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Abstract

The knowledge of the decomposition numbers of Hecke algebras associated to Weyl
groups is very useful in the representation theory of finite groups of Lie type since
the decomposition matrix of such an algebra embeds into that of the corresponding
group. In the investigation of the Hecke algebras themselves, generic constructions
— that is, constructions independent of the coefficient ring and the parameters —
are a helpful tool. This thesis contributes to those two aspects of the theory of
Hecke algebras.

The first part of this thesis is concerned with decomposition numbers of blocks
of Hecke algebras of type A. In particular, we consider blocks having core (0) and
weight 3. First, we derive an upper bound for the decomposition numbers of an
arbitrary block. This is used to show that all the decomposition numbers of a block
having core (0) and weight 3 are 0 or 1. That result in turn enables us to describe
a combinatorial algorithm for their calculation. Furthermore, we show that the
decomposition numbers of a block having core (0) and weight 3 depend only on the
ordinary and the quantized characteristic of the coefficient field. Moreover, if the
ordinary characteristic is neither 2 nor 3 then they are already determined by the
quantized characteristic alone.

In the second part of this thesis, we construct generic Specht series for Hecke
algebras of type A and generic bi-Specht series for Hecke algebras of type B. These
are series of right ideals in those algebras such that all subquotients are Specht
modules respectively bi-Specht modules. The construction of the Specht series
generalizes ideas from Dipper and James for symmetric groups and Hecke algebras
of type A. In particular, generic bases for the so-called PK-modules are introduced.
The derivation of the bi-Specht series makes use of the Specht series and general

methods from Dipper and James for the investigation of Hecke algebras of type B.
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Zusammenfassung

Die Kenntnis der Zerlegungszahlen von mit Weyl-Gruppen assoziierten Hecke-Al-
gebren ist sehr niitzlich in der Darstellungstheorie endlicher Gruppen vom Lie-Typ,
da die Zerlegungsmatrix einer solchen Algebra in die der entsprechenden Gruppe
eingebettet ist. Zur Untersuchung der Hecke-Algebren selbst sind generische — das
heiffit vom Koeffizientenring und den Parametern unabhangige — Konstruktionen
hilfreich. Die vorliegende Arbeit tragt zu diesen beiden Aspekten der Theorie der
Hecke-Algebren bei.

Der erste Teil dieser Arbeit beschaftigt sich mit Zerlegungszahlen von Blocken
von Hecke-Algebren vom Typ A. Insbesondere werden Blocke mit Kern (0) und
Gewicht 3 betrachtet. Zunachst wird eine obere Schranke fiir die Zerlegungszahlen
eines beliebigen Blocks hergeleitet. Damit wird gezeigt, dal die Zerlegungszahlen
eines Blocks mit Kern (0) und Gewicht 3 nur die Werte 0 und 1 annehmen. Dies
ermoglicht die Beschreibung eines kombinatorischen Algorithmus zu ihrer Berech-
nung. Weiter wird gezeigt, dafl die Zerlegungszahlen eines Blocks mit Kern (0)
und Gewicht 3 nur von der gewohnlichen und der quantisierten Charakteristik des
Koeffizientenkorpers abhangen. Wenn die gewohnliche Charakteristik weder 2 noch
3 ist, sind sie sogar bereits durch die quantisierte Charakteristik bestimmt.

Im zweiten Teil dieser Arbeit werden generische Specht-Serien fiir Hecke-Alge-
bren vom Typ A und generische Bi-Specht-Serien fiir Hecke-Algebren vom Typ B
konstruiert. Dabei handelt es sich um Reihen von Rechtsidealen, bei denen alle
Subquotienten Specht-Moduln beziehungsweise Bi-Specht-Moduln sind. Die Kon-
struktion der Specht-Serien verallgemeinert Ideen von Dipper und James fiir sym-
metrische Gruppen und Hecke-Algebren vom Typ A, insbesondere werden gene-
rische Basen fiir die sogenannten PK-Moduln bestimmt. Die Herleitung der Bi-
Specht-Serien benutzt die Specht-Serien und allgemeine Methoden von Dipper und

James zur Untersuchung von Hecke-Algebren vom Typ B.
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Introduction

Hecke algebras associated to Weyl groups are involved in various branches of math-
ematics and physics. Hecke algebras of type A are employed in knot theory for
the construction of topological invariants (see [JON]) and also occur in statistical
mechanics (see [JIM1], [JIM2]). In the theory of quantum groups, they play the
part of the symmetric group algebras in the quantized version of classical Schur-
Weyl reciprocity between general linear groups and symmetric groups (see again
[JIM2]). Furthermore, the Hecke algebras associated to Weyl groups are a valuable
tool in the representation theory of algebraic groups and finite groups of Lie type
(see [IWA] and [KL]). In particular, they are very useful for the determination of
the decomposition numbers of finite groups of Lie type, namely their decomposition
matrices embed into the decomposition matrices of the corresponding groups (see
[DIP] and [DJ3]).

The first part of this thesis contributes to that latter application of Hecke al-
gebras. Here, the decomposition matrices of certain blocks of Hecke algebras of
type A are investigated. For a more detailed description, we fix coefficient rings
and parameters. Let () be a field and v be a discrete valuation on () such that @)
is complete with respect to 1. With that, denote by S the valuation ring of ¢ in
@, by I the valuation ideal of ¢ in S, and write F' = S/I for the residue class field.
Then we have the inclusion S — @ and the reduction modulo I ~: S — F. Next,
fix a unit @ € S. Then a also is a unit in ) and a is a unit in F'. We assume that
there are natural numbers m satisfying Z;’:OI @' = 0 in F' — the opposite not being
interesting — and denote by ep(a) the minimum of these numbers. With that, we
put n = 3er(a) and build the Hecke algebras of type A,_1 over the coefficient rings
Q, S, and F with the respective parameters a, a, and a. We denote them by Hgn’fz,
Hfici)l, and Hgf)l (see Section 1.2). We also assume that Hgn’fz is semisimple.

Similar to the special case of symmetric groups, the blocks of these algebras are
indexed by ep(a)-cores of partitions of n and are divided into families according
to the ep(a)-weights of the indexing cores. The block under consideration in this

thesis is indexed by the partition (0) of 0 and has ep(a)-weight 3. Our choice of n

1X



X INTRODUCTION

ensures that the algebras H;n’fz, Hgi)u and Hff:f)l indeed have such a block. This
block can be considered as the principal block of those algebras. We denote it by
B©(n) and its decomposition matrix by A¥((0)) (see Section 1.8).

The results obtained for the block decomposition matrix A’¢((0)) are as follows.
First, it is shown that all of its entries are 0 or 1. Then, this fact and the quantized
version of the Theorem of Schaper from [JM] are used to describe a purely com-
binatorial algorithm for the calculation of A”((0)). Finally, it is shown that the
matrix A’((0)) depends only on the characteristic of F' and the number ep(a), and
moreover, if the characteristic of F' is neither 2 nor 3 then it is already completely
determined by ep(a). This proves a conjecture of James (see [JAM2, Section 4])
in the special case of the submatrix A’((0)) of the decomposition matrix of the
algebras H;n’fi, Hff;i)l, and Hgf)l

The second part of this thesis is concerned with generic features of Hecke algebras
of type A and B. Generic means that these features are independent of the choice of
the coefficient ring and the parameters for the Hecke algebra. Here, the coefficient
ring can be an arbitrary integral domain. The features in question are generic
Specht series for Hecke algebras of type A and generic bi-Specht series for Hecke
algebras of type B.

A generic Specht series for a Hecke algebra of type A means a series of right
ideals in that algebra such that all the quotients of successive ideals are isomorphic
to Specht modules (see Section 1.3) and moreover all algebra elements, ideals, and
homomorphisms occurring in the construction of this series are stable when changing
the coefficient ring. Here, the Specht modules for Hecke algebras of type A are those
from [DJ1].

Similarly, a generic bi-Specht series for a Hecke algebra of type B means a series
of right ideals in that algebra such that all the quotients of successive ideals are
isomorphic to bi-Specht modules (see Section 4.4) and moreover all algebra elements,
ideals, and homomorphisms occurring in the construction of this series are stable
when changing the coefficient ring. Here, the bi-Specht modules for Hecke algebras
of type B are a generalization of those from [DJ3].

In this thesis, generic Specht series for Hecke algebras of type A are constructed
by generalizing ideas from [JAM1, Section 16| and [DJ1, Section 7]. In particular,
new generic bases of the intermediary modules S Wi from there are introduced (see
Section 3.10). These generic Specht series for Hecke algebras of type A are then
used to obtain generic bi-Specht series for Hecke algebras of type B by transferring
the algebra elements, ideals, and homomorphisms employed in their construction
to Hecke algebras of type B with methods from [DJ3].
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The organization of this thesis is as follows. Chapter 1 collects background
material and known facts about Hecke algebras of type A which will be used in
later chapters. It starts with an overview of the combinatorics required for the
representation theory of the Weyl groups of type A, that is, the symmetric groups.
Here, we recall — amongst other things — compositions and partitions, hooks and
rim hooks, 3-sequences and abaci, cores, tableaux, Young subgroups and shortest

representatives, and finally row number lists.

The next section reviews Hecke algebras of type A. It gives generators and rela-
tions for these algebras and lists some basic facts and notions related to coefficient
rings. Section 1.3 describes the derivation of the irreducible representations of Hecke
algebras of type A over fields as carried out in [DJ1]. It also recalls the generic per-
mutation modules and Specht modules from there. The following section adapts the
account on modular reduction and decomposition numbers for group algebras given
in [CR1, §16] to the situation at hand. It fixes the notation for Grothendieck groups,
modular systems, decomposition maps, and decomposition numbers for Hecke al-
gebras of type A. Next, Section 1.5 describes the behavior of Specht modules with
respect to modular reduction and states some consequences thereof. Then, in Sec-
tion 1.6, new modular systems with nice properties are derived from a given one
and are used to examine the dependency of the decomposition numbers of Hecke
algebras of type A on the employed modular system. Section 1.7 translates the
treatment of projective indecomposable modules and the Cartan-Brauer triangle
for group algebras in [CR1, §18] to Hecke algebras of type A.

The following section collects some basic facts and notions from the block the-
ory of Hecke algebras of type A. It recalls such things as block idempotents and
block ideals, the parameterization of the blocks of Hecke algebras of type A by
cores of partitions, and the block decomposition of modules, Grothendieck groups,
projective class groups, and decomposition matrices. The next section treats in-
duction of modules from a Hecke algebra of type A, _s to the corresponding one
of type A,_1. The induction of Specht modules and projective indecomposable
modules, both considered as elements of Grothendieck groups and projective class
groups, is described in more detail. This is then used to derive an upper bound
for the decomposition numbers of a block of the Hecke algebra of type A, _; pro-
vided the decomposition numbers of the Hecke algebra of type A,_o are known.
Finally, Section 1.10 gives an account on Schaper’s Theorem for Hecke algebras of
type A proved in [JM]. It introduces the required notation and states the Theorem
of Schaper. Then, it describes how this theorem can be used to obtain valuable

information on decomposition numbers.
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In Chapter 2, we investigate the decomposition matrices of blocks of Hecke
algebras of type A having core (0) and weight 3. Here and in the following, we
use the terminology and notation from above. In Section 2.1, it is shown that
all entries of AM((0)) are 0 or 1. This is done by using the upper bound for
the decomposition numbers of an arbitrary block of the algebras Hfﬁ’fi, Hﬁi)l,
and H%:?)l from Section 1.9. In the case of the block B®(n), this upper bound
depends on an upper bound U, for the entries of the decomposition matrix A* |
of the algebras H! e 7‘[ Sa) and H(Fa (see Section 1.4) and a certain integer J()
determined by comblnatorlcs 1nv01v1ng the partitions belonging to B (n). Since
every block of HEL‘Q’ H(Sa ,» and H has weight less than 3, the upper bound
U,—1 can be obtained from results on such blocks in [RIC| and [JAM2].

For the evaluation of .Jg), we proceed as follows. First, the partitions belonging
to B (n), that is, those having ep(a)-core (0), are divided into families according
to the shapes of the corresponding abaci as described in [MR2]. Then, the definition
of Jigy in Theorem 1.9.18 is adapted to abacus notation. Finally, Jig) is determined
through a case by case analysis of the various families of partitions lying in the block
BO(n). The values obtained for U,_; and J(o) now establish the upper bound 1
for all entries of A7((0)).

Section 2.2 first shows how the matrix A’((0)) can be calculated explicitly and
then investigates its dependency on the employed coefficient rings and parameters.
The explicit calculation of A’f((0)) is based on the quantized version of Schaper’s
Theorem from [JM]. This theorem reveals for every entry in a row of A’¢((0))
if it vanishes or not provided the earlier rows — with respect to an appropriate
ordering — are known (see Remark 1.10.9.(ii)). This fact and the upper bound 1
for all decomposition numbers of the block B (n) established in Section 2.1 allow
the explicit calculation of its decomposition matrix A¥((0)) in a straightforward

inductive manner.

The second topic in Section 2.2 is the dependency of A((0)) on the coefficient
rings and parameters underlying the algebras H(Q’ H ASa and H Fa) . It turns
out that the determining values are er(a) and the characterlstlc of F Flrst the
relations between these values and the parameters a and a of the Hecke algebras are
described (see Lemma 2.2.3 to Lemma 2.2.5). We see that there are three distinct
cases to be considered. Using this distinction, the values of the valuation ¢ on
quantized integers (see Definition 1.2.2.(i)) are determined. Such expressions occur
in the Theorem of Schaper. We see that these values are completely determined by
er(a) and the characteristic of F'. This fact and the previously described method
for calculating the matrix A’¢((0)) using Schaper’s Theorem now show that the
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decomposition numbers of B (n) also depend only on the characteristic of F and
er(a).

Next, this dependency is reduced even further provided the characteristic of F is
neither 2 nor 3. With this restriction, we get a factorization of the values of ¢ on the
relevant quantized integers where one factor is completely determined by er(a) and
the characteristic of F' while the other one depends only on ep(a) and the ordinary
integer behind the respective quantized integer. Combining this with the Theorem
of Schaper and the method for calculating the decomposition numbers of the block
B (n) described above, we obtain that A’((0)) is completely determined by e (a)
provided the characteristic of F' is neither 2 nor 3.

Chapter 3 is concerned with the construction of generic Specht series for Hecke
algebras of type A (see above). To be more specific, let us fix a degree n, an integral
domain R, a unit ¢ € R, and with that the Hecke algebra Hﬁi’f)l. Sections 3.1 to 3.3
provide the combinatorics required for the construction of a generic Specht series for
this algebra. Section 3.1 reviews ordering relations for row standard tableaux and
the corresponding shortest representatives. Section 3.2 discusses PK,-pairs p#
and the operators A. and R, for them as described in [JAM1] and some related
tableaux and permutations. In short, a PK,-pair consists of a partition p# and
a composition p of n (see Section 1.1) satisfying certain conditions. Moreover,
if we have an index ¢ > 1 such that the c-th and (¢ — 1)-th entries of u# and
1 meet further requirements then we can apply the operator A. to get another
partition p# A, and a PK,-pair u# A.u and also the operator R, which gives us
another composition R, and a PK,,-pair u# uR.. Section 3.3 treats the aspects of
row number lists employed in the construction of the Specht series. These are the
connection to PK,,-pairs via good and bad entries, the ensuing organization of row
number lists into sets Z#7# and maps between such sets from [JAM1], but also
ordering relations between related permutations.

Sections 3.4 and 3.5 review known modules and homomorphisms which are
used in the construction of the Specht series. Section 3.4 recalls the definition
of PK,-modules S ; ;) indexed by PK,-pairs from [DJ1] and collects some ele-
mentary facts about them. Section 3.5 gives an account on the construction of

PK,,-homomorphisms

(Ra) . pqqn wRe
leu#,uc : M(qu) - M(qu)

and lists some basic properties of them. Such a homomorphism is indexed by a
PK,-pair 47 and an integer ¢ which allows the application of the corresponding
pair of operators A, and R, to u#u (see above). It maps the permutation module

My, (see Section 1.3) into M(“é?;) and the PK,,-module S(“;flg into S(“;;‘fzc. All this
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is drawn from [DJ1].

The next two sections introduce ZNL-elements and describe the effect of PK,,-
homomorphisms on them. In Section 3.6, we define for a composition A of n and
every row number list ¢ in the set Z* (see Section 1.1) the corresponding ZNL-
element z(()(r,q) in M ()‘R7 o). We also derive some basic facts about these elements.
We determine, for example, their representations with respect to the row standard
basis Bﬁfsstd(R, q) of ]\/[(’\qu) (see Section 1.3). From this in turn we obtain their
linear independence. In Section 3.7, we examine for a given PK,-pair p#pu the
images of the ZNL-elements z(()(r ) indexed by row number lists ¢ € Z 1 under
a PK,,-homomorphism \Ifﬁ’z)c P Mgy — M("If ;) and derive their representations
with respect to the basis BM“™ (R, q) of M(“;;). We find that the 2(()(r,q) with
¢ € zrtAen C 21 are contained in Ker \Ifﬁ’z)c and that the Z(C)(R74>WL§¢’ZL with
-l \ Z1" Ak gre linearly independent.

The following three sections establish bases of PK,,-modules consisting of ZNL-
elements. In Section 3.8, we show that, given a PK,,-pair x# 1 and a pair of operators
A, and R, for it, the set {z(n)(Rm n e Z“#“RC} is an R-basis of the PK,,-module

Sé‘;g‘)Rc provided {z(()(qu) (e Z“#“} is an R-basis of Sé‘;g‘). This is done by

comparing the representations of the elements z({); R#l)\llﬁ’z)c for ¢ € 2\ ZrAen
with respect to BM“™ (R, q) to those of the elements z(n) g, for n € ZrtuBe In

row std

Section 3.9, we consider again a PK,,-pair ;# 1 and a pair of operators A, and R, for

it and we also assume that {Z(C)(R,q) ¢ e Z“#“} is an R-basis of Ségi;‘). Given this,

we show that {Z(C)(R,q) ‘ (e Z“#AC“} is an R-basis of Ker (W(R’q) lM“ > by using

p# e | su#p
the result of the preceding section and basic properties of ZNL-elements and PK,,-
. .. . . (R7q) MH o #Ac
homomorphisms. From this in turn we easily obtain Ker (\Ifﬂ#ucl SH#H) = Slra
In Section 3.10, we remove the basis assumption of the preceding two sections
by induction along sequences of operators A. and R, applied to PK,-pairs. The
induction always starts with a PK,,-pair v#v of a particular kind for which we have
V#V - 14
Sty = Mg
. . # . .
{Z(C)(R,q) (€ Z“#“} is an R-basis of Sé‘R f;) and, given a pair of operators A, and

R, applicable to u# p,

)- The main results of this section are that, given a PK,-pair pu#p,

(R,q) | M+ _ anTAc
Ker (\Il“#uc SM#H) = S?R’q) K

In the final section of this chapter, we construct generic Specht series for PK,-
modules by induction in binary trees from the leaves to the respective root. The
vertices of these trees are labelled with PK,,-pairs, their edges with pairs of operators
A, and R.. Moreover, the labels of the leaves correspond to certain PK,,-modules

which have an obvious generic Specht series. Given a PK,-pair p# pu, we construct
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such a tree from it via repeated application of pairs of operators A. and R.. The
root of this tree is labelled 7, and the labels of its direct successors are p# Aqpu
and p#puR. with an appropriate pair of operators A, and R.. Corresponding to
this, we have the short exact sequence

u# Acp u# 1 pRe
0= Sirg" = Srg = Srg —0

which was established in the preceding sections. Here, the left map is the natural
(R.q) lMﬂ

inclusion and the right map is W ./ 10

. Using this sequence, we can combine

the inductively existing generic Specht series for S(“ ;i (’30“ and S(“ :7 . )RC into a generic
Specht series for S (“ ;i o)~ This method also is used in [DJ1]. Since every permutation
module is a PK,-module and the right regular Hﬁi’f)l—module is a permutation
module, this result gives us generic Specht series for PK,-modules, permutation
modules, and Hff)l.

In Chapter 4, we construct generic bi-Specht series for Hecke algebras of type B
(see above) by translating the constructions from the preceding chapter to Hecke
algebras of type B. Section 4.1 provides the combinatorics required for Hecke
algebras of type B and the bi-Specht series. Let us fix a degree n for the following.
With that, the first part of this section describes the Weyl group of type B, and
introduces so-called left inclusions and right inclusions of Weyl groups of type A into
other Weyl groups of type A and into the Weyl group of type B,,. The second part
of this section recalls bi-compositions and bi-partitions of n and then introduces
bi-PK,,-pairs and operators (94, A© (IR and R for them. Bi-compositions, bi-
partitions, and bi-PK,,-pairs all depend on an additional parameter a € {0,...,n}.
A bi-composition is a pair (A, i) where A is a composition of @ and p is a composition
of n — a. A bi-partition is a bi-composition where both parts are partitions. A
bi-PK,,-pair (A\#*\, u# 1) consists of a PK,-pair A*\ and a PK,_,-pair u#u. The
operators (94, A (R and R, indexed by integers ¢ > 1, act on a bi-PK,,-pair
(A# X, p# 1) via application of the operator A, respectively R, to A\ respectively
u* i, if possible, to get another bi-PK,,-pair.

Section 4.2 collects some general facts about Hecke algebras of type B. First,
the construction of the Hecke algebra of type B,, over an integral domain R with a
unit ¢ € R and an arbitrary element () € R via generators and relations is reviewed.
This algebra is denoted by Hgi’q’Q). Then, the left inclusions and right inclusions
for Weyl groups of type A and B from the preceding section are adapted to Hecke
algebras of type A and B.

Section 4.3 introduces bi-permutation modules for Hgi’q’@ and in the course of

this describes a general method for the construction of “nice” right ideals in Hecke
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algebras of type B from right ideals in Hecke algebras of type A. This method is
taken from [DJ3]. It is a translation to Hecke algebras of the corresponding method
from the well known derivation of the representation theory of Weyl groups of type
B from that of Weyl groups of type A (see, for example, [KER]). First, this section
reviews the definition of certain elements véff;‘i’?’ of Hg’q’@ with a € {0,...,n}.
These elements are Hecke algebra analogues of certain sums over the base group
Cy x -+ x Cy (n times) of the Weyl group of type B,, when considered as a wreath
product Cy ! &, where (5 is the cyclic group of order 2. Then, we describe a
filtration of Hgi’q’Q) with right ideals such that all the subquotients are of the form
C(Li’q,’f ) Hgi’q’@. Next, suppose we have a right ideal M in Hiﬁ’fz and a right ideal
N in Hfﬁ’i_l with an integer a € {1,...,n — 1} and they both have R-bases.
Denote the right inclusion of M into Hﬁ’q’@ (see above) by M = and the left
inclusion of N into H(B]i’q’Q) (see above) by N'= . With that, an R-basis for the

right ideal v{%9) <M$> (Nn;a> Hg’q’Q) can be obtained from the R-bases of M

and N. Finally, we define bi-permutation modules for H%ﬁ’q’@ by applying this

v

to permutation modules for Hecke algebras of type A. Bi-permutation modules
are indexed by bi-compositions, and the bi-permutation module corresponding to a

bi-composition (A, 1) is denoted by M((I)%\:Z,)Q)'

In Section 4.4, we define bi-Specht modules for Hgi’q’@ and exhibit R-bases for
them. This is done along the lines from the preceding section using Specht modules
for Hecke algebras of type A. Bi-Specht modules are indexed by bi-partitions, and

the bi-Specht module corresponding to a bi-partition (A, i) is denoted by S((;’Z )Q).

Section 4.5 introduces bi-PK,,-modules for Hgﬁ’q’@, describes R-bases thereof,
and discusses elementary relations between them and bi-permutation modules and
bi-Specht modules. The construction of the bi-PK,,-modules employs PK-modules
for Hecke algebras of type A and is based again on the method described in Sec-
tion 4.3. Bi-PK,-modules are indexed by bi-PK,-pairs, and the bi-PK,-module

corresponding to a bi-PK,-pair (A*\, u# 1) is denoted by S((;i’\";#“ )

In Section 4.6, we define bi-PK,,-homomorphisms and describe their effect on
bi-PK,,-modules. Such a homomorphism is indexed by a bi-PK,-pair (A\#\, u# )
and an integer ¢ which allows the application of the corresponding pair of operators
©A and R respectively A and R to (A\#\, u# 1) (see above). By definition, bi-
PK,,-homomorphisms map bi-permutation modules into bi-permutation modules.

They are denoted by

c ) (ARc,p)
( )\Il(/\#/\ﬁu#u)(R’ 4 Q) : M(R:JL,Q) - M(R,qﬁét)
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and

(c)
\IJ(A#A i pu)

/L) (AvuRC)
(R.¢,Q): MZoy — MRao -

These homomorphisms are derived from PK—homomorphisms for Hecke algebras of
type A in a way compatible with the construction of bi-permutation modules from
permutation modules for Hecke algebras of type A. This enables us to determine
the images and kernels of bi-PK,,-homomorphisms when applied to bi-PK,,-modules.
We get

WFEX L)\ (¢ VX YR
(S(R,q,Ql; g > ( )\IJ()\#)\,M#M)(Ra q,Q) = S(R,Q,Q/; 8

and
c o) NEA ) A
Ker (( "0 gt (R 4 Q)lﬁx#i,u#uJ = Sthasy

and analogous statements for homomorphisms ‘IJE,\)# Ay ) (R,q,Q).

In Section 4.7, we use the definitions and results from the preceding sections
to construct generic bi-Specht series for bi-PK,,-modules. These comprise generic
bi-Specht series for bi-permutation modules as special cases which in turn lead to

’qQ -module. The construction

a generic bi-Specht series for the right regular H
of generic bi-Specht series for bi-PK,,-modules is an adaption of the construction of
generic Specht series for PK-modules from Section 3.11 to the situation at hand.
Given a bi-PK,-module S ﬁ;/\é)’; H , we build a binary tree from the bi-PK,-pair
(A# X, u# 11) via repeated application of pairs of operators (A and ()R and also A(©)
and R, We use induction on the vertices of this tree from the leaves to the root

which is labelled (A\# ), u# ) and finally employ the exact sequence

OFXp# ) (©9A OF X 1 1) OFX\p# 1) OR
= S(rq0) Straty "~ S(rat) —0
respectively
(AN p# 1) AC©) (A p1) (A p# 1) R(®)
0= Strq0) S(raQ) S(ra0) —0

(see above) where the left map is the natural inclusion and the right map is

the restricted bi-PK,-homomorphism (W 4y 4, (R, q,Q) ﬁ;;iiu#w respectively
N

Oty (25 4, Q)lM ©% . to combine the inductively existing generic bi-Specht

SO X ¥ 1)

NG 0t )(©) , # Xt ) A© )
series for S }’}{q)‘Q“) WA and S((})% q’\g; wOR respectively S((I)% q’\é‘; WA and S }’}{ q)‘Q”) wE

# .
into a generic bi-Specht series for S(?z q/\ciz/; )| This completes the derivation of

generic bi-Specht series for Hecke algebras of type B. Using the constructions and
results from [PAL], this chapter can easily be translated to Hecke algebras of type
D, thus providing generic bi-Specht series for them as well.

Finally, I wish to thank my supervisor Prof. Dr. Richard Dipper and the other

reviewers for the devotion of their time and for their patience. I also am grateful
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to the DFG for financial support. This thesis is a late contribution to the DFG
project “Algorithmic Number Theory and Algebra”.



Deutschsprachige Ubersicht

Mit Weyl-Gruppen assoziierte Hecke-Algebren tauchen in verschiedenen Zweigen
der Mathematik und der Physik auf. Hecke-Algebren vom Typ A dienen in der Kno-
tentheorie zur Konstruktion von topologischen Invarianten (siehe [JON]), aulerdem
werden sie auch in der statistischen Mechanik verwendet (siehe [JIM1], [JIM2]). In
der Theorie der Quantengruppen spielen sie in der quantisierten Version der klas-
sischen Schur-Weyl-Reziprozitat zwischen generellen linearen Gruppen und sym-
metrischen Gruppen die Rolle der Gruppenalgebren symmetrischer Gruppen (siehe
wiederum [JIM2]). Weiter sind die mit Weyl-Gruppen assoziierten Hecke-Algebren
ein wertvolles Werkzeug in der Darstellungstheorie von algebraischen Gruppen und
endlichen Gruppen vom Lie-Typ (sieche [[WA] und [KL]). Insbesondere sind sie sehr
niitzlich bei der Bestimmung der Zerlegungszahlen von endlichen Gruppen vom Lie-
Typ, da ihre Zerlegungsmatrizen in die der entsprechenden Gruppen eingebettet
sind (siehe [DIP] und [DJ3]).

Der erste Teil der vorliegenden Dissertation ist ein Beitrag zu dieser letzteren An-
wendung von Hecke-Algebren. Hier werden die Zerlegungsmatrizen gewisser Blocke
von Hecke-Algebren vom Typ A untersucht. Um dies genauer zu beschreiben,
wahlen wir die folgenden Koeffizientenringe und Parameter. Sei ) ein Korper und
sei 1 eine diskrete Bewertung auf @), so daf3 () vollstandig beziiglich v ist. Damit
bezeichne S den Bewertungsring von 1 in (), I das Bewertungsideal von % in S
und F' den Restklassenkorper S/I. Dann hat man die Inklusion S — @ und die
Reduktion modulo I = : S — F. Weiter wird eine Einheit a € S fest gewahlt.
Dann ist a auch eine Einheit in () und a ist eine Einheit in F'. Wir nehmen an,
daB es natiirliche Zahlen m gibt, fir die in F Z;’;l a' = 0 gilt — das Gegenteil
ist hier nicht von Interesse — und notieren das Minimum dieser Zahlen als ep(a).
Mit alledem setzen wir n = 3er(a) und bilden die Hecke-Algebren vom Typ A,_;
iiber den Koeffizientenringen (), S und F' mit den jeweiligen Parametern a, a und a.
Diese Algebren werden als Hﬁ,n’ﬂ, H(A‘S;f)l und Hi&ii notiert (siche Abschnitt 1.2).
Wir nehmen auch an, dafl Hﬁ,n’fi halbeinfach ist.

Ahnlich wie im Spezialfall der symmetrischen Gruppen werden die Blocke dieser

Xix
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Algebren durch ep(a)-Kerne von Partitionen von n indiziert und durch die er(a)-
Gewichte dieser Kerne in Familien eingeteilt. Der hier betrachtete Block wird durch
die Partition (0) von 0 indiziert und hat ep(a)-Gewicht 3. Die obige Wahl von n
stellt sicher, daf} die Algebren Hfi’fz, nyﬂ und Hf:f)l tatsachlich solch einen Block
haben. Er kann als ihr Hauptblock angesehen werden. Wir bezeichnen diesen Block
mit B (n) und seine Zerlegungsmatrix mit A’¢((0)) (sieche Abschnitt 1.8).

Die fiir die Blockzerlegungsmatrix A¥((0)) erhaltenen Resultate sind wie folgt.
Zuerst wird gezeigt, dafl alle ihre Eintrage 0 oder 1 sind. Dann wird mit Hilfe
dieser Tatsache und der quantisierten Version des Satzes von Schaper aus [JM]
ein rein kombinatorischer Algorithmus zur Berechnung von A’((0)) beschrieben.
Schliellich wird gezeigt, daf die Matrix A’((0)) nur von der Charakteristik von
F und der Zahl ep(a) abhingt. Wenn die Charakteristik von F' weder 2 noch 3
ist, kann die Abhéngigkeit von dieser sogar noch eliminiert werden, so da§ A’¢((0))
vollstdndig durch ep(a) bestimmt ist. Dies beweist eine Vermutung von James
(siehe [JAM2, Section 4]) fiir den Spezialfall der Teilmatrix A((0)) der Zerlegungs-
matrix der Algebren Hiﬁ’a), Hﬁ‘i)l und H&ii

-1

Der zweite Teil der vorliegenden Dissertation befafit sich mit generischen Eigen-
schaften von Hecke-Algebren der Typen A und B. Generisch bedeutet, dafl diese
Eigenschaften unabhéangig von der Wahl des Koeffizientenrings und der Parameter
fir die Hecke-Algebra sind. Dabei kann der Koeffizientenring ein beliebiger In-
tegritatsbereich sein. Die betrachteten Eigenschaften sind generische Specht-Serien
fiir Hecke-Algebren vom Typ A und generische Bi-Specht-Serien fiir Hecke-Algebren
vom Typ B.

Eine generische Specht-Serie fiir eine Hecke-Algebra vom Typ A ist eine Reihe
von Rechtsidealen in dieser Algebra, so dal alle Quotienten aufeinanderfolgender
Ideale isomorph zu Specht-Moduln (siehe Abschnitt 1.3) sind und sich auflerdem
alle in der Konstruktion dieser Reihe auftretenden Algebra-Elemente, Ideale und
Homomorphismen bei einem Wechsel des Koeffizientenrings stabil verhalten. Dabei

werden die Specht-Moduln fiir Hecke-Algebren vom Typ A aus [DJ1] verwendet.
Analog ist eine generische Bi-Specht-Serie fiir eine Hecke-Algebra vom Typ B

eine Reihe von Rechtsidealen in dieser Algebra, so daf} alle Quotienten aufeinander-
folgender Ideale isomorph zu Bi-Specht-Moduln (siche Abschnitt 4.4) sind und sich
auBerdem alle in der Konstruktion dieser Reihe auftretenden Algebra-Elemente,
Ideale und Homomorphismen bei einem Wechsel des Koeffizientenrings stabil ver-

halten. Die dabei verwendeten Bi-Specht-Moduln sind eine Verallgemeinerung der
Bi-Specht-Moduln aus [DJ3].

In der vorliegenden Dissertation werden Ideen aus [JAMI, Section 16] und
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[DJ1, Section 7] auf Hecke-Algebren vom Typ A verallgemeinert, um generische
Specht-Serien fiir diese zu erhalten. Insbesondere werden neue generische Basen
der dort eingefiihrten “Zwischenmoduln” S#*# konstruiert (siche Abschnitt 3.10).
Aus diesen generischen Specht-Serien fiir Hecke-Algebren vom Typ A werden dann
durch Ubertragung der bei ihrer Konstruktion verwendeten Algebra-Elemente, Ide-
ale und Homomorphismen auf Hecke-Algebren vom Typ B mit Methoden aus [DJ3]
generische Bi-Specht-Serien fiir Hecke-Algebren vom Typ B gewonnen.

Der Aufbau der vorliegenden Dissertation ist wie folgt. In Kapitel 1 werden
Hintergrundmaterial und bekannte Tatsachen tiber Hecke-Algebren vom Typ A, die
spater benotigt werden, zusammengestellt. Das Kapitel beginnt mit einer Ubersicht
iiber die fiir die Darstellungstheorie der Weyl-Gruppen vom Typ A — sprich der
symmetrischen Gruppen — benotigte Kombinatorik. Dabei wird unter anderem an
Kompositionen und Partitionen, Haken und Randhaken, 3-Sequenzen und Rechen-
schieber, Kerne, Tableaux, Young-Untergruppen und kiirzeste Reprasentanten und

auch an Zeilennummernlisten erinnert.

Der nachste Abschnitt enthélt einige elementare Dinge tiber Hecke-Algebren vom
Typ A. Hier werden etwa Erzeuger und Relationen fiir diese Algebren angegeben
und grundlegende Begriffe in Bezug auf die verwendeten Koeffizientenringe einge-
fithrt. Abschnitt 1.3 beschreibt die Herleitung der irreduziblen Darstellungen von
Hecke-Algebren vom Typ A iiber Kérpern wie sie in [DJ1] durchgefiihrt wird. Dabei
wird auch an die generischen Permutationsmoduln und Specht-Moduln von dort
erinnert. Der nachfolgende Abschnitt tibertragt die Ausfilhrungen zur modularen
Reduktion und zu Zerlegungszahlen fiir Gruppenalgebren aus [CR1, §16] auf die hier
vorliegende Situation. Hier werden die Notationen fiir Grothendieck-Gruppen, mo-
dulare Systeme, Zerlegungsabbildungen und Zerlegungszahlen fiir Hecke-Algebren
vom Typ A festgelegt. Als néchstes wird in Abschnitt 1.5 das Verhalten von Specht-
Moduln bei modularer Reduktion zusammen mit einigen Konsequenzen davon be-
schrieben. Dann werden in Abschnitt 1.6 neue modulare Systeme mit besonderen
Eigenschaften aus einem gegebenen modularen System abgeleitet und zur Unter-
suchung der Abhéngigkeit der Zerlegungszahlen von Hecke-Algebren vom Typ A
vom verwendeten modularen System benutzt. In Abschnitt 1.7 wird die Behand-
lung projektiv unzerlegbarer Moduln und des Cartan-Brauer-Dreiecks fiir Gruppen-

algebren aus [CR1, §18] an Hecke-Algebren vom Typ A angepafit.

Im nachfolgenden Abschnitt werden einige elementare Tatsachen und Begriffe
aus der Blocktheorie von Hecke-Algebren vom Typ A zusammengestellt. Hier wird
an solche Dinge wie Block-Idempotente und Block-Ideale, die Parametrisierung

der Blocke von Hecke-Algebren vom Typ A durch Kerne von Partitionen und die
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Blockzerlegung von Moduln, Grothendieck-Gruppen, projektiven Klassengruppen
und Zerlegungsmatrizen erinnert. Der néachste Abschnitt behandelt Induktion von
Moduln von einer Hecke-Algebra vom Typ A, _» zur entsprechenden Algebra vom
Typ A,,_1. Die Induktion von Specht-Moduln und projektiv unzerlegbaren Moduln,
betrachtet als Elemente sowohl von Grothendieck-Gruppen als auch von projektiven
Klassengruppen, wird genauer beschrieben. Dies wird dann benutzt, um eine obere
Schranke fiir die Zerlegungszahlen eines Blocks der Hecke-Algebra vom Typ A,
herzuleiten, wobei auch noch vorausgesetzt wird, dafl die Zerlegungszahlen der
Hecke-Algebra vom Typ A,,_» bekannt sind. Abschnitt 1.10 beschreibt schlieflich
den Satz von Schaper fiir Hecke-Algebren vom Typ A wie er in [JM] bewiesen wird.
Zuerst wird die benotigte Notation eingefiihrt und der Satz von Schaper formuliert.
Dann wird beschrieben, wie man mit Hilfe dieses Satzes wertvolle Informationen

iiber Zerlegungszahlen gewinnen kann.

In Kapitel 2 untersuchen wir die Zerlegungsmatrizen von Blocken von Hecke-
Algebren vom Typ A mit Kern (0) und Gewicht 3. Hier und im folgenden wer-
den die obigen Bezeichnungen und Notationen verwendet. In Abschnitt 2.1 wird
gezeigt, daB alle Eintriage von A((0)) 0 oder 1 sind. Dies wird ermoglicht durch
die obere Schranke fiir die Zerlegungszahlen eines beliebigen Blocks der Algebren
H! 4 H Asa und H 2" aus Abschnitt 1.9. Im Fall des Blocks B (n) héngt
diese obere Schranke ab von einer oberen Schranke U, _; fiir die Eintrage der Zer-
und H(Aliz (siche Abschnitt 1.4)

und einer gewissen ganzen Zahl J), dle durch kombinatorische Manipulationen

nl’ 1

legungsmatrix A* | der Algebren H! o ) H(Sa

—2

der zu BO(n ) gehérigen Partitionen bestimmt ist. Da das Gewicht jedes Blocks
von H! - a) H o
Resultaten uber solche Blocke in [RIC] und [JAM2] gewonnen werden.

) und HE A klemer als 3 ist, kann die obere Schranke U, _; aus

Zur Auswertung von J(g) gehen wir wie folgt vor. Zuerst werden die zu B ©) (n)
gehorigen Partitionen — das heiit die mit er(a)-Kern (0) — entsprechend der For-
men der ihnen zugeordneten Rechenschieber in Familien eingeteilt wie in [MR2]
beschrieben. Dann wird die Definition von Jig) aus Satz 1.9.18 in Rechenschieber-
notation iibersetzt. Damit wird J(g) schlieBlich durch explizite Betrachtung jeder
einzelnen Familie der in dem Block B(®)(n) liegenden Partitionen bestimmt. Die fiir
Un—1 und J(g) erhaltenen Werte liefern nun die obere Schranke 1 fiir alle Eintrage
von AT((0)).

Abschnitt 2.2 zeigt zuerst, wie die Matrix A¥((0)) explizit berechnet werden
kann, und untersucht dann ihre Abhéangigkeit von den verwendeten Koeffizienten-

ringen und Parametern. Die explizite Berechnung von A’¢((0)) beruht auf der quan-

tisierten Version des Satzes von Schaper aus [JM]. Mit Hilfe dieses Satzes kann man
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fiir jeden Eintrag in einer Zeile von A¥((0)) entscheiden, ob er verschwindet oder
nicht, vorausgesetzt die vorhergehenden Zeilen — beziiglich einer geeigneten Anord-
nung — sind bekannt (sieche Bemerkung 1.10.9.(ii)). Diese Tatsache und die in Ab-
schnitt 2.1 hergeleitete obere Schranke 1 fiir alle Zerlegungszahlen des Blocks B (n)
ermdglichen die explizite Berechnung seiner Zerlegungsmatrix A’((0)) durch einen

einfachen Induktionsprozes.

Der zweite Themenbereich in Abschnitt 2.2 ist die Abhangigkeit der Blockzer-
legungsmatrix A’¢((0)) von den Koeffizientenringen und Parametern der Algebren
H(An’fz, Hﬁﬂ und Hféi(f)l Es stellt sich heraus, daf§ diese Matrix durch den Wert
er(a) und die Charakteristik von F' bestimmt ist. Zu diesem Ergebnis gelangt man
folgendermaflen. Zunéchst werden die Beziehungen zwischen er(a) und der Charak-
teristik von F' einerseits und den Parametern ¢ und a der Hecke-Algebren ander-
erseits beschrieben (siehe Lemma 2.2.3 bis Lemma 2.2.5). Es zeigt sich, da dabei
drei unterschiedliche Falle betrachtet werden miissen. Mit Hilfe der Charakter-
isierungen dieser Félle werden die Werte der Bewertung 1 auf quantisierten ganzen
Zahlen (siehe Definition 1.2.2.(i)) ermittelt. Solche Ausdriicke tauchen im Satz von
Schaper auf. Wir erhalten, dafl diese Werte vollstédndig durch ep(a) und die Charak-
teristik von F' bestimmt sind. Diese Tatsache und die im vorhergehenden Absatz
beschriebene Methode zur Berechnung der Matrix A*((0)) mit Hilfe des Satzes von
Schaper zeigen schlieBlich, daf8 die Zerlegungszahlen von B (n) wie behauptet nur

von der Charakteristik von F' und ep(a) abhéngen.

Diese Abhéngigkeit kann noch weiter reduziert werden, wenn man annimmt,
daBl die Charakteristik von F' weder 2 noch 3 ist. Diese Voraussetzung erméglicht
eine genauere Aussage iiber die Werte von v auf den fiir die oben beschriebene
Berechnung von A’{((0)) relevanten quantisierten ganzen Zahlen. Man erhilt eine
Faktorisierung dieser Werte, wobei der eine Faktor vollstandig durch ep(a) und
die Charakteristik von F bestimmt ist, wéhrend der andere nur von eg(a) und
der der quantisierten ganzen Zahl zugrunde liegenden gewohnlichen ganzen Zahl
abhéangt. Die Kombination dieser Faktorisierung mit dem Satz von Schaper und der
oben beschriebenen Berechnung der Zerlegungszahlen des Blocks B(®)(n) ergibt, daf
AM((0)) bereits allein durch er(a) bestimmt ist, vorausgesetzt die Charakteristik

von F' ist weder 2 noch 3.

Kapitel 3 befafit sich mit der Konstruktion von generischen Specht-Serien fiir
Hecke-Algebren vom Typ A (siehe oben). Dazu seien im folgenden ein Grad n,
ein Integritatsbereich R, eine Einheit ¢ € R und damit die Hecke-Algebra Hl(éi’(_l)l
fest gewéhlt. Die Abschnitte 3.1 bis 3.3 stellen die zur Konstruktion einer gene-
rischen Specht-Serie fiir diese Algebra benotigte Kombinatorik zur Verfiigung. Ab-
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schnitt 3.1 erinnert an Ordnungsrelationen fiir zeilenstandard Tableaux und die
entsprechenden kiirzesten Reprasentanten. Abschnitt 3.2 diskutiert PK,,-Paare
p#p und die fiir sie erklirten Operatoren A, und R, wie in [JAM1] beschrieben
und auflerdem einige damit verbundene Tableaux und Permutationen. Kurz gesagt
besteht ein PK,,-Paar aus einer Partition x# und einer Komposition p von n (siehe
Abschnitt 1.1), die gewissen Bedingungen geniigen. Wenn man weiter einen In-
dex ¢ > 1 hat, so daB die (¢ — 1). und c. Eintriige von p# und p zusitzliche
Anforderungen erfiillen, dann kann man die zugehorigen Operatoren A. und R,
anwenden. Der Operator A, liefert eine Partition p# A, und damit ein PK,,-Paar
p# Agp. Der Operator R, liefert eine Komposition pR, und weiter ein PK,-Paar
p# uR,. Abschnitt 3.3 behandelt die verschiedenen Aspekte der Verwendung von
Zeilennummernlisten bei der Konstruktion der Specht-Serien. Dies sind etwa die
Verbindung zu PK,-Paaren mittels guter und schlechter Eintrage, die daraus re-
sultierende Einteilung von Zeilennummernlisten in Mengen Zr 1 und Abbildungen
zwischen solchen Mengen aus [JAM1], aber auch Ordnungsrelationen zwischen aus
den Zeilennummernlisten abgeleiteten Permutationen.

Die Abschnitte 3.4 und 3.5 erinnern an bekannte Moduln und Homomorphismen,
die zur Konstruktion der Specht-Serien benutzt werden. Abschnitt 3.4 wiederholt
die Definition der durch PK,-Paare indizierten PK,-Moduln S, ; ;) aus [DJ1] und
stellt einige elementare Tatsachen iiber sie zusammen. Abschnitt 3.5 erklart die

Konstruktion von PK,,-Homomorphismen

(Ra) . qrn pRe
\Ilp,#p,c ' M(qu) - M(R7q)

und zahlt einige grundlegende Eigenschaften von ihnen auf. Ein solcher Homomor-
phismus wird indiziert durch ein PK,-Paar p#p und eine ganze Zahl ¢, die die An-
wendung des entsprechenden Paares von Operatoren A, und R, auf u# u ermoglicht
(siehe oben). Er bildet den Permutationsmodul My, v (siehe Abschnitt 1.3) in den

Permutationsmodul M(“ Blf o und den PK,-Modul Sé‘; 5 ) in den PK,,-Modul S(“ ;:’ 5 )RC
ab. Dies alles stammt aus [DJ1].

Die néachsten beiden Abschnitte fiihren ZNL-Elemente ein und beschreiben die
Wirkung von PK,,-Homomorphismen auf ihnen. In Abschnitt 3.6 definieren wir fiir
eine Komposition A von n und jede Zeilennummernliste ¢ in der Menge Z* (siche
Abschnitt 1.1) das entsprechende ZNL-Element 2(()r,q) in M, ()‘qu). Wir leiten auch
einige elementare Tatsachen tiber diese Elemente her. So bestimmen wir etwa ihre
Darstellungen beziiglich der Zeilenstandard-Basis BX (R, q) von M()‘R’ ;) (siehe
Abschnitt 1.3). Daraus wiederum erhalten wir ihre lineare Unabhéngigkeit. In
Abschnitt 3.7 untersuchen wir fiir ein gegebenes PK,-Paar p#p die Bilder der

durch Zeilennummernlisten ¢ € Z#*# indizierten ZNL-Elemente 2(¢)(r,q unter
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einem PK,-Homomorphismus \I!Li’z)c : M(”R 5 M(“}f;) und leiten deren Darstel-
lungen beziiglich der Basis BM.™ (R, q) von M(“}g +y her. Es zeigt sich, daff die

Q) (rg mit ¢ € Z¥Aer € 2871 in Ker WY liegen und daB die 2(¢) (g ¥ 57,
mit ¢ € Zntn \ ZrAen Jinear unabhangig sind.

In den folgenden drei Abschnitten werden aus ZNL-Elementen bestehende Basen
von PK,,-Moduln hergeleitet. In Abschnitt 3.8 zeigen wir, da8 fiir ein PK,,-Paar p# 1
ne Zu#uRc}

eine R-Basis des PK,-Moduls S{‘;gﬁc bildet, vorausgesetzt {z(()(mq) (€ Z“#“}

ist eine R-Basis von Sg f; ) Diese Aussage erhalten wir durch einen Vergleich
der Darstellungen der Elemente Z(C)(Rﬂ)qfﬁ’ﬁ fiir ¢ € ZrFm\ ZrFAer hegiiglich

BM"™ (R, q) mit denen der Elemente z(n) g, fir n € Z#*#f In Abschnitt 3.9

row std

mit einem Paar von Operatoren A. und R, dafiir die Menge {z(n)( R.q)

betrachten wir wiederum ein PK,-Paar p#p mit einem Paar von Operatoren A,
¢ € Z“#“} eine R-Basis

und R, dafiir und nehmen auch wieder an, daf {z((’ )(R.q)

von Sé‘;g) ist. Mit diesen Voraussetzungen zeigen wir, dafl {Z(C)(qu) (e Z“#AC“}
eine R-Basis von Ker (‘PL@ZQ% ‘;H) bildet. Dazu verwenden wir das Ergebnis des

vorhergehenden Abschnitts und grundlegende Eigenschaften von ZNL-Elementen

und PK,-Homomorphismen. Mit Hilfe dieser Basis von Ker (Wﬁ’z)clﬁil) ergibt

sich leicht Ker (Wﬁﬁl]g‘i ‘;&M> =5 ;; j)c“ . In Abschnitt 3.10 entfernen wir die An-
nahme tiber die R-Basis von S f ;; f; ) aus den beiden vorhergehenden Abschnitten mit-
tels Induktion entlang Sequenzen von auf PK,-Paare angewandten Operatoren A,
und R,. Die Induktion beginnt immer mit einem PK,-Paar v#v spezieller Bauart,
fir das SE’;? 0= M (R.q) gilt. Dieser Abschnitt hat die folgenden beiden Hautpergeb-

nisse. Zum einen ist fiir ein PK,-Paar p#u die Menge {Z(C)(R’q) (e Z“#“} eine

R-Basis von S, : ;- Und zum anderen gilt fiir ein PK,-Paar w7 i mit einem Paar
darauf anwendbarer Operatoren A, und R,

Ker (\IJ(R’q) MH > _ SM#ACM.

p#puc | Sutu (R.q)

Im abschlieBenden Abschnitt dieses Kapitels konstruieren wir generische Specht-
Serien fiir PK,,-Moduln mittels Induktion in Bindrbaumen von den Blittern zur
jeweiligen Wurzel. In diesen Baumen sind die Knoten mit PK,,-Paaren beschriftet
und die Kanten mit Paaren von Operatoren A, und R.. Auflerdem entsprechen die
Beschriftungen der Blétter gewissen PK,,-Moduln, die eine offensichtliche generische
Specht-Serie besitzen. Aus einem gegebenen PK,,-Paar p# u konstruieren wir solch
einen Baum durch wiederholte Anwendung von Paaren von Operatoren A, und R..

Die Wurzel dieses Baumes ist mit ;7 ;1 beschriftet. Die Beschriftungen ihrer direkten
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Nachfolger lauten p# A.p und p#pR. mit einem geeigneten Paar von Operatoren
A, und R.. Entsprechend dazu haben wir die kurze exakte Sequenz
u# Acp w#p p# pRe
0= Srg” = Srg = Srg —0

die in den vorhergehenden Abschnitten hergeleitet wurde. Dabei ist die linke

Abbildung die natiirliche Inklusion und die rechte Abbildung die Einschrankung

(R,q) | pmw

ot e | guta Mittels dieser Sequenz konnen wir aus den induktiv existierenden

generischen Specht-Serien fiir Sé‘ ;; ;4)6“ und Sé‘ : . )R ¢ eine generische Specht-Serie fiir

Sg’ ;) bilden. Diese Methode wird auch in [DJ1] benutzt. Da jeder Permuta-

tionsmodul ein PK,-Modul ist und auflerdem der rechtsregulare H(A}i’f)l—l\/[odul ein
Permutationsmodul, erhalten wir aus diesem Resultat generische Specht-Serien fiir
PK,-Moduln, Permutationsmoduln und Hfﬁ’f)l.

In Kapitel 4 konstruieren wir generische Bi-Specht-Serien fiir Hecke-Algebren
vom Typ B (siehe oben) durch Ubertragung der Konstruktionen aus dem vorherge-
henden Kapitel auf Hecke-Algebren vom Typ B. Abschnitt 4.1 stellt die fiir Hecke-
Algebren vom Typ B und die Bi-Specht-Serien benétigte Kombinatorik bereit.
Dazu sei im folgenden ein Grad n fest gewahlt. Damit beschreibt der erste Teil
dieses Abschnitts die Weyl-Gruppe vom Typ B, und fiihrt sogenannte Links- und
Rechtsinklusionen von Weyl-Gruppen vom Typ A in andere Weyl-Gruppen vom
Typ A und in die Weyl-Gruppe vom Typ B, ein. Der zweite Teil dieses Abschnitts
erinnert zunéchst an Bi-Kompositionen und Bi-Partitionen von n und fithrt dann
Bi-PK,-Paare und Operatoren (94, A© ()R und R fiir diese ein. Dabei hingen
Bi-Kompositionen, Bi-Partitionen und Bi-PK,-Paare noch von einem weiteren Pa-
rameter a € {0,...,n} ab. Eine Bi-Komposition ist ein Paar (A, u) mit einer
Komposition A von a und einer Komposition p von n — a. FEine Bi-Partition ist
eine aus zwei Partitionen bestehende Bi-Komposition. Ein Bi-PK,-Paar (A\# X, ¥ 1)
besteht aus einem PK,-Paar A*\ und einem PK,_,-Paar pu#pu. Die durch ganze
Zahlen ¢ > 1 indizierten Operatoren (YA, A© (R und R wirken auf ein Bi-
PK,,-Paar (\* X, u# 1) durch Anwendung des Operators A, beziehungsweise R, auf
A\#\ beziehungsweise p#p — vorausgesetzt dies ist moglich — um wiederum ein
Bi-PK,,-Paar zu erhalten.

Abschnitt 4.2 stellt einige allgemeine Tatsachen tiber Hecke-Algebren vom Typ
B zusammen. Zunéachst wird die Konstruktion der Hecke-Algebra vom Typ B,, iiber
einem Integritatsbereich R mit einer Einheit ¢ € R und einem beliebigen Element
() € R mittels Erzeugern und Relationen beschrieben. Diese Algebra wird als
Hgi’q’@ notiert. Dann werden die Links- und Rechtsinklusionen fiir Weyl-Gruppen

der Typen A und B aus dem vorhergehenden Abschnitt auf Hecke-Algebren der
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Typen A und B tubertragen.

Abschnitt 4.3 fithrt Bi-Permutationsmoduln fiir H( 29 6in und gibt dabei
einen Uberblick iiber eine allgemeine Methode zur Konstruktlon von “interessan-
ten” Rechtsidealen in Hecke-Algebren vom Typ B aus Rechtsidealen in Hecke-
Algebren vom Typ A. Diese Methode stammt aus [DJ3|. Es handelt sich dabei um
eine Ubertragung der wohlbekannten Ableitung der Darstellungstheorie von Weyl-
Gruppen vom Typ B aus der von Weyl-Gruppen vom Typ A (siehe etwa [KER])
auf Hecke-Algebren. Zunéchst wiederholt dieser Abschnitt die Definition gewisser
Elemente vgff;‘ff) von Hgi’q’Q) mit a € {0,...,n}. Wenn man die Weyl-Gruppe
vom Typ B, als Kranzprodukt C51 &,, auffafit, wobei C5 die zyklische Gruppe der
Ordnung 2 bezeichnet, dann entsprechen diese Elemente gewissen Summen iiber die
Basisgruppe Cy X -+ - x Cy (n mal) des Kranzprodukts. Dann beschreiben wir eine

qQ)

Filtrierung von H mit Rechtsidealen, bei der alle Subquotienten von der Form

((Z}iq g)H RaQ) smd. Als nachstes werden Ideale mit R-Basen betrachtet. Dazu sei
a€{l,...,n— 1} und damit M ein Rechtsideal in H&i’ﬂ und N ein Rechtsideal in
H(R’Q) , die beide R-Basen besitzen. Wenn man nun die Rechtsinklusion von M

in Hy RqQ (siche oben) als M~ notiert und die Linksinklusion von N in H\: RqQ)

(siehe oben) als NV n‘:a, dann erhalt man aus den R-Basen von M und N lelcht
eine R-Basis des Rechtsideals v\ 7% <M i’) < ) H (10.Q) iy H (7:0.9) " SchlieBlich

definieren wir Bi-Permutationsmoduln fiir Hecke—Algebren vom Typ B, indem wir
diese Konstruktion auf Permutationsmoduln fiir Hecke-Algebren vom Typ A an-
wenden. Bi-Permutationsmoduln werden durch Bi-Kompositionen indiziert. Der
einer Bi-Komposition (A, 1) entsprechende Bi-Permutationsmodul wird als M, ((Rq)Q)

notiert.

In Abschnitt 4.4 definieren wir Bi-Specht-Moduln fiir Hecke-Algebren vom Typ
B und leiten R-Basen fiir sie her. Das geschieht durch Anwendung der Methode
aus dem vorhergehenden Abschnitt auf Specht-Moduln fiir Hecke-Algebren vom Typ
A. Bi-Specht-Moduln werden durch Bi-Partitionen indiziert. Der einer Bi-Partition
(A, ) entsprechende Bi-Specht-Modul wird als S((I)%’,’; ?Q) notiert.

Abschnitt 4.5 fiihrt Bi-PK,-Moduln fiir Hecke-Algebren vom Typ B ein, be-
schreibt R-Basen fiir sie und diskutiert elementare Beziehungen zwischen ihnen,
Bi-Permutationsmoduln und Bi-Specht-Moduln. Die Konstruktion der Bi-PK,-
Moduln verwendet PK-Moduln fiir Hecke-Algebren vom Typ A und beruht wie-
derum auf der in Abschnitt 4.3 beschriebenen Methode. Bi-PK,,-Moduln werden
durch Bi-PK,-Paare indiziert. Der einem Bi-PK,-Paar (A¥\, u# 1) entsprechende

Bi-PK,,-Modul wird als S (2 q’\Q” ® notiert.

In Abschnitt 4.6 definieren wir Bi-PK,,-Homomorphismen und beschreiben ihre
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Wirkung auf Bi-PK,-Moduln. Ein solcher Homomorphismus wird indiziert durch
ein Bi-PK,-Paar (A, ) und eine ganze Zahl ¢, die die Anwendung des ent-
sprechenden Paares von Operatoren (Y4 und (R beziehungsweise A und R auf
(AF X, p# 1) ermoglicht (siehe oben). Nach Definition bilden Bi-PK,,-Homomorphis-

men Bi-Permutationsmoduln in Bi-Permutationsmoduln ab. Sie werden als

(C)\Ij(*#%u#u)(&q, Q) : M((A’“) N ARem)

R,q,Q) (R,q,Q)
und
(¢) ) (A pRe)
\I/(/\#A,u#u)(R’ 7 Q) ) M(R,q,Q) - M(R,%Q)

notiert. Diese Homomorphismen werden aus PK-Homomorphismen fiir Hecke-
Algebren vom Typ A abgeleitet. Das geschieht auf eine Art und Weise, die vertrag-
lich mit der Konstruktion von Bi-Permutationsmoduln aus Permutationsmoduln fiir
Hecke-Algebren vom Typ A ist. So konnen wir die Bilder und Kerne von Bi-PK,,-
Homomorphismen bestimmen, wenn diese auf Bi-PK,,-Moduln angewandt werden.
Wir erhalten

(S(/\#AM#“)) (C)\I'(,\#,\,u#u)(R, 7,Q) = S((’\#’\’”#“)(C)R

(R,q,Q) s
und
Ker <(C)\P(A#)\7M#M)(R7Q7Q)lg{i;:j\),u#u)> _ S((Jij\égl;#u)(%
und analoge Aussagen fiir Homomorphismen @ (R.4.0).

(A#FXu# 1)
In Abschnitt 4.7 benutzen wir die Definitionen und Ergebnisse aus den vorherge-

henden Abschnitten, um generische Bi-Specht-Serien fiir Bi-PK,,-Moduln zu kon-
struieren. Diese umfassen generische Bi-Specht-Serien fiir Bi-Permutationsmoduln,
welche zu einer generischen Bi-Specht-Serie fiir den rechtsregularen Hgi’q’Q)—Modul
fithren. Die Konstruktion von generischen Bi-Specht-Serien fiir Bi-PK,,-Moduln ist
eine Anpassung der Konstruktion von generischen Specht-Serien fiir PK-Moduln
aus Abschnitt 3.11 an die vorliegende Situation. Wir beginnen mit einem Bi-PK,,-
Modul S((I)%ij\é’;#“ ). Aus dem entsprechenden Bi-PK,-Paar (A\*\, u# 11) bilden wir
einen Bindrbaum durch wiederholte Anwendung von Paaren von Operatoren (A
und YR und auch A© und R©. Wir verwenden Induktion iiber die Knoten dieses
Baumes von den Blittern zur Wurzel, die mit (A\# X, u# 1) beschriftet ist. SchlieSlich
benutzen wir eine der exakten Sequenzen

(VX u# ) (DA (A u# ) A u#p)OR
0= S5(rq0) ~ SRe@) 7 O(RaQ) —0

oder
(A u# ) AL (A# X1 11) (X u# ) R(O)
0= Skaea) = S(Re@) S(ra0) — 0.
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Dabei ist die linke Abbildung beidesmal die natiirliche Inklusion und die rechte Ab-
(Am)
g{k#i,u#u)

mal die Einschrankung \Ilgi)#/\ju#u)(R,q, Q) g{i;;iiu#m. Die Existenz und Exakt-

heit dieser Sequenzen wurde in den vorhergehenden Abschnitten nachgewiesen.

bildung einmal die Einschrankung (C)\I/(A# Aty (R, g, Q)l und das andere

Mit der geeigneten exakten Sequenz konnen wir aus den induktiv existierenden

, _ . # 2t 1)(©) % ) (©) . .
generischen Bi-Specht-Serien fir S((;% q’\é‘; W4 und S((; q’\c’g‘; W beziehungsweise

. oA p) AC) (A X 1) R(S) (A# X1 11)
fir S(r g0 und Sz o) (Ra.Q)
bilden. Damit ist die Herleitung von generischen Bi-Specht-Serien fiir Hecke-Al-

eine generische Bi-Specht-Serie fiir S

gebren vom Typ B beendet. Mit Hilfe der Konstruktionen und Ergebnisse aus
[PAL] kann dieses Kapitel fast wortlich auf Hecke-Algebren vom Typ D iibertragen
werden, so dafl generische Bi-Specht-Serien auch fiir diese zur Verfiigung stehen.

Abschlieend mochte ich mich bei Herrn Prof. Dr. Richard Dipper und auch den
Mitberichtern fiir ihre Geduld und ihre aufgewendete Zeit bedanken. Weiter danke
ich der Deutschen Forschungsgemeinschaft fiir finanzielle Unterstiitzung. Diese Dis-
sertation ist ein spater Beitrag zum DFG-Projekt “Algorithmische Zahlentheorie
und Algebra”.
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Chapter 1
Background

This chapter consists for the most part of descriptions of well known definitions,
constructions, and results which are used in later chapters. Combinatorial notations
are introduced and technical facts about Hecke algebras of type A are reviewed.
Central results in this chapter are Theorem 1.8.23 and Theorem 1.9.18.

1.1 Combinatorics

This section introduces the combinatorics required for the definition of Hecke alge-
bras and the description of their representation theory. Furthermore, notations for
some elementary notions are fixed. References for the biggest part of the following
material are [JAM1] and [HUM, Chapter 1, Chapter 2, Chapter 5.

The set {...,—2,—1,0,1,2,...} of all integers is denoted by Z. We denote the
set {1,2,3,...} of all positive integers by N. The set {0,1,2,...} of all nonnega-
tive integers is denoted by Ny. We denote the set {z/y | z € Z,y € Z\ {0}} of all
rational numbers by Q.

For a finite set M, the number of its elements is denoted by |M| € Ny. For sets
M, N and amap f: M — N, the restriction of f to a subset U C M is denoted by

floU—N. (1.1)

In everything that follows, n € N denotes a fixed positive integer. The symmetric
group &,, is the group of all permutations on the set {1,...,n}. The parameter n
is called the degree of the symmetric group &,,. Group elements operate from the
right on these numbers and are written in cycle notation. Thus, for v = (1,2, 3)
and v = (1,2)(3,4), we have 2u = 3 and uv = (2,4, 3). The neutral element of G,
is denoted by 1g,. For a set M C {1,...,n}, we put

Sy={we6,|Vje{l,....n}\ M:jw=j} C6,. (1.2)

1
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Gy is a subgroup of &,,.

G, is isomorphic to the Weyl group W4, of type A, which is generated by

n—1

the elements
S1y+.-,8p—1 (13)

together with the relations

Vie{l,...,n—1}:s? =1y,
Vie{l,...,n—2}: 88118 = Sit18iSi+1, (1.4)
Vi,je{l,...,n—1} with |i —j| > 1:s;5; = s;5;
where 1y, denotes the neutral element of that group (see, for example, [HUP,
Beispiel 19.7]). More generally, W, _, is called a Weyl group of type A and denoted

by Wa. Wy, _, is the Weyl group of the root system of type A,,_; with the following
Dynkin diagram.

O O O O
1 2 n—2 n-—1
Here, for each j € {1,...,n —1}, the vertex j corresponds to the generator s;

of W4, ,. These generators are called simple reflections. They correspond to the

generating set

B, = {(1,2),...,(n—1,n)} (1.5)

of &,, consisting of transpositions of adjacent numbers. More precisely, one has
Wa, , =6, with s;— (j,j+1)forje{l,....,n—1}. (1.6)

In the following, W, ., and &,, are identified by means of this isomorphism. The

n—1
elements of B,, also are called simple reflections.

