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dim dimension N natural numbers
End endomorphism ring Z rational integers
id identity Z(p) localization {a/b | a, b ∈ Z, p - b}
Irr irreducible Zp p-adic integers
ker kernel Zπ semilocalization

⋂
p∈π Z(p)

Out outer automorphism group Q rational field
supp support C complex field
Tr trace Fq finite field with q elements

Linear Algebra
Matn(R) ring of n× n matrices over ring R
GLn(R) group of invertible n× n matrices over R
SLn(R) {X ∈ GLn(R) | det(X) = 1}
char.pol(M) characteristic polynomial of matrix M
diag(a1, . . . ) diagonal matrix with diagonal entries a1, . . .

Group Theory
H ≤ G subgroup inclusion
H < G proper subgroup inclusion
H E G H is normal subgroup of G
H C G H is proper normal subgroup of G
|G : H| index of H in G
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G/N factor group of G by normal subgroup N
CG(H) centralizer of H in G
NG(H) normalizer of H in G
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xy conjugation y−1xy
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Ḡ, G̃, . . . homomorphic images of G (“bar convention”)
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F∗(G) generalized Fitting subgroup of G
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⋃
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Autc(G) group of class-preserving automorphisms of G
AutCol(G) group of Coleman automorphisms of G
AutR(G) group of automorphisms inducing inner automorphisms of RG
PAut(G) group of power automorphisms of G
AutCT(G) automorphism group of character table of G

Ring Theory
Λ× group of units of ring Λ
RG group ring of group G over commutative ring R
R[G] R-span of G
U(RG) group of units of RG
V(RG) group of units of RG of augmentation 1
IR(G) augmentation ideal of RG
IR(N)G kernel of natural map RG→ RG/N
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|N |
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Cl(Λ) locally free class group of Λ
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Zusammenfassung (German summary)

Longum iter est per praecepta, breve et efficax per exempla.

Lucius Annaeus Seneca

Epistulae Morales ad Lucilium – Liber VI, 62–65

“Darstellungstheorie” ist, grob gesprochen, “Modultheorie”. Eine der Hauptaufgaben
der ganzzahligen Darstellungstheorie sollte die Konstruktion von unzerlegbaren Gittern
über Ordnungen sein. Ein prominentes Beispiel einer Z-Ordnung ist der ganzzahlige
Gruppenring ZG einer endlichen Gruppe G. Ein grundlegendes Problem (mit dem wir
es hier jedoch nicht zu tun haben werden) ist, einen vollständigen Satz von Invarianten
(unter Isomorphie) eines ZG-Gitters M zu finden welcher die Isomorphieklasse von M
eindeutig bestimmt.

Man kann sich ZG, oder allgemeiner die ganzzahlige Darstellungstheorie, als ein
Bindeglied zwischen gewöhnlicher und modularer Darstellungstheorie vorstellen. (Diese
“Allgemeinheit” läßt bereits erkennen, dass die Klärung der Struktur von ZG im all-
gemeinen eine delikate Aufgabe ist.) Einen Schritt weitergehend können wir uns ganz-
zahlige Darstellungstheorie, im Sinne von Curtis und Reiner [28,27], als einen zentralen
Kern vorstellen, welcher verschiedene Themen in gewöhnlicher und modularer Darstel-
lungstheorie, algebraischer Zahlentheorie, und algebraischer K-Theorie verbindet. Dieser
Standpunkt wird in Kapitel III veranschaulicht, wo wir anhand eines Beispiels lokal–
globale Aspekte in Bezug auf Automorphismen von ganzzahligen Gruppenringen erörtern
werden.

In der Darstellungstheorie ist es üblich über ZG-Moduln zu sprechen und dabei die
ausgezeichnete Gruppenbasis G ausdrücklich im Auge zu haben. (Andernfalls, was sollte
es bedeuten dass M ein Permutationsmodul ist?) Wir können jedoch die verschiedenen
Möglichkeiten wie G, als Gruppenbasis, in ZG eingebettet werden kann in Betracht zie-
hen: Dies führt zu Fragen über Ringautomorphismen von ZG, von denen die sogenannte
“Zassenhaus-Vermutung” die beachtenswerteste ist. Wir können auch fragen welche Ei-
genschaften einer endlichen Gruppe G durch ihre ganzzahligen Darstellungen bestimmt
sind. Ob die Gruppe G bis auf Isomorphie durch ihren ganzzahligen Gruppenring be-
stimmt ist, ist das sogenannte “Isomorphieproblem für ganzzahlige Gruppenringe”. Die-
se Fragestellungen sind sicherlich im Sinne einiger wohlbekannter Probleme die Richard
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viii Zusammenfassung (German summary)

Brauer [18] zur Diskussion stellte, und sie waren Ende des vergangenen Jahrhunderts
der Gegenstand vieler Forschung. Wir werden die “semilokale Version” des Isomor-
phieproblems und der Zassenhaus-Vermutung in den ersten beiden Kapiteln eingehend
besprechen. Dabei wird der Koeffizientenring der ganzen Zahlen Z ersetzt durch eine
geeignete Semilokalisation Zπ von Z (die gleich eingeführt wird), so dass Fragen über
lokal freie Klassengruppen vermieden werden.

Kenntnis der p-adischen Gruppenringe ZpG gibt Einblick wieG auf abelschen Gruppen
operieren kann. Da die interessantesten arithmetischen Eigenschaften beim Übergang
von ZG zu einer maximalen Überordnung in QG verloren gehen, sind wir versucht, die
Semilokalisation

Zπ :=
⋂

p||G|
Z(p)

als angemessenen “ganzzahligen Koeffizientenring mit Bezug auf G” anzusehen. Dieser
Ring ist “komfortabler” als Z da er nur endlich viele maximale Ideale besitzt, und das-
selbe gilt für den Gruppenring ZπG. Dennoch hat ZπG alle interessanten Quotienten:
Zu einer die Ordnung von G teilenden Primzahl p, und einer natürlichen Zahl n, haben
wir kanonische Ringhomomorphismen ZG ↪→ ZπG³ (Z/pnZ)G.

Vorausgesetzt man interessiert sich für die Eigenschaften von G welche durch die
Modulkategorie ZGMod bestimmt sind, ist dies sogar der bessere Rahmen, denn die
folgenden Aussagen sind äquivalent: Es gibt eine Äquivalenz ZGMod ' ZH Mod von
Modulkategorien; es gibt einen Isomorphismus ZπG ∼= ZπH von Ringen; es gibt eine
Äquivalenz ZπGMod ' ZπH Mod.

In Kapitel III zeigen wir für eine Gruppe G der Ordnung 96, dass der semilokale
Gruppenring ZπG einen Automorphismus besitzt, welcher mit keinem Automorphismus
von ZG bis auf einen inneren Automorphismus von QG übereinstimmt.

Gewisse Gruppenautomorphismen treten in natürlicher Weise bei Untersuchungen
zur Zassenhaus-Vermutung und des Isomorphieproblems auf. Klassenerhaltende Au-
tomorphismen zu studieren wurde neu motiviert durch Arbeiten von Roggenkamp und
Kimmerle, die diese Automorphismen in Beziehung zur Zassenhaus-Vermutung setzten
(Untersuchungen in diese Richtung begannen in [117]), und eine Beobachtung von Mazur
verknüpft das Isomorphieproblem für ganzzahlige Gruppenringe mit der Existenz be-
stimmter nicht innerer klassenerhaltender Automorphismen, nämlich jenen welche innere
Automorphismen des Gruppenrings induzieren. Darüberhinaus sollte, nach Scotts Auf-
fassung, im Fall auflösbarer Gruppen ein Automorphismus eines semilokalen Gruppen-
rings betrachtet werden können als eine Kollektion von “rational zueinander passender”
Gruppenisomorphismen von Trägheitsgruppen, und eine ähnliche Beschreibung sollte es
auch für Gruppenringisomorphismen geben. Ein großer Teil der ersten beiden Kapi-
tel, sowie das ganze Kapitel IV, ist dem Studium derjenigen Gruppenautomorphismen
gewidmet, welche in diesem Zusammenhang auftreten.



ix

Die Kapitel V–VII bilden einen weiteren Teil dieser Arbeit. Im Gegensatz zu dem
ersten Teil befassen wir uns dort mit Einheiten in ganzzahligen Gruppenringen von
unendlichen Gruppen. Die Ergebnisse werden selbstverständlich auch für Gruppenringe
endlicher Gruppen gelten, aber die Grundhaltung wird sein, dass der Schwerpunkt auf
die Reduktion auf den Fall endlicher Gruppen gelegt wird, welcher entweder bekannt ist
oder als handhabbar eingeschätzt wird. Wir können die Einheitengruppe U(ZG) einer
beliebigen Gruppe G in unsere Überlegungen mit einbeziehen, aber in den meisten Fällen
sind die Ergebnisse nur vollständig falls G eine periodische Gruppe ist. Dies hängt mit
dem Umstand zusammen, dass wir bislang wenig über die multiplikative Gruppe des
ganzzahligen Gruppenrings einer torsionsfreien Gruppe wissen. Anstelle von ZG werden
wir allgemeiner RG betrachten, wobei R ein G-angepasster Ring ist, dass heißt, ein
Integritätsbereich der Charakteristik 0 in welchem eine Primzahl p nicht invertierbar ist
wann immer G ein Element der Ordnung p besitzt. Wir werden näher eingehen auf den
Normalisator von G in der Einheitengruppe U(RG), auf die aufsteigende Zentralreihe
von U(RG), und auf das endliche Konjugiertheit-Zentrum1 von U(ZG).

Wir werden sagen dass eine Gruppe G die Normalisator-Eigenschaft besitzt falls für
jeden G-angepassten Ring R der Normalisator NU(RG)(G) von G in U(RG) nur aus den
auf der Hand liegenden Einheiten besteht, das heißt falls NU(RG)(G) = ZG gilt, wobei
Z das Zentrum von U(RG) bezeichnet. Die Frage, ob eine Gruppe die Normalisator-
Eigenschaft besitzt oder nicht, soll als das Normalisator-Problem bezeichnet werden. Es
hat sich herausgestellt, dass Gruppen die die Normalisator-Eigenschaft nicht besitzen,
als Bausteine für Gegenbeispiele zum Isomorphieproblem fungieren können.

In Kapitel V studieren wir, motiviert durch von Mazur [93] erzielten Ergebnissen, das
Normalisator-Problem für unendliche Gruppen. Vermutlich hat Mazur als erster auf
diesem Gebiet gearbeitet. Wir werden die in [93] aufgeworfenen Fragen beantworten,
und wir werden Klassen von Gruppen geben die die Normalisator-Eigenschaft besitzen,
damit jene Klassen vergrößernd die von Jespers, Juriaans, de Miranda und Rogerio [72]
gegeben wurden.

In Kapitel VI untersuchen wir die aufsteigende Zentralreihe 1 E Z1(U) = Z(U) E
Z2(U) E . . . der Einheitengruppe U = U(RG) eines ganzzahligen Gruppenrings RG einer
periodischen Gruppe G. Unsere Motivation beziehen wir aus dem Umstand dass Z2(U) ≤
NU (G) gilt. Diese Beobachtung ist der Startpunkt von Lis Schrift [86], in der gezeigt wird
dass Z2(U) = Z3(U) im Fall R = Z gilt. Kürzlich wurde eine vollständige Beschreibung
von Z2(U) im Fall R = Z von Li und Parmenter [87] gegeben. Unter Verwendung
anderer Methoden haben wir davon unabhängig die entsprechende Beschreibung in dem
allgemeinen Fall erhalten: Z3(U) = Z2(U) ≤ Z(U)Z2(G); und falls Z2(U) 6= Z(U), ist G
eine sogenannte Q∗-Gruppe.

In Kapitel VII zeigen wir, dass für eine periodische Gruppe G das zweite Zentrum
Z2(U(ZG)) mit dem endlichen Konjugiertheit-Zentrum von U(ZG) übereinstimmt, also

1finite conjugacy center



x Zusammenfassung (German summary)

mit der Menge der Elemente von U(ZG) welche nur endlich viele Konjugierte unter der
Operation von U(ZG) besitzen.

Mit dem letzten Kapitel beabsichtigen wir Hoffnungen zu wecken, dass eines Ta-
ges die ganzzahlige Darstellungstheorie signifikante Beiträge zur Theorie der endlichen
Gruppen liefern wird. Es ist ein bedeutendes offenes Problem, einen direkten und “dar-
stellungstheoretischen” Beweis eines ungeraden Analogons zu Glaubermans Z∗-Theorem
zu finden. Robinson [114] studierte die Charaktertheorie eines minimalen Gegenbeispiels,
K, zu dem Z∗

p-Theorem für ungerades p. In [115] zeigte Robinson, dass seine Ergebnis-
se benützt werden können um das Problem in einen ganz anderen Zusammenhang zu
stellen, dem der Einheiten in Gruppenringen: Er zeigte die Existenz einer nichttrivialen
zentralen Einheit der Ordnung p in dem p-Hauptblock von K, vorausgesetzt dass p ≥ 5,
oder dass p = 3 und K nicht einfach ist.

Vorausgesetzt dass p = 3, und x ein Element der Ordnung 3 in K ist welches mit
keinem seiner anderen Konjugierten vertauscht, zeigen wir, dass für jeden irreduziblen
Charakter χ von K der Charakterwert χ(x) ein ganzzahliges Vielfaches einer Potenz
einer primitiven dritten Einheitswurzel ζ ist. Eine Konsequenz ist, dass die Existenz
der nichttrivialen zentralen Einheit in dem p-Hauptblock in jedem Fall garantiert ist.
Die Beweisidee ist in der Tat ziemlich einfach, sie stützt sich auf die Klassifikation der
unzerlegbaren Z[ζ]C3-Gitter. Hiermit schließt sich der Kreis dieses kleinen Überblicks
über die vorliegende Schrift!

Jedes Kapitel ist in sich abgeschlossen und kann unabhängig von den anderen gelesen
werden. Der Inhalt eines jeden Kapitels wird weiter unten ausführlicher beschrieben.

Der Leser wird feststellen, dass in dieser Schrift viele Beispiele gegeben werden. Wir
meinen, dass dies heutzutage keiner Rechtfertigung bedarf und sind überzeugt: “Lang
ist der Weg durch Vorschriften, kurz und wirkungsvoll durch praktische Beispiele.”

Gleichwohl möchten wir den Leser darauf hinweisen, dass in der in Englisch geschrie-
benen Zusammenfassung an dieser Stelle zu dem Thema “Beispiele” einige Betrachtun-
gen von Ringel wiedergegeben sind.

Kapitel I

Wir gehen davon aus, dass der Leser mit den Begriffen “ganzzahliger Gruppenring”
und “Isomorphieproblem für ganzzahlige Gruppenringe” vertraut ist. In den ersten
vier Kapiteln dieser Arbeit werden wir uns nur mit endlichen Gruppen G beschäftigen.
Schreiben wir dann ZπG, so ist Zπ als Durchschnitt von Lokalisationen Z(p) zu verste-
hen, wobei p eine endliche Menge von Primzahlen durchläuft, welche die Primteiler der
Ordnung von G enthält. Man beachte dass ZπG ein semilokaler Ring ist.

Graham Higman bezeichnete OG als ganzzahligen Gruppenring wann immer O ein
Ring algebraisch ganzer Zahlen ist. Wir werden ZπG ebenfalls als ganzzahligen Grup-
penring bezeichnen. Mit Bezug auf dass Isomorphieproblem für ganzzahlige Gruppen-
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ringe ist dies durch (1.1) gerechtfertigt: Nach Jacobinskis grundlegender Arbeit über
Geschlechter von Gittern folgt aus ZπG ∼= ZπH, dass OG ∼= OH für einen geeigne-
ten Ring O von algebraisch ganzen Zahlen gilt. Weitere lokal–global Aspekte werden
in Abschnitt 1 besprochen, einschließlich Scotts Verfahrensweise zur Konstruktion von
Gruppenringautomorphismen und Isomorphismen in dem semilokalen Fall, welche jeg-
liche Verwendung der Theorie der Ordnungen vermeidet (siehe (1.4) und (1.6)). Wir
werden solche Konstruktionen in den Abschnitten 3 und 8 anwenden, und (1.4) wird für
das Verständnis von einem Teil von Kapitel 3 hilfreich sein.

In Abschnitt 2 besprechen wir Möglichkeiten, wie Gegenbeispiele zum Isomorphie-
problem für ganzzahlige Gruppenringe konstruiert werden können in dem Fall, dass
semilokale Gruppenringe vorliegen. In (2.3) zeigen wir, wie eine Konstruktion von Mazur
auf den Fall endlicher Gruppen übertragen werden kann, wobei multiplikative 1-Kozykeln
ins Spiel kommen. Wir weisen auch auf den lokal–global Aspekt (2.10) dieser Konstruk-
tion hin, wozu wir den Begriff eines lokalen Systems von 1-Kozykeln einführen, worunter
wir eine Kollektion von lokalen 1-Kozykeln verstehen wollen, welche sich rational durch
1-Koränder unterscheiden.

Es gibt nicht isomorphe Gruppen X und Y , beide von der Ordnung 221 · 9728, mit
isomorphen ganzzahligen Gruppenringen, ZX = ZY . Diese Gruppen zur Hand habend,
verfolgen wir in Abschnitt 3 den durch (1.6) vorgeschriebenen Weg, um zu zeigen dass
die Gruppenringe semilokal isomorph sind. Dies führt zu neuer Einsicht in die Struktur
dieser Gruppen. Tatsächlich werden wir eine kleine Abänderung vornehmen: Die 97-
Sylowgruppe wird durch eine 17-Sylowgruppe ersetzt werden, ohne dabei die Struktur
der Gruppen zu verändern. Offen bleiben wird die Frage, ob dies zu einem weiteren
globalen Gegenbeispiel führt.

Motiviert durch die semilokale Untersuchung dieses Gegenbeispiels, präsentieren wir
in Abschnitt 4 eine p-Gruppe (für eine beliebige Primzahl p), die ebenfalls jene Eigen-
schaften der 2-Sylowgruppe von X besitzt, welche sich als kritisch für die semilokale Kon-
struktion herausgestellt haben. Dies suggeriert stark, dass es semilokale Gegenbeispiele
zum Isomorphieproblem geben sollte deren zugrundeliegenden Gruppen ungerade Ord-
nung haben.

Kenntnis über die Automorphismen von ganzzahligen Gruppenringen kann hilfreich
sein um das Isomorphieproblem für gewisse Klassen von Gruppen zu klären, unter Ver-
wendung von (Variationen von) Kimmerles G × G-Tricks. Dies wird in Abschnitt 5
verdeutlicht, wo wir einen weiteren Beweis eines auf Scott zurückgehenden Satzes geben
werden. Aus Wissen über Automorphismen (5.5) werden wir (5.7) ableiten: Endliche
nilpotent auf abelsche Gruppen sind durch ihren ganzzahligen Gruppenring bestimmt.
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Kapitel II

Dieses Kapitel enthält verschiedene Ergebnisse in Zusammenhang mit der Zassenhaus-
Vermutung (betreffend Automorphismen von ganzzahligen Gruppenringen ZG, wobei G
eine endliche Gruppe ist).

In Abschnitt 6 ergreifen wir die Gelegenheit, um in einem Omnibus-Lemma (6.1) einige
mehr oder weniger wohlbekannte Eigenschaften von Antiinvolutionen auf Gruppenrin-
gen zusammenzufassen, die mit der Zassenhaus-Vermutung zusammenhängen. Falls bei-
spielsweise α ∈ Autn(ZG), und ∗ die zu G assozierte Antiinvolution bezeichnet, dann
gilt [∗, α] = conj(u∗u) für ein u ∈ NU(QG)(ZG) genau dann, wenn α eine Zassenhaus-
Zerlegung bezüglich G besitzt, d.h., falls es ρ ∈ Aut(G) gibt mit αρ ∈ Inn(QG). Wir
möchten auch auf ein Konjugiertheitskriterium (6.4) hinweisen, welches allerdings bislang
noch keine Anwendungen gefunden hat.

Roggenkamp und Scott zeigten, im Falle dass G Normalteiler N1, . . . , Nr von paarweise
teilerfremder Ordnung besitzt, ein ganzzahliger Gruppenring RG durch ein Pullback-
Diagramm (7.1) beschrieben werden kann, welches sich als besonders nützlich herausge-
stellt hat um Gegenbeispiele zur Zassenhaus-Vermutung zu konstruieren. Wir werden
einen ausführlichen Beweis dieses Resultats in Abschnitt 7 geben, wobei wir auf eine
interessante Beschreibung (7.2) des Ideals

∑r
i=1(RG) · N̂i hinweisen werden.

Dieses Ergebnis von Roggenkamp und Scott kann auch zur Berechnung der Einheit-
engruppen gewisser ganzzahliger Gruppenringe verwendet werden. Dies wird in (7.3)
veranschaulicht, wo wir die Einheitengruppe von ZC10 und deren Index in einer maxi-
malen Überordnung berechnen.

Lam und Leung (7.4) haben folgendes zahlentheoretisches Problem gelöst: Gegeben
eine natürliche Zahl m, für welche Zahlen n gibt es mte Einheitswurzeln α1, . . . , αn ∈ C
mit α1 + · · · + αn = 0? Wir werden deren Ergebnisse in einen allgemeineren Zusam-
menhang setzen, und die Ergebnisse werden dann vollständig in der Sprache der Grup-
penringe formuliert sein, da wir (7.2) benutzen werden, um einige lineare Disjunktheits-
Argumente überflüssig zu machen. Der Ausgangspunkt wird (7.7) sein: Für Normalteiler
A und B von G mit A∩B = 1 gilt N0G∩ (ZG · Â+ ZG · B̂) = N0G · Â+ N0G · B̂ (hier ist
N0 = N ∪ {0}). Dann werden wir in enger Anlehnung an die von Lam und Leung gege-
bene Darstellung die Verallgemeinerung von (7.4) in (7.11) geben: Die Augmentation
eines jeden Elements aus N0G ∩∑r

i=1 ZG · N̂i ist in
∑r

i=1 N0 |Ni| enthalten.

In Abschnitt 8 wenden wir uns der Konstruktion von Gegenbeispielen zur Zassenhaus-
Vermutung im semilokalen Fall zu. (Solche Beispiele wurden oft “Gegenbeispiele” ge-
nannt, ihr Auftreten wurde mit Überraschung aufgenommen. Nunmehr erscheint es
richtig, solches Verhalten als ganz gewöhnlich einzuschätzen.) Nach einiger Vorarbeit
werden wir bereit sein um mit relativ geringem Aufwand solche Beispiele zu geben,
unter denen eine metabelsche Gruppe mit abelschen Sylowgruppen, eine überauflösbare
Gruppe, und eine Frobeniusgruppe sein werden.
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In Abschnitt 9 berechnen wir die Gruppen- und die Charaktertafelautomorphismen
der Kranzprodukte Gn,r = (Z/rZ) o Sn (welche eine der zwei unendlichen Serien von
irreduziblen endlichen komplexen Reflektionsgruppen bilden): In (9.1) geben wir eine
explizite Beschreibung von Out(Gn,r), und für Gn,r 6= G2,2 zeigen wir in (9.2), dass die
Sequenz 1 → Inn(Gn,r) → Aut(Gn,r) → AutCT(Gn,r) → 1 exakt ist. Insbesondere
erhalten wir, dass die Zassenhaus-Vermutung für diese Gruppen gilt (was jedoch bereits
bekannt ist, siehe [129, Section 44]).

Kapitel III

Das Hauptergebnis dieses Kapitels ist, dass der semilokale Gruppenring ZπG einer end-
lichen Gruppe G einen Automorphismus α besitzen kann, welcher von keinem globalen
Automorphismus repräsentiert wird, d.h., es gibt keinen Automorphismus von ZG der
sich auf QG von α nur um einen inneren Automorphismus unterscheidet.

Wir werden ein Beispiel ausarbeiten welches eine von Blanchards Gruppen G der Ord-
nung 96 von [13] verwendet. Diese Gruppe ist von der Form G = (〈q : q3〉 × 〈c : c2〉 ×
〈b : b4〉) o 〈a : a4〉. Blanchard zeigt, dass es ein α ∈ Autn(ZπG) gibt, welches nur die
beiden treuen irreduziblen Charaktere von G vertauscht, und welches nicht als Produkt
eines Gruppenautomorphismus (auf ZπG fortgesetzt) und eines zentralen Automorphis-
mus geschrieben werden kann. Wir werden zeigen, dass ein solches α von keinem globalen
Automorphismus repräsentiert wird.

Wir beschreiben kurz unsere Vorgehensweise. Verbunden mit den Normalteilern Q =
〈q〉 und M = Z(G) = 〈b2〉 von G, haben wir ein Pullback-Diagramm (7.1)

ZG - Γ

Λ
?
- Λ2 ⊕ Λ3

.
?

Wir können Λ ⊂ Mat4(Z[ζ]) annehmen, wobei ζ eine primitive dritte Einheitswur-
zel ist, da genau die beiden treuen irreduziblen Charaktere von G, welche algebraisch
konjugiert sind, zu CΛ gehören.

Es gibt ein τ ∈ Aut(G) welches die beiden treuen irreduziblen Charaktere vertauscht
und einen inneren Automorphismus auf Λ2⊕Λ3 induziert. Die ganze Diskussion läuft auf
die Frage hinaus, ob es γ ∈ Autcent(Γ) und λ ∈ Autcent(Λ) geben kann, welche sich auf
dem gemeinsamen Quotienten Λ2 ⊕Λ3 um den von τ induzierten inneren Automorphis-
mus unterscheiden. Aus der Annahme, dass es solche Automorphismen gibt, werden wir
letztendlich einen Widerspruch herleiten.

Es sei P = 〈a, b, c〉, eine 2-Sylowgruppe von G. Querstriche sollen Reduktion modulo
M bedeuten, so dass P̄ = P/M ist. Dann ist Γ das Bild der natürlichen Abbildung
ZG → ZP̄Q ⊕ ZP . Der Automorphismus γ induziert zentrale Automorphismen von
ZP̄Q und ZP , welche ebenfalls mit γ bezeichnet werden sollen.
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Für jedes β ∈ Autcent(ZP ) können wir wiefolgt eine Norm N(β) ∈ {±1} definieren:
β induziert auf den Summanden von QP die echte Matrixringe sind innere Automor-
phismen, gegeben durch Konjugation mit Matrizen mit Determinante ±1, und N(β)
ist das Produkt der Determinanten solcher Matrizen. Unter Verwendung von Fröhlichs
Lokalisations-Sequenz, und Mayer–Vietoris Sequenzen zur Berechnung von lokal freien
Klassengruppen, können wir zeigen dass stets N(β) = 1 gilt.

Man betrachte nun folgendes Diagramm, in welchem jedes “Quadrat” ein Pullback-
Diagramm ist. (Die Bedeutung der ausgefüllten Ovale wird nachträglich erklärt werden.)

Γ - ZP - ZP/(M̂)
mod 3- Λ3 = F3P/(M̂) ∼= Mat4(F3)

ZP̄Q
?

- ZP̄
?

- F2P̄
?

ZP̄Q/(Q̂)

?
- F3P̄

?

ZG/(Q̂)

¾

Λ2 = F2P̄Q/(Q̂)

mod 2

?
¾ Λ

mod (1 − ζ)

6

-
⊂ Mat4(Z[ζ])

γα1

²± °̄

γα
²± °̄

γ
²± °̄

γτ = λ
²± °̄

6

6

N(γ) = −1:
abschließender
Widerspruch

'
&

$
%

γ und λ sind Konjugationen
mit Matrizen mit Determinante 1.
Deshalb det(u) = 1.

'
&

$
%

N1(α1) = −1

N1(γ̄α1) = 1
(Determinantenabb.!)

'
&

$
%

λ = conj(u)
(Innerer Automorphismus

wegen Hebung γα1.)

'
&

$
%

¼

- ¾

C
C
C
C
C
C
C
C
CO

Hebung γα
²± °̄

Wir können gleichermaßen eine Norm N1 für zentrale Automorphismen von F3P̄
definieren. Jedes β ∈ Autcent(ZP ) induziert einen inneren Automorphismus β̄ von
F3P̄ und einen inneren Automorphismus conj(T ) von Λ3

∼= Mat4(F3), und wir haben
N(β) = N1(β̄) · det(T ).

Es ist einfach zu sehen, dass ohne Einschränkung der Allgemeinheit angenommen
werden darf, dass sowohl γ als auch λ auf Λ3 eine Konjugation mit einer Matrix mit
Determinante 1 ist.
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Wir werden einen inneren Automorphismus α1 von ZP̄Q/(Q̂) konstruieren, welcher
den von τ auf Λ2 induzierten inneren Automorphismus hebt, und wir werden zeigen,
dass α1 weiter zu einem zentralen Automorphismus α von ZP̄Q hebbar ist.

Insbesondere wird λ von einem zentralen Automorphismus von ZG/(Q̂) induziert,
was zur Folge hat dass λ einen inneren Automorphismus von Z2Λ induziert. Daraus
schließen wir, unter erneuter Verwendung von Fröhlichs Lokalisations-Sequenz, dass λ
ein innerer Automorphismus ist, sagen wir, conj(u). Man beachte, dass det(u) = 1 gilt
da die Reduktion von u modulo (1 − ζ) Determinante 1 hat.

Der Automorphismus γ induziert einen zentralen Automorphismus γ̄ von F3P̄ , und
wir interessieren uns für N1(γ̄). Jeder zentrale Automorphismus von ZP̄Q/(Q̂) induziert
einen zentralen Automorphismus von F3P̄ . Wir wissen dass N1(α1) = −1 gilt, und da
γα1 eine Hebung des von λ auf Λ2 induzierten Automorphismus ist, versuchen wir also
N1(γ̄α1) zu berechnen.

Die Untergruppe U ≤ Λ× bestehe aus jenen Einheiten v, für die es einen zentralen
Automorphismus βv von ZP̄Q/(Q̂) gibt, welcher auf Λ2 mit dem durch Konjugation
mit dem Bild von v gegebenen inneren Automorphismus übereinstimmt. Dann liefert
die Zuordnung v 7→ N1(β̄v) einen wohldefinierten Homomorphismus d : U → {±1}.
Der Autor würde sehr gerne wissen, ob nun ein allgemeines Argument zeigt dass dieser
Homomorphismus von der Determinantenabbildung herrührt.

Was wir zeigen werden ist, dass falls sich für ein v ∈ Λ× der durch Konjugation mit dem
Bild von v gegebene innere Automorphismus von Λ2 zu einem zentralen Automorphismus
ν von ZP̄Q heben läßt, det(v) = ±1 gilt, mit det(v) = 1 genau dann wenn d(v) =
1. Dazu werden wir v und ν, unter Verwendung von geeigneten “Modifikationen” von
bizyklischen Einheiten, sorgfältig modifizieren bis die Behauptung offensichtlich ist.

Also ist N1(γ̄α1) = det(u) = 1, und folglich N(γ) = −1, der gewünschte Widerspruch.

Kapitel IV

Dieses Kapitel enthält eine lose Reihe von Ergebnissen in Bezug auf spezielle Automor-
phismengruppen, die bei Betrachtung der Zassenhaus-Vermutung und des Isomorphie-
problems auftreten.

In Abschnitt 14 kommen wir kurz in Berührung mit klassenerhaltenden Automorphis-
men von endlichen Gruppen und zeigen (14.4): Klassenerhaltende Automorphismen von
zyklisch auf abelschen Gruppen sind innere Automorphismen.

Ein Coleman-Automorphismus einer endlichen Gruppe G ist ein Automorphismus
von G, dessen Einschränkung auf jede Sylowgruppe von G mit der Einschränkung ei-
nes inneren Automorphismus von G übereinstimmt. In Abschnitt 15 führen wir in [61]
begonnene Untersuchungen fort und studieren die Struktur einer endlichen Gruppe G
mit einem nicht inneren Coleman-Automorphismus von p-Potenzordnung unter der Vor-
aussetzung, dass G/F∗(G) keinen Hauptfaktor der Ordnung p hat. Tatsächlich wis-
sen wir nicht, ob es eine solche Gruppe gibt; wir studieren die Struktur eines mini-
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malen Gegenbeispiels. Anhand eines Beispiels (15.4) zeigen wir, dass dies auf interes-
sante Fragen (15.6) über zentrale Erweiterungen, hauptsächlich von einfachen Gruppen,
führt, welche jedoch unbeantwortet bleiben werden. Kurz betrachten wir auch Coleman-
Automorphismen von zentralen Erweiterungen.

In Abschnitt 16 beschäftigen wir uns mit subdirekten Produkten von endlichen Grup-
pen. Spezieller besprechen wir das Konzept von getwisteten projektiven Limiten, welches
natürlicherweise bei der Diskussion des ganzzahligen Isomorphieproblems für auflösbare
Gruppen auftritt, siehe (16.5). Wir geben ein Beispiel (16.17), in dem Twisten mit einem
inneren Automorphismus zu einer nicht isomorphen Gruppe derselben Ordnung führt.

Falls G ein projektiver Limes ist, bemerken wir dass Aut(G), unter milden Vorausset-
zungen, auf natürliche Weise ebenfalls ein projektiver Limes ist. Dies beschafft uns einen
praktischen Weg, die Gruppe der Coleman-Automorphismen AutCol(G) einer auflösbaren
Gruppe G zu berechnen, und wir werden einen kurzen Beweis eines Resultats von Dade
(16.13) geben: OutCol(G) ist abelsch.

Eine auflösbare Gruppe G ist der projektive Limes seiner Faktorgruppen G/Op′(G).
Wir können den projektiven Limes Γ der Gruppenringe ZG/Op′(G) bilden und uns
fragen, wieviel Information Γ über ZG enthält. Wir zeigen die Existenz einer exakten
Sequenz, welche zu einem gewissen Ausmaß mißt, wie weit Γ davon entfernt ist die
“simultane p-Version” der Zassenhaus-Vermutung zu erfüllen.

Kapitel V

Es sei G eine Gruppe, und R ein kommutativer Ring. Die Automorphismen von G, die
einen inneren Automorphismus des Gruppenrings RG induzieren, bilden eine Gruppe
AutR(G). Wir setzen OutR(G) = AutR(G)/Inn(G). Man beachte, dass AutR(G) ∼=
NU (G)/Z(U) gilt, wobei U = U(RG) gesetzt ist.

Der grundlegendste Fakt über Elemente aus NU (G) bezieht die Standard-Antiinvolu-
tion ∗G von RG mit ein: u ∈ NU (G) impliziert uu∗G ∈ Z(U), und dies impliziert wieder-
um (uu−∗G)∗G(uu−∗G) = 1.

Die Umkehrung gilt im allgemeinen nicht: Selbst wenn R G-adaptiert ist, muß uu∗G ∈
Z(U) nicht notwendigerweise u ∈ NU (G) implizieren. Dies gilt jedoch falls R = Z ist.
Weiterhin, falls R = Z, gibt ein klassisches Result, welches auf Higman und Berman
zurückgeht, dass uu−∗G ∈ ±G für jedes u ∈ NU (G) gilt, woraus unmittelbar folgt, dass
OutZ(G) vom Exponent 2 ist. Dies unterstreicht die Sonderstellung, die der Koeffizien-
tenring Z einnimmt, und die Stärke solcher “Stern-Argumente”. Wir möchten jedoch
darauf hinweisen, dass wir in den Kapiteln V und VI keinerlei Gebrauch von “Stern-
Argumenten” machen werden. Dies hat zur Konsequenz, dass unsere Resultate für
beliebige G-adaptierte Koeffizientenringe R gültig sein werden. Einige unserer Resultate
sind in dem Fall R = Z bereits bekannt. Jedoch schließen die bekannten Beweise oft
“Stern-Argumente” mit ein, so dass wir andersgeartete Beweise finden mußten, siehe
z.B. (19.1) und (19.3).
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In Abschnitt 17 geht es um die Frage, was ohne weitere Voraussetzungen an den
Koeffizientenring R (neben der Kommutativität) über OutR(G) ausgesagt werden kann.
Unser erstes Resultat (17.3) ist, dass AutR(G) ≤ Autc(G) gilt.

Für die Untersuchung von NU (G) ist die erste grundlegende Beobachtung, dass man
mit dem Gruppenring des endlichen Konjugiertheit-Zentrums ∆(G) vonG arbeiten kann,
denn für u ∈ NU (G) mit 1 ∈ supp(u) gilt D := {g−1gu | g ∈ G} ⊆ supp(u) ⊆ ∆(G).
In (17.2) zeigen wir, dass 〈D〉 und 〈supp(u)〉 normale Untergruppen von G sind. Ist
desweiteren u = u∗G , dann gilt T := {g−1gv | g ∈ G, v ∈ 〈u〉} ⊆ supp(u). Dies ist
insofern ein interessantes Resultat, als es uns zeigt dass T eine endliche Menge ist, und
wir nun einen (gruppentheoretischen!) Satz von Baer (17.4) mit einbeziehen können um
zu folgern, dass N = 〈T 〉 eine endliche normale Untergruppe von G ist. Man beachte,
dass Konjugation mit u auf G/N die Identität induziert.

Unter Verwendung von Ideen von Mazur [93], und, wiederum, des Satzes von Baer,
werden wir schließlich in (17.8) zeigen, dass jedes Element von AutR(G) einen inneren
Automorphismus von G/N für eine endliche normale Untergruppe N von G induziert.
Als Korollar erhalten wir (17.9): Die Gruppe OutR(G) ist periodisch. Vorausgesetzt
dass ∆(G) endlich erzeugt ist, zeigen wir in (17.7), dass OutR(G) eine endliche Gruppe
ist.

Wir beenden den Abschnitt mit einigen Beispielen, welche negative Antworten zu ei-
nigen Fragen aus [93] liefern. Insbesondere zeigen wir, dass es zu u ∈ NU (G) nicht
notwendigerweise ein Gruppenelement g ∈ G geben muß so dass 〈supp(ug)〉 eine end-
liche Gruppe ist (vgl. mit (18.5)). Weiterhin, falls eine Primzahl p die Ordnung eines
Elements von OutR(G) teilt, muß G nicht notwendigerweise ein Element der Ordnung p
haben.

In Abschnitt 18 werden wir kurze und vereinheitlichte Beweise einiger “Darstellungs-
Sätze” geben welche in [74,72,70] erscheinen. Die grundlegende Idee (18.1) hinter diesen
Sätzen ist, das klassische Result, dass der rationale Gruppenring QH einer geordneten
Gruppe H nur triviale Einheiten besitzt, zu verallgemeinern. Es sei ∆+(G) die Menge
der Torsionselemente in ∆(G) (dies ist eine charakteristische Untergruppe von G), und
es sei R ein ∆+(G)-adaptierter Ring. Dann haben wir den “Darstellungs-Satz” (18.5):
Für jedes u ∈ NU(RG)(G) mit 1 ∈ supp(u) ist die Trägergruppe 〈supp(u)〉 eine endliche
normale Untergruppe von G. Als Korollar erhalten wir (18.6): Ist u ∈ NV(RG)(G) mit
un ∈ G für ein n ∈ N, dann gilt u ∈ G. Ein weiteres Korollar (18.7) besagt, dass
∆+(G) ein Element von Primzahlordnung p enthält, falls die Primzahl p die Ordnung
eines Elements der periodischen Gruppe OutR(G) teilt.

Ab jetzt bezeichne R stets einen ∆+(G)-adaptierten Ring.

In Abschnitt 19 werden wir (18.5) benutzen, um in (19.1) und (19.3) die Struktur von
NV(RG)(G)/G (dies ist eine torsionsfreie abelsche Gruppe) und NV(RG)(G)/Z(V(RG))G
zu untersuchen.

Wir werden sagen dass G die Normalisator-Eigenschaft besitzt falls OutR(G) = 1,
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oder, gleichwertig, NU(RG)(G) = Z(U(RG))G für jeden G-adaptierten Ring R gilt. Wir
werden (18.5) auch benutzen, um für einige Klassen von Gruppen die Normalisator-
Eigenschaft nachzuweisen. Wir möchten erwähnen, dass unsere Resultate nahezu voll-
ständig waren, als wir einen Vorabdruck einer Arbeit von Jespers, Juriaans, de Miranda
and Rogerio [72] erhielten. Wir vergleichen deren Hauptergebnisse mit den entsprechen-
den Ergebnissen, die wir erzielen konnten:

Eine Gruppe G hat die Normalisator-Eigenschaft, vorausgesetzt dass G zu einer der
Klassen gehört, die gegeben ist

in [72]:

• Gruppen mit ∆+(G) ohne nicht-
trivialer 2-Torsion; Torsionsgrup-
pen mit normaler 2-Sylowgruppe;

• lokal nilpotente Gruppen;

• EK-Gruppena G, so dass [G,G] eine
p-Gruppe ist.

aSämtliche Konjugiertenklassen haben endliche
Länge.

in Abschnitt 19:

(19.11) Gruppen, deren endliche normale
Untergruppen eine normale 2-
Sylowgruppe haben;

(19.12) Gruppen, deren endliche normale
Untergruppen nilpotent sind;

(19.6) Gruppen G, so dass endliche Fak-
torgruppen von [G,G] p-Gruppen
sind.

(Strenggenommen wird in [72] nur OutZ(G) = 1 nachgeprüft.)

Einer der Gründe, warum wir größere Klassen erhalten, ist dass wir die für unendliche
Gruppen zweckmäßige Version des Ward–Coleman Lemmas (siehe Seite 138) verwen-
den: Ist G endlich, betrachtet man gewöhnlich die Operation eines u ∈ NU (G) auf
einer p-Sylowgruppe von G, wohingegen im Fall G unendlich, man die Operation auf
Untergruppen von endlichem p′-Index in G zu betrachten hat (siehe (19.4)). Als eine
Anwendung erhalten wir sofort (19.6), ohne den “Darstellungs-Satz” überhaupt anwen-
den zu müssen!

Wir geben auch ein technisches Lemma (19.5), welches uns erlaubt, ausgiebigen Ge-
brauch von dem “Darstellungs-Satz” (18.5) zu machen. Auf diese Weise überträgt sich
die wohlbekannte Tatsache (19.14), dass eine endliche Gruppe G die Normalisator-Eigen-
schaft besitzt sofern sie nur eine ihren eigenen Zentralisator enthaltende normale p-
Untergruppe hat, auf den Fall unendlicher Gruppen (19.15).

An [72] anschließend, besprechen wir in Abschnitt 20 kurz die Frage, wann RG “nur
triviale zentrale Einheiten” hat. Wir zeigen in (20.3) dass, falls R ein Integritätsbereich
der Charakteristik Null ist in dem keine rationale Primzahl invertierbar ist, die Redewen-
dung “RG besitzt nur triviale zentrale Einheiten” gerechtfertigt ist, da sie unabhängig
von der zugrundeliegenden Gruppenbasis ist. Der Beweis verwendet einen Satz von
Burn, welcher besagt, dass die Trägergruppe eines zentralen Idempotents in RG eine
endliche normale Untergruppe von G ist.
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Burns Satz wird auch verwendet werden um eine positive Antwort (20.6) auf eine
Frage von Mazur [92, p. 438] zu geben: Ist G eine EK-Gruppe, und R ein G-adaptierter
Ring, dann ist jede Gruppenbasis von RG ebenfalls eine EK-Gruppe.

Kapitel VI

Es sei U die Gruppe der Einheiten eines Gruppenrings RG, wobei G eine periodische
Gruppe und R ein G-adaptierter Ring ist, und es sei 1 E Z1(U) = Z(U) E Z2(U) E . . .
die aufsteigende Zentralreihe von U . Unser Hauptergebnis (21.2) besagt, dass Z3(U) =
Z2(U) ≤ Z(U)Z2(G) gilt; und falls Z2(U) 6= Z(U), ist G eine sogenannte Q∗-Gruppe (wie
in (21.1) definiert).

Q∗-Gruppen erscheinen, möglicherweise zum ersten Mal, in der Schrift [16] von Bovdi,
der zeigte, dass G eine Q∗-Gruppe ist, falls G eine nicht zentrale Untergruppe besitzt
welche normal in U(ZG) ist.

Wir möchten anmerken, dass unsere Präsentation den Umstand hervorhebt, dass hier
eine starke Verbindung zu dem Normalisator-Problem besteht.

Zuallererst ist einfach zu sehen, dass Z2(U) ≤ NU (G) gilt. Für einen Moment sei
angenommen, dass G die Normalisator-Eigenschaft besitzt, d.h., dass die Beziehung
NU (G) = Z(U)G besteht. Dann gilt Z2(U) = Z(U)(G ∩ Z2(U)). Für beliebige g ∈
G ∩ Z2(U) und u ∈ U ist gu ∈ Z2(U) ≤ NU (G), und da gu endliche Ordnung hat, folgt
gu ∈ G (siehe (23.2.4) oder (18.6)). Folglich ist G ∩ Z2(U) eine normale Untergruppe
von U , und unser Hauptergebnis (21.2) folgt aus Bovdis Ergebnissen (siehe (24.4) und
(25.3)).

Setze Z∞(U) =
⋃∞
n=1 Zn(U). Wesentlich für unsere Vorgehensweise wird (23.3) sein,

wo wir Z∞(U) ≤ NU (G) zeigen, und dass Elemente von Z∞(U) mit allen unipotenten Ele-
menten von U vertauschen. Anschließend werden wir in (23.5) unter der Annahme, dass
ein u ∈ NU (G) mit allen unipotenten Elementen von ZG vertauscht, zeigen, dass conj(u)
einen Potenzautomorphismus von G induziert, und falls weiter G keine Dedekindgruppe
ist, ist dann [G, u] ≤ R(G), wobei R(G) den Durchschnitt aller nicht normalen Unter-
gruppen von G bezeichnet. Dies erlaubt uns, zwei gruppentheoretische Ergebnisse ins
Spiel zu bringen. Das erste ist Blackburns Klassifikation (22.2) der endlichen Gruppen
G mit R(G) 6= 1. Diese Klassifikation wird benutzt werden, um (23.8) zu beweisen:
Falls G keine Dedekindgruppe ist, und ein u ∈ NU (G) mit allen unipotenten Elementen
von ZG vertauscht, dann gilt u ∈ Z(U)G. Das andere Ergebnis, welches Cooper zu ver-
danken ist, besagt, dass ein Potenzautomorphismus einer beliebigen Gruppe ein zentraler
Automorphismus ist, d.h. ein Automorphismus, welcher auf der zentralen Faktorgruppe
die Identität induziert. Dies wird in (23.6) benutzt werden, um Z∞(U) = Z2(U) zu
zeigen. Insgesamt erhalten wir in (23.9), dass Z∞(U) ≤ Z(U)Z2(G) gilt.

Als nächstes beschreiben wir kurz, was in den einzelnen Abschnitten ausgeführt wird.

In Abschnitt 21 geben wir das Hauptergebnis und stellen die Geschichte dieses Klassifi-
kationstheorems dar. Insbesondere sei bemerkt, dass wir unsere Ergebnisse unabhängig
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von einer Arbeit von Li und Parmenter erzielt haben, in welcher diese unter Verwendung
anderer Methoden das Ergebnis für den Fall R = Z erhalten haben.

In Abschnitt 22 benützen wir Blackburns Klassifikation für eine Fall zu Fall Unter-
suchung, und zeigen in (22.4): Ist eine endliche Gruppe G keine Dedekindgruppe, und
ist der Durchschnitt R(G) ihrer nicht normalen Untergruppen nicht trivial, dann gilt
R(G) ≤ Z(G) und Outc(G) = 1.

Die Ergebnisse aus Abschnitt 23, in dem die zentrale Proposition (23.3) bewiesen wird,
sind bereits oben beschrieben worden.

Um die Darstellung in sich geschlossen zu halten, geben wir in Abschnitt 24 einen
kurzen Beweis des oben erwähnten Resultats von Bovdi.

In Abschnitt 25 zeigen wir, wie Bovdis Result benutzt werden kann um Z∞(U) ≤
Z(U)Z2(G) zu etablieren, wobei wir eng vorangegangener Arbeit von Arora, Hales und
Passi folgen werden. Und es wird nun natürlich mit Bovdis Result folgen, dass G eine
Q∗-Gruppe ist falls Z2(U) 6= Z(U) gilt. Wir geben eine vollständige Beschreibung (25.3)
von Z∞(U) falls R ein Ring algebraischer Zahlen in einem total reellen Zahlkörper ist. Ist
andererseits R in einem gewissen Sinn “groß genug”, darf man Z2(U) = Z(U) erwarten,
wie in (25.4) gezeigt wird.

Kapitel VII

Für eine periodische Gruppe G werden wir zeigen, dass das zweite Zentrum Z2(U(ZG))
der Gruppe der Einheiten in ZG mit dem endlichen Konjugiertheit-Zentrum ∆(U(ZG))
von U(ZG) übereinstimmt, d.h. mit der Menge der Elemente von U(ZG) die nur endlich
viele Konjugierte unter der Operation von U(ZG) haben.

Um dieses Ziel zu erreichen, werden wir einen Satz von Sehgal und Zassenhaus (26.1)
benutzen. Angenommen, G ist eine endliche Gruppe. Ist D ein Block von QG welcher
eine total definite Quaternionenalgebra ist, stimmt die von G induzierte Involution ∗ mit
der “klassischen” Involution auf D überein (27.3), so dass mit dem Sehgal–Zassenhaus
Result folgt, dass uu∗ zentral in ZG ist für jedes Element u aus ZG welches nur endlich
viele Konjugierte unter der Operation von U(ZG) hat.2 Ist also u weiterhin eine Einheit
in ZG, so zeigt das übliche “Stern-Argument”, dass u ∈ NU(ZG)(G). Nun zeigt ein
Standardargument, dass dieses Ergebnis auch für eine periodische Gruppe G bestehen
bleibt.3

Man beachte, dass ein Element u von ZG, welches nur endlich viele Konjugierte unter
der Operation von U(ZG) hat, mit allen unipotenten Elementen von ZG vertauscht
(23.1).

2Aus der endgültigen Version [71] von [70] ist kaum ersichtlich, dass in diesem Zusammenhang wir diese
(einfache) Beobachtung zuerst verwendeten.

3Folglich läßt sich der zu [70, Theorem 2.3] gegebene Beweis unschwer zu einem Beweis von [70, Corol-
lary 4.3] umschreiben.
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Dies ist bereits genügend Information, um die Gleichheit ∆(U(ZG)) = Z2(U(ZG)) aus
bekannten Resultaten abzuleiten, was in Abschnitt 27 geschehen wird.4

Wiederum sei G endlich, und ein Schiefkörper D sei ein Block von QG. Es sei Z[G] das
Bild von ZG in D. Unter Verwendung von Amitsurs Klassifikation der endlichen Grup-
pen, die sich in die multiplikative Gruppe eines Schiefkörpers einbetten lassen, führen
wir in den Abschnitten 28 und 29 folgendes aus. Es sei x ∈ Z[G]. Ist D keine total
definite Quaternionenalgebra, so ist x entweder zentral in Z[G] oder hat unendlich viele
Konjugierte unter der Operation von U(ZG), und in letzterem Fall konstruieren wir
Einheiten in U(ZG), welche benützt werden können um unendlich viele Konjugierte zu
produzieren. Ist D eine total definite Quaternionenalgebra, geben wir die Gruppe der
Einheiten in Z[G] explizit an (welche von endlicher Ordnung über dem Zentrum ist).

Kapitel VIII

Das ungerade Analogon zu dem berühmten Z∗-Theorem von Glauberman kann wie
folgt formuliert werden: Falls x ein Element von Primzahlordnung p in einer endlichen
Gruppe G ist, welches mit keinem seiner anderen Konjugierten vertauscht, dann gilt
[x,G] ≤ Op′(G). Es ist wohlbekannt, dass dieses Theorem für ungerades p leicht mit
Hilfe der Klassifikation der endlichen einfachen Gruppen zu beweisen ist, aber einen
direkten Beweis zu finden wäre sicherlich nützlich und aufschlußreich.

Man beachte, dass unsere Voraussetzung an das Gruppenelement x gerade besagt,

dass seine Klassensumme Cx in x+ Tr
〈x〉
1 (ZG) enthalten ist, wobei Tr

〈x〉
1 die gewöhnliche

relative Spurabbildung bezeichnet.

Es sei χ ein irreduzibler Charakter von G, es bezeichne ωχ den zu χ gehörigen zentralen
Charakter, und es sei ρ : G → Matn(O) eine Darstellung von G welche uns χ liefert,
wobei O der Ring der ganzen Zahlen in einer endlichen Erweiterung des p-adischen
Körpers Qp ist, welche eine primitive pte Einheitswurzel ζ enthält. Dann gilt ρ(x) +

Tr
〈ρ(x)〉
1 (M) = ωχ(Cx)·Idn für ein M ∈ Matn(O). Man beachte, dass ωχ(Cx) ∈ R = Zp[ζ]

gilt.

Nun sei p = 3, und C3 eine zyklische Gruppe der Ordnung 3. Dieterich hat gezeigt,
dass RC3 endlichen Darstellungstyp hat, und dass es 9 Isomorphieklassen von unzer-
legbaren RC3-Gittern gibt. Damit leiten wir leicht (30.5) her: Falls X ∈ GLn(R) die

Ordnung 3 besitzt, und falls X+Tr
〈X〉
1 (M) ≡ ω ·Idn (mod 3R) für gewisse M ∈ Matn(R)

und ω ∈ R gilt, dann ist die Spur von X ein ganzzahliges Vielfaches einer Potenz von
ζ.

Wir können nicht erwarten dass O = R ist, aber O ist ein freier R-Modul von
endlichem Rang m. Damit haben wir eine R-lineare Einbettung Matn(O) ↪→ Matnm(R),
und wir erhalten (in dem Fall p = 3), dass χ(x) ein ganzzahliges Vielfaches einer Potenz

4Aus den Bemerkungen in [71, S. 95] könnte man unzutreffenderweise schließen, dass wir zu diesem
Beweis durch eine sorgfältige Untersuchung von [70] gekommen sind.
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von ζ ist.
Es sei e0 das zu dem Hauptblock B0 von Z(3)G gehörige zentrale Idempotent. Es

ist wohlbekannt, dass e0Cx eine Einheit in B0 ist. Robinson bemerkte, dass unter der
Voraussetzung, dass die zu B0 gehörigen irreduziblen Charaktere die obige Bedingung
erfüllen, ux = e0Cx(e0Cx−1)−1 eine zentrale Einheit der Ordnung 3 in B0 ist, und dass
[x,G] ≤ O3′(G) gilt, falls ux eine triviale Einheit ist, d.h. falls ux = e0g für ein g ∈ G
gilt.

Die letzte Beobachtung verbindet die Frage, ob [x,G] ≤ O3′(G) gilt oder nicht gilt, mit
der “Defektgruppen-Frage” für den Hauptblock (siehe [128, p. 267]): Selbst bescheidener
Fortschritt in Richtung auf eine positive Antwort zu dieser Frage würde zur Konsequenz
haben, dass ux eine triviale Einheit ist (siehe [115]).
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Summary

Longum iter est per praecepta, breve et efficax per exempla.

Lucius Annaeus Seneca

Epistulae Morales ad Lucilium – Liber VI, 62–65

Loosely speaking, “representation theory” is “module theory”. One of the main objects
of integral representation theory should be the construction of indecomposable lattices
over orders. A prominent example of a Z-order is the integral group ring ZG of a finite
group G. A fundamental problem (with which we shall not be concerned with) is to find
a full set of isomorphism invariants of a ZG-lattice M which determines the isomorphism
class of M uniquely.

One can envisage ZG, or more general integral representation theory, as a link be-
tween ordinary and modular representation theory. (This “universality” already indi-
cates that clarifying the structure of ZG in general is a delicate issue.) Going further
on in this direction, we may regard integral representation theory, in the sense of Curtis
and Reiner [28,27], as a central core which connects various topics in ordinary and mod-
ular representation theory, algebraic number theory, and algebraic K-theory. This point
of view will be illustrated in Chapter III, where we discuss, by means of an example,
local–global aspects concerning automorphisms of integral group rings.

It is common usage in representation theory to speak about ZG-modules M having
the distinguished group basis G explicitly in mind. (Otherwise, what should be the
meaning of M being a permutation module?) However, we may take into account the
various ways G can be embedded, as a group basis, into ZG: This leads to questions
about ring automorphisms of ZG, the so called “Zassenhaus conjecture” being the most
notable one. We may also ask which properties of the finite group G are determined by
its integral representations. Asking whether the isomorphism class of G is determined by
its integral group ring is the so called “isomorphism problem for integral group rings”.
These questions are certainly in the sense of well known problems posed by Richard
Brauer [18], and they constituted the subject of much research at the end of the past
century. We shall discuss the “semilocal version” of the isomorphism problem and the
Zassenhaus conjecture in Chapters I and II in some detail. Thereby, the coefficient ring
of rational integers Z is replaced by a suitable semilocalization Zπ of Z (which we shall

1
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introduce next), thus avoiding questions about locally free class groups.
The knowledge of the p-adic group rings ZpG yields insight into the possible actions

of G on abelian groups. Since the most interesting arithmetical properties are lost when
one passes from ZG to a maximal over order in QG, we are tempted to consider as an
appropriate “integral coefficient ring with respect to G” the semilocalization

Zπ :=
⋂

p||G|
Z(p).

This ring is more “comfortable” than Z itself, since it has only finitely many maximal
ideals, and the same is true for the group ring ZπG. Nevertheless, ZπG has all interesting
quotients: For a prime p dividing the order of G, and a natural number n, we have
canonical ring homomorphisms ZG ↪→ ZπG³ (Z/pnZ)G.

Suppose one is interested in the properties of G which are determined by the module
category ZGMod, this is even the better setting since the following statements are
equivalent: there is an equivalence ZGMod ' ZH Mod of module categories; there is an
isomorphism ZπG ∼= ZπH of rings; there is an equivalence ZπGMod ' ZπH Mod.

In Chapter III we show that there is a group G of order 96 such that the semilocal
group ring ZπG has an automorphism which does not agree, up to an inner automorphism
of QG, with some automorphism of ZG.

Certain group automorphisms naturally appeared in the analysis of the Zassenhaus
conjecture and the isomorphism problem. New motivation to study class-preserving
automorphisms of finite groups came from work of Roggenkamp and Kimmerle, which
related them to the Zassenhaus conjecture (research in this direction began in [117]).
An observation of Mazur linked the isomorphism problem for integral group rings with
the existence of certain non-inner class-preserving automorphisms, namely those which
induce inner automorphisms of the group ring. Moreover, in Scott’s opinion, the picture
in the solvable group case of a semilocal group ring automorphism should be a collection
of group isomorphisms on inertial groups that fit together rationally, and their should be
a similar description for group ring isomorphisms. A large part of the first two chapters,
and the whole Chapter IV, is devoted to the study of group automorphisms which show
up in this context.

Chapters V–VII constitute another part of this work. In contrast with the first part,
we then deal with units of integral group rings of infinite groups. The results will be, of
course, also valid for group rings of finite groups, but the tenor will be that emphasis is
put on the reduction to the finite group case, which is either known or assumed to be
manageable. We can consider the unit group U(ZG) for an arbitrary group G, but in
most cases the results are complete only for the case that G is a periodic group. This
is related to the fact that so far we know little about the multiplicative group of the
integral group ring of a torsion-free group. Instead of ZG we shall consider more general
RG, where R is a G-adapted ring, that is, an integral domain of characteristic 0 in which
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a prime p is not invertible whenever G has an element of order p. We shall elaborate
on the normalizer of G in the unit group U(RG), the upper central series of U(RG) and
the finite conjugacy center of U(ZG).

We shall say that a group G has the normalizer property if for any G-adapted ring
R, the normalizer NU(RG)(G) of G in U(RG) consists of the obvious units only, i.e.,
if NU(RG)(G) = ZG, where Z denotes the center of U(RG). Asking whether a group
has the normalizer property or not will be termed the normalizer problem. It has been
shown that groups which do not have the normalizer property may serve as building
blocks for counterexamples to the isomorphism problem.

In Chapter V we study the normalizer problem for infinite groups, motivated by results
of Mazur [93], who was probably the first one to work on this problem. We will answer
the questions raised in [93], and we will give classes of groups having the normalizer
property, enlarging those given by Jespers, Juriaans, de Miranda and Rogerio [72].

In Chapter VI we examine the upper central series 1 E Z1(U) = Z(U) E Z2(U) E . . .
of the unit group U = U(RG) of an integral group ring RG of a periodic group G.
Our motivation comes from the fact that Z2(U) ≤ NU (G). This observation is the
starting point of Li’s paper [86], where it is shown that Z2(U) = Z3(U) in the R = Z
case. Recently, a complete description of Z2(U) in the R = Z case was given by Li and
Parmenter [87]. Using different methods, we obtained independently the corresponding
description in the general case: Z3(U) = Z2(U) ≤ Z(U)Z2(G); and if Z2(U) 6= Z(U), then
G is a so called Q∗-group.

In Chapter VII we show that for a periodic group G, the second center Z2(U(ZG))
conincides with the finite conjugacy center of U(ZG), i.e., with the set of elements of
U(ZG) having only finitely many conjugates under the action of U(ZG).

The last chapter is intended to raise hopes that significant applications of integral
representation theory to finite group theory will be found some day. It is an important
open problem to find a direct and “representation-theoretic” proof of some odd analogue
to Glauberman’s Z∗-theorem. Robinson [114] studied the character theory of a minimal
counterexample, K, to the Z∗

p-theorem for odd p. In [115], Robinson showed that his
results can be used to place the problem in quite another context, that of units in
group rings: he demonstrated the existence of a nontrivial central unit of order p in the
principal p-block of K, provided that p ≥ 5, or that p = 3 and K is not simple.

We show that if p = 3, and x is an element of order 3 in K which commutes with
none of its other conjugates, then for each irreducible character χ of K, the character
value χ(x) is an integral multiple of a power of a primitive third root of unity ζ. As
a consequence, the existence of the nontrivial central unit in the principal p-block is
guaranteed in any case. The idea of the proof is actually quite simple, and is based on
the classification of the indecomposable Z[ζ]C3-lattices. We’ve come full circle of this
short overview of the present paper!

Each chapter is self-contained, and its content is described in detail below.
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The reader will notice that this paper contains many examples. We think that nowa-
days this needs no justification; we are confident that “The way is made long through
rules, but short and effective through examples.”

Nevertheless, we would like to render some considerations of Ringel on this theme. The
reader only interested in the results of this paper can safely skip the following remark.

Looking at examples. We would like to quote three pointed remarks from Ringel’s paper [112]:

1. There is a book on the foundations of module and ring theory [147] (with the subtitle
“A handbook for study and research”), which, as Ringel puts it, “manages to avoid any
nontrivial examples whatsoever”, and that “It should not be surprising that it claims to
present a proof that all indecomposable artinian modules have local endomorphism rings, an
assertion which would imply the validity of Krull-Remak-Schmidt for artinian rings.” (See
31.14 of the book; the “proof” essentially carries over Guérindon’s error [45].) Fortunately,
we can quote from the introduction of the 1991 English edition: “Besides several minor
changes and improvements this English edition contains a number of new results.” There
are remarkably simple examples of indecomposable artinian modules whose endomorphism
rings are not local, for example modules over the ring

[
Q 0
Q Z

]
(see [111]).

2. “Apparently, until 1998 no one had studied artinian modules over a ring such as
[

Q 0
Q Z

]
.

To get inspiration from examples should be one of the most important endeavour of math-
ematicians. But in contrast, to look at examples was considered quite obsolete by many
algebraists until very recent times.”

3. From the “maybe provocative postulates” concerning the prospects of algebra in this cen-
tury, given at the end of the paper, we quote: “Many new phanomena should be discovered
when studying non-commutative structures in greater detail. (The preoccupation with the
development of “theories” has neglected up to now the careful study of examples.)”

We briefly outline some background; Ringel’s papers [111,112] are the source where we copied
from.

To begin with, we remark that the presentation stresses the fact that categorical equivalences
show that a given category may be realized in different ways.

The theorem of Krull-Remak-Schmidt is one of the basic results in representation theory. In
1932, Krull asked whether direct decompositions of a general artinian module into indecompos-
ables are unique up to isomorphisms. Only in 1995, this question was answered in the negative
in a joint paper of Facchini, Herbera, Levy and Vámos.

Following the Pimenov-Yakovlev approach [104], consider the “innocent” ring R =
[

Q 0
Q Z

]
.

(This ring is really innocent, though after Small’s example [135] from 1965, certainly many
students (including the author) were forced to have a look at this ring. Furthermore, it should
be remarked that today, it is known that triangular matrix rings arising from bimodules act as
a good source for constructing “counterexamples”, see for example [52,41,139,104].)

What are the left R-modules? Given a left R-module M , set B = e1M and A = e2M , where
e1 =

[
1 0
0 0

]
and e2 =

[
0 0
0 1

]
. Clearly M = B ⊕A as additive groups. Note that A is a submodule

of M , annihilated by Re1R, and that R/Re1R = Z, so A is really a Z-module. The quotient
M/A is just the Q-module B. Multiplication with

[
0 0
1 0

]
on M yields a Z-linear map γ : B → A.

Conversely, such a triple (B,A, γ) determines a column module M =
[

B
A

]
γ
, with the obvious

“matrix multiplication”
[

x 0
z y

]
·
[

b
a

]
=
[

xb
(zb)γ+ya

]
.
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Let A′ be the category of all Z-linear maps γ : B → A, where A, B are abelian groups with B
torsion-free divisible, together with the obvious morphisms. (Note that the torsion-free divisible
abelian groups are just the Q-vector spaces.) Then we have essentially shown that there is an
isomorphism of categories η : A′ → RMod so that η(B,A, γ) =

[
B
A

]
γ
.

