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Abstract

Standard objects in classical (topological) geometry are the real affine and hyperbolic
planes. Both of them can be seen as (open) subplanes of the real projective plane
(endowed with the standard topology) and thus share a common theory. This may serve
as a brief illustration of the importance of the notion of embeddability.

One particularly nice class of topological planes are the so called stable planes – in
fact, the above examples are stable planes; as well as the projective planes over the
real and complex numbers, Hamilton quaternions and Cayley octaves, the so called
classical planes. Moreover, every open subplane of a stable plane again is a stable plane.
Consequently, one way of understanding a given stable plane is trying to embed it into
one of more profound acquaintanceship, preferredly one of the classical planes.

An elegant way of constructing stable planes uses stable partitions of Lie groups.
Planes of that type can be treated more efficiently studying these groups along with
certain stabilisers, the so called sketches, rather than the original geometries. This
method has so far yielded results in several cases where intrinsic methods had not been
gratifying.

Maier in his dissertation gives a classification of all 4-dimensional connected Lie groups
which allow for a stable partition. Only one of them, the Frobenius group Γ = RnHei3R,
had not been expected, and it hosts an infinite number of stable partitions. Our objective
is whether or not the resulting stable planes P are embeddable into an already well known
plane. Using sketches, it can be proved that none of these planes P is embeddable into
the classical projective plane P2C. As an interesting counterpoint, those planes — hostile
as they are towards being embedded into classical planes — do contain an abundance
of both, affine and non-affine 2-dimensional classical subplanes.

The full automorphism group Σ of such a plane P does not contain a certain selection
of classical groups. Some conclusions can be drawn as to how soluble Σ is : either it
is soluble or it contains one copy of a subgroup with Lie algebra sl2R. The normaliser
NΣ(Γ) of Γ in Σ turns out to be soluble, after all.

On a more general basis, the interplay of being a sketched geometry and a stable plane
is studied : Is there any particular reason why all the examples of sketched stable planes
so far have been point homogeneous geometries ? And indeed, any line homogeneous
sketched stable plane is necessarily flag homogeneous.
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Zusammenfassung

Der Begriff der stabilen Ebenen verallgemeinert alltägliche klassische Ebenen wie die re-
elle affine Ebene oder die reelle hyperbolische Ebene. Besonders schöne Exemplare lassen
sich aus Gruppen mit gewissen Partitionen konstruieren, die sogenannten skizzierten sta-
bilen Ebenen. Die Gruppen, die solche stabilen Partitionen zulassen, sind sehr häufig
Liegruppen und haben nach einem Satz von Löwen die Dimension 2, 4, 8 oder 16.

Maier klassifizierte alle vierdimensionalen Liegruppen mit stabilen Partitionen. Die
stabilen Ebenen, die sich aus den vier Kandidaten ergeben, sind wohlbekannt — mit
Ausnahme derer, die aus der Frobeniusgruppe Γ = R n Hei3R entstehen. Diese Familie
von Ebenen wird hier näher beleuchtet.

Neben dem erwähnten Konstruktionsmechanismus spielt der Begriff der Einbettung
eine tragende Rolle. Beispielsweise lassen sich die affine und auch die hyperbolische reelle
Ebene als offene Unterebenen einbetten in die reelle projektive Ebene, erschließen sich
mithin dem gemeinsamen Zugriff mit Hilfe nur einer Theorie. Umgekehrt ist jede offene
Unterebene einer stabilen Ebene wiederum eine stabile Ebene. Auf diesem Wege kann
man sich also mit einer fremden stabilen Ebene vertraut machen — indem man nämlich
eine bekannte Ebene findet, in die sie einbettbar wäre. Die begehrtesten “Betten” sind
natürlich die klassischen stabilen Ebenen, also die projektiven Ebenen über den reellen
Zahlen, den komplexen Zahlen, den Hamiltonschen Quaternionen und den Cayleyschen
Oktaven.

Es wird nachgewiesen, daß keine der aus Γ konstruierten stabilen Ebenen auf irgendei-
nem Wege in die vierdimensionale komplexe projektive Ebene eingebettet werden kann.
Dieses Ergebnis schränkt die Suche nach der vollen Automorphismengruppe Σ einer
solchen Ebene deutlich ein : gewisse klassische Gruppen können nicht als Automor-
phismengruppen auftauchen, und mithin ist Σ entweder selbst auflösbar oder enthält
genau ein Exemplar einer Untergruppe mit Liealgebra sl2R. Ihr Normalisator NΣ(Γ) ist
auflösbar.

Umgekehrt ergibt sich, daß diese Ebenen selber eine Vielzahl von zweidimensionalen
Unterebenen enthalten, die affine oder nichtaffine Unterebenen der reellen affinen Ebene
sind.

In allgemeinerem Kontext wird ausgeleuchtet, weshalb bislang keine anderen als punkt-
homogene skizzierte stabile Ebenen bekannt sind: jede geradenhomogene skizzierte sta-
bile Ebene ist notwendigerweise bereits fahnenhomogen.
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Preface

Mathematics has a long and fruitful tradition of translating problems from one of its
areas into another one which has already been understood more deeply and which might
shed a new light on the subject at hand. The translation mechanism which will be the
central thread running through the present thesis is called sketching, and it helps to
understand problems dealing with geometries by studying their transformation groups
along with suitable stabilisers.

It is as early as 1927 that Young in [77] introduces group partitions of possibly non-
abelian groups. In 1954, this notion is taken up by André [2] who uses them for the
construction of certain point homogeneous geometries, his so-called “translation struc-
tures”. (In our notation, thus, he treats incidence structures of the form P (Γ; {1},F),
where F is a group partition of the abstract group Γ.) André characterises translation
planes as being precisely those translation structures which arise from planar partitions
(“congruences”) of a necessarily abelian group. In 1951, Freudenthal in a little aside
in [13] hints at the possibility of constructing flag homogeneous geometries on planes
from a group along with two of its subgroups. The same train of thought is developed
in 1961 by Higman and McLaughlin in [22].

Stroppel [59] in 1992 gives a useful generalisation of the method to geometries on
planes which are not flag homogeneous. Finally in 1993, Stroppel [60] takes a cat-
egorical point of view and introduces a reconstruction method for geometries with an
arbitrary number of types (point, lines, . . . ). Moreover, he establishes that the method
is a reconstruction method, indeed : any geometry satisfying suitable homogeneity con-
ditions, a so-called sketched geometry, is fully determined by its transformation group
along with certain stabilisers, its so-called sketch.

Applications of this translation technique have been highly rewarded in quite a number
of cases where mere study of the geometrical problems had not been successful. A beau-
tiful recent example is Grundhöfer, Kramer and Knarr’s classification [16]+[17]
of flag homogeneous compact connected polygons. Further success could be noted in
[57], [61], [63], [65] and [72].

The present thesis wishes to add to the applications of Stroppel’s reconstruction
method to certain “topological planes”. Topological geometry studies incidence ge-
ometries which are endowed with a topology that in a certain sense is compatible with
the geometric operations. Very little can be said about topological planes in general,
though, and they may escape far from the scope of classical planes. It is thus desirable
to impose further topological or homogeneity conditions.
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Preface

Salzmann and his school have been primarily concerned with the classification of
compact connected projective planes, where the key is given by the dimension of their
automorphism group. Yet, other types of topological planes arose to the left and right
of their way, one of which will be studied here : In 1976, Löwen [31] coined the no-
tion of stable planes, i.e., topological linear spaces where planarity was modelled by
an additional “stability axiom”. It in particular covers the classical projective, affine
and hyperbolic planes. Additional topological hypotheses – local compactness and fi-
nite positive topological dimension – stimulate surprisingly strong results on their actual
dimension and also on their automorphism groups; see [39], [32].

Every open subplane of a stable plane is a stable plane on its own. For instance, the
real affine plane A2R and the real hyperbolic plane IH R are both open subplanes of
the real projective plane P2R and thus share a common theory. This is why, given an
unknown example of the species, it is an obvious question if it could be established as
an open subplane of some well-known, preferredly classical stable plane. In that way,
embeddability problems mark their appearance on stage. And it is here that things come
to full circle : Stroppel’s mechanism of translating difficult problems on geometries
into a corresponding question on their sketches has also lead the way towards quite
rewarding results on embeddability. Stroppel [61], for instance, achieves an embedding
of Strambach’s 2-dimensional SL2R-plane into Löwen’s 4-dimensional SL2C-plane.

We will join a brief guide to the actual parts of the present thesis. The general structure
is thus that Chapter 1 provides for the fundamental notions and results on sketched
geometries and stable planes. Chapter 2 is independent of all the other parts and deals
with the general theory of sketched stable planes, whereas the remaining chapters treat
one particular family of sketched stable planes. Chapters 3 and 4 are parallel studies of
embeddability problems. Chapter 5 relies upon the results from chapter 3 and interprets
their relevance for the study of the automorphism group of the planes under review.

Chapter 2 asks for the interplay of being a stable plane and being a sketched geometry.
A sketched linear space is necessarily point or line homogeneous. Yet a huge dominance
of the point homogeneous species has been observed, and for a good reason : it can be
proved that a line homogeneous sketched stable plane must be flag homogeneous. The
proof is based on Löwen’s classification [38] of stable planes with at least two isotropic
points, which yields a list of candidates. In fact, a line homogeneous sketched stable
plane (Γ,P) entirely consists of Γ-isotropic points. Some of Löwen’s candidates will
be disqualified due to possession of non-isotropic points. For the remaining ones flag
homogeneity can be established.

Chapters 3 through 5 take up the main issue of the present thesis : Peter planes. Such
were baptised those stable planes which arise from stable partitions of the Lie group
Γ = R n Hei3R, stemming from Maier’s classification [44] of 4-dimensional connected
Lie groups allowing for stable partitions. Maier proves that there are four such groups,
and the stable planes three of them give rise to are well-known. It is the fourth group Γ
and the corresponding stable planes which have so far evaded any firm grip.

After a brief introduction to the subject, Chapter 3 deals with the question whether
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Preface

or not Peter planes can be embedded as open subplanes into the classical 4-dimensional
projective plane P2C. The answer may be anticipated straight away : No, there is no
embedding of stable planes. The clue here is the access via Stroppel’s translation
mechanism, which will be followed from a question on stable planes towards a corre-
sponding question on subgroups of AutP2C. The whole chapter is one huge proof by
contradiction, setting out with the assumption of an embedding H : P → P2C of stable
planes and culminating in largely misbehaved line stabilisers in P2C. Moreover, a brief
note will explain why the same sort of argument establishes that there is no canonical
Γ-equivariant embedding of P into the translation planes Tk that arise from the Betten

spreads Sk of C2.

Chapter 4 then adds a counterpoint by producing an abundance of both, affine and non-
affine, 2-dimensional subplanes of the real plane any Peter plane does contain, whilst
on the other hand refusing an embedding of its precious self. More precisely, every
2-dimensional Lie subalgebra of g = ` Γ = R ∝ hei3R which does not happen to be
an element of the stable partition S gives rise to such a subplane of P. Exemplarily,
concrete embeddings of two standard 2-dimensional planes, one affine, the other non-
affine, into the original Peter planes Pk = P (Γ; {1},Sexp

k ) are presented. The abelian
and non-abelian 2-dimensional Lie subalgebras of g are classified; as a matter of fact,
the abelian ones are those contained in a certain hyperplane. This observation is helpful
in proving that any stable partition of g contains precisely one abelian fibre.

Chapter 5 is dedicated to the full automorphism group Σ of a Peter plane. The non-
embeddability results from chapter 3 imply that Σ does not contain a selection of classical
groups. Some conclusions can be drawn as to how soluble the connected component Σ1

is : either it is soluble or it contains precisely one copy of a group with Lie algebra sl2R.
After all, the normaliser NΣ(Γ) of Γ in Σ turns out to be soluble. Consequently, if ever
there is a subgroup whose Lie algebra is sl2R, it cannot be hidden in NΣ(Γ).

I would like to express my gratitude towards all those who have helped and supported me.
First of all, there are my parents who paved the way for my doing as much mathematics
as I ever wished to, and then of course there are those who accompanied my path through
mathematics. My warmest thanks goes out towards my supervisor, Markus Stroppel,
who has always had a word of advice or encouragement, and who devotes far more than
the usual share of time and energy to his students. I wish to thank Hermann Hähl for
co-refereeing this thesis and for providing a helping hand whenever required. I deeply
appreciate their style of doing and communicating mathematics.

Moreover, mathematical life at Stuttgart University would have been only half as
rewarding without all those people who were good companions, within and outside
science. Besides many others let me only mention Martin Bulach, who is not only a
steady and helpful presence amongst us, but who has also always managed to swiftly
settle disagreements between myself and my computer. — And thanks for all the tea.

The commutative diagrams are drawn using Paul Taylor’s diagrams package.
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Kurzfassung in deutscher Sprache

Es ist ein probates Mittel, Sachverhalte und Fragestellungen aus einem Teilgebiet der
Mathematik in ein anderes zu übersetzen, zumal dann, wenn letzteres bereits genauer
erforscht ist und die Hoffnung besteht, auf diesem Wege einen anderen Blickwinkel auf
Problem und mögliche Lösungswege zu erhaschen. Der Mechanismus, um den sich die
vorliegende Arbeit drehen wird, leistet die Übersetzung zwischen Inzidenzgeometrien
auf der einen Seite und deren Automorphismengruppen samt einigen ausgewählten Sta-
bilisatoren auf der anderen Seite. Bereits an dieser Stelle sei darauf hingewiesen, daß
wir in Übereinstimmung mit Felix Kleins Erlangener Programm unter einer Geome-
trie (Γ;P) stets eine Inzidenzstruktur P = (P,L) mit Punktraum P und Geradenraum L
zusammen mit der Wirkung einer Automorphismengruppe Γ verstehen werden.

Im Jahre 1927 taucht bei Young [77] erstmalig der Begriff der Gruppenpartition
möglicherweise nicht-abelscher Gruppen auf. Er wird von André [2] im Jahre 1954
aufgegriffen, um aus einer Gruppe Γ mit ihren Nebenklassenräumen bezüglich der Parti-
tionselemente punkthomogene Inzidenzgeometrien (Γ; (Γ, Γ/F)) zu gewinnen, die er als
“Translationsstrukturen” bezeichnet. André erkennt, daß die Translationsebenen genau
diejenigen sind, die auf diesem Wege aus einer planaren Gruppenpartition hervorgehen,
und daß die Gruppe in diesem Fall notwendigerweise abelsch ist. Im Jahre 1951 deutet
Freudenthal in [13] die Möglichkeit an, aus einer Gruppe Γ und zwei ihrer Untergrup-
pen, Λ und M, eine fahnenhomogene Geometrie (Γ; (Γ/Λ, Γ/M)) zu gewinnen. Derselbe
Gedanke wird auch 1961 von Higman and McLaughlin [22] verfolgt.

Stroppel [59] arbeitete 1992 eine Verallgemeinerung auch für nicht-fahnenhomogene
Geometrien aus, die er 1993 in [60] noch auf kategorientheoretische Füße stellt. In der
letztgenannten Arbeit wird der Mechanismus ganz allgemein für Geometrien mit beliebig
vielen Typen (Punkten, Geraden, . . . ) eingeführt; da für unser Anliegen der zweitypige
Fall ausreicht, wollen wir es auch in der Notation dabei belassen: Sind eine Gruppe Γ
und zwei Mengen RP und RL von Untergruppen von Γ gegeben, so definiert

P (Γ;RP ,RL) := (Γ; (Γ/RP , Γ/RL))

eine Inzidenzgeometrie. Stroppel weist nach, daß das ganze als Rekonstruktionsme-
chanismus geeigneter Geometrien tauglich ist: Eine Inzidenzgeometrie (Γ;P) mit einem
System RP von Repräsentanten der Punktbahnen unter Γ und einem System RL von
Repräsentanten der Geradenbahnen unter Γ mit der Eigenschaft, daß RP × RL ein Re-
präsentantensytem der Fahnenbahnen unter Γ ist, nennt man eine skizzierte Geometrie.
Liegt eine solche skizzierte Geometrie vor, so bezeichnen wir

S (Γ;P) := (Γ; {Γp | p ∈ RP}, {ΓL | L ∈ RL})

ix



Kurzfassung

als ihre Skizze. Stets ist P S (Γ;P) eine zu (Γ;P) isomorphe Geometrie. Umgekehrt
gilt für jedes Paar (RP ,RL) wüster Haufen von Untergruppen einer Gruppe Γ, daß
S P (Γ;RP ,RL) = (Γ;RP ,RL). Darüber hinaus kann man P und S mit passenden Mor-
phismenabbildungen versehen, um zu einem Paar adjungierter Funktoren zwischen einer
Kategorie SGeo∗ skizzierter Geometrien und der Kategorie Sk der Skizzen zu gelangen.
Wichtig in unserem Kontext ist auch, daß sowohl P als auch S Monomorphismen erhal-
ten.

In Situationen, in denen eine rein geometrische Betrachtungsweise nicht von Erfolg ge-
krönt war, hat der skizzierte Übersetzungsmechanismus schon gute Dienste geleistet. Ein
sehr schönes Beispiel der jüngsten Geschichte ist Grundhöfer, Knarr und Kra-

mers Klassifikation [16]+[17] aller fahnenhomogenen kompakten zusammenhängenden
verallgemeinerten Polygone P. Dabei trat das Problem auf, daß die maximal kompakte
Untergruppe K einer fahnentransitiv wirkenden Gruppe nicht notwendigerweise wieder
fahnentransitiv wirken muß. Wohl aber stellte sich heraus, daß (K;P) stets skizziert
ist, und davon ausgehend sicherte die Rekonstruktionsmethode die erfolgreiche Wei-
terführung des Programms. Charakterisierungen spezieller Geometrien mit Hilfe der Re-
konstruktionsmethode sind zu finden in [67], [15], [63], [65], [70], [7] und [72]. Weiteres
über die Theorie punkthomogener skizzierter Geometrien findet sich in [69].

Die vorliegende Arbeit möchte einen kleinen Beitrag leisten zur Anwendung der Rekon-
struktionsmethode auf spezielle topologische Ebenen. Topologische Geometrie im all-
gemeinen beschäftigt sich mit Geometrien, deren Punkt- und Geradenraum dergestalt
topologisiert werden, daß die Topologien mit den geometrischen Operationen verträglich
sind: eine topologische Ebene (P,L) ist eine Ebene bestehend aus topologischen Räumen
P und L mit der Eigenschaft, daß Verbinden und Schneiden stetig sind. Nun kann man
über topologische Ebenen generell recht wenige Aussagen treffen, und auch können sie
sich sehr weit entfernen von dem, was wir uns klassischerweise unter Ebenen vorstellen.
Daher ist es zweckmäßig im Sinne einer schönen Theorie, weitere Bedingungen topolo-
gischer oder inzidenzgeometrischer Natur zu stellen.

Löwen [31] prägte 1976 den Begriff der stabilen Ebene, d.h. einer topologischen Ebe-
ne (P,L), bei der zudem der Definitionsbereich des Schneidens offen ist in L×L. Durch-
weg seien hier als stabile Ebenen solche mit lokalkompaktem Punkt- und Geradenraum
sowie positiver endlicher Dimension bezeichnet, den Bezeichnungen in [31] zufolge also
stabile lp-Ebenen. Klassische Beispiele sind die reelle projektive, affine und hyperbolische
Ebene sowie deren Verwandte über C, H und O. Die topologischen Zusatzbedingungen
führen zu überraschend starken Einschränkungen: nach Löwen [39] treten stabile (lp-)
Ebenen ausschließlich in den Dimensionen 2, 4, 8 und 16 auf.

Jede offene Unterebene einer stabilen Ebene ist wieder eine stabile Ebene. Daher scheint
der Gedanke naheliegend, angesichts eines unbekannten Exemplars der Gattung zunächst
einmal zu fragen, ob es sich womöglich um eine offene Unterebene bekannter Exemplare,
am liebsten gleich der klassischen Ebenen, handelt. Auch und gerade im Zusammenhang
mit derartigen Einbettungsproblemen erwies sich der eingangs dargestellt Rekonstrukti-
onsmechanismus als außerordentlich hilfreich. Beispielsweise gelang in Stroppel [61]
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Kurzfassung

die Einbettung der zweidimensionalen Strambach’schen SL2R-Ebene SR in ihr vierdi-
mensionales Analogon, Löwens SL2C-Ebene SC, als stabile Ebene; seit deren Auftritt
in Strambachs Klassifikation [56] der R2-Ebenen mit dreidimensionaler Automorphis-
mengruppe — übrigens auch unter Zuhilfenahme der Rekonstruktionsmethode für fah-
nenhomogene Geometrien — stand fest, daß eine Einbettung der Geometrie (SL2R,SR)
in die Geometrie (SL2C,SC) nicht möglich sein würde. Weitere mit Hilfe von Skizzen
gelöste Einbettungsprobleme finden sich in [57], [68] und auch in [76]; in [62] und [68]
wurden Einbettungsprobleme stabiler Ebenen auch auf anderem Wege angegangen.

Eine tragende Rolle bei der Klassifikation topologischer Ebenen spielen oft deren volle
Automorphismengruppen. Salzmann und seine Schule streben stets eine Bestimmung
der Ebene aus der Dimension ihrer Automorphismengruppe an. Hierbei tritt der Begriff
der kritischen Dimension gewisser Klassen von Ebenen auf, das heißt, jene Dimensi-
on c, für die noch nicht-klassische Beispiele P mit dim AutP = c existieren, jedoch
dim AutP > c bereits erzwingt, daß P eine klassische Ebene ist. Für vierdimensionale
stabile Ebenen weist Stroppel 1993 nach, daß die kritische Dimension c4 ≤ 12 ist [64,
16.4]. Bickel [5] klassifiziert 1995 die vierdimensionalen stabilen Ebenen mit minde-
stens neundimensionaler Automorphismengruppe; sie sind sämtlich offene Unterebenen
der komplexen projektiven Ebene P2C. Da die Bettenschen Translationsebenen Tk, die
ein kurzes Gastspiel in Abschnitt 3.8 geben, nicht-klassische Beispiele mit achtdimensio-
naler Automorphismengruppe sind, ist damit c4 = 8 besiegelt.

Wir wollen hier einen kurzen Überblick über die einzelnen Kapitel geben. Im Hinblick
auf die Gesamtstruktur ist zu bemerken, daß Kapitel 2 eigenständig ist, wohingegen
Kapitel 3 bis 5 sich mit dem gemeinsamen Hauptthema der vorliegenden Arbeit – den
Peter-Ebenen – beschäftigen. Dabei sind Kapitel 3 und 4 parallelen Überlegungen zur
Einbettbarkeit gewidmet, während Kapitel 5 einzufangen versucht, welches Licht die Er-
gebnisse aus Kapitel 3 auf die Kenntnis der Automorphismengruppen der Peter-Ebenen
werfen.

Geradenhomogene skizzierte stabile Ebenen

Es ist unmittelbar einsichtig, daß ein skizzierter linearer Raum punkt- oder geradenho-
mogen sein muß, denn widrigenfalls würde die Skizziertheit für die Existenz nichtein-
deutiger Verbindungsgeraden sorgen. Nun wurden bei den skizzierten stabilen Ebenen
bislang nur punkthomogene Exemplare beobachtet und daraus die Frage abgeleitet, ob
dahinter System steckt. Dieser Frage wird hier nachgespürt und dargelegt, weshalb sie
mit ja zu beantworten ist. Deus ex machina ist hierbei Löwens Klassifikation [38] der
stabilen Ebenen mit mindestens zwei isotropen Punkten. In der Tat ist es einfach einzu-
sehen, daß in einer skizzierten geradenhomogenen stabilen Ebene (Γ,P) jeder Punkt p
bereits Γ-isotrop sein muß, d.h. der Stabilisator Γp transitiv auf dem Punktbüschel in
p operiert. Löwens Klassifikation liefert in dieser Situation eine Liste von Kandida-
tinnen (2.3.3), von denen allerdings noch einige ob des Besitzes nicht-isotroper Punkte
disqualifiziert werden müssen. Die verbleibenden Kandidatinnen sind die affinen, projek-
tiven und (inneren) hyperbolischen Ebenen über den reellen Zahlen R, den komplexen
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Zahlen C, den Hamiltonschen Quaternionen H oder den Cayleyschen Oktaven O. Weitere
Ergebnisse aus demselben Artikel [38] ermöglichen es, die Geometrien (Γ,P) als bereits
fahnenhomogen zu erkennen (2.3.7). Ein wenig Arbeit muß noch investiert werden, um
dies auch für die ursprüngliche Geometrie (Γ,P) nachzuweisen. Insgesamt kann somit ge-
zeigt werden, daß jede geradenhomogene skizzierte stabile Ebene bereits fahnenhomogen
ist, es in der Tat also keine rein geradenhomogenen Exemplare geben kann (2.3.28). Mit
diesem Ergebnis ist in unserem Kontext auch eine Verallgemeinerung eines Ergebnisses
aus Block [6] erreicht, das die Frage aufwarf, ob auch bei nicht-endlichen Geometrien
die Anzahl der Geradenbahnen stets die der Punktbahnen überschreitet.

Ein Nichteinbettungssatz für Peter-Ebenen

Gegenstand des überwiegenden Teiles der vorliegenden Arbeit ist eine Familie von sta-
bilen Ebenen, die aus stabilen Faserungen der Frobenius-Gruppe

Γ = R n Hei3R ∼=


 a2 x z

a y
1

 | a, x, y, z ∈ R, a > 0


mit nichtabelschem Frobenius-Kern Hei3R hervorgeht. In [44] beschreibt Maier, welche
Eigenschaften eine Gruppenpartition einer Liegruppe zu einer stabilen Partition machen:
eine planare Partition F einer Liegruppe Υ erzeugt in P (Υ; {1},F) genau dann eine sta-
bile Ebene, wenn sie kompakt ist bezüglich der Graßmann-Topologie. Maier klassifiziert
alle vierdimensionalen zusammenhängenden Liegruppen, die eine stabile Partition zu-
lassen, und erhält genau vier Gruppen (1.5.1 ff). Drei davon sind samt den zugehörigen
stabilen Ebenen wohlbekannt: es handelt sich um Translationsebenen, die in [76] be-
schriebenen halben Translationsebenen und komplexe Minkowski-Ebenen. Lediglich
die vierte Gruppe, eben unser Γ, gibt noch Rätsel auf. Ziel war es nun, ein wenig zur
Erhellung der Lage beizutragen.

Sei hierzu P eine Ebene der Gestalt P (Γ; {1},F), wobei F eine stabile Partition der
Liegruppe Γ = R n Hei3R ist. Einfachheitshalber seien diese Ebenen von nun an als
Peter-Ebenen angesprochen. Sehr erhellend wäre es sicherlich, könnte P als offene Un-
terebene einer der klassischen Ebenen, in unserem Fall der vierdimensionalen projektiven
Ebene P2C, erkannt werden. Fragestellung des dritten Kapitels ist somit: Gibt es eine
Einbettung einer beliebigen Peter-Ebene in die komplexe projektive Ebene ? Technischer
gefragt: Gibt es einen Morphismus H : P → P2C von stabilen Ebenen ? Dies ist nun eines
jener Probleme auf der Ebene stabiler Ebenen, die wir lieber auf die Ebene der Skizzen
transferieren. Es folgt eine ausführliche Erörterung, wie dies möglich ist, kulminierend
in folgendem Kochrezept: Angenommen, es gäbe einen solchen Morphismus H. Dann
existierte auch ein stetiger Gruppenmorphismus ε : Γ → PSL3C und ein Punkt p der
projektiven Ebene mit trivialem Stabilisator Γεp = 1 derart, daß der Stabilisator ΓεL jeder
Gerade L des Büschels in p die Dimension 2 hat (3.3.37). Umgekehrt bedeutet dies: Will
man nachweisen, daß es keinen Morphismus H : P → P2C stabiler Ebenen gibt, muß
man (1) alle möglichen stetigen injektiven Gruppenmorphismen ε von Γ nach PSL3C
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finden, (2) für alle diese ε alle Punkte p mit trivialem Stabilisator Γεp finden und (3)
für jeden dieser Punkte eine Gerade L des Büschels in p finden, für die die Dimension
des Stabilisators ΓεL von 2 verschieden ist. Nun verraten wir hier schon soviel, daß es am
Ende keine Einbettung von P in P2C geben wird. Um dies nachzuweisen, muß also nur
das Kochrezept abgearbeitet werden.

Zunächst besorgt man sich mit Hilfe der zugehörigen (auflösbaren) Liealgebren
und deren Kommutatorreihen alle Kandidaten für injektive Morphismen von Liealge-
bren (3.4.11). Eminent hilfreich ist hier wie im späteren Verlauf die Tatsache, daß es
sich bei der Exponentialfunktion exp : ` Γ → Γ um einen Homöomorphismus handelt.
Man erfährt am Ende, daß das Bild von Γ unter ε (bis auf Konjugation) beschrieben
wird durch zwei komplexe Parameter u und v:

Γε =


 a a(tu+ r) a(s + rt(1 + uv) + t2

2
u(1 + uv) + r2

2
v)

1 t(1 + uv) + rv
a−1

∣∣∣∣∣∣ a, r, s, t ∈ R
a > 0

 .

Um die Punktstabilisatoren zu studieren, zerlegt man den Punktraum von P2C
zunächst einmal in die Bahnen unter Γε, wobei diese Zerlegung abhängig ist von der
Wahl der Parameter u und v. Untersuchung von Repräsentanten der Punktbahnen liefert
dann, daß nur in vier Fällen triviale Stabilisatoren auftreten (3.6.10), nämlich bei reel-
lem u für alle Punkte der Bahnen von C(1, i, 0) und C(1,−i, 0), und bei nicht-reellem u
für alle Punkte der Bahnen von C(1, 0, i) und C(1, 0,−i).

Im Anschluß müssen die Geradenbüschel in diesen Punkten untersucht werden. Hierbei
vereinfacht sich die Rechnung dadurch, daß die reellen Punkte eine Baer-Unterebene der
komplexen projektiven Ebene bilden, es also ausreicht, lediglich Verbindungsgeraden des
Punktes p mit reellen Punkten zu untersuchen. Hierbei finden sich in der Tat in allen vier
Fällen Geraden L durch p mit dim ΓεL 6= 2. Daraus erhält man den gewünschten Wider-
spruch und folglich die Nichteinbettbarkeit der Peter-Ebenen in die komplexe projektive
Ebene (3.7.8).

Klassische Unterebenen in Peter-Ebenen

Kontrapunktisch zum vorangehenden Kapitel befaßt sich dieses mit der Frage, ob die
Peter-Ebenen selber klassische zweidimensionale Unterebenen enthalten. Vorgestellt wer-
den in Abschnitt 4.1 als archetypische zweidimensionale skizzierte Ebenen die affine Ebe-
ne A2R unter der punkttransitiven Wirkung der abelschen zweidimensionalen Liegruppe
A ∼= Aff R und eine nicht-affine offene Halbebene in A2R unter der ebenfalls punkt-
transitiven Wirkung der nicht-abelschen zweidimensionalen Liegruppe ∆ ∼= Dil1R. Mit
Hilfe ihrer Skizzen und der zugehörigen stabilen Faserungen ihrer Liealgebren können
diese als Unterebenen der ursprünglichen Peter-Ebenen entlarvt werden (4.3). Unter ur-
sprünglichen Peter-Ebenen verstehen wir hierbei jene, die aus einer Betten-Partition Sk
der Liealgebra

g = ` Γ ∼=


 2t a c

t b
0

 | t, a, b, c ∈ R
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hervorgehen. Nicht nur enthält generell jede beliebige Peter-Ebene solche Baer-
Unterebenen — abgeschlossene zweidimensionale Unterebenen, die offene Unterebenen
der reellen affinen Ebene sind —, sondern jeder ihrer Punkte ist in einer Vielzahl solcher
Unterebenen enthalten:

Sei d eine zweidimensionale Lie-Unteralgebra von g, die keine Faser der Partition S
von g ist. Dann induziert S eine stabile Partition F auf d, und die zweidimensionale
stabile Ebene U := P (dexp; {1},F exp) ist isomorph zu einem der beiden Prototypen.
Insbesondere ist U genau dann affin, wenn d abelsch ist. Über die Skizze läßt sich U
einbetten in die Peter-Ebene P = P (gexp; {1},Sexp) (4.2.10).

Entscheidend für die Existenz solcher skizzierter Baer-Unterebenen, in denen ein
Punkt p = Xexp von P liegt, ist also die Frage, ob das Element X ∈ g in einer zwei-
dimensionalen Unteralgebra liegt, die keine Faser der stabilen Partition ist. Dies leitete
über zur Klassifikation der zweidimensionalen Lie-Unteralgebren von g und der Frage,
wie sich eine stabile Partition von g überhaupt zusammensetzt. Hierzu betrachten wir
zunächst die Bahnen unter Aut g: die Liealgebra g zerfällt in drei Typen von Bahnen, die
wir der Einfachheit halber rot, gelb und grün anstreichen (4.4.4). Es stellt sich heraus,
daß jeder beliebige Punkt in beliebig vielen nicht-affinen skizzierten Baer-Unterebenen
enthalten ist. Bei den affinen skizzierten Baer-Unterebenen hingegen entscheidet die
Farbzugehörigkeit, denn die zweidimensionalen abelschen Lie-Unteralgebren liegen kom-
plett innerhalb der rot-gelben Hyperebene. Daher können die Punkte der grünen Bahnen
überhaupt nicht in einer solchen affinen skizzierten Baer-Unterebene enthalten sein. Im
Gegenzug sind rote Punkte in beliebig vielen affinen skizzierten Baer-Unterebenen ent-
halten (4.6.10). Für gelbe Punkte gilt es, zwei Fälle zu unterscheiden: Jedes Element
X ∈ g der gelben Bahn unter Aut g ist in genau einer abelschen zweidimensionalen Lie-
Unteralgebra d enthalten. Ist d kein Partitionselement, können wir unverzagt eine affine
skizzierte Baer-Unterebene um Xexp konstruieren. Ist d aber just die eindeutige Faser
von S, in der das Element X liegt, ist es auf dem beschriebenen Wege nicht möglich, eine
affine skizzierte Baer-Unterebene zu konstruieren, die Xexp enthielte. Wohl aber kann
man sich in diesem Fall damit trösten, daß der Punkt Xexp immerhin in einer affinen
Gerade enthalten ist, sprich, in einer solchen Gerade, zu der es durch jeden Punkt der
Peter-Ebene genau eine Parallele gibt (4.6.5). Darüber hinaus mag es beruhigen, daß
jede stabile Partition von g lediglich eine abelsche Faser enthält (4.5.5).

Über die Automorphismengruppe von Peter-Ebenen

Das Nichteinbettbarkeitsresultat aus Kapitel 3 birgt Informationen über die volle Au-
tomorphismengruppe Σ := AutP einer beliebigen Peter-Ebene P = P (Γ; {1},Sexp).
Zunächst einmal wissen wir über Σ lediglich, daß sie mindestens vierdimensional ist,
muß sie doch Γ = RnHei3R enthalten. Die oben erwähnte Klassifikation von Bickel [5]
verrät darüber hinaus, daß 4 ≤ dim Σ ≤ 8, denn alle vierdimensionalen stabilen (lp-)
Ebenen mit mindestens neundimensionaler Automorphismengruppe sind als offene Un-
terebenen der komplexen projektiven Ebene P2C erkannt, und eine solche ist P nun
gerade nicht.

Eine wesentliche Rolle spielt die Tatsache, daß Γ = RnHei3R keine echten kompakten
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Untergruppen enthält (5.1.31). Um dies einzusehen, zerlegt man mit Hilfe des Satzes von
Mal’vec-Iwasawa die lokalkompakte zusammenhängende Gruppe Γ in eine maximal
kompakte Untergruppe M und einen Vektorgruppenanteil. Da Γ homöomorph ist zu R4,
müssen auch alle höheren Homotopiegruppen von M trivial sein. Gelingt es zu zeigen,
daß M selbst trivial ist, folgt bereits, daß Γ kompaktfrei ist. Dieses Resultat erhielte man
recht schnell, jedoch teuer, mit Hilfe eines Satzes von Toda [75] (in [47]). Wir ziehen es
vor, keine solch großen Geschütze aufzufahren, und betreiben ein wenig Theorie kompak-
ter Liegruppen, um das gewünschte Ziel zu erreichen. Aufgrund der Auflösbarkeit von Γ
sind wir hier in der glücklichen Lage, unsere kompakte, einfach zusammenhängende Lie-
gruppe M ≤ Γ ohne weiterführende Referenzen als trivial zu erkennen. Dennoch wäre
dies auch ohne die Auflösbarkeit von M möglich, wenn zusätzlich Trivialität von π3(M)
bekannt ist und man sich auf einen Satz von Bott [9] beruft, der in der Tat Todas
Resultat zugrunde liegt: Die dritte Homotopiegruppe jeder kompakten, einfach zusam-
menhängenden, fasteinfachen Liegruppe Υ ist π3(Υ) = Z. Diese Überlegungen wurden
der eigentlichen Untersuchung der Automorphismengruppe Σ am Stück vorangestellt.

Getreu der Devise, daß diejenigen Aussagen über Peter-Ebenen am schönsten sind,
die andeuten, was sie alles nicht tun, wenden wir uns der Erkenntnis zu, daß ihre Auto-
morphismengruppen Σ gewisse Gruppen nicht enthalten: Von Löwen bereits gründlich
untersucht wurden solche vierdimensionalen stabilen (lp-) Ebenen, deren Automorphis-
mengruppe leidlich groß ist und SO3R oder SU2C enthält. Da auch solche Ebenen als
offene Unterebenen von P2C erkannt sind, liefert unser Nichteinbettbarkeitssatz, daß die
Automorphismengruppe Σ einer Peter-Ebene weder SO3R noch SU2C enthält (5.2).

Diese Erkenntnis bedingt wiederum Aussagen über die Auflösbarkeit der Zusammen-
hangskomponente Σ1 der Automorphismengruppe: Da weder SU2C noch SO3R Un-
tergruppen von Σ sind, kann auch deren Liealgebra `Σ die dreidimensionale Liealge-
bra so3R = `(SO3R) = `(SU2C) nicht enthalten. Betrachtet man die Levi-Zerlegung
`Σ = s ∝ r in den halbeinfachen Anteil s und das auflösbare Radikal r und zerlegt
s =

⊕
j∈J ej in einfache Bestandteile ej, stellt man fest, daß keines der Ideale ej die

einfache Liealgebra so3R enthalten darf. Es stellt sich also die Frage, welche reellen ein-
fachen Liealgebren es gäbe, in denen so3R nicht zu finden wäre. Wir stellen für den
nichteingeweihten Leser noch kurz die nötigen Vokabeln und Zusammenhänge bereit,
um der Klassifikation der (komplexen) einfachen Liealgebren, beispielsweise Tits’ Ta-
bellen [74], entnehmen zu können, daß es darauf nur eine Antwort gibt: ej = sl2R. Da
nach einem Resultat von Löwen [32] jede halbeinfache Automorphismengruppe einer
vierdimensionalen (lp-) Ebene bereits fasteinfach ist, folgt nun zwingend, daß sich in
s =

⊕
j∈J ej = (sl2R)n höchstens ein Exemplar sl2R verbirgt (5.3.26): Die Liealgebra `Σ

der vollen Automorphismengruppe einer Peter-Ebene ist entweder auflösbar, oder es gilt
`Σ = sl2R ∝ r, wobei r das auflösbare Radikal bezeichne.

Leider ist bislang ungeklärt, welcher der beiden Fälle nun tatsächlich vorliegt. Einen
Schritt kann man sich der Wahrheit nähern, wenn man statt der vollen Automorphis-
mengruppe den Normalisator N := NΣ(Γ) von Γ in Σ betrachtet: Die stabile Partition S
von g = ` Γ ist invariant unter der Wirkung des Stabilisators Npo von po := 1 ∈ Γ auf g.
Daher wirkt Npo auf der Translationsebene P (g; {0},S). Da aus Kapitel 4 einiges über
die Zusammensetzung der stabilen Partition S bekannt ist, kann man schließen, daß

xv



Kurzfassung

Npo eine maximale Fahne fixiert und mithin auflösbar ist. Nach dem Frattini-Argument
ist N = Npo n Γ sowie Npo

∼= N/Γ, und daraus folgt, daß der Normalisator N = NΣ(Γ)
auflösbar ist. Folglich enthält die Liealgebra `N keinen sl2R-Anteil, und N selbst enthält
keinerlei Liegruppe Υ, deren Liealgebra `Υ = sl2R wäre (5.3.37).
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1. Foundations

1.1. Sketched geometries

1.1.1. Categories and sketched geometries

Sketched geometries as such were introduced by Stroppel in [59] and under a category
theoretical point of view in [60]. The following will give a brief resumé drawn from these
articles, along with some additions from chapters 1 and 2 of [76]. The present thesis
will be concerned with planes only, and this is why we restrict the theory to two-typed
geometries. Moreover, morphisms are expected to map points to points and lines to
lines. This fortunately enables us to skip most of the distracting formalism.

It will be convenient to adopt a slightly category theoretical point of view and, ac-
cordingly, present objects along with morphisms straight away.

The idea behind ”sketched geometries” is to replace the study of incidence structures
by the study of transformation groups and certain subgroups. We will hence start out
with various categories of planes and end up with presenting those ”piles” of groups,
together with the translation mechanism and some of its properties.

1.1.1 Definition. Incidence Structures (Inc). An incidence structure (A, I) =
(AP , AL, I) consists of a point space AP , a line space AL and an incidence relation
I ⊆ AP × AL. A point p ∈ AP and a line L ∈ L are incident if (p, L) ∈ I; an incident
pair (p, L) is called a flag.

A morphism of incidence structures is a pair H = (HP ,HL) : A → B consisting of
a point map HP : AP → BP and a line map HL : AL → BL mapping each flag (p, L) ∈ I
again to a flag (pHP , LHL) ∈ I.

1.1.2 Remark. By laxness of notation, we will mostly write an incidence structure as
A = (AP , AL) whenever no special emphasis is placed on the incidence relation I. The
point map HP of a morphism H in Inc is usually referred to as lineation, whereas point
maps of isomorphisms in Inc are called collineations.

The heart of the theory is the (convenient) action of groups on incidence structures. In
accordance with Felix Klein’s Erlangen Programme, a geometry in our sense will thus
be an incidence structure endowed with a transformation group.

1.1.3 Definition. Geometries (Geo). A geometry is a triple (Γ, γ;A) consisting of an
incidence structure A and a group Γ with

point action γP : AP × Γ→ AP and
line action γL : AL × Γ→ AL

1
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such that an element α ∈ Γ maps each flag (p, L) to a flag ((p, α)γP , (L, α)γL) =:
((p, L), α)γ ∈ I.

A morphism of geometries (ε,H) : (Γ, γ;A) → (∆, δ;B) consists of a morphism
H : A → B of incidence structures and a group morphism ε : Γ→ ∆ such that for both
types, points t = P and lines t = L, the following diagram commutes :

At × Γ
γt - At

BT ×∆

Ht × ε

?

δt
- Bt

Ht

?

©

Now those geometries will have to be singled out which are accessible to Stroppel’s
translation mechanism.

1.1.4 Definition. Sketched Geometries (SGeo). A sketched geometry (R; Γ, γ;A, I)
is a geometry (Γ, γ;A, I) along with a pair R = (RP , RL) of sets such that

• for each type t ∈ {P,L}, the subset Rt ⊆ At is a system of representatives for the
action γt of Γ on At

• RP × RL ⊆ I consists of flags, and it is a system of representatives for the flag
action of Γ on I

We also say that the family R sketches the geometry (Γ;A).
For technical reasons which will be clarified later on, we impose another condition on

the objects of SGeo :

(∗) ∀t ∈ {P,L} ∀x, y ∈ Rt. Γx = Γy =⇒ x = y

It states that different representatives should have different stabilisers. The sketched
geometries satisfying (∗) will be collected in the full subcategory SGeo∗ of SGeo.

A morphism (ε,H) : (R; Γ;A) → (Q; ∆;B) of geometries is called a morphism of
sketched geometries if it maps each representative to another representative; that is,
if RHt

t ⊆ Qt for both types t ∈ {P,L}. ©

1.1.5 Remark. Again, if the extra information is not emphasised we denote a sketched
geometry simply by (R; Γ;A). Basic examples of sketched geometries, such as affine
planes and half planes, are treated later on, for instance in 4.1.10 and 4.1.5.

1.1.6 Definition. Denote by UInc : SGeo → Inc the corresponding forgetful functor
which forgets all the information on transformation groups and representatives.
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The promise was to extract purely group theoretical information from such a sketched
geometry which enables us to reconstruct the original geometry. How to do this ? The
trick is to collect the transformation group along with the stabilisers of the representa-
tives — and then to know how to regain the information dropped.

1.1.7 Definition. Sketches (Sk). A sketch (Γ;R) consists of some group Γ and arbi-
trary sets RP and RL of subgroups of Γ. A morphism (ε,E) : (Γ;R) → (∆;Q) of
sketches consists of a group morphism ε : Γ→ ∆ and maps Et : Rt → Qt for each type
t ∈ {P,L}, such that

∀Λ ∈ Rt. Λε ≤ ΛHt .

©

All alone, these sketches look rather bloodless. They come to life, though, when linked
with sketched geometries.

1.1.8 Definition. The functor S . Consider the map

S : obSGeo → ob Sk
(R; Γ;A) 7→ (Γ;R)

where, for both types t ∈ {P,L}, we define

Rt := {Γx | x ∈ Rt}

as the sets of stabilisers of the chosen representatives. It can be complemented by a
morphism map

S : morph SGeo → morph Sk
(ε; H) 7→ (ε,E)

where
Et : Rt → Qt

Γx 7→ ∆xHt

for t ∈ {P,L}. These definitions make up for a functor S : SGeo∗ → Sk. ©

1.1.9 Remark. Note that here, the subcategory SGeo∗ appears on stage : the morphism
map would not be well-defined on SGeo; cf. [76, Bsp. 2.15].

The opposite direction shall be explored by another functor :

1.1.10 Definition. Let (Γ;R) be a sketch. Define for each type t ∈ {P,L}

• point and line spaces

At :=
⋃

Λ∈Rt

Γ/Λ = {Λα | Λ ∈ Rt, α ∈ Γ}
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• an incidence relation

I := {(Λα,Mα) | α ∈ Γ, Λ ∈ RP , M ∈ RL}

• a family γ = (γP , γL) of actions

γt : At × Γ → At
(Λα, β) 7→ Λ · αβ

and define the object map

P : obSk → ob SGeo∗

(Γ;R) 7→ (R; Γ, γ;A, I) .

A morphism (ε,E) : (Γ,R)→ (∆;Q) of sketches is mapped to

(ε,H) : P (Γ;R)→ P (∆;Q),

where
Ht :

⋃
Λ∈Rt

Γ/Λ →
⋃

Λ∈Qt

∆/Λ

Λα 7→ ΛEt · αε

for t ∈ {P,L}. This defines a functor P : Sk→ SGeo∗. ©

1.1.11 Theorem.

a) S ◦ P = id
Sk

b) ∀P ∈ ob SGeo∗. P SP ∼= P

c) S and P are adjoint functors.

d) S and P are full and faithful.

e) S and P preserve monomorphisms and epimorphisms.

Proof. [60] and also [76, Chapter 2]. �

We will be frequently dealing with the search for embeddings. As a consequence, a
characterisation of monomorphisms (and epimorphisms) in the various categories will
be helpful. Recall that a morphism ϕ ∈ morphC(A,B) of a category C is called

a monomorphism if for any object X ∈ ob C and arbitrary morphisms α, β ∈
morphC(X,A) equality αϕ = βϕ implies α = β. It is called an epimorphism if

for arbitrary X ∈ ob C and α, β ∈ morphC(B,X) equality ϕα = ϕβ implies α = β.

X
α -

β
- A- ϕ - B A

ϕ -- B
α -

β
- X
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1.1. Sketched geometries

1.1.12 Lemma. Let H ∈ morph Inc. Then

a) H is an epimorphism if and only if HP and HL are epimorphisms each.

b) H is a monomorphism if and only if HP and HL are monomorphisms each.

1.1.13 Lemma. Let (ε,H) ∈ morph Geo. Then

a) (ε,H) is an epimorphism if and only if ε, HP and HL are epimorphisms each.

b) (ε,H) is a monomorphism if and only if ε, HP and HL are monomorphisms each.

1.1.14 Lemma. Let (ε,H) be a morphism in SGeo or SGeo∗. Then

a) (ε,H) is an epimorphism if and only if ε, HP and HL are epimorphisms each.

b) (ε,H) is a monomorphism if ε, HP and HL are monomorphisms each. Conversely,
if (ε,H) is monomorphism, then so is ε.

c) Warning. In SGeo and SGeo∗, the morphism (ε,H) being monic does not neces-
sarily imply that HP and HL are monomorphisms. For a counterexample, consult
[76, 2.7].

1.1.15 Lemma. Let (ε,E) ∈ morph Sk. Then

• (ε,E) is an epimorphism if and only if ε, EP and EL are epimorphisms each.

• (ε,E) is a monomorphism if and only if ε, EP and EL are monomorphisms each.

1.1.2. Homogeneity and sketched geometries

Certain homogeneity conditions interact quite smoothly with sketchedness. What follows
is a loose collection of observations that will prove useful.

1.1.16 Definition. A geometry (Γ,P, I) is called point homogeneous if Γ acts tran-
sitively on the point space P . It is line homogeneous if Γ acts transitively on the line
space L. And it is flag homogeneous if Γ acts transitively on the flag space I.

1.1.17 Lemma. Let (Γ,P) be a point and line homogeneous geometry. It is sketched
if and only if it is flag homogeneous.

1.1.18 Definition. A linear space is an incidence structure (P,L) with the property
that any two distinct points can be joined by a unique line, every line has at least two
points and there is a quadrangle.

1.1.19 Lemma. A sketched linear space is point or line homogeneous.

Proof. Assume a sketched geometry that is neither point nor line homogeneous. Then
the systems of point and line representatives would contain at least two elements each,
and by the crucial axiom of sketched geometries they would form a bigon — which is
forbidden in a linear space. �
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1. Foundations

1.1.20 Lemma. Some point homogeneous sketched geometry P = P (Γ; {1},F) is a
linear space if and only if F is a group partition of Γ.

Proof. (For a definition of group partitions, see 1.4.1.) If P is a linear space, then
any point α ∈ Γ can be joined to the origin by a unique line Λ ∈ F . This is as much
as saying that any element of Γ is contained in a unique fibre of F . Conversely, for any
two distinct points α, β ∈ Γ, a group partition F contains a unique fibre Λ such that
α−1β ∈ Λ. Then α and β are joined by the unique line Λα = Λβ. �

1.1.21 Definition. Let (Γ,P) be a geometry. A line L ∈ L is called Γ-isotropic if the
(set-wise) stabiliser ΓL acts transitively on the point row PL. Γ-isotropy of a point is
defined dually. For Γ = AutP one briefly speaks about isotropy.

1.1.22 Lemma. Let x ∈ P
.
∪ L be a point or a line in an arbitrary plane (P,L), and

let Υ ≤ Aut
Inc

(P,L) be an automorphism group of the plane. If x is Υ-isotropic then

every element in its orbit xΥ is Υ-isotropic.

Proof. Consider some element y = xγ ∈ xΥ of the orbit, and let u and v be distinct
items incident with y. Then uγ

−1
and vγ

−1
are distinct items incident with x. By the

hypothesis, there is an element α ∈ Υx mapping uγ
−1

to vγ
−1

. Therefore, uγ
−1αγ =

vγ
−1γ = v, and γ−1αγ ∈ γ−1Υxγ = Υxγ = Υy. Hence, y is Υ-isotropic. �

1.1.23 Lemma. A point homogeneous geometry (Γ,P) is sketched if and only if every
line is Γ-isotropic. Dually, a line homogeneous geometry (Γ,P) is sketched if and only if
every point is Γ-isotropic.

Proof. We will prove the first assertion; cf. [69, Lemma 4]. The proof for the dual
one can be achieved by dualising. =⇒ : Because of point homogeneity there is a point
representative po ∈ P and a set RL ⊆ Lp0 of line representatives. Consider a flag (p, L).
There is a representative L0 ∈ RL and a group element α ∈ Γ which maps L0 to L. Then
pα0 ∈ L. Due to Γ-isotropy there is an element β ∈ ΓL such that pαβ0 = p. Moreover,
Lαβ0 = Lβ = L.

⇐= : Let L be a line, and let p and q be points on L. Due to point homogeneity, (Γ,P)
can be sketched by systems RP and RL of representatives such that RP consists of one
point p0 only. Then there are line representatives L0, K0 ∈ RL and elements α, β ∈ Γ
such that (p0, L0)

α = (p, L) and (p0, K0)
β = (q, L); thus L0 = K0. But then λ := α−1β

moves α to β and satisfies Lλ = Lβ0 = L, hence is contained in the stabiliser ΓL. Thus L
is Γ-isotropic. �

Most of the present thesis deals with point homogeneous sketched geometries. Yet, we
will not a priori restrict our attention to them and adapt all the definitions accordingly
— as do André [2] and Maier [44]. On the contrary, the entire second chapter will be
dedicated to the question of line homogeneity for sketched stable (lp)-planes.
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1.2. Stable planes

1.2. Stable planes

A topological linear space is a linear space whose point and line spaces are endowed with
topologies such that the intersection of lines and the joining of points become continuous
operations in their respective domains. In order to get a stronger hold on these planes,
though, it is desirable to impose further conditions, be it on the incidence structure or
on the topologies. The notion of ”stable planes” now follows the latter concept and tries
to make up for some sort of ”planarity” by ”stability” of the intersection operation.

1.2.1 Definition. A linear space (P,L) is called a stable plane if the following holds.

(i) P and L are locally compact Hausdorff spaces of finite and positive (covering)
dimension.

(ii) Joining of points is a continuous operation ∨ : P 2 \ {(p, p) | p ∈ P} → L.

(iii) Intersection of lines is a continuous operation ∧ : dom∧ → P .

(iv) Stability. The domain dom∧ of intersection is an open subset of L × L.

The concept of stable planes was coined in 1976 by Löwen [31] — yet in a more general
way : P and L could well be arbitrary topological spaces. The objects we defined here
are often addressed as stable lp-planes. In our context though, this confinement will
be both, sufficient and handy. For a survey on stable planes we refer the reader to [31],
[66] and [18]. Stable planes are a generalisation of many a classical plane.

1.2.2 Example. Stable planes.

a) The real affine plane A2R
with point space R2 and line space {Rx+ a | a ∈ R2, x ∈ R2 \ 0}

b) The real projective plane P2R
with point space P2R = {Rx | x ∈ R3 \ 0} = u1(R3) and line space L2R = u2(R3)

c) Real hyperbolic planes. Consider the bilinear form

h : R3 ×R3 → R
(x, y) 7→ xAyT = x1y1 + x2y2 − x3y3

described by the diagonal matrix Diag(1, 1,−1). It provides three prominent open
subplanes of P2R, namely

the interior hyperbolic plane IH R induced on I := {Rx | h(x, x) < 0}
the exterior hyperbolic plane EH R induced on E := {Rx | h(x, x) > 0}
the united hyperbolic plane UH R induced on U ∪E

7



1. Foundations

Q

I

E

d) Analogues A2F, P2F, IH F, EH F and UH F over the skew fields F ∈ {C,H}. Here,
h : F3 × F3 → F : (x, y) 7→ xAyαT is an α-sesquilinear form with respect to
conjugation α : F→ F : x 7→ x.

1.2.3 Every open subplane — that is, a non-empty open subset of the point space
along with the induced system of lines — of a stable plane is a stable plane. In that
sense, all the examples above are open subplanes of the classical projective planes P2F
for F ∈ {R,C,H}. As a matter of fact, a strong similarity between arbitrary stable
planes and open subplanes of the classical planes is observable. This phenomenon is
referred to as domination by classical planes. Yet, there are examples which are not of
that type; cf. [34, §5], [71, 6.2] and [20].

1.2.4 According to deep results by Löwen, every stable (lp-) plane P = (P,L) is of
dimension 2l := dimP ∈ {2, 4, 8, 16}. The dimensions of the point space P and line
space L coincide. Every line pencil is homotopy equivalent to the sphere Sl; see [39]. If
lines are known to be manifolds, then line pencils are homeomorphic to the sphere Sl,
and lines are open submanifolds of Sl; cf. [31, 1.19f]. This in particular applies to stable
(lp-) planes of dimension 2l ≤ 4, by [31, 1.13]. The full automorphism group AutP,
endowed with the compact-open topology, is a topological group with a countable basis,
and it acts on P as a topological transformation group; see [31, §2]. Moreover, AutP
has a strong tendency to be a Lie group; see [31, 2.10+2.11], [32, Satz A], and also
Szenthe’s theorem [54, 96.14].

It may thus be pardonable that the major part of the present thesis is concerned
with 4-dimensional stable planes which are (re-)constructed from the action of locally
compact Lie groups.

1.3. Morphisms and embeddings of stable planes

Our main topic will be the recognition of stable subplanes in stable planes. It may thus
be worthwhile to have a glimpse at the notion of embeddings of stable planes. On our
way, we will introduce a category of stable planes, following Stroppel [58].
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1.3. Morphisms and embeddings of stable planes

1.3.1 Definition. A lineation π : (P,L)→ (P ′,L′) is collapsed if there is a line L′ ∈ L′

such that P π ⊆ PL′.

Every continuous lineation between stable planes which is not injective is collapsed or
locally constant [58, Thm. 6]. So it does make sense to cling to injective lineations when
talking about stable planes.

1.3.2 Lemma. Let π : (P,L)→ (P ′,L′) be an injective lineation between stable planes.
Then the following is true :

a) There is a unique map λ : L → L′ such that (π, λ) becomes a morphism of incidence
structures. In fact, λ is the map

λ : L → L′

p ∨ q 7→ pπ ∨ qπ.

b) π non-collapsed =⇒ λ injective

c) π continuous =⇒ λ continuous

Proof. Lemma 3 in [58]. �

This is corroborated by work of Dörfner who in [12] generalises Stroppel’s results
on endomorphisms :

1.3.3 Theorem. Let P and P ′ be stable planes of equal dimension dimP = dimP ′. Let
π : P → P ′ be a continuous and injective lineation. Then π is open and non-collapsed.

We will cast all this into a category.

1.3.4 Definition. The category StP of stable planes. The objects of StP shall be
stable (lp-) planes. A map H : P → P ′ shall be called a morphism of stable planes
if H ∈ morph Inc and the point map HP is continuous, injective and non-collapsed.

1.3.5 Proposition. Let H : P → P ′ be a morphism in StP. Then the following holds :

a) The line map HL is injective and continuous.

b) If the point map HP : P → P ′ is a homeomorphism then H : P → P ′ is an
isomorphism of stable planes.

Now assume further that the planes are of equal dimension dimP = dimP ′. Then

c) HP is open.

d) HP : P → PHP is a homeomorphism.

e) H : P → PH is an isomorphism.

9



1. Foundations

Proof. ad (a). Parts (b) and (c) of 1.3.2. ad (b). The inverse π−1 : P ′ → P
of the point map is continuous, injective and open. By (a), there also is an inverse
λ−1 : L′ → L, and we easily check that (π−1, λ−1) ∈ morph Inc. Thus λ−1 is the
unique line map corresponding to π−1 promised in part (a) of 1.3.2; hence, (π−1, λ−1) =
(π, λ)−1 ∈ morph StP. Part (c) follows from 1.3.3, and parts (d) and (e) are immediate
consequences of the preceding parts. �

Due to the definition, every morphism in the category StP is monic. We want to coin
a notion of embedding different from monomorphisms, though, which takes account of
the topological aspect. Note that we do not wish to restrict the definition to open
embeddings because we will also consider embeddings of planes of smaller dimension
into higher dimensional ones, for instance the sketched Baer subplanes in chapter 4.

1.3.6 Definition. A morphism H : P → P ′ of stable planes is an embedding of
stable planes if the co-restriction HP : P → PHP is a homeomorphism.

1.3.7 Corollary. a) Every morphism between stable planes of equal dimension is an
embedding.

b) Every embedding H : P → P ′ of stable planes is an isomorphism from P onto PH.

Note that an isomorphism in StP is, very straightforwardly, an isomorphism in Inc whose
point and line maps are homeomorphisms [1.3.2].

1.4. Construction of stable planes from stable partitions

Stable planes as well as sketched geometries have been introduced. This, of course, calls
for the concept of sketched stable planes. Given a topological group Υ along with a group
partition F of Υ, what properties of F and Υ will grant a stable plane P (Υ; {1},F) ?
This subject has been exploited by Maier in his dissertation [44], using results from
Plaumann and Strambach [50].

The notion of partitions in several classes of objects will be crucial.

1.4.1 Definition. Let C be one of the categories VecSp of real vector spaces, LieAlg of
real Lie algebras, Gp of groups and LieGp of Lie groups. Denote by 0 the null object
in C. Let X be an object in C. Then a collection F ⊆ P(X) is called a C-partition of
X if

• X =
⋃

Λ∈F
Λ

• ∀Λ,M ∈ F . Λ 6= M =⇒ Λ ∩M = 0

• Each fibre Λ ∈ F is a C-substructure of X.
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1.4. Construction of stable planes from stable partitions

By ”C-substructure’, we mean a vector subspace, Lie subalgebra or subgroup in VecSp,
LieAlg and Gp, respectively, and a closed subgroup in LieGp.

1.4.2 Definition. Let C ∈ {VecSp,Gp, LieGp} and let X ∈ ob C. Denote by � the binary
operation � : X ×X → X. A C-partition F of X will be called a planar C-partition
of X if for any two distinct fibres Λ,M ∈ F we get Λ � M = X. A LieAlg-partition is
called planar if it is planar as a VecSp-partition.

Planar VecSp-partitions are often referred to as spreads. They can also be characterised
via the dimension of their fibres.

1.4.3 Lemma. Let V be a real vector space of finite dimension. Then a VecSp-partition
of V is planar if and only if dim V = 2k for some k ∈ N+ and the fibres in F are of
dimension k. This clearly remains true for LieAlg-partitions.

There are results on translation planes gained from partitions. André in [2] algebraically
characterises those partitions :

1.4.4 Theorem (André 1954). Let F be a Gp-partition of a group Υ. Then
P (Υ; {1},F) is a translation plane if and only if F is planar. In that case, Υ is an
abelian group, carries a vector space structure of even dimension, and F is a (planar)
VecSp-partition.

Proof. §3 (Sätze 7 and 9) and §4 in [2]. �

Topological properties of these spreads leading towards translation planes were studied
in Löwen [43]. In [42], in a more general context, he introduces the so-called disc
topology on the line space of a stable plane; see also Löwen [43] and Maier [44,
2.1.5]. Note that, indeed, the line space of a stable plane whose lines are manifolds
carries the disc topology with respect to a suitable metric on its point space. For a
spread of R2n, the disc topology equals the Graßmann topology; see [44, p. 21]. The
following result on topological translation planes remains true for vector spaces over
arbitrary locally compact non-discrete fields, and in this general version can be found in
[43].

1.4.5 Theorem (Löwen 1989). Let V be a real vector space of dimension 2n ∈
{2, 4, 8, 16}, and let S be a planar VecSp-partition of V . Consider the translation plane
T := P (V ; {0},S) as a topological plane, where the line space is endowed with the disc
topology. Then T is locally compact and connected if and only if S is compact in the
Graßmann manifold un(V ) of n-dimensional subspaces of V .
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1. Foundations

As a planar partition in the usual sense can only occur on abelian groups and, moreover,
the associated translation structure P (Υ; {1},F) invariably is a translation plane, it
seems appropriate to use a slightly modified notion of planarity for Lie groups. For the
moment, we will not simply refer to it as ”planarity”, but indicate that it was introduced
by Maier in [44, p. 6] :

1.4.6 Definition. A LieGp-partition F of a Lie group Υ of dimension 2n will be called
Peter-planar if every fibre Λ ∈ F is n-dimensional.

Our aim will be the construction of stable planes from Lie algebras along with suitable
LieAlg-partitions, making use of associated LieGp-partitions. Thus, the interplay between
properties of LieAlg- and LieGp-partitions will be of importance. Starting out with Lie
groups, the situation is fairly straightforward :

1.4.7 Lemma. Let Υ be a Lie group of dimension dim Υ = 2n. Let F be a LieGp-
partition of Υ and put `F := {`Λ | Λ ∈ F}. Then the following statements are true :

a) `F is a LieAlg-partition of `Υ.

b) If F is Peter-planar then `F is planar.

The converse only holds for specials scenarios. The later parts of this thesis will treat
4-dimensional Lie groups with bijective exponential functions, which will justify a re-
striction to that case. Note that in general, we could not even be sure whether or not
the exponential image of a partition of the Lie algebra would be a Set-partition of the
Lie group.

1.4.8 Lemma. Let S be a planar LieAlg-partition of some 4-dimensional real Lie alge-
bra g. Assume a bijective exponential map exp : g → Υ. Then Sexp := {Λexp | Λ ∈ S}
is a Peter-planar LieGp-partition of Υ.

Proof. The essential point in the 4-dimensional situation is that the fibres of a planar
partition are 2-dimensional Lie algebras, and there are only two isomorphism types of
those : abelian and non-abelian; cf. 4.2.1. Let d be a fibre in S.

The abelian case. If d is abelian, then expd obeys the exponential law, hence is a group
morphism. Consequently, dexp is a subgroup of Υ.

The non-abelian case. If d is non-abelian, then there is a LieAlg-isomorphism η :
n → d, mapping ”the” non-abelian 2-dimensional prototype n to d. Moreover, there
is a homeomorphic exponential function expn : n → ∆ mapping n to our ”standard”
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1.4. Construction of stable planes from stable partitions

non-abelian 2-dimensional Lie group ∆; see 4.1.1 for a concrete version.

∆
ε - Υ

dexpg

-
................................

ε| ∆ ε

-

d

expg |dexp

66

n

expn

6

66

η̂ --

η

--

g

expg

6

66

-

id

-

The isomorphism η can be read as an injective LieAlg-morphism η̂ : n → g, and thus
there is a LieGp-morphism ε : ∆→ Υ such that the outer diagram commutes. But then,

dexpg = nη·expg = nη̂·expg = nexpn ·ε = ∆ε ≤ Υ,

which is a subgroup of Υ.
All in all, dim g = 4 implies that every dexp for d ∈ S is a subgroup of Υ, indeed.

Moreover, such a dexp is a closed subgroup of dimension 2, as exp is a homeomorphism.
Finally, Sexp is a Set-partition because expg was assumed to be a bijection. Thus, Sexp

is a Peter-planar LieGp-partition of Υ. �

1.4.9 Definition. Let F be a LieGp-partition of a Lie group Υ. F is called a stable
LieGp-partition of Υ if the plane P (Υ; {1},F) is a stable plane. Here, the line space
shall be endowed with the disc topology.

Trying to model an analogue for partitions of Lie algebras, several possibilities meet the
eye. We will pick the one which is the closest in spirit.

1.4.10 Definition. Let S be a LieAlg-partition of a real Lie algebra g. S is called a
stable LieAlg-partition of g if the plane P (g; {0},S) is a locally compact translation
plane. Here again, the line space is thought of as endowed with the disc topology.

As the plane associated with a stable LieAlg-partition has to be a translation plane, it
is an immediate consequence of 1.4.4 that
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1. Foundations

1.4.11 Lemma. Any stable LieAlg-partition is planar.

Maier in the second chapter of his dissertation [44] clarified the interplay between
stability on the Lie algebra versus the Lie group levels. In order to formulate his results,
it is necessary to introduce some more vocabulary.

1.4.12 Definition. A linear space (P,L) is called a homogeneous plane if

• P is the coset space of a connected Lie group Υ modulo some subgroup, endowed
with the quotient topology; i.e., a homogeneous space.

• L is an Υ-invariant subset of the space An(P ) of all closed n-dimensional subman-
ifolds of P , where n := 1

2
dimP . Endow L with the disc topology.

1.4.13 Definition. Let P be a topological manifold of dimension 2n. Two closed n-
dimensional submanifolds L and K are said to intersect regularly in some point p ∈ P
if there is a neighbourhood U of p and a homeomorphism ϕ : U → R2n which sends
K ∩ U to Rn × 0 and L ∩ U to 0×Rn.

1.4.14 Lemma. a) Any two n-dimensional Lie subalgebras of a 2n-dimensional Lie
algebra which intersect trivially intersect regularly.

b) Any two n-dimensional Lie subgroups of a 2n-dimensional Lie group intersect
regularly, if they intersect trivially.

The nucleus of the whole theory is

1.4.15 Theorem (Maier 1999). A homogeneous plane (P,L) is a stable plane if and
only if there is a point p ∈ P such that Lp is a compact subset of L and any pair of lines
in Lp intersects regularly..

1.4.16 Theorem (Maier 1999). Let P = (P,L) be a homogeneous plane with respect
to some connected Lie group Υ. Assume that

• any pair of intersecting lines in L intersects regularly

• all lines are connected

• for each line L ∈ L, the stabiliser ΥL acts transitively on the point row PL; i.e.,
each line is Υ-isotropic

• ∀p ∈ P ∀L ∈ Lp. Υp ≤ ΥL

Then P is a stable plane if and only if there is a point p ∈ P such that the tangent plane
Tp(P) := (Tp(P ), {Tp(L) | L ∈ L}) is a topological translation plane, or equivalently, a
stable plane.

Proof. [44], theorems 2.3.10 and 2.4.6. �
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1.4. Construction of stable planes from stable partitions

This can be drastically shortened talking about point-homogeneous sketched planes
gained from partitions of connected Lie groups.

1.4.17 Corollary. Let Υ be a connected Lie group along with a Peter-planar LieGp-
partition F of Υ. Consider the plane

P = (P,L) := P (Υ; {1},F)

where the point space is P ≈ Υ and the line space is endowed with the disc topology.
Then the following statements are equivalent :

P is a stable plane
⇐⇒ T1P = P (`Υ; {0}, `F) is a stable plane
⇐⇒ the planar partition `F of `Υ is compact in the Graßmann manifold

In other words, F is a stable LieGp-partition of Υ if and only if `F is a stable LieAlg-
partition of `Υ.

Proof. We have to check all the hypothesis of 1.4.16. Let us have a glimpse at some of
them. Put n := 1

2
dim Υ.

L is an Υ-invariant subset of An(Υ). Every fibre of F is a closed n-dimensional
subgroup of Υ because F is a Peter-planar LieGp-partition. And Υ-invariance comes
with being a sketched geometry.

Line stabilisers act transitively on point rows. (This is what, conversely, would force
P to be sketched; see 1.1.23.) Note that for any Λ ∈ F and γ ∈ Υ, the line stabiliser
of Λγ is ΥΛγ = γ−1Λγ. Consider α and β in Λγ. Then λ := α−1β ∈ ΥΛγ is an element
which maps α to β.

Connectivity of lines can be found as Satz 6.4 in Plaumann and Strambach [50].
Regular intersection of intersecting lines was established in 1.4.14.

All hypotheses verified, theorem 1.4.16 yields that P is a stable plane if and only
if there is some point p ∈ P such that Tp(P) is a (locally compact and connected)
topological translation plane. The plane P being homogeneous, this is equivalent to
saying that the translation plane T0(P) = P (`Υ; {0}, `F) is a (locally compact and
connected) topological translation plane, in other words, equivalent to `F being a stable
LieAlg-partition of `Υ. �

Getting back to 4-dimensional Lie groups, this encourages the construction of stable
planes – which are not translation planes – from stable LieAlg-partitions. Lemma 1.4.8
and corollary 1.4.17 combine as follows.

1.4.18 Corollary. Let g be a 4-dimensional Lie algebra along with a planar LieAlg-
partition S. Assume a bijective exponential function exp : g → Υ. Then the planar
LieGp-partition Sexp of Υ is stable if and only if S is stable.

In the latter situation, therefore, all presumable notions of ”stability” do coincide :

S is a stable partition of g
⇐⇒ the associated translation plane P (g; {0},S) is a stable plane
⇐⇒ Sexp is a stable partition of gexp = Υ.
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1.5. Stable partitions of 4-dimensional Lie groups

1.5.1 Theorem (Maier 1999). Let Υ be a 4-dimensional connected Lie group with a
stable LieGp-partition. Then Υ is isomorphic to one of the following groups :

R4, Dil1C, Dil13R, R nδ Hei3R.

Here, for a field F ∈ {R,C}, the dilatation group is defined as

DilnF :=

{(
a1l u

1

)∣∣∣∣ a ∈ F×, u ∈ Fn
}
,

and Dil1nF denotes its connected component. The semidirect product RnδHei3R is given
via conjugation δ : R→ Aut(Hei3R) : t 7→ (tD)exp, where D := diag(2, 1, 0).

Proof. [44, 4.3.2]; for a matrix description of R nδ Hei3R see chapter 3. �

These were obtained via a classification of the corresponding Lie algebras allowing for
stable partitions :

1.5.2 Theorem (Maier 1999). Let g be a 4-dimensional Lie algebra with a stable
LieAlg-partition. Then g is isomorphic to one of the following Lie algebras :

R4, dil1C, dil3R, R ∝α hei3R.

Here, a dilatation algebra is defined as

dilnF :=

{(
a1l u

0

)∣∣∣∣ a ∈ F, u ∈ Fn
}
,

and the semidirect sum R ∝α hei3R is given by the adjoint action α : R→ Der(hei3R) :
t 7→ tD, where D := diag(2, 1, 0).

Proof. [44, 4.1.7] �

In chapter 4.2 of [44], Maier exposes a construction for examples of stable partitions
of these Lie algebras. Let us briefly put on record that

• for dil1C, there is a unique stable partition

• for the abelian Lie algebra R4 and the almost abelian Lie algebra dil3R, any pair
(f1, f2) of a decreasing function f1 : R→ R and an increasing function f2 : R→ R
gives rise to a stable LieAlg-partition

• for g = R ∝δ hei3R, any decreasing function g : R → R gives rise to a stable
LieAlg-partition.
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1.5. Stable partitions of 4-dimensional Lie groups

This is not to be understood as a classification. For R4, dil3R and g = R ∝α hei3R it
is likely that many more can be found. Furthermore, the isomorphism problem has not
yet been attacked. Note though, that the results in chapter 3 do not depend on the
concrete stable partition.

The stable planes P := P (Υ; {1},F) constructed from these stable partitions F of `Υ
are well-known for the first three groups :

• for Υ = R4, the plane P is translation plane; cf. 1.4.4

• for Υ = Dil13R, the plane P is half a translation plane; cf. [76, ch. 4] or 1.5.3.

• for Υ = Dil1C, the plane P is a certain open subplane of A2C; cf. 1.5.4

Last but not least, the planes corresponding to the Frobenius group Γ = RnδHei3R have
not yet revealed their true faces. They will provide a startling subject for chapters 3
through 5, and for that purpose be baptised Peter planes.

1.5.3 Real dilatation groups and open halves of translation planes. Let n ∈ N,
and let S be a planar VecSp-partition of the dilatation algebra dil2n−1R. There is an
isomorphism

α : dil2n−1R → R2n(
s1l x

0

)
7→ (x|s)

of vector spaces, which translates S into a planar VecSp-partition Sα of R2n. By 1.4.4,
the plane T := UIncP (R2n; {0},Sα) is a translation plane.

As dil2n−1R is an almost abelian Lie algebra, S is a planar LieAlg-partition. Its
exponential image under the bijection exp : dil2n−1R→ Dil+2n−1R is a LieGp-partition of
the connected component

Dil12n−1R = Dil+2n−1R :=

{(
a1l u

1

)∣∣∣∣ a > 0, u ∈ R2n−1

}
of the dilatation group. The planeH := UIncP (Dil+2n−1R; {1},Sexp) is isomorphic to half a
translation plane, namely the open subplane of T induced by H := {x ∈ R2n | x2n > 0}.
For a proof, consult [76, Ch. 4].

1.5.4 Dil1C and the complex Minkowski plane. Consider the open subplaneM(C)
of A2C induced by the point space M(C) := {(x1, x2) ∈ C2 | x1 6= 0}; cf. Löwen [33,
2.11] or [35, 2.5]. There is a point transitive action of Dil1C on M(C) which describes
a point homogeneous sketched stable plane (Dil1C,M(C)). (In order to verify this,
one can readily copy down the calculations elaborated in paragraph 4.1.) The sketch
S (Dil1C,M(C)) then yields a stable LieAlg-partition of dil1C. As there is a unique
stable LieAlg-partition of dil1C, every stable plane gained from such a partition must be
isomorphic to the complex Minkowski planeM(C).
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1. Foundations
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2. Line homogeneous sketched stable
planes

The study of planes along with their collineation groups naturally provokes the study of
possible constellations concerning the numbers of point and line orbits. For finite linear
spaces, the point space always seems to be “privileged” in a way, as can be deduced
from theorem 2.1 in Block [6] :

2.0.5 Theorem (Block 1967). Let P = (P,L) be a linear space, and let Γ ≤ AutP
be an arbitrary group of collineations. If P is finite then the following is true :

a) |P | ≤ |L|

b) The number |P/Γ| of point orbits does not exceed the number |L/Γ| of line orbits.

Following the principle that counting in finite geometry might be replaced by compact-
ness arguments in topological geometry, one could ask for a generalisation of Block’s
result on (locally) compact planes, stable planes for instance. A direct transfer will not
be possible, as can be seen in the light of the following example (which will be elaborated
below): The real hyperbolic motion group PO3R(1) acts on the closed hyperbolic plane
IHR, producing two point orbits but only one line orbit. Hence, more restrictions are to
be expected.

We will tackle a generalisation for sketched stable planes. Recall from 1.1.19 that
a sketched linear space automatically is point or line homogeneous, such that for our
purposes we are left with the line homogeneous case. It will be dealt with largely
exploiting results by Löwen, after an extensive introduction to the dramatis personae.

2.1. Euclidean, hyperbolic and skew hyperbolic
geometries

Some typical stable planes will be presented in detail — incidentally, we pick those that
will later on play their role within the classification of line homogeneous sketched stable
planes. They will be presented as under their classical motion groups, and the existence
of sketches will be studied. The reader familiar with the folklore of the material may
happily skip those parts and go to the classification straight away.

Throughout this chapter, F denotes one of the (skew) fields R of real numbers, C of
complex numbers or the Hamilton quaternions H, unless otherwise stated. For the
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2. Line homogeneous sketched stable planes

octonions O, the relevant results remain true, whereas the technical approach may dif-
fer. Corresponding citations are given in due place, mainly referring to chapters 16
through 18 in Salzmann et al. [54]. Different models of P2O can be found in Aslak-

sen [3] or Allcock [1].

2.1.1 Unitary groups. Let V = Fn be a right vector space over some skew field F of
characteristic char F 6= 2 and α an involutory antiautomorphism of F. Let h : V ×V → F
be some non-degenerate, α-hermitian form on V . The unitary group of V with respect
to h is defined as

U(V, h) := {ϕ ∈ GL(V ) | ∀v, w ∈ V . h(vϕ, wϕ) = h(v, w)} .

Given some basis, h can be described as h(v, w) = vHw∗ for some matrix H ∈ Mat
n

F,

where v∗ := (vα)T. Then the unitary group turns out to be

U(V, h) = {A ∈ GLnF | AHA∗ = H} .

We talk about orthogonality whenever F is a (commutative) field of characteristic
char F 6= 2 and h is symmetric, i.e., α = id

F
. Quite prominent examples are

OnF := {A ∈ GLnF | AAT = 1l} for H = 1l, F ∈ {C,R}
and α = id

F

UnC := {A ∈ GLnC | AA
T

= 1l} for H = 1l, F = C
and complex conjugation

Affine planes

2.1.2 The real example. Consider the semidirect product Ψ := SO2RnαR2, where
α = id : SO2R→ GL2R is the natural representation. Note that Ψ is isomorphic to the
matrix group

Ψ ∼=
SO2R

R2 1
,

and as such comes with a canonical action on the real affine plane A2R :

R2 ×Ψ → R2 : (x, (A, v)) 7→ xA+ v
L ×Ψ → L : (Rx+ y, (A, v)) 7→ RxA + yA+ v

The normal subgroup R2 E Ψ acts as the translation group. Therefore, the point action
is transitive, and so is the line action, as a matter of fact. The geometry (Ψ,A2R) is a
flag transitive sketched geometry; for a system of representatives any flag may be chosen.

This real affine geometry can be transferred to any of the affine planes A2F over one of
the skew fields C or H.

2.1.3 The plane. The affine plane A2F is defined by the point space F2 and the line
space {Fx+ y | x, y ∈ F2 ∧ x 6= 0}; incidence is given by the relation ∈.
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2.1. Euclidean, hyperbolic and skew hyperbolic geometries

2.1.4 The Euclidean motion group. Consider the semidirect product

Ψ := Spinn+1 n F2 ∼=
Spinn+1

F2 1
,

where n := dimR F ∈ {1, 2, 4, 8}. For m ≥ 3, the spinor group Spinm denotes the
universal covering group of SOmR. By definition, Spin2 is the two-fold covering of
SO2R. Note that Spin3

∼= SU2C and Spin5
∼= U2H; see 11.26 and 18.9 in [54]. For

another description of Spin9, see [54, 18.8]. Except for the abelian SO2R, the spinor
groups are almost simple Lie groups.

2.1.5 The geometry. The semidirect product Ψ acts on the affine plane A2F via

F2 ×Ψ → F2 : (x, (A, v)) 7→ xA + v
L ×Ψ → L : (Fx+ y, (A, v)) 7→ FxA + yA+ v

Again, the translation group F2 E Ψ ensures point transitivity. Flag transitivity follows
from transitivity of Spinn+1 ≤ Ψ on the “directions” P2F; cf. [54, 13.15]. All in all,
(Ψ,A2F) is a flag homogeneous sketched geometry with representatives RP = {0} and
RL = {Fe1}, for instance. Flag homogeneity is also given for F = O; cf. [18, 5.4].

Projective planes

2.1.6 The plane. Consider the projective plane P2F = (P2F,L2F) over F, which is
given by

the point space P2F = u1(F
3) = {Fx | x ∈ F3 \ 0}

the line space L2F = u2(F3) = {Ker a | aT ∈ F3 \ 0},
where a is a column vector defining a hyperplane

Ker a := {x ∈ F3 | x · a = 0}.
Incidence is given by the subspace relation.

2.1.7 Proposition. Consider P2F as a topological plane, endowed with the quotient
topology on P2F which is induced by the canonical projection F3 \ 0 _ P2F. Denote
n := dimR F, where F ∈ {R,C,H}.

a) P2F and L2F are compact Hausdorff spaces.

b) ∀L ∈ L2F. L ≈ Sn
In particular, every line is (path-)connected and compact.

c) The flag space {(p, L) ∈ P2F× L2F | p ≤ L} is closed in P2F×L2F.

d) P2F is a topological projective plane.

The same assertions hold for F = O.

Proof. ad (a). 14.4 and 16.9 in [54]. ad (b). 14.7 and 16.13 in [54]. ad (c).
This is proved in [54, 14.6] and within the proof of [54, 16.11]. ad (d). 14.4 and 16.11
in [54]. �
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2. Line homogeneous sketched stable planes

2.1.8 The elliptic motion group. Let α : F→ F denote conjugation in F, that is,

α : C→ C : z = x+ iy 7→ x− iy = z
α : H→ H : u+ jv 7→ u− jv .

Along with the unit matrix 1l, this defines an α-sesquilinear form

e : F3 × F3 → F
(x, y) 7→ x1lyT = x1y

α
1 + x2y

α
2 + x3y

α
3

The corresponding unitary group is

U3F := U(F3, e) = {A ∈ GL3F | A · AαT = 1l}.

Note that the elliptic motion groups PU3F below are simple Lie groups for F ∈ {R,C,H};
see [54, 18.27]. The elliptic motion group over the octonions is isomorphic to the (simple)
real exceptional group F4(−52); see [54, 18.15].

2.1.9 The geometry. The unitary group U3F acts on P2F via the

point action P2F×U3F → P2F
(Fx,A) 7→ FxA

line action L2F×U3F → L2F
(Ker a, A) 7→ Ker(A−1a).

For each matrix A ∈ GL3F define the map

[A] : P2F→ P2F : F 7→ FxA.

The projective group then is

PGL3F := {[A] | A ∈ GL3F},

and the projective unitary group consequently is

PU3F = {[A] | A ∈ U3F}.

We will consider the effective action

P2F× PU3F → P2F : (Fx, [A]) 7→ FxA

L2F× PU3F → L2F : (Ker a, [A]) 7→ Ker(A−1a)

of PU3F on P2F.

2.1.10 Lemma. (PU3F,P2F) is a flag homogeneous sketched geometry with point rep-

resentative RP = {Fe1} and line representative RL = {Ker

0
BBB@

0
0
1

1
CCCA}, for instance. Flag

transitivity is also given for F = O.

Proof. Flag transitivity of the elliptic motion group is checked by hand, or by open-
ing [54] at 13.15 and 18.10. For the set of representatives we may pick our favourite
flag. �
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2.1. Euclidean, hyperbolic and skew hyperbolic geometries

Hyperbolic planes

The hyperbolic planes emerge from considering P2F under the action of a second motion
group, which is gained from an α-sesquilinear form of Witt index 1.

2.1.11 The hyperbolic motion group. Again, denote by α : F → F conjugation
in F ∈ {R,C,H}. Along with the diagonal matrix

H := diag(1, 1,−1) =

 1
1
−1


this defines the hyperbolic α-sesquilinear form

h : F3 × F3 → F
(x, y) 7→ xHyαT = x1y

α
1 + x2y

α
2 − x3y

α
3 .

The corresponding unitary group is

U3F(1) := U(F3, h) = {A ∈ GL3F | AHAαT = H},

and the projective group is

PU3F(1) := {[A] | A ∈ U3F(1)}.

Note that the hyperbolic motion groups PU3F(1) are simple Lie groups for F ∈ {C,H}.
For the real case, its connected component PO1

3R(1) is simple; see [54, 18.27]. The
hyperbolic motion group over the octonions is isomorphic to the (simple) real exceptional
Lie group F4(−20); see [54, 18.26].

2.1.12 The geometry. The point action

P2F× PU3F(1)→ P2F : (Fx, [A]) 7→ FxA

along with the line action

L2F× PU3F(1)→ L2F : (Ker a, [A]) 7→ Ker(A−1a) = Ker(HAαTHa)

then turn (PU3F(1),P2F) into a geometry.

In order to obtain the point orbits one could, of course, use Witt’s theorem. But when
dealing with skew hyperbolic planes it is convenient to re-use some of the stabilisers we
will compute here.

2.1.13 Lemma.

a) The stabiliser of the point o := F(0, 0, 1) is

Φo := PU3F(1)Fe3 =

{[
B

w

]∣∣∣∣ B ∈ U2F
wwα = 1

}
.
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2. Line homogeneous sketched stable planes

b) Φo leaves W := Ker

 0
0
1

 invariant.

c) Φo acts transitively on the point row of W .

Proof. [54, 13.14] �

2.1.14 Lemma. The point orbits of P2F under Φo are

F(0, 0, 1)Φo = {F(0, 0, 1)} =: S0

F(0, 1, 0)Φo = {F(x, y, 0) | (x, y) 6= (0, 0)}

F(λ, 0, 1)Φo = {F(x, y, 1) | xxα + yyα = λλα =: r} =: Sr

for λ ∈ R+, hence r ∈ R+

2.1.15 Lemma. Point orbits under PU3F(1).

FePU3F(1)
3 =

⋃
0≤r<1

Sr = {Fx | h(x, x) < 0} =: I

FePU3F(1)
2 = W ∪

⋃
r>1

Sr = {Fx | h(x, x) > 0} =: E

F(1, 0, 1)PU3F(1) = S1 = {Fx | h(x, x) = 0} =: Q

Proof. FePU3F(1)
3 and FePU3F(1)

2 contain elements of every Sr for 0 ≤ r < 1 and r > 1,
respectively. This, in fact, is achieved by the one parameter group

 1 √
1 + t2 t

t
√

1 + t2

∣∣∣∣∣∣ t ∈ R

 ≤ PU3F(1)Fe1 .

Transitivity of Φo on the sets Sr as well as on W then yields the assertion. �

Finding the line orbits of P2F under the action of the hyperbolic motion group can be
simplified a lot by the exploitation of the duality principle for projective planes. To that
end, we will first translate the current situation into new notions, and afterwards, with
great relish, milk the conception.

2.1.16 The standard hyperbolic polarity.

π : P2F→ L2F : U 7→ U⊥h

L2F→ P2F : U 7→ U⊥h

is a polarity of P2F, i.e., an involutory duality. In homogeneous coordinates, it will be
written as

π : P2F→ L2F : Fx 7→ Ker(HxαT)
L2F→ P2F : Ker a 7→ F(aαTH) .
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2.1. Euclidean, hyperbolic and skew hyperbolic geometries

A collineation γ of P2F is said to commute with a duality π if γπ = πγ. Each element
of PU3F(1) commutes with the standard hyperbolic polarity π. A point p is called an
absolute point if it is incident with its polar pπ. Conversely, an absolute line L is
by definition incident with its pole Lπ. The set of absolute points/lines is left invariant
by every collineation which commutes with π.

2.1.17 Definition. A point p ∈ P2F is called an exterior point if it is not absolute,
yet incident with an absolute line. It is an interior point if it is not absolute and not
incident with any absolute line. Let us collect the different types of points into

Abs := the set of all absolute points
Int := the set of all interior points
Ext := the set of all exterior points .

The fact that any element of PU3F(1) commutes with π and therefore maps absolute
items to absolute items, immediately yields

2.1.18 Lemma. PU3F(1) leaves Abs, Int and Ext invariant.

2.1.19 Lemma. Abs = Q = F(1, 0, 1)PU3F(1)

Proof. Fx and Fxπ are incident if and only if 0 = x ·HxαT, that is, if and only if x ∈ Q.
Transitivity was proved in 2.1.15. �

2.1.20 Lemma. Ker a is an absolute line if and only if FaT ∈ Q = Abs. �

2.1.21 Lemma. Fe3 is an interior point, and Fe2 is an exterior point.

Proof. ad (a). Fe3 is not absolute, since it is not contained in Q. Let L ∈ LFe3.

Then L = Ker

0
B@

a1
a2
0

1
CA for (a1, a2) 6= (0, 0). Its pole is Lπ = F(aα1 , a

α
2 , 0), and L is not

incident with its pole because (aα1 , a
α
2 , 0) ·

0
B@

a1
a2
0

1
CA = a1a

α
1 + a2a

α
2 > 0. Therefore L is

not absolute, and p is an interior point. ad (b). Clearly, Fe2 is not absolute, either.

Let L ∈ LFe2. Then L = Ker

0
B@

a1
0
a3

1
CA with (a1, a3) 6= (0, 0). L is incident with its pole

Lπ = F(aα1 , 0,−aα3 ) if and only if a1a
α
1 = a3a

α
3 . This is achievable, and hence Fe2 is an

exterior point. �

2.1.22 Corollary. I = FePU3F(1)
3 = Int

E = FePU3F(1)
2 = Ext

Proof. Lemma 2.1.21 along with lemma 2.1.18 and the orbits known from 2.1.15. �
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2. Line homogeneous sketched stable planes

Equipped with that knowledge the line orbits are going to be tackled.

2.1.23 Definition. For the moment, a line L will be contained in

TypeT � L is absolute
TypeP � L is not absolute, yet incident with an absolute point
TypeS � L is not absolute, and it is not incident with any absolute point.

These definitions are dual to those of Abs, Int and Ext, which accounts for

2.1.24 Lemma. The polarity π is a bijection interchanging the following sets of points
and lines :

Q = Abs ←→ TypeT
I = Int ←→ TypeP
E = Ext ←→ TypeS .

2.1.25 Corollary. TypeT = Qπ = {Ker a | h(aT, aT) = 0}
TypeP = Iπ = {Ker a | h(aT, aT) < 0}
TypeS = Eπ = {Ker a | h(aT, aT) > 0}

Moreover, talking about orbits, we harvest

2.1.26 Corollary. Putting

To := F(1, 0, 1)π = Ker

0
BBB@

1
0
−1

1
CCCA

Po := Feπ3 = Ker

0
BBB@

0
0
1

1
CCCA

So := Feπ2 = Ker

0
BBB@

0
1
0

1
CCCA

we get

TypeT = T
PU3F(1)
o

TypeP = P
PU3F(1)
o

TypeS = S
PU3F(1)
o .

Proof. As an example, let us consider the lines of type T :

TypeT = Qπ = F(1, 0, 1)PU3F(1)·π = F(1, 0, 1)π·PU3F(1) = TPU3F(1)
o ,

making use of the above, 2.1.15 and the fact that PU3F(1) commutes with π. �
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2.1. Euclidean, hyperbolic and skew hyperbolic geometries

It remains to link those abstract types of lines to our intuition : indeed, they are what
we want them to be, namely the tangents, passing lines and secants with respect to the
unital Q.

2.1.27 Definition. A line L ∈ L2F is called a

passing line � |L ∩Q| = 0
tangent � |L ∩Q| = 1
secant � |L ∩Q| ≥ 2

2.1.28 Lemma. To is a tangent, Po is a passing line, and So is a secant.

Proof. To is a tangent : Any point q contained in To is of the form q = F(a, b, a).
Additionally, it is a point of the unital if and only if 0 = h(q, q) = aaα+ bbα−aaα = bbα,
which is true if and only if q = F(1, 0, 1). Thus, |To ∩Q| = 1.
So is a secant : Any point p contained in So is of the form q = F(a, 0, b) with

(a, b) 6= (0, 0). It is absolute if and only if 0 = h(q, q) = aaα − bbα. As b 6= 0, this is
equivalent to q = F(ab−1, 0, 1), where (ab−1)(ab−1)α = (aaα)(bbα)−1 = 1, in other words,
q = F(x, 0, 1) satisfying xxα = 1. Hence,

So ∩Q = {F(x, 0, 1) | xxα = 1},
which corresponds to Sn−1 for n := dimR F. Thus, |So ∩Q| = |Sn−1| ≥ 2.
Po is a passing line : A point q = F(a, b, 0) ∈ So, where (a, b) 6= (0, 0), is absolute if

and only if 0 = h(q, q) = aaα + bbα > 0, which is to say : never. Hence, |Po ∩Q| = 0. �

2.1.29 Corollary. TypeT is the set of tangents,
TypeP is the set of passing lines, and
TypeS is the set of secants.

Proof. Let Lo ∈ {To, Po, So} be one of the standard lines, let α ∈ PU3F(1). Due to
2.1.18 and the fact that α is an isomorphism in Inc, we get |Lαo ∩Q| = |Lo ∩Q|. �

Three little details long to be mentioned : To start with, from the proof of 2.1.28 we
extract

2.1.30 Lemma. Let S be a secant in P2F. Then the intersection of S and the unital Q
is homeomorphic to the sphere Sn−1, where n := dimR F. �

2.1.31 Lemma.

a) So contains interior points.

b) Neither To nor Po contain interior points.

c) A line S in P2F is a secant if and only if it contains interior points.

Proof. Fe3 ∈ I ∩ So, and by 2.1.15 and 2.1.26, every line of type S contains interior
points. Little standard computations reveal that neither To nor Po contain interior
points, and again, this implies that none of the lines of type T or P does. �
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2. Line homogeneous sketched stable planes

2.1.32 Lemma. The line pencil of any exterior point in P2F comprises secants, tangents
and passing lines.

Proof. The line pencil LFe2 of Fe2 ∈ E contains Ker

0
B@

0
0
1

1
CA = Po ∈ TypeP, Ker

0
B@

1
0
−1

1
CA =

To ∈ TypeT as well as Ker

0
B@

1
0
0

1
CA ∈ TypeS. This implies that every exterior point Feα2 ,

for α ∈ PU3F(1), is incident with their respective images under α. �

2.1.33 The interior, exterior and united hyperbolic planes. Motivated by the
point orbits of the hyperbolic motion group on P2F, the corresponding open subplanes
of P2F have been singled out. They generalise the real stable planes presented in the
introductory chapter :

the interior hyperbolic plane IH F is induced by the point set I
the exterior hyperbolic plane EH F is induced by the point set E
the united hyperbolic plane UH F is induced by the point set I ∪ E

Note that by 2.1.32, the line spaces of the exterior and united hyperbolic planes
equal L2F, whereas the line space of the interior hyperbolic plane consists of the se-
cants only.

Let us summarise the results on orbits and sketchability so far :

2.1.34 Proposition.

a) (PU3F(1), P2F) consists of the three point orbits I, E and Q. The line orbits are
the sets of secants, tangents and passing lines. It cannot be sketched.

b) (PU3F(1), UH F) consists of the two point orbits I and E along with the three line
orbits. It cannot be sketched, either.

Proof. The orbits have been provided for in 2.1.15 and 2.1.26. As to sketchability, recall
that by 1.1.19, a sketched linear space has to be point homogeneous or line homogeneous,
which both candidates are not. �

It remains to show that the action of PU3F(1) on both, IH F and EH F ensures sketched
geometries. As they are point homogeneous, criterion 1.1.23 states that equivalently,
we may show that each line is PU3F(1)-isotropic. For convenience’s sake, while talking
about stabilisers, we will again abbreviate Φ := PU3F(1).

2.1.35 Lemma. Let x ∈ P2F
.
∪ L2F be a point or a line in P2F. Let Υ ≤ Φ be a

subgroup of PU3F(1). Then Υx = Υxπ , that is, the stabiliser of a point equals the
stabiliser of its polar, and vice versa.

Proof. Let γ ∈ Υx. Then xπγ = xγπ = xπ, because every element of the hyperbolic
motion group PU3F(1) commutes with the hyperbolic polarity. Conversely, let γ ∈ Υxπ .
Then xγ = xπ·πγ = xπγ·π = xππ = x, since π is an involution. �
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2.1. Euclidean, hyperbolic and skew hyperbolic geometries

As the line space of IH F consists of the secants only, the interior plane can be dealt with
fairly quickly :

2.1.36 Lemma.

a) So ∩ I is Φ-isotropic.

b) Every secant in IH F is Φ-isotropic.

Proof. ad (a). The group

K :=

Kx :=

 √1 + xxα 0 x
0 1 0
xα 0

√
1 + xxα

∣∣∣∣∣∣x ∈ F


is contained in PU3F(1)Fe2 ≤ ΦFe2 = ΦSo . Therefore,

Fe
ΦSo
3 ⊇ {F(x, 0,

√
1 + xxα) | x ∈ F} = {F(x, 0, 1) | x ∈ F, |x| < 1},

which equals So ∩ I. Part (b) follows from part (a), 1.1.22 and transitivity of Φ on
secants. �

2.1.37 Proposition. (PU3F(1), IH F) is a flag homogeneous sketched geometry. A sys-
tem of representatives is, for instance,

RP = {Fe3} and RL = {Ker

0
BBB@

0
1
0

1
CCCA}.

Flag homogeneity also holds for F = O.

Proof. This emerges from the criterion in 1.1.23, feeding it with point transitivity
2.1.15, Φ-isotropy of the secants, and the fact that the secants provide for all lines in
IH F, which is implied by 2.1.31. For the octonion case, flag transitivity is proved in [54,
18.23]. �

Applying the same criterion to the exterior plane EH F means asking all types of lines
for Φ-isotropy.

2.1.38 Lemma.

a) So ∩E is Φ-isotropic.

b) Po is Φ-isotropic.

c) To ∩E is Φ-isotropic.

d) Every line in EH F is Φ-isotropic.
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2. Line homogeneous sketched stable planes

Proof. ad (a). Using the elements Kx ∈ K from 2.1.36, one gets

Fe
ΦSo
1 ⊇ {F(

√
1 + xxα, 0, x) | x ∈ F} = {Fe1} ∪ {F(x, 0, 1) | x ∈ F, |x| > 1},

which equals So ∩ E. ad (b). By 2.1.13, the stabiliser ΦPo = ΦFe3 = Φo acts transi-
tively on W = Po. ad (c). The group

N :=


 1− ssα

2
−sα −ssα

2

s 1 s
ssα

2
sα 1 + ssα

2


∣∣∣∣∣∣∣ s ∈ F


is contained in PU3F(1)F(1,0,1) = ΦF(1,0,1) = ΦTo . Therefore, Fe

ΦTo
2 = {F(s, 1, s) | s ∈ F},

which equals To ∩E. ad (d). We have seen that the standard lines So, To and Po are
Φ-isotropic. By 1.1.22, then so is each line within their orbits under Φ. By 2.1.26 and
2.1.32, these orbits constitute the line space of EH F. �

Again, point homogeneity and criterion 1.1.23 yield

2.1.39 Proposition. (PU3F(1), EH F) is a point homogeneous sketched geometry. A
system of representatives is, for instance,

RP = {Fe2} and RL = {Ker

0
BBB@

1
0
−1

1
CCCA,Ker

0
BBB@

0
0
1

1
CCCA,Ker

0
BBB@

1
0
0

1
CCCA}.

Skew hyperbolic planes

For the real case F = R an interesting series of non-desarguesian compact projective
planes is obtained from P2R by keeping the tangents and passing lines as they are, but
modifying the secants once they leave the interior of the quadric.

2.1.40 The automorphism group. Consider the connected component

Ω := (PO3R(1))1

of PO3R(1). Intuitively, it consists of those elements from PO3R(1) = PSO3R(1) that
respect the orientation on the quadric Q. The reflection ρ : P2R → P2R : R(x, y, z) 7→
R(x,−y, z) is not contained in Ω. As a matter of fact, PO3R(1) = Ω · 〈ρ〉. It is moreover
true that Ω = (PO3R(1))1 = (PO3R(1))′ ∼= PSL2R; see [54, 15]. The hyperbolic group Ω
contains the (path connected) one parameter groups

K :=

Kr :=

 √1 + r2 0 r
0 1 0

r 0
√

1 + r2

∣∣∣∣∣∣ r ∈ R
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2.1. Euclidean, hyperbolic and skew hyperbolic geometries

N :=


 1− s2

2
−s −s2

2

s 1 s
s2

2
s 1 + s2

2


∣∣∣∣∣∣∣ s ∈ R


required earlier on, as well as the one parameter group

∆ :=

{[
B

1

]∣∣∣∣B ∈ SO2R

}
∼= SO2R.

As a matter of fact, Ω is generated by K, N and ∆; see [4, p. 32ff].

2.1.41 Skew hyperbolic planes. Let t be a real parameter. The new “standard”
secant is defined as

Lt := {R(x, 0, 1) | |x| < 1}
.
∪ {R(x, y, z) | y2 = t2(x2 − z2) ∧ txy ≥ 0}.

–2

–1

1

2

–2 –1 1 2

The skew hyperbolic plane (or modified hyperbolic plane) Ht R is defined by

the point space P2R

the line space Lt := {L ∈ L2R | |L ∩Q| ≤ 1}
.
∪ {Lωt | ω ∈ Ω};

in other words, the set of secants in P2R is replaced by the orbit LΩ
t of “modified”

secants.
Note that the characterisation of lines in Ht R – via the number of points it has in

common withQ – remains the same; a line is a (modified) secant if and only if it intersects
with the interior I. The open subplanes of Ht R induced by E and I ∪ E are called
the exterior and united skew hyperbolic planes EHt R and UHt R, respectively;
the interior hyperbolic plane induced by I equals the non-modified hyperbolic plane
IH R, because the secants have not been modified inside I. The simple group Ω is the
full automorphism group of Ht R, as well as of the interior, exterior and united skew
hyperbolic planes. For further information on skew hyperbolic planes, the reader is
referred to chapter 35 in Salzmann et al. [54] and Salzmann [53, 5.3], [52].

2.1.42 Lemma. a) The stabiliser of the point o := R(0, 0, 1) is Ωo = ∆ ∼= SO2R.
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2. Line homogeneous sketched stable planes

b) Ωo acts transitively on Q.

c) Ωo leaves W = Ker

0
BBB@

0
0
1

1
CCCA invariant.

d) Ωo acts transitively on the point row of W .

e) The sets Sr := {R(x, y, 1) | x2 +y2 = r} for r > 0 are point orbits under the action
of Ωo.

Proof. ad (a). Computation reveals that

SO3R(1)o =

{(
B

b

)∣∣∣∣B ∈ SO2R ∧ b2 = 1

}
.

ad (b). The action of Ωo on Q = {R(x, y, 1) | x2 + y2 = 1} is therefore equivalent
to the action of SO2R on P1R = S1. ad (c+d). Part (a) implies that the point row
{R(x, y, 0) | (x, y) 6= (0, 0)} of the line W at infinity is invariant under Ωo. This action
again is equivalent to the transitive action of SO2R on a circle. ad (e). The sets Sr
are left invariant due to orthogonality of SO2R ∼= Ωo. The action is transitive because
it is, once more, equivalent to the action of SO2R on a circle. �

2.1.43 Lemma. Consider the points of intersection a := R(1, 0, 1) and b := R(−1, 0, 1)
of the standard secant Lt and the quadric Q.

a) ΩLt = Ω{a,b} = Ω
Ker

0
B@

0
1
0

1
CA

= ΩRe2

b) Ω{a,b} ≥ Ωa,b ≥ K

N.B.: As a matter of fact, Ω{a,b} ∼= Ωa,bo < σ >, where σ : P2R → P2R : Rx →
RxH is the half-turn with axis Re3.

c) Put pt := R(1, t, 0) ∈ Lt ∩ E. The orbit oΩa,b contains elements of each Sr with

0 ≤ r < 1. The orbit p
Ωa,b

t contains elements of each Sr with r > 1.

d) Lt \ {a, b} = (Lt ∩ I) ∪ (Lt ∩ E) = p
Ωa,b

t ∪ oΩa,b.

Proof. ad (a). Every automorphism fixing {a, b} fixes Lt = a ∨ b. Conversely, every
element of ΩLt has to leave {a, b} = Lt∩Q invariant. Therefore, ΩLt = Ω{a,b}. Switching
our point of view towards P2R, we see that {a, b} = So ∩ Q, and hence Ω{a,b} = ΩSo =
ΩRe2 . ad (b). These are the elements Kx ∈ K already called in in 2.1.38, which are
actually contained in the connected component ΩRe2 ≤ ΦRe2 . ad (c). Using these
elements, we get oKs = R(s, 0,

√
1 + s2) = R( s

1+s2
, 0, 1) with r := s2

1+s2
reaching any

real value 0 ≤ r < 1. For s 6= 0, the images of pt are ptKs = R(
√

1 + s2, t, s) =

R(
√

1+s2

s
, t
s
, 1) with r := 1

s2
(1+ s2 + t2) reaching any real value r > 1. ad (d). oΩa,b ⊇

{R(r, 0,
√

1 + r2 | r ∈ R} = Lt ∩ I as before, and p
Ωa,b

t ⊇ {R(
√

1 + r2, t, r) | r ∈ R} =
{pt} ∪ {R(x, y, 1) | y2 = t2(x2 − 1) ∧ txy ≥ 0} = Lt ∩ E. �
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2.1. Euclidean, hyperbolic and skew hyperbolic geometries

2.1.44 Corollary. Every (modified) secant in IH R and EHt R is Ω-isotropic.

Proof. By part (c) of 2.1.43, the line stabiliser ΩLt is both, transitive on Lt ∩ I and
Lt ∩ E. The (modified) secants in IH R and EHt R, respectively, by definition form an
orbit, and therefore 1.1.22 ensures Ω-isotropy for each of the secants. �

2.1.45 Corollary. The point orbits of Ω on Ht R are

oΩ = I

pΩ
t = E

aΩ = Q.

Proof. Part (d) of 2.1.43 along with parts (e) and (d) of 2.1.42. �

2.1.46 Lemma. The line orbits of Ω on Ht R are the sets of passing lines, tangents and
modified secants.

Proof. Passing lines and tangents are conservative, i.e., directly imported from P2R in
a non-modified way. Therefore, given transitivity of Ω on I and Q, we may once more
profit from the hyperbolic polarity : the set of tangents equals Qπ = aΩ·π = aπ·Ω = TΩ

o .
Analogically, the set of passing lines equals PΩ

o . Hence, there are at most these three
orbits, and there are precisely these three orbits because Ω ≤ PO3R(1). �

2.1.47 Corollary. The line pencil of any exterior point in Ht R contains passing lines,
tangents and (modified) secants.

Proof. The line pencil of our favourite exterior point pt = R(1, t, 0) contains the

secant Lt, the passing line Po = Ker

0
B@

0
0
1

1
CA and the tangent Tt := Ker

0
B@

−t
1√

1+t2

1
CA. Point

transitivity of Ω on E (proved in 2.1.45) sees for the same situation in every exterior
point. �

2.1.48 Corollary.

a) (Ω, Ht R) consists of three point orbits and three line orbits. It cannot be sketched.

b) (Ω, UHt R) consists of two point orbits and three line orbits. It cannot be sketched,
either.

c) (Ω, IH R) is a flag homogeneous sketched geometry.

Proof. Non-sketchability is gained from lemmas 2.1.45 and 2.1.46, fed into crite-
rion 1.1.19. The information on the types of lines required for UHt R stems from 2.1.47.
As to IH R, by 2.1.45 and 2.1.44 it is a point homogeneous plane with Ω-isotropic lines
and as a such is sketched by criterion 1.1.23. �
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2. Line homogeneous sketched stable planes

A discussion of the exterior skew hyperbolic plane requires knowledge on the Ω-isotropy
of every single type of lines in Ht R.

2.1.49 Lemma. a) ΩPo acts transitively on Po.

b) Every passing line in EHt R is Ω-isotropic.

Proof. Transitivity of ΩPo = ΩRe3 on Po ∩ E = Po = W is precisely part (d) of 2.1.42.
Lemma 1.1.22 then establishes Ω-isotropy of every line in the orbit PΩ

o , by 2.1.46 thus
on every passing line. �

2.1.50 Lemma. a) ΩTo acts transitively on To ∩E.

b) Every tangent in EHt R is Ω-isotropic.

Proof. Recall from 2.1.35 and 2.1.38 that ΩTo = Ωaπ = Ωa ≥ N. Therefore,

lemma 2.1.38 already states that Re
ΩTo
2 ⊇ {R(x, 1, x) | x ∈ R} = To \ {a} = To ∩ E.

Again, 1.1.22 and 2.1.46 establish the assertion. �

2.1.51 Proposition. (Ω, EHt R) is a point homogeneous sketched geometry. A system
of representatives is, for instance, given by

RP = {R(1, t, 0)} and RL = {Lt,Ker

0
BBB@

0
0
1

1
CCCA,Ker

0
BBB@

−t
1√

1 + t2

1
CCCA.

2.2. Non-isotropic points therein

For the classification of line homogeneous sketched stable planes it will turn out to be
of importance (in 2.3.3) that the planes UH F, Ht R and UHt R with t 6= 0 contain
non-isotropic points. This information will be provided beforehand, profiting by the
particular topological or geometrical structures of these candidates.

Non-isotropic points in united hyperbolic planes

2.2.1 Lemma. For F ∈ {R,C,H,O}, any passing line in UH F is compact and con-
nected.

Proof. By 2.1.7, any line in P2F is compact and connected. Passing lines in UH F are
by definition imported from P2F without doing them any harm. �

2.2.2 Lemma. For F ∈ {R,C,H,O}, neither tangents nor secants in UH F are compact.
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2.2. Non-isotropic points therein

Proof. The unital Q is closed in P2F. The set Flags := {(p, L) ∈ P2F × L2F |
p incident L} of flags is closed in P2F × L2F; cf. 2.1.7. Hence so is Fixπ ∩ Flags =
{(p, pπ) | p ∈ P ∧ p incident pπ}. The canonical projection pr : P2F× L2F → P2F is a
closed map, because P2F and L2F are compact Hausdorff spaces [2.1.7]. Consequently,
the set (Fix π ∩ Flags)pr = {p ∈ P | p incident pπ} = Q of absolute points is a closed
subset of P2F. Furthermore, Q is compact.

Now let L be a tangent or secant in UH F, and let L′ ∈ L2F be the line in P2F it stems
from. Then L′∩Q = L′ \L 6= ∅. The point set of L is not closed in P2F : otherwise, the
connected set L′ = L

.
∪ (L′ ∩ Q) were the disjoint union of two proper closed subsets.

Consequently L is not compact, because P2F is a compact Hausdorff space. �

2.2.3 Lemma. For F ∈ {R,C,H}, tangents in UH F are connected, whereas secants
are not.

Proof. Let L′ ∈ L2F be a line in P2F, and let L be its trace in UH F. By 2.1.7,
the point set of L′ is homeomorphic to the n-sphere Sn, where n := dimR F. If L′ is
a tangent, then |L′ \ L| = 1, and therefore L is homeomorphic to the n-sphere minus
one point, which still is (path-)connected. If L′ is a secant, consider the decomposition
L = L′ \ Q = (L′ ∩ I)

.
∪ (L′ ∩ E). I and E are open subsets of P2F, and therefore

L′ ∩ I as well as L′ ∩ E are open subsets of L. Moreover, the standard secant So from
2.1.26 comprises interior as well as exterior points. As the secants form an orbit under
PU3F(1), so does any other secant L′ ∈ L2F, and consequently both, L′ ∩ I and L′ ∩ E
are non-empty. Therefore, the secant L in UH F is not connected. �

2.2.4 Corollary. For F ∈ {R,C,H}, every exterior point in UH F is non-isotropic.

Proof. This follows from 2.1.32, 2.2.1 and 2.2.2 along with the fact that we are
considering continuous automorphisms of UH F. As a matter of fact, the sets of passing
lines, tangents and secants, respectively, are invariant under AutUH F. �

The explicit constructions behind these arguments are valid for F ∈ {R,C,H}. For
the octonions O, technique becomes more elaborate whereas the structural arguments
remain the same. We will content ourselves with a brief guide line as to how to browse
through the results in chapter 18 of Salzmann et al. [54] in order to obtain the
desired result.

2.2.5 The octonion case. The octonion projective plane P2O allows for polarities;
denote by π− the standard hyperbolic polarity presented in [54, 18.0]. The hyperbolic
motion group Φ− consists of those automorphisms of P2O which commute with π−.
There is a “polar triangle” offered by [54, 18.20], consisting of an interior point o and
exterior points u and v along with lines oπ

−
= uv =: W ′, uπ

−
= ov =: Y ′ and vπ

−
=

ou =: X ′.
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2. Line homogeneous sketched stable planes

Q

o u

W

X

v

Y

By [54, 18.21], the line W ′ at infinity is a passing line with respect to the unital Q of
absolute points. X ′ on the other hand, by [54, 18.24], is a secant. Now consider their
traces in the united hyperbolic plane UH O, which is induced by the point set P2O \Q.

The line W := W ′ \ Q = W ′ is compact, by 2.2.1, being a passing line. The line
X := X ′ \ Q is not compact, by 2.2.2. The exterior point u is non-isotropic. We have
seen that u is incident with the compact line W and the non-compact line X, and they
cannot be transferred into one another using a continuous automorphism of P2O.

2.2.6 Corollary. The exterior points in UH O are non-isotropic.

Proof. Let p be an exterior point. By [54, 18.23], the hyperbolic motion group acts
transitively on the set of exterior points, which provides for an element α ∈ Φ− mapping
u to p. Then W α ∈ Lp is a compact line and Xα ∈ Lp is a non-compact one. Again,
there cannot be any automorphism of P2O mapping one to the other. �

Non-isotropic points in skew hyperbolic planes

Again, our aim will be non-isotropy of the exterior points. Nevertheless, as the point
space of Ht R equals that of the projective plane P2R, the topological arguments used
for UH F cannot be a handle here. Instead, a geometrical notion will be exploited.

2.2.7 Definition. Desargues configuration.

345

12

14

13

15

24

23

25
45

35
34
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2.2. Non-isotropic points therein

The configuration is said to close if the points 34, 35 and 45 are collinear. Let
P = (P,L) be a topological plane. A point p in P is called desarguesian if it possesses
a desarguesian convex neighbourhood, i.e., a neighbourhood U of p which is convex
with respect to the line system L and which has the the property that every Desargues
configuration contained in U closes. If every point in P is desarguesian the plane will
be called locally desarguesian. It is said to be desarguesian if simply any Desargues
configuration closes.

2.2.8 Lemma. The sets of desarguesian and non-desarguesian points, respectively, are
invariant under the action of Aut Ht R.

Proof. Let p ∈ P2R be a desarguesian point, and let U be one of its desarguesian
neighbourhoods. Let α be an automorphism of Ht R. As α is homeomorphic and an
isomorphism in Inc, it maps U onto a desarguesian neighbourhood of pα. �

Clearly, every desarguesian plane is locally desarguesian. The converse is true for special
cases only, as studied by Polley. The exterior points in Ht R, for instance, can be dealt
with due to [51, Satz 1], bearing in mind that the exterior E is homeomorphic to a Möbius
strip.

2.2.9 Theorem (Polley 1972). Every locally desarguesian topological plane whose
point space is a Möbius strip is desarguesian. �

2.2.10 Corollary. For t 6= 0, none of the exterior points of Ht R is desarguesian.

Proof. The exterior skew hyperbolic plane EHt R is non-desarguesian. In fact, a
Desargues configuration in P2R can be constructed which consists of ten exterior points
and nine passing lines or tangents, and whose tenth line is a (conservative) secant.
Switching the point of view towards Ht R reveals a Desargues configuration whose tenth
line does not exist. In fact, there is no modified secant which could join the same three
exterior points the old secant used to join, because there is no (proper) conic which
contains three points that lie on a “straight” line.

Then Polley’s theorem 2.2.9 yields that EHt R is not locally desarguesian. — An
elementary proof of this fact, avoiding the use of Polley’s theorem, will be found in
Dörfner [12]. �
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2. Line homogeneous sketched stable planes

2.2.11 Lemma.

a) The interior points are desarguesian in Ht R.

b) For t 6= 0, the points on the quadric are non-desarguesian in Ht R.

Proof. ad (a). The interior plane of Ht R is isomorphic to the customary (desarguesian)
hyperbolic plane IH R. ad (b). Assume the existence of a desarguesian point q ∈ Q on
the quadric. Let U be a desarguesian neighbourhood of q. Then U contains an exterior
point p, along with a neighbourhood p ∈ V ⊆ U of p. As V is contained in U , it must
be desarguesian, and therefore p is a desarguesian point. Yet, lemma 2.2.10 has just
established that all the exterior points are non-desarguesian. By this contradiction, the
point q on the quadric is necessarily non-desarguesian. �

2.2.12 Corollary. Consider a point p in Ht R, where t 6= 0. Then

p ∈ I ⇐⇒ p is desarguesian
p ∈ Q ⇐⇒ p is non-desarguesian, yet every neighbourhood

contains desarguesian points
p ∈ E ⇐⇒ p is non-desarguesian, and there is a neighbourhood

which does not contain desarguesian points.
�

2.2.13 Corollary. For t 6= 0, the automorphism group Aut Ht R leaves I, Q and E
invariant.

Proof. This follows from 2.2.8 and from the fact that automorphisms of Ht R are
homeomorphisms. �

2.2.14 Corollary. The sets of tangents, passing lines and modified secants, respectively,
are invariant under the action of Aut Ht R.

Proof. By 2.1.41, the secants are the only lines to intersect with the interior, and by
definition, the passing lines are the ones not to intersect with the quadric. �

This finally suffices to establish the exterior points as being non-isotropic.

2.2.15 Corollary. For t 6= 0, none of the exterior points of Ht R is isotropic.

Proof. Let p ∈ E. By 2.1.47, the line pencil Lp contains lines of each type. Assuming
that p were isotropic would imply the existence of an automorphism which could map
tangents to secants, say. Yet, this is ruled out by 2.2.14. �
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2.3. Classification of line homogeneous sketched stable planes

Non-isotropic points in united skew hyperbolic planes

As the modified secants are still homeomorphic to the old ones, we can transport the
arguments from the non-modified plane UH R to UHt R and receive the same result :

2.2.16 Lemma. For any t ∈ R, none of the exterior points of UHt R is isotropic. �

2.3. Classification of line homogeneous sketched stable
planes

The present aim is a complete classification of line homogeneous sketched stable planes
in the sense that – as opposed to point homogeneous ones – they have no life of their
own : line homogeneity entails flag homogeneity; as a consequence, every sketched stable
plane is point homogeneous. The passepartout for this project is Löwen’s article [38]
on Stable planes with isotropic points. In a first step, the stable planes admitting line
homogeneous sketched collineation groups will be detected. This is fairly close at hand,
given Löwen’s results and some slight amount of zoology, which has been provided for on
the preceding pages. A second step then strives for enlightenment on the question of the
transformation groups themselves, still under suitable restrictions on the transformation
group. A third step finally rids the result of these restrictions.

The planes

Let P be a stable (lp-)plane. Let Γ ≤ Aut
StP
P be an arbitrary collineation group

with the property that (Γ,P) is a line homogeneous sketched geometry. Lemma 1.1.23
immediately yields isotropy of points.

2.3.1 Corollary. In the above situation, every point in P is Γ-isotropic.

The zoological key to the following classification has been collected in the preceding
sections :

2.3.2 Lemma. The united hyperbolic planes UH F for F ∈ {R,C,H,O} as well as the
skew hyperbolic planes Ht R and united skew hyperbolic planes UHt R, for t 6= 0, contain
non-isotropic points.

Proof. 2.2.4 and 2.2.6, 2.2.15 and 2.2.16. �

The operating ingredient, though, is theorem 1 from [38] :

2.3.3 Theorem (Löwen 1983). The stable (lp-) planes containing two isotropic
points are precisely the following :

A2F UH F
P2F Ht R
IH F UHt R

where F ∈ {R,C,H,O}.
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2. Line homogeneous sketched stable planes

Assembling all this we obtain our choice of planes :

2.3.4 Proposition. Let P be a stable (lp-) plane, and let Γ ≤ Aut
StP
P be an arbitrary

group of collineations such that (Γ,P) is a line homogeneous sketched geometry. Then
P is one of the planes A2F, P2F or IH F for F ∈ {R,C,H,O}.

Proof. Corollary 2.3.1 states that every point in P is Γ-isotropic, hence a fortiori
isotropic. This justifies the application of Löwen’s theorem 2.3.3, which leaves us with
the above list of candidates, whose second column will be eliminated by 2.3.2, due to
possession of non-isotropic points. �

The geometries

In order to earmark the group, further results from Löwen [38] can be profited from.

2.3.5 Proposition. Let P be a stable (lp-) plane and consider some closed subgroup
Υ ≤ Aut

StP
P. Denote by U the set of all Υ-isotropic points. If |U | ≥ 2, then the

following holds.

a) U is open in P .

b) The connected component Υ1 acts flag transitively on every open subplane induced
by a connected component of U .

Proof. Proposition 3.14 in [38] states a slightly weaker assertion, in as much as it
considers the entire automorphism group Υ = AutP. Nevertheless, Löwen’s proof can
be directly copied down for any closed subgroup Υ ≤ AutP. �

2.3.6 Corollary. In the above situation, (Γ
1
,P) is flag homogeneous.

Proof. By 2.3.1, every point in P is Γ-isotropic. The planes singled out in 2.3.4 are
connected. Therefore, an application of 2.3.5 deals with the connected set U = P and

thus yields flag transitivity of Γ
1

on the whole of P. �

Given flag homogeneity, corollary 1.4 from [38] matches the situation and gives a clas-

sification of the groups involved : in the elliptic and hyperbolic cases, Γ
1

contains a
copy of the (simple, connected component of the) elliptic and hyperbolic motion groups,
respectively. In the euclidean case, it contains a copy of both, the translation group and
the spinor group Spinn+1 for n := dimR F, where Spin2 is defined to be SO2R itself.

2.3.7 Theorem. Let P be a stable (lp-) plane and let Γ ≤ Aut
StP
P be an arbitrary

group of collineations. If (Γ,P) is a line homogeneous sketched geometry then the
following holds :

a) The plane P is one of the affine planes A2F, the projective planes P2F or the
(inner) hyperbolic planes IH F for F ∈ {R,C,H,O}.
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2.3. Classification of line homogeneous sketched stable planes

b) The geometry (Γ
1
,P) is flag homogeneous.

c) The connected component Γ
1

contains a subgroup Ψ isomorphic to one of the
following groups :

P2F IH F A2F
elliptic hyperbolic euclidean

R PO3R PO1
3R(1) Spin2 n ΘR

∼= SO2R n R2

C PU3C PU3C(1) Spin3 n ΘC
∼= SU2C n C2

H PU3H PU3H(1) Spin5 n ΘH
∼= U2H n H2

O F4(−52) F4(−20) Spin9 n O2

Generalisation to arbitrary subgroups

The defect of the previous result is that it yields flag transitivity for closed transformation
groups only. Fortunately, this can be cured. The formal key here can be the notion of
a Mal’cev closure of Lie algebras.

2.3.8 Definition. Let Υ be a Lie group and g := `Υ its Lie algebra. Let h ≤ g be
a Lie subalgebra of g, and denote by Φ := 〈hexp〉 the Lie subgroup of Υ corresponding
to h. Then Φ is the least one among the closed Lie subgroups of Υ containing Φ. Its Lie
algebra hM := `Φ ≤ g contains h and is called the Mal’cev closure of h in g.

By a theorem by Mal’cev, the commutator subalgebras of hM and h coincide; see [48,
5.3]. Using this closure one obtains the operating lemma which in most cases makes the
motion group a subgroup of Γ.

2.3.9 Lemma. Consider (Γ,P) and Ψ ≤ Γ as in 2.3.7. Then the following assertions
are true :

a) `Ψ′ ≤ g′, hence Ψ′ ≤ Γ′ ≤ Γ.

b) If Ψ is perfect, that is, if Ψ′ = Ψ, then Ψ ≤ Γ′ ≤ Γ.

Proof. By hypothesis, Ψ is contained in the closure Γ, which implies `Ψ′ ≤ (` Γ)′ =
(gM )′ = g′ by Mal’cev’s theorem. Therefore, Ψ′ ≤ Γ′ ≤ Γ. �

This will be applied to the motion groups Ψ contained in Γ, which are listed in 2.3.7.
The hyperbolic and elliptic motion groups Ell R = PO3R, Ell C = PU3C, Ell H = U3H,
Ell O = F4(−52) and Hyp R = PO′

3R(1), Hyp C = PU3C(1), Hyp H = PU3H(1), Hyp O =
F4(−20) are simple connected Lie groups, and as such are perfect groups; cf. 2.1.8 and
2.1.11.

2.3.10 Lemma. Every almost simple Lie group is perfect.
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2. Line homogeneous sketched stable planes

Proof. The normal subgroup Υ′ translates to an ideal `Υ′ E `Υ of the simple (non-
abelian) Lie algebra `Υ. �

As to the euclidean motion groups from 2.1.4, we should have a closer look. Moreover,
the necessity arises to distinguish between the real case and the non-real ones.

2.3.11 Lemma.

a) The commutator subgroup of Euc F = Spinn+1 n F2 is (Euc F)′ = Spin′
n+1 n F2.

b) The euclidean motion groups Euc F over F ∈ {C,H,O} are perfect, whereas
(Euc R)′ = 1 n R2.

Proof. ad (a). Let n := dimR F ∈ {1, 2, 4, 8}. Note that −1l ∈ Spinn+1. In each case,
[〈−1l〉n 0, 1 n F2] = 1 n F2; in fact, for v ∈ F2 we compute

[(−1l, 0), (1l, v)] = (−1l, 0)(1l, v)(−1l, 0)−1(1l, v)−1

= (−1l, v)(−1l,−v) = (1l,−v1l− v) = (1l,−2v).

Moreover, for T := Spinn+1, we get [T n 0,T n 0] = T′ n 0, and therefore (Euc F)′ ≥
T′ n F2. The converse inclusion is immediate, given the description in 2.1.4. ad (b).
The groups Spin3

∼= SU2C, Spin5
∼= U2H and Spin9 are almost simple Lie groups and,

by 2.3.10, are perfect. Part (a) yields the assertion. As to Euc R, the abelian part
Spin2 = SO2R accounts for (Euc R)′ = SO′

2R n R2 = 1 n R2. �

2.3.12 Corollary. For planes P and groups Γ and Ψ ≤ Γ as in 2.3.7, with exception of
(Ψ,P) = (Euc R,A2R), the motion group Ψ is contained in Γ.

The problematic case hence is the real affine plane, whose (euclidean) motion group
Ψ = SO2R n R2 is not perfect. Nevertheless it will be possible to establish the desired
inclusion.

The real affine case

2.3.13 Recall that AutA2R = GL2R n R2; see [54, 12.10]. We are facing the following
situation : just like in 2.3.9, we understand that the commutator group `Ψ′ = 1n R2 is
contained in Γ. Then the inclusion can be visualised as follows:

GL2R n R2

Γ

1

SO2R n R2

1 n R2

Γ
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2.3. Classification of line homogeneous sketched stable planes

Denote by ρ : GL2RnR2
_ GL2R the canonical quotient map. Put ∆ := Γρ and observe

that Γ
ρ ≤ Γρ = ∆. Therefore, the situation modulo R2 can be caught in the following

lattice:

∆

1

GL2R

SO2R

gl2R

so2R

0

d

∆ dM

gM /R2Γ/R2

Switching the point of view to the corresponding Lie algebras, abbreviate g := ` Γ and
d := `∆. Then their Mal’cev closures satisfy

`(Γ
ρ
) = `(Γ)` ρ = gM/R2 and `(Γρ) = `(∆) = dM ,

thus also gM/R2 ≤ dM . This legitimises the lattice to the right hand as being the proper
translation of the situation to the world of Lie algebras.

Given that very lattice, the general plan for the remainder is as follows : all Lie alge-
bras dM satisfying so2R ≤ dM ≤ gl2R can be determined. These candidates will be
checked and proved to be Mal’cev closed, i.e., dM = d (corollary 2.3.26). As a conse-
quence, so2R ≤ d and hence SO2R ≤ ∆ (corollary 2.3.27).

To that end pick a basis

1l, I :=

(
1

−1

)
, H :=

(
1
−1

)
, T :=

(
1

1

)
of gl2R. The corresponding Lie brackets are [I,H ] = −2T , [I, T ] = 2H and [T,H] =
−2I.

2.3.14 Lemma. Every Lie subalgebra so2R ≤ h ≤ gl2R must be one of the Lie algebras
so2R, a := R1l⊕RI, sl2R or gl2R. The corresponding Lie groups are the rotations SO2R,
the rotation-stretchings R+ × SO2R, the special linear group SL2R and GL2R.

Proof. Consider the representation ad |so2R : so2R → Der(gl2R) of the 1-dimensional
abelian Lie algebra so2R = RI. With respect to the basis above, the linear map ad I
corresponds to the matrix 

0
0

−2
2

 ,

with eigenvalues 0, 2i and −2i. The reduction of gl2R modulo so2R into irreducible real
so2R-submodules therefore is gl2R/so2R ∼= R1l⊕ (RT ⊕RU).

Any Lie algebra h of g containing so2R clearly is so2R-invariant and has to be com-
posed of these components. Thus, h must be one of the algebras RI = so2R, a = RI+R1l,
RI + RH + RU = sl2R or gl2R. �
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2. Line homogeneous sketched stable planes

In order to scrutinize these candidates ∆ for dense subgroups ∆ it is worthwhile to make
sure the topologies behave just like they are expected to.

2.3.15 Lemma. The compact-open topology on AutA2R = GL2R n R2 coincides with
the matrix topology on

GL2R n R2 =
GL2R

R2 1
⊆ Mat

3
R.

Proof. Apply lemma 3.3.19 to Υ = GL2R n R2, X = R2 and the injection f : Υ→ X :(
A
v 1

)
7→ (e1A+ v, e2A + v). �

2.3.16 Corollary. Consider some subgroup Υ ≤ AutA2R. The following topologies on
Φ := Υ/R2 coincide :

• the matrix topology induced from GL2R

• the quotient topology on Υ/R2, where Υ carries the compact-open topology with
respect to the action of Υ on R2

Proof.

AutA2R-
∼= -- GL2R n R2

Ψco
-

�

⊃
Ψmat

⊂

-

Φco

`

- Φmat

`

(AutA2R)/R2

`

-
∼= --

�

⊃

GL2R

`

⊂

-

By the lemma above, the topological groups AutA2R and GL2R n R2 are isomorphic,
and so are their respective quotients modulo R2. Now, the concatenation Φco → GL2R of
continuous maps is continuous, and by the universal property of the embedding Φmat →
GL2R, so is Φco → Φmat. By analogy, Φco → (AutA2R)/R2 being an embedding yields
continuity of Φmat → Φco. Hence, these topologies on Φ coincide, indeed. �
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2.3. Classification of line homogeneous sketched stable planes

In our situation then, we may consider the groups ∆ and ∆ as endowed with their
“usual” matrix topology.

2.3.17 Lemma. If the Mal’cev closure is dM = gl2R, then d = dM = gl2R and ∆ =
∆ = GL2R.

Proof. From Mal’cev’s theorem we know that d′ = (dM)′ = sl2R ≤ d ≤ gl2R. Hence
d = sl2R or d = gl2R. But SL2R is not dense in GL2R. Therefore d = dM = gl2R. �

2.3.18 Lemma. If dM = so2R, then d = dM = so2R and ∆ = ∆ = SO2R.

Proof. The only Lie algebra properly contained in the 1-dimensional algebra so2R is
the trivial one, whose exponential image 1 is certainly not dense in SO2R. �

2.3.19 Lemma. Consider the case dM = a = R1l + RI. Then the following is true :

a) The proper Lie subalgebras of a are of the form RX for X ∈ a. The proper Lie
subgroups of the group A := 〈aexp〉 of rotation-stretchings are precisely the one
parameter groups RXexp.

b) The one parameter groups are closed in GL2R.

c) If dM = a, then d = dM = a and ∆ = ∆ = A. Every Lie subalgebra of a is Mal’cev
closed.

Proof. Note that A = R+×SO2R ≈ R+×S1 ≈ C× ≈ R2\0. ForX = a1l+bI ∈ a we may
without loss assume a = 1, and the restriction of the exponential function corresponds
to RX → C× : t(1l + bI) 7→ etetbi. Then RXexp = {etetbi | t ∈ R}, which is closed in
C×. (Note that visualised in R2 \ 0, the one parameter group R1lexp corresponds to an
open half axis, RIexp corresponds to the unit circle, and any other one parameter group
corresponds to a logarithmic spiral.) We have thus established that every Lie subalgebra
of a is Mal’cev closed; there is no proper h < a satisfying hM = a; A possesses no proper
dense Lie subgroups. �

What remains to be done is to examine the Lie subalgebras of the fourth candidate, sl2R.
Following Hilgert and Hofmann [23], we provide some preparatory presentations.

2.3.20 A basis of sl2R is given by

H =

(
1
−1

)
, T =

(
1

1

)
, U :=

(
1

−1

)
= I;

recall the Lie brackets [H, T ] = 2U , [H,U ] = 2T and [T, U ] = −2H . With respect
to this basis the Killing form κ(X, Y ) = tr(adX · adY ) corresponds to the matrix
8 · Diag(1, 1,−1), i.e., κ(x1H + x2T + x3U, y1H + y2T + y3U) = 8(x1y1 + x2y2 − x3y3).
Consider the adjoint action Ad : SL2R → Aut(sl2R) : g 7→ (A 7→ g−1Ag). The orbits
of SL2R on {RX | X ∈ sl2R \ 0} are the unital {RX | κ(X,X) = 0}, its interior
{RX | κ(X,X) < 0} = SL2R.RU and its exterior {RX | κ(X,X) > 0} = SL2R.RT ; see
[23, 1.1].
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2. Line homogeneous sketched stable planes

2.3.21 Lemma. Every one parameter group RXexp ≤ SL2R is conjugate to

RU exp = SO2R ⇐⇒ κ(X,X) < 0

RHexp =

{(
a

a−1

)
| a > 0

}
⇐⇒ κ(X,X) > 0

RP exp = 1l + RP ⇐⇒ κ(X,X) = 0,

where P :=

(
0 1

0

)
∈ sl2R, satisfying κ(P, P ) = 0.

Proof. [23, 1.2] �

2.3.22 Corollary. Every one parameter group in SL2R is closed in GL2R.

Proof. By 2.3.21, every one parameter group RXexp is conjugate to one of the above.
Being defined by equations, these three standard groups are closed in GL2R. As con-
jugation is a homeomorphism in topological groups, the one parameter group RXexp is
also closed in GL2R. �

The two-dimensional Lie subgroups in SL2R are described in proposition 1.1 of [23] :

2.3.23 Lemma. Some 2-dimensional vector subspace h of sl2R is a Lie subalgebra if
and only if it is the orthogonal space h = X⊥κ of some element X ∈ sl2R satisfying
κ(X,X) = 0. �

2.3.24 Lemma. Every 2-dimensional Lie subgroup of SL2R is closed in GL2R.

Proof. Step 1. We elect P⊥ = RH + RP =: t for our favourite 2-dimensional Lie
subalgebra. Its exponential image

T := 〈texp〉 =

{(
a x

a−1

)∣∣∣∣ a > 0
x ∈ R

}
is closed in GL2R. Step 2. By 2.3.23 there is some X ∈ sl2R with κ(X,X) = 0 such
that h = X⊥. By 2.3.20 there is an element g ∈ SL2R such that Ad g.P = g−1Pg =
±X. Then h = X⊥ = (g−1Xg)⊥ = g−1X⊥g, because the Killing form is invariant
under Ad; that is, for every X, Y ∈ sl2R and g ∈ SL2R the equation κ(Ad g.X, Y ) =
κ(X,Ad g−1.Y ) holds (see [21, p.220]). Step 3. This implies that the exponential
image H := 〈hexp〉 = 〈(g−1t g)exp〉 = g−1Tg is conjugate to the closed subgroup T of
GL2R. And as conjugation is homeomorphic, H is closed in GL2R, too. �

2.3.25 Corollary.

a) Every Lie subgroup of SL2R is closed in GL2R. Every Lie subalgebra of sl2R is
Mal’cev closed.

b) If dM = sl2R, then d = dM = sl2 and ∆ = ∆ = SL2R.

Proof. 2.3.22 and 2.3.24 �
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2.3.26 Corollary. Every Lie subalgebra so2R ≤ h ≤ gl2R is Mal’cev closed.

Proof. The candidates from 2.3.14 were one by one dealt with in 2.3.17, 2.3.18, 2.3.19
and 2.3.25. �

2.3.27 Corollary. Getting back to our situation in 2.3.13, we have established d = dM

and ∆ = ∆. Therefore, so2R ≤ d and SO2R ≤ ∆, which finally means that `Ψ ≤ g and
Ψ ≤ Γ also hold for the real affine case.

Proof. We know that the Mal’cev closure dM is a Lie subalgebra of gl2R containing
so2R. Hence we have just found out that then d = dM as well as ∆ = ∆, by 2.3.26. This
implies g = d ∝ R2 = dM ∝ R2 = gM and Γ = ∆ n R2 = ∆ n R2 = Γ, and therefore
Ψ ≤ Γ ≤ Γ. �

These are all the ingredients we need for a generalisation of 2.3.7 to arbitrary Lie sub-
groups.

2.3.28 Theorem. Let P be a stable (lp-) plane and let Γ ≤ Aut
StP
P be an arbitrary

group of collineations. If (Γ,P) is a line homogeneous sketched geometry then the
following holds :

a) The plane P is one of the affine planes A2F, the projective planes P2F or the
(inner) hyperbolic planes IH F for F ∈ {R,C,H,O}.

b) The connected component Γ1 contains a subgroup isomorphic to one of the follow-
ing motion groups :

P2F IH F A2F
elliptic hyperbolic euclidean

R PO3R PO1
3R(1) Spin2 n ΘR

∼= SO2R n R2

C PU3C PU3C(1) Spin3 n ΘC
∼= SU2C n C2

H PU3H PU3H(1) Spin5 n ΘH
∼= U2H n H2

O F4(−52) F4(−20) Spin9 n O2

c) The geometry (Γ1,P) is flag homogeneous.

Proof. ad (a). Nothing needs to be added to part (a) of 2.3.7. ad (b). Part (b)

of 2.3.7 states that the motion group Ψ is contained in the topological closure Γ
1
. As

a matter of fact, Ψ is already contained in Γ1, which has been proved in 2.3.12 for all
the cases except the real affine one and in 2.3.27 for the real affine case. ad (c). The
zoological part of the present chapter established that the geometries (Ψ,P) are flag
homogeneous; cf. 2.1.5, 2.1.10 and 2.1.37. �
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Consequences

Some immediate conclusions can be drawn from the classification. First of all, indeed it
yields a generalisation of Block’s result in a very trivial way :

2.3.29 Corollary. Let ∆ ≤ Aut
StP
P be a collineation group of a stable (lp-) plane. If

(∆,P) is sketched then it is point homogeneous.

Proof. By 1.1.19, the geometry is point homogeneous or line homogeneous. In case of
line homogeneity, theorem 2.3.7 yields flag homogeneity. �

Moreover, there are not a great many chances of drawing sketched geometries from
proper skew hyperbolic planes :

2.3.30 Corollary. Consider a skew hyperbolic plane Ht R with t ∈ R. If there is a
collineation group ∆ ≤ Aut

StP
Ht R such that (∆,Ht R) is sketched, then Ht R = H0 R =

P2R is the real projective plane and (∆,P2R) is flag homogeneous.

Proof. Being sketched, the geometry is point or line homogeneous [1.1.19]. In case of
line homogeneity, the classification 2.3.7 yields that Ht R = P2R and that ∆ = ∆ acts
flag transitively on P2R. In case of point homogeneity, recall from [54, 35.2] that the
skew hyperbolic planes are connected compact projective planes. Therefore Löwen [36]
proved that Ht R is classical, thus Ht R = H0 R = P2R, and moreover that ∆ contains
the elliptic motion group. As by 2.1.10, the geometry (PO3R,P2R) is flag homogeneous,
so is (∆,P2R). �
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3. A non-embeddability theorem for
Peter planes

3.1. The planes ...

Throughout the remains of this thesis, any group called Γ shall be the the 4-dimensional
Lie group

Γ :=


 a2 x z

a y
1

 | a, x, y, z ∈ R, a > 0

 .

This is the Frobenius group mentioned by Plaumann-Strambach in [50, I §4], whose
non-abelian Frobenius kernel is the 3-dimensional Heisenberg group

Hei3R :=


 1 x z

1 y
1

 | x, y, z ∈ R

 .

Γ can be interpreted as a semidirect product in several related ways :

Γ = {Diag(a2, a, 1) | a > 0}nκ Hei3R ∼= R+ nδ Hei3R ∼= R nδ̃ Hei3R,

where the group morphisms constituting the semidirect products should be thought of
as

conjugation κ for the inner product

δ : R+ → Aut(Hei3R)
a 7→ (M 7→ Diag(a2, a, 1)−1 ·M ·Diag(a2, a, 1))

δ̃ : R → Aut(Hei3R)
t 7→ (M 7→ diag(−2t,−t, 0)exp ·M · diag(2t, t, 0)exp).

The isomorphisms are given by multiplication

i : R+ nδ Hei3R → Γ
(a,M) 7→ diag(a2, a, 1) ·M

j : R nδ̃ Hei3R → Γ
(t,M) 7→ diag(2t, t, 0)exp ·M

In order to describe a stable partition of Γ it turns out to be more convenient to find an
appropriate stable partition of the corresponding Lie algebra

g :=


 2t a c

t b
0

 | t, a, b, c ∈ R

 .
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This Lie algebra can also be described as a semidirect sum

g = R · diag(2, 1, 0) ∝
ad

hei3R ∼= R ∝ω hei3R,

where the constituting action is

ω : R→ Der(hei3R) : t 7→ ad diag(2t, t, 0).

The isomorphism is given by addition

R ∝ω hei3R→ g : (t,M) 7→ diag(2t, t, 0) +M.

In order to see that the corresponding exponential function is a homeomorphism, we
describe it as a restriction of a homeomorphic exponential function exp : r → P for a
larger group

P :=

{
A ∈ GL3C

∣∣∣∣ A is upper triangular matrix
with positive real diagonal entries

}
=

R+ C C
R+ C

R+

.

Consider the Lie algebra

r :=

{
X ∈ gl3C

∣∣∣∣ X is upper triangular matrix
with real diagonal entries

}
=

R C C
R C

R
.

3.1.1 Lemma. expr : r→ P : A 7→
∑∞

ν=0
1
ν!
Aν is a homeomorphism.

Proof. As to being a bijection, one can brutally compute its inverse function. This
would involve five different cases and become rather awkward. This is why we prefer to
give a brief outline of a more conceptual approach :

A Cartan subalgebra of a Lie algebra is a nilpotent Lie subalgebra which equals
its own normaliser. Given a Lie algebra a along with a Cartan subalgebra h, an el-
ement α of the dual space h∗ is called a root of a with respect to h if 0 6= aα :=
{X ∈ a |∀H ∈ h. adH.X = Hα ·X}. A soluble real Lie algebra a is called exponen-
tial if there is a Cartan subalgebra h with the property that for any root α of aC with
respect to hC, we get hα ∩ iR = 0. By [24, III 7.29] and the theorem of Dixmier [24,
III 7.30], bijectivity of the exponential function exp : `Υ→ Υ of a simply connected Lie
group Υ follows from exponentiality of its Lie algebra `Υ. Now,

t :=
R

R
R
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is a Cartan subalgebra of r, and the roots of r with respect to t are

α0 = (0, 0, 0) with r0 = t

α1 = (1,−1, 0) with rα1 = C

 0 1 0
0 0

0


α2 = (0, 1,−1) with rα2 = C

 0 0 0
0 1

0


α3 = (1, 0,−1) with rα3 = C

 0 0 1
0 0

0

 .

Hence no purely imaginary ad-eigenvalues occur in t, and therefore r is exponential.
Moreover, P ≈ R9 is simply connected, and thus the exponential function is bijective.

P as well as r being endowed with the matrix topology induced from Mat
3
C ≈ (C3)3,

the exponential function is continuous. It remains to show that exp is open. This is true
because P, being a manifold, has the domain invariance property; cf. notes in A.1.5. In
fact, consider a neighbourhood U of 0 in r. Then U contains a (compact) closed ball B
around 0. Now the restriction exp |Bexp

B : B → Bexp is a homeomorphism, as exp is
continuous and bijective. Therefore, the interior I of B is homeomorphic to its image
Iexp ⊆ Bexp ⊆ P. Due to the domain invariance property for P this proves that Iexp is
open in P, and thus U exp is a neighbourhood of 1 in P, indeed. Hence exp is an open
map. �

Now g is a Lie subalgebra of r and Γ is a subgroup of P, and one can verify that gexp = Γ.
Therefore, expg : g→ Γ is the co-restriction expg = expr |Γg of the homeomorphism expr,
and as such is a homeomorphism itself; cf. A.1.4.

3.1.2 Corollary. The exponential function expg : g→ Γ is a homeomorphism.

3.1.3 The spreads. We are now looking for stable LieAlg-partitions of g. Maier

exposes a whole family of them in chapter 4.2 of [44]. One prominent series, dependent
on a parameter k ≥ 1, are the so-called Betten spreads Sk : Consider the following
2-dimensional Lie subalgebras of g as described by Löwe in [29] :

s :=


 0 0 c

0 b
0

 | b, c ∈ R


and

u(a, b, c) :=

〈 2 0 b
1 a

0

 ,

 0 1 a
0 c

0

〉
LA

for a, b, c ∈ R;
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note that it suffices to consider the vector subspace generated by these two matrices, as
it automatically is a Lie subalgebra. For any real parameter k ≥ 1 the spread

Sk := {s} ∪ {u(a, b,−kb) | a, b ∈ R, b ≤ 0} ∪ {u(a, b,−b) | a, b ∈ R, b ≥ 0}

is a stable LieAlg-partition of g. It gives rise to a stable plane

Pk := UIncP (Γ; {1},Sexp
k ).

3.1.4 Definition. More generally, let S be an arbitrary stable LieAlg-partition of g =
R ∝ω hei3R. Then by 1.4.18, its exponential image Sexp is a stable LieGp-partition of
Γ = R nδ̃ Hei3R. The stable plane

P := UIncP (Γ; {1},Sexp)

will be called a Peter plane. The planes Pk gained from a Betten spread Sk will
eventually be referred to as the original Peter planes.

3.1.5 The basis. For later convenience we will introduce a basis of g :

e1 =

 0 1 0
0 0

0

 , e2 =

 0 0 0
0 1

0

 , e3 =

 0 0 1
0 0

0

 , d =

 2 0 0
1 0

0

 .

The Lie bracket on g behaves as follows :

[d, e1] = e1 [e1, e2] = e3
[d, e2] = e2 [e1, e3] = 0
[d, e3] = 2e3 [e2, e3] = 0.

The Betten spreads are not invariant under conjugation in Γ. In order to lay hands on
a concrete example, consider the fibre w := u(0, 0, 0) = Rd + Re1 ∈ Sk and an element
A = 1l + ze3 ∈ Γ′′ \ 1. The conjugate of the fibre is wA = Re1 + R(d + ze3), which
intersects the fibre non-trivially in w ∩wA = Re1. Thus, wA cannot be a fibre in Sk.

3.2. ... and their bed

The question arose whether or not the stable planes P presented as Peter planes could
possibly be (open) subplanes of one of the classical planes, the most immediate candi-
date being the 4-dimensional complex projective plane P2C. This problem will keep us
occupied throughout the remains of the present chapter. Hence, it might be worthwhile
to first of all introduce the projective plane along with some useful features.

3.2.1 The complex projective plane P2C is given by
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3.2. ... and their bed

the point space P2C := u1C3

the line space L2C := u2C3

along with the incidence relation ⊆. Endowed with the quotient topology from C3 \{0},
it becomes a compact connected 4-dimensional stable plane.

3.2.2 Action of Γ on P2C. Let π : Γ→ PGL3C denote the canonical quotient map of
Γ ≤ GL3C into the projective general linear group PGL3C. (Due to the ”1” in the lower
right corner of the matrices, π is an injection; Γ can be identified with the subgroup
Γπ of the projective group.) Clearly, Γπ ≤ PGL3C acts on P2C. Whereas PGL3C acts
transitively on the point space, its subgroup Γπ will not. Some light computation reveals
the point orbits :

3.2.3 Lemma. Γπ acts on the point space P2C, inducing the following nine orbits :

C(0, 0, 1)Γπ
= {C(0, 0, 1)} darkblue

C(0, 1, 0)Γπ
= {C(0, 1, y) | y ∈ R} yellow

C(1, 0, 0)Γπ
= {C(1, x, y) | x, y ∈ R} red

C(0, 1,±i)Γπ
= {C(0, 1, z) | Im z ≷ 0} lightblue

C(1,±i, 0)Γπ
= {C(1, w, z) | w, z ∈ C, Imw ≷ 0} lilac

C(1, 0,±i)Γπ
= {C(1, x, z) | x ∈ R, Im z ≷ 0} green

For reasons of intuitive reference later on the different orbits are colour coded. It will
be extremely helpful to simply refer to points from the last orbit as ”green points”, et
cetera. Note that the ”lilac”, ”green” and ”light blue” code comprises two orbits each,
though.

Some Pythia tells us that in the sequel we will have to study pencils of lines incident
with points of the four (!) orbits C(1,±i, 0)Γπ

and C(1, 0,±i)Γπ
, typically represented

by the pencils Lp0 and Lq0, where p0 := C(1,±i, 0) and q0 := C(1, 0,±i). In order to
prevent us from working too much it seems appropriate to introduce the notion of a
Baer subplane of a projective plane.

3.2.4 Definition. Let B be a proper subplane of some projective plane P. Then B is
called a Baer subplane of P if every point of P is incident with some line of B and
every line of P carries a point of B.

3.2.5 The lilac and green pencils. The real projective plane P2R is a Baer subplane
of the complex projective plane P2C. This comes in handy, because P2R = C(0, 0, 1)Γπ∪
C(0, 1, 0)Γπ∪C(1, 0, 0)Γπ

consists of the three real orbits above, exactly. As a consequence,
any treatment of a pencil Lp reduces to considering lines which are obtained by joining
the point p to any point from a real orbit. Doing this to p0 = C(1,±i, 0) we will find
the following types of lines in the lilac pencil Lp0 :
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3. A non-embeddability theorem for Peter planes

L parameter form homogeneous coordinates
p0 ⊕ C(0, 0, 1) ker(1 ±i 0)T complex
p0 ⊕ C(0, 1, 0) ker(0 0 1)T real
p0 ⊕ C(0, 1, c), c ∈ R, c 6= 0 ker(1 ±i ±ic−1)T complex
p0 ⊕ C(1, d, c), c, d ∈ R, c 6= 0 ker(1 ±i − c−1(1±id))T complex

Note that Lp0 contains exactly one real line, namely ker(0 0 1)T = p0 ⊕ C(0, 1, 0) =
p0 ⊕ C(1, 0, 0) ∈ L2R. In fact, any real line L ∈ L must have real homogeneous coor-
dinates L = ker a, a = (a1, a2, a3)

T ∈ R3 \ {(0, 0, 0)T}. This forces 0 = a1 ± a2i, thus
a1 = a2 = 0 and therefore L = ker(0 0 a3)

T = ker(0 0 1)T. This line, of course,
also contains all the points C(1, d, 0) with d ∈ R; this is why they do not appear in the
table above.

The same procedure applied to q0 = C(1, 0,±i) figures out the green pencil Lq0 as

L parameter form homogeneous coordinates
q0 ⊕ C(0, 0, 1) ker(0 1 0)T real
q0 ⊕ C(0, 1, c), c ∈ R ker(±i − c 1)T complex
q0 ⊕ C(1, d, c), c, d ∈ R, d 6= 0 ker(±id(c2 + 1)−1(c± i) 1 − d(c2 + 1)−1(c± i))T complex

Here the (!) real line also contains all the points C(1, 0, c) with c ∈ R, such that the
option d = 0 has been suppressed.

3.2.6 P2C as a sketched geometry. The group PGL3C acts flag transitively on P2C.
The resulting geometry (PGL3C,P2C) is flag homogeneous and sketched by, for instance,
the representatives RP = {Ce1} and RL = {Ce1 + Ce2}. A sketch then would be given
by S (Π;P2C) = (Π; {ΠCe1}, {ΠCe1+Ce2}) , where we abbreviate Π := PGL3C. Note that
the geometry (Γπ,P2C), on the other hand, cannot be sketched because it is neither
point nor line homogeneous; see 1.1.19.

3.3. A categorical user’s manual for the embedding of
planes

As already mentioned in 1.5.1, one would like to know more on the nature of Peter planes,
because they are the remaining mystery in Maier’s classification of stable planes gained
from stable (LieGp-) partitions of 4-dimensional connected Lie groups. The most homely
information here would be the knowledge that in some way or other, a Peter plane P
could be found as a subplane of a classical plane; and the candidate at hand is the
complex projective plane. ”In some way or other” should read, more precisely, as the
existence of a (mono-) morphism H : P → P2C of stable planes; that is, a continuous,
injective and non-collapsed lineation. Let us for a moment, for a longer one in fact,
assume the existence of such a morphism

H : P ↪→ P2C
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of stable planes. What should it look like ? What could one possibly do to get hold of it ?
Remembering that the plane P stems from a sketched geometry (Γ,P) = P (Γ,Q) with
sketch (Γ,Q) := (Γ; {1},Sexp), could there be a way of translating the problem of finding
an embedding of (topological) incidence structures into one of finding an embedding of
sketches ? After all, there might be a slightly better chance to handle groups than nasty
looking planes.

Such a translation from the category Inc into Sk is possible, indeed — yet not without
touching upon several other categories on our way. Let us lay open our intentions in
order to motivate the reader to follow through more tedious details afterwards :

3.3.1 Aim. Assume a morphism H : P ↪→ P2C ∈ morph StP of stable planes.

(StP) As a matter of fact, H : P → P2C is an open embedding of stable planes.

(Geo) There is a continuous group monomorphism

ε : Γ→ PGL3C ∈ morph TopGp

such that

(ε,H) : (Γ;P)→ (PGL3C;P2C) ∈ morph Geo

is a (topological) embedding of geometries.

(SGeo) This induces an isomorphism

(ε,H) : (Γ;Q;P)→ (Γε;QH;PH) ∈ morph SGeo∗

with

• RP := QH
P = {p} for some p ∈ P2C satisfying Γεp = 1

• RL := QH
L = (L2C)p .

(Sk) Via S , the above translates to the existence of an isomorphism

(ε,E) : (Γ;Q)→ (Γε;R) ∈ morph Sk

of sketches, where

• ε : Γ→ PGL3C is a continuous group monomorphism

• RP = {Γεp} for some p ∈ P2C satisfying Γεp = 1

• RL = {ΓεL | L ∈ (L2C)p}.

The remains of the present section will cover the stepwise transitions from category to
category, till finally reaching Sk.
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3. A non-embeddability theorem for Peter planes

3.3.1. Transition from incidence structures to geometries

We will start by establishing the morphism H as an embedding of stable planes. Doing
this, we will give more detailed arguments for the concrete incarnation of the general
results in the introductory chapter, notably proposition 1.3.5. A first glimpse will reveal
that by 1.3.2, the line map HL is injective and continuous; this implies moreover, that
H is a monomorphism of incidence structures (see 1.1.12).

3.3.2 A topological space X is said to have the domain invariance property if every
subset homeomorphic to some open subset is open itself. Euclidean spaces as well as
n-manifolds possess the domain invariance property; for a list of detailed literature,
consult [54, 51.18]. This fact will play a vital role in the following technical lemma.

3.3.3 Lemma. Let f : X → Y be a continuous injection, Y an n-manifold.

(i) If x ∈ X and U is an open neighbourhood of x which is homeomorphic to Rn and
whose closure U is compact, then its image Uf is also homeomorphic to Rn and
thus open in Y .

(ii) If X is moreover an n-manifold then f is an open map.

Proof. Note that we could refer to [54, 51.19] right away, but prefer to give an outline
of the arguments involved.

ad (i). Consider a closed subset A of U . As U is compact A is compact as well, and

so is its image Af in U
f
. Due to Y being a T2-space, this implies that Af is closed in Y .

Thus we understand that f |U : U → U
f

is a homeomorphism. Then so is the restriction
f |U : U → Uf . Therefore Rn ≈ U ≈ Uf . Now domain invariance of Y yields that Uf is
open in Y ; in fact, every n-manifold contains open subsets homeomorphic to Rn.

ad (ii). Let V be an open subset of X. As X is a (locally compact) n-manifold, for
every x ∈ X there is some open neighbourhood Ux ≈ Rn whose closure Ux is compact
and contained in V . Now V =

⋃
x∈V Ux, and (i) reveals V f =

⋃
x∈X U

f
x as open in Y .

Therefore f is an open map. �

3.3.4 Corollary. H : P → P2C is an open embedding of stable planes. In particular,
PH is open in P2C.

Consequently, via H, the Peter plane P is an open subplane of the compact projective
plane P2C, which allows us to apply Löwen’s

3.3.5 Corollary from the Local Fundamental Theorem (1982). Let P be an open
subspace of one of the classical projective spaces PnF over F ∈ {R,C,H,O} with n ≥ 2.
Then every automorphism α of P is induced by a (unique !) automorphism α̃ of PnF
which leaves P invariant.

Proof. [37, Corollary 2] �
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This is fairly convenient, for we can directly use it to construct the desired group mor-
phism ε : Γ→ PGL3C — with some obstacles to come, yet.

3.3.6 Definition.

ε : Γ → AutP2C
α 7→ α̃

The diagram is to be
read in StP.

P2C- ∃! α̃-- P2C

P

H

6

6

-
∀α

-- P

H

6

6

3.3.7 Lemma. ε is a group monomorphism.

Proof. First of all note that due to uniqueness of α̃ the map is well defined. In order
to verify (αβ)ε = αεβε for every α, β ∈ Γ, chase the following diagram, again using

uniqueness of α̃β.

P2C- α̃β -- P2C

P2C
-

β̃

--
-

α̃

--

P

H

6

6

-
α

-- P

H

6

6

-
β

-- P

H

6

6

Injectivity of ε amounts to the statement that H is monic in the category of incidence
structures; in fact, for α, β ∈ Γ equality α̃ = β̃ implies αH = Hα̃ = Hβ̃ = βH, which
forces α = β. �

By construction of ε, the action of Γ on P and the action of Γε on PHP are equivalent.
The same is true for the line actions, and, in fact, the flag actions. This is just another
way of saying that we are dealing with a morphism of geometries. Moreover, by 1.1.13,
it is monic (epic) in Geo because ε, HP and HL are injective (surjective).

3.3.8 Corollary. (ε,H) : (Γ,P)→ (Γε,PH) is an isomorphism in Geo.

In order to verify continuity of ε it occurs mandatory to understand the topologies
involved. What topologies on Γ can we think of ? (For convenience’s sake, we will here
simply write H, meaning the point map HP .)
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3. A non-embeddability theorem for Peter planes

T0 := topology induced by the compact-open topology on AutP
T1 := topology induced by the matrix topology on Mat3C ≈ C9

T2 := compact-open topology with respect to the action of Γ on P
T3 := topology on Γε induced by the compact-open topology

on AutP2C, translated to Γ via the bijection ε
T4 := compact open topology on Γε with respect to the action of

Γε on PH, translated via ε
The question remains which of these happen to coincide. At a first glimpse, we notice
that T0 = T2, by the definition of the compact-open topology.

3.3.9 Lemma. On Γε, there is a coincidence of the compact-open topology with respect
to the action of Γε on PH, the compact-open topology with respect to the action of Γε

on P2C, and the topology induced from AutP2C by the compact-open topology with
respect to the action of AutP2C on P2C.

Proof. As PH is an open subset of P2C, theorem 4b in [19] states the first coincidence.
The second one is immediate, as by definition dC,UeΓε = dC,UePGL3C ∩ Γε for compact
subsets C ⊆ P2C and open subsets U ⊆ P2C. �

3.3.10 Corollary. T3 = T4.

3.3.11 Lemma. T2 = T4.

Proof. Use the fact that H|PH

P is a homeomorphism and Γ : P and Γε : PH are equivalent
actions.

PH × Γε - PH

P × Γ

H× ε

6

- P

H

6

Concretely, let U be an open subset of P and C a compact one. We want to check
whether the image dC,Ueε of the subbasis element dC,Ue ∈ T2 describes an open set in
T4. In fact, the continuous image CH is compact. Moreover, UH is open in PH. Verify

dCH, UHe =
{
α̃ ∈ Γε | CHα̃ = CαH ⊆ UH

}
= {α̃ ∈ Γε | Cα ⊆ U}

and accept dC,Ueε = dCH, UHe as open in Γε with respect to the compact open topology
induced by Γε : PH. Consequently dC,Ue ∈ T4. The converse inclusion can be obtained
analogically. �

3.3.12 It remains to compare T1 to T2. Note that by construction Γ = P , and the
action Γ : P is right multiplication Γ × Γ → Γ : (α, β) 7→ αβ. As a consequence — the
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3.3. A categorical user’s manual for the embedding of planes

topological group Γ ≤ GL3C being endowed with the matrix topology T1 — this action
is continuous. Now the compact open topology is the coarsest topology which allows
the action to be continuous [55, I §7.9, Hilfssatz 3]. Thus T2 is coarser than T1, in other
words, id : Γ→ Γco is continuous.

Γ

Γco

id

? id
- Γpo

�

id

Let us furthermore consider the product topology on C(P, P ) ⊆ P P , which as a matter
of fact is the ”point-open” topology on Γ with respect to the action by multiplication
as described in 3.3.18. Certainly, every one of the subbasis elements d{p}, Ue is open
in Γco as well, such that id : Γco → Γpo is continuous. On the other hand, with our
particular action by multiplication, we get d{1}, Ue = {α ∈ Γ | 1 · α ∈ U} = U , such
that id : Γpo → Γ is continuous. Thus we have established Γ = Γco = Γpo, meaning
T1 = T2.
As a matter of fact, we have just proved the following special case of lemma 3.3.19.

3.3.13 Lemma. Let Υ be a topological group. Consider the action ρ : Υ×Υ→ Υ by
right multiplication. Denote by Υco the group endowed with the compact-open topology
with respect to ρ, and by Υpo the group endowed with the point-open topology. Then
Υ ≈ Υco ≈ Υpo.

In our particular case again, we harvest

3.3.14 Lemma. T0 = T1 = T2 = T3 = T4

3.3.15 Corollary. ε : Γ→ AutP2C is an embedding of topological groups.

Proof. AutP2C is endowed with the compact-open topology with respect to its action
on P2C. Thus by the previous lemma, the co-restriction of ε to its image Γε, which is
endowed with the topology induced from AutP2C, is a homeomorphism. �

At that stage it can only be claimed that Γε ≤ AutP2C. Nevertheless, we are confident
that Γε after all is a subgroup of PGL3C. What can be said about that ? First of all,
talking about continuous collineations, the automorphism group is AutP2C = PΓL3C =
Aut CnPGL3C; cf. [54, 13.6.]. Here the group Aut C of continuous field automorphisms
consists of two elements only, namely identity and complex conjugation κ. Moreover, its
connected component is (AutP2C)1 = 1 n PGL3C. In fact, PGL3C is connected —
use connectedness of GL3C [21, Kapitel I, §2, Satz 14] and continuity of the canonical
quotient map GL3C _ PGL3C — and 1 n PGL3C and {κ} n PGL3C are two non-
trivial open and closed subsets of AutP2C. By 3.3.15 the morphism ε is continuous,
with the consequence that Γε ≤ (AutP2C)1 = 1 n PGL3C. Thus we have established
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3. A non-embeddability theorem for Peter planes

3.3.16 Lemma. Γε ≤ PGL3C E AutP2C

From now on we will consider the continuous group monomorphism ε : Γ → PGL3C.
All in all, from 3.3.8 we get

3.3.17 Corollary. (ε,H) : (Γ,P) → (PGL3C,P2C) ∈ morph Geo is a monomorphism
of geometries. All of its components are embeddings.

Note that up to further notice, the matrix group PGL3C = PSL3C is thought of as
endowed with the topology induced from AutP2C. This mishap will be cured in the
following aside.

3.3.2. Excursus on the topologies involved

One may obtain a wider choice of topologies on the groups involved here. The main
tool will be a more general version of the above argument on the action of a topological
group on itself by right multiplication.

3.3.18 Definition. Let Υ be a group which acts on a topological space X. The point-
open topology on Υ is given by the subbasis {d{p}, Ue | p ∈ X ∧ open U ⊆ X},
where d{p}, Ue := {α ∈ Υ | pα ∈ U}.

3.3.19 Lemma. Let Υ be a topological group which acts continuously on some topo-
logical space X. Denote by Υco the group endowed with the compact-open topology
with respect to the action, denote by Υpo the group endowed with the corresponding
point-open topology.

a) id : Υ→ Υco is continuous.

b) id : Υco → Υpo is continuous.

Now assume the existence of a natural number n and points p1, . . . , pn ∈ X such that
the map

f : Υ → Xn

α 7→ (pαj )j=1,...,n

is injective and f : Υ → Xn (where Υ is considered with its original topology) is an
embedding. Then furthermore

c) f : Υpo → Xn is continuous.

d) id : Υpo → Υ is continuous.

e) The three topologies coincide, i.e., Υ = Υco = Υpo.
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Proof. ad (a). The compact-open topology is the coarsest topology on Υ which allows
the action to be continuous [55, I §7.9, Hilfssatz 3]. As by hypothesis, the action is
continuous, the original topology on Υ is finer than the compact-open topology. ad (b).
For every point p ∈ X, the set {p} is compact. ad (c). A basis element of the product
topology on Xn is of the form U = U1× . . .×Un for open subsets Uj of X. Its pre-image

Uf↼

= {α ∈ Υ | ∀j ≤ n. pαj ∈ Uj} =

n⋂
j=1

d{p}, Uje

is open with respect to the point open topology on Υco.

Υ ⊂ f - Xn

Υco

id

? id
- Υpo

f

6
�................................

id

ad (d). This is due to the universal property of embeddings : as f : Υpo → Xn is
continuous, so is id : Υpo → Υ; see A.1.2. ad (e). Immediate consequence of (a), (b)
and (d). �

3.3.20 Remark. Note that for any group Υ acting on some topological space X and
any subgroup Ψ ≤ Υ, the compact-open topology on Ψ with respect to the action of Ψ
on X and the topology induced from the compact-open topology on Υ trivially coincide.
This is why lemmata 3.3.21 and 3.3.28 will be proved for GLnC and PGLnC, respectively,
yet hold for any of their subgroups.

3.3.21 Corollary. Consider an arbitrary subgroup Υ ≤ GLnC endowed with the ma-
trix topology induced from (Cn)n. Denote by Υco and Υpo the group endowed with
the compact-open and point-open topologies, respectively, with respect to the standard
action of Υ on Cn. Then these three topologies coincide, i.e., Υ = Υco = Υpo.

Proof. With respect to the matrix topology on Υ, its action on Cn is continuous. Pick
the standard basis e1, . . . , en of Cn and put

h : Υ → (Cn)n

A 7→ (ejA)j=1,...,n.

Then h is an injection. In fact, h : Υ → (Cn)n is an embedding. Hence we may apply
lemma 3.3.19, which yields equality of the topologies. �

The analogical result will be obtained for the projective situation, yet after some more
preparations.
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3. A non-embeddability theorem for Peter planes

3.3.22 Lemma. The action of PSL3C on P2C is continuous.

Proof.

C3 \ 0× SL3C
ω1

- C3 \ 0

P2C× SL3C

λ× id

`

P2C

λ

`

P2C× PSL3C

id×π
`

...........
ω3

- P2C

wwwwwwwwww-

We may use the universal property of the
quotient map (λ × id) · (id×π), see A.1.2.
In fact, the diagonal (λ× id) · (id×π) · ω3 =
ω1 · λ · id is continuous because λ and the
action ω2 of PSL3C on C3 \ 0 are continu-
ous. By the universal property then so is the
action ω3 of PSL3C on P2C.

�

Our candidate for an embedding of PSL3C into a product of projective spaces P2C will
be

I : PSL3C → (P2C)4

[A] 7→ ([qjA])j=1,...,4

with q1 := [e1], q2 := [e2], q3 := [e3] and q4 := [e1 + e2 + e3].

3.3.23 Lemma. I : PSL3C→ (P2C)4 is an injection.

Proof. Consider [A], [B] ∈ PSL3C with the property that [A]I = [B]I . Then there are
factors λ1, λ2, λ3 ∈ C× such that bj = λjaj holds for the rows of the matrices. The fourth
component ensures another coefficient λ4 ∈ C× satisfying λ4(a1 +a2 +a3) = λ4(e1 +e2 +
e3)A = (e1 + e2 + e3)B = b1 + b2 + b3 = λ1a1 + λ2a2 + λ2a3, thus λ1 = λ2 = λ3 = λ4 and
consequently [A] = [B]. �

3.3.24 Lemma. The image of PSL3C under I is the set

F := {([pj])j=1,...,4 ∈ (P2C)4 | each triple of projective points [pj] is non-collinear }
= {([pj])j=1,...,4 ∈ (P2C)4 | each triple of affine points pj forms a basis of C3 }

of (ordinary) four-gons in P2C.

Proof. For [A] ∈ PSL3C = PGL3C the lines of A form a basis of C3. Thus the inclusion
(PSL3C)I ⊆ F is immediate. Now let p be a four-gon in P2C, with pj = [aj], aj ∈ C3 \0,
for j ≤ 4. As a1, a2, a3 form a basis of C3, there are unique coefficients µ1, µ2, µ3 ∈ C
such that a4 =

∑3
j=1 µjaj . Due to p ∈ F , these coefficients µj are non-zero. Put
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A := (a1 a2 a3)
T. Our aim is to find coefficients λ1, λ2, λ3, λ4 ∈ C× satisfying

(1) λ4a4 = (1, 1, 1)

λ1

λ2

λ3

A

(2) 1 = λ1λ2λ3 · detA.

From (2) we get λ3 = (λ1λ2 ·detA)−1. From (1) then, we understand that we are looking
for solutions of the equation

λ4(µ1, µ2, µ3) = (λ1, λ2, (λ1λ2 detA)−1).

As a matter of fact, there is a solution, namely

λ4 = (µ1µ2µ3 · detA)−
1
3 6= 0

λ1 = µ1λ4 6= 0
λ2 = µ2λ4 6= 0
λ3 = (λ1λ2 detA)−1 6= 0.

Thus, I|F : PSL3C→ F is surjective, bijective even. �

In order to establish I : PSL3C → (P2C)4 as an embedding we will appeal to the
following result on the action of locally compact groups.

3.3.25 Theorem. Let ω : X ×Υ→ X be a continuous action of a topological group Υ
on a topological space X. Pick x ∈ X, and consider the bijection

Ω : Υ/Υx → xΥ

Υx · α 7→ xα .

Then

a) Ω is continuous.

b) If the group Υ is σ-compact and locally compact, and if the orbit xΥ is a locally
compact Hausdorff space, then Ω is a homeomorphism.

Proof. The theorem is due to Freudenthal [13]. A complete proof can be found in
[73, 8.8]. For more references, see [54, 96.8]. �

Consider the action
ω : F × PSL3C → F

(p,M) 7→ (pMj )j=1,...,4,

where pMj refers to the action of M ∈ PSL3C on pj ∈ P2C. As by 3.3.22 the latter action
is continuous, so is ω. With respect to this action, the situation so far reformulates into
the following orbit and stabiliser and therefore allows for an application of the theorem
above :
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3. A non-embeddability theorem for Peter planes

3.3.26 Corollary. Pick qo := (qj)j=1...,4 = ([e1], [e2], [e3], [e1 + e2 + e3]) ∈ (P2C)4.

a) I = ω(qo, · )

b) qo
PSL3C = F

c) (PSL3C)qo = 1

Proof. Let M = [A] ∈ PSL3C. Then M I = ([e1A], [e2A], [e3A], [(e1 + e2 + e3)A]) =
(qMj )j=1,...,4 = (qo,M)ω. As to the orbit, for p ∈ F put M := pI

−1
. Then p = M I =

(qo,M)ω. As to the stabiliser, note that I is injective. �

3.3.27 Corollary. The co-restriction I|F : PSL3C → F is a homeomorphism, and
I : PSL3C→ (P2C)4 is an embedding.

Proof. As qo
PSL3C = F and point stabilisers are trivial, we can identify the map ”Ω”

from theorem 3.3.25 with Ω = I|F : PSL3C → F . The spaces SL3C and C3 \ 0 are
connected and locally compact. As both quotient maps are open, both, PSL3C and P2C
are locally compact, too. So PSL3C is connected and locally compact, hence σ-compact,
and the closed subset F ⊆ (P2C)4 is a locally compact Hausdorff space; see A.1.3. Thus
the theorem is applicable and yields that I|F is homeomorphic. �

Now we are in a position to conclude coincidence of several topologies on PSL3C.

3.3.28 Corollary. Let Υ be an arbitrary subgroup of PSL3C, endowed with the topol-
ogy induced by the quotient topology on SL3C with respect to the matrix topology on
SL3C. Denote by Υco and Υpo the group endowed with the compact-open and point-open
topologies, respectively, with respect to the action of Υ on P2C. Then Υ = Υco = Υpo.

Proof. By 3.3.22, the action of PSL3C on P2C is continuous, and 3.3.27 provides for a
suitable embedding I : PSL3C→ (P2C)4. Thus 3.3.19 establishes the desired result. �
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This finally enables us to make use of different descriptions of the topologies in question
when dealing with our mappings ε and ϕ.

Γ ⊂ ε - PSL3C

Γε
⊂

-
-

ε| Γ ε

--

Γϕ

ϕ|Γε

Γϕ

6

Γ

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
- ϕ --

ϕ|
Γ
ϕ

--

SL3C

π

a

⊂

-

3.3.29 We have by now seen that the following topologies on Γε coincide :

• the compact-open topology with respect to the action of Γε on P2C

• the topologies induced from PSL3C, where PSL3C may be endowed with any of
the topologies described in 3.3.28.

3.3.30 Corollary. ε|Γε
: Γ→ Γε ≤ PSL3C is a homeomorphism.

Proof. This follows from 3.3.29 and 3.3.14, using T3 on Γ along with the compact-open
topology with respect to the action Γε : P2C on Γε. �

3.3.3. Transition from geometries to sketched geometries

Remember that the assumed morphism H : P → P2C has been established as an open
embedding of stable planes. Henceforth, we will concentrate on its co-restriction and
switch towards talking about isomorphisms of all sorts : the open subplane

PH := (PHP ,LHL) ⊂ P2C

is a stable plane isomorphic to P via H.

3.3.31 A morphism H of incidence structures is said to preserve pencils if the pencil
of every point p is mapped onto the pencil of the image of p; i.e., if (Lp)HL = (L′)pHP .
Lemma 1.1 in Stroppel [66] affirms that our open embedding H : P → P2C preserves
pencils.
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3. A non-embeddability theorem for Peter planes

3.3.32 Lemma. (ε,H) : (Γ;Q;P)→ (Γε, R;PH) ∈ morph SGeo∗, where

• Q := ({1},Sexp)

• R := (QHP
P ,QHL

L )

is an isomorphism of sketched geometries. All of its components are homeomorphisms.

Proof. As to the objects, first of all P (Γ;Q) = (Γ;Q;P) certainly is a sketched geometry,
by construction. As (ε,H) is an isomorphism in Geo, this implies that R = QH sketches
(Γε,PH), and therefore (Γε;R;PH) ∈ obSGeo∗.

Talking about morphisms, (ε,H) is already recognized as an isomorphism in Geo, and
by 1.1.13 and 1.1.14 so it is in SGeo∗, for all its components are isomorphisms in their
respective categories. �

There is more precious information on the set of line representatives to be drawn from
the fact that H is an open map. This requires a short glimpse at the set of point
representatives.

3.3.33 Lemma. RP = {p} for some p ∈ PHP ⊆ P2C satisfying Γεp = 1.

Proof. First observe that Γ acts sharply transitive on P = Γ. But then Γε acts
transitively on PHP because the actions Γ : P and Γε : PHP are equivalent. Thus
there is some p ∈ PHP ⊆ P2C with PHP = pΓε

; as a matter of fact, we may pick
p = 1HP . Moreover, due to equivalence of actions, the point stabiliser of p turns out to
be Γεp = (Γ1)

ε = 1. �

3.3.34 Lemma. RL = (L2C)p for p ∈ P2C as in 3.3.33.

Proof. Observe that RL = Sexp·HL = (L1)
HL = (L2C)1HP = (L2C)p. The third equation

is due the fact that H preserves pencils (3.3.31), thus due to openness of H. �

A résumé of the preceding three lemmata arrives at

3.3.35 Corollary. (ε,H) : (Γ;Q;P)→ (Γε;R;PH) ∈ morph SGeo∗ with

• RP = {p} for some p ∈ P2C satisfying Γεp = 1

• RL = (L2C)p

is a continuous isomorphism of sketched geometries.
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3.3.4. Transition from sketched geometries to sketches

3.3.36 At that stage not much work is left to do. All there is, is to apply the functor
S : SGeo∗ → Sk to the situation in 3.3.35. A glimpse at the objects involved immediately
yields

S (Γ;Q;P) = S P (Γ;Q) = (Γ;Q) = (Γ; {1},Sexp)

as well as

S (Γε;R;PH) = (Γε; {1}, {ΓεL | L ∈ (L2C)p}) =: (Γε;R).

As any functor preserves isomorphisms,

(ε,E) := S (ε,H) ∈ morph Sk

is an isomorphism of sketches. To be more concrete about E, note that a line stabiliser
Λ = ΓΛ ∈ QL = Sexp is mapped to ΛEL = (Γε)ΛHL = (ΓΛ)ε = Λε.

3.3.37 Proposition. Assume the existence of a continuous monomorphism

H : P → P2C ∈ morph Inc.

Then there is an isomorphism

(ε,E) : (Γ; {1},Sexp)→ (Γε;R) ∈ morph Sk

where

(1) ε : Γ→ PGL3C is a continuous monomorphism of groups

(2) RP = {Γεp} for some p ∈ P2C satisfying Γεp = 1

(3) RL = {ΓεL | L ∈ (L2C)p} .

In particular, every line stabiliser M ∈ RL is of dimension 2.

Proof. For (1), (2) and (3) recollect 3.3.7, 3.3.15, 3.3.35 and 3.3.36 above. In order to
agree with the remark on the dimensions of the line stabilisers, take into account that

• (ε,E) being epic implies that in particular EL is a surjection [1.1.15]

• every fibre in Sexp is of dimension 2, as Sexp is Peter-planar

• the co-restriction ε : Γ→ Γε is a homeomorphism [3.3.30].

Let M ∈ RL. Due to surjectivity of EL, there is a fibre Λ ∈ Sexp such that ΛEL = M.
Then 2 = dim Λ = dim Λε = ΛEL = dim M. �
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3.3.38 Recipe. What have we learnt in the meantime, revisiting our original ques-
tion ? If ever there is a morphism H : P ↪→ P2C of stable planes, there is a continuous
injective group morphism ε : Γ→ PGL3C and some point p ∈ P2C with trivial stabiliser
Γεp = 1 such that for every line L in the pencil (L2C)p in p the stabiliser ΓεL is of dimen-
sion 2. As a consequence, the non-existence of such a morphism H of stable planes can
be established by proving that for every monomorphism ε : Γ → PGL3C of topological
groups and for every point p ∈ P2C the point stabiliser Γεp is non-trivial or there is some
line L ∈ (L2C)p whose stabiliser is of dimension dim ΓεL 6= 2. This describes the itinerary
for the remains of the chapter :

1. Find all continuous injective morphisms ε of the group Γ into PGL3C.

2. Single out all the points p ∈ P2C satisfying Γεp = 1.

3. For those points p check the line pencils (L2C)p for lines L with dim ΓεL 6= 2.

3.4. Hunting down group monics

For a start, we will now be searching for all continuous group monomorphisms

ε : Γ ↪→ PGL3C.

At first glimpse, this looks hopeless. Can we do anything to make it look more hos-
pitable ? To that end, let us have a look at the constellation of groups. Note that
PGL3C = PSL3C; in fact, for any A ∈ GL3C with a := detA 6= 0 we have det(a−

1
3A) = 1

and [A] = [a−
1
3A] ∈ PSL3C. Moreover, π : SL3C _ PSL3C : A 7→ [A] is a universal

covering with kernel ker π = {λ1l | λ ∈ C, λ3 = 1}.

3.4.1 Lemma. a) For any morphism ε : Γ→ PSL3 there is a unique lifting ϕ : Γ→
SL3C satisfying ϕπ = ε. In other words, the following diagram commutes :

Γ
ε- PSL3C

Γ

wwwwwwwwww
ϕ - SL3C

π

a

b) If ε is monic then so is ϕ.

Proof. ad (a). This is true because Γ is simply connected; see [26, A2.6] or [49, 3.7.6].
ad (b). Let α, β ∈ morph Gp such that αϕ = βϕ. Then αϕπ = αε = βε = βϕπ, and
as ε is monic, we get α = β. �
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3.4. Hunting down group monics

The consequence is that given a group embedding ε : Γ→ PGL3C we should be able to
find its lifting ϕ : Γ→ SL3C. Note that different embeddings ε1 and ε2 produce different
liftings ϕ1 and ϕ2. In fact, ϕ1 = ϕ2 implies ε1 = ϕ1π = ϕ2π = ε2.

Thus, in the sequel we will be hunting for any possible group monomorphism ϕ : Γ→
SL3C. As Γ will turn out to be a soluble group we will be able to further embellish the
task by applying Lie’s theorem A.3.4. To that end we will briefly give the commutator
series of Γ and g.

3.4.2 Lemma.

a) Γ =


 a2 x z

a y
1

 | a, x, y, z ∈ R, a > 0


Γ′ =


 1 x z

1 y
1

 | x, y, z ∈ R


Γ′′ =


 1 0 z

1 0
1

 | z ∈ R


Γ′′′ = 1

b) g =


 2t x z

t y
0

 | t, x, y, z ∈ R


g′ =


 0 x z

0 y
0

 | x, y, z ∈ R


g′′ =


 0 0 z

0 0
0

 | z ∈ R


g′′′ = 0

3.4.3 Corollary. Γ is a soluble group and g is a soluble Lie algebra. �

Denote by η : g → sl3C the morphism
η := ` ϕ : ` Γ → `(SL3C) of Lie alge-
bras.

Γ
ϕ - SL3C

g

expg

6

66

η - sl3C

exp

6

3.4.4 Corollary. The homomorphic images Γϕ and gη are soluble.

Proof. Homomorphic images of soluble Lie algebras are soluble; see A.3.5. �
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3. A non-embeddability theorem for Peter planes

Now we are allowed to apply Lie’s theorem A.3.4 to the soluble Lie algebra gη and get

3.4.5 Lemma. gη stabilises some flag in C3. In other words, up to conjugation in
PGL3C, the image gη consists of upper triangular matrices :

gη ≤ d :=


 a x z

b y
c

 | a, b, c, x, y, z ∈ C, a+ b+ c 6= 0

 ≤ sl3C .

As an immediate consequence

Γϕ = gη·exp ≤ dexp ≤ ∆,

where

∆ :=


 a x z

b y
c

 | a, b, c, x, y, z ∈ C, abc = 1

 ≤ SL3C .

3.4.6 Lemma.

Any monic ε : Γ ↪→ PGL3C induces a
monomorphism η : g→ d.

Γ-
ϕ - ∆

g

expg

6

66

-
η

- d

exp

6

Proof. This follows from lemma 3.4.1 and lemma 3.4.5. In fact, expg ·ϕ is injective,
and hence so is η. �

Instead of hunting down group monomorphisms, we may be tempted to first of all search
for monomorphisms η : g ↪→ d of the corresponding Lie algebras : if there is any monic
ε : Γ ↪→ PGL3C then we should be able to find some monomorphism η : g → d of
Lie algebras. A closer look at the commutator series of ∆ and d will turn out to be
convenient for finding monomorphisms.

3.4.7 Lemma.

a) ∆ =


 a x z

b y
c

 | a, b, c, x, y, z ∈ C, abc = 1


∆′ =


 1 x z

1 y
1

 | x, y, z ∈ C


∆′′ =


 1 0 z

1 0
1

 | z ∈ C


∆′′′ = 1

70



3.4. Hunting down group monics

b) d =


 a x z

b y
c

 | a, b, c, x, y, z ∈ C, a+ b+ c = 0


d′ =


 0 x z

0 y
0

 | x, y, z ∈ C


d′′ =


 0 0 z

0 0
0

 | z ∈ C


d′′′ = 0

3.4.8 Lemma. Let η : g → d be a monomorphism. Then so are η|g′ : g′ → d′ and
η|g′′ : g′′ → d′′.

Smaller Lie algebras are easier to handle. So we will try and find possible embeddings
of g′′ = `(Γ′′), then of g′ = `(Γ′) and so forth, gradually climbing our way up towards
embeddings of g = ` Γ.

Step 1. The bottom-most step will hence determine η|g′′ up to conjugation in ∆.

3.4.9 Lemma. Any monic η : g′′ → d′′ can be described by e3 7→ we3 for some w ∈ C\0.
Without loss we can assume w = 1.

Proof. η is a monomorphism if and only if w 6= 0. For w 6= 0 we can apply the
inner automorphism e3 7→ Diag(1, w, w−1)−1 · e3 ·Diag(1, w, w−1), which transforms we3
into e3. Thus, without loss of generality η = id. �

Next we will determine the extensions of η|g′′ to g′. All we know at first glimpse is that
η|g′ must be of the form

η : g′ → d′

e3 7→ e3

e1 7→

 0 u w
0 v

0



e2 7→

 0 u′ w′

0 v′

0


where e3, e

η
1, e

η
2 form a basis of d′. We can learn more about u, v, w, u′, v′, w′ ∈ C taking

into account that any morphism of Lie algebras had better respect Lie brackets. Recall
from 3.1.5 that the Lie bracket in g is given by

[d, e1] = e1 [e1, e2] = e3
[d, e2] = e2 [e1, e3] = 0
[d, e3] = 2e3 [e2, e3] = 0 .
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3. A non-embeddability theorem for Peter planes

At that stage, the only important condition is e3 = eη3 = [e1, e2]
η = [eη1, e

η
2], which

directly translates to 1 = uv′ − u′v. In other words, a linear mapping η of the form
above is a morphism of Lie algebras if and only if 1 = uv′ − u′v. Note that in that
case eη3, e

η
1, e

η
2 automatically form a basis of g′. Moreover, 1 = uv′ − u′v implies that

¬(u = v = 0) ∧ ¬(u′ = v′ = 0) ∧ ¬(u = u′ = 0).

Step 2. We can now try and find automorphisms of d′ in order to make the image of g′

look more pleasant. One thing we are allowed to do is conjugate eη1 with matrices that
will not destroy what we have already achieved; more explicitly, we may use elements of
the centraliser

C3 := C∆(e3) = {A ∈ ∆ | a = c} .

There are two cases to be distinguished between :
Case u 6= 0. Using

A :=

 u
1
3 0 0

u−
2
3 −u− 2

3w

u
1
3

 ∈ C3

we get  0 u w
0 v

0

A

=

 0 1 0
0 uv

0

 .

Case u = 0. Then eη1 ∈ 〈e2, e3〉, and any conjugate eη·A1 with A ∈ C3 is also contained
in 〈e2, e3〉. Therefore, the intended embellishment cannot be achieved by conjugation
alone. But we may first apply some left twist by an automorphism of g satisfying eα1 = e2
and eα2 = −e1, and fixing e3 and d; cf. 4.4.2. (Note that every α ∈ Aut g fixes d.) Then
eαη1 = u′e1 + v′e2 +w′e3. As u = u′ = 0 would imply that η were not monic u′ has to be
non-zero, and we are transferred to the first case. Consequently, there is some A ∈ C3

with the property that

eαη·A1 = 1 · e1 + u′v′ · e2.

Summarising both cases and pointing out that in the end we will be merely interested
in the image gη = gαη, we may thus assume without loss of generality that eη3 = e3 and
u = 1, i.e.,

eη1 =

 0 1 0
0 v

0

 for some v ∈ C.

Step 3. In order to simplify eη2, we may use any element of

C13 := C3 ∩ C∆(

 0 1 0
0 v

0

) =


 a x z

a xv
a

 | a, x, z ∈ C , a3 = 1

 .
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Conjugation by such an element

A =

 a x z
a xv

a


maps u′e1 + v′e2 + w′e3 to 0 u′ w′

0 v′

0

A

=

 0 u′ w′ − a−1x
0 v′

0

 .

For instance, conjugation by

A :=

 1 w′ 0
1 w′v

1

 ∈ C13

yields  0 u′ w′

0 v′

0

A

=

 0 u′ 0
0 v′

0

 .

This is as good as it gets.

3.4.10 Lemma. Any monic η|g′ : g′ → d′ can be described by

e3 7→ e3
e1 7→ e1 + ve2
e2 7→ u′e1 + v′e2

where u′, v′ ∈ C and 1 = v′ − u′v.

Step 4. All that is left to do now is find an appropriate image of d ∈ g. Consider

dη =

 r u′′ w′′

s v′′

t


for some r, s, t, u′′, v′′, w′′ ∈ C. The fact that η is a Lie algebra morphism implies r = t+2,
s = t + 1 and v′′ = u′′ = 0. Moreover, dη ∈ sl3C requires 0 = tr dη = 3(t + 1), hence
t = −1. Thus we get

dη =

 1 0 w′′

0 0
−1
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for a start. The stabiliser we are interested in is

C123 := C13 ∩ C∆(

 0 u′ 0
0 v′

0

) =


 a 0 z

a 0
a

 | a, z ∈ C , a3 = 1

 .

Indeed, conjugation by

A :=

 1 0 −w′′
2

1 0
1

 ∈ C123

transforms dη into Diag(1, 0,−1) = d− 1l. All in all we have at that stage proved

3.4.11 Proposition. Let η : g → d a monomorphism of Lie algebras. Then, with
α ∈ Aut g as in Step 2, there are parameters u, v ∈ C such that up to conjugation in ∆

αη : e3 7→

 0 0 1
0 0

0

 = e3

e1 7→

 0 1 0
0 v

0

 = e1 + ve2

e2 7→

 0 u 0
0 1 + uv

0

 = ue1 + (1 + uv)e2

d 7→

 1 0 0
0 0
−1

 = d− 1l .

The homomorphic image of g then is

gαη = gη = ` Γ`ϕ =


 r xu+ y z

0 x(1 + uv) + yv
−r

 | r, x, y, z ∈ R

 .

�

Conversely, such a morphism η is monic for every choice of u, v,∈ C indeed : The
image gη is 4-dimensional if and only if

0 6= det

(
u 1 + uv
1 v

)
= uv − 1− uv = −1,

that is, always.
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3.4.12 In order to handle the stabilisers from 3.3.38, the explicit image Γϕ is required.
Direct computing leaves us with some utterly ugly matrices. More elegantly, the Lie
algebra can be written as the (inner) semidirect sum

gη = Rdη ∝ (g′)η = Rdη ∝ hei3R
η = Rdη ∝ (Reη1 ∝ (Reη2 ⊕ Reη3)).

By A.3.3, the corresponding Lie group gη·exp = Γϕ is the (inner) semidirect product

Γϕ = (eRd)ϕ n Γ′ϕ = (eRd)ϕ n Hei3R
ϕ = (eRd)ϕ n ((eRe1)ϕ n (eRe2+Re3)ϕ),

which computes as

Γϕ =


 a a(tu+ r) a(s+ rt(1 + uv) + t2

2
u(1 + uv) + r2

2
v)

1 t(1 + uv) + rv
a−1

∣∣∣∣∣∣ a, r, s, t ∈ R
a > 0

 .

Consequently,
Γε = Γϕπ = {[A] | A ∈ Γϕ} ∼= Γϕ.

3.4.13 Remark. We have already seen in 3.3.30 that under the hypothesis of the exis-
tence of an embedding H : P → P2C, the group morphism ε constructed on our way is
an embedding. Now that we actually know its image, the fact that all diagonal entries
are positive real numbers enables us to add that ϕ is an embedding, too. Recall from
3.1.1 that there is a homeomorphic exponential function between

r :=
R C C

R C
R

and P :=
R+ C C

R+ C
R+

.

a) gη ≤ r ∩ sl3C and Γϕ ≤ P ∩ SL3C

b) exp |P∩SL3C

r∩sl3C
: r ∩ sl3C→ P ∩ SL3C is a homeomorphism.

c) exp |Γϕ

gη : gη → Γϕ is a homeomorphism.

d) η|gη
: g→ gη is a homeomorphism.

e) ϕ|Γϕ
: Γ→ Γϕ is a homeomorphism.

f) ϕ : Γ→ SL3C is an embedding.

Proof. ad (a). 3.4.12 ad (b). Let A ∈ P∩SL3C. As by 3.1.1, the exponential map expr

is surjective, there is an element X ∈ r such that Xexp = A. Now 1 = detA = (trX)exp,
and as the diagonal elements of X are real numbers, this implies trX = 0. Hence,

X ∈ r ∩ sl3C. Therefore, exp |P∩SL3C

r∩sl3C
: r ∩ sl3C → P ∩ SL3C is a co-restriction of a

homeomorphism and as such is homeomorphic itself; cf. A.1.4. ad (c). Note that
gη·exp = gexp ·ϕ = Γϕ, as expg is surjective. Hence again, the surjection exp |Γϕ

gη is a co-
restriction of a homeomorphism and thus is homeomorphic. ad (d). η : g → sl3C is
an injective R-linear map. Therefore, the co-restriction η|gη

: g → gη is a continuous
R-linear bijection; and then so is its inverse. This establishes that η|gη

is an open map.
ad (e). This follows from (c) and (d), and from expg being a homeomorphism, too. �
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PSL3C

SL3C

π

a

Γ-
ϕ|P∩SL3C

-⊂

ε

-

⊂

ϕ

-

P ∩ SL3C ⊂ -
⊂

-

P

′
ϕ|Γϕ

Γϕ
⊂

-
-

--

gη

expr |··

6

66

g

expg

6

66

- η|r∩sl3C

--

η|
g
η

--

r ∩ sl3C

expr|··

6

66

⊂ -

⊂

-

r

expr

6

66

sl3C

expsl3C

6

⊂

-

-

η

-

After all these modifications our original recipe 3.3.38 can be rendered in a more explicit
way :

3.4.14 Recipe II. Existence of a morphism H : P → P2C of stable planes implies the
existence of some continuous group monomorphism ϕ : Γ → ∆ as in 3.4.12, given by
complex parameters u and v, and the existence of some point p ∈ P2C such that Γϕp = 1

and such that the line stabiliser of every line L ∈ (L2C)L is 2-dimensional.

Non-existence of such an embedding H will hence be proved by proving that for any
choice of u and v and every p ∈ P2C satisfying Γϕp = 1 there is at least one line L ∈ (L2C)p
whose line stabiliser is of dimension dim ΓϕL 6= 2.
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3.5. The point orbits

Proof. Let us for a moment distinguish between two different group monics ϕ and ψ,
where ϕ : Γ → SL3C purely denotes the (unique) lifting of ε, satisfying ϕπ = ε. On
the other hand, ψ : Γ → ∆ denotes the “embellished” version of ϕ from 3.4.12. Note
that the search for a favourable appearance of ϕ has been achieved by conjugation by
some matrix A ∈ SL3C; hence ψ = ϕκA : Γ → ∆ : M 7→ A−1MϕA. It is essential
that Γψ ∩ ker π = 1 and therefore Γε ∼= Γε·κ[A] = Γϕ·κA·π = Γψπ ∼= Γψ. Tracing our way
backwards, we see that the following implications hold :

∀ψ : Γ→ ∆ ∈ monic TopGp of “beautiful form” as in 3.4.12 ∀q ∈ P2C.

Γψq 6= 1 ∨ (∃K ∈ (L2C)q. dim ΓψK 6= 2)

=⇒ ∀ϕ : Γ→ SL3C ∈ monic TopGp ∀p ∈ P2C.
Γϕp 6= 1 ∨ (∃L ∈ (L2C)p. dim ΓϕL 6= 2)

=⇒ ∀ε : Γ→ PGL3C ∈ monic TopGp ∀p ∈ P2C.
Γεp 6= 1 ∨ (∃L ∈ (L2C)p. dim ΓεL 6= 2)

=⇒ @ H : P → P2C ∈ morph StP

As a matter of fact, the first implication is simple linear algebra, the second one is due
to Γε ∼= Γψ and hence equivalence of their actions on the projective plane, and the third
step just restates recipe 3.3.38, backed up by the information that ϕ is an embedding,
too.

By abuse of notation, throughout the remains of the chapter these distinctions will be
ignored; ε and ψπ will be identified. The group acting will be Γε ∼= Γψπ. �

3.5. The point orbits

Due to the reflections in 3.4.14 we will have to single out every point p ∈ P2C having
a trivial stabiliser and then compute the line stabilisers for every single line through p.
Being lazy and mortal, we will try and pool points with similar behaviour into point
orbits with respect to the action of Γε ≤ PGL3C : For any other point q = pα with
α ∈ Γε contained in the same orbit the stabiliser Γεq = Γεpα = (Γεp)

α is trivial if and only if
Γεp is trivial. Thus, in the end we will be down to the task of scrutinising the stabilisers
of only one representative per orbit.

The present chapter is therefore dedicated to the search of all those point orbits —
the result of which will largely depend on the choice of u and v. We will first of all
have a look at some particularly friendly orbits and gather a sufficient number of them.
Then the point of view will be switched and a documentation of all point orbits for every
“characteristic” constellation of the complex parameters u and v will be given.

Throughout the whole section consider an element

A =

 a a(tu+ r) a(s+ tr(1 + uv) + t2

2
u(1 + uv) + r2

2
v

1 t(1 + uv) + rv
a−1

 ∈ Γε ,
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3. A non-embeddability theorem for Peter planes

where a, r, s, t ∈ R and a > 0. Remember that u, v ∈ C are the parameters determining
the group embedding ε := ε(u,v). (As a matter of fact, A will appear within the proofs
only.)

3.5.1 Lemma. The dark blue orbit. C(0, 0, 1)Γε
= {C(0, 0, 1)} .

3.5.2 Lemma. The yellow orbits. C(0, 1, 0)Γε
=

{C(0, 1, y) | y ∈ R} for u /∈ R, v = 0
u, v ∈ R

{C(0, 1, w) | w ∈ C} for u /∈ R, v ∈ R×

u ∈ R, v /∈ R
u, v /∈ R, 1 + uv /∈ Rv

{C(0, 1, rv) | r ∈ R} for u, v /∈ R, 1 + uv ∈ Rv

Proof. We get
C(0, 1, 0) · A = C(0, 1, t(1 + uv) + rv) ,

which immediately explains all cases except for u, v /∈ R. In the latter case it has to
be taken into account that v and 1 + uv, interpreted as R-vectors, may or may not be
linearly dependent. �

3.5.3 Lemma. The light blue orbits. C(0, 1,±i)Γε
=

{C(0, 1, w) | w ∈ C} for u, v ∈ R
u /∈ R, v = 0
u, v /∈ R, 1 + uv /∈ Rv

{C(0, 1, w) | Imw ≷ 0} for u /∈ R, v ∈ R×

u ∈ R, v /∈ R
{C(0, 1, rv ± ai) | r ∈ R, a > 0} for u, v /∈ R, 1 + uv ∈ Rv

Note that for reasons of convenience we are handling two orbits at the same time, one
for +i and one for −i.
Proof. We compute

C(0, 1,±i) = C(0, 1, t(1 + uv) + rv ± ai) ,

which automatically yields the statements on the (all) real and mixed cases. For u, v /∈ R
we will again have to pay attention to the linear independence of v and 1 + uv as R-
vectors. �

3.5.4 Lemma. The red orbits. C(1, 0, 0)Γε
=

{C(1, x, y) | x, y ∈ R} for u, v ∈ R

{C(1, x, w) | x ∈ R, Imw = x2

2
Im v} for u ∈ R, v /∈ R

{C(1, z, w) | z ∈ C, Imw = term(z)} for u /∈ R

where term(z) := Im(tr(1 + uv) + t2

2
u(1 + uv) + r2

2
v) with t := Im z · (Im u)−1 and

r := Re z − Im z · Reu · (Im u)−1 .
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Proof.

C(1, 0, 0) · A = C(1, tu+ r, s+ tr(1 + uv) +
t2

2
u(1 + uv) +

r2

2
v) .

The real case can be verified stante pedes. As to the case u, v /∈ R, for any z ∈ C there
are unique t, r ∈ R such that z = tu + r; namely the ones given above. Now for an
arbitrary w ∈ C we will try and find a > 0 as well as s ∈ R such that the third coordinate
above equals w. Thanks to s we may happily ignore the real part and concentrate on
the imaginary part. It is forced to be Imw = term(z).

For a real parameter u the situation changes slightly in as far as the second coordinate
x = tu + r can be chosen freely from R, as well as the real part of the third one. Its
imaginary part turns out to be Imw = 1

2
x2 Im z. �

3.5.5 Lemma. The green orbits. C(1, 0,±i)Γε
=

{C(1, x, y) | x, y ∈ R} for u, v ∈ R
{C(1, x, w) | x ∈ R, Imw ≷ 1

2
x2 Im v} for u ∈ R, v /∈ R

{C(1, z, w) | z ∈ C, Imw ≷ term(z)} for u /∈ R

where term(z) is defined as in 3.5.4.

Proof.

C(1, 0,±i) · A = C(1, tu+ r, s+ tr(1 + uv) +
t2

2
u(1 + uv) +

r2

2
v ± ai) .

The important point is that a third component w ∈ C must satisfy Imw = Im(tr(1 +

uv)+ t2

2
u(1+uv)+ r2

2
v)±a, where a > 0. So, still considering the third component, these

two orbits fill up the space the previous red ones have left out in the non-real cases. �

3.5.6 Lemma. The lilac orbits. These two orbits are particularly nasty, such that
the cases actually required are given only :

C(1,±i, 0)Γε

= {C(1, z, w) | Im z ≷ 0, w ∈ C} for u, v ∈ R or u ∈ R, v /∈ R .

Proof.

C(1,±i, 0) ·A = C(1, tu+r±ai, s+ tr(1+uv)+
t2

2
u(1+uv)+

r2

2
v± i ·a(t(1+uv)+rv)).

Let z ∈ C with Im z ≷ 0 and w ∈ C. In the real case the second coordinate z determines
a > 0 uniquely, and for any t there is a unique r such that z = tu + r ± ai. Due to s
the real part of the third component can be chosen arbitrarily. The imaginary part is
Imw = ±a(t(1 + uv) + rv). Thus we are looking for a solution (t, r) of

(Re z, Imw) = (t, r)

(
u a(1 + uv)
1 av

)
,
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3. A non-embeddability theorem for Peter planes

and because the according determinant equals auv−a(1+uv) = −a < 0 we are granted
one, a unique one even.

Now consider the case u ∈ R, v /∈ R : Nothing changes for the second coordinate
z = tu+ r ± ai. The imaginary part of the third one computes as

Imw =
1

2
Im v(tu+ r)2 ± a(t+ Re v(tu+ r))

=
1

2
Im vRe z ± a(t+ Re vRe z) .

Thus t is determined uniquely by Imw; then Re z determines r, and finally Rew decides
the choice of s. �

It may be enlightening to have a look at the actual orbit partition of P2C, dependent
on the constellations of parameters u and v.

3.5.7 Corollary. There are five typical cases to be distinguished between. The follow-
ing renders the complete orbit partitions for each of them.

Case u, v ∈ R.

C(0, 0, 1)Γε
= {C(0, 0, 1)}

C(0, 1, 0)Γε
= {C(0, 1, y) | y ∈ R}

C(0, 1,±i)Γε
= {C(0, 1, w) | Imw ≷ 0}

C(1, 0, 0)Γε
= {C(1, x, y) | x, y ∈ R}

C(1, 0,±i)Γε
= {C(1, x, w) | x ∈ R, Imw ≷ 0}

C(1,±i, 0)Γε
= {C(1, z, w) | Im z ≷ 0, w ∈ C}

Case u ∈ R and v /∈ R.

C(0, 0, 1)Γε
= {C(0, 0, 1)}

C(0, 1, 0)Γε
= {C(0, 1, w) | w ∈ C}

C(1, 0, 0)Γε
= {C(1, x, w) | x ∈ R, Imw = x2

2
Im v}

C(1, 0,±i)Γε
= {C(1, x, w) | x ∈ R, Imw ≷ x2

2
Im v}

C(1,±i, 0)Γε
= {C(1, z, w) | Im z ≷ 0, w ∈ C}

Case u /∈ R and v = 0.

C(0, 0, 1)Γε
= {C(0, 0, 1)}

C(0, 1, 0)Γε
= {C(0, 1, y) | y ∈ R}

C(0, 1,±i)Γε
= {C(0, 1, w) | Imw ≷ 0}

C(1, 0, 0)Γε
= {C(1, z, w) | z ∈ C, Imw =

Im z2

2 Imu
}

C(1, 0,±i)Γε
= {C(1, z, w) | z ∈ C, Imw ≷ Im z2

2 Imu
}
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3.5. The point orbits

Case u /∈ R and v ∈ R×.

C(0, 0, 1)Γε
= {C(0, 0, 1)}

C(0, 1, 0)Γε
= {C(0, 1, w) | w ∈ C}

C(1, 0, 0)Γε
= {C(1, z, w) | z ∈ C, Imw = term(z)}

C(1, 0,±i)Γε
= {C(1, z, w) | z ∈ C, Imw ≷ term(z)}

Case u, v /∈ R.

C(0, 0, 1)Γε
= {C(0, 0, 1)}

C(0, 1, 0)Γε
=

{
{C(0, 1, w) | w ∈ C} for (1 + uv) /∈ Rv
{C(0, 1, rv) | r ∈ R} for (1 + uv) ∈ Rv

C(0, 1,±i)Γε
=

{
C(0, 1, 0)Γε

for (1 + uv) /∈ Rv
{C(0, 1, rv ± ai) | a, r ∈ R, a > 0} for (1 + uv) ∈ Rv

C(1, 0, 0)Γε
= {C(1, z, w) | z ∈ C, Imw = term(z)}

C(1, 0,±i)Γε
= {C(1, z, w) | z ∈ C, Imw ≷ term(z)}

where term(z) := Im
(
tr(1 + uv) + t2

2
u(1 + uv) + r2

2
v
)

with t, r ∈ R uniquely such

that z = tu+ r.

3.5.8 For a better idea of what is left to do the above will be summarized in a tabular.
An orbit is marked

× iff it is necessary and not covered by any other orbit marked ×
colour iff it is already covered by the orbit colour

(which then had better be marked ×).
Thus, per row the orbits marked × make up a partition of P2C.

C(0, 0, 1) C(0, 1, 0) C(0, 1,±i) C(1, 0, 0) C(1, 0,±i) C(1,±i, 0)
blue yellow lightblue red green lilac

u, v ∈ R × × × × × ×
u ∈ R, v /∈ R × × yellow × × ×

u /∈ R, v = 0 × × × × × red ∪ green
u /∈ R, v ∈ R× × × yellow × × red ∪ green

u, v /∈ R × × ×
yellow ∗ × × red ∪ green

∗ × for 1 + uv /∈ Rv and yellow for 1 + uv ∈ Rv

81



3. A non-embeddability theorem for Peter planes

Having worked our way through all this, are we any better off than before ? Talking of
point stabilisers, we do no longer have to compute one for each point in P2C but only
one per ”×” in table 3.5.8 above. Which certainly is a slightly improved situation —
this at least is a finite problem.

3.6. The point stabilisers

Remember that our task is to single out every point p ∈ P2C with trivial stabiliser Γεp.
This still — despite the radical reduction from section 3.5 — looks like tedious work.
We may again be tempted to search for an equivalent within the according Lie algebras.
Indeed, there is humble aid : for a point p = Cw ∈ P2C, the Lie subalgebra

Sw := {M ∈ gη | wM ∈ Cw} ≤ gη

is apt to nominate candidates.

3.6.1 Lemma. For any w ∈ C3 triviality of the point stabiliser Γε
Cw implies Sw = 0.

Proof.

PGL3C

Γ ⊂ ϕ -⊂

ε

-

∆

π

a

g

expg

6

66

⊂
η

- `∆

exp

6

Let p = Cw ∈ P2C, and let M ∈ gη be an
element of Sw, satisfying wM = λw for some
λ ∈ C. Then w · M exp = w ·

∑∞
ν=0

1
ν!
Mν =∑∞

ν=0
1
ν!
λνw = eλ · w, i.e., p ·M exp = p. There-

fore, Sexp
w ⊆ Γϕp .

Now assume moreover that Γεp = 1. Then
M exp π ∈ Γϕπp = Γεp = 1, hence M exp π = 1l.
Injectivity of ε and expg implies M = 0.

�

Presumably, the Sw are easier to produce than the group stabilisers. In the sequel
these sets will be listed in order to come up with candidates for trivial point stabilisers.
Throughout the proofs, let

M =

 r xu+ y z
0 x(1 + uv) + yu

−r

 ,

with r, x, y, z ∈ R, be an element of the Lie algebra gη.

3.6.2 Lemma. S(0,0,1) = gη.

Some of the equations turn out to be rather awkward. This is why we occasionally just
state whether or not Sw = 0. This suffices for all subsequent applications, by 3.6.1 and
part (2) of 3.3.37.
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3.6.3 Lemma. S(0,1,0) 6= 0.

Proof. (0, 1, 0) ·M = (0, 0, x(1 + uv) + yu). Note that r and z are not involved at all;
as a consequence dimS(0,1,0) ≥ 2. �

3.6.4 Lemma. S(0,1,±i) 6= 0.

Proof. Application of the very same argument to z in (0, 1,±i) ·M = (0, 1, 0) ·M ∓
(0, 0, ri).

3.6.5 Lemma.

S(1,0,0) =


 r 0 0

0 x
−r

∣∣∣∣∣∣ r, x ∈ R

 for u ∈ R

and

S(1,0,0) =


 r 0 0

0 0
−r

∣∣∣∣∣∣ r ∈ R

 for u /∈ R

Proof. (1, 0, 0) ·M = (r, xu + y, z) ∈ C(1, 0, 0) if and only if z = 0 and y = −xu. If
u /∈ R this forces 0 = y = xReu and 0 = x Im u, in other words x = y = 0. �

3.6.6 Lemma.

S(1,0,±i) =


 0 0 0

0 x
0

∣∣∣∣∣∣ x ∈ R

 for u ∈ R

and
S(1,0,±i) = 0 for u /∈ R .

Proof. λ(1, 0,±i) = (r, xu + y, z ∓ ri) if and only if λ = r and y = −xu ∈ R as well
as 0 = z ± 2ri. The latter implies 0 = z = r. The penultimate equation can be solved
non-trivially for u ∈ R; otherwise it forces x and y to be 0. �

3.6.7 Lemma. S(1,±i,0) = 0 unless 1 = Im u Im v and 0 = Re v Im u.

Proof. We figure out that λ(1,±i, 0) = (r, xu+ y, z ± i(x(1 + uv) + yu)) if and only if

• λ = r

• y = xReu

• r = ±x Im u

• 0 = z ∓ x Im uRe v

• 0 = x(1− Im u Im v) .
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3. A non-embeddability theorem for Peter planes

If 0 6= 1− Imu Im v — thus in particular if u or v is real — then we need x = 0, which
again implies r = y = z = 0.

Otherwise we can freely choose x (which then uniquely determines r, y and z). Yet
entry 23 equals x(1−Im u Im v+iRe v Im u) = xiRe v Im u, which equals 0 if Re v Im u =
0; but then entry 13 equals z = ±x Im uRe v = 0. So for 0 = 1 − Im u Im v and
Re v Im u = 0 we end up with Sw = 0, nevertheless. Finally, for 0 = 1 − Im u Im v but
Re v Im u 6= 0 the set Sw is not trivial (but 1-dimensional). �

Resuming the above five lemmas in combination with table 3.5.8, the only candidates
left are C(1,±i, 0) for u ∈ R and C(1, 0,±i) for u /∈ R. In both cases the point stabilisers
turn out to be trivial, indeed :

3.6.8 Lemma. Γε
C(1,±i,0) = 1 for u ∈ R.

Proof. Some matrix A ∈ Γε
C(1,±i,0) had better satisfy (exchanging a for a−1)

C(1,±i, 0) = C(1, tu+ r± ai, s+ tr(1+uv)+
t2

2
u(1+ uv)+

r2

2
v± ai(t(1 + uv)+ rv)) .

Equality of the second component can be guaranteed for r = −tu and a = 1 only. Using
these, the third component is s− t2

2
u(1+ uv)+ t2

2
u2v± i(t(1 + uv)− tuv) = s− t2

2
u± it,

which equals 0 if an only if t = 0 and s = t2

2
u = 0. But then also r = 0; hence A = 1l. �

3.6.9 Lemma. Γε
C(1,0,±i) = 1 for u /∈ R.

Proof. We must guarantee

C(1, 0,±i) = C(1, 0,±i) · A = C(1, tu+ r, s+ tr(1 + uv) +
t2

2
u(1 + uv) +

r2

2
v ± ai) .

Equality of the second component holds if and only if 0 = r+ tReu and 0 = t Im u, that
is t = r = 0. The third component requires a solution of ±i = s± a−1i, which is s = 0
and a = 1. �

What does this mean for the original question of embeddability of P into P2C ?

3.6.10 Corollary. An embedding of (Γ; {1},Sexp
k ) into (Γε; {Γεp}, {ΓεL | L ∈ (L2C)p})

can only be achieved for a point p contained in one of the lilac orbits C(1,±i, 0)Γε
with

u ∈ R and the green orbits C(1, 0,±i)Γε
with u /∈ R.

3.7. The line stabilisers

So far, candidates for the group embedding ε : Γ→ PGL3C and for the points p ∈ P2C
with trivial stabiliser have been determined. The time has come to talk about lines.
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Following the recipe in 3.4.14, we will successively leaf through the five ”typical”
cases having crystallised in 3.5.8 and strive to find at least one line L ∈ (L2C)p with
dim ΓεL 6= 2. By 3.6.10, each of the five cases determines candidates for the point
representative p : p0 = C(1,±i, 0) for u ∈ R and q0 = C(1, 0,±i) for u /∈ R. In section
3.2 the fact that the real points form a Baer subplane in P2C was used to gain an explicit
description of the line pencils through p0 and q0 [3.2.5]. Their homogeneous coordinates
will be used here.

3.7.1 Lemma. Let A ∈ PGL3C and L = Kera for a ∈ C3 \ 0 be a projective line.
Then

a) LA = Ker(A−1a)

b) A stabilizes L if and only if Aa ∈ Ca

Proof. ad (a). Remember that ordinary vectors are row vectors, but a is a column
vector. We get LA = {CxA | 0 = x ·a = xA ·A−1a} = {Cy | 0 = y ·A−1a} = Ker(A−1a).
ad (b). L = LA iff Ker a = Ker(A−1a) iff λa = Aa for some λ ∈ C× iff Aa ∈ C×a. �

As usual let

A =

 a a(tu+ r) a(s+ tr(1 + uv) + t2

2
u(1 + uv) + r2

2
v

1 t(1 + uv) + rv
a−1

 ∈ Γε ,

with a, r, s, t ∈ R and a > 0, wherever an element A ∈ Γε ≤ PGL3C appears.

The case u, v ∈ R. Then we need to check the line pencil of the standard lilac
point p0 = C(1,±i, 0) for adequate lines. For instance, consider a line L of type L =
p0 ⊕ C(1, d, c) with c, d ∈ R, c 6= 0.

3.7.2 Lemma. If u, v ∈ R then for any red-lilac line L = p0 ⊕ C(1, d, c) with c, d ∈ R,
c 6= 0, the line stabiliser ΓεL is trivial.

Proof. In homogeneous coordinates, L = Ker(1 ± i − c−1(1 ± id))T. Let A ∈ ΓεL;
let λ ∈ C× with

λ

 1
±i

−c−1(1± id)

 =

 a± ia(tu + r)− ac−1(1± id)(s+ tr(1 + uv) + t2

2
u(1 + uv) + r2

2
v)

±i−−c−1(1± id)(t(1 + uv) + rv)
−a−1c−1(1± id)

 .

The third component forces λ = a−1. From the second component we learn that 0 = t(1+
uv)+rv and a = 1. The first one then comes in with 0 = s+tr(1+uv)+ t2

2
u(1+uv)+ r2

2
v

and 0 = tu+ r, and consequently A = 1l. �
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3. A non-embeddability theorem for Peter planes

The case u ∈ R, v /∈ R. The corresponding candidate for a point representative is
of the same type p0 = C(1,±i, 0), but this time the lines of type L = p0 ⊕ C(0, 1, c) =
Ker(1 ± i ic−1)T, c 6= 0, are by far easier to handle. Again we get

3.7.3 Lemma. If u ∈ R and v /∈ R, then for any yellow-lilac line L = p0 ⊕ C(0, 1, c)
with c ∈ R× the line stabiliser ΓεL is trivial.

Proof. A ∈ ΓεL stabilizes L if and only if

λ

 1
±i
±ic

 =

 a± ia(tu + r)± iac−1(1± id)(s+ tr(1 + uv) + t2

2
u(1 + uv) + r2

2
v)

±i± ic(t(1 + uv) + rv)
±ica−1


for some λ ∈ C×. Again λ = a−1 follows immediately. Moreover equality of the second
components can only be guaranteed if 0 = ∓c−1 Im v(tu + r), that is r = −tu along
with t = −c(1 − a−1). Then some juggling of the first components subsequently spits
out a = 1 and s = t2

2
u. But putting a = 1 in the equation for t above forces t = 0 and

finally A = 1l. �

The remaining three cases are those where the lilac orbits are subsumed by the green
and red ones [see 3.5.8], and in fact 3.6.10 states that the candidate for a point repre-
sentative p must be a green one : q0 = C(1, 0,±i). As a consequence the line L must be
drawn from a green pencil.

3.7.4 Lemma. If u /∈ R and v = 0, then for any red-green line L = q0 ⊕C(1, d, c) with
c, d ∈ R, d 6= 0 the line stabiliser ΓεL is trivial.

Proof. In homogeneous coordinates, such a red-green line is of the form L =
Ker(±id(c2 + 1)−1(c± i) 1 − d(c2 + 1)−1(c± i))T. Let A ∈ ΓεL and λ ∈ C× with

λ

 ±id(c2 + 1)−1(c± i)
1

−d(c2 + 1)−1(c± i)

 =

(
±iad(c2 + 1)−1(c± i) + a(tu + r)− d(c2 + 1)−1(c± i) · (s + tr(1 + uv) + t2

2 u(1 + uv) + r2

2 v)
1− d(c2 + 1)−1(c± i) · (t(1 + uv) + rv)

−a−1d(c2 + 1)−1(c± i)

)
.

Then λ = a−1. Furthermore, t = 0 and a = 1 follow from the real and imaginary parts,
respectively, of the second component. Then the first one yields s = 0 as well as r = 0. �

3.7.5 Lemma. For u /∈ R and v ∈ R× any yellow-green line L = q0 ⊕ C(0, 1, c) with
c ∈ R has trivial stabiliser ΓεL.
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3.7. The line stabilisers

Proof. In homogeneous coordinates, L = Ker(±i − c 1). Any λ ∈ C× satisfying

λ

 ±i−c
1

 =

 ±ia− ac(tu+ r) + (s+ tr(1 + uv) + t2

2
u(1 + uv) + r2

2
v)

−c + (t(1 + uv) + rv)
−a−1


must be λ = a−1. Then t = 0 and r = cv−1(1− a−1) follow from the second component,
and the first one then affirms a = 1 and s = 0, and there we are. �

The fifth and final case requires some special care. Algebraically, we can prove that
these line stabilisers are of dimension at most 1, which already suffices for our purposes.

Beyond that, certain line stabilisers turn out to be finite, and in that case they are even
trivial : Γε does not contain non-trivial finite subgroups. In fact, by 3.3.30 the topological
groups Γε and Γ are isomorphic, any finite subgroup is compact, and proposition 5.1.31
later on settles that Γ does not contain non-trivial compact subgroups. An ad hoc
argument for the same claim could be given as follows : Consider a finite subgroup E ≤ Γ
and an element 1 6= α ∈ E. There is an element 0 6= A ∈ g such that Aexp = α, and
for any natural number n the exponential image of nA ∈ g is (nA)exp = αn. As α is
necessarily of finite order, this contradicts injectivity of expg.

3.7.6 Lemma. Let u, v /∈ R and consider an arbitrary yellow-green line L = q0 ⊕
C(0, 1, c) with c ∈ R. Then dim ΓεL ≤ 1.

Proof. We are talking about L = Ker(±i − c 1). Let A ∈ ΓεL. As usual it can be
figured out that

(1+2) (
0

c(1− a−1)

)
= (t, r) ·

(
Im(uv) 1 + Re(uv)
Im v Re v

)
(3) s = rc(1 + tReu)− tr(1 + Re(uv))− t2

2
Re(u+ u2v)− r2

2
Re v

(4) ±a−2 = ±1− tc Imu+ tr Im(uv) + t2

2
Im(u+ u2v) r

2

2
Im v.

Equation (1) is equivalent to

(1’) r = − Im(uv)

Im v
t.

Squaring (2) and subtracting (4), we get some equation of the form

(5) 0 = t · (m+ t · n),

where m and n are terms in c, u and v. Instead of explicitly solving this equation observe
that

• if m = n = 0 then t can be chosen arbitrarily and uniquely determines a, r and s.
Then ΓεL is (at most) 1-dimensional.
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3. A non-embeddability theorem for Peter planes

• if m 6= 0 and n = 0 then t = 0, and as a consequence ΓεL = 1l.

• if m = 0 and n 6= 0 then t = 0, and as a consequence ΓεL = 1l.

• if m · n 6= 0 then there are two solutions for t (one of which is t = 0). Each
of them determines unique solutions for a, r and s, such that |ΓεL| ≤ 2. By the
remark above, though, Γε is not supposed to have non-trivial finite subgroups, and
therefore ΓεL is trivial.

In either case, dim ΓεL never exceeds 1. �

Summarising, for every group embedding ε := ε(u, v) with u, v ∈ C and for every
p ∈ P2C with Γεp = 1, there is a line L ∈ (L2C)p with dim ΓεL < 2. Expressed on the
level of sketches, by proposition 3.3.37 the following has been proved :

3.7.7 Corollary. There is no monomorphism (ε,E) : (Γ; {1},Sexp
k ) ↪→ (Γε;R) of

sketches with the property that

• ε : Γ→ PGL3C is a continuous monomorphism in Gp

• RP = {Γεp} for some p ∈ P2C with Γεp = 1

• RL = {ΓεL | L ∈ (L2C)p}.

Recalling all the way we have come, its essence summarised in 3.3.38, this finally proves
the non-existence of the fictitious embedding of stable planes we started out with in
section 3.3.

3.7.8 Theorem (Non-embeddability of Peter planes). Let P = P (Γ; {1},Sexp)
be a Peter plane, given by a stable partition Sexp of Γ = R n Hei3R. Such a plane P
cannot be embedded into the complex projective plane P2C as a stable plane. As a
matter of fact, there is no morphism H : P → P2C ∈ morph StP.

3.8. One more way of not embedding Peter planes

So far we have obtained the result that Maier’s planes P that arise from stable partitions
of the 4-dimensional Frobenius group Γ = RnHei3R cannot be found as open subplanes
of the classical plane P2C. One possible next move would be to search for less classical
planes that might contain P as an open subplane. Dealing with P2C, we had the good
fortune of Löwen’s Local Fundamental Theorem 3.3.5 giving rise to a group morphism
stemming from a possible embedding of stable planes. As there is no such deus ex
machina to be seen for non-classical planes we will have to restrict the question of
embeddability to embeddability of geometries.

The candidates to be considered here are the translation planes

Tk := UIncP (C2; {0},Sk)
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3.8. One more way of not embedding Peter planes

that arise from the Betten spreads Sk (k ≥ 1) of the Lie algebra g = R ∝ hei3R, as
introduced in 3.1.3. Their full automorphism group is the 8-dimensional group

Aut Tk = 〈β〉n (GL2R n C2) ,

where the (left) action of the general linear group is given by ordinary multiplication
with column vectors, and where β denotes the Baer involution interchanging the halves
of the plane and fixing S+

k ∩ S−
k . In that way, C2 describes the translation group of Tk.

For details, see Salzmann et al. [54, 73.13].

Any continuous group morphism ε : Γ→ Aut Tk would map the connected group Γ into
the connected component

A := GL+
2 R n C2 =

GL+
2 R C2

1

of Aut Tk. Assume there were an embedding (ε,H) : (Γ,P)→ (A, Tk) of geometries with
the property that the co-restriction ε|Γε

is homeomorphic and that H : P → Tk is a
morphism of stable planes. Again, H is an open embedding, and Stroppel [66, 1.1]
ensures that it preserves pencils. Hence the same mechanism may be started that we
have already seen at work, beginning with 3.3.32 and culminating in proposition 3.3.37.
And again, the same recipe crystallises : In order to prove the non-existence of such an
embedding it suffices to make sure that for every continuous injective group morphism
ε : Γ→ A and for every point p ∈ C2 with trivial point stabiliser Γεp = 1 the pencil Kp of
p in Tk contains at least one line L whose line stabiliser has dimension dim ΓεL 6= 2.

Trying to come up with all the possibilities for the continuous group monomorphism
ε : Γ → A terminated with ε being determined by quite large a number of parameters
— which definitely determined not to tackle the point and line stabilisers. Therefore
we just made sure the obvious candidate ε = id : Γ → A does not allow for any such
embedding (id,H) : (Γ,P)→ (A, Tk) and then went on to study different matters.

3.8.1 Proposition. Let P be a Peter plane as in 3.1.4, and for k ≥ 1 consider the trans-
lation plane (A, Tk) as introduced above. There is no morphism H : P → T ∈ morph StP
which would turn (id,H) : (Γ,P)→ (A, Tk) into a monomorphism of geometries.

Proof. The (five) point orbits of Γ on C2 are

Γ ·
(

0
0

)
= R2

Γ ·
(
±i
0

)
=

{(
w
y

)∣∣∣∣ y ∈ R ∧ Imw ≷ 0

}
Γ ·
(

0
±i

)
=

{(
u
v

)∣∣∣∣u ∈ C ∧ Im v ≷ 0

}
.

The only ones having a trivial point stabiliser are the lilac points, represented by po :=
(0,±i)T. Computing the line stabilisers of adjacent lines reveals that, for instance,
ΓL = 1 where L := C(1, i)T + po ∈ Kpo is one of the non-modified lines through po. �
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4. Classical subplanes in Peter planes

Whereas in the previous chapters we found out that none of the Peter planes P is embed-
dable into 4-dimensional ”classical” planes, we will now study 2-dimensional ”classical”
subplanes of P. It will turn out that almost every point in P is contained in an abun-
dance of both, affine and non-affine 2-dimensional closed subplanes of P which are open
subplanes of the affine plane A2R – we will refer to these as Baer subplanes. There are
two archetypes of those Baer subplanes appearing in our context, and we present them
below.

4.1. Two prototypes

The standard non-affine plane

4.1.1 The group. We will consider the 2-dimensional simply connected non-abelian
Lie group

∆ :=


 s t 0

1 0
1

∣∣∣∣∣∣ s, t ∈ R, s > 0

 ∼= Dil11R .

Its Lie algebra is the 2-dimensional non-abelian Lie algebra

n :=


 a b 0

0 0
0

∣∣∣∣∣∣ a, b ∈ R

 ∼= dil1R,

and the exponential map

expn : n → ∆ a b 0
0 0

0

 7→

 ea b · ea−1
a

0
1 0

1

 for a 6= 0

 0 b 0
0 0

0

 7→

 1 b 0
1 0

1
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is a homeomorphism. Its inverse is given by

lnn : ∆ → n s t 0
1 0

1

 7→

 ln s t · ln s
s−1

0

0 0
0

 for s 6= 1 1 t 0
1 0

1

 7→

 0 t 0
0 0

0


.

4.1.2 The geometry. Moreover, we will study the open subplane H of the real affine
plane A2R induced by the ”right” half plane H := {(x, y) | x, y,∈ R, x > 0}. Its line
space, consequently, is u1(R2) +H . An action of ∆ on H is given by

H ×∆ → H

((x, y),

 s t 0
1 0

1

) 7→ (sx, tx+ y) ! (x, y, 1)

 s t 0
1 0

1

 .

For typography’s sake, let us identify ∆ and H via

(s, t)←→

 s t 0
1 0

1

,
which encourages the notation (x,y)(s,t) := (xs, xt + y). Note that the set of 1-
dimensional subspaces u1(R2) is left invariant under the action of ∆. The corresponding
action on the lines of H then is

(u1(R
2) +H) × ∆ → u1(R

2) +H
(Rx+ y, (s, t)) 7→ R x(s,t) + y(s,t) .

This action turns (∆,H) into a geometry.

4.1.3 Lemma. Representatives and the sketched geometry.

a) ∆ acts transitively on the point space H .

b) R(0, 1)∆ = R(0, 1)
R(1, m)∆ = {R(1, t+m

s
) | (s, t) ∈ H} for m ∈ R

c) Representatives for the line orbits – incident with the point p0 := (1, 0) – are
RL := {R(0, 1) + p0} ∪ {u1(R2) + p0}.

d) {p0} ×RL is a system of representatives for the flag orbits.

e) Thus, (∆; ({p0}, RL);H) is a sketched geometry.
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4.1. Two prototypes

Proof. ad (a,b). Simple verification. ad (c). (R(0, 1)+p0)
∆ = R(0, 1)+H makes up

for all the vertical lines. All the non-vertical lines R(1, b)+y for b ∈ R and y ∈ H can be
written in a unique way as R(1, b) + y = (R(1, m) + p0)

y, where m = by1− y2. ad (d).
Any flag inH is of the form (y,Rx+y), where, without loss of generality, x = (0, 1) or x =
(1, b) for some real number b. For x = (0, 1), we get (y,R(0, 1)+ y) = (p0,R(0, 1)+ p0)

y.
For x = (1, b), putting m = by1 − y2, we get (y,R(1, b) + y) = (p0,R(1, m) + p0)

y.
ad (e). By definition, using the above. �

4.1.4 Lemma. Stabilisers and the sketch.

a) ∆p0 = 1

b) ∆R(0,1)+p0 =
1 R 0

1 0
1

∆R(1,m)+p0 =


 s (s− 1)m 0

1 0
1

∣∣∣∣∣∣ s > 0

 for m ∈ R.

c) The sketch corresponding to the sketched geometry (∆,H) is S (∆,H) =
(∆; {1},RL), where

RL = {
1 R 0

1 0
1
} ∪ {


 s (s− 1)m 0

1 0
1

∣∣∣∣∣∣ s > 0

 | m ∈ R }.

Proof. ad (b). For the vertical representative, note that (s, t) ∈ ∆ fixes R(0, 1) +
(1, 0) = (R(0, 1) + p0)

(s,t) = R(0, 1) + (s, t) if and only if (s− 1, t) ∈ R(0, 1), thus s = 1.
For non-vertical representatives R(1, m) + p0, note that (s, t) ∈ ∆R(1,m) if and only if
R(1, m) = R(1, m+t

s
), hence ∆R(1,m) = {(s, (s− 1)m) | s > 0}. Now, (s, t) ∈ ∆R(1,m)+p0 if

and only if (s, t) ∈ ∆R(1,m) and p
(s,t)
0 − p0 = (s− 1, t) = (s− 1)(1, m) ∈ R(1, m), and this

is true for every (s, t) ∈ ∆R(1,m). Thus, ∆R(1,m)+p0 = ∆R(1,m). ad (c). This follows
from (a) and (b), as sketching a geometry just means collecting the group acting, along
with its point and line stabilisers for the respective representatives. �

Peter planes are constructed from partitions of a 4-dimensional Lie algebra g. So, as we
are aiming at embeddings of the above 2-dimensional stable planes into Peter planes, it
may be worthwhile studying the situation on a Lie algebra basis. Recall from 4.1.1 that
expn : n→ ∆ is a homeomorphism.
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4. Classical subplanes in Peter planes

4.1.5 Lemma. The stable partition of the Lie algebra n.

a)
1 R 0

1 0
1

lnn

=
0 R 0

0 0
0

=: t

{

 s (s− 1)m 0
1 0

1

 | s > 0} lnn = R ·

 1 m 0
0 0

0

 =: v(m)

for m ∈ R

b) T := {t} ∪ {v(m) | m ∈ R} = u1(n) is a stable partition of the Lie algebra n.

c) The 2-dimensional non-affine geometry we are studying can be obtained as

(∆,H) = P (∆; {1}, T exp).

The standard affine plane

4.1.6 The group. Consider the 2-dimensional simply connected abelian Lie group

A =


 1 s t

1 0
1

∣∣∣∣∣∣ s, t ∈ R

 .

Its Lie algebra is the 2-dimensional commutative Lie algebra

a =


 0 a b

0 0
0

∣∣∣∣∣∣ a, b ∈ R

 ,

and the exponential map

expa : a → A 0 a b
0 0

0

 7→

 1 a b
1 0

1


is a homeomorphism. Of course it is, as by identifying

(a, b)←→

 0 a b
0 0

0

,
we are looking at naught but the standard abelian Lie algebra R2 ∼= a, whose simply
connected Lie group is (R2,+) ∼= A.
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4.1.7 The geometry. The abelian Lie group A acts on the affine plane A2R by the
point action

R2 × A → R2

((x, y),

 1 s t
1 0

1

) 7→ (x+ s, y + t) ! (1, x, y)

 1 s t
1 0

1


Again, we identify A ∼= R2 an write (x,y)(s,t) := (x+ s, y+ t). Correspondingly, a group
element (s, t) ∈ A will map an affine line Rx+ y to the affine line Rx+ y(s,t); A acts on
A2R via translations. This action turns (A,A2R) into a geometry.

4.1.8 Lemma. Representatives and the sketched geometry.

a) A acts transitively on R2.

b) For every x ∈ R2 \ 0, the line orbit of Rx is RxA = Rx+ R2.

c) Representatives for the line orbits – incident with the origin q0 := (0, 0) – are just
all lines through the origin, i.e., RL = u1(R2).

d) {q0} ×RL is representative for flag orbits.

e) Thus, (A; {q0}, RL;A2R) is a sketched geometry.

Proof. Simple verification. �

4.1.9 Lemma. Stabilisers and the sketch.

a) Aq0 = 1

b) ∀Λ ∈ u1(R2). AΛ = Λ

c) The sketch associated with the geometry (A;A2R) is S (A;A2R) = (A; {1},RL),
where

RL = {
1 0 R

1 0
1
} ∪ {


 1 s sm

1 0
1

∣∣∣∣∣∣ s ∈ R

 | m ∈ R }.

Proof. ad (a). q
(s,t)
0 = (0, 0)(s,t) = (s, t). ad (b). u1(R2) 3 Λ = Rx for x ∈ R2 \ 0.

Then Rx = (Rx)(s,t) = Rx + (s, t) if and only if (s, t) ∈ Rx; hence AΛ = Λ, by abuse of
notation. (Also, AΛ+y = AΛ = Λ.) ad (c). The set of line stabilisers for u1(R2) thus is
identified with u1(R2) = {R(0, 1)} ∪ {R(1, m) | m ∈ R} itself. ”Dis-identification” then
yields the set RL of line stabilisers above. �
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4. Classical subplanes in Peter planes

Again, this calls for a translation onto the Lie algebra level, which leads towards

4.1.10 Lemma. The stable partition of the Lie algebra a.

a)
1 0 R

1 0
1

lna

=
0 0 R

0 0
0

=: t

{

 1 s sm
1 0

1

 | s ∈ R} lna = R

 0 1 m
0 0

0

 =: v(m) for m ∈ R

b) T := {t} ∪ {v(m) | m ∈ R} = u1(a) is a stable partition of the Lie algebra a.

c) The 2-dimensional affine geometry we are studying can be written as

(A;A2R) = P (A; {1}, T exp).

In both cases, the abelian and the non-abelian one, we end up dealing with a 2-
dimensional affine or non-affine sketched geometry of the form U = P (dexp; {1},F exp),
where d is a 2-dimensional Lie subalgebra of g = R ∝ hei3R along with a planar par-
tition F . We now claim that in this very situation, U will always be embeddable into
any Peter plane. The general situation will be studied. Yet, in section 4.3, we will
exemplarily continue the explicit embedding process of the two 2-dimensional planes
above.

4.2. Sketched Baer subplanes from 2-dimensional Lie
subalgebras

Having studied the abelian and non-abelian standard examples, we are in a position to
cope with any 2-dimensional Lie subalgebra, as there are only two isomorphism types of
2-dimensional Lie algebras; cf. [27, §1.4].

4.2.1 Lemma. Let d be a 2-dimensional Lie algebra. Then one of the following state-
ments is true :

a) d is abelian.
Then d ∼= a, and there is a homeomorphic exponential map expd : d→ A.

b) d is non-abelian.
Then d ∼= n, and there is a homeomorphic exponential map expd : d→ ∆.
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4.2. Sketched Baer subplanes from 2-dimensional Lie subalgebras

From now on let P be a Peter plane P = P (Γ; {1},Sexp), where S is one of the stable
partitions of g = ` Γ = R ∝ hei3R (see 3.1.3). Let us consider a 2-dimensional Lie algebra
d along with an injective Lie algebra morphism η : d→ g; in other words, let us study a
2-dimensional Lie subalgebra of g. By the lemma above we may assume a homeomorphic
exponential map expd : d → Θ, where Θ ∈ {A,∆} is the simply connected Lie group
satisfying `Θ = d. Let us furthermore assume — and this is crucial — that dη /∈ S is
none of the fibres in S. Now, put

F := {Λη↼ | Λ ∈ S and Λη
↼ 6= 0}.

4.2.2 Lemma. F is a planar partition of the Lie algebra d.

Proof. Begin by considering the set F ′ := {Λ ∩ dη | Λ ∈ S and Λ ∩ dη 6= 0} of Lie
subalgebras of g. We will verify that F ′ is a planar partition of dη. Then, by injectivity
of the morphism η, F = (F ′)η

↼
is a planar partition of d.

In fact, it is easy to verify that F ′ is a Lie algebra partition of dη. In order to
understand planarity it is helpful to see that every element of F ′ is 1-dimensional : Let
Λ be a fibre in S. If Λ∩ dη were 2-dimensional, then Λ∩ dη = dη were a fibre of S, which
we forbade. As we also excluded 0-dimensional intersections from being elements of F ′,
the subalgebra Λ ∩ dη must be of dimension 1. This now implies planarity of F ′ : Let
Λ,M ∈ S. As (Λ∩dη)∩(M∩dη) = Λ∩M∩dη = 0, the subalgebra (Λ∩dη)⊕(M∩dη) ≤ dη

has dimension 2, thus has to be dη itself. Hence, F ′ is a planar partition of dη. �

Using this partition of d, we can construct a new sketched geometry

U := P (Θ; {1},F exp).

This is the very candidate we would like to establish as a closed 2-dimensional subplane
of every Peter plane. What do we know about U at that stage ? We do know precisely
what it is, as there are only two choices for Θ.

4.2.3 Lemma. Presentation of the candidates.

a) F = u1(d)

b) U is one of the two standard planes presented in the previous section :

d abelian =⇒ U ∼= (A,A2R) as in 4.1.10
d non-abelian =⇒ U ∼= (∆,H) as in 4.1.5

c) In particular, U is a stable plane and F is a stable partition of d.

Proof. ad (a). By 4.2.2, F is a planar partition of the 2-dimensional vector space d,
and there is only one of those. ad (b). From 4.2.1 we know that it suffices to distinguish
between the abelian and the non-abelian cases. In both cases, part (a) ensures F = u1(d),
such that (Θ; {1},F exp) is the sketch of one of the stable planes presented in the previous
section. More precisely, we can trace the stepwise translation of isomorphisms through
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the categories in the lines of the following table — with commutativity of d triggering
the choice between the third or fourth columns :

category object isomorphism type
d abelian d non-abelian

Sk (d; {0},F) (a; {0}, u1(a)) (n; {0}, u1(n))

Sk (Θ; {1},F exp) (A; {1}, u1(a)exp) (∆; {1}, u1(n)exp)

SGeo (Θ;U) (A;A2R) (∆;H)

ad (c). Both candidates are open subplanes of the stable plane A2R and as such are
stable, too. This, by definition, makes F a stable partition of the Lie algebra d. �

The way of embedding these 2-dimensional stable planes into a 4-dimensional Peter
plane is to have a closer look at their sketches. Our next aim, therefore, will be finding
an embedding of sketches, and we will start our search at a Lie algebra level. Consider
the map

H : F → S
Λη

↼ 7→ Λ
.

4.2.4 Lemma.

a) H is an injection.

b) ∀M ∈ F . Mη ≤ MH

c) (η; H) : (d;F)→ (g;S) is a monomorphism in Sk.

Proof. To start with, one might wonder why H should be well-defined at all. In fact, if
Λ and M are fibres in S such that Λη

↼
= Mη↼

, then 0 6= Λη
↼η = Mη↼η ⊆ Λ ∩M, which

implies Λ = M. Injectivity, on the other hand, is fairly immediate. ad (b). Consider
the fibre M = Λη

↼
of F . Then Mη = Λη

↼η ≤ Λ = MH. ad (c). Part (b) just says that
(η,H) is a morphism of sketches, and being a monomorphism follows from injectivity of
both components [1.1.15], hence from (a). �

Our next task will be translating the current situation back to the level of Lie groups.

4.2.5 Lemma.

There is a continuous group morphism ε : Θ → Γ
satisfying ε · expg = expd ·η. Moreover, ε is in-
jective, and the co-restriction ε|Θε

: Θ → Θε is a
homeomorphism. In other words, ε is an embed-
ding of topological groups.

Θ
ε - Γ

d

expd

6

66

⊂
η

- g

expg

6

66
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Proof. By the Open Mapping Theorem A.2.3, the Lie algebra morphism η : d→ g is an
embedding of topological spaces. By 4.2.1 and 3.1.2, both exponential functions, expd

and expg, are homeomorphisms. Therefore the continuous group morphism ε : Θ → Γ
provided by Lie theory ([10, Chap. III, §6, no. 1, Thme. 1]) is not only locally injective,
but globally. Moreover, the universal property of embeddings (see A.1.2) carries over
from η to ε. �

We can use H to define the mapping

EL : F exp → Sexp

Λ 7→ Λexp↼
d ·H·expg

between the partitions of Θ and Γ. If one puts E := (EP ,EL), where

EP : {1} → {1} : 1 7→ 1,

then we end up with an embedding of sketches.

4.2.6 Lemma. (ε,E) : (Θ; {1},F exp)→ (Γ; {1},Sexp) is a monomorphism of sketches.

Proof. The morphism property here reduces to Λε being contained in ΛEL for every
fibre Λ ∈ F exp. In fact, this is true due to 4.2.4 : Let Λ = Mexp ∈ F exp. Then
Λε = Mexp ·ε = Mη·exp ≤ MH·exp = ΛEL . Moreover, EL is injective, as by 4.2.4, H is
injective, and by 4.2.1 so is expd. Summarised, all three components — ε, EP and EL —
are injections, which by 1.1.15 makes (ε,E) a monomorphism in Sk. �

Application of the functor P yields a morphism

(ε,N) : P (Θ; {1},F exp) → P (Γ; {1},Sexp)

of sketched geometries. Remember that written down in an explicit way, the point and
line maps are

NP = ε : Θ → Γ

NL :
⋃

Λ∈Fexp

Θ/Λ →
⋃

Λ∈Sexp

Γ/Λ

Λα 7→ ΛEL · αε

.

As by 1.1.11, the functor P preserves monomorphisms, we get an embedding of sketched
geometries.

4.2.7 Lemma. (ε,N) : (Θ,U)→ (Γ,P) is a monomorphism of sketched geometries.

In particular, the point map NP = ε is quite well-behaved : it is continuous and injective
and its co-restriction is a homeomorphism. Nevertheless, the crux is obvious : We cannot
yet decide whether or not the line map NL is injective. By the example in [76, 2.7] we
know that it does not necessarily have to. A means of — not only — overcoming that
barrier is provided by the theory of morphisms of stable planes from the first chapter.
As a matter of fact, we will apply proposition 1.3.5 in order to establish N : U → P as
an embedding of stable planes.
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4. Classical subplanes in Peter planes

4.2.8 Corollary. NL is continuous and injective, and N : U → P is an embedding of
stable planes.

Proof. In 4.2.3, we saw that U is a stable plane. Already knowing that the point map
NP is continuous and injective, we need to understand that it is non-collapsed : Pick two
different fibres Λ and M in F = u1(R2). Due to injectivity of EL (from 4.2.6), ΛEL and MEL

are still distinct, and hence these two distinct lines (Λ · 1)NL = ΛEL 6= MEL = (M · 1)NL

are contained in the image of NL. This completes all the hypothesis required, and
theorem 1.3.5 terminates the proof. �

Technically resuming here, we get the following

4.2.9 Corollary. The morphism (ε,N) : (Θ,U) → (Γ,P) of sketched geometries has
the following properties :

a) (ε,N) is a monomorphism of sketched geometries.

b) ε : Θ → Γ is a continuous group monomorphism, and its co-restriction is an
isomorphism of topological groups.

c) Both, the point map NP and the line map NL, are continuous and injective. In
particular, N : U → P is a monomorphism of incidence structures.

d) N : U → P is an embedding of stable planes.

Proof. ad (a,b). See 4.2.7. ad (c). See 4.2.7 and 4.2.8. By 1.1.12, the morphism N
is a monomorphism in the category Inc if and only if both components are injective. �

A rough overall résumé will be added before closing the general section.

4.2.10 Proposition. Let P = P (Γ; {1},Sexp) be a Peter plane, and let d be a 2-
dimensional Lie subalgebra with injective Lie algebra morphism η : d → g. Assume
that dexp /∈ S. Consider the 2-dimensional plane U := P (Θ; {1},F exp), where

Θ is the simply connected Lie group Θ ∈ {A,∆} with `Θ = d and
F := {Λη↼ | Λ ∈ S and Λη

↼ 6= 0}.
Then U is an open subplane of the real affine plane A2R, and U is embeddable into P

as a closed subplane; the embedding being meant as an embedding of sketched geometries
as well as of stable planes.

4.3. The prototypes as sketched Baer subplanes of the
original Peter planes

Are there any tangible incarnations of the situation discussed above ? Remember our two
standard examples, the affine plane (A,A2R) and its non-affine open subplane (∆,H).
As a little demonstration of what is happening in the previous section, let us trace the
procedure for those two examples.
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4.3. The prototypes as sketched Baer subplanes of the original Peter planes

The standard non-affine plane revisited

The 2-dimensional non-affine plane we are considering is

U := (∆;H) = P (∆; {1}, T exp)

as given in 4.1.5. First of all the embedding procedure requires an embedding of the Lie
algebra n into g. There are a huge number of choices — consult 4.4.10 for a classification
of possible images — and we pick our favourite one.

4.3.1 Lemma. Lie algebra and Lie group embeddings.

a) η : n → g a b 0
0 0

0

 7→

 a 0 b
a
2

0
0


is a monomorphism of Lie algebras.

b) The corresponding monomorphism of Lie groups is
ε : ∆ → Γ s t 0

1 0
1

 7→

 s 0 t√
s 0

1


Proof. ad (a). Simple verification. ad (b). Very much so. Yet, let us say that we
request the verification of the equation expn ·ε = η · expg. Let X ∈ n. Then, for a 6= 0,
we get

Xexpn ·ε =:

 a b 0
0 0

0

expn ·ε

=

 ea b · ea−1
a

0
1 0

1

ε

=

 ea 0 b · ea−1
a

e
a
2 0

1


=

 a 0 b
a
2

0
0

expg

=

 a b 0
0 0

0

η·expg

= Xη·expg .

For a = 0, the same is true. �

In order to be capable of concrete calculations, let us try and embed U into the original
Peter planes Pk := P (Γ; {1},Sexp

k ), for k ≥ 1, stemming from the Betten spread

Sk := {s} ∪ {u(a, b,−kb) | a, b ∈ R, b ≤ 0} ∪ {u(a, b,−b) | a, b ∈ R, b ≥ 0},
where we recall from 3.1.3 that

s :=


 0 0 y

0 x
0

∣∣∣∣∣∣ x, y ∈ R


u(a, b, c) :=

〈 2 0 b
1 a

0

 ,

 0 1 a
0 c

0

〉
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4. Classical subplanes in Peter planes

for a, b, c ∈ R. Let us have a look at what will happen to the Lie subalgebras in T under
our map η. Will they find a fibre in Sk each whose subspaces they are ? Will those even
be unique ? We realise that

tη =
0 R 0

0 0
0

η

=
0 0 R

0 0
0

≤ s

v(m)η = (R

 1 m 0
0 0

0

)η = R

 2 0 m
1 0

0

 ≤
{

u(0, m,−km) for m ≤ 0
u(0, m,−m) for m ≥ 0

for m ∈ R. As a matter of fact, the fibres to be inhabited are unique. Consequently, we
may make use of the map

H : T → Sk
t 7→ s

v(m) 7→
{

u(0, m,−km) for m ≤ 0
u(0, m,−m) for m ≥ 0.

4.3.2 Lemma.

a) H : T → Sk is injective.

b) ∀Λ ∈ T . Λη ≤ ΛH

c) H is the only map satisfying (a) and (b).

d) (η,H) : (n, T )→ (g,Sk) is a monomorphism of sketches.

Hence, (η,H) is the embedding of sketches on the Lie algebra level we may use in order
to proceed with the embedding of U = (∆,H) into each of the planes Pk as described
in the previous section.

4.3.3 Corollary. In particular, the 2-dimensional non-affine plane H has been con-
structively established as a closed subplane of every original Peter plane Pk, k ≥ 1.

The standard affine plane revisited

Our second example is provided by the 2-dimensional affine plane

U := (A,A2R) = P (A; {1}, T exp)

as presented in 4.1.10. Again, we start by picking our favourite embedding of the Lie
algebras; which is fairly easy. Consider

η = id
a

: a = Re1 + Re3 → g = Rd+ Re1 + Re2 + Re3
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4.4. Classification of 2-dimensional Lie subalgebras of g

as our choice of Lie algebra monomorphism. The corresponding monomorphism ε of Lie
groups, of course, is

ε = id
A

: A→ Γ.

And again, there is a unique way of embedding T into Sk such that we end up with a
monomorphism of sketches :

t =
0 0 R

0 0
0

≤ s

v(m) = R

 0 1 m
0 0

0

 ≤ u(m, 0, 0)

for m ∈ R. This inspires the map

H : T → Sk
t 7→ s

v(m) 7→ u(m, 0, 0) for m ∈ R.

4.3.4 Lemma.

a) H : T → Sk is injective.

b) ∀Λ ∈ T . Λη ≤ ΛH

c) H is unique with properties (a) and (b).

So here, (η,H) : (a, T ) → (g,Sk) is the monomorphism of sketches the embedding of
U = (A,A2R) into any Pk can be started with.

4.3.5 Corollary. In particular, the 2-dimensional affine plane A2R has been actively
established as a closed subplane of every original Peter plane Pk, k ≥ 1.

4.4. Classification of 2-dimensional Lie subalgebras of g

So far, it has been said that more or less any 2-dimensional Lie subalgebra of g may
be used in order to construct a sketched Baer subplane (provided it is not a fibre of
the stable partition involved), and two examples have been exhibited. Naturally, one of
the arising questions is that for more examples. In other words, what 2-dimensional Lie
subalgebras are there ? And when do they not qualify for the construction process, i.e.,
when are they fibres of the spread used in defining the Peter plane ? Is every point of
a Peter plane contained in an affine or non-affine sketched Baer subplane of that sort ?
And if so, is that sketched Baer subplane unique ?
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4. Classical subplanes in Peter planes

4.4.1 For convenience’s sake, let us recall the basis for g we picked in 3.1.5 : the vector
space g is generated by the elements

d =

 2 0 0
1 0

0

 , e1 =

 0 1 0
0 0

0

 , e2 =

 0 0 0
0 1

0

 , e3 =

 0 0 1
0 0

0

 .

Their Lie brackets are

[d, e1] = e1 [e1, e2] = e3
[d, e2] = e2 [e1, e3] = 0
[d, e3] = 2e3 [e2, e3] = 0

The commutator algebra of g is g′ = Re1 +Re2 +Re3, and g′′ = Re3. We will abbreviate
an element of g as

(a, v, x) := ad+ v1e1 + v2e2 + xe3

with x, a ∈ R and v ∈ R2. The Lie bracket in g then computes as

[(a, v, x), (b, w, y)] = (0, aw − bv, 2 · det

(
a x
b y

)
+ det

(
v
w

)
).

The automorphism group and its orbits

It will be helpful to lay hands on the group of all automorphisms of g. What do we know
about it ? In the first place, every automorphism is a linear map of the 4-dimensional
real vector space g ∼= R4. Hence, Aut g is a subgroup of GL4R. Stepwise incorporation
of their properties as Lie algebra morphisms reveals their true nature.

4.4.2 Proposition.

Aut g =


 1 σTIAT τ

A σ
detA

 ∣∣∣∣∣∣A ∈ GL2R, σ
T ∈ R2, τ ∈ R


where I :=

(
1

−1

)
. The matrices refer to the basis d, e1, e2, e3 of g.

Proof. The commutator algebras g′ and g′′ are invariant under the action of Aut g.
Consequently, with respect to the basis d, e1, e2, e3 and vectors being understood as row
vectors, an element ϕ of the automorphism group can be written as a matrix

ϕ =

 ρ π τ
A σ

α
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4.4. Classification of 2-dimensional Lie subalgebras of g

with A ∈ GL2R, σT, π ∈ R2, α, ρ ∈ R× and τ ∈ R. We start by detecting the
automorphism group of g′ : Consider (0, v, x), (0, w, y) ∈ g′. Then

[(0, v, x), (0, w, y)] = (0, 0, det

(
v
w

)
),

and ϕ being a morphism yields the equation

[(0, v, x)ϕ, (0, w, y)ϕ] = (0, 0, det

(
v
w

)
)ϕ,

in other words

(0, 0, detA · det

(
v
w

)
) = (0, 0, α · det

(
v
w

)
)

and hence finally α = detA. Wanting to make the d-component enter the game, we now
consider the morphism condition concerning

[(1, 0, 0), (0, w, y)] = (0, w, 2y),

which yields the equation

(0, ρwA, 2ρ(wσ + y detA) + det

(
π
wA

)
) = (0, wA, wσ + 2y detA).

This implies ρ = 1, and moreover 0 = wσ + det

(
π
wA

)
for any w ∈ R2. Picking

w = (0, 1) and w = (1, 0), successively, we get

σ =

(
1

−1

)
· A · πT = I ·A · πT.

�

4.4.3 Remark. As an aside, within the above proof we could have also deduced that

Aut(g′) =

{(
A σ

detA

)∣∣∣∣A ∈ GL2R, σ
T ∈ R2

}
.

4.4.4 Lemma. Under the action of its automorphism group Aut g, the Lie algebra g
splits into the following orbits :

colour code

(0, 0, 1)Autg = R(0, 0, 1) = g′′ red

(0, (0, 1), 0)Autg = {(0, w, x) | w ∈ R2 \ 0, x ∈ R} = g′ \ g′′ yellow

(λ, 0, 0)Aut g = {(λ, v, x) | v ∈ R2, x ∈ R} for λ ∈ R× green
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4. Classical subplanes in Peter planes

The question to be answered here will be :

(PP) Given a point p in a Peter plane, how many affine or non-affine Baer subplanes U ,
as constructed in 4.2.10, are there such that p is a point in U ?

Due to their construction from 2-dimensional subalgebras this problem is closely linked
with the following question :

(LA) Given an element X of the Lie algebra g, how many 2-dimensional Lie subalge-
bras d, abelian or non-abelian, are there such that X ∈ d ?

4.4.5 Definition. Denote by

A := {a ≤ g | dim a = 2 ∧ a is abelian}
N := {n ≤ g | dim n = 2 ∧ n is non-abelian}

the sets of all abelian and non-abelian, respectively, 2-dimensional Lie subalgebras of g.

Now, given X ∈ g, there will not be more ”different behaviours” as to being contained
in subalgebras in A or N than there are different orbits in g. In fact, if X ∈ a ∈ A, then
for any ϕ ∈ Aut g we will get Xϕ ∈ aϕ ∈ A; and very much the same for non-abelian
n ∈ N.

As a consequence, if we just want to learn about the numbers of abelian or non-abelian
d ∈ A∪N some given point is contained in, it suffices to concentrate on representatives of
the orbits above. In the table below, the points X are representatives of their respective
orbits — explicitly, X = (0, 0, 1) for red points, X = (0, (0, 1), 0) for yellow points and
X = (λ, 0, 0) for green points — whereas Y = (b, w, y) is an arbitrary point in g. The
table describes, for a given representative X, what additional hypothesis concerning the
choice of Y makes the Lie subalgebra d := 〈X, Y 〉LA ≤ g an element of A ∪N, that is,
2-dimensional.

X Y additional hypothesis d is remarks
red yellow abelian

green non-abelian d′ = RX

yellow red abelian
yellow w ∈ R(0, 1) abelian = yellow+red

w /∈ R(0, 1) > 2-dim

green det
(

0 1
w1 w2

)
= 0 non-abelian d′ = RX

det
(

0 1
w1 w2

)
6= 0 > 2-dim

green red non-abelian d′ = RY
yellow y = 0 non-abelian d′ = RY

y 6= 0 > 2-dim
green w = 0 non-abelian = green+red

w 6= 0, y = 0 non-abelian = green+yellow
w 6= 0,y 6= 0 > 2-dim
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4.4. Classification of 2-dimensional Lie subalgebras of g

We can already realize that green points will never be contained in any abelian 2-
dimensional Lie subalgebra. A yellow point will determine a unique abelian a ∈ A to
be contained in. In any other cases, there is a promise of an abundance of d ∈ A ∪N
containing the given point X.

It is just as well possible to straightforwardly compute a similar table for arbitrary X.
Yet, there is a characterisation of elements X ∈ g contained in subalgebras of A and N,
respectively, via eigenspaces of the corresponding adjoint maps adX, which may shed
light on the situation.

4.4.6 Definition. Let ϕ be an R-linear map on g. Then the eigenspace of ϕ with
respect to an eigenvalue µ will be denoted by

Tµ(ϕ) := {X ∈ g | Xϕ = µ ·X}.

4.4.7 Lemma. Characterisation of habitation. Let X ∈ g.

a) ∃a ∈ A. X ∈ a ⇐⇒ T0(adX) > RX

b) ∃n ∈ N. X ∈ n \ n′ ⇐⇒ adX has an eigenvalue µ 6= 0

c) ∃n ∈ N. X ∈ n′ ⇐⇒
there is some Y ∈ g\RX and an eigenvalue µ 6= 0 of adY such that X ∈ Tµ(adY )

Proof. ad (a). Here, X ∈ a := RX + RY for some Y ∈ g \ RX satisfying [X, Y ] = 0.
ad (b). X ∈ n := RX + RY for some Y ∈ g \RX satisfying [X, Y ] ∈ RY . Let us have a
closer look at the forward implication : Starting out with a Lie subalgebra n ∈ N such
that X ∈ n\n′, we can find a second basis element Z ∈ g\RX of n. As n is non-abelian,
there are real numbers a and b such that adX.Z = aX + bZ 6= 0. Moreover, b 6= 0
because X /∈ n′. Hence, Y := aX + bZ is an eigenvector of adX with respect to the
eigenvalue µ := b 6= 0. ad (c). X ∈ n := RX + RY for some y ∈ g \ RX satisfying
[X, Y ] ∈ RX. �

Recall from 3.1.5 the eigenvalues and eigenspaces of the elements of our preferred basis
of g :

eigenvalue basis of eigenspace
d 0 d

1 e1, e2
2 e3

e1 0 e1, e2
e2 0 e2, e3
e3 0 e1, e2, e3

Thus we can get an idea of what may happen. As a matter of fact, the complete
characterisation looks like this :
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4. Classical subplanes in Peter planes

4.4.8 Lemma. Let X ∈ g.

a) ∃a ∈ A. X ∈ a
⇐⇒ one of the following is true :

i) X is red; then T0(adX) = Re1 + Re2 + Re3

ii) X is yellow; then T0(adX) = RX + Re3

b) ∃n ∈ N. X ∈ n \ n′

⇐⇒
X is green. For X = (λ, x, v) ∈ (λ, 0, 0)Autg, λ ∈ R×, the eigenvalues are λ and 2λ
with respective eigenspaces

Tλ(adX) = {(0, w,−λ−1 · det

(
v
w

)
| w ∈ R2}

T2λ(adX) = Re3

c) ∃n ∈ N. X ∈ n′

⇐⇒ one of the following is true :

i) X is red. Then for any green Y= (λ, v, x) we get X ∈ T2λ(adY ) = Re3.

ii) X is yellow. ThenX can be written asX = (0, w,−λ−1·det
(
v
w

)
) with unique

w ∈ R2 \ 0 and arbitrary λ ∈ R× or v ∈ R2. For green Y ∈ (λ, v, 0) + Re3,

we get X ∈ Tλ(adY ) = {(0, z,−λ−1 · det
(
z
w

)
) | z ∈ R2}. These are the only

elements with ad-eigenvector X.

Proof. Some straightforward but lengthy computation. �

4.4.9 Remark. The actual Lie subalgebras d ∈ A ∪N can be deduced from the above
lemma as follows :

in (a) : ∀Y ∈ T0(adX) \ RX. a := RX + RY ∈ A
in (b) : ∀µ ∈ {λ, 2λ} ∀Y ∈ Tµ(adX). n := RX + RY ∈ N
in (c) : For each of the green Y mentioned, we get X ∈ n′ ≤ n := RX + RY ∈ N.

4.4.10 Corollary. Classification of 2-dimensional Lie subalgebras of g.

A = {Re3 + RX | X yellow}
= {T0(adX) | X yellow}

N = {Re3 + RX | X green}
∪ {R(1, v, x) + R(0, w,− det

(
v
w

)
) | v ∈ R2, x ∈ R, w ∈ R2 \ 0}

= {RX + RY | green X ∈ (1, 0, 0)Autg ∧ Y ∈ T2(adX)}
∪ {RX + RY | green X ∈ (1, 0, 0)Autg ∧ Y ∈ T1(adX)}

This finally is an answer to question (LA), as well as the major part of an answer to
question (PP) :
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4.5. Abelian fibres in stable partitions of g

4.4.11 Corollary. Habitation within the Lie algebra. ”Number” of 2-dimensional
Lie subalgebras d ≤ g containing some given X ∈ g :

d abelian d non-abelian
X red many many
X yellow one many
X green — many+1

4.4.12 Proposition. Habitation within the Peter plane. ”Number” of sketched
Baer subplanes U = P (dexp; {1},F exp) with d ≤ g and F := {Λ∩d | Λ ∈ S ∧ Λ∩d 6= 0}
containing a given point p = Xexp of the Peter plane P = P (gexp; {1},Sexp) :

U affine U non-affine
X red many many
X yellow ≤ 1 many
X green — many

Proof. This can be directly copied down from the table above, yet, bearing in mind that
the Lie subalgebra d ∈ A ∪N we happen to pick must not be a fibre in S. At most one
of these Lie subalgebras is a fibre; in fact, two such fibres would intersect non-trivially
in X and hence be equal. Consequently, this restriction only affects the (unique) abelian
Lie subalgebra for yellow points X. �

The existence of an affine sketched Baer subplane containing a given yellow point
remains uncertain : When does it happen that the abelian Lie subalgebra d is a fibre of
S ? This question will be the subject of the following studies.

4.5. Abelian fibres in stable partitions of g

Studying the number of abelian fibres a stable partition of g may contain, the following
little observation — gained from 4.4.10 — turns out to be helpful :

4.5.1 Remark. a) The commutator algebra g′ = Re1+Re2+Re3 forms a hyperplane
in the vector space g ∼= R4.

b) Any abelian fibre of a planar partition S of g is entirely contained in the hyper-
plane g′.

c) Any non-abelian fibre Λ of a stable partition S of g intersects g′ in a 1-dimensional
subspace Λ ∩ g.

d) As a matter of fact, (b) and (c) remain true for 2-dimensional Lie subalgebras
instead of a fibres.

Proof. Recall that every fibre of a stable, hence planar, partition of a 4-dimensional
Lie algebra is a 2-dimensional Lie subalgebra. �
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4. Classical subplanes in Peter planes

This already has a very immediate consequence :

4.5.2 Corollary. Any planar partition of g = R ∝ hei3R contains at most one abelian
fibre.

Proof. Assume the existence of different abelian fibres Λ and M in S. Then g′ ≥
Λ⊕M = g by part (b) of remark 4.5.1. This is a contradiction, though. �

Obtaining a lower bound for the number of abelian fibres in S requires, for instance,
some additional knowledge of the topology of stable partitions. We will briefly indicate
some of it :

4.5.3 Proposition. a) A stable partition S of a 4-dimensional Lie algebra g is home-
omorphic to the 2-sphere S2.

b) The Graßmann manifold u1(R3) is homeomorphic to the cross-cap P2R.

c) S2 and P2R are non-homeomorphic. One way of legitimising this is by stating that
S2 is the prototype of an orientable closed surface of genus 0 (with associated word
aa−1 = �), whereas the cross-cap represents the non-orientable closed surface of
genus 1 (with associated word aa). Another hint is provided by their respective
fundamental groups π1(S2) = 1 and π1(P2R) = Z2.

Proof. For (a), see [31, Satz 1.19] or [54, 64.4b]. Parts (b) and (c) can be found in any
book on topology or algebraic topology treating the classification of compact surfaces,
for instance Ossa [49, p.104 ff] or Massey [45, chapter 1]. �

4.5.4 Lemma. Any stable partition S of g contains at least one abelian fibre.

Proof. Assume that S consists of non-abelian fibres only. Part (c) of 4.5.1 then yields
a map

π : S → u1(g
′)

Λ 7→ Λ ∩ g′ .

π is a continuous bijection. Consider fibres Λ and M satisfying Λπ = Mπ. Both, Λπ =
Λ ∩ g′ and Mπ = M ∩ g′ are 1-dimensional. Consequently, the fibres Λ and M intersect
non-trivially and hence are equal. Thus, π is injective. As to surjectivity, every 1-
dimensional subspace of g′ is of the form RX for some X ∈ g′ \0. As S is a vector space
partition, there is some fibre Λ ∈ S such that X ∈ Λ, hence RX ⊆ Λ ∩ g′.
π is open. Now we need to apply our secret knowledge on the fibrations we talk about.

By 4.5.3, S ≈ S2 is compact, and the cross-cap u1(g
′) = u1(R3) ≈ P2R is a Hausdorff

space. This implies openness of π.

Here we are with the 2-sphere S ≈ S2 and the cross-cap u1(g
′) ≈ P2R being home-

omorphic, which certainly is a lie; cf. part (c) of 4.5.3. Thus, we have established the
existence of at least one abelian fibre in S. �
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4.5.5 Corollary. Any stable partition of g = R ∝ hei3R contains exactly one abelian
fibre.

4.5.6 Remark. Coming back to question (PP) and its partial answer in 4.4.12, we can
now add another part to the answer : Given a yellow point p and the unique abelian
a ∈ A containing p, there is exactly one chance of a being a fibre. In any other case,
a may be used for the construction, and p happily settles down in the middle of an
affine sketched Baer subplane of P. Moreover, even if a happens to be ”the wrong one”,
something nice at least can be said about p, which will be exposed in the sequel.

4.6. Affine lines in Peter planes

A yellow point p induces a unique abelian Lie subalgebra a ∈ A. In case a is a fibre in
S we are not in a position to use it for the construction of a sketched Baer subplane
of P containing p; simply because 4.2.2 could not be maintained. Nevertheless, we can
be consoled by the fact that in this case ”something affine” still happens : let us study
affine lines in Peter planes. Our aim will be to establish a link between abelian fibres in
S and ”affine lines” in the corresponding Peter plane. To that end, before introducing
the notion of ”affine lines”, let us study the structure of stable partitions of g.

4.6.1 Lemma. A 2-dimensional Lie subalgebra of g = R ∝ hei3R is an ideal in g if and
only if it is abelian. In other words, A is the set of all 2-dimensional ideals in g.

Proof. Lemma 4.4.10 gives a list of all 2-dimensional Lie subalgebras in g. An effective,
though highly non-elegant, way of establishing the claim hence is to run through them
all and check the ideal property.

Any abelian a ∈ A is of the form d = RX+RY for red X and yellow Y . Then for any
red or yellow Z ∈ g′, we get adZ.a ≤ g′′ = RX ≤ a. For green Z ∈ g \ g′, we compute
that adZ.X ∈ RX ≤ a and adZ.Y ∈ a, and consequently adZ.a ≤ a. Hence a E g is
an ideal in g.

It remains to show that the non-abelian Lie subalgebras n ∈ N are not ideals in g.
One the one hand, by 4.5.1d, the intersection of such a non-abelian Lie subalgebra n
with the commutator algebra g′ is 1-dimensional. On the other hand, n contains some
green point X = λ0d+ λ1e1 + λ2e2 + λ3e3, λ0 6= 0. Assume that n is an ideal in g. Then
so is the intersection n ∩ g′, which then would contain R[X, e1] + R[X, e2] + R[X, e3] =
R(λ0e1 − λ2e3) + R(λ0e2 + λ1e3) + R(2λ0e3) = Re1 + Re2 + Re3 = g′. This contradicts
dim(n ∩ g′) = 1, and hence n cannot be an ideal. �

It is a known fact for connected Lie groups that ideals in the Lie algebra make up for
normal subgroups in the Lie group, and vice versa (cf. [24, p. 215] or [26, Prop 5.49]).

4.6.2 Lemma. Every stable partition S of g contains exactly one fibre which is an ideal
in g. The stable partition Sexp of Γ, then, contains exactly one fibre which is a normal
subgroup in Γ.
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4. Classical subplanes in Peter planes

Proof. 4.5.5 along with 4.6.1. The bit on Lie groups has been explained above, taking
into account that expg is a bijection. �

The above observations will be crucial for the study of our actual topic, ”affine lines” in
Peter planes.

4.6.3 Definition. Let (P,L) be an incidence structure. A line L ∈ L will be called an
affine line if it satisfies the parallel axiom, i.e., if for every point p ∈ P which is not
contained in L there is a unique line K ∈ L containing p and having empty intersection
L ∩K = ∅.

4.6.4 Definition. A fibre Λ of a group partition R of some group Ψ will be called an
affine fibre in R if for any other fibre M ∈ R \ {Λ} we get ΛM = Ψ = MΛ.

4.6.5 Lemma. Let P = (P,L) = P (Ψ; {1},R) be the sketched geometry gained from
an arbitrary group Ψ along with a group partition R. Consider a line Λα in P, with
Λ ∈ R and α ∈ Ψ. Then Λα is an affine line in P if and only if Λ is an affine fibre in R.

Proof. Bear in mind that for any β ∈ Ψ\{α} the line Λβ is a parallel line to Λα incident
with β, anyway, as Λα∩ Λβ = ∅. This accounts for the third step in the following series
of equivalences :

Λα is an affine line in P
⇐⇒ ∀β ∈ Ψ \ Λα ∃! L = Mγ ∈ L . β ∈ Mγ ‖ Λα
⇐⇒ ∀β ∈ Ψ \ Λα ∃! M ∈ R . Mβ ∩ Λα = ∅
⇐⇒ ∀β ∈ Ψ \ Λα ∀M ∈ R \ {Λ} . Mβ ∩ Λα 6= ∅
⇐⇒ ∀M ∈ R \ Λα ∀β ∈ Ψ \ Λα . Mβ ∩ Λα 6= ∅
⇐⇒ ∀M ∈ R \ {Λ} ∀β ∈ Ψ \ Λα . β ∈ MΛα
⇐⇒ ∀M ∈ R \ {Λ} . Ψ \ Λα ⊆ MΛα
⇐⇒ ∀M ∈ R \ {Λ} . Ψ = MΛα
⇐⇒ ∀M ∈ R \ {Λ} . Ψ = MΛ
⇐⇒ Λ is an affine fibre in R

�
We can therefore consider affine lines as a purely algebraic phenomenon.

4.6.6 Lemma. Let R be a group partition of a group Ψ. Every affine fibre Λ ∈ R is a
normal subgroup in Ψ.

Proof. Assume that Λ is not normal in Ψ. This means the existence of an element
α ∈ Ψ with the property that Λα := α−1Λα ⊂ Λ or Λ ⊆ Λα. The second inclusion is
equivalent to the inclusion Λ ⊂ Λα

−1
, such that we may replace α by α−1 in order to

state that there is some element α ∈ Ψ such that Λ ⊂ Λα.
There is a fibre M ∈ R \ {Λ} such that M ∩ Λα 6= 1. Pick an element 1 6= β ∈ Λα \ Λ.

As R is a partition of Ψ there is some fibre M ∈ Rexp such that β ∈ M; quite obviously
M 6= Λ.
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4.6. Affine lines in Peter planes

There is an element µ ∈ M such that Λα = Λµ. By the hypothesis, Λ is an affine fibre,
and therefore α ∈ Υ = ΛM can be written as α = λµ with λ ∈ Λ and µ ∈ M. But then,
Λα = α−1Λα = µ−1Λµ = Λµ.

Finally, this implies 1 6= M ∩ Λα = M ∩ Λµ = Mµ ∩ Λµ = (M ∩ Λ)µ = 1, which is a
contradiction. As a consequence, Λ had better be a normal subgroup in Ψ. �

So far, the results have not required any restrictions, neither on the group nor on its
group partition. In order to obtain the converse of the above result, though, we will
have to come back to our concrete situation.

4.6.7 Lemma. Let Sexp be a stable partition of Γ = R n Hei3R, and let Λ be a fibre
of Sexp. If Λ is normal in Γ then it is an affine fibre in Sexp.

Proof. Let Λ ∈ Sexp be a normal subgroup in Γ. Let M ∈ Sexp \ {Λ}. Show : ΛM = Γ.
First of all observe that there is an isomorphism η mapping the semidirect sum `M ∝ `Λ
onto g, because `M and `Λ are distinct fibres in the planar partition S and `Λ is an

ideal in g. Denote by M̃ and Λ̃ the simply connected Lie groups satisfying ` M̃ = `M and

` Λ̃ = `Λ, respectively. Then there is an isomorphism ϕ mapping the semidirect product

M̃ n Λ̃ onto Γ; see A.3.3.

M̃ n Λ̃-
ϕ -- Γ

`M ∝ `Λ

exp

6

-
η

-- g

expg

6

This isomorphism satisfies (M̃×1)ϕ = M and (Λ̃×1)ϕ = Λ. In fact, (`M⊕0)η = `M,

and
〈
(`M⊕ 0)exp

〉
= M̃× 1 as M̃× 1 is connected. Therefore,

(M̃× 1)ϕ =
〈
(`M⊕ 0)exp

〉ϕ
= (`M⊕ 0)η expg = (`M)expg = M.

The same argument applies to Λ. These facts imply that

Γ = (M̃ n Λ̃)ϕ =
〈
M̃× 1, 1× Λ̃

〉ϕ
=
〈
(M̃× 1)ϕ, (1× Λ̃)ϕ

〉
= 〈M,Λ〉 ,

which establishes Γ = MΛ, as Λ is normal in Γ. �

4.6.8 Corollary. Let Sexp be a stable partition of Γ = R n Hei3R, and let Λ be a fibre
of Sexp. Then Λ is an affine fibre if and only if it is a normal subgroup in Γ.
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4. Classical subplanes in Peter planes

This yields a characterisation of affine lines in Peter planes :

4.6.9 Proposition. Let S be a stable partition of g = R ∝ hei3R. Consider a line
Λexpα (Λ ∈ S, α ∈ Γ) in the corresponding Peter plane P = P (Γ; {1},Sexp). Then Λexpα
is an affine line in P if and only if Λ is ”the” abelian fibre in S.

Proof. 4.6.8, 4.6.5, 4.6.1 and 4.5.5. �

Let us try and technically resume the whole situation, answering question (PP) as well
as the one left over in section 4.4 :

4.6.10 Proposition. Let P = P (Γ; {1},Sexp) be a Peter plane. Let p = Xexp ∈ Γ be
a point in P. Recall that ”sketched Baer subplane” will be meant to denote a closed
2-dimensional subplane U = P (Θ; {1},F exp) of P as constructed in 4.2.10.

a) If p is a red point, then P hosts infinitely many affine sketched Baer subplanes as
well as infinitely many non-affine sketched Baer subplanes containing p.

b) If p is a green point, then there is an infinite number of non-affine sketched Baer
subplanes of P containing p, but there is no such affine sketched Baer subplane.

c) If p is a yellow point, it is contained in an infinite number of non-affine sketched
Baer subplanes of P.

Now, let Λ0 = RX0 +Re3 be the unique abelian fibre contained in the stable partition S
of g.

d) If p is a yellow point not contained in Λexp
0 , then P hosts exactly one affine sketched

Baer subplane containing p.

e) If p is a yellow point contained in Λexp
0 , then we cannot construct an affine sketched

Baer subplane containing p, but p is contained in the affine line Λexp
0 in P.

Proof. ad (a). 4.4.12 ad (b). 4.4.12 ad (c). 4.4.12 ad (d). 4.4.12 and 4.4.11
ad (e). 4.4.12, 4.6.9 and 4.5.5 �
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Peter planes

The present chapter will continue the study of those planes P that arise from a stable
partition of the Frobenius group Γ = RnHei3R. Chapter 3 establishes that such a Peter
plane P cannot be found as an open subplane in P2C. This non-embeddability result
brings about consequences for the appearance of the full automorphism group Σ = AutP
of a Peter plane.

5.1. Γ is compact-free

One fact that does play a major role in our reasoning is the fact that the group Γ =
R n Hei3R does not contain compact subgroups, which will be established in the sequel.

5.1.1 Definition. A topological group is said to be compact-free if the trivial group
is its only compact subgroup.

One major tool to be exploited is the existence of a maximal compact subgroup stated
in

5.1.2 Theorem (Mal’cev-Iwasawa). Let ∆ be some locally compact connected topo-
logical group. Then

a) ∆ contains some maximal compact subgroup M. Moreover, each maximal compact
subgroup is connected and conjugate to M.

b) There are a number k and one-parameter subgroups Pj ≈ R, j ≤ k such that the
multiplicative map

P1 × . . .× Pk ×M → ∆
(ρ1, . . . , ρk, ϕ) 7→ ρ1 · · · ρk · ϕ

is a homeomorphism. In particular,

∆ ≈ Rk ×M.

[54, 93.10] �
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5. On the automorphism group of Peter planes

Consequently, the topological space Γ = R nHei3R can be written as Cartesian product

Γ ≈ M× Rk

in the category of topological spaces, where M is some maximal compact subgroup of Γ
and k ∈ N. Our aim will be to prove that M ≤ Γ will have to be trivial; and thus k = 4.
Let us first of all collect our knowledge on Γ :

5.1.3 Lemma. a) Γ ≈ R4 via the homeomorphism

R4 → Γ

(t, x, y, z) 7→

 e2t x z
et y

1


b) Γ is a simply connected (locally compact) Lie group of dimension dim Γ = 4.

Proof. Everything follows, once you believe the homeomorphism to be a homeomor-
phism. And this is true by 3.1.2. �

5.1.4 Lemma. Rk ×M is (simply) connected if and only if M is (simply) connected.

Proof. For simple connectedness, this drops out of the fact that for any two path
connected topological spaces A and B the fundamental group π1(A× B) is π1(A× B) ∼=
π1(A)× π1(B). �

5.1.5 Remark. Any locally path connected, connected topological space is path con-
nected. In fact, every path connected component is an open subset; and if there were
more than one of them, the space would no longer be connected. In particular, any con-
nected Lie group is path connected, which allows us not to pay attention to the choice
of the base point for the homotopy groups involved.

Thus, the M we are looking for will have to be a simply connected maximal compact
subgroup of Γ. In fact, there is more to be known on its homotopy groups :

5.1.6 Lemma.

a) ∀n ∈ N. πn(Γ) ∼= πn(R4) = 1

b) ∀n ∈ N. πn(M) = 1

Proof. Let n be some natural number. For the nth homotopy group of some contractible
space A, thus in particular for R4, it is true that πn(A) = 1. Moreover, it is also true that
πn(A×B) ∼= πn(A)×πn(B) for arbitrary path connected groups A and B. This yields the
second assertion. – For bare facts on higher homotopy groups, listed in appendix A.1.6,
see [14, 7.10+11], for instance. �
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Certainly the trivial group is one simply connected compact Lie group with all higher
homotopy groups trivial. And in fact, it is the only one. In order to see this, we can rely
upon a theorem by Toda; the underlying fact is that the simply connected compact Lie
groups are all classified, and there is none, indeed, whose higher homotopy groups are
all trivial.

5.1.7 Theorem (Toda 1976). Two simply connected compact, and hence semisimple,
Lie groups are isomorphic if and only if they have isomorphic homotopy groups for each
dimension. [75] cited in [47, Thm 1.9], quoted as in [8] �

From this we could easily read that Γ is a compact-free group. Toda’s theorem, though,
is a mighty theorem and it provides much more than we actually need. It occurs to be
wise to fall back on some of the structure theory of compact Lie groups, which will lead
us to the concept of compact Lie algebras. In the end the simple fact will remain that
our maximal compact subgroup M has to be semisimple and soluble all at the same time,
which does not leave it much choice : M is trivial, and thus Γ is compact-free.

5.1.1. The commutator subgroup of a compact connected Lie group

Consider an arbitrary compact connected Lie group M along with its Lie algebra m :=
`M. Naturally, the one specimen of interest later on will be a maximal compact sub-
group M of Γ = R n Hei3R, but for the moment the concrete appearance is of no
importance.

5.1.8 Lemma. Let Υ be a compact connected (linear) Lie group.

a) `(Υ′) = (`Υ)′, and in particular (`Υ′)exp ⊆ M′.

b) The connected component Z(Υ)1 of the centre is a compact closed subgroup of Υ.

c) exp : `Υ→ Υ is surjective.

Proof. ad (a). [26, 5.60] — Note that compactness is not required for this part; cf.
[54, 94.16]. ad (b). Centres and connected components are always closed. Therefore,
compactness of M causes compactness of Z(M)1. ad (c). [26, 6.30] �

From now on consider the commutator subgroup M′ of M and its Lie algebra `(M′) = m′.
Note that m′ is an ideal in m. What we are looking for is a complement k of m′ in m. It
will turn out that m can be endowed with an inner product, and the orthogonal space
with respect to that inner product yields the desired complement. The motivation for
that very construction will be briefly touched here.

5.1.9 Haar-measure and Weyl’s trick. For any locally compact group Υ define

K(Υ) := {f ∈ C(Υ,R) | supp f compact },
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5. On the automorphism group of Peter planes

where the support of f is the topological closure of supp f := {x ∈ Υ | f(x) 6= 0}.
Denote by K+(Υ) all non-negative elements of K(Υ). Then

||f || := max{|f(x)| | x ∈ Υ}

defines a norm on K(Υ), and moreover the group Υ operates on K(Υ) by

Λg : f 7→ λg−1f
Pg : f 7→ ρg−1f.

A linear functional µ : K(Υ) → R is called a positive measure if µ(f) ≥ 0 for all
f ∈ K+(Υ). We call a positive measure that satisfies µ(λgf) = µ(f) or µ(ρgf) = µ(f)
for all g ∈ Υ and all f ∈ K(Υ) left invariant or right invariant, respectively. Some
left or right invariant measure, finally, which is moreover positive definite is called a
Haar measure. Every compact group can be endowed with a Haar measure; see [26,
2.8].

Now let Υ be a compact group with Haar measure µ and V some finite dimensional
Hilbert space with scalar product (· | ·) : V × V → R. Given some continuous group
morphism π : Υ→ GL(V ) there is a scalar product 〈· | ·〉 on V such that for every g ∈ Υ
the linear mappings gπ are orthogonal. In fact, this scalar product is given by

〈x | y〉 :=
∫
Υ

(gπ.x | gπ.y) dµ(g) := µ(χx,y)

for x, y ∈ V , where
χx,y : Υ → R

g 7→ (gπ.x | gπ.y) .

In our particular context, we choose π to be Ad : M → GL(g). Then the scalar
product constructed thus on g is Ad-invariant (or ”M-invariant”); that is to say that for

any X, Y ∈ g and g ∈ M it is true that
〈
Ad g.X | Ad g.Y

〉
= 〈X | Y 〉. As it is moreover

true that for all X ∈ g the equation

d

d t
ead tX = ead tX · adX

holds, one can conclude that the scalar product is also invariant in the sense that
〈Y | [X,Z]〉 = 〈[Y,X] | Z〉 for all X, Y, Z ∈ g.

A finite dimensional real Lie algebra endowed with an invariant scalar product is called
a compact Lie algebra or (finite dimensional) Hilbert Lie algebra. (For the general
notion of potentially infinite dimensional Hilbert Lie algebras, see chapter 6 in [26],
along with the errata [25] for definition 6.3.) Using this vocabulary, the above may be
interpreted as a motivation of the fact that the Lie algebra of a compact Lie group is
a compact Lie algebra. As a matter of fact, the converse assertion is also true : Let m
be a finite dimensional real Lie algebra. Then m is compact if and only if there is some
compact Lie group Υ such that m = `Υ; see [26, 6.6] or [24, III 5.4]. Note that this
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notion of a compact Lie algebra is misleading in as far as m endowed with its natural
topology never ever is a compact topological space (unless it is singleton). It is not true
in general that any Lie group with a compact Lie algebra is compact. Nevertheless it is
true for semisimple ones :

5.1.10 Theorem (Weyl). Let m be a semisimple compact (real) Lie algebra and Υ a
connected Lie group with Lie algebra `Υ = m. Then Υ is compact. [24, III 5.13] �

Remember that we were looking for an appropriate complement for m′ in m. We suggest
that the orthogonal subspace

k := (m′)⊥

with respect to the above scalar product does the job. This is due to a general fact on
compact Lie algebras :

5.1.11 Proposition. Let m be a compact (finite dimensional) Lie algebra.

a) Let a be some ideal in m. Then its orthogonal space a⊥ is an ideal in m as well,
and m = a⊕ a⊥.

b) Any abelian ideal a of m is contained in the centre z(m) of m.

c) The ideal relation is transitive for compact Lie algebras.

Proof. [26, 6.4] ad (a). The fact that 〈· | ·〉 is invariant ensures that a⊥ is an ideal
in m; its positive definiteness causes a and a⊥ to be disjoint. ad (b). We write m as
m = a⊕ a⊥ and note that [a, a⊥] ≤ a ∩ a⊥ = 0, which induces the commutator of a and
m to be [a,m] = [a, a⊕ a⊥] = [a, a]⊕ [a, a⊥] = 0⊕ 0 = 0, due to the above and the fact
that a is abelian. ad (c). Let k E i E m. Then [k, i⊥] ⊆ [i, i⊥] = 0. We know from
part (a) that i⊕ i⊥ = m. As a consequence, [k,m] = [k, i⊕ i⊥] ⊆ [k, i]+ [k, i⊥] ⊆ k+0 = k,
which means that k is an ideal in m. �

As a consequence of this decomposition to our situation, we get

m = m′ ⊕ k

in particular. Another important fact is due to the prominence of the commutator
algebra m′.

5.1.12 Corollary. k = z(m)

Proof. ad ”⊆”. Of course, [k,m] is contained in the commutator subalgebra m′, as
well as in k, because k is an ideal in m. Thus [k,m] ≤ k ∩ m = 0, and hence [k,m] = 0.
This just states that k is contained in the centre z(m) of m.

ad ”⊇”. Let Z be an element of the centre z(m). Due to invariance of the scalar
product, this implies that for any X, Y ∈ m we get 0 = 〈[X, Y ] | Z〉 = 〈X | [Y, Z]〉. Any
element W ∈ m′ is a linear combination of such elements [Y, Z], such that 〈X,W 〉 = 0,
too. But this just means that X ∈ (m′)⊥ = k. �
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The fact that k and m commute directly implies the exponential law :

5.1.13 Lemma. ∀X ∈ k ∀Y ∈ m. (X + Y )exp = Xexp · Y exp

More is known on the nature of the commutator group of a compact connected Lie
group.

5.1.14 Proposition. Every (finite dimensional) compact Lie algebra has a semisimple
commutator algebra.

Proof. [26, 6.4 vi] Remember from 5.1.12 that the compact Lie algebra m is the direct
sum m = m′ ⊕ z(m) of its commutator algebra and its centre. We can invoke part (a)
of 5.1.11 in order to decompose the finite dimensional Lie algebra m into a direct sum
m = a1⊕ . . .⊕ ak of ideals aj of m, where each aj has no non-trivial proper ideals. Note
that the aj are ideals in m, indeed, as being an ideal is transitive for finite dimensional
compact Lie algebras, by part (c) of 5.1.11.

Considering the 1-dimensional ideals aj, we see that they have to be abelian and
thus, again by 5.1.11, contained in the centre z(m). Now consider some ideal aj with
dim aj > 1. It is forcedly simple. Thus, a′

j is either trivial or aj itself. It cannot be
trivial, as aj is non-abelian. Consequently, a′

j = aj , and in particular aj ≤ m′. Denote
by c the direct sum of all 1-dimensional ideals aj and by s the direct sum of all simple
ideals aj. Then the above argument proves that c is contained in the centre z(m) and s is
contained in the commutator algebra m′. But then m =

⊕
aj = c⊕ s ≤ z(m)⊕m′ = m,

which implies c = z(m) as well as s = m′. In particular, m′ is semisimple. �

5.1.15 Corollary. The commutator subgroup M′ of M is compact and connected.

Proof. The commutator subgroup of any connected Lie group is connected. By 5.1.14
and 5.1.8(a), M′ is semisimple, and being a subalgebra of the compact Lie algebra m, its
Lie algebra `(M′) = m′ is compact. Therefore, Weyl’s theorem 5.1.10 yields compact-
ness of M′ if endowed with its Lie topology gained from m′. The identity map from M′

endowed with this Lie topology into M′ endowed with the topology induced by M is a
continuous bijective group morphism, mapping a compact space onto a Hausdorff space.
Hence it is open, the two topologies coincide, and compactness of M′ with respect to the
topology induced by M is established. �

5.1.2. The centre of a compact connected Lie group

Consider the exponential image

K := kexp = z(m)exp

of k. First of all note that it already is a group in its own right.
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5.1.16 Lemma.

a) exp : k→ M is a continuous group morphism.

b) K = kexp ≤ M

c) K is abelian.

d) K is connected.

e) exp |k : k→ Z(M)1 is surjective, i.e., K = z(k)exp = Z(M)1.

Proof. ad (a) and (b). Let X, Y ∈ k. Then the exponential rule 5.1.13 states that
(X + Y )exp = Xexp · Y exp. Furthermore, for any X ∈ k we have (Xexp)−1 = (−X)exp.
The exponential mapping has thus been exposed as a group morphism. Consequently,
the image K of k, is a subgroup of M. Moreover, the restriction exp |k of the continuous
function exp : m→ M is still continuous. Assertion (c) is an immediate consequence
of 5.1.12. Assertion (d) is due to the fact that K = kexp is a continuous homomorphic
image of the connected set k. Finally, the inclusion K ≤ Z(M)1 in part (e) follows from
the exponential law 5.1.13, along with parts (c) and (d). As to a proof of the inverse
inclusion, the reader is referred to appendix A.3.8. �

5.1.17 Corollary. exp : k→ Z(M)1 is a quotient morphism.

Proof. It suffices to show that exp is continuous and open, since any continuous open
surjection ϕ : X → Y is a quotient map. (In fact, any open subset T of Y has an open
preimage T↼ ⊆ X, due to continuity of ϕ. Conversely, any set T ⊆ Y with open T ϕ

↼

satisfies T = T ϕ
↼ ϕ due to surjectivity. But then T is open in Y by openness of ϕ.)

Continuity is stated in 5.1.16. Openness follows from the Open Mapping Theo-
rem A.2.3 : the additive group k, being locally compact and connected, qualifies as
a locally compact σ-compact group [73, 5.18], and Z(M)1 is a locally compact Hausdorff
space. As moreover exp has just been proved to be a continuous group epimorphism,
A.2.3 establishes that exp is open. �

5.1.18 Lemma.

Tracing a homomorphism theorem for
topological groups, one can verify (in
order of appearance), that ι has to be
continuous and open, in other words a
homeomorphism, and moreover an iso-
morphism of topological groups.

k

k/ker exp
ι

-
/

π

Z(M)1

exp

.

Proof. ι is continuous because exp is continuous and π is open. It is open because π
is continuous and exp is open [5.1.17]. �
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Note that, considered as a topological group, (k,+) is isomorphic to (Rn,+) for some
natural number n ∈ N. Our aim is to understand the nature of the connected component
Z(M)1. To this end, let us further investigate the structure of ker exp in Rn.

5.1.19 Lemma. ker exp is a discrete subgroup of Rn.

Proof. As we are dealing with topological groups, it suffices to prove that 0 is open in
ker exp. Let us first of all note that 0 is contained in the kernel, since 0exp = 1l. Now all
we need is a neighbourhood U of 0 in Rn such that U ∩ker exp = 0. But the exponential
function exp : k→ M is a local homeomorphism; that is to say, there is a neighbourhood
U of 0 in k ∼= Rn such that exp |U is a homeomorphism. Then U ∩ ker exp = 0, due to
injectivity. �

5.1.20 Proposition. Let D be a discrete and closed subgroup of Rn. Then there is a
linearly independent subset Z of Rn with the property that D =

∑
b∈Z Zb. In particular,

there is some k ≤ n such that D ∼= Zk.

Proof. [73, 19.4b]. �

5.1.21 Lemma. For any k ≤ n, Rn/Zk is compact if and only if k = n.

Proof. A torus T ≈ S1 is compact, and by Tychonov’s theorem, so is Tl for any
l ∈ N. Conversely, there is an isomorphism of topological spaces between Rn/Zk and
(R/Z)k × Rn−k ∼= Tk × Rn−k. As Rl is non-compact for l ≥ 1, Tk × Rk−n can only be
compact if Rn−k entirely vanishes, that is, if n = k. �

5.1.22 Corollary. Z(M)1 ∼= Rn/Zn ∼= Tn

Proof. We have found out that the topological group Z(M)1 is isomorphic to k/ker exp,
and the kernel of exp is a discrete and closed subgroup of k ∼= Rn [5.1.18 and 5.1.19].
Hence by 5.1.20, without loss of generality, there is a basis X1, . . . , Xn of Rn with the
property that ker exp ∼= ZX1 + . . . + ZXk. Therefore, Z(M)1 ∼= k/ker exp ∼= Rn/Zk. As
by 5.1.8 the connected component of the centre is compact, lemma 5.1.21 forces k = n
and thus the assertion. �

5.1.3. Simply connected compact Lie groups

So far it has been sufficient to ask the Lie group M for compactness and connectedness.
In the sequel the consequences of further hypotheses on the first and eventually the third
homotopy groups will be studied. Recall that that the fundamental group of products
of tori T ∼= R/Z is π1(Tn) = Zn; cf. appendix A.1.6.

5.1.23 Lemma. Z(M)1 ×M′ is a covering space of M.
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Proof. Abbreviate Z := Z(M)1. Consider the group morphism p : Z×M′ → M : (a, b) 7→
ab. For topological groups it suffices to show that p is a continuous, open surjection and
that its kernel is discrete; cf. [54, 94.2]. First of all, p is a group morphism indeed,
because Z is contained in the centre of M. Surjectivity. Let g ∈ M. By 5.1.8(c),
the exponential function is surjective, and g is the exponential image of some element
X ∈ m. By 5.1.12, there are (unique) elements A ∈ z(m) and B ∈ m′ such that
A + B = X ∈ m = z(m) ⊕ m′. Then g = Xexp = (A + B)exp = Aexp · Bexp ∈ (Z ×M′)p

by the exponential law 5.1.13, 5.1.16 and 5.1.8(a). Openness. Being a continuous
surjection between a compact space and a Hausdorff space, p is a closed map. Thus it is
a quotient map; cf. [73, 1.33(b)]. Quotient maps between topological groups are open; cf.
[73, 5.2(a)]. The kernel of p is ker p = {(a, a−1) | a ∈ Z∩M′}, and Z∩M′ is discrete. In
fact, the exponential map is a local isomorphism, and hence there are neighbourhoods U
of 0 in m and V of 1 in M such that U ∼= V , and 1 = (U ∩ (z(m)∩m′))exp = V ∩ (Z∩M′).
For topological groups, the existence of such a neighbourhood V just means that Z∩M′

is discrete. �

5.1.24 Lemma. If the compact connected Lie group M is moreover simply connected
then Z(M)1 = 1 and M′ = M is simply connected.

Proof. By A.1.6, 5.1.23 and 5.1.22 the fundamental group π1(M) ≥ π1(Z(M)1 ×M′) =
π1(Z(M)1)× π1(M

′) = Zn × π1(M
′) can only be trivial if both, Zn as well as π1(M

′), are
trivial, in other words, if Tn ∼= Z(M)1 ∼= 1 and M′ = M is simply connected. �

5.1.25 Corollary. M = M′

Proof. M = mexp = (k ⊕ m′)exp = kexp · (m′)exp ≤ Z(M)1 ·M′ ≤ M. The first equation
holds because of surjectivity of the exponential function, by part (c) of 5.1.8. The third
equation holds because k = z(m) and m′ commute. Moreover, m′ exp is contained in
the commutator group M′, by part (a) of 5.1.8. But then, necessarily equality holds
everywhere, and M = Z(M)1 ·M′ = M′, in particular. �

5.1.26 Corollary. M is semisimple.

Proof. M = M′ is a compact connected Lie group and thus semisimple by 5.1.14. �
Let us briefly summarise the theory so far :

5.1.27 Proposition. For any compact connected Lie group M the following holds :

a) The corresponding Lie algebra m := `M is a compact Lie algebra,
and it can be decomposed as m = m′ ⊕ z(m).

b) M′ is semisimple.

c) z(m)exp = Z(M)1 ∼= Tn for some natural number n.

d) If π1(M) = 1, then Z(M)1 is trivial and M = M′ is semisimple. �
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5. On the automorphism group of Peter planes

Now there are two possible ways how to proceed. If our aim is an immediate statement
on our particular problem, then we have gathered all we need. Indeed, we remember
from 3.4.3 that g = R ∝ hei3R is a soluble Lie algebra. Thus, its ideal m has to be
semisimple and soluble at the same time, which forces it to be m = 0. Hence our
maximal compact subgroup M of Γ = R n Hei3R is trivial.

5.1.28 Corollary. If M is a soluble compact connected Lie group whose fundamental
group is trivial, then M = 1.

Yet, there is an interesting general way to proceed whenever we are not in a position
to say that our simply connected compact Lie group M is soluble but if we do know
that its third homotopy group is trivial. To that end the semisimple Lie algebra m
is written as a sum m = ⊕rk=1ek of simple Lie subalgebras. For k ≤ r consider the
simply connected Lie groups Ek satisfying `Ek = ek. These Ek turn out to be compact,
connected, simply connected, almost simple Lie groups. In fact, compactness follows
from Weyl’s theorem 5.1.10. Moreover, E1× . . .× Er is the simply connected universal
covering group of M. The essential key is given by a result from Bott [9], which is
actually at the bottom of Toda’s theorem 5.1.7 dismissed earlier on, and which does
not make use of the classification of simple Lie groups.

5.1.29 Theorem (Bott 1954). Let Υ be a compact, simply connected, almost simple
Lie group. Then its third homotopy group is π3(Υ) = Z.

This theorem guarantees that for all k ≤ r the homotopy groups π3(Ek) are infinite
and cyclic. If we assume π3(M) to be trivial, then 1 = π3(M) = π3(E1 × . . . × Er) =
π3(E1) × . . . × π3(Er) = Zr, which is only possible for r = 0. This implies m = 0 and
thus M = 1. Summarising, the following has been proved :

5.1.30 Proposition. Let M be a compact connected Lie group satisfying π1(M) = 1

and π3(M) = 1. Then M = 1.

By 5.1.6, any maximal compact subgroup M of Γ = R nHei3R satisfies these conditions.
Hence this way one could also have established that M is trivial.

Either way, all this culminates in the insight that our particular Γ is compact-free :

5.1.31 Corollary. Γ = R n Hei3R is compact-free.

Proof. Let X be some compact subgroup of Γ. Then X is contained in some maximal
compact subgroup M of Γ, and we have just proved that M = 1. Hence, also X = 1. �
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5.2. Some groups the automorphism group does not contain

5.2. Some groups the automorphism group does not
contain

Consequences of the non-embeddability results from chapter 3 on the full automorphism
group Σ of a Peter plane P will be studied. We will begin by proving that certain
prominent groups, SO3R and SU2C, do not qualify as automorphism groups of P. The
arguments ruling out these two candidates as subgroups of Σ are widely parallel, which
is not too surprising as SU2C is the two-fold covering group of SO3R. For that reason,
we will start out with the overall assumption of some (topological) subgroup Φ ≤ Σ
which is assumed to be isomorphic to SO3R or SU2C, alternatively. We will make an
explicit choice as soon as it is necessary. As a byproduct of these considerations it will
turn out that P cannot be Löwen’s SL2C-plane either, nor any of its open subplanes.

The phrases “Σ contains Φ” or “Φ is embeddable into Σ” shall refer to the existence
of an embedding of topological groups, that means, a continuous injective group mor-
phism ε : Φ→ Σ whose co-restriction ε|Φε

: Φ � Φε is open. In our context, though, the
embedded group Φ is usually compact and Σ is a Hausdorff space, with the consequence
that any continuous injective group morphism ε : Φ → Σ automatically is such an
embedding of topological groups.

Later on, we will see that SO3R and SU2C not being automorphism groups of P
allows for quite far reaching conclusions on the extent of solubility of Σ. In fact, it can
be established that `Σ contains at most one copy of sl2R as a non-soluble factor, if any.

5.2.1 Lemma. Some facts on the classical groups involved

a) SU2C is the two-fold covering group of SO3R.

b) so3R = `(SO3R) = `(SU2C) = v, where v denotes the 3-dimensional vector pro-
duct algebra v = (R3,+,×).

c) so3R does not have any 2-dimensional Lie subalgebras.

d) The Lie algebra so3R is simple. In other words, SO3R and SU2C are almost simple
Lie groups.

e) Neither SO3R nor SU2C contain compact subgroups of dimension 2.

Proof. Part (b) is a direct consequence of (a); for a proof of part (a), we refer you to
lemma 5.3.7. In order to verify (c), assume the existence of some Lie subalgebra w ≤ v

of dimension at least 2. Then w contains two linearly independent vectors a, b ∈ R3.
Their vector product a× b then is a third vector linearly independent of both, a and b,
and moreover it is also contained in w. Consequently, w is of dimension at least 3, thus
equals v. In order to prove part (d), it remains to be established that v does not have
any 1-dimensional ideals. This can be ruled out by very much the same argument : The
Lie bracket, i.e., vector product, of any non-trivial vector in any 1-dimensional ideal and
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5. On the automorphism group of Peter planes

some other vector not contained in the ideal will be non-trivial and orthogonal to the
plane spanned by them, thus never be contained in the ideal. As to part (e), any 2-
dimensional subgroup of Φ would give rise to some 2-dimensional subalgebra of `Φ = v,
and thus, by (c), dissolves into nonexistence. �

5.2.2 Lemma. Some facts on Σ = AutP

a) Σ is a locally compact, metrizable topological group with a countable basis.

b) Σ is a Lie group.

Proof. ad (a). Löwen [31, §2]. ad (b). Szenthe’s theorem [54, 96.14]. — Note
that, as the point space of a Peter plane is homeomorphic to R4, it can be obtained
in a cheaper way that the connected component Σ1 is a Lie group : see lemma 2.11 in
Löwen [31], using [30]. Note moreover, that Σ is not necessarily a linear Lie group. �

5.2.3 Lemma.

a) Φ is a closed subgroup of Σ.

b) Γ is a closed subgroup of Σ.

Proof. ad (a). Being a compact subgroup of the Hausdorff group Σ, Φ is automatically
closed. ad (b). Γ comes endowed with the topology induced by the compact-open
topology on Σ; cf. 3.3.14. Thus, Γ is a locally compact subgroup of the Hausdorff
group Σ. In that case, it is forcedly closed [73, 4.8]. �

5.2.4 Corollary. If Σ contains some subgroup Φ isomorphic to either SO3R or SU2C
then dim Σ ≥ 7.

Proof. By the lemma above, Φ ∩ Γ is a closed subgroup of the compact group Φ, thus
compact itself. Here we are, looking for a compact subgroup of Γ. As we have seen in
lemma 5.1.31 of the preceding section, Γ is compact-free; that is to say, there is only one
choice, namely Φ∩Γ = 1. Trying to learn about the dimension of Σ becomes a lot easier
once we have a look at the corresponding Lie algebras : dimΣ = dim `Σ ≥ dim(` Γ +
`Φ) = dim ` Γ+dim `Φ−dim(`Φ∩` Γ) = dim Γ+dim SO3R−dim(Φ∩Γ) = 4+3−0 = 7.
Thus, we have established the inequality dim Σ ≥ 7. �

5.2.1. SO3R is not an automorphism group of P

This is the point, where the itineraries part. Let us, for the moment, concentrate on
Φ ∼= SO3R. Here, the key is theorem 1 from Löwen [40], which states that in such a
situation P is basically well-known :
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5.2.5 Theorem (Löwen 1986). If the automorphism group of a locally compact 4-
dimensional stable plane has dimension at least 5 and contains a group Φ ∼= SO3R,
then the plane is the complex projective plane P2C or the open subplane obtained from
P2C by removing the points of either a conic section (”complex oval plane”) or the real
projective plane P2R.

From our previous fundamental failure 3.7.8 of embedding any Peter plane P into P2C
as an open subplane we can now deduce that the full automorphism group Σ of P cannot
contain SO3R.

5.2.6 Proposition. There is no continuous group monomorphism mapping SO3R
into Σ.

5.2.2. SL2C is not an automorphism group of P
As a short aside, which will turn out to be useful shortly, we can safely say that P
does not allow an action of the (non-compact) group SL2C. To that end, denote by SC

the SL2C-plane as introduced by Löwen in [41]. Note that SC is the unique stable
plane with point set R4 and connected lines apart from A2C which allows an action
of SL2C. Its automorphism group is the extension of SL2C by a certain collineation,
namely τ : C2 → C2 : (u, v) 7→ −i(u, v), and thus 6-dimensional.

5.2.7 Proposition. P is neither isomorphic to SC nor to SC \ {0}. There is no embed-
ding of topological groups mapping SL2C into Σ.

Proof. As the automorphism group of the punctured SL2C-plane seems not to be
known to literature as yet, a separate study of the punctured and non-punctured planes
will be called for : First of all, P cannot be the punctured plane SC \ {0} because the
simply connected set R4 and C2 \ {0} are clearly not homeomorphic. As to P not being
isomorphic to SC, note that a second proof will emerge as a corollary from Bickel’s
theorem 5.2.10. We will give Version A here : Assume P = SC. This means that P
admits an action of SL2C and thus in particular an action of its (maximal compact)
subgroup SU2C. But then corollary 5.2.4 implies dim Σ ≥ 7, which contradicts the fact
that dim Σ = dim AutSC = 6. Hence, P is not the SL2C-plane SC, either. �

5.2.3. SU2C is not an automorphism group of P
Let us again take up the thread at the point where we knew that Σ is of dimension
at least 7 if it contains some subgroup Φ isomorphic to SO3R or SU2C, i.e., corollary
5.2.4. This time dealing with Φ ∼= SU2C, we will exploit a result on 4-dimensional stable
planes that allow SU2C for an automorphism group [41, Thm. 5] :

5.2.8 Theorem (Löwen 1986). Let P be a locally compact stable plane of dimen-
sion 4. Let moreover ∆ be a connected Lie group that is a subgroup of AutP, satisfying
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5. On the automorphism group of Peter planes

dim ∆ ≥ 6. If ∆ contains a subgroup Φ ∼= SU2C, then either P belongs to a certain
class of open subplanes of P2C or P ∈ {SC,SC \ {0}}.

Again, the non-embeddability result in 3.7.8 forbids any open subplane of the complex
projective plane. The troublemakers are, of course, the SL2C-plane and its punctured
open subplane. But these two planes have been excluded as candidates in lemma 5.2.7.
Hence, the overall assumption that P suffers an action of the group SU2C must neces-
sarily be wrong : the full automorphism group Σ of P does not contain SU2C.

5.2.9 Proposition. There is no continuous group monomorphism mapping SU2C
into Σ.

5.2.4. Application of a result by Bickel

Although not ultimately necessary at that stage, we may pay attention to quite strong
a result by Bickel [5, Korollar 4.3.2], which establishes the critical dimension c4 of
4-dimensional stable (lp-) planes as being c4 = 8. Here, the critical dimension is
the natural number c4 with the property that there are non-classical examples of 4-
dimensional stable planes whose automorphism group is of dimension c4, but any such P
with dim AutP > c4 has to be classical. As a matter of fact, Betten’s translation
planes Tk in 3.8 are non-classical stable planes with an 8-dimensional automorphism
group; cf. [54, 73.13].

5.2.10 Theorem (Bickel 1995). Any 4-dimensional stable plane with an automor-
phism group of dimension at least 9 is isomorphic to one of the seven planes
P2C,A2C,P2C \ {∞},C(C),UC(C),DC(C),DUC(C), i.e., the complex projective or
affine planes, the cylinder plane, the united cylinder plane or their respective duals
described in §3.6 of [5].

This theorem gives rise to version B of the proof of proposition 5.2.7, proceeding as
follows :

5.2.11 Lemma. If any Peter plane P were the SL2C-plane SC then the full automor-
phism group Σ were of dimension at least 10.

Proof. Assume P = SC. Then SL2C acts on P, and its action on the point space
P = Γ ≈ C2 is the standard action on C2 (see [41]). Thus, it fixes the origin o. In other
words, Σo ≥ Ψ ∼= SL2C. Moreover, Ψ ∩ Γ ≤ Σo ∩ Γ ≤ Γo = 1, because Γ acts sharply
transitive on P = Γ. Therefore, Ψ ∩ Γ = 1. But then we are in a position to say that
dim Σ = dim `Σ ≥ dim(`Ψ + ` Γ) = dim `Ψ + dim ` Γ− dim(`Ψ∩ ` Γ) = 6 + 4− 0 = 10,
since `Ψ ∩ ` Γ = 0. �

All these seven planes above are by construction open subplanes of the complex pro-
jective plane P2C. Bickel’s result hence yields that if the arbitrary Peter plane P
were isomorphic to SC it were an open subplane of P2C, which by 3.7.8 it is not; hence
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none of the Peter planes is isomorphic to the SL2C-plane. Consequently, the above is an
alternative proof of 5.2.7 : The Peter plane P is neither the SL2C-plane nor contained
therein as an open SL2C-invariant subplane. Equivalently, Σ does not contain SL2C.

Apart from that, but by the same argument, Bickel’s theorem gives us an upper bound
on the dimension of Σ :

5.2.12 Corollary. 4 ≤ dim Σ ≤ 8

Proof. As the 4-dimensional group Γ is a subgroup of Σ, the lower bound is immediate.
As to the upper bound, assume that dimΣ ≥ 9. Then once more, P would have to be
one of the planes mentioned in Bickel’s classification, and they are without exception
open subplanes of P2C. But this contradicts theorem 3.7.8. �

5.3. How soluble is the automorphism group ?

5.3.1. Zoological considerations concerning so3R

5.3.1 Unitary Lie algebras. Let V = Fn be a right vector space over some skew
field F of characteristic char F 6= 2 and α an involutional antiautomorphism of F. Let
h : V × V → F be some non-degenerate, ε-α-hermitian linear form on V , where ε ∈
{1,−1}. Recall from chapter 2 that h can be described as h(v, w) = vHw∗ for some
matrix H ∈ Mat

n
F, where w∗ := (wα)T. Then the unitary group of V with respect

to h is
U(V, h) := {ϕ ∈ GL(V ) | ∀v, w ∈ V . h(vϕ, wϕ) = h(v, w)}

= {A ∈ GLnF | AHA∗ = H} .

Its Lie algebra, called the unitary Lie algebra, can be identified as

u(V, h) := `(U(V, h)) =
{
X ∈ Mat

n
F | HX∗ = −XH

}
.

We talk about orthogonality whenever F is a (commutative) field of characteristic
char F 6= 2 and h is symmetric, i.e., ε = 1 and α = id

F
. Quite prominent examples are

onF := {X ∈ Mat
n

F | XT = −X} for H = 1l, F ∈ {C,R}, ε = 1
and α = id

F

unC := {X ∈ Mat
n

C | XT
= −X} for H = 1l, F = C, ε = 1

and complex conjugation
sp2nC := {X ∈ Mat

2n
C | HX∗ = −XH} for F = C, ε = −1,

complex conjugation and

H =

(
1ln

−1ln

)
.

Note that all the elements in onF must have zero diagonal elements, which implies that
onF = sonF. As to other complex orthogonal Lie algebras, they are all isomorphic : for
every symmetric non-degenerate bilinear form h on Cn, we get

on(C, h) ∼= on(C, 1l) .
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For a survey on sesquilinear forms, see [11, §5ff].

5.3.2 Quaternions. Folklore — as exposed in Mäurer [46] — has it that Hamil-

ton’s quaternions can be considered as

H = R · SU2C =

{(
u v
−v u

)∣∣∣∣ u, v ∈ C

}
.

Complex conjugation can be extended from C ≤ H to

h :=

(
u −v
v u

)
for h ∈ H. The quadratic form q : H → H : h 7→ hh = (uu+ vv) · 1l induces a positive
definite symmetric bilinear form β : H×H→ R by polarisation β(h, g) := 1

2
(q(h+ g)−

q(h)−q(g)). There is an isomorphism which yields the following identifications with the
“usual” description H = R + Ri+ Rj + Rk :

H = R · SU2C H = C + Cj = R4

element h =

(
u v
−v u

)
a = u1 + u2i+ v1j + v2k

= (u1, u2, v1, v2)
T ∈ R4

conjugation h =

(
u −v
v u

)
a = u1 − u2i− v1j − v2k

quadratic form q(h) = hh = (uu+ vv) · 1l q(a) = u2
1 + u2

2 + v2
1 + v2

2 = aT1l a

bilinear form β(h, g) 〈a | b〉 = aT1l b

Thus, the bilinear form is nothing but the “ordinary” scalar product on the vector space
R4 ∼= H; the inner product spaces (H, β) and (R4, 1l) are isomorphic. Consequently, so
are their respective special orthogonal groups SO(H, β) and SO4R. We will make use of
both descriptions in the sequel.

5.3.3 Actions of SU2C. Consider the multiplicative group

S := {h ∈ H | |h| = 1} = SU2C ≤ H .

Note that S = SU2C ≈ S3 is a simply connected compact group. For every a ∈ S, right
and left multiplication

ρa : H→ H : x 7→ xa
λa : H→ H : x 7→ ax

are orthogonal R-linear maps with respect to β. As a matter of fact, ρa and λa are even
contained in the connected component O(H, β)1 = SO(H, β). This encourages treating
the group morphism

ϕ : S × S → SO(H, β)
(a, b) 7→ λaρb

.

Its kernel is kerϕ = {(−1,−1), (1, 1)} = 〈(−1,−1)〉. In order to understand its surjec-
tivity one can study actions of S × S on S :
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(i) S × S acts transitively on S with stabiliser (S × S)1 = {(a, a) | a ∈ S} ∼= S

(ii) (S×S)1 acts transitively on 1⊥∩S with stabiliser (S×S)1,i = {(a, a) | a ∈ S ∩C}

Assertion (i) can be hand-crafted, whereas the proof of assertion (ii) requires some more
zeal :

The stabiliser (S × S)1 acts on V := 1⊥ = Pu H. The group morphism ϕ can thus be
restricted to (S × S)1 and maps into SO(V, β|V×V) :

ϕ|(S×S)1 : (S × S)1 → SO(V, β|V×V)

But again, SO(V, β|V×V) = SO3R, such that ϕ|(S×S)1 can be identified with a group
morphism

ψ : S → SO3R
a 7→ λaρa

.

Transitivity of (S × S)1 on V would be implied by surjectivity of ψ, because SO3R
acts transitively on the vector space R3 = V. As, moreover, V ∩ S is invariant under
S ∼= (S × S)1, this would account for transitivity of (S × S)1 on V ∩ S.

5.3.4 As a matter of fact, ψ : S → SO3R is surjective :

(I) Every half turn with respect to an axis in R3 is contained in Sψ. For a proof, let
v ∈ V \ 0. Then v is skew-symmetric, i.e., v = −v. This implies v2 = −vv =
−(det v) · 1l; hence vψ has order 2. For v ∈ V ∩ S, the linear map vψ pointwisely
fixes Rv. Consequently, vψ is a half turn around Rv. Now, any axis in R3 can be
written as Rv for some v ∈ V∩S, which completes the first part of the argument.

(II) Let δ ∈ SO3R. As every rotation in R3 is the product of two reflections, there
are reflections σ1 and σ2 with respect to planes in R3 such that δ = σ1σ2. For
ν ∈ {1, 2}, the linear map− id ·σν = σν ·(− id) is of order 2 and has determinant +1,
hence is a rotation by π. By (I), SO3R 3 (− id ·σ1) · (− id ·σ2) = (−id)2 · σ1σ2 = δ.
This proves SO3R ⊆ Sψ and thus surjectivity of ψ.

5.3.5 Let H := (S × S)ϕ ≤ SO(H, β) and abbreviate G := SO(H, β) = SO4R.

S × S ϕ - H ⊂ - G

S ∼= (S × S)1

∪

6

- H1

∪

6

⊂ - G1

∪

6

(S × S)1,i

∪

6

- H1,i

∪

6

⊂ - G1,i

∪

6
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Note, that G1,i,j = (SO4R)e1,e2,e3 = 1. Thus stepwise application of the Frattini-
argument A.2.1 yields, from bottom to top :

(ii) by 5.3.3(ii), H1 ≤ G1 acts transitively on 1⊥ ∩ S 3 i.
Thus G1 = H1,i ·H1 = H1.

(i) by 5.3.3(i), H ≤ G acts transitively on S 3 1.
Thus G = H1 ·H = H .

Assertion (i) above states that ϕ is surjective. Recall that S = SU2C ≈ S2 is simply
connected, and hence so is S × S; cf. A.1.6. As a surjective continuous morphism from
the compact group S×S to the Hausdorff group SO4R, it is a quotient map (cf. A.2.3),
and having a discrete kernel finally makes it a universal covering :

5.3.6 Proposition.

a) ϕ : SU2C× SU2C→ SO4R is a universal covering.

b) so4R ∼= su2C⊕ su2C

c) so4C ∼= sl2C⊕ sl2C

Proof. ad (b) : by (a), so4R = `(SO4R) ∼= `(S × S) = `(SU2C)⊕ `(SU2C) = su2C ⊕
su2C. ad (c) : This follows from (b) by considering the respective complexifications :
C ⊗ so4R ∼= (C ⊗ su2C) ⊕ (C ⊗ su2C), in other words, so4C ∼= sl2C ⊕ sl2C. (For
complexifications, see 5.3.13). �

Stopping to look at assertion (ii) above reveals ψ : SU2C→ SO3R being a quotient map
with discrete kernel kerψ = 〈−1l〉, thus a universal covering, too.

5.3.7 Proposition.

a) ψ : SU2C→ SO3R is a universal covering.

b) SU2C/ 〈−1l〉 ∼= SO3R

c) su2C ∼= so3R

d) so4R ∼= so3R⊕ so3R.

Proof. ad (b) : By the homomorphism theorem, SU2C/ 〈−1l〉 = S/kerψ ∼= SO3R.
ad (c) : By (a), we get so3R = `(SO3R) ∼= `(SU2C) = su2C. ad (d) : This follows
from (b) and 5.3.6(b). �

This now may suffice as a zoological equipment for the following paragraphs.
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5.3.2. Consequences for the Levi decomposition

The previous results — more precisely SO3R and SU2C not being embeddable into the
full automorphism group Σ of a Peter plane — imply that in the end, the Lie algebra
so3R is not a subalgebra of `Σ. We will explain the reason why, and continue by outlining
the consequences for the solubility of Σ.

5.3.8 Proposition. The Lie algebra so3R is not embeddable into `Σ.

Proof.

SU2C/ ker ε

SU2C
ε -

.

Σ

-

-

so3R

exp

6

- ϕ - `Σ

exp

6

Assume an injective morphism ϕ : so3R ↪→ `Σ of Lie algebras. As SU2C is simply
connected, there is a continuous group morphism ε : SU2C→ Σ; cf. [24, I 9.11]. Yet we
do not know whether or not ε is injective. What we do know is that the kernel of ε is
discrete. In order to establish discreteness consider Campbell-Hausdorff neighbourhoods
U ∈ U0(so3R) of 0 in so3R and V ∈ U1(SU2C) of 1 in SU2C such that exp : U → V
is a homeomorphism, and another pair S ∈ U0(`Σ) and T ∈ U1(Σ) of homeomorphic
neighbourhoods. Now consider the neighbourhood W := V ∩ T ε↼

of 1 in SU2C. Let
g ∈W ∩ker ε. There is a unique element X ∈ U with Xexp = g. Then Xϕ exp = Xexp ε =
gε = 1, thus S 3 Xϕ = 0, and due to injectivity of ϕ we get X = 0. This implies g = 1
and thus establishes a neighbourhood W in SU2C satisfying W ∩ ker ε = 1. Therefore,
1 is open in ker ε and ker ε is discrete.

Its being discrete implies that the kernel of ε is either trivial or equals 〈−1l〉. In fact,
ker ε is a (discrete) normal subgroup of SU2C. It is generally true that the only normal
subgroup of SU2C is its centre Z(SU2C) = 〈−1l〉; see [21, I §§4.4, 4.5] for instance. Yet
for our purposes, it suffices to know its discrete normal subgroups, which are by far
easier to obtain : The action of SU2C on ker ε by conjugation is continuous. Being
discrete, ker ε is totally disconnected. Therefore, the (connected) orbit of each element
in ker ε under conjugation in SU2C consists of one element only, which means that
ker ε ≤ Z(SU2C) = 〈−1l〉.

Hence, the canonical decomposition of ε yields an injective continuous group morphism
from SU2C/ker ε to Σ. As a matter of fact, this morphism is an embedding of topological
groups, since the co-restriction of a continuous injection from a compact space into a
Hausdorff space is open. From 5.3.7 we know that this quotient is either SO3R or SU2C
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itself. But this harshly contradicts 5.2.6 and 5.2.9, for neither of these two embeddings
exists. �

Now consider the Levi decomposition

`Σ = s n r

of `Σ, where r =
√
`Σ is the soluble radical. The semisimple Lie algebra s can be written

as a direct sum s =
⊕

j∈J ej of simple Lie algebras ej. Furthermore, 5.3.8 implies that
so3R is not embeddable into any of the ej. Summarizing, we are looking for simple real
Lie algebras ej which do not admit so3R as a subalgebra.

5.3.3. Semisimple complex Lie algebras, real and compact forms

There is quite straight an answer to that problem : the only possible candidate is sl2R.
In order to give a detailed argument, though, we should be familiar with the structure
theory of semisimple complex Lie algebras, real forms and their maximal compact sub-
algebras. For our purposes it suffices to be aware of the summary given in 5.3.16. For
the convenience of the reader we will nevertheless give a brief outline, mainly following
[24] and [27].

Due to technical necessities, let us introduce the group

Inn
g
a :=

〈
ead a

〉
≤ Aut g

of inner automorphisms with respect to some Lie subalgebra a of a Lie algebra g. For
semisimple Lie algebras, Inn

g
g coincides with the connected component (Aut g)1 of the

automorphism group of g; see proof of [24, III 6.4] along with [28, I 1.97+98].

5.3.9 Root space decomposition. Let g denote a semisimple Lie algebra over C. A
Lie subalgebra t of g is called maximal toral if every element adX is diagonalisable
whenever X ∈ t. Every semisimple Lie algebra possesses maximal toral subalgebras,
and they are necessarily abelian. Now, let t denote such a maximal toral subalgebra.
For every α ∈ t∗ we define

gα := {X ∈ g | ∀T ∈ t. [T,X] = T α ·X} .

If gα 6= 0, then α 6= 0 is called a root of g relative to t. In that case, gα is called a root
space. We denote by Φ the set of all roots relative to t.

A partial order can be defined on t∗ with respect to which Φ = Φ+ ∪ (−Φ+), where
Φ+ is the set of all positive elements of Φ ⊆ t∗. The algebra g can be written as the
direct sum

g = t⊕
⊕
α∈Φ

gα ;

we call this the root space decomposition of g. Moreover, g0 = zg(t) = t.
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5.3.10 Cartan decomposition. Let g denote a semisimple real Lie algebra and κ its
Killing form κ : g×g→ R : (X, Y ) 7→ tr(adX ·adY ). An automorphism τ of g is called
a Cartan involution if

• τ 2 = id
g

• κ is negative definite on k := {X ∈ g | Xτ = X} = Fix τ

• κ is positive definite on p := {X ∈ g | Xτ = −X}.

This yields the Cartan decomposition g = k⊕p of g. Note that k is a Lie subalgebra,
whereas p is a vector subspace only; in fact, [k, k] ⊆ k, [k, p] ⊆ p and [p, p] ⊆ k.

The Cartan decomposition of a semisimple Lie algebra is unique up to isomorphism.
More precisely, for Cartan decompositions k1 ⊕ p1 = g = k2 ⊕ p2 there is some automor-
phism γ ∈ Inn

g
g such that kγ1 = k2 and pγ1 = p2.

5.3.11 Compact Lie algebras. Recall that a finite dimensional real Lie algebra g is
called compact if there is some positive definite symmetric bilinear form β : g× g→ R
which is moreover invariant, in the sense that for any X, Y, Z ∈ g we get β(X, [Y, Z]) =
β([X, Y ], Z). Note that the Cartan decomposition g = k⊕p deliberately offers a compact
subalgebra of g : with β := −κ|k×k, the subalgebra k is clearly compact.

In order to talk about uniqueness results another theorem has proven essential :

5.3.12 Theorem. Let g be a semisimple real Lie algebra with Cartan decomposition
g = k⊕ p. Then the following is true :

a) For any compact subgroup U of (Aut g)1 = Inn
g
g, there is some γ ∈ Inn

g
g such

that γ−1Uγ ⊆ K := Inn
g
k. [24, III.6.22]

b) Let G be a connected Lie group with Lie algebra `G = g, and put K := 〈kexp〉 ≤ G.
Then for any compact subgroup U of G there is an element g ∈ G such that
g−1Ug ⊆ K. [24, III.6.25] �

5.3.13 Complexification and real forms. Cartan decompositions and the notion
of compactness make sense for real Lie algebras only, as they require the notion of
positiveness. Yet, there are ways of using these concepts also when dealing with complex
Lie algebras. What we need is a translation of real into complex Lie algebras, and vice
versa : The complexification of a real Lie algebra g is the tensor product gC := C⊗R g.

On the other hand, there are two different methods of gaining real Lie algebras from
a complex Lie algebra g : First of all, we can simply read g as a real Lie algebra, i.e.,
take R for the scalar field. The resulting real Lie algebra is called the realification of g

and is denoted by gR. A real form of a complex Lie algebra g is a real Lie algebra e
with complexification eC = C ⊗ e ∼= g. A real form which is moreover compact will be
called a compact form of g.
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5. On the automorphism group of Peter planes

5.3.14 The compact form of a semisimple complex Lie algebra. Let g be a
semisimple complex Lie algebra. Denote by t a maximal toral subalgebra and consider
its root space decomposition relative to t as described in 5.3.9. Pick a suitable C-basis
T1, . . . , Tm of t such that the Killing form κ is negative definite on the real subalgebra
ĩt := i ·

⊕m
j=1 RTj of tR. Moreover, we may choose suitable Xα ∈ gα for every root α ∈ Φ,

with the property that κ(Xα, X−α) = 1. Then

gk := ĩt⊕
⊕
α∈Φ+

( R(Xα −X−α)⊕ iR(Xα +X−α) )

is a compact form of g, and gR = gk ⊕ igk is a Cartan decomposition of the realification
of g. Weyl’s theorem can be used to obtain a maximality result for gk : for any
semisimple compact Lie subalgebra c of gR there is an element γ ∈ Aut g such that
cγ ⊆ gk.
Proof. Let G be the simply connected group with Lie algebra `G = gR. By Weyl’s
theorem 5.1.10, C := 〈cexp〉 ≤ G is compact. By 5.3.12, there is an element g ∈ G
satisfying g−1Cg ⊆ 〈kexp〉. Thus

k ≥ `(g−1Cg) = `(cIg) = `(cexp ·Ig) = `(cAd g·exp) = cAd g ,

and Ad g is an element in Aut g. �

5.3.15 Maximal compact subalgebras of real forms. Let g be a semisimple com-
plex Lie algebra with compact form gk. Let e be some real form of g. Then there is a
certain automorphism τ ∈ Aut g such that

k := e ∩ gτk
p := e ∩ igτk

form a Cartan decomposition e = k⊕ p of e. As to uniqueness, again every semisimple
compact Lie algebra c of e can be found as c ∼= cγ ≤ k for some γ ∈ Aut e.

Finally, it is true that every simple real Lie algebra occurs in one of the two forms
discussed above. Thus, we can summarize :

5.3.16 Theorem. Maximal compact subalgebras of semisimple Lie algebras.

a) Any simple real Lie algebra is either the realification or a real form of some simple
complex Lie algebra.

b) Let g be a simple complex Lie algebra. Then g possesses a compact form gk, and
for any other semisimple compact subalgebra c of gR there is an automorphism
γ ∈ Aut g such that cγ ≤ gk.

c) Let g be a simple complex Lie algebra. Then any real form e of g has a maximal
compact subalgebra k, and for any other semisimple compact subalgebra c of e
there is an automorphism γ ∈ Aut e such that cγ ≤ k. �
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5.3.4. What the classification of simple Lie algebras can do for us

Equipped with that knowledge, we can go out and open Tits’ tables [74] : What we
will find is a complete list of all simple complex Lie algebras along with their real forms
and their respective maximal compact subalgebras.

Remember from 5.3.8 that we are looking for simple summands ej of the semisimple
part s = ⊕j∈Jej of `Σ. Not containing so3R as a subalgebra is one necessary condition
of being a candidate. As e := ej is a simple real Lie algebra, by 5.3.16(a) it can be found
in Tits’ tables [74] :

Case 1 : e is the realification of a simple complex Lie algebra g. From 5.3.16(b), so3R
is a subalgebra of e if and only if so3R is a subalgebra of the compact form gk of g. And
gk is also listed in Tits’ tables.

Case 2 : e is a real form of a simple complex Lie algebra g. From 5.3.16(c), so3R is
a subalgebra of e if and only if so3R is a subalgebra of the maximal compact subalgebra
k of e. And k is also listed in Tits’ tables.

By browsing the tables, then, and eliminating every simple real Lie algebra which does
contain so3R, promising candidates will be singled out.

5.3.17 A word of warning. Tits uses the very same notation for two different items :
the simple complex Lie algebra g is denoted by the same chiffre as its (unique) compact
form gk. For the four series, for instance, this means :

dim chiffre g gk

n2 + 2n An sln+1C AC,0
n = sun+1C n ≥ 1

2n2 + n Bn so2n+1C BR,0
n = so2n+1R n ≥ 2

2n2 + n Cn sp2nC CH,0
n = sunH n ≥ 3

2n2 − n Dn so2nC DR,0
n = so2nR n ≥ 4

5.3.18 Inclusions and identities. Considering the series of simple complex Lie alge-
bras, the elements within one series form a chain with respect to the inclusion order, the
smallest element being the one with the smallest index. The series B and D are closely
related, in as much as

Bn ↪→ Dn+1 ↪→ Bn+1 for n ≥ 3 ,

in other words so2n+1C ↪→ so2n+2C ↪→ so2n+3C. Furthermore, there are certain identities
near the bottom element of the ordered set :

A1
∼= B1

∼= C1

B2
∼= C2

A3
∼= D3

Note that D2
∼= A1 ×A1 is properly semisimple (cf. 5.3.6(c)). The inclusion ordered set

— at least the part of immediate interest here — looks like this :
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A D B C

A4

A2

A1 = B1 = C1

D2 B2 = C2

C3
B3

B4

D4

D5

A3 = D3

The very same inclusions hold for the corresponding compact forms. This is due to

5.3.19 Lemma. Let a, b be simple complex Lie algebras and ak, bk their respective
compact forms. If a ↪→ b then ak ↪→ bk.

Proof. We will consider the simply connected Lie groups A and B with Lie algebras
`A = a and `B = b. Then there is an embedding ϕ : A ↪→ B. Put K := 〈aexp

k 〉 ≤ A
and M := 〈bexp

k 〉 ≤ B. As both, a and b, are simple compact Lie algebras, Weyl’s
theorem 5.1.10 ensures the compactness of K and M.

A ⊂ ϕ - B

K

id
A
|K

∪

6

⊂
ψ - M

id
B
|M

∪

6

ak

exp

6

⊂
` ψ

- bk

exp

6

Now ϕ|K is an embedding of K into B. By 5.3.12(b), there is some element g ∈ B such
that g−1Kϕg ≤ M. In other words, ψ := ϕIg is an embedding of K into the maximal
compact subgroup M of B; here, Ig denotes conjugation by g. But then, ` ψ is an
embedding of `K = ak into `M = bk. Therefore, ak ↪→ bk. �
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A theorem by Bickel implies that dim Σ = dim `Σ ≤ 8 (cf. 5.2.10, 5.2.12). Thus
we will here restrict our attention to Lie algebras of real dimension not more than 10.
Yet, we could just as well exclude those of higher dimension using the same genre of
arguments as before. The results will be collected in the following table, referring to
single arguments given below.

5.3.20
Realifications

dimR e g gk contains so3R reference

6 A1 = sl2C A1 = so3R yes 5.3.21

Real forms

dimR e e k contains so3R reference

3 AR

1 R no 5.3.22

3 AC,0
1 AC,0

1 = A1 = so3R yes

8 AR

2 B1 = A1 yes

8 AC,0
2 AC,0

2 = A2 yes 5.3.18

8 AC,1
2 A1 × R yes

10 BR,0
2 BR,0

2 = B2 yes 5.3.18

10 BR,1
2 D2 = A1 ×A1 yes 5.3.23

10 BR,2
2 D1 × B1 yes 5.3.18

5.3.21 Lemma. so3R is contained in every simple real Lie algebra which is a realifica-
tion of a simple complex Lie algebra.

Proof. By 5.3.18, the bottom element A1 = so3R is contained in every one of the
compact forms of all possible simple complex Lie algebras, thus in their realifications. �

5.3.22 Indeed, AR
1 = sl2R does not contain so3R. For if it did, the 3-dimensional Lie

algebra so3R would have to be embeddable into the 1-dimensional Lie algebra R, which
is a contradiction. �

5.3.23 Lemma. The compact form D2 is the direct sum D2
∼= A1 ⊕A1.

Proof. Lemma 5.3.7(b); as the compact forms are D2 = so4R and A1 = so3R. �

All in all, we have seen that the only remaining candidate is ej = sl2R. As a matter of
fact, sl2R is the only simple real Lie algebra which does not contain so3R. Consequently,
the Levi decomposition `Σ = s n r must obey

5.3.24 Corollary. `Σ = s n r = (sl2R)n n
√
`Σ for some n ∈ N0
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5.3.5. Solubility revisited

Löwen has studied automorphism groups of 4-dimensional stable planes and come up
with a result which offers further insight into the structure of Σ :

5.3.25 Theorem (Löwen 1978). Every semisimple group of automorphisms of a 4-
dimensional stable plane is almost simple. [32] �

Applied to the semisimple automorphism group 〈sexp〉 ≤ Σ of a Peter plane, Löwen’s
theorem yields that s is a simple Lie algebra; thus, in the light of 5.3.24, s = 0 or
s = sl2R. Summarising our knowledge on solubility of the full automorphism group of
P, we get

5.3.26 Theorem. Let P be a Peter plane and denote by Σ its full automorphism group.

Then its Lie algebra `Σ is either soluble altogether, or `Σ = sl2R n r, where r =
√
`Σ

denotes its soluble radical.

5.3.6. Solubility of a normaliser

The question still remains whether or not the full automorphism group Σ = AutP of a
Peter plane is soluble, or, to put it another way, whether or not SL2R is an automorphism
group of a Peter plane. A partial answer will be attempted, concluding that after all, if
ever SL2R or one of its kins is a subgroup of Σ it will not be entirely found within the
normaliser of Γ. This normaliser, at least, will turn out to be soluble.

Σ = AutP being the full automorphism group of a Peter plane P, it comes naturally
equipped with a (point) action

ω : P × Σ→ P

on P = (P,L) = P (Γ; {1},Sexp). As expg is a bijection, it allows the following construc-
tion of an action of Σ on the Lie algebra g = ` Γ :

Ω : g× Σ → g

(X,α) 7→ (Xexpg , α)ω·exp−1
g .

Γ× Σ
ω - γ

g× Σ

expg× id

6

66

..................
Ω

- g

expg

6

66

Consider the normaliser

N := NΣ(Γ)

of Γ in Σ.

140



5.3. How soluble is the automorphism group ?

5.3.27 Lemma.

a) Γ is closed in Σ.

b) N is closed in Σ.

c) N is a Lie group with Lie algebra `N = n
`Σ

(g) =: n.

Proof. ad (a). By 3.3.14, the matrix topology τ1 on Γ coincides with the one induced
by the compact-open topology on Σ with respect to the action Σ : P . But endowed
with the matrix topology, Γ is homeomorphic to R4, which is locally compact. Thus Γ
is a locally compact subgroup of the locally compact Hausdorff group Σ; see [73, 4.8].
Therefore it is closed in Σ. ad (b). As the normaliser of a closed subgroup is closed
(see [26, 5.53]), closedness of N is a consequence of part (a). Part (c) follows from [54,
94.12] along with the fact that the normaliser is the largest subgroup or Lie subalgebra
in which Γ or g = ` Γ, respectively, is normal. Alternatively, see [10, chapitre III, § 9,
no. 4, prop. 11]. �

5.3.28 Lemma. The restriction of ω to the action of Γ on Γ is equivalent to right
multiplication. In particular, Γ acts sharply transitive on Γ. For any point po ∈ P = Γ,
the point evaluation

evalω : Γ→ Γ : γ 7→ pγo = (po, γ)
ω

is a bijection.

Proof. By the construction of a Peter plane P (Γ; {1},Sexp), there is a sharply transitive
point action of Γ ≤ AutP, given by right multiplication

ρ : P × Γ→ P : (γ, α) 7→ γα.

Therefore, for any point po ∈ P = Γ, evaluation

evalρ : Γ→ P : γ 7→ (po, γ)
ρ

is a bijection. Consider the group monomorphism σ : Γ → Σ : α 7→ (σα : (po, γ)
ρ 7→

(po, γα)ρ).

Γ× Σ
ω - Γ

Γ× Γ

evalρ × σ

6

6

ρ - Γ

evalρ

6

66

One can verify that this diagram commutes, meaning that ρ and the restriction ω|P×Γ

are equivalent. �
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5.3.29 Lemma. For any point po ∈ P = Γ, consider the restriction of the actions to
the point stabilisers in N.

a) ω|Γ×Npo
: Γ× Npo → Γ is equivalent to conjugation

κ : Γ× Npo → Γ : (γ, α) 7→ α−1γα .

b) Ω|g×Npo
: g× Npo → g is equivalent to the adjoint representation

Ad : g× Npo → g : (X,α) 7→ Adα.X .

Proof. ad (a). Note that κ is an action, indeed, as Γ E N. For arbitrary group elements
γ ∈ Γ and α ∈ Npo, we get ((po, γ)

ω, α)ω = (po, γα)ω = (po, α
−1γα)ω, as α−1 fixes po.

Hence, the outer square of the diagram commutes and the actions are equivalent.

Γ× Npo

ω - Γ

g× Npo

Ω -

�� exp
g ×

id

�
g-

ex
p g

--

g× Npo

Evalω × id

6

Ad
- g

Evalω

6

Γ× Npo

evalω × id

6

66

κ -
�� ex

p g
× id

�

Γ

evalω

6

66

-

exp
g

--

ad (b). Ad indeed describes an action of N on g, as N was chosen as the normaliser
of Γ. In fact, let α ∈ N, X ∈ g = {Y ∈ `N | (RX)exp ⊆ Γ}. In order to show that Adα.X
is contained in g it suffices to show that the one-parameter group of Adα.X is contained
in Γ. Let t ∈ R. Then (t · (Adα.X))exp = (Adα.(tX))exp = (tX)exp κα ∈ Γ, because,
in order of appearance, Adα is linear, Adα · exp = exp ·κα, (RX)exp ∈ Γ as X ∈ ` Γ,
and finally Γ E N. As to commutativity of the inner square, let α ∈ Npo . By definition,
Ω(·, α) = `(ω(·, α)), which by part (a) is equivalent to `(κ(·, α)) = Adα. If needs be, the
diagram can be made commutative by the bijection Evalω := expg ·evalω · exp−1

g : g→ g.
�
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Now pick po := 1 ∈ Γ.

5.3.30 Lemma.

a) Sexp is invariant under the action ω of Npo .

b) S is invariant under the action Ω of Npo .

Proof. ad (a). (N,P) is a subgeometry of (Σ,P). Therefore, Npo leaves the pencil
Lpo = L1 = Sexp invariant. ad (b). Let Λ ∈ S and α ∈ Npo . Then Λexp ·α ∈ Sexp,
by (a), and (Λ, α)Ω = (Λexp ·α)exp−1 ∈ Sexp · exp−1

= S, as expg is bijective. �

Consider the translation plane

T := P (g; {0},S)

constructed from the planar LieAlg-partition S of g. The linear point action Ω is com-
plemented by the line action

g/S × Npo → g/S
(Λ +X,α) 7→ Λα +Xα .

This is an action indeed, because the spread has proved invariant under the point action.
Thus (Npo, T ) becomes a geometry.

5.3.31 Lemma.

a) Npo fixes g′′ = Re3.

b) Npo fixes g′ = Re3 + Re2 + Re1.

Denote by Λo ∈ S the unique fibre containing g′′ = Re3. As a matter of fact, by 4.5.5
and 4.4.10, Λo is the (unique) abelian fibre in S.

c) Npo fixes Λo.

d) Npo fixes the maximal flag g′′ ≤ Λo ≤ g′ ≤ g.

Proof. Parts (a) and (b) are due to the fact that (g′)exp = Γ′ and (g′′)exp = Γ′′

are normal subgroups of N; in fact, they are characteristic subgroups of the normal
subgroup Γ of N. Let α ∈ N, ∆ ∈ {Γ′, Γ′′} and X ∈ `∆. Then, as for ∆ = Γ above,
(R · (Adα.X))exp = (Adα.RX)exp = (RX)exp κα ⊆ ∆, and thus Adα.X ∈ `∆. ad (c).
From 4.4.10 we know that Λo is a red-yellow linear combination and hence contained
in g′. Now any α ∈ Npo on the one hand fixes g′′ ≤ Λo and on the other hand maps Λo
to some fibre Λαo ∈ S. Thus Λαo = Λo. ad (d). From the proof of (c) we recall that
g′′ ≤ Λo ≤ g′ ≤ g is a flag, indeed. Then (a) through (c) ensure that this flag is fixed by
each α ∈ Npo . �
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5.3.32 Corollary. Npo is isomorphic to a subgroup of the group of all upper triangular
matrices in GL4R.

Proof. Pick an element f2 ∈ Λo such that Λo = Re3 + Rf2, and pick another element
f1 ∈ g′ such that g′ = Λo + Rf1. As any element α ∈ Npo acts linearly on g = R4, it
can be described as a matrix in GL4R. As by 5.3.31, α fixes the flag g′′ ≤ Λo ≤ g′, with
respect to the basis d, f1, f2, e3 of g it can be written as an upper triangular matrix. �

5.3.33 Corollary. Npo is soluble.

Proof. The group of all upper triangular matrices in GL4R is soluble. By 5.3.32, then
so is its subgroup Npo . �

5.3.34 Lemma.

a) N = Npo n Γ

b) Npo
∼= N/Γ

Proof. In our context, it suffices to treat the above as statements on (abstract) groups.
ad (a). Γ acts transitively on P = Γ. Thus, the Frattini argument A.2.1 ensures
that N = NpoΓ. Moreover, Npo ∩ Γ ≤ Γpo = 1, and finally Γ is a normal subgroup of
its normaliser N = NΣ(Γ). Therefore, N = Npo n Γ is a semidirect product. ad (b).
From (a) we conclude that N/Γ = NpoΓ/Γ ∼= Npo/(Γ ∩ Npo)

∼= Npo are isomorphic groups.
�

5.3.35 Proposition.

a) N is a soluble group.

b) n = `N is a soluble Lie algebra.

Proof. Part (a) follows from the facts that Npo
∼= N/Γ as well as Γ are soluble, and

from solubility being an extension property. As to part (b), every connected Lie group
is soluble if and only if its Lie algebra is soluble; cf. [54, 94.17]. Therefore, `(N1) = `N
is soluble. �

5.3.36 Corollary. There is no monomorphism of Lie algebras mapping sl2R into n.

Proof. Assume the existence of such a morphism η : sl2R→ n. Then the image (sl2R)η

is a simple Lie subalgebra of the soluble algebra n. Which is a contradiction; in fact,
this would imply sl2R = sl2R(3) ≤ n(3) = 0. �

5.3.37 Corollary. Let Φ be a Lie group with Lie algebra `Φ ∼= sl2R. Then there is no
continuous injective group morphism ϕ : Φ � N.
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5.3. How soluble is the automorphism group ?

Proof.

SL2R-
∼= -- Φ- ϕ - N

sl2R

exp

6

- -- `Φ

6

-
` ϕ

- n

exp

6

Assuming the existence of such a monomorphism ϕ, the Lie functor yields a monomor-
phism ` ϕ of Lie algebras mapping sl2R ∼= `Φ into n. Which is out-ruled by 5.3.36. �
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5. On the automorphism group of Peter planes
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A. Appendix

The appendix is meant as a loose collection of definitions and results which might prove
useful, yet would have interrupted the train of thought in the main part of the thesis.

Note that the application of a map f : X → Y to an element x ∈ X is denoted by
xf . Similarly, the action of a group Γ on a set X is written as (x, α) 7→ xα. Matrices are
usually applied to row vectors from the right; hence scalars operate from the left.

A.1. Topology

General topology

A.1.1 Definition. Let X and Y be topological spaces. A continuous injection f : X →
Y is called an embedding if its co-restriction f |Xf

: X → Xf is an open map.

A.1.2 Lemma.

a) Universal property of quotient maps. Let q : X → Y be a continuous
surjection. Then q is a quotient map if and only if the following condition holds :

(Q) Consider an arbitrary topological space
Z and arbitrary maps f : X → Z and
g : Y → Z such that qg = f . Then
continuity of f implies continuity of g.

X
q

. Y

Z

g

?

f

-

b) Universal property of embeddings. Let e : X → Y be a continuous injection.
Then e is an embedding if and only if the following condition holds :

(E) Consider an arbitrary topological space
Z and arbitrary maps f : Z → X and
g : Z → Y with fe = g. Then continuity
of g implies continuity of f .

X ⊂ e - Y

Z

g

6
�

f
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Proof. ad (a). Consider a quotient map q, and let f and g be maps with qg = f .
Assume that f is continuous. Let T be an open subset of Z. Then T g

↼q↼
= T f

↼

is open in X, by continuity of f , and therefore g is continuous, too. — Now assume
that q satisfies the universal property Q. Consider the topological space Z := Yquot

endowed with the quotient topology with respect to q, and consider the quotient map
π : X → Z. Being a quotient map, π is continuous, and therefore property Q for q
ensures continuity of id : Y → Yquot. On the other hand, π is a quotient map and as
such satisfies Q. Therefore, continuity of q implies continuity of id : Yquot → Y . All in
all, Y ≈ Yquot carries the quotient topology, in other words, q is a quotient map. See
also [73, 1.33e]

ad (b). Consider an embedding e, and let f and g be maps with fe = g. Assume
that g is continuous. Let T be an open subset of X. Then T e is open in Xe, i.e.,
there is an open subset S of Y such that S ∩ Xe = T e. Then T eg

↼
= (S ∩ Xe)g

↼
=

Sg
↼ ∩ Xeg↼

= Sg
↼ ∩ Xee↼f↼

= Sg
↼ ∩ Xf↼

= Sg
↼ ∩ Z = Sg

↼
, which is open in Z,

as g is continuous. Thus, f is continuous. — Conversely, assume property E. Consider
Z := Xe endowed with the topology induced from Y . Then g := id : Xe → Y is an
embedding, and, in particular, continuous. Therefore by property E for g and e, the
map f := (e|Xe

)−1 : Xe → X is a homeomorphism.
�

A.1.3 Lemma. Let f : X → Y be an open quotient map between Hausdorff spaces X
and Y . If X is locally compact, then so is Y .

Proof. Let y ∈ Y . Due to surjectivity, there is some x ∈ X such that xf = y. As X
is locally compact, there is a compact neighbourhood K ⊆ X of x. Let U be an open
neighbourhood of x contained in K. Then y = xf ∈ Uf ⊆ Kf . As f is continuous, Kf

is compact. As it is open, Uf is open. Hence y possesses a compact neighbourhood. As
we are dealing with Hausdorff spaces, this suffices for local compactness. �

A.1.4 Lemma. Let X and Y be topological spaces, and let f : X → Y be a continuous
mapping.

a) Consider a subset Z of X. If f is an embedding, then its restriction f |Z : Z → Y
to Z is an embedding, too.

b) Let Z be a subset of X. If f is a homeomorphism, then f |Zf

Z : Z → Zf is a
homeomorphism, too.

c) Let W be a subset of Xf ⊆ Y . If f is an embedding, then its co-restriction
f |W
W f↼ : W f↼ →W is a homeomorphism. �

A.1.5 A topological space X is said to have the domain invariance property if the
following is true : If U ⊆ X is open and f : U → V ⊆ X is a homeomorphism, then V
is open in X as well. Euclidean spaces have the domain invariance property, and this
carries over to all n-manifolds. For references consult [54, 51.19].
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A.2. Groups and topological groups

Homotopy Theory

A.1.6 Lemma. Higher homotopy groups. [14, Chap. I 7] All topological spaces
considered here are supposed to be path connected, such that we can abstain from the
base point with respect to which homotopy groups are computed.

a) For any star shaped topological space X and any natural number n ≥ 1, πn(X) is
trivial.

b) For any two topological spaces X and Y and n ≥ 1, the nth homotopy group of
X × Y is πn(X × Y ) ∼= πn(X)× πn(Y ).

c) Let U be a covering space of X. Then π1(U) ≤ π1(X) and πn(U) ∼= πn(X) for
n ≥ 2.

d) ∀n ∈ N. π1(Tn) = Zn

e) ∀n ∈ N ∀m ∈ N+. πm(Tn) =

{
Z for m = n
1 for m < n

�

A.2. Groups and topological groups

A.2.1 Lemma (Frattini argument). Let G be a group which acts on a set X. Let
H be a subgroup of G and a a point in X. Then transitiveness of H on X implies
G = GaH .

Proof. Let g ∈ G. Because of transitivity of H , there is some h ∈ H such that ag = ah,
in other words gh−1 ∈ Ga. Hence g = (gh−1)h ∈ GaH . �

A.2.2 A topological space is called σ-compact if it is the union of a countable family
of compact spaces. Every connected, locally compact group is σ-compact.

A.2.3 Theorem (Open Mapping Theorem). Let Υ be a locally compact, σ-
compact group. Then every surjective continuous homomorphism from Υ onto a locally
compact Hausdorff group is an open map. [73, 5.18] �

A.2.4 Theorem (Dimension formula). If ∆ is a closed subgroup of the locally com-
pact group Γ, then dim Γ = dim ∆ + dim Γ/∆. [54, 93.7] �

A.3. Lie algebras and Lie groups

A.3.1 Definition. Let n and k be Lie algebras and α ∈ Hom(k,Der(n)). Define a Lie
bracket on the direct sum k⊕ n of vector spaces by

[(k,m), (l, n)] := ([k, l], [m,n] + kα.n− lα.m)
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A. Appendix

for any n,m ∈ n and k, l ∈ h = k. Endowed with this bracket, k ⊕ n becomes a Lie
algebra, usually called the semidirect sum k ∝α n of the Lie algebras k and n. Then
k is isomorphic to the Lie subalgebra k ∝α 0, and n is isomorphic to the ideal 0 ∝α n in
k ∝α n. For α ≡ 0, we get the direct sum k ∝0 n = k⊕ n of the Lie algebras k and n.
By abuse of notation, we have often denoted the semidirect sum of Lie algebras by n,
when dealing with Lie algebras only.

A.3.2 Let g be a Lie algebra, k ≤ g a Lie subalgebra and n E g an ideal in g such
that k ∩ n = 0. Then k ∝ad n is isomorphic to a Lie subalgebra of g via addition
k ∝ad n → g : (k, n) 7→ k + n. It is usually identified with that subalgebra and called
the inner semidirect sum of k and n. If ϕ : g → h is an injective morphism of Lie
algebras, then the image (k ∝ad n)ϕ is isomorphic to the semidirect sum gϕ ∝ad nϕ.

A.3.3 Theorem. Let Υ be a simply connected Lie group such that its Lie algebra is
a semidirect sum `Υ ∼= a ∝α b. Denote by A and B the simply connected Lie groups
satisfying `A = a and `B = b. Then Υ ∼= A nβ B. (In particular, for inner semidirect
sums α = ad, the action β corresponds to conjugation κ.) [24, III 3.16] �

A.3.4 Theorem (Lie). Let V be a finite dimensional complex vector space, and let g
be a soluble Lie subalgebra of gl(V ). Then g stabilizes some flag in V ; in other words, the
matrices of g relative to a suitable basis of V are upper triangular. [27, 4.1 Corollary A]

�

A.3.5 Lemma. Homomorphic images of soluble Lie algebras are soluble.

Proof. Let g and h be Lie algebras, ϕ ∈ Hom(g, h). Show by induction that (gϕ)(j) =
(g(j))

ϕ
for every j ∈ N; then compare commutator series. �

A.3.6 Definition. A Lie algebra g is called simple if g is nonabelian and if moreover
any ideal h is either h = 0 or h = g. Note that the assertion ”g is nonabelian” may be
replaced by the assertion that dim g > 1. A Lie algebra g is called semisimple if any
abelian ideal a in g has to be a = 0. Equivalently, g is the direct sum of simple ideals.

A.3.7 Definition. An abstract group is called simple if it has no normal subgroups
but the trivial one. A Lie group Υ, however, is usually called simple if its Lie alge-
bra `Υ is a simple Lie algebra. For the sake of clarity we will here use the notion of an
almost simple Lie group. A Lie group shall be called semisimple if its Lie algebra is
semisimple.

A.3.8 Proposition. Let Υ be a Lie group with Lie algebra g. If Υ is compact, then
z(g)exp = Z(Υ)1.

Proof. The inclusion z(g)exp ⊆ Z(Υ)1 has already been proved in 5.1.16. Denote by l
the Lie algebra l := `(Z(Υ)). By parts (b) and (c) of 5.1.8, the exponential image of the
compact Lie algebra l in the compact Lie group Z(M) is the connected component of the
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A.3. Lie algebras and Lie groups

Lie group, and therefore lexp = 〈lexp〉 = Z(Υ)1. Let A ∈ l, which means that (RA)exp ⊆
Z(Υ)1. Then for all s, t ∈ R and for all X ∈ g we get (tA)exp ·(sX)exp = (sX)exp ·(tA)exp.
Differentiation of both sides of that equation with respect to t yields

d

d t
((tA)exp(sX)exp) = A(tA)exp(sX)exp = (sX)expA(tA)exp =

d

d t
((sX)exp(tA)exp) .

Evaluation at t = 0 leaves us with

A · (sX)exp = (sX)exp · A.

If we repeat this procedure with respect to s, evaluation of the derivative at s = 0 yields
AX = XA; and that for all X ∈ g, as we remember. Thus, A ∈ z(g), and l ≤ z(g) is
established.

Now, from the inverse inclusion in lemma 5.1.16(e), we get Z(Υ)1 = lexp ≤ z(g)exp ≤
Z(Υ)1, and thus forcedly z(g)exp = Z(Υ)1. �
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group, 150
Lie algebra, 150

Lie group, 150
sketch (Sk), 3
sketched geometry (SGeo), 2
skew hyperbolic plane, 31

exterior, 31
united, 31

SL2C-plane, 127
spinor group, 21
spread, 11
stable lp-plane = stable plane, 7
stable plane (StP), 7, 9
standard hyperbolic polarity, 35
support, 118
symplectic Lie algebra, 129

tangent, 27
theorem

André, 11
Bickel, 128
Block, 19
Bott, 124
Lie, 150
Löwen, 11, 39, 56, 127, 140
Maier, 14, 16
Mal’cev-Iwasawa, 115
open mapping (for top. groups), 149
Toda, 117
Weyl, 119

topology
disc, 11
point-open, 60

unitary
group, 20, 129
Lie algebra, 129

universal property
of embeddings, 147
of quotient maps, 147

Weyl’s trick, 117
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