and S
(λ#λ,µ#µ)R(c)

(R,q,Q)

into a generic bi-Specht series for S
(λ#λ,µ#µ)
(R,q,Q) . This completes the derivation of

generic bi-Specht series for Hecke algebras of type B. Using the constructions and

results from [PAL], this chapter can easily be translated to Hecke algebras of type

D, thus providing generic bi-Specht series for them as well.

Finally, I wish to thank my supervisor Prof. Dr. Richard Dipper and the other

reviewers for the devotion of their time and for their patience. I also am grateful
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to the DFG for financial support. This thesis is a late contribution to the DFG

project “Algorithmic Number Theory and Algebra”.



Deutschsprachige Übersicht

Mit Weyl-Gruppen assoziierte Hecke-Algebren tauchen in verschiedenen Zweigen

der Mathematik und der Physik auf. Hecke-Algebren vom Typ A dienen in der Kno-

tentheorie zur Konstruktion von topologischen Invarianten (siehe [JON]), außerdem

werden sie auch in der statistischen Mechanik verwendet (siehe [JIM1], [JIM2]). In

der Theorie der Quantengruppen spielen sie in der quantisierten Version der klas-

sischen Schur-Weyl-Reziprozität zwischen generellen linearen Gruppen und sym-

metrischen Gruppen die Rolle der Gruppenalgebren symmetrischer Gruppen (siehe

wiederum [JIM2]). Weiter sind die mit Weyl-Gruppen assoziierten Hecke-Algebren

ein wertvolles Werkzeug in der Darstellungstheorie von algebraischen Gruppen und

endlichen Gruppen vom Lie-Typ (siehe [IWA] und [KL]). Insbesondere sind sie sehr

nützlich bei der Bestimmung der Zerlegungszahlen von endlichen Gruppen vom Lie-

Typ, da ihre Zerlegungsmatrizen in die der entsprechenden Gruppen eingebettet

sind (siehe [DIP] und [DJ3]).

Der erste Teil der vorliegenden Dissertation ist ein Beitrag zu dieser letzteren An-

wendung von Hecke-Algebren. Hier werden die Zerlegungsmatrizen gewisser Blöcke

von Hecke-Algebren vom Typ A untersucht. Um dies genauer zu beschreiben,

wählen wir die folgenden Koeffizientenringe und Parameter. Sei Q ein Körper und

sei ψ eine diskrete Bewertung auf Q, so daß Q vollständig bezüglich ψ ist. Damit

bezeichne S den Bewertungsring von ψ in Q, I das Bewertungsideal von ψ in S

und F den Restklassenkörper S/I . Dann hat man die Inklusion S ↪→ Q und die

Reduktion modulo I ·̄ : S → F . Weiter wird eine Einheit a ∈ S fest gewählt.

Dann ist a auch eine Einheit in Q und ā ist eine Einheit in F . Wir nehmen an,

daß es natürliche Zahlen m gibt, für die in F
∑m−1

i=0 āi = 0 gilt — das Gegenteil

ist hier nicht von Interesse — und notieren das Minimum dieser Zahlen als eF (ā).

Mit alledem setzen wir n = 3eF (ā) und bilden die Hecke-Algebren vom Typ An−1

über den Koeffizientenringen Q, S und F mit den jeweiligen Parametern a, a und ā.

Diese Algebren werden als H(Q,a)
An−1

, H(S,a)
An−1

und H(F,ā)
An−1

notiert (siehe Abschnitt 1.2).

Wir nehmen auch an, daß H(Q,a)
An−1

halbeinfach ist.

Ähnlich wie im Spezialfall der symmetrischen Gruppen werden die Blöcke dieser

xix
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Algebren durch eF (ā)-Kerne von Partitionen von n indiziert und durch die eF (ā)-

Gewichte dieser Kerne in Familien eingeteilt. Der hier betrachtete Block wird durch

die Partition (0) von 0 indiziert und hat eF (ā)-Gewicht 3. Die obige Wahl von n

stellt sicher, daß die AlgebrenH(Q,a)
An−1

,H(S,a)
An−1

undH(F,ā)
An−1

tatsächlich solch einen Block

haben. Er kann als ihr Hauptblock angesehen werden. Wir bezeichnen diesen Block

mit B(0)(n) und seine Zerlegungsmatrix mit ∆Hn ((0)) (siehe Abschnitt 1.8).

Die für die Blockzerlegungsmatrix ∆Hn ((0)) erhaltenen Resultate sind wie folgt.

Zuerst wird gezeigt, daß alle ihre Einträge 0 oder 1 sind. Dann wird mit Hilfe

dieser Tatsache und der quantisierten Version des Satzes von Schaper aus [JM]

ein rein kombinatorischer Algorithmus zur Berechnung von ∆Hn ((0)) beschrieben.

Schließlich wird gezeigt, daß die Matrix ∆Hn ((0)) nur von der Charakteristik von

F und der Zahl eF (ā) abhängt. Wenn die Charakteristik von F weder 2 noch 3

ist, kann die Abhängigkeit von dieser sogar noch eliminiert werden, so daß ∆Hn ((0))

vollständig durch eF (ā) bestimmt ist. Dies beweist eine Vermutung von James

(siehe [JAM2, Section 4]) für den Spezialfall der Teilmatrix ∆Hn ((0)) der Zerlegungs-

matrix der Algebren H(Q,a)
An−1

, H(S,a)
An−1

und H(F,ā)
An−1

.

Der zweite Teil der vorliegenden Dissertation befaßt sich mit generischen Eigen-

schaften von Hecke-Algebren der Typen A und B. Generisch bedeutet, daß diese

Eigenschaften unabhängig von der Wahl des Koeffizientenrings und der Parameter

für die Hecke-Algebra sind. Dabei kann der Koeffizientenring ein beliebiger In-

tegritätsbereich sein. Die betrachteten Eigenschaften sind generische Specht-Serien

für Hecke-Algebren vom Typ A und generische Bi-Specht-Serien für Hecke-Algebren

vom Typ B.

Eine generische Specht-Serie für eine Hecke-Algebra vom Typ A ist eine Reihe

von Rechtsidealen in dieser Algebra, so daß alle Quotienten aufeinanderfolgender

Ideale isomorph zu Specht-Moduln (siehe Abschnitt 1.3) sind und sich außerdem

alle in der Konstruktion dieser Reihe auftretenden Algebra-Elemente, Ideale und

Homomorphismen bei einem Wechsel des Koeffizientenrings stabil verhalten. Dabei

werden die Specht-Moduln für Hecke-Algebren vom Typ A aus [DJ1] verwendet.

Analog ist eine generische Bi-Specht-Serie für eine Hecke-Algebra vom Typ B

eine Reihe von Rechtsidealen in dieser Algebra, so daß alle Quotienten aufeinander-

folgender Ideale isomorph zu Bi-Specht-Moduln (siehe Abschnitt 4.4) sind und sich

außerdem alle in der Konstruktion dieser Reihe auftretenden Algebra-Elemente,

Ideale und Homomorphismen bei einem Wechsel des Koeffizientenrings stabil ver-

halten. Die dabei verwendeten Bi-Specht-Moduln sind eine Verallgemeinerung der

Bi-Specht-Moduln aus [DJ3].

In der vorliegenden Dissertation werden Ideen aus [JAM1, Section 16] und
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[DJ1, Section 7] auf Hecke-Algebren vom Typ A verallgemeinert, um generische

Specht-Serien für diese zu erhalten. Insbesondere werden neue generische Basen

der dort eingeführten “Zwischenmoduln” Sµ
#µ konstruiert (siehe Abschnitt 3.10).

Aus diesen generischen Specht-Serien für Hecke-Algebren vom Typ A werden dann

durch Übertragung der bei ihrer Konstruktion verwendeten Algebra-Elemente, Ide-

ale und Homomorphismen auf Hecke-Algebren vom Typ B mit Methoden aus [DJ3]

generische Bi-Specht-Serien für Hecke-Algebren vom Typ B gewonnen.

Der Aufbau der vorliegenden Dissertation ist wie folgt. In Kapitel 1 werden

Hintergrundmaterial und bekannte Tatsachen über Hecke-Algebren vom Typ A, die

später benötigt werden, zusammengestellt. Das Kapitel beginnt mit einer Übersicht

über die für die Darstellungstheorie der Weyl-Gruppen vom Typ A — sprich der

symmetrischen Gruppen — benötigte Kombinatorik. Dabei wird unter anderem an

Kompositionen und Partitionen, Haken und Randhaken, β-Sequenzen und Rechen-

schieber, Kerne, Tableaux, Young-Untergruppen und kürzeste Repräsentanten und

auch an Zeilennummernlisten erinnert.

Der nächste Abschnitt enthält einige elementare Dinge über Hecke-Algebren vom

Typ A. Hier werden etwa Erzeuger und Relationen für diese Algebren angegeben

und grundlegende Begriffe in Bezug auf die verwendeten Koeffizientenringe einge-

führt. Abschnitt 1.3 beschreibt die Herleitung der irreduziblen Darstellungen von

Hecke-Algebren vom Typ A über Körpern wie sie in [DJ1] durchgeführt wird. Dabei

wird auch an die generischen Permutationsmoduln und Specht-Moduln von dort

erinnert. Der nachfolgende Abschnitt überträgt die Ausführungen zur modularen

Reduktion und zu Zerlegungszahlen für Gruppenalgebren aus [CR1, §16] auf die hier

vorliegende Situation. Hier werden die Notationen für Grothendieck-Gruppen, mo-

dulare Systeme, Zerlegungsabbildungen und Zerlegungszahlen für Hecke-Algebren

vom Typ A festgelegt. Als nächstes wird in Abschnitt 1.5 das Verhalten von Specht-

Moduln bei modularer Reduktion zusammen mit einigen Konsequenzen davon be-

schrieben. Dann werden in Abschnitt 1.6 neue modulare Systeme mit besonderen

Eigenschaften aus einem gegebenen modularen System abgeleitet und zur Unter-

suchung der Abhängigkeit der Zerlegungszahlen von Hecke-Algebren vom Typ A

vom verwendeten modularen System benutzt. In Abschnitt 1.7 wird die Behand-

lung projektiv unzerlegbarer Moduln und des Cartan-Brauer-Dreiecks für Gruppen-

algebren aus [CR1, §18] an Hecke-Algebren vom Typ A angepaßt.

Im nachfolgenden Abschnitt werden einige elementare Tatsachen und Begriffe

aus der Blocktheorie von Hecke-Algebren vom Typ A zusammengestellt. Hier wird

an solche Dinge wie Block-Idempotente und Block-Ideale, die Parametrisierung

der Blöcke von Hecke-Algebren vom Typ A durch Kerne von Partitionen und die
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Blockzerlegung von Moduln, Grothendieck-Gruppen, projektiven Klassengruppen

und Zerlegungsmatrizen erinnert. Der nächste Abschnitt behandelt Induktion von

Moduln von einer Hecke-Algebra vom Typ An−2 zur entsprechenden Algebra vom

Typ An−1. Die Induktion von Specht-Moduln und projektiv unzerlegbaren Moduln,

betrachtet als Elemente sowohl von Grothendieck-Gruppen als auch von projektiven

Klassengruppen, wird genauer beschrieben. Dies wird dann benutzt, um eine obere

Schranke für die Zerlegungszahlen eines Blocks der Hecke-Algebra vom Typ An−1

herzuleiten, wobei auch noch vorausgesetzt wird, daß die Zerlegungszahlen der

Hecke-Algebra vom Typ An−2 bekannt sind. Abschnitt 1.10 beschreibt schließlich

den Satz von Schaper für Hecke-Algebren vom Typ A wie er in [JM] bewiesen wird.

Zuerst wird die benötigte Notation eingeführt und der Satz von Schaper formuliert.

Dann wird beschrieben, wie man mit Hilfe dieses Satzes wertvolle Informationen

über Zerlegungszahlen gewinnen kann.

In Kapitel 2 untersuchen wir die Zerlegungsmatrizen von Blöcken von Hecke-

Algebren vom Typ A mit Kern (0) und Gewicht 3. Hier und im folgenden wer-

den die obigen Bezeichnungen und Notationen verwendet. In Abschnitt 2.1 wird

gezeigt, daß alle Einträge von ∆Hn ((0)) 0 oder 1 sind. Dies wird ermöglicht durch

die obere Schranke für die Zerlegungszahlen eines beliebigen Blocks der Algebren

H(Q,a)
An−1

, H(S,a)
An−1

und H(F,ā)
An−1

aus Abschnitt 1.9. Im Fall des Blocks B(0)(n) hängt

diese obere Schranke ab von einer oberen Schranke Un−1 für die Einträge der Zer-

legungsmatrix ∆Hn−1 der Algebren H(Q,a)
An−2

, H(S,a)
An−2

und H(F,ā)
An−2

(siehe Abschnitt 1.4)

und einer gewissen ganzen Zahl J(0), die durch kombinatorische Manipulationen

der zu B(0)(n) gehörigen Partitionen bestimmt ist. Da das Gewicht jedes Blocks

von H(Q,a)
An−2

, H(S,a)
An−2

und H(F,ā)
An−2

kleiner als 3 ist, kann die obere Schranke Un−1 aus

Resultaten über solche Blöcke in [RIC] und [JAM2] gewonnen werden.

Zur Auswertung von J(0) gehen wir wie folgt vor. Zuerst werden die zu B(0)(n)

gehörigen Partitionen — das heißt die mit eF (ā)-Kern (0) — entsprechend der For-

men der ihnen zugeordneten Rechenschieber in Familien eingeteilt wie in [MR2]

beschrieben. Dann wird die Definition von J(0) aus Satz 1.9.18 in Rechenschieber-

notation übersetzt. Damit wird J(0) schließlich durch explizite Betrachtung jeder

einzelnen Familie der in dem Block B(0)(n) liegenden Partitionen bestimmt. Die für

Un−1 und J(0) erhaltenen Werte liefern nun die obere Schranke 1 für alle Einträge

von ∆Hn ((0)).

Abschnitt 2.2 zeigt zuerst, wie die Matrix ∆Hn ((0)) explizit berechnet werden

kann, und untersucht dann ihre Abhängigkeit von den verwendeten Koeffizienten-

ringen und Parametern. Die explizite Berechnung von ∆Hn ((0)) beruht auf der quan-

tisierten Version des Satzes von Schaper aus [JM]. Mit Hilfe dieses Satzes kann man
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für jeden Eintrag in einer Zeile von ∆Hn ((0)) entscheiden, ob er verschwindet oder

nicht, vorausgesetzt die vorhergehenden Zeilen — bezüglich einer geeigneten Anord-

nung — sind bekannt (siehe Bemerkung 1.10.9.(ii)). Diese Tatsache und die in Ab-

schnitt 2.1 hergeleitete obere Schranke 1 für alle Zerlegungszahlen des BlocksB(0)(n)

ermöglichen die explizite Berechnung seiner Zerlegungsmatrix ∆Hn ((0)) durch einen

einfachen Induktionsprozeß.

Der zweite Themenbereich in Abschnitt 2.2 ist die Abhängigkeit der Blockzer-

legungsmatrix ∆Hn ((0)) von den Koeffizientenringen und Parametern der Algebren

H(Q,a)
An−1

, H(S,a)
An−1

und H(F,ā)
An−1

. Es stellt sich heraus, daß diese Matrix durch den Wert

eF (ā) und die Charakteristik von F bestimmt ist. Zu diesem Ergebnis gelangt man

folgendermaßen. Zunächst werden die Beziehungen zwischen eF (ā) und der Charak-

teristik von F einerseits und den Parametern a und ā der Hecke-Algebren ander-

erseits beschrieben (siehe Lemma 2.2.3 bis Lemma 2.2.5). Es zeigt sich, daß dabei

drei unterschiedliche Fälle betrachtet werden müssen. Mit Hilfe der Charakter-

isierungen dieser Fälle werden die Werte der Bewertung ψ auf quantisierten ganzen

Zahlen (siehe Definition 1.2.2.(i)) ermittelt. Solche Ausdrücke tauchen im Satz von

Schaper auf. Wir erhalten, daß diese Werte vollständig durch eF (ā) und die Charak-

teristik von F bestimmt sind. Diese Tatsache und die im vorhergehenden Absatz

beschriebene Methode zur Berechnung der Matrix ∆Hn ((0)) mit Hilfe des Satzes von

Schaper zeigen schließlich, daß die Zerlegungszahlen von B(0)(n) wie behauptet nur

von der Charakteristik von F und eF (ā) abhängen.

Diese Abhängigkeit kann noch weiter reduziert werden, wenn man annimmt,

daß die Charakteristik von F weder 2 noch 3 ist. Diese Voraussetzung ermöglicht

eine genauere Aussage über die Werte von ψ auf den für die oben beschriebene

Berechnung von ∆Hn ((0)) relevanten quantisierten ganzen Zahlen. Man erhält eine

Faktorisierung dieser Werte, wobei der eine Faktor vollständig durch eF (ā) und

die Charakteristik von F bestimmt ist, während der andere nur von eF (ā) und

der der quantisierten ganzen Zahl zugrunde liegenden gewöhnlichen ganzen Zahl

abhängt. Die Kombination dieser Faktorisierung mit dem Satz von Schaper und der

oben beschriebenen Berechnung der Zerlegungszahlen des Blocks B(0)(n) ergibt, daß

∆Hn ((0)) bereits allein durch eF (ā) bestimmt ist, vorausgesetzt die Charakteristik

von F ist weder 2 noch 3.

Kapitel 3 befaßt sich mit der Konstruktion von generischen Specht-Serien für

Hecke-Algebren vom Typ A (siehe oben). Dazu seien im folgenden ein Grad n,

ein Integritätsbereich R, eine Einheit q ∈ R und damit die Hecke-Algebra H(R,q)
An−1

fest gewählt. Die Abschnitte 3.1 bis 3.3 stellen die zur Konstruktion einer gene-

rischen Specht-Serie für diese Algebra benötigte Kombinatorik zur Verfügung. Ab-
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schnitt 3.1 erinnert an Ordnungsrelationen für zeilenstandard Tableaux und die

entsprechenden kürzesten Repräsentanten. Abschnitt 3.2 diskutiert PKn-Paare

µ#µ und die für sie erklärten Operatoren Ac und Rc wie in [JAM1] beschrieben

und außerdem einige damit verbundene Tableaux und Permutationen. Kurz gesagt

besteht ein PKn-Paar aus einer Partition µ# und einer Komposition µ von n (siehe

Abschnitt 1.1), die gewissen Bedingungen genügen. Wenn man weiter einen In-

dex c > 1 hat, so daß die (c − 1). und c. Einträge von µ# und µ zusätzliche

Anforderungen erfüllen, dann kann man die zugehörigen Operatoren Ac und Rc

anwenden. Der Operator Ac liefert eine Partition µ#Ac und damit ein PKn-Paar

µ#Acµ. Der Operator Rc liefert eine Komposition µRc und weiter ein PKn-Paar

µ#µRc. Abschnitt 3.3 behandelt die verschiedenen Aspekte der Verwendung von

Zeilennummernlisten bei der Konstruktion der Specht-Serien. Dies sind etwa die

Verbindung zu PKn-Paaren mittels guter und schlechter Einträge, die daraus re-

sultierende Einteilung von Zeilennummernlisten in Mengen Zµ#µ und Abbildungen

zwischen solchen Mengen aus [JAM1], aber auch Ordnungsrelationen zwischen aus

den Zeilennummernlisten abgeleiteten Permutationen.

Die Abschnitte 3.4 und 3.5 erinnern an bekannte Moduln und Homomorphismen,

die zur Konstruktion der Specht-Serien benutzt werden. Abschnitt 3.4 wiederholt

die Definition der durch PKn-Paare indizierten PKn-Moduln Sµ
#µ

(R,q) aus [DJ1] und

stellt einige elementare Tatsachen über sie zusammen. Abschnitt 3.5 erklärt die

Konstruktion von PKn-Homomorphismen

Ψ
(R,q)

µ#µc
: Mµ

(R,q) →MµRc
(R,q)

und zählt einige grundlegende Eigenschaften von ihnen auf. Ein solcher Homomor-

phismus wird indiziert durch ein PKn-Paar µ#µ und eine ganze Zahl c, die die An-

wendung des entsprechenden Paares von Operatoren Ac und Rc auf µ#µ ermöglicht

(siehe oben). Er bildet den Permutationsmodul Mµ
(R,q) (siehe Abschnitt 1.3) in den

Permutationsmodul MµRc
(R,q) und den PKn-Modul Sµ

#µ
(R,q) in den PKn-Modul Sµ

#µRc
(R,q)

ab. Dies alles stammt aus [DJ1].

Die nächsten beiden Abschnitte führen ZNL-Elemente ein und beschreiben die

Wirkung von PKn-Homomorphismen auf ihnen. In Abschnitt 3.6 definieren wir für

eine Komposition λ von n und jede Zeilennummernliste ζ in der Menge Zλ (siehe

Abschnitt 1.1) das entsprechende ZNL-Element z(ζ)(R,q) in Mλ
(R,q). Wir leiten auch

einige elementare Tatsachen über diese Elemente her. So bestimmen wir etwa ihre

Darstellungen bezüglich der Zeilenstandard-Basis BMλ

row std(R, q) von Mλ
(R,q) (siehe

Abschnitt 1.3). Daraus wiederum erhalten wir ihre lineare Unabhängigkeit. In

Abschnitt 3.7 untersuchen wir für ein gegebenes PKn-Paar µ#µ die Bilder der

durch Zeilennummernlisten ζ ∈ Zµ#µ indizierten ZNL-Elemente z(ζ)(R,q) unter
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einem PKn-Homomorphismus Ψ
(R,q)

µ#µc
: Mµ

(R,q) → MµRc
(R,q) und leiten deren Darstel-

lungen bezüglich der Basis BMµRc

row std(R, q) von MµRc
(R,q) her. Es zeigt sich, daß die

z(ζ)(R,q) mit ζ ∈ Zµ#Acµ ⊆ Zµ#µ in Ker Ψ
(R,q)

µ#µc
liegen und daß die z(ζ)(R,q)Ψ

(R,q)

µ#µc

mit ζ ∈ Zµ#µ \ Zµ#Acµ linear unabhängig sind.

In den folgenden drei Abschnitten werden aus ZNL-Elementen bestehende Basen

von PKn-Moduln hergeleitet. In Abschnitt 3.8 zeigen wir, daß für ein PKn-Paar µ#µ

mit einem Paar von Operatoren Ac und Rc dafür die Menge
{
z(η)(R,q)

∣∣∣ η ∈ Zµ#µRc
}

eine R-Basis des PKn-Moduls Sµ
#µRc

(R,q) bildet, vorausgesetzt
{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#µ
}

ist eine R-Basis von Sµ
#µ

(R,q). Diese Aussage erhalten wir durch einen Vergleich

der Darstellungen der Elemente z(ζ)(R,q)Ψ
(R,q)

µ#µc
für ζ ∈ Zµ#µ \ Zµ#Acµ bezüglich

BMµRc

row std(R, q) mit denen der Elemente z(η)(R,q) für η ∈ Zµ#µRc . In Abschnitt 3.9

betrachten wir wiederum ein PKn-Paar µ#µ mit einem Paar von Operatoren Ac

und Rc dafür und nehmen auch wieder an, daß
{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#µ
}

eine R-Basis

von Sµ
#µ

(R,q) ist. Mit diesen Voraussetzungen zeigen wir, daß
{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#Acµ
}

eine R-Basis von Ker
(

Ψ
(R,q)

µ#µc

yMµ

Sµ
#µ

)
bildet. Dazu verwenden wir das Ergebnis des

vorhergehenden Abschnitts und grundlegende Eigenschaften von ZNL-Elementen

und PKn-Homomorphismen. Mit Hilfe dieser Basis von Ker
(

Ψ
(R,q)

µ#µc

yMµ

Sµ
#µ

)
ergibt

sich leicht Ker
(

Ψ
(R,q)

µ#µc

yMµ

Sµ
#µ

)
= Sµ

#Acµ
(R,q) . In Abschnitt 3.10 entfernen wir die An-

nahme über die R-Basis von Sµ
#µ

(R,q) aus den beiden vorhergehenden Abschnitten mit-

tels Induktion entlang Sequenzen von auf PKn-Paare angewandten Operatoren Ac

und Rc. Die Induktion beginnt immer mit einem PKn-Paar ν#ν spezieller Bauart,

für das Sν
#ν

(R,q) = M ν
(R,q) gilt. Dieser Abschnitt hat die folgenden beiden Hautpergeb-

nisse. Zum einen ist für ein PKn-Paar µ#µ die Menge
{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#µ
}

eine

R-Basis von Sµ
#µ

(R,q). Und zum anderen gilt für ein PKn-Paar µ#µ mit einem Paar

darauf anwendbarer Operatoren Ac und Rc

Ker
(

Ψ
(R,q)

µ#µc

yMµ

Sµ
#µ

)
= Sµ

#Acµ
(R,q) .

Im abschließenden Abschnitt dieses Kapitels konstruieren wir generische Specht-

Serien für PKn-Moduln mittels Induktion in Binärbäumen von den Blättern zur

jeweiligen Wurzel. In diesen Bäumen sind die Knoten mit PKn-Paaren beschriftet

und die Kanten mit Paaren von Operatoren Ac und Rc. Außerdem entsprechen die

Beschriftungen der Blätter gewissen PKn-Moduln, die eine offensichtliche generische

Specht-Serie besitzen. Aus einem gegebenen PKn-Paar µ#µ konstruieren wir solch

einen Baum durch wiederholte Anwendung von Paaren von Operatoren Ac und Rc.

Die Wurzel dieses Baumes ist mit µ#µ beschriftet. Die Beschriftungen ihrer direkten
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Nachfolger lauten µ#Acµ und µ#µRc mit einem geeigneten Paar von Operatoren

Ac und Rc. Entsprechend dazu haben wir die kurze exakte Sequenz

0→ Sµ
#Acµ

(R,q) → Sµ
#µ

(R,q) → Sµ
#µRc

(R,q) → 0,

die in den vorhergehenden Abschnitten hergeleitet wurde. Dabei ist die linke

Abbildung die natürliche Inklusion und die rechte Abbildung die Einschränkung

Ψ
(R,q)

µ#µc

yMµ

Sµ
#µ

. Mittels dieser Sequenz können wir aus den induktiv existierenden

generischen Specht-Serien für Sµ
#Acµ

(R,q) und Sµ
#µRc

(R,q) eine generische Specht-Serie für

Sµ
#µ

(R,q) bilden. Diese Methode wird auch in [DJ1] benutzt. Da jeder Permuta-

tionsmodul ein PKn-Modul ist und außerdem der rechtsreguläre H(R,q)
An−1

-Modul ein

Permutationsmodul, erhalten wir aus diesem Resultat generische Specht-Serien für

PKn-Moduln, Permutationsmoduln und H(R,q)
An−1

.

In Kapitel 4 konstruieren wir generische Bi-Specht-Serien für Hecke-Algebren

vom Typ B (siehe oben) durch Übertragung der Konstruktionen aus dem vorherge-

henden Kapitel auf Hecke-Algebren vom Typ B. Abschnitt 4.1 stellt die für Hecke-

Algebren vom Typ B und die Bi-Specht-Serien benötigte Kombinatorik bereit.

Dazu sei im folgenden ein Grad n fest gewählt. Damit beschreibt der erste Teil

dieses Abschnitts die Weyl-Gruppe vom Typ Bn und führt sogenannte Links- und

Rechtsinklusionen von Weyl-Gruppen vom Typ A in andere Weyl-Gruppen vom

Typ A und in die Weyl-Gruppe vom Typ Bn ein. Der zweite Teil dieses Abschnitts

erinnert zunächst an Bi-Kompositionen und Bi-Partitionen von n und führt dann

Bi-PKn-Paare und Operatoren (c)A, A(c), (c)R und R(c) für diese ein. Dabei hängen

Bi-Kompositionen, Bi-Partitionen und Bi-PKn-Paare noch von einem weiteren Pa-

rameter a ∈ {0, . . . , n} ab. Eine Bi-Komposition ist ein Paar (λ, µ) mit einer

Komposition λ von a und einer Komposition µ von n − a. Eine Bi-Partition ist

eine aus zwei Partitionen bestehende Bi-Komposition. Ein Bi-PKn-Paar (λ#λ, µ#µ)

besteht aus einem PKa-Paar λ#λ und einem PKn−a-Paar µ#µ. Die durch ganze

Zahlen c > 1 indizierten Operatoren (c)A, A(c), (c)R und R(c) wirken auf ein Bi-

PKn-Paar (λ#λ, µ#µ) durch Anwendung des Operators Ac beziehungsweise Rc auf

λ#λ beziehungsweise µ#µ — vorausgesetzt dies ist möglich — um wiederum ein

Bi-PKn-Paar zu erhalten.

Abschnitt 4.2 stellt einige allgemeine Tatsachen über Hecke-Algebren vom Typ

B zusammen. Zunächst wird die Konstruktion der Hecke-Algebra vom Typ Bn über

einem Integritätsbereich R mit einer Einheit q ∈ R und einem beliebigen Element

Q ∈ R mittels Erzeugern und Relationen beschrieben. Diese Algebra wird als

H(R,q,Q)
Bn

notiert. Dann werden die Links- und Rechtsinklusionen für Weyl-Gruppen

der Typen A und B aus dem vorhergehenden Abschnitt auf Hecke-Algebren der
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Typen A und B übertragen.

Abschnitt 4.3 führt Bi-Permutationsmoduln für H(R,q,Q)
Bn

ein und gibt dabei

einen Überblick über eine allgemeine Methode zur Konstruktion von “interessan-

ten” Rechtsidealen in Hecke-Algebren vom Typ B aus Rechtsidealen in Hecke-

Algebren vom Typ A. Diese Methode stammt aus [DJ3]. Es handelt sich dabei um

eine Übertragung der wohlbekannten Ableitung der Darstellungstheorie von Weyl-

Gruppen vom Typ B aus der von Weyl-Gruppen vom Typ A (siehe etwa [KER])

auf Hecke-Algebren. Zunächst wiederholt dieser Abschnitt die Definition gewisser

Elemente v
(R,q,Q)
a,n−a von H(R,q,Q)

Bn
mit a ∈ {0, . . . , n}. Wenn man die Weyl-Gruppe

vom Typ Bn als Kranzprodukt C2 oSn auffaßt, wobei C2 die zyklische Gruppe der

Ordnung 2 bezeichnet, dann entsprechen diese Elemente gewissen Summen über die

Basisgruppe C2 × · · · × C2 (n mal) des Kranzprodukts. Dann beschreiben wir eine

Filtrierung von H(R,q,Q)
Bn

mit Rechtsidealen, bei der alle Subquotienten von der Form

v
(R,q,Q)
a,n−a H

(R,q,Q)
Bn

sind. Als nächstes werden Ideale mit R-Basen betrachtet. Dazu sei

a ∈ {1, . . . , n− 1} und damit M ein Rechtsideal in H(R,q)
Aa−1

und N ein Rechtsideal in

H(R,q)
An−a−1

, die beide R-Basen besitzen. Wenn man nun die Rechtsinklusion von M

in H(R,q,Q)
Bn

(siehe oben) als M
a→ notiert und die Linksinklusion von N in H(R,q,Q)

Bn

(siehe oben) als N
n−a← , dann erhält man aus den R-Basen von M und N leicht

eine R-Basis des Rechtsideals v
(R,q,Q)
a,n−a

(
M

a→
)(

N
n−a←
)
H(R,q,Q)
Bn

inH(R,q,Q)
Bn

. Schließlich

definieren wir Bi-Permutationsmoduln für Hecke-Algebren vom Typ B, indem wir

diese Konstruktion auf Permutationsmoduln für Hecke-Algebren vom Typ A an-

wenden. Bi-Permutationsmoduln werden durch Bi-Kompositionen indiziert. Der

einer Bi-Komposition (λ, µ) entsprechende Bi-Permutationsmodul wird als M
(λ,µ)
(R,q,Q)

notiert.

In Abschnitt 4.4 definieren wir Bi-Specht-Moduln für Hecke-Algebren vom Typ

B und leiten R-Basen für sie her. Das geschieht durch Anwendung der Methode

aus dem vorhergehenden Abschnitt auf Specht-Moduln für Hecke-Algebren vom Typ

A. Bi-Specht-Moduln werden durch Bi-Partitionen indiziert. Der einer Bi-Partition

(λ, µ) entsprechende Bi-Specht-Modul wird als S
(λ,µ)
(R,q,Q) notiert.

Abschnitt 4.5 führt Bi-PKn-Moduln für Hecke-Algebren vom Typ B ein, be-

schreibt R-Basen für sie und diskutiert elementare Beziehungen zwischen ihnen,

Bi-Permutationsmoduln und Bi-Specht-Moduln. Die Konstruktion der Bi-PKn-

Moduln verwendet PK-Moduln für Hecke-Algebren vom Typ A und beruht wie-

derum auf der in Abschnitt 4.3 beschriebenen Methode. Bi-PKn-Moduln werden

durch Bi-PKn-Paare indiziert. Der einem Bi-PKn-Paar (λ#λ, µ#µ) entsprechende

Bi-PKn-Modul wird als S
(λ#λ,µ#µ)
(R,q,Q) notiert.

In Abschnitt 4.6 definieren wir Bi-PKn-Homomorphismen und beschreiben ihre
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Wirkung auf Bi-PKn-Moduln. Ein solcher Homomorphismus wird indiziert durch

ein Bi-PKn-Paar (λ#λ, µ#µ) und eine ganze Zahl c, die die Anwendung des ent-

sprechenden Paares von Operatoren (c)A und (c)R beziehungsweise A(c) und R(c) auf

(λ#λ, µ#µ) ermöglicht (siehe oben). Nach Definition bilden Bi-PKn-Homomorphis-

men Bi-Permutationsmoduln in Bi-Permutationsmoduln ab. Sie werden als

(c)Ψ(λ#λ,µ#µ)(R, q,Q) : M
(λ,µ)
(R,q,Q) →M

(λRc,µ)
(R,q,Q)

und

Ψ
(c)

(λ#λ,µ#µ)
(R, q,Q) : M

(λ,µ)
(R,q,Q) →M

(λ,µRc)
(R,q,Q)

notiert. Diese Homomorphismen werden aus PK-Homomorphismen für Hecke-

Algebren vom Typ A abgeleitet. Das geschieht auf eine Art und Weise, die verträg-

lich mit der Konstruktion von Bi-Permutationsmoduln aus Permutationsmoduln für

Hecke-Algebren vom Typ A ist. So können wir die Bilder und Kerne von Bi-PKn-

Homomorphismen bestimmen, wenn diese auf Bi-PKn-Moduln angewandt werden.

Wir erhalten (
S

(λ#λ,µ#µ)
(R,q,Q)

)
(c)Ψ(λ#λ,µ#µ)(R, q,Q) = S

(λ#λ,µ#µ)(c)R
(R,q,Q)

und

Ker
(

(c)Ψ(λ#λ,µ#µ)(R, q,Q)
yM(λ,µ)

S(λ#λ,µ#µ)

)
= S

(λ#λ,µ#µ)(c)A
(R,q,Q)

und analoge Aussagen für Homomorphismen Ψ
(c)

(λ#λ,µ#µ)
(R, q,Q).

In Abschnitt 4.7 benutzen wir die Definitionen und Ergebnisse aus den vorherge-

henden Abschnitten, um generische Bi-Specht-Serien für Bi-PKn-Moduln zu kon-

struieren. Diese umfassen generische Bi-Specht-Serien für Bi-Permutationsmoduln,

welche zu einer generischen Bi-Specht-Serie für den rechtsregulären H(R,q,Q)
Bn

-Modul

führen. Die Konstruktion von generischen Bi-Specht-Serien für Bi-PKn-Moduln ist

eine Anpassung der Konstruktion von generischen Specht-Serien für PK-Moduln

aus Abschnitt 3.11 an die vorliegende Situation. Wir beginnen mit einem Bi-PKn-

Modul S
(λ#λ,µ#µ)
(R,q,Q) . Aus dem entsprechenden Bi-PKn-Paar (λ#λ, µ#µ) bilden wir

einen Binärbaum durch wiederholte Anwendung von Paaren von Operatoren (c)A

und (c)R und auch A(c) und R(c). Wir verwenden Induktion über die Knoten dieses

Baumes von den Blättern zur Wurzel, die mit (λ#λ, µ#µ) beschriftet ist. Schließlich

benutzen wir eine der exakten Sequenzen

0→ S
(λ#λ,µ#µ)(c)A
(R,q,Q) → S

(λ#λ,µ#µ)
(R,q,Q) → S

(λ#λ,µ#µ)(c)R
(R,q,Q) → 0

oder

0→ S
(λ#λ,µ#µ)A(c)

(R,q,Q) → S
(λ#λ,µ#µ)
(R,q,Q) → S

(λ#λ,µ#µ)R(c)

(R,q,Q) → 0.
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Dabei ist die linke Abbildung beidesmal die natürliche Inklusion und die rechte Ab-

bildung einmal die Einschränkung (c)Ψ(λ#λ,µ#µ)(R, q,Q)
yM(λ,µ)

S(λ#λ,µ#µ)
und das andere

mal die Einschränkung Ψ
(c)

(λ#λ,µ#µ)
(R, q,Q)

yM(λ,µ)

S(λ#λ,µ#µ)
. Die Existenz und Exakt-

heit dieser Sequenzen wurde in den vorhergehenden Abschnitten nachgewiesen.

Mit der geeigneten exakten Sequenz können wir aus den induktiv existierenden

generischen Bi-Specht-Serien für S
(λ#λ,µ#µ)(c)A
(R,q,Q) und S

(λ#λ,µ#µ)(c)R
(R,q,Q) beziehungsweise

für S
(λ#λ,µ#µ)A(c)

(R,q,Q) und S
(λ#λ,µ#µ)R(c)

(R,q,Q) eine generische Bi-Specht-Serie für S
(λ#λ,µ#µ)
(R,q,Q)

bilden. Damit ist die Herleitung von generischen Bi-Specht-Serien für Hecke-Al-

gebren vom Typ B beendet. Mit Hilfe der Konstruktionen und Ergebnisse aus

[PAL] kann dieses Kapitel fast wörtlich auf Hecke-Algebren vom Typ D übertragen

werden, so daß generische Bi-Specht-Serien auch für diese zur Verfügung stehen.

Abschließend möchte ich mich bei Herrn Prof. Dr. Richard Dipper und auch den

Mitberichtern für ihre Geduld und ihre aufgewendete Zeit bedanken. Weiter danke

ich der Deutschen Forschungsgemeinschaft für finanzielle Unterstützung. Diese Dis-

sertation ist ein später Beitrag zum DFG-Projekt “Algorithmische Zahlentheorie

und Algebra”.
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Chapter 1

Background

This chapter consists for the most part of descriptions of well known definitions,

constructions, and results which are used in later chapters. Combinatorial notations

are introduced and technical facts about Hecke algebras of type A are reviewed.

Central results in this chapter are Theorem 1.8.23 and Theorem 1.9.18.

1.1 Combinatorics

This section introduces the combinatorics required for the definition of Hecke alge-

bras and the description of their representation theory. Furthermore, notations for

some elementary notions are fixed. References for the biggest part of the following

material are [JAM1] and [HUM, Chapter 1, Chapter 2, Chapter 5].

The set {. . . ,−2,−1, 0, 1, 2, . . .} of all integers is denoted by Z. We denote the

set {1, 2, 3, . . .} of all positive integers by N. The set {0, 1, 2, . . .} of all nonnega-

tive integers is denoted by N0. We denote the set {z/y | z ∈ Z, y ∈ Z \ {0}} of all

rational numbers by Q.

For a finite set M , the number of its elements is denoted by |M | ∈ N0. For sets

M , N and a map f : M → N , the restriction of f to a subset U ⊆M is denoted by

f
yM
U : U → N. (1.1)

In everything that follows, n ∈ N denotes a fixed positive integer. The symmetric

group Sn is the group of all permutations on the set {1, . . . , n}. The parameter n

is called the degree of the symmetric group Sn. Group elements operate from the

right on these numbers and are written in cycle notation. Thus, for u = (1, 2, 3)

and v = (1, 2)(3, 4), we have 2u = 3 and uv = (2, 4, 3). The neutral element of Sn

is denoted by 1Sn . For a set M ⊆ {1, . . . , n}, we put

SM = {w ∈ Sn | ∀j ∈ {1, . . . , n} \M : jw = j} ⊆ Sn. (1.2)

1
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SM is a subgroup of Sn.

Sn is isomorphic to the Weyl group WAn−1 of type An−1 which is generated by

the elements

s1, . . . , sn−1 (1.3)

together with the relations

∀i ∈ {1, . . . , n− 1} : s2
i = 1WA

,

∀i ∈ {1, . . . , n− 2} : sisi+1si = si+1sisi+1,

∀i, j ∈ {1, . . . , n− 1} with |i− j| > 1 : sisj = sjsi

(1.4)

where 1WA
denotes the neutral element of that group (see, for example, [HUP,

Beispiel 19.7]). More generally, WAn−1 is called a Weyl group of type A and denoted

by WA. WAn−1 is the Weyl group of the root system of type An−1 with the following

Dynkin diagram.

e e e eq q q
1 2 n− 2 n− 1

Here, for each j ∈ {1, . . . , n− 1}, the vertex j corresponds to the generator sj

of WAn−1 . These generators are called simple reflections. They correspond to the

generating set

Bn = {(1, 2), . . . , (n− 1, n)} (1.5)

of Sn consisting of transpositions of adjacent numbers. More precisely, one has

WAn−1

∼→ Sn with sj 7→ (j, j + 1) for j ∈ {1, . . . , n− 1} . (1.6)

In the following, WAn−1 and Sn are identified by means of this isomorphism. The

elements of Bn also are called simple reflections.

With this, reduced expressions and the length function translate from WAn−1 to

Sn. According to (1.3) and (1.4), each w ∈ WAn−1 can be expressed as a product

of simple reflections. A reduced expression for w is such a representation with the

smallest possible number of factors. The length `(w) = `A(w) = `An−1(w) of w in

WAn−1 is defined as the number of factors in a reduced expression of w. Thus, a

reduced expression of w has the form

w = si1 · · · si`(w)
(1.7)

with certain i1, . . . , i`(w) ∈ {1, . . . , n− 1}. For the length function

`An−1 = `A = ` : WAn−1 → N0, w 7→ `An−1(w) = `A(w) = `(w), (1.8)
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the following statements hold.

(i) ∀w ∈ WAn−1 : `(w) = 0⇔ w = 1WA
.

(ii) ∀w ∈ WAn−1 : `(w) = 1⇔ w ∈ {s1, . . . , sn−1} .

(iii) ∀w ∈ WAn−1 , s ∈ {s1, . . . , sn−1} : `(ws) ∈ {`(w)− 1, `(w) + 1} .

(iv) ∀w ∈ WAn−1 : `(w−1) = `(w).

(1.9)

When interpreting a w ∈ WAn−1 as a permutation in Sn, its length can be deter-

mined as follows.

`(w) = |{(i, j) ∈ {1, . . . , n} × {1, . . . , n} | i < j and iw > jw}| (1.10)

Furthermore, a reduced expression of w ∈ Sn has the form

w = v1 · · · v`(w) (1.11)

with certain factors v1, . . . , v`(w) ∈ Bn.

In what follows, some combinatorial constructions related to the representation

theory of symmetric groups are described. These will be generalized to Hecke

algebras. Until further notice, let

m ∈ N0

be an arbitrarily chosen nonnegative integer.

Definition 1.1.1 (i) A composition of m is a sequence

λ = (λ1, λ2, . . .)

with entries λj ∈ N0 for j ∈ N such that∑
j∈N

λj = m

holds. This is denoted by

λ � m.

(ii) For a λ = (λ1, λ2, . . .) � m and a j ∈ N0,

λ+
j =

j∑
i=1

λi

denotes the partial sum of the first j entries of λ.
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(iii) The set of all compositions of m is denoted by

Ξm = {λ | λ � m} .

Our notation of compositions uses the following simplifications. For every composi-

tion λ = (λ1, λ2, . . .), all entries with large enough indices are 0, these are omitted.

Furthermore, successive entries of the same value are written in power notation. In

doing so, the exponent 0 with the obvious interpretation will also be used. With

these conventions, one has for example

λ = (8, 0, 3, 3, 3, 3, 6, 6, 0, 0, 0, 5, 1, 0, 0, 0, . . .)

= (8, 0, 3, 3, 3, 3, 6, 6, 0, 0, 0, 5, 1)

= (8, 0, 34, 62, 03, 5, 1) � 38.

Definition 1.1.2 (i) A partition of m is a λ = (λ1, λ2, . . .) � m such that the

entries λj ∈ N0 with j ∈ N satisfy

λ1 ≥ λ2 ≥ · · · .

This is denoted by

λ ` m.

(ii) For an e ∈ N ∪ {∞}, a λ = (λ1, λ2, . . .) ` m is called e-singular if there is

an index j ∈ N such that λj = λj+1 = · · · = λj+e−1 > 0 holds. If λ is not

e-singular, λ is called e-regular.

(iii) The set of all partitions of m is denoted by

Πm = {λ | λ ` m} .

Furthermore, we put for an e ∈ N ∪ {∞}

Πm,e = {λ ` m | λ e-regular} .

Remark 1.1.3 Obviously, for an

e ∈ {m+ 1,m+ 2, . . .} ∪ {∞}

every λ ∈ Πm is e-regular, and we have

Πm,e = Πm.

The ordering relations described in the following definition also are considered

in [MUR, Section 3, especially Definition 3.1] and elsewhere.



1.1. COMBINATORICS 5

Definition 1.1.4 Let λ = (λ1, λ2, . . .) � m and let µ = (µ1, µ2, . . .) � m.

(i) We write

λ < µ

if there is an i ∈ N such that both

λi < µi and ∀j ∈ {1, . . . , i− 1} : λj = µj

hold. Furthermore, we write

λ ≤ µ

if

(λ < µ) ∨ (λ = µ)

holds.

(ii) We write

λ E µ

if

∀i ∈ N : λ+
i ≤ µ+

i

holds. Furthermore, we write

λ C µ

if

(λ E µ) ∧ (λ 6= µ)

holds.

Lemma 1.1.5 (i) The relation ≤ on the set Ξm is a total ordering relation.

(ii) The relation E on the set Ξm is a partial ordering relation.

(iii) Let λ, µ � m. Then

λ E µ⇒ λ ≤ µ.

Proof. See elsewhere, for example [MUR, Section 3]. �

Definition 1.1.6 Let λ = (λ1, λ2, . . .) � m.

(i) The diagram of λ is the set of lattice points

[λ] = {(i, j) | i ∈ N and j ∈ {1, . . . , λi}} ⊆ N× N.
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(ii) For k ∈ N, the k-th row of [λ] is the set of lattice points

{(k, j) | j ∈ N and (k, j) ∈ [λ]} = {(k, j) | j ∈ {1, . . . , λk}} .

The length of the k-th row of [λ] is given by

|{(k, j) | j ∈ N and (k, j) ∈ [λ]}| = λk ∈ N0.

(iii) For k ∈ N, the k-th column of [λ] is the set of lattice points

{(j, k) | j ∈ N and (j, k) ∈ [λ]} .

The length of the k-th column of [λ] is given by

|{(j, k) | j ∈ N and (j, k) ∈ [λ]}| ∈ N0.

The diagram [λ] of a composition λ = (λ1, λ2, . . .) of m is represented by squares

in the plane ordered by rows. A square is placed at each lattice point in [λ]. Then,

for every j ∈ N, the j-th row contains exactly λj squares, and the left ends of all

rows are aligned one under another. The following picture shows on the left hand

side the representation of the diagram [λ] of λ = (3, 5, 0, 2) � 10 and on the right

hand side the representation of the diagram [µ] of µ = (6, 42, 2, 1) ` 17.

1

2

3

4

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5 6

The rows of these arrangements correspond exactly to the rows of [λ] and [µ] as

defined in Definition 1.1.6.(ii) and are numbered in ascending order from top to

bottom. The columns of these arrangements correspond exactly to the columns of

[λ] and [µ] as defined in Definition 1.1.6.(iii) and are numbered in ascending order

from left to right.

The following pair of statements gives some elementary properties of composi-

tions, partitions, and their respective diagrams.

Lemma 1.1.7 Let λ = (λ1, λ2, . . .) � m.
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(i) For i ∈ N we have

λi = |{(i, j) | j ∈ N and (i, j) ∈ [λ]}| .

This shows that λ can be reconstructed from [λ].

(ii) We have

|[λ]| = m.

Proof. (i) This follows immediately from Definition 1.1.6.(i).

(ii) This follows from statement (i) and Definition 1.1.1.(i). �

Lemma 1.1.8 Let λ = (λ1, λ2, . . .) ` m.

(i) Let (i, j) ∈ λ and let ĩ ∈ {1, . . . , i}. Then we have

(̃i, j) ∈ [λ] .

(ii) For j ∈ N we have

|{(i, j) | i ∈ N and (i, j) ∈ [λ]}|
≥ |{(i, j + 1) | i ∈ N and (i, j + 1) ∈ [λ]}| .

Proof. (i) This follows from Definition 1.1.2.(i) and Definition 1.1.6.(i).

(ii) This is immediate from Definition 1.1.6.(i). �

Next, an important map on the set Πm will be introduced.

Definition 1.1.9 The map

(·)′ : N× N→ N× N

is defined by

(i, j)′ = (j, i) for (i, j) ∈ N× N.

Lemma 1.1.10 (i) We have

(·)′(·)′ = idN×N.

(ii) Let λ ` m with associated diagram [λ] ⊆ N×N. Then [λ]′ also is the diagram

of a partition of m.

Proof. (i) This follows immediately from Definition 1.1.9.

(ii) This can be obtained from the statements in Lemma 1.1.7 and Lemma 1.1.8.

�

The following is the set [µ]′ for the diagram of µ = (6, 42, 2, 1) ` 17 shown after

Definition 1.1.6.
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According to Lemma 1.1.10, the following definition is meaningful.

Definition 1.1.11 Let λ ` m. Then the partition λ′ is defined by

[λ′] = [λ]′ .

λ′ is said to be transposed to λ. Furthermore, this defines the transposition map

(·)′ : Πm → Πm.

Remark 1.1.12 More generally, for λ = (λ1, λ2, . . .) ` m and every k ∈ N,

the entry λ′k of λ′ = (λ′1, λ
′
2, . . .) ` m is, according to Definition 1.1.6.(iii) and

Lemma 1.1.7.(i), equal to the number of lattice points in the k-th column of [λ]

respectively the number of squares in the k-th column of the representation of [λ].

Thus, the k-th column of [λ] can be written as

{(j, k) | j ∈ {1, . . . , λ′k}} .

Since the diagram [λ] is the disjoint union of its columns, this shows for [λ] and [λ′]

[λ′] = {(i, j) | i ∈ N, j ∈ {1, . . . , λ′i}}
=

⋃
i∈N

{(i, j) | j ∈ {1, . . . , λ′i}}

=
⋃
i∈N

{(i, j) | (j, i) in the i-th column of [λ]}

= {(i, j) | (j, i) ∈ [λ]} .

Thus, [λ′] is obtained from [λ] by means of a “reflection” about the “diagonal”

{(j, j) | j ∈ N} in N×N. This maps the rows of [λ] onto the columns of [λ′] and the

columns of [λ] onto the rows of [λ′]. Furthermore, this shows that the first column of

[λ′] contains λ1 lattice points. Thus, one can write λ′ = (λ′1, . . . , λ
′
λ1

) with λ′λ1
> 0.

The objects and constructions described in the following are related to the block

theory of Hecke algebras of type A. They stem from the block theory of group

algebras of symmetric groups.
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Definition 1.1.13 Let λ = (λ1, λ2, . . .) ` m with λ′ = (λ′1, λ
′
2, . . .) ` m and let

(i, j) ∈ [λ]. Then the (i, j)-hook in λ is defined as

hλ(i,j) = {(i, k) ∈ [λ] | k ∈ {j, . . . , λi}} ∪
{

(k, j) ∈ [λ] | k ∈
{
i, . . . , λ′j

}}
.

hλ(i,j) also is called (i, j)-hook or hook in λ or just hook. We use the notation

hλ(i,j) = h(i,j) = hλ = h.

The size of the set hλ(i,j) is called the hook length of hλ(i,j) or, for short, the length

of hλ(i,j). This value is denoted by∣∣hλ(i,j)∣∣ =
∣∣h(i,j)

∣∣ =
∣∣hλ∣∣ = |h| .

With this, hλ(i,j) also is called a
∣∣∣hλ(i,j)∣∣∣-hook.

Definition 1.1.14 Let λ ` m and let (i, j) ∈ [λ]. Then the (i, j)-rim hook in λ is

defined as

rλ(i,j) =
{

(̃i, j̃) ∈ [λ] | ĩ ≥ i, j̃ ≥ j and (̃i+ 1, j̃ + 1) /∈ [λ]
}
.

rλ(i,j) also is called (i, j)-rim hook or rim hook in λ or just rim hook. We use the

notation

rλ(i,j) = r(i,j) = rλ = r.

The size of the set rλ(i,j) is called the rim hook length of rλ(i,j) or, for short, the

length of rλ(i,j). This value is denoted by∣∣rλ(i,j)∣∣ =
∣∣r(i,j)

∣∣ =
∣∣rλ∣∣ = |r| .

With this, rλ(i,j) also is called a
∣∣∣rλ(i,j)∣∣∣-rim hook.

Lemma 1.1.15 Let λ ` m and let (i, j) ∈ λ. Then∣∣hλ(i,j)∣∣ =
∣∣rλ(i,j)∣∣ .

Proof. See [JK, Seite 56]. �

Now, rim hooks can be removed from and added to partitions such that the

resulting objects are again partitions. This is described in more detail in the fol-

lowing.

Definition 1.1.16 Let λ ` m and let µ ` m̃ with m̃ ∈ N0 such that [µ] ⊆ [λ] holds

and such that [λ] \ [µ] is a rim hook rλ in λ. Then we write

µ = λ \ rλ

and say that µ is λ without the rim hook rλ.
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Definition 1.1.17 Let λ ` m and let µ ` m̃ with m̃ ∈ N0 such that [λ] ⊆ [µ] holds

and such that [µ] \ [λ] is a rim hook rµ in µ. Then we write

µ = λ ∪ rµ

and say that µ is λ together with the rim hook rµ.

Later on, we also will require the removal and addition of single lattice points

from and to the diagram of a partition. These operations are obtained from the

removal and addition of rim hooks by considering rim hooks of length 1.

Definition 1.1.18 Let λ = (λ1, λ2, . . .) ` m and suppose that for an i ∈ N we have

λi > λi+1.

Then the partition

λ \ {(i, λi)} = (λ1, . . . , λi−1, λi − 1, λi+1, . . .)

of m− 1 is called λ without (i, λi). This is denoted by

λ \ (i, λi).

Definition 1.1.19 Let λ = (λ1, λ2, . . .) ` m and suppose that for an i ∈ N we have

(i = 1) ∨ ((i > 1) ∧ (λi < λi−1)).

Then the partition

λ ∪ {(i, λi + 1)} = (λ1, . . . , λi−1, λi + 1, λi+1, . . .)

of m+ 1 is called λ together with (i, λi + 1). This is denoted by

λ ∪ (i, λi + 1).

The sets introduced in the following definition are used in Section 1.9.

Definition 1.1.20 Let k ∈ N.

(i) Let λ = (λ1, λ2, . . .) ` k − 1. Then the set λ ↑⊆ Πk is defined as

λ ↑= {λ ∪ (1, λ1 + 1)} ∪ {λ ∪ (i, λi + 1) | i ∈ N \ {1} and λi < λi−1} .

(ii) Let µ = (µ1, µ2, . . .) ` k. Then the set µ ↓⊆ Πk−1 is defined as

µ ↓= {µ \ (i, µi) | i ∈ N and µi > µi+1} .



1.1. COMBINATORICS 11

Lemma 1.1.21 Let k ∈ N, λ ` k − 1, and µ ` k. Then we have

µ ∈ λ ↑⇔ λ ∈ µ ↓ .

Proof. This is obvious from Definition 1.1.18 and Definition 1.1.19. �

When the removal and addition of rim hooks to a partition is executed by using

its diagram, the result is not always easy to determine. In the following, different

representations of partitions are described that simplify this operation. A thorough

description of the following material can be found in [JK, Section 2.7].

Definition 1.1.22 Let λ = (λ1, λ2, . . .) ` m. Then a β-sequence for λ is defined

as a finite sequence

β = (β1, . . . , βc)

with a nonnegative integer

c ≥

{
0 for m = 0

max {k ∈ N | λk > 0} for m > 0
(1.12)

and entries

βj = λj + c− j (1.13)

for j ∈ {1, . . . , c}. The value c ∈ N0 is called the length of the β-sequence β.

Remark 1.1.23 (i) A substantial difference between partitions and β-sequences

is that a partition can have several positive entries of the same value whereas

the entries of a β-sequence are always pairwise distinct. β-sequences are

strictly decreasing.

(ii) Obviously, a partition λ can be reconstructed from every β-sequence for λ by

means of the relation (1.13). More generally, this relation shows that every

strictly decreasing sequence of nonnegative integers is, in fact, a β-sequence

for a unique partition.

(iii) From a given β-sequence for a partition, all other β-sequences for this partition

can be easily obtained. Let, for example, β = (β1, . . . , βc) and β̃ = (β̃1, . . . , β̃c̃)

with c < c̃ both be β-sequences for the same partition λ. Then we get from

Definition 1.1.22

β = (β̃1 + c− c̃, . . . , β̃c + c− c̃)

and

β̃ = (β1 + c̃− c, . . . , βc + c̃− c, c̃− c− 1, . . . , 0).



12 CHAPTER 1. BACKGROUND

(iv) In the following constructions, β-sequences are used for the representation of

partitions. Some of these constructions impose a lower bound on the lengths

of the β-sequences employed. This is no real restriction since, according to

statement (iii), one can always pass from a given β-sequence for a partition

to a longer β-sequence for the same partition.

(v) With the notation from Definition 1.1.22, formula (1.13) shows that for a

given partition λ and a given length c as in (1.12), there is exactly one β-

sequence for λ of length c.

We have, for example, the β-sequences β = (7, 5, 4, 2) and β̃ = (10, 8, 7, 5, 2, 1, 0) for

the same partition λ = (4, 32, 2). β has length 4, β̃ has length 7. β is the shortest

β-sequence for λ.

Next, we describe how the removal and addition of rim hooks from and to

partitions can be executed by using β-sequences.

Lemma 1.1.24 Let λ = (λ1, . . . , λk) ` m with k ∈ N. Furthermore, choose an

e ∈ N and a β-sequence β = (β1, . . . , βc) for λ with c ≥ k. Finally, choose an

i ∈ {1, . . . , c}. Then the following statements (i) and (ii) are equivalent.

(i) We have m ≥ e and there is a uniquely determined µ ` m − e with [µ] ⊆
[λ] such that [λ] \ [µ] is a rim hook rλ in λ which satisfies

∣∣rλ∣∣ = e and

min
{
ĩ | (̃i, j̃) ∈ rλ

}
= i.

(ii) We have βi ≥ e and βi − e /∈ {β1, . . . , βc} .

If one of these equivalent conditions holds, a β-sequence for µ = λ \ rλ is obtained

from β by arranging the elements of the set

{β1, . . . , βi−1, βi − e, βi+1, . . . , βc}

in descending order.

Proof. See [JK, Lemma 2.7.13]. �

Lemma 1.1.25 Let λ = (λ1, . . . , λk) ` m with k ∈ N. Furthermore, choose an

e ∈ N and a β-sequence β = (β1, . . . , βc) for λ with c ≥ k + e. Finally, choose an

i ∈ {1, . . . , c}. Then the following statements (i) and (ii) are equivalent.

(i) There is a uniquely determined µ ` m+ e with [λ] ⊆ [µ] such that [µ] \ [λ] is

a rim hook rµ in µ which satisfies |rµ| = e and max
{
ĩ | (̃i, j̃) ∈ rµ

}
= i.

(ii) We have βi + e /∈ {β1, . . . , βc} .
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If one of these equivalent conditions holds, a β-sequence for µ = λ ∪ rµ is obtained

from β by arranging the elements of the set

{β1, . . . , βi−1, βi + e, βi+1, . . . , βc}

in descending order.

Proof. This follows easily from Lemma 1.1.24. �

The removal and addition of single lattice points from and to partitions also can

be described easily in terms of β-sequences.

Corollary 1.1.26 Let λ = (λ1, . . . , λk) ` m with k ∈ N. Furthermore, choose a

β-sequence β = (β1, . . . , βc) for λ with c ≥ k. Finally, choose an i ∈ {1, . . . , c}.
Then the following statements (i) and (ii) are equivalent.

(i) We have λi > 0 and (i, λi) can be removed from [λ] to obtain λ \ (i, λi).

(ii) We have

((i = c) ∧ (βc > 0)) ∨ ((i < c) ∧ (βi − 1 > βi+1)).

If one of these equivalent conditions holds,

(β1, . . . , βi−1, βi − 1, βi+1, . . . , βc)

is a β-sequence for λ \ (i, λi).

Proof. This follows from Definition 1.1.18, Definition 1.1.22, and Lemma 1.1.24. �

Corollary 1.1.27 Let λ = (λ1, . . . , λk) ` m with k ∈ N. Furthermore, choose a

β-sequence β = (β1, . . . , βc) for λ with c ≥ k + 1. Finally, choose an i ∈ {1, . . . , c}.
Then the following statements (i) and (ii) are equivalent.

(i) (i, λi + 1) can be added to [λ] to obtain λ ∪ (i, λi + 1).

(ii) We have

(i = 1) ∨ ((i > 1) ∧ (βi + 1 < βi−1)).

If one of these equivalent conditions holds,

(β1, . . . , βi−1, βi + 1, βi+1, . . . , βc)

is a β-sequence for λ ∪ (i, λi + 1).
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Proof. This follows from Definition 1.1.19, Definition 1.1.22, and Lemma 1.1.25. �

Now, a graphical representation of β-sequences is described. This representation

makes it very easy to determine if and where a rim hook of a certain length can be

removed from or added to a partition and also to execute this operation immediately.

Definition 1.1.28 Let e ∈ N. Then an e-abacus is defined as an arrangement a

of e parallel runners in a plane which contain a finite number of movable beads.

The following picture shows on the left hand side such an arrangement for e = 5.

The runners are bounded in one direction — downwards — and unbounded in the

opposite direction — upwards. They are numbered from left to right in ascending

order, the leftmost runner receives the number 0.

The beads on the abacus are arranged in rows perpendicular to the runners.

These rows are numbered bottom up in ascending order, the lowermost row receives

the number 0. The possible places for beads on the abacus are numbered within each

row from left to right and across the rows bottom up in ascending order, the place in

the lower left corner receives the number 0. In the 5-abacus a on the left hand side of

the following picture, the places not occupied by beads are marked by horizontal bars.

The right hand side of the picture shows the same abacus with explicitly numbered

runners, rows, and places.

q q q q qq q q q qq q q q q

z z z y
z z
z

z q q q q qq q q q qq q q q q

z z z y
z z
z

z

0 1 2 3 4

0

1

2

3

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

a : a :

In the following, e-abaci will be represented like the 5-abacus on the left hand side

of the previous picture and denoted by a, b, c, . . ..

In the following, the beads on an e-abacus with an e ∈ N will be moved along

their respective runners and also within their respective rows. Movement within

a column means translation along a runner up or down. Movement within a row

means displacement along consecutive places. To be more specific, movement within

a row in the upward direction means displacement to the right within a row and

displacement from the rightmost place of a row to the leftmost place of the row

above, movement within a row in the downward direction means displacement to
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the left within a row and displacement from the leftmost place of a row to the

rightmost place of the row below.

Definition 1.1.29 Let λ ` m, choose a β-sequence β = (β1, . . . , βc) for λ, and

fix an e ∈ N. Then the e-abacus for β is defined as the particular e-abacus that

contains beads exactly on the places with numbers β1, . . . , βc.

More generally, an e-abacus is called an e-abacus for λ if the numbers of those

places in that abacus which contain beads form a β-sequence for λ when arranged

in descending order.

Remark 1.1.30 Let e ∈ N.

(i) Obviously, the e-abacus for a β-sequence is uniquely determined, and the

β-sequence can be reconstructed from it. Conversely, according to Defini-

tion 1.1.29, every e-abacus is the e-abacus of a uniquely determined β-se-

quence.

(ii) The relation between partitions and associated e-abaci is the same as that be-

tween partitions and associated β-sequences. A partition can be reconstructed

from every e-abacus for it. Conversely, every e-abacus is an e-abacus for a

uniquely determined partition.

If one has two e-abaci for the same partition, the one containing more beads

is obtained from the one containing fewer beads through multiple successive

movement within a row of all beads one place in the upward direction and

simultaneous addition of a new bead in the place 0. Conversely, the e-abacus

with fewer beads is obtained from the e-abacus with more beads through mul-

tiple successive removal of the bead in the place 0 (if there is one) and si-

multaneous movement within a row of all beads one place in the downward

direction. These operations correspond exactly to the transitions between dif-

ferent β-sequences for the same partition.

(iii) In particular, Remark 1.1.23.(v) shows that for any given partition there are

no two different abaci with the same number of beads.

The behavior of an e-abacus associated to a partition on removal and addition

of rim hooks and single lattice points from and to that partition is obtained via

Definition 1.1.29 directly from the corresponding results for a β-sequence associated

to the partition.
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Lemma 1.1.31 Let λ = (λ1, . . . , λk) ` m with k ∈ N. Furthermore, choose an

e ∈ N and an e-abacus for λ containing c beads in the places β1, . . . , βc with c ≥ k

and β1 > · · · > βc ≥ 0. Finally, choose an i ∈ {1, . . . , c}. Then the following

statements (i) and (ii) are equivalent.

(i) We have m ≥ e and there is a uniquely determined µ ` m − e with [µ] ⊆ [λ]

such that [λ] \ [µ] is a rim hook rλ in λ satisfying∣∣rλ∣∣ = e and min
{
ĩ | (̃i, j̃) ∈ rλ

}
= i.

(ii) In the e-abacus for λ, the place βi is not contained in the lowermost row, and

the place βi − e located one row below the place βi is not occupied by a bead.

If one of these equivalent conditions holds, an e-abacus for µ = λ \ rλ is obtained

from the e-abacus for λ through movement within a column of the bead in the place

βi in the downward direction to the place βi − e.

Proof. This follows from Definition 1.1.29 and Lemma 1.1.24. �

Lemma 1.1.32 Let λ = (λ1, . . . , λk) ` m with k ∈ N. Furthermore, choose an

e ∈ N and an e-abacus for λ containing c beads in the places β1, . . . , βc with c ≥ k+e

and β1 > · · · > βc ≥ 0. Finally, choose an i ∈ {1, . . . , c}. Then the following

statements (i) and (ii) are equivalent.

(i) There is a uniquely determined µ ` m+ e with [λ] ⊆ [µ] such that [µ] \ [λ] is

a rim hook rµ in µ satisfying

|rµ| = e and max
{
ĩ | (̃i, j̃) ∈ rµ

}
= i.

(ii) In the e-abacus for λ, the place βi + e located one row above the place βi is

not occupied by a bead.

If one of these equivalent conditions holds, an e-abacus for µ = λ ∪ rµ is obtained

from the e-abacus for λ through movement within a column of the bead in the place

βi in the upward direction to the place βi + e.

Proof. This follows from Definition 1.1.29 and Lemma 1.1.25. �

Corollary 1.1.33 Let λ = (λ1, . . . , λk) ` m with k ∈ N. Furthermore, choose an

e ∈ N and an e-abacus for λ containing c beads in the places β1, . . . , βc with c ≥ k

and β1 > · · · > βc ≥ 0. Finally, choose an i ∈ {1, . . . , c}. Then the following

statements (i) and (ii) are equivalent.
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(i) We have λi > 0 and (i, λi) can be removed from [λ] to obtain λ \ (i, λi).

(ii) In the e-abacus for λ, the place βi is not coincident with the place 0, and the

place βi − 1 immediately preceding the place βi is not occupied by a bead.

If one of these equivalent conditions holds, an e-abacus for λ \ (i, λi) is obtained

from the e-abacus for λ through movement within a row of the bead in the place βi

in the downward direction to the place βi − 1.

Proof. This follows from Definition 1.1.29 and Corollary 1.1.26. �

Corollary 1.1.34 Let λ = (λ1, . . . , λk) ` m with k ∈ N. Furthermore, choose

an e ∈ N and an e-abacus for λ containing c beads in the places β1, . . . , βc with

c ≥ k + 1 and β1 > · · · > βc ≥ 0. Finally, choose an i ∈ {1, . . . , c}. Then the

following statements (i) and (ii) are equivalent.

(i) (i, λi + 1) can be added to [λ] to obtain λ ∪ (i, λi + 1).

(ii) In the e-abacus for λ, the place βi + 1 immediately preceding the place βi is

not occupied by a bead.

If one of these equivalent conditions holds, an e-abacus for λ∪ (i, λi+ 1) is obtained

from the e-abacus for λ through movement within a row of the bead in the place βi

in the upward direction to the place βi + 1.

Proof. This follows from Definition 1.1.29 and Corollary 1.1.27. �

Later on, certain partitions will occur, from which for a given e ∈ N no e-rim

hooks can be removed. Such partitions are investigated in the following. All this is

described in more detail in [JK, Section 2.7].

Definition 1.1.35 Let e ∈ N ∪ {∞}.

(i) For e < ∞, a partition λ is called an e-core, if λ doesn’t contain any e-rim

hooks.

(ii) For e =∞, every partition λ is called an e-core.

(iii) The set of all e-cores is denoted by

Γe = {λ ` k | k ∈ N0 and λ is an e-core} .

Remark 1.1.36 Let e ∈ N ∪ {∞} and choose an e-core λ. Then it follows easily

from Definition 1.1.2.(ii) that λ is e-regular.
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Lemma 1.1.37 Let e ∈ N. Furthermore, let λ ` k with k ∈ N0. Then e-rim hooks

can be removed successively from λ until the partition µ obtained in this process

doesn’t contain any e-rim hooks any more. This partition µ of k − je with an

appropriate j ∈ N0 is independent of the selection of the rim hooks removed from λ

to obtain µ, it depends only on λ and e.

Proof. See [JK, Theorem 2.7.16] �

Definition 1.1.38 (i) Let e ∈ N and λ ` k with k ∈ N0. Then the partition µ

constructed in Lemma 1.1.37 is called the e-core of λ. This is denoted by

µ = γe(λ). (1.14)

Write µ ` k − je with j ∈ N0 as in Lemma 1.1.37. Then j is called the

e-weight of λ. This is denoted by

j = ge(λ).

(1.14) defines the map

γe :
⋃
i∈N0

Πi → Γe, λ 7→ γe(λ).

(ii) Let e =∞ and choose a partition λ. Then the partition γ∞(λ) is defined by

γ∞(λ) = λ. (1.15)

γ∞(λ) is called the ∞-core of λ. Furthermore, the integer g∞(λ) is defined by

g∞(λ) = 0.

g∞(λ) is called the ∞-weight of λ. (1.15) defines the map

γ∞ :
⋃
i∈N0

Πi → Γ∞, λ 7→ γ∞(λ).

Definition 1.1.39 Let e ∈ N ∪ {∞} and k ∈ N0.

(i) The set of the e-cores of all partitions of k is denoted by

Γe(k) = γe(Πk).

(ii) The set of all partitions of k having a given e-core µ ∈ Γe(k) is denoted by

Πµ,e
k = γ−1

e ({µ}) ∩ Πk.
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(iii) Let ẽ ∈ N ∪ {∞}. Then the set of all ẽ-regular partitions of k having a given

e-core ν ∈ Γe(k) is denoted by

Πν,e
k,ẽ = γ−1

e ({ν}) ∩ Πk,ẽ.

Remark 1.1.40 (i) With the notations from Definition 1.1.38.(i), ge(λ) is the

number of e-rim hooks which have to be removed from λ to obtain the core

γe(λ).

(ii) If, with the notations from Definition 1.1.39,

ẽ ∈ {k + 1, k + 2, . . .} ∪ {∞}

holds then, according to Remark 1.1.3, we have

Πν,e
k,ẽ = Πν,e

k .

For an e ∈ N, the explicit determination of e-cores of given partitions can be

executed easily by means of e-abaci.

Lemma 1.1.41 Let e ∈ N and λ ` m. Then an e-abacus for γe(λ) is obtained from

an e-abacus for λ by moving all beads in the e-abacus for λ along their respective

runners — that is, within a column — as far down as possible.

Proof. This follows from Definition 1.1.38.(i), Lemma 1.1.37, and Lemma 1.1.31. �

Next, some relations between partitions and their respective e-cores for different

values of the parameter e ∈ N are described.

Lemma 1.1.42 Let e, ẽ ∈ N with ẽ | e. Furthermore, let λ ` m such that an e-rim

hook can be removed from λ. Then this effect can be achieved through successive

removal of several ẽ-rim hooks.

Proof. This can be seen by considering an e-abacus for λ and an ẽ-abacus for

lambda with the same number of beads, and by using the fact that ẽ | e. �

Lemma 1.1.43 Let e, ẽ ∈ N with ẽ | e. Furthermore, let λ ` m and µ = γe(λ).

Then we have

γẽ(λ) = γẽ(µ).

Proof. This follows from Lemma 1.1.42. �

Lemma 1.1.44 Let e, ẽ ∈ N with ẽ | e. Furthermore, let ν ∈ Γẽ(m). Then we have
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(i) Πν,ẽ
m =

⋃
µ∈Γe(m)
γẽ(µ)=ν

Πµ,e
m ,

(ii) Πν,ẽ
m,e =

⋃
µ∈Γe(m)
γẽ(µ)=ν

Πµ,e
m,e.

Proof. This follows from Lemma 1.1.43 and Definition 1.1.39. �

From now on, the number m ∈ N0 is no more required. In the following, the

variable m will be used for arbitrary purposes. The next definition makes use of

Definition 1.1.6.

Definition 1.1.45 Let λ = (λ1, λ2, . . .) � n.

(i) A tableau t of λ is a bijection

t : [λ]→ {1, . . . , n} .

t also is called a λ-tableau or just a tableau. For a lattice point (i, j) ∈ [λ], its

image (i, j)t is called the entry at position (i, j) in the tableau t or just the

(i, j)-entry in t. Here, the map is written to the right of its argument. For

k ∈ N, the k-th row of t is defined as the restriction of t on the k-th row of

[λ], the k-th column of t is defined as the restriction of t on the k-th column

of [λ].

(ii) For a λ-tableau t and a k ∈ {1, . . . , n}, let

(i, j) = (k)t−1.

Then the row number of k in t is defined by

(k)ζt = i.

Furthermore, the column number of k in t is defined by

(k)σt = j.

(iii) A λ-tableau t is called row standard if, in every row of t, the entries are

arranged from left to right in ascending order, or equivalently, if

∀i ∈ N ∀j ∈ {2, . . . , λi} : (i, j − 1)t < (i, j)t

holds.
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A λ-tableau t is called column standard if, in every column of t, the entries

are arranged top down in ascending order, or equivalently, if, for any column

of [λ] consisting of, say, the lattice points

(i1, j), . . . , (ik, j)

with j ∈ N, k ∈ N0 and indices i1, . . . , ik ∈ N satisfying

i1 < · · · < ik,

the relation

(i1, j)t < · · · < (ik, j)t

holds.

A λ-tableau t is called standard if t is both row standard and column standard.

The next definition makes use of Definition 1.1.1.(iii).

Definition 1.1.46 (i) Let λ � n. Then the set of all λ-tableaux is denoted by

T λ = {t : [λ]→ {1, . . . , n} | t bijective} .

Furthermore, the set of all row standard λ-tableaux is denoted by

T λrow std =
{

t ∈ T λ
∣∣∣ t row standard

}
.

Finally, the set of all standard λ-tableaux is denoted by

T λstd =
{

t ∈ T λ
∣∣∣ t standard

}
.

(ii) The set of all tableaux of compositions of n is denoted by

T Ξn =
⋃
λ∈Ξn

T λ.

The set of all row standard tableaux of compositions of n is denoted by

T Ξn
row std =

⋃
λ∈Ξn

T λrow std.
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A λ-tableau t with λ � n is represented by writing for each lattice point (i, j) ∈ [λ]

the number (i, j)t in the corresponding square in the representation of [λ]. In the

following picture, four tableaux t1, . . . , t4 are represented.