What are the artinian left R-modules? An R-module
[

B
A

]
γ

is artinian if and only if A is an

artinian abelian group and B is a finite dimensional vector space over Q. Thus if we assume that
γ is surjective (so that A is divisible too), then

[
B
A

]
γ

is artinian if and only if B is of finite rank

and A is the direct sum of finitely many Prüfer groups.

Now let A be the full subcategory of A′ consisting of all surjective Z-linear maps γ : B → A,
where B is torsion-free of finite rank and A is an artinian Z-module. Also, let F be the category
of torsion-free abelian groups F of finite rank such that pF = F for almost all prime numbers p.
The members of F are precisely the groups F that occur as the kernel of a map γ as above, and
an exact sequence 0 → F → Qn → A→ 0, where A is artinian, is a minimal injective resolution
of F . This shows that we have a categorical equivalence F ' A.

Nothing strange has happened, but that A may be interpreted as a category of artinian
modules over the ring R is what had been neglected before. For it has been established a long
time ago that the category F does not satisfy the theorem of Krull-Remak-Schmidt: The first
example was given by Jónsson in 1945, later ones were given by Butler, Corner, Fuchs and others.
In some sense, Krull’s problem has been solved 50 years before it was answered in the negative
in 1995!

Chapter I

We assume that the reader is familiar with the notions integral group ring and isomor-
phism problem for integral group rings. In the first four chapters, we shall only deal
with finite groups G. When we write ZπG it is understood that Zπ is the intersection of
localizations Z(p) with p ranging over a finite set π of primes which contains the prime
divisors of the order of G. Note that ZπG is a semilocal ring.

Graham Higman termed OG an integral group ring whenever O is a ring of alge-
braic integers. We shall call ZπG an integral group ring as well. With respect to the
isomorphism problem for integral group rings, this is justified by (1.1): It follows from
Jacobinski’s fundamental work on genera of lattices that ZπG ∼= ZπH implies that
OG ∼= OH for some ring O of algebraic integers. Another local–global aspects are
discussed in Section 1, including Scott’s approach to the construction of group ring au-
tomorphisms and isomorphisms in the semilocal case that avoids any explicit use of the
theory of orders (see (1.4) and (1.6)). We shall apply such constructions in Sections 3
and 8, and (1.4) will also be helpful for the understanding of part of Chapter 3.

In Section 2 we talk about possibilities how to construct counterexamples to the
isomorphism problem for integral group rings in the semilocal group ring case. In (2.3)
we show how an observation of Mazur can be adapted to the finite group case, which
involves the use of multiplicative 1-cocyles. We also point out the local–global aspect
(2.10) of this construction, introducing the notion of local system of 1-cocycles, which
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shall be a collection of local 1-cocycles which differ rationally by 1-coboundaries.

There are two non-isomorphic groups X and Y , both of order 221 · 9728, which have
isomorphic integral group rings, ZX = ZY . Having these groups at hand, we pursue
in Section 3 the way prescribed by (1.6) to show that the group rings are semilocally
isomorphic. This leads to new insight into the structure of these groups. Actually, this
allows us to make a small modification: We will replace the Sylow 97-subgroup by a
Sylow 17-subgroup, without changing the structure of the groups. The question remains
open whether this yields another global counterexample.

Motivated by the semilocal analysis of the counterexample, we present in Section 4 a
p-group (for any prime p) which likewise has those properties of the Sylow 2-subgroup of
X which turned out to be crucial to the semilocal construction. This strongly suggests
that there should be semilocal counterexamples to the isomorphism problem with the
underlying groups having odd order.

Knowledge about automorphisms of integral group rings may help to settle the isomor-
phism problem for certain classes of groups, via (variations of) Kimmerle’s G×G-trick.
This will be demonstrated in Section 5, where we give another proof of a theorem due
to Scott. From knowledge about automorphisms (5.5) we deduce (5.7): Finite abelian
by nilpotent groups are determined by their integral group rings.

Chapter II

This chapter contains various results related to the Zassenhaus conjecture (concerning
automorphisms of integral group rings ZG, where G is a finite group).

In Section 6, we take the opportunity to collect in an omnibus lemma (6.1) some
more or less well known properties of antiinvolutions of group rings associated to group
bases which are related to the Zassenhaus conjecture. For example, if α ∈ Autn(ZG),
and ∗ denotes the antiinvolution associated to G, then [∗, α] = conj(u∗u) for some
u ∈ NU(QG)(ZG) if and only if α admits a Zassenhaus decomposition with respect to G,
that is, if there is ρ ∈ Aut(G) such that αρ ∈ Inn(QG). We also wish to point out a
conjugacy criterion (6.4), which, however, has not yet found applications.

Roggenkamp and Scott showed that in the presence of normal subgroups N1, . . . , Nr

of G of pairwise coprime order, an integral group ring RG can be described by a pull-
back diagram (7.1) which proved to be very useful to construct counterexamples to the
Zassenhaus conjecture. We shall give a detailed proof of this result in Section 7, thereby
pointing out in (7.2) an interesting description of the ideal

∑r
i=1(RG) · N̂i.

The Roggenkamp–Scott result can also be used to compute unit groups of integral
group rings. This is illustrated in (7.3) where we compute the unit group of ZC10 and
its index in the unit group of a maximal over order.

Lam and Leung (7.4) solved the following problem in number theory: Given a natural
number m, what are the possible integers n for which there exist mth roots of unity
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α1, . . . , αn ∈ C such that α1 + · · · + αn = 0? We will put their crucial results into a
more general context, the results then being stated entirely in the language of group
rings, since we can use (7.2) to dispense with some linear disjointness arguments. The
starting point will be (7.7): For normal subgroups A and B of G with A ∩ B = 1, we
have N0G ∩ (ZG · Â + ZG · B̂) = N0G · Â + N0G · B̂ (here N0 = N ∪ {0}). Then, we
will follow closely the presentation given by Lam and Leung to give a generalization of
(7.4) in (7.11): The augmentation of each element of N0G ∩∑r

i=1 ZG · N̂i is contained
in
∑r

i=1 N0 |Ni|.
In Section 8, we turn to the construction of semilocal counterexamples to the Zassen-

haus conjecture. (Such examples often have been called “counterexamples”, they were
considered as very surprising. But it seems now that such a behavior should be rated
as quite usual.) After some preparatory work, we are ready to produce such examples
with relatively minor effort, which will include a metabelian group with abelian Sylow
subgroups, a supersolvable group, and a Frobenius group.

In Section 9, we calculate the group- and character table automorphisms for the wreath
products Gn,r = (Z/rZ) oSn, which form one of the two infinite series of irreducible finite
complex reflection groups. In particular, we will see that the Zassenhaus conjecture holds
for these groups (which, however, is already known [129, Section 44]). More precisely, we
show for Gn,r 6= G2,2 that the sequence 1 → Inn(Gn,r) → Aut(Gn,r) → AutCT(Gn,r) →
1 is exact (9.2), which generalizes [14, Proposition 4.3], and we describe Out(Gn,r)
explicitly (9.1).

Chapter III

The main result of this chapter is that the semilocal group ring ZπG of a finite group G
may have an automorphism α which is not represented by a global one, that is, there is
no automorphism of ZG which differs on QG from α only by an inner automorphism.

We will work out an example, using one of Blanchard’s groups G of order 96 from
[13]. This group is of the form G = (〈q : q3〉 × 〈c : c2〉 × 〈b : b4〉) o 〈a : a4〉. Blanchard
showed that there is an α ∈ Autn(ZπG) which permutes only the two faithful irreducible
characters of G, and which cannot be written as the product of a group automorphism
(extended to ZπG) and a central automorphism. We will show that such an α is not
represented by a global automorphism.

We briefly describe our strategy. Associated with the normal subgroups Q = 〈q〉 and
M = Z(G) = 〈b2〉 of G, we have the pullback diagram (7.1)

ZG - Γ

Λ
?
- Λ2 ⊕ Λ3

.
?
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We may assume that Λ ⊂ Mat4(Z[ζ]), where ζ denotes a primitive third root of
unity, since precisely the two faithful irreducible characters of G, which are algebraically
conjugate, belong to CΛ.

There is τ ∈ Aut(G) which permutes the two faithful irreducible characters, and
induces an inner automorphism on Λ2 ⊕ Λ3. The whole discussion boils down to the
question whether there are γ ∈ Autcent(Γ) and λ ∈ Autcent(Λ) which differ on the
common quotient Λ2 ⊕ Λ3 by the inner automorphism induced by τ . Assuming that
such automorphisms exist, we will finally reach a contradiction.

Let P = 〈a, b, c〉, a Sylow 2-subgroup of G, and let bars denote reduction modulo M ,
so that P̄ = P/M . Then Γ is the image of the natural map ZG → ZP̄Q ⊕ ZP . The
automorphism γ induces central automorphisms of ZP̄Q and ZP which shall also be
denoted by γ.

For each β ∈ Autcent(ZP ), we can define a norm N(β) ∈ {±1} as follows: β induces
on the proper matrix ring summands of QP inner automorphisms given by conjuga-
tion with matrices of determinant ±1, and N(β) is the product of the determinants of
such matrices. Using Fröhlich’s localization sequence, and Mayer–Vietoris sequences to
calculate locally free class groups, we are able to show that always N(β) = 1.

Consider now the following diagram, in which each “square” is a pullback diagram.

Γ - ZP - ZP/(M̂)
mod 3- Λ3 = F3P/(M̂) ∼= Mat4(F3)

ZP̄Q
?

- ZP̄
?

- F2P̄
?

ZP̄Q/(Q̂)

?
- F3P̄

?

ZG/(Q̂)

¾

Λ2 = F2P̄Q/(Q̂)

mod 2

?
¾ Λ

mod (1 − ζ)

6

-
⊂ Mat4(Z[ζ])

γα1

²± °̄

γα
²± °̄

γ
²± °̄

γτ = λ
²± °̄

6

6

N(γ) = −1:
final
contradiction

'
&

$
%

Both γ and λ are conjugations
with matrices of determinant 1.
Therefore det(u) = 1.

'
&

$
%

N1(α1) = −1

N1(γ̄α1) = 1
(determinantal map!)

'
&

$
%

λ = conj(u)
(Inner automorphism

since we have lift γα1.)

'
&

$
%

¼

- ¾

C
C
C
C
C
C
C
C
CO

lift γα
²± °̄
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(The meaning of the filled in ovals will be explained subsquently.)

We can similarly define a norm N1 for central automorphisms of F3P̄ . Any β ∈
Autcent(ZP ) induces an inner automorphism β̄ of F3P̄ and an inner automorphism
conj(T ) of Λ3

∼= Mat4(F3), and we have N(β) = N1(β̄) · det(T ).

It is easy to see that we can assume without lost of generality that on Λ3, both γ and
λ are conjugations with matrices of determinant 1.

We will construct an inner automorphism α1 of ZP̄Q/(Q̂) which lifts the inner auto-
morphism τ induces on Λ2, and we will show that α1 lifts further to a central automor-
phism α of ZP̄Q.

In particular, λ is induced from a central automorphism of ZG/(Q̂), which implies that
λ induces an inner automorphism of Z2Λ. Using again Fröhlich’s localization sequence,
we then see that λ is an inner automorphism, conj(u) (say). Note that det(u) = 1 since
the reduction of u modulo (1 − ζ) has determinant 1.

The automorphism γ induces a central automorphism γ̄ of F3P̄ , and we are interested
in N1(γ̄). Each central automorphism of ZP̄Q/(Q̂) induces a central automorphism of
F3P̄ . We know that N1(α1) = −1, so we try to calculate N1(γ̄α1) since γα1 is a lift of
the automorphism λ induces on Λ2.

Let U ≤ Λ× consist of those units v such that there is a central automorphism βv
of ZP̄Q/(Q̂) which induces on Λ2 the inner automorphism given by conjugation with
the image of v. Then, the assignment v 7→ N1(β̄v) yields a well defined homomorphism
d : U → {±1}. The author would very much like to know whether there is a general
argument showing that this homomorphism arises from the determinantal map.

What we will show is that if for some v ∈ Λ×, the inner automorphism of Λ2 given
by conjugation with the image of v can be lifted to a central automorphism ν of ZP̄Q,
then det(v) = ±1, and det(v) = 1 if and only if d(v) = 1. This will be done by carefully
modifying v and ν, using suitable “modifications” of bicyclic units, until the claim will
be obvious.

So N1(γ̄α1) = det(u) = 1, and consequently N(γ) = −1, the final contradiction.

Chapter IV

This chapter contains a loose variety of results concerning specific automorphism groups
which showed up in connection with the Zassenhaus conjecture and the isomorphism
problem.

In Section 14, we only briefly touch upon class-preserving automorphisms of finite
groups when showing (14.4) that class-preserving automorphisms of abelian by cyclic
groups are inner automorphisms.

A Coleman automorphism of a finite group G is an automorphism of G whose restric-
tion to any Sylow subgroup of G equals the restriction of some inner automorphism of
G. In Section 15, we continue research began in [61] and study the structure of a finite
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group G which has a non-inner Coleman automorphism of p-power order under the as-
sumption that no chief factor of G/F∗(G) is isomorphic to Cp. Actually, we do not know
whether such a group exists, but we study the structure of a minimal counterexample.
By means of an example (15.4) we show that this leads to interesting questions (15.6)
about central extensions, mainly of simple groups, which, however, will remain open.
We also briefly consider Coleman automorphisms of central extensions.

In Section 16, we shall deal with subdirect products of finite groups. More specifically,
we discuss the concept of twisted projective limits, which appears naturally in the dis-
cussion of the integral isomorphism problem for solvable groups, see (16.5). We give an
example (16.17) where twisting with an inner automorphism leads to a non-isomorphic
group of the same order.

We note that if G is a projective limit, then Aut(G) is, under some mild conditions,
also a projective limit in a natural way. This provides a convenient way to compute the
group of Coleman automorphisms AutCol(G) of a solvable group G, and we will give a
short proof of a result of Dade (16.13): OutCol(G) is abelian.

A solvable group G is the projective limit of the factor groups G/Op′(G). We can form
the projective limit Γ of the group rings ZG/Op′(G) and may ask how much information
Γ contains about ZG. We show that there is an exact sequence which measures to some
extent how far Γ is away from satisfying a “simultaneous p-version” of the Zassenhaus
conjecture.

Chapter V

Let G be a group, and R a commutative ring. The automorphisms of G inducing an
inner automorphism of the group ring RG form a group AutR(G). We set OutR(G) =
AutR(G)/Inn(G). Note that AutR(G) ∼= NU (G)/Z(U), where U = U(RG).

The most basic fact about elements of NU (G) involves the standard anti-involution ∗G
of RG: u ∈ NU (G) implies that uu∗G ∈ Z(U), which in turn implies (uu−∗G)∗G(uu−∗G) =
1. The converse is not true in general: Even if R is G-adapted, uu∗G ∈ Z(U) does not
necessarily imply that u ∈ NU (G). This is, however, true in the R = Z case. Moreover,
if R = Z, then by a classical result due to Higman and Berman, uu−∗G ∈ ±G for any
u ∈ NU (G), which immediately implies that OutZ(G) is of exponent 2. This underlines
the special role the coefficient ring Z plays, and the strength of such “star-arguments”.
However, we would like to point out that in Chapters V and VI we will not make any use
of star-arguments. As a consequence, our results will be valid for arbitrary G-adapted
coefficient rings R. Some of our results are already known in the R = Z case. Then,
however, the known proofs often involve star-arguments, and we had to find different
proofs, see e.g. (19.1) and (19.3).

In Section 17, the point is what can be said about OutR(G) without making any further
assumption on the coefficient ring R. Our first result (17.3) is that AutR(G) ≤ Autc(G).
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When studying NU (G), the first basic observation is that we can work in the group
ring of the FC-center ∆(G) of G, since for u ∈ NU (G) with 1 ∈ supp(u), we have
D := {g−1gu | g ∈ G} ⊆ supp(u) ⊆ ∆(G). In (17.2), we show that 〈D〉 and 〈supp(u)〉
are normal subgroups of G. If furthermore u = u∗G , then T := {g−1gv | g ∈ G, v ∈
〈u〉} ⊆ supp(u). This is an interesting result inasmuch as it tells us that T is a finite
set, and we can involve a (group-theoretical!) theorem of Baer (17.4) to conclude that
N = 〈T 〉 is a finite normal subgroup of G. Note that conjugation with u induces the
identity on G/N .

Using ideas of Mazur [93], and again Baer’s theorem, we will eventually show in (17.8)
that any element of AutR(G) induces an inner automorphism of G/N for some finite
normal subgroup N of G. As a corollary, we obtain (17.9): The group OutR(G) is
periodic. Provided that ∆(G) is finitely generated, we show in (17.7) that OutR(G) is a
finite group.

We finish the section with some examples which provide negative answers to some
questions from [93]. In particular, we show that for u ∈ NU (G), there need not be a
group element g ∈ G such that 〈supp(ug)〉 is a finite group (cf. with (18.5)). Furthermore,
if a prime p divides the order of an element of OutR(G), then G need not have an element
of order p.

In Section 18, we shall give short and unified proofs of some “representation theorems”
appearing in [74, 72, 70]. The basic idea (18.1) behind these theorems is to generalize
the classical result that the group ring QH of an ordered group H has only trivial units.
Let ∆+(G) be the set of torsion elements in ∆(G) (a characteristic subgroup of G), and
let R be a ∆+(G)-adapted ring. Then we have the “representation theorem” (18.5): For
any u ∈ NU(RG)(G) with 1 ∈ supp(u), the support group 〈supp(u)〉 is a finite normal
subgroup of G. As a corollary, we obtain (18.6): If u ∈ NV(RG)(G) is such that un ∈ G
for some n ∈ N, then u ∈ G. Another corollary (18.7) is that if a prime p divides the
order of an element of the periodic group OutR(G), then ∆+(G) has an element of order
p.

From now on, R always denotes a ∆+(G)-adapted ring.

In Section 19, we shall use (18.5) to analyze in (19.1) and (19.3) the structure of
NV(RG)(G)/G (this is a torsion-free abelian group) and NV(RG)(G)/Z(V(RG))G.

We shall say that G has the normalizer property if for any G-adapted ring R, we have
OutR(G) = 1, or, equivalently, NU(RG)(G) = Z(U(RG))G. We will use (18.5) also to
verify the normalizer property for certain classes of groups. We would like to mention
that we almost completed our results when we obtained a preprint of work done by
Jespers, Juriaans, de Miranda and Rogerio [72]. We compare their main results with the
corresponding results we could obtain:

A group G has the normalizer property provided G belongs to one of the classes given
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in [72]:

• groups such that ∆+(G) is without
non-trivial 2-torsion; torsion groups
with normal Sylow 2-subgroup;

• locally nilpotent groups;

• FC-groups with [G,G] a p-group.

in Section 19:

(19.11) groups whose finite normal sub-
groups have a normal Sylow 2-
subgroup;

(19.12) groups whose finite normal sub-
groups are nilpotent;

(19.6) groups such that finite factor groups
of [G,G] are p-groups.

(Strictly speaking, only OutZ(G) = 1 was verified in [72].)
One of the reasons why we obtain larger classes is that we use for infinite groups the

proper version of the Ward–Coleman Lemma (see page 138): If G is finite, one usually
considers the action of some u ∈ NU (G) on a Sylow p-subgroup of G, whereas if G is
infinite, one has to consider the action on subgroups which are of finite p′-index in G
(see (19.4)). As an application, we obtain at once (19.6), without making any use of the
“representation theorem”!

We also give a technical lemma (19.5) which allows us to make full use of the “rep-
resentation theorem” (18.5). That way, the well known fact (19.14) that a finite group
G has the normalizer property provided G has a normal p-subgroup containing its own
centralizer in G, carries over to the infinite group case (19.15).

In Section 20 we briefly discuss, following [72], the question for when RG has “only
trivial central units”. We show (20.3) that if R is an integral domain of characteristic
zero in which no rational prime is invertible, then the phrase “RG possesses only trivial
central units” is justified, as it is independent from the underlying group basis. The proof
makes use of a result of Burn, saying that the support group of a central idempotent in
RG is a finite normal subgroup of G.

Burn’s result will also be used to give a positive answer (20.6) to a question of Mazur
[92, p. 438]: If G is a FC-group, and R is G-adapted, then any group basis of RG is also
a FC-group.

Chapter VI

Let U be the group of units of a group ring RG, where G is a periodic group, and R a
G-adapted ring, and let 1 E Z1(U) = Z(U) E Z2(U) E . . . be the upper central series of
U . Our main result (21.2) is that Z3(U) = Z2(U) ≤ Z(U)Z2(G); and if Z2(U) 6= Z(U),
then G is a so called Q∗-group (as defined in (21.1)).

Q∗-groups appear, possibly for the first time, in the paper [16] of Bovdi, who proved
that if G has a non-central subgroup which is normal in U(ZG), then G is a Q∗-group.

We would like to remark that our presentation stresses the fact that there is a strong
connection with the normalizer problem.
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First of all, it is easy to see that Z2(U) ≤ NU (G). Assume for a moment that G has the
normalizer property, that is, we have NU (G) = Z(U)G. Then Z2(U) = Z(U)(G∩Z2(U)).
Take any g ∈ G ∩ Z2(U) and u ∈ U . Then gu ∈ Z2(U) ≤ NU (G), and since gu has
finite order, it follows that gu ∈ G (see (23.2.4) or (18.6)). Thus G ∩ Z2(U) is a normal
subgroup of U , and our main result (21.2) follows from Bovdi’s results (see (24.4) and
(25.3)).

Set Z∞(U) =
⋃∞
n=1 Zn(U). Vitally for our strategy will be (23.3), where we establish

that Z∞(U) ≤ NU (G) and that elements of Z∞(U) commute with all unipotent elements
of U . Then, we will show in (23.5) that if some u ∈ NU (G) commutes with all unipotent
elements of ZG, then conj(u) induces a power automorphism of G, and if G is not a
Dedekind group, then [G, u] ≤ R(G), where R(G) denotes the intersection of all non-
normal subgroups of G. This allows us to involve two group-theoretical results. The
first one is Blackburn’s classification (22.2) of the finite groups G with R(G) 6= 1. This
classification will be used to prove (23.8): If G is not a Dedekind group, and if some
u ∈ NU (G) commutes with all unipotent elements of ZG, then u ∈ Z(U)G. The other
result, due to Cooper, is that a power automorphism of an arbitrary group is a central
automorphism, i.e., induces the identity on the central factor group. This will be used
in (23.6) to show that Z∞(U) = Z2(U). Altogether, we obtain in (23.9) that Z∞(U) ≤
Z(U)Z2(G).

Next, we briefly describe what is done in the individual sections.

In Section 21, we describe the main result and tell the story of this classification
theorem. In particular, we notice that we obtained our results independently from work
of Li and Parmenter, who obtained, using different methods, the result in the R = Z
case.

In Section 22, we use Blackburn’s classification to show in case by case analysis (22.4):
If a finite group G is not a Dedekind group and if the intersection R(G) of its non-normal
subgroups is nontrivial, then R(G) ≤ Z(G) and Outc(G) = 1.

The results from Section 23, where the central proposition (23.3) is established, are
already described above.

In order to keep the exposition self-contained, we give in Section 24 a short proof of
the above mentioned result of Bovdi.

In Section 25 we show how Bovdi’s result can be used to establish that Z∞(U) ≤
Z(U)Z2(G), following closely previous work of Arora, Hales and Passi. And, of course,
it now follows from Bovdi’s result that G is a Q∗-group provided that Z2(U) 6= Z(U).
We give a complete description (25.3) of Z∞(U) in the case that R is a ring of algebraic
integers in a totally real number field. On the other hand, if R is in a certain sense
“large enough”, then one should expect that Z2(U) = Z(U), as is shown in (25.4).
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Chapter VII

We will show that for a periodic group G, the second center Z2(U(ZG)) of the group of
units of ZG coincides with the finite conjugacy center ∆(U(ZG)) of U(ZG), i.e., with
the set of elements of U(ZG) having only finitely many conjugates under the action of
U(ZG).

To achieve this aim, we will use a theorem of Sehgal and Zassenhaus (26.1). Assume
that G is a finite group. If D is a block of QG which is a totally definite quaternion
algebra then the involution ∗ induced by G coincides with the “classical” involution on D
(27.3), so the Sehgal–Zassenhaus result implies that uu∗ is central in ZG for each element
u of ZG having only finitely many conjugates under the action of U(ZG).5 Thus if u is
a unit in ZG, then the usual “star-argument” shows that u ∈ NU(ZG)(G). A standard
argument now shows that this result is also valid for a periodic group G.6

Note that an element u of ZG which has only finitely many conjugates under the
action of U(ZG) commutes with all unipotent elements of ZG (23.1).

This is already sufficient information to deduce the equality ∆(U(ZG)) = Z2(U(ZG))
from known results; this is done in Section 27.7

Again, let G be finite, and let D be a block of QG which is a division ring. Let Z[G]
be the image of ZG in D. Using Amitsur’s classification of the finite groups that are
embeddable in the multiplicative group of a division ring, we do in Sections 28 and 29
the following. Let x ∈ Z[G]. If D is not a totally definite quaternion algebra, then x is
either central in Z[G] or has infinitely many conjugates under the action of U(ZG), and
in the latter case, we construct units in U(ZG) that can be used to produce infinitely
many different conjugates. If D is a totally definite quaternion algebra, we give explicitly
the group of units in Z[G] (which is of finite order over the center).

Chapter VIII

The odd analogue to Glauberman’s famous Z∗-theorem can be formulated as follows: If
x is an element of prime order p in a finite group G which commutes with none of its
other conjugates, then [x,G] ≤ Op′(G). It is well known that this theorem follows for
odd p easily from the classification of finite simple groups, but it would be useful and
instructive to find a direct proof.

Note that our assumption on the group element x is that its class sum Cx is contained

in x+ Tr
〈x〉
1 (ZG), where Tr

〈x〉
1 is the usual relative trace map.

Let χ be an irreducible character of G, let ωχ be the central character associated to
χ, and let ρ : G → Matn(O) be a representation of G affording χ, where O is the ring

5It can hardly be seen from the final version [71] of [70] that we first made this (simple) observation.
6Thus the given proof of [70, Theorem 2.3] readily extents to a proof of [70, Corollary 4.3].
7One might incorrectly conclude from the remarks in [71, p. 95] that we found this proof by a careful

analysis of [70].
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of integers of some finite extension field of the p-adic field Qp containing a primitive pth

root of unity ζ. Then ρ(x) + Tr
〈ρ(x)〉
1 (M) = ωχ(Cx) · Idn for some M ∈ Matn(O). Note

that ωχ(Cx) ∈ R = Zp[ζ].
Now let p = 3, and let C3 be a cyclic group of order 3. Dieterich has shown that RC3 is

of finite representation type, and that there are 9 isomorphism classes of indecomposable
RC3-lattices. From that, we easily derive (30.5): If X ∈ GLn(R) is of order 3, and if

for some M ∈ Matn(R) and some ω ∈ R, we have X + Tr
〈X〉
1 (M) ≡ ω · Idn (mod 3R),

then the trace of X is an integral multiple of a power of ζ.
We cannot suppose that O = R, but O is a free R-module of finite rank m. Thus we

have an R-linear embedding Matn(O) ↪→ Matnm(R), and we obtain (in the p = 3 case)
that χ(x) is an integral multiple of a power of ζ.

Let e0 be the central idempotent belonging to the principal block B0 of Z(3)G. It is well
known that e0Cx is a unit in B0. Robinson observed that if the irreducible characters
of G belonging to B0 satisfy the above condition, then ux = e0Cx(e0Cx−1)−1 is a central
unit of order 3 in B0, and if ux is a trivial unit, i.e., if ux = e0g for some g ∈ G, then
[x,G] ≤ O3′(G).

The latter observation links the problem whether [x,G] ≤ O3′(G) is true or not with
the “defect group conjugacy question” for the principal block (see [128, p. 267]): Even
some modest progress towards a positive answer to this question would imply that ux is
a trivial unit (see [115]).
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I. On the isomorphism problem for integral
group rings

Non vitae, sed scholae discimus.

Discamus igitur non scholae, sed vitae.

In this chapter, we describe some problems which occur naturally when dealing with
the isomorphism problem for integral group rings of finite groups G, and try to give at
least partial solutions. These problems concern local–global aspects in connection with
a generalization of Mazur’s observation from [92], as well as the local structure of the
known counterexample [57].

The integral group ring of the group G is by definition the group ring ZG. We will,
however, follow Graham Higman, who, in his thesis, called OG an “integral group ring”
whenever O is a ring of algebraic integers. The isomorphism problem then asks: Does
an isomorphism OX ∼= OY of integral group rings imply an isomorphism X ∼= Y of the
underlying (finite) groups?

1. Local–global considerations

Given a finite group G, a G-adapted ring R is an integral domain of characteristic zero
such that if G has an element of order p, then p is not invertible in R.

It is well known that RG, where R is a G-adapted ring, has some specific properties.
Among them, we mention that a nontrivial unit of finite order in RG has vanishing
1-coefficient; that RG has only trivial idempotents; that there is a class sum and a
normal subgroup correspondence for group bases of RG available. For details, we refer
the reader to [130] and [76, Chapters 2 and 3].

A basic example of a G-adapted ring is R = Zπ, the intersection of the localizations
Z(p) with p ranging over a finite set π of primes which contains the set π(G) of prime
divisors of |G|. (Note that ZπG is a semilocal ring.) Later on, we will see that it is more
convenient to perform calculations in RG rather than in ZG.

We could also call Zπ(G)G an integral group ring. With respect to the integral iso-
morphism problem, this is justified by the following proposition.

1.1 Proposition. Let G and H be finite groups, and set π = π(G). Then ZπG ∼= ZπH
implies that OG ∼= OH for some ring O of algebraic integers.

16
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Proof. We may assume that ZπG = ZπH. Then V = ZG and W = ZH · ZG (the set
of finite sums

∑
aibi with ai ∈ ZH, bi ∈ ZG) are right ZG-lattices (the action given by

right multiplication). As V ⊗Z Zp = ZpG = W ⊗Z Zp for all p ∈ π(G), the modules V
and W lie in the same genus. By [68, Satz 7], there is a ring O of algebraic integers such
that OG = V ⊗ZO and M := W ⊗ZO are isomorphic as OG-lattices; let m1 ∈M be the
image of 1 ∈ OG under such an isomorphism OG→M . Note that M is contained in the
algebra QG⊗Z O, that the operation of OG on M is just given by right multiplication,
and that OH ·M ⊆M . Now for any y ∈ OH ⊆M , there is a unique xy ∈ OG such that
ym1 = m1xy. It follows that the map OH → OG, defined by y 7→ xy, is an isomorphism
of rings. (The map is clearly an isomorphism of abelian groups, and for y, y ′ ∈ OH
we have (yy′)m1 = y(y′m1) = y(m1xy′) = (ym1)xy′ = (m1xy)xy′ = m1(xyxy′), so
xyy′ = xyxy′ .) ¤

In this context, we may ask:

1.2 Problem. 1. Does the converse hold, i.e., does OG ∼= OH (for some ring O of
algebraic integers) imply that ZπG ∼= ZπH?

2. Let O be a ring of algebraic integers. If φ is an automorphism of OG, is there an
automorphism ψ of ZπG, agreeing with φ on CG up to an inner automorphism?

3. If φ is an automorphism of ZπG, is there an automorphism ψ of ZG, agreeing with
φ on QG up to an inner automorphism?

4. If ZπG ∼= ZπH, does it follow that ZG ∼= ZH?

We could not answer the first two questions.

We will show in Section 12 that in general, Problem 1.2(3) has a negative answer.
Nevertheless, it might be interesting to note that a positive answer to Problem 1.2(3)
would have given a positive answer to Problem 1.2(4), by Kimmerle’sG×G-trick (see [81,
Lemma 5.3]), which reduces questions about isomorphisms to questions about automor-
phisms. Briefly, the argument goes as follows: An isomorphism ZπG ∼= ZπH induces
an automorphism φ of Zπ(G×H) mapping ZπG to ZπH and conversely, and if ψ is an
automorphism of Z(G×H) agreeing with φ on QG up to an inner automorphism, then
φ maps the induced augmentation ideal of H onto the induced augmentation ideal of G,
thus inducing an isomorphism ZG ∼= ZH.

The next proposition is well known, and puts Problem 1.2(4) in another context. (If
the module categories are equivalent, are the group rings isomorphic?) One direction is
Corollary 1.2.6 from [119], where the converse is stated without proof on p. 609. For the
readers convenience, we include a complete proof.

1.3 Proposition. Let G, H be finite groups and set π = π(G). Then ZπG ∼= ZπH if
and only if the category of ZG-modules is equivalent to that of ZH-modules.
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Proof. Any equivalence of the module categories (as exhibited by an invertible bimodule)
produces a corresponding equivalence over the enlarged ring Zπ, and such an equivalence
implies, by Swan’s theorem, that ZπG ∼= ZπH (see [119, Corollary 1.2.6]).

Conversely, assume that ZπG = ZπH. Set M = ZG, and consider V := QM = QG
as (QG,QH)-bimodule, the action of G and H given, respectively, by left and right
multiplication. We will show that the restricted module V |(ZG,ZH) contains an invertible
bimodule N (and then −⊗ZGN provides an equivalence of the categories of ZG- and ZH-
modules). We will construct, for each prime p, an invertible (Z(p)G,Z(p)H)-bimodule
X(p) inside V |(Z(p)G,Z(p)H) such that X(p) = M(p) = Z(p)G almost everywhere. Then it

follows from [106, (4.22)] that N :=
⋂
pX(p) is a full Z-lattice in QG, and N(p) = X(p)

for all primes p. Thus N will be an invertible (ZG,ZH)-bimodule since invertibility is a
“local” property (see [28, (35.4)]).

Let the set ω consist of those primes p such that ZG * Z(p)H or ZH * Z(p)G holds;
note that ω is a finite set. Let p be a prime. If p 6∈ ω, then Z(p)G = Z(p)H and we set
X(p) = Z(p)G. If p ∈ ω, we necessarily have p 6∈ π(G) = π(H), so Z(p)G and Z(p)H are
maximal orders in QG, and are therefore conjugate: u−1

p (Z(p)G)up = Z(p)H for some
unit up of QG (see [106, (41.1), (10.5), (18.7)]). Then X(p) := (Z(p)G)up is a submodule
of V |(Z(p)G,Z(p)H), which is invertible since X(p) ∼= Z(p)G as left Z(p)G-modules and

EndZ(p)G(X(p)) ∼= u−1
p (Z(p)G)up = Z(p)H. ¤

Scott [127, Section 2] found a way to approach the construction of group ring auto-
morphisms and isomorphisms in the semilocal case that avoids any explicit use of the
theory of orders, though integral representation theory and Fröhlich’s theory [36] are
still important in the background.

A basic observation, already noted in [117], is given in the next proposition. We in-
clude a proof of it since the reader may wish to recall the construction when reading
Chapter III. We shall use some standard results concerning the interpretation of auto-
morphisms as invertible bimodules (which can be found in [106, Section 37], [27, § 55A]
or [119, Section 1]).

Let R be a Dedekind ring with quotient field K of characteristic 0. Let P range over
the prime ideals of R, and let RP denote localization at P . By a semilocalization at a
finite set π of primes in R, we just mean the intersection Rπ of the localizations of R at
the primes in π. (Note that Rπ is a semilocal Dedekind ring, that is, a Dedekind ring
with only a finite number of maximal ideals.)

1.4 Proposition. Assume that there are given automorphisms αP of RPG which agree
on KG up to central automorphisms. Then there is an invertible (RG,RG)-bimodule M
such that for any semilocalization Rπ, we have Rπ⊗RM ∼= 1(RπG)απ for some automor-
phism απ ∈ Aut(RπG) which differs on RPG from αP only by an inner automorphism,
for all P ∈ π. The bimodule M is of the form M = (RG)ν for some idele ν of KG.
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Proof. Fix some prime ideal P0 of R and let α be the automorphism αP0 induces on KG.
By the Skolem–Noether theorem, there are units νP of KG such that α−1

P α = conj(νP )
for all P . Moreover, the νP ’s can be chosen such that νP ∈ (RPG)× for all but a finite
number of P ’s (see Proposition 5.2). Then ν = (νP ) is an idele of KG (relative to R), and
M = (RG)ν :=

⋂
P RPG·νP is a full R-lattice in KG with MP = RPG·νP for each P (see

[106, (4.22)]). Each RPG·νP can be viewed as a submodule of the (RPG,RPG)-bimodule

1(KG)α. Then M ≤ 1(KG)α as (RG,RG)-bimodules, and MP = RPG·νP ∼= 1(RPG)αP .
The bimodule M is invertible since invertibility is a “local” property (see [28, (35.4)]).

Note that Rπ ⊗R M as RπG-module is free from one side since this holds locally
(see [106, Exercise 18.3]). Thus Rπ ⊗R M ∼= 1(RπG)απ for some automorphism απ ∈
Aut(RπG), and localizing further shows that απ differs on RPG from αP only by an
inner automorphism, for all P ∈ π. ¤

Thus automorphisms of semilocal group rings can be specified ‘a prime at a time’, as
described in [119, (1.2.9)]:

1.5 Proposition. Let R be a semilocal Dedekind ring. Assume that there are given
automorphisms αP of RPG which agree on KG up to central automorphisms. Then there
is an automorphism of RG which agrees with each αP up to an inner automorphism of
RPG. ¤

Now let G and H be finite groups, and let R be a semilocal Dedekind ring. If given
local isomorphisms RPG → RPH fit together rationally, that is, if each two agree on
KG up to a central automorphism, then there is an isomorphism RG → RH which
differs from each local isomorphism only by an inner automorphism.

This result can be obtained by making some minor modifications in the proof of
Proposition 1.4. We will, however, take the opportunity to show how it can be derived
from Proposition 1.4 using Kimmerle’s G×G-trick.

1.6 Proposition. Let R be a semilocal Dedekind ring. For each prime ideal P of R, let
βP : RPG −→ RPH be an augmentation-preserving ring isomorphism. Each βP induces
an isomorphism β̂P : KG→ KH. Assume that the automorphisms β̂P · β̂−1

Q of KG are
inner automorphisms, for all prime ideals P , Q of R. Then there is an isomorphism
β : RG→ RH such that β · β−1

P induces an inner automorphism of RPG for all P .

Proof. Note that for any coefficient ring S, we may identify S(G×H) with SG⊗S SH.

For each P , let αP : RP (G × H) → RP (G × H) be the “flip” induced by βP , i.e.,
(x⊗y)αP = yβ−1

P ⊗xβP for all x ∈ RPG, y ∈ RPH. Note that αP has order 2, and that

(x ⊗ y)α̂P α̂Q = xβ̂P β̂
−1
Q ⊗ yβ̂−1

P β̂Q for all P , Q and x ∈ KG, y ∈ KH. It follows from
Proposition 1.5 that there is an automorphism α : R(G×H) → R(G×H) agreeing with
each αP up to an inner automorphism of RP (G×H). In particular, α maps the trace of
H (the sum of the elements of H) to the trace of G. The annihilators of these elements
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are the induced augmentation ideals IH = I(H)(G×H) and IG = I(G)(G×H), so α maps
IH onto IG and induces an isomorphism β : RG ∼= R(G×H)/IH → R(G×H)/IG ∼= RH,
and it is easy to see that β has the desired property. ¤

Dade [30] constructed non-isomorphic finite groups G, H with isomorphic group rings
over each field. It is also true that Z(p)G ∼= Z(p)H for these groups, for all primes p.
However, such isomorphisms do not fit together rationally.

Based on the known counterexample [57], we give an example (in Section 3) where local
isomorphisms fit together rationally. We do not know, however, whether the integral
group rings are isomorphic.

2. Mazur’s construction adapted to finite groups

A finite group G is embedded in the group U(ZG) of units of its integral group ring
ZG, and the normalizer NU(ZG)(G) of G therein has been the subject of much research
in recent years [66, 122, 91, 54, 61, 58, 57, 72]. Its study includes the study of the center
Z(U(ZG)), which is already a very difficult and broad subject. Moreover, there is an ap-
parently “small” quotient of the normalizer, naturally isomorphic to a certain subgroup
of the outer automorphism group Out(G), which measures the extent to which there are
“non-obvious” units normalizing G. (In Chapter V, this quotient will be studied in some
detail for infinite groups G.)

To be more precise, we denote by AutZ(G) the group of automorphisms of G which in-
duce inner automorphisms of ZG. Then the quotient under consideration is OutZ(G) =
AutZ(G)/Inn(G) — note that OutZ(G) ∼= NU(ZG)(G)/G · Z(U(ZG)). Interest in that
group arose from the fact that a finite group G with OutZ(G) 6= 1 gives rise to non-
isomorphic (infinite polycyclic) groups X = G × Z and Y with ZX ∼= ZY . This obser-
vation of Mazur [92] has been refined in [54, 57], where in addition it was shown that
there are actually finite groups G with OutZ(G) 6= 1. We will discuss this concept in
more detail, including local–global aspects.

Multiplicative 1-cocycles

Let R be a commutative ring and Λ an R-order on which a finite group H acts via an
R-algebra homomorphism ι : RH → Λ (i.e., λh = λhι for all h ∈ H). A multiplicative
1-cocycle on H with values in Λ is a map µ : H → Λ satisfying µ(gh) = µ(g)h · µ(h) for
all g, h ∈ H. Such a µ is called a 1-coboundary provided there exists a unit u ∈ Λ× such
that µ(h) = u−h · u for all h ∈ H.

For any automorphism γ ∈ Aut(G), and u ∈ RG, we define the norm Nγ(u) of u with
respect to γ by

Nγ(u) := uγn−1 · . . . · uγ · u, where n is the order of γ.
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If Nγ(u) = 1, then µ(γ) = u defines a (multiplicative) 1-cocycle µ : 〈γ〉 → RG (and
conversely). Note that if Nγ(u) is a unit of finite order, there is a cyclic group 〈c〉 of
finite order, acting via γ on RG (i.e., xc = xγ for all x ∈ RG), such that µ(c) = u defines
a 1-cocycle µ : 〈c〉 → RG.

For the rest of this section, let R denote a G-adapted ring. We are interested in
cocycles 〈c〉 → RG with values in NU(RG)(G).

2.1 Problem. Give examples of triples (G, u, γ), where G is a finite group, the unit
u ∈ NU(RG)(G) induces a non-inner automorphism α = conj(u) of G of order m (say),
and γ ∈ Aut(G) such that one of the following holds.

(P1) Nγ(u) is of finite order.

(P2) Nγ(u) is of finite order, and γ̄ and ᾱγ̄ are not conjugate in Out(G).

(P3) Nγ(um) is of finite order.

2.2 Remark. 1. (P1), and in particular (P2), are very difficult problems. If (P2) is
solved, it is possible to construct non-isomorphic groups X and Y with isomorphic
group rings, RX ∼= RY (cf. [54, Proposition 5.6.1], and Proposition 2.3 below). If
G and γ have odd order, the groups X and Y may be chosen to have odd order,
too.

2. Problem (P2) is solved with G of even order in [54,57].

3. Problem (P3) seems to be more accessible. At least we do know how cocycles with
values in the central units look like (some simple examples are given below).

4. A connection between (P1) and (P3) is as follows. Assume that (P3) is solved,
and that the uγi, i ∈ N, commute pairwise (this happens, for example, when γ
normalizes 〈α〉). Then Nγ(u) has finite order and (P1) is solved. However, note
that if γ acts coprime on 〈α〉, we will not get a solution of (P2) in that way.

5. Given G, and u ∈ NU(RG)(G) inducing a non-inner automorphism α = conj(u)
of G of order m, the central unit um may be calculated in the form cm for some
central unit c of KG, where K is some field containing R. The question, then, is
whether there exists a central unit z of RG and γ ∈ Aut(G) so that Nγ(cz) is of
finite order and γ acts on 〈α〉 (for then we could replace u by uz, thus giving a
solution of (P1)). This might turn out to be a practicable approach.

The next result is Mazur’s observation [92] adapted to finite groups.

2.3 Proposition. Let G be a finite group, γ ∈ Aut(G) and u ∈ NU(RG)(G) such that
Nγ(u) is of finite order. Set α = conj(u) ∈ Aut(G) and assume further that γ̄ and ᾱγ̄
are not conjugate in Out(G). Then there are non-isomorphic groups X and Y such that
RX ∼= RY , and these groups are semidirect products (G × Cr) o Cn, where n is the
product of the orders of γ and Nγ(u), and r is a prime with (r, n|G|) = 1 such that Cn
acts faithfully on Cr.
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Proof. To begin with, note that for any group K, κ ∈ Aut(K) of order r, and a cyclic
group 〈x〉 whose order is divisible by r, we may define the semidirect product S = Ko〈x〉
with x acting via κ, i.e., kx = kκ for all k ∈ K. In this case, we also write S = Koκ 〈x〉.

Let n be the product of the orders of γ and Nγ(u). If m denotes the order of γ, then
(γα)m = conj(Nγ(u)), so γn = id and (γα)n = id. Let 〈c〉 be a cyclic group of order
n. Choose a cyclic group A of prime order r with (r, n|G|) = 1 such that n divides
r− 1 (what can be done by a special case of Dirichlet’s theorem on primes in arithmetic
progressions), and let 〈µ〉 be an automorphism of A of order n. The groups X and Y
are given as

X = (G×A) o(γ×µ) 〈c〉 and Y = (G×A) o(γα×µ) 〈c〉.
Assume that X ∼= Y , and fix an isomorphism φ : X → Y . Clearly Aφ = A, as A is a
normal Hall subgroup of X and Y . It follows that (GA)φ = CX(A)φ = CY (A) = GA,
so Gφ = G. Note that the assumption on A and µ implies that there are x ∈ G and
a ∈ A such that cφ = xac. Thus for all g ∈ G,

g(γ · φ) = (gc)φ = (gφ)(cφ) = (gφ · conj(x))c = g(φ · conj(x) · α · γ),

so φ|−1
G · γ · φ|G = conj(x) · α · γ, contradicting the assumption that γ̄ and ᾱγ̄ are not

conjugate in Out(G). Hence X and Y are non-isomorphic.
Note that (cu)m = cmNγ(u) in RX (where m is the order of γ), so cu ∈ RX has order

n, and it is easy to see that the subgroup U := 〈G,M, cu〉 of U(RX) is isomorphic to Y ,
and that RU = RX. This proves RX ∼= RY . ¤

2.4 Remark. 1. It should be evident that in the previous proof, the subgroup A
of X is introduced only for “technical reasons”. Instead, one could also increase
the order of c to ensure that an isomorphism X → Y (if there is any) fixes G.
Proceeding this way would be more closely to Mazur’s construction for infinite
groups.

2. It appears to be difficult to verify the non-conjugacy of γ̄ and ᾱγ̄ in a concrete
situation. To prove that X and Y are non-isomorphic it is probably better to use
an obstruction theory as outlined in [80].

3. The obstruction theory just mentioned also gives information about how the group
X should look like. As an example, assume that X = Q o P is a semidirect
product of a normal Sylow q-subgroup Q and a Sylow p-subgroup P . Let R =
Zπ(X) and RX = RY . It is known that the images of X and Y in RP and
in RX/Op(X) are conjugate by rational units u and v, respectively, which gives
rise to a class-preserving automorphism δ := conj(ūv̄−1) ∈ Aut(P/Op(X)). The
groups X and Y are isomorphic if and only if δ can be written as the product of
two automorphisms, one induced from an automorphism of RP , the other induced
from an automorphism of RX/Op(X). In particular, if Outc(P/Op(X)) = 1, then
X ∼= Y .
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Cocycles with values in the central units

We give some examples of cocycles with values in commutative group rings. The first
example was used to construct the counterexample to the isomorphism problem for
integral group rings.

2.5 Example. (Cf. [57, Section 4].) Let G = 〈w〉 be a cyclic group of order 8, and let
γ be the automorphism of G of order 2 defined by wγ = w5. Then for the unit

ν =
1 + w4

2
+

1 − w4

2

(
3 + 2

(
w + w−1

))
∈ U(ZG),

we have Nγ(ν) = 1, which simply means that γ inverts ν. For each n ≥ 2, there are
prime powers pa and rb so that νn ≡ 1 mod pa and νn ≡ w4 mod rb. For some values
of n, these prime powers are listed in the following table.

n 2 3 4 5 6 7 8 . . . 24

pa 2 7 22, 3 41 2, 5, 7 239 23, 3, 17 . . . 23, 32, 5, 7, 11, 17, 1153

rb 3 5 17 29 32, 11 132 577 . . . 97, 577, 13729

We remark that the prime 97 is the smallest prime r such that there is n ∈ N with
νn ≡ 1 mod 8 and νn ≡ w4 mod r, and that this is the reason why the groups given
in [57, Theorem B] have order divisible by 97.

Next, we present an example where G and γ are of odd order. We shall write εG =
1
|G|
∑

g∈G g for the trivial idempotent and ηG = 1 − εG.

2.6 Example. Let G = 〈x〉 be a cyclic group of order 7, and let γ be the automorphism
of G of order 3 defined by xγ = x2. Let ζ be a primitive 7th root of unity. Then
a = −1 − ζ − ζ6 is a unit in Z[ζ] with a21 ≡ 1 mod 7. Hence

u = εG + ηG(−1 − x− x6)21

= −6910567 − 4308668(x+ x6) + 1537746(x2 + x5) + 6226206(x3 + x4)

is a unit in ZG with Nγ(u) = 1.

Given any abelian group G of odd order, and distinct primes p and r, a unit u of ZG
cannot satisfy simultaneously the congruences u ≡ 1 mod p and u ≡ g mod r for some
1 6= g ∈ G. (This follows from Proposition 19.2; the same might be true for arbitrary G
of odd order.) This is the reason why in the next examples, the coefficient ring is Zπ(G).

2.7 Remark. Let 〈x〉 be a cyclic group of order n, and let a, b ∈ Z with (a, b) = 1.
Then u := −a+ bx is a unit in Zπ(ab)〈x〉 (where π(ab) denotes the set of prime divisors
of ab), with inverse

u−1 =
1

−an + bn

n−1∑

i=0

aibn−1−ixi.
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2.8 Example. Keep the notation from Example 2.6. Let u = 7x5 − 6. Then u ≡ 1
mod 7 and u ≡ x5 mod 3. It follows that u is a unit in Z{3,7}G. Hence

v = εG + ηGNγ(u−1)u3

is a unit in Z{3,7}G with Nγ(v) = 1. Explicitly, we have

v =
1

543607
(−82368 + 103831x+ 559482x2 − 106680x3

− 522144x4 + 101346x5 + 490140x6)

v−1 =
1

5436072
(−88071245394 + 350666925924x− 308485501128x2

+ 275342849922x3 − 247018545396x4

+ 214383470616x5 + 98690615905x6).

Note that Nγ(x) = 1. It follows that v ≡ x mod 3 and v ≡ 1 mod 7.

In the final example, the action of γ on G is not coprime (cf. Remark 2.2(4)).

2.9 Example. Let G = 〈x, y : x9 = y3 = [x, y] = 1〉 ∼= C9 × C3, and let γ be the au-
tomorphism of G of order 3 defined by xγ = xy and yγ = yx6. Then Nγ(x) = 1. Let
u = −5x + 6. Then u ≡ 1 mod 5 and u ≡ x mod 3. It follows that u is a unit in
Z{3,5}G. Set v = Nγ(u−1) · u3. By construction, Nγ(v) = 1. We have v ≡ x3 mod 3,
and v ≡ Nγ(x−1)Nγ(u3) ≡ 1 mod 5.

Local–global aspect

Let G be a finite group, and let R be a semilocal Dedekind ring with quotient field K of
characteristic 0. Assume that there are α, γ ∈ Aut(G) such that for each prime ideal P
of R, there is a local unit uP ∈ U(RPG) such that α = conj(uP ), and Nγ(uP ) is of finite
order. Let L be the collection of the uP ’s.

Let 〈c〉 be a cyclic group whose order is divisible by the product of the orders of γ and
the Nγ(uP )’s, and let c act on KG via γ. Then there are 1-cocycles δP,Q : 〈c〉 → Z(KG),
defined by δP,Q(c) = u−1

Q uP , for all prime ideals P,Q.

This is easy to see, but we will demonstrate it anyway. Set v = uP , w = uQ, and write
xγ instead of xγ. If m denotes the order of γ, then using the centrality of δP,Q(c),

δP,Q(cm) = w−γm−1
vγ

m−1 · · ·w−γ2
vγ

2
(w−γvγ)w−1v

= w−γm−1
vγ

m−1 · · · (w−γ2
vγ

2
)w−1w−γvγv

= w−γm−1
vγ

m−1 · · ·w−1w−γw−γ2
vγ

2
vγv
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...

= Nγ(w)−1Nγ(v).

We have conj(Nγ(v)) = (γα)m = conj(Nγ(w)), so the elements Nγ(v) and Nγ(w) com-
mute. Let n be the product of their orders. Since cm acts trivial on KG, it follows that
δP,Q(cmn) = Nγ(w)−nNγ(v)n = 1.

If the 1-cocycles δP,Q are all 1-coboundaries, we will call (γ, L) a local system of 1-
cocycles.

2.10 Proposition. With notation as above, assume that γ̄ and ᾱγ̄ are not conjugate in
Out(G), and that (γ, L) is a local system of 1-cocycles. Then there are non-isomorphic
groups X and Y involving G, as described in Proposition 2.3, such that RX ∼= RY .

Proof. Define groups X and Y as in Proposition 2.3; again there are isomorphisms φ(P ) :
RPX → RPY , defined by xφ(P ) = x for all x ∈ G×A and cφ(P ) = cuP . By assumption,
there are z(P,Q) ∈ Z(KG) such that δP,Q(c) = z(P,Q)−cz(P,Q) for all P,Q. Therefore
φ(P ) · φ(Q)−1, considered as automorphism of KX, maps c to c · δP,Q(c) = cz(P,Q), i.e.,
is given by conjugation with the unit z(P,Q). Hence RX ∼= RY by Proposition 1.6. ¤

3. Semilocal analysis of the counterexample

In [57], two non-isomorphic groups X and Y , both of order 221 · 9728, have been con-
structed which have isomorphic integral group rings, ZX = ZY . Having these groups at
hand, we pursue the way prescribed by Proposition 1.6 to show that the group rings are
semilocally isomorphic. This leads to new insight into the structure of these groups.

Actually, this allows us to make a small modification: We will replace the Sylow
97-subgroup by a Sylow 17-subgroup, without changing the structure of the groups.

3.1 Theorem. There are non-isomorphic groups X and Y of order 220 ·1728 which have
isomorphic semilocal group rings, ZπX ∼= ZπY , where π = {2, 17}.

The proof will occupy the rest of this section.

The group X

The group X is a semidirect product X = QoP , where Q is a normal Sylow 17-subgroup
and P is a Sylow 2-subgroup of X, precisely

P = (〈u : u32〉 × 〈v : v4〉 × 〈w : w8〉) o (〈a : a64〉 × 〈b : b2〉 × 〈c : c8〉),

with the action of a given by

ua = u, va = u16v and wa = u4w,
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and xb = x−1, xc = x5 for all x ∈ 〈u, v, w〉. (Compared with the counterexample [57,
Theorem B], only the order of a has changed.)

The normal Sylow 17-subgroup Q of X and the action of P on Q is defined in total
analogy to the counterexample [57, Theorem B], but anyway, we will repeat it.

The group Q is the direct product of normal subgroups N and M of X, defined as

follows. Let D = (〈d3〉 × 〈d2〉) o 〈d1〉 ∼= C
(2)
17 oC17 with dd12 = d3d2 and [d3, d1] = 1, and

let R = D(2) (the direct product of two copies of D). Then N = R(4). The group M is
the additive group of the finite field F174 .

The largest normal 2-subgroup of X is O2(X) = CP (Q) = 〈u, v, c2〉. We have

P̄ = P/CP (Q) = 〈ā〉 × 〈w̄, b̄, c̄〉 = 〈ā〉 × C8 o (C2 × C2)︸ ︷︷ ︸
Wall’s Group (1947)

.

The subgroup 〈w, b, c〉 of P centralizes M , and a operates on M via multiplication with
a (fixed) primitive 64th root of unity of F174 .

An automorphism δ ∈ Aut(D) is given by

δ :





d1 7→ d3
2

d2 7→ d1

d3 7→ d−3
3

.

From 38 ≡ −1 mod 17 it follows that

δ8 :





d1 7→ d34

1

d2 7→ d34

2

d3 7→ d−1
3

and δ16 :





d1 7→ d−1
1

d2 7→ d−1
2

d3 7→ d3

,

so δ has order 32, and an automorphism ρ ∈ Aut(R) of order 64 is defined by (x, y)ρ =
(y, xδ) for all x, y ∈ D.

The operation of P on N is defined by

(r1, r2, r3, r4)a = (r1ρ, r2ρ, r3ρ, r4ρ),

(r1, r2, r3, r4)w = (r4ρ
64, r1, r2, r3),

(r1, r2, r3, r4)b = (r1, r4ρ
64, r3ρ

64, r2ρ
64),

(r1, r2, r3, r4)c = (r1, r2ρ
64, r3, r4ρ

64),

for all (r1, . . . , r4) ∈ N .

The group X is now completely fixed, and can be illustrated as follows.
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Q = C
(4)
17 ×

(
R

(2)
173 ×R

(2)
173 ×R

(2)
173 ×R

(2)
173

)

(
〈a〉 × 〈b〉 × 〈c〉

)
n
(
〈w〉︸ ︷︷ ︸×〈v〉 × 〈u〉

)

acts via
“monomial” matrices

A
A
AA

¢
¢
¢¢

acts
diagonally

acts
faithfully

By construction, we have that

• conjugation by a16 induces fixed-point free automorphisms of Z(Q) and of Q/Z(Q),

• conjugation by a32 induces the identity on Z(N),

• EndH(N/Z(N)) ∼= Mat4(F17), where H = 〈w, b, c〉.
Using these facts, the following crucial properties of X are proved in complete analogy

to [57, Claims 2–5]:

• The group-theoretical obstruction (see Lemma 16.14):

A class-preserving automorphism σ of P̄ is defined by c̄ 7→ w̄4 · c̄, and w̄, b̄, ā stay
fixed. Note that

{ḡ−1(ḡσ) | ḡ ∈ P̄} = {1, w̄4}.

The group-theoretical obstruction ensures that a certain twist of X involving σ
(see below) really yields another group Y . It can be depicted as follows:

Qo P̄

X

? ?

-

- P̄

P

Autom. α

Autom. β

induced
Autom. ᾱ, β̄

⇒(pullback) ᾱβ̄ 6= σ

We remark that for this reason, the group Q has the additional factor M = F174 .

• The inertia group:

We have ηQ := 1 − 1
|Q|
∑

g∈Q g = e+ f with orthogonal central idempotents e and
f of QQ. The inertia group of e in X is

T(e) = Q〈u, v, w, a2, b, c〉 (which is of index 2 in X; we have ea = f).

Here, the important fact is that the subgroup 〈w4〉, which measures the ‘difference’
between the elements ḡ and ḡσ, centralizes T(e) ∩ P .
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The group Y

The group Y will be a twisted version of X,

Qo P̄

Y

? ?

-

- P̄ - P̄
σ

P

(pullback)

We search for a nice embedding

Y ↪→ Z
[

1
2

]
X.

There are central subgroups of X:

Z1 := [w4, P ] = 〈u16〉 ≤ Z(X),

Z2 := [v · w4, P ] = 〈v2〉 ≤ Z(X),

Z3 := [u8v · w4, P ] = 〈u16v2〉 ≤ Z(X).

Note that
〈Zi | i = 1, 2, 3〉 ∼= C2 × C2.

In particular, X has no faithful irreducible complex representation! In fact, we will
construct Y as a subgroup of V(Z

[
1
2

]
X) such that Y agrees with X on each block of

CX.
Further on, note that the action of w4 on P can be compensated, on each block of

Z
[

1
2

]
X, by group elements acting trivially on Q.

There are automorphisms σi of the factor groups P/Zi, defined by

σ1 : c 7→ w4 · c,
σ2 : c 7→ v · w4 · c,
σ3 : c 7→ u8v · w4 · c,

and elements of the quotient of

S = 〈u, v, w, a, b〉

by Zi stay fixed. (We hope that the reader is not disturbed by the somewhat sloppy
notation.)

Note that
X = QS o 〈c〉.
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In Z
[

1
2

]
〈u16, v2〉, there is an orthogonal central decomposition

1 = e1 + e2 + e3,

with Zi in the kernel of eiQX. Set

t = e1 + e2 · v + e3 · u8v, and d = t · c.

Then

xd = xc, (x ∈ Q),

sd = sw
4c (s ∈ S).

Thus,
Y = QS o 〈d〉

is a subgroup of V(Z
[

1
2

]
X) of the same order as X.

There are isomorphisms

α : S o 〈d〉 → S o 〈c〉 = P,

d 7→ w4c , s in S stay fixed,

and

β : Y/O2(Y ) → X/O2(X),

d 7→ c , y in QS stay fixed.

It follows that the group Y is the twisted pullback:

Qo P̄

Y

? ?

- -S o 〈d〉

- P̄ - P̄
σ

P

(pullback)
via β

α

Thus, by the group-theoretical obstruction, the groups X and Y are non-isomorphic.

Isomorphism of semilocal group rings

We wish to prove
ZπX ∼= ZπY, π = π(X) = {2, 17}.

By construction,
Z
[

1
2

]
X = Z

[
1
2

]
Y.
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According to Proposition 1.6, we have to find local isomorphisms which fit together
rationally. Thus, we have to prove existence of an isomorphism

φ : RX → RY, R = Z
[

1
17

]
,

which induces a central automorphism of QX.
We will define φ piecewise, using the decompositions

RX = εQRX ⊕ ηQRX,

RY = εQRY ⊕ ηQRY,

where
εQ = 1

|Q|
∑

g∈Q
g, ηQ = 1 − εQ.

Choose e1 = 1+u16

2 , so that

e2 = (1 − e1)1+v2

2 , e3 = (1 − e1)1+u16v2

2 .

The isomorphism of Sylow 2-subgroups

α−1 : P = S o 〈c〉 → S o 〈d〉,
c 7→ w4d , s in S stay fixed,

extends to an isomorphism
φ1 : εQRX → εQRY,

agreeing on eiεQRX with the group automorphism σi. Thus, the following lemma tells
us that φ1 induces a central automorphism of εQQX.

3.2 Lemma. (i) σ1 is a class-preserving automorphism of G/Z1;

(ii) σ2 fixes each irreducible character which does not contain Z1 in its kernel;

(iii) σ3 fixes each irreducible character which does not contain Z1 in its kernel.

Proof. (i) It suffices to prove that for all x ∈ 〈a, b〉c, there is k ∈ 〈u, v, w〉 with
xσ1 = xk. This follows from

aw = u−4a, cu
27

= u4c and (bc)u
4

= u8bc,

which implies that for all i ∈ N,

(aic)wu
27i

= ai(w4c) = (aic)σ1,

(aibc)w
2u4i

= aib(w4c) = (aibc)σ1.
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(ii) Let χ ∈ Irr(P/〈v2〉) with u16 6∈ ker(χ). Let ψ be an irreducible constituent of
χ|〈u〉. The inertia group of ψ is T(ψ) = 〈u, v, w, a〉 E P/〈v2〉. Since σ2 leaves each
element of T(ψ) fixed, χ(g) = χ(gσ2) = χσ2(g) for all g ∈ T(ψ). If g ∈ G \ T(ψ),
then χ(g) = χ(0) = χ(gσ2) as χ is induced from a character of the normal subgroup
T(ψ) (see Proposition 8.1).

(iii) This is proved in complete analogy to (ii). ¤

To construct an isomorphism

φ2 : ηQRX → ηQRY,

we invoke (elementary) Clifford theory. Recall that

ηQ = e+ f

with orthogonal central idempotents e, f of QQ, so that the inertia groups (with respect
to X and to Y !) are

TX(e) = Q〈u, v, w, a2, b〉 o 〈c〉,
TY (e) = Q〈u, v, w, a2, b〉 o 〈d〉.

Recall that

w4 centralizes TX(e) ∩ P ,
sd = sw

4c for s ∈ 〈u, v, w, a, b〉.

Thus we have an isomorphism of inertia groups:

γ : TX(e) → TY (e),

c 7→ d , x ∈ 〈u, v, w, a2, b〉 stay fixed.

Now Clifford theory yields an isomorphism

θX : ηQRX
∼=−−→ Mat2(eRTX(e)), m 7→

[
eme emae

ea−1me ea−1mae

]
,

and similarly for ηQRY . Thus we have a commutative diagram

ηQRX
φ2 - ηQRY

Mat2(eRTX(e))

θX
? γ- Mat2(eRTY (e))

θY
?
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The isomorphism φ2 agrees on eiηQQX with a group automorphism ρi of TX(e)/Zi.
These automorphisms are

ρ1 = id,

ρ2 :

{
c 7→ v · c
x ∈ Q〈u, v, w, a2, b〉 stay fixed

,

ρ3 :

{
c 7→ u8v · c
x ∈ Q〈u, v, w, a2, b〉 stay fixed

.

The automorphisms ρ2 and ρ3 fix each irreducible complex character which does not
contain Z1 in its kernel (this is proved in the very same way as Lemma 3.2 is proved).
Thus, φ2 induces a central automorphism on ηQQX = Mat2(eQT(e)).

Together, the isomorphism φ = φ1 ⊕ φ2 induces a central automorphism on QX, and
Theorem 3.1 is proved.

3.3 Remark. For this semilocal counterexample, we have confirmed Scott’s inertial
group picture. In [127], Scott wrote “... my picture in the solvable case of a group ring
automorphism is a collection of group isomorphisms on inertial groups that fit together
rationally. ... What does this general picture say about the isomorphism problem itself?
... it just says that all group ring isomorphisms should be obtained from some system
of group isomorphisms on related groups, usually smaller. There is a prospect for an
elegant theory here, even if the isomorphism problem ... has a negative answer.”