With this, reduced expressions and the length function translate from Wy, | to
S,. According to (1.3) and (1.4), each w € W4

of simple reflections. A reduced expression for w is such a representation with the

can be expressed as a product

n—1

smallest possible number of factors. The length ¢(w) = {4(w) = 4, ,(w) of w in
Wa
reduced expression of w has the form

is defined as the number of factors in a reduced expression of w. Thus, a

n—1

w = S’i1 “ .. Sie(w)

with certain i1, ...,4w) € {1,...,n — 1}. For the length function

Ca, ,=la=0:Wy, , =Ny, wr—ly, (w)=~La(w)="L(w), (1.8)
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the following statements hold.
(i) Yw e Wy, , l(w) =0 w=1y,.
(i) Yw € Wy, , l(w)=1<w e {s1,...,5,-1}-
(i) Y € Wa .5 € {51, ..., 501} : L(ws) € {f(w) — 1, f(w) + 1} . -
(iv) Yw € Wy, , : l(w™) = L(w).

When interpreting a w € W, , as a permutation in &, its length can be deter-

n—1

mined as follows.
lw)=[{(i,7) e {1,...,n} x{1,...,n} | i< jand iw > jw}| (1.10)
Furthermore, a reduced expression of w € G,, has the form
W= V- Vg(w) (1.11)

with certain factors vy, ..., vyw) € By.
In what follows, some combinatorial constructions related to the representation
theory of symmetric groups are described. These will be generalized to Hecke

algebras. Until further notice, let
m € Ny
be an arbitrarily chosen nonnegative integer.
Definition 1.1.1 (i) A composition of m is a sequence
A= (A, Ao, 00)

with entries A\j € Ny for j € N such that

Z)\j:m

jEN
holds. This is denoted by
AEm.

(ii) For a A= (A, A,...) Em and a j € Ny,

denotes the partial sum of the first j entries of \.
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(iii) The set of all compositions of m is denoted by
En={A|AEm}.

Our notation of compositions uses the following simplifications. For every composi-
tion A = (Aq, Ag, .. .), all entries with large enough indices are 0, these are omitted.
Furthermore, successive entries of the same value are written in power notation. In
doing so, the exponent 0 with the obvious interpretation will also be used. With

these conventions, one has for example

A= (8,0,3,3,3,3,6,6,0,0,0,5,1,0,0,0,...)
= (8,0,3,3,3,3,6,6,0,0,0,5,1)
= (8,0,3,6% 0% 5,1) F 38.

Definition 1.1.2 (i) A partition of m is a A = (A1, \a,...) E m such that the
entries \; € Ng with j € N satisfy

AL = Ag >

This is denoted by
A m.

(ii) For an e € NU{oo}, a A = (A1, \a,...) F m is called e-singular if there is
an index j € N such that \j = \jy1 = -+ = Ajje—1 > 0 holds. If X is not

e-singular, \ is called e-reqular.
(7ii) The set of all partitions of m is denoted by
I, ={A | AFm}.
Furthermore, we put for an e € NU {oco}
e ={AFm| A e-reqular} .
Remark 1.1.3 Obuviously, for an
ec{m+1,m+2,...}U{oco}
every A € 11, is e-reqular, and we have
L, = 11,,.

The ordering relations described in the following definition also are considered

in [MUR, Section 3, especially Definition 3.1] and elsewhere.
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Definition 1.1.4 Let A = (A1, Ao,...) Em and let p = (1, po,...) Fm.

(i) We write
A<

if there is an i € N such that both
i < and Vied{l,...,i—1}:Aj = py

hold. Furthermore, we write

of

holds.
(ii) We write
if
Vie N: A <uf

holds. Furthermore, we write
A< p

if
(A u) AN # )
holds.
Lemma 1.1.5 (i) The relation < on the set =, is a total ordering relation.

(i) The relation < on the set =, is a partial ordering relation.

11) Let A\, u Em. Then
(i) M
Adpu= A<

Proof. See elsewhere, for example [MUR, Section 3]. B

Definition 1.1.6 Let A = (A, Ag,...) Em.
(i) The diagram of X is the set of lattice points

N ={(,j)|ieNandje{l, .., \}} CNxN.
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(i) For k € N, the k-th row of [\] is the set of lattice points
{(k,3) 17 €N and (k,j) € [N} = {(k,5) [ j € {1,..., M} }
The length of the k-th row of [\ is given by

{(k,5) | € Nand (k,j) € [A]}| = M € No.

(iii) For k € N, the k-th column of [\] is the set of lattice points
{(G:F) [J € N and (j, k) € [A]}.
The length of the k-th column of [\] is given by

{0, k) | j € N and (j, k) € [A]}| € No.

The diagram [A] of a composition A = (Ay, Ag,...) of m is represented by squares
in the plane ordered by rows. A square is placed at each lattice point in [A]. Then,
for every j € N, the j-th row contains exactly A; squares, and the left ends of all
rows are aligned one under another. The following picture shows on the left hand
side the representation of the diagram [A] of A = (3,5,0,2) F 10 and on the right
hand side the representation of the diagram [u] of u = (6,42,2,1) - 17.

1 2 3 4 5 1 2 3 4 5 6

=~ W N
Tt o W NN =

The rows of these arrangements correspond exactly to the rows of [A] and [u] as
defined in Definition 1.1.6.(ii) and are numbered in ascending order from top to
bottom. The columns of these arrangements correspond exactly to the columns of
[A] and [u] as defined in Definition 1.1.6.(iii) and are numbered in ascending order
from left to right.

The following pair of statements gives some elementary properties of composi-

tions, partitions, and their respective diagrams.

Lemma 1.1.7 Let A = (A, A, ...) Em.
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(i) Fori e N we have
A ={(i,9) 17 € N and (i, 7) € [A]}.
This shows that A can be reconstructed from [A].

(i) We have
Wl =m.

Proof. (i) This follows immediately from Definition 1.1.6.(i).
(ii) This follows from statement (i) and Definition 1.1.1.(i). B

Lemma 1.1.8 Let A = (A, Ag,...) Fm.
(i) Let (i,5) € X and let 1 € {1,...,i}. Then we have

(1,5) € [A].
(ii) For j € N we have

{6 7) [ € N and (i, j) € [A]}]
> {(i,j+1) i €N and (i,j + 1) € [\]}].

Proof. (i) This follows from Definition 1.1.2.(i) and Definition 1.1.6.(i).
(ii) This is immediate from Definition 1.1.6.(i). W
Next, an important map on the set 11, will be introduced.
Definition 1.1.9 The map
(Y :NxN-—->NxN
is defined by
(.3 = (i) for (,j) ENXN.
Lemma 1.1.10 (i) We have
()'(-)" = idmsn-
(ii) Let A= m with associated diagram [\] C N x N. Then [\ also is the diagram
of a partition of m.

Proof. (i) This follows immediately from Definition 1.1.9.
(i) This can be obtained from the statements in Lemma 1.1.7 and Lemma 1.1.8.
[

The following is the set [u]’ for the diagram of u = (6,42,2,1) = 17 shown after
Definition 1.1.6.
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According to Lemma 1.1.10, the following definition is meaningful.

Definition 1.1.11 Let A+ m. Then the partition X' is defined by

N is said to be transposed to \. Furthermore, this defines the transposition map
() : 10, — IL,,.

Remark 1.1.12 More generally, for A = (A1, \a,...) & m and every k € N,
the entry N of X' = (AN, Ay, ...) B m is, according to Definition 1.1.6.(iii) and
Lemma 1.1.7.(i), equal to the number of lattice points in the k-th column of [A]
respectively the number of squares in the k-th column of the representation of [M].

Thus, the k-th column of [A] can be written as

{G k)7 e {1 A}

Since the diagram [M] is the disjoint union of its columns, this shows for [A] and [N']

VT = {G)lieNje{l... A}}
= UlG@alie{t.. X1
ieN
= U {(4,7) | (4,7) in the i-th column of [A]}
ieN
= {065 1 (G0 € A}
Thus, [N] is obtained from [N by means of a “reflection” about the “diagonal”
{(j,7) | 7 € N} in NxN. This maps the rows of [\| onto the columns of [\'] and the
columns of [\] onto the rows of [N']. Furthermore, this shows that the first column of

[X] contains Ay lattice points. Thus, one can write N = (X, ..., X\ ) with X} > 0.

The objects and constructions described in the following are related to the block
theory of Hecke algebras of type A. They stem from the block theory of group

algebras of symmetric groups.
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Definition 1.1.13 Let A = (A, Ao, ...) F m with X' = (N, X\,,...) = m and let
(i,7) € [N]. Then the (i,j)-hook in X\ is defined as

hyp =L k) e N ke{j... . X} U{(kj) e\ ke {i. . N}}.
hf\z’,j) also is called (i, j)-hook or hook in \ or just hook. We use the notation
hiyjy = higy = h* = h.

The size of the set hf\z}j) 1s called the hook length of hf\z}j) or, for short, the length
of h?@j)' This value is denoted by

Wi p| = |hasp| = B = IR

With thas, hf‘i,j) also is called a -hook.

A
his.J)

Definition 1.1.14 Let A\ = m and let (i,7) € [A]. Then the (i,j)-rim hook in X is
defined as

iy ={GHeMT24,7>j and (+1,7+1) ¢ [\}.
ré,j) also is called (i, j)-rim hook or rim hook in \ or just rim hook. We use the

notation

The size of the set Tévj) 18 called the rim hook length of rE\iJ) or, for short, the

length of r(Am.). This value is denoted by
G| = Iranl =1 = Irl.
With this, T(Am.) also is called a ‘Té’j)‘—m’m hook.
Lemma 1.1.15 Let A\ m and let (i,7) € \. Then
[htp] = It |-
Proof. See [JK, Seite 56]. B

Now, rim hooks can be removed from and added to partitions such that the
resulting objects are again partitions. This is described in more detail in the fol-

lowing.

Definition 1.1.16 Let A = m and let p = 1m with m € Ny such that [u] C [A] holds
and such that [\ \ [p] is a rim hook r* in X\. Then we write

p=A\r

and say that p is X without the rim hook 1.
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Definition 1.1.17 Let A+ m and let p = m with m € Ny such that [\ C [u] holds

and such that [u] \ [\] is a rim hook r* in . Then we write
pw=AuUrt
and say that p is \ together with the rim hook r*.

Later on, we also will require the removal and addition of single lattice points
from and to the diagram of a partition. These operations are obtained from the

removal and addition of rim hooks by considering rim hooks of length 1.

Definition 1.1.18 Let A = (A1, \a,...) = m and suppose that for an i € N we have
Ai > At
Then the partition
AN{GEN) = (A, N A — L g, -
of m — 1 is called A without (i, \;). This is denoted by
AN (2, \).
Definition 1.1.19 Let A = (A, Ao, ...) b m and suppose that for an i € N we have
(=1 V(E>1)AN<N1)).
Then the partition
AU+ = A, Nim, A+ L A, )
of m+ 1 is called X together with (i, \; + 1). This is denoted by
AU (4, A\ +1).
The sets introduced in the following definition are used in Section 1.9.
Definition 1.1.20 Let k € N.
(i) Let X\ = (A1, Ao, ...) Fk—1. Then the set X\ T C Il is defined as

AT={A UMM+ DYUAUGN+1) e N\ {1} and A < A1}
(i1) Let = (u1, pa,...) k. Then the set p | C Il is defined as

pl=A{p\ @ w)|ieN and p; > pip1}.
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Lemma 1.1.21 Let ke N, AFk—1, and p+ k. Then we have
BENTES ANEN] .

Proof. This is obvious from Definition 1.1.18 and Definition 1.1.19. W

When the removal and addition of rim hooks to a partition is executed by using
its diagram, the result is not always easy to determine. In the following, different
representations of partitions are described that simplify this operation. A thorough

description of the following material can be found in [JK, Section 2.7].

Definition 1.1.22 Let A = (A, Ao, ...) = m. Then a (-sequence for X is defined

as a finite sequence

B=(B,....05)

with a nonnegative integer

e 0 for m =20 (112)
max {k € N| X\, >0} for m>0

and entries
Bi=Ate—j (1.13)

forj € {l,...,c}. The value c € Ny is called the length of the (3-sequence 3.

Remark 1.1.23 (i) A substantial difference between partitions and [3-sequences
1s that a partition can have several positive entries of the same value whereas
the entries of a (3-sequence are always pairwise distinct. [(3-sequences are

strictly decreasing.

(ii) Obviously, a partition A can be reconstructed from every [3-sequence for X by
means of the relation (1.13). More generally, this relation shows that every
strictly decreasing sequence of nonnegative integers is, in fact, a [3-sequence

for a unique partition.

(1ii) From a given 3-sequence for a partition, all other 3-sequences for this partition
can be easily obtained. Let, for example, = ((1,...,B.) and B = (ﬁNl, . ,55)
with ¢ < ¢ both be B-sequences for the same partition A. Then we get from
Definition 1.1.22

6:(61—*—0_6’-"7604—0_5)

and

B=Bi+c¢—c,....8.+¢—c,c—c—1,...,0).
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(iv) In the following constructions, 3-sequences are used for the representation of
partitions. Some of these constructions impose a lower bound on the lengths
of the [(B-sequences employed. This is no real restriction since, according to
statement (iii), one can always pass from a given (-sequence for a partition

to a longer 3-sequence for the same partition.

(v) With the notation from Definition 1.1.22, formula (1.13) shows that for a
given partition A and a given length ¢ as in (1.12), there is exactly one [3-

sequence for X of length c.

We have, for example, the G-sequences § = (7,5,4,2) and § = (10,8,7,5,2,1,0) for
the same partition A = (4,32%,2). 3 has length 4, £ has length 7. ( is the shortest
(-sequence for A.

Next, we describe how the removal and addition of rim hooks from and to

partitions can be executed by using 3-sequences.

Lemma 1.1.24 Let A = (A\1,...,\¢) b m with k € N. Furthermore, choose an
e € N and a (B-sequence 3 = (B1,...,0.) for X with ¢ > k. Finally, choose an
i €{1,...,c}. Then the following statements (i) and (ii) are equivalent.

(i) We have m > e and there is a uniquely determined p = m — e with [u] C
[A] such that [N\ [p] is a rim hook v in X\ which satisfies |r*| = e and
min {i | (i,7) € r*} =1i.

(ii) We have B; > e and B; —e & {(1,...,0:} .

If one of these equivalent conditions holds, a B3-sequence for = X\ r* is obtained

from B by arranging the elements of the set

{ﬁl? s 7/8i—1aﬁi - eaﬁi—i—lv CI aﬁc}

in descending order.

Proof. See [JK, Lemma 2.7.13]. B

Lemma 1.1.25 Let A = (A\1,...,\¢) F m with k € N. Furthermore, choose an
e € N and a (-sequence 3 = (04, ..., B.) for X with ¢ > k + e. Finally, choose an
i€{1,...,c}. Then the following statements (i) and (ii) are equivalent.

(i) There is a uniquely determined p b m + e with [\| C [u] such that [p] \ [N is

a rim hook r* in p which satisfies |r*| = e and max {i| (i, j) € r*} = i.

(i) We have 5; +e & {B1,...,0:} .
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If one of these equivalent conditions holds, a (3-sequence for = AU 1" is obtained

from 3 by arranging the elements of the set

{617 s 7ﬁi—l>ﬁi + eaﬁi—&-l? s 7ﬁ6}

i descending order.

Proof. This follows easily from Lemma 1.1.24. B

The removal and addition of single lattice points from and to partitions also can

be described easily in terms of 3-sequences.

Corollary 1.1.26 Let A = (A1,...,\x) b m with k € N. Furthermore, choose a
B-sequence 3 = (B1,...,0.) for X with ¢ > k. Finally, choose an i € {1,...,c}.

Then the following statements (i) and (ii) are equivalent.
(i) We have \; > 0 and (i, \;) can be removed from [\] to obtain X\ (i, \;).

(ii) We have
(=) A (Be>0)) V(I <A (B = 1> Fita)).

If one of these equivalent conditions holds,
(617 s 76i—176i - 17 /6i+17 cee 760)
is a B-sequence for A\ (i, \;).

Proof. This follows from Definition 1.1.18, Definition 1.1.22, and Lemma 1.1.24. &

Corollary 1.1.27 Let A = (A1,...,\x) b m with k € N. Furthermore, choose a
B-sequence = (B, ..., 0:) for X with ¢ > k+ 1. Finally, choose ani € {1,...,c}.

Then the following statements (i) and (ii) are equivalent.
(1) (i, \; + 1) can be added to [A] to obtain AU (i, \; + 1).

(i) We have
(=1)V((E>D)ANB+1<bim1)).

If one of these equivalent conditions holds,

(Bry -, Bic1, Bi + 1, Bigrs - -+, Be)

is a B-sequence for XU (i, \; + 1).
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Proof. This follows from Definition 1.1.19, Definition 1.1.22, and Lemma 1.1.25. B

Now, a graphical representation of -sequences is described. This representation
makes it very easy to determine if and where a rim hook of a certain length can be

removed from or added to a partition and also to execute this operation immediately.

Definition 1.1.28 Let ¢ € N. Then an e-abacus is defined as an arrangement a
of e parallel runners in a plane which contain a finite number of movable beads.
The following picture shows on the left hand side such an arrangement for e = 5.
The runners are bounded in one direction — downwards — and unbounded in the
opposite direction — upwards. They are numbered from left to right in ascending
order, the leftmost runner receives the number 0.

The beads on the abacus are arranged in rows perpendicular to the runners.
These rows are numbered bottom up in ascending order, the lowermost row receives
the number 0. The possible places for beads on the abacus are numbered within each
row from left to right and across the rows bottom up in ascending order, the place in
the lower left corner receives the number 0. In the 5-abacus a on the left hand side of
the following picture, the places not occupied by beads are marked by horizontal bars.
The right hand side of the picture shows the same abacus with explicitly numbered

runners, rows, and places.

- + + 3 151+16—171+18—19
- - 2 10+11+12@15+14
a: a:
- - 1 5@6+7@8—19
, -+ 9 0 0@ 1 , 213 9 4

0 1 2 8 4

In the following, e-abaci will be represented like the 5-abacus on the left hand side
of the previous picture and denoted by a,b,c, .. ..

In the following, the beads on an e-abacus with an e € N will be moved along
their respective runners and also within their respective rows. Movement within
a column means translation along a runner up or down. Movement within a row
means displacement along consecutive places. To be more specific, movement within
a row in the upward direction means displacement to the right within a row and
displacement from the rightmost place of a row to the leftmost place of the row

above, movement within a row in the downward direction means displacement to
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the left within a row and displacement from the leftmost place of a row to the

rightmost place of the row below.

Definition 1.1.29 Let A = m, choose a (-sequence 3 = (p1,...,0B.) for A, and
fix an e € N. Then the e-abacus for ( is defined as the particular e-abacus that
contains beads exactly on the places with numbers 3y,. .., B..

More generally, an e-abacus is called an e-abacus for X\ if the numbers of those
places in that abacus which contain beads form a (B-sequence for A when arranged

in descending order.

Remark 1.1.30 Let e € N.

(i) Obviously, the e-abacus for a (-sequence is uniquely determined, and the
B-sequence can be reconstructed from it. Conversely, according to Defini-
tion 1.1.29, every e-abacus is the e-abacus of a uniquely determined [3-se-

quence.

(ii) The relation between partitions and associated e-abaci is the same as that be-
tween partitions and associated (3-sequences. A partition can be reconstructed
from every e-abacus for it. Conversely, every e-abacus is an e-abacus for a

uniquely determined partition.

If one has two e-abaci for the same partition, the one containing more beads
1s obtained from the one containing fewer beads through multiple successive
movement within a row of all beads one place in the upward direction and
simultaneous addition of a new bead in the place 0. Conversely, the e-abacus
with fewer beads is obtained from the e-abacus with more beads through mul-
tiple successive removal of the bead in the place 0 (if there is one) and si-
multaneous movement within a row of all beads one place in the downward
direction. These operations correspond exactly to the transitions between dif-

ferent B-sequences for the same partition.

(iii) In particular, Remark 1.1.25.(v) shows that for any given partition there are

no two different abaci with the same number of beads.

The behavior of an e-abacus associated to a partition on removal and addition
of rim hooks and single lattice points from and to that partition is obtained via
Definition 1.1.29 directly from the corresponding results for a S-sequence associated

to the partition.
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Lemma 1.1.31 Let A = (Aq,..., \y) b m with k € N. Furthermore, choose an
e € N and an e-abacus for A containing ¢ beads in the places [, ..., 3. with ¢ > k
and fy > -+ > . > 0. Finally, choose an i € {1,...,c}. Then the following

statements (i) and (ii) are equivalent.

(i) We have m > e and there is a uniquely determined p = m — e with [u] C [A]
such that [\ \ [p] is a rim hook r* in \ satisfying

Pl=e and  min{i[(j) €'} =i

(ii) In the e-abacus for X\, the place [3; is not contained in the lowermost row, and

the place [3; — e located one row below the place 3; is not occupied by a bead.

If one of these equivalent conditions holds, an e-abacus for = A\ r* is obtained
from the e-abacus for \ through movement within a column of the bead in the place

B; in the downward direction to the place 3; — e.

Proof. This follows from Definition 1.1.29 and Lemma 1.1.24.

Lemma 1.1.32 Let A = (Aq,..., ) B m with k € N. Furthermore, choose an
e € N and an e-abacus for A containing c beads in the places By, ..., 3. with ¢ > k+e
and 31 > -+ > . > 0. Finally, choose an i € {1,...,c}. Then the following

statements (i) and (ii) are equivalent.

(i) There is a uniquely determined p b m + e with [\| C [u] such that [p] \ [N is

a rim hook r* in p satisfying

Tt =e and max {i | (1,7) € r*} =i.

(ii) In the e-abacus for X\, the place B; + e located one row above the place [; is

not occupied by a bead.

If one of these equivalent conditions holds, an e-abacus for ;i = XU r" is obtained
from the e-abacus for \ through movement within a column of the bead in the place

B; in the upward direction to the place 3; + e.
Proof. This follows from Definition 1.1.29 and Lemma 1.1.25. Il

Corollary 1.1.33 Let A = (A\y,...,A\x) & m with k € N. Furthermore, choose an
e € N and an e-abacus for A containing ¢ beads in the places (3, ..., 3. with ¢ > k
and fy > -+ > . > 0. Finally, choose an i € {1,...,c}. Then the following

statements (i) and (ii) are equivalent.
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(i) We have \; > 0 and (i, \;) can be removed from [\] to obtain X\ (i, \;).

(ii) In the e-abacus for \, the place [3; is not coincident with the place 0, and the
place B; — 1 immediately preceding the place [3; is not occupied by a bead.

If one of these equivalent conditions holds, an e-abacus for A\ (i, \;) is obtained
from the e-abacus for \ through movement within a row of the bead in the place j3;

i the downward direction to the place 3; — 1.
Proof. This follows from Definition 1.1.29 and Corollary 1.1.26. B

Corollary 1.1.34 Let A\ = (Ay,..., ) b m with k € N. Furthermore, choose
an e € N and an e-abacus for A containing c¢ beads in the places [, ..., 3. with
c>k+1and py > --- > [, > 0. Finally, choose an i € {1,...,c}. Then the

following statements (i) and (ii) are equivalent.
(i) (i,\; + 1) can be added to [A] to obtain AU (i, \; + 1).

(ii) In the e-abacus for X\, the place 3; + 1 immediately preceding the place (; is

not occupied by a bead.

If one of these equivalent conditions holds, an e-abacus for N\U (i, \; + 1) is obtained
from the e-abacus for \ through movement within a row of the bead in the place [3;

in the upward direction to the place (; + 1.

Proof. This follows from Definition 1.1.29 and Corollary 1.1.27. B

Later on, certain partitions will occur, from which for a given e € N no e-rim
hooks can be removed. Such partitions are investigated in the following. All this is
described in more detail in [JK, Section 2.7].

Definition 1.1.35 Let e € NU {o0}.

(i) For e < 0o, a partition X is called an e-core, if X doesn’t contain any e-rim
hooks.

(i) For e = 0o, every partition X is called an e-core.
(iii) The set of all e-cores is denoted by

[.={AFEk|keNyand X is an e-core} .

Remark 1.1.36 Let e € NU {oo} and choose an e-core X. Then it follows easily
from Definition 1.1.2.(i1) that X is e-regular.
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Lemma 1.1.37 Let e € N. Furthermore, let A = k with k € Ng. Then e-rim hooks
can be removed successively from X\ until the partition p obtained in this process
doesn’t contain any e-rim hooks any more. This partition p of k — je with an
appropriate j € Ny is independent of the selection of the rim hooks removed from A

to obtain , it depends only on A and e.
Proof. See [JK, Theorem 2.7.16] B

Definition 1.1.38 (i) Let e € N and A\ - k with k € No. Then the partition p
constructed in Lemma 1.1.37 is called the e-core of \. This is denoted by

= "e(N). (1.14)

Write p = k — je with j € Ny as in Lemma 1.1.37. Then j is called the
e-weight of X\. This is denoted by

J= ge()‘)'
(1.14) defines the map

Ve U I, = e, A= 7e(N).

i€Np
(i1) Let e = oo and choose a partition \. Then the partition v (\) is defined by
Yoo(A) = A. (1.15)
Yoo (A) is called the co-core of N. Furthermore, the integer goo(\) is defined by
goo(A) = 0.
Goo(A) is called the co-weight of . (1.15) defines the map

Yoo U II; = T, A= 7(N).

i€Ng
Definition 1.1.39 Let e € NU {c0} and k € Ny.

(i) The set of the e-cores of all partitions of k is denoted by
Fe(k) = ’Ye(Hk)'
(i) The set of all partitions of k having a given e-core u € I'c(k) is denoted by

M =7 ({p}) NI
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(11i) Let ¢ € NU {oo}. Then the set of all é-reqular partitions of k having a given
e-core v € I'.(k) is denoted by

I =~ ({v}) N e

Remark 1.1.40 (i) With the notations from Definition 1.1.38.(i), g.(\) is the

number of e-rim hooks which have to be removed from X\ to obtain the core

Ye(A)-
(i1) If, with the notations from Definition 1.1.39,
ec{k+1,k+2,...} U{oo}
holds then, according to Remark 1.1.3, we have
HZZ =II,°.

For an e € N, the explicit determination of e-cores of given partitions can be

executed easily by means of e-abaci.

Lemma 1.1.41 Lete € N and A= m. Then an e-abacus for ~.(\) is obtained from
an e-abacus for A by moving all beads in the e-abacus for A along their respective

runners — that is, within a column — as far down as possible.

Proof. This follows from Definition 1.1.38.(i), Lemma 1.1.37, and Lemma 1.1.31. H

Next, some relations between partitions and their respective e-cores for different

values of the parameter e € N are described.

Lemma 1.1.42 Lete,é € N with é | e. Furthermore, let A = m such that an e-rim
hook can be removed from A. Then this effect can be achieved through successive

removal of several é-rim hooks.

Proof. This can be seen by considering an e-abacus for A and an é-abacus for

lambda with the same number of beads, and by using the fact that ¢ | e. B

Lemma 1.1.43 Let e,é € N with € | e. Furthermore, let A = m and p = 7.(\).
Then we have

Ve(A) = ve(p)-
Proof. This follows from Lemma 1.1.42. B

Lemma 1.1.44 Lete,é € N with € | e. Furthermore, let v € I'z(m). Then we have
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() W= J M
p€le(m)
’75(#):’/

. v,e __ e

(M’) Hm,e - U Hm,e‘
pele(m)
ve(w)=v

Proof. This follows from Lemma 1.1.43 and Definition 1.1.39. l

From now on, the number m € Nj is no more required. In the following, the
variable m will be used for arbitrary purposes. The next definition makes use of
Definition 1.1.6.

Definition 1.1.45 Let A = (A1, g, ...) En.
(i) A tableau t of X is a bijection
t:[A]—{1,...,n}.

t also is called a \-tableau or just a tableau. For a lattice point (i,7) € [)\], its
image (i,7)t is called the entry at position (i,j) in the tableau t or just the
(1,7)-entry in t. Here, the map is written to the right of its argument. For
k € N, the k-th row of t is defined as the restriction of t on the k-th row of
[A], the k-th column of t is defined as the restriction of t on the k-th column

of [A].
(i) For a A-tableau t and a k € {1,...,n}, let
(i,4) = (k)e ™"
Then the row number of k in t is defined by
(k)G = 1.

Furthermore, the column number of k in t is defined by
(K)ot = j.

(iii) A A-tableau t is called row standard if, in every row of t, the entries are

arranged from left to right in ascending order, or equivalently, if
Vie NVje{2,...,\}: (4,5 — 1)t < (i,5)t

holds.
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A A-tableau t is called column standard if, in every column of t, the entries

are arranged top down in ascending order, or equivalently, if, for any column
of [A] consisting of, say, the lattice points

(Zlaj)aa(zkaj)
with 7 € N, k € Ny and indices iy, ...,1, € N satisfying
1 < - < g,

the relation
holds.

A A-tableau t is called standard if t is both row standard and column standard.

The next definition makes use of Definition 1.1.1.(iii).
Definition 1.1.46 (i) Let A E n. Then the set of all A-tableauz is denoted by
T ={t: [\ = {1,...,n} | t bijective} .
Furthermore, the set of all row standard \-tableauz is denoted by
T g = {t cT? ‘ t row standard} :
Finally, the set of all standard \-tableauz is denoted by

T = {t c7T? ’ t standard} .

(ii) The set of all tableauz of compositions of n is denoted by

T = U T

AEE,

The set of all row standard tableauz of compositions of n is denoted by

= _ A
,];ovllfstd - U zowstd'

AEE,
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A A-tableau t with A F n is represented by writing for each lattice point (i, 7) € [A]

the number (7, j)t in the corresponding square in the representation of [A]. In the

following picture, four tableaux tq,...,t, are represented.
81716 5171819
416
3 3
41211 2
1
ty to
(1.16)
91512 11216|(7]10
106 ]3 3158
1| 7141(1 419
121 8
t3 t4

t; is a non-row standard non-column standard (3,0, 2, 3)-tableau, ts is a row stan-
dard non-column standard (4, 2, 13)-tableau, t3 is a non-row standard column stan-
dard (32,4, 2)-tableau, and t4 is a standard (5, 3, 2)-tableau. The rows and columns
of these arrangements correspond exactly to the rows and columns of the tableaux
t1,...,t4 as defined in Definition 1.1.45.(i). The entry 7, for example, occurs in t;

and ty at position (1,2), in t3 at position (3,2), and in t4 at position (1,4). Thus,

the row numbers and column numbers of the entry 7 in t{,...,t, are
(7)Ct1 = 17 (7)Ut1 = 2a
(7)Ct2 = 17 (7)0t2 = 2a
(M)¢es = 3, (Moe, = 2,
(M =1, (7)o, =4

Definition 1.1.47 Let A n. Then the map
T'x G, =T, (t,w)+— tw,

where tw is the concatenation of the bijections t : [N\ — {1,...,n} and w :

{1,...,n} = {1,...,n}, is an operation of &, on T*.

For a A-tableau t with A F n and a w € &,,, the representation of the tableau tw is

obtained from the representation of the tableau t through replacing every entry of
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the latter by its image under w. The following picture shows on the left hand side a
(2,3)-tableau t and on the right hand side its image tw under w = (1,2)(4,5) € &s.

51 2 411
11314 21315 (1.17)
t tw

We say that a w € &,,, when operating on a A-tableau t with A F n, moves an entry
Jj €{1,...,n} in t downwards if the position of the entry j in the representation
of t is higher than the position of the entry j in the representation of tw. More

formally, this means
(1) < (4)Cew-

In the example (1.17) above with n = 5, w moves the entry 2 in t downwards.
Similarly, we say that a w € &,,, when operating on a A-tableau t with \ F n,
moves an entry j € {1,...,n} in t upwards if the position of the entry j in the
representation of t is lower than the position of the entry j in the representation of

tw. More formally, this means

(7)G > (7)Gew-

In the example (1.17) above with n = 5, w moves the entry 4 in t upwards.
Now, the transposition of partitions and their diagrams will be generalized to the
tableaux constructed from them. According to Lemma 1.1.10, the next definition

is meaningful.

Definition 1.1.48 Let A - n and choose a A-tableau t : [\] — {1,...,n}. Then

the tableau t' transposed to t is defined by the following concatenation of bijections
LN == {1, 0}

Lemma 1.1.49 Let A\ = n, and choose a A-tableau t and a w € &,,. Then the

following statements hold.
(i) t" =t.
(1) Vi €{1,....n}: (1) = (Fov) A((G)oe = ()Ce)-

(iii) For each j € N, transposition maps the entries in the j-th row of t from left

to right on the entries in the j-th column of t' from top to bottom.

(i) t is row standard < t' is column standard.
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(v) t is standard < t' is standard.

(vi) (tw) = (t')w.

Proof. (i) This can be obtained from Definition 1.1.48 and Lemma 1.1.10.(i).
(ii) This follows from Definition 1.1.9, Definition 1.1.11, Definition 1.1.45.(ii),

and Definition 1.1.48.
(iii) This follows easily from Definition 1.1.45.(i), Definition 1.1.6.(ii), Defini-

tion 1.1.6.(iii), Definition 1.1.48, Remark 1.1.12, and statement (ii).
(iv) This is a consequence of Definition 1.1.45.(iii) and statement (iii).
(v) This follows from Definition 1.1.45.(iii) and statements (iv) and (i).
(vi) This is an easy consequence of Definition 1.1.48 and Definition 1.1.47. W

Definition 1.1.50 Let t € 7=".
(i) The row stabilizer Ry of t is defined as

Re={we&, |Vie{l,....n}: ()& = (J)Cw}-

(ii) The column stabilizer € of t is defined as
Q:t = {w S 671 ’ Vj € {1,,”} . (j)Ut = (])th}
Remark 1.1.51 Definition 1.1.45 provides the following less formal description of
the row stabilizer and the column stabilizer of a tableau t € T=n.

in every row of t,
w permutes the entries amongst themselves .

(z')‘ﬁt:{wEGn

in every column of t, }

w permutes the entries amongst themselves

For every tableau t € 7=, R, and €; are subgroups of &,,. We have, for example,

for the tableaux r and s as shown in the following picture

Ry = 6{2,6,7} X 6{5,8} X 6{1,3,4,9},
¢ = (‘5{7,8,9} X 6{4,5,6} X 6{273}

and

Rs = 6{4,5,9710} X 6{3,6,8} X 6{2,7},
¢ = 6{1,7,8,10} X 6{2,6,9} X 6{3,5},

where R, and €, are subgroups of &y, and Ry and & are subgroups of Gyg.
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71612 10[9 (5|4
8|95 81613
7|2
9141311 1
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Lemma 1.1.52 Let \Fn andt € T». Then
Q:t - ‘ﬁt/.

Proof. This follows easily from Definition 1.1.50, Lemma 1.1.49.(ii), and Lem-
ma 1.1.49.(vi). &

Definition 1.1.53 Let A E n. Then the lattice points in [A] can be ordered by rows
from top to bottom and within the rows from left to right. This means that for
(i,7), (.3) € [A] we have

(i,5) < (i,5) © (i <i) vV ((i=1) A (5 <])).
Then t* € T* is defined as the order preserving map from the set [\ ordered by <

to the set {1,...,n} arranged in its natural ascending order.

In the following picture, the tableau on the left hand side is t* with A = (5,4,32,1)
16, the tableau on the right hand side is t* with u = (4, 3,0,2%) F 11.

112131415 112134
6789 5167
101112

13114 (15 819

16 10|11

Remark 1.1.54 Obviously, for a A\ E n, the tableau t* from Definition 1.1.53 is
row standard (see Definition 1.1.45.(ii)). It also is easy to see that t* is column

standard and thus standard.

Definition 1.1.55 Let A E n. Then the row stabilizer Rex C &, of t* is called the
Young subgroup of &,, associated with \ and is denoted by G,.

For every A = (A1, g, ...) F n, we have

S\ = X;ieEOG{)\itl_i_l Jea C G,. (1.18)

~~~~~
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Lemma 1.1.56 Let A En. Then the set

D,\:{UJGGn

t*w is row standard}

has the following properties.

(i) Dy is a system of representatives for the right cosets of &y in &,,. This means
that

&, = |J &,

deDy

where the union is disjoint.

(ii) For every w € &y and every d € Dy, we have

U(wd) = L(w) + ((d).

(1ii) Every d € D,y is the unique shortest element in the coset S,d.

Proof. See [DJ1, Lemma 1.1]. B

Corollary 1.1.57 Let A E n and let Dy as in Lemma 1.1.56. Then the set Dy '

has the following properties.

(i) Dy' is a system of representatives for the left cosets of &y in &,,. This means
that

&, = |J re,
f

—1
eD;

where the union is disjoint.
(ii) For every w € &y and every f € D', we have
((fw) = L£(f) + €(w).
Proof. This follows from Lemma 1.1.56 and (1.9) on page 3. B
Lemma 1.1.56 shows that the following definition is meaningful.
Definition 1.1.58 Let A\ F n.

(i) The set
D, = {w €6,

t*w is row Standard}

is called the set of the shortest representatives of the right cosets of Gy in S,

or, for short, the set of the shortest representatives associated with .
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(i) To an arbitrary w € 6&,,, we can assign the uniquely determined representative
[w])‘ € Dy satisfying
6)\11} = 6)\[11)])\.

We call this representative the shortest representative of w associated with .

Lemma 1.1.59 Let A\ En.

(i) The map

Dy — T d— t'd

row std»
s a bijection.
(i1) For xz,y € &, we have
A1 A
2] = fow

Proof. (i) This is an immediate consequence of Definition 1.1.45.(i) and Defini-
tion 1.1.47.
(i) According to Definition 1.1.58.(ii), we have &,[z]* = & 2. This implies

&2y = Srzy.

A
In turn, this shows, again according to Definition 1.1.58.(ii), [[a:]’\y] = [zy]*, as

desired. W

Next, some useful properties of standard tableaux and associated permutations

are described.

Definition 1.1.60 Let A\ En. Then the set

&:{wec‘sn

trw is standard}

15 called the set of the standard representatives of the right cosets of Gy in &, or,

for short, the set of the standard representatives associated with \.
Remark 1.1.61 According to Definition 1.1.45.(iii), we have for A\ E n
E\x CD,.

Lemma 1.1.62 Let \En, t € T2, ands = (j,j+1) € B, withj € {1,...,n— 1}.
Then
ts € Ty & (()Ce # (5 + D) A ((f)oe # ( + Do)

Proof. This is immediate from Definition 1.1.45 and Definition 1.1.47. B
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Lemma 1.1.63 Let A\En and f € €\ {1ls,}. Then there is an s € B,, such that
both fs € Ex and ((fs) = L(f) — 1 hold.

Proof. This follows from [DJ1, Lemma 1.5]. W
Definition 1.1.64 The partition w™ € I, is defined by
w™ = (1").

Lemma 1.1.65 For the partition w™ from Definition 1.1.64, the following state-

ments hold.

(i) The tableau t“ looks as follows.

(i1)) We have S m = {le,}

(iii) We have Dym) = &,,.

Proof. (i) This is immediate from Definition 1.1.53.
(ii) This follows from statement (i) and Definition 1.1.55.

(iii) This can be obtained from statement (ii) and Lemma 1.1.56. B

Definition 1.1.66 Let A = n. Then the lattice points in [N can be ordered by
columns from left to right and within the columns from top to bottom. This means
that for (i,7), (i,7) € [\] we have

(i,5) < @5) = (<) V(=) r(i<i)).

Then ty € T* is defined as the order preserving map from the set [\ ordered by <

to the set {1,...,n} arranged in its natural ascending order.

In the following picture, the tableau on the left hand side is t, with A = (5,4,3%,1)
16, the tableau on the right hand side is t, with p = (4,3,0,22) F 11.
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Definition 1.1.67 Let A\ En. Then the permutation wy is defined by
wy = (t)‘)_l ty or equivalently trwy, = t.
Here, maps are written to the right of their respective arguments.
Lemma 1.1.68 Let A\ n. Then we have
(i) tr € T3y C Ty suas

(ZZ) wy € D,y.

Proof. (i) This is a consequence of Definition 1.1.66 and Definition 1.1.45.(iii).
(ii) This follows from Definition 1.1.58.(i), Definition 1.1.67, and statement (i).
|

Lemma 1.1.69 Let A = (A, Ao, ...) Fn. Then we have
(i) (t2)" =t
(ii) wy' = wy,

(iii) wy € Dy,

(1v) wyGy C Dy.

Proof. (i) This is immediate from Definition 1.1.66, Definition 1.1.53, Defini-
tion 1.1.48, and Definition 1.1.9.

(ii) This follows from the calculation
00wyt = (6) it = (b ") = (8) = b
(iii) This follows from the identity
tMwrt = tMwy = ty,

Lemma 1.1.68.(i), and Definition 1.1.58.(i).
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(iv) This follows easily from the fact that for any two indices i, j € N with i < j,

any entry in the ¢-th row of t, is smaller than any entry in the j-th row of t,. B

According to Lemma 1.1.56, for a given A F n, the right cosets of G, in &,, are

parameterized by row standard A-tableaux. However, this index set 7.\ is not

row std

closed under the operation of &, on 7*. Thus, the operation of &,, on 7* is not
compatible with the operation of &,, on the right cosets of &,. In the following,
a different representation of row standard A-tableaux will be constructed such that

the obtained set, corresponding to 7.} has a natural &,,-operation compatible

row std?

with the &,-operation on right cosets of G,.
Definition 1.1.70 Let A = (A, Ag,...) E n.

(i) A sequence

satisfying
Vi EN: ke {l,...n}| (k) =} = A

1s called a A\-row number list.

(ii) A A-row number list ( can be written in the power notation

¢ = (b7, b5, )

with bj € N and e; € Ny for j € N, a power b;j denoting e; successive entries
of the sequence ¢ € N™ with value b;.

(iii) The set of all \-row number lists is denoted by Z*.

Remark 1.1.71 Let A = (A, Ag,...) E n.

(i) Choose a A\-row number list ( € Z* and write

¢ = (b, 052, ...).
Then it’s easy to see that

VEEN: Y e =\ (1.19)

JEN
bj:k
This shows together with Definition 1.1.1.(i)
Z €j = Nn.
jeN
Conversely, every sequence (b{*,b32,...) with the property (1.19) is a A-row

number list.
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(ii) We have
Zr 4 o,
since, according to (i), Z* contains for example the \-row number list with

the power notation (1*1,2*2 .. ).

For a given row standard A-tableau t with A E n, ((1)¢,...,(n)¢) (see Defini-

[43

tion 1.1.45.(ii)) obviously is a A-row number list. This motivates the name “row

number list”. Furthermore, it shows that the following definition is meaningful.

Definition 1.1.72 Let A E n. Then the map

CA T, g — 20

row std

18 defined by
t = (£)C[A] =G = ()G, -, (1)Ce)-

Conversely, for any given \ F n, a row standard A-tableau can be assigned to every

A-row number list.

Definition 1.1.73 Let A = (A, \y,...) F n and ¢ € Z*. With this data, the
A-tableau t¢ is defined as follows.

According to Definition 1.1.70.(i), for every i € N, certain numbers kq, ..., ky, €
{1,...,n} are uniquely defined by the conditions

ki <---<ky and  (k)C=---= (k)¢ =1.

With this, we put for every j € {1,...,\;}
(i, 5)tc = kj.
Obviously, we have for every A E n and every ¢ € Z*

tceT/\

row std*
This shows that the following definition is meaningful.

Definition 1.1.74 Let A E n. Then the map

t[\ : A )

row std

1s defined by
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Lemma 1.1.75 Let A = (A, Ay, ...) E n. Then the maps ([\] and t[\] are bijec-

tions, and one is the inverse of the other.

Proof. This can be obtained from Definition 1.1.72, Definition 1.1.74, and Defini-
tion 1.1.45.(ii). W

For a A F n, a sequence ¢ = ((1)¢,...,(n)¢) € Z* can be considered as a map
¢:{1,...,n} = N, j— (5)¢. With this, the operation of &,, on the arguments of

that map naturally induces an operation of &,, on Z*.
Definition 1.1.76 Let A En. Then the map

ZAx 6, — 2%, ((,w)— Cw
with

Cw= (1w )¢, ..., (nw™)()
for ¢ = ((1)¢, ..., (n)C) is an operation of &, on Z*.

That, for a ¢ € Z2* with A F n and a w € &,,, we actually have Cw € Z*, follows
easily from Definition 1.1.70.(i). Later on, we will need the following properties of

this operation of &,, on Z*.

Lemma 1.1.77 Let \En, s = (j,j+1) € B, withj € {1,...,n— 1}, and d € D,.
Then the following statements hold.

(i) Let (§)Crg < (§+ 1)Crg- Then we have €(ds) = £(d) + 1, ds € D,, and
Ceras = Cergs-
(i1) Let (5)Crq = (J + 1)Crq- Then we have £(ds) = £(d) + 1 and (prgs = Cprg-
(111) Let (7)Crg > (5 + 1)Grg- Then we have €(ds) = £(d) — 1, ds € Dy, and
Ceras = Cergs-

Proof. This is an easy consequence of Definition 1.1.53, (1.9).(iii), Definition 1.1.76,
and Definition 1.1.47. W

Remark 1.1.78 Lemma 1.1.65 shows that for any w € G,, = D, mn) we have
Crotm = (lw™, ... ,nw™").

From this sequence, w can be reconstructed. Thus, every w € &,, can be identi-
Jfied with its row number list C o € 2" This sequence C,m 1S called the

permutation list of w. The injective map

wm)
6n — Z 5 w r— tw(n)w
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is, because of ‘Zw(")‘ = ’];gv(vngtd‘ = |Dym| = |&,|, actually bijective, and further-
more compatible with the operations from the right of &, on these sets — on S,

through multiplication from the right and on 2" as in Definition 1.1.76. This
shows that this map is an isomorphism of right &,,-sets. Thus, given the permu-
tation list of any w € &,,, Lemma 1.1.77 can be used to determine the behavior of
the length when multiplying w from the right with a simple reflection s € 9B, and

furthermore to construct the permutation list of ws from that of w.

1.2 Hecke algebras of type A

Now, Hecke algebras of type A, as also considered in [DJ1], will be introduced.
There, further references on the background of these algebras can be found. Another
good reference is [HUM, Chapter 7]. There, Hecke algebras of arbitrary type are
constructed in a very general way. For the following, fix an n € N.

Next, several notions connected to the underlying coefficient ring are introduced.

Definition 1.2.1 Let R be an integral domain and ¢ € R be a unit. Then the pair
(R, q) is called a coefficient pair.

In the following, R is always an arbitrary but fixed integral domain with the additive
neutral element Or and the multiplicative neutral element 1z. Furthermore, ¢ € R

is always a unit.

Definition 1.2.2 (i) Let j € Z. Then the element [j], of R is defined as

q
gt for j>0
[]]q = OR fOT j:O :
-1 .
=>4 for j <0
7], € R is called a g-number.
(ii) The value er(q) € {2,3,...} U{oc} is defined as
enlg) = inf {j € N|[j], = On} .
Here, we use inf & = 00. eg(q) is called the q-characteristic of R.

Now we introduce the Hecke algebras. The Hecke algebra

Ho=Ha=Hy, = HL =HED = HE) =My, (R.q)

1
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of type A, or, more precisely, of type A,_1, over the coefficient pair (R, ¢) is defined
as the free R-module with basis {7, | w € &,,} on which the rules

Ty, =1

Gn HE“R#Z)
and

Tows if l(ws) =L(w)+1

Tl = { qTyps + (¢ — )T, if L(ws)=Ll(w)—1 (1.20)

for w € 6,, and s € B, induce an associative multiplication. Here, 1,H(R,q) denotes
A

the multiplicative neutral element of the algebra H;}:"j)l. Furthermore, the additive

q)

neutral element of H(AR’ , is denoted by 0,,(r.q). The parameter n is called the degree
" A

of the Hecke algebra Hfﬁ’f)l . From the rules (1.20), the following properties of the

multiplication can be derived.

For a w € &,, with a reduced expression w = vy - - - Vg() With

v; € By, for j € {1,...,{(w)}, we have T, =T, -+ Ty, (1.21)
For v € &, and w € &,, with {(uw) = ¢(u) + ¢(w), we have (1.22)
T =TT '

For every w € &,,, T,, is invertible in H(Ai’f)l. (1.23)

If we put ¢ = 1g then both cases in the rule (1.20) produce the same result, and
we get
HW'" = RS, (1.24)

Thus, for arbitrary units ¢ € R, we can consider H(A]?f)l as a deformation of the
group algebra RG,,.
The notations introduced in the next definition are useful in later constructions.

They also are used in [MUR] and elsewhere.
Definition 1.2.3 Let X C G,,.

(i) LET];)’(])(X) e Hfﬁ’f) is defined as

1

(n) _
L(Ryq) (X) - Z To-

weX

As abbreviations, we write

i (X) = (g (X) = (M (X) = 1(X).

R,q)
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(ii) 5%2(1) (X) e Hffi’i’)l is defined as
“(rg(X) = X (0T

weX

As abbreviations, we write

el (X) = erg(X) = €™ (X) = e(X).

The following anti-involution on H(A]?f)l generalizes the anti-involution on RS,

induced by the inversion on &,,.
Definition 1.2.4 The R-linear map

w MG =

n—1

1s defined by
T =Ty, for weG,

w

and R-linear extension.

Lemma 1.2.5 The map * from Definition 1.2.4 is an anti-involution on H(A]?f)l.

This means that for x,y € Hﬁ’ﬂ, we have

* ok

(xy)" =y'x and 7 ==,

Proof. See [MUR, Lemma 2.3]. B

By using *, dual modules of Hgi’f)l—modules can be constructed as in the case of
group algebras (see also [CR1, §10D]).

Definition 1.2.6 Let M be a right Hfﬁ’f)l -module. Then the dual H(Xi’f)l -module
M* is defined as
M* = Hompg(M, R)

with the operation
fra=a"f:M—R, m— (m-z")f

for f € Homg(M, R) and x € Hﬁ’f)l. Here, maps are written to the right of their

respective arguments.

Next, we show that Hecke algebras are stable when changing the coefficient ring.
So, let £ : R — R be a ring homomorphism from R to another integral domain R.
Then £(¢) € R is a unit. Furthermore, R can be considered a left R-module with
the operation a-z = £(a)z € R for € R and a € R. With this, the functor — @z R

can be constructed.
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Lemma 1.2.7 We have Hfﬁiﬂl ®r R ~ Hg’f(ﬂ)) as R-algebras.

Proof. This follows easily from the construction of the Hecke algebra of type A,,_1.

|
In the following, the R-algebras H [ A, ® R and H ) will be identified by means
of the preceding statement. Then we have a map
—@p R:HE? 5 HED  h s heg, (1.25)
This map is compatible with the multiplicative structures on H(A}Z’ and H(R"C
To be more specific, for z,y € H, RQ) , we have
(ry) @r 1p = (x @r1g) (Y ©r 15) - (1.26)

Now, the general behavior of modules of Hecke algebras when changing the coeffi-

cient ring is examined.

Lemma 1.2.8 (i) Let M be a right Hfﬁ’f)l -module with the structure map

M ®g H(Rq — M, xQpryw— Y.

-1

H(A}i’f(lq»—module structure.

Then oy induces on M ®g R in a natural way an

In particular, for every x € M and every y € Hfff)l, we have
(ry) @r 1p = (¢ Qr1g) (Y ©r 15) - (1.27)
(ii) Let M and N be right H(R ) -modules and let
f:M— N
be an Hfﬁ’i’)l -module homomorphism. Then
f®RidR:M®RE’—>N®RE’

R (Q)

s an HA -module homomorphism.

(iii) Let M and N be right H( Q) -modules. Then we have
<M®RR> & (Nop k)= (MaN)onk
as right H ) modules.

Proof. All this is clear from general facts on rings and modules. H
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Remark 1.2.9 In the following, there will occur certain ideals in Hecke algebras,
homomorphisms between such ideals, and several other objects whose constructions
are independent of the underlying coefficient pair. This means that these objects are
defined over arbitrary coefficient pairs, and the construction of such an object over
the coefficient pair (R, q) is mapped ezactly on the construction of the correspond-
ing object over the coefficient pair (R,£(q)) when changing the coefficient ring as
described above by applying the functor — @ R to all algebra elements and module
elements occurring in the construction of the object over the coefficient pair (R, q).

Objects with this property are called generic.

For example, according to Lemma 1.2.7, the Hecke algebras of type A themselves

are generic.

1.3 Irreducible representations of Hecke algebras

of type A

In this section, the construction of the irreducible modules of Hecke algebras of type
A over various coefficient fields and parameters is described. This can be generalized
from the special case of the group algebra of a symmetric group (see, for example,
[JAM1, Section 11]) to the more general case of a Hecke algebra over a field. In this
process, the combinatorial objects and constructions known from group algebras of
symmetric groups are for the most part preserved. All modules considered in the
following are finitely generated right modules, furthermore we fix an n € N and a
coefficient pair (R, q) as described in Definition 1.2.1.

First, permutation modules on right cosets of Young subgroups are generalized.

This can be done over the coefficient ring R, a field is not required.
Definition 1.3.1 Let A E n.

(i) 2\ e Hfﬁ’f)l is defined as

As an abbreviation, we write

R,
ZE& 9 = Tx-

(ii) The right ideal M(’\R7 g i H(A]ff)l is defined as

R, R,
M =
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As an abbreviation, we write
A A
M(R,q) - M .
M(’\R, g 8 called the permutation module of Hﬁf}f{ associated to \.

The next statement shows the close relation between a permutation module M*
with A F n and the corresponding permutation module of G,, on the right cosets of

the Young subgroup &,.

Theorem 1.3.2 Let A\ =n. Then MA has the R-basis

{ (R, q)Td ‘ d e DA} {x/\ ‘d € &,, such that t*d is row standard}

Proof. See [DJ1, Lemma 3.2]. B

Definition 1.3.3 Let A En. Then the R-basis
{ q)T ‘d € D,\} {x/\ Q)T ‘d € &,, such that t*d is row stcmdard}

of M R 9 from Theorem 1.3.2 s called the row standard basis ofM Roq) and denoted
by
BM (R.q) or  BM

row std row std*

The operation of Hfﬁ’f)l on the basis elements of M (’\qu) from Theorem 1.3.2 can be

described by using row standard A-tableaux.

Lemma 1.3.4 Let \F n,d € Dy, and s = (j,j + 1) € B,, with j € {1,...,n— 1}.

Then we have
20Ty, for (j)Coa < (7 + 1)Goaa
YT, = g\, for (j)Coa= (i +1Coa -
o Ty + (¢ = DTy for ()Coa > (G + 1o
Proof. See [DJ1, Lemma 3.2]. B

The following lemma also describes an aspect of the operation of Hii’ Lon M (’\R 0

Lemma 1.3.5 Let A\En and w € S,. Then

IE\R’q)Tw _ qe(w)x()\R,q).
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Proof. This can be seen by using (1.10) on page 3, (1.18) on page 25, (1.21) on
page 34, Lemma 1.3.4, Definition 1.1.53, and Definition 1.1.55. B

Next, we will show that the module M()\R, 9 with a A F n is stable when changing
the coefficient ring, similarly to the algebra H(A}i’i’)l. To this end, let £ : R — R be a
ring homomorphism from R to another integral domain R, as in Lemma 1.2.7 and
Lemma 1.2.8.

Lemma 1.3.6 Let A = n. Then we have M()‘R,q) ®r R ~ M(/\R,S(q)) as Hfﬁfg@)_

modules.

Proof. This follows easily from Theorem 1.3.2 and Lemma 1.3.4. B

Remark 1.3.7 (i) Lemma 1.3.6 shows that the permutation modules M(’\R’q) with
A E n from Definition 1.5.1.(ii) are generic in the sense of Remark 1.2.9.

(ii) Lemma 1.3.6 and Theorem 1.3.2 show that the row standard bases of permu-

tation modules from Definition 1.3.3 are generic in the sense of Remark 1.2.9.

In the following constructions, permutation modules defined by means of partitions
are considered. Some of these constructions can more generally be executed by
using compositions (see [DJ1, Section 4]). However, this is not required in the

following. The next definition makes use of Theorem 1.3.2.

Definition 1.3.8 Let A+ n. The symmetric bilinear form
B = 65\R7q) : M(/\R,q) X M(AR,Q) — R

1s defined by

R, R,
Bl @ Ty, 20T

) @ if d=d
| 0r if d#d

for basis elements x&R’Q)Td and m&R’q)Td with d,d € Dy, and bilinear extension to

arbitrary elements of M(/\R, 0

Remark 1.3.9 Remark 1.3.7 shows that the bilinear form introduced in Defini-

tion 1.5.8 is generic in the sense of Remark 1.2.9.

Next, the Specht modules known from the representation theory of &,, will be

generalized to Hecke algebras.

Definition 1.3.10 Let A Fn.
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(i) y\* e Hffi’f)l is defined as

R, n
yg\ = 5ER),Q)(6>\)~

As an abbreviation, we write

ng’q) = Ux
(i1) zg\R’q) € Hfﬁ’f)l is defined as
Z/(\R,q) — xg\Rﬂ)TwAyE\{iq)'
As an abbreviation, we write
Z&R’Q) = Zx.

(iii) The right ideal S()‘qu) n Hfﬁf)l is defined as

R, R,
Strg = ATVHED.

As an abbreviation, we write
A ax
Srg =95
S(AR g U called a q-Specht module or just a Specht module.

In the following theorem, the construction of the standard basis for Specht modules

of symmetric groups is generalized to ¢-Specht modules of Hecke algebras.

Theorem 1.3.11 Let A+ n. Then the set
{zE\R’Q)Tf ‘ fe 5,\/} = {z/(\R’q)Tf ’ f € &, such that t)wy f is stcmdard}

1s an R-basis of the Specht module S(’\Rm. If X is an indeterminate over Z then we
have for every f € Ex

R,
AROTy = T + Z 9w(q) - 1rT,
é(w’l)ufét()l’;}kf)

with an appropriate exponent ay € Z and appropriate Laurent polynomials gy, €
Z[X, X forw e &, with {(w) > l(wyf) independent of (R, q).
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Proof. See [DJ1, Theorem 5.6 and Lemma 5.1]. The particular form of the coef-
ficients follows from Definition 1.3.10.(ii), Definition 1.3.1.(i), Definition 1.3.10.(i),
Definition 1.2.3, and the construction of the multiplication of HED with the for-
mulas (1.20). W

Since, for every A F n, the tableau t* is standard, the preceding theorem shows

that all Specht modules S(’\R’ g) are different from the null module.

Definition 1.3.12 Let A+ n. Then the R-basis
{z/(\R’q)Tf ‘ fe E,\/} {z/\ 4 ’f € B, such that t*w, f is standard}
of S(’\R’q) from Theorem 1.3.11 is called the standard basis of S(’\R’q) and denoted by

A A
Bsstd(Ra q) or Bsstd

The following statement describes the operation of H(A}i’f)l on the standard basis of

a Specht module S(’\R’ 2

Lemma 1.3.13 Let A Fn, f € Ev,s € B, and fix an indeterminate X over Z.

Then we have
)\ TfT = Z gfd 1RZ>\ q)Td,
dEgA/
where the coefficient of every Z&R’Q)Td with d € Eyv is of the form gra(q) - 1r € R
with an appropriate Laurent polynomial g;q € 7 [X, X '] independent of (R, q).

Proof. From Theorem 1.3.11 and (1.20) on page 34, we get

n\TfTs = Z 9tw(q) - 1T
wES,
with appropriate Laurent polynomials s, € Z[X, X '] independent of (R,q).
Since 2\TT, € S(AR, o & HD and by using Theorem 1.3.11 once again and also
induction on the length of the w € G,,, this expression can be rewritten as a linear
combination of basis elements 2)T,; with d € £, where the coefficients indeed have

the required form. W

Next, we will show that the Specht module S(/\R, g With a A n is stable when
changing the coefficient ring, similarly to the algebra Hgi’f)l and the module M, (’\qu).

To this end, fix a ring homomorphism ¢ : R — R from R into another integral

domain R.

Lemma 1.3.14 Let A\ = n. Then we have S(R o ©r R ~ SRg( as quifgq))

modules.
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Proof. This follows from Theorem 1.3.11 and Lemma 1.3.13.

Remark 1.3.15 (i) Lemma 1.53.1} shows that the Specht modules S?R’q) with A +

n from Definition 1.3.10.(iii) are generic in the sense of Remark 1.2.9.

(i1) Lemma 1.3.14 and Theorem 1.8.11 show that the standard bases of Specht

modules from Definition 1.3.12 are generic in the sense of Remark 1.2.9.

Now, the irreducible modules of Hecke algebras over fields will be constructed
as quotients of Specht modules. Appropriate submodules of Specht modules S*
with A\ - n are obtained by means of the bilinear forms 3* on the corresponding
permutation modules M?*. This procedure also is a generalization of the well known
methods for symmetric groups (see [JAM1, Section 11}).

The following definition makes use of the notation (1.1) on page 1 and dual

modules as introduced in Definition 1.2.6.
Definition 1.3.16 Let A\ Fn.

(i) The symmetric bilinear form

A A . A A
V=V P Sra) X O(rg — 1

1s defined as

A A
Mg q)* M{g,q)

A _ AA
Vira) = Fira lng T

(i) Through 'y(’\R’ g CVETY T € S(/\R, 2 induces an R-linear homomorphism

")/()\R,q) (.Z‘, _) : S()\R,q) - Ra Yy = 7(\R,q) (.’ﬂ, y)

This, in turn, induces the R-linear homomorphism
S0[7(>\th)] : S(/\R,q) _> (S(/\qu)> - I_IomR<S(/\R,Q)’ R),
X — gp[’Y()\R,q)] (.T) = 7(/\R,q) (.T, _) .

(iii) The radical rad v = rad 7(’\R7q) of the symmetric bilinear form 7(>‘R7q) 1s defined

as

Remark 1.3.17 Remark 1.3.7.(i), Remark 1.5.9, and Remark 1.3.15.(i) show that
the bilinear form introduced in Definition 1.3.16.(i) is generic in the sense of Re-
mark 1.2.9.



1.3. IRREDUCIBLE REPRESENTATIONS OF 'H 4 43

Lemma 1.3.18 Let A\t n. Then rad fy(’\qu) s an Hffi’f)l -submodule of S(AR’q).

Proof. This follows from Definition 1.3.16, Definition 1.3.8, and [DJ1, Lemma 4.4].
[

Definition 1.3.19 Let A= n. Then the Hfﬁ’f) -module D* = D(\R’q) is defined as

1
A o A A
Dirg) = Strg)/rad V(rg)-

In the following, K always denotes a field with additive neutral element Ox and
multiplicative neutral element 1y, furthermore let r € K \ {Ox} be an arbitrarily
chosen but fixed element. In the next two statements, the role of the number e (r)
from Definition 1.2.2.(ii) for the algebra Hfﬁfz is similar to that of the characteristic
of K for the algebra KG,,.

Theorem 1.3.20 (i) Let A n. If X is ex(r)-regular, we have DE\K " # 0,
’ A
and D(’\K ") 15 an absolutely irreducible H;K’Tz—module. Here, OH(K,T) denotes
k) n— A

the null ideal in HEAXK’?. If X is e (r)-singular, we have DZ\K = 0y 0.
- ) A

(ii) Let X,y € Il ¢, (ry with X # pi. Then we have D(AKJ) * Dé‘K’T).

(iii) The set

{DZ\K,T) AE Hn’eK(r)}

is a complete system of representatives of the isomorphism classes of irre-

ducible H(Ali’ji—modules. It is parameterized by the set 1, o, ().
(iv) K is a splitting field for Hfiffi

Proof. (i) See [DJ1, Theorem 4.9, Theorem 6.3.(i), Theorem 6.8.(i)].
(ii) See [DJ1, Corollary 4.13].
(iii) See [DJ1, Theorem 7.6].

(iv) This follows from statements (i) and (iii). W
Theorem 1.3.21 (i) The algebra Hﬁ{jj is semisimple if and only if
ex(r) >n
holds.
(i1) Suppose that Hﬁfif} is semisimple. Then the set

A
{S(Kﬂ

is a complete system of representatives of the isomorphism classes of irre-

)\eHn}

ducible H(A[i’jz—modules. It s parameterized by the set I1,,.
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(i1i) Suppose that H(AKQ is semisimple. Then we have for every A\ = n

A QA
Dikry = Sk

Proof. (i) See [DJ2, Theorem 4.3].
(ii) See [DJ2, Theorem 4.3].
(iii) This follows from Definition 1.3.19, Theorem 1.3.20, and statement (ii). H

1.4 Modular reduction and decomposition num-

bers for Hecke algebras of type A

Now we consider modular reductions of Hecke algebras over various coefficient fields
and related objects like Grothendieck groups, decomposition maps, and decomposi-
tion numbers. A good reference for the following material is [CR1, Chapter 2]. This
book also provides general facts about projective modules, short exact sequences,
and similar things which are used here without specific references. For the following,

we fix an n € N.
Definition 1.4.1 Let R be an integral domain and g € R be a unit.

(i) The isomorphism class of an Hfﬁ"z)l -module M is denoted by [M]. The set of

all isomorphism classes of all finitely generated right Hfﬁ’f)l -modules is denoted

by

M(Hffl’f)l) = {[M] ‘ M s a finitely generated right Hgi’f)l —module} :

(ii) The Z-submodule UO(HSZ’??) of the free module &
as the Z-span of the set

[M]GM(H%R,{;))Z[M] is defined

;

(M), [M"], [M") € M(HE)
such that there is a short exact sequence
[M] = [M'] = [M"]
OH(R,q) - M —-M—-M— OH(R,q)
A A

of H,(4Rn’(_1)1 -modules

\ Ve

Here, 0y, denotes the null ideal in Hfﬁ’f)l. With this, the Grothendieck group
of Hfﬁ’i’)l is defined as

GoHe™)=| B ZM]| U(HE").
[M]eM(HEPD)
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The structure of the Grothendieck groups of Hecke algebras over fields is described

in the following two statements.
Lemma 1.4.2 Let (K,r) be a coefficient pair with a field K.

(i) We have
Go(HgZQ) = @ Z[D?Kr)]

:ueHn,eK (r)

(i1) Let [M] € M(H K?). Then we have in GO(H(AIET))

1

M= > 2Df,]

MEHTL,GK<T)
with coefficients xL le Ny for p € Il e (r)-

Proof. (i) This follows from Theorem 1.3.20.(iii) and [CR1, Proposition 16.6].
(ii) This follows from Theorem 1.3.20.(iii) and [CR1, proof of Proposition 16.6].
|

Lemma 1.4.3 Let (K,r) be a coefficient pair with a field K such that H(KT

semistmple.

(i) We have

Alirz @Z Kr

pelly,

(Kor)

1) Let (M| e M H(KT) . Then we have in Go(H' "
An_1

= 2 " (S

pelly,

with coefficients yu le Ny for p € 11,,.

Proof. (i) This follows from Theorem 1.3.21.(ii) and [CR1, Proposition 16.6].
(i) This follows from Theorem 1.3.21.(ii) and [CR1, proof of Proposition 16.6].
|

According to Lemma 1.4.3.(i), the Grothendieck groups of all finitely generated
modules of semisimple Hecke algebras of type A,,_; over fields are isomorphic. The

following definition fixes such an isomorphism.
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Definition 1.4.4 Let (K,r) and (K,7) be two coefficient pairs with fields K and
K such that the Hecke algebras Hffiji and Hffi_rl) are semisitmple. Then the iso-
morphism
n . K,r K,F
O‘Z(,r)(f(,f) : GO(H&MJ) - GO(H(A,L,B )
15 defined by
[S(’\K,T)] — [S(/\f(,f)] for Akn

and Z-linear extension.

Next, systems of coefficient rings for the construction of decomposition maps of
Hecke algebras are described. We proceed as in [CR1, §4C].

Definition 1.4.5 Let K be a field. A discrete additive valuation on K is defined

as a map

v K\{0x} —2Z

with the following properties.

(i) ¥ is an epimorphism of the multiplicative group K \ {Ox} onto the additive
group Z. In particular, we have for x,y € K \ {0k}

(zy) = (x) + ¥ (y).
(ii) For x,y € K\ {0x} with x +y # O, we have
U(z +y) = min{d(z), ¥ (y)}
The pair (K, ) is called a valuated field.

Definition 1.4.6 Let (K,v) be a valuated field. Then the discrete valuation ring
of ¥ is defined as

Sy ={r € K\ {0k} [ ¢(x) > 0} U{0x} C K.
Furthermore, the valuation ideal of ¥ is defined as
Iy ={z € K\ {0k} | ¥(x) >0} U{0x} C Sy C K.

Remark 1.4.7 Let (K,v) be a valuated field. Then the properties of 1 stated in
Definition 1.4.5 show that Sy is an integral domain and furthermore a local ring

with the unique mazimal ideal I, and the group of multiplicative units Sy \ L.



1.4. MODULAR REDUCTION, DECOMPOSITION NUMBERS FOR H 4

Definition 1.4.8 A modular system is defined as a tuple
K=(Q,v,S,1,a,F)
of objects with the following specifications.
(i) (Q,) is a valuated field.
(i1) S is the discrete valuation ring of 1.
(ii) 1 is the valuation ideal of 1.
(iv) a € S\ I is a unit in S.
(v) F is the residue class field S/1.
The natural projection from S onto F' is denoted by

o S—=F, rx—Ix=x+1.

47

IC determines three coefficient pairs (Q,a), (S,a), and (F,a) as in Definition 1.2.1.

These are called the coefficient pairs associated to the modular system K.

For the following, we fix a modular system
K=(@Q,v,S1,a,F).

The next statement makes use of Definition 1.2.2.(ii).

Lemma 1.4.9 (i) We have ep(a) < eg(a).

(i1) Let eq(a) < co. Then ep(a) divides eg(a).

Proof. (i) If eg(a) = oo, there is nothing to show. So let eg(a) < co. Then we have

in () according to Definition 1.2.2

eq(a)—1 '
co(@)], = > a'=0q.
=0
From this, we get in F
eq(a)—1 A
eo(a)l,= > a =0p
=0

With that, the claim follows from Definition 1.2.2.(ii).

(1.28)
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(ii) According to Definition 1.2.2.(ii), statement (i), and the assumption, we
have
2 <ep(a) <egla) < .

Thus, we can write
eg(a) =aep(a)+F with aeNy, and [e€{0,...,ep(a)—1}. (1.29)

Then, to prove the claim, we must show § = 0. Now, from (1.29) and Defini-

tion 1.2.2.(i), we get in F' the relation

[ea(@)]; = [0]germler(@)], +a* @ [3],.

This shows together with (1.28) from the proof of statement (i), Definition 1.2.2.(ii),
and Definition 1.4.8

[ﬁ]a = 0p.
From this, we get together with (1.29) and Definition 1.2.2

B=0.

Thus, ep(a) divides eg(a), as desired. W

Now, some relations between the Hecke algebras over the coefficient pairs (Q, a),
(S,a), and (F,a) associated to K are described. The natural inclusion tg¢g : S — @

allows the construction of the functor — ®g @), and one gets the following result.

Lemma 1.4.10 We have Hfi’i)l ®g Q) =~ Hﬁ’f) as QQ-algebras.

1

Proof. This follows from Lemma 1.2.7. B

In what follows, the algebras H(Ai‘i)l ®s @ and H(Aanz are identified by means of the
preceding lemma. Now, the coefficient pairs (S, a) and (F,a) are considered. The
natural projection ~: S — F, x +— T = x + [ allows the construction of the functor

— ®g F, and one gets the following result.

Lemma 1.4.11 We have Hﬁﬂ ®Rs F ~ Hif;’?) as F-algebras.

1

Proof. This follows from Lemma 1.2.7. B

In what follows, the algebras Hﬁ‘i)l ®g F' and Hﬁfﬂ are identified by means of the
preceding lemma.

The next definition relates Hiﬁ’fi—modules and Hfi:‘i)l—modules. It makes use of
Lemma 1.2.8.(i) and the functor — ®g Q. See also [CR1, Definition 16.11].
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Definition 1.4.12 Let M be aﬁmtely genemtedH —module Then afull?‘l(sa -
lattice of M is defined as a HA —module N with the followmg two properties.

(i) N is free over S with finite rank.

(i1) We have N ®s Q ~ M as HA ) -modules.

For example, according to Lemma 1.2.7, Hﬁ’fl is a full H A lattlce of H! - 'f
the algebras are considered as right modules for themselves. For H —modules
and full H(i‘i)l—lattices thereof, the following statements hold.

Lemma 1.4.13 (i) Every H —module has full HASG -lattices.

(ii) Let N be a full H( -lattice in an H —module M. Then we have Rnkg N =
dimQ M.

Proof. (i) See [CR1, Proposition 16.15].
(ii) This follows immediately from Definition 1.4.12. H

Next, we relate Hﬁi)l—modules and Hgif?)l—modules. The following definition

makes use of Lemma 1.2.8.(i) and the functor — ®g F.

Definition 1.4.14 Let M be an Hff;f)l—module Then the HA ) -module M @g F
is called the reduction of M modulo I. For this we write M. The map — Qg F' -
M — M s, for short, denoted by

M- M, r—T=1Qglp.

For example, according to Lemma 1.2.7, H(Fa is the reduction modulo I of Hfﬁ)l
if the algebras are considered as right modules for themselves. Furthermore, this
gives together with the relation (1.27) from Lemma 1.2.8 the following property of

the reduction modulo / of an Hﬁ(i)l—module M.
Vo e M,y € H(ﬁf_b)l LTy = TY (1.30)

Now we compare for a given H —module M the reductions modulo I of various
full H Asf -lattices therein. For two full H P —lattlces N; and Ny in M, we will have
in general Ny ¢ N, as ‘H Ani)l -modules. However, the following important result
holds.

Lemma 1.4.15 Let M be an Hfﬁ’ -module, choose two full HA -lattices Ny and
N, thereof, and consider their reductions modulo I N; and Ns. Then we have in
Go(H{L™)

[N1] = [No].
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Proof. See [CR1, Proposition 16.16]. W

With the preceding result, we can assign to an isomorphism class of Hfél"’fz—
modules [M] € M(H® a)) by means of a representative M € [M] and a full Hﬁﬂ—
lattice N of M (which exists according to Lemma 1.4.13.(i)) the uniquely deter-
mined element [N] € Go(H AFE ). This assignment is compatible with the relations
between the isomorphism classes of H'® ) —modules in GO(H @ a)) (see [CR1, Propo-
sition 16.17]) and thus induces a homomorphlsm from this Grothendieck group into
G (H(F,(i))

0 An—1/"

Definition 1.4.16 The homomorphism
D" = D}t = Dt = Dy - Go(HU2") — Go(HY"),  [M] — [N]

for [M] € M(H(Q al) with a representative M € [M] and a full ’H(Sa -lattice N of
M s called the decomposition map for Hecke algebras associated wzth the degree n

and the modular system IC.

Finally, decomposition numbers of Hecke algebras are introduced as coefficients

in matrix representations of decomposition maps.

Definition 1.4.17 According to Lemma 1.4.2, the formulas

Dl (D)) = Z dTALLK[DfLF@)]

:U‘enn,eF(&)

with A € I, e, define uniquely determined numbers d € Ny for A € I, e5(a)
and | € Hn,eF(a). These numbers are called the decomposztzon numbers for Hecke
algebras associated with the degree n and the modular system K. The matriz

H H H n,K
AP = Y= O = AT = (&) v

HEM, o1 (a)

representing the map DZ:,C with respect to the basis {[D( ]

N € Moo b of the Z-
module GO(H(Q ) and the basis {[Dé‘Fﬁ)] ‘ TSN | R } of the Z-module Go(HAF(z )

from Lemma 1.4.2.(1) is called the decomposition matriz for Hecke algebras associ-

ated with the degree n and the modular system IC.

1.5 Modular reduction and Specht modules of
Hecke algebras of type A

For this section, we fix an n € N, as before. Furthermore, K denotes a modular

system as introduced in the previous section. This section describes the effect of
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the decomposition map DZZ,C on Specht modules. This is particularly important if

the Hecke algebra, Hfﬁfz is semisimple.

Lemma 1.5.1 Let A= n. Then S(\s,a) is a full Hfi) lattice of S(AQ,Q).

-
Proof. This follows from Definition 1.4.12, Theorem 1.3.11, and Lemma 1.3.14. Bl

Lemma 1.5.2 Let AFn. Then S(>\F,(_I,) 1s the reduction modulo I of the full ny;‘i)l-
lattice S(\S,a) of S()‘ )

Proof. This follows from Lemma 1.5.1, Definition 1.4.14, and Lemma 1.3.14. W

Corollary 1.5.3 Let A+ n. Then we have

D ([Stow)) = [Sira)-
Proof. This follows from Definition 1.4.16, Lemma 1.5.1, and Lemma 1.5.2.

Corollary 1.5.4 Suppose that HAljf)l 15 semisimple. Then the decomposition ma-
trix AZ;,C 18, if the row and column index sets are ordered in the same way, an

identity matriz (i.e. it has ones on the diagonal and zeroes elsewhere).

Proof. This follows from Theorem 1.3.21, Lemma 1.4.9.(i), Definition 1.4.17, and
Corollary 1.5.3. B

Lemma 1.5.5 Suppose that H(Aqifz is semisimple. Then, for every A € II, and
every i € I, cp(a), the decomposition number df\Ll’jC 15 equal to the multiplicity of

D?F’a) as a composition factor in S(/\F,a)'

Proof. According to Theorem 1.3.20.(iii), Theorem 1.3.21.(ii), Definition 1.4.16,
and Definition 1.4.17, the decomposition number di\”f is obtained by choosing a
full H¥ Jattice N of S(’\Q’a), constructing its reduction modulo I N, and deter-
mining the multiplicity of the irreducible module Dé‘ Fa) 85 a composition factor in
N. According to Lemma 1.5.1, one can choose N = S()\S,a)' Then, according to

Lemma 1.5.2, one has N = S(’\F@). This shows the claim. W

Corollary 1.5.6 Suppose that Hfﬁfz 1s semisimple. Then, for every A € 11, and

every i € Il c.@), the decomposition number dif 18 uniquely determined by the
data A\, p, and (F,a).

Proof. This follows immediately from Lemma 1.5.5. B

The next lemma makes use of Definition 1.1.2 and Definition 1.1.4.(ii).
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Lemma 1.5.7 Suppose that H;sz 1s semisimple and let X\ = n. Then the following
statements hold in GO(H(Fa ).

(i) We have
n,IKC
[Stra] = Y. dui Dy

MEHn,eF(a)

(i1) If X is ep(a)-regular, we have
[S(/\F,&)] = [DE\F,a)] + Z dn’C[DFFa)]

l"enn,eF(a)
pu>

(1ii) If X is ep(a)-singular, we have

pu>

Proof. The identity in statement (i) is obtained from Theorem 1.3.21, Defini-
tion 1.4.17, and Corollary 1.5.3. This in turn, together with Lemma 1.5.5, the inclu-
sion S* C M* (see Definition 1.3.1 and Definition 1.3.10), [DJ1, Corollary 4.12.(i)],
Theorem 1.3.20.(i), and [DJ1, Corollary 4.14], implies the identities in statements
(ii) and (iii). W

The next statement is required in the following considerations. It is a generaliza-

tion of the corresponding property of group algebras (see [CR1, Corollary 18.14]).

Lemma 1.5.8 Suppose that Hﬁﬁfi is semisimple. Then the following statements
hold.

(i) The decomposition map

Mt Go(H'PY) — Go(HE™)

-1
18 surjective.

(ii) For the decomposition matriz

H m, K
ATL,]C o <d>\M > A€lly, )

HEY o (a)

we have
Rnkg AT e = [T e, (@) -
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Proof. (i) According to Lemma 1.4.3.(i) and Corollary 1.5.3, we must show that

for every pu € Il ¢ (a) the basis element [Dij ] € Go(HY™™) can be written as

a Z-linear combination of the elements [S()‘F,a)] € Go(H'™) with A € II,. This
follows from [DJ1, Corollary 4.12, Corollary 4.14]. There, a certain order on the
set II,, is used, by means of which the required representations of the [DEL F’a)] with
i € 11, ¢ (@) can be constructed inductively.

(ii) In the following sequence of Z-modules, 0z denotes the null module over Z.

Go(H2) 75 Gy(HIFD) — 0

According to statement (i), this sequence is exact. By tensoring over Z with Q, one
obtains an exact sequence of Q-vector spaces, since — ®z Q is right exact (see, for
example, [CR1, §2B]). Now, according to Definition 1.4.17 and Theorem 1.3.21.(ii),
the matrix representing the surjective map DZZ,C ®z1dg with respect to the bases of
G ( @)y and Gol( ;F’a)) from Lemma 1.4.3.(i) and Lemma 1.4.2.(i) tensored with
Q over Z is just AZ;E,C. Now the claim follows from general facts of linear algebra
and the relation

|Hn,eF(a)‘ S |Hn|
(see Definition 1.1.2.(iii)).

1.6 Dependence of the decomposition matrices of
Hecke algebras of type A on the employed

modular system

We continue to use the integer n € N and the modular system X fixed in the
previous section. This section will show that the decomposition numbers dff with
A € Il e (a) and p € 11, ¢ () are independent of the coefficient ring S in the modular
system K. To this end, we require, in addition to K, two other modular systems.
These are introduced next.

Let K be an arbitrary field, fix an element r € K \ {Ox}, and consider an
indeterminate X over K. Then the polynomial f = X —r € K[X] is irreducible.

With this, we define for every element ¢ of K(X)\ {Ox(x)} with g,h € K[X]
the integer

by means of the decomposition
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with §,h € K[X] such that both f+ g and f {h hold. The map
b KX\ {0k} = Z, 2= 4y(2)
defined in this way has the following properties.
(i) For arbitrary y,z € K(X)\ {Ox(x)} we have ¢¢(yz) = ¢(y) + 15 (2).

(ii) For y,z € K(X) \ {Ox(x)} satisfying y + 2z # Ox(x) we have ¢;(y + 2) >
min{ s (y), ¥r(2)}-
Thus, s is a discrete additive valuation on K (X) (see [CR1, §4C]). Associated to

Yy is the discrete valuation ring

Swf = {z € K(X)\ {OK(X)} | Ys(2) > 0} U {OK(X)}

with the unique maximal ideal

Iy, = {z € K(X)\ {0k} [94(2) > 03 U {0k(x) } -

These also can be described as follows.

Sy, = KlXlpxix)
_ {% € K(X) ‘ g€ K[X], he K[X]\ {Okx} such that fTh}
is the localization of K[X] at the ideal fK[X] (see [CR1, §4A]). With this,
Iy, = fSy;
= [ K[X]xix
— {% c K(X) ‘g € K[X], h € K[X]\ {OK[X]} such that f | g and fj(h}

is the ideal generated by f in Sy,. Because of ¢y(X) =0 = wf(lyK), X is a unit in
Sy,. Furthermore, every element of Sy, is congruent modulo Iy, to an element of
K C S¢f C K(X). Thus, we have

S’Z)f/lwf =K,
and the natural projection
Sy, = K,z =24y,

maps X to

X=r.
All in all, this construction provides for a given field K and a fixed r € K \ {0k}
a modular system with (K, r) as an associated coefficient pair such that K is the

residue class field of the discrete valuation ring.
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Definition 1.6.1 Let K be an arbitrary field, fix an r € K \ {0k}, and choose an
indeterminate X over K. Then the modular system Kk, is defined by means of
the discrete additive valuation ¢y _, on K(X) as

IC(K,T) = (K(X)7¢X—7"aSsz,Ta-[’lﬂXfrvX? K)
= (K(X>7¢X—T7K[X](X—T)K[X]a (X - T) . K[X](X—T)K[X}7X7 K) .

Later on, we will require modular systems with a complete discrete valuation ring.
Such a modular system is obtained from a given field K and a unit r € K \ {Ox}
by means of the construction of the modular system Kk ) just introduced if, in
addition, the field K(X) is completed with respect to the valuation ¢x_,. This is
described in more detail in [CR1, §4C] and the further references given there.

Definition 1.6.2 Let K be a field, fiz anr € K \ {0k}, and choose an indetermi-
nate X over K.

(i) The completion of K(X) with respect to the additive valuation v x_, is denoted
by
K(X).

~

K(X) is considered a subset of K(X).

~

(i) The discrete additive valuation on K(X) defined by continuous extension of

~

Ux—r from K(X)\ {Ogx)} to K(X)\ {OK(X)} is denoted by

~

bxr i KOO\ {00} ~ 2.

(11i) The discrete valuation ring in K(AX) associated to x_, is denoted by

Sy, = {z e K(X)\ {OK(X>} ’dx_r(z) > o} U {OK(X)} .

The unique mazimal ideal in Sy is denoted by

Iy, = {2 € KOO\ {0 } |9x(2) > 0p U {0}

Lemma 1.6.3 Let K be a field, fix anr € K\ {Ox}, and choose an indeterminate
X over K. Then the following statements hold.

(i) Sy, is a complete discrete valuation ring.

(i) We have Sy [I; =K.
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(iii) For thé natural projection~: Sy — Sy [I; = K, we have the relation
X—=X=r.

Proof. (i) As a continuous extension of the discrete additive valuation ¥x_,, Uy
is discrete. The completeness of Sﬁxir with respect to zﬂX_r follows from the com-
pleteness of K (AX ) with respect to 1& x_r and the continuity of 1/3 x_r With respect to
the topology on K (AX ) induced by Vx_y

(ii) See [CR1, §4C].

(ili) According to the construction of S; —  and {x_, in Definition 1.6.2, we

have X € Sd?x_r' Now, X = r follows from the construction of Iy @ZA)X_T, and
QZJX—T- u

According to the preceding lemma, one gets from Definition 1.6.2 for a given field
K and an r € K \ {Ox} a modular system with a complete discrete valuation ring
and an associated coefficient pair (K, r) such that K is the residue class field of the

discrete valuation ring.

Definition 1.6.4 Let K be a field, fiz anr € K \ {0k}, and choose an indetermi-
nate X over K. Then the modular system IC(KJ«) 1s defined by means of the discrete

additive valuation {x_, on K(AX) as

A

Kirer = (K(X), Do S 5 X, K) .

Lemma 1.6.5 Let K be an arbitrary field and choose an indeterminate X over K.

Then the Hecke algebras Hgi(_)f)’x) and Hffi(_)f)’x) are semisimple.

Proof. X is transcendent over K. Thus, the claim follows from Theorem 1.3.21 and
Definition 1.2.2. B

Now we consider in addition to a given modular system
’C = (Q? w? S7 [7 a7 F)

also the modular systems

Kga = (QY), ¥y—a, QY Jv—ayop), (Y — @) - QY Jy—ajoiy), ¥, Q)

and
Kray = (F(Z),Y2-a, F|Z)(z-ayr12), (Z — @) - F[Z)(z-ayp|2), Z, F)

where Y is an indeterminate over () and Z is an indeterminate over F. In the
remainder of this section, we could use, instead of (g, and K(rg), the modular

systems IC(Q,G) and I€( Fa) as well. From the three modular systems K, K(qg,q), and
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K(ra), we get four Hecke algebras over fields and furthermore four Grothendieck
groups of categories of finitely generated modules. With these, we can construct

the following diagram.

Hn
«
QY)Y (F(2),2)
Y)Y F(2),2
Go(HI2)™) - Go(HL 7))
H H
Dy, K@) D"v’cuw) (1.31)
a Fa
Go(HU2") - Go(HY™)
DH
n,KC
Here, DZ:,C(Q e DZZ’C(F o and DZZ,C are decomposition maps as in Definition 1.4.16.

Furthermore, azgl(y)y)(F(Z)’Z) is an isomorphism as in Definition 1.4.4, it exists
according to Lemma 1.6.5. Similar diagrams are considered more generally in [GEC,
Section 4, Section 5] for Hecke algebras of arbitrary type. The following lemma is

proved in [GEC, Section 4] for Hecke algebras of arbitrary type.
Lemma 1.6.6 The diagram (1.31) is commutative.

Proof. According to Lemma 1.6.5 and Lemma 1.4.3.(i), it suffices to show the
commutativity for every [S(AQ(Y)’Y)] € Go(HPY™M)) with A F n. According to
Definition 1.4.4, Definition 1.4.16, and Lemma 1.5.2, we have

DZ}JQF@) (az-én(Y),Y)(F(Z),Z) ( [S(/\Q(YLY)])) - DZL_{K(F,&) ([S(AF(Z)VZ)D
= [S(AF,C_L)]
= DZL{,/C([S(/\Q,(I)})
= DZZK(DZ;/C(Q@)([S(AQ(Y),Y)]))-

This proves the claim. W

Corollary 1.6.7 The decomposition matrices A%K, A

H .
K g AN AH,K(M) satisfy

AH

1K (0.0) (1.32)

H H
' An,IC - ATL,K(R,—L) .

Proof. This follows from Lemma 1.6.6 by considering the matrices representing
the maps in the diagram (1.31) with respect to the bases of the Grothendieck
groups in that diagram described in Lemma 1.4.2.(i) and Lemma 1.4.3.(i). See also
Definition 1.4.4, Definition 1.4.17, and Theorem 1.3.21. W

Now, the independence of the decomposition matrix of the discrete valuation

ring S in the modular system KC can be shown.
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Theorem 1.6.8 Let K = (Q,, S, 1,a, F) be an arbitrary modular system. Then
for every X\ € 11, eola) and every p € 1, ..@), the decomposition number d

independent of the discrete valuation ring S in IC.

Proof. The coefficient pairs (Q),a) and (F,a) provide the modular systems K q)
and K(pg) as in Definition 1.6.1. With these, we can build a rectangle (1.31) in
which Lemma 1.6.5, Lemma 1.6.6, Lemma 1.5.8, and Corollary 1.6.7 hold. Now
Corollary 1.6.7, Lemma 1.5.8.(ii), and general facts from linear algebra show that

and A

the matrix A, is completely determined by the matrices A K ()"

TLIC(Q
But these latter two matrices are independent of S, since S doesnt occur as a

coefficient ring in the modular systems K (g q) and K(pa). Thus, the matrix Al =
(dt\L;jC) NE—— also is independent of S. W

”Enn,ep(&)

1.7 Modular reduction and projective modules of

Hecke algebras of type A

In the following, further properties of decomposition maps under certain assump-
tions on the employed modular systems are shown. We proceed as in [CR1, §18].
n € N is still fixed.

First, we introduce projective class groups (see [CR1, §16B]).
Definition 1.7.1 Let R be an integral domain and fix a unit ¢ € R.

(i) The isomorphism class of an H( ) -module M is denoted by [M] The set of
all isomorphism classes of all ﬁmtely generated projective right H —modules

15 denoted by

P(HAn 1) = {[P] ) P is a finitely generated projective right Hfﬁ’(_]i -module} )

(i) The Z-submodule %(Hgi’f)l) of the free module &
the Z-span of the set

(PleP(HP q>)Z[P] is defined as

4 )

[P, [P, [P"] € P(H{)
such that there is an isomorphism
P~PoP"
of H( q) -modules

[P] = [P] = [P]
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With this, the projective class group of H(AR 9

is defined as
n—1

KEHG ) = @ zlP)| /oMY,

[PleP(H?)

For the remainder of this section, we fix a modular system

= (Q? w? S7 [7 a7 F)
as in Definition 1.4.8 which satisfies the following conditions.

(i) The algebra H(Acifi is semisimple.
(ii) The discrete valuation ring S is complete with respect to the valu- (1.33)

ation 1.

Lemma 1.7.2 (i) Let pn € I, ., @). Then the irreducible module D?F&) has an
indecomposable projective cover

w o pH
P P(Fa)

P(“F a) 1s a finitely generated projective mdecomposable right HA -module and
isomorphic to the right ideal f“(Fa)H genemted by an appropriate inde-
composable tdempotent f“(Fa) € ’H(Fa DFF a) 15 the only irreducible quotient

of Plpa)-
(i) The set

{Plia ner(@ |

is a complete system of representatives of the isomorphism classes of finitely

generated projective indecomposable right H( a) -modules. It is parameterized
by the set 11, ¢, (a)-

(iii) We have
KoMym) = D 2P,

“enn,eF (a)

(iv) Let [P] € 73’(7'( f ). Then we have in Ko(H{™)

1 An—1

[Pl= > [Py

MeHn,eF (a)

with coefficients xLP] € Ny for p € Il ep(a)-
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Proof. The statements referred to in the following can be applied here because of
the properties (1.33) of the modular system K. See also [CR1, introductory remarks
to Theorem 6.23].

(i) This follows from [CR1, Summary 18.1.(i)] and Theorem 1.3.20.(iii).

(ii) This follows from [CR1, Summary 18.1.(ii), Summary 18.1.(i)] and state-
ment (i).

(iii) This follows from [CR1, Proposition 16.7] and statement (ii).

(iv) This follows from [CR1, proof of Proposition 16.7] and statement (ii). B

Lemma 1.7.3 (i) For every pu € I, .,.(a), there is a finitely generated projective

indecomposable right H(Ab:f)l -module

L D
P = P(S,a)
such that
DE _ pH
Plsa) = Fira)

holds. P(’fgﬂ) 15 isomorphic to the right ideal f“(s aﬂ'(A generated by an

appropriate indecomposable idempotent fH(Sm € HATH' For this idempotent,

we have

(F,a)
H(S G)HAn 1 P(l;?‘@)

(i) The set

{P(lfg,a) n,ep(d)}

is a complete system of representatives of the isomorphism classes of finitely
generated projective indecomposable right Hjl’(i)l—modules. It is parameterized

by the set 11, ¢ ,.(a)-

(i1i) We have
Ko(Hy) = D ZIPj,)-

MeHn,eF (a)

(iv) Let [P] € P(H ‘il) Then we have in Ko(Hiiﬁ)l)

[Pl= Y [P,

NEHn,eF(a)

with coefficients xLP] € Ny for p € Il cp(a)-
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Proof. The statements referred to in the following can be applied here because of
the properties (1.33) of the modular system K. See also [CR1, introductory remarks
to Theorem 6.23].

(i) This follows from [CR1, Summary 18.1.(iii), Summary 18.1.(i)] and Theo-
rem 1.3.20.(iii).

(ii) This follows from [CR1, Summary 18.1.(iv), Summary 18.1.(iii)] and state-
ment (i).

(iii) This follows from [CR1, Proposition 16.7] and statement (ii).

(iv) This follows from [CR1, proof of Proposition 16.7] and statement (ii). B

Now, certain homomorphisms between the Grothendieck groups GO(H(AC'Z’L?) and
GO(H(FG)) and the projective class group KO(H(FG)) will be considered. The de-

1 1
composition map

,a F.a
D = Go(H")) = Go(Hi)T)
was introduced in Definition 1.4.16. Furthermore the inclusion 17 of the cate-

gory of the ﬁmtely generated projective HE A —modules in the category of all finitely

generated H A “ _modules induces a homomorphlsm from Ko(H AFa ) to G (H(F ) )

Definition 1.7.4 The homomorphism

CTte: Ko(HY™) — Go(H™),  [P] = [l pay (P)] = [P] € Go(HY™)

—1

induced by an(Fa) is called the Cartan map for Hecke algebras associated with the

degree n and the modular system K. The matriz

CZZK = (CZZK(N 1) Ay e p(a)

HEM, o g (a)

representing the map C’Zf’,c with respect to the basis {[P()ha)] ‘ A€ Hn,ep(a)} of the
Z-module KO(HELQ?) from Lemma 1.7.2.(iii) and the basis {[DE\F@)] A€ aneF(a)}

of the Z-module GO(HEQ?)l) from Lemma 1.4.2.(i), whose integer entries C]4e (A, 1)
Jor A, € 1L, ¢ (@) are uniquely determined by

CZL_,(IC([P()}«“,&)]): Z CZ:IC()‘?M)[D?F@)]’

pnell

n,ep(a)

1s called the Cartan matriz for Hecke algebras associated with the degree n and the

modular system K.

Remark 1.7.5 The Cartan map exists more generally for Hecke algebras over inte-

gral domains. However, in order to define the Cartan matrix as in Definition 1.7.4,
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the coefficient ring should be a field. The Cartan map and also the Cartan matriz
both depend only on the coefficient pair directly involved, a whole modular system
s not required. However, this degree of generality is not needed here. In what fol-
lows, Cartan maps and Cartan matrices will always occur in connection with whole

modular systems, as in Definition 1.7.4. This motivates the notation chosen here.

Finally, we introduce a homomorphism from Ky(H AFa ) to Gy (H Q) 7). This is done
in two steps. First, Lemma 1.2.8.(iii), Definition 1.4.14, and Deﬁmtlon 1.7.1 show

that the following construction is meaningful.
Definition 1.7.6 The homomorphism
_ S,a Fa)
(R = Ko(HE)

15 defined by
[Pl =[Pl e Ko(Hy") for [Pl€P(H)

1

and Z-linear extension.

Lemma 1.7.7 The homomorphism
- (S,a) (F,a)
S Ko(HAT) — Ko(Hy)
from Definition 1.7.6 is an isomorphism.

Proof. See [CR1, Theorem 18.2]. B

Furthermore, it follows from Lemma 1.2.8, Definition 1.4.1, and Definition 1.7.1

that the next definition is meaningful.
Definition 1.7.8 The homomorphism
—®s Q: Ko(Hy") — Go(HE")
15 defined by
[PlosQ=[P®sQl € Go(HE") for [PleP(H™)
and Z-linear extension.

Through appropriate composition of the homomorphisms from Definition 1.7.6 and
Definition 1.7.8, one obtains the desired map. See also [CR1, (18.3)].
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Definition 1.7.9 The composition of the maps
F.a S,a
()7t Ko(HT) — Ko(HY")

and
—®5Q: Ko(HY™ ) — Go(HP)

defines the homomorphism

Bt Ko(H'™) — Go(HE), a0 Blye(z) = (— @5 Q)(() " (x)).

1

This map is called the Brauer map for Hecke algebras associated with the degree n

and the modular system KC. The matriz representmg BH,C with respect to the basis

{ ‘ Aellen@ } of the Z-module KO(HA ) from Lemma 1.7.2.(iii) and the
basis { ’)\ e Il, } of the Z-module GO(H(Q’a ) from Lemma 1.4.3.(i), whose
integer entmes Bn,c()\ w) for X € I, ca) and p € 11, are uniquely determined by
H
By ([Plna)) = > Bl i)[S{g);
MEHn

1s denoted by
BZL-{’C = (BZ@{,ICOH l’l’)) AEHn,eF(a) .

€Iy

Now, all maps between the considered Grothendieck groups and projective class

groups required in the following are available.

Definition 1.7.10 The diagram

Go(H'>)
H
Drx (1.34)
Ko(H'$™) Go(H'S™)
CZ},C

1s called the Cartan-Brauer triangle for Hecke algebras associated with the degree n

and the modular system IC or, for short, Cartan-Brauer triangle.

Lemma 1.7.11 The Cartan-Brauer triangle from Definition 1.7.10 is commuta-

tive.
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Proof. According to Lemma 1.7.2.(iii), it suffices to show the commutativity for
basis elements [P’\ ] of KD(H D) with A € I, c(a). This follows easily from the
construction of the maps Dn,/o Cm,c, and BZZK in Definition 1.4.16, Definition 1.7.4,
and Definition 1.7.9. See also [CR1, Proposition 18.5]. W

In order to describe further relations between the maps occurring in a Cartan-
Brauer triangle, we now introduce bilinear forms on some products of the Z-modules

involved. It is shown in [CR1, §18B] that the following bilinear form is well defined.

Definition 1.7.12 The bilinear form
o : Go(H2") X Go(HE") — Z

1s defined by
iH(Q a)([M], [N]) = dimQ HOmH%Q,a)(M, N)

for [M],[N] € M(H(Qa ) and bilinear extension.

1

According to condition (1.33).(i) and Lemma 1.4.3.(i), the Grothendieck group

GO(H(A%fz) has the basis {[S()‘Qﬂ)] ‘ A€ Hn}. The next lemma states the values

H

of the bilinear form im(Q’a) on such basis elements.

Lemma 1.7.13 For [S(Q o) [S0.0) € GU(Hiﬁ’f)) with A\, u € I, we have

1

1 if A=
i) (St [%abz{ 0 Z: A#Z |

Proof. This follows from Theorem 1.3.21.(ii) and Theorem 1.3.20.(iv). See also
[CR1, §18B]. &

It is shown in [CR1, Proposition 18.8] that the following bilinear form is well defined.

Definition 1.7.14 The bilinear form
, Fa Fa
Jnray - Ko(Hi ") x Go(Hy") — Z

1s defined by
]'ZZ(Fa)([P], [M]) = dimp HomHﬁlFﬁ)(Pa M)

for [P] € 73(7'[1(4}25_1)1) and [M] € M(H', il) and bilinear extension.
According to Lemma 1.7.2.(iii) and Lemma 1.4.2.(i), Ko(H Fa)) and G’O(H%:?)l)
have the bases {[P(AF@)] ‘ A€ Hn,eF(a)} and {[DE\F@ ’)\ € Hn’eF(a)}, respectively.

The following lemma states the values of the bilinear form jZ:(Fﬁ) on such basis

elements.
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(F,a F,a .
Lemma 1.7.15 For [P(}@)] € KO(H )) and [Dp ] € GO(H(A,L,)l) with \,u €

L, e, (a) we have

. 1 if A=p
M ([Pha], [DF.]) = :
Jn,(F,a)([ (F,a)] [ (F,a)]) 0 if A+
Proof. This follows from Lemma 1.7.2, Theorem 1.3.20, and [CR1, Proposition 18.8].

Now, the bilinear forms z'ﬁf(an) and jZZ( F.ay Provide further relations between the
maps DZf,,C, Bn,c, and C

Lemma 1.7.16 Let K = (Q,v,S,1,a, F) be a modular system satisfying the con-
ditions (1.33). Then the following statements hold.

(i) The maps B]' and D}Y are transposes of one another with respect to the

bilinear forms Zf(Q o) and jM (Fa)- This means that for arbitrary elements

fe KO(H(AT)I) and g € GO(HfL’ﬂ) we have
i%(@,a) (Bff,;c(f), g) = jZL{,(F,a) (f, DZ:IC(Q))'

(ii) The representing matrices AH of DH,C from Definition 1.4.17, B ,C of BH
from Definition 1.7.9, and CZ;‘ of CZ: from Definition 1.7.4 satisfy

Bl = (AT)"
and
T
CnIC - BnIC AnIC - (AZL—{IC) ’ (AZL-l,IC) .
(iii) Let pu € Iy, ep@@). Then we have in Go(H), Qa))
Bk = > B[Siow)
A€Tl,

with uniquely determined coefficients d;f for A n.

Proof. (i) See [CR1, Theorem 18.9].

(ii) See [CR1, Corollary 18.10 and its proof].
(iii) This follows immediately from Definition 1.7.9 and statement (ii). B

Remark 1.7.17 The maps B}Y and C}Y also can be defined in the more gen-
eral case that Hy, Qa) 1s not semisimple, and relations between them and the de-
composition map can be investigated as well. In that case, the Grothendieck group
Go(Hfﬁ’fE) and the projective class group KO(HA ) don’t coincide, and, instead
of the Cartan-Brauer triangle from Definition 1.7.10, one obtains a rectangle. For

such considerations see [GR, Section 2]. They will not be required in the following.
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Corollary 1.7.18 Let K = (Q,¢,S,I,a,F) be a modular system satisfying the
conditions (1.33). Then the Brauer map

Bl : Ko(Hy") — Go(HU2")
18 1njective.

Proof. This follows easily from Lemma 1.7.16.(i), Lemma 1.5.8.(i), and Lem-
ma 1.7.15. &

1.8 Block theory of Hecke algebras of type A

Now, the decomposition of Hecke algebras of type A and their module categories in
blocks is described. We proceed as in [CR2, §56]. The central results in this section
are from [DJ2] and [JM].

As before, we fix an n € N. Furthermore, let

= (Q? ¢7 S7 [7 a/7 F)
be a modular system as in Definition 1.4.8 with the following additional properties.
(i) The algebra Hiﬁfz is semisimple.
(ii) The discrete valuation ring S is complete with respect to the valu- (1.35)
ation 1.

Most of the following statements hold under weaker assumptions on K, but this

level of generality is not required here.

Definition 1.8.1 Let R be an integral domain and choose a unit ¢ € R. Then the
center of the Hecke algebra Hfﬁf)l 15 denoted by

Z(H).
Lemma 1.8.2 Z(H(Ai'i)l) is free over S with rank |I1,|. It has an S-basis
{ea(S,a) | A € 11, }
with the following properties.

(1) {cx(S,a) ®s1g | A €1l, }CH ® Q= H(Qa is a QQ-basis on(HQa))

—1

(ii) {ca(S,a) @s1p [ A €1l } = {CA S, a ‘)\ e1Il, } C H(Sa) ’H(Fa)l is an F-
basis of Z(H Fa))
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From this, we get

ZHE) = Z(HYY ) @5 Q

and
ZMY") = (H(S“ ) ®s F.
This means that Z(HAsa ) is a full Z( ) lattice in Z(Hﬁlnfl) and Z(H(Fa ) is

the reduction of Z(H(Sa ) modulo 1.

1

Proof. This follows from [GR, Theorem 5.2]. See also [DJ2, Section 2]. B

Lemma 1.8.3 (i) In Hfax , there is a decomposition of L, s tn central prim-
A

itive orthogonal idempotents

m

7 S,a
17‘[543"1) = Z bgdemp (Hf‘ln—)l>

=1

(H$ ) withi € {1,...,m}

are uniquely determined up to ordering in the sum.

with an appropriate m € N. The summands bﬁlemp

(ii) The application of the functor — ®g F to the decomposition of 1 from

HEqS,a)
statement (i) produces a decomposition of L, ray in central primitive orthog-
A

onal idempotents
— i Fa
]-HEAF,E) - 17_[545,‘1) ®S ]-F - 17_{54&“) = Zb§d)emp(HA(/-ln,)l)
i=1

with the same m € N as in statement (i). The summands bldemp(Hii’?l)
with i € {1,...,m} are uniquely determined up to ordering in the sum. This
ordering is determined by the ordering of the elements bldemp(Hﬁﬂ) chosen
in statement (i) and the relations

p®)

Idemp

(HfélF i) ) = bIdemp(H(S ) ) = bIdemp (Hiiz(i)l)

1
forie{l,...,m}.

(iii) The application of the functor — ®g Q to the decomposition of 1 from

HEqS,a)
statement (i) produces a decomposition of 1H(Q,a) in central orthogonal idem-
A

potents

]_H(Q a) = 1H(S o) g lQ - Z bIdemp Hfﬁal)
=1
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with the same m € N as in statement (i). The ordering of the summands
bldemp(H Qaz) with i € {1,...,m} is determined by the ordering of the ele-

ments b

Idemp(Hﬁiﬂ) chosen in statement (i) and the relations

Idemp (HA ) Idemp (HA ) 1 Q
forie{l,...,m}.

(iv) The decomposition of L, sa from statement (i) induces a decomposition of
A

Hﬁi)l in indecomposable two-sided ideals

S a)
An 1 @ BIdeal

with the same m € N as in statement (i). The summands Bldeal(H,(f,i)J with
i €{1,...,m} are uniquely determined up to ordering in the sum. This order-
ing is determined by the ordering of the bldemp(H(sal) chosen in statement (i)
and the relations

ol

Idemp

(H (5:a) ) € BIdeal(Hff;al)

forie{l,...,m}. Foreveryi € {l,...,m}, we have

Ideal(HAia)l) = 7—(A e bldemp (Hx(f,a) )
e (H ™ Y H )

Idemp

a i (S,a) S,a
= HOY b (H >H221

n—1ldemp

D (K YR b (H).

n—1_ldemp

Every ideal BIdeal(Hf 'i)l) is an S-algebra with multiplicative neutral element

Idemp (HA )

(v) The application of the functor — ®g F to the decomposztwn of HA . Jrom
statement (iv) produces a decomposition ofﬁAn_1 in indecomposable two-szded

1deals

HAI’:.a)l HAS “ ® F H v a) @ BIdeal

with the same m € N as in statement (i). The summands BIdeal(HA )
with i € {1,...,m} are uniquely determined up to ordering in the sum. This
ordering 1s determined by the ordering of the ideals BIdeal(H(S a)) chosen in

statement (iv) and the relations

(Fa S,a) @) . (Sa)
Ideal(H ) ) Ideal(H( ) ® F= BIdeal<H ) )
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(vi)

fori € {1,...,m}, or equivalently by the ordering of the b\ (H Fa)) chosen

Idemp
in statement (ii) and the relations

b

(F,a i F,a)
Idemp(H )) € Bld)eal(H,(axn )

forie{l,...,m}. Foreveryi € {l,...,m}, we have

(F,a (F,a i
Ideal(HAn )1) = HA ) b%demp )1)
= bIdemp(HA )H,(axn’i)l

F.a Fia
= B @) (HE4 )1)

An—1 Idemp
(F.a
= Idemp(HA “ )HAn 1 Idemp(HA,L 1)

Every zdeal Bl(éeal(Hff f)l) 1s an F-algebra with multiplicative neutral element

Idemp (HA )

The application of the functor — ®g Q) to the decomposition of H(Ab:;‘i)l from

statement (iv) produces a decomposition of Hfﬁfi in two-sided ideals

a (S,a) a
HELXQn 1 HA ® Q @Bldeal Hfélci 1)

=1

with the same m € N as in statement (i). The ordering of the summands
Ideal(H(Qa ) with i € {1,...,m} is determined by the ordering of the ideals

Ideal(H ) chosen in statement (iv) and the relations

Ideal(HAQnaz) BIdeal(HAn 1) ®s Q

fori e {1,...,m}, or equivalently by the ordering of the b (H(AQ fz) chosen

Idemp
in statement (iii) and the relations

b

Idemp

(") € Bige (ML)
forie{l,...,m}. Foreveryi € {1,...,m}, we have

Q,a Q,a Q a
Ideal(Hgn 1) - H;n 1 b§d)emp( ) )

= (HA az )HA

Idemp

= HA b (HA )HA

n—1_ldemp
_ W

Idemp (H (o) )H Q “ b(z (H @ a))

Ap—1 " Idemp

Every ideal BIdeal(H;Q’fZ) is a QQ-algebra with multiplicative neutral element
Dy ().
Idemp An_1
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Proof. According to the remark following Definition 1.4.12, the remark following
Definition 1.4.14, and Lemma 1.8.2, Hecke algebras of type A and their centers
behave like group algebras and their centers with respect to the elementary con-
structions of modular representation theory (see [CR2, §56A and §56B]). Further-
more, because of property (1.35).(ii), the modular system K satisfies condition (a)
in [CR2, Definition 56.3]. This shows that the arguments used in [CR2, §56A] for
group algebras can be directly translated to Hecke algebras of type A to prove the
various claims of the lemma.

(i) This follows from [CR2, Proposition 56.5.(1)].

ii) This follows from [CR2, Proposition 56.5].

iii) This follows immediately from statement (i).

(

(

(iv) This follows immediately from statement (i).

(v) This follows immediately from statements (ii) and (iv).
(

vi) This follows immediately from statements (iii) and (iv). B

Definition 1.8.4 Let (R, q) € {(S,a), (F,a),(Q,a)}.

(i) We call the central idempotents bldemp(HfLi’f)l) with i € {1,...,m} from Lem-
ma 1.8.3 the block idempotents ofH Ay

(ii) The two-sided ideals BIOL%J(H(R q)) with i € {1,...,m} from Lemma 1.8.5 are
called the block ideals of HAn_1

(iii) We call the categories of finitely generated right modules of the R-algebras
Ideal(H(R q)) with i € {1,...,m} from Lemma 1.8.3 the block categories of
H . For every i € {1,. m} the block category of Bldeal(H(Rq )-modules

is denoted by
(R
Kat(HAnq)l)

Definition 1.8. 5 Let (R,q) € {(S,a),(F,a),(Q,a)} and let M be a finitely gen-
erated right HA -module. If we have for an i € {1,...,m} with m € N from
Lemma 1.8.5.(i)

Mo, (HY) = M

Idemp

then we say that M belongs to the block category BKat(HAn 1)

Lemma 1.8.6 Let (R,q) € {(S,a),(F,a),(Q,a)}. Furthermore, let M be a finitely
generated right H(Aljf)l -module. Then we have with the notation from Definition 1.8.4

M= EB (Mbldemp(H(Rq )) (1.36)

=1
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where the right hand side is a direct sum of finitely genemted right ’H(Rq -modules.
(HATH) belongs to

Furthermore, for every i € {1,....,m}, the summand Mb\)
the block category Bl(gat(Hfjiql)

Idemp

Proof. This follows from the decomposition of 1 HRD in block idempotents in
Lemma 1.8.3. Since the block idempotents are orthogonal (1.36) is a decompo-
sition of M in an R-direct sum. Since the block 1dempotents are central, the
summands on the right hand side of (1 36) are HE-modules. Finally, for ev-
ery i € {1,...,m}, the summand Mb\")__(H{*?)

i R, % R
Bﬁ(it(H?(% ‘1)) since b%demp( ( @ )

Tdemp belongs to the block category

is idempotent. W

Definition 1. 8 7 Let (R,q) € {(S,a),(F,a),(Q,a)} and let M be a finitely gener-
ated right HA ) _module. Then the decomposition (1.86) of M from Lemma 1.8.6
15 called the block decomposition of M.

Lemma 1.8.8 Let (R, q) € {(S,a),(F,a),(Q,a)}. Furthermore, let M be a finitely
generated right ’H( q) -module which, for an i € {1,...,m} with m € N from
Lemma 1.8.3, belongs to the block category BKat(H(Rq ) Then the following state-

ments hold.

(i) Forj € {l,...,m} with j # i, we have

Idemp (H ) = 0.

Here, 0 denotes the null module ofH RQ)

(ii) If M # 0 then M belongs to exactly one block category of Hffif)l

(i1i) For every x € M we have
xbldemp(HAn 1) €.

(iv) Submodules and homomorphic images of M also belong to the block category
(R,q)
Kat(H )

Proof. (i) From Definition 1.8.5 and the orthogonality of the block idempotents, we
get for j # i

(H(R q))b(ﬂ

Idemp

(HB9) = pplY)

Idemp

M b(]

Idemp

(H(R Q)) 0.

(i) This follows immediately from statement (i) and Definition 1.8.5.
(iii) This follows from the decomposition of L (ra in block idempotents in
A
Lemma 1.8.3 and statement (i).

(iv) This follows immediately from statement (iii) and Definition 1.8.5. W
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Remark 1.8.9 Let (R,q) € {(S,a),(F,a),(Q,a)}. Furthermore, let M be an
HA -module which, for an i € {1 .,m} with m € N from Lemma 1.8.3, be-
longs to the block category BKat<HAn,1)- Then, according to Lemma 1.8.8.(iii),
bldemp(H 1) operates as identity on M. Thus, M can be considered as a module
for the algebm BIdeal(H(R ) ). This shows that M is in fact an object of the category

Kat (HAn 1 )

The following statement shows that certain modules of Hecke algebras belong to
a block category. These modules include the projective indecomposable modules
from Lemma 1.7.2.(i).

Lemma 1.8.10 (i) Forevery A € I1,,, S(’\an) belongs to a block category OfH,(atnfi
(i) For every A € 11,,, S()\S,a) belongs to a block category of H(Asz)l

(i1i) For every A € 11, S belongs to a block category of HA . For every u €
I ep(a)s D“ belongs to a block category of HAWI. For every p € 11, ¢.(a),
P“ belongs to a block category of HA

Proof. (i) Let A F n. According to condition (1.35).(i), (@) is semisimple. Thus,
according to Theorem 1.3.21.(ii), S(’\an) is irreducible. This shows that the block
decomposition of S(’\Q’a) (see Lemma 1.8.6) contains exactly one summand different
from the null module. Thus, S belongs to a block category of H,, (@)

(ii) Let A F n. Suppose that S doesn t belong to a block category of H,
Then the block decomposition of S S.a) contains at least two summands different
from the null module. By tensoring this decomposition over S with @, we get a
decomposition of S()\Q,a) with at least two summands different from the null module
(none of the nontrivial summands vanishes in the process since ) is the quotient
field of S, see [CR1, §4A]; see also Lemma 1.3.14 and Lemma 1.2.8.(i)). This is a
contradiction to the irreducibility of S(AQM. Thus, S(/\S,a) belongs to a block category
of HE.

(iii) Let A F n. Then the block decomposition of S(’\F’a) is obtained from the
block decomposition of S(\s,a) by tensoring over S with F' (see Lemma 1.3.14 and
Lemma 1.8.3.(ii)). According to statement (i), this decomposition of S ) contains
exactly one summand different from the null module. Thus, the same is true for
the decomposition of S(AFf and S(AFf belongs to a block category of H

Let p € 11, ¢,.(z). Then the fact that D“ belongs to a block category of HO

follows from the irreducibility of DEL Fa) 8 in the proof of statement (i).
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Let p € I, ¢ (a)- Since P Fa) is projective indecomposable, the block decompo-

sition of P“ Fg) Must contain exactly one summand different from the null module.
Thus, P“ belongs to a block category of HEYD. m

The block categories of Hecke algebras and also the other objects from Defini-
tion 1.8.4 corresponding to them can be indexed in such a way that, for a module
considered in the preceding lemma, the block category to which it belongs can be

easily read off from its indexing partition.

Theorem 1.8.11 The block idempotents, block ideals, and block categories of the
Hecke algebras 'H, Sa) s Hy Fa) L and H%fz from Definition 1.8.4 can be indexed by the
elements of the set F r(a )( ) More precisely, the indexing scheme can be chosen in
such a way that each of the modules S(Q o) Sf\s,a)7 S(’\Fﬁ), D( Fa) and P Fa) indexed by
an appropriate X\ = n belongs to the block category of the appmprmte Hecke algebra
indexed by Yep(a)(A) € Lepgay(n).

Proof. [JM, Theorem 4.29] provides the desired indexing scheme with respect to
the modules S(AF@ with A F n (see also [DJ2, Theorem 4.13]). It follows from
Definition 1.8.5, Lemma 1.3.14, Lemma 1.8.3.(ii), and Lemma 1.8.3.(iii) that this
indexing scheme also has the desired properties with respect to the modules S(\s,a)
and S(AQ’&) with A = n. Finally, the desired properties of the indexing scheme with
respect to the modules Df‘ Fa) and P&a) with p € I, . .a) are obtained by using

Lemma 1.8.8.(iv), Definition 1.3.19, and Lemma 1.7.2.(i). W

Now we can fix a better notation.

Definition 1.8.12 (i) In the following, the block idempotents, block ideals, and
block categories introduced in Definition 1.8.4 are no more indexed by num-
bers, but instead by the elements of the set I'c,@)(n) as described in The-

orem 1.8.11. For a given core ji € I'cpa)(n) and a given coefficient pair

(R,q) € {(S,a),(F,a),(Q,a)}, we write

b,“f

Idemp

(HY?),  BleaHEY), Bl (HE)

1 —1
or, for short,

1 1 1
bIdemp’ Bldeal’ BKat :

(ii) Let p € T'cp@(n) and (R,q) € {(S,a),(F,a),(Q,a)}. Then the block ideal
Bﬁieal(H(R Q)) and the block category BKat(H(Rq ) are called p-block or block
of HAn_1 for short. This is denoted by

BHHY) = B*(n) = B".
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(iii)

(iv)
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The set ITI;" (&), whose elements index Specht modules, irreducible modules,
and projective indecomposable modules as in Lemma 1.8.10, also is called -
block or block. This is denoted by

1#er@ —= BH(n) = B*.

The ep(a)-weight ge, @) (B*(n)) of the block B*(n) is defined as

Gep(@(B"(n)) = %

In the case of ep(a) = oo we get, by using the usual rules for calculations with
o0, geF(a)(B”(n)) =0.

Let pe T, ( ) (R,q) € {(S,a),(F,a),(Q,a)}, and choose a finitely gener—

ated right H —module M. If M belongs to the block category BKat(HAn 1)

we say for short that M belongs to the block B“(H ni)l) or lies in the block
Br(HY).

Let X € I, with pt = Yep@(A) € Lep@(n). Then we say that X belongs to the
block B*(n) or lies in the block B*(n).

Remark 1.8.13 Let 1 € T, a)(n) and A € 7@ With that, we see from Lem-
ma 1.1.87, Definition 1.1.38, and Definition 1.8.12.(ii)

GJer(a) (Bﬂ<n)) = Yer(a) <>‘)

From this, we also get

Jer(@(B"(n)) € No.

Next, the block decomposition of modules from Lemma 1.8.6 is translated to

Grothendieck groups and projective class groups.

Lemma 1.8.14 Let (R, q) € {(5,a),(F,a),(Q,a)} and p € Tep(a)(n).

(i) Let

O0—-=M —-M-—M' —0

be an exact sequence of right HA —modules Then

00— M bu (H,(4R q)) M”bildemp(HAqui) 0

Idemp

(HY) — M

Idemp

also is an exact sequence of right HA -modules.
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(ii) Let P be a pmjectwe right H —module Then PO (H(R q)) also is a

Idemp
projective right HA —module

Proof. (i) The homomorphisms in the sequence 0 — M’ — M — M" — 0 are
compatible with the operations of the block idempotents of HgR’Q) on the modules
M'; M, and M” and thus also with the block decompositions of these modules (see
Lemma 1.8.6). This shows the claim.

(R is central in HS?, Pl

(11) Since the idempotent b}, (H(R )) is an

Idemp
H ) _direct summand of P and thus projective. M

The preceding lemma shows that the following definition is meaningful.
Definition 1.8.15 Let (R,q) € {(S,a), (F,a),(Q,a)} and p € T¢,@)(n).

(i) The endomorphism

bll;rOJ bgrOJ (HAR?)I) : G0<HE4}1?1) - G (HAn )1)
is defined by
bgr0J<H(Rq )<[M]) [Mbilldemp(H( )] S G (H(R q))

for [M] € M(HAn’fl) and Z-linear extension.

(i) The endomorphism

Voros = Ubros (H4) - Ko(HE?) — Ko(H')
15 defined by

Voroi (SN ([P]) = [PWems(HY )] € Ko(H'H)

Proj An—1 Idemp n—1

for [P] € P(H&ﬁ’f)l) and Z-linear extension.

For simplicity, the two endomorphisms of Go(Hﬁi’?)l) and KO(HS?L’??) introduced in
the preceding definition are denoted by the same symbol. Now, the effect of the
map bPrOJ(Hfﬁ’fz) with a u € I'cp(g)(n) on GO(HEﬁ’fi) is described. This will be

required in Section 1.9.

Lemma 1.8.16 Lei
r=Y &[Skl € GoHZ)

AETT,
with coefficients §x € Z for X € 11, and let p € I'cp gy (n). Then we have

bgrOJ (H.(Anilz)(x) = Z €>\ [S(/\Q,a)]‘

)\EHH’EF(a)
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Proof. This follows from Definition 1.8.15.(i), Definition 1.8.12.(i), Theorem 1.8.11,
Definition 1.8.5, and Lemma 1.8.8.(i). W

Next, the compatibility of the endomorphisms from Definition 1.8.15 and the Brauer

map from Definition 1.7.9 is shown. This also will be required in Section 1.9.

Lemma 1.8.17 Let pi € I'c,(a)(n). Then the diagram

S,a
(S,a) bgroj (H1(4n_)1 ) (S,a)
KO(HAT;_I) > KO(HA;_l)
F,a R F.a
Ko(HL™) Ko
bll;roj (HAn’,1>

with maps from Definition 1.7.6 and Definition 1.8.15.(ii) is commutative.

Proof. This follows from the relation

(HPD) = b (HAY)

Idemp

b.u

Idemp

(see Lemma 1.8.3.(ii)) and the property (1.30) of the reduction modulo I of arbitrary

(%9 _modules on page 49. B

Lemma 1.8.18 Let ji € e a)(n). Then the diagram

S,a
(S,a) b;roj (H,(An,)l ) (S,a)
KO(HA,;,l) > KO(HA,;,l)
- ®sQ - ®sQ
Go(HL") —— Go(H{")
bgroj (HAnLl)

with maps from Definition 1.7.8 and Definition 1.8.15 is commutative.

Proof. This follows from the equation

b#

Idemp

(H(Q’a)) — M

n Idemp

(HE) s 10

in Lemma 1.8.3.(iii) and the formula (1.27) in Lemma 1.2.8. B
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Lemma 1.8.19 Let y € e, a)(n). Then the diagram

Fa
(F (‘1) b!léroj (H,(An,)l ) (F EL)
KO(HA,:,l) > KO(HA,;,l)
Bl Bl
Go(HL") o Go(H")
bgroj (HAn’, 1 )

with maps from Definition 1.7.9 and Definition 1.8.15 is commutative.

Proof. This follows from Lemma 1.8.17 and Lemma 1.8.18. Il

Now the decomposition matrix

H m,K
A”,’C - (dAM >)\€Hn
“enn,eF(&)

will be subdivided into (matrix) blocks by making use of the classification of Specht
modules and irreducible modules of the Hecke algebra Hgf)l into blocks (see Lem-
ma 1.8.10.(iii)). Since, according to condition (1.35).(i), Hfﬁfz is semisimple, Defi-
nition 1.4.17 and Theorem 1.3.21 show that the rows of this matrix are indexed by
the elements of the set II,,. The second statement of the following theorem also can

be found in [JAM2, Rule 5.2].

Theorem 1.8.20 (i) Let DE‘F@ be a composition factor of S(AF?(_Z) with A 6_ IL,
and p € 11, o (a). Then S()\F@) and D?Ra) belong to the same block of Hfii)l

(ii) Let X € II,, and p € 11, ¢,.@). Then we have

Ay # 0= Yep(@(N) = Yer@ (10)-

Proof. (i) According to Lemma 1.8.10.(iii), S(’\Fﬁ) and DéLFﬁ) both belong to a
respective block of Hﬁf""). That both modules lie in the same block follows from
Lemma 1.8.8.(iv).

(ii) This follows from Lemma 1.5.5, statement (i), and Theorem 1.8.11. W

The desired subdivision of decomposition matrices into matrix blocks can be ob-
tained not only for modular systems as hitherto considered, but can be generalized

to others as well. To this end, let

= (Q.0.8.1.a.F)
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be a modular system as in Definition 1.4.8. K is not required to satisfy the conditions
(1.35). Since, on the other hand, the modular system K has all the properties

required from the modular system K, the following definition also is valid for K.

Definition 1.8.21 Let v € I',_)(n). Then the submatriz

AM(v) = M) = AF©) = Al v) = () e

n,e ~(a)

of A?i& is called v-block of Agﬁ.
The following theorem is stated only for IC, it will later be generalized to K.

Theorem 1.8.22 Let m = |T'., ) (n)| and fix an enumeration

L m)

g ey

of the elements of I'c,.@)(n). Furthermore, order IL,, in such a way that for alli,j €
{1,....,m} with i < j the elements of e @ precede the elements of [y er (@,
Finally, order Hn en@ i such a way that for alli,j € {1,...,m} with i < j the

v eF(a) v e (@)

elements of IT, @ precede the elements of 11, @) - With these orderings of the

H JE— 7IC
row and column mdex sets of the decomposition matriz A = (dzﬂ ) - , we
”Enn,eF(&)
have
Ag,c(y(l)) 0
0 AN (™)

Proof. This follows from Theorem 1.8.20.(ii) W

Now, fix indeterminates Y over Q and Z over F. Then we have the modular systems

~

’C(Q@) - (Q(Y)’ ¢Y_&’ S";Y—&’ I"LY—&’ Y’ Q)
and
Ko = (F(2) 0255, o1y, 2. F)

as in Definition 1.6.4, and, according to Lemma 1.6.6, also the following commuta-

tive diagram.
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Hn

(8% A o~
< QW)Y )(F(2),2)
Y)Y -
Go(H Yy - Go(HD)
DM DM
n.K .0 nK(7.5)
, -~ F.a
Go(H2™) Go(HS ™)
DH,@

Furthermore, according to Lemma 1.6.5 and Lemma 1.6.3.(i), the modular systems
IC(QJZ) and IC(F,E) satisfy the conditions (1.35). With this, Theorem 1.8.22 can be

translated to the decomposition matrix

H _ [ mK
An,l€ - (d/\u )Aenn,EQ(&)

“€H7L,5F(é)

associated with the modular system K.

Theorem 1.8.23 Let m =

L. @) (n)‘ and fix an enumeration

of the elements of I'._@ @(n). Furthermore, order Hne (&) i such a way that for

: v F(a)

all i,7 € {1,...,m} wzth 1 < j the elements of H (@) precede the elements

v e
of I1 e’ 5)( ). Finally, order Hne

with © < j the elements ofH ’(F)( precede the elements ofH jg)(a). With these
orderings of the row and column index sets of the decomposztwn matriz A" . =

n, K
n,K
(d/\u >A€Hn,eQ(a)7 we have

pell

) in such a way that foralli,j € {1,...,m}

)

i

n,e (@)

0 AZ}I@(V(’”))

Proof. From Corollary 1.6.7 we get

AR AT = AT
nKga ™k k(g
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Furthermore, according to Lemma 1.6.5 and Lemma 1.6.3.(i), the modular systems

IC(Q@) and ]6(}57&) satisfy the conditions (1.35). Thus, the matrices

AH;@ ) — dne (Q,a) and AH}@ = d779 (F,a)
A Q.a) nely (G nelly,

eenn,eQ(d) Gennyﬂﬁ(a)

have the form described in Theorem 1.8.22.

If we have ez(a) = oo or ez(a) = oo then the claim follows easily from
Lemma 1.4.9.(i), Theorem 1.3.21.(i), and Corollary 1.5.4. Thus, we assume in the
following

eg(a) €N and ep(a) € N,

Then we get from Lemma 1.4.9.(ii)

This, together with Lemma 1.1.44, enables us to combine for every v € I'._s) (n)

all the blocks A
H _ [ e
An,;a@ﬁ) () = (dna )neniyeé(m

e (@)

eenn,EQ(&)

indexed by a € T'e @) (n) with 7. @) (n) = v to get a bigger block with row index

set
U H“’eé(d) _ H”veﬁ(&)

€T, . (5)(n)
1% ¢ y(

’Yeﬁ(a) (W)=v

and column index set
/"eQ"(a) . I/,eljﬂ((i)
U n,eQ(&) T nep(a)’
MEFEQ(a)(n)

’YeF(E) (n)=v

The row index set of this combined block coincides with the row index set of the

block A
nK s =
AH - V) = d 8) vie(a
n,’C(F,fz)( ) o nerty F@

V,EI::,((:i)

€Il =
n,eﬁ(a)

of AHK indexed by v. Furthermore, the column index set of the combined block
W (F,a)

coincides with the row index set of the — at this point only formally defined —
block

H _ (K _
A () = (dn(, ) e n@)
’ 7]61_[" e~ (a)
o

u,cﬁ(a)

oIl =
n,ei(a)
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of AHK indexed by v. We also note that the column index sets of AH,@ (v) and
n, M F,a)

A:’é(y) coincide. Finally, we have according to Lemma 1.6.5 and Lemma 1.5.8.(ii)

H _
Rukg A””&@,a) N ’H"’e@(a)

From all these properties and considerations, the claim also follows, by using ele-

mentary arguments from linear algebra, in the case es(a), e 7la)eN. B

1.9 Induction of Hecke algebra modules

In this section, we first introduce the notion of induction of modules of a Hecke
algebra of type A,, with m € Ny over a given coefficient pair to modules of the
Hecke algebra of type A,,+1 over the same coefficient pair. Then, we describe the
behavior of Specht modules with respect to induction. Finally, we use induced
projective modules to construct upper bounds for decomposition numbers of Hecke
algebras of type A.

In the following, we fix an n € N\ {1}. Furthermore, R denotes always an

integral domain and ¢ is always a unit in R.

Definition 1.9.1 For m € N\ {1}, x'™ € I1,, is defined as
x™ = (m—1,1).
Lemma 1.9.2 Let m € N\ {1}. Then we have in &,,
Sym =61, m1) = {w € &, | mw =m}.

Proof. This follows immediately from Definition 1.1.55. See also (1.2) on page 1. B

According to Lemma 1.9.2, the inclusion
Gh1—6, w—weG,withnw=n

maps &, isomorphically onto the subgroup &, m of &,,. This inclusion induces

an inclusion of algebras
defined by

for T, € Hffl’f)z with w € &,,_;. This follows from the construction of the Hecke
algebras of type A in Section 1.2.
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Definition 1.9.3 The inclusion of algebras

Ho  _ HEY 4 (Ra) (R.q)
U ZH(R o f M, = H T

defined by
T, — T, € H(R Q)

for T, € Hfﬁ’fl with w € &,,_1 is called the standard inclusion of Hﬁi’g into H&i’i})l

or, for short, the standard inclusion.

q)

From now on, H' A, 1s con51dered a subalgebra of H{* A, by means of the standard

@) (R Q)

inclusion. Thus, H can be considered a left H( —module and a right H

,q)

module at the same tlme and the functor — ®,H(R @ H A, can be constructed. Thls

functor can be applied to right H! A, ’Q) -modules to obtam right H modules

Definition 1.9.4 Let M be a finitely generated right H(A}?fl -module. Then the right

Hff’q)l -module M ®, (r.q) H;R’q)l is called the Hff’q)l -module induced from M. This
n— n_1 n— n—

1s denoted by

H%R,q)

(Ra) _ Hn
M ®H£f‘i’({> HAn—l =M Hn-1 M H;’i"lﬂ ’

As in the case of group algebras, the induction of Hecke algebra modules has the

following useful property.
Lemma 1.9.5 The map

H(AR q) @yt HA — H(Rq T @y (ha) Y = LY (1.37)

s an isomorphism of right HA -modules.

Proof. According to [CR1, (2.16)], (1.37) is an isomorphism of left H,,_;-modules.
Furthermore, it follows directly from (1.37) that this map is compatible with the
natural right H,,-module structure on H,, given by multiplication. This shows the

claim. W

According to Lemma 1.1.56 and the property (1.22) on page 34, HE A, if con-
sidered as a left H An’fg—module, is free over H An’(_IQ with the basis {T Y ) de Dx(n>} .

This shows that the functor — ®, (r.q HELXR’Q)I is exact (see [CR1, §2D]) and thus
n—1 n-
induces a homomorphism between the Grothendieck groups of the algebras under

consideration.



1.9. INDUCTION OF H4-MODULES 83

Definition 1.9.6 We call the homomorphism

(R,q)
T = < Guln) = Gt

ot :
determined by
g, = [0 = e[
for [M] € M(H(A}i’fl) the induction homomorphism for Grothendieck groups.

There also is an induction homomorphism for projective class groups. We see

from Lemma 1.9.5 that induction of free right Hfﬁ’g—modules gives free right H&i’f)l—

modules. Thus, induction of a projective right H(Xi’g—module gives a projective

right Hfﬁ’f)l—module (see [CR1, §2D]). This fact, the compatibility of the functor

— ®,,(Ra) HE4R’Q)1 with direct sums of right H;R’qi-modules, and Definition 1.7.1 show
n—1 n- n—

that the following definition is meaningful.

Definition 1.9.7 We call the homomorphism

(R,q)
T, =i Ral) — o)

iy

determined by
(R,q) (R,q)
P, = 1P| = 1P| )

n—1 n—1

for [P] € P(Hfﬁ’g) the induction homomorphism for projective class groups.

Next, the behavior of Specht modules with respect to induction is described. To
this end, the following lemma uses Definition 1.1.19 and Definition 1.1.20.(i).

Lemma 1.9.8 Let A = n — 1. Furthermore, let K be a field and choose an r €
K\ {O0k}. Then we have in G0<HE4I:2)

A MG
[S(K,r)] THQK&T) = Z [SélK,r)]'

REXT
Proof. This follows from [DJ1, Section 7]. If we write
A= (A1, \)
with A > 0 for an appropriate k£ € N and put

~

A= A D) =AU(k+1,1) Fn
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then we have, with the notation from there,
A Hn QAN
S(KvT) THn—l - S .

Now, in [DJ1, Section 7], a series of submodules of the module SM is constructed
such that, with the notation from there, the subquotients are certain modules S**
for every p € A T. Each of these modules occurs with multiplicity 1. The argumen-
tation in [DJ1, Section 7] makes use of the fact that the coefficient ring is a field
(see in particular [DJ1, Theorem 7.4]). Furthermore, one has for every u € A |
P G

St =S (K.r)-

This shows the claim. l

Remark 1.9.9 The result used in the proof of the preceding lemma is generalized
in Chapter 3 to arbitrary integral domains as coefficient rings (see in particular
Theorem 3.11.2 and its proof). Thus, the preceding lemma also holds for Hecke

algebras and Specht modules over such coefficient rings.

Now the behavior of projective indecomposable modules with respect to induc-

tion is considered. To this end, let
K=(@Q.¢,51,a,F)
be a modular system as in Definition 1.4.8 with the following properties.

(i) The algebra H;n’fz is semisimple.

(ii) The discrete valuation ring S is complete with respect to the valu- (1.38)

ation ).

Property (i) and Theorem 1.3.21.(i) show that the algebra H(An’fg also is semisimple.
Furthermore, this choice of I makes available the results from Section 1.7 and
Section 1.8. By combining these and the preceding considerations on the induction
of modules, an upper bound for the entries in a block of the decomposition matrix
ATty (see Definition 1.8.21) will be derived from the entries in the decomposition
matrix AJ* | - in the following.

First, the compatibility of the Brauer map from Definition 1.7.9 and the induc-

tion homomorphisms from Definition 1.9.6 and Definition 1.9.7 is shown.

Lemma 1.9.10 Let R be an integral domain and choose a unit ¢ € R. Let R be
another integral domain and let € : R — R be a ring homomorphism. Then the

diagram
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H 0
(Ra) ity (Ra)
q - q
HAn—2 g HAn—l
—Q®Qr R —Qr R
(R&(q)) . (R&(q)
HAn— R " HAn—l
HRE@)
1
R,
H;{f%(‘l))

with maps as in Definition 1.9.3 and (1.25) on page 36 is commutative.

Proof. This follows by considering the bases {T,, | w € &,,_1} and {T, | w € &,,}
of the algebras occurring in the diagram. Every homomorphism occurring in the
diagram maps such a basis element of one algebra to the corresponding element of

another algebra. B

Lemma 1.9.11 Let R be an integral domain and choose a unit ¢ € R. Let R be
another integral domain and let € : R — R be a ring homomorphism. Finally, let

m € N and choose an idempotent [ € Hifi)l. Then we have
R, 5 R,
(559 0 e~ ( 1) M
as right H;ﬁé_(f))-modules.

Proof. If we put
My = FH

then we have the natural inclusion of right HED_modules
if: My — HRD),

An application of — ®g R to this map together with Lemma 1.2.7, Lemma 1.2.8.(i),

)

and Lemma 1.2.8.(ii) produces the homomorphism of right HEEO) _modules

Because of the compatibility of — ®p R with the multiplicative structures on H D)

and H,(f (@) (see equation (1.26) on page 36), we have for this latter homomorphism

(iy @ridg)(M; @g R) = (f @r 1) HFED),
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Furthermore, an application of — ®g R to the decomposition

ng’q) = if(Mf) ) <<1H54R,q) — f) Hﬁf’q)>

together with Lemma 1.2.7 and Lemma 1.2.8.(iii) shows that iy ®p idj is again an
inclusion. Thus, ¢y ®p idz maps the module ( fH RQ)> ®g R isomorphically onto

the submodule (f ®r 13) (Re@) o gy FE@) i proves the claim. W

Lemma 1.9.12 Let R be an integral domain and choose a unit ¢ € R. Further-
more, let f € H(fi’i}l C Hiﬁ’lj)l be an idempotent. Then we have

R, R, R,
(FHED) @m0 HED) = pH
as right H modules

Proof. The proof is analogous to that of Lemma 1.9.11. We have the natural

inclusion of right H 9_modules
gy SR = 1D

If we identify H\? By HP and HY using the isomorphism (1.37) from
Lemma 1.9.5, an application of — H(R @) HED 1o Jf produces the homomorphism

of right H{"”-modules
(PR 0
By using (1.37), we get for this map

(U @yt inglRm)((f Hgﬁ’f)) Dy HILED) = FHID.

Furthermore, an application of — Q. (r.0) H,(lR’q) to the decomposition

HD = (PR @ (L0 — £) HD)

together with Lemma 1.9.5 and the compatibility of — ®, r.q HED with direct
n—1
sums (see [CR1, (2.17)]) shows that j; ®, (r¢ id, (e is again an inclusion. Thus,
n—1 n
Jf @y (Ro) id,H(R,q) maps the module <qu(ﬁ’f)> @y (Roa) HSLR’Q) isomorphically onto the
n—1 " n—1
submodule fHY of H{*®. This proves the claim. W

Lemma 1.9.13 The diagram
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S,a n-1 _ S,a
Ko(H$™) - Ko(Hy™)
Fa - Fa
Ko(H") ——  Ko(H")
Hy
T

15 commutative.

Proof. From Lemma 1.7.3.(iii) we see that it suffices to show the commutativity
for the elements of the basis {[P(’}gﬂ)] ‘ A€ Hn—LeF(a)} of Ko(H®%). Fix a basis
element [P(%,a)] with a projective indecomposable module P(%,a) for a p € I, 1 ¢, (a)-
According to Lemma 1.7.3.(i), there is an idempotent f* € Hés_’alt) such that P(*fg 0 =

A and thus also [Plsal =1 FPHEY] hold. Now the claim follows from the

n

(S,a) B T — (F,a)
calculation of the images [P&@]&ES " and <[P(li€,a)]> TZZF o of the isomorphism

class [P(lfs,a)] by using the representative f"H,(fl(i), Definition 1.7.6, Definition 1.9.7,
Lemma 1.9.10, Lemma 1.9.11, and Lemma 1.9.12. B

Lemma 1.9.14 The diagram

H’(ns,a)
(S.a) |y (S.a)
KO(HA:;) > KO(HA,;:)
- ®sQ - ®sQ
Go(H™) - Go(HP)
H@w

15 commutative.

Proof. The proof is analogous to that of Lemma 1.9.13. From Lemma 1.7.3.(iii)
we see that it suffices to show the commutativity for the elements of the basis
{[P(/\s,a)] ‘ A€ anl,ep(ﬁ)} of Ko(H™). Fix a basis element [P(5,q)) With a projective
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indecomposable module P for a ,u € II,,_1 .- According to Lemma 1.7.3.(i),

there is an idempotent f" E H such that P’gﬂ) ~ f“HnSfi and thus also

n— 1 (
[P(’fga] [ f“H(Sa] hold. Now the claim follows from the calculation of the im-
ages ([P(Sa)ﬂzi“ > ®g @ and ([P,Sa | ®s Q)T (ZZ; of the isomorphism class

[P ] by using the representative f“Hn 1, Definition 1.7.8, Definition 1.9.6, Defi-
mtlon 1.9.7, Lemma 1.9.10, Lemma 1.9.11, and Lemma 1.9.12. B

Lemma 1.9.15 The diagram

HSLF,&)

(Fa) 1ty (Fa)
KO(HA,;(jQ) > KO(HA,::)
Btk B
Go(H( 7a)) > G (H( ,a))
An—2 H(an) 0 An—l

IH;Q’?

18 commutative.

Proof. This follows from Definition 1.7.9, Lemma 1.9.13, and Lemma 1.9.14. W

Now the decomposition of induced projective modules in projective indecom-
posable modules is described in more detail.

Lemma 1.9.16 For an m € N, [H(Sa e KO(H(AS:L) has a decomposition
i) = (U] + -+ [U]

in isomorphism classes of projective irreducible right H(Asfi)l -modules Uy, ..., U, with
a z € N. The summands are uniquely determined up to ordering. For any given
decomposition

M ] =i+ + V]

of [H(Sa | in isomorphism classes of projective right H;

m— 1:|

Sa) -modules Vi, ...V, with

ay €N, there is a decomposition

(1,....2}=JU---UJ,

of the index set {1, ..., z} in pairwise disjoint subsets Jy, ..., J, such that, for every
ie{l,...,y}, we have in Kg(Hi‘Sj_)l)
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Proof. According to property (1.38).(ii), H satisfies condition (i) in [CRI,
Theorem 6.12]. Thus, that theorem can be applied to finitely generated HSE’“)-
modules. Now this theorem, the fact that HP _direct summands of HE® are
projective (see [CR1, §2D]), and Definition 1.7.1.(ii) prove the claim. W

Lemma 1.9.17 Let v € I'.,@a)(n).

. , ( o
(i) Let pu € I —1ep@- Then bPrOJ(HAQ )(B%K([P&,a)ﬂH(m))) G()(H ,1) can

n—1

be written as

5 a (Fa)
s M DB (Pa) [0 = 0 SuBSP) (139
" vep(a)

nEHn,eF(a)

v,er(a)
n,eF(d)

with uniquely determined coefficients f,., € Ny for n € 11

(ii) Let n € H:Zi((?) Then there is a p € Il,,_1 ¢, ) such that we have for the

corresponding coefficient f,, in (1.39)

Jun > 0.

Proof. (i) According to Lemma 1.7.2.(iii), Lemma 1.7.2.(iv), and Definition 1.9.7,
the element [P(‘}’a)w%z_ € Ko(H™) can be written as

1

Phal ¥ = D fulPlg)

neHn,eF (a)

with uniquely determined coefficients f,, € No. Now an application of bp,; (H)
from Definition 1.8.15.(ii) together with Lemma 1.8.10.(iii), Definition 1.8.5, Lem-
ma 1.8.8.(i), and Theorem 1.8.11 leads to

Uona (RPN (Pl [ ) = D2 Funl Pl

viep(a)

nell, )

Lemma 1.7.2.(iii) shows that the coefficients on the right hand side of the preceding
equation also are uniquely determined. Now an application of the Brauer map BZjK

from Definition 1.7.9 gives

Bl ooy M) (Pl [H ) = D2 Fun Bl ([Pl

v,ep(a)

nell, o a)
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Because of the injectivity of BZ:,C (see Corollary 1.7.18), the coefficients on the
right hand side are again uniquely determined. Furthermore, we have according to
Lemma 1.8.19

BZfK:(b;rOJ (H Fa))([P(l},a)]ngfl )) = b%rOJ (H @ a)><BZL—flC([P(l;«",&)}T%271 ))

All this proves the claim.

(F,a)

(ii) According to Lemma 1.7.2.(i), there is an idempotent f7 € Hy ™ such that

Fa) ~ an (F,a)

holds. Since f”H,(lF’a) is a direct summand of H{ (see [CR1, §6A]), it follows
from Definition 1.7.1.(ii) and Lemma 1.9.16 that [P, ] occurs in the representa-
tion of [HY"] € Ko(HS™) with respect to the basis { ‘ A€l epa } from
Lemma 1.7.2.(iii) with positive multiplicity. Furthermore, we get from the decom-
position
) = (0] + o+ (U

of [H(Fa)] € KO(H(F@)) in isomorphism classes of projective indecomposable mod-
ules Uy, ...,U, with a z € N as in Lemma 1.9.16 by applying the map - T H._, from

Definition 1.9.7 and using the relation
(Fa ~ a
HED [ = (P
(see Definition 1.9.4 and Lemma 1.9.5) the decomposition

D] = [0 [+ O]

of [H"] € Ko(H™) in isomorphism classes of projective modules. Thus, ac-
cording to Lemma 1.9.16 and Lemma 1.7.2.(iii), there are a j € {1,...,z} and a
€ 1,1 ¢ (@) such that

o
U; ~ P(Fa)

holds and furthermore [P(”F )] occurs in the representation of

Pho) [H6, = 05 [30) € Ko(r)

with respect to the basis {[P(’}; a)] ’ Aell,, F(a)} with positive multiplicity. Now the
claim is proved by applying bPrOJ(HnF’a)) followed by BJf to [P("F )] and [P )] T%Z )
and making use of Definition 1.8.15.(ii), Lemma 1.8.10.(iii), Definition 1.8.5, Lem-
ma 1.8.8.(1), Theorem 1.8.11, Lemma 1.8.19, and the fact that the coefficients oc-
curring on the right hand side of (1.39) are uniquely determined. B
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Next, an upper bound for the decomposition numbers in a block of the de-
composition matrix A’ (see Definition 1.8.21) is derived from the entries in the
decomposition matrix AKLK by means of induced projective indecomposable mod-

ules.

Theorem 1.9.18 Let v € T'c,@)(n). With this, put for every A\ € 27 @ gnd
everyn € I'e,@(n —1)

vier(a)

Furthermore, set for every A € 11,
Hy =max {E\,|n € le,@n—1)}.
In addition let
J, = max{H)\ ‘ AE H;’EF((’)} .

Finally put
U, -1 = max {d’;_l’lc ‘ rell, 1,pe anl,ep(a)} )

v,er(a)
n,ep(a)

ZIBF

Then we have for every A € 11 ) and every p € I1

dyr < J U1

This is equivalent to say that J,U,_1 is an upper bound for the entries in the v-block

I
AZJJC(V) = <d7;\L/L >>\en;’eF(‘_1) Of AZ’L_‘JC

v.ep(a)

el ep (@)

Proof. Fix a 0 € TI," (Zf We see from Lemma 1.7.16.(iii) and Theorem 1.8.20.(ii)

that BZ;,C([P(GF 1) € Go(H{®™) has the representation

Bl(Pra) = D 4y [Siga) (1.40)

AelT °F (@

with respect to the basis {[S(AQG)] ‘ S Hn} from Lemma 1.4.3.(1). Furthermore,
according to Lemma 1.9.17.(ii), there is a 1 € II,,_1 ¢, (5) such that BZ},C([P("F 1) oc-

curs in the decomposition (1.39) of bf,; (7‘(7(1 ’a))(BZf,C([ FCL)]THYL 1)) € Go( %Q’a))
from Lemma 1.9.17.(i) with positive multiplicity. Let

braoy () Bl (Pl |7 ) = 20 onilSion] (1.41)

Ael, o F @

be the representation of the element bp,; (HY ’a))(BZf,C([P&a)]THn ) € Go(Hn (@)

with respect to the basis {[S(’\Q’a)] ‘ AE Hn} with uniquely determined coefficients
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9y € Np. Tt follows from Lemma 1.8.16 that only indices A € I @ oceur
on the right hand side of (1.41). Furthermore, it follows from Definition 1.9.7,
Lemma 1.7.2, Definition 1.7.9, Definition 1.7.6, Lemma 1.7.3, Definition 1.7.8, and
Definition 1.8.15 that the coefficients on the right hand side of (1.41) are non-
negative. The decomposition (1.41) is obtained from the representation (1.39) in
Lemma 1.9.17 by substituting decompositions of the form (1.40) for the summands
BZ:,C([P(’}@)]) with k € HZZ ((?) Since all coeflicients involved in this process are
nonnegative (see Definition 1.4.17) and B} ([P(eFa)]) in fact occurs as a summand,

we get from this

VA € TIer@ . gl < g,y .

Since 0 € HZ?; ((?) was arbitrarily chosen, it suffices for the proof of the claim to
show that

YA€ 127 @ € Ty 1 epia) : Gou < JoUno1. (1.42)

In order to prove (1.42), we now express the coefficients g,, in terms of the
entries of the decomposition matrix AZZ‘?LK. Fix a p € II,,_1 ¢,.(a). According to
Theorem 1.8.11 and Definition 1.8.12 — applied to Hecke algebras of type A,_o—
the projective indecomposable module P“ hes in the block of H( 1 ) indexed by

the core
N = Yer(a) (,u)a

and according to Lemma 1.7.16.(iii) and Theorem 1.8.20.(ii) — applied again to
Hecke algebras of type A,,_o — we have in GO(H(Q’“))

n—1

Bn 1IC([P(M )]): Z dn UC Qa)]'

et
By using Lemma 1.9.15 and Lemma 1.9.8, we get from this

(F,a) (Q,a)
BZ&([P{‘F@MF,?) - (B;*_I,K<[Pg;a)1>)b%

n—1

=2 ) [Sal

perreF (@ Aew]
e

By applying b%,; (H(Q )) and using Lemma 1.8.16, we obtain now

braoy () Bl (Pl [ ) = 2 a7 (Sl

et er @ AernILy F (@
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By using Definition 1.1.20 and Lemma 1.1.21, this double sum can be rewritten

such that we get

(1.43)

= > Yo & S,

Aemy “F @\ wexnmeF @

Because the coefficients in the decompositions (1.41) and (1.43) are uniquely deter-

mined (see Lemma 1.4.3.(i)), we have now for every A € II,;°" @)

= Z d;z;l,K

n,ep (@)
KEXNITEE

< Upoy [A | NITEEE®
= U, 1By,
< U,-1H),
< U,-1J,.

Since p € I,y ¢,.(a) Was arbitrarily chosen, this proves (1.42) and thus the claim of
the theorem. Wl

In Section 2.1, the preceding theorem will be applied to the blocks of decomposition

matrices indexed by the core (0) and having ep(a)-weight 3.

1.10 The Theorem of Schaper for Hecke algebras
of type A

This section describes the generalization of the Theorem of Schaper from group
algebras of symmetric groups to Hecke algebras of type A. The result for group
algebras of symmetric groups can be found in [SCH]. The generalization to Hecke
algebras of type A has been done by James and Mathas in [JM] where the following
material is presented in more detail.

The Theorem of Schaper is a useful tool for determining decomposition numbers
of Hecke algebras of type A in an inductive manner. It involves the bilinear form
from Definition 1.3.16 and rim hooks in partitions. For the following we fix an

n € N. Furthermore, we choose a modular system

K=(Q,v,S1,a,F)
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n—1 : ( : )

Part of the following holds under weaker assumptions on C, but this degree of
generality will not be required here.
First we describe the Jantzen filtration of Specht modules. Filtrations of this

kind have been investigated by Jantzen in [JAN].

Definition 1.10.1 (i) For j € Ny we define
1V = {z € Q\ {00} | ¥(z) = j} U{0g}.

(ii) For Ak n and j € Ny we define

S(As,a)(j) = {$ S S()\S,a) Vy € S(>\S,a) : /y(AS,a) (z,y) € ](j)} .
Lemma 1.10.2 (i) We have IV =5, IV =], and
055 @ 5.
For every j € Ny, IV is an ideal in S.
(i) Let A+ n. Then we have S()‘S,a)(()) = S()\S@) and

S()\S,a)<0) 2 S(/\S,a)(l) 2 S()\S,a)(2> DI

For every j € Ny, SE\S7a) (7) is an S-submodule and also an Hﬁ(f)l—submodule
of Sf\s,a)'

(i1i) Let A+ n. Then we have Sg‘&a)(()) = S(’\Fﬁ), S()‘Sﬂ)(l) = rad 7()‘1%), and

S5y (0) 2 85, (1) 2 53y(2) 2 -+

For every 5 € Ny, S(’\Sﬂ)(j) 15 an F'-subvectorspace and also an Hfﬂ? -sub-

module of S(\F,a) )

Proof. (i) This follows from Definition 1.4.5, Definition 1.4.6, Definition 1.4.8, and
Definition 1.10.1.(i).

(i) The first claim Sy, (0) = S}y, is obtained from the relation I = S in
statement (i). The chain of inclusions follows from the chain of inclusions in state-

ment (i). Furthermore, the fact that S(\S,a) (7) is an S-submodule of S(’\Sﬂ) follows
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from the fact that I¢) is an ideal in S. Finally, the fact that S(’\S (7) is an HE e
submodule of S’\ ) is obtained from Definition 1.10.1.(ii), Definition 1.3.16.(i), Def—
inition 1.3.8, and [DJl, Lemma 4.4].

(iii) The first claim S()‘Sya)(()) = S(/\F,a) follows from Lemma 1.5.2 and the rela-
tion S(/\s,a)(o) = S(\s,a) in statement (ii). The second claim S(\s,a)(l) = 1:ad fy(’\Fﬁ) is
obtained from the relation I(!) = I in statement (i), the relation F = S = S/I in
Definition 1.4.8, Definition 1.3.16.(iii), and the following compatibility property of
the bilinear form v* and the reduction modulo I (see Definition 1.4.14).

VZL', Y€ S(/\S,a) : 7()\5@) (ZL‘, y) = P)/()\F,Fz) ('fa g)

This in turn is obtained from Definition 1.3.16.(i), Theorem 1.3.2, Remark 1.3.7.(i),

and the following analogous property of the bilinear form *.

Vd,d € Dy : By, (@8 Ty, a5 Ty) = By (@8 Ty, 257 Ty)

This finally follows from Definition 1.3.8. The chain of inclusions is obtained from
the corresponding chain of inclusions in statement (ii) by applying reduction modulo
I. Similarly, the fact that S(\s o (J) is an F-subvectorspace and an H —submodule

of S()‘F o) 1s obtained from the analogous claim in statement (ii). A

Definition 1.10.3 Let A+ n. Then the filtration

Stray = Sl5.ay(0) 2 Sl 0 (1) 2 S759(2) 2 -+

of S(’\F@) with the Hfif)l -submodules from Lemma 1.10.2.(iii) is called the Jantzen
filtration of Sf\p,a)

In order to state the Theorem of Schaper, we next introduce an indexing scheme for
the isomorphism classes of Specht modules in the Grothendieck groups GO(H%;?J

with m € N by means of 3-sequences.

Definition 1.10.4 Let (1, ...,[.) be a finite sequence of length ¢ € N with entries
B; €Z forj € {1,...,c} such that {B1,..., 0.} #{0,...,c— 1} holds.

(i) If the numbers [3y, ..., 3. are all nonnegative and pairwise distinct, there is a
w € &, such that the sequence (B, - - -, Pew) s strictly decreasing and thus
a (3-sequence for an appropriate partition A of m with an m € N. With this,
the element S((1,...,0.) of GO(HELﬁ’f_)l) is defined as

SBr,. . B) = (1) [Sha].
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(ii) If some of the numbers (31, ..., . are negative or equal to one another, then

for every m € N the element S(f,...,[0.) of Go(Hgf_)l) is defined as
S(ﬁl,. . ,60) — 0

Remark 1.10.5 The condition {1, ...,0.} # {0,...,c¢— 1} in Definition 1.10.4
excludes the possibility that rearranging the sequence (05i,...,[0.) produces a [3-

sequence for the partition (0).

Now the Theorem of Schaper for Hecke algebras of type A can be formulated. The

formulation makes use of Definition 1.2.2.(i).

Theorem 1.10.6 Let A\ = (A, \a,...) F n with N = (N, \,,...) and let § =
(B1,...,0:.) be a B-sequence for \. Then we have in Go(Hfﬁa)

A AL A
SA ) = r k) — r>‘.k .
jGZN[ (S’a)(]ﬂ k=1 i=1 j;I( ‘ " Q/J(H v )Ha)> (1.45)

(ﬁla s 7ﬁi—17ﬁi + }rf\],k){ ,5“.1, Ce
: 76j—17ﬁj - ‘r?j,k)} 7ﬂj+17 cee 7ﬂc>~

Proof. From the semisimplicity of H'Z* (see (1.44)) and Theorem 1.3.21.(i) we get
eg(a) > n.
This shows together with Definition 1.2.2
VEk e {l,...,n}: K], # 0g.

From this and Definition 1.1.14 we see that the differences involving the valuation
in formula (1.45) are well defined. Now the claim is obtained from [JM, Theorem 4.7
and Theorem 4.13]. W

Remark 1.10.7 The right hand side of the identity (1.45) is a finite sum repre-
senting an element of GO(H(Fa ). This shows that the sum on the left hand side of

that formula contains only finitely many summands different from 0.

The following corollary restricts the identity (1.45) to a block. It makes use of
Definition 1.1.38 and Definition 1.8.15.(i).
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Corollary 1.10.8 Suppose that Hfﬁfi 1s semisimple and S is complete with re-
spect to the valuation 1. With the notation from Theorem 1.10.6, let furthermore
= Yer@(A). Then we have in GO(H(Ai’Ej)l), again with the notation from Theo-
rem 1.10.06,

> 15350 0)]

jEN
=222 (vl = vllrtwll,) - (1.46)

Fa
bgrOJ An )1) (ﬁla"'aﬁiflaﬁi—i_‘rz\j,k;)|>ﬁi+la"'
A
"7ﬂj—17ﬁj - ‘T(Jlg)

oy Be)-

Proof. 1f we apply the homomorphism b, (HE™Y - Go(HP™) = Go(HE™) from
Definition 1.8.15.(i) to both sides of the formula (1.45), we obtain for the left hand
side by using Definition 1.8.5, Lemma 1.8.8.(iv), Lemma 1.8.10.(iii), Theorem 1.8.11,
and Definition 1.10.3

ooy (D[S D) = 3 (oo (P (S0 G

jeN JEN

= D 1% 0 ) Wgennp ()]

jEN

= Z[S(As,a) (])]

jEN
This proves the claim. l

Remark 1.10.9 (i) According to Lemma 1.1.24 and Lemma 1.1.25, the con-
struction of the sequence
(Brs- -, Bicr, B + ‘Tf\j,k)} s Bty -5 Bi—1, 85 — |7”Z\ ) 5 Be)  (1.47)

from the (B-sequence ((1, ..., ;) in the identities (1.45) from Theorem 1.10.6
and (1.46) from Corollary 1.10.8 can be interpreted in such a way that one

removes the rim hook r()‘j k) from X\ and tries to add a rim hook r with

Ir| = |r2\j7k)‘ and max {Z‘ (1,k) € r} =1
to \. If this is possible, one obtains because of
min{~ (7, /;:)Erjk)}—j>z

by rearranging (1.47) a [(-sequence for a p b n with u > X\ (see Defini-
tion 1.1.4.(ii)).
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(i) Suppose that H&ﬁfi s semisimple and S is complete with respect to the val-

uation . Then Corollary 1.10.8 can be used to determine decomposition

numbers dZéK with n € 1L, and 0 € 11, o .(a) in the following way.

Let A\ n and p = e, @ (X). With this let

[rad ’7()\F,a)] = Z aV{DE/F,a)]
VEH“’EFE(:IZ
n,ep(a

and

Y Skl = > b[Dig] (1.48)

jeN mep(a)
! vell o a)

be the representations of [rad fy(AF’C_L)] and ZjEN[S()\S,a) (7)] in GO(HXZ’?I) with

respect to the basis {[D?F,a)] ‘ K € Hn,eF(a)} from Lemma 1.4.2.(i) with coef-
ficients a,,b, € Ny for v € 7@ From Definition 1.3.16.(iii), Defini-

n,ep(a)”

tion 1.10.8, Lemma 1.8.8.(iv), and Theorem 1.8.20 we see that the indices
in the sums on the right hand sides of these decompositions can be restricted

to the p-block. Now we get from Definition 1.3.19, Theorem 1.53.20.(1), and
H/J"eF(a‘)

Lemma 1.5.7 for every v & nen(a)

a, =dyc =0 if VI,

a, =0 and dyN =1 if v=\ (1.49)
a, = dy if v,
the case v = X occurring only for an ep(a)-reqular \. We also get from
Lemma 1.10.2.(iii) for every v € ngg
a, <b, and  a,=0<b,=0. (1.50)

Now if the coefficients in the decompositions

[Stea) = Y diF[Dleg)

mep(a)
VEHn,eF(EL)

(see Lemma 1.5.5) for k € HZ’EF(EL) with k > A are known, they enable us to

7€F(a)

calculate the coefficients in the decomposition (1.48) by using statement (i)
and the formula (1.46). In turn, from these coefficients b, with v € [1er (@)

n,ep(a)

we get by means of (1.49) and (1.50) conditions on the decomposition numbers
A5 with v e T4

n,ep(a)”
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If these decomposition numbers dﬁ;’c with v € I Z‘; Eg can be completely de-

termined, the decomposition

n,IC v
[S()\F,a)] = Z dAy [ (F,a)]
Hep(a)

VEHn,eF(E,)

1s available and can be used as above on the right hand side of the identity
(1.46) to derive conditions on the decomposition numbers d%* for k € [1eer(@

with A > Kk and v € HZE?EZ; This shows how Corollary 1.10.8 and induction
on the partial ordering > on the set Hﬁ’eF(a) can be used to get information

on the decomposition numbers d* with x € " and v € 11" o Eg
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Chapter 2

Blocks of Hecke algebras of type A

having weight 3 and empty core

This chapter investigates the decomposition numbers belonging to certain blocks of
Hecke algebras of type A. The central results describe an algorithm for the explicit
calculation of these decomposition numbers (see Theorem 2.2.1) and their depen-
dence of the underlying modular system (see Theorem 2.2.10). Further important

results are Theorem 2.1.8 and Theorem 2.1.11.

2.1 Bounds for the decomposition numbers

In this section we consider blocks of various Hecke algebras of type A whose as-
sociated core is the partition (0) of 0, that is, the empty partition. The degree of
the Hecke algebras under consideration is such that the weight of these blocks (see
Definition 1.8.12.(ii)) is 3. We will determine bounds for the values of the entries
of the associated (0)-blocks of the decomposition matrices (see Definition 1.8.21) of
these Hecke algebras. These bounds will be used in the next section to show how
these matrix blocks can be calculated explicitly.

In this section, n € N is a positive integer. Furthermore,
IC = (Q7 w’ S7 ‘[7 a? F)
denotes a modular system as in Definition 1.4.8 satisfying the following conditions.

(i) The algebra H(Acifi is semisimple.

(2.1)

(ii) The discrete valuation ring S is complete with respect to the valu-
ation 1.

101
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The main result first will be proved for modular systems of this kind and then will
be generalized to arbitrary modular systems by means of Corollary 1.6.7.

Next we describe some properties of blocks having er(a)-weight 0, 1, or 2. These
properties will be required later. The following three statements make use of Defi-

nition 1.8.21. The next lemma covers blocks having ep(a)-weight 0.

Lemma 2.1.1 Let v € II, N ey g(n). Then we have for every entry dggc of
Alklv) = (di}f > wener@ withn € I and 6 € TLS"()

n,ep(a)
v.ep(a)

HEH'IL,CF(E,)

dly € {0,1}.

Proof. Since the ep(a)-core v is itself a partition of n and because of Remark 1.1.36,
we have
yer@ = 2er® — )

TL,GF(

With that, we get from Lemma 1.5.7 and Lemma 1.4.2.(i)

Al(v) = () = (1).

This proves the claim. W

The following lemma covers blocks having ep(a)-weight 1.

Lemma 2.1.2 Let n > ep(a) and let v € 11, @ N Lep@(n). Then we have for
every entry d%c of Al (v) = d’;f) ert With 1) € 2@ gnd 0 e HTuL,ep(a)

SEF (a’)
viep(a)

“EnnvEF(é)

dyc € {0,1}.

Proof. See [JAM2, (3.12) and Theorem 6.5]. W

The next lemma covers blocks having er(a)-weight 2.

Lemma 2.1.3 Let n > 2ep(a) and let v € 11, 9@ NTep@(n). Then we have for
every entry dZé’C of Al (v) = (d’i’f) L erte With 1 € 2@ gnd 0 e T0er @

n.er (@)
viep(a)
n,ep(a)

dryc € {0,1}.

peIL

Proof. This follows from [RIC, Conjecture 4.7]. That conjecture in turn is proved
by Theorem 1.10.6 (see also [JM]). B

Now we are in a position to investigate blocks having ep(a)-weight 3. To this
end, we assume

er(a) < oo
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until further notice. Furthermore note that, according to Definition 1.2.2.(ii), we
have ep(a) > 2. With this, we first introduce a useful notation for the partitions
in such a block. This notation comes from [MR2]. According to Lemma 1.1.41,
given an abacus a for the ep(a)-core indexing a block having er(a)-weight 3, one
obtains an abacus for a partition in that block by moving three (not necessarily
pairwise distinct) beads in a within their respective columns one place in the upward
direction. Doing this in all possible ways produces abaci for all partitions in the
considered block. This shows together with Remark 1.1.30.(iii) that the notations

introduced in the following definition indeed represent the partitions in that block.

Definition 2.1.4 Let n > 3ep(a) and v € Il 3.,@) N Lep@(n) and choose an

abacus a for v having at least three beads on each runner.

(i) Forie€{0,...,ep(a)— 1},
(i)
denotes the partition corresponding to the abacus obtained from a through

movement of the uppermost bead on runner i within its column by three places

i the upward direction.

(ii) Forie€{0,...,ep(a)— 1},
(i,7)a
denotes the partition corresponding to the abacus obtained from a through
movement of the uppermost bead on runner i within its column by two places
in the upward direction and movement of the next lower bead on runner i

within its column by one place in the upward direction.
(iii) Fori,j €{0,... ep(a) — 1} with i # j,
(i, 7)a

denotes the partition corresponding to the abacus obtained from a through
movement of the uppermost bead on runner i within its column by two places
i the upward direction and movement of the uppermost bead on runner j

within its column by one place in the upward direction.

() Fori€{0,...,ep(a)— 1},
(i,1,1)a
denotes the partition corresponding to the abacus obtained from a through

movement of the three uppermost beads on runner i within their column by

one place in the upward direction.
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(v) Fori,j€{0,...,ep(a)— 1} withi # j,
(4,7, )

denotes the partition corresponding to the abacus obtained from a through
movement of the two uppermost beads on runner i and the uppermost bead on

runner j within their columns by one place in the upward direction.
(vi) For pairwise distinct i,j,k € {0,...,er(a) — 1},
(1,7, k)a

denotes the partition corresponding to the abacus obtained from a through
movement of the uppermost beads on the runners i, j, k within theiwr columns

by one place in the upward direction.

Next, we show how the constants H) from Theorem 1.9.18 can be easily deter-
mined by using abaci. The following statement makes use of Definition 1.1.20.(ii)
and Definition 1.1.38.(i).

Lemma 2.1.5 Let n > 1 and ep(a) < co. Furthermore, let A\t n and p, i € X |.
Finally, let a be an ep(a)-abacus for A. Then the following two statements are

equivalent.

(i) For the er(a)-cores of 1 and fi, we have
Ver(@) (1) = Ver(a) (2)-

(ii) There is ani € {0,...,ep(a) — 1} such that abaci for y and i can be obtained
from a through movement of respectively one appropriate bead on runner i

within its row by one place in the downward direction.

Proof. According to Definition 1.1.20.(ii) and Corollary 1.1.33, there is a uniquely
determined

j€{0,...,er(a)—1}

such that an abacus b for u is obtained from a through movement of an appropriate
bead on runner j within its row by one place in the downward direction. Similarly,

there is a uniquely determined

j€{0,... ep(a)—1}
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such that an abacus b for [t is obtained from a through movement of an appropriate
bead on runner j within its row by one place in the downward direction. Thus we
have
(i) & j = J.

Furthermore, according to Lemma 1.1.41, an abacus ¢ for 7., (a)(A) is obtained from
a through movement of all beads in a within their columns as far in the downward
direction as possible. Similarly, an abacus 0 for v, ) (x) is obtained from b and an
abacus 0 for Yer(a)(ft) is obtained from b through movement of all beads in b and b
within their columns as far in the downward direction as possible. The construction

of all these abaci from a shows that ¢ and 9 differ only on runners j and k& with
- j—1 if j>0
) oep(@)—1 if j=0"

More specifically, 0 contains on runner j one bead less than ¢ and on runner k£ one

bead more than ¢. Similarly, ¢ and d differ only on runners j and & with
- j—1 if 7>0
| ep(@ -1 if j=0"

More specifically, 9 contains on runner j one bead less than ¢ and on runner k one

bead more than ¢. From this we get
j=j&e0=0.

Furthermore, the construction of the abaci @ and 9 shows that they contain the

same number of beads. Thus we have according to Remark 1.1.30.(iii)
=0« (i)
This proves the claim. B

Lemma 2.1.6 Letn > 1, ep(a) < 0o, and A = n and choose an ep(a)-abacus a for
M. With that, let for every i € {0,...,ep(a) — 1}

runnert in a
, contains a bead in row j
Li=1¢ J€Ny

that can be moved within its row

by one place in the downward direction

Then we have with the notations from Theorem 1.9.18

Hy=max{L;|i€{0,...,ep(a) —1}}.
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Proof. This follows immediately from the Definition of H) in Theorem 1.9.18 and
Lemma 2.1.5. &

From now on we assume

n = 3ep(a)

until further notice. Then we have (0) € I'c,@G)(n), and thus the Hecke algebras
H(Aci’fz, Hﬁﬁ)l, and Hféi?l have a block of weight 3 with core (0). In order to
manipulate partitions in this block by means of abaci, we fix the following abacus

3 for the partition (0).

ooooo

This abacus contains enough beads for all required manipulations (see Remark
1.1.30.(ii)).

The next theorem also makes use of the notations from Theorem 1.9.18.
Theorem 2.1.7 Let n = 3ep(a) and A € Y Then we have
H, <1.

Proof. Let a be the ep(a)-abacus for A constructed from the abacus 3 for (0) as
in Definition 2.1.4. The claim is proved by applying Lemma 2.1.6 to A with the
abacus a and explicitly considering all cases in Definition 2.1.4.

As an example, we consider the case (i). Then we have

A= <Z>3

with an ¢ € {0,...,er(a) — 1}, and a is obtained from 3 through movement of the
uppermost bead on runner ¢ within its column in the upward direction from row 2

to row 5. Since there is no bead in 3 that can be moved within its row by one place
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in the downward direction (see (2.2)), any bead in a that can be moved within its

row by one place in the downward direction must sit on runner ¢ or runner 5 with

. i+l if i<ep(a) -1
TV 0 i i=ep(@ -1

For the beads on runner ¢, we have two different situations depending on 7 > 0
or i = 0. In the case ¢ > 0, if we have a bead movable within its row by one place
in the downward direction, it will end up in the same row on runner ¢ — 1. In the
case 1 = 0, if we have a bead movable within its row by one place in the downward

direction, it will end up one row below on runner er(a) — 1. These two situations
are displayed in the following picture.

>0 1=0

i—1 i 0 ep(a) —1

In both cases, runner ¢ contains only one bead movable within its row by one place
in the downward direction. This bead is depicted as (). The position occupied by
it after the movement is marked with a x.

Similarly, for the beads on runner j, we have the following two different situa-

tions depending on 7 > 0 or 5 = 0.
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ji>0 j=0

J=1 7 0 er(a) —1

In the case j > 0, runner j contains one bead movable within its row by one place
in the downward direction. This bead is depicted as (). The position occupied by
it after the movement is marked with a x. In the case j = 0, there is no bead on
runner j that can be moved within its row by one place in the downward direction.

With the notations from Lemma 2.1.6, we now have shown all in all
Vk € {O,,ep(a)—l}[/kg 1

and thus

This proves the claim of the theorem in the case A = (7);.
Similar considerations prove the claim of the theorem in the remaining cases of
Definition 2.1.4. &

Now we are able to easily determine all constants required for the applica-
tion of Theorem 1.9.18 to the ep(a)-core (0) and the associated block AM((0)) of

the decomposition matrix AZ;,C, thus obtaining an upper bound for the entries of
AN ((0)).

Theorem 2.1.8 Let n = 3er(a). Then we have for every entry d:;’e’c of the matrix
Al((0)) = <d7;f> sen(@ep@ With 1) € e @ gnd o € 10er@

n,ep(a)
(0),ep(a)

HEHn,eF(E,)

dry € {0,1}.
Proof. According to Definition 1.4.17, we have

n,KC
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Thus, it remains to show d%’c < 1. This can be derived as follows from Theo-

rem 1.9.18. With the notation from there, we get from Theorem 2.1.7
Joy < 1.

Furthermore, it follows from the condition n = 3ep(a), Definition 1.8.12.(ii), Re-
mark 1.8.13, and Definition 1.1.38.(i) that the Hecke algebras of degree n—1 over the
coefficient pairs associated to K only have blocks of ep(a)-weight 0, 1, or 2. From
this together with Theorem 1.8.22, Lemma 2.1.1, Lemma 2.1.2, and Lemma 2.1.3
we get

Un—1 <1

Now we obtain from Theorem 1.9.18
dry < JoyUn1 <1,
as desired. W

Remark 2.1.9 The preceding theorem is proved by Martin and Russell in [MR1]
for the special case of group algebras of symmetric groups (see (1.24) on page 34).

Corollary 2.1.10 Letn € N and ep(a) € {2,3,...} U{oo} withn < 3ep(a). Then

we have for every entry dZéK of the matriz A}l = dﬁf with n € I,, and

Aelln
HEIL, o (a)

NS Hn,eF(Fl)
n,IC
dyy €1{0,1}.

Proof. Because of the condition n < 3er(a), the algebras H ’a), 25’“), and HE™

only have blocks of weight 0, 1, or 2 and possibly a block of weight 3 with associated
core (0). Thus, the claim follows from Theorem 1.8.22, Lemma 2.1.1, Lemma 2.1.2,
Lemma 2.1.3, and Theorem 2.1.8. W

Finally, the preceding corollary is generalized to arbitrary modular systems. To
this end, let
£ - (2.6.5.1.0,F)
be a modular system as in Definition 1.4.8. Then we get from Definition 1.6.4 with
the coefficient pairs (Q,a) and (F,a) and indeterminates Y over Q and Z over F

the modular systems

~

K(Qa&) - (Q(Y)’ wl/—d; S@}ua’ IT/Aiyfa’ Y’ Q)
and A
IC(F,E) = (F(Z)7 1/)Z—(:17 SJ’Z—E“ IQZ;Z_57 Z7 F) .
With these, Corollary 2.1.10 can be generalized to the decomposition numbers of

Hecke algebras associated with the degree n and the modular system K.
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Theorem 2.1.11 Let n € N and ez(a) € {2,3,...} U{oo} withn < 3ez(a). Then
’I’L,}é . n7]€ .
we have for every entry dpp of the matrix AZK dy,, Al i) with n € Hn,eé(&)

pnell

n,eﬁ(t:z)

and 0 € 11,, .z
i (@) )
dry € {0,1}.

Proof. By applying Corollary 1.6.7 to the situation at hand with the modular
systems K, K(Q,a)v and IC(F@ we get

AT =AT AM (2.3)

nKipg  nKGga mE
Furthermore, it follows from Definition 1.6.4, Lemma 1.6.3.(i), and Lemma 1.6.5
that the modular systems IC( 7.7 and I&(Q,a) satisfy the conditions (2.1). In addition,
Lemma 1.6.3.(iii) shows that for the g-characteristics of the coefficient pair (F, Z) =
(F, &) associated to IC(F ) and the coefficient pair (Q, Y) = (Q, @) associated to
K0, we have

,a

ep(2) = ep(a) and eo(Y) = egla).
Now the preceding considerations together with the assumption n < 3ez(a) and
Lemma 1.4.9.(i) show that Corollary 2.1.10 holds for the decomposition matrices
AZ:’C(F,E) and AZK@,&)' Thus, each of their entries is either 0 or 1.
According to Lemma 1.6.5 and Lemma 1.5.8.(ii), we also have for the matrix
nK5 s
AZ:IC(Q,&) - <d>\” “ )) A€elly,

”EHn,eQ(&)

H —
Rnk(@ An,lﬁ@ﬁ) = )H”»GQ(&)

This shows that every column of that matrix contains at least one entry different
from 0.
Finally, according to Definition 1.4.17, the entries of the decomposition matrix

AT are nonnegative.

The claim follows from all these properties of the matrices A’ A:K ~,and
’ X
AZ} & by explicitly considering the relations between their entries given in (2.3).
M(FE)

2.2 Calculation of the decomposition numbers

depending on the modular system

Now we will show how the decomposition numbers of blocks having weight 3 and

empty core, as considered in the preceding section, can be calculated explicitly. In
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the course of that, we also will obtain results on the dependence of these decompo-
sition numbers on the underlying modular system.
In what follows,

K=(Q,v,S 1,a,F)

denotes a modular system as in Definition 1.4.8 such that

Hfﬁfi is semisimple (2.4)
and furthermore
erp(a) < oo (2.5)
holds. With this, we put
n = 3er(a). (2.6)

These conditions on n and ep(a) ensure that the Hecke algebras over the coefficient
pairs associated to K have a block of weight 3 with core (0).

Because of (2.4) and according to Corollary 1.5.6, the decomposition matrix AZ: K
is uniquely determined by the data n and (F,a). Thus we can modify the modular
system K as follows without changing the associated decomposition numbers. First,
we put

(F.a) = (K,r).

Then we can assume without loss of generality

’C = K(K,T‘) = (K(AX>7¢X*T7S¢X7T7[¢ 71”’X7 K) (27)

X

where X is an indeterminate over K (see Definition 1.6.4). This modular system
satisfies the conditions (2.1) on page 101 (see Lemma 1.6.5).

With these assumptions, the (0)-block A7((0)) of the decomposition matrix
Ag,c (see Definition 1.8.21) can be determined explicitly. To this end, the following

theorem makes use of the results from Section 1.10.

Theorem 2.2.1 The entries of the matriz

AR(0)) = () o exco

(0),ep (1)

eenn,eK(T')

can be calculated explicitly by using the Theorem of Schaper.

Proof. The matrix A’%((0)) will be calculated by induction on the elements of
ex(r)

the row index set TI{"" using the partial ordering > (see Definition 1.1.39 and
Definition 1.1.4.(ii)), Remark 1.10.9.(ii), and Theorem 2.1.8. To this end, fix a

A € TOex)
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and inductively suppose that all matrix rows indexed by partitions
ke TOex) with k> A

are already known. In order to determine the matrix row indexed by A, we must,

according to (1.49) on page 98, calculate the decomposition numbers

4 for v eIk with v A (2.8)

n,e,K (r)
To do this, we first use the induction hypothesis to calculate the coefficients

b, €N, with v e II0exl)

n,ex (1)
introduced in Remark 1.10.9.(ii) as described there. With these values b, and the
relations (1.50) on page 98 we can decide for each of the coefficients

a, €Ny with v e e

n,ex (r)

also introduced in Remark 1.10.9.(ii) whether it is 0 or not. Furthermore, we have
according to (1.49) on page 98 and Theorem 2.1.8
0),ex(r . m,KC
vy € 0t with v > At a, = dy € {0,1}.
(0)sex(r)

n,ex (1)
values of all decomposition numbers (2.8). Again according to (1.49) on page 98,

Since we know for every v € 11 whether a, is 0 or not, we also know the exact

we thus have determined all decomposition numbers

d;’f with v e IV,

n,ex (1)

Now we know the row of the matrix A¥((0)) indexed by A and inductively the
whole matrix A7t ((0)). W

The preceding theorem enables us to further investigate the dependence of
AT4((0)) on the underlying modular system. To this end, we first examine the
behavior of the valuation zﬂX_r associated with the modular system K under con-
sideration (see (2.7) on page 111) when applied to the g-numbers occurring in the

formula (1.46) on page 97.
Definition 2.2.2 Let K be a field. Then the value
pi € NU {oo}

is defined as follows. If K has positive characteristic, we define pi to be that
characteristic. Iff( has characteristic 0, we define pg to be oo. In other words, pj
is the additive order of 15 in K.
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Lemma 2.2.3 For the modular system K under consideration, one of the following

alternatives holds.
(i) We have r = 1 and px € N.

(i) r is a root of unity in K distinct from 1y and we have px = 00. (2.9)

(#i) r is a root of unity in K distinct from 1y and we have px € N.

Proof. If r is not a root of unity in K, we get from Definition 1.2.2 ex (1) = ep(a) =
oo. This is a contradiction to the assumption (2.5) on page 111. Thus, 7 is a root of
unity in K. Similarly, we get from the combination r = 1x and px = oo, by using
Definition 2.2.2; ex(r) = er(a) = oo and again a contradiction to the assumption
(2.5). This shows the claim. B

Lemma 2.2.4 For the modular system IC under consideration, the following state-

ments hold.
(i) If r = 1k then we have px = ex(1k).

(ii) If v is a root of unity in K distinct from 1k then ex(r) is the multiplicative

order of r in K.

(1i) If r is a root of unity in K distinct from 1k and if px € N then ex(r) and

px have no nontrivial common divisors, that s, they are relatively prime.

Proof. (i) From the assumptions and Definition 1.2.2.(i), we get
VieN:[jl, =, =7 1k
This, Definition 1.2.2.(ii), and Definition 2.2.2 show the claim.

(ii) From the assumptions and Definition 1.2.2.(i), we get

J _
T’m:T 1K

VieN:[j], =

7j—1

r—1g
A K

This and Definition 1.2.2.(ii) show the claim.
(iii) This follows from statement (ii), Definition 2.2.2, and general facts from
field theory. B

m

Lemma 2.2.5 For the modular system IC under consideration, the following state-

ments hold.

(1) Alternative (2.9).(i) is equivalent to

pr = ex(r). (2.10)
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(ii) Alternative (2.9).(ii) is equivalent to

PK = 00 (2.11)

(1i1) Alternative (2.9).(iii) is equivalent to

pr €N
and (2.12)

pr and ek (r) have no nontrivial common divisors.

Proof. This follows easily from Lemma 2.2.4. B

The next lemma makes use of the considerations from the beginning of Sec-

tion 1.6, especially Definition 1.6.2.(ii).

Lemma 2.2.6 Leti € N. Then the following statements on the modular system K

under consideration hold.

(1) Assume (2.10) and let
i=jpK)"
with uniquely determined values 7 € N and a € Ny such that px t j holds.

Then we have

5 a0y 0 if ex(r)ti
I {<pK>a—1 e |

(ii) Assume (2.11). Then we have

0 if er(r)fi ‘
1 if ex(r)|i

&X—r(MX) - {

(iii) Assume (2.12) and let
i=7(pK)” (2.13)

with uniquely determined values 7 € N and a € Ny such that px t j holds.
Then we have

0 if ex(r)fi
pr)" i ex(r)li

bx—(lilx) = { (
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Proof. (i) According to Definition 1.6.2.(ii), the considerations from the beginning
of Section 1.6, Definition 1.2.2.(i), and Lemma 2.2.5.(i), ¥x_,([i]y) is equal to the
multiplicity of X —r =X — 1k in

R

X —1g

Furthermore we have, according to Definition 2.2.2 and general facts from field
theory,
X1, = (Xj _ 1K)(pK)

where the polynomial X7 — 1y is separable (that is, it has no nonconstant divisors

with multiplicity greater than 1) and contains the factor X — 1x. This shows

dx—r([ily) = (px)" = 1

which in turn, together with the assumption (2.10), proves the claim.

(i) In order to determine ¢y _,([i] ), we proceed as in the proof of statement (i).
However, we see from Definition 2.2.2 and general facts from field theory that, in
the situation at hand, the polynomial X’ — 1x is separable (that is, it has no
nonconstant divisors with multiplicity greater than 1) and furthermore contains,
according to assumption (2.11), Lemma 2.2.5.(ii), and Lemma 2.2.4.(ii), the factor
X —rif and only if ex(r) | i. Because of r # 1x (see again Lemma 2.2.5.(ii)), these
properties translate to the polynomial

-1

_1K —

This shows the claim.

(iii) Again, we proceed as in the proof of statement (i). Just like there, we obtain
X' 1 = (X7 = 1,) "

where the polynomial X7 — 1y is separable (that is, it has no nonconstant divisors
with multiplicity greater than 1) and furthermore contains, according to assumption
(2.12), Lemma 2.2.5.(iii), and Lemma 2.2.4.(ii), the factor X — r if and only if
ex(r) | j. In addition, we get from (2.13) and the assumption (2.12)

ex(r) | j < ex(r) | i
All this together with the fact r # 1x (see again Lemma 2.2.5.(iii)) shows that the
multiplicity of the factor X — r in the polynomial
X —1g

[Z]X: X_lK’
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or equivalently the value vy _,([i] +)s 1s given by the expression in statement (iii).

The following corollary improves on Corollary 1.5.6 in the situation at hand. It
makes use of Definition 1.8.21 and Definition 1.1.39.

Corollary 2.2.7 The entries of the matriz

AT((0)) = (dF) oo exco

(0),e g (r)

€I, e (r)

are uniquely determined by the data ey (r) and pg.

Proof. The inductive calculation of the entries of Al ((0)) described in the proof
of Theorem 2.2.1 is based on the evaluation and manipulation of the formula (1.46)
on page 97. This involves combinatorial manipulations with partitions and the ap-
plication of the valuation 1& x_r to certain g-numbers. The occurring partitions and
the combinatorial manipulations applied to them depend only on e (r) (see (2.6)).
According to Lemma 2.2.6, Lemma 2.2.5, and Lemma 2.2.3, the behavior of Q/A)X_r
when applied to the occurring g-numbers is completely determined by e (r) and

pr. This completes the proof. Il

The result of the preceding corollary can be further improved for arbitrary values

of ex(r) and sufficiently large values of px. This is described in the following.

Lemma 2.2.8 Assume px > 3. Then there are a constant
Aexcrypx €N,
depending only on ek (r) and pg, and a map
Beyey i {1,...,n} = Ng, i+ Be, (i),
depending only on ek (r), such that

Vie {1,...,n} 1 x o ([ilx) = A tr)pre Ber ) (1) (2.14)
holds.

Proof. In order to show the claim, we distinguish the various cases (2.9) and use their
characterizations (2.10), (2.11), and (2.11). We define the constant A, ()., € N

as
px —1 if (2.10) holds

Ack(rypx = 1 if (2.11) holds .
1 if (2.12) holds
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Furthermore, we define the map B,y : {1,...,n} — No, i — B, (i) as

0 if ex(r)fi .
1 if ex(r) |

Beye(n (i) = {

Now we establish the factorization (2.14). First we consider an

i€{l,...,n} suchthat eg(r)fi.
Here we get from Lemma 2.2.6 and the construction of B,

Yx—r([ily) = 0= Acyo(r) s Bere(r (0).
Now we consider an

i€{l,...,n} suchthat eg(r)]:.
If (2.10) holds, we get from (2.6) and the assumption px > 3

(px)’* >n >

and also
I = JPK
with an appropriate 5 € N not divisible by pg. With that we get from Lem-

ma 2.2.6.(i) and the construction of A, (), and Be, ()

K
TﬁX*T([Z’]X) =pk — 1= AeK(T)’pKBeK(T)(i)'

If (2.11) holds, we obtain from Lemma 2.2.6.(ii) and the construction of A., ),
and B

K

ek (r)
wX—T([Z']X) =1= AGK(T)7PKB€K(T)(i)'
Finally if (2.12) holds, we get from (2.6) and the assumption pyx > 3
ex(r)px >n > 1. (2.15)

Now suppose that pg | ¢ holds. Then we get from that together with the relation
ex(r) | i and (2.12) the relation ex(r)px | ¢ and thus ex(r)px < i. This is a
contradiction to (2.15). So we must have

PK ’f 1.
From this, Lemma 2.2.6.(iii), and the construction of A, (),
Ux—r(lilx) =1= AeK(V),PKBBK(T)(i)'

This completes the proof. l

and B, (), we get

K

The next statement makes use of Definition 1.1.39.(ii).
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Corollary 2.2.9 Assume px > 3 and let A € I Then we have in the
Grothendieck group GO(Hfﬁfz) with the notation from Corollary 1.10.8 and Lem-
ma 2.2.8

PRIV RS

AeK("')vpK Z Z Z (BeK(r)(}r():i,k)D - BeK(T)(‘TE\j,k:)D) . (216)

k=1 i=1 j=i+1
0 K,r
b%r)oj(H.(An_z)S(ﬁb s aﬂi—laﬁi + ‘TE\],k)| 7ﬁi+17 tee
.. 75j—17ﬁj - ‘T?j,k) 7ﬁj+1a s 7ﬁ0)‘

Proof. According to the considerations at the beginning of this section, the modular
system under consideration satisfies the assumptions of corollary 1.10.8. Further-
more, according to Definition 1.1.14 and Lemma 1.1.7.(ii), the rim hook lengths
occurring in the identity (1.46) on page 97 are not smaller than 1 and not bigger
than n. With that, the claim follows from the substitution of the factorization (2.14)
into (1.46). W

Theorem 2.2.10 Assume px > 3. Then the entries of the matrix

AT(0)) = (4] o exo

(0),epc ()

Genn,eK(T)

are uniquely determined by the datum ey (r).

Proof. The partitions to be considered are determined by ex(r) and the condi-
tion (2.6) on page 111. The matrix entries are obtained from the inductive calcu-
lation of AJt((0)) described in the proof of Theorem 2.2.1 combined with Corol-
lary 2.2.9. In the course of an induction step, decomposition numbers already
calculated — and by induction hypothesis uniquely determined by eg(r) — are
substituted into formula (1.46) on page 97 as described in Remark 1.10.9.(ii) to
determine the coefficients

b, €N, with v e T0exl)

n,ex (1)

introduced in that remark.
But in the further course of the proof of Theorem 2.2.1, we don’t need to know
the exact value of such a coefficient, but only whether it is 0 or not. Now, in the

situation at hand, the expression (2.16) which is equivalent to (1.46) on page 97 can
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be used for the calculation of the b,. In that expression (2.16), only the constant
factor A, () p, depends on px. The sum in this expression is composed for the one
part of combinatorial manipulations depending only on e (r) and for the other part
of terms which are, according to Lemma 2.2.8, uniquely determined by eg (7). The
calculation of the b, is done by first substituting expressions which, by induction
hypothesis, are completely determined by e () and then applying some elementary
algebraic manipulations. This shows that whether a coefficient b, is 0 or not depends
only on ex(r).

If we now complete the induction step exactly as in the proof of Theorem 2.2.1,
the preceding considerations show that the decomposition numbers just obtained
are completely determined by eg (7). Thus, induction shows that, in the situation
at hand, the whole matrix AJ%((0)) is uniquely determined by ex(r), as desired.
|

Remark 2.2.11 (i) [LLT, Conjecture 6.6, [GRO], [ARI, Paragraph 4.7], and
[MAT, Theorem 4.3] show that in the case px = oo the decomposition matriz
AZ:,C can be calculated using a combinatorial algorithm. According to The-
orem 2.2.10, this procedure also produces the matriz AlL((0)) in the more

general case pg > 3.

(i1) In [JAM2, Section 4], it is conjectured that for px € N with

6K<r)pK >n,

the decomposition matriz Alty coincides with the decomposition matriz ATty
in the case px = o0o. Theorem 2.2.10 and (2.6) on page 111 show that this

conjecture is true for the submatriz ATt ((0)).
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Chapter 3

Generic Specht series for Hecke

algebras of type A

In this chapter we construct certain series of submodules of Hecke algebras of
type A and more generally of permutation modules of such algebras (see Defini-
tion 1.3.1.(i1)). The property of interest of these series is that all quotients of
adjacent submodules are Specht modules. Because of that, these series are called
Specht series. They are generic in the sense of Remark 1.2.9 and generalize the
Specht series from [DJ1, Section 7] over fields to arbitrary integral domains as
coefficient rings. This is done by explicitly constructing appropriate bases of the
modules involved.

The first three sections of this chapter provide the required combinatorial state-
ments and objects, the derivation of the generic Specht series follows in the subse-

quent eight sections.

3.1 Ordering relations for shortest representa-

tives of right cosets of Young subgroups in G,

This section introduces and compares, for an arbitrary composition A\, various or-
derings on the set D, (see Definition 1.1.58.(1)). To this end, we first introduce and
investigate ordering relations on related sets. The ordering relations on the sets D,
for various compositions A\ will be required later on in the construction of generic
bases of the subquotients occurring in Specht series. For all the following we fix an
n € N.

First we introduce and compare three ordering relations for tableaux (see Def-
inition 1.1.45). This also is described elsewhere, for example in [MUR, Section 3,

121
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especially Definition 3.1]. The second part of the following definition makes use of
Definition 1.1.46.(ii) and (1.1) on page 1.

Definition 3.1.1 (i) For a given tableau t of a composition of n, this composi-
tion is said to be associated to t and denoted by \*. The diagram [A\*] also is

satd to be associated to t.

(ii) Lett € Tor . and m € {1,...,n}. Then we define the row standard tableau

tﬂ’n‘l as
n St )T -1
tln = (t {1,4._7m}> C (1L, mtt = {1, m),
(4, 7) = ()t
t ﬂ’n‘l 15 called the target restriction of t to m or, for short, the target restric-
tion of t.

(iii) Let s and t be A-tableaux with A F n. Then a chain of length k from s to t

with k € Ny is defined as a sequence
rg=sS,r1,...,rp_1,rp =1
of A\-tableaux such that for every j € {1,...,k} we have
r; =7r;_1v;
with an appropriate v; € B, U{lgs,}.

(iv) Using the notation from (iii), a chain of length k from s to t is called de-
scending, if for every j € {1,... k} we have

V; = (ij,ij + 1) S %n
with i; € {1,...,n — 1} and furthermore

(ij)grj—l < (Z] + 1)CI‘]'_1'

Remark 3.1.2 (i) For a given tableau t of a composition of n, the associated
diagram [\Y] is obtained from the representation of t (see picture (1.16) on

page 22) by removing all the entries.

(ii) Choose a row standard \-tableau t with A E n and let m € {1,...,n}. Then
the representation of t ﬂﬁl 15 obtained from the representation of t by removing
all squares with entries greater than m. Since t is row standard, this procedure
only eliminates squares from the ends of the rows in the representation of t,

thus leaving indeed a row standard tableau with associated composition At
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(iii) Let s and t be A-tableaux with A E n and let
ro=s,Iry,...,Ip1,rp =1

be a chain from s to t with k € Ny. Then for every j € {1,...,k} the tableaux

r; and rj_; differ at most by the application of a simple reflection.

(iv) Using the notation from (i), suppose that the chain from s to t is descending
and consider the transition from r;_y tor; =r;_qv; for a j € {1,...,k}. In
the course of this, the simple reflection v; = (i;,i; + 1) € B,, moves the entry
t; in the representation of rj_; downwards and the entry i; + 1 in the same

representation upwards.

The following lemma is a useful observation regarding the compositions associated

to the target restrictions of a row standard tableau.

Lemma 3.1.3 Let t € ’];Eg;std. Then t can be recovered from the sequence of com-

positions
Al el el el

Proof. According to the construction of the compositions A with m e {1,...,n}
in Definition 3.1.1, A differs from the composition (0) by exactly one entry having
the value 1. If the index of that entry is denoted by i; then we have

(1)¢e = i1

Similarly, for a j € {2,...,n}, the compositions AT and A1 differ only in their

entries at one particular index ¢;. For this index we have

()G = 5.

Thus we know the row numbers of all entries in the tableau t and, since t is row
standard (see Definition 1.1.45.(iii)), also the tableau itself. H

The next definition makes use of the ordering relations for compositions from Def-
inition 1.1.4 and Lemma 1.1.5 and also of the set from Definition 1.1.46.(ii).

Definition 3.1.4 (i) Lets,t € 7" .. Then we write
s<t
if there is an-m € {1,...,n} such that both

A <At and Yk e {m+1,... 0} 23U =\t
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hold. Furthermore we write

(s<t)V(s=t)

holds.

(ii) Let s, t € T-r Then we write

row std -

if
Vme{l,...,n}: Al g At

holds. Furthermore we write

st

(st A(s£8)

holds.
(iii) Let N\E n and s,t € T2, .q- Then we write
st
if there is a descending chain from t to s. Furthermore we write

s<t

(s<t)A(s£1)
holds.

Lemma 3.1.5 (i) The relation < on the set T, is a total ordering relation.

(ii) The relation < on the set T-" ., is a partial ordering relation.

(iii) Let X E n. Then the relation < on the set T\

row st

q 15 a partial ordering relation.

(iv) Let \En and s, t € T\

owstd- LThen we have

s<Xt=sJdt.
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(v) Lets,t € T =" Then we have

row std*

s<t=s<t.

(vi) Lets,t € T=" Then we have

row std*

s<t=s<t.

Proof. (i) The reflexivity of the relation < on the set ’];Ev’;std follows immediately
from Definition 3.1.4.(i).

Now choose s, t € ’];i’;,std. Then if we have

Vm e {1,...,n}: x¥n = \tbi|
we also have, according to Lemma 3.1.3,
s =t.
If this is not the case then there is an m € {1,...,n} such that
A 2 atbn and ke {m+ 1. 0} st =

hold. Here we have s # t and, according to Lemma 1.1.5.(i), either Asbn < Aol
or A > Atbh | From this we get with Definition 3.1.4.(i) that

either s<t or s>t

holds. All in all we see that exactly one of the relations s =t, s < t, or s > t holds.
This shows that the relation < on the set ’]f‘j;std is total and antisymmetric.
Now choose s,t,u € 7" 4 such that s < t < u holds. According to Defini-

row st

tion 3.1.4.(i), we then have an i € {1,...,n} satisfying

A and Vhe {i+ 1, n) s asth =t
and similarly a j € {1,...,n} satisfying

A <A and Vhe {41, 0} At = el

If we put
k = max {7, j}

then we get for this index

b el < \uli or b <l o \uli
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and also

Vhe{k+1,.. . n}:aUi = i = \ubii,

Again according to Definition 3.1.4.(i), this shows s < u. Thus the relation < on
the set 7-r . is transitive.

(ii) The reflexivity, antisymmetry, and transitivity of the relation < on the set
’Z;EV’; «tq follows easily from Definition 3.1.4.(ii), the corresponding properties of the
relation < on the set =, shown in Lemma 1.1.5.(ii), and Lemma 3.1.3.

(iii) The reflexivity of the relation < on the set 7.-7 ., follows immediately from
Definition 3.1.4.(iii).

Choose s, t € T2

row st

q such that s <t < s holds. Then we have, according to
Definition 3.1.4.(iii), a descending chain from t to s and a descending chain from s
to t. Let a € Ny be the length of the descending chain from t to s and b € Ny be
the length of the descending chain from s to t. Concatenation of these chains gives
a descending chain
ro==t,ry,...,Ta4p-1,Larp =t

from t to t. Let vq,..., v, € B, be the associated simple reflections with

r,=r;,_10; for ie{l,...,a—i—b}
(see Definition 3.1.1). Furthermore, fix the one d € D, satisfying
t =t'd.

Then we inductively get, by using Definition 3.1.1.(iv) and Lemma 1.1.77.(i), for
every i € {0,...,a+ b}

r; :tkd’Ul""UZ‘ and K(dvl---vi) :g(d) + 1.
Now this and the fact rg =t = r, 4, imply
t=ro=t\d= Toip = t vy - “VUgab

and furthermore
d= (t)\)ilt = dUl c o Ugtb

which finally leads to
U(d) = L(dvy - - - vayp) = £(d) + a+b.
From this we get a + b = 0 and, because of a,b € Ny, also

a=b=0.
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Thus the descending chains from t to s and from s to t considered above both have

length 0, and we get from Definition 3.1.1.(iii)

s =t.
This shows that the relation < on the set 72 ., is antisymmetric.
Now choose s, t,u € 72 .4 satisfying s < t < u. Then we have as above in the

proof of the antisymmetry property a descending chain from t to s and a descending
chain from u to t. Concatenation of these chains gives a descending chain from u
to s. According to Definition 3.1.4.(iii), this means s < u. Thus the relation < on
the set 7.2

owstd 18 transitive.

(iv) According to Definition 3.1.4.(iii), we have a descending chain

ro=1t,r;,...,r% 1, =8
from t to s with a certain length k € Ny, tableaux ry,...,r;_; € 77, and simple
reflections vy, ..., v, € B, satistying

Vi € {17,]{3} =T 10;.

From Definition 3.1.1.(iv), Lemma 1.1.77.(i), and Definition 1.1.58.(i) we inductively

get, as in the proof of statement (iii),

Vie {0,...,k} :r; € T

ow std*

Thus we have, according to Definition 3.1.4.(iii),
Vi € {1,,k} i i r;.

S
C T.r . it suffices

now to show Vi € {1,...,k} : r,_1 > r;. To this end, we fix an i € {1,...,k}.

Furthermore, let

Using the transitivity of the relation < on the set 7.2

row std

with an appropriate j € {1,...,n —1}. According to Definition 3.1.1.(iv) and
Remark 3.1.2.(iv), r;_; and r; differ by the transposition of j and j 4+ 1 such that
in r;_; the entry j is located above the entry 7 + 1 and in r; the entry j is located

below the entry j 4+ 1. In other words, we can write

Y= ()G = G+ 1), and 2=+ G, = ()G,

and then have

y <z
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Every other entry h € {1,...,n}\ {j,j + 1} occupies the same place in r;_; and r;

and we have
(h’)Crifl = (h)Crz

In order to prove the desired relation r;_; > r;, we now consider restrictions r;_; lLZ
and r; || of the tableaux r;_; and r; with h € {1,...,n} as in Definition 3.1.1.(ii).
We distinguish three cases.
First let
he{l,...,j—1}.

Then r; HZ and r; llz only contain entries smaller than j, and the preceding
considerations show that each of these entries occupies the same place in r;_; lLZ
and r; ﬂ’,f Thus we have

r,1 lLZ =T lLZ

and, according to Definition 3.1.1.(i), furthermore
arimb — il

Now let
he{j+1,...,n}.

Then each of r; 4 lLZ and r; ﬂﬁ contains the entry j as well as the entry j + 1
and, according to the considerations above, these two tableaux differ only by the
transposition of j and j+1, as do already r;_; and r;. In other words, corresponding
positions in r;_; |7 and r; ||} are occupied either by the same number or in one
tableau by 7 and in the other one by j+ 1. By deleting the entries of these tableaux
we get (see Remark 3.1.2.(i))

[,\ri—liiﬁ] _ [,\rii%i}
and furthermore (see Lemma 1.1.7.(i))
Al — el
Finally let
h=j.
Then both r;_; ﬂ? and r; ﬂ;‘ contain besides the entry j only entries smaller than
7 and, according to the considerations above, every entry different from j occupies

the same position in r;_; ll;‘ and r; ﬂ? Since j is the biggest entry in both r;_; ll;‘

and r; ﬂ? and both r;_; and r; are row standard, we obtain r; ﬂ? from r;_; ﬂ? by
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moving j from the end of row y to the end of row z, using the notation from above.

This shows that if we put
= (p, fho,...) = Al and v=(v,vg,...)= Ay
then we have
py = vy + 1, e =10, — 1, and  Vr e N\ {y,z}:p, =rv,.
Because of y < z (see above), this immediately implies (see Definition 1.1.4.(ii))
Al = s = il

Altogether, we get from these relations between A=l and ArE for all values
of h € {1,...,n} according to Definition 3.1.4.(ii)

ri B>y,
as desired.
(v) We can assume s # t. Then Lemma 3.1.3 provides us with an ¢ € {1,...,n}
such that
bzl and o vie i+, nk sl = (3.1)

hold. Because of s <1t (see Definition 3.1.4.(ii)), this implies
s 4ot
and, according to Lemma 1.1.5.(iii), furthermore
al < asb
From this together with (3.1) we get, according to Definition 3.1.4.(i),
s < t,

as desired.
(vi) This follows from Definition 3.1.4.(i), Definition 3.1.4.(ii), and statement (v).
[

Next, we introduce two ordering relations for permutations. These relations can
be defined not only on symmetric groups, but also on arbitrary Coxeter groups (see
for example [HUM, Section 5.9]). The following definition makes use of reduced

expressions of permutations as introduced in (1.11) on page 3.
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Definition 3.1.6 For u,w € &,, we write
u=<w
if there are a reduced expression
U= 01 Ugy)
for w with vy, ... vy € By and a k € {0,...,0(u)} satisfying
W=y Vg.

Furthermore we write

u<w

(u 2 w) A (u 7 w)

holds. =< is called the weak Bruhat ordering on the symmetric group &,,.
Lemma 3.1.7 The relation =< on G,, is a partial ordering relation.

Proof. See [HUM, Section 5.9]. B

The weak Bruhat ordering on &,, provides a useful characterization of the sets of
standard representatives associated to compositions of n (see Definition 1.1.60).

The following lemma also makes use of Definition 1.1.67.
Lemma 3.1.8 Let A En. Then we have
S={we6,|w=w}.

Proof. See [DJ1, Lemma 1.5]. W

The next definition makes use of the set of general reflections in &,,. This set is
defined as

¢, ={(i,7) | 4,5 € {1,...,n} such that i # j}.

The notion of general reflections comes from the general theory of Coxeter groups
(see [HUM, Section 5.7]).

Definition 3.1.9 For u,w € &,, we write

u <<w
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if there are an m € Ny and general reflections ty,...,t,, € €, satisfying
U =wt Ty

and
VJ < {1, R ,m} : €(wt1 .. 'tj,1> < f(wtl .. t])

Furthermore we write

u<lw

if
(u dw) A (u# w)

holds. < is called the strong Bruhat ordering or just the Bruhat ordering on the

symmetric group G,,.
Lemma 3.1.10 The relation < on S, is a partial ordering relation.

Proof. See [HUM, Section 5.9]. B

Now we describe a useful characterization of the Bruhat ordering.

Definition 3.1.11 Consider a product
vy Uy
with m € Ny and vy, ...,v, € B,.
(i) A subexpression of vy - vy, is defined as a product
iy + g

with j € {0,...,m} and indices 1y, ...,1; € {1,...,m} satisfying

1§i1<i2<-~-<ij,1<ij§m.

(ii)) We say that a w € &,, can be represented as a subexpression of the given
product vy - - - v, if w can be written as a product of simple reflections such

that this product is a subexpression of vy -« - vy,.
Theorem 3.1.12 Let u,w € G,,. Fiz a reduced expression
U = V1 - Vg (3.2)

for w with vy, ..., vy € B,. Then the following statements are equivalent.
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(i) We have u < w.

(i) The permutation w can be represented as a subexpression of the reduced ex-

pression (3.2) for u.

Proof. See [HUM, Section 5.10]. B

The previously described ordering relations will now be related to shortest rep-

resentatives of right cosets of Young subgroups in G,,.

Lemma 3.1.13 Let A\En and d, f € Dy. Then the following statements hold.
(i) t"d 2 t*f < d < f.
(ii) tr"d <t f & d < f.

(iii) t*"d <t f & d < f.

Proof. (i) See [MUR, Lemma 3.8.(i)].

(ii) See [MUR, Lemma 3.8.(ii)].

(iii) This follows easily from Definition 3.1.4.(ii), Definition 3.1.9, and state-
ment (ii). B

The following definition makes use of Definition 3.1.4.(i).

Definition 3.1.14 Let A\En and d, f € D). Then we write

d<f
if
thd < tf
holds. Furthermore we write
da<f
if
trd <t f
holds.

The next statement makes use of the ordering relations < from Definition 3.1.6 and
< from Definition 3.1.9.

Lemma 3.1.15 Let A E n. Then the following statements hold.

(i) The relation < on the set Dy is a total ordering relation.
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(ii) Let d, f € Dy. Then we have

d=f=dd}.
(iii) Let d, f € Dy. Then we have

ddf=d< /.
(iv) Let d, f € Dx. Then we have

daf=d<f.

Proof. (i) This is obtained from Definition 3.1.14, Lemma 1.1.59.(i), and Lem-
ma 3.1.5.(i).

(ii) This follows from Lemma 3.1.5.(iv) and Lemma 3.1.13.

(iii) This follows from Lemma 3.1.13.(ii), Lemma 3.1.5.(v), and Definition 3.1.14.

(iv) This is obtained from Lemma 3.1.13.(iii), Lemma 3.1.5.(vi), and Defini-
tion 3.1.14. W

3.2 PK-pairs

The combinatorial objects introduced in this section are used to construct and
index the generic modules, homomorphisms, and basis elements occurring in the
derivation of the Specht series. These combinatorial objects also are considered in
[JAM1, Section 15, Section 16, Section 17]|. As always, n denotes a positive integer.

The next definition makes use of Definition 1.1.6.(i).

Definition 3.2.1 A pair p# pu with = (jun, pa, . ..) En and p# = (W 5, ) F k
with a k € {1,...,n} satisfying

M# =H
and
[u#] C [y or equivalently Vie N:u? <

1s called a partition-composition-pair of degree n or just a partition-composition-
pair. This is abbreviated as PK,-pair or just as PK-pair.
The symbol 00 without any relation to partitions and compositions also is called

a PK-pair.
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If we consider for example

M= (3,221) 8, pt = (22,14 - 8,

3.3
A= (32,22, 12) 12, p=(2,322,13) F 13 (3:3)

then we can build the PK s-pair A* X\ and the PK3-pair x#p. Both A* and p and
also u# and A cannot be combined into PK-pairs. The abbreviation PK stands for

partition-composition.
Remark 3.2.2 Since, using the notation from Definition 3.2.1, u* is a partition

of a positive integer, we have

;ﬁfé>0.

This and the condition /ﬂf = p1 show that the composition j necessarily satisfies

[L1>O.

Definition 3.2.3 Let u#p be a PK,,-pair with u#u # 00, = (p1, pio, ...) En, and
pt = )bk forake{l,...,n}. Then a

ce N\ {1}

satisfying
) = pre and  pf < pe

is called an AR-index for u# p.

In the example (3.3) above, 4 is an AR-index for A# \ and 2 is an AR-index for both
A\ and 7. The abbreviation AR stands for add-raise. This notation will make

sense after Definition 3.2.5.

Remark 3.2.4 Consider a PK,-pair u” . If there is an AR-index c for u*u as
in Definition 3.2.3 then we have, using the notation from there and Remark 3.2.2,
w1 > 0 and also p. > p# > 0 with ¢ > 1. Thus at least two entries of u & n are
positive and we must have

n > 2.

Now we consider two operators which construct new PK-pairs from a given one.

Definition 3.2.5 Let u# u be a PK,-pair with u#p # 00, = (1, i, - . .) En, and
p#* = (u . ) Fk for a k € {1,...,n}. Furthermore, let ¢ € N\ {1} be an
AR-index for u# .
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(i) We put
ptA = i, L ) E R L

u#* A, is called the image of the partition u* under the operator A.,.
(ii) We put
/J“Rc = (:ula oy He—2y fhe—1 F e — Hzf, ,Ujé, Met1y .- ) En.

uR. is called the image of the composition p under the operator R..

iii) In the case ¢ > 2, we combine the compositions pu* and pR. into the pair
H H

w” nuR.. In the case c = 2, we define the pair u* pR. as

(1 + o — il 1. )R,

that is, we modify the first entry of u”. p*uR. is called the image of the
PK,,-pair u# i under the operator R,.

(iv) If u# A, & k + 1, we combine the partition u* A. and the composition u into
the pair p# Ap. If p# A, is not a partition or equivalently if uf_l = u?, we
declare p# Aqpu to be 00. p# Aqpu is called the image of the PK,-pair u* i under
the operator A..

If we consider for example the PK;5-pair u# o with
p* =(53,21)F11 and pu=(53,4,1,2)F 15
and the AR-index 3 for it, we can apply the operators As and R3 to obtain first
pf A= (5,3%1)F12 and  puRs=(5%2,1,2)E 15
and with that the PK;s-pairs u# Asp and p# 1 Rs.

Remark 3.2.6 (i) The pairs pu* uR, and p* A.u introduced in Definition 3.2.5
are always distinct from the initial pair p#u. In the case of p*uR., this

follows from the condition
i < e
in Definition 3.2.3.

(ii) The operators A. and R. from Definition 3.2.5 also can be constructed without
the condition
Ni1 = He-1
in Definition 3.2.3. However, this condition is crucial to their application (see
proof of Lemma 8.3.9).
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The first part of the following lemma makes use of Definition 1.1.6.(i).

Lemma 3.2.7 (i) Let p#p be a PK,-pair with p#p # 00 and choose an AR-
index ¢ € N\ {1} for u#p. Then we have

[1#] C [n A

(i) Let u#p be a PK,-pair with p# i # 00 and choose an AR-indexr ¢ € N\ {1}
for p#u. Then p#uR. and p#A.u are PK,-pairs. Furthermore, we have

p# pR, # 00.

(iii) Consider a PK,-pair p# . Then there is an AR-index ¢ € N\ {1} for p#p if
and only if
pfp#00  and  p7 Ap

hold.
(iv) For every PK, -pair p# i with p# p # 00, there is a
v=(v,ln,...)En

such that (v1)v is a PK,-pair from which the PK,-pair u*u can be obtained
by iterated application of appropriate operators A. and R. with AR-indices
ce N\ {1}.

Proof. (i) This follows immediately from Definition 3.2.5.(i) and Definition 1.1.6.(i).

(i) First we consider u# A.p. In the case u# A = 00, there is nothing to prove.
In the case p# A # 00, u#* A, is a partition, and we get from Definition 3.2.1, the
conditions in Definition 3.2.3, and the construction of u# A. in Definition 3.2.5 with

/L# = (M?aﬂ#?)? n= (,ula,u%"')v M#AC: ((M#Ac)lv(u#AC)2>"')

the fact

and because of ¢ > 1 in particular
(# A = pf = .

Thus p# A is a PK,-pair (see Definition 3.2.1).
Now we consider u#uR.. u*uR, # 00 follows immediately from the definition,

since this pair contains the composition R, of n.
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In the case ¢ > 2, the given partition p# is not modified in the course of
the construction of the pair u#uR.. Now we get from Definition 3.2.1 and the
construction of puR. in Definition 3.2.5 with

= (

H N#nuZ#?"'% H= (N17M2"">7 pRe = ((MRC)D(MRC)Q"")

the fact
Vie N:pl < (uR.);

and because of ¢ > 2 in particular

1= = (uRo)1.

Thus p# R, is a PK,,-pair.

In the case ¢ = 2, we write

pRy = ((1Ra2)1, (R2)a, .. .).

With that, the first entry of the given partition p# is changed to

pn + o — iy = (uRo)y

in the course of the construction of u#puR,. According to Definition 3.2.1, we have
,uf = p; and, because of ¢ = 2 and the conditions in Definition 3.2.3, furthermore

1 < pip. This implies (see also Definition 1.1.2)
fo A+ o — gl >l >l >

Thus the modified composition p# is a partition of a positive integer. This partition
has the same first entry as puRs. In addition, we have according to Definition 3.2.5
and Definition 3.2.1

pf = (uRy)  and Vi e N\{L2}:u? <y = (uRy);.

Thus p# R, also is a PK,,-pair.
(iii) Let u#u be a PK,-pair. If we have pu#pu = 00, there is no AR-index
according to Definition 3.2.3. Now suppose p#pu # 00 with

#

p# =i uf, ) and = (e, ).

In the case u# = pu, there is no ¢ € N\ {1} with pu# < p. and thus no AR-index.
In the case u# # u, we get from the facts [,u#] C [p] and /ﬁé = p1 a minimal
co € N\ {1} satisfying

< prey.
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This ¢y necessarily also satisfies

Nﬁ)fl = Heop—1-

Thus cp is an AR-index for pu# pu.
(iv) See [JAMI, Section 15, especially 15.12]. W

Now we introduce certain tableaux and permutations based on PK-pairs. The
following definition makes use of Definition 1.1.6 and Definition 1.1.45.(i).

Definition 3.2.8 Let u#u be a PK,-pair as in Definition 3.2.1 with pu* u # 00.

(i) The lattice points in [u] can be ordered in such a way that the lattice points
in [p*] C [u] precede the lattice points in [1] \ [p#] and furthermore the
ascending order for the lattice points in [/L#] 18 by columns from left to right
and within each column from top to bottom and finally the ascending order for
the lattice points in [u] \ [p#] is by rows from top to bottom and within each
row from left to right. This is equivalent to say that for (i,7),(1,7) € [u] we

have

[1#]) A ((0,9) € [1*]) A
(G<3)v (G 5>A<z<z>>)>v
<<<u>e[uﬂ> (GJ) ¢ [

((G) & 1)) A (G.D) ¢ [1#]) A
((<DV(E=AG=<))))

G.3)<Gd) & ((G5)e

With that we define
T

as the order preserving map from the set [u] ordered by < to the set {1,...,n}
arranged in its natural ascending order.
(ii) The permutation w,#, € &, is defined as

#

Wyt = (t“)fl tHH

or equivalently by the condition

#
thw,, =t
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(iii) The permutation g,#, € &, is defined as

-1

Ju#p = Wz, Wp

or equivalently by the condition
Wp#pYp#p = Wp-
The following picture shows the p-tableau t#"# for the PKayo-pair p e with

p* =(7,32,2)F15 and  p=(7,5,6,4) F 22.

11519121314 |15
216 (10)16|17
3|7 (111118({19]20
418 (2122

Furthermore, we have for this PKys-pair

W, = (2,5,13,3,9,6,14,7,15,11,16, 18,20, 8)(4, 12, 17, 19)

and
Gty = (12,13,17,18,15,22,16, 14, 20, 21).

The notions introduced in the following serve the better description of properties
of and constructions with the tableaux and permutations introduced in the pre-
ceding definition. The next definition makes use of the notation (1.1) on page 1,
Definition 1.1.6, and Definition 1.1.45.(i).

Definition 3.2.9 Let A\ E n. Moreover let v E k with a k € {1,...,n} satisfying
[v] C[A]. Finally choose a A-tableau t. Then the map

tm = {1,...,n}, (i,j) — (i,j)tm = (3,7)t

is called the source restriction of t from [A] to [v] or the source restriction of t to
[v] or just the source restriction of t. For a lattice point (i,j) € [v], its image

(i,j)tﬂ;\}] = (4,7)t is called the entry at the position (i,7) in t“ﬁ or just the (i,7)-

entry in tﬁ;\% The rows of tﬁ;\% are defined as the restrictions of tﬁ;\} to the
rows of [v]. The columns of tﬁ;\} are defined as the restrictions of t“i‘} to the
columns of [v]. tlm is represented by labelling for every lattice point (i,7) € [v]
(A

the corresponding square in the representation of [v] with the (i,j)-entry in tl[ -
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Remark 3.2.10 The notions introduced in the preceding definition can be applied

i particular to PK,-pairs ,u#,u different from 00 and the restrictions t [[’j#] of

p-tableauz t.

The next statement makes use of Definition 1.1.58.(i), Definition 1.1.60, and Defi-
nition 1.1.66.

Lemma 3.2.11 Let u#u be a PK,-pair with p* 1 # 00. Then we have

i) oo 1) =t

(ii) ¢ € Thy,

(iii) w4, € E, C D,

() L(wu) = L(wy) + E(gur ),
(v) t“#"gu#u =t,.

Proof. (i) This follows immediately from Definition 3.2.8.(i), Definition 3.2.9, Re-
mark 3.2.10, and Definition 1.1.66.

(i) From [p#] C [u] we see that for every j € N the j-th row of [u] consists
of the j-th row of [p#] on the left and some lattice points in [p] \ [¢#] on the
right. According to Definition 3.2.8.(i), statement (i), and because of t,» € 7;’;;&
(see Lemma 1.1.68.(i)), the entries in each of these two parts of the j-th row of t#”#
are arranged in ascending order from left to right and furthermore every entry in
the left part is smaller than every entry in the right part. This shows that for every
J € N all entries in the j-th row of tW 1 are arranged in ascending order from left
to right. Thus we have

tWie e T

row std"

Since p# = (uf, ... is a partition (see Definition 1.1.2.(i)), we also have
that for every j € N the j-th column of [u] consists of the j-th column of [,u#} as
upper part and some lattice points in [u] \ [,u#} as lower part. To see this, suppose
that the j-th column of [u#} is nonempty and put

k:max{z'GN (i,7) € [,u#]}

Because of (k,j) € [/ﬂﬂ we then have 7 < ,uf and get

Vie{l,...,k—l}:jguk#guf
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Thus for every i € {1,...,k — 1} the lattice point (7,j) is contained in the j-th
column of [p#]. This shows that the j-th column of [u] consists above (k, j) only of
lattice points in [u#]. Again according to the construction of t“#“, statement (i),
and because t,# is standard, the entries of t#" 1 in this upper part of the j-th column
of [u] are arranged in ascending order from top to bottom and furthermore each one
of these entries is smaller than every entry in the lower part. In addition, we get
from the construction of the map t*"* on the set [u] \ [1#] in Definition 3.2.8.(i)
that the entries of t*"# in the lower part of the j-th column of [u] — consisting
entirely of lattice points in [p] \ [p#] — also are arranged in ascending order from
top to bottom. Thus all entries in the j-th column of £ 1 are arranged in ascending
order from top to bottom. This shows that t#"# is column standard.

All in all we now have
#
thH e T4,

as desired.

(iii) This follows immediately from statement (ii). See also Remark 1.1.61.

(iv) This is obtained from statement (iii), Lemma 3.1.8, Definition 3.1.6, and
finally Definition 3.2.8.(iii).

(v) This follows immediately from Definition 3.2.8.(ii), Definition 3.2.8.(iii), and
Definition 1.1.67. W

The following definition makes use of Definition 1.1.45.(ii) and Definition 1.1.66.

Definition 3.2.12 For a given PK,-pair u# pu with p#pu # 00 we put

V(5,9) € [\ [1#] 5 (G, 5w = G, )
Uiru =4 w e, | VG,5) € [w#] : (e (e )t e [u#] A
(1, )" ), = )
and
V(5,9) € [\ [1#] 5 Gt = (5,5t
Vit =13 we®, | VGi,5) € [1#] : (i )tultuw) ™t € [#] A

(0> )t) o0 = j)

Remark 3.2.13 Let u#pu be a PK,-pair with p#pu # 00. Then Uy, and Vs, can

m
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be described less formally as follows.

w fizes the entries in tH"#
at positions in [u] \ [p#]

Upp =4 wE€Gn| gnd permutes the entries in each column

of t“#“ﬁ’:}#] amongst themselves

w fizes the entries in t,
at positions in [u] \ [p*]

Vi = we S, | gnd permutes the entries in each column

of tuy“] amongst themselves

[1#] J

The next statement uses (1.2) on page 1, Definition 1.1.1.(ii), Remark 1.1.12, Defi-
nition 1.1.55, Definition 1.1.58.(i), and Definition 1.1.67.

Lemma 3.2.14 Let p#p be a PK,-pair with p”p # 00, p = (g1, o, ...) F n,
and p#* = (u¥ ), ) F k for a k € {1,...,n}. Then we also have pt = 4
and furthermore p# = (u?’, ... ,uﬁi’) F k with uﬁl’ > 0. With that, the following

statements hold.

(i) Put for j €{1,...,m}

) _
U#‘;ﬁu — 6{uj#7/jlt+1 ..... iu’;%/+} g Gn (34)
Then we have
U = U x - x USY) C &, (3.5)

The length function on &, is additive with respect to this decomposition of

U

"
determined decomposition

#, 1nto a direct product. This means that for an x € U,%, and its uniquely
=11y,
with x; € UISQM forje{l,...,} we have
Uz) =Ll(xr) + -+ lzy,).
Furthermore, if we put
n= (... ,uﬁll, "M En (3.6)

then we have

Uy, =6, (3.7)
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(i) Fori € N we denote by m; € Ny the number of lattice points contained in the
i-th column of [p]. With that we put for k € Ny

k

+ _ )

m, = E m;.
j=1

Finally we put for j € {1,...,u1}

) _
vlﬁiu - G{m;'_l—i—l ,,,,, m;"_1+‘u;,¢’} g 677, (38)
Then we have
Vit =V x o x VB C &, (3.9)

The length function on &,, is additive with respect to this decomposition of
V,#, into a direct product. This means that for a y € V,#, and its uniquely

determined decomposition
Y= Ym

with y; € Vu(f"*)u forje{l,..., u1} we have

Uy) = L(yr) + -+ Yy )-

Furthermore, if we put
0 = (i 1 el iy (3.10)

then we have

Vi = Go. (3.11)

(iii) We have
—1
| gu#uUu#ugu#u
or equivalently

Gt Vit = Upt n Gyt -

(iv) Let w € Uy, and put @ = g;;iuwgu#u. Then we have W € V#,, g,#,0 =

w4, and
g(g,u#pﬂzo - g(g,u#p,) + EOI}) - E(wgu#u) - K(w) + E(Qu#u)‘

(v) We have

Wy, Uyt e © Dy
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(vi) We have
w,V,

w#u S Dy

(vii) w;;i# is the shortest representative of the right coset Uﬂ#pw;i# of the Young

subgroup U, in S,. In other words, we have, using (5.6) and (8.7) from
statement (i),
w;ﬁi“ € D,.

1

(viii) w, " is the shortest representative of the right coset Vﬂ##wljl of the Young

subgroup V., in &,. In other words, we have, using (5.10) and (3.11) from
statement (i),

’LU;1 € Dy.
(iz) Let ¢ € N\ {1} be an AR-index for u#p. Then we have
Ut = Uptpn,-

(x) Let N i be another PK,-pair satisfying \*u # 00 and
W] € ¥
Then there is a set F C &,, such that
View = Vi F
holds and moreover each w € Vy#, has a uniquely determined decomposition
w=uf
with w € V%, and f € F and finally arbitrary u € V%, and f € F satisfy

l(uf) = (u) + £(f).

Proof. (i) Since u* is a partition, [u#} has exactly ,u’f = pp nonempty columns
(see Definition 1.1.6 and Definition 3.2.1). Definition 3.2.8.(i), Definition 3.2.9, and

Remark 3.2.10 show that for every j € {1,..., 1} the j-th column of t“#“l[[’j#]
contains the entries

WL

in that order from top to bottom. Thus, according to Definition 3.2.12 and Re-

mark 3.2.13, the permutations in U, can be characterized as those permuting for
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every j € {1,...,u1} the elements of the set {/Lfé_”{ +1,... ,M?M} amongst them-
selves and fixing all numbers not contained in any one of these pairwise disjoint
sets. From this we get the decomposition (3.5) of U,#, into a direct product.

The additivity of the length function with respect to this decomposition is easily
obtained from (1.10) on page 3 and the fact that the sets on which the various factors
of the direct product operate are pairwise disjoint intervals of integers.

Finally, the relation

U,#

wtn = Gy
is obtained by comparing (1.18) on page 25 — applied with the composition 7 —
and (3.4).

(ii) The proof of this statement is for the most part analogous to that of state-
ment (i).

Since p# is a partition, [p#] is composed of y; nonempty columns. Defini-
tion 1.1.66, Definition 3.2.9, Remark 3.2.10, and the construction of the m; with

i € N and the m;” with k € Ny show that for every j € {1,..., 1} the j-th column

of t ”“‘;] #] contains the entries

/
mi 1. miy + ol

in that order from top to bottom. Thus, according to Definition 3.2.12 and Re-
mark 3.2.13, the permutations in V%, can be characterized as those permuting for
every j € {1,..., 1} the elements of the set {mjtl +1,... ,m;r_l + /L;%/} amongst
themselves and fixing all numbers not contained in any one of these pairwise disjoint
sets. From this we get the decomposition (3.9) of V,,#, into a direct product.

The additivity of the length function with respect to this decomposition is ob-
tained as in the proof of statement (i).

Finally, we get from the inclusion [/ﬂﬂ C [u], Remark 1.1.12, and the construc-
tion of the m; with ¢ € N and the m;" with k& € Ny the relations

VJE{laaﬂl}ngN]/

and also

Jr
n>m M
This shows that 6 is indeed a well defined composition of n. Now we get
Vi, = Go

as in the proof of statement (i) by comparing (1.18) on page 25 — applied with the

composition § — and (3.9).
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(iii) According to Lemma 3.2.11.(v), we have t“#“gu#u = t,. This shows that

g,#, maps for every j € N the entries of the j-th column of 7 n [[’;] #] bijectively

onto the entries of the j-th column of t “l[[l;] 4] and furthermore the entries in t#"# at

positions from [\ [1#] bijectively onto the entries in t,, at positions from [u]\ [p#].
The claim follows from these properties of g,#, and Remark 3.2.13.

(iv) w € V,#, follows from statement (iii). g,#,0 = wg,#, follows imme-
diately from the construction of w. Moreover, we get from t“#“g##u = t, (see
Lemma 3.2.11.(v)), using the notions and considerations from statements (i) and
(ii) and their proofs, that g,#, maps for every j € {1,..., 1} the entries

WLl

of the j-th column of e n l in this order — that is, order preserving — to the

(1]
[1#]
entries

/
’rn;r_l—i—1,...,m;r_1—|—/vb}éé

of the j-th column of tMH’:} ik Now the remainder of the claim follows from this

property of g,#,, Remark 3.2.13, and (1.10) on page 3.

(v) Fix a u € U,#,. According to Definition 1.1.58.(i) and Definition 3.2.8.(ii),
we must show that t”#u is row standard.

First, Lemma 3.2.11.(ii) and Definition 1.1.45.(iii) show that t*"* is row stan-
dard. Moreover, Definition 3.2.8.(i) shows that every entry in t#" 1 at a position
from [p#] is smaller than every entry in t"# at a position from [4] \ [1#]. Finally,
Lemma 3.2.11.(i), Definition 1.1.66, Definition 3.2.9, and Remark 3.2.10 show that

for arbitrary 4,5 € N with ¢ < j every entry in the ¢-th column of t“#“l[[”]#

#]is

smaller than every entry in the j-th column of t“#“l[ﬁ nE

From these properties of t#"# and Remark 3.2.13 we see that t*"#u is row
standard. This completes the proof as explained above.

(vi) The proof of this statement is similar to the proof of statement (v).

Fix a v € V,%,. According to Definition 1.1.58.(i) and Definition 1.1.67, we
must show that t,v is row standard.

Now we see from Definition 1.1.66 that for arbitrary 7,7 € N with ¢ < j every
entry in the ¢-th column of t, is smaller than every entry in the j-th column of t,,.
From this property of t, and Remark 3.2.13 we see that t,v is row standard. This

completes the proof as explained above.
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(vii) According to (3.6) and (3.7) from statement (i), we must show that t”wl;iu
is row standard.

To this end, we first compare t7 from Definition 1.1.53 and t#"1 from Defini-
tion 3.2.8.(1). We easily get from the definitions of these tableaux that for every
Jj € {1,..., 1} the sequence of the entries in the j-th row of t”7 when considered

from left to right coincides with the sequence of the entries in the j-th column
of tu#ul[[‘j#] when considered from top to bottom (see also Definition 3.2.9 and

Remark 3.2.10).

Now an application of w;jﬁu (see Definition 3.2.8.(ii)) to the relations described
in the preceding paragraph shows that for every j € {1,..., u;} the sequence of the
entries in the j-th row of t"w;iu when considered from left to right coincides with

the sequence of the entries in the j-th column of

(tu#ul[[fj#o w;;ﬂ = (tu#uw;“) “j#] = t#l[[fj#]

when considered from top to bottom. Since t* is column standard, we get from this
that for every j € {1,..., pu;} the entries in the j-th row of t"w;ﬁi“ when considered
from left to right are arranged in ascending order.

Furthermore, we see from (3.6) that every other row of t"wl;iu contains at most
one entry.

All in all, we get that t"w;iu is row standard. This proves the claim as described
above.

(viii) The proof of this statement is similar to the proof of statement (vii).

According to (3.10) and (3.11) from statement (ii), we must show that t®w," is
row standard.

To this end, we decompose 6 in u; + 1 successive subsequences. Using the no-
tation from statement (ii), we define for every j € {1,..., 1} the j-th subsequence

as
(' 1),

The (p1 + 1)-th subsequence is defined as
(1™ 0,0,0,...).

The concatenation of these sequences in ascending order according to their num-
bering results in 6 (see (3.10)).

Now we compare t? from Definition 1.1.53 and t, from Definition 1.1.66. We
easily get from the definitions of these tableaux and the construction of # that for

every j € {1,..., 1} the sequence of the entries in the row of t? corresponding to the
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first entry in the j-th subsequence of 8 when considered from left to right coincides

with the sequence of the entries in the j-th column of tuﬂ‘j #] when considered from

top to bottom (see also Definition 3.2.9 and Remark 3.2.10).

Now an application of w;l (see Definition 1.1.67) to the relations described in
the preceding paragraph shows that for every j € {1,...,u;} the sequence of the
entries in the row of t‘s'w;1 corresponding to the first entry in the j-th subsequence

of # when considered from left to right coincides with the sequence of the entries in

(tuﬁ‘j#o w," = (tuw, 1)“Z]#} = tu“f#]

when considered from top to bottom. Since t* is column standard, we get from

the j-th column of

this that for every j € {1,..., 1} the entries in the row of t‘)w;1 corresponding to
the first entry in the j-th subsequence of 6§ when considered from left to right are

arranged in ascending order.

-1

u contains at most

Furthermore, we see from (3.10) that every other row of t?w
one entry.

All in all, we get that t(’w;1 is row standard. This proves the claim as described
above.

(ix) In order to prove this statement, we distinguish the cases ¢ > 2 and ¢ = 2.

First we consider the case ¢ > 2. Then we see from Definition 3.2.5.(iii) that the
PK,,-pairs p# 1 and p# puR. contain the same partition. This partition is denoted by
v in the following. With that, we obtain from Definition 3.2.8.(i), Definition 3.2.9,
and Lemma 3.2.11.(i)

t“#ﬂl[ﬂ]} —t, = t“#NRcH“]Rc} .

v

This shows together with Definition 3.2.12 and Remark 3.2.13

U##H:UH#uRc for ¢ > 2.

Now we consider the case ¢ = 2. Then we see from Definition 3.2.5.(iii) that the
PK,,-pairs i and pu# iRy contain different partitions. If we denote the partition
contained in u* p by o and the partition contained in p# 1Ry by 3 then (3 is obtained
from « by increasing the first entry. According to Remark 1.1.12, this implies
that the transposed partition 3’ is obtained from o' by appending some entries
with the value 1. These new entries of 3’ contribute only trivial factors to the
decomposition of U, ,r, into a direct product as described in statement (i). Since

the remaining entries of 5" are identical to the entries of o, the remaining factors
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in the decomposition of U,# g, into a direct product as described in statement (i)

are identical to the factors in the analogous decomposition of U,#,. Thus we have
Uty = Uptup, -

Now the claim is proved for all possible values of c.
(x) If we write A* = (A\F, A% ..}, we get from Definition 3.2.1

A == uf.

According to Remark 1.1.12, we also have \# = (A7, M) with A% > 0. In

particular, A*" and p# have the same number of positive entries. Furthermore, we
get from the condition [,uﬂ C [/\#}, Definition 1.1.9, and Definition 1.1.11

(] < V]
According to Definition 1.1.6.(i), this implies

Vied{l,...,m}: /UL}#/ < )\}#l. (3.12)

If we now consider the decompositions

Vit =V, x o x Vi) C &, (3.13)
and
Vi =V xoxvi) ce, (3.14)

of Vy#, and V,», with factors V/\(i)“ and V;ﬁu for j € {1,..., 1} from statement (ii),
we get from (3.12)

Vie{l,...,m}: VY cvi,

and thus
Vit © Varp

More specifically, we have that for every j € {1,..., 1} the group Vu(i)u is the
Young subgroup associated with v\ = (uf’, 1 ,) + )\f’ of the symmetric group
V/\(j&)# of degree )\}#/ (see (1.18) on page 25). Thus there is for every j € {1,..., 1}
the set of shortest representatives of all right cosets of Vu(i)u in V/\(i)ﬂ. If we denote
this set by FU), we have

: v 0 )
Vie{l,...,m}: Ve =V FY. (3.15)

M B p
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Since the factors in the decomposition (3.13) of V)%, commute, substitution of
(3.15) leads to

_ Wz .. () £ )
Ve = (Vu#u}_ ) (VM#N}_M > (3.16)
_ (V;#H vj;‘ﬁ) (FO ... Fly
Thus if we put
F=FWU x...x Flm) c Ve, C 6, (3.17)

then we get from (3.16) and (3.14)
Vatn = Vit o F. (3.18)

Being a product of the systems of representatives FU) for the right cosets of
the direct factors Vu(i)u of V4, in the corresponding direct factors V)\(i)u of Vi, for
Jj€{L,...,ui}, F is a system of representatives for the right cosets of V,#, in Vy#,,.

This implies that if we have a decomposition
w=uf

of an arbitrary w € V)%, into a product of an appropriate u € V%, and an appro-
priate f € F then the factors v and f are uniquely determined.

Finally, choose an arbitrary u € V,», and an arbitrary f € F C Vy%,. Then we
have, according to (3.13), (3.14), and (3.17), uniquely determined decompositions

U=Up- Uy and f:fl"'fm

with u; € V;Qﬂ and f; € FU) C V;i)# forj € {1,..., 1 }. Asshown in statement (ii),

these decompositions satisfy
lu) =L(ur) + -+ lu,) and £(f)=L(f1)+ - +L(fun) (3.19)
From these decompositions we get
wf = (ur-up) (fre fu) = (uafa) - (g fun) (3.20)
(see (3.16)). Now (3.18) and (3.15) show that both
uf €Vaw, and Ve {l...m}iuf; € VD

hold. Thus (3.20) is the uniquely determined decomposition of uf € Vy%, into a
product of elements of the factors V.7 iy O Vagy, for j € {1,..., n}. From this fact,
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statement (ii), the construction of the FU) for j € {1,..., 1}, and (3.19) we get

luf) = Lurfi) + -+ U fu)

(Clur) +£(f1) + -+ (Uwp,) + (fu))
(Clur) + -+ L) + (C(f1) + -+ L(fu)
= L(u)+L(f).

Now all claims in statement (x) are proved. W

The Young subgroups U,#, and V%, of &,, with a PK,-pair u? 1 # 00 are used in
Section 3.4 to construct new Hecke algebra modules.

The following definitions and statements will be used in Section 3.5 to construct
module homomorphisms. The next definition makes use of (1.2) on page 1 and
Definition 1.1.1.(ii).

Definition 3.2.15 Let p#u be a PK,-pair with p#u # 00, p = (1, pa,...) E n,
and p#* = (u¥, 1, )bk forak € {1,...,n}. Furthermore, let c € N\ {1} be an
AR-index for p# . Then we define the set L, €6, as

wEG{uj,ﬁrl _____ Mj}§
Litpe =4 we&, | (uf+1)w< < (uly+ pe—p)w

(Hy +pe = pf 1) w < - < pfw

Remark 3.2.16 Let p#u and c be as in Definition 3.2.15. Then the set L# e

introduced therein can be characterized less formally as follows.

w only permutes the entries in the
c-th row of t# amongst themselves such that
L=< weGS,| inthec-th row of t'w the left p. — uf entries

and the right p¥ entries respectively are

arranged in ascending order from left to right

Lemma 3.2.17 Let u#p be a PK,-pair with p#pu # 00 and let ¢ € N\ {1} be an
AR-indez for it. Then the set I,#,. introduced in Definition 3.2.15 satisfies

(Z) Iu#uc - 6#7
(ii) 1#ue = (6ur.6u) N Dyr,.

Proof. (i) This follows from Definition 3.2.15 and the product decomposition (1.18)
of Young subgroups on page 25.
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(ii) First we consider the inclusion I,#,. C (&,r.6,)NDyg,.. From statement (i)
we get
Lytpe © 6 € Gup. 6y

In order to obtain the inclusion I,#,. € D,g., we consider the operation of an arbi-
trarily chosen f € I,#,. on the tableau t*fe. If we write p = (p1, f1o, . ..) and p# =
(¥, pf,...) then we get from Definition 3.2.5.(ii) uR. = ((Re)1, (Re)2,...) E n
with
/vchl"i_/JJc_:Uﬁcé)Ié for j:C_l
(hR.); = i for j=c
14 for jeN\{c—1,c}

Thus the (¢ — 1)-th row and the c-th row of t#% have the following form (see also
Definition 1.1.1.(ii)).

(c=1)-throw: plo+ 1, ul iy +1, 0wy 4 pe — pf

3.21
cthrow: pl 4 pe—pf+1,... uf (3.21)

All elements of {1,...,n} not fixed by f are contained in these two rows of t#ft.
From the conditions on the arrangement of the images of these elements under f
we easily get that t/f f is row standard. This shows f € D,g. and furthermore

Li#pe © Dur,

and finally
1

uit e - (GMRCGM) N D,uRc-
Now we will show the inclusion (&,z.6,) N D,r, € I,#,.. To this end, we
consider the operation of an arbitrarily chosen f € (8,x,6,) D, r, with a product

decomposition
[=xy (3.22)

with z € &, and y € &, on t* and t*. Since uR. and p differ only in the

entries with indices ¢ — 1 and ¢ and these entries satisfy

(nRe)e—1 + (pRe)e = (:uc—l + e — Mf) + (:uf&) = fe—1 t Hes

we see that [uR.] and [u] and thus also t*fe and t* are identical except for the rows
¢ — 1 and c¢. This shows that first  operating on t*% and then y operating on
tifeg leaves every entry not contained in row ¢ — 1 or row ¢ within its row. Now
(3.22) shows that this also is true for f operating on t*"c. Moreover, both t*%= and

t#e f are row standard, since f € D,g,. All this shows that every entry in t*fe f
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not contained in row ¢ or row ¢ — 1 occupies the same position as it does in t#%e.
This means that f fixes every one of these entries. Thus we get from (3.21) and
(1.2) on page 1

fe 6{#2-72+17..‘7H3-}. (3.23)

Next we put

L = {Hj_2+17'-'7ﬂj—1}7
M = {1, e — )
N = {py+pe—pf+1,..,pul}.

With that, we see from (3.21) that € S,z = Riure permutes the elements of
the sets L U M and N respectively amongst themselves and leaves them in their
respective rows in t*fc. According to Definition 1.1.53, the elements of L, M, and
N are exactly the entries in the (¢ — 1)-th row and the ¢-th row of t#, which are

displayed in the following diagram.

(c—1)-throw: pubo+1,... 0
c-thvow s ply + 1, pul g+ pe = pf oy e —pF 1t

From this we see that y € 6, = PR« permutes the elements of the sets L and
M U N respectively amongst themselves. All this shows together with (3.22) and
(3.23) that the application of f to t#fe leaves the elements of L in the (¢ — 1)-th
row and rearranges the elements of M U N within the (¢ — 1)-th row and the c-th
row. Thus the entries in the (¢ — 1)-th row of t*f f are composed of all elements
of the set L and . — p# elements of the set M U N, and moreover the c-th row
of t*f f consists of the remaining p7 elements of the set M U N. Now since t#ft f
is row standard and every element of L is smaller than every element of M U N,
the elements of the set L in the (¢ — 1)-th row of t*% f must occupy the leftmost
positions in this row and must be arranged in ascending order from left to right,
exactly as they are in the (¢ — 1)-th row of t*fc. This implies that f fixes each of
these elements individually. From that and (3.23) we get

FEGLE ity (3.24)

Again since t* f is row standard, the rightmost p.—u# entries in the (c—1)-th row
of t*F f and also all entries in the c-th row of t“f< f respectively must be arranged

in ascending order from left to right. This fact and (3.21) together imply

(i + 1) f<- < (uby+pe—pd) f (3.25)
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and
(o +pe—pf+1)f < <pulf (3.26)
(3.24), (3.25), and (3.26) now show f € I,#,. and furthermore

<6HRCG#> N DMRC - Iu#;w'
Thus we have all in all

Iu#uc = (Guchu) N DMRcv

as desired. W

The next lemma makes use of representations of tableaux and compositions as
described in Section 1.1. It constructs from a given representation of a tableau
the representation of another tableau by moving around entries or equivalently the

squares containing them.

Lemma 3.2.18 Let u#pu be a PK,-pair with u#p # 00 and write p = (ju1, po, - - )
and p# = (u,p4f,..)). Furthermore, let ¢ € N\ {1} be an AR-index for u# .
Finally, choose a w € &,,. Then the tableau t*few is obtained from the tableau t'w
by moving the leftmost pi. — i entries of the c-th row in the given order to the end
of the (¢ — 1)-th row and moving the remaining p# entries of the c-th row in the

giwven order to the beginning of the c-th row.

Proof. From Definition 1.1.53 and Definition 3.2.5.(ii) we get the following con-

uRc

struction of t from t*.

t/f is obtained from t* by moving the leftmost ji.—u? entries
of the c-th row in the given order to the end of the (¢ — 1)-th
row and moving the remaining p# entries of the c-th row in

(3.27)

the given order to the beginning of the c-th row.

The displacement of squares labelled with certain entries is compatible with the
operation of permutations on these entries. Thus an application of w to (3.27)

yields the following construction of t*#ew from t*w.

t#feyw is obtained from t*w by moving the leftmost . — p#
entries of the c-th row in the given order to the end of the
(¢ — 1)-th row and moving the remaining p# entries of the

c-th row in the given order to the beginning of the c-th row.
This completes the proof. l

The following lemma is similar to the preceding one. It also makes use of Defini-
tion 3.2.5.(ii).
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Lemma 3.2.19 Let p#p be a PK,-pair with p#p # 00 and write = (yy, po, . . .)
and p#* = (W, pZ,..)). Furthermore, let ¢ € N\ {1} be an AR-index for u# .
Finally, choose an f € I4,. and a w € &,,. With that, write

fw=ud

with uniquely determined permutations u € &, g, and d € D,gr.. Then the tableau
t*fed is obtained from the tableau t*w by moving u.— i appropriate entries of the
c-th row to the end of the (c — 1)-th row, moving the remaining u? entries of the
c-th row to the beginning of the c-th row, and arranging the entries of the various

rows in ascending order from left to right.

Proof. According to Definition 3.2.15 and Remark 3.2.16, an application of f €
1,4, to t# permutes only the entries in the c-th row amongst themselves and fixes
the entries in all other rows. This implies that t*fw and ttw differ only by a
permutation of the entries in the c-th row. From this fact and Lemma 3.2.18 —
applied to t* fw in order to obtain t“® fw — we get the following construction of

tHfe f from tHw.

tifte fw is obtained from t“w by moving u. — p# appropri-
ate entries of the c-th row to the end of the (¢ — 1)-th row (3.28)
and moving the remaining pu# entries of the c-th row to the
beginning of the c-th row.

Furthermore, an application of u € &, to t"f< leaves each entry in its respective
row. This implies that t“Feud = t*fe fw and t*Fed differ only by a permutation of
the entries in the various rows respectively amongst themselves. Moreover, because
of d € D,g,, the entries in the various rows of t#fed are arranged in ascending order
from left to right. From all this and (3.28) we get the following construction of

tH fed from tHw.

tifed is obtained from t“w by moving p. — u# appropriate
entries of the c-th row to the end of the (¢—1)-th row, moving
the remaining p# entries of the c-th row to the beginning of
the c-th row, and arranging the entries of the various rows in

ascending order from left to right.
This completes the proof. l

The next Lemma makes use of Lemma 1.1.8.(i), Remark 1.1.12, Definition 1.1.45.(i),
Definition 1.1.45.(ii), and in particular Definition 3.2.5.(iv) and Lemma 3.2.7.(ii).
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Lemma 3.2.20 Let pp be a PK,-pair with u#*u # 00 and let ¢ € N\ {1} be
an AR-index for it such that u*A, is a partition or equivalently p*A.pu # 00
holds. Moreover, suppose that we have a w € &, such that the entries of ev-

(1]

ery column of (tFw) o

] when considered from top to bottom form an ascend-

ing sequence of successive integers. More formally, this means that if we write
pt Ae = (W A1, (W AL, . ..) and ,u#AC/ = ((M#Acl)l, e (,LL#ACI)(N#AC)I) then

vje{l,...,(utA) ) Vi€ {1,...,(M#AC’)J} : (3.29)
(i, )t w = (1, j)thw +i— 1

holds. Finally, let f € I,#,. and write
fw =ud

with uniquely determined permutations u € &,r, and d € D,r.. Then there is an

m € {2,...,n} with the following properties.

(m) (tw) ™ (= 1) () € [uFA]
(Mm)oguy = (M — 1)y

(M)Gureqg = (M — 1)Ceurey

Proof. According to Remark 3.2.4, the assumptions of the lemma imply n > 2.
Thus the claim is meaningful.

First we note that, according to the assumptions, u*A.u is a PK-pair with
p# Aep # 00 (see Lemma 3.2.7.(ii)). Thus we get from Definition 3.2.1

[ Ac] € [u].

Next, if we write g = (pu, p2,...) E n, p#* = (W, u,.. ) F k, and p#A. =
(W, ot + l,uil, ...) F k+1 as in Definition 3.2.5, we see that the left
p# + 1 entries in the c-th row of the representation of t“w all occupy squares
contained in the representation of [/L#Ac].

Furthermore, we can apply Lemma 3.2.19 to the situation at hand and construct
t#fied from t*w as described there. In the course of this construction, j.—pu# squares
from the c-th row of t“w are moved to the (¢ — 1)-th row, and only u# squares
remain in the c-th row. This implies that a square contained in [M#Ac} with a
certain entry m € {1,...,n} must be moved from the c-th row to the (¢ — 1)-th

row. More formally, we have for this m

(m) (t*w) " € [WF AL, (M)Gpw=0¢,  (M)Gura=c—1 (3.30)
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From this, the fact ¢ > 1 (see Definition 3.2.3), and the property (3.29) of the

tableau t*w we get on the one hand
me{2,...,n} (3.31)

and on the other hand that, in the representation of t*w, the square containing the
entry m — 1 is located directly above the square containing the entry m and also
is contained in the representation of [p#A.] (see Lemma 1.1.8.(i)). More formally,
we have
(m—1) (t"w)™" e [p*A.],
[ ] (3.32)
(m — 1)O't“’w = (m)O'tuw, (m — 1)Ct“w = (m)(ww —1=c—1.

From (m — 1)ty = ¢ — 1 we get in turn that, in the course of the construction of
t*fed from t*w described in Lemma 3.2.19, the entry m — 1 remains in the (c—1)-th

row. Thus we have
(m — 1)Cureg = (M — 1) = ¢ — 1. (3.33)
Now the claim follows directly from (3.30), (3.31), (3.32), and (3.33). H

Remark 3.2.21 Definition 1.1.67 and Definition 1.1.66 show that, using the no-
tation from Lemma 8.2.20, condition (3.29) is satisfied in particular by the permu-

tation w, € &, and the tableau t'w, = t,.

Now a distinguished element of the set from Definition 3.2.15 is introduced. The
next definition makes use of (1.2) on page 1 and Definition 1.1.1.(ii).

Definition 3.2.22 Let uu be a PK,-pair with p#u # 00, p = (uy, po, - ..), and
p# = (u¥ 1%, ..). Furthermore, let ¢ € N\ {1} be an AR-index for y#p. Then

we define the permutation

------

by
(g + 1) furpe = i + 0+ 1,0 (g 4 e — 1) futpe = 11 + fe,
(Mj—l + e — :uf + 1)fu#uc - :u::'_—l +1,... 7“jfu#uc = MZF_1 + pdfé'

Remark 3.2.23 If we apply, using the notation from Definition 3.2.22, the per-
mutation f,#,. to the tableau t*, we see that f,#,. moves the leftmost ui entries in
the c-th row of the representation of this tableau in the given order to the rightmost
wi# places of the c-th row and the rightmost p. — ¥ entries in the c-th row in the
given order to the leftmost p. — u? places of the c-th row. All entries in other rows

remain fized.
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Now some properties of the permutation introduced in Definition 3.2.22 are de-

scribed.

Lemma 3.2.24 Let u#p be a PK,-pair with p#p # 00 and write p = (1, po, - - )
and p#* = (u,pf,..)). Furthermore, let ¢ € N\ {1} be an AR-index for u# .
Finally, choose a w € &,,. Then the tableau t“RCfM#NCw 15 obtained from the tableau
thw by moving the rightmost p. — p# entries in the c-th row of t*w — that is, the
entries in the c-th row of t'w occupying positions not contained in [u#] — in the
given order to the end of the (¢ — 1)-th row of tFw.

Proof. From Remark 3.2.23 we get the following construction of t* f, 4, w from tHw.

tH f#cw 1s obtained from t*w by moving the leftmost ui
entries in the c-th row of t“w — that is, the entries in the c-
th row of t"w occupying positions contained in [p#] C [u] —
in the given order to the end of the c-th row of t*w and moving (3.34)
the rightmost ji. — pu# entries in the c-th row of t“w — that
is, the entries in the c-th row of t#w occupying positions not
contained in [p#] C [u] — in the given order to the beginning

of the c-th row of t*w.

Moreover, Lemma 3.2.18 provides a method for the construction of t#%e Jou# pew from

t# f,#,cw. Now the proof is completed by appending this method to (3.34). W

The next statement makes use of Definition 3.2.5.(ii), Lemma 3.2.7.(ii), and Defi-
nition 3.2.8.

Lemma 3.2.25 Let p#p be a PK,-pair with p#p # 00 and let ¢ € N\ {1} be an
AR-indez for it. Then the permutation f,#,. from Definition 3.2.22 satisfies

(Z) f,u#,uc € I,u#uc;
(”) tuRCfIJ/#II‘Cle‘#M — t,u#uRc )

Proof. (i) This follows immediately from Definition 3.2.15 and Definition 3.2.22.
(i) In the following we write u F n and p# + k with a k € {1,...,n} as in
Definition 3.2.1.

Lemma 3.2.24 provides a method for the construction of t+%e St pcw from

B
thw, %, = t#"#. This method doesn’t move entries occupying positions contained
in [u#}. From this fact, Definition 3.2.9, Remark 3.2.10, Lemma 3.2.7.(ii), Defini-

tion 3.2.5, and Lemma 3.2.11.(i) we get

Rc (Re] _ pp#p | (W]
(tu fu#ucwu#u)hl;#] =t uh‘;#] = tux.
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Here, u# and pR,. are not considered a PK,-pair. In turn, the preceding equation
and Definition 1.1.66 show that the entries 1,...,k in t“RCfu#Mcwu#u

positions contained in [u#} and are arranged in ascending order by columns from

occupy the

left to right and within each column from top to bottom.

Furthermore, Definition 3.2.8.(i) shows that the entries k£ + 1,...,n in 7
occupy the positions not contained in [,uﬂ and are arranged in ascending order
by rows from top to bottom and within each row from left to right. This type of
arrangement is preserved by the above-mentioned construction of t#f Jo# pcW
from t*”* which moves all entries in the c-th row of t*"* occupying positions not
contained in [u#} in the given order to the end of the (¢ — 1)-th row of e,

From all this we get the following description of t*%e St Wt -

In tHfte fu

pied by the entries 1,...,k arranged in ascending order by

o . . . # _
# e Wy s the positions contained in [u ] are occu

columns from left to right and within each column from top
to bottom, and furthermore the positions not contained in (3.35)
[u#] are occupied by the entries £ 4+ 1,...,n arranged in as-
cending order by rows from top to bottom and within each

row from left to right.

Here, i and pR,. are not considered a PK,,-pair. This description is now employed
to compare tAft Jo# pew, i, and twuBe We distinguish the cases ¢ > 2 and ¢ = 2.

First we consider the case ¢ > 2. Then, according to Definition 3.2.5.(iii), the
PK,-pairs % and p# R, contain the same partition. From this we get by using
Definition 3.2.8.(i) — applied to the PK,-pair u#uR. — and (3.35)

#
t”RCf##ucw“## =t e for ¢ > 2.

Now we consider the case ¢ = 2. Here, according to Definition 3.2.5.(iii), the
PK,,-pairs p# p and p# 1Ry contain different partitions. In the following we denote
the partition contained in p#puRy by v = m with an appropriate m € {1,...,n},
the partition contained in p#p is still denoted by p#. Definition 3.2.3, Defini-
tion 3.2.5.(ii), and Definition 3.2.5.(iii) show that v is obtained from p# by increas-
ing the first entry of ;# to the value of the first entry of yRy. This implies m > k,
and furthermore [v] is obtained from [/ﬂﬂ by appending a certain number of lattice
points to the end of the first row such that the length of the first row of [uRs] is
reached. Since p# is a partition, each of these added lattice points constitutes a
column of [v].

According to Definition 3.2.8.(i), the entries 1,...,m in i nltz occupy the po-

sitions contained in [v] and are arranged in ascending order by columns from left
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to right and within each column from top to bottom. This and the preceding con-
siderations show that, on the one hand, the entries 1,...,k occupy the positions
contained in [u#} C [v] and are arranged in ascending order by columns from left
to right and within each column from top to bottom, and, on the other hand, the
entries k+1, ..., m occupy the added positions in [v] — that is, the not yet occupied
positions in the first row of [uRs] — and also are arranged in ascending order by
columns from left to right and within each column from top to bottom. In other
words, the entries k& + 1,...,m occupy the positions in the first row of [uRs] not
contained in [/ﬂﬂ and are arranged in ascending order from left to right.

Moreover, the entries m +1,...,n in i nl occupy the positions contained in
[WR] \ [v] and are arranged in ascending order by rows from top to bottom and
within each row from left to right. Again according to the preceding considerations,
the positions contained in [uRs] \ [v] are exactly the positions in [pR] contained in
neither [;#] nor the first row of [1R,).

Now a comparison of this description of t*"#%2 and (3.35) shows
t#szu#Mwu#u — t”#“RQ.

This completes the proof. l

The permutation introduced in Definition 3.2.22 is uniquely determined by the
properties shown in Lemma 3.2.25. The following lemma provides another useful

characterization.

Lemma 3.2.26 Let p#p be a PK,-pair with p#p # 00 and write pu = (py, po, . . .)
and p# = (uF, ¥, ..). Furthermore let ¢ € N\ {1} be an AR-index for p#pu, and
finally let f € I,4,.\ {fu#uc} and w € &,,. Then there are column numbers

je{l,...,,uf} and je{l,...,luc—uf}

satisfying
(coj)t"w = (e, )t fu.

In other words, one of the leftmost u¥ entries in the c-th row of t*w coincides with

one of the leftmost pi. — uf entries in the c-th row of t* fw.

Proof. According to Definition 3.2.15, Definition 1.1.1.(ii), and Definition 1.1.53,
t# and t*f and thus also t*w and t* fw differ only by a permutation of the entries
in the c-th row amongst themselves. Now suppose that none of the leftmost p#
entries in the c-th row of t#w occupies one of the leftmost u. — p# positions in the

c-th row of t# fw. This implies that an application of f to t* moves the leftmost
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pi# entries in the c-th row to the rightmost p# positions in this row. But this in
turn implies that f moves the rightmost . — u# entries in the c-th row of t* to the
leftmost j1. — puf positions in this row. With all this we get from Definition 3.2.15
and Definition 3.2.22 (see also Remark 3.2.16 and Remark 3.2.23)

f = f,u#uca

a contradiction. Thus our assumption is wrong, and one of the leftmost ;7 entries
in the c-th row of t“w coincides with one of the leftmost . — p# entries in the

c-th row of t¥ fw. More formally, there are column indices j € {1, ce ,uf} and

je {1,..., pe — p* } satisfying
(¢, J)t"w = (¢, ))t" fu,
as desired. W

The next lemma is similar to Lemma 3.2.20. It makes use of Definition 1.1.6,
Lemma 1.1.8.(i), Remark 1.1.12, Definition 1.1.45.(ii), Definition 1.1.53, Defini-
tion 1.1.55, Lemma 1.1.56.(i), Definition 3.2.5.(ii), Definition 3.2.9, and finally Re-
mark 3.2.10.

Lemma 3.2.27 Let u#p be a PK,-pair with p#p # 00 and let ¢ € N\ {1} be
an AR-index for u*u. Moreover, suppose that we have a w € &, such that the
entries of every column of (t'w) [[‘;]#] when considered from top to bottom form

an ascending sequence of successive integers. More formally, this means that if we

write ji# = (uf, pf ) and p# = (i, u7%) then

vg'e{1,...,u#} vze{L...,ujﬁ’}; (3.36)

holds. Finally, let f € I#,.\ { f#u} and write
fw=ud

with uniquely determined permutations u € &,r, and d € D,r.. Then there is an
m € {2,...,n} with the following properties.
(m) (tw) ™, (m = 1) (w) " €[]
(m)O'tuw = (m — 1)0’th

(m)Ceureqg = (M —1)Geureq
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Proof. According to Remark 3.2.4, the assumptions of the lemma imply n > 2.
Thus the claim is meaningful.

In the following we write g1 = (ji1, flo, - . .) and denote p# as in the formulation
of the statement. Then an application of Lemma 3.2.26 to the given data supplies
us with an m € {1,...,n} satisfying

(m)ogew € {1,..., 0¥}, (M)Guw =c (3.37)
and
(m)owupw € {1, e —pf b, (M)Coupw = c (3.38)
From (3.37), the fact ¢ > 1, and (3.36) we see
me{2,...,n}. (3.39)
Finally, (3.37) and Definition 1.1.6.(i) show
(m) (tw) " € [p*]. (3.40)

Now because of (3.40) and again the fact ¢ > 1, and since p# is a partition, it
follows from condition (3.36) and Lemma 1.1.8 that, in the representation of t*w,
the square containing the entry m — 1 is located immediately above the square
occupied by the entry m and thus also is located in the representation of [u#].
More formally, we have

(m—1) (t"w) " € [u#],
(m — 1)O—tuw = (m)O't/Lw, (341)

(m — 1)Couw = (M) gy — 1 = ¢ — 1.
By using Definition 3.2.15 and Remark 3.2.16, we get from this

(m — ]-)Ct“fw = (m — 1)th‘w =c— 1.

All this shows together with (3.38) and Lemma 3.2.18, applied with the permu-
tation fw € G,,, the following relation concerning the positions of m and m — 1 in
tHEBe fw.

(m)Ceure poy = (M — 1) (e gy = ¢ — 1
Now since u € S,r, = Ryure (see Definition 1.1.55, Definition 1.1.50, and Re-
mark 1.1.51), the tableaux t*# fuw = t*feud and t*F<d differ only by a permutation
of the entries in the various rows respectively amongst themselves. This and the

preceding relation imply

(m)Ctp.Rcd = (m — 1)CtuRcd. (3.42)

The claim now follows from (3.39), (3.40), (3.41), and (3.42). H



3.3. ROW NUMBER LISTS 163

Remark 3.2.28 Definition 1.1.67, Definition 1.1.66, Definition 3.2.8, and Lem-
ma 3.2.11 show that, using the notation from Lemma 3.2.27, condition (3.306) is
satisfied in particular by the permutation w, € &, and the tableau t'w, = t, as

well as the permutation w € 6, and the tableau tFw, 4, = 7,

wH#p

3.3 Row number lists

This section describes some constructions with the row number lists introduced
in Section 1.1 (see in particular Definition 1.1.70). These constructions also are
considered in [JAMI1, Section 15]. Here they are employed in the derivation of the
generic bases of the modules occurring in the construction of the Specht series.
In the following we use the notations for row number lists and associated objects
introduced in Section 1.1. n continues to denote a positive integer.

First we associate certain tableaux, compositions, and permutations to row num-

ber lists.

Definition 3.3.1 Fiz a A = (A, \a,...) F n with Ay > 0 and choose a ( =
(¢, .., 6) € 22

(i) The A-tableau t(() is defined by the following construction in the course of
which the diagram [\ is filled with numbers corresponding to the entries of C.
Also, these numbers and the corresponding entries of ¢ are divided into good

ones and bad ones.

The construction starts with the diagram

Now fir a j € {1,...,n} and suppose that t(¢)’~! is already defined. Then
the diagram t(C)? is derived from the diagram t(C)’~! by means of the entry
¢; of ¢ as follows.

If we have (; = 1 then t(C)’ is obtained from t(C)’~1 by entering j into the
leftmost empty square of the first row of t(¢)?~. Furthermore, j is called a
good entry of the diagram and (; is called a good entry of (.

If we have ¢; > 1 and the ({; —1)-th row of t(¢)’~* contains more good entries
than the (;-th row then t(C)’ is obtained from t(¢)?~' by entering j into the
leftmost empty square of the (;-th row of t(C)?~'. Furthermore, j is called a
good entry of the diagram and (; is called a good entry of .

If we have ¢; > 1 and the (¢; — 1)-th row of t(¢)’~* contains exactly as many
good entries as the (j-th row then t(C)? is obtained from t(¢)7 by entering
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J into the rightmost empty square of the (;-th row of t(¢)?~'. Furthermore, j
is called a bad entry of the diagram and (; is called a bad entry of (.

With this, t(() is defined as

(11) For j € N we define v((); € Ny to be the number of good entries in the j-th
row of t(C). With this, we define the composition v(() as

v(€) = (W(Q)1, ¥(C)2, - ).
(i1i) The permutation g(¢) € &, is defined as

9(¢) = t57t(¢)

or equivalently by the condition
t:9(¢) = t(0).

Remark 3.3.2 (i) The condition Ay > 0 in Definition 3.3.1 is imposed here and
in the following mostly for simplicity without really being necessary. It is re-
quired where PK-pairs occur in the following constructions (see Remark 3.2.2).
Since later on these constructions are used only in conjunction with PK-pairs,

the above condition on X\ is not a substantial restriction.

(ii) The construction of t(¢) for a ¢ = ((1,-..,C) € ZX with A = (A, Ao, ... ) En
in Definition 3.3.1.(i) does indeed produce a A\-tableau since for every j €
{1,...,n} in the course of the transition from t(C)’~! to t(¢)? the value j is
entered into the (;-th row of the diagram \. And since ¢ is a A-row number
list (see Definition 1.1.70.(1)), for every k € N exactly \, entries are inserted
in the k-th row in the course of the entire construction. This shows that in
the j-th step of the construction an empty square is available in the (;-th row
and at the end of the construction the diagram [\ is filled with the numbers

1,...,n.

The statements (iv) and (v) in the next lemma make use of Definition 3.2.9.

Lemma 3.3.3 Let A = (A, \y,...) En with \y > 0 and let ¢ = (Cy,...,¢0) € 2.
Then the following statements hold.
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(i) We have
V() -k

with a k € {1,...,n}.

(ii) The diagrams [v(C)] and [\ satisfy
(O] € [A].

(111) v(Q)A is a PK,-pair with v(¢)A # 00.

(iv) In every row of t(C)Hi](C)] the entries are arranged in ascending order from
left to right.

(v) In every column oft(C)H;\](O] the entries are arranged in ascending order from

top to bottom.

Proof. (i) Definition 3.3.1.(i) shows that t(() contains at most n good entries. This
definition and the condition A; > 0 also imply that t({) contains at least one good

entry. Thus we have, according to Definition 3.3.1.(ii),
v(Q) F k

with a k € {1,...,n}. Furthermore, for every j € {0,...,n} and every m € N the
m-th row of the diagram t(¢)’ from Definition 3.3.1.(i) contains at least as many
good entries as the (m + 1)-th row. This is true for j = 0 and follows inductively
from the construction of the diagrams for j > 0. From this fact applied with 7 = n,
Definition 3.3.1.(i), and Definition 3.3.1.(ii) we get

V()1 > (€)= -

This shows
v(() Fk

with a k € {1,...,n}, as desired.
(ii) From the construction of t(¢) in Definition 3.3.1.(i) we get (see Defini-
tion 3.1.1.(i))
O] =[N

Thus for every j € N the j-th row of t({) contains at most A; good entries. Ac-

cording to Definition 3.3.1.(ii), this means

Vi eN:v((); <A,
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or equivalently
(O] € [A].
(iii) From Definition 3.3.1.(i) and Definition 3.3.1.(ii) we get

This shows together with statements (i) and (ii) that v({)\ is a PK,-pair as in
Definition 3.2.1. Obviously, v(¢)A is different from 00.
(iv) According to statement (ii), we can build t(¢ >H§(C)]' According to Defini-

tion 3.3.1.(1) and Definition 3.3.1.(ii), t(C)Hi](O] contains exactly the good entries
of t(¢). In the construction of t({) these entries are entered into the various rows
of [¥(¢)] C [\ in ascending order from left to right. This proves the claim.

(v) If in the course of the construction of t(¢) in Definition 3.3.1.(i) a good entry
is entered into the diagram [v({)] C [A] below the first row then a good entry with
a smaller value is already located immediately above this new entry. The proof of

the claim is now completed as in the proof of statement (iv). W
The following lemma makes use of Definition 1.1.70.(iii), Definition 1.1.58.(ii), and
Definition 1.1.67.

Lemma 3.3.4 Let A = (A, \a,...) En with \y > 0. Then the map

22Dy (e g
18 a bijection.

Proof. Fix a ¢ = ((1,...,¢,) € Z*. Then we see from the construction of t(¢) and
the construction of t; (see Definition 1.1.73) that for every j € {1,...,n} the entry
Jj is located in the ((;)-th row of each of the tableaux t(¢) and t.. This means that
for every i € N the set of the entries in the i-th row of t({) and the set of the entries
in the i-th row of t. coincide. Moreover, Definition 1.1.67, Definition 1.1.58.(ii), and
Definition 1.1.55 show that the tableau t*[wyg(¢)]* is obtained from the tableau

t*wrg(¢) = t29(¢) = t(C)

by a permutation of the entries in the various rows of t({) respectively amongst
themselves. Furthermore, according to Definition 1.1.58 again and also Defini-
tion 1.1.73, both t*[w,g(¢)]* and t; are row standard. All this implies

t wag ()] = te.
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Now the desired bijection is obtained as the concatenation of the bijection from
Definition 1.1.74 (see also Lemma 1.1.75) and the inverse of the bijection from
Lemma 1.1.59.(i). &

The sets of row number lists introduced next are employed in the construction
and indexing of the generic bases of the modules occurring in the derivation of the

Specht series.
Definition 3.3.5 For a PK,-pair u# u with p#pu # 00 we define Zrn C Zr g

gt ={cez| [i*] S}

Furthermore we put
Z0 =g

The statements (iii) and (iv) in the following lemma make use of Definition 3.2.3
and Definition 3.2.5.(iv).

Lemma 3.3.6 Let u” i be a PK,-pair with p* . # 00. Then the following state-

ments hold.

(i) We have
ZHe £ g

(it) For a PK,-pair Ay with A\*ju # 00 and [p#] C [A\#] we have
ZXuC zrte,
(iii) Let ¢ € N\ {1} be an AR-index for u#u. Then we have
Zu# Acp C zZ#u
(iv) Let p#* = (u,pdf,.. ) F k with a k € {1,...,n} and let ¢ € N\ {1} be an
AR-index for u# . Then we have
zrn\ gt = L e 20| i = 0(Q). ).
Proof. (i) Let p = (u1, pto, . . .) and consider
C= (1,202 )¢ 2"

(see Definition 1.1.70 and Remark 1.1.71). Then we see from Definition 3.3.1.(i)
that for every j € N the j-th row of t({) contains exactly min {su4,...,y;} good

entries. According to Definition 3.3.1.(ii), this means

VieN:v((); =min{p,. .., u}.
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If we furthermore write u# = (,ufé, pf, ...) then we get from Definition 3.2.1 and
Definition 1.1.2.(i)

\Zi GN:M;éé <min{p,...,u}.
All in all we now have

Vi eN:ul <v(();.

This is equivalent to

(1] € (O]
Now Definition 3.3.5 shows
¢ e zmtn
and furthermore
Zu#p £ @,
as desired.
(ii) According to Definition 3.3.5, we have for every ( € ZMu
[A*] < [v(0)].
From this and the assumptions we get
(1] € (0],
that is,
¢ ez,

Since ¢ € Z)*# is arbitrarily chosen, the claim follows.

(iii) In the case p# A = 00 we have Z#7 A<t = & (see Definition 3.3.5) and there
is nothing to prove. In the case u# A.u # 00 the claim follows from Lemma 3.2.7.(i)
and statement (ii).

(iv) In order to prove this statement, we distinguish the cases u” A.u # 00 and
pu# Ao = 00.

First we consider the case u#A.u # 00. Here statement (iii) shows ZntAen C
Zr" 1 and we must prove V¢ € ZH k¢ ¢ ZntAen & p# = v((¢).. To this end, fix a
¢ € Z#" 1. Then Definition 3.3.5 shows [11#] C [v(€)] (see also Definition 3.3.1.(ii)).
This is equivalent to

VjieN:uf <v((); (3.43)

Because of u# A.u # 00 we furthermore have pu# A, = ((u# A.)1, (17 Ac)a, .. .) F k+1
(see Definition 3.2.5). From this, Definition 3.3.5, and Definition 1.1.6.(i) we get

C¢ 2 o [FA] Z [v(Q)] (3.44)
& 35 € Nsuch that (u#A,); £ v(Q);.
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Now we have according to Definition 3.2.5.(i)

p#+1 for j=c

(M#Ac)' = :
’ ,u;’% for j e N\ {c}

This implies together with (3.44) and (3.43)
Cg 2t &t +1 £ v(Q)e
and furthermore because of u# < v((). (see (3.43))

¢ ¢ 21740 oyt = y(C)..

This proves the claim in the case u# A.u # 00.

Now we consider the case p# A.u = 00. Here we have Zrtden = according
to Definition 3.3.5 and we must show V¢ € Z#7# : u# = v(¢),. To this end, fix
a ( € Z¥r C Zr. According to Definition 3.3.5 and Definition 1.1.6.(i), we then

have
i < v(Q)e
(see (3.43)). Moreover, we see from Lemma 3.3.3.(i) and Definition 1.1.2.(i)
V(C)c S V(C)c—l-

Furthermore, we get from Lemma 3.3.3.(ii) and Definition 1.1.6.(i) with  as in the

proof of statement (i)
V(Q)e-1 < et

According to Definition 3.2.3, we also have

He—1 = Mf—l?
and finally the fact u# A.u = 00 and Definition 3.2.5.(iv) imply

Nf—l =ul.
From all these relations we obtain

qu& < V(C)C < V(C)Cfl < fem1 = :uc#—l = luf>

that is,
pt = v(Q)e.

This also proves the claim in the case p# A.u = 00. W
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Lemma 3.3.7 Let A = (A1, \a,...) E n with \y > 0. Then (M)A is a PK,-pair
with (M)A # 00 and we have
ZO0r =z,

Proof. Because of the assumption A\; > 0 and according to Definition 1.1.1.(i), we
have

Now Definition 3.2.1 shows that (A1) is a PK-pair with (A1) # 00.

Furthermore, we have according to Definition 3.3.5
A e A
In order to prove the reverse inclusion, fix a
¢ ez
Then, according to Lemma 3.3.3, v({)\ with

v(Q) = (O, ¥(Oa, - )

as in Definition 3.3.1 is a PK-pair satisfying v(¢)A # 00. Thus, according to Defi-

nition 3.2.1, we have the relation

This implies
[(A)] € [v(Q)]

and with Definition 3.3.5 furthermore
C’ c Zo\l))‘.
Because ¢ € Z* is arbitrarily chosen we now have
Z)\ C Z()q))\

and all in all
Z()q))\ — Z/\7

as desired. l

The construction introduced in the following also is considered in [JAMI1, Sec-
tion 15]. Here it is used in the investigation of homomorphisms between the modules

occurring in the derivation of the Specht series.
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Definition 3.3.8 Let u# i be a PK,-pair with p# i # 00 and let ¢ € N\ {1} be an
AR-index for u#u. Then for
C=(Clyen vy Go) € BHF1N\ 27 Ack
the sequence
ju#uc(C) = (7717 e 777n) € N"
1s defined by

c—1 if we have (; = c and ¢; is a bad entry of ¢
nj = .
¢;  otherwise

forje{l,...,n}.

Lemma 3.3.9 Let u#p be a PK,-pair with u#p # 00 and let ¢ € N\ {1} be an
AR-index for p#p. Then the map

# #4, n
maps the set Zrn \ Znt Acp bijectively onto the set ZutuRe C Nn.

Proof. See [JAM1, Theorem 15.14]. The notion of a sequence of type p used there
corresponds to the notion of a u-row number list used here. Also, the notions of good
and bad entries in a sequence of type p and its corresponding row number list from
[JAMTI, Definition 15.2] and Definition 3.3.1.(i) coincide. The condition 7 | = fie_
imposed in Definition 3.2.3 is used in the proof of [JAM1, Theorem 15.14] (see also
Remark 3.2.6.(ii)). W

Corollary 3.3.10 Let u#p be a PK,-pair with u# u # 00 and let ¢ € N\ {1} be an
AR-index for p#u. Then we have

zZu¥p \ Zu# Acp £+ @.

Proof. According to Lemma 3.2.7.(ii), u# uR, is a PK-pair satisfying u#uR. # 00.
With that we get from Lemma 3.3.6.(i)

ZH pRe £ o
The claim now follows from Lemma 3.3.9. B

Lemma 3.3.11 Let p#p be a PK,-pair with u#u # 00 and let ¢ € N\ {1} be an
AR-indez for p#u. Then we have

V¢ e Z1tn \ ZriAm [qucg(ju#uc(C))]#Rc = [fu#ucwug(o]uRc'
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Proof. According to Corollary 3.3.10, we have Z+'# \ ZHT Acp # @. So fix a
¢ € ZrPm\ Zr A Then Definition 1.1.58 and Lemma 1.1.59.(i) show that to
prove the desired identity [qucg(j“#w(C))]“Rc = [fu#ucwug(C)]“Rc it suffices to

R. R
prove t*7e [wp, g(Tpe(C))]" = 7 [ frpew,9(O)]"
Now we have according to Definition 1.1.58, Definition 1.1.55, Definition 1.1.45,

Definition 1.1.66, Definition 1.1.67, and Definition 3.3.1

t“Rc[qucg(@#uc(C))]uRc = t""w,p,g(T#,.(¢)) with entries

in each row arranged in ascending
order from left to right
= tur.9(JTu#,uc(¢)) with entries
in each row arranged in ascending
order from left to right
= t(J#..(¢)) with entries
in each row arranged in ascending
order from left to right.
Moreover, if we write p = (1, pia,...) and p# = (u¥, 1, ..)), we get from Def-
inition 1.1.58.(ii), Definition 1.1.55, Definition 1.1.45.(iii), Lemma 3.2.24, Defi-

nition 1.1.66, Definition 1.1.67, Definition 3.3.1, Lemma 3.3.6.(iv), and Defini-
tion 3.3.8

troe [fu#ucwug(C)}“Rc = t"f 4 w0,9(¢) with entries

in each row arranged in ascending
order from left to right

= (t"w,g(¢) with the rightmost
e — p entries of the c-th row
moved to the end of the
(¢ — 1)-th row) with entries
in each row arranged in ascending
order from left to right

= (t,g(¢) with the rightmost
e — p entries of the c-th row
moved to the end of the
(¢ — 1)-th row) with entries

in each row arranged in ascending
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order from left to right

= (t(¢) with the bad entries of the
c-th row moved to the end of the
(¢ — 1)-th row) with entries
in each row arranged in ascending
order from left to right

= t(J#.c(¢)) with entries
in each row arranged in ascending

order from left to right.

Now the claim follows from the preceding two calculations as explained above. B

Corollary 3.3.12 Let u#p be a PK,-pair with u#p # 00 and let ¢ € N\ {1} be an
AR-indez for u# . Then the map

Zetu\ gt e L pup G [ Fatpewag (O]

18 1njective.
Proof. Lemma 3.3.9, the inclusion Z+7#Ee C ZrBe (see Definition 3.3.5), and
Lemma 3.3.4 — applied with the composition R, — show that the map

Zeh\ Z A L Dup o [ g(T e ()]

is injective. Now the claim follows from this and Lemma 3.3.11. B

Now we introduce certain sets of permutations associated to row number lists.
These sets are used in the construction of the generic basis elements of the modules
occurring in the derivation of the Specht series. The following definition makes use
of Definition 3.2.12.

Definition 3.3.13 Let A\ = (A, \y,...) B n with \y > 0 and let ( € Z*. Then
Y (() € &, is defined as
Y(C) = Voo

The next statement uses notation as in Lemma 3.2.14.(ii) and furthermore makes
use of Definition 3.1.14 and Lemma 3.1.15.(i).

Lemma 3.3.14 Let pn = (pq, pi2,...) E n with uy > 0 and let n € Z*. Then the

following statements hold.
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(i) Fori € N we denote by m; € Ny the number of lattice points contained in the
i-th column of [p]. With that we put for k € Ny

k

+ — E A

my = m;.
J=1

Furthermore, we write v(n) = (v(n)1,v(n)2,...) b k with a k € {1,...,n}.
Then we also have v(n)y = i and v(n) = (v(n)},...,v(n),) F k with
v(n),, > 0. Now if we put

/

= ()5, 17, T 1)

then

holds.

(ii) [w.g(n)]" € D, is the unique maximal element of {[w,yg(n)]" |y € Y(n)} C

D,, with respect to the ordering relation < on D,,. In other words, we have

[wug(m]* € {{waygm)])* |y € Y(n)}

and
Yy € Y(n)\ {le,} : [wuygm)]” < [wug(n)]".

Proof. (i) From Lemma 3.3.3.(i) we get v(n) b k with a k € {1,...,n}. According

to Lemma 3.3.3.(iii), v(n)u is a PK-pair satisfying v(n)u # 00. With this we

obtain from Definition 3.2.1 v(n); = py. This fact and Remark 1.1.12 prove the

form of v(n) described in the statement. Now the remaining claims follow from

Definition 3.3.13 and an application of Lemma 3.2.14.(ii) to the PK-pair v(n)u.
(ii) According to statement (i), we have 1g, € Y(n) and thus

[wug(m]* € {{wuygm)* |y € Y(n)}.

Now fix a
yeY(m\{le,}-
In order to prove the relation [w,yg(n)]"* < [w,g(n)]*, we first compare the tableaux
thw,g(n) = tug(n) = t(n)  and  t"w,yg(n) = tuyg(n)

(see Definition 3.3.1). According to Definition 3.3.13, Definition 3.2.12, and Re-

mark 3.2.13, t,y is obtained from t, by a permutation of the entries in the various
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columns of tHHff ](n)} respectively amongst themselves (see Definition 3.2.9). With

that, an application of ¢g(n) to these tableaux shows that t,yg(n) is obtained from

t,g(n) by a permutation of the entries in the various columns of

(t | By ) 9m) = (g |

respectively amongst themselves. Since y # lg, , we also have

t.g(n) # t.yg(n).

Thus there is an entry
me{l,...,n}

such that on the one hand m occupies different positions in t,g(n) and t,yg(n) and
on the other hand every k € {m+1,...,n} occupies the same position in t,g(n)

and t,yg(n). In other words, using Definition 1.1.45.(ii), we can write

Vk € {m +1,... ,n} : (kj)ct#yg(n) = (k)ct#g(n)- (3.45)

Furthermore, in the construction of t,yg(n) from t,g(n) described above not all
entries different from m can remain fixed, in addition to m there must be another

— by choice of m necessarily smaller — entry which is moved. This shows
m > 1. (3.46)

Moreover, the construction of t,yg(n) from t,g(n) described above shows that the
positions occupied by m in both these tableaux are located in the same column
within [v(n)]. Finally, Lemma 3.3.3.(v) and the choice of m show that the positions
in the column of (t,g(n)) l %5 }(n)] containing m which are located below m only contain
entries bigger than m. These entries are not moved in the transition from t,g(n) to
t,yg(n). Since in the course of this transition m itself is moved within its column
in (tﬂg(n))ﬁ’:}(m] , the position occupied by m in t,yg(n) must be located above the

position occupied by m in t,g(n). More formally, we have

(M) Ceuygn < (M)Ce,g(n)- (3.47)

Now we move from the tableaux t,g(n) = t*w,g(n) and t,yg(n) = t*w,yq(n)
to the tableaux

t'w,g(n)]”  and  t[wuyg(n)]”.

According to Definition 1.1.58 and Definition 1.1.55, both t*w,g(n) and t*[w,g(n)]"
as well as t'w,yg(n) and t*[w,yg(n)]" respectively differ by a permutation of the
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entries in the various rows amongst themselves. With this we get from (3.45) and

(3.47)
Vk e {m+1,....n}: (k)Cerfuw,uygmp = (K)Confwgtm (3.48)
and
(1) Contunyg ) < (1) Gor g (3.49)
From (3.48), Definition 3.1.1.(ii), Remark 3.1.2.(ii), Definition 3.1.1.(i), and Re-

mark 3.1.2.(i) we easily obtain
Vi€ {m,...,n}t: A ws@I)T — 7A@ a5 (3.50)
Similarly, we get from (3.46), (3.48), (3.49), and Definition 1.1.4.(i)

A TwaygmI 51 N @ lwag)]) U7 (3.51)
(3.50) and (3.51) together now show, according to Definition 3.1.4.(i),

t"[w.yg(m)]" < t"[w.g(n)]"
which, according to Definition 3.1.14, implies

[wuyg(m]" < fwug(n)]”.

This proves the claim. W

The following lemma states additional facts about Young subgroups Y ({) asso-
ciated to certain row number lists (. It makes use of Definition 3.2.1, Defini-
tion 3.2.3, Definition 3.2.5, Definition 3.2.22, Definition 1.1.58, Definition 3.1.14,
and Lemma 3.1.15.(i).

Lemma 3.3.15 Let u#pu be a PK,-pair with p#pu # 00 and let ¢ € N\ {1} be an
AR-index for p* . Furthermore let 1 € Zntu \ ZuFAen C Z1 Then the following

statements hold.

(i) (fu##cwu)_l is the shortest representative of the right coset'Y (n) (fﬂ##cwu)_l
of the Young subgroup Y (n) in &,,.

fle ¢ Dyr. 1s the uniquely determined mawxi-

(ii) The permutation [fu#ucwug(n)]
mal element of the set {[fu#ucwuyg(n)}“& ‘ y € Y(n)} C Dy, with respect

to the ordering relation < on D,g,. In other words, we have

y € Y(n)}

nRe

[futpewpg ()] € { [fotpewnyg(n)]

and

Vy € V() \ {1e,} : [futne0uyg(m]"™ < [fr pewng(m)]"™.
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Proof. (i) The proof of this statement is similar to the proof of statement (viii) in
Lemma 3.2.14.
Write i = (1, po,...) En. Then we get from Lemma 3.3.14 with the notation

from there (see also Remark 3.2.2)

/

Kk = (V<77)/1, 1m1—y(77)17 ey l/(?’]);“’ 1™ —V(U)L17 1n—m:1) En

and

With this and Definition 1.1.58.(i), we must show that t* (fmx;&ucwﬂ)_1 is row stan-
dard.
To this end, we divide x into pq + 1 successive subsequences. Using the notation

from Lemma 3.3.14, we define for every j € {1,..., u;} the j-th subsequence as

(v(n)}, 1 5),

The (p1 + 1)-th subsequence is defined as
(17™1,0,0,0,...).

The result of the concatenation of these sequences in the order implied by their
numbering is exactly k.

Now we compare the tableaux t* and t,. Since for every j € {1,..., 1} the
J-th subsequence of & is a composition of m;, we obtain from the definitions of these
tableaux and the particular form of the subsequences of k the following statement
(see also Definition 3.2.9, Remark 3.2.10, and Lemma 3.3.3.(iii)).

For every j € {1, ..., u1} the sequence of the entries in the row
of t* corresponding to the first entry in the j-th subsequence
of k when considered from left to right coincides with the (3.52)
sequence of the entries in the j-th column of tuﬁﬁ ](n)} when

considered from top to bottom.

Next we compare the tableaux t, and t*f fu# ucwy. To this end, we write ut =

(1, 1. .) in the following. Then we get from the assumption n € Z# #\ Z1¥Aen

and Lemma 3.3.6.(iv)
i =vn).. (3.53)

Moreover, we have according to Lemma 3.3.3.(ii)

[v(n)] € [u].- (3.54)
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This and the construction of uR. from p in Definition 3.2.5.(ii) lead to

()] € [nR]. (3.55)

Now, according to Lemma 3.2.24, the tableau t+%« Ju#ucwy is obtained from the
tableau t*w, = t, by moving the rightmost u. — p# entries in the c-th row of t, in
the given order to the end of the (¢ —1)-th row of t,,. This process doesn’t move the
leftmost v(n). = p¥ (see (3.53)) entries in the c-th row of t,, — that is, exactly the
entries in the ¢-th row occupying positions contained in [v(n)] — and the entries in

all other rows of t,,. This implies

W _ Re [nR]
t“l[z(n)] = (¢ fu#ucwu)l[ﬁ(n)}' (3.56)

Here, v(n) and pR. are not considered a PK-pair.
Now we get from (3.52) and (3.56) the following relation between rows of t* and

LR,
columns of t#7% f 4, w,,.

For every j € {1,...,u1} the sequence of the entries in
the row of t® corresponding to the first entry in the j-th
subsequence of k when considered from left to right coin-
cides with the sequence of the entries in the j-th column of

(tuRc fu# “Cwu) “5 gf)}] when considered from top to bottom.

As before, v(n) and pR,. are not considered a PK-pair.
The application of (fu#ucwu)_l to the tableaux t"* and t“RCfM#MCwM occurring

in the preceding relation leads to the following statement.

For every j € {1,..., 1} the sequence of the entries in the
row of t" ( Ju# chu)f1 corresponding to the first entry in the
j-th subsequence of x when considered from left to right co-
incides with the sequence of the entries in the j-th column of

t“RC“‘: 570)]] when considered from top to bottom.

Again, v(n) and pR. are not considered a PK-pair. From the preceding relation
and the fact that t“f is column standard, we see that for every j € {1,...,u}
the entries in the row of t* ( Jo# Mcwu)_l corresponding to the first entry in the j-th
subsequence of k are arranged in ascending order from left to right. Furthermore,
the construction of the subsequences of x and the particular form of x show that
every other row of t* ( fu# Mcwﬂ)fl contains at most one entry.

All this implies that t" ( fo# #cwu) ~!is row standard. From this the claim follows

as explained above.



3.3. ROW NUMBER LISTS 179

(ii) The proof of this statement is similar to the proof of statement (ii) in
Lemma 3.3.14.
According to Lemma 3.3.14.(i), we have 1lg, € Y (n) and thus

[t netwng )] € L[ fupewnyg )™ [y € Y() }

Now fix a
yeY(n)\{le.}-

In order to establish the desired relation [f,# #Cwuyg(n)}“

R

R
< [furnewng ()],
we compare various tableaux. To this end, we write u = (u1, o, ...), p# =
(W, pf, .., and v(n) = (v(n)1,v(n)s,...) as in the proof of statement (i). With

that we have, again as in the proof of statement (i),

pl =vim)e, ) Clul, 0] <R

(see (3.53), (3.54), (3.55), and Definition 1.1.6).

Now, according to Lemma 3.2.24, the tableau t+%e

Ju#ucwug(n) is obtained from
the tableau t“w,g(n) = t,g(n) = t(n) by moving the rightmost p.—p¥ entries in the
c-th row of t*w,g(n) in the given order to the end of the (¢ —1)-th row of t*w,g(n).
This process doesn’t move the leftmost v(n). = pu# (see above) entries in the c-th
row of t*w,g(n) — that is, exactly the entries in the c-th row of t*w,g(n) occupying
positions contained in [v(n)] — and the entries in all other rows of t*w,g(n). This

implies (see Definition 3.2.9)

R
(6 g () | forte) = (t“wug(”))w&m] = t(”)w{m]‘

Here, v(n) and pR,. are not considered a PK-pair. Now we get the following state-

ment from the preceding relation and Lemma 3.3.3.(v).

The entries in every column of (t”RC fu#ucw#g(n))“Z (1;2;)]] are (3.57)

arranged in ascending order from top to bottom.

As before, v(n) and pR, are not considered a PK-pair.

In the same way, again according to Lemma 3.2.24, the tableau t*f Ju# pcwy, 18
obtained from the tableau t"w, = t, by moving the rightmost u. — p¥ entries in
the c-th row of t"w, in the given order to the end of the (¢ — 1)-th row of t*w, and
not touching the leftmost v(n). = p# entries in the c-th row and the entries in all

other rows of t#w,. This implies

R R _ Wy |
(6 Fumnewn) | Bty = (@0) |y = 6| Ly (3.58)
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Again, v(n) and pR, are not considered a PK-pair. Furthermore, Definition 3.3.13,
Definition 3.2.12, and Remark 3.2.13 show that the tableau t*w,y is obtained
from the tableau t*w, by an application of y € Y(n) which only permutes the
entries in the various columns of (t“wﬂ)“ff %n)] respectively amongst themselves.
From this and (3.58) we see that the tableau t”RCfM#MCwMy is obtained from the
tableau t#fe Ju#ucw, by a permutation of the entries in the various columns of
(677 f, ety ) ﬁ‘; 55]] respectively amongst themselves. As before, v(n) and pR, are
not considered a PK-pair. Finally, the application of g(n) to the tableaux occurring

in this construction leads to the following relation between t+%e Ju#pewpg(n) and

tifte f,u#,ucw,uyg(n) :

The tableau t*# f, 4 ,.w,yg(n) is obtained from the tableau
tife 4 wug(n) by a permutation of the entries in the vari-

[HRc}

(3.59)
ous columns of (t“RC Ju# chug(n)) 0] respectively amongst

themselves.

Again, v(n) and R, are not considered a PK-pair.
Now statements (3.57) and (3.59) enable us to establish the desired relation

Re R
[fu#ucwuyg(n)}“ < [f“#ucwug(n)}“ . Because of y # 1g, we have

t‘uRC fu#ucwug(n) 7& t“RC fu#ucwuyg(n) :

So we must have an entry
me{l,...,n}

such that on the one hand m occupies different positions in t#ft Ju#pcwpg(n) and
t+fe f #,0,yg(n) and on the other hand every k € {m+1,...,n} occupies the
same position in t*7 f,x w,g(n) and t* f,2 w,yg(n). Thus we can write, using
Definition 1.1.45.(ii),

Vk - {m + 1, Ce ,TL} . <k)Ct“Rcfu#ucwuyg(77) = (k)Ct“RCf,,#ucwug(n)' (360)

Moreover, the construction of t*f f, w,yg(n) from t*F f, 4 w,g(n) described in
(3.59) cannot fix all entries different from m, in addition to m there must be another

— by choice of m necessarily smaller — entry which is moved. This shows
m > 1. (3.61)

Furthermore, again according to (3.59), the positions occupied by m in the tableaux
tBe fwcw,9(n) and t4Fe f 4 w,yg(n) are located in the same column but in dif-
ferent rows of [v(n)]. Finally, (3.57) and the choice of m show that the positions

in the column of (67 f,4,.w,.g(n)) “5 5”5}] containing m which are located below m
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only contain entries bigger than m. These entries are not moved in the transition
from t*F f 4 w,g(n) to t47 f 4 w,yg(n). Since in the course of this transition m
itself is moved within its column in (67 f, 4 ,.w,g(n)) “ff 570)}} , the position occupied
by m in t“RCfM#Mcwuyg(n) must be located above the position occupied by m in

tife f 4 cw,ug(n). More formally, we have

(m)gt“Rc fott pewnyg(n) < (m)Ct“RCfu#ucwug(n) : (3'62)

Now we move from the tableaux t*#f 4 .w,g(n) and t*F f 4 w,yg(n) to the

tableaux

tuRc [fu#,ucwug(n)} e and tuRC [fu#ucwuyg(n)} e :

From Definition 1.1.58.(ii) and Definition 1.1.55 we see that t*% f, 4 ,.w,g(n) and

Re R
tife [fu#ucwllg(,r/)} ! and also t#f fu#ucwuyg(n) and t#fe [fu#,ucwuyg(n)] !
tively differ by a permutation of the entries in the various rows amongst them-

“ respec-

selves. This means that the row numbers of entries remain fixed in the tran-
sition from t*f f » w,g(n) to tHf [fu#ﬂcw#g(n)}“Rc
tHBe f Lk ew,yg(n) to trFe [fu#“cwuyg(n)]“m. With that we get from (3.60) and
(3.62)

and in the transition from

Vk € {m +1,... ,n} : (k)CtHRC [f . wuyg(n)]HRc = (k>CtuRc [f . wug(ﬂ)]HRc (363)
and
(m)CtHRC [f##ucwuyg(n)] pRe < (m)Ct#Rc [f’u#y‘cwug(n)]ll«Rc . (364)

From (3.63), Definition 3.1.1, and Remark 3.1.2.(ii) we easily obtain
i€ {m,....n}: I G LA Ch) e N S Y (s F ) S N (3.65)
Similarly, we get from (3.61), (3.63), (3.64), and Definition 1.1.4.(i)
)\(t"RC [fu#ucwuyg(n)]“Rc)U%_l < )\(t“RC [fu#ucwug(n)]wc> M-l (3.66)
(3.65) and (3.66) together now show, according to Definition 3.1.4.(i),

tuRc [fu#ucwuyg(n)} e < t'uRC [fu#,ucwug(n)} e

which in turn, according to Definition 3.1.14, leads to

[fi# uewuyg ()] M < it uewng(n)] H

This proves the claim of the statement. H

Now we are in possession of all the combinatorial objects and statements required

in the derivation of the generic Specht series.
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3.4 PK-modules for Hecke algebras of type A

In this and the following sections of this chapter the construction of Specht series
for Hecke algebras of type A and certain modules of these algebras is carried out.
As always, n € N denotes a positive integer. Furthermore, we fix a coefficient pair
(R, q) as in Definition 1.2.1 for all that follows.

Next we introduce a family of modules for H(A}i’f)l indexed by PK,,-pairs. Mod-
ule families of this kind also are considered in [DJ1, Section 7] and [JAMI, Sec-
tion 17, in particular Definition 17.4]. The following definition makes use of Defi-
nition 1.2.3.(ii).

Definition 3.4.1 Let p# 11 be a PK,-pair. If we have u* pu # 00 then the right ideal

Sé‘R b in Hfﬁ’f)l is defined as

Fuo_ (R, (n) (R,q)
SéLR:) - xl(t Q)Twug(R,q)(Vu#u)HAni-

If we have p#p = 00 then the right ideal Sgg) = S(O]%,q) mn Hg’f)l 1s defined as
S(R q H(R ,q) -
Here, OH(R,q) denotes the null ideal in H;R’q)l. We write
A n-

#* # 00 00
SéLR:;) = S,LL “ Cmd S(qu) = S .

In any case, SZ:Z) is called a PK-module of degree n or a PK,-module or just a
PK-module.

Remark 3.4.2 The PK,-modules introduced in Definition 3.4.1 are generic in the
sense of Remark 1.2.9.

The next statement is a simple consequence of Lemma 3.2.14.(x), it makes use of
Definition 1.2.3.(ii).

Lemma 3.4.3 Let u#p and N\ be PK,,-pairs with u#p # 00 # \*p and
(1] € V] (3.67)

Then we have
(n) _
2(rg)(Varn) = €(rg (Vi)

with an appropriate right factor h € H(R q)
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Proof. From the assumption (3.67) and Lemma 3.2.14.(x) we get a set F C &,
with the property
V/\#M — VM#Mf

such that every w € V)%, has a unique decomposition w = uf with v € V%, and
f € F and furthermore arbitrary v € V%, and f € F satisfy

((uf) = Lu) + £(f).
From this, Definition 1.2.3.(ii), and (1.22) on page 34 we obtain
E(V)\#u) = 5(Vu#u)€(F)‘

This proves the claim if we put h = ¢(F). B
The following lemma makes use of Definition 1.2.3.(ii), Definition 3.2.3, and Defi-
nition 3.2.5.(iv).

Lemma 3.4.4 Let u#p be a PK,-pair with p#u # 00 and p = (juy, po, . ..) E n.
Then the following statements hold.

(i) We have

#u (R, (n) (R.q)
S(#R,g) - xL q)TwM#ug(R,q)<Uﬂ#u>HAn,1'

(ii) For u#* = (1) & py1 we have

p#p _ olp)e _ arp
Strg) = S(rg) = Mirg):

(iii) For u#* = pu we have

wFu _ qup  _ qn
Strg = Srg = Sirag)

(iv) Let \#p # 00 be another PK,-pair satisfying [u#] C [)\#]. Then we have
Sty € Sty

(R,q)

v) Let c € e an -index for ' . en we have
L N\ {1} b AR-index for p#u. Th h

uw# Acpt i
Stra)" S Sira)
(vi) We have

uw# "
Strag) E Mirg):
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Proof. (i) From Definition 3.2.8.(iii), Lemma 3.2.11.(iv), and (1.22) on page 34 we

obtain

T, =Tw, Ty 4. (3.68)
Furthermore we get from Lemma 3.2.14, Definition 1.2.3, and again (1.22)
Tgu#us(vu#u) = 5(Uu#u)Tgu#u' (3.69)

Now the substitution of (3.68) and (3.69) into Definition 3.4.1 and the invertibility
of Ty , inH, (see (1.23) on page 34) show the claim.
(i) Since [p#] = [(u1)] consists of a single row, every column of [p#] contains

at most one square. This shows together with Definition 3.2.12 and Remark 3.2.13

Vit = Vi = {ls.}-

According to Definition 1.2.3.(ii), this means
g(vu#u> = 5(‘/@1)#) = Iy, (3.70)

Now the substitution of (3.70) into Definition 3.4.1, (1.23) on page 34, and Defini-
tion 1.3.1.(ii) show the claim.
(iii) The condition u# = p implies

W\ [1¥] =2

and furthermore with Definition 3.2.9 for the tableau t,

] W _
tuh’;#] =6, |1 =,
From all this we see, using Remark 3.2.13 and Remark 1.1.51.(ii),

V

N#M == VMM - Q:tu'

Now the assumption p# = p and Definition 3.2.1 show that p is a partition, which
enables us to apply Lemma 1.1.52 and Lemma 1.1.69.(i) from which we get

Vit = Vi = R () = S,

This implies
eWVurn) = e(Vip) = e(6pr) = Y- (3.71)
Now the substitution of (3.71) into Definition 3.4.1 and Definition 1.3.10 prove the

claim.
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(iv) Lemma 3.4.3 can be applied to the situation at hand and shows that we
have
5(V>\#u> = €<Vu#u)h

with an appropriate h € 'H,,. If we substitute this into Definition 3.4.1 then we get

SN = w2 Ty e (Vs Ha
= $uTwu€(VM#u)hH”
2, T, €(Vyt ) Hn

#
L
SHH,

N

as desired.

(v) In the case u# A.u = 00, there is nothing to prove (see Definition 3.4.1). In
the case u#A.u # 00, the claim follows from Lemma 3.2.7.(i), Lemma 3.2.7.(ii),
and statement (iv).

(vi) This follows immediately from Definition 1.3.1.(ii) and Definition 3.4.1. W

3.5 PK-homomorphisms for Hecke algebras of
type A

Now we describe certain generic homomorphisms between PK-modules. Such homo-
morphisms also are considered in [DJ1, Section 7|. As before, n denotes a positive
integer and (R, ¢) denotes a coefficient pair.

The following two statements are of a more technical nature. The first one
of them makes use of Lemma 1.1.56, Corollary 1.1.57, Definition 1.2.3.(i), and
Definition 3.2.5.(ii).

Lemma 3.5.1 Let p*p be a PK,-pair with p#pu # 00 and let ¢ € N\ {1} be an
AR-index for . Then we have in Hfﬁ’(_]i

() (p- @ W
L(R,q)(DulO(G#RCGH))xELRq) - L(R,q)(GuRCGu)
(R.9)  (n)
quS L(R,q)((GuRCGu) n DuRc)-

Proof. According to Corollary 1.1.57.(i), the set of the shortest representatives of

cosets occurring in the decomposition of &, &, into left cosets of &, is given by
—1
D, N(6,r.6,).

Similarly, according to Lemma 1.1.56.(i), the set of the shortest representatives of

cosets occurring in the decomposition of &,z,&,, into right cosets of &, is given
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by
(GMRCGM) N DMRC-
Thus we have
(D;Il A (GuRc6u>) S, =6,ur.6, = 6ur. ((64r.6,) N Dyr.) -

The claim now follows easily from Corollary 1.1.57.(ii), Lemma 1.1.56.(ii), (1.22)
on page 34, and Definition 1.2.3.(i). W

The next lemma makes use of Definition 3.2.8.(i) and Definition 1.2.3.(ii).

Lemma 3.5.2 Let m € {2,...,n}, A\En, and d € D, satisfying

(m)Cera = (m — 1)Gprg-
(i) Let u#p be a PK,-pair with p# p # 00 and the following properties.
(m)t,', (m—1)t;" €[]
(m)og, = (m—1)oy,
Then we have in H(Alff)l

xg\R’Q)TdEEQq) (Vi) = OHff"“‘

(ii) Let pu#u be a PK,-pair with u#u # 00 and the following properties.

o) (##9) Lm0 () e ]

(m)atu#u (m - 1)0tu#u

Then we have in Hg’(_])l

I’E\R’q)nggz)’q) (UN##) = OHi‘R,q).

Proof. (i) In the following we will consider the transposition
s=(m—-1,m)eB, CG,
(see (1.5) on page 2). If we put
(m)oy, = (m—1)oy, =k €N

then we get from the assumptions (m)t,' (m — 1)t,* € [p#] and (m)oy, =
(m — 1)oy, together with Definition 3.2.12, Remark 3.2.13, and the notation from
Lemma 3.2.14.(ii)

(k)
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Furthermore, we see from (1.18) on page 25, using the notation from Lemma 3.2.14
and in particular from statement (ii) thereof, that the group {lg,, s} is the Young
subgroup of the symmetric group V:ﬁL of degree uk#’ associated with the composition
(1(7”_2)_’“;17 2, 1“k#/_(m_m;:fl)) of uk#'. Thus we have the set of shortest represen-
tatives of the right cosets of {lg,, s} in Vu(i)u' In the following this set is denoted
by F.

Using the preceding considerations, we now derive a product decomposition of
e(V,#,) € Hy. First, we get from Definition 1.2.3.(ii), the additivity of the length
function with respect to the decomposition (3.9) of V%, in Lemma 3.2.14.(ii), and
(1.22) on page 34, using the notation from Lemma 3.2.14,

(V) = (V) - eV,

g
Furthermore, we obtain from the arguments just employed together with the com-
mutativity of elements of different factors V“(z)ﬂ with h € {1,..., 1}

)€(V(j)

Vije{l,....m}:e(VY '

) =e(V (V).
Finally, we see from the construction of the set F C &, described above and
Lemma 1.1.56

e(VY) =<({le,, s}e(F).

All this shows that e(V,#,) has the left factor

o
8({16717 S}) = Tlen - qilTS = 17‘(,4 - qilTs'

The assumption (m)(pg = (m — 1)(rg and Lemma 1.3.4 now imply

IATdé‘({l@n, S}) = O’HA-

This proves the claim.
(ii) The proof of this statement is completely analogous to that of statement (i).

If we consider the transposition
s=(m—-1m)eB,CG,

and put

<m>atu#u = (m - 1)0-tﬂ#u =keN

then we get from the assumptions of the statement, Definition 3.2.12, and Re-

mark 3.2.13, using the notation from Lemma 3.2.14.(i),

seUY) CUwp
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Furthermore, we see, using the notation from Lemma 3.2.14 and in particular
from statement (i) thereof, that the group {lg,,s} is the Young subgroup of
the symmetric group U (];)” of degree 1 (see (1.18) on page 25) associated with
(1(m_2)_“k#i+1, 2, i = m=il ) E ,uk . Thus we have the set of shortest representa-
tives of the right cosets of {lg,, s} in U;S’;)u' In the following this set is denoted
by F.

Using the preceding considerations, we now derive a product decomposition of
e(U,#,) € H,. From Definition 1.2.3.(ii), the additivity of the length function
with respect to the decomposition (3.5) of U,#, in Lemma 3.2.14.(i), and (1.22) on
page 34 we get, using the notation from Lemma 3.2.14,

(Upry) = (UY,) -+ e(UYL).

Furthermore, we obtain from the arguments just employed together with the com-

mutativity of elements of different factors U;’;)M with h € {1,..., 1}

Vi g € {1, m}:e(UR )e(UY) ) = (U )e(U) ).

Finally, we see from the construction of the set F C &, described above and
Lemma 1.1.56

(U =e({ls,, s})e(F).

Thus (U,#,) has the left factor

W
8({1677,7 S}) = Tlen - qilTS = 17‘(,4 - qilTs-

Now we get from Lemma 1.3.4 and the assumption (m)(pg = (m — 1)y

23 Tue({ls,: s}) = Ony.
This proves the claim. l

Definition 1.3.1 and Lemma 3.5.1 show that the following definition is meaning-
ful.

Definition 3.5.3 Let u#u be a PK -pair with p#u # 00 and let c € N\ {1} be an
AR-index for u*u. Then the HA -homomorphism

(Ra) . a1 uRe
Votne Mg gy = Mipg)

1s defined by

LEROgE) o () (D N(S.r.6, ))xflR’q)

2 p# pe YRq)

x(Rq (Rq)<(6uRc6 )N Dyr,)
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R, . . .
and Hgnf)l—lznear extension. We write

\I](qu) — \Ij

wH# pc w# pe:

\I/(#Z)c 15 called a PK-homomorphism of degree n or a PK,-homomorphism or just

a PK-homomorphism.

Remark 3.5.4 The PK, -homomorphisms from Definition 3.5.3 are generic in the
sense of Remark 1.2.9. In fact, they are particular elements of the generic bases
of the sets of homomorphisms between permutation modules of a Hecke algebra of
type A constructed by Dipper and James in [DJ1, Section 3] (see especially [DJ1,
Theorem 3.4]).

Next we derive some properties of PK,,-homomorphisms which are fundamental
to the construction of Specht series. The following statement corresponds to [DJ1,
Lemma 7.1]. It makes use of Definition 3.2.15, Lemma 3.2.7.(ii), Definition 3.4.1,
and the notation (1.1) on page 1.

Lemma 3.5.5 Let pu#u be a PK,-pair with p#p # 00 and let ¢ € N\ {1} be an
AR-indez for p# . Then we have for the homomorphism \I/( Q) MY, — MPEEe

(Ra) — " (Ra)
(1) = u#uc - qu Z Ty,

fe[u#’uc

.. # A, R, q
(ii) Sé‘R )“ C Ker (\I/L#Z)CJS;%)) )

R.q)

# (R,q) # Re
(i1i) Spag)¥ e = Siray

Proof. (i) This is obtained from Definition 3.5.3, Definition 1.2.3.(i), and Lem-
ma 3.2.17.(ii).

(ii) According to Lemma 3.4.4.(vi), we can build ¥
from Lemma 3.4.4.(v)

MH
w#uc | qutn Moreover, we get

guF Acp = g

This shows that the claim makes sense. Now in the case u#A.u = 00 we have,
according to Definition 3.4.1, S = 0y, (the null ideal in H,,) and there is nothing
to prove. Thus we can assume

p# Aepu # 00

in the following. Then we see from Definition 3.4.1 that it is enough to prove

2T, e(Vi#a,) VY e = O, (the additive neutral element of H,). Now we get
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from Definition 3.5.3, statement (i), Lemma 3.2.17.(i), and Lemma 1.1.68.(ii)

T, e Vit ao)Vptpe = TVt el &(Vir ap)
= wure | D0 Tp | T (Vi) (3.72)
fEIu#M

= XuR. Z wau E(VM#ACM)'

fe[u#’uc

Now we fix an arbitrary
Jo € Li#pe
and consider the corresponding summand
Tur. T fow, 5(‘/;4# Acu)
on the right hand side of (3.72). According to Lemma 1.1.56.(i), we can write
fow, = ud
with uniquely determined permutations
u € Syp, and d € Dyg,-
From that we obtain with Lemma 1.1.56.(ii) and Lemma 1.3.5
i Trow, = TurTua = Tur T Ty = 4" aur, Ty, (3.73)

Now Lemma 3.2.20, applied with w, € &,, and fy € I,#,. (see also Remark 3.2.21),
and Lemma 3.5.2.(i), applied with the composition uR. and the PK-pair pu# A.u,

show that we have
Tur.Tae(Vi#a,n) = Ony
and thus
Cpure T o, €Vt an) = 02y

This in turn implies together with (3.72) and the choice of f; € I,
quwug(Vu#Acu)\pu#uc = OHA,

as desired. The claim now follows from this and Definition 3.4.1 as explained above.
(iii) According to Definition 3.5.3 and Lemma 3.4.4.(vi), the claim of the state-

ment makes sense. Moreover, Lemma 3.4.4.(1) shows that it suffices to prove
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v, Ty , e(Uu)V,tpe = Tur T, e(U,#ur.)- By using Definition 3.5.3, state-

w w
n#p u# pRe

ment (i), Lemma 3.2.17.(i), and Lemma 3.2.11.(iii), we get as in the calcula-
tion (3.72) in the proof of statement (ii)

quwu#ug(Uu#u)\Iju#uc = xquu#ucTwu#f(Uu#u)
= ZTuR. Z Tf Twu#ug(Uﬂ#N) (374)
fe[u#uc

= ZuR. Z wau#u g(UM#M)'

fEIM#MC

Now we fix an arbitrary
foe Iu#uc \ {fu#uc}

(see Definition 3.2.22 and Lemma 3.2.25.(i)) and consider the corresponding sum-

mand
mMRchowu#ue(Uu#u>

on the right hand side of (3.74). According to Lemma 1.1.56.(i), we can write
Jow,#, = ud
with uniquely determined permutations
u € Syp, and d € Dyp,.
From that we obtain as in the calculation (3.73) in the proof of statement (ii)
ur Lo, 4, = TurToa = 2un.TuTa = ¢ our T

Now Lemma 3.2.27, applied with w,#, € &, and fy € [#,. \ {fu#uc} (see also
Remark 3.2.28), and Lemma 3.5.2.(ii), applied with the composition uR., show that
we have
Tur. Tae(Uy#,) = On,y
and thus
Tur T, €Uy n) = Ory-

This in turn implies together with (3.74), Lemma 3.2.25.(i), and the choice of fy €
L pe \ {fu#uc}

quwM#f(Uu#u)\I/u#uc = l’uRchu#MwM#ME(UM#M).
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Using Lemma 3.2.25.(ii), Definition 3.2.8.(ii), and Lemma 3.2.14.(ix), this can be

rewritten as

quwM#,LE(Uu#uNJu#uc = qucTwﬂ#uRc e(Up#ur.)s

as desired. The claim now follows from this and Lemma 3.4.4.(i) as explained above.

3.6 ZNL-elements of Hecke algebras of type A

In this section the row number lists introduced in Section 1.1 (see Definition 1.1.70)
and the associated constructions described in Section 3.3 are employed to define
useful generic elements of PK-modules and to describe their representations with
respect to the row standard bases of permutation modules (see Definition 1.3.3).
Later on, it will be shown that appropriate sets of such elements are bases of PK-
modules and that they can be used to determine the kernels of the restrictions of
PK-homomorphisms to PK-modules. This is essential for the construction of the
Specht series. As always, n denotes a positive integer and (R, ¢) denotes a coefficient
pair.

The following two statements are of a rather general and technical nature. The

first one of them makes use of Definition 3.1.9.

Lemma 3.6.1 For arbitrary u,v € 6,, we have in Hgi’(_l)l

7T, = quuU + Z CoThw

wEG
wuv

with an appropriate exponent j € Z and appropriate coefficients ¢, € R for all
w € G, satisfying w < uv.

Proof. This follows from [DJ1, Lemma 2.1.(iii)], Definition 3.1.9, and Lemma 3.1.10.
|

The next Lemma makes use of Definition 1.1.58, Definition 1.3.1, Theorem 1.3.2,
and Definition 3.1.9.

Lemma 3.6.2 Let A\En, f € Dy, and w € &,,. Then we have in M()‘Rm

[Eg\Rq)TfTw = qij\R’q)T'[fw])\ + Z Cd{L‘g\Rﬂ)Td
deDy
d<[fw]?

with an appropriate exponent j € 7Z and appropriate coefficients cq € R for all
d € Dy satisfying d < [fuw]”.
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Proof. This follows from [DJ1, Lemma 3.2.(iv)], Definition 3.1.9, and Lemma 3.1.10.
[

Now we employ row number lists to define certain elements of permutation mod-
ules. It will turn out that these elements have the useful properties described at the
beginning of this section. The following definition makes use of Definition 1.1.70,
Definition 1.3.1, Definition 1.1.67, Definition 1.2.3.(ii), Definition 3.3.13, and Defi-

nition 3.3.1.(iii). Furthermore we remind the reader of Remark 3.3.2.(i).

Definition 3.6.3 For a A = (A, \y,...) En with \y > 0 and a { € Z* we define
2(Q(rg) € M(\R,q) as

R, n
A rg) = T8 Tl (Y (O) Tyo)-

2(C)(ryq) %5 called the row number list element associated to ¢ or the ZNL-element

associated to ¢ or just a row number list element or a ZNL-element. We write

2(Q)(rq) = 2(Q).

The abbreviation ZNL stands for row number list.

Remark 3.6.4 (i) The ZNL-elements from Definition 3.6.3 are generic in the
sense of Remark 1.2.9.

(ii)) The ZNL-elements from Definition 3.6.3 are very similar to the elements
of permutation modules of symmetric groups introduced in [JAMI1, Defini-
tion 17.2]. However, the former ones are not a direct generalization of the

latter ones.

In the following we investigate ZNL-elements. The next Lemma makes use of
Definition 3.2.1, Remark 3.2.2, Definition 3.3.5, and Definition 3.4.1.

Lemma 3.6.5 Let u#pu be a PK,-pair with p#p # 00. Then we have

# #
(e s,

{Z(C)(R,q)

Proof. Write pn = (pu1, ft2, . ..) F n and fix an arbitrary ¢ € Zr'n C Zr. According
to Remark 3.2.2, we then have p; > 0 and thus we can build the ZNL-element
z(¢) € M*" associated to ¢ as in Definition 3.6.3. Moreover, Definition 3.3.1.(ii),
Lemma 3.3.3.(iii), and Definition 3.3.5 show that v({)u is a PK-pair with the prop-

erties

VQu#A00  and  [i#] € ()]
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With that we get from Definition 3.6.3, Definition 3.3.13, Definition 3.4.1, and
Lemma 3.4.4.(iv)
2(¢) € SvQr Su#u,

as desired. B

The following statement makes use of Definition 1.1.70, Definition 1.3.1.(ii), Theo-
rem 1.3.2, and Definition 3.1.14.

Lemma 3.6.6 Let A = (A, Ag,...) En with Ay > 0.

(i) Let ¢ € Z*. Then we have in M(AR’q)

© (R, R,
2O = N Ty gop + D e (3.75)
deDy,
d<[wyg(¢))*

with an appropriate exponent j € Z and appropriate coefficients cEf) €ER
for all d € Dy satisfying d < [wg(O)].

(ii) The set
{Z(C)(R,q)

1s linearly independent over R.

(€ ZA} C My,

(iii) The set

{s0ma|ce 2} c My,

1s an R-basis of M(Aqu)

Proof. (i) First we consider the product x,T,, (Y (¢)) occurring in the definition of
2(¢). Using Definition 1.2.3.(ii), Definition 3.3.13, Lemma 3.2.14.(viii), and Corol-

lary 1.1.57, this product can be rewritten as follows.

x)\TwAE(Y<C)) - x)\TwA Z Z(y)Ty
yeY' ()
= ) Z fyTw)\y
yeY (¢

Postmultiplying with T}, we further obtain according to Definition 3.6.3

Z(C) = Z (_Q)_Z(y)kaw)\yT( ¢)- (376)
yeY (¢)

Now since, according to Definition 3.3.13 and Lemma 3.2.14.(vi), we have

Vy € Y(C) : way € Dy,
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we can employ Lemma 3.6.2 to express the summands on the right hand side of
(3.76) as follows.

i(y)
¥y €Y Q) aaTuyyTy) = @ 0T o+ D ol (3.77)

deD),
dafwyyg (O]
The preceding expression contains exponents j# € Z depending on y € Y (Q)
and coefficients c((iy) € R depending on y € Y(() and d € D, satisfying d <
[wayg(Q)]*. By substituting (3.77) into (3.76) and rearranging terms we obtain,
using Lemma 3.3.14.(ii) and Lemma 3.1.15.(iv),

i(©)
A) = nTop + D e

deDy,

d<wyg(¢)

with an appropriate exponent ) € Z and appropriate coefficients cﬁf) € R for
all d € D, satisfying d < [wrg(¢)]*. This representation of z(¢) as an R-linear

combination of elements of the basis BM" . of M* (see Definition 1.3.3 and Defi-

row std

nition 1.1.58.(ii)) hat the desired form.
(ii) According to Remark 1.1.71.(ii), we have

{z0[cez}2e

Now consider an equation

D rez(Q) = On, (3.78)

(ez*
with certain coefficients r¢ € R for ¢ € Z*. Here, 0y, denotes the additive neutral
element of H,. With that, put

V- {g c 2 ‘ re # OR} -2 (3.79)

Here, O denotes the additive neutral element of R. Then, in order to establish the
linear independence of {z(¢)|¢ € 2*}, we must show Y = .
Now if we have ) # &, there is an

neY with  V¢Ce Y\ {n}: [wag(Q)]* < [wrg(n)]* (3.80)

(see Definition 3.3.1.(iii), Lemma 3.3.4, Definition 3.1.14, and Lemma 3.1.15.(i)).
With these properties of 7, we obtain by substituting (3.75) from statement (i) into
the left hand side of (3.78) and rearranging terms

j(m) ~
@i+ D TanaTa = On,
deD)y
d<[w)\g(”7)}>\
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with an appropriate exponent j € Z and appropriate coefficients 7y € R for all
d € D, satistying d < [w)\g(n)])‘. From this and Theorem 1.3.2 we get

i(n)
q Ty = Or

and thus, according to Definition 1.2.1,
Ty = OR.

This is a contradiction to (3.79) and (3.80).

So we must have

V=0

and the set {z(¢)|¢ € 2*} is linearly independent over R.

(iii) The linear independence of the set {z(¢)|¢ € Z*} € M* over R follows
from statement (ii). In order to show that this set generates M* over R, fix a
y € M*\ {0y, }. Then we have according to Theorem 1.3.2

y = Z car 1y

deDy

with uniquely determined coeflicients ¢4 € R for all d € D). Because of y # 0y,
there is a dy € D, satisfying

Cdl#OR and VdED)\\{dl}icd#ORjd<d1
(see Definition 3.1.14 and Lemma 3.1.15.(i)). Thus we can write

y = ca,xxTa, + Z caxr1a. (3.81)

deD)
d<d

Furthermore we get from Lemma 3.3.4 a (; € Z* with the property

dy = [wAg(Cl)])\'

This, (3.75) from statement (i), and (3.81) imply

Y- Cdquj(mz(énl) = Z caxrTy (3.82)

deD),
d<d]
with jV) € Z as in statement (i) and appropriate coefficients ¢4 € R for all d € D,
satisfying d < d;. This elimination of a summand from the row standard basis of
M?* on the right hand side in the course of the transition from (3.81) to (3.82) can
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be repeated inductively downwards along the ordering < on the set D, until none

of these summands are left. Then we have an expression

y—2(G) = = en2(Gn) = Ony

with an appropriate m € N and appropriate coefficients ¢; € R and row number
lists (; € Z* for all j € {1,...,m}. Now since y € M*\ {03, } was arbitrarily
chosen, this shows that M* is generated over R by the set {z(¢)|¢ € Z*}. All in

all we see that this set is indeed an R-basis of M?*, as desired. B
Corollary 3.6.7 Let u i be a PK,-pair with p#u # 00. Then we have
Sty 7 O
Here, 0y, denotes the null ideal in Hfﬁ’f)l.
Proof. According to Lemma 3.3.6.(i), there is a
¢ ez,
With that we get from Lemma 3.6.5
2(() € Setn,
Lemma 3.6.6.(i), Definition 1.1.58.(ii), and Theorem 1.3.2 show furthermore

Z(C) 7é OHA'

Here, 04, denotes the additive neutral element of H,,. This proves the claim. Wl

3.7 Homomorphic images of ZNL-elements of

Hecke algebras of type A

Now we investigate the effect of the PK-homomorphisms introduced in Section 3.5
(see Definition 3.5.3) on the ZNL-elements introduced in the preceding section (see
Definition 3.6.3). As before, n denotes a positive integer and (R, q) denotes a
coefficient pair as in Definition 1.2.1. Furthermore we fix for this section a PK,,-
pair p#p # 00 and an AR-index ¢ € N\ {1} for u#pu (see Definition 3.2.1 and
Definition 3.2.3).

The next statement is a simple consequence of Lemma 3.5.5.(ii), it makes use
of Definition 3.2.5.(iv), Definition 3.3.5, Lemma 3.3.6.(iii), Definition 3.6.3, and
Definition 3.5.3.
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Corollary 3.7.1 Let ¢ € ZrtAen C Zu71 - Then we have

R7
20 (ra) PEY = On,.

ue
Here, 0y, denotes the additive neutral element of H(Ai’(j)l.

Proof. In the case u A.u = 00 we have 24w — o5 and there is nothing to show.
In the case u* A.u # 00 the claim follows from Lemma 3.6.5 and Lemma 3.5.5.(ii).
[

In the following lemma a useful representation of the images of ZNL-elements
under PK-homomorphisms is derived. It makes use of Definition 3.2.5.(ii), Defini-
tion 3.2.22, Definition 3.3.13, Definition 1.2.3.(ii), Definition 3.3.1.(iii), and Defini-
tion 1.1.58.(ii).

Lemma 3.7.2 Let ¢ € Z/°*. Then we have
R, R, n
Z(C)(R,q)‘yi#Zl = mLRE)TfM#HCwuggR),q)(Y(C))TQ(C)

— i (R (n)
= ¢'T,R, T[fu#ww“]“ch(R,q)(Y(C))Tg(C)

with an appropriate exponent j € 7.

Proof. First we get from Definition 3.6.3, Definition 3.5.3, and Lemma 3.5.5.(i)
2OVt = TuTw,e(Y () Ty0) Yt pe
Tu VWt e T, € (Y (€)) Tg(o)

= g S TTu (Y (O) oo,
el 4,

Using Lemma 3.2.17.(i) and Lemma 1.1.68.(ii), this can be rewritten as

Z(<)\IJM##C = x,Uch Z waME(Y<<>)Tg(C)
Fel s, (3.83)

= D wur TV (O) o
felu#‘w

Now we fix an
fO € [M#NC \ {fu#uc}
(see Definition 3.2.22) and consider the summand x,r, Tfyw, (Y (¢))T4(c) on the
right hand side of (3.83) corresponding to it. Because of { € Zr 1 Definition 3.3.5,
Definition 3.3.13, and Lemma 3.4.3 we have

é‘(Y(C)) - E(Vu#u)h
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with an appropriate h € 'H,,. By substituting this into the summand corresponding
to fo on the right hand side of (3.83) we obtain

2 Lo, €Y (O)Ty(0) = r T, £ (Vi) b
with an appropriate h € H,,. Furthermore we can write
fow, = ud
with uniquely determined permutations
u € Syp, and d € Dyp,.
From this and Lemma 1.3.5 we get
Tur Thyw, = TurTua = Tur, TuTy = ¢" 0, Ty, (3.84)

Now Lemma 3.2.27, applied with w, € &, and fo € I,#,. \ {fu#uc} (see also
Remark 3.2.28), and Lemma 3.5.2.(i), applied with the composition pR,., show

quch€<V##p) = OHA-
Here, 04, denotes the additive neutral element of H,,. From all this we get
muRchOwu5<Vu#u) = Ony

and furthermore
TR Tfow, (Y (C))Tyc) = Oy -

By substituting the preceding equation into (3.83) and taking into account the

choice of f, we obtain

Z(C>\Iju#uc - 'ruRchM#ucwus(Y(C))Tg(C)’ (385)

which is the first identity in the claim.
In order to prove the second identity in the claim, we decompose f,#,.w, with
respect to the right cosets of &z, in &,,. Using Definition 1.1.58.(ii), we can write

R

fu# pey = a[fu#ucwu]“ with @ € S,p,.

From this we get as in the calculation (3.84)

quc Tfu#lww“ quc Tﬁ [f,u# ,ucwﬂ] he
= X RCT”T nRe
. “ [fu#ucw“] ‘
i
= q (U)x/J,RCT[ pRe .

fu#ucw”]
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By substituting this into the right hand side of (3.85) we obtain the second identity
in the claim with j = ¢(a) € Z. &

The next theorem describes the representations of the images of ZNL-elements
under PK-homomorphisms with respect to the row standard bases of permuta-
tion modules (see Definition 1.3.1.(ii) and Definition 1.3.3). It makes use of Def-
inition 3.3.5, Definition 3.2.5, Definition 3.6.3, Definition 3.5.3, Definition 3.2.22,
Definition 3.3.1, Definition 1.1.58, and Definition 3.1.14.

Theorem 3.7.3 Let ¢ € ZHtn \ ZHWF Al Then we have in M(’f;)

(Ra) _ j..(Rq) (R,q)
Z(O(R’Q)\I}u#uc — T TR T[fu#ucwug(C)]“Rc " dEDZ @ 1 (3.86)
nRe
d<[fu#ucw“g<<)]#Rc

with an appropriate exponent j € 7Z and appropriate coefficients c¢q € R for all
. . R
d € Dy, satisfying d < [fu#ucwug(g)}“ .

Proof. The proof of this claim is similar to the proof of Lemma 3.6.6.(i).

According to Lemma 3.7.2, we have

Z(C)qju#uc = quchM#ucwug(Y(g))Tg(C)'

The left factor z,r, Ty, #ucwus(Y(C )) of the right hand side of the preceding identity
can be rewritten as follows by using Definition 1.2.3.(ii), Lemma 3.3.14.(i), and
Lemma 3.3.15.(i).

quchM#ucwudY(C)) = x“RCTfu#chu Z()(_q)z(y)Ty
yeY (¢

—
= ZTuR. Z (—q) (y)Tfu#Mwuy
yeY'(Q)

By postmultiplying this with the factor Tj) we obtain

AV = S (=0) W, Ty

M#”CwuyTg(C)' (3.87)
yeY (()

Now we fix a

y € Y(C)

and consider the corresponding summand z,, Rchu ##cwuyTg(C) on the right hand side
of (3.87). Using Definition 1.1.58.(ii), we can write

St peWuy = ul¥) [fu# pewpy] e With an appropriate  u) € &5,
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From this decomposition, Lemma 1.3.5, and Lemma 3.6.2 we get

quchu#ucwuyTg(C) = wurT, [ ] Ty

fu#ucwuy

fu#

w7 pe

= wur LTy, e T

w®)
= qe( U)quCT[ “RCTQ(C)

fu#ucw“y]

)

= q x#RCT{ +

# ey “RCQ(C)] e

Z Cgly) quc Td

d€D, R,

wa] e o0]

[

“w

d< Hf##Mc

+

Z C((iy)I#RCTd

deD

f

.I'MRCT[

#ucw“y‘g(C)] plte

nRe

< [fu#ucw”yg(o]MRc

with an exponent % € Z depending on y and coefficients c((iy) € R depending on y
and d € D, p, satistying d < [fu#ﬂcw#yg(g)]“Rc.

Now we substitute the preceding identity for each y € Y'(¢) into the right hand
side of (3.87) and rearrange terms using Lemma 3.3.15.(ii) and Lemma 3.1.15.(iv).

Then we obtain

uRe + E Cdquch

deD, g,

2OV e = q]x“RCT[f,‘#qug(C)]

qu(C)] nlte

d< [fu#uc

with an appropriate exponent j € 7Z and appropriate coefficients ¢; € R for all
d € D,p, satistying d < [fu#ucwug(o}“&. This representation of 2(()W,#,. as an
R-linear combination of elements of the basis BM"" of M#Fe (see Definition 1.3.3)
has the desired form. H

The row number lists not considered in Theorem 3.7.3 — that is, those in the set
ZrFAen C 2z are covered in Corollary 3.7.1.

The following corollary uses Lemma 3.2.7.(ii), Lemma 3.6.5, Lemma 3.5.5.(iii),
and Lemma 3.4.4.(vi).

Corollary 3.7.4 The set

R, # #A, #uRe R,
{Z(C)(R,q)q’i#21 (e zrim\ zrA “} C Strg) S Ming)

1s linearly independent over R.
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Proof. The proof of this statement is analogous to that of Lemma 3.6.6.(ii).
According to Corollary 3.3.10, we have

EGLAMISE-AV-2a S
Now we consider a linear combination
> re2(QW e = Ony (3.88)
Cezu#u\zu#Acu

with coefficients . € R for all ( € Zntn \ Ziw* A Here, Oy , denotes the additive
neutral element of H,,. With that we put

Yy = {C c zZhu \ Zu# Acp

re # OR} C zrtu\ iAo, (3.89)

Here, Or denotes the additive neutral element of R. In order to prove the claim, we
must show ) = &.

Suppose that we have ) # @. Then we get from Corollary 3.3.12, Defini-
tion 3.1.14, and Lemma 3.1.15.(i) an

ne) with V(e Y\ {n}: [fu#ucwug(g)]uRc < [fu#ucw#g(n)]MRc (3.90)

(see also Definition 3.2.22 and Definition 3.3.1.(iii)). Using this property of 7, we
substitute (3.86) from Theorem 3.7.3 into the left hand side of (3.88) and rearrange
terms in order to obtain

qunIuRcT[ e + Z TaTur,Lq = Oy,

f ot e wng(n)
nrne d€D R,

Re

a< [fu#ucwug(n)]u

with an appropriate exponent j € Z and appropriate coefficients 7y € R for all
d € D,p, satisfying d < [fu#ucwug(n)}“Rc. From this equation and Theorem 1.3.2,
we get

qun =0g
and, using Definition 1.2.1, furthermore

rn:()R

in contradiction to (3.89) and (3.90).
Thus we must have

Y=g

and the set {Z(C v ¢ e Zwin\ Z“#AC“} is linearly independent over R. H

w# pc
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3.8 Statements on bases of images of PK-homo-

morphisms for Hecke algebras of type A

This section describes how the existence of a certain basis of a PK-module leads
to the existence of an analogous basis of the image of that PK-module under a
PK-homomorphism (see Definition 3.4.1, Definition 3.5.3, and Lemma 3.5.5.(iii)).
As always, n denotes a positive integer and (R, ¢) denotes a coefficient pair.

The following lemma makes use of Definition 3.2.1, Definition 3.2.3, Defini-
tion 3.6.3, Definition 3.3.5, Lemma 3.6.5, Definition 3.2.5, and Lemma 3.2.7.(ii).

Lemma 3.8.1 Let u*p be a PK,-pair with p#p # 00 and let ¢ € N\ {1} be an
AR-index for p# . Suppose that

{Z(C)(R,q)

# L
(e 2 csin

is an R-basis of Sé‘;g). Then

{000

#uR, 1# pRe

is an R-basis of Sé;:g)Rc.
Proof. In this proof, we write
BrH — {z(() ) (e Z“#“} and B R — {2(77) ‘ n e Z“#“RC} )

According to Lemma 3.3.6.(1) and Lemma 3.2.7.(ii), these sets are nonempty.

First we show that, given the assumptions of the claim, the set

w# pe

Crtue = {z(g)\y

Cezrtu\ zu#Acﬂ} (3.91)

(see Definition 3.5.3 and Definition 3.2.5.(iv)) is an R-basis of S#*#Be According to
Corollary 3.3.10, this set is nonempty. According to Corollary 3.7.4, it is contained
in S#*rRe and also linearly independent over R. The assumption that B**# forms
an R-basis of S#*# Lemma 3.5.5.(iii), and Corollary 3.7.1 show that the set CHne
generates SHFRRe gver R. Thus, C#7#¢ is in fact an R-Basis of S#*#Re,

Now we consider the set B+ #fe C Sr#uRe - Tts linear independence over R
follows from Lemma 3.6.6.(ii). In order to prove the claim, we must show that it
generates S*7#Be over R. This is done in the remainder of the proof.

We will require a distinguished numbering of the elements of ZrPuRe et

m — ) Zu¥ pRe

eN
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(see Lemma 3.3.6.(i) and Lemma 3.2.7.(ii)). With that, let

M, - Mm
be an enumeration of the elements of Z#"#Re C ZrRe satisfying
Vi, je{l,...,m} i <j= [wur.gm)]"™ > [wur.g(n))"" (3.92)

(see Definition 3.3.5, Lemma 3.3.4, Definition 3.1.14, and Lemma 3.1.15.(i)). Using
this and Lemma 3.3.9 and putting

0 = Tu#pe(G) for je{l,...,m}, (3.93)

we obtain an enumeration

Gty Cm (3.94)

of the elements of Z+"# \ ZHT Ak gatisfying

Vi,je{l,....m}:i<j=

R R
[w,uch<jﬂ#,uc(Ci>>]u > [qucg(ju#uc<<j>)]u
or, according to Lemma 3.3.11, equivalently
Vioj € {Lcoom} i < j = [fumewug(G)])" > [fumpewng(G))" . (3.95)

Now we fix an
h € SHFuRe,

For this element we will inductively construct certain coefficients
a; € R with je{l,...,m}

and R-linear combinations of ZNL-elements from B~ #fe - Sr# uRe
d #
a; = Zaiz(m) c SHHBe with 5 € {0,...,m}
i=1
such that for every j € {0,...,m} in the representation of h —a; € SuFuRe C )fuke
with respect to the R-basis BM 1 of M#Ee the coefficients of all the basis elements

row std

re € B with e {1,...,5}

TR, T, row std

I:w,u,Rc 9(771' )]

vanish (see Lemma 3.4.4.(vi), Definition 1.3.3, and Definition 1.1.58.(ii)). The in-

duction process starts with

#
ap = Oy, € SHHe CH,.
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Here, 03/, denotes the additive neutral element of H,, (see also Definition 3.4.1). If
fora j € {1,...,m} the coefficients o; € R with i € {1,...,j — 1} and the R-linear
combinations a; € S#* 1R with i € {0,...,7 — 1} are already constructed then we

choose o; € R and

J
a; =Y aiz(n) = a1 + azz(n;) € S
i=1
such that in the representation of h — a; € SuFuRe . NfrRe with respect to the

R-basis BM"™ of M#Be the coefficient of the basis element

MHRc

LTuR, T row std

[w,uRgg(nj

)]uRc € B

vanishes. The formula (3.75) in Lemma 3.6.6.(i) and Definition 1.2.1 show that
this is possible. Now the particular choice of «; and a;, formula (3.75) from
Lemma 3.6.6.(i), the relations (3.92), and the induction hypothesis, which states
that in the representation of h — a;_; with respect to the R-basis BM!™  of M#he

the coefficients of all the basis elements

vre € BMY™ 0 with ie {1,...,j—1}

TuR, T row std

[wureg(mi))]

vanish, all together show that in the representation of
h—a; =h—aj1 —a;z(1;)

with respect to the R-basis BM “eof M#Ee the coefficients of all the basis elements

row std

xﬂRcT

[quC g(m;) row std

]MRceBM“RC with ie{l,...,5}

vanish. This in turn shows that the induction hypothesis also holds for o; and a;
and the induction can be continued. Proceeding in this way, we obtain for j = m an
R-linear combination a,, € S #2 of ZNL-elements from B#"#fe such that in the
representation of h — a,, with respect to the basis Bfgx’jgd of M#Ee the coefficients

of all the basis elements

ure € BT with p e ZHtnke

LuR. T row std

[qucg(U)]

vanish.
Now we show h = a,,. To this end, we write h — a,, as an R-linear combination
of the R-basis C*"#¢ of S#*#Re (see the beginning of the proof). Let

h—an =Y &)V, with &eR for ie{l,...,m}

=1
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(see (3.91) and (3.94)). Suppose that we have {i € {1,...,m} | & # O0r} # @. With

this assumption, put

j=min{i € {1,....,m} | & #0r} € {1,...,m}. (3.96)

Here, O denotes the additive neutral element of R. Now we can write

h—a,, = 5]'2(Cj>qju#yc + Z giz(Ci)\Ij,u#,uC' (397)

i=j+1

Next, we substitute the representations of the elements z(()W,#,. € M+ for
(e Zrtn \ ZHF Ak with respect to the R-basis BM"™ of M#Ee from Theorem 3.7.3

row std

into the right hand side of the preceding equation and rearrange terms, taking into

account (3.95) from above. Thus we obtain

h—an, = gjqk$uRcT[

:IP«RC + Z gdtzRch

fu#ucwug(@) s

nRe

wp,g(Cj):I‘uRC

d< [f,u#u.c

with an appropriate exponent £ € Z and appropriate coefficients éd € R for all
d € D,p, satistying d < [fu#ucw“g(ﬁj)}“m. Now, according to Definition 1.2.1 and

the choice of j, we have for the coefficient of x“RCT[fM#HCwug(Cj)]“RC
&q" # Or. (3.98)
Furthermore, we see from Lemma 3.3.11 and (3.93)
et ()" = [0 (Tl O™ = g™ (3.99)

Now (3.98) and (3.99) together lead to a contradiction to the construction of a,,

which ensures that the coefficient quk of the basis element qucT[w o(n
pRe 7

ishes (see the preceding paragraph). Thus j cannot be chosen as in (3.96) and we

)];LRC van-

have
Vie{l,...,m}:& =0g

and furthermore
h—am, =0y, or equivalently h = ay,.

This shows that B#"#Ee generates S#"#Be over R and all in all is an R-basis of
SHFuRe o desired. W
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3.9 Statements on bases of kernels of PK-homo-

morphisms for Hecke algebras of type A

This section describes how the existence of a certain basis of a PK-module leads to
the existence of an analogous basis of the kernel of a PK-homomorphism restricted
to that PK-module (see Definition 3.4.1, Definition 3.5.3, Lemma 3.4.4.(vi), and
Lemma 3.5.5.(ii)). As before, n denotes a positive integer and (R, q) denotes a
coefficient pair.

The next lemma uses Definition 3.2.1, Definition 3.2.3, Definition 3.2.5.(iv),
Definition 3.6.3, Definition 3.3.5, Lemma 3.6.5, and Lemma 3.3.6.(iii).

Lemma 3.9.1 Let p#p be a PK,-pair with p#p # 00 and let ¢ € N\ {1} be an
AR-index for p# u such that we have p* A # 00. Suppose that

{Z(C)(R,q)

" #
is an R-basis of SR Then

(R,q)°

R,q)

{2000

u# Acp u p
nez } C S(

M#
is an R-basis of Ker (\P(R’q)l (R‘q)) c SHie

uH# uc SF}?:) = Y (R9)
Proof. In this proof, we write
B = {x(Q|ce 2},
BU‘#ACM — {2(77) ‘ /’7 c ZM#ACM} ,
# uc MH
KFHe — Ker (QH#HClSM#H) .

According to Lemma 3.3.6.(iii) and Lemma 3.6.5, we have
B~ Acn C B C [Saa

This and the assumption that B*"1 is an R-basis of SH"# together imply that

B+ 4o jg linearly independent over R. Furthermore, we get from Corollary 3.7.1
BrFAen e

Now it remains to show that B#"4ex generates K i ne gver R. To this end, we
fix an
he Krine c gntn
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According to the assumptions of the claim, we can write

h = Z rez(Q)

cezutu

with uniquely determined coefficients r. € R for all ¢ € Zr 1, By applying U e

and taking into account Corollary 3.7.1 we get from this

p#pe = Z TCZ(C)‘I’M#MC'

Cezu#u\zu#f\cu

O, = hU

Corollary 3.7.4 now shows
V¢ € 2rTi\ 2 A pe = Op

which implies

h = Z rp2(n).

nezu#Acu

Thus, BH" Acn generates K n¥ne over R and all in all is an R-basis of K “#”C, as
desired. W

The following statement makes use of Definition 3.2.1, Definition 3.2.3, Defini-
tion 3.6.3, Definition 3.3.5, Lemma 3.6.5, and Definition 3.2.5.(iv).

Lemma 3.9.2 Let u#pu be a PK,-pair with u#p # 00 and let ¢ € N\ {1} be an
AR-index for u* . Suppose that

{Z<C)(R,q)

- -
ez s
is an R-basis of Sé‘;g). Then the following statements hold.

(i) Let u#* A # 00. Then

{Z(U)(R,q)

is an R-basis of Sé‘}:gc“.

#Ae p# Acp

(ii)) We have
(Ra) | M{ra) \ _ cu#Acp
Ker (\Ilu#wlsffu) ) - S(R#J) )
»q

Proof. First we consider the case p Aqu # 00. Here we get from Lemma 3.6.5 —
applied to the PK-pair p# A.u — and Lemma 3.5.5.(ii)

SuF L

{2(77) ‘ n e ZM#ACM} C §#F A ¢ Ker (@u#uclz\/ju ) _
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Moreover, the assumptions of the claim and Lemma 3.9.1 show that the set on the
left hand side of the preceding chain of inclusions is an R-basis of the module on the
right hand side. This proves statement (i) and also statement (ii) for u# A.u # 00.

Now we consider the case u# A.u = 00. Here we only must prove statement (ii).
Because of u# A.u = 00 and Definition 3.4.1, the claim is equivalent to the injectivity
of qju#mlg{;u' This property of \I]M#Mlg{;;ﬁu
claim, Definition 3.3.5, and Corollary 3.7.4.

Now the claim is completely proved. B

follows from the assumptions of the

3.10 ZNL-bases for PK-modules and kernels of
PK-homomorphisms for Hecke algebras of
type A

In this section we first derive generic bases of PK-modules (see Remark 1.2.9
and Definition 3.4.1), then we derive a useful description of the kernels of PK-
homomorphisms restricted to PK-modules (see Definition 3.5.3), and finally we
derive a representation of Specht modules as intersections of kernels of PK-homo-
morphisms. As always, n denotes a positive integer and (R, ¢) denotes a coefficient
pair.

The next theorem makes use of Definition 3.2.1, Definition 3.6.3, Definition 3.3.5,
Definition 3.4.1, and Lemma 3.6.5.

Theorem 3.10.1 Let p#p be a PK,-pair with u? i # 00. Then the set

{Z(C)(R,q)

# D
(e 2 csi
is an R-basis of Sé’“}:q).
Proof. According to Lemma 3.2.7.(iv), there is a v = (v, 2, . . .) F n such that (v)v
forms a PK-pair from which the given PK-pair p# it can be reached by an application
of an appropriate chain of operators A, and R, with AR-indices ¢ € N\ {1}. More
specifically, we have an index m € Ny and PK-pairs A*W\0) £ 00 for j € {0,...,m}
with

MONOD — 1)y and MMM — ),

Moreover, for every j € {1,...,m} we have an AR-index ¢; € N\ {1} for the
PK-pair A#U-DX\0=1) guch that

AP NG — \#E-D 4 \G-D) or A N\G) = \#U-DN\G-DR
¢ cj
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holds. The claim will now be proved by induction on j € {0,...,m}.

The induction starts with j = 0 and the PK-pair A*©OX® = (v)v. Here
we have, according to Lemma 3.4.4.(ii) and Lemma 3.3.7, S* X = M2 and
ZMOXND — ZXY With that, the claim follows from Lemma 3.6.6.(iii).

Now we consider a j € {1,...,m} and assume that {Z(C) ’ ¢ e Z)‘#UJ)A(FD} is

an R-basis of SV YA " Then it follows in the case \#0)\0) = )\#(jfl)/\(jfl)ch
from Lemma 3.8.1 and in the case A#WA0) = A\#U=D A, AU=D from Lemma 3.9.2.(i)
that {Z(C) ’ (e Z’\#(jwj)} is an R-basis of the module $*"%

Thus, for every j € {0,...,m} the set {z(() ’ ¢ e Z)‘#(j)’\(j>} forms an R-basis of
SMOAD “and the case j = m with A#WA = 1 #; shows that {Z(C) ‘ (€ Z“#“}

. . # .
is an R-basis of S*"#, as desired. l

Definition 3.10.2 Let pu# i be a PK,-pair with u#pu # 00. Then the R-basis

{Z(C)(R,q)

# #
Cezr e

of SZ:;L) from Theorem 3.10.1 is called the row number list basis of S(“;g) or just the

ZNL-basis of Ségi“. We denote this basis by

q)
# #
B%LM (R7 Q) or B%LM~

Remark 3.10.3 Remark 3.4.2, Remark 3.6.4.(i), and Theorem 3.10.1 show that
the ZNL-bases of PK-modules from Definition 3.10.2 are generic in the sense of
Remark 1.2.9.

The next corollary records another fact on bases of PK-modules. It makes use of
Definition 3.2.1, Definition 3.2.3, Definition 3.6.3, Definition 3.5.3, Definition 3.3.5,
and Definition 3.2.5.

Corollary 3.10.4 Let u#p be a PK,-pair with u# u # 00 and let ¢ € N\ {1} be an
AR-index for u# . Then the set

{Z(O(qu)@(Rﬂ) (e Z1# \ Zy#Acu} C SéL;uRc

wH# pc o))

M#MRC

1s an R-Basis of S(Rﬂ)

Proof. This is obtained from Theorem 3.10.1 and the beginning of the proof of
Lemma 3.8.1. W

The following statement makes use of Definition 3.2.1, Definition 3.2.3, Defini-
tion 3.5.3, Lemma 3.4.4.(vi), and Definition 3.2.5.(iv).
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Theorem 3.10.5 Let u#p be a PK,-pair with u#pu # 00 and let ¢ € N\ {1} be an
AR-index for u# . Then we have

(Ra) | M(r.q) _ opFAcu
Ker <\IIM#MCJ/5H#H > - S(Rﬂ) )
(R,q)
Proof. This follows from Theorem 3.10.1 and Lemma 3.9.2.(ii). W

Remark 3.10.6 (i) Remark 1.5.7.(i), Remark 3.4.2, Remark 3.5.4, and Theo-
rem 3.10.5 show that the kernels of PK-homomorphisms restricted to PK-
modules as considered in Theorem 3.10.5 are generic in the sense of Re-
mark 1.2.9.

(ii) In [DJ1, Section 7] Theorem 3.10.5 is proved under the assumption that the
coefficient ring R is a field (see especially [DJ1, Lemma 7.3]).

The next corollary makes use of Definition 1.1.1.(ii) and Definition 3.5.3.

Corollary 3.10.7 Let A = (A1,...,A\p) Fn with m € N\ {1} and \,, > 0. With
that, put for every i € {2,...,m} and every j € {0,...,\; — 1}

A#(Zv]) = (/\1, .. .,>\z‘—1;j) l_ /\2——1 +‘7

Then we have in M()\R,q)

A R,q)
S(R,q) = ﬂ ﬂ Ker ‘I’E\#z,j))\i-

1€{2,0m} {0 A~ 1}

Proof. In this proof, we write
Z={@G,j)|i€e{2,....,m}and j € {0,...,\; — 1}}.

Since A F n, we have in particular A; > 0. For every (i,7) € Z this fact and
the choice of j for a given i show that the composition A\#() is a partition of a
positive integer. The construction of A#(*) also implies [A\*)] C [A]. From all
this we see that for every (i, j) € Z the partitions A#*(*7) and A form a PK-pair with
A#) X =£ 00. Furthermore, it easily follows from the construction of A#() with
an (i,7) € T that i satisfies the conditions imposed on an AR-index for A\#(:7))
from Definition 3.2.3. These considerations show that the claim of the corollary is
meaningful.

Next, we order the set Z lexicographically. More formally, we define for i €
{2,...om},j€{0,....\; —1}andi € {2,...,m}, ; €{0,..., \; — 1}

(i,5) < (i,5) & (i <i) vV ((i=19) A (5 <])).



212 CHAPTER 3. GENERIC SPECHT SERIES FOR H4

This is a total ordering on the set Z with the smallest pair (2,0) and the biggest
pair (m, A, — 1).
Furthermore, we define for (i, j) € Z with (4, j) # (m, A\, — 1) the pair (i, )" as

(i )" = (i,7+1) if j<X—1
" (i+1,0) if j=XN—-1"

" is the immediate successor of (i, ) in

N

Then we have (i,7)" € Z. Moreover, (i, j)

the lexicographic ordering on Z, that is, we have (i,7) < (4,7)" and there is no

(1,7) € T satisfying (i,7) < (4,7) < (i,7)". From Definition 3.2.5.(i) we also obtain
V(i,5) € T\ {(m, A\ — 1)} : AFEI A, = \#EI", (3.100)

Finally, we note the relation
AHEmAm=1) 4 ) (3.101)

which again follows directly from Definition 3.2.5.(i).

For the remainder of the proof, we put
K= () Ker Uiy C M (3.102)
(i,9)€T

(see Definition 3.5.3). In order to prove the claim, we must show S* C K and
K C SM

First we verify the inclusion S* C K. Because of (3.102), it suffices to show for
an arbitrary (i,7) € Z the inclusion S* C Ker W,x(.5),;. To this end, we fix such an
(7,7). Then we have according to Theorem 3.10.5

Ker <‘I’,\#<iu‘>mlgi;<mn> — GATAR, (3.103)

(3.100), (3.101), the considerations concerning the plausibility of the claim of the
corollary, and Definition 3.2.1 show that A\#(9) A, \ is a PK-pair with A#(7) A, X # 00.
In particular, we have [A*()A;] C [A. From this fact, Lemma 3.4.4.(iii), and
Lemma 3.4.4.(iv) we get

G — gM c g AN

This relation and (3.103) in turn show
S)‘ g Ker (\IIA#(i’j))\’ilSMA;(ivj)/\) g Ker \Il)\#(i’j))\i7
as desired. From the choice of (7,7) € Z and (3.102) we now obtain

S C K.
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Next we consider the reverse inclusion K C S*. In order to verify it, we fix a
y € K. We now show for every (i,j) € Z the relation y € SMEIA - We do this
by induction on the elements of Z using the lexicographic ordering. The induction
starts with the smallest pair (2,0). In this case we have A*(20) = ()\;) and thus,
according to Lemma 3.4.4.(ii), SNOX — M| This shows the induction hypothesis
for the pair (2,0). For the induction step we consider an arbitrary (i,7) € Z \
{(m, A, — 1)}. Suppose that we have for this pair y € SMCINWith that, we get
from the fact y € K, (3.102), Theorem 3.10.5, and (3.100)

#(i.9)
Yy € KN SA A
#(i.3)
C Ker Wyug,; NSM 7
= Ker (q’A#(i»j)AilS/\#(i,j)A >
S)\#(iyj)Ai)\

S/\#(i,j)A,\

This also shows the induction hypothesis for the pair (i, )" and thus inductively for
all pairs (i, 7) € Z. Now we consider in particular the biggest pair (m, \,, — 1) € Z.
For this pair a calculation analogous to the preceding one but using (3.101) instead
of (3.100) and furthermore Lemma 3.4.4.(iii) shows

y € K gAmam i

#(m,Am—1)
Ker \D}\#(m,xmfn)\m N S)\ " A

= Ker <\I]>\#(m,>\mfl)>\mJ/SA#(m,)\m—l))\ )
S)\#(m,kmfl)AmA

— S)\A
= S

This and the arbitrary choice of y € K now imply
K C SN
All in all, we have S* C K and K C S* and thus
S* = K,
which proves the claim of the corollary. B

Remark 3.10.8 (i) The case left out in the statement of Corollary 3.10.7, that

is, m = 1, is trivial. Using the notation from Corollary 3.10.7, we have for
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= 1 the relation A = (n). Now the permutation module M((g)q) is free
(R.q)

over R of rank 1 with the basis element Ty - Furthermore we get from

Definition 1.1.64 and Lemma 1.1.65.(ii) the identities (n) = (1") = w(™,
_—— — (’I’L) — (R,(]) R (R7Q) J— (qu)

Sy = {lents toy) =t winy = Lo, Yoy = Loy 2y = Ty and

finally S{7,) ) = M(<;)q)

(i1) In [DJ1, Section 7] Corollary 3.10.7 is proved under the assumption that the
coefficient ring R is a field (see especially [DJ1, Theorem 7.5]).

3.11 Construction of generic Specht series for
Hecke algebras of type A and associated per-

mutation modules and PK-modules

Now we complete the derivation of the generic Specht series for Hecke algebras of
type A. To this end, we first give a formal definition of Specht series for modules of
Hecke algebras of type A. Then we construct generic Specht series for PK-modules
and permutation modules and finally also for Hecke algebras of type A. As before, n

denotes a positive integer and (R, q) denotes a coefficient pair as in Definition 1.2.1.
Definition 3.11.1 Let M be a right Hfﬁ’f)l -module. Then a series of submodules
O, =My CM C---C My CSMy =M

with an m € Ny and the property

Vjie{l,...,m}: M;/M, 1_5)‘;;; as H(Rq -modules
for an appropriate \U) F n

is called a Specht series for M. Here, 0y, denotes the trivial H(A}i’f)l -submodule of
M. The number m is called the length of this Specht series.

The following theorem makes use of Definition 3.2.1 and Definition 3.4.1.

Theorem 3.11.2 Let pu#p be a PK,-pair. Then there is a Specht series for the

w
PK,,-module S(R 0

Proof. In the case u#u = 00 we have, according to Definition 3.4.1, Sefe — O -
Here, 04, denotes the null ideal in H,,. This shows the claim with the Specht series

O, = S
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of length 0.
In the case p#p # 00 and p# = pu we have, according to Lemma 3.4.4.(iii),
SH¥u — Sr. This shows the claim with the Specht series

Oy, C 5" = gt

of length 1.

In the remainder of the proof, we assume p#p # 00 and p# # p. Then we
get from Lemma 3.2.7.(iii) an AR-index ¢; € N\ {1} for the PK-pair p#u which
enables us to construct the PK-pairs u” A, and p#pR,, as in Definition 3.2.5.
Now there might be an AR-index ¢; € N\ {1} for p# A, p respectively an AR-
index c3 € N\ {1} for u#uR., such that the application of the operators A., and
R, to M#Acl o respectively the operators A., and R, to ,u#uRcl leads to further
PK-pairs. The iteration of this process as long as possible produces a binary tree
(that is, every vertex in the tree has zero or two successors) whose vertices are
labelled with PK-pairs and whose edges are labelled with operators A, and R, with
appropriate AR-indices ¢ € N\ {1}. More specifically, the root of the tree (that
is, the vertex without predecessor) is labelled p#p, and if a vertex of the tree has
two successors then the label of this vertex is a PK-pair v#v # 00, the labels of
the edges leading to its successors are A, and R. with an AR-index ¢ € N\ {1} for
v#v, the label of the vertex at the other end of the edge labelled A, is v A.v, and
the label of the vertex at the other end of the edge labelled R, is vV R,. This part
of the tree is displayed in the following picture.

A, R, (3.104)

vt A O Q V7*UR,
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Now let v#v # 00 be an arbitrary PK-pair occurring in the tree and let ¢ €
N\ {1} be an AR-index for v#v. Then the application of the operator A, to
v#v either produces 00 or increases the number of lattice points in the diagram
[v#] C [v] but leaves unchanged the number of lattice points in the diagram [v]
(see Definition 3.2.1 and Definition 3.2.5). Furthermore, the application of the
operator R, to v#v moves lattice points from the c-th row of the diagram [v] to
the (¢ — 1)-th row of [v] and possibly increases the number of lattice points in the
diagram [v#] C [v] (see Definition 1.1.6, Definition 3.2.1, and Definition 3.2.5).
This shows that any iterative application of operators A, and R. with appropriate
AR-indices ¢ € N\ {1} to u¥u inevitably produces after a finite number of steps
a PK-pair to which no such operators can be applied any more. From this we see
that the binary tree constructed in this way from p#u only contains a finite number
of vertices. Moreover, Lemma 3.2.7.(iii) implies that the labels of the leaves of this
tree (that is, the vertices without successors) are of the form 00 or A\ with an

appropriate A = n. Thus the complete binary tree has the form

1

A, /O\Rq

// \ (3.105)
gdo Ik

/ 0\ 00 AONO
O

AW A@) A@GNE  AG)IN\G)

SO\
O

with appropriate AV, ... A\©®) ¢ TI,, (see Definition 1.1.2.(iii)) and possibly more
such partitions.

The claim of the theorem in the case pup # 00 and pu # p is now proved by
induction on the labels of the vertices of this tree along the edges from the leaves to
the root. The induction start is provided by the two special cases p# ;1 = 00 on the
one hand and p# i # 00 and p# = p on the other hand considered at the beginning
of the proof together with the above considerations concerning the labelling of the
leaves of the binary tree. For the induction step we consider a vertex of the tree
which is not a leaf. This vertex is then, as shown in picture (3.104), labelled with

a PK-pair v#v # 00 and the labels of its successors are v# A.v and v#v R, with an
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AR-index ¢ € N\ {1} for v#v. With this data we get from Lemma 3.4.4.(v)
Oy, C 57 A C v (3.106)
and furthermore from Lemma 3.5.5.(iii) and Theorem 3.10.5
SV g A n grFYRe a9 H, modules, (3.107)

the isomorphism being induced by the map \I/V#l,clM Now if the claim of the

P
theorem holds for v# A,v and v*vR, then we can use the Specht series for Gv# Ay
and S$*""Ee and the isomorphism (3.107) to refine the series (3.106) for S*** to
a Specht series for S¥"v. Thus the claim of the theorem also holds for v#v and
inductively for all PK-pairs occurring as labels of vertices in the binary tree (3.105).
In particular, the claim of the theorem holds for the label of the root of the tree,

namely p7# . A

Remark 3.11.3 (i) Remark 1.3.15.(i), Remark 3.4.2, Remark 3.5.4, and Re-
mark 3.10.6.(i) show that the Specht series for PK-modules constructed in the
proof of Theorem 3.11.2 are generic in the sense of Remark 1.2.9.

(i) In [DJ1, Section 7] Theorem 3.11.2 is proved under the assumption that the
coefficient ring R is a field (see especially [DJ1, Theorem 7.4]).

Corollary 3.11.4 Let A = (A1, A\a,...) E n with Ay > 0. Then there is a Specht

series for the permutation module M()‘R .

Proof. The assumption A; > 0 allows us to build the PK-pair (A;)\ (see Defi-
nition 3.2.1). Now the claim follows from Lemma 3.4.4.(ii) and Theorem 3.11.2.
|

Remark 3.11.5 (i) Remark 3.11.3.(i) shows that the Specht series for permu-
tation modules constructed in the proof of Corollary 3.11.4 are generic in the
sense of Remark 1.2.9.

(i) Consider \, i E n which differ only by a permutation of their entries. Then
we have according to [DJ1, Lemma 4.5]

A ~ “w
Mip g = Mg

as Hfﬁ’f)l -modules. The particular isomorphism that is constructed in [DJ1,
Lemma 4.3] also is generic in the sense of Remark 1.2.9. All this shows that
the condition imposed on the composition in the statement of Corollary 3.11.4

18 not essential.
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Corollary 3.11.6 If we consider Hffi’f)l as a right H(Ai’i’) module then there is a

) -
Specht series for this module.

Proof. From Definition 1.1.64, Lemma 1.1.65.(ii), and Definition 1.3.1 we see
M =,
Now the claim follows from Corollary 3.11.4. B

Remark 3.11.7 Remark 3.11.5.(i) shows that the Specht series for Hfﬁ’f)l con-
structed in the proof of Corollary 3.11.6 is generic in the sense of Remark 1.2.9.

This completes the derivation of the generic Specht series for Hecke algebras of

type A.



Chapter 4

Generic bi-Specht series for Hecke

algebras of type B

This chapter describes the generalization of the generic Specht series for Hecke
algebras of type A from the preceding chapter to Hecke algebras of type B.

The first and the second section describe the combinatorial background required
for the treatment of Hecke algebras of type B and the algebras themselves. The next
three sections introduce and investigate the modules employed in the construction
of the bi-Specht series. The following section describes certain homomorphisms
between these modules. The final section carries out the construction of the bi-
Specht series for Hecke algebras of type B and describes how this construction can
be adapted to Hecke algebras of type D. The central results are Theorem 4.7.4 and
Theorem 4.7.6.

4.1 Combinatorics for Hecke algebras of type B

This section provides the combinatorial objects and constructions relevant to Hecke
algebras of type B. References for the following material are [DJ3, Section 2] and
[DJM, Section 3]. As always, n € N denotes a positive integer.

The first part of this section introduces the Weyl groups underlying the Hecke
algebras of type B (see also [DJ3, Section 2] and [HUM, Chapter 1, Chapter 2,
Chapter 5]).

Definition 4.1.1 The group Wpg, is defined to be generated by the elements

t,Sl,...,Sn_l (41)

219
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subject to the relations

2 = 1wy,
Vie{l,...,n—1}: 82 = ly,,
tsitsy = s1ts1t,
Vie{2,...,n—1} : ts; = sit,
Vie{l,...,n—2} 88118 = Sit15iSi+1,
Vi,je{l,...,n—1} with |i —j| > 1:s;5; = s;8;
where 1y, denotes the neutral element of this group. Wpg, is the Weyl group of

type B,,. Wpg, also is called a Weyl group of type B and denoted by Wg. The

generators (4.1) are called the simple reflections in Wpg, .

Wi, is the Weyl group of the root system of type B, with the following Dynkin

diagram.

Here, the simple reflection ¢ corresponds to the vertex 0 and for every index j €
{1,...,n — 1} the simple reflection s; corresponds to the vertex j. Moreover, the
element t € Wp, generates a subgroup isomorphic to Cs (the cyclic group of order 2)
and the set {s1,...,s,-1} C Wpg, generates a subgroup isomorphic to &,, ~ W, _,
(see (1.6) on page 2). With these two subgroups of Wp  we have the following
realization of Wp, as a wreath product (see for example [DJ3, Section 2] or [HUM,
Section 1.1]).

Wg ~Co16, (4.2)

n

The notions of reduced expressions and length for the elements of the Weyl group

Wy, are defined as in (1.7) on page 2 and (1.8) on page 2. The length function
lp,=lp=0:Wp, — Ny, wlp (w)="Ipw)="~lw)

has properties analogous to those in (1.9) on page 3 (see also [DJ3, Section 2]).
Next we describe certain embeddings of Weyl groups of type A into other Weyl

groups of type A and also into Weyl groups of type B. From the construction of

the Weyl groups of the types A and B in (1.3) on page 2, (1.4) on page 2, and

Definition 4.1.1 we see that the next definition is meaningful.
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Definition 4.1.2 (i) Let m € {1,...,n}. Then the assignments
Wa, 28— sim =8 €Wy, , for ie{l,...,m—1}

define by multiplicative extension a length preserving and injective group ho-
momorphism

m

yiid
wH—w .

m
<_.
T ”Am—1 ? ”A

n—17

This homomorphism is called the left inclusion of Wa,, _, into Wy, . As an
abbreviation, we write

(i) Let m € {1,...,n}. Then the assignments

m

Wa, D88 =Sion-m€Wa, , for ie{l,....m—1}

define by multiplicative extension a length preserving and injective group ho-
momorphism

m

T Wy — Wy w— w .

m—1 n—17

This homomorphism is called the right inclusion of Wa,, | into Wy, . As an

abbreviation, we write

m
— >

(iii) The assignments
Wa, 28— 8,€Wg, for ie{l,....n—1}

define by multiplicative extension a length preserving and injective group ho-

momorphism
WAnfl — WBn? WAn71 9 wH— w E WBn

We identify the group Wy, _, with its image in Wp_ under this embedding.

n—1

Remark 4.1.3 (i) The embedding of Wa,_, into Wpg, from Definition 4.1.2.(iii)
has already been used in the derivation of (4.2).

(i1) The embedding of Wa, , into Wy, from Definition 4.1.2.(iii) also allows us
to apply constructions for Weyl groups of type A from the preceding chapters

n—1
to Weyl groups of type B.

Lemma 4.1.4 Leta € {1,...,n—1}. Choose u € Wu

we have in Wy, |

andv € Wy, . Then

n—a—1
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Proof. (i) According to Definition 4.1.2.(1), v~ € Wy
from the set {s1,..., 8,41} € Wy, _,. Similarly, according to Definition 4.1.2.(ii),

is a product of factors

n—1

v~ € Wa,_, is a product of factors from the set {s,_ai1,...,8n-1} C Wa,_,.
According to (1.4) on page 2, every element of the set {si,...,S,_4 1} commutes
with every element of the set {s,_q+1,...,S,_1}. This shows the claim.

(ii) This follows from the considerations in the proof of statement (i), (1.6) on

page 2, and (1.10) on page 3. B

The following lemma makes use of the isomorphism (1.6) on page 2 and the nota-

tion (1.2) on page 1.

Lemma 4.1.5 Leta € {1,...,n—1}. Then we have in W,, | ~ &,, the following

identities.
(i) Wa, .\~ = S, n—a}-
(ii) Wa, .~ = Spnat1.m)-
(iii) (WAH*G*I”;“) N (WAkﬁ> = {1, }.

(iv) (WAH,G,l";“) (WAaf) = G-

Proof. Statements (i) and (ii) follow from the consideration of the sets of simple
reflections generating the respective groups and (1.6) on page 2. Statement (iii)
follows from (1.6) and statements (i) and (ii). Furthermore, Lemma 4.1.4.(i) and

n—a

statement (iii) show that the product (WA - ) <WAQ_1i> in Wy

n—a—1

., 1s direct.

Now statement (iv) follows from a comparison of statements (i) and (ii) with the

decomposition (1.18) of Young subgroups on page 25. B

Now we describe some constructions relevant to the representation theory of
Weyl groups of type B. They generalize constructions known from the representa-
tion theory of symmetric groups employed in the preceding chapters. The notions

introduced in the next definition can also be found, for example, in [DJM, Section 3.
Definition 4.1.6 Let a € {0,...,n}.

(i) A pair (X, p) consisting of A\ F a and p E n — a is called an a-bi-composition

of n or a bi-composition of n or just an a-bi-composition or a bi-composition.
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(i) A pair (A, u) consisting of A\ a and p = n —a is called an a-bi-partition of n

or a bi-partition of n or just an a-bi-partition or a bi-partition.
The following definition makes use of Definition 3.2.1.

Definition 4.1.7 (i) Let a € {1,...,n — 1}. Furthermore, let \¥\ be a PK,-
pair with \* X # 00 and let p#p be a PK,_q-pair with u#u # 00. Then the
pair

(NN, 17 )

15 called an a-bi-PK,-pair or an a-bi-PK-pair or just a bi-PK,-pair or a bi-
PK-pazr.

(ii) Let u*u be a PK,-pair with u*u # 00. Then the pair

(00, g pu)

15 called a 0-bi-PK,-pair or a 0-bi-PK-pair or just a bi-PK,-pair or a bi-PK-

pair.
(iii) Let NX¥X\ be a PK,-pair with \¥ X\ # 00. Then the pair
(A* ), 00)

18 called an n-bi-PK,-pair or an n-bi-PK-pair or just a bi-PK,-pair or a bi-
PK-pair.

(iv) The pair
(00, 00)

also is called a bi-PK-pair.

In the preceding definition, the abbreviation PK stands for partition-composition.

The following remark makes use of Definition 4.1.6.(i).

Remark 4.1.8 (i) Leta € {1,...,n — 1} and fix an a-bi-PK,-pair (\*\, u# p1).

Then (A, i) is an a-bi-composition.
(ii) Let (00, u# ) be a 0-bi-PK,-pair. Then ((0), 1) is a 0-bi-composition.
(iii) Let (\*X,00) be an n-bi-PK,-pair. Then (), (0)) is an n-bi-composition.

The next definition uses Definition 3.2.3 and Definition 3.2.5. Lemma 3.2.7.(ii)

shows that it is meaningful.
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Definition 4.1.9 Let (\* )\, u# 1) be a bi-PK,,-pair.

(i) Suppose N\ # 00 and let ¢ € N\ {1} be an AR-index for NX¥*X. Then the
bi-PK-pair (N X, u# 1) @A is defined as
(ANFAN, u# i) for AN*AN# 00

(NN, ¥ 1) 94 = :
(00,00)  for A*A\ =00

(NN, u#1) @A s called the image of the bi-PK,-pair (\*\, u# ) under the
operator (©A.

1) Suppose and let ¢ € e an -index for . en the
(ii) S u#u # 00 and | N\ {1} b AR-index for u”u. Then th
bi- PK-pair (\# X, p# 1) A©) is defined as
(VX u# Aep) - for pi# A # 00

(WX, ¥ ) A = :
(00, 00) for p#A.u =00

(NN, u# 1) A s called the image of the bi-PK,-pair (\* X\, u#* 1) under the
operator A,

(iii) Suppose N\ # 00 and let ¢ € N\ {1} be an AR-index for \*X. Then the
bi-PK-pair (AN X, u# 1) ©R is defined as

VX 1 1) OR = (VAR 1# o).

(AN, 1# 11)9R is called the image of the bi-PK,-pair (\* X, u# 1) under the
operator R.

(iv) Suppose p#p # 00 and let ¢ € N\ {1} be an AR-index for u*u. Then the
bi- PK-pair (A X, p# 1) R is defined as

(VX 1 ) RO = (W, 1i# uR,.).

(AN, p# 1) R is called the image of the bi-PK,-pair (\* X\, u# 1) under the
operator R,

Now we introduce some useful elements of Wp,. The next definition makes use
of Definition 4.1.2.(iii), it is modelled on [DJ3, Definition 2.3].

Definition 4.1.10 Let a € {0,...,n}. Then the element wq,—q € Wa, , € Wpg,
1s defined as

n—a
Wa,n—a = (Sn—lsn—Q s 8281)
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Remark 4.1.11 Leta € {0,...,n}. Then we get from (1.6) on page 2
Sp1Sp—9- - S281 = (1,2,-+- ., n—1,n).

From this in turn we see that for a € {1,...,n—1} the element wqn—q from
Definition 4.1.10 maps the numbers 1,...,a in the given order to the numbers
n—a-+1,...,n and the numbers a + 1,...,n in the given order to the numbers

1,...,n—a. Moreover, for a € {0,n} we obtain wyp—oq = le, .-

4.2 Hecke algebras of type B

In this section we describe Hecke algebras of type B, as also considered in [DJ3].
Further information on the history and background of these algebras also can be
found there. Moreover, we refer the reader to [HUM, Chapter 7] where Hecke
algebras of arbitrary type are constructed in a very general way. As before, n € N
denotes a positive integer.

The next definition is analogous to Definition 1.2.1.

Definition 4.2.1 Let R be an integral domain. Furthermore, let ¢ € R be a unit
and @ € R be an arbitrary element. Then the triple (R, q, Q) is called a coefficient
triple.

Remark 4.2.2 Let (R, q,Q) be a coefficient triple as in Definition 4.2.1. Then
(R, q) is a coefficient pair as in Definition 1.2.1.

The following description of the Hecke algebra of type B, is from [DJ3, Sec-
tion 3|, it makes use of Definition 4.1.1.

Definition 4.2.3 Let (R, q,Q) be a coefficient triple. Then the Hecke algebra

of type B, — or more generally of type B — owver the coefficient triple (R, q, Q) is
defined as the free R-module with basis {T,, | w € Wg,} on which the rules

(Z) TlWB = 1HSBR,q,Q) s
(it) T = QThy, +(Q@ - 1T},
(iii) Vi € {1,...,n =1} : T} = qThy,, + (¢ — DT, ,

() T, = Tm~~~Tvl(w) for every w € Wpg  having a reduced expression w =

Uy - Vg (w) With factors vy, ... Vo) € {t, 515, Sn—1}
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induce an associative multiplication. Here, ].,H(R,q,Q) denotes the multiplicative neu-
B

tral element of the algebra Hgi’q’Q). Furthermore, the additive neutral element of

Hgi’q’@ 15 denoted by OH(R,q,Q>. The parameter n is called the degree of the Hecke
B

algebra Hgi’q’Q) .

For all the following we fix a coefficient triple (R, q,@). From the rules for the
multiplication on Hp, in Definition 4.2.3 we get the following useful facts (see
Definition 4.1.2.(iii), (1.22) on page 34, (1.23) on page 34, and [DJ3, (3.1)]).

For u,v € Wg, satisfying {p, (uv) = {p, (u) + {p, (v), we have

4.3
T = T,T,. (4:3)

For every w € Wy, , C Wpg,, T, is invertible in Hgi’q’@. (4.4)

Now we investigate the behavior of Hp, when changing the coefficient ring. This
is done as in the case of type A in Section 1.2. Let R be an integral domain and
let £ : R — R be a ring homomorphism. Then (R, £(g), £(Q)) is a coefficient triple
as in Definition 4.2.1. Furthermore, using &, R can be considered a left R-module.
This allows us to build the functor — ®p R.

Lemma 4.2.4 We have Hgi’q’Q) ®r R~ Hg,g(q),g(cg)) as R-algebras.

Proof. This proof is completely analogous to that of Lemma 1.2.7. B

Remark 4.2.5 Lemma 4.2.4 and its proof show that Hecke algebras of type B are

generic in the sense of Remark 1.2.9.

Next we generalize Definition 4.1.2 from Weyl groups to Hecke algebras. This
can be done because the maps considered there are length preserving, further be-
cause of the similar constructions of the Hecke algebras of types A and B in Sec-
tion 1.2 and Definition 4.2.3, and finally because of Remark 4.2.2.

Definition 4.2.6 (i) Let m € {1,...,n}. Then the assignments
Hffr;q_)l 5T, — Twm = Twm € Hfﬁ’iﬁl for we Wy, |
define by R-linear extension an injective algebra homomorphism

SH O S WO e T

(R,q)
A

oY into H(Ai"_])l. As an

This homomorphism is called the left inclusion of 'H

abbreviation, we write

m
— —



4.2. HECKE ALGEBRAS OF TYPE B 227

(i1) Let m € {1,...,n}. Then the assignments
H(Rq 3T, — ng =T m € Hff)l for we Wy |
define by R-linear extension an injective algebra homomorphism
P S HED D b

This homomorphism is called the right inclusion of Hfﬁl into Hfﬁf)l. As an

abbreviation, we write

m
- _ =

(iii) The assignments
H(fi’f)l >5T,+— 1T, € Hgi’q’Q) for we Wy |
define by R-linear extension an injective algebra homomorphism

MY — HE D HED 5 b hoe MY

—1

We identify the algebra HA ’ql with its image in Hjy Rq @) under this embedding.

Remark 4.2.7 (i) Lemma 1.2.7 and Lemma 4.2.4 together with their proofs

show that the embeddings from Definition 4.2.6 are generic in the sense of
Remark 1.2.9.

(ii) The embedding from Definition 4.2.6.(iii) also allows us to apply constructions
for Hecke algebras of type A from the preceding chapters to Hecke algebras of
type B. According to statement (i), generic constructions for Hecke algebras

of type A remain generic when considered in Hecke algebras of type B.

Lemma 4.2.8 Fiz an a € {1,...,n—1}. Then all the following statements hold
in H(AR %

(i) Let x € H, RQ) and y € HY

. Then we have in H(Alif)l

a—1

(i1) ( Ay (_> (H(AR’(’?H) C H(A}i’f)l is an R-subalgebra.

(i) We have
(R | (i P U

as R-algebras.
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(iv) Hﬁ"_])l is a free left (Hﬁ’fl_l - ) (Hfﬁ’fza) -module with basis
{Tg | g c D(n_aﬂ)} .
In other words, we have

R, Rq) = Raq) ™
M= @ () ()

gelD(nfu.,a)
the sum being direct over (H(A]i’f)a_l - ) (Hfﬁ’qiﬂ).

(v) Let
M C Hfﬁ’fi and N C Hfﬁ’flfl

be right ideals. Furthermore, let
{z;|i€eZI} M

be an R-basis of M with a certain index set Z. Finally, let
{y;ljeTYCN

be an R-basis of N with a certain index set J. Then the set
(tee i€ 21) (15 € TV ) {519 € Porma}

= {(=5) )7

c My

iEI,jEj, geD(n—a,a)}

1s an R-basis of the right ideal
(%) (V) it < e,

Proof. (i) This follows from the construction of the Hecke algebras of type A in
Section 1.2 — in particular formula (1.22) on page 34 — and Lemma 4.1.4.

(i) This follows easily from statement (i).

(iii) We see from the construction of the Hecke algebras of type A in Section 1.2
and Lemma 4.1.4.(ii) that (Ha,_,_,”) (Ha,_, ") is generated over R by the set

{To-|ueWa, ., }{To-|veEWs,_}
= {jiw—vﬁ |u c VVA (NS vvhu_1}
C Ha,

(4.5)

n—a—17
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Now Lemma 4.1.5.(iii) shows that the elements of this set are indexed by pairs
(u,v) with u € Wy
Hecke algebras of type A, this set also is linearly independent over R. Thus it is an
R-basis of the R-algebra (Ha,_,_,”) (Ha,_, ). Furthermore, Ha, , , ®r Ha,_,
has the R-basis

and v € Wy, . Again according to the construction of the

n—a—1

{Tu Qr T, | u € Wy NS WAa—l} . (46)

n—a—17

The elements of this set also are indexed by pairs (u,v) with u € Wy and

n—a—1
v € Wy, ,. The desired isomorphism now is obtained by identifying elements of
the bases (4.5) and (4.6) having the same index pair.

(iv) From the construction of the Hecke algebras of type A in Section 1.2, the

isomorphism (1.6) on page 2, Lemma 1.1.56, Lemma 4.1.4, and Lemma 4.1.5 we get

MHa,, = EP RL

xe Gn

B & rn.|7T,

geD(nfa,a) weG(n—a,a)

B b P rn-T.-)7,

gelD(n*ava) uEWAnfafl 'UGWAa71

= B RT.- B k-7,

geD(vz—a,a) uEWy ' UGWAa_l

n—a—1

- @ (Hapur™) (Hao ) Ty,

geD(n—a,a)

all occurring sums being direct over R. This proves the claim.

(v) From statements (i), (iii), and (iv) we get

(MT)Y(NT)Ha, = M)WV | B (Haan™) (Ha ) T,

geD(n—a,a)

= B (M) (Haru”) Har ) T,

gED(n—a,a)

= D () (VHa )T,

gED(nfa,a)

= D wHwr,

gE'D(nfa,a)

- @ (@) )((@~) )
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- D DDrE 7,

gGD(n a,a) i€ jEJ
all occurring sums being direct at least over R. This proves the claim. B

Now we record some identities in ‘H g, which will be useful later on. The following

statement makes use of Definition 4.1.1.

Lemma 4.2.9 (i) Leti e {1,...,n}. Then we have in ng,@

Tsi—l"'sll‘z—;fTSl"'Si—l = TSi—l"'SltSl"'Si—l'
(i) Leti,j € {1,...,n}. Then we have in ngq@)

TSi—l"'Sltsl"'Si—lTSj—l"'SltSl"'Sj—1 — TS]’—l"'51t51"'Sj—lTSi—l"'SltSl"'Si—l .

Proof. (i) See [DJ3, considerations after (3.1)].
(i) See [DJ3, considerations after Definition 3.2]. W

4.3 Bi-permutation modules for Hecke algebras

of type B

In this section we introduce a family of modules for Hecke algebras of type B
which is based on the permutation modules for Hecke algebras of type A from Def-
inition 1.3.1. This procedure is similar to the investigation of the representation
theory of Weyl groups of type B by means of the representation theory of Weyl
groups of type A (see, for example, [KER]). We keep the notation from the preced-
ing section, that is, n denotes a positive integer and (R, ¢, Q) denotes a coefficient
triple as in Definition 4.2.1.

First, we provide the elements of Hp, required for the construction of the mod-
ules. The following definition makes use of Definition 4.1.10, Definition 4.2.6.(iii),
and Lemma 4.2.9. The latter shows that the arrangement of the factors in the
products occurring in part (ii) is not important. This definition follows [DJ3, Defi-
nition 3.2 and Definition 3.8].

Deﬁnition 4.3.1 (z) Let a € {0,...,n}. Then we define the element han a
H H(RQQ

An—1

h(R7Q) — T

a,n—a Wa,n—a "

As an abbreviation, we write

h(qu)

an—a — ha,nfa .
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(ii) Let m € {O ...,n}. Then we define the elements u} (R, q,Q),u,,(R,q,Q) €

Hgiq Q)
SUXTIRY | (AR,
i=1
and

R q, Q = H Sl 1 S1ET81“-81—1)'
i=1

As an abbreviation, we write

ut (R, q,Q) = u,

and

U, (R, q,Q) = u,,.

(iii) Let a € {0,...,n}. Then we define the element v2*9 € Hgi’q’Q) as

a,n—a

R,
Vot = uf (R, Qi _o(R. 0, Q).
As an abbreviation, we write

(RqQ)

Van—a = VYan—a-

Remark 4.3.2 (i) From Remark 4.1.11 we see

(Rq) __ Rq
hOn =hyg = 1H<R,q,Q>.

(i) From Definition 4.5.1 and statement (i) we see
o =y (R0, Q) and 05" =ui(R,Q).

The next lemma makes use of Definition 4.2.6 and Remark 4.2.7.(ii). Statements
(v) and (vi) also are proved in [DJ3, Lemma 3.10].

Lemma 4.3.3 (i) Leta€{l,...,n} and z € Hiﬁ’fz. Then we have in H(Ai"_])l
<xi) hfﬁ;@a - hffj{@a (:cg> :

(ii) Leta €{0,...,n—1} andyGH,(ﬁq)

—a—1"

(yn ) hc(zlqu)a - ht(zlfmq a (yn;a) .

Then we have in Hg’f)l
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(i1i) Let m € {1,...,n} and x € Hiﬁf)r Then we have in Hfgi’q’Q)

(+%) (R0, Q) = i (R0, Q) (™)
and

(f‘E) u, (R, q,Q) =u,,(R,q,Q) (ﬁ) .

(iv) Letm €{0,...,n—1} and y € Hfﬁf)m @

. R,
_,- Then we have in H%nq

(v™") wn(R.0.Q) = (R0, Q) (v
and

(v (R 0. Q) = (R0, Q) (™)
(v) Leta € {1,...,n} cmdeHqu. Then we have mHRQQ)

(ﬁ) pBaQ) _  (Ra.Q) <x_’> ‘

a,n—a a,n—a

(vi) Let a € {0,...,n—1} and y € Hiﬁﬂ, . Then we have in Hp RqQ)

1

<yn;a) Uéi,g,((;?) _ U(gﬁ;%{?) (yn;a) .
Proof. Statements (i) and (ii) follow from [DJ3, (2.5) and (2.7)], formula (1.22)
on page 34, and Definition 4.2.6. Furthermore, statements (iii) and (iv) follow
from [DJ3, Proposition 3.4], the product representation (1.7) on page 2, and again

formula (1.22). Finally, statements (v) and (vi) follow from Definition 4.3.1 and
statements (i) to (iv). W

Now we employ the elements introduced in Definition 4.3.1.(iii) to construct a
useful series of right ideals in Hp,. The next theorem makes use of Definition 1.9.3
and Definition 4.2.6.(iii), it is derived from [DJ3, Theorem 3.17].

Theorem 4.3.4 If we put, in addition to Definition 4.3.1.(iii),
U(()If)q D =y = Lyrae (4.7)
then we have for arbitrary

a,be Ny with a+b<n

a short exact sequence of right ideals in Hy RQQ)

(R,q, Q)H (R.q,Q) _, (%%Q)HJ(BR,%Q)

(R,q,Q) 4 /(R,q,Q)
OHEBR,q,Q) - 'Ua b1 H

— Ua+1 b - OHSBR#LQ);

— Uﬁ’q’Q)Hg’q’Q) being the natural inclusion

(Rq Q)H(Rq @D, v(gif Q)Hgi’q’@ being induced by premul-

RqQ)

R,q,Q)n ,(R,q,Q
(hapgae

and the homomorphism v,

the homomorphism v

tiplication with a certain element of Hy
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Proof. In the case a + b > 0 we see from Definition 4.3.1, Definition 1.9.3, and
Definition 4.2.6.(iii)

uy € Hp,, hap € Hayyy € Ha, , € Hp,, u, € Hp,
and thus
Va,b € 7_(Bn-
According to (4.7), this also holds in the case a + b = 0. Similarly we get for
arbitrary values of a + b

Vapt+1 € Hp, and Vat+16 € Hp,.

This shows that the claim of the theorem is meaningful. The short exact sequence
and the particular forms of the homomorphisms occurring therein now follow from
[DJ3, Theorem 3.17 and its proof]. W

Remark 4.3.5 Definition 4.3.1, Remark 4.2.5, and [DJ3, proof of Theorem 3.17]
show that the short exact sequences from Theorem 4.5.4 are generic in the sense of
Remark 1.2.9.

Corollary 4.3.6 There is a series of right ideals in ng’q’@
— _ (Ra,Q)
OH(R’Q’Q) - MO g M1 g e g Mm—l g Mm - HBn (48)
B
with a certain m € N such that we have for every j € {1,...,m}

M;/M;_y ~ {09 Hgi’q’@ as Hg’q’Q)-modules

aj,n—a;
with an appropriate a; € {0,...,n}.

Proof. This follows from repeated applications of Theorem 4.3.4 with various values
of the parameters a and b occurring there. The starting point is @ = b = 0. Then

we have according to Theorem 4.3.4
voHp, = Hsp,

and

UO,OHBR/UO,IHBH ~ 'ULOHBn as HBn—modules.

From this we see that in the case n = 1 the series

04, € vo1HB, € vooHB, = Hp,
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has the desired properties. In the case n > 1 this series can be refined by applying
Theorem 4.3.4 to the quotients of adjacent right ideals occurring in it. Here, the
particular values of the parameters a and b involved always satisfy a +b = 1. If we
iterate this procedure until we reach the upper bound for a + b in Theorem 4.3.4

then we obtain a series of right ideals in Hp, with the desired properties. l

Remark 4.3.7 Remark 4.3.5 and the proof of Corollary 4.3.6 show that the series

of right ideals constructed in Corollary 4.5.6 is generic in the sense of Remark 1.2.9.

Next, we investigate the behavior of ideals in Hecke algebras of type A when
multiplying them up to ideals in Hecke algebras of type B with the elements intro-
duced in Definition 4.3.1. The following statement makes use of Definition 4.2.6.(iii)
and Definition 4.1.2.(iii).

Theorem 4.3.8 Choose ana € {0,...,n}. Then the following two statements hold
n H%R’Q’Q) .

(i) We have
(R7q7Q)H(R7q7Q) (R, Q)H (R.q)

a,n—a Bn an a Ap_1°

V,

(ii) The right ideal U(Rq <) Hjy Rq ) in H(R’q’Q) has the R-basis

{ fﬁf’?T weWa, . W},
Proof. (i) See [DJ3, Theorem 3.13].
(i) See [DJ3, Theorem 3.15]. W
The next corollary makes use of Definition 4.2.6 and Definition 1.1.58.

Corollary 4.3.9 Let a € {1,...,n—1}. With that, let M C Hfﬁ’fz and N C
H(A}i’(jL . be right ideals. Then the following statements hold.

(i) For the right Hg:’q’Q)—ideal a9 (Mi’> ( ) H(Rq 9 we have

a,n—a

f,iqff) (Mz> ( e > H(Rq@) vg{zzg?) (Mi> (N";a> H(A]if)l

(i) Let {z; | i € I} C M be an R-basis of M with a certain index set T and let
{y; 1 7€ T} € N be an R-basis of N with a certain index set J. Then the

set

1 (11 1) (1 1€ Y7 ) {510 € Do}

= L9 () ()

g H(BquvQ)

g Z.617‘76\7;gGIZD(n—a,a)}

is an R-basis of the right ideal van 2Q) (M") <Nn‘:a> Hgi’q’Q) in Hgi’q’@.
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Proof. (i) From Lemma 4.3.3.(v), Lemma 4.3.3.(vi), and Theorem 4.3.8.(i) we get

'Ua,nfa (M*)) (NH> HBn - (MH> (NH) 'Ua,nfaHBn
= (M7)(N7)van—-aHa, ,
= Vgn-a(M7)(NT)Ha, .

This shows the claim.
(ii) Theorem 4.3.8 shows that we obtain an R-basis for v, ,,—q (M 7)) (N7) Ha,
by premultiplication of an R-basis for (M~) (N“)Ha, , with v4,—,. Now the

claim follows from statement (i) and Lemma 4.2.8.(v). B

The next statement makes use of Definition 4.2.6.

Corollary 4.3.10 Let M C Hfﬁ‘_l)l be a right ideal. Then the following statements
hold in My .

(i) We have
véff;q’Q) ( M<ﬁ> Hg:q,cz) _ vgff;q’@ MHgi’q’Q)
= ol (M) M

= O

= véi’q’Q) <M£>
= U(()i’q’Q)M .
(ii) We have
ngo,q,cz) ( Mi> Hgi,q,cz) _ U%q,cz) MHgi,q,Q)

= ol (ar) H)

-
= Uﬁff)’q’Q) (Mﬁ))
= viﬁ)’q’Q)M .

Proof. (i) This follows from Definition 4.2.6.(i), Lemma 4.3.3.(vi), and Theo-
rem 4.3.8.(1).

(ii) This is obtained from Definition 4.2.6.(ii), Lemma 4.3.3.(v), and Theo-
rem 4.3.8.(1). W

The next corollary makes use of Definition 4.2.6.
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Corollary 4.3.11 Let M C Hgi’i])l be a right ideal. Furthermore, let {x; |i € T} C
M be an R-basis of M with a certain index set . Then the following statements
hold.

(i) The set
ot (i li e TV = o9 ({wi | i € TV)
= {59 (v") |ie T}
= {vRQQ) ZGI}
1s an R-basis of the right ideal v0n <M ) (RQQ = (RqQ)MH RQQ

contained in Hy Rq @

(i) The set
WD ({2 i € T})

e

z'eI}

U(RqQ ({xl|z€I} ) =

Z'EI}

v,
_ {quQ)
is an R-basis of the right ideal v( Q) <M )H(RqQ = vflpan MHSBR;’Q’Q)

contained in Hy Rq @

Proof. (i) From Definition 4.2.6.(1) we see that the sets occurring in the claim
are equal. Moreover, according to Theorem 4.3.8, we obtain an R-basis for vy, M
by premultiplication of an R-basis for M with v,. Now an application of Corol-
lary 4.3.10.(i) completes the proof of the claim.

(ii) The proof of this statement makes use of Definition 4.2.6.(ii) and Corol-
lary 4.3.10.(ii) and is otherwise completely analogous to the proof of statement (i).

Now we employ the algebra elements introduced in Definition 4.3.1 to de-
fine modules for Hecke algebras of type B in the form of right ideals. In addi-
tion, the next definition makes use of Definition 4.1.6.(i), Definition 4.2.6, and
Lemma 4.2.8.(i).

Definition 4.3.12 (i) Let a € {1,. — 1} and let (A, 1) be an a-bi-composi-

tion of n. Then the right ideal M((R “)Q in Hy Rq @ s defined as

) (R4Q) PO po "N\ o (RaQ)
MEqeq = vVan-a (M(R,q> )(M(R,q> )HBn

_ fReQ) (x& ) )(xLR,q) )H(RQQ.
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(i1) Let ((0), ) be a 0-bi-composition of n. Then the right ideal M (), )) inHp Rq @
15 defined as
() (Rq,Q)p ru
Mipgq) = You " Ming
_ U(()Iqu) <M“ )HRqQ

(R

T 1 B,

_ R (xm,q) )H Ra.Q)

H(R ,0,Q)

I

(iii) Let (X, (0)) be an m-bi-composition of n. Then the right ideal M;f}og) in
Hgi’q’Q) is defined as

n0) (RqQ) (R,q,Q)
MGSD) = o™ Mgy Hi:

R0 ( M(AR’q)_’) HFaQ)

_ vg%qQ HRqQ

_ R (x(f"” )Hg,q@)_

For an a-bi-composition (A, 1) of n with a € {0,.. n} the right ideal M )

(Rq Q) in
is called the bi-permutation module ofH associated to (A, ). As an
abbreviation, we write
M) ()
M(R%Q) = M™Y.
Remark 4.3.13 (i) Definition 4.3.1, Remark 1.5.7.(i), Remark 4.2.5, and Re-
mark 4.2.7 show that the bi-permutation modules of Hecke algebras of type B

introduced in Definition 4.3.12 are generic in the sense of Remark 1.2.9.

(i) In [DJM, Definition 4.19], using the notation from there, certain right ide-
als M* for Hg’q’Q) are defined. These right ideals are indexed by bi-partitions
of n and, at a superficial glance, are similar to the correspondingly indexed
bi-permutation modules from Definition 4.3.12. In fact, every right ideal M*
contains the bi-permutation module indexed by the same bi-partition, in gen-

eral as a strict subset.

Next, we derive generic bases of bi-permutation modules for Hecke algebras of
type B. The following statement makes use of Definition 4.1.6.(i), Definition 1.3.3,
and Definition 4.2.6.
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Theorem 4.3.14 (i) Leta € {1,...,n— 1} and let (\, ) be an a-bi-composition
of n. Then the set

Uéﬁg’?) (Bi\c{vistd(R> Q) ) (Bi‘c{wstd(R q ) {T |g € Dn aa)}

a n—a dGD)\,
e (rom) ") (o) )| sem

g e D(nfa,a)

C HRQQ
s an R-basis ofMRqQ)

(ii) Let ((0), ) be a 0-bi-composition of n. Then the set

Yo, nq Q)Bﬁ\gxsm(R, Q) = U(()}Zq @ <B£gxstd(Ra Q)£>
= {véﬁq’Q)xLR’Q)Tf ‘ fenD }
- e () [ren)
C HgiquQ)
1s an R-basis ofMRqQ)
(iii) Let (X, (0)) be an n-bi-composition of n. Then the set

row std row std

_ {U(Rq@ (Ra) )deDA}

= {Uffd%@ ((:::&R’Q)Td) ) ‘deDA}

g H(BI?‘LQ)

(RQQ)BM* (R, q) _ UT(L%%Q) (BM* (R, q)_’)

(X,(0))
1s an R-basis ofMR )

Proof. (i) The claim follows from Definition 4.3.12.(i), Theorem 1.3.2, Defini-
tion 1.3.3, and Corollary 4.3.9.(ii).

(ii) From Definition 4.2.6 we see that the sets occurring in the claim are equal.
The remainder of the claim now follows from Definition 4.3.12.(ii), Theorem 1.3.2,
Definition 1.3.3, and Corollary 4.3.11.(i).

(iii) From Definition 4.2.6 we see that the sets occurring in the claim are equal.
The remainder of the claim now follows from Definition 4.3.12.(iii), Theorem 1.3.2,
Definition 1.3.3, and Corollary 4.3.11.(ii). W
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Remark 4.3.15 From Definition 4.3.1, Remark 1.3.7.(ii), Remark 4.2.5, and Re-
mark 4.2.7 we see that the bases of bi-permutation modules of Hecke algebras of

type B from Theorem 4.3.14 are generic in the sense of Remark 1.2.9.

Finally, we record a special property of certain bi-permutation modules. The

next lemma makes use of Definition 1.1.64.

Lemma 4.3.16 In Hgi’q’@ we have

~ @@y (Ra,Q)q (Ra.Q)
(i) Va€{l,....,n =1} : Mz > = Vgpea Hpg ",

vy ((0)7w(n)) J— (R7 7Q) (R7 7Q)
(it) M(R,Q,Q) = Uo,nq HBnq )

@™ ,0) _  (R4,Q)7,(Rq,Q)
(iii) Mg ,.0) =V, H T

Proof. From Lemma 1.1.65.(ii) and Definition 1.3.1 we obtain
Vie{l,...,n}: Mo = Ha,,-
Now all claims follow from Definition 4.3.12. B

Remark 4.3.17 Lemma 4.3.16 shows that the quotients of adjacent right ideals in

the series (4.8) from Corollary 4.3.6 are in fact bi-permutation modules.

4.4 Bi-Specht modules for Hecke algebras of
type B

Here, we construct a family of modules for Hecke algebras of type B which is based
on the Specht modules for Hecke algebras of type A from Definition 1.3.10. This
procedure is completely analogous to the construction of the bi-permutation mod-
ules for Hecke algebras of type B in the preceding section. As always, n € N denotes
a positive integer and (R, ¢, )) denotes a coefficient triple as in Definition 4.2.1.

The following definition makes use of Definition 4.1.6.(ii), Definition 4.3.1.(iii),
Definition 4.2.6, and Lemma 4.2.8.(i).

Definition 4.4.1 (i) Leta € {1,...,n — 1} and let (A, ) be an a-bi-partition of

n. Then the right ideal S((I/\%,Z)Q) mn Hgi’q’Q) 1s defined as

A (R [ on & T (R,a4,Q)
S(Re@ = Van-a (S<R,q) )(5<R,q> )HBn

_ 0@ (Zg\R,q)_’) (ZLR,@ H') M),
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(i) Let ((0),p) be a 0-bi-partition of n. Then the right ideal ng],) in Hy RqQ
15 defined as

SO Ea@ge gyfaQ)

Rq@Q ~ Yom (R
_ U{gzti (Sﬁzq )H(RqQ

(RqQ)

n

_ fRe@ (Z(R,q) )HRqQ)

o

(iii) Let (X, (0)) be an n-bi-partition of n. Then the right ideal S&Eﬁg) in Hgi’q’@
1s defined as

A0 R4.Q R4.Q
S(ng) — UT(L,Oq )S()\R,q)H(Bnq )
_ Re ( S(>\R7q)—’) Q)
R, Ra,
_ Uioq Q)Z; )Hj(gnq Q)

_ UT(l{%O,q,Q) (Z/(\R,q)_’) Hj(Bfi,q,Q).

For an a-bi-partition (\,p) of n with a € {0,...,n}, the right ideal S((R“)Q in
Hy RqQ) 1s called the bi-Specht module of Hgi’q’Q) associated to (A, ). As an abbre-
matzon, we write

(M) (A1)
S(RqQ = S\,
Remark 4.4.2 (i) Definition 4.3.1, Remark 1.3.15.(i), Remark 4.2.5, and Re-
mark 4.2.7 show that the bi-Specht modules of Hecke algebras of type B from
Definition 4.4.1 are generic in the sense of Remark 1.2.9.

(ii) In [DJ3, Definition 5.2.(i)], using the notation from there, right ideals S™*
indexed by bi-partitions of n are defined under certain assumptions on the
coefficient triple (R, q, Q). If these right ideals exist then every one of them
physically coincides with the bi-Specht module from Definition 4.4.1 indexed

by the same bi-partition.

Now we derive generic bases of bi-Specht modules for Hecke algebras of type B.
The following statement makes use of Definition 4.1.6.(ii), Definition 4.3.1.(iii),
Definition 1.3.12, Definition 4.2.6, and Definition 1.1.60.
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Theorem 4.4.3 (i) Let a € {1,...,n— 1} and let (A, p) be an a-bi-partition of
n. Then the set

e (Bil(R, q)ﬁ) (Bi‘é(R q) ) {T.|¢€Dpann

a n;a f E S)\/a
= { a0 (( o1y) ) ((z,SR’”Tg) )TC g€ &,

cc D(n_a@)

g H(Bf’:”q7Q)

is an R-basis of S((;i:Z?Q)

(ii) Let ((0), ) be a 0-bi-partition of n. Then the set

v BPYOBI(R, ) = it ? (Biﬁ(R,q)h)

= {véliq@) 29T, gESM}
= {obie (o)) e e}
c Hyt?
1s an R-basis of S gz}‘é
(i1i) Let (X, (0)) be an n-bi-partition of n. Then the set
o YBLa(Rg) = vt <Bft§(R, Q)i>

_ {(Rq@) (R.a)p ’feé’x}

= {UT%Q’Q) (( ,(\Rq) Ty ) ’fEE)«}

g H(Raq’Q)

s an R-basis ofSRqQ

Proof. (i) The claim follows from Definition 4.4.1.(i), Theorem 1.3.11, Defini-
tion 1.3.12, and Corollary 4.3.9.(ii).

(ii) From Definition 4.2.6 we see that the sets occurring in the claim are equal.
The remainder of the claim now follows from Definition 4.4.1.(ii), Theorem 1.3.11,
Definition 1.3.12, and Corollary 4.3.11.(i).

(iii) From Definition 4.2.6 we see that the sets occurring in the claim are equal.

The remainder of the claim now follows from Definition 4.4.1.(iii), Theorem 1.3.11,
Definition 1.3.12, and Corollary 4.3.11.(ii). W
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Remark 4.4.4 From Definition 4.53.1, Remark 1.5.15.(ii), Remark 4.2.5, and Re-
mark 4.2.7 we see that the bases of bi-Specht modules of Hecke algebras of type B
from Theorem 4.4.3 are generic in the sense of Remark 1.2.9.

4.5 Bi-PK-modules for Hecke algebras of type B

In this section we introduce a family of modules for Hecke algebras of type B which
is based on the PK-modules for Hecke algebras of type A from Definition 3.4.1. This
procedure is completely analogous to the construction of the bi-permutation mod-
ules and the bi-Specht modules in the preceding sections. As before, n € N denotes
a positive integer and (R, ¢, Q)) denotes a coefficient triple as in Definition 4.2.1.

The next definition makes use of Definition 4.1.7, Definition 4.3.1.(iii), Defini-
tion 3.4.1, Definition 4.2.6, and Lemma 4.2.8.(i).

Definition 4.5.1 (i) Leta € {1,...,n — 1} and let (N \, u* ) be an a-bi-PK,-
pair. Then the right ideal S(/\ )‘Q’;#“) mn Hgi’q’Q) 1s defined as

WEAutn)  (RaQ) [ an#a #u =\ (R Q)
Sracy © = vimta (S(Rq) )(55&5 )H :

(ii) Let (00, u# 1) be a 0-bi-PK, -pair. Then the right ideal 5(00“ ” in Hgi’q’Q) is
defined as

S((%O,uz)u) _ UORqQ Su#u H(Rq Q)
7q7 n

_ oo ( Y rgoe,

(iii) Let (\*X,00) be an n-bi-PK,-pair. Then the right ideal S((]’\;:Z;)O) in Hgi’q’Q)
1s defined as

S(]A:;,\Qo)o) _ 1(1RoqQ S,\#AHRqQ

_ 7(LROqQ) (S()}i;\) )HRqQ)
w e right 1aea s definea as
v) The right ideal Sg o) in My *? is defined

00,00
S(R 4 Q)) = Opraa.

Here, OH(Rq @ denotes the null ideal in Hjy Rq @,
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For an a-bi-PK,-pair (\*X\, u#p) with a € {0,...,n}, the right ideal S((])% /\Q‘L#“)
m H R.aQ) s called an a-bi-PK,,-module or an a-bi-PK-module or just a bi-PK,-
module or a bi-PK-module. The right ideal S((g’)(’fg)) also is called a bi-PK-module.

As abbreviations, we write

WA p#p) _ aOFap#p) (00,00) __ (00,00)
S(RqQ) =9 nrR and S(Rg,Q) =5 )

Remark 4.5.2 Definition 4.53.1, Remark 3.4.2, Remark 4.2.5, and Remark 4.2.7
show that the bi-PK-modules of Hecke algebras of type B from Definition 4.5.1 are

generic in the sense of Remark 1.2.9.

Next, we derive generic bases of bi-PK-modules for Hecke algebras of type B.
The following statement makes use of Definition 4.1.7, Definition 4.3.1.(iii), Defini-
tion 3.6.3, Remark 3.2.2, Definition 4.2.6, and Definition 3.3.5.

Theorem 4.5.3 (i) Leta € {1,...,n— 1} and let (\*X, u# 1) be an a-bi-PK,-
pair. Then the set

C c ZA#)\
02 (™) (200na™ ) Ta| ezt § S
de D(nfa,a)

(AF X u# 1)
15 an R-basis ofSRqQ )

(ii) Let (00, u# 1) be a 0-bi-PK, -pair. Then the set

R, #
{U(()an)Z(U)(R qQ) a ”}
R, b #
{dir? (sae”) [ne 27}
C H RQQ)

1s an R-basis ofSOOM “).

(iii) Let (A*X,00) be an n-bi-PK,-pair. Then the set

{592 | ¢ € 22}
= {9 (2Qma”) [ € 22
g H(RQQ

(\# AOO
s an R-basis ofS .
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Proof. (i) The claim follows from Definition 4.5.1.(i), Theorem 3.10.1, and Corol-
lary 4.3.9.(ii).

(ii) From Definition 4.2.6 we see that the sets occurring in the claim are equal.
The remainder of the claim now follows from Definition 4.5.1.(ii), Theorem 3.10.1,
and Corollary 4.3.11.(i).

(iii) From Definition 4.2.6 we see that the sets occurring in the claim are equal.
The remainder of the claim now follows from Definition 4.5.1.(iii), Theorem 3.10.1,
and Corollary 4.3.11.(ii). W

Remark 4.5.4 Definition 4.3.1, Remark 3.10.3, Remark 4.2.5, and Remark 4.2.7
show that the bases of bi-PK-modules of Hecke algebras of type B from Theo-

rem 4.5.3 are generic in the sense of Remark 1.2.9.

Now we record some properties of the bi-PK-modules for Hecke algebras of
type B which will be required later. The next statement makes use of Defini-
tion 4.1.7, Remark 4.1.8, and Definition 4.3.12.

Lemma 4.5.5 Let a € {0,...,n} and let (N, p#u) be an a-bi-PK,-pair with
(AN, u# ) # (00,00). Then we have in Hf,f;q’@

(M7 1) (M)
S(R,q,Q) < M(R,%Q)'

Proof. This follows from Definition 4.5.1, Definition 4.3.12, and Lemma 3.4.4.(vi).
[

The following lemma uses Definition 4.1.7, Definition 3.2.1, Remark 4.1.8, Def-
inition 4.1.6, and Definition 4.4.1.

Lemma 4.5.6 (i) Leta e {l,...,n—1}, AF a, and p - n —a. Then we have
for the a-bi-PK,-pair (A, p)

(AX,pp) (M)
S(R,q,Q) S(R,q,Q) :

(i) Let pt=n. Then we have for the 0-bi-PK,-pair (00, pu)

(00,up) _ ((0),p)
S(R«LQ) - S(R,q,Q)'

(iii) Let A+ n. Then we have for the n-bi-PK,-pair (A, 00)

(AX,00) _ o(A,(0)
S(R,q,Q) o S(R7q7Q)'
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Proof. Everything is obtained from Definition 4.5.1, Lemma 3.4.4.(iii), and Defini-
tion 4.4.1. A

The next statement makes use of Definition 3.2.1, Remark 3.2.2, Definition 4.1.7,
Definition 4.3.12, and Definition 4.1.6.(i).

Lemma 4.5.7 The following statements hold in Hgi’q’@.

(i) Leta € {1,...,n—1}. With that, choose a A = (A1, Aa,...) E a having Ay > 0
and a p = (p1, p2, . ..) En —a with gy > 0. Then we have

OOMER 1)
Skaw = MEqeq):

(i1) Let = (uq, pra,...) En with uy > 0. Then we have

(00,(p1)p) 5 r((0),p)
S(R,q,Q) _M(Rq,Q)'

(1ii) Let X = (A1, Ag,...) En with \y > 0. Then we have

S — MG,

Proof. (i) The assumptions on A and p ensure that the PK,-pair (A1), the PK,,_,-
pair (p1)p, and the a-bi-PK,,-pair ((A)A, (1)) are all well defined. Furthermore,
we can use A and g to build the a-bi-composition (A, p). This shows that the
claim is meaningful. The desired identity now follows from Definition 4.5.1.(i),
Lemma 3.4.4.(ii), and Definition 4.3.12.(i).

(ii) The proof of this statement makes use of Definition 4.5.1.(ii) and Defini-
tion 4.3.12.(ii) and is otherwise completely analogous to the proof of statement (i).

(iii) The proof of this statement makes use of Definition 4.5.1.(iii) and Defini-
tion 4.3.12.(iii) and is otherwise completely analogous to the proof of statement (i).
[

4.6 Bi-PK-homomorphisms for Hecke algebras of
type B

Now we introduce and investigate generic homomorphisms between bi-PK-modules.
These homomorphisms are based on the PK-homomorphisms for Hecke algebras of
type A from Definition 3.5.3. As always, n € N denotes a positive integer and
(R, q,Q) denotes a coefficient triple as in Definition 4.2.1.

The following technical statement makes use of Definition 4.1.7, Definition 3.2.3,
Definition 1.2.3.(i), Definition 3.2.5.(ii), Definition 4.2.6, Remark 4.2.7.(ii), and Def-
inition 4.3.1.(iii).
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Lemma 4.6.1 (i) Let a € {1,...,n— 1}. With that, let (\*\, u# 11) be an a-bi-

PK,,-pair and let c € N\ {1} be an AR-index for \¥X. Then we have in the

algebra H (R.a.Q)

(Lg‘;{q)@ QICIVICN) ) vinld) (x&R’” )(wff“q“)
_ viﬁ’q’f)( (Ra)™ )(xga,qw) (ngq)((GARCGA)ﬂDARC) )

(ii) Leta € {1,...,n— 1}. With that, let (\*\, p# 1) be an a-bi-PK,-pair and let
c € N\ {1} be an AR-index for u*pu. Then we have in the algebra Hgi’q’Q)

n—a - 'ﬂ;ﬂ ]%7 R R n;a,
(LER@))(DM 1 N (6“}306#)) > Uc(b,nz(?) (xg\ q) " > (ILR,(]) )
R R, ﬁ) R ‘_ n—a ’n;a,
= fz,ﬂg) (I(A q) > ( LRq) ) (ERq))«GuRcGﬂ)mDuRc) )

(iii) Let (00, u# ) be a 0-bi-PK, -pair and let ¢ € N\ {1} be an AR-index for p¥ .

Then we have in the algebra Hj Rq @)

({00 P G001 s ()

R,q, R, < n &
= Q) (min) )(LER{q)«euRceu)mDMRC) )

(iv) Let (A\#¥X,00) be an n-bi-PK,-pair and let ¢ € N\ {1} be an AR-index for
N\, Then we have in Hpy RqQ)

n R R, -
(32002 P @) ) ffie (7
_ e <ng;ch> )( ) (S:r.63) N Dag,) )

Proof. All claims follow from Lemma 4.3.3.(v), Lemma 4.3.3.(vi), Lemma 3.5.1,
and Lemma 4.2.8.(i). W

The preceding statement and Definition 4.3.12 show that the next two definitions
are meaningful. In addition, these two definitions make use of Definition 4.1.7, Defi-
nition 3.2.3, Remark 4.1.8, Definition 4.3.1.(iii), Definition 4.2.6, Definition 1.2.3.(i),
and Definition 3.2.5.(ii).

Definition 4.6.2 Let a € {1,...,n — 1} and let (\* X\, u# i) be an a-bi-PK,,-pair.
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(i) Let c € N\ {1} be an AR-index for \X*\. Then the Hgfl’q’Q)—homomorphz’sm
) (ARe,p)
()\I/(A#/\ ) (R q, Q) R Q) M(R éL)

15 defined by

R, Ra)™ =N (e
U((znqc?) ( g\ ? ) (ZL‘;(LRH) )()\P(A#)\,u#u)(R7Qa Q)

= (@ NS ) i (o) (™)

= U((I{zl’q_’l?) (xg\gf) ) (xLR,Q) H) (Lgig),q)((G/\RcGA) ﬂ'D)\RC) )

Ra.Q) 1 ,
and H%nq 9 _linear extension.

(ii) Let ¢ € N\ {1} be an AR-index for u#p. Then the Hpy RqQ -homomorphism

\I/(C)

(N pu# 1)

) ()\ R/)
(R.q,Q) : M{ztly) = M{gh's

15 defined by
vz(ﬁ{z’c?) (xg\R ? a) (IEE‘R@)L‘I) \Ijgf\i&u#u)(R’ ¢Q)
= (@ ) ) it (o) (™)
- (07) (7)) (i e nmn )

R’ k) o o
and H%nq 9 linear extension.

(c)q/()\#/\##u)(R,q, Q) and \I/Eil/\,u#u)(R’q’ Q) are called a-bi-PK,-homomorphisms
or a-bi-PK-homomorphisms or just bi-PK,-homomorphisms or bi-PK-homomor-

phisms. As abbreviations, we write

(C)\P(A#A,u#u) (R, q, Q) - (C)\Il(k#)\,u#p,)

and
(<) (<)

Definition 4.6.3 (i) Let (00, u# 1) be a 0-bi-PK,-pair and let c € N\ {1} be an
AR-index for u*u. Then the Hj(gﬁ’q’@)—homomorphz'sm

(R q, Q) (0)7#) M(( ):uRe)

(©)
v (Ra,Q — "(Rg,Q)

(00,u# 1)
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1s defined by
12 (x,{&Rm‘ﬁ) 0O (R, Q)
- (LEZ?,@ A <6m6u>>1> o (xif’“”‘i)
= ol (50°) (S8 N D))

and H 14Q) Jinear extension. \IIEO)O u#u)(R’q’Q) 1s called a 0-bi-PK,-homo-

morphzsm or just a 0-bi-PK-homomorphism.
(ii) Let (\¥X,00) be an n-bi-PK,-pair and let ¢ € N\ {1} be an AR-index for
NN\, Then the Hy, Rq @) -homomorphism

o X, (0 AR, (0
( )\If(,\#)\po)(R, q, Q) : M((R,g,ég)) M((Rng )

is defined by
vp" <x&3,q>ﬂ) W (34200 (R, ¢, Q)
= ( (a0 <6ARC,6A>>£) 0 (x&R"”l)
= v%q@ (w&R 0" ) ( (Rq)((G)\R/G)\) ﬂD,\R/)n)

and Hy RqQ -linear extension. (C')\IJ(A#,\OO)(R, q,Q) is called an n-bi-PK,-ho-
momorphism or just an n-bi-PK-homomorphism.
\IIESO u#u)(R q,Q) and (Cl)\lf(,\#/\,oo)(R, q,Q) also are called bi-PK,-homomorphisms

or just bi-PK-homomorphisms. As abbreviations, we write

(c) c)
\11(00 ) (R q; Q) 00 W )
and
W 3,00 (R, ¢, Q) = W (xk 00)-

Remark 4.6.4 Remark 4.2.5, Remark 4.3.13, Definition 4.3.1, Definition 1.2.3,
and Remark 4.2.7 show that the bi-PK-homomorphisms for Hecke algebras of type B

from the preceding two definitions are generic in the sense of Remark 1.2.9.

The following two lemmata relate the bi-PK-homomorphisms for Hecke algebras
of type B from Definition 4.6.2 and Definition 4.6.3 to the PK-homomorphisms
for Hecke algebras of type A from Definition 3.5.3. They make use of Defini-
tion 4.1.7, Definition 4.3.1.(iii), Definition 4.2.6, Definition 4.3.12, Remark 4.1.8,
Definition 3.2.3, and Definition 3.2.5.(ii).
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Lemma 4.6.5 Leta € {1,...,n — 1} and let (\* X, u# 1) be an a-bi-PK,,-pair. Fur-
thermore choose x € M(’\R’q), Yy e M(R 0 and h € H RqQ and consider the element

29 () (7)o i
(i) Let c € N\ {1} be an AR-index for \X* \. Then we have in M((I)%Rcé;)
(w2 () (57) 1) O ionsm (o @)

Ra,Q R\ 7\ ([,
— v((wq_a) <<x\lff\#§)c> )(y )h

(ii) Let ¢ € N\ {1} be an AR-index for u*u. Then we have in M((}’;:Z%)’)

(o5 (%) (57 ) 1) 95k (Ro 0. Q)
- o9 () (( o ) ) X
an—a H##C .

Proof. This follows from Definition 4.6.2, Lemma 4.3.3.(v), Lemma 4.3.3.(vi),
Lemma 4.2.8.(i), and Definition 3.5.3. W

Lemma 4.6.6 (i) Let (00, u*u) be a 0-bi-PK,-pair. Furthermore choose x €

M(R 2 and h € H(R’Q’Q) and consider the element

(a7 ) e MEETE),

Finally let c € N\ {1} be an AR-index for u#*u. Then we have in M((}(gé“?c)

R, (R, R, -
(46559 (o) ) W (R0, = i ((s022) )

(ii) Let (A\*X,00) be an n-bi-PK,-pair. Furthermore choose x € MR and h €

(R,q)
Hy Rq 9 and consider the element

(Rq@) ( )h c M(;L(og)

Finally let c € N\ {1} be an AR-index for \X*\. Then we have in M(()‘R° ()))

<v£f07qu) (xH> h) (C)\Il(/\#)\,OO) (R7 q, Q) - U7(LPE)q @ ((95\11(;12)) > h.
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Proof. This follows easily from Definition 4.6.3, Lemma 4.3.3.(v), Lemma 4.3.3.(vi),
and Definition 3.5.3. W

Now we describe the effect of bi-PK-homomorphisms on bi-PK-modules. The
next statement makes use of Definition 4.1.7, Definition 3.2.3, Definition 4.3.12,
Remark 4.1.8, Definition 3.2.5, Definition 4.5.1, Lemma 4.5.5, and Definition 4.1.9.

Lemma 4.6.7 (i) Let a € {1,...,n — 1}. With that, let (\*\, u# 11) be an a-bi-
PK,,-pair and let c € N\ {1} be an AR-index for \¥ . Then we have in the
module M ((}’;zg;)

WXL u) Y (e _ AR u# ) _ oOFAuF )R
<S<R,q,c2> >()‘I’(A#Avu#u>(3>qv@—S(R,q,@ =Sre@)

(ii) Leta € {1,...,n —1}. With that, let (\* X\, p# 1) be an a-bi-PK,, -pair and let
c € N\ {1} be an AR-index for u#p. Then we have in the module M)

(R,q,Q)

(R,q,Q) (N, u ) R,q,Q) (R,q,Q)

(i) Let (00, u#p) be a 0-bi-PK,-pair and let ¢ € N\ {1} be an AR-index for ¥ p.
Then we have in the module M O#7)

(Rq,Q)
(S(OOM#H)> \I’(C

) _ (00,u#pRe) _ (00,u% ) R()
ra@ ) Yooy (B0 Q) = Sy~ =5 :

(R,q,Q)

(iv) Let (A\#*X,00) be an n-bi-PK,-pair and let ¢ € N\ {1} be an AR-index for

N X, Then we have in the module M((I)%Rc’(o))
0,Q)

(A#X2,00)\ (¢ _ a(VFARC,00)  (OFA,00)9R
(S(R,q,@ )“‘I’(A#%OO)(R"]’Q)—S<R,q,Q) =Ske0)

Proof. (i) We get from Lemma 4.5.5, Definition 4.5.1.(i), Lemma 4.6.5.(i), Lem-
ma 3.5.5.(iii), and Definition 4.1.9.(iii)

(S(A#A’N#M)> OWasrpty = (va,n—a (SA#A_) (5“#“(_> HBn) O rter utep)
= VYgn—a ((SA#)\\I])\#)\C>H> (S'u#!/_> HBn
= VUgn-—a (S)\#)\RCH> (SN#P’H) HB

—  GOVFARep#p)

GOFAL# )R

This shows the claim.
(ii) The proof of this statement uses Lemma 4.6.5.(ii) and Definition 4.1.9.(iv)

and is otherwise completely analogous to the proof of statement (i).
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(iii) The proof of this statement uses Definition 4.5.1.(ii), Lemma 4.6.6.(i), and
Definition 4.1.9.(iv) and is otherwise completely analogous to the proof of state-
ment (i).

(iv) The proof of this statement uses Definition 4.5.1.(iii) and Lemma 4.6.6.(ii)

and is otherwise completely analogous to the proof of statement (i). B

The following statement makes use of Definition 4.1.7, Definition 3.2.3, Defini-
tion 4.3.12, Remark 4.1.8, Definition 4.5.1, Lemma 4.5.5, and Definition 4.1.9.

Lemma 4.6.8 (i) Leta € {1,...,n — 1}. With that, let (\*\, u# 1) be an a-bi-
PK,-pair and let ¢ € N\ {1} be an AR-index for NX¥*\. Then we have in the
module M((; “)Q)

c Mk NNt ) (94
Ker (( )\D(/\#)MH##)<R’ 9 Q)JSJA};Aﬁ;u)) - S((R,q,é}; e
(R,q,Q)
1) Leta € , M — 1th that, let W) be an a-bi -pazran et
i) L 1,. 1}. With that, let (\# ) b bi-PK,,-pair and |
ce N\ {1} be an AR-index for p# . Then we have in the module M(R )Q)
(Asp)
(c MR q.0) _ WA u# Al
K <\Il(>\#)\ M#:U' (R q Q)ls(’\#’\vﬂ#ﬂ)) - S(RV‘LQ) ’
(R.q,Q)
(iii) Let (00, u# ) be a 0-bi-PK,-pair and let ¢ € N\ {1} be an AR-index for ¥ p.

Then we have in the module M(g)) "
4Q)

((0),)
(c) Migg@) | _ o(00,u#u)A©
Ker (\Ij(oo,u#u)(R’ q, Q)lsé?ﬁzﬁ)ﬂ)) = S(R,q,Q) )
3qs

(iv) Let (\*X,00) be an n-bi-PK,-pair and let ¢ € N\ {1} be an AR-index for
AN, Then we have in the module M (.(0)

(R,q,Q)
O) 4 ©
c (R,q,Q) (A7 X,00)(¢)A
Ker (( )\II(A#A,OO)<R7 q, Q)lsggiigo)) S(RqQ) ’
545
Proof. (i) For this proof, we put
C c ZA#)\ \ Z)\#Ac)\
#\.ut — —
@APTMTI = &0 (2(0)7) (2(n) ) T ne ZHn
de D(nfa,a)
and
C c ZA#AC)\
@B = & 0 (2(0)7) () ) Tu | e 207

de D(n—a,a)
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Obviously, (C)A(’\#)"“#“) and (C)B(A#)"“#“) are disjoint. Moreover, Theorem 4.5.3.(i)
shows that ((C)A(’\#’\’“#“)) U <(C)B(A#’\’“#“)) is an R-basis of SO*An#u),

Now we get from Lemma 4.6.5.(i)

(AR ) OB s
(e Z,\#,\ \ ZA#AC)\
- Van—a ((2(Q)Waiac) ") (2(n)7) Tu ne Z“#“,
de D(n—a,a)
vana ({2000 | ¢ € 292 2417
({z(n) ‘ n e Z“#“} > {Td |d e D(n_a,a)} )

From this, Corollary 3.10.4, Theorem 3.10.1, Corollary 4.3.9.(ii), Definition 4.5.1.(i),
and Lemma 4.6.7.(1) we see that the set ((C)A(A#’\’“#“)> (W (\#2 %, is an R-basis
of

\I/(A#/\w#u)

n

Va,n—a (SA#)\RC_)> (S“#“(_> Hp, = SOFARe, ) (S(A#&M#u)) (c)

and in particular linearly independent over R. Furthermore, we get from Lem-
ma 4.6.5.(i) and Corollary 3.7.1 for every van o (2(¢)7) (2(n) ") Ty € BN #1
with ¢ € 2\ 42 € 207 and d € Dpy_g)

(Van—a (2(0)7) GO ) T) D0saptn) = Van—a (2(0)Wrsrd) ™) (2(n) ) Ty
Ua,n—aO'HA (2(77)&) Td

S

Now we distinguish the cases \* A\ = 00 and A\* A\ # 00. First we consider
the case
AF A\ = 00.

On the one hand, according to Definition 3.3.5, we have in this case ZNAX = o

and thus (C)B()‘#’\’“#“) = . From this and the preceding considerations we obtain

c (A,p)
Ker (( )\I’(A#)\,u#u)lg{)\#:##M) = OHB-

On the other hand, according to Definition 4.1.9.(i) and Definition 4.5.1.(iv), we
have in this case (A\*\, u# 11)(9A = (00, 00) and thus

M u ) (DA
ST AT p) ="

All this proves the claim in the case A\* A\ = 00.
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Next we consider the case

M AN # 00.

On the one hand, we get from Lemma 3.3.6.(i) and Definition 1.1.58.(i) in this

NN

case (C)B( M £ @. This and the preceding considerations imply that the set

(C)B(A#A’”#“) is an R-basis of Ker <(C)W(A#A,u#u)lg{gi)ﬂ#u))' On the other hand,
we get from Definition 4.1.9.(1) and Theorem 4.5.3.(i) in this case that the set
(C)B(’\#’\W#“) is an R-basis of SO AFW @A A1) this also proves the claim in the case
NFAN £ 00.

(ii) The proof of this statement uses Lemma 4.6.5.(ii), Lemma 4.6.7.(ii), and
Definition 4.1.9.(ii) and is otherwise completely analogous to the proof of state-
ment (i).

(iii) The proof of this statement uses Theorem 4.5.3.(ii), Lemma 4.6.6.(i), Corol-
lary 4.3.11.(i), Definition 4.5.1.(ii), Lemma 4.6.7.(iii), and Definition 4.1.9.(ii) and
is otherwise completely analogous to the proof of statement (i).

(iv) The proof of this statement uses Theorem 4.5.3.(iii), Lemma 4.6.6.(ii),
Corollary 4.3.11.(ii), Definition 4.5.1.(iii), and Lemma 4.6.7.(iv) and is otherwise

completely analogous to the proof of statement (i). H

4.7 Construction of generic bi-Specht series for
Hecke algebras of type B and associated bi-

permutation modules and bi-PK-modules

Now we complete the derivation of the generic bi-Specht series for Hecke algebras
of type B. This procedure is analogous to the construction of generic Specht series
for Hecke algebras of type A in Section 3.11. First we give a formal definition of
bi-Specht series for modules of Hecke algebras of type B. Then we construct generic
bi-Specht series for bi-PK-modules and bi-permutation modules and finally also for
Hecke algebras of type B. As before, n € N denotes a positive integer and (R, ¢, Q)
denotes a coefficient triple as in Definition 4.2.1.
The next definition makes use of Definition 4.1.6.(ii) and Definition 4.4.1.

Definition 4.7.1 Let M be a right Hg’q’@—module. Then a series of submodules
OHB:MOQMlg"'ngflng:M

with an m € Ny s called a bi-Specht series for M if there are for every j €
{1,...,m} an a; € {0,...,n} and an a;-bi-partition (\, 1)) such that

M;/M;_y ~ S((I’\%’Z)g)) as Hg’q’@—modules
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holds. The number m is called the length of the bi-Specht series.

The following lemma makes use of Definition 4.1.7, Definition 3.2.1, and Defini-
tion 4.5.1.

Lemma 4.7.2 (i) Let a € {1,...,n—1}, A F a, p F n —a and consider the

a-bi-PK,-pair (AN, pp). Then the a-bi-PK,-module S((]’;)‘q”g)) has a bi-Specht

series.

(i1) Let = n and consider the 0-bi-PK,, -pair (00, uu). Then the 0-bi- PK,,-module

S((%O(’fgg has a bi-Specht series.

(iii) Let A+ n and consider the n-bi-PK, -pair (A, 00). Then the n-bi-PK,-module

S((]){\q’og)) has a bi-Specht series.

(iv) The bi-PK-module S((?%Oéog)) has a bi-Specht series.

Proof. (i) Lemma 4.5.6.(i) shows that S®##) has the bi-Specht series
0p, C S — g pu)

of length 1.
(ii) Lemma 4.5.6.(ii) shows that S(%#%) has the bi-Specht series

OHB - S((O)vﬂ) — S(OO,;J,N,)

of length 1.
(iii) Lemma 4.5.6.(iii) shows that S has the bi-Specht series

Onp C GA(0) — g(AX,00)

of length 1.
(iv) Obviously, S©*%) has the bi-Specht series

Oy, = 50000
of length 0. W

Remark 4.7.3 Remark 4.5.2 shows that the bi-Specht series from the proof of

Lemma 4.7.2 are generic in the sense of Remark 1.2.9.

The next theorem also makes use of Definition 4.1.7, Definition 3.2.1, and Defi-
nition 4.5.1.
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Theorem 4.7.4 (i) Let a € {1,...,n—1}. With that, let \*\ be a PK,-pair
satisfying \* X # 00, let i = n— a, and consider the a-bi-PK,-pair (\* X, jujt).

Then there is a bi-Specht series for the a-bi-PK,-module S gq’\Q”” .

(ii) Let a € {1,...,n — 1}. With that, let u#p be a PK, _,-pair satisfying p* p #
00, let X = a, and consider the a-bi-PK,-pair (A, u#pn). Then there is a
bi-Specht series for the a-bi-PK,-module S (A ”#

(iii) Let (00, u# ) be a 0-bi-PK,-pair. Then there is a bi-Specht series for the
0-bi-PK,,-module S{5y o).

(iv) Let (\*X,00) be an n-bi-PK,-pair. Then there is a bi-Specht series for the
n-bi-PK,,-module S((}’}:;)‘Cf)o).

Proof. (i) If we apply the construction of the binary tree (3.105) on page 216
described in the proof of Theorem 3.11.2 to the left entry A* X of the a-bi-PK,,-pair
(A# X, up), taking into account Definition 4.1.9, then we obtain a binary tree (that
is, every vertex in the tree has zero or two successors) whose vertices are labelled
with bi-PK-pairs and whose edges are labelled with operators (YA and ()R with
appropriate AR-indices ¢ € N\ {1}. More specifically, the root of the tree (that
is, the vertex without predecessor) is labelled (A#\, up), and if a vertex of the tree
has two successors then the label of this vertex is an a-bi-PK,-pair (v#v, uu), the
labels of the edges leading to its successors are (YA and (YR with an AR-index
c € N\ {1} for v#v, the label of the vertex at the other end of the edge labelled (/A
is (v#v, pu) @A, and the label of the vertex at the other end of the edge labelled
@R is (v#v, pu)@R. This part of the tree is displayed in the following picture.

(v, pupe)

O

(©4 (R (4.9)

(v*v, pp)9A Q O (v*v, pp) R

The further considerations in the proof of Theorem 3.11.2 show together with
Definition 4.1.9 that this binary tree contains only a finite number of vertices and
that the label of a leaf of this tree (that is, a vertex without successors) is either

(00,00) or an a-bi-PK,,-pair (kk, puu) with an appropriate x F a. Thus the complete
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binary tree has the form

(NN, upe)

()4 /O\(c> R

7N\ T
/N /N

(K@K, ) (RO RO, pup) (00,00) (K&, )

/N O/\O

(00,00) (kWrM ) (kW@ ) (kOKO), up)

(4.10)

with appropriate £V, ... k©® € II, (see Definition 1.1.2.(iii)) and possibly more
such partitions.

The claim is now proved by induction on the labels of the vertices of this tree
along the edges from the leaves to the root. The induction start is provided by
Lemma 4.7.2.(i) and Lemma 4.7.2.(iv) together with the above considerations con-
cerning the labelling of the leaves of the binary tree. For the induction step we
consider a vertex of the tree which is not a leaf. This vertex is then, as shown in
picture (4.9), labelled with an a-bi-PK,-pair (v#v, uu) and the labels of its suc-
cessors are (v*v, pu) @A and (v*v, up)®R with an AR-index ¢ € N\ {1} for v#v.
With this data we obtain from Lemma 4.6.7.(i) and Lemma 4.6.8.(i) the series

Op, C SWFrum©A  gwFvum) (4.11)

with
S(”#”’““)/S(”#”’““)(C>A o SEHFr Ry H p,-modules, (4.12)
the isomorphism being induced by the map W, 4, ., ﬁi;@’:)’w) . Now if the claim of

the theorem holds for (v#v, upu)©A and (v*v, uu)©R then we can use the bi-Specht
series for 07 @A and §@Frun) R and the isomorphism (4.12) to refine the
series (4.11) for S (#vum) to g bi-Specht series for S@*vmm), Proceeding inductively

# .
AT - as desired.

in this way, we finally obtain a bi-Specht series for S¢
(ii) The proof of this statement uses Definition 4.1.9.(ii), Definition 4.1.9.(iv),
Lemma 4.6.7.(i1), and Lemma 4.6.8.(ii) and is otherwise completely analogous to

the proof of statement (i).
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(iii) The proof of this statement uses Definition 4.1.9.(ii), Definition 4.1.9.(iv),
Lemma 4.7.2.(ii), Lemma 4.6.7.(iii), and Lemma 4.6.8.(iii) and is otherwise com-
pletely analogous to the proof of statement (i).

(iv) The proof of this statement uses Lemma 4.7.2.(iii), Lemma 4.6.7.(iv), and
Lemma 4.6.8.(iv) and is otherwise completely analogous to the proof of state-
ment (i). W

Remark 4.7.5 Remark 4.5.2, Remark 4.7.3, and Remark 4.6.4 show that the bi-
Specht series constructed in the proof of Theorem 4.7.4 are generic in the sense of
Remark 1.2.9.

The following statement makes use of Definition 4.1.7.(i) and Definition 4.5.1.(i).

Theorem 4.7.6 Let a € {1,...,n— 1} and let (\*\, u# ) be an a-bi-PK,-pair.

Then there is a bi-Specht series for the a-bi-PK,-module S((l)%i/\éﬁ;#u)

Proof. The proof of this theorem is similar to the proof of Theorem 4.7.4.(i).

First we construct, as in the proofs of Theorem 4.7.4.(i) and Theorem 3.11.2,
starting from (A#\, u# u) and making repeated use of Definition 4.1.9, a binary tree
with a finite number of vertices. The vertices of the tree are labelled with bi-PK-
pairs and the labels of the edges of the tree are operators (94, (OR, A and R
with appropriate AR-indices ¢ € N\ {1}. More specifically, the root of the tree (that
is, the vertex without predecessor) is labelled (A# X, u# 1), and if a vertex of the tree
has two successors then the label of this vertex is an a-bi-PK,-pair (k% k, v#v) and
the part of the binary tree consisting of this vertex, its two successors, and the

connecting edges has one of the following two forms.

(k# K, V7 V)

y O\Y (4.13)
A O Q (

(k*k, v7V)e K7k, V7 V)R

(k# K, V7 V)

y Q\Y (4.14)
O O

(k# K, v# ) Ale k¥, v#U)R()
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Here, ¢ € N\ {1} denotes an AR-index for the PK,-pair x#x and ¢ € N\ {1}
denotes an AR-index for the PK,,_,-pair v*v. Moreover, the leaves of the binary
tree are labelled with bi-PK-pairs to which none of the operators (94, R, A or
R with an appropriate AR-index ¢ € N\ {1} can be applied. In the situation at
hand, such a bi-PK-pair must be, according to Definition 4.1.9, Definition 3.2.5, and
Lemma 3.2.7.(iii), either (00,00) or of the form (kk,vv) with appropriate x € II,
and v € II,,_, (see Definition 1.1.2.(iii)).

The claim of the theorem is now proved by induction on the labels of the vertices
of this binary tree along the edges from the leaves to the root. The induction
start is provided by Lemma 4.7.2.(i) and Lemma 4.7.2.(iv) together with the above
considerations concerning the labelling of the leaves of the tree. The induction
step makes use of picture (4.13), picture (4.14), Lemma 4.6.7.(i), Lemma 4.6.7.(ii),
Lemma 4.6.8.(i), and Lemma 4.6.8.(ii) and is otherwise completely analogous to
the induction step in the proof of Theorem 4.7.4.(i). Proceeding inductively in this

way, we finally obtain a bi-Specht series for S (’\#’\7”#“), as desired. W

Remark 4.7.7 Remark 4.5.2, Remark 4.7.3, and Remark 4.6.4 show that be bi-
Specht series constructed in the proof of Theorem 4.7.6 are generic in the sense of
Remark 1.2.9.

From Lemma 4.7.2, Remark 4.7.3, Theorem 4.7.4, Remark 4.7.5, Theorem 4.7.6,
and Remark 4.7.7 we see that every bi-PK,-module for Hp, has a generic bi-Specht
series.

The next corollary makes use of Definition 4.3.12 and Definition 4.1.6.(i).

Corollary 4.7.8 (i) Let a € {1,...,n—1}, A = (A, Ag,...) F a with \y > 0,
and p = (1, p2, . ..) En—a with py > 0. Then there is a bi-Specht series for

the bi-permutation module M(%:g ’)Q).

(ii) Let p= (i, pi2, . ..) En with py > 0. Then there is a bi-Specht series for the

bi-permutation module M((z(%(?gjfctg))'

(11i) Let A = (A1, Aa,...) En with A\y > 0. Then there is a bi-Specht series for the

bi-permutation module (Ra.Q)"

Proof. (i) The assumptions A; > 0 and p; > 0 allow us, according to Defini-
tion 3.2.1, to build the PK,-pair (A1) and the PK, _,-pair ()p. According to
Definition 4.1.7.(i), these can be combined into the a-bi-PK,-pair ((A;)A, (u1)p).
Now the desired bi-Specht series for M*#) is obtained from Lemma 4.5.7.(i) and
Theorem 4.7.6.
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(ii) The proof of this statement uses Definition 4.1.7.(ii), Lemma 4.5.7.(ii), and
Theorem 4.7.4.(iii) and is otherwise completely analogous to the proof of state-
ment (i).

(iii) The proof of this statement uses Definition 4.1.7.(iii), Lemma 4.5.7.(iii),
and Theorem 4.7.4.(iv) and is otherwise completely analogous to the proof of state-
ment (i). W

Remark 4.7.9 Remark 4.7.5 and Remark 4.7.7 show that the bi-Specht series from
the proof of Corollary 4.7.8 are generic in the sense of Remark 1.2.9.

Corollary 4.7.10 There is a bi-Specht series for Hgi’q’Q).

Proof. This follows from Corollary 4.3.6, Lemma 4.3.16, Remark 4.3.17, and Corol-
lary 4.7.8. 1

Remark 4.7.11 Remark 4.3.7 and Remark 4.7.9 show that the bi-Specht series
from the proof of Corollary 4.7.10 is generic in the sense of Remark 1.2.9.

This completes the derivation of the generic bi-Specht series for Hecke algebras of

type B.

Remark 4.7.12 Using the definitions, constructions, statements, and results in
[PAL], this chapter carries over almost word for word from Hecke algebras of type B
to Hecke algebras of type D, thus also providing generic bi-Specht series for the

latter.
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Notation

The following notations are arranged in order of their first appearance.

Z

set {...,—2,—1,0,1,2,...} of all integers (see page 1)
set {1,2,3,...} of all positive integers (see page 1)

set {0,1,2,...} of all nonnegative integers (see page 1)
set {z/y |z € Z,y € Z\ {0}} of all rational numbers (see
page 1)

cardinality of a set (see page 1)

restriction of a map (see page 1)

symmetric group on {1,...,n} (see page 1)

neutral element of &,, (see page 1)

symmetric group on a set (see page 2)

Weyl group of type A,_1 (see page 2)

generating set of G,, consisting of transpositions of adja-

cent numbers (see page 2)

isomorphism from one algebraic structure to another (see
page 2)

length of w € W4, | (see page 2)

composition of m € Ny (see page 3)

partial sum of the entries of A F m (see page 3)

set {\ | A E m} of all compositions of m € Ny (see page 4)
partition of m € Ny (see page 4)

set {\ | A m} of all partitions of m € Ny (see page 4)

set I, = {A\F m | A e-regular} of all e-regular partitions

of m € Ny (see page 4)

265



266

A<
XVY
AL

XANY

A
hiig)

‘h?m
i)
‘Té,j)
AN\ 7
AUT

AN (4, )

AU (i, N + 1)

AT

pl

NOTATION

total ordering relation between elements of =,,, (see page 5)
OR of boolean values (see page 5)

partial ordering relation between elements of =,, (see
page 5)

AND of boolean values (see page 5)

diagram of A F m (see page 5)

direct product of sets (see page 5)

transposition map on N x N (see page 7);

also denotes the transposition map on II,, (see page 8)
identity map on a set (see page 7)

transpose of [\] with A = m (see page 7)

transpose of A - m (see page 8)

(7, 7)-hook in A = m (see page 9)

hook length of hf\i,j) (see page 9)

(1, 7)-rim hook in A - m (see page 9)

rim hook length of Tz\m.) (see page 9)

A m without a rim hook (see page 9)

A F m together with a rim hook (see page 10)

A m without a lattice point (see page 10)

A m together with a lattice point (see page 10)

set of partitions obtained from A\ F k € Ny by adding a

lattice point in every possible way (see page 10)

set of partitions obtained from p F k € N by removing a

lattice point in every possible way (see page 10)

set {\F k| k€ Nyand X is an e-core} of all e-cores (see
page 17)

e-core of \ - k (see page 18)
e-weight of A F & (see page 18)
set of the e-cores of all partitions of k € Ny (see page 18)

set of all partitions of k € Ny having a given e-core pu (see

page 18)
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set of all é-regular partitions of £ € Ny having a given
e-core v (see page 19)

x divides y for integers or polynomials (see page 19)
entry in a tableau (see page 20)

row number of an entry in a tableau (see page 20)
column number of an entry in a tableau (see page 20)

set {t: [A\] = {1,...,n} |t bijective} of all A-tableaux
(see page 21)

set {t eT? ‘ t row standard} of all row standard A-tab-
leaux (see page 21)

set {t eT? ‘ t standard} of all standard A-tableaux (see
page 21)

set of all tableaux of compositions of n € N (see page 21)

set of all row standard tableaux of compositions of n € N

(see page 21)

transpose of a tableau (see page 23)

row stabilizer of a tableau (see page 24)
column stabilizer of a tableau (see page 24)
direct product of groups (see page 24)

A-tableau whose entries are arranged in ascending order
by rows from top to bottom and within the rows from left

to right (see page 25)
Young subgroup of &,, associated with A\ F n (see page 25)

set of the shortest representatives associated with A F n

(see page 26)

shortest representative of w € &,, associated with A F n

(see page 27)

set of the standard representatives associated with A E n

(see page 27)

partition (1) (see page 28)
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ty

W

()¢

NOTATION

A-tableau whose entries are arranged in ascending order by
columns from left to right and within the columns from

top to bottom (see page 28)

permutation mapping #* to t, (see page 29)
entry of a row number list (see page 30)
set of all \-row number lists (see page 30)
empty set (see page 31)

map assigning to a row standard A-tableau its A-row num-
ber list (see page 31)

row number list of a tableau (see page 31)
row standard tableau of a row number list (see page 31)

map assigning to a A-row number list its row standard
A-tableau (see page 31)

additive neutral element of a ring (see page 33)
multiplicative neutral element of a ring (see page 33)
g-number associated to a coefficient pair (see page 33)
g-characteristic of a coefficient pair (see page 33)

Hecke algebra of type A,_; over the coefficient pair (R, q)
(see page 34)

defining basis element of a Hecke algebra of type A indexed
by an element of the underlying Weyl group (see page 34);
also denotes a defining basis element of a Hecke algebra
of type B indexed by an element of the underlying Weyl
group (see page 226)

“unsigned” sum ) . T, over some defining basis ele-

ments in a Hecke algebra of type A (see page 34)

“signed” sum Y, ¢ (—q)"““)T, over some defining basis

elements in a Hecke algebra of type A (see page 35)

image of h € H,(ai’(_l)l under the anti-involution induced by

inversion on &,, (see page 35)

set of all R-homomorphisms from one R-module to an-

other (see page 35)
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MoN
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dual module of an H(A}i’i})l -module (see page 35)
tensor product over R of two R-modules (see page 35)

isomorphism relation between algebraic structures (see

page 36)
direct sum of two modules (see page 36)
“unsigned” sum LE%)’(])(G ) € Hg’f’)l (see page 37)

permutation module of Hfﬁ’f)l associated to A F n (see

page 38)
row standard basis {xE\R’q)Td ‘ de D,\} of M(’\R’q) (see
page 38)

symmetric bilinear form on M ()‘R7 " (see page 39)

“signed” sum 5%2 (61 € Hfﬁ’f)l (see page 40)

generator of S(’\R7 ;) (see page 40)

Specht module of Hfﬁ’f)l associated to A - n (see page 40)
) R,

standard basis {zi q)Tf ‘ fe 5,\/} of S(’\Rm (see page 41)

symmetric bilinear form on S()\R, ;) (see page 42)

R-homomorphism from S(AR g tO (S()\R, q)> induced by
'y()‘R’ ;) (see page 42)
radical of 7()\1%, 2 (see page 42)

irreducible H;Kn’fi—module associated to A € II,, ¢ (r) (see

page 43)
isomorphism class of an Hfﬁ’f)l -module (see page 44)

set of the isomorphism classes of H(Ai’f)l -modules (see
page 44)

R7
W

Grothendieck group of H ™ (see page 44)

(Kr)

isomorphism from Go(H,, ") to Go(Hgfl)) with semisim-

ple Hecke algebras (see page 46)
discrete valuation ring of a discrete additive valuation (see
page 46)

valuation ideal of a discrete additive valuation (see

page 46)
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n,KC
dAM

H
An,lC

NOTATION

natural projection from a discrete valuation ring S, onto
its residue class field Sy /I, (see page 47);

also denotes the reduction map from an Hﬁﬂ—module M
to its reduction M (see page 49);

furthermore denotes the reduction map from KO(HESQ(?I)
to KO(HXE)l) (see page 62)

inclusion map (see page 48)

rank of a free module over a ring (see page 49)
dimension of a vector space over a field (see page 49)
reduction of an Hfi‘i)l—module (see page 49)

decomposition map for Hecke algebras of type A associ-
ated with the degree n and the modular system /C (see
page 50)

decomposition number for Hecke algebras of type A asso-
ciated with the degree n and the modular system K (see

page 50)

decomposition matrix for Hecke algebras of type A asso-
ciated with the degree n and the modular system IC (see

page 50)

Q-rank of a decomposition matrix for Hecke algebras of

type A (see page 52)

polynomial ring over the coefficient ring R in the indeter-

minate X (see page 53)

rational function field over the coefficient field K in the

indeterminate X (see page 54)
x doesn’t divide y for integers or polynomials (see page 54)

discrete additive valuation on a rational function field as-

sociated to an irreducible polynomial f (see page 54)
localization of a ring at an ideal (see page 54)

modular system associated to a field K and a unit r € K

(see page 55)

completion of a valuated field (see page 55)



NOTATION

~

(&

~

K (k)
PH)

R7
Ko(HY™)

ﬁt

sl

Flpa)

)

m
Pls.a)

7735<F,a)

n?
H
Cn,IC

CZ:IC()" M)
- ®sQ

Bl
BZ:IC()U /J“)

In.(Qua)
Inra

MT
Z(HGD)
C) (S7 CL)

271

continuous extension of a valuation 1 to the completion
K of the underlying valuated field K (see page 55)

complete modular system associated to a field K and a
unit r € K (see page 56)

set of the isomorphism classes of projective Hﬁi’ﬂ—modules

(see page 58)
projective class group of H(A]i’f)l (see page 59)

indecomposable projective cover of D? Fa) with

p € I, e (a) (see page 59)

projective indecomposable H(i’a_)l—module associated to

p € 11, ca) (see page 60)

inclusion of the category of projective H(Ai?l -modules into

the category of all H Ai’f)l—modules (see page 61)

Cartan map for Hecke algebras of type A associated with
the degree n and the modular system /C (see page 61)

Cartan matrix for Hecke algebras of type A associated

with the degree n and the modular system K (see page 61)

entry of CZ:,C (see page 61)

extension of coefficients from KO(H(AST:T)I) to GO(H(A%fi)

(see page 62)
Brauer map for Hecke algebras of type A associated with

the degree n and the modular system /C (see page 63)
matrix representing B}Y (see page 63)

entry of BJf (see page 63)

bilinear form of intertwining numbers on Go(Hfﬁ’fi) X

Go(Hgn’fi) (see page 64)

bilinear form of intertwining numbers on KO(HSQ?

Go(H{.")) (see page 64)

) X

transpose of a matrix (see page 65)

center of Hfﬁ’f) (see page 66)

1

element of an S-basis of Z (Hﬁi)l) indexed by a A - n (see
page 66)
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Idemp (HAn 1 )
i R,
BI(d?eal(Hféln?)l)
BI((at (HAn 1 )

Dmp (HL4 )
Bl (HY")
Blt ()
Br(HY)
B(n)
Ger(ay(B*(n))
PrOJ (HAn 1)

A#,IC(”)

. H;R’Q)
iy

NOTATION

block idempotent of H&if
ber (see page 70)

)1 indexed by an arbitrary num-

block ideal of Hiﬁ’fi indexed by an arbitrary number (see

page 70)

block category of Hfﬁ’f)l indexed by an arbitrary number
(see page 70)

block idempotent of Hfﬁ’f)l indexed by a core (see page 73)

block ideal of Hfﬁf)l indexed by a core (see page 73)

block category of Hfﬁf)l indexed by a core (see page 73)

p-block of Hfﬁf)l (see page 73)

p-block of Hfﬁf)l (see page 74)

er(a)-weight of B*(n) (see page 74)

block projection on Gg(Hﬁi’f)l) (see page 75);

also denotes the block projection on KO(HELx}ff)l) (see
page 75)
v-block of A, (see page 78)
partition (m — 1,1) (see page 81)

standard inclusion of H(Ai’g into H(A}i’f)l (see page 82)

H(R Q) -module induced from an Hﬁ‘_ll—module (see

page 82)

induction homomorphism from Go(Hffi’g) to Gg(Hiﬁ’f)l)

(see page 83);
also denotes the induction homomorphism from
Ko(H RQ)) to Ko (HA ) (see page 83)

constant used in the derivation of an upper bound for
decomposition numbers of Hecke algebras of type A (see

page 91)

constant used in the derivation of an upper bound for
decomposition numbers of Hecke algebras of type A (see

page 91)
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constant used in the derivation of an upper bound for
decomposition numbers of Hecke algebras of type A (see

page 91)

constant used in the derivation of an upper bound for
decomposition numbers of Hecke algebras of type A (see
page 91)

ideal in a discrete valuation ring used in the construction

of Jantzen filtrations for Specht modules (see page 94)

Hffyf)l—submodule of S5,y used in the construction of the

Jantzen filtration for S(’\F@) (see page 94)
term in the Jantzen filtration of S()‘Fﬁ) (see page 95)

coefficient used in the calculation of decomposition num-
bers for Hecke algebras of type A with the Theorem of
Schaper (see page 98)

coefficient used in the calculation of decomposition num-
bers for Hecke algebras of type A with the Theorem of
Schaper (see page 98)

angle notation for a partition in a block of weight 3 (see
page 103)
angle notation for a partition in a block of weight 3 (see
page 103)
angle notation for a partition in a block of weight 3 (see
page 103)
angle notation for a partition in a block of weight 3 (see
page 103)
angle notation for a partition in a block of weight 3 (see
page 104)
angle notation for a partition in a block of weight 3 (see

page 104)

constant used in the derivation of an upper bound for
decomposition numbers of Hecke algebras of type A (see

page 105)

particular abacus for the partition (0) (see page 106)
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trfu
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Ju#p

NOTATION

additive order of 1 in a field K (see page 112)
composition associated to a tableau (see page 122)
diagram associated to a tableau (see page 122)
target restriction of a tableau (see page 122)

total ordering relation between elements of 7.-" .. (see

page 124)

partial ordering relation between elements of 72" . (see

page 124)

partial ordering relation between elements of 72 . with
a A\ FEn (see page 124)

weak Bruhat ordering between elements of G,, (see
page 130)

set of general reflections in &,, (see page 130)

(strong) Bruhat ordering between elements of &, (see

page 131)

total ordering relation between elements of D, with a A F

n (see page 132)
PK,,-pair (see page 133)
special PK,,-pair (see page 133)

image of the partition p# from the PK,-pair p#p under
the operator A. (see page 135)

image of the composition y from the PK,,-pair p# p under
the operator R, (see page 135)

image of the PK,-pair u#u under the operator R, (see
page 135)
image of the PK,-pair p#u under the operator A, (see
page 135)

pu-tableau whose entries are arranged in ascending order

first by columns within [p#] and then by rows within
[u] \ [1#] (see page 138)
permutation mapping t* to t+"# (see page 138)

permutation mapping t*"* to t, (see page 139)
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source restriction of a tableau (see page 139)

entry in the source restriction of a tableau (see page 139)
subgroup of G,, permuting only the entries in each column

of t“#““’:} #] amongst themselves (see page 141)

subgroup of &,, permuting only the entries in each column

of tul[[’;}#] amongst themselves (see page 141)

direct factor of U,#, (see page 142)

number of lattice points in the i-th column of a composi-
tion (see page 143)

number of lattice points in the first k£ columns of a com-
position (see page 143)

direct factor of Vu»(i)u (see page 143)

subset of &,, permuting only the entries in the c-th row
of t# such that the images of the left p, — pu# entries and

those of the the right 7 entries respectively are arranged

in ascending order from left to right (see page 151)

element of I,#,, moving the left p# entries in the c-th row
of t# to the right end of that row and the right p. — p#
entries to the left end (see page 157)

A-tableau associated to ¢ € Z* via good and bad entries

(see page 163)

partially filled diagram of a composition used in the con-
struction of ¢(¢) (see page 163)

number of good entries in the j-th row of t({) (see
page 164)

partition associated to ¢ € Z* via good and bad entries

(see page 164)

permutation associated to ¢ € Z* via good and bad entries

(see page 164)
set of all ¢ € Z* satisfying [u#] C [v(Q)] (see page 167)

empty set — this is a special case of Z+"© (see page 167)
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ju#uc(g)
T # e
Y(¢)

u#
S(R,q)
00
S(R.a)

(R.q)
p# pe

Z(C)(R,q)

uw#p
BgNL (Rv Q)
Whg
Cy

n

(g, (w)

I3

I3

WAnf 1 WBn

(A, 1)

(NN, 1 p0)

(00, p# )
(A# X, 00)

NOTATION

image of ¢ € ZH'r \ Zr Ak ynder Jy# e (see page 171)
bijection from Z#7n\ Zr¥ A to ZWRe (see page 171)
ZNL-subgroup of &, with ( € Z* for certain A F n (see
page 173)

PK,-module of Hfﬁ’f)l associated to the PK,,-pair pu# 1 (see
page 182)

null ideal in Hfﬁf)l — this is a special case of S(; ;; . (see
page 182)

PK,,-homomorphism associated to a PK,,-pair and an AR-
index for it (see page 189)

ZNL-element in M(’\R,q) associated to ¢ € Z* for certain
A E n (see page 193)

ZNL-basis of Sgg‘) for p# 1 # 00 (see page 210)

Weyl group of type B, (see page 220)

cyclic group of order 2 (see page 220)

wreath product of groups (see page 220)

length of w € Wp, (see page 220)

left inclusion of Wy, , into Wy, , (see page 221);
also denotes the left inclusion of Hiﬁ;q_)l into H(ﬁ’f)l (see

page 226)

into Wy, , (see page 221);
into Hfﬁf)l (see

right inclusion of Wy

m—1

also denotes the right inclusion of Hffiﬁ)
page 227)

1

inclusion of Wy, , into Wp, through identification of sim-

ple reflections (see page 221)

a-bi-composition of n with A F a and p F n — a (see
page 222);

also denotes an a-bi-partition of n with A\ - a and pu -n—a
(see page 223)

a-bi-PK,,-pair with a PK,-pair A*\ and a PK,,_,-pair /L#u
(see page 223)

0-bi-PK,,-pair with a PK,-pair u#u (see page 223)
n-bi-PK,,-pair with a PK,,-pair A¥\ (see page 223)
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(00, 00)
(A, u# 1) A
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(A#N, u# ) R

Wa,n—a

H(quvQ)
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ut (R, q,Q)
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special bi-PK-pair (see page 223)

image of the bi-PK,,-pair (A\# X, u# 1) with A¥ X\ # 00 under
the operator (94 (see page 224)

image of the bi-PK,,-pair (A\# X\, u# 1) with u# u # 00 under
the operator A (see page 224)

image of the bi-PK,,-pair (A\# X, u# 1) with A# X # 00 under
the operator R (see page 224)

image of the bi-PK,,-pair (A\#\, u# u1) with pu# p # 00 under
the operator R (see page 224)

a times shift permutation in &,, (see page 224)

Hecke algebra of type B,, over the coefficient triple
(R, q,Q) (see page 226)

inclusion of Hfﬁf)l into Hﬁ’q’@ through identification of
defining basis elements (see page 227)

a times shift permutation in H;R’q) (see page 230)

“unsigned” sum over the base group of Wp, in Hj RqQ)

(see page 231)

Q) (

[ ” : (R,q
signed” sum over the base group of Wg, in Hj see

page 231)

“partially signed” sum over the base group of Wp in
H(RqQ (see page 231)

additive neutral element of H (F..Q)

(R,q,Q)

a,n—a

— this is a special case
of v (see page 232)

Q)

bi-permutation module of H 1149) associated to the a-bi-

composition (A, p) with a € {1 ...,n — 1} (see page 236)

bi-permutation module of HB R.4Q) associated to the 0-bi-
composition ((0), 1) (see page 237)

R,q,Q)

bi-permutation module of H} B, associated to the n-bi-

composition (A, (0)) (see page 237)

bi-Specht module of Hgi’q’Q) associated to the a-bi-parti-
tion (A, u) with a € {1,...,n — 1} (see page 239)

bi-Specht module of HSQ"’Q’ associated to the 0-bi-parti-
tion ((0), 1) (see page 240)
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(A,(0)
S (R,q,Q)

(AN )
S(R 4,Q)

(00,17 1)
S(ra.Q)

(A X,00)
S(ra0)

(00,00)
S(ra.)

(C)\I](A#)\,u#u) (R7 q, Q)

ULy o (B2 0, Q)

!

W 0,000 (R, ¢, Q)

0

NOTATION

bi-Specht module of Hj; RQQ associated to the n-bi-parti-
tion (A, (0)) (see page 240)

a-bi-PK,,-module of Hgi’q’Q) associated to the a-bi-PK,-
pair (A\* X\, u# u) with a € {0, ...
0-bi-PK,,-module of Hgi’q’Q) associated to the 0-bi-PK,,-
pair (00, u# 1) (see page 242)

n-bi-PK,,-module of Hgiqg)
pair (A# )\, 00) (see page 242)

,n} (see page 242)

associated to the n-bi-PK,,-

null ideal in H(Rq Q) this is a special case of S&Té‘;#m

(see page 242)

a-bi-PK,,-homomorphism associated to the a-bi-PK,-pair
(A#X, u#p) with @ € {1,...,n— 1} and the AR-index ¢
for A*\ (see page 247)

a-bi-PK,,-homomorphism associated to the a-bi-PK,-pair
(A#X, u#p) with a € {1,...,n — 1} and the AR-index ¢
for u# u (see page 247)

0-bi-PK,,-homomorphism associated to the 0-bi-PK,-pair
(00, ) and the AR-index ¢ for u#u (see page 248)

n-bi-PK,,-homomorphism associated to the n-bi-PK,,-pair
(A#),00) and the AR-index ¢ for A¥\ (see page 248)
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abacus

for a (3-sequence

for a partition
angle notation for partitions in
blocks of weight 3

anti-involution on a Hecke alge-

bra of type A
application of the Theorem
of Schaper
AR-~index for a PK-pair

bad entry
of a diagram

of a row number list ........

basis

of a bi-permutation mod-

of a bi-PK-module
of a bi-Specht module

of the center of a Hecke alge-
bra of type A

bead on an abacus ...............
belonging

of a partition to a block ......
of an H 4-module to a block ..
of an H 4-module to a block
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