8 7 6

5 3

4 2 1

t1

5 7 8 9

4 6

3

2

1

t2

9 5 2

10 6 3

11 7 4 1

12 8

t3

1 2 6 7 10

3 5 8

4 9

t4

(1.16)

t1 is a non-row standard non-column standard (3, 0, 2, 3)-tableau, t2 is a row stan-

dard non-column standard (4, 2, 13)-tableau, t3 is a non-row standard column stan-

dard (32, 4, 2)-tableau, and t4 is a standard (5, 3, 2)-tableau. The rows and columns

of these arrangements correspond exactly to the rows and columns of the tableaux

t1, . . . , t4 as defined in Definition 1.1.45.(i). The entry 7, for example, occurs in t1

and t2 at position (1, 2), in t3 at position (3, 2), and in t4 at position (1, 4). Thus,

the row numbers and column numbers of the entry 7 in t1, . . . , t4 are

(7)ζt1 = 1, (7)σt1 = 2,

(7)ζt2 = 1, (7)σt2 = 2,

(7)ζt3 = 3, (7)σt3 = 2,

(7)ζt4 = 1, (7)σt4 = 4.

Definition 1.1.47 Let λ � n. Then the map

T λ ×Sn → T λ, (t, w) 7→ tw,

where tw is the concatenation of the bijections t : [λ] → {1, . . . , n} and w :

{1, . . . , n} → {1, . . . , n}, is an operation of Sn on T λ.

For a λ-tableau t with λ � n and a w ∈ Sn, the representation of the tableau tw is

obtained from the representation of the tableau t through replacing every entry of
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the latter by its image under w. The following picture shows on the left hand side a

(2, 3)-tableau t and on the right hand side its image tw under w = (1, 2)(4, 5) ∈ S5.

5 2

1 3 4

t

4 1

2 3 5

tw

(1.17)

We say that a w ∈ Sn, when operating on a λ-tableau t with λ � n, moves an entry

j ∈ {1, . . . , n} in t downwards if the position of the entry j in the representation

of t is higher than the position of the entry j in the representation of tw. More

formally, this means

(j)ζt < (j)ζtw.

In the example (1.17) above with n = 5, w moves the entry 2 in t downwards.

Similarly, we say that a w ∈ Sn, when operating on a λ-tableau t with λ � n,

moves an entry j ∈ {1, . . . , n} in t upwards if the position of the entry j in the

representation of t is lower than the position of the entry j in the representation of

tw. More formally, this means

(j)ζt > (j)ζtw.

In the example (1.17) above with n = 5, w moves the entry 4 in t upwards.

Now, the transposition of partitions and their diagrams will be generalized to the

tableaux constructed from them. According to Lemma 1.1.10, the next definition

is meaningful.

Definition 1.1.48 Let λ ` n and choose a λ-tableau t : [λ] → {1, . . . , n}. Then

the tableau t′ transposed to t is defined by the following concatenation of bijections

t′ : [λ′]
(·)′−→ [λ]

t−→ {1, . . . , n} .

Lemma 1.1.49 Let λ ` n, and choose a λ-tableau t and a w ∈ Sn. Then the

following statements hold.

(i) t′′ = t.

(ii) ∀j ∈ {1, . . . , n} : ((j)ζt = (j)σt′) ∧ ((j)σt = (j)ζt′).

(iii) For each j ∈ N, transposition maps the entries in the j-th row of t from left

to right on the entries in the j-th column of t′ from top to bottom.

(iv) t is row standard ⇔ t′ is column standard.
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(v) t is standard ⇔ t′ is standard.

(vi) (tw)′ = (t′)w.

Proof. (i) This can be obtained from Definition 1.1.48 and Lemma 1.1.10.(i).

(ii) This follows from Definition 1.1.9, Definition 1.1.11, Definition 1.1.45.(ii),

and Definition 1.1.48.

(iii) This follows easily from Definition 1.1.45.(i), Definition 1.1.6.(ii), Defini-

tion 1.1.6.(iii), Definition 1.1.48, Remark 1.1.12, and statement (ii).

(iv) This is a consequence of Definition 1.1.45.(iii) and statement (iii).

(v) This follows from Definition 1.1.45.(iii) and statements (iv) and (i).

(vi) This is an easy consequence of Definition 1.1.48 and Definition 1.1.47. �

Definition 1.1.50 Let t ∈ T Ξn.

(i) The row stabilizer Rt of t is defined as

Rt = {w ∈ Sn | ∀j ∈ {1, . . . , n} : (j)ζt = (j)ζtw} .

(ii) The column stabilizer Ct of t is defined as

Ct = {w ∈ Sn | ∀j ∈ {1, . . . , n} : (j)σt = (j)σtw} .

Remark 1.1.51 Definition 1.1.45 provides the following less formal description of

the row stabilizer and the column stabilizer of a tableau t ∈ T Ξn.

(i) Rt =

{
w ∈ Sn

in every row of t,

w permutes the entries amongst themselves

}
.

(ii) Ct =

{
w ∈ Sn

in every column of t,

w permutes the entries amongst themselves

}
.

For every tableau t ∈ T Ξn , Rt and Ct are subgroups of Sn. We have, for example,

for the tableaux r and s as shown in the following picture

Rr = S{2,6,7} ×S{5,8} ×S{1,3,4,9},

Cr = S{7,8,9} ×S{4,5,6} ×S{2,3}

and

Rs = S{4,5,9,10} ×S{3,6,8} ×S{2,7},

Cs = S{1,7,8,10} ×S{2,6,9} ×S{3,5},

where Rr and Cr are subgroups of S9, and Rs and Cs are subgroups of S10.
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7 6 2

8 5

9 4 3 1

r

10 9 5 4

8 6 3

7 2

1

s

Lemma 1.1.52 Let λ ` n and t ∈ T λ. Then

Ct = Rt′ .

Proof. This follows easily from Definition 1.1.50, Lemma 1.1.49.(ii), and Lem-

ma 1.1.49.(vi). �

Definition 1.1.53 Let λ � n. Then the lattice points in [λ] can be ordered by rows

from top to bottom and within the rows from left to right. This means that for

(i, j), (̃i, j̃) ∈ [λ] we have

(i, j) < (̃i, j̃)⇔
(
i < ĩ

)
∨
((
i = ĩ

)
∧
(
j < j̃

))
.

Then tλ ∈ T λ is defined as the order preserving map from the set [λ] ordered by <

to the set {1, . . . , n} arranged in its natural ascending order.

In the following picture, the tableau on the left hand side is tλ with λ = (5, 4, 32, 1) `
16, the tableau on the right hand side is tµ with µ = (4, 3, 0, 22) � 11.

1 2 3 4 5

6 7 8 9

10 11 12

13 14 15

16

1 2 3 4

5 6 7

8 9

10 11

Remark 1.1.54 Obviously, for a λ � n, the tableau tλ from Definition 1.1.53 is

row standard (see Definition 1.1.45.(iii)). It also is easy to see that tλ is column

standard and thus standard.

Definition 1.1.55 Let λ � n. Then the row stabilizer Rtλ ⊆ Sn of tλ is called the

Young subgroup of Sn associated with λ and is denoted by Sλ.

For every λ = (λ1, λ2, . . .) � n, we have

Sλ = × i∈N
λi>0

S{λ+
i−1+1,...,λ+

i } ⊆ Sn. (1.18)
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Lemma 1.1.56 Let λ � n. Then the set

Dλ =
{
w ∈ Sn

∣∣∣ tλw is row standard
}

has the following properties.

(i) Dλ is a system of representatives for the right cosets of Sλ in Sn. This means

that

Sn =
⋃
d∈Dλ

Sλd,

where the union is disjoint.

(ii) For every w ∈ Sλ and every d ∈ Dλ, we have

`(wd) = `(w) + `(d).

(iii) Every d ∈ Dλ is the unique shortest element in the coset Sλd.

Proof. See [DJ1, Lemma 1.1]. �

Corollary 1.1.57 Let λ � n and let Dλ as in Lemma 1.1.56. Then the set D−1
λ

has the following properties.

(i) D−1
λ is a system of representatives for the left cosets of Sλ in Sn. This means

that

Sn =
⋃

f∈D−1
λ

fSλ,

where the union is disjoint.

(ii) For every w ∈ Sλ and every f ∈ D−1
λ , we have

`(fw) = `(f) + `(w).

Proof. This follows from Lemma 1.1.56 and (1.9) on page 3. �

Lemma 1.1.56 shows that the following definition is meaningful.

Definition 1.1.58 Let λ � n.

(i) The set

Dλ =
{
w ∈ Sn

∣∣∣ tλw is row standard
}

is called the set of the shortest representatives of the right cosets of Sλ in Sn,

or, for short, the set of the shortest representatives associated with λ.
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(ii) To an arbitrary w ∈ Sn, we can assign the uniquely determined representative

[w]λ ∈ Dλ satisfying

Sλw = Sλ[w]λ.

We call this representative the shortest representative of w associated with λ.

Lemma 1.1.59 Let λ � n.

(i) The map

Dλ → T λrow std, d 7→ tλd

is a bijection.

(ii) For x, y ∈ Sn, we have [
[x]λy

]λ
= [xy]λ.

Proof. (i) This is an immediate consequence of Definition 1.1.45.(i) and Defini-

tion 1.1.47.

(ii) According to Definition 1.1.58.(ii), we have Sλ[x]λ = Sλx. This implies

Sλ[x]λy = Sλxy.

In turn, this shows, again according to Definition 1.1.58.(ii),
[
[x]λy

]λ
= [xy]λ, as

desired. �

Next, some useful properties of standard tableaux and associated permutations

are described.

Definition 1.1.60 Let λ � n. Then the set

Eλ =
{
w ∈ Sn

∣∣∣ tλw is standard
}

is called the set of the standard representatives of the right cosets of Sλ in Sn, or,

for short, the set of the standard representatives associated with λ.

Remark 1.1.61 According to Definition 1.1.45.(iii), we have for λ � n

Eλ ⊆ Dλ.

Lemma 1.1.62 Let λ � n, t ∈ T λstd, and s = (j, j+1) ∈ Bn with j ∈ {1, . . . , n− 1}.
Then

ts ∈ T λstd ⇔ ((j)ζt 6= (j + 1)ζt) ∧ ((j)σt 6= (j + 1)σt).

Proof. This is immediate from Definition 1.1.45 and Definition 1.1.47. �
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Lemma 1.1.63 Let λ � n and f ∈ Eλ \ {1Sn}. Then there is an s ∈ Bn such that

both fs ∈ Eλ and `(fs) = `(f)− 1 hold.

Proof. This follows from [DJ1, Lemma 1.5]. �

Definition 1.1.64 The partition ω(n) ∈ Πn is defined by

ω(n) = (1n).

Lemma 1.1.65 For the partition ω(n) from Definition 1.1.64, the following state-

ments hold.

(i) The tableau tω
(n)

looks as follows.

ppp
1

n

(ii) We have Sω(n) = {1Sn}.

(iii) We have Dω(n) = Sn.

Proof. (i) This is immediate from Definition 1.1.53.

(ii) This follows from statement (i) and Definition 1.1.55.

(iii) This can be obtained from statement (ii) and Lemma 1.1.56. �

Definition 1.1.66 Let λ � n. Then the lattice points in [λ] can be ordered by

columns from left to right and within the columns from top to bottom. This means

that for (i, j), (̃i, j̃) ∈ [λ] we have

(i, j) < (̃i, j̃)⇔
(
j < j̃

)
∨
((
j = j̃

)
∧
(
i < ĩ

))
.

Then tλ ∈ T λ is defined as the order preserving map from the set [λ] ordered by <

to the set {1, . . . , n} arranged in its natural ascending order.

In the following picture, the tableau on the left hand side is tλ with λ = (5, 4, 32, 1) `
16, the tableau on the right hand side is tµ with µ = (4, 3, 0, 22) � 11.
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1 6 10 14 16

2 7 11 15

3 8 12

4 9 13

5

1 5 9 11

2 6 10

3 7

4 8

Definition 1.1.67 Let λ � n. Then the permutation wλ is defined by

wλ =
(
tλ
)−1

tλ or equivalently tλwλ = tλ.

Here, maps are written to the right of their respective arguments.

Lemma 1.1.68 Let λ � n. Then we have

(i) tλ ∈ T λstd ⊆ T λrow std,

(ii) wλ ∈ Dλ.

Proof. (i) This is a consequence of Definition 1.1.66 and Definition 1.1.45.(iii).

(ii) This follows from Definition 1.1.58.(i), Definition 1.1.67, and statement (i).

�

Lemma 1.1.69 Let λ = (λ1, λ2, . . .) ` n. Then we have

(i) (tλ)
′ = t(λ′),

(ii) w−1
λ = wλ′,

(iii) wλ ∈ D−1
λ′ ,

(iv) wλSλ′ ⊆ Dλ.

Proof. (i) This is immediate from Definition 1.1.66, Definition 1.1.53, Defini-

tion 1.1.48, and Definition 1.1.9.

(ii) This follows from the calculation

t(λ′)w−1
λ = (tλ)

′w−1
λ =

(
tλw

−1
λ

)′
=
(
tλ
)′

= tλ′ .

(iii) This follows from the identity

t(λ′)w−1
λ = t(λ′)wλ′ = tλ′ ,

Lemma 1.1.68.(i), and Definition 1.1.58.(i).
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(iv) This follows easily from the fact that for any two indices i, j ∈ N with i < j,

any entry in the i-th row of tλ is smaller than any entry in the j-th row of tλ. �

According to Lemma 1.1.56, for a given λ � n, the right cosets of Sλ in Sn are

parameterized by row standard λ-tableaux. However, this index set T λrow std is not

closed under the operation of Sn on T λ. Thus, the operation of Sn on T λ is not

compatible with the operation of Sn on the right cosets of Sλ. In the following,

a different representation of row standard λ-tableaux will be constructed such that

the obtained set, corresponding to T λrow std, has a natural Sn-operation compatible

with the Sn-operation on right cosets of Sλ.

Definition 1.1.70 Let λ = (λ1, λ2, . . .) � n.

(i) A sequence

ζ = ((1)ζ, . . . , (n)ζ) ∈ Nn

satisfying

∀j ∈ N : |{k ∈ {1, . . . , n} | (k)ζ = j}| = λj

is called a λ-row number list.

(ii) A λ-row number list ζ can be written in the power notation

ζ = (be11 , b
e2
2 , . . .)

with bj ∈ N and ej ∈ N0 for j ∈ N, a power b
ej
j denoting ej successive entries

of the sequence ζ ∈ Nn with value bj.

(iii) The set of all λ-row number lists is denoted by Zλ.

Remark 1.1.71 Let λ = (λ1, λ2, . . .) � n.

(i) Choose a λ-row number list ζ ∈ Zλ and write

ζ = (be11 , b
e2
2 , . . .).

Then it’s easy to see that

∀k ∈ N :
∑
j∈N
bj=k

ej = λk. (1.19)

This shows together with Definition 1.1.1.(i)∑
j∈N

ej = n.

Conversely, every sequence (be11 , b
e2
2 , . . .) with the property (1.19) is a λ-row

number list.
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(ii) We have

Zλ 6= ∅,

since, according to (i), Zλ contains for example the λ-row number list with

the power notation (1λ1 , 2λ2 , . . .).

For a given row standard λ-tableau t with λ � n, ((1)ζt, . . . , (n)ζt) (see Defini-

tion 1.1.45.(ii)) obviously is a λ-row number list. This motivates the name “row

number list”. Furthermore, it shows that the following definition is meaningful.

Definition 1.1.72 Let λ � n. Then the map

ζ[λ] : T λrow std → Zλ

is defined by

t 7→ (t)ζ[λ] = ζt = ((1)ζt, . . . , (n)ζt).

Conversely, for any given λ � n, a row standard λ-tableau can be assigned to every

λ-row number list.

Definition 1.1.73 Let λ = (λ1, λ2, . . .) � n and ζ ∈ Zλ. With this data, the

λ-tableau tζ is defined as follows.

According to Definition 1.1.70.(i), for every i ∈ N, certain numbers k1, . . . , kλi ∈
{1, . . . , n} are uniquely defined by the conditions

k1 < · · · < kλi and (k1)ζ = · · · = (kλi)ζ = i.

With this, we put for every j ∈ {1, . . . , λi}

(i, j)tζ = kj.

Obviously, we have for every λ � n and every ζ ∈ Zλ

tζ ∈ T λrow std.

This shows that the following definition is meaningful.

Definition 1.1.74 Let λ � n. Then the map

t[λ] : Zλ → T λrow std

is defined by

ζ 7→ (ζ)t[λ] = tζ .
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Lemma 1.1.75 Let λ = (λ1, λ2, . . .) � n. Then the maps ζ[λ] and t[λ] are bijec-

tions, and one is the inverse of the other.

Proof. This can be obtained from Definition 1.1.72, Definition 1.1.74, and Defini-

tion 1.1.45.(ii). �

For a λ � n, a sequence ζ = ((1)ζ, . . . , (n)ζ) ∈ Zλ can be considered as a map

ζ : {1, . . . , n} → N, j 7→ (j)ζ. With this, the operation of Sn on the arguments of

that map naturally induces an operation of Sn on Zλ.

Definition 1.1.76 Let λ � n. Then the map

Zλ ×Sn → Zλ, (ζ, w) 7→ ζw

with

ζw = ((1w−1)ζ, . . . , (nw−1)ζ)

for ζ = ((1)ζ, . . . , (n)ζ) is an operation of Sn on Zλ.

That, for a ζ ∈ Zλ with λ � n and a w ∈ Sn, we actually have ζw ∈ Zλ, follows

easily from Definition 1.1.70.(i). Later on, we will need the following properties of

this operation of Sn on Zλ.

Lemma 1.1.77 Let λ � n, s = (j, j+1) ∈ Bn with j ∈ {1, . . . , n− 1}, and d ∈ Dλ.

Then the following statements hold.

(i) Let (j)ζtλd < (j + 1)ζtλd. Then we have `(ds) = `(d) + 1, ds ∈ Dλ, and

ζtλds = ζtλds.

(ii) Let (j)ζtλd = (j + 1)ζtλd. Then we have `(ds) = `(d) + 1 and ζtλds = ζtλd.

(iii) Let (j)ζtλd > (j + 1)ζtλd. Then we have `(ds) = `(d) − 1, ds ∈ Dλ, and

ζtλds = ζtλds.

Proof. This is an easy consequence of Definition 1.1.53, (1.9).(iii), Definition 1.1.76,

and Definition 1.1.47. �

Remark 1.1.78 Lemma 1.1.65 shows that for any w ∈ Sn = Dω(n) we have

ζ
tω

(n)
w

= (1w−1, . . . , nw−1).

From this sequence, w can be reconstructed. Thus, every w ∈ Sn can be identi-

fied with its row number list ζ
tω

(n)
w
∈ Zω(n)

. This sequence ζ
tω

(n)
w

is called the

permutation list of w. The injective map

Sn → Zω
(n)

, w 7→ ζ
tω

(n)
w
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is, because of
∣∣∣Zω(n)

∣∣∣ =
∣∣∣T ω(n)

row std

∣∣∣ = |Dω(n) | = |Sn|, actually bijective, and further-

more compatible with the operations from the right of Sn on these sets — on Sn

through multiplication from the right and on Zω(n)
as in Definition 1.1.76. This

shows that this map is an isomorphism of right Sn-sets. Thus, given the permu-

tation list of any w ∈ Sn, Lemma 1.1.77 can be used to determine the behavior of

the length when multiplying w from the right with a simple reflection s ∈ Bn and

furthermore to construct the permutation list of ws from that of w.

1.2 Hecke algebras of type A

Now, Hecke algebras of type A, as also considered in [DJ1], will be introduced.

There, further references on the background of these algebras can be found. Another

good reference is [HUM, Chapter 7]. There, Hecke algebras of arbitrary type are

constructed in a very general way. For the following, fix an n ∈ N.

Next, several notions connected to the underlying coefficient ring are introduced.

Definition 1.2.1 Let R be an integral domain and q ∈ R be a unit. Then the pair

(R, q) is called a coefficient pair.

In the following, R is always an arbitrary but fixed integral domain with the additive

neutral element 0R and the multiplicative neutral element 1R. Furthermore, q ∈ R
is always a unit.

Definition 1.2.2 (i) Let j ∈ Z. Then the element [j]q of R is defined as

[j]q =


∑j−1

i=0 q
i for j > 0

0R for j = 0

−
∑−1

i=j q
i for j < 0

.

[j]q ∈ R is called a q-number.

(ii) The value eR(q) ∈ {2, 3, . . .} ∪ {∞} is defined as

eR(q) = inf
{
j ∈ N

∣∣∣ [j]q = 0R

}
.

Here, we use inf ∅ =∞. eR(q) is called the q-characteristic of R.

Now we introduce the Hecke algebras. The Hecke algebra

H = HA = Hn = H(R,q)
A = H(R,q)

n = H(R,q)
An−1

= HAn−1(R, q)
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of type A, or, more precisely, of type An−1, over the coefficient pair (R, q) is defined

as the free R-module with basis {Tw | w ∈ Sn} on which the rules

T1Sn
= 1H(R,q)

A

and

TwTs =

{
Tws if `(ws) = `(w) + 1

qTws + (q − 1)Tw if `(ws) = `(w)− 1
(1.20)

for w ∈ Sn and s ∈ Bn induce an associative multiplication. Here, 1H(R,q)
A

denotes

the multiplicative neutral element of the algebra H(R,q)
An−1

. Furthermore, the additive

neutral element of H(R,q)
An−1

is denoted by 0H(R,q)
A

. The parameter n is called the degree

of the Hecke algebra H(R,q)
An−1

. From the rules (1.20), the following properties of the

multiplication can be derived.

For a w ∈ Sn with a reduced expression w = v1 · · · v`(w) with

vj ∈ Bn for j ∈ {1, . . . , `(w)}, we have Tw = Tv1 · · ·Tv`(w)
.

(1.21)

For u ∈ Sn and w ∈ Sn with `(uw) = `(u) + `(w), we have

Tuw = TuTw.
(1.22)

For every w ∈ Sn, Tw is invertible in H(R,q)
An−1

. (1.23)

If we put q = 1R then both cases in the rule (1.20) produce the same result, and

we get

H(R,1R)
An−1

= RSn. (1.24)

Thus, for arbitrary units q ∈ R, we can consider H(R,q)
An−1

as a deformation of the

group algebra RSn.

The notations introduced in the next definition are useful in later constructions.

They also are used in [MUR] and elsewhere.

Definition 1.2.3 Let X ⊆ Sn.

(i) ι
(n)
(R,q)(X) ∈ H(R,q)

An−1
is defined as

ι
(n)
(R,q)(X) =

∑
w∈X

Tw.

As abbreviations, we write

ι
(n)
(R,q)(X) = ι(R,q)(X) = ι(n)(X) = ι(X).
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(ii) ε
(n)
(R,q)(X) ∈ H(R,q)

An−1
is defined as

ε
(n)
(R,q)(X) =

∑
w∈X

(−q)−`(w)Tw.

As abbreviations, we write

ε
(n)
(R,q)(X) = ε(R,q)(X) = ε(n)(X) = ε(X).

The following anti-involution on H(R,q)
An−1

generalizes the anti-involution on RSn

induced by the inversion on Sn.

Definition 1.2.4 The R-linear map

∗ : H(R,q)
An−1

→ H(R,q)
An−1

is defined by

T ∗w = Tw−1 for w ∈ Sn

and R-linear extension.

Lemma 1.2.5 The map ∗ from Definition 1.2.4 is an anti-involution on H(R,q)
An−1

.

This means that for x, y ∈ H(R,q)
An−1

, we have

(xy)∗ = y∗x∗ and x∗∗ = x.

Proof. See [MUR, Lemma 2.3]. �

By using ∗, dual modules of H(R,q)
An−1

-modules can be constructed as in the case of

group algebras (see also [CR1, §10D]).

Definition 1.2.6 Let M be a right H(R,q)
An−1

-module. Then the dual H(R,q)
An−1

-module

M∗ is defined as

M∗ = HomR(M,R)

with the operation

f · x = x∗f : M → R, m 7→ (m · x∗)f

for f ∈ HomR(M,R) and x ∈ H(R,q)
An−1

. Here, maps are written to the right of their

respective arguments.

Next, we show that Hecke algebras are stable when changing the coefficient ring.

So, let ξ : R → R̃ be a ring homomorphism from R to another integral domain R̃.

Then ξ(q) ∈ R̃ is a unit. Furthermore, R̃ can be considered a left R-module with

the operation a ·x = ξ(a)x ∈ R̃ for x ∈ R̃ and a ∈ R. With this, the functor −⊗R R̃
can be constructed.



36 CHAPTER 1. BACKGROUND

Lemma 1.2.7 We have H(R,q)
An−1

⊗R R̃ ' H(R̃,ξ(q))
An−1

as R̃-algebras.

Proof. This follows easily from the construction of the Hecke algebra of type An−1.

�

In the following, the R̃-algebrasH(R,q)
An−1
⊗R R̃ andH(R̃,ξ(q))

An−1
will be identified by means

of the preceding statement. Then we have a map

−⊗R R̃ : H(R,q)
An−1

→ H(R̃,ξ(q))
An−1

, h 7→ h⊗R 1R̃. (1.25)

This map is compatible with the multiplicative structures on H(R,q)
An−1

and H(R̃,ξ(q))
An−1

.

To be more specific, for x, y ∈ H(R,q)
An−1

, we have

(xy)⊗R 1R̃ = (x⊗R 1R̃) (y ⊗R 1R̃) . (1.26)

Now, the general behavior of modules of Hecke algebras when changing the coeffi-

cient ring is examined.

Lemma 1.2.8 (i) Let M be a right H(R,q)
An−1

-module with the structure map

%M : M ⊗R H(R,q)
An−1

→M, x⊗R y 7→ xy.

Then %M induces on M ⊗R R̃ in a natural way an H(R̃,ξ(q))
An−1

-module structure.

In particular, for every x ∈M and every y ∈ H(R,q)
An−1

, we have

(xy)⊗R 1R̃ = (x⊗R 1R̃) (y ⊗R 1R̃) . (1.27)

(ii) Let M and N be right H(R,q)
An−1

-modules and let

f : M → N

be an H(R,q)
An−1

-module homomorphism. Then

f ⊗R idR̃ : M ⊗R R̃→ N ⊗R R̃

is an H(R̃,ξ(q))
An−1

-module homomorphism.

(iii) Let M and N be right H(R,q)
An−1

-modules. Then we have(
M ⊗R R̃

)
⊕
(
N ⊗R R̃

)
'
(
M ⊕N

)
⊗R R̃

as right H(R̃,ξ(q))
An−1

-modules.

Proof. All this is clear from general facts on rings and modules. �
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Remark 1.2.9 In the following, there will occur certain ideals in Hecke algebras,

homomorphisms between such ideals, and several other objects whose constructions

are independent of the underlying coefficient pair. This means that these objects are

defined over arbitrary coefficient pairs, and the construction of such an object over

the coefficient pair (R, q) is mapped exactly on the construction of the correspond-

ing object over the coefficient pair (R̃, ξ(q)) when changing the coefficient ring as

described above by applying the functor −⊗R R̃ to all algebra elements and module

elements occurring in the construction of the object over the coefficient pair (R, q).

Objects with this property are called generic.

For example, according to Lemma 1.2.7, the Hecke algebras of type A themselves

are generic.

1.3 Irreducible representations of Hecke algebras

of type A

In this section, the construction of the irreducible modules of Hecke algebras of type

A over various coefficient fields and parameters is described. This can be generalized

from the special case of the group algebra of a symmetric group (see, for example,

[JAM1, Section 11]) to the more general case of a Hecke algebra over a field. In this

process, the combinatorial objects and constructions known from group algebras of

symmetric groups are for the most part preserved. All modules considered in the

following are finitely generated right modules, furthermore we fix an n ∈ N and a

coefficient pair (R, q) as described in Definition 1.2.1.

First, permutation modules on right cosets of Young subgroups are generalized.

This can be done over the coefficient ring R, a field is not required.

Definition 1.3.1 Let λ � n.

(i) x
(R,q)
λ ∈ H(R,q)

An−1
is defined as

x
(R,q)
λ = ι

(n)
(R,q)(Sλ).

As an abbreviation, we write

x
(R,q)
λ = xλ.

(ii) The right ideal Mλ
(R,q) in H(R,q)

An−1
is defined as

Mλ
(R,q) = x

(R,q)
λ H(R,q)

An−1
.
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As an abbreviation, we write

Mλ
(R,q) = Mλ.

Mλ
(R,q) is called the permutation module of H(R,q)

An−1
associated to λ.

The next statement shows the close relation between a permutation module Mλ

with λ � n and the corresponding permutation module of Sn on the right cosets of

the Young subgroup Sλ.

Theorem 1.3.2 Let λ � n. Then Mλ
(R,q) has the R-basis{

x
(R,q)
λ Td

∣∣∣ d ∈ Dλ} =
{
x

(R,q)
λ Td

∣∣∣ d ∈ Sn such that tλd is row standard
}
.

Proof. See [DJ1, Lemma 3.2]. �

Definition 1.3.3 Let λ � n. Then the R-basis{
x

(R,q)
λ Td

∣∣∣ d ∈ Dλ} =
{
x

(R,q)
λ Td

∣∣∣ d ∈ Sn such that tλd is row standard
}

of Mλ
(R,q) from Theorem 1.3.2 is called the row standard basis of Mλ

(R,q) and denoted

by

BMλ

row std(R, q) or BMλ

row std.

The operation of H(R,q)
An−1

on the basis elements of Mλ
(R,q) from Theorem 1.3.2 can be

described by using row standard λ-tableaux.

Lemma 1.3.4 Let λ � n, d ∈ Dλ, and s = (j, j + 1) ∈ Bn with j ∈ {1, . . . , n− 1}.
Then we have

x
(R,q)
λ TdTs =


x

(R,q)
λ Tds for (j)ζtλd < (j + 1)ζtλd

qx
(R,q)
λ Td for (j)ζtλd = (j + 1)ζtλd

qx
(R,q)
λ Tds + (q − 1)x

(R,q)
λ Td for (j)ζtλd > (j + 1)ζtλd

.

Proof. See [DJ1, Lemma 3.2]. �

The following lemma also describes an aspect of the operation of H(R,q)
An−1

on Mλ
(R,q).

Lemma 1.3.5 Let λ � n and w ∈ Sλ. Then

x
(R,q)
λ Tw = q`(w)x

(R,q)
λ .
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Proof. This can be seen by using (1.10) on page 3, (1.18) on page 25, (1.21) on

page 34, Lemma 1.3.4, Definition 1.1.53, and Definition 1.1.55. �

Next, we will show that the module Mλ
(R,q) with a λ � n is stable when changing

the coefficient ring, similarly to the algebra H(R,q)
An−1

. To this end, let ξ : R→ R̃ be a

ring homomorphism from R to another integral domain R̃, as in Lemma 1.2.7 and

Lemma 1.2.8.

Lemma 1.3.6 Let λ � n. Then we have Mλ
(R,q) ⊗R R̃ ' Mλ

(R̃,ξ(q))
as H(R̃,ξ(q))

An−1
-

modules.

Proof. This follows easily from Theorem 1.3.2 and Lemma 1.3.4. �

Remark 1.3.7 (i) Lemma 1.3.6 shows that the permutation modules Mλ
(R,q) with

λ � n from Definition 1.3.1.(ii) are generic in the sense of Remark 1.2.9.

(ii) Lemma 1.3.6 and Theorem 1.3.2 show that the row standard bases of permu-

tation modules from Definition 1.3.3 are generic in the sense of Remark 1.2.9.

In the following constructions, permutation modules defined by means of partitions

are considered. Some of these constructions can more generally be executed by

using compositions (see [DJ1, Section 4]). However, this is not required in the

following. The next definition makes use of Theorem 1.3.2.

Definition 1.3.8 Let λ ` n. The symmetric bilinear form

βλ = βλ(R,q) : Mλ
(R,q) ×Mλ

(R,q) → R

is defined by

βλ(R,q)(x
(R,q)
λ Td, x

(R,q)
λ Td̃) =

{
q`(d) if d = d̃

0R if d 6= d̃

for basis elements x
(R,q)
λ Td and x

(R,q)
λ Td̃ with d, d̃ ∈ Dλ, and bilinear extension to

arbitrary elements of Mλ
(R,q).

Remark 1.3.9 Remark 1.3.7 shows that the bilinear form introduced in Defini-

tion 1.3.8 is generic in the sense of Remark 1.2.9.

Next, the Specht modules known from the representation theory of Sn will be

generalized to Hecke algebras.

Definition 1.3.10 Let λ ` n.
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(i) y
(R,q)
λ ∈ H(R,q)

An−1
is defined as

y
(R,q)
λ = ε

(n)
(R,q)(Sλ).

As an abbreviation, we write

y
(R,q)
λ = yλ.

(ii) z
(R,q)
λ ∈ H(R,q)

An−1
is defined as

z
(R,q)
λ = x

(R,q)
λ Twλy

(R,q)
λ′ .

As an abbreviation, we write

z
(R,q)
λ = zλ.

(iii) The right ideal Sλ(R,q) in H(R,q)
An−1

is defined as

Sλ(R,q) = z
(R,q)
λ H(R,q)

An−1
.

As an abbreviation, we write

Sλ(R,q) = Sλ.

Sλ(R,q) is called a q-Specht module or just a Specht module.

In the following theorem, the construction of the standard basis for Specht modules

of symmetric groups is generalized to q-Specht modules of Hecke algebras.

Theorem 1.3.11 Let λ ` n. Then the set{
z

(R,q)
λ Tf

∣∣∣ f ∈ Eλ′} =
{
z

(R,q)
λ Tf

∣∣∣ f ∈ Sn such that tλwλf is standard
}

is an R-basis of the Specht module Sλ(R,q). If X is an indeterminate over Z then we

have for every f ∈ Eλ′

z
(R,q)
λ Tf = qafTwλf +

∑
w∈Sn

`(w)>`(wλf)

gf,w(q) · 1RTw

with an appropriate exponent af ∈ Z and appropriate Laurent polynomials gf,w ∈
Z [X,X−1] for w ∈ Sn with `(w) > `(wλf) independent of (R, q).
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Proof. See [DJ1, Theorem 5.6 and Lemma 5.1]. The particular form of the coef-

ficients follows from Definition 1.3.10.(ii), Definition 1.3.1.(i), Definition 1.3.10.(i),

Definition 1.2.3, and the construction of the multiplication of H(R,q)
n with the for-

mulas (1.20). �

Since, for every λ ` n, the tableau tλ is standard, the preceding theorem shows

that all Specht modules Sλ(R,q) are different from the null module.

Definition 1.3.12 Let λ ` n. Then the R-basis{
z

(R,q)
λ Tf

∣∣∣ f ∈ Eλ′} =
{
z

(R,q)
λ Tf

∣∣∣ f ∈ Sn such that tλwλf is standard
}

of Sλ(R,q) from Theorem 1.3.11 is called the standard basis of Sλ(R,q) and denoted by

BSλ

std(R, q) or BSλ

std.

The following statement describes the operation of H(R,q)
An−1

on the standard basis of

a Specht module Sλ(R,q).

Lemma 1.3.13 Let λ ` n, f ∈ Eλ′ , s ∈ Bn, and fix an indeterminate X over Z.

Then we have

z
(R,q)
λ TfTs =

∑
d∈Eλ′

gf,d(q) · 1Rz(R,q)
λ Td,

where the coefficient of every z
(R,q)
λ Td with d ∈ Eλ′ is of the form gf,d(q) · 1R ∈ R

with an appropriate Laurent polynomial gf,d ∈ Z [X,X−1] independent of (R, q).

Proof. From Theorem 1.3.11 and (1.20) on page 34, we get

zλTfTs =
∑
w∈Sn

g̃f,w(q) · 1RTw

with appropriate Laurent polynomials g̃f,w ∈ Z [X,X−1] independent of (R, q).

Since zλTfTs ∈ Sλ(R,q) ⊆ H
(R,q)
n and by using Theorem 1.3.11 once again and also

induction on the length of the w ∈ Sn, this expression can be rewritten as a linear

combination of basis elements zλTd with d ∈ Eλ′ where the coefficients indeed have

the required form. �

Next, we will show that the Specht module Sλ(R,q) with a λ ` n is stable when

changing the coefficient ring, similarly to the algebra H(R,q)
An−1

and the module Mλ
(R,q).

To this end, fix a ring homomorphism ξ : R → R̃ from R into another integral

domain R̃.

Lemma 1.3.14 Let λ ` n. Then we have Sλ(R,q) ⊗R R̃ ' Sλ
(R̃,ξ(q))

as H(R̃,ξ(q))
An−1

-

modules.
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Proof. This follows from Theorem 1.3.11 and Lemma 1.3.13. �

Remark 1.3.15 (i) Lemma 1.3.14 shows that the Specht modules Sλ(R,q) with λ `
n from Definition 1.3.10.(iii) are generic in the sense of Remark 1.2.9.

(ii) Lemma 1.3.14 and Theorem 1.3.11 show that the standard bases of Specht

modules from Definition 1.3.12 are generic in the sense of Remark 1.2.9.

Now, the irreducible modules of Hecke algebras over fields will be constructed

as quotients of Specht modules. Appropriate submodules of Specht modules Sλ

with λ ` n are obtained by means of the bilinear forms βλ on the corresponding

permutation modules Mλ. This procedure also is a generalization of the well known

methods for symmetric groups (see [JAM1, Section 11]).

The following definition makes use of the notation (1.1) on page 1 and dual

modules as introduced in Definition 1.2.6.

Definition 1.3.16 Let λ ` n.

(i) The symmetric bilinear form

γλ = γλ(R,q) : Sλ(R,q) × Sλ(R,q) → R

is defined as

γλ(R,q) = βλ(R,q)

yMλ
(R,q)

×Mλ
(R,q)

Sλ
(R,q)

×Sλ
(R,q)

.

(ii) Through γλ(R,q), every x ∈ Sλ(R,q) induces an R-linear homomorphism

γλ(R,q)(x,−) : Sλ(R,q) → R, y 7→ γλ(R,q)(x, y).

This, in turn, induces the R-linear homomorphism

ϕ[γλ(R,q)] : Sλ(R,q) →
(
Sλ(R,q)

)∗
= HomR(Sλ(R,q), R),

x 7→ ϕ[γλ(R,q)](x) = γλ(R,q)(x,−).

(iii) The radical rad γλ = rad γλ(R,q) of the symmetric bilinear form γλ(R,q) is defined

as

rad γλ(R,q) = Kerϕ[γλ(R,q)] =
{
x ∈ Sλ(R,q)

∣∣∣ ∀y ∈ Sλ(R,q) : γλ(R,q)(x, y) = 0R

}
.

Remark 1.3.17 Remark 1.3.7.(i), Remark 1.3.9, and Remark 1.3.15.(i) show that

the bilinear form introduced in Definition 1.3.16.(i) is generic in the sense of Re-

mark 1.2.9.
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Lemma 1.3.18 Let λ ` n. Then rad γλ(R,q) is an H(R,q)
An−1

-submodule of Sλ(R,q).

Proof. This follows from Definition 1.3.16, Definition 1.3.8, and [DJ1, Lemma 4.4].

�

Definition 1.3.19 Let λ ` n. Then the H(R,q)
An−1

-module Dλ = Dλ
(R,q) is defined as

Dλ
(R,q) = Sλ(R,q)/rad γλ(R,q).

In the following, K always denotes a field with additive neutral element 0K and

multiplicative neutral element 1K , furthermore let r ∈ K \ {0K} be an arbitrarily

chosen but fixed element. In the next two statements, the role of the number eK(r)

from Definition 1.2.2.(ii) for the algebraH(K,r)
An−1

is similar to that of the characteristic

of K for the algebra KSn.

Theorem 1.3.20 (i) Let λ ` n. If λ is eK(r)-regular, we have Dλ
(K,r) 6= 0H(K,r)

A

and Dλ
(K,r) is an absolutely irreducible H(K,r)

An−1
-module. Here, 0H(K,r)

A
denotes

the null ideal in H(K,r)
An−1

. If λ is eK(r)-singular, we have Dλ
(K,r) = 0H(K,r)

A
.

(ii) Let λ, µ ∈ Πn,eK(r) with λ 6= µ. Then we have Dλ
(K,r) 6' Dµ

(K,r).

(iii) The set {
Dλ

(K,r)

∣∣∣λ ∈ Πn,eK(r)

}
is a complete system of representatives of the isomorphism classes of irre-

ducible H(K,r)
An−1

-modules. It is parameterized by the set Πn,eK(r).

(iv) K is a splitting field for H(K,r)
An−1

.

Proof. (i) See [DJ1, Theorem 4.9, Theorem 6.3.(i), Theorem 6.8.(i)].

(ii) See [DJ1, Corollary 4.13].

(iii) See [DJ1, Theorem 7.6].

(iv) This follows from statements (i) and (iii). �

Theorem 1.3.21 (i) The algebra H(K,r)
An−1

is semisimple if and only if

eK(r) > n

holds.

(ii) Suppose that H(K,r)
An−1

is semisimple. Then the set{
Sλ(K,r)

∣∣∣λ ∈ Πn

}
is a complete system of representatives of the isomorphism classes of irre-

ducible H(K,r)
An−1

-modules. It is parameterized by the set Πn.
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(iii) Suppose that H(K,r)
An−1

is semisimple. Then we have for every λ ` n

Dλ
(K,r) = Sλ(K,r).

Proof. (i) See [DJ2, Theorem 4.3].

(ii) See [DJ2, Theorem 4.3].

(iii) This follows from Definition 1.3.19, Theorem 1.3.20, and statement (ii). �

1.4 Modular reduction and decomposition num-

bers for Hecke algebras of type A

Now we consider modular reductions of Hecke algebras over various coefficient fields

and related objects like Grothendieck groups, decomposition maps, and decomposi-

tion numbers. A good reference for the following material is [CR1, Chapter 2]. This

book also provides general facts about projective modules, short exact sequences,

and similar things which are used here without specific references. For the following,

we fix an n ∈ N.

Definition 1.4.1 Let R be an integral domain and q ∈ R be a unit.

(i) The isomorphism class of an H(R,q)
An−1

-module M is denoted by [M ]. The set of

all isomorphism classes of all finitely generated right H(R,q)
An−1

-modules is denoted

by

M(H(R,q)
An−1

) =
{

[M ]
∣∣∣M is a finitely generated right H(R,q)

An−1
-module

}
.

(ii) The Z-submodule U0(H(R,q)
An−1

) of the free module ⊕
[M ]∈M(H(R,q)

n )
Z[M ] is defined

as the Z-span of the set
[M ]− [M ′]− [M ′′]

[M ], [M ′], [M ′′] ∈M(H(R,q)
An−1

)

such that there is a short exact sequence

0H(R,q)
A
→M ′ →M →M ′′ → 0H(R,q)

A

of H(R,q)
An−1

-modules


.

Here, 0HA denotes the null ideal in H(R,q)
An−1

. With this, the Grothendieck group

of H(R,q)
An−1

is defined as

G0(H(R,q)
An−1

) =

 ⊕
[M ]∈M(H(R,q)

n )

Z[M ]

 /U0(H(R,q)
An−1

).
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The structure of the Grothendieck groups of Hecke algebras over fields is described

in the following two statements.

Lemma 1.4.2 Let (K, r) be a coefficient pair with a field K.

(i) We have

G0(H(K,r)
An−1

) =
⊕

µ∈Πn,eK (r)

Z[Dµ
(K,r)].

(ii) Let [M ] ∈M(H(K,r)
An−1

). Then we have in G0(H(K,r)
An−1

)

[M ] =
∑

µ∈Πn,eK (r)

x[M ]
µ [Dµ

(K,r)]

with coefficients x
[M ]
µ ∈ N0 for µ ∈ Πn,eK(r).

Proof. (i) This follows from Theorem 1.3.20.(iii) and [CR1, Proposition 16.6].

(ii) This follows from Theorem 1.3.20.(iii) and [CR1, proof of Proposition 16.6].

�

Lemma 1.4.3 Let (K, r) be a coefficient pair with a field K such that H(K,r)
An−1

is

semisimple.

(i) We have

G0(H(K,r)
An−1

) =
⊕
µ∈Πn

Z[Sµ(K,r)].

(ii) Let [M ] ∈M(H(K,r)
An−1

). Then we have in G0(H(K,r)
An−1

)

[M ] =
∑
µ∈Πn

y[M ]
µ [Sµ(K,r)]

with coefficients y
[M ]
µ ∈ N0 for µ ∈ Πn.

Proof. (i) This follows from Theorem 1.3.21.(ii) and [CR1, Proposition 16.6].

(ii) This follows from Theorem 1.3.21.(ii) and [CR1, proof of Proposition 16.6].

�

According to Lemma 1.4.3.(i), the Grothendieck groups of all finitely generated

modules of semisimple Hecke algebras of type An−1 over fields are isomorphic. The

following definition fixes such an isomorphism.
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Definition 1.4.4 Let (K, r) and (K̃, r̃) be two coefficient pairs with fields K and

K̃ such that the Hecke algebras H(K,r)
An−1

and H(K̃,r̃)
An−1

are semisimple. Then the iso-

morphism

αHn
(K,r)(K̃,r̃)

: G0(H(K,r)
An−1

)→ G0(H(K̃,r̃)
An−1

)

is defined by

[Sλ(K,r)] 7→ [Sλ
(K̃,r̃)

] for λ ` n

and Z-linear extension.

Next, systems of coefficient rings for the construction of decomposition maps of

Hecke algebras are described. We proceed as in [CR1, §4C].

Definition 1.4.5 Let K be a field. A discrete additive valuation on K is defined

as a map

ψ : K \ {0K} → Z

with the following properties.

(i) ψ is an epimorphism of the multiplicative group K \ {0K} onto the additive

group Z. In particular, we have for x, y ∈ K \ {0K}

ψ(xy) = ψ(x) + ψ(y).

(ii) For x, y ∈ K \ {0K} with x+ y 6= 0K, we have

ψ(x+ y) ≥ min{ψ(x), ψ(y)}.

The pair (K,ψ) is called a valuated field.

Definition 1.4.6 Let (K,ψ) be a valuated field. Then the discrete valuation ring

of ψ is defined as

Sψ = {x ∈ K \ {0K} | ψ(x) ≥ 0} ∪ {0K} ⊆ K.

Furthermore, the valuation ideal of ψ is defined as

Iψ = {x ∈ K \ {0K} | ψ(x) > 0} ∪ {0K} ⊆ Sψ ⊆ K.

Remark 1.4.7 Let (K,ψ) be a valuated field. Then the properties of ψ stated in

Definition 1.4.5 show that Sψ is an integral domain and furthermore a local ring

with the unique maximal ideal Iψ and the group of multiplicative units Sψ \ Iψ.
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Definition 1.4.8 A modular system is defined as a tuple

K = (Q,ψ, S, I, a, F )

of objects with the following specifications.

(i) (Q,ψ) is a valuated field.

(ii) S is the discrete valuation ring of ψ.

(iii) I is the valuation ideal of ψ.

(iv) a ∈ S \ I is a unit in S.

(v) F is the residue class field S/I.

The natural projection from S onto F is denoted by

·̄ : S → F, x 7→ x̄ = x+ I.

K determines three coefficient pairs (Q, a), (S, a), and (F, ā) as in Definition 1.2.1.

These are called the coefficient pairs associated to the modular system K.

For the following, we fix a modular system

K = (Q,ψ, S, I, a, F ) .

The next statement makes use of Definition 1.2.2.(ii).

Lemma 1.4.9 (i) We have eF (ā) ≤ eQ(a).

(ii) Let eQ(a) <∞. Then eF (ā) divides eQ(a).

Proof. (i) If eQ(a) =∞, there is nothing to show. So let eQ(a) <∞. Then we have

in Q according to Definition 1.2.2

[eQ(a)]a =

eQ(a)−1∑
i=0

ai = 0Q.

From this, we get in F

[eQ(a)]ā =

eQ(a)−1∑
i=0

āi = 0F . (1.28)

With that, the claim follows from Definition 1.2.2.(ii).
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(ii) According to Definition 1.2.2.(ii), statement (i), and the assumption, we

have

2 ≤ eF (ā) ≤ eQ(a) <∞.

Thus, we can write

eQ(a) = αeF (ā) + β with α ∈ N0 and β ∈ {0, . . . , eF (ā)− 1} . (1.29)

Then, to prove the claim, we must show β = 0. Now, from (1.29) and Defini-

tion 1.2.2.(i), we get in F the relation

[eQ(a)]ā = [α]āeF (ā) [eF (ā)]ā + āαeF (ā)[β]ā.

This shows together with (1.28) from the proof of statement (i), Definition 1.2.2.(ii),

and Definition 1.4.8

[β]ā = 0F .

From this, we get together with (1.29) and Definition 1.2.2

β = 0.

Thus, eF (ā) divides eQ(a), as desired. �

Now, some relations between the Hecke algebras over the coefficient pairs (Q, a),

(S, a), and (F, ā) associated to K are described. The natural inclusion ιS,Q : S ↪→ Q

allows the construction of the functor −⊗S Q, and one gets the following result.

Lemma 1.4.10 We have H(S,a)
An−1

⊗S Q ' H(Q,a)
An−1

as Q-algebras.

Proof. This follows from Lemma 1.2.7. �

In what follows, the algebras H(S,a)
An−1
⊗S Q and H(Q,a)

An−1
are identified by means of the

preceding lemma. Now, the coefficient pairs (S, a) and (F, ā) are considered. The

natural projection ·̄ : S → F, x 7→ x̄ = x+ I allows the construction of the functor

−⊗S F , and one gets the following result.

Lemma 1.4.11 We have H(S,a)
An−1

⊗S F ' H(F,ā)
An−1

as F -algebras.

Proof. This follows from Lemma 1.2.7. �

In what follows, the algebras H(S,a)
An−1
⊗S F and H(F,ā)

An−1
are identified by means of the

preceding lemma.

The next definition relates H(Q,a)
An−1

-modules and H(S,a)
An−1

-modules. It makes use of

Lemma 1.2.8.(i) and the functor −⊗S Q. See also [CR1, Definition 16.11].
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Definition 1.4.12 Let M be a finitely generated H(Q,a)
An−1

-module. Then a full H(S,a)
An−1

-

lattice of M is defined as a H(S,a)
An−1

-module N with the following two properties.

(i) N is free over S with finite rank.

(ii) We have N ⊗S Q 'M as H(Q,a)
An−1

-modules.

For example, according to Lemma 1.2.7, H(S,a)
An−1

is a full H(S,a)
An−1

-lattice of H(Q,a)
An−1

if

the algebras are considered as right modules for themselves. For H(Q,a)
An−1

-modules

and full H(S,a)
An−1

-lattices thereof, the following statements hold.

Lemma 1.4.13 (i) Every H(Q,a)
An−1

-module has full H(S,a)
An−1

-lattices.

(ii) Let N be a full H(S,a)
An−1

-lattice in an H(Q,a)
An−1

-module M . Then we have RnkS N =

dimQM .

Proof. (i) See [CR1, Proposition 16.15].

(ii) This follows immediately from Definition 1.4.12. �

Next, we relate H(S,a)
An−1

-modules and H(F,ā)
An−1

-modules. The following definition

makes use of Lemma 1.2.8.(i) and the functor −⊗S F .

Definition 1.4.14 Let M be an H(S,a)
An−1

-module. Then the H(F,ā)
An−1

-module M ⊗S F
is called the reduction of M modulo I. For this we write M̄ . The map − ⊗S F :

M → M̄ is, for short, denoted by

·̄ : M → M̄, x 7→ x̄ = x⊗S 1F .

For example, according to Lemma 1.2.7, H(F,ā)
An−1

is the reduction modulo I of H(S,a)
An−1

if the algebras are considered as right modules for themselves. Furthermore, this

gives together with the relation (1.27) from Lemma 1.2.8 the following property of

the reduction modulo I of an H(S,a)
An−1

-module M .

∀x ∈M, y ∈ H(S,a)
An−1

: xy = x̄ȳ (1.30)

Now we compare for a givenH(Q,a)
An−1

-moduleM the reductions modulo I of various

fullH(S,a)
An−1

-lattices therein. For two fullH(S,a)
An−1

-lattices N1 and N2 in M , we will have

in general N̄1 6' N̄2 as H(F,ā)
An−1

-modules. However, the following important result

holds.

Lemma 1.4.15 Let M be an H(Q,a)
An−1

-module, choose two full H(S,a)
An−1

-lattices N1 and

N2 thereof, and consider their reductions modulo I N̄1 and N̄2. Then we have in

G0(H(F,ā)
An−1

)

[N̄1] = [N̄2].
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Proof. See [CR1, Proposition 16.16]. �

With the preceding result, we can assign to an isomorphism class of H(Q,a)
An−1

-

modules [M ] ∈M(H(Q,a)
An−1

) by means of a representative M ∈ [M ] and a full H(S,a)
An−1

-

lattice N of M (which exists according to Lemma 1.4.13.(i)) the uniquely deter-

mined element [N̄ ] ∈ G0(H(F,ā)
An−1

). This assignment is compatible with the relations

between the isomorphism classes of H(Q,a)
An−1

-modules in G0(H(Q,a)
An−1

) (see [CR1, Propo-

sition 16.17]) and thus induces a homomorphism from this Grothendieck group into

G0(H(F,ā)
An−1

).

Definition 1.4.16 The homomorphism

DH = DHn = DHK = DHn,K : G0(H(Q,a)
An−1

)→ G0(H(F,ā)
An−1

), [M ] 7→ [N̄ ]

for [M ] ∈ M(H(Q,a)
An−1

) with a representative M ∈ [M ] and a full H(S,a)
An−1

-lattice N of

M is called the decomposition map for Hecke algebras associated with the degree n

and the modular system K.

Finally, decomposition numbers of Hecke algebras are introduced as coefficients

in matrix representations of decomposition maps.

Definition 1.4.17 According to Lemma 1.4.2, the formulas

DHn,K([Dλ
(Q,a)]) =

∑
µ∈Πn,eF (ā)

dn,Kλµ [Dµ
(F,ā)]

with λ ∈ Πn,eQ(a) define uniquely determined numbers dn,Kλµ ∈ N0 for λ ∈ Πn,eQ(a)

and µ ∈ Πn,eF (ā). These numbers are called the decomposition numbers for Hecke

algebras associated with the degree n and the modular system K. The matrix

∆H = ∆Hn = ∆HK = ∆Hn,K =
(
dn,Kλµ

)
λ∈Πn,eQ(a)

µ∈Πn,eF (ā)

representing the map DHn,K with respect to the basis
{

[Dλ
(Q,a)]

∣∣∣λ ∈ Πn,eQ(a)

}
of the Z-

module G0(H(Q,a)
An−1

) and the basis
{

[Dµ
(F,ā)]

∣∣∣µ ∈ Πn,eF (ā)

}
of the Z-module G0(H(F,ā)

An−1
)

from Lemma 1.4.2.(i) is called the decomposition matrix for Hecke algebras associ-

ated with the degree n and the modular system K.

1.5 Modular reduction and Specht modules of

Hecke algebras of type A

For this section, we fix an n ∈ N, as before. Furthermore, K denotes a modular

system as introduced in the previous section. This section describes the effect of
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the decomposition map DHn,K on Specht modules. This is particularly important if

the Hecke algebra H(Q,a)
An−1

is semisimple.

Lemma 1.5.1 Let λ ` n. Then Sλ(S,a) is a full H(S,a)
An−1

-lattice of Sλ(Q,a).

Proof. This follows from Definition 1.4.12, Theorem 1.3.11, and Lemma 1.3.14. �

Lemma 1.5.2 Let λ ` n. Then Sλ(F,ā) is the reduction modulo I of the full H(S,a)
An−1

-

lattice Sλ(S,a) of Sλ(Q,a).

Proof. This follows from Lemma 1.5.1, Definition 1.4.14, and Lemma 1.3.14. �

Corollary 1.5.3 Let λ ` n. Then we have

DHn,K([Sλ(Q,a)]) = [Sλ(F,ā)].

Proof. This follows from Definition 1.4.16, Lemma 1.5.1, and Lemma 1.5.2. �

Corollary 1.5.4 Suppose that H(F,ā)
An−1

is semisimple. Then the decomposition ma-

trix ∆Hn,K is, if the row and column index sets are ordered in the same way, an

identity matrix (i.e. it has ones on the diagonal and zeroes elsewhere).

Proof. This follows from Theorem 1.3.21, Lemma 1.4.9.(i), Definition 1.4.17, and

Corollary 1.5.3. �

Lemma 1.5.5 Suppose that H(Q,a)
An−1

is semisimple. Then, for every λ ∈ Πn and

every µ ∈ Πn,eF (ā), the decomposition number dn,Kλµ is equal to the multiplicity of

Dµ
(F,ā) as a composition factor in Sλ(F,ā).

Proof. According to Theorem 1.3.20.(iii), Theorem 1.3.21.(ii), Definition 1.4.16,

and Definition 1.4.17, the decomposition number dn,Kλµ is obtained by choosing a

full H(S,a)
n -lattice N of Sλ(Q,a), constructing its reduction modulo I N̄ , and deter-

mining the multiplicity of the irreducible module Dµ
(F,ā) as a composition factor in

N̄ . According to Lemma 1.5.1, one can choose N = Sλ(S,a). Then, according to

Lemma 1.5.2, one has N̄ = Sλ(F,ā). This shows the claim. �

Corollary 1.5.6 Suppose that H(Q,a)
An−1

is semisimple. Then, for every λ ∈ Πn and

every µ ∈ Πn,eF (ā), the decomposition number dn,Kλµ is uniquely determined by the

data λ, µ, and (F, ā).

Proof. This follows immediately from Lemma 1.5.5. �

The next lemma makes use of Definition 1.1.2 and Definition 1.1.4.(ii).
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Lemma 1.5.7 Suppose that H(Q,a)
An−1

is semisimple and let λ ` n. Then the following

statements hold in G0(H(F,ā)
An−1

).

(i) We have

[Sλ(F,ā)] =
∑

µ∈Πn,eF (ā)

dn,Kλµ [Dµ
(F,ā)].

(ii) If λ is eF (ā)-regular, we have

[Sλ(F,ā)] = [Dλ
(F,ā)] +

∑
µ∈Πn,eF (ā)

µBλ

dn,Kλµ [Dµ
(F,ā)].

(iii) If λ is eF (ā)-singular, we have

[Sλ(F,ā)] =
∑

µ∈Πn,eF (ā)
µBλ

dn,Kλµ [Dµ
(F,ā)].

Proof. The identity in statement (i) is obtained from Theorem 1.3.21, Defini-

tion 1.4.17, and Corollary 1.5.3. This in turn, together with Lemma 1.5.5, the inclu-

sion Sλ ⊆Mλ (see Definition 1.3.1 and Definition 1.3.10), [DJ1, Corollary 4.12.(i)],

Theorem 1.3.20.(i), and [DJ1, Corollary 4.14], implies the identities in statements

(ii) and (iii). �

The next statement is required in the following considerations. It is a generaliza-

tion of the corresponding property of group algebras (see [CR1, Corollary 18.14]).

Lemma 1.5.8 Suppose that H(Q,a)
An−1

is semisimple. Then the following statements

hold.

(i) The decomposition map

DHn,K : G0(H(Q,a)
An−1

)→ G0(H(F,ā)
An−1

)

is surjective.

(ii) For the decomposition matrix

∆Hn,K =
(
dn,Kλµ

)
λ∈Πn
µ∈Πn,eF (ā)

,

we have

RnkQ ∆Hn,K =
∣∣Πn,eF (ā)

∣∣ .
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Proof. (i) According to Lemma 1.4.3.(i) and Corollary 1.5.3, we must show that

for every µ ∈ Πn,eF (ā) the basis element [Dµ
(F,ā)] ∈ G0(H(F,ā)

n ) can be written as

a Z-linear combination of the elements [Sλ(F,ā)] ∈ G0(H(F,ā)
n ) with λ ∈ Πn. This

follows from [DJ1, Corollary 4.12, Corollary 4.14]. There, a certain order on the

set Πn is used, by means of which the required representations of the [Dµ
(F,ā)] with

µ ∈ Πn,eF (ā) can be constructed inductively.

(ii) In the following sequence of Z-modules, 0Z denotes the null module over Z.

G0(H(Q,a)
n )

DHn,K−→ G0(H(F,ā)
n ) −→ 0Z

According to statement (i), this sequence is exact. By tensoring over Z with Q, one

obtains an exact sequence of Q-vector spaces, since −⊗Z Q is right exact (see, for

example, [CR1, §2B]). Now, according to Definition 1.4.17 and Theorem 1.3.21.(ii),

the matrix representing the surjective map DHn,K⊗Z idQ with respect to the bases of

G0(H(Q,a)
n ) and G0(H(F,ā)

n ) from Lemma 1.4.3.(i) and Lemma 1.4.2.(i) tensored with

Q over Z is just ∆Hn,K. Now the claim follows from general facts of linear algebra

and the relation ∣∣Πn,eF (ā)

∣∣ ≤ |Πn|

(see Definition 1.1.2.(iii)). �

1.6 Dependence of the decomposition matrices of

Hecke algebras of type A on the employed

modular system

We continue to use the integer n ∈ N and the modular system K fixed in the

previous section. This section will show that the decomposition numbers dn,Kλµ with

λ ∈ Πn,eQ(a) and µ ∈ Πn,eF (ā) are independent of the coefficient ring S in the modular

system K. To this end, we require, in addition to K, two other modular systems.

These are introduced next.

Let K be an arbitrary field, fix an element r ∈ K \ {0K}, and consider an

indeterminate X over K. Then the polynomial f = X − r ∈ K[X] is irreducible.

With this, we define for every element g
h

of K(X) \
{

0K(X)

}
with g, h ∈ K[X]

the integer

ψf (
g

h
) ∈ Z

by means of the decomposition

g

h
=
g̃

h̃
fψf ( g

h
)
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with g̃, h̃ ∈ K[X] such that both f - g̃ and f - h̃ hold. The map

ψf : K(X) \ {0K(X)} → Z, z 7→ ψf (z)

defined in this way has the following properties.

(i) For arbitrary y, z ∈ K(X) \ {0K(X)} we have ψf (yz) = ψf (y) + ψf (z).

(ii) For y, z ∈ K(X) \ {0K(X)} satisfying y + z 6= 0K(X) we have ψf (y + z) ≥
min{ψf (y), ψf (z)}.

Thus, ψf is a discrete additive valuation on K(X) (see [CR1, §4C]). Associated to

ψf is the discrete valuation ring

Sψf =
{
z ∈ K(X) \

{
0K(X)

}
|ψf (z) ≥ 0

}
∪
{

0K(X)

}
with the unique maximal ideal

Iψf =
{
z ∈ K(X) \

{
0K(X)

}
|ψf (z) > 0

}
∪
{

0K(X)

}
.

These also can be described as follows.

Sψf = K[X]fK[X]

=
{g
h
∈ K(X)

∣∣∣ g ∈ K[X], h ∈ K[X] \
{

0K[X]

}
such that f - h

}
is the localization of K[X] at the ideal fK[X] (see [CR1, §4A]). With this,

Iψf = fSψf

= f ·K[X]fK[X]

=
{g
h
∈ K(X)

∣∣∣ g ∈ K[X], h ∈ K[X] \
{

0K[X]

}
such that f | g and f - h

}
is the ideal generated by f in Sψf . Because of ψf (X) = 0 = ψf (

1K
X

), X is a unit in

Sψf . Furthermore, every element of Sψf is congruent modulo Iψf to an element of

K ⊆ Sψf ⊆ K(X). Thus, we have

Sψf/Iψf = K,

and the natural projection

·̄ : Sψf → K, z 7→ z̄ = z + Iψf

maps X to

X̄ = r.

All in all, this construction provides for a given field K and a fixed r ∈ K \ {0K}
a modular system with (K, r) as an associated coefficient pair such that K is the

residue class field of the discrete valuation ring.
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Definition 1.6.1 Let K be an arbitrary field, fix an r ∈ K \ {0K}, and choose an

indeterminate X over K. Then the modular system K(K,r) is defined by means of

the discrete additive valuation ψX−r on K(X) as

K(K,r) =
(
K(X), ψX−r, SψX−r , IψX−r , X,K

)
=

(
K(X), ψX−r, K[X](X−r)K[X], (X − r) ·K[X](X−r)K[X], X,K

)
.

Later on, we will require modular systems with a complete discrete valuation ring.

Such a modular system is obtained from a given field K and a unit r ∈ K \ {0K}
by means of the construction of the modular system K(K,r) just introduced if, in

addition, the field K(X) is completed with respect to the valuation ψX−r. This is

described in more detail in [CR1, §4C] and the further references given there.

Definition 1.6.2 Let K be a field, fix an r ∈ K \ {0K}, and choose an indetermi-

nate X over K.

(i) The completion of K(X) with respect to the additive valuation ψX−r is denoted

by
ˆK(X).

K(X) is considered a subset of ˆK(X).

(ii) The discrete additive valuation on ˆK(X) defined by continuous extension of

ψX−r from K(X) \
{

0K(X)

}
to ˆK(X) \

{
0 ˆK(X)

}
is denoted by

ψ̂X−r : ˆK(X) \
{

0 ˆK(X)

}
→ Z.

(iii) The discrete valuation ring in ˆK(X) associated to ψ̂X−r is denoted by

Sψ̂X−r =
{
z ∈ ˆK(X) \

{
0 ˆK(X)

} ∣∣∣ ψ̂X−r(z) ≥ 0
}
∪
{

0 ˆK(X)

}
.

The unique maximal ideal in Sψ̂X−r is denoted by

Iψ̂X−r =
{
z ∈ ˆK(X) \

{
0 ˆK(X)

} ∣∣∣ ψ̂X−r(z) > 0
}
∪
{

0 ˆK(X)

}
.

Lemma 1.6.3 Let K be a field, fix an r ∈ K \ {0K}, and choose an indeterminate

X over K. Then the following statements hold.

(i) Sψ̂X−r is a complete discrete valuation ring.

(ii) We have Sψ̂X−r/Iψ̂X−r = K.
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(iii) For the natural projection ·̄ : Sψ̂X−r → Sψ̂X−r/Iψ̂X−r = K, we have the relation

X 7→ X̄ = r.

Proof. (i) As a continuous extension of the discrete additive valuation ψX−r, ψ̂X−r

is discrete. The completeness of Sψ̂X−r with respect to ψ̂X−r follows from the com-

pleteness of ˆK(X) with respect to ψ̂X−r and the continuity of ψ̂X−r with respect to

the topology on ˆK(X) induced by ψ̂X−r.

(ii) See [CR1, §4C].

(iii) According to the construction of Sψ̂X−r and ψ̂X−r in Definition 1.6.2, we

have X ∈ Sψ̂X−r . Now, X̄ = r follows from the construction of Iψ̂X−r , ψ̂X−r, and

ψX−r. �

According to the preceding lemma, one gets from Definition 1.6.2 for a given field

K and an r ∈ K \ {0K} a modular system with a complete discrete valuation ring

and an associated coefficient pair (K, r) such that K is the residue class field of the

discrete valuation ring.

Definition 1.6.4 Let K be a field, fix an r ∈ K \ {0K}, and choose an indetermi-

nate X over K. Then the modular system K̂(K,r) is defined by means of the discrete

additive valuation ψ̂X−r on ˆK(X) as

K̂(K,r) =
(

ˆK(X), ψ̂X−r, Sψ̂X−r , Iψ̂X−r , X,K
)
.

Lemma 1.6.5 Let K be an arbitrary field and choose an indeterminate X over K.

Then the Hecke algebras H(K(X),X)
An−1

and H( ˆK(X),X)
An−1

are semisimple.

Proof. X is transcendent over K. Thus, the claim follows from Theorem 1.3.21 and

Definition 1.2.2. �

Now we consider in addition to a given modular system

K = (Q,ψ, S, I, a, F )

also the modular systems

K(Q,a) =
(
Q(Y ), ψY−a, Q[Y ](Y−a)Q[Y ], (Y − a) ·Q[Y ](Y−a)Q[Y ], Y,Q

)
and

K(F,ā) =
(
F (Z), ψZ−ā, F [Z](Z−ā)F [Z], (Z − ā) · F [Z](Z−ā)F [Z], Z, F

)
where Y is an indeterminate over Q and Z is an indeterminate over F . In the

remainder of this section, we could use, instead of K(Q,a) and K(F,ā), the modular

systems K̂(Q,a) and K̂(F,ā) as well. From the three modular systems K, K(Q,a), and
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K(F,ā), we get four Hecke algebras over fields and furthermore four Grothendieck

groups of categories of finitely generated modules. With these, we can construct

the following diagram.

-

-

? ?

αHn(Q(Y ),Y )(F (Z),Z)

DHn,K

DHn,K(Q,a)
DHn,K(F,ā)

G0(H(Q(Y ),Y )
An−1

) G0(H(F (Z),Z)
An−1

)

G0(H(Q,a)
An−1

) G0(H(F,ā)
An−1

)

(1.31)

Here, DHn,K(Q,a)
, DHn,K(F,ā)

, and DHn,K are decomposition maps as in Definition 1.4.16.

Furthermore, αHn(Q(Y ),Y )(F (Z),Z) is an isomorphism as in Definition 1.4.4, it exists

according to Lemma 1.6.5. Similar diagrams are considered more generally in [GEC,

Section 4, Section 5] for Hecke algebras of arbitrary type. The following lemma is

proved in [GEC, Section 4] for Hecke algebras of arbitrary type.

Lemma 1.6.6 The diagram (1.31) is commutative.

Proof. According to Lemma 1.6.5 and Lemma 1.4.3.(i), it suffices to show the

commutativity for every [Sλ(Q(Y ),Y )] ∈ G0(H(Q(Y ),Y )
n ) with λ ` n. According to

Definition 1.4.4, Definition 1.4.16, and Lemma 1.5.2, we have

DHn,K(F,ā)
(αHn(Q(Y ),Y )(F (Z),Z)([S

λ
(Q(Y ),Y )])) = DHn,K(F,ā)

([Sλ(F (Z),Z)])

= [Sλ(F,ā)]

= DHn,K([Sλ(Q,a)])

= DHn,K(DHn,K(Q,a)
([Sλ(Q(Y ),Y )])).

This proves the claim. �

Corollary 1.6.7 The decomposition matrices ∆Hn,K, ∆Hn,K(Q,a)
, and ∆Hn,K(F,ā)

satisfy

∆Hn,K(Q,a)
·∆Hn,K = ∆Hn,K(F,ā)

. (1.32)

Proof. This follows from Lemma 1.6.6 by considering the matrices representing

the maps in the diagram (1.31) with respect to the bases of the Grothendieck

groups in that diagram described in Lemma 1.4.2.(i) and Lemma 1.4.3.(i). See also

Definition 1.4.4, Definition 1.4.17, and Theorem 1.3.21. �

Now, the independence of the decomposition matrix of the discrete valuation

ring S in the modular system K can be shown.
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Theorem 1.6.8 Let K = (Q,ψ, S, I, a, F ) be an arbitrary modular system. Then,

for every λ ∈ Πn,eQ(a) and every µ ∈ Πn,eF (ā), the decomposition number dn,Kλµ is

independent of the discrete valuation ring S in K.

Proof. The coefficient pairs (Q, a) and (F, ā) provide the modular systems K(Q,a)

and K(F,ā) as in Definition 1.6.1. With these, we can build a rectangle (1.31) in

which Lemma 1.6.5, Lemma 1.6.6, Lemma 1.5.8, and Corollary 1.6.7 hold. Now

Corollary 1.6.7, Lemma 1.5.8.(ii), and general facts from linear algebra show that

the matrix ∆Hn,K is completely determined by the matrices ∆Hn,K(Q,a)
and ∆Hn,K(F,ā)

.

But these latter two matrices are independent of S, since S doesn’t occur as a

coefficient ring in the modular systems K(Q,a) and K(F,ā). Thus, the matrix ∆Hn,K =(
dn,Kλµ

)
λ∈Πn,eQ(a)

µ∈Πn,eF (ā)

also is independent of S. �

1.7 Modular reduction and projective modules of

Hecke algebras of type A

In the following, further properties of decomposition maps under certain assump-

tions on the employed modular systems are shown. We proceed as in [CR1, §18].

n ∈ N is still fixed.

First, we introduce projective class groups (see [CR1, §16B]).

Definition 1.7.1 Let R be an integral domain and fix a unit q ∈ R.

(i) The isomorphism class of an H(R,q)
An−1

-module M is denoted by [M ]. The set of

all isomorphism classes of all finitely generated projective right H(R,q)
An−1

-modules

is denoted by

P(H(R,q)
An−1

) =
{

[P ]
∣∣∣P is a finitely generated projective right H(R,q)

An−1
-module

}
.

(ii) The Z-submodule V0(H(R,q)
An−1

) of the free module ⊕
[P ]∈P(H(R,q)

n )
Z[P ] is defined as

the Z-span of the set
[P ]− [P ′]− [P ′′]

[P ], [P ′], [P ′′] ∈ P(H(R,q)
An−1

)

such that there is an isomorphism

P ' P ′ ⊕ P ′′

of H(R,q)
An−1

-modules


.
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With this, the projective class group of H(R,q)
An−1

is defined as

K0(H(R,q)
An−1

) =

 ⊕
[P ]∈P(H(R,q)

n )

Z[P ]

 /V0(H(R,q)
An−1

).

For the remainder of this section, we fix a modular system

K = (Q,ψ, S, I, a, F )

as in Definition 1.4.8 which satisfies the following conditions.

(i) The algebra H(Q,a)
An−1

is semisimple.

(ii) The discrete valuation ring S is complete with respect to the valu-

ation ψ.

(1.33)

Lemma 1.7.2 (i) Let µ ∈ Πn,eF (ā). Then the irreducible module Dµ
(F,ā) has an

indecomposable projective cover

P µ = P µ
(F,ā).

P µ
(F,ā) is a finitely generated projective indecomposable right H(F,ā)

An−1
-module and

isomorphic to the right ideal fµ
H(F,ā)
n

H(F,ā)
An−1

generated by an appropriate inde-

composable idempotent fµ
H(F,ā)
n

∈ H(F,ā)
An−1

. Dµ
(F,ā) is the only irreducible quotient

of P µ
(F,ā).

(ii) The set {
P µ

(F,ā)

∣∣∣µ ∈ Πn,eF (ā)

}
is a complete system of representatives of the isomorphism classes of finitely

generated projective indecomposable right H(F,ā)
An−1

-modules. It is parameterized

by the set Πn,eF (ā).

(iii) We have

K0(H(F,ā)
An−1

) =
⊕

µ∈Πn,eF (ā)

Z[P µ
(F,ā)].

(iv) Let [P ] ∈ P(H(F,ā)
An−1

). Then we have in K0(H(F,ā)
An−1

)

[P ] =
∑

µ∈Πn,eF (ā)

x[P ]
µ [P µ

(F,ā)]

with coefficients x
[P ]
µ ∈ N0 for µ ∈ Πn,eF (ā).
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Proof. The statements referred to in the following can be applied here because of

the properties (1.33) of the modular system K. See also [CR1, introductory remarks

to Theorem 6.23].

(i) This follows from [CR1, Summary 18.1.(i)] and Theorem 1.3.20.(iii).

(ii) This follows from [CR1, Summary 18.1.(ii), Summary 18.1.(i)] and state-

ment (i).

(iii) This follows from [CR1, Proposition 16.7] and statement (ii).

(iv) This follows from [CR1, proof of Proposition 16.7] and statement (ii). �

Lemma 1.7.3 (i) For every µ ∈ Πn,eF (ā), there is a finitely generated projective

indecomposable right H(S,a)
An−1

-module

P µ = P µ
(S,a)

such that

P µ
(S,a) = P µ

(F,ā)

holds. P µ
(S,a) is isomorphic to the right ideal fµ

H(S,a)
n

H(S,a)
An−1

generated by an

appropriate indecomposable idempotent fµ
H(S,a)
n

∈ H(S,a)
An−1

. For this idempotent,

we have

fµ
H(S,a)
n

H(F,ā)
An−1

' P µ
(F,ā).

(ii) The set {
P µ

(S,a)

∣∣∣µ ∈ Πn,eF (ā)

}
is a complete system of representatives of the isomorphism classes of finitely

generated projective indecomposable right H(S,a)
An−1

-modules. It is parameterized

by the set Πn,eF (ā).

(iii) We have

K0(H(S,a)
An−1

) =
⊕

µ∈Πn,eF (ā)

Z[P µ
(S,a)].

(iv) Let [P ] ∈ P(H(S,a)
An−1

). Then we have in K0(H(S,a)
An−1

)

[P ] =
∑

µ∈Πn,eF (ā)

x[P ]
µ [P µ

(S,a)]

with coefficients x
[P ]
µ ∈ N0 for µ ∈ Πn,eF (ā).
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Proof. The statements referred to in the following can be applied here because of

the properties (1.33) of the modular system K. See also [CR1, introductory remarks

to Theorem 6.23].

(i) This follows from [CR1, Summary 18.1.(iii), Summary 18.1.(i)] and Theo-

rem 1.3.20.(iii).

(ii) This follows from [CR1, Summary 18.1.(iv), Summary 18.1.(iii)] and state-

ment (i).

(iii) This follows from [CR1, Proposition 16.7] and statement (ii).

(iv) This follows from [CR1, proof of Proposition 16.7] and statement (ii). �

Now, certain homomorphisms between the Grothendieck groups G0(H(Q,a)
An−1

) and

G0(H(F,ā)
An−1

) and the projective class group K0(H(F,ā)
An−1

) will be considered. The de-

composition map

DHn,K : G0(H(Q,a)
An−1

)→ G0(H(F,ā)
An−1

)

was introduced in Definition 1.4.16. Furthermore, the inclusion ηHn,(F,ā) of the cate-

gory of the finitely generated projectiveH(F,ā)
An−1

-modules in the category of all finitely

generated H(F,ā)
An−1

-modules induces a homomorphism from K0(H(F,ā)
An−1

) to G0(H(F,ā)
An−1

).

Definition 1.7.4 The homomorphism

CHn,K : K0(H(F,ā)
An−1

)→ G0(H(F,ā)
An−1

), [P ] 7→ [ηHn,(F,ā)(P )] = [P ] ∈ G0(H(F,ā)
An−1

)

induced by ηHn,(F,ā) is called the Cartan map for Hecke algebras associated with the

degree n and the modular system K. The matrix

CHn,K =
(
CHn,K(λ, µ)

)
λ∈Πn,eF (ā)
µ∈Πn,eF (ā)

representing the map CHn,K with respect to the basis
{

[P λ
(F,ā)]

∣∣∣λ ∈ Πn,eF (ā)

}
of the

Z-module K0(H(F,ā)
An−1

) from Lemma 1.7.2.(iii) and the basis
{

[Dλ
(F,ā)]

∣∣∣λ ∈ Πn,eF (ā)

}
of the Z-module G0(H(F,ā)

An−1
) from Lemma 1.4.2.(i), whose integer entries CHn,K(λ, µ)

for λ, µ ∈ Πn,eF (ā) are uniquely determined by

CHn,K([P λ
(F,ā)]) =

∑
µ∈Πn,eF (ā)

CHn,K(λ, µ)[Dµ
(F,ā)],

is called the Cartan matrix for Hecke algebras associated with the degree n and the

modular system K.

Remark 1.7.5 The Cartan map exists more generally for Hecke algebras over inte-

gral domains. However, in order to define the Cartan matrix as in Definition 1.7.4,
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the coefficient ring should be a field. The Cartan map and also the Cartan matrix

both depend only on the coefficient pair directly involved, a whole modular system

is not required. However, this degree of generality is not needed here. In what fol-

lows, Cartan maps and Cartan matrices will always occur in connection with whole

modular systems, as in Definition 1.7.4. This motivates the notation chosen here.

Finally, we introduce a homomorphism from K0(H(F,ā)
An−1

) to G0(H(Q,a)
An−1

). This is done

in two steps. First, Lemma 1.2.8.(iii), Definition 1.4.14, and Definition 1.7.1 show

that the following construction is meaningful.

Definition 1.7.6 The homomorphism

·̄ : K0(H(S,a)
An−1

)→ K0(H(F,ā)
An−1

)

is defined by

[P ] = [P̄ ] ∈ K0(H(F,ā)
An−1

) for [P ] ∈ P(H(S,a)
An−1

)

and Z-linear extension.

Lemma 1.7.7 The homomorphism

·̄ : K0(H(S,a)
An−1

)→ K0(H(F,ā)
An−1

)

from Definition 1.7.6 is an isomorphism.

Proof. See [CR1, Theorem 18.2]. �

Furthermore, it follows from Lemma 1.2.8, Definition 1.4.1, and Definition 1.7.1

that the next definition is meaningful.

Definition 1.7.8 The homomorphism

−⊗S Q : K0(H(S,a)
An−1

)→ G0(H(Q,a)
An−1

)

is defined by

[P ]⊗S Q = [P ⊗S Q] ∈ G0(H(Q,a)
An−1

) for [P ] ∈ P(H(S,a)
An−1

)

and Z-linear extension.

Through appropriate composition of the homomorphisms from Definition 1.7.6 and

Definition 1.7.8, one obtains the desired map. See also [CR1, (18.3)].
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Definition 1.7.9 The composition of the maps

(̄·)−1 : K0(H(F,ā)
An−1

)→ K0(H(S,a)
An−1

)

and

−⊗S Q : K0(H(S,a)
An−1

)→ G0(H(Q,a)
An−1

)

defines the homomorphism

BHn,K : K0(H(F,ā)
An−1

)→ G0(H(Q,a)
An−1

), x 7→ BHn,K(x) = (−⊗S Q)((̄·)−1(x)).

This map is called the Brauer map for Hecke algebras associated with the degree n

and the modular system K. The matrix representing BHn,K with respect to the basis{
[P λ

(F,ā)]
∣∣∣λ ∈ Πn,eF (ā)

}
of the Z-module K0(H(F,ā)

An−1
) from Lemma 1.7.2.(iii) and the

basis
{

[Sλ(Q,a)]
∣∣∣λ ∈ Πn

}
of the Z-module G0(H(Q,a)

An−1
) from Lemma 1.4.3.(i), whose

integer entries BHn,K(λ, µ) for λ ∈ Πn,eF (ā) and µ ∈ Πn are uniquely determined by

BHn,K([P λ
(F,ā)]) =

∑
µ∈Πn

BHn,K(λ, µ)[Sµ(Q,a)],

is denoted by

BHn,K =
(
BHn,K(λ, µ)

)
λ∈Πn,eF (ā)
µ∈Πn

.

Now, all maps between the considered Grothendieck groups and projective class

groups required in the following are available.

Definition 1.7.10 The diagram

�
�
�
�
�
���

-
?

BHn,K

CHn,K

DHn,K

K0(H(F,ā)
An−1

)

G0(H(Q,a)
An−1

)

G0(H(F,ā)
An−1

)

(1.34)

is called the Cartan-Brauer triangle for Hecke algebras associated with the degree n

and the modular system K or, for short, Cartan-Brauer triangle.

Lemma 1.7.11 The Cartan-Brauer triangle from Definition 1.7.10 is commuta-

tive.
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Proof. According to Lemma 1.7.2.(iii), it suffices to show the commutativity for

basis elements [P λ
(F,ā)] of K0(H(F,ā)

n ) with λ ∈ Πn,eF (ā). This follows easily from the

construction of the maps DHn,K, CHn,K, and BHn,K in Definition 1.4.16, Definition 1.7.4,

and Definition 1.7.9. See also [CR1, Proposition 18.5]. �

In order to describe further relations between the maps occurring in a Cartan-

Brauer triangle, we now introduce bilinear forms on some products of the Z-modules

involved. It is shown in [CR1, §18B] that the following bilinear form is well defined.

Definition 1.7.12 The bilinear form

iHn,(Q,a) : G0(H(Q,a)
An−1

)×G0(H(Q,a)
An−1

)→ Z

is defined by

iHn,(Q,a)([M ], [N ]) = dimQ HomH(Q,a)
n

(M,N)

for [M ], [N ] ∈M(H(Q,a)
An−1

) and bilinear extension.

According to condition (1.33).(i) and Lemma 1.4.3.(i), the Grothendieck group

G0(H(Q,a)
An−1

) has the basis
{

[Sλ(Q,a)]
∣∣∣λ ∈ Πn

}
. The next lemma states the values

of the bilinear form iHn,(Q,a) on such basis elements.

Lemma 1.7.13 For [Sλ(Q,a)], [S
µ
(Q,a)] ∈ G0(H(Q,a)

An−1
) with λ, µ ∈ Πn we have

iHn,(Q,a)([S
λ
(Q,a)], [S

µ
(Q,a)]) =

{
1 if λ = µ

0 if λ 6= µ
.

Proof. This follows from Theorem 1.3.21.(ii) and Theorem 1.3.20.(iv). See also

[CR1, §18B]. �

It is shown in [CR1, Proposition 18.8] that the following bilinear form is well defined.

Definition 1.7.14 The bilinear form

jHn,(F,ā) : K0(H(F,ā)
An−1

)×G0(H(F,ā)
An−1

)→ Z

is defined by

jHn,(F,ā)([P ], [M ]) = dimF HomH(F,ā)
n

(P,M)

for [P ] ∈ P(H(F,ā)
An−1

) and [M ] ∈M(H(F,ā)
An−1

) and bilinear extension.

According to Lemma 1.7.2.(iii) and Lemma 1.4.2.(i), K0(H(F,ā)
An−1

) and G0(H(F,ā)
An−1

)

have the bases
{

[P λ
(F,ā)]

∣∣∣λ ∈ Πn,eF (ā)

}
and

{
[Dλ

(F,ā)]
∣∣∣λ ∈ Πn,eF (ā)

}
, respectively.

The following lemma states the values of the bilinear form jHn,(F,ā) on such basis

elements.
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Lemma 1.7.15 For [P λ
(F,ā)] ∈ K0(H(F,ā)

An−1
) and [Dµ

(F,ā)] ∈ G0(H(F,ā)
An−1

) with λ, µ ∈
Πn,eF (ā) we have

jHn,(F,ā)([P
λ
(F,ā)], [D

µ
(F,ā)]) =

{
1 if λ = µ

0 if λ 6= µ
.

Proof. This follows from Lemma 1.7.2, Theorem 1.3.20, and [CR1, Proposition 18.8].

�

Now, the bilinear forms iHn,(Q,a) and jHn,(F,ā) provide further relations between the

maps DHn,K, BHn,K, and CHn,K.

Lemma 1.7.16 Let K = (Q,ψ, S, I, a, F ) be a modular system satisfying the con-

ditions (1.33). Then the following statements hold.

(i) The maps BHn,K and DHn,K are transposes of one another with respect to the

bilinear forms iHn,(Q,a) and jHn,(F,ā). This means that for arbitrary elements

f ∈ K0(H(F,ā)
An−1

) and g ∈ G0(H(Q,a)
An−1

) we have

iHn,(Q,a)(B
H
n,K(f), g) = jHn,(F,ā)(f,D

H
n,K(g)).

(ii) The representing matrices ∆Hn,K of DHn,K from Definition 1.4.17, BHn,K of BHn,K
from Definition 1.7.9, and CHn,K of CHn,K from Definition 1.7.4 satisfy

BHn,K =
(
∆Hn,K

)T
and

CHn,K = BHn,K ·∆Hn,K =
(
∆Hn,K

)T · (∆Hn,K) .
(iii) Let µ ∈ Πn,eF (ā). Then we have in G0(H(Q,a)

An−1
)

BHn,K([P µ
(F,ā)]) =

∑
λ∈Πn

dn,Kλµ [Sλ(Q,a)]

with uniquely determined coefficients dn,Kλµ for λ ` n.

Proof. (i) See [CR1, Theorem 18.9].

(ii) See [CR1, Corollary 18.10 and its proof].

(iii) This follows immediately from Definition 1.7.9 and statement (ii). �

Remark 1.7.17 The maps BHn,K and CHn,K also can be defined in the more gen-

eral case that H(Q,a)
An−1

is not semisimple, and relations between them and the de-

composition map can be investigated as well. In that case, the Grothendieck group

G0(H(Q,a)
An−1

) and the projective class group K0(H(Q,a)
An−1

) don’t coincide, and, instead

of the Cartan-Brauer triangle from Definition 1.7.10, one obtains a rectangle. For

such considerations see [GR, Section 2]. They will not be required in the following.
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Corollary 1.7.18 Let K = (Q,ψ, S, I, a, F ) be a modular system satisfying the

conditions (1.33). Then the Brauer map

BHn,K : K0(H(F,ā)
An−1

)→ G0(H(Q,a)
An−1

)

is injective.

Proof. This follows easily from Lemma 1.7.16.(i), Lemma 1.5.8.(i), and Lem-

ma 1.7.15. �

1.8 Block theory of Hecke algebras of type A

Now, the decomposition of Hecke algebras of type A and their module categories in

blocks is described. We proceed as in [CR2, §56]. The central results in this section

are from [DJ2] and [JM].

As before, we fix an n ∈ N. Furthermore, let

K = (Q,ψ, S, I, a, F )

be a modular system as in Definition 1.4.8 with the following additional properties.

(i) The algebra H(Q,a)
An−1

is semisimple.

(ii) The discrete valuation ring S is complete with respect to the valu-

ation ψ.

(1.35)

Most of the following statements hold under weaker assumptions on K, but this

level of generality is not required here.

Definition 1.8.1 Let R be an integral domain and choose a unit q ∈ R. Then the

center of the Hecke algebra H(R,q)
An−1

is denoted by

Z(H(R,q)
An−1

).

Lemma 1.8.2 Z(H(S,a)
An−1

) is free over S with rank |Πn|. It has an S-basis

{cλ(S, a) | λ ∈ Πn}

with the following properties.

(i) {cλ(S, a)⊗S 1Q | λ ∈ Πn} ⊆ H(S,a)
An−1

⊗S Q = H(Q,a)
An−1

is a Q-basis of Z(H(Q,a)
An−1

).

(ii) {cλ(S, a)⊗S 1F | λ ∈ Πn} =
{
cλ(S, a)

∣∣∣λ ∈ Πn

}
⊆ H(S,a)

An−1
= H(F,ā)

An−1
is an F -

basis of Z(H(F,ā)
An−1

).
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From this, we get

Z(H(Q,a)
An−1

) = Z(H(S,a)
An−1

)⊗S Q

and

Z(H(F,ā)
An−1

) = Z(H(S,a)
An−1

)⊗S F.

This means that Z(H(S,a)
An−1

) is a full Z(H(S,a)
An−1

)-lattice in Z(H(Q,a)
An−1

) and Z(H(F,ā)
An−1

) is

the reduction of Z(H(S,a)
An−1

) modulo I.

Proof. This follows from [GR, Theorem 5.2]. See also [DJ2, Section 2]. �

Lemma 1.8.3 (i) In H(S,a)
An−1

, there is a decomposition of 1H(S,a)
A

in central prim-

itive orthogonal idempotents

1H(S,a)
A

=
m∑
i=1

b
(i)
Idemp(H(S,a)

An−1
)

with an appropriate m ∈ N. The summands b
(i)
Idemp(H(S,a)

An−1
) with i ∈ {1, . . . ,m}

are uniquely determined up to ordering in the sum.

(ii) The application of the functor − ⊗S F to the decomposition of 1H(S,a)
A

from

statement (i) produces a decomposition of 1H(F,ā)
A

in central primitive orthog-

onal idempotents

1H(F,ā)
A

= 1H(S,a)
A
⊗S 1F = 1H(S,a)

A
=

m∑
i=1

b
(i)
Idemp(H(F,ā)

An−1
)

with the same m ∈ N as in statement (i). The summands b
(i)
Idemp(H(F,ā)

An−1
)

with i ∈ {1, . . . ,m} are uniquely determined up to ordering in the sum. This

ordering is determined by the ordering of the elements b
(i)
Idemp(H(S,a)

An−1
) chosen

in statement (i) and the relations

b
(i)
Idemp(H(F,ā)

An−1
) = b

(i)
Idemp(H(S,a)

An−1
)⊗S 1F = b

(i)
Idemp(H(S,a)

An−1
)

for i ∈ {1, . . . ,m}.

(iii) The application of the functor − ⊗S Q to the decomposition of 1H(S,a)
A

from

statement (i) produces a decomposition of 1H(Q,a)
A

in central orthogonal idem-

potents

1H(Q,a)
A

= 1H(S,a)
A
⊗S 1Q =

m∑
i=1

b
(i)
Idemp(H(Q,a)

An−1
)



68 CHAPTER 1. BACKGROUND

with the same m ∈ N as in statement (i). The ordering of the summands

b
(i)
Idemp(H(Q,a)

An−1
) with i ∈ {1, . . . ,m} is determined by the ordering of the ele-

ments b
(i)
Idemp(H(S,a)

An−1
) chosen in statement (i) and the relations

b
(i)
Idemp(H(Q,a)

An−1
) = b

(i)
Idemp(H(S,a)

An−1
)⊗S 1Q

for i ∈ {1, . . . ,m}.

(iv) The decomposition of 1H(S,a)
A

from statement (i) induces a decomposition of

H(S,a)
An−1

in indecomposable two-sided ideals

H(S,a)
An−1

=
m⊕
i=1

B
(i)
Ideal(H

(S,a)
An−1

)

with the same m ∈ N as in statement (i). The summands B
(i)
Ideal(H

(S,a)
An−1

) with

i ∈ {1, . . . ,m} are uniquely determined up to ordering in the sum. This order-

ing is determined by the ordering of the b
(i)
Idemp(H(S,a)

An−1
) chosen in statement (i)

and the relations

b
(i)
Idemp(H(S,a)

An−1
) ∈ B(i)

Ideal(H
(S,a)
An−1

)

for i ∈ {1, . . . ,m}. For every i ∈ {1, . . . ,m}, we have

B
(i)
Ideal(H

(S,a)
An−1

) = H(S,a)
An−1

b
(i)
Idemp(H(S,a)

An−1
)

= b
(i)
Idemp(H(S,a)

An−1
)H(S,a)

An−1

= H(S,a)
An−1

b
(i)
Idemp(H(S,a)

An−1
)H(S,a)

An−1

= b
(i)
Idemp(H(S,a)

An−1
)H(S,a)

An−1
b

(i)
Idemp(H(S,a)

An−1
).

Every ideal B
(i)
Ideal(H

(S,a)
An−1

) is an S-algebra with multiplicative neutral element

b
(i)
Idemp(H(S,a)

An−1
).

(v) The application of the functor − ⊗S F to the decomposition of H(S,a)
An−1

from

statement (iv) produces a decomposition of H(F,ā)
An−1

in indecomposable two-sided

ideals

H(F,ā)
An−1

= H(S,a)
An−1

⊗S F = H(S,a)
An−1

=
m⊕
i=1

B
(i)
Ideal(H

(F,ā)
An−1

)

with the same m ∈ N as in statement (i). The summands B
(i)
Ideal(H

(F,ā)
An−1

)

with i ∈ {1, . . . ,m} are uniquely determined up to ordering in the sum. This

ordering is determined by the ordering of the ideals B
(i)
Ideal(H

(S,a)
An−1

) chosen in

statement (iv) and the relations

B
(i)
Ideal(H

(F,ā)
An−1

) = B
(i)
Ideal(H

(S,a)
An−1

)⊗S F = B
(i)
Ideal(H

(S,a)
An−1

)
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for i ∈ {1, . . . ,m}, or equivalently by the ordering of the b
(i)
Idemp(H(F,ā)

An−1
) chosen

in statement (ii) and the relations

b
(i)
Idemp(H(F,ā)

An−1
) ∈ B(i)

Ideal(H
(F,ā)
An−1

)

for i ∈ {1, . . . ,m}. For every i ∈ {1, . . . ,m}, we have

B
(i)
Ideal(H

(F,ā)
An−1

) = H(F,ā)
An−1

b
(i)
Idemp(H(F,ā)

An−1
)

= b
(i)
Idemp(H(F,ā)

An−1
)H(F,ā)

An−1

= H(F,ā)
An−1

b
(i)
Idemp(H(F,ā)

An−1
)H(F,ā)

An−1

= b
(i)
Idemp(H(F,ā)

An−1
)H(F,ā)

An−1
b

(i)
Idemp(H(F,ā)

An−1
).

Every ideal B
(i)
Ideal(H

(F,ā)
An−1

) is an F -algebra with multiplicative neutral element

b
(i)
Idemp(H(F,ā)

An−1
).

(vi) The application of the functor − ⊗S Q to the decomposition of H(S,a)
An−1

from

statement (iv) produces a decomposition of H(Q,a)
An−1

in two-sided ideals

H(Q,a)
An−1

= H(S,a)
An−1

⊗S Q =
m⊕
i=1

B
(i)
Ideal(H

(Q,a)
An−1

)

with the same m ∈ N as in statement (i). The ordering of the summands

B
(i)
Ideal(H

(Q,a)
An−1

) with i ∈ {1, . . . ,m} is determined by the ordering of the ideals

B
(i)
Ideal(H

(S,a)
An−1

) chosen in statement (iv) and the relations

B
(i)
Ideal(H

(Q,a)
An−1

) = B
(i)
Ideal(H

(S,a)
An−1

)⊗S Q

for i ∈ {1, . . . ,m}, or equivalently by the ordering of the b
(i)
Idemp(H(Q,a)

An−1
) chosen

in statement (iii) and the relations

b
(i)
Idemp(H(Q,a)

An−1
) ∈ B(i)

Ideal(H
(Q,a)
An−1

)

for i ∈ {1, . . . ,m}. For every i ∈ {1, . . . ,m}, we have

B
(i)
Ideal(H

(Q,a)
An−1

) = H(Q,a)
An−1

b
(i)
Idemp(H(Q,a)

An−1
)

= b
(i)
Idemp(H(Q,a)

An−1
)H(Q,a)

An−1

= H(Q,a)
An−1

b
(i)
Idemp(H(Q,a)

An−1
)H(Q,a)

An−1

= b
(i)
Idemp(H(Q,a)

An−1
)H(Q,a)

An−1
b

(i)
Idemp(H(Q,a)

An−1
).

Every ideal B
(i)
Ideal(H

(Q,a)
An−1

) is a Q-algebra with multiplicative neutral element

b
(i)
Idemp(H(Q,a)

An−1
).
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Proof. According to the remark following Definition 1.4.12, the remark following

Definition 1.4.14, and Lemma 1.8.2, Hecke algebras of type A and their centers

behave like group algebras and their centers with respect to the elementary con-

structions of modular representation theory (see [CR2, §56A and §56B]). Further-

more, because of property (1.35).(ii), the modular system K satisfies condition (a)

in [CR2, Definition 56.3]. This shows that the arguments used in [CR2, §56A] for

group algebras can be directly translated to Hecke algebras of type A to prove the

various claims of the lemma.

(i) This follows from [CR2, Proposition 56.5.(i)].

(ii) This follows from [CR2, Proposition 56.5].

(iii) This follows immediately from statement (i).

(iv) This follows immediately from statement (i).

(v) This follows immediately from statements (ii) and (iv).

(vi) This follows immediately from statements (iii) and (iv). �

Definition 1.8.4 Let (R, q) ∈ {(S, a), (F, ā), (Q, a)}.

(i) We call the central idempotents b
(i)
Idemp(H(R,q)

An−1
) with i ∈ {1, . . . ,m} from Lem-

ma 1.8.3 the block idempotents of H(R,q)
An−1

.

(ii) The two-sided ideals B
(i)
Ideal(H

(R,q)
An−1

) with i ∈ {1, . . . ,m} from Lemma 1.8.3 are

called the block ideals of H(R,q)
An−1

.

(iii) We call the categories of finitely generated right modules of the R-algebras

B
(i)
Ideal(H

(R,q)
An−1

) with i ∈ {1, . . . ,m} from Lemma 1.8.3 the block categories of

H(R,q)
An−1

. For every i ∈ {1, . . . ,m}, the block category of B
(i)
Ideal(H

(R,q)
An−1

)-modules

is denoted by

B
(i)
Kat(H

(R,q)
An−1

).

Definition 1.8.5 Let (R, q) ∈ {(S, a), (F, ā), (Q, a)} and let M be a finitely gen-

erated right H(R,q)
An−1

-module. If we have for an i ∈ {1, . . . ,m} with m ∈ N from

Lemma 1.8.3.(i)

Mb
(i)
Idemp(H(R,q)

An−1
) = M

then we say that M belongs to the block category B
(i)
Kat(H

(R,q)
An−1

).

Lemma 1.8.6 Let (R, q) ∈ {(S, a), (F, ā), (Q, a)}. Furthermore, let M be a finitely

generated right H(R,q)
An−1

-module. Then we have with the notation from Definition 1.8.4

M =
m⊕
i=1

(
Mb

(i)
Idemp(H(R,q)

An−1
)
)

(1.36)
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where the right hand side is a direct sum of finitely generated right H(R,q)
An−1

-modules.

Furthermore, for every i ∈ {1, . . . ,m}, the summand Mb
(i)
Idemp(H(R,q)

An−1
) belongs to

the block category B
(i)
Kat(H

(R,q)
An−1

).

Proof. This follows from the decomposition of 1H(R,q)
A

in block idempotents in

Lemma 1.8.3. Since the block idempotents are orthogonal, (1.36) is a decompo-

sition of M in an R-direct sum. Since the block idempotents are central, the

summands on the right hand side of (1.36) are H(R,q)
n -modules. Finally, for ev-

ery i ∈ {1, . . . ,m}, the summand Mb
(i)
Idemp(H(R,q)

n ) belongs to the block category

B
(i)
Kat(H

(R,q)
n ) since b

(i)
Idemp(H(R,q)

n ) is idempotent. �

Definition 1.8.7 Let (R, q) ∈ {(S, a), (F, ā), (Q, a)} and let M be a finitely gener-

ated right H(R,q)
An−1

-module. Then the decomposition (1.36) of M from Lemma 1.8.6

is called the block decomposition of M .

Lemma 1.8.8 Let (R, q) ∈ {(S, a), (F, ā), (Q, a)}. Furthermore, let M be a finitely

generated right H(R,q)
An−1

-module which, for an i ∈ {1, . . . ,m} with m ∈ N from

Lemma 1.8.3, belongs to the block category B
(i)
Kat(H

(R,q)
An−1

). Then the following state-

ments hold.

(i) For j ∈ {1, . . . ,m} with j 6= i, we have

Mb
(j)
Idemp(H(R,q)

An−1
) = 0.

Here, 0 denotes the null module of H(R,q)
An−1

.

(ii) If M 6= 0 then M belongs to exactly one block category of H(R,q)
An−1

.

(iii) For every x ∈M we have

xb
(i)
Idemp(H(R,q)

An−1
) = x.

(iv) Submodules and homomorphic images of M also belong to the block category

B
(i)
Kat(H

(R,q)
An−1

).

Proof. (i) From Definition 1.8.5 and the orthogonality of the block idempotents, we

get for j 6= i

Mb
(j)
Idemp(H(R,q)

n ) = Mb
(i)
Idemp(H(R,q)

n )b
(j)
Idemp(H(R,q)

n ) = 0.

(ii) This follows immediately from statement (i) and Definition 1.8.5.

(iii) This follows from the decomposition of 1H(R,q)
A

in block idempotents in

Lemma 1.8.3 and statement (i).

(iv) This follows immediately from statement (iii) and Definition 1.8.5. �
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Remark 1.8.9 Let (R, q) ∈ {(S, a), (F, ā), (Q, a)}. Furthermore, let M be an

H(R,q)
An−1

-module which, for an i ∈ {1, . . . ,m} with m ∈ N from Lemma 1.8.3, be-

longs to the block category B
(i)
Kat(H

(R,q)
An−1

). Then, according to Lemma 1.8.8.(iii),

b
(i)
Idemp(H(R,q)

An−1
) operates as identity on M . Thus, M can be considered as a module

for the algebra B
(i)
Ideal(H

(R,q)
An−1

). This shows that M is in fact an object of the category

B
(i)
Kat(H

(R,q)
An−1

).

The following statement shows that certain modules of Hecke algebras belong to

a block category. These modules include the projective indecomposable modules

from Lemma 1.7.2.(i).

Lemma 1.8.10 (i) For every λ ∈ Πn, Sλ(Q,a) belongs to a block category of H(Q,a)
An−1

.

(ii) For every λ ∈ Πn, Sλ(S,a) belongs to a block category of H(S,a)
An−1

.

(iii) For every λ ∈ Πn, Sλ(F,ā) belongs to a block category of H(F,ā)
An−1

. For every µ ∈
Πn,eF (ā), D

µ
(F,ā) belongs to a block category of H(F,ā)

An−1
. For every µ ∈ Πn,eF (ā),

P µ
(F,ā) belongs to a block category of H(F,ā)

An−1
.

Proof. (i) Let λ ` n. According to condition (1.35).(i), H(Q,a)
n is semisimple. Thus,

according to Theorem 1.3.21.(ii), Sλ(Q,a) is irreducible. This shows that the block

decomposition of Sλ(Q,a) (see Lemma 1.8.6) contains exactly one summand different

from the null module. Thus, Sλ(Q,a) belongs to a block category of H(Q,a)
n .

(ii) Let λ ` n. Suppose that Sλ(S,a) doesn’t belong to a block category of H(S,a)
n .

Then the block decomposition of Sλ(S,a) contains at least two summands different

from the null module. By tensoring this decomposition over S with Q, we get a

decomposition of Sλ(Q,a) with at least two summands different from the null module

(none of the nontrivial summands vanishes in the process since Q is the quotient

field of S, see [CR1, §4A]; see also Lemma 1.3.14 and Lemma 1.2.8.(i)). This is a

contradiction to the irreducibility of Sλ(Q,a). Thus, Sλ(S,a) belongs to a block category

of H(S,a)
n .

(iii) Let λ ` n. Then the block decomposition of Sλ(F,ā) is obtained from the

block decomposition of Sλ(S,a) by tensoring over S with F (see Lemma 1.3.14 and

Lemma 1.8.3.(ii)). According to statement (i), this decomposition of Sλ(S,a) contains

exactly one summand different from the null module. Thus, the same is true for

the decomposition of Sλ(F,ā), and Sλ(F,ā) belongs to a block category of H(F,ā)
n .

Let µ ∈ Πn,eF (ā). Then the fact that Dµ
(F,ā) belongs to a block category of H(F,ā)

n

follows from the irreducibility of Dµ
(F,ā) as in the proof of statement (i).
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Let µ ∈ Πn,eF (ā). Since P µ
(F,ā) is projective indecomposable, the block decompo-

sition of P µ
(F,ā) must contain exactly one summand different from the null module.

Thus, P µ
(F,ā) belongs to a block category of H(F,ā)

n . �

The block categories of Hecke algebras and also the other objects from Defini-

tion 1.8.4 corresponding to them can be indexed in such a way that, for a module

considered in the preceding lemma, the block category to which it belongs can be

easily read off from its indexing partition.

Theorem 1.8.11 The block idempotents, block ideals, and block categories of the

Hecke algebras H(S,a)
An−1

, H(F,ā)
An−1

, and H(Q,a)
An−1

from Definition 1.8.4 can be indexed by the

elements of the set ΓeF (ā)(n). More precisely, the indexing scheme can be chosen in

such a way that each of the modules Sλ(Q,a), S
λ
(S,a), S

λ
(F,ā), D

λ
(F,ā), and P λ

(F,ā) indexed by

an appropriate λ ` n belongs to the block category of the appropriate Hecke algebra

indexed by γeF (ā)(λ) ∈ ΓeF (ā)(n).

Proof. [JM, Theorem 4.29] provides the desired indexing scheme with respect to

the modules Sλ(F,ā) with λ ` n (see also [DJ2, Theorem 4.13]). It follows from

Definition 1.8.5, Lemma 1.3.14, Lemma 1.8.3.(ii), and Lemma 1.8.3.(iii) that this

indexing scheme also has the desired properties with respect to the modules Sλ(S,a)

and Sλ(Q,a) with λ ` n. Finally, the desired properties of the indexing scheme with

respect to the modules Dµ
(F,ā) and P µ

(F,ā) with µ ∈ Πn,eF (ā) are obtained by using

Lemma 1.8.8.(iv), Definition 1.3.19, and Lemma 1.7.2.(i). �

Now we can fix a better notation.

Definition 1.8.12 (i) In the following, the block idempotents, block ideals, and

block categories introduced in Definition 1.8.4 are no more indexed by num-

bers, but instead by the elements of the set ΓeF (ā)(n) as described in The-

orem 1.8.11. For a given core µ ∈ ΓeF (ā)(n) and a given coefficient pair

(R, q) ∈ {(S, a), (F, ā), (Q, a)}, we write

bµIdemp(H(R,q)
An−1

), Bµ
Ideal(H

(R,q)
An−1

), Bµ
Kat(H

(R,q)
An−1

)

or, for short,

bµIdemp, Bµ
Ideal, Bµ

Kat.

(ii) Let µ ∈ ΓeF (ā)(n) and (R, q) ∈ {(S, a), (F, ā), (Q, a)}. Then the block ideal

Bµ
Ideal(H

(R,q)
An−1

) and the block category Bµ
Kat(H

(R,q)
An−1

) are called µ-block or block

of H(R,q)
An−1

for short. This is denoted by

Bµ(H(R,q)
An−1

) = Bµ(n) = Bµ.



74 CHAPTER 1. BACKGROUND

The set Π
µ,eF (ā)
n , whose elements index Specht modules, irreducible modules,

and projective indecomposable modules as in Lemma 1.8.10, also is called µ-

block or block. This is denoted by

Πµ,eF (ā)
n = Bµ(n) = Bµ.

The eF (ā)-weight geF (ā)(B
µ(n)) of the block Bµ(n) is defined as

geF (ā)(B
µ(n)) =

n− |[µ]|
eF (ā)

.

In the case of eF (ā) =∞ we get, by using the usual rules for calculations with

∞, geF (ā)(B
µ(n)) = 0.

(iii) Let µ ∈ ΓeF (ā)(n), (R, q) ∈ {(S, a), (F, ā), (Q, a)}, and choose a finitely gener-

ated right H(R,q)
An−1

-module M . If M belongs to the block category Bµ
Kat(H

(R,q)
An−1

),

we say for short that M belongs to the block Bµ(H(R,q)
An−1

) or lies in the block

Bµ(H(R,q)
An−1

).

(iv) Let λ ∈ Πn with µ = γeF (ā)(λ) ∈ ΓeF (ā)(n). Then we say that λ belongs to the

block Bµ(n) or lies in the block Bµ(n).

Remark 1.8.13 Let µ ∈ ΓeF (ā)(n) and λ ∈ Π
µ,eF (ā)
n . With that, we see from Lem-

ma 1.1.37, Definition 1.1.38, and Definition 1.8.12.(ii)

geF (ā)(B
µ(n)) = geF (ā)(λ).

From this, we also get

geF (ā)(B
µ(n)) ∈ N0.

Next, the block decomposition of modules from Lemma 1.8.6 is translated to

Grothendieck groups and projective class groups.

Lemma 1.8.14 Let (R, q) ∈ {(S, a), (F, ā), (Q, a)} and µ ∈ ΓeF (ā)(n).

(i) Let

0→M ′ →M →M ′′ → 0

be an exact sequence of right H(R,q)
An−1

-modules. Then

0→M ′bµIdemp(H(R,q)
An−1

)→MbµIdemp(H(R,q)
An−1

)→M ′′bµIdemp(H(R,q)
An−1

)→ 0

also is an exact sequence of right H(R,q)
An−1

-modules.
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(ii) Let P be a projective right H(R,q)
An−1

-module. Then PbµIdemp(H(R,q)
An−1

) also is a

projective right H(R,q)
An−1

-module.

Proof. (i) The homomorphisms in the sequence 0 → M ′ → M → M ′′ → 0 are

compatible with the operations of the block idempotents of H(R,q)
n on the modules

M ′, M , and M ′′ and thus also with the block decompositions of these modules (see

Lemma 1.8.6). This shows the claim.

(ii) Since the idempotent bµIdemp(H(R,q)
n ) is central in H(R,q)

n , PbµIdemp(H(R,q)
n ) is an

H(R,q)
n -direct summand of P and thus projective. �

The preceding lemma shows that the following definition is meaningful.

Definition 1.8.15 Let (R, q) ∈ {(S, a), (F, ā), (Q, a)} and µ ∈ ΓeF (ā)(n).

(i) The endomorphism

bµProj = bµProj(H
(R,q)
An−1

) : G0(H(R,q)
An−1

)→ G0(H(R,q)
An−1

)

is defined by

bµProj(H
(R,q)
An−1

)([M ]) = [MbµIdemp(H(R,q)
An−1

)] ∈ G0(H(R,q)
An−1

)

for [M ] ∈M(H(R,q)
An−1

) and Z-linear extension.

(ii) The endomorphism

bµProj = bµProj(H
(R,q)
An−1

) : K0(H(R,q)
An−1

)→ K0(H(R,q)
An−1

)

is defined by

bµProj(H
(R,q)
An−1

)([P ]) = [PbµIdemp(H(R,q)
An−1

)] ∈ K0(H(R,q)
An−1

)

for [P ] ∈ P(H(R,q)
An−1

) and Z-linear extension.

For simplicity, the two endomorphisms of G0(H(R,q)
An−1

) and K0(H(R,q)
An−1

) introduced in

the preceding definition are denoted by the same symbol. Now, the effect of the

map bµProj(H
(Q,a)
An−1

) with a µ ∈ ΓeF (ā)(n) on G0(H(Q,a)
An−1

) is described. This will be

required in Section 1.9.

Lemma 1.8.16 Let

x =
∑
λ∈Πn

ξλ[S
λ
(Q,a)] ∈ G0(H(Q,a)

An−1
)

with coefficients ξλ ∈ Z for λ ∈ Πn and let µ ∈ ΓeF (ā)(n). Then we have

bµProj(H
(Q,a)
An−1

)(x) =
∑

λ∈Π
µ,eF (ā)
n

ξλ[S
λ
(Q,a)].
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Proof. This follows from Definition 1.8.15.(i), Definition 1.8.12.(i), Theorem 1.8.11,

Definition 1.8.5, and Lemma 1.8.8.(i). �

Next, the compatibility of the endomorphisms from Definition 1.8.15 and the Brauer

map from Definition 1.7.9 is shown. This also will be required in Section 1.9.

Lemma 1.8.17 Let µ ∈ ΓeF (ā)(n). Then the diagram

-

-

? ?

bµProj(H
(S,a)
An−1

)

bµProj(H
(F,ā)
An−1

)

·̄ ·̄

K0(H(S,a)
An−1

) K0(H(S,a)
An−1

)

K0(H(F,ā)
An−1

) K0(H(F,ā)
An−1

)

with maps from Definition 1.7.6 and Definition 1.8.15.(ii) is commutative.

Proof. This follows from the relation

bµIdemp(H(F,ā)
n ) = bµIdemp(H(S,a)

n )

(see Lemma 1.8.3.(ii)) and the property (1.30) of the reduction modulo I of arbitrary

H(S,a)
n -modules on page 49. �

Lemma 1.8.18 Let µ ∈ ΓeF (ā)(n). Then the diagram

-

-

? ?

bµProj(H
(S,a)
An−1

)

bµProj(H
(Q,a)
An−1

)

−⊗S Q −⊗S Q

K0(H(S,a)
An−1

) K0(H(S,a)
An−1

)

G0(H(Q,a)
An−1

) G0(H(Q,a)
An−1

)

with maps from Definition 1.7.8 and Definition 1.8.15 is commutative.

Proof. This follows from the equation

bµIdemp(H(Q,a)
n ) = bµIdemp(H(S,a)

n )⊗S 1Q

in Lemma 1.8.3.(iii) and the formula (1.27) in Lemma 1.2.8. �
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Lemma 1.8.19 Let µ ∈ ΓeF (ā)(n). Then the diagram

-

-

? ?

bµProj(H
(F,ā)
An−1

)

bµProj(H
(Q,a)
An−1

)

BHn,K BHn,K

K0(H(F,ā)
An−1

) K0(H(F,ā)
An−1

)

G0(H(Q,a)
An−1

) G0(H(Q,a)
An−1

)

with maps from Definition 1.7.9 and Definition 1.8.15 is commutative.

Proof. This follows from Lemma 1.8.17 and Lemma 1.8.18. �

Now the decomposition matrix

∆Hn,K =
(
dn,Kλµ

)
λ∈Πn
µ∈Πn,eF (ā)

will be subdivided into (matrix) blocks by making use of the classification of Specht

modules and irreducible modules of the Hecke algebra H(F,ā)
An−1

into blocks (see Lem-

ma 1.8.10.(iii)). Since, according to condition (1.35).(i), H(Q,a)
An−1

is semisimple, Defi-

nition 1.4.17 and Theorem 1.3.21 show that the rows of this matrix are indexed by

the elements of the set Πn. The second statement of the following theorem also can

be found in [JAM2, Rule 5.2].

Theorem 1.8.20 (i) Let Dµ
(F,ā) be a composition factor of Sλ(F,ā) with λ ∈ Πn

and µ ∈ Πn,eF (ā). Then Sλ(F,ā) and Dµ
(F,ā) belong to the same block of H(F,ā)

An−1
.

(ii) Let λ ∈ Πn and µ ∈ Πn,eF (ā). Then we have

dn,Kλµ 6= 0⇒ γeF (ā)(λ) = γeF (ā)(µ).

Proof. (i) According to Lemma 1.8.10.(iii), Sλ(F,ā) and Dµ
(F,ā) both belong to a

respective block of H(F,ā)
n . That both modules lie in the same block follows from

Lemma 1.8.8.(iv).

(ii) This follows from Lemma 1.5.5, statement (i), and Theorem 1.8.11. �

The desired subdivision of decomposition matrices into matrix blocks can be ob-

tained not only for modular systems as hitherto considered, but can be generalized

to others as well. To this end, let

K̃ =
(
Q̃, ψ̃, S̃, Ĩ, ã, F̃

)



78 CHAPTER 1. BACKGROUND

be a modular system as in Definition 1.4.8. K̃ is not required to satisfy the conditions

(1.35). Since, on the other hand, the modular system K has all the properties

required from the modular system K̃, the following definition also is valid for K.

Definition 1.8.21 Let ν ∈ ΓeF̃ (¯̃a)(n). Then the submatrix

∆H(ν) = ∆Hn (ν) = ∆HK̃(ν) = ∆H
n,K̃(ν) =

(
dn,K̃λµ

)
λ∈Π

ν,e
F̃

(¯̃a)

n,e
Q̃

(ã)

µ∈Π
ν,e
F̃

(¯̃a)

n,e
F̃

(¯̃a)

of ∆H
n,K̃ is called ν-block of ∆H

n,K̃.

The following theorem is stated only for K, it will later be generalized to K̃.

Theorem 1.8.22 Let m =
∣∣ΓeF (ā)(n)

∣∣ and fix an enumeration

ν(1), . . . , ν(m)

of the elements of ΓeF (ā)(n). Furthermore, order Πn in such a way that for all i, j ∈
{1, . . . ,m} with i < j the elements of Π

ν(i),eF (ā)
n precede the elements of Π

ν(j),eF (ā)
n .

Finally, order Πn,eF (ā) in such a way that for all i, j ∈ {1, . . . ,m} with i < j the

elements of Π
ν(i),eF (ā)
n,eF (ā) precede the elements of Π

ν(j),eF (ā)
n,eF (ā) . With these orderings of the

row and column index sets of the decomposition matrix ∆Hn,K =
(
dn,Kλµ

)
λ∈Πn
µ∈Πn,eF (ā)

, we

have

∆Hn,K =

 ∆Hn,K(ν(1)) 0
. . .

0 ∆Hn,K(ν(m))

 .

Proof. This follows from Theorem 1.8.20.(ii) �

Now, fix indeterminates Y over Q̃ and Z over F̃ . Then we have the modular systems

K̂(Q̃,ã) =
(

ˆQ̃(Y ), ψ̂Y−ã, Sψ̂Y−ã , Iψ̂Y−ã , Y, Q̃
)

and

K̂(F̃ ,¯̃a) =
(

ˆF̃ (Z), ψ̂Z−¯̃a, Sψ̂Z−¯̃a
, Iψ̂Z−¯̃a

, Z, F̃
)

as in Definition 1.6.4, and, according to Lemma 1.6.6, also the following commuta-

tive diagram.
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-

-

? ?

αHn
( ˆQ̃(Y ),Y )( ˆF̃ (Z),Z)

DH
n,K̃

DH
n,K̂(Q̃,ã)

DH
n,K̂(F̃ ,¯̃a)

G0(H( ˆQ̃(Y ),Y )
An−1

) G0(H( ˆF̃ (Z),Z)
An−1

)

G0(H(Q̃,ã)
An−1

) G0(H(F̃ ,¯̃a)
An−1

)

Furthermore, according to Lemma 1.6.5 and Lemma 1.6.3.(i), the modular systems

K̂(Q̃,ã) and K̂(F̃ ,¯̃a) satisfy the conditions (1.35). With this, Theorem 1.8.22 can be

translated to the decomposition matrix

∆H
n,K̃ =

(
dn,K̃λµ

)
λ∈Πn,e

Q̃
(ã)

µ∈Πn,e
F̃

(¯̃a)

associated with the modular system K̃.

Theorem 1.8.23 Let m =
∣∣∣ΓeF̃ (¯̃a)(n)

∣∣∣ and fix an enumeration

ν(1), . . . , ν(m)

of the elements of ΓeF̃ (¯̃a)(n). Furthermore, order Πn,eQ̃(ã) in such a way that for

all i, j ∈ {1, . . . ,m} with i < j the elements of Π
ν(i),eF̃ (¯̃a)

n,eQ̃(ã) precede the elements

of Π
ν(j),eF̃ (¯̃a)

n,eQ̃(ã) . Finally, order Πn,eF̃ (¯̃a) in such a way that for all i, j ∈ {1, . . . ,m}

with i < j the elements of Π
ν(i),eF̃ (¯̃a)

n,eF̃ (¯̃a)
precede the elements of Π

ν(j),eF̃ (¯̃a)

n,eF̃ (¯̃a)
. With these

orderings of the row and column index sets of the decomposition matrix ∆H
n,K̃ =(

dn,K̃λµ

)
λ∈Πn,e

Q̃
(ã)

µ∈Πn,e
F̃

(¯̃a)

, we have

∆H
n,K̃ =


∆H
n,K̃(ν(1)) 0

. . .

0 ∆H
n,K̃(ν(m))

 .

Proof. From Corollary 1.6.7 we get

∆H
n,K̂(Q̃,ã)

∆H
n,K̃ = ∆H

n,K̂(F̃ ,¯̃a)
.
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Furthermore, according to Lemma 1.6.5 and Lemma 1.6.3.(i), the modular systems

K̂(Q̃,ã) and K̂(F̃ ,¯̃a) satisfy the conditions (1.35). Thus, the matrices

∆H
n,K̂(Q̃,ã)

=

(
d
n,K̂(Q̃,ã)

ηθ

)
η∈Πn
θ∈Πn,e

Q̃
(ã)

and ∆H
n,K̂(F̃ ,¯̃a)

=

(
d
n,K̂(F̃ ,¯̃a)

ηθ

)
η∈Πn
θ∈Πn,e

F̃
(¯̃a)

have the form described in Theorem 1.8.22.

If we have eQ̃(ã) = ∞ or eF̃ (¯̃a) = ∞ then the claim follows easily from

Lemma 1.4.9.(i), Theorem 1.3.21.(i), and Corollary 1.5.4. Thus, we assume in the

following

eQ̃(ã) ∈ N and eF̃ (¯̃a) ∈ N.

Then we get from Lemma 1.4.9.(ii)

eF̃ (¯̃a) | eQ̃(ã).

This, together with Lemma 1.1.44, enables us to combine for every ν ∈ ΓeF̃ (¯̃a)(n)

all the blocks

∆H
n,K̂(Q̃,ã)

(µ) =

(
d
n,K̂(Q̃,ã)

ηθ

)
η∈Π

µ,e
Q̃

(ã)

n

θ∈Π
µ,e

Q̃
(ã)

n,e
Q̃

(ã)

indexed by a µ ∈ ΓeQ̃(ã)(n) with γeF̃ (¯̃a)(µ) = ν to get a bigger block with row index

set ⋃
µ∈Γe

Q̃
(ã)(n)

γe
F̃

(¯̃a)(µ)=ν

Π
µ,eQ̃(ã)
n = Π

ν,eF̃ (¯̃a)
n

and column index set ⋃
µ∈Γe

Q̃
(ã)(n)

γe
F̃

(¯̃a)(µ)=ν

Π
µ,eQ̃(ã)

n,eQ̃(ã) = Π
ν,eF̃ (¯̃a)

n,eQ̃(ã).

The row index set of this combined block coincides with the row index set of the

block

∆H
n,K̂(F̃ ,¯̃a)

(ν) =

(
d
n,K̂(F̃ ,¯̃a)

ηθ

)
η∈Π

ν,e
F̃

(¯̃a)
n

θ∈Π
ν,e
F̃

(¯̃a)

n,e
F̃

(¯̃a)

of ∆H
n,K̂(F̃ ,¯̃a)

indexed by ν. Furthermore, the column index set of the combined block

coincides with the row index set of the — at this point only formally defined —

block

∆H
n,K̃(ν) =

(
dn,K̃ηθ

)
η∈Π

ν,e
F̃

(¯̃a)

n,e
Q̃

(ã)

θ∈Π
ν,e
F̃

(¯̃a)

n,e
F̃

(¯̃a)
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of ∆H
n,K̃ indexed by ν. We also note that the column index sets of ∆H

n,K̂(F̃ ,¯̃a)

(ν) and

∆H
n,K̃(ν) coincide. Finally, we have according to Lemma 1.6.5 and Lemma 1.5.8.(ii)

RnkQ ∆H
n,K̂(Q̃,ã)

=
∣∣∣Πn,eQ̃(ã)

∣∣∣ .
From all these properties and considerations, the claim also follows, by using ele-

mentary arguments from linear algebra, in the case eQ̃(ã), eF̃ (¯̃a) ∈ N. �

1.9 Induction of Hecke algebra modules

In this section, we first introduce the notion of induction of modules of a Hecke

algebra of type Am with m ∈ N0 over a given coefficient pair to modules of the

Hecke algebra of type Am+1 over the same coefficient pair. Then, we describe the

behavior of Specht modules with respect to induction. Finally, we use induced

projective modules to construct upper bounds for decomposition numbers of Hecke

algebras of type A.

In the following, we fix an n ∈ N \ {1}. Furthermore, R denotes always an

integral domain and q is always a unit in R.

Definition 1.9.1 For m ∈ N \ {1}, χ(m) ∈ Πm is defined as

χ(m) = (m− 1, 1).

Lemma 1.9.2 Let m ∈ N \ {1}. Then we have in Sm

Sχ(m) = S{1,...,m−1} = {w ∈ Sm | mw = m} .

Proof. This follows immediately from Definition 1.1.55. See also (1.2) on page 1. �

According to Lemma 1.9.2, the inclusion

Sn−1 ↪→ Sn, w 7→ w ∈ Sn with nw = n

maps Sn−1 isomorphically onto the subgroup Sχ(n) of Sn. This inclusion induces

an inclusion of algebras

H(R,q)
An−2

↪→ H(R,q)
An−1

defined by

Tw 7→ Tw ∈ H(R,q)
An−1

for Tw ∈ H(R,q)
An−2

with w ∈ Sn−1. This follows from the construction of the Hecke

algebras of type A in Section 1.2.
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Definition 1.9.3 The inclusion of algebras

iHnHn−1
= iH

(R,q)
n

H(R,q)
n−1

: H(R,q)
An−2

↪→ H(R,q)
An−1

defined by

Tw 7→ Tw ∈ H(R,q)
An−1

for Tw ∈ H(R,q)
An−2

with w ∈ Sn−1 is called the standard inclusion of H(R,q)
An−2

into H(R,q)
An−1

or, for short, the standard inclusion.

From now on, H(R,q)
An−2

is considered a subalgebra of H(R,q)
An−1

by means of the standard

inclusion. Thus, H(R,q)
An−1

can be considered a left H(R,q)
An−2

-module and a right H(R,q)
An−1

-

module at the same time, and the functor −⊗H(R,q)
n−1
H(R,q)
An−1

can be constructed. This

functor can be applied to right H(R,q)
An−2

-modules to obtain right H(R,q)
An−1

-modules.

Definition 1.9.4 Let M be a finitely generated right H(R,q)
An−2

-module. Then the right

H(R,q)
An−1

-module M ⊗H(R,q)
n−1
H(R,q)
An−1

is called the H(R,q)
An−1

-module induced from M . This

is denoted by

M ⊗H(R,q)
n−1
H(R,q)
An−1

= M
xHnHn−1

= M

xH(R,q)
n

H(R,q)
n−1

.

As in the case of group algebras, the induction of Hecke algebra modules has the

following useful property.

Lemma 1.9.5 The map

H(R,q)
An−2

⊗H(R,q)
n−1
H(R,q)
An−1

→ H(R,q)
An−1

, x⊗H(R,q)
n−1

y 7→ xy (1.37)

is an isomorphism of right H(R,q)
An−1

-modules.

Proof. According to [CR1, (2.16)], (1.37) is an isomorphism of left Hn−1-modules.

Furthermore, it follows directly from (1.37) that this map is compatible with the

natural right Hn-module structure on Hn given by multiplication. This shows the

claim. �

According to Lemma 1.1.56 and the property (1.22) on page 34, H(R,q)
An−1

, if con-

sidered as a left H(R,q)
An−2

-module, is free over H(R,q)
An−2

with the basis
{
Td

∣∣∣ d ∈ Dχ(n)

}
.

This shows that the functor − ⊗H(R,q)
n−1
H(R,q)
An−1

is exact (see [CR1, §2D]) and thus

induces a homomorphism between the Grothendieck groups of the algebras under

consideration.
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Definition 1.9.6 We call the homomorphism

·
xHnHn−1

= ·
xH(R,q)

n

H(R,q)
n−1

: G0(H(R,q)
An−2

)→ G0(H(R,q)
An−1

)

determined by

[M ]
xHnHn−1

= [M ]

xH(R,q)
n

H(R,q)
n−1

= [M

xH(R,q)
n

H(R,q)
n−1

]

for [M ] ∈M(H(R,q)
An−2

) the induction homomorphism for Grothendieck groups.

There also is an induction homomorphism for projective class groups. We see

from Lemma 1.9.5 that induction of free rightH(R,q)
An−2

-modules gives free rightH(R,q)
An−1

-

modules. Thus, induction of a projective right H(R,q)
An−2

-module gives a projective

right H(R,q)
An−1

-module (see [CR1, §2D]). This fact, the compatibility of the functor

−⊗H(R,q)
n−1
H(R,q)
An−1

with direct sums of right H(R,q)
An−2

-modules, and Definition 1.7.1 show

that the following definition is meaningful.

Definition 1.9.7 We call the homomorphism

·
xHnHn−1

= ·
xH(R,q)

n

H(R,q)
n−1

: K0(H(R,q)
An−2

)→ K0(H(R,q)
An−1

)

determined by

[P ]
xHnHn−1

= [P ]

xH(R,q)
n

H(R,q)
n−1

= [P

xH(R,q)
n

H(R,q)
n−1

]

for [P ] ∈ P(H(R,q)
An−2

) the induction homomorphism for projective class groups.

Next, the behavior of Specht modules with respect to induction is described. To

this end, the following lemma uses Definition 1.1.19 and Definition 1.1.20.(i).

Lemma 1.9.8 Let λ ` n − 1. Furthermore, let K be a field and choose an r ∈
K \ {0K}. Then we have in G0(H(K,r)

An−1
)

[Sλ(K,r)]

xH(K,r)
n

H(K,r)
n−1

=
∑
µ∈λ↑

[Sµ(K,r)].

Proof. This follows from [DJ1, Section 7]. If we write

λ = (λ1, . . . , λk)

with λk > 0 for an appropriate k ∈ N and put

λ̂ = (λ1, . . . , λk, 1) = λ ∪ (k + 1, 1) ` n
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then we have, with the notation from there,

Sλ(K,r)

xHnHn−1
= Sλλ̂.

Now, in [DJ1, Section 7], a series of submodules of the module Sλλ̂ is constructed

such that, with the notation from there, the subquotients are certain modules Sµµ

for every µ ∈ λ ↑. Each of these modules occurs with multiplicity 1. The argumen-

tation in [DJ1, Section 7] makes use of the fact that the coefficient ring is a field

(see in particular [DJ1, Theorem 7.4]). Furthermore, one has for every µ ∈ λ ↑

Sµµ = Sµ(K,r).

This shows the claim. �

Remark 1.9.9 The result used in the proof of the preceding lemma is generalized

in Chapter 3 to arbitrary integral domains as coefficient rings (see in particular

Theorem 3.11.2 and its proof). Thus, the preceding lemma also holds for Hecke

algebras and Specht modules over such coefficient rings.

Now the behavior of projective indecomposable modules with respect to induc-

tion is considered. To this end, let

K = (Q,ψ, S, I, a, F )

be a modular system as in Definition 1.4.8 with the following properties.

(i) The algebra H(Q,a)
An−1

is semisimple.

(ii) The discrete valuation ring S is complete with respect to the valu-

ation ψ.

(1.38)

Property (i) and Theorem 1.3.21.(i) show that the algebra H(Q,a)
An−2

also is semisimple.

Furthermore, this choice of K makes available the results from Section 1.7 and

Section 1.8. By combining these and the preceding considerations on the induction

of modules, an upper bound for the entries in a block of the decomposition matrix

∆Hn,K (see Definition 1.8.21) will be derived from the entries in the decomposition

matrix ∆Hn−1,K in the following.

First, the compatibility of the Brauer map from Definition 1.7.9 and the induc-

tion homomorphisms from Definition 1.9.6 and Definition 1.9.7 is shown.

Lemma 1.9.10 Let R be an integral domain and choose a unit q ∈ R. Let R̃ be

another integral domain and let ξ : R → R̃ be a ring homomorphism. Then the

diagram
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-

-

? ?

iH
(R,q)
n

H(R,q)
n−1

iH
(R̃,ξ(q))
n

H(R̃,ξ(q))
n−1

−⊗R R̃ −⊗R R̃

H(R,q)
An−2

H(R,q)
An−1

H(R̃,ξ(q))
An−2

H(R̃,ξ(q))
An−1

with maps as in Definition 1.9.3 and (1.25) on page 36 is commutative.

Proof. This follows by considering the bases {Tw | w ∈ Sn−1} and {Tw | w ∈ Sn}
of the algebras occurring in the diagram. Every homomorphism occurring in the

diagram maps such a basis element of one algebra to the corresponding element of

another algebra. �

Lemma 1.9.11 Let R be an integral domain and choose a unit q ∈ R. Let R̃ be

another integral domain and let ξ : R → R̃ be a ring homomorphism. Finally, let

m ∈ N and choose an idempotent f ∈ H(R,q)
Am−1

. Then we have(
fH(R,q)

Am−1

)
⊗R R̃ ' (f ⊗R 1R̃)H(R̃,ξ(q))

Am−1

as right H(R̃,ξ(q))
Am−1

-modules.

Proof. If we put

Mf = fH(R,q)
m

then we have the natural inclusion of right H(R,q)
m -modules

if : Mf ↪→ H(R,q)
m .

An application of −⊗R R̃ to this map together with Lemma 1.2.7, Lemma 1.2.8.(i),

and Lemma 1.2.8.(ii) produces the homomorphism of right H(R̃,ξ(q))
m -modules

if ⊗R idR̃ : Mf ⊗R R̃→ H(R̃,ξ(q))
m .

Because of the compatibility of −⊗R R̃ with the multiplicative structures on H(R,q)
m

andH(R̃,ξ(q))
m (see equation (1.26) on page 36), we have for this latter homomorphism

(if ⊗R idR̃)(Mf ⊗R R̃) = (f ⊗R 1R̃)H(R̃,ξ(q))
m .
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Furthermore, an application of −⊗R R̃ to the decomposition

H(R,q)
m = if (Mf )⊕

((
1H(R,q)

A
− f

)
H(R,q)
m

)
together with Lemma 1.2.7 and Lemma 1.2.8.(iii) shows that if ⊗R idR̃ is again an

inclusion. Thus, if ⊗R idR̃ maps the module
(
fH(R,q)

m

)
⊗R R̃ isomorphically onto

the submodule (f ⊗R 1R̃)H(R̃,ξ(q))
m of H(R̃,ξ(q))

m . This proves the claim. �

Lemma 1.9.12 Let R be an integral domain and choose a unit q ∈ R. Further-

more, let f ∈ H(R,q)
An−2

⊆ H(R,q)
An−1

be an idempotent. Then we have(
fH(R,q)

An−2

)
⊗H(R,q)

n−1
H(R,q)
An−1

' fH(R,q)
An−1

as right H(R,q)
An−1

-modules.

Proof. The proof is analogous to that of Lemma 1.9.11. We have the natural

inclusion of right H(R,q)
n−1 -modules

jf : fH(R,q)
n−1 ↪→ H(R,q)

n−1 .

If we identify H(R,q)
n−1 ⊗H(R,q)

n−1
H(R,q)
n and H(R,q)

n using the isomorphism (1.37) from

Lemma 1.9.5, an application of −⊗H(R,q)
n−1
H(R,q)
n to jf produces the homomorphism

of right H(R,q)
n -modules

jf ⊗H(R,q)
n−1

idH(R,q)
n

:
(
fH(R,q)

n−1

)
⊗H(R,q)

n−1
H(R,q)
n → H(R,q)

n .

By using (1.37), we get for this map

(jf ⊗H(R,q)
n−1

idH(R,q)
n

)(
(
fH(R,q)

n−1

)
⊗H(R,q)

n−1
H(R,q)
n ) = fH(R,q)

n .

Furthermore, an application of −⊗H(R,q)
n−1
H(R,q)
n to the decomposition

H(R,q)
n−1 = jf (fH(R,q)

n−1 )⊕
((

1H(R,q)
A
− f

)
H(R,q)
n−1

)
together with Lemma 1.9.5 and the compatibility of − ⊗H(R,q)

n−1
H(R,q)
n with direct

sums (see [CR1, (2.17)]) shows that jf ⊗H(R,q)
n−1

idH(R,q)
n

is again an inclusion. Thus,

jf ⊗H(R,q)
n−1

idH(R,q)
n

maps the module
(
fH(R,q)

n−1

)
⊗H(R,q)

n−1
H(R,q)
n isomorphically onto the

submodule fH(R,q)
n of H(R,q)

n . This proves the claim. �

Lemma 1.9.13 The diagram
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-

-

? ?

·
xH(S,a)

n

H(S,a)
n−1

·
xH(F,ā)

n

H(F,ā)
n−1

·̄ ·̄

K0(H(S,a)
An−2

) K0(H(S,a)
An−1

)

K0(H(F,ā)
An−2

) K0(H(F,ā)
An−1

)

is commutative.

Proof. From Lemma 1.7.3.(iii) we see that it suffices to show the commutativity

for the elements of the basis
{

[P λ
(S,a)]

∣∣∣λ ∈ Πn−1,eF (ā)

}
of K0(H(S,a)

n−1 ). Fix a basis

element [P µ
(S,a)] with a projective indecomposable module P µ

(S,a) for a µ ∈ Πn−1,eF (ā).

According to Lemma 1.7.3.(i), there is an idempotent fµ ∈ H(S,a)
n−1 such that P µ

(S,a) '
fµH(S,a)

n−1 and thus also [P µ
(S,a)] = [fµH(S,a)

n−1 ] hold. Now the claim follows from the

calculation of the images [P µ
(S,a)]

xH(S,a)
n

H(S,a)
n−1

and
(

[P µ
(S,a)]

)xH(F,ā)
n

H(F,ā)
n−1

of the isomorphism

class [P µ
(S,a)] by using the representative fµH(S,a)

n−1 , Definition 1.7.6, Definition 1.9.7,

Lemma 1.9.10, Lemma 1.9.11, and Lemma 1.9.12. �

Lemma 1.9.14 The diagram

-

-

? ?

·
xH(S,a)

n

H(S,a)
n−1

·
xH(Q,a)

n

H(Q,a)
n−1

−⊗S Q −⊗S Q

K0(H(S,a)
An−2

) K0(H(S,a)
An−1

)

G0(H(Q,a)
An−2

) G0(H(Q,a)
An−1

)

is commutative.

Proof. The proof is analogous to that of Lemma 1.9.13. From Lemma 1.7.3.(iii)

we see that it suffices to show the commutativity for the elements of the basis{
[P λ

(S,a)]
∣∣∣λ ∈ Πn−1,eF (ā)

}
of K0(H(S,a)

n−1 ). Fix a basis element [P µ
(S,a)] with a projective
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indecomposable module P µ
(S,a) for a µ ∈ Πn−1,eF (ā). According to Lemma 1.7.3.(i),

there is an idempotent fµ ∈ H(S,a)
n−1 such that P µ

(S,a) ' fµH(S,a)
n−1 and thus also

[P µ
(S,a)] = [fµH(S,a)

n−1 ] hold. Now the claim follows from the calculation of the im-

ages

(
[P µ

(S,a)]

xH(S,a)
n

H(S,a)
n−1

)
⊗S Q and

(
[P µ

(S,a)]⊗S Q
)xH(Q,a)

n

H(Q,a)
n−1

of the isomorphism class

[P µ
(S,a)] by using the representative fµH(S,a)

n−1 , Definition 1.7.8, Definition 1.9.6, Defi-

nition 1.9.7, Lemma 1.9.10, Lemma 1.9.11, and Lemma 1.9.12. �

Lemma 1.9.15 The diagram

-

-

? ?

·
xH(F,ā)

n

H(F,ā)
n−1

·
xH(Q,a)

n

H(Q,a)
n−1

BHn−1,K BHn,K

K0(H(F,ā)
An−2

) K0(H(F,ā)
An−1

)

G0(H(Q,a)
An−2

) G0(H(Q,a)
An−1

)

is commutative.

Proof. This follows from Definition 1.7.9, Lemma 1.9.13, and Lemma 1.9.14. �

Now the decomposition of induced projective modules in projective indecom-

posable modules is described in more detail.

Lemma 1.9.16 For an m ∈ N, [H(S,a)
Am−1

] ∈ K0(H(S,a)
Am−1

) has a decomposition

[H(S,a)
Am−1

] = [U1] + · · ·+ [Uz]

in isomorphism classes of projective irreducible right H(S,a)
Am−1

-modules U1, . . . , Uz with

a z ∈ N. The summands are uniquely determined up to ordering. For any given

decomposition

[H(S,a)
Am−1

] = [V1] + · · ·+ [Vy]

of [H(S,a)
Am−1

] in isomorphism classes of projective right H(S,a)
Am−1

-modules V1, . . . , Vy with

a y ∈ N, there is a decomposition

{1, . . . , z} = J1 ∪ · · · ∪ Jy

of the index set {1, . . . , z} in pairwise disjoint subsets J1, . . . ,Jy such that, for every

i ∈ {1, . . . , y}, we have in K0(H(S,a)
Am−1

)

[Vi] =
∑
j∈Ji

[Uj].
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Proof. According to property (1.38).(ii), H(S,a)
m satisfies condition (ii) in [CR1,

Theorem 6.12]. Thus, that theorem can be applied to finitely generated H(S,a)
m -

modules. Now this theorem, the fact that H(S,a)
m -direct summands of H(S,a)

m are

projective (see [CR1, §2D]), and Definition 1.7.1.(ii) prove the claim. �

Lemma 1.9.17 Let ν ∈ ΓeF (ā)(n).

(i) Let µ ∈ Πn−1,eF (ā). Then bνProj(H
(Q,a)
An−1

)(BHn,K([P µ
(F,ā)]

xH(F,ā)
n

H(F,ā)
n−1

)) ∈ G0(H(Q,a)
An−1

) can

be written as

bνProj(H
(Q,a)
An−1

)(BHn,K([P µ
(F,ā)]

xH(F,ā)
n

H(F,ā)
n−1

)) =
∑

η∈Π
ν,eF (ā)

n,eF (ā)

fµηB
H
n,K([P η

(F,ā)]) (1.39)

with uniquely determined coefficients fµη ∈ N0 for η ∈ Π
ν,eF (ā)
n,eF (ā).

(ii) Let η ∈ Π
ν,eF (ā)
n,eF (ā). Then there is a µ ∈ Πn−1,eF (ā) such that we have for the

corresponding coefficient fµη in (1.39)

fµη > 0.

Proof. (i) According to Lemma 1.7.2.(iii), Lemma 1.7.2.(iv), and Definition 1.9.7,

the element [P µ
(F,ā)]

xHnHn−1
∈ K0(H(F,ā)

n ) can be written as

[P µ
(F,ā)]

xHnHn−1
=

∑
η∈Πn,eF (ā)

fµη[P
η
(F,ā)]

with uniquely determined coefficients fµη ∈ N0. Now an application of bνProj(H
(F,ā)
n )

from Definition 1.8.15.(ii) together with Lemma 1.8.10.(iii), Definition 1.8.5, Lem-

ma 1.8.8.(i), and Theorem 1.8.11 leads to

bνProj(H(F,ā)
n )([P µ

(F,ā)]
xHnHn−1

) =
∑

η∈Π
ν,eF (ā)

n,eF (ā)

fµη[P
η
(F,ā)].

Lemma 1.7.2.(iii) shows that the coefficients on the right hand side of the preceding

equation also are uniquely determined. Now an application of the Brauer map BHn,K
from Definition 1.7.9 gives

BHn,K(bνProj(H(F,ā)
n )([P µ

(F,ā)]
xHnHn−1

)) =
∑

η∈Π
ν,eF (ā)

n,eF (ā)

fµηB
H
n,K([P η

(F,ā)]).
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Because of the injectivity of BHn,K (see Corollary 1.7.18), the coefficients on the

right hand side are again uniquely determined. Furthermore, we have according to

Lemma 1.8.19

BHn,K(bνProj(H(F,ā)
n )([P µ

(F,ā)]
xHnHn−1

)) = bνProj(H(Q,a)
n )(BHn,K([P µ

(F,ā)]
xHnHn−1

)).

All this proves the claim.

(ii) According to Lemma 1.7.2.(i), there is an idempotent fη ∈ H(F,ā)
n such that

P η
(F,ā) ' fηH(F,ā)

n

holds. Since fηH(F,ā)
n is a direct summand of H(F,ā)

n (see [CR1, §6A]), it follows

from Definition 1.7.1.(ii) and Lemma 1.9.16 that [P η
(F,ā)] occurs in the representa-

tion of [H(F,ā)
n ] ∈ K0(H(F,ā)

n ) with respect to the basis
{

[P λ
(F,ā)]

∣∣∣λ ∈ Πn,eF (ā)

}
from

Lemma 1.7.2.(iii) with positive multiplicity. Furthermore, we get from the decom-

position

[H(F,ā)
n−1 ] = [U1] + · · ·+ [Uz]

of [H(F,ā)
n−1 ] ∈ K0(H(F,ā)

n−1 ) in isomorphism classes of projective indecomposable mod-

ules U1, . . . , Uz with a z ∈ N as in Lemma 1.9.16 by applying the map ·
xHnHn−1

from

Definition 1.9.7 and using the relation

H(F,ā)
n−1

xHnHn−1
' H(F,ā)

n

(see Definition 1.9.4 and Lemma 1.9.5) the decomposition

[H(F,ā)
n ] = [U1

xHnHn−1
] + · · ·+ [Uz

xHnHn−1
]

of [H(F,ā)
n ] ∈ K0(H(F,ā)

n ) in isomorphism classes of projective modules. Thus, ac-

cording to Lemma 1.9.16 and Lemma 1.7.2.(iii), there are a j ∈ {1, . . . , z} and a

µ ∈ Πn−1,eF (ā) such that

Uj ' P µ
(F,ā)

holds and furthermore [P η
(F,ā)] occurs in the representation of

[P µ
(F,ā)]

xHnHn−1
= [Uj

xHnHn−1
] ∈ K0(H(F,ā)

n )

with respect to the basis
{

[P λ
(F,ā)]

∣∣∣λ ∈ Πn,eF (ā)

}
with positive multiplicity. Now the

claim is proved by applying bνProj(H
(F,ā)
n ) followed byBHn,K to [P η

(F,ā)] and [P µ
(F,ā)]

xHnHn−1

and making use of Definition 1.8.15.(ii), Lemma 1.8.10.(iii), Definition 1.8.5, Lem-

ma 1.8.8.(i), Theorem 1.8.11, Lemma 1.8.19, and the fact that the coefficients oc-

curring on the right hand side of (1.39) are uniquely determined. �
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Next, an upper bound for the decomposition numbers in a block of the de-

composition matrix ∆Hn,K (see Definition 1.8.21) is derived from the entries in the

decomposition matrix ∆Hn−1,K by means of induced projective indecomposable mod-

ules.

Theorem 1.9.18 Let ν ∈ ΓeF (ā)(n). With this, put for every λ ∈ Π
ν,eF (ā)
n and

every η ∈ ΓeF (ā)(n− 1)

Eλ,η =
∣∣∣λ ↓ ∩Π

η,eF (ā)
n−1

∣∣∣ .
Furthermore, set for every λ ∈ Π

ν,eF (ā)
n

Hλ = max
{
Eλ,η | η ∈ ΓeF (ā)(n− 1)

}
.

In addition let

Jν = max
{
Hλ

∣∣∣λ ∈ Πν,eF (ā)
n

}
.

Finally put

Un−1 = max
{
dn−1,K
λµ

∣∣∣λ ∈ Πn−1, µ ∈ Πn−1,eF (ā)

}
.

Then we have for every λ ∈ Π
ν,eF (ā)
n and every µ ∈ Π

ν,eF (ā)
n,eF (ā)

dn,Kλµ ≤ JνUn−1.

This is equivalent to say that JνUn−1 is an upper bound for the entries in the ν-block

∆Hn,K(ν) =
(
dn,Kλµ

)
λ∈Π

ν,eF (ā)
n

µ∈Π
ν,eF (ā)

n,eF (ā)

of ∆Hn,K.

Proof. Fix a θ ∈ Π
ν,eF (ā)
n,eF (ā). We see from Lemma 1.7.16.(iii) and Theorem 1.8.20.(ii)

that BHn,K([P θ
(F,ā)]) ∈ G0(H(Q,a)

n ) has the representation

BHn,K([P θ
(F,ā)]) =

∑
λ∈Π

ν,eF (ā)
n

dn,Kλθ [Sλ(Q,a)] (1.40)

with respect to the basis
{

[Sλ(Q,a)]
∣∣∣λ ∈ Πn

}
from Lemma 1.4.3.(i). Furthermore,

according to Lemma 1.9.17.(ii), there is a µ ∈ Πn−1,eF (ā) such that BHn,K([P θ
(F,ā)]) oc-

curs in the decomposition (1.39) of bνProj(H
(Q,a)
n )(BHn,K([P µ

(F,ā)]
xHnHn−1

)) ∈ G0(H(Q,a)
n )

from Lemma 1.9.17.(i) with positive multiplicity. Let

bνProj(H(Q,a)
n )(BHn,K([P µ

(F,ā)]
xHnHn−1

)) =
∑

λ∈Π
ν,eF (ā)
n

gλµ[Sλ(Q,a)] (1.41)

be the representation of the element bνProj(H
(Q,a)
n )(BHn,K([P µ

(F,ā)]
xHnHn−1

)) ∈ G0(H(Q,a)
n )

with respect to the basis
{

[Sλ(Q,a)]
∣∣∣λ ∈ Πn

}
with uniquely determined coefficients
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gλµ ∈ N0. It follows from Lemma 1.8.16 that only indices λ ∈ Π
ν,eF (ā)
n occur

on the right hand side of (1.41). Furthermore, it follows from Definition 1.9.7,

Lemma 1.7.2, Definition 1.7.9, Definition 1.7.6, Lemma 1.7.3, Definition 1.7.8, and

Definition 1.8.15 that the coefficients on the right hand side of (1.41) are non-

negative. The decomposition (1.41) is obtained from the representation (1.39) in

Lemma 1.9.17 by substituting decompositions of the form (1.40) for the summands

BHn,K([P κ
(F,ā)]) with κ ∈ Π

ν,eF (ā)
n,eF (ā). Since all coefficients involved in this process are

nonnegative (see Definition 1.4.17) and BHn,K([P θ
(F,ā)]) in fact occurs as a summand,

we get from this

∀λ ∈ Πν,eF (ā)
n : dn,Kλθ ≤ gλµ.

Since θ ∈ Π
ν,eF (ā)
n,eF (ā) was arbitrarily chosen, it suffices for the proof of the claim to

show that

∀λ ∈ Πν,eF (ā)
n , µ ∈ Πn−1,eF (ā) : gλµ ≤ JνUn−1. (1.42)

In order to prove (1.42), we now express the coefficients gλµ in terms of the

entries of the decomposition matrix ∆Hn−1,K. Fix a µ ∈ Πn−1,eF (ā). According to

Theorem 1.8.11 and Definition 1.8.12 — applied to Hecke algebras of type An−2 —

the projective indecomposable module P µ
(F,ā) lies in the block of H(F,ā)

n−1 indexed by

the core

η = γeF (ā)(µ),

and according to Lemma 1.7.16.(iii) and Theorem 1.8.20.(ii) — applied again to

Hecke algebras of type An−2 — we have in G0(H(Q,a)
n−1 )

BHn−1,K([P µ
(F,ā)]) =

∑
κ∈Π

η,eF (ā)
n−1

dn−1,K
κµ [Sκ(Q,a)].

By using Lemma 1.9.15 and Lemma 1.9.8, we get from this

BHn,K([P µ
(F,ā)]

xH(F,ā)
n

H(F,ā)
n−1

) =
(
BHn−1,K([P µ

(F,ā)])
)xH(Q,a)

n

H(Q,a)
n−1

=
∑

κ∈Π
η,eF (ā)
n−1

dn−1,K
κµ

∑
λ∈κ↑

[Sλ(Q,a)].

By applying bνProj(H
(Q,a)
n ) and using Lemma 1.8.16, we obtain now

bνProj(H(Q,a)
n )(BHn,K([P µ

(F,ā)]
xHnHn−1

)) =
∑

κ∈Π
η,eF (ā)
n−1

dn−1,K
κµ

∑
λ∈κ↑∩Π

ν,eF (ā)
n

[Sλ(Q,a)].
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By using Definition 1.1.20 and Lemma 1.1.21, this double sum can be rewritten

such that we get

bνProj(H(Q,a)
n )(BHn,K([P µ

(F,ā)]
xHnHn−1

))

=
∑

λ∈Π
ν,eF (ā)
n

 ∑
κ∈λ↓∩Π

η,eF (ā)
n−1

dn−1,K
κµ

 [Sλ(Q,a)].

(1.43)

Because the coefficients in the decompositions (1.41) and (1.43) are uniquely deter-

mined (see Lemma 1.4.3.(i)), we have now for every λ ∈ Π
ν,eF (ā)
n

gλµ =
∑

κ∈λ↓∩Π
η,eF (ā)
n−1

dn−1,K
κµ

≤ Un−1

∣∣∣λ ↓ ∩Π
η,eF (ā)
n−1

∣∣∣
= Un−1Eλ,η

≤ Un−1Hλ

≤ Un−1Jν .

Since µ ∈ Πn−1,eF (ā) was arbitrarily chosen, this proves (1.42) and thus the claim of

the theorem. �

In Section 2.1, the preceding theorem will be applied to the blocks of decomposition

matrices indexed by the core (0) and having eF (ā)-weight 3.

1.10 The Theorem of Schaper for Hecke algebras

of type A

This section describes the generalization of the Theorem of Schaper from group

algebras of symmetric groups to Hecke algebras of type A. The result for group

algebras of symmetric groups can be found in [SCH]. The generalization to Hecke

algebras of type A has been done by James and Mathas in [JM] where the following

material is presented in more detail.

The Theorem of Schaper is a useful tool for determining decomposition numbers

of Hecke algebras of type A in an inductive manner. It involves the bilinear form

from Definition 1.3.16 and rim hooks in partitions. For the following we fix an

n ∈ N. Furthermore, we choose a modular system

K = (Q,ψ, S, I, a, F )
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as in Definition 1.4.8 such that

H(Q,a)
An−1

is semisimple. (1.44)

Part of the following holds under weaker assumptions on K, but this degree of

generality will not be required here.

First we describe the Jantzen filtration of Specht modules. Filtrations of this

kind have been investigated by Jantzen in [JAN].

Definition 1.10.1 (i) For j ∈ N0 we define

I(j) = {x ∈ Q \ {0Q} | ψ(x) ≥ j} ∪ {0Q} .

(ii) For λ ` n and j ∈ N0 we define

Sλ(S,a)(j) =
{
x ∈ Sλ(S,a)

∣∣∣ ∀y ∈ Sλ(S,a) : γλ(S,a)(x, y) ∈ I(j)
}
.

Lemma 1.10.2 (i) We have I(0) = S, I(1) = I, and

I(0) ⊇ I(1) ⊇ I(2) ⊇ · · · .

For every j ∈ N0, I(j) is an ideal in S.

(ii) Let λ ` n. Then we have Sλ(S,a)(0) = Sλ(S,a) and

Sλ(S,a)(0) ⊇ Sλ(S,a)(1) ⊇ Sλ(S,a)(2) ⊇ · · · .

For every j ∈ N0, Sλ(S,a)(j) is an S-submodule and also an H(S,a)
An−1

-submodule

of Sλ(S,a).

(iii) Let λ ` n. Then we have Sλ(S,a)(0) = Sλ(F,ā), S
λ
(S,a)(1) = rad γλ(F,ā), and

Sλ(S,a)(0) ⊇ Sλ(S,a)(1) ⊇ Sλ(S,a)(2) ⊇ · · · .

For every j ∈ N0, Sλ(S,a)(j) is an F -subvectorspace and also an H(F,ā)
An−1

-sub-

module of Sλ(F,ā).

Proof. (i) This follows from Definition 1.4.5, Definition 1.4.6, Definition 1.4.8, and

Definition 1.10.1.(i).

(ii) The first claim Sλ(S,a)(0) = Sλ(S,a) is obtained from the relation I(0) = S in

statement (i). The chain of inclusions follows from the chain of inclusions in state-

ment (i). Furthermore, the fact that Sλ(S,a)(j) is an S-submodule of Sλ(S,a) follows
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from the fact that I(j) is an ideal in S. Finally, the fact that Sλ(S,a)(j) is an H(S,a)
An−1

-

submodule of Sλ(S,a) is obtained from Definition 1.10.1.(ii), Definition 1.3.16.(i), Def-

inition 1.3.8, and [DJ1, Lemma 4.4].

(iii) The first claim Sλ(S,a)(0) = Sλ(F,ā) follows from Lemma 1.5.2 and the rela-

tion Sλ(S,a)(0) = Sλ(S,a) in statement (ii). The second claim Sλ(S,a)(1) = rad γλ(F,ā) is

obtained from the relation I(1) = I in statement (i), the relation F = S̄ = S/I in

Definition 1.4.8, Definition 1.3.16.(iii), and the following compatibility property of

the bilinear form γλ and the reduction modulo I (see Definition 1.4.14).

∀x, y ∈ Sλ(S,a) : γλ(S,a)(x, y) = γλ(F,ā)(x̄, ȳ)

This in turn is obtained from Definition 1.3.16.(i), Theorem 1.3.2, Remark 1.3.7.(i),

and the following analogous property of the bilinear form βλ.

∀d, d̃ ∈ Dλ : βλ(S,a)(x
(S,a)
λ Td, x

(S,a)
λ Td̃) = βλ(F,ā)(x

(F,ā)
λ Td, x

(F,ā)
λ Td̃)

This finally follows from Definition 1.3.8. The chain of inclusions is obtained from

the corresponding chain of inclusions in statement (ii) by applying reduction modulo

I. Similarly, the fact that Sλ(S,a)(j) is an F -subvectorspace and an H(F,ā)
An−1

-submodule

of Sλ(F,ā) is obtained from the analogous claim in statement (ii). �

Definition 1.10.3 Let λ ` n. Then the filtration

Sλ(F,ā) = Sλ(S,a)(0) ⊇ Sλ(S,a)(1) ⊇ Sλ(S,a)(2) ⊇ · · ·

of Sλ(F,ā) with the H(F,ā)
An−1

-submodules from Lemma 1.10.2.(iii) is called the Jantzen

filtration of Sλ(F,ā).

In order to state the Theorem of Schaper, we next introduce an indexing scheme for

the isomorphism classes of Specht modules in the Grothendieck groups G0(H(F,ā)
Am−1

)

with m ∈ N by means of β-sequences.

Definition 1.10.4 Let (β1, . . . , βc) be a finite sequence of length c ∈ N with entries

βj ∈ Z for j ∈ {1, . . . , c} such that {β1, . . . , βc} 6= {0, . . . , c− 1} holds.

(i) If the numbers β1, . . . , βc are all nonnegative and pairwise distinct, there is a

w ∈ Sc such that the sequence (β1w, . . . , βcw) is strictly decreasing and thus

a β-sequence for an appropriate partition λ of m with an m ∈ N. With this,

the element S(β1, . . . , βc) of G0(H(F,ā)
Am−1

) is defined as

S(β1, . . . , βc) = (−1)`(w) · [Sλ(F,ā)].
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(ii) If some of the numbers β1, . . . , βc are negative or equal to one another, then

for every m ∈ N the element S(β1, . . . , βc) of G0(H(F,ā)
Am−1

) is defined as

S(β1, . . . , βc) = 0.

Remark 1.10.5 The condition {β1, . . . , βc} 6= {0, . . . , c− 1} in Definition 1.10.4

excludes the possibility that rearranging the sequence (β1, . . . , βc) produces a β-

sequence for the partition (0).

Now the Theorem of Schaper for Hecke algebras of type A can be formulated. The

formulation makes use of Definition 1.2.2.(i).

Theorem 1.10.6 Let λ = (λ1, λ2, . . .) ` n with λ′ = (λ′1, λ
′
2, . . .) and let β =

(β1, . . . , βc) be a β-sequence for λ. Then we have in G0(H(F,ā)
An−1

)

∑
j∈N

[Sλ(S,a)(j)] =

λ1∑
k=1

λ′k−1∑
i=1

λ′k∑
j=i+1

(
ψ(
[∣∣rλ(i,k)

∣∣]
a
)− ψ(

[∣∣rλ(j,k)

∣∣]
a
)
)
·

S(β1, . . . , βi−1, βi +
∣∣rλ(j,k)

∣∣ , βi+1, . . .

. . . , βj−1, βj −
∣∣rλ(j,k)

∣∣ , βj+1, . . . , βc).

(1.45)

Proof. From the semisimplicity of H(Q,a)
n (see (1.44)) and Theorem 1.3.21.(i) we get

eQ(a) > n.

This shows together with Definition 1.2.2

∀k ∈ {1, . . . , n} : [k]a 6= 0Q.

From this and Definition 1.1.14 we see that the differences involving the valuation ψ

in formula (1.45) are well defined. Now the claim is obtained from [JM, Theorem 4.7

and Theorem 4.13]. �

Remark 1.10.7 The right hand side of the identity (1.45) is a finite sum repre-

senting an element of G0(H(F,ā)
An−1

). This shows that the sum on the left hand side of

that formula contains only finitely many summands different from 0.

The following corollary restricts the identity (1.45) to a block. It makes use of

Definition 1.1.38 and Definition 1.8.15.(i).
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Corollary 1.10.8 Suppose that H(Q,a)
An−1

is semisimple and S is complete with re-

spect to the valuation ψ. With the notation from Theorem 1.10.6, let furthermore

µ = γeF (ā)(λ). Then we have in G0(H(F,ā)
An−1

), again with the notation from Theo-

rem 1.10.6,

∑
j∈N

[Sλ(S,a)(j)]

=

λ1∑
k=1

λ′k−1∑
i=1

λ′k∑
j=i+1

(
ψ(
[∣∣rλ(i,k)

∣∣]
a
)− ψ(

[∣∣rλ(j,k)

∣∣]
a
)
)
·

bµProj(H
(F,ā)
An−1

)S(β1, . . . , βi−1, βi +
∣∣rλ(j,k)

∣∣ , βi+1, . . .

. . . , βj−1, βj −
∣∣rλ(j,k)

∣∣ , βj+1, . . . , βc).

(1.46)

Proof. If we apply the homomorphism bµProj(H
(F,ā)
n ) : G0(H(F,ā)

n )→ G0(H(F,ā)
n ) from

Definition 1.8.15.(i) to both sides of the formula (1.45), we obtain for the left hand

side by using Definition 1.8.5, Lemma 1.8.8.(iv), Lemma 1.8.10.(iii), Theorem 1.8.11,

and Definition 1.10.3

bµProj(H
(F,ā)
n )(

∑
j∈N

[Sλ(S,a)(j)]) =
∑
j∈N

(
bµProj(H

(F,ā)
n )([Sλ(S,a)(j)])

)
=

∑
j∈N

[Sλ(S,a)(j)b
µ
Idemp(H(F,ā)

n )]

=
∑
j∈N

[Sλ(S,a)(j)].

This proves the claim. �

Remark 1.10.9 (i) According to Lemma 1.1.24 and Lemma 1.1.25, the con-

struction of the sequence

(β1, . . . , βi−1, βi +
∣∣rλ(j,k)

∣∣ , βi+1, . . . , βj−1, βj −
∣∣rλ(j,k)

∣∣ , βj+1, . . . , βc) (1.47)

from the β-sequence (β1, . . . , βc) in the identities (1.45) from Theorem 1.10.6

and (1.46) from Corollary 1.10.8 can be interpreted in such a way that one

removes the rim hook rλ(j,k) from λ and tries to add a rim hook r with

|r| =
∣∣rλ(j,k)

∣∣ and max
{
ĩ
∣∣∣ (̃i, k̃) ∈ r

}
= i

to λ. If this is possible, one obtains because of

min
{
j̃
∣∣∣ (j̃, k̃) ∈ rλ(j,k)

}
= j > i

by rearranging (1.47) a β-sequence for a µ ` n with µ B λ (see Defini-

tion 1.1.4.(ii)).
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(ii) Suppose that H(Q,a)
An−1

is semisimple and S is complete with respect to the val-

uation ψ. Then Corollary 1.10.8 can be used to determine decomposition

numbers dn,Kηθ with η ∈ Πn and θ ∈ Πn,eF (ā) in the following way.

Let λ ` n and µ = γeF (ā)(λ). With this let

[rad γλ(F,ā)] =
∑

ν∈Π
µ,eF (ā)

n,eF (ā)

aν [D
ν
(F,ā)]

and ∑
j∈N

[Sλ(S,a)(j)] =
∑

ν∈Π
µ,eF (ā)

n,eF (ā)

bν [D
ν
(F,ā)] (1.48)

be the representations of [rad γλ(F,ā)] and
∑

j∈N[Sλ(S,a)(j)] in G0(H(F,ā)
An−1

) with

respect to the basis
{

[Dκ
(F,ā)]

∣∣∣κ ∈ Πn,eF (ā)

}
from Lemma 1.4.2.(i) with coef-

ficients aν , bν ∈ N0 for ν ∈ Π
µ,eF (ā)
n,eF (ā). From Definition 1.3.16.(iii), Defini-

tion 1.10.3, Lemma 1.8.8.(iv), and Theorem 1.8.20 we see that the indices

in the sums on the right hand sides of these decompositions can be restricted

to the µ-block. Now we get from Definition 1.3.19, Theorem 1.3.20.(i), and

Lemma 1.5.7 for every ν ∈ Π
µ,eF (ā)
n,eF (ā)

aν = dn,Kλν = 0 if ν 4 λ,

aν = 0 and dn,Kλν = 1 if ν = λ,

aν = dn,Kλν if ν B λ,

(1.49)

the case ν = λ occurring only for an eF (ā)-regular λ. We also get from

Lemma 1.10.2.(iii) for every ν ∈ Π
µ,eF (ā)
n,eF (ā)

aν ≤ bν and aν = 0⇔ bν = 0. (1.50)

Now if the coefficients in the decompositions

[Sκ(F,ā)] =
∑

ν∈Π
µ,eF (ā)

n,eF (ā)

dn,Kκν [Dν
(F,ā)]

(see Lemma 1.5.5) for κ ∈ Π
µ,eF (ā)
n,eF (ā) with κ B λ are known, they enable us to

calculate the coefficients in the decomposition (1.48) by using statement (i)

and the formula (1.46). In turn, from these coefficients bν with ν ∈ Π
µ,eF (ā)
n,eF (ā)

we get by means of (1.49) and (1.50) conditions on the decomposition numbers

dn,Kλν with ν ∈ Π
µ,eF (ā)
n,eF (ā).
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If these decomposition numbers dn,Kλν with ν ∈ Π
µ,eF (ā)
n,eF (ā) can be completely de-

termined, the decomposition

[Sλ(F,ā)] =
∑

ν∈Π
µ,eF (ā)

n,eF (ā)

dn,Kλν [Dν
(F,ā)]

is available and can be used as above on the right hand side of the identity

(1.46) to derive conditions on the decomposition numbers dn,Kκν for κ ∈ Π
µ,eF (ā)
n

with λ B κ and ν ∈ Π
µ,eF (ā)
n,eF (ā). This shows how Corollary 1.10.8 and induction

on the partial ordering D on the set Π
µ,eF (ā)
n can be used to get information

on the decomposition numbers dn,Kκν with κ ∈ Π
µ,eF (ā)
n and ν ∈ Π

µ,eF (ā)
n,eF (ā).
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Chapter 2

Blocks of Hecke algebras of type A

having weight 3 and empty core

This chapter investigates the decomposition numbers belonging to certain blocks of

Hecke algebras of type A. The central results describe an algorithm for the explicit

calculation of these decomposition numbers (see Theorem 2.2.1) and their depen-

dence of the underlying modular system (see Theorem 2.2.10). Further important

results are Theorem 2.1.8 and Theorem 2.1.11.

2.1 Bounds for the decomposition numbers

In this section we consider blocks of various Hecke algebras of type A whose as-

sociated core is the partition (0) of 0, that is, the empty partition. The degree of

the Hecke algebras under consideration is such that the weight of these blocks (see

Definition 1.8.12.(ii)) is 3. We will determine bounds for the values of the entries

of the associated (0)-blocks of the decomposition matrices (see Definition 1.8.21) of

these Hecke algebras. These bounds will be used in the next section to show how

these matrix blocks can be calculated explicitly.

In this section, n ∈ N is a positive integer. Furthermore,

K = (Q,ψ, S, I, a, F )

denotes a modular system as in Definition 1.4.8 satisfying the following conditions.

(i) The algebra H(Q,a)
An−1

is semisimple.

(ii) The discrete valuation ring S is complete with respect to the valu-

ation ψ.

(2.1)

101
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The main result first will be proved for modular systems of this kind and then will

be generalized to arbitrary modular systems by means of Corollary 1.6.7.

Next we describe some properties of blocks having eF (ā)-weight 0, 1, or 2. These

properties will be required later. The following three statements make use of Defi-

nition 1.8.21. The next lemma covers blocks having eF (ā)-weight 0.

Lemma 2.1.1 Let ν ∈ Πn ∩ ΓeF (ā)(n). Then we have for every entry dn,Kηθ of

∆Hn,K(ν) =
(
dn,Kλµ

)
λ∈Π

ν,eF (ā)
n

µ∈Π
ν,eF (ā)

n,eF (ā)

with η ∈ Π
ν,eF (ā)
n and θ ∈ Π

ν,eF (ā)
n,eF (ā)

dn,Kηθ ∈ {0, 1} .

Proof. Since the eF (ā)-core ν is itself a partition of n and because of Remark 1.1.36,

we have

Πν,eF (ā)
n = Π

ν,eF (ā)
n,eF (ā) = {ν} .

With that, we get from Lemma 1.5.7 and Lemma 1.4.2.(i)

∆Hn,K(ν) =
(
dn,Kνν

)
= (1) .

This proves the claim. �

The following lemma covers blocks having eF (ā)-weight 1.

Lemma 2.1.2 Let n ≥ eF (ā) and let ν ∈ Πn−eF (ā) ∩ ΓeF (ā)(n). Then we have for

every entry dn,Kηθ of ∆Hn,K(ν) =
(
dn,Kλµ

)
λ∈Π

ν,eF (ā)
n

µ∈Π
ν,eF (ā)

n,eF (ā)

with η ∈ Π
ν,eF (ā)
n and θ ∈ Π

ν,eF (ā)
n,eF (ā)

dn,Kηθ ∈ {0, 1} .

Proof. See [JAM2, (3.12) and Theorem 6.5]. �

The next lemma covers blocks having eF (ā)-weight 2.

Lemma 2.1.3 Let n ≥ 2eF (ā) and let ν ∈ Πn−2eF (ā) ∩ΓeF (ā)(n). Then we have for

every entry dn,Kηθ of ∆Hn,K(ν) =
(
dn,Kλµ

)
λ∈Π

ν,eF (ā)
n

µ∈Π
ν,eF (ā)

n,eF (ā)

with η ∈ Π
ν,eF (ā)
n and θ ∈ Π

ν,eF (ā)
n,eF (ā)

dn,Kηθ ∈ {0, 1} .

Proof. This follows from [RIC, Conjecture 4.7]. That conjecture in turn is proved

by Theorem 1.10.6 (see also [JM]). �

Now we are in a position to investigate blocks having eF (ā)-weight 3. To this

end, we assume

eF (ā) <∞
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until further notice. Furthermore note that, according to Definition 1.2.2.(ii), we

have eF (ā) ≥ 2. With this, we first introduce a useful notation for the partitions

in such a block. This notation comes from [MR2]. According to Lemma 1.1.41,

given an abacus a for the eF (ā)-core indexing a block having eF (ā)-weight 3, one

obtains an abacus for a partition in that block by moving three (not necessarily

pairwise distinct) beads in a within their respective columns one place in the upward

direction. Doing this in all possible ways produces abaci for all partitions in the

considered block. This shows together with Remark 1.1.30.(iii) that the notations

introduced in the following definition indeed represent the partitions in that block.

Definition 2.1.4 Let n ≥ 3eF (ā) and ν ∈ Πn−3eF (ā) ∩ ΓeF (ā)(n) and choose an

abacus a for ν having at least three beads on each runner.

(i) For i ∈ {0, . . . , eF (ā)− 1},
〈i〉a

denotes the partition corresponding to the abacus obtained from a through

movement of the uppermost bead on runner i within its column by three places

in the upward direction.

(ii) For i ∈ {0, . . . , eF (ā)− 1},
〈i, i〉a

denotes the partition corresponding to the abacus obtained from a through

movement of the uppermost bead on runner i within its column by two places

in the upward direction and movement of the next lower bead on runner i

within its column by one place in the upward direction.

(iii) For i, j ∈ {0, . . . , eF (ā)− 1} with i 6= j,

〈i, j〉a

denotes the partition corresponding to the abacus obtained from a through

movement of the uppermost bead on runner i within its column by two places

in the upward direction and movement of the uppermost bead on runner j

within its column by one place in the upward direction.

(iv) For i ∈ {0, . . . , eF (ā)− 1},
〈i, i, i〉a

denotes the partition corresponding to the abacus obtained from a through

movement of the three uppermost beads on runner i within their column by

one place in the upward direction.
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(v) For i, j ∈ {0, . . . , eF (ā)− 1} with i 6= j,

〈i, i, j〉a

denotes the partition corresponding to the abacus obtained from a through

movement of the two uppermost beads on runner i and the uppermost bead on

runner j within their columns by one place in the upward direction.

(vi) For pairwise distinct i, j, k ∈ {0, . . . , eF (ā)− 1},

〈i, j, k〉a

denotes the partition corresponding to the abacus obtained from a through

movement of the uppermost beads on the runners i, j, k within their columns

by one place in the upward direction.

Next, we show how the constants Hλ from Theorem 1.9.18 can be easily deter-

mined by using abaci. The following statement makes use of Definition 1.1.20.(ii)

and Definition 1.1.38.(i).

Lemma 2.1.5 Let n > 1 and eF (ā) < ∞. Furthermore, let λ ` n and µ, µ̃ ∈ λ ↓.
Finally, let a be an eF (ā)-abacus for λ. Then the following two statements are

equivalent.

(i) For the eF (ā)-cores of µ and µ̃, we have

γeF (ā)(µ) = γeF (ā)(µ̃).

(ii) There is an i ∈ {0, . . . , eF (ā)− 1} such that abaci for µ and µ̃ can be obtained

from a through movement of respectively one appropriate bead on runner i

within its row by one place in the downward direction.

Proof. According to Definition 1.1.20.(ii) and Corollary 1.1.33, there is a uniquely

determined

j ∈ {0, . . . , eF (ā)− 1}

such that an abacus b for µ is obtained from a through movement of an appropriate

bead on runner j within its row by one place in the downward direction. Similarly,

there is a uniquely determined

j̃ ∈ {0, . . . , eF (ā)− 1}
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such that an abacus b̃ for µ̃ is obtained from a through movement of an appropriate

bead on runner j̃ within its row by one place in the downward direction. Thus we

have

(ii)⇔ j = j̃.

Furthermore, according to Lemma 1.1.41, an abacus c for γeF (ā)(λ) is obtained from

a through movement of all beads in a within their columns as far in the downward

direction as possible. Similarly, an abacus d for γeF (ā)(µ) is obtained from b and an

abacus d̃ for γeF (ā)(µ̃) is obtained from b̃ through movement of all beads in b and b̃

within their columns as far in the downward direction as possible. The construction

of all these abaci from a shows that c and d differ only on runners j and k with

k =

{
j − 1 if j > 0

eF (ā)− 1 if j = 0
.

More specifically, d contains on runner j one bead less than c and on runner k one

bead more than c. Similarly, c and d̃ differ only on runners j̃ and k̃ with

k̃ =

{
j̃ − 1 if j̃ > 0

eF (ā)− 1 if j̃ = 0
.

More specifically, d̃ contains on runner j̃ one bead less than c and on runner k̃ one

bead more than c. From this we get

j = j̃ ⇔ d = d̃.

Furthermore, the construction of the abaci d and d̃ shows that they contain the

same number of beads. Thus we have according to Remark 1.1.30.(iii)

d = d̃⇔ (i).

This proves the claim. �

Lemma 2.1.6 Let n > 1, eF (ā) <∞, and λ ` n and choose an eF (ā)-abacus a for

λ. With that, let for every i ∈ {0, . . . , eF (ā)− 1}

Li =

∣∣∣∣∣∣∣∣∣

 j ∈ N0

runner i in a

contains a bead in row j

that can be moved within its row

by one place in the downward direction


∣∣∣∣∣∣∣∣∣ .

Then we have with the notations from Theorem 1.9.18

Hλ = max {Li | i ∈ {0, . . . , eF (ā)− 1}} .



106 CHAPTER 2. BLOCKS OF HA HAVING WEIGHT 3 AND CORE (0)

Proof. This follows immediately from the Definition of Hλ in Theorem 1.9.18 and

Lemma 2.1.5. �

From now on we assume

n = 3eF (ā)

until further notice. Then we have (0) ∈ ΓeF (ā)(n), and thus the Hecke algebras

H(Q,a)
An−1

, H(S,a)
An−1

, and H(F,ā)
An−1

have a block of weight 3 with core (0). In order to

manipulate partitions in this block by means of abaci, we fix the following abacus

z for the partition (0).

q qq qq q

q q q q q

q q q q q
z z
z z
z z

0 eF (ā)− 1

z : (2.2)

This abacus contains enough beads for all required manipulations (see Remark

1.1.30.(ii)).

The next theorem also makes use of the notations from Theorem 1.9.18.

Theorem 2.1.7 Let n = 3eF (ā) and λ ∈ Π
(0),eF (ā)
n . Then we have

Hλ ≤ 1.

Proof. Let a be the eF (ā)-abacus for λ constructed from the abacus z for (0) as

in Definition 2.1.4. The claim is proved by applying Lemma 2.1.6 to λ with the

abacus a and explicitly considering all cases in Definition 2.1.4.

As an example, we consider the case (i). Then we have

λ = 〈i〉z

with an i ∈ {0, . . . , eF (ā)− 1}, and a is obtained from z through movement of the

uppermost bead on runner i within its column in the upward direction from row 2

to row 5. Since there is no bead in z that can be moved within its row by one place
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in the downward direction (see (2.2)), any bead in a that can be moved within its

row by one place in the downward direction must sit on runner i or runner j with

j =

{
i+ 1 if i < eF (ā)− 1

0 if i = eF (ā)− 1
.

For the beads on runner i, we have two different situations depending on i > 0

or i = 0. In the case i > 0, if we have a bead movable within its row by one place

in the downward direction, it will end up in the same row on runner i − 1. In the

case i = 0, if we have a bead movable within its row by one place in the downward

direction, it will end up one row below on runner eF (ā) − 1. These two situations

are displayed in the following picture.

qqq qqq qqq qqq qqq

q q q q q q

q q q q q qz
z
z
z
z
z

��@@

z
z

j

z
z
z
z
z
z

i > 0

a :

i− 1 i

qqq qqq qqq

q q q

q q qz
z

j

z
z
z
z
z
z
��@@

i = 0

a :

0 eF (ā)− 1

In both cases, runner i contains only one bead movable within its row by one place

in the downward direction. This bead is depicted as ©. The position occupied by

it after the movement is marked with a ×.

Similarly, for the beads on runner j, we have the following two different situa-

tions depending on j > 0 or j = 0.
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qqq qqq qqq qqq qqq qqq

q q q q q q

q q q q q qz
z
z
z
z
z
z
z��@@

z

z
z
j
z
z
z
z
z
z

j > 0

a :

j − 1 j

qqq qqq qqq

q q q

q q qz
z
z
z
z
z
z
z

z
j = 0

a :

0 eF (ā)− 1

In the case j > 0, runner j contains one bead movable within its row by one place

in the downward direction. This bead is depicted as ©. The position occupied by

it after the movement is marked with a ×. In the case j = 0, there is no bead on

runner j that can be moved within its row by one place in the downward direction.

With the notations from Lemma 2.1.6, we now have shown all in all

∀k ∈ {0, . . . , eF (ā)− 1} : Lk ≤ 1

and thus

H〈i〉z ≤ 1.

This proves the claim of the theorem in the case λ = 〈i〉z.
Similar considerations prove the claim of the theorem in the remaining cases of

Definition 2.1.4. �

Now we are able to easily determine all constants required for the applica-

tion of Theorem 1.9.18 to the eF (ā)-core (0) and the associated block ∆Hn,K((0)) of

the decomposition matrix ∆Hn,K, thus obtaining an upper bound for the entries of

∆Hn,K((0)).

Theorem 2.1.8 Let n = 3eF (ā). Then we have for every entry dn,Kηθ of the matrix

∆Hn,K((0)) =
(
dn,Kλµ

)
λ∈Π

(0),eF (ā)
n

µ∈Π
(0),eF (ā)

n,eF (ā)

with η ∈ Π
(0),eF (ā)
n and θ ∈ Π

(0),eF (ā)
n,eF (ā)

dn,Kηθ ∈ {0, 1} .

Proof. According to Definition 1.4.17, we have

dn,Kηθ ∈ N0.
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Thus, it remains to show dn,Kηθ ≤ 1. This can be derived as follows from Theo-

rem 1.9.18. With the notation from there, we get from Theorem 2.1.7

J(0) ≤ 1.

Furthermore, it follows from the condition n = 3eF (ā), Definition 1.8.12.(ii), Re-

mark 1.8.13, and Definition 1.1.38.(i) that the Hecke algebras of degree n−1 over the

coefficient pairs associated to K only have blocks of eF (ā)-weight 0, 1, or 2. From

this together with Theorem 1.8.22, Lemma 2.1.1, Lemma 2.1.2, and Lemma 2.1.3

we get

Un−1 ≤ 1.

Now we obtain from Theorem 1.9.18

dn,Kηθ ≤ J(0)Un−1 ≤ 1,

as desired. �

Remark 2.1.9 The preceding theorem is proved by Martin and Russell in [MR1]

for the special case of group algebras of symmetric groups (see (1.24) on page 34).

Corollary 2.1.10 Let n ∈ N and eF (ā) ∈ {2, 3, . . .}∪{∞} with n ≤ 3eF (ā). Then

we have for every entry dn,Kηθ of the matrix ∆Hn,K =
(
dn,Kλµ

)
λ∈Πn
µ∈Πn,eF (ā)

with η ∈ Πn and

θ ∈ Πn,eF (ā)

dn,Kηθ ∈ {0, 1} .

Proof. Because of the condition n ≤ 3eF (ā), the algebras H(Q,a)
n , H(S,a)

n , and H(F,ā)
n

only have blocks of weight 0, 1, or 2 and possibly a block of weight 3 with associated

core (0). Thus, the claim follows from Theorem 1.8.22, Lemma 2.1.1, Lemma 2.1.2,

Lemma 2.1.3, and Theorem 2.1.8. �

Finally, the preceding corollary is generalized to arbitrary modular systems. To

this end, let

K̃ =
(
Q̃, ψ̃, S̃, Ĩ , ã, F̃

)
be a modular system as in Definition 1.4.8. Then we get from Definition 1.6.4 with

the coefficient pairs (Q̃, ã) and (F̃ , ¯̃a) and indeterminates Y over Q̃ and Z over F̃

the modular systems

K̂(Q̃,ã) =
(

ˆQ̃(Y ), ψ̂Y−ã, Sψ̂Y−ã , Iψ̂Y−ã , Y, Q̃
)

and

K̂(F̃ ,¯̃a) =
(

ˆF̃ (Z), ψ̂Z−¯̃a, Sψ̂Z−¯̃a
, Iψ̂Z−¯̃a

, Z, F̃
)
.

With these, Corollary 2.1.10 can be generalized to the decomposition numbers of

Hecke algebras associated with the degree n and the modular system K̃.
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Theorem 2.1.11 Let n ∈ N and eF̃ (¯̃a) ∈ {2, 3, . . .} ∪ {∞} with n ≤ 3eF̃ (¯̃a). Then

we have for every entry dn,K̃ηθ of the matrix ∆H
n,K̃ =

(
dn,K̃λµ

)
λ∈Πn,e

Q̃
(ã)

µ∈Πn,e
F̃

(¯̃a)

with η ∈ Πn,eQ̃(ã)

and θ ∈ Πn,eF̃ (¯̃a)

dn,K̃ηθ ∈ {0, 1} .

Proof. By applying Corollary 1.6.7 to the situation at hand with the modular

systems K̃, K̂(Q̃,ã), and K̂(F̃ ,¯̃a) we get

∆H
n,K̂(F̃ ,¯̃a)

= ∆H
n,K̂(Q̃,ã)

∆H
n,K̃. (2.3)

Furthermore, it follows from Definition 1.6.4, Lemma 1.6.3.(i), and Lemma 1.6.5

that the modular systems K̂(F̃ ,¯̃a) and K̂(Q̃,ã) satisfy the conditions (2.1). In addition,

Lemma 1.6.3.(iii) shows that for the q-characteristics of the coefficient pair (F̃ , Z̄) =

(F̃ , ¯̃a) associated to K̂(F̃ ,¯̃a) and the coefficient pair (Q̃, Ȳ ) = (Q̃, ã) associated to

K̂(Q̃,ã) we have

eF̃ (Z̄) = eF̃ (¯̃a) and eQ̃(Ȳ ) = eQ̃(ã).

Now the preceding considerations together with the assumption n ≤ 3eF̃ (¯̃a) and

Lemma 1.4.9.(i) show that Corollary 2.1.10 holds for the decomposition matrices

∆H
n,K̂(F̃ ,¯̃a)

and ∆H
n,K̂(Q̃,ã)

. Thus, each of their entries is either 0 or 1.

According to Lemma 1.6.5 and Lemma 1.5.8.(ii), we also have for the matrix

∆H
n,K̂(Q̃,ã)

=

(
d
n,K̂(Q̃,ã)

λµ

)
λ∈Πn
µ∈Πn,e

Q̃
(ã)

RnkQ ∆H
n,K̂(Q̃,ã)

=
∣∣∣Πn,eQ̃(ã)

∣∣∣ .
This shows that every column of that matrix contains at least one entry different

from 0.

Finally, according to Definition 1.4.17, the entries of the decomposition matrix

∆H
n,K̃ are nonnegative.

The claim follows from all these properties of the matrices ∆H
n,K̃, ∆H

n,K̂(Q̃,ã)

, and

∆H
n,K̂(F̃ ,¯̃a)

by explicitly considering the relations between their entries given in (2.3).

�

2.2 Calculation of the decomposition numbers

depending on the modular system

Now we will show how the decomposition numbers of blocks having weight 3 and

empty core, as considered in the preceding section, can be calculated explicitly. In
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the course of that, we also will obtain results on the dependence of these decompo-

sition numbers on the underlying modular system.

In what follows,

K = (Q,ψ, S, I, a, F )

denotes a modular system as in Definition 1.4.8 such that

H(Q,a)
An−1

is semisimple (2.4)

and furthermore

eF (ā) <∞ (2.5)

holds. With this, we put

n = 3eF (ā). (2.6)

These conditions on n and eF (ā) ensure that the Hecke algebras over the coefficient

pairs associated to K have a block of weight 3 with core (0).

Because of (2.4) and according to Corollary 1.5.6, the decomposition matrix ∆Hn,K
is uniquely determined by the data n and (F, ā). Thus we can modify the modular

system K as follows without changing the associated decomposition numbers. First,

we put

(F, ā) = (K, r).

Then we can assume without loss of generality

K = K̂(K,r) =
(

ˆK(X), ψ̂X−r, Sψ̂X−r , Iψ̂X−r , X,K
)

(2.7)

where X is an indeterminate over K (see Definition 1.6.4). This modular system

satisfies the conditions (2.1) on page 101 (see Lemma 1.6.5).

With these assumptions, the (0)-block ∆Hn,K((0)) of the decomposition matrix

∆Hn,K (see Definition 1.8.21) can be determined explicitly. To this end, the following

theorem makes use of the results from Section 1.10.

Theorem 2.2.1 The entries of the matrix

∆Hn,K((0)) =
(
dn,Kηθ

)
η∈Π

(0),eK (r)
n

θ∈Π
(0),eK (r)

n,eK (r)

can be calculated explicitly by using the Theorem of Schaper.

Proof. The matrix ∆Hn,K((0)) will be calculated by induction on the elements of

the row index set Π
(0),eK(r)
n using the partial ordering D (see Definition 1.1.39 and

Definition 1.1.4.(ii)), Remark 1.10.9.(ii), and Theorem 2.1.8. To this end, fix a

λ ∈ Π(0),eK(r)
n
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and inductively suppose that all matrix rows indexed by partitions

κ ∈ Π(0),eK(r)
n with κ B λ

are already known. In order to determine the matrix row indexed by λ, we must,

according to (1.49) on page 98, calculate the decomposition numbers

dn,Kλν for ν ∈ Π
(0),eK(r)
n,eK(r) with ν B λ. (2.8)

To do this, we first use the induction hypothesis to calculate the coefficients

bν ∈ N0 with ν ∈ Π
(0),eK(r)
n,eK(r)

introduced in Remark 1.10.9.(ii) as described there. With these values bν and the

relations (1.50) on page 98 we can decide for each of the coefficients

aν ∈ N0 with ν ∈ Π
(0),eK(r)
n,eK(r)

also introduced in Remark 1.10.9.(ii) whether it is 0 or not. Furthermore, we have

according to (1.49) on page 98 and Theorem 2.1.8

∀ν ∈ Π
(0),eK(r)
n,eK(r) with ν B λ : aν = dn,Kλν ∈ {0, 1} .

Since we know for every ν ∈ Π
(0),eK(r)
n,eK(r) whether aν is 0 or not, we also know the exact

values of all decomposition numbers (2.8). Again according to (1.49) on page 98,

we thus have determined all decomposition numbers

dn,Kλν with ν ∈ Π
(0),eK(r)
n,eK(r) .

Now we know the row of the matrix ∆Hn,K((0)) indexed by λ and inductively the

whole matrix ∆Hn,K((0)). �

The preceding theorem enables us to further investigate the dependence of

∆Hn,K((0)) on the underlying modular system. To this end, we first examine the

behavior of the valuation ψ̂X−r associated with the modular system K under con-

sideration (see (2.7) on page 111) when applied to the q-numbers occurring in the

formula (1.46) on page 97.

Definition 2.2.2 Let K̃ be a field. Then the value

pK̃ ∈ N ∪ {∞}

is defined as follows. If K̃ has positive characteristic, we define pK̃ to be that

characteristic. If K̃ has characteristic 0, we define pK̃ to be ∞. In other words, pK̃
is the additive order of 1K̃ in K̃.
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Lemma 2.2.3 For the modular system K under consideration, one of the following

alternatives holds.

(i) We have r = 1K and pK ∈ N.

(ii) r is a root of unity in K distinct from 1K and we have pK =∞.

(iii) r is a root of unity in K distinct from 1K and we have pK ∈ N.

(2.9)

Proof. If r is not a root of unity in K, we get from Definition 1.2.2 eK(r) = eF (ā) =

∞. This is a contradiction to the assumption (2.5) on page 111. Thus, r is a root of

unity in K. Similarly, we get from the combination r = 1K and pK =∞, by using

Definition 2.2.2, eK(r) = eF (ā) = ∞ and again a contradiction to the assumption

(2.5). This shows the claim. �

Lemma 2.2.4 For the modular system K under consideration, the following state-

ments hold.

(i) If r = 1K then we have pK = eK(1K).

(ii) If r is a root of unity in K distinct from 1K then eK(r) is the multiplicative

order of r in K.

(iii) If r is a root of unity in K distinct from 1K and if pK ∈ N then eK(r) and

pK have no nontrivial common divisors, that is, they are relatively prime.

Proof. (i) From the assumptions and Definition 1.2.2.(i), we get

∀j ∈ N : [j]r = [j]1K = j · 1K .

This, Definition 1.2.2.(ii), and Definition 2.2.2 show the claim.

(ii) From the assumptions and Definition 1.2.2.(i), we get

∀j ∈ N : [j]r =

j−1∑
m=0

rm =
rj − 1K
r − 1K

.

This and Definition 1.2.2.(ii) show the claim.

(iii) This follows from statement (ii), Definition 2.2.2, and general facts from

field theory. �

Lemma 2.2.5 For the modular system K under consideration, the following state-

ments hold.

(i) Alternative (2.9).(i) is equivalent to

pK = eK(r). (2.10)



114 CHAPTER 2. BLOCKS OF HA HAVING WEIGHT 3 AND CORE (0)

(ii) Alternative (2.9).(ii) is equivalent to

pK =∞. (2.11)

(iii) Alternative (2.9).(iii) is equivalent to

pK ∈ N
and

pK and eK(r) have no nontrivial common divisors.

(2.12)

Proof. This follows easily from Lemma 2.2.4. �

The next lemma makes use of the considerations from the beginning of Sec-

tion 1.6, especially Definition 1.6.2.(ii).

Lemma 2.2.6 Let i ∈ N. Then the following statements on the modular system K
under consideration hold.

(i) Assume (2.10) and let

i = j (pK)a

with uniquely determined values j ∈ N and a ∈ N0 such that pK - j holds.

Then we have

ψ̂X−r([i]X) =

{
0 if eK(r) - i

(pK)a − 1 if eK(r) | i
.

(ii) Assume (2.11). Then we have

ψ̂X−r([i]X) =

{
0 if eK(r) - i

1 if eK(r) | i
.

(iii) Assume (2.12) and let

i = j (pK)a (2.13)

with uniquely determined values j ∈ N and a ∈ N0 such that pK - j holds.

Then we have

ψ̂X−r([i]X) =

{
0 if eK(r) - i

(pK)a if eK(r) | i
.
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Proof. (i) According to Definition 1.6.2.(ii), the considerations from the beginning

of Section 1.6, Definition 1.2.2.(i), and Lemma 2.2.5.(i), ψ̂X−r([i]X) is equal to the

multiplicity of X − r = X − 1K in

[i]X =
i−1∑
m=0

Xm =
X i − 1K
X − 1K

.

Furthermore we have, according to Definition 2.2.2 and general facts from field

theory,

X i − 1K =
(
Xj − 1K

)(pK)a

where the polynomial Xj − 1K is separable (that is, it has no nonconstant divisors

with multiplicity greater than 1) and contains the factor X − 1K . This shows

ψ̂X−r([i]X) = (pK)a − 1

which in turn, together with the assumption (2.10), proves the claim.

(ii) In order to determine ψ̂X−r([i]X), we proceed as in the proof of statement (i).

However, we see from Definition 2.2.2 and general facts from field theory that, in

the situation at hand, the polynomial X i − 1K is separable (that is, it has no

nonconstant divisors with multiplicity greater than 1) and furthermore contains,

according to assumption (2.11), Lemma 2.2.5.(ii), and Lemma 2.2.4.(ii), the factor

X− r if and only if eK(r) | i. Because of r 6= 1K (see again Lemma 2.2.5.(ii)), these

properties translate to the polynomial

X i − 1K
X − 1K

=
i−1∑
m=0

Xm = [i]X .

This shows the claim.

(iii) Again, we proceed as in the proof of statement (i). Just like there, we obtain

X i − 1K =
(
Xj − 1K

)(pK)a

where the polynomial Xj − 1K is separable (that is, it has no nonconstant divisors

with multiplicity greater than 1) and furthermore contains, according to assumption

(2.12), Lemma 2.2.5.(iii), and Lemma 2.2.4.(ii), the factor X − r if and only if

eK(r) | j. In addition, we get from (2.13) and the assumption (2.12)

eK(r) | j ⇔ eK(r) | i.

All this together with the fact r 6= 1K (see again Lemma 2.2.5.(iii)) shows that the

multiplicity of the factor X − r in the polynomial

[i]X =
X i − 1K
X − 1K

,
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or equivalently the value ψ̂X−r([i]X), is given by the expression in statement (iii).

�

The following corollary improves on Corollary 1.5.6 in the situation at hand. It

makes use of Definition 1.8.21 and Definition 1.1.39.

Corollary 2.2.7 The entries of the matrix

∆Hn,K((0)) =
(
dn,Kηθ

)
η∈Π

(0),eK (r)
n

θ∈Π
(0),eK (r)

n,eK (r)

are uniquely determined by the data eK(r) and pK.

Proof. The inductive calculation of the entries of ∆Hn,K((0)) described in the proof

of Theorem 2.2.1 is based on the evaluation and manipulation of the formula (1.46)

on page 97. This involves combinatorial manipulations with partitions and the ap-

plication of the valuation ψ̂X−r to certain q-numbers. The occurring partitions and

the combinatorial manipulations applied to them depend only on eK(r) (see (2.6)).

According to Lemma 2.2.6, Lemma 2.2.5, and Lemma 2.2.3, the behavior of ψ̂X−r

when applied to the occurring q-numbers is completely determined by eK(r) and

pK . This completes the proof. �

The result of the preceding corollary can be further improved for arbitrary values

of eK(r) and sufficiently large values of pK . This is described in the following.

Lemma 2.2.8 Assume pK > 3. Then there are a constant

AeK(r),pK ∈ N,

depending only on eK(r) and pK, and a map

BeK(r) : {1, . . . , n} → N0, i 7→ BeK(r)(i),

depending only on eK(r), such that

∀i ∈ {1, . . . , n} : ψ̂X−r([i]X) = AeK(r),pKBeK(r)(i) (2.14)

holds.

Proof. In order to show the claim, we distinguish the various cases (2.9) and use their

characterizations (2.10), (2.11), and (2.11). We define the constant AeK(r),pK ∈ N
as

AeK(r),pK =


pK − 1 if (2.10) holds

1 if (2.11) holds

1 if (2.12) holds

.
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Furthermore, we define the map BeK(r) : {1, . . . , n} → N0, i 7→ BeK(r)(i) as

BeK(r)(i) =

{
0 if eK(r) - i

1 if eK(r) | i
.

Now we establish the factorization (2.14). First we consider an

i ∈ {1, . . . , n} such that eK(r) - i.

Here we get from Lemma 2.2.6 and the construction of BeK(r)

ψ̂X−r([i]X) = 0 = AeK(r),pKBeK(r)(i).

Now we consider an

i ∈ {1, . . . , n} such that eK(r) | i.

If (2.10) holds, we get from (2.6) and the assumption pK > 3

(pK)2 > n ≥ i

and also

i = jpK

with an appropriate j ∈ N not divisible by pK . With that we get from Lem-

ma 2.2.6.(i) and the construction of AeK(r),pK and BeK(r)

ψ̂X−r([i]X) = pK − 1 = AeK(r),pKBeK(r)(i).

If (2.11) holds, we obtain from Lemma 2.2.6.(ii) and the construction of AeK(r),pK

and BeK(r)

ψ̂X−r([i]X) = 1 = AeK(r),pKBeK(r)(i).

Finally if (2.12) holds, we get from (2.6) and the assumption pK > 3

eK(r)pK > n ≥ i. (2.15)

Now suppose that pK | i holds. Then we get from that together with the relation

eK(r) | i and (2.12) the relation eK(r)pK | i and thus eK(r)pK ≤ i. This is a

contradiction to (2.15). So we must have

pK - i.

From this, Lemma 2.2.6.(iii), and the construction of AeK(r),pK and BeK(r), we get

ψ̂X−r([i]X) = 1 = AeK(r),pKBeK(r)(i).

This completes the proof. �

The next statement makes use of Definition 1.1.39.(ii).
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Corollary 2.2.9 Assume pK > 3 and let λ ∈ Π
(0),eK(r)
n . Then we have in the

Grothendieck group G0(H(K,r)
An−1

) with the notation from Corollary 1.10.8 and Lem-

ma 2.2.8

∑
j∈N

[Sλ(Sψ̂X−r ,X)(j)]

= AeK(r),pK

λ1∑
k=1

λ′k−1∑
i=1

λ′k∑
j=i+1

(
BeK(r)(

∣∣rλ(i,k)

∣∣)−BeK(r)(
∣∣rλ(j,k)

∣∣)) ·
b

(0)
Proj(H

(K,r)
An−1

)S(β1, . . . , βi−1, βi +
∣∣rλ(j,k)

∣∣ , βi+1, . . .

. . . , βj−1, βj −
∣∣rλ(j,k)

∣∣ , βj+1, . . . , βc).

(2.16)

Proof. According to the considerations at the beginning of this section, the modular

system under consideration satisfies the assumptions of corollary 1.10.8. Further-

more, according to Definition 1.1.14 and Lemma 1.1.7.(ii), the rim hook lengths

occurring in the identity (1.46) on page 97 are not smaller than 1 and not bigger

than n. With that, the claim follows from the substitution of the factorization (2.14)

into (1.46). �

Theorem 2.2.10 Assume pK > 3. Then the entries of the matrix

∆Hn,K((0)) =
(
dn,Kηθ

)
η∈Π

(0),eK (r)
n

θ∈Π
(0),eK (r)

n,eK (r)

are uniquely determined by the datum eK(r).

Proof. The partitions to be considered are determined by eK(r) and the condi-

tion (2.6) on page 111. The matrix entries are obtained from the inductive calcu-

lation of ∆Hn,K((0)) described in the proof of Theorem 2.2.1 combined with Corol-

lary 2.2.9. In the course of an induction step, decomposition numbers already

calculated — and by induction hypothesis uniquely determined by eK(r) — are

substituted into formula (1.46) on page 97 as described in Remark 1.10.9.(ii) to

determine the coefficients

bν ∈ N0 with ν ∈ Π
(0),eK(r)
n,eK(r)

introduced in that remark.

But in the further course of the proof of Theorem 2.2.1, we don’t need to know

the exact value of such a coefficient, but only whether it is 0 or not. Now, in the

situation at hand, the expression (2.16) which is equivalent to (1.46) on page 97 can
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be used for the calculation of the bν . In that expression (2.16), only the constant

factor AeK(r),pK depends on pK . The sum in this expression is composed for the one

part of combinatorial manipulations depending only on eK(r) and for the other part

of terms which are, according to Lemma 2.2.8, uniquely determined by eK(r). The

calculation of the bν is done by first substituting expressions which, by induction

hypothesis, are completely determined by eK(r) and then applying some elementary

algebraic manipulations. This shows that whether a coefficient bν is 0 or not depends

only on eK(r).

If we now complete the induction step exactly as in the proof of Theorem 2.2.1,

the preceding considerations show that the decomposition numbers just obtained

are completely determined by eK(r). Thus, induction shows that, in the situation

at hand, the whole matrix ∆Hn,K((0)) is uniquely determined by eK(r), as desired.

�

Remark 2.2.11 (i) [LLT, Conjecture 6.6], [GRO], [ARI, Paragraph 4.7], and

[MAT, Theorem 4.3] show that in the case pK =∞ the decomposition matrix

∆Hn,K can be calculated using a combinatorial algorithm. According to The-

orem 2.2.10, this procedure also produces the matrix ∆Hn,K((0)) in the more

general case pK > 3.

(ii) In [JAM2, Section 4], it is conjectured that for pK ∈ N with

eK(r)pK > n,

the decomposition matrix ∆Hn,K coincides with the decomposition matrix ∆Hn,K
in the case pK = ∞. Theorem 2.2.10 and (2.6) on page 111 show that this

conjecture is true for the submatrix ∆Hn,K((0)).
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Chapter 3

Generic Specht series for Hecke

algebras of type A

In this chapter we construct certain series of submodules of Hecke algebras of

type A and more generally of permutation modules of such algebras (see Defini-

tion 1.3.1.(ii)). The property of interest of these series is that all quotients of

adjacent submodules are Specht modules. Because of that, these series are called

Specht series. They are generic in the sense of Remark 1.2.9 and generalize the

Specht series from [DJ1, Section 7] over fields to arbitrary integral domains as

coefficient rings. This is done by explicitly constructing appropriate bases of the

modules involved.

The first three sections of this chapter provide the required combinatorial state-

ments and objects, the derivation of the generic Specht series follows in the subse-

quent eight sections.

3.1 Ordering relations for shortest representa-

tives of right cosets of Young subgroups in Sn

This section introduces and compares, for an arbitrary composition λ, various or-

derings on the set Dλ (see Definition 1.1.58.(i)). To this end, we first introduce and

investigate ordering relations on related sets. The ordering relations on the sets Dλ
for various compositions λ will be required later on in the construction of generic

bases of the subquotients occurring in Specht series. For all the following we fix an

n ∈ N.

First we introduce and compare three ordering relations for tableaux (see Def-

inition 1.1.45). This also is described elsewhere, for example in [MUR, Section 3,

121
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especially Definition 3.1]. The second part of the following definition makes use of

Definition 1.1.46.(ii) and (1.1) on page 1.

Definition 3.1.1 (i) For a given tableau t of a composition of n, this composi-

tion is said to be associated to t and denoted by λt. The diagram [λt] also is

said to be associated to t.

(ii) Let t ∈ T Ξn
row std and m ∈ {1, . . . , n}. Then we define the row standard tableau

t
w�n
m as

t
w�n
m =

(
t−1
y{1,...,n}{1,...,m}

)−1

: ({1, . . . ,m})t−1 → {1, . . . ,m} ,

(i, j) 7→ (i, j)t.

t
w�n
m is called the target restriction of t to m or, for short, the target restric-

tion of t.

(iii) Let s and t be λ-tableaux with λ � n. Then a chain of length k from s to t

with k ∈ N0 is defined as a sequence

r0 = s, r1, . . . , rk−1, rk = t

of λ-tableaux such that for every j ∈ {1, . . . , k} we have

rj = rj−1vj

with an appropriate vj ∈ Bn ∪ {1Sn}.

(iv) Using the notation from (iii), a chain of length k from s to t is called de-

scending, if for every j ∈ {1, . . . , k} we have

vj = (ij, ij + 1) ∈ Bn

with ij ∈ {1, . . . , n− 1} and furthermore

(ij)ζrj−1
< (ij + 1)ζrj−1

.

Remark 3.1.2 (i) For a given tableau t of a composition of n, the associated

diagram [λt] is obtained from the representation of t (see picture (1.16) on

page 22) by removing all the entries.

(ii) Choose a row standard λ-tableau t with λ � n and let m ∈ {1, . . . , n}. Then

the representation of t
w�n
m is obtained from the representation of t by removing

all squares with entries greater than m. Since t is row standard, this procedure

only eliminates squares from the ends of the rows in the representation of t,

thus leaving indeed a row standard tableau with associated composition λt⇓nm .
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(iii) Let s and t be λ-tableaux with λ � n and let

r0 = s, r1, . . . , rk−1, rk = t

be a chain from s to t with k ∈ N0. Then for every j ∈ {1, . . . , k} the tableaux

rj and rj−1 differ at most by the application of a simple reflection.

(iv) Using the notation from (iii), suppose that the chain from s to t is descending

and consider the transition from rj−1 to rj = rj−1vj for a j ∈ {1, . . . , k}. In

the course of this, the simple reflection vj = (ij, ij + 1) ∈ Bn moves the entry

ij in the representation of rj−1 downwards and the entry ij + 1 in the same

representation upwards.

The following lemma is a useful observation regarding the compositions associated

to the target restrictions of a row standard tableau.

Lemma 3.1.3 Let t ∈ T Ξn
row std. Then t can be recovered from the sequence of com-

positions

λt⇓n1 , λt⇓n2 , . . . , λt⇓nn−1 , λt⇓nn .

Proof. According to the construction of the compositions λt⇓nm with m ∈ {1, . . . , n}
in Definition 3.1.1, λt⇓n1 differs from the composition (0) by exactly one entry having

the value 1. If the index of that entry is denoted by i1 then we have

(1)ζt = i1.

Similarly, for a j ∈ {2, . . . , n}, the compositions λt⇓nj and λt⇓nj−1 differ only in their

entries at one particular index ij. For this index we have

(j)ζt = ij.

Thus we know the row numbers of all entries in the tableau t and, since t is row

standard (see Definition 1.1.45.(iii)), also the tableau itself. �

The next definition makes use of the ordering relations for compositions from Def-

inition 1.1.4 and Lemma 1.1.5 and also of the set from Definition 1.1.46.(ii).

Definition 3.1.4 (i) Let s, t ∈ T Ξn
row std. Then we write

s < t

if there is an m ∈ {1, . . . , n} such that both

λs⇓nm < λt⇓nm and ∀k ∈ {m+ 1, . . . , n} : λs⇓nk = λt⇓nk
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hold. Furthermore we write

s ≤ t

if

(s < t) ∨ (s = t)

holds.

(ii) Let s, t ∈ T Ξn
row std. Then we write

s E t

if

∀m ∈ {1, . . . , n} : λs⇓nm E λt⇓nm

holds. Furthermore we write

s C t

if

(s E t) ∧ (s 6= t)

holds.

(iii) Let λ � n and s, t ∈ T λrow std. Then we write

s � t

if there is a descending chain from t to s. Furthermore we write

s ≺ t

if

(s � t) ∧ (s 6= t)

holds.

Lemma 3.1.5 (i) The relation ≤ on the set T Ξn
row std is a total ordering relation.

(ii) The relation E on the set T Ξn
row std is a partial ordering relation.

(iii) Let λ � n. Then the relation � on the set T λrow std is a partial ordering relation.

(iv) Let λ � n and s, t ∈ T λrow std. Then we have

s � t⇒ s E t.
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(v) Let s, t ∈ T Ξn
row std. Then we have

s E t⇒ s ≤ t.

(vi) Let s, t ∈ T Ξn
row std. Then we have

s C t⇒ s < t.

Proof. (i) The reflexivity of the relation ≤ on the set T Ξn
row std follows immediately

from Definition 3.1.4.(i).

Now choose s, t ∈ T Ξn
row std. Then if we have

∀m ∈ {1, . . . , n} : λs⇓nm = λt⇓nm ,

we also have, according to Lemma 3.1.3,

s = t.

If this is not the case then there is an m ∈ {1, . . . , n} such that

λs⇓nm 6= λt⇓nm and ∀k ∈ {m+ 1, . . . , n} : λs⇓nk = λt⇓nk

hold. Here we have s 6= t and, according to Lemma 1.1.5.(i), either λs⇓nm < λt⇓nm
or λs⇓nm > λt⇓nm . From this we get with Definition 3.1.4.(i) that

either s < t or s > t

holds. All in all we see that exactly one of the relations s = t, s < t, or s > t holds.

This shows that the relation ≤ on the set T Ξn
row std is total and antisymmetric.

Now choose s, t,u ∈ T Ξn
row std such that s < t < u holds. According to Defini-

tion 3.1.4.(i), we then have an i ∈ {1, . . . , n} satisfying

λs⇓ni < λt⇓ni and ∀h ∈ {i+ 1, . . . , n} : λs⇓nh = λt⇓nh

and similarly a j ∈ {1, . . . , n} satisfying

λt⇓nj < λu⇓nj and ∀h ∈ {j + 1, . . . , n} : λt⇓nh = λu⇓nh .

If we put

k = max {i, j}

then we get for this index

λs⇓nk < λt⇓nk ≤ λu⇓nk or λs⇓nk ≤ λt⇓nk < λu⇓nk
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and also

∀h ∈ {k + 1, . . . , n} : λs⇓nh = λt⇓nh = λu⇓nh .

Again according to Definition 3.1.4.(i), this shows s < u. Thus the relation ≤ on

the set T Ξn
row std is transitive.

(ii) The reflexivity, antisymmetry, and transitivity of the relation E on the set

T Ξn
row std follows easily from Definition 3.1.4.(ii), the corresponding properties of the

relation E on the set Ξn shown in Lemma 1.1.5.(ii), and Lemma 3.1.3.

(iii) The reflexivity of the relation � on the set T Ξn
row std follows immediately from

Definition 3.1.4.(iii).

Choose s, t ∈ T λrow std such that s � t � s holds. Then we have, according to

Definition 3.1.4.(iii), a descending chain from t to s and a descending chain from s

to t. Let a ∈ N0 be the length of the descending chain from t to s and b ∈ N0 be

the length of the descending chain from s to t. Concatenation of these chains gives

a descending chain

r0 = t, r1, . . . , ra+b−1, ra+b = t

from t to t. Let v1, . . . , va+b ∈ Bn be the associated simple reflections with

ri = ri−1vi for i ∈ {1, . . . , a+ b}

(see Definition 3.1.1). Furthermore, fix the one d ∈ Dλ satisfying

t = tλd.

Then we inductively get, by using Definition 3.1.1.(iv) and Lemma 1.1.77.(i), for

every i ∈ {0, . . . , a+ b}

ri = tλdv1 · · · vi and `(dv1 · · · vi) = `(d) + i.

Now this and the fact r0 = t = ra+b imply

t = r0 = tλd = ra+b = tλdv1 · · · va+b

and furthermore

d =
(
tλ
)−1

t = dv1 · · · va+b

which finally leads to

`(d) = `(dv1 · · · va+b) = `(d) + a+ b.

From this we get a+ b = 0 and, because of a, b ∈ N0, also

a = b = 0.
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Thus the descending chains from t to s and from s to t considered above both have

length 0, and we get from Definition 3.1.1.(iii)

s = t.

This shows that the relation � on the set T λrow std is antisymmetric.

Now choose s, t,u ∈ T λrow std satisfying s � t � u. Then we have as above in the

proof of the antisymmetry property a descending chain from t to s and a descending

chain from u to t. Concatenation of these chains gives a descending chain from u

to s. According to Definition 3.1.4.(iii), this means s � u. Thus the relation � on

the set T λrow std is transitive.

(iv) According to Definition 3.1.4.(iii), we have a descending chain

r0 = t, r1, . . . , rk−1, rk = s

from t to s with a certain length k ∈ N0, tableaux r1, . . . , rk−1 ∈ T λ, and simple

reflections v1, . . . , vk ∈ Bn satisfying

∀i ∈ {1, . . . , k} : ri = ri−1vi.

From Definition 3.1.1.(iv), Lemma 1.1.77.(i), and Definition 1.1.58.(i) we inductively

get, as in the proof of statement (iii),

∀i ∈ {0, . . . , k} : ri ∈ T λrow std.

Thus we have, according to Definition 3.1.4.(iii),

∀i ∈ {1, . . . , k} : ri−1 � ri.

Using the transitivity of the relation E on the set T λrow std ⊆ T
Ξn

row std, it suffices

now to show ∀i ∈ {1, . . . , k} : ri−1 D ri. To this end, we fix an i ∈ {1, . . . , k}.
Furthermore, let

vi = (j, j + 1)

with an appropriate j ∈ {1, . . . , n− 1}. According to Definition 3.1.1.(iv) and

Remark 3.1.2.(iv), ri−1 and ri differ by the transposition of j and j + 1 such that

in ri−1 the entry j is located above the entry j + 1 and in ri the entry j is located

below the entry j + 1. In other words, we can write

y = (j)ζri−1
= (j + 1)ζri and z = (j + 1)ζri−1

= (j)ζri

and then have

y < z.
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Every other entry h ∈ {1, . . . , n} \ {j, j + 1} occupies the same place in ri−1 and ri

and we have

(h)ζri−1
= (h)ζri .

In order to prove the desired relation ri−1 D ri, we now consider restrictions ri−1

w�n
h

and ri
w�n
h of the tableaux ri−1 and ri with h ∈ {1, . . . , n} as in Definition 3.1.1.(ii).

We distinguish three cases.

First let

h ∈ {1, . . . , j − 1} .

Then ri−1

w�n
h and ri

w�n
h only contain entries smaller than j, and the preceding

considerations show that each of these entries occupies the same place in ri−1

w�n
h

and ri
w�n
h . Thus we have

ri−1

w�n
h = ri

w�n
h

and, according to Definition 3.1.1.(i), furthermore

λri−1⇓nh = λri⇓nh .

Now let

h ∈ {j + 1, . . . , n} .

Then each of ri−1

w�n
h and ri

w�n
h contains the entry j as well as the entry j + 1

and, according to the considerations above, these two tableaux differ only by the

transposition of j and j+1, as do already ri−1 and ri. In other words, corresponding

positions in ri−1

w�n
h and ri

w�n
h are occupied either by the same number or in one

tableau by j and in the other one by j+1. By deleting the entries of these tableaux

we get (see Remark 3.1.2.(i)) [
λri−1⇓nh

]
=
[
λri⇓nh

]
and furthermore (see Lemma 1.1.7.(i))

λri−1⇓nh = λri⇓nh .

Finally let

h = j.

Then both ri−1

w�n
j and ri

w�n
j contain besides the entry j only entries smaller than

j and, according to the considerations above, every entry different from j occupies

the same position in ri−1

w�n
j and ri

w�n
j . Since j is the biggest entry in both ri−1

w�n
j

and ri
w�n
j and both ri−1 and ri are row standard, we obtain ri

w�n
j from ri−1

w�n
j by
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moving j from the end of row y to the end of row z, using the notation from above.

This shows that if we put

µ = (µ1, µ2, . . .) = λri−1⇓nj and ν = (ν1, ν2, . . .) = λri⇓nj

then we have

µy = νy + 1, µz = νz − 1, and ∀x ∈ N \ {y, z} : µx = νx.

Because of y < z (see above), this immediately implies (see Definition 1.1.4.(ii))

λri−1⇓nj = µ D ν = λri⇓nj .

Altogether, we get from these relations between λri−1⇓nh and λri⇓nh for all values

of h ∈ {1, . . . , n} according to Definition 3.1.4.(ii)

ri−1 D ri,

as desired.

(v) We can assume s 6= t. Then Lemma 3.1.3 provides us with an i ∈ {1, . . . , n}
such that

λs⇓ni 6= λt⇓ni and ∀j ∈ {i+ 1, . . . , n} : λs⇓nj = λt⇓nj (3.1)

hold. Because of s C t (see Definition 3.1.4.(ii)), this implies

λs⇓ni C λt⇓ni

and, according to Lemma 1.1.5.(iii), furthermore

λs⇓ni < λt⇓ni .

From this together with (3.1) we get, according to Definition 3.1.4.(i),

s < t,

as desired.

(vi) This follows from Definition 3.1.4.(i), Definition 3.1.4.(ii), and statement (v).

�

Next, we introduce two ordering relations for permutations. These relations can

be defined not only on symmetric groups, but also on arbitrary Coxeter groups (see

for example [HUM, Section 5.9]). The following definition makes use of reduced

expressions of permutations as introduced in (1.11) on page 3.
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Definition 3.1.6 For u,w ∈ Sn we write

u � w

if there are a reduced expression

u = v1 · · · v`(u)

for u with v1, . . . , v`(u) ∈ Bn and a k ∈ {0, . . . , `(u)} satisfying

w = v1 · · · vk.

Furthermore we write

u ≺ w

if

(u � w) ∧ (u 6= w)

holds. � is called the weak Bruhat ordering on the symmetric group Sn.

Lemma 3.1.7 The relation � on Sn is a partial ordering relation.

Proof. See [HUM, Section 5.9]. �

The weak Bruhat ordering on Sn provides a useful characterization of the sets of

standard representatives associated to compositions of n (see Definition 1.1.60).

The following lemma also makes use of Definition 1.1.67.

Lemma 3.1.8 Let λ � n. Then we have

Eλ = {w ∈ Sn | w � wλ} .

Proof. See [DJ1, Lemma 1.5]. �

The next definition makes use of the set of general reflections in Sn. This set is

defined as

Cn = {(i, j) | i, j ∈ {1, . . . , n} such that i 6= j} .

The notion of general reflections comes from the general theory of Coxeter groups

(see [HUM, Section 5.7]).

Definition 3.1.9 For u,w ∈ Sn we write

u E w
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if there are an m ∈ N0 and general reflections t1, . . . , tm ∈ Cn satisfying

u = wt1 · · · tm

and

∀j ∈ {1, . . . ,m} : `(wt1 · · · tj−1) < `(wt1 · · · tj).

Furthermore we write

u C w

if

(u E w) ∧ (u 6= w)

holds. E is called the strong Bruhat ordering or just the Bruhat ordering on the

symmetric group Sn.

Lemma 3.1.10 The relation E on Sn is a partial ordering relation.

Proof. See [HUM, Section 5.9]. �

Now we describe a useful characterization of the Bruhat ordering.

Definition 3.1.11 Consider a product

v1 · · · vm

with m ∈ N0 and v1, . . . , vm ∈ Bn.

(i) A subexpression of v1 · · · vm is defined as a product

vi1 · · · vij

with j ∈ {0, . . . ,m} and indices i1, . . . , ij ∈ {1, . . . ,m} satisfying

1 ≤ i1 < i2 < · · · < ij−1 < ij ≤ m.

(ii) We say that a w ∈ Sn can be represented as a subexpression of the given

product v1 · · · vm if w can be written as a product of simple reflections such

that this product is a subexpression of v1 · · · vm.

Theorem 3.1.12 Let u,w ∈ Sn. Fix a reduced expression

u = v1 · · · v`(u) (3.2)

for u with v1, . . . , v`(u) ∈ Bn. Then the following statements are equivalent.
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(i) We have u E w.

(ii) The permutation w can be represented as a subexpression of the reduced ex-

pression (3.2) for u.

Proof. See [HUM, Section 5.10]. �

The previously described ordering relations will now be related to shortest rep-

resentatives of right cosets of Young subgroups in Sn.

Lemma 3.1.13 Let λ � n and d, f ∈ Dλ. Then the following statements hold.

(i) tλd � tλf ⇔ d � f.

(ii) tλd E tλf ⇔ d E f.

(iii) tλd C tλf ⇔ d C f.

Proof. (i) See [MUR, Lemma 3.8.(i)].

(ii) See [MUR, Lemma 3.8.(ii)].

(iii) This follows easily from Definition 3.1.4.(ii), Definition 3.1.9, and state-

ment (ii). �

The following definition makes use of Definition 3.1.4.(i).

Definition 3.1.14 Let λ � n and d, f ∈ Dλ. Then we write

d < f

if

tλd < tλf

holds. Furthermore we write

d ≤ f

if

tλd ≤ tλf

holds.

The next statement makes use of the ordering relations � from Definition 3.1.6 and

E from Definition 3.1.9.

Lemma 3.1.15 Let λ � n. Then the following statements hold.

(i) The relation ≤ on the set Dλ is a total ordering relation.
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(ii) Let d, f ∈ Dλ. Then we have

d � f ⇒ d E f.

(iii) Let d, f ∈ Dλ. Then we have

d E f ⇒ d ≤ f.

(iv) Let d, f ∈ Dλ. Then we have

d C f ⇒ d < f.

Proof. (i) This is obtained from Definition 3.1.14, Lemma 1.1.59.(i), and Lem-

ma 3.1.5.(i).

(ii) This follows from Lemma 3.1.5.(iv) and Lemma 3.1.13.

(iii) This follows from Lemma 3.1.13.(ii), Lemma 3.1.5.(v), and Definition 3.1.14.

(iv) This is obtained from Lemma 3.1.13.(iii), Lemma 3.1.5.(vi), and Defini-

tion 3.1.14. �

3.2 PK-pairs

The combinatorial objects introduced in this section are used to construct and

index the generic modules, homomorphisms, and basis elements occurring in the

derivation of the Specht series. These combinatorial objects also are considered in

[JAM1, Section 15, Section 16, Section 17]. As always, n denotes a positive integer.

The next definition makes use of Definition 1.1.6.(i).

Definition 3.2.1 A pair µ#µ with µ = (µ1, µ2, . . .) � n and µ# = (µ#
1 , µ

#
2 , . . .) ` k

with a k ∈ {1, . . . , n} satisfying

µ#
1 = µ1

and [
µ#
]
⊆ [µ] or equivalently ∀i ∈ N : µ#

i ≤ µi

is called a partition-composition-pair of degree n or just a partition-composition-

pair. This is abbreviated as PKn-pair or just as PK-pair.

The symbol 00 without any relation to partitions and compositions also is called

a PK-pair.
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If we consider for example

λ# = (3, 22, 1) ` 8, µ# = (22, 14) ` 8,

λ = (32, 22, 12) ` 12, µ = (2, 32, 2, 13) � 13
(3.3)

then we can build the PK12-pair λ#λ and the PK13-pair µ#µ. Both λ# and µ and

also µ# and λ cannot be combined into PK-pairs. The abbreviation PK stands for

partition-composition.

Remark 3.2.2 Since, using the notation from Definition 3.2.1, µ# is a partition

of a positive integer, we have

µ#
1 > 0.

This and the condition µ#
1 = µ1 show that the composition µ necessarily satisfies

µ1 > 0.

Definition 3.2.3 Let µ#µ be a PKn-pair with µ#µ 6= 00, µ = (µ1, µ2, . . .) � n, and

µ# = (µ#
1 , µ

#
2 , . . .) ` k for a k ∈ {1, . . . , n}. Then a

c ∈ N \ {1}

satisfying

µ#
c−1 = µc−1 and µ#

c < µc

is called an AR-index for µ#µ.

In the example (3.3) above, 4 is an AR-index for λ#λ and 2 is an AR-index for both

λ#λ and µ#µ. The abbreviation AR stands for add-raise. This notation will make

sense after Definition 3.2.5.

Remark 3.2.4 Consider a PKn-pair µ#µ. If there is an AR-index c for µ#µ as

in Definition 3.2.3 then we have, using the notation from there and Remark 3.2.2,

µ1 > 0 and also µc > µ#
c ≥ 0 with c > 1. Thus at least two entries of µ � n are

positive and we must have

n ≥ 2.

Now we consider two operators which construct new PK-pairs from a given one.

Definition 3.2.5 Let µ#µ be a PKn-pair with µ#µ 6= 00, µ = (µ1, µ2, . . .) � n, and

µ# = (µ#
1 , µ

#
2 , . . .) ` k for a k ∈ {1, . . . , n}. Furthermore, let c ∈ N \ {1} be an

AR-index for µ#µ.
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(i) We put

µ#Ac = (µ#
1 , . . . , µ

#
c−1, µ

#
c + 1, µ#

c+1, . . .) � k + 1.

µ#Ac is called the image of the partition µ# under the operator Ac.

(ii) We put

µRc = (µ1, . . . , µc−2, µc−1 + µc − µ#
c , µ

#
c , µc+1, . . .) � n.

µRc is called the image of the composition µ under the operator Rc.

(iii) In the case c > 2, we combine the compositions µ# and µRc into the pair

µ#µRc. In the case c = 2, we define the pair µ#µRc as

(µ1 + µ2 − µ#
2 , µ

#
2 , . . .)µRc,

that is, we modify the first entry of µ#. µ#µRc is called the image of the

PKn-pair µ#µ under the operator Rc.

(iv) If µ#Ac ` k + 1, we combine the partition µ#Ac and the composition µ into

the pair µ#Acµ. If µ#Ac is not a partition or equivalently if µ#
c−1 = µ#

c , we

declare µ#Acµ to be 00. µ#Acµ is called the image of the PKn-pair µ#µ under

the operator Ac.

If we consider for example the PK15-pair µ#µ with

µ# = (5, 3, 2, 1) ` 11 and µ = (5, 3, 4, 1, 2) � 15

and the AR-index 3 for it, we can apply the operators A3 and R3 to obtain first

µ#A3 = (5, 32, 1) ` 12 and µR3 = (52, 2, 1, 2) � 15

and with that the PK15-pairs µ#A3µ and µ#µR3.

Remark 3.2.6 (i) The pairs µ#µRc and µ#Acµ introduced in Definition 3.2.5

are always distinct from the initial pair µ#µ. In the case of µ#µRc, this

follows from the condition

µ#
c < µc

in Definition 3.2.3.

(ii) The operators Ac and Rc from Definition 3.2.5 also can be constructed without

the condition

µ#
c−1 = µc−1

in Definition 3.2.3. However, this condition is crucial to their application (see

proof of Lemma 3.3.9).
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The first part of the following lemma makes use of Definition 1.1.6.(i).

Lemma 3.2.7 (i) Let µ#µ be a PKn-pair with µ#µ 6= 00 and choose an AR-

index c ∈ N \ {1} for µ#µ. Then we have[
µ#
]
⊆
[
µ#Ac

]
.

(ii) Let µ#µ be a PKn-pair with µ#µ 6= 00 and choose an AR-index c ∈ N \ {1}
for µ#µ. Then µ#µRc and µ#Acµ are PKn-pairs. Furthermore, we have

µ#µRc 6= 00.

(iii) Consider a PKn-pair µ#µ. Then there is an AR-index c ∈ N \ {1} for µ#µ if

and only if

µ#µ 6= 00 and µ# 6= µ

hold.

(iv) For every PKn-pair µ#µ with µ#µ 6= 00, there is a

ν = (ν1, ν2, . . .) � n

such that (ν1)ν is a PKn-pair from which the PKn-pair µ#µ can be obtained

by iterated application of appropriate operators Ac and Rc with AR-indices

c ∈ N \ {1}.

Proof. (i) This follows immediately from Definition 3.2.5.(i) and Definition 1.1.6.(i).

(ii) First we consider µ#Acµ. In the case µ#Acµ = 00, there is nothing to prove.

In the case µ#Acµ 6= 00, µ#Ac is a partition, and we get from Definition 3.2.1, the

conditions in Definition 3.2.3, and the construction of µ#Ac in Definition 3.2.5 with

µ# = (µ#
1 , µ

#
2 , . . .), µ = (µ1, µ2, . . .), µ#Ac = ((µ#Ac)1, (µ

#Ac)2, . . .)

the fact

∀i ∈ N : (µ#Ac)i ≤ µi

and because of c > 1 in particular

(µ#Ac)1 = µ#
1 = µ1.

Thus µ#Acµ is a PKn-pair (see Definition 3.2.1).

Now we consider µ#µRc. µ
#µRc 6= 00 follows immediately from the definition,

since this pair contains the composition µRc of n.
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In the case c > 2, the given partition µ# is not modified in the course of

the construction of the pair µ#µRc. Now we get from Definition 3.2.1 and the

construction of µRc in Definition 3.2.5 with

µ# = (µ#
1 , µ

#
2 , . . .), µ = (µ1, µ2, . . .), µRc = ((µRc)1, (µRc)2, . . .)

the fact

∀i ∈ N : µ#
i ≤ (µRc)i

and because of c > 2 in particular

µ#
1 = µ1 = (µRc)1.

Thus µ#µRc is a PKn-pair.

In the case c = 2, we write

µR2 = ((µR2)1, (µR2)2, . . .).

With that, the first entry of the given partition µ# is changed to

µ1 + µ2 − µ#
2 = (µR2)1

in the course of the construction of µ#µR2. According to Definition 3.2.1, we have

µ#
1 = µ1 and, because of c = 2 and the conditions in Definition 3.2.3, furthermore

µ#
2 < µ2. This implies (see also Definition 1.1.2)

µ1 + µ2 − µ#
2 > µ#

1 ≥ µ#
2 ≥ · · · .

Thus the modified composition µ# is a partition of a positive integer. This partition

has the same first entry as µR2. In addition, we have according to Definition 3.2.5

and Definition 3.2.1

µ#
2 = (µR2)2 and ∀j ∈ N \ {1, 2} : µ#

j ≤ µj = (µR2)j.

Thus µ#µR2 also is a PKn-pair.

(iii) Let µ#µ be a PKn-pair. If we have µ#µ = 00, there is no AR-index

according to Definition 3.2.3. Now suppose µ#µ 6= 00 with

µ# = (µ#
1 , µ

#
2 , . . .) and µ = (µ1, µ2, . . .).

In the case µ# = µ, there is no c ∈ N \ {1} with µ#
c < µc and thus no AR-index.

In the case µ# 6= µ, we get from the facts
[
µ#
]
⊆ [µ] and µ#

1 = µ1 a minimal

c0 ∈ N \ {1} satisfying

µ#
c0
< µc0 .
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This c0 necessarily also satisfies

µ#
c0−1 = µc0−1.

Thus c0 is an AR-index for µ#µ.

(iv) See [JAM1, Section 15, especially 15.12]. �

Now we introduce certain tableaux and permutations based on PK-pairs. The

following definition makes use of Definition 1.1.6 and Definition 1.1.45.(i).

Definition 3.2.8 Let µ#µ be a PKn-pair as in Definition 3.2.1 with µ#µ 6= 00.

(i) The lattice points in [µ] can be ordered in such a way that the lattice points

in
[
µ#
]
⊆ [µ] precede the lattice points in [µ] \

[
µ#
]

and furthermore the

ascending order for the lattice points in
[
µ#
]

is by columns from left to right

and within each column from top to bottom and finally the ascending order for

the lattice points in [µ] \
[
µ#
]

is by rows from top to bottom and within each

row from left to right. This is equivalent to say that for (i, j), (̃i, j̃) ∈ [µ] we

have

(i, j) < (̃i, j̃) ⇔
( (

(i, j) ∈
[
µ#
])
∧
(
(̃i, j̃) ∈

[
µ#
])
∧((

j < j̃
)
∨
((
j = j̃

)
∧
(
i < ĩ

))) )
∨((

(i, j) ∈
[
µ#
])
∧
(
(̃i, j̃) /∈

[
µ#
]))
∨( (

(i, j) /∈
[
µ#
])
∧
(
(̃i, j̃) /∈

[
µ#
])
∧((

i < ĩ
)
∨
((
i = ĩ

)
∧
(
j < j̃

))) )
.

With that we define

tµ
#µ ∈ T µ

as the order preserving map from the set [µ] ordered by < to the set {1, . . . , n}
arranged in its natural ascending order.

(ii) The permutation wµ#µ ∈ Sn is defined as

wµ#µ = (tµ)−1 tµ
#µ

or equivalently by the condition

tµwµ#µ = tµ
#µ.
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(iii) The permutation gµ#µ ∈ Sn is defined as

gµ#µ = w−1
µ#µ

wµ

or equivalently by the condition

wµ#µgµ#µ = wµ.

The following picture shows the µ-tableau tµ
#µ for the PK22-pair µ#µ with

µ# = (7, 32, 2) ` 15 and µ = (7, 5, 6, 4) � 22.

1 5 9 12 13 14 15

2 6 10 16 17

3 7 11 18 19 20

4 8 21 22

Furthermore, we have for this PK22-pair

wµ#µ = (2, 5, 13, 3, 9, 6, 14, 7, 15, 11, 16, 18, 20, 8)(4, 12, 17, 19)

and

gµ#µ = (12, 13, 17, 18, 15, 22, 16, 14, 20, 21).

The notions introduced in the following serve the better description of properties

of and constructions with the tableaux and permutations introduced in the pre-

ceding definition. The next definition makes use of the notation (1.1) on page 1,

Definition 1.1.6, and Definition 1.1.45.(i).

Definition 3.2.9 Let λ � n. Moreover let ν � k with a k ∈ {1, . . . , n} satisfying

[ν] ⊆ [λ]. Finally choose a λ-tableau t. Then the map

t
y[λ]

[ν] : [ν]→ {1, . . . , n} , (i, j) 7→ (i, j)t
y[λ]

[ν] = (i, j)t

is called the source restriction of t from [λ] to [ν] or the source restriction of t to

[ν] or just the source restriction of t. For a lattice point (i, j) ∈ [ν], its image

(i, j)t
y[λ]

[ν] = (i, j)t is called the entry at the position (i, j) in t
y[λ]

[ν] or just the (i, j)-

entry in t
y[λ]

[ν] . The rows of t
y[λ]

[ν] are defined as the restrictions of t
y[λ]

[ν] to the

rows of [ν]. The columns of t
y[λ]

[ν] are defined as the restrictions of t
y[λ]

[ν] to the

columns of [ν]. t
y[λ]

[ν] is represented by labelling for every lattice point (i, j) ∈ [ν]

the corresponding square in the representation of [ν] with the (i, j)-entry in t
y[λ]

[ν] .
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Remark 3.2.10 The notions introduced in the preceding definition can be applied

in particular to PKn-pairs µ#µ different from 00 and the restrictions t

y[µ]

[µ#]
of

µ-tableaux t.

The next statement makes use of Definition 1.1.58.(i), Definition 1.1.60, and Defi-

nition 1.1.66.

Lemma 3.2.11 Let µ#µ be a PKn-pair with µ#µ 6= 00. Then we have

(i) tµ
#µ

y[µ]

[µ#]
= tµ#,

(ii) tµ
#µ ∈ T µstd,

(iii) wµ#µ ∈ Eµ ⊆ Dµ,

(iv) `(wµ) = `(wµ#µ) + `(gµ#µ),

(v) tµ
#µgµ#µ = tµ.

Proof. (i) This follows immediately from Definition 3.2.8.(i), Definition 3.2.9, Re-

mark 3.2.10, and Definition 1.1.66.

(ii) From
[
µ#
]
⊆ [µ] we see that for every j ∈ N the j-th row of [µ] consists

of the j-th row of
[
µ#
]

on the left and some lattice points in [µ] \
[
µ#
]

on the

right. According to Definition 3.2.8.(i), statement (i), and because of tµ# ∈ T µ
#

std

(see Lemma 1.1.68.(i)), the entries in each of these two parts of the j-th row of tµ
#µ

are arranged in ascending order from left to right and furthermore every entry in

the left part is smaller than every entry in the right part. This shows that for every

j ∈ N all entries in the j-th row of tµ
#µ are arranged in ascending order from left

to right. Thus we have

tµ
#µ ∈ T µrow std.

Since µ# = (µ#
1 , µ

#
2 , . . .) is a partition (see Definition 1.1.2.(i)), we also have

that for every j ∈ N the j-th column of [µ] consists of the j-th column of
[
µ#
]

as

upper part and some lattice points in [µ] \
[
µ#
]

as lower part. To see this, suppose

that the j-th column of
[
µ#
]

is nonempty and put

k = max
{
i ∈ N

∣∣∣ (i, j) ∈ [µ#
]}
.

Because of (k, j) ∈
[
µ#
]

we then have j ≤ µ#
k and get

∀i ∈ {1, . . . , k − 1} : j ≤ µ#
k ≤ µ#

i .
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Thus for every i ∈ {1, . . . , k − 1} the lattice point (i, j) is contained in the j-th

column of
[
µ#
]
. This shows that the j-th column of [µ] consists above (k, j) only of

lattice points in
[
µ#
]
. Again according to the construction of tµ

#µ, statement (i),

and because tµ# is standard, the entries of tµ
#µ in this upper part of the j-th column

of [µ] are arranged in ascending order from top to bottom and furthermore each one

of these entries is smaller than every entry in the lower part. In addition, we get

from the construction of the map tµ
#µ on the set [µ] \

[
µ#
]

in Definition 3.2.8.(i)

that the entries of tµ
#µ in the lower part of the j-th column of [µ] — consisting

entirely of lattice points in [µ] \
[
µ#
]

— also are arranged in ascending order from

top to bottom. Thus all entries in the j-th column of tµ
#µ are arranged in ascending

order from top to bottom. This shows that tµ
#µ is column standard.

All in all we now have

tµ
#µ ∈ T µstd,

as desired.

(iii) This follows immediately from statement (ii). See also Remark 1.1.61.

(iv) This is obtained from statement (iii), Lemma 3.1.8, Definition 3.1.6, and

finally Definition 3.2.8.(iii).

(v) This follows immediately from Definition 3.2.8.(ii), Definition 3.2.8.(iii), and

Definition 1.1.67. �

The following definition makes use of Definition 1.1.45.(ii) and Definition 1.1.66.

Definition 3.2.12 For a given PKn-pair µ#µ with µ#µ 6= 00 we put

Uµ#µ =

 w ∈ Sn

∀(i, j) ∈ [µ] \
[
µ#
]

: (i, j)tµ
#µw = (i, j)tµ

#µ;

∀(i, j) ∈
[
µ#
]

:
(

(i, j)tµ
#µ(tµ

#µw)−1 ∈
[
µ#
]
∧

((i, j)tµ
#µ)σ

tµ
#µw

= j
)


and

Vµ#µ =

 w ∈ Sn

∀(i, j) ∈ [µ] \
[
µ#
]

: (i, j)tµw = (i, j)tµ;

∀(i, j) ∈
[
µ#
]

:
(

(i, j)tµ(tµw)−1 ∈
[
µ#
]
∧

((i, j)tµ)σtµw = j
)
 .

Remark 3.2.13 Let µ#µ be a PKn-pair with µ#µ 6= 00. Then Uµ#µ and Vµ#µ can
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be described less formally as follows.

Uµ#µ =


w ∈ Sn

w fixes the entries in tµ
#µ

at positions in [µ] \
[
µ#
]

and permutes the entries in each column

of tµ
#µ

y[µ]

[µ#]
amongst themselves



Vµ#µ =


w ∈ Sn

w fixes the entries in tµ

at positions in [µ] \
[
µ#
]

and permutes the entries in each column

of tµ

y[µ]

[µ#]
amongst themselves


The next statement uses (1.2) on page 1, Definition 1.1.1.(ii), Remark 1.1.12, Defi-

nition 1.1.55, Definition 1.1.58.(i), and Definition 1.1.67.

Lemma 3.2.14 Let µ#µ be a PKn-pair with µ#µ 6= 00, µ = (µ1, µ2, . . .) � n,

and µ# = (µ#
1 , µ

#
2 , . . .) ` k for a k ∈ {1, . . . , n}. Then we also have µ#

1 = µ1

and furthermore µ#′ = (µ#′
1 , . . . , µ

#′
µ1

) ` k with µ#′
µ1
> 0. With that, the following

statements hold.

(i) Put for j ∈ {1, . . . , µ1}

U
(j)

µ#µ
= S{µ#′+

j−1 +1,...,µ#′+
j } ⊆ Sn. (3.4)

Then we have

Uµ#µ = U
(1)

µ#µ
× · · · × U (µ1)

µ#µ
⊆ Sn. (3.5)

The length function on Sn is additive with respect to this decomposition of

Uµ#µ into a direct product. This means that for an x ∈ Uµ#µ and its uniquely

determined decomposition

x = x1 · · ·xµ1

with xj ∈ U (j)

µ#µ
for j ∈ {1, . . . , µ1} we have

`(x) = `(x1) + · · ·+ `(xµ1).

Furthermore, if we put

η = (µ#′
1 , . . . , µ

#′
µ1
, 1n−k) � n (3.6)

then we have

Uµ#µ = Sη. (3.7)
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(ii) For i ∈ N we denote by mi ∈ N0 the number of lattice points contained in the

i-th column of [µ]. With that we put for k ∈ N0

m+
k =

k∑
j=1

mj.

Finally we put for j ∈ {1, . . . , µ1}

V
(j)

µ#µ
= S{m+

j−1+1,...,m+
j−1+µ#′

j } ⊆ Sn. (3.8)

Then we have

Vµ#µ = V
(1)

µ#µ
× · · · × V (µ1)

µ#µ
⊆ Sn. (3.9)

The length function on Sn is additive with respect to this decomposition of

Vµ#µ into a direct product. This means that for a y ∈ Vµ#µ and its uniquely

determined decomposition

y = y1 · · · yµ1

with yj ∈ V (j)

µ#µ
for j ∈ {1, . . . , µ1} we have

`(y) = `(y1) + · · ·+ `(yµ1).

Furthermore, if we put

θ = (µ#′
1 , 1

m1−µ#′
1 , . . . , µ#′

µ1
, 1mµ1−µ

#′
µ1 , 1n−m

+
µ1 ) � n (3.10)

then we have

Vµ#µ = Sθ. (3.11)

(iii) We have

Vµ#µ = g−1
µ#µ

Uµ#µgµ#µ

or equivalently

gµ#µVµ#µ = Uµ#µgµ#µ.

(iv) Let w ∈ Uµ#µ and put w̃ = g−1
µ#µ

wgµ#µ. Then we have w̃ ∈ Vµ#µ, gµ#µw̃ =

wgµ#µ, and

`(gµ#µw̃) = `(gµ#µ) + `(w̃) = `(wgµ#µ) = `(w) + `(gµ#µ).

(v) We have

wµ#µUµ#µ ⊆ Dµ.
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(vi) We have

wµVµ#µ ⊆ Dµ.

(vii) w−1
µ#µ

is the shortest representative of the right coset Uµ#µw
−1
µ#µ

of the Young

subgroup Uµ#µ in Sn. In other words, we have, using (3.6) and (3.7) from

statement (i),

w−1
µ#µ
∈ Dη.

(viii) w−1
µ is the shortest representative of the right coset Vµ#µw

−1
µ of the Young

subgroup Vµ#µ in Sn. In other words, we have, using (3.10) and (3.11) from

statement (ii),

w−1
µ ∈ Dθ.

(ix) Let c ∈ N \ {1} be an AR-index for µ#µ. Then we have

Uµ#µ = Uµ#µRc .

(x) Let λ#µ be another PKn-pair satisfying λ#µ 6= 00 and[
µ#
]
⊆
[
λ#
]
.

Then there is a set F ⊆ Sn such that

Vλ#µ = Vµ#µF

holds and moreover each w ∈ Vλ#µ has a uniquely determined decomposition

w = uf

with u ∈ Vµ#µ and f ∈ F and finally arbitrary u ∈ Vµ#µ and f ∈ F satisfy

`(uf) = `(u) + `(f).

Proof. (i) Since µ# is a partition,
[
µ#
]

has exactly µ#
1 = µ1 nonempty columns

(see Definition 1.1.6 and Definition 3.2.1). Definition 3.2.8.(i), Definition 3.2.9, and

Remark 3.2.10 show that for every j ∈ {1, . . . , µ1} the j-th column of tµ
#µ

y[µ]

[µ#]
contains the entries

µ#′+
j−1 + 1, . . . , µ#′+

j

in that order from top to bottom. Thus, according to Definition 3.2.12 and Re-

mark 3.2.13, the permutations in Uµ#µ can be characterized as those permuting for
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every j ∈ {1, . . . , µ1} the elements of the set
{
µ#′+
j−1 + 1, . . . , µ#′+

j

}
amongst them-

selves and fixing all numbers not contained in any one of these pairwise disjoint

sets. From this we get the decomposition (3.5) of Uµ#µ into a direct product.

The additivity of the length function with respect to this decomposition is easily

obtained from (1.10) on page 3 and the fact that the sets on which the various factors

of the direct product operate are pairwise disjoint intervals of integers.

Finally, the relation

Uµ#µ = Sη

is obtained by comparing (1.18) on page 25 — applied with the composition η —

and (3.4).

(ii) The proof of this statement is for the most part analogous to that of state-

ment (i).

Since µ# is a partition,
[
µ#
]

is composed of µ1 nonempty columns. Defini-

tion 1.1.66, Definition 3.2.9, Remark 3.2.10, and the construction of the mi with

i ∈ N and the m+
k with k ∈ N0 show that for every j ∈ {1, . . . , µ1} the j-th column

of tµ

y[µ]

[µ#]
contains the entries

m+
j−1 + 1, . . . ,m+

j−1 + µ#′
j

in that order from top to bottom. Thus, according to Definition 3.2.12 and Re-

mark 3.2.13, the permutations in Vµ#µ can be characterized as those permuting for

every j ∈ {1, . . . , µ1} the elements of the set
{
m+
j−1 + 1, . . . ,m+

j−1 + µ#′
j

}
amongst

themselves and fixing all numbers not contained in any one of these pairwise disjoint

sets. From this we get the decomposition (3.9) of Vµ#µ into a direct product.

The additivity of the length function with respect to this decomposition is ob-

tained as in the proof of statement (i).

Finally, we get from the inclusion
[
µ#
]
⊆ [µ], Remark 1.1.12, and the construc-

tion of the mi with i ∈ N and the m+
k with k ∈ N0 the relations

∀j ∈ {1, . . . , µ1} : mj ≥ µ#′
j

and also

n ≥ m+
µ1
.

This shows that θ is indeed a well defined composition of n. Now we get

Vµ#µ = Sθ

as in the proof of statement (i) by comparing (1.18) on page 25 — applied with the

composition θ — and (3.9).
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(iii) According to Lemma 3.2.11.(v), we have tµ
#µgµ#µ = tµ. This shows that

gµ#µ maps for every j ∈ N the entries of the j-th column of tµ
#µ

y[µ]

[µ#]
bijectively

onto the entries of the j-th column of tµ

y[µ]

[µ#]
and furthermore the entries in tµ

#µ at

positions from [µ]\
[
µ#
]

bijectively onto the entries in tµ at positions from [µ]\
[
µ#
]
.

The claim follows from these properties of gµ#µ and Remark 3.2.13.

(iv) w̃ ∈ Vµ#µ follows from statement (iii). gµ#µw̃ = wgµ#µ follows imme-

diately from the construction of w̃. Moreover, we get from tµ
#µgµ#µ = tµ (see

Lemma 3.2.11.(v)), using the notions and considerations from statements (i) and

(ii) and their proofs, that gµ#µ maps for every j ∈ {1, . . . , µ1} the entries

µ#′+
j−1 + 1, . . . , µ#′+

j

of the j-th column of tµ
#µ

y[µ]

[µ#]
in this order — that is, order preserving — to the

entries

m+
j−1 + 1, . . . ,m+

j−1 + µ#′
j

of the j-th column of tµ

y[µ]

[µ#]
. Now the remainder of the claim follows from this

property of gµ#µ, Remark 3.2.13, and (1.10) on page 3.

(v) Fix a u ∈ Uµ#µ. According to Definition 1.1.58.(i) and Definition 3.2.8.(ii),

we must show that tµ
#µu is row standard.

First, Lemma 3.2.11.(ii) and Definition 1.1.45.(iii) show that tµ
#µ is row stan-

dard. Moreover, Definition 3.2.8.(i) shows that every entry in tµ
#µ at a position

from
[
µ#
]

is smaller than every entry in tµ
#µ at a position from [µ] \

[
µ#
]
. Finally,

Lemma 3.2.11.(i), Definition 1.1.66, Definition 3.2.9, and Remark 3.2.10 show that

for arbitrary i, j ∈ N with i < j every entry in the i-th column of tµ
#µ

y[µ]

[µ#]
is

smaller than every entry in the j-th column of tµ
#µ

y[µ]

[µ#]
.

From these properties of tµ
#µ and Remark 3.2.13 we see that tµ

#µu is row

standard. This completes the proof as explained above.

(vi) The proof of this statement is similar to the proof of statement (v).

Fix a v ∈ Vµ#µ. According to Definition 1.1.58.(i) and Definition 1.1.67, we

must show that tµv is row standard.

Now we see from Definition 1.1.66 that for arbitrary i, j ∈ N with i < j every

entry in the i-th column of tµ is smaller than every entry in the j-th column of tµ.

From this property of tµ and Remark 3.2.13 we see that tµv is row standard. This

completes the proof as explained above.
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(vii) According to (3.6) and (3.7) from statement (i), we must show that tηw−1
µ#µ

is row standard.

To this end, we first compare tη from Definition 1.1.53 and tµ
#µ from Defini-

tion 3.2.8.(i). We easily get from the definitions of these tableaux that for every

j ∈ {1, . . . , µ1} the sequence of the entries in the j-th row of tη when considered

from left to right coincides with the sequence of the entries in the j-th column

of tµ
#µ

y[µ]

[µ#]
when considered from top to bottom (see also Definition 3.2.9 and

Remark 3.2.10).

Now an application of w−1
µ#µ

(see Definition 3.2.8.(ii)) to the relations described

in the preceding paragraph shows that for every j ∈ {1, . . . , µ1} the sequence of the

entries in the j-th row of tηw−1
µ#µ

when considered from left to right coincides with

the sequence of the entries in the j-th column of(
tµ

#µ

y[µ]

[µ#]

)
w−1
µ#µ

=
(
tµ

#µw−1
µ#µ

)y[µ]

[µ#]
= tµ

y[µ]

[µ#]

when considered from top to bottom. Since tµ is column standard, we get from this

that for every j ∈ {1, . . . , µ1} the entries in the j-th row of tηw−1
µ#µ

when considered

from left to right are arranged in ascending order.

Furthermore, we see from (3.6) that every other row of tηw−1
µ#µ

contains at most

one entry.

All in all, we get that tηw−1
µ#µ

is row standard. This proves the claim as described

above.

(viii) The proof of this statement is similar to the proof of statement (vii).

According to (3.10) and (3.11) from statement (ii), we must show that tθw−1
µ is

row standard.

To this end, we decompose θ in µ1 + 1 successive subsequences. Using the no-

tation from statement (ii), we define for every j ∈ {1, . . . , µ1} the j-th subsequence

as

(µ#′
j , 1

mj−µ#′
j ).

The (µ1 + 1)-th subsequence is defined as

(1n−m
+
µ1 , 0, 0, 0, . . .).

The concatenation of these sequences in ascending order according to their num-

bering results in θ (see (3.10)).

Now we compare tθ from Definition 1.1.53 and tµ from Definition 1.1.66. We

easily get from the definitions of these tableaux and the construction of θ that for

every j ∈ {1, . . . , µ1} the sequence of the entries in the row of tθ corresponding to the
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first entry in the j-th subsequence of θ when considered from left to right coincides

with the sequence of the entries in the j-th column of tµ

y[µ]

[µ#]
when considered from

top to bottom (see also Definition 3.2.9 and Remark 3.2.10).

Now an application of w−1
µ (see Definition 1.1.67) to the relations described in

the preceding paragraph shows that for every j ∈ {1, . . . , µ1} the sequence of the

entries in the row of tθw−1
µ corresponding to the first entry in the j-th subsequence

of θ when considered from left to right coincides with the sequence of the entries in

the j-th column of (
tµ

y[µ]

[µ#]

)
w−1
µ =

(
tµw

−1
µ

)y[µ]

[µ#]
= tµ

y[µ]

[µ#]

when considered from top to bottom. Since tµ is column standard, we get from

this that for every j ∈ {1, . . . , µ1} the entries in the row of tθw−1
µ corresponding to

the first entry in the j-th subsequence of θ when considered from left to right are

arranged in ascending order.

Furthermore, we see from (3.10) that every other row of tθw−1
µ contains at most

one entry.

All in all, we get that tθw−1
µ is row standard. This proves the claim as described

above.

(ix) In order to prove this statement, we distinguish the cases c > 2 and c = 2.

First we consider the case c > 2. Then we see from Definition 3.2.5.(iii) that the

PKn-pairs µ#µ and µ#µRc contain the same partition. This partition is denoted by

ν in the following. With that, we obtain from Definition 3.2.8.(i), Definition 3.2.9,

and Lemma 3.2.11.(i)

tµ
#µ
y[µ]

[ν] = tν = tµ
#µRc

y[µRc]
[ν] .

This shows together with Definition 3.2.12 and Remark 3.2.13

Uµ#µ = Uµ#µRc for c > 2.

Now we consider the case c = 2. Then we see from Definition 3.2.5.(iii) that the

PKn-pairs µ#µ and µ#µR2 contain different partitions. If we denote the partition

contained in µ#µ by α and the partition contained in µ#µR2 by β then β is obtained

from α by increasing the first entry. According to Remark 1.1.12, this implies

that the transposed partition β′ is obtained from α′ by appending some entries

with the value 1. These new entries of β′ contribute only trivial factors to the

decomposition of Uµ#µR2
into a direct product as described in statement (i). Since

the remaining entries of β′ are identical to the entries of α′, the remaining factors
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in the decomposition of Uµ#µR2
into a direct product as described in statement (i)

are identical to the factors in the analogous decomposition of Uµ#µ. Thus we have

Uµ#µ = Uµ#µR2
.

Now the claim is proved for all possible values of c.

(x) If we write λ# = (λ#
1 , λ

#
2 , . . .), we get from Definition 3.2.1

λ#
1 = µ1 = µ#

1 .

According to Remark 1.1.12, we also have λ#′ = (λ#′
1 , . . . , λ

#′
µ1

) with λ#′
µ1
> 0. In

particular, λ#′ and µ#′ have the same number of positive entries. Furthermore, we

get from the condition
[
µ#
]
⊆
[
λ#
]
, Definition 1.1.9, and Definition 1.1.11[
µ#′] ⊆ [λ#′] .

According to Definition 1.1.6.(i), this implies

∀j ∈ {1, . . . , µ1} : µ#′
j ≤ λ#′

j . (3.12)

If we now consider the decompositions

Vλ#µ = V
(1)

λ#µ
× · · · × V (µ1)

λ#µ
⊆ Sn (3.13)

and

Vµ#µ = V
(1)

µ#µ
× · · · × V (µ1)

µ#µ
⊆ Sn (3.14)

of Vλ#µ and Vµ#µ with factors V
(j)

λ#µ
and V

(j)

µ#µ
for j ∈ {1, . . . , µ1} from statement (ii),

we get from (3.12)

∀j ∈ {1, . . . , µ1} : V
(j)

µ#µ
⊆ V

(j)

λ#µ

and thus

Vµ#µ ⊆ Vλ#µ.

More specifically, we have that for every j ∈ {1, . . . , µ1} the group V
(j)

µ#µ
is the

Young subgroup associated with ν(j) = (µ#′
j , 1

λ#′
j −µ

#′
j ) ` λ#′

j of the symmetric group

V
(j)

λ#µ
of degree λ#′

j (see (1.18) on page 25). Thus there is for every j ∈ {1, . . . , µ1}
the set of shortest representatives of all right cosets of V

(j)

µ#µ
in V

(j)

λ#µ
. If we denote

this set by F (j), we have

∀j ∈ {1, . . . , µ1} : V
(j)

λ#µ
= V

(j)

µ#µ
F (j). (3.15)
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Since the factors in the decomposition (3.13) of Vλ#µ commute, substitution of

(3.15) leads to

Vλ#µ =
(
V

(1)

µ#µ
F (1)

)
· · ·
(
V

(µ1)

µ#µ
F (µ1)

)
=

(
V

(1)

µ#µ
· · ·V (µ1)

µ#µ

) (
F (1) · · · F (µ1)

)
.

(3.16)

Thus if we put

F = F (1) × · · · × F (µ1) ⊆ Vλ#µ ⊆ Sn (3.17)

then we get from (3.16) and (3.14)

Vλ#µ = Vµ#µF . (3.18)

Being a product of the systems of representatives F (j) for the right cosets of

the direct factors V
(j)

µ#µ
of Vµ#µ in the corresponding direct factors V

(j)

λ#µ
of Vλ#µ for

j ∈ {1, . . . , µ1}, F is a system of representatives for the right cosets of Vµ#µ in Vλ#µ.

This implies that if we have a decomposition

w = uf

of an arbitrary w ∈ Vλ#µ into a product of an appropriate u ∈ Vµ#µ and an appro-

priate f ∈ F then the factors u and f are uniquely determined.

Finally, choose an arbitrary u ∈ Vµ#µ and an arbitrary f ∈ F ⊆ Vλ#µ. Then we

have, according to (3.13), (3.14), and (3.17), uniquely determined decompositions

u = u1 · · ·uµ1 and f = f1 · · · fµ1

with uj ∈ V (j)

µ#µ
and fj ∈ F (j) ⊆ V

(j)

λ#µ
for j ∈ {1, . . . , µ1}. As shown in statement (ii),

these decompositions satisfy

`(u) = `(u1) + · · ·+ `(uµ1) and `(f) = `(f1) + · · ·+ `(fµ1). (3.19)

From these decompositions we get

uf = (u1 · · ·uµ1) (f1 · · · fµ1) = (u1f1) · · · (uµ1fµ1) (3.20)

(see (3.16)). Now (3.18) and (3.15) show that both

uf ∈ Vλ#µ and ∀j ∈ {1, . . . , µ1} : ujfj ∈ V (j)

λ#µ

hold. Thus (3.20) is the uniquely determined decomposition of uf ∈ Vλ#µ into a

product of elements of the factors V
(j)

λ#µ
of Vλ#µ for j ∈ {1, . . . , µ1}. From this fact,
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statement (ii), the construction of the F (j) for j ∈ {1, . . . , µ1}, and (3.19) we get

`(uf) = `(u1f1) + · · ·+ `(uµ1fµ1)

= (`(u1) + `(f1)) + · · ·+ (`(uµ1) + `(fµ1))

= (`(u1) + · · ·+ `(uµ1)) + (`(f1) + · · ·+ `(fµ1))

= `(u) + `(f).

Now all claims in statement (x) are proved. �

The Young subgroups Uµ#µ and Vµ#µ of Sn with a PKn-pair µ#µ 6= 00 are used in

Section 3.4 to construct new Hecke algebra modules.

The following definitions and statements will be used in Section 3.5 to construct

module homomorphisms. The next definition makes use of (1.2) on page 1 and

Definition 1.1.1.(ii).

Definition 3.2.15 Let µ#µ be a PKn-pair with µ#µ 6= 00, µ = (µ1, µ2, . . .) � n,

and µ# = (µ#
1 , µ

#
2 , . . .) ` k for a k ∈ {1, . . . , n}. Furthermore, let c ∈ N \ {1} be an

AR-index for µ#µ. Then we define the set Iµ#µc ⊆ Sn as

Iµ#µc =

 w ∈ Sn

w ∈ S{µ+
c−1+1,...,µ+

c };(
µ+
c−1 + 1

)
w < · · · <

(
µ+
c−1 + µc − µ#

c

)
w;(

µ+
c−1 + µc − µ#

c + 1
)
w < · · · < µ+

c w

 .

Remark 3.2.16 Let µ#µ and c be as in Definition 3.2.15. Then the set Iµ#µc

introduced therein can be characterized less formally as follows.

Iµ#µc =


w ∈ Sn

w only permutes the entries in the

c-th row of tµ amongst themselves such that

in the c-th row of tµw the left µc − µ#
c entries

and the right µ#
c entries respectively are

arranged in ascending order from left to right


Lemma 3.2.17 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for it. Then the set Iµ#µc introduced in Definition 3.2.15 satisfies

(i) Iµ#µc ⊆ Sµ,

(ii) Iµ#µc = (SµRcSµ) ∩ DµRc .

Proof. (i) This follows from Definition 3.2.15 and the product decomposition (1.18)

of Young subgroups on page 25.
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(ii) First we consider the inclusion Iµ#µc ⊆ (SµRcSµ)∩DµRc . From statement (i)

we get

Iµ#µc ⊆ Sµ ⊆ SµRcSµ.

In order to obtain the inclusion Iµ#µc ⊆ DµRc , we consider the operation of an arbi-

trarily chosen f ∈ Iµ#µc on the tableau tµRc . If we write µ = (µ1, µ2, . . .) and µ# =

(µ#
1 , µ

#
2 , . . .) then we get from Definition 3.2.5.(ii) µRc = ((µRc)1, (µRc)2, . . .) � n

with

(µRc)j =


µc−1 + µc − µ#

c for j = c− 1

µ#
c for j = c

µj for j ∈ N \ {c− 1, c}

.

Thus the (c− 1)-th row and the c-th row of tµRc have the following form (see also

Definition 1.1.1.(ii)).

(c− 1)-th row : µ+
c−2 + 1, . . . , µ+

c−1, µ
+
c−1 + 1, . . . , µ+

c−1 + µc − µ#
c

c-th row : µ+
c−1 + µc − µ#

c + 1, . . . , µ+
c

(3.21)

All elements of {1, . . . , n} not fixed by f are contained in these two rows of tµRc .

From the conditions on the arrangement of the images of these elements under f

we easily get that tµRcf is row standard. This shows f ∈ DµRc and furthermore

Iµ#µc ⊆ DµRc

and finally

Iµ#µc ⊆ (SµRcSµ) ∩ DµRc .

Now we will show the inclusion (SµRcSµ) ∩ DµRc ⊆ Iµ#µc. To this end, we

consider the operation of an arbitrarily chosen f ∈ (SµRcSµ)∩DµRc with a product

decomposition

f = xy (3.22)

with x ∈ SµRc and y ∈ Sµ on tµRc and tµ. Since µRc and µ differ only in the

entries with indices c− 1 and c and these entries satisfy

(µRc)c−1 + (µRc)c =
(
µc−1 + µc − µ#

c

)
+
(
µ#
c

)
= µc−1 + µc,

we see that [µRc] and [µ] and thus also tµRc and tµ are identical except for the rows

c − 1 and c. This shows that first x operating on tµRc and then y operating on

tµRcx leaves every entry not contained in row c − 1 or row c within its row. Now

(3.22) shows that this also is true for f operating on tµRc . Moreover, both tµRc and

tµRcf are row standard, since f ∈ DµRc . All this shows that every entry in tµRcf
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not contained in row c or row c − 1 occupies the same position as it does in tµRc .

This means that f fixes every one of these entries. Thus we get from (3.21) and

(1.2) on page 1

f ∈ S{µ+
c−2+1,...,µ+

c }. (3.23)

Next we put

L =
{
µ+
c−2 + 1, . . . , µ+

c−1

}
,

M =
{
µ+
c−1 + 1, . . . , µ+

c−1 + µc − µ#
c

}
,

N =
{
µ+
c−1 + µc − µ#

c + 1, . . . , µ+
c

}
.

With that, we see from (3.21) that x ∈ SµRc = RtµRc permutes the elements of

the sets L ∪M and N respectively amongst themselves and leaves them in their

respective rows in tµRc . According to Definition 1.1.53, the elements of L, M , and

N are exactly the entries in the (c − 1)-th row and the c-th row of tµ, which are

displayed in the following diagram.

(c− 1)-th row : µ+
c−2 + 1, . . . , µ+

c−1

c-th row : µ+
c−1 + 1, . . . , µ+

c−1 + µc − µ#
c , µ

+
c−1 + µc − µ#

c + 1, . . . , µ+
c

From this we see that y ∈ Sµ = Rtµ permutes the elements of the sets L and

M ∪ N respectively amongst themselves. All this shows together with (3.22) and

(3.23) that the application of f to tµRc leaves the elements of L in the (c − 1)-th

row and rearranges the elements of M ∪N within the (c − 1)-th row and the c-th

row. Thus the entries in the (c − 1)-th row of tµRcf are composed of all elements

of the set L and µc − µ#
c elements of the set M ∪ N , and moreover the c-th row

of tµRcf consists of the remaining µ#
c elements of the set M ∪N . Now since tµRcf

is row standard and every element of L is smaller than every element of M ∪ N ,

the elements of the set L in the (c − 1)-th row of tµRcf must occupy the leftmost

positions in this row and must be arranged in ascending order from left to right,

exactly as they are in the (c − 1)-th row of tµRc . This implies that f fixes each of

these elements individually. From that and (3.23) we get

f ∈ S{µ+
c−1+1,...,µ+

c }. (3.24)

Again since tµRcf is row standard, the rightmost µc−µ#
c entries in the (c−1)-th row

of tµRcf and also all entries in the c-th row of tµRcf respectively must be arranged

in ascending order from left to right. This fact and (3.21) together imply(
µ+
c−1 + 1

)
f < · · · <

(
µ+
c−1 + µc − µ#

c

)
f (3.25)
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and (
µ+
c−1 + µc − µ#

c + 1
)
f < · · · < µ+

c f. (3.26)

(3.24), (3.25), and (3.26) now show f ∈ Iµ#µc and furthermore

(SµRcSµ) ∩ DµRc ⊆ Iµ#µc.

Thus we have all in all

Iµ#µc = (SµRcSµ) ∩ DµRc ,

as desired. �

The next lemma makes use of representations of tableaux and compositions as

described in Section 1.1. It constructs from a given representation of a tableau

the representation of another tableau by moving around entries or equivalently the

squares containing them.

Lemma 3.2.18 Let µ#µ be a PKn-pair with µ#µ 6= 00 and write µ = (µ1, µ2, . . .)

and µ# = (µ#
1 , µ

#
2 , . . .). Furthermore, let c ∈ N \ {1} be an AR-index for µ#µ.

Finally, choose a w ∈ Sn. Then the tableau tµRcw is obtained from the tableau tµw

by moving the leftmost µc−µ#
c entries of the c-th row in the given order to the end

of the (c − 1)-th row and moving the remaining µ#
c entries of the c-th row in the

given order to the beginning of the c-th row.

Proof. From Definition 1.1.53 and Definition 3.2.5.(ii) we get the following con-

struction of tµRc from tµ.

tµRc is obtained from tµ by moving the leftmost µc−µ#
c entries

of the c-th row in the given order to the end of the (c− 1)-th

row and moving the remaining µ#
c entries of the c-th row in

the given order to the beginning of the c-th row.

(3.27)

The displacement of squares labelled with certain entries is compatible with the

operation of permutations on these entries. Thus an application of w to (3.27)

yields the following construction of tµRcw from tµw.

tµRcw is obtained from tµw by moving the leftmost µc − µ#
c

entries of the c-th row in the given order to the end of the

(c − 1)-th row and moving the remaining µ#
c entries of the

c-th row in the given order to the beginning of the c-th row.

This completes the proof. �

The following lemma is similar to the preceding one. It also makes use of Defini-

tion 3.2.5.(ii).
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Lemma 3.2.19 Let µ#µ be a PKn-pair with µ#µ 6= 00 and write µ = (µ1, µ2, . . .)

and µ# = (µ#
1 , µ

#
2 , . . .). Furthermore, let c ∈ N \ {1} be an AR-index for µ#µ.

Finally, choose an f ∈ Iµ#µc and a w ∈ Sn. With that, write

fw = ud

with uniquely determined permutations u ∈ SµRc and d ∈ DµRc. Then the tableau

tµRcd is obtained from the tableau tµw by moving µc−µ#
c appropriate entries of the

c-th row to the end of the (c − 1)-th row, moving the remaining µ#
c entries of the

c-th row to the beginning of the c-th row, and arranging the entries of the various

rows in ascending order from left to right.

Proof. According to Definition 3.2.15 and Remark 3.2.16, an application of f ∈
Iµ#µc to tµ permutes only the entries in the c-th row amongst themselves and fixes

the entries in all other rows. This implies that tµfw and tµw differ only by a

permutation of the entries in the c-th row. From this fact and Lemma 3.2.18 —

applied to tµfw in order to obtain tµRcfw — we get the following construction of

tµRcfw from tµw.

tµRcfw is obtained from tµw by moving µc − µ#
c appropri-

ate entries of the c-th row to the end of the (c − 1)-th row

and moving the remaining µ#
c entries of the c-th row to the

beginning of the c-th row.

(3.28)

Furthermore, an application of u ∈ SµRc to tµRc leaves each entry in its respective

row. This implies that tµRcud = tµRcfw and tµRcd differ only by a permutation of

the entries in the various rows respectively amongst themselves. Moreover, because

of d ∈ DµRc , the entries in the various rows of tµRcd are arranged in ascending order

from left to right. From all this and (3.28) we get the following construction of

tµRcd from tµw.

tµRcd is obtained from tµw by moving µc − µ#
c appropriate

entries of the c-th row to the end of the (c−1)-th row, moving

the remaining µ#
c entries of the c-th row to the beginning of

the c-th row, and arranging the entries of the various rows in

ascending order from left to right.

This completes the proof. �

The next Lemma makes use of Lemma 1.1.8.(i), Remark 1.1.12, Definition 1.1.45.(i),

Definition 1.1.45.(ii), and in particular Definition 3.2.5.(iv) and Lemma 3.2.7.(ii).
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Lemma 3.2.20 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be

an AR-index for it such that µ#Ac is a partition or equivalently µ#Acµ 6= 00

holds. Moreover, suppose that we have a w ∈ Sn such that the entries of ev-

ery column of (tµw)

y[µ]

[µ#Ac]
when considered from top to bottom form an ascend-

ing sequence of successive integers. More formally, this means that if we write

µ#Ac = ((µ#Ac)1, (µ
#Ac)2, . . .) and µ#Ac

′
= ((µ#Ac

′
)1, . . . , (µ

#Ac
′
)(µ#Ac)1

) then

∀j ∈
{

1, . . . , (µ#Ac)1

}
∀i ∈

{
1, . . . , (µ#Ac

′
)j

}
:

(i, j)tµw = (1, j)tµw + i− 1

(3.29)

holds. Finally, let f ∈ Iµ#µc and write

fw = ud

with uniquely determined permutations u ∈ SµRc and d ∈ DµRc. Then there is an

m ∈ {2, . . . , n} with the following properties.

(m) (tµw)−1 , (m− 1) (tµw)−1 ∈
[
µ#Ac

]
(m)σtµw = (m− 1)σtµw

(m)ζtµRcd = (m− 1)ζtµRcd

Proof. According to Remark 3.2.4, the assumptions of the lemma imply n ≥ 2.

Thus the claim is meaningful.

First we note that, according to the assumptions, µ#Acµ is a PK-pair with

µ#Acµ 6= 00 (see Lemma 3.2.7.(ii)). Thus we get from Definition 3.2.1[
µ#Ac

]
⊆ [µ] .

Next, if we write µ = (µ1, µ2, . . .) � n, µ# = (µ#
1 , µ

#
2 , . . .) ` k, and µ#Ac =

(µ#
1 , . . . , µ

#
c−1, µ

#
c + 1, µ#

c+1, . . .) ` k + 1 as in Definition 3.2.5, we see that the left

µ#
c + 1 entries in the c-th row of the representation of tµw all occupy squares

contained in the representation of
[
µ#Ac

]
.

Furthermore, we can apply Lemma 3.2.19 to the situation at hand and construct

tµRcd from tµw as described there. In the course of this construction, µc−µ#
c squares

from the c-th row of tµw are moved to the (c − 1)-th row, and only µ#
c squares

remain in the c-th row. This implies that a square contained in
[
µ#Ac

]
with a

certain entry m ∈ {1, . . . , n} must be moved from the c-th row to the (c − 1)-th

row. More formally, we have for this m

(m) (tµw)−1 ∈
[
µ#Ac

]
, (m)ζtµw = c, (m)ζtµRcd = c− 1. (3.30)
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From this, the fact c > 1 (see Definition 3.2.3), and the property (3.29) of the

tableau tµw we get on the one hand

m ∈ {2, . . . , n} (3.31)

and on the other hand that, in the representation of tµw, the square containing the

entry m − 1 is located directly above the square containing the entry m and also

is contained in the representation of
[
µ#Ac

]
(see Lemma 1.1.8.(i)). More formally,

we have

(m− 1) (tµw)−1 ∈
[
µ#Ac

]
,

(m− 1)σtµw = (m)σtµw, (m− 1)ζtµw = (m)ζtµw − 1 = c− 1.
(3.32)

From (m− 1)ζtµw = c− 1 we get in turn that, in the course of the construction of

tµRcd from tµw described in Lemma 3.2.19, the entry m−1 remains in the (c−1)-th

row. Thus we have

(m− 1)ζtµRcd = (m− 1)ζtµw = c− 1. (3.33)

Now the claim follows directly from (3.30), (3.31), (3.32), and (3.33). �

Remark 3.2.21 Definition 1.1.67 and Definition 1.1.66 show that, using the no-

tation from Lemma 3.2.20, condition (3.29) is satisfied in particular by the permu-

tation wµ ∈ Sn and the tableau tµwµ = tµ.

Now a distinguished element of the set from Definition 3.2.15 is introduced. The

next definition makes use of (1.2) on page 1 and Definition 1.1.1.(ii).

Definition 3.2.22 Let µ#µ be a PKn-pair with µ#µ 6= 00, µ = (µ1, µ2, . . .), and

µ# = (µ#
1 , µ

#
2 , . . .). Furthermore, let c ∈ N \ {1} be an AR-index for µ#µ. Then

we define the permutation

fµ#µc ∈ S{µ+
c−1+1,...,µ+

c } ⊆ Sn

by

(µ+
c−1 + 1)fµ#µc = µ+

c−1 + µ#
c + 1, . . . , (µ+

c−1 + µc − µ#
c )fµ#µc = µ+

c−1 + µc,

(µ+
c−1 + µc − µ#

c + 1)fµ#µc = µ+
c−1 + 1, . . . , µ+

c fµ#µc = µ+
c−1 + µ#

c .

Remark 3.2.23 If we apply, using the notation from Definition 3.2.22, the per-

mutation fµ#µc to the tableau tµ, we see that fµ#µc moves the leftmost µ#
c entries in

the c-th row of the representation of this tableau in the given order to the rightmost

µ#
c places of the c-th row and the rightmost µc − µ#

c entries in the c-th row in the

given order to the leftmost µc− µ#
c places of the c-th row. All entries in other rows

remain fixed.
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Now some properties of the permutation introduced in Definition 3.2.22 are de-

scribed.

Lemma 3.2.24 Let µ#µ be a PKn-pair with µ#µ 6= 00 and write µ = (µ1, µ2, . . .)

and µ# = (µ#
1 , µ

#
2 , . . .). Furthermore, let c ∈ N \ {1} be an AR-index for µ#µ.

Finally, choose a w ∈ Sn. Then the tableau tµRcfµ#µcw is obtained from the tableau

tµw by moving the rightmost µc − µ#
c entries in the c-th row of tµw — that is, the

entries in the c-th row of tµw occupying positions not contained in
[
µ#
]

— in the

given order to the end of the (c− 1)-th row of tµw.

Proof. From Remark 3.2.23 we get the following construction of tµfµ#µcw from tµw.

tµfµ#µcw is obtained from tµw by moving the leftmost µ#
c

entries in the c-th row of tµw — that is, the entries in the c-

th row of tµw occupying positions contained in
[
µ#
]
⊆ [µ] —

in the given order to the end of the c-th row of tµw and moving

the rightmost µc − µ#
c entries in the c-th row of tµw — that

is, the entries in the c-th row of tµw occupying positions not

contained in
[
µ#
]
⊆ [µ] — in the given order to the beginning

of the c-th row of tµw.

(3.34)

Moreover, Lemma 3.2.18 provides a method for the construction of tµRcfµ#µcw from

tµfµ#µcw. Now the proof is completed by appending this method to (3.34). �

The next statement makes use of Definition 3.2.5.(ii), Lemma 3.2.7.(ii), and Defi-

nition 3.2.8.

Lemma 3.2.25 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for it. Then the permutation fµ#µc from Definition 3.2.22 satisfies

(i) fµ#µc ∈ Iµ#µc,

(ii) tµRcfµ#µcwµ#µ = tµ
#µRc.

Proof. (i) This follows immediately from Definition 3.2.15 and Definition 3.2.22.

(ii) In the following we write µ � n and µ# ` k with a k ∈ {1, . . . , n} as in

Definition 3.2.1.

Lemma 3.2.24 provides a method for the construction of tµRcfµ#µcwµ#µ from

tµwµ#µ = tµ
#µ. This method doesn’t move entries occupying positions contained

in
[
µ#
]
. From this fact, Definition 3.2.9, Remark 3.2.10, Lemma 3.2.7.(ii), Defini-

tion 3.2.5, and Lemma 3.2.11.(i) we get(
tµRcfµ#µcwµ#µ

)y[µRc]

[µ#]
= tµ

#µ

y[µ]

[µ#]
= tµ# .
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Here, µ# and µRc are not considered a PKn-pair. In turn, the preceding equation

and Definition 1.1.66 show that the entries 1, . . . , k in tµRcfµ#µcwµ#µ occupy the

positions contained in
[
µ#
]

and are arranged in ascending order by columns from

left to right and within each column from top to bottom.

Furthermore, Definition 3.2.8.(i) shows that the entries k + 1, . . . , n in tµ
#µ

occupy the positions not contained in
[
µ#
]

and are arranged in ascending order

by rows from top to bottom and within each row from left to right. This type of

arrangement is preserved by the above-mentioned construction of tµRcfµ#µcwµ#µ

from tµ
#µ which moves all entries in the c-th row of tµ

#µ occupying positions not

contained in
[
µ#
]

in the given order to the end of the (c− 1)-th row of tµ
#µ.

From all this we get the following description of tµRcfµ#µcwµ#µ.

In tµRcfµ#µcwµ#µ, the positions contained in
[
µ#
]

are occu-

pied by the entries 1, . . . , k arranged in ascending order by

columns from left to right and within each column from top

to bottom, and furthermore the positions not contained in[
µ#
]

are occupied by the entries k + 1, . . . , n arranged in as-

cending order by rows from top to bottom and within each

row from left to right.

(3.35)

Here, µ# and µRc are not considered a PKn-pair. This description is now employed

to compare tµRcfµ#µcwµ#µ and tµ
#µRc . We distinguish the cases c > 2 and c = 2.

First we consider the case c > 2. Then, according to Definition 3.2.5.(iii), the

PKn-pairs µ#µ and µ#µRc contain the same partition. From this we get by using

Definition 3.2.8.(i) — applied to the PKn-pair µ#µRc — and (3.35)

tµRcfµ#µcwµ#µ = tµ
#µRc for c > 2.

Now we consider the case c = 2. Here, according to Definition 3.2.5.(iii), the

PKn-pairs µ#µ and µ#µR2 contain different partitions. In the following we denote

the partition contained in µ#µR2 by ν ` m with an appropriate m ∈ {1, . . . , n},
the partition contained in µ#µ is still denoted by µ#. Definition 3.2.3, Defini-

tion 3.2.5.(ii), and Definition 3.2.5.(iii) show that ν is obtained from µ# by increas-

ing the first entry of µ# to the value of the first entry of µR2. This implies m > k,

and furthermore [ν] is obtained from
[
µ#
]

by appending a certain number of lattice

points to the end of the first row such that the length of the first row of [µR2] is

reached. Since µ# is a partition, each of these added lattice points constitutes a

column of [ν].

According to Definition 3.2.8.(i), the entries 1, . . . ,m in tµ
#µR2 occupy the po-

sitions contained in [ν] and are arranged in ascending order by columns from left
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to right and within each column from top to bottom. This and the preceding con-

siderations show that, on the one hand, the entries 1, . . . , k occupy the positions

contained in
[
µ#
]
⊆ [ν] and are arranged in ascending order by columns from left

to right and within each column from top to bottom, and, on the other hand, the

entries k+1, . . . ,m occupy the added positions in [ν] — that is, the not yet occupied

positions in the first row of [µR2] — and also are arranged in ascending order by

columns from left to right and within each column from top to bottom. In other

words, the entries k + 1, . . . ,m occupy the positions in the first row of [µR2] not

contained in
[
µ#
]

and are arranged in ascending order from left to right.

Moreover, the entries m + 1, . . . , n in tµ
#µR2 occupy the positions contained in

[µR2] \ [ν] and are arranged in ascending order by rows from top to bottom and

within each row from left to right. Again according to the preceding considerations,

the positions contained in [µR2] \ [ν] are exactly the positions in [µR2] contained in

neither
[
µ#
]

nor the first row of [µR2].

Now a comparison of this description of tµ
#µR2 and (3.35) shows

tµR2fµ#µ2wµ#µ = tµ
#µR2 .

This completes the proof. �

The permutation introduced in Definition 3.2.22 is uniquely determined by the

properties shown in Lemma 3.2.25. The following lemma provides another useful

characterization.

Lemma 3.2.26 Let µ#µ be a PKn-pair with µ#µ 6= 00 and write µ = (µ1, µ2, . . .)

and µ# = (µ#
1 , µ

#
2 , . . .). Furthermore let c ∈ N \ {1} be an AR-index for µ#µ, and

finally let f ∈ Iµ#µc \
{
fµ#µc

}
and w ∈ Sn. Then there are column numbers

j ∈
{

1, . . . , µ#
c

}
and j̃ ∈

{
1, . . . , µc − µ#

c

}
satisfying

(c, j)tµw = (c, j̃)tµfw.

In other words, one of the leftmost µ#
c entries in the c-th row of tµw coincides with

one of the leftmost µc − µ#
c entries in the c-th row of tµfw.

Proof. According to Definition 3.2.15, Definition 1.1.1.(ii), and Definition 1.1.53,

tµ and tµf and thus also tµw and tµfw differ only by a permutation of the entries

in the c-th row amongst themselves. Now suppose that none of the leftmost µ#
c

entries in the c-th row of tµw occupies one of the leftmost µc − µ#
c positions in the

c-th row of tµfw. This implies that an application of f to tµ moves the leftmost
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µ#
c entries in the c-th row to the rightmost µ#

c positions in this row. But this in

turn implies that f moves the rightmost µc−µ#
c entries in the c-th row of tµ to the

leftmost µc − µ#
c positions in this row. With all this we get from Definition 3.2.15

and Definition 3.2.22 (see also Remark 3.2.16 and Remark 3.2.23)

f = fµ#µc,

a contradiction. Thus our assumption is wrong, and one of the leftmost µ#
c entries

in the c-th row of tµw coincides with one of the leftmost µc − µ#
c entries in the

c-th row of tµfw. More formally, there are column indices j ∈
{

1, . . . , µ#
c

}
and

j̃ ∈
{

1, . . . , µc − µ#
c

}
satisfying

(c, j)tµw = (c, j̃)tµfw,

as desired. �

The next lemma is similar to Lemma 3.2.20. It makes use of Definition 1.1.6,

Lemma 1.1.8.(i), Remark 1.1.12, Definition 1.1.45.(ii), Definition 1.1.53, Defini-

tion 1.1.55, Lemma 1.1.56.(i), Definition 3.2.5.(ii), Definition 3.2.9, and finally Re-

mark 3.2.10.

Lemma 3.2.27 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be

an AR-index for µ#µ. Moreover, suppose that we have a w ∈ Sn such that the

entries of every column of (tµw)

y[µ]

[µ#]
when considered from top to bottom form

an ascending sequence of successive integers. More formally, this means that if we

write µ# = (µ#
1 , µ

#
2 , . . .) and µ#′ = (µ#′

1 , . . . , µ
#′
µ#

1

) then

∀j ∈
{

1, . . . , µ#
1

}
∀i ∈

{
1, . . . , µ#′

j

}
:

(i, j)tµw = (1, j)tµw + i− 1

(3.36)

holds. Finally, let f ∈ Iµ#µc \
{
fµ#µc

}
and write

fw = ud

with uniquely determined permutations u ∈ SµRc and d ∈ DµRc. Then there is an

m ∈ {2, . . . , n} with the following properties.

(m) (tµw)−1 , (m− 1) (tµw)−1 ∈
[
µ#
]

(m)σtµw = (m− 1)σtµw

(m)ζtµRcd = (m− 1)ζtµRcd
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Proof. According to Remark 3.2.4, the assumptions of the lemma imply n ≥ 2.

Thus the claim is meaningful.

In the following we write µ = (µ1, µ2, . . .) and denote µ# as in the formulation

of the statement. Then an application of Lemma 3.2.26 to the given data supplies

us with an m ∈ {1, . . . , n} satisfying

(m)σtµw ∈
{

1, . . . , µ#
c

}
, (m)ζtµw = c (3.37)

and

(m)σtµfw ∈
{

1, . . . , µc − µ#
c

}
, (m)ζtµfw = c. (3.38)

From (3.37), the fact c > 1, and (3.36) we see

m ∈ {2, . . . , n} . (3.39)

Finally, (3.37) and Definition 1.1.6.(i) show

(m) (tµw)−1 ∈
[
µ#
]
. (3.40)

Now because of (3.40) and again the fact c > 1, and since µ# is a partition, it

follows from condition (3.36) and Lemma 1.1.8 that, in the representation of tµw,

the square containing the entry m − 1 is located immediately above the square

occupied by the entry m and thus also is located in the representation of
[
µ#
]
.

More formally, we have

(m− 1) (tµw)−1 ∈
[
µ#
]
,

(m− 1)σtµw = (m)σtµw,

(m− 1)ζtµw = (m)ζtµw − 1 = c− 1.

(3.41)

By using Definition 3.2.15 and Remark 3.2.16, we get from this

(m− 1)ζtµfw = (m− 1)ζtµw = c− 1.

All this shows together with (3.38) and Lemma 3.2.18, applied with the permu-

tation fw ∈ Sn, the following relation concerning the positions of m and m− 1 in

tµRcfw.

(m)ζtµRcfw = (m− 1)ζtµRcfw = c− 1

Now since u ∈ SµRc = RtµRc (see Definition 1.1.55, Definition 1.1.50, and Re-

mark 1.1.51), the tableaux tµRcfw = tµRcud and tµRcd differ only by a permutation

of the entries in the various rows respectively amongst themselves. This and the

preceding relation imply

(m)ζtµRcd = (m− 1)ζtµRcd. (3.42)

The claim now follows from (3.39), (3.40), (3.41), and (3.42). �
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Remark 3.2.28 Definition 1.1.67, Definition 1.1.66, Definition 3.2.8, and Lem-

ma 3.2.11 show that, using the notation from Lemma 3.2.27, condition (3.36) is

satisfied in particular by the permutation wµ ∈ Sn and the tableau tµwµ = tµ as

well as the permutation wµ#µ ∈ Sn and the tableau tµwµ#µ = tµ
#µ.

3.3 Row number lists

This section describes some constructions with the row number lists introduced

in Section 1.1 (see in particular Definition 1.1.70). These constructions also are

considered in [JAM1, Section 15]. Here they are employed in the derivation of the

generic bases of the modules occurring in the construction of the Specht series.

In the following we use the notations for row number lists and associated objects

introduced in Section 1.1. n continues to denote a positive integer.

First we associate certain tableaux, compositions, and permutations to row num-

ber lists.

Definition 3.3.1 Fix a λ = (λ1, λ2, . . .) � n with λ1 > 0 and choose a ζ =

(ζ1, . . . , ζn) ∈ Zλ.

(i) The λ-tableau t(ζ) is defined by the following construction in the course of

which the diagram [λ] is filled with numbers corresponding to the entries of ζ.

Also, these numbers and the corresponding entries of ζ are divided into good

ones and bad ones.

The construction starts with the diagram

t(ζ)0 = [λ] .

Now fix a j ∈ {1, . . . , n} and suppose that t(ζ)j−1 is already defined. Then

the diagram t(ζ)j is derived from the diagram t(ζ)j−1 by means of the entry

ζj of ζ as follows.

If we have ζj = 1 then t(ζ)j is obtained from t(ζ)j−1 by entering j into the

leftmost empty square of the first row of t(ζ)j−1. Furthermore, j is called a

good entry of the diagram and ζj is called a good entry of ζ.

If we have ζj > 1 and the (ζj−1)-th row of t(ζ)j−1 contains more good entries

than the ζj-th row then t(ζ)j is obtained from t(ζ)j−1 by entering j into the

leftmost empty square of the ζj-th row of t(ζ)j−1. Furthermore, j is called a

good entry of the diagram and ζj is called a good entry of ζ.

If we have ζj > 1 and the (ζj − 1)-th row of t(ζ)j−1 contains exactly as many

good entries as the ζj-th row then t(ζ)j is obtained from t(ζ)j−1 by entering
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j into the rightmost empty square of the ζj-th row of t(ζ)j−1. Furthermore, j

is called a bad entry of the diagram and ζj is called a bad entry of ζ.

With this, t(ζ) is defined as

t(ζ) = t(ζ)n.

(ii) For j ∈ N we define ν(ζ)j ∈ N0 to be the number of good entries in the j-th

row of t(ζ). With this, we define the composition ν(ζ) as

ν(ζ) = (ν(ζ)1, ν(ζ)2, . . .).

(iii) The permutation g(ζ) ∈ Sn is defined as

g(ζ) = t−1
λ t(ζ)

or equivalently by the condition

tλg(ζ) = t(ζ).

Remark 3.3.2 (i) The condition λ1 > 0 in Definition 3.3.1 is imposed here and

in the following mostly for simplicity without really being necessary. It is re-

quired where PK-pairs occur in the following constructions (see Remark 3.2.2).

Since later on these constructions are used only in conjunction with PK-pairs,

the above condition on λ is not a substantial restriction.

(ii) The construction of t(ζ) for a ζ = (ζ1, . . . , ζn) ∈ Zλ with λ = (λ1, λ2, . . .) � n

in Definition 3.3.1.(i) does indeed produce a λ-tableau since for every j ∈
{1, . . . , n} in the course of the transition from t(ζ)j−1 to t(ζ)j the value j is

entered into the ζj-th row of the diagram λ. And since ζ is a λ-row number

list (see Definition 1.1.70.(i)), for every k ∈ N exactly λk entries are inserted

in the k-th row in the course of the entire construction. This shows that in

the j-th step of the construction an empty square is available in the ζj-th row

and at the end of the construction the diagram [λ] is filled with the numbers

1, . . . , n.

The statements (iv) and (v) in the next lemma make use of Definition 3.2.9.

Lemma 3.3.3 Let λ = (λ1, λ2, . . .) � n with λ1 > 0 and let ζ = (ζ1, . . . , ζn) ∈ Zλ.

Then the following statements hold.
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(i) We have

ν(ζ) ` k

with a k ∈ {1, . . . , n}.

(ii) The diagrams [ν(ζ)] and [λ] satisfy

[ν(ζ)] ⊆ [λ] .

(iii) ν(ζ)λ is a PKn-pair with ν(ζ)λ 6= 00.

(iv) In every row of t(ζ)
y[λ]

[ν(ζ)] the entries are arranged in ascending order from

left to right.

(v) In every column of t(ζ)
y[λ]

[ν(ζ)] the entries are arranged in ascending order from

top to bottom.

Proof. (i) Definition 3.3.1.(i) shows that t(ζ) contains at most n good entries. This

definition and the condition λ1 > 0 also imply that t(ζ) contains at least one good

entry. Thus we have, according to Definition 3.3.1.(ii),

ν(ζ) � k

with a k ∈ {1, . . . , n}. Furthermore, for every j ∈ {0, . . . , n} and every m ∈ N the

m-th row of the diagram t(ζ)j from Definition 3.3.1.(i) contains at least as many

good entries as the (m + 1)-th row. This is true for j = 0 and follows inductively

from the construction of the diagrams for j > 0. From this fact applied with j = n,

Definition 3.3.1.(i), and Definition 3.3.1.(ii) we get

ν(ζ)1 ≥ ν(ζ)2 ≥ · · · .

This shows

ν(ζ) ` k

with a k ∈ {1, . . . , n}, as desired.

(ii) From the construction of t(ζ) in Definition 3.3.1.(i) we get (see Defini-

tion 3.1.1.(i)) [
λt(ζ)

]
= [λ] .

Thus for every j ∈ N the j-th row of t(ζ) contains at most λj good entries. Ac-

cording to Definition 3.3.1.(ii), this means

∀j ∈ N : ν(ζ)j ≤ λj,
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or equivalently

[ν(ζ)] ⊆ [λ] .

(iii) From Definition 3.3.1.(i) and Definition 3.3.1.(ii) we get

ν(ζ)1 = λ1.

This shows together with statements (i) and (ii) that ν(ζ)λ is a PKn-pair as in

Definition 3.2.1. Obviously, ν(ζ)λ is different from 00.

(iv) According to statement (ii), we can build t(ζ)
y[λ]

[ν(ζ)] . According to Defini-

tion 3.3.1.(i) and Definition 3.3.1.(ii), t(ζ)
y[λ]

[ν(ζ)] contains exactly the good entries

of t(ζ). In the construction of t(ζ) these entries are entered into the various rows

of [ν(ζ)] ⊆ [λ] in ascending order from left to right. This proves the claim.

(v) If in the course of the construction of t(ζ) in Definition 3.3.1.(i) a good entry

is entered into the diagram [ν(ζ)] ⊆ [λ] below the first row then a good entry with

a smaller value is already located immediately above this new entry. The proof of

the claim is now completed as in the proof of statement (iv). �

The following lemma makes use of Definition 1.1.70.(iii), Definition 1.1.58.(ii), and

Definition 1.1.67.

Lemma 3.3.4 Let λ = (λ1, λ2, . . .) � n with λ1 > 0. Then the map

Zλ → Dλ, ζ 7→ [wλg(ζ)]λ

is a bijection.

Proof. Fix a ζ = (ζ1, . . . , ζn) ∈ Zλ. Then we see from the construction of t(ζ) and

the construction of tζ (see Definition 1.1.73) that for every j ∈ {1, . . . , n} the entry

j is located in the (ζj)-th row of each of the tableaux t(ζ) and tζ . This means that

for every i ∈ N the set of the entries in the i-th row of t(ζ) and the set of the entries

in the i-th row of tζ coincide. Moreover, Definition 1.1.67, Definition 1.1.58.(ii), and

Definition 1.1.55 show that the tableau tλ[wλg(ζ)]λ is obtained from the tableau

tλwλg(ζ) = tλg(ζ) = t(ζ)

by a permutation of the entries in the various rows of t(ζ) respectively amongst

themselves. Furthermore, according to Definition 1.1.58 again and also Defini-

tion 1.1.73, both tλ[wλg(ζ)]λ and tζ are row standard. All this implies

tλ[wλg(ζ)]λ = tζ .
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Now the desired bijection is obtained as the concatenation of the bijection from

Definition 1.1.74 (see also Lemma 1.1.75) and the inverse of the bijection from

Lemma 1.1.59.(i). �

The sets of row number lists introduced next are employed in the construction

and indexing of the generic bases of the modules occurring in the derivation of the

Specht series.

Definition 3.3.5 For a PKn-pair µ#µ with µ#µ 6= 00 we define Zµ#µ ⊆ Zµ as

Zµ#µ =
{
ζ ∈ Zµ

∣∣∣ [µ#
]
⊆ [ν(ζ)]

}
.

Furthermore we put

Z00 = ∅.

The statements (iii) and (iv) in the following lemma make use of Definition 3.2.3

and Definition 3.2.5.(iv).

Lemma 3.3.6 Let µ#µ be a PKn-pair with µ#µ 6= 00. Then the following state-

ments hold.

(i) We have

Zµ#µ 6= ∅.

(ii) For a PKn-pair λ#µ with λ#µ 6= 00 and
[
µ#
]
⊆
[
λ#
]

we have

Zλ#µ ⊆ Zµ#µ.

(iii) Let c ∈ N \ {1} be an AR-index for µ#µ. Then we have

Zµ#Acµ ⊆ Zµ#µ.

(iv) Let µ# = (µ#
1 , µ

#
2 , . . .) ` k with a k ∈ {1, . . . , n} and let c ∈ N \ {1} be an

AR-index for µ#µ. Then we have

Zµ#µ \ Zµ#Acµ =
{
ζ ∈ Zµ#µ

∣∣∣µ#
c = ν(ζ)c

}
.

Proof. (i) Let µ = (µ1, µ2, . . .) and consider

ζ = (1µ1 , 2µ2 , . . .) ∈ Zµ

(see Definition 1.1.70 and Remark 1.1.71). Then we see from Definition 3.3.1.(i)

that for every j ∈ N the j-th row of t(ζ) contains exactly min {µ1, . . . , µj} good

entries. According to Definition 3.3.1.(ii), this means

∀j ∈ N : ν(ζ)j = min {µ1, . . . , µj} .
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If we furthermore write µ# = (µ#
1 , µ

#
2 , . . .) then we get from Definition 3.2.1 and

Definition 1.1.2.(i)

∀j ∈ N : µ#
j ≤ min {µ1, . . . , µj} .

All in all we now have

∀j ∈ N : µ#
j ≤ ν(ζ)j.

This is equivalent to [
µ#
]
⊆ [ν(ζ)] .

Now Definition 3.3.5 shows

ζ ∈ Zµ#µ

and furthermore

Zµ#µ 6= ∅,

as desired.

(ii) According to Definition 3.3.5, we have for every ζ ∈ Zλ#µ[
λ#
]
⊆ [ν(ζ)] .

From this and the assumptions we get[
µ#
]
⊆ [ν(ζ)] ,

that is,

ζ ∈ Zµ#µ.

Since ζ ∈ Zλ#µ is arbitrarily chosen, the claim follows.

(iii) In the case µ#Acµ = 00 we have Zµ#Acµ = ∅ (see Definition 3.3.5) and there

is nothing to prove. In the case µ#Acµ 6= 00 the claim follows from Lemma 3.2.7.(i)

and statement (ii).

(iv) In order to prove this statement, we distinguish the cases µ#Acµ 6= 00 and

µ#Acµ = 00.

First we consider the case µ#Acµ 6= 00. Here statement (iii) shows Zµ#Acµ ⊆
Zµ#µ and we must prove ∀ζ ∈ Zµ#µ : ζ /∈ Zµ#Acµ ⇔ µ#

c = ν(ζ)c. To this end, fix a

ζ ∈ Zµ#µ. Then Definition 3.3.5 shows
[
µ#
]
⊆ [ν(ζ)] (see also Definition 3.3.1.(ii)).

This is equivalent to

∀j ∈ N : µ#
j ≤ ν(ζ)j. (3.43)

Because of µ#Acµ 6= 00 we furthermore have µ#Ac = ((µ#Ac)1, (µ
#Ac)2, . . .) ` k+1

(see Definition 3.2.5). From this, Definition 3.3.5, and Definition 1.1.6.(i) we get

ζ /∈ Zµ#Acµ ⇔
[
µ#Ac

]
6⊆ [ν(ζ)]

⇔ ∃j ∈ N such that (µ#Ac)j 6≤ ν(ζ)j.

(3.44)
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Now we have according to Definition 3.2.5.(i)

(µ#Ac)j =

 µ#
c + 1 for j = c

µ#
j for j ∈ N \ {c}

.

This implies together with (3.44) and (3.43)

ζ /∈ Zµ#Acµ ⇔ µ#
c + 1 6≤ ν(ζ)c

and furthermore because of µ#
c ≤ ν(ζ)c (see (3.43))

ζ /∈ Zµ#Acµ ⇔ µ#
c = ν(ζ)c.

This proves the claim in the case µ#Acµ 6= 00.

Now we consider the case µ#Acµ = 00. Here we have Zµ#Acµ = ∅ according

to Definition 3.3.5 and we must show ∀ζ ∈ Zµ#µ : µ#
c = ν(ζ)c. To this end, fix

a ζ ∈ Zµ#µ ⊆ Zµ. According to Definition 3.3.5 and Definition 1.1.6.(i), we then

have

µ#
c ≤ ν(ζ)c

(see (3.43)). Moreover, we see from Lemma 3.3.3.(i) and Definition 1.1.2.(i)

ν(ζ)c ≤ ν(ζ)c−1.

Furthermore, we get from Lemma 3.3.3.(ii) and Definition 1.1.6.(i) with µ as in the

proof of statement (i)

ν(ζ)c−1 ≤ µc−1.

According to Definition 3.2.3, we also have

µc−1 = µ#
c−1,

and finally the fact µ#Acµ = 00 and Definition 3.2.5.(iv) imply

µ#
c−1 = µ#

c .

From all these relations we obtain

µ#
c ≤ ν(ζ)c ≤ ν(ζ)c−1 ≤ µc−1 = µ#

c−1 = µ#
c ,

that is,

µ#
c = ν(ζ)c.

This also proves the claim in the case µ#Acµ = 00. �
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Lemma 3.3.7 Let λ = (λ1, λ2, . . .) � n with λ1 > 0. Then (λ1)λ is a PKn-pair

with (λ1)λ 6= 00 and we have

Z(λ1)λ = Zλ.

Proof. Because of the assumption λ1 > 0 and according to Definition 1.1.1.(i), we

have

1 ≤ λ1 ≤ n.

Now Definition 3.2.1 shows that (λ1)λ is a PK-pair with (λ1)λ 6= 00.

Furthermore, we have according to Definition 3.3.5

Z(λ1)λ ⊆ Zλ.

In order to prove the reverse inclusion, fix a

ζ ∈ Zλ.

Then, according to Lemma 3.3.3, ν(ζ)λ with

ν(ζ) = (ν(ζ)1, ν(ζ)2, . . .)

as in Definition 3.3.1 is a PK-pair satisfying ν(ζ)λ 6= 00. Thus, according to Defi-

nition 3.2.1, we have the relation

ν(ζ)1 = λ1.

This implies

[(λ1)] ⊆ [ν(ζ)]

and with Definition 3.3.5 furthermore

ζ ∈ Z(λ1)λ.

Because ζ ∈ Zλ is arbitrarily chosen we now have

Zλ ⊆ Z(λ1)λ

and all in all

Z(λ1)λ = Zλ,

as desired. �

The construction introduced in the following also is considered in [JAM1, Sec-

tion 15]. Here it is used in the investigation of homomorphisms between the modules

occurring in the derivation of the Specht series.
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Definition 3.3.8 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Then for

ζ = (ζ1, . . . , ζn) ∈ Zµ#µ \ Zµ#Acµ

the sequence

Jµ#µc(ζ) = (η1, . . . , ηn) ∈ Nn

is defined by

ηj =

{
c− 1 if we have ζj = c and ζj is a bad entry of ζ

ζj otherwise

for j ∈ {1, . . . , n}.

Lemma 3.3.9 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Then the map

Jµ#µc : Zµ#µ \ Zµ#Acµ → N
n, ζ 7→ Jµ#µc(ζ)

maps the set Zµ#µ \ Zµ#Acµ bijectively onto the set Zµ#µRc ⊆ Nn.

Proof. See [JAM1, Theorem 15.14]. The notion of a sequence of type µ used there

corresponds to the notion of a µ-row number list used here. Also, the notions of good

and bad entries in a sequence of type µ and its corresponding row number list from

[JAM1, Definition 15.2] and Definition 3.3.1.(i) coincide. The condition µ#
c−1 = µc−1

imposed in Definition 3.2.3 is used in the proof of [JAM1, Theorem 15.14] (see also

Remark 3.2.6.(ii)). �

Corollary 3.3.10 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Then we have

Zµ#µ \ Zµ#Acµ 6= ∅.

Proof. According to Lemma 3.2.7.(ii), µ#µRc is a PK-pair satisfying µ#µRc 6= 00.

With that we get from Lemma 3.3.6.(i)

Zµ#µRc 6= ∅.

The claim now follows from Lemma 3.3.9. �

Lemma 3.3.11 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Then we have

∀ζ ∈ Zµ#µ \ Zµ#Acµ :
[
wµRcg(Jµ#µc(ζ))

]µRc
=
[
fµ#µcwµg(ζ)

]µRc
.
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Proof. According to Corollary 3.3.10, we have Zµ#µ \ Zµ#Acµ 6= ∅. So fix a

ζ ∈ Zµ#µ \ Zµ#Acµ. Then Definition 1.1.58 and Lemma 1.1.59.(i) show that to

prove the desired identity
[
wµRcg(Jµ#µc(ζ))

]µRc
=
[
fµ#µcwµg(ζ)

]µRc
it suffices to

prove tµRc
[
wµRcg(Jµ#µc(ζ))

]µRc
= tµRc

[
fµ#µcwµg(ζ)

]µRc
.

Now we have according to Definition 1.1.58, Definition 1.1.55, Definition 1.1.45,

Definition 1.1.66, Definition 1.1.67, and Definition 3.3.1

tµRc
[
wµRcg(Jµ#µc(ζ))

]µRc
= tµRcwµRcg(Jµ#µc(ζ)) with entries

in each row arranged in ascending

order from left to right

= tµRcg(Jµ#µc(ζ)) with entries

in each row arranged in ascending

order from left to right

= t(Jµ#µc(ζ)) with entries

in each row arranged in ascending

order from left to right.

Moreover, if we write µ = (µ1, µ2, . . .) and µ# = (µ#
1 , µ

#
2 , . . .), we get from Def-

inition 1.1.58.(ii), Definition 1.1.55, Definition 1.1.45.(iii), Lemma 3.2.24, Defi-

nition 1.1.66, Definition 1.1.67, Definition 3.3.1, Lemma 3.3.6.(iv), and Defini-

tion 3.3.8

tµRc
[
fµ#µcwµg(ζ)

]µRc
= tµRcfµ#µcwµg(ζ) with entries

in each row arranged in ascending

order from left to right

= (tµwµg(ζ) with the rightmost

µc − µ#
c entries of the c-th row

moved to the end of the

(c− 1)-th row) with entries

in each row arranged in ascending

order from left to right

= (tµg(ζ) with the rightmost

µc − µ#
c entries of the c-th row

moved to the end of the

(c− 1)-th row) with entries

in each row arranged in ascending
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order from left to right

= (t(ζ) with the bad entries of the

c-th row moved to the end of the

(c− 1)-th row) with entries

in each row arranged in ascending

order from left to right

= t(Jµ#µc(ζ)) with entries

in each row arranged in ascending

order from left to right.

Now the claim follows from the preceding two calculations as explained above. �

Corollary 3.3.12 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Then the map

Zµ#µ \ Zµ#Acµ → DµRc , ζ 7→
[
fµ#µcwµg(ζ)

]µRc
is injective.

Proof. Lemma 3.3.9, the inclusion Zµ#µRc ⊆ ZµRc (see Definition 3.3.5), and

Lemma 3.3.4 — applied with the composition µRc — show that the map

Zµ#µ \ Zµ#Acµ → DµRc , ζ 7→
[
wµRcg(Jµ#µc(ζ))

]µRc
is injective. Now the claim follows from this and Lemma 3.3.11. �

Now we introduce certain sets of permutations associated to row number lists.

These sets are used in the construction of the generic basis elements of the modules

occurring in the derivation of the Specht series. The following definition makes use

of Definition 3.2.12.

Definition 3.3.13 Let λ = (λ1, λ2, . . .) � n with λ1 > 0 and let ζ ∈ Zλ. Then

Y (ζ) ⊆ Sn is defined as

Y (ζ) = Vν(ζ)λ.

The next statement uses notation as in Lemma 3.2.14.(ii) and furthermore makes

use of Definition 3.1.14 and Lemma 3.1.15.(i).

Lemma 3.3.14 Let µ = (µ1, µ2, . . .) � n with µ1 > 0 and let η ∈ Zµ. Then the

following statements hold.
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(i) For i ∈ N we denote by mi ∈ N0 the number of lattice points contained in the

i-th column of [µ]. With that we put for k ∈ N0

m+
k =

k∑
j=1

mj.

Furthermore, we write ν(η) = (ν(η)1, ν(η)2, . . .) ` k with a k ∈ {1, . . . , n}.
Then we also have ν(η)1 = µ1 and ν(η)′ = (ν(η)′1, . . . , ν(η)′µ1

) ` k with

ν(η)′µ1
> 0. Now if we put

κ = (ν(η)′1, 1
m1−ν(η)′1 , . . . , ν(η)′µ1

, 1mµ1−ν(η)′µ1 , 1n−m
+
µ1 ) � n

then

Y (η) = Sκ

holds.

(ii) [wµg(η)]µ ∈ Dµ is the unique maximal element of {[wµyg(η)]µ | y ∈ Y (η)} ⊆
Dµ with respect to the ordering relation ≤ on Dµ. In other words, we have

[wµg(η)]µ ∈ {[wµyg(η)]µ | y ∈ Y (η)}

and

∀y ∈ Y (η) \ {1Sn} : [wµyg(η)]µ < [wµg(η)]µ.

Proof. (i) From Lemma 3.3.3.(i) we get ν(η) ` k with a k ∈ {1, . . . , n}. According

to Lemma 3.3.3.(iii), ν(η)µ is a PK-pair satisfying ν(η)µ 6= 00. With this we

obtain from Definition 3.2.1 ν(η)1 = µ1. This fact and Remark 1.1.12 prove the

form of ν(η)′ described in the statement. Now the remaining claims follow from

Definition 3.3.13 and an application of Lemma 3.2.14.(ii) to the PK-pair ν(η)µ.

(ii) According to statement (i), we have 1Sn ∈ Y (η) and thus

[wµg(η)]µ ∈ {[wµyg(η)]µ | y ∈ Y (η)} .

Now fix a

y ∈ Y (η) \ {1Sn} .

In order to prove the relation [wµyg(η)]µ < [wµg(η)]µ, we first compare the tableaux

tµwµg(η) = tµg(η) = t(η) and tµwµyg(η) = tµyg(η)

(see Definition 3.3.1). According to Definition 3.3.13, Definition 3.2.12, and Re-

mark 3.2.13, tµy is obtained from tµ by a permutation of the entries in the various
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columns of tµ

y[µ]
[ν(η)] respectively amongst themselves (see Definition 3.2.9). With

that, an application of g(η) to these tableaux shows that tµyg(η) is obtained from

tµg(η) by a permutation of the entries in the various columns of(
tµ

y[µ]
[ν(η)]

)
g(η) = (tµg(η))

y[µ]
[ν(η)]

respectively amongst themselves. Since y 6= 1Sn , we also have

tµg(η) 6= tµyg(η).

Thus there is an entry

m ∈ {1, . . . , n}

such that on the one hand m occupies different positions in tµg(η) and tµyg(η) and

on the other hand every k ∈ {m+ 1, . . . , n} occupies the same position in tµg(η)

and tµyg(η). In other words, using Definition 1.1.45.(ii), we can write

∀k ∈ {m+ 1, . . . , n} : (k)ζtµyg(η) = (k)ζtµg(η). (3.45)

Furthermore, in the construction of tµyg(η) from tµg(η) described above not all

entries different from m can remain fixed, in addition to m there must be another

— by choice of m necessarily smaller — entry which is moved. This shows

m > 1. (3.46)

Moreover, the construction of tµyg(η) from tµg(η) described above shows that the

positions occupied by m in both these tableaux are located in the same column

within [ν(η)]. Finally, Lemma 3.3.3.(v) and the choice of m show that the positions

in the column of (tµg(η))
y[µ]

[ν(η)] containingm which are located belowm only contain

entries bigger than m. These entries are not moved in the transition from tµg(η) to

tµyg(η). Since in the course of this transition m itself is moved within its column

in (tµg(η))
y[µ]

[ν(η)] , the position occupied by m in tµyg(η) must be located above the

position occupied by m in tµg(η). More formally, we have

(m)ζtµyg(η) < (m)ζtµg(η). (3.47)

Now we move from the tableaux tµg(η) = tµwµg(η) and tµyg(η) = tµwµyg(η)

to the tableaux

tµ[wµg(η)]µ and tµ[wµyg(η)]µ.

According to Definition 1.1.58 and Definition 1.1.55, both tµwµg(η) and tµ[wµg(η)]µ

as well as tµwµyg(η) and tµ[wµyg(η)]µ respectively differ by a permutation of the
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entries in the various rows amongst themselves. With this we get from (3.45) and

(3.47)

∀k ∈ {m+ 1, . . . , n} : (k)ζtµ[wµyg(η)]µ = (k)ζtµ[wµg(η)]µ (3.48)

and

(m)ζtµ[wµyg(η)]µ < (m)ζtµ[wµg(η)]µ . (3.49)

From (3.48), Definition 3.1.1.(ii), Remark 3.1.2.(ii), Definition 3.1.1.(i), and Re-

mark 3.1.2.(i) we easily obtain

∀j ∈ {m, . . . , n} : λ(tµ[wµyg(η)]µ)⇓nj = λ(tµ[wµg(η)]µ)⇓nj . (3.50)

Similarly, we get from (3.46), (3.48), (3.49), and Definition 1.1.4.(i)

λ(tµ[wµyg(η)]µ)⇓nm−1 < λ(tµ[wµg(η)]µ)⇓nm−1 . (3.51)

(3.50) and (3.51) together now show, according to Definition 3.1.4.(i),

tµ[wµyg(η)]µ < tµ[wµg(η)]µ

which, according to Definition 3.1.14, implies

[wµyg(η)]µ < [wµg(η)]µ.

This proves the claim. �

The following lemma states additional facts about Young subgroups Y (ζ) asso-

ciated to certain row number lists ζ. It makes use of Definition 3.2.1, Defini-

tion 3.2.3, Definition 3.2.5, Definition 3.2.22, Definition 1.1.58, Definition 3.1.14,

and Lemma 3.1.15.(i).

Lemma 3.3.15 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Furthermore let η ∈ Zµ#µ \ Zµ#Acµ ⊆ Zµ. Then the following

statements hold.

(i)
(
fµ#µcwµ

)−1
is the shortest representative of the right coset Y (η)

(
fµ#µcwµ

)−1

of the Young subgroup Y (η) in Sn.

(ii) The permutation
[
fµ#µcwµg(η)

]µRc ∈ DµRc is the uniquely determined maxi-

mal element of the set
{[
fµ#µcwµyg(η)

]µRc ∣∣∣ y ∈ Y (η)
}
⊆ DµRc with respect

to the ordering relation ≤ on DµRc. In other words, we have[
fµ#µcwµg(η)

]µRc ∈ {[fµ#µcwµyg(η)
]µRc ∣∣∣ y ∈ Y (η)

}
and

∀y ∈ Y (η) \ {1Sn} :
[
fµ#µcwµyg(η)

]µRc
<
[
fµ#µcwµg(η)

]µRc
.
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Proof. (i) The proof of this statement is similar to the proof of statement (viii) in

Lemma 3.2.14.

Write µ = (µ1, µ2, . . .) � n. Then we get from Lemma 3.3.14 with the notation

from there (see also Remark 3.2.2)

κ = (ν(η)′1, 1
m1−ν(η)′1 , . . . , ν(η)′µ1

, 1mµ1−ν(η)′µ1 , 1n−m
+
µ1 ) � n

and

Y (η) = Sκ.

With this and Definition 1.1.58.(i), we must show that tκ
(
fµ#µcwµ

)−1
is row stan-

dard.

To this end, we divide κ into µ1 +1 successive subsequences. Using the notation

from Lemma 3.3.14, we define for every j ∈ {1, . . . , µ1} the j-th subsequence as

(ν(η)′j, 1
mj−ν(η)′j).

The (µ1 + 1)-th subsequence is defined as

(1n−m
+
µ1 , 0, 0, 0, . . .).

The result of the concatenation of these sequences in the order implied by their

numbering is exactly κ.

Now we compare the tableaux tκ and tµ. Since for every j ∈ {1, . . . , µ1} the

j-th subsequence of κ is a composition of mj, we obtain from the definitions of these

tableaux and the particular form of the subsequences of κ the following statement

(see also Definition 3.2.9, Remark 3.2.10, and Lemma 3.3.3.(iii)).

For every j ∈ {1, . . . , µ1} the sequence of the entries in the row

of tκ corresponding to the first entry in the j-th subsequence

of κ when considered from left to right coincides with the

sequence of the entries in the j-th column of tµ

y[µ]
[ν(η)] when

considered from top to bottom.

(3.52)

Next we compare the tableaux tµ and tµRcfµ#µcwµ. To this end, we write µ# =

(µ#
1 , µ

#
2 , . . .) in the following. Then we get from the assumption η ∈ Zµ#µ \Zµ#Acµ

and Lemma 3.3.6.(iv)

µ#
c = ν(η)c. (3.53)

Moreover, we have according to Lemma 3.3.3.(ii)

[ν(η)] ⊆ [µ] . (3.54)
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This and the construction of µRc from µ in Definition 3.2.5.(ii) lead to

[ν(η)] ⊆ [µRc] . (3.55)

Now, according to Lemma 3.2.24, the tableau tµRcfµ#µcwµ is obtained from the

tableau tµwµ = tµ by moving the rightmost µc− µ#
c entries in the c-th row of tµ in

the given order to the end of the (c−1)-th row of tµ. This process doesn’t move the

leftmost ν(η)c = µ#
c (see (3.53)) entries in the c-th row of tµ — that is, exactly the

entries in the c-th row occupying positions contained in [ν(η)] — and the entries in

all other rows of tµ. This implies

tµ

y[µ]
[ν(η)] =

(
tµRcfµ#µcwµ

)y[µRc]
[ν(η)] . (3.56)

Here, ν(η) and µRc are not considered a PK-pair.

Now we get from (3.52) and (3.56) the following relation between rows of tκ and

columns of tµRcfµ#µcwµ.

For every j ∈ {1, . . . , µ1} the sequence of the entries in

the row of tκ corresponding to the first entry in the j-th

subsequence of κ when considered from left to right coin-

cides with the sequence of the entries in the j-th column of(
tµRcfµ#µcwµ

)y[µRc]
[ν(η)] when considered from top to bottom.

As before, ν(η) and µRc are not considered a PK-pair.

The application of
(
fµ#µcwµ

)−1
to the tableaux tκ and tµRcfµ#µcwµ occurring

in the preceding relation leads to the following statement.

For every j ∈ {1, . . . , µ1} the sequence of the entries in the

row of tκ
(
fµ#µcwµ

)−1
corresponding to the first entry in the

j-th subsequence of κ when considered from left to right co-

incides with the sequence of the entries in the j-th column of

tµRc
y[µRc]

[ν(η)] when considered from top to bottom.

Again, ν(η) and µRc are not considered a PK-pair. From the preceding relation

and the fact that tµRc is column standard, we see that for every j ∈ {1, . . . , µ1}
the entries in the row of tκ

(
fµ#µcwµ

)−1
corresponding to the first entry in the j-th

subsequence of κ are arranged in ascending order from left to right. Furthermore,

the construction of the subsequences of κ and the particular form of κ show that

every other row of tκ
(
fµ#µcwµ

)−1
contains at most one entry.

All this implies that tκ
(
fµ#µcwµ

)−1
is row standard. From this the claim follows

as explained above.
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(ii) The proof of this statement is similar to the proof of statement (ii) in

Lemma 3.3.14.

According to Lemma 3.3.14.(i), we have 1Sn ∈ Y (η) and thus[
fµ#µcwµg(η)

]µRc ∈ {[fµ#µcwµyg(η)
]µRc ∣∣∣ y ∈ Y (η)

}
.

Now fix a

y ∈ Y (η) \ {1Sn} .

In order to establish the desired relation
[
fµ#µcwµyg(η)

]µRc
<
[
fµ#µcwµg(η)

]µRc
,

we compare various tableaux. To this end, we write µ = (µ1, µ2, . . .), µ
# =

(µ#
1 , µ

#
2 , . . .), and ν(η) = (ν(η)1, ν(η)2, . . .) as in the proof of statement (i). With

that we have, again as in the proof of statement (i),

µ#
c = ν(η)c, [ν(η)] ⊆ [µ] , [ν(η)] ⊆ [µRc]

(see (3.53), (3.54), (3.55), and Definition 1.1.6).

Now, according to Lemma 3.2.24, the tableau tµRcfµ#µcwµg(η) is obtained from

the tableau tµwµg(η) = tµg(η) = t(η) by moving the rightmost µc−µ#
c entries in the

c-th row of tµwµg(η) in the given order to the end of the (c−1)-th row of tµwµg(η).

This process doesn’t move the leftmost ν(η)c = µ#
c (see above) entries in the c-th

row of tµwµg(η) — that is, exactly the entries in the c-th row of tµwµg(η) occupying

positions contained in [ν(η)] — and the entries in all other rows of tµwµg(η). This

implies (see Definition 3.2.9)(
tµRcfµ#µcwµg(η)

)y[µRc]
[ν(η)] = (tµwµg(η))

y[µ]
[ν(η)] = t(η)

y[µ]
[ν(η)] .

Here, ν(η) and µRc are not considered a PK-pair. Now we get the following state-

ment from the preceding relation and Lemma 3.3.3.(v).

The entries in every column of
(
tµRcfµ#µcwµg(η)

)y[µRc]
[ν(η)] are

arranged in ascending order from top to bottom.
(3.57)

As before, ν(η) and µRc are not considered a PK-pair.

In the same way, again according to Lemma 3.2.24, the tableau tµRcfµ#µcwµ is

obtained from the tableau tµwµ = tµ by moving the rightmost µc − µ#
c entries in

the c-th row of tµwµ in the given order to the end of the (c− 1)-th row of tµwµ and

not touching the leftmost ν(η)c = µ#
c entries in the c-th row and the entries in all

other rows of tµwµ. This implies(
tµRcfµ#µcwµ

)y[µRc]
[ν(η)] = (tµwµ)

y[µ]
[ν(η)] = tµ

y[µ]
[ν(η)] . (3.58)
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Again, ν(η) and µRc are not considered a PK-pair. Furthermore, Definition 3.3.13,

Definition 3.2.12, and Remark 3.2.13 show that the tableau tµwµy is obtained

from the tableau tµwµ by an application of y ∈ Y (η) which only permutes the

entries in the various columns of (tµwµ)
y[µ]

[ν(η)] respectively amongst themselves.

From this and (3.58) we see that the tableau tµRcfµ#µcwµy is obtained from the

tableau tµRcfµ#µcwµ by a permutation of the entries in the various columns of(
tµRcfµ#µcwµ

)y[µRc]
[ν(η)] respectively amongst themselves. As before, ν(η) and µRc are

not considered a PK-pair. Finally, the application of g(η) to the tableaux occurring

in this construction leads to the following relation between tµRcfµ#µcwµg(η) and

tµRcfµ#µcwµyg(η).

The tableau tµRcfµ#µcwµyg(η) is obtained from the tableau

tµRcfµ#µcwµg(η) by a permutation of the entries in the vari-

ous columns of
(
tµRcfµ#µcwµg(η)

)y[µRc]
[ν(η)] respectively amongst

themselves.

(3.59)

Again, ν(η) and µRc are not considered a PK-pair.

Now statements (3.57) and (3.59) enable us to establish the desired relation[
fµ#µcwµyg(η)

]µRc
<
[
fµ#µcwµg(η)

]µRc
. Because of y 6= 1Sn we have

tµRcfµ#µcwµg(η) 6= tµRcfµ#µcwµyg(η).

So we must have an entry

m ∈ {1, . . . , n}

such that on the one hand m occupies different positions in tµRcfµ#µcwµg(η) and

tµRcfµ#µcwµyg(η) and on the other hand every k ∈ {m+ 1, . . . , n} occupies the

same position in tµRcfµ#µcwµg(η) and tµRcfµ#µcwµyg(η). Thus we can write, using

Definition 1.1.45.(ii),

∀k ∈ {m+ 1, . . . , n} : (k)ζtµRcf
µ#µc

wµyg(η) = (k)ζtµRcfµ#µcwµg(η). (3.60)

Moreover, the construction of tµRcfµ#µcwµyg(η) from tµRcfµ#µcwµg(η) described in

(3.59) cannot fix all entries different from m, in addition to m there must be another

— by choice of m necessarily smaller — entry which is moved. This shows

m > 1. (3.61)

Furthermore, again according to (3.59), the positions occupied by m in the tableaux

tµRcfµ#µcwµg(η) and tµRcfµ#µcwµyg(η) are located in the same column but in dif-

ferent rows of [ν(η)]. Finally, (3.57) and the choice of m show that the positions

in the column of
(
tµRcfµ#µcwµg(η)

)y[µRc]
[ν(η)] containing m which are located below m
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only contain entries bigger than m. These entries are not moved in the transition

from tµRcfµ#µcwµg(η) to tµRcfµ#µcwµyg(η). Since in the course of this transition m

itself is moved within its column in
(
tµRcfµ#µcwµg(η)

)y[µRc]
[ν(η)] , the position occupied

by m in tµRcfµ#µcwµyg(η) must be located above the position occupied by m in

tµRcfµ#µcwµg(η). More formally, we have

(m)ζtµRcf
µ#µc

wµyg(η) < (m)ζtµRcf
µ#µc

wµg(η). (3.62)

Now we move from the tableaux tµRcfµ#µcwµg(η) and tµRcfµ#µcwµyg(η) to the

tableaux

tµRc
[
fµ#µcwµg(η)

]µRc
and tµRc

[
fµ#µcwµyg(η)

]µRc
.

From Definition 1.1.58.(ii) and Definition 1.1.55 we see that tµRcfµ#µcwµg(η) and

tµRc
[
fµ#µcwµg(η)

]µRc
and also tµRcfµ#µcwµyg(η) and tµRc

[
fµ#µcwµyg(η)

]µRc
respec-

tively differ by a permutation of the entries in the various rows amongst them-

selves. This means that the row numbers of entries remain fixed in the tran-

sition from tµRcfµ#µcwµg(η) to tµRc
[
fµ#µcwµg(η)

]µRc
and in the transition from

tµRcfµ#µcwµyg(η) to tµRc
[
fµ#µcwµyg(η)

]µRc
. With that we get from (3.60) and

(3.62)

∀k ∈ {m+ 1, . . . , n} : (k)ζ
tµRc [fµ#µc

wµyg(η)]
µRc = (k)ζ

tµRc [fµ#µc
wµg(η)]

µRc (3.63)

and

(m)ζ
tµRc [fµ#µc

wµyg(η)]
µRc < (m)ζ

tµRc [fµ#µc
wµg(η)]

µRc . (3.64)

From (3.63), Definition 3.1.1, and Remark 3.1.2.(ii) we easily obtain

∀j ∈ {m, . . . , n} : λ

(
tµRc [fµ#µc

wµyg(η)]
µRc

)
⇓nj = λ

(
tµRc [fµ#µc

wµg(η)]
µRc

)
⇓nj . (3.65)

Similarly, we get from (3.61), (3.63), (3.64), and Definition 1.1.4.(i)

λ

(
tµRc [fµ#µc

wµyg(η)]
µRc

)
⇓nm−1 < λ

(
tµRc [fµ#µc

wµg(η)]
µRc

)
⇓nm−1 . (3.66)

(3.65) and (3.66) together now show, according to Definition 3.1.4.(i),

tµRc
[
fµ#µcwµyg(η)

]µRc
< tµRc

[
fµ#µcwµg(η)

]µRc
which in turn, according to Definition 3.1.14, leads to[

fµ#µcwµyg(η)
]µRc

<
[
fµ#µcwµg(η)

]µRc
.

This proves the claim of the statement. �

Now we are in possession of all the combinatorial objects and statements required

in the derivation of the generic Specht series.
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3.4 PK-modules for Hecke algebras of type A

In this and the following sections of this chapter the construction of Specht series

for Hecke algebras of type A and certain modules of these algebras is carried out.

As always, n ∈ N denotes a positive integer. Furthermore, we fix a coefficient pair

(R, q) as in Definition 1.2.1 for all that follows.

Next we introduce a family of modules for H(R,q)
An−1

indexed by PKn-pairs. Mod-

ule families of this kind also are considered in [DJ1, Section 7] and [JAM1, Sec-

tion 17, in particular Definition 17.4]. The following definition makes use of Defi-

nition 1.2.3.(ii).

Definition 3.4.1 Let µ#µ be a PKn-pair. If we have µ#µ 6= 00 then the right ideal

Sµ
#µ

(R,q) in H(R,q)
An−1

is defined as

Sµ
#µ

(R,q) = x(R,q)
µ Twµε

(n)
(R,q)(Vµ#µ)H(R,q)

An−1
.

If we have µ#µ = 00 then the right ideal Sµ
#µ

(R,q) = S00
(R,q) in H(R,q)

An−1
is defined as

S00
(R,q) = 0H(R,q)

A
.

Here, 0H(R,q)
A

denotes the null ideal in H(R,q)
An−1

. We write

Sµ
#µ

(R,q) = Sµ
#µ and S00

(R,q) = S00.

In any case, Sµ
#µ

(R,q) is called a PK-module of degree n or a PKn-module or just a

PK-module.

Remark 3.4.2 The PKn-modules introduced in Definition 3.4.1 are generic in the

sense of Remark 1.2.9.

The next statement is a simple consequence of Lemma 3.2.14.(x), it makes use of

Definition 1.2.3.(ii).

Lemma 3.4.3 Let µ#µ and λ#µ be PKn-pairs with µ#µ 6= 00 6= λ#µ and[
µ#
]
⊆
[
λ#
]
. (3.67)

Then we have

ε
(n)
(R,q)(Vλ#µ) = ε

(n)
(R,q)(Vµ#µ)h

with an appropriate right factor h ∈ H(R,q)
An−1

.
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Proof. From the assumption (3.67) and Lemma 3.2.14.(x) we get a set F ⊆ Sn

with the property

Vλ#µ = Vµ#µF

such that every w ∈ Vλ#µ has a unique decomposition w = uf with u ∈ Vµ#µ and

f ∈ F and furthermore arbitrary u ∈ Vµ#µ and f ∈ F satisfy

`(uf) = `(u) + `(f).

From this, Definition 1.2.3.(ii), and (1.22) on page 34 we obtain

ε(Vλ#µ) = ε(Vµ#µ)ε(F).

This proves the claim if we put h = ε(F). �

The following lemma makes use of Definition 1.2.3.(ii), Definition 3.2.3, and Defi-

nition 3.2.5.(iv).

Lemma 3.4.4 Let µ#µ be a PKn-pair with µ#µ 6= 00 and µ = (µ1, µ2, . . .) � n.

Then the following statements hold.

(i) We have

Sµ
#µ

(R,q) = x(R,q)
µ Tw

µ#µ
ε

(n)
(R,q)(Uµ#µ)H(R,q)

An−1
.

(ii) For µ# = (µ1) ` µ1 we have

Sµ
#µ

(R,q) = S
(µ1)µ
(R,q) = Mµ

(R,q).

(iii) For µ# = µ we have

Sµ
#µ

(R,q) = Sµµ(R,q) = Sµ(R,q).

(iv) Let λ#µ 6= 00 be another PKn-pair satisfying
[
µ#
]
⊆
[
λ#
]
. Then we have

Sλ
#µ

(R,q) ⊆ Sµ
#µ

(R,q).

(v) Let c ∈ N \ {1} be an AR-index for µ#µ. Then we have

Sµ
#Acµ

(R,q) ⊆ Sµ
#µ

(R,q).

(vi) We have

Sµ
#µ

(R,q) ⊆Mµ
(R,q).
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Proof. (i) From Definition 3.2.8.(iii), Lemma 3.2.11.(iv), and (1.22) on page 34 we

obtain

Twµ = Tw
µ#µ

Tg
µ#µ

. (3.68)

Furthermore we get from Lemma 3.2.14, Definition 1.2.3, and again (1.22)

Tg
µ#µ

ε(Vµ#µ) = ε(Uµ#µ)Tg
µ#µ

. (3.69)

Now the substitution of (3.68) and (3.69) into Definition 3.4.1 and the invertibility

of Tg
µ#µ

in Hn (see (1.23) on page 34) show the claim.

(ii) Since
[
µ#
]

= [(µ1)] consists of a single row, every column of
[
µ#
]

contains

at most one square. This shows together with Definition 3.2.12 and Remark 3.2.13

Vµ#µ = V(µ1)µ = {1Sn} .

According to Definition 1.2.3.(ii), this means

ε(Vµ#µ) = ε(V(µ1)µ) = 1HA . (3.70)

Now the substitution of (3.70) into Definition 3.4.1, (1.23) on page 34, and Defini-

tion 1.3.1.(ii) show the claim.

(iii) The condition µ# = µ implies

[µ] \
[
µ#
]

= ∅

and furthermore with Definition 3.2.9 for the tableau tµ

tµ

y[µ]

[µ#]
= tµ

y[µ]
[µ] = tµ.

From all this we see, using Remark 3.2.13 and Remark 1.1.51.(ii),

Vµ#µ = Vµµ = Ctµ .

Now the assumption µ# = µ and Definition 3.2.1 show that µ is a partition, which

enables us to apply Lemma 1.1.52 and Lemma 1.1.69.(i) from which we get

Vµ#µ = Vµµ = R
t(µ′) = Sµ′ .

This implies

ε(Vµ#µ) = ε(Vµµ) = ε(Sµ′) = yµ′ . (3.71)

Now the substitution of (3.71) into Definition 3.4.1 and Definition 1.3.10 prove the

claim.
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(iv) Lemma 3.4.3 can be applied to the situation at hand and shows that we

have

ε(Vλ#µ) = ε(Vµ#µ)h

with an appropriate h ∈ Hn. If we substitute this into Definition 3.4.1 then we get

Sλ
#µ = xµTwµε(Vλ#µ)Hn

= xµTwµε(Vµ#µ)hHn

⊆ xµTwµε(Vµ#µ)Hn

= Sµ
#µ,

as desired.

(v) In the case µ#Acµ = 00, there is nothing to prove (see Definition 3.4.1). In

the case µ#Acµ 6= 00, the claim follows from Lemma 3.2.7.(i), Lemma 3.2.7.(ii),

and statement (iv).

(vi) This follows immediately from Definition 1.3.1.(ii) and Definition 3.4.1. �

3.5 PK-homomorphisms for Hecke algebras of

type A

Now we describe certain generic homomorphisms between PK-modules. Such homo-

morphisms also are considered in [DJ1, Section 7]. As before, n denotes a positive

integer and (R, q) denotes a coefficient pair.

The following two statements are of a more technical nature. The first one

of them makes use of Lemma 1.1.56, Corollary 1.1.57, Definition 1.2.3.(i), and

Definition 3.2.5.(ii).

Lemma 3.5.1 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Then we have in H(R,q)
An−1

ι
(n)
(R,q)(D

−1
µ ∩ (SµRcSµ))x(R,q)

µ = ι
(n)
(R,q)(SµRcSµ)

= x
(R,q)
µRc

ι
(n)
(R,q)((SµRcSµ) ∩ DµRc).

Proof. According to Corollary 1.1.57.(i), the set of the shortest representatives of

cosets occurring in the decomposition of SµRcSµ into left cosets of Sµ is given by

D−1
µ ∩ (SµRcSµ) .

Similarly, according to Lemma 1.1.56.(i), the set of the shortest representatives of

cosets occurring in the decomposition of SµRcSµ into right cosets of SµRc is given
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by

(SµRcSµ) ∩ DµRc .

Thus we have(
D−1
µ ∩ (SµRcSµ)

)
Sµ = SµRcSµ = SµRc ((SµRcSµ) ∩ DµRc) .

The claim now follows easily from Corollary 1.1.57.(ii), Lemma 1.1.56.(ii), (1.22)

on page 34, and Definition 1.2.3.(i). �

The next lemma makes use of Definition 3.2.8.(i) and Definition 1.2.3.(ii).

Lemma 3.5.2 Let m ∈ {2, . . . , n}, λ � n, and d ∈ Dλ satisfying

(m)ζtλd = (m− 1)ζtλd.

(i) Let µ#µ be a PKn-pair with µ#µ 6= 00 and the following properties.

(m)t−1
µ , (m− 1)t−1

µ ∈
[
µ#
]

(m)σtµ = (m− 1)σtµ

Then we have in H(R,q)
An−1

x
(R,q)
λ Tdε

(n)
(R,q)(Vµ#µ) = 0H(R,q)

A
.

(ii) Let µ#µ be a PKn-pair with µ#µ 6= 00 and the following properties.

(m)
(
tµ

#µ
)−1

, (m− 1)
(
tµ

#µ
)−1

∈
[
µ#
]

(m)σ
tµ

#µ = (m− 1)σ
tµ

#µ

Then we have in H(R,q)
An−1

x
(R,q)
λ Tdε

(n)
(R,q)(Uµ#µ) = 0H(R,q)

A
.

Proof. (i) In the following we will consider the transposition

s = (m− 1,m) ∈ Bn ⊆ Sn

(see (1.5) on page 2). If we put

(m)σtµ = (m− 1)σtµ = k ∈ N

then we get from the assumptions (m)t−1
µ , (m − 1)t−1

µ ∈
[
µ#
]

and (m)σtµ =

(m− 1)σtµ together with Definition 3.2.12, Remark 3.2.13, and the notation from

Lemma 3.2.14.(ii)

s ∈ V (k)

µ#µ
⊆ Vµ#µ.
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Furthermore, we see from (1.18) on page 25, using the notation from Lemma 3.2.14

and in particular from statement (ii) thereof, that the group {1Sn , s} is the Young

subgroup of the symmetric group V
(k)

µ#µ
of degree µ#′

k associated with the composition

(1(m−2)−m+
k−1 , 2, 1µ

#′
k −(m−m+

k−1)) of µ#′
k . Thus we have the set of shortest represen-

tatives of the right cosets of {1Sn , s} in V
(k)

µ#µ
. In the following this set is denoted

by F .

Using the preceding considerations, we now derive a product decomposition of

ε(Vµ#µ) ∈ Hn. First, we get from Definition 1.2.3.(ii), the additivity of the length

function with respect to the decomposition (3.9) of Vµ#µ in Lemma 3.2.14.(ii), and

(1.22) on page 34, using the notation from Lemma 3.2.14,

ε(Vµ#µ) = ε(V
(1)

µ#µ
) · · · ε(V (µ1)

µ#µ
).

Furthermore, we obtain from the arguments just employed together with the com-

mutativity of elements of different factors V
(h)

µ#µ
with h ∈ {1, . . . , µ1}

∀i, j ∈ {1, . . . , µ1} : ε(V
(i)

µ#µ
)ε(V

(j)

µ#µ
) = ε(V

(j)

µ#µ
)ε(V

(i)

µ#µ
).

Finally, we see from the construction of the set F ⊆ Sn described above and

Lemma 1.1.56

ε(V
(k)

µ#µ
) = ε({1Sn , s})ε(F).

All this shows that ε(Vµ#µ) has the left factor

ε({1Sn , s}) = T1Sn
− q−1Ts = 1HA − q−1Ts.

The assumption (m)ζtλd = (m− 1)ζtλd and Lemma 1.3.4 now imply

xλTdε({1Sn , s}) = 0HA .

This proves the claim.

(ii) The proof of this statement is completely analogous to that of statement (i).

If we consider the transposition

s = (m− 1,m) ∈ Bn ⊆ Sn

and put

(m)σ
tµ

#µ = (m− 1)σ
tµ

#µ = k ∈ N

then we get from the assumptions of the statement, Definition 3.2.12, and Re-

mark 3.2.13, using the notation from Lemma 3.2.14.(i),

s ∈ U (k)

µ#µ
⊆ Uµ#µ.
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Furthermore, we see, using the notation from Lemma 3.2.14 and in particular

from statement (i) thereof, that the group {1Sn , s} is the Young subgroup of

the symmetric group U
(k)

µ#µ
of degree µ#′

k (see (1.18) on page 25) associated with

(1(m−2)−µ#′+
k−1 , 2, 1µ

#′
k −(m−µ#′+

k−1)) � µ#′
k . Thus we have the set of shortest representa-

tives of the right cosets of {1Sn , s} in U
(k)

µ#µ
. In the following this set is denoted

by F .

Using the preceding considerations, we now derive a product decomposition of

ε(Uµ#µ) ∈ Hn. From Definition 1.2.3.(ii), the additivity of the length function

with respect to the decomposition (3.5) of Uµ#µ in Lemma 3.2.14.(i), and (1.22) on

page 34 we get, using the notation from Lemma 3.2.14,

ε(Uµ#µ) = ε(U
(1)

µ#µ
) · · · ε(U (µ1)

µ#µ
).

Furthermore, we obtain from the arguments just employed together with the com-

mutativity of elements of different factors U
(h)

µ#µ
with h ∈ {1, . . . , µ1}

∀i, j ∈ {1, . . . , µ1} : ε(U
(i)

µ#µ
)ε(U

(j)

µ#µ
) = ε(U

(j)

µ#µ
)ε(U

(i)

µ#µ
).

Finally, we see from the construction of the set F ⊆ Sn described above and

Lemma 1.1.56

ε(U
(k)

µ#µ
) = ε({1Sn , s})ε(F).

Thus ε(Uµ#µ) has the left factor

ε({1Sn , s}) = T1Sn
− q−1Ts = 1HA − q−1Ts.

Now we get from Lemma 1.3.4 and the assumption (m)ζtλd = (m− 1)ζtλd

xλTdε({1Sn , s}) = 0HA .

This proves the claim. �

Definition 1.3.1 and Lemma 3.5.1 show that the following definition is meaning-

ful.

Definition 3.5.3 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Then the H(R,q)
An−1

-homomorphism

Ψ
(R,q)

µ#µc
: Mµ

(R,q) →MµRc
(R,q)

is defined by

x(R,q)
µ Ψ

(R,q)

µ#µc
= ι

(n)
(R,q)(D

−1
µ ∩ (SµRcSµ))x(R,q)

µ

= x
(R,q)
µRc

ι
(n)
(R,q)((SµRcSµ) ∩ DµRc)
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and H(R,q)
An−1

-linear extension. We write

Ψ
(R,q)

µ#µc
= Ψµ#µc.

Ψ
(R,q)

µ#µc
is called a PK-homomorphism of degree n or a PKn-homomorphism or just

a PK-homomorphism.

Remark 3.5.4 The PKn-homomorphisms from Definition 3.5.3 are generic in the

sense of Remark 1.2.9. In fact, they are particular elements of the generic bases

of the sets of homomorphisms between permutation modules of a Hecke algebra of

type A constructed by Dipper and James in [DJ1, Section 3] (see especially [DJ1,

Theorem 3.4]).

Next we derive some properties of PKn-homomorphisms which are fundamental

to the construction of Specht series. The following statement corresponds to [DJ1,

Lemma 7.1]. It makes use of Definition 3.2.15, Lemma 3.2.7.(ii), Definition 3.4.1,

and the notation (1.1) on page 1.

Lemma 3.5.5 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Then we have for the homomorphism Ψ
(R,q)

µ#µc
: Mµ

(R,q) →MµRc
(R,q)

(i) x(R,q)
µ Ψ

(R,q)

µ#µc
= x

(R,q)
µRc

∑
f∈I

µ#µc

Tf ,

(ii) Sµ
#Acµ

(R,q) ⊆ Ker

(
Ψ

(R,q)

µ#µc

yMµ
(R,q)

Sµ
#µ

(R,q)

)
,

(iii) Sµ
#µ

(R,q)Ψ
(R,q)

µ#µc
= Sµ

#µRc
(R,q) .

Proof. (i) This is obtained from Definition 3.5.3, Definition 1.2.3.(i), and Lem-

ma 3.2.17.(ii).

(ii) According to Lemma 3.4.4.(vi), we can build Ψµ#µc

yMµ

Sµ
#µ

. Moreover, we get

from Lemma 3.4.4.(v)

Sµ
#Acµ ⊆ Sµ

#µ.

This shows that the claim makes sense. Now in the case µ#Acµ = 00 we have,

according to Definition 3.4.1, S00 = 0HA (the null ideal in Hn) and there is nothing

to prove. Thus we can assume

µ#Acµ 6= 00

in the following. Then we see from Definition 3.4.1 that it is enough to prove

xµTwµε(Vµ#Acµ)Ψµ#µc = 0HA (the additive neutral element of Hn). Now we get
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from Definition 3.5.3, statement (i), Lemma 3.2.17.(i), and Lemma 1.1.68.(ii)

xµTwµε(Vµ#Acµ)Ψµ#µc = xµΨµ#µcTwµε(Vµ#Acµ)

= xµRc

 ∑
f∈I

µ#µc

Tf

Twµε(Vµ#Acµ)

= xµRc

 ∑
f∈I

µ#µc

Tfwµ

 ε(Vµ#Acµ).

(3.72)

Now we fix an arbitrary

f0 ∈ Iµ#µc

and consider the corresponding summand

xµRcTf0wµε(Vµ#Acµ)

on the right hand side of (3.72). According to Lemma 1.1.56.(i), we can write

f0wµ = ud

with uniquely determined permutations

u ∈ SµRc and d ∈ DµRc .

From that we obtain with Lemma 1.1.56.(ii) and Lemma 1.3.5

xµRcTf0wµ = xµRcTud = xµRcTuTd = q`(u)xµRcTd. (3.73)

Now Lemma 3.2.20, applied with wµ ∈ Sn and f0 ∈ Iµ#µc (see also Remark 3.2.21),

and Lemma 3.5.2.(i), applied with the composition µRc and the PK-pair µ#Acµ,

show that we have

xµRcTdε(Vµ#Acµ) = 0HA

and thus

xµRcTf0wµε(Vµ#Acµ) = 0HA .

This in turn implies together with (3.72) and the choice of f0 ∈ Iµ#µc

xµTwµε(Vµ#Acµ)Ψµ#µc = 0HA ,

as desired. The claim now follows from this and Definition 3.4.1 as explained above.

(iii) According to Definition 3.5.3 and Lemma 3.4.4.(vi), the claim of the state-

ment makes sense. Moreover, Lemma 3.4.4.(i) shows that it suffices to prove
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xµTw
µ#µ

ε(Uµ#µ)Ψµ#µc = xµRcTwµ#µRc
ε(Uµ#µRc). By using Definition 3.5.3, state-

ment (i), Lemma 3.2.17.(i), and Lemma 3.2.11.(iii), we get as in the calcula-

tion (3.72) in the proof of statement (ii)

xµTw
µ#µ

ε(Uµ#µ)Ψµ#µc = xµΨµ#µcTwµ#µ
ε(Uµ#µ)

= xµRc

 ∑
f∈I

µ#µc

Tf

Tw
µ#µ

ε(Uµ#µ)

= xµRc

 ∑
f∈I

µ#µc

Tfw
µ#µ

 ε(Uµ#µ).

(3.74)

Now we fix an arbitrary

f0 ∈ Iµ#µc \
{
fµ#µc

}
(see Definition 3.2.22 and Lemma 3.2.25.(i)) and consider the corresponding sum-

mand

xµRcTf0wµ#µ
ε(Uµ#µ)

on the right hand side of (3.74). According to Lemma 1.1.56.(i), we can write

f0wµ#µ = ud

with uniquely determined permutations

u ∈ SµRc and d ∈ DµRc .

From that we obtain as in the calculation (3.73) in the proof of statement (ii)

xµRcTf0wµ#µ
= xµRcTud = xµRcTuTd = q`(u)xµRcTd.

Now Lemma 3.2.27, applied with wµ#µ ∈ Sn and f0 ∈ Iµ#µc \
{
fµ#µc

}
(see also

Remark 3.2.28), and Lemma 3.5.2.(ii), applied with the composition µRc, show that

we have

xµRcTdε(Uµ#µ) = 0HA

and thus

xµRcTf0wµ#µ
ε(Uµ#µ) = 0HA .

This in turn implies together with (3.74), Lemma 3.2.25.(i), and the choice of f0 ∈
Iµ#µc \

{
fµ#µc

}
xµTw

µ#µ
ε(Uµ#µ)Ψµ#µc = xµRcTfµ#µc

w
µ#µ

ε(Uµ#µ).
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Using Lemma 3.2.25.(ii), Definition 3.2.8.(ii), and Lemma 3.2.14.(ix), this can be

rewritten as

xµTw
µ#µ

ε(Uµ#µ)Ψµ#µc = xµRcTwµ#µRc
ε(Uµ#µRc),

as desired. The claim now follows from this and Lemma 3.4.4.(i) as explained above.

�

3.6 ZNL-elements of Hecke algebras of type A

In this section the row number lists introduced in Section 1.1 (see Definition 1.1.70)

and the associated constructions described in Section 3.3 are employed to define

useful generic elements of PK-modules and to describe their representations with

respect to the row standard bases of permutation modules (see Definition 1.3.3).

Later on, it will be shown that appropriate sets of such elements are bases of PK-

modules and that they can be used to determine the kernels of the restrictions of

PK-homomorphisms to PK-modules. This is essential for the construction of the

Specht series. As always, n denotes a positive integer and (R, q) denotes a coefficient

pair.

The following two statements are of a rather general and technical nature. The

first one of them makes use of Definition 3.1.9.

Lemma 3.6.1 For arbitrary u, v ∈ Sn we have in H(R,q)
An−1

TuTv = qjTuv +
∑
w∈Sn
wCuv

cwTw

with an appropriate exponent j ∈ Z and appropriate coefficients cw ∈ R for all

w ∈ Sn satisfying w C uv.

Proof. This follows from [DJ1, Lemma 2.1.(iii)], Definition 3.1.9, and Lemma 3.1.10.

�

The next Lemma makes use of Definition 1.1.58, Definition 1.3.1, Theorem 1.3.2,

and Definition 3.1.9.

Lemma 3.6.2 Let λ � n, f ∈ Dλ, and w ∈ Sn. Then we have in Mλ
(R,q)

x
(R,q)
λ TfTw = qjx

(R,q)
λ T[fw]λ +

∑
d∈Dλ
dC[fw]λ

cdx
(R,q)
λ Td

with an appropriate exponent j ∈ Z and appropriate coefficients cd ∈ R for all

d ∈ Dλ satisfying d C [fw]λ.
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Proof. This follows from [DJ1, Lemma 3.2.(iv)], Definition 3.1.9, and Lemma 3.1.10.

�

Now we employ row number lists to define certain elements of permutation mod-

ules. It will turn out that these elements have the useful properties described at the

beginning of this section. The following definition makes use of Definition 1.1.70,

Definition 1.3.1, Definition 1.1.67, Definition 1.2.3.(ii), Definition 3.3.13, and Defi-

nition 3.3.1.(iii). Furthermore we remind the reader of Remark 3.3.2.(i).

Definition 3.6.3 For a λ = (λ1, λ2, . . .) � n with λ1 > 0 and a ζ ∈ Zλ we define

z(ζ)(R,q) ∈Mλ
(R,q) as

z(ζ)(R,q) = x
(R,q)
λ Twλε

(n)
(R,q)(Y (ζ))Tg(ζ).

z(ζ)(R,q) is called the row number list element associated to ζ or the ZNL-element

associated to ζ or just a row number list element or a ZNL-element. We write

z(ζ)(R,q) = z(ζ).

The abbreviation ZNL stands for row number list.

Remark 3.6.4 (i) The ZNL-elements from Definition 3.6.3 are generic in the

sense of Remark 1.2.9.

(ii) The ZNL-elements from Definition 3.6.3 are very similar to the elements

of permutation modules of symmetric groups introduced in [JAM1, Defini-

tion 17.2]. However, the former ones are not a direct generalization of the

latter ones.

In the following we investigate ZNL-elements. The next Lemma makes use of

Definition 3.2.1, Remark 3.2.2, Definition 3.3.5, and Definition 3.4.1.

Lemma 3.6.5 Let µ#µ be a PKn-pair with µ#µ 6= 00. Then we have{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#µ
}
⊆ Sµ

#µ
(R,q).

Proof. Write µ = (µ1, µ2, . . .) � n and fix an arbitrary ζ ∈ Zµ#µ ⊆ Zµ. According

to Remark 3.2.2, we then have µ1 > 0 and thus we can build the ZNL-element

z(ζ) ∈ Mµ associated to ζ as in Definition 3.6.3. Moreover, Definition 3.3.1.(ii),

Lemma 3.3.3.(iii), and Definition 3.3.5 show that ν(ζ)µ is a PK-pair with the prop-

erties

ν(ζ)µ 6= 00 and
[
µ#
]
⊆ [ν(ζ)] .



194 CHAPTER 3. GENERIC SPECHT SERIES FOR HA

With that we get from Definition 3.6.3, Definition 3.3.13, Definition 3.4.1, and

Lemma 3.4.4.(iv)

z(ζ) ∈ Sν(ζ)µ ⊆ Sµ
#µ,

as desired. �

The following statement makes use of Definition 1.1.70, Definition 1.3.1.(ii), Theo-

rem 1.3.2, and Definition 3.1.14.

Lemma 3.6.6 Let λ = (λ1, λ2, . . .) � n with λ1 > 0.

(i) Let ζ ∈ Zλ. Then we have in Mλ
(R,q)

z(ζ)(R,q) = qj
(ζ)

x
(R,q)
λ T[wλg(ζ)]

λ +
∑
d∈Dλ

d<[wλg(ζ)]
λ

c
(ζ)
d x

(R,q)
λ Td (3.75)

with an appropriate exponent j(ζ) ∈ Z and appropriate coefficients c
(ζ)
d ∈ R

for all d ∈ Dλ satisfying d < [wλg(ζ)]λ.

(ii) The set {
z(ζ)(R,q)

∣∣∣ ζ ∈ Zλ} ⊆Mλ
(R,q)

is linearly independent over R.

(iii) The set {
z(ζ)(R,q)

∣∣∣ ζ ∈ Zλ} ⊆Mλ
(R,q)

is an R-basis of Mλ
(R,q).

Proof. (i) First we consider the product xλTwλε(Y (ζ)) occurring in the definition of

z(ζ). Using Definition 1.2.3.(ii), Definition 3.3.13, Lemma 3.2.14.(viii), and Corol-

lary 1.1.57, this product can be rewritten as follows.

xλTwλε(Y (ζ)) = xλTwλ
∑
y∈Y (ζ)

(−q)−`(y)Ty

= xλ
∑
y∈Y (ζ)

(−q)−`(y)Twλy

Postmultiplying with Tg(ζ), we further obtain according to Definition 3.6.3

z(ζ) =
∑
y∈Y (ζ)

(−q)−`(y)xλTwλyTg(ζ). (3.76)

Now since, according to Definition 3.3.13 and Lemma 3.2.14.(vi), we have

∀y ∈ Y (ζ) : wλy ∈ Dλ,
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we can employ Lemma 3.6.2 to express the summands on the right hand side of

(3.76) as follows.

∀y ∈ Y (ζ) : xλTwλyTg(ζ) = qj
(y)

xλT[wλyg(ζ)]
λ +

∑
d∈Dλ

dC[wλyg(ζ)]
λ

c
(y)
d xλTd (3.77)

The preceding expression contains exponents j(y) ∈ Z depending on y ∈ Y (ζ)

and coefficients c
(y)
d ∈ R depending on y ∈ Y (ζ) and d ∈ Dλ satisfying d C

[wλyg(ζ)]λ. By substituting (3.77) into (3.76) and rearranging terms we obtain,

using Lemma 3.3.14.(ii) and Lemma 3.1.15.(iv),

z(ζ) = qj
(ζ)

xλT[wλg(ζ)]
λ +

∑
d∈Dλ

d<[wλg(ζ)]
λ

c
(ζ)
d xλTd

with an appropriate exponent j(ζ) ∈ Z and appropriate coefficients c
(ζ)
d ∈ R for

all d ∈ Dλ satisfying d < [wλg(ζ)]λ. This representation of z(ζ) as an R-linear

combination of elements of the basis BMλ

row std of Mλ (see Definition 1.3.3 and Defi-

nition 1.1.58.(ii)) hat the desired form.

(ii) According to Remark 1.1.71.(ii), we have{
z(ζ)

∣∣∣ ζ ∈ Zλ} 6= ∅.
Now consider an equation ∑

ζ∈Zλ
rζz(ζ) = 0HA (3.78)

with certain coefficients rζ ∈ R for ζ ∈ Zλ. Here, 0HA denotes the additive neutral

element of Hn. With that, put

Y =
{
ζ ∈ Zλ

∣∣∣ rζ 6= 0R

}
⊆ Zλ. (3.79)

Here, 0R denotes the additive neutral element of R. Then, in order to establish the

linear independence of
{
z(ζ) | ζ ∈ Zλ

}
, we must show Y = ∅.

Now if we have Y 6= ∅, there is an

η ∈ Y with ∀ζ ∈ Y \ {η} : [wλg(ζ)]λ < [wλg(η)]λ (3.80)

(see Definition 3.3.1.(iii), Lemma 3.3.4, Definition 3.1.14, and Lemma 3.1.15.(i)).

With these properties of η, we obtain by substituting (3.75) from statement (i) into

the left hand side of (3.78) and rearranging terms

qj
(η)

rηxλT[wλg(η)]λ +
∑
d∈Dλ

d<[wλg(η)]λ

r̃dxλTd = 0HA
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with an appropriate exponent j(η) ∈ Z and appropriate coefficients r̃d ∈ R for all

d ∈ Dλ satisfying d < [wλg(η)]λ. From this and Theorem 1.3.2 we get

qj
(η)

rη = 0R

and thus, according to Definition 1.2.1,

rη = 0R.

This is a contradiction to (3.79) and (3.80).

So we must have

Y = ∅

and the set
{
z(ζ) | ζ ∈ Zλ

}
is linearly independent over R.

(iii) The linear independence of the set
{
z(ζ) | ζ ∈ Zλ

}
⊆ Mλ over R follows

from statement (ii). In order to show that this set generates Mλ over R, fix a

y ∈Mλ \ {0HA}. Then we have according to Theorem 1.3.2

y =
∑
d∈Dλ

cdxλTd

with uniquely determined coefficients cd ∈ R for all d ∈ Dλ. Because of y 6= 0HA
there is a d1 ∈ Dλ satisfying

cd1 6= 0R and ∀d ∈ Dλ \ {d1} : cd 6= 0R ⇒ d < d1

(see Definition 3.1.14 and Lemma 3.1.15.(i)). Thus we can write

y = cd1xλTd1 +
∑
d∈Dλ
d<d1

cdxλTd. (3.81)

Furthermore we get from Lemma 3.3.4 a ζ1 ∈ Zλ with the property

d1 = [wλg(ζ1)]λ.

This, (3.75) from statement (i), and (3.81) imply

y − cd1q
−j(ζ1)

z(ζ1) =
∑
d∈Dλ
d<d1

c̃dxλTd (3.82)

with j(ζ1) ∈ Z as in statement (i) and appropriate coefficients c̃d ∈ R for all d ∈ Dλ
satisfying d < d1. This elimination of a summand from the row standard basis of

Mλ on the right hand side in the course of the transition from (3.81) to (3.82) can
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be repeated inductively downwards along the ordering < on the set Dλ until none

of these summands are left. Then we have an expression

y − ĉ1z(ζ1)− · · · − ĉmz(ζm) = 0HA

with an appropriate m ∈ N and appropriate coefficients ĉj ∈ R and row number

lists ζj ∈ Zλ for all j ∈ {1, . . . ,m}. Now since y ∈ Mλ \ {0HA} was arbitrarily

chosen, this shows that Mλ is generated over R by the set
{
z(ζ) | ζ ∈ Zλ

}
. All in

all we see that this set is indeed an R-basis of Mλ, as desired. �

Corollary 3.6.7 Let µ#µ be a PKn-pair with µ#µ 6= 00. Then we have

Sµ
#µ

(R,q) 6= 0HA .

Here, 0HA denotes the null ideal in H(R,q)
An−1

.

Proof. According to Lemma 3.3.6.(i), there is a

ζ ∈ Zµ#µ.

With that we get from Lemma 3.6.5

z(ζ) ∈ Sµ#µ.

Lemma 3.6.6.(i), Definition 1.1.58.(ii), and Theorem 1.3.2 show furthermore

z(ζ) 6= 0HA .

Here, 0HA denotes the additive neutral element of Hn. This proves the claim. �

3.7 Homomorphic images of ZNL-elements of

Hecke algebras of type A

Now we investigate the effect of the PK-homomorphisms introduced in Section 3.5

(see Definition 3.5.3) on the ZNL-elements introduced in the preceding section (see

Definition 3.6.3). As before, n denotes a positive integer and (R, q) denotes a

coefficient pair as in Definition 1.2.1. Furthermore we fix for this section a PKn-

pair µ#µ 6= 00 and an AR-index c ∈ N \ {1} for µ#µ (see Definition 3.2.1 and

Definition 3.2.3).

The next statement is a simple consequence of Lemma 3.5.5.(ii), it makes use

of Definition 3.2.5.(iv), Definition 3.3.5, Lemma 3.3.6.(iii), Definition 3.6.3, and

Definition 3.5.3.
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Corollary 3.7.1 Let ζ ∈ Zµ#Acµ ⊆ Zµ#µ. Then we have

z(ζ)(R,q)Ψ
(R,q)

µ#µc
= 0HA .

Here, 0HA denotes the additive neutral element of H(R,q)
An−1

.

Proof. In the case µ#Acµ = 00 we have Zµ#Acµ = ∅ and there is nothing to show.

In the case µ#Acµ 6= 00 the claim follows from Lemma 3.6.5 and Lemma 3.5.5.(ii).

�

In the following lemma a useful representation of the images of ZNL-elements

under PK-homomorphisms is derived. It makes use of Definition 3.2.5.(ii), Defini-

tion 3.2.22, Definition 3.3.13, Definition 1.2.3.(ii), Definition 3.3.1.(iii), and Defini-

tion 1.1.58.(ii).

Lemma 3.7.2 Let ζ ∈ Zµ#µ. Then we have

z(ζ)(R,q)Ψ
(R,q)

µ#µc
= x

(R,q)
µRc

Tf
µ#µc

wµε
(n)
(R,q)(Y (ζ))Tg(ζ)

= qjx
(R,q)
µRc

T
[fµ#µc

wµ]
µRcε

(n)
(R,q)(Y (ζ))Tg(ζ)

with an appropriate exponent j ∈ Z.

Proof. First we get from Definition 3.6.3, Definition 3.5.3, and Lemma 3.5.5.(i)

z(ζ)Ψµ#µc = xµTwµε(Y (ζ))Tg(ζ)Ψµ#µc

= xµΨµ#µcTwµε(Y (ζ))Tg(ζ)

= xµRc
∑

f∈I
µ#µc

TfTwµε(Y (ζ))Tg(ζ).

Using Lemma 3.2.17.(i) and Lemma 1.1.68.(ii), this can be rewritten as

z(ζ)Ψµ#µc = xµRc
∑

f∈I
µ#µc

Tfwµε(Y (ζ))Tg(ζ)

=
∑

f∈I
µ#µc

xµRcTfwµε(Y (ζ))Tg(ζ).

(3.83)

Now we fix an

f0 ∈ Iµ#µc \
{
fµ#µc

}
(see Definition 3.2.22) and consider the summand xµRcTf0wµε(Y (ζ))Tg(ζ) on the

right hand side of (3.83) corresponding to it. Because of ζ ∈ Zµ#µ, Definition 3.3.5,

Definition 3.3.13, and Lemma 3.4.3 we have

ε(Y (ζ)) = ε(Vµ#µ)h
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with an appropriate h ∈ Hn. By substituting this into the summand corresponding

to f0 on the right hand side of (3.83) we obtain

xµRcTf0wµε(Y (ζ))Tg(ζ) = xµRcTf0wµε(Vµ#µ)h̃

with an appropriate h̃ ∈ Hn. Furthermore we can write

f0wµ = ud

with uniquely determined permutations

u ∈ SµRc and d ∈ DµRc .

From this and Lemma 1.3.5 we get

xµRcTf0wµ = xµRcTud = xµRcTuTd = q`(u)xµRcTd. (3.84)

Now Lemma 3.2.27, applied with wµ ∈ Sn and f0 ∈ Iµ#µc \
{
fµ#µc

}
(see also

Remark 3.2.28), and Lemma 3.5.2.(i), applied with the composition µRc, show

xµRcTdε(Vµ#µ) = 0HA .

Here, 0HA denotes the additive neutral element of Hn. From all this we get

xµRcTf0wµε(Vµ#µ) = 0HA

and furthermore

xµRcTf0wµε(Y (ζ))Tg(ζ) = 0HA .

By substituting the preceding equation into (3.83) and taking into account the

choice of f0 we obtain

z(ζ)Ψµ#µc = xµRcTfµ#µc
wµε(Y (ζ))Tg(ζ), (3.85)

which is the first identity in the claim.

In order to prove the second identity in the claim, we decompose fµ#µcwµ with

respect to the right cosets of SµRc in Sn. Using Definition 1.1.58.(ii), we can write

fµ#µcwµ = ũ
[
fµ#µcwµ

]µRc
with ũ ∈ SµRc .

From this we get as in the calculation (3.84)

xµRcTfµ#µc
wµ = xµRcTũ[fµ#µc

wµ]
µRc

= xµRcTũT[fµ#µc
wµ]

µRc

= q`(ũ)xµRcT[fµ#µc
wµ]

µRc .
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By substituting this into the right hand side of (3.85) we obtain the second identity

in the claim with j = `(ũ) ∈ Z. �

The next theorem describes the representations of the images of ZNL-elements

under PK-homomorphisms with respect to the row standard bases of permuta-

tion modules (see Definition 1.3.1.(ii) and Definition 1.3.3). It makes use of Def-

inition 3.3.5, Definition 3.2.5, Definition 3.6.3, Definition 3.5.3, Definition 3.2.22,

Definition 3.3.1, Definition 1.1.58, and Definition 3.1.14.

Theorem 3.7.3 Let ζ ∈ Zµ#µ \ Zµ#Acµ. Then we have in MµRc
(R,q)

z(ζ)(R,q)Ψ
(R,q)

µ#µc
= qjx

(R,q)
µRc

T
[fµ#µc

wµg(ζ)]
µRc +

∑
d∈DµRc

d<[fµ#µc
wµg(ζ)]

µRc

cdx
(R,q)
µRc

Td (3.86)

with an appropriate exponent j ∈ Z and appropriate coefficients cd ∈ R for all

d ∈ DµRc satisfying d <
[
fµ#µcwµg(ζ)

]µRc
.

Proof. The proof of this claim is similar to the proof of Lemma 3.6.6.(i).

According to Lemma 3.7.2, we have

z(ζ)Ψµ#µc = xµRcTfµ#µc
wµε(Y (ζ))Tg(ζ).

The left factor xµRcTfµ#µc
wµε(Y (ζ)) of the right hand side of the preceding identity

can be rewritten as follows by using Definition 1.2.3.(ii), Lemma 3.3.14.(i), and

Lemma 3.3.15.(i).

xµRcTfµ#µc
wµε(Y (ζ)) = xµRcTfµ#µc

wµ

∑
y∈Y (ζ)

(−q)−`(y)Ty

= xµRc
∑
y∈Y (ζ)

(−q)−`(y)Tf
µ#µc

wµy

By postmultiplying this with the factor Tg(ζ) we obtain

z(ζ)Ψµ#µc =
∑
y∈Y (ζ)

(−q)−`(y)xµRcTfµ#µc
wµyTg(ζ). (3.87)

Now we fix a

y ∈ Y (ζ)

and consider the corresponding summand xµRcTfµ#µc
wµyTg(ζ) on the right hand side

of (3.87). Using Definition 1.1.58.(ii), we can write

fµ#µcwµy = u(y)
[
fµ#µcwµy

]µRc
with an appropriate u(y) ∈ SµRc .
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From this decomposition, Lemma 1.3.5, and Lemma 3.6.2 we get

xµRcTfµ#µc
wµyTg(ζ) = xµRcTu(y)[fµ#µc

wµy]
µRcTg(ζ)

= xµRcTu(y)T
[fµ#µc

wµy]
µRcTg(ζ)

= q`(u
(y))xµRcT[fµ#µc

wµy]
µRcTg(ζ)

= qj
(y)

xµRcT[[fµ#µc
wµy]

µRc
g(ζ)

]µRc +

∑
d∈DµRc

dC

[
[fµ#µc

wµy]
µRc

g(ζ)

]µRc
c

(y)
d xµRcTd

= qj
(y)

xµRcT[fµ#µc
wµyg(ζ)]

µRc +∑
d∈DµRc

dC[fµ#µc
wµyg(ζ)]

µRc

c
(y)
d xµRcTd

with an exponent j(y) ∈ Z depending on y and coefficients c
(y)
d ∈ R depending on y

and d ∈ DµRc satisfying d C
[
fµ#µcwµyg(ζ)

]µRc
.

Now we substitute the preceding identity for each y ∈ Y (ζ) into the right hand

side of (3.87) and rearrange terms using Lemma 3.3.15.(ii) and Lemma 3.1.15.(iv).

Then we obtain

z(ζ)Ψµ#µc = qjxµRcT[fµ#µc
wµg(ζ)]

µRc +
∑

d∈DµRc

d<[fµ#µc
wµg(ζ)]

µRc

cdxµRcTd

with an appropriate exponent j ∈ Z and appropriate coefficients cd ∈ R for all

d ∈ DµRc satisfying d <
[
fµ#µcwµg(ζ)

]µRc
. This representation of z(ζ)Ψµ#µc as an

R-linear combination of elements of the basis BMµRc

row std of MµRc (see Definition 1.3.3)

has the desired form. �

The row number lists not considered in Theorem 3.7.3 — that is, those in the set

Zµ#Acµ ⊆ Zµ#µ — are covered in Corollary 3.7.1.

The following corollary uses Lemma 3.2.7.(ii), Lemma 3.6.5, Lemma 3.5.5.(iii),

and Lemma 3.4.4.(vi).

Corollary 3.7.4 The set{
z(ζ)(R,q)Ψ

(R,q)

µ#µc

∣∣∣ ζ ∈ Zµ#µ \ Zµ#Acµ
}
⊆ Sµ

#µRc
(R,q) ⊆MµRc

(R,q)

is linearly independent over R.
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Proof. The proof of this statement is analogous to that of Lemma 3.6.6.(ii).

According to Corollary 3.3.10, we have{
z(ζ)Ψµ#µc

∣∣∣ ζ ∈ Zµ#µ \ Zµ#Acµ
}
6= ∅.

Now we consider a linear combination∑
ζ∈Zµ#µ\Zµ#Acµ

rζz(ζ)Ψµ#µc = 0HA (3.88)

with coefficients rζ ∈ R for all ζ ∈ Zµ#µ \ Zµ#Acµ. Here, 0HA denotes the additive

neutral element of Hn. With that we put

Y =
{
ζ ∈ Zµ#µ \ Zµ#Acµ

∣∣∣ rζ 6= 0R

}
⊆ Zµ#µ \ Zµ#Acµ. (3.89)

Here, 0R denotes the additive neutral element of R. In order to prove the claim, we

must show Y = ∅.

Suppose that we have Y 6= ∅. Then we get from Corollary 3.3.12, Defini-

tion 3.1.14, and Lemma 3.1.15.(i) an

η ∈ Y with ∀ζ ∈ Y \ {η} :
[
fµ#µcwµg(ζ)

]µRc
<
[
fµ#µcwµg(η)

]µRc
(3.90)

(see also Definition 3.2.22 and Definition 3.3.1.(iii)). Using this property of η, we

substitute (3.86) from Theorem 3.7.3 into the left hand side of (3.88) and rearrange

terms in order to obtain

qjrηxµRcT[fµ#µc
wµg(η)]

µRc +
∑

d∈DµRc

d<[fµ#µc
wµg(η)]

µRc

r̃dxµRcTd = 0HA

with an appropriate exponent j ∈ Z and appropriate coefficients r̃d ∈ R for all

d ∈ DµRc satisfying d <
[
fµ#µcwµg(η)

]µRc
. From this equation and Theorem 1.3.2,

we get

qjrη = 0R

and, using Definition 1.2.1, furthermore

rη = 0R

in contradiction to (3.89) and (3.90).

Thus we must have

Y = ∅

and the set
{
z(ζ)Ψµ#µc

∣∣∣ ζ ∈ Zµ#µ \ Zµ#Acµ
}

is linearly independent over R. �
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3.8 Statements on bases of images of PK-homo-

morphisms for Hecke algebras of type A

This section describes how the existence of a certain basis of a PK-module leads

to the existence of an analogous basis of the image of that PK-module under a

PK-homomorphism (see Definition 3.4.1, Definition 3.5.3, and Lemma 3.5.5.(iii)).

As always, n denotes a positive integer and (R, q) denotes a coefficient pair.

The following lemma makes use of Definition 3.2.1, Definition 3.2.3, Defini-

tion 3.6.3, Definition 3.3.5, Lemma 3.6.5, Definition 3.2.5, and Lemma 3.2.7.(ii).

Lemma 3.8.1 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Suppose that{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#µ
}
⊆ Sµ

#µ
(R,q)

is an R-basis of Sµ
#µ

(R,q). Then{
z(η)(R,q)

∣∣∣ η ∈ Zµ#µRc
}
⊆ Sµ

#µRc
(R,q)

is an R-basis of Sµ
#µRc

(R,q) .

Proof. In this proof, we write

Bµ#µ =
{
z(ζ)

∣∣∣ ζ ∈ Zµ#µ
}

and Bµ#µRc =
{
z(η)

∣∣∣ η ∈ Zµ#µRc
}
.

According to Lemma 3.3.6.(i) and Lemma 3.2.7.(ii), these sets are nonempty.

First we show that, given the assumptions of the claim, the set

Cµ#µc =
{
z(ζ)Ψµ#µc

∣∣∣ ζ ∈ Zµ#µ \ Zµ#Acµ
}

(3.91)

(see Definition 3.5.3 and Definition 3.2.5.(iv)) is an R-basis of Sµ
#µRc . According to

Corollary 3.3.10, this set is nonempty. According to Corollary 3.7.4, it is contained

in Sµ
#µRc and also linearly independent over R. The assumption that Bµ#µ forms

an R-basis of Sµ
#µ, Lemma 3.5.5.(iii), and Corollary 3.7.1 show that the set Cµ#µc

generates Sµ
#µRc over R. Thus, Cµ#µc is in fact an R-Basis of Sµ

#µRc .

Now we consider the set Bµ#µRc ⊆ Sµ
#µRc . Its linear independence over R

follows from Lemma 3.6.6.(ii). In order to prove the claim, we must show that it

generates Sµ
#µRc over R. This is done in the remainder of the proof.

We will require a distinguished numbering of the elements of Zµ#µRc . Let

m =
∣∣∣Zµ#µRc

∣∣∣ ∈ N
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(see Lemma 3.3.6.(i) and Lemma 3.2.7.(ii)). With that, let

η1, . . . , ηm

be an enumeration of the elements of Zµ#µRc ⊆ ZµRc satisfying

∀i, j ∈ {1, . . . ,m} : i < j ⇒ [wµRcg(ηi)]
µRc > [wµRcg(ηj)]

µRc (3.92)

(see Definition 3.3.5, Lemma 3.3.4, Definition 3.1.14, and Lemma 3.1.15.(i)). Using

this and Lemma 3.3.9 and putting

ηj = Jµ#µc(ζj) for j ∈ {1, . . . ,m} , (3.93)

we obtain an enumeration

ζ1, . . . , ζm (3.94)

of the elements of Zµ#µ \ Zµ#Acµ satisfying

∀i, j ∈ {1, . . . ,m} : i < j ⇒[
wµRcg(Jµ#µc(ζi))

]µRc
>
[
wµRcg(Jµ#µc(ζj))

]µRc
or, according to Lemma 3.3.11, equivalently

∀i, j ∈ {1, . . . ,m} : i < j ⇒
[
fµ#µcwµg(ζi)

]µRc
>
[
fµ#µcwµg(ζj)

]µRc
. (3.95)

Now we fix an

h ∈ Sµ#µRc .

For this element we will inductively construct certain coefficients

αj ∈ R with j ∈ {1, . . . ,m}

and R-linear combinations of ZNL-elements from Bµ#µRc ⊆ Sµ
#µRc

aj =

j∑
i=1

αiz(ηi) ∈ Sµ
#µRc with j ∈ {0, . . . ,m}

such that for every j ∈ {0, . . . ,m} in the representation of h−aj ∈ Sµ
#µRc ⊆MµRc

with respect to the R-basis BMµRc

row std of MµRc the coefficients of all the basis elements

xµRcT[wµRcg(ηi)]
µRc ∈ BMµRc

row std with i ∈ {1, . . . , j}

vanish (see Lemma 3.4.4.(vi), Definition 1.3.3, and Definition 1.1.58.(ii)). The in-

duction process starts with

a0 = 0HA ∈ Sµ
#µRc ⊆ Hn.
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Here, 0HA denotes the additive neutral element of Hn (see also Definition 3.4.1). If

for a j ∈ {1, . . . ,m} the coefficients αi ∈ R with i ∈ {1, . . . , j − 1} and the R-linear

combinations ai ∈ Sµ
#µRc with i ∈ {0, . . . , j − 1} are already constructed then we

choose αj ∈ R and

aj =

j∑
i=1

αiz(ηi) = aj−1 + αjz(ηj) ∈ Sµ
#µRc

such that in the representation of h − aj ∈ Sµ
#µRc ⊆ MµRc with respect to the

R-basis BMµRc

row std of MµRc the coefficient of the basis element

xµRcT[wµRcg(ηj)]
µRc ∈ BMµRc

row std

vanishes. The formula (3.75) in Lemma 3.6.6.(i) and Definition 1.2.1 show that

this is possible. Now the particular choice of αj and aj, formula (3.75) from

Lemma 3.6.6.(i), the relations (3.92), and the induction hypothesis, which states

that in the representation of h− aj−1 with respect to the R-basis BMµRc

row std of MµRc

the coefficients of all the basis elements

xµRcT[wµRcg(ηi)]
µRc ∈ BMµRc

row std with i ∈ {1, . . . , j − 1}

vanish, all together show that in the representation of

h− aj = h− aj−1 − αjz(ηj)

with respect to the R-basis BMµRc

row std of MµRc the coefficients of all the basis elements

xµRcT[wµRcg(ηi)]
µRc ∈ BMµRc

row std with i ∈ {1, . . . , j}

vanish. This in turn shows that the induction hypothesis also holds for αj and aj

and the induction can be continued. Proceeding in this way, we obtain for j = m an

R-linear combination am ∈ Sµ
#µRc of ZNL-elements from Bµ#µRc such that in the

representation of h− am with respect to the basis BMµRc

row std of MµRc the coefficients

of all the basis elements

xµRcT[wµRcg(η)]
µRc ∈ BMµRc

row std with η ∈ Zµ#µRc

vanish.

Now we show h = am. To this end, we write h− am as an R-linear combination

of the R-basis Cµ#µc of Sµ
#µRc (see the beginning of the proof). Let

h− am =
m∑
i=1

ξiz(ζi)Ψµ#µc with ξi ∈ R for i ∈ {1, . . . ,m}
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(see (3.91) and (3.94)). Suppose that we have {i ∈ {1, . . . ,m} | ξi 6= 0R} 6= ∅. With

this assumption, put

j = min {i ∈ {1, . . . ,m} | ξi 6= 0R} ∈ {1, . . . ,m} . (3.96)

Here, 0R denotes the additive neutral element of R. Now we can write

h− am = ξjz(ζj)Ψµ#µc +
m∑

i=j+1

ξiz(ζi)Ψµ#µc. (3.97)

Next, we substitute the representations of the elements z(ζ)Ψµ#µc ∈ MµRc for

ζ ∈ Zµ#µ \Zµ#Acµ with respect to the R-basis BMµRc

row std of MµRc from Theorem 3.7.3

into the right hand side of the preceding equation and rearrange terms, taking into

account (3.95) from above. Thus we obtain

h− am = ξjq
kxµRcT[fµ#µc

wµg(ζj)]
µRc +

∑
d∈DµRc

d<[fµ#µc
wµg(ζj)]

µRc

ξ̃dxµRcTd

with an appropriate exponent k ∈ Z and appropriate coefficients ξ̃d ∈ R for all

d ∈ DµRc satisfying d <
[
fµ#µcwµg(ζj)

]µRc
. Now, according to Definition 1.2.1 and

the choice of j, we have for the coefficient of xµRcT[fµ#µc
wµg(ζj)]

µRc

ξjq
k 6= 0R. (3.98)

Furthermore, we see from Lemma 3.3.11 and (3.93)[
fµ#µcwµg(ζj)

]µRc
=
[
wµRcg(Jµ#µc(ζj))

]µRc
= [wµRcg(ηj)]

µRc . (3.99)

Now (3.98) and (3.99) together lead to a contradiction to the construction of am

which ensures that the coefficient ξjq
k of the basis element xµRcT[wµRcg(ηj)]

µRc van-

ishes (see the preceding paragraph). Thus j cannot be chosen as in (3.96) and we

have

∀i ∈ {1, . . . ,m} : ξi = 0R

and furthermore

h− am = 0HA or equivalently h = am.

This shows that Bµ#µRc generates Sµ
#µRc over R and all in all is an R-basis of

Sµ
#µRc , as desired. �
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3.9 Statements on bases of kernels of PK-homo-

morphisms for Hecke algebras of type A

This section describes how the existence of a certain basis of a PK-module leads to

the existence of an analogous basis of the kernel of a PK-homomorphism restricted

to that PK-module (see Definition 3.4.1, Definition 3.5.3, Lemma 3.4.4.(vi), and

Lemma 3.5.5.(ii)). As before, n denotes a positive integer and (R, q) denotes a

coefficient pair.

The next lemma uses Definition 3.2.1, Definition 3.2.3, Definition 3.2.5.(iv),

Definition 3.6.3, Definition 3.3.5, Lemma 3.6.5, and Lemma 3.3.6.(iii).

Lemma 3.9.1 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ such that we have µ#Acµ 6= 00. Suppose that{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#µ
}
⊆ Sµ

#µ
(R,q)

is an R-basis of Sµ
#µ

(R,q). Then{
z(η)(R,q)

∣∣∣ η ∈ Zµ#Acµ
}
⊆ Sµ

#µ
(R,q)

is an R-basis of Ker

(
Ψ

(R,q)

µ#µc

yMµ
(R,q)

Sµ
#µ

(R,q)

)
⊆ Sµ

#µ
(R,q).

Proof. In this proof, we write

Bµ#µ =
{
z(ζ)

∣∣∣ ζ ∈ Zµ#µ
}
,

Bµ#Acµ =
{
z(η)

∣∣∣ η ∈ Zµ#Acµ
}
,

Kµ#µc = Ker
(

Ψµ#µc

yMµ

Sµ
#µ

)
.

According to Lemma 3.3.6.(iii) and Lemma 3.6.5, we have

Bµ#Acµ ⊆ Bµ#µ ⊆ Sµ
#µ.

This and the assumption that Bµ#µ is an R-basis of Sµ
#µ together imply that

Bµ#Acµ is linearly independent over R. Furthermore, we get from Corollary 3.7.1

Bµ#Acµ ⊆ Kµ#µc.

Now it remains to show that Bµ#Acµ generates Kµ#µc over R. To this end, we

fix an

h ∈ Kµ#µc ⊆ Sµ
#µ.
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According to the assumptions of the claim, we can write

h =
∑

ζ∈Zµ#µ

rζz(ζ)

with uniquely determined coefficients rζ ∈ R for all ζ ∈ Zµ#µ. By applying Ψµ#µc

and taking into account Corollary 3.7.1 we get from this

0HA = hΨµ#µc =
∑

ζ∈Zµ#µ\Zµ#Acµ

rζz(ζ)Ψµ#µc.

Corollary 3.7.4 now shows

∀ζ ∈ Zµ#µ \ Zµ#Acµ : rζ = 0R

which implies

h =
∑

η∈Zµ#Acµ

rηz(η).

Thus, Bµ#Acµ generates Kµ#µc over R and all in all is an R-basis of Kµ#µc, as

desired. �

The following statement makes use of Definition 3.2.1, Definition 3.2.3, Defini-

tion 3.6.3, Definition 3.3.5, Lemma 3.6.5, and Definition 3.2.5.(iv).

Lemma 3.9.2 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Suppose that{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#µ
}
⊆ Sµ

#µ
(R,q)

is an R-basis of Sµ
#µ

(R,q). Then the following statements hold.

(i) Let µ#Acµ 6= 00. Then{
z(η)(R,q)

∣∣∣ η ∈ Zµ#Acµ
}
⊆ Sµ

#Acµ
(R,q)

is an R-basis of Sµ
#Acµ

(R,q) .

(ii) We have

Ker

(
Ψ

(R,q)

µ#µc

yMµ
(R,q)

Sµ
#µ

(R,q)

)
= Sµ

#Acµ
(R,q) .

Proof. First we consider the case µ#Acµ 6= 00. Here we get from Lemma 3.6.5 —

applied to the PK-pair µ#Acµ — and Lemma 3.5.5.(ii){
z(η)

∣∣∣ η ∈ Zµ#Acµ
}
⊆ Sµ

#Acµ ⊆ Ker
(

Ψµ#µc

yMµ

Sµ
#µ

)
.
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Moreover, the assumptions of the claim and Lemma 3.9.1 show that the set on the

left hand side of the preceding chain of inclusions is an R-basis of the module on the

right hand side. This proves statement (i) and also statement (ii) for µ#Acµ 6= 00.

Now we consider the case µ#Acµ = 00. Here we only must prove statement (ii).

Because of µ#Acµ = 00 and Definition 3.4.1, the claim is equivalent to the injectivity

of Ψµ#µc

yMµ

Sµ
#µ

. This property of Ψµ#µc

yMµ

Sµ
#µ

follows from the assumptions of the

claim, Definition 3.3.5, and Corollary 3.7.4.

Now the claim is completely proved. �

3.10 ZNL-bases for PK-modules and kernels of

PK-homomorphisms for Hecke algebras of

type A

In this section we first derive generic bases of PK-modules (see Remark 1.2.9

and Definition 3.4.1), then we derive a useful description of the kernels of PK-

homomorphisms restricted to PK-modules (see Definition 3.5.3), and finally we

derive a representation of Specht modules as intersections of kernels of PK-homo-

morphisms. As always, n denotes a positive integer and (R, q) denotes a coefficient

pair.

The next theorem makes use of Definition 3.2.1, Definition 3.6.3, Definition 3.3.5,

Definition 3.4.1, and Lemma 3.6.5.

Theorem 3.10.1 Let µ#µ be a PKn-pair with µ#µ 6= 00. Then the set{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#µ
}
⊆ Sµ

#µ
(R,q)

is an R-basis of Sµ
#µ

(R,q).

Proof. According to Lemma 3.2.7.(iv), there is a ν = (ν1, ν2, . . .) � n such that (ν1)ν

forms a PK-pair from which the given PK-pair µ#µ can be reached by an application

of an appropriate chain of operators Ac and Rc with AR-indices c ∈ N \ {1}. More

specifically, we have an indexm ∈ N0 and PK-pairs λ#(j)λ(j) 6= 00 for j ∈ {0, . . . ,m}
with

λ#(0)λ(0) = (ν1)ν and λ#(m)λ(m) = µ#µ.

Moreover, for every j ∈ {1, . . . ,m} we have an AR-index cj ∈ N \ {1} for the

PK-pair λ#(j−1)λ(j−1) such that

λ#(j)λ(j) = λ#(j−1)Acjλ
(j−1) or λ#(j)λ(j) = λ#(j−1)λ(j−1)Rcj
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holds. The claim will now be proved by induction on j ∈ {0, . . . ,m}.
The induction starts with j = 0 and the PK-pair λ#(0)λ(0) = (ν1)ν. Here

we have, according to Lemma 3.4.4.(ii) and Lemma 3.3.7, Sλ
#(0)λ(0)

= Mλ(0)
and

Zλ#(0)λ(0)
= Zλ(0)

. With that, the claim follows from Lemma 3.6.6.(iii).

Now we consider a j ∈ {1, . . . ,m} and assume that
{
z(ζ)

∣∣∣ ζ ∈ Zλ#(j−1)λ(j−1)
}

is

an R-basis of Sλ
#(j−1)λ(j−1)

. Then it follows in the case λ#(j)λ(j) = λ#(j−1)λ(j−1)Rcj

from Lemma 3.8.1 and in the case λ#(j)λ(j) = λ#(j−1)Acjλ
(j−1) from Lemma 3.9.2.(i)

that
{
z(ζ)

∣∣∣ ζ ∈ Zλ#(j)λ(j)
}

is an R-basis of the module Sλ
#(j)λ(j)

.

Thus, for every j ∈ {0, . . . ,m} the set
{
z(ζ)

∣∣∣ ζ ∈ Zλ#(j)λ(j)
}

forms an R-basis of

Sλ
#(j)λ(j)

, and the case j = m with λ#(m)λ(m) = µ#µ shows that
{
z(ζ)

∣∣∣ ζ ∈ Zµ#µ
}

is an R-basis of Sµ
#µ, as desired. �

Definition 3.10.2 Let µ#µ be a PKn-pair with µ#µ 6= 00. Then the R-basis{
z(ζ)(R,q)

∣∣∣ ζ ∈ Zµ#µ
}
⊆ Sµ

#µ
(R,q)

of Sµ
#µ

(R,q) from Theorem 3.10.1 is called the row number list basis of Sµ
#µ

(R,q) or just the

ZNL-basis of Sµ
#µ

(R,q). We denote this basis by

BSµ
#µ

ZNL (R, q) or BSµ
#µ

ZNL .

Remark 3.10.3 Remark 3.4.2, Remark 3.6.4.(i), and Theorem 3.10.1 show that

the ZNL-bases of PK-modules from Definition 3.10.2 are generic in the sense of

Remark 1.2.9.

The next corollary records another fact on bases of PK-modules. It makes use of

Definition 3.2.1, Definition 3.2.3, Definition 3.6.3, Definition 3.5.3, Definition 3.3.5,

and Definition 3.2.5.

Corollary 3.10.4 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Then the set{
z(ζ)(R,q)Ψ

(R,q)

µ#µc

∣∣∣ ζ ∈ Zµ#µ \ Zµ#Acµ
}
⊆ Sµ

#µRc
(R,q)

is an R-Basis of Sµ
#µRc

(R,q) .

Proof. This is obtained from Theorem 3.10.1 and the beginning of the proof of

Lemma 3.8.1. �

The following statement makes use of Definition 3.2.1, Definition 3.2.3, Defini-

tion 3.5.3, Lemma 3.4.4.(vi), and Definition 3.2.5.(iv).
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Theorem 3.10.5 Let µ#µ be a PKn-pair with µ#µ 6= 00 and let c ∈ N \ {1} be an

AR-index for µ#µ. Then we have

Ker

(
Ψ

(R,q)

µ#µc

yMµ
(R,q)

Sµ
#µ

(R,q)

)
= Sµ

#Acµ
(R,q) .

Proof. This follows from Theorem 3.10.1 and Lemma 3.9.2.(ii). �

Remark 3.10.6 (i) Remark 1.3.7.(i), Remark 3.4.2, Remark 3.5.4, and Theo-

rem 3.10.5 show that the kernels of PK-homomorphisms restricted to PK-

modules as considered in Theorem 3.10.5 are generic in the sense of Re-

mark 1.2.9.

(ii) In [DJ1, Section 7] Theorem 3.10.5 is proved under the assumption that the

coefficient ring R is a field (see especially [DJ1, Lemma 7.3]).

The next corollary makes use of Definition 1.1.1.(ii) and Definition 3.5.3.

Corollary 3.10.7 Let λ = (λ1, . . . , λm) ` n with m ∈ N \ {1} and λm > 0. With

that, put for every i ∈ {2, . . . ,m} and every j ∈ {0, . . . , λi − 1}

λ#(i,j) = (λ1, . . . , λi−1, j) ` λ+
i−1 + j.

Then we have in Mλ
(R,q)

Sλ(R,q) =
⋂

i∈{2,...,m}

⋂
j∈{0,...,λi−1}

Ker Ψ
(R,q)

λ#(i,j)λi
.

Proof. In this proof, we write

I = {(i, j) | i ∈ {2, . . . ,m} and j ∈ {0, . . . , λi − 1}} .

Since λ ` n, we have in particular λ1 > 0. For every (i, j) ∈ I this fact and

the choice of j for a given i show that the composition λ#(i,j) is a partition of a

positive integer. The construction of λ#(i,j) also implies
[
λ#(i,j)

]
⊆ [λ]. From all

this we see that for every (i, j) ∈ I the partitions λ#(i,j) and λ form a PK-pair with

λ#(i,j)λ 6= 00. Furthermore, it easily follows from the construction of λ#(i,j) with

an (i, j) ∈ I that i satisfies the conditions imposed on an AR-index for λ#(i,j)λ

from Definition 3.2.3. These considerations show that the claim of the corollary is

meaningful.

Next, we order the set I lexicographically. More formally, we define for i ∈
{2, . . . ,m}, j ∈ {0, . . . , λi − 1} and ĩ ∈ {2, . . . ,m}, j̃ ∈ {0, . . . , λĩ − 1}

(i, j) < (̃i, j̃)⇔
(
i < ĩ

)
∨
((
i = ĩ

)
∧
(
j < j̃

))
.
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This is a total ordering on the set I with the smallest pair (2, 0) and the biggest

pair (m,λm − 1).

Furthermore, we define for (i, j) ∈ I with (i, j) 6= (m,λm− 1) the pair (i, j)∧ as

(i, j)∧ =

{
(i, j + 1) if j < λi − 1

(i+ 1, 0) if j = λi − 1
.

Then we have (i, j)∧ ∈ I. Moreover, (i, j)∧ is the immediate successor of (i, j) in

the lexicographic ordering on I, that is, we have (i, j) < (i, j)∧ and there is no

(̃i, j̃) ∈ I satisfying (i, j) < (̃i, j̃) < (i, j)∧. From Definition 3.2.5.(i) we also obtain

∀(i, j) ∈ I \ {(m,λm − 1)} : λ#(i,j)Ai = λ#(i,j)∧ . (3.100)

Finally, we note the relation

λ#(m,λm−1)Am = λ (3.101)

which again follows directly from Definition 3.2.5.(i).

For the remainder of the proof, we put

K =
⋂

(i,j)∈I

Ker Ψλ#(i,j)λi ⊆Mλ (3.102)

(see Definition 3.5.3). In order to prove the claim, we must show Sλ ⊆ K and

K ⊆ Sλ.

First we verify the inclusion Sλ ⊆ K. Because of (3.102), it suffices to show for

an arbitrary (i, j) ∈ I the inclusion Sλ ⊆ Ker Ψλ#(i,j)λi. To this end, we fix such an

(i, j). Then we have according to Theorem 3.10.5

Ker
(

Ψλ#(i,j)λi

yMλ

Sλ
#(i,j)λ

)
= Sλ

#(i,j)Aiλ. (3.103)

(3.100), (3.101), the considerations concerning the plausibility of the claim of the

corollary, and Definition 3.2.1 show that λ#(i,j)Aiλ is a PK-pair with λ#(i,j)Aiλ 6= 00.

In particular, we have
[
λ#(i,j)Ai

]
⊆ [λ]. From this fact, Lemma 3.4.4.(iii), and

Lemma 3.4.4.(iv) we get

Sλ = Sλλ ⊆ Sλ
#(i,j)Aiλ.

This relation and (3.103) in turn show

Sλ ⊆ Ker
(

Ψλ#(i,j)λi

yMλ

Sλ
#(i,j)λ

)
⊆ Ker Ψλ#(i,j)λi,

as desired. From the choice of (i, j) ∈ I and (3.102) we now obtain

Sλ ⊆ K.
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Next we consider the reverse inclusion K ⊆ Sλ. In order to verify it, we fix a

y ∈ K. We now show for every (i, j) ∈ I the relation y ∈ Sλ
#(i,j)λ. We do this

by induction on the elements of I using the lexicographic ordering. The induction

starts with the smallest pair (2, 0). In this case we have λ#(2,0) = (λ1) and thus,

according to Lemma 3.4.4.(ii), Sλ
#(2,0)λ = Mλ. This shows the induction hypothesis

for the pair (2, 0). For the induction step we consider an arbitrary (i, j) ∈ I \
{(m,λm − 1)}. Suppose that we have for this pair y ∈ Sλ#(i,j)λ. With that, we get

from the fact y ∈ K, (3.102), Theorem 3.10.5, and (3.100)

y ∈ K ∩ Sλ#(i,j)λ

⊆ Ker Ψλ#(i,j)λi ∩ Sλ
#(i,j)λ

= Ker
(

Ψλ#(i,j)λi

yMλ

Sλ
#(i,j)λ

)
= Sλ

#(i,j)Aiλ

= Sλ
#(i,j)∧λ.

This also shows the induction hypothesis for the pair (i, j)∧ and thus inductively for

all pairs (i, j) ∈ I. Now we consider in particular the biggest pair (m,λm− 1) ∈ I.

For this pair a calculation analogous to the preceding one but using (3.101) instead

of (3.100) and furthermore Lemma 3.4.4.(iii) shows

y ∈ K ∩ Sλ#(m,λm−1)λ

⊆ Ker Ψλ#(m,λm−1)λm ∩ Sλ
#(m,λm−1)λ

= Ker
(

Ψλ#(m,λm−1)λm

yMλ

Sλ
#(m,λm−1)λ

)
= Sλ

#(m,λm−1)Amλ

= Sλλ

= Sλ.

This and the arbitrary choice of y ∈ K now imply

K ⊆ Sλ.

All in all, we have Sλ ⊆ K and K ⊆ Sλ and thus

Sλ = K,

which proves the claim of the corollary. �

Remark 3.10.8 (i) The case left out in the statement of Corollary 3.10.7, that

is, m = 1, is trivial. Using the notation from Corollary 3.10.7, we have for
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m = 1 the relation λ = (n). Now the permutation module M
(n)
(R,q) is free

over R of rank 1 with the basis element x
(R,q)
(n) . Furthermore we get from

Definition 1.1.64 and Lemma 1.1.65.(ii) the identities (n)′ = (1n) = ω(n),

S(n)′ = {1Sn}, t(n) = t(n), w(n) = 1Sn, y
(R,q)
(n)′ = 1H(R,q)

A
, z

(R,q)
(n) = x

(R,q)
(n) , and

finally S
(n)
(R,q) = M

(n)
(R,q).

(ii) In [DJ1, Section 7] Corollary 3.10.7 is proved under the assumption that the

coefficient ring R is a field (see especially [DJ1, Theorem 7.5]).

3.11 Construction of generic Specht series for

Hecke algebras of type A and associated per-

mutation modules and PK-modules

Now we complete the derivation of the generic Specht series for Hecke algebras of

type A. To this end, we first give a formal definition of Specht series for modules of

Hecke algebras of type A. Then we construct generic Specht series for PK-modules

and permutation modules and finally also for Hecke algebras of type A. As before, n

denotes a positive integer and (R, q) denotes a coefficient pair as in Definition 1.2.1.

Definition 3.11.1 Let M be a right H(R,q)
An−1

-module. Then a series of submodules

0HA = M0 ⊆M1 ⊆ · · · ⊆Mm−1 ⊆Mm = M

with an m ∈ N0 and the property

∀j ∈ {1, . . . ,m} : Mj/Mj−1 ' Sλ
(j)

(R,q) as H(R,q)
An−1

-modules

for an appropriate λ(j) ` n

is called a Specht series for M . Here, 0HA denotes the trivial H(R,q)
An−1

-submodule of

M . The number m is called the length of this Specht series.

The following theorem makes use of Definition 3.2.1 and Definition 3.4.1.

Theorem 3.11.2 Let µ#µ be a PKn-pair. Then there is a Specht series for the

PKn-module Sµ
#µ

(R,q).

Proof. In the case µ#µ = 00 we have, according to Definition 3.4.1, Sµ
#µ = 0HA .

Here, 0HA denotes the null ideal in Hn. This shows the claim with the Specht series

0HA = Sµ
#µ
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of length 0.

In the case µ#µ 6= 00 and µ# = µ we have, according to Lemma 3.4.4.(iii),

Sµ
#µ = Sµ. This shows the claim with the Specht series

0HA ⊆ Sµ = Sµ
#µ

of length 1.

In the remainder of the proof, we assume µ#µ 6= 00 and µ# 6= µ. Then we

get from Lemma 3.2.7.(iii) an AR-index c1 ∈ N \ {1} for the PK-pair µ#µ which

enables us to construct the PK-pairs µ#Ac1µ and µ#µRc1 as in Definition 3.2.5.

Now there might be an AR-index c2 ∈ N \ {1} for µ#Ac1µ respectively an AR-

index c3 ∈ N \ {1} for µ#µRc1 such that the application of the operators Ac2 and

Rc2 to µ#Ac1µ respectively the operators Ac3 and Rc3 to µ#µRc1 leads to further

PK-pairs. The iteration of this process as long as possible produces a binary tree

(that is, every vertex in the tree has zero or two successors) whose vertices are

labelled with PK-pairs and whose edges are labelled with operators Ac and Rc with

appropriate AR-indices c ∈ N \ {1}. More specifically, the root of the tree (that

is, the vertex without predecessor) is labelled µ#µ, and if a vertex of the tree has

two successors then the label of this vertex is a PK-pair ν#ν 6= 00, the labels of

the edges leading to its successors are Ac and Rc with an AR-index c ∈ N \ {1} for

ν#ν, the label of the vertex at the other end of the edge labelled Ac is ν#Acν, and

the label of the vertex at the other end of the edge labelled Rc is ν#νRc. This part

of the tree is displayed in the following picture.
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ν#ν

Ac Rc

ν#Acν ν#νRc

(3.104)
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Now let ν#ν 6= 00 be an arbitrary PK-pair occurring in the tree and let c ∈
N \ {1} be an AR-index for ν#ν. Then the application of the operator Ac to

ν#ν either produces 00 or increases the number of lattice points in the diagram[
ν#
]
⊆ [ν] but leaves unchanged the number of lattice points in the diagram [ν]

(see Definition 3.2.1 and Definition 3.2.5). Furthermore, the application of the

operator Rc to ν#ν moves lattice points from the c-th row of the diagram [ν] to

the (c− 1)-th row of [ν] and possibly increases the number of lattice points in the

diagram
[
ν#
]
⊆ [ν] (see Definition 1.1.6, Definition 3.2.1, and Definition 3.2.5).

This shows that any iterative application of operators Ac and Rc with appropriate

AR-indices c ∈ N \ {1} to µ#µ inevitably produces after a finite number of steps

a PK-pair to which no such operators can be applied any more. From this we see

that the binary tree constructed in this way from µ#µ only contains a finite number

of vertices. Moreover, Lemma 3.2.7.(iii) implies that the labels of the leaves of this

tree (that is, the vertices without successors) are of the form 00 or λλ with an

appropriate λ ` n. Thus the complete binary tree has the form
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µ#µ

Ac1 Rc1

λ(2)λ(2) λ(3)λ(3) 00 λ(6)λ(6)

00 λ(1)λ(1) λ(4)λ(4) λ(5)λ(5)

(3.105)

with appropriate λ(1), . . . , λ(6) ∈ Πn (see Definition 1.1.2.(iii)) and possibly more

such partitions.

The claim of the theorem in the case µ#µ 6= 00 and µ# 6= µ is now proved by

induction on the labels of the vertices of this tree along the edges from the leaves to

the root. The induction start is provided by the two special cases µ#µ = 00 on the

one hand and µ#µ 6= 00 and µ# = µ on the other hand considered at the beginning

of the proof together with the above considerations concerning the labelling of the

leaves of the binary tree. For the induction step we consider a vertex of the tree

which is not a leaf. This vertex is then, as shown in picture (3.104), labelled with

a PK-pair ν#ν 6= 00 and the labels of its successors are ν#Acν and ν#νRc with an
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AR-index c ∈ N \ {1} for ν#ν. With this data we get from Lemma 3.4.4.(v)

0HA ⊆ Sν
#Acν ⊆ Sν

#ν (3.106)

and furthermore from Lemma 3.5.5.(iii) and Theorem 3.10.5

Sν
#ν/Sν

#Acν ' Sν
#νRc as Hn-modules, (3.107)

the isomorphism being induced by the map Ψν#νc

yMν

Sν
#ν

. Now if the claim of the

theorem holds for ν#Acν and ν#νRc then we can use the Specht series for Sν
#Acν

and Sν
#νRc and the isomorphism (3.107) to refine the series (3.106) for Sν

#ν to

a Specht series for Sν
#ν . Thus the claim of the theorem also holds for ν#ν and

inductively for all PK-pairs occurring as labels of vertices in the binary tree (3.105).

In particular, the claim of the theorem holds for the label of the root of the tree,

namely µ#µ. �

Remark 3.11.3 (i) Remark 1.3.15.(i), Remark 3.4.2, Remark 3.5.4, and Re-

mark 3.10.6.(i) show that the Specht series for PK-modules constructed in the

proof of Theorem 3.11.2 are generic in the sense of Remark 1.2.9.

(ii) In [DJ1, Section 7] Theorem 3.11.2 is proved under the assumption that the

coefficient ring R is a field (see especially [DJ1, Theorem 7.4]).

Corollary 3.11.4 Let λ = (λ1, λ2, . . .) � n with λ1 > 0. Then there is a Specht

series for the permutation module Mλ
(R,q).

Proof. The assumption λ1 > 0 allows us to build the PK-pair (λ1)λ (see Defi-

nition 3.2.1). Now the claim follows from Lemma 3.4.4.(ii) and Theorem 3.11.2.

�

Remark 3.11.5 (i) Remark 3.11.3.(i) shows that the Specht series for permu-

tation modules constructed in the proof of Corollary 3.11.4 are generic in the

sense of Remark 1.2.9.

(ii) Consider λ, µ � n which differ only by a permutation of their entries. Then

we have according to [DJ1, Lemma 4.3]

Mλ
(R,q) 'Mµ

(R,q)

as H(R,q)
An−1

-modules. The particular isomorphism that is constructed in [DJ1,

Lemma 4.3] also is generic in the sense of Remark 1.2.9. All this shows that

the condition imposed on the composition in the statement of Corollary 3.11.4

is not essential.
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Corollary 3.11.6 If we consider H(R,q)
An−1

as a right H(R,q)
An−1

-module then there is a

Specht series for this module.

Proof. From Definition 1.1.64, Lemma 1.1.65.(ii), and Definition 1.3.1 we see

Mω(n)

= Hn.

Now the claim follows from Corollary 3.11.4. �

Remark 3.11.7 Remark 3.11.5.(i) shows that the Specht series for H(R,q)
An−1

con-

structed in the proof of Corollary 3.11.6 is generic in the sense of Remark 1.2.9.

This completes the derivation of the generic Specht series for Hecke algebras of

type A.



Chapter 4

Generic bi-Specht series for Hecke

algebras of type B

This chapter describes the generalization of the generic Specht series for Hecke

algebras of type A from the preceding chapter to Hecke algebras of type B.

The first and the second section describe the combinatorial background required

for the treatment of Hecke algebras of type B and the algebras themselves. The next

three sections introduce and investigate the modules employed in the construction

of the bi-Specht series. The following section describes certain homomorphisms

between these modules. The final section carries out the construction of the bi-

Specht series for Hecke algebras of type B and describes how this construction can

be adapted to Hecke algebras of type D. The central results are Theorem 4.7.4 and

Theorem 4.7.6.

4.1 Combinatorics for Hecke algebras of type B

This section provides the combinatorial objects and constructions relevant to Hecke

algebras of type B. References for the following material are [DJ3, Section 2] and

[DJM, Section 3]. As always, n ∈ N denotes a positive integer.

The first part of this section introduces the Weyl groups underlying the Hecke

algebras of type B (see also [DJ3, Section 2] and [HUM, Chapter 1, Chapter 2,

Chapter 5]).

Definition 4.1.1 The group WBn is defined to be generated by the elements

t, s1, . . . , sn−1 (4.1)

219
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subject to the relations

t2 = 1WB
,

∀i ∈ {1, . . . , n− 1} : s2
i = 1WB

,

ts1ts1 = s1ts1t,

∀i ∈ {2, . . . , n− 1} : tsi = sit,

∀i ∈ {1, . . . , n− 2} : sisi+1si = si+1sisi+1,

∀i, j ∈ {1, . . . , n− 1} with |i− j| > 1 : sisj = sjsi

where 1WB
denotes the neutral element of this group. WBn is the Weyl group of

type Bn. WBn also is called a Weyl group of type B and denoted by WB. The

generators (4.1) are called the simple reflections in WBn.

WBn is the Weyl group of the root system of type Bn with the following Dynkin

diagram.

e e e e eq q q
0 1 2 n− 2 n− 1

Here, the simple reflection t corresponds to the vertex 0 and for every index j ∈
{1, . . . , n− 1} the simple reflection sj corresponds to the vertex j. Moreover, the

element t ∈ WBn generates a subgroup isomorphic to C2 (the cyclic group of order 2)

and the set {s1, . . . , sn−1} ⊆ WBn generates a subgroup isomorphic to Sn ' WAn−1

(see (1.6) on page 2). With these two subgroups of WBn we have the following

realization of WBn as a wreath product (see for example [DJ3, Section 2] or [HUM,

Section 1.1]).

WBn ' C2 oSn (4.2)

The notions of reduced expressions and length for the elements of the Weyl group

WBn are defined as in (1.7) on page 2 and (1.8) on page 2. The length function

`Bn = `B = ` : WBn → N0, w 7→ `Bn(w) = `B(w) = `(w)

has properties analogous to those in (1.9) on page 3 (see also [DJ3, Section 2]).

Next we describe certain embeddings of Weyl groups of type A into other Weyl

groups of type A and also into Weyl groups of type B. From the construction of

the Weyl groups of the types A and B in (1.3) on page 2, (1.4) on page 2, and

Definition 4.1.1 we see that the next definition is meaningful.
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Definition 4.1.2 (i) Let m ∈ {1, . . . , n}. Then the assignments

WAm−1 3 si 7→ si
m← = si ∈ WAn−1 for i ∈ {1, . . . ,m− 1}

define by multiplicative extension a length preserving and injective group ho-

momorphism

·
m← : WAm−1 ↪→ WAn−1 , w 7→ w

m←.

This homomorphism is called the left inclusion of WAm−1 into WAn−1. As an

abbreviation, we write

·
m← = ·←.

(ii) Let m ∈ {1, . . . , n}. Then the assignments

WAm−1 3 si 7→ si
m→ = si+n−m ∈ WAn−1 for i ∈ {1, . . . ,m− 1}

define by multiplicative extension a length preserving and injective group ho-

momorphism

·
m→ : WAm−1 ↪→ WAn−1 , w 7→ w

m→.

This homomorphism is called the right inclusion of WAm−1 into WAn−1. As an

abbreviation, we write

·
m→ = ·→.

(iii) The assignments

WAn−1 3 si 7→ si ∈ WBn for i ∈ {1, . . . , n− 1}

define by multiplicative extension a length preserving and injective group ho-

momorphism

WAn−1 ↪→ WBn , WAn−1 3 w 7→ w ∈ WBn .

We identify the group WAn−1 with its image in WBn under this embedding.

Remark 4.1.3 (i) The embedding of WAn−1 into WBn from Definition 4.1.2.(iii)

has already been used in the derivation of (4.2).

(ii) The embedding of WAn−1 into WBn from Definition 4.1.2.(iii) also allows us

to apply constructions for Weyl groups of type A from the preceding chapters

to Weyl groups of type B.

Lemma 4.1.4 Let a ∈ {1, . . . , n− 1}. Choose u ∈ WAn−a−1 and v ∈ WAa−1. Then

we have in WAn−1
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(i) u
n−a← v

a→ = v
a→u

n−a← ,

(ii) `An−1(u
n−a← v

a→) = `An−1(u
n−a← ) + `An−1(v

a→).

Proof. (i) According to Definition 4.1.2.(i), u← ∈ WAn−1 is a product of factors

from the set {s1, . . . , sn−a−1} ⊆ WAn−1 . Similarly, according to Definition 4.1.2.(ii),

v→ ∈ WAn−1 is a product of factors from the set {sn−a+1, . . . , sn−1} ⊆ WAn−1 .

According to (1.4) on page 2, every element of the set {s1, . . . , sn−a−1} commutes

with every element of the set {sn−a+1, . . . , sn−1}. This shows the claim.

(ii) This follows from the considerations in the proof of statement (i), (1.6) on

page 2, and (1.10) on page 3. �

The following lemma makes use of the isomorphism (1.6) on page 2 and the nota-

tion (1.2) on page 1.

Lemma 4.1.5 Let a ∈ {1, . . . , n− 1}. Then we have in WAn−1 ' Sn the following

identities.

(i) WAn−a−1

n−a← = S{1,...,n−a}.

(ii) WAa−1

a→ = S{n−a+1,...,n}.

(iii)
(
WAn−a−1

n−a←
)
∩
(
WAa−1

a→
)

= {1WA
}.

(iv)
(
WAn−a−1

n−a←
)(

WAa−1

a→
)

= S(n−a,a).

Proof. Statements (i) and (ii) follow from the consideration of the sets of simple

reflections generating the respective groups and (1.6) on page 2. Statement (iii)

follows from (1.6) and statements (i) and (ii). Furthermore, Lemma 4.1.4.(i) and

statement (iii) show that the product
(
WAn−a−1

n−a←
)(

WAa−1

a→
)

in WAn−1 is direct.

Now statement (iv) follows from a comparison of statements (i) and (ii) with the

decomposition (1.18) of Young subgroups on page 25. �

Now we describe some constructions relevant to the representation theory of

Weyl groups of type B. They generalize constructions known from the representa-

tion theory of symmetric groups employed in the preceding chapters. The notions

introduced in the next definition can also be found, for example, in [DJM, Section 3].

Definition 4.1.6 Let a ∈ {0, . . . , n}.

(i) A pair (λ, µ) consisting of λ � a and µ � n − a is called an a-bi-composition

of n or a bi-composition of n or just an a-bi-composition or a bi-composition.



4.1. COMBINATORICS FOR HB 223

(ii) A pair (λ, µ) consisting of λ ` a and µ ` n− a is called an a-bi-partition of n

or a bi-partition of n or just an a-bi-partition or a bi-partition.

The following definition makes use of Definition 3.2.1.

Definition 4.1.7 (i) Let a ∈ {1, . . . , n− 1}. Furthermore, let λ#λ be a PKa-

pair with λ#λ 6= 00 and let µ#µ be a PKn−a-pair with µ#µ 6= 00. Then the

pair

(λ#λ, µ#µ)

is called an a-bi-PKn-pair or an a-bi-PK-pair or just a bi-PKn-pair or a bi-

PK-pair.

(ii) Let µ#µ be a PKn-pair with µ#µ 6= 00. Then the pair

(00, µ#µ)

is called a 0-bi-PKn-pair or a 0-bi-PK-pair or just a bi-PKn-pair or a bi-PK-

pair.

(iii) Let λ#λ be a PKn-pair with λ#λ 6= 00. Then the pair

(λ#λ, 00)

is called an n-bi-PKn-pair or an n-bi-PK-pair or just a bi-PKn-pair or a bi-

PK-pair.

(iv) The pair

(00, 00)

also is called a bi-PK-pair.

In the preceding definition, the abbreviation PK stands for partition-composition.

The following remark makes use of Definition 4.1.6.(i).

Remark 4.1.8 (i) Let a ∈ {1, . . . , n− 1} and fix an a-bi-PKn-pair (λ#λ, µ#µ).

Then (λ, µ) is an a-bi-composition.

(ii) Let (00, µ#µ) be a 0-bi-PKn-pair. Then ((0), µ) is a 0-bi-composition.

(iii) Let (λ#λ, 00) be an n-bi-PKn-pair. Then (λ, (0)) is an n-bi-composition.

The next definition uses Definition 3.2.3 and Definition 3.2.5. Lemma 3.2.7.(ii)

shows that it is meaningful.
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Definition 4.1.9 Let (λ#λ, µ#µ) be a bi-PKn-pair.

(i) Suppose λ#λ 6= 00 and let c ∈ N \ {1} be an AR-index for λ#λ. Then the

bi-PK-pair (λ#λ, µ#µ)(c)A is defined as

(λ#λ, µ#µ)(c)A =

 (λ#Acλ, µ
#µ) for λ#Acλ 6= 00

(00, 00) for λ#Acλ = 00
.

(λ#λ, µ#µ)(c)A is called the image of the bi-PKn-pair (λ#λ, µ#µ) under the

operator (c)A.

(ii) Suppose µ#µ 6= 00 and let c ∈ N \ {1} be an AR-index for µ#µ. Then the

bi-PK-pair (λ#λ, µ#µ)A(c) is defined as

(λ#λ, µ#µ)A(c) =

 (λ#λ, µ#Acµ) for µ#Acµ 6= 00

(00, 00) for µ#Acµ = 00
.

(λ#λ, µ#µ)A(c) is called the image of the bi-PKn-pair (λ#λ, µ#µ) under the

operator A(c).

(iii) Suppose λ#λ 6= 00 and let c ∈ N \ {1} be an AR-index for λ#λ. Then the

bi-PK-pair (λ#λ, µ#µ)(c)R is defined as

(λ#λ, µ#µ)(c)R = (λ#λRc, µ
#µ).

(λ#λ, µ#µ)(c)R is called the image of the bi-PKn-pair (λ#λ, µ#µ) under the

operator (c)R.

(iv) Suppose µ#µ 6= 00 and let c ∈ N \ {1} be an AR-index for µ#µ. Then the

bi-PK-pair (λ#λ, µ#µ)R(c) is defined as

(λ#λ, µ#µ)R(c) = (λ#λ, µ#µRc).

(λ#λ, µ#µ)R(c) is called the image of the bi-PKn-pair (λ#λ, µ#µ) under the

operator R(c).

Now we introduce some useful elements of WBn . The next definition makes use

of Definition 4.1.2.(iii), it is modelled on [DJ3, Definition 2.3].

Definition 4.1.10 Let a ∈ {0, . . . , n}. Then the element wa,n−a ∈ WAn−1 ⊆ WBn

is defined as

wa,n−a = (sn−1sn−2 · · · s2s1)n−a .
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Remark 4.1.11 Let a ∈ {0, . . . , n}. Then we get from (1.6) on page 2

sn−1sn−2 · · · s2s1 = (1, 2, · · · , n− 1, n).

From this in turn we see that for a ∈ {1, . . . , n− 1} the element wa,n−a from

Definition 4.1.10 maps the numbers 1, . . . , a in the given order to the numbers

n − a + 1, . . . , n and the numbers a + 1, . . . , n in the given order to the numbers

1, . . . , n− a. Moreover, for a ∈ {0, n} we obtain wa,n−a = 1Sn.

4.2 Hecke algebras of type B

In this section we describe Hecke algebras of type B, as also considered in [DJ3].

Further information on the history and background of these algebras also can be

found there. Moreover, we refer the reader to [HUM, Chapter 7] where Hecke

algebras of arbitrary type are constructed in a very general way. As before, n ∈ N
denotes a positive integer.

The next definition is analogous to Definition 1.2.1.

Definition 4.2.1 Let R be an integral domain. Furthermore, let q ∈ R be a unit

and Q ∈ R be an arbitrary element. Then the triple (R, q,Q) is called a coefficient

triple.

Remark 4.2.2 Let (R, q,Q) be a coefficient triple as in Definition 4.2.1. Then

(R, q) is a coefficient pair as in Definition 1.2.1.

The following description of the Hecke algebra of type Bn is from [DJ3, Sec-

tion 3], it makes use of Definition 4.1.1.

Definition 4.2.3 Let (R, q,Q) be a coefficient triple. Then the Hecke algebra

H(R,q,Q)
Bn

= H(R,q,Q)
B = HBn = HB

of type Bn — or more generally of type B — over the coefficient triple (R, q,Q) is

defined as the free R-module with basis {Tw | w ∈ WBn} on which the rules

(i) T1WB
= 1H(R,q,Q)

B
,

(ii) T 2
t = QT1WB

+ (Q− 1)Tt ,

(iii) ∀i ∈ {1, . . . , n− 1} : T 2
si

= qT1WB
+ (q − 1)Tsi ,

(iv) Tw = Tv1 · · ·Tv`(w)
for every w ∈ WBn having a reduced expression w =

v1 · · · v`B(w) with factors v1, . . . , v`B(w) ∈ {t, s1, . . . , sn−1}
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induce an associative multiplication. Here, 1H(R,q,Q)
B

denotes the multiplicative neu-

tral element of the algebra H(R,q,Q)
Bn

. Furthermore, the additive neutral element of

H(R,q,Q)
Bn

is denoted by 0H(R,q,Q)
B

. The parameter n is called the degree of the Hecke

algebra H(R,q,Q)
Bn

.

For all the following we fix a coefficient triple (R, q,Q). From the rules for the

multiplication on HBn in Definition 4.2.3 we get the following useful facts (see

Definition 4.1.2.(iii), (1.22) on page 34, (1.23) on page 34, and [DJ3, (3.1)]).

For u, v ∈ WBn satisfying `Bn(uv) = `Bn(u) + `Bn(v), we have

Tuv = TuTv.
(4.3)

For every w ∈ WAn−1 ⊆ WBn , Tw is invertible in H(R,q,Q)
Bn

. (4.4)

Now we investigate the behavior ofHBn when changing the coefficient ring. This

is done as in the case of type A in Section 1.2. Let R̃ be an integral domain and

let ξ : R→ R̃ be a ring homomorphism. Then (R̃, ξ(q), ξ(Q)) is a coefficient triple

as in Definition 4.2.1. Furthermore, using ξ, R̃ can be considered a left R-module.

This allows us to build the functor −⊗R R̃.

Lemma 4.2.4 We have H(R,q,Q)
Bn

⊗R R̃ ' H(R̃,ξ(q),ξ(Q))
Bn

as R̃-algebras.

Proof. This proof is completely analogous to that of Lemma 1.2.7. �

Remark 4.2.5 Lemma 4.2.4 and its proof show that Hecke algebras of type B are

generic in the sense of Remark 1.2.9.

Next we generalize Definition 4.1.2 from Weyl groups to Hecke algebras. This

can be done because the maps considered there are length preserving, further be-

cause of the similar constructions of the Hecke algebras of types A and B in Sec-

tion 1.2 and Definition 4.2.3, and finally because of Remark 4.2.2.

Definition 4.2.6 (i) Let m ∈ {1, . . . , n}. Then the assignments

H(R,q)
Am−1

3 Tw 7→ Tw
m← = T

w
m← ∈ H

(R,q)
An−1

for w ∈ WAm−1

define by R-linear extension an injective algebra homomorphism

·
m← : H(R,q)

Am−1
↪→ H(R,q)

An−1
, h 7→ h

m←.

This homomorphism is called the left inclusion of H(R,q)
Am−1

into H(R,q)
An−1

. As an

abbreviation, we write

·
m← = ·←.
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(ii) Let m ∈ {1, . . . , n}. Then the assignments

H(R,q)
Am−1

3 Tw 7→ Tw
m→ = T

w
m→ ∈ H

(R,q)
An−1

for w ∈ WAm−1

define by R-linear extension an injective algebra homomorphism

·
m→ : H(R,q)

Am−1
↪→ H(R,q)

An−1
, h 7→ h

m→.

This homomorphism is called the right inclusion of H(R,q)
Am−1

into H(R,q)
An−1

. As an

abbreviation, we write

·
m→ = ·→.

(iii) The assignments

H(R,q)
An−1

3 Tw 7→ Tw ∈ H(R,q,Q)
Bn

for w ∈ WAn−1

define by R-linear extension an injective algebra homomorphism

H(R,q)
An−1

↪→ H(R,q,Q)
Bn

, H(R,q)
An−1

3 h 7→ h ∈ H(R,q,Q)
Bn

.

We identify the algebra H(R,q)
An−1

with its image in H(R,q,Q)
Bn

under this embedding.

Remark 4.2.7 (i) Lemma 1.2.7 and Lemma 4.2.4 together with their proofs

show that the embeddings from Definition 4.2.6 are generic in the sense of

Remark 1.2.9.

(ii) The embedding from Definition 4.2.6.(iii) also allows us to apply constructions

for Hecke algebras of type A from the preceding chapters to Hecke algebras of

type B. According to statement (i), generic constructions for Hecke algebras

of type A remain generic when considered in Hecke algebras of type B.

Lemma 4.2.8 Fix an a ∈ {1, . . . , n− 1}. Then all the following statements hold

in H(R,q)
An−1

.

(i) Let x ∈ H(R,q)
An−a−1

and y ∈ H(R,q)
Aa−1

. Then we have in H(R,q)
An−1

x
n−a← y

a→ = y
a→x

n−a← .

(ii)

(
H(R,q)
An−a−1

n−a←
)(
H(R,q)
Aa−1

a→
)
⊆ H(R,q)

An−1
is an R-subalgebra.

(iii) We have (
H(R,q)
An−a−1

n−a←
)(
H(R,q)
Aa−1

a→
)
' H(R,q)

An−a−1
⊗R H(R,q)

Aa−1

as R-algebras.
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(iv) H(R,q)
An−1

is a free left

(
H(R,q)
An−a−1

n−a←
)(
H(R,q)
Aa−1

a→
)

-module with basis{
Tg | g ∈ D(n−a,a)

}
.

In other words, we have

H(R,q)
An−1

=
⊕

g∈D(n−a,a)

(
H(R,q)
An−a−1

n−a←
)(
H(R,q)
Aa−1

a→
)
Tg,

the sum being direct over

(
H(R,q)
An−a−1

n−a←
)(
H(R,q)
Aa−1

a→
)

.

(v) Let

M ⊆ H(R,q)
Aa−1

and N ⊆ H(R,q)
An−a−1

be right ideals. Furthermore, let

{xi | i ∈ I} ⊆M

be an R-basis of M with a certain index set I. Finally, let

{yj | j ∈ J } ⊆ N

be an R-basis of N with a certain index set J . Then the set(
{xi | i ∈ I}

a→
)(
{yj | j ∈ J }

n−a←
){

Tg | g ∈ D(n−a,a)

}
=

{(
xi

a→
)(

yj
n−a←
)
Tg

∣∣∣ i ∈ I, j ∈ J , g ∈ D(n−a,a)

}
⊆ H(R,q)

An−1

is an R-basis of the right ideal(
M

a→
)(

N
n−a←
)
H(R,q)
An−1

⊆ H(R,q)
An−1

.

Proof. (i) This follows from the construction of the Hecke algebras of type A in

Section 1.2 — in particular formula (1.22) on page 34 — and Lemma 4.1.4.

(ii) This follows easily from statement (i).

(iii) We see from the construction of the Hecke algebras of type A in Section 1.2

and Lemma 4.1.4.(ii) that
(
HAn−a−1

←) (HAa−1

→) is generated over R by the set

{
Tu← |u ∈ WAn−a−1

}{
Tv→ | v ∈ WAa−1

}
=

{
Tu←v→ |u ∈ WAn−a−1 , v ∈ WAa−1

}
⊆ HAn−1 .

(4.5)
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Now Lemma 4.1.5.(iii) shows that the elements of this set are indexed by pairs

(u, v) with u ∈ WAn−a−1 and v ∈ WAa−1 . Again according to the construction of the

Hecke algebras of type A, this set also is linearly independent over R. Thus it is an

R-basis of the R-algebra
(
HAn−a−1

←) (HAa−1

→). Furthermore, HAn−a−1 ⊗R HAa−1

has the R-basis {
Tu ⊗R Tv |u ∈ WAn−a−1 , v ∈ WAa−1

}
. (4.6)

The elements of this set also are indexed by pairs (u, v) with u ∈ WAn−a−1 and

v ∈ WAa−1 . The desired isomorphism now is obtained by identifying elements of

the bases (4.5) and (4.6) having the same index pair.

(iv) From the construction of the Hecke algebras of type A in Section 1.2, the

isomorphism (1.6) on page 2, Lemma 1.1.56, Lemma 4.1.4, and Lemma 4.1.5 we get

HAn−1 =
⊕
x∈Sn

RTx

=
⊕

g∈D(n−a,a)

 ⊕
w∈S(n−a,a)

RTw

Tg

=
⊕

g∈D(n−a,a)

 ⊕
u∈WAn−a−1

⊕
v∈WAa−1

RTu←Tv→

Tg

=
⊕

g∈D(n−a,a)

 ⊕
u∈WAn−a−1

RTu←

 ⊕
v∈WAa−1

RTv→

Tg

=
⊕

g∈D(n−a,a)

(
HAn−a−1

←) (HAa−1

→)Tg,
all occurring sums being direct over R. This proves the claim.

(v) From statements (i), (iii), and (iv) we get

(M→) (N←)HAn−1 = (M→) (N←)

 ⊕
g∈D(n−a,a)

(
HAn−a−1

←) (HAa−1

→)Tg


=
⊕

g∈D(n−a,a)

((M→) (N←))
((
HAn−a−1

←) (HAa−1

→))Tg
=

⊕
g∈D(n−a,a)

((
MHAa−1

)→) ((
NHAn−a−1

)←)
Tg

=
⊕

g∈D(n−a,a)

(M→) (N←)Tg

=
⊕

g∈D(n−a,a)

((⊕
i∈I

Rxi

)→)((⊕
j∈J

Ryj

)←)
Tg
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=
⊕

g∈D(n−a,a)

⊕
i∈I

⊕
j∈J

R (xi
→) (yj

←)Tg,

all occurring sums being direct at least over R. This proves the claim. �

Now we record some identities inHBn which will be useful later on. The following

statement makes use of Definition 4.1.1.

Lemma 4.2.9 (i) Let i ∈ {1, . . . , n}. Then we have in H(R,q,Q)
Bn

Tsi−1···s1TtTs1···si−1
= Tsi−1···s1ts1···si−1

.

(ii) Let i, j ∈ {1, . . . , n}. Then we have in H(R,q,Q)
Bn

Tsi−1···s1ts1···si−1
Tsj−1···s1ts1···sj−1

= Tsj−1···s1ts1···sj−1
Tsi−1···s1ts1···si−1

.

Proof. (i) See [DJ3, considerations after (3.1)].

(ii) See [DJ3, considerations after Definition 3.2]. �

4.3 Bi-permutation modules for Hecke algebras

of type B

In this section we introduce a family of modules for Hecke algebras of type B

which is based on the permutation modules for Hecke algebras of type A from Def-

inition 1.3.1. This procedure is similar to the investigation of the representation

theory of Weyl groups of type B by means of the representation theory of Weyl

groups of type A (see, for example, [KER]). We keep the notation from the preced-

ing section, that is, n denotes a positive integer and (R, q,Q) denotes a coefficient

triple as in Definition 4.2.1.

First, we provide the elements of HBn required for the construction of the mod-

ules. The following definition makes use of Definition 4.1.10, Definition 4.2.6.(iii),

and Lemma 4.2.9. The latter shows that the arrangement of the factors in the

products occurring in part (ii) is not important. This definition follows [DJ3, Defi-

nition 3.2 and Definition 3.8].

Definition 4.3.1 (i) Let a ∈ {0, . . . , n}. Then we define the element h
(R,q)
a,n−a ∈

H(R,q)
An−1

⊆ H(R,q,Q)
Bn

as

h
(R,q)
a,n−a = Twa,n−a .

As an abbreviation, we write

h
(R,q)
a,n−a = ha,n−a.
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(ii) Let m ∈ {0, . . . , n}. Then we define the elements u+
m(R, q,Q), u−m(R, q,Q) ∈

H(R,q,Q)
Bn

as

u+
m(R, q,Q) =

m∏
i=1

(
qi−1 + Tsi−1···s1TtTs1···si−1

)
and

u−m(R, q,Q) =
m∏
i=1

(
Qqi−1 − Tsi−1···s1TtTs1···si−1

)
.

As an abbreviation, we write

u+
m(R, q,Q) = u+

m

and

u−m(R, q,Q) = u−m.

(iii) Let a ∈ {0, . . . , n}. Then we define the element v
(R,q,Q)
a,n−a ∈ H

(R,q,Q)
Bn

as

v
(R,q,Q)
a,n−a = u+

a (R, q,Q)h
(R,q)
a,n−au

−
n−a(R, q,Q).

As an abbreviation, we write

v
(R,q,Q)
a,n−a = va,n−a.

Remark 4.3.2 (i) From Remark 4.1.11 we see

h
(R,q)
0,n = h

(R,q)
n,0 = 1H(R,q,Q)

B
.

(ii) From Definition 4.3.1 and statement (i) we see

v
(R,q,Q)
0,n = u−n (R, q,Q) and v

(R,q,Q)
n,0 = u+

n (R, q,Q).

The next lemma makes use of Definition 4.2.6 and Remark 4.2.7.(ii). Statements

(v) and (vi) also are proved in [DJ3, Lemma 3.10].

Lemma 4.3.3 (i) Let a ∈ {1, . . . , n} and x ∈ H(R,q)
Aa−1

. Then we have in H(R,q)
An−1(

x
a←
)
h

(R,q)
a,n−a = h

(R,q)
a,n−a

(
x
a→
)
.

(ii) Let a ∈ {0, . . . , n− 1} and y ∈ H(R,q)
An−a−1

. Then we have in H(R,q)
An−1(

y
n−a→
)
h

(R,q)
a,n−a = h

(R,q)
a,n−a

(
y
n−a←
)
.
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(iii) Let m ∈ {1, . . . , n} and x ∈ H(R,q)
Am−1

. Then we have in H(R,q,Q)
Bn(

x
m←
)
u+
m(R, q,Q) = u+

m(R, q,Q)
(
x
m←
)

and (
x
m←
)
u−m(R, q,Q) = u−m(R, q,Q)

(
x
m←
)
.

(iv) Let m ∈ {0, . . . , n− 1} and y ∈ H(R,q)
An−m−1

. Then we have in H(R,q,Q)
Bn(

y
n−m→
)
u+
m(R, q,Q) = u+

m(R, q,Q)
(
y
n−m→
)

and (
y
n−m→
)
u−m(R, q,Q) = u−m(R, q,Q)

(
y
n−m→
)
.

(v) Let a ∈ {1, . . . , n} and x ∈ H(R,q)
Aa−1

. Then we have in H(R,q,Q)
Bn(

x
a←
)
v

(R,q,Q)
a,n−a = v

(R,q,Q)
a,n−a

(
x
a→
)
.

(vi) Let a ∈ {0, . . . , n− 1} and y ∈ H(R,q)
An−a−1

. Then we have in H(R,q,Q)
Bn(

y
n−a→
)
v

(R,q,Q)
a,n−a = v

(R,q,Q)
a,n−a

(
y
n−a←
)
.

Proof. Statements (i) and (ii) follow from [DJ3, (2.5) and (2.7)], formula (1.22)

on page 34, and Definition 4.2.6. Furthermore, statements (iii) and (iv) follow

from [DJ3, Proposition 3.4], the product representation (1.7) on page 2, and again

formula (1.22). Finally, statements (v) and (vi) follow from Definition 4.3.1 and

statements (i) to (iv). �

Now we employ the elements introduced in Definition 4.3.1.(iii) to construct a

useful series of right ideals in HBn . The next theorem makes use of Definition 1.9.3

and Definition 4.2.6.(iii), it is derived from [DJ3, Theorem 3.17].

Theorem 4.3.4 If we put, in addition to Definition 4.3.1.(iii),

v
(R,q,Q)
0,0 = v0,0 = 1H(R,q,Q)

B
(4.7)

then we have for arbitrary

a, b ∈ N0 with a+ b < n

a short exact sequence of right ideals in H(R,q,Q)
Bn

0H(R,q,Q)
B

→ v
(R,q,Q)
a,b+1 H

(R,q,Q)
Bn

→ v
(R,q,Q)
a,b H(R,q,Q)

Bn
→ v

(R,q,Q)
a+1,b H

(R,q,Q)
Bn

→ 0H(R,q,Q)
B

,

the homomorphism v
(R,q,Q)
a,b+1 H

(R,q,Q)
Bn

→ v
(R,q,Q)
a,b H(R,q,Q)

Bn
being the natural inclusion

and the homomorphism v
(R,q,Q)
a,b H(R,q,Q)

Bn
→ v

(R,q,Q)
a+1,b H

(R,q,Q)
Bn

being induced by premul-

tiplication with a certain element of H(R,q,Q)
Bn

.
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Proof. In the case a + b > 0 we see from Definition 4.3.1, Definition 1.9.3, and

Definition 4.2.6.(iii)

u+
a ∈ HBn , ha,b ∈ HAa+b−1

⊆ HAn−1 ⊆ HBn , u−b ∈ HBn

and thus

va,b ∈ HBn .

According to (4.7), this also holds in the case a + b = 0. Similarly we get for

arbitrary values of a+ b

va,b+1 ∈ HBn and va+1,b ∈ HBn .

This shows that the claim of the theorem is meaningful. The short exact sequence

and the particular forms of the homomorphisms occurring therein now follow from

[DJ3, Theorem 3.17 and its proof]. �

Remark 4.3.5 Definition 4.3.1, Remark 4.2.5, and [DJ3, proof of Theorem 3.17]

show that the short exact sequences from Theorem 4.3.4 are generic in the sense of

Remark 1.2.9.

Corollary 4.3.6 There is a series of right ideals in H(R,q,Q)
Bn

0H(R,q,Q)
B

= M0 ⊆M1 ⊆ · · · ⊆Mm−1 ⊆Mm = H(R,q,Q)
Bn

(4.8)

with a certain m ∈ N such that we have for every j ∈ {1, . . . ,m}

Mj/Mj−1 ' v
(R,q,Q)
aj ,n−ajH

(R,q,Q)
Bn

as H(R,q,Q)
Bn

-modules

with an appropriate aj ∈ {0, . . . , n}.

Proof. This follows from repeated applications of Theorem 4.3.4 with various values

of the parameters a and b occurring there. The starting point is a = b = 0. Then

we have according to Theorem 4.3.4

v0,0HBn = HBn

and

v0,0HBn/v0,1HBn ' v1,0HBn as HBn-modules.

From this we see that in the case n = 1 the series

0HB ⊆ v0,1HBn ⊆ v0,0HBn = HBn
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has the desired properties. In the case n > 1 this series can be refined by applying

Theorem 4.3.4 to the quotients of adjacent right ideals occurring in it. Here, the

particular values of the parameters a and b involved always satisfy a+ b = 1. If we

iterate this procedure until we reach the upper bound for a + b in Theorem 4.3.4

then we obtain a series of right ideals in HBn with the desired properties. �

Remark 4.3.7 Remark 4.3.5 and the proof of Corollary 4.3.6 show that the series

of right ideals constructed in Corollary 4.3.6 is generic in the sense of Remark 1.2.9.

Next, we investigate the behavior of ideals in Hecke algebras of type A when

multiplying them up to ideals in Hecke algebras of type B with the elements intro-

duced in Definition 4.3.1. The following statement makes use of Definition 4.2.6.(iii)

and Definition 4.1.2.(iii).

Theorem 4.3.8 Choose an a ∈ {0, . . . , n}. Then the following two statements hold

in H(R,q,Q)
Bn

.

(i) We have

v
(R,q,Q)
a,n−a H

(R,q,Q)
Bn

= v
(R,q,Q)
a,n−a H

(R,q)
An−1

.

(ii) The right ideal v
(R,q,Q)
a,n−a H

(R,q,Q)
Bn

in H(R,q,Q)
Bn

has the R-basis{
v

(R,q,Q)
a,n−a Tw

∣∣∣w ∈ WAn−1 ⊆ WBn

}
.

Proof. (i) See [DJ3, Theorem 3.13].

(ii) See [DJ3, Theorem 3.15]. �

The next corollary makes use of Definition 4.2.6 and Definition 1.1.58.

Corollary 4.3.9 Let a ∈ {1, . . . , n− 1}. With that, let M ⊆ H(R,q)
Aa−1

and N ⊆
H(R,q)
An−a−1

be right ideals. Then the following statements hold.

(i) For the right H(R,q,Q)
Bn

-ideal v
(R,q,Q)
a,n−a

(
M

a→
)(

N
n−a←
)
H(R,q,Q)
Bn

we have

v
(R,q,Q)
a,n−a

(
M

a→
)(

N
n−a←
)
H(R,q,Q)
Bn

= v
(R,q,Q)
a,n−a

(
M

a→
)(

N
n−a←
)
H(R,q)
An−1

.

(ii) Let {xi | i ∈ I} ⊆ M be an R-basis of M with a certain index set I and let

{yj | j ∈ J } ⊆ N be an R-basis of N with a certain index set J . Then the

set

v
(R,q,Q)
a,n−a

(
{xi | i ∈ I}

a→
)(
{yj | j ∈ J }

n−a←
){

Tg | g ∈ D(n−a,a)

}
=

{
v

(R,q,Q)
a,n−a

(
xi

a→
)(

yj
n−a←
)
Tg

∣∣∣ i ∈ I, j ∈ J , g ∈ D(n−a,a)

}
⊆ H(R,q,Q)

Bn

is an R-basis of the right ideal v
(R,q,Q)
a,n−a

(
M

a→
)(

N
n−a←
)
H(R,q,Q)
Bn

in H(R,q,Q)
Bn

.
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Proof. (i) From Lemma 4.3.3.(v), Lemma 4.3.3.(vi), and Theorem 4.3.8.(i) we get

va,n−a (M→) (N←)HBn = (M←) (N→) va,n−aHBn

= (M←) (N→) va,n−aHAn−1

= va,n−a (M→) (N←)HAn−1 .

This shows the claim.

(ii) Theorem 4.3.8 shows that we obtain an R-basis for va,n−a (M→) (N←)HAn−1

by premultiplication of an R-basis for (M→) (N←)HAn−1 with va,n−a. Now the

claim follows from statement (i) and Lemma 4.2.8.(v). �

The next statement makes use of Definition 4.2.6.

Corollary 4.3.10 Let M ⊆ H(R,q)
An−1

be a right ideal. Then the following statements

hold in H(R,q,Q)
Bn

.

(i) We have

v
(R,q,Q)
0,n

(
M

n←
)
H(R,q,Q)
Bn

= v
(R,q,Q)
0,n MH(R,q,Q)

Bn

= v
(R,q,Q)
0,n

(
M

n←
)
H(R,q)
An−1

= v
(R,q,Q)
0,n MH(R,q)

An−1

= v
(R,q,Q)
0,n

(
M

n←
)

= v
(R,q,Q)
0,n M.

(ii) We have

v
(R,q,Q)
n,0

(
M

n→
)
H(R,q,Q)
Bn

= v
(R,q,Q)
n,0 MH(R,q,Q)

Bn

= v
(R,q,Q)
n,0

(
M

n→
)
H(R,q)
An−1

= v
(R,q,Q)
n,0 MH(R,q)

An−1

= v
(R,q,Q)
n,0

(
M

n→
)

= v
(R,q,Q)
n,0 M.

Proof. (i) This follows from Definition 4.2.6.(i), Lemma 4.3.3.(vi), and Theo-

rem 4.3.8.(i).

(ii) This is obtained from Definition 4.2.6.(ii), Lemma 4.3.3.(v), and Theo-

rem 4.3.8.(i). �

The next corollary makes use of Definition 4.2.6.
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Corollary 4.3.11 Let M ⊆ H(R,q)
An−1

be a right ideal. Furthermore, let {xi | i ∈ I} ⊆
M be an R-basis of M with a certain index set I. Then the following statements

hold.

(i) The set

v
(R,q,Q)
0,n

(
{xi | i ∈ I}

n←
)

= v
(R,q,Q)
0,n ({xi | i ∈ I})

=
{
v

(R,q,Q)
0,n

(
xi

n←
) ∣∣∣ i ∈ I}

=
{
v

(R,q,Q)
0,n xi

∣∣∣ i ∈ I}
is an R-basis of the right ideal v

(R,q,Q)
0,n

(
M

n←
)
H(R,q,Q)
Bn

= v
(R,q,Q)
0,n MH(R,q,Q)

Bn

contained in H(R,q,Q)
Bn

.

(ii) The set

v
(R,q,Q)
n,0

(
{xi | i ∈ I}

n→
)

= v
(R,q,Q)
n,0 ({xi | i ∈ I})

=
{
v

(R,q,Q)
n,0

(
xi

n→
) ∣∣∣ i ∈ I}

=
{
v

(R,q,Q)
n,0 xi

∣∣∣ i ∈ I}
is an R-basis of the right ideal v

(R,q,Q)
n,0

(
M

n→
)
H(R,q,Q)
Bn

= v
(R,q,Q)
n,0 MH(R,q,Q)

Bn

contained in H(R,q,Q)
Bn

.

Proof. (i) From Definition 4.2.6.(i) we see that the sets occurring in the claim

are equal. Moreover, according to Theorem 4.3.8, we obtain an R-basis for v0,nM

by premultiplication of an R-basis for M with v0,n. Now an application of Corol-

lary 4.3.10.(i) completes the proof of the claim.

(ii) The proof of this statement makes use of Definition 4.2.6.(ii) and Corol-

lary 4.3.10.(ii) and is otherwise completely analogous to the proof of statement (i).

�

Now we employ the algebra elements introduced in Definition 4.3.1 to de-

fine modules for Hecke algebras of type B in the form of right ideals. In addi-

tion, the next definition makes use of Definition 4.1.6.(i), Definition 4.2.6, and

Lemma 4.2.8.(i).

Definition 4.3.12 (i) Let a ∈ {1, . . . , n− 1} and let (λ, µ) be an a-bi-composi-

tion of n. Then the right ideal M
(λ,µ)
(R,q,Q) in H(R,q,Q)

Bn
is defined as

M
(λ,µ)
(R,q,Q) = v

(R,q,Q)
a,n−a

(
Mλ

(R,q)

a→
)(

Mµ
(R,q)

n−a←
)
H(R,q,Q)
Bn

= v
(R,q,Q)
a,n−a

(
x

(R,q)
λ

a→
)(

x(R,q)
µ

n−a←
)
H(R,q,Q)
Bn

.
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(ii) Let ((0), µ) be a 0-bi-composition of n. Then the right ideal M
((0),µ)
(R,q,Q) in H(R,q,Q)

Bn

is defined as

M
((0),µ)
(R,q,Q) = v

(R,q,Q)
0,n Mµ

(R,q)H
(R,q,Q)
Bn

= v
(R,q,Q)
0,n

(
Mµ

(R,q)

n←
)
H(R,q,Q)
Bn

= v
(R,q,Q)
0,n x(R,q)

µ H(R,q,Q)
Bn

= v
(R,q,Q)
0,n

(
x(R,q)
µ

n←
)
H(R,q,Q)
Bn

.

(iii) Let (λ, (0)) be an n-bi-composition of n. Then the right ideal M
(λ,(0))
(R,q,Q) in

H(R,q,Q)
Bn

is defined as

M
(λ,(0))
(R,q,Q) = v

(R,q,Q)
n,0 Mλ

(R,q)H
(R,q,Q)
Bn

= v
(R,q,Q)
n,0

(
Mλ

(R,q)

n→
)
H(R,q,Q)
Bn

= v
(R,q,Q)
n,0 x

(R,q)
λ H(R,q,Q)

Bn

= v
(R,q,Q)
n,0

(
x

(R,q)
λ

n→
)
H(R,q,Q)
Bn

.

For an a-bi-composition (λ, µ) of n with a ∈ {0, . . . , n}, the right ideal M
(λ,µ)
(R,q,Q) in

H(R,q,Q)
Bn

is called the bi-permutation module of H(R,q,Q)
Bn

associated to (λ, µ). As an

abbreviation, we write

M
(λ,µ)
(R,q,Q) = M (λ,µ).

Remark 4.3.13 (i) Definition 4.3.1, Remark 1.3.7.(i), Remark 4.2.5, and Re-

mark 4.2.7 show that the bi-permutation modules of Hecke algebras of type B

introduced in Definition 4.3.12 are generic in the sense of Remark 1.2.9.

(ii) In [DJM, Definition 4.19], using the notation from there, certain right ide-

als Mλ for H(R,q,Q)
Bn

are defined. These right ideals are indexed by bi-partitions

of n and, at a superficial glance, are similar to the correspondingly indexed

bi-permutation modules from Definition 4.3.12. In fact, every right ideal Mλ

contains the bi-permutation module indexed by the same bi-partition, in gen-

eral as a strict subset.

Next, we derive generic bases of bi-permutation modules for Hecke algebras of

type B. The following statement makes use of Definition 4.1.6.(i), Definition 1.3.3,

and Definition 4.2.6.
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Theorem 4.3.14 (i) Let a ∈ {1, . . . , n− 1} and let (λ, µ) be an a-bi-composition

of n. Then the set

v
(R,q,Q)
a,n−a

(
BMλ

row std(R, q)
a→
)(

BMµ

row std(R, q)
n−a←
){

Tg | g ∈ D(n−a,a)

}
=

 v
(R,q,Q)
a,n−a

((
x

(R,q)
λ Td

) a→
)((

x
(R,q)
µ Tf

)n−a← )
Tg

d ∈ Dλ,
f ∈ Dµ,

g ∈ D(n−a,a)


⊆ H(R,q,Q)

Bn

is an R-basis of M
(λ,µ)
(R,q,Q).

(ii) Let ((0), µ) be a 0-bi-composition of n. Then the set

v
(R,q,Q)
0,n BMµ

row std(R, q) = v
(R,q,Q)
0,n

(
BMµ

row std(R, q)
n←
)

=
{
v

(R,q,Q)
0,n x(R,q)

µ Tf

∣∣∣ f ∈ Dµ}
=

{
v

(R,q,Q)
0,n

((
x(R,q)
µ Tf

) n←) ∣∣∣∣ f ∈ Dµ}
⊆ H(R,q,Q)

Bn

is an R-basis of M
((0),µ)
(R,q,Q).

(iii) Let (λ, (0)) be an n-bi-composition of n. Then the set

v
(R,q,Q)
n,0 BMλ

row std(R, q) = v
(R,q,Q)
n,0

(
BMλ

row std(R, q)
n→
)

=
{
v

(R,q,Q)
n,0 x

(R,q)
λ Td

∣∣∣ d ∈ Dλ}
=

{
v

(R,q,Q)
n,0

((
x

(R,q)
λ Td

) n→
) ∣∣∣∣ d ∈ Dλ}

⊆ H(R,q,Q)
Bn

is an R-basis of M
(λ,(0))
(R,q,Q).

Proof. (i) The claim follows from Definition 4.3.12.(i), Theorem 1.3.2, Defini-

tion 1.3.3, and Corollary 4.3.9.(ii).

(ii) From Definition 4.2.6 we see that the sets occurring in the claim are equal.

The remainder of the claim now follows from Definition 4.3.12.(ii), Theorem 1.3.2,

Definition 1.3.3, and Corollary 4.3.11.(i).

(iii) From Definition 4.2.6 we see that the sets occurring in the claim are equal.

The remainder of the claim now follows from Definition 4.3.12.(iii), Theorem 1.3.2,

Definition 1.3.3, and Corollary 4.3.11.(ii). �
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Remark 4.3.15 From Definition 4.3.1, Remark 1.3.7.(ii), Remark 4.2.5, and Re-

mark 4.2.7 we see that the bases of bi-permutation modules of Hecke algebras of

type B from Theorem 4.3.14 are generic in the sense of Remark 1.2.9.

Finally, we record a special property of certain bi-permutation modules. The

next lemma makes use of Definition 1.1.64.

Lemma 4.3.16 In H(R,q,Q)
Bn

we have

(i) ∀a ∈ {1, . . . , n− 1} : M
(ω(a),ω(n−a))
(R,q,Q) = v

(R,q,Q)
a,n−a H

(R,q,Q)
Bn

,

(ii) M
((0),ω(n))
(R,q,Q) = v

(R,q,Q)
0,n H(R,q,Q)

Bn
,

(iii) M
(ω(n),(0))
(R,q,Q) = v

(R,q,Q)
n,0 H(R,q,Q)

Bn
.

Proof. From Lemma 1.1.65.(ii) and Definition 1.3.1 we obtain

∀j ∈ {1, . . . , n} : Mω(j)

= HAj−1
.

Now all claims follow from Definition 4.3.12. �

Remark 4.3.17 Lemma 4.3.16 shows that the quotients of adjacent right ideals in

the series (4.8) from Corollary 4.3.6 are in fact bi-permutation modules.

4.4 Bi-Specht modules for Hecke algebras of

type B

Here, we construct a family of modules for Hecke algebras of type B which is based

on the Specht modules for Hecke algebras of type A from Definition 1.3.10. This

procedure is completely analogous to the construction of the bi-permutation mod-

ules for Hecke algebras of type B in the preceding section. As always, n ∈ N denotes

a positive integer and (R, q,Q) denotes a coefficient triple as in Definition 4.2.1.

The following definition makes use of Definition 4.1.6.(ii), Definition 4.3.1.(iii),

Definition 4.2.6, and Lemma 4.2.8.(i).

Definition 4.4.1 (i) Let a ∈ {1, . . . , n− 1} and let (λ, µ) be an a-bi-partition of

n. Then the right ideal S
(λ,µ)
(R,q,Q) in H(R,q,Q)

Bn
is defined as

S
(λ,µ)
(R,q,Q) = v

(R,q,Q)
a,n−a

(
Sλ(R,q)

a→
)(

Sµ(R,q)
n−a←
)
H(R,q,Q)
Bn

= v
(R,q,Q)
a,n−a

(
z

(R,q)
λ

a→
)(

z(R,q)
µ

n−a←
)
H(R,q,Q)
Bn

.
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(ii) Let ((0), µ) be a 0-bi-partition of n. Then the right ideal S
((0),µ)
(R,q,Q) in H(R,q,Q)

Bn

is defined as

S
((0),µ)
(R,q,Q) = v

(R,q,Q)
0,n Sµ(R,q)H

(R,q,Q)
Bn

= v
(R,q,Q)
0,n

(
Sµ(R,q)

n←
)
H(R,q,Q)
Bn

= v
(R,q,Q)
0,n z(R,q)

µ H(R,q,Q)
Bn

= v
(R,q,Q)
0,n

(
z(R,q)
µ

n←
)
H(R,q,Q)
Bn

.

(iii) Let (λ, (0)) be an n-bi-partition of n. Then the right ideal S
(λ,(0))
(R,q,Q) in H(R,q,Q)

Bn

is defined as

S
(λ,(0))
(R,q,Q) = v

(R,q,Q)
n,0 Sλ(R,q)H

(R,q,Q)
Bn

= v
(R,q,Q)
n,0

(
Sλ(R,q)

n→
)
H(R,q,Q)
Bn

= v
(R,q,Q)
n,0 z

(R,q)
λ H(R,q,Q)

Bn

= v
(R,q,Q)
n,0

(
z

(R,q)
λ

n→
)
H(R,q,Q)
Bn

.

For an a-bi-partition (λ, µ) of n with a ∈ {0, . . . , n}, the right ideal S
(λ,µ)
(R,q,Q) in

H(R,q,Q)
Bn

is called the bi-Specht module of H(R,q,Q)
Bn

associated to (λ, µ). As an abbre-

viation, we write

S
(λ,µ)
(R,q,Q) = S(λ,µ).

Remark 4.4.2 (i) Definition 4.3.1, Remark 1.3.15.(i), Remark 4.2.5, and Re-

mark 4.2.7 show that the bi-Specht modules of Hecke algebras of type B from

Definition 4.4.1 are generic in the sense of Remark 1.2.9.

(ii) In [DJ3, Definition 5.2.(i)], using the notation from there, right ideals Sλ,µ

indexed by bi-partitions of n are defined under certain assumptions on the

coefficient triple (R, q,Q). If these right ideals exist then every one of them

physically coincides with the bi-Specht module from Definition 4.4.1 indexed

by the same bi-partition.

Now we derive generic bases of bi-Specht modules for Hecke algebras of type B.

The following statement makes use of Definition 4.1.6.(ii), Definition 4.3.1.(iii),

Definition 1.3.12, Definition 4.2.6, and Definition 1.1.60.
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Theorem 4.4.3 (i) Let a ∈ {1, . . . , n− 1} and let (λ, µ) be an a-bi-partition of

n. Then the set

v
(R,q,Q)
a,n−a

(
BSλ

std(R, q)
a→
)(

BSµ

std(R, q)
n−a←
){

Tc | c ∈ D(n−a,a)

}
=

 v
(R,q,Q)
a,n−a

((
z

(R,q)
λ Tf

) a→
)((

z
(R,q)
µ Tg

)n−a← )
Tc

f ∈ Eλ′ ,
g ∈ Eµ′ ,

c ∈ D(n−a,a)


⊆ H(R,q,Q)

Bn

is an R-basis of S
(λ,µ)
(R,q,Q).

(ii) Let ((0), µ) be a 0-bi-partition of n. Then the set

v
(R,q,Q)
0,n BSµ

std(R, q) = v
(R,q,Q)
0,n

(
BSµ

std(R, q)
n←
)

=
{
v

(R,q,Q)
0,n z(R,q)

µ Tg

∣∣∣ g ∈ Eµ′}
=

{
v

(R,q,Q)
0,n

((
z(R,q)
µ Tg

) n←) ∣∣∣∣ g ∈ Eµ′}
⊆ H(R,q,Q)

Bn

is an R-basis of S
((0),µ)
(R,q,Q).

(iii) Let (λ, (0)) be an n-bi-partition of n. Then the set

v
(R,q,Q)
n,0 BSλ

std(R, q) = v
(R,q,Q)
n,0

(
BSλ

std(R, q)
n→
)

=
{
v

(R,q,Q)
n,0 z

(R,q)
λ Tf

∣∣∣ f ∈ Eλ′}
=

{
v

(R,q,Q)
n,0

((
z

(R,q)
λ Tf

) n→
) ∣∣∣∣ f ∈ Eλ′}

⊆ H(R,q,Q)
Bn

is an R-basis of S
(λ,(0))
(R,q,Q).

Proof. (i) The claim follows from Definition 4.4.1.(i), Theorem 1.3.11, Defini-

tion 1.3.12, and Corollary 4.3.9.(ii).

(ii) From Definition 4.2.6 we see that the sets occurring in the claim are equal.

The remainder of the claim now follows from Definition 4.4.1.(ii), Theorem 1.3.11,

Definition 1.3.12, and Corollary 4.3.11.(i).

(iii) From Definition 4.2.6 we see that the sets occurring in the claim are equal.

The remainder of the claim now follows from Definition 4.4.1.(iii), Theorem 1.3.11,

Definition 1.3.12, and Corollary 4.3.11.(ii). �



242 CHAPTER 4. GENERIC BI-SPECHT SERIES FOR HB

Remark 4.4.4 From Definition 4.3.1, Remark 1.3.15.(ii), Remark 4.2.5, and Re-

mark 4.2.7 we see that the bases of bi-Specht modules of Hecke algebras of type B

from Theorem 4.4.3 are generic in the sense of Remark 1.2.9.

4.5 Bi-PK-modules for Hecke algebras of type B

In this section we introduce a family of modules for Hecke algebras of type B which

is based on the PK-modules for Hecke algebras of type A from Definition 3.4.1. This

procedure is completely analogous to the construction of the bi-permutation mod-

ules and the bi-Specht modules in the preceding sections. As before, n ∈ N denotes

a positive integer and (R, q,Q) denotes a coefficient triple as in Definition 4.2.1.

The next definition makes use of Definition 4.1.7, Definition 4.3.1.(iii), Defini-

tion 3.4.1, Definition 4.2.6, and Lemma 4.2.8.(i).

Definition 4.5.1 (i) Let a ∈ {1, . . . , n− 1} and let (λ#λ, µ#µ) be an a-bi-PKn-

pair. Then the right ideal S
(λ#λ,µ#µ)
(R,q,Q) in H(R,q,Q)

Bn
is defined as

S
(λ#λ,µ#µ)
(R,q,Q) = v

(R,q,Q)
a,n−a

(
Sλ

#λ
(R,q)

a→
)(

Sµ
#µ

(R,q)

n−a←
)
H(R,q,Q)
Bn

.

(ii) Let (00, µ#µ) be a 0-bi-PKn-pair. Then the right ideal S
(00,µ#µ)
(R,q,Q) in H(R,q,Q)

Bn
is

defined as

S
(00,µ#µ)
(R,q,Q) = v

(R,q,Q)
0,n Sµ

#µ
(R,q)H

(R,q,Q)
Bn

= v
(R,q,Q)
0,n

(
Sµ

#µ
(R,q)

n←
)
H(R,q,Q)
Bn

.

(iii) Let (λ#λ, 00) be an n-bi-PKn-pair. Then the right ideal S
(λ#λ,00)
(R,q,Q) in H(R,q,Q)

Bn

is defined as

S
(λ#λ,00)
(R,q,Q) = v

(R,q,Q)
n,0 Sλ

#λ
(R,q)H

(R,q,Q)
Bn

= v
(R,q,Q)
n,0

(
Sλ

#λ
(R,q)

n→
)
H(R,q,Q)
Bn

.

(iv) The right ideal S
(00,00)
(R,q,Q) in H(R,q,Q)

Bn
is defined as

S
(00,00)
(R,q,Q) = 0H(R,q,Q)

B
.

Here, 0H(R,q,Q)
B

denotes the null ideal in H(R,q,Q)
Bn

.
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For an a-bi-PKn-pair (λ#λ, µ#µ) with a ∈ {0, . . . , n}, the right ideal S
(λ#λ,µ#µ)
(R,q,Q)

in H(R,q,Q)
Bn

is called an a-bi-PKn-module or an a-bi-PK-module or just a bi-PKn-

module or a bi-PK-module. The right ideal S
(00,00)
(R,q,Q) also is called a bi-PK-module.

As abbreviations, we write

S
(λ#λ,µ#µ)
(R,q,Q) = S(λ#λ,µ#µ) and S

(00,00)
(R,q,Q) = S(00,00).

Remark 4.5.2 Definition 4.3.1, Remark 3.4.2, Remark 4.2.5, and Remark 4.2.7

show that the bi-PK-modules of Hecke algebras of type B from Definition 4.5.1 are

generic in the sense of Remark 1.2.9.

Next, we derive generic bases of bi-PK-modules for Hecke algebras of type B.

The following statement makes use of Definition 4.1.7, Definition 4.3.1.(iii), Defini-

tion 3.6.3, Remark 3.2.2, Definition 4.2.6, and Definition 3.3.5.

Theorem 4.5.3 (i) Let a ∈ {1, . . . , n− 1} and let (λ#λ, µ#µ) be an a-bi-PKn-

pair. Then the set v
(R,q,Q)
a,n−a

(
z(ζ)(R,q)

a→
)(

z(η)(R,q)

n−a←
)
Td

ζ ∈ Zλ#λ,

η ∈ Zµ#µ,

d ∈ D(n−a,a)

 ⊆ H(R,q,Q)
Bn

is an R-basis of S
(λ#λ,µ#µ)
(R,q,Q) .

(ii) Let (00, µ#µ) be a 0-bi-PKn-pair. Then the set{
v

(R,q,Q)
0,n z(η)(R,q)

∣∣∣ η ∈ Zµ#µ
}

=
{
v

(R,q,Q)
0,n

(
z(η)(R,q)

n←
) ∣∣∣ η ∈ Zµ#µ

}
⊆ H(R,q,Q)

Bn

is an R-basis of S
(00,µ#µ)
(R,q,Q) .

(iii) Let (λ#λ, 00) be an n-bi-PKn-pair. Then the set{
v

(R,q,Q)
n,0 z(ζ)(R,q)

∣∣∣ ζ ∈ Zλ#λ
}

=
{
v

(R,q,Q)
n,0

(
z(ζ)(R,q)

n→
) ∣∣∣ ζ ∈ Zλ#λ

}
⊆ H(R,q,Q)

Bn

is an R-basis of S
(λ#λ,00)
(R,q,Q) .
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Proof. (i) The claim follows from Definition 4.5.1.(i), Theorem 3.10.1, and Corol-

lary 4.3.9.(ii).

(ii) From Definition 4.2.6 we see that the sets occurring in the claim are equal.

The remainder of the claim now follows from Definition 4.5.1.(ii), Theorem 3.10.1,

and Corollary 4.3.11.(i).

(iii) From Definition 4.2.6 we see that the sets occurring in the claim are equal.

The remainder of the claim now follows from Definition 4.5.1.(iii), Theorem 3.10.1,

and Corollary 4.3.11.(ii). �

Remark 4.5.4 Definition 4.3.1, Remark 3.10.3, Remark 4.2.5, and Remark 4.2.7

show that the bases of bi-PK-modules of Hecke algebras of type B from Theo-

rem 4.5.3 are generic in the sense of Remark 1.2.9.

Now we record some properties of the bi-PK-modules for Hecke algebras of

type B which will be required later. The next statement makes use of Defini-

tion 4.1.7, Remark 4.1.8, and Definition 4.3.12.

Lemma 4.5.5 Let a ∈ {0, . . . , n} and let (λ#λ, µ#µ) be an a-bi-PKn-pair with

(λ#λ, µ#µ) 6= (00, 00). Then we have in H(R,q,Q)
Bn

S
(λ#λ,µ#µ)
(R,q,Q) ⊆M

(λ,µ)
(R,q,Q).

Proof. This follows from Definition 4.5.1, Definition 4.3.12, and Lemma 3.4.4.(vi).

�

The following lemma uses Definition 4.1.7, Definition 3.2.1, Remark 4.1.8, Def-

inition 4.1.6, and Definition 4.4.1.

Lemma 4.5.6 (i) Let a ∈ {1, . . . , n− 1}, λ ` a, and µ ` n − a. Then we have

for the a-bi-PKn-pair (λλ, µµ)

S
(λλ,µµ)
(R,q,Q) = S

(λ,µ)
(R,q,Q).

(ii) Let µ ` n. Then we have for the 0-bi-PKn-pair (00, µµ)

S
(00,µµ)
(R,q,Q) = S

((0),µ)
(R,q,Q).

(iii) Let λ ` n. Then we have for the n-bi-PKn-pair (λλ, 00)

S
(λλ,00)
(R,q,Q) = S

(λ,(0))
(R,q,Q).
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Proof. Everything is obtained from Definition 4.5.1, Lemma 3.4.4.(iii), and Defini-

tion 4.4.1. �

The next statement makes use of Definition 3.2.1, Remark 3.2.2, Definition 4.1.7,

Definition 4.3.12, and Definition 4.1.6.(i).

Lemma 4.5.7 The following statements hold in H(R,q,Q)
Bn

.

(i) Let a ∈ {1, . . . , n− 1}. With that, choose a λ = (λ1, λ2, . . .) � a having λ1 > 0

and a µ = (µ1, µ2, . . .) � n− a with µ1 > 0. Then we have

S
((λ1)λ,(µ1)µ)
(R,q,Q) = M

(λ,µ)
(R,q,Q).

(ii) Let µ = (µ1, µ2, . . .) � n with µ1 > 0. Then we have

S
(00,(µ1)µ)
(R,q,Q) = M

((0),µ)
(R,q,Q).

(iii) Let λ = (λ1, λ2, . . .) � n with λ1 > 0. Then we have

S
((λ1)λ,00)
(R,q,Q) = M

(λ,(0))
(R,q,Q).

Proof. (i) The assumptions on λ and µ ensure that the PKa-pair (λ1)λ, the PKn−a-

pair (µ1)µ, and the a-bi-PKn-pair ((λ1)λ, (µ1)µ) are all well defined. Furthermore,

we can use λ and µ to build the a-bi-composition (λ, µ). This shows that the

claim is meaningful. The desired identity now follows from Definition 4.5.1.(i),

Lemma 3.4.4.(ii), and Definition 4.3.12.(i).

(ii) The proof of this statement makes use of Definition 4.5.1.(ii) and Defini-

tion 4.3.12.(ii) and is otherwise completely analogous to the proof of statement (i).

(iii) The proof of this statement makes use of Definition 4.5.1.(iii) and Defini-

tion 4.3.12.(iii) and is otherwise completely analogous to the proof of statement (i).

�

4.6 Bi-PK-homomorphisms for Hecke algebras of

type B

Now we introduce and investigate generic homomorphisms between bi-PK-modules.

These homomorphisms are based on the PK-homomorphisms for Hecke algebras of

type A from Definition 3.5.3. As always, n ∈ N denotes a positive integer and

(R, q,Q) denotes a coefficient triple as in Definition 4.2.1.

The following technical statement makes use of Definition 4.1.7, Definition 3.2.3,

Definition 1.2.3.(i), Definition 3.2.5.(ii), Definition 4.2.6, Remark 4.2.7.(ii), and Def-

inition 4.3.1.(iii).
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Lemma 4.6.1 (i) Let a ∈ {1, . . . , n− 1}. With that, let (λ#λ, µ#µ) be an a-bi-

PKn-pair and let c ∈ N \ {1} be an AR-index for λ#λ. Then we have in the

algebra H(R,q,Q)
Bn(

ι
(a)
(R,q)(Dλ

−1 ∩ (SλRcSλ))
a←
)
v

(R,q,Q)
a,n−a

(
x

(R,q)
λ

a→
)(

x(R,q)
µ

n−a←
)

= v
(R,q,Q)
a,n−a

(
x

(R,q)
λRc

a→
)(

x(R,q)
µ

n−a←
)(

ι
(a)
(R,q)((SλRcSλ) ∩ DλRc)

a→
)
.

(ii) Let a ∈ {1, . . . , n− 1}. With that, let (λ#λ, µ#µ) be an a-bi-PKn-pair and let

c ∈ N \ {1} be an AR-index for µ#µ. Then we have in the algebra H(R,q,Q)
Bn(

ι
(n−a)
(R,q) (Dµ−1 ∩ (SµRcSµ))

n−a→
)
v

(R,q,Q)
a,n−a

(
x

(R,q)
λ

a→
)(

x(R,q)
µ

n−a←
)

= v
(R,q,Q)
a,n−a

(
x

(R,q)
λ

a→
)(

x
(R,q)
µRc

n−a←
)(

ι
(n−a)
(R,q) ((SµRcSµ) ∩ DµRc)

n−a←
)
.

(iii) Let (00, µ#µ) be a 0-bi-PKn-pair and let c ∈ N \ {1} be an AR-index for µ#µ.

Then we have in the algebra H(R,q,Q)
Bn(

ι
(n)
(R,q)(Dµ

−1 ∩ (SµRcSµ))
n→
)
v

(R,q,Q)
0,n

(
x(R,q)
µ

n←
)

= v
(R,q,Q)
0,n

(
x

(R,q)
µRc

n←
)(

ι
(n)
(R,q)((SµRcSµ) ∩ DµRc)

n←
)
.

(iv) Let (λ#λ, 00) be an n-bi-PKn-pair and let c ∈ N \ {1} be an AR-index for

λ#λ. Then we have in H(R,q,Q)
Bn(

ι
(n)
(R,q)(Dλ

−1 ∩ (SλRcSλ))
n←
)
v

(R,q,Q)
n,0

(
x

(R,q)
λ

n→
)

= v
(R,q,Q)
n,0

(
x

(R,q)
λRc

n→
)(

ι
(n)
(R,q)((SλRcSλ) ∩ DλRc)

n→
)
.

Proof. All claims follow from Lemma 4.3.3.(v), Lemma 4.3.3.(vi), Lemma 3.5.1,

and Lemma 4.2.8.(i). �

The preceding statement and Definition 4.3.12 show that the next two definitions

are meaningful. In addition, these two definitions make use of Definition 4.1.7, Defi-

nition 3.2.3, Remark 4.1.8, Definition 4.3.1.(iii), Definition 4.2.6, Definition 1.2.3.(i),

and Definition 3.2.5.(ii).

Definition 4.6.2 Let a ∈ {1, . . . , n− 1} and let (λ#λ, µ#µ) be an a-bi-PKn-pair.
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(i) Let c ∈ N \ {1} be an AR-index for λ#λ. Then the H(R,q,Q)
Bn

-homomorphism

(c)Ψ(λ#λ,µ#µ)(R, q,Q) : M
(λ,µ)
(R,q,Q) →M

(λRc,µ)
(R,q,Q)

is defined by

v
(R,q,Q)
a,n−a

(
x

(R,q)
λ

a→
)(

x(R,q)
µ

n−a←
)

(c)Ψ(λ#λ,µ#µ)(R, q,Q)

=

(
ι
(a)
(R,q)(Dλ

−1 ∩ (SλRcSλ))
a←
)
v

(R,q,Q)
a,n−a

(
x

(R,q)
λ

a→
)(

x(R,q)
µ

n−a←
)

= v
(R,q,Q)
a,n−a

(
x

(R,q)
λRc

a→
)(

x(R,q)
µ

n−a←
)(

ι
(a)
(R,q)((SλRcSλ) ∩ DλRc)

a→
)

and H(R,q,Q)
Bn

-linear extension.

(ii) Let c′ ∈ N \ {1} be an AR-index for µ#µ. Then the H(R,q,Q)
Bn

-homomorphism

Ψ
(c′)

(λ#λ,µ#µ)
(R, q,Q) : M

(λ,µ)
(R,q,Q) →M

(λ,µRc′ )
(R,q,Q)

is defined by

v
(R,q,Q)
a,n−a

(
x

(R,q)
λ

a→
)(

x(R,q)
µ

n−a←
)

Ψ
(c′)

(λ#λ,µ#µ)
(R, q,Q)

=

(
ι
(n−a)
(R,q) (Dµ−1 ∩ (SµRc′

Sµ))
n−a→
)
v

(R,q,Q)
a,n−a

(
x

(R,q)
λ

a→
)(

x(R,q)
µ

n−a←
)

= v
(R,q,Q)
a,n−a

(
x

(R,q)
λ

a→
)(

x
(R,q)
µRc′

n−a←
)(

ι
(n−a)
(R,q) ((SµRc′

Sµ) ∩ DµRc′ )
n−a←
)

and H(R,q,Q)
Bn

-linear extension.

(c)Ψ(λ#λ,µ#µ)(R, q,Q) and Ψ
(c′)

(λ#λ,µ#µ)
(R, q,Q) are called a-bi-PKn-homomorphisms

or a-bi-PK-homomorphisms or just bi-PKn-homomorphisms or bi-PK-homomor-

phisms. As abbreviations, we write

(c)Ψ(λ#λ,µ#µ)(R, q,Q) = (c)Ψ(λ#λ,µ#µ)

and

Ψ
(c′)

(λ#λ,µ#µ)
(R, q,Q) = Ψ

(c′)

(λ#λ,µ#µ)
.

Definition 4.6.3 (i) Let (00, µ#µ) be a 0-bi-PKn-pair and let c ∈ N \ {1} be an

AR-index for µ#µ. Then the H(R,q,Q)
Bn

-homomorphism

Ψ
(c)

(00,µ#µ)
(R, q,Q) : M

((0),µ)
(R,q,Q) →M

((0),µRc)
(R,q,Q)
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is defined by

v
(R,q,Q)
0,n

(
x(R,q)
µ

n←
)

Ψ
(c)

(00,µ#µ)
(R, q,Q)

=

(
ι
(n)
(R,q)(Dµ

−1 ∩ (SµRcSµ))
n→
)
v

(R,q,Q)
0,n

(
x(R,q)
µ

n←
)

= v
(R,q,Q)
0,n

(
x

(R,q)
µRc

n←
)(

ι
(n)
(R,q)((SµRcSµ) ∩ DµRc)

n←
)

and H(R,q,Q)
Bn

-linear extension. Ψ
(c)

(00,µ#µ)
(R, q,Q) is called a 0-bi-PKn-homo-

morphism or just a 0-bi-PK-homomorphism.

(ii) Let (λ#λ, 00) be an n-bi-PKn-pair and let c′ ∈ N \ {1} be an AR-index for

λ#λ. Then the H(R,q,Q)
Bn

-homomorphism

(c′)Ψ(λ#λ,00)(R, q,Q) : M
(λ,(0))
(R,q,Q) →M

(λRc′ ,(0))

(R,q,Q)

is defined by

v
(R,q,Q)
n,0

(
x

(R,q)
λ

n→
)

(c′)Ψ(λ#λ,00)(R, q,Q)

=

(
ι
(n)
(R,q)(Dλ

−1 ∩ (SλRc′
Sλ))

n←
)
v

(R,q,Q)
n,0

(
x

(R,q)
λ

n→
)

= v
(R,q,Q)
n,0

(
x

(R,q)
λRc′

n→
)(

ι
(n)
(R,q)((SλRc′

Sλ) ∩ DλRc′ )
n→
)

and H(R,q,Q)
Bn

-linear extension. (c′)Ψ(λ#λ,00)(R, q,Q) is called an n-bi-PKn-ho-

momorphism or just an n-bi-PK-homomorphism.

Ψ
(c)

(00,µ#µ)
(R, q,Q) and (c′)Ψ(λ#λ,00)(R, q,Q) also are called bi-PKn-homomorphisms

or just bi-PK-homomorphisms. As abbreviations, we write

Ψ
(c)

(00,µ#µ)
(R, q,Q) = Ψ

(c)

(00,µ#µ)

and
(c′)Ψ(λ#λ,00)(R, q,Q) = (c′)Ψ(λ#λ,00).

Remark 4.6.4 Remark 4.2.5, Remark 4.3.13, Definition 4.3.1, Definition 1.2.3,

and Remark 4.2.7 show that the bi-PK-homomorphisms for Hecke algebras of type B

from the preceding two definitions are generic in the sense of Remark 1.2.9.

The following two lemmata relate the bi-PK-homomorphisms for Hecke algebras

of type B from Definition 4.6.2 and Definition 4.6.3 to the PK-homomorphisms

for Hecke algebras of type A from Definition 3.5.3. They make use of Defini-

tion 4.1.7, Definition 4.3.1.(iii), Definition 4.2.6, Definition 4.3.12, Remark 4.1.8,

Definition 3.2.3, and Definition 3.2.5.(ii).
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Lemma 4.6.5 Let a ∈ {1, . . . , n− 1} and let (λ#λ, µ#µ) be an a-bi-PKn-pair. Fur-

thermore choose x ∈Mλ
(R,q), y ∈M

µ
(R,q), and h ∈ H(R,q,Q)

Bn
and consider the element

v
(R,q,Q)
a,n−a

(
x
a→
)(

y
n−a←
)
h ∈M (λ,µ)

(R,q,Q).

(i) Let c ∈ N \ {1} be an AR-index for λ#λ. Then we have in M
(λRc,µ)
(R,q,Q)(

v
(R,q,Q)
a,n−a

(
x
a→
)(

y
n−a←
)
h
)

(c)Ψ(λ#λ,µ#µ)(R, q,Q)

= v
(R,q,Q)
a,n−a

((
xΨ

(R,q)

λ#λc

) a→
)(

y
n−a←
)
h.

(ii) Let c′ ∈ N \ {1} be an AR-index for µ#µ. Then we have in M
(λ,µRc′ )
(R,q,Q)(

v
(R,q,Q)
a,n−a

(
x
a→
)(

y
n−a←
)
h
)

Ψ
(c′)

(λ#λ,µ#µ)
(R, q,Q)

= v
(R,q,Q)
a,n−a

(
x
a→
)((

yΨ
(R,q)

µ#µc′

)n−a← )
h.

Proof. This follows from Definition 4.6.2, Lemma 4.3.3.(v), Lemma 4.3.3.(vi),

Lemma 4.2.8.(i), and Definition 3.5.3. �

Lemma 4.6.6 (i) Let (00, µ#µ) be a 0-bi-PKn-pair. Furthermore choose x ∈
Mµ

(R,q) and h ∈ H(R,q,Q)
Bn

and consider the element

v
(R,q,Q)
0,n

(
x
n←
)
h ∈M ((0),µ)

(R,q,Q).

Finally let c ∈ N \ {1} be an AR-index for µ#µ. Then we have in M
((0),µRc)
(R,q,Q)(

v
(R,q,Q)
0,n

(
x
n←
)
h
)

Ψ
(c)

(00,µ#µ)
(R, q,Q) = v

(R,q,Q)
0,n

((
xΨ

(R,q)

µ#µc

) n←
)
h.

(ii) Let (λ#λ, 00) be an n-bi-PKn-pair. Furthermore choose x ∈ Mλ
(R,q) and h ∈

H(R,q,Q)
Bn

and consider the element

v
(R,q,Q)
n,0

(
x
n→
)
h ∈M (λ,(0))

(R,q,Q).

Finally let c ∈ N \ {1} be an AR-index for λ#λ. Then we have in M
(λRc,(0))
(R,q,Q)(

v
(R,q,Q)
n,0

(
x
n→
)
h
)

(c)Ψ(λ#λ,00)(R, q,Q) = v
(R,q,Q)
n,0

((
xΨ

(R,q)

λ#λc

) n→
)
h.



250 CHAPTER 4. GENERIC BI-SPECHT SERIES FOR HB

Proof. This follows easily from Definition 4.6.3, Lemma 4.3.3.(v), Lemma 4.3.3.(vi),

and Definition 3.5.3. �

Now we describe the effect of bi-PK-homomorphisms on bi-PK-modules. The

next statement makes use of Definition 4.1.7, Definition 3.2.3, Definition 4.3.12,

Remark 4.1.8, Definition 3.2.5, Definition 4.5.1, Lemma 4.5.5, and Definition 4.1.9.

Lemma 4.6.7 (i) Let a ∈ {1, . . . , n− 1}. With that, let (λ#λ, µ#µ) be an a-bi-

PKn-pair and let c ∈ N \ {1} be an AR-index for λ#λ. Then we have in the

module M
(λRc,µ)
(R,q,Q)(

S
(λ#λ,µ#µ)
(R,q,Q)

)
(c)Ψ(λ#λ,µ#µ)(R, q,Q) = S

(λ#λRc,µ#µ)
(R,q,Q) = S

(λ#λ,µ#µ)(c)R
(R,q,Q) .

(ii) Let a ∈ {1, . . . , n− 1}. With that, let (λ#λ, µ#µ) be an a-bi-PKn-pair and let

c ∈ N \ {1} be an AR-index for µ#µ. Then we have in the module M
(λ,µRc)
(R,q,Q)(

S
(λ#λ,µ#µ)
(R,q,Q)

)
Ψ

(c)

(λ#λ,µ#µ)
(R, q,Q) = S

(λ#λ,µ#µRc)
(R,q,Q) = S

(λ#λ,µ#µ)R(c)

(R,q,Q) .

(iii) Let (00, µ#µ) be a 0-bi-PKn-pair and let c ∈ N \ {1} be an AR-index for µ#µ.

Then we have in the module M
((0),µRc)
(R,q,Q)(

S
(00,µ#µ)
(R,q,Q)

)
Ψ

(c)

(00,µ#µ)
(R, q,Q) = S

(00,µ#µRc)
(R,q,Q) = S

(00,µ#µ)R(c)

(R,q,Q) .

(iv) Let (λ#λ, 00) be an n-bi-PKn-pair and let c ∈ N \ {1} be an AR-index for

λ#λ. Then we have in the module M
(λRc,(0))
(R,q,Q)(

S
(λ#λ,00)
(R,q,Q)

)
(c)Ψ(λ#λ,00)(R, q,Q) = S

(λ#λRc,00)
(R,q,Q) = S

(λ#λ,00)(c)R
(R,q,Q) .

Proof. (i) We get from Lemma 4.5.5, Definition 4.5.1.(i), Lemma 4.6.5.(i), Lem-

ma 3.5.5.(iii), and Definition 4.1.9.(iii)(
S(λ#λ,µ#µ)

)
(c)Ψ(λ#λ,µ#µ) =

(
va,n−a

(
Sλ

#λ→
)(

Sµ
#µ←

)
HBn

)
(c)Ψ(λ#λ,µ#µ)

= va,n−a

((
Sλ

#λΨλ#λc

)→)(
Sµ

#µ←
)
HBn

= va,n−a

(
Sλ

#λRc
→)(

Sµ
#µ←

)
HBn

= S(λ#λRc,µ#µ)

= S(λ#λ,µ#µ)(c)R.

This shows the claim.

(ii) The proof of this statement uses Lemma 4.6.5.(ii) and Definition 4.1.9.(iv)

and is otherwise completely analogous to the proof of statement (i).
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(iii) The proof of this statement uses Definition 4.5.1.(ii), Lemma 4.6.6.(i), and

Definition 4.1.9.(iv) and is otherwise completely analogous to the proof of state-

ment (i).

(iv) The proof of this statement uses Definition 4.5.1.(iii) and Lemma 4.6.6.(ii)

and is otherwise completely analogous to the proof of statement (i). �

The following statement makes use of Definition 4.1.7, Definition 3.2.3, Defini-

tion 4.3.12, Remark 4.1.8, Definition 4.5.1, Lemma 4.5.5, and Definition 4.1.9.

Lemma 4.6.8 (i) Let a ∈ {1, . . . , n− 1}. With that, let (λ#λ, µ#µ) be an a-bi-

PKn-pair and let c ∈ N \ {1} be an AR-index for λ#λ. Then we have in the

module M
(λ,µ)
(R,q,Q)

Ker

(
(c)Ψ(λ#λ,µ#µ)(R, q,Q)

yM(λ,µ)
(R,q,Q)

S
(λ#λ,µ#µ)
(R,q,Q)

)
= S

(λ#λ,µ#µ)(c)A
(R,q,Q) .

(ii) Let a ∈ {1, . . . , n− 1}. With that, let (λ#λ, µ#µ) be an a-bi-PKn-pair and let

c ∈ N \ {1} be an AR-index for µ#µ. Then we have in the module M
(λ,µ)
(R,q,Q)

Ker

(
Ψ

(c)

(λ#λ,µ#µ)
(R, q,Q)

yM(λ,µ)
(R,q,Q)

S
(λ#λ,µ#µ)
(R,q,Q)

)
= S

(λ#λ,µ#µ)A(c)

(R,q,Q) .

(iii) Let (00, µ#µ) be a 0-bi-PKn-pair and let c ∈ N \ {1} be an AR-index for µ#µ.

Then we have in the module M
((0),µ)
(R,q,Q)

Ker

(
Ψ

(c)

(00,µ#µ)
(R, q,Q)

yM((0),µ)
(R,q,Q)

S
(00,µ#µ)
(R,q,Q)

)
= S

(00,µ#µ)A(c)

(R,q,Q) .

(iv) Let (λ#λ, 00) be an n-bi-PKn-pair and let c ∈ N \ {1} be an AR-index for

λ#λ. Then we have in the module M
(λ,(0))
(R,q,Q)

Ker

(
(c)Ψ(λ#λ,00)(R, q,Q)

yM(λ,(0))
(R,q,Q)

S
(λ#λ,00)
(R,q,Q)

)
= S

(λ#λ,00)(c)A
(R,q,Q) .

Proof. (i) For this proof, we put

(c)A
(λ#λ,µ#µ) =

 va,n−a (z(ζ)→) (z(η)←)Td

ζ ∈ Zλ#λ \ Zλ#Acλ,

η ∈ Zµ#µ,

d ∈ D(n−a,a)


and

(c)B
(λ#λ,µ#µ) =

 va,n−a (z(ζ)→) (z(η)←)Td

ζ ∈ Zλ#Acλ,

η ∈ Zµ#µ,

d ∈ D(n−a,a)

 .
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Obviously, (c)A
(λ#λ,µ#µ) and (c)B

(λ#λ,µ#µ) are disjoint. Moreover, Theorem 4.5.3.(i)

shows that
(

(c)A
(λ#λ,µ#µ)

)
∪
(

(c)B
(λ#λ,µ#µ)

)
is an R-basis of S(λ#λ,µ#µ).

Now we get from Lemma 4.6.5.(i)(
(c)A

(λ#λ,µ#µ)
)

(c)Ψ(λ#λ,µ#µ)

=

 va,n−a ((z(ζ)Ψλ#λc)
→) (z(η)←)Td

ζ ∈ Zλ#λ \ Zλ#Acλ,

η ∈ Zµ#µ,

d ∈ D(n−a,a)


= va,n−a

({
z(ζ)Ψλ#λc

∣∣∣ ζ ∈ Zλ#λ \ Zλ#Acλ
}→)

·({
z(η)

∣∣∣ η ∈ Zµ#µ
}←){

Td | d ∈ D(n−a,a)

}
.

From this, Corollary 3.10.4, Theorem 3.10.1, Corollary 4.3.9.(ii), Definition 4.5.1.(i),

and Lemma 4.6.7.(i) we see that the set
(

(c)A
(λ#λ,µ#µ)

)
(c)Ψ(λ#λ,µ#µ) is an R-basis

of

va,n−a

(
Sλ

#λRc
→)(

Sµ
#µ←

)
HBn = S(λ#λRc,µ#µ) =

(
S(λ#λ,µ#µ)

)
(c)Ψ(λ#λ,µ#µ)

and in particular linearly independent over R. Furthermore, we get from Lem-

ma 4.6.5.(i) and Corollary 3.7.1 for every va,n−a (z(ζ)→) (z(η)←)Td ∈ (c)B
(λ#λ,µ#µ)

with ζ ∈ Zλ#Acλ, η ∈ Zµ#µ, and d ∈ D(n−a,a)

(va,n−a (z(ζ)→) (z(η)←)Td)
(c)Ψ(λ#λ,µ#µ) = va,n−a ((z(ζ)Ψλ#λc)

→) (z(η)←)Td

= va,n−a0HA (z(η)←)Td

= 0HB .

Now we distinguish the cases λ#Acλ = 00 and λ#Acλ 6= 00. First we consider

the case

λ#Acλ = 00.

On the one hand, according to Definition 3.3.5, we have in this case Zλ#Acλ = ∅

and thus (c)B
(λ#λ,µ#µ) = ∅. From this and the preceding considerations we obtain

Ker
(

(c)Ψ(λ#λ,µ#µ)

yM(λ,µ)

S(λ#λ,µ#µ)

)
= 0HB .

On the other hand, according to Definition 4.1.9.(i) and Definition 4.5.1.(iv), we

have in this case (λ#λ, µ#µ)(c)A = (00, 00) and thus

S(λ#λ,µ#µ)(c)A = 0HB .

All this proves the claim in the case λ#Acλ = 00.
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Next we consider the case

λ#Acλ 6= 00.

On the one hand, we get from Lemma 3.3.6.(i) and Definition 1.1.58.(i) in this

case (c)B
(λ#λ,µ#µ) 6= ∅. This and the preceding considerations imply that the set

(c)B
(λ#λ,µ#µ) is an R-basis of Ker

(
(c)Ψ(λ#λ,µ#µ)

yM(λ,µ)

S(λ#λ,µ#µ)

)
. On the other hand,

we get from Definition 4.1.9.(i) and Theorem 4.5.3.(i) in this case that the set

(c)B
(λ#λ,µ#µ) is an R-basis of S(λ#λ,µ#µ)(c)A. All this also proves the claim in the case

λ#Acλ 6= 00.

(ii) The proof of this statement uses Lemma 4.6.5.(ii), Lemma 4.6.7.(ii), and

Definition 4.1.9.(ii) and is otherwise completely analogous to the proof of state-

ment (i).

(iii) The proof of this statement uses Theorem 4.5.3.(ii), Lemma 4.6.6.(i), Corol-

lary 4.3.11.(i), Definition 4.5.1.(ii), Lemma 4.6.7.(iii), and Definition 4.1.9.(ii) and

is otherwise completely analogous to the proof of statement (i).

(iv) The proof of this statement uses Theorem 4.5.3.(iii), Lemma 4.6.6.(ii),

Corollary 4.3.11.(ii), Definition 4.5.1.(iii), and Lemma 4.6.7.(iv) and is otherwise

completely analogous to the proof of statement (i). �

4.7 Construction of generic bi-Specht series for

Hecke algebras of type B and associated bi-

permutation modules and bi-PK-modules

Now we complete the derivation of the generic bi-Specht series for Hecke algebras

of type B. This procedure is analogous to the construction of generic Specht series

for Hecke algebras of type A in Section 3.11. First we give a formal definition of

bi-Specht series for modules of Hecke algebras of type B. Then we construct generic

bi-Specht series for bi-PK-modules and bi-permutation modules and finally also for

Hecke algebras of type B. As before, n ∈ N denotes a positive integer and (R, q,Q)

denotes a coefficient triple as in Definition 4.2.1.

The next definition makes use of Definition 4.1.6.(ii) and Definition 4.4.1.

Definition 4.7.1 Let M be a right H(R,q,Q)
Bn

-module. Then a series of submodules

0HB = M0 ⊆M1 ⊆ · · · ⊆Mm−1 ⊆Mm = M

with an m ∈ N0 is called a bi-Specht series for M if there are for every j ∈
{1, . . . ,m} an aj ∈ {0, . . . , n} and an aj-bi-partition (λ, µ)(j) such that

Mj/Mj−1 ' S
(λ,µ)(j)

(R,q,Q) as H(R,q,Q)
Bn

-modules
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holds. The number m is called the length of the bi-Specht series.

The following lemma makes use of Definition 4.1.7, Definition 3.2.1, and Defini-

tion 4.5.1.

Lemma 4.7.2 (i) Let a ∈ {1, . . . , n− 1}, λ ` a, µ ` n − a and consider the

a-bi-PKn-pair (λλ, µµ). Then the a-bi-PKn-module S
(λλ,µµ)
(R,q,Q) has a bi-Specht

series.

(ii) Let µ ` n and consider the 0-bi-PKn-pair (00, µµ). Then the 0-bi-PKn-module

S
(00,µµ)
(R,q,Q) has a bi-Specht series.

(iii) Let λ ` n and consider the n-bi-PKn-pair (λλ, 00). Then the n-bi-PKn-module

S
(λλ,00)
(R,q,Q) has a bi-Specht series.

(iv) The bi-PK-module S
(00,00)
(R,q,Q) has a bi-Specht series.

Proof. (i) Lemma 4.5.6.(i) shows that S(λλ,µµ) has the bi-Specht series

0HB ⊆ S(λ,µ) = S(λλ,µµ)

of length 1.

(ii) Lemma 4.5.6.(ii) shows that S(00,µµ) has the bi-Specht series

0HB ⊆ S((0),µ) = S(00,µµ)

of length 1.

(iii) Lemma 4.5.6.(iii) shows that S(λλ,00) has the bi-Specht series

0HB ⊆ S(λ,(0)) = S(λλ,00)

of length 1.

(iv) Obviously, S(00,00) has the bi-Specht series

0HB = S(00,00)

of length 0. �

Remark 4.7.3 Remark 4.5.2 shows that the bi-Specht series from the proof of

Lemma 4.7.2 are generic in the sense of Remark 1.2.9.

The next theorem also makes use of Definition 4.1.7, Definition 3.2.1, and Defi-

nition 4.5.1.
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Theorem 4.7.4 (i) Let a ∈ {1, . . . , n− 1}. With that, let λ#λ be a PKa-pair

satisfying λ#λ 6= 00, let µ ` n− a, and consider the a-bi-PKn-pair (λ#λ, µµ).

Then there is a bi-Specht series for the a-bi-PKn-module S
(λ#λ,µµ)
(R,q,Q) .

(ii) Let a ∈ {1, . . . , n− 1}. With that, let µ#µ be a PKn−a-pair satisfying µ#µ 6=
00, let λ ` a, and consider the a-bi-PKn-pair (λλ, µ#µ). Then there is a

bi-Specht series for the a-bi-PKn-module S
(λλ,µ#µ)
(R,q,Q) .

(iii) Let (00, µ#µ) be a 0-bi-PKn-pair. Then there is a bi-Specht series for the

0-bi-PKn-module S
(00,µ#µ)
(R,q,Q) .

(iv) Let (λ#λ, 00) be an n-bi-PKn-pair. Then there is a bi-Specht series for the

n-bi-PKn-module S
(λ#λ,00)
(R,q,Q) .

Proof. (i) If we apply the construction of the binary tree (3.105) on page 216

described in the proof of Theorem 3.11.2 to the left entry λ#λ of the a-bi-PKn-pair

(λ#λ, µµ), taking into account Definition 4.1.9, then we obtain a binary tree (that

is, every vertex in the tree has zero or two successors) whose vertices are labelled

with bi-PK-pairs and whose edges are labelled with operators (c)A and (c)R with

appropriate AR-indices c ∈ N \ {1}. More specifically, the root of the tree (that

is, the vertex without predecessor) is labelled (λ#λ, µµ), and if a vertex of the tree

has two successors then the label of this vertex is an a-bi-PKn-pair (ν#ν, µµ), the

labels of the edges leading to its successors are (c)A and (c)R with an AR-index

c ∈ N\{1} for ν#ν, the label of the vertex at the other end of the edge labelled (c)A

is (ν#ν, µµ)(c)A, and the label of the vertex at the other end of the edge labelled
(c)R is (ν#ν, µµ)(c)R. This part of the tree is displayed in the following picture.

��
��

��
��

��
��

�
�
�
�
�	

@
@
@
@
@R

(ν#ν, µµ)

(c)A (c)R

(ν#ν, µµ)(c)A (ν#ν, µµ)(c)R

(4.9)

The further considerations in the proof of Theorem 3.11.2 show together with

Definition 4.1.9 that this binary tree contains only a finite number of vertices and

that the label of a leaf of this tree (that is, a vertex without successors) is either

(00, 00) or an a-bi-PKn-pair (κκ, µµ) with an appropriate κ ` a. Thus the complete
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binary tree has the form
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A
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#
#

#
#
##

�
�
�
�

L
L
L
L
L
L
L
L
LL

aaaaaaaaaa

(λ#λ, µµ)

(c)A (c)R

(κ(2)κ(2), µµ) (κ(3)κ(3), µµ) (00, 00) (κ(6)κ(6), µµ)

(00, 00) (κ(1)κ(1), µµ) (κ(4)κ(4), µµ) (κ(5)κ(5), µµ)

(4.10)

with appropriate κ(1), . . . , κ(6) ∈ Πa (see Definition 1.1.2.(iii)) and possibly more

such partitions.

The claim is now proved by induction on the labels of the vertices of this tree

along the edges from the leaves to the root. The induction start is provided by

Lemma 4.7.2.(i) and Lemma 4.7.2.(iv) together with the above considerations con-

cerning the labelling of the leaves of the binary tree. For the induction step we

consider a vertex of the tree which is not a leaf. This vertex is then, as shown in

picture (4.9), labelled with an a-bi-PKn-pair (ν#ν, µµ) and the labels of its suc-

cessors are (ν#ν, µµ)(c)A and (ν#ν, µµ)(c)R with an AR-index c ∈ N \ {1} for ν#ν.

With this data we obtain from Lemma 4.6.7.(i) and Lemma 4.6.8.(i) the series

0HB ⊆ S(ν#ν,µµ)(c)A ⊆ S(ν#ν,µµ) (4.11)

with

S(ν#ν,µµ)/S(ν#ν,µµ)(c)A ' S(ν#ν,µµ)(c)R as HBn-modules, (4.12)

the isomorphism being induced by the map (c)Ψ(ν#ν,µµ)

yM(ν,µ)

S(ν#ν,µµ)
. Now if the claim of

the theorem holds for (ν#ν, µµ)(c)A and (ν#ν, µµ)(c)R then we can use the bi-Specht

series for S(ν#ν,µµ)(c)A and S(ν#ν,µµ)(c)R and the isomorphism (4.12) to refine the

series (4.11) for S(ν#ν,µµ) to a bi-Specht series for S(ν#ν,µµ). Proceeding inductively

in this way, we finally obtain a bi-Specht series for S(λ#λ,µµ), as desired.

(ii) The proof of this statement uses Definition 4.1.9.(ii), Definition 4.1.9.(iv),

Lemma 4.6.7.(ii), and Lemma 4.6.8.(ii) and is otherwise completely analogous to

the proof of statement (i).
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(iii) The proof of this statement uses Definition 4.1.9.(ii), Definition 4.1.9.(iv),

Lemma 4.7.2.(ii), Lemma 4.6.7.(iii), and Lemma 4.6.8.(iii) and is otherwise com-

pletely analogous to the proof of statement (i).

(iv) The proof of this statement uses Lemma 4.7.2.(iii), Lemma 4.6.7.(iv), and

Lemma 4.6.8.(iv) and is otherwise completely analogous to the proof of state-

ment (i). �

Remark 4.7.5 Remark 4.5.2, Remark 4.7.3, and Remark 4.6.4 show that the bi-

Specht series constructed in the proof of Theorem 4.7.4 are generic in the sense of

Remark 1.2.9.

The following statement makes use of Definition 4.1.7.(i) and Definition 4.5.1.(i).

Theorem 4.7.6 Let a ∈ {1, . . . , n− 1} and let (λ#λ, µ#µ) be an a-bi-PKn-pair.

Then there is a bi-Specht series for the a-bi-PKn-module S
(λ#λ,µ#µ)
(R,q,Q) .

Proof. The proof of this theorem is similar to the proof of Theorem 4.7.4.(i).

First we construct, as in the proofs of Theorem 4.7.4.(i) and Theorem 3.11.2,

starting from (λ#λ, µ#µ) and making repeated use of Definition 4.1.9, a binary tree

with a finite number of vertices. The vertices of the tree are labelled with bi-PK-

pairs and the labels of the edges of the tree are operators (c)A, (c)R, A(c), and R(c)

with appropriate AR-indices c ∈ N\{1}. More specifically, the root of the tree (that

is, the vertex without predecessor) is labelled (λ#λ, µ#µ), and if a vertex of the tree

has two successors then the label of this vertex is an a-bi-PKn-pair (κ#κ, ν#ν) and

the part of the binary tree consisting of this vertex, its two successors, and the

connecting edges has one of the following two forms.
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@
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(κ#κ, ν#ν)

(c)A (c)R

(κ#κ, ν#ν)(c)A (κ#κ, ν#ν)(c)R

(4.13)
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A(c′) R(c′)

(κ#κ, ν#ν)A(c′) (κ#κ, ν#ν)R(c′)

(4.14)
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Here, c ∈ N \ {1} denotes an AR-index for the PKa-pair κ#κ and c′ ∈ N \ {1}
denotes an AR-index for the PKn−a-pair ν#ν. Moreover, the leaves of the binary

tree are labelled with bi-PK-pairs to which none of the operators (c)A, (c)R, A(c), or

R(c) with an appropriate AR-index c ∈ N \ {1} can be applied. In the situation at

hand, such a bi-PK-pair must be, according to Definition 4.1.9, Definition 3.2.5, and

Lemma 3.2.7.(iii), either (00, 00) or of the form (κκ, νν) with appropriate κ ∈ Πa

and ν ∈ Πn−a (see Definition 1.1.2.(iii)).

The claim of the theorem is now proved by induction on the labels of the vertices

of this binary tree along the edges from the leaves to the root. The induction

start is provided by Lemma 4.7.2.(i) and Lemma 4.7.2.(iv) together with the above

considerations concerning the labelling of the leaves of the tree. The induction

step makes use of picture (4.13), picture (4.14), Lemma 4.6.7.(i), Lemma 4.6.7.(ii),

Lemma 4.6.8.(i), and Lemma 4.6.8.(ii) and is otherwise completely analogous to

the induction step in the proof of Theorem 4.7.4.(i). Proceeding inductively in this

way, we finally obtain a bi-Specht series for S(λ#λ,µ#µ), as desired. �

Remark 4.7.7 Remark 4.5.2, Remark 4.7.3, and Remark 4.6.4 show that be bi-

Specht series constructed in the proof of Theorem 4.7.6 are generic in the sense of

Remark 1.2.9.

From Lemma 4.7.2, Remark 4.7.3, Theorem 4.7.4, Remark 4.7.5, Theorem 4.7.6,

and Remark 4.7.7 we see that every bi-PKn-module for HBn has a generic bi-Specht

series.

The next corollary makes use of Definition 4.3.12 and Definition 4.1.6.(i).

Corollary 4.7.8 (i) Let a ∈ {1, . . . , n− 1}, λ = (λ1, λ2, . . .) � a with λ1 > 0,

and µ = (µ1, µ2, . . .) � n− a with µ1 > 0. Then there is a bi-Specht series for

the bi-permutation module M
(λ,µ)
(R,q,Q).

(ii) Let µ = (µ1, µ2, . . .) � n with µ1 > 0. Then there is a bi-Specht series for the

bi-permutation module M
((0),µ)
(R,q,Q).

(iii) Let λ = (λ1, λ2, . . .) � n with λ1 > 0. Then there is a bi-Specht series for the

bi-permutation module M
(λ,(0))
(R,q,Q).

Proof. (i) The assumptions λ1 > 0 and µ1 > 0 allow us, according to Defini-

tion 3.2.1, to build the PKa-pair (λ1)λ and the PKn−a-pair (µ1)µ. According to

Definition 4.1.7.(i), these can be combined into the a-bi-PKn-pair ((λ1)λ, (µ1)µ).

Now the desired bi-Specht series for M (λ,µ) is obtained from Lemma 4.5.7.(i) and

Theorem 4.7.6.
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(ii) The proof of this statement uses Definition 4.1.7.(ii), Lemma 4.5.7.(ii), and

Theorem 4.7.4.(iii) and is otherwise completely analogous to the proof of state-

ment (i).

(iii) The proof of this statement uses Definition 4.1.7.(iii), Lemma 4.5.7.(iii),

and Theorem 4.7.4.(iv) and is otherwise completely analogous to the proof of state-

ment (i). �

Remark 4.7.9 Remark 4.7.5 and Remark 4.7.7 show that the bi-Specht series from

the proof of Corollary 4.7.8 are generic in the sense of Remark 1.2.9.

Corollary 4.7.10 There is a bi-Specht series for H(R,q,Q)
Bn

.

Proof. This follows from Corollary 4.3.6, Lemma 4.3.16, Remark 4.3.17, and Corol-

lary 4.7.8. �

Remark 4.7.11 Remark 4.3.7 and Remark 4.7.9 show that the bi-Specht series

from the proof of Corollary 4.7.10 is generic in the sense of Remark 1.2.9.

This completes the derivation of the generic bi-Specht series for Hecke algebras of

type B.

Remark 4.7.12 Using the definitions, constructions, statements, and results in

[PAL], this chapter carries over almost word for word from Hecke algebras of type B

to Hecke algebras of type D, thus also providing generic bi-Specht series for the

latter.
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Notation

The following notations are arranged in order of their first appearance.

Z set {. . . ,−2,−1, 0, 1, 2, . . .} of all integers (see page 1)

N set {1, 2, 3, . . .} of all positive integers (see page 1)

N0 set {0, 1, 2, . . .} of all nonnegative integers (see page 1)

Q set {z/y | z ∈ Z, y ∈ Z \ {0}} of all rational numbers (see

page 1)

|M | cardinality of a set (see page 1)

f
yM
U restriction of a map (see page 1)

Sn symmetric group on {1, . . . , n} (see page 1)

1Sn neutral element of Sn (see page 1)

SM symmetric group on a set (see page 2)

WAn−1 Weyl group of type An−1 (see page 2)

Bn generating set of Sn consisting of transpositions of adja-

cent numbers (see page 2)

X
∼→ Y isomorphism from one algebraic structure to another (see

page 2)

`An−1(w) length of w ∈ WAn−1 (see page 2)

λ � m composition of m ∈ N0 (see page 3)

λ+
j partial sum of the entries of λ � m (see page 3)

Ξm set {λ | λ � m} of all compositions of m ∈ N0 (see page 4)

λ ` m partition of m ∈ N0 (see page 4)

Πm set {λ | λ ` m} of all partitions of m ∈ N0 (see page 4)

Πm,e set Πm,e = {λ ` m | λ e-regular} of all e-regular partitions

of m ∈ N0 (see page 4)
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λ ≤ µ total ordering relation between elements of Ξm (see page 5)

X ∨ Y OR of boolean values (see page 5)

λ E µ partial ordering relation between elements of Ξm (see

page 5)

X ∧ Y AND of boolean values (see page 5)

[λ] diagram of λ � m (see page 5)

M ×N direct product of sets (see page 5)

(·)′ transposition map on N× N (see page 7);

also denotes the transposition map on Πm (see page 8)

idM identity map on a set (see page 7)

[λ]′ transpose of [λ] with λ ` m (see page 7)

λ′ transpose of λ ` m (see page 8)

hλ(i,j) (i, j)-hook in λ ` m (see page 9)∣∣∣hλ(i,j)∣∣∣ hook length of hλ(i,j) (see page 9)

rλ(i,j) (i, j)-rim hook in λ ` m (see page 9)∣∣∣rλ(i,j)∣∣∣ rim hook length of rλ(i,j) (see page 9)

λ \ r λ ` m without a rim hook (see page 9)

λ ∪ r λ ` m together with a rim hook (see page 10)

λ \ (i, λi) λ ` m without a lattice point (see page 10)

λ ∪ (i, λi + 1) λ ` m together with a lattice point (see page 10)

λ ↑ set of partitions obtained from λ ` k ∈ N0 by adding a

lattice point in every possible way (see page 10)

µ ↓ set of partitions obtained from µ ` k ∈ N by removing a

lattice point in every possible way (see page 10)

Γe set {λ ` k | k ∈ N0 and λ is an e-core} of all e-cores (see

page 17)

γe(λ) e-core of λ ` k (see page 18)

ge(λ) e-weight of λ ` k (see page 18)

Γe(k) set of the e-cores of all partitions of k ∈ N0 (see page 18)

Πµ,e
k set of all partitions of k ∈ N0 having a given e-core µ (see

page 18)
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Πν,e
k,ẽ set of all ẽ-regular partitions of k ∈ N0 having a given

e-core ν (see page 19)

x | y x divides y for integers or polynomials (see page 19)

(i, j)t entry in a tableau (see page 20)

(k)ζt row number of an entry in a tableau (see page 20)

(k)σt column number of an entry in a tableau (see page 20)

T λ set {t : [λ]→ {1, . . . , n} | t bijective} of all λ-tableaux

(see page 21)

T λrow std set
{

t ∈ T λ
∣∣∣ t row standard

}
of all row standard λ-tab-

leaux (see page 21)

T λstd set
{

t ∈ T λ
∣∣∣ t standard

}
of all standard λ-tableaux (see

page 21)

T Ξn set of all tableaux of compositions of n ∈ N (see page 21)

T Ξn
row std set of all row standard tableaux of compositions of n ∈ N

(see page 21)

t′ transpose of a tableau (see page 23)

Rt row stabilizer of a tableau (see page 24)

Ct column stabilizer of a tableau (see page 24)

G×H direct product of groups (see page 24)

tλ λ-tableau whose entries are arranged in ascending order

by rows from top to bottom and within the rows from left

to right (see page 25)

Sλ Young subgroup of Sn associated with λ � n (see page 25)

Dλ set of the shortest representatives associated with λ � n

(see page 26)

[w]λ shortest representative of w ∈ Sn associated with λ � n

(see page 27)

Eλ set of the standard representatives associated with λ � n

(see page 27)

ω(n) partition (1n) (see page 28)
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tλ λ-tableau whose entries are arranged in ascending order by

columns from left to right and within the columns from

top to bottom (see page 28)

wλ permutation mapping tλ to tλ (see page 29)

(j)ζ entry of a row number list (see page 30)

Zλ set of all λ-row number lists (see page 30)

∅ empty set (see page 31)

ζ[λ] map assigning to a row standard λ-tableau its λ-row num-

ber list (see page 31)

ζt row number list of a tableau (see page 31)

tζ row standard tableau of a row number list (see page 31)

t[λ] map assigning to a λ-row number list its row standard

λ-tableau (see page 31)

0R additive neutral element of a ring (see page 33)

1R multiplicative neutral element of a ring (see page 33)

[j]q q-number associated to a coefficient pair (see page 33)

eR(q) q-characteristic of a coefficient pair (see page 33)

H(R,q)
An−1

Hecke algebra of type An−1 over the coefficient pair (R, q)

(see page 34)

Tw defining basis element of a Hecke algebra of type A indexed

by an element of the underlying Weyl group (see page 34);

also denotes a defining basis element of a Hecke algebra

of type B indexed by an element of the underlying Weyl

group (see page 226)

ι
(n)
(R,q)(X) “unsigned” sum

∑
w∈X Tw over some defining basis ele-

ments in a Hecke algebra of type A (see page 34)

ε
(n)
(R,q)(X) “signed” sum

∑
w∈X(−q)−`(w)Tw over some defining basis

elements in a Hecke algebra of type A (see page 35)

h∗ image of h ∈ H(R,q)
An−1

under the anti-involution induced by

inversion on Sn (see page 35)

HomR(M,N) set of all R-homomorphisms from one R-module to an-

other (see page 35)
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M∗ dual module of an H(R,q)
An−1

-module (see page 35)

M ⊗R N tensor product over R of two R-modules (see page 35)

X ' Y isomorphism relation between algebraic structures (see

page 36)

M ⊕N direct sum of two modules (see page 36)

x
(R,q)
λ “unsigned” sum ι

(n)
(R,q)(Sλ) ∈ H(R,q)

An−1
(see page 37)

Mλ
(R,q) permutation module of H(R,q)

An−1
associated to λ � n (see

page 38)

BMλ

row std(R, q) row standard basis
{
x

(R,q)
λ Td

∣∣∣ d ∈ Dλ} of Mλ
(R,q) (see

page 38)

βλ(R,q) symmetric bilinear form on Mλ
(R,q) (see page 39)

y
(R,q)
λ “signed” sum ε

(n)
(R,q)(Sλ) ∈ H(R,q)

An−1
(see page 40)

z
(R,q)
λ generator of Sλ(R,q) (see page 40)

Sλ(R,q) Specht module of H(R,q)
An−1

associated to λ ` n (see page 40)

BSλ

std(R, q) standard basis
{
z

(R,q)
λ Tf

∣∣∣ f ∈ Eλ′} of Sλ(R,q) (see page 41)

γλ(R,q) symmetric bilinear form on Sλ(R,q) (see page 42)

ϕ[γλ(R,q)] R-homomorphism from Sλ(R,q) to
(
Sλ(R,q)

)∗
induced by

γλ(R,q) (see page 42)

rad γλ(R,q) radical of γλ(R,q) (see page 42)

Dλ
(K,r) irreducible H(K,r)

An−1
-module associated to λ ∈ Πn,eK(r) (see

page 43)

[M ] isomorphism class of an H(R,q)
An−1

-module (see page 44)

M(H(R,q)
An−1

) set of the isomorphism classes of H(R,q)
An−1

-modules (see

page 44)

G0(H(R,q)
An−1

) Grothendieck group of H(R,q)
An−1

(see page 44)

αHn
(K,r)(K̃,r̃)

isomorphism from G0(H(K,r)
An−1

) to G0(H(K̃,r̃)
An−1

) with semisim-

ple Hecke algebras (see page 46)

Sψ discrete valuation ring of a discrete additive valuation (see

page 46)

Iψ valuation ideal of a discrete additive valuation (see

page 46)
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·̄ natural projection from a discrete valuation ring Sψ onto

its residue class field Sψ/Iψ (see page 47);

also denotes the reduction map from an H(S,a)
An−1

-module M

to its reduction M̄ (see page 49);

furthermore denotes the reduction map from K0(H(S,a)
An−1

)

to K0(H(F,ā)
An−1

) (see page 62)

f : U ↪→M inclusion map (see page 48)

RnkRM rank of a free module over a ring (see page 49)

dimK V dimension of a vector space over a field (see page 49)

M̄ reduction of an H(S,a)
An−1

-module (see page 49)

DHn,K decomposition map for Hecke algebras of type A associ-

ated with the degree n and the modular system K (see

page 50)

dn,Kλµ decomposition number for Hecke algebras of type A asso-

ciated with the degree n and the modular system K (see

page 50)

∆Hn,K decomposition matrix for Hecke algebras of type A asso-

ciated with the degree n and the modular system K (see

page 50)

RnkQ ∆Hn,K Q-rank of a decomposition matrix for Hecke algebras of

type A (see page 52)

R[X] polynomial ring over the coefficient ring R in the indeter-

minate X (see page 53)

K(X) rational function field over the coefficient field K in the

indeterminate X (see page 54)

x - y x doesn’t divide y for integers or polynomials (see page 54)

ψf discrete additive valuation on a rational function field as-

sociated to an irreducible polynomial f (see page 54)

RI localization of a ring at an ideal (see page 54)

K(K,r) modular system associated to a field K and a unit r ∈ K
(see page 55)

K̂ completion of a valuated field (see page 55)
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ψ̂ continuous extension of a valuation ψ to the completion

K̂ of the underlying valuated field K (see page 55)

K̂(K,r) complete modular system associated to a field K and a

unit r ∈ K (see page 56)

P(H(R,q)
An−1

) set of the isomorphism classes of projectiveH(R,q)
An−1

-modules

(see page 58)

K0(H(R,q)
An−1

) projective class group of H(R,q)
An−1

(see page 59)

P µ
(F,ā) indecomposable projective cover of Dµ

(F,ā) with

µ ∈ Πn,eF (ā) (see page 59)

P µ
(S,a) projective indecomposable H(S,a)

An−1
-module associated to

µ ∈ Πn,eF (ā) (see page 60)

ηHn,(F,ā) inclusion of the category of projective H(F,ā)
An−1

-modules into

the category of all H(F,ā)
An−1

-modules (see page 61)

CHn,K Cartan map for Hecke algebras of type A associated with

the degree n and the modular system K (see page 61)

CHn,K Cartan matrix for Hecke algebras of type A associated

with the degree n and the modular system K (see page 61)

CHn,K(λ, µ) entry of CHn,K (see page 61)

−⊗S Q extension of coefficients from K0(H(S,a)
An−1

) to G0(H(Q,a)
An−1

)

(see page 62)

BHn,K Brauer map for Hecke algebras of type A associated with

the degree n and the modular system K (see page 63)

BHn,K matrix representing BHn,K (see page 63)

BHn,K(λ, µ) entry of BHn,K (see page 63)

iHn,(Q,a) bilinear form of intertwining numbers on G0(H(Q,a)
An−1

) ×
G0(H(Q,a)

An−1
) (see page 64)

jHn,(F,ā) bilinear form of intertwining numbers on K0(H(F,ā)
An−1

) ×
G0(H(F,ā)

An−1
) (see page 64)

MT transpose of a matrix (see page 65)

Z(H(R,q)
An−1

) center of H(R,q)
An−1

(see page 66)

cλ(S, a) element of an S-basis of Z(H(S,a)
An−1

) indexed by a λ ` n (see

page 66)
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b
(i)
Idemp(H(R,q)

An−1
) block idempotent of H(R,q)

An−1
indexed by an arbitrary num-

ber (see page 70)

B
(i)
Ideal(H

(R,q)
An−1

) block ideal of H(R,q)
An−1

indexed by an arbitrary number (see

page 70)

B
(i)
Kat(H

(R,q)
An−1

) block category of H(R,q)
An−1

indexed by an arbitrary number

(see page 70)

bµIdemp(H(R,q)
An−1

) block idempotent ofH(R,q)
An−1

indexed by a core (see page 73)

Bµ
Ideal(H

(R,q)
An−1

) block ideal of H(R,q)
An−1

indexed by a core (see page 73)

Bµ
Kat(H

(R,q)
An−1

) block category of H(R,q)
An−1

indexed by a core (see page 73)

Bµ(H(R,q)
An−1

) µ-block of H(R,q)
An−1

(see page 73)

Bµ(n) µ-block of H(R,q)
An−1

(see page 74)

geF (ā)(B
µ(n)) eF (ā)-weight of Bµ(n) (see page 74)

bµProj(H
(R,q)
An−1

) block projection on G0(H(R,q)
An−1

) (see page 75);

also denotes the block projection on K0(H(R,q)
An−1

) (see

page 75)

∆Hn,K(ν) ν-block of ∆Hn,K (see page 78)

χ(m) partition (m− 1, 1) (see page 81)

iH
(R,q)
n

H(R,q)
n−1

standard inclusion of H(R,q)
An−2

into H(R,q)
An−1

(see page 82)

M

xH(R,q)
n

H(R,q)
n−1

H(R,q)
An−1

-module induced from an H(R,q)
An−2

-module (see

page 82)

·
xH(R,q)

n

H(R,q)
n−1

induction homomorphism from G0(H(R,q)
An−2

) to G0(H(R,q)
An−1

)

(see page 83);

also denotes the induction homomorphism from

K0(H(R,q)
An−2

) to K0(H(R,q)
An−1

) (see page 83)

Eλ,η constant used in the derivation of an upper bound for

decomposition numbers of Hecke algebras of type A (see

page 91)

Hλ constant used in the derivation of an upper bound for

decomposition numbers of Hecke algebras of type A (see

page 91)
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Jν constant used in the derivation of an upper bound for

decomposition numbers of Hecke algebras of type A (see

page 91)

Un−1 constant used in the derivation of an upper bound for

decomposition numbers of Hecke algebras of type A (see

page 91)

I(j) ideal in a discrete valuation ring used in the construction

of Jantzen filtrations for Specht modules (see page 94)

Sλ(S,a)(j) H(S,a)
An−1

-submodule of Sλ(S,a) used in the construction of the

Jantzen filtration for Sλ(F,ā) (see page 94)

Sλ(S,a)(j) term in the Jantzen filtration of Sλ(F,ā) (see page 95)

aν coefficient used in the calculation of decomposition num-

bers for Hecke algebras of type A with the Theorem of

Schaper (see page 98)

bν coefficient used in the calculation of decomposition num-

bers for Hecke algebras of type A with the Theorem of

Schaper (see page 98)

〈i〉a angle notation for a partition in a block of weight 3 (see

page 103)

〈i, i〉a angle notation for a partition in a block of weight 3 (see

page 103)

〈i, j〉a angle notation for a partition in a block of weight 3 (see

page 103)

〈i, i, i〉a angle notation for a partition in a block of weight 3 (see

page 103)

〈i, i, j〉a angle notation for a partition in a block of weight 3 (see

page 104)

〈i, j, k〉a angle notation for a partition in a block of weight 3 (see

page 104)

Li constant used in the derivation of an upper bound for

decomposition numbers of Hecke algebras of type A (see

page 105)

z particular abacus for the partition (0) (see page 106)
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pK additive order of 1K in a field K (see page 112)

λt composition associated to a tableau (see page 122)

[λt] diagram associated to a tableau (see page 122)

t
w�n
m target restriction of a tableau (see page 122)

s ≤ t total ordering relation between elements of T Ξn
row std (see

page 124)

s E t partial ordering relation between elements of T Ξn
row std (see

page 124)

s � t partial ordering relation between elements of T λrow std with

a λ � n (see page 124)

u � w weak Bruhat ordering between elements of Sn (see

page 130)

Cn set of general reflections in Sn (see page 130)

u E w (strong) Bruhat ordering between elements of Sn (see

page 131)

d ≤ f total ordering relation between elements of Dλ with a λ �

n (see page 132)

µ#µ PKn-pair (see page 133)

00 special PKn-pair (see page 133)

µ#Ac image of the partition µ# from the PKn-pair µ#µ under

the operator Ac (see page 135)

µRc image of the composition µ from the PKn-pair µ#µ under

the operator Rc (see page 135)

µ#µRc image of the PKn-pair µ#µ under the operator Rc (see

page 135)

µ#Acµ image of the PKn-pair µ#µ under the operator Ac (see

page 135)

tµ
#µ µ-tableau whose entries are arranged in ascending order

first by columns within
[
µ#
]

and then by rows within

[µ] \
[
µ#
]

(see page 138)

wµ#µ permutation mapping tµ to tµ
#µ (see page 138)

gµ#µ permutation mapping tµ
#µ to tµ (see page 139)
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t
y[λ]

[ν] source restriction of a tableau (see page 139)

(i, j)t
y[λ]

[ν] entry in the source restriction of a tableau (see page 139)

Uµ#µ subgroup of Sn permuting only the entries in each column

of tµ
#µ

y[µ]

[µ#]
amongst themselves (see page 141)

Vµ#µ subgroup of Sn permuting only the entries in each column

of tµ

y[µ]

[µ#]
amongst themselves (see page 141)

U
(j)

µ#µ
direct factor of Uµ#µ (see page 142)

mi number of lattice points in the i-th column of a composi-

tion (see page 143)

m+
k number of lattice points in the first k columns of a com-

position (see page 143)

V
(j)

µ#µ
direct factor of V

(j)

µ#µ
(see page 143)

Iµ#µc subset of Sn permuting only the entries in the c-th row

of tµ such that the images of the left µc − µ#
c entries and

those of the the right µ#
c entries respectively are arranged

in ascending order from left to right (see page 151)

fµ#µc element of Iµ#µc moving the left µ#
c entries in the c-th row

of tµ to the right end of that row and the right µc − µ#
c

entries to the left end (see page 157)

t(ζ) λ-tableau associated to ζ ∈ Zλ via good and bad entries

(see page 163)

t(ζ)j partially filled diagram of a composition used in the con-

struction of t(ζ) (see page 163)

ν(ζ)j number of good entries in the j-th row of t(ζ) (see

page 164)

ν(ζ) partition associated to ζ ∈ Zλ via good and bad entries

(see page 164)

g(ζ) permutation associated to ζ ∈ Zλ via good and bad entries

(see page 164)

Zµ#µ set of all ζ ∈ Zµ satisfying
[
µ#
]
⊆ [ν(ζ)] (see page 167)

Z00 empty set — this is a special case of Zµ#µ (see page 167)
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Jµ#µc(ζ) image of ζ ∈ Zµ#µ \ Zµ#Acµ under Jµ#µc (see page 171)

Jµ#µc bijection from Zµ#µ \ Zµ#Acµ to Zµ#µRc (see page 171)

Y (ζ) ZNL-subgroup of Sn with ζ ∈ Zλ for certain λ � n (see

page 173)

Sµ
#µ

(R,q) PKn-module ofH(R,q)
An−1

associated to the PKn-pair µ#µ (see

page 182)

S00
(R,q) null ideal in H(R,q)

An−1
— this is a special case of Sµ

#µ
(R,q) (see

page 182)

Ψ
(R,q)

µ#µc
PKn-homomorphism associated to a PKn-pair and an AR-

index for it (see page 189)

z(ζ)(R,q) ZNL-element in Mλ
(R,q) associated to ζ ∈ Zλ for certain

λ � n (see page 193)

BSµ
#µ

ZNL (R, q) ZNL-basis of Sµ
#µ

(R,q) for µ#µ 6= 00 (see page 210)

WBn Weyl group of type Bn (see page 220)

C2 cyclic group of order 2 (see page 220)

G oH wreath product of groups (see page 220)

`Bn(w) length of w ∈ WBn (see page 220)

·
m← left inclusion of WAm−1 into WAn−1 (see page 221);

also denotes the left inclusion of H(R,q)
Am−1

into H(R,q)
An−1

(see

page 226)

·
m→ right inclusion of WAm−1 into WAn−1 (see page 221);

also denotes the right inclusion of H(R,q)
Am−1

into H(R,q)
An−1

(see

page 227)

WAn−1 ↪→ WBn inclusion of WAn−1 into WBn through identification of sim-

ple reflections (see page 221)

(λ, µ) a-bi-composition of n with λ � a and µ � n − a (see

page 222);

also denotes an a-bi-partition of n with λ ` a and µ ` n−a
(see page 223)

(λ#λ, µ#µ) a-bi-PKn-pair with a PKa-pair λ#λ and a PKn−a-pair µ#µ

(see page 223)

(00, µ#µ) 0-bi-PKn-pair with a PKn-pair µ#µ (see page 223)

(λ#λ, 00) n-bi-PKn-pair with a PKn-pair λ#λ (see page 223)
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(00, 00) special bi-PK-pair (see page 223)

(λ#λ, µ#µ)(c)A image of the bi-PKn-pair (λ#λ, µ#µ) with λ#λ 6= 00 under

the operator (c)A (see page 224)

(λ#λ, µ#µ)A(c) image of the bi-PKn-pair (λ#λ, µ#µ) with µ#µ 6= 00 under

the operator A(c) (see page 224)

(λ#λ, µ#µ)(c)R image of the bi-PKn-pair (λ#λ, µ#µ) with λ#λ 6= 00 under

the operator (c)R (see page 224)

(λ#λ, µ#µ)R(c) image of the bi-PKn-pair (λ#λ, µ#µ) with µ#µ 6= 00 under

the operator R(c) (see page 224)

wa,n−a a times shift permutation in Sn (see page 224)

H(R,q,Q)
Bn

Hecke algebra of type Bn over the coefficient triple

(R, q,Q) (see page 226)

H(R,q)
An−1

↪→ H(R,q,Q)
Bn

inclusion of H(R,q)
An−1

into H(R,q,Q)
Bn

through identification of

defining basis elements (see page 227)

h
(R,q)
a,n−a a times shift permutation in H(R,q)

An−1
(see page 230)

u+
m(R, q,Q) “unsigned” sum over the base group of WBn in H(R,q,Q)

Bn

(see page 231)

u−m(R, q,Q) “signed” sum over the base group of WBn in H(R,q,Q)
Bn

(see

page 231)

v
(R,q,Q)
a,n−a “partially signed” sum over the base group of WBn in

H(R,q,Q)
Bn

(see page 231)

v
(R,q,Q)
0,0 additive neutral element ofH(R,q,Q)

Bn
— this is a special case

of v
(R,q,Q)
a,n−a (see page 232)

M
(λ,µ)
(R,q,Q) bi-permutation module of H(R,q,Q)

Bn
associated to the a-bi-

composition (λ, µ) with a ∈ {1, . . . , n− 1} (see page 236)

M
((0),µ)
(R,q,Q) bi-permutation module of H(R,q,Q)

Bn
associated to the 0-bi-

composition ((0), µ) (see page 237)

M
(λ,(0))
(R,q,Q) bi-permutation module of H(R,q,Q)

Bn
associated to the n-bi-

composition (λ, (0)) (see page 237)

S
(λ,µ)
(R,q,Q) bi-Specht module of H(R,q,Q)

Bn
associated to the a-bi-parti-

tion (λ, µ) with a ∈ {1, . . . , n− 1} (see page 239)

S
((0),µ)
(R,q,Q) bi-Specht module of H(R,q,Q)

Bn
associated to the 0-bi-parti-

tion ((0), µ) (see page 240)
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S
(λ,(0))
(R,q,Q) bi-Specht module of H(R,q,Q)

Bn
associated to the n-bi-parti-

tion (λ, (0)) (see page 240)

S
(λ#λ,µ#µ)
(R,q,Q) a-bi-PKn-module of H(R,q,Q)

Bn
associated to the a-bi-PKn-

pair (λ#λ, µ#µ) with a ∈ {0, . . . , n} (see page 242)

S
(00,µ#µ)
(R,q,Q) 0-bi-PKn-module of H(R,q,Q)

Bn
associated to the 0-bi-PKn-

pair (00, µ#µ) (see page 242)

S
(λ#λ,00)
(R,q,Q) n-bi-PKn-module of H(R,q,Q)

Bn
associated to the n-bi-PKn-

pair (λ#λ, 00) (see page 242)

S
(00,00)
(R,q,Q) null ideal in H(R,q,Q)

Bn
— this is a special case of S

(λ#λ,µ#µ)
(R,q,Q)

(see page 242)

(c)Ψ(λ#λ,µ#µ)(R, q,Q) a-bi-PKn-homomorphism associated to the a-bi-PKn-pair

(λ#λ, µ#µ) with a ∈ {1, . . . , n− 1} and the AR-index c

for λ#λ (see page 247)

Ψ
(c′)

(λ#λ,µ#µ)
(R, q,Q) a-bi-PKn-homomorphism associated to the a-bi-PKn-pair

(λ#λ, µ#µ) with a ∈ {1, . . . , n− 1} and the AR-index c′

for µ#µ (see page 247)

Ψ
(c)

(00,µ#µ)
(R, q,Q) 0-bi-PKn-homomorphism associated to the 0-bi-PKn-pair

(00, µ#µ) and the AR-index c for µ#µ (see page 248)

(c′)Ψ(λ#λ,00)(R, q,Q) n-bi-PKn-homomorphism associated to the n-bi-PKn-pair

(λ#λ, 00) and the AR-index c′ for λ#λ (see page 248)
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of a decomposition matrix . . . 78

of a Hecke algebra of

type A . . . . . . . . . . . . . . . . . . . 73
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bra of type A . . . . . . . . 70, 73
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rix . . . . . . . . . . . . . . . . . . . 78, 79

of an HA-module . . . . . . . . . . . . 71

block ideal of a Hecke algebra of

type A . . . . . . . . . . . . . . . 70, 73

block idempotent of a Hecke al-

gebra of type A . . . . . . 70, 73

block projection
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