3.4 Problem. Does the groups of Theorem 3.1 yield a global counterexample, i.e., does
ZX ∼= ZY hold?

3.5 Remark. We briefly point out the connection with the normalizer problem (cf. [57,
Section 1]). Recall that for t = e1 + e2 · v + e3 · u8v,

xt = x (x ∈ Q), st = sw
4

(s ∈ S), (∗)

and that
Y = Go 〈tc〉, G = QS.

Thus
t ∈ NV(QG)(G).

If, by some “accident”, this becomes

t ∈ NV(ZG)(G),

still satisfying (∗) and the cocycle condition (tc)8 = 1, we would conclude that ZX ∼= ZY .
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4. A group-theoretical problem related to the isomorphism

problem

Motivated by the semilocal analysis of the counterexample [57] in the previous section,
we present the following example (which was found during an interactive Maple session).

4.1 Example. For any prime p, there is a p-group P having the following properties.
There is Cp × Cp ∼= Z ≤ N E P , with Z contained in the center of P , such that:

(1) There is a class-preserving automorphism σ of P/N , which cannot be lifted to an
automorphism of P ;

(2) For a suitable labeling Z0, Z1, . . . , Zp of the nontrivial cyclic subgroups of Z, σ can
be lifted to automorphisms σi of P/Zi, and

(a) σ0 is a class-preserving automorphism,

(b) σi fixes each irreducible character of P/Zi which does not contain Z0 in its
kernel (i > 0).

4.2 Remark. This example should be seen as a contribution towards the construction
of non-isomorphic paqb-groups X and Y having isomorphic integral group rings (over
Z{p,q}).

We remark that it is a general fact that there are finite q-groups Q of nilpotency
class 2 on which P/N acts faithfully such that only the inner automorphisms of P/N
can be lifted to automorphisms of the semidirect product Q(P/N). This was noted by
Pettet [103], as an observation about a construction of Heinecken and Liebeck [50] (and
a subsequent extension of Webb [145]). Thus it is unproblematic to obtain a group-
theoretical obstruction.

To construct a counterexample to the isomorphism problem (with underlying group
X = QP ), it remains to refine such a construction to have P/N acting ‘suitably’ on the
central idempotents of the rational group ring of Q, to obtain suitable inertia groups.
So far, we did not follow up this job.

We begin with defining a group H by

H = 〈 a, b, c : ap
2

= bp
2

= cp
2

= [a, b]p = 1, [a, c] = [b, c] = 1,

[a, [a, b]] = [b, [a, b]] = 1 〉.

Then H is a group of order p7, and

H = { [a, b]iajbkcl | 0 ≤ i < p, 0 ≤ j, k, l < p2 }.
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Let A, B and C be the following matrices of GL7(Z/p2Z):

A =




1 · · · · · ·
· 1 · · · · ·
· · 1 · p · ·
· · · 1 · 1 ·
· · · · 1 1 ·
· · · · · 1 ·
· · · · · · 1




,

B =




1 · · · · · ·
· 1 · · · 1 ·
p · 1 · · · ·
· · · 1 · · p
· · · · 1 · 1
· · · · · 1 p
· · · · · p 1




,

C =




1 −p · · · · 1
· 1 · · · · ·
· · 1 · · 1 ·
· · · 1 · · ·
· · · · 1 · ·
· · · · · 1 ·
· · · · · · 1




.

We claim that H is isomorphic to the group 〈A,B,C〉, with a, b and c corresponding to
A, B and C, respectively. Therefore, check that A and B commute with C, and that
their commutator

[A,B] =




1 · · · · · ·
· 1 · · · · ·
· · 1 · · · p
· · · 1 · · p
· · · · 1 · p
· · · · · 1 ·
· · · · · · 1



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(of order p) commutes with A and B. Furthermore, the pth powers of the matrices A,
B and C have order p:

Ap =




1 · · · · · ·
· 1 · · · · ·
· · 1 · · · ·
· · · 1 · p ·
· · · · 1 p ·
· · · · · 1 ·
· · · · · · 1




, Bp =




1 · · · · · ·
· 1 · · · p ·
· · 1 · · · ·
· · · 1 · · ·
· · · · 1 · p
· · · · · 1 ·
· · · · · · 1




,

Cp =




1 · · · · · p
· 1 · · · · ·
· · 1 · · p ·
· · · 1 · · ·
· · · · 1 · ·
· · · · · 1 ·
· · · · · · 1




,

and the matrix

ApjBpkCpl =




1 · · · · · pl
· 1 · · · pk ·
· · 1 · · pl ·
· · · 1 · pj ·
· · · · 1 pj pk
· · · · · 1 ·
· · · · · · 1




is not a power of [A,B] unless it is the identity matrix. This proves H ∼= 〈A,B,C〉.
Via this representation, let H act on

V = (Z/p2Z)(6) = Z/p2Z ⊕ . . .⊕ Z/p2Z,

and let
P = V oH

be the corresponding semidirect product, i.e., a−1va = va = vA for all v ∈ V etc.
Let ei ∈ V be the element whose i-th entry is 1, and 0 otherwise. We also set

u = e5 = (0, 0, 0, 0, 1, 0, 0),
v = e6 = (0, 0, 0, 0, 0, 1, 0),
w = e7 = (0, 0, 0, 0, 0, 0, 1).

Let
N = 〈up, vp, w〉,
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a normal subgroup of P , and

Z = 〈vp, wp〉 ∼= Cp × Cp,

a central subgroup of P contained in N . We label the p+ 1 subgroups of Z isomorphic
to Cp as follows:

Z0 = 〈wp〉, Zi = 〈vpiwp〉, 0 < i < p, and Zp = 〈vp〉.

Note that 〈A,B〉 E H and H/〈A,B〉 = 〈C〉 ∼= Cp2 . (We hope that the reader accepts
that we will denote a group element and its image in a factor group by the same symbol
whenever the precise meaning is obvious from the context.) Moreover, v maps to a
central element (of order p2) in P/Z0. Hence an automorphism σ0 of P/Z0 is defined by

Aut(P/Z0) 3 σ0 :

{
c 7→ c · v
‘other’ generators, i.e., the elements of 〈V, a, b〉, stay fixed

The automorphism σ0 induces on P/N an automorphism which will be denoted by σ.
Let M E P with M ≤ N ; we ask whether σ can be lifted to an automorphism σ̂ of
P/M , i.e., whether there exists

Aut(P/M) 3 σ̂ :





a 7→ a · uprvpswt
b 7→ b · upkvplwm
c 7→ c · v · upxvpywz

...

If we let
ta = (0, 0, 0, 0, pr, ps, t),
tb = (0, 0, 0, 0, pk, pl,m),
tc = (0, 0, 0, 0, px, 1 + py, z),

then aσ̂ = a·ta, and similarly for b and c. The condition that aσ̂ and cσ̂ have to commute
gives

ac(ta)
ctc ≡ atactc ≡ ctcata ≡ ca(tc)

ata mod M.

Equivalently, (ta)
ct−1
a ≡ (tc)

at−1
c mod M , which means that the elements di ∈ V , de-

fined by
d1 = tc(A− E) − ta(C − E) = (0, 0, 0, 0, 0, px, 0),
d2 = tc(B − E) − tb(C − E) = (0, 0, 0, 0, 0, pz, p(x+ 1)),

are contained in M (here E denotes the identity matrix). Note that there do not exist
elements x, z such that d1 = 0 = d2, showing that

• σ does not lift to an automorphism of P .
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However, if 0 < i < p and x = 0, z = i, then d1, d2 ∈ Zi, and if x = −1, z = 0, then
d1, d2 ∈ Zp. Hence we can record:

• σ lifts to an automorphism σi of P/Zi for all i, with

Aut(P/Zi) 3 σi :

{
c 7→ c · v · wi
other generators stay fixed

(0 < i < p)

Aut(P/Zp) 3 σp :

{
c 7→ c · v · u−p
other generators stay fixed

Write h = [a, b]iajbkcl for some element h ∈ H. We shall show that h is conjugate to
an element of the coset hvlZ0, via an element of V . Note that for x ∈ V ,

h(−x) = h · x([A,B]iAjBkC l − E), (E the identity matrix),

and that it is easily checked that

[A,B]iAjBkC l − E =




· −pl · · · · l
· · · · · k pk(k − 1)/2

pk · · · pj l p(i+ kl)
· · · · · j p(i+ k + jk)
· · · · · j p(i+ kj)
· · · · · · pk
· · · · · pk ·




.

If (p, k) = 1 or (p, j) = 1, it follows from h(−e2) ∈ hvkZ0 or h(−e4) ∈ hvjZ0, respectively,
that h is conjugate to hv in P/Z0. Hence we may assume that h is of the form h =
[a, b]iapjbpkcl. But then h(−e3) ∈ hvlZ0, as desired. We really have proved:

• σ0 is a class-preserving automorphism.

Again, let h = [a, b]iajbkcl ∈ H. Then

he1 = h · epl2 w−l and h(ep
1) = h · w−pl,

so if h 6∈ 〈A,B〉, i.e., if (l, p) = p or (l, p) = 1, then h and hwp are conjugate via an
element of V . Let i > 0 and let χ be an irreducible character of P/Zi which does not
contain Z0 = 〈wp〉 in its kernel. Note that if ρ is a representation of P affording χ, then
(wp)ρ is ζp times the identity matrix, where ζp is a primitive pth root of unity. Thus if
g ∈ P \ 〈V,A,B〉, then

χ(g) = χ(gwp) = ζp · χ(g),

which implies that χ(g) = 0. Altogether, we have χ(g) = χ(gσi) for all g ∈ P , and we
have shown:
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• If i > 0, then σi fixes each irreducible character of P/Zi which does not contain
Z0 in its kernel.

This concludes Example 4.1.

5. Automorphisms of group rings of abelian by nilpotent groups

Scott proved that a finite abelian by nilpotent group is determined by its integral group
ring (cf. [119, p. 601], [118]). Let G be a finite abelian by nilpotent group, and let A be
the smallest abelian normal subgroup of G with nilpotent quotient G/A (note that A
is well defined, see [65, III 2.5]). In this section, we show that if α is an augmentation-
preserving automorphism of the integral group ring ZG, then there is an automorphism
ρ of G such that ρα induces a central automorphism of ZG/A. Then, an application of
Kimmerle’s G×G-trick will yield another proof of Scott’s result.

We shall make freely use of the elementary properties of the normal subgroup cor-
respondence. For example, with G, A and α as above, α induces an automorphism
of ZG/A. For if B denotes the normal subgroup correspondent of Aα in G, we have
ZG/B ∼= ZG/A, so G/B is nilpotent and B = A.

Lifting class-preserving group automorphisms

We shall need an elementary fact about lifting of group automorphisms. Let G be a
finite group with a normal subgroup N , and let σ ∈ Aut(G/N). We say that σ lifts to
G if there is σ̂ ∈ Aut(G) which fixes N and induces σ on G/N .

The next lemma shows a circumstance under which a class-preserving group auto-
morphism of G/N lifts, provided that N is abelian. Another criterion is given in [80,
Lemma 4.12].

5.1 Lemma. Let G be a finite group with an abelian normal subgroup A. Assume that
some σ ∈ Autc(G/A) induces an inner automorphism of Zπ(A)G/A. Then σ lifts to an
automorphism of G.

Proof. For a group H, let I(H) be the augmentation ideal of ZH. Consider the exact
sequence

0 - I(A)G

I(A)I(G)
- ZG

I(A)I(G)
- ZG/A - 0.

The middle term is called the small group ring of G over Z associated with G and A,
and will be denoted by s(G,A) (cf. [119, 1.1.8]). The left term is an ideal in s(G,A),
of square zero, and is additively isomorphic to to the abelian group A. Suggestively,
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we denote it by {A− 1}. Tensoring the exact sequence with Zπ(A) ⊗
Z

– yields the exact

sequence

0 - {A− 1} - Zπ(A) ⊗
Z
s(G,A) - Zπ(A)G/A - 0.

By assumption, σ induces an inner automorphism of Zπ(A)G/A, and since {A − 1}
is an ideal of square zero, this automorphism lifts to an (inner) automorphism σ̂ of
Zπ(A) ⊗

Z
s(G,A). The natural copy of G in Zπ(A) ⊗

Z
s(G,A) is the pre-image of G/A and

is therefore fixed by σ̂. This proves the lemma. ¤

In a particular case, each class-preserving automorphism induces an inner automor-
phism of the semilocal group ring:

5.2 Proposition ([119, 1.2.13]). If G is a finite group and S is a semilocal Dedekind
domain in which |G| is invertible, then Picent(SG) = Outcent(SG) = 1.

5.3 Corollary. Let G be a finite group with abelian normal subgroups A1 and A2 of
coprime order. Assume that Ḡ = G/A1A2 is nilpotent, and let β ∈ Autc(Ḡ). Then there
are σi ∈ Aut(G/Ai), both inducing class-preserving automorphisms σ̄i of Ḡ, such that
β = σ̄1σ̄2.

Proof. Since Ḡ is nilpotent and (|A1|, |A2|) = 1, we have a decomposition Ḡ = N1 ×N2

where (|Ai|, |Ni|) = 1. Write β = τ1τ2 with τi|Ni = id|Ni . Note that by Proposition 5.2,
τ1 induces an inner automorphism of Zπ(A2)Ḡ, and τ2 induces an inner automorphism
of Zπ(A1)Ḡ. It follows from Lemma 5.1 that the class-preserving group automorphism τi
lifts to an automorphism σi of G/Ai, as desired. ¤

Automorphisms of group rings of abelian by nilpotent groups

We shall need the following special case of a theorem due to Roggenkamp and Scott
(see [62, Theorem 4.6]).

5.4 Theorem. Let G be a finite group with a normal Sylow p-subgroup P satisfying
CG(P ) ⊆ P . Then for any α ∈ Autn(ZG), the groups G and Gα are conjugate in the
units of ZpG.

We are now in a position to prove the following theorem (in the spirit of [79]).

5.5 Theorem. Let G be a finite abelian by nilpotent group, and let A be the smallest
abelian normal subgroup of G with nilpotent quotient G/A. Then for any α ∈ Autn(ZG),
there is ρ ∈ Aut(G) such that ρα induces a central automorphism of ZG/A.
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Proof. By [119, Corollary 3] (Zassenhaus conjecture in the nilpotent group case), we
may assume that A 6= 1. The theorem is proved by induction on the order of G. Set
Ḡ = G/A. We shall distinguish the following two cases.

Case 1 A is not a p-group. Then A = A1 ×A2 for some nontrivial normal subgroups
A1 and A2 of G of coprime order. There are commutative diagrams

G - G/A1

(∗)

G/A2

?
- Ḡ
?

and

ZG - ZG/A1

ZG/A2

?
- ZḠ

?
.

By the normal subgroup correspondence, α induces automorphisms αi ∈ Autn(ZG/Ai).
We may assume inductively that there are ρi ∈ Aut(G/Ai) such that each ρiαi induces
a central automorphism of ZḠ. Each ρi induces an automorphism ρ̄i ∈ Aut(Ḡ), and
β := ρ̄1ρ̄2

−1 is a class-preserving group automorphism of Ḡ. By Corollary 5.3, there are
σi ∈ Aut(G/Ai), inducing class-preserving automorphisms σ̄i of Ḡ, such that β = σ̄−1

1 σ̄2.
Then σ̄1ρ̄1 = σ̄2ρ̄2, so there is ρ ∈ Aut(G) inducing σiρi on G/Ai (since (∗) is a pullback
diagram), and ρα induces the central automorphism σ̄1(ρ̄1ᾱ1) on ZḠ.

Case 2 A is a p-group. By Theorem 5.4, we may assume that Op′(G) 6= 1. Then
there is a prime q, different from p, such that B := Z(Oq(G)) 6= 1. Set G̃ = G/AB, and
consider the commutative diagrams

G - Ḡ

(∗)

G/B
?

- G̃

?
and

ZG - ZḠ

ZG/B
?

- ZG̃
?
.

Arguing as in Case 1, we obtain ϕ ∈ Aut(G) such that β := ϕα induces a central
automorphism β̃ of ZG̃. The automorphism β induces an automorphism β̄ of ZḠ, and
by [119, Corollary 3] (Zassenhaus conjecture in the nilpotent group case), there is σ ∈
Aut(Ḡ) such that σβ̄ is a central automorphism. Note that σ induces an automorphism
σ̃ of G̃. Since β̃ is a central automorphism, we may assume that σ induces the identity
on Oq′(Ḡ). Also, σ induces a class-preserving group automorphism of Oq(Ḡ)/B, so σ̃
induces an inner automorphism of Z(p)G̃ (see [119, 1.2.13]). Hence σ̃ lifts to G/B by
Lemma 5.1, and there is ψ ∈ Aut(G) inducing σ. If we set ρ = ψ−1ϕ, then ρα induces
the central automorphism σβ̄ of ZḠ. ¤

The isomorphism problem for group rings of abelian by nilpotent groups

We give a variation of Kimmerle’s G×G-trick [81, Lemma 5.3].

5.6 Lemma. Let G be an indecomposable finite group, and let H be another finite group
with ZG ∼= ZH. Assume that for every α ∈ Autn(Z(G ×H)) there is ρ ∈ Aut(G ×H)
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and a proper normal subgroup M of H such that ρα fixes the trace Ĝ×M (i.e., the sum
of the elements of G×M). Then G ∼= H.

Proof. Let φ : ZG→ ZH be an isomorphism which maps G into V(ZH). Note that ZG
and ZH naturally embed into Z(G×H).

There is α ∈ Autn(Z(G×H)) with (G×H)α = Hφ−1×Gφ (a “flip”). By assumption,

we may modify α by a group automorphism of G×H such that α fixes the trace Ĝ×M ,
for some proper normal subgroup M of H, and such that (G×H)α = Hφ−1 ×Gφ still
holds.

We calculate the image of

S :=
{
x ∈ G×H

∣∣∣ Ĝ×M · (x− 1) = 0
}

= G×M

under α. By the normal subgroup correspondence, there is N E G with N̂φ = M̂ . It
follows that

Sα :=
{
y ∈ Hφ−1 ×Gφ

∣∣∣ Ĝ×M · (y − 1) = 0
}
⊇ Hφ−1 ×Nφ

(note that α is augmented). Hence Gα×Mα = Hφ−1×Nφ. Since Gα is indecomposable,
it follows that G ∼= Gα ∼= Hφ−1 ∼= H by the Krull–Remak–Schmidt theorem [65,
I 12.5]. ¤

5.7 Theorem. Let G be a finite abelian by nilpotent group, and let H be a group with
ZG ∼= ZH. Then G ∼= H.

Proof. By the normal subgroup correspondence, also H is abelian by nilpotent, and
we may assume inductively that G is indecomposable. Let M be the smallest normal
abelian subgroup of H with nilpotent quotient H/M . We may assume that M is a
proper subgroup of H (otherwise G would be abelian). Let α ∈ Autn(Z(G × H)). By
Theorem 5.5, there is ρ ∈ Aut(G × H) such that ρα fixes the trace of G ×M . Hence
G ∼= H by Lemma 5.6. ¤



II. On the Zassenhaus conjecture

–Eh bien, mon vieux Barbicane, répondit Michel, on m’eût plutôt

coupé la tête, en commençant par les pieds, que de me faire

résoudre ce problème-là ! –Parce que tu ne sais pas l’algèbre,

répliqua tranquillement Barbicane.

Jules Verne

Autour de la lune, 1873

This chapter contains various results related to the Zassenhaus conjecture (concerning
automorphisms of integral group rings).

Let G be a finite group, and let S be a G-adapted ring, that is, an integral domain
of characteristic 0 in which no prime divisor of |G| is invertible. Following [127, p. 327],
we shall say that an automorphism of SG has a Zassenhaus factorization if the auto-
morphism is the composition of a group automorphism of G (extended to a ring au-
tomorphism) and a central automorphism (an automorphism of SG fixing the center
element-wise). (This notion actually depends on the chosen group basis G.) We say
that the Zassenhaus conjecture holds for G if each augmentation-preserving automor-
phism of ZG has a Zassenhaus factorization.

6. Some general observations

In this section, we briefly point out the role played by antihomomorphisms associated
to group bases in connection with the Zassenhaus conjecture.

Though not in direct connection with the Zassenhaus conjecture, we point out a
criterion for an element of the complex group ring to be conjugate to a group element.

Antihomomorphisms associated with group bases

We want to take the opportunity to collect in an omnibus lemma some properties of
antihomomorphisms of group rings associated to group bases which are related to the
Zassenhaus conjecture (see Proposition 6.1(ix)) and to the group OutO(G) of automor-
phisms of G which induce inner automorphisms of OG (see Proposition 6.1(xi)–(xiv)).

42
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We do not claim that these results are really new; actually, most of them are well known
in the basic O = Z case (see Remark 6.2 to whom credit is due).

We fix the following notation.

• G is a finite group;

• O is a ring of algebraic integers in an algebraic number field (contained in C);

• µ is the group of roots of units in O;

• K is the normal closure of the field of fractions of O;

• G = Gal(K/Q);

• σ ∈ G is the complex conjugation on K;

• σG denotes the conjugacy class of σ in G;

• For x ∈ CG, let xg ∈ C (g ∈ G) be the coefficient of g in x, i.e., x =
∑

g∈G xgg.

Let ∗γG be the antihomomorphism of KG associated with the group basis G and the
automorphism γ ∈ G, i.e.,

(∑

g∈G
xgg

)∗γ
G

=
∑

g∈G
xγgg

−1 (xg ∈ K).

When γ = σ is complex conjugation, then ∗G = ∗σG is the well known anti-involution of
KG.

6.1 Proposition. (i) If u∗
γ
Gu ∈ µG for some u ∈ U(OG) and all γ ∈ σG, then

u ∈ µG.

(ii) If OG = OH and ∗γG = ∗γH for all γ ∈ σG, then G = H.

(iii) ∗γ−1

G · ∗γGu = [∗γG, conj(u)] = conj(u∗
γ
Gu) for all u ∈ U(KG) and γ ∈ G.

(iv) u∗
γ
Gu ∈ Z(KG) for all u ∈ NU(KG)(G) and γ ∈ G.

(v) (uu−∗τ
G)∗

τ
G(uu−∗τ

G) = 1 for all u ∈ NU(KG)(G) and all involutions τ ∈ G.

(vi) If u ∈ NU(KG)(OG) and OG = OH with ∗γ−1

G · ∗γH = conj(u∗
γ
Gu) for all γ ∈ σG,

then H = Gu.

(vii) If for some u ∈ U(OG), u∗
γ
Gu ∈ Z(KG) for all γ ∈ σG, then u ∈ NU(OG)(G).

(viii) If α ∈ Autn(OG) commutes with ∗γG for all γ ∈ σG, then α ∈ Aut(G).

(ix) Let α ∈ Autn(OG). Then [∗γG, α] = conj(u∗
γ
Gu) for some u ∈ NU(KG)(OG) and all

γ ∈ σG if and only if α admits a Zassenhaus decomposition with respect to G, i.e.,
if there is ρ ∈ Aut(G) such that α · ρ ∈ Inn(KG).

(x) If σ ∈ Z(G), then uu−∗σ
G ∈ µG for all u ∈ NU(OG)(G).



44 II. On the Zassenhaus conjecture

(xi) The exponent of OutO(G) divides 2|N |, where N = 〈[σ,G]γ : γ ∈ G〉 E G.

(xii) If σ ∈ Z(G), then OutO(G) is an elementary abelian 2-group.

(xiii) [u, v]∗
γ
G [u, v] = 1 for all u, v ∈ NU(KG)(G) and γ ∈ G.

(xiv) Let A be the ring of all algebraic integers in C. Then OutA(G) is contained in the
center of Outc(G). In particular, OutA(G) is an abelian group.

Proof. (i) Let u =
∑

g∈G ugg and γ ∈ σG . Then c(γ)1 =
∑

g∈G u
γ
gug is the coefficient

of 1 in c(γ) = u∗
γ
Gu, so either c(γ)1 = 0 or c(γ)1 ∈ µ. If ug = 0 or ug ∈ µ for all

g ∈ G, then c(σ)1 =
∑

g∈G|ug| = ]{g ∈ G | ug 6= 0} ∈ µ implies that u ∈ µG.
Now assume that 0 6= uh 6∈ µ for some h ∈ G. By a theorem of Kronecker (see [95,
Theorem 2.1]), there is α ∈ G with |uαh | > 1. Then (c(σα

−1
)1)α =

∑
g∈G u

ασ
g uαg =∑

g∈G|uαg |2 > 1, which implies that 0 6= c(σα
−1

)1 6∈ µ, a contradiction.

(ii) Let h ∈ H. By assumption, h∗
γ
Gh = h∗

γ
Hh = 1 for all γ ∈ σG , so h ∈ µG by (i).

Taking augmentation gives h ∈ G.

(iii) ∗γ−1

G · conj(u−1) · ∗γG · conj(u)︸ ︷︷ ︸
= ∗γ

Gu (consider effect on Gu)

= ∗γ−1

G · conj(u−1) · ∗γG︸ ︷︷ ︸
= conj(u

∗
γ
G )

· conj(u).

(iv) Immediate from (iii).

(v) (uu−∗τ
G)∗

τ
G(uu−∗τ

G) = u−1(u∗
τ
Gu)u−∗τ

G = 1 by (iv).

(vi) By (iii), ∗γH = ∗γGu for all γ ∈ σG . Hence H = Gu by (ii).

(vii) By (iii), ∗γG = ∗γGu for all γ ∈ σG . Hence G = Gu by (ii).

(viii) If α ∈ Autn(OG) commutes with ∗γG, then (gα)∗
γ
G(gα) = (g∗

γ
Gα)(gα) = 1 for all

g ∈ G. Hence the assertion follows from (i).

(ix) Since [∗γG, α] = ∗γ−1

G · ∗γGα, this follows from (iii) and (vi).

(x) Immediate from (i) and (v).

(xi) Let u ∈ NU(OG)(G). Note that by (iv), u∗
γ
G commutes with u and u∗

γ′

G , for all

γ, γ′ ∈ G. Again by (iv), z :=
(∏

γ∈N u∗
γ
G

)
un ∈ Z(KG), where n = |N |. Let E be

the fixed field under N , with ring of integers OE . By the fundamental theorem of
Galois theory, the Galois group of E over Q is naturally isomorphic to the factor
group G/N ; by construction of N , the complex conjugation σ is contained in the
center. Clearly zu−n =

∏
γ∈N u∗

γ
G ∈ U(OEG), so

z2u−2n = (zu−n)(zu−n)−∗σ
G

︸ ︷︷ ︸
∈µG by (x)

(zu−n)∗
σ
G(zu−n)︸ ︷︷ ︸

∈Z(KG) by (iv)

,

and conj(u2n) ∈ Inn(G).
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(xii) Follows from (xi).

(xiii) Let ∗ = ∗γG. It follows from (iv) that

[u, v]∗[u, v] = v∗u∗v−∗u−∗u−1v−1uv = v∗(u∗u)u−1v−∗u−∗u−1v−1uv

= v∗u−1v−∗u−∗(u∗u)u−1v−1uv = v∗u−1v−∗v−1uv

= (v∗v)v−1u−1v−∗v−1uv = v−1u−1v−∗(v∗v)v−1uv = 1.

(xiv) Let φ ∈ Autc(G) and α ∈ AutA(G); we have to show [φ, α] ∈ Inn(G). There is
u ∈ U(QG) with φ = conj(u) and v ∈ U(AG) with α = conj(v). It follows

[u, v] = u−1(v−1uv)︸ ︷︷ ︸
∈QG

= (u−1v−1u)︸ ︷︷ ︸
∈AG

v ∈ QG ∩AG = ZG.

By (xiv) and (i), [u, v] = g for some g ∈ G, so [φ, α] = conj(g) ∈ Inn(G). ¤

6.2 Remark. For O = Z, (i) is due to Berman. The version presented here follows [93,
Theorem 2], but the result already appeared in work of Bovdi [15, p. 374–5]. For O = Z,
(ii) is due to Banaschewski. Item (v) for O = Z is an observation of Krempa (see [66]);
the present form is taken from [93]. Sandling [125, 5.15, 5.16] recorded (ix) for O = Z.
Items (x) and (xi) are from Mazur’s paper [93]. Item (xii) in the O = Z case is again
Krempa’s observation. Items (xiii) and (xiv) reproduce [58, Proposition 3.1] (cf. also
Proposition 19.1).

Finally, we remark that a special feature of the integral group ring ZG is that for
each u ∈ NU(ZG)(G), there is h ∈ CG(u) such that hu is ∗G-invariant (see the proof of
Proposition 19.2).

Conjugacy of torsion units and partial augmentation

Let G be a finite group. For u =
∑

g∈G ugg (all ug in C), we adopt the notation from [90]
and write ũ(g) =

∑
x∼g ux. The ũ(g)’s are called the partial augmentations of u. The

partial augmentations of u vanish if and only if u is contained in the additive commutator
[CG,CG] = {xy − yx | x, y ∈ CG}.

Marciniak, Ritter, Sehgal and Weiss proved the following [90, Theorem 2.5]:

6.3 Theorem. Let U be a periodic subgroup of V(ZG). Then the following are equiva-
lent:

(i) For every u ∈ U there exists a group element g ∈ G such that such that u is
conjugate to g in U(QG).
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(ii) For every u =
∑
ugg ∈ U , there exists a g0, unique up to conjugacy, such that

ũ(g0) 6= 0.

We point out another criterion for u ∈ CG to satisfy condition Theorem 6.3(ii). Ya-
mauchi [148] observed that a central unit u ∈ V(CG) of finite order is trivial (i.e.,
contained in G) if χψ(u) = χ(u)ψ(u) for all χ, ψ ∈ Irr(G). Note that χψ is defined
by χψ(g) = χ(g)ψ(g) for all g ∈ G, and linear extension to CG. This observation is
generalized by the following proposition.

6.4 Proposition. Let u ∈ CG \ [CG,CG]. Then there exists a g ∈ G, unique up to
conjugacy in G, with ũ(g) 6= 0 if and only if χψ(u) = χ(u)ψ(u) for all χ, ψ ∈ Irr(G).

We remark that Hasse [49] proved a similar result.

Let a(CG) be the character ring of G, and set A(CG) = C⊗Z a(CG). The proposition
follows from the fact that each species of A(CG) (i.e., a nonzero C-algebra homomor-
phism A(CG) → C) is of the form χ 7→ χ(g) for some g ∈ G. Nevertheless, we shall give
an elementary proof below.

If H is a group basis of ZG, then each element of H is conjugate to some element of G
in the units of QG, by the class sum correspondence. However, the following conjecture
of Zassenhaus is still an open problem.

(ZC 1) If u ∈ V(ZG) is of finite order, then u is conjugate to some g ∈ G within the
units of QG.

We have the following reformulation of this conjecture.

6.5 Corollary. (ZC 1) holds for G if and only if for all u ∈ V(ZG) of finite order, and
all χ, ψ ∈ Irr(G), there is an equality χψ(u) = χ(u)ψ(u).

Proof. Immediate from Theorem 6.3 and Theorem 6.4. ¤

One might speculate whether there is some analogue for units in blocks of Z(p)G.

Proposition 6.4 follows from two simple lemmas. The first one can also be seen as an
application of Artin’s theorem, cf. [85, Ch. VI Corollary 4.2].

6.6 Lemma. Let h ∈ N, and c, ai ∈ C, bi ∈ C \ {0} (1 ≤ i ≤ h) such that the bi are
pairwise distinct, and at least one of the ai is different from 0. Assume that for all
1 ≤ n ≤ h+ 1,

cn = a1b
n
1 + a2b

n
2 + . . .+ ahb

n
h. (∗)

Then ai0 = 1 for some index i0, and ai = 0 for i 6= i0.
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Proof. Consider the matrix equation




c
c2

...
ch


 =




b1 b2 . . . bh
b21 b22 . . . b2h
...

...
...

bh1 bh2 . . . bhh







a1

a2
...
ah


 .

The Vandermonde determinant of the matrix (bji ) does not vanish. Since some ai 6= 0,
it follows that c 6= 0. Dividing (∗) by cn, we may assume that c = 1. But then
[a1b1, a2b2, . . . , ahbh]T is also a solution of the matrix equation, and it follows that aibi =
ai, so either ai = 0 or bi = 1 for all i. Since the bi’s are distinct, and at least one ai is
different from 0, the assertion follows. ¤

6.7 Lemma. Let u ∈ CG. If χψ(u) = χ(u)ψ(u) for all χ, ψ ∈ Irr(G), then this equality
also holds for all virtual characters χ and ψ of G.

Proof. Let χi, ψj ∈ Irr(G), and ai, bj ∈ C. Then

(∑

i

aiχi

)(∑

j

bjψj

)
(u) =

∑

i,j

aibjχiψj(u)

=
∑

i,j

aibjχi(u)ψj(u) (by assumption)

=
∑

i

aiχi(u) ·
∑

j

bjψj(u) =
(∑

i

aiχi

)
(u)
(∑

j

bjψj

)
(u),

as desired. ¤

Proof of Proposition 6.4. Let u ∈ CG \ [CG,CG].

If there is g ∈ G, unique up to conjugacy in G, with ũ(g) 6= 0, then χψ(u) = χψ(g) =
χ(g)ψ(g) = χ(u)ψ(u) for all χ, ψ ∈ Irr(G).

To prove the converse, let g1, . . . , gh be representatives of the conjugacy classes of G,
and set ũi = ũ(gi). Let µ be a (virtual) character of G which separates the conjugacy
classes of G, i.e., µ(gi) 6= µ(gj) for all i 6= j, and which satisfies µ(gi) 6= 0 for all i. By
Lemma 6.7, µ(u)n = µn(u) for all n ∈ N, so

µ(u)n = µn(u) = ũ1µ
n(g1) + ũ2µ

n(g2) + . . .+ ũhµ
n(gh)

= ũ1µ(g1)n + ũ2µ(g2)n + . . .+ ũhµ(gh)n.

Now apply Lemma 6.6 with c = µ(u), ai = ũi and bi = µ(gi) to conclude that all ũi,
except one, vanish. ¤
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7. A pullback diagram for integral group rings

Let G be a finite group. Roggenkamp and Scott [117] showed that in the presence
of normal subgroups of G of pairwise coprime order, an integral group ring RG can
be described by a pullback diagram (Theorem 7.1) which proved to be very useful to
construct counterexamples to the Zassenhaus conjecture. (This will be illustrated by
examples we give in the next chapter.)

Aleev [1, Theorem 13] determined the unit group of the integral group ring of a
cyclic group of order 10. The lengthy calculation makes essential use of properties of
Fibonacci numbers. We show that Aleev’s result can be quickly derived from the pullback
description, and our method apparently can be applied to compute other unit groups.

An integral part of the pullback description will be used to put recent work of Lam
and Leung [84] on vanishing sums of mth roots of unity into a more general context, the
results being formulated entirely in the language of group rings.

For a normal subgroup N of G, we set

N̂ =
∑

n∈N
n.

We have corresponding central idempotents

εN =
1

|N |N̂ and ηN = 1 − εN .

Let R be an integral domain of characteristic 0 with field of fractions K. Let N be a
normal subgroup of G. We write IR(N) for the augmentation ideal of RN , so IR(N)G
is the kernel of the natural map RG → R(G/N). The ideals IR(N)G and (RG) · N̂
intersect trivially, and their sum is the ideal generated by IR(N)G and |N |. Thus we
have the following well known pullback diagram of rings:

RG - RG/N

RG/(N̂)

?
- (R/|N |R) (G/N)

?

Roggenkamp and Scott [117] gave the following generalization.

7.1 Theorem (Roggenkamp, Scott). Let N1, . . . , Nr E G, with Nj and Nk of co-
prime order for all j 6= k. Set Ri = R/|Ni|R. Then there is a commutative diagram
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with exact rows (the maps being the natural ones):

0 -
⋂

i

IR(Ni)G - RG -
⊕

i

RG/Ni

0 -
⋂

i

IR(Ni)G

www
- RG∑

i
(RG) · N̂i

?

-
⊕

i

RiG/Ni∑
j 6=i

(RiG/Ni) · N̂j

?

- 0

We will record an essential part of the proof of this theorem in a separate lemma.
Roggenkamp and Scott proved the equality stated in this lemma by showing equality at
the localization of all maximal ideals of R, but we can give an even shorter proof.

7.2 Lemma. Let N1, . . . , Nr E G, with Nj and Nk of coprime order for all j 6= k. Then

r∑

i=1

(RG) · N̂i = RG ∩
( r∑

i=1

KG · εNi

)
.

Proof. The inclusion “⊆” in (ii) is obvious. The reverse inclusion is proved by induction
on r. Set ei = εNi , and take any x ∈ RG ∩∑iKG · ei. If r = 1, then we may write

x =
∑

g∈T kgN̂1g where T is a system of coset representatives of N1 in G and kg ∈ K for

all g ∈ T . Since x ∈ RG, it follows that all kg lie in R and consequently x ∈ (RG) · N̂1.
So let r > 1, and fix some index j. Then

x · |Nj |(1 − ej) ∈ RG ∩
∑

i6=j
KG · ei,

and we may assume inductively that

x · |Nj | − x · N̂j = x · |Nj |(1 − ej) ∈
∑

i6=j
(RG) · N̂i.

Hence x · |Nj | ∈
∑r

i=1(RG) · N̂i. As (|N1|, |N2|) = 1, we obtain x ∈∑r
i=1(RG) · N̂i. ¤

We continue with a proof of the above theorem which differs somewhat from the
original presentation given by Roggenkamp and Scott.

Proof (of Theorem 7.1). Set ei = εNi and f =
∏
i(1 − ei). Note that

⋂

i

IK(Ni)G = KG · f and
∑

i

KG · ei = KG · (1 − f).

There are two-sided ideals

S =
∑

i

(RG) · N̂i, D =
⋂

i

IR(Ni)G and Ji = S + IR(Ni)G

of RG. We shall prove
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(i) D = RG ∩ (
⋂
i IK(Ni)G) = RG ∩KG · f ;

(ii) S = RG ∩ (
∑

iKG · ei) = RG ∩KG · (1 − f);

(iii) S ∩D = 0;

(iv) S +D =
⋂
i Ji;

(v) Ji + Jk = RG for all i 6= k.

(i) is obvious, and (ii) is Lemma 7.2.
(iii) follows directly from (i) and (ii).
In order to prove (iv), we first show that (

⋂
i Ji)f ⊆ D by induction on r. If r = 1,

then

J1f = (S + IR(N1)G)f
(ii)
= IR(N1)G · f = Df

(i)
= D.

Now let r > 1, take any x ∈ ⋂i Ji and fix some index j. Then

x · |Nj |(1 − ej) ∈
⋂

i6=j

(∑

k 6=j
(RG) · N̂k

)
+ IR(Ni)G,

so we may assume inductively that

x · |Nj | · f = x · |Nj |(1 − ej) ·
∏

i6=j
(1 − ei) ∈

⋂

i6=j
IR(Ni)G ⊆ RG.

Since (|N1|, |N2|) = 1, it follows that xf ∈ RG. Hence xf ∈ D by (i), and we have proved
(
⋂
i Ji)f ⊆ D. Again, let x ∈ ⋂i Ji. We have seen that xf ∈ D. Since x(1 − f) ∈ S by

(ii), x = x(1 − f) + xf ∈ S +D and (iv) is proved.
Since |Ni| = N̂i − (N̂i − |Ni|) ∈ Ji and (|Ni|, |Nk|) = 1, it follows that 1 ∈ Ji + Jk and

(v) is proved.
By (iii), there is a commutative diagram with exact rows

0 - D - RG - RG/D - 0

0 - D

wwwwww
- RG/S

?
- RG/S +D

?
- 0

By (iv) and (v), we may apply the Chinese remainder theorem to get the natural iso-
morphism

RG/S +D = RG/
⋂

i

Ji ∼=
⊕

i

RG/Ji.

Since the kernel of the natural homomorphism

RG→ RiG/Ni∑
j 6=i

(RiG/Ni) · N̂j

— recall that Ri = R/|Ni|R — is precisely Ji, this proves the theorem. ¤
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The following example shows how the pullback can be used to compute unit groups
of integral group rings.

7.3 Example. Let C10 = 〈x〉 be the cyclic group of order 10. We shall compute the unit
group of ZC10 using the pullback description of ZC10 given by Theorem 7.1. We remark
that the unit group has already been computed by Aleev [1, Theorem 13]. However,
his calculation is somewhat special and occupies, including some corollaries, about 15
pages.

By Theorem 7.1, we have a commutative diagram

ZC10
- ZC5 ⊕ ZC2

ZC10

(Ĉ5, Ĉ2)

?

- F2C5

(Ĉ5)
⊕ F5C2

(Ĉ2)

? (∗)

which can be written as
ZC10

- ZC5 ⊕ ZC2

Z[ζ10]
?

- F2(ζ5) ⊕ F5

?

Here, ζn denotes a primitive nth root of unity (clearly Z[ζ10] = Z[ζ5]). Note that
we obtain a pullback diagram if we replace ZC5 ⊕ ZC2 by the pullback Γ over the
augmentation ε, that is, Γ = {(s, t) | (s, t) ∈ ZC5 ⊕ ZC2 and ε(s) = ε(t)}.

Clearly the image of U(ZC2) in F5 is {±1}. Let ζ5 = exp(2πi/5). Then

ω := −ζ2
5 − ζ3

5 =
1 +

√
5

2

is a fundamental unit of Z[ζ5] and U(Z[ζ5]) = 〈−ζ5〉×〈ω〉. Let x̄ be the image of x under
the map ZC10 → ZC5. Then it is easy to see that

U(ZC5) = 〈−x̄〉 × 〈−1 + x̄2 + x̄3〉

(this is well known). Let ζ10 = −ζ5. Then 1 + ζ2
10 − ζ3

10 = 1 + ζ2
5 + ζ3

5 = 1−
√

5
2 is a

fundamental unit of Z[ζ10] (this choice will yield the generators for the unit group given
by Aleev).

Let w ∈ U(ZC10). Multiplying w with a trivial unit, and inverting w if necessary, we
may assume that for some n ≥ 0, the elements w and (1+x2−x3)n have the same image
in Λ = ZC10/(Ĉ5, Ĉ2). The following table lists the relevant congruences (Φi(x) denotes
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the i-th cyclotomic polynomial).

n (1 + x2 − x3)n (−1 + x2 + x3)n

mod (Φ5(x), 2) mod (Φ2(x), 5) mod (Φ5(x), 2)

1 1 + x2 + x3 3 1 + x2 + x3

2 x2 + x3 −1 x2 + x3

3 1 2 1

It follows that n 6= 1, and that there are units u, v ∈ V(ZC10), defined via the diagram
(∗) as indicated below.

u - ((−1 + x2 + x3)2, x)

(1 + x2 − x3)2
?

- (1 + x2 + x3,−1)
?

v - ((−1 + x2 + x3)3, 1)

1
?

- (1, 1)
?

Moreover, it easily follows that w = uivj for some uniquely determined i, j ∈ Z. Hence

U(ZC10) = 〈−1〉 × 〈x〉 × 〈u〉 × 〈v〉.

We give the units u, v explicitly (they coincide with the units given by Aleev):

u = 2 + (x+ x5 + x9) − (x2 + x3 + x7 + x8),

u−1 = 2 + (x3 + x5 + x7) − (x+ x4 + x6 + x9),

v = −3 − 4x5 − (x+ x4 + x6 + x9) + 3(x2 + x3 + x7 + x8),

v−1 = −3 − 4x5 − (x2 + x3 + x7 + x8) + 3(x+ x4 + x6 + x9).

Aleev’s calculations take place in the complex group ring, but it seems to be more
convenient to work in the rational group ring. We make some additional comments.
Identify QC10 with its Wedderburn decomposition,

QC10 = Q ⊕ Q ⊕ Q(ζ5) ⊕ Q(ζ5), ζ5 = exp(2πi/5),

x = (1,−1, ζ5,−ζ5).

Then ZC10 is contained in the maximal order

M = Z ⊕ Z ⊕ Z[ζ5] ⊕ Z[ζ5].

For a cyclic group C, Künzer and Weber [83, Corollary 5.8] calculated the index of
ZC in the maximal order of QC. The index of ZC10 in M is 25 · 52; in fact, we have

M/ZC10
∼= (Z/2Z)(5) ⊕ (Z/5Z)(2) as additive groups.



7. A pullback diagram for integral group rings 53

Let us compute the index of U(ZC10) in U(M). Since

1 + ζ2
10 − ζ3

10 = −ω−1 and − 1 + ζ2
5 + ζ3

5 = −ω2,

it follows that

u = (1,−1, ω4, ω−2) and v = (1, 1,−ω6, 1).

From that, we easily obtain Corollary 4 of [1]. Namely, if φi denotes the natural map
from V(ZC10) to the unit group of the i-th component of QC10 (in the given order), then

ker(φ2) = 〈x2〉 × 〈xu〉 × 〈v〉 ∼= C5 × C∞ × C∞,

ker(φ3) = 〈x5〉 × 〈u3v−2〉 ∼= C2 × C∞, coker(φ3) ∼= C2 × C2,

ker(φ4) = 〈v〉 ∼= C∞, coker(φ4) ∼= C2.

From that, it has been deduced in [1, Corollary 4] that l = 2 is the least natural number
such that U(M)l ⊆ U(ZC10). However, this is not correct; we have

Q := U(M)/U(ZC10) ∼= C4 × C4 × C3 × C5.

(Check that Q = 〈ȳ1, ȳ2, ȳ3〉 with y1 = (1, 1, ω, 1), y2 = (1, 1, ω−2, ω) and y3 = (1, 1, 1, ζ).
If ȳa1 ȳ

b
2ȳ
c
3 ∈ U(ZC10) for a, b, c ∈ Z, then 12 | a, 4 | b and 5 | c.)

In particular, the index of U(ZC10) in U(M) is 24 ·3 ·5 = 240 and the smallest number
l with U(M)l ⊆ U(ZC10) is l = 60.

On vanishing sums of roots of unity

Lam and Leung [84] solved the following problem in number theory: Given a natural
number m, what are the possible integers n for which there exist mth roots of unity
α1, . . . , αn ∈ C such that α1 + · · ·+αn = 0? (Such an equation is said to be a vanishing
sum of mth roots of unity of weight n.)

We will put the crucial results from [84] into a more general context. Our results are
stated entirely in the language of group rings, since we use Lemma 7.2 to dispense with
some linear disjointness arguments from [84].

If m has prime factorization pa1
1 . . . par

r (ai > 0), then it is easy to see that any linear
combination of p1, . . . , pr with non-negative integer coefficients occurs as weight of some
vanishing sum of mth roots of unity. Lam and Leung [84] proved the converse:

7.4 Theorem (Lam, Leung). For any m = pa1
1 . . . par

r as above, the set of weights of
vanishing sums of mth roots of unity is exactly given by N0p1 + . . .+ N0pr.

The key technique used for the proof is that of group rings; in fact, group rings
provide a very natural setting for studying linear relations among roots of unity, as was
demonstrated in [84].
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To be more precise, let G = 〈z〉 be a cyclic group of order m, and let ζ be a (fixed)
primitive mth root of unity. Let ϕ : ZG → Z[ζ] be the natural homomorphism given
by ϕ(z) = ζ. Then the elements of ker(ϕ) correspond precisely to all Z-linear relations
among the mth roots of unity. For vanishing sums of mth roots of unity, we have to
look at N0G ∩ ker(ϕ). If x ∈ N0G ∩ ker(ϕ), the weight of the corresponding vanishing
sum of mth roots of unity is exactly the augmentation ε(x).

Note that an element x of ZG lies in ker(ϕ) if and only if χ(x) = 0 for each faithful
irreducible character χ of G. Thus, if m = pa1

1 . . . par
r as above, and Ni is the subgroup

of G of order pi, then x ∈ ker(ϕ) if and only if fx = 0, where f is the idempotent∏r
i=1(1− εNi). Lemma 7.2 now yields the following theorem, called the Rédei–de Bruin–

Schoenberg theorem in [84, Section 2]. As noted in [84], it gives a natural family of ideal
generators of ker(ϕ), which is just the principal ideal generated by the mth cyclotomic
polynomial.

7.5 Theorem. With notation as above, we have ker(ϕ) =
∑r

i=1 ZG · N̂i.

However, this does not imply Theorem 7.4 directly (by taking augmentation, see [84,
Remark 5.3]) unless r ≤ 2 (see Proposition 7.7). What follows from Theorem 7.5 is that
all sufficiently large integers occur as weights of vanishing sums of mth roots of unity,
by the following elementary number-theoretic fact:

7.6 Lemma. Let p, q be relatively prime positive integers. If n is an integer satisfying
n ≥ (p− 1)(q − 1), then n ∈ N0p+ N0q.

Proof. Write n = sp + tq with s, t ∈ Z. Adding vq to s and subtracting vp from t, for
suitable v ∈ Z, we may assume that 0 ≤ s < q. Then (p− 1)(q− 1) ≤ n ≤ (q− 1)p+ tq,
which implies that −q + 1 ≤ tq, and t ∈ N0. ¤

To give an idea of the proof of Theorem 7.4, we introduce the following notions. Let
G be an arbitrary finite group, and N1, . . . , Nr E G. We say that a nonzero element of
N0G ∩∑r

i=1 ZG · N̂i is minimal if it cannot be decomposed into a sum of two nonzero

elements in N0G∩∑r
i=1 ZG · N̂i. An element of

∑r
i=1 N0G · N̂i will be called symmetric.

If G is cyclic of order m, the subgroups N1, . . . , Nr are chosen as above, and p1 < p2 <
· · · < pr, then Lam and Leung showed that if x ∈ N0G ∩∑r

i=1 ZG · N̂i is minimal, then
x is either symmetric, or we will have r ≥ 3 and ε(x) > (p1 − 1)(p2 − 1) (which clearly
implies their principal result on vanishing sums). Theorem 7.11 below generalizes this
result.

From now on, G will denote an arbitrary finite group.
The following proposition generalizes [84, Theorem 3.3], and will set the stage for the

inductive proof of Theorem 7.10.

7.7 Proposition. Let A and B be normal subgroups of G with A ∩B = 1. Then

N0G ∩ (ZG · Â+ ZG · B̂) = N0G · Â+ N0G · B̂.
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Proof. We need only prove the inclusion ⊆. Let w ∈ N0G∩(ZG ·Â+ZG ·B̂). We wish to
show that w ∈ N0G · Â+N0G · B̂, and proceed by induction on the augmentation ε(w) of
w. We have ε(w) = 0 if and only if w = 0, so we can assume that w 6= 0. We can write
w = x+ y with x ∈ ZG · Â, y ∈ ZG · B̂ such that |supp(x)|+ |supp(y)| is minimal. Write
x =

∑
g∈G xgg with integer coefficients xg, and likewise for other group ring elements.

Choose h ∈ G such that xh ≥ xg for all g ∈ G. Reversing roles of A and B, if necessary,
we may assume that xh > 0. Set w′ = w − hÂ. By way of contradiction, we will show
w′ ∈ N0G. So assume that there is k ∈ A with w′

hk < 0. Since w′
hk = whk − 1 ≥ −1, it

follows that whk = 0, that is, yhk = −xhk. Note that for any g ∈ G, we have xga = xg for
all a ∈ A and ygb = yg for all b ∈ B. Take any b ∈ B. Then −xh = −xhk = yhk = yhkb,
so xhkb − xh = xhkb + yhkb ≥ 0, and xhkb = xh by assumption on h. It follows that

x = xhkhÂB̂︸ ︷︷ ︸
∈ZG·B̂

+
∑

g 6∈hÂB̂
xgg

︸ ︷︷ ︸
∈ZG·Â

, y = −xhkhkB̂ +
∑

g 6∈hkB̂
ygg

︸ ︷︷ ︸
∈ZG·B̂

.

Thus, if we set x′ = x−xhkhÂB̂ ∈ ZG·Â and y′ = y+xhkhÂB̂ ∈ ZG·B̂, then w = x′+y′

with |supp(x′)| = |supp(x)| − |AB| and |supp(y′)| ≤ |supp(y)| − |B| + (|A| − 1)|B|,
contradicting our choice of the decomposition w = x+y. We have shown that w′ ∈ N0G.
Since ε(w′) < ε(w), we may assume inductively that w′ ∈ N0G · Â+ N0G · B̂, and then
also w = w′ + hÂ ∈ N0G · Â+ N0G · B̂, as desired. ¤

The next lemma generalizes [84, Theorem 3.1].

7.8 Lemma. Let N1, . . . , Nr E G, with Nj and Nk of coprime order for all j 6= k. Set
N = N1N2 · · ·Nr, and let g1, . . . , gs be a complete system of coset representatives of N
in G. Then

N0G ∩
r∑

i=1

ZG · N̂i =
s∑

j=1

gj

(
N0N ∩

r∑

i=1

ZN · N̂i

)
.

Proof. We need only prove the inclusion ⊆. Let x ∈ N0G ∩ ∑i ZG · N̂i, and write
x =

∑
j gjxj with xj ∈ ZN . Then xj ∈ N0N for all j. Let, as in the proof of Theorem 7.1,

f be the idempotent
∏
i(1 − εNi). Then

∑
j gj(xjf) = xf = 0 implies that xjf = 0 for

all j, so xj ∈
∑

i ZN · N̂i by Lemma 7.2. This completes the proof. ¤

We can define a partial ordering on ZG, by declaring that y ≥ x if y−x ∈ N0G. We will
need a technical lemma, the proof of which closely follows the proof of [84, Theorem 4.1].

7.9 Lemma. Let N = N1 × N2 × · · · × Nr be the direct product of groups Ni of order
ni such that n1 < n2 < · · · < nr and (nj , nk) = 1 for all j 6= k. Let x, y ∈ N0N such
that x − y ∈ ∑r

i=1 ZN · N̂i. If |supp(x)| ≤ n1, then we have either (A) y ≥ x or (B)



56 II. On the Zassenhaus conjecture

|supp(y)| ≥ (n1 − |supp(x)|)(n2 − 1). In Case (A), we have |supp(y)| ≥ |supp(x)|, and
in Case (B), we have |supp(y)| > |supp(x)|.

Proof. The last statement in the theorem follows since, in Case (B), we will have

|supp(y)| ≥ (n1 − |supp(x)|)(n2 − 1) ≥ n2 − 1 > n1 − 1 ≥ |supp(x)|.

The proof of the theorem will be by induction on r ≥ 2. Set M = N1 · · ·Nr−1. There
are unique expressions

x =
∑

g∈Nr

xgg, y =
∑

g∈Nr

ygg,

where xg, yg ∈ N0M . Set I = {g | xg = 0}. This is a nonempty set, since |supp(x)| ≤
n1 − 1 < nr. In the set {yg | g ∈ I}, choose yh such that |supp(yh)| is the smallest. Set
f =

∏r−1
i=1 (1 − εNi) and fr = 1 − εNr . From the hypothesis x− y ∈∑i ZN · N̂i, we have

frf(x− y) = 0, that is, f(x− y) ∈ QM · N̂r, and consequently f(xg − yg) = f(xh − yh)
for all g ∈ Nr. Since xh = 0, equivalently

fyg = f(xg + yh). (1)

Choose k such that |supp(xk)| is maximum (among all |supp(xg)|’s). We shall distinguish
the following two main cases.

Case 1 |supp(xk)| + |supp(yh)| ≥ n1. Let t := nr − |I|, which is the number of
nonzero xg’s. We may assume that t ≥ 1, for otherwise x = 0 and y ≥ x holds. Note
the following obvious upper and lower bounds on |supp(x)|:

|supp(xk)| + t− 1 ≤ |supp(x)| ≤ |supp(xk)|t.

Using the definition of yh, we have

|supp(y)| ≥ |I| · |supp(yh)| = (nr − t)|supp(yh)|
≥ (n2 − t)(n1 − |supp(xk)|)
= n1n2 − tn1 − |supp(xk)|n2 + |supp(xk)|t
= n1n2 + t(n2 − n1) − n2 − (|supp(xk)| + t− 1)n2 + |supp(xk)|t
≥ n1n2 + (n2 − n1) − n2 − |supp(x)|n2 + |supp(x)|
= (n1 − |supp(x)|)(n2 − 1),

so we have proved (B) in this case.

Case 2 |supp(xk)|+|supp(yh)| ≤ n1−1. This case assumption means that |supp(xg)|+
|supp(yh)| ≤ n1 − 1 for all g ∈ Nr. We shall first take care of the case r = 2 (to start
the induction). In this case, M = N1 and f = 1 − εM , so by (1),

for all g ∈ N2, yg = xg + yh + zgM̂ for some zg ∈ Z. (2)
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If some zg < 0, then xg + yh = yg + |zg|M̂ implies that |supp(xg)| + |supp(yh)| ≥
|supp(xg + yh)| = n1, a contradiction. Therefore, we must have zg ≥ 0 for all g ∈ N2. It
follows from (2) that yg ≥ xg for all g ∈ N2, and hence y ≥ x in this case.

Assume now r ≥ 3. Note that (1) is equivalent to

(xg + yh) − yg ∈
r−1∑

i=1

ZM · N̂i,

by Lemma 7.2. Since |supp(xg + yh)| ≤ |supp(xg)| + |supp(yh)| ≤ n1 − 1, we can apply
the inductive hypothesis to the pair yg and xg + yh in N0M . In particular, we will have

|supp(yg)| ≥ |supp(xg + yh)| for all g ∈ Nr. (3)

If yg ≥ xg + yh for all g ∈ Nr, then yg ≥ xg for all g ∈ Nr, and we have y ≥ x, proving
(A) in this case. Otherwise, our inductive hypothesis implies that there exists an l ∈ Nr

such that
|supp(yl)| ≥ (n1 − |supp(xl + yh)|)(n2 − 1).

Note that, from (3), |supp(yg)| ≥ |supp(yh)| for all g ∈ Nr. Using this, we have

|supp(y)| = |supp(yl)| +
∑

g∈Nr\{l}
|supp(yg)|

≥ (n1 − |supp(xl + yh)|)(n2 − 1) + (nr − 1)|supp(yh)|
≥ (n1 − |supp(xl)|)(n2 − 1) + (nr − n2)|supp(yh)|
≥ (n1 − |supp(x)|)(n2 − 1),

proving (B) in this case. ¤

As in [84], we are now ready to establish a lower bound theorem for the augmentation of
the non-symmetric minimal elements in N0G∩∑r

i=1 ZG·N̂i. The proof closely follows the
proof of [84, Theorem 4.8]. As in [84, Section 6], the theorem could be used to give more
precise information on the non-symmetric minimal elements of smallest augmentation,
but we will not pursue these ideas any further.

7.10 Theorem. Let N1, N2, . . . , Nr be normal subgroups of G, with Ni of order ni,
such that (nj , nk) = 1 for all j 6= k and n1 < n2 < · · · < nr. For any minimal
element x ∈ N0G ∩∑r

i=1 ZG · N̂i, we have either (A) x is symmetric, or (B) r ≥ 3 and
ε(x) ≥ |supp(x)| ≥ n1(n2 − 1) + n3 − n2 ≥ n3.

Proof. By Lemma 7.8, we may assume that G = N . The proof will be again by induction
on r. In the case r = 2, Proposition 7.7 implies that x is necessarily symmetric, so (A)
always holds in this case. This starts the induction, and we may now proceed to the
case r ≥ 3.
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Write x =
∑

g∈Nr
xgg as in the proof of Lemma 7.9, where xg ∈ N0M and M =

N1 · · ·Nr−1. Since x ∈∑i ZN · N̂i, it follows as in the proof of Lemma 7.9 that fxg1 =
fxg2 for all g1, g2 ∈ Nr, where f =

∏r−1
i=1 (1 − εNi). Choose h such that |supp(xh)| is the

smallest. We shall argue in the following three cases.

Case 1 |supp(xh)| ≥ n1. In this case, we have

|supp(x)| ≥ |supp(xh)|nr ≥ n1n3 = n1(n2 + n3 − n2)

> n1n2 + n3 − n2 > n1(n2 − 1) + n3 − n2.

Case 2 |supp(xh)| = 0. This means that xh = 0, so we have fxg = fxh = 0 for all
g ∈ Nr, i.e., xg ∈ N0M ∩∑r−1

i=1 ZM · N̂i by Lemma 7.2. Since x is minimal, we must

have x = xkk for some k ∈ Nr, with xk necessarily minimal in N0M ∩∑r−1
i=1 ZM · N̂i.

Invoking the inductive hypothesis, xk is either symmetric, or we have r − 1 ≥ 3 and
|supp(x)| = |supp(xk)| ≥ n1(n2 − 1) + n3 − n2, as desired.

Case 3 We may assume now that 1 ≤ |supp(xh)| ≤ n1−1. Note that f(xg1 −xg2) = 0
implies that xg1 − xg2 ∈ N0M ∩∑r−1

i=1 ZM · N̂i, by Lemma 7.2. By Lemma 7.9 (applied
to the elements xh, xg ∈ N0M , where g ranges over the elements of Nr), we have the
following two possibilities:

Subcase 1 xg ≥ xh for all g ∈ Nr. In this case,

x =
∑

g∈Nr

xgg ≥
∑

g∈Nr

xhg = xhN̂r.

Since x is minimal, we must have x = xhN̂r and xh ∈M , so x is symmetric in this case.

Subcase 2 There exists l ∈ Nr such that |supp(xl)| ≥ (n1 − |supp(xh)|)(n2 − 1). In
this case,

|supp(x)| = |supp(xl)| +
∑

g∈Nr\{l}
|supp(xg)|

≥ (n1 − |supp(xh)|)(n2 − 1) + (nr − 1)|supp(xh)|
= n1(n2 − 1) + (nr − n2)|supp(xh)|
≥ n1(n2 − 1) + nr − n2

≥ n1(n2 − 1) + n3 − n2.

In any case, we have shown that either (A) or (B) holds. (For the last inequality in
(B), note that n1(n2 − 1) + n3 − n2 = n1n2 − n2 − n1 + n3 ≥ (n2 − n1) + n3 ≥ n3.) ¤

The following theorem immediately implies Theorem 7.4, as explained above.

7.11 Theorem. Let N1, . . . , Nr be normal subgroups of G which are of pairwise coprime
order. Then for any x ∈ N0G ∩∑r

i=1 ZG · N̂i, we have ε(x) ∈∑r
i=1 N0 |Ni|.
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Proof. Clearly, we may assume that r ≥ 2. Since x can be decomposed into minimal
elements in

∑
i ZG · N̂i, it suffices to prove the theorem for minimal elements x. By

Theorem 7.10, either x is symmetric, or we will have r ≥ 3 and ε(x) ≥ n1(n2−1)+n3−n2,
where ni = |Ni| and the normal subgroups Ni are suitably arranged. In the former case,
ε(x) = ni for some i. In the latter case,

ε(x) > n1(n2 − 1) > (n1 − 1)(n2 − 1),

and Lemma 7.6 implies that ε(x) ∈ N0 n1 + N0 n2 ⊆∑r
i=1 N0 |Ni|. ¤

8. Semilocal counterexamples

In this section, we present three semilocal counterexamples to the Zassenhaus conjec-
ture: We will construct group ring automorphisms in the semilocal case, i.e., group ring
automorphisms of Zπ(G)G, which do not have a Zassenhaus factorization, i.e., which do
not differ from a group automorphism by a central automorphism.

The examples include a metabelian A-group G, a supersolvable group G and a Frobe-
nius group G.

Following Scott [127, Section 2], we will avoid any explicit use of the theory of orders.
We merely construct a single group automorphism σ of G which acts in a prescribed
way on the irreducible characters of G, and show that if some other automorphism ρ of
G acts in the same way, then either ρ or ρσ moves certain characters.

Therefore we are asking for useful criteria for when a group automorphism σ of G
fixes some character χ of G. If for any g ∈ G, either g and gσ are conjugate or χ(g) =
0 = χ(gσ), then clearly χσ = χ. On the other hand, we know of certain instances when
character values are zero.

Roggenkamp and Scott [117] used the following well known criterion.

8.1 Proposition. Let χ ∈ Irr(G), N E G, and let ψ ∈ Irr(N) be a constituent of χ|N .
Let Gψ = {x ∈ G | ψx = ψ} be the inertia group of ψ. Then xG ∩ Gψ = ∅ for some
x ∈ G implies that χ(x) = 0.

Proof. By Clifford’s theorem, χ is induced from some character η ∈ Irr(Gψ) (see [28,
(11.4)]). ¤

The following criterion is particularly easy to verify. A proof using the Second Or-
thogonality Relation is given in [28, exercise 9.15].

8.2 Proposition. Let N E G, let x ∈ G with CG(x) ∩N = 1, and let χ ∈ Irr(G) with
N 6≤ ker(χ). Then χ(x) = 0.

Proof. This follows from |N | · χ(x) = χ(
∑

n∈N x
n) = χ(x ·∑n∈N n) = 0. ¤
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As a corollary, we obtain

8.3 Corollary. Let G be a Frobenius group with Frobenius kernel F , and let σ ∈ Aut(G).
Then χσ = χ holds for every character χ ∈ Irr(G) with F 6≤ ker(χ) if and only if gσ is
conjugate to g for all g ∈ F . ¤

8.4 Example. (Affine semi-linear groups.) Let F be a finite field. Write F× for its
group of units, and V for F , if considered as an additive group only. Let φ be the
Frobenius automorphism of F . The affine semi-linear group is the semidirect product

S = V o F× o 〈φ〉.

We have a homomorphism θ : F× → F×, m 7→ (mφ)m−1. Let U ≤ F× with F×θ ≤ U .
Then G = V o U ≤ S is a Frobenius group with Frobenius kernel V . Conjugation with
φ ∈ S induces an automorphism σ ∈ Aut(G), and by choice of U , the elements vσ and
v are conjugate for all v ∈ V . Thus σ fixes each irreducible character of G which does
not contain V in its kernel, by Corollary 8.3.

The next lemma shows that given certain non-conjugate group elements lying in a
product MN of normal subgroups M and N of G, there is an irreducible character of G
which takes different values on the group elements and which does not have one of the
subgroups M and N in its kernel. We will apply the lemma in the examples below. A
similar result, together with a different proof, is given in [60, Lemma 2.4].

8.5 Lemma. Let M,N E G with M ∩ N = 1. Suppose that there are given elements
u, v ∈ MN which are not conjugate in G, and that |CG(u)| = |CG(v)|. Assume further
that of both of these elements, not one is contained in M and the other in N . Then
there exists χ ∈ Irr(G) such that M,N 6≤ ker(χ) and χ(u) 6= χ(v).

Proof. We shall use that by the Second Orthogonality Relation, for a finite group X and
elements s, t ∈ X that are not conjugate in X, we have

∑

χ∈Irr(G)

|χ(s) − χ(t)|2 = |CX(s)| + |CX(t)|.

Furthermore, given x ∈ X and Y E X such that x is conjugate to xy (in X) for exactly
k elements y ∈ Y , we have

|CX/Y (x)| =
k

|Y | |CX(x)|.

Now assume that the assertion of the lemma does not hold. Then

2|CG(u)| =
∑

χ∈Irr(G/M)

|χ(u) − χ(v)|2 +
∑

χ∈Irr(G/N)

|χ(u) − χ(v)|2, (∗)
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and none of the sums on the right hand side vanish. To estimate the first sum, let

|CG/M (u)| =
k1

|M | |CG(u)|, |CG/M (v)| =
k2

|M | |CG(u)|.

Since u and v are not conjugate in G/N , we have k1 + k2 ≤ |M |, and if this is an
equality, then either u ∈ N or v ∈ N . The second sum can be treated similarly. Since
(∗) is an equality, we can assume without lost of generality that u = 1, which produces
a contradiction. This proves the lemma. ¤

We give a typical application:

8.6 Corollary. Let G be a Frobenius group, and assume that the Frobenius kernel of G
is the direct product of nontrivial normal subgroups M and N of G. Let σ ∈ Aut(G)
with Mσ = M and Nσ = N . If χσ = χ for every χ ∈ Irr(G) with M,N 6≤ ker(χ), then
σ ∈ Autc(G).

Proof. By Lemma 8.5, we have that xσ is conjugate to x, for all x ∈ MN . Choose
n0 ∈ Z(N) \ {1}, and g ∈ G with n0σ = ng0. Then for any m ∈ Z(M), there is h ∈ G
with ng0(mσ) = (n0m)σ = nh0m

h, and since G is a Frobenius group, we may choose h = g.
Thus we can assume that mσ = m for all m ∈ Z(M). Then gσ ∈ gCG(Z(M)) = gMN
for all g ∈ G, and therefore σ ∈ Autc(G) by Corollary 8.3. ¤

Let us recall the following proposition, which is a consequence of Proposition 1.5
(cf. [54, Proposition 2.1.3]).

8.7 Proposition. Assume that G has nontrivial normal subgroups M and N of coprime
order, and that some σ ∈ Aut(G) with (MN)σ = MN satisfies the following conditions:

1. The automorphism of G/MN induced by σ is not class-preserving;

2. σ fixes each irreducible character of G which has exactly one of the normal sub-
groups M and N in its kernel;

3. If another automorphism ρ of G satisfies the above conditions (which are fulfilled
by σ), then one of the following hold:

– ρ moves some irreducible character of G which does not has M in its kernel;

– The automorphism of G/M induced by ρσ is not class-preserving.

Let S be a semilocal Dedekind ring of characteristic 0. Then SG has an augmentation-
preserving automorphism α which has no Zassenhaus factorization, i.e., there is no
ρ ∈ Aut(G) such that ρα is a central automorphism of SG.
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Proof. Let P be a prime ideal of S. If |M | 6∈ P , then SPG = εMSPG⊕ ηMSPG (where
εM = 1

|M |
∑

m∈M m and ηM = 1 − εM ), and an automorphism α(P ) of SPG is defined

as follows: α(P ) fixes εMSPG element-wise, and agrees with σ on ηMSPG. Otherwise
|N | 6∈ P , and α(P ) is defined correspondingly, using the normal subgroup N instead of
M . By Proposition 1.5, there is an automorphism α of SG which agrees with each α(P )
up to an inner automorphism of SPG. The third condition precisely says that α has no
Zassenhaus factorization. ¤

We are now ready to produce semilocal counterexamples to the Zassenhaus conjecture
with relatively minor effort.

8.8 Example (A metabelian A-Group). A metabelian group G having abelian Sy-
low subgroups and a Sylow tower, |G| = 22 · 32 · 5, is presented such that SG, where
S = Zπ(G), has an augmentation-preserving automorphism without Zassenhaus factor-
ization.

Let X = 〈x〉 ∼= C4, M = 〈s, t〉 ∼= C3×C3 and N = 〈n〉 ∼= C5. Then G is the semidirect
product G = (M ×N) oX where sx = t, tx = s2 and nx = n−1.

An automorphism σ ∈ Aut(G) is defined by xσ = x3, sσ = s, tσ = t2 and nσ = n.
(In fact, x operates on M via the matrix [ 0 1

2 0 ], which is inverted by the matrix [ 1 0
0 2 ].)

Obviously, σ induces on G/MN an automorphism which is not class-preserving. Since
m is conjugate to mσ for all m ∈ M , it follows from Proposition 8.2 that σ fixes each
irreducible character of G which has exactly one of the normal subgroups M and N in
its kernel.

Assume that some ρ ∈ Aut(G) fixes each faithful irreducible character of G; we will
show that ρ is an inner automorphism. By Lemma 8.5, each element a of MN is conju-
gate to its image aρ. Thus we may assume that nρ = n. Then for each m ∈M , we have
mρ = mg for some g ∈ CG(n) since (mρ)n is conjugate to mn, i.e., either mρ = m or
mρ = m−1. This means that either ρ|M = id or ρ|M = conj(x2), so that we can assume
that ρ|MN = id. Furthermore, we can assume that Xρ = X, and since X acts faithfully
on M , it follows that ρ = id.

Now Proposition 8.7 shows that SG has an augmentation-preserving automorphism
without Zassenhaus factorization.

It should be remarked that in [60, Theorem B], a group of order 24 ·3 ·52, with abelian
Sylow subgroups and a Sylow tower, is given for which the Zassenhaus conjecture does
not hold.

8.9 Example (A supersolvable group). A supersolvable group G of order 23 · 32 · 5
is presented such that SG, where S = Zπ(G), has an augmentation-preserving automor-
phism without Zassenhaus factorization.

Let Q8 = 〈a, b〉 be the quaternion group of order 8, and let L = 〈l : l3〉, M = 〈m :
m3〉, N = 〈n : n5〉. The group G is the semidirect product G = (L ×M × N) o Q8
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where [l, a] = [m, b] = [n, ab] = 1, and none of the normal subgroups L, M and N is
central in G.

An automorphism σ ∈ Aut(G) is defined by lσ = l−1, and the remaining generators
m,n, a, b stay fixed.

The automorphism induced on G/MN by σ is not class-preserving since the images
of la and (la)σ = l−1a in G/MN are not conjugate.

We will show that σ fixes each irreducible character of G which has exactly one of the
normal subgroups M and N in its kernel. Take any χ ∈ Irr(G) with N ≤ ker(χ) and
M 6≤ ker(χ); we have to show χ(xσ) = χ(x) for x ∈ LMQ8. But this is obvious if xσ
is conjugate to x, and otherwise we have x, xσ 6∈ LM〈b〉, therefore CG(x) ∩M = 1 and
χ(xσ) = 0 = χ(x) by Proposition 8.2. The corresponding statement, with roles of M
and N interchanged, is verified analogously.

Finally, let ρ be an automorphism of G which also fixes each irreducible character of G
which has exactly one of the normal subgroups M and N in its kernel, and assume that
ρ fixes each χ ∈ Irr(G) with M 6≤ ker(χ). Then we will show that the automorphism
of G/M induced by ρσ is not class-preserving. Assume the contrary. Then ρσ induces
an inner automorphism of G/MN , and we can assume that xρ = x for all x ∈ Q8,
and lρ = l−1. By assumption, ρ fixes each character χ ∈ Irr(G) with M 6≤ ker(χ)
or N 6≤ ker(χ). Consequently, (mb)ρ is conjugate to mb and (nab)ρ is conjugate to
nab, which implies that mρ = m and nρ = n. Hence (lmn)ρ is not conjugate to lmn,
contradicting Lemma 8.5.

Now Proposition 8.7 shows that SG has an augmentation-preserving automorphism
without Zassenhaus factorization.

This example seems to be a really “small one”, so it might be worthwhile to expand on
it. The reader may have noticed that the normal subgroups L, M and N can be replaced
by any cyclic subgroups of prime order so that two of them are of coprime order, thus
producing a whole family of semilocal counterexamples.

We leave it (as an exercise?) to the reader to figure out what family members give rise
to counterexamples to the Zassenhaus conjecture (cf. Section 10). Therefore, one should
write ZG as a pullback as described in Theorem 7.1 (possibly involving three normal
subgroups!).

8.10 Example (A Frobenius group). A Frobenius group G of order 3 · 23 · 52 · 112

is presented such that SG, where S = Zπ(G), has an augmentation-preserving automor-
phism without Zassenhaus factorization.

A Frobenius complement H of G is given by

H = 〈a, b, t : a4, a2 = b2, ba = b−1, t3, at = b3a, bt = a〉 ∼= Q8 o C3.

We have faithful representations π5 : H → SL(2, 5) and π11 : H → SL(2, 11), given by

aπ5 =

[
0 4
1 0

]
, bπ5 =

[
2 0
0 3

]
, tπ5 =

[
1 2
1 3

]
,



64 II. On the Zassenhaus conjecture

aπ11 =

[
4 6
10 7

]
, bπ11 =

[
0 7
3 0

]
, tπ11 =

[
5 7
5 5

]
.

The group G is the corresponding semidirect product

G :=
(
F(2)

5 ⊕ F(2)
11

)
oH,

a Frobenius group, since none of the matrices from Hπi has eigenvalue 1.
We claim that there is σ ∈ Aut(G) having the following properties: g is conjugate to

gσ for each group element g from one of the normal subgroups M := F(2)
5 , N := F(2)

11 ,
and σ induces an automorphism of H which is not class-preserving.

First, note that η ∈ Aut(H), defined by aη = ba, bη = b3 and tη = t2, is not a
class-preserving automorphism since η induces a non-inner automorphism of the cyclic
quotient H ∼= 〈t〉. Furthermore, for S5 = [ 0 3

1 0 ] ∈ GL(2, 5) and S11 = [ 1 0
0 10 ] ∈ GL(2, 11),

we have (hη)πi = S−1
i (hπi)Si for all h ∈ H (i = 5, 11). Thus there is σ ∈ Aut(G)

extending η (meaning that hσ = hη for all h ∈ H), and (a, b)σ = (a, b) · Si for all

(a, b) ∈ F(2)
i (i = 5, 11).

Since |H| = 24 and |M | = 25, it is obvious that mσ is conjugate to m for all m ∈M .
Let ζ5 be a primitive 5th root of unity in F11. Note that no matrix from K :=

〈Hπ11, S11〉 has eigenvalue ζ5 (simply because (|K|, 5) = 1). It follows that under the
action of H on N \{1}, there are 5 orbits, with set of representatives {(ζ j5 , 0) | 0 ≤ j ≤ 4}
(since 5 · 24 = 112 − 1). Further on, nσ is conjugate to n for all n ∈ N .

Thus σ has the desired properties. It follows that σ fixes each irreducible character ofG
which has exactly one of the normal subgroups M and N in its kernel, by Proposition 8.2.

Finally, if an automorphism ρ ofG fixes each character χ ∈ Irr(G) withM,N 6≤ ker(χ),
then ρ ∈ Autc(G) by Corollary 8.6.

Now Proposition 8.7 shows that SG has an augmentation-preserving automorphism
without Zassenhaus factorization.

This example shows that Frobeniusgroups are qualified to yield semilocal counterex-
amples, which might come as a surprise. It is known that a weaker version of the
Zassenhaus conjecture holds for Frobenius groups (see [56, Corollary 7]).

9. Group- and character table automorphisms of (Z/rZ) o Sn
The automorphisms of a finite Coxeter group W , its integral group ring ZW , and the
associated generic Iwahori-Hecke algebra are classified in [14] (in particular, the Zassen-
haus conjecture holds for W ), and in [14, p. 620] the opinion has been expressed that
at least some of these results should extend to the case where W is a finite complex
reflection group.

Shephard and Todd classified in [133] the finite complex reflection groups. These
groups are direct products of irreducible ones, which either belong to one of two infinite



9. Group- and character table automorphisms of (Z/rZ) o Sn 65

series or to a list of 34 groups. For these exceptional groups, the Zassenhaus conjecture
is valid (see [63, Section 5]).

We shall calculate the group- and character table automorphisms for the groups of
one of the infinite families. In particular, we show that the Zassenhaus conjecture holds
for these groups. This family comprises the Coxeter groups of type Bn, and its members
are the wreath products Gn,r = (Z/rZ) o Sn, for the natural action of the symmetric
group Sn on the set {1, 2, . . . , n} (n and r are natural numbers).

The complex reflection group Gn,r can be identified with the group of all monomial
matrices of size n whose nonzero entries are rth roots of unity. We assume that n, r > 1,
and exclude the case n = r = 2 (G2,2 is the dihedral group of order 8).

Automorphisms of (Z/rZ) o Sn
The outer automorphism group of Gn,r is described by the following proposition.

9.1 Proposition. Let Gn,r be as above. If 2 | r and n > 2, there is a unique central
automorphism δ of Gn,r of order 2 which fixes each element of the base group.1 Let
N ≤ Aut(Gn,r) consist of those automorphisms of Gn,r which stabilize the base group,
and fix its complement Sn element-wise. Then N is an abelian group which intersects
Inn(Gn,r) trivially. We have

Out(Gn,r) ∼=
{
N × 〈δ〉 if 2 | r and n > 2,

N otherwise.

Let Np ≤ N consist of those automorphisms which fix each p′-element of the base group;
then N =

∏
pNp, where p runs over the prime divisors of r. For such a p, let pa be the

highest power of p dividing r. Then

Np
∼=





(Z/paZ)× × (Z/paZ)× if p - n,

(Z/paZ)× × Cpa if p is odd and p | n, or if p = 2 and 4 | n,
(Z/2aZ)× × C2a−1 × C2 if p = 2 and n/2 is odd.

Explicit generators of the cyclic subgroups are given in Table II.1 on page 69.

Proof. Let B be the base group of Gn,r, so that Gn,r = B o Sn. As Sn-module, B
is induced from Z/rZ, considered as trivial Sn−1-module. By the Eckmann-Shapiro
Lemma for Ext,

H1(Sn, B) = H1(Sn, (Z/rZ)
xSn
Sn−1

) ∼= H1(Sn−1,Z/rZ)

∼= Hom(Sn−1,Z/rZ) ∼=
{
C2 if 2 | r and n > 2,

0 otherwise.

1called a “duality automorphism” in [14]
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Hence if 2 | r and n > 2, there is a non-inner automorphism δ of Gn,r which fixes B
element-wise and induces the identity on Gn,r/B. Indeed, we may assume that δ is
central, i.e., that δ induces the identity modulo the center of Gn,r; then δ is unique (in
particular, central in Aut(Gn,r)), and of order 2.

Now let α ∈ Aut(Gn,r). Note that the base group B is characteristic in Gn,r (in our
special situation, it is easily seen that B is the unique abelian normal subgroup of order
rn). Thus multiplying α by an inner automorphism, and, if necessary, with δ as above,
we may assume that α stabilizes B and its complement Sn.

Let ξ be a primitive rth root of unity. Then 〈ξ〉 ∼= Z/rZ, and each b ∈ B can be
written in the form b = (ξu1 , ξu2 , . . . , ξun) with ui ∈ Z. Note that CSn(b) is a Young
subgroup. In particular, the centralizer of t = (ξ, 1, . . . , 1) in Sn has order (n− 1)!, and
since automorphisms preserve the class lengths, it easily follows that

tα = (ξ, 1, . . . , 1)α = (ξv, . . . , ξv, ξu, ξv, . . . , ξv)

for some u, v ∈ Z with ξu 6= ξv.
We will see at once that α induces on Sn an inner automorphism: Otherwise n = 6

and α|Sn maps the class of cycle type (2) to the class of cycle type (2, 2, 2), and as t is
centralized by a transposition of Sn, its image tα is centralized by an element of Sn of
cycle type (2, 2, 2), which is impossible by the description of tα given above.

Further modifying α by an inner automorphism, we assume from now on that α
stabilizes B and fixes the complement Sn element-wise, i.e., that α ∈ N . Then t and tα
have the same centralizer in Sn, so that

tα = (ξ, 1, . . . , 1)α = (ξu, ξv, . . . , ξv).

Since (tg)α = (tα)g for all g ∈ Sn, the action of α on B is determined by tα, and can be
described by the (n× n)-matrix

M = M(u, v) =




u v . . . v

v u
. . .

...
...

. . .
. . . v

v . . . v u



.

Since

M(a, b)M(u, v) = M(au+ (n− 1)bv, bu+ av + (n− 2)bv) = M(u, v)M(a, b),

it follows that N is an abelian group.
Clearly N =

∏
pNp as claimed, so we assume from now on that r = pa is the power of a

prime p. Let M× be the set of matricesM := M(u, v) with det(M) a unit in R := Z/paZ.
(We shall consider M also as an element of Matn(R).) Note that M := M(s, t) defines



9. Group- and character table automorphisms of (Z/rZ) o Sn 67

an automorphism (lying in N) if and only if M ∈ M×, so that we can identify N with
M×. The matrix

A =




1 −1 0 . . . 0

1 0 −1
. . .

...
...

...
. . .

. . . 0
1 0 . . . 0 −1
1 1 . . . . . . . 1




has inverse

A−1 =
1

n




1 1 . . . . . . . . . . 1
1 − n 1 . . . . . . . . . . 1

1 1 − n 1 . . . 1
...

. . .
. . .

. . .
...

1 . . . 1 1 − n 1



,

and
AMA−1 = diag(u− v, u− v, . . . , u− v, u+ (n− 1)v).

Thus M , when considered as element of Matn(R), is invertible if and only if its eigen-
values u− v and u+ (n− 1)v are units in R.

We first handle the case when p - n. Let µ ∈ R×. Clearly diag(µ, . . . , µ) ∈ AM×A−1,
and setting v = u − 1, we see that also diag(1, . . . , 1, µ) ∈ AM×A−1. Obviously
AM×A−1 is generated by all matrices of this shape, and it follows that M× = {M(µ, 0) |
µ ∈ R×} × {M(1 + µ−1

n , µ−1
n ) | µ ∈ R×}.

Now assume that p | n. Then u− v ∈ R× if and only if u+ (n− 1)v ∈ R×, and given
u ∈ R, any µ ∈ R× can be written as µ = u−(u−µ). Thus M× has order pa−1(p−1)pa.
Clearly, {M(µ, 0) | µ ∈ R×} ≤ M× has order pa−1(p− 1). Note that

M(u, v)k =
1

n
M
(
(n− 1)(u− v)k + (u+ (n− 1)v)k,−(u− v)k + (u+ (n− 1)v)k

)
.

In particular,

M(0,−1)k =
1

n
M
(
n− 1 + (1 − n)k,−1 + (1 − n)k

)

= M(1 − S(k),−S(k)) with S(k) =
k∑

i=1

(
k
i

)
(−n)i−1,

and for any m ∈ N,

S(pm) = pm + pm
pm∑

i=2

(
pm−1
i−1

)(−n)i−1

i
.

Assume that p is odd, or that p = 2 and 4 | n. Let i ≥ 2. If pb | i for some b ≥ 1, then
i− 1 ≥ pb − 1 ≥ b, with pb − 1 > b if p is odd. Hence the nominator (−n)i−1 is divided
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by a higher power of p than the denominator i, and it follows that S(pm) ∈ pm+pm+1Z.
Thus M(0,−1) ∈ M× has order pa, and

M(0,−1)p
a−1

= M(1 − pa−1, pa−1) in GLn(Z/paZ)

implies that 〈M(0,−1)〉 ∩ {M(µ, 0) | µ ∈ R×} = 1. Consequently, M× is generated by
M(0,−1) and the diagonal matrices M(µ, 0).

We are left with the case p = 2 and n = 2d for odd d. We have

M(1, 2)k = M
(
(−1)k + S̃(k), S̃(k)

)
with S̃(k) = 2

k∑

i=1

(
k
i

)
(2n)i−1(−1)k−i,

and for any m ∈ N,

S̃(2m) = 2

(
2m + 2m

2m∑

i=2

(
2m−1
i−1

)(2n)i−1

i
(−1)2

m−i
)
.

For i ≥ 2, the nominator (2n)i−1 is divided by a higher power of 2 than the denominator
i. Hence S̃(2m) ∈ 2m+1 + 2m+2Z, and

M(1, 2)2
a−2

= M(1 + 2a−1, 2a−1) in GLn(Z/2aZ) for a ≥ 3.

It follows that M(1, 2) ∈ M× has order 2a−1, and that M(1, 2) intersects the group of
diagonal matrices trivially.

Note that M(0, 1)2 = M(n − 1, n − 2), so M(0, 1) has order 2 in GLn(Z/4Z) by
assumption on n.

Finally, note that M(1 − 1
d ,− 1

d) is an element of M× of order 2.
Altogether, it follows that N is of the form as shown in Table II.1 on page 69. ¤

Character table automorphisms of (Z/rZ) o Sn
Set t = diag(ξ, 1, . . . , 1) and let si be the permutation matrix which permutes the ith and
the (i+1)th basis vector (and leaves the remaining fixed). Then Gn,r = 〈t, s1, . . . , sn−1〉.
For all u, v ∈ Z, there are representations

ρ+
u,v, ρ

−
u,v : Gn,r → GLn(C), defined by

ρ+
u,v(t) = ρ−u,v(t) = diag(ξu, ξv, . . . , ξv),

ρ+
u,v(si) = si and ρ−u,v(si) = −si for all 1 ≤ i ≤ n− 1.

The irreducible characters of Gn,r can be obtained by the “method of little groups”
(see [132]). From this description, it follows that each n-dimensional irreducible character
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Case 1: p - n.

N = {M(µ, 0) | µ ∈ R×} × {M(1 + µ−1
n , µ−1

n ) | µ ∈ R×}
∼= (Z/paZ)× × (Z/paZ)×

Case 2: p odd and p | n, or p = 2 and 4 | n.
N = {M(µ, 0) | µ ∈ R×} × 〈M(0,−1)〉 ∼= (Z/paZ)× × Cpa

Case 3: pa = 2a and n = 2d with d odd.

a = 1 : N = 〈M(0, 1)〉 ∼= C2

a = 2 : N = {M(µ, 0) | µ ∈ R×} × 〈M(1, 2)〉 × 〈M(0, 1)〉 ∼= C2 × C2 × C2

a ≥ 3 : N = {M(µ, 0) | µ ∈ R×} × 〈M(1, 2)〉 × 〈M(1 − 1
d ,− 1

d)〉
∼= C2a−2 × C2 × C2a−1 × C2

Table II.1.: Structure of N for G = Cpa o Sn.

of Gn,r is afforded by some representation ρεu,v, and if two such representations are
distinct, then they are non-equivalent except for the case n = 2 and the characters ρ+

u,v

and ρ−u,v. Note that a representation ρεu,v is faithful if and only if the determinant of
the matrix M(u, v) is a unit in Z/rZ. A faithful character afforded by some ρ+

u,v will
be called a natural reflection character. It is obvious that the subgroup N ≤ Aut(Gn,r)
defined in Proposition 9.1 acts simply transitive on the natural reflection characters.

The conjugacy classes of Gn,r are indexed by a set of multipartitions. We shall only
need the following facts. Set

Z(d, a) :=




1
. . .

1
a



d×d

(a monomial d× d-matrix). Then each element of Gn,r is conjugate to a block diagonal
matrix of the form

M := diag(Z(n1, a1), . . . , Z(nk, ak))

for some integers ni and rth roots of unity ai. If we arrange the ni in increasing order,
we obtain a partition of n which we call the shape of the matrix M . Note that two block
matrices of the above form are conjugate in Gn,r if and only if they can be transformed
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into each other by permuting the blocks. Also,

char.pol(M) = det(X · id −M) =
k∏

i=1

(Xni − ai).

Note that the conjugacy class of M is not determined by its characteristic polynomial
and its shape.

We shall write AutCT(G) for the group of automorphisms of the character table
CT(G) of a finite group G (following [14, Definition 2.6]).

Recall that we assume that Gn,r 6= G2,2.

9.2 Theorem. Each character table automorphism of Gn,r which fixes a natural reflec-
tion character is trivial, and the sequence

1 - Inn(Gn,r) - Aut(Gn,r) - AutCT(Gn,r) - 1

is exact.

Proof. Let χεu,v be the character afforded by ρεu,v (ε = ±1). Let τ ∈ AutCT(Gn,r).
For each g ∈ Gn,r we choose some τ(g) ∈ Gn,r such that τ maps the class of g to
the class of τ(g). Assume that n ≥ 3 and that τ maps χ+

1,0 to some χ−
u,v. Then

χ+
1,0(τ(s1)) = τ(χ+

1,0)(s1) = χ−
u,v(s1) = −(n− 2). Thus τ(s1) must be conjugate in Gn,r

to an element of the form diag(ξi, ξ−i,−1, . . . ,−1) ·s1. This can only happen if r is even,
so we can define a duality automorphism δ of Gn,r as in Proposition 9.1, which maps
χ−
u,v to χ+

u,v. If n = 2, then χ−
u,v = χ+

u,v. Since we have already seen that Aut(Gn,r)
acts transitive on the natural reflection characters, we assume from now on that τ fixes
the character χ := χ+

1,0 of the representation ρ := ρ+
1,0, and then have to show that τ is

trivial.
By [14, Corollary 2.5], we have char.pol(ρ(τ(g))) = char.pol(ρ(g)) for all g ∈ Gn,r.
Let N be the normal subgroup of Gn,r consisting of the diagonal matrices. We will

show that τ fixes N .
Let 1 6= g ∈ 〈t〉. Since g has eigenvalue 1 with multiplicity n−1, the class of g is either

fixed by τ or sent to the class of s1. But g has exactly n conjugates in Gn,r, whereas s1
has more than n conjugates (this is the reason why we do not consider G2,2 here). Thus
τ fixes the class of g.

We remark that by the same reasoning, it follows that the class of s1 is fixed by τ :
Since τ preserves the orders of the elements of Gn,r and fixes ρ, it follows that τ(s1) is
either conjugate to diag(−1, 1, . . . , 1) (which turns out to be impossible by comparing
the conjugacy lengths) or to an element of the form diag(ξi, ξ−i, 1, . . . , 1) ·s1 (i.e., to s1).

Since N is generated by the conjugates of t, it follows from [14, Corollary 2.5] (and an
easy induction) that τ(N) = N . Hence τ permutes the characters of Gn,r having N in
their kernel, and we obtain an induced character table automorphism τ̄ of the quotient



9. Group- and character table automorphisms of (Z/rZ) o Sn 71

Gn,r/N ∼= Sn. By Peterson’s result [101] (see also [14, Subsection 2.7]), τ̄ must be trivial.
This is obvious for n 6= 6; for n = 6, note that the class of s1 is fixed by τ̄ . In other
words, τ preserves the shape of each element of Gn,r.

Assume that a permutation matrix P = diag(Z(n1, 1), . . . , Z(nk, 1)) ∈ Gn,r has the
same characteristic polynomial as a matrix M = diag(Z(n1, a1), . . . , Z(nk, ak)) for some
rth roots of unity ai. We will show by induction on n = n1 + . . .+nk that P and M are
conjugate in Gn,r. Therefore we may assume that n1 = . . . = nl < nl+1 ≤ nl+2 ≤ . . .. In
the quotient field of the ring of formal power series,

1 =

∏k
i=1(Xni − ai)∏k
i=1(Xni − 1)

=
k∏

i=1

(
ai + (ai − 1)

∞∑

j=1

Xnij

)
=: f(X).

Thus
∏k
i=1 ai = 1, and the lowest non-constant term of f has coefficient

c :=
l∑

i=1

(
(ai − 1)

∏

j 6=i
aj

)
=

l∑

i=1

(1 − a−1
i ).

Since c = 0, we get a1 = . . . = al = 1 by the triangle equality. If k = l we are done, and
otherwise diag(Z(nl+1, 1), . . . , Z(nk, 1)) and diag(Z(nl+1, al+1), . . . , Z(nk, ak)) have the
same characteristic polynomials, and the proof is completed by induction.

Now let M = diag(Z(n1, a1), . . . , Z(nk, ak)) ∈ Gn,r. We will show that τ fixes the class
of M . This will be done by induction on the number of the ai’s which are different from
one. The case when M is a permutation matrix already being settled, we can assume
that a1 6= 1. Then M is the product of diag(Z(n1, 1), Z(n2, a2), . . . , Z(nk, ak)) and a
diagonal matrix D with one main diagonal entry equal to a1, and all others equal to 1.
We know that τ(D) is conjugate to D, so by [14, Corollary 2.3(a)] and the induction
hypothesis, we may assume that τ(M) = diag(Z(n1, 1), Z(n2, a1a2), . . . , Z(nk, ak)) (the
reader should notice that nothing can happen if M consists of a single block only). It
follows that the matrices diag(Z(n1, a1), Z(n2, a2)) and diag(Z(n1, 1), Z(n2, a1a2)) have
the same characteristic polynomials, i.e., that a1X

n2 + a2X
n1 = Xn2 + a1a2X

n1 . Since
a1 6= 1, it follows that n1 = n2. Thus if a2 = 1, then τ(M) is obtained from M by
permuting the first two blocks. Otherwise τ(M) and τ 2(M) are conjugate by induction
hypothesis, and we may apply τ−1 to obtain the desired result.

We have shown that τ is trivial. Thus to prove exactness of the short sequence, we only
need to observe that class-preserving automorphisms of Gn,r are inner automorphisms.

¤

To conclude this chapter, we describe a particular situation when a character table
automorphism of a factor group of G can be extended to an automorphism of the whole
character table of G. This situation is given, for example, for the complex reflection
group G of order 36 · 2, which will lead to a character table automorphism which is not
induced by a group automorphism of G.
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9.3 Remark. LetG be a finite group, with normal subgroupN . We will write Ḡ = G/N
etc. Note that for g ∈ G, we have CḠ(ḡ) = l

|N |CG(g), where l is the number of conjugates

of g lying in the coset Ng. In particular, if CḠ(ḡ) = CG(g) for some g ∈ G, and C denotes
the column of the character table CT(G) belonging to g, then the following holds.

(i) If a column C ′ of CT(G) agrees with C in all entries which correspond to characters
having N in their kernel, then C ′ = C;

(ii) All entries of C which correspond to characters having N not in their kernel are
zero.

(The second observation follows from the Second Orthogonality Relation, and, of course,
implies the first one.)

Now assume that there is τ ∈ AutCT(Ḡ) with the property that τ moves only classes
of elements ḡ with CḠ(ḡ) = CG(g). Then, by the above, τ extends to a character table
automorphism of G which fixes the class of g if the class of ḡ is fixed by τ , and moves
the class of g to the class of h if τ moves the class of ḡ to the class of h̄ (note that this
prescription is well defined).

9.4 Example. We show that the imprimitive complex reflection group G of order 36 · 2
has a character table automorphism which is not induced by a group automorphism.2

Let ξ be a primitive 9th root of unity, and put

t =



ξ 0 0
0 1 0
0 0 1


 , s1 =




0 1 0
1 0 0
0 0 1


 , s2 =




1 0 0
0 0 1
0 1 0


 .

Then G = 〈t3, t−1s1t, s1, s2〉 is a normal subgroup of G3,9 = 〈t, s1, s2〉 of index 3 contain-
ing all diagonal matrices whose determinant is a 3th root of unity (often G is denoted
by G(9, 3, 3)). Set

a =




1 0 0
0 ξ3 0
0 0 ξ6


 , b =



ξ 0 0
0 ξ4 0
0 0 ξ4


 .

Then as1 = a2b3, bs1 = ab4, as2 = a2 and bs2 = b, so N := 〈a, b〉 is a normal subgroup
of G of order 33. (Also, note that N = {[x, s1s2] | x ∈ D}, where D is the subgroup of
diagonal matrices in G.) Finally, set

u = t3 =



ξ3 0 0
0 1 0
0 0 1


 , v =




1 0 0
0 ξ 0
0 0 ξ−1


 .

2GAP [37] claims that |AutCT(G)| = 2|Out(G)| = 108.
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Then 〈ū, v̄〉 is a subgroup of order 9 in Ḡ := G/N , with v̄s̄1 = v̄s̄2 = v̄2 and [ū, Ḡ] = 1.
Thus Ḡ = 〈ū〉× (〈v̄〉o 〈s̄1, s̄2〉) ∼= C3× (C3 oS3). Let τ be the automorphism of Ḡ which
fixes ū and v̄, and interchanges s̄1 and s̄2. Note that the factor C3 oS3 contains a unique
class of involutions, so that τ fixes each class of elements of 2-order and each class of
elements of composite order. It follows that τ interchanges the classes of ūiv̄(s̄1s̄2) and
ūiv̄2(s̄1s̄2) for i = 0, 1, 2, and leaves the remaining classes fixed.

Let g = uivs1s2 for some i. Note that a diagonal matrix which centralizes g is a
multiple of the identity matrix. It readily follows that CN (g) has order 3. We have
gv = (bs1s2)2g ∈ Ng. Assume that gv = gx for some x ∈ N . Then x = λ · v for some
λ ∈ 〈ξ〉. Since xv−1 ∈ G, it follows that λ ∈ 〈ξ3〉. But then x ∈ 〈a, b3〉, and we obtain
the contradiction 1 = x3 = v3 6= 1. We have proved that all elements in the coset Ng
are conjugate in G, and therefore CḠ(ḡ) = CG(g).

It follows that τ extends to a character table automorphism τ̂ of G (in the sense
of Remark 9.3). Clearly, τ̂ is not a field automorphism. Next, we show that τ̂ is not
induced by a group automorphism.

Assume that τ̂ is induced by some ϕ ∈ Aut(G). Then ϕ stabilizes N , and fixes the
conjugacy class of each diagonal matrix. Note that class-preserving automorphisms of Ḡ
are necessarily inner automorphisms, so that we can assume that ϕ induces α on Ḡ. Then
s2ϕ = xs1 and vϕ = yv for some x, y ∈ N , and we obtain (yv)s1 = (yv)xs1 = (vϕ)s2ϕ =
v−1ϕ = y−1v−1, i.e., s1 inverts vϕ. Thus vϕ is of the form diag(ξi, ξ−i, ξj), and since vϕ
is conjugate to v, it follows that vϕ = diag(ξ±1, ξ∓1, 1). Finally, v−1(vϕ) ∈ N implies
that vϕ = diag(ξ, ξ−1, 1). Furthermore, s1ϕ ∈ Ns2, so (vs1)ϕ = (vϕ)s1ϕ = (vϕ)s2 =

diag(ξ, 1, ξ−1) = vs1 . Hence diag(ξ, ξ, ξ−2) = v · vs1 φ7−→ vϕ · vs1ϕ = diag(ξ2, ξ−1, ξ−1), a
contradiction, since by assumption ϕ fixes the conjugacy class of v · vs1 .



III. Automorphisms of integral group rings:
local–global considerations

Le bon sens est la chose du monde la mieux partagée, car chacun

pense en être bien pourvu.

Réne Descartes

Le Discours de la méthode, 1637

An automorphism α of an integral group ring RG, where G is a finite group, is said
to have a Zassenhaus factorization if it is the composition of an automorphism of G
(extended to a ring automorphism) and a central automorphism. Blanchard [13] showed
that there are three groups of order 96 whose group rings over semilocal coefficient rings
R have automorphisms without Zassenhaus factorization. In this chapter, it is shown
that over the coefficient ring Z of rational integers, the same holds for two of these
groups, but not for the remaining group.

10. General considerations and the groups of Blanchard

In the last 15 years, counterexamples were found to the Zassenhaus conjecture, the
normalizer problem, and the isomorphism problem. These are questions about isomor-
phisms of integral group rings ZG, where G is a finite group, and the counterexamples
were found among the finite solvable groups.

A common point of view was that the main problem was to find the semilocal coun-
terexample, with the global problem over Z just being a question of hard work. Allowing
a sufficiently broad interpretation, this philosophy may be accurate: It may indeed be
difficult in a given semilocal case to check if one has a counterexample. However, there is
at least a general K-theoretic procedure, outlined by Roggenkamp and Scott [117]. And
while it may lead to an obstruction, counterexamples usually come in families, and there
should always be a possibility of selecting the appropriate family member or making
some other small modification to get rid of the obstruction. The results presented here
illustrate this point of view.

A specific counterexample due to Roggenkamp and Zimmermann [122], did not lead to
a global example (see [57, Section 8]), in spite of expectations. However, it is conventional
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wisdom that existence of the semilocal automorphism is very strong evidence for the
existence of a global automorphism.

Recently, Blanchard [13] showed that there are three semilocal counterexamples to
the Zassenhaus conjecture, the groups having order 96 (and that there are no smaller
groups violating the conjecture). Here, it is shown that two of his groups give rise to
global counterexamples, but not the remaining one.1

Let G be a finite group, and let S be a G-adapted ring, that is, an integral domain
of characteristic 0 in which no prime divisor of |G| is invertible. (A basic example
is Zπ(G), the intersection of the localizations Z(p) with p in π(G), the set of prime
divisors of |G|.) Following [127, p. 327], we shall say that an automorphism of SG
has a Zassenhaus factorization if it is the composition of a group automorphism of
G (extended to a ring automorphism) and a central automorphism (an automorphism
of SG fixing the center element-wise). Then, the Zassenhaus conjecture holds for G
if each augmentation-preserving automorphism of ZG has a Zassenhaus factorization.
Roggenkamp and Scott [117] constructed for the first time a group G such that ZG has
an augmentation-preserving automorphism which has no Zassenhaus factorization (see
also [82]). Further counterexamples are given in [55, 60] (the smallest example having
order 144). Blanchard [13,12] gave semilocal counterexamples. His groups from [13] are
the following groups of order 96 = 25 · 3.

G0 = 〈a, b, c, q | a4 = b4 = c2 = q3 = 1, [b, c] = [b, q] = [c, q] = 1,

ba = bc, ca = b2c, qa = q−1〉,
G1 = 〈a, b, c, q | b4 = c2 = q3 = 1, a4 = b2, [b, c] = [b, q] = [c, q] = 1,

ba = bc, ca = a4c, qa = q−1〉,
G2 = 〈a, b, c, q | a8 = b2 = c2 = q3 = 1, [b, c] = [b, q] = [c, q] = 1,

ba = bc, ca = a4c, qa = q−1〉.

In this chapter, we attack the global case and prove the following theorem.

10.1 Theorem. There exists augmentation-preserving automorphisms αi of SGi, where
S = Zπ(Gi), which have no Zassenhaus factorization (i = 1, 2, 3). Moreover, the following
holds.

(i) The semilocal automorphisms α1 and α2 are represented by global ones, up to
semilocal inner automorphisms: The Zassenhaus conjecture does not hold for the
groups G1 and G2.

(ii) The semilocal automorphism α0 is not represented by a global one: The Zassenhaus
conjecture holds for the group G0.

1The necessary matrix calculations can be done by hand, but they were also checked using MAPLE [144].
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The difficult task is to prove part (ii). There is an invertible bimodule M for ZG0 such
that S ⊗Z M ∼= 1(SG0)α0 as invertible bimodules (cf. Proposition 1.4), and the problem
is to show that there is no invertible bimodule for ZG0 in the same genus as M which is
free from one side. This is proved indirectly in Section 12 by showing that the semilocal
automorphism α0 is not represented by a global one.

Gustafson and Roggenkamp [48, (4.10)] raised the question whether there is an ex-
ample of a Z-order Λ and an invertible bimodule N with a left Λ-module isomorphism
N ⊕ Λ ∼= Λ ⊕ Λ with N not left Λ-free. Examples were given by Montgomery and
Passman [94], and by Guralnick and Montgomery [46, Proposition 5.7]. The question
remains open whether such bimodules exist for integral group rings (see [48]).

We were not able to decide whether M (as above) is stably free as left ZG0-module
or not. Note that QG0 does not satisfy the Eichler condition, which is a sufficient, but
not necessary, condition for ZG0 to have locally free cancellation. Thus one has to do
some extra work. Since in our proof of Theorem 10.1(ii), the components of QG0 which
are totally definite quaternion algebras seemingly do not play any role (have a look at
the unit v given in Subsection 12.4), we believe that M will not be stably free.

In Subsection 12.5 we briefly comment on this question. Without further work, we
obtain from Theorem 10.1(ii):

10.2 Proposition. There is an invertible bimodule M for ZG0 such that S ⊗Z M ∼=
1(SG0)α0 as invertible bimodules, with α0 ∈ Autn(SG0) as in Theorem 10.1. The module
M is not ZG0-free from one side, and M ⊕M ∼= ZG0 ⊕ ZG0 as left ZG0-modules (but
the latter does not hold for all choices of M).

10.3 Remark. We tried unsuccessfully to find an example showing that there is no
local–global principle for central group ring automorphisms. Roggenkamp pointed out
where the obstruction for getting globally central automorphisms from local data lies
(see [121, p. 82]). Let R be a Dedekind ring of characteristic 0, let G be a finite group, and
let ClRG(Z(RG)) be the subgroup of the locally free class group Cl(Z(RG)) consisting
of those isomorphism classes of invertible ideals a in Z(RG) so that aRG is a principal
ideal in RG. Then Fröhlich’s localization sequence ([36]; cf. also [27, 55.25, 55.26]) can
be extended to the following diagram with exact rows.

1 - Cl(Z(RG)) - Picent(RG) - ∏
P∈max(R)

Picent(RPG) - 1

1 - ClRG(Z(RG))

6

- Outcent(RG)

6

φ- ∏
P∈max(R)

Outcent(RPG)

∼=6

The question whether φ is surjective, i.e., whether for any M in Picent(RG) there is an
invertible bimodule in the same genus as M which is RG-free from the left (say) has
been raised in [121, IX 1.13], [120, Problem 3.7], [116, Problem 12.3]. If R is a semilocal
ring, then φ is an isomorphism (see [27, 55.26, 55.16]).
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First, we review some properties which the group rings ZGi have in common.

Structure of the group rings

Set P = 〈a, b, c〉, a Sylow 2-subgroup of Gi of order 32, and Q = 〈q〉, the normal Sylow
3-subgroup of Gi of order 3 (i = 1, 2, 3). Let M denote the center of Gi, so M := 〈a4〉 if
considered as a subgroup of G1 or G2, and M := 〈b2〉 if considered as a subgroup of G0.

For a group X, write X̂ for the sum of its elements. The (two-sided) ideal generated
by group ring elements s, t, . . . will be denoted by (s, t, . . . ). The quotient

Λ = ZGi/(M̂, Q̂)

is the projection on a factor of QGi (to which all blocks having neither M nor Q in
their kernel belong). The projection of ZGi on the complementary factor is the image
Γ of ZGi under the natural map ZGi → ZGi/M ⊕ ZGi/Q. Hence there are pullback
diagrams

Γ - ZGi/M

ZGi/Q
?

- ZGi/MQ
?

and

ZGi - Γ

Λ
?

- Λ̄
?
.

Roggenkamp and Scott (see Theorem 7.1) proved that the ring Λ̄ over which the pullback
for ZGi is taken has the form

(F2Gi/M)/(Q̂) ⊕ (F3Gi/Q)/(M̂).

A group automorphism τ of Gi plays an important role. Though τ induces on
Γ a non-central automorphism, τ will induce central automorphisms of the quotients
(ZG/M)/(Q̂) and (ZG/Q)/(M̂), and even an inner automorphism of Λ̄.

For i = 1, 2, it is shown in Section 11 that there are inner automorphisms γ ∈ Inn(Γ)
and λ ∈ Inn(Λ) which differ on the common quotient Λ̄ by the automorphism induced
by τ , say τ̄ λ̄ = γ̄. Thus there is an automorphism α of ZGi which induces γ on Γ
and τλ on Λ. Note that α is augmented; this is because Γ inherits the structure of an
augmented algebra, and α induces on Γ an augmentation-preserving automorphism. In
order to show that α has no Zassenhaus factorization, it remains to show that there is
no σ ∈ Aut(Gi) which induces on Λ a central automorphism, and differs on Γ from τ by
a central automorphism (this will be called the “group-theoretical obstruction”).

In contrast to the i = 1, 2 group case, it is shown in Section 12 that in the i = 0 case,
there are no central automorphisms γ ∈ Autcent(Γ) and λ ∈ Autcent(Λ) which differ on
the common quotient Λ̄ by the automorphism induced by τ .

For global considerations, one has to deal with the representations (= matrices) more
directly. Note that Gi has a faithful irreducible complex representation θi, given by the
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following matrices (dots indicate zeros, ζ = exp(2πi/3)):

θ0(a) =




· · · 1
· · 1 ·
1 · · ·
· 1 · ·


 , θ0(b) =




· 1 · ·
−1 · · ·
· · · −1
· · 1 ·


 ,

θ1(a) =




· · 1 ·
· · · 1
i · · ·
· −i · ·


 , θ1(b) =




· 1 · ·
−1 · · ·
· · · 1
· · −1 ·


 ,

θ2(a) =




· · 1 ·
· · · 1
· 1 · ·

−1 · · ·


 , θ2(b) =




−1 · · ·
· 1 · ·
· · −1 ·
· · · 1


 ,

θi(c) =




−1 · · ·
· −1 · ·
· · 1 ·
· · · 1


 , θi(q) =




ζ · · ·
· ζ · ·
· · ζ2 ·
· · · ζ2


 (i = 0, 1, 2).

In fact, θi|P is an irreducible representation of the Sylow 2-subgroup P of Gi. These
representations are distinguished by the following properties. We have θ2(P ) ⊆ SL4(Z).
We have θ1(QP ) ∼= Mat2(H), where H is the skewfield of rational quaternions, so θ1|P has
Schur index 2 relative to Q. Finally, we have θ0(P ) ⊆ GL4(Z), but θ0(a) has determinant
−1.

Note that θi(cq) has trace 2(−ζ+ζ2), so some algebraic conjugate of θi affords another
character of Gi. Since dim(QΛ) = 96− 96/2− 96/3 + 96/6 = 32, it follows that we may
identify Λ with the Z-order generated by θi(Gi).

11. Two groups lead to global counterexamples

In this section, G may be one of the groups G1, G2. One verifies immediately that
automorphisms τ and τ ′ of G are defined by setting

τ ′ :





a 7→ a−1

b 7→ b
c 7→ a4c
q 7→ q−1

, τ :





a 7→ a−1

b 7→ b
c 7→ a4c
q 7→ q

.

Recall that M := Z(G) = 〈a4〉. Let bars denote reduction modulo M , so Ḡ = G/M .
First, we prove the following group-theoretical obstruction:



11. Two groups lead to global counterexamples 79

There is no σ ∈ Aut(G) which induces on Λ a central automorphism, and differs on Γ
from τ by a central automorphism.

By way of contradiction, assume that there is σ ∈ Aut(G) having these properties.
Modifying σ by an inner automorphism, if necessary, we can assume that qσ = q and
Pσ = P . We have Z(P ) = 〈a4〉 and [P, P ] = 〈a4〉 × 〈c〉 ∼= C2 × C2, so a4σ = a4, and
either cσ = c or cσ = a4c. The class sums C1 := cq+a4cq−1 and C2 := cq−1 +a4cq have
different images in Λ, as one sees from 0 6≡ C1 ≡ c(q − q−1) ≡ −C2 mod (M̂, Q̂). Since
σ would permute these class sums provided that cσ = a4c, we have cσ = c. Furthermore
bσ ∈ b〈c, a4〉 since V := 〈b, c, a4〉 is a characteristic subgroup of P . If bσ ∈ {bc, bca4},
then (bcq)τσ ∈ {ba4q, bq}. But b̄c̄q̄ and b̄q̄ are not conjugate in Ḡ, contradicting the
assumption that τσ induces a central automorphism of ZḠ (note that ā4 = 1). Hence
bσ ∈ b〈a4〉. Since a4 is central, it now follows from (bσ)aσ = (ba)σ = (bc)σ = (bσ)c that
baσ = bc. Clearly aσ ∈ a±1V ⊆ a±1CG(b), so aσ ∈ aV as ba

−1 6= bc. Thus σ induces
on G̃ := G/V Q = 〈ã〉 ∼= C4 the identity. As aτ = a−1, it follows that τσ induces a
non-central automorphism of ZG̃, and we have reached a contradiction.

Let us see how τ acts on the various pieces over which the pullback for ZG is taken.
Set u = ((1 + c)a−1 + (1 − c)a)b. Then

θ1(u) = 2




· · · 1
· · −1 ·
· 1 · ·

−1 · · ·


 , θ2(u) = 2




· · −1 ·
· · · 1

−1 · · ·
· 1 · ·


 ,

and one verifies that τ ′ induces on Λ a central automorphism, given by conjugation with
the rational unit θi(u). Note that θi(u)2 is ±4 times the identity matrix. Since τ ′ and
τ induce the same automorphism on P , it follows that τ induces on F3P/(M̂) an inner
automorphism, given by conjugation with the image of θi(u).

Set
w = q + a2q−1, w′ = −q − a6q−1.

Then ww′ = 1 − (1 + q + q2) − a2(1 + a4), so θi(w) is a unit in Λ, with inverse θi(w
′).

As aw = (a4q + a2q−1)a−1, we have āw̄ = w̄ā−1 in ZḠ (= ZG/M), and w̄ commutes
with b̄, c̄ and q̄. It follows that τ induces on F2Ḡ/(Q̂) an inner automorphism, given by
conjugation with the image of w.

The group G1

Recall that QP/(M̂) ∼= Mat2(H), the isomorphism given by restriction of θ1. Explicitly,

set i =
[
i 0
0 −i

]
and j =

[
0 1

−1 0

]
. Then a↔

[
0 1
i 0

]
, b↔

[
j 0
0 j

]
and c↔

[−1 0
0 1

]
.

We already know that τ ′ on Λ is given by conjugation with
[

0 j
j 0

]
, and that τ on

F2Ḡ/(Q̂) is conjugation with the image of the unit θ1(w) of Λ. Note that θ1(w) and
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θ1(1 + a2) map to the same element in F3P/(M̂), and that

θ1(b(a+ ca−1)) =
[

0 j
j 0

]
· θ1(1 + a2) = [ 0 ω

ω 0 ] , where ω = j(1 + i).

As ω2 = −2, the matrix
[

3 −8ω
4ω 21

]
has determinant −1. Now θ1(v) =

[
3 −8ω

4ω 21

]
, where

v = 12 + 9c + 2(3c − 1)b(a + ca−1), so θ1(v) is a unit in Λ (with inverse
[−21 −8ω

4ω −3

]
,

the image of −12 + 9c + 2(3c − 1)b(a + ca−1)). Let λ be the inner automorphism of
Λ given by conjugation with θ1(v)θ1(w′). As v ≡ c mod (2), c̄ is central in Ḡ and
τ has order 2, it follows that λ and τ induce the same automorphism on F2Ḡ/(Q̂).
Moreover, 2θ1(v)θ1(w′) ≡ 2θ1(b(a + ca−1))θ1(w′) ≡ θ1(u) mod (3, q − 1), so λ and τ
induce also on F3P/(M̂) the same automorphism. Hence there is an augmentation-
preserving automorphism α of ZG which induces λ on Λ and τ on Γ, and by the group-
theoretical obstruction, α has no Zassenhaus factorization.

The group G2

In this case, we have QP/(M̂) ∼= Mat4(Q) and F3P/(M̂) ∼= Mat4(F3). Note that
det(θ2(u)) = 16 ≡ 1 mod (3). By [60, Lemma 2.2] (applied with H = P , N = M ,
m = 3, ϕ = τ), there is an inner automorphism γ1 of Γ which induces the identity map-
ping on ZḠ, and which agrees with τ on F3P/(M̂). Further on, θ1(w) and θ1(1 + a2)
map to the same element in F3P/(M̂), and

θ2(1 + a2) =




1 1 · ·
−1 1 · ·
· · 1 1
· · −1 1




has determinant 4, which is congruent 1 modulo 3. Again by [60, Lemma 2.2], there is
an inner automorphism γ2 of Γ which induces the identity mapping on ZḠ, and which
induces on F3P/(M̂) the same automorphism as conjugation with θ2(w) on Λ does. Now
conjugation with θ2(w) and γ1γ2 differ on F2Ḡ/(Q̂) ⊕ F3P/(M̂) by the automorphism
induced by τ . By the group-theoretical obstruction, these inner automorphisms give rise
to an augmentation-preserving automorphism of ZG without Zassenhaus factorization.

12. . . . but not the third one

In this section, we set G = G0, M = 〈b2〉 and Ḡ = G/M , as well as θ = θ0. There are
automorphisms τ and τ ′ of G of order two, defined by setting

τ ′ :





a 7→ a−1

b 7→ b
c 7→ b2c
q 7→ q−1

, τ :





a 7→ a−1

b 7→ b
c 7→ b2c
q 7→ q

.
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Again, we have the following group-theoretical obstruction:

There is no σ ∈ Aut(G) which induces on Λ a central automorphism, and differs on Γ
from τ by a central automorphism.

To that, the proof of the corresponding result in Section 11 can be copied word by word,
except that each time a4 occurs it has to replaced by b2.

Let us see how τ acts on the various pieces over which the pullback for ZG is taken.
Set u = ((1 + a2) + (1 − a2)c)a−1. Then

θ(u) = 2




· · · 1
· · 1 ·
· 1 · ·
1 · · ·


 ,

and one verifies that τ ′ induces on Λ a central automorphism, given by conjugation with
the rational unit θ(u). Note that θ(u)2 is 4 times the identity matrix. Since τ ′ and τ
induce the same automorphism on P , it follows that τ induces on F3P/(M̂) ∼= Mat4(F3)
an inner automorphism, given by conjugation with the image of θ(u), a matrix having
determinant 1. Set w = q + a2q−1. Here, the image of w in Λ is not a unit, but
the image of w in F2Ḡ/(Q̂) is again a unit, as one sees from w2 = −1 + 2a2 + Q̂ and
(−1+2a2)(1+2a2) = 3. And we have aw = wa−1, [w, c] = [w, q] = 1 and [w̄, b̄] = 1 (since
[b, a2] = b2), so τ induces on F2Ḡ/(Q̂) an inner automorphism, given by conjugation with
the image of w.

Since in the semilocal situation, “units lift to units”, it readily follows that there
is an augmentation-preserving automorphism of Zπ(G)G, which permutes only the two
faithful irreducible characters, therefore having no Zassenhaus factorization. (Of course,
one may stick to the character-theoretic viewpoint introduced in [12,13], see also [127].)

Since the Zassenhaus conjecture holds for ZP and ZP̄Q, and Outc(P̄ ) = 1, it follows
from the description of Γ as a pullback that each augmentation-preserving automor-
phism of ZG acts on the irreducible characters of Γ in the same way as some group
automorphism of G.

Thus we have shown that the Zassenhaus conjecture holds for ZG once we have proved
that there is no augmentation-preserving automorphism of ZG which permutes only the
two faithful irreducible characters.

12.1. Idea of the proof

By the normal subgroup correspondence, each automorphism of ZG induces automor-
phisms of Γ, Λ and Λ̄. We assume that there are γ ∈ Autcent(Γ) and λ ∈ Autcent(Λ)
which induce automorphisms of Λ̄ and differ on this quotient by the inner automorphism
induced by τ , and then we finally have to reach a contradiction. Recall that ZG is the
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pullback

ZG - Γ

Λ
?
- Λ̄ = Λ2 ⊕ Λ3

?
, where Λ2 = F2Ḡ/(Q̂), Λ3 = F3P/(M̂),

and that we may identify Λ with θ(ZG), and Λ3 with Mat4(F3).
The pullback diagram for Γ fits into a larger diagram:

Γ - ZP - ZP/(M̂)
mod 3- Λ3 = F3P/(M̂) ∼= Mat4(F3)

ZP̄Q
?

- ZP̄
?

- F2P̄
?

ZP̄Q/(Q̂)

?
- F3P̄

?

Λ2 = F2P̄Q/(Q̂)

mod 2
?

Note that a central automorphism of Γ induces central automorphisms on all quotients
displayed in the diagram.

The automorphisms γ and λ induce automorphisms of Λ2 and Λ3. (For example, the
kernel of the projection of Λ onto Λ3 consists of those x ∈ Λ for which 2x is contained in
the kernel of the map Λ → Λ̄, which is stabilized by λ. Hence λ induces an automorphism
of Λ2.)

By the Skolem–Noether Theorem, γ and λ induce inner automorphisms of Λ3. These
automorphisms differ by conjugation with the image of θ(u), a matrix with determinant
1. Since the image of θ(a) in Λ3 has determinant −1, we can assume that both γ and λ
induce on Λ3 conjugations with matrices of determinant 1.

Look at the following part of the above diagram:

ZP - Mat4(F3)

F3P̄
?

.

We have F3P̄ ∼= F3P̄ /P̄
′⊕Mat2(F3)⊕Mat2(F3). For any automorphism β of F3P̄ which

fixes the two 2 × 2-matrix rings (and which is therefore conjugation with matrices M1

and M2 on these blocks) we define a norm by setting

N1(β) = det(M1) · det(M2) ∈ {±1}
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(which is apparently well defined).

At this point, it should be remarked that instead of G, one could have defined more
generally a family of groups, by letting Gp be the semidirect product where the Sylow
2-subgroup P acts on a cyclic group of odd prime order p in the same way as P acts on
Q (so that G = G3). Then the discussion below essentially shows that, for example, G5

does not satisfy the Zassenhaus conjecture (which illustrates the remarks made at the
beginning of Section 10).

Given any α ∈ Autcent(ZP ), we define a norm N(α) as follows: α induces a central
automorphism β̄ of F3P̄ and a central automorphism of Mat4(F3), say conjugation with
the matrix T , and we set

N(α) = N1(β̄) · det(T ) ∈ {±1}.

In Subsection 12.2, we show that N(α) = 1 for any α ∈ Autcent(ZP ).

Now consider the following diagram:

Ω := ZP̄Q/(Q̂) - F3P̄

Λ - Λ2 = F2P̄Q/(Q̂)

?

Let H be the subgroup of Autcent(Λ) consisting of those α which induce a central auto-
morphism of Λ2, which, furthermore, can be lifted to a central automorphism of Ω. (We
remark that τ ′ induces a central automorphism of Λ, but a non-central automorphism
of Λ2.) Note that any automorphism β of Ω induces an automorphism of F3P̄ (If we
start with Ω, factor out (3) and then the radical, we arrive at F3P̄ .) If β ∈ Autcent(Ω)
induces β̄ on F3P̄ , then N1(β̄) is defined.

If α ∈ Autcent(Λ) and β ∈ Autcent(Ω) induce the same automorphism of Λ2, set
d(α) = N1(β̄). If α is an inner automorphism, say conjugation with s ∈ Λ×, set d(s) =
d(α). In Subsection 12.3, we show that this yields a well defined homomorphism d :
H → {±1}. We shall see that H ≤ Inn(Λ). The author would very much like to know
whether there is same general argument showing that d is induced by the determinantal
map.

In Subsection 12.3, we show that if s ∈ Λ×, and there is α ∈ Autcent(ZP̄Q) which
induces on Λ2 the inner automorphism given by conjugation with the image of s, then
det(s) = ±1, and det(s) = 1 if and only if d(s) = 1. This is done by carefully modifying
s and α until the claim will be obvious.

In Subsection 12.4, we show that there is α ∈ Autcent(ZP̄Q) which induces on Λ2 the
same automorphism as τ , and induces on F3P̄ an automorphism β with N1(β) = −1.
This will provide the final contradiction.
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12.2. Norms of units in ZP

The commutator subgroup of P is P ′ = 〈b2, c〉, and P̃ = P/P ′ = 〈ã〉 × 〈b̃〉 ∼= C4 × C2.

Let ε be the idempotent 1
4 P̂

′, and set η = 1−ε. There are two 2-dimensional irreducible
representations ρ+ and ρ− of P :

ρ±(a) =

[
0 1
±1 0

]
, ρ±(b) =

[
1 0
0 −1

]
, ρ±(c) =

[
−1 0
0 −1

]
.

We have ηQP ∼= Mat2(Q) × Mat2(Q) × Mat4(Q), which we treat as an identification
via ηx = (ρ+(x), ρ−(x), θ(x)), x ∈ QP . We define a norm N(x) for x ∈ ZP (or, more
generally, for x ∈ QP ) by setting

N(x) = det(ρ+(x)) · det(ρ−(x)) · det(θ(x)).

Note that the group automorphism τ induces on ηZP a central automorphism, given
by conjugation with the rational unit

x =



[
1 ·
· 1

]
,

[
−1 ·
· 1

]
,




· · · 1
· · 1 ·
· 1 · ·
1 · · ·







satisfying N(x) = −1.

Our goal is to show that the restriction of any α ∈ Autcent(ZP ) to ηZP is given by
conjugation with a unit x of ηZP satisfying N(x) = 1.

First of all, we consider inner automorphisms of ZP . Note that the number of non-
isomorphic simple RP -modules coincides with the corresponding number of QP -modules.
By a theorem of Bass (see [27, 45.21]) it follows that the Whitehead group K1(ZP ) is
a torsion group. Then, it follows from Wall’s theorem (see [27, 46.4]) that K1(ZP ) =

{±1}×P̃×SK1(ZP ). Note that the composition (ZP )× ↪→ K1(ZP )
φ−→ K1(QP )

det◦N−−−→ Q
(of the obvious maps) is just the norm map. Since N(±P ) = 1, and SK1(ZP ) is by
definition the kernel of φ, it follows that all units in ZP have norm 1.

Next, note that Picent(ZrP ) = 1 for an odd prime r (cf. [27, 55.48]), and that
Picent(Z2P ) = 1 by a famous result of Roggenkamp and Scott [119] (note that Outc(P ) =
1). Thus we have to focus on the subgroup ClZP (Z(ZP )) of the locally free class group
Cl(Z(ZP )) consisting of those isomorphism classes of invertible ideals a in Z(ZP ) so that
aZP is a principal ideal in ZP (see Remark 10.3). The locally free class group can be
studied using Mayer-Vietoris sequences.

Set ∆ = Z(ZP ). Note that ∆× = {±1} × C2 by a classical result of Higman, since
Z[i] has only units of finite order.
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We shall show that (η∆)× ∼= {±1} × C2 and Cl(η∆) = 0. Computing the values
|P : CP (g)|χ(g)/χ(1) for the three relevant characters, one sees that η∆ is generated as
Z-module by the columns of the matrix




1 −2 −2 2 1
1 2 −2 −2 1
1 0 0 0 −1




(and multiplication of two columns is performed entry by entry). We shall write η∆ ={
1 ···
1 ···
1 ···

}
. Elementary transformations show that

η∆ =





1 0 0
1 4 0
1 0 2



 .

This shows that (η∆)× ∼= {±1} × C2. There are ideals

I =





0
0
2



 and J =





2 0
2 4
0 0





of η∆ with I ∩ J = 0. Obviously η∆/I ∼= { 1 0
1 4 } and η∆/J ∼=

{
1
1
1

}
∼= Z. We have a

pullback diagram

{ 1 0
1 4 }

mod { 0
4 }- Z

Z

mod { 4
0 }
?

- Z/4Z
?

giving rise to an exact Mayer-Vietoris sequence (see [27, 49.28])

1 - {±1} - {±1} × {±1} - {±1} - Cl(η∆/I) - 0.

This shows that Cl(η∆/I) = 0. The Mayer-Vietoris sequence associated to the pullback
diagram

η∆
mod J-

{
1
1
1

}

{ 1 0
1 4 }

mod I
?

- Z/2Z
?

now reads

1 - {±1} × C2
- {±1} × {±1} - 1 - Cl(η∆) - 0.
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Thus Cl(η∆) = 0 as claimed.

Next we describe ε∆. The class length of a2 is 2, and the elements a, a3, b, ab, a2b
and a3b all have class length 4. Consequently

ε∆ = Z + 2Z〈ã2〉 + 4Z〈ã, b̃〉.

Note that (ε∆)× = {±1} by a classical result of Higman. We shall have no need to
calculate Cl(ε∆), but we will demonstrate that Cl(ε∆) contains elements of order 4.
This will be used in Subsection 12.5 to illustrate how subtle things are.

We have O = Z + 2Z〈ã2〉 + 4Z〈ã〉 ∼= ε∆/(4(b̃ − 1)) ∼= ε∆/(4(b̃ + 1)), so there is a
pullback diagram

ε∆ - O

O
?
- O/8O

?

which gives rise to the Mayer-Vietoris sequence

1 - (ε∆)× - O× ×O× - (O/8O)× - Cl(ε∆) - Cl(O) ⊕ Cl(O) - 0.

It is routine to verify that (O/8O)× has order 64, exponent 4, and exactly 8 elements of

order ≤ 2. Hence (O/8O)× ∼= C
(3)
4 , the exact sequence reads

1 - C2
- C2 × C2

- C
(3)
4

- Cl(ε∆) - Cl(O) ⊕ Cl(O) - 0,

and it follows that Cl(ε∆) has a subgroup isomorphic to C4 × C4 × C2.

The well known pullback diagram

ZP
f1 - ZP/P ′

ZP/(P̂ ′)

f2 ?

g2
- (Z/4Z) (P/P ′)

g1
?

also describes ∆ as a pullback: Setting ∆1 = ∆f1
∼= ε∆, ∆2 = ∆f2

∼= η∆ and ∆̄ =
∆f1g1, we get a pullback diagram

∆ - ∆1

∆2

?
- ∆̄
?
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From the description of ε∆ it follows that ∆̄× = {±1} × 〈1 + 2ã2〉 ∼= C2 × C2. Putting
everything together, we get an exact Mayer-Vietoris sequence

1 - C2 × C2
- C2 × C2 × C2

- C2 × C2
∂- Cl(∆)

f- Cl(∆1) - 0.

Now let a be an invertible ideal in ∆ such that aZP = uZP for some u ∈ ZP , that
is, [a] ∈ ClZP (∆). Then [a]f = [ã] where ã := af1 is an invertible ideal in ∆1 such that
ãZP̃ = ũZP̃ . Note that u ∈ (QP )×, so ũ−1x · y = 1 for some x ∈ ã and y ∈ ZP̃ . As
ũ−1x ∈ ZP̃ , it follows that ũ−1x ∈ (ZP̃ )×. Hence we may assume that x = ũ. Then
1 ∈ x−1ã ⊂ ZP̃ , and x−1ã ∼= ã as ∆1-lattices. In particular, Z2 ⊗Z x

−1ã ∼= Z2∆1 as
Z2∆1-lattices. Thus, if we set Xn = Z/2nZ ⊗Z x

−1ã and Yn = Z/2nZ ⊗Z ∆1 for n ∈ N,
we have Xn

∼= Yn. Note that Yn ⊆ Xn, so we have in fact equality, and it follows that
x−1ã ⊂ ∆1. Thus x−1ã = ∆1, [a]f = [ã] = 0, and consequently [a] ∈ im(∂).

Assume that [a] 6= 0. Then, by the description of ∆̄× and the map ∂, we have
[a] = v∂ = [M(v)], where v = 1 + 2ã2 and

M(v) = {(x1, x2) ∈ ∆1 ⊕ ∆2 | vx̄1 = x̄2 in ∆̄}.

By assumption, the ZP -module

X := M(v)ZP = {(x1, x2) ∈ ZP̃ ⊕ ZP/(P̂ ′) | vx̄1 = x̄2 in (Z/4Z) (P/P ′)}

gives rise to the zero element in Cl(ZP ). Since QP = Eichler/Z, we have (see [27, 49.30])

v = (x1g1)(x2g2) for some x1 ∈ (ZP̃ )×, x2 ∈ (ZP/(P̂ ′))×. (∗)

We have seen that Outcent(ZP ) is either trivial or cyclic of order 2, corresponding
to whether (∗) holds or not. Assume that (∗) is satisfied. Since ZP̃ has only trivial

units, we then have v = xg1 for some x ∈ (ZP/(P̂ ′))×. We wish to show that N(x) = 1.
Note that η(1 + a2 + b−1a2b) = (−id, 3 · id, id). This element differs from x by some
element of ηIZ(P ′)P , where IZ(P ′) denotes the augmentation ideal of P ′. Note that
η(1 − b2) = (0, 0, 2 · id), and that the elements η(1 − c) and η(1 − b2c) are given by



[
2 ·
· 2

]
,

[
2 ·
· 2

]
,




2 · · ·
· · · ·
· · 2 ·
· · · ·





 ,



[
2 ·
· 2

]
,

[
2 ·
· 2

]
,




· · · ·
· 2 · ·
· · · ·
· · · 2







respectively. It can be checked that the image of ηZP in Mat2(F2)×Mat2(F2)×Mat4(F2)
consists of elements of the form



[
a1 + a3 a2 + a4

a2 + a4 a1 + a3

]
,

[
a1 + a3 a2 + a4

a2 + a4 a1 + a3

]
,




a3 a2 a1 a4

a2 a3 a4 a1

a1 a4 a3 a2

a4 a1 a2 a3






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with a1, . . . , a4 ∈ F2. This allows us to compute the norm N(x) modulo 4. For example,
consider the projection x3 of x on the 4× 4-matrix ring. Modulo 4, the diagonal entries
of x3 are of the form 1 + 2s, 1 + 2t, 1 + 2s, 1 + 2t, and the off-diagonal entries of x3

are even. This shows that det(x3) ≡ 1 mod 4. As x is a unit in ηZP , it follows that
det(x3) = 1. We can argue similarly for the projections of x on the other components.
Hence we obtain N(x) = 1, as desired.

12.3. Norms of units in Λ and Ω

We consider the following diagram:

ZG/(Q̂) - Ω := ZP̄Q/(Q̂) - F3P̄

Λ
?

- Λ2 = F2P̄Q/(Q̂)

?

In the next subsection, we will see that λ ∈ Autcent(Λ) (the automorphism which
differs from γ ∈ Autcent(Γ) on the quotient Λ̄ = Λ2 ⊕ Λ3 by the inner automorphism
induced by τ) induces on Λ2 an automorphism which can be lifted to a central auto-
morphism of ZP̄Q (so we will lift the inner automorphism of Λ2 induced by τ). Such
automorphisms will be analyzed in this subsection.

First, we give the irreducible representations of CΩ. We have dimC(CΩ) = 32, and it
easily follows that CΩ is isomorphic to the direct sum of eight copies of Mat2(C). We
treat this isomorphism as identification, the images of the group elements corresponding
to:

a↔
(

[ 0 1
1 0 ] , [ 0 1

1 0 ] ,
[

0 1
−1 0

]
,
[

0 1
−1 0

]
, [ 0 1

1 0 ] ,
[

0 1
−1 0

]
, [ 0 1

1 0 ] ,
[

0 1
−1 0

] )
,

b↔
( [−1 0

0 1

]
,
[−1 0

0 1

]
,
[−1 0

0 1

]
,
[−1 0

0 1

]
,
[−1 0

0 −1

]
,
[−1 0

0 −1

]
, [ 1 0

0 1 ] , [ 1 0
0 1 ]

)
,

c↔
([−1 0

0 −1

]
,
[−1 0

0 −1

]
,
[−1 0

0 −1

]
,
[−1 0

0 −1

]
, [ 1 0

0 1 ] , [ 1 0
0 1 ] , [ 1 0

0 1 ] , [ 1 0
0 1 ]

)
,

q ↔
( [ ζ 0

0 ζ2

]
,
[
ζ2 0
0 ζ

]
,
[
ζ 0
0 ζ2

]
,
[
ζ2 0
0 ζ

]
,
[
ζ 0
0 ζ2

]
,
[
ζ 0
0 ζ2

]
,
[
ζ 0
0 ζ2

]
,
[
ζ 0
0 ζ2

] )
.

Recall that any β ∈ Autcent(Ω) induces an automorphism β̄ of F3P̄ , for which we have
defined a norm N1(β̄). We show how to compute this norm in CΩ. Note that the first
component of CΩ corresponds to a representation with kernel 〈a2〉, and that the third
component corresponds to a faithful representation. It follows that we may identify the
group ring F3P̄ with F3P̄ /P̄

′⊕Mat2(F3)⊕Mat2(F3), and that an element (M1, . . . ,M8)
of Ω maps to an element of the form (∗, M̃1, M̃3), where ˜ indicates “reduction mod 1−ζ”.
Let β ∈ Autcent(Ω), inducing β̄ on F3P̄ . Then β is conjugation with a rational unit
(T1, . . . , T8). We will show that T1 and T3 can be chosen to lie in GL2(Z[ζ]), and having
determinant ±1. Clearly β̄ on the 2 × 2-matrix blocks is conjugation with (T̃1, T̃3), so
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that N1(β̄) = det(T1) · det(T3). Let ϕ+ and ϕ− be the projection of CG onto the first
and third component of CΩ, respectively. We treat both projections simultaneously.
There is T ∈ GL2(Q(ζ)) such that T−1(gϕ±)T = gϕ±β for all g ∈ G. If T = [ s tu v ], and
d = det(T ), then

aϕ±β =
1

d

[
∓st+ uv ∓t2 + v2

±s2 − u2 ±st− uv

]
,

bϕ±β =
1

d

[
−tu− sv −2tv

2su sv + tu

]
,

qϕ±β =
1

d

[
tu+ (tu+ sv)ζ tv + 2tvζ
−su− 2suζ −sv − (sv + tu)ζ

]
.

Note that Z[ζ] is a principal ideal domain, with group of units {±1} × 〈ζ〉. We may
assume that all entries of T lie in Z[ζ] and are relatively prime. The entries of the
above displayed matrices all lie in Z[ζ]. From the entries of the first matrix we read off
d | ±s2 − u2 and d | ∓t2 + v2. From the entries of the two other matrices we read off
d | su and d | tv. Altogether, it follows that d | s, t, u, v, so d is a unit by assumption,
and we clearly can assume that d = ±1.

Note that any α ∈ Autcent(Λ) and β ∈ Autcent(Ω) which induce the same automor-
phism of Λ2 give rise to a central automorphism of ZG/(Q̂). Using Fröhlich’s localization
sequence, we will show that any central automorphism of ZG/(Q̂) induces an inner au-
tomorphism of Λ. In particular, λ is an inner automorphism. For any prime p, let Rp
be the ring of algebraic integers in Qp(ζ).

If p 6= 2, 3 then RpΛ := Rp ⊗Z Λ ∼= Mat4(Rp) ⊕ Mat4(Rp), so Outcent(RpΛ) = 1 since
Rp is a local ring.

Since the restriction of θ to the Sylow subgroup P is irreducible, and R3Λ = Z3[ζ]⊗Z Λ
does not contain the central primitive idempotent belonging to θ, it follows from Schur
relations that Z3[ζ]Λ is a pullback

Z3[ζ]Λ - Mat4(Z3[ζ])

Mat4(Z3[ζ])
?

- Mat4(F3)
?

Again, it follows that Outcent(R3Λ) = 1. (We have Outcent(R2Λ) 6= 1, for τ ′ induces
an outer central automorphism of Λ.)

Calculating the norm and the trace of an element of Q2(ζ), one sees that R2 = Z2[ζ],
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with residue class field Z2[ζ]/2Z2[ζ] = F4. Thus we have a pullback diagram

Z2[ζ]G/(Q̂) - Z2[ζ]Ḡ/(Q̂)

Z2[ζ]Λ
?

- F4Ḡ/(Q̂)

?

The idempotent e = (1 + ζ2q + ζq2)/3 of R2Q has inertia group T = 〈a2, b, c〉 × 〈q〉 in
G. Clearly eR2T ∼= R2H, where H = 〈a2, b, c〉. Thus by Clifford theory,

R2G/(Q̂) ∼= Mat2(R2H), R2Ḡ/(Q̂) ∼= Mat2(R2H̄), F4Ḡ/(Q̂) ∼= Mat2(F4H̄).

We have Outcent(Mat2(R2H)) ↪→ Picent(Mat2(R2H)) ∼= Picent(R2H) by [27, 55.11,
55.9]. Since Outc(H) = 1, it follows from [119] that Picent(R2H) = 1. Hence

Outcent(R2G/(Q̂)) = 1,

and any central automorphism of ZG/(Q̂) induces an inner automorphism of R2Λ.

From the interpretation of an automorphism as an invertible bimodule and a result
due to Reiner and Zassenhaus (see [28, §35 exercise 13, (30.25)]), it follows that any
central automorphism of ZG/(Q̂) induces an inner automorphism of ZpΛ for all primes
p.

For later use, we remark that Outcent(Z2Ḡ/(Q̂)) = 1, which is proved in the very
same way.

Note that the center of Λ is Z[
√
−3] (the scalar

√
−3 corresponds to the class sum

of cq), and Cl(Z[
√
−3]) = 0. By Fröhlich’s localization sequence (see Remark 10.3), it

follows that any central automorphism of ZG/(Q̂) induces an inner automorphism of Λ.

Let ψ ∈ Autcent(ZG/(Q̂)). Then ψ induces an automorphism ψ̄ of F3P̄ for which
the norm N1(ψ̄) is defined. Assume that ψ induces the identity on Λ2; we will show
that N1(ψ̄) = 1. The automorphism ψ induces a central automorphism of Z2Ω which is
modulo 2 the identity. It follows that ψ induces an inner automorphism of Z2Ω, given
by conjugation with a unit from 1 + 2 · Z2Ω (see [62, Theorem 3.9, Remark 3.10]). Let
M1 and M3 be their projection on the first and third component of Q2(ζ)Ω, respectively.
We already know that on these components, ψ is given by conjugation with matrices
T1, T3 ∈ GL2(Z[ζ]) of determinant ±1. Since Mi and Ti differ by a scalar, there are
s, t ∈ Z2[ζ] \ {0} such that s2det(M1)det(M3) = t2det(T1)det(T3) = ±t2. We may
assume that s is a unit in Z2[ζ], and then t is a unit, too. Note that s2 and t2 are
congruent to a power of ζ modulo 4. We compute det(M1)det(M3) modulo 4. The
projection of Z2[ζ]Ω on the first and third component is

{([
x1 x2 + 2x3

x̄2 x̄1 + 2x̄4

]
,

[
x1 + 2x5 x2 + 2x3 + 2x6 + 4x7

−x̄2 − 2x̄6 x̄1 + 2x̄4 + 2x̄5 + 4x̄8

])
: xi ∈ Z2[ζ]

}
.
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(We only need to know that corresponding entries in the diagonals differ by a multiple
of 2, which is easily checked.) Thus for some x1, x2, we have

det(M1)det(M3) ≡ det

([
1 + 2x1 2x2

2x̄2 1 + 2x̄1

])2

≡ 1 mod (4),

and it follows that N1(ψ̄) = det(T1)det(T3) = 1, as we wished to show.
This observation has the following consequence. Let U ≤ Λ× consist of those units

u such that there is a central automorphism βu of Ω which induces on Λ2 the inner
automorphism given by conjugation with the image of u. Then, the assignment u 7→
N1(β̄u) yields a well defined homomorphism d : U → {±1}. Does this homomorphism
arise from the determinantal map?

The following obvious approach to this question seemingly doesn’t lead to something
concrete. Recall that R2G/(Q̂) ∼= Mat2(R2H), where H = 〈a2, b, c〉. Explicitly,

a↔
[
0 a2

1 0

]
, b↔

[
b 0
0 bc

]
, c↔

[
c 0
0 b2c

]
, q ↔

[
ζ 0
0 ζ2

]
.

Then, with the following representation of
(

1−b2
2

) (
1−c
2

)
R2H:

ρ(a2) =

[
0 1
1 0

]
, ρ(b) =

[
0 1
−1 0

]
, ρ(c) =

[
−1 0
0 −1

]
,

we recover the representation θ, that is, ρ induces a homomorphism from Mat2(R2H) to
the projection (R2Λ)pr of R2Λ to a block of Q2(ζ)Λ. Now one would like to apply the
K1-functor to

R2H - R2H̄

(
1−b2

2

) (
1−c
2

)
R2H

?

to get information about how norms of units in Λ and Ω are related. But, for exam-
ple, the unit

[
a2−b+c 0

0 1

]
in Mat2(R2H) maps to a matrix of determinant 1 in (R2Λ)pr

(we have ρ(a2 − b + c) =
[−1 0

2 −1

]
), whereas its image in Mat2(R2H̄) ∼= R2Ḡ/(Q̂) is(

[ 1 0
0 1 ] ,

[
1 0
0 −1

]
,
[−1 0

0 1

]
, . . .

)
.

What we will show is that if s ∈ Λ×, and there is α ∈ Autcent(ZP̄Q) which induces on
Λ2 the inner automorphism given by conjugation with the image of s, then det(s) = ±1,
and det(s) = 1 if and only if d(s) = 1.

First, note that P̄Q has S := 〈a, q〉 (∼= C3oC4) as homomorphic image. The nonlinear
irreducible complex representations of S can be read off from the seventh and eighth
component of CΩ; let us denote them by ϕ7 and ϕ8. The unit groups (ϕi(ZS))× are
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known. The block ϕ8(QS) of the rational group algebra QS belongs to the faithful
representation and is a totally definite quaternion algebra, and (ϕ8(ZS))× = ϕ8(S)
(see Proposition 29.2). Hence α agrees on ϕ8(ZS) with a group automorphism of S.
There is no central automorphism of ZS which agrees on ϕ8(ZS) with a non-inner group
automorphism of S (cf. [60, Example 2.1]). Any automorphism of ZS induces an inner
automorphism of ZS/〈a2〉, the integral group ring of the symmetric group S3 of order
6 (see [64]). According to a description of the normalized unit group V(ZS3) due to
Jespers and Parmenter (see [73]), S3 has a normal complement in V(ZS3) generated by
three bicyclic units.2

The following elements are ‘modifications’ of these units:

b1 = 1 + (1 − a)q(1 + a) − (1 − a2)qa,

b2 = 1 + (1 − aq)q(1 + aq) − (1 − a2)a,

b3 = 1 + (1 − aq2)q(1 + aq2) + (1 − a2)a.

Thus (ϕ7(ZS))× = 〈ϕ7(b1), ϕ7(b2), ϕ7(b3)〉oϕ7(S). Moreover, the images of b1, b2 and b3
in Ω and Λ are units, having determinant 1 in each irreducible representation belonging
to these components: Set ω = ζ − ζ2 = i

√
3. Then

S1 =

[
−2ζ2 ω
−ω −2ζ

]
, S2 =

[
−2ζ2 ωζ2

−ωζ −2ζ

]
, S3 =

[
−2ζ −ωζ
ωζ2 −2ζ2

]
,

T1 =

[
0 1
−1 0

]
, T2 =

[
0 ζ2

−ζ 0

]
, T3 =

[
0 ζ

−ζ2 0

]

are matrices of determinant 1, and the elements b1, b2 and b3 map to
(
S1, S

−1
1 , T1, T1, S1, T1, S1, T1

)
,

(S2, S3, T2, T3, S2, T2, S2, T2) ,
(
S−1

3 , S−1
2 ,−T3,−T2, S

−1
3 ,−T3, S

−1
3 ,−T3

)

in Ω, respectively. From this it follows that their images in Λ have determinant 1, for
θ|S is equivalent to ϕ7|S ⊕ ϕ8|S : A representation equivalent to θ is given by

a 7→




0 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 , b 7→




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 ,

c 7→




−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 , q 7→




ζ 0 0 0
0 ζ2 0 0
0 0 ζ 0
0 0 0 ζ2


 .

2The complement is torsion-free. However, see Section 13 for bicyclic units in ZS4.
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Since d(g) = det(ϕ+(g)) · det(ϕ−(g)) = det(θ(g)) = ±1 for all g ∈ G, this allows us
to modify u and α such that α induces the identity on ϕ7(ZS). Let α̃ be the automor-
phism of ZS induced by α; we show that α̃ is the identity. Let B be the block of QS
corresponding to the faithful irreducible representation, and denote the complementary
component by C. Then α̃ induces the identity on C, and agrees with an inner group
automorphism on B. Thus if g ∈ S, then g−1(gα̃) is a unit of finite order. Therefore,
g−1(gα̃) is rationally conjugate to a group element h. Then h maps to the unity in C,
so h = 1, and we are done.

For 1 ≤ i ≤ j ≤ 8, let Ωi-j denote the projection of Ω to the sum of the blocks i, . . . , j
of CΩ. We have just shown that α induces the identity on Ω7-8. Associated with the
idempotents 1+c

2 and 1+b
2 there are pullback diagrams

Z2Ω - Z2Ω1-4

Z2Ω5-8

?
- Z2Ω1-4/2Z2Ω1-4

?
and

Z2Ω5-8
- Z2Ω5-6

Z2Ω7-8

?
- Z2Ω5-6/2Z2Ω5-6

?
.

Recall that α induces an inner automorphism of Z2Ω, and therewith of the above pull-
backs as well. We will show that there are units v = (V1, . . . , V8) and w = (W1, . . . ,W8)
of Z2Ω such that α is conjugation with vw, and det(V1) ·det(V3) ≡ det(W1) ·det(W3) ≡ 1
mod 4Z2[ζ]. We already know that there is s ∈ Z2[ζ]× such that N1(ᾱ) = s2det(V1) ·
det(V3) · det(W1) · det(W3) ≡ s2 mod 4Z2[ζ], and it follows that N1(ᾱ) = 1.

Let M = Z2Ω5-6, considered as a Z2-representation of S = 〈a, q〉, the action given by
m · g = g−1m(gα) for all g ∈ S and m ∈ M . A 1-coboundary δ ∈ B1(S,M) is given by
δ(g) = 1 · (1 − g) = 1 − g−1(gα) for all g ∈ S. Since α induces the identity on M/2M ,
there is δ′ ∈ Z1(S,M) with δ = 2 · δ′.

Note that M is isomorphic to Z2Ω5-6, considered as S-module via usual conjugation,
since α induces an inner automorphism of Z2Ω5-6, and that the image of {aiqj | 0 ≤
i ≤ 3, 1 ≤ i ≤ 2} in Z2Ω5-6 is a Z2-basis of M which is permuted by the conjugation
action of 〈a〉. Thus M is a direct summand of a permutation lattice for S over Z2.
By Shapiro’s lemma, H1(S,M) = 0, so δ′ is a coboundary, and there is m ∈ M with
1− g−1(gα) = 2(m− g−1m(gα)) for all g ∈ S. This means g(1−2m) = (1−2m)(gα) for
all g ∈ S, and 1−2m is a unit in M , so α induces on M the inner automorphism given by
conjugation with 1− 2m. There is x ∈ Z2S which maps to −m in M . Then α on Ω5-8 is
given by conjugation with the image v = (V1, . . . , V8) of 1+b

2 + 1−b
2 (1 + 2x) = 1 + (1− b)x

in Z2Ω. The element v is of the form

( [
1 + 2x1 2x̄2

0 1

]
,

[
1 + 2x̄1 2x2

0 1

]
,

[
1 + 2x1 + 4x3 2x̄2 + 4x̄4

0 1

]
,

[
1 + 2x̄1 + 4x̄3 2x2 + 4x4

0 1

]
,

[
1 + 2x1 2x̄2

2x2 1 + 2x̄1

]
,

[
1 0
0 1

]
,
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[
1 + 2x1 + 4x3 2x̄2 + 4x̄4

−2x2 − 4x4 1 + 2x̄1 + 4x̄3

]
,

[
1 0
0 1

] )

for some xi ∈ Z2[ζ]. Apparently, v is a unit in Z2Ω, with det(V1) · det(V3) ≡ 1
mod 4Z2[ζ].

Let conj(v) be conjugation with v, and consider the automorphism β := conj(v)−1α
of Z2Ω. Since β induces the identity on Z2Ω5-8, this automorphism induces an inner
automorphism of M := Z2Ω1-4, and the identity on M/2M . Note that M is only a
monomial lattice for the permutation action of 〈a, b〉, so the previous argument cannot
be applied. But it is easy to see that the group of central units in M maps onto the group
of central units in M/2M , so there is m ∈M such that β on M is given by conjugation
with 1 + 2m. If y ∈ Z2G maps to m in M , then the image w = (W1, . . . ,W8) of
1+c
2 + 1−c

2 (1 + 2y) = 1 + (1 − c)y in Z2Ω is clearly a unit, and det(W1) · det(W3) ≡ 1
mod 4Z2[ζ] (by the same argument which proved that the map d is well defined).

Since α = conj(vw), it follows that N1(ᾱ) = 1, as claimed. Thus it remains to show
that det(u) = 1.

We have a look at the image v′ of 1 + (1 − b)x and the image w′ of 1 + (1 − c)y in
Z2Λ. We have

v′ =




1 + x1 −x1 x̄2 −x̄2

x1 1 + x1 x̄2 x̄2

x2 x2 1 + x̄1 x̄1

x2 −x2 −x̄1 1 + x̄1




for some xi ∈ Z2[ζ]. Writing x1 = s + tζ with s, t ∈ Z2, we get det(v′) = 1 + 2(t + t2).
Therefore det(v′) ≡ 1 mod 4Z2[ζ], and v′ is a unit in Z2Λ.

The first two diagonal entries of an element of Z2Λ are congruent modulo 2. It easily
follows that det(w′) ≡ 1 mod 4Z2[ζ], and w′ is a unit in Z2Λ.

Note that u = v′w′z for some unit z in Z2Λ which maps to a central unit in Λ2.

Let g1 = 1, g2 = a2, g3 = c, g4 = a2c, g5 = b, g6 = bq, g7 = bq2, g8 = acq, g9 = ab,
g10 = abq, g11 = abq2, g12 = abc. Then each central element of Λ2 can be lifted to an
element of the form

s =
4∑

i=1

cigi +
12∑

i=5

ci(gi + a−1gia) (ci ∈ Z).

Note that the image of s in Z2Λ is a unit if its image in Λ2 is a unit. Thus z can be
written as the product of some θ(s) and a unit of Z2Λ mapping to the identity in Λ2.

We have θ(s) =
[
B1 0
0 B2

]
, where (recall that ω = ζ − ζ2)

B1 =

[
c1 − c3 − c10ω + c11ω + 2c12 c2 − c4 + c6ω − c7ω − c8ω
c2 − c4 − c6ω + c7ω − c8ω c1 − c3 + c10ω − c11ω − 2c12

]
,
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B2 =

[
c1 + c3 + 2c9 − c10 − c11 c2 + c4 − 2c5 + c6 + c7 − c8ω

c2 + c4 + 2c5 − c6 − c7 − c8ω c1 + c3 − 2c9 + c10 + c11

]

satisfy det(B1) ≡ det(B2) mod 4Z[ζ].

We have

Z2Λ =








a1 a3 + 2a9 ā7 + 2a8 ā5 + 2a6 − 2ā15 − 4a16

−a3 a1 + 2a11 ā5 + 2a6 −ā7 − 2a8 + 2ā13 + 4a14

a5 a7 + 2a13 ā1 + 2a2 −ā3 − 2a4 + 2ā9 + 4a10

−a7 a5 + 2a15 ā3 + 2a4 ā1 + 2a2 − 2ā11 − 4a12


 : ai ∈ Z2[ζ]





(only the congruences in the diagonal are of interest for us). Thus det(1 + 2m) ≡ 1
mod 4Z2[ζ] for all m ∈ Z2Λ. Note that the kernel of the map Z2Λ → Λ2 consists
precisely of the elements of the form 1 + 2m (m ∈ Z2Λ).

Thus we have shown that det(u) ≡ det(B1)2 mod 4Z2[ζ]. Since u ∈ Λ×, we obtain
det(u) = 1, as desired.

12.4. Final contradiction

First, we show that the inner automorphism of Λ2 induced by τ lifts to a central auto-
morphism α of ZP̄Q. We have a pullback diagram

ZP̄Q - ZP̄

ZP̄Q/(Q̂)

?
- F3P̄

?
.

Let

v = 2(1 − a2) + 4(a+ a−1) − 3(q − a2q−1 + 2).

Then the image of v in Ω = ZP̄Q/(Q̂) is

([ κ 8
8 κ̄ ] , [ κ̄ 8

8 κ ] , [ 1 0
0 1 ] , [ 1 0

0 1 ] , [ κ 8
8 κ̄ ] , [ 1 0

0 1 ] , [ κ 8
8 κ̄ ] , [ 1 0

0 1 ]) , where κ = −6 − 3(ζ − ζ2).

Since κκ̄ − 82 = 63 − 64 = −1, it follows that the image of v in Ω is a unit. Let α1

denote the inner automorphism of Ω given by conjugation with the image of v. We
have v ≡ q + a2q−1 = w mod 2, so α1 and τ induce the same automorphism of Λ2.
Note that the projections of v and a to any block of CΩ are matrices of the same
determinant. It follows from [60, Lemma 2.2] that there is an inner automorphism
α2 of ZP̄ which agrees with α1 on F3P̄ (for example, conjugation with the image of
a+ ((1− j(1 + b)a)(1− j(1− b)a)(1− j(1 + b)a)), where j = (1− c)(1− a2)), thus giving
rise to a central automorphism of α of ZP̄Q which agrees with τ on Λ2.
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We are in a position to finish the proof of Theorem 10.1. Recall that there are γ ∈
Autcent(Γ) and λ ∈ Autcent(Λ), inducing automorphisms of Λ̄ and differing on this
quotient by the inner automorphism induced by τ . Besides, the automorphisms γ and λ
induce automorphisms of Λ2, and inner automorphisms of Λ3 given by conjugation with
matrices of determinant 1. The automorphism γ induces central automorphisms on the
various pieces of the ‘large’ diagram the pullback Γ fits in (see Subsection 12.1), which
shall be denoted by γ too, for short.

According to our assumptions, we can assume that λ and γα ∈ Autcent(ZP̄Q) induce
the same automorphism of Λ̄. Applying the results from Subsection 12.3, we get that
λ is an inner automorphism, say conjugation with u ∈ Λ×. Then det(u) 6= −1 since λ
induce an inner automorphism of Λ3 given by conjugation with a matrix of determinant
1. Therefore det(u) = 1, and consequently N1(γᾱ1) = 1. Since N1(ᾱ1) = −1, it follows
that N1(γ) = −1. But γ induces an inner automorphism of Λ3 given by conjugation with
a matrix of determinant 1, so γ, considered as a central automorphism of ZP , satisfies
N(γ) = −1, in contradiction to the result from Subsection 12.2.

Theorem 10.1 is proved.

12.5. Final remarks

Let α be an augmentation-preserving automorphism of SG, where S = Zπ(G), which has
no Zassenhaus factorization. Then there is an invertible bimodule M for ZG such that
S ⊗Z M ∼= 1(SG)α as invertible bimodules (see Proposition 1.4). We now know that
there is no invertible bimodule for ZG in the same genus as M which is free from one
side. However, it might be possible to prove this more directly, by examination of the
bimodule M . This might also help to answer the question whether M as left ZG-module
may be stably free or not.

We have essentially two different descriptions of the bimodule M .

The idele-theoretic description

Firstly, there is the idele-theoretic description from Proposition 1.4. Then, M is a locally
free left ZG-ideal in QG,

M = (ZG)ν =
⋂

p

Z(p)G · νp

for some idele ν = (νp) with νp ∈ (QG)×. Note that we can give such a ν explicitly.

We may view ν as an element of the idele group

J(QG) =
{

(µp) ∈
∏
p

(QpG)×
∣∣∣ µp ∈ (ZpG)× a.e.

}

(for this and the following remarks, see [27, § 49]). There are three relevant subgroups
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of J(QG):

U(ZG) = group of unit ideles =
∏
p(ZpG)×,

u(QG) = group of principal ideles = image of (QG)× in J(QG),

J0(QG) = kernel of the reduced norm nr acting on J(QG)

= {µ ∈ J(QG) | nr(µ) = 1}.

(J0(QG) is a closed normal subgroup, in the idele topology, and [J(QG), J(QG)] ⊆
J0(QG).)

Let Cl(ZG) be the locally free class group of ZG, consisting of stable isomorphism
classes of locally free left ZG-ideals in QG. Then there is a natural isomorphism

Cl(ZG) ∼= J(QG)

J0(QG)U(ZG)u(QG)
.

Of course, we also have Cl(Z(ZG)) = J(Z(QG))/U(Z(ZG))u(Z(QG)). As noted be-
fore, the isomorphism class of the bimodule M is not uniquely determined: By [28,
31.18]), there are exactly |Cl(Z(ZG))| isomorphism classes of bimodules in the genus of
M , and the bimodule corresponding to an idele γ = (γp) ∈ J(Z(QG)) is given by

(ZG)νγ = QG ∩
⋂

p

ZpG · νpγp.

Recall from Subsection 12.2 that we have shown Cl(ε∆) 6= 0, for a homomorphic
image ε∆ of ∆ = Z(ZP ). Since the surjections Z(ZG) ³ ∆ ³ ε∆ induce surjections
between the corresponding class groups, it follows that Cl(Z(ZG)) 6= 0. (We have also
shown that Cl(Z(ZG)) contains elements of order 4.)

Since the bimodule M is not free from one side, we have

ν 6∈ U(ZG)u(QG).

It is easy to see that we can choose ν such that ν2 ∈ J0(QG). Then M ⊕M is, as left
module, stably isomorphic to ZG, and from the Bass Cancellation Theorem [27, 41.20]
it follows that M ⊕M ∼= ZG⊕ ZG as left modules. However, this does not hold for all
bimodules in the genus of M since Cl(Z(ZG)) contains elements of order 4. This proves
Proposition 10.2.

The module M is stably free as left ZG-module if and only if [M ] = [ZG] = 0 in
Cl(ZG), that is, if ν ∈ J0(QG)U(ZG)u(QG). If we could show that in this case, already
ν ∈ U(ZG)u(QG), we would have a contradiction and proved that M is not stably free.
This seems reasonable since ν can be chosen such that eνp = e for all primes p, where
e denotes the rational idempotent belonging to the sum of the two blocks of QG which
are totally definite quaternion algebras.
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Milnor’s description

A theorem of Milnor (see [27, 42.11]) shows how the projective ZG-modules are built
from the projective modules of the pieces Λ and Γ of the pullback diagram

ZG - Γ

Λ
?

- Λ̄
?
.

We shall give such a description for M , which is a projective left ZG-module, in a
moment.

Given the above pullback diagram, we have Milnor’s “Mayer-Vietoris” sequence, which
is an exact sequence of groups (see [27, 49.27]):

K1(Γ) ×K1(Λ) - K1(Λ̄)
∂′- Cl(ZG) - Cl(Γ) ⊕ Cl(Λ) - 0. (∗)

Here, Λ̄ is a finite ring, so each element of the Whitehead group K1(Λ̄) may be rep-
resented by a unit of Λ̄, and the connecting homomorphism ∂ ′ can be described quite
simply: for u ∈ Λ̄×, the left ZG-module

M(u) = {(γ, λ) ∈ Γ ⊕ Λ | γ̄u = λ̄ in Λ̄}

is in the same genus as ZG, and ∂ ′(u) = [M(u)] ∈ Cl(ZG).
As we have seen at the beginning of this section, the image u of the group ring element

2((1 + a2) + (1 − a2)c)a−1 + 3(q + a2q−1) in Λ̄ is a unit, and the group automorphism τ
of G induces an inner automorphism of Λ̄, given by conjugation with u. We claim that
we can choose

M = M(u).

Indeed, M is also a right ZG-module, the action given by

(γ, λ) · g = (γ(gτ), λg) for all (γ, λ) ∈M , g ∈ G.

Tensoring with Q gives QM = 1(QΓ)τ ⊕ 1(QΛ)1, so M yields the ‘expected’ semilocal
isomorphism.

Now M is not free from one side if and only if u 6= γ̄λ̄ in Λ̄ for all γ ∈ Γ×, λ ∈ Λ×

(see [27, 42.11]). We have shown even more, but note that when one has shown that M
is not free, there is no reason why this should also be the case for all the other bimodules
in the genus of M .

We remark that, since [M ] lies in the kernel of the map Cl(ZG) → Cl(Γ) ⊕ Cl(Λ), we
have an isomorphism of left ZG-modules

M ⊕ (Γ ⊕ Λ)(k) ∼= ZG⊕ (Γ ⊕ Λ)(k) for some k ∈ N
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(cf. the proof of [27, 49.34]).

Furthermore, since u2 = 1 in Λ̄, we obtain, as before, that M ⊕M ∼= ZG⊕ ZG.

Finally, the module M is stably free as left ZG-module if and only if [M ] = [ZG] = 0
in Cl(ZG), that is, if u is contained in the image of the map K1(Γ) ×K1(Λ) → K1(Λ̄).
Since Γ and Λ have stable range 2 (see [27, 41.23]) this is equivalent to say that there
are matrices X ∈ GL2(Γ) and Y ∈ GL2(Λ) such that [ u 0

0 1 ] = X̄Ȳ in GL2(Λ̄).

13. Bicyclic units and torsion

The bicyclic units in an integral group ring ZG, where G is a finite group, have proved to
be useful for the explicit construction of subgroups of finite index in the normalized unit
group V(ZG) of ZG. To describe them, let x, y ∈ G and write x̂ = 1 + x + . . . + xn−1,
where n denotes the order of x. Then b(x, y) := 1 + (1 − x)yx̂ defines a typical bicyclic
unit of ZG.

Let Sn be the symmetric group on n letters. Ritter and Sehgal proved that the Bass
cyclic and the bicyclic units generate a subgroup of finite index in V(ZSn) (see [129,
(27.8)]). Set

Bn = 〈b(x, y) | x, y ∈ Sn〉.
Jespers and Parmenter [73] showed that B3 is a torsion-free normal complement of rank
3 to S3 in V(ZS3). Using a theoretic description of the units in ZS4 given by Allen and
Hobby, Olivieri and del Ŕıo proved in [97] the following theorem.

13.1 Theorem. The intersection Bn∩Sn is the normal four-group of S4 for n = 4, and
the alternating group of Sn for n ≥ 5.

Thus the description of Bn ∩Sn for n ∈ N is complete. The theorem shows in particular
that the group generated by the bicyclic units may have torsion; this answers Problem 19
from [129].

To prove the theorem, it suffices to show that B4 ∩ S4 is nontrivial. For assume that
there is a nontrivial g contained in B4 ∩ S4, and let K be the normal four-group of S4.
Then g has to be contained in K since B3 is torsion-free (and S4 maps to S3 with kernel
K, which gives rise to a map ZS4 → ZS3 which maps bicyclic units to bicyclic units).
This implies that B4∩S4 = K, since it is easily seen that Bn∩Sn is a normal subgroup of
Sn. Let n ≥ 5. Since S4 is embedded in Sn, it follows that Bn∩Sn is a nontrivial normal
subgroup of Sn, i.e., Bn ∩Sn is either the alternating group of degree n or all of Sn. But
the latter is impossible since any bicyclic unit maps to 1 under the sign representation
of Sn. (The latter fact was missed in the submitted version of [97].)

Here, we show how to write a nontrivial element of S4 explicitly as a product of bicyclic
units.3

3We performed the calculations using MAPLE [144].



100 III. Automorphisms of integral group rings: local–global considerations

Let S4 = 〈a, b〉 o 〈c, d〉, where 〈a, b〉 is the normal four-group of S4 and 〈c, d〉 ∼= S3.
Recall that we may identify QS4 with Q⊕Q⊕Mat2(Q)⊕Mat3(Q)⊕Mat3(Q) by setting

a :=


[ 1

]
,
[

1
]
,

[
1 0
0 1

]
,




−1 0 0
0 1 0
0 0 −1


 ,




−1 0 0
0 1 0
0 0 −1






b :=


[ 1

]
,
[

1
]
,

[
1 0
0 1

]
,




1 0 0
0 −1 0
0 0 −1


 ,




1 0 0
0 −1 0
0 0 −1






c :=


[ 1

]
,
[

1
]
,

[
0 1

−1 −1

]
,




0 1 0
0 0 1
1 0 0


 ,




0 1 0
0 0 1
1 0 0






d :=


[ 1

]
,
[
−1

]
,

[
0 1
1 0

]
,




0 0 1
0 1 0
1 0 0


 ,




0 0 −1
0 −1 0

−1 0 0






Maple tells us that ZS4 contains 156 (nontrivial) bicyclic units.4 We can write b ∈ S4

as a product of seven bicyclic units,

b = b1b2b3b4b5b6b7,

where

b1 := b(b, c2) =



[

1 0
0 1

]
,




1 0 0
4 1 0
0 0 1


 ,




1 0 0
4 1 0
0 0 1






b2 := b(ab, bc) =



[

1 0
0 1

]
,




1 0 0
0 1 −4
0 0 1


 ,




1 0 0
0 1 −4
0 0 1






b3 := b(d, abc2) =



[
−2 −3

3 4

]
,




0 −2 −1
0 1 0
1 2 2


 ,




2 0 −1
−2 1 2

1 0 0






b4 := b(d, bc2) =



[
−2 −3

3 4

]
,




2 2 1
0 1 0

−1 −2 0


 ,




0 0 1
−2 1 2
−1 0 2






b5 := b(abd, c) =



[

7 6
−6 −5

]
,




1 0 0
0 1 0
0 0 1


 ,




1 4 0
0 1 0
0 4 1






4Thanks to Ángel del Ŕıo who informed me that a previous calculation of mine went wrong, cf. below.
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b6 := b(bc2d, c2) =



[

1 −3
0 1

]
,




1 0 0
2 2 −1
2 1 0


 ,




1 2 2
0 0 −1
0 1 2






b7 := b(c2d, abc) =



[

1 3
0 1

]
,




1 0 0
−2 0 −1

2 1 2


 ,




1 −2 2
0 2 −1
0 1 0






(Here we omitted the projections on the first two components, which are all equal to 1).
In fact, we observed that

b6b7 =



[

1 0
0 1

]
,




1 0 0
−4 −1 −4

0 0 −1


 ,




1 4 0
0 −1 0
0 4 −1






is ‘congruent modulo 4’ to b, and then we tried to write bb6b7 as a product of bicyclic
units.

13.2 Remark. On the 7th December, 2002 Ángel del Ŕıo informed the author that ZS4

contains 156 nontrivial bicyclic units. (Due to a bug in a Maple Worksheet, we originally
obtained only 102 nontrivial bicyclic units.)

Motivated by the calculation above, Aurora Olivieri and Ángel del Ŕıo performed
an exhaustive search, using Mathematica, in order to write the group element a as a
product of as few as possible bicyclic units, and obtained

a = a1a2a3a4,

where

a1 := b(cd, ca) =



[

1 0
−3 1

]
,




2 1 2
−1 0 −2

0 0 1


 ,




0 1 0
−1 2 0
−2 2 1






a2 := b(c2d, cab) =



[

1 3
0 1

]
,




1 0 0
2 2 1

−2 −1 0


 ,




1 −2 2
0 0 1
0 −1 2






a3 := b(bc2d, c2ab) =



[

1 −3
0 1

]
,




1 0 0
−2 0 1
−2 −1 2


 ,




1 2 2
0 2 1
0 −1 0






a4 := b(cd, c2) =



[

1 0
3 1

]
,




0 −1 2
1 2 −2
0 0 1


 ,




2 −1 0
1 0 0

−2 2 1








IV. Some results on specific automorphism
groups

. . . the source of all great mathematics is the special case, the

concrete example. It is frequent in mathematics that every in-

stance of a concept of seemingly great generality is in essence

the same as a small and concrete special case.

Paul R. Halmos

I Want to be a Mathematician, 1985

This chapter contains a loose variety of results concerning specific automorphism groups
which showed up in connection with the Zassenhaus conjecture and the isomorphism
problem. We shall deal with class-preserving automorphisms and Coleman automor-
phisms of finite groups, and (twisted) projective limits of finite groups.

14. Class-preserving automorphisms

Recently, a new motivation to study class-preserving automorphisms of finite groups
came from work of Roggenkamp and Kimmerle [80], which related them to the Zassen-
haus conjecture (research in this direction began in [117]). Also, Mazur’s observa-
tion [91, 92] linked the isomorphism problem for integral group rings with the existence
of certain non-inner class-preserving automorphisms (see Section 2).

A short survey on class-preserving automorphisms is given in [54, Kapitel 3]; more
recent results can be found in [56,59,137].

We would like to remark that nilpotent groups are the most natural candidates for
groups with non-inner, class-preserving automorphisms. Examples might arise via linear
algebra as follows (recently, Szechtman [137] investigated similar examples in detail).

14.1 Example. For any rational prime p, we construct a group G of order p6 which
possesses a non-inner, class-preserving automorphism σ.

102
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Let

B =




1 · 1 ·
· 1 · 1
· · 1 ·
· · · 1


 , C =




1 · · 1
· 1 · ·
· · 1 ·
· · · 1


 ∈ GL(4, p).

Then B and C are two commuting matrices of order p. Take the underlying vector space

V = Fp ⊕ Fp ⊕ Fp ⊕ Fp

and form the semidirect product

G = V o (〈b : b2〉 × 〈c : c2〉),

the operation given by vb = vB and vc = vC for all v ∈ V . Let

v = (0, 0, 0, 1) ∈ V ∩ Z(G)

and define the automorphism σ ∈ Aut(G) by cσ = cz, bσ = b and vσ = v for all v ∈ V .
Then σ is a class-preserving automorphism if and only if for all g = bick, i, k ∈ N, there
is v ∈ V with

g · v(BiCk − E) = vgv−1 = gσ = gzk (E = identity matrix),

i.e., if and only if the matrix equation

(0, 0, 0, k) = v




· · i k
· · · i
· · · ·
· · · ·




has a solution for every pair i, k. This is obvious, but there is no simultaneous solution
for all i, k. Hence σ is a non-inner, class-preserving automorphism.

Here, we show that class-preserving automorphisms of abelian by cyclic groups are
inner automorphisms. (For the class of metacyclic groups, this is obvious and was
noticed by Kimmerle (see proof of [81, Folgerung 5.15]).)

The proof is based on the following lemma.

14.2 Lemma. Let G be an abelian p-group, and let α and β be automorphisms of G of
p-power order. Assume that αβ = βα and that for each g ∈ G, there is n ∈ N such that
gβ = gαn. Then β is a power of α.
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Proof. Assume that G is a counterexample, with the order of the semidirect product
G〈α〉 being minimal. Let Z be a central subgroup of order p in G〈α〉 which is contained
in G. Then β centralizes Z. Thus α and β induce automorphisms ᾱ and β̄ of Ḡ = G/Z,
and β̄ is a power of ᾱ by minimality of G〈α〉. Hence we can assume that β̄ is the
identity. Then G → Z, g 7→ g−1(gβ) is a surjective homomorphism, with kernel K of
index p. For all g ∈ G, there is n(g) ∈ N such that gβ = gαn(g). Choose h ∈ G \ K
such that αn(h) is of maximal order among the αn(g), g ∈ G \ K. By minimality of
G〈α〉, we have 〈α〉 = 〈αn(h)〉. Thus we can assume that G = 〈K,h〉 and hβ = hα.
Note that hβ = zh for an element z of order p in Z ≤ Z(G). For all k ∈ K, we have
kzh = (kβ)(hβ) = (kh)β = (kh)αn(kh) = kαn(kh)zn(kh)h, so αn(kh) is not the identity,
and kαn(kh) ∈ kZ. Thus if αq is a power of α having order p, then αq induces the identity
on G/Z. As above, it follows that H := CG(αq) is a normal α-invariant subgroup of G of
index p. Also, H is fixed by β since β commutes with α. Thus by minimality of G〈α〉, the
automorphism β agrees on H with some power αl of α. If h 6∈ H, then h 6= hαq = zqh,
so p - q and α has order p. Consequently H = CG(α) ⊆ CG(β) and β = α (since
h 6∈ H), contradicting our assumption that G is a counterexample. Thus h ∈ H and
hα = hβ = hαl, so that 〈αl〉 = 〈α〉 since hα 6= h. Since β induces the identity on K, it
follows that α induces the identity on H∩K. Take any k ∈ K\H; then G = 〈h, k,H∩K〉
as H ∩K is of index p2 in G. Since α induces the identity on G/H, we have kα = xk
for some x ∈ H ∩ K, and x 6= 1 since α 6= β. Let xm be a power of x having order
p. Assume that 〈xm〉 6= 〈z〉. Since xα = x = xβ, the automorphisms α and β induce
automorphisms of G/〈xm〉, and by minimality of G〈α〉, the automorphism induced by
β equals the automorphism induced by some power αj of α. Since hαj(hβ)−1 = zj−1,
it follows that j = 1 + ps for some s ∈ Z. Furthermore kαj(kβ)−1 = xjkk−1 = xj , and
therefore 〈x〉 = 〈xj〉 ≤ 〈xm〉. It follows that (hk)αi = zihxik = (zx)ihk 6= zhk = (hk)β
for all i ∈ Z (this is the place where we use that G is abelian!), and we have reached a
final contradiction. ¤

14.3 Remark. The group G which is the direct product of a cyclic group C2 of order
2 and the dihedral group D8 of order 8 may serve as an example showing that the
hypothesis that G is abelian cannot be removed. This observation also shows that there
is a semidirect product (C2×D8)oC4 having a non-inner class-preserving automorphism
of order 2.

We now have the following proposition.

14.4 Proposition. Let G be a finite group having an abelian normal subgroup A with
cyclic quotient G/A. Then class-preserving automorphisms of G are inner automor-
phisms.

Proof. Let σ be a class-preserving automorphism of G of p-power order, for some prime
p dividing the order of G; we have to show that σ is an inner automorphism. By [56,
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Corollary 5] we can assume that G/A is a p-group. Let P be a Sylow p-subgroup of
G, and choose x ∈ P such that G = 〈x,A〉. By Sylow’s theorem, we can assume that
Pσ = P . Set S = P ∩A = Op(A) and T = Op′(A), so that P = 〈x, S〉 and A = S × T .

Let γ ∈ Aut(G) be the inner automorphism given by conjugation with x, and set
H = 〈σ|T , γ|T 〉 ≤ Aut(T ). It is well known that CH(t0) = CH(T ) for some t0 ∈ T . Thus
after modifying σ such that t0σ = t0, we have tσ = t for all t ∈ T .

Let y be a generator of C〈x〉(t0), and let δ be the inner automorphism given by conju-

gation with y. For each s ∈ S there is n(s) ∈ N such that sσt0 = (st0)σ = (st0)γn(s) =
(sγn(s))(t0γ

n(s)), meaning that sσ = sδm(s) for some m(s) ∈ N. Clearly σ|S commutes
with δ. Thus the lemma tells us that σ|S is a power of δ, and we can modify σ such
that the new σ fixes A element-wise. Clearly xσ = xs for some s ∈ S, and then σ is the
inner automorphism given by conjugation with s. ¤

The proof actually shows:

14.5 Proposition. Let G be a finite metabelian group having an abelian normal sub-
group B such that the quotient Ḡ = G/B is abelian with cyclic Sylow p-group, for some
prime p. Then each class-preserving automorphism of G of p-power order is an inner
automorphism. ¤

15. Coleman automorphisms

A Coleman automorphism of a finite group G is an automorphism of G whose restriction
to any Sylow subgroup of G equals the restriction of some inner automorphism of G
(this notion was introduced in [56, 61]). We write AutCol(G) for the group of Coleman
automorphisms of G, and put OutCol(G) = AutCol(G)/Inn(G).

Coleman automorphisms occur naturally in the study of the normalizer of a finite
group G in the units of its integral group ring ZG (see the Ward–Coleman Lemma on
page 138). Kimmerle and the author [61] studied Coleman automorphisms in their own
right. Here, we shall deal with some problems which were left open in [61].

Groups with non-cyclic chief factors

In [61], it was shown that the size of OutCol(G) can be limited if one imposes restrictions
on the dimensions of the abelian composition factors of G. More precisely, it was shown
(among other things):

• If G is quasinilpotent, then OutCol(G) = 1;

• If G has no composition factor of order p, then OutCol(G) is a p′-group;

• If Z(F∗(G)) is a p′-group, and no chief factor of G/F∗(G) has order p, then
OutCol(G) is a p′-group.
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Here, we will be concerned about the following questions which remained unanswered
in [61] — even though no definite results will be presented.

15.1 Problem. 1. Assume that no chief factor of G is of order p. Is it true that
OutCol(G) is a p′-group?

2. Assume that Op′(G) = 1 for some prime p. Is it true that OutCol(G) = 1?

3. Assume that G has a unique minimal normal subgroup. Is it true that OutCol(G) =
1?

The present discussion has its origin in the following two results from [61]: For any
finite group G, we have OutCol(F

∗(G)) = 1 (see [61, Corollary 16]), and if N is a normal
subgroup of G with OutCol(N) a p′-group and if p does not divide the order of G/N ,
then OutCol(G) is a p′-group, too (see [61, Corollary 3]).

In an attempt to generalize this result, we are led to consider the structure of a finite
group G having the following properties:

• No chief factor of G/F∗(G) is isomorphic to Cp;

• The group G has a non-inner Coleman automorphism σ of p-power order.

Note that for N E G, we have F∗(G)N/N ≤ F∗(G/N). Hence the first property
pass on to factor groups. Thus, considering a ‘minimal’ example, we can assume that σ
induces inner automorphisms on proper quotients of G.

Assume that N := Op′(G) 6= 1. Then σ induces an inner automorphism on G/N , and
we can modify σ such that σ induces the identity on G/N (see [61, Remark 5]). Then σ
induces a Coleman automorphism on N by [61, Lemma 19], and is therefore the identity
on N by [61, Proposition 1]. But this implies that σ (which is of p-power order) is the
identity, a contradiction.

Hence Op′(G) = 1. Since σ restricted to a Sylow p-subgroup coincides with an inner
automorphism, it follows that G is not p-constrained (see [44, Corollary 4.2]).

Choosing N = F∗(G) in [61, Lemma 19], we see that σ induces a Coleman au-
tomorphism on F∗(G). Since OutCol(F

∗(G)) = 1, we can modify σ such that σ in-
duces the identity on F∗(G). Then σ induces the identity on the quotient G/M , where
M = Op(Z(F∗(G))) (so σ corresponds to a nontrivial element of H1(G/M,M)).

Choose a Sylow p-subgroup P of G with Pσ = P and x ∈ P with σ|P = conj(x)|P .
Then x centralizes the Sylow p-subgroup P ∩ F∗(G) of F∗(G). Note that x 6∈ Op(G) by
a well known 1-cohomology argument.

Since F∗(G) contains its own centralizer, it follows from a result of Gross [44, Theo-
rem A(ii)] that x ∈ F∗(G) provided that p > 2.

It is known that there are groups H with O2′(H) = 1 having non-inner 2-central
automorphisms, so the previous argument does not carry over to the p = 2 case. We
remark that if p = 2 and x 6∈ F∗(G), then 〈xG〉/F∗(G) has an abelian Sylow 2-subgroup
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and a normal 2-complement by a result of Glauberman [40, Theorem 1], so G/F∗(G)
has at least a composition factor of order 2. Though this case might be interesting, we
didn’t pursued it any further.

Now assume that x ∈ F∗(G). Write x = yx1 · · ·xn with y ∈ Op(G), and each xi
lying in a component Li of G. Then y ∈ Z(F∗(G)), and we can assume without lost of
generality that y = 1. Each xi is p-central in Li.

Note that there must be a component Li, and φ ∈ Aut(Li), such that xiφ = zxi
for some 1 6= z ∈ Z(Li) (consider the action of P on the components of G and on the
coset (x1 · · ·xn)M). In particular, φ is a non-inner automorphism. Further, note that
there may be some z′ ∈ Z(Li) such that xz′ is a fixed point of φ (at least there is no
obvious reason why such an element should not exist, see the example below), but the
non-existence of such elements proves in retrospect that σ is a non-inner automorphism.

15.2 Example. Let L be the covering group of the unitary group K = U6(2), with
center isomorphic to C2 ×C2. Then there is an (outer) automorphism φ of K of order 2
which leaves a normal subgroup Z = 〈z〉 of order 2 invariant, and a 2-central involution
x ∈ L \ Z(L) such that xφ = zx. However, this also holds for some x ∈ Z(L). (This has
been checked using GAP [37].)

Some situations are easy to analyze. For example:

15.3 Proposition. Assume that non-abelian composition factors of F∗(G) are alternat-
ing groups, and that no chief factor of G/F∗(G) is of prime order. Then OutCol(G) = 1.

¤

As illustration, we continue with an example.

15.4 Example. Let L be a finite group having a normal subgroup Z = 〈z〉 of order 2,
and an automorphism φ of order 2 such that xφ = zx for some 2-central element x, but
xz′ is not a fixed point of φ for all z′ ∈ Z(L).

Then there is a group G having a non-inner class-preserving Coleman automorphism
of order 2 and the following properties: G has a minimal normal subgroup M of order
24, contained in the center of a normal subgroup F of G, such that F/M is a direct
product of 15 copies of L/Z, and G/F ∼= A5, the alternating group of order 60.

Proof. We work with the presentation A5 = 〈s, t | s2 = t3 = (st)5 = 1〉. A signed permu-
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tation representation ρ : A5 → GL15(Z) is given by s 7→ S, t 7→ T , where

S =




· 1 · · · · · · · · · · · · ·
1 · · · · · · · · · · · · · ·
· · −1 · · · · · · · · · · · ·
· · · · · 1 · · · · · · · · ·
· · · · · · · 1 · · · · · · ·
· · · 1 · · · · · · · · · · ·
· · · · · · · · · 1 · · · · ·
· · · · 1 · · · · · · · · · ·
· · · · · · · · 1 · · · · · ·
· · · · · · 1 · · · · · · · ·
· · · · · · · · · · · · · −1 ·
· · · · · · · · · · · · · · 1
· · · · · · · · · · · · −1 · ·
· · · · · · · · · · −1 · · · ·
· · · · · · · · · · · 1 · · ·




, T =




· · 1 · · · · · · · · · · · ·
· · · 1 · · · · · · · · · · ·
· · · · 1 · · · · · · · · · ·
· · · · · · 1 · · · · · · · ·
1 · · · · · · · · · · · · · ·
· · · · · · · · 1 · · · · · ·
· 1 · · · · · · · · · · · · ·
· · · · · · · · · · 1 · · · ·
· · · · · · · · · · · 1 · · ·
· · · · · · · · · · · · 1 · ·
· · · · · · · · · · · · · · 1
· · · · · 1 · · · · · · · · ·
· · · · · · · · · · · · · 1 ·
· · · · · · · · · 1 · · · · ·
· · · · · · · 1 · · · · · · ·




.

Let Π be a direct product of 15 copies of L. Then A5 acts on Π as follows. The matrix
gρ can be interpreted as an element of GL15(Aut(L)) when the entries −1 are replaced
by the automorphism φ. Then g acts on Π by right multiplication with this matrix.
We form the corresponding semidirect product H = Π o A5 (This is a “twisted wreath
product” in the common sense [65, I.15.10].)

Let V = Z × . . . × Z ≤ Π, and write multiplication in V additively, thus identifying
V with a 15-dimensional row space over F2. We write ei for the row vector with entry
1 at i-th position and zero elsewhere.

We determined a composition series of the underlying F2A5-module V , together with
a transformation matrix A, using the matrix-package in GAP [37]:

A :=




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
· · 1 · · · · · 1 · · · 1 · ·
· · · · 1 · · · · · · 1 · 1 ·
· · · · · · · 1 · · 1 · · · 1
· 1 1 1 1 · 1 1 1 · 1 1 1 1 1
· · · 1 · · 1 · 1 · 1 1 · · ·
· · · · · · 1 · 1 · · 1 1 1 1
· · · 1 · 1 · · · · · 1 · · 1
· · · 1 · 1 1 · · 1 1 1 · 1 1
· · · · · · · · · · · 1 1 · 1
· · · · · · · · · 1 · · 1 1 ·
· · · · · · · · · · 1 · 1 · 1
· · · · · · · · · · 1 · · 1 1
· · · · · · · · · · 1 · · 1 ·
· · · · · · · · · · 1 · 1 1 ·




,
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ASA−1 (2)≡




1 · · · · · · · · · · · · · ·
· 1 · · · · · · · · · · · · ·
· · · 1 · · · · · · · · · · ·
· · 1 · · · · · · · · · · · ·
1 1 1 1 1 · · · · · · · · · ·
· · · · · 1 · · 1 · · · · · ·
· · · · · · 1 1 1 · · · · · ·
· · · · · · · 1 · · · · · · ·
· · · · · · · · 1 · · · · · ·
· · · · · · · · · 1 · · · · ·
· · · · · · · 1 1 · 1 · · · ·
· · · · · · · · · 1 · 1 · · 1
· · · · · · · · · 1 · · 1 1 1
· · · · · · · · · · · · · 1 ·
· · · · · · · · · · · · · · 1




, ATA−1 (2)≡




1 · · · · · · · · · · · · · ·
· · 1 · · · · · · · · · · · ·
1 · · · 1 · · · · · · · · · ·
· · · 1 · · · · · · · · · · ·
1 1 · · · · · · · · · · · · ·
· 1 1 1 1 · · 1 · · · · · · ·
· 1 1 · 1 · · · 1 · · · · · ·
· · · 1 · 1 · 1 · · · · · · ·
· 1 1 · 1 · 1 · 1 · · · · · ·
· · · 1 · 1 1 1 · 1 · · · · ·
· · · · · · · · · · 1 · · · ·
· · · 1 · · · · · · · · · 1 ·
· · · 1 · · · · · · 1 · · · 1
· · · · · · · · · · 1 1 · 1 ·
· · · · · · · · · · 1 · 1 · 1




.

Set fi = eiA. Then N = 〈f1, . . . , f11〉 is a normal subgroup of H, and we put G =
H̄ = H/N . Then M = V̄ is the 4-dimensional faithful irreducible F2A5-module which
is reducible over F4. With respect to the basis f̄12, . . . , f̄15, the elements s̄, t̄ act on M
by multiplication with the 4 × 4-matrices in the lower-right corner in ASA−1, ATA−1.
It is easily seen that M comes from the natural representation A5

∼= SL(2, 4), with
s =

[
1 ζ
0 1

]
and t = [ 0 1

1 1 ] (ζ a primitive third root of unity). It is well known that

H1(A5,M) ∼= C2 × C2, with pairwise non-equivalent cocycles δa : s 7→ (0, a), t 7→ 0
(a ∈ F×

4 ). The corresponding automorphisms of M oA5 are non-inner, class-preserving
automorphisms (see [123]).

Let c = (x, x, . . . , x) ∈ Π. Then tc = t and

sc = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0) · s
= ((f2 + f7 + f8 + f9 + f10 + f11) + (f14 + f15)) · s.

Define an automorphism σ ∈ Aut(G) by σ|Π̄ = id|Π̄ and σ|Ā5
= conj(c̄)|Ā5

.

Then for each g ∈ G, there is m ∈ M with gσ = gm, so σ is a class-preserving
automorphism. By assumption, there is a Sylow 2-subgroup P of H such that c ∈
Z(P ∩ Π), and then σ agrees on P̄ with conj(c̄). Also, since σ induces the identity on
G/M , σ agrees on each Sylow subgroup of odd order with some inner automorphism.
Thus σ is a Coleman automorphism. Note that f14 + f15 = e13, so that the extra
condition on the group element x ensures that σ is a non-inner automorphism. ¤

15.5 Remark. 1. We may take for L a group like S3 × C2, but then G/F∗(G) has
chief factors of order 2.

2. If there exists a quasisimple group L satisfying the hypotheses of Example 15.4,
then all questions posed in Problem 15.1 have a negative answer. (In this context,
it might be helpful to understand the concept of splitting and stable involutions,
cf. [43].) However, we couldn’t find such a group.

The discussion leads us to the following question.
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15.6 Problem. Let p be a prime. Is there a finite group L having the following prop-
erties:

• No chief factor of L/Op(L) has order p;

• There is a central subgroup 〈z〉 of order p in L, a p-central element x in L and
φ ∈ Aut(L) of order p such that xφ = zx, but there is no z ′ ∈ Z(L) such that xz′

is a fixed point of φ.

If such a group L exists, is L necessarily non-solvable? (not p-constrained?)

1-cohomology

We have seen how 1-cohomology appears in the study of Coleman automorphisms. We
briefly recall some general facts which might be helpful in some further discussion.

Let G be a finite group with an abelian normal subgroup A. Let Aut(G,A) be the
group of automorphisms of G which leave A invariant. Thus each σ ∈ Aut(G,A) induces
an automorphism σ̄ of Ḡ = G/A. Then the n-th cohomology group Hn(Ḡ, A) has a
natural structure as a right Aut(G,A)-module; the action of σ ∈ Aut(G,N) is induced
by its action fσ := (σ̄−1 × . . . × σ̄−1)fσ on normalized cochains f : Ḡ × . . . × Ḡ → A.
It is easily seen that Inn(G) acts trivially, so Hn(Ḡ, A) can be viewed as a module for
Aut(G,A)/Inn(G).

The following has been observed by Dade (in a special case, see [29, 2.5]).

15.7 Proposition. Let A be an abelian normal subgroup of the finite group G. Then
the group OutCol(G) acts trivially on H∗(G/A,A). ¤

Let Aut11(G,A) denote the group of automorphisms σ ∈ Aut(G,A) with σ|A = id
and σ̄ = id. It is well known that Aut1

1(G,A) ∼= Z1(Ḡ, A), with σ ∈ Aut1
1(G,A) corre-

sponding to δ ∈ Z1(Ḡ, A) defined by δ(ḡ) = g−1(gσ). The inner automorphisms given
by conjugation with an element of A correspond to the 1-coboundaries.

Let σ ∈ Aut1
1(G,A). If q is a prime not dividing |A|, and Q is a Sylow q-subgroup of G,

then it follows from Sylow’s theorem (or a 1-cohomology argument) that σ|Q = conj(a)|Q
for some a ∈ A.

From now on, we will assume that A is a p-group. Then σ ∈ AutCol(G) if and only if
σ|P = conj(x)|P for some Sylow p-subgroup P of G and x ∈ G.

Conversely, given some Sylow p-subgroup P of G and x ∈ P with x ∈ CG(A) and
x̄ ∈ Z(P̄ ), we might ask whether there is σ ∈ Aut1

1(G,A) such that σ|P = conj(x)|P .

This happens if and only if [δ] ∈ H1(P̄ , A), defined by δ(ḡ) = g−1gx = [g, x], lies in the
image of the restriction map H1(Ḡ, A) → H1(P̄ , A), that is, if [δ] is stable with respect
to G (see [20, III(10.3)]).

So assume that [δ] is stable with respect to G, which means that resP,P g∩P ([δ]) =
resP g ,P g∩P ([δconj(g)]) for all g ∈ G. So for all g ∈ G there is a ∈ A such that for y ∈ P g∩P ,
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we have [y, x] = δ(ȳ) = δconj(g)(ȳ)·[y, a] = δ(ȳg
−1

)g ·[y, a] = [yg
−1
, x]g ·[y, a] = [y, xg]·[y, a].

Hence

[δ] is G-stable iff ∀
g∈G

∃
a∈A

∀
y∈P g∩P

[y, x] = [y, xg] · [y, a].

In particular, we get that [x−1, g] centralizes P g ∩ P ∩ CG(A).

