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Abstract

We present the studies of the general material property (time independent) and dy-
namic property (time dependent) of Mn12-acetate single-molecule magnet by using the
frequency-domain magnetic resonance spectrsocopy (FDMRS) technique.

For studies of the material property (time independent), the measurement was done
within the frequency range 6-12 cm−1, temperature range 1.9-15 K, and magnetic field
0-6 T. We report the zero field splitting (ZFS) parameters and g-value anisotropy. We
also report that the environmental effects, such as the effects of the internal field (e.g.
dipolar field) and the inhomogeneous distribution of the main ZFS parameter, which
both give contributions to the linebroadening mechanism in Mn12-acetate.

We also studied the magneto-optical effects in the Mn12-acetate sample e.g. the ori-
entation effect of the magnetic field and the wave propagation direction, the magnetic
state of the sample (demagnetized and magnetized states,) and the polarization of the
radiation (e.g. linear, and left hand circular, and right hand circular polarizations),
on the magnetic transition lineshape. As a result, we found the Faraday effect in the
Mn12-acetate system which suggests an application as the molecular rotator.

For the dynamic studies (time dependent), we performed relaxation measurements
at low temperature (1.75-3.3 K) and in magnetic fields up to 6 T. We studied the relax-
ation time as function of the temperature, applied magnetic field, and magneto-optical
geometries. We observed both thermally activated and magnetic quantum tunneling
relaxations. We qualitatively and quantitatively investigated the distribution of the
relaxation time in the magnetic field domain via the phonon-assisted spin tunneling
process.

In conclusion, these results show that the FDMRS technique is a promising tool
to study the magnetic resonance and mesoscopic quantum phenomena in the field of
single-molecule magnets in the future.
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Kurzfassung

Ergebnisse

Das mesoskopische System Mn12-Acetat ist der am meisten untersuchte Einzelmo-
lekülmagnet. Es besteht aus Austausch-gekoppelten paramagnetischen Metallion-
Komplexen, die quantenmechanische Effekte wie das rein molekulare magnetische
Quantentunneln aufweisen. Mn12-Acetat besteht aus 8 Mn3+ und 4 Mn4+ Ionen, die
antiferromagnetisch gekoppelt sind und zum Hochspin-Grundzustand S=10 führen.
Die Mangan Ionen sind durch Brückenverbindungen von Oxid- und und Acetatli-
ganden umgeben wodurch jedes einzelne Molekül von den anderen abgeschirmt ist.
Mn12-Acetat besitzt eine große, einaxial magnetische Anisotropie, die zu einer Nullfeld-
Energiebarriere (Koerzitivfeld) von 65 K gegen magnetisches Umpolen führt; + → −
oder − → +. Die Umpolung der Magnetisierung kann über drei verschiedene Prozesse
erfolgen: thermische Aktivierung, Quantentunneln und thermisch unterstütztes Tun-
neln. Eine detaillierte Beschreibung der Eigenschaften von Mn12-Acetat wird in Kapi-
tel 1 gegeben.

In den letzten zehn Jahren gab es einige hundert Veröffentlichungen über das Mn12-
Acetat-System, wobei die unterschiedlichsten Messtechniken, namentlich Elektronen-
spin-Resonanz (electron paramagnetic resonance, EPR bei veränderlichem äußeren
Magnetfeld), Kernspin-Resonanz (NMR), SQUID-Magnetometrie, inelastische Neu-
tronenstreuung (INS) u.s.w., angewendet wurden. Dennoch bleiben sehr viele of-
fene Fragen und ungelöste Probleme, die es wert sind, mit bisher noch nicht ange-
wandten Techniken betrachtet zu werden. In dieser Arbeit führen wir als alternative
Methode die Elektronenspinresonanz mit veränderlicher Frequenz der elektromagnetis-
chen Strahlung ein, die sogenannte frequency-domain magnetic resonance spectroscopy
(FDMRS). Mit dieser Technik ist es möglich, sowohl die statischen (zeitunabhängi-
gen), als auch die dynamischen (zeitabhängigen) Eigenschaften des Einzelmolekülmag-
neten Mn12-Acetat zu untersuchen. Sowohl die elektrodynamischen Eigenschaften von
Festkörpern als auch die der magnetischen Resonanz werden in Kapitel 2 beschrieben.

Mit unserer Apparatur können wir externe Magnetfelder von H = 0 - 8 T in einem
Temperaturbereich von 1,5 - 300 K anlegen. Die Ausbreitungsrichtung der elektromag-
netischen Welle (q) und die Richtung des äußeren magnetischen Feldes (Hext) können
dabei in verschiedenen Anordungen zueinander angelegt werden, woraus zwei ver-
schiedene Mess-Geometrien, nämlich die Voigt- (q ⊥ Hext) und die Faraday-Geometrie
(q ‖ Hext), resultieren. Die Frequenz der elektromagnetischen Strahlung kann in einem
Freuqenzbereich von 1 - 48 cm−1 (= 30 - 1 440 GHz, was einer Wellenlänge von 208 µm -
10 mm entspricht) entweder durchgestimmt oder festgehalten werden. Eine komplette
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Beschreibung der FDMRS Apparatur und der Messmethode findet sich in Kapitel 3.
Während bei der EPR-Technik oft Wellenleiter benötigt werden breitet sich die

Strahlung bei der FDMRS-Technik im freien Raum aus. Dadurch können wir die Po-
larisierung der Strahlung kontrollieren, also linear, elliptisch oder zirkular polarisiertes
Licht anwenden. Einen Bericht über derartige magnetooptische Messungen am Einzel-
molekühlmagneten Mn12-Acetat gab es bislang nicht. Der andere große Vorteil der
FDMRS ist, dass man individuelle magnetische Übergänge untersuchen kann, während
beispielsweise bei der SQUID-Messung nur die Gesamtmagnetisierung gemessen wird.
Außerdem ist bei EPR-Messungen immer ein externe Magnetfeld notwendig, während
wir bei der FDMRS sowohl Nullfeld-Messungen als auch Messungen mit externem Feld
machen können. Gerade die Eigenschaft, dass man einzelne magnetische Übergänge
mit und ohne äußeres Feld bei verschiedenen Polarisationen studieren kann, macht
die FDMRS sehr interessant. Zusätzlich können wir mit der FDMRS die einzelnen
magnetischen Übergänge bei ihrem magnetischen Relaxationsprozess beobachten. In
diesem Fall können wir eine Echtzeit-Analyse durchführen, wodurch wir sowohl die
Linienform als auch die Relaxationszeit der Übergänge erhalten.

In dieser Arbeit verwenden wir die FDMRS, um die magnetischen Übergänge zwis-
chen den |±10〉 → |±9〉, |±9〉 → |±8〉 und |±8〉 → |±7〉 Niveaus zu studieren. Wir ver-
wenden die Fresnel-Formeln für Übergänge, um die Spektren anzufitten und erhalten
so die elektrodynamische Antwortfunktionen der Materialien, nämlich die komplexe
dielektrische Funktion (ε̂) und die komplexe mangetische Permeabilität (µ̂). Bei der
Analyse benutzen wir den Zusammenhang µ = 1 + ∆µ · g(ν) zwischen der komplexen
Permeabilität (µ̂) und dem Beitrag der magnetischen Mode (∆µ).

Im Kapitel 4 präsentieren wir temperaturabhängige Transmissionsmessungen ohne
äußeres Magnetfeld. Wir erhalten daraus die Nullfeldaufspaltungs-Parameter (zero
field splitting, ZFS): D = -0,389 ± 0,01 cm−1, B = -7,65 ± 0,05×10−4 cm−1 und
C = ± 2×10−5 cm−1. Diese Ergebnisse stimmen sehr gut mit denen aus etlichen an-
deren anderen Messmethoden überein. Dabei konnten beispielsweise bei der Hochfeld
Elektronenspinresonanz (HFEPR) die Ergebnisse nur durch Extrapolationen aus Mag-
netfeldmessungen erzielt werden, während man nur mit der FDMRS oder der INS die
Resultate direkt ohne äußeres Feld bekommen kann. Bei der INS werden aber einige
Gramm einer deuterierten Probe benötigt, während man für die FDMRS nur etwa 100
Milligramm (entweder Einkristalle oder Polykristalle) braucht. Die FDMRS Messun-
gen sind schnell und die Ergebnisse werden direkt aus einer realen Nullfeld-Messung
erhalten.

Neben den ZFS Parametern fanden wir noch zusätzlich heraus, dass die Temper-
aturabhängigkeit des Beitrag der magnetischen Mode dem Gesetz einer Boltzmann-
Verteilung gehorcht. Die Absorptionslinien können wesentlich besser mit Gauß-förmi-
gen als mit Lorentz-förmigen Linien angefittet werden. Die Gauß-Form ist ein Hinweis
auf eine inhomogene Verbreiterung die zumindest teilweise von lokalen Variationen
des Nullfeldaufspaltungs-Parameters (ZSF) (D-Verteilung) im Mn12-Acetat herrührt.
Die Breite der Gauß-Linie (σ) erweist sich als temperaturabhängig, was ein Anzeichen
für den Beitrag eines internen Dipolfeldes an der Linienverbreiterung ist. Die Reso-
nanzfrequenz dagegen ist temperaturunabhängig, was bedeutet, dass die Temperatur
im untersuchten Temperaturbereich die Nullfeldaufspaltungs-Parameter nicht beein-
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flusst. Als nächstes untersuchten wir die magnetischen Übergänge bei angelegtem
äußeren Magnetfeld. Dabei fanden wir eine Verschiebung der Absorptionsinien als
Funktion des Zeeman-Splitting-Terms: gµBm ·Hext. Wir erhalten aus der Berechnung
der durchschnittlichen Form der graphischen Darstellung der Resonanzfrequenzen als
Funktion des Magnetfeldes einen Wert von g‖ = 1,93. Dieser g-Faktor stimmt gut mit
dem aus HFEPR-Messungen erhaltenen überein.

Im Kapitel 5 untersuchten wir die Linienform des |±10〉 → |±9〉 Übergangs von
Mn12-Acetat Einkristallen in Voigt- und Faraday-Geometrie. Da wir in der Lage waren,
Nullfeld-Messungen an Proben durchzuführen, die entweder ohne äußeres Magnetfeld
(zero field cooled, zfc), oder unter Einfluß eines äußeres Magnetfeld gekühlt wor-
den waren (field cooled, fc), waren Tieftemperatur-Messungen (T = 1,75 - 3,3 K)
sowohl an nichtmagnetisierten (zfc) als auch an magnetisierten (zfc) Proben möglich.
In den beiden Geometrien fanden wir große Unterschiede in der Linienform je nach
Magnetisierungs-Zustand der Probe. Wir entwickelten ein Modell zur Beschreibung die
Linienform der magnetischen Resonanz-Übergänge im Mn12-Acetat System unter all
diesen Bedingungen. Die Unterschiede in der Linienform können durch das Auftreten
Nichtdiagonal-Elemente im magnetischen Permeabilitäts-Tensor in den magnetisierten
Proben beschrieben werden. Der Permeabilitäts-Tensor ist eine Folge der Wechsel-
wirkung zwischen der elektromagnetischen Strahlung, dem äußeren Magnetfeld und
dem magnetischen Zustand der anisotropen Probe in den verschieden magnetooptis-
chen Geometrien.

In Voigt-Geometrie untersuchten wir entmagnetisierte (zfc) und magnetisierte (fc)
Proben mit linear polarisiertem Licht ohne äußeres Magnetfeld. Dabei fanden wir
eine symmetrische Gauß-Linie im zfc und eine asymmetrische Gauß-Linie im fc Fall.
Außerdem fanden wir eine leichte Verschiebung der Linie um ≈ 0,1 cm−1 zwischen
den zfc und fc Proben. Diesen Effekt erklären wir mit Beiträgen innerer Felder wie
zum Beispiel Dipolfelder oder Hyperfein-Felder (≈ 0,02 - 0,03 cm−1) und dem Effekt
der nichtdiagonalen Permeabilität ≈ 0,07 cm−1. Der zweite genannte Beitrag durch
nichtdiagonale Elemente in der Permeabilität ist eine Konsequenz des magnetisierten
Zustands der Probe. Die Tatsache, dass die Asymmetrie der Gauß-Linie der mag-
netisierten Probe bei der Nullfeld-Messung auftritt ein Hinweis, dass diese Asymmetrie
nicht von der Verkippung der weichen Achse des Kristalls herrührt, sondern viel mehr
vom D-Strain.

In Faraday-Geometrie führten wir die Transmissions-Messungen mit linear und
zirkular polarisiertem Licht durch. Dabei konnten wir Unterschiede in den Linienfor-
men bei linkszirkular polarisiertem (left hand circularly, L.H.C.), rechtszirkular polar-
isiertem (right hand circularly, R.H.C.) und linear polarisiertem Licht feststellen. Im
Falle linear polarisierten Lichts fanden wir symmetrische Gauß-Linien bei zfc Mn12-
Acetat. Im fc Fall bleibt die Linienform gleich, besitzt aber nur die Halbe Intensität
im Vergleich zu den Voigt-Spektren. Platziert man einen Analysator vor dem De-
tektor wird die Linienform deutlich verändert, neben der Resonanzlinie selbst werden
zwei zusätzliche Minima sichtbar. Mit dem linear polarisierten Licht konnten wir auch
den Faraday-Effekt beobachten, bei dem bei der Transmission die Hauptachse der Po-
larisation als Funktion der Strahlungsfrequenz gedreht wird. Die Faraday-Drehung
reicht bei einer Probendicke von 0,5 mm von -100o bis 100o. Deshalb schlagen wir vor,
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dass ein Mn12-Acetat Einkristall als molekularer Polarisatons-Transformer verwendet
werden kann.

Unter der Verwendung von zirkular polarisiertem Licht in der Faraday-Geometrie
fanden wir eine einzelne Gauß-Absorptionslinie sowohl bei zfc als auch bei fc Mn12-
Acetat genau wie in der Voigt-Geometrie. Die Absorption hängt aber von der Magne-
tisierungs-Richtung der Probe und von der Drehrichtung des zirkular polarisierten
Lichts (L.H.C. oder R.H.C.) ab. Zum Beispiel, wenn die Probe durch ein +Hext Feld
magnetisiert wurde tritt die Resonanz nur bei L.H.C. Licht auf, bei −Hext Feld mag-
netisierter Probe nur bei R.H.C. Licht. Dieses Ergebnis kommt von der optischen
Auswahlregel: ∆m = +1 für L.H.C. und ∆m = −1 für R.H.C. Licht. Die Absorption
in der unmagnetisierten Probe tritt sowohl bei L.H.C. als auch bie R.H.C. auf.

Zur Auswertung der Linienform-Messungen entwickelten wir ein ein Modell, das
die Linienform in den beiden Geometrien in Abhängigkeit von der Magnetisierungen
beschreibt. Damit konnten wir sowohl qualitativ als auch quantitativ die Elektrody-
namik des Mn12-Acetat Systems mit Hilfe des Effekts der Lichtpolarisation und den
magnetooptischen Geometrieeffekten auswerten.

In Kapitel 6 untersuchten wir die dynamischen Eigenschaften, die Relaxation der
Magnetisierung von Mn12-Acetat. Während eines Relaxatations-Prozesses wechselt
der Spin vom ”’Spinup”- (+) in den ”’Spindown”- (-) Zustand oder umgekehrt.

Wir untersuchten mit der FDMRS-Technik die drei verschiedenen Relaxations-
prozesse im Temperaturbereich von 1,75 - 3,3 K, in Magnetfeldern von 1,6 - 2,63 T
und in den beiden Geometrien (Voigt, Faraday). Dabei fanden wir heraus, dass die
Relaxation viel mehr von der Temperatur und dem Magnetfeld als von der Geometrie
abhängt. Im Temperaturbereich zwischen 1,75 und 3,3 K hängt die Relaxation sehr
stark nach dem Arrhenius-Gesetz von der Temperatur ab. Bei Magnetfeldern zwischen
1,6 und 2,63 T beobachten wir 2 Minima in der Relaxationszeit. Das erste Minimum
liegt bei etwa 1,85 T, das zweite bei etwa 2,3 - 2,35 T. Diese zwei Minima treten bei
einem Magnetfeld Hmm′

n ≈ 0,45n mit n = 4, 5 auf, durch das Energieniveaus auf beiden
Seiten des Doppelmuldenpotenzials in Übereinstimmung gebracht werden.

Wir spalteten die Relaxations-Messungen in zwei Teil-Messungen auf: Im ersten
Teil geht es um die Relaxations-Spektren bei variierter Frequenz, im zweiten Teil um
die Relaxations-Zeiten bei verschiedenen Magnetfeldern.

Für die frequenzabhängigen Messungen entwickelten wir ein theoretisches Mod-
ell zur Analyse der zeitabhängigen Spektren sowohl in der Voigt- als auch in der
Faraday-Geometrie. Damit können die Linienformen der Relaxationsspektren gut
beschrieben werden. Dabei führten wir den Besetzungs-Faktor ein, der ein Maß dafür
ist, welcher Anteil der Spin-Besetzung zur Intensität der Absorptionslinie beiträgt.
Wir fanden einen exponenziellen Zusammenhang zwischen Besetzungs-Faktor und
Zeit, woraus man die Relaxationszeit erhalten kann. In Voigt-Geometrie beobachteten
wir während des Relaxationsprozesses eine Verschiebung der Resonanzlinie und eine
Veränderung der Breite der Gauß-Linie. Wir nehmen an, dass die Verschiebung
vom lokalen Dipolfeld und den nichtdiagonalen Elementen des magnetischen Perme-
abilitäts-Tensors herrühren.

Im zweiten Teil stellen wir die Abhängigkeit der Relaxationszeit vom äußeren Mag-
netfeld (Hz) dar. Wir beobachten zwei unterschiedliche Relaxations-Mechanismen;
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thermische Aktivierung mit geringerer und thermisch unterstütztes Tunneln mit sehr
viel höherer Relaxationsrate. Unsere Relaxationszeit-Messungen verglichen wir mit
den Resultaten aus magnetometrischen Messungen und fanden eine gute Übereinstim-
mung.

Die Relaxationszeit-Abhängigkeit vom Magnetfeld konnten wir qualitativ und quan-
titativ mit dem Modell eines Phononen-gestützen Spin-Tunnelns beschreiben. Wir
berechneten die Relaxationszeit aus den drei Beiträgen: Der Zeit, nötig zur Spin-
Phonon-Kopplung (m → m ± 1, ±2), der Zeit des Tunnelns (m → m′) und der
Zeit für den (m′ → m′ ± 1, ±2) Prozess. Der Parameter des longitudinalen Feldes
(Hz) wird durch die Energieniveau-Parameter ersetzt. Nach diesem Modell hat die
Relaxationszeit-Verteilung die Form einer Lorentz-Linie um das Feld Hmm′

n , bei dem
sich die Energieniveaus kreuzen.

Der Spin-Tunnelprozess geschieht auf verschiedenen Pfaden: dem Hauptpfad und
dem Satelliten. In dieser Arbeit identifizieren wir die Tunnel-Pfade durch Simulation
Relaxationszeit-Verteilung mit einer einzelnen Lorentz-Linie mit der höchsten Ampli-
tude und der größten Linienbreite. Bei der vierten Kreuzung (Hz,theo ≈ 1,8 T), sind die
Hauptpfade (6,-2) mit der höchsten Amplitude und (4,0) mit der größten Linienbreite.

Die Untersuchung des Relaxations-Phänomens mit Hilfe der FDMRS kann sehr
viele Details, wie die Relaxationszeit, ihre Temperatur- und Magnetfeldabhängigkeit,
die Dynamik der Relaxationsspektren oder den Einfluss des Tunnelns auf die Linien-
formen der Einzelnen Übergänge liefern. Für den letzt genannten Fall allerdings haben
wir bislang den realen Mechanismus, wie das Tunneln die einzelnen Relaxationsspek-
tren beeinfussen kann, noch nicht völlig verstanden.

Zusammenfassend kann man sagen, dass die FDMRS-Technik eine sehr vielver-
sprechende Methode zur Untersuchung sowohl der statischen als auch der dynamischen
Methode des Einzelmolekühlmagneten Mn12-Acetat darstellt.

Ausblick

Der Einzelmolekühlmagnet Mn12-Acetat und seine analogen Komplexe bieten möglich-
erweise einen Zugang zu ultimativen Datenspeichern extrem hoher Speicherdichte. Das
liegt an der wohldefinierten Größe im Nanometerbereich die als einzelne magnetische
Domäne wirkt. Die Moleküle müssen dazu geeignet angeordnet und einzeln addressier-
bar gemacht werden, sodaß jedes Molekül als ein Bit Informationspeicher dienen kann.
Einige Forschergruppen versuchten, die Moleküle auf Polymerschichten auf metallis-
chen oder halbleitenden Substraten anzubringen. Durch diesen Trend bewegt sich
die Mn12-Acetat-Forschung in Richtung der zweidimensionalen (2D) mesoskopischen
Physik. Beispielsweise könnte die Untersuchung der Halbleiter-Eigenschaften und das
MQT-Phänomen einer dünnen Mn12-Acetat Schicht ein sehr interessantes Gebiet sein.
Die Eigenschaften dünner Schichten hängen auch stark von den Substrat-Materialien
und deren Oberflächen-Eigenschaften ab. Nachdem FDMRS sowohl elektrische, als
auch magnetische Eigenschaften der Materialen erfassen kann, kann sie, neben den
im Rahmen dieser Arbeit beschriebenen Anwendungen, auch in diesem Gebiet eine
vielversprechende Methode sein.
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Chapter 1

Introduction to Molecular magnets

1.1 An overview

Mesoscopic physics is the physics of a large system that shows quantum effects. It lies
at the frontier between the microscopic and the macroscopic world. The microscopic
regime normally contains the building block of atoms, and molecules. The macroscopic
regime contains the objects whose behavior can be treated with classical mechanics.
Macroscopic and mesoscopic systems are similar in the sense that they contain a large
number of atoms or molecules. The difference is that we can predict the behavior of
the objects in the macroscopic regime through the average properties of the materials.
In mesoscopic regime, the object is so small that its fluctuations around the average
become important which provides the signature of the classical motion of its quantum
counterpart. Research on mesoscopic systems has led to the discovery of many new
phenomena such as quantum tunneling of the Cooper pairs of electrons in the Joseph-
son junctions, quantum tunneling of the electrons in quantum dots system, quantum
tunneling of the magnetization, quantum phase interference, quantum coherence and
quantum decoherence, quantum spin collective phenomena, etc.

Mesoscopic systems can be made either by making macroscopic objects smaller or
by increasing the size of microscopic particles. Since mesoscopic system often deals
with the objects in nanometer size, it is thought as a subdiscipline of nanoscience.
One very interesting class of mesoscopic materials are molecular magnets. Their mag-
netic properties are in between the quantum spins and bulk magnets. The fascinating
quantum effects that shown in these materials are the quantum tunneling of the mag-
netization [1], quantum coherence [2, 3, 4], quantum avalanches [5, 6], quantum size
effects, quantum interference [7], etc.

Molecular magnets are the molecular systems which contain organic groups com-
bined with transition metal or rare earth ions. There are several categories of the
molecular magnets. One of them is the exchanged coupled clusters. The prime exam-
ples are Mn12-acetate, Fe8, Ni12, V15, etc. They show very interesting quantum phe-
nomena at low temperatures such as slow relaxation of the magnetization. They exhibit
magnetic hysteresis similar to bulk magnets. However, this behavior is purely from
molecular origin. Hence, they can be called single molecule magnets (SMMs). Note

17
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that similar systems such as the Prussian blues, polycyanamides, and spin crossover
systems, which exhibit the photoswitching phenomenon, are also the molecular mag-
nets but they are not in SMMs category since they do not exhibit the slow magnetic
relaxation.

SMMs contains four to thirty paramagnetic ions, normally from the first period
of the transition metals, that are bridged by simple ligands such as oxide, hydroxide,
halide, or carboxylate ligands. Owing to its organic ligand shell, each molecule is
well shielded from the others. The exchange interaction among these ions is often
antiferromagnetic. In some cases, it can lead to ferrimagnetic large spin ground states,
since the magnetic moments of the individual ions are not cancelled out.

1.1.1 Magnetic anisotropy and spin Hamiltonian

Not only the large spin, but also the magnetic anisotropy of the SMMs is important.
The magnetic anisotropy is the dependence of magnetic properties on the preferred
direction. It can be anisotropy in the response of the system to a magnetic field ( g
value anisotropy) or in zero field (zero field splitting). There are two origins of the zero
field splitting (ZFS). For the single ions, spin-orbit coupling is the main contribution.
It induces a mixing of excited state orbital angular momentum into the ground state.
For the clusters, the dipolar interaction between paramagnetic ions is also a main
contribution.

An easy way to describe the magnetic anisotropy term is to use the spin Hamil-
tonian. Here we replace the real wavefunction by spin wavefunction and the real
Hamiltonian by an effective spin Hamiltonian. So that we consider the energies of the
spin states only. The spin Hamiltonian takes the crystal symmetry into consideration
together with the directions of the appropriate axes relative to where the anisotropy is
present. This approach allows all parameters to be substituted by spin variables, which
can be obtained from the experimental data. Therefore, a suitable magnetic anisotropy
Hamiltonian that can describe these two contributions together can be written in the
simplest case as

HA = S · D̃ · S, (1.1)

where D̃ is a symmetric traceless tensor. The above equation can be rewritten as [8,
9, 10]

HA = D[S2
z − S(S + 1)/3] + E(S2

x − S2
y), (1.2)

where D and E are the axial and rhombic anisotropy constants which are related to
the principal values Duu (u=x,y,z) of the D̃ tensor via

D = 3Dzz/2, (1.3)

E = | Dxx −Dyy | /2. (1.4)
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If S ≥ 2, the higher terms are required. In orthorhombic symmetry, the axes (x,y,z)
may be chosen in different ways. In the higher axial symmetry system (eg. tetragonal,
cubic), the rhombic parameter E is zero.

Note that in several publications, instead of Eq. 1.2, they often use the extended
Stevens operators system, where the magnetic anisotropy Hamiltonian can be written
as

HA =
∑

k,q

Bq
kO

q
k(Sx,Sy,Sz), (1.5)

where Oq
k are operators which are functions of Sx,y,z. k corresponds to the site sym-

metry ranging from −q, .., q. Bq
k are corresponding anisotropy parameters.

Compare Eq. 1.2 and Eq. 1.5, we have [10]

D = 3B0
2 , (1.6)

3E = 3B2
2 . (1.7)

Up to the fourth order term Bq
4, the terms B0

4 and B4
4 are nonzero for tetragonal

symmetry. For orthorhombic symmetry, the terms B0
4 , B2

4 , and B4
4 are nonzero.

In molecular magnetism, Eq. 1.2 and Eq. 1.5 are often used together. The complete
magnetic anisotropy Hamiltonian up to the fourth order can be expressed as

HA = D[S2
z − S(S + 1)/3] + B0

4O
0
4 + E(S2

x − S2
y) + B2

4O
2
4 + B4

4O
4
4, (1.8)

where the first two terms are the axial terms while the last three terms are the trans-
verse terms. The axial terms change the energies of the states, while the transverse
terms changes the character of the states (i.e. mixing the states).

If there is an applied field (H) in the system, the Hamiltonian in Eq. 1.8 will include
the extra Zeeman term

HZee = gµBSzHz + gµBSx,yHx,y, (1.9)

where the first term is the axial term and the second term is the transverse term.

1.1.2 Double-well energy potential

From Eq. 1.8, if the axial magnetic anisotropy is negative, the cluster becomes bistable,
meaning that the spin has two preferable directions, namely spin up and spin down.
Let m represent the projection of the spin along the uniaxial direction, for example
z-direction. The spin energy potential forms the double-well potential type. One
well represents the +m states, where m = 0, ..., +S and another well represents -m
states, where −m = 0, ... − S. S is the total spin ground state. The barrier energy
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Figure 1.1: at H=0; (a) Spherical plot of spin energy (H = DS2
z ) in (−D sin2 θ, θ =

0 − π, φ = 0 − 2π) coordinate. (b) The projection of the spin energy from (a) on

to (E, θ) coordinate. Sz can be mapped from Sz =
√

S(S + 1) cos θ. The localized
behavior of the wave function coefficients cm are shown as thick black and gray solid
lines. (See text)
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H = DSZ
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+ C(S+
4+S-
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0 /2
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Figure 1.2: at H=0; (a) Spherical plot of spin energy included both longitudinal and
transverse term (H = DS2

z + C(S4
+ + S4

−)). (b) The projection of the spin energy
from (a) on to (E, θ) coordinate. m quantum number can be mapped from m =√

S(S + 1) cos θ. Here the delocalized behavior of the wave function coefficients cm is
shown. The thick black line represents symmetric wave function. The thick gray line
represents antisymmetric wave function. (See text)
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that separated those two energy states, can be estimated from the spin Hamiltonian
Eq. 1.8.

To have a view of the double-well potential, in a simplest case, we use the simplest
form of the anisotropy Hamiltonian. Eq. 1.8 becomes H = DS2

z , where we neglect

all the higher anisotropy terms. In Fig. 1.1(a), Sz =
√

S(S + 1) cos θ is plotted in a

spherical coordinate, (−D sin θ2, θ = 0 − π, φ = 0 − 2π). Fig. 1.1(a) is mapped to
Fig. 1.1(b) via the (E, θ) coordinate, which becomes the double well potential energy
diagram. The barrier height of the double well potential can be estimated as E = Dm2.

At high temperature, the system couples with the heat bath (phonon). The
phonons induce the spin transitions under the selection rule; ∆m = ±1,±2. The
spin hop across the energy barrier. This mechanism is called thermally activated relax-
ation. The relaxation time (τ) required in this thermal process follows the Arrhenius
law;

τ = τ0exp(−U/T ), (1.10)

where U is the barrier energy. τ0 is the time constant of the exponential function. T
is the temperature.

If the spin Hamiltonian contains the transverse term. For example, it contains the
lowest transverse term which is E(S2

x − S2
y), see Eq. 1.8. The energy diagram can be

redrawn as shown in Fig. 1.2(a). The transverse term induces the tunneling splitting
(∆). It exists between each pair of the matching energy levels between both side of
the double-well potential, as shown in Fig. 1.2(b).

If we apply the magnetic field to the system, the magnetic field (the axial term in
Eq. 1.9) will lower the energy barrier and the double-well potential becomes asymmet-
ric. The transverse term in Eq. 1.9 will enlarge the tunnel splitting.

However, if the temperature of the system is low enough and if the energy levels in
the opposite side of the double-well potential are matched, either in the zero field or
in the applied magnetic field, magnetic quantum tunneling (MQT) can occur. In order
to understand the MQT, we have to understand the basic idea of Quantum tunneling
(QT) first.

1.1.3 Theory of quantum tunneling and magnetic quantum
tunneling

QT is a quantum effect in which a particle can tunnel through the potential energy
barrier where classical physics conclude that a classical particle does not have enough
energy to do so. The tunneling phenomenon is an important consequence of quantum
mechanics.

Let us consider a particle with the energy E in the one dimensional potential well
V(x).

E =
p2

2M
+ V (x), (1.11)
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quantum picture

Figure 1.3: Upper figure shows the classical picture of an electron and the energy
barrier. If the energy of the electron is less than the barrier energy. The electron can
not cross the barrier. Lower figure shows the quantum picture of an electron wave and
the energy barrier. The electron wave has some finite probability to tunnel (transmit)
through the barrier even though its energy is less than the barrier energy.

where x is position of the center of mass of a particle, p is momentum conjugate to x,
and M is an effective mass.

Let V is the maximum height of the potential barrier. In classical mechanics, if
E < V , the particle remains in the potential well. If E > V , the particle can escape
from the potential well. In quantum system, the particle can escape from the well
even in the case E < V . In this case, the particle tunnel through the barrier and
emerge with the same energy E. This is due to the fact that the distance x is not a
conserved quantity and the particle has a wave property in a quantum system. Hence,
the tunneling is allowed. The root of the tunneling phenomena is the kinetic energy in
a particle tunneling case. Switching off the tunneling can be done by increaseing the
effective mass M → ∞. However, by doing this, the system becomes classical since
the energy density becomes continuous. Therefore, quantum tunneling is always there
in a quantum system.

However, it is different in the spin system. The energy form contains no kinetic
part. Let us consider the simplest Hamiltonian of a spin system with an easy axis
anisotropy,

H = −DS2
z + H ′, (1.12)

where the first term is an anisotropy energy, and the second term contains the terms
which do not commute with Sz. In the limit of H ′ → 0, Sz is a conserved quantity,
meaning that the transitions between the eigenstates of Sz are not allowed. In this
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Figure 1.4: Schematic diagram of the spin tunneling (magnetic quantum tunneling).
Left figure shows the circular precession of the spin wave (sw) together with the mag-
netization vector in the up state (solid arrow) passaging to the down state (dotted
arrow). Right figure shows the double-well potential energy of the spin wave. The up
and down wells are separated by the energy barrier.

case, there is no tunneling. Unlike in the classical case, the system does not have to
become classical to turn off the tunneling phenomenon. To turn on the tunneling, it
can be done by introducing the transverse terms which do not commute with Sz, e.g.
a transverse magnetic field, or a transverse anisotropy. Keep in mind that in the spin
system, we only consider the spin wave function part not the spatial wave function
part. Hence, the quantum tunneling in the spin system is the magnetization tunneling
through a potential barrier, which happens in an angular space. See Fig. 1.4.

To quantify the magnetic quantum tunneling (MQT) phenomenon in the spin sys-
tem, first we have to consider the view of the double well potential energy diagram.
The first criteria for spin tunneling is that both sides of the barrier have the same
energy. Second criteria is that the transverse term exists which does not commute
with Sz.

To understand how the transverse term can induce tunneling, the convenient way
is to look at the spin wave function. First, we express the eigenstates | ψ > in the
basis of the eigenstates | m > of Sz as follows:

| ψ > =
∑
m

cm | m >, (1.13)

where m=-S,...,+S, cm is the symmetric or antisymmetric coefficient of the state | m >.
Due to the existence of transverse anisotropy term such as C(S4

+ + S4
−), or E(S2

x−
S2

y), the m states are no longer the eigenstates of the system. Therefore, the states
| ψ > of the system are not a set of doublets of the localized states but rather of
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the delocalized states. We show the localized behavior of cm coefficients in Fig. 1.1.
The spin Hamiltonian only contains axial terms. The wave function coefficients cm in
Eq. 1.13 are localized for both symmetric and antisymmetric cases. See the thick black
and gray lines in Fig. 1.1(b). For the delocalized state, the wave function coefficients
cm in Eq. 1.13 are no longer localized but rather tunnel between the energy barrier
for both symmetric and antisymmetric cases. See the thick black and gray lines in
Fig. 1.2(b).

We assume that each doublet can consist of a symmetric state | ψs > with sym-
metric coefficient c+m = c−m, and an antisymmetric state | ψa > with antisymmetric
coefficient c+m = −c−m. These two states are separated by an energy gap ∆ = Ea−Es.
In the ground doublet, the good approximation for those states are

| ψa > =
1√
2
(| +S > − | −S >), (1.14)

| ψs > =
1√
2
(| +S > + | −S >). (1.15)

The state that is localized on one side of the barrier can now be expressed as a
superposition of the actual eigenstates as

| +S > =
1√
2
(| ψs > + | ψa >), (1.16)

| −S > =
1√
2
(| ψs > − | ψa >). (1.17)

If the system is prepared at time, t=0 such that, ψ(t = 0) =| +S >. The time
evolution of this system simply obeys the Schrödinger equation as

ψ(t) =
1√
2
exp(ıt

Es + Ea

2h̄
)[| ψs > exp(+ıt

∆

2h̄
)+ | ψa > exp(−ıt

∆

2h̄
)]. (1.18)

This implies that the time evolution of the state shows coherent oscillations of the
spin between the state | +S > and | −S > with oscillating frequency ωT = ∆/h̄. In
this model, the spins coherently tunnel back and forth through the barrier. The energy
gap ∆ is called the tunnel splitting. However, in reality, the system can couple to the
environment, for instance, external fields, or internal fields such as hyperfine field or
dipolar field, the phonon bath, etc. The coupling energy is many orders of magnitude
larger than the tunnel splitting caused by the off-diagonal terms in most molecular
magnets. Consequently, the tunneling is not coherent but rather incoherent.

1.1.4 Experimental evidences for magnetic quantum tunnel-
ing

The first story of MQT began when C. Paulsen and J.G. Park found the evidence
of MQT from the steps in the magnetization relaxation experiment. Specific heat
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measurement confirmed that the steps found in the hysteresis are associated with
superparamagnetism [11]. M.A. Novak and R. Sessoli unexpectedly found the field
dependence of the relaxation time in dynamic susceptibility measurements [11]. It has
significantly fast rates at some specific value of the magnetic field applied in z-direction
(Hz). Later, J.R. Friedman et al. found the space steps at some specific value of Hz

in the hysteresis loops from the dynamic hysteresis experiment [1].

The field tuned resonant tunneling appears in AC susceptibility measurement [12].
It was found that the relaxation rate followed the Arrhenius law and the barrier height
varied with the applied field. The field tuned resonant tunneling was also performed
by NMR result [13] and specific heat measurement results [14, 15]. It has been proved
that the resonance condition is invariant under the transverse field to at least fourth
order in perturbation theory [1].

However, it was found that if the magnetic field is not at the resonance value,
the small transverse field can get back the tunneling [12]. E.M. Chudnovsky and
J.R. Friedman have explained the transverse field effect through the nonresonance
tunneling. In this case, there is no energy barrier. The tunnel splitting becomes
comparable to level spacing. Recently, the effects of transverse field have been studied
widely for both theoretically and experimentally schemes. D.A. Garanin and E.M.
Chudnovsky have published the effects of Hx to the tunneling rate caused by hyperfine
and axis misalignment [16]. Later, they introduced the theory of transverse field
effected tunneling which is caused by the lattice dislocation [17, 18].

AC susceptibility data and DC magnetic relaxation data indicated the relaxation
time that follows an Arrhenius law down to 2.1 K [5, 11, 19, 20, 21]. The relaxation time
constant τ0 in the Arrhenius equation is 10−7−10−9 sec. Below 2 K, the relaxation time
is deviated from the Arrhenius law [5, 20, 22, 23], where the relaxation time approaches
toward the temperature independent behavior. At low temperature, thermal activation
becomes exponentially difficult, while the tunneling becomes exponentially easier. The
crossover between these two temperature regimes was theoretically studied by D.A.
Garanin et al. [16, 24, 25]. They proposed that as the temperature is decreased, the
dominant tunneling levels shift to lower energies either continuously (second order
transition) or abruptly (first order transition) under the limit S → ∞ and T → 0.
The crossover regime was experimentally observed at ≈1 K by the micro-Hall-effect
magnetometry technique [26].

For the past few years, the main interest in this field is the details studies of the
tunnel splitting which is a driving force for MQT [27, 28]. The tunnel splitting of
this system was first calculated by D.A. Garanin et al. [16]. They found the tun-
neling between levels near the top of the barrier is faster than the bottom levels.
Tunnel splitting increases in several orders of magnitude from lower to upper states.
If the transverse field increases, the relaxation rate also increases. There are many
issues involving the studies of the relaxation process in details. The applied trans-
verse field [29], the crystal defects such as dislocations [30], the transverse component
of the hyperfine field [16, 31, 32], the spin-orbit-vibron interaction [33] influence the
spin tunneling in Mn12-acetate system. Spin phonon coupling is also involved in the
tunneling mechanism in the thermal assisted tunneling regime [16, 34, 35].
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Figure 1.5: A schematic diagram of the relaxation phenomena; (i) Quantum tunneling
regime , (ii) Thermally activated regime, (iii) Thermally assisted quantum tunneling
regime. (See text).

1.1.5 Magnetic relaxation

Depending on the temperature, one of the relaxation mechanisms (thermally activated
relaxation or MQT relaxation) will become important. If the system is at high tem-
perature but the energy levels are matched, then the relaxation can occur through
either thermal activation or MQT. However, the thermal activation process is faster
and dominant in the high temperature regime than the MQT process. In the special
case, the system can lie between those two relaxation regimes, namely, thermally as-
sisted quantum tunneling regime. The relaxation occurs with the helps of both thermal
activation and MQT processes. The most common case is the phonon-assisted spin
tunneling. The spins first couple to the heat bath and move to the higher energy states.
If the energy of those states are matched with ones at the other side of the well, then
the spins can tunnel through the energy barrier. See Fig. 1.5.

1.1.6 Theoretical concepts of phonon-assisted spin tunneling

Normally thermally activation over the barrier is accompanied by transitions from the
bottom energy level to the top energy level. This kind of process requires the energy
to be exchanged between S and the other degrees of freedom of the whole system, for
example:

i) The fluctuating part of the dipole-dipole interaction between different magnetic
clusters which could cause the spin relaxation was proved to be inefficient to cause the
spin relaxation [21, 36] by using the diluting sample.

ii) Nuclear spins produce hyperfine field on electronic spin system. Its transverse
term can enhance the tunneling. However, it will be treated as a part of the transverse
field term, HT .

iii) Spins interact with phonons and photons. In the case of the presence of both
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phonons and photons. The photon part can be neglected since the light velocity is
much faster than the sound velocity, making the photon density of states much smaller
than the phonon’s. The spin-phonon energy is large enough to be considered at low
temperature without Raman scattering concerned.

Spin Hamiltonian: included spin-phonon coupling

In this part, we will formulate the spin-phonon Hamiltonian (Hsp) and determine the
spin-phonon coupling constant (gi). First, we rewrite a single spin Hamiltonian of
Mn12-acetate system in Eq. 1.67 including the spin-phonon coupling as

H = Ha + Hz + HT + Hsp (1.19)

Ha = DS2
Z is the longitudinal anisotropy term, Hz = gµBSzHz is the longitudinal

Zeeman term, HT = C(S4
+ + S4

−)/2 + gµBSxHx is the transverse term, and Hsp is
defined as the spin-phonon coupling term which can be generally formulated as

Hsp =
∑

i

Qi ⊗ Fi, (1.20)

where Qi is spin operator and Fi is phonon operator.
The idea of spin-phonon coupling assisted tunneling has been formulated intensively

for many years [8]. D.A. Garanin and E.M. Chudnovsky first implemented this idea
in Mn12-acetate system [16]. Shortly after, many have followed their works [34, 37].
Here we assume that the phonon in molecular magnet systems contains two transverse
modes and one longitudinal mode.

The basic concept of spin coupled with phonon is based on the studies of energy
transfer between spin system and the phonon bath. The whole system is an isolated
system. Therefore, the energy has to be conserved. The lowest order spin-phonon
interactions , which is allowed by time-reversal symmetry, is linear in phonon operator
and bilinear in spin operator. The simplest interaction is due to the rotation of an
anisotropy axis by a transverse phonon. We leave the longitudinal phonon mode since
it appears at the plasma frequency, which is not in our case.

If n is an arbitrarily oriented anisotropy axis, then the anisotropy term, Ha to the
first order, can be rewritten as

Ha = D(nS2), (1.21)

where the the fourth-order term (BS4
z ) is much smaller and is neglected here. A

transverse phonon can change the vector n by

δn = δφ× n, (1.22)

where δφ is a local rotation of the lattice and u is the lattice displacement where
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Strain function One-ion spin operators of spherical tensor operators
1
2 [εxx − εyy] 1

2 [S2
x − S2

y ]
εxy

1
2 [SxSy + SySx]

εyz
1
2 [SySz + SzSy]

εxz
1
2 [SxSz + SzSx]

Table 1.1: Isomorphisim for elastic strain components and one-ion spin operators.[38]

δφ =
1

2
∇× u. (1.23)

Normally if we have the displacement of the lattice, it is necessary to determine
the strain tensor. The linear strain tensor is defined by

ε = ∇u. (1.24)

Let α, β = x,y,z. We can determine the symmetric linear strain tensor as

εαβ =
1

2
(
∂uα

∂β
+

∂uβ

∂α
), (1.25)

and the antisymmetric linear strain tensor as

ωαβ =
1

2
(
∂uα

∂β
− ∂uβ

∂α
). (1.26)

We use an equation 1.20 combined with the formulas for the strain functions, one-
ion spin operators given as shown in table 1.1, and the antisymmetric strain term. We
can write the spin-phonon coupling term allowed by tetragonal symmetry of Mn12-
acetate crystal as (Refer to [34, 38])

Hsp = g1(εxx − εyy)⊗ (S2
x − S2

y) +
1

2
g2εxy ⊗ {Sx, Sy}+ (1.27)

+
1

2
g3(εxz ⊗ {Sx, Sz}+ εyz ⊗ {Sy, Sz}) +

+
1

2
g4(ωxz ⊗ {Sx, Sz}+ ωyz ⊗ {Sy, Sz}),

where the notation {Sx, Sy} is [SxSy + SySx]. After we substitute S± = Sx ± ıSy in
the above equation, we have
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Hsp =
1

2
g1(εxx − εyy)⊗ (S2

+ + S2
−) +

ı

4
g2εxy ⊗ (S2

− − S2
+) + (1.28)

+
1

4
g3[(εxxz − ıεyz)⊗ {S+, Sz}+ (εxz + ıεyz)⊗ {S−, Sz}] +

+
1

4
g4[(ωxz − ıωyz)⊗ {S+, Sz}+ (ωxz − ıωyz)⊗ {S−, Sz}].

Due to the modulation of crystal field by phonon, we denote gi=1,2,3,4 as the
spin-phonon coupling constants which can be determined as

g1 = | g2 | = D,
| g3 | = g4 = 2D.

(1.29)

Recall that D is the anisotropy constant. For proof of equation 1.29, refer to [34,
39].

Finally, we have formulated the spin-phonon Hamiltonian (Hsp) by assuming that
the spin Hamiltonian contains only the first order longitudinal anisotropy term (DS2

z )
and found that the coupling constants (gi) in Hsp are related to the anisotropy constant
(D). We note that g1,2 cause the transition with ∆m = ±2 and g3,4 with ∆m = ±1.
In the next Section, we will formulate the tunnel splitting in order to further calculate
the tunneling rate.

Tunnel splitting

Recall that the transverse terms in the spin Hamiltonian are the terms that cause the
tunnel splitting. These terms mix the eigenstates | m > and | m′ > of longitudinal
terms together. The mixing of these two eigen states can give symmetric and anti-
symmetric final state with different energy, where the energy difference is called tunnel
splitting. The tunnel splitting can make the tunneling of the magnetization through
the barrier possible. To calculate the tunnel splitting energy (which is the inverse of
the tunneling rate), it might be interesting to follow the following story.

In quasiclassical limit where S À 1, the tunneling rate from ground state for
different values of Hz was calculated by E.M. Chudnovsky and L. Gunther [40] using
the instanton technique. M. Enz and R. Schilling have developed more sophisticate
version of the instanton approach to spins, in order to obtain ground state tunneling
splitting with the prefactor [41]. Later, O.B. Zaslavskii used more simple method
based on the mapping onto a particle problem [42]. J.L. van Hemmen and A. Sütő
have formulated the Wentzel, Kramers, and Brillouin- WKB method for spin systems
to calculate the tunneling rates for excited states [43, 44]. Note that WKB method
is a semi-classical treatment to explain the tunneling. Scharf et al. have proposed an
approach using a particle mapping but subsequent with WKB approximation to refine
the results of the energy splitting in the excited levels. However, it is limited to small
Hx [45]. In case of small Hx, it is possible to directly calculate the energy splitting
using high order perturbation theory. For early applications refer to I.Ya. Korenblit
et al. who studied ground state splitting of rare earth system [46]. The successful
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calculation for the Mn12-acetate system came with D.A. Garanin who could derive
the splitting energy for all levels of m [47]. However, he used only one perturbation
parameter which is HT = HxSx. It gives the transition only ∆m = ±1. In this case,
the tunnel splitting energy can be formulated as

∆
(n)
m,m′ =

2D

[2m− n− 1]2
(
(S + m− n)!(S + m)!

(S −m)!(S −m + n)!
)(1/2)(

gµBHT

2D
)(2m− n),(1.30)

where n = m−m′. Recall that HT = HxSx for the above formula.
To have ∆m = ±4, M. Leuenberger et al. have used double perturbation parame-

ters which includes the B4 term giving ∆m = ±4 in the transverse Hamiltonian [34]

HT =
C

2
(S4

+ + S4
−) + gµBHxSx. (1.31)

In a small transverse field, the tunnel splitting ∆mm′ can be solved in an elementary
way using time-independent perturbation theory in higher order as

∆mm′ = 2
Vm,m−1

εm−1 − εm

Vm−1,m−2

εm−2 − εm

...V−m′+1,−m′ , (1.32)

where the step ∆m = ±1 is allowed. Then, by using resolvent techniques [34, 48] to
generalize the equation 1.32. It gives ∆m as any arbitrary steps.

∆mm′ = 2| ∑

m1...mN ,mi 6=m,m′

Vm,m1

εm − εm1

N−1∏

i=1

Vmi,mi+1

εm − εmi+1

VmN ,m′|, (1.33)

where V is a Hermitian operator having a real eigen value (not complex). V is defined

as; Vm+1,m =< m+1 | hSx | m >= h
2
[(s−m)(s+1+m)

1
2 ] and N is the lowest order of

the degenerate perturbation. The summation in Eq. 1.33 can be thought as the sum
over different paths in Hilbert space between | m > and | m′ >.

We insert HT in the potentials Vmi,mi+1
. The two-state Hamiltonian yields

H̃T = εm | m >< m | +∆m,m′/2 | m >< m′ | +(m ↔ m′), (1.34)

where εm = Em + gµBδHzm. See Fig. 1.6. See Em in Eq. 5.24. δHz is

δHz = Hmm′
z −Hz = 0. (1.35)

See Hmm′
z in Eq. 1.69 (Hmm′

z = nD
gµB

[1 + B
D

(m2 + m′2)]). | m > and | m′ > are

degenerate when δHz = 0. The energy eigen value (ET ) can be written as

ET = 1/2[εm + εm′ ±
√

(εm − εm′)2 + ∆2
m,m′ ]. (1.36)
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Em - g B Hzm

Em + g B Hzm
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Em + g B Hzm
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Figure 1.6: The tunneling diagram between the energy levels Em → Em
′ within the

tunneling gap (dashed line) caused by the energy difference between the antisymmetric
state (| A >) and symmetric state (| S >). Wm−1,m and Wm−2,m are the transition
rates (See Eq.1.51-1.52).

The density matrix equation (DME) for relaxation system

DME is used to study the resonant tunneling in a moderate spin system. Because there
is a lost for a natural account in tunneling problem in the quasiclassical approaches for
the real macroscopic system. First, we shall know some basic properties of the density
matrix [49].

Density matrix and its properties

To consider a mixture of states | ψn >, (n=1,2,3,...), with statistical weight Wn. The
density operator (or statistical operator) which can describe the mixture can be written
as

ρ =
∑
n

Wn | ψn >< ψn | . (1.37)

Next ρ operator needs to be expressed in a matrix form. To this end, the convenient
basis states are chosen as, | φ1 >, | φ2 >, | φ3 >, .... They are orthonomal (< φn |
φm >= δnm) and complete (

∑
n | φn >< φn |= 1). By superposing all the states, we

have

ρ =
∑

nm′m
Wna

(n)
m′ a(n)∗

m | φm′ >< φm | . (1.38)
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By taking matrix elements of equation 1.38 between state | φj > and | φi >, and
applying the orthonormality, we have the set of the following elements

< φi | ρ | φj > =
∑
n

Wna
(n)
i a

(n)∗
j , (1.39)

where i and j run over all basis which finally gives ρ operator from equation 1.37 into
a matrix form. It is called the density matrix.

Because we use | φn > as the basis states, therefore we will present the elements of
the density matrix as | φn >.

Here are some important properties of the density matrix.

i) ρ is

< φi | ρ | φj > = < φj | ρ | φi >∗ . (1.40)

ii) Reckon that Wn is the probability of finding the system in the state | φn > and
| a(n)

m |2 is the probability to find | ψn > in state | φm >. Then we shall have the
probability to find the system in state | φm > as diagonal element

ρmm =
∑
n

Wn | a(n)
m |2 . (1.41)

iii) ρmm ≥ 0

iv) The probability W (ψ) to find the system in state | ψ > after the measurement
is

W (ψ) = < ψ | ρ | ψ > . (1.42)

v) Since
∑

n Wn = 1, then the trace of ρ is tr ρ = 1.

vi) If Q is any operator, the expectation value of Q is given by the trace of the
product of ρ and Q. In general case, we shall drop the normalization then we have

< Q > =
tr(ρQ)

trρ
. (1.43)
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The properties of a system can be found by calculation of the expectation values
of suitable operators. Since the expectation value of any operator can be obtained by
equation 1.43, therefore, we shall say that the density matrix contains all physically
significant information of the system.

vii) Now we shall consider the time evolution of the mixtures of the states. By
applying the Shrödinger relation, we have

ıh̄
∂ρ(t)

∂t
= [H(t), ρ(t)], (1.44)

with the commutator

[H(t), ρ(t)] = H(t)ρ(t)− ρ(t)H(t). (1.45)

The relation in Eq. 1.43 and Eq. 1.44 are the heart of the density matrix the-
ory. They are simultaneous solution which can lead to equations of motion for the
observable.

Density matrix for spin-phonon coupling: Generalized master equation

We consider a system in a contact with its surroundings, exchanging energy, or polar-
ization. If its initial state in a nonequilibrium state. After some time later, the state
gradually goes to an equilibrium state. Such a gradual and irreversible evolution into
an equilibrium state is called relaxation process.

By using a density matrix equation, we can describe the evolution of the spin
system coupled to an equilibrium heat bath of phonons where the diagonal elements
ρmm = Nm describe population of the spin energy levels. If a transverse field or
another level mixing perturbation are applied, nondiagonal elements appear with the
slow dynamics describing the tunneling process.

Here we derive only a master equation that can describe the relaxation of the spin
due to the tunneling. Our model is the spin coupling to a heat reservoir of phonons.
The phonon heat bath is in thermodynamics equilibrium which can be described by a
canonical density matrix ρph for free phonons. We can write down the full Hamiltonian
representing the whole interested system again as

H = H0 + Hsp + Hph, (1.46)

where H0 = Ha + Hz (see Eq. 1.19). Hsp represents the spin bath, and Hph represents
phonon heat bath.

The relaxation of the magnetization obeys
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ρ̇mm′ =
ı

h̄
[ρ,H0]mm′ + δmm′

∑

n 6=m

ρnWmn − γmm′ρmm′ . (1.47)

The Eq. 1.47 is called the generalized master equation. To formulate Eq. 1.47, refer
to [49]. The diagonal elements (m = m′) of Eq. 1.47 give the master equation

ρ̇m =
ı

h̄
[ρ,H0]mm +

∑

n 6=m

ρnWmn − ρm

∑

n 6=m

Wnm, (1.48)

and the off-diagonal elements (m 6= m′) are given by

ρ̇mm′ =
ı

h̄
[ρ, H0]mm′ − γmm′ρmm′ . (1.49)

The diagonal term gives the probability to find the level | m > occupied at time t.
The probability increases in time due to the transitions from all other levels | n > to
| m >. Vice versa, It also decreases due to transitions from | m > to | n >. Hence, we
can calculate the rate change in the diagonal elements as

ρ̇mm′ = Gain in | m > −Loss in | m >, (1.50)

where ρ̇mm′ =< m | ρ | m′ >. Wmn is the Fermi golden rule describing the transition
rate from all other states | m > to | n > and vice versa for Wnm which can be explicitly
written as

Wm±1,m =
D2s±1

12πρc5h̄4

(Em±1 − Em)3

eβ(Em±1−Em) − 1
, (1.51)

Wm±2,m =
17D2s±2

192πρc5h̄4

(Em±2 − Em)3

eβ(Em±2−Em) − 1
, (1.52)

where D is the anisotropy constant, Em is the energy of level m (see Eq. 5.24), and

s±1 = (s∓m)(s±m + 1)(2m± 1)2, (1.53)

s±2 = (s∓m)(s±m + 1)(s∓m− 1)(s±m + 2). (1.54)

Refer to [34] for more details. The mass density ρ of Mn12-acetate is 1.83 × 103

kg/m3, and the sound velocity c is ≈ 1.45− 2× 103 m/s.
Note that we only calculate the rate changes due to the population gain and loss

in a certain m state causes by the spin coupling with phonon bath under the selection
rule ∆m = ±1,±2. In the next section, we will calculate the rate changes by including
the effect of tunneling between m and m′.
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Density matrix for spin-phonon coupling including spin tunneling: Master
equation

To evaluate the generalized master equation (Eq. 1.47) with the spin tunneling term,
we insert H̃T from Eq. 1.34 into the generalized master equation (Eq. 1.47). We obtain
the master equation with the diagonal and off-diagonal element as

˙ρm =
ı∆mm′

2h̄
(ρmm′ − ρm′m)−Wmρm +

∑

n6=m,m′
Wmnρn, (1.55)

and

ρ̇mm′ = −(
ı

h̄
εmm′ + γmm′)ρmm′ +

ı∆mm′

2h̄
(ρm − ρm′), (1.56)

where εmm′ = εm − εm′ (see Eq. 1.34). Since the tunneling process is incoherent, we
can neglect the time dependence of the offdiagonal elements, eg. ρ̇mm′ = 0. Inserting
the stationary solution of Eq. 1.56 into Eq. 1.55 yields the complete master equation

ρ̇m = −Wmρm +
∑

n 6=m,m′
Wmnρn + Γm′

m (ρ′m − ρm), (1.57)

where

Γm′
m = ∆2

mm′
Wm + Wm′

4ε2
mm′ + h̄2(Wm + Wm′)2

, (1.58)

where Γm′
m is the transition rate from state | m > to | m′ >. It is induced by tunneling

process and phonon damping. The quantity Γm′
m has a Lorentzian shape as a function

of εmm′ which is the subfunction of the external magnetic field Hz. The Lorentzian
has a very sharp peak at the resonance field.

Up to this part, we can write down the generalized master equation in Eq. 1.47
and the master equation in Eq. 1.57. The first one explains the transition within m
states by spin-phonon induced process. In the latter one, the spin tunneling process
from m ↔ m′ is included, in which its tunneling is described as the Lorentzian Γm′

m

function.

Relaxation time

To evaluate the relaxation time, we need to numerically diagonalize the master equa-
tion. We rewrite the master equation 1.57 as

~̇ρ(t) = W̃ ~ρ(t). (1.59)
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Here we represent ~ρ(t) as the diagonal elements of ρ. For the system with several
relaxation path (i), the rate matrix W̃ has its eigenvalues wi where i=1,2,3,...,21. The
dominant relaxation time of the system is

τ = maxi{− 1

Re wi

}. (1.60)

It is not obvious to calculate τ according to the above equation. Alternatively we
estimate the value of τ near the resonance.

For Hz ≥ 0, we use

1/τ =
1

1 + eβ(E−s− Es)

eβ(Emi−Es)

Ω
mi+1
mi

, (1.61)

and for Hz ≤ 0 we use

1/τ ∗ =
1

1 + eβ(Es− E−s)

eβ(Emi−E−s)

Ωmi
mi+1

, (1.62)

where Ωmi+1
mi

is Γmi+1
mi

.
The relaxation rate in equation 1.61 can be rewritten as (see [34])

1/τ =
1

1 + eβ(E−s−Es)
(
eβ(Em+2−Es)

Wm,m+2

+
eβ(Em′−Es)

Wm′−2,m′
+

e(βEm−Es)

Γm′
m

). (1.63)

Note that the relation between the transition probability to go up Wm+2
m and to

decay down Wm
m+2 is

Wm,m+2

Wm+2,m

= eβ(Em+2−Em). (1.64)

The linewidth of the relaxation rate peak in Eq. 1.63 can be estimated as

w′ =
23/2∆mm′

| m−m′ | gµB

. (1.65)

Finally, we obtain the relaxation rate of the phonon assisted spin tunneling process
(see Eq. 1.63 and Fig. 1.6) with the first two terms describe the time required in the
transitions within the same m and the last term describes the transitions between
m ↔ m′ levels. The last term which is due to the tunneling term is the main term
giving the Lorentzian lineshape (see Γmi+1

mi
function) to the relaxation time in the field

domain curve. We will use Eq. 1.63 in Chapter 6 in order to explain our experimental
relaxation time.
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Figure 1.7: (a) Structure of Mn12-acetate molecule; manganese atoms - large spheres,
oxygen atoms - black spheres, carbon atoms - gray spheres, and hydrogen atoms -
white spheres. The inner big spheres are Mn4+ ions where the outer big spheres are
Mn3+ ions. The acetic acid can make a hydrogen bond (dash line) to the manganese
core on two different axes (curve arrow) and on different positions. (b) Unit cell of
Mn12-acetate (See text)
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1.2 Examples of the molecular magnets

1.2.1 Mn12-acetate

Mn12-acetate is the prime example of single molecule magnets. Several interesting
phenomena have been found in this system such as the magnetic quantum tunneling
(MQT) which is a typical mesoscopic effect. Mn12-acetate is stands for [Mn12O12-
(CH3COO)16(H2O)4]·2CH3COOH·4H2O]. It is a high spin coordination cluster with
total spin ground state S=10. This has been confirmed by low-field magnetic mea-
surements [50]. It was first synthesized by Lis and characterized by X-ray diffrac-
tion methods [51]. The structure of Mn12-acetate is shown in Fig. 1.7(a) which was
confirmed experimentally by polarized neutron scattering [52] and theoretically by
electronic-structure calculations [53]. The core of the molecule is composed of four
Mn4+ ions forming a ferromagnetic sublattice with spin s=3/2 each, surrounded by a
crown of eight Mn3+ ions forming a ferromagnetic sublattice of spin s=2 each. These
two ferromagnetic sublattices are strongly antiferromagnetically coupled through the
oxygen ligands, giving a total collective spin S=10 ground state.

The unit cell of Mn12-acetate crystals is shown in Fig.1.7(b). This molecular clus-
ters form a molecular crystal of tetragonal S4 symmetry with the lattice constants
a = 1.732 nm and b = 1.239 nm. One unit cell contains two Mn12O12 molecules sur-
rounded by four water molecules and two acetic acid molecules. The molecules are
isolated from each other by the acetate shell. The symmetry of the molecules and
the lattice results in a strong uniaxial anisotropy along the c-axis. The symmetry
disallows second order transverse anisotropy. The anisotropy barrier of each molecule
is about 65 K which blocks the magnetic moment along the c-axis. It exhibits an
effective magnetic moment M = gSµB = 20µB at low temperature. The magnetism
of this coordinative cluster is of purely spin origin because of the quenching of the
orbital moment by the crystal field. The S = 10 spin ground state is split into 21
components, with the two degenerate states m = ±10 being the ground states.

Since Mn12-acetate has tetragonal symmetry, hence the term B2
4 is zero but not B0

4

and B4
4 . The rhombic constant is also zero (E = 0). We can rewrite the Hamiltonian

in Eq. 1.8 for the tetragonal symmetry as

HA = D[S2
z − S(S + 1)/3] + B0

4O
0
4 + B4

4O
4
4. (1.66)

If O0
4 = 35S4

z − 30S(S + 1)S2
z + 25S2

z − 6S(S + 1) + 3S2(S + 1)2, and O4
4 =

1/2(S4
+ + S4

−) [54], then a convenient spin Hamiltonian of Mn12-acetate including the
Zeeman terms can be formulated as

H = DS2
z + BS4

z + gµBSzHz + C(S4
+ + S4

−)/2 + gµBSx,yHx,y, (1.67)

where D, B, and C are anisotropy constants of Mn12-acetate system. The first three
terms in Eq. 1.67 are the axial terms while the last two terms are the transverse
terms. Note that the spin operator S± is equivalent to (Sx ± ıSy). The anisotropy
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Figure 1.8: Six isomers of Mn12-acetate molecule are shown. The circles represent
Mn12-acetate molecules. n is a number of acetic acid molecules which are represented
by black rectangular shape [58].

constants can be obtained by using different techniques [54, 55, 56]. It was found that
D ≈ −0.56 K, B ≈ −1.1 × 10−3 K, and C ≈ ±3 × 10−5 K. DS2 is typically around
60-70 K.

Eq. 1.67 contains no E term because it is not allowed by the tetragonal symmetry.
However in the real crystal, there is the strong stress of the dislocations in the Mn12-
acetate [57]. It leads to the extra transverse E term. The average value for E ≈
22 mK [57].

The other origin of the E term also was discussed by A. Cornia et al. [58]. The idea
of the isomer-model was proposed via the disorder of the acetic acid of crystallization
induces the distortion of the Mn(III) sites. See Fig. 1.8. There are six different ways,
namely six isomers, that the acetic acid can make the hydrogen bond to the manganese
core. In Fig. 1.8, there are four isomers (n=1, n=2-cis, n=2-trans, and n=3) that have
symmetry lower than tetragonal, leading to a nonzero E term. Only two isomers (n=0,
and n=4) have tetragonal symmetry. Moreover, six different isomers give different
anisotropy constants D, and E values. The isomer property of Mn12-acetate leads to
the distribution in the anisotropy constants which influences the line broadening in
the magnetic resonance spectra [59].

To have an idea how the energy levels of the double-well potential look like, we use
Eq. 1.67 without the transverse terms as a simplest case. The energy (Em) of each
level m can be written as

Em = Dm2 + Bm4 + gµBHzm. (1.68)

According to Eq. 5.24, there is a condition of the magnetic field for matching of
two energy levels (m,m′) in the opposite wells, where m = 0, 1.2, ..., 10 and m′ =
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0,−1,−2, ...,−10. For Em = Em′ ,

Hmm′ =
nD

gµB

[1 +
B

D
(m2 + m′2)], (1.69)

where n = m + m′, where n=0,1,2,...,10. Hmm′ is so called the resonance field.

1.2.2 Other molecular magnets

Beside Mn12-acetate, there are many other molecular magnet systems that show in-
teresting mesoscopic quantum phenomena. For example, Fe8 system also exhibits
MQT [7]. It was first synthesized in the group of Wieghardt in 1984 [60]. Pure quan-
tum tunneling behavior below 0.35 K was discovered in this system due to its large
transverse anisotropy [61]. Later Fe8 was widely studied and topological constructive-
destructive interference of the spin phase (Berry phase) was found in the transverse
field dependence of the relaxation rate [7].

Molecular clusters with the complete antiferromagnetic cancellation of their spin
giving S=0 ground state are also interesting. In the last few years some of the an-
tiferromagnetic ring-shaped clusters, which exhibit quantum-size effects, have been
intensively studied [62, 63, 64, 65]. For example, large iron(III) rings can be a model
of 1D-quantum antiferromagnets. These are the best candidates for investigating the
properties of larger assemblies of interacting metal ions at the simplest level. In ad-
dition, mesoscopic quantum coherence might be observed in the form of coherence
tunneling of the sublattice magnetization (the Néel vector) between classically degen-
erate directions over many periods [66].

Today, the number of new magnetic clusters that are synthesized and investigated
increases exponentially. In manganese complex family, many compounds have been
studied such as Mn4 [67], Mn7 with S=11 [68], [Mn8O8]

8+ with S=16 [69], Mn9 with
S=11/2 [70], Mn10 with S=12 [71]. Recently, larger clusters than Mn12-acetate have
been produced such as [Mn18]

2+ with S=13 [72], Mn21 with S=17/2 [73], Mn25 with
S=51/2 [74], Mn30 with S=5 [75], Mn84 with S=6 [76]. In the range of iron complexes,
beside Fe8, there are many iron compounds that have been investigated such as Fe4 [77,
78], Fe2, Fe6, Fe17, and Fe19 [79, 80, 81, 82]. Many other inorganic based molecular
magnets such as cyano-bridged complexes [83], cobalt based complexes [84, 85], nickel
based complexes [86, 87], and copper based complexes [88] are also being investigated.

1.3 Molecular magnets in applications

Beside their significant properties to test the fundamental quantum theory and nanoscale
magnetism prospects [1, 89], molecular magnets may have important technological ap-
plications as the nanoscale storage [90], qubits for quantum computation [67, 91, 92,
93], and the molecular electronics and magnetic devices [94, 95, 96, 97].

The Mn12-acetate molecular magnet and its analogous clusters offer potential ac-
cess to ultimate high density data storage devices, due to its well defined nanoscale size
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and identically molecular structure with a single magnetic domain [2, 93, 98]. How-
ever, to achieve this role, the molecules need to be oriented properly in order to be
addressed individually, where each molecule can be used as a bit of information. This
can be done by arranging the molecules onto the thin film surface. An early attempt
was to arrange Mn12-acetate molecules into a well organized multilayer film by using
Langmuir-Blodgett (LB) technique [99, 100]. In this work, Mn12-acetate was embed-
ded in multilayer fatty acid (behenic acid) where Mn12-acetate formed an intercalated
layer between the two headgroups of adjacent fatty acids. However this technique is
very unstable when the Mn12-acetate film is transferred to other substrates. The next
approach is based on the preparation of the polymeric thin films which is made from
polycarbonate matrix, and Mn12-acetate complex [101]. This method is more reliable
and simpler methodology than the LB technique.

However, at that time there has been no success to organize Mn12-acetate molecules
onto the conducting substrates. Until, there is a report by A. Cornia that depositing
Mn12-acetate-derivative molecules onto gold surface with monolayer or submonolayer
coverage is possible [94]. The molecule can be addressed individually by the scanning
probe microscope. Nanopatterning of aggregates of Mn12-acetate with size and dis-
tance control on multiple length scale ranging from ten nanometers to millimeters was
demonstrated by using the stamp-assisted deposition of the molecules technique [102].

Spin coating Mn12Cl onto the silicon wafer is also already achieved [85]. In this
work, the magnetic hysteresis of the tunneling current is reported, implying that mag-
netic character of the molecule influences the current transport in the single molecule
level. The other interesting report is about depositing Mn12-acetate molecules into the
mesoporous silica as the magnetically addressed structure [103]. This work can also
open the opportunity of the molecular magnet as the new functional materials.

However, due to its storage application, the problem of how to implement the
process of reading and writing is still a major discussion [104]. It has been proposed
to use these molecular clusters as qubit systems for quantum computers [91, 93]. It
is also independently reported that it is feasible to encode and read-out the states of
the molecular clusters by the interaction between the polarizing clusters and injected
electrons [105].

Beside the molecular electronics application, recently, the superradiance effect (0.1-
0.5 THz) from the avalanches of the magnetization reversal Mn12-acetate was observed
by J. Tejada et al. [106, 107, 108]. The electromagnetic radiation sources in the THz
range are very rare. This suggests a new application of the molecular magnets as a
new THz source. Consequently this field is very active. Lots of experimental results
and sophisticated theories are reported.

1.4 Motivation of the Thesis

In this Thesis, we are interested in Mn12-acetate system, since it is one of the prime
examples of the single molecule magnets that shows the slow relaxation mechanism
at reasonably low temperature (in order of a few seconds at 4 K, or a few months at
2 K). Therefore, its quantum tunneling dynamics are easily investigated with most
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techniques without the use of a dilution refrigerator. The single crystal of this sample
is also physically and chemically stable. So far, there are many techniques that have
been applied to Mn12-acetate system e.g. the magnetometry technique [11, 27, 109,
110, 111, 112, 113], electron paramagnetic resonance (EPR) [54], nuclear magnetic
resonance (NMR) [13, 114, 115, 116], muon spin resonance (µSR) [116], specific heat
measurement [3], magnetic circular dichroism technique [117].

However, most of the MQT evidences were measured by the SQUID magnetome-
ter. Nevertheless, this technique can not measure the local magnetization from each
individual magnetic transitions but rather measure the magnetization of the whole
system. In this point of view, the optical spectroscopy technique such as EPR has a
better advantage since it can access each magnetic transition individually. However,
in the typical EPR setup, the magnetic field is scannable while the frequency of the
radiation is fixed. This technique can not directly observe the relaxation of the mag-
netization. Beside, EPR requires an applied magnetic field. In order to measure the
zero field splitting parameters by using EPR technique, the results are extrapolated
from the results in the magnetic fields, which might be inaccurate.

Therefore, we would like to introduce our new technique; Frequency-Domain Mag-
netic Resonance Spectroscopy (FDMRS), which is a frequency domain technique, to
study both physical and relaxation properties in Mn12-acetate system. Firstly, FDMRS
works either in zero or applied magnetic field. Therefore, compared to typical EPR
technique, FDMRS can directly measure the zero field splitting parameters in the zero
magnetic field.

Secondly, FDMRS can locally measure the magnetic transition compared to the
typical SQUID magnetometer. MQT measured by SQUID is the macroscopic results.
In contrast, by using FDMRS, we can observe the relaxation from the individual
magnetic transitions. Beside we can obtain the relaxation time, we can also do the
lineshape studies of the magnetic transitions during the relaxation process. Lineshape
studies (such as linewidth, and lineshape) can give much fruitful information about the
effects of the environmental (such as dipolar field, and hyperfine field) to the magnetic
resonance transitions. Therefore, it is very interesting to measure the relaxation time
and observe the environmental effect to the relaxation process at the same time.

Thirdly, our FDMRS setup can be arranged into two different magneto-optical ge-
ometries (Voigt and Faraday). The typical EPR setup requires the waveguide, there-
fore, the wave geometry is no longer important in this system since it is difficult to
control the polarization of the radiation. In FDMRS, the radiation travels in free
space, therefore the radiation polarization is remained. So far, there is no full reports
on the magneto-optical studies on Mn12-acetate system. Since Mn12-acetate exhibit the
bistability of the magnetization, therefore studying this system by using different light
polarizations (linear or circular polarization) in different magneto-optical geometries,
we might explore the new results in this field.

Therefore, we would like to apply FDMRS technique to qualitatively and quantita-
tively study Mn12-acetate molecular magnet system for both physical and relaxation
characteristics.
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1.5 Thesis outline

After we have introduced the general properties of the molecular magnets in this Chap-
ter, in Chapter 2, we introduce the basic idea of the electrodynamics in which we will
explain how the electromagnetic wave interacts with the matters and how the mag-
netic resonance works.

In Chapter 3, we introduce FDMRS technique for its history, detailed setup and
operation, detailed measurement and spectra analysis.

In Chapter 4, we report the results in zero field and in magnetic field measure-
ments on the static properties of Mn12-acetate such as the zero field splitting (ZFS)
parameters, g-value anisotropy, magnetic mode contribution, etc.

In Chapter 5, we report the magneto-optical properties of Mn12-acetate.

In Chapter 6, we focus on the relaxation measurements in which we will report our
observations on MQT phenomenon.

Chapter 7 is the summary of this Thesis in which the future works are included.



Chapter 2

Electromagnetic wave propagation
and the magnetic resonance
phenomenon

The main aim of this Thesis is to apply frequency-domain magnetic resonance spec-
troscopy (FDMRS) method to observe the magnetic transitions and magnetic relax-
ation (including the tunneling process) in molecular magnets. In order to understand
our results throughout the whole Thesis, it is important to understand some basic con-
cepts of electromagnetic (EM) wave propagation in a magnetic medium, and magnetic
resonance (MR) theory. This Chapter is divided into two parts.

In the first part, we discuss the general concept of the basic EM wave propagation
theory. First we discuss the wave equations in space, in a medium and at the inter-
face. Then we make a note on the polarization property of the radiation and the wave
propagation geometries with respect to the applied magnetic field direction; Voigt and
Faraday geometry. Later we will go through more details of how the medium responds
to the radiation where we introduce the material parameters such as dielectric permit-
tivity and magnetic permeability. We also include the derivation of these parameters
for each wave propagation case (Voigt and Faraday). Note that most works in this
Thesis are done in CGS units.

For the second part, we discuss basic MR theory including MR mechanism, tran-
sition probability and transition absorption line.

2.1 Electromagnetic wave propagation

2.1.1 Electromagnetic waves in space

Electromagnetic (EM) waves are defined as a time and space varied combination of
alternating electric and magnetic fields. J.C Maxwell was the first who successfully
derived the electric and magnetic field relation through the famous Maxwell equations.
In the vacuum, time (t) and space (r) varying Maxwell equations in the revised version
are written in (CGS units) as

45
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∇× E(r, t) +
1

c

∂B(r, t)

∂t
= 0, (2.1)

∇ ·B(r, t) = 0, (2.2)

∇×B(r, t)− 1

c

∂E(r, t)

∂t
=

4π

c
J(r, t), (2.3)

∇ · E(r, t) = 4πρ(r, t), (2.4)

where E is the electric field strength, B is the magnetic induction, c is the light
velocity (3 × 108 ms−1), J is the current density, and ρ is the charge density. These
parameters are dependent of spatial (r) and time (t). By assuming that the waves are
monochromatic, the solutions of the above Maxwell equations in vacuum are

E(r, t) = E0 exp {ı(q · r− ωt)}, (2.5)

B(r, t) = B0 exp {ı(q · r− ωt)}, (2.6)

where q is the wave vector, and ω is the wave frequency.

2.1.2 Electromagnetic waves in a medium

The Maxwell equations for a medium are written as

∇× E(r, t) +
1

c

∂B(r, t)

∂t
= 0, (2.7)

∇ ·B(r, t) = 0, (2.8)

∇×H(r, t)− 1

c

∂D(r, t)

∂t
=

4π

c
Jcond(r, t), (2.9)

∇ ·D(r, t) = 4πρext(r, t), (2.10)

where D is the displacement field which can be explained as the response of a solid to
an electric field E and written as D = ε̂E. ε̂ = ε′ + ıε′′ is the dielectric permittivity.
H is the magnetic field strength, which is associated with the magnetic induction B
by B = µ̂H. µ̂ = µ′ + ıµ′′ is the magnetic permeability. Jcond is conduction current in
a medium related with E via the conductivity σ̂ as Jcond = σ′E. σ̂ = σ′ + ıσ′′. ρext is
external charge from outside.

The solutions of wave equations in an infinite medium (to avoid boundary and the
edge effects) with no free charge (ρext = 0) and no external current (Jext = 0) are

E(r, t) = E0 exp {ı(q · r− ωt)}, (2.11)

H(r, t) = H0 exp {ı(q · r− ωt)}. (2.12)

The response functions of the medium to the EM waves such as ε, µ, and σ are
important as material parameters. The main optical properties of the medium are
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the real refractive index (n) and the extinction coefficient (k ) which are used for the
propagation and dissipation of the EM wave in the medium. To relate the material
parameters and the optical response function, we define a new response function called
the complex refractive index (N̂)

N̂ = n + ık = [ε̂µ′]1/2, (2.13)

n2 − k2 = ε′µ′. (2.14)

The important relation between n and k expressed through the phase difference is

tan φ =
k

n
. (2.15)

We define the relation between the propagation wave vector (q) and the complex
propagation wave vector (q̂) as

q = q̂nq, (2.16)

where nq is the unit wave vector defined as nq = q/ | q |. The dispersion relation
between ω and q̂ can be written as

q̂ =
ω

c
N̂ =

nω

c
+ ı

kω

c
. (2.17)

Substituting equation 2.17 into equation 2.11, we obtain separately real and imag-
inary parts of the wave that go through the medium as

E(r, t) = E0 exp{ıω(
n

c
nq · r− t)} exp{−ωk

c
nq · r}. (2.18)

We can see here that the real part of the complex wave vector q represents a
travelling wave while the imaginary part expresses the attenuation term. The first
exponent describes the fact that the velocity of light is reduced to c/n. The second
exponent gives the damping term. This is also true for the magnetic field wave since
it has the same q.

2.1.3 Electromagnetic waves at the interface

To this point, we have already explained how the EM waves propagate through the
medium. Now we have to discuss what will happen to the waves at the interface.
For simplicity, we use the infinite thickness medium as the example. At the inter-
face between medium 1 and medium 2, part of the wave is transmitted and part
is reflected. Fig. 2.1 shows the transmission and reflection wave diagram. We use
Fresnel formulas to describe both transmission and reflection wave phenomena. Here
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Figure 2.1: Reflection and transmission of an electromagnetic wave at the interface between
the medium 1 and medium 2; (a) with the electric field (~E) perpendicular to the xy-plane
of incidence where the magnetic field ( ~H) lies in the xy- plane. (b) with electric field (~E)
parallel to the xy-plane of incidence where the magnetic field ( ~H) is perpendicular to the
xy-plane.
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we define the following notation; Ei = E0iexp{ı(q · r− ωit)} is the incident wave,
Er = E0rexp{ı(q · r− ωrt)} is the reflected wave, and Et = E0texp{ı(q · r− ωtt)} is
the transmitted wave. The angle φi is an incident angle of qi , φr is reflected angle
of qr, φt is transmitted angle of qt in the plane-xy. µ′1 and µ′2 are the real part of
the magnetic permeability of the medium 1 and the medium 2 ,respectively. N̂ is the
complex refractive index. In the case of Ei perpendicular to the xy-plane of incidence,
the complex transmission and reflection coefficients are

t̂⊥ =
E0t

E0i

,

=
2µ′1 cos φi

µ′1 cos φi +
√

(N̂2 − sin2 φi)
, (2.19)

r̂⊥ =
E0r

E0i

,

=
µ′1 cos φi −

√
(N̂2)− sin φi

2

µ′1 cos φi +
√

(N̂2 − sin2 φi)
. (2.20)

If Ei is in the plane of incidence xy, we obtain the Fresnel formulas for Ei parallel
to the plane of incidence xy

t̂‖ =
E0t

E0i

,

=
2µ′1N̂ cos φi

N̂2 cos φi + µ′1
√

(N̂2 − sin2 φi)
, (2.21)

r̂‖ =
E0r

E0i

,

=
N̂2 cos φi − µ′1

√
(N̂2)− sin2 φi

N̂2 cos φi + µ′1
√

(N̂2 − sin2 φi)
. (2.22)

Further reading can be found in [118].

2.1.4 Polarization

Before we continue to the next section (dielectric and magnetic properties of the
medium), It would be useful to know some basic ideas about the polarization principle
of EM waves because the interaction between the EM radiation and the matter can be
sensitive to some external parameters i.e. light polarization, magnetic field direction,
direction of light propagation, etc.

Linear Polarization

If a wave moves in the z direction and its electric field component oscillates in the x
direction, it is said to be linearly polarized in the x direction. The wave equations can
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Figure 2.2: Wave diagram shows linearly polarized wave in x direction.

be expressed as

E = E0x cos (qz − ωt), (2.23)

B = B0y cos (qz − ωt), (2.24)
ω

q
= c. (2.25)

A similar solution is obtained for a wave that moves in the z direction with its
electric field component oscillating in the y direction. Such a wave is said to be
linearly polarized in the y direction.

E = E0y cos (qz − ωt), (2.26)

B = B0x cos (qz − ωt). (2.27)
ω

k
= c (2.28)

Circular Polarization

We also can make circularly polarized light by adding x and y linearly polarized light
but make them out of phase in time by 90o. A right circularly polarized wave is
described by

E = E0[x cos (qz − ωt) + ysin(qz − ωt)], (2.29)

B = B0[y cos (qz − ωt)− xsin(qz − ωt)]. (2.30)

Similarly, a left circularly wave looks like
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Figure 2.3: Wave diagram showing a circularly polarized wave. If approaching an observer,
the electric vector (E) of this wave would appear to be rotating clockwise and this is called
right hand circular polarization.

E = E0[x cos (qz − ωt)− ysin(qz − ωt)], (2.31)

B = B0[y cos (qz − ωt) + xsin(qz − ωt)]. (2.32)

We can also have linearly polarized wave by adding right and left circularly waves
together with the equal amplitude and the right phase shift.

2.1.5 Wave propagation geometries

When an external d.c. magnetic field (Hext) is applied to the system, different wave
propagation directions of the r.f. radiation exist with respect to the direction of the
applied magnetic field. In this Thesis, we concern two types of such the arrangements
namely Voigt and Faraday geometry. We introduce these following parameters of the
r.f. radiation; propagation wave vector (q), electric field component (e), and magnetic
field component (h).

Voigt geometry

Voigt geometry is described as having q ⊥ Hext. We can set e parallel or perpendicular
to Hext. Similar considerations for h. It can be expressed in an orthogonal geometry
as

(q ‖ y) ⊥ (Hext ‖ h ‖ z) , e ‖ x, (2.33)

(q ‖ y) ⊥ (Hext ‖ e ‖ z) , h ‖ x. (2.34)
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Figure 2.4: Voigt geometry where electromagnetic wave (e,h) with propagation direction
(q) perpendicular to the bias d.c. field Hext; q ⊥ Hext.
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Figure 2.5: Faraday geometry where electromagnetic wave (e,h) with propagation direction
(q) parallel to the bias d.c. field Hext; q ‖ Hext.
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Faraday geometry

Faraday geometry is described as q ‖ z ‖ Hext. We can have the following cases:

q ‖ Hext ‖ z , (e ‖ x) ⊥ (h ‖ y) ⊥ Hext, (2.35)

q ‖ Hext ‖ z , (e ‖ y) ⊥ (h ‖ x) ⊥ Hext. (2.36)

The schematic of Voigt and Faraday geometry is shown in Fig. 2.4 and Fig. 2.5.
Here we can see that in Faraday geometry, h strongly couples to Hext giving us a strong
magneto-optical effect, so called the Faraday effect, where the plane of polarization of
the light is rotated from the initial plane position. This geometry has been widely used
to measured the magnetization in ferromagnetic and ferrimagnetic materials[119, 120].
Note that, there is also a coupling between h and Hext in Voigt geometry but small
compared to the Faraday case. See Fig. 2.4 for example, the torque between h and
Hext is maximum for the upper radiation while it is minimum for the lower radiation
scheme. In Faraday case, see Fig. 2.5, h is always perpendicular to Hext for both
radiation schemes giving the maximum torque always. As a result, the magneto-optic
effect in Voigt geometry is less sensitive to the mode of light polarization than in
Faraday geometry, which we shall see in the later Section.

2.1.6 Dielectric permittivity and magnetic permeability ten-
sor of the second rank

We have already introduced the properties of the medium such as dielectric permit-
tivity (ε), magnetic permeability (µ), and conductivity (σ) in Section 2.1.2. In this
section, we will discuss in more details about the properties of these quantities. In this
Thesis, we will omit σ quantity since it is not in our particular interests.

In physics, normally we have three types of quantities: scalar, vector, and tensor.
Tensor is the quantity connected to any possibly defined reference direction. The
n rank tensor defined as 3n components. Scalar and Vector can be classified as a
tensor of zero and first rank respectively. The tensor of a second rank defined by
nine numbers. It follows from the tensor algebra that the quantity, connecting the
other two physical quantities for example between f-rank and g-rank tensor quantities,
will have the [f+g] rank tensor. For example, dielectric permittivity is a second-rank
tensor quantity because it connects the dielectric displacement and the electric field,
each of which is a first-rank tensor quantity. That is why the dielectric permittivity
tensor is a second-rank tensor quantity. The same rule applies to the other physical
quantities which are in the second-rank form such as electrical conductivity, thermal
conductivity, permittivity, permeability, etc. Further reading refer to [121].

In an isotropic medium, the ε, µ, and σ quantities are scalars but more general,
the mediums are anisotropic such as the crystal and these quantities are in a second
rank tensor form. Here we will discuss for each case:
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Dielectric permittivity

Dielectric permittivity (ε) is a measure of how much a medium changes when it in-
teracts to an electric field. In an isotropic medium, (ε) is scalar quantity defined as
ε = D/E where D is displacement field and E is electric field, which are parallel
to each other. In the anisotropic medium, it is called permittivity tensor defined as
ε̃ = D/E where D are no longer parallel to E. For example, we can write the second
rank permittivity tensor in the crystal as

ε̃ =




εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


 . (2.37)

Note that the tensor multiplication is the same as in matrix or vector multiplication.
For example, we can write

Dx = εxxEx + εxyEy + εxzEz. (2.38)

In case, if the medium has

εij = εji, (2.39)

then this results in diagonal permittivity tensor in a properly defined coordinate frame
(with principal axes)

ε̃ =




εxx 0 0
0 εyy 0
0 0 εzz


 . (2.40)

The medium is uniaxial when any two pairs are equal εxx = εyy 6= εzz and biaxial
when εxx 6= εyy 6= εzz. In this Thesis, we keep the dielectric permittivity as a constant
value due to very strong magnetic absorption in Mn12-acetate sample.

Magnetic permeability

Similarly considerations are valid for the magnetic permittivity (µ), which is the degree
of magnetization of a medium in response to a magnetic field. In an isotropic medium,
µ is a scalar quantity defined as µ = B/H where B is and H are parallel. In an
anisotropic medium, it is called permeability tensor defined as µ̃ = B/H where B are
no longer parallel to H. For example, we can write the second rank permeability tensor
in the crystal as

µ̃ =




µxx µxy µxz

µyx µyy µyz

µzx µzy µzz


 . (2.41)

The permeability tensor (µ̃) was first derived by D. Polder [122]. Here we will
follow his work to have some fruitful ideas about the tensor quantities µ̃. Polder
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derived µ̃ through the ferromagnetic resonance in ferrites. When ferrites are subjected
to a d.c. polarizing field in the z direction, the spin direction of the electron cloud
makes an angle θ with respect to the z axis. We defined P as the angular momentum,
and m is the magnetic moment of the electron. If a uniform magnetic flux density
(B = Bextz = µ0Hextz) is applied, we can write the torque acts on the electron as

dP

dt
= T (2.42)

= µ0m×H

= −µ0|γ|P×H

= ωL ×P,

where ωL =| γ | Bext is the Larmor precession frequency and γ is the ratio of the
spin magnetic moment to the spin angular momentum or said to be q/me = 1.759 ×
1011 C/Kg.

We emphasize again that the first assumption is the d.c. magnetic field (Hext) is
applied in z direction. Now we apply r.f. microwave radiation (h) as an additional
perturbation creating a (small) time harmonic wave field of frequency ω. This r.f. wave
can approach the material from any direction. The time dependent term is exp{ıωt}.
Now the total magnetic field is

H = Hext + hexp{ıωt} = Hextz + hexp{ıωt}, (2.43)

where h << Hext and the material is a large sum of individual moments with identical
spin. Thus it follows the the magnetization (M = χ̃ · H, where χ̃ is the magnetic
susceptibility tensor)

M = Ms + mexp{ıωt} = Msz + mexp{ıωt}, (2.44)

where Ms is the saturated state and m is the magnetization induced by the perturba-
tion r.f. field. The torque in equation 2.42 now can be rewritten as

dM

dt
= −µ0|γ|M×H. (2.45)

By substituting forms for M and H, the Eq. 2.45 becomes

dm

dt
= − | γ | µ0(m×Hext + Ms × h + m× h), (2.46)

' − | γ | µ0(m×Hext + Ms × h),

where each component yields
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mx = ı
ωL

ω
(my −Ms

hy

Hext

), (2.47)

my = ı
ωL

ω
(Ms

hx

Hext

−mx), (2.48)

ıωmz = 0. (2.49)

We have assumed that the time dependence is exp{ıωt} and Ms and Hext lie along
z direction. We solve for M in terms of H and then derive the resulting form of
the permeability tensor by using B = µ0(H + M) = µ̃ · H, where µ0 is magnetic
permeability in vacuum. We then obtain

bx = µ0hx +
µ0ωLωs

ω2
L − ω2

hx − ı
µ0ωωs

ω2
L − ω2

hy, (2.50)

by = µ0hy +
µ0ωLωs

ω2
L − ω2

hy + ı
µ0ωωs

ω2
L − ω2

hx, (2.51)

where ωL = |γ|Bext is the Larmor precession due to the applied d.c. field. ωs = µ0|γ|Ms

depends on the materials. Now we can write the permeability tensor for the ferrite-type
materials where external d.c. magnetic field applied in z direction as

µ̃Hext‖z =




µxx µxy µxz

µyx µyy µyz

µzx µzy µzz


 =




µxx µxy 0
µyx µyy 0
0 0 µ0


 , (Hz) (2.52)

where

µxx = µyy = µ0(1 +
ωLωs

ω2
L − ω2

), (2.53)

µxy = −µyx = ı
µ0ωωs

ω2
L − ω2

. (2.54)

We can rewrite Eq. 2.52 in a conventional way as

µ̃Hext‖z = µ0




µ −ıκ 0
ıκ µ 0
0 0 1


 , (2.55)

where µ and κ are defined as

µ = 1 +
ωLωs

ω2
L − ω2

, (2.56)

κ =
ωωs

ω2
L − ω2

. (2.57)

If the material is biased by the magnetic field in another orthogonal direction. The
permeability tensor will be transformed due to the change in coordinates. Hence, if
we have Hext = Hextx, the permeability tensor will be
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µ̃Hext‖x =




µ0 0 0
0 µyy µyz

0 µzy µzz


 , (Hx) (2.58)

If Hext = Hexty, the permeability tensor will be

µ̃Hext‖y =




µxx 0 µxz

0 µ0 0
µzx 0 µ0


 , (Hy) (2.59)

Effective magnetic permeability

The macroscopic or measurable quantity of µ̃ is called effective permeability (µeff ).
This scalar quantity only depends on the geometry of the wave propagation (i.e. Voigt
and Faraday) interact with the external magnetic field. To calculate µeff , one needs to
look at the complex propagation constant (Γ) for each mode of the wave propagation.
First of all, we need the general form of Γ. It can be obtained by writing the Maxwell
equations which includes the permeability tensor taken from Eq. 2.55. We then obtain

∇× E = −ıωµ̃ ·H, (2.60)

∇×H = ıωεE. (2.61)

By eliminating the E term, we can rewrite Eq. 2.60 as

∇×∇×H = −∇2H +∇(∇ ·H) = ω2εµ̃ ·H. (2.62)

If we rewrite the plane wave solution of the perturbed r.f. radiation as

h = h0 exp{−Γ(nq · r)}, (2.63)

where h is magnetic field component of the radiation, nq is the unit wave vector
in the direction of propagation, r is the displacement vector, and the complex wave
propagation constant is Γ = α + ıβ. Then we can rewrite ∇(∇ ·H) = Γ2(nq · hnq)
which is equivalent to ∇2H = Γ2nq

2h. Now we can rewrite Eq. 2.62 as

Γ2[−n2
qh + (nq · h)nq] = ω2εµ̃ · h. (2.64)

Now we need to write down three linear equations of hx, hy, and hz from Eq. 2.62.
First we assume that the magnetic field Hext is in z direction, propagation vector is in
xz plane. Therefore we can write nq into {x, y, z} directions as; nq,y = 0, nq,x = sin ψ,
and nq,z = cos ψ , where ψ is the angle between propagation direction and Hext. These
give us the three component linear equations of hx, hy, and hz with the vanishing
determinant of the coefficients
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∣∣∣∣∣∣∣

−Γ2 cos ψ2 − ω2εµ0µ ıω2εµ0κ Γ2 sin ψ cos ψ
−ıω2εµ0κ −Γ2 − ω2εµ0µ 0

Γ2 sin ψ cos ψ 0 −Γ2 sin ψ2 − ω2εµ0

∣∣∣∣∣∣∣
= 0 (2.65)

where µ and κ are defined in Eq. 2.56. If we expand the above determinant, we can
obtain a general form of Γ as

Γ2
± = −ω2εµ0

(µ2 − µ− κ2) sin ψ2 + 2µ± [(µ2 − µ− κ2)2 sin ψ4 + 4κ2 cosψ2]1/2

2(cos ψ2 + µ sin ψ2)
. (2.66)

Finally we can determine µeff for each propagation case.

i) µeff,V for Voigt geometry

In Voigt geometry with the external magnetic field (Hz) perpendicular to the wave
propagation, the value ψ = 90o. The propagation constant in Eq. 2.66 is then

Γ‖ =
ıωε1/2

c
(
µ2 − κ2

µ
)1/2, (2.67)

Γ⊥ =
ıωε1/2

c
, (2.68)

where ε represents the dielectric constant with respect to free space. Note that we use
Γ‖ and Γ⊥ instead of Γ+ and Γ− in Voigt case.

We now have Γ‖ and Γ⊥ correspond to two modes of propagations according to
Eq. 2.33 and Eq. 2.34. We can discuss as following

Γ‖ is the propagation constant for the case (q ‖ y) ⊥ (Hext ‖ h ‖ z) , e ‖ x. In
this case, the magnetic field h of the radiation does not interact with the spin dipoles.

Γ⊥ is the propagation constant for the case (q ‖ y) ⊥ (Hext ‖ e ‖ z) , h ‖ x.
While in this case, h can interact with the spin dipoles.

The overall propagation constant can be obtained by multiply Γ‖ and Γ⊥ together,
giving the macroscopic permeability as

µeff,V = µ0
µ2 − κ2

µ
, (2.69)

= µxx − µxyµyx

µyy

. (2.70)
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ii) µeff,F for Faraday geometry

In the case of Faraday geometry, where the propagation vector is parallel to the
external magnetic field. Therefore, we have ψ = 0o, nq,x = nq,y = 0, nq,z = 1, and
h = h0exp{−Γz}. Such a special case, we need to write down the linear component
equations in Eq. 2.64 again as

−Γ2hx =
ω2

c2
ε(µhx − ıκhy), (2.71)

−Γ2hy =
ω2

c2
ε(ıκhx + µhy). (2.72)

Note that the z component has vanished. Let us take the ratio of the above two
equations. We have

hx

hy

=
µhx − ıκhy

ıκhx + µhy

, (2.73)

or

hx = ±ıhy. (2.74)

Here the imaginary quantity indicates the phase different between the +ıhy and
−ıhy terms. Inserting the above equation into Eq. 2.71, we have

Γ2
± = −ω2

c2
ε(µ± κ). (2.75)

Now we again have Γ+ and Γ−. Both corresponds to two modes of propagation
according to Ref. 2.35 and 2.36 with respect to Hext, these two modes can be thought
as the circularly polarized modes of the radiation, namely right hand circularly polar-
ization (R.H.C.) and left hand circularly polarization (L.H.C.) mode. The scalar or
effective permeability of these two opposite modes can be written as

µ(eff, L.H.C.) = µ0(µ + κ) = µxx − µxy, (2.76)

µ(eff, R.H.C.) = µ0(µ− κ) = µxx + µxy. (2.77)

For further reading, refer to [119, 120, 123, 124].

2.2 Magnetic Resonance

For the past section, we have already learnt much about how the electromagnetic
waves propagate through the medium plus the optical responses of the materials. In
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Figure 2.6: Precession of a magnetic moment (m) in a magnetic field Hext. P is an angular
momentum and α is a precession angle between m and Hext. See text for more details.

this section, we will go into details for our particularly interesting medium which is the
paramagnetic substance. This kind of materials can give us very interesting phenomena
so called the electron paramagnetic resonance (EPR). Note that there is another main
type of magnetic resonance technique called nuclear magnetic resonance (NMR). It
shares the same phenomena as EPR but for nuclear system and at the radio frequency
waves, while EPR is for the electrons and based on the microwave or at slightly higher
frequencies. In this Section, we will focus mainly on EPR phenomena but keep in
mind that NMR is theoretically based on the same magnetic resonance phenomena.

A paramagnetic medium is defined as a medium which has a very weak or no
resultant magnetic moment in the absence of an external magnetic field. However, it
can give a net magnetic moment in the direction of an applied field. Its size is also a
function of that applied field.

A paramagnetic medium can be composed of the atoms or ions which have per-
manent magnetic moments. In the case of zero applied field, these atoms or ions are
randomly oriented. When the field is applied, there is a redistribution of those atomic
(or nuclear) magnetic moments giving the net magnetic moment of the system. The
magnetic dipole moment can be written as

m = γP, (2.78)

where m is the magnetic dipole moment, P is the angular momentum of the electron
in paramagnetic atom, and γ is the magnetogyric ratio (q/me).

When this atom is placed in the magnetic field (Hext), the magnetic dipole moment
(m) will precess around the field with an angular velocity

ωL = | γ | Hext, (2.79)
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where ωL is so called the Larmor frequency. This precession can produce the oscillatory
magnetic dipole moment in any direction perpendicular to the field Hext. If there
is another oscillatory field (H1 cos ωt) perpendicular to Hext, there is a chance that
H1 cos ωt can interact with the oscillatory magnetic dipole moment and result in the
energy change of the magnetic dipole.

Let W be the energy of the dipole in the field Hext

W = m.Hext. (2.80)

A change in component mHext cos α gives the energy change of the magnetic dipole

W = mHext cos α =| γ | PHext cos α. (2.81)

To have a transition between m and m ′ levels with ∆M = ±1, the system requires
quantum energy of

h̄ω = Wm −Wm′ =| γ | h̄Hext, (2.82)

or

ω =| γ | Hext = ωL. (2.83)

The Eq. 2.83 fulfills the resonance condition between the magnetic dipole moment
m cos ωLt and the oscillatory field h cos ωt leading to the magnetic transition. Such a
resonance phenomenon is called magnetic resonance.

2.2.1 Transition probability and the transition absorption line
in the magnetic resonance

One important topic in MR is to find the transition probability (Pm,m′) of the electron
from state m → m′. We can consider this transition as following

Pm,m′ = γ2H2
1 |< ψ(m) | Ŝx,y | ψ(m′) >|2 δ(ωL − ω), (2.84)

where |< ψ(m) | Ŝx,y | ψ(m′) >| is the matrix element which is found to be zero unless
m′ = m± 1 giving the selection rule of the magnetic transition ∆m = ±1. δ(ωL − ω)
is the Dirac delta function which defined as the function being zero everywhere except
at ω = ωL. In this form, the transition lineshape will be infinitesimally sharp.

However, the Eq. 2.84 can only be justified for a single isolated moment but not in
the real macroscopic system. Therefore, we need to introduce the g(ω) or g(ν) as the
lineshape term instead of the Dirac delta function and the Eq. 2.84 becomes

Pm,m′ = γ2H2
1 |< ψ(m) | Ŝx,y | ψ(m′) >|2 g(ν). (2.85)
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The lineshape function has the dimension of time and it is proportional to the
frequency (ω = 2πν). Generally, most of the form of g(ν) are Lorentzian or Gaussian
type. For the Lorentzian type:

g(ν) =
ν2

L

ν2
L − ν2 + ıν∆νL

, (2.86)

where νL = ωL/2π is the resonance frequency.
For the Gaussian type:

g′′(ν) = (
π

8
)1/2(

ν

σL

)[exp{−(ν − νL)2

2σ2
L

}+ exp{−(ν + νL)2

2σ2
L

}], (2.87)

g′(ν) = (
2

π
)
∫ ∞

0

ν1g
′′(ν1)

ν2
1 − ν2

dν1, (2.88)

where g′′(ν) is the imaginary term, and g′ is the real term determined via the Kramers-
Kronig relation. σL is the width of the Gaussian line.

The probability of the transition is symmetric for Pm,m′ = Pm′,m with respect to
an interchange of the quantum number m. This means the probability of a transition
between two states are equal but not the number of the transitions. The latter depends
on the population of each states which can be determined by the Boltzmann factor,
which is written as

f(T ) = e(−Em/kT ), (2.89)

where T is the temperature. The total number of the transitions from all transition
modes relates to the magnetic permeability (µ) of the material through the following
relation

µ̂ = 1 +
∑

L

∆µL · g(ν)L, (2.90)

where L is the transition mode which corresponds to each resonance frequency νL in
the system. ∆µL is called the mode contribution to the static magnetic permeability
expressed as

∆µL = γ2H2
1 |< ψ(m) | Ŝx,y | ψ(m′) >|2 {N · e(−Em/kT )e(−Em′/kT )

∑
i eEi/kT Emm′

}, (2.91)

where Emm′ = (Em′ − Em),
∑

i is the sum over all of the contribution modes (e.g.
magnetic and phonon), and N is the number of the magnetic atoms per unit volume
of the material which contribute the magnetic moments in the system. Note that
we have separated g(ν) from the transition probability function in Eq. 2.85 (which is
equivalent to the ∆µ function) for simplicity.



Chapter 3

Experimental techniques

Up to now, we have learnt about the basic ideas of radiation propagation in a medium
and the magnetic resonance (MR) phenomenaon. In this Chapter, we will concentrate
more on the technical details of frequency-domain magnetic resonance spectroscopy or
FDMRS which will be our main technique for this Thesis.

In the first Section, some historical background of EPR, HFEPR, and FDMRS
spectroscopy is introduced. The second Section is about the detailed operation of
our FDMRS spectrometer. In the third Section, it is described how to transform the
polarization of the electromagnetic radiation from linear to circular polarization. The
fourth Section deals with the magnetic cryostat and its low temperature operation.
The fifth Section is the sample preparation for FDMRS techniques. The sixth Sec-
tion is the description of the FDMRS transmission measurement and transmission
spectral simulation. The last Section is to compare between the FDMRS phase and
transmission measurements.

3.1 Historical background of electron paramagnetic

resonance spectroscopy

The history of the electron paramagnetic resonance is closely related to the microwave
technique history. The first successful magnetic resonance (MR) experiment was per-
formed by E. Zavoisky [125] in 1944. He observed electron paramagnetic resonance
(EPR) in CuCl2H2O at 4.76 mT using a frequency of 133 MHz. In 1946, J. Griffiths
observed ferromagnetic resonance [126]. At the same time, in 1946, B. Bleaney et
al. [127] moved up to microwave frequencies to measure the absorption in the ammo-
nia molecule. Later they moved up to the frequencies around 9 GHz (X-band) which
became a standard of EPR. Due to the lack of technologies to produce the monochro-
matic and continuously tunable source at that time, therefore the X-band was found
to be the most compromise between cost and availability of high field electromag-
nets, high frequency radiation sources on one hand, and cavity size, sensitivity and
g-value resolution on the other. During these years, EPR has been developed allow
solid (single crystal and polycrystalline powders), frozen solution, and liquid solution
to be recorded. EPR in the range of 9-35 GHz also has became traditional tool to
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obtain structural information of transition metal compounds. Later it has been widely
applied in various field such as biology and mineralogy.

There are many reasons for going to higher magnetic fields and higher frequencies.
For example, high field EPR (HFEPR) is useful to resolve small g-value anisotropies.
In the case of large zero field splitting (ZFS), the EPR-active transitions of integer-
spin systems can not be observed at low frequencies. Such systems are called EPR-
silent, which is due to the fact that the magnetic field of a conventional X-band EPR
spectrometer usually does not exceed 2 T and the photon energy corresponds to only
0.3 cm−1. Therefore, operating at high frequencies makes it possible to study such
large ZFS integer-spin systems. Hence, in the last decade, high frequency and high field
electron paramagnetic resonance (HFEPR) research efforts in various fields of science
at the magnetic field up to 30 T and the frequency up to 700 GHz have increased
enormously. Nowadays, HFEPR spectrometers are operated at large scale facilities.
Such as the facilities operated at the National High Magnetic Field Laboratory at
Tallahasee, USA, the Grenoble High Magnetic Field Laboratory in France, and the
newly equipped at Nijmegen High Field Magnet Laboratory in The Netherlands with
numerous publications coming out each year [89, 128, 129, 130].

The first HFEPR spectrometers were based on high frequency klystrons. Besides
far-infrared (FIR) gas lasers, solid-state devices, like semiconductor Gunn diodes or
IMPATT diodes, are employed as high-frequency radiation sources in 90-500 GHz re-
gion. Although this covers a wide spectral range, these source can not be continuously
swept over a large frequency range. Sweeping of an external magnetic field is therefore
required to achieve the resonance condition. This means that ZFS parameters can be
determined only by extrapolation from non-zero magnetic fields which can possibly
lead to the wrong values.

An alternative method to obtain ZFS parameters is to sweep the frequency and keep
the magnetic field at zero or at some fixed values. This technique is called frequency-
domain magnetic resonance spectroscopy or FDMRS. It was originated by Richards
and co-workers[131] in the late 60s who used an infrared Michelson interferometer.
This type of far-infrared FIR spectroscopy combined with fixed magnetic fields allows
one to observe the parameters of the electronic spins (ZFS and g-values) for systems
which are not possible to study by conventional EPR technique. Performing EPR
investigations at different frequencies also allows one to study dynamic processes. At
different magnetic fields, interactions like the zero-field splitting (ZFS) and the Zeeman
splitting have different respective magnitudes. Estimation of ZFS parameters from the
extrapolation of the magnetic field measurement data can be inaccurate. Therefore,
using FDMRS in zero field allows one to have more accuracy in the determination of
the corresponding ZFS parameters. Recently, this technique has been widely applied
in many high spin and large ZFS splitting systems [132, 133, 134, 135]. It also has been
widely applied to several molecular magnets and molecular compounds system [133,
136, 134]. The detailed operation of FDMRS technique will be discussed in a later
Section.

The advantages of FDMRS over the other powerful techniques in this scope (to
obtain the ZFS parameter in zero magnetic field) such as inelastic neutron scattering
(INS) is that in INS, gram amounts of deuterated sample are needed while in FDMRS,
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only few hundred milligrams are required, depending on the absorption properties of
the materials. INS can be carried out only at a small number of large facilities due to
the need of a nuclear reactor or a particle accelerator as the neutron source. However,
the advantage of the INS over FDMRS is ∆S = ±1 transitions which are not allowed
in EPR or other optical spectroscopies.

3.2 Frequency-domain magnetic resonance spectro-

scopy

During the 1960s, there were major improvements in the development of the backward-
wave oscillators (BWOs) as monochromatic and continuously tunable sources. Our
success in building a high-frequency domain spectrometer is mainly due to using high
frequency BWOs. A BWO [138] is a vacuum tube similar to a magnetron, a klystron
or a travelling-wave tube in the sense that electrons are generated and accelerated
and transform their kinetic energy to generate electromagnetic waves. Fig. 3.1 shows
a schematic diagram of a (high-frequency) backward wave oscillator, the cathode is
heated by an electrical heater which is located next to it, and emits electrons. Applying
a high voltage accelerates the electrons towards the anode. In order to collimate the
electron beam, the source is placed in a permanent magnet. On the way to the anode,
the electrons pass over a comb-like fine metallic structure where charges and electric
fields modulate the electron velocity and group them in bunches. The acceleration and
deceleration causes the electrons to excite and sustain an electromagnetic wave which
travels in the direction opposite to the electron beam and exits the source through an
oversized waveguide. For a given comb structure, the frequency of this radiation is
determined purely by the velocity of the electrons and hence by the magnitude of the
high voltage. Thus, changing the voltage allows one to tune the frequency continuously.

The radiation generated by BWOs is coherent, monochromatic and linearly po-
larized to a high degree. The spectrum of the output power of various BWOs is
shown in Fig. 3.2. The frequency range of 1-48 cm−1is covered by different sources.
The low-frequency BWOs (up to 6 cm−1) are irreversibly incorporated in a small
samarium-cobalt magnet. The high-frequency sources (> 180 GHz) are placed in a
1.2 T permanent magnet which focuses the electron beam.

We let the radiation propagates through free space without using any wave-guide.
Fig. 3.3 shows the diagram of our spectrometer setup. It is the typical arrangement
of an optical Mach-Zehnder interferometer. The radiation is generated by the BWOs,
collimated to a parallel beam and focused onto a detector by set of lenses made of PE
or PTFE. The Mach-Zehnder interferometer is formed by two beam splitters and two
metal mirrors. For transmission measurements only one arm of the interferometer is in
used while for the phase measurements the interferometer is utilized to its full extent.
The detector is a Golay cell which has a frequency independent response the whole
submillimeter wavelength range. Whereas, a helium-cooled pumped bolometer is used
when higher sensitivity is needed. The beam splitters and polarizers are made of closely
spaced, parallel tungsten wire grids which reflect the electric field component E‖ and
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Figure 3.1: Schematic diagram of a backward wave oscillator[138]. 1) heater, 2) emit-
ter(cathode), 3) electron beam, 4) collector(anode), 5) permanent magnet, 6) deceleration
system, 7) electromagnetic wave, 8) waveguide, and 9) water cooling.

allow E⊥ to pass through. The lenses are Teflon or fused-Silica type with typical di-
ameter of 5-10 cm and focal length of 5-20 cm. The samples are plane parallel slabs of
3-10 mm in diameter where the thickness can be varied depending on the absorption of
the materials. To have a good signal-to-noise ratio, the transmission coefficient should
be larger than 10−4 − 10−5. For zero-field measurement a homemade helium bath
cryostat (T=1.5-300 K) is used, and for zero or in-field measurement(T=1.5-300 K,
H=0-8 T) an Oxford Instruments Spectromag 4000 with a split-coil superconducting
magnet is used, which is equipped with Large nonabsorbent thin polymer films win-
dows. Both Voigt (q⊥Hext) and Faraday (q‖Hext) geometries can be used (where q
is the propagational wavevector, and Hext is the external applied magnetic field).

The transmission coefficient (Tr), is determined as the ratio of the signal with the
sample and without the sample in the quasi-optical channel. For phase-shift measure-
ment, the movable mirror-1 in the reference arm as shown in Fig. 3.3 is adjusted in
length to make the beam in both arms interfere destructively at the detector. From
the position of mirror-1, the optical phase shift is evaluated as a function of frequency.
Practically, resolution can be as good as 0.1 MHz allowing one to map extremely nar-
row lines. All measurements are computer controlled and performed fully automated
on a real time scale of a few seconds.
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Figure 3.2: Radiation characteristics of BWOs, shown as the output power of various BWOs
vs. frequency from 30 GHz to 1400 GHz (1-48 cm−1).
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Figure 3.3: Schematic setup of the FDMRS spectrometer. For transmission measurements,
the reference arm of the interferometer (in the dash box) is not used. The reference arm is
only used for phase measurement. The q vector is the direction of the radiation propagation
which can be parallel or perpendicular to the external field Hext corresponding to Faraday
and Voigt geometry respectively.
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3.3 Polarization transforming

The type of polarization of the electromagnetic radiation (linear, circular, or elliptic) is
determined by the direction of the oscillation plane of electric field vector (e). We use
a millimeter-wave quasi-optical polarization transformer which allows the continuous
change of the phase difference between two orthogonal components of the electric
field vector. As shown in Fig. 3.4, polarizer-1 (P1) creates linearly polarized light
at the angle α1 = 0o and polarizer-2 (P2) polarizes the radiation at α2 = 45o. The
polarization transformer consists of a mobile uniform metal mirror and a fixed grid
under 45o with beam. The component of the vector e parallel to the grid wires will
be reflected. The perpendicular e component will pass through and reflect at the
mirror. By changing the distance d between the mirror and the wire grid of the
polarization transformer, the outgoing beam to the detector will consist of two waves
with mutually perpendicular polarization and with phase difference, ∆φ = 2πd

√
2/λ.

By changing d , consequently the phase difference, ∆φ, changes. For two orthogonal x
and y components of the electric field; ex and ey with equal amplitudes the trajectory
(a) of the e vector is given by;

e2
x + e2

y − 2exeycos∆φ = a2sin2∆φ. (3.1)

This allows one to get any polarization of the outgoing beam by changing ∆φ or d at
the polarization transformer; linear (ex = (−1)mey for ∆φ = mπ when m = 0,±1, ...),
circular (e2

x + e2
y = a2 for ∆φ = ±π/2) , or elliptic in all other cases. The phase

difference must be π/2 and 3π/2 to create right hand circular (R.H.C.) and left hand
circular (L.H.C.) respectively. Experimentally it can also been done by switching
polarizer-2 to +π/4 and −π/4 for R.H.C. and L.H.C. respectively.

We have confirmed our polarization transformation setup by using two mirror-grid
transformers namely MG1 and MG2. We used MG1 to produce circularly polarized
light. After that, we used MG2 to convert back the circular to linearly polarized light
in order to confirm that we truly have a real circularly polarized wave from MG1 with
equal amplitude in all direction, not an average signal or an unpolarized signal (refer
to theory of polarization in Section 2.1.4). We placed MG2 right after the cryostat.
We checked the output signal as a function of the analyzer angle at P2, MG1, and
MG2. The result is shown in Fig.3.5 which confirms us that we had truly circularly
polarized radiation by using the mirror-grid transformer (MG1) ie. with the quality of
98-99% at 300GHz wave, 88-95% in the frequency range of 294-304 GHz. The quality
of the circular polarization decreased sharply outside that frequency range. During the
experiment we always had to fine tune to obtain the best quality of circularly polarized
light at each frequency.

3.4 Operating the magnetic cryostat

A commercial magnetic cryostat with a superconducting magnet Oxford Spectromag
4000 was used to perform the temperature measurements (1.5-300 K) in a magnetic
field (0-8 T).
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Figure 3.4: Experimental setup in Faraday geometry combined with the use of circularly
polarized radiation. The radiation propagates through polarizer-1 (P1) at α1 = 0o and
polarizer-2 (P2) at α2 = 45o having vectorially the orthogonal electric field vector components
(ex and ey). The mirror-grid transformer (Mirror − Grid1) creates the right phase shift
between these ex and ey vectors producing the circularly polarized radiation, (see text).

0 45 90 135 180 225 270 315 360

1

10

 P2
 MG1
 MG2

 

 

Si
gn

al
 (v

ol
t)

Analyzer angle (degree)

Figure 3.5: Angular dependence of the detector signal after mirror-grid-1 (MG1), mirror-
grid-2 (MG2), polarizer-2 (P2), (see text). The beam is linearly polarized at the polarizer-2
(P2 with α = +45o) placed after the polarizer-1 (P1 with α = 0o), the beam is circularly
polarized at MG1, and the signal is back to linear polarized again at MG2.
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Figure 3.6: Schematic diagram of our Spectromag4000 - magnetic cryostat.
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The variable temperature insert (VTI) allows us to adjust the temperature of a
sample continuously over a wide range (1.5-300 K). The outer part of VTI is equipped
with large windows for the optical access for two opposite sides. The inner part of the
VTI insert is vacuum isolated from the liquid helium reservoir. There is a radiation
shield between the sample space and the helium reservoir, and a liquid nitrogen reser-
voir between the helium reservoir and the outer vacuum chamber (OVC) to reduce the
heat load.

The sample space is connected to the reservoir by an indium sealed capillary tube
and a needle valve. The sample is mounted on a top loading probe which is inserted
into the VTI in the flowing helium gas. The liquid helium is drawn from the main
reservoir to the sample space through a needle valve which adjusted by a stepping
motor to control the flow. The sample temperature can be controlled by balancing
the cooling power of the liquid helium flow with the heater controlled by an Oxford
Instruments ITC503 temperature controller. The heater and control thermometer
were mounted on the sample rod. In principle, the needle valve is also equipped with
a heater in order to clear any ice blockage in the small capillaries between the sample
space and the reservoir without warming the whole system up to room temperature.

Temperatures below 4.2 K can be reached by reducing the vapor pressure of liquid
helium in the sample space. We set the needle valve in order to let the liquid he-
lium fill in the sample space continuously. Having the right flow rate can replace the
evaporating liquid and maintain a constant liquid level. The base temperature in this
continuous fill mode is 1.7 K.

The magnet consists of a number of coaxial solenoid sections wound using multifil-
amentary superconducting wire. This magnet is both physically and thermally stable
under the large Lorentz forces generated during operation. The superconducting mag-
net has the ability to be operated in the persistent mode where the superconducting
circuit is closed to form a continuous loop and the power supply can be switched off
leaving the magnet at field. To have the magnet in the normal or nonsuperconducting
state, the switch has to be warmed by the switch heater in order to hold it open. After
the magnet reaches the desired field, the induced voltage across the switch drops to
zero and all current flows through the magnet. The switch is closed by turning off the
heater thus allowing the magnet to return to the superconducting state. Normally we
can the run the magnet up to 7 T.

3.5 Sample preparation

The sample is mounted on the sample holder which is placed in a cryostat. The
aperture with the diameter larger than the radiation wavelength is placed in front of
the sample. The sample size depends on the size of this aperture. Powder samples are
pressed into plane parallel pellets. For single crystals, if the resonance frequency of
interest falls around a few wavenumbers then the crystal diameter should be around
a centimeter. The typical single crystal size is around a few millimeter, therefore, a
mosaics of a few single crystals must be prepared. It can be done by glueing the single
crystals on a mylar layer where the main axis of the crystals must point into the same
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Figure 3.7: Mn12-acetate-mosaic of single crystals with 0.5 mm thickness and 7 × 7 mm2

area. The crystals are fixed with epoxy with the main axis in the plane of the mosaic.

direction i.e. parallel or perpendicular to the mylar layer. After the glue had dried,
we polished both sides of the mosaic surface in order to have a plane parallel sample.
At the last step, we filled in the hole between the imperfectly shaped crystals with
the graphite powder in order to avoid standing wave effects from the diffraction and
reflection through the holes between the crystals. In this Thesis, we prepared two
types of Mn12-acetate mosaics as shown in Fig. 3.7 and Fig. 3.8 with the anisotropy
axis (main axis) parallel and perpendicular to the mylar plane, respectively. The
plane parallel pressed pellet sample is shown in Fig. 3.9. The synthesis method of
Mn12-acetate crystals was described by Lis[51].

3.6 Simulating FDMRS transmission spectra

This Section, we will learn the basic concept of how to analyse the absorption line
measured by FDMRS with the background knowledge from Chapter 2 and Chapter 3.

The transmission coefficient spectra (Tr) from the FDMRS technique are obtained
from the ratio of the transmission measurement from the the sample channel (Isample)
and empty channel (Ihole).

Tr(ν) =
Isample(ν)

Ihole(ν)
, (3.2)

where ν is the frequency.
However, simulation of Tr(ν) is not simple since it is a complicated function of the

complex dielectric permittivity ε̂ and complex magnetic permeability µ̂.
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Figure 3.8: Mn12-acetate-mosaic of single crystals with 0.5 mm thickness and 4 × 4 mm2

area. They are fixed with epoxy with the main axis perpendicular to the plane.

Figure 3.9: Mn12-acetate-plane parallel pressed pellet with diameter 10 mm and thickness
1.32 mm.
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ε̂(ν) = ε′(ν) + ıε′′(ν), (3.3)

µ̂(ν) = µ′(ν) + ıµ′′(ν), (3.4)

where ε′(ν) is the effective dielectric constant, ε′′(ν) is the dielectric absorption, µ′(ν) is
the magnetic permeability, and µ′′(ν) is the magnetic absorption. As we have explained
in Section 2.1.6, in an anisotropic system, ε̂(ν) and µ̂(ν) are tensors, and the latter
one is antisymmetric in a case of a magnetized medium.

The optical response functions of the medium normally appear in a pair such as
refractive index (n) and extinction index (k) and are related to the medium properties
such as ε̂ and µ̂, (refer to Section 2.1.2). If one measures the transmission coefficient
(Tr) and the phase change (Φ) spectra, one can obtain the medium properties (ε̂, µ̂)
through those response functions (n,k) by the use of the Fresnel formulas given in
Eq. 2.19, and Eq. 2.22 (Section 2.1.3), which can be rewritten as [137, 138, 139]

Tr(ν) = E
(1−R)2 + 4R sin2 ψ

(1−RE)2 + 4RE sin2 (Q + ψ)
. (3.5)

The phase change Φ can be expressed as

Φ = Q + arctan
ER sin 2(Q + ψ)

1− ER cos 2(Q + ψ)
+ arctan

b

b2 + a2 + a
− arctan

b

a + 1
,(3.6)

where Q and E are function of the real refractive index (n), the extinction coefficient
(k), the frequency (ν), and the sample thickness (d).

E = exp{−4πkνd}, (3.7)

Q = 2πnνd. (3.8)

The complex refractive index (N̂) is given by

N̂ = n + ık, (3.9)

where the optical response N̂ is related to the materials parameters ε̂ and µ̂ through

n =
θ2

2
, (3.10)

k =

√√√√−θ1 +
√

θ2
1 + θ2

2

2
, (3.11)

θ1 = ε′µ′ − ε′′µ′′, (3.12)

θ2 = ε′µ′′ − ε′′µ′. (3.13)
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Similarly to N̂ , R is also a function of ε̂ and µ̂

R =
(a− 1)2 + b2

(a + 1)2 + b2
, (3.14)

a =

√√√√α1 +
√

α2
1 + α2

2

2
, (3.15)

b =
α2

2a
, (3.16)

α1 =
µ′ε′ + µ′′ε′′

ε′2 + ε′′2
, (3.17)

α2 =
µ′′ε′ + µ′ε′′

ε′2 + ε′′2
. (3.18)

The last parameter is ψ which is also a function of ε̂ and µ̂

ψ = arctan
2b

a2 + b2 − 1
. (3.19)

For further analysis, here we simply consider two types of media; a dielectric and
a magnetic medium. One with only a dielectric response and one with both dielectric
and magnetic responses.

3.6.1 Dielectric medium

For a purely dielectric medium, there is no magnetic resonance contribution to the ab-
sorption process. The optical response can be determined by a pair of optical response
functions: such as refractive index (n) and extinction index (k), real and imaginary
part of the dielectric permittivity (ε′, ε′′), or real and imaginary part of optical conduc-
tivity (σ′, σ′′), etc. A typical transmission coefficient spectra of a dielectric sample is
shown in Fig. 3.10. The oscillation is caused by the interference of the waves travelling
through a plane parallel medium with a thickness comparable to the wavelength. We
can numerically evaluate any pair of those material parameters via Eq. 3.5 by assum-
ing that µ′(ν) = 1 and µ′′(ν) = 0. There is no need to measure the phase spectra in
this case. Further reading about dielectric measurements can be found in Ref. [138].

3.6.2 Magnetic medium

For magnetic medium, the simulation of the transmission coefficient spectra is rather
complicated since both dielectric and magnetic properties become important. We need
to determine two pairs of unknown parameters; (ε′, ε′′) and (µ′, µ′′).

First we determine the dielectric constants. This can be done outside of the res-
onance line or at temperature where the magnetic resonance line is absent. The di-
electric parameters are then kept constant throughout the fit process. For this part of
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Figure 3.10: Transmission spectrum of a dielectric sample: quartz glass. (See text for the
spectrum analysis).

the fit, we assume that µ′ = 1 and µ′′ = 0. When we obtain these dielectric properties
(ε′, ε′′), we can interpolate them in the magnetic resonance region.

Next we fit the magnetic permeability in the magnetic resonance region. We can
calculate the quantity µ̂ from Eq. 2.90, Section 2.2.1. For simplicity, we write this
term µ̂ for one magnetic absorption mode presented as

µ̂(ν) = 1 + ∆µ · g(ν), (3.20)

where all the parameters have been explained in Section 2.2.1.
In the case of H ‖ z, the permeability tensor can be written as in Eq. 2.52, where

µ component can be simply written as

µ̂xx = µ̂yy = 1 + ∆µ · g(ν), (3.21)

µ̂xy = −µ̂yx = ı∆µ · g(ν). (3.22)

In Voigt geometry, the effective permeability from Eq. 2.70 can be expressed as

µ̂eff, V = 1 +
∆µ · g(ν)

1 + ∆µ · g(ν)
. (3.23)

In Faraday geometry, the effective permeability from Eq. 2.76-2.77 can be written
as
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temperature T=30 K, there is no magnetic resonance line (b) at T=15 K, three magnetic
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µ̂eff, F, L.H.C. = 1 + ∆µ · g(ν)− ı∆µ · g(ν), (3.24)

µ̂eff, F, R.H.C. = 1 + ∆µ · g(ν) + ı∆µ · g(ν). (3.25)

Here we have to assume the lineshape function (g(ν)) in Eq. 2.85 to be in either
Lorentzian (Eq. 2.86) or Gaussian form (Eq. 2.87-2.88). The last step is to put the
above parameters into Eq. 3.5.

For a polycrystalline sample, we need to average the permeability with respect to
their orientation (θ) in the applied magnetic field (Hz) as follows

µ̂xx,yy = (1 + ∆µ · g(ν)) · (1 + cos2 θ)/2, (3.26)

µ̂xy,yx = ±ı∆µ · g(ν) · cos θ, (3.27)

µ̂zz = (1 + ∆µ · g(ν)) · sin2 θ, (3.28)

3.7 Phase and transmission measurement

So far we have used only the transmission measurement with the fitting model to
extract the magnetic mode parameters and the complex permeability µ′(ν) and µ′′(ν).
However, it is possible to directly obtain µ′(ν) and µ′′(ν) spectra without any model
consideration by using both transmission and phase measurements. In this way, we
also can check the validity of our fitting model.

In the phase measurement, both channels of the FDMRS setup are used (refer to
Fig. 3.3) and form a two beam polarization interferometer (Mach-Zehnder interfer-
ometer). It is operated by moving the movable mobile mirror during the frequency
scan. The measurable quantity is a displacement 4(ν) of the movable mobile mirror.
This implies that the spectrometer registers the change in the optical thickness of the
sample vs. frequency. The phase spectrum φ(ν) of the sample is determined from the
difference 4(ν)−40(ν).

The transmission spectra is shown in Fig. 3.12(a)-dot. The phase spectrum of
the polycrystalline sample in a zero magnetic field is shown in Fig. 3.12(b). The
permeability µ′(ν) in Fig. 3.12(d)-(dot) and µ′′(ν) spectrum in Fig. 3.12(c) -dot are
calculated via the corresponding transmission spectra, phase spectra and preliminary
found dielectric constants (in Fig. 3.12(c) and (d)-dash line).

We have compared the result between µ′(ν) and µ′′(ν) obtained from experiment
(Fig. 3.12(d)-dot and (c)-dot), and calculation (Fig. 3.12(d)-line and (c)-line) to the
phase spectrum (Fig. 3.12(b)-dot). The results are in good agreement.

We can see that we do not need to do the phase measurement (Φ) since the simu-
lation of Tr spectra has already given us the µ′, µ′′ parameters. Nevertheless, to check
the accuracy of this Tr spectra simulation model, one needs to measure the phase shift
for the comparison.
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Figure 3.12: Mn12-acetate pellet at T = 5.2 K (a)Transmission spectra (b) Phase spectra.
(c)+(d) Spectra of the complex permeability µ′′ and µ′ extracted from transmission and
phase spectra by direct calculations. The ε′ and ε′′ are obtained directly from the fitting of
the transmission line in (a) and are shown as the dash line in (d) and (c) respectively.
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Chapter 4

Magnetic Resonance in
Mn12-acetate

In this chapter, we demonstrate that FDMRS is a powerful technique to quantitatively
study the material properties of Mn12-acetate molecular magnetic clusters. Detailed
studies of the transmission spectra measurement of Mn12-acetate in zero and non
zero applied magnetic field are described. We observed magnetic transitions in the
frequency range ν = 6−12 cm−1. We qualitatively and quantitatively study the effects
of the temperature and field dependence to the zero field splitting (ZFS) transition
in Mn12-acetate. The Chapter is divided into two Sections. In the first Section,
we studied the temperature dependence of the resonance frequencies, linewidths, and
mode contributions to the magnetic permeability in the temperature range 1.9-30 K
and in zero magnetic field. In the second Section, we study the field dependence of
the ZFS transition in the magnetic field up to 7 T. The studies of the transmission
lineshape are very rich in details. The results show the origin of the line broadening
in the Mn12-acetate clusters.

4.1 Experimental

We studied two different types of Mn12-acetate samples; (a) plane parallel pressed
pellets with a diameter of 10 mm and thicknesses ranging from d ∼ 0.5 − 2 mm and
(b) a mosaic of single crystals with their easy axes in the plane of the mosaic with a
thickness of about 0.5 mm and diameter 7× 7 mm2 as described in Chapter 3.

Note that in this chapter, we restricted ourselves to the Voigt geometry, where
the wave vector of the radiation is perpendicular to the applied magnetic field (q ⊥
Hext, see Chapter 3). We used linear polarization radiation within the frequency
range 6 − 12 cm−1. First we performed the zero field transmission measurement in
temperature range of 1.7-30 K. Next we applied an external magnetic field of up to
7 Tesla to zero field cooled samples at temperatures of 1.9-14 K and recorded the
transmission spectra. The transmission measurement technique has been described in
Chapter 3.

81
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Figure 4.1: Transmission spectra of a 0.5 mm thick mosaic of Mn12-acetate single crystals
for two different directions of magnetic field vector of the radiation: h ⊥ C4 where the
absorption lines are found and h ‖ C4 where there is no absorption line. C4 is the easy axis
of the Mn12-acetate crystal.

4.2 Part 1: Zero field measurement

4.2.1 Experimental results and analysis

Checking a mosaic alignment

Before doing any measurement, first we have to check the quality of the crystal align-
ment of our mosaic sample. We measured the transmission using the radiation with
the magnetic field vector h parallel and perpendicular to the easy axis C4 of the mo-
saics. The measurement was done at 4 K without applied magnetic field. The result
is shown in Fig. 4.1. We found two absorption lines when h ⊥ C4 and no absorption
line when h ‖ C4. This is due to the magnetic interaction between the magnetic
moment (µ) in the sample and the magnetic field vector of the radiation. It causes
the magneto-dipolar transition only when h × µ 6= 0. In other words, from a quan-
tum mechanical point of view, there is a matrix element containing Ŝx,y or Ŝ±, which
causes the magneto-dipolar transition, only when h is not parallel to C4. The results
in Fig. 4.1 has confirmed us that our crystal alignment is accurate within at maximum
a few degrees.

Transmission measurement without applied magnetic field

We measured transmission spectra of both Mn12-acetate mosaic (aligned single crys-
tals) and pellet (polycrystal) samples. Fig. 4.2(a), and Fig. 4.3(a) show the frequency
dependent transmission Tr(ν) of the Mn12-acetate single crystals and Mn12-acetate
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Figure 4.2: Temperature dependence measurement of Mn12-acetate single crystal mosaic
with a 0.49 mm thickness (a) Transmission coefficient spectra; mode 1 corresponds to the
|± 10〉 → |±9〉 CF transition, mode 2 to |±9〉 → |±8〉, mode 3 to |± 8〉 → |±7〉. (b) Mode
contribution to the static magnetic permeability of the CF transitions obtained by fitting
the transmission spectra as well as calculated. (c) Gaussian linewidths of the transmission
spectra as a function of temperature. (d) Magnetic resonance frequency as a function of
temperature.
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Figure 4.3: Temperature dependence measurement of Mn12-acetate pellet with a 1.326 mm
thickness (a) Transmission coefficient spectra: mode 1 correspond to the | ± 10〉 → |± 9〉 CF
transition, mode 2 to | ± 9〉 → | ± 8〉, mode 3 to | ± 8〉 → | ± 7〉. (b) Mode contribution to
the static magnetic permeability of the CF transitions obtained by fitting the transmission
spectra as well as calculated. (c) Gaussian linewidths of the transmission spectra as a function
of temperature. (d) Magnetic resonance frequency as a function of temperature.
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pellet recorded at several temperatures (5-35 K). We observed 3 absorption modes in
both samples. Note that mode-3 in the single crystal can hardly be observed. This is
due to the smaller thickness of the single crystals sample which gives a lower number
of the transitions meaning a lower signal compared to the pellet sample.

The three observed modes belong to the magneto-dipolar transitions between;
mode-1: | ±10 > to | ±9 >, mode-2: | ±9 > to | ±8 >, and mode-3: | ±8 > to | ±7 >
(see Chapter 1). For T > 30 K, these absorption lines are absent. The transmission
spectra for both single crystals and pellet are more or less flat, with slight oscillations
connected to the interference of the radiation inside the plane parallel sample. As the
temperature is lowered a series of narrow absorption lines arise at ν ≤ 10 cm−1 in the
Tr(ν) spectra. On reducing the temperature further, the low-frequency lines become
weaker while the intensity of the higher frequency line keeps increasing. Below T ≈ 3 K
only one narrow absorption line (mode-1) remains (approximately at 10 cm−1).

In Fig. 4.2(a), and Fig. 4.3(a), the solid lines represent the theoretical fitting spec-
tra using a single Gaussian lineshape per resonance mode. A Lorentzian lineshape
does not fit here in our case. The fitting method has been described in Chapter
3. During the fitting process, the dielectric constants were determined by fitting the
spectra outside the magnetic lines, using corresponding interference oscillations. To
follow the temperature dependence of the absorption lines, their intensities, widths
and absorption frequencies from both sample are investigated.

First we investigate the temperature dependence of the line intensity for each mode
as a function of the mode contributions (∆µ). For H=0, the total contributions are
∆µ10 = ∆µ+10 + ∆µ−10, ∆µ9 = ∆µ+9 + ∆µ−9, and ∆µ8 = ∆µ+8 + ∆µ−8 for the
observed transitions | ± 10〉 → |± 9〉, | ± 9〉 → |± 8〉, and | ± 8〉 → |± 7〉, respectively.
We have calculated ∆µk, where k = ±10,±9,±8, from Eq. 2.89-2.90 which can be
here written again as

∆µk = γ2H2
1 |< ψ(m) | Ŝx,y | ψ(m′) >|2 {N · (e−Em/kT − e−Em′/kT )∑

i e−Ei/kT Em′m
}, (4.1)

where the parameter details have been described in Section 2.2.1. To obtain the effec-
tive permeability, the components of the permeability tensor must be first calculated
(see Eq. 2.52 and Eq. 2.70). We have µxx,yy = µ⊥ = 1 + ∆µ · g(ν), µxy,yx = 0,
and µzz = µ‖ = µ0. The g(ν) function is the lineshape which is better described by
Gaussian than Lorentzian type. For Mn12-acetate, we calculate the number of atoms
per unit volume as N = ρNa/M where density ρ = 1.83 g cm−3, number of atoms
Na = 6.022 × 1023 mol−1, and molecular weight M = 2059.28 g mol−1. We used
γ = g‖ · µB, where we found g‖ = 1.93 taken as a fit parameter. We have plotted
our results shown in Fig. 4.2(b) and Fig. 4.3(b). The lines represent the theoretical
calculated values of ∆µk, and the symbols represent the ∆µk values obtained as direct
fit parameters from the experimental spectra. Both direct calculated µk and fitted µk

are in good agreement.
In Fig. 4.2(b) and Fig. 4.3(b), we found strong a temperature dependence of ∆µk.

When lowering the temperature, the intensity of the high frequency mode increases
monotonically. While the intensities of the lower frequency modes display maxima at
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Parameters FDMRS [132] INS [141] EPR [128] HFEPR [54]
D, (cm−1) −0.389± 0.01 −0.375± 0.01 -0.41 −0.388± 0.02
B, (cm−1) (−7.65± 0.05)× 10−4 (−8.34± 0.06)× 10−4 6.1× 10−4 (−7.7± 0.02)× 10−4

C, (cm−1) ±2× 10−5 - ±2× 10−5 ±4× 10−5

Table 4.1: Zero field splitting parameters of Mn12-acetate.

around 10 K for mode-2 and 20 K for mode-3. Below 5 K, these modes practically
disappear in our experimental spectra. This can be explained by the level population,
which is a function of temperature, and can be described as the Boltzmann distribution
function exp{−Em/kT} − exp{Em′/kT}/[∑i exp{−Ei/kT}], where Em is the energy
of m level and i is the number of all transition modes (both magnetic and phonon).

Note that, we have added one extra mode around 30-40 cm−1as a correction mode in
the partition function (

∑
i exp{Ei/kT}) of the Boltzmann term for both single crystals

and polycrystalline sample, in order to obtain a better fit of the high temperature tail.
As shown in Fig. 4.4, the tail of the experimental data (symbols) are fitted much better
by adding an extra mode at higher frequency (30-40 cm−1). The best fit is obtained by
adding 38 cm−1mode into the spectrum. This high frequency mode has been observed
by far infrared measurements (FIR) [140] and INS measurements [55], and confirmed
to be a phonon mode [140]. We also have done the high frequency measurement (up
to 70 cm−1) in the pellet sample using FIR spectrometer. The result is shown in
Fig. 4.5. The extra mode are found at 35 cm−1, and 53 cm−1. The 35 cm−1mode
which is closed to our estimation at 38 cm−1from the fitting procedure, does not shift
in a 7 T magnetic field. There is also no shift for the 53 cm−1mode in the magnetic
field. Therefore, we confirm the observed transition mode at 35 cm−1and 53 cm−1as
phonon modes.

Next we investigated the resonance frequencies as a function of the temperature.
The frequency of all modes νk are shown in Fig. 4.2(d) and Fig. 4.3(d) for single crystals
and polycrystalline sample. For both samples, we observed temperature independence
of the resonance frequencies of all three modes in the observed range. This suggests
that the temperature does not effect the local environment that causes the ZFS. The
observed modes are mode-1 at 10.02 cm−1, mode-2 at 8.50 cm−1, and mode-3 at
7.2 cm−1. We used these values to estimate the ZFS parameters D, B, C of the spin
Hamiltonian Hcf = DS2

z + BS4
z + C(S4

+ + S4
−)/2 (see in Chapter 1). We obtained

D = −0.389 cm−1, B = −7.65× 10−4 cm−1, and C = ±2× 10−5 cm−1.

We have compared our results to INS measurement by Y.Zhong et al. [141], EPR
measurement by S. Hill et al. [128], and HFEPR measurement by A.L. Barra et al. [54]
as shown in Table 4.1. Note that, the values in Table 4.1 are recalculated in order to
have the same spin Hamiltonian forms and same unit. We found good agreements of
ZFS parameters obtained from our FDMRS techniques and the other relevant tech-
niques. In FDMRS and INS techniques, the term gµBS.H is of no importance because
we measured in zero magnetic field. However, in HFEPR or EPR techniques, sweeping
magnetic field is needed in order to match the transition energy and the energy of the
fixed r.f. field. Therefore, the g-value can be a crucial parameter in that case.
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Figure 4.5: The high frequency spectra measured by FIR spectrometer in 0 T and 7 T mag-
netic field at temperature 10 K of Mn12-acetate pellet sample. There is no field dependence
of the transition modes at 35 cm−1and 53 cm−1. The transition line at about 10 cm−1belongs
to the magnetic transition | 10 >→| 9 > within the S=10 ground state.



4.2. PART 1: ZERO FIELD MEASUREMENT 89

Then we followed the linewidth of each mode as a function of temperature. Here
we express the Gaussian linewidth as σ. We have taken σk as a fitting parameter
while using the theoretically calculated ∆µk as a fixed parameter. The result is
shown in Fig. 4.2(c) for single crystals, and Fig. 4.3(c) for the polycrystalline sample.
The linewidth from the single crystals sample (σcrys ≈ 0.08 − 0.09 cm−1, therefore
FWHMsingle ≈ 2

√
2ln2σ ≈ 0.188− 0.212 cm−1 for mode-1) is slightly smaller than the

pellet sample (σpell ≈ 0.09− 0.10 cm−1, therefore FWHMpell ≈ 0.212− 0.235 cm−1for
mode-1). The broader line from the pellet compared to the mosaic sample is due
to the microcrystals in the pellet which have been subjected to varying stresses that
corresponds to slightly broader Gaussian line [142]. For both samples, we found slight
temperature dependence of σ for all modes (pronouncedly in mode-2 and mode-3)
under the error bar of ±8% approximately.

4.2.2 Discussion

We have found that inclusion of an extra mode at 38 cm−1in our theoretical ∆µ calcu-
lation significantly improves the high temperature part of the temperature dependence
of ∆µ. This mode is not due to any transitions within S=10 ground state. However, it
does play a role in the partition function

∑
i e
−Ei/kT , which sums over both magnetic

and nonmagnetic levels. M. Hennion et al. have also observed high frequency modes
at 40 cm−1, and 70 cm−1in zero field measurement by INS [55]. In the reports of A.B.
Sushkov et al. [140], the line at 35 cm−1has been observed. It does not move in a
magnetic field.

The resonance lines have an average Gaussian linewidth of σ ≈ 0.08 − 0.1 cm−1.
Two possible causes for the observed Gaussian broadening are the dipolar fields which
is a temperature dependent term, and the distribution in the ZFS parameter (D),
namely D-strain, which is a temperature independent term. For the dipolar fields, σdip

estimated by B. Parks et al. [144] is around ≈ 220 Oe combined with the reported
σhyp ≈ 50-70 Oe [7, 109], can give the contribution to the linewidth ≈ 0.03 cm−1only.
This value is not enough to explain our obtained linewidth σ = 0.08 − 0.1 cm−1. It
implies that the other main contribution to the observed Gaussian linewidth comes
from the distribution of the ZFS parameter; D. It is approximately σ±10/ν10 = σD/(D+
181B) ≈ σD/D; in our case we have σD ≈ 0.01D [59, 144]. Note that σ±10 is the Gaus-
sian linewidth of the transition mode-1 (| ±10 >→| ±9 >). The broader distribution
from D parameter compared to the dipolar broadening, is the reason of the limited
temperature dependence of the linewidth in Mn12-acetate system.

In a real crystal, this D-strain can be due to the effects such as dislocations [18],
or isomer forms within the same single crystal [58]. A. Cornia et al. have shown that
disorder of acetic acid can induce different coordination surroundings at Mn3+ ions
resulting in six different isomers (see Chapter 1). The three most abundant isomers
have D = -0.76 K, -0.778 K, and -0.788 K giving ∆D/D ≈ 0.01 which is similar to what
we have estimated above; σD ≈ 0.01D. We have used the above three isomers with
different D to quantitatively simulate three isomer absorption lines for the transition
mode1 (| ±10 >→| ±9 >), where we used the same value of linewidth (σ) for all lines.
As shown in Fig. 4.6, we found the fit is much improved especially at the outer limits
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Figure 4.6: Fit of the | ±10 >→| ±9 > resonance line of the single crystal sample according
to two different models. The dashed line represents a single Gaussian line. The solid line
represents the simulation using the ZFS parameters of the three most abundant isomers in
the Cornia model [58].

of the absorption line.

However beside D-strain, g-strain which was found in literature to be around
σg ≈ 0.002g [143, 145] can also give a contribution to the linewidth in the in-field
measurement. We will discuss this effect in the next section when we apply the exter-
nal magnetic field.

4.3 Part 2: Measurement in magnetic field (H‖z)
4.3.1 Experimental results, analysis, and discussion

Fig. 4.7 shows transmission spectra recorded on a single crystal mosaic at temperature
14 K with and without applied magnetic field. By applying the external magnetic field,
the Zeeman effect causes the magneto-dipolar transitions to split. Two absorption
lines, which are degenerate at H = 0, move up and down in frequency proportional
to the magnetic field (white dot spectra in Fig. 4.7). The absorption line which shifts
up in frequency becomes stronger at the expense of its low-frequency counterpart.
This behavior can be explained by the distribution of the level population due to the
strength of the magnetic field.

First we calculated the frequencies of the split states (± | m >→ ± | m− 1 >) in
the magnetic field. See the Hamiltonian including the applied field in Chapter 1.
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Figure 4.7: Zeeman splitting of the | ± 10〉 → | ± 9〉 ZFS transition. The 14 K transmission
spectra were recorded in the external magnetic field H = 0 and 0.5 T.

hνp = Em−1,H − Em,H , (4.2)

hνm = E−m+1,H − E−m,H , (4.3)

where the frequency νp and νm corresponds to the transition | +m >→| +m − 1 >
and | −m >→| −m + 1 > respectively. Em,H is the energy of level m as a function of
the applied magnetic field (H = Hext).

If the system is disturbed by the magnetic field, the population correspond to the
p-transition (| +10 >→| +9 >) and the m-transition (| −10 >→| −9 >) will be biased.
Therefore, we introduce the factor (p = [0..1]) to correct ∆µ as

∆µ = ∆µp + ∆µm, (4.4)

∆µp =
ν0

νp

p∆µ0, (4.5)

∆µm =
ν0

νm

(1− p)∆µ0. (4.6)

The p and 1 − p factor represent how much the population presents in the state
| +10 > and | −10 > respectively. Note that, in this case, we fitted ∆µ instead of
using the calculated one. We need the correction term ν0/νp and ν0/νm for ∆µp and
∆µm respectively in H 6= 0. Since, in H = 0 case, ∆µ is a function of 1/ν0 (refer to
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the term 1/Emm′ = 1/(Em′−Em) = 1/hν0) in Eq. 4.1). Therefore, in H 6= 0, there is a
need for the correction term ν0/ν

′, where ν ′ is the transition frequency corresponding
to the field H 6= 0.

Thereafter, we simulated the spectrum by using the same procedure as described
in Section 3.6. The simulation spectra for H = 0.5 T of all three observed modes are
shown in Fig. 4.7 (white dots). An overview of the Zeeman splitting in a larger field
range is given in the Fig. 4.8(a), where the resonance frequencies of the various ZFS
transitions are plotted as a function of applied magnetic field up to 6 Tesla. Those
average slope corresponds to g‖ = 1.93± 0.02.

Up to this point, we can obtain g‖ from the slope of the plot in Fig. 4.8(a); g‖ =
1.93 ± 0.02 which is close to the value obtained from HFEPR by A.L. Barra et
al. [54]; g‖ = 1.93 ± 0.01, while g‖ ≈ 1.97 − 2.08 was obtained from EPR by S.
Hill et al. [128].

In Fig. 4.8(b), we plot Gaussian linewidth of the transition | +10 >→| +9 > and
| +9 >→| +8 > of the single crystal mosaics as a function of the applied magnetic
field in z direction. We found the linewidth independent of the field. Therefore, there
is no g-strain in our case, which is in contrast to the report by S. Hill et al. [128, 142].

In the case of a polycrystalline sample, the result is shown in Fig.4.9 where the
transmission coefficients of the first mode (| ±10 >→| ±9 >) are plotted against the
applied magnetic field. We found the transmission lines of polycrystal are broader
than the single crystals one. Due to the random orientation of the easy axis in the
crystals, the lines are much inhomogeneously broadened at the higher field. In this
case, we need to average the permeability in Eq. 4.1 with respect to their orientation.
The average function is f = 〈f(θH)〉 = 1

2

∫ π
0 f(θH) sin θHdθH , where θH is the angle

between the easy axis and the magnetic field Hz.
At Hz = 0, the spectra is symmetric Gaussian. At the higher field, the spectral be-

come asymmetric Gaussian. It is due to the inhomogeneous splitting of the degenerate
| ±10 > and | ±9 > state with the frequency (νp and νm) calculated from Eq. 4.2, and
Eq. 4.3. In the spin Hamiltonian, we have Hz = H cos θH plus the average value of
the permeability tensor components. These make the line becomes much broader than
the single crystal case. In this case, the line broadening is because of Hz = H cos θH

term. Different molecules experience different longitudinal fields.

4.4 Conclusion

Using a novel type of frequency-swept EPR spectroscopy, we have performed a detailed
study of the crystal-field transitions in Mn12-acetate (for both single crystals and
a polycrystalline sample) at temperature 1.5 K < T < 40 K and magnetic fields
up to 7 T in Voigt geometry. The analysis of our experimental data shows that
the spectroscopic characteristics of the ZFS transitions in Mn12-acetate persist for
the different kinds of samples. Result from the oriented single crystals (mosaic) and
polycrystalline pellets are in a good agreement with each other. We have quantitatively
described the observed transmission spectra for both H = 0 and H 6= 0. We have
determined the mode contribution to the static magnetic permeability, linewidth and
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Figure 4.8: (a) Magnetic field dependence of the resonance frequencies of the ZFS transitions
in a magnetic field up to 5 T recorded on the single crystal sample. (b) Gaussian linewidth
of the transition | +10 >→| +9 > (black dots), and | +9 >→| +8 > (white dots) in the
single crystal mosaic at T=14 K, plotted as a function of the magnetic field.
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Figure 4.9: Magnetic field dependence of the | ± 10〉 → | ± 9〉 transition of the pellet of
Mn12-acetate at T = 1.9 K. The solid lines represent theoretical description.

transition frequencies as a function of temperature and magnetic field. We obtained
the main characteristics of the ZFS transitions such as ZFS parameters and g-value.
We conclude that the contributions to the inhomogeneous broadening of the ZFS
transition in Mn12-acetate are the dipolar field, and the distribution in CF parameter
(D-strain) but not g-strain in our case.



Chapter 5

Magnetic resonance - lineshape
studies on Mn12-acetate

In Chapter 4, the material properties of Mn12-acetate (ZFS parameters, g-factor, and
magnetic permeability contribution) were quantitatively studied in Voigt geometry.
In this Chapter, the magneto-optical properties of the same sample are investigated.
It is shown that the magnetic resonance lineshapes strongly depend on the relative
orientation of the magnetic field, radiation propagation direction and the magnetic
state of the sample. These features are mainly due to the magneto-optical properties
rather than the magnetic resonance properties of the sample. Measurements were
performed in Voigt and Faraday geometry, in magnetized (fc) and non-magnetized
(zfc) states, and by using linearly and circularly polarized radiation. The magnetic
resonance lineshapes are described quantitatively and qualitatively. The findings of
this Chapter have some important consequences for magnetic resonance measurements
in general.

5.1 Experiment

The experiments are divided into two main parts according to two different arrange-
ments; Voigt (H ⊥ q) and Faraday (H ‖ q) geometries (see Section 2.1.5). The
Mn12-acetate samples were separately prepared for each geometry (see Section 3.4).
The sample was mounted on a sample holder with the easy axes of the crystals ly-
ing parallel to the applied magnetic field. For both geometries, we performed the
transmission measurement at low temperature (1.7 − 3.3 K), in order to probe the
magneto-dipolar transitions between the lowest lying states (| ±10 >→| ±9 >).

In Voigt geometry, the external field is perpendicular to the radiation propagation,
H ⊥ q. We used linearly polarized radiation with h ⊥ H to probe the transmission
line. First we performed the zero field cooled measurement (zfc) by cooling the sample
down to 1.7 K without an applied magnetic field. Then, we measured the transmission
line. After that, we heated up the sample to 70 K in order to start the field cooled
measurement (fc). When we reached 70 K, we applied a magnetic field of 2 T. Then
we cooled the sample down to 1.7 K in the field. As soon as the temperature had

95
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stabilized, we switched off the field. Finally, we measured the transmission line in
zero field again but in the magnetized state. We used only linearly polarized radiation
to probe the transmission because the spectrum is not sensitive to the magnetization
state of the sample when using circularly polarized radiation in Voigt geometry.

In Faraday geometry as we have explained in Section 2.1.5, there is a very strong
coupling between the magnetic vector h of the r.f. radiation and the magnetized
medium (magnetized by the external magnetic field). Recall that in Faraday geometry,
the rotating h of circularly polarized radiation is always perpendicular to the external
magnetic field, while in Voigt geometry, it is not always the case.

We used linearly polarized radiation to probe the transmission line. We placed
an extra analyzer in front of the detector. We will explain the analyzer effect in the
analysis and discussion part.

First of all, we performed the zero field and field cooled measurement, similarly to
what we have done in Voigt geometry. We found an extreme transformation of the
lineshape between magnetized and demagnetized states. Next we set the analyzer in
front of the detector at different angles ie. 0o, +45o,−45o, +90o. We measured the
transmission line of the sample in fc state in zero magnetic field as a function of the
analyzer angle.

Secondly, we performed the circular light experiment with zfc and fc condition at
1.77 K. We measured the transmission spectra using circularly polarized light. We
found the absorption line for for both L.H.C. and R.H.C. in zfc case. In fc case,
depending on the direction of the field, we found an absorption for L.H.C. but not
for R.H.C. if we cooled the sample in +H and vice versa for -H field. We did not use
the analyzer in this case, since there is no change in the spectra lineshape with and
without an analyzer.

5.2 Mn12-acetate in Voigt geometry

5.2.1 zfc and fc measurement with linearly polarized radia-
tion in Voigt geometry

Experimental results

The results of zfc and fc measurement in zero magnetic field using linearly polarized
radiation at 2.33 K are shown in Fig. 5.1. We found that the resonance line in the zfc
case lies at a frequency of 10.002 cm−1and has a symmetric lineshape. In the fc case,
the resonance line is around 10.10 cm−1and has an asymmetric lineshape. After the fc
measurement, we kept measuring the transmission spectra at the same temperature,
increasing the magnetic field up to 1.8 T. We found that the resonance line remains
asymmetrical. The results are shown in Fig. 5.2.

Analysis and discussion

For quantitative analysis of the spectra [59], we have to determine the optical response
using the effective magnetic permeability in the case of Voigt geometry (see Section
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Figure 5.1: Transmission spectra (dots) due to | ±10 >→| ±9 > magnetic transitions in the
Mn12-acetate single crystals measured at T=2.33 K and in zero magnetic field. In the zfc
case, the absorption line is at 10.002 cm−1while in the fc case, it is shifted to 10.10 cm−1.
The solid lines show the calculation results using a single Gaussian line model and the dashed
lines show the calculation results using the isomer model (see text). The zfc line is found to
be a symmetric Gaussian whereas the fc line is found to be an asymmetric Gaussian.



98CHAPTER 5. MAGNETIC RESONANCE - LINESHAPE STUDIES ON MN12-ACETATE

9.6 10.0 10.4 10.8 11.2 11.6 12.0

0.01

0.1

1

 

 

H=0.9 T H=1.8 T

T=2.33K
H=0

Mn12ac

T
ra

ns
m

is
si

on
 c

oe
ffi

ci
en

t

Frequency (cm-1)

Figure 5.2: Absorption due to the | ±10 >→| ±9 > crystal field transition in Mn12-acetate
single crystals at T=2.33 K measured at different magnetic fields. The solid lines represent
the calculations using single Gaussian lines.

3.6),

µ̂eff = µ̂xx(ν)− µ̂xy(ν)µ̂yx(ν)/µ̂yy(ν), (5.1)

where

µ̂xx = µ̂yy = 1 + ∆µ · g(ν), (5.2)

µ̂xy = −µ̂yx = ı∆µ · g(ν), (5.3)

where all parameter details have been described in Section 2.2.1 and Section 3.6. In
general, g(ν) can be Gaussian or Lorentzian lineshape described in Eq. 2.86-2.88.

In the zfc case, the external magnetic field is absent, and the average magnetization
in the Mn12-acetate sample is zero. The offdiagonal components (µ̂xy and µ̂yx) are
therefore zero, while the diagonal components still exist.

In the fc case, the external magnetic field is still absent in the zero field measure-
ment. However, we have cooled the sample in a strong field therefore the average
magnetization of the sample is not zero. Consequently, the off-diagonal components
appear while the diagonal components remain the same as in zfc case. Hence, from
Eq. 5.1, we obtained the µ̂eff for zfc and fc case as

µ̂eff,zfc(ν) = 1 + ∆µ±10 · g(ν), (5.4)

µ̂eff,fc(ν) = 1 +
∆µ+10 · g(ν)

1 + ∆µ+10 · g(ν)
, (5.5)
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where all components of permeability tensor have been described in Eq. 5.2, and
Eq. 5.3. ∆µ±10 refers to the mode contribution in zfc case, where the transitions can
occur from both | ±10 >→| ±9 > states. In + fc case, the transition occurs only from
| +10 >→| +9 > state.

We used the transmission spectra fitting model explained in Section 3.6 combined
with the effective magnetic permeability in Eq. 5.4 and Eq. 5.5 to fit our data. We
found a better spectral fit with Gaussian lineshapes than with Lorentzian ones. The
argument for using Gaussian lineshape due to the distribution of the crystal field
parameters has already been discussed in Section 4.2.2.

In Fig. 5.1, those two spectra represent the transitions from state | 10 >→| 9 >.
We found a frequency shift of ≈ 0.098 cm−1, from ν10 = 10.002 cm−1 in zfc case to
ν ′10 = 10.10 cm−1in fc case. There are two contributions that cause the line shift; the
effect of the magnetic permeability (∆νµeff

), and the internal field (∆νint).
The shift can be first estimated from the change in the permeability. In Eq. 5.5,

the minimum in transmission is where the denominator goes to zero. Therefore, we
can estimate the line shift as; ν̄ = ν ′10

√
1 + ∆µ. From fitting procedure, we found

∆µ+10 ≈ 0.008. Hence, the change in µeff gives ∆νµeff
= ν̄10 − ν10 ≈ 0.07 cm−1.

The other contribution to the frequency shift is due to the internal dipolar field;
Heff = Hext + Hdip = Hext + λM, where λM is the magnetic field proportional to
the averaged magnetization M (M=0 in zfc and M=Ms in fc). λ is magneto-dipolar
tensor, where λ‖ ≡ λzz and λ⊥ ≡ λxx = λyy. Note that in our case, the transverse
internal dipolar fields ∼ λ⊥M⊥ play very small role. Thus we set this value to zero.
The frequency shift in fc state is hν ′10 = hν10 + gµBλ‖Ms. From the fit, we found the
internal field about 0.024 cm−1, where the average calculated dipolar is predicted to
be gµBλ‖M0 ≈ 0.01− 0.02 cm−1 [109, 31, 115, 98].

Therefore, total frequency shift from the above discussions (∆νµeff
≈ 0.07 cm−1and

∆νint ≈ 0.024 cm−1) is ≈ 0.094 cm−1. This value is in good agreement with the
experimental frequency shift (∆νexp = 0.098 cm−1). Note that, the above arguments
of the lineshift (the difference in µ̂eff and the influence of Hdip) also valid for the
Lorentzian line. Hence, the frequency shift effect can be found in both Gaussian and
Lorentzian lineshape. However, the asymmetry of the line in Eq. 5.5 occurs only in the
case of a Gaussian lineshape but not Lorentzian lineshape. The Lorentzian lineshape
stays symmetric for both fc and zfc case. We have simulated the imaginary part of the
magnetic permeability (µ′′) which corresponds to the magnetic resonance absorption
term for both Gaussian and Lorentzian type in the fc case. An asymmetry of the
magnetic resonance line was also observed in EPR measurement of Mn12-acetate by
Hill et al.[142]. We simulated the spectra measured in the magnetic field up to 1.8 T
as shown as a solid line in Fig. 5.2. The asymmetry still remains in fc state as we have
predicted.

Note that, generally the intensity of the resonance line is a function of resonance
frequency. The amplitude of the field is reduced by the higher exponential factor
exp(−2πk/n) per wavelength in the medium. As shown in Fig. 5.2, the theoretical
transmission line is deeper at higher frequency. However we do not see this effect in
our experimental data. It is possibly due to experimental limitations e.g. parasitic
radiation in the cryostat.
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Figure 5.3: Imaginary part of magnetic permeability(µ′′) compared between Gaussian and
Lorentzian lineshape at zero magnetic field (H=0) for fc state.

Qualitatively, there are several contributions to the inhomogeneous broadening of
CF-transitions such as the random distribution of magneto-dipolar fields [109, 145,
142], hyperfine fields [109, 146, 147], tilting of the anisotropy axes of single Mn12-
acetate molecules from c-axis [148], local variations of CF parameters (D-strains) [58,
59, 18, 142, 145] etc. However in our case, the tilt of the easy axis of Mn12-acetate from
the direction of the magnetic field can hardly play a role, since in our observation, the
asymmetry does not vanish in zero external magnetic field.

5.3 Mn12-acetate in Faraday geometry

5.3.1 Mn12-acetate in Faraday geometry measured with lin-
early polarized radiation

In this Section, we performed the measurement in Faraday geometry with linearly
polarized light. An additional analyzer is placed in front of the detector. Without
the analyzer, we have half the intensity signal compared to Voigt spectra. This will
be explained later in the Section. When an analyzer is introduced, the lineshape
changes dramatically. We studied the influence of the magnetic states (zfc and fc) and
the angular dependence of an analyzer to the magneto-optical lineshape in Faraday
geometry.
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Figure 5.4: Transmission spectra from | ±10 >→| ±9 > states in Faraday geometry mea-
sured at temperature 3.3 K and in magnetic field 0 T. Black dots and white dots represent
the zero field cooled zfc and field cooled fc measurement respectively. Lines represent the
theoretical calculation. (See text)

Experimental results

We used linearly polarized light to probe the transmission spectra of the | ±10 >→
| ±9 > transitions. First, we placed the analyzer set at 0o in the front of the detector.
We cooled the sample from room temperature down to 3.3 K in zero magnetic field (zfc
measurement). When the temperature was stabilized, we measured the transmission
spectra. The result is shown in Fig. 5.4 (white dots). The line shape is similar to the
one obtained from zfc measurement in Voigt geometry. The resonance frequency of zfc
state is at 10.02 cm−1.

Then we heated the sample to 80 K and then applied the magnetic field to 2 T. We
started to cool the sample down again to 3.3 K in 2 T field (fc measurement). When
temperature reached 3.3 K, we switched the field to zero and immediately measured
the transmission line. The result is in Fig. 5.4 (black dots). We can clearly see that, the
lineshape in fc state is significantly different from the zfc one. The absorption intensity
is half of the zfc spectra. However, the resonance frequency remains unchanged at
10.02 cm−1. A slight asymmetry between the two minima of the fc lineshape is due to
the fact that the analyzer angle is slightly off from 0o.

Next we measured the fc transmission spectra in the zero magnetic field using
different analyzer angles (0o, +45o, -45o, 90o) at temperature 1.77 K. The results are
shown in Fig. 5.5 where we found that the peculiar lineshape structure depends on the
analyzer angle.
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Analysis and discussion

Recall that the magnetic field (H) is oriented along the z-direction. Therefore, we
can write the same magnetic permeability tensor as Eq. 2.52, where all magnetic
permeability components are defined as Eq. 5.2 and Eq. 5.3. If we use linearly polarized
light which its q vector parallel to H, we can view this as a combination of two
circularly polarized wave (left and right hand) as explained in Section 2.1.6. The
effective magnetic permeability in Faraday geometry using linearly polarized light can
be written as Eq. 3.24-3.25. However in this Section, they will be rewritten as

µ̂(eff, left) = 1 +
1

2
(1− p) ∆µ10 · g(ν)− ı

1

2
p∆µ10 · g(ν), (5.6)

µ̂(eff, right) = 1 +
1

2
(1− p)∆µ10 · g(ν) + ı

1

2
p∆µ10 · g(ν), (5.7)

where g(ν) is the lineshape function (see Section 2.2.1). The notation left belongs to
L.H.C. wave and right belongs to R.H.C. wave. p is a population factor defined as a
difference between the populations in the | +10 > and | −10 > states. We set p = 1
for fc case and p = 0 for zfc case.

We fitted the spectral using g(ν) as a Gaussian lineshape. The sample thickness is
0.75 mm. The fixed parameters for both cases (zfc and fc) are the dielectric constant
ε = 4.9, linewidth σG ' 0.09 cm−1, and mode contribution ∆µ ' 0.0085. The effective
permeability for each case can be discussed as follows:

i) Zero field cooled case (zfc) - demagnetized state

In this case, we have p=0 then the effective magnetic permeability can be rewritten
as following

µ̂(eff, zfc, left) = 1 +
1

2
∆µ10 · g(ν), (5.8)

µ̂(eff, zfc, right) = 1 +
1

2
∆µ10 · g(ν). (5.9)

We can see that in zfc case, the effective permeability of L.H.C. and R.H.C. ra-
diation are the same, meaning that the absorption are equal. The offdiagonal terms
(imaginary terms) are also zero for both cases.

ii) Field cooled case (fc) - magnetized state

We have p = 1, then the effective magnetic permeability can be rewritten as (see
Eq. 5.6 and Eq. 5.7)

µ̂(eff, fc, left) = 1− ı
1

2
∆µ10 · g(ν), (5.10)

µ̂(eff, fc, right) = 1 + ı
1

2
∆µ10 · g(ν). (5.11)



5.3. MN12-ACETATE IN FARADAY GEOMETRY 103

In the fc case, we can see that the effective permeabilities for L.H.C. and R.H.C.
radiation are not the same, meaning that the absorption is different. See the example
in Fig. 5.8(a). The offdiagonal terms (imaginary terms) are present in both cases.

To analyze the Faraday transmission spectra in general, first we have to consider
the following optical parameters for L.H.C. and R.H.C. wave (see Section 2.1.2).

n2
left − k2

left = ε′µ′( eff, left), (5.12)

2nleftkleft = ε′µ′′( eff, left) − ε′′µ′( eff, left), (5.13)

n2
right − k2

right = ε′µ′( eff, right), (5.14)

2nrightkright = ε′µ′′( eff, right) − ε′′µ′( eff, right). (5.15)

The real part of the dielectric constant (ε′) is taken to be equal for both waves.
The imaginary part (ε′′) is zero in our case. The difference is in the permeability terms
(see Eq. 5.6-5.7). The phase shift at the boundary of the transmitted to the incident
wave of L.H.C. and R.H.C. radiation can be approximated as

φ = arctan
−k

n + 1
, (5.16)

φp = arctan
−kleft

nleft + 1
, (5.17)

φm = arctan
−kright

nright + 1
. (5.18)

For more than one boundary, the φ formula has a complicated form [118].
In general, the transmission spectra can be calculated from Eq. 3.5. In Faraday

case, we separate the transmission spectra for the two circularly polarized waves; Trp

for the transition from | +10 >→| +9 > and Trm for the transition from | −10 >→|
−9 >, since they both interact with the magnetic sample in Faraday geometry in a
different manner. Recall that in the present geometry, the magnetic field component
(h) of the radiation is perpendicular to the applied d.c. field (H). The precession of
hL.H.C. and hR.H.C. is in opposite directions.

Due to the different angle of an analyzer, the signal at the detector is an angular
sum of the complex transmission Trp and Trm respects to their amplitude and phase.
Here we can mathematically summarize the sum of the complex transmitted waves as
a function of the analyzer angle as follows (see diagram in Fig. 5.6).

Tr0 = | Trp + Trm

2
|2, (5.19)

Tr90 = | ıT rp − Trm

2
|2, (5.20)

Tr+45 = |
Trp+Trm

2
cos 45− ıTrp−Trm

2
sin 45

cos 45
|2, (5.21)

Tr−45 = |
Trp+Trm

2
cos 45 + ıTrp−Trm

2
sin 45

cos 45
|2, (5.22)
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where the sum has to take into account both amplitude and phase. See Fig. 5.6.
To explain the results in Fig. 5.4-(dots), we can discuss as follows:
In the zfc case, both Trp and Trm spectra have the same amplitude (Eq. 5.8-5.9) and

phase (Eq. 5.17-5.18), where nleft = nright and kleft = kright. The interference result
(Eq. 5.19) becomes a normal spectral shape as appears in Voigt geometry. However in
the fc case, Trp and Trm spectra do not have the same amplitude (Eq. 5.10-5.11) and
phase (Eq. 5.17-5.18), where nleft 6= nright and kleft 6= kright. The interference result
(Eq. 5.19) is totally different from the zfc case. The simulation results are shown in
Fig. 5.4-(lines). Qualitative details of the lineshape analysis will be discussed later in
this Section.

As far as our knowledge, there is no report on the transmission measurement of
Mn12-acetate in Faraday geometry. The significant change of the lineshape from mag-
netized (fc) to demagnetized state (zfc) in Faraday geometry can be connected to the
role of the offdiagonal terms in the permeability tensor. Note that, the offdiagonal
terms are related to the interaction between the light and the magnetization in the
sample. In Faraday geometry, there is no frequency shift effect in the fc case as in Voigt
geometry. The resonance frequencies of the zfc and fc state lie at the same frequency at
10.02 cm−1. Due to the effective permeability of L.H.C. and R.H.C. radiation contain
the opposite sign of the offdiagonal terms. See Eq. 5.6 and Eq. 5.7. Therefore the
frequency shift due to the offdiagonal terms is cancelled out.

In Fig. 5.5-(dots), the results of the angular dependence of an analyzer angle are
shown. We measured the transmission in fc case but in zero field. The analysis is
based on the fc case as we have discussed in the earlier part. We sum Trp and Trm

spectra using Eq. 5.19-5.22 depending on the analyzer angle. The simulation of the
spectra for each analyzer angle is shown in Fig. 5.5-(solid lines). Qualitatively, the
peculiar lineshape can be understood as follows.

In order to understand the effect of the analyzer, first we have to know the physical
form of our radiation in xy-coordinate. To do so, we have to look at the electric field
term. The electric field vectors Ep and Em of Trp and Trm transmission radiation can
be written as

Ep ∝ | Trp |
2

exp ı(φp − α), (5.23)

Em ∝ | Trm |
2

exp ı(φm − α), (5.24)

where the first term |Trp,m|
2

corresponds to the amplitude and the exponential term
corresponds to the phase. α is an analyzer angle. φp and φm are the phase changes of
the transmitted radiation (refer to Eq. 5.17-5.18). Note that, the size of the individual
Ep and Em vectors are not variance when they are plotted as a function of the phase
angle. It means they both remain their circularly polarization but a sum between Ep

and Em vector does not necessary to keep their circular polarization, depending on
their amplitude and their phase difference.

If | Ep | and | Em | represent the size of the electric field vectors Ep and Em re-
spectively, then:
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Figure 5.5: Transmission spectra of a 0.75 mm thick mosaic of Mn12-acetate single crys-
tals in zero magnetic field and at 1.77 K. Each spectra belongs to the analyzer angle at
0o, +45o,−45o,+90o.
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Figure 5.6: Schematic diagram shows the sum of two opposite circular mode spectra (Trp

and Trm) on the polar coordinate at different analyzer angles (dashed lines). Recall that
Trp and Trm are complex quantities and can be represented as a combination between real
and imaginary vectors under the right angle (arrow lines). However they have the opposite
phase, therefore their imaginary vectors are in the opposite directions. The analyzer is also
represented in the polar coordinate (θ = 0o−360o). Only the vectors which have the parallel
component to the analyzer can go through and then interference, otherwise, they are blocked.
(See Eq. 5.19- 5.22 for quantitative formulas).
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Figure 5.7: Faraday transmission spectra measured at 1.77 K and at the analyzer angle
α = 0o, which lies horizontal. The small diagrams show the sum between the intensity of
the Ep and Em spectra for the phase angle 0-360o at certain frequencies. (see text).

case i. If | Ep | = | Em |→ Ep + Em is linear polarized.
case ii. If | Ep | 6= | Em |→ Ep + Em is elliptic polarized.
case iii. If | Ep | = 0 or | Em | = 0 → Ep + Em is circular polarized.

At the frequency near and at the resonance frequency, there is a rotation of the
major axis of the radiation leaving the sample which is called the Faraday rotation
with the rotating angle (θF ). It can be expressed as

θF = (
√

ε′µ(eff, left) −
√

ε′µ(eff, right) )
ω

2c
d. (5.25)

The dielectric constants and effective permeability are referred to Eq. 5.10-5.15. ω
is the wave frequency. c is the light speed. d is the thickness of the sample. The
simulation of the Faraday angle as a function of frequency is shown in Fig. 5.8(b)-
(line). The Faraday rotation calculated from the experimental spectra is shown in
Fig. 5.8(b)-(dots). The calculation is based on the following formula.

tan 2θF =
Tr45 − Tr−45

4Tr0 − Tr+45 − Tr−45

. (5.26)
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The derivation of the above formula is through the coordinate transformation from
xy-coordinate to the coordinate of the main axes of the elliptic. See the inset diagram
in Fig. 5.8(c).

The radiation leaving the sample has a polarization form as a vector sum of Esum =
Ep + Em with the phase difference taken into account, see Eq. 5.23- 5.24. During the
360o rotation of the phase of the light, the minimum and maximum value of the electric
field vector of Esum are Emin and Emax respectively. The ellipticity can be defined as

Ellipticity =
E2

min

E2
max

. (5.27)

The simulation of the ellipticity using the simulated Trp and Trm spectra from
Fig. 5.8(a) is shown in Fig. 5.8(c)-(solid line). The calculation of the ellipticity using
the experimental spectra from Fig. 5.5 is shown in Fig. 5.8(c)-(dots). Note that in
the experimental spectra, the ellipticity is not close to unity. This is due to imperfect
polarization of the radiation.

To quantitatively analyze the Faraday spectra, let us consider the situation before
the linearly polarized light enters the sample. At this stage, the linear light can be
viewed as a sum of the same phase and the same amplitude of L.H.C. and R.H.C.light.
When the light pass through the sample, the following situation can occur:

i. At nonresonance frequencies, there is no absorption for both circular modes.
Both waves are transmitted with equal amplitude and phase. Their combination is
linearly polarized light (Fig. 5.8(c)), where the ellipticity is close to zero, meaning that
it is linearly polarized. From Fig. 5.8(b), Faraday angle (θF ) is zero, implying that the
polarization vector of the transmitted wave is parallel to the incident one.

ii. At the resonance frequency ≈ 10 cm−1, only L.H.C. light interacts with the
sample, while R.H.C. light does not. Referring to Fig. 5.8(a), L.H.C. is virtually com-
pletely absorbed, whereas R.H.C. is not. In this case, the radiation leaving the sample
is the R.H.C. light only. See Fig. 5.7 at frequency of 10 cm−1, and Fig. 5.8(c), where
the ellipticity is close to unity for the simulated spectra. Therefore, the signal at the
detector placed after the analyzer is equal in all angular directions. The real resonance
line at 10 cm−1remains the same in all cases of the analyzer angle (Fig. 5.5(a)-(d)).
In Fig. 5.8(b), the Faraday rotation is also zero due to the fact that circular radiation
has no major polarization axis.

iii. In case that the radiation is close but not at the resonance frequency, there is
partial absorption for L.H.C. radiation while there is no absorption for R.H.C. radia-
tion. In this situation, the signal after the sample is a sum of the L.H.C. and R.H.C.
with unequal amplitudes and different phases. The typical interference result will be
elliptically polarized radiation. See Fig. 5.7 at frequency of 9.8 cm−1and Fig. 5.8(c).
The Faraday rotation is varied, ranging from +100o to -100o (see Fig. 5.8(b)).

Depending on the angle of the analyzer (α), the detector can observe only the
projection of the elliptically polarized wave parallel to the analyzer as shown in Fig. 5.5
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Figure 5.8: (a) Simulation of the individual L.H.C. and R.H.C. transmission spectra Trp

and Trm. (b) Simulated and experimentally obtained Faraday rotation angles (θF ). (c)
Simulation and experimental calculation of the ellipticity. (See text)
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(a)-(d). In some special cases ie. at some special frequencies, the analyzer cuts through
the minor axis of the elliptic light. This results in a minimum in the signal, which
can be clearly seen as a pseudo-peak at nonresonance frequencies in the transmission
spectra. See Fig. 5.7 at frequency of 9.8 cm−1 for example.

The interference between two circular modes (L.H.C. and R.H.C. radiation) is
similar to the magnetic circular dichroism phenomena where the rotation of the polar-
ization axis is found due to the different absorption of both circular modes. In the real
Faraday effect, the rotation is rather due to the difference in the refraction term, while
the absorption term is zero. In our case, the rotation is due to both refraction and ab-
sorption terms. The rotation of the major axis of the radiation found in Mn12-acetate
suggests that Mn12-acetate can be used as a molecular rotator at low temperature
with continuous frequencies tuning by the external magnetic field. Moreover at the
resonance frequency, we notice that by using the linearly polarized light, we obtain
the circularly polarized light. This suggests Mn12-acetate can be used as a molecular
polarization transformer with continuous frequencies. However, the experimental ra-
tio between the L.H.C. and R.H.C. absorbtion has to be optimized and the very low
working temperature has to be taken into account.

5.3.2 Faraday geometry: in magnetic field measurement with
circularly polarized radiation.

Experimental results

In this Section, we performed the transmission measurement by using circularly polar-
ized radiation. The polarization transforming technique has been described in Section
3.3. Note that, in principle circular polarization can be obtained only at a fixed fre-
quency. However, in our case we scan the frequency in a small range of 310-350 GHz
(≈ 10.33− 11.67 cm−1). We still obtain good quality of the circular polarization at
and near the resonance frequency (±5 GHz) was 90-98%. At the frequencies ±20 GHz
from the resonance frequency, the quality of the circular polarization drops to 60%.

First, we measured the zfc sample in a magnetic field 0 T at 1.77 K using R.H.C.
and L.H.C. light. We found the absorption for both polarizations as shown in Fig. 5.9.

Next we measured the transmission spectra at 1.77 K in +1 T magnetic field.
We found the absorption line at 10.94 cm−1 for L.H.C. radiation only but not for
R.H.C. radiation. See Fig. 5.10(a). Then we cooled the sample in -1 T, and mea-
sured the transmission spectra at 1.77 K. We found the absorption line for R.H.C. at
10.94 cm−1 but not L.H.C. radiation in this case. See Fig. 5.10(b).

Analysis and Discussion

The analysis for both zfc and fc can be treated similarly to Section 5.3.1. The
transmission lineshape from the circular polarized radiation appears to be a single line
which is different from the case of using linear polarized radiation where the absorption
line is in a complex interference form. Because we only used one circular mode at a
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Figure 5.9: Transmission coefficient spectra of zfc Mn12-acetate sample at 1.77 K in zero
field. The absorption from both L.H.C. and R.H.C. radiation are observed.

time, therefore, there will be no interference between two individual spectra (Trp for
L.H.C. and Trm for R.H.C.) as in Section 5.3.1.

In the zfc case, the effective magnetic permeability of the system can be written
as Eq. 5.8 and Eq. 5.9, where there is no offdiagonal term. Both L.H.C. and R.H.C.
light have the equal absorption probability (1/2∆µ10). Transmission spectra can be
calculated separately for each individual mode (Trp and Trm). Since both circular
modes have the same absorption and same resonance frequency, therefore the simulated
spectra (Trp and Trm) are the same in both amplitude and phase as shown in Fig. 5.9-
(solid line).

In +fc case, we follow the effective magnetic permeability in Eq. 5.10 for L.H.C.
light and Eq. 5.11 for R.H.C. light for +1 T fc case. L.H.C. light has the absorption
term ∆µ10 because the all spin population is in the | +m > state. R.H.C. light has
zero absorption because no spin population is in the | −m > state. Therefore, we can
see only the absorption in L.H.C. light but not R.H.C light. The simulation of the
transmission spectra of L.H.C. absorption (Trp) is shown in Fig. 5.10(a)-(solid line).

In-fc case, we follow Eq. 5.10 for R.H.C. light and Eq. 5.11 for L.H.C. light. In
this case, R.H.C. light has the absorption proportional to ∆µ but L.H.C. has zero
absorption, since all the spin population is in the | −m > state. Hence, the absorp-
tion is possible for R.H.C. only. The Trm spectra simulation result is depicted in
Fig. 5.10(b)-(solid line).

According to the optical selection rules, only the circular wave with left hand
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Figure 5.10: Transmission coefficient spectra at 1.77 K (a) At -1 T, only the absorption
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polarized state can transfer the right energy, and spin angular momentum (∆ms = +1)
to those molecules sitting in the | +m > state. Similarly to the right hand polarized
state, it can transfer energy and spin momentum ∆ms = −1 to those molecules sitting
in the | −m > state [119, 120, 149]. This is the reason why in the linearly polarization
case and without the analyzer, we have half of the intensity signal compared to the
circular case.

5.4 Conclusion

We have studied the magneto-optical effects on the transmission lineshape of Mn12-
acetate sample in both Voigt and Faraday geometry. We found that the lineshapes are
very much sensitive to the magnetic field direction, radiation propagation direction and
the magnetic states of the sample (zfc and fc cases). In Voigt geometry, the symmetry
in zfc state and the asymmetry in fc state of transmission lineshape gives us evidence of
the inhomogeneity of CF splitting parameters (see also Chapter 4). The lineshift gives
us information on the internal dipolar field. In Faraday geometry, the lineshape in zfc
and fc states are totally different. The transformation of the lineshape has its own
advantage in which will be discussed in the next Chapter. As a result, we can see that
careful magneto-optical lineshape studies can become important. Moreover, we also
show that strong Faraday rotation is observed in the Mn12-acetate molecular magnet.
Compared the results from our FDMRS setup (frequency domain) to some EPR setup
(field domain regime) e.g. without the cavity, our spectra are much more sensitive
to the magneto-optical effect than in a single pass transmission HFEPR spectra. In
HFEPR setup, the radiation can sometimes lose its polarization properties since it
travels in an oversized wave guide. While in our case, the radiation travels in free space
in our quasi-optical setup. Therefore, we have more flexibility and controllability to
study the magneto-optical effects than in the HFEPR experiment.
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Chapter 6

Magnetic quantum tunneling

In this Chapter, we investigate the magnetic quantum tunneling (MQT) phenomenon
in Mn12-acetate molecular magnet via the relaxation measurement by using the frequency-
domain magnetic resonance (FDMRS) technique. We optically probe the individual
transitions, e.g. | +10 >→| +9 > and | −10 >→| −9 >, during the relaxation process,
while the other techniques such as the magnetometer cannot locally access. Since we
can set up two different geometries (Voigt and Faraday geometries) which give us dis-
tinctively different transition lineshapes, the relaxation experiments are performed in
both geometries. We study the effect of temperature, applied magnetic field, internal
field, the magnetization state to the relaxation time. We develop a model to describe
the relaxation spectra and the relaxation time obtained from the FDMRS technique.
We also qualitatively and quantitatively describe the relaxation mechanism from our
results through the phonon assisted spin tunneling model e.g. relaxation path, and
relaxation rate. In the last Section, we have added the zero field relaxation measure-
ment in the Faraday geometry, in order to study the internal field in the Mn12-acetate
system via the magneto-optics analysis.

6.1 Description of the experiment and the analysis

6.1.1 Relaxation experiment

Using the FDMRS technique, relaxation measurements can be performed. First we
prepare polarized system by using a bias dc magnetic field, in order to obtain all the
population in the same side of the double-well potential.

The general measurement procedure was as follows. We cooled the system from
high temperature to low temperature in +H field in order to obtain all the popula-
tion in | +m > quantum well (see Fig. 6.1(a)). When the temperature is stabilized
(±0.005 K), we invert the field to -H in less than two minutes. At this stage, the
system is in a nonequilibrium state, which means the spin population will start to
move to the lower energy levels (see Fig. 6.1(b)). We immediately started to measure
the transmission coefficient spectra focusing on both | ±10 >→| ±9 > transition res-
onance lines. We kept measuring the transmission spectra as a function of time until
the system is back to the equilibrium state where the relaxation process is finished (see

115
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Figure 6.1: Schematic diagram showing the relaxation experiment in a magnetic field. (a)
First the system is polarized using +H magnetic field. (b) Next the system is converted to a
metastable state by inverting the magnetic field to -H. (c) The system relaxes over time and
the spin population moves to the ground state. (d) At the end of the relaxation process, the
system is back to an equilibrium state again. The arrows show transitions observed in the
spectra.

Fig. 6.1(d)). The measurement temperature is < 1.95 K. Example of the relaxation
spectra of the transition | +10 >→| +9 > and | −10 >→| −9 > measured in magnetic
field 1.85 T and at 1.77 K are shown in Fig. 6.3(a) and (b) respectively.

In the zero field relaxation (ZFR) case, the relaxation experiment is the same with
the previous case except the relaxation measurement is in zero magnetic field and
in Faraday geometry. See Fig. 6.2. The lineshape is dramatically changed in zfc/fc
measurements which gives us an advantage to study the ZF relaxation. This is a
consequence from the results in Chapter 5. In this case, the population in both side of
the potential well is equalized (see Fig. 6.2(d)). Example of the relaxation spectra of
the transition | ±10 >→| ±9 > measured in zero magnetic field and at 3.3 K is shown
in Fig. 6.16(a).
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Figure 6.2: Schematic diagram showing the relaxation experiment in a zero magnetic field.
(a) First the system is polarized using +H magnetic field. (b) Next the system is converted
to a metastable state by inverting the magnetic field to zero. (c) The system relaxes over
time and the spin population moves to the ground state. (d) At the end of the relaxation
process, the system is back to an equilibrium state again where the population is equal in
both side of the double-well. The arrows show transitions observed in the spectra.
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Figure 6.3: Magnetic resonance spectra recorded on a single crystals sample of Mn12-acetate
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6.1.2 Relaxation spectra - fitting model

To fit Voigt and Faraday relaxation spectra, we use the model described below:
i. We fit the appropriate mode permeability (∆µ) and Gaussian linewidth (σ)

using the spectra in the equilibrium state (e.g. before convert the magnetic field) and
then set them as fixed parameters for the whole set of the relaxation spectra.

ii. The only fitting parameter is the population factor (p or q) with time dependent
behavior.

q = 1− p, (6.1)

where p is the population of | +10 > state. q is the population of | −10 > state. We
take p = 0 and q = 1 at t = 0 and p = 1 and q = 0 at t = ∞ as the boundary condition.
These factors are very important since they describe the dynamics of the system and
quantitatively describe the spin population during relaxation process. Fitting these
quantities gives us the relaxation time.

iii. The mode contributions of the | +10 >→| +9 > and of | −10 >→| −9 >
transitions to the magnetic permeability (∆µ±10) can be separated and expressed as

∆µ+10 = p ·∆µ10 · ν0

ν+0

, (6.2)

∆µ−10 = q ·∆µ10 · ν0

ν−0

, (6.3)

where ∆µ10 is the mode contribution of the ground state transition in the equilibrium
system without applied field (H = 0). It can be obtained experimentally or theoret-
ically (see Chapter 4). The last term is the correction factor for ∆µ10 in the case of
the applied magnetic field is presented (H 6= 0) (see Section 4.3.1). ν0 is the resonance
frequency in H = 0. ν+0 and ν−0 are the resonance frequency of | +10 >→| +9 > and
| −10 >→| −9 > transitions in the field, respectively.

iv. We will use the effective permeability for Voigt and Faraday geometry as fol-
lows:

Effective permeability for Voigt geometry

µeff, V, fc = 1 +
(∆µ+10 · g+10(ν) + ∆µ−10 · g−10(ν))

1 + (∆µ+10 · g+10(ν) + ∆µ−10 · g−10(ν))
, (6.4)

where g(ν) is the Gaussian lineshape function.
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Figure 6.4: Relaxation time is plotted as a function of the tilt α angle between the crystal
easy axes and the applied field. The measurement was performed at temperature 1.74 K and
longitudinal field 1.9 T.

Effective permeability for Faraday geometry

µeff, F, fc, left = 1 + ∆µ+10 · g+10(ν) + ı∆µ+10 · g+10(ν), (6.5)

µeff, F, fc, right = 1−∆µ−10 · g−10(ν) + ı∆µ−10 · g−10(ν), (6.6)

where µ(eff, F, fc, left) and µ(eff, F, fc, right) are the effective permeability corresponding
to the left hand and right hand circular light respectively.

v. The energy level (Em) of the system is corrected due to the presence of the
internal field as following;

Em = Dm2 + Bm4 − gzµBm[Hz + Hdip] (p− q), (6.7)

where p − q term is the time dependent population differenc of | +10 > and | −10 >
states which is taken as a measure for the magnetization of the system during the
relaxation.

vi. To describe the transmission coefficient spectra, we used the formulas described
in Section 3.6. For Faraday geometry, in the case of using the analyzer and linearly
polarized light, the transmission coefficient spectra can be simulated according to
Section 5.3.1-5.3.2.



6.2. EXPERIMENTAL RESULTS 121

The examples of the spectra fitting (solid line) for Voigt spectra measured at 1.85 T
and 1.77 K are shown in Fig. 6.3(a)-increasing spectra and Fig. 6.3(b)-decreasing spec-
tra. The examples of the spectra fitting (solid line) for Faraday spectra are shown in
Fig. 6.14(a).

vii. To obtain the relaxation time, we plotted p and q population factor as a func-
tion of time. See Eq. 6.2 - Eq. 6.4. The results are shown in Fig. 6.3(c) for Voigt
measurement and Fig. 6.14(b) for Faraday measurement. We fitted each exponential
curve to a single exponential in order to obtain the relaxation time (τ).

6.1.3 Angular calibration of the sample holder

We have mentioned before that the sample alignment is very important since the
transverse field can play a crucial role (see Chapter 1). Therefore, we calibrated the
position (α) angle between the sample holder and the magnetic field (H) in order to
minimize the angle (α′) between an easy axis of the crystal and the magnetic field
(Hz). Note that this can be done only in the xz-plane (see the inset in Fig. 6.4).
The calibration process is done by recording the relaxation time as a function of
the angle in xz-plane. For every α = 6o − 16o, we keep the temperature and field
constant at T=1.74 K and Hz=1.9 T. The results are shown in Fig. 6.4. The maximum
relaxation time, meaning least transverse field, belongs to the α = 10o which will be
the calibration angle in our system for the whole Chapter.

6.1.4 Measurement lists

Up to this point, we have explained briefly how to perform the relaxation experiment
in general. Before going into the experimental part, here is an overview of the experi-
ments performed in this Chapter.
i. Temperature dependence of the relaxation time: Voigt geometry.
ii. Longitudinal field dependence of the relaxation time: Voigt geometry.
iii. Longitudinal field dependence of the relaxation time: Faraday geometry.
iv. Zero field relaxation: Faraday geometry.

6.2 Experimental results

6.2.1 Temperature dependence of relaxation time: Voigt ge-
ometry

We measured the temperature dependence of the relaxation process in magnetic field
1.9 T. Recall that we still used the same calibration angle α = 10o in order to ex-
clude accidental transverse field effects. We measured the relaxation spectra for each
temperature from 1.68-1.87 K in a 1.9 T magnetic field. The detailed analysis of
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Figure 6.5: Temperature dependence of the relaxation time at Hz = 1.9 T field. The
experimental data (dots) have been fitted with Arrhenius function (dashed line) with the
relaxation time constant τ0 = 2.6× 10−10 s, and the barrier height energy 49 K.

the relaxation time is explained in Section 6.1.2. The results (dots) are shown in
Fig. 6.5. We can clearly see that the relaxation time is exponentially dependence on
the temperature. We fitted the data in Fig. 6.5 (dashed line) using the Arrhenius law;
τ = τ0exp(U/kBT ), since the temperature of the system is in the thermal activation
regime.

From Fig. 6.5, we found the characteristic decay time τ0 = 2.6 × 10−10 s, and the
barrier height energy U = 49 ± 2 K at H=1.9 T. Theoretically, we can estimate the
effective barrier height energy (U) in the magnetic field 1.9 T through U = E2−E10 ≈
47 K. E2 is the highest energy level for system in 1.9 T field. E2 and E10 are estimated
from Eq. 6.7, where p = 1 and q = 0. D = 0.56 K, and B = 1.1∗10−3 K are taken from
the results in Chapter 4. The theoretical barrier height energy, U(H=1.9 T ),theo ≈ 47 K,
is closed to the experimental value obtained from Fig. 6.5, U(H=1.9 T ),exp ≈ 49± 2 K.

According to the literatures, the relaxation time constant (τ0) is typically around
10−7 − 10−9 s from the magnetization measurements [109, 151]. However, we found
τ0 ≈ 2.6 × 10−10 s from our FDMRS technique. Our larger τ0 can be due to the fact
that τ0 and U are not independent parameters in the fitted process, meaning that this
method is not the best way to obtain the precise decay time parameter and the barrier
height energy.
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6.2.2 Longitudinal field dependence of relaxation time: Voigt
geometry

Results and Analysis

In this part, we measured relaxation spectra in a longitudinal magnetic field (Hz =
1.6−2.65 T) at 1.77 K, and at α angle 10o. We observed both i) the growing resonance
line due to the | +10 >→| +9 > transition and ii) the dying resonance line of the
| −10 >→| −9 > transition. The relaxation results of both growing spectra (ν+) and
dying spectra (ν−) measured at Hz = 1.85 T are shown in Fig. 6.3(a) and (b)-(dots) as
examples. The arrows show the development with time. The spectrum at time infinity
was measured before converting the magnetic field from -H to +H. In Fig. 6.3(a), we
observe that the absorption intensity increases and that the resonance frequency shifts
to the higher frequencies, while in Fig. 6.3(b), we observed the absorption intensity
decreases and the spectra shifts to lower frequencies.

The relaxation time of Voigt relaxation spectra can be analyzed as in Section 6.1.2.
The overall relaxation time curve as a function of the longitudinal field (Hz) is plotted
in Fig. 6.6. Black dots, and white dots belong to the relaxation time calculated from
Voigt-increasing spectra, and Voigt-decreasing spectra at 1.77 K respectively. The
stars represent relaxation time from Faraday-increasing spectra at 1.86 K which will
be discussed in the next Section.

The relaxation curve in Fig. 6.6 shows pronounced minima at certain fields of
1.85 T and between 2.3-2.35 T. The first minimum is belong to the fourth crossing
field, which can be theoretically estimated as H4th

mm′ = 4× 0.45 = 1.8 T. It corresponds
a relaxation time of τ ≈ 5000 s. The second minimum is belong to the fifth crossing
field, which can be theoretecally estimated as H5th

mm′ = 5× 0.45 = 2.25 T. Note that at
the fifth crossing, the relaxation occurs too fast to measure. Apart from these minima,
the relaxation time slowly decreases as a function of applied field due to the lower
effective energy barrier.

Theoretical analysis on the relaxation time

In order to understand the relaxation mechanism, we have to simulate the contributions
from both thermal relaxation and thermal assisted quantum tunneling.

Thermal activation regime

Normally, to estimate the relaxation time in the slow regime, namely thermal activated
relaxation, we use the Arrhenius law; τther = τ0 exp (−U/kBT ). By substitution of U
as a function of Hz, we obtain

τther ≈ τ0 exp (
Dm2 + Bm2 + gµBmHz

kBT
). (6.8)

The temperature T=1.77 K is kept constant. In this case, we found τ0 = 4× 10−7 s in
order to fit τther, which is a background relaxation time in Fig. 6.6.
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Figure 6.6: Longitudinal field dependence of the relaxation time. Dots belong to Voigt
geometry data measured at 1.77 K [white dots: disappearing resonance line (Voigt-n), black
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measured from the appearing resonance line (Faraday-p) at 1.86 K. Solid line represents
the calculated relaxation time from the phonon assisted spin tunneling combined with the
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of 0.06 T.
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n m m′ tunnel splitting , ∆mm′ (mK)
0 4 -4 45kB

1 3 -2 45kB

2 5 -3 45kB

3 4 -1 130kB

4 6 -2 40kB

Table 6.1: The dominant paths (m,m′) and their corresponding tunnel splitting energy
(∆mm′) for each resonance n, where n = m + m′. [34]

Thermal assisted tunneling regime

Next we simulate the fast relaxation time regime (solid line in Fig. 6.6). We can discuss
the procedure as follows;

In our calculation for every main crossing field (nth), it has one dominant relaxation
path (see Table 6.1). To calculate the relaxation rate 1/τ , we need to estimate the
relaxation time contributed by the spin-phonon coupling between m → m + 2, m′ →
m′ − 2 levels, and spin tunneling between (m, m′) resonance path. Note that the
relaxation time induced by thermal transition due to phonon with ∆m = ±2 is much
more dominant than from ∆m = ±1. The relaxation time can be summarized as
Eq. 1.63, which can be written here again as

1/τ =
1

1 + eβ(ε−s−εs)
(
eβ(εm+2−εs)

Wm,m+2

+
eβ(εm′−εs)

Wm′−2,m′
+

e(βεm−εs)

Γm′
m

), (6.9)

where the first two terms are the relaxation due to spin-phonon coupling with the
relaxation rate Wm,m+2 and Wm′−2,m′ . The last term is the relaxation due to the
quantum tunneling with the relaxation rate Γm′

m . εs and ε−s are the energy of the
ground state level s = 10. The relaxation time (τ) has a single Lorenztian lineshape
because the Γm′

m term which has a Lorenztian lineshape is dominate. See also Eq. 1.63.

Γm′
m = ∆2

mm′
Wm + Wm′

4ε2
mm′ + h̄2(Wm + Wm′)2

. (6.10)

The linewidth of the Lorenztian peak can be estimated as [34]

w′ =

√
23/2∆mm′

| m−m′ | gµB

, (6.11)

where all parameters details are explained in Chapter 1. Note that ∆mm′ is the tunnel
splitting energy corresponds to the tunneling path (m,m′). The relaxation rate (1/τ)
has a single Lorentzian lineshape respects to Hz applied field because of the term
Γm′

m . It contains the εmm′ term, which is proportional to δHz. See Eq. 1.34, εm =
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Figure 6.8: The calculated relaxation time (τ) of the tunneling path (6,-2) as a function of
the magnetic field (Hz), see Eq. 6.9. The inset shows the Lorenztian lineshape of the Γ6,−2

function, see Eq. 6.11 with the linewidth w′ = 42 mT. (See text).

εm + gµBδHzm. To tunnel, the spin has to be in a certain energy level within the
tunnel splitting gap.

For example at the fourth resonance, the main resonance path is (6,-2) [34, 152].
We first simulated the Lorentzian line from Γ−2

6 function according to Eq. 6.10. The
simulation is shown in the inset of Fig. 6.8. Next we calculate the relaxation rate,
1/τ(6,−2) by insert Γ−2

6 term into Eq. 6.9. Finally we can calculate the relaxation time,
τ(6,−2). The simulation is shown in Fig. 6.8. We found the linewidth of the relaxation
time of the (6,-2) peak ≈ 42 mT, which is closed to the value obtained by Ref. [34].
The sensitive parameter in the fit procedure is the sound velocity c term since it enters
with the 5th power (see Eq. 1.51-1.52). We found c ≈ 1.8× 103 m/s.

Normally, beside the main resonance path, there are also the other minority (nar-
rower Lorentzian) resonance paths contribute in the relaxation process. These nar-
rower Lorentzian lines are called the satellite peaks. See Fig. 6.7 (solid line). They are
a direct consequences of the fourth order anisotropy (BS4

z ) in the spin Hamiltonian
which leads to the transition ∆m = ±4 and the transverse field Hx = Hz sin α term due
to the misalignment angle α (see the inset diagram in Fig. 6.4) leads to the transition
∆m = ±1. In this Thesis, we do not perform the calculation of these transverse terms
but directly take the results via the tunnel splitting energy term from Ref. [34, 152]
since it is not a simple method. See Eq.1.34. Refer to Ref. [16, 37, 152, 153] for more
details.

In our calculation, we took the satellite paths from [34]. For example at fourth
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crossing, the tunneling path diagram is shown in Fig. 6.9. From the simulation
(Fig. 6.7), the main resonance of the fourth crossing is the (6,-2) path due to its
minimum relaxation time with linewidth (42 mT). The (4,0) path is considered to be
another important resonance path since it has the biggest linewidth (90 mT) but its
relaxation time is significantly slower than of the path (6,-2).

In Fig. 6.6, and Fig. 6.7, the lines are the results of summing all the possi-
ble relaxation paths together using the Kirchhoff’s rule of the electrical resistance
(1/τ =

∑
i 1/τi, where i represents the number of the relaxation paths). At the non-

resonance field, thermal activated relaxation time (Eq. 6.8) is taken into account as
the background. Note that in Fig. 6.6, the theoretical line is calculated by using 0.01 T
magnetic field resolution, while in Fig. 6.7 we use 0.06 T field resolution.

In general, the resonance field (Hmm′) can be approximated from Eq. 1.23. For
different resonance paths, the resonance fields are slightly different. The magnetic
field interval d between a satellite peak and its associate main resonance peak can be
directly obtained as

d(m1 −m′
1,m2 −m′

2) = | nB

gµB

(m2
1 + m′2

1 −m2
2 −m′2

2 ) |, (6.12)
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where (m1,m
′
1) represents the main resonance path and (m2,m

′
2) represents the satel-

lite path. n = m1 + m′
1 = m2 + m′

2. For example, between the far left peak (5,-1) and
the far right peak (8,-4), we obtained the magnetic field interval d ≈ 0.2 T by using
Eq. 6.12. This value coincides well with the FWHM linewidth of the experimental
data peak of the fourth resonance (black dots in Fig. 6.6). Our experimental linewidth
value (measured at 1.77 K) also agrees well with the results at 1.8 K from Ref. [154].

In this Thesis, we only studied the relaxation mechanism of the fourth and fifth
crossing since their relaxation time scