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Zusammenfassung

In dieser Arbeit präsentiere ich experimentelle Ergebnisse über die Streueigenschaf-
ten von ultrakalten Chromatomen. Diese Resultate stellen einen wichtigen Schritt
in Richtung eines Bose-Einstein-Kondensats (BEC) mit Chromatomen dar.

Die erstmalige Realisierung eines Bose-Einstein-Kondensats in verdünnten atomaren
Gasen im Jahr 1995 [1, 2, 3] hat eine faszinierende Forschungsrichtung eröffnet: das
Studium makroskopischer Quantenzustände als eine neue Form der Materie. Eine
immer weiter wachsende Zahl an theoretischen und experimentellen Arbeiten wurden
seitdem veröffentlicht. Weltweit arbeiten ca. 40 experimentelle Gruppen auf diesem
Gebiet, die meisten mit BECs der Alkaliatome Rubidium, Natrium und Lithium.
2001 haben Eric Cornell, Wolfgang Ketterle und Carl Wieman den Nobelpreis in
Physik für ihre Leistungen auf diesem Gebiet erhalten [4].

Viele der faszinierenden Eigenschaften von Bose-Einstein-Kondensaten entsprin-
gen dem Zusammenspiel von Quantenstatistik und der Wechselwirkung zwischen
den Atomen. In allen bislang erzeugten BECs ist dies die isotrope Kontaktwech-
selwirkung, welche durch s-Wellen Stöße vermittelt wird. Sie hat zu interessan-
ten Effekten, wie akustischen Wellen und Phononen [5, 6, 7] und der Realisierung
von Spinor-Kondensaten [8, 9] geführt. Bose-Einstein-Kondensate sind zudem Su-
praflüssigkeiten [10, 11, 12], in denen quantisierte Wirbel nachgewiesen werden konn-
ten [13, 14, 15, 16].

Kondensate können im Rahmen einer nichtlinearen Schrödingergleichung beschrie-
ben werden, wobei die Nichtlinearität durch die Wechselwirkung hervorgerufen wird.
Eine vergleichbare Gleichung beschreibt die Propagation von Licht in einem nicht-
linearen Medium. Daher konnten in BECs bekannte Phänomene der nichtlinearen
Optik, wie die Vierwellenmischung [17] und die Erzeugung von hellen und dunklen
Solitonen [18, 19, 20, 21, 22] beobachtet werden.

Die Stärke der Wechselwirkung in einem Bose-Kondensat ist nicht notwendiger-
weise festgelegt. In besonderen Fällen können die s-Wellen Streueigenschaften mit
Hilfe von Feshbach-Resonanzen durch Anlegen externer Magnetfelder verändert wer-
den [23]. Dies führt zu so dramatischen Effekten, wie der sogenannten “Bosenova”
[24, 25]. Wie wir schon an diesen wenigen Beispielen sehen können, tragen Wechsel-
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wirkungen massgeblich zur Vielfalt der beobachteten Phänomene in Bose-Einstein-
Kondensaten bei.

In den letzten Jahren hat das theoretische Interesse an Wechselwirkungen die über
die isotrope Kontaktwechselwirkung hinausgehen zugenommen. Besonders vielver-
sprechend ist die Dipol-Dipol Wechselwirkung [26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38], da sie im Gegensatz zur Kontaktwechselwirkung langreichweitig und
anisotrop ist. So wurden z.B. das Zusammenspiel dieser beiden Wechselwirkungen
und ihr Einfluss auf die Eigenschaften eines Kondensats untersucht [31, 35, 39]. Es
wurde vorhergesagt, dass in einem eindimensionales Gitter aus dipolaren Atomen ein
ferromagnetischer Phasenübergang auftritt [34]. Darüber hinaus gibt es Vorschläge
mit permanenten Dipolen einen Quantencomputer zu implementieren [27].

Ähnlich wie bei Feshbach-Resonanzen lässt sich auch die Dipol-Dipol Wechselwir-
kung durch Anlegen zeitlich veränderlicher Magnetfelder durchstimmen [28]. Dies
ermöglicht es die oben genannten Effekte als Funktion der Stärke und des Vorzei-
chens der Dipol-Dipol Wechselwirkung zu studieren.

Mögliche Realisierungen dieser dipolaren Systeme beinhalten Atome und Moleküle
mit einem hohen elektrischen oder magnetischen Dipolmoment. Ein Kandidat mit
einem großen magnetischen Moment von 6 Bohr Magnetonen ist atomares Chrom.
Die dipolare Wechselwirkung zwischen zwei Chromatomen ist um einen Faktor 36
größer als bei Alkaliatomen. Obwohl die Bose-Einstein-Kondensation von Chrom
bislang nicht erreicht wurde, verfolgen weltweit drei Gruppen — uns eingeschlossen
— dieses Ziel [40, 41].

Bose-Einstein-Kondensate werden unter Einsatz verschiedener Kühlmechanismen
und Fallentypen erzeugt. Üblicherweise beginnt man mit einer magneto-optischen
Falle (MOT), in der Atome eingefangen und lasergekühlt werden. Inelastische Kol-
lisionen in Gegenwart von nahresonantem Laserlicht verhindern weitere Kühlung
und limitieren die erreichbaren Dichten. Die Atome werden daher in eine Magnet-
falle transferiert. Dort werden sie evaporativ bis in das quantenentartete Regime
gekühlt. Die genaue Kenntnis der elastischen und inelastischen Stoßeigenschaften
der Atome sind nicht nur für die Vorhersage der Eigenschaften des Kondensats un-
erlässlich, sondern auch für seine Erzeugung. Im Gegensatz zu den Alkaliatomen
waren vor dieser Arbeit weder experimentelle noch theoretische Vorhersagen über
die ultrakalten Stoßeigenschaften von Chrom bekannt. Diese Arbeit hat wesentlich
zum Verständnis dieser Eigenschaften beigetragen.

Abweichend vom üblichen Weg zur Erzeugung eines Bose-Einstein-Kondensats konn-
ten wir aufgrund der speziellen spektroskopischen Eigenschaften und dem hohen
magnetischen Moment von Chrom einen kontinuierlichen Lademechanismus ent-
wickeln. In dieser sogenannten CLIP Falle (Continuously Loaded Ioffe-Pritchard
Trap) können Atome aus dem angeregten Zustand der magneto-optischen Falle in
einen langlebigen metastabilen Zustand zerfallen. Dort sind sie magnetisch gefangen
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und vom Licht der MOT entkoppelt. Mit bis zu 2 × 108 Atomen konnten wir in
der CLIP Falle mehr als 40 Mal mehr Atome fangen als in der MOT. Zudem er-
leichtert die direkte Ansammlung der Atome in der Ioffe-Pritchard Magnetfalle die
nachfolgenden Präparationsschritte für ultrakalte Atome erheblich. Wir haben de-
taillierte Messungen zur Temperaturabhängigkeit der Wolke, der gefangenen Atom-
zahl und der Ladezeitkonstanten für verschiedene Fallenparamter durchgeführt. Wir
konnten die beiden dominierenden Verlustmechanismen identifizieren. Ein Modell
basierend auf Ratengleichungen erlaubte es uns die entsprechenden Ratenkoeffizien-
ten für diesen Verlustprozess aus den Daten zu bestimmen. In Kollisionen zwischen
Atomen im angeregten Zustand der MOT und magnetisch gefangenen Atomen im
metastabilen Zustand wird ein Teil der Anregungsenergie in kinetische Energie um-
gewandelt. Dies führt zu einem Verlust der Atome mit einem Ratenkoeffizienten von
βed = 5×10−10±45 % cm3/s. Inelastische Stöße zwischen den magnetisch gefangenen
Atomen begrenzen die Lebensdauer der Atome in diesem Zustand. Wir konnten den
entsprechenden Ratenkoeffizienten zu βdd = 1.3 × 10−11 ± 17 % cm3/s bestimmen.
Dieser recht große Wert verhinderte weitere Experimente in diesem metastabilen
Zustand. Daher werden die Atome nach dem Laden durch Rückpumplaser zurück in
den Grundzustand transferiert, in dem alle nachfolgenden Experimente stattfinden.

Im nächsten Schritt wird die Magnetfalle komprimiert um die Dichte der Atome
zu erhöhen. Dabei steigt jedech ebenso die Temperatur. Durch Dopplerkühlen der
Atome in der komprimierten Falle wurde die Temperatur reduziert und damit ein-
hergehend die Dichter weiter gesteigert. Obwohl lediglich ein axialer Kühllaser ein-
gestrahlt wurde, konnte ein signifikanter Kühleffekt in radialer Richtung beobach-
tet werden. Wir haben ausführliche Untersuchungen zur zeitlichen Entwicklung der
Temperatur sowie ihrem stationären Verhalten durchgeführt. Mit Messungen zur
Intensitätsabhängigkeit der radialen Temperatur sowie dem Einfluss der optischen
Dichte in der Wolke auf diese Temperatur konnten elastische Kollisionen und an-
harmonisches Mischen der Freiheitsgrade als Kühlmechanismus ausgeschlossen wer-
den. In dem von uns entwickelten Modell führt die hohe optische Dichte der Atom-
wolke zur Reabsorption von gestreuten Kühlphotonen. Durch die Erweiterung der
Doppler-Kühltheorie um diesen Effekt konnte ein theoretisches Modell des radialen
Kühlprozesses entwickelt werden. Die Vorhersagen dieses Modells stimmen quanti-
tativ mit den Messergebnissen überein. In axialer Richtung wurden Temperaturen
nahe der Dopplertemperatur von 124µK erreicht. Die radiale Temperatur war um
etwa einen Faktor zwei höher.

Eine weitere Verringerung der Temperatur wurde durch evaporatives Kühlen er-
reicht. Bei dieser Methode werden Atome mit hoher kinetischer Energie aus
der Falle entfernt. Die verbleibenden Atome thermalisieren über elastische Stöße
zu einer neuen — tieferen — Gleichgewichtstemperatur. Die Effizienz dieses
Kühlmechanismusses hängt wesentlich von den elastischen und inelastischen Streuei-
genschaften des verwendeten Atoms ab. Für Chrom waren die relevanten Eigenschaf-
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ten vor dieser Arbeit unbekannt. Ultrakalte Kollisionen von Grundzustandsatomen
werden durch s-Wellen Stöße dominiert. Diese sind durch einen einzigen Parame-
ter, der Streulänge a, charakterisiert. Wir konnten die Temperaturabhängigkeit der
elastische Kollisionsrate der beiden Chromisotope 52Cr und 50Cr in einem Rela-
xationsexperiment bestimmen. Bei dieser Methode wird die Fallengeometrie nach
dem evaporativen Kühlen schnell verändert. Dies erzeugt eine anisotrope Tempera-
turverteilung in der Wolke. Über den zeitlichen Verlauf der von elastischen Stößen
vermittelte Relaxation zur Gleichgewichtstemperatur kann auf den Streuquerschnitt
geschlossen werden. Der Vergleich mit einer Theorie, die die effektive Reichweite des
Potentials beinhaltet, erlaubt es nicht nur den Absolutbetrag der Streulänge, son-
dern auch ihr Vorzeichen zu ermitteln. Die deka-triplett Streulänge von 52Cr konnten
wir zu a(52Cr) = 170 ± 39 a0 bestimmen, wobei a0 = 0.53Å der Bohr’sche Radius
ist. Das Vorzeichen der Streulänge spielt hierbei eine wichtige Rolle, da Kondensa-
te nur bei positiver Streulänge stabil sind. Die geringere natürliche Häufigkeit von
50Cr schränkte den messbaren Temperaturbereich ein. Daher konnten wir in diesem
Fall nur den Absolutbetrag der deka-triplett Streulänge von |a(50Cr)| = 50 ± 23 a0

bestimmen.

Unsere Bemühungen ein Bose-Einstein-Kondensat mit Chromatomen durch evapo-
ratives Kühlen in der Magnetfalle zu erreichen, resultierten in einer maximalen Pha-
senraumdichte von 0.04 ± 0.013, bei einer Temperatur von 370 ± 52 nK und mit
1500 ± 260 verbleibenden Atomen, was einer zentralen Dichte von (6.5 ± 1.7) ×
1011 cm−3 entspricht. Weiteres Kühlen reduzierte die Phasenraumdichte aufgrund
eines erhöhten Verlusts an Atomen durch dipolare Relaxation.

Wir konnten vorläufige Ergebnisse zur Magnetfeldabhängigkeit der dipolaren Rela-
xationsrate bei einer Temperatur von 300µK erzielen. Unsere experimentellen Daten
sind in ausgezeichneter Übereinstimmung mit der Theorie. Bei einem magnetischen
Offset-Feld von B0 = 20 G erhalten wir einen Ratenkoeffizienten für den Atomzahl-
verlust von βdp = 1011 cm3/s. Eine Messung der durch dipolare Relaxation verur-
sachten Heizrate in Atomwolken von 52Cr und 50Cr zeigte vergleichbare Heizraten
für beide Isotope. Mit diesen Experimenten konnten wir die Vorhersagen der Theo-
rie bestätigen, dass die dipolare Relaxationsrate unabhängig von den Details des
Wechselwirkungspotentials ist, jedoch mit dem magnetischen Offset-Feld und dem
Dipolmoment der Atome skaliert. Im Gegensatz dazu hängen die Eigenschaften der
elastischen s-Wellen Streuung sensitiv vom Wechselwirkungspotential ab.

Die Ergebnisse dieser Arbeit stellen einen wichtigen Schritt auf dem Weg zu einem
Bose-Einstein-Kondensat von Chromatomen dar. Speziell die Kenntnis der elasti-
schen und inelastischen Stoßeigenschaften im Grundzustand erlauben es nun eine
erfolgreiche Strategie zu entwickeln.

Ein vielversprechender Ansatz hierzu stellt das Umladen der Atome in eine optische
Dipolfalle [42] dar. Dabei werden die Atome im absoluten Grundzustand gefangen,
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welcher immun gegenüber dipolaren Verlusten ist. Mit den in dieser Arbeit entwickel-
ten Kühlmethoden können die Atome in einer Magnetfalle vorgekühlt werden. Der
große elastische Streuquerschnitt von Chrom sollte effizientes evaporatives Kühlen
nach dem Umladen in die Dipol-Falle bis ins quantenentartete Regime erlauben.
Dieser Ansatz wird derzeit in unserem Labor experimentell umgesetzt.

Sobald ein Bose-Einstein-Kondensat mit Chrom erzeugt wird, sind eine Reihe inter-
essanter Experimente möglich. So kann z.B. der Einfluss der (einstellbaren) Dipol-
Dipol Wechselwirkung auf die Expansion eines Chrom-Kondensats studiert werden
[28, 29]. Die starke dipolare Wechselwirkung lässt zudem eine ausreichende Brei-
te der Feshbach-Resonanzen erwarten. Diese könnten dann dazu eingesetzt werden
die Kontaktwechselwirkung zu verändern und sogar vollständig zu unterdrücken. In
einem solchen System wäre die dipolare Wechselwirkung dominant. Durch Einstel-
len des Vorzeichens und der Wechselwirkungsstärke könnten die Stabilität und der
Kollaps eines derartigen dipolaren Kondensats untersucht werden [31, 33] — kom-
plementär zu den analogen Experimenten in Alkaliatomen, in denen eine attraktive
Kontaktwechselwirkung zum Kollaps führt [24].

Wir erwarten, dass die Dipol-Dipol Wechselwirkung in einem Bose-Einstein-
Kondensat mit Chromatomen die Vielfalt an Effekten in quantenentarteten Syste-
men deutlich bereichern wird. Die Kontrolle über sowohl die Kontakt- als auch die
Dipol-Dipol Wechselwirkung wird eine ganze Reihe an faszinierenden Experimenten
ermöglichen, die zu einer Vertiefung unseres Verständnisses dieser neuen Form von
Materie beitragen werden.
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Abstract

In this thesis, I present experimental results on the scattering properties of ultra-
cold chromium atoms. This represents a significant progress towards a Bose-Einstein
condensate with chromium atoms. Deviating from the standard approach for the
preparation of ultra-cold atoms, we have devised a continuous loading scheme for
a magnetic trap from a magneto-optical trap. Doppler cooling of the atoms in
the compressed magnetic trap further reduces the temperature of the cloud and
increases its density. Subsequent forced radio-frequency evaporation resulted in a
maximum phase-space density of 0.04. Strong dipolar relaxation collisions originat-
ing from the large magnetic dipole moment of chromium prevented us from reaching
quantum degeneracy. We measured the magnetic field dependence of the dipolar
relaxation rate, which was typically on the order of βdp ≈ 1011 cm3/s, in excellent
agreement with theory. Probably the most important parameter for ultra-cold scat-
tering of chromium atoms is the scattering length a. We were able to perform a
detailed measurement of the temperature dependence of the elastic collision rate. A
comparison of our data with theory allowed us to extract the deca-triplet scattering
lengths for the two bosonic chromium isotopes 52Cr and 50Cr. For 52Cr we obtained
a value of a(52Cr) = 170± 39 a0 with a positive sign (a0 = 0.53Å is Bohr’s radius).
The low natural abundance of 50Cr limited the temperature range of our measure-
ment. As a result, we could only deduce the magnitude |a(50Cr)| = 50±23 a0 of the
scattering length. Knowing the ultra-cold scattering properties allows now to devise
a successful route to a Bose-Einstein condensate with chromium atoms.
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Chapter 1

Introduction

In this Chapter I give a brief introduction into the field of Bose-Einstein condensates.
The experimental studies presented in this thesis are aimed towards the realization
of a Bose-Einstein condensate with chromium atoms.

The first realization of Bose-Einstein condensation (BEC) in dilute atomic gases
in the year 1995 [1, 2, 3] has pioneered the exploration of an exciting new form
of matter: the macroscopic quantum state. This date marked the emergence of a
fascinating new field in atom optics and quantum physics. An ever growing enor-
mous number of theoretical and experimental publications have appeared since then.
Around 40 experimental groups are working now in the field, mostly with BECs of
the alkali atoms rubidium, sodium and lithium. Besides these elements, atomic hy-
drogen [43] and recently metastable helium [44, 45], potassium [46] and cesium [25]
have been Bose-condensed. In 2001, Eric Cornell, Wolfgang Ketterle and Carl Wie-
man were awarded the Nobel Price in Physics “for the achievement of Bose-Einstein
condensation in dilute gases of alkali atoms, and for early fundamental studies of
the properties of the condensates” [4].

The phenomenon of Bose-Einstein condensation was first discussed by Einstein [47]
based on the photon statistics invented by Bose [48]. The particle–wave duality
in quantum mechanics allows to attribute a wavelength to atoms in a gas, the de
Broglie wavelength λdB. If the particle density n in a gas of atoms is such that
the interparticle separation is of the same order of magnitude as the de Broglie
wavelength, the particles can no longer be treated as independent. This is the
condition for Bose-Einstein condensation, which can be expressed in terms of the
phase-space density % = nλ3

dB ≈ 2.6. BEC is characterized by the macroscopic
population of a single quantum state, described by a macroscopic wavefunction which
is the order parameter of the system. In atomic vapors the transition temperature is
typically on the order of a few hundred nK at densities between 1014 . . . 1015 cm−3.
Comparing this density to typical densities in air (1019 cm−3) or solids (1023 cm−3),

1
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demonstrates that we are dealing with a very dilute system. Even under ideal
experimental conditions, most Bose-Einstein condensates have a limited lifetime.
Ultimately, interactions lead to the formation of molecules which results in the
destruction of the BEC and relaxation into the thermodynamically stable regime.
It was therefore not clear in the beginning, whether a condensate state existed long
enough to be observable at all.

Probably the first BEC occured in liquid helium. Helium is special in that it stays a
liquid even for very low temperatures and becomes superfluid below a critical tem-
perature. London was the first to relate the superfluidity in 4He to Bose-Einstein
condensation [49]. The strong interactions between the atoms in a liquid result in a
small condensate fraction in superfluid helium. BEC in dilute gases occurs in a com-
plementary regime: interactions are weak and almost the whole sample comprising
typically 104 . . . 106 atoms is in the condensate state. Despite their weakness, inter-
actions govern the main properties of Bose-Einstein condensates in atomic vapors.

The dominant interaction is the contact interaction arising from s-wave scattering
of the atoms. Most of the interesting features of a BEC emerge from the interplay
of quantum-statistical effects and the contact interaction. These include elementary
excitations like acoustic waves and phonons [5, 6, 7], and the realization of conden-
sate spin mixtures, so-called “spinor-condensates” [8, 9]. Just like liquid helium,
Bose condensates are superfluids below the critical temperature [10, 11, 12] in which
quantized vortices [13, 14, 15, 16] have been observed.

The macroscopic occupation of a single quantum state is well-known from laser
physics. The analogy between the mode of a laser and Bose-Einstein condensates has
motivated the realization of atom “lasers” [50, 51, 52, 53] and a coherent amplifier
for matter waves [54, 55].

Bose-Einstein condensates can be described in the framework of a nonlinear
Schrödinger equation, where the nonlinearity arises from the interactions. In quan-
tum optics, a similar equation governs the propagation of light in a nonlinear
medium. Consequently, nonlinear optical phenomena like four-wave mixing [17]
and the creation of bright and dark solitons [18, 19, 20, 21, 22] could be observed in
a Bose-Einstein condensate.

The interaction in a BEC is not necessarily fixed. In special cases, the s-wave scat-
tering properties of the atomic species can be tuned with an external magnetic field
via a Feshbach resonance [23]. This can lead to a dramatic change in the properties
of the BEC including its spectacular collapse in a so-called “Bosenova” [24, 25]. As
we can see from these examples, interactions between the atoms contribute to the
richness of effects in Bose-Einstein condensates.

In recent years, theoretical interest in additional interaction mechanisms beyond
the isotropic contact interaction has grown. Especially the dipole-dipole interaction
has attracted much interest [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] since
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it is long-range and anisotropic — two features the contact interaction lacks. The
interplay between contact and dipole-dipole interaction will govern the properties
of a Bose-Einstein condensate [35]. Theoretical investigations have shown that the
stability and shape of a dipolar BEC is dependent on the shape of the trap [31, 39].
The attractive part of the dipole-dipole interaction can lead to a BCS (Bardeen-
Cooper-Shrieffer) type transition in a fermionic quantum gas [26], and may result in a
quantum phase transition of a bosonic ultra-cold dipolar gas in an optical lattice [32].
If dipolar atoms are arranged in a one-dimensional optical lattice, a ferromagnetic
phase transition is predicted and spontaneous magnetization is expected to occur
[56]. Moreover, there are theoretical proposals for realizing a quantum computer
with permanent dipole moments [27].

Similar to the Feshbach resonances, the magnitude and sign of the dipole-dipole
interaction can be adjusted by applying time varying magnetic fields [28]. This
makes it possible to map the dependence of the effects described above on the
strength of the dipolar interaction. Obviously, dipole-dipole interactions will further
diversify the phenomenons observed in Bose-Einstein condensates.

Possible realizations of such dipolar systems include atoms and molecules that have
a large electric dipole moment in an external electric field, and atoms with a large
magnetic dipole moment. Several groups have started activities towards cooling and
trapping of polar molecules [57, 58, 59]. A candidate with a large magnetic moment
of 6Bohr magnetons is atomic chromium. The dipole-dipole interaction between
two chromium atoms is larger by a factor of 36 compared to alkali atoms. Although
Bose-Einstein condensation in atomic chromium has not yet been achieved, three
groups including us are pursuing this goal [40, 41]. Chromium also has a fermionic
isotope, which allows to study quantum statistical effects in a degenerate fermi gas
under the influence of dipole-dipole interactions [30, 60, 61, 62, 63, 64, 65].

Typically, Bose-Einstein condensates are produced using a combination of cooling
and trapping techniques. The “standard” approach to BEC starts with a magneto-
optical trap in which atoms are collected, precooled and trapped. Inelastic collisions
in the presence of the near resonant cooling laser light make a transfer to a mag-
netic or optical-dipole trap necessary. There, the atoms are evaporatively cooled to
the quantum degenerate regime. Other approaches employ buffer gas cooling in a
cryogenic environment to precool the atoms and load them into a steep magnetic
trap, in which evaporative cooling is performed [41, 43].

The knowledge of the elastic and inelastic scattering properties of the atoms is not
only essential for predicting the properties of a Bose-Einstein condensate, but also
for the optimization of the “route to BEC”. Unlike for the alkali atoms, neither ex-
perimental nor helpful theoretical data existed on the ultra-cold scattering properties
of chromium. Elastic and inelastic scattering rates for chromium at temperatures
exceeding 10mK have been obtained in a cryogenic trapping experiment [41]. By
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virtue of the complexity of atom-atom scattering, this data allows no extrapolation
to the ultra-cold regime.

The elastic and inelastic scattering properties are very sensitive to the details of the
molecular interaction potential of two colliding atoms. Feshbach resonance spec-
troscopy has successfully been employed to refine model potentials for the inter-
action between 133Cs [66, 67], 23Na [68], 85Rb [69] and 87Rb [70]. These model
potentials allow an accurate prediction of the elastic s-wave cross-section, position
of resonances and also inelastic collision rates. Photoassociation spectroscopy is sup-
posably the most powerful method to obtain information on weakly bound molecular
states. Again, model potentials can be refined to fit the experimental data and allow
predictions of further scattering properties [71, 72, 73]. Cross-dimensional thermal
relaxation of an anisotropic temperature distribution in a trapped cloud of atoms
[74] and loss rate measurements of the number of atoms from a finite depth trap
[75] provide the most direct access to the elastic and inelastic scattering properties
of atoms in a trap, respectively.

In this thesis, I report on the elastic ground state scattering properties of the
chromium isotopes 52Cr and 50Cr using the cross-dimensional relaxation method.
Preliminary inelastic dipolar relaxation rates are determined from a loss rate mea-
surement. In addition, we have studied the elastic and inelastic collision mechanisms
involved in the preparation of our ultra-cold samples.

We have developed a variation of the standard approach. Atoms from the MOT are
continuously loaded into a magnetic trap. Subsequent laser cooling further reduces
the temperature of the atoms in the compressed magnetic trap. Evaporative cooling
allowed us to reach phase-space densities as high as 0.04. Bose-Einstein condensation
was prevented by excessive heating and atom loss due to a strong dipolar relaxation
rate.

The thesis is organized as follows:

In Chapter 2, I give a summary of the physical and spectroscopic properties of
chromium relevant for this work. Chapter 3 provides the theoretical background for
the laser cooling and trapping mechanisms employed. Special attention is given to
the theory of Doppler cooling, which is extended in Chapter 7 to account for cooling
effects of reabsorbed photons. The principles of magnetic trapping are discussed in
Chapter 4. I review the different regimes of a Ioffe-Pritchard type magnetic trap
and address possible loss mechanisms due to the trap geometry. The technical de-
tails of the experimental setups and the data evaluation procedures are presented
in Chapter 5. The first step in the preparation of an ultra-cold cloud of chromium
atoms is the CLIP (Continuously Loaded Ioffe-Pritchard) trap, which I introduce
in Chapter 6. Experimental results on the temperature and the loading efficiency
for different trap parameters are presented and compared to a simple model. In the
next preparation step, Doppler cooling in a compressed magnetic trap is used to
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further reduce the temperature of the cloud. Details of this method are described
in Chapter 7. Elastic scattering of photons followed by reabsorption in the optically
dense cloud can explain the observed radial cooling, even though the cooling laser
beam is only applied along the axial direction. The standard treatment of Doppler
cooling is extended to account for this reabsorption cooling. A model based on rate
equations is compared with the experimental result. Evaporative cooling is typically
the last preparation step for the realization of a BEC. Elastic and inelastic collisions
determine the efficiency of this method. Therefore, I give a review on basic scattering
theory in Chapter 8. I consider the most prominent features in ultra-cold scattering
using the square-well potential as an example. Specialities of atom–atom scattering
like e.g. Feshbach resonances and dipolar relaxation are discussed in a separate Sec-
tion. The Chapter concludes with a description of the evaporative cooling technique.
In Chapter 9, I present experimental results on the elastic scattering properties for
the two chromium isotopes 52Cr and 50Cr. Theoretical models are fitted to the data
and allow us to extract the scattering length for 52Cr and its magnitude for 50Cr.
At the end of Chapter 9, I present the results of our effort to achieve Bose-Einstein
condensation in atomic chromium via evaporative cooling. Preliminary results on
the extraordinarily large dipolar relaxation rate in chromium are shown in Appendix
E. The thesis concludes with a summary and future perspectives in Chapter 10.



Chapter 2

Chromium

In this chapter I present the physical, electronic and spectroscopic properties of
chromium relevant to this work. A summary of the electronic dipole transitions
employed for the laser cooling and trapping techniques is given.

The experiments presented in this thesis are performed with two different bosonic
isotopes of the transition metal element chromium. Chromium is a very hard (9
mohs), lustrous, silvery-white metal with a body-centered cubic (bcc) crystalline
structure. It has a very high melting and boiling point of around 1850 ◦C and
2690 ◦C, respectively. Sublimation under vacuum conditions results in a vapor pres-
sure of 6 × 10−7 mbar at a temperature of 1500 ◦C [76] — sufficient for an atomic
beam experiment. The difficulty of operating a high temperature effusion cell un-
der ultra-high vacuum conditions is eased by the getter capabilities of chromium.
The inner wall of the vacuum chamber is continuously coated with a chromium film
during operation. Residual gas atoms hitting the coated surfaces stick to it and are
buried under the growing chromium film. In titanium sublimation getter pumps,
the same mechanism results in typical pumping speeds of several thousand liters per
second. In fact, chromium is an even more efficient getter material than titanium
[76, 77], but due to its high sublimation temperature not commonly used in getter
pumps.

element mass [au] abundance [%] nuclear spin I statistics

chromium 50 4.35 0+ boson

52 83.79 0+ boson

53 9.5 3/2+ fermion

54 2.36 0+ boson

Table 2.1: Natural abundance and nuclear spin of stable chromium isotopes.

6
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Figure 2.1: Part of the level scheme for chromium (energies not to scale). Shown are
the septet (blue) and quintet (red) system for the S, P and D terms up to an energy
of 23 500 cm−1. The numbers on the left and right of each level are the energy in wave
numbers (cm−1) and the total angular momentum J , respectively. The relevant transitions
for cooling (425.5 nm), continuous loading of the magnetic trap (658.3 nm) and repumping
(663.2 nm) are indicated by the arrows.

One of the original scopes of this project is the investigation of quantum statistical
effects in bosons and fermions. A natural choice are two different isotopes of the
same element. In chromium, we have three bosonic and one fermionic isotope. The
fermion has I = 3/2 nuclear spin, whereas the bosons have none. Table 2.1 summa-
rizes the natural abundance and nuclear spin for the stable chromium isotopes. In
the experiments presented in this thesis, we have mainly used 52Cr, but sometimes
for comparison also 50Cr.

The spectroscopic properties of chromium are important for the laser cooling ex-
periments presented in Chapter 6 and 7. Figure 2.1 shows the relevant part of the
level scheme for bosonic chromium1. The corresponding levels for the fermionic iso-
tope 53Cr (not shown) are further split by the hyperfine interaction. We operate the
Zeeman-slower and the magneto-optical trap (see Chapter 3) on the strong transition
connecting the ground state 7S3 with the excited state 7P4 in the blue at a wave-
length of 425.5 nm. The main properties of this transition are summarized in Table
2.2. Atoms in the excited 7P manifold can undergo a transition to the metastable
5D manifold via intercombination lines. The wavelengths of the most important of
these transitions are summarized in Table 2.3. Spontaneous de-excitation via the
spin forbidden 5D4 ↔ 7P4 transition is utilized to continuously load atoms into
a magnetic trap (see Chapter 6). The atoms accumulate during operation of the

1The isotope shifts for the transitions are with a few 100MHz rather small.
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vacuum wavelength λ = 2π
k = 425.554 nm

natural linewidth Γ = 1
τ = 31.5× 106 s−1

= 2π × 5.02MHz

saturation intensity Is = πhcΓ
3λ3 = 8.52 mW/cm2

absorption cross-section σλ = 6πλ2 = 8.65× 10−10 cm2

Doppler temperature TD = 1
kB

~Γ
2 = 124µK

recoil temperature Trec = 1
kB

(~k)2

2m = 1.02µK

recoil velocity vrec = ~k
m = 1.80 cm/s

Table 2.2: Properties of the cooling and trapping transition 7S3 ↔ 7P4.

magneto-optical trap in the metastable 5D4 state. We use a repumper laser on the
5D4 ↔ 7P3 line to pump the atoms back into the ground state, since this transition
is faster than the 5D4 ↔ 7P4 transition and disturbing dark state resonances on the
latter transition are absent [78].

Atoms in the excited state can also undergo a transition to the 5D3 state and ac-
cumulate there. This occurs on a longer timescale than for the 5D4 state due to a
smaller natural linewidth, as indicated in Table 2.3. Nevertheless we have set up
a repumper laser to the 7P3 state to slightly increase the number of atoms in our
magnetic trap.

Prior to our measurements [78], only the natural linewidth of the 5D4 ↔ 7P3 tran-
sition was known. It is worthwhile to mention, that the natural linewidths for the
intercombination lines starting in the 7P4 excited state are orders of magnitude
smaller than those starting from 7P3. The reason for this might be a coupling of
the 5P3 to the 7P3 state, thus allowing the septet state to decay via the 5P state to
the 5D state. Since a 5P4 state does not exist, the conservation law for the spin is
enforced and the transition rates are small [79].

Most laser cooling and trapping experiments are carried out with alkali metals, that
have a rather simple electron configuration with one valence electron. Chromium
on the other hand has six valence electrons in a hybridized [Ar]3d54s1 electronic
configuration. The alignment of all electron spins leads to a strong magnetic moment
in the 7S3 ground (6µB) and metastable 5D4 (6 µB), 5D3 (4.5µB) states. This allows
us to achieve magnetic traps with a strong confinement (see Chapter 4) as required
for evaporative cooling (see Section 9.4.4). Elastic scattering of magnetic dipoles
scales with the fourth power of the magnetic moment and is therefore by more than
three orders of magnitude stronger than for the alkali metals (see Section 8.6.3).
We expect new and fascinating effects in a Bose-Einstein condensate of chromium
in which the dipole-dipole force can be the dominant interaction.
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isotope intercombination line vacuum wavelength natural linewidth
52Cr 5D4 ↔ 7P4 658.2740(2) nm a Γ = (127± 14) s−1 a

5D4 ↔ 7P3 663.1846(2) nm a Γ = 6000 s−1 b

5D3 ↔ 7P4 649.1978(2) nm a Γ = (42± 6) s−1 a

5D3 ↔ 7P3 653.9727(2) nm a - c

50Cr 5D4 ↔ 7P4 658.2733(2) nm a see above
5D4 ↔ 7P3 663.1877(2) nm d see above
5D3 ↔ 7P4 653.9764(2) nm a see above

Table 2.3: Vacuum wavelength and natural linewidths of the most important intercombi-
nation lines between 7P and 5D for the two isotopes 52Cr and 50Cr.

a[78]
b[80]
cunknown
dthis work

On the other hand, also inelastic dipolar relaxation collisions scale in a similar way
with the dipole moment and prevents us from reaching the quantum degenerate
regime in a purely magnetic trap. A far-off resonant optical dipole trap allows
storage of the atoms in the absolute ground state of the system and eliminates this
loss process. Bose-Einstein condensation of chromium should be possible in such a
trap, which is currently being set up.

The number of electrons also has profound consequences on the complexity of ultra-
cold elastic collisions. Two bosonic chromium atoms can collide on 7 different molec-
ular potential curves (see Figure 8.11) that are further split by the Zeeman energy.
The mere number of electrons makes accurate ab initio calculations of the molecu-
lar potentials extremely hard and only one such calculation for the 13Σ+

g molecular
state is known from the literature [81]. As a result, no theoretical predictions of
the scattering properties of chromium exist. The experimental results of this thesis
(see Chapter 9 and Appendix E) might allow to construct a more accurate model
potential for chromium in the future.



Chapter 3

Optical cooling and trapping

techniques

Atom–light interactions are a vast subject which has been studied since the early
days of atomic physics. This Chapter gives a brief summary of the most important
effects with special emphasis on the laser cooling and trapping techniques. In the
first Section I discuss the dipole- and the radiation pressure force acting on an atom
in a light field. As an application of these forces, one-dimensional Doppler and
polarization gradient cooling are being presented in Sections 3.2-3.4. Finally, I show
in Section 3.5 how these techniques can be extended to three dimensions and —
combined with a magnetic field — form a magneto-optical trap for neutral atoms.

3.1 Atom–light interaction

Atoms in a monochromatic light field with a frequency tuned close to an atomic
resonance frequency experience strong forces and large accelerations which can be
used for slowing down the atoms. The force acting on an atom in a light field has
two contributions: the conservative dipole force arising from energy shifts of the
atomic states in the light field (ac Stark shift) and the dissipative radiation pressure
force arising from momentum transfer of scattered photons.

3.1.1 The dipole force

Consider an atom with two internal states: the ground state | g 〉 and an excited
state | e 〉 which are connected via an optical dipole transition with frequency ωatom

and spectral linewidth Γ. The electric field ~E of a quasi-resonant light field with
intensity I and frequency ωlaser couples to the electric dipole moment ~d of the atom

10
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Figure 3.1: Energy diagram of the combined atom–photon system for a blue detuned laser
(δ > 0). Left: Energy of the photon field. Middle: Energy shifts of the eigenstates for the
atom-photon system across a Gaussian laser beam. Right: Spontaneous emission lines at
position r∗ with intensities proportional to the line thickness.

giving rise to an interaction energy of V = −~d · ~E. In strong light fields with I & Is,
where Is = πhcΓ

3λ3 is the saturation intensity, the ground and excited state of the atom
(“bare states”) are no longer eigenstates of the Hamiltonian describing the system.
The joint system atom–photon is described by a so-called “dressed state” and the
number of photons n in the light field. The new eigenstates |+, n 〉 and | −, n 〉 and
are superpositions of the bare states | g 〉 and | e 〉 [82]:

|+, n 〉 = − sinΘ| g 〉+ cos Θ| e 〉 (3.1)

| −, n 〉 = +cos Θ| g 〉+ sin Θ| e 〉, (3.2)

where tan 2Θ = −ΩR
δ is the tangens of the so-called “Stückelberg angle” with the

Rabi frequency

ΩR = |
~d · ~E

~
| = Γ

√
I

2Is
(3.3)

and the detuning δ = ωlaser − ωatom of the laser from the atomic resonance. Figure
3.1 shows the energy evolution of the eigenstates across a Gaussian intensity distri-
bution. The energy spectrum can be described as a ladder system with pairs of steps
having an energy splitting corresponding to the photon energy of the light field and a
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frequency splitting between two dressed states given by the effective Rabi frequency
ΩR,eff =

√
Ω2

R + δ2. The energy shift of the dressed states with respect to the bare
states is given by

Udip = ±sign(δ)
~
2
(ΩR,eff − |δ|), (3.4)

where the “+” sign applies for the dressed state adiabatically evolving from the
ground state. An intensity gradient in the light field results in the so-called “dipole
force” ~Fdip = −∇Udip. For a red detuned laser (δ < 0), atoms initially in the ground
state are attracted to high electric fields (“high field seekers”), since their electric
dipole oscillates in phase with the external field. For a blue detuned laser, a phase
shift of π reverses this behaviour: atoms are repelled from the high intensity region
(“low field seekers”).

By spontaneously emitting a photon, atoms can undergo transitions between the
step pairs of the ladder. The corresponding fluorescence spectrum consists of three
frequencies ωlaser and ωlaser ± ΩR,eff , the so-called Mollow-Triplet [83], with differ-
ent intensities as shown on the right hand side of Figure 3.1. We will discuss the
fluorescence spectrum emitted by an atom in more detail in Appendix A.

The dipole force has many applications in atom optics. In atom lithography, a
standing wave light mask can be used to focus a beam of atoms onto a substrate [84].
Focused laser beams can be used as optical traps and optical waveguides for atoms
[42]. Several cooling techniques, such as the bichromatic force [85] or polarization
gradient cooling in standing wave light fields [86] rely on dipole forces in multi-level
atoms.

3.1.2 The radiation pressure force

Each absorption and emission process of a photon is accompanied by a momentum
transfer of ~k between atom and photon, where k = 2π

λ is the wave number of the
laser light. Directed absorption of photons from a laser beam leads to a net force
in the direction of the laser beam, since the subsequent spontaneous emission is
centro-symmetric and averages to zero for many absorption/emission cylces. The
average force acting on an atom is the rate of change in momentum:

Fsc = ~kΓsc, (3.5)

where we have introduced the scattering rate

Γsc =
Γ
2

s

s + 1
=

Γ
2

I/Is

(1 + I/Is + 4∆2/Γ2)
(3.6)
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with the saturation parameter

s =
I/Is

(1 + 4∆2/Γ2)
(3.7)

and the effective detuning ∆. For s = 1, the scattering rate drops to half its
maximum value of Γ

2 . The frequency difference between the incident laser beam
in the laboratory frame and the atomic transition frequency in the moving frame
of the atom, is given by the effective detuning ∆. Depending on the system of
consideration, it can have several contributions:

∆ = δ + kv − ∆µB

~
. (3.8)

The first term is the laser detuning for an atom at rest. For an atom moving at
a velocity v along the direction of a counterpropagating laser beam, the frequency
of the laser light is Doppler-shifted by kv (second term). The energy of an atomic
state with a magnetic dipole moment µ can be shifted in an external magnetic field
(Zeeman effect). The shift in the atomic transition frequency depends on the mag-
nitude of the magnetic field B, and the difference between the magnetic moment of
the ground and excited state, ∆µ (last term of Equation 3.8). A simple application
of the magnetic tuning of the resonance frequency is the Zeeman-slower (see Section
5.2). It is used to produce slow atomic beams by scattering photons from a coun-
terpropagating laser beam. To keep the atoms on resonance with the laser beam
during deceleration, either the laser frequency or the atomic resonance frequency
has to compensate the change in Doppler shift with decreasing velocity. This can be
accomplished by applying a specially designed inhomogeneous magnetic field along
the direction of the atomic beam.

In principle, the energy of an atomic state can also be altered with electric fields [87].
The experimental complexity and obstacles to generate the required field strengths
compared to magnetic fields have prevented this technique to be widely used in
atom optics experiments until recently. In a challenging experiment, Gerald Meijer
and coworkers have succeeded in slowing down and trapping dipolar molecules with
time-varying electric fields [57, 88].

3.2 Doppler cooling

In the previous section, we have seen that a laser beam can exert an average force on
an atom. Due to the irreversibility of the spontaneous emission process, the radiation
pressure force is non-conservative and can be used to cool atoms to very low velocities
[89]. Consider two red detuned, counterpropagating laser beams incident on an atom
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moving along the direction of the laser beams. The net radiation pressure force is
the sum of the forces of each laser beam:

Fsc = F+
sc + F−

sc (3.9)

= ~k
Γ
2

(
I/Is

1 + I/Is + 4 (δ−kv)2/Γ2
−

I/Is

1 + I/Is + 4 (δ+kv)2/Γ2

)
(3.10)

≈ ~k
Γ
2

I

Is

kv

Γ
16 δ/Γ

1 + 8 (δ2+k2v2)/Γ2 + 16 (δ2−k2v2)2/Γ4
. (3.11)

For the last step, we have approximated the full expression assuming low saturation
(I/Is ¿ 1). We can further simplify the last expression in the limit of low velocity
(|kv| ¿ Γ and |kv| ¿ |δ|) and write it as a friction force Fsc = −α v. The damping
coefficient α is given by

α = −8 ~k2
δ/Γ

(1 + 4δ2/Γ2)2
I

Is
. (3.12)

In the rest frame of the atom, the frequency of the light beam counterpropagating
the atomic motion is Doppler-shifted closer to the atomic resonance. As a result,
the atom absorbs more light from this beam than from the one copropagating with
the atom and is therefore slowed down.

The heating and cooling rates for Doppler cooling are obtained by considering the
time evolution of the kinetic energy of a particle under the influence of cooling and
heating effects of photon scattering. Let us neglect reabsorption processes for the
moment. The atom experiences a cooling power which is proportional to the square
of its velocity [90]:

(
dE

dt

)

cool

= Fv = −αv2. (3.13)

This results in an exponential decrease of kinetic energy with a time constant τcool

corresponding to a cooling rate of

1
τcool

= −(dE/dt)cool

E
=

2α

m
, (3.14)

where m is the mass of the atomic species. Absorption and spontaneous emission
lead to a random walk in momentum space, which can be described as a diffusion
process d(p2)

dt = χDp, with the diffusion constant Dp = 2~2k2Γsc. The contribution
of absorption and spontaneous emission to momentum diffusion in the direction of
observation (~ez) is given by χ. Absorption from a laser beam propagating along this
direction leads to a momentum kick of 1. In a purely one dimensional system, each
absorption/emission cylcle yields χ = 2 steps in momentum space. For three dimen-
sional systems, the projection of the emission pattern Pe(ϑ, φ) onto the direction of
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emission type Pe(ϑ, φ) χ

one-dimensional 1 1 + 1

isotropic 1
4π 1 + 1

3

linear dipole along ~ex
3
8π (1− sin2 ϑ cos2 φ) 1 + 2

5

Table 3.1: Spontaneous emission patterns and corresponding contribution χ to momentum
diffusion in ~ez direction. In this example, the direction of the cooling laser coincides with
the direction of observation, therefore absorption always leads to a momentum kick of 1.

interest has to be taken into account1

χ = 1 +

2π∫

0

dφ

∫ π

0
dϑ cos2(ϑ)Pe(ϑ, φ) sin(ϑ). (3.15)

Table 3.1 summarizes different emission patterns and the resulting χ.

The gain in kinetic energy p2

2m due to momentum diffusion leads to a heating power
which is given by

(
dE

dt

)

heat

= χ
Dp

2m
. (3.16)

In contrast to the cooling power (Equation 3.13), the heating power is independent
of energy, yielding a heating rate of

1
τheat

=
(dE/dt)heat

ER
=

χDp

~2k2
= 2χΓsc. (3.17)

The kinetic energy evolution of the system converted to temperature is given by the
sum of heating and cooling rates:

dT

dt
=

ER

kBτheat
− T

τcool
(3.18)

where ER = ~2k2

2m is the recoil energy of the cooling transition and kB Boltzman’s
constant. The steady state temperature is easily found by setting the left hand side
of Equation 3.18 to zero. The minimal temperature is achieved for a detuning of
δ = −Γ

2 and is called the Doppler temperature TD, which is usually evaluated for a
one-dimensional system (χ = 2):

kBTD = ~
Γ
2

. (3.19)

1The term cos2(ϑ) arises from the projection of p2 onto the z-direction with pz = p cos(ϑ).
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It is worthwhile to note that the Doppler temperature is independent of the cooling
light intensity and the mass of the atomic species. For strong cooling transitions,
TD is usually around 120µK. The fact that it only depends on the linewidth of
the cooling transition can be exploited to achieve extremely low temperatures on
transitions with a small linewidth [91]. We will extend the standard treatment of
Doppler cooling as it has been presented here in Section 7.2 to include reabsorption
processes and their contribution to cooling.

3.3 Multi-level atoms

In the context of laser cooling, the term “multi-level atoms” is used for atoms with
a Zeeman substructure in the ground and/or excited state which arises from the
coupling of the atomic magnetic moment ~µ to magnetic fields. The levels are char-
acterized by the projection of ~µ onto the quantization axis (usually given by the
direction of an external magnetic field). The z component of this projection is pro-
portional to the magnetic quantum number mJ (or mF if the atom has hyperfine
structure):

µz = −mJ gJ µB, (3.20)

where µB is Bohr’s magneton. For simplicity, we will write µ = µz for the z com-
ponent of the magnetic moment from now on and use the term “magnetic moment”
but mean “projection of the magnetic moment onto the quantization axis” instead.
The Landé-factor gJ of an atomic state with quantum numbers L (orbital angular
momentum), S (spin) and J (total angular momentum of the atom) is given by

gJ = 1 +
J(J + 1) + S(S + 1)− L(L + 1)

2J(J + 1)
. (3.21)

For atoms with hyperfine structure, the Landé-factor reads

gF = gJ

F (F + 1) + J(J + 1)− I(I + 1)
2F (F + 1)

, (3.22)

where I is the quantum number for the nuclear spin and F for the total angular
momentom of the atom.

The magnetic moment of the atom interacts with magnetic fields, resulting in an
energy shift

∆EZS = −~µ · ~B = gJ mJ µBB. (3.23)

This energy shift is frequently expressed in terms of the Larmor precession frequency,
which is given by

ωL =
∣∣∣∣gJ mJ

µBB

~

∣∣∣∣ (3.24)
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Figure 3.2: Zeeman structure for the 7S3 ←→ 7P4 transition in 52Cr. The numbers close to
the transition lines are the squares of the Clebsh-Gordan coefficients denoting the coupling
strength to σ+, σ− and π light.

External magnetic fields can be used to tune the atomic transition frequency (see
Equation 3.8) or, in inhomogeneous magnetic fields, to trap the atoms in a magne-
tostatic trap (see Chapter 4).

Optical dipole transitions between electronic states of an atom have to satisfy the
selection rules ∆mJ = 0,±1 arising from angular momentum conservation for a
photon having spin 1. In a two-level atom, the coupling constant between ground
and excited state is given by the Rabi-frequency ΩR (Equation 3.3). For multi-level
atoms, the addition rule for angular momenta have to be taken into account. This
results in additional coupling constants, the squares of the so-called Clebsh-Gordan
coefficients [92]. As an example for a multi-level atom, we show in Figure 3.2 the
7S3 ←→ 7P4 transition in 52Cr.

3.4 Polarization gradient cooling

First optical cooling experiments of multi-level atoms achieved much lower temper-
atures than predicted by the Doppler cooling theory [93]. Soon thereafter, a the-
oretical explanation was found independently by two groups [86, 94]: polarization
gradient cooling. We will briefly discuss the basic concepts in the following.

Sub-Doppler cooling mechanisms such as polarization gradient cooling are multi-
photon cooling processes of multi-level atoms in a light field with a spatially varying
polarization. In contrast to Doppler cooling, the cooling mechanisms do not rely on
the Doppler shift, but rather on a motional coupling of the internal state population
to the light field. The most commonly used 1D light field configurations consisting
of two counterpropagating laser beams are called lin ⊥ lin and σ+/σ−.
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In the lin ⊥ lin configuration, the two laser beams have orthogonal linear polar-
izations. Along the direction of the laser beams, the polarization of the light field
changes from linear–σ+–linear–σ− over half an optical wavelength. At this point the
Clebsh-Gordan coefficients become important. They determine how strongly the al-
lowed transitions couple to the local light field polarization. Different Clebsh-Gordan
coefficients result in different optical potential depths (see Equation 3.4). Optical
pumping an atom at rest achieves a steady state population in which the state with
the lowest energy (with the strongest coupling to the light field) is populated most.
An atom moving in a polarization gradient light field has to climb a potential hill at
the cost of kinetic energy, since its atomic substate population does not correspond
anymore to the lowest energy configuration of the new polarization. A finite optical
pumping time constant allows to maintain this population imbalance resulting in a
strong damping force. Since the atom always climbs a potential hill, this cooling
mechanism is also called “Sisyphus cooling” in analogy to the Greek mythology. The
cooling process is based on the interplay of two time scales: the optical pumping
time and the time it takes an atom to move by half an optical wavelength. If the
atom is too slow, optical pumping can maintain the steady state population and
no damping occurs. If the atom is too fast, the optical potentials average to zero.
From these considerations, it is obvious that lin ⊥ lin cooling is only effective over a
small range of velocities corresponding to a Doppler shift of typically one fourth of
the linewidth centered around zero velocity. Just as is the case for Doppler cooling,
kinetic energy is converted to photon energy by spontaneous emission during the
optical pumping process.

The cooling principle is slightly different for the σ+/σ− configuration in which the
two laser beams are σ+ and σ− polarized. This results in a linear polarization
everywhere, rotating by 2π over an optical wavelength. If we define our quantization
axis always by the direction of the local electric field polarization, only π transitions
can be excited and no optical potential gradient exists. Consider an atom with a
transition J = 0 → J = 1 at rest in such a light field configuration. The difference
in Clebsh-Gordan coefficients leads to a large population of the mJ = 0 state at the
expense of the mJ = ±1 states during optical pumping. For a moving atom, the
rotation of the quantization axis given by the local electric field mixes the Zeeman
substates. If the atom is moving faster than a typical optical pumping time required
to reach steady state, the atomic substate populations for a moving atom lag behind
the steady state. The population difference is such, that the atom preferentially
absorbs photons from the counterpropagating laser beam. This leads to strong
damping forces comparable to the lin ⊥ lin configuration. For both configurations,
the damping coefficient scales linearly with the detuning of the laser beam, whereas
the capture velocity is inversely proportional to the detuning. This is in contrast
to Doppler cooling which achieves a minimum temperature at a detuning of −Γ

2 .
Therefore, the damping forces for sub-Doppler cooling are larger by a factor of 2 |δ|Γ .
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Figure 3.3: One-dimensional principle of operation of a magneto-optical trap. In addition
to laser cooling, an atom experiences a restoring force which is directed to the trap center.
The energy of the Zeeman substates in the excited state is shifted by the magnetic field
gradient in such a way, that the atom comes more into resonance with the beam opposing
the displacement from the center of the trap.

Since the photon diffusion constants are comparable, much lower temperatures can
be achieved with the polarization gradient cooling mechanisms. The theoretical
limit is given by the photon recoil temperature Trec = ~2k2

2mkB
. More sophisticated

cooling mechanisms can reach even lower temperatures by exploiting internal state
coherences to decouple atoms from the light field that are moving at velocities below
the recoil velocity or use Raman transitions between spectrally resolved vibrational
levels in a trap (see review article by Balykin et. al. [95] and references therein).

σ+/σ− cooling is most commonly used in magneto-optical trapping schemes, which
will be described in the next Section.

3.5 Magneto-optical trap

The cooling mechanisms and light field configurations discussed so far can only slow
the atoms down, but are unable to trap them. In general, a trap is characterized by
a restoring force which is directed towards the trap center. This can be achieved by
breaking the symmetry along the cooling laser beams and thus enabling the atoms
to distinguish between the laser beam directions. In a magneto-optical trap (MOT)
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the symmetry is broken by a magnetic field gradient with a zero crossing at the
center of the trap. The atom can distinguish between the counterpropagating laser
beams if they couple to different atomic (Zeeman) levels. Therefore, in general only
multi-level atoms, where the cooling laser drives a F → F +1 transition are suitable
for magneto-optical traps. The simplest MOT configuration is shown in Figure 3.3.
An atom with a single ground state | g, 0 〉 and three excited states | e, 0 〉, | e,±1 〉
moves in the light field of two counterpropagating σ+/σ− polarized laser beams. The
magnetic field gradient shifts the energy of the Zeemann substates in the excited
state. As a result, an atom moving at small velocity comes more into resonance with
the laser beam opposing the displacement from the trap center. This increases the
force from that beam acting on the atom. The net force from both laser beams is
therefore directed towards the trapping center. In the low intensity ( I

Is
¿ 1) and

low velocity (|kv| ¿ Γ and |kv| ¿ |δ|) limit, the total force acting on an atom is
given by

F = −α v − κMOTz with (3.25)

κMOT = −8∆µB′k
δ/Γ

(1 + 4δ2/Γ2)
I

Is
, (3.26)

where α is the damping constant given by Equation 3.12, κMOT the spring constant
and B′ the magnetic field gradient. The volume of the trap is determined by the
capture radius Rc, at which the beams become resonant with the atomic transition.
Atoms far beyond Rc are heated and expelled from the trap. Magneto-optical traps
can capture atoms having a velocity below the capture velocity vc, which can be
approximated by the maximum radiation force and the diameter of the trapping
region, 2Rc:

1
2

mv2
c = 2RcFsc. (3.27)

Typical values for the capture velocity are between 10 m/s and 30 m/s.

Extension of this one dimensional magneto-optical trapping scheme in two and three
dimensions is easily accomplished. In the standard 3D configuration, a magnetic
quadrupole field provides a linear magnetic field gradient along all three axes. Three
pairs of σ+/σ− polarized laser beams along the same axes cool and trap the atoms.
Figure 3.4 shows the two dimensional configuration used in our experiments. A two-
dimensional magnetic quadrupole field together with two pairs of σ+/σ− polarized
laser beams provide cooling and trapping in radial (x, y) direction. Cooling along
the axial degree of freedom (z) is accomplished by an additional pair of σ+ polarized
laser beams. In this direction the atoms are only Doppler cooled, since polarization
gradient cooling would require a σ+/σ− light field configuration, which is not desired
in our setup (see Chapter 6).
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Figure 3.4: Light and magnetic field configuration for a 2D-MOT. Black lines are magnetic
field lines, solid arrows denote the direction and polarization of the cooling light.

For an extensive review of the properties of magneto-optical traps, refer to [89] and
references therein.

In 3D magneto-optical traps, typically atomic densities on the order of 1011 cm−3 and
atom numbers exceeding 1010 at temperatures of around 100µK have been achieved.
The ultimate limit in this type of trap are inelastic excited state collisions between
atoms in the ground state and atoms excited by the MOT laser. Although many
groups have investigated the possibility of the so-called “all-optical Bose-Einstein
condensation”, in the sense that all cooling steps are performed by optical means,
this goal has not been achieved so far. Instead, purely magnetic and lately also
far-off resonant optical dipole traps [25, 42, 96, 97] have opened the way to higher
densities and colder temperatures by eliminating the near-resonant cooling laser.
We will discuss magnetic trapping of neutral atoms in the following Chapter.



Chapter 4

Magnetic trapping

In this Chapter the basic principles of magnetic trapping of neutral atoms are out-
lined. I will concentrate on the magnetic field configuration of a Ioffe-Pritchard trap,
since this trap type is used in the experiments presented in this thesis. Different trap-
ping regimes are discussed and an estimate of Majorana spin-flip losses for very low
magnetic offset fields will be given.

4.1 Introduction

Magneto-optical trapping of atoms, as described in the previous Chapter, is a pow-
erful tool for a large variety of atomic physics experiments. Nevertheless, the quest
for even colder and denser atomic gases continued. Inelastic loss processes in the
presence of near-resonant cooling light limit the density and the achievable tempera-
ture in a MOT. Purely magnetic traps together with evaporative cooling (see Section
9.4.4) have led to the realization of Bose-Einstein condensates in dilute atomic gases
[1, 2, 3, 98].

We have already seen in Section 3.3, that the Zeeman sublevels experience an energy
shift in a magnetic field ~B according to ∆EZS = −~µ · ~B = µzB, with the projection
µz = µ = −gJ mJ µB of the magnetic moment ~µ onto the quantization axis along
~B. This effect can be used to magneto-statically trap the atoms in an inhomoge-
neous three-dimensional magnetic field configuration ~B(~r). An atom in such a field
configuration is subject to a conservative force ~FB(~r) = ~∇(~µ · ~B(~r)). Depending on
the orientation of the projection of the magnetic moment onto the external field,
the atoms are either called ”high-field seekers”(~µ parallel to ~B(~r), gJ mJ < 0) or
”low-field seekers”(~µ anti-parallel to ~B(~r), gJ mJ > 0). Since Maxwell’s equations
forbid a static magnetic field maximum in free space [99], only low-field seekers can
be trapped in a magneto-static trap.

22



4.2. THE IOFFE-PRITCHARD TRAP 23

Figure 4.1: The standard Ioffe-Pritchard configuration. Four parallel wires (Ioffe-bars,
green) carrying the same current in alternating directions produce a radial 2D quadrupole
field. A pair of dipole coils (red) generate a curvature field in axial direction which is com-
pensated at the center of the trap by the homogeneous field of a pair of offset compensation
coils (blue).

Purely magnetic traps are usually rather shallow compared to the kinetic energy
of thermal atoms, since the interaction between the magnetic moment of an atom
and reasonably large magnetic fields is weak. Typically, the atoms need to be pre-
cooled to temperatures below 1 mK, which is most commonly achieved with optical
cooling techniques (see Chapter 3). So it was not before 1984, when optical cool-
ing techniques had been sufficiently evolved, that neutral atoms could be trapped
magnetically [100]. Several magnetic trap configurations have been proposed and
implemented [95, 101, 102]. The most widely-used trapping field configuration for
storing ultra-cold atoms is of the Ioffe-Pritchard type, which will be discussed in
detail in the next Section.

4.2 The Ioffe-Pritchard trap

The Ioffe-Pritchard trap (IP trap) has originally been invented by Ioffe for plasma
confinement [103]. Pritchard has adopted the magnetic field configuration to neutral
atom trapping [104]. It can be implemented with a wide variety of current carrying
wire configurations, including the baseball trap [8], 4-Dee trap [105], QUICK trap
[106] and the cloverleaf trap [107]. All these different coil configurations produce to
lowest order the same magnetic trapping field. We have implemented our IP trap in
the cloverleaf configuration (see Section 5.1). Its trapping potential is easiest derived
from the simple setup shown in Figure 4.1. The four Ioffe-bars produce a transla-
tionally invariant 2D quadrupole field in the xy-plane (see magnetic field lines in
Figure 3.4) which provides radial confinement. Axial confinement is achieved with a
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pair of dipole coils (sometimes also called “pinch” coils) which generate a quadrat-
ically increasing magnetic “curvature” field along the z direction. The magnetic
offset field of the dipole coils at the center of the trap is partially compensated by
the homogeneous field of a pair of offset compensation coils. A full evaluation of the
Biot-Savart integral for this current configuration to second order in the coordinates
yields the magnetic field of the Ioffe-Pritchard trap:

~B(~r) =




0
0
1


B0 +




x

−y

0


 B′ +




−xz

−yz

z2 − 1
2(x2 + y2)


 B′′

2
. (4.1)

The field is characterized by the magnetic offset field B0, the radial gradient B′ and
the axial curvature B′′. In the adiabatic limit (see Section 4.2.4), the magnetic mo-
ment of the atom follows the direction of the magnetic trapping field. The trapping
potential can then be simplified to U(~r) = µ| ~B(~r)|, where the magnitude of the
magnetic field is given by

| ~B(~r)| = B(~r) =√[
B0 +

B′′

4
(2z2 − x2 − y2)

]2

+
[
B′y +

B′′

2
yz

]2

+
[
B′x− B′′

2
xz

]2

(4.2)

We have plotted the B(~r) and its gradient for typical trap parameters of B0 = 1 G,
B′ = 150 G/cm and B′′ = 150 G/cm2 in Figure 4.2. The shape of the trapping potential
seen by the atoms depends on the specific trap parameters and the size (i.e. the
temperature) of the atomic cloud. We will discuss the stability and different regimes
of the trap in the following subsections.

4.2.1 Instability points

One can see from Equation 4.1 that the radial and axial magnetic field components
are coupled via the last term. Therefore, the radial field parameters are dependent
on the position in z direction. In a pathological situation, the trap can even lose its
radial confinement. This occurs in the xy-plane for

0 =
dB(x, 0, z)

dx
= B′′(B′′x2 − 4B0) + 8B′(B′ −B′′z).

Keeping only the terms linear in the coordinates (small displacement from the trap
center), we obtain the instability points for the radial confinement along the z di-
rection:

zd = ±
(

B′

B′′ −
B0

2B′

)
. (4.3)
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Figure 4.2: Magnetic field of a Ioffe-Pritchard trap. The magnitude of the magnetic field
B(~r) is color coded (blue: low magnetic field to red: high magnetic field). The contour lines
have a spacing of 1G. Black arrows show the direction and magnitude (arrow length) of the
magnetic field gradient. The magnetic field was calculated according to Equation 4.1 using
the following trap parameters: B0 = 1 G, B′ = 150 G/cm and B′′ = 150 G/cm2.

The trap develops additional minima at four points off center from the trap. These
additional minima strongly deform the trap and allow the atoms to occupy a much
larger volume, although they are not expelled from the trap. Such a configura-
tion is shown in Figure 4.3. In this regime, images of the atomic cloud exhibit a
characteristic x-pattern which we have observed in our experiments.

4.2.2 Harmonic regime

For cold (small) clouds compared to the potential energy at the center of the trap
(µB0 À kBT ) we can neglect all higher order terms in the coordinates in a series



26 CHAPTER 4. MAGNETIC TRAPPING

Figure 4.3: Magnetic field of a shallow Ioffe-Pritchard trap. Same trap as in Figure 4.2,
except for a radial gradient of B′ = 50 G/cm and a different axis scaling. Note the radial
deformation of the trapping field towards the instability points. One of them is marked by
a white circle.

expansion of the square root in Equation 4.2. The potential is then given by

Uht(~r) = µ

(
B0 +

1
2
Br
′′(x2 + y2) +

1
2
B′′z2

)
(4.4)

with

Br
′′ =

B′2

B0
− B′′

2
. (4.5)

The resulting trapping potential (neglecting gravity) is harmonic in all three dimen-
sions with trap frequencies

ωx = ωy =

√
Br
′′µ
m

(4.6)

ωz =

√
B′′µ
m

. (4.7)
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It is important to note, that the radial trap frequency is sensitive to the magnetic
offset field via Equation 4.5. Thus radial compression of the trap can be accom-
plished by lowering B0. The atomic motion in a harmonic trap is separable along
the principal axes of the trap. Therefore, energy conservation holds in each direction
separately.

The density distribution of a thermal cloud of atoms subject to this trapping poten-
tial is given by a Gaussian distribution

nht(~r) = n0 exp
(
−Uht(~r)

kBT

)
= n0 exp

(
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)
, (4.8)

where

σx = σy =

√
kBT

µBr
′′ =

1
ωz

√
kBT

m
and (4.9)

σz =

√
kBT

µB′′ =
1
ωr

√
kBT

m
(4.10)

are the 1/
√

e sizes of the distribution. The peak density n0 of the trap is the ra-
tio between the number of trapped atoms, N , and the occupied volume Vht =
(2π)3/2σxσyσz. In our experiments, the atoms are usually imaged with a charge-
coupled device (CCD) camera along a specific direction. The density distribution
(Equation 4.8) has to be integrated along the imaging axis (e.g. the x direction) to
obtain the distribution recorded by the camera:

ñht(y, z) = n0

√
2πσx exp

(
− y2

2σ2
y

− z2

2σ2
z

)
. (4.11)

Taking the linear potential produced by gravity into account, the position of the den-
sity maximum is shifted and the density distribution becomes asymmetric. For the
harmonic trap parameters used in our experiments, gravity can safely be neglected.

4.2.3 Linear regime

We can gain further insight into the trapping potential by assuming a low offset
field B0 compared to all other magnetic field components seen by the atoms (µB0 ¿
kBT ). Neglecting the offset field and keeping only the terms to lowest order in the
coordinates, the trap can be approximated by a linear potential in the radial and
a harmonic potential in the axial direction. The trapping potential in the linear
regime is then given by

Ult(~r) = µ

(
B′√x2 + y2 +

1
2
B′′z2

)
. (4.12)
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It is worthwhile to note, that, in contrast to the harmonic trap, this potential is
not separable in the coordinates. As a consequence, the atomic motion in such a
trap is not separable and so-called anharmonic mixing between different degrees of
freedom occurs. The density distribution in the linear regime is characterized by
the 1/e length

ξ =
kBT

µB′ (4.13)

in the radial direction and reads

nlt(~r) = n0 exp
(
−Ult(~r)

kBT

)
= n0 exp

(
−

√
x2 + y2

ξ
− z2

2σ2
z

)
. (4.14)

Integration along the imaging axis yields the density distribution as seen by the
camera:

ñlt(y, z) = 2|y|n0 exp
(
− z2

2σ2
z

)
K1

( |y|
ξ

)
, (4.15)

where K1(x) is the modified Bessel function of the second kind of first order.

For very weak radial confinement as used in our CLIP trap (see Chapter 6), grav-
ity has to be taken into account. The radial symmetry is broken by the linear
gravitational potential along the y direction. This results in an asymmetric cloud
characterized by an additional 1/e length

ξg =
kBT

mg
, (4.16)

where g = 9.81 m/s2 is earth’s acceleration. Gravity does not change the position
of the maximum. The full density distribution and the integrated distribution then
read

nlt,g(x, y, z) = n0 exp

(
−

√
x2 + y2

ξ
− y

ξg
− z2

2σ2
z

)
(4.17)

ñlt,g(y, z) = 2|y|n0

[
exp

(
− z2

2σz
− y

ξg

)
K1

( |y|
ξ

)]
, (4.18)

respectively. In the linear regime, the trap volume has to be determined from a
numerical integration of Equation 4.15 or 4.18.

4.2.4 Majorana spin-flip losses

One of the major advantages of a Ioffe-Pritchard trap over the much simpler
quadrupole magnetic trap [78, 101] is its finite offset field at the center of the trap.
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Figure 4.4: Lifetime of an atomic ensemble subject to Majorana spin-flip losses in the
CLIP trap for different temperatures.

For vanishing offset field, the Larmor precession frequency ωL = µB0/~ (see Equa-
tion 3.24) can become smaller than the oscillation frequency ωt of the atom in the
trap. The spin can no longer adiabatically follow the local magnetic field direction.
Motional coupling between different magnetic substates can lead to a spin flip to a
high-field seeking state and the atom is ejected from the trap [108]. These so-called
Majorana spin-flip losses can be suppressed by providing a magnetic offset field high
enough to maintain ωL À ωt. Sukumar et. al. [109] have derived an expression for
the high temperature limit (kBT > 2~ωt) of the spin-flip transition rate w for the
radial oscillation of an atom in the center of a Ioffe-Pritchard trap:

w =
π~ω2

t

kBT
exp

(
−∆EZS + ~ωt

kBT

)
, (4.19)

where ∆EZS is the Zeeman energy released during the spin-flip. For chromium in the
mJ = +3 state, a transition to the mJ = +2 state corresponds to ∆EZS = 2µBB0.
Note, that the trap frequency also depends on the offset field via Equation 4.6.
Averaging the position dependent spin-flip rate over the density distribution along
the z direction yields the inverse lifetime τM = 1/<w> of the atomic ensemble in
the trap. In Figure 4.4 we have plotted this lifetime vs. the magnetic offset field
in the CLIP trap configuration (see Chapter 6: B′ =12 G/cm, B′′ =11 G/cm2) for
different temperatures of the cloud. The rather small radial magnetic field gradients
already allow a small offset field of B0 = 40 mG to achieve a lifetime of more than
10 s. It is important to note though, that after compression of the trap to its
maximum trapping fields, the Majorana loss rate can be significant. In Figure 4.5
we have plotted the Majorana loss rate for typical trapping parameters of the fully
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Figure 4.5: Lifetime of an atomic ensemble subject to Majorana spin-flip losses in the
fully compressed Ioffe-Pritchard trap for different temperatures.

compressed magnetic trap (B′ = 150 G/cm, B′′ = 100 G/cm2). It is obvious from
the Figure, that lowering the offset field to values below 1 G is only advisable for
rather could clouds. The atoms can be quite hot (≈ 1 mK) in the compressed
trap, therefore the offset field should be lowered only after precooling the atoms. A
multi-step sequence, alternating between cooling steps and lowering the offset field,
might give the best results. Most experiments in this thesis have been performed at
magnetic offset fields on the order of 4G, for which the Majorana-limited lifetime is
on the order of minutes for temperatures around 100µK.



Chapter 5

Experimental setup and

methods

In this Chapter I describe the technical details of the experimental setup including
magnetic trap, vacuum and laser system as well as the data evaluation procedure. For
the experiments presented in this thesis, we have used two separate vacuum systems
and magnetic traps, which differ only in minor technical details. I will concentrate
here on the description of the first (“old”) system, which has been used to perform
the measurements for the CLIP trap (Chapter 6), the Doppler cooling (Chapter 7)
and the inelastic ground state scattering properties (Appendix E). Where necessary,
we will mention variations in the second (“new”) system, which has been used to
measure the elastic ground state scattering properties of chromium (Chapter 9).

5.1 The cloverleaf magnetic trap

We have implemented a Ioffe-Pritchard trap in the cloverleaf configuration [107].
Our selection was motivationed by the compatibility of the cloverleaf trap with the
existing vacuum chamber and the flexible control of the trap parameters, including
the possibility to operate the trap at arbitrarily low magnetic offset fields. Another
advantage is the excellent mechanical and optical access to the trapped atoms. As a
general rule for magnetic traps, all coils need to be as close as possible to the trapping
center to provide strong confinement. In a standard IP trap as shown in Figure 4.1,
the Ioffe bars need special vacuum chamber designs, e.g. employing glass cells [110]
or sophisticated vacuum feed-throughs [111]. In the cloverleaf configuration, the Ioffe
bars are replaced by eight so-called “cloverleaf” coils creating a radial 2D quadrupole
field. This setup provides a 2π optical and mechanical access in radial direction as
shown in Figure 5.2.
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Figure 5.1: Qualitative derivation of the cloverleaf field. The length of the arrows in the
mid-plane indicate the magnitde of the magnetic field produced by the corresponding coil
having the same color. (a) Two circular coils produce an axial curvature field, but no radial
gradient at the center between the coils. (b) Coils that are pinched along two orthogonal
directions produce an axial curvature and a radial gradient. (c) Each pinched coil (left) can
be substituted by three smaller coils (center): a dipole coil between two gradient coils. Two
additional gradient coils (drawn in black) double the radial gradient and form together with
an offset coil (drawn in red) one coil package of the cloverleaf trap.

Figure 5.1 illustrates the main principle of the cloverleaf configuration. Consider two
circular coils with radius R lying in the xy-plane, separated along the z-direction by a
distance d > R as shown in Figure 5.1(a). Both coils produce a magnetic field which
is decreasing with increasing distance from the coils. At the center between the two
coils the fields add up and yield a quadratically increasing magnetic field along the
z axis. Due to symmetry, the radial magnetic field components cancel in the mid-
plane between the coils, since they have the same magnitude but opposite sign. This
situation changes for the configuration shown in Figure 5.1(b), where the two coils
are pinched along orthogonal directions. The magnetic field produced by the long
side of the elliptically shaped coils is stronger than that from the short side. Thus,
the radial field components of the two coils do not cancel any more and we obtain
in addition to the axial curvature a radial magnetic field gradient1. Figure 5.1(c)

1This is true only for the radial field components, not for the gradient of the absolute value of the

magnetic field, | ~B(~r)|. The strong axial offset field in this configuration makes the trap harmonic
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Figure 5.2: Coil setup for the cloverleaf magnetic trap. (a) Sketch of the coil configuration
with arrows indicating the direction of the current. (b) Rendered image of the implementa-
tion for the new system (to scale). The four cloverleaves (blue) in each coil package surround
the dipole coil (green). The offset coil (red) is placed behind the leaves.

shows the evolution of the cloverleaf configuration (right) from one of the pinched
coils (left). An additional offset coil compensates the offset field of the dipole coil at
the center of the trap. A very nice feature of the cloverleaf trap configuration is the
ability to independently control the radial magnetic field gradient, axial curvature
and offset field by adjusting the current through the cloverleaf, the dipole and the
offset coils, respectively.

Our implementation of the cloverleaf trap is shown in Figure 5.2. Cloverleaf and
dipole coils are located in the same plane to achieve maximum radial gradient with-
out sacrifying axial curvature. The offset coils are placed behind the cloverleaves and
produce an almost homogeneous field cancelling the field of the dipole coils at the
center of the trap. The actual shape of the cloverleaf coils is not circular but rather
elliptical to fill the available space most efficiently (see Figure 5.2). We have run a
computer simulation of the magnetic fields produced by the coils. The coil shapes
and winding patterns were optimized to achieve both, a high curvature and a high
gradient field under a few technical constraints given by our vacuum system, power
dissipation (thermal expansion) and the availability of commercial power supplies
and copper tubing. The need for fast current switching times (¿ 1ms) puts a limit
on the inductivity and thererfore the number of loops for each coil2. Consequently,
the coils are made out of a few loops of hollow copper tubing to allow for water cool-
ing. For the cloverleaves (elliptical with half axes 12.5x25.6 mm, 10 layers high and
2 layers thick), we used round copper tubing with an outer diameter of 3 mm and
an inner diameter of 1.5 mm. The same tubing was used for the dipole coil (circular
with 12.6 mm inner diameter, 10 layers high). The offset coil (cicular with 68 mm

also in the radial direction. Only with an offset compensation field supplied by additional offset

coils, a truly linear trap in radial direction can be achieved.
2In principle, the ratio of current density vs. power dissipation increases with decreasing wire

diameter.
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outer diameter, 4 layers high and 3 layers thick) was wound using 4 mm square cop-
per tubing with a wall thickness of 0.5 mm. All copper tubings were isolated prior
to winding using Kapton tape3. To mechanically fix the position of the coils, they
were glued into a tightly fitting plastic form using two component low expansion
epoxy glue4 together with a mechanical support that is used to mount the trap to
the vacuum chamber. For fine adjustments of the offset field, we have additional
moveable offset coils. They consist of a single circular loop of solid copper with a
diameter of 65mm. Placed on a moveable support behind each coil package and
connected in series to the offset coils, these coils allow small corrections to the offset
field after installation of the trap.

The coil assemblies are mounted inside two re-entrance windows made out of glass5,
which permit to operate the coils for the trap outside the vacuum while achieving
a minimum separation of 37 mm between the cloverleaf coil assemblies. We use
a power supply6 with 16.8 V/300 A for the dipole and offset compensation coils
which are connected in series to achieve common mode rejection of current noise.
An electronic MOSFET resistor bank in parallel with the offset coils controls the
magnetic offset field. In addition, we use compensation coils wound around the
chamber for fine tuning the offset field. We achieve an axial curvature of 116 G/cm

at 300 A current through the coils. The cloverleaves are powered by a separate
current supply7 with 30V/330 A producing a radial gradient of 150 G/cm at 300A.
The measured values agree to within 15 % with the numerical simulation of the
trapping fields. Heating of the coils during operation could be reduced to a maximum
of 20 ◦K by temperature stabilized high pressure (12 bar) cooling water which flows
through the copper tubing. Fast switching of the trap is accomplished by using
IGBT’s (Insulated Gate Bipolar Transistor) and a carefully designed free wheeling
circuit. We achieve switching times below 50µs. Residual eddy currents in the steel
chamber prolong the magnetic field switching time to around 300µs.

In the old system, we experienced a severe thermal drift of the magnetic trap. A
change in distance of the coil assemblies of only 100µm results in a change of 0.27 G
offset field corresponding to a change in final temperature after radio-frequency
induced evaporation (see Section 9.4.4) of almost 40µK. This inacceptably large
drift was probably due to thermal expansion of the brass support of the trap which
was mounted to the vacuum chamber. In the new system, the re-entrance windows
were made out of steel with a 2.5 cm diameter window melted onto a small tube
protruding from the center of the bucket. This design allows the coil assembly to be
pressed into the buckets by heavy duty screws. After sufficient warm up time, we

3CMC Klebetechnik GmbH
4Fa. Lord, 310 A/B
5Caburn MDC, also known as “inverted vacuum windows”
6Agilent technology, model HP 6682A
7Power Ten, model P63D 30330)
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observe a drift in the magnetic offset field of less than 10 mG during several hours
of operation. With the new trap, we achieve trapping fields of B′ =200 G/cm in
radial and B′′ =324 G/cm2 in axial direction with the same power supplies as above
but a different coil geometry adopted to larger re-entrance windows. We observe
a rather slow decay (≈ 5ms) of stray magnetic offset fields after switching off the
new trap which is presumably caused by eddy currents in the steel buckets and the
copper seals of the vacuum flanges for the re-entrance windows. This effect puts a
lower limit on the minimum time-of-flight after which the number of atoms can be
extracted accurately from absorption images (see Section 5.5).

Further information on the magnetic trap setup and construction for the old system
can be found in Reference [112] and for the new system in Reference [113].

To allow radio-frequency (rf) forced evaporative cooling (see Section 8.14), an ad-
ditional single-loop coil was attached in front of one cloverleaf coil-package. This
low inductance coil is used to couple the radio-frequency into the magnetic trapping
region. A 35 W power amplifier8 connected to this coil was operated at a typical
output power between 1 and 5W. Frequency and amplitude of our frequency source
9 were controlled via analog inputs having a modulation bandwith of 10 kHz. For
radio-frequencies exceeding 50 MHz, we used a commercial frequency generator10.

5.2 The vacuum system

The ultra-high vacuum system (Figure 5.3) consists of two vertically arranged steel
chambers connected by a 50 cm long Zeeman slower tube. In the lower oven-chamber
chromium is sublimated at temperatures of around 1750 K in a high temperature
effusion cell11. The cell is resistive heated via tungsten wires. Commercially available
chromium granulate is deposited in a CaO stabilized zirconium dioxide crucible12

which itself is placed inside a tungsten crucible13. The combination of two crucibles
is necessary, since chromium forms a low-melting alloy with tungsten [76] and the
zirconium dioxide crucibles tend to break and react with the tantalum rods holding
the crucibles. A 3mm thick aperture with a hole of 1 mm diameter inside the
crucibles collimates the chromium beam. A movable metal plate connected to a
stepper-motor-operated mechanical feedthrough allows shutting the atomic beam
on and off within 200 ms. The oven chamber is pumped by a two-stage turbo-

8ENI, model 440LA
9self-made frequency synthesizer based on Analog Devices’ model AD-9851

10Rohde & Schwarz, model SML-01
11VTS J. Schwarz GmbH, model HT-TA-35-10/W (special design)
12Haldenwanger, special design
13VTS J. Schwarz, model W-T-HTC-UK-802
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molecular pump assembly14 to around 10−8 mbar. In the new vacuum system a
much lower pressure has been achieved by replacing the turbo-molecular pumps by
an ion pump15. The upper science-chamber is pumped by an ion pump15 and a
Ti:sublimation pump16 yielding a pressure in the lower 10−11 mbar regime. The
spin-flip Zeeman-slower [78, 114] is used to slow the atoms down longitudinally on
their way from the oven- to the science-chamber. A counterpropagating laser beam
is kept into resonance with the decelerating atoms by means of an inhomogeneous
magnetic field (see Section 3.1.2) created by an especially designed solenoid wound
around the tube. With an inner diameter of 1.5 cm, the Zeeman-slower tube also
acts as a differential pumping stage. An additional 7 cm long conical insert inside the
lower end of the Zeeman-slower tube further increases the efficiency of the differential
pumping stage to maintain a pressure difference between the upper and the lower
chamber of more than three orders of magnitude. A 45 ◦-mirror inside the vacuum on
top of the science-chamber reflects the laser light for the Zeeman-slower through the
Zeeman-slower tube onto the oven aperture, where the light has a focus. This mirror
is being continuously re-coated with chromium by the atomic beam. The reflectivity
of a chromium coated mirror for the laser light at 426 nm has been measured to be
around 70 %. Several viewports attached to the science-chamber are needed for
the laser light of the magneto-optical trap and fluorescence and absorption imaging
along the horizontal axis. Two re-entrance vacuum windows made out of glass allow
the operation of the cloverleaf coils in the science-chamber outside the vacuum.

5.3 The laser system

5.3.1 Cooling laser

Cooling and trapping is performed on the 7S3 ↔7P4 transition of 52Cr at a wave-
length of 425.6 nm. The laser light for this transition is generated by frequency
doubling the output of an Ar+-laser17 pumped Ti:sapphire-laser18 in a self-made ex-
ternal, pump beam resonant cavity using a 10 mm long Brewster cut LBO crystal.
We obtain 300 mW of blue light at 2 W fundamental input power. Further details
on the frequency doubling system can be found in reference [115]. Figure 5.4 shows
a schematics of the blue laser system. The laser is actively frequency-stabilized to
the cooling transition in the chromium spectrum (beam II). Doppler-free polariza-
tion spectroscopy is performed in a chromium gas which is produced by cold gas

14Pfeiffer Vacuum, models TMU 260 and TMH 064 with a membrane pump from Vacuumbrand,

model MD 4T
15Varian, model Plus 75 Diode
16Varian, model TSP filament cartridge
17Coherent, model Sabre 25 TSM, multi-line visible mode (MLVIS)
18Coherent, model MBR 110



38 CHAPTER 5. EXPERIMENTAL SETUP AND METHODS

P
I

Lock-In

L

CLCL

L L

PD

M

M

M

M

Ar -Laser: 17 W MLVS
+

titan-sapphire Laser
2.0 W

851 nm

PI

PZT

0.

0.
2.

1.

M M

M

AOM
100 MHz

AOM 100 MHz
as Chopper

HCL+B:
-40...+40 MHz

l/2

PBS

PBS

PBS
l/2

l/4

l/4

M

L

MOT
-60...+40

MHz

Zeeman-
Slower

-200 MHz

to titan-sapphire
frequency lock

M

M

l/4

PD

PBS

-

SHG with

LBO: 300 mW

S

S

l/2OD

0.1.

M

0.1.

PBS

l/4

M

L

AOMs

90...140 MHz

S

425.6 nm

M

Imaging
-60...+40

MHz

beam I beam II

beam III

beam IV
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discharge in a chromium tube under an argon atmosphere [78]. The resonance fre-
quency of the atoms in the spectroscopy can be fine-tuned by Zeeman-shifting the
transition energy with an external magnetic field in the spectroscopy. We achieve a
long term frequency stability of around 1 MHz. An additional AOM can be placed
into the beam path for the spectroscopy via kinematic mounts. The AOM frequency
shifts the light for the spectroscopy by ≈ 150MHz (not shown). Keeping the lock
on the strong 52Cr resonance therefore results in the same frequency shift for the
cooling laser, now being resonant with the 7S3 ↔ 7P4 transition in 50Cr. A fre-
quency tunable and fast switchable laser beam for absorption imaging is obtained
by frequency shifting the laser light in a double-pass AOM19 (beam I) controlled by
a VCO (voltage controlled oscillator). We use a single-mode glass fiber to guide the
imaging light to the vacuum chamber. This improves the transverse mode quality
and beam pointing stability. The light for the spectroscopy and the imaging is ob-
tained from reflections of the blue light at the exit face of the LBO crystal20. The
main output of the frequency doubling cavity is split between the Zeeman slower
(beam III, 120 mW) and the three retroreflected MOT beams (beam IV, 60 mW
for all three beams) with an area of 11 mm2 each. For optimum performance of the
MOT, the z beam was adjusted to have less than 10 % of the total MOT intensity.
The frequency of the Zeeman-slower beam is fixed to 200 MHz below the atomic
resonance by frequency shifting the laser light for the spectroscopy (beam I). As
for the imaging light, a double-pass AOM is employed to allow fast switching and
frequency shifts of the MOT light by a few linewidths around the atomic resonance
without compromising the beam pointing stability. Beams III and IV are steered
to the vacuum system using a pair of mirrors for each beam. We found the repro-
ducability of the beam positions sufficient, provided a temperature stability in the
laboratory of below 2K could be achieved. In all experiments reported here, the
laser detuning for the MOT beams was set to −2Γeg, unless otherwise noted.

5.3.2 Repumping laser

Atoms in the metastable 5D4 and 5D3 states can be transfered to the ground state
by exciting them with repumper lasers to the 7P3 state from which they sponta-
neously decay into the ground state. Figure 5.5 shows a sketch of the experimental
setup. A commercial diode laser21 in the Littrow configuration [116] is tuned to the
5D4 ↔ 7P3 transition in chromium at a wavelength of 663.2 nm. It provides 5 mW
of repumping light in a 2 mm diameter beam. Optionally, the laser power can be

19In an AOM in double-pass configuration, the frequency shifted laser beam is retroreflected and

passes the AOM twice. This compensates the frequency dependence of the Bragg-angle and shifts

the frequency of the laser twice
20The Brewster condition for the entrance and exit faces of the crystal is only fulfilled for the

pump light.
21Toptica, model DL100
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increased to 15 mW by injection locking a slave laser diode. A second diode laser
system at 654.0 nm serves as repumper for the 5D3 ↔ 7P3 transition. Both laser
frequencies are locked to a mode of an evacuated and temperature stabilized Fabry-
Perot reference cavity made of Zerodur and Invar22 using the Pound-Drever-Hall
sideband modulation technique [117]. The laser light for the stabilization cavity can
be frequency shifted with double-pass AOMs to coincide with a cavity resonance
without altering the output frequency of the lasers for the experiment. We achieve
a frequency stability of typically 2 MHz/hour dominated by temperature drifts of the
Fabry-Perot cavity. Further details on the repumper laser system and the frequency
stabilization can be found in reference [118].

5.4 Computer control

Preparation and detection of ultra-cold atoms is a multi-step procedure requiring
precise timing of around 24 digital and 8 analog channels. A typical experimental
run consists of a sequence of 10-30 steps in which e.g. lasers and currents are shut
on or off, the current through the coils of the magnetic trap is ramped, or the power
and frequency of the radio-frequency ramp are adjusted. Automation of these steps
is a mandatory prerequisite for efficient experiments.

We have implemented our computer control system using cost-effective standard
IBM-PC compatible hard- and software. The control computer is equipped with an
AMD Athlon 1.2 GHz CPU and a 32 channel digital input/ouput PCI card23 and an
8 channel, 12 Bit analog output PCI card24 running under Microsoft Windows 2000.
The analog and digital output cards are synchronized via the card specific RTSI-bus
and are able to perform clocked pattern generation at a maximum rate of around
75 MBytes/s. One should avoid generating any traffic other than that for the pattern
generation on the PCI bus, since the bandwidth is shared among all components
and the very limited size of the onboard buffer does not tolerate a latency exceeding
80 µs. With this system we are able to generate arbitrary digital and analog patterns
at a rate of 100 kHz. The digital output signals from the computer are opto-coupled
to a 50 Ω driver which can also be controlled manually. The analog output signals
for the current supplies are decoupled from the computer using an isolated 1 : 1
amplifier. Most other analog signals are simply rescaled to the range required by
the attached device.

The experimental sequences are programmed in a graphical user interface based on
LabView25. The self-made sequencer software [119] allows to define states of the

22both materials have a very low thermal expansion coefficient
23National Insturments, model PCI-6533 (DIO-32HS)
24National Instruments, model PCI-6713
25National Instruments
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Figure 5.6: Screen shot of the computer control software. The sequence shown is used
as a module to load atoms into the CLIP trap (Section 6), compress the trap and perform
Doppler cooling (Section 7).
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system that last for a specified time until the system advances to the next state. A
state is characterized by certain digital and analog ouput patterns. A typical series
of states is shown in Figure 5.6. The software allows to program linear and nonlinear
analog ramps using standard mathematical functions, loops of sequences and to use
external modules of sequences. It is also possible to define constants that can be
used within the program. Automatic saving of the sequence file and generation of
an information file for the data evaluation software enforces documentation of an
experimental run.

5.5 Imaging and data evaluation

All relevant thermodynamic properties of an atomic ensemble can be obtained from
images of its density and momentum distribution. In this section we will discuss the
different imaging techniques used in this thesis and how the physical properties can
be derived from the pictures.

We use a 12Bit digital progressive scan charge coupled device (CCD) camera26,
connected to a standard IBM-PC compatible computer. A custom-made camera
control software based on LabView controls the exposure time of the electronic
shutter and saves the pictures to the hard drive. The camera is hardware triggered
by one of the digital output channels of the computer control board.

The density regime of the cloud determines the imaging technique to be used. Flu-
orescence imaging is mostly employed for large and hot clouds with a low optical
density. For clouds with a high optical density, absorption imaging is preferrable. We
will discuss the different imaging techniques and their applications in the following.

5.5.1 Fluorescence imaging

Fluorescence imaging is based on the collection of near-resonant laser light scattered
by the atoms. We use the laser beams for the magneto-optical trap to illuminate the
atoms for fluorescence imaging. The different polarizations of the six laser beams
yield an approximately unpolarized light field. As a consequence, even a polarized
sample of atoms is depolarized (all Zeeman substates are equally populated) after
a few optical cycles. Assuming a depolarized cloud in an unpolarized light field,
we can include the effects of different polarization coupling constants for multi-
level atoms by introducing a mean saturation intensity <Is > = Is/<CGK>, where
<CGK> is an average over the squares of the Clebsh-Gordan coefficients. For
chromium, <CGK> = 3/7 results in a mean saturation intensity which is larger by
a factor of 2.3 compared to the two-level atom saturation intensity [78].

26PCO, model PixelFly VGA
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Figure 5.7: Schematic setup for the imaging system (top view). The cloud of atoms is
imaged onto a CCD camera using lenses L3-L5 (2.6:1 magnification) or L3-L4 (1:1 magni-
fication). For absorption imaging, blue laser light from a single mode glass fiber (beam I
in Figure 5.4) is expanded in a telescope formed by the lenses L1 and L2. Polarization and
intensity of the light are adjusted by the half (λ/2) and quarter (λ/4) waveplates together
with the polarizing beam splitter (PBS).

Atoms scatter light at a rate given by Equation 3.6. For a cloud of atoms with a
small optical density, the intensity of the incident light is uniform over the cloud
and reabsorption of scattered photons can be neglected. The total photon scattering
rate of N atoms is then given by the incoherent sum of all single atom scattering
rates Γtot = NΓsc. For an unpolarized cloud and unpolarized light, the emission
pattern of the fluorescence light is isotropic. The solid angle fraction imaged onto
the camera determines how much of the fluorescence light is captured by the imaging
system. To increase this fraction and thus the signal to noise ratio, lenses with a
large diameter d and a small focal length f placed at a small distance (usually
corresponding to the focal length) from the cloud, should be used. These efficiency
considerations are summarized in the so-called “f-number” f/# = f/d. The spot
size27 of a lens illuminated with a parallel laser beam having a wavelength λ is then
given by ∆d = 2.44λf/#. The corresponding resolving power of an imaging system
according to the Rayleigh criterion is ∆x = ∆d/2.

Figure 5.7 shows the setup of our imaging system. For fluorescence imaging, only the
optics left of the vacuum chamber is relevant. The atoms are illuminated by all six
MOT beams tuned to the atomic resonance frequency producing an approximately
unpolarized light field. We use two 50mm diameter achromats28 (L3, L4) with a
focal length of 300 mm each in a 2f—2f imaging system with a magnification of
1. An additional lens with a focal length of 75 mm (L5) can be inserted to yield a
magnification (actually a reduction) of 2.6:1. The camera can be moved from the 1:1
imaging position to the 2.6:1 imaging position via kinematic mounts. The optical
resolution29 of the 1:1 imaging system has been measured with a USAF-1951 test
target to be 15µm. It is limited by the 10µm pixel size of our camera. After the

27defined as the diameter of the first order diffraction minimum
28Linos Photonics, model 32 2305
29distance between two black lines that were just distinguishable
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experiments for this thesis, a larger magnification was added resulting in a measured
resolution of 6µm.

A typical experimental sequence for a fluorescence image starts with switching off
the trapping field. After an adjustable time-of-flight the camera exposure is started
and the MOT laser beams are tuned to the atomic resonance and switched on for
an adjustable exposure time, which varies between 100µs and a few ms. After this
fluorescence picture, the atoms are removed from the trapping region and a back-
ground picture with the same laser light and exposure time is taken. The background
picture is subtracted from the fluorescence picture prior to data evaluation.

Each atom scatters many photons during fluorescence imaging. A diffusion process
and imbalances in the counterpropagating laser light intensities lead to a distortion
of the shape of the cloud for long exposure times. We found experimentally, that
clouds with an original size on the order of 500µm keep their original shape to within
10% for exposure times below 500µs. Smaller clouds or longer exposure times allow
only a determination of the number of atoms.

Accurate determination of the number of atoms in the atomic cloud requires precise
knowledge of laser light intensity and detuning, the solid angle fraction captured
by the imaging system, its transmission and the camera calibration. In the high
intensity limit, the scattering rate is to first order independent of the incident light
intensity and detuning, since all atoms scatter at a rate of Γ

2 (see Equation 3.6).
The solid angle fraction dΩ can be obtained from the lens diameter d and distance
f ′ À d from the center of the cloud

dΩ =
π(d/2)2

4πf ′2
. (5.1)

The transmission of the imaging system can either be measured or estimated from
the number of uncoated and anti-reflection coated glass surfaces. We calibrated our
CCD camera with a laser beam of known intensity which yielded an efficiency of
9.3× 10−18 Ws/pixelcount.

The images recorded by the camera reflect the density distribution of the atoms
integrated along the imaging direction. The number of atoms in the cloud can be
obtained from the calibrated pixelcounts summed over all pixels. We estimate the
accuracy of our atom number determination to around 20%. This was verified by
comparison with absorption images of identically prepared atomic clouds. Where
possible, we calibrated the fluorescence images to yield the same number of atoms
as absorption images.

In atomic clouds with a high optical density, the intensity of the incident light is
significantly reduced when passing through the cloud. This results in an intensity
gradient and thus a reduced scattering rate of atoms close to the center. As a
consequence, the observed density profile is distorted and the number of atoms
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underestimated. Absorption imaging uses exactly this effect to obtain an image of
the cloud and thus turns the disadvantage of strong absorption of photons into an
advantage.

5.5.2 Absorption imaging

The absorption imaging technique is complementary to fluorescence imaging.
Whereas in the latter photons scattered from a light beam are recorded, in ab-
sorption imaging the photons remaining in the illuminating laser beam are used to
obtain the density distribution of the cloud. The absorbing cloud casts a shadow
which can be recorded with a CCD camera.

It is well known from Beer’s law, that the light intensity in a homogenous absorbing
medium decreases exponentially with penetration depth x:

I(x) = I0e
−OD·x, (5.2)

where OD is the optical density of the medium. For a cloud of two-level atoms,
the optical density can easily be derived using the concepts of Chapter 3. In the
low intensity limit (I/Is ¿ 1), the light power scattered by a two-level atom can be
written as

Psc =
~ωlaserΓ

2

I/Is

1 + 4δ2/Γ2
= σλ(ωlaser) I, (5.3)

with

σλ(ωlaser) =
σ0

λ

1 + 4δ2/Γ2
. (5.4)

The resonant light scattering cross-section is given by

σ0
λ = 6πλ2 =

~ωatomΓ
2Is

, (5.5)

where λ is the transition wavelength divided by 2π. The intensity of light passing
along the x direction through a cloud of atoms with density distribution n(x, y, z)
is reduced by dI = −σλ(ωlaser) n(x, y, z) I dx. Integration yields Beer’s law (Equa-
tion 5.2), where the exponent of the exponential function is replaced by a position
dependent optical density of

ÕD(x, y, z) = −σλ(ωlaser)

x∫

−∞
n(x′, y, z) dx′. (5.6)

From the last equation it becomes clear, that the intensity profile of the laser beam
after having passed through the cloud contains the information about the integrated
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density distribution n(y, z) of the cloud. It can be reconstructed if the intensity
profiles of the laser beam before (Ib(y, z)) and after (Ia(y, z)) passing through the
cloud are known:

n(y, z) = − 1
σλ(ωlaser)

ln
Ia(y, z)
Ib(y, z)

. (5.7)

Integration of this equation yields the total number of atoms. Since the recorded
images are divided into descrete pixels, the integration is turned into a summation
over all pixels:

N =
A

σλ(ωlaser)

∑

pixels

ln
Ia(y, z)
Ib(y, z)

, (5.8)

where A is the area in the cloud corresponding to the size of a pixel. In contrast to
fluorescence imaging, no camera and transmission calibration nor solid angle mea-
surement is necessary to determine the number of atoms from an absorption image.
It only requires a calibration of the magnification, which can be done very accu-
rately. We estimate a systematic uncertainty of around 20 % in the determination
of the number of atoms arising mostly from fluctuations of the magnetic field and
the imaging laser polarization. Interference fringes in the intensity distribution of
the imaging laser limit the detection capability to clouds with an optical density
exceeding 5 %.

Figure 5.5 on page 43 shows the experimental setup for absorption imaging. The
absorption beam is guided to the vacuum chamber in a single mode glass fiber
to improve the mode quality and to reduce beam drifts and vibrations during an
imaging sequence. The light is expanded in a telescope consisting of lenses L1a/b
(f = −50mm) and L2 (f = 200 mm) to a diameter of approximately 40 mm. The
intensity and polarization are adjusted using a half and a quarter waveplate together
with a polarizing beam splitter. The cloud of atoms casts a shadow in the absorption
beam passing through it. This shadow is projected onto the CCD camera using the
same imaging system as for fluorescence imaging. A weak homogeneous magnetic
offset field along the direction of the σ+-polarized absorption beam is used as a
support field to keep the atoms aligned. The atoms are optically pumped within a
few cycles to the extreme Zeeman-substate mJ = 3 from which they can undergo
transitions only to m′

J = 4 with a Clebsh-Gordan coefficient of 1. They can therefore
be treated as ideal two level atoms.

Besides the transverse mode quality of the absorption beam, the spectral properties
are important. The spectral width of the imaging light needs to be much smaller than
the linewidth of the transition, so that the light scattering cross-section σλ(ωlaser) is
the same for all frequency components of the light.

The duration of the absorption imaging light pulse has to be short enough for the
atoms to maintain their original density distribution. The diffusion induced by
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photon scattering (see Section 3.2) leads to an increase in the size of the cloud. The
number of photons contributing to an acceleration along one direction is given by the
square root of the total number of scattered photons [120]. In our setup, each atom
scatters typically 35 photons during absorption imaging. The atoms are accelerated
and travel approximately 5µm during the 100µs pulse. This distance is below our
resolution limit and can therefore be safely neglected.

An absorption image is obtained by taking a series of three pictures: the dark, bright
and background picture. The sequence starts with switching off the trapping fields
(usually the currents for the magnetic trap) and simultaneously switching on the
magnetic imaging field. After a variable time of flight30, the absorption light tuned
to the atomic resonance frequency in the imaging field is switched on for 100µs to
take the absorption picture. The intensity of the absorption light is adjusted to
almost saturate the CCD camera during the 100µs exposure. It is usually much
below the saturation intensity as required for the derivation of Equation 5.3. The
atoms are removed from the trapping region before the bright image is taken with the
same laser and magnetic field parameters as before. Finally, a background picture
is taken with the same camera exposure time as before but no laser light. After
background subtraction from the dark and bright pictures, the integrated density
distribution of the atoms is obtained according to Equation 5.7.

5.5.3 Intra-trap absorption imaging

Intra-trap absorption imaging can be used to determine the size of the cloud in
the magnetic trap. The imaging sequence is the same as for regular absorption
imaging, except that the magnetic trapping fields are kept on during imaging and
no magnetic support field is switched on. Determining the number of atoms from
these pictures is very complicated, since in our magnetic field configuration the atoms
cannot be treated as two-level systems anymore. We adjust the polarization of the
absorption light to be linear along the z-axis and the magnetic offset field of the trap.
Optical pumping distributes the atoms among the magnetic substates at rates which
depend on the laser light intensity and the magnetic offset field that Zeeman-shifts
the transitions according to Figure 3.2. Additional distortions of the optical density
arise from the finite temperature of the cloud and the inhomogeneous magnetic
trapping fields. A large (hot) cloud of atoms probes stronger magnetic fields in axial
and radial directions leading to position dependent Zeeman-shifts and a rotation of
the atomic quantization axis with respect to the π-polarization of the light field.
We have modeled the optical pumping process assuming a homogeneous magnetic
offset field using rate equations. During a 100µs long absorption laser pulse, no
steady state in the atomic distribution is reached. The effective absorption therefore

30Residual magnetic fields generated by eddy currents in the vacuum chamber prevent us from

taking pictures for a time-of-flight shorter than 0.5 ms in the old system and 5ms in the new system.
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changes during exposure and is strongly dependent on laser light intensity. We found
qualitative agreement with the experimental results, but could not satisfactorily
predict a universal scaling factor for the number of atoms. A more sophisticated
approach including local magnetic field effects might allow to “deconvolute” the
original density distribution from the intra-trap absorption image.

We found observed ratios for the number of atoms from absorption and intra-trap
absorption images ranging between 2 and 4, depending on the temperature and
density of the cloud. However, the initial size and therefore the temperature of the
cloud agreed to within 20%. In conlusion, intra-trap absorption imaging can be
a useful tool to probe the temperature of an atomic ensemble, but can only give
approximate atom numbers that need to be calibrated by other imaging techniques.

5.5.4 Data evaluation

The main purpose of the data evaluation is to extract from the CCD camera images
the physical properties describing the atomic ensemble. These include number of
atoms, density, size, temperature and phase-space density of the atoms.

From CCD camera images, we get the integrated density distribution divided into
pixels. Fitting a model distribution (Equations 4.11 or 4.15) to the data yields the
size of the cloud σy,z or ξ, the peak density n0 and the position of the maximum. We
use either a full 2D least squares fit to the image or two 1D fits to orthogonal cuts
through the center of the cloud along the trap axes. From the rotational symmetry
of the cloud in the xy-plane, the full 3D density distribution can be reconstructed.
The number of atoms can be derived from the peak density and the size of the cloud,

N = n0V = (2π)
3
2 n0σxσyσz, (5.9)

where we have assumed a harmonic trap in the last equality. We found this method
more accurate than determining the number of atoms from the calibrated pixelsum
of the image as described in the previous Subsections.

There are several ways to obtain the momentum distribution of the cloud which
is in thermal equilibrium characterized by the temperature. The most accurate
method is to perform a time-of-flight (TOF) experiment in which the atoms are
released from the trap and are allowed to expand freely for a specific amount of
time. During expansion, the initial momentum distribution is transformed into
a density distribution which is independent of the initial density distribution for
long expansion times. Recording the evolution in a series of TOF images allows
the reconstruction of the initial momentum distribution, i.e. the temperature of
the ensemble. For a cloud in a harmonic trap, the momentum and the density
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distribution are Gaussian (Equation 4.8). At a time t after release from the trap,
the size of the cloud is given by

σ(t) =

√
σ2

0 +
kBT

m
t2, (5.10)

where σ0 is the initial size of the cloud at t = 0 and T the temperature. For a har-
monic trapping potential, this equation holds for all three directions independently.
A fit of this equation to the measured evolution of the cloud size yields the temper-
ature and the initial size in the trap. The temperature can also be obtained from σ0

and the known trapping potential B′′ by means of Equation 4.9 or 4.10. For a well
known trapping potential, we can insert the relation between size and temperature
in Equation 5.10 and thus reduce the fit parameter to the temperature only:

σ(t) =

√
kBT

µB′′ +
kBT

m
t2. (5.11)

Absorption images are usually taken after a certain time-of-flight to allow the mag-
netic fields to settle before imaging. The size of the cloud in these images is larger
than the initial size according to Equation 5.10. Eliminating the temperature in this
Equation by inserting Equation 4.10 and solving for the initial size yields

σ0 =

√
kBT

µB′′ =

√
σ(t)2

1 + µB′′
m t2

. (5.12)

Solving the same Equations for the temperature of the cloud, one obtains

T =
σ2

0µB′′

kB
=

σ(t)2
kB

µB′′ + kB
m t2

. (5.13)

With these formulae, it is possible to derive the temperature and the initial density
of the atoms in the trap from a single TOF image, although with less precision. We
chose the appropriate method for evaluating the cloud parameters using the most
accurately determined values in the specific experiment.

We have developed a data evaluation software based on Matlab31. It enables us to
perform almost real-time data evaluation during an experimental run. The software
implements modules for loading images, standard fitting procedures of the image
data and evaluation of the cloud properties from the fit. The methods for deter-
mining these properties are controlled by variable flags and switches. All relevant
experimental parameters (e.g. camera type and magnification, imaging technique,
magnetic trap parameters) are modular and user selectable. Details of the experi-
mental run are read in from a human-readable text file which is usually generated

31The Mathworks
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by the computer control software. Matlab’s flexible script language allows to easily
program complex data evaluation procedures using these modules. The plots and
results are automatically stored in an encapsulated postscript (eps) file and a binary
file, respectively.



Chapter 6

Continuous loading of a

Ioffe-Pritchard magnetic trap

In this Chapter I present a novel technique to continuously load atoms from a
magneto-optical into a magnetic trap of the Ioffe-Pritchard type. It allows us to ac-
cumulate an order of magnitude more atoms than we are able to trap in a chromium
magneto-optical trap. In Section 6.2 the continuous loading scheme together with
a discussion of the general requirements for the atomic level structure and possi-
ble implementations is presented. The rate equation model developed in References
[78, 121] for the temperature and the accumulation of magnetically trapped atoms is
summarized and extended in Section 6.3. Details of the specific experimental tech-
niques are discussed in Section 6.4. Measurements of the temperature, the number
of trapped atoms and the accumulation efficiency in the CLIP trap are presented in
Section 6.5 and compared to our model. I conclude this chapter with a discussion
of possible applications and extensions of our scheme in Section 6.6. Parts of this
chapter have been published in [122].

6.1 Introduction

Cold atomic gases have proven to be a useful tool for a wide variety of fundamental
experiments in physics, including Bose-Einstein condensation (BEC) [123] and atom
interferometry [124]. The preparation of ultracold atomic samples for experiments
in magnetic traps is a challenging task involving multi-step cooling and trapping
procedures. The starting point is usually a magneto-optical trap (MOT) (see Section
3.5). Transferring the atoms from the MOT into the magnetic trap (MT) is typically
accompanied by a significant loss in atom number. A crucial point of this transfer
process is to match the size and position of the atomic cloud in the MOT and the

52
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MT (so called ”mode matching”) to obtain maximum transfer efficiency and to avoid
heating [125].

We present a simple scheme for a Continuously Loaded Ioffe-Pritchard (”CLIP”)
trap, which is directly loaded from a magneto-optical trap. The CLIP trap can serve
as a robust source of cold atoms for various atom optics experiments. It significantly
simplifies the preparation of cold atomic samples in harmonic magnetic traps and
can be implemented for a variety of elements [121, 126]. Accumulation of atoms in
the magnetic trap during operation of the MOT removes the need for a separate
transfer step and allows to capture more atoms than in the MOT. The latter is
especially useful for atomic species like chromium with a large inelastic two-body
loss coefficient for excited state collisions [78, 127].

Besides loading a magnetic trap, our scheme could serve as a source for magnetic
waveguide experiments. A fully continuous atom laser has been on the wish list
of many atomic physicists ever since the successfull formation of a BEC in dilute
atomic gases. In one of the most promising schemes [128], a magnetic waveguide
is loaded from a MOT and evaporative cooling is performed on a continuous beam
of atoms along the waveguide transforming the temporal evolution of evaporation
into a spatial evolution. The mode matching of the initial MOT to the magnetic
waveguide is a complicated issue [129]. Due to its continuous character, our scheme
is an ideal source for this and other magnetic waveguide and atom interferometry
[130, 131] experiments.

The CLIP trap is based on our previously reported continuously loaded magnetic
quadrupole trap [121]. The new scheme removes the need for a transfer step from
a 3D-quadrupole into an IP magnetic trap, thus greatly simplifying the preparation
procedure. Another advantage is the possibility to adjust the aspect ratio in the IP
trap, thus reducing the influence of the dominant density dependent loss mechanisms
[78, 121]. The CLIP trap employs a modified magneto-optical trapping scheme
allowing us to operate a MOT and a large volume IP trap overlapped in space and
time. Atoms are magnetically trapped in a long-lived metastable state which is
decoupled from the MOT light. Transfer between MOT and MT is provided by
radiative leakage [121, 132] from the excited state, which is populated by the MOT
laser. We have implemented this scheme with atomic chromium, but also the alkaline
earth metals and e.g. ytterbium are well suited [126] for that scheme and several
groups are working on an implementation [133, 134].

6.2 Continuous loading scheme

The basic principle of the continuous loading scheme presented here has been de-
veloped and implemented for chromium in a 3D-quadrupole magnetic trap [121]. In
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Figure 6.1: CLIP trap loading scheme. Shown are the relevant atomic levels and tran-
sitions for the implementation in 52Cr (black lines). The magneto-optical trap is operated
by driving the fast transition from | g 〉 to | e 〉. Transfer between MOT and CLIP trap is
provided by radiative leakage from | e 〉 to | d 〉. Repumping the atoms via an intermediate
state |m 〉 (gray lines) allows to transfer the atoms to the ground state.

this chapter we show that the scheme can be extended to magnetic traps of the Ioffe-
Pritchard type. We will introduce the concepts of the CLIP trap with chromium.
Requirements and possibilities for the implementation with other atomic species will
be discussed at the end of this section.

Figure 6.1 shows the principle of operation on a simplified level scheme for 52Cr (see
Figure 2.1 for more details). A strong dipole transition with linewidth Γeg connecting
the ground state | g 〉 and an excited state | e 〉 allows the operation of a modified
magneto-optical trap (see Section 3.5). We employ a light field configuration similar
to the 2D+-MOT [135]: two orthogonal pairs of σ+/σ−-polarized laser beams cool
and trap the atoms radially. An additional pair of σ+-polarized laser beams along
the axial direction provides Doppler cooling and very weak confinement due to light
pressure forces [136, 137]. The advantage of using this setup rather than a standard
3D-MOT is the compatibility with the magnetic field configuration of the IP trap.
For simplicity, in the following we will refer to our configuration as ”MOT”, although
we actually mean the modified setup just described. The radial magnetic field
gradient needed for the 2D-MOT is provided by the Ioffe-Pritchard trap (see Section
4.2). The magnetic field configuration for the latter consists in radial direction (x,
y) of a 2D-quadrupole with magnetic field gradient B′ supporting the atoms against
gravity. In axial direction (z), magnetic confinement is provided by a curvature
field B′′ [138]. Along the same direction, a small magnetic offset field B0 prevents
Majorana spin-flip losses [109].

The cycling transition used for the chromium MOT is not closed. Atoms can undergo
spontaneous emission to a long-lived metastable state, denoted | d 〉 in Figure 6.1,
at a rate Γed. This radiative leakage is the loading mechanism for the magnetic
trap. Atoms in the low field seeking magnetic substates of the | d 〉-state manifold
can be magnetically trapped in the field of the IP trap. While operating the MOT,
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atoms spontaneously decay to the metastable level and accumulate in the MT. The
branching ratio Γeg/Γed has to be much larger than 1 to provide cooling in the
MOT before the atoms are transferred into the MT. In chromium, the branching
ratio Γeg/Γed ≈ 250 000 is rather high, thus limiting the loading rate into the CLIP
trap (see Section 6.3.1 below). Additional optical pumping to the state |m 〉 would
allow a much higher loading rate due to a branching ratio of only Γmg/Γmd ≈ 5200
and will be implemented in future experiments [139]. Simultaneous operation of a
MOT and a MT is only possible if the magnetic field gradient required for magnetic
trapping is compatible with the MOT. Chromium with 6 µB (Bohr magnetons)
is easily supported against gravity for magnetic field gradients around 5-10 G/cm,
which are typical gradients for operating a MOT with an atom having a linewidth
of ∼ 2π × 5 MHz.

In general, there are few requirements on the atomic species properties for an im-
plementation of the CLIP trap scheme: (i) The atoms need to be laser-coolable
to operate a MOT. (ii) A long-lived magnetically trappable state decoupled from
the MOT light must exist. (iii) A dissipative transfer mechanism between MOT
and metastable atoms is needed. (iv) The MOT should operate at magnetic field
parameters required to trap the metastable atoms.

We will briefly discuss each of these points and possible implementations of the
continuous loading scheme for two other atomic species: rubidium as a representative
of the alkali metals and strontium for the earth alkali metals.

Requirement (i) seems obvious and is met by most atomic species used in atom optics
experiments, although some restrictions may apply (see below). Besides metastable
states, also hyperfine states with a sufficiently large separation from the states used
for the MOT, should be utilizable to fulfill condition (ii). In 87Rb, where the MOT
is usually operated on the | g 〉 =̂ 5S1/2, F=2 ↔ 5P3/2, F=3 =̂ | e 〉 transition, the
F=1 hyperfine state of the 5S manifold could serve as the magnetic trapping state
|m 〉. Off-resonant excitation of the 5P3/2, F=2 state by the MOT light followed by
spontaneous decay to state |m 〉 serves as the loading mechanism for the magnetic
trap (requirement (iii)). The loading rate can be tuned by adjusting the intensity
of the MOT laser beams. At this point condition (i) puts a restriction on the actual
implementation: a Rb MOT without repumping the atoms from the F=1 to the F=2
manifold has a strongly reduced efficiency. The dark SPOT-MOT [140] solves this
problem by surrounding a central spot in the MOT with repumping light. Also, the
operation of a MOT at magnetic field gradients required for the magnetic trapping
of rubidium having a magnetic moment of 0.5 µB in the lower hyperfine state can
be a problem (requirement (iv)).

A 88Sr MOT for catching and precooling the atoms is typically operated between
the absolute ground state 1S0, | g 〉, and the excited state 1P0

1. As in chromium, this
transition is not closed. Nevertheless, 8 × 107 atoms can be trapped in a Sr MOT
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even without repump laser [91]. Atoms can spontaneously decay via an intermediate
state 1D2 to the long-lived magnetic trap state 3P0

2, |m 〉 (requirements (ii) and (iii)).
Additional decay channels can be closed by repumping lasers. Here, simultaneous
operation of a MOT and a MT is assisted by a moderate magnetic moment of 3µB

and the spectrally broad MOT transition requiring high magnetic field gradients
of 50-150 G/cm by itself (requirement (iv)). A more elaborate discussion of this
trapping scheme and its variants adopted for ytterbium and other earth alkalis is
given in Reference [126].

Requirement (iii) might raise the issue of reabsorption of spontaneously emitted pho-
tons by a very dense cloud of already magnetically trapped atoms. In the scheme
for chromium presented here, the narrow transition | e 〉↔| d 〉 into the trap state is
spectrally broadened by the strong MOT transition | g 〉↔| e 〉. The integral absorp-
tion cross section for this spin-forbidden transition to state | e 〉 is determined by the
small transition strength giving rise to a suppression of reabsorption by a factor of
Γeg/Γed [78, 141].

6.3 Model

In this section, we want to summarize and extend the model for the continuous
loading scheme developed in Reference [121] and adapt it to the Ioffe-Pritchard
configuration.

6.3.1 Number of trapped atoms

Loading of the CLIP trap is characterized by a loading rate R, proportional to the
number of excited atoms in level | e 〉, N∗

MOT, the decay rate into the metastable
level Γed, and a transfer efficiency η, giving

R = ηN∗
MOTΓed. (6.1)

The maximum attainable transfer efficiency (i.e. the fraction of atoms in a magneti-
cally trappable low field seeking state) can be estimated using a rate equation model
for optical pumping. Its theoretical prediction for chromium atoms in a standard
3D-MOT is around 30% [78]. Similar values have been obtained experimentally in
our CLIP trap configuration.

Accumulation of atoms in the MT is limited by loss mechanisms removing mag-
netically trapped atoms. We have identified two inelastic collision processes as the
major loss mechanisms: (i) inelastic collisions between optically excited atoms in the
MOT and atoms in the MT, characterized by a rate constant βed, and (ii) inelastic



6.3. MODEL 57

collisions between two magnetically trapped atoms with a rate constant1 βdd. For
completeness, we have also included background gas collisions at a rate γd, although
they are negligible in our setup. The rate equation for the number of atoms in the
CLIP trap, NMT, reads

dNMT

dt
= R− γdNMT − βed

∫

V

ne(~r)nd(~r)dV − 2βdd

∫

V

n2
d(~r)dV

= R− (γd + γed)NMT − 2βdd
N2

MT

VMT
(6.2)

with

γed =
N∗

MOTβed

Veff
, (6.3)

Veff = N∗
MOTNMT




∫

V

ne(~r)nd(~r)dV



−1

, (6.4)

VMT = N2
MT




∫

V

n2
d(~r)dV



−1

. (6.5)

Here we have introduced the loss rate γed for collisions between MOT and MT
atoms to emphasize that this process is effectively a single-atom loss for magnetically
trapped atoms. In these equations, the density of atoms in the MT and in the
excited state of the MOT is given by nd(~r) and ne(~r), respectively. The size of
the effective volume Veff is dominated by the larger of the two volumes VMOT and
VMT for the magneto-optical and magnetic trap, respectively. In our experiments
with chromium, we find VMOT ¿ VMT, so we can approximate the effective volume
with the volume of the CLIP trap Veff ≈ VMT. Then, the steady state solution of
Equation 6.2 is given by

N∞
MT =

−(γd + γed)VMT +
√

(γd + γed)2V 2
MT + 8βddRVMT

2βdd
(6.6)

Neglecting background gas collisions (γd = 0) and assuming saturation for the MOT
transition (N∗

MOT ≈ NMOT/2), Equation 6.6 together with Equation 6.3 can be
rewritten as an accumulation efficiency κ:

κ :=
N∞

MT

NMOT
=
−βed +

√
β2

ed + 16βddRVMT/N2
MOT

4βdd
. (6.7)

This equation allows an estimate of the number of atoms in the CLIP trap given
the number of atoms in the MOT, NMOT, and the inelastic collision properties

1Each inelastic collision event removes two atoms from the trap. Therefore the loss rate in the

differential equation for the number of atoms in the trap is twice the inelastic collision rate.
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βed and βdd. The inelastic processes limit the achievable density in the magnetic
trap (Equation 6.2) and therefore the number of accumulated atoms. Increasing the
magnetic trapping volume therefore leads to accumulation of more atoms. This is one
of the main advantages of using the Ioffe-Pritchard trap over a 3D-quadrupole trap:
independent control of the trapping field parameters in radial and axial direction
allows increasing the magnetic trapping volume without degradation of the MOT
performance.

After loading the CLIP trap and switching off the MOT, the atoms are still subject
to a non-exponential decay given by the inelastic collisions between atoms in the
| d 〉 state. The evolution of the number of atoms can be derived from Equation 6.2
by setting R = 0 and γed = 0:

NMT(t) = N∞
MT

γde
−γdt

γd + N∞
MT(1− e−γdt) βdd

VMT

. (6.8)

This equation can be used to independently determine the two-body loss coefficient
βdd by measuring the number of atoms and the volume of the cloud for different
holding times in the metastable | d 〉 state.

6.3.2 Temperature

The temperature of the atoms in the magnetic trap is determined by the initial
temperature in the MOT (TMOT) and the shape of the trapping potentials [78, 121].
Assuming the MOT to be much smaller than the MT, loading occurs at the center
of the magnetic trap where the atoms have only kinetic but no potential energy. In
the new trapping potential the initial kinetic energy is distributed between the final
kinetic and potential energy according to the Virial theorem. The trapping potential
in the CLIP trap is harmonic in axial and linear in radial direction, whereas the MOT
is approximately harmonic in all three dimensions. Using the relation V z

f = Ez
f for

the final potential and kinetic energy in z-direction, respectively, and V r
f = 2Er

f for
the radial direction, we have

3
2
kBTMOT = Ez

f + V z
f + 2(Er

f + V r
f ) =

8
3
Ef =

8
3

3
2
kBTMT,

where Ef is the thermalized kinetic energy in the magnetic trap. Therefore, in an
ideal situation, one would expect the atoms in the CLIP trap to have a tempera-
ture of TMT = 3

8TMOT ≈ 0.4 × TMOT. In reality, additional heating increases the
temperature. One source of heating is misalignment between MOT and MT due
to an imbalance in laser beam intensities. Inelastic processes like dipolar relaxation
collisions (see Appendix E) and fine-structure changing collisions can also contribute
to heating in the MT.



6.4. EXPERIMENTAL TECHNIQUES AND DATA EVALUATION 59

It is worthwhile mentioning, that it is in fact advantageous to have the atoms in the
MT not too cold if a maximum number of atoms is desired, since a hot cloud is less
dense and thus allows trapping of more atoms in the presence of density limiting
inelastic losses as discussed in the previous section.

6.4 Experimental techniques and data evaluation

A typical experimental sequence starts with loading the CLIP trap from the MOT
at a radial gradient of 13 G/cm, an axial curvature of 11 G/cm2 and an offset field
close to zero. After 10 s loading, MOT and Zeeman-Slower lasers are switched off
and the repumping laser is switched on for 20 ms to transfer the atoms to the ground
state. The magnetic trapping fields are switched off rapidly (< 300 µs) 11 ms after
repumping and - in case of absorption imaging - a homogeneous magnetic support
field along the imaging axis is switched on. We either image the cloud a few hundred
microseconds after switching off the trapping field to obtain the density distribution
of the atoms in the trap or after a variable time-of-flight to obtain the temperature.

We probe the atoms using fluorescence and absorption imaging (see Section 5.5) on
the strong | g 〉↔| e 〉 transition. After loading, magnetically trapped atoms in the
metastable | d 〉 state are optically pumped to the ground state with the repumping
laser. Temperature, shape and Zeeman substate of the polarized atoms are not sig-
nificantly changed during repumping since only two photons are scattered by every
transferred atom and the involved states 7S3 and 5D4 have the same magnetic mo-
ment of 6 µB. The density profile of the atomic cloud is recorded with a calibrated
CCD camera and fitted with the appropriate density distribution assuming thermal
equilibrium. For the magneto-optical trap the density distribution is given by a
Gaussian with 1/

√
e radius σx = σy and σz in radial and axial direction, respec-

tively. The density in the magnetic trap is given by a Gaussian distribution in axial
(characterized by the 1/

√
e size σMT

z ) and an exponential distribution in radial di-
rection which is modified by gravity along the y-axis (see Equations 4.17 and 4.18).
From the fit we extract the volume of the cloud. Typical sizes of the MOT are
σz ≈ 1.3 mm, σx,y ≈ 0.1 mm and for the magnetic trap σMT

z ≈ 2 mm, ξ1 ≈ 0.5 mm
and ξ2 ≈ 1.2 mm. All measured sizes are well beyond the 20 µm resolution limit of
our imaging system. The number of atoms is determined from the integrated fluo-
rescence or absorption recorded by the calibrated CCD camera. The atomic density
is then given by the ratio of the number of atoms and the fitted volume.

We assume a polarized sample of atoms in the mJ = +3 magnetic substate through-
out this Chapter. We have experimentally verified that this assumption is valid by
comparing the fitted size of the cloud with the size derived from the known trapping
potential and the temperature. The sizes were compatible with a projection of the
magnetic moment of 6± 10% µB.
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Laser beam intensities for the plot in Figure 6.2 are obtained from a measurement of
the light power passing through a 1 mm diameter circular aperture with a calibrated
photo diode. The loading rate into the magnetic trap has been determined from a
measurement in which we loaded the trap for a variable time and recorded the
number of atoms accumulated during that time. A linear fit to data up to a loading
time of 250 ms yields the loading rate R. We introduce an effective loading time τ =
NMT/R as a measure for the losses from the trap. Strictly speaking, this definition is
only valid for a single-particle loss process. Nevertheless 1/τ is a qualitative measure
of the trap loss. More accurately, Equation 6.6 should be used. We measured the
temperature of the atomic ensemble by a time-of-flight measurement. In this case,
we also fitted the atoms released from the magnetic trap with a gaussian density
distribution which gave good results after a few ms time-of-flight.

6.5 Performance of the CLIP trap

In this Section, we present measurements on the temperature and the accumulated
number of atoms in the CLIP trap. We compare our experimental results with the
model presented in Section 6.3 and give improved numbers for the relevant collisional
properties.

6.5.1 Temperature

We have measured the temperature of the magneto-optical and magnetic trap for
different light-shift parameters (I/Isat)/(|δ|/Γeg), where I is the sum of all six laser
beam intensities. We expect a linear increase in the temperature of the MOT with
increasing light-shift parameter [142, 143]. In Figure 6.2 we have plotted the radial
temperature of the atoms in the MOT and in the CLIP trap. For very low scattering
rates at low light-shift parameters, the temperature increases again, since cooling
breaks down (not shown). Linear fits to the high temperature tails give slopes of
22± 2 and 10± 1µK×Γeg/Isat for the MOT and the MT, respectively. The value of
0.46 for the ratio of these slopes is in qualitative agreement with the prediction of
1/3 for the radial temperature from our model as descibed in Section 6.3.2. At very
low temperature the measured temperatures fail our model, which is manifested in
the intesection of the fitted lines at I/|δ| > 0. Possible systematic errors include
uncertainties in the laser beam intensity and detuning. Especially at low temper-
atures, off-center loading of the MT and the finite size of the MOT increase the
temperature achieved in the magnetic trap. Furthermore, perfect overlap of MOT
and MT is hard to maintain when changing the light force on the atoms by almost
an order of magnitude. Additional heating arises from the exothermic two-body loss
process limiting the number of accumulated atoms as described in Section 6.3.1.
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Figure 6.2: Radial temperature of the atoms in the MOT (blue markers) and the CLIP
trap (green markers) versus the light-shift parameter. A linear fit (red lines) to the high
temperature tails gives a slope of 22 ± 2 and 10 ± 1 µK × Γeg/Isat for the MOT and MT
temperature, respectively.
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Figure 6.3: Radial temperature of the atoms in the MOT (blue) and MT (green) for
different axial magnetic offset fields. The lines are 2-point moving averages to guide the eye.
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One of the major advantages of the Ioffe-Pritchard trap over a 3D-quadrupole trap is
the finite offset field at the center of the trap, preventing atom loss due to Majorana
spin-flips for cold atomic clouds. For the radial trapping parameters in the CLIP
trap, an offset field as low as 40 mG reduces the spin-flip rate to below 0.1 1/s
(see Section 4.2.4). We observed lifetimes in the 7S3 state of more than 25 s in the
CLIP trap even for negative offset fields. Although we are not limited by Majorana
spin-flips while loading the CLIP trap, a small positive offset field prevents atom
loss during the subsequent compression of the Ioffe-Pritchard trap.

The influence of an axial magnetic field consisting of the small offset field and the
curvature field of the magnetic trap on the cooling performance in the MOT is an
important aspect [144, 145, 146]. In Figure 6.3 we measured the radial temperature
of the MOT and the MT for different axial magnetic offset field strengths. As
expected, we observe a temperature minimum around zero magnetic offset field.
The number of atoms in the MOT is constant over the range of magnetic fields
shown in Figure 6.3. For negative offset fields, the MOT temperature increases only
at large magnetic fields, whereas positive offset fields lead to a strong degradation
of the cooling efficiency of the MOT. For optimum performance, a magnetic field
strength approaching zero results in a temperature close to the minimum achieveable
temperature in the MOT, while at the same time preventing Majorana spin-flip losses
during subsequent compression of the trap.

In summary, we observed a minimum temperature of 140 µK in the magneto-optical
and 100 µK in the magnetic trap for low MOT light intensities and large detunings.
An axial offset field close to zero does not degrade the MOT performance. We opti-
mized the loading of our CLIP trap to achieve a maximum number of accumulated
atoms at the cost of minimal temperature, thus operating the MOT at high laser
light intensities and a detuning of −2Γ. Subsequent repumping to the 7S3 ground
state and compression of the IP trap is followed by a Doppler cooling stage which
results in a temperature close to the Doppler temperature independent of the initial
temperature (see Chapter 7). Using this preparation scheme, the figure of merit for
loading the CLIP trap is reduced to the number of atoms, thus greatly simplifying
adjustment and daily operation.

6.5.2 Number of atoms

In this section, we present experimental results on the number of atoms accumulated
in the CLIP trap as a function of the trap parameters. We show that the steady
state number of atoms is very robust against moderate magnetic field variations
and demonstrate the advantages of using a Ioffe-Pritchard trap instead of a 3D-
quadrupole trap. By determining independently the loading rate into the CLIP
trap and the number of trapped atoms in the MOT and the MT, we are able to
explain our findings qualitatively. A fit of the model developed in Section 6.3.1
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Figure 6.4: Steady state number of atoms in the MOT (blue) and in the CLIP trap (green)
for different radial magnetic field gradients. The lines are 3-point moving averages of the
data to guide the eye. Note the different scale for the number of atoms in the MOT and in
the MT.

to the experimental data results in a more accurate determination of the collision
parameters responsible for trap loss than previously reported [121].

In Figure 6.4, we have plotted the number of atoms in the MOT and the steady state
number of atoms accumulated in the CLIP trap for various radial field gradients
while keeping all other trapping parameters at their optimum values. The measured
volume of the magnetic trap decreases almost linearly with increasing gradient from
14 × 10−3 cm3 to 4 × 10−3 cm3. Due to an unusually high inelastic excited state
collision rate for chromium with a loss coefficient on the order of 10−9 cm3/s [78, 127],
the number of atoms in the MOT is density limited to around 5×106. The number of
atoms in the MT exhibits a maximum around 13 G/cm. To either side, a decrease in
atom number coincides with a reduced MOT performance and thus a reduced loading
rate (see Equation 6.1). This situation is comparable to changing the gradient of a
3D-quadrupole trap [121]: both, magnetic and magneto-optical trap are affected by
a change in gradient. This can be seen more clearly in the loading rate and time
measurement presented in Figure 6.5. The loading rate closely follows the number
of atoms in the MOT for high gradients and decreases even more steeply for low
gradients. This behaviour is an indication for a degradation in loading efficiency due
to position mismatch between MOT and MT. The inverse of the effective loading
time τ , which takes into account inelastic collisions, is a measure for the loss rate
from the magnetic trap (see Section 6.4). Therefore the observed increase in effective
loading time for low gradients in Figure 6.5 resembles a decreased loss from the CLIP
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Figure 6.5: Loading rate into the CLIP trap (blue) and effective loading time (green) for
different radial magnetic field gradients. The lines are 3-point moving averages of the data
to guide the eye.

trap originating from a reduced number of atoms in the MOT and an increase of
the trapping volume (see Equations 6.2 and 6.3).

For high gradient fields, we observe a small rise in the effective loading time. At this
point the number of atoms in the magnetic trap decreases faster than the trapping
volume, thus the density in the CLIP trap decreases. This leads to a slight reduction
in the inelastic loss rates and therefore an increase in loading time.

The situation shown in Figures 6.6 and 6.7 is different. Here, we have changed the
axial curvature and recorded the number of atoms in the MOT and the CLIP trap
as well as the effective loading time and rate. The volume of the magnetic trap is
approximately inversely proportional to the applied curvature field, ranging from
14× 10−3 to 3.9× 10−3 cm3 thus covering essentially the same range as for the gra-
dient measurements. For comparison, we have marked in Figure 6.6 the equivalent
curvature of a typical 3D-quadrupole trap having a volume corresponding to the
volume in the CLIP trap. Whereas in Figure 6.4 the MOT performance is strongly
affected by the radial gradient, in Figure 6.6 only a weak dependence of the number
of atoms in the MOT on the curvature field is observed (note that the vertical axis
scales in both Figures are identical). Consequently, the loading rate in Figure 6.7 is
also constant to within 30 %. In this situation, the number of atoms accumulated
in the CLIP trap is limited mainly by inelastic loss processes. This becomes evident
from the decrease in the effective loading time (i.e. the increase in loss) in the high
curvature regime shown in Figure 6.7. At very low curvatures, reduced axial con-
finement, apparent in the reduced effective loading time, and probably misalignment
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Figure 6.6: Steady state number of atoms in the MOT (blue) and in the CLIP trap
(green) for different axial magnetic field curvatures. The filled black circle shows a typical
3D-quadrupole trap having a volume that corresponds to the volume of an IP trap with the
indicated curvature. The lines are 3-point moving averages of the data to guide the eye.
Note that the vertical scales are identical to Figure 6.4.
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Figure 6.7: Loading rate into the CLIP trap (blue) and effective loading time (red) for
different axial magnetic field curvatures. The lines are 3-point moving averages of the data
to guide the eye. Note that the vertical scales are identical to Figure 6.5.
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Figure 6.8: Accumulation efficiency into the CLIP trap versus transfer rate divided by
the density of excited MOT atoms. The line is a least squares fit to the data.

between MOT and MT, noticeable in a slightly reduced loading rate, are responsible
for a lower number of atoms in the CLIP trap. More accurate alignment of the MOT
at low curvature fields should allow a constant loading rate at its maximum value
even at low curvature fields. Such a configuration would be useful for continuous
loading of a magnetic waveguide.

We achieved a maximum number of 2 × 108 atoms in the CLIP trap at a loading
rate of 108 atoms/s for optimum trapping parameters of B′ = 12.5 G/cm for the
radial gradient, B′′ = 10.5 G/cm2 for the axial curvature and an axial offset field
close to zero. This is about three times the number of atoms trapped previously in
a 3D-quadrupole trap under comparable loading conditions.

The data presented in Figures 6.5 and 6.7 indicates that the effective loading time is
limited to around 2 s due to inelastic collisions. We have determined the magnitude
of the two major loss mechanisms by fitting the simplified rate equation model from
Equation 6.7 to the gradient and curvature data from Figures 6.4 and 6.6. The
result is shown in Figure 6.8, where we have plotted the accumulation efficiency
κ = NMT/NMOT versus RVMT/N2

MOT. The line is a least squares fit of Equation
6.7 to the data with βdd and βed as fitting parameters. For the fit we have ne-
glected the low gradient and curvature data points in which other loss mechanisms
dominate. Since both loss rates scale with the volume of the magnetic trap, the fit-
ting parameters are strongly correlated resulting in the large statistical uncertainty
for each parameter. We obtain βed = 6 × 10−10 ± 45 % cm3/s for inelastic colli-
sions between MOT atoms in the excited state and magnetically trapped atoms and



6.5. PERFORMANCE OF THE CLIP TRAP 67

-5 0 5 10 15 20 25 30 35
1

2

3

4

5

6

7

8

9

time [s]

n
u

m
b

e
r 

o
f 
a
to

m
s

data

fit

x10
7

Figure 6.9: Number of atoms remaining in the CLIP trap after a certain holding time.
The fit of Equation 6.8 with γed = 0 to the data yields a two-body loss coefficient of
βdd = 3.8× 10−11 ± 10 % cm3/s.

βdd = 1.3 × 10−11 ± 17 % cm3/s for inelastic collisions between atoms in the CLIP
trap. The two inelastic processes lead to loss rates of the same order of magnitude
in Equation 6.2. Systematic errors, mainly from the determination of the densities,
reduce the accuracy of the given values to within a factor of 2. These more accurate
results improve the order of magnitude rates reported previously [121]. An inde-
pendent measurement of βdd was performed by observing the decay of magnetically
trapped atoms in the 5D4 state and fitting the evolution of the number of atoms
given by Equation 6.8 under single- and two-atom loss processes to the data. We
have included the volume of the cloud for each data point in the fit function, since
the volume increases during the measurement due to heating by the exoergodic in-
elastic collision process and selective removal of the coldest atoms near the center
of the cloud. The single-body loss rate γd is dominated by collisions with the fast
chromium atoms in our atomic beam. It was determined in a seperate measure-
ment to approximately 30 s. The experimental situation in the decay measurement
is different from the accumulation measurement, where only the steady state atom
number is recorded. Other processes not included in our model, like e.g. dipolar
relaxation (see Appendix E) and variations in temperature and magnetic substate
distribution of the cloud during the decay process make a comparison difficult. Nev-
ertheless, the obtained value of βdd = 3.8× 10−11± 10 % cm3/s is close to the value
from the fit to the accumulation efficiency.
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6.6 Conclusion

We have presented a continuous optical loading scheme for ultracold atoms from
a magneto-optical trap into a Ioffe-Pritchard magnetic trap. We achieved tem-
peratures below 100 µK, a loading rate of up to 108 atoms/s and 2 × 108 atoms
accumulated in the magnetic trap in our implementation for chromium atoms. The
loading rate is limited by the small number of atoms trappable in a chromium MOT
[78, 127] and the small decay rate Γed into the metastable trap state. We plan to
increase the loading rate by optically pumping the atoms via another fine structure
level of the excited state that has a higher decay rate into the trap state. Two
major loss mechanisms limit the number of atoms in the magnetic trap: inelastic
collisions among excited state atoms in the MOT and magnetically trapped atoms
and inelastic collisions between atoms in the magnetic trap [121]. We have presented
a model for the steady state number of atoms in the magnetic trap that is in good
agreement with our experimental data. From a fit of the model to the data we
could determine the loss rates for the two inelastic density limiting processes to be
βed = 6 × 10−10 ± 45 % cm3/s and βdd = 1.3 × 10−11 ± 17 % cm3/s for collisions
between MOT and MT atoms and between MT atoms, respectively. Independent
control of the radial and axial trapping fields in the Ioffe-Pritchard trap allowed us
to accumulate more atoms in the MT by increasing the volume of the trap with-
out losing confinement or deteriorating MOT performance. The inelastic loss in
the metastable trap state in chromium requires repumping the atoms to the ground
state for subsequent experiments.

We use the CLIP trap loading scheme as a starting point for further cooling sequences
which will be discussed in the following Chapters.

Our experiments at low axial confinement (Figures 6.6, 6.7) show that continuous
loading of a magnetic waveguide should be possible. In that case, slightly tilting the
trap would allow the atoms to escape the trapping region resulting in a continuous
flux exceeding 108 magnetically trapped ultracold atoms per second in the case of
chromium.

Another possibility of accumulating orders of magnitudes more atoms would be to
extend the Ioffe-Pritchard configuration. For example the combination of a tilted
magnetic waveguide with magnetic or optical endcaps could serve as a large volume
accumulation reservoir and prolong the loading time2

The continuously loaded Ioffe-Pritchard trap presented here is not limited to
chromium. Atoms like e.g. the earth alkalis and ytterbium with a large natural

2Such a reservoir could be loaded until the atoms return to the loading position due to the con-

servative character of the guiding potentials. However, the available loading time can be increased

by employing anharmonic guiding potentials where pseudo-chaotic motion and anharmonic mixing

can significantly increase the return time of the atoms.
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linewidth allow high gradients for operating the MOT, thus enabling magnetic trap-
ping at the same time. Besides this feature, the earth alkalis have a level structure
which is especially well suited for the continuous loading scheme presented here or
variations of it [126].



Chapter 7

Doppler cooling of an optically

dense cloud of magnetically

trapped atoms

Doppler cooling of magnetically trapped atoms is used to further increase the phase-
space density of our atomic ensemble. In contrast to previous experiments [147,
148, 149], we observe efficient cooling in all three dimensions by applying a one
dimensional optical molasses. Our findings can be quantitatively explained by taking
into account the cooling effects of reabsorbed photons. In Section 7.2, I present and
discuss a theoretical model for Doppler cooling in a magnetic trap in the presence of
reabsorption. Experimental results on the dynamics and steady state properties of
the cooling process are presented in Section 7.4. I conclude with a discussion of our
results in Section 7.5. Excerpts of this chapter have been published in [150].

7.1 Introduction

Since the advent of laser cooling of neutral atoms more than 20 years ago, this
method has been extensively studied [90] and widely used for a variety of atoms and
applications. Ultimately, laser cooling followed by evaporative cooling [151] allowed
the creation of a Bose–Einstein condensate (BEC) of neutral atoms [123, 152, 153].

In almost all BEC experiments atoms are caught in a magneto–optical trap. After
sub-Doppler molasses cooling [154] and polarization of the sample by optical pump-
ing, the atoms are typically transferred into a magnetic trap [123, 152, 153] or, as
has been recently demonstrated, into an optical [96] trap. The ensuing evaporative
cooling process requires both, a high initial density to provide a reasonably large
elastic collision rate, and a large number of atoms, since most atoms are removed

70
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from the trap during evaporation. The figure of merit for efficient evaporative cool-
ing is the initial phase space density of the atomic cloud. Therefore, all laser cooling
and polarization steps have to be optimized carefully, to keep the temperature of the
atoms low and the number of atoms high, thus maximizing the phase space density
in the final trap.

Alternative approaches for reaching high phase space densities include gray molasses
[155], 3D Raman sideband cooling in optical lattices [156, 157] and cooling on a spin-
forbidden transition close to the recoil limit [91]. Using these techniques, atomic
samples with a phase space density close to degeneracy have been loaded into optical
dipole traps [97, 158] and ultimately Bose-Einstein condensation of cesium could be
achieved [25].

Sub-Doppler cooling schemes for atoms in magnetic traps have been proposed by
Pritchard and Ketterle [159] and Newbury et al. [160]. In the latter setup very low
temperatures of 1.5µK corresponding to 4 recoil energies have been achieved in a
weak magnetic trap for low atomic densities.

In this Chapter, we present a robust Doppler cooling scheme in an external trap
which is applicable to most laser-coolable atomic species. Our scheme is particularly
well suited for optically dense samples and reduces the figure of merit for evaporative
cooling to the number of atoms transferred into the trap regardless of temperature.

Free-space one-dimensional Doppler cooling is usually performed in a standing wave
light field created by two counterpropagating laser beams with a frequency below
the atomic transition frequency. Cooling is based on preferential absorption of pho-
tons from the laser beam opposing the direction of motion of the atom. Subsequent
spontaneous emission is centrally symmetric and does not change the mean momen-
tum of the atom. Doppler cooling of polarized atoms in a magnetic trap has been
proposed for atomic hydrogen [161] and experimentally realized for sodium [147],
hydrogen [149] and lithium [148]. In Reference [147] one-dimensional Doppler cool-
ing of an optically thin cloud of sodium atoms in a magnetic trap was performed.
The atoms were treated as a two level system since a very high magnetic offset field
(B0 ≈ 1 500 G) spectroscopically resolved the Zeeman substates. Cooling of the
motional degrees of freedom orthogonal to the laser beams was provided by anhar-
monic mixing in the trapping potential. Due to a long mixing time compared to the
cooling time, the achieved temperature was ten times the Doppler temperature for
sodium. In Reference [149] single-beam pulsed Doppler cooling was performed on a
dense sample of magnetically trapped hydrogen atoms. Thermalization of the cloud
was accomplished by elastic collisions between the atoms. Cooling was limited to
approximately five times the Doppler temperature due to limited laser power and
additional heating rates.

The main advantage of the cooling technique presented here is, that it combines
three-dimensional temperatures close to the Doppler-limit with the cooling of dense
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samples. In our experiment, one-dimensional optical molasses cools the cloud of
atoms in the axial direction down to the Doppler limit (see Section 3.2). Cooling in
the radial directions, orthogonal to the laser beams, can be explained by reabsorption
of spontaneously emitted photons by the optically dense cloud. To our knowledge,
reabsorption has so far been treated only as a density-limiting mechanism which
comes along with heating of the atomic sample [162, 163, 164, 165, 166, 167, 168].
Here, we focus on the cooling aspects of scattered and reabsorbed photons in a
trapped polarized atomic sample.

We show that the atoms in the magnetic trap remain polarized during the cooling
process and practically no atoms are lost, provided the magnetic substructure is
spectrally resolved. We are able to cool chromium atoms in a magnetic trap from
≈ 1 mK to a mean temperature of 240 µK, corresponding to an increase in phase
space density by a factor of 80. We have studied the dynamics of the cooling pro-
cess as well as the steady state temperature for various cooling parameters. The
experimental results can be explained with a simple model based on rate equations
for the temperature.

7.2 Theory

7.2.1 Rate Equations

In this section, we present a simple model based on rate equations. Although we
assume cooling in a magnetic trap here, the scheme is universal to all kinds of traps,
provided cooling is compatible with the trap and the quantization axis of the atoms
is independent of the position of the atoms in the trap.

Consider a cloud of spin-polarized atoms with mass m and magnetic moment µ

confined in an axially symmetric harmonic magnetic trap with trapping potential
V (x, y, z) = µ(B

′′
xx2/2 + B

′′
y y2/2 + B

′′
z z2/2 + B0) (see Section 4.2).

B
′′
x = B

′′
y and B

′′
z are the magnetic field curvatures in the radial (x, y) and axial (z)

direction, respectively, and B0 is a homogeneous offset field along the axial direction.

We assume that the corresponding trap frequencies ωx,y,z =
√

µB
′′
x,y,z/m are much

smaller than the Larmor precession frequency at the center of the trap ωL = µB0/~,
ensuring that the atoms stay spin polarized and no spin flip losses occur [109].

Doppler cooling is performed on an electric dipole transition that couples a long-
lived ground state with total angular momentum J to a short-lived excited state with
angular momentum J

′
, such that1 J

′
= J + 1. We also assume the corresponding

Landé factors gJ and gJ
′ to have the same sign, which we choose to be positive for

1In principle the same argument holds for a J
′
= J transition for simplicity we will concentrate

on the situation above.
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Figure 7.1: Part of the Zeeman substructure of 52Cr as an example of a J → J + 1
transition. See Figure 3.2 for the full substructure. The numbers next to the transitions are
the squares of the Clebsch-Gordan coefficients.

our example. The atoms are polarized in the ”weak field seeking”state mJ = J and
have a magnetic moment of µ = mJ gJ µB, where µB is Bohr’s magneton.

Cooling is carried out in a σ+/σ+-standing wave created by two laser beams propa-
gating along the axial direction with intensity I and detuning δ. For a spin-polarized
sample of atoms in a magnetic trap, the quality of the polarization of the cooling
light is important. No depolarizing transitions mJ → mJ ,mJ − 1 can occur for
perfectly polarized σ+-light propagating along the quantization axis of the atoms
in a homogeneous magnetic field. For imperfect polarization, the cooling light can
also drive depolarizing transitions which cause loss of atoms. In the configuration
described above, the Zeeman-splitting due to the finite offset field B0 reduces the
scattering rates Rdep of unwanted depolarizing transitions with respect to the rate
Rpol of the cooling transition mJ → mJ + 1:

Rdep =
Γ
2

2C3
3

I/Is

1 + 4∆2
dep/Γ2

¿ Γ
2

2C4
3

I/Is

1 + 4∆2
pol/Γ2

= Rpol, (7.1)

where ∆ = ∆pol and ∆dep are the effective detunings between the laser and the
atomic transition frequency in a magnetic field and Cj

i is the square of the Clebsch-
Gordan coefficient for the transition from state mg = i to me = j. In Figure 7.1 this
effect is illustrated for the J = 3 → J = 4 transition that connects the ground state
7S3 to the excited state 7P4 in 52Cr (see Chapter 2 for details). A full treatment
of optical pumping in an arbitrary light field, taking into account all excited and
ground state levels, gives the steady state population of each ground state for a given
magnetic field. Assuming a polarization quality of 1:10, a detuning of ∆ = −0.5 Γ
for the polarizing transition and allowing for an atom loss of less than 1% during the
cooling process, we find for the case of chromium a necessary offset field of B0 ≥ 9 G
and for rubidium of B0 ≥ 12 G.
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Following the common treatment of free-space Doppler cooling as presented in Sec-
tion 3.2, rate equations for the temporal evolution of the temperature for the axial
(z) and radial (y) degrees of freedom are readily obtained:

dTz

dt
=

2Trec

τheat
z

− Tz

τ cool
z

(7.2)

dTy

dt
=

2Trec

τheat
y

− Ty

τ cool
y

, (7.3)

where Trec is the recoil energy of the cooling transition with wave number k. Usually,
the heating and cooling time constants are derived by considering the random walk in
momentum space due to spontaneous emission and the net cooling effect of scattered
photons from the two counterpropagating laser beams. In an optically dense sam-
ple reabsorption of photons has to be taken into account. Previously, reabsorption
has mainly been discussed as a reason for density limitations and density-dependent
heating in magneto-optical traps [163, 164, 167] and in the context of sub-recoil cool-
ing [162]. In our model, we emphasize cooling effects of reabsorbed photons which
can be substantial for polarized atoms confined in an external trapping potential.

We show in Appendix A.1, that the photon energy after a scattering event in the low
intensity limit is only slightly shifted. Therefore scattered photons have essentially
the same detuning as the cooling laser beams. The emission pattern of σ+ polarized
light with respect to the quantization axis is proportional to (1+cos2 ϑ)2, as derived
in Appendix A.2. For our calculations, we use the axial direction parallel to the
laser beam as our quantization axis. The contribution of the reabsorbed photons
to cooling of the radial and axial directions depends on the projection of their wave
vector ~k onto these directions. The effective intensity Ieff

z,y of the cooling photons
is proportional to the incident laser light intensity 2I with a proportionality factor
κz,y which primarily depends on the optical density ODz,y in these directions:

Ieff
z,y = 2I × κz,y ∼ 2I × κ∗z,y ×ODz,y (7.4)

To simplifiy the calculations, we assume only a single scattering/reabsorption pro-
cess. The coefficients κ are then obtained by averaging the intensity scattered by
a volume element dV0 over the normalized density distribution, taking into account
absorption of the incident light, the projection of the k-vectors onto the direction
of interest and the angular dependence of the σ+ polarized fraction of the emitted
light. We derive in Appendix B the following expressions for the coefficients:

κy =
∫

V

dV0

∫

V

sin2 ϑ dr dϑ dφ κ0(~r0, r, ϑ, φ) | sinφ| (7.5)

κz =
∫

V

dV0

∫

V

sinϑ dr dϑ dφ κ0(~r0, r, ϑ, φ) | cosϑ|, (7.6)
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with

κ0(~r0, r, ϑ, φ) =
3Psc(~r0)
32πI0

(1 + cos2 ϑ)2 n(~r0) n(~r0, r, ϑ, φ). (7.7)

Here, Psc(~r0) is the light power scattered by an atom at position ~r0 in the cloud,
n(~r0) the atomic density distribution and n(~r0, r, ϑ, φ) the density distribution in
spherical coordinates relative to ~r0.

In a simple picture, κz,y can be interpreted as the effective number of photons that
contribute to cooling in the corresponding directions originating from a single photon
absorbed from the laser light. The total number of reabsorption/emission cycles for
an incident photon is given by

κ =
∫

V

dV0

∫

V

sinϑdr dϑ dφ κ0(~r0, r, ϑ, φ). (7.8)

For the derivation of these quantities, we have assumed the incident laser light
intensity to be constant across the cloud of atoms. Absorption of photons creates
an intensity gradient across the cloud which is included in the expression for the
scattered power.

If the effects of reabsorbed photons are included the cooling rates become

1
τ cool
z

= −Γ
32(1 + κz)2 (I/Is) ∆/Γ

(1 + 4∆2/Γ2)2
kBTrec

~Γ
(7.9)

1
τ cool
y

= −Γ
32κy2 (I/Is) ∆/Γ

(1 + 4∆2/Γ2)2
kBTrec

~Γ
. (7.10)

In the axial and radial direction the total cooling light intensity reads Itot
z = 2I +

Ieff
z = 2I(1 + κz) and Itot

y = Ieff
y = 2Iκy, respectively.

For the derivation of the heating rates, we have to take into account directed re-
absorption of κz,y photons and spontaneous emission of (κ + 1) photons for each
photon absorbed from the cooling laser beams:

1
τheat
z

= [(1 + κz) +
2
5
(1 + κ)]

2I/Is

1 + 4∆2/Γ2
Γ (7.11)

1
τheat
y

= [κy +
3
10

(1 + κ)]
2I/Is

1 + 4∆2/Γ2
Γ (7.12)

The first term on the right hand side of Equation 7.11 accounts for the first absorp-
tion of a photon from the laser beams (1) and the subsequent reabsorptions in z

direction (κz). The second term corresponds to the contribution of the first (2/5)
photon to heating in z direction according to the emission pattern of σ+ polarized
light and all subsequent emissions from reabsorbed photons (2/5κ). In the heating
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rate in the y direction (Equation 7.12), the first absorption momentum kick is absent
and the radiation pattern of emitted photons has a statistical weight of 3/10 instead
of 2/5.

In this model we have neglected additional loss and heating processes, like e.g.
radiative escape [169] and radiation trapping [167]. The influence of these additional
effects will be discussed in the experimental part of this Chapter.

7.2.2 Discussion of the Model

Steady State

For simplicity we assume the coefficients κz,y to be time independent. This is justified
for the evaluation of the steady state parameters of the cooling process. The dy-
namics of the cooling process can be described only qualitatively within this model,
since the optical density will change during cooling and therefore the number of
reabsorbed photons increases.

The steady state temperatures are readily derived from Equations 7.2, 7.3 to be

T∞z = 2Trec
τ cool
z

τheat
z

=
1 + κz + 2

5(1 + κ)
1 + κz

TD

2
(7.13)

T∞y = 2Trec

τ cool
y

τheat
y

=
κy + 3

10(1 + κ)
κy

TD

2
, (7.14)

where TD is the Doppler temperature defined by Equation 3.19. These minimum
temperatures are found at a detuning of ∆ = −1/2, in agreement with free space
Doppler cooling [90]. It is worthwhile to mention that in this configuration in absence
of reabsorption (i.e. κz,y = κ = 0) the 1D temperature in the axial direction

Tmin
z =

7
10

TD (7.15)

is smaller than what is usually called the 1D Doppler temperature. The reason is
easily seen: in the 1D model photons can be absorbed and emitted only along the
axial direction. In a 3D model with 1D cooling, photons can be emitted into the
radial degrees of freedom according to the dipole radiation pattern. These degrees
of freedom take up photon recoil heating and therefore reduce the heating rate in
the axial direction. In this situation the radial energy grows without limit.

If we now include reabsorption, the situation changes. Whereas reabsorption only
in the axial direction (κz > 0) changes the cooling rate but not the steady state
temperature, reabsorption in the radial direction (κy > 0) provides a cooling effect,
that establishes a radial steady state temperature (Equation 7.14). The magnitude
of this temperature is determined by the ratio of heating to cooling photons.
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Figure 7.2: Temperatures in the axial (z) and radial (y) direction as a function of trap
aspect ratio for N = 108 atoms and a peak density of n0 = 5× 1010 cm−3.

Experimentally, it is not possible to independently change κy, κz and κ. They de-
pend via Equations 7.6 and 7.8 on the shape of the trapped cloud. In Figure 7.2
we show an example, where we have integrated these equations for different aspect
ratios α = σz/σy to calculate the steady state temperatures. The aspect ratio has no
influence on the axial temperature, since cooling is dominated by photons scattered
directly from the laser beams. Most photons are scattered close to the surface of
an optically dense cloud. Therefore, we observe a decreasing temperature towards a
pancake-shaped cloud for which more photons are scattered and reabsorbed in radial
direction than for a cigar-shaped cloud. Doppler temperature in all directions could
be achieved with a larger number of atoms in the trap. The ultimate phase-space
density attainable in such a system depends on the Doppler temperature and the
inelastic collisional properties of the atomic species used. In laser cooling exper-
iments, the highest reachable densities correspond to the cubed inverse transition
wavelength, i.e. 1012 . . . 1013 cm3.

Dynamics

The transient evolution of the temperature in the radial and axial direction can be
approximated by the well known solution of Equations 7.2, 7.3:

Tz,y(t) = T∞z,y + (T 0
z,y − T∞z,y) exp(− t

τ cool
z,y

) (7.16)

where T 0
z,y are the initial temperatures of the cloud in the axial and radial direction.

Depending on the initial temperatures and the steady state temperatures Equations
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7.13, 7.14, either Doppler cooling (T∞z,y < T 0
z,y) or Doppler heating (T∞z,y > T 0

z,y)
occurs. However, since the atoms are oscillating in a harmonic trap, cooling prefer-
entially occurs close to the trap minimum where the velocity of the atoms is highest.
Therefore the cooling rates can not be higher than approximately one quarter of the
trap oscillation period tz,y.

According to Equations 7.9, 7.10 the time constants τ cool
z , τ cool

y depend on the num-
ber of scattered cooling photons. This can provide a test for the reabsorption model.
If cooling in the radial direction originated from elastic scattering [149] or anhar-
monic mixing by the trapping potential [147], one would expect an intensity in-
dependent relaxation towards an equilibrium temperature, provided τ cool

z ¿ τ cool
y ,

while our model explicitly requires an intensity dependence of τ cool
y

We have already mentioned in the previous section that the effective intensity of
reabsorbed photons will change during the cooling process. We will now discuss the
dynamical effects on the relevant parameters κz,y. From Figure 7.2 and Equation
7.13 we deduce a weak dependence of the axial steady state temperature on reab-
sorbed photons. In this regime cooling in the axial direction is dominated by the real
laser beams and we can assume Tz to be unperturbed from its minimum value Tmin

z .
In contrast, radial cooling strongly depends on the reabsorbed photons, therefore we
have to take into account how κy changes with time. As cooling in the z-direction
starts, the cloud shrinks according to σz =

√
kBTz/µB

′′
z . This will increase the optical

density in the radial direction and thus the number of reabsorbed photons according
to Equation 7.4 and

ODy ∝ 1
σzσy

∝ κy.

As a result, the radial steady state temperature is reduced, since it depends on the
effective number of reabsorbed photons (Equation 7.14). The same argument holds
for the size of the cloud in the radial direction. During radial cooling σy shrinks and
we arrive at an even lower T∞y . In actual experiments this nonlinear effect is less
pronounced and will be neglected.

7.3 Experimental techniques and data evaluation

In our experiment, we continuously load typically 108 chromium atoms in the low
field seeking |j = 3,mJ = 3 > magnetic substate into a weak Ioffe-Pritchard trap as
described in the previous Chapter. In the compressed cigar-shaped trap with a nearly
harmonic trapping potential in all three dimensions, we have an axial and a radial
curvature of B

′′
z = 110 G/cm2 and B

′′
y = 750 G/cm2, respectively. This corresponds

to trapping frequencies for chromium µ = 6µB of ωx = ωy = 2π × 110 Hz and
ωz = 2π × 42 Hz. We use a rather high offset field of B0 = 28 G to assure sufficient
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harmonicity in all directions. During compression the atoms are adiabatically heated
to a temperature of 1 mK at a peak density of 0.4− 1× 1010 cm−3. In this trap we
perform one-dimensional Doppler cooling on the 7S3 ↔ 7P4 transition in 52Cr with
a retroreflected σ+-polarized beam along the axial direction of the trap. The laser
frequency is tuned to 7 Γ above the unperturbed transition frequency corresponding
to an effective detuning of approximately −0.8 Γ for a nonmoving atom placed at the
minimum of the magnetic field in the center of the trap. This value was optimized
with respect to minimum temperature in all directions. The mean intensity of the
≈ 1 cm diameter beam as seen by the ≈ 2 mm diameter cloud was measured to be
4×10−3 Isat using a 1 mm diameter pinhole in front of a calibrated photodiode. The
atomic ensemble is detected by absorption imaging using a 12 Bit CCD camera. The
resulting optical density profile of the cloud is fitted with two orthogonal Gaussian
profiles meeting at the center of the cloud as descibed in Section 5.5. The number
of atoms is extracted from this fit using the peak optical density and the size. We
perform time-of-flight (TOF) sequences to obtain the temperature in the axial and
radial direction. Densities are derived using the size of the cloud in the trap obtained
from the time-of-flight fit and the number of atoms. The error bars shown in the
figures are the square root of the diagonal elements of the covariance matrix for the
fitting parameters obtained from a least square fit. No systematic errors have been
included, unless otherwise noted.

7.4 Experimental Results

7.4.1 Dynamics

In this section, we present experimental results on the dynamics of the cooling
process. In Figure 7.3 we have plotted the temperature of the cloud in the axial (z)
and radial (y) direction after a variable cooling time. We start in both directions with
a temperature of approximately 1 mK. In the axial (cooling laser beam) direction we
see a fast decrease in temperature. But also in the radial direction, where no laser
beam is applied, cooling is observed on a short timescale. The initial decrease in
temperature is well fitted by an exponential decay in both cases (see inset in Figure
7.3), as is expected from Equation 7.16. The cooling time constants derived from
the fit are τ cool

y ≈ 50 ms and τ cool
z ≈ 10 ms, corresponding to the fastest possible

cooling time of 2π/4ωz. In fact, we have never observed axial cooling time constants
significantly lower than 10 ms. The minimum steady state temperatures in Figure
7.3 are T∞y = 334±7 µK and T∞z = 124±3 µK, corresponding to 2.7 and 1 times the
1D Doppler temperature of TD = 124µK. Due to density dependent heating effects
in the light field [127, 132], the minimum axial temperature of Tmin

z ≈ 90µK is not
reached. Figure 7.4 shows the evolution of the number of atoms and the phase space
density during the cooling in a double logarithmic plot to resolve the fast initial
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Figure 7.3: Typical evolution of the temperatures in the axial (z) and radial (y) direction
as a function of cooling time. The intensity of the cooling laser was 4× 10−3 Isat. The inset
shows another measurement with finer resolution of the initial decrease in temperature.
The lines in the inset are least square fits of an exponential decay to the data with a typical
uncertainty in the time constants of below 10 %.
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Figure 7.4: Evolution of the number of atoms and the phase space density for the same
data set as shown in Figure 7.3. The statistical error in the data of 20 % has been omitted
for clarity.
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Figure 7.5: Radial cooling rate 1/τcool
y as a function of measured single beam cooling light

intensity. The corresponding cooling rates in the axial direction are larger by a factor of at
least 5 for each data point.

dynamics. The number of atoms stays constant within experimental uncertainty
beyond 300 ms at which time the steady state temperature is reached. We gain
more than a factor of 80 in phase space density and increase at the same time the
peak density by more than one order of magnitude from 0.4×1010 to 5.6×1010 cm−3.

In the experiment shown in Figures 7.3 and 7.4, we continued cooling after reaching
steady state. Figure 7.4 shows a strong reduction in the number of atoms for cooling
times longer than 500 ms. Atoms are lost from the trap presumably by radiative
escape or fine structure changing collisions [121, 169] in the cooling light. At the
same time the temperature increases in the radial direction, whereas it stays constant
in the axial direction. This is evidence for a density dependent cooling effect in the
radial direction. A lower number of atoms results in a reduced optical density and,
according to Equation 7.14, to a higher steady state temperature T∞y . We will come
back to this effect in the discussion of the steady state results.

We have already pointed out in Section 7.2.2 that the cooling rate of the radial
degrees of freedom via anharmonic mixing or elastic collisions between the atoms
should be independent of cooling light intensity, provided cooling in the axial direc-
tion is much faster. In Figure 7.5 the results of a cooling experiment with different
cooling light intensities are plotted. For each data point we have performed an
experiment analogous to Figure 7.3 and fitted the initial exponential decay of the
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temperature to obtain the cooling rate. The corresponding rate constant for the axial
direction has been verified to be larger by at least a factor of five for each data point.
One can clearly see a linear dependence of the radial cooling rate on light intensity,
ruling out anharmonic mixing or elastic collisions as the major cooling mechanism.
We have also performed an experiment in which we stopped cooling after the axial
direction reached steady state, thus producing a highly anisotropic temperature dis-
tribution. The subsequent cross-dimensional relaxation of the temperatures, driven
by elastic ground state collisions, occurred on a much longer timescale than the
observed cooling time constants when the light was on.

Increasing the laser intensity beyond the values shown in Figure 7.5 results in a
strong distortion of the cloud due to light pressure forces and intensity imbalance
between the two counterpropagating cooling beams. This causes parasitic heating
and increases the achievable temperatures.

From the slope of the linear fit to the data in Figure 7.5 we can extract κy =
0.0069 for a detuning of ∆ = −0.8Γ according to Equation 7.10. To compare
this experimentally determined value with theory, we have integrated Equation 7.5
using the steady state density distribution with a cloud size of σz = 700µm and
σy = 410µm. The theoretical result of κy = 0.046 is larger by more than a factor
6. If absorption of the scattered intensity inside the cloud is taken into account in
Equation 7.5, the result reduces to κy = 0.028 or 4 times the experimental value.
This deviation may arise from a change in κy originating from an increase in the
optical density during cooling. From our experimental data we extract an average
cooling rate, which is systematically lower than the steady state value.

7.4.2 Steady State Temperatures

In this section, we present experiments that elucidate the different effects influencing
the steady state temperature and compare them to theory.

In the simplified model used to derive the steady state temperatures in the axial
and radial direction given by Equations 7.13 and 7.14, the latter are independent
of cooling light intensity, since both, the heating rate 1/τheat

z,y and the cooling rate
1/τ cool

z,y are linear in intensity. Accounting for an additional constant heating rate
R in the differential equation (7.3), the steady state temperature is now intensity
dependent and for a detuning of ∆ = −0.5Γ becomes

T∞y =

(
κy + 3

10(1 + κ) + R
kBTrecΓI/Is

)

κy

TD

2
. (7.17)

In Figure 7.6 we have plotted the measured steady state temperature T∞y for different
cooling light intensities. The fit to Equation 7.17 using the measured detuning of
∆ = −0.8Γ and κ = 0.16 calculated from Equation 7.8, gives κy = 0.1 ± 0.002 and
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Figure 7.6: Radial steady state temperature as a function of cooling light intensity. The
data is fitted by Equation 7.17. The data is from the same experimental run as in Figure
7.5.

R = 2.4 × 10−26 ± 10% Js−1. This result agrees well with the integrated value for
κy = 0.07 obtained from Equation 7.5. We can also estimate a minimum radial
temperature of T∞y ≈ 300µK from Figure 7.6, which is in good agreement with
the predicted value using Equation 7.14 (see Figure 7.2) of T∞y = 2.6TD ≈ 320µK.
Although the calculated temperature (neglecting multiple scattering events) is higher
than the measured one, we expect the additional, intensity independent heating
mechanism to slightly increase the minimum temperature. We have identified this
mechanism to be a strong dipolar relaxation process in chromium which will be
discussed in Appendix E.

We have already seen in Figure 7.3 that the steady state temperature in the radial
direction depends on the number of atoms in the cloud (the temperature increases
when the number of atoms decreases at longer cooling times). To elucidate this
effect more quantitatively we have performed an experiment in which we cool down
the atoms to steady state as described before. In a second ”cooling”stage we reduce
the cooling laser intensity to 1.6 × 10−3 Is to slow down the loss of atoms. After
different cooling times, we measure the temperature and the optical density in the
radial direction. The result is plotted in Figure 7.7 as a function of optical density in
the radial direction. We observe a decrease in temperature with increasing optical
density. The effective number of reabsorbed radial and total cooling photons, κy and
κ, respectively, are to lowest order linearly proportional to the optical density ODy
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Figure 7.7: Steady state temperature in the radial direction as a function of optical density
(OD) in this direction. The error bar resembles the typical error from the temperature fit
to the time of flight data. The theory curve is a plot of Equation 7.18 using the results of
the fit from Figure 7.6.

(Equation 7.4). Introducing two new constants, κ∗y = κy/ODy and κ∗ = κ/ODy,
the steady state temperature reads

T∞y =

(
κ∗y ×ODy + 3

10(1 + κ∗ ×ODy) + R
kBTrecΓI/Is

)

κ∗y ×ODy

TD

2
. (7.18)

This equation is plotted as a solid line in Figure 7.7 using the results for R and κy

(normalized to steady state optical density of 4.5) from the fit to the data in Figure
7.6. The agreement with the experimental data is surprisingly good, since κy and κ

are not strictly linear in the optical density (see Equations 7.5, 7.8) and the heating
rate depends on temperature and density.

7.5 Conclusion

We have presented a general Doppler cooling technique which works for opti-
cally dense, trapped atomic samples. In experiments with magnetically trapped
Chromium atoms we have achieved an increase in phase space density by two orders
of magnitude. To explain our experimental results, in particular the fast and effi-
cient three-dimensional cooling in a one-dimensional molasses, we have developed a
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model which takes into account the radial cooling due to reabsorption of scattered
photons. Our experimental findings for the intensity-dependence of the cooling rate
and the steady-state temperature agree well with the theoretical considerations. We
could exclude thermalization effects via elastic collisions or anharmonic mixing as
the origin of the radial cooling we observe. Optimum radial cooling is observed for
pancake shaped trap configurations and the radial cooling efficiency increases with
the radial optical density.

Our technique should be applicable to most atomic species which can be laser-cooled
provided that a moderate magnetic offset-field (e.g. B0 = 15 G for 87Rb) is applied
to prevent depolarization of the sample. Implementation of this technique in a BEC
experiment could simplify the initial laser cooling stages, since Doppler cooling in
the trap reduces the figure of merit for loading of the trap to the number of atoms
transferred into the trap regardless of temperature. Due to the low light intensities
needed to cool the atoms, our method might also be applicable to magnetically
trapped atoms in a cryogenic environment [41, 170]. In our experiment, the achieved
phase space density for chromium already provides good starting conditions for
evaporation and only excessive atom loss and heating due to dipolar relaxation
(see Appendix E) in the consecutive evaporation stage prevented us from reaching
quantum degeneracy. In conclusion, we have shown that Doppler-cooling applied in
a magnetic trap serves as a technique for preparing ultra-cold magnetically trapped
atoms. We observe that high optical densities in the cloud improve the cooling
efficiency by reabsorption of scattered photons.



Chapter 8

Basic collision theory

In this Chapter I introduce the basic concepts of collision theory with main emphasis
on cold and ultra-cold collisions. I do not intend to give a full derivation of the
theoretical formalism but rather stress the — sometimes less precise — underlying
physical pictures and interpretations. To understand the dynamics of an ultra-cold
trapped atomic ensemble, it is necessary to be acquainted with the features of low
energy scattering. After an introduction, various scattering features with a square-
well as a model potential are discussed. In Section 8.6, I address the specialities of
atom-atom collisions arising from their internal structure. The last Section gives a
short introduction in the theory of evaporative cooling.

8.1 Introduction

8.1.1 Terms and definitions

We will consider the non-relativistic collision process between two distinguishable
quantum particles interacting via a finite-range1 skalar potential V (~r1, ~r2). Effects
of identical particle scattering will be discussed in Section 8.1.3. It is convenient to
treat the scattering process in the center of mass system, thus transforming a two
particle problem into two single particle problems. The center of mass motion of
the two particles is unaffected by the collision process, whereas the relative motion
describes the scattering of a single particle with reduced mass mµ = m1m2

m1+m2
on the

potential V (~r1 − ~r2) = V (~r). The kinetics of the scattering process is characterized
by either the initial momentum ~p, wave vector ~k = ~p/~ or its magnitude k = |~k|,
velocity ~v, kinetic energy E = ~p2

2mµ
or corresponding temperature T = E/kB of the

reduced mass in the center of mass frame2.
1We will specify the term ”finite-range”more stringently below.
2We will use these quantities synonymously.

86
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V( r )

dJ
z

Figure 8.1: Basic scattering problem: an incident plane wave with wavevector ~k0 is
scattered by a potential V (~r). The scattered wave is detected in the shaded area d ~A along
a direction ~k under the solid angle dΩ.

In quantum mechanics, particles are usually described as wavepackets. We assume
the wavepackets of the scatterers to be very broad in position space and to have a
well defined momentum (i.e. energy) in momentum space according to Heisenberg’s
uncertainty relation. The superposition principle of quantum mechanics allows to
decompose the wavepackets into an arbitrary set of wave functions. We will choose
the plane wave approach in the position representation here. In principle, collision
theory can be treated in a very general but abstract way in the framework of the
Lippmann-Schwinger equation (see e.g. [171] or [172]), which is an integral equation
for the formal solution of the scattering problem. The plane-wave approach pre-
sented here simplifies calculations and allows to gain more insight into the physical
properties of the scattering process.

The simplified scattering problem is sketched in Figure 8.1. An incident plane wave
with wavevector ~k0 is scattered by a potential V (~r). The scattering of the plane
wave is described by the time independent Schrödinger equation

[
~̂p 2

2mµ
+ V (~r)

]
φ(~r) = Eφ(~r), (8.1)

where ~̂p is the momentum operator and E the total energy. The stationary solution
has two components: the incident plane wave φ0(~r) and an outbound scattered wave
φs(~r):

φ(~r) = φ0(~r) + φs(~r). (8.2)

The Ansatz for the scattered wave in the far field is given by a spherical wave with
wavevector k modulated by the angle-dependent scattering amplitude f(ϑ, φ):

φs(~r) −−−→
~r→∞

f(ϑ, φ)
eikr

r
. (8.3)
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Elastic scattering requires energy conservation, i.e. k = |~k0|.
The main goal of scattering theory is to derive an expression for the scattering
cross-section σtot. It tells us how many scattering events per unit time and incident
particle flux take place. A detector (depicted by the area d ~A in Figure 8.1), on the
other hand, usually can only observe a fraction of the total scattered wave. This
leads to the definition of the differential scattering cross-section

dσ(E, ϑ, φ) = |f(E, ϑ, φ)|2dΩ, (8.4)

which is a measure for scattering probability of a single particle into the solid angle
dΩ normalized to the incident particle current density. Integration of Equation 8.4
yields the total scattering cross-section

σtot(E) =
∫
|f(E, ϑ, φ)|2dΩ (8.5)

All the information about the collision process can therefore be obained from the
scattering amplitude.

It is very instructive to relate the quantum mechanical with the classical description
of the scattering process. In a classical picture of a contact (billiard ball) scattering
potential, the particles scattered away from the incident wave result in a shadow cast
by the potential. In the quantum description of the problem, this shadow emerges
as a consequence of the destructive interference of the incident and scattered wave.
From these considerations, one can qualitatively understand the optical theorem

σtot(E) =
4π

k
Imf(E, ϑ = 0). (8.6)

The imaginary part of the forward (ϑ = 0) scattering amplitude is responsible for
this destructive interference.

Besides the energy conserving elastic collisions, also exothermic inelastic or even
reactive collisions can take place. The concept of collision “channels” has been in-
troduced to account for a change in the properties of the colliding particles. A
channel is a possible mode of fragmentation of the composite system (particle 1 +
particle 2) during the collision. Elastic collisions always involve a single channel,
since entrance and exit channel of the collision are identical. Inelastic collisions usu-
ally involve a change in the internal state of one or both particles. Each possible
final state of the pair of particles denotes a collision channel, which can be charac-
terized by a set of quantum numbers describing the internal states. A channel is
open, if the corresponding collision process is allowed by all applicable conservation
laws and closed if not. Interactions between open and closed channels can lead to
interesting effects, like e.g. Feshbach resonances (see Section 8.6.2).
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8.1.2 Partial wave decomposition

For central potentials V (r) that depend only on the distance r between the particles,
the partial wave decomposition has proven to be a very useful method — especially
in the low energy limit, where only a few partial waves contribute to the scattering
amplitude. For such a potential, the Hamiltonian in Equation 8.1 commutes with the
angular momentum operator and the projection operator of the angular momentum
onto the z axis. The angular part of the Schrödinger equation is therefore solved by
the spherical harmonic functions which further simplify to the Legendre polynomials
P`(cosϑ) if we take into account the azimuthal symmetry of the problem. The partial
wave expansion for the wave function

φ(~r) =
∞∑

`=0

u`(r)
r

P`(cosϑ) (8.7)

results in a Schrödinger equation for the radial wave function u`(r):

~2

2mµ
u′′` (r) + [E − Veff(r)]u′′` (r) = 0, (8.8)

where the double prime (′′) denotes the second derivative with respect to the radial
coordinate. The effective potential in spherical coordinates is given by

Veff(r) =
[
V (r) +

~2`(` + 1)
2mµr2

]
. (8.9)

The centrifugal term accounts for the rotational energy of the system. This “centrifu-
gal barrier” is responsible for the threshold laws discussed in Section 8.3. The total
“potential” energy is given by the effective potential. For a free particle (V (r) = 0),
Equation 8.8 is similar to the spherical Bessel differential equation. The solution for
the full scattering problem satisfying the boundary conditions3 can be divided into
two regions: the interaction region (V (r) 6= 0) and the far field (V (r) = 0). The
far-field solution has the same structure as the free particle solution. Therefore, the
difference between scattering and free space solution in the r → ∞ limit can only
be a phase shift δ`. This phase shift is determined by the boundary conditions con-
necting the interaction with the far-field solution. The dependence of the scattering
amplitude on this phase shift is obtained by performing a partial wave expansion
of the incoming plane wave φ0(~r) in Equation 8.2 and comparing the coefficients of
Equations 8.7 and 8.2 in the r → ∞ limit. We obtain for the scattering amplitude

3The boundary conditions for physically meaningful solutions require them to be regular and

finite everywhere. Only attractive potentials vanishing faster than r−2 for r → ∞ can be treated

in this formalism.
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the following general r →∞ expression:

f(k, ϑ) =
1

2ki

∑

`

(2` + 1)
(
e2iδ`(k) − 1

)
P`(cosϑ) (8.10)

=
1
k

∑

`

(2` + 1)eiδ`(k) sin δ`(k)P`(cosϑ), (8.11)

where δ`(k) is the collisional phase shift of the `th partial wave, which is explicitly
dependent on the collision energy via the wave number k =

√
2mE/~. Integration of

Equation 8.4 yields the total scattering cross-section σtot(k) and the cross-sections
for each partial wave, σ`(k):

σtot(k) =
4π

k2

∑

`

(2` + 1) sin2 δ`(k) =
4π

k2

∑

`

σ`(k). (8.12)

The maximum contribution of a specific partial wave to the total cross-section is
reached in the so called unitarity limit (sin2 δ` = 1) and increases with angular
momentum according to

σ` =
4π(2` + 1)

k2
. (8.13)

Comparing the scattering amplitude in forward direction, f(k, ϑ = 0) with Equation
8.12, directly yields the optical theorem given in Equation 8.6.

We can derive another useful functional form of the ` = 0 (s-wave) scattering am-
plitude. From Equation 8.10, we obtain the following relations

f0(k) =
1
k
eiδ0(k) sin δ0(k) (8.14)

=⇒ Im
1

f0(k)
= −k (8.15)

=⇒ Re
1

f0(k)
= k cot δ0(k). (8.16)

From the last two equations it follows immediately that the s-wave scattering am-
plitude can be written as4

f0(k) =
1

g0(k)− ik
, (8.17)

where we have defined the function g0(k) = k cot δ0(k). We will use this expression
for the scattering amplitude to derive the energy dependence of the s-wave scattering
cross-section in Section 8.5.3.

4A thorough treatment shows that the validity of this equation is not limited to s-waves [173].
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(a) (b)

Figure 8.2: Scattering of identical particles. For indistinguishable particles, the scattering
events shown in (a) and (b) are described by the same (anti-)symmetrized wave function

We have now reduced the solution of a specific scattering problem to the determi-
nation of the corresponding partial wave phase shifts δ`(k). It can be shown (see
Section 8.3) that in the low energy limit k → 0 (threshold scattering), all higher or-
der partial wave cross-sections vanish, except for the spherically symmetric s-wave
scattering amplitude f0 = −a with the cross-section σ0(k → 0) = 4πa2, where a is
called the scattering length. Ensembles in which scattering is governed by s-waves
will be discussed in more detail in Section 8.5.

The effect of the scattering potential on the phase shift can be understood in terms
of a simple optical analog: the incoming wave is represented by a light wave with
a wavelength λ and the potential by a transparent material with a refractive index
nr. An attractive potential reduces the wavelength of the incoming particle corre-
sponding to a refractive index of nr > 1. The scattered wave is retarded (δ` < 0)
with respect to the unscattered wave. For a repulsive potential, the scattered wave
is advanced (δ` > 0), corresponding to nr < 1.

8.1.3 Identical particles

Particles in the same internal quantum state are indistinguishable. It is therefore
impossible to determine which particle scatters and which is the scatterer (see Figure
8.2). This is accounted for by considering both events in the (anti-)symmetrized wave
function. Interchange of particles (~r → −~r, r → r, ϑ → π − ϑ, φ → π + φ) can
either reverse the sign of the wave function for fermions having half integral spin,
or leave it untouched for bosons having integral spin. (Anti-)symmetrization of the
scattered wave (Equation 8.3) assuming a central potential yields

φs(~r) −−−→
~r→∞

[f(ϑ)± f(π − ϑ)]
eikr

r
, (8.18)

where the plus sign applies for bosons and the minus sign for fermions. The detector
cannot distinguish between the identical particles, so both processes depicted in
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Figure 8.2 lead to a “click”. The differential cross-section is therefore defined by

dσ(ϑ) = |f(ϑ)± f(π − ϑ)|2dΩ (8.19)

= |f(ϑ)|2 + |f(π − ϑ)|2 ± 2Re [f(ϑ)f∗(π − ϑ)] dΩ, (8.20)

where the star (*) denotes complex conjugate. The last term in this equation is
a quantum mechanical interference which vanishes in the classical limit. However,
it has important consequences for low energy scattering. In the case of bosons, all
odd partial waves interfere destructively, whereas for fermions all even partial waves
vanish due to the symmetry properties of the Legendre polynomials. Collisions
between identical fermions “freeze out” in the limit k → 0. The total scattering
cross-section is obtained by integrating over one half sphere to conserve the number
of particles (detection at ~r∗ = −~r would yield the same number of “clicks” as
observation at ~r, thus counting the same event twice). It is worthwhile to mention,
that the quantum mechanical s-wave scattering cross-section in the low temperature
limit is σ0 = 8πa2 and thus twice as large as for distinguishable particles and four
times as large as for classical particles. The difference between quantum mechanical
and classical result is the interference term in the scattering amplitude which also
leads to the optical theorem. Classically, particles are only scattered away from the
incident beam. Quantum mechanical scattering has two contributions: a scattered
wave corresponding to classical scattering, plus a destructive interference term of the
scattered wave with the incident wave responsible for the “shadow” in the beam cast
by the scattering potential. These two terms have the same magnitude and double
the quantum mechanical cross-section with respect to the classical. The number of
collision events (in which two atoms collide) per unit volume per unit time in a gas
of density n is given by <σ(E)v>thn

2/2 (omitting the factor 1/2 would count the
pairs twice), where <. . .> denotes thermal averaging (see Appendix C).

In the following we will continue to assume distinguishable particles if not otherwise
noted. The corresponding cross-sections and rates for identical particles are larger
by a factor of 2.

8.2 Scattering by a square-well potential

In this section, we will discuss low energy scattering of a particle by a square-well
potential. Most results obtained here can easily be adopted to other, more realistic
potentials as far as they fall off more rapidly than r−2 for large r. We will therefore
use it as an example to illustrate the general features of low energy collisions.

Consider a three-dimensional attractive square-well potential having a width r0 and
a depth V0 as sketched in Figure 8.3. The square well can support Nb bound states,
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V(r)

r

-V0

0 r0

δ

Figure 8.3: Scattering by a square-well potential of depth −V0 and width r0. The position
of bound states are indicated by the gray lines inside the well. The stationary solution of
the scattering wave is represented by the black wave, whereas the solution in the absence
of the potential is given by the gray wave. The waves have a phaseshift δ modulo 2π, as
indicated.

where Nb is given by [172, Ch. 9.2.5]

Nb = Ceil

[
1
π

√
2mµV0r2

0

~2
− 1

2

]
. (8.21)

The function Ceil[x] returns the next integer greater than or equal to x. The first
bound state has an energy of

Ub =
π2~2

8mµr2
0

. (8.22)

A bound state is characterized by the fact that half the wavelength corresponding
to the eigenfunction of this state equals an integer multiple of the effective square
well width. Due to the exponential decay of the wavefunction into the classically
forbidden region, the effective width can be up to twice as large compared to the
actual width [174]. In this regime, the Bohr-Sommerfeld quantization condition is
given by nλb/4 = r0, where n is a positive integer. This can be generalized for arbi-
trary potentials using the WKB (Wenzel-Crames-Brioullin) quantization condition
Φ(E) = (Nb + 1/4)π, where the phase integral Φ(E) between the inner and outer
classical turning points r1 and r2, respectively, is defined as [175]

Φ(E) =

r2∫

r1

k(E)dr. (8.23)
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Figure 8.4: Temperature dependence of the ` = 0, 1, 2 scattering cross-sections for a
square well potential of width r = 50 a0 (a0 = 0.53Å is Bohr’s radius) and depth V0 =
VNb=100 +5 (see Equation 8.21). (a) Low temperature regime. The dotted lines indicate the
low temperature limits of the cross-sections. ` > 0 partial waves vanish as k4`, whereas the
s-wave scattering cross-section reaches a constant value of 4πa2. (b) Medium temperature
regime. The dotted lines indicate the unitarity limit (Equation 8.13) for the different partial
waves. The cross-sections oscillate between zero and the unitarity limit.

The stationary solution of the free particle problem (V (r) = 0) obtained from Equa-
tion 8.8 is given by a linear combination of spherical Bessel j`(z) and von Neumann
functions n`(z) (symbolized by the gray wave in Figure 8.3). Inside the potential
(r < r0), the only regular solution is the spherical Bessel function, whereas on the
outside (r > r0) we get the same structure as in the absence of the potential. The
inside and outside wave functions have to meet the boundary condition requiring
the continuity of the logarithmic derivative of the wave functions at r = r0. The
asymptotic (r → ∞) phase shift between the unperturbed und the scattered solu-
tion determines is a direct consequence of this boundary condition. It determines
the partial wave cross-section according to Equation 8.12 and is given by

tan δ` =
kj′`(kr0)j`(k0r0)− k0j

′
`(k0r0)j`(kr0)

kn′`(kr0)j`(k0r0)− k0j′`(k0r0)n`(kr0)
, (8.24)

where k2 = 2mµ

~2 E is the square of the wave vector outside and k2
0 = k2 + λ2

0

with λ2
0 = 2mµ

~2 V0 inside the potential well. We have plotted in Figure 8.4 the
exact solution (Equation 8.24) for the temperature5 dependence of the ` = 0, 1, 2
partial wave cross-sections. The most prominent feature is the oscillation of the
scattering cross-sections between zero and the corresponding unitarity limit with
temperature. This behaviour is termed the “Ramsauer-Townsend effect” [171, Ch.

5We assume a well defined collision energy instead of a thermal energy distribution, but use

the temperature as a measure for the kinetic energy. For an atomic ensemble close to thermal

equilibrium, thermal averaging of the collision cross-section has to be performed (see Appendix C).
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4.3] and can easily be understood in terms of the scattering phase. Each time the
incident particle energy is such that an integer multiple of half the wavelength fits
inside the potential region, no scattering occurs. In that case, the solutions for the
wave with and without potential have an integer phase shift of π and the scattering
cross-section vanishes. In between, the phase shift attains odd multiples of π/2 which
corresponds to unitarity scattering (see Equation 8.13).

8.3 Scattering close to threshold

The partial wave expansion is only useful, if we can limit ourselves to the evaluation
of only a few phase shifts. A simple classical argument shows, that this is true for
low energy scattering. The angular momentum of a particle scattered at a central
potential is given by |~L| = b

√
2mµE = const, where b is the impact parameter.

Scattering requires the particle to penetrate the potential having a range of r0, thus
|~L| ≤ r0

√
2mµE. The analogous quantum mechanical expression yields an upper

limit for the angular momentum involved in the scattering process:

` ≤
√

`(` + 1) ≤ 1
~
r0

√
2mµE = kr0. (8.25)

The physics behind this behaviour is easily seen: the centrifugal barrier term in
Equation 8.9 scales quadratically with the angular momentum. Thus, collisions
involving a high angular momentum have to provide sufficient rotational energy to
probe the scattering potential at all. An exception to this behaviour are shape
resonances discussed in Section 8.4.

The onset of quantum threshold scattering for a −Cs/rs potential with s ≥ 3 is
related to the breakdown of the semiclassical WKB approximation for the connec-
tion between the external r > rq and the internal r < rq wavefunction below a
characteristic energy Eq [176]

Eq =
~2

mµ

[(
2
s + 1

3

)2s (
s− 2
6s

)s (
2s + 2
s− 2

· ~2

mµCs

)2
] 1

s−2

(8.26)

rq =
(

27s
4(s + 1)3

· mµCs

~2

) 1
s−2

. (8.27)

In the WKB approach, the potential is linearized around the turning points which
results in an energy independent reflection phase of π/2. The breakdown occurs at an
energy for which the de Broglie wavelength λdB of the incoming wave varies strongly
when entering the potential region: dλdB(E,r)

dr & 1. The linearization of the potential
is no longer valid and thus the phase shift upon reflection deviates from π/2 and
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becomes energy dependent, which marks the onset of quantum threshold behaviour
[175].

The height and position of the centrifugal barrier of the effective potential (Equation
8.9) can be related to the characteristic threshold energy Eq and is given for a van
der Waals potential with s = 6 by

Ec(`) = 0.0193Eq [`(` + 1)]
3
2 (8.28)

rc(`) = 2.67
rq

4
√

`(` + 1)
. (8.29)

The particle can enter the interaction region for a kinetic energy E = 3
2kBT exceeding

the centrifugal barrier height Ec(`). The corresponding ` = 2 and ` = 4 threshold
temperatures for bosonic chromium assuming C6 ≈ 1300 a.u. (see Appendix D) are
Tl=2 ≈ 1.1 mK and Tl=4 ≈ 6.8 mK, respectively, and thus far above any temperature
we observe in our trapped atomic ensembles.

The contribution of the higher order partial waves for low collision energies can
be obtained by approximating the solution for the phase shifts for the square well
potential (Equation 8.24) in the kr0 ¿ 1 limit:

tan δ` =
2` + 1

[(2` + 1)!!]2
(kr0)2`+1P ∗

` (k0r0), with (8.30)

P ∗
` (k0r0) =

(
`j`(z)− zj′`(z)

(` + 1)j`(z) + zj′`(z)

)

z=k0r0

. (8.31)

Provided the term abbreviated by P ∗
` behaves reasonably (see next Section), we

can immediately deduce a k2`+1 dependence of the scattering phase. Therefore,
the cross-sections for partial waves with ` > 0 vanish for decreasing energy as 1/k4`

(Wigner threshold law). On the contrary, the s-wave cross-section remains at a
constant value of σ0 = 4πa2 (see Figure 8.4 (a)). It can be shown [173, §132], that
this behaviour is quite general, provided the scattering potential vanishes faster than
1/r2`+3. An important exception from this is the dipole-dipole interaction, which will
be discussed in Section 8.6.3.

The Wigner threshold law has been verified experimentally for p-waves collisions in
an ensemble of fermionic 40K atoms [177].

8.4 Shape resonances

We have seen in the previous section that higher partial waves (` > 0) do not signifi-
cantly contribute to the low energy scattering cross-section below a certain threshold
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Figure 8.5: Shape resonance for the ` > 1 partial waves in a square well potential. (a)
Sketch of the effective potential (Equation 8.9) including the centrifugal barrier (vertical scale
exaggerated). The scattering wave k can tunnel through the centrifugal barrier, provided
the scattering energy is resonant with a bound level inside the centrifugal barrier. (b) ` = 1
partial wave scattering cross-sections for a square well potential with a low energy shape
resonance. The two curves show the influence of a slight change in potential depth, which
is given in units of the first bound state energy Ub (Equation 8.22).

(height of the centrifugal barrier), provided the term defined in Equation 8.31 be-
haves reasonably. An exception from this is the occurence of a shape resonance,
when the denominator of Equation 8.31 vanishes at a certain energy Er and tan δ`

diverges. For a narrow, deep square well potential this energy can be derived from

k0r0 − π

2
` ≈

(
n +

1
2

)
π, with k2

0 =
2mµ

~2
(Er + V0) (8.32)

where n is a positive integer. The same equation describes the energy Er of a
quasi-bound state with orbital angular momentum ` inside the centrifugal barrier.
Apparently, higher order partial waves can tunnel through the barrier and couple
resonantly to these states as sketched in Figure 8.5 (a). The scattered particle can
spend a significant amount of time inside the centrifugal barrier, which results in a
large scattering probability.

The energy dependence of the cross-section close to the resonance energy can be
obtained from a Taylor expansion of the denominator of Equation 8.31 and assuming
E ≈ Er. Defining

Γr = Γ(Er) =
(kr0)2`+1

[(2`− 1)!!]2

(
2~2

mr2
0

)
, (8.33)

we can derive from Equation 8.30 the Breit-Wigner formula for resonance scattering:

σ` =
4π(2` + 1)

k2

Γ2
r

4(E − Er)2 + Γ2
r

. (8.34)
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The scattering cross-section has a Lorentzian lineshape with a resonance half width
given by Γr. On resonance, it reaches its unitarity value (Equation 8.13). The width
of the resonance (Equation 8.33) scales like E

`+1/2
r . This can be understood from

the lifetime τ ≈ ~/Γr of the metastable quasi-bound state: the lower Er, the thicker
the centrifugal barrier and the longer the lifetime. This behaviour is illustrated in
Figure 8.5 (b), where we have plotted the ` = 1 shape resonance for two slightly
different potential depths. Close to the resonance at T = 30µK and T = 90 µK
the ` = 1 cross-section dominates the scattering process, although the centrifugal
barrier for both potentials has a height of 1.4 mK. As we can see from the Figure,
already minor changes in the scattering potential can have profound consequences
on the position and width of the resonance. It is this sensitivity to the shape of the
potential that gave these resonances their name.

Shape resonances can also play an important role in inelastic collisions of atoms.
The atoms spend a long time close together inside the centrifugal barrier. Spin-orbit
or hyperfine interactions during that time can lead to an enhancement of dipolar
relaxation collisions which will be discussed in more detail in Section 8.6.3.

Shape resonances in cold atomic collisions have been observed for p-waves in
fermionic 40K in a cross-dimensional relaxation experiment [177], and in d-waves
for 87Rb [178] and 39K [179, 180] by photoassociation spectroscopy.

8.5 Elastic s-wave collisions

We have seen in Section 8.3 that all partial wave cross-sections vanish — in the
absence of resonances — as the collision energy approaches zero, except for the s-
wave cross-section. We will again use the results from the square-well potential to
develop the general features of s-wave scattering, most of which have equivalents for
other scattering potentials.

8.5.1 The scattering length

From Equation 8.12, we immediately obtain the s-wave scattering cross-section

σ0(k) =
4π

k2
sin2 δ0(k). (8.35)

The full solution for the phase shifts of the square-well scattering problem (Equation
8.24) can be further simplified for s-waves to

δ0(k) = arctan
(

k tan k0r0

k0

)
− kr0. (8.36)
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For vanishing collision energy (k0 → λ0) and with the definition of the scattering
length as

a = − lim
k→0

tan δ0(k)
k

(8.37)

=
square well

[
1− tanλ0r0

λ0r0

]
r0, (8.38)

the phase shift is

δ0(k) = arctan [k(r0 − a)]− kr0. (8.39)

Far away from any resonances, a does not diverge [k0r0 6= (Nb + 1/2)π, where Nb is
an integer], the arctan() can be replaced by its argument and we simply get for the
scattering phase (modulo π)

δ0(k) ≈ −ka. (8.40)

In this case, the s-wave cross-section (Equation 8.35) is to first order independent
of collision energy

σ0 = 4πa2. (8.41)

We will see in Section 8.5.3, that information on the temperature dependence of
the s-wave cross-section can be obtained from an effective range expansion which
gives higher order terms in the collision energy. The scattering length a can be
positive or negative and is typically on the order of the range of the interaction
potential. For collisions between neutral atoms, it is on the order of 100a0, where
a0=0.53 Å is Bohr’s radius. A geometrical interpretation of the scattering length can
be obtained by considering the scattered wave function which has the asymptotic
form u0 ∼ sin (kr + δ0). In the zero temperature limit and for r → 0, this can
be further simplified to u0 ∼ ±k(r − a) by replacing sin(x) with its argument and
using Equation 8.40. Therfore, the scattering length marks the intersection of the
tangent on the asymptotic wavefunction [the argument of sin(x)] with the r-axis.
Figure 8.6 shows some examples for threshold (k → 0) wave functions and their
tangents (dashed lines) for slightly different potentials resulting in a negative, zero
and positive scattering length (from top to bottom).

8.5.2 Zero energy resonances

In the previous subsection we have obtained a low energy expression for the scatter-
ing cross-section under the assumption that the scattering length does not diverge.
We will now drop this limitation and analyze the behaviour of the phase and the
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Figure 8.6: Wave functions for slightly different potentials resulting in a negative, zero and
positive scattering length a (top to bottom, vertically displaced for clarity). From: [181].

cross-section for different potential depths. We are free to choose δ0 = 0 for V0 = 0.
Increasing the potential depth starting from zero, the scattering length a (Equation
8.38) decreases from 0 to minus infinity6 as we approach

λ0r0 =
(

Nb +
1
2

)
π, (8.42)

where Nb is an integer. We immediately see that this is equivalent to the condition
for the existence of the first bound level inside the square well (Equation 8.21).
In that case the zero energy scattering phase (Equation 8.39) is δ0 = π/2 resulting
in a pole in the scattering length and a divergence in the scattering cross-section
(Equation 8.41): we observe a zero energy resonance (see Figure 8.7). Just before
the condition 8.42 is reached, the scattering length is large and negative and the
potential is said to have a virtual state. The scattering length has a pole with
a change in sign as a new bound state enters the square well. The zero energy
scattering phase is zero if no bound state exists, π/2 as it appears, and π for slightly
deeper potentials (see Figure 8.7 (b)). As we further increase the potential depth,
the scattering phase remains at π until the potential can support the next bound
state and the phase jumps to 3π/2. In summary, the zero energy phase for a potential
supporting Nb bound states is

lim
k→0

δ0(k) = Nbπ, (8.43)

6 lim
x→0

tan x
x

= 1 + x2

3
+O(x4)
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Figure 8.7: (a) Scattering length (red line, left axis) and scattering phase (blue line,
right axis) in the zero temperature limit for different potential depths (scaled to the number
of bound states the potential can support, Equation 8.21). The dotted line indicates the
average scattering length. (b) Energy dependence of the phase shift for a potential which
has a virtual state (red line), for which the first bound state just enters (black line) and
which supports a single bound state (blue line).

except at a potential depth for which the next (Nb + 1) bound state enters, where
it takes the value

lim
k→0

δ0(k) =
(

Nb +
1
2

)
π. (8.44)

The last two equations are an example of the more general Levinson’s theorem [171]
which is valid for a wide range of potentials.

The coincidence between a zero energy resonance and a new bound state entering
the square well has a simple geometrical meaning: a bound level exists, if an inte-
ger multiple of the wavelength inside the potential (2π/k0) exactly fits the effective
potential range. The incident wave is in the k → 0 limit in resonance with this level
which greatly enhances the interaction and thus the scattering cross-section.

This behaviour can be observed in Figure 8.7, where we have plotted the scattering
length and the scattering phase for increasing potential depths. The corresponding
cross-section in the zero temperature limit is simply given by Equation 8.41. We
also note that the scattering length is most of the time positive and coincides with
the potential range r0. One can show that for a truncated 1/r6 potential (see Section
8.6.1), there is a 75 % probability for a random potential depth to have a positive
scattering length [182].

8.5.3 Effective range expansion

We are especially interested in the temperature dependence of the s-wave scattering
cross-section in the low temperature (ka ¿ 1) regime. Equation 8.41 is the zero
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order approximation of the scattering cross-section for T → 0. More information on
the temperature dependence can be obtained from the effective range expansion of
the scattering amplitude [171, 173]. Starting point is the scattering amplitude in the
form of Equation 8.17. It can be shown that g0(k) = k cot δ0(k) is analytical over
a wide range of collision energies provided the potential V (r) vanishes sufficiently
fast7. For small collision energies, we can therefore expand g0(k) in even powers of
k

g0(k) ≈ c0 + c1k
2 + · · · . (8.45)

Comparing this expansion with the definition of the scattering length (Equation
8.37), we find for the first expansion coefficient c0 = −1/a. For a square well potential,
we know the exact solution for the phase shift (Equation 8.36) and perform the series
expansion analytically:

k cot δ0(k) = −1
a

+
1
2
rek

2 + · · · , (8.46)

where the effective range re is given by

re = r0 − r3
0

3a2
− 1

λ2
0a
≈ r0 − r3

0

3a2
. (8.47)

For the last approximation, we have assumed a sufficiently deep potential(
2mµV0

~2 a À 1
)
. The effective range equals the width of the square well exactly

at a zero energy resonance. In Figure 8.8, we have plotted the effective range to-
gether with the scattering length for increasing potential depth. One can see that
the effective range diverges for a → 0.

In a simplistic picture, the term ka gives the phase shift between the scattered and
the incoming wave. The effective range expansion term 1

2k2are is then a second
order correction to this phase shift, reducing or enlarging the “effective width” of
the potential.

A more general expression can be obtained from the analytical properties of the
k → 0 solutions u2

0(r) and v2
0(r) of the radial Equation 8.8 with and without the

scattering potential, respectively. The effective range is then given by

re = 2

∞∫

0

[
v2
0(r)− u2

0(r)
]
dr. (8.48)

The numerical factor in front of the integral has been chosen such that the square-
well potential solution re = r0 is reproduced. The effective range expansion is valid
provided the energy dependent term satisfies 1

2k2are ¿ 1.

7The effective range expansion can be performed for any potential vanishing faster than 1/r5

[183].
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Using Equations 8.17 and 8.5 we obtain the low temperature energy dependence of
the s-wave scattering cross-section in the effective range expansion

σ
(2)
0 (k) =

4πa2

k2a2 + (1
2k2rea− 1)2

. (8.49)

Keeping only the first term in the expansion (Equation 8.46) yields a lower order
approximation

σ
(1)
0 (k) ≈ 4πa2

k2a2 + 1
. (8.50)

For very large scattering lengths, i.e. close to a zero energy resonance (see Section
8.5.2), the cross-section approaches its unitarity value given by Equation 8.13. The
effective range approximation is especially useful for scattering close to such a res-
onance. In Figure 8.9(a) the exact solution of the scattering cross-section σ0(T )
for a square well potential (Equations 8.36 together with 8.35) is compared with
σ

(2)
0 (k) and σ

(1)
0 (k) for positive and negative scattering lengths. Obviously, the in-

clusion of the effective range provides a much better agreement than the first order
approximation, although the expansion term (1

2k2rea À 1) is beyond its validity for
temperatures above 500µK. The inset shows the high temperature region. We note
two important points: i) Neither approximation reproduces the oscillations in the
cross-section (Ramsauer-Townsend effect, see Section 8.2). ii) The s-wave scattering
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cross-section for a negative scattering length vanishes much faster than the unitarity
limit for high temperature.

Figure 8.9(b) shows the dependence of the relative deviation of the effective range
approximation from the exact cross-section on the scattering length (i.e. potential
depth) for a fixed temperature of 200µK. The effective range approximation clearly
fails for re À a. On the other hand, it agrees very well close to a zero energy
resonance (a → ±∞) although the effective range expansion term 1

2k2rea À 1. We
will come back to this point in Chapter 9, where we compare experimental data with
theory.

For van der Waals interaction potentials −C6/r6, the effective range is not a free
parameter but related to the scattering length and the C6 coefficient in the following
way:

re =
√

2γ

3

[
Γ

(
1
4

)

Γ
(

3
4

) − 2
√

2γ

a
+

Γ
(

3
4

)

Γ
(

1
4

) 4γ

a2

]

≈ √
γ

(
1.395− 1.333

√
γ

a
+ 0.637

γ

a2

)
,

(8.51)

where γ =
√

2mµC6/~, Γ(x) is the Gamma function and re, a and C6 are given in
atomic unit. This relation has been established analytically using a semi-classical
approximation [184] and, independently, using a quantum-defect theory approach
[185]. A plot of the effective range versus the scattering length for a C6 coefficient
of 1300 a0 is shown in Figure 9.3 on page 124.

In the context of zero-energy resonances in Section 8.5.2, we have already discussed
the influence of the last bound state on the scattering cross-section. A resonance
occurs when the potential can just support a new bound state. In that case, the
denominator of Equation 8.17 equals to zero. We can use this condition as the
definition for the position of the last bound state with binding energy E∗

B and relate
it to the scattering length and the effective range [171, Chap. 11]:

E∗
B = − ~2

2mµ

∣∣∣∣∣
1±√

1− 2 re
a

re

∣∣∣∣∣
2

. (8.52)

8.5.4 The contact interaction

In the previous subsections we have seen that the interaction between two atoms is
governed by s-wave collisions which are characterized by the scattering length. In
a Bose-Einstein condensate, millions of atoms interact with each other. It is now
a well-known concept from theoretical physics (e.g. the Hartree-Fock approach),
that these many particle interactions can be simplified in the zero temperature limit
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to an effective interaction or contact interaction, sometimes also called a pseudo
potential. In this regime, the thermal de Broglie wavelength is on the order of the
inter-particle separation and much larger than the potential range. Therefore, the
atoms “probe” an effective interaction integrated over many particles. The mean
field concept has proven to be very successful and describes many features of Bose-
Einstein condensates. It is given by V (~r) = gδ(~r), where ~r is the particle separation
and

g =
4π~2a

m
. (8.53)

is the coupling constant [186]. The stationary Schrödinger equation including parti-
cle interactions becomes nonlinear and is called the Gross-Pitaevskii equation (GPE)

[
− ~

2

2m
∇2 + Vtrap(~r) + g|Ψ(~r)|2

]
Ψ(~r) = i~

∂

∂t
Ψ(~r), (8.54)

where Ψ(~r) is the condensate wavefunction. It is important to note that the scat-
tering length appears linearly and not squared as for the scattering cross-section.
This has major consequences: a positive scattering length results in an effective re-
pulsion of the atoms8, whereas a negative scattering length leads to attraction and
eventually a collapse of the BEC. Nevertheless, a BEC with attractive interactions
can exist in a trap for a limited particle number due to the quantum repulsion in the
trapping potential9 and has been observed for 7Li which has a negative scattering
length [98, 187].

For condensates with a large number of atoms, the internal interaction dominates
over the kinetic energy term in the GPE. In the Thomas-Fermi approximation,
the latter is being neglected. The shape of the condensate in this approximation
resembles the trapping potential, i.e. for a harmonic trap an ellipsoid. The half axes
of this ellipsoid are the Thomas-Fermi radii

R2
i =

2g

mω2
i

n =
8π~2a

m2ω2
i

n, (8.55)

where n is the mean density and ωi the trap frequency in direction i.

8The system is trying to minimize the interaction term by reducing the density given by |Ψ(~r)|2.
9The harmonic oscillator ground state in the trap has a certain size assoziated with it. The

system is trying to maintain this size leading to quantum repulsion.
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8.6 Atomic ground state collisions

8.6.1 Interaction potential

The interaction between two colliding atoms of the same species is very complex.
Nevertheless, relatively simple Born-Oppenheimer10 potentials with a limited set of
free parameters have proven to describe the scattering process to a very good ac-
curacy. The dominant interactions can be roughly divided into two regimes, which
cross-over around the internuclear distance for which the potential depth is com-
parable to the hyperfine interaction11. For alkali metals this distance is roughly
rc ∼ 20 a0 [188]. In the inner region the electron clouds overlap and the strong
exchange interaction dominates. If the valence electrons are in the same electronic
and spin state (triplet state for alkali atoms with a single electron), Pauli’s exclusion
principle leads to a strong repulsion of the atoms. If they are not (singlet state),
the covalent binding energy results in a strong attraction. The difference between
the potential minima are of the order of the binding energy of the corresponding
molecule. This effect can be observed from the triplet and singlet molecular po-
tentials of 87Rb shown in Figure 8.10. For very small internuclear separations, the
exchange interaction of the inner shell electrons and the coulomb interaction result
in a strongly repulsive potential.

For large separations r & 20 a0, the dominant interaction arises from induced fluctu-
ations of the electron clouds which interact via induced electric multipole moments
with each other. This dispersion interaction has the form

Vdisp(r) = −C6

r6
− C8

r8
− C10

r10
, (8.56)

in which the dominant term −C6
r6 is called the van der Waals dispersion term. It

is a consequence of the induced dipole-dipole interactions of the electronic clouds.
The higher order terms in the interaction potential are ususally small compared to
the van der Waals term and will be neglected here.

For many applications, it is sufficient to use a model potential consisting of the van
der Waals term and an exponential repulsion for r ≤ rc [189]:

V (r) =
1
2
Brαe−βr − Vdisp ×

(
Θ(r − rc) + Θ(rc − r)e−(rc/r−1)2

)
, (8.57)

where Θ(x) is the Theta-function and B, α and β are element specific parameters.
The radius rc is used to parametrize the short-distance behaviour of the repulsive

10The nuclear and electronic motion is being treated independently. Due to the large mass

ratio the electrons “adiabatically” follow the nuclear motions. To obtain the Born-Oppenheimer

potential, the electronic eigenenergies are being calculated for every nuclear separation.
11At this distance the recoupling from atomic to molecular states takes place. This distance might

be much smaller for atoms without hyperfine structure, for which the much larger finestructure

splitting is to be compared with the interaction potential.
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Figure 8.10: The ground state molecular potentials for Rb2. The full figure shows the
potentials on the range of chemical bonding. The inset shows a vertical enlargement at long
range in which the hyperfine structure is resolved. The upper two potentials in the inset
correlate with the 3Σ+

u molecular state (from: [73]).

part of the exact interaction potential, i.e. to obtain the same number of bound
states as in the real potential. This truncated 1/r6 potential shows all features of
cold atomic ground state collisions with neutral atoms.

We have learned in the previous sections that the position of the last bound (or
virtual) state has profound consequences on the scattering properties. We have
also seen that its position is extremely sensitive to slightest changes in the interac-
tion potential. From spectroscopic measurements, one can obtain relatively precise
information about the position of low-lying bound states in the singlet potential.
This provides an accurate determination of the repulsive part of the potential. The
structure of the bound states close to the dissociation limit, on the other hand, is
determined by the dispersion potential [190]. It is a most formidable task for a
theoretical physicist to construct model potentials for the interaction between two
neutral atoms. The coefficients for these model potentials are usually not know to
the precision required to determine the exact position of the last bound state, and
therefore the scattering length. Experimental results on the ultra-cold scattering
properties of atoms are usually used to fit the model patameters. Especially Fesh-
bach resonance spectroscopy [66, 67, 68, 70, 191] and photoassociation spectroscopy
[71, 72, 73] have proved to be powerful experimental methods to obtain data from
which extremely accurate model potentials can be constructed.

For chromium, no such data is available up to now. There is one ab inito calculation
of the chromium dimer molecular potential curves [81]. The result of this calculation
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is shown in Figure 8.11. We are scattering on the 13Σ+
g potential curve which adia-

batically corresponds to the (mJ = +3,mJ = +3) and (mJ = −3,mJ = −3) atomic
states. The accuracy of such calculations is not sufficient to predict the scattering
length. In principle, it might allow to extract an approximate C6 coefficient from the
long range slope of the potential. Unfortunately, no data is available for internuclear
distances exceeding 10 a0. We have therefore used several other methods to obtain
a C6 coefficient for chromium. They are described in Appendix D.

8.6.2 Feshbach resonances

We have already discussed resonance phenomena in Sections 8.4 and 8.5.2. The
properties of these resonances are fixed by the scattering potential. A Feshbach
resonance on the other hand, is a multi-channel resonance that can be tuned via
an external (usually a magnetic) field. The resonance occurs if the bound state
of a closed channel12 comes into resonance with the threshold energy of the open
entrance channel.

12A channel is closed, if the total (kinetic and internal) energy of the colliding particles is lower

than the internal energy for the collision on the closed channel.
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respect to each other. A Feshbach resonance occurs, if a bound state of the closed 1 + 2
potential comes into resonance with the kinetic energy of the incident wave. (b) Variation
of the scattering length with the magnetic field close to a Feshbach resonance according to
Equation 8.60.

In ultra-cold atomic collisions, the involved channels are usually molecular potentials
of a hyperfine manifold. As an example, we have shown in Figure 8.12 the molecular
potentials for two fictitious atoms having a nuclear spin I = 3/2, an electron spin s =
1/2 and an electronic angular momentum ` = 0 each. The total angular momentum
of such an atom can be f = 1 or f = 2. For two atoms colliding on the channel
α = 1+1, the 1+2 and 2+2 channels are closed. Magnetic shifting13 of the molecular
potentials allows to bring a bound state of channel β = 1 + 2 (gray line in the inset
of Figure 8.10) in resonance with the threshold energy of the entrance channel.
The hyperfine interaction between two atoms couples molecular potentials of the
same electron configuration (m, `). Therefore, the atoms can undergo a Landau-
Zener type transition from one molecular potential to the other, mediated by the
hyperfine interaction. In that case, the bound state of channel 1 + 2 can decay into
the continuum of the 1 + 1 channel and is therefore a quasi-bound metastable state
with a certain lifetime τ = ~

Γrα
, with

Γrα = 2π |〈φβ |Vβα |φα 〉|2E=Er
, (8.58)

where φα and φβ are the scattering wave function and the normalized bound state
wavefunction, respectively. The resonance can decay to several exit channel states α′,
including inelastic channels. The resonance mediated cross-section between entrance
channel α and exit channel α′ is then given by a Breit-Wigner type formula (see
Equation 8.34 and [192]),

σα′α =
4π

k2
α

Γrα′Γrα

4(E −∆rα)2 + Γ2
r

, (8.59)

13relative shifting of the potentials requires the magnetic moment of the involved channels to be

different
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where Γr =
∑

α Γrα is the total resonance width. The detuning ∆rα = Er−Eα−srα

includes a possible energy shift srα of the bound state due to the interaction.

The properties of a Bose-Einstein condensate are dominated by the s-wave scattering
length. Tuning this parameter allows to dramatically change its behaviour. Close
to a Feshbach resonance, one can approximately write the scattering length as [193]

aFB(B) = anr

(
1− ∆Br

B −Br

)
, (8.60)

where Br is the magnetic field for which the resonance occurs and ∆Br is its width.
Provided the width of the resonance is sufficiently broad, the scattering length can be
tuned to any desired value between −∞ and +∞ by adjusting the external magnetic
field.

Tuning the scattering length close to a Feshbach resonance enables many fasci-
nating experiments with ultra-cold atoms [23], including the coherent formation of
molecules [194] in 85Rb. Several groups [195, 196] are working on Feshbach reso-
nances in fermionic 6Li. Tuning the scattering length to large negative values results
in a strong attraction between the atoms which might lead to a BCS (Bardeen-
Cooper-Shrieffer) transition in a degenerate Fermi gas [197].

Bosonic chromium has no nuclear spin and therefore no hyperfine structure. Mag-
netic trapping is performed in the low field seeking state mJ = 3 in the 7S3 electronic
state. The molecular potential of two atoms in this state has the highest energy of all
Zeeman potentials in a weak magnetic field (see Section 8.6.1). As a consequence, no
closed channels and therefore no Feshbach resonances exist. The situation changes
for atoms in the high field seeking state. Its energy can be lowered in a magnetic
field with respect to all other states, making these molecular potentials to closed
channels with respect to the entrance channel. Magnetic field shifting of the poten-
tials might allow to observe Feshbach resonances in the high-field seeking state of
chromium. This would allow to tune the s-wave interaction to any desired value.
For chromium, the coupling mechanism between different molecular potentials is the
spin-spin dipole interaction. In alkali atoms this interaction is rather weak compared
to the hyperfine interaction and therefore leads to very narrow Feshbach resonances
[191]. The large magnetic moment in chromium is expected to result in much broader
Feshbach resonances. Trapping the atoms for such an experiment requires an optical
dipole trap, since the atoms in that state would be expellend from a static magnetic
trap. A similar experiment, in which coupling between different Zeeman states is
involved, has been performed with 133Cs in an optical dipole trap [191, 198].

8.6.3 Elastic and inelastic Dipole-Dipole scattering

The static magnetic dipole-dipole interaction is vanishingly small for alkali atoms
with a magnetic moment of typically one µB (Bohr magneton). However, for
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chromium with a magnetic moment of 6µB, dipole-dipole interactions are stronger
by a factor of 36 and can therefore have an influence on the scattering and mean
field properties of an ultra-cold gas.

The dipole-dipole interaction potential between two magnetic moments ~µ1 and ~µ2

separated by a distance r is given by

Vdpdp(~r) =
µ0

4πr3
[~µ1~µ2 − 3(~µ1~n)(~µ2~n)] , (8.61)

where µ0 is the magnetic induction constant and ~n = ~r/r. In contrast to the isotropic
contact interaction, this potential is long range (1/r3 dependence) and due to the
second term – anisotropic. The potential is attractive for two magnetic moments
separated along the direction of their polarization, and repulsive for a separation
perpendicular to it. The interaction strength for a maximally attractive configura-
tion is twice as large as for the repulsive one. The average of Equation 8.61 over
all interaction angles is 0. Therefore, the isotropic s-wave scattering cross-section
vanishes identically [192]. The anisotropy of the interaction can be exploited to tune
the elastic scattering cross-section. With a proper choice of experimental parame-
ters, the magnetic dipoles can adiabatically follow a rotating external magnetic field
(“spinning field”). The angle under which the dipoles rotate with respect to the
rotation axis is called the “spinning-angle”. The time-averaged interaction depends
on this angle and can be tuned from positive to zero and even negative values [28].
This technique is well known from NMR experiments.

The long range character prevents the scattering cross-sections for higher partial
waves from “freezing out” at low collision energy, since the Wigner threshold law
holds only for potentials vanishing faster than 1/r3 for large r (see Section 8.3).

Besides elastic scattering, the dipole-dipole interaction can also lead to inelastic
scattering: one or both atoms flip their spin and the Zeeman-energy is converted
into kinetic energy. This inelastic process is called “dipolar relaxation” and results
in loss of atoms from a magnetic trap (spin-flip to an untrapped state) and heating
of the atomic sample. Only single ∆mJ = 1 and double ∆mJ = 2 spin-flips are
possible in first order pertubation theory. Total angular momentum is conserved,
since internal angular momentum is transfered to motional angular momentum.
Dipolar relaxation collisions are different from the so-called “spin relaxation” or
”purifying” collisions in which atoms in different mJ states exchange internal angular
momentum. Subsequent collisions between two atoms in magnetic substates mJ < J

lead to untrapped atoms with mJ ≤ 0 and polarized atoms with mJ = J . The rate
constants for spin relaxation and dipolar relaxation collisions in alkali atoms are
typically on the order of βsr ∼ 10−11 cm3/s and βdp ∼ 10−14 cm3/s, respectively.

The scattering cross-sections for elastic and inelastic dipole-dipole scattering can be
estimated by means of the first Born approximation14. Reference [78] outlines the

14In the first Born approximation the scattering amplitude f(ϑ) is basically given by the Fourier
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procedure for the calculation of the elastic and inelastic scattering cross-sections for
two atoms interacting only via the dipole-dipole interaction. Stefano Giovanazzi
[199] has recalculated the cross-sections using a different symmetrization. We will
summarize his results here. The cross-sections corresponding to no (σ0), a single
(σ1) and a double (σ2) spin-flip during the collision are given by:

σ0
dp =

16πã2

45
[1± h(1)] (8.62)

σ1
dp =

8πã2

15
kf

ki

1
J

[1± h(kf/ki)] (8.63)

σ2
dp =

8πã2

15
kf

ki

1
J2

[1± h(kf/ki)] , (8.64)

with

h(x) = −1
2
− 3

8
(1− x2)2

x(1 + x2)
log

[
(1− x)2

(1 + x)2

]
(8.65)

where the “+” sign holds for boson and the “-” sign for fermions, J denotes the
total internal angular momentum of a single atom and h(x) represents the ratio
of the exchange contribution to the direct one. An effective scattering length for
dipole-dipole scattering [200] can be defined by

ã =
µ0µ

2mµ

4π~2
, (8.66)

where µ is the magnetic moment of a single atom and mµ is the reduced mass. This
quantity is useful for comparing the contribution of dipole-dipole scattering to elastic
collisions with the ordinary s-wave scattering. The cross-sections are already aver-
aged over all possible orientations of the initial (~ki) and final (~kf ) wavevectors with
respect to the quantization axis given by the magnetic field direction. The factor
kf

ki
=

√
1 + 2mµ∆E

~2k2
i

is the ratio between final and initial momentum. It accounts for
the different density of states in the initial and final state. ∆E is the Zeeman energy
released in the spin-flip collision, and is given by ∆E = 2µBB and ∆E = 4µBB for a
single and double spin-flip collision between bosonic chromium atoms, respectively.
It is clear that neglecting all other molecular interactions is a simplification of the
scattering process. Nevertheless, it is expected — in the absence of resonances —
that the cross-sections calculated in first order perturbation theory provide a good
approximation. The resulting inelastic rate constant for chromium atoms is on the
order of βdp ∼ 10−11 cm3/s. This is almost three orders of magnitude larger than for
alkali atoms and is a direct consequence of the high magnetic moment of µ = 6µB

in chromium.

transform of the interaction potential.
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Dipolar relaxation is not limited to magnetic interaction. Also electric dipoles of e.g.
polar molecules are subject to this relaxation mechanism. The huge dipole moments
in these systems can lead to significant loss in electrostatic traps.

It is worthwhile to note that the correct physical quantity to describe dipolar relax-
ations depends on the details of the experimental situation. For large offset fields
and low temperatures, dipolar relaxation is described by a rate coefficient βdp. In
the contrary case of low offset field and high temperature, the inelastic cross-section
σdp is meaningful (see Appendix C.3).

We have discussed here the dipolar relaxation mediated by the long range spin-
dipole–spin-dipole interaction. It is dominant in a region where the recoupling be-
tween atomic and molecular states takes place. Close to the inner turning point
the electron orbitals overlap and the second order spin-orbit interaction [201, 202]
dominates the relaxation process. Our model does not account for this additional
contribution. Nevertheless, it can be of similar magnitude but different sign, thus
either reducing or further increasing the total relaxation rate.

We will discuss the consequences of the large dipolar relaxation rate for evaporative
cooling chromium atoms in a magnetic trap in Section 9.4.4 and present preliminary
results of the measured relaxation rate in Appendix E.

8.6.4 Three-body recombination

Most Bose-Einstein condensates have a limited lifetime. They exist as a metastable
state in the phase diagram of the substance used. Ultimately, three-body recombi-
nation will lead to the formation of bound molecules, a precursor to the solid state
phase which is the thermodynamically stable state at the temperatures and densities
encountered in a BEC. Energy and momentum conservation requires three atoms
to collide to form a molecule. Two atoms form a weakly bound molecule and the
third takes up the excess binding energy of the molecule. The rate constants for this
process depend strongly on the details of the interaction potential. Nevertheless,
for the recombination to a weakly bound s level, a universal event rate constant
αrec = 3.9~a4/m, where a is the scattering length, can be found [203]. Three-body
recombination plays a role only for very dense samples, since the rate constants are
typically very small (αrec ∼ 10−27 cm6/s), but the loss rate scales with the third power
of the density. In the experiments presented in this thesis, three-body recombination
can be neglected.

8.7 Evaporative cooling

Evaporative cooling is a powerful technique to cool atomic ensembles below the
critical temperature for Bose-Einstein condensation. It has been adopted to trapped



8.7. EVAPORATIVE COOLING 115

f(
E

)
E

Ec

Figure 8.13: Principle of evaporative cooling: atoms with a kinetic energy exceeding
Ec are removed from the sample (red curve). The remaining atoms thermalize to a lower
temperature (blue curve).

atoms for the first time by Hess et. al. [204]. In the meantime this technique is widely
used and has been extensively studied [151, 205, 206, to mention just a few].

The principle is the same as for a steaming cup of coffee or tea cooling down: the
most energetic atoms are allowed to escape taking with them more than the average
kinetic energy in the sample. The remaining atoms thermalize via elastic collisions
to a lower temperature. We have sketched in Figure 8.13 the truncated Maxwell-
Boltzmann distribution of a cloud of atoms. Atoms with a kinetic energy exceeding
the cut-off energy Ec escape from the sample. The remaining atoms thermalize
to a lower temperature via elastic collisions. This technique can be implemented
in a variety of ways. Lowering the trap depth is a method which has proven to
be very efficient in cryogenic magnetic trapping experiments [41, 204] and optical
dipole traps [207, 208]. The most frequently used method is radio-frequency (rf)
induced evaporative cooling. The principle is shown in Figure 8.14. Atoms in a low-
field seeking magnetic substate (mJ = 1) can undergo transitions to the untrapped
mJ = −1 state in the presence of radio-frequency field with frequency ωrf . The
magnetic field at which this occurs is given by the resonance condition ∆ωL = ωrf ,
where ∆ωL is the frequency difference between two magnetic substates:

|gJ µBB(~r)| = ~ωrf . (8.67)

Strong coupling results in the adiabatic potentials shown in Figure 8.14(b). The cut-
off energy for the atoms is given by the difference between the energy corresponding
to the trap bottom (B0) and the cut-off magnetic field:

Ec = |mJ | ~ (ωrf − ωrf0), (8.68)

where ωrf0 = |gJ µBB0/~| is the resonance frequency at the trap minimum.

The figure of merit for the overall efficiency of evaporative cooling is the steady state
cut-off parameter η = Ec/kBT . Very efficient evaporative cooling is characterized
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Figure 8.14: (a) Trapping potentials for atoms with J = 1. Radio-frequency drives
transitions to the untrapped magnetic substate m

J
= −1. (b) Adiabatic potential curves

for a strong rf drive. Atoms that have a kinetic energy exceeding Ec can leave the trap.

by a high η. Applying the so-called “rf-knife” at a single frequency is not sufficient
for reaching quantum degeneracy. In forced evaporative cooling, the rf-frequency
follows the decreasing temperature of the cloud. During forced evaporation, the
cut-off parameter η is kept at its optimum value. Evaporative cooling increases
the phase-space density at the expense of the number of atoms left in the sample.
Additional trap loss is caused by inelastic processes that can also heat the sample
(“bad collisions”). The elastic collisions between atoms, on the other hand, lead to
thermalization and therefore determine the cooling speed (“good collisions”). As a
rule of thumb, the good to bad collision ratio has to be much larger than 100. If
the scattering properties of the atomic species are well known, an optimum route to
quantum degeneracy can be devised [151]. We have plotted the good/bad collision
ratio in Figure 8.15 versus the temperature for different offset fields. We used the
theoretical results (Equations 8.63, 8.64) for the dipolar relaxation rate from Section
8.6.3 and use the low order expression Equation 8.50 for the elastic cross-section
assuming a scattering length of a = 170 a0 (see next Chapter). Whereas the elastic
scattering rate vanishes in the zero energy limit, the inelastic rate approaches a
constant value which depends on the offset field. Therefore, the good/bad ratio also
tends to zero. Only very small magnetic offset fields B0 ¿ 0.1G allow a sufficiently
large good to bad collision ratio even at low temperature. Typical offset fields in
evaporative cooling experiments are on the order of 1 G. The technical requirements
to achieve a stable magnetic offset field of below 0.1 G are very demanding. A
more sophisticated model including three-body recombination and background gas
losses in addition to the elastic and dipolar relaxation collisions showed, that Bose-
Einstein condensation of chromium in a magnetic trap requires sophisticated cooling
and compression sequences, not achievable with our current setup [209].
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Chapter 9

Elastic collisions

In this chapter I present experimental results on the temperature dependence of the
elastic collision rate for the chromium isotopes 52Cr and 50Cr. In Section 9.1 I
give a short overview over previously performed relaxation experiments on the ultra-
cold elastic scattering properties of alkali metals. Section 9.2 briefly describes the
experimental procedure and data evaluation. The results are presented in Section 9.4
and compared with theory. I conclude in Section 9.5.

9.1 Introduction

We have already pointed out the importance of the scattering length for the prop-
erties of ultra-cold atomic gases. It usually dominates the interaction in a Bose-
Einstein condensate (see Section 8.5.4) and together with the inelastic rate coeffi-
cients, it determines the efficiency of evaporative cooling (see Section 8.7).

Up to now, only the elastic scattering lengths for alkali metals, hydrogen and
metastable helium have been determined experimentally. Several different meth-
ods have been successfully employed to perform this task. One of the probably most
accurate methods is photo-association spectroscopy [71, 73]. During the collision
process, two colliding ground state atoms are excited with a photoassociation laser
to a bound state of the molecular potential which corresponds to one atom in the
ground and one atom in the excited state. The excitation rate depends critically
on the Franck-Condon factors (overlap of the initial and final wave functions at the
excitation distance). In the highly excited states of the molecular potential, the mag-
nitude of the wavefunction is peaked around the classical turning points. The slow
variation of the wavefunction in the ground state can be mapped out by recording
the rates for different excited molecular states with known resonance energy. From
this map of the wavefunction, the scattering length can be directly deduced.

118
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Another very accurate method is Feshbach resonance spectroscopy. Knowing the
magnetic field dependence of Feshbach resonances for various hyperfine states allows
to construct an accurate model potential from which the scattering length can be
obtained [66, 67, 70].

Once a Bose-Einstein condensate has been created, the scattering length can be
deduced from the measured density and Thoms-Fermi radius (Equation 8.55). The
main uncertainty in this measurement stems from the difficulty in determining the
density accurately. For negative scattering lengths, the condensate is stable only
below a critical number of atoms. From this stability criterion, a value for the
(negative) scattering length can be obtained.

The method used in our experiments relies on the characteristic temperature de-
pendence of the elastic s-wave cross-section. By recording the relaxation of an
anisotropic temperature distribution in an atomic cloud towards equilibrium, we ob-
tain a relaxation time constant which can be translated into a scattering cross-section
if the particle density is known. Monroe et. al. [74] performed such cross-dimensional
relaxation experiment for spin-polarized 133Cs in the F = 3, mF = −3 state for the
first time. Since then, this technique has been used to determine the ultra-cold scat-
tering properties of cesium [210, 211], the rubidium isotopes [69, 212, 213], sodium
[214], and potassium [215, 216], to mention just a few.

In all of these experiments, only the scattering cross-section, i.e. the magnitude of
the scattering length could be determined, but not its sign. We have made an effort
to measure the temperature dependence of the elastic cross-section for J = 3, mJ = 3
52Cr atoms over two orders of magnitude ranging from 5 to 500µK. Comparing our
data to the theoretical prediction for the temperature dependence of the s-wave
cross-section in the effective range approximation, we obtain evidence for a large
and positive scattering length for 52Cr. The same experiment performed with 50Cr
over a smaller temperature range yields a much smaller scattering length, but does
not allow to extract its sign.

The threshold for d- and p-waves in binary chromium collisions are T`=2 ≈ 1.8mK
and T`=4 ≈ 11mK (see Section 8.3). With the exception of shape resonances, we do
not expect significant contribution from d- or higher partial waves in the measured
temperature regime.

9.2 Experimental procedure and data evaluation

9.2.1 Sample preparation

We prepare a magnetically trapped cold cloud of chromium atoms using our CLIP
trap loading procedure described in Chapter 6 with subsequent Doppler cooling in
the compressed magnetic trap as presented in Chapter 7. After Doppler cooling, we
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relax the trap radially and compress it axially by reducing the magnetic offset field to
4G, yielding trap frequencies of ωr = ωx = ωy = 2π× 124Hz and ωz = 2π× 72.6Hz
in the radial and axial direction, respectively. In this trap, the atoms are further
cooled via forced radio-frequency evaporative cooling (see Section 9.4.4). We adjust
the temperature of our sample by choosing different end frequencies of the rf ramp.
A typical result is shown in Figure 9.8. The evaporation ramp consists of several
linear frequency ramps. The total duration is rather long (≈ 6 s for the lowest tem-
peratures) to obtain a cloud which is close to thermal equilibrium after evaporation.
A 25 ms linear ramp of the magnetic offset field from 4 to 1.75 G increases the radial
trapping frequencies to ωr = 2π × 207Hz. This adiabatic compression results in an
anisotropic temperature distribution T i

r,z of the atoms in the trap, since the time
scale for the modification of the trap is much faster than the mean time between
collisions. Elastic collisions lead to a relaxation to the new steady state temperature
T f = T f

r = T f
z = (2T i

r + T i
z)/3 if no additional heating is present. After a variable

thermalization time ranging from 10 ms to 2 s, an intra-trap absorption image as
described in Section 5.5.3 is taken to obtain the spatial distribution of the atoms in
the trap. A full 2-dimensional fit of Equation 4.11 to the density distribution yields
the 1/

√
e sizes σr and σz of the cloud in the radial and axial direction, respectively.

Assuming thermal equilibrium along the three principal axes, we obtain the temper-
ature in radial and axial direction from the corresponding sizes of the cloud using
Equations 4.9 and 4.10. As already discussed in Section 5.5.3, this imaging method
does not yield the accurate number of atoms in the cloud due to Zeeman shifts and
optical pumping. Also, the size of the cloud can be slightly distorted for the same
reasons. Nevertheless, it can be used to observe relative changes in the size of the
cloud, as required for a relaxation experiment.

In the real experimental situation, inelastic processes, dominated by dipolar relax-
ation (see Section 8.6.3), lead to atom loss and heating. Especially at very low
temperatures, this process results in a significant decrease of the density during
the thermal relaxation. We account for this effect by employing the time rescaling
method of Hopkins et. al. [211], which we develop in the following. The relaxation
rate Γrel(t) is in general time dependent via the density. The differential equation
of the temperature relaxation is then given by

d∆T (t)
dt

= −Γrel(t)∆T (t), (9.1)

where ∆T (t) = Tr − Tz is the temperature difference between the radial and axial
temperature. The solution is easily obtained using the initial condition ∆T (0) =
∆T0:

∆T (t) = ∆T0 e
−

tR
0

Γrel(t
′) dt′

. (9.2)



9.3. RELAXATION AND COLLISION RATES 121

The time dependence of the relaxation rate arises from the density n(t), which usu-
ally decreases during a relaxation measurement. Inserting Γrel(t) ∝ n(t) in Equation
9.2, we obtain

∆T (t∗) = ∆T0 e−Γrel(0)t∗ , (9.3)

where the rescaled time t∗ is given by

t∗(t) =
1

n(0)

t∫

0

n(t′) dt′. (9.4)

An exponential fit to ∆T (t) yields a relaxation time constant τrel. We have verified
that the relaxation time constant is inversely proportional to the density of the
cloud, ruling out anharmonic mixing.

We deliberately prepared a rather low number of atoms ranging between 3 × 105

and 2 × 107 atoms for the highest and lowest temperature, respectively, to obtain
relaxation time constants on the order of 200ms. The peak density is typically on the
order of 3×1011 cm−3. Faster relaxation times conflict with the speed at which we are
able to ramp the magnetic fields. Figure 9.1 shows a typical relaxation measurement
for a cloud with a mean temperature of T̄ (t) = (2Tr(t)+Tz(t))/3 ≈ 42µK. We have
plotted the evolution of the mean temperature in the inset. A slight increase in
temperature for long thermalization times can be attributed to dipolar relaxation
collisions. This heating can be significant for very low temperatures and partially
mask the relaxation effect. For the exponential fit, we use only data points whose
mean temperature does not significantly exceed the initial temperature.

The density and temperature of the cloud are obtained from a separate time-of-flight
measurement using absorption imaging (see Section 5.5.2). The atoms are prepared
in exactly the same way as in the corresponding relaxation experiment for a fixed
relaxation time of t = 100 ms. From a measurement of the trap frequencies we know
the trap parameters to within a few percent. We can therefore use Equation 5.11
to fit the data with the temperature as the only fit parameter. Figure 9.2 shows a
typical TOF measurement corresponding to the thermalization data in Figure 9.1.

Altough the temperatures obtained from the TOF and the intra-trap measurement
usually agree to within ≈ 10%, we always used the more accurate TOF result for
the temperature. The density was deduced from an average over the fitted number
of atoms from each TOF picture and the initial size of the cloud obtained from the
TOF fit.

9.3 Relaxation and collision rates

The elastic collision rate Γcoll in an ultra-cold cloud of atoms is given by

Γcoll = n̄(t)<σ(v)v>therm, (9.5)
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Figure 9.1: Thermal relaxation versus rescaled time of a cloud of 52Cr atoms in a magnetic
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2π× 207Hz. The line is an exponential fit to the data. The inset shows the evolution of the
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Figure 9.2: Time-of-flight measurement for the data set shown in Figure 9.1. The line is
a fit of Equation 5.11 to the data with T = 47± 2 µK.
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where σ(v) is the velocity dependent s-wave elastic cross-section, < ·>therm denotes
thermal averaging (see Appendix C) and n̄ =

∫
n2(~r)dV/

∫
n(~r)dV is the mean den-

sity. In a harmonic trap the latter can be related to the peak density n0 by n̄ = n0/
√

8.
A limited redistribution of energy in the collision process requires each atom to scat-
ter more than once before the cloud reaches thermal equilibrium. The relaxation rate
for this thermalization process can be related to the collision rate by Γcoll = αΓrel,
where α is in general a temperature dependent factor. In Monte-Carlo simulations
α = 2.7 has been determined for a temperature independent elastic cross-section
[74, 210, 217]. This value seems to be universal for all atomic species and inde-
pendent of details of the trapping parameters. Analytical [160, 218] solutions of
the Boltzmann equation confirmed this result. For a temperature dependent cross-
section σ ∼ 1/T , more than 2.7 collisions are needed for thermalization. Scattering
preferentially occurs at low collision energies which contribute less to thermaliza-
tion. From Monte-Carlo simulations α = 10.7 was deduced [210], and a somewhat
smaller value of α ≈ 8 from the analytical treatment [218]. The transition from the
temperature-dependent to the temperature-independent regime depends on the char-
acteristic temperature of the elastic cross-section (see Equation 8.50) T0 = ~2

kBma2 .
Although most of the data presented here is below this temperature of T0 ≈ 150µK
for 52Cr, we are in an intermediate regime where the temperature dependence of
α can be significant. We therefore use the analytical result for the relaxation rate
from [218] to analyze our data. It is given by

Γrel(T ) =
1

2.65
n̄ v̄r

6(kBT )4

∞∫

0

σ0(E) E3 e
− E

kBT dE = n̄<σ0(E) · v · F (E)>. (9.6)

The second equality defines the shorthand notation in which the function F (E)
transforms the thermal average over the elastic collision rate into that over a thermal
relaxation rate. We will compare different approximations and limits of the s-wave
elastic cross-section with our data. The most detailed information can be obtained
from the effective range approximation (see Section 8.5.3) of the cross-section1:

σ
(2)
0 (a, re, E) =

8πa2

a2k2 + (1
2k2rea− 1)2

, (9.7)

where k2 = mE/~2 is the square of the relative wave vector, m the chromium mass,
a the scattering length and re the effective range of the potential. The latter can
be derived from the scattering length and the C6 coefficient using Equation 8.51. In
Figure 9.3(a) we have plotted the effective range for 52Cr assuming C6 =1300 a.u.
versus the scattering length. Since the effective range is related to the inverse of
the scattering length, it diverges for a → 0. The effective range approximation

1the cross-section is larger by a factor of 2 compared to Equation 8.50 due to identical particle

effects (see Section 8.1.3)
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Figure 9.3: (a) Effective range re as a function of the scattering length a for a collision
energy of E = kB100 µK. The effective range diverges for vanishing scattering length. In this
regime the approximation fails. Close to a scattering resonance (a diverges), the effective
range approaches a constant value. (b) Second order expansion coefficient of the scattering
phase for T = 100 µK. Usually, the effective range approximation requires 1

2k2are ¿ 1 (see
text).

(truncation of the expansion of the scattering phase in Equation 8.46 after the k2

term) requires 1
2k2are ¿ 1. We have plotted this term for 52Cr and a temperature

of T = 100µK in Figure 9.3 (b). For vanishing or negative scattering lengths, re

and thus the expansion term are large. From our discussion of the validity of the
effective range expansion in Section 8.5.3 it is clear that it is very difficult to judge
at which point the effective range approximation fails. A large expansion term does
not necessarily lead to a strong deviation from the exact cross-section. Comparing
the effective range approximation with the exact solution for a square-well potential
led us to a rule of thumb stating that the requirement 1

2k2are ¿ 1 is sufficient as
long as the effective range does not exceed the scattering length.

Using only the first order term of the expansion in Equation 8.46 yields a lower order
approximation for the temperature dependence of the scattering cross section:

σ
(1)
0 (a,E) =

8πa2

k2a2 + 1
. (9.8)

This approximation connects the correct low temperature behaviour of the exact
cross-section with the high temperature limit. The zero energy limit for the s-wave
scattering cross-section (see Equation 8.41) is given by

σ
(0)
0 (a) = 8πa2 (9.9)

and is independent of collision energy. For very large collision energies it oscillates
between zero and a temperature dependent maximum value (see Figure 8.4) given
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Figure 9.4: Temperature dependence of the density normalized relaxation rate for 52Cr.
The red line is a fit of Equation 9.6 which results in a positive scattering length of a =
170 ± 2a0. The green line corresponds to a negative scattering length of a = −220a0. The
error bars are derived from statistical and calibration uncertainties. Data from different
experimental runs are labeled by the plot symbols.

by the unitarity limit

σ
(u)
0 (E) =

8π

k2
. (9.10)

In this regime s-wave scattering is independent of the details of the interaction
potential. We will discuss the different approximations and their validity in the
next Section.

9.4 Results

9.4.1 Deca-triplet scattering length of 52Cr

We have performed relaxation rate measurements for ultra-cold 52Cr covering a
temperature range of almost two orders of magnitude. The main result is shown in
Figure 9.4 where we have plotted the density normalized relaxation rate Γrel/n̄ versus
the mean temperature. The data is a compilation from 5 different experimental runs,
each run indicated by a different plot symbol. The highest temperature data points
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(upward pointing triangles) have been obtained in a completely different vacuum
system and a different magnetic trap setup (“old system”, see Chapter 5). Also,
the data evaluation differs slightly: the relaxation curve has been determined from a
full time-of-flight sequence for each relaxation time. We observe excellent agreement
between this and the rest of the data sets in the overlap region, indicating good
reproducability.

Two theory curves are plotted with the data. The red line is a fit of Equation 9.6
to the data points below 25µK using the effective range scattering cross-section
σ

(2)
0 (a, re, E) with C6 = 1300 a.u. which results in an re = 86 a0 and a scattering

length of a = 170 ± 3 a0, where a0 = 0.53Å is Bohr’s radius. This curve is in
good agreement with the measured relaxation rates for low- (. 25µK) and high-
temperatures (& 100µK). In the intermediate temperature range we observe a
small deviation of the measured relaxation rates from the theoretical prediction.
The reason for this discrepancy remains unclear. A more sophisticated theoretical
analysis based on a multi-channel quantum defect treatment of the scattering process
using model potentials for chromium molecules might give further insights into the
details of ultra-cold chromium collisions and might help to resolve this issue.

The green line is a plot of Equation 9.6 assuming a negative scattering length. A
scattering length of a = −220 a0, resulting in an effective range re = 229 a0, has
been chosen to achieve best agreement with the lowest temperature relaxation data.
It is obvious from the plot that the assumption of a negative scattering length is
incompatible with our relaxation data. For the interpretation of the theory curves,
the validity of the effective range expansion has to be considered. From the plot of
the second order term 1

2k2rea for a temperature of 100µK in Figure 9.3, one can
deduce2 that the effective range expansion for a = 170 a0 is valid for temperatures
< 450µK. Assuming a negative scattering length, the large effective range limits
the validity to temperatures < 130µK.

To show the qualitative difference between positive and negative scattering length
more clearly, we have plotted in Figure 9.5 the effective elastic cross-section (see
Equation C.9

σeff(T ) :=
2.65 Γrel(T )

n̄ v̄r
, (9.11)

where v̄r =
√

8kBT
πmµ

is the relative thermal velocity. The effective range expansion
term is smaller than 0.1 for a = 170 a0 and smaller than 0.4 for a = −220 a0 over the
shown temperature range. We therefore assume the effective range approximation to
be valid under these experimental conditions. The effective cross-section assuming
a negative scattering length has a much steeper slope in the low temperature regime
as compared to assuming a positive one. This is a direct consequence of the minus

2The expansion term scales linearly with energy.
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Figure 9.5: Temperature dependence of the effective elastic cross-section of 52Cr for
T → 0. The data has been obtained from Figure 9.4 using Equation 9.11. The lines are
theory curves derived in the same way for a = 140, 170 and 190 a0 along with a negative
scattering length of a = −220 a0.

sign in the denominator of Equation 9.7. As a result, the shape of cross-sections and
relaxation rates for negative a is always distinct from positive scattering lengths.
The fit for a > 0 clearly shows very good agreement with the measured cross-
sections in contrast to the a = −220 a0 curve. We have therefore strong evidence
for a positive scattering length. Our data is compatible with a scattering length of
a = 170± 20 a0. The main source of systematic errors in these types of experiments
is the uncertainty of around 20 % in determining the density of the atomic cloud.
Including this systematic error, we arrive at our final result of adt

52 = 170± 39 a0 for
the deca-triplet scattering length of 52Cr.

9.4.2 Comparison between different regimes of the elastic cross-
section

Many different approximations have been used for analysing cross-dimensional re-
laxation data [74, 210, 213]. To our knowledge, we have implemented for the first
time the analytical result of [218] for the temperature dependence of the relaxation
rate.

We have plotted in Figure 9.6 various limits and approximations of the thermally



128 CHAPTER 9. ELASTIC COLLISIONS

T [mK]
10

1
10

2
10

3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data

< (a,r ,v)s
(2)

e × ×

s × ×

s × ×

s × ×

s ×

v F(v)>

< (a,v) v F(v)>

< (a) v F(v)>

< (v) v F(v)>

< (a,v) v>/2.65

(1)

(0)

(u)

(1)

G
re

l
/

[c
m

/s
]

n
3

x10
-10

Figure 9.6: Different approximations and limits of the relaxation rate as defined by
Equations 9.7-9.10 (see text for more details). The function F (v) incorporates the energy
dependence of the cross-dimensional relaxation process. < · · · > denotes thermal averaging.

averaged relaxation rate together with the data obtained for 52Cr. The green curve
corresponds to the relaxation rate for the temperature independent cross-section in
the T → 0 limit given by Equation 9.9. It diverges for increasing temperature since
the thermal velocity increases without limit. The opposit limit for high temperatures
is given by the unitarity cross-section Equation 9.10 (black curve). As discussed in
the previous Subsection, the low order approximation given by Equation 9.8 (dark
blue curve) interpolates between these limits. We have also plotted the thermal
average of the density normalized elastic collision rate in this approximation divided
by a constant factor of α = 2.65 to convert it into a relaxation rate. This has been
the most frequently used approximation in analysing relaxation data. As we can
see from the plot, the assumption of a temperature independent factor of α = 2.65
is valid up to a few tens of micro Kelvins (light blue curve). The red curve is the
best fit of the thermal averaged effective range approximation for the elastic cross-
section (Equation 9.7) which we have already shown in Figure 9.4. As expected
from our discussion of a square well potential in Section 8.5.3 it interpolates the
oscillation of the s-wave elasic cross-section between zero and the unitarity limit for
high temperature (see also the inset in Figure 8.9(a)). It is noteworthy that our
data does not exceed the unitarity limit. This is an indication that no severe error
in the determination of the atomic density in the trap has been made.

In conlusion, we have verified that the theoretical prediction for the relaxation rate
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Figure 9.7: Density normalize cross-dimensional relaxation rates for 52Cr (blue squares)
and 50Cr (red circles). The blue line is the fit from Figure 9.4 to the data for 52Cr. The
black, red and green line are plots of < σ(1)(v, a)vF (v) > with a = 30 a0, 50 a0 and 70 a0,
respectively.

using the elastic cross-section in the effective range approximation yields the best
overall agreement with the measured data.

9.4.3 Deca-triplet scattering length of 50Cr

The knowledge of the scattering lengths for two different isotopes of the same atomic
species with the same nuclear spin can give further insights into the vibrational struc-
ture of the topmost bound levels of the involved molecular potentials. Scattering
length and effective range can be used to determine the energy of the last bound
level close to the dissociation limit via Equation 8.52. From semi-classical quanti-
zation formulas [175, 190, 219], information on the slope of the molecular potential
can be obtained.

We have therefore performed relaxation measurements for the chromium isotope
50Cr, which is a boson and also has zero nuclear spin. In Figure 9.7 we have plotted
the results of the relaxation experiment for 50Cr (red circles) and included for com-
parision the previously shown data for 52Cr (blue squares). Obviously, the density
normalized relaxation rates for 52Cr are much smaller than those for 52Cr. We have



130 CHAPTER 9. ELASTIC COLLISIONS

plotted the theoretical relaxation rates according to the low order approximation3 of
the elastic cross-section (Equation 9.8) for three different scattering lengths: a = 30,
50 and 70 a0 (from bottom to top). Comparing these theory curves with the data
points, we derive an approximate value for the 50Cr deca-triplet scattering length
of |adt

50| = 50± 23 a0, where we have again assumed a systematic uncertainty on the
order of 20%. Theoretical studies have shown, that there is a 75 % probability of
finding a positive scattering length for a random potential depth [182]. Especially a
“normal” scattering length of around 50 a0 might indicate a positive sign.

Owing to the low natural abundance of only 4.4%, we were unable to prepare signif-
icantly more than 7× 106 atoms at the highest measured temperature even though
we operated the oven at an elevated temperature of 1625 ◦C. Dipolar relaxation
rates on the same order of magnitude as for 52Cr but a much smaller elastic collision
cross-section resulted in a rather poor good/bad collision ratio making evaporative
cooling inefficient (see Appendix E). This prevented us from achieving higher densi-
ties and lower temperatures for the relaxation measurement. Ultimately, our lowest
temperature data were limited by the signal to noise ratio of our detection system.

Since we have used exactly the same techniques for both chromium isotopes, sys-
tematic errors should affect the results for the scattering lengths in the same way.
A more sophisticated theoretical model for 52Cr collisions could significantly reduce
the systematic uncertainty and would at the same time improve the prediction for
the 50Cr cross-sections.

9.4.4 Evaporative cooling

The rather large scattering length for 52Cr is very promising for efficient evaporative
cooling. In Section 8.6.3 we have already mentioned that the disturbing influence
of dipolar relaxation collisions can be minimized with a small magnetic offset field.
We have therefore performed an experiment in which we increased the phase-space
density by forced radio-frequency evaporative cooling (see Section 8.7) at a very low
magnetic offset field. We prepared a cloud of atoms as described in Section 9.2.
After Doppler cooling, we lowered the trap bottom to an offset field of B0 ≈ 140mG
and reduced the radial and axial trap parameters to trap frequencies of 500Hz and
42Hz in radial and axial direction, respectively. Subsequently, the atoms were cooled
down using a radio-frequency ramp consisting of eight consecutive linear frequency
sweeps, each optimized to yield the maximum gain in phase-space density per atom
number loss. Figure 9.8 shows the phase-space density for different intermediate
frequencies of the fully optimized ramp resulting in a different number of remaining
atoms. We achieved a maximum phase-space density of 0.04±0.013 at a temperature

3The effective range theory fails in this temperature regime due to the small scattering length

and the large effective range of re ≈ 150 a0.
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Figure 9.8: Phase-space density versus remaining number of atoms at different interme-
diate evaporative cooling steps.

of 370 ± 52 nK and a peak density of (6.5 ± 1.7) × 1011 cm−3. At that point, two
orders of magnitude away from quantum degeneracy, we had only 1500± 260 atoms
left in the trap. Further cooling did not increase the phase-space density, since the
loss in density outweighed the reduction in temperature. This has been confirmed by
a more detailed study of the high phase-space density region. As already mentioned
in Section 8.6.3, the high magnetic moment in chromium leads to a large dipolar
relaxation rate. This inelastic process limits the efficiency of evaporative cooling
especially in the low temperature region (see also Figure 8.15). Preliminary results
on the dipolar relaxation rate for chromium isotopes in the low-field seeking magnetic
substate are presented in Appendix E.

9.5 Conclusion

Cross-dimensional relaxation measurements over a temperature range of almost two
orders of magnitude have been presented. Comparing the lowest temperature (5-
25 µK) data with theoretical predictions for the thermally averaged relaxation rates
in the effective range approximation allowed us to determine the deca-triplet scat-
tering length of 52Cr in the J = 3, mj = 3 magnetic substate to adt

52 = 170± 39 a0.
Assuming the effective range expansion to be valid in this regime, we have a strong
indication for a positive scattering length. From relaxation data for 50Cr, we deduce
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a deca-triplet scattering length of |adt
50| = 50± 23 a0 in the J = 3, mj = 3 magnetic

substate with a high probability of having a positive sign.

We hope that the experimental data presented here inspires and encourages theo-
retical investigations in the scattering properties of chromium atoms. Together with
ab initio calculations of the molecular potentials of neutral chromium dimers [81],
model potentials for a multi-channel quantum defect formalism could be constructed.
Such a calculation would not only aid in explaining the elastic but also the inelastic
properties of scattering in the J = 3, mJ = 3 state. Of special interest are also
the scattering properties in the (mJ = −3, mJ = −3) channel, which is not only
immune against inelastic dipolar relaxation collisions, but is also expected to ex-
hibit magnetically tunable Feshbach resonance. Experiments towards Bose-Einstein
condensation of chromium in this state using an optical dipole trap are underway.



Chapter 10

Summary and perspectives

In this Chapter I give a summary of the results presented in this thesis and discuss
their consequence for future investigations. Prospects for exciting experiments with
a Bose-Einstein condensate of chromium atoms conclude the Chapter.

10.1 Summary

The properties of Bose-Einstein condensates with alkali atoms are governed by the
isotropic contact interaction arising from s-wave scattering. Chromium on the other
hand, has a large magnetic dipole moment which can lead to a significant dipole-
dipole interaction in a chromium BEC. In contrast to the contact interaction, the
dipole-dipole interaction is anisotropic and long-range. These features are expected
to alter the properties of a BEC and may lead to new phenomena.

In this thesis I have presented experimental results of the scattering properties of
ultra-cold chromium atoms. This represents a significant progress towards a Bose-
Einstein condensate with chromium atoms. Deviating from the standard approach
for the preparation of ultra-cold atoms, we have devised a continuous loading scheme
for a magnetic trap from a magneto-optical trap. Doppler cooling of the atoms in
the magnetic trap further reduces the temperature of the cloud. Subsequent forced
radio-frequency evaporation resulted in a maximum phase-space density of 0.04.
Strong dipolar relaxation collisions originating from the large magnetic dipole mo-
ment of chromium prevented us from reaching quantum degeneracy. We measured
the magnetic field dependence of the dipolar relaxation rate which was typically
on the order of βdp = 1011 cm3/s, in excellent agreement with theory. Probably
the most important parameter for ultra-cold scattering of chromium atoms is the
scattering length. We were able to perform a detailed measurement of the temper-
ature dependence of the elastic collision rate. Comparison with theory allowed us
to extract a(52Cr) = 170 ± 39 a0 for the scattering length of 52Cr (a0 = 0.53Å is
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Bohr’s radius). For 50Cr we determined the magnitude of the scattering length to
be |a(50Cr)| = 50± 23 a0.

The thesis began with an introduction of the main characteristics of chromium
relevant for this work, with special emphasis on the spectroscopic properties. In
Chapters 3 and 4, I presented the basic theoretical concepts for laser cooling and
trapping and purely magnetic trapping of atoms. A detailed description of the ex-
perimental apparatus was given in Chapter 5. I outlined the design of the cloverleaf
magnetic trap, vacuum chamber and the cooling and repumping laser system. The
computer control of the experiment together with the imaging techniques for the
atomic cloud and the data evaluation procedure have also been addressed.

The specific spectroscopic properties of chromium together with its high magnetic
moment allowed us to devise a continuous loading scheme of a Ioffe-Pritchard trap
from a MOT. I introduced this so-called CLIP trap scheme in Chapter 6. Atoms in
the excited state of the MOT can undergo a transition to a long-lived metastable
state, where they are magnetically trapped and decoupled from the MOT laser light.
With 2 × 108 atoms in the CLIP trap, we were able to accumulate up to 40 times
more atoms than were captured in the MOT. Furthermore, the direct accumulation
of the atoms in a Ioffe-Pritchard magnetic trap greatly simplifies the subsequent
preparation process for an ultra-cold sample. I presented a detailed study of the
temperature, number of atoms and the effective loading time constants for various
trap geometries. We identified two major loss mechanisms from the CLIP trap. A
model based on rate equations allowed us to extract the corresponding event rate
coefficients for the inelastic processes from our data. In collisions between excited
atoms from the MOT and magnetically trapped atoms, part of the excitation energy
is converted into kinetic energy, leading to a loss of atoms with a rate coefficient of
βed = 5 × 10−10 ± 45 % cm3/s. Inelastic collisions between magnetically trapped
atoms in the metastable state limit the lifetime of atoms in this state. We determined
the corresponding rate coefficient to be βdd = 1.3×10−11±17 % cm3/s. This rather
large value prevented us from using the metastable state for subsequent experiments.
Therefore the atoms are optically pumped back into the electronic ground state after
loading for further experiments.

Subsequent compression of the magnetic trap increases the density of the atomic
sample, but also their temperature. In Chapter 7 I presented a simple technique to
cool the magnetically trapped atoms via one-dimensional Doppler cooling without
significant atom loss or depolarization. Though only an axial cooling laser beam
was applied, we observed cooling also in the radial direction. I presented detailed
studies of the dynamical evolution and steady-state temperature of the Doppler
cooled cloud. With measurements of the intensity and optical density dependence
of the radial cooling rate, we could rule out anharmonic mixing and elastic collisions
as the source of the radial cooling. In our model, the high optical density of the
atomic cloud leads to reabsorption of scattered cooling photons. Including this effect
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in the standard treatment of Doppler cooling, we could qualitatively explain our
experimental findings. We observed temperatures close to the Doppler temperature
of 124µK in axial, and approximately a factor of two higher in radial direction.

Further cooling of the atoms was performed via radio-frequency induced evapora-
tive cooling. This method is based on the selective removal of the most energetic
atoms. Elastic collisions thermalize the remaining atoms to a lower temperature.
The efficiency of this cooling mechanism is strongly dependent on the elastic and
inelastic scattering properties of the atoms. Since these properties were unknown for
chromium prior to this work, I introduced the basic concepts of ultra-cold scattering
theory in Chapter 8. Using the square-well as a model potential, I could illustrate
the most prominent features of low energy scattering. S-wave scattering, charac-
terized by the scattering length a, is dominant in this regime. I also addressed the
special features of atom-atom scattering, including Feshbach resonances, elastic and
inelastic dipole-dipole scattering and three-body recombination. A brief description
of the evaporative cooling technique was given at the end of the Chapter.

Experimental results on the elastic ground state properties of the two bosonic
chromium isotopes 52Cr and 50Cr were presented in Chapter 9. We determined
the elastic collision rate over a temperature range of almost two orders of mag-
nitude in a cross-dimensional relaxation experiment. In this method the trap ge-
ometry is changed rapidly after evaporative cooling of the atoms. This creates an
anisotropic temperature distribution. From the collision-driven relaxation towards
the new equilibrium temperature, the elastic scattering cross-section could be de-
termined. Comparing the data to an effective range theory allowed us to not only
determine the magnitude of the s-wave scattering length, but also its sign. For 52Cr,
we found a scattering length of a(52Cr) = 170± 39 a0. The low natural abundance
of 50Cr restricted the measurement of the relaxation rates to a smaller range at
higher temperature. Therefore, only the magnitude of the scattering length could
be determined: |a(50Cr)| = 50 ± 23 a0. We also presented the results of our efforts
to achieve Bose-Einstein condensation via evaporative cooling. A maximum phase-
space density of 0.04± 0.013 at a temperature of 370± 52 nK and with 1500± 260
remaining atoms corresponding to a peak density of (6.5 ± 1.7) × 1011 cm−3 was
achieved. Further cooling did not increase the phase-space density due an increased
trap loss originating from dipolar relaxation collisions.

Preliminary results on the magnetic field dependence of the rate constants for dipolar
relaxation collisions at a temperature of 300µK were presented in Appendix E. We
find excellent agreement between our experimental data and theory. At a magnetic
offset field of B0 = 20 G, we obtain a loss rate coefficient of βdp = 1011 cm3/s. A
measurement of the dipolar relaxation induced heating rates in atomic clouds of
52Cr and 50Cr showed comparable heating rates for both isotopes. Therefore, we
could confirm with this experiment the theoretical prediction that dipolar relaxation
collisions are independent of the details of the interaction potential but rather scale
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with the magnetic offset field and the magnetic moment. This is in contrast to
elastic s-wave scattering which sensitively depends on the interaction potential.

The results of this work represent an important step towards a Bose-Einstein con-
densate with atomic chromium. Especially the knowledge of elastic and inelastic
ground state scattering properties allow now to devise a successful route to BEC
with chromium.

10.2 Perspectives

The strong dipolar relaxation rate in magnetically trapped chromium in the low-
field seeking state prevented us from reaching the quantum degenerate regime. In an
optical dipole trap [42], the atoms can be trapped in the high-field seeking magnetic
substate which is the absolute ground state of the system. Energy conservation
suppresses dipolar relaxation from this state. A promising implementation of this
concept would start by preparing an ultra-cold cloud of chromium atoms using the
methods developed in this thesis. Radio-frequency induced evaporative cooling to
a temperature of around 10µK in the magnetic trap prepares the atoms for the
transfer into the optical dipole trap. The latter consists of two crossed, horizontally
aligned, far-off resonant laser beams from a fiber laser, tightly focussed onto the
center of the magnetic trap. The atoms are transfered from the magnetic into the
dipole trap and then into the high field seeking magnetic substate, thus eliminating
dipolar relaxation. Assuming an adiabatic transfer, we can estimate a density of
around 1013 cm−3 and a temperature of 50µK in the dipole trap. Evaporation is
then achieved by slowly lowering the potential of the optical trap. The large elastic
scattering cross-section in chromium determined in this work, facilitates efficient
evaporative cooling. We estimate an initial elastic collision rate of 21 1/s. Experi-
ments towards a chromium BEC in an optical dipole trap implementing this scheme
are currently underway.

Once BEC in chromium has been achieved, many fascinating experiments are possi-
ble. The influence of the dipole-dipole interaction is probably most easily observable
in a ballistic expansion experiment [29]. Tuning the dipole-dipole interaction with
magnetic spinning techniques [28] allows to change the aspect ratio of the expanding
cloud. Further investigation of dipolar effects in a BEC requires a reduction of the
contact interaction arising from s-wave scattering. Magnetic tuning of the scattering
length via a Feshbach resonance in the optically trapped high field seeking magnetic
substate might allow to diminish or even completely cancel the contact interaction
as has been shown in a cesium BEC [25]. It is expected, that the strong dipole-dipole
interaction results in sufficiently broad Feshbach resonances in chromium. Investiga-
tion of the positions and widths of these Feshbach resonances also contributes to the
knowledge of the molecular interaction potentials in a chromium dimer. Together
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with the scattering properties determined in this thesis, accurate model potentials
could be constructed that aid in further understanding the ultra-cold scattering
properties of chromium atoms.

In a system with vanishing contact interaction, the influence of dipolar interactions
on the ground state wave-function as well as the stability and collapse of the con-
densate can be explored [31, 33] by tuning the dipole-dipole interaction [28]. These
experiments would be complementary to the investigation of the collapse of a BEC
under the influence of an attractive contact interaction [24, 220].

A periodic array of dipolar condensates, e.g. in an optical lattice, allows to inves-
tigate several solid-state physics effects in a very “clean” and controllable model
system. Ferromagnetism [34] and macroscopic spin tunneling [221] are expected to
be observable in such studies.

Sympathetic cooling of the fermionic isotope 53Cr into the quantum degenerate
regime constitutes another fascinating direction of investigation. In a first step, its
ultra-cold scattering properties need to be explored, using the experimental tech-
niques developed in this work. So far, dipolar interactions in fermionic systems have
only been touched theoretically. One can only guess what interesting effects lie in
wait here to be discovered.

We expect, that the dipole-dipole interaction in degenerate quantum gases of
chromium atoms will significantly enrich the variety of effects observable in such
systems. The ability to tune both, the contact and the dipole-dipole interaction,
will enable a whole series of exciting experimental investigations in Bose-Einstein
condensates that contribute to our understanding of this new form of matter.



Appendix A

Light scattered by a single atom

We have already discussed in Chapter 3 the effects of light scattering on the motion
of an atom. In this Appendix, we are interestend in the polarization and spectral
properties of the scattered light. Reabsorption of the scattered photons can lead to
cooling effects as discussed in Chapter 7.

A.1 Spectral properties

In general, scattered light from a single atom at rest exhibits two distinct contribu-
tions: a coherent part, Icoh, arising from the mean dipole oscillating in phase with
the driving field and an incoherent part, Iincoh, originating from fluctuations of the
atomic dipole [83, 222]. The frequency spectrum of the coherent part (also known
as Rayleigh peak) is identical to the driving laser field of the incident beam, with a
mean steady state intensity

< Icoh >∝ s

(1 + s)2
, (A.1)

where s is the saturation parameter as defined by Equation 3.7. The frequency spec-
trum of the incoherent part is far more complicated and depends on the intensity
and detuning ∆ given by Equation 3.8. In general, the spectrum of the incoherent
part consists of at most three components which can have different frequencies and
spectral widths. We will discuss a few limiting cases in the following. For resonance
scattering (∆ = 0) in the low intensity limit (ΩR ¿ Γ), the incoherent spectrum
consists of three components having the same laser frequency ωlaser = ωatom and
linewdiths of Γ/2 and Γ for the first two and the last component, respectively. For
low intensity off-resonant scattering (|ωlaser−ωatom| À ΩR,Γ, the spectrum consists
of a line at the excitation frequency ωlaser with a linewidth of 2Γ and two side-
bands with a linewidth of Γ/2 located at ωlaser ±∆Γ. In the high intensity limit for
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resonance scattering, the well known Mollow-Triplet [83] emerges with a resonant
line having a linewidth of Γ and two sidebands at ωatom ± ΩR with a linewidth of
3Γ/2. All frequency components differing from the incident laser frequency involve
multi-photon processes. The total intensity of the incoherent contribution to the
fluorescence spectrum is given by

< Iincoh >∝ s2

(1 + s)2
. (A.2)

As a consequence of energy conservation, the frequency weighted integrated spec-
trum of the scattered and the incident light are equal. This is no longer true for
atomic ensembles in which collisions play a role. An additional component at the
atomic transition frequency with the linewidth of the transition arises at the ex-
pense of the elastic component. The energy difference ~ωatom − ~ωlaser to shift the
frequency of the photon is provided by the collision partner.

In our system, the mean time between two collisions τ ≈ 1 s is much larger than
the excited state lifetime 1/Γ ≈ 30 ns of the atoms. Therefore we can safely neglect
the influence of collisions on the fluorescence spectrum. The intensity ratio between
coherent and incoherent contribution to the spectrum is <Icoh>

<Iincoh> = 1
s . Since the

saturation parameter for the Doppler-cooling light in our experiment is on the order
of s = 1 %, we can also neglect the incoherent contribution to the fluorescence
spectrum.

For a moving atom, the Doppler shift of the photon frequency and momentum and
energy conservation during the scattering process have to be taken into account.
The classical treatment of the elastic scattering of a photon by a moving atom gives
a maximum frequency shift for the photon of

∆ω = −4ωrec − 2~v · ~k, (A.3)

where ~v is the velocity of the atom and ~k is the wavevector of the photon. The
total frequency shift has to be smaller than the laser detuning of ∆ ≈ −0.5Γ for
Doppler cooling by reabsorption to be efficient. The first term on the right hand
side of Equation A.3 is the recoil shift 4ωrec ≈ 0.02Γ, which is small compared to
the atomic linewidth. The second term arises from the Doppler shift, which is on
the order of 2~v · ~k ≈ 0.2Γ at Doppler temperature. On average, more photons are
scattered by atoms counterpropagating the cooling laser (~v = −|v| · ~ez). Therefore,
the Doppler shift increases the energy of the scattered photon towards the atomic
resonance. From these considerations it becomes clear, that the Doppler shift of
the scattered photon limits the efficiency of reabsorption cooling to a few scattering
events.
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A.2 Polarization properties

In our model, all atoms are polarized along the quantization axis in z-direction and
can only absorb light which is σ+ polarized with respect to this quantization axis
(see next section). The scattering atom can be modeled by two oscillating dipoles
oriented along the x and y direction having a phase shift of π with respect to each
other. The near field complex electric field vector in cartesian coordinates is given
by

~ε1 =
1√
2



−1
−i

0




xyz

. (A.4)

Here we have used the transformation rules for electric fields between the σ+/π/σ−-
basis and cartesian coordinates:




εx

εy

εz




xyz

=
1√
2




1 0 −1
−i 0 −i

0
√

2 0







ε−

επ

ε+



−π+

, (A.5)

and




ε−

επ

ε+



−π+

=
1√
2




1 i 0
0 0 1
−1 i 0







εx

εy

εz




xyz

. (A.6)

To obtain the electric field components of the light propagating in the direction of
the unit vector ~r, we have to project the electric field onto two orthogonal unit
vectors ~s1, ~s2, that form a mutually orthogonal tripod with ~r. One choice of vectors
is the following:

~r =




cosφ sinϑ

sinφ sinϑ

cosϑ



xyz

, ~s1 =




sinφ

− cosφ

0



xyz

, ~s2 =




cosϑ cosφ

cosϑ sinφ

− sinϑ



xyz

. (A.7)

The propagating electric field ~ε2 in cartesian coordinates is then given by

~ε2 = (~ε1 · ~s1)~s1 + (~ε1 · ~s2)~s2 (A.8)

=
1√
2




eiφ cosφ sin2 ϑ− 1
eiφ sinφ sin2 ϑ

eiφ cosϑ sinϑ




xyz

. (A.9)
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Only the σ+ component with respect to the quantization axis in z-direction of the
field ~ε2 can be absorbed by the polarized atoms. Transforming ~ε2 back into the
σ+/π/σ−-basis gives

~ε2 =




1
2e2iφ sin2 ϑ

1√
2
eiφ cosϑ sinϑ

1
2(1 + cos2 ϑ)



−π+

. (A.10)

From the σ+ component of ~ε2, we obtain the normalized angular distribution for the
scattered light that can be reabsorbed by polarized atoms:

dPsp(ϑ)
dΩ

=
3

32π
(1 + cos2 ϑ)2 (A.11)

In summary, the light scattered by the atoms has the same spectral width as the
incident laser light, but is slightly shifted closer to the atomic resonance by the
Doppler shift. The angular distribution of the σ+-component of the emitted light
with respect to the quantization axis is given by Equation A.11.



Appendix B

Effective intensity coefficients

In this Appendix, we sketch the derivation of the proportionality constants κy,z

between effective Iy,z
eff and incident laser intensity I0 used in Chapter 7. The effective

intensity arises from scattering of photons from a laser beam into all directions. The
light can be reabsorbed by other atoms in the cloud and is treated in the Doppler
cooling theory as if originating from a separate light source. We will take only a single
scattering/reabsorption event into account. Figure B.1 shows a sketch of the model.
Let us consider a single monochromatic laser beam with homogeneous intensity
I0 (approximation for a beam size much larger than the diameter of the cloud)
propagating along the axial direction. In brief, we derive the intensity scattered by
a point source at ~r0 = (x0, y0, z0) as seen by an atom located at ~r1 = (x1, y1, z1).
Averaging over all positions ~r0 and ~r1 and taking into account only the projection
of the emitted intensity onto the direction of interest, we obtain numerical values
for the coefficients κy, κz.

We start by evaluating the intensity of the incident laser beam as seen by an atom at

V(z)

z

s
+

Figure B.1: Illustration of the reabsorption process. A photon (red wavy arrow) from
the incident laser beam is scattered by an atom. The scattered wave (green) is absorbed by
another atom according the the emission pattern and absorption probability.
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position ~r. Scattering of light in the cloud with Gaussian density distribution n(~r)
results in a spatially varying intensity gradient given by the following expression:

Iinc(~r) = I0 exp



−σλ

z∫

−∞
n(x, y, z′)dz′



 (B.1)

= I0 exp
{
−σλ

N0

4πσ2
y

exp
[
− x2

2σ2
x

− y2

2σ2
z

]
(B.2)

×
[
1 + Erf

(
z0√
2σz

)]}
, (B.3)

where Erf(·) is the error function, N0 the number of atoms and σx, σy and σz are
the 1/

√
e radii of the cloud in the x, y and z direction, respectively. In the low

intensity limit, the light power Psc scattered by an atom is proportional to the
incident intensity of the light:

Psc(~r) =
~ωΓ
2

Iinc(x,y,z)/Is

1 + 4(∆/Γ)2
= σλ

Iinc(x, y, z)
1 + 4(∆/Γ)2

, (B.4)

where σλ = 6πλ2 is the resonant scattering cross-section and λ the wavelength of the
transition. Each atoms acts as a point source emitting the scattered power according
to the dipole radiation pattern with the intensity falling off as 1/r2 with distance r

from the source. We must only take into account the fraction of the light that can
be reabsorbed by the polarized atoms. The angular distribution is then given by
Equation A.11. The intensity at point ~r1 emitted from a volume element dV0 at
position ~r0 is given by

dIsc(~r0, ~r1) =
3Psc(~r0)

32π|~r1 − ~r0|2 (1 + cos2 ϑe)2n(~r0)dV0, (B.5)

where cosϑe = (z1−z0)
|~r1−~r0| is the cosine of the azimuth angle of emission with respect

to the quantization axis. The total intensity of the scattered light at position ~r1

is obtained by integrating Equation B.5 over all scattering volume elements dV0.
Weighting this result with the normalized density distribution and integrating over
all final positions ~r1 yields the mean intensity. κ is the proportionality constant
between the laser intensity I0 and the mean intensity of light scattered into any
direction. It is given by

κ =
∫

V

dV0

∫

V

dV1
dIsc(~r0, ~r1)

I0

n(~r1)
N0

. (B.6)

Similarly, the contribution of the scattered intensity to an effective intensity in the y

and z direction is obtained by projecting the emitted intensity onto these direction.
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The effective intensity coefficients for these directions then read

κy =
∫

V

dV0

∫

V

dV1
dIsc(~r0, ~r1)

I0

n(~r1)
N0

| sinϑe| | sinφe| (B.7)

κz =
∫

V

dV0

∫

V

dV1
dIsc(~r0, ~r1)

I0

n(~r1)
N0

| cosϑe|, (B.8)

where sinφe =
√

1− (x1−x0)2

|~r1−~r0|2 is the sine of the polar angle of emission with respect
to the quantization axis. Although no analytic result can be found, numerical inte-
gration of these Equations yield coefficients that can be compared with experimental
results.



Appendix C

Thermal averaging of rates and

cross-sections

The collision process between two atoms is conveniently described in the center of
mass reference system. The important physical quantities in the scattering pro-
cess have no explicit dependence on the center of mass coordinates nor momentas.
Therefore, the center of mass evolution is trivial and will be neglected below. The
normalized Maxwell-Boltzmann distribution for the relative velocity ~vr is given by

f(~vr, T ) d3vr =
(

m

πkBT

) 3
2

e
−mµ~v2

r
2kBT d3vr (C.1)

where mµ = m1m2
(m1+m2) is the reduced mass. We can write the distribution in polar

coordinates with vr = |~vr| and, assuming a spherically symmetric scattering problem
(s-wave scattering), integrate the angular part and obtain

f(vr, T ) dvr =
1√
4π

(
m

kBT

) 3
2

v2
r e

−mµv2
r

2kBT dvr (C.2)

f(E, T ) dE = 2

√
1
π

(kBT )−
3
2

√
E e

− E
kBT dE. (C.3)

In Equation C.3 we have transformed the distribution to collision energies.
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C.1 Elastic collision rates

The thermal average of the density normalized event rate for elastic collisions is
given by <σ vr >th, or in integral form

<σ vr >th =

∞∫

0

σ(E)

√
2E

mµ
f(E, T ) dE (C.4)

= 2

√
2

3πmµ
(kBT )−

3
2

∞∫

0

σ(E) E e
− E

kBT dE. (C.5)

We can define an effective thermally averaged elastic cross-section in the following
way:

σeff(T ) :=
<σ vr >th

v̄r
= (kBT )−2

∞∫

0

σ(E) E e
− E

kBT dE, (C.6)

where v̄r =
√

8kBT
πmµ

is the relative thermal velocity.

C.2 Thermal relaxation rates

A cloud of atoms with an anisotropic temperature distribution thermalizes to a
uniform steady state temperature at a relaxation rate Γrel. We denote the number
of collision events per atom required to thermalize the cloud as α(T ). It is in
general temperature and cross-section dependent. Kavoulakis et. al. [218] have
solved the Boltzmann equation for the thermal relaxation of a trapped cloud of
atoms analytically. We will present here their main result, which has been used
to fit the relaxation data for 52Cr and 50Cr in Chapter 9. Their solution for the
temperature dependence of the thermal relaxation rate for a general form of the
elastic cross-section using a simple trial function for the variational ansatz is given
by

Γrel(T ) =
2
5

n̄ v̄r

6(kBT )4

∞∫

0

σ(E) E3 e
− E

kBT dE, (C.7)

where

n̄ =
∫

n2(~r)dV∫
n(~r)dV

=
n0√

8
(C.8)
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is the density weighted density or mean density of the atoms in the trap. The second
equality hold for a cloud with peak density n0 in a harmonic trapping potential.
Besides some constant factors, Equation C.7 differs from Equation C.5 only in the
power of the energy in the integral. An improved trial function results in a 6 %
correction of the numerical factors (2/5 = 1/2.5 has to be replaced by 1/2.65).

Again, we can define an effective cross-section for which we include a constant α =
2.65 to obtain the elastic cross-section rather than the relaxation cross-section1:

σeff(T ) :=
2.65Γrel(T )

n̄ v̄r
=

1
6 (kBT )4

∞∫

0

σ(E) E3 e
− E

kBT dE. (C.9)

For a constant cross-section σ, this equation reduces to σeff = σ. For more general
cross-sections, Equation C.9 has to be evaluated numerically.

C.3 Inelastic rates

Inelastic collision cross-sections typically contain a factor of kf/ki, where ki and kf

are the initial and final wavenumber of the collision, respectively. This factor is a
result of Fermi’s golden rule, stating that the transition probability is proportional
to the density of final states. The event rate for inelastic collisions is again given by
a thermal average: Γinel = n̄<σinel(v)v>th. It is therefore advantageous to have a
physical quantity that is independent of temperature, thus eliminating the need to
perform this average. If the release in energy ∆E by the inelastic collision is much
larger than the initial kinetic energy, the ratio kf

ki
≈

√
2∆E
mµ

1
v becomes inversely

proportional to the velocity. In this case, the rate constant βinel = σinel(v̄r)v̄r is
independent of velocity and the event rate can be written as Γinel = n̄ βinel. If on the
other hand the energy release is small compared to the initial kinetic energy, kf/ki ≈ 1
and the useful physical quantity is the velocity independent inelastic cross-section
σinel. The event rate is then given by Γinel = n̄ σinelv̄r.

For example, dipolar relaxation in alkali atoms in the upper hyperfine state typically
releases the hyperfine energy, which is always much higher than the initial kinetic
energy in these experiments. In chromium, the magnetic field dependent Zeeman
energy is released, which can be on the order of the initial kinetic energy. In that
case, the full thermal averaging has to be performed and no temperature independent
quantity exists.

1The choice of α = 2.65 restricts the validity of σeff to low temperatures.



Appendix D

The C6 coefficient for chromium

There are several ways to obtain an approximate C6 coefficient. One possibility is
to extract it from ab inito calculations of the molecular potentials. The lack of data
prevents this method for chromium (see Section 8.6.1).

The C6 coefficient can also be related to the polarizability α of an atom via the
following approximate expression [223]:

C6 ≈ 3
4

4πε0
ea5

0

Eionα
2, (D.1)

where Eion is the first ionization energy in eV and α in units of1 Å3 to obtain C6

in atomic units2. The reason is easily seen: the polarizability is a measure for the
electric dipole moment of an atom under the influence of an electric field. The C6

coefficient arises from the interaction of fluctuating dipole moments and is therefore
proportional to the square of the polarizability. The formula above has proven to be
accurate to within few 10%. For chromium with a static polarizability of 11.6 Å3,
we get C6 ≈ 1140 a.u.

An exact expression for the C6 coefficient can be obtained from a more detailed
analysis of the contributions of the dipole transitions to the polarizability. It can be
written as a sum over the oscillator strengths of all dipole transitions starting from
the ground state. The C6 coefficient in atomic units can then be expressed as the
sum over all pair products of the oscillator strength fn0 connecting the ground state
with an excited state n [223]:

C6 =
3
2

∑

n,n′

fn0fn′0

(En − E0)(En′ − E0)(En + En′ − 2E0)
(D.2)

1α[SI] = 4πε0α[Å3]× 10−30, where ε0 is the dielectric constant
2C6[SI] = C6[a.u.]

e2a5
0

4πε0
, where e is the charge of the electron and a0 is Bohr’s radius
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where En and E0 are the energies in atomic units3 of the excited and the ground
state, respectively. We have calculated C6 ≈ 541 a.u. for chromium, using all tran-
sitions available from the NIST database of atomic line spectra [80].

Along a similar line of thought, an approximate expression for C6 can be obtained.
The polarizability can be related to the C6 coefficient by taking into account the
effective number of electrons, Neff involved in the interaction. For two atoms of the
same species, it is given by [224, 225]

C6,eff = Kα2

√
Neff

4α
, (D.3)

where α is the static polarizability of the atom in Å3 and K = 13.14 is a coefficient to
obtain C6 in atomic units. Neff can be approximated using an empirical interpolation
formula

Neff = Next +
(

1− Next

Nint

)(
Nint

Ntot

)2

Next, (D.4)

where Nint and Next are the numbers of total inner and valence electrons, respec-
tively, and Ntot = Nint + Next. For transition elements of the first half of the
d-periods like chromium, the similarity between s and d electrons leads to a slight
modification of Neff = Ns +0.6Nd, where Ns and Nd are the number of s and d elec-
trons, respectively. For chromium, we have Ntot = 24 and Neff = 6.22, resulting in
C6 ≈ 1300 a.u. This C6 coefficient contains also contributions from higher multipole
interactions4

In summary, we have used three different ways to obtain an approximate C6 coeffi-
cient for chromium. Equation D.1 is known to yield only a very crude estimate of
the C6 coefficient, whereas the semi-empirical approach (Equation D.3 is believed
to be accurate to within a few percents. Both values differ by only 13%, making
C6 = 1300 for chromium a good choice. The difference to the number obtained from
the oscillator strengths lies probably in the incomplete knowledge of all transitions,
especially in the x-ray regime. An indication for this is the failure of the Thomas-
Reiche-Kuhn sum rule [223], which states, that the sum over all oscillator strengths
equals the number of electrons in the atom. For chromium we have evaluated this
sum to be ≈ 1.16 in clear disagreement to the number of electrons. The situation
seems to be different for the alkali metals, for which the main contribution to C6

coefficient comes from the single valence electron. The main transitions for this
electron has an oscillator strength of approximately 1. Evaluation of Equation D.2
using this single transition yields a C6 coefficient, which is in good agreement with
experimental and theoretical data.

3for a transition wavelength λ, En−E0 = hc
λ

1
EH

, where EH ≈ 4.36×10−18 is the Hartree energy
4Note added: The isolated C6 coefficient is approximately 20% smaller than the effective C6

determined here [226]. The results of our analysis of the elastic scattering properties in Chapter 9

are not affected by this discrepancy.



Appendix E

Preliminary results on dipolar

relaxation collisions

Evaporative cooling of chromium atoms in a magnetic trap is limited by an extraordi-
narily large dipolar relaxation rate. In this Appendix I present preliminary results on
the dipolar relaxation rate constants for two bosonic chromium isotopes as discussed
theoretically in Section 8.6.3.

In alkali atoms in the upper hyperfine state, dipolar relaxation changes the hyper-
fine state of one or both atoms releasing the hyperfine energy corresponding to a
temperature of approximately 0.25K for each atom. Therefore, dipolar relaxation
immediately results in atom loss from the trap. In chromium, only the Zeeman
energy ∆EZS = 2µBB, corresponding to a temperature of 500µK for a magnetic
offset field of B = 8 G is released in a single spin-flip transition. The atoms, then in
the mJ = 2 magnetic substate, are still trapped together with the mJ = 3 atoms.
The Zeeman energy is distributed between the collision partners. The two possible
relaxation processes

(mJ = 3,mJ = 3) → (mJ = 3, mJ = 2) + ∆EZS (E.1)

(mJ = 3,mJ = 3) → (mJ = 2, mJ = 2) + 2∆EZS (E.2)

produce either an energetic mJ = 3 and an energetic mJ = 2 atom or a pair of hot
mJ = 2 atoms. The mixture of magnetic substates and kinetic energies makes the
interpretation of images of such clouds extremely diffcult.

From these considerations, we devised a technique which allows us to unambiguously
measure the dipolar loss rate. We use a radio-frequency shield to selectively remove
energetic atoms in the mJ = 3 and mJ = 2 magnetic substates, as shown in Figure
E.1. Using this technique, we can turn the dipolar relaxation in chromium into a
real loss process. The frequency of the rf-shield has to be adjusted to sufficiently
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Figure E.1: Measurement principle for dipolar relaxation collisions in chromium. (a)
Dipolar relaxation populates the mJ = 2 magnetic substate. Atom pairs undergoing a
double (single) spin-flip have an additional kinetic energy of 2∆EZS (∆EZS), corresponding
to (half) the energy difference between the mJ = 2 and mJ = 3 potentials in the magnetic
trap. (b) Applying a radio-frequency shield allows to selectively remove the mJ = 2 atoms
and hot mJ = 3 atoms, thus turning dipolar relaxation into a loss process. For simplicity,
we have neglected the mJ = 1 magnetic substate in the drawing of the potentials.

high frequencies, such that the initial mJ = 3 cloud is not significantly evaporatively
cooled. Otherwise, evaporative cooling of the initial cloud would lead to additional
loss. Consequently, the gain in kinetic energy in the relaxation process needs to
be sufficiently large to have the atoms removed by such a rf-shield. From these
consideration it becomes clear that this method is only applicable for offset fields
B0 À kBT/2µB, where T is the initial temperature of the cloud.

The differential equation governing the decay of the number of atoms (N) from the
trap is given by:

dN

dt
= −γbgN − 2βdp

N2

V̄
, (E.3)

where γbg is the loss rate due to collisions with the background gas, βdp is the event
rate1 for dipolar relaxation collisions and V̄ =

√
8(2π)3/2σxσyσz is the mean volume

of the atomic cloud having a Gaussian density distribution with 1/
√

e sizes σx, σy

and σz. The well-known solution to this differential equation is

N(t) = N0
γbg e−γbgt

γbg + N0
2βdp

V̄
(1− e−γbgt)

, (E.4)

where N0 is the initial number of atoms in the trap.

We have performed a series of measurements in which we recorded N(t) for different
magnetic offset fields. A typical experimental sequence starts with the prepara-
tion of a cold cloud of atoms using our CLIP trap loading scheme and subsequent

1The factor of 2 accounts for the fact that each dipolar relaxation event removes two atoms from

the trap.



152 APPENDIX E. PRELIMINARY RESULTS ON DIPOLAR RELAXATION

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

10
7

10
8

n
u

m
b

e
r 

o
f 

a
to

m
s

time [s]

x10
7

Figure E.2: Decay of the number of atoms due to dipolar relaxation. The blue line is a
fit of Equation E.2 to the data, yielding βdp = 1.54± 0.06× 10−11 cm3/s. The inset shows
a logarithmic plot of the data together with a purely exponential decay curve (red line).

Doppler cooling in the magnetic trap as described in Chapters 6 and 7. Performing
Doppler cooling already at the desired magnetic offset field assures that the initial
temperature of the cloud is approximately the same for all offset fields. After the
Doppler cooling stage, the radio-frequency shield is applied and the atomic ensemble
is allowed to evolve in the trap for a variable time. The number of remaining atoms
is determined from a fluorescence image with an exposure time of 200µs, taken after
3ms time-of-flight. The initial density distribution and volume are retrieved from
the known trapping parameters via Equation 5.12. An example of such a decay
curve is shown in Figure E.2. The red line is a fit of Equation E.4 to the data using
a background gas collision rate2 of γbg = 1

300 s . The latter has been obtained from
a separate measurement with a low density atomic cloud. The fit parameters were
the inital number of atoms N0 and the event rate βdp for dipolar relaxation.

We have performed the same measurement for four different magnetic offset fields:
11, 25, 38 and 52 G. The radio-frequency shield was adjusted to corresponded to a
cut-off temperature of approximately 3 mK (see Equation 8.68). We have determined
the evolution of the temperature of the atoms in a separate measurement using a
time-of-flight sequence. The initial temperature in radial direction was typically
around 275± 25 µK. Directly after Doppler cooling, the axial direction is typically

2The fit is not sensitive to exact value of this parameter.
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Figure E.3: Magnetic field dependence of the dipolar relaxation rate coefficicent. The
blue line is a plot of Equation E.5 with no fit parameter.

close to the Doppler limit. Elastic collisions thermalize the cloud, visible in a rapid
increase in the axial temperature. In addition, we observe significant heating during
the evolution of the atomic sample in the trap. The increased volume due to the
heating was accounted for in the fit. Effects due to the temperature dependence of
the inelastic collisional properties are small and have been ignored.

The resulting event rate coefficients βdp for dipolar relaxation as a function of the
magnetic offset field are shown in Figure E.3. The red line is a plot of the thermalized
theoretical event rate without any adjustable parameters obtained from Equations
8.63 and 8.64 according to

<(σ1
dp + σ2

dp) · vr >. (E.5)

The agreement with the experimental data is remarkable. We assume a 20 % un-
certainty in the number of atoms in addition to the error bars in Figure E.3 which
have been obtained from the fit. This agreement is evidence for the validity of the
simple theory presented in Section 8.6.3 in the considered regime.

The main result of the theory is the independence of dipolar relaxations from details
of the molecular interaction. We have confirmed this conclusion for large magnetic
moments by comparing the heating of the atomic cloud due to dipolar relaxation for
the two isotopes 52Cr and 50Cr. The result is shown in Figure E.4 where we have
plotted the temperature evolution of the clouds, derived from their radial sizes σy

via Equation 5.13. The upper curve shows a typical measurement for 52Cr with a
high initial density of 1011 cm−3. Strong heating with an initial rate of more than
100µK/s is observed. Due to the lower natural abundance of 50Cr, we are only able
to achieve densities on the order of 1010 cm−3. Comparing the heating rates for 50Cr
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Figure E.4: Heating due to dipolar relaxation for 52Cr and 50Cr. Both isotopes show the
same heating for comparable initial density of atoms in the cloud.

with a cloud of 52Cr atoms at comparable densities, we find the same heating for
both atomic species. Since the elastic scattering properties of 52Cr and 50Cr are
very different (see Chapter 9), we can conclude that the dipolar relaxation rate for
chromium is independent of the details of the scattering potential. It rather depends
on the magnetic offset field and the magnetic moment of the atomic species. For
chromium, we find a typical rate coefficient of βdp = 10−11 cm3/s at a magnetic
offset field of B0 = 20G.

This result is especially important for experiments aimed towards electrostatic trap-
ping of large samples of polar molecules [57]. The large dipole-dipole interaction3

between these molecules will lead to a dramatic rise in the dipolar relaxation rate
as the density increases.

Dipolar relaxation can be suppressed by trapping the atoms or molecules in the
strong field seeking state which is the absolute ground state of the system and
therefore immune against dipolar relaxation. This can be realized in an optical dipole
trap [42]. The success of this technique has been demonstrated with Bose-Einstein
condensation of atomic cesium [25]. Cesium in the weak field seeking states has
resisted all efforts to achieve BEC due to extraordinarily large loss rates [210, 227].
Analogous to cesium, optical trapping of atomic chromium in the high field seeking
state should permit to achieve Bose-Einstein condensation.

3The electronic dipole-dipole interaction for typical dipole moments of 1Debeye is four orders

of magnitude larger than the magnetic dipole-dipole interaction for magnetic moments of 1 µB .
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[32] K. Góral, L. Santos, and M. Lewenstein, Quantum Phases of Dipolar Bosons
in Optical Lattices, Phys. Rev. Lett. 88, 170406 (2002).

[33] J.-P. Martikainen, M. Mackie, and K.-A. Suominen, Comment on ’Bose-
Einstein condensation with magnetic dipole-dipole forces’, Phys. Rev. A 64,
037601 (2001).

[34] H. Pu, W. Zhang, and P. Meystre, Ferromagnetism in a Lattice of Bose-
Einstein Condensates, Phys. Rev. Lett. 87, 140405 (2001).

[35] L. Santos, G. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose-Einstein Con-
densation in Trapped Dipolar Gases, Phys. Rev. Lett. 85, 1791 (2000).



158 BIBLIOGRAPHY

[36] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Erratum: Bose-
Einstein Condensation in Trapped Dipolar Gases [Phys. Rev. Lett. 85, 1791
(2000)], Phys. Rev. Lett. 88, 139904 (2002).

[37] S. Yi and L. You, Trapped condensates of atoms with dipole interactions, Phys.
Rev. A 63, 053607 (2001).

[38] W. Zhang, H. Pu, C. Search, and P. Meystre, Spin Waves in a Bose-Einstein-
Condensed Atomic Spin Chain, Phys. Rev. Lett. 88, 060401 (2002).
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vom Ytterbium-Team für die vielen Diskussionen und die freundschaftliche Zusam-
menarbeit, sowie den apparativen und den Know-How Austausch bedanken.

Mein besonderer Dank gilt auch den mechanischen und elektronischen Werkstätten
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die Unterstützung in theoretischen Fragen zur Bose-Einstein-Kondensation im All-
gemeinen und zur Streutheorie im Besonderen, bedanken.

Bei der Studienstiftung des deutschen Volkes möchte ich mich für die finanzielle
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