The following technical lemma might help to clarify some specific situations.

15.8 Lemma. Let A ≤ K ≤ G with A a normal p-subgroup of G, and A ≤ Z(K).
Assume that K/K(1)A is a p′-group, and that there is S ≤ K, a subgroup of index p in
a Sylow p-subgroup P of G. Finally, assume that Z(P/A) = T/A with [T,A] = 1 and
Z(S)Z(P ) ⊆ A. Then any p-central automorphism of G which is of p-power order is
given by conjugation with an element of A.

Proof. Replacing K, and P , by a suitable conjugate, we may assume that σ|P = id|P .
Let Ḡ = G/A. There is a p-element g ∈ G such that σḠ = conj(ḡ). It follows that
g ∈ P and ḡ ∈ Z(P̄ ), so [g,A] = 1. Hence τ = σ · conj(g−1) induces on both A and Ḡ
the identity. Since H1(K̄, A) = Hom(K̄, A) consists of the trivial homomorphism only,
it follows that τ |K = id|K , and consequently [g, S] = 1. If g ∈ S, then g ∈ Z(S), and
otherwise g ∈ Z(P ) since [P : S] = p. Hence g ∈ A by assumption, and it follows that σ
is given by conjugation with an element of A. ¤

For any finite simple group S, there is a prime p dividing the order of S such that
p-central automorphisms of S are inner automorphisms [61, Theorem 14]. This implies
that the same is true for each group G with S ≤ G ≤ Aut(S) [61, Remark 15]. One might
ask whether the same is true for each covering group of G. As a concluding example,
we consider the symmetric groups:

15.9 Proposition. The group OutCol(G) is trivial for any covering group G of a sym-
metric group Sn.

Proof. If n ≤ 3, then all Sylow subgroups of Sn are cyclic, the Schur multiplier of Sn is
trivial and the assertion is obvious. So assume that n ≥ 4, and let G be a covering group
of Sn. It is known that G is isomorphic to one of the following groups (see [75, 2.12]):

S∗
n = 〈 g1, . . . , gn−1, z | g2

i = (gjgj+1)3 = (gkgl)
2 = z, z2 = [z, gi] = 1

for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2, k ≤ l − 2 〉,

S∗∗
n = 〈 g1, . . . , gn−1, z | g2

i = (gjgj+1)3 = 1, (gkgl)
2 = z,

z2 = 1, [z, gi] = 1

for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2, k ≤ l − 2 〉.
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Note that in both cases, we have gkgl = glgkz for k ≤ l − 2 and gjgj+1gj = gj+1gjgj+1

for 1 ≤ j ≤ n− 2.
Let Ḡ = G/〈z〉 ∼= Sn; an isomorphism is given by letting ḡi correspond to the cycle

(i, i+ 1).
Let σ ∈ AutCol(G). Since the induced automorphism σ̄ of Ḡ is a Coleman automor-

phism, it follows that σ̄ is an inner automorphism (here, only the case n = 6 has to be
considered, see [65, II.5.5]). Hence we may assume that σ̄ = id, so σ is of 2-power order,
σ fixes a Sylow 2-subgroup P of G, and there is c ∈ P with σ|P = conj(c)|P .

Note that σ restricted to the commutator subgroup G(1) is the identity. This is easily
seen in the case n = 4, and if n > 4, this follows from the fact that G(1)/〈z〉 ∼= An is
perfect. Hence if σ 6= id, that is, σ|P 6= id|P , then c ∈ G(1).

Recall the following description of a Sylow 2-subgroup of Sn. If n =
∑∞

i=0 ai2
i with

ai ∈ {0, 1} is the 2-adic expansion, then
∏
ai 6=0 22i−1 is the 2-part of n!, and a Sylow 2-

subgroup of Sn is the direct product of Sylow 2-subgroups of the S2i with ai 6= 0. These
Sylow 2-subgroups can be described as iterated wreath products (see [65, III.15.3]).

Now assume that σ 6= id. Then it follows from the description of the Sylow 2-subgroups
that c̄ ∈ Z(P̄ ) is an involution, that we may assume c = g1g3 · · · g2n+1 for some n ≥ 1
(since c ∈ G(1)) and that P contains the element d = g2g1g3g2. We calculate

g1g3 · g2g1g3g2 = g3(g1g2g1)g3g2 · z = g3g2g1(g2g3g2) · z
= g3g2(g1g3)g2g3 · z = (g3g2g3)g1g2g3 = g2g3(g2g1g2)g3

= g2(g3g1)g2g1g3 = g2g1g3g2 · g1g3 · z.

It follows that cd = dcz, and dσ = dc = dz. On the other hand, d ∈ G(1), so dσ = d.
This contradiction shows that σ = id, and the lemma is proven. ¤

16. Subdirect products of finite groups

In this section, we will touch upon the following problems in group theory, guided by
possible applications to the Zassenhaus conjecture and the isomorphism problem.

• Given a finite group G, what are the possibilities to represent G as a subgroup of
a direct product?

• Describe the structure of the subgroups of a direct product in terms of the sub-
groups of the direct factors.

Known results

Let G1, . . . , Gn be finite groups. A subgroup of the direct product D = G1 × . . .×Gn is
called a subdirect product (of the Gi’s). (We remark that many of the following definitions
also make sense for infinite groups and infinitely many factors.)
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Remak was the first who investigated in a series of papers [108, 107, 109, 110] how
a finite group G can be written as a subdirect product, and introduced the following
terminology. The finite group G is subdirectly indecomposable if is not a subgroup of the
direct product of two groups of smaller order. Let G be a subgroup of D = G1× . . .×Gn.
The projection of G to Gi is the i-th subdirect factor. Assume that these projections are
surjective. The kernel of the projection of G to G∧

i = G1×. . .×Gi−1×Gi+1×. . .×Gn (i-th
factor omitted) is the i-th block component. The i-th subdirect factor is supernumerary if
the i-th block component is trivial; then G is a subdirect product of G∧

i . The embedding
G ↪→ D is an economic subdirect decomposition if each Gi is subdirectly indecomposable
and not supernumerary.

Remak [107] studied subdirect products of two factors and showed that these are
what is nowadays known as a pullback. A group G is subdirectly indecomposable if and
only if G has exactly one nontrivial minimal normal subgroup. In an economic subdirect
decomposition of G, the socle of G is the direct product of the minimal normal subgroups
of the factors. Based on his work [108], Remak proved further results on subdirect
products, depending on the properties of the socle of a group. In [109], Remak described
a method of how to obtain an economic subdirect decomposition for a given group, and
showed that all such decompositions are obtained in that way. In [110], Remak related
certain subgroups of a subdirect product with three factors. As an application, he gave
the following proposition.

16.1 Proposition ([110, Satz VII]). Let G be a group with normal subgroups A, B
and C. Then

AB ∩ C
(A ∩ C)(B ∩ C)

∼= BC ∩A
(B ∩A)(C ∩A)

∼= CA ∩B
(C ∩B)(A ∩B)

and each factor group is an abelian group.

We can, however, give a short and elementary proof of this proposition:

Proof. There is a well defined surjective map AB ∩C → BC ∩A/B ∩A which maps an
element c ∈ C which is of the form ab (a ∈ A, b ∈ B) to the coset a(B ∩ A). Indeed,
a = cb−1 ∈ BC ∩ A, and if c = a1b1 = a2b2 with c ∈ C, a1, a2 ∈ A and b1, b2 ∈ B, then
a1a

−1
2 = c(b−1

1 b2)c−1 ∈ B∩A. By definition, the kernel of this map is B∩C. Hence there
is an isomorphism AB∩C/B∩C → BC ∩A/B∩A which carries (A∩C)(B∩C)/B∩C
to (A ∩ C)(B ∩A)/B ∩A, and the induced isomorphism on the factor groups gives the
first isomorphism. The second isomorphism is obtained by interchanging B and C.

In order to prove that the first factor group is abelian, put N = (A ∩ C)(B ∩ C) and
let ¯ denote the natural map G → G/N . Then Ā ∩ C̄ = 1 and B̄ ∩ C̄ = 1, and we have
to show that ĀB̄ ∩ C̄ is abelian. Hence we may assume that A ∩C = 1 and B ∩C = 1.
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Then the group G is a pullback, as shown below,

G //

²²

G/A

²²
G/C // G/AC

The image of AB ∩ C in G/C is trivial, so we have to show that the image of AB ∩ C
in G/A is abelian. Let x, y ∈ (AB ∩ C)A/A. Then there are b ∈ B and c ∈ C such that
x = bA and y = cA, and since [b, c] ∈ B ∩ C = 1, it follows that x and y commute, and
we are done. ¤

Using lattice theory, Birkhoff [8, Theorem 26·2], [10, VI.5] proved an extension of this
proposition. He also proved a representation theorem in universal algebra: every algebra
can be represented as a subdirect union of subdirectly irreducible algebras (see [9],
or [10, VI.6 Theorem 10]). It follows, for example, that any abelian group is a subdirect
product (possibly infinitely many subdirect factors) of the groups Q and Q/Z (see [9,
Corollary 5]).

Again, let G be a subdirect product of groups Gi, i ∈ I. Loonstra [89] gives a criterion
for when there exist a group F and homomorphisms αi : Gi → F (i ∈ I) such that G
consists of those tupels (gi)i∈I with giαi = gjαj for all i, j ∈ I.

If N1, . . . , Nn are normal subgroups of G whose intersection is trivial, then G is a
subdirect product of the groups G/Ni in a natural way. We may also form a projective
limit associated with G and the Ni, in which G embeds. Kimmerle and Roggenkamp [80]
give a criterion for when G is isomorphic to this projective limit (see Corollary 16.9
below).

Bryce and Cossey [22, 21] investigate Fitting classes which are closed with respect to
forming subdirect products.

Vedernikov [140] shows that finite subdirect products can be made by iterating the
familar (pullback) construction of subdirect products with two subdirect factors, and
uses this construction to describe those formations of finite groups whose subformations
are all closed under taking subnormal subgroups.

Vedernikov [141] proves that the class of groups which have Hall π-subgroups, for some
nonempty set π of prime numbers, is closed under finite subdirect products provided
Schreier’s conjecture holds. (Schreier’s conjecture holds by the classification of the finite
simple groups).

If G is a subdirect product of groups G1, . . . , Gn and N is a normal subgroup of G such
that each projection N → Gi is surjective, then G/N is nilpotent of class not exceeding
n (see [42, Proposition 4.7]). Khukhro [78] constructs groups G/N of this type (for an
infinity of values of n) that have increasing (with n) nilpotency class.

There is a well known description of all subgroups of the direct product of two finite
groups (see [136, (4.19)], [138, (1.1)]). Seemingly, it is open whether there is a similar
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description of the subgroups of direct products of more then two finite groups (see
Problem 16.2 below). Thévenaz [138] describes the maximal subgroups of the direct
product Gn of n copies of a group G. In particular, if G is perfect then any maximal
subgroup of Gn is the inverse image of a maximal subgroup of G2 for some projection
Gn → G2 onto two factors, and if G is perfect and finite then the number of maximal
subgroups ofGn is a quadratic function of n (otherwise this number grows exponentially).
Also, he deduces a theorem of Wiegold about the growth behavior of the number of
generators of Gn.

Definitions

Let Gi and Gij be finite groups with Gij = Gji and Gii = Gi, for all 1 ≤ i, j ≤ n, n a
natural number. Let πij : Gi → Gij be homomorphisms (with πii the identity mapping).
The projective limit of the groups Gi with respect to the homomorphisms πij is the
subgroup

G = proj lim
1≤i,j≤n

(Gi, πij) =
{

(g1, . . . , gn) ∈
n∏
i=1
Gi

∣∣∣ giπij = gjπji for all 1 ≤ i, j ≤ n
}

of the direct product of the Gi, i.e., a special subdirect product (cf. Problem 16.2 below).
The projection πi : G → Gi into the i-th component is clearly a homomorphism, and
πiπij = πjπji for all i, j. The projective limit G has the following universal property:
whenever there is a group H and homomorphisms π′

i : H → Gi such that π′iπij = π′jπji
for all i, j, then there is a unique homomorphism φ : H → G making the following
diagrams commutative.

H

∃! φ
²² π′j

¹¹

π′i

ªª

G

πi{{vv
vv
vv
v

πj ##H
HH

HH
HH

Gi

πij ##F
FF

FF
FF

Gj

πji{{ww
ww
ww

Gij

It does no harm to replace the Gi by the subdirect factors of G, i.e., to assume that
the projections πi : G → Gi are surjective. Then πij and πji have the same image in
Gij = Gji, for all i, j, and we may also assume that the πij are surjective, so that all
involved groups are factor groups of G.

Let G be a finite group, and let N1, . . . , Nn be normal subgroups of G. Put Gi = G/Ni,
Gij = G/NiNj , and let πij : Gi → Gij be the natural maps. Then we write

Ĝ = proj lim
1≤i,j≤n

(Gi, πij),
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and sometimes we omit to mention the πij in the definition of the projective limit. Note
that if

⋂n
i=1Ni = 1, then G has a natural embedding into Ĝ, but this need not be an

isomorphism (see [80, Example 2.2]). We ask:

16.2 Problem. Let D1, . . . , Dn be normal subgroups of G such that G ↪→ ∏n
i=1G/Di

is an economic subdirect decomposition of G. Is then G ∼= proj lim1≤i≤n(G/Di)?

A homomorphism between projective limits

G = proj lim
1≤i,j≤n

(Gi, πij) and H = proj lim
1≤i,j≤n

(Hi, π
′
ij)

(same index set!) is the obvious thing, i.e., a family of homomorphisms αi : Gi → Hi

such that πiαiπ
′
ij = πjαjπ

′
ji for all i, j. By the universal property, this family determines

uniquely a homomorphism G→ H.

It would be nice to have a simpler criteria for when the family (αi)1≤i≤n is a homo-
morphism of projective limits. If the kernel of πij is contained in the kernel of αiπ

′
ij for

all i, j, then the αi induce homomorphisms αij : Gij → Hij , and (αi)1≤i≤n is a homo-
morphism if αij = αji for all i, j, which is also a necessary condition if all maps πi, πij
are surjective:

Gi

αi

²²

πij

!!B
BB

BB
BB

Gj

αj

²²

πji

}}||
||
||
|

Hi

π′

ij !!B
BB

BB
BB

Gij
αij

²²

Gji
αji

²²

Hj

π′

ji}}||
||
||
|

Hij Hji

Here, we shall assume that a homomorphism between projective limits is understood in
this stricter sense.

16.3 Example. There are two obvious examples of homomorphisms between projective
limits. Let Gi, Gij and πij be as above.

(1) Let α1 ∈ Aut(G1), and let

π′ij =

{
α1π12 if i = 1, j = 2,

πij otherwise.
π′′ij =

{
α−1

1 π1j for j > 2,

πij otherwise.

Then (α1, id, . . . , id) : proj lim1≤i,j≤n(Gi, π
′
ij) → proj lim1≤i,j≤n(Gi, π

′′
ij) is an iso-

morphism of projective limits.

(2) Let σij ∈ Aut(Gij) with σij = σji. Then there is an isomorphism of projective
limits: (id)1≤i,j≤n : proj lim1≤i,j≤n(Gi, πij) → proj lim1≤i,j≤n(Gi, πijσij).
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16.4 Example. Let N1, N2, N3 be normal subgroups of a group G, set Gi = G/Ni,
Gij = G/NiNj , and let πi : G → Gi, πij : Gi → Gij be the natural maps. For g ∈ G
we agree that γg, when interpreted as an automorphism of Gi, is conjugation with
gπi. Then the two projective limits associated with the following data are isomorphic
(a, b, c, d, e, f ∈ G):

G1

γe·π13
ÂÂ@

@@

γd·π12 // G12 G2

γb·π23
ÄÄ~~~

γc·π21oo

G13 G23

G3
γf ·π31

aaBBB
γa·π32

==|||

G1

π13
ÂÂ@

@@

π12 // G12 G2

π23
ÄÄ~~~

π21oo

G13 G23

G3
π31

aaBBB
γab−1cd−1ef−1 ·π32

==|||

Twisted projective limits

We briefly discuss the concept of twisted projective limits, considered in [117,80] in con-
nection with the Zassenhaus conjecture and the isomorphism problem. Some examples
are given at the end of this section.

Let N1, . . . , Nn be normal subgroups of the finite group G. Set Gi = G/Ni, Gij =
G/NiNj , and let πij : Gi → Gij be the natural maps. Given a family σ of automorphisms
σij ∈ Aut(Gij), the projective limit

Ĝ(σ) = proj lim
1≤i,j≤n

(Gi, πijσij)

might be called a twisted projective limit (though Gij = Gji, we may have σij 6= σji, cf.
Example 16.3(2)).

We remark that interest in these groups arises from the following theorem (see [80,
Theorem 1.2]):

16.5 Theorem. Let G be a finite solvable group, and set Ĝ = proj limp∈π(G)(G/Op′(G)).

If H is a group basis of ZG, then H ∼= Ĝ(σ) for a family σ of class-preserving automor-
phisms.

The structure of a twisted projective limit Ĝ(σ) may be not at all obvious (compared
to that of Ĝ). For example, we may ask:

16.6 Problem. Give necessary and/or sufficient conditions on σ such that Ĝ and Ĝ(σ)
have the same order.

The following lemma can be extracted from the proof of [80, Lemma 2.3], which we
will recover as Corollary 16.9.

16.7 Lemma. Assume that Ĝ(σ) maps surjectively onto some factor Gi, and that Ni is
a p′-group, for some prime p. Then Sylow p-subgroups of G and Ĝ(σ) are isomorphic.
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Proof. Let π′j : Ĝ(σ) → Gj (1 ≤ j ≤ n) be the projections to the factors. By assumption,
π′i is surjective, and a Sylow p-subgroup of Gi is isomorphic to a Sylow p-subgroup of G.
Hence we have to show that a Sylow p-subgroup P of Ĝ(σ) has trivial intersection with
the kernel of π′i. Take any x ∈ P with xπ′i = 1, and let j ∈ {1, . . . , n}. Then xπ′j is a
p-element which lies in the kernel of πji. But the kernel of πji is the p′-group NiNj/Nj ,
so xπ′j = 1, and consequently x = 1. ¤

16.8 Corollary. Assume that Ĝ(σ) maps surjectively onto all factors Gi, and that for
each p ∈ π(G), some Ni is a p′-group. Then |Ĝ(σ)| = |G|. ¤

16.9 Corollary ([80, Lemma 2.3]). Let G be a finite group, and let N1, . . . , Nn be nor-
mal subgroups of G such that

⋂n
i=1Ni = 1, and that for each p ∈ π(G), some Ni is a

p′-group. Then G ∼= proj lim1≤i≤n(G/Ni). ¤

Again, we can discuss homomorphisms, between twisted projective limits. Let H be
another finite group, and let M1, . . . ,Mn be normal subgroups of H. Set Hi = H/Mi,
Hij = H/MiMj , let π′ij : Hi → Hij be the natural maps, and let τ be a family of
automorphisms τij ∈ Aut(Hij).

If a family α of homomorphisms αi : Gi → Hi induce homomorphisms αij : Gij → Hij

(1 ≤ i, j ≤ n) such that the following diagram commutes:

Gi

αi

²²

πij

!!B
BB

BB
BB

Gj

αj

²²

πji

}}||
||
||
|

Hi

π′

ij !!B
BB

BB
BB

Gij
αij

²²

σij // Gij = Gji
σ−1

ji // Gji
αji

²²

Hj

π′

ji}}||
||
||
|

Hij

τij // Hij = Hji

τ−1
ji // Hji

i.e., if αij(τijτ
−1
ji ) = (σijσ

−1
ji )αji for all i, j, then α is a homomorphism of projective

limits Ĝ(σ) → Ĥ(τ). (Compare with [80, Definition 3.4].)
For a family of automorphisms σij ∈ Aut(Gij), we are thus led to consider the family

of automorphisms δij = σijσ
−1
ji . The collection δ = (δij)1≤i,j≤n is called a cocycle. Note

that δ really consists of a family of automorphisms of the groups Gij , since δ−1
ij = δji

(this condition also could have served for the definition of a cocycle).
The way twisted projective limits appear in the obstruction theory given in [80] sug-

gests the following addition: If there are groups Gijk (not depending on the order of the
indices) and homomorphisms Gij → Gijk, then we require in addition that δij induce a
homomorphism δij,k of Gijk such that δij,kδjk,i = δik,j , for all 1 ≤ i, j, k ≤ n (think of
Gijk = G/Op′i

(G)Op′j
(G)Op′k

(G)).

A cocycle δ is called a coboundary if there is a family of automorphisms αi ∈ Aut(Gi)
which induce automorphisms αij of the Gij such that αijδij = αji for all i, j, that is,
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if and only if there exists an isomorphism (of projective limits) between Ĝ and Ĝ(τ),
where τ = (τij) is such that τij = δij if i < j and τij = id otherwise.

16.10 Remark. If G and H are solvable groups and α : G → H is a homomorphism
(of abstract groups), then α is also a homomorphism between the projective limits
Ĝ = proj limp∈π(G)(G/Op′(G)) and Ĥ = proj limp∈π(H)(H/Op′(H)) in the above sense.
The same holds for homomorphisms of abstract groups between twisted projective limits
Ĝ(σ) and Ĥ(τ). (This holds in many other cases; the main point here is that the involved
normal subgroups are characteristic.)

Automorphisms as projective limits

Let G = proj lim1≤i,j≤n(Gi, πij) be a projective limit as above. Let

Aut(Gi) = {σ ∈ Aut(Gi) | σ induces an automorphism of Gij , for all j}.

(Note that this definition does not depend on Gi alone, but this will hopefully cause no
confusion.) There are natural maps θij : Aut(Gi) → Aut(Gij).

Let us assume that the projections πi : G→ Gi are surjective, and that the kernels of
the πi are characteristic subgroups. Then

Aut(G) = proj lim
1≤i,j≤n

(Aut(Gi), θij)

=
{

(σ1, . . . , σn) ∈
n∏
i=1

Aut(Gi)
∣∣∣ σiθij = σjθji for all 1 ≤ i, j ≤ n

}
.

For solvable groups, we have the following characterization of Coleman automor-
phisms.

16.11 Lemma. Let G be finite solvable group. Then AutCol(G) consists of those au-
tomorphisms σ of G which induce inner automorphisms of all quotients G/Op′(G),
p ∈ π(G).

Proof. Let N = Op′(G) and put Ḡ = G/N , for some p ∈ π(G). Assume that σ ∈ Aut(G)
induces an inner automorphism of Ḡ. Let P be a Sylow p-subgroup of G; we will show
that the restriction of σ to P equals the restriction of some inner automorphism of G.
Without lost of generality, σ induces the identity on Ḡ. Then σ stabilizes NP , and by
Sylow’s theorem there is m ∈ N such that Pσ = Pm. Put τ = σ · conj(m−1). Then τ
still induces the identity map of Ḡ, and Pτ = P . It follows x−1(xτ) ∈ N ∩ P = 1 for
all x ∈ P , so the restriction of σ to P equals the restriction of conj(m). This proves one
inclusion, and the other follows from a result of Gross [44, Corollary 2.4]. ¤

More generally, for an arbitrary finite group G, the group AutCol(G) consists of those
automorphisms σ of G which induce an inner automorphism of the principal block of
ZpG, for all p ∈ π(G) (a proof can be extracted from [126]).
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For a solvable group G, the result allows us to describe AutCol(G) as a projective
limit. For the rest of this subsection, let G be a solvable group, let π(G) = {p1, . . . , pn},
and put Gi = G/Op′i

(G), Gij = G/Op′i
(G)Op′j

(G). Then G = proj lim1≤i≤n(Gi) by

Corollary 16.9. Note that the natural maps πij : Gi → Gij induce maps π∗ij : Gi/Z(Gi) →
Gij/Z(Gij). Lemma 16.11 shows that

AutCol(G) ∼= proj lim
1≤i≤n

(Gi/Z(Gi), π
∗
ij) = proj lim

1≤i≤n
(Inn(Gi)),

which provides a convenient way to compute AutCol(G).

16.12 Example. Let G = (C3 ×C5) oC2, where the cyclic group of order two acts by
inversion (i.e., G is the dihedral group of order 30). Then G3 = G/O3′(G) = C3 o C2,
G5 = G/O5′(G) = C5 o C2 and AutCol(G) = proj lim(Inn(G3), Inn(G5)) = G3 ×G5. In
particular, OutCol(G) ∼= C2.

Also, with respect to the composite maps π̄ij : Gi
πij−→ Gij → Gij/Z(Gij) we can form

the projective limit H = proj lim1≤i≤n(Gi, π̄ij), and then OutCol(H) = 1.
Clearly Aut(Gi) contains Inn(Gi), and we write Out(Gi) for the quotient. The natural

maps Aut(Gi) → Aut(Gij) induce maps Out(Gi) → Out(Gij). With respect to these
maps, we have the following commutative diagram with exact rows.

1 // Inn(G) //

²²

Aut(G) // Out(G) //

²²

1

1 // AutCol(G) // proj lim
1≤i≤n

(Aut(Gi))
λ // proj lim

1≤i≤n
(Out(Gi))

The map λ is in general not surjective.
Let Autn(ZGi) be the group of augmentation-preserving ring automorphisms of ZGi

which stabilize the relative augmentation ideals of the normal subgroups NjNi/Ni, where
Ni = Op′i

(G). Let I(ZGi) be the group of automorphisms of ZGi which induce inner
automorphisms of ZpiGi. Then Autn(ZGi)/I(ZGi) ∼= Out(Gi), by the F∗-Theorem
(see [128, Theorem]).

Let Γ = proj lim1≤i≤n(ZGi), a projective limit in the category of rings with respect to
the maps ZGi → ZGij . Setting

Aut(Γ) = proj lim
1≤i≤n

(Autn(ZGi)) ≤ Aut(Γ),

we have an exact sequence

1 → proj lim
1≤i≤n

(I(ZGi)) → Aut(Γ)
µ−→ proj lim

1≤i≤n
(Out(Gi)).

The quotient im(µ)/im(λ) measures to some extent how far Γ is away from satisfying
a “simultaneous p-version” of the Zassenhaus conjecture, cf. [80].



16. Subdirect products of finite groups 121

Finally, we shall give a short proof of a result of Dade. We will use (for simplicity) the
bar convention for all maps G → Gi (there will be no confusion), and set Ni = Op′i

(G).
Let σ, τ ∈ AutCol(G). Then G = {(ḡ, . . . , ḡ) ∈ ∏n

i=1Gi | g ∈ G}. By Lemma 16.11,
there are xi, yi ∈ G such that σ induces the inner automorphism conj(x̄i) of Gi and τ
induces the inner automorphism conj(ȳi) of Gi. It follows that gxi ≡ gxj mod NiNj for
all g ∈ G, that is, xix

−1
j maps to a central element in G/NiNj , and likewise yiy

−1
j . It

follows that [x̄i, ȳi][x̄j , ȳj ]
−1 ∈ NiNj , so g = ([x̄1, ȳ1], . . . , [x̄n, ȳn]) is an element of G,

and [σ, τ ] = conj(g) ∈ Inn(G). Thus we have [29, Proposition 2.2]:

16.13 Proposition. For a solvable group G, the group OutCol(G) is abelian. ¤

Using the classification of the finite simple groups, this has been verified for any finite
group G in [61, Theorem 11].

Pullbacks

Subgroups of the direct product of two finite groups are well understood: these are just
(twisted) pullbacks. As illustration, we briefly describe the group-theoretical obstruction
we met in Section 3.

Let G be a finite group, and let N1, N2 E G with N1 ∩ N2 = 1. Set Ḡ = G/N1N2.
Then we have the following pullback diagram

G
π2- G/N2

G/N1

π1
? ρ1- Ḡ

ρ2
?

—the maps being the natural ones. Let σ ∈ Aut(Ḡ). We may form the “twisted”
pullback H of the maps ρ1σ and ρ2,

H
τ2 - G/N2

G/N1

τ1
? ρ1- Ḡ

σ - Ḡ

ρ2
?

Then we have the following group-theoretical condition for whenG andH are isomorphic.

16.14 Lemma. With G and H given as above, suppose that each surjective homomor-
phism G → G/Ni has kernel Ni (i = 1, 2). Then G ∼= H if and only if there are
φi ∈ Aut(G/Ni), inducing automorphisms φ̄i of Ḡ, so that σ = φ̄−1

1 φ̄2.
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Proof. Let φ : G → H be an isomorphism. By assumption, φτi has kernel Ni, so there
is φi ∈ Aut(G/Ni) with φτi = πiφi.

Let K = N1π2, which is the kernel of ρ2. Then (Kφ2)ρ2 = N1π2φ2ρ2 = N1φτ2ρ2 =
N1φτ1ρ1σ = (N1π1)φ1ρ1σ = 1, so φ2 stabilizes the kernel of ρ2 and there is φ̄2 ∈ Aut(Ḡ)
with φ2ρ2 = ρ2φ̄2. Similarly, we get φ̄1 ∈ Aut(Ḡ) with φ1ρ1 = ρ1φ̄1. Hence we have the
following diagram, in which every square is commutative.

G
π2 - G/N2

H
τ2 -

φ
- ρ2

G/N2

φ2
-

G/N1

π1

? ρ1 - Ḡ
?

G/N1

τ1

? ρ1 -

φ1
-

Ḡ
σ -

¾

φ̄1

Ḡ

ρ2

?

φ̄2

-

Diagram chasing shows that the “triangle” is commutative, too:

π1ρ1φ̄1σ = π1φ1ρ1σ = φτ1ρ1σ = φτ2ρ2 = π2φ2ρ2 = π2ρ2φ̄2 = π1ρ1φ̄2,

so φ̄1σ = φ̄2 as π1ρ1 is surjective.
Conversely, given φi as above, G ∼= H follows from the universal property of the

pullback. ¤

16.15 Remark. 1. The hypothesis of the Lemma is clearly satisfied if Ni = Opi(G)
for different primes p1, p2.

2. In the special situation when N1 has a complement K in G containing N2, the
group H has a convenient description: it is the semidirect product N1 oσ K, the
action of K on N1 being “twisted” by σ, i.e., nk = nk̄σ for all n ∈ N1, k ∈ K.
Indeed, the following diagram is commutative.

N1 oσ K
(id,ρ1)- N1 oσ Ḡ

(id,σ)- N1 o Ḡ= G/N2

G/N1 = K

τ1
? ρ1 - Ḡ

σ - Ḡ

ρ2
?

Projective limits with three factors

We shall collect some observations on twisted projective limits with three factors.
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Let N1, N2, N3 be normal subgroups of a finite group G such that for all p ∈ π(G),
some Ni is a p′-group. Again, let Gi = G/Ni, Gij = G/NiNj , and let πi : G → Gi,
πij : Gi → Gij be the natural maps. Then G = proj lim1≤i≤3(Gi, πij).

In the simplest case, we consider G, and for some γ ∈ Aut(G1), the twisted projective
limit H, as shown below.

G :

G1

π13
ÂÂ@

@@

π12 // G12 G2

π23
ÄÄ~~~

π21oo

G13 G23

G3
π31

aaBBB
π32

==|||

H :

G1

π13
ÂÂ@

@@

γ·π12 // G12 G2

π23
ÄÄ~~~

π21oo

G13 G23

G3
π31

aaBBB
π32

==|||

Then |G| = |H| if and only if [G, γ] = 〈g−1(gγ) : g ∈ G〉 ≤ N1N2N3. Indeed, the latter
condition is equivalent to say that H maps surjectively onto the factor G1, and the kernel
of this map consists of elements of the form (gπ1, gπ2, gπ3) (g ∈ N1), whence is equal to
N1.

Note that if γ = conj(xπ1) for some x ∈ G, then x ∈ N1N2N3 implies that G ∼= H
(this follows from Example 16.4).

Assume that [G, γ] ≤ N1N2N3. Then for each g ∈ G, there are ag ∈ N2 and bg ∈ N3

(not uniquely determined) such that (gγ−1ag, g, g) = (gbg, g, g) ∈ H. (We agree to write
(g1, g2, g3) instead of (g1π1, g2π2, g3π3) for gi ∈ G). Let M1 = N2 ∩ N3. The group H
is the complex product of M1 × 1 × 1 and {(gbg, g, g) | g ∈ G}. In particular, we have
extensions

1 →M1 → G→ G/M1 → 1,

1 →M1 → H → G/M1 → 1,

which, however, need not have the same coupling (at least, there seems to be no obvious
reason for this).

Note that there are surjections H → G/N1
π→ G/N1M1 and H → G/M1

π→ G/N1M1

(the π’s are the natural maps) which necessarily have the same kernel. Hence there is
σ ∈ Aut(G/N1M1) such that there is a pullback diagram

H //

²²

G/N1

πσ
²²

G/M1 π
// G/N1M1

The next problem may be easy, but we did not elaborate on it.

16.16 Problem. Describe the map σ.
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Finally, set M1 = N2 ∩ N3 etc. Then there are homomorphisms αij : Mi → Gj such
that the following diagram is commutative, and H ∼= proj lim(Mi, αij).

M3

α31

zzuu
uu
uu
uu
u

α32

$$I
II

II
II

II

G1

π13
!!C

CC

γ·π12 // G12 G2

π23
}}{{
{

π21oo

G13 G23

M2

α21

BB¦¦¦¦¦¦¦¦¦

α23

// G3
π31

bbEEE
π32

<<yyy
M1α13

oo

α12

\\999999999

16.17 Example. (Non-isomorphic twisted projective limits.) We give a projective limit
G where twisting with an inner automorphism leads to a non-isomorphic group of the
same order.

Let p, q and r be different primes such that Cp acts on Cq and Cr. Form an iterated
semidirect product G, as shown below (lines indicate faithful operation),

Cp

{{
{{
{

CC
CC

C

Cp2

CC
CC

C
Cq

{{

{{

CC

CC

Cr

{{
{{
{

Mp Mr Mq

where Mi is a i-group such that only the inner automorphisms of G/Oi′(G)Mi can be
lifted to automorphisms of Gi := G/Oi′(G), for i = p, q, r. (Note that such Mp, Mq,
Mr exist, see [103].) Then G = Ĝ = proj lim(G/Op′(G), G/Oq′(G), G/Or′(G)) can be
visualized as follows.

Cp
ÄÄ

Cp Cp
??
?

Cp2 Cq
ÄÄÄÄ

Cq Cq
????
Cr

Mp Cp Cp
????

Mq

Cp2

ÄÄ

Cp
????

Cr

Cp2
??
?

ÄÄ

Cr
ÄÄ
Ä

Mr

ÃÃ@
@@

// oo

__???
??ÄÄÄ

¡¡¢¢
¢

Let x be a generator of the cyclic group Cp on the top of G. Then twisting some
projection with the inner automorphism conj(x̄) yields a group H which has the same
order as G, as we already noted before.
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We claim that G and H are non-isomorphic. To demonstrate this, we first fix such a
group H: Set Gij = G/Oi′(G)Oj′(G), define σij ∈ Aut(Gij) by

σij =

{
conj(x̄) if (i, j) = (p, q),

id otherwise

and set H = Ĝ(σ), where σ = (σij). The cocycle δ = (δij) assigned to σ is given by

δij = σijσ
−1
ji =





conj(x̄) if (i, j) = (p, q),

conj(x̄)−1 if (i, j) = (q, p),

id otherwise.

Note that G ∼= H if and only if Ĝ ∼= Ĝ(σ) as projective limits, and that the latter holds
if and only if δ is a coboundary (by our discussion on homomorphisms between twisted
projective limits). Thus assume, by way of contradiction, that there are automorphisms
αi ∈ Aut(Gi) which induce automorphisms αij of the Gij such that αijδij = αji for all
i, j. Since the automorphisms αi arise from an isomorphism G ∼= H, each automorphism
αi induces an automorphism ᾱi of G/Oi′(G)Mi, which is, by assumption, an inner au-
tomorphism, conj(ḡi) (say). Write gi = yix

ni in G, with yi ∈ Op′(G)Oq′(G)Or′(G) and
1 ≤ ni ≤ p. Note that ᾱi = conj(ḡi) induces the automorphisms αij . Since x acts
faithfully on the cyclic groups Cp2 , Cq and Cr, it follows from αpr = αprδpr = αrp and
αqr = αqrδqr = αrq that np = nr and nq = nr. But then np = nq, which is impossible
since αpq · conj(x̄) = αqp. This contradiction shows that G and H are non-isomorphic.

It would be interesting to know what properties these groups might have in common.



V. On the normalizer problem for infinite
groups

Things done well, and with a care, exempt themselves from fear;

things done without example, in their issue are to be fear’d.

William Shakespeare

King Henry the Eighth, 1612

Throughout this chapter, G denotes an arbitrary (i.e., possibly infinite) group.

For a group G, and a commutative ring R, the automorphisms of G inducing an inner
automorphism of the group ring RG form a group AutR(G). We show that AutR(G)
consists of class-preserving automorphisms, and that any automorphism in AutR(G)
induces an inner (group) automorphism of G/N for some finite normal subgroup N
of G. Thus the group OutR(G) = AutR(G)/Inn(G) is periodic. If R is a G-adapted
ring, then any outer automorphism from OutR(G) has some representative which is
given by conjugation with a unit whose support generates a finite normal subgroup.
Extending results given by Jespers, Juriaans, de Miranda and Rogerio [72], it is shown
that OutR(G) = 1 for certain classes of groups (comprising infinite p-groups, nilpotent
groups and groups whose finite normal subgroups N are p-constrained with Op′(N) = 1
for some prime p), by reduction to the (known) finite group case.

17. Normalizers of group bases: general coefficients

Recall that G denotes an arbitrary group, and let R be a commutative ring, not nec-
essarily G-adapted. In this section, we show that AutR(G) ≤ Autc(G), and that any
automorphism of AutR(G), after modification by an inner group automorphism, induces
the identity on G/N for some finite normal subgroup N of G.

A group basis of RG is a group H ≤ V(RG) which consists of R-linearly independent
elements, such that RG = RH. Let ∗G be the anti-involution of RG associated with the
group basis G, that is, (

∑
g∈G rgg)∗G =

∑
g∈G rgg

−1 (all rg in R). If u = u∗G for some
u ∈ RG, then u might be called G-symmetric, or, more customary, simply symmetric
(having the distinguished basis G explicitly in mind). Note that ∗G commutes with
taking inverses. For u ∈ U(RG), we shall write u−∗G = (u−1)∗G for short.

126
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The most basic fact about elements of NU(RG)(G) involves the standard anti-involution
of RG, and is given in the next lemma. Though it is well known (see [66]), we shall
include the (short) proof.

17.1 Lemma. Let u ∈ NU(RG)(G). Then uu∗G ∈ Z(RG), so [u, u∗G ] = 1, and (an
observation of Krempa) (uu−∗G)∗G(uu−∗G) = 1.

Proof. Let g ∈ G and write ∗ = ∗G. Then u−1gu = (u−1g−1u)−1 = (u−1g−1u)∗ =
u∗gu−∗, so uu∗ ∈ Z(RG), and (uu−∗)∗(uu−∗) = u−1(u∗u)u−∗ = 1 follows. ¤

A classical result due to Higman and Berman says that if uu∗G = 1 for some u ∈ ZG,
then u ∈ ±G (one just has to look at the 1-coefficient of uu∗G). Thus the lemma
immediately implies that OutZ(G) is of exponent 2, a result due to Krempa. This
underlines the special role the coefficient ring Z plays, and the strength of such “star-
arguments”. Some of these arguments remain valid if Z is replaced by a suitable ring of
algebraic integers (see [93], and Proposition 6.1).

For x =
∑

g∈G rgg (all rg inR), the support supp(x) of x is the set {g ∈ G | rg 6= 0}, and
the support group of x is the group generated by supp(x). Note the little inconsistency:
we should have written suppG(x) rather than supp(x), but this will cause no confusion.

When studying NU(RG)(G), the first basic observation is that we can work in the
group ring of the FC-center of G (see the lemma below). Hence we recall the following
definitions and elementary properties (see, for example, [100, PART 2, 4§1]). The set
∆(G) = {g ∈ G | gG is finite} is a characteristic subgroup of G, called the FC-center
of G. If G = ∆(G), then G is said to be a finite conjugate group (FC-group for short).
The set of torsion elements ∆+(G) = {x ∈ ∆(G) | x is of finite order} is a characteristic
subgroup of ∆(G). If ∆(G) is finitely generated, then its center is of finite index in
∆(G), and ∆+(G) is a finite group, with ∆(G)/∆+(G) finitely generated torsion-free
abelian.

We begin our investigations with taking a closer look at the support of elements of
NU(RG)(G). The first statement of the following lemma has already been proved by
Mazur [93, Corollary 1].

17.2 Lemma. If u ∈ NU(RG)(G) and 1 ∈ supp(u), then

{h−1hu | h ∈ G} ⊆ supp(u) ⊆ ∆(G).

Moreover, 〈h−1hu : h ∈ G〉 and 〈supp(u)〉 are normal subgroups of G. If furthermore u
is G-symmetric, then {h−1hv | h ∈ G, v ∈ 〈u〉} ⊆ supp(u).

Proof. Let u =
∑

g∈G ugg (all ug in R), and set σ = conj(u). Comparing coefficients in
hu = u(hσ) (h ∈ G) gives

uhg = ug(hσ) for all g, h ∈ G. (∗)
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Specializing to g = h−1 yields u1 = uh−1(hσ) for all h ∈ G, and as u1 6= 0, it follows that
D = {h−1(hσ) | h ∈ G} ⊆ supp(u). Substituting g = h−1g in (∗) gives

ug = uh−1g(hσ) = ugh·h−1(hσ) for all g, h ∈ G.

As D is finite, the set {gh · h−1(hσ) | h ∈ G} is finite if and only if gG is finite,
and therefore supp(u) ⊆ ∆(G). Moreover, if g ∈ supp(u) and h ∈ G, then gh =
h−1g(hσ) · (h−1(hσ))−1 ∈ 〈supp(u)〉, so 〈supp(u)〉 E G. It follows from (h−1hu)g =
[h, u]g = [hg, u][g, u]−1 that 〈D〉 E G.

Assume that u is G-symmetric, and let g ∈ G and n,m ∈ Z. Then ug−1(gσn) =

u(g−1σn)g
(∗)
= ug(g−1σn+1), and it follows inductively that ug−1(gσn) = ug−ε(gεσm), with

ε = 1 if n−m is even and ε = −1 otherwise. So ug−1(gσn) = u1 by (∗), and the proof is
complete. ¤

We do not know whether the last statement of the lemma is true if u is not G-
symmetric. The question arises whether the normal subgroups defined in the lemma are
finite. We shall see in this section that this is true for 〈h−1hu : h ∈ G〉 in an important
case, and in the next section, that also 〈supp(u)〉 is finite under some natural restrictions
on R.

However, we shall first show how the fact that supp(u) ⊆ ∆(G) for u ∈ NU(RG)(G)
with 1 ∈ supp(u) can be used to prove that AutR(G) ≤ Autc(G). The proof follows the
way which has been pursued by Mazur, who obtained partial results in [93] (however,
see the remark following the proof!).

We shall repeatedly need the following trivial observation: for any u ∈ NU(RG)(G),
and N E G, the automorphism conj(u) ∈ Aut(G) induces an automorphism of G/N
since the inner automorphism conj(u) ∈ Aut(RG) preserves the kernel of the natural
map RG→ RG/N .

17.3 Theorem. AutR(G) ≤ Autc(G) for any group G.

Proof. Let G be a counterexample, with u ∈ NU(RG)(G) and g ∈ G such that g and
gu are not conjugate in G. We may assume that 1 ∈ supp(u); then supp(u) ⊆ ∆(G)
by Lemma 17.2. The subgroup H generated by supp(u) and g is also a counterexample
(with the same data, i.e., σ = conj(u) ∈ Aut(H) and g ∈ H). Note that H/∆(H) = 〈ḡ〉
since supp(u) ⊆ ∆(G) ∩ H ⊆ ∆(H). As ∆(H) is a finitely generated FC-group, it
follows from the definition of the FC-center that [H : CH(∆(H))] < ∞. In particular,
gn centralizes ∆(H) for some n ∈ N. It follows that gn is central in H, and therefore
gn ∈ ∆(H). (This reduction step has been given already by Mazur [93, p. 178].)

Choose a characteristic, central and torsion-free subgroup Z of ∆(H) with [H : Z] <
∞. Note that Z is finitely generated. Put T = ∆+(H), a finite characteristic subgroup
of ∆(H), with ∆(H)/T finitely generated torsion-free abelian.
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For any natural number m, H/Zm is a finite group, so σ induces a class-preserving
automorphism σm of H/Zm. In particular σ1 ∈ Autc(H/Z), and we may assume (after
modifying σ by a suitable inner automorphism) that gσ = gz for some z ∈ Z.

Let S = {k ∈ ∆(H) | [k, g] ∈ Z}, a subgroup of ∆(H) with Z as a subgroup of finite
index. Since σm ∈ Autc(H/Z

m), there is km ∈ ∆(H) with [km, g]z = g−km(gσ) ∈ Zm, for
allm. It follows that km ∈ S. These facts translate into matrix language as follows. Since
ST/T is a finitely generated torsion-free abelian group, we may write ST/T as a product
of n copies of Z, for some n ∈ N. Then the action of g on ST/T is given by multiplication
with a matrix Ag ∈ GL(n,Z), and the system of linear equations x(Ag − E) = −z (E
the identity matrix) has modulo m ∈ N the solution km. Hence there is also a global
solution. Translated back, this gives s ∈ S with [s, g]z = g−s(gσ) ∈ T ∩ Z = 1, and the
contradiction gσ = gs. The theorem is proved. ¤

After having seen this work, I. B. S. Passi pointed out the following easy proof. For
g ∈ G, the partial augmentation ε[g] is the R-linear map ε[g] : RG → R such that if
h ∈ G is conjugate to g within G, then ε[g](h) = 1, and ε[g](h) = 0 otherwise. Note that
ε[g](xy) = ε[g](x

−1(xy)x) = ε[g](yx) for all x, y ∈ G, and therefore ε[g](ab) = ε[g](ba) for
all a, b ∈ RG by linearity.

Short proof of Theorem 17.3. Let σ ∈ AutR(G), and take any g ∈ G. There is u ∈
NU(RG)(G) such that gσ = gu, and it follows that ε[g](gσ) = ε[g](u

−1gu) = ε[g](g) = 1.
As gσ ∈ G, this shows that gσ is conjugate to g within G, and the result follows. ¤

Due to Lemma 17.2, we are led to recall a theorem of Baer [7, Satz 3]. For convenience
of the reader, and since we do not need all results established in [7] from which the
theorem is deduced, a proof is included at the end of the section.

17.4 Theorem (Baer). Assume that a group has a normal subgroup G with comple-
ment A such that the set G−1+A = {[g, a] | g ∈ G, a ∈ A} is finite. Then [G,A] =
〈G−1+A〉 is a finite normal subgroup of GA.

As an immediate consequence of this theorem and Lemma 17.2 we obtain the following
corollary.

17.5 Corollary. If u ∈ NU(RG)(G) is G-symmetric and 1 ∈ supp(u), then the normal
subgroup of G generated by the elements h−1hu (h ∈ G), is finite. In particular, conj(u),
as an automorphism of RG, has finite order. ¤

We like to mention [93, Lemma 6], thereby pointing out an important detail which
will be needed for the proof of Theorem 17.8.

17.6 Lemma. The image of OutR(G) in OutR(G/∆+(G)) is trivial. More precisely, for
any u ∈ NU(RG)(G) there is x ∈ G such that conj(ux) induces the identity on G/∆+(G),
and 1 ∈ supp(ux).
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Proof. Let u ∈ NU(RG)(G). By Lemma 17.2, there is g ∈ G such that supp(ug) ⊆ ∆(G).
Choose a maximal ideal m of R. Since A = ∆(G)/∆+(G) is a torsion-free abelian group
and F = R/m is a field, the group ring FA has only trivial units (see [100, PART 13, §1]).
Hence ug maps under the natural map R∆(G) → FA to a trivial unit, say λa (λ ∈ F×,
a ∈ A). It follows that conj(ug) is given by conjugation with a on FG/∆+(G). Choose
h ∈ ∆(G) with image a in A. Then conj(ugh−1) induces the identity on G/∆+(G),
and as ugh−1 maps to λ in FA, there is t ∈ ∆+(G) such that 1 ∈ supp(ugh−1t). With
x = gh−1t, we get the desired result. ¤

The following corollary was proved by Mazur [93, Corollary 9] under the additional
assumption that G is finitely generated.

17.7 Corollary. If ∆(G) is finitely generated, then OutR(G) is a finite group.

Proof. We begin with a trivial remark. Let G be an arbitrary group, and N a finite
normal subgroup of G. Then the subgroup S ≤ Aut(G) generated by the automorphisms
conj(u) with u ∈ NU(RG)(G) ∩ RN is finite. Indeed, CG(N) is of finite index in G, and
if T is a system of coset representatives of CG(N) in G, then any σ ∈ S is completely
determined by its values on T , which are contained in the finite set TN .

Now assume that ∆(G) is finitely generated, and choose a central and torsion-free
subgroup A of ∆(G) with [∆(G) : A] <∞ which is normal in G. Then G is a pullback,
as shown below.

G - G/A

G/∆+(G)
?

- G/A∆+(G)
? (P)

Let S ≤ AutR(G) be the subgroup generated by the automorphisms conj(u) with
u ∈ NU(RG)(G) ∩ R∆(G) which induce the identity on G/∆+(G). By Lemma 17.6
and Lemma 17.2, it suffices to show that S is finite. But by the preliminary remark, the
group of automorphisms of G/A induced by S is finite, and therefore also the group of
automorphisms of the pullback (P) induced by S. The proof is complete. ¤

Using Theorem 17.4, we now can prove the following final result with respect to an
arbitrary commutative coefficient ring R.

17.8 Theorem. Any element of AutR(G) induces an inner automorphism of G/N for
some finite normal subgroup N of G.

Proof. Let u ∈ NU(RG)(G). By Lemma 17.6, there is x ∈ G such that σ = conj(ux) in-
duces the identity on G/∆+(G), and 1 ∈ supp(ux). By Lemma 17.2, H = 〈supp(ux)〉 E
G is a finitely generated FC-group. Choose a torsion-free normal subgroup A of finite
index in H which is normal in G. Then σ induces on G = G/A an automorphism σ
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given by conjugation with ux ∈ RH, where H = H/A is a finite group. Hence σ is of
finite order. As G is a pullback, as shown in (P), it follows that σ is of finite order. From
Lemma 17.2 we know that the set S = {g−1(gσ) | g ∈ G} is finite. For any n ∈ N and
g ∈ G,

g−1(gσn) = g−1(gσ) · (gσ)−1(gσ2) · . . . · (gσn−1)−1(gσn) ∈ Sn,

and as σ is of finite order, say m, T = {g−1(gτ) | g ∈ G, τ ∈ 〈σ〉} ⊆ Sm is a finite set
too. Now it follows from Theorem 17.4 that N = 〈T 〉 is a finite normal subgroup of G,
and σ induces the identity on G/N . ¤

17.9 Corollary. The group OutR(G) is periodic. ¤

One can also make some statement about the order of an element of this group (see [93,
Theorem 1]), which is based on the fact that for a finite group G, prime divisors of the
order of Autc(G) are contained in π(G) (see [65, Kap. I, § 4, Aufg. 14]). One might ask,
for general G, whether a prime dividing the order of an element of OutR(G) is contained
in π(G) (cf. [93, p. 180]), but the next example shows that this is not the case. It also
substantiates the necessity of the hypothesis of Theorem 18.4 below.

17.10 Example. The matrices A = [ 2 1
3 2 ] and B = [ 3 0

0 2 ], viewed as elements of GL(2, 5),
have order 3 and 4, respectively, and AB = A2. Let

G = 〈 v, w, a, b : v5 = w5 = [v, w] = 1, a3 = 1, ab = a2,

va = v2w, wa = v3w2, vb = v3, wb = w2 〉.

Then N = 〈v, w〉 is an elementary abelian normal subgroup of G of order 25, on which
a and b act via the matrices A and B, respectively. It follows that Z(G) = 〈b4〉, and
G/Z(G) is the Frobenius group of order 300. An automorphism σ ∈ Aut(G) is defined
by vσ = v2, wσ = w2, aσ = a and bσ = b. We shall show that σ ∈ AutR(G), where
R = Z[15 ] (see also [56, 58] for some theoretical background). Note that σ has order 4,
whereas π(G) = {3, 5}.

Let X̂ denote the sum of the elements of a set X. Consider the element

t = 〈̂v〉b+ 〈̂vw3〉ba2 + 〈̂vw2〉ba+ 〈̂w〉b3 + 〈̂vw4〉b3a2 + 〈̂vw〉b3a.

It is easily checked that the summands of t are permuted under the conjugation action
of 〈a, b〉, and that the product of any two distinct summands of t is contained in N̂G.
Therefore tt∗G is modulo N̂(ZG) equivalent to five times the sum of the elements of
the six nontrivial cyclic subgroups of N , so tt∗G ≡ 5(5 + N̂) mod N̂(ZG). It follows
that u = 1

25N̂ +
(
1 − 1

25N̂
)

1
5 t ∈ V(RG), with u−1 = u∗G . Finally, it is easily seen that

gt = t(gσ) for all g ∈ G, so σ = conj(u). Also note that there is no g ∈ G such that
〈supp(ug)〉 is a finite group.
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We shall give two more illuminating examples. A homomorphism r : OutR(G) →
OutR(∆(G)) is defined as follows. Any α ∈ OutR(G) is represented by some conj(u) ∈
Aut(G) with u ∈ NU(RG)(G) and 1 ∈ supp(u). Then u ∈ R∆(G) by Lemma 17.2, and
r maps α to the outer automorphism defined by conj(u)|R∆(G). To show that r is well
defined, let conj(u′) with u′ ∈ NU(RG)(G) and 1 ∈ supp(u′) be another representative
of α. Then u−1u′ = gz for some g ∈ G and z ∈ Z(RG). As Z(RG) ⊆ Z(R∆(G)), it
follows that g ∈ ∆(G) and therefore conj(u) and conj(u′) indeed define the same element
in OutR(∆(G)). In [93, p. 181], it has been asked whether this map r is necessarily
injective. The following simple example shows that this is not true.

17.11 Example. Let G be the group generated by elements v, w, b, c subject to the
relations

w8 = b2 = c2 = [b, c] = [v, w] = 1, vb = v, vc = v−1, wb = w−1, wc = w5.

Then 〈v〉 ∼= C∞ and G = 〈v〉oH with H = 〈w, b, c〉 of order 32. Clearly ∆(G) = 〈v, w, b〉,
and

u =
1

2
(1 + w4) +

1

2
(1 − w4)(w + w−1) (∗∗)

is a unit in the center of Q∆(G) with 1 ∈ supp(u) which induces a non-inner automor-
phism of G (cf. [65, I 4.10b]). Hence r : OutQ(G) → OutQ(∆(G)) is not injective.

In [93, p. 188], it has been asked whether for any FC-group G, the locally inner auto-
morphisms in AutR(G) must be inner. We give an example showing that this is not the
case. Recall that a locally inner automorphism of a group G is an automorphism φ of
G such that for every finitely generated subgroup U of G, there is γ ∈ Inn(G) such that
φ|U = γ|U .

17.12 Example. Let G be the iterated semidirect product

G = 〈w : w8〉 o 〈b : b2〉 o
∞
Dr
i=1

〈ci : c2i 〉 o
∞
Dr
i=1

〈ai : a2
i 〉,

the actions given by wb = w−1, wci = w5, bci = b, wai = w, bai = b and cai
i = w4ci.

(Here Dr denotes the restricted product.) Let u be defined as in (∗∗). Then conj(u) ∈
AutQ(G) \ Inn(G) is a locally inner automorphism of the FC-group G.

We finish this section with a reproduction of a proof of the theorem of Baer.

Proof of Theorem 17.4. Let g, h denote elements of G, and a, b elements of A. Set
M = [G,A].

Claim. M , CG(M) and CG(A) ∩ CG(M) are normal subgroups of GA.
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Proof. Clearly, these subgroups of G are A-invariant. It follows from

[g, a]h = [gh, a][h, a]−1 (†)

that M E GA. Consequently, CG(M) E GA. If g ∈ CG(A) ∩ CG(M), then (gh)a =
h−1[h−1, a]gha = h−1g[h−1, a]ha = gh, showing that CG(A) ∩ CG(M) is G-invariant.

As F = G−1+A is a finite set, we may assume that A is finitely generated. Further,
we may assume that CA(G) = 1.

Claim. [G : CG(M)] <∞.

Proof. The automorphism conj(h)|M of M is completely determined by its effect on F .
It follows from (†) that conj(h)|M maps the finite set F into the finite set FF−1, so
{conj(h)|M | h ∈ G} is a finite group.

Claim. ν = [G : CG(A)] <∞ and A is a finite group.

Proof. The map [·, a] from right cosets of CG(a) in G to F given by CG(a) · g 7→ [g, a]
is a well defined injective map, so [G : CG(a)] <∞. As CG(A) is a finite intersection of
subgroups CG(a), it follows that [G : CG(A)] <∞.

Now there is the well defined map [·, a] from the finite set of right cosets of CG(A) in
G to F , given by CG(A) · g 7→ [g, a], and [·, a] = [·, b] implies a = b since CA(G) = 1.
Consequently, A is finite.

Since [G : CG(M)] is finite, Z(M) = M ∩ CG(M) is of finite index in M . It is
well known (see [65, IV 2.3]) that this implies that [M,M ] is finite. Let m ∈ M . As
mν ∈ CG(A), we have

[m, a]ν = (m−1ma)ν ≡ m−ν(ma)ν ≡ m−ν(mν)a ≡ 1 mod [M,M ],

so [M,A]ν ⊆ [M,M ]. Using the commutator identity [x, yz] = [x, z][x, y][[x, y], z] (see
[65, III 1.2]), we get for i ∈ N

[g, ai] = [g, ai−1a] = [g, a] · [g, ai−1] · [[g, ai−1], a] = . . .

= [g, a]i · [[g, a], a] · · · [[g, ai−2], a] · [[g, ai−1], a].

With α being the order of A, we get 1 = [g, a]α · [[g, a], a] · · · [[g, aα−2], a] · [[g, aα−1], a].
Since [[g, ai], a] ∈ [M,A] for all i, we get

1 =
(
[g, a]α · [[g, a], a] · · · [[g, aα−2], a] · [[g, aα−1], a]

)ν ≡ [g, a]αν mod [M,M ].

Since the elements [g, a] form the finite generating set F of M and [M,M ] is finite, M
is a finite group. ¤
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18. Normalizers of group bases: G-adapted coefficients

It was shown in [74, 72, 70] that some group ring problems can be reduced to the finite
group case. We shall give short and unified proofs of these results. The basic observation
can be extracted from [74]:

18.1 Lemma. Let G be a group which has a finite normal subgroup T such that G/T
is a finitely generated torsion-free abelian group. Let u ∈ U(ZG), and write u =

∑
i gixi

with all xi ∈ ZT , and the gi ∈ G belonging to different cosets of T in G. Then we have
that u = gixi for some index i provided the following holds for each central primitive
idempotent e in QT :

(i) xie is either zero or a unit in (QT )e, for all i;

(ii) if xie 6= 0, then xie
g 6= 0, for all i and g ∈ G.

Proof. Let 1 = e1 +e2 + . . .+en be a decomposition of the identity into central primitive
idempotents of QT . Let f be an orbit sum of the conjugacy operation of G on the ej ’s.
Then uf is a unit in (QG)f , and since G/T is ordered, it follows by a classical argument
(see, for example, [129, (45.3)]) that uf = gkxkf (some k). The unit u is the sum of
all such (uf)’s. Collecting terms with the same gk, we get u =

∑
hlalfl, where the

pairwise different hl’s are contained in the set formed by the gk’s, the fl’s are orthogonal
idempotents in QT , central in QG and summing up to one, and each al ∈ QT is such
that alfl is a unit in (QT )fl. Comparing coefficients, we see that each alfl ∈ ZT . Let
bl ∈ (QT )fl with albl = fl, and set v =

∑
blh

−1
l fl. Then uv = vu = 1, so v = u−1 ∈ ZG.

Comparing coefficients, we see that blfl ∈ ZT . Hence fl = alflblfl ∈ ZT . As ZT has no
(nontrivial) central idempotents, this proves the lemma. ¤

The following proposition appears as a “representation theorem” in [72, Theorem 1.4].

18.2 Theorem. Let G be a group and u ∈ NU(ZG)(G). Then for any g ∈ supp(u), there
is a finite normal subgroup T of G such that g−1u ∈ ZT .

Proof. Let u ∈ NU(ZG)(G) such that 1 ∈ supp(u), and set H = 〈supp(u)〉. Then H
is a normal subgroup of G contained in ∆(G) by Lemma 17.2. Consequently, H is a
finitely generated FC-group, and T := ∆+(H) is a finite normal subgroup of G, with
H/T finitely generated torsion-free abelian. We can assume that G = H.

Write u =
∑
gixi as in Lemma 18.1. Comparing coefficients in Tu = uT shows that

Txi = xiT for all i. In particular, Ii = (ZT )xi = xi(ZT ) is a two-sided ideal in ZT .
Let e be a central primitive idempotent in QT . Then QIie is a two-sided ideal in the
block (QT )e, so xie is either zero or a unit in (QT )e. Take any g ∈ G. Since G/T is
abelian, it follows from

∑
gi[gi, g]xgi = ug = u[u, g] =

∑
gixi[u, g] that (TxiT )g = TxiT .

Consequently Txie
gT = (TxieT )g, so if xie 6= 0, then xie

g 6= 0. The claim now follows
from Lemma 18.1. ¤
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The next proposition appears as a “representation theorem” in [70, Theorem 1.4].

18.3 Theorem. Let G be a group and u ∈ ∆(U(ZG)). Then for any g ∈ supp(u), there
is a finite normal subgroup T of G such that g−1u ∈ ZT .

Proof. Let u ∈ ∆(U(ZG)) and set H = 〈xg | x ∈ supp(u), g ∈ G〉 E G. Then H is a
finitely generated FC-group, and we can assume that G = H. Set T := ∆+(H).

Write u =
∑
gixi as in Lemma 18.1, and let e be a central primitive idempotent in

QT . If (QT )e is a division ring, then it is clear that xie is either zero or a unit in
(QT )e. Let M be the sum of the blocks of QT that are proper matrix rings. Clearly,
there are elements f1, . . . , fn of square zero in ZT which generate M as a Q-algebra.
Then fju = ufj implies that f gi

j xi = xifj , and since M g for all g ∈ G, it follows that
xiM = Mxi. Thus if e ∈ M , then xiMe is a two-sided ideal in the block Me, meaning
that xie is either zero or a unit in (QT )e. Assume there is g ∈ G with eg 6= e. Then eg
is of square zero, so (eg)u = u(eg), that is,

∑
gixie

ggi =
∑
gi[gi, g](xie)

g. Since G/T is
abelian, it follows that xie

ggi = [gi, g](xie)
g. Consequently eggi = eg if xie 6= 0, and then

also xie
g 6= 0. The claim now follows from Lemma 18.1. ¤

It is obvious that the above results hold more generally for a ∆+(G)-adapted coefficient
ring. In fact, we have the following theorem.

18.4 Theorem. Let R be a commutative ring such that for each finite normal subgroup
T of G, the group ring RT has no (nontrivial) central idempotents, and KT is semisimple
for some ring extension R ⊆ K. Then for any u ∈ NU(RG)(G) with 1 ∈ supp(u), the
support group 〈supp(u)〉 is a finite normal subgroup of G. ¤

We shall apply this theorem in the following form.

18.5 Theorem. Let R be a ∆+(G)-adapted ring. Then for any u ∈ NU(RG)(G) with
1 ∈ supp(u), the support group 〈supp(u)〉 is a finite normal subgroup of G. ¤

The next corollary shows in particular that central units of finite order in RG are
trivial (see also [76, Theorem 2.13], but note that our condition on R is weaker). A
different proof has been given by Mazur [93, Lemma 8]. The reader might convince
himself that for R = Z, the corollary follows readily from a “star-argument”.

18.6 Corollary. Let R be a ∆+(G)-adapted ring, and u ∈ NV(RG)(G) such that un ∈ G
for some n ∈ N. Then u ∈ G. In particular, central units of finite order in V(RG) are
contained in G.

Proof. Let g ∈ supp(u). By Theorem 18.5, N = 〈supp(ug−1)〉 is a finite normal subgroup
of G. Now (ug−1)n ∈ G ∩ RN = N , so ug−1 has finite order, and 〈N,ug−1〉 is a finite
subgroup of RN . Hence ug−1 ∈ N (see, for example, [76, Proposition 2.15]), and the
corollary is proved. ¤
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18.7 Corollary. If R is a ∆+(G)-adapted ring, then the order of any element of the
periodic group OutR(G) is divisible only by primes from π(∆+(G)).

Proof. Let u ∈ NU(RG)(G) with 1 ∈ supp(u). By Theorem 18.5, N = 〈supp(u)〉 is a
finite normal subgroup of G. Since conj(u)|N ∈ Autc(N), and prime divisors of the
order of Autc(N) are contained in π(N) (see [65, Kapitel I, §4, Aufgabe 14]), the result
follows. ¤

19. Groups satisfying the normalizer property

We shall say that a group G has the normalizer property if OutR(G) = 1, or, equivalently,
NV(RG)(G) = Z(V(RG))G for any G-adapted ring R. Using a strong version of the
Ward–Coleman Lemma for infinite groups, we prove a lemma which allows us to reduce
the question whether OutR(G) = 1 or not in certain cases to the finite group case, and
give examples thereof. In particular, p-groups, nilpotent groups and groups whose finite
normal subgroups N are p-constrained with Op′(N) = 1 for some prime p have the
normalizer property, and also a well known result of Jackowski and Marciniak extends
to infinite groups. These results strongly extend results obtained by Jespers, Juriaans,
de Miranda and Rogerio [72, Theorem 2].

First of all, however, we shall clarify the structure of NV(RG)(G)/G. Using different
methods, this has been done in [93, Theorem 8] for G with finitely generated FC-center,
and a ring R of algebraic integers, and in [72, Corollary 1.5] for R = Z (note that the
proof given there depends on a “star-argument”).

19.1 Proposition. Let R be a ∆+(G)-adapted ring. Then NV(RG)(G)/G is a torsion-
free abelian group. If ∆(G) is finitely generated, then NV(RG)(G)/G has the same rank
as Z(V(RG))/Z(G).

Proof. By Corollary 18.6, NV(RG)(G)/G is torsion-free. Let u, v ∈ NV(RG)(G). We
have to show that [u, v] ∈ G, and, without lost of generality, we may assume that
1 ∈ supp(u) and 1 ∈ supp(v). Then 〈supp(u), supp(v)〉 is a finite normal subgroup of G
by Theorem 18.5. Thus we may suppose that G is finite. Embed the quotient field of
R into a splitting field K of G. Then KG is a direct sum of full matrix rings over K,
and the projection of [u, v] ∈ V(RG) to each of these has determinant 1. Since [u, v] has
finite order over the center Z(V(RG)), it follows that [u, v] is of finite order, so [u, v] ∈ G
by Corollary 18.6.

Now let G be again an arbitrary group, and set C = Z(V(RG)). If ∆(G) is finitely
generated, then NV(RG)(G)/CG is a finite group by Corollary 17.7, so NV(RG)(G)/G has
the same rank as CG/G, which is isomorphic to C/Z(G). ¤

If R = Z, we have the following interesting result, which is based on an observation of
Jackowski and Marciniak (see the proof of [66, 3.5. Theorem]).
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19.2 Proposition. If R = Z, then NV(RG)(G)/G can be generated by symmetric units
whose support contains 1.

Proof. Let u ∈ NV(ZG)(G); we have to show that (hu)∗ = hu for some h ∈ G and
∗ = ∗G. By Theorem 18.5, we may assume that G is finite. Let H = CG(u) = CG(u∗).
By Lemma 17.1, c = uu∗ is a central element, and (uu−∗)∗(uu−∗) = 1, so uu−∗ = x
for some x ∈ G by a classical result due to Higman and Berman. Note that x ∈ Z(H).
Write x = xsx2t (s, t ∈ N) such that xs is the 2-part of x, and x2t is the 2′-part of x.
Then (ux−t)2 = u2x−2t = cuu−∗x−2t = cxs. Hence we may suppose that u2m ∈ Z(ZG)
for some m ∈ N. Let u =

∑
g∈G agg (all ag in Z). Then ag = agu and ag−1 = axg

for all g ∈ G. Note that x ∈ Z(H) implies that H is a disjoint union of the sets
S(h) = {h−1, xh}. Since the augmentation of u is not divisible by 2, and u acts as a
2-element on supp(u), there must be h ∈ H with S(h) ⊆ supp(u) containing only one
element. It follows that (hu)∗ = u∗h−1 = u∗xh = uh = hu, and clearly 1 ∈ supp(hu). ¤

We also give the proper generalization of Corollary 1.6 from [72] (note that there, the
assumption that NU1(G) is finitely generated is unnecessary).

19.3 Proposition. Let G be a group so that Z := Z(V(RG)) is finitely generated. Then
NV(RG)(G)/ZG is a finite abelian group, the rank of a Sylow p-subgroup being at most
the torsion-free rank of Z.

Proof. Set N = NV(RG)(G) and H = ZG. Then N/H is a periodic abelian group by
Corollary 17.9 and Proposition 19.1. Let X = 〈x1, . . . , xs〉 ≤ N be such that X̄ =
XH/H is a p-group of rank s, and let r be the torsion-free rank of Z. Then we have to
show that s ≤ r.

First we will show that the natural map X → N/G is injective. Assume the contrary;
then, as N/G is torsion-free abelian by Proposition 19.1, there are natural numbers
m1, . . . ,ms such that

x = xm1
1 · · ·xms

s ∈ G. (∗)

In particular, x̄ = 1, so p divides all mi. Let q be the highest power of p which divides
all mi, and set ni = mi/q. Then y = xn1

1 · · ·xns
s has the property that yq ∈ G (bear

in mind that N/G is abelian), so y ∈ G by Corollary 18.6. But at least one ni is not
divisible by p, which means that y 6∈ H, and we have reached a contradiction.

We may assume that there are natural numbers ai such that xai
i ∈ Z for all i (this is

clearly the case if the group generated by the support of xi is a finite normal subgroup,
and this can be assumed by Theorem 18.5). By the above, Y = 〈xa1

1 , . . . , x
as
s 〉 is a

torsion-free abelian group of rank s. On the other hand, the rank of Y can not be
strictly bigger than r, the torsion-free rank of Z, since otherwise a relation of the form
(∗) would hold. This proves the proposition. ¤
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By the Ward–Coleman Lemma we will understand the very useful fact that for a finite
group G with a p-subgroup P , and any commutative ring R with pR 6= R, we have

NV(RG)(P ) = NG(P )CV(RG)(P ).

Coleman’s contribution [25] is well known, but the first version appears in an article
of Ward [142] as a contribution to a seminar run by Richard Brauer at Harvard. In its
present form, the lemma appears first in [124, Proposition 1.14], see also [66, 2.6 Theo-
rem].

We shall need a version of the Ward–Coleman Lemma for infinite groups. The idea
behind the proof is the same in both cases.

19.4 Lemma. Let R be commutative ring with pR 6= R for some rational prime p.
Then for any u ∈ NU(RG)(G) there is g ∈ supp(u) such that ug−1 centralizes a subgroup
of G which is of finite p′-index in G.

Proof. Let u ∈ NU(RG)(G). The group G acts on supp(u) via x
g7→ g−1xgu for x ∈

supp(u) and g ∈ G, and elements of an orbit under this operation have the same co-
efficient in u (viewed as a linear combination of elements of G). Let Q be the kernel
of this operation, and choose Q ≤ P ≤ G such that P/Q is a Sylow p-subgroup of the
(finite) group G/Q. Since the augmentation of u is a unit in R, there is a fixed point
x ∈ supp(u) under the operation of P , that is, ux−1 centralizes P . ¤

This version of the Ward–Coleman Lemma is used to prove the key lemma of this
section, which will then be applied to establish that OutR(G) = 1 for G belonging to
certain classes of groups, extending (known) results for finite groups.

19.5 Lemma. Let

(i) R be a commutative ring with pR 6= R, for some rational prime p;

(ii) N be a finite normal subgroup of a group G such that the center of a Sylow p-
subgroup of N is contained in Op(N);

(iii) u ∈ NZ(U(RN))(G) be such that σ = conj(u) ∈ AutR(G) is of p-power order.

Then there is g ∈ Z(Op(N)) such that ug ∈ Z(RG).

Proof. Clearly [G, u] ≤ N , so [[G, u], u] = 1 and [G, u]p
n

= [G, up
n
] = 1. Moreover,

[[G, u], N ] = 1 by the Three Subgroup Lemma. In particular, it follows that [G, u] ≤
A = Z(Op(N)). By Lemma 19.4, there is a subgroup P of G which is of finite p′-index in
G, and x ∈ supp(u), such that [P, ux−1] = 1. Since u is of p-power order over the center,
and [u, x] = 1, there is y ∈ 〈x〉 of p-power order with [P, uy−1] = 1. Let S be a Sylow p-
subgroup of N . Then there is a fixed point under the multiplication action of S on the set
of left cosets of P in G, say gP , and it follows that [Sg, y−1] = [Sg, uy−1] ≤ [P, uy−1] = 1.
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Hence y ∈ A by the hypothesis on N . Now σ = conj(uy−1) is an automorphism of
G, which is of p-power order, induces the identity on both A and G/A, and fixes P
element-wise. Using restriction-corestriction in 1-cohomology [65, I 16.18], it follows
that σ = conj(a) for some a ∈ A. (Explicitly, a =

(∏n
i=1 g

−1
i (giτ)

)m
, where g1, . . . , gn

is a system of right coset representatives of P in G, and m ∈ N is such that nm ≡ 1
mod |A|.) The proof is complete. ¤

As another application of that kind of reasoning, we prove the following proposition,
which extends [93, Corollary 18], and also [72, Corollary 2.7], considerably.

19.6 Proposition. Let R be a commutative ring with pR 6= R for some rational prime
p. If finite quotients of the commutator subgroup G′ are p-groups, then OutR(G) = 1.

Proof. Let u ∈ NU(RG)(G). By Lemma 19.4, there is a subgroup P of finite p′-index in
G, and x ∈ G, such that [P, ux] = 1. Since G′ acts on the set of right cosets of P in G
as a finite p-group, it follows that G′ ≤ P . Let σ = conj(ux) ∈ Aut(G). Then σ induces
the identity on both G′ and G/Z(G′), and the same 1-cohomology argument as above
shows that σ ∈ Inn(G). ¤

Note that there was no need to apply a “representation theorem”, so the remark
preceding [72, Corollary 2.7] doesn’t make sense. We take the opportunity to point
out that [72, Proposition 2.6] can also be proved without applying a “representation
theorem”:

19.7 Proposition. Let G be a group which has a normal subgroup N so that N∩G′ = 1.
If G/N has the normalizer property, then G has the normalizer property.

Proof. Let u ∈ NU(RG)(G), and g ∈ G. By hypothesis, there is x ∈ G such that ux maps
to a central element under the natural map RG→ RG/N . It follows that [ux, g], which
is an element of G, is contained in N . On the other hand, since RG/G′ is commutative,
[ux, g] maps to 1 under the natural map RG → RG/G′, so [ux, g] ∈ G′. It follows that
[ux, g] ∈ N ∩ G′ = 1, and since g was an arbitrary element of G, the proposition is
proved. ¤

19.8 Proposition. Let G be a group whose finite normal subgroups N satisfy N ∩G′ =
1. Then G has the normalizer property.

Proof. Let u ∈ NU(RG)(G). By Theorem 17.8, there is a finite normal subgroup N of G
and x ∈ G such that [G, ux] ≤ N , and [G, ux] ≤ G′ by Theorem 17.3. Hence [G, ux] = 1
by assumption and the proposition is proved. ¤

Note that the last proposition holds for any commutative coefficient ring R.
Jackowski and Marciniak proved that OutZ(G) = 1 for a finite group G with a normal

Sylow 2-subgroup [66, Theorem 3.6]. In [61], it is shown that this is a special case of a
much more general result. Here, we shall need the following proposition.
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19.9 Proposition. Let G be a finite group which has a normal Sylow p-subgroup, and
let R be a commutative ring with pR 6= R. If σ ∈ AutR(G) has p-power order, then
σ = conj(g) for some g ∈ Op(G).

Proof. Let σ ∈ AutR(G) be of p-power order, and put N = Op(G). As G/N is a p′-group,
σ induces the identity on G/N (see [65, Kap. I, § 4, Aufg. 14]). By the Ward–Coleman
Lemma, there is g ∈ G such that σ|N = conj(g)|N , and clearly g can be chosen to
be a p-element. But then conj(g−1)σ fixes N element-wise, and is therefore an inner
automorphism, given by conjugation with an element from Z(N). ¤

19.10 Corollary. Let p be a rational prime, and let G be a group whose finite normal
subgroups have a normal Sylow p-subgroup. Let R be a ∆+(G)-adapted ring. Then
OutR(G) has no p-torsion.

Proof. Let u ∈ NU(RG)(G) and put σ = conj(u) ∈ AutR(G). By the way of contradiction,
assume that σ 6∈ Inn(G), but that the image of σ in OutR(G) has p-power order. Take
g ∈ supp(u); then N = 〈supp(ug−1)〉 is a finite normal subgroup of G by Theorem 18.5.
Consequently, τ = conj(ug−1) ∈ Aut(G) is of finite order, and there is n ∈ N, not divis-
ible by p, such that τn has p-power order. Note that p ∈ π(∆+(G)) by Corollary 18.7,
so Proposition 19.9 can be applied to give h ∈ Op(N) with v = (ug−1)nh ∈ Z(RN), and
conj(v) ∈ Aut(G) has p-power order. Hence σn ∈ Inn(G) by Lemma 19.5, a contradic-
tion. ¤

Note that the hypothesis of the corollary is particularly satisfied if the set of p-torsion
elements of G form a normal subgroup of G.

Since OutZ(G) is of exponent 2, it follows that the Jackowski-Marciniak result extends
to infinite groups.

19.11 Corollary. Let G be a group whose finite normal subgroups have a normal Sylow
2-subgroup. Then OutZ(G) = 1. ¤

Now we turn to the obvious class of groups to which Lemma 19.5 applies.

19.12 Corollary. Let G be a group whose finite normal subgroups are nilpotent, and
R a ∆+(G)-adapted ring. Then OutR(G) = 1. More precisely, if u ∈ NU(RG)(G) with
1 ∈ supp(u), then N = 〈supp(u)〉 is a finite normal subgroup of G, and there is g ∈ N
such that ug ∈ Z(RG).

Proof. Let u ∈ NU(RG)(G) with 1 ∈ supp(u). Then N = 〈supp(u)〉 is a finite normal
subgroup of G by Theorem 18.5, and by the Ward–Coleman Lemma, there is x ∈ N
such that v = ux ∈ Z(RN). The automorphism σ = conj(v) ∈ Aut(G) is of finite order;
assume that σn (n ∈ N) is of p-power order, for some rational prime p. Obviously, it
suffices to show that there is h ∈ N such that vnh ∈ Z(RG). But this follows from
Lemma 19.5. ¤
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In particular, OutZ(G) = 1 for p-groups and locally nilpotent groups G, extending
the well known finite group case (Ward–Coleman Lemma). Also note that hypercentral
groups, that is, groups which coincide with the terminal member of its (transfinite) upper
central series, are locally nilpotent (see [77, 1.B.2 Lemma]).

A somewhat weaker version of the next corollary, which follows immediately from
Corollary 19.12, has been obtained for finitely generated nilpotent groups in [74, Propo-
sition 3] (note that in the decomposition given here, g ∈ G actually can be chosen to lie
in Z(G)), and for locally nilpotent groups in [72, Theorem 2.4].

19.13 Corollary. Let G be a nilpotent group, and R a ∆+(G)-adapted ring. Then
OutR(G) = 1. For any central unit u in RG, there is g ∈ Z(G) such that ug is a unit in
RN , for some finite normal subgroup N of G. ¤

An observation of Gross [44, Corollary 2.4] combined with the Ward–Coleman Lemma
immediately implies the following proposition (cf. also [61, Proposition 4]).

19.14 Proposition. Let G be a finite group which has a normal p-subgroup containing
its own centralizer in G, and let R be a commutative ring with pR 6= R. Then OutR(G) =
1. ¤

This result extends to arbitrary groups in the following way.

19.15 Corollary. Let G be a group whose finite normal subgroups satisfy the hypothesis
of Proposition 19.14, and let R be a ∆+(G)-adapted ring. Then OutR(G) = 1.

Proof. Let u ∈ NU(RG)(G) such that 1 ∈ supp(u). Then N = 〈supp(u)〉 is a finite
normal subgroup of G by Theorem 18.5. By hypothesis, CN (Op(N)) ≤ Op(N) for some
rational prime p. By Proposition 19.14, there is g ∈ N such that ug ∈ Z(RN). Note
that conj(ug) induces the identity on G/Z(N), and that Z(N) ≤ Op(N). It follows that
conj(ug) is of p-power order, and since N satisfies the hypothesis (ii) of Lemma 19.5,
the result follows from this lemma. ¤

If finite normal subgroups of G are either as in Lemma 19.5, or are center-less and
have the normalizer property, then G too will have the normalizer property. We content
ourselves with a typical example. The result also appeared in an earlier version of [72],
but we feel that our proof is more conceptually.

We first demonstrate that finite Frobenius groups have the normalizer property. Re-
stricting to the rational integers Z as coefficient ring only, this is the content of a paper
by Lobão and Milies [102], but the proof given there does not generalize to the case of
G-adapted coefficient rings. (We also remark that our proof is considerably shorter.)

19.16 Proposition. Let G be a finite Frobenius group, and R a G-adapted ring. Then
OutR(G) = 1.
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Proof. If the Fitting subgroup F(G) of G is a p-group, Proposition 19.14 shows that
OutR(G) = 1. Hence we may assume that F(G) = A×B for nontrivial normal subgroups
A,B of G. Let σ ∈ AutR(G). Proceeding by induction on the order of G, we may assume
that σ induces the identity on G/A, and that there is x ∈ G such that gx ∈ gB for all
g ∈ G. Then σ|A = conj(x)|A and σ|B = id|B. Choose a ∈ A \ {1} and b ∈ B \ {1}.
Since σ ∈ Autc(G), there is g ∈ G such that axb = (ab)σ = agbg. This means that
[b, g] = 1 and [a, xg−1] = 1, so x = xg−1 · g ∈ F(G) as G is a Frobenius group. Hence
there is y ∈ F(G) with σ|AB = conj(y)|AB. As CG(F(G)) ≤ F(G), conj(y−1)σ induces
the identity on both F(G) and G/F(G). Since these groups have coprime orders, the
usual 1-cohomology argument shows that σ ∈ Inn(G). ¤

19.17 Corollary. Let G be a locally finite Frobenius group, and R a ∆+(G)-adapted
ring. Then OutR(G) = 1.

Proof. Let u ∈ NU(RG)(G); then we have to show that u ∈ Z(RG)G. We may assume that
1 ∈ supp(u). Then N = 〈supp(u)〉 is a finite normal subgroup of G by Theorem 18.5,
and N ≤ F ≤ G for some finite Frobenius group F . Hence N is either nilpotent or a
Frobenius group. In the first case, u ∈ Z(RG)G follows as in the proof of Corollary 19.12.
If N is a Frobenius group, we may assume that u ∈ Z(RN) by Proposition 19.16. But
then conj(u) induces the identity on both N and G/N , so u ∈ Z(RG) as Z(N) = 1. ¤

20. Trivial central units

It should be noted that analyzing OutR(G) means that one studies specific central units.
Indeed, let σ ∈ AutR(G), and let 〈c〉 be a cyclic group of the same order as σ. Form the
semidirect product H = Go 〈c〉, where c is acting via σ, that is, gc = gσ for all g ∈ G.
If σ is given by conjugation with u ∈ U(RG), then uc−1 ∈ Z(RH).

In this section, we apply the results of Section 18 to obtain a criterion (in terms of
the finite normal subgroups of G) for when RG has “only trivial central units” (see
Sehgal’s Problem 26 in [129]), and show that this notion is really independent from the
underlying group basis. Note that the finite group case has been settled by Ritter and
Sehgal (see [129, Theorem (6.1)]).

The next two corollaries are essentially [72, Corollary 1.7] for a more general coefficient
ring. The first observation is that RG has “only trivial central units” if and only if
additionally G has the normalizer property.

20.1 Corollary. Let R be a ∆+(G)-adapted ring. Then Z(V(RG)) = Z(G) if and only
if NU(RG)(G) = G.

Proof. One implication is obvious. For the converse, assume that Z(V(RG)) = Z(G) and
let u ∈ NU(RG)(G) such that 1 ∈ supp(u); we have to show that u ∈ G. By Theorem 18.5,
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N = 〈supp(u)〉 is a finite normal subgroup of G, so un ∈ Z(V(RG))∩RN ≤ N for some
n ∈ N, and the result follows from Corollary 18.6. ¤

The next corollary tells us that all central units of RG are trivial provided that each
central unit which is contained in RN for some finite normal subgroup N of G is trivial.
We remark that a special case thereof has already been given in [69, Corollary 2.2].

20.2 Corollary. Let R be a ∆+(G)-adapted ring. Assume that Z(V(RG)) ∩ RN ⊆ G
for each finite normal subgroup N of G. Then Z(V(RG)) = Z(G).

Proof. Let z ∈ Z(V(RG)), and take any g ∈ supp(z). Put u = zg−1, and N = 〈supp(u)〉,
a finite normal subgroup by Theorem 18.5. Take n ∈ N such that [N, gn] = 1, and put
m = n|N |. Then gm ∈ Z(G) since g maps to a central element in RG/N . It follows that
um ∈ Z(RG), so um ∈ N by assumption, and z = ug ∈ G by Corollary 18.6. ¤

If R is an integral domain of characteristic zero in which no rational prime is invertible,
then the phrase “RG possesses only trivial central units” is justified, as it is independent
from the underlying group basis. More precisely, we use a result of Burn [23] on the
support group of central idempotents to prove the following proposition. Let X̂ denote
the sum of the elements of a set X.

20.3 Proposition. Let R be a ∆+(G)-adapted ring, and suppose that Z(V(RG)) =
Z(G). If H is a group basis of RG such that R is ∆+(H)-adapted, then Z(V(RH)) =
Z(H).

Proof. Let M be a finite normal subgroup of H, and z ∈ Z(V(RG)) ∩RM . Write M̂ =∑
g∈G agg with ag ∈ R for g ∈ G. Since 1

|M |M̂ is a central idempotent, N = 〈g : ag 6= 0〉
is a finite normal subgroup of G by [23]. Since 0 = M̂(z − 1) = (

∑
g∈N agg)(z − 1) and

z ∈ G, it follows that z ∈ N . Hence z is of finite order, and z ∈ H by Corollary 18.6.
Now it follows from Corollary 20.2 that Z(V(RH)) = Z(H), which completes the proof.

¤

We finish this section with another application of Burn’s result [23]. Let R be a
commutative ring, and N E G. We denote the kernel of the natural map RG→ RG/N
by IR(N)G. Note that if N is finite, then IR(N)G = AnnRG(N̂) and AnnRG(IR(N)G) =
(RG)N̂ (see [130, III, Proposition 4.18]), where AnnRG(S) = {x ∈ RG | Sx = 0} denotes
the (right) annihilator of S ⊆ RG in RG.

20.4 Lemma. Let R be an integral domain of characteristic zero, and H a group basis
of RG. Then for any finite normal subgroup N of G, there is a finite normal subgroup
M of H such that AnnRG(N̂) ⊆ AnnRG(M̂).
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Proof. Let N be a finite normal subgroup of G, and write N̂ =
∑

h∈H ahh with ah ∈
R for h ∈ H. Taking augmentation we see that

∑
h∈H ah = |N |. Since 1

|N |N̂ is a

central idempotent, M = 〈h : ah 6= 0〉 is a finite normal subgroup of H by [23]. Let

x ∈ AnnRG(N̂). Multiplying the equation 0 = N̂x = (
∑

h∈M ahh)x with M̂ , we get

0 = (
∑

h∈M ah)M̂x = |N |M̂x, and consequently x ∈ AnnRG(M̂). ¤

20.5 Lemma. Let R be a ∆+(G)-adapted ring. If H is another group basis of RG such
that R is also a ∆+(H)-adapted ring, then π(∆+(G)) = π(∆+(H)), and IR(∆+(G))G =
IR(∆+(H))H.

Proof. Let N be a finite normal subgroup of G. By Lemma 20.4, there are finite normal
subgroups M of H and L of G such that AnnRG(N̂) ⊆ AnnRG(M̂) ⊆ AnnRG(L̂).

Equivalently, (RG)N̂ ⊇ (RG)M̂ ⊇ (RG)L̂, so M̂ = xN̂ and L̂ = yM̂ for some x, y ∈ RG,
and taking augmentation shows that |M | ∈ |N |R and |L| ∈ |M |R. As R is ∆+(G)- and
∆+(H)-adapted, it follows that |N | divides |M | and |M | divides |L|. Since ∆+(G) is the
union of the finite normal subgroups of G (see [100, PART 2, §4 Lemma 1.8]), this shows
that π(∆+(G)) ⊆ π(∆+(H)) ⊆ π(∆+(G)). Finally, IR(∆+(G))G =

⋃
N AnnRG(N̂), the

union over all finite normal subgroups N of G, and likewise for H, and it follows that
IR(∆+(G))G = IR(∆+(H))H. ¤

Note that the above lemma does not follow from the subgroup correspondence for finite
normal subgroups (see [130, III.4.17]), for this is based on a theorem of Bass [130, II.1.2],
which is not known to hold for G-adapted rings (see Sehgal’s Problem 3 in [129]).

The last corollary answers a question of Mazur [92, p. 438].

20.6 Corollary. Assume that G is a FC-group, and let R be a G-adapted ring. Then
any group basis of RG is also a FC-group.

Proof. Let H be a group basis of RG, and h ∈ H. By Lemma 20.5, RG/∆+(G) =
RH/∆+(H), and since G/∆+(G) is torsion-free abelian, RG/∆+(G) has only trivial
units (see [100, PART 2, §4 Lemma 1.6, PART 13, §1]). Hence there is z ∈ Z(RH)
whose image in RH/∆+(H) is a multiple of the image of h, which implies that z has,
with respect to the group basis H, an element hk (k ∈ ∆+(H)) in its support. It follows
that hk ∈ ∆(H), and h ∈ ∆(H). ¤



VI. Hypercentral units in integral group
rings

Eigentlich ist schon alles gesagt worden.

Aber noch nicht von allen.

Karl Valentin

For a group H, let Z∞(H) be the union of the terms Zn(H) of the upper central series
of H. Let U be the group of units of a group ring RG, where G is a periodic group,
and R a G-adapted ring. We show that Z∞(U) ≤ Z(U)Z2(G). If Z∞(U) 6= Z(U), then
the structure of G is similar to that of the quaternion group (G is a so-called Q∗-group).
This work continues research initiated by Arora, Hales and Passi. As a consequence, we
obtain an explicit description of Z∞(U) in the case R = Z, a result which was obtained
independently by Li and Parmenter [87].

21. Hypercentral units and Q∗-groups

For a group G, and a commutative ring R, let U(RG) be the group of units in the
group ring RG. The subject of this chapter is, under certain restrictions on G and R,
the hypercenter of U(RG). For a finite group G, the hypercenter of U(ZG) has already
been studied by Arora, Hales and Passi [3,4], and their results have been generalized to
periodic groups by Li and Parmenter [86,87]. We shall also deal with a periodic group G,
but more generally with a G-adapted ring R, that is, an integral domain of characteristic
zero such that if G has an element of order p, then p is not invertible in R.

Let us introduce the following notation. For a group H, let Zn(H) be the n-th term
of the upper central series (so that Z1(H) = Z(H) is the center of H), and set Z∞(H) =⋃∞
n=1 Zn(H). If the upper central series 1 ≤ Z1(H) ≤ Z2(H) ≤ . . . of H terminates,

then Z∞(H) coincides with the hypercenter of H, which is the terminal member of the
transfinitely extended upper central series of H.

Next we define a class of groups which will play a special role in our investigations.

21.1 Definition. We say that the group G is a Q-group if G has an abelian subgroup
A of index 2 which is not elementary abelian, and G = 〈A, b〉 for some b ∈ G of order 4
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with xb = x−1 for all x ∈ A. If in addition there is a ∈ A with a2 = b2, then G is said
to be a Q∗-group.

The term “Q-group” has been introduced by Blackburn in [11], and the term “Q∗-group”
has been used by Arora and Passi [4]. Q∗-groups appear, possibly for the first time, in the
paper [16] of Bovdi, who proved that if a group G has a non-central periodic subgroup
which is normal in U(ZG), then G is a Q∗-group. Williamsen [146] showed that Q∗-
groups are exactly those groups containing a non-central element a which has finitely
many conjugates in U(ZG). An elementary approach was given by Parmenter [98], who
showed that some weaker condition also characterizes these groups. (We will encounter
finite conjugacy again in Chapter VII.)

Our results on hypercentral units (elements of the hypercenter of the group of units)
can be summarized as follows.

21.2 Theorem. Let G be a periodic group, and R a G-adapted ring. Then the following
hold for U = U(RG).

1. Z∞(U) = Z2(U) ≤ Z(U)Z2(G);

2. If Z2(U) 6= Z(U), then G is a Q∗-group;

3. If R = Z, then exactly one of the following holds:

(a) Z∞(U) = Z(U);

(b) G is a Hamiltonian 2-group and Z∞(U) = Z(U)G;

(c) G is a Q∗-group, and Z∞(U) = Z(U)〈g ∈ A | g2 = a2〉 with notation as in
Definition 21.1.

Parts of the theorem have already been proved by other authors, and a few comments
on their work seem to be appropriate. Let G be a group, and set U = U(ZG). Recall that
Bovdi [16] described the periodic subgroups of U which are normal in U . In particular, he
showed that they are contained in G, and that G is a Q∗-group whenever a non-central
periodic subgroup of G is normal in U .

Now let G be finite. Arora, Hales and Passi [3] studied the multiplicative Jordan
decomposition for elements of U . They noted that [Z2(U),U ] ≤ Z(G), and that this
implies that Z∞(U)/Z(U) is a periodic group since Z(G) is finite. Thus Z∞(U) consists
of semisimple elements, and an inductive argument then shows that elements of Z∞(U)
commute with all unipotent elements. These observations, together with Bovdi’s results,
led them to the conclusion that Z∞(U) = Z2(U). They also noted that the torsion
elements of Z∞(U) are contained in Z2(G) since they form a periodic normal subgroup
of U . Then, Arora and Passi [4] proved that Z2(U) = Z(U)T , where T denotes the
torsion subgroup of Z2(U). This result relies on Blackburn’s classification [11] of the
finite groups in which the non-normal subgroups have nontrivial intersection.
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For a periodic group G, Li [86] proved that Z∞(U) = Z2(U). Note, however, that the
proof heavily relies on the fact that the coefficient ring is Z, since a result of Krempa (see
[66, 3.2. Theorem]) is used to show that Z2(U)/Z(U) has exponent 2 (and so Z∞(U)/Z(U)
is a periodic group). Then, the proof is completed along general lines as in [3]. For a
periodic group G, the question remained whether Z2(U) = Z(U)T , where T denotes the
torsion subgroup of Z2(U). This was stated by Parmenter as Open Problem 5 in [99]
(see also [88, p. 4219]) and was, finally, affirmatively answered by Li and Parmenter [87].
However, they do not use Blackburn’s classification [11] any longer. Instead, they make
use of Bass cyclic, bicyclic and Hoechsmann units in integral group rings. In contrast
to this approach, we still use Blackburn’s classification, but do not make any use of
particular units in group rings. Again, the Li-Parmenter proof heavily relies on the fact
that the coefficient ring is Z, as becomes apparent from the proof of [87, Lemma 1]. The
(nontrivial) generalization of this lemma is given in Proposition 23.3.

There is an obvious connection with what has become known as the “normalizer
problem”. Let NU (G) be the normalizer of G in U . Then the observation from [3]
that [Z2(U), G] ≤ Z(G) (which readily extends to periodic groups, see [86, Lemma 1])
implies that Z2(U) ≤ NU (G). The group G is said to have the normalizer property if
NU (G) = Z(U)G, and this in turn implies that Z2(U) = Z(U)T . Any u ∈ NU (G) defines
an automorphism conj(u) : g 7→ gu of G, and conj(u) is contained in Autc(G), the group
of class-preserving automorphisms of G (this is well known if G is finite, and stated for
arbitrary G in Theorem 17.3). Thus a group G has the normalizer property once the
stronger property Autc(G) = Inn(G) is established. This is done in Section 22 for the
groups from Blackburn’s list [11] (one might wish to compare this approach with the
strategy pursued in [88]).

As already mentioned, we shall also deal with a periodic group G, but more generally
with a G-adapted coefficient ring R. This seems to be justified since many results which
hold for U(ZG) generalize to results for U(RG), giving at the same time more insight
into the structure of the unit groups. (However, it should be noted that such general-
izations are sometimes very difficult to find.) The main results are already contained in
Section 23. We believe that the achieved results are definitive, and have tried to keep the
exposition as self-contained as possible. This applies in particular to Section 24, where
short proofs of some of Bovdi’s results are given. In Section 25, applications of Bovdi’s
work to hypercentral units are discussed.

22. Groups with nontrivial intersection of their non-normal
subgroups

A group G is called a Dedekind group if any subgroup of G is normal in G. Such a group
is abelian or the direct product of the quaternion group of order 8, an elementary abelian
2-group and an abelian group with all its elements of odd order (see [113, 5.3.7]). A
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non-abelian Dedekind group is called Hamiltonian. If G is not a Dedekind group, then,
following [11], we denote by R(G) the intersection of all non-normal subgroups of G.
The following simple observation is quite useful for the determination of R(G).

22.1 Lemma. If G is not a Dedekind group then R(G) is the intersection of all non-
normal cyclic subgroups of G (in particular, R(G) is cyclic). If R(G) is finite, it is the
intersection of all non-normal cyclic subgroups of prime-power order of G.

Proof. Let S be the set of all non-normal subgroups of G, and C be the set of all non-
normal cyclic subgroups of G. Clearly R(G) =

⋂
S∈S S ≤ ⋂C∈C C. Take any x ∈ ⋂C∈C C

and S ∈ S. We wish to show that x ∈ S. Assume the contrary. Then x 6∈ 〈g〉 for all
g ∈ S, so all cyclic subgroups of S are normal in G, and we obtain the contradiction
S E G. Now assume that R(G) is finite. Let x ∈ G be contained in all non-normal cyclic
subgroups of prime-power order of G, and let C ∈ C. Then there is a Sylow subgroup P
of C which is not normal in G, so x ∈ P ⊆ C, which proves the supplement. ¤

It should be obvious that the condition R(G) 6= 1 severely restricts the structure of
G. The finite groups G for which R(G) 6= 1 have been determined by Blackburn [11].
For convenience of the reader, we give the complete list. We do not quote literally, but
it should be unproblematic for the reader to identify both lists.

We write Q2n = 〈s, t : s2
n−1

= 1, t2 = s2
n−2

, st = s−1〉 for the generalized quaternion
group of order 2n, n ≥ 3, and E2 denotes an elementary abelian 2-group of finite order.

22.2 Theorem (Blackburn). Suppose that the finite group G is not a Dedekind group
and that R(G) 6= 1.

If G is a p-group, then p = 2 and one of the following holds.

(1) G ∼= Q8 × C4 × E2.

(2) G ∼= Q8 × Q8 × E2.

(3) G is a Q-group (see Definition 21.1).

If G is not of prime-power order, then one of the following holds.

(a) G = N o 〈b〉 with a p-element b and an abelian p′-group N . There is m ∈ N such
that xb = xm for all x ∈ N , and 1 6= C〈b〉(N) 6= 〈b〉.

(b) G = N ×H with N abelian of odd order and H of the kind described in (1) or (2).

(c) G ∼= N o Q2n with N abelian of odd order, and xs = x−1, xt = x for all x ∈ N .

(d) G = N oH, where N is abelian of odd order, and the 2-group H is a Q-group. If
H = 〈A, b〉 as in Definition 21.1, then [N,A] = 1 and b acts either trivially or by
inversion on every Sylow subgroup of N .

(e) G ∼= H × Q8 × E2, where H is of odd order and is of the kind described in (a).
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It would be interesting to know whether a similar result holds for periodic groups; some
arguments from [11] certainly carries over to this more general situation.

Note that a class-preserving automorphism stabilizes every normal subgroup, and
that Autc(−) commutes with taking direct products. We shall show that for G as in
Theorem 22.2, Autc(G) consists of the inner automorphisms only. We begin with the
following lemma (which implies [88, Theorem 2]). (A more general version is given in
Proposition 14.4.)

22.3 Lemma. Assume that a group G has an abelian normal subgroup of index 2 in G.
Then Outc(G) = 1.

Proof. Let G = 〈A, g〉, where A is an abelian normal subgroup of index 2 in G and
g ∈ G, and take any σ ∈ Autc(G). We have to show that σ ∈ Inn(G), and we may
assume without lost of generality that gσ = g. Note that for all a ∈ A, either aσ = a or
aσ = ag. Choose x ∈ A with x 6= xσ = xg (otherwise σ = id, and we are done). Assume
that there is a ∈ A with aσ 6= ag. In follows that aσ = a and xga = xg(aσ) = (xa)σ, so
xga is equal to xa or to (xa)g. However, the first possibility contradicts xg 6= x and the
second contradicts a 6= ag. Hence aσ = ag for all a ∈ A, and σ = conj(g). ¤

Note that the next proposition improves [88, Theorem 1].

22.4 Proposition. Suppose that the finite group G is not a Dedekind group and that
R(G) 6= 1. Then R(G) ≤ Z(G) and Outc(G) = 1.

Proof. If G is of type (1) or (2), then R(G) is the diagonally embedded C2 of Q8 × C4

or Q8 × Q8, respectively. If G is a Q-group, say G = 〈A, b〉 as in Definition 21.1, then
R(G) = 〈b2〉. In case (a), R(G) = C〈b〉(N). For G as in (b), (d) or (e), R(G) = R(H).
In case (c), R(G) = 〈t2〉. In particular, R(G) ≤ Z(G) in all cases.

If G is of type (1), (2), (3) or (d), then Outc(G) = 1 by Lemma 22.3. It follows that
Outc(G) = 1 for G of type (b). Assume that G is of type (a), and let σ ∈ Autc(G);
we wish to show that σ ∈ Inn(G). Without lost of generality, we may assume that
bσ = b. Note that σ maps each subgroup of N into itself. By a result of Levi (see [26,
Theorem 3.4.1]), it follows that there is l ∈ N such that gσ−1 = gl for all g ∈ N . Take
x ∈ N of maximal order, and n ∈ N such that xσ = xb

n
. Then the automorphism

conj(bn)σ−1 : g 7→ gm
nl of N is of p-power order, and fixes a nontrivial element of

each Sylow subgroup of the abelian p′-group N . It follows that σ = conj(bn) ∈ Inn(G).
Hence Outc(G) = 1 for G of type (a), and it follows that the same is true for G of type
(e). Let G be of type (c), and let σ ∈ Autc(G). In order to show that σ ∈ Inn(G),
we may assume without lost of generality that σ|N = id|N and σ|Q2n = conj(g) for
some g ∈ Q2n . Take any x ∈ N \ {1}. Then (xt)σ = (xt)u for some u ∈ 〈s〉 since
[N, t] = 1. This means that x = xσ = xu and tg = tu. It follows that u ∈ 〈s2〉, and
g ∈ CQ2n (t)〈s2〉 = 〈t, s2〉 = CQ2n (N), so σ = conj(g). The proof is complete. ¤
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23. The hypercenter and unipotent elements

In the next three sections, G will always denote an arbitrary periodic group, unless
stated otherwise, and R will denote a G-adapted ring. To avoid clumpy notation, we
write U = U(RG) for the unit group of RG. In this section, the main result, Z∞(U) ≤
Z(U)Z2(G), is established.

Recall that u ∈ RG is called unipotent if u−1 is nilpotent, i.e., if some power of u−1 is
zero. Let H be a finite group, and put U = U(ZH). Arora, Hales and Passi [3, 2.6 The-
orem] proved that U is of central height at most two. The proof is essentially based on
their observation that a hypercentral unit commutes with all unipotent elements. (How-
ever, note that they additionally used Bovdi’s results [16] on periodic normal subgroups
of the unit group.) Soon afterwards, Arora and Passi used this observation to prove that
[Z2(U), H] ≤ R(H) if H is not a Dedekind group (see [4, 2.1 Proposition]). It has been
remarked in [3, 2.3 Proposition] that Z2(U) ≤ NU (H), which obviously remains true for
a periodic group H (see [86, Lemma 1]).

We shall prove suitable generalizations of these results which will lead to the conclusion
that Z∞(U) ≤ Z2(U). After recalling some basic facts about elements of NU (G), we
shall use Blackburn’s classification of finite groups H with R(H) 6= 1 to prove that
Z∞(U) ≤ Z(U)Z2(G).

First of all, we like to mention the following two instances of when an element of RG
commutes with all unipotent elements. Thereby, G can be arbitrary.

23.1 Lemma. A subgroup H of G with H E U centralizes all unipotent elements of U .
Likewise, if

⋂∞
i=0 p

iR = 0 for some prime p, and some u ∈ U has only finitely many
conjugates in U , then u commutes with every unipotent element of U .

Proof. Let y = 1 − x ∈ U be a unipotent element, so xs = 0 for some s ∈ N. Assume
that H E U for some H ≤ G, and take any h ∈ H. Let p be a rational prime which
divides the order of h, and set yn = 1 − pnx for all n ∈ N. Then yn ∈ U , with
y−1
n = 1 + (pnx) + (pnx)2 + · · ·+ (pnx)s−1, and y−1

n hyn ∈ h+ pnRG. As y−1
n hyn ∈ G and

p is not invertible in R, it follows that [yn, h] = 1, so h commutes with x and y. Now
assume that

⋂∞
i=0 p

iR = 0 for some prime p, and take u ∈ U with only finitely many
conjugates in U . With yn as defined just now, y−1

n uyn = u + pnwn for some wn ∈ RG.
As u has only finitely many conjugates in U , there is m ∈ N such that pmwm = pnwn
for infinitely many n ∈ N. Hence wm ∈ pnRG for all n ∈ N, and it follows that wm = 0,
so u commutes with ym and y. ¤

We shall see that Z∞(U) ≤ NU (G), and the reader may feel more comfortable if we
list some basic facts about elements of NU (G) we will need, together with somewhat
condensed proofs.

23.2 Remark. Let G be an arbitrary group, and let u ∈ NU (G). If u =
∑

g∈G rgg (all
rg in R), then S = supp(u) = {g ∈ G | rg 6= 0} is the support of u.
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(1) The group G acts on S via x
g7→ g−1xgu for x ∈ S and g ∈ G, and the elements of

an orbit under this operation have the same coefficient in u (viewed as an R-linear
combination of elements of G). This fundamental fact was observed independently
by Coleman and Ward (see page 138, as well for the next remark).

(2) If pR 6= R for some rational prime p, then there is x ∈ S such that ux−1 centralizes
a subgroup of G which is of finite p′-index in G (this version of the Ward–Coleman
Lemma is given in Lemma 19.4). Indeed, let Q be the kernel of the operation
defined in (1), and choose Q ≤ P ≤ G such that P/Q is a Sylow p-subgroup of the
(finite) group G/Q. Since the augmentation of u is a unit in R, there is a fixed
point x ∈ supp(u) under the operation of P , that is, ux−1 centralizes P .

(3) Let N = 〈S〉, the support group of u. Assume that 1 ∈ S. Then it follows from (1)
that g−1gu ∈ S for all g ∈ G; in other words, ug ∈ uS−1 ⊆ RN . This immediately
implies that N E G. Moreover,

⋃
g∈G supp(ug) ⊆ SS−1 is a finite set, and it follows

that each element x of N has only a finite number of conjugates in G (this has
already been noted in [93, Corollary 1]). So N is a finitely generated FC-group.
If G (and therewith N too) is a periodic group, it follows at once that N is finite
(see [113, 14.5.8]). (However, this is always true, see Theorem 18.5).

(4) Assume that G is a periodic group, and that un ∈ G for some n ∈ N. Then gu is a
unit of finite order for all g ∈ G, and choosing g = x−1 for some x ∈ S, it follows
from [130, II.1.2] and (3) that u is a trivial unit (i.e., of the form rg for some r ∈ R
and g ∈ G).

(5) Though we do not need it, we would like to mention that u is a trivial unit whenever
un ∈ G for some n ∈ N, see Corollary 18.6. Note that if R = Z, this follows readily
from a classical result of Berman and Higman, since in any case uu∗ ∈ Z(U)
(see [66, 3.1. Proposition]). Also, we would like to refer the reader to the paper [34]
of Farkas and Linnell.

23.3 Proposition. The following hold:

(1) Z∞(U) ≤ NU (G);

(2) Z∞(U)/Z(U) is a periodic group;

(3) [U ,Zn+1(U)] ≤ Zn(G) for each n ∈ N;

(4) every element of Z∞(U) commutes with every unipotent element of U .

Proof. As to (1), we shall prove inductively Zn(U) ≤ NU (G) for all n ∈ N. The case
n = 1 being trivial, let n > 1, and take any u ∈ Zn(U) and g ∈ G. Then gu = g[g, u] ∈
NU (G) by the induction hypothesis, and therefore gu ∈ G by Remark 23.2(4). Now
(2) follows since NU (G)/Z(U) is a periodic group by [93, Theorem 1] (this also follows
from Corollary 17.9 and Proposition 19.1). Next, we prove [U ,Zn+1(U)] ≤ Zn(G) by
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induction on n. Take any u ∈ U and v ∈ Zn+1(U). Applying the commutator identity
[a, bc] = [a, c][a, b][[a, b], c] (see [65, III 1.2]), we get inductively for k ∈ N (with Z0(G) = 1,
the case n = 1 being obvious) that

[u, vk] = [u, vk−1v] = [u, v][u, vk−1][[u, vk−1]︸ ︷︷ ︸
∈Zn(U)

, v] ∈ [u, v][u, vk−1] · Zn−1(G).

Continuing in that way, it follows that [u, vk] ∈ [u, v]k · Zn−1(G). By (2), we can
choose k ∈ N such that vk ∈ Z(U), and then [u, v]k ∈ Zn−1(G), so [u, v] ∈ G by
Remark 23.2(4). Hence (3) holds for n = 1, and for n > 1 it follows inductively that
[G, [u, v]] ≤ [U ,Zn(U)] ≤ Zn−1(G), so [u, v] ∈ Zn(G), and (3) is proved. Let x ∈ U
be a unipotent element, so (x − 1)m = 0 for some m ∈ N. We prove inductively that
[x,Zn(U)] = 1, the case n = 1 being trivial. Let n > 1, and take u ∈ Zn(U). By
(3), there is g ∈ Zn−1(G) such that xu = xg, and we may assume inductively that
[g, x] = 1. Let K be a field, containing R, such that K〈g〉 = ⊕iKei (the ei’s be-
ing idempotents), and write g =

∑
i ξiei (all ξi in K). Let K[t] be a polynomial ring

and let µi be the endomorphism K[t] → End(eiKG) such that µi(t) is left multipli-
cation with x (note that x commutes with ei). The kernel of µi is a principal ideal
generated by f(t) = (t − 1)l for some l ∈ N since u is unipotent. On the other hand,
ei(ξix− 1)m = (eiξix− ei)

m = (eix
u − ei)

m = ei(x
u − 1)m = ei((x− 1)m)u = 0, so f(t)

divides (ξit − 1)m, and it follows that ξi = 1. This shows that g = 1, so [u, x] = 1, and
(4) is proved. ¤

The group G ∩ Z∞(U) will be examined in the next two sections.

23.4 Corollary. We have G ∩ Z∞(U) E U .

Proof. Let H = G ∩ Z∞(U). By Proposition 23.3(3), [U , H] ≤ G ∩ Z∞(U) = H, so
H E U . ¤

Let H be an arbitrary group. A power automorphism of H is an automorphism of
H which leaves every subgroup of H invariant (we already encountered power automor-
phisms of abelian groups in the proof of Proposition 22.4). The power automorphisms
of H form an abelian group, which is usually denoted by PAut(H). Several authors have
worked on power automorphisms. Cooper has proved that a power automorphism of H
is a central automorphism, i.e., induces the trivial automorphism on the central factor
group (see [26, Theorem 2.2.1]), and we shall apply this result in a moment.

Let g, h ∈ G, and denote by ĝ the sum of the elements of 〈g〉. Then (1 − g)hĝ is an
element of square zero, and the unipotent element 1 + (1− g)hĝ is called a bicyclic unit.

A scrutiny of what is needed for and what is done in the proof of [4, 2.1 Proposition]
leads to the following proposition, which paves the way for the application of Blackburn’s
classification, but also highlights a connection with power automorphisms.
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23.5 Proposition. Assume that some u ∈ NU (G) commutes with all unipotent elements
of ZG. Then conj(u) ∈ PAut(G). If G is not a Dedekind group, then [G, u] ≤ R(G).

Proof. If G is a Dedekind group, then there is nothing to prove. Hence we may assume
that there is a non-normal cyclic subgroup C = 〈c〉 of G. Take any g ∈ G. We show
that [g, u] ∈ C, by considering the following two possibilities.

Case 1 cg 6∈ C. Clearly y = (1 − c)gĉ = gĉ − cgĉ is a nilpotent element. If gcn =
cgcm for some integers n and m, then cg = cn−m, a contradiction. Hence supp(gĉ) ∩
supp(cgĉ) = ∅. Therefore gu appears with coefficient 1 in yu = y, so gu = gcn for some
n ∈ N, and [g, u] = cn ∈ C.

Case 2 cg ∈ C. Choose h ∈ G with ch 6∈ C, and note that [h, u] ∈ C by Case 1.
Consider the nilpotent element y = (1 − c)hg−1ĉ = hg−1ĉ − chg−1ĉ. If hg−1cn =
chg−1cm for some integers n and m, then ch = g−1cn−mg ∈ C, a contradiction. So
supp(hg−1ĉ) ∩ supp(chg−1ĉ) = ∅, and as (hg−1)u appears with coefficient 1 in yu = y,
it follows that (hg−1)u = hg−1cn for some n ∈ N, that is, [h, u] = g−1cng[g, u], and
therefore [g, u] ∈ C.

Now remember that if 〈g〉 E G, then obviously gu ∈ 〈g〉, and otherwise we could have
chosen c = g, so gu ∈ 〈g〉 in any case. ¤

We remark that we have actually shown the following. If G is an arbitrary group and
some u ∈ NU (G) commutes with all unipotent elements of ZG, then [G, u] ≤ C for each
finite non-normal cyclic subgroup C of G.

23.6 Corollary. We have Z∞(U) = Z2(U).

Proof. A power automorphism of a groupH induces the trivial automorphism ofH/Z(H)
(see [26, Theorem 2.2.1]). Together with Propositions 23.3 and 23.5, it follows that
[G,Z∞(U)] ≤ Z(G). Hence [U ,Z∞(U)] maps to 1 under the natural map RG →
RG/Z(G), and therefore [U ,Z∞(U)] ≤ Z(G) by Proposition 23.3(3). The proof is com-
plete. ¤

Let us recall Lemma 19.5:

23.7 Lemma. Let M be a finite normal subgroup of G such that for some rational
prime p, the center of a Sylow p-subgroup of M is contained in Op(M). If u ∈ NU (G)
is contained in the center of RM , and up

n ∈ Z(U) for some n ∈ N, then u ∈ Z(U)M .

We have gathered enough information in order to prove the main result.

23.8 Theorem. Assume that G is not a Dedekind group, and that some u ∈ NU (G)
commutes with all unipotent elements of ZG. Then u ∈ Z(U)G.
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Proof. By Proposition 23.5, [G, u] ≤ R(G), so we may assume that R(G) 6= 1. Take any
x ∈ supp(u). Then L = 〈supp(ux−1)〉 is a finite normal subgroup ofG by Remark 23.2(3).
Since u and x have the same image under the natural map RG → RG/L, and [G, u] ≤
R(G), it follows that [G, x] ≤ R(G)L. Consequently, M = R(G)L〈x〉 is a finite nor-
mal subgroup of G which contains supp(u). If M is not a Dedekind group, then
1 6= R(G) ≤ R(M) (see [11, Lemma 1(a)]). Hence M is either a Dedekind group,
or one of the groups described in Theorem 22.2. By Proposition 22.4, Outc(M) = 1,
so v = uh ∈ Z(RM) for some h ∈ M . Note that vl ∈ Z(U) for some l ∈ N. If M is
not of type (a) or (e) (as described in Theorem 22.2), then M satisfies the hypothesis
of Lemma 23.7 for all primes p, which implies that v ∈ Z(U)G. Hence we may assume
that M is of type (a) or (e), so M = H × K with normal subgroups H,K of G, and
H = N o 〈b〉, where b is a p-element, and N is an abelian p′-group. Furthermore, there
is m ∈ N such that xb = xm for all x ∈ N , and 1 6= R(M) = C〈b〉(N) 6= 〈b〉. Assume that

σ = conj(bix) ∈ PAut(H) for some x ∈ N and i ∈ N. Then b(x−bx) = bx = bσ ∈ 〈b〉,
so x = 1 as CN (b) = 1. For any 1 6= y ∈ N , it follows that yb

i
b = (yb)σ ∈ 〈yb〉, so

yb
i

= y. That is, bi ∈ C〈b〉(N), and we have shown that σ = id. By Proposition 23.5,
conj(u)|H ∈ PAut(H). Recall that there is h ∈M with uh ∈ Z(RM), and [G, u] ≤ R(H).
The observation just made shows that we could have chosen h = 1. Thus we may
assume that u ∈ Z(RM), and it follows that up

n ∈ Z(U) for some n ∈ N. Put
C = C〈b〉(N), and let ¯ : RG → (R/|N |R)G/NK be the natural map. Note that
{gx | x ∈ N} = {xg | x ∈ N} for g ∈ 〈b〉 \ C, so ū ∈ R̄C̄. By Lemma 23.7,
[G, u−1b1] ≤ NK for some b1 ∈ 〈b〉. Assume that b1 6∈ C, and that [g, u] 6= 1 for
some g ∈ G. Then b̄ ḡ1 = b̄2b̄1 for some 1 6= b2 ∈ 〈b〉. Note that C ≤ 〈b p1 〉, and

(b̄ p1 )ḡ = b̄ p2 b̄
p
1 . Using the natural map R̄C̄ → R̄C̄/〈b̄ p2 〉, we see that ḡb̄1 = ḡū ∈ ḡ〈b̄ p2 〉.

So b̄−1
2 = ḡ−1ḡb̄1 ∈ 〈b̄ p2 〉, a contradiction. Hence u ∈ Z(U) if b1 6∈ C. Now assume that

b1 ∈ C. Then 〈b1〉 E G, and [g, u−1b1] = [g, b1][g, u−1]b1 ≤ NK ∩ 〈b〉 = 1 for all g ∈ G,
so u ∈ Z(U)b1. The proof is complete. ¤

23.9 Theorem. We have Z∞(U) ≤ Z(U)Z2(G).

Proof. If G is not a Dedekind group, then Z∞(U) ≤ Z(U)G by Proposition 23.3(1), (4)
and Theorem 23.8. If G is a Dedekind group, then Outc(G) = 1, and Z∞(U) ≤ Z(U)G by
Proposition 23.3(1). Hence Z∞(U) = Z(U)H with H = G ∩ Z∞(U). By Corollary 23.6,
Z∞(U) = Z2(U), and with Proposition 23.3(3) it follows that [G,H] ≤ [G,Z2(U)] ≤
Z(G). ¤

24. Subgroups of a group basis which are normal in the unit
group

In this section, we shall see that the existence of a non-central subgroup of G which is
normal in the unit group U strongly influences the structure of G. We do not claim that
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the results and techniques are new; in fact, most of them are covered by the work [15,16]
of Bovdi. We shall need part of [16, Theorem 11], and like to present a short proof for
it which is based on Bovdi’s work and a group-theoretical characterization of Q∗-groups
given by Williamson.

We begin by listing the following “elementary” properties of normal subgroups of U
which are contained in G.

24.1 Lemma. Assume that H E U for some subgroup H of G. Then

(1) gh ∈ 〈g〉 for all g ∈ G, h ∈ H;

(2) hu ∈ 〈h〉 for all u ∈ U , h ∈ H;

(3) [g, h] ∈ 〈g〉 ∩ 〈h〉 for all g ∈ G, h ∈ H;

(4) units of finite order in RH are trivial.

Proof. (1) follows from Lemma 23.1 and Proposition 23.5. Assume that there is h ∈ H
such that 〈h〉 is not normal in U , and choose u ∈ U with g = hu 6∈ 〈h〉 (but note
that g ∈ G). Then x = (h − 1)uĥ = huĥ − uĥ is a nilpotent element, so x = xh by
Lemma 23.1, and it follows that uĥ − h−1uĥ = h−1x = xh−1 = huĥ − uĥ. Multiplying
with u−1 from the left, we reach the contradiction ĥ− g−1ĥ = gĥ− ĥ and ĥ = gĥ. This
proves (2), and (3) follows from (1) and (2). Let u be a unit of finite order in RH. By
(1), 〈supp(u)〉 is a finite group, and we may assume that H is finite. As H E U(RH), hu
is a unit of finite order too, for all h ∈ H. Hence we may assume that the 1-coefficient
of u doesn’t vanish. But then u is a trivial unit (see [130, II.1.4]). ¤

The following lemma should be compared with [16, Theorem 6].

24.2 Lemma. Let p be a rational prime. Assume that there are p-elements g, h ∈ G
with 〈h〉 E U and [h, g] 6= 1. Then 〈h, g〉 is isomorphic to the quaternion group.

Proof. We write o(x) for the order of a group element x. We shall need an elementary
group-theoretical fact: if A = 〈x, y〉 is a finite abelian group with o(x) ≤ o(y), then there
is a ∈ A such that A = 〈a〉 × 〈y〉.

Set X = 〈h, g〉, and choose x ∈ 〈g〉 of smallest possible order such that Y = 〈h, x〉
is not abelian. Let A = 〈h, xp〉. Then A E U(RY ) as xp ∈ Z(Y ). Note that xp 6= 1
by Lemma 24.1(3). Assume that o(h) ≤ o(xp). Then A = 〈a〉 × 〈xp〉 for some a ∈ A.
By Lemma 24.1(2), 〈a〉 E U(RY ). As 〈x〉 ∩ 〈a〉 = 1, it follows from Lemma 24.1(3)
that [x, a] = 1. Consequently, Y = 〈A, x〉 = 〈a, x〉 is abelian, a contradiction. Hence
o(h) > o(xp). Assume that p is odd. Then hx = ch for some c ∈ Z(Y ) of order p. Note
that for all i ∈ N,

(xhi)p = xp(hi)x
p−1 · · · (hi)x2

(hi)xhi = xphip · (ci)p−1 · · · (ci)2ci︸ ︷︷ ︸
=1 since p6=2

.
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If xp ∈ 〈h〉, then xp = h−np for some n ∈ N, and 〈xhn〉 is a complement of order p to 〈h〉 in
Y . So [h, x] = 1 by Lemma 24.1(3), a contradiction. If xp 6∈ 〈h〉, then A = 〈h〉 × 〈xphm〉
for some m ∈ N. Since 〈x〉 ∩ 〈h〉 6= 1 by Lemma 24.1(3), o(xp) = o(hm), so m = np for
some n ∈ N. But then (xhn)p = xphm, and again we have reached the contradiction
that 〈xhn〉 is a complement to 〈h〉 in Y . Thus p = 2. We shall show that o(h) = 4.
Let s be the involution in 〈h〉. Then hx ∈ {h−1, sh−1, sh}. If hx = h−1 or hx = sh−1,
then by Lemma 24.1(1), xh2 = xh ∈ 〈x〉 or xsh2 = xh ∈ 〈x〉, respectively, so h2 ∈ 〈x〉 in
both cases since s ∈ 〈x〉. But then h2 = (h2)x = h−2, and it follows that o(h) = 4. If
hx = sh, take n ∈ N with x2n−1 6∈ 〈h〉, but x2n ∈ 〈h〉. As o(h) ≥ o(x), there is m ∈ N
such that x2n

= h−2nm. Also, there is t ∈ H such that t2 = s. Assume that [t, x] = 1.
Then (xhm)2

n
= 1 if m is even, and (xthm)2

n
= 1 if m is odd. In any case, it follows

that 〈h〉 has a complement in Y , contradicting Lemma 24.1(3). Hence [t, x] 6= 1, and
〈h〉 = 〈t〉 since [h2, x] = 1. We have seen that h is of order 4, so Y is isomorphic to the
quaternion group of order 8. Finally, it follows from [x2, h] = 1 that X = Y . ¤

Williamson has given the following group-theoretical characterization of Q∗-groups
([146, p. 495]; see also [98, p. 5505]).

24.3 Lemma. If G contains a non-central element a such that for all g ∈ G, 〈a, g〉 is
either abelian or isomorphic to the quaternion group, then G is a Q∗-group.

Proof. There is b ∈ G such that Q = 〈a, b〉 is isomorphic to the quaternion group, and
it follows that a and b have order 4. Set A = CG(a). Observe that b 6∈ A, so for any
g ∈ A, gb 6∈ A and 〈a, gb〉 ∼= Q. It follows that b2 = a2 = gbgb, that is, gb = g−1. Hence
A is abelian (a1a2 = a−b1 a−b2 = (a2a1)−b = a2a1 for all a1, a2 ∈ A). Finally note that A
is of index 2 in G since Aut(〈a〉) ∼= C2. ¤

We can now prove the part of [16, Theorem 11] which will be applied in the next
section. Note that the proof could be reduced at once to the case R = Z.

24.4 Theorem. Assume that H E U for some subgroup H ≤ G with H 6⊆ Z(G). Then
G is a Q∗-group.

Proof. By assumption, there is a ∈ H with a 6∈ Z(G), and we may clearly assume that
a is a p-element for some prime p. By Lemma 24.1(2), 〈a〉 E U . Take any g ∈ G
such that 〈a, g〉 is not abelian, and write g = bx with b, x ∈ 〈g〉 and b a p-element,
x a p′-element. By Lemma 24.1(3), [a, x] = 1, so [a, b] 6= 1 and 〈a, b〉 is a quaternion
group by Lemma 24.2. Now it follows from [16, Lemma 10], or [146, Lemma 5], that
x = 1. The basic approach here is to construct explicitly—assuming that x 6= 1—a unit
in Z〈b, x〉 which does not normalize 〈a〉. Using a Bass cyclic unit, this has been done
most elementary by Parmenter [98, pp. 5504–05]. In view of Lemma 24.3, we are done.

¤
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We finish this section with another application of Lemma 24.1, for what we need a
theorem due to Berman (see [130, II.2.18]).

24.5 Theorem. Let G be a finite group. All units in ZG of finite order are trivial if
and only if G is abelian or a Hamiltonian 2-group. ¤

The following lemma, which is part of [16, Theorems 1, 3], can be proved quite easily.
Note that we can work over a G-adapted ring R, since we are dealing with a periodic
normal subgroup of U which is contained in G.

24.6 Proposition. Assume that H E U for some non-abelian subgroup H of G. Then
G is a Hamiltonian 2-group.

Proof. As H is non-abelian, it follows from Lemma 24.1(2) that H is Hamiltonian.
Choose x, y ∈ H which do not commute, and let h ∈ H. Then 〈x, y, h〉 is a finite
non-abelian group, and it follows from Theorem 24.5 and Lemma 24.1(4) that h is a
2-element. Hence H is a Hamiltonian 2-group. Together with Lemma 24.1(2) it follows
that each g ∈ G acts as an inner automorphism on H, so G = CG(H)H. Let g ∈ CG(H),
and set P = 〈g,H〉. Then P E U(RP ) as g ∈ Z(P ). So P is a Hamiltonian 2-group
too, and g2 = 1 since g ∈ Z(P ). We have shown that CG(H) is an elementary abelian
2-group, and G = Z(G)H. Hence G E U , and G is a Hamiltonian 2-group. ¤

25. Non-central elements of the hypercenter

In this section, we discuss what happens when Z2(U) 6= Z(U). Using results of Bovdi
[15,16], a complete description of Z2(U) is given in the case when R is a ring of algebraic
integers in a totally real number field K (that is, every embedding of K into C is
contained in R).

First of all, however, we like to point out that Corollary 23.6 can be proved using
Theorem 24.4 instead of Cooper’s result on power automorphisms, in much the same
way as [3, 2.6 Theorem] was proved.

Alternative proof of Corollary 23.6. Assume the contrary. Then Z2(U) < Z3(U), so
H = [U ,Z3(U)] 6⊆ Z(U), and H ≤ Z2(G) by Proposition 23.3(3). By Theorem 24.4,
G is a Q∗-group. If G is Hamiltonian, then Outc(G) = 1, so Z∞(U) ≤ Z(U)G by
Proposition 23.3(1). Let K = G ∩ Z∞(U). Then Z∞(U) = Z(U)K, and K E U by
Corollary 23.4. Since G = Z2(G), RG/Z(G) is a commutative ring, and looking at the
image of [U ,K] under the natural map RG→ RG/Z(G), it follows that [U ,K] ≤ Z(G),
and we obtain the contradiction H ≤ [U ,Z∞(U)] = [U ,Z(U)K] = [U ,K] ≤ Z(G). If G
is not Hamiltonian, then R(G) is a central subgroup of order 2 as G is a Q∗-group, and
[G,Z∞(U)] ≤ R(G) ∼= C2 by (1) and (4) of Proposition 23.3 and Proposition 23.5. It
follows that

(∗) [G′,Z∞(U)] = 1, (∗∗) [G,Z∞(U)2] = 1.
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Looking at the image of H under the natural map RG → RG/G′, we see that H ≤ G′.

Let u ∈ U and x ∈ Z3(U). Then h = [u, x] is a typical generator of H, and h2 (∗)
= h ·hx =

[u, x][u, x]x = [u, x2]
(∗∗)
= 1. But elements of order 2 in G are contained in the center of

G, so H ≤ Z(G), a contradiction. The proof is complete. ¤

From Theorem 23.9, Corollary 23.4 and Theorem 24.4 we see that the existence of
non-central elements of the hypercenter severely limits the structure of G.

25.1 Theorem. If Z2(U) 6= Z(U), then G is a Q∗-group. ¤

We give a necessary condition for a group element to lie in Z∞(U).

25.2 Lemma. Assume that there is x ∈ G \ Z(G) with x ∈ Z∞(U). Then G is a Q∗-
group, and if G = 〈A, b〉 and a are as in Definition 21.1, then x2 = a2. If x 6∈ A, then
G is a Hamiltonian 2-group.

Proof. By Corollary 23.4, G ∩ Z∞(U) is a normal subgroup of U , and G is a Q∗-group
by Theorem 24.4. Let A, b and a be as in Definition 21.1. By Lemma 24.1(3), [g, x] ∈
〈g〉 ∩ 〈x〉 for all g ∈ G. Assume that x 6∈ A. Then y−2 = [y, x] ∈ 〈y〉 ∩ 〈x〉 ≤ 〈b2〉 for
all y ∈ A. It follows that y2 = b2, and that G is a Hamiltonian 2-group. Thus we may
assume that x ∈ A. If 〈b〉 ∩ 〈x〉 = 1, then x2 = [b, x] = 1 and x ∈ Z(G), a contradiction.
Hence 〈b〉 ∩ 〈x〉 = 〈a2〉 and x2 = [b, x] = a2. ¤

Using [16, Theorem 11], we can prove the following result.

25.3 Proposition. Let G be a Q∗-group, G = 〈A, b〉 and a ∈ A as in Definition 21.1.
Let R be a ring of algebraic integers in a totally real number field. Then either G is a
Hamiltonian 2-group and Z∞(U) = Z(U)G, or Z∞(U) = Z(U)〈g ∈ A | g2 = a2〉.

Proof. Let H = G ∩ Z∞(U), a normal subgroup of U by Corollary 23.4. Take any
x ∈ H ∩ A. Then either x ∈ Z(G) or x2 = a2 by Lemma 25.2. On the other hand,
let y ∈ A with y2 = a2, and take any u ∈ U . Let ∗ be the usual anti-involution of
RG (that is, g∗ = g−1 for g ∈ G, and R-linear extension). Write u = x1 + x2b with
xi ∈ RA; then uu∗ = (x1x

∗
1 + x2x

∗
2) + x1x2(b + b−1) clearly commutes with y, and it

follows that yu(yu)∗ = 1. Write yu =
∑

g∈G rgg (all rg in R); then
∑

g∈G |rg|2 = 1.
Assume that one of the algebraic integers rg is nonzero, but not a root of unity. Then
by a well known theorem of Kronecker (see [95, Theorem 2.1]), there is an embedding
σ : R ↪→ C such that |rσg | > 1, and we obtain the contradiction 1 <

∑
g∈G |rσg |2 = 1

since Rσ ⊆ R. Hence exactly one rg is different from zero, and yu ∈ G (this is Bovdi’s
argument from [16, Theorem 11]). Note that yu and y have the same image under the
natural map RG→ RG/〈a2〉 since [G, y] = 〈a2〉, so [u, y] ∈ 〈a2〉 ≤ Z(G). It follows that
y ∈ Z2(U). Up to now, we have seen that H ∩ A = Z(G)〈g ∈ A : g2 = a2〉. Assume
that H 6⊆ A. Then G is a Hamiltonian 2-group by Lemma 25.2 (or by Proposition 24.6,
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since H is non-abelian). But then A, b and a can be chosen such that a is any given
non-central element of G, so H = G. The proposition now follows from Theorem 23.9.

¤

On the other hand, if R is in a certain sense “large enough”, then one should expect
that Z2(U) = Z(U). (In this context, note that there is an obvious gap in the proof
of [16, Theorem 4].) As in the proof of [16, Lemma 4], we obtain the following proposition.

25.4 Proposition. If there are ri ∈ R with r21 + r22 + r23 = r1 and (r1, r2, r3) 6∈
{(0, 0, 0), (1, 0, 0)}, then Z2(U) = Z(U).

Proof. Assume the contrary. Then G is a Q∗-group by Theorem 25.1, say G = 〈A, b〉
and a ∈ A as in Definition 21.1, and there is g ∈ G with g ∈ G \ Z(G) and g ∈ Z2(U).
By Lemma 25.2, g2 = a2. Let ri ∈ R with r21 + r22 + r23 = r1 and (r1, r2, r3) different
from (0, 0, 0) and (1, 0, 0). Then 〈g, h〉 is a quaternion group, and u = r1g+ (1− r1)g3 +
r2(h− g2h) + r3(gh− g3h) is a nontrivial unit of RG of order 4. By Corollary 23.4 and
Lemma 24.1, 〈g〉 E U , so g−1u and g−3u are nontrivial units of finite order too. But one
of these units has nonzero 1-coefficient, so must be a trivial unit (see [76, Theorem 3.2.3]).
We have reached a contradiction, and the proposition is proved. ¤



VII. Finite conjugacy for orders in division
rings

Knowledge does not keep any better than fish.

Alfred North Whitehead

The aims of education, 1929

We show that for a periodic group G, the FC-center of U(ZG) and the second center
of U(ZG) coincide, using a characterization of the FC-subring of ZH for a finite group
H given by Sehgal and Zassenhaus [131]. Together with work of Li and Parmenter [87]
on the hypercenter of U(ZG), this yields a short proof of a recent result of Jespers and
Juriaans [70] on the FC-center which avoids the use of Amitsur’s classification [2] of finite
subgroups in division rings. Also, for a totally definite quaternion algebra generated (as
Q-algebra) by a finite multiplicative subgroup G, the group of units of the Z-order Z[G]
spanned by G is described explicitly.

26. The finite conjugacy center and the second center

Herstein [51] proved that any element of a division ring is either central or has infinitely
many conjugates. The proof is based on the Brauer-Cartan-Hua theorem, and in the
sequel further results aiming at a dichotomy as expressed in this theorem have been
proved (see [53, Chapter 6]). Somewhat more precisely, the objective was to show that
certain subgroups or subrings of a division ring which are invariant with respect to
certain natural operations must be small or large, in a very well specified way. One
might ask whether similar results also hold for Z-orders in division rings, a question that
naturally arises in the study of the FC-subring FC(ZG) of the integral group ring of a
group G, which is defined as the set of all elements of ZG having only finitely many
conjugates under the action of the group of units U(ZG). First results on FC(ZG) are
contained in A. A. Bovdi’s paper [16]. Williamson [146] gave a necessary and sufficient
condition for an element of G to belong to FC(ZG). Motivated by this result, Sehgal and
Zassenhaus [131] characterized the FC-subring FC(ZG) for a finite group G as follows:

26.1 Theorem (Sehgal, Zassenhaus). Let G be a finite group. Then the FC-subring
of ZG consists of all those elements x of ZG for which Γ(x) is central in Γ(ZG) for

160
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every irreducible representation Γ of QG over Q for which Γ(QG) is not a totally definite
quaternion algebra.

(Recall that a finite dimensional Q-algebra A is said to be a totally definite quaternion
algebra if the center F of A is a totally real field and A⊗F R is a Hamilton quaternion
algebra.)

After that, FC-elements in group rings over fields were studied in [105, 24]. Recently,
finite conjugacy in orders and algebras was re-investigated in [33]. This paper contains
some general results on FC-units in algebras, with a few applications to group rings.
(However, one might note that the first remark in Section 4 is a special case of [131,
Theorem 2], and that Lemma 4.3 and Proposition 4.4 are already contained in [16].)
V. Bovdi [17] investigated the FC-subring of quite general rings.

For any group G, the set ∆(G) of elements of G having only a finite number of
conjugates form a characteristic subgroup of G, called the FC-center of G. Note that
∆(U(ZG)) = U(ZG) ∩ FC(ZG). Jespers and Juriaans [70] characterized the periodic
groups G with ∆(U(ZG)) non-central in ZG (these are the so-called Q∗-groups, see
Definition 21.1), and described ∆(U(ZG)) explicitly. This classification coincides with
the classification of the periodic groups G with U(ZG) having non-central second center
Z2(U(ZG)), given by Li and Parmenter [86, 87] (see Theorem 21.2). This connection is
not even mentioned in [70], though a crucial step in both classifications is to establish
that the considered subgroups of U(ZG) are periodic over the center of U(ZG) (cf.
Proposition 23.3). In Section 27, we show how Theorem 26.1 can be used to give a short
and rigorous proof of the following theorem.

26.2 Theorem. If G is a periodic group then ∆(U(ZG)) = Z2(U(ZG)).

Taking the description of Z2(U(ZG)) given by Li and Parmenter for granted, this proves
the Jespers–Juriaans result without the use of Amitsur’s classification of the finite groups
that are embeddable in the multiplicative groups of division rings, which was achieved
in the technically complicated paper [2].

As noted in [70], Theorem 18.3 should prove to be very useful to achieve a description
of ∆(U(ZG)) for more general G.

If a group G is embedded in the multiplicative group of a division ring of characteristic
zero, we will write Q[G] = {∑ agg | g ∈ G, ag ∈ Q} and Z[G] = {∑ agg | g ∈ G, ag ∈ Z}.
In the remaining sections of this chapter, we will prove the following theorem.

26.3 Theorem. Let G be a non-cyclic finite group contained in the multiplicative group
of a division ring of characteristic zero. Then one of the following holds.

(i) Any u ∈ Z[G] is either central in Z[G] or has infinitely many conjugates under the
action of U(ZG) induced by the natural homomorphism U(ZG) → Z[G]×.

(ii) G is isomorphic to one of the following groups: SL(2, 3), SL(2, 5), the binary octa-
hedral group, or to one of the groups CkoC4, CkoQ2l described in Proposition 29.2
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below, and then any element of Q[G] has only a finite number of conjugates under
the action of the unit group Z[G]×.

Actually, this theorem follows almost immediately from Theorem 26.1 and Amitsur’s
classification. What we are really doing is to construct in case (i) units in U(ZG) that
can be used to produce infinitely many different conjugates of an element, if there are any
(this is done in Section 28), and in case (ii), explicit descriptions of the unit groups Z[G]×

are given in Section 29. This might be useful for the problem of describing generators
of a subgroup of finite index of U(ZG) for fixed-point free groups G, a problem which
seems to be still open (see [38,96]).

Amitsur’s classification

As preparation for Sections 28 and 29, we recall parts of Amitsur’s classification [2] of
the finite groups that can be embedded in the multiplicative group of a division ring of
characteristic zero, thereby fixing the notation.

Let m, r be two relatively prime integers. Set s = (r − 1,m), t = m/s and let n be
the minimal integer satisfying rn ≡ 1 (mod m). Then1

Gm,r = 〈a, b | am = 1, bn = at, ab = ar〉

is a group of order mn with center 〈at〉. By [2, Theorem 7], a finite group G can be
embedded in a division ring of characteristic zero if and only if G is one of the following
types: (1) a cyclic group, (2) a group Gm,r, where the integers m, r etc. satisfy certain
conditions, (3) a group SL(2, 3) × Gm,r, again with certain conditions on m, r etc.
(Gm,r = 1 is allowed), (4) the binary octahedral group or SL(2, 5).

Let εm be a fixed primitive mth root of unity, and set εs = εtm. Set Cm = Q(εm), and
let σ be the automorphism of Cm determined by the mapping εm 7→ εrm. Let Z be the
fixed field under the operation of σ. The cyclic algebra determined by Cm, σ and εs will
be denoted by Am,r; this is a crossed product algebra in the sense of [106, Section 29].
In particular, Am,r is a central simple algebra of dimension n2 over its center Z.

If a group Gm,r is contained in a division ring of characteristic zero, then Q[Gm,r] ∼=
Am,r (see [2, Lemma 4]), and the isomorphism is given by the correspondence a ↔ A,
b↔ B, where

A =




εm
εσm

εσ
2

m
. . .

εσ
n−1

m



, B =




εs
1

1
. . .

1




1There should be no mistaking with the wreath products Gn,r from Section 9.
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(this is a quite convenient representation to work with). Sometimes we will identify Cm
with Q[A]. Clearly, we have an action of U(ZGm,r) on Am,r induced by the natural
homomorphism U(ZGm,r) → A×

m,r.

27. On the finite conjugacy center

Let U be the unit group of the integral group ring ZG of a periodic group G. In this
section, a short proof is given for the fact that the finite conjugacy center ∆(U) coincides
with the second center Z2(U). Note that Z2(U) has been completely determined by
Parmenter and Li [87], see also Chapter VI.

Some information on elements of ∆(U) will be needed in case G is finite. We first recall
two basic observations. The following well known lemma, which was already known to
Berman, shows that Wedderburn components of QG which are division rings deserve
special attention (a slightly more general version is given as Lemma 23.1).

27.1 Lemma. Let G be a group. If some element u in ZG has only finitely many
conjugates (under the action of U(ZG)), then u commutes with every nilpotent element
of ZG. ¤

If G is finite, then each Wedderburn component of QG which is a proper matrix ring
is generated (as Q-algebra) by elements of ZG of square zero, so ∆(U) centralizes such
components (this too is known for a long time).

If a Wedderburn component is a division ring, one may wish to have a reduction to
the case that G embeds into this component. This is achieved by the following lemma.

27.2 Lemma. Let G be a finite group, and u an element of ZG which has only finitely
many conjugates (under the action of U(ZG)). Then for a normal subgroup N of G, the
image of u in ZG/N has only finitely many conjugates, too.

Proof. Set n = |N |. It is well known that ZG is a pullback over the finite ring
(Z/|n|Z) (G/N):

ZG - ZG/N

ZG/(N̂)

?
- (Z/|n|Z) (G/N)

?
.

Assume, by way of contradiction, that the image ū of u in ZG/N has infinitely many
conjugates. Then there are units v0, v1, v2, . . . in ZG/N which all have the same image
in (Z/|n|Z) (G/N), and ūv0 , ūv1 , ūv2 , . . . are pairwise different conjugates of ū. The units
w1 := v1v

−1
0 , w2 := v2v

−1
0 , . . . map to 1 in (Z/|n|Z) (G/N) and can therefore be lifted

to units of ZG. This provides a contradiction since ūw1 , ūw2 , . . . are pairwise different
conjugates. ¤
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In view of Theorem 26.1, we record the following well known fact.

27.3 Remark. Let D be a totally definite quaternion algebra, generated (as Q-algebra)
by a finite multiplicative subgroup G. Let ∗ be the involution induced by G, (

∑
agg)∗ =∑

agg
−1 (ag ∈ Q, g ∈ G). Then ∗ is the “classical” involution, and dd∗ lies in the

center of D, for all d ∈ D. Indeed, if F denotes the center of D, then by definition we
have G ⊂ D ⊗F R ∼= {[ r s

−s̄ r̄ ] | r, s ∈ R}. For g ∈ G, det(g) is a positive real number,
so det(g) = 1 and g−1 = ḡtr, the hermitian transposed. Thus for d = [ r s

−s̄ r̄ ], we have
dd∗ = [ r s

−s̄ r̄ ] [ r̄ −s
s̄ r ] =

[
rr̄+ss̄ 0

0 rr̄+ss̄

]
.

Thus Theorem 26.1 has the following corollary.

27.4 Corollary. Let G be a finite group. Then uu∗ is central in ZG for all u ∈ FC(ZG).
In particular, if u ∈ ∆(U(ZG)), then u ∈ NU(ZG)(G) (since (gu)(gu)∗ = 1 for g ∈ G; see
also Lemma 6.1(vii)). ¤

Note that this also follows from claim (AC) in [70], and that this is what is actually
needed for the proof of [70, Theorem 1.1]. The result also follows from Lemma 27.1,
Lemma 27.2 and the results from Section 28, but such a proof then relies on Amitsur’s
classification.

Here is a quick proof of Theorem 26.2:

Proof of Theorem 26.2. Set U = U(ZG) and let u ∈ ∆(U). Then F := 〈xg | x ∈
supp(u), g ∈ G〉 E G is a finitely generated periodic FC-group, that is, a finite group.
Take any g ∈ G, and set H = 〈F, g〉 (a finite group). Clearly u ∈ ∆(U(ZH)). By
Corollary 27.4, u ∈ NU(ZF )(H). Since g was arbitrarily chosen, it follows that u ∈
NU(ZF )(G). In particular, u has finite order over the center of U , so U−1+〈u〉 := {[v, un] |
v ∈ U , n ∈ Z} is a finite set. By a theorem of Baer (see Theorem 17.4), this condition
ensures that M :=

〈
U−1+〈u〉〉 = [U , 〈u〉] is a finite normal subgroup of U . Clearly

M is augmented, so M ≤ G by a result of Berman and Rossa (see [15]), and each
subgroup of M is a finite normal subgroup of U (see [16, Theorem 2]). Consequently
[U ,M ] ≤ Z(G) by [146, Theorem 1]. Thus 〈u〉 ⊆ Z3(U). By [86, Theorem 2], we have
Z3(U) = Z2(U), and it follows that ∆(U) ⊆ Z2(U). The converse inclusion follows
immediately from [87, Theorem 2] and [146, Theorem 1]. ¤

There are even more approaches to the characterization of ∆(U(ZG)) for a periodic
group G. Set U = U(ZG) and let u ∈ ∆(U). By Corollary 27.4, we have u ∈ NU(ZG)(G).
By Lemma 27.1, u commutes with every nilpotent element of ZG. But this implies
u ∈ Z(U)G by Theorem 23.8.2 Thus we get a complete characterization of ∆(U(ZG))
from [146].

One could also first characterize ∆(U(ZG)) for G finite using [4, Theorem 3.7], and
then argue as in the proof of [70, Corollary 2.4].

2This argument now appears in the final version [71] of [70].
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27.5 Remark. One might ask whether there is a complete description of ∆(U(ZG))
for an arbitrary group G. Though Theorem 18.3 gives in some sense a reduction to
finite groups, this seems not really within reach. We shall content ourselves with a few
comments.

Let u ∈ ∆(U(ZG)). By Theorem 18.3, there is a finite normal subgroup T of G and
a group element g ∈ G such that u = vg for some v ∈ U(ZT ). Then uu∗ = vv∗ ∈
∆(U(ZT )), and it follows from Theorem 26.1 and Remark 27.3 that vv∗ ∈ Z(U(ZT )).
By the usual star-argument, it follows that v ∈ NU(ZT )(T ) (this was also noted in [70]).

Now assume that g has infinite order. Clearly we can assume that v has augmentation
1. Then H := 〈T, vg〉 is a group basis of Z〈T, g〉. Trivially vg ∈ NU(ZH)(H), and since by
Lemma 23.1, vg commutes with all unipotent elements of ZH, we have [T, vg] ≤ C for
each cyclic non-normal subgroup C of T , by the remark following Proposition 23.5. Note
that conjugation with vg on T is a power automorphism. We now could try to imitate
the proof of Theorem 23.8 to show that vg ∈ Z(U(ZH))H, but we did not elaborate on
that. We remark that if vg 6∈ Z(U(ZH)), then T is either a Dedekind group or a group
from Blackburn’s list (see Theorem 22.2).

Note that vg has finite order over the center of H. Thus we may apply Theorem 17.4
of Baer to obtain that [U(ZH), vg] is a finite normal subgroup of U(ZH). By [15],
[U(ZH), vg] ≤ T . We may also apply Cooper’s result [26, Theorem 2.2.1] to obtain that
[U(ZT ), vg] ≤ Z(T ).

We finish this remark with an example (cf. [24, Example 1], [5]). Let G = C3 o 〈a〉,
where the element a is of infinite order and acts by inversion on C3. By Lemma 18.1, we
have U(ZG) = ±G, so ∆(U(ZG)) = U(ZG). The element a cannot be multiplied with a
central unit so that the resulting unit has finite order.

28. Division rings of dimension greater than 4 over the center

In this section, we treat the algebras Am,r which are division rings of dimension greater
than 4 over the center. Nevertheless, to prove the main result Proposition 28.4, we will
need some information about a particular class of algebras Am,r with n = 2:

28.1 Proposition. Let p be an odd prime and q an odd number with (p, q) = 1, and
choose an integer r with r ≡ 1 (mod p) and r ≡ −1 (mod q). Set m = 2pq, and note
that

G := Gm,r = 〈a, b | a2pq = 1, b2 = aq, (ap)b = a−p〉.

The element A2p−B is a unit in Z[〈A,B〉] having two eigenvalues with different absolute
values. There is a unit in ZG and a certain power of a2p − b having the same image in

ZG/(b̂2p, b̂4). Consequently any element of Am,r is either central in Am,r or has infinitely
many conjugates under the action of U(ZG).
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Proof. Recall that A2p =
[
ζ 0
0 ζ−1

]
and B =

[
0 1
−ξ 0

]
, where ζ and ξ are primitive qth

and pth complex roots of unity, respectively. Thus A2p − B has determinant 1 + ξ and
is therefore a unit in Z[〈A,B〉]. Its eigenvalues are λ1,2 = ((ζ + ζ−1) ±

√
D)/2 with

D = (ζ+ ζ−1)2−4(1 + ξ). Assume that |λ1| = |λ2|. Then
√
D has to be pure imaginary,

for geometrical reason, meaning that D, and hence 4(1 + ξ) too, is a real number. This
contradiction proves that |λ1| 6= |λ2|.

Note that (a2p− b)(a−2p+ b) = 1 +a2pb− ba−2p− b2 = 1− b2. We have b2 = b2pb2(p+1)

with b2p of order 2 and b2(p+1) of order p. Thus 1 − b2 and 1 + b2(p+1) have the same

image in Λ := ZG/(b̂2p, b̂4). Since 1 + b2(p+1) becomes a unit in the quotient Z〈b4〉/(b̂4)
(which is isomorphic to Z[ξ]), it follows that the image λ of a2p − b in Λ is a unit. The
group ring ZG can be written as a pullback

ZG - Γ

Λ
?

- Λ̄
?

with Λ̄ a finite ring (this is well known, see Section 7). Thus a power of λ maps to 1 in
Λ̄, and can therefore be lifted to a unit of ZG.

Let x be any element in Am,r which has only a finite number of conjugates under
the action of U(ZG). Then x commutes with some power of A2p − B. Since A2p − B
has eigenvalues with different absolute values, this means that x and A2p − B can be
simultaneously diagonalized, so x commutes with A2p − B and is therefore of the form[

α β
−ξβ α+(ζ−ζ−1)β

]
for some α, β ∈ Q(ζ, ξ). Also, x commutes with A−2p −B, hence is of

the form
[

α β
−ξβ α+(ζ−1−ζ)β

]
. Thus β = 0 and x is central in Am,r. ¤

We will need the following well known facts.

28.2 Lemma. Let n1, n2 ∈ N with n1 ≥ 2, n2 > 2 and let ζ be a primitive (n1n2)th root
of unity. Assume that Q(ζn1) ⊂ Q(ζ). Then there is a cyclotomic unit u of Z[ζ] such
that uk 6∈ Z[ζn1 ] for all k ∈ N.

Proof. Set ζ = exp(2πi/n1n2) and let σ be a nontrivial Galois automorphism of Q(ζ)
which fixes ζn1 . Clearly ζσ = ζs and st ≡ 1 (mod n1n2) for some s, t ∈ N. Set u =
(1 − ζt)/(1 − ζ), a cyclotomic unit of Z[ζ], and assume that uk ∈ Z[ζn1 ] for some k ∈ N.
Then uk = (uσ)k. In particular, |u| = |uσ|, that is, |1− ζt||1− ζs| = |1− ζ|2. However, a
simple geometric consideration shows that |1 − ζ| ≤ |1 − ζ l| for all l ∈ N, with equality
if and only if ζ l = ζ±1. Hence σ is complex conjugation, a contradiction. ¤

28.3 Lemma. Let C be a cyclic group, and ζ a root of unity of the same order as C.
Then the natural map U(ZC) → Z[ζ]× has finite cokernel. ¤
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The first part of the proof of the next proposition was essentially noted in [70,
Lemma 5.1].

28.4 Proposition. Assume that Am,r is a division algebra with n2 > 4. Then any
element of Am,r is either central in Am,r or has infinitely many conjugates under the
action of U(ZGm,r).

Proof. We first show that if some element c ∈ Cm has only a finite number of conjugates
under the action of U(Z〈b〉) then already c ∈ Z. Set S = C〈B〉(c). If S = 〈B〉, then c ∈ Z
follows readily from B−1AB = Aσ. Thus assume that d := [〈B〉 : S] ≥ 2. Note that
〈Bn〉 ≤ S < 〈B〉, and that n divides the order of 〈Bn〉 (see [2, Lemma 5]). Let ζ be a
primitive (ns)th root of unity. By Lemma 28.2, there is a cyclotomic unit u in Z[ζ] such
that uk 6∈ Z[ζd] for all k ∈ N. There are homomorphisms Z〈b〉 → Z[ζ] → Am,r, defined
by b 7→ ζ 7→ B, and uϕ(ns), where ϕ denotes Euler’s function, can be lifted to a unit
v of Z〈b〉 (in fact, to a Bass cyclic unit, see [129, (10.3)]). By assumption, c commutes
with the image of some power of v, and by construction of v, this image is of the form∑n−1

i=0 ciB
i (all ci ∈ Cm) with ci 6= 0 and Bi 6∈ S for some index i. This contradiction

proves that c ∈ Z.
Now let x be any element in Am,r which has only a finite number of conjugates under

the action of U(ZGm,r); we have to show that x ∈ Z. Note that by [2, Theorem 4], m is

divisible by an odd prime. Thus the elements ui := 1− (−1)mεr
i

m, 0 ≤ i < n, are units in
Z[εm] (see [143, Proposition 2.8]), and 1 − (−1)mA is a unit in Z[A]. Since some power
of 1 − (−1)mA lifts to a unit in U(Z〈a〉) (see Lemma 28.3), it follows that x commutes
with (1 − (−1)mA)k for some k ∈ N. Thus if the (i, j)th entry in x is nonzero, we must
have uki u

−k
j = 1. Taking absolute values, wee see that this can happen only if i = j or

ui = uj . If n is odd or 4 | n, it follows that x is a diagonal matrix, i.e, x ∈ Cm, and
therefore x ∈ Z as shown above. Thus we can assume that n is divisible by 2, but not
by 4. Then εs = −ξ with ξ 6= 1, ξq = 1 for some odd number q, by [2, Lemma 5]. We
can also assume that for some odd prime p, Cm contains a primitive pth root of unity ζ
with ζσ

n/2
= ζ−1. Let Ã be an element of order p in 〈A〉. Note that

Bn/2 =




εs
. . .

εs
1

. . .

1




.

Thus x = k1+k2B
n/2 for some ki ∈ Cm. It follows at once that k1 and k2 have only a finite

number of conjugates under the action of U(Z〈b〉), so they are contained in the center
Z. By Proposition 28.1, M = Ã− Bn/2 is a unit in Z[G], and after conjugation with a
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permutation matrix we can assume that B is a block diagonal matrix with block entries[
0 1
−ξ 0

]
. Then M is a block diagonal matrix with block entries of the form Mi =

[
ζi 1
−ξ ζ−i

]
,

1 ≤ i < p. By Proposition 28.1, each Mi has eigenvalues with different absolute values.
Since Bn/2 and M does not commute, it follows that Bn/2 does not commute with any
power of M (otherwise Bn/2 and M could be simultaneously diagonalized). Again by
Proposition 28.1 it follows that Bn/2 has infinitely many conjugates under the action of
U(ZG). Thus k2 = 0 and x = k1 ∈ Z. ¤

28.5 Proposition. Assume that G = SL(2, 3) × Gm,r can be embedded in a division
ring of characteristic zero, for some nontrivial group Gm,r. Then any element of Q[G]
is either central in Q[G] or has infinitely many conjugates under the action of U(ZG).

Proof. Assume that Gm,r is not cyclic. Then by [2, Theorem 6a (and its proof)], we can
assume that Gm′,r′ ⊂ G for some numbers m′, r′, and that Q[G] = Am′,r′ is of dimension
> 4 over its center. Thus the claim follows from Proposition 28.4.

Assume that Gm,r is a cyclic group Cm of odd order. By [2, Theorem 6a, Lemma 12],
we can assume that G is generated by the matrices P =

[
i 0
0 −i

]
, Q =

[
0 1
−1 0

]
and

R = 1
2

[−1−i −1−i
1−i i−1

]
, and the matrix C =

[
ζ 0
0 ζ

]
, where ζ is a primitive mth root of unity.

Then D = 1 + CP =
[

1+iζ 0
0 1−iζ

]
, having determinant 1 + ζ2, is a unit in Z[G], and

the eigenvalues of D have different absolute values. Note that some power of D lifts to
a unit of the integral group ring of G (details in a similar case are given in the proof
of Proposition 28.1). Now let x be an element in Q[G] which has only a finite number
of conjugates under the action of U(ZG). Then x commutes with some power of D,

meaning that x is a diagonal matrix,
[
λ1 0
0 λ2

]
, say. Likewise, R−1xR = 1

2

[
λ1+λ2 λ1−λ2
λ1−λ2 λ1+λ2

]

is a diagonal matrix, so λ1 = λ2 and x lies in the center of Q[G]. ¤

29. Division rings of dimension 2 over the center

If Gm,r with n = 2 is such that Am,r is a division ring, then Gm,r is one of the groups
described in the next two propositions. This follows from Amitsur’s classification; the
reader might wish to compare with the presentation given in [134, Section 2]. After
having dealt with these cases, we determine the structure of Z[G]× in the remaining
“exceptional” cases.

29.1 Proposition. Let Ck be a cyclic group of odd order k, and assume that G = Gm,r

is isomorphic to either

(i) Q8 × Ck, where Q8 is the quaternion group, or

(ii) (Cq o C2l) × Ck, where l > 1 and C2l acts by inversion on Cq, q odd.
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Then any element of Am,r is either central in Am,r or has infinitely many conjugates
under the action of U(ZG).

Proof. Let x be an element of Am,r which has only a finite number of conjugates under
the action of U(ZG).

In case (i), Am,r contains the matrices P =
[
i 0
0 −i

]
, Q =

[
0 1
−1 0

]
and C =

[
ζ 0
0 ζ

]
,

where ζ is a primitive kth root of unity, as homomorphic images of elements of G. The
matrices M1 = 1+CP and M2 = 1+CQ are units in Am,r, with suitable powers of them
lifting to units of the integral group ring of G (see the proof of Proposition 28.5). Thus

x commutes with some power of M1 and is therefore a diagonal matrix,
[
λ1 0
0 λ2

]
, say.

Likewise, M−1
2 xM2 = (1 + ζ2)−1

[
λ1+ζ2λ2 ζ(λ1−λ2)

ζ(λ1−λ2) λ2+ζ2λ1

]
is a diagonal matrix, so λ1 − λ2 = 0

and x lies in the center of Am,r.
In case (ii), Am,r contains as homomorphic images of elements of G the matrices

P =
[

0 1
εζ−1 0

]
, D =

[
ξ 0
0 ξ−1

]
and C =

[
ζ 0
0 ζ

]
, where ε, ξ and ζ are primitive 2l−1th, qth,

and kth roots of unity, respectively. The matrices M1 = 1 + CD and M2 = 1 + CP
are units in Am,r, with suitable powers of them lifting to units of the integral group
ring of G. Since the eigenvalues of M1 have different absolute values, x commutes

with some power of M1 and is therefore a diagonal matrix,
[
λ1 0
0 λ2

]
, say. Likewise,

M−1
2 xM2 = (1 − εζ)−1

[
λ1−εζλ2 ζ(λ1−λ2)

−ε(λ1−λ2) λ2−εζλ1

]
is a diagonal matrix, so λ1 − λ2 = 0 and x

lies in the center of Am,r. ¤

Note that in all cases we will consider from now on, Q[G] is a totally definite quaternion
algebra.

29.2 Proposition. Let Ck be a nontrivial cyclic group of odd order k, and assume that
G = Gm,r is isomorphic to either

(i) Ck o C4, where C4 acts by inversion, or

(ii) Ck oQ2l, where l > 2, a cyclic subgroup C2l−1 acts trivially on Ck, and a subgroup
of order 4 acts by inversion.

Identify G with its image in Am,r. Then Z[G]× = Z[A]×G. In particular, any element
of Am,r has only a finite number of conjugates under the action of the unit group Z[G]×.

Proof. Note that Z[εm]×R := Z[εm]× ∩ R = Z[εim + ε−im , i ∈ N] is of finite index in Z[εm]×,
and that Z[εm]×R is contained in the center of Am,r.

Let M =
[ x y
−ȳ x̄

]
be a matrix in Z[G] with determinant 1, that is, xx̄ + yȳ = 1. If

both x and y would be nonzero, this would imply that the norm NQ(εm)/Q(x) lies strictly
between 0 and 1, which is impossible. If xx̄ = 1, then x is a root of unity. The same
holds for y, so M ∈ G.
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Now take any M =
[ x y
−ȳ x̄

]
∈ Z[G]×. Note that δ := det(M) ∈ Z[εm]×R , that is, δ

is contained in the center of Z[G]. Since
[
δ 0
0 δ

]−1
M2 has determinant 1, it follows that

M2 ∈ Z[εm]×RG. In particular, either the diagonal entries of M 2 or the off-diagonal

entries of M2 vanish. Since M2 =
[

x2−yȳ y(x+x̄)

−ȳ(x+x̄) x̄2−yȳ

]
, this means that either x2 = x̄2 and

x + x̄ 6= 0, or y(x + x̄) = 0. In the first case, one gets x = x̄ and the contradiction
2xy ∈ Z[εm]×. Assume that both x and y are nonzero. Then x + x̄ = 0, that is, x is

pure imaginary. But the entries of AM are also all nonzero (recall that A =
[
εm 0

0 ε−1
m

]
),

thus εmx is pure imaginary, by the same reasoning. This contradiction shows that
Z[G]× = Z[A]×G. In particular, Z[G]× is finite over its center. ¤

29.3 Proposition. Let G be the binary tetrahedral group of order 24 (so G ∼= SL(2, 3)),
embedded in the multiplicative group of a division ring of characteristic zero. Then
Z[G]× = G.

Proof. By [2, Lemma 12], we have Q[G] = {[ r s
−s̄ r̄ ] | r, s ∈ Q(i)}, and we can assume

that G = 〈P,Q〉 o 〈R〉, where P =
[
i 0
0 −i

]
, Q =

[
0 1
−1 0

]
and R = 1

2

[−1−i −1−i
1−i i−1

]
. Then

Z[G] ⊂ 1
2Mat2(Z[i]). Let M = [ r s

−s̄ r̄ ] ∈ Z[G]×. Then det(M) = rr̄ + ss̄ > 0, so
det(M) = 1 as Z[i]× = {1,−1, i,−i}. One readily verifies that Mat2(Z[i]) contains
exactly 8 matrices of determinant 1 and 16 matrices of determinant 4, which shows that
Z[G]× = G. ¤

29.4 Proposition. Let G be the binary octahedral group of order 48, embedded in the
multiplicative group of a division ring of characteristic zero. Then Z[G]× ∼= G×C∞. If
G = 〈T,Q,R〉 as in [2, Lemma 13], then the factor C∞ is generated by 1 +T 3R+TQR.

Proof. By [2, Lemma 13], we have Q[G] =
{

[ r s
−s̄ r̄ ] | r, s ∈ Q(i,

√
2)
}

, and we can assume

that G = 〈T,Q,R〉, where T =
√

2
2

[
1+i 0
0 1−i

]
, Q =

[
0 1
−1 0

]
and R = 1

2

[−1−i −1−i
1−i i−1

]
.

Then Z[G] ⊂ Λ := 1
2Mat2(Z[i,

√
2]) ∩ Q[G]. Note that Z[

√
2] ⊂ Z[G] (in fact, we have

T 3R + TQR =
[√

2 0
0

√
2

]
), and that Z[

√
2]× = 〈ε〉, where ε = 1 +

√
2. Let M ∈ Λ×, and

write M = 1
2 [ r s

−s̄ r̄ ] with r, s ∈ Z[i,
√

2]. Note that

r = α+ β
√

2 + γi+ δi
√

2 with α, β, γ, δ ∈ Z,

rr̄ = (α2 + γ2) + 2(β2 + δ2) + 2(αβ + γδ)
√

2,

and similarly for s. One readily verifies that det(M) = (rr̄ + ss̄)/4 6= ε. Therefore
det(M) is an even power of ε, and it follows that Λ× = 〈ε̃〉Λ×

1 , where Λ×
1 = {M ∈ Λ |

det(M) = 1} and ε̃ = [ ε 0
0 ε ]. Clearly Λ×

1 is a finite group, and Z[G]× = 〈ε̃〉(Z[G] ∩ Λ×
1 ).

Since Z[G] ∩ Λ×
1 is a finite group in Q[G]× containing G, it follows from Amitsur’s

classification that G = Z[G] ∩ Λ×
1 . ¤
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29.5 Proposition. Let G be the binary icosahedral group of order 120 (i.e., G =
SL(2, 5)), embedded in the multiplicative group of a division ring of characteristic zero.
Then Z[G]× ∼= G × C∞. If G = 〈ε, j, i1〉 as in [2, Lemma 14], then the factor C∞ is
generated by ε+ ε−1.

Proof. By [2, Lemma 14 and subsequent discussion], we can assume that G = 〈ε, j, i1〉 ⊂
A5,−1, where (ζ denotes a primitive 5th complex root of unity) ε =

[
ζ 0
0 ζ−1

]
, j =

[
0 1
−1 0

]

and i1 =
√

5
5

[
ζ2−ζ3 ζ−ζ4
ζ−ζ4 −(ζ2−ζ3)

]
. The following matrices form a system of right coset

representatives for the subgroup 〈ε, j〉 of order 20 (this has been checked using Maple
[144]):

r1 = [ 1 0
0 1 ] ,

r2 = (i1ε)
2 = 1

5

[
−2+ζ−ζ2+2ζ3 −1−2ζ+2ζ2+ζ3

−1−2ζ−3ζ2−4ζ3 −3−ζ+ζ2−2ζ3

]
,

r3 = r22 = 1
5

[
−3−ζ+ζ2−2ζ3 1+2ζ−2ζ2−ζ3
1+2ζ+3ζ2+4ζ3 −2+ζ−ζ2+2ζ3

]
,

r4 = i1εi1 = 1
5

[
3+ζ+4ζ2+2ζ3 −1−2ζ−3ζ2+ζ3

−1−2ζ−3ζ2+ζ3 2−ζ+ζ2+3ζ3

]
,

r5 = r34 = 1
5

[
−1−2ζ−3ζ2−4ζ3 2+4ζ+ζ2+3ζ3

2+4ζ+ζ2+3ζ3 1+2ζ−2ζ2−ζ3
]
,

r6 = r74 = 1
5

[
1+2ζ−2ζ2−ζ3 −2−4ζ−ζ2−3ζ3

−2−4ζ−ζ2−3ζ3 −1−2ζ−3ζ2−4ζ3

]
.

Note that Z[ζ]× = 〈ζ〉 × 〈ω〉, where ω = ζ + ζ−1, and that ω̃ := ε + ε−1 is a central

unit in Z[G] corresponding to ω. We have r5 + r6 = −1
5

[
ζ2+ζ3 0

0 ζ2+ζ3

]
, so 1

5 ∈ Z[G] and

Z[G] = Λ := 1
5Mat2(Z[ζ]) ∩ A5,−1.

Set Λ×
1 = {M ∈ Λ | det(M) = 1}; we will show that Λ×

1 is finite. Take any M ∈ Λ×
1 ,

and write M = 1
5 [ r s

−s̄ r̄ ] with r, s ∈ Z[ζ]. Assume that s = 0. Then rr̄ = 25, and it is
a finite problem to check that r = 5ζn for some n ∈ N, so M ∈ G. This also holds if
t = 0, so assume from now on that s, t 6= 0. It follows from rr̄+ ss̄ = 25 that the norms
NQ(ζ)/Q(r) and NQ(ζ)/Q(s) are bounded above by 252. Consequently, there are finitely
many elements of Z[ζ] (not depending on M) such that both r and s is associated to
one of these elements. A quick calculation shows that if for some a, b ∈ Z, the matrix

M = 1
5

[
rωa sωb

−s̄ωb r̄ωa

]
lies in Λ×

1 , then (1 − ω2b)/(1 − ω2a) = −rr̄/ss̄ < 0. Now assume

that there exists an infinite number of pairs (a1, b1), (a2, b2), . . . of integers such that
(1 − ω2bn)/(1 − ω2an) = −rr̄/ss̄ for all n. Assume further that ω2an < 1 for all n. This
forces ω2bn > 1 for all n (because of the minus sign!), so limn→∞ 1 − ω2an = 1 and
limn→∞ 1−ω2bn = −∞, which is impossible. Similarly, the case ω2an > 1 (all n) is ruled
out. Thus we obtain a contradiction by considering a suitable sub-sequence. Altogether,
we have shown that Λ×

1 is finite. As G ⊆ Λ×
1 , it follows from Amitsur’s classification

that G = Λ×
1 .
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Take any M ∈ Z[G]×. Then det(M) ∈ Z[ζ]× ∩ R = 〈ω〉. We wish to show that
M ∈ G×〈ω̃〉; by the above, this holds if det(M) ∈ 〈ω2〉. Thus assume that det(M) = ωn

for some odd number n; we will reach at once a contradiction. We can assume that n = 1.
There is τ ∈ Gal(Q(ζ)/Q) with ωτ < 0, and then 0 < (rr̄ + ss̄)τ = det(M)τ < 0. This
final contradiction proves that Z[G]× = G× 〈ω̃〉. ¤



VIII. Central units in p-blocks

Alice laughed: “There’s no use trying,” she said; “one can’t

believe impossible things.” “I daresay you haven’t had much

practice,” said the Queen. “When I was younger, I always did it

for half an hour a day. Why, sometimes I’ve believed as many as

six impossible things before breakfast.”

Lewis Carroll

Alice’s Adventures in Wonderland, 1865

We show that the principal 3-block of a finite group G contains a nontrivial central unit
of order 3 provided that O3′(G) = 1 and G contains a non-central element of order
3 which commutes with none of its other conjugates. This supplements Robinson’s
results [114,115] on the character theory of a counterexample to the Z∗

p-theorem for odd
p. That non-principal p-blocks may very well have nontrivial central units of order p is
shown by means of an example.

30. On Robinson’s unit

It is an important open problem to find a direct and “representation-theoretic” proof of
some odd analogue to Glauberman’s Z∗-theorem [39], which would provide a significant
simplification in the classification of finite simple groups (see [43, Remark 7.8.3], [19,
6.5]). The following theorem comprises Glauberman’s theorem (p = 2), and follows
for odd p easily from the classification of finite simple groups (see [47, Theorem 4.1],
and [6]).

Z∗

p
-theorem. Let G be a finite group and p a prime. If x is an element of order p in

G with xG ∩ P = {x} for some Sylow p-subgroup P of G, then [x,G] ≤ Op′(G).

Nevertheless, it would be useful and instructive to find a direct proof. Robinson studied
in [114] the character theory of a minimal counterexample, K, to the Z∗

p-theorem for
odd p. It is well known that K is either simple, or else K = K ′〈x〉 where K ′ is simple,
K ′ 6= K, and x is an element of order p in K which commutes with none of its other
conjugates. In [115], Robinson showed that his results can be used to place the problem
in quite another context, that of units in group rings: he demonstrated the existence of

173
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a nontrivial central unit of order p in the principal p-block of K, provided that p ≥ 5,
or that p = 3 and K is not simple.

To be more precise, we introduce the following notation. Let G be a finite group. For
a prime p, let Z(p) = {a/b | a ∈ Z, b ∈ Z \ pZ}. Let B0(Z(p)G) be the principal block of
Z(p)G, with block idempotent e0, so that B0(Z(p)G) = e0(Z(p)G). For an element g ∈ G,
let Cg denote the class sum of g in ZG.

Robinson’s unit is f0Cx2(f0Cx)−1, where f0 is the block idempotent of B0(Z(p)K).
We shall give an elementary proof of the following theorem (note that together with

Robinson’s results, it ensures the existence of a nontrivial central unit of order p in all
cases).

30.1 Theorem. Let x be an element of order 3 in G which commutes with none of its
other conjugates. Then e0Cx is a unit in B0(Z(3)G), and setting

ux = e0Cx(e0Cx−1)−1,

we have:

(i) ux is a normalized unit of order 3 in the center of B0(Z(3)G).

(ii) If ux is a trivial unit, i.e., if ux = e0g for some g ∈ G, then [x,G] ≤ O3′(G).

We begin with a couple of remarks and well known facts. Let G be an arbitrary finite
group and keep the previous notation.

The first two remarks are essentially taken from Robinson’s paper [115].

30.2 Lemma. Let x be an element of G which is contained in the center of a Sylow
p-subgroup of G. Then e0Cx is a unit in B0(Z(p)G).

Proof. Let R = Z(p)[θ], where θ is a primitive |G|th root of unity. Then e0 remains
primitive in Z(RG) (as is well known). Let Irr(p)

0 (G) be the set of irreducible complex
characters belonging to the principal p-block of G, and set K = Q[θ]. For χ ∈ Irr(p)

0 (G),
let eχ be the associated idempotent of Z(KG) and ωχ the associated central character
of Z(KG). Then e0Cx =

∑
χ∈Irr

(p)
0 (G)

ωχ(Cx)eχ. By the standard congruence for the

principal block, we have for any χ ∈ Irr(p)
0 (G) that ωχ(Cx) := [G : CG(x)](χ(x)/χ(1)) ≡

[G : CG(x)] (mod rad(R)), so that u := e0Cx is a unit in Λ1 :=
⊕

χ∈Irr
(p)
0 (G)

eχRG (since

ωχ(Cx) ∈ Z[θ] ⊂ R and p - [G : CG(x)]). Set Λ2 = e0RG. The abelian group Λ1/Λ2 is
a finitely generated R-module, is annihilated by |G|, and is therefore finite. Thus the
elements u−1, u−2, . . . cannot lie in pairwise different cosets of Λ2, which means that λ :=
u−n−u−m ∈ Λ2 for some n,m ∈ N with 1 ≤ n < m. Then u−1 = (1−λun)um−n−1 ∈ Λ2.
Set Λ0 = e0Z(p)G. Note that Λ2 is a noetherian Z(p)-module (since it is finitely generated
over Z(p)). Hence the chain Λ0 ⊆ Λ0u

−1 ⊆ Λ0u
−2 ⊆ . . . ⊆ Λ2 becomes stationary,

Λ0u
−n = Λ0u

−(n+1) for some n ∈ N. It follows that Λ0 = Λ0u
−1, so u is a unit in Λ0,

and we are done. ¤
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It is clear that this observation can be generalized to arbitrary blocks, using [35, (IV.4.3)].

30.3 Remark. Let x be an element of G which is contained in the center of a Sylow
p-subgroup of G. Then e0Cx is a unit in B0(Z(p)G), and setting ux = e0Cx(e0Cx−1)−1,
we have:

(i) ux is a normalized unit in the center of B0(Z(p)G).

(ii) ux is of finite order if and only if χ(x) is rational or a real multiple of a root of
unity, for all χ ∈ Irr(p)

0 (G). The order of ux divides, if finite, the order of x.

(iii) If x is not conjugate to x−1 in G, then ux 6= e0.

(iv) If ux is a trivial unit, i.e., if ux = e0g for some g ∈ G, then [g,G] ≤ Op′(G), and g
may be chosen such that x is conjugate to gx−1 in G and [x, g] = 1.

Proof. That ux is a unit in B0(Z(p)G) is shown in Lemma 30.2, and it is clear that ux
has augmentation 1, so (i) holds. We have ux =

∑
χ∈Irr

(p)
0 (G)

(χ(x)/χ(x−1))eχ (with

notation as above). If χ(x) is rational, then χ(x) = χ(x−1), and if χ(x) is a real multiple
of a root of unity ξ, then χ(x)/χ(x−1) = χ(x)/χ(x) = ξ2. This already establishes
one part of (ii). On the other hand, if ux is of finite order, and χ ∈ Irr(p)

0 (G), then
χ(x) = ξ · χ(x−1) = ξ · χ(x) for some root of unity ξ, which implies that χ(x) is a real
multiple of a root of unity. The remark on the order of ux is clear from the description
of ux.

Let a, b be p-elements in G with e0Ca = e0Cb. Then Ca and Cb have the same
augmentation, and therefore χ(a) = χ(b) for all χ ∈ Irr(p)

0 (G). Thus it follows from
block orthogonality (see [35, (IV.6.3)]) that a and b are conjugate in G. This proves
(iii).

Assume that ux is a trivial unit, i.e., that ux = e0g for some g ∈ G. Then e0g is a
central unit, and since Op′(G) is the kernel of B0(Z(p)G) (see [35, (IV.4.12)]), it follows
that [g,G] ≤ Op′(G). By (ii), ux has order a power of p, so we can assume that g is a
p-element. Moreover, we can assume that x and g are contained in a Sylow p-subgroup;
then [x, g] = 1. Set Ḡ = G/Op′(G). It follows from e0Cx = e0gCx−1 that ē0Cx̄ = ē0Cḡx̄−1

in the principal p-block ē0Z(p)Ḡ of Z(p)Ḡ. Thus x̄ and ḡx̄−1 are conjugate in Ḡ (see
the last paragraph), which implies that x and gx−1 are conjugate in G. The proof is
complete. ¤

If P is a p-group, and x an element in P which commutes with none of its other
conjugates, then clearly x ∈ Z(P ). Thus, in the situation of Theorem 30.1, e0Cx is a
unit in B0(Z(3)G), by Lemma 30.2. As to part (ii) of the theorem, assume that ux = e0g
for some g ∈ G. By Remark 30.3(iv), [g,G] ≤ O3′(G) and g can be chosen such that
x is conjugate to gx−1 in G and [x, g] = 1. Then x = gx−1 by the assumption of the
theorem, and it follows that [x,G] ≤ O3′(G). It remains to prove part (i).
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30.4 Remark. Let R be a complete discrete valuation ring of characteristic 0, and let
π be a prime element of R. Suppose that R/πR has prime characteristic p, and let
v(p) be the ramification index of p in R, i.e., p = πv(p). The order RG is said to be of
finite (infinite) representation type if the number of non-isomorphic indecomposable RG-
lattices is finite (infinite). Let G be a p-group. By [67], RG is of infinite representation
type except when G is cyclic of order p or p2; even in these cases, moreover, RG is of
infinite representation type unless v(p) is small (see [32]).

We will be interested in the case R = Z3[ζ], ζ a primitive 3rd root of unity, and G = C3

of order 3. Then RC3 is of finite representation type, and there are 9 isomorphism classes
of indecomposable RC3-lattices (see [31, 3.2]). It is easily seen that the following matrices
of order 3 give rise to 9 pair-wise non-isomorphic indecomposable RC3-lattices.

1.
[
1
]

2.
[
ζ
]

3.
[
ζ2
]

4.

[
1 0
1 ζ

]
5.

[
1 0
1 ζ2

]
6.

[
ζ 0
1 ζ2

]

7.




1 0 0
1 ζ 0
0 1 ζ2


 8.




1 0 0
1 ζ 0
1 0 ζ2


 9.




1 0 0
0 ζ 0
1 1 ζ2




(Let Vn (V ′
n) be the right (left) RC3-lattice defined by letting a generator g of C3 act on

rows (columns) via the nth matrix. Clearly Vi ∼= Vj if and only if V ′
i
∼= V ′

j . The regular
representation V7 contains a trivial submodule W such that V/W is an indecomposable
lattice; this distinguishes V7 from V8. The same argument distinguishes V8 from V9. The
lattice V ′

7 contains a submodule W on which g acts by multiplication with ζ2 such that
V/W is an indecomposable lattice; this distinguishes V ′

7 from V ′
9 .)

We will only need the fact that if V is an indecomposable RC3-lattice of rank ≥ 2,
then g (a generator of C3) acts on V via a matrix of trace zero. This can also be
checked by performing elementary transformations on rows and columns (Note that any
X ∈ GLn(R) of order 3 is conjugate within GLn(R) to a lower triangular matrix.)

From now on, let ζ a primitive 3rd root of unity, and set R = Z3[ζ], K = Q3(ζ).
Then each matrix X ∈ GLn(R) with X3 = Idn is conjugate within GLn(R) to a block
diagonal matrix, the block entries being from the list given in Remark 30.4.

For M ∈ Matn(R) and X ∈ GLn(R) of order 3 we write

Tr
〈X〉
1 (M) = M +X−1MX +X−2MX2,

a relative trace map in the usual sense.
The following simple observation is the key lemma to the proof of Theorem 30.1.

30.5 Lemma. Let M ∈ Matn(R) and X ∈ GLn(R) of order 3 (for some n ∈ N), and
assume that for some ω ∈ R,

X + Tr
〈X〉
1 (M) ≡ ω · Idn (mod 3R).

Then the trace of X is an integral multiple of a power of ζ.
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Proof. Replacing X by a conjugate of it, if necessary, we can assume that X is a block
diagonal matrix, the block entriesX1, X2, . . .Xs being from the list given in Remark 30.4.
Partition M in accordance with this decomposition, i.e., write

X =




. . .

X1

X2

Xs
0

0



, M =




. . .

M1

M2

Ms
∗

∗


.

Then Xi + Tr
〈Xi〉
1 (Mi) ≡ ω · Idni (mod 3R) for 1 ≤ i ≤ s, where ni is the size of the

matrix Xi. It follows that trace(Xi) ≡ niω (mod 3R) for all i. In particular trace(Xi) ≡
trace(Xj) (mod 3R) if Xi and Xj are of the same size. By direct inspection, it follows
that all blocks of dimension 1, as well as all blocks of dimension 2, are equal (if there are
any). Assume that there are blocks of both dimensions, for example [ ζm ] for somem ∈ N,
and

[
1 0
1 ζ

]
. Then ζm ≡ ω (mod 3R) and 1+ζ ≡ 2ω (mod 3R), so 1+ζ ≡ 2ζm (mod 3R),

which forces ζm = ζ2; finally note that trace
([

1 0
1 ζ

])
= −ζ2. One can deal similarly with

the other cases, which shows that the contribution of the blocks of dimension 1 and 2 to
the trace of X is is an integral multiple of a power of ζ. This concludes the proof since
blocks of dimension 3 have trace zero, and there are no other blocks. ¤

Let L = Q3(θ), where θ is a primitive |G|th root of unity, and let O be the ring
of integers in L over Z3. Then L is a splitting field for G, and each irreducible L-
representation can be realized over O. Since R is a principal ideal domain, O is a free
R-module of rank m := [L : K]. Thus for n ∈ N, we have an embedding ι : Matn(O) ↪→
Matnm(R) such that

trace(ι(M)) =
∑

σ∈Gal(L/K)

σ(trace(M)) for M ∈ Matn(O).

Now let x be an element of order 3 in G which commutes with none of its other
conjugates; equivalently, Cx ∈ x + Tr

〈x〉
1 (ZG). Let ρ : G → Matn(O) be an irreducible

representation of G affording the character χ ∈ Irr(p)
0 (G). Then ρ(x) + Tr

〈ρ(x)〉
1 (M) =

ωχ(Cx) ·Idn for some M ∈ Matn(O). Note that ωχ(Cx) ∈ R. Thus for an embedding ι as

above, we have ιρ(x)+Tr
〈ιρ(x)〉
1 (ι(M)) = ωχ(Cx) ·Idnm, and we can apply Lemma 30.5 to

conclude that the trace of ιρ(x) is an integral multiple of a power of ζ. Since trace(ρ(x)) ∈
R, we have trace(ιρ(x)) = m · trace(ρ(x)) = m · χ(x). This clearly implies that χ(x) is
an integral multiple of a power of ζ.

Therefore ux = e0Cx(e0Cx−1)−1 is a normalized unit of order 3 in the center of
B0(Z(p)G), by Remark 30.3. The proof of Theorem 30.1 is complete.
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30.6 Remark. We remark that we have shown that χ(x) is an integral multiple of a
power of ζ, for each irreducible character χ ∈ Irr(G).

We finish this section with some examples.

30.7 Example. There is at least no obvious reason why a block should not occur. For

example, let X =
[
ζ 0
1 ζ2

]
and M =

[
1 −ζ
0 0

]
. Then X + Tr

〈X〉
1 (M) = Id. As another

example, let

X =




1 0 0
0 ζ 0
1 1 ζ2


 , M1 =



ζ 0 −ζ
0 0 0
0 0 0


 , M2 =




0 0 ζ2

0 0 1
0 0 ζ2


 .

Then we have X + Tr
〈X〉
1 (M1) = ζ · Id and X + Tr

〈X〉
1 (M2) = ζ2 · Id.

30.8 Example. If in the situation above, χ would be afforded by another representation
ρ′ : G → Matn(O) such that ρ′(x) is a diagonal matrix, then ρ(x) would have to be a
scalar! In this context, one might think of the following simple examples.

Let 〈X,Y 〉 be the non-abelian group of order 33 and exponent 3. An irreducible
representation of 〈X,Y 〉 is given by the matrices below.

X =




0 1 0
0 0 1
1 0 0


 , Y =




1 0 0
0 ζ 0
0 0 ζ2


 , T =




1 1 1
1 ζ ζ2

1 ζ2 ζ


 .

Then T−1XT = Y and T−1Y T = X−1.
Let

A =




1 0 0
0 −1 0
0 0 −1


 ; then T−1AT =

1

3



−1 2 2

2 −1 2
2 2 −1


 .

Here, 〈A,X〉 is the alternating group of order 12, and the above matrices give the
irreducible representation of degree 3. Any K-equivalent representation exhibiting X as
a diagonal matrix is not written over R (however, the representation does not belong to
the principal 3-block, as it should be).

30.9 Example. The following example shows that non-principal p-blocks may contain
nontrivial central elements of order p. It has been found using GAP [37]. There is a
finite group G of order 216 = 23 · 33 having Sylow subgroups

〈a, b | a2 = b4 = 1, ba = b−1〉, 〈x, y | x3 = y9 = 1, xy = xy6〉

and where the elements a, b, x, y satisfy the relations

[a, x] = [b, x] = 1, ya = b2y, yb = bay−1.
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We note that G is a complete group, that is, Z(G) = 1 and Out(G) = 1.
A representative system of the conjugacy classes of G is given by

1a = 1, 6a = ax2y3, 2a = a, 3a = x2y3,

4a = ab−1y5, 6b = axy6, 12a = b−1xy−1, 3b = xy6,

12b = ab−1x2y2, 2b = ab, 6c = abx2y6, 9a = ab2x2y7,

6d = abxy3, 9b = b2xy, 9c = ab2y4, 6e = ax,

6f = ax2y6, 6g = ay3, 3c = y3.

The character table and the table of central characters (ωχ(Cg)) of G is given in Fig-
ure VIII.1.

The group ring Z(3)G has exactly two blocks. The non-principal 3-block B has defect
2, and normal defect group O3(G). The characters belonging to B are Xi, 10 ≤ i ≤ 18.
The decomposition matrix of B is given by

Y3 Y4

X10 1 .
X11 . 1
X12 1 .
X13 . 1
X14 1 .
X15 . 1
X16 1 1
X17 1 1
X18 1 1

Note that for each irreducible character χ belonging to B, the central character value
[G : CG(ax)](χ(ax)/χ(1)) is of the form −2ζ i. Thus if e denotes the block idempotent
belonging to B, then eCax is a unit in B (see proof of Lemma 30.2), and

eCax(eCax2y6)−1

is a nontrivial central unit of order 3 in B.
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1a 6a 2a 3a 4a 6b 12a 3b 12b 2b 6c 9a 6d 9b 9c 6e 6f 6g 3c

X1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X2 1 1 1 1 −1 1 −1 1 −1 −1 −1 1 −1 1 1 1 1 1 1

X3 1 ζ2 1 ζ2 1 ζ ζ ζ ζ2 1 ζ2 ζ2 ζ ζ 1 ζ ζ2 1 1

X4 1 ζ2 1 ζ2
−1 ζ −ζ ζ −ζ2

−1 −ζ2 ζ2
−ζ ζ 1 ζ ζ2 1 1

X5 1 ζ 1 ζ 1 ζ2 ζ2 ζ2 ζ 1 ζ ζ ζ2 ζ2 1 ζ2 ζ 1 1

X6 1 ζ 1 ζ −1 ζ2
−ζ2 ζ2

−ζ −1 −ζ ζ −ζ2 ζ2 1 ζ2 ζ 1 1
X7 2 2 2 2 0 2 0 2 0 0 0 −1 0 −1 −1 2 2 2 2

X8 2 2ζ 2 2ζ 0 2ζ2 0 2ζ2 0 0 0 −ζ 0 −ζ2
−1 2ζ2 2ζ 2 2

X9 2 2ζ2 2 2ζ2 0 2ζ 0 2ζ 0 0 0 −ζ2 0 −ζ −1 2ζ 2ζ2 2 2
X10 3 −1 −1 3 −1 −1 −1 3 −1 1 1 0 1 0 0 −1 −1 −1 3
X11 3 −1 −1 3 1 −1 1 3 1 −1 −1 0 −1 0 0 −1 −1 −1 3

X12 3 −ζ −1 3ζ −1 −ζ2
−ζ2 3ζ2

−ζ 1 ζ 0 ζ2 0 0 −ζ2
−ζ −1 3

X13 3 −ζ −1 3ζ 1 −ζ2 ζ2 3ζ2 ζ −1 −ζ 0 −ζ2 0 0 −ζ2
−ζ −1 3

X14 3 −ζ2
−1 3ζ2

−1 −ζ −ζ 3ζ −ζ2 1 ζ2 0 ζ 0 0 −ζ −ζ2
−1 3

X15 3 −ζ2
−1 3ζ2 1 −ζ ζ 3ζ ζ2

−1 −ζ2 0 −ζ 0 0 −ζ −ζ2
−1 3

X16 6 4 −2 0 0 4 0 0 0 0 0 0 0 0 0 −2 −2 1 −3

X17 6 4ζ −2 0 0 4ζ2 0 0 0 0 0 0 0 0 0 −2ζ2
−2ζ 1 −3

X18 6 4ζ2
−2 0 0 4ζ 0 0 0 0 0 0 0 0 0 −2ζ −2ζ2 1 −3

X19 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 −3

1a 6a 2a 3a 4a 6b 12a 3b 12b 2b 6c 9a 6d 9b 9c 6e 6f 6g 3c

X1 1 3 3 3 18 3 18 3 18 18 18 24 18 24 24 6 6 6 2
X2 1 3 3 3 −18 3 −18 3 −18 −18 −18 24 −18 24 24 6 6 6 2

X3 1 3ζ2 3 3ζ2 18 3ζ 18ζ 3ζ 18ζ2 18 18ζ2 24ζ2 18ζ 24ζ 24 6ζ 6ζ2 6 2

X4 1 3ζ2 3 3ζ2
−18 3ζ −18ζ 3ζ −18ζ2

−18 −18ζ2 24ζ2
−18ζ 24ζ 24 6ζ 6ζ2 6 2

X5 1 3ζ 3 3ζ 18 3ζ2 18ζ2 3ζ2 18ζ 18 18ζ 24ζ 18ζ2 24ζ2 24 6ζ2 6ζ 6 2

X6 1 3ζ 3 3ζ −18 3ζ2
−18ζ2 3ζ2

−18ζ −18 −18ζ 24ζ −18ζ2 24ζ2 24 6ζ2 6ζ 6 2
X7 1 3 3 3 0 3 0 3 0 0 0 −12 0 −12 −12 6 6 6 2

X8 1 3ζ 3 3ζ 0 3ζ2 0 3ζ2 0 0 0 −12ζ 0 −12ζ2
−12 6ζ2 6ζ 6 2

X9 1 3ζ2 3 3ζ2 0 3ζ 0 3ζ 0 0 0 −12ζ2 0 −12ζ −12 6ζ 6ζ2 6 2
X10 1 −1 −1 3 −6 −1 −6 3 −6 6 6 0 6 0 0 −2 −2 −2 2
X11 1 −1 −1 3 6 −1 6 3 6 −6 −6 0 −6 0 0 −2 −2 −2 2

X12 1 −ζ −1 3ζ −6 −ζ2
−6ζ2 3ζ2

−6ζ 6 6ζ 0 6ζ2 0 0 −2ζ2
−2ζ −2 2

X13 1 −ζ −1 3ζ 6 −ζ2 6ζ2 3ζ2 6ζ −6 −6ζ 0 −6ζ2 0 0 −2ζ2
−2ζ −2 2

X14 1 −ζ2
−1 3ζ2

−6 −ζ −6ζ 3ζ −6ζ2 6 6ζ2 0 6ζ 0 0 −2ζ −2ζ2
−2 2

X15 1 −ζ2
−1 3ζ2 6 −ζ 6ζ 3ζ 6ζ2

−6 −6ζ2 0 −6ζ 0 0 −2ζ −2ζ2
−2 2

X16 1 2 −1 0 0 2 0 0 0 0 0 0 0 0 0 −2 −2 1 −1

X17 1 2ζ −1 0 0 2ζ2 0 0 0 0 0 0 0 0 0 −2ζ2
−2ζ 1 −1

X18 1 2ζ2
−1 0 0 2ζ 0 0 0 0 0 0 0 0 0 −2ζ −2ζ2 1 −1

X19 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 −1
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[89] F. Loonstra, Über subdirekte Produkte von Gruppen, Rend. Mat. e Appl. (5) 21
(1962), 364–372. MR 27 #1514 114



188 Bibliography

[90] Z. Marciniak, J. Ritter, S. K. Sehgal, and A. Weiss, Torsion units in integral group
rings of some metabelian groups. II, J. Number Theory 25 (1987), no. 3, 340–352.
MR 88k:20019 45

[91] Marcin Mazur, Automorphisms of finite groups, Comm. Algebra 22 (1994), no. 15,
6259–6271. MR 95i:20036 20, 102

[92] , On the isomorphism problem for infinite group rings, Exposition. Math.
13 (1995), no. 5, 433–445. MR 96k:20007 12, 16, 20, 21, 102, 144

[93] , The normalizer of a group in the unit group of its group ring, J. Algebra
212 (1999), no. 1, 175–189. MR 2000a:16058 3, 11, 45, 127, 128, 129, 130, 131,
132, 135, 136, 139, 151

[94] S. Montgomery, A generalized Picard group for prime rings, Topics in algebra, Part
1 (Warsaw, 1988), Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 55–63.
MR 93g:16026 76

[95] WÃladysÃlaw Narkiewicz, Elementary and analytic theory of algebraic numbers,
PWN—Polish Scientific Publishers, Warsaw, 1974, Monografie Matematyczne,
Tom 57. MR 50 #268 44, 158

[96] Olaf Neisse and Sudarshan K. Sehgal, Gauss units in integral group rings, J. Al-
gebra 204 (1998), no. 2, 588–596. MR 99e:16040 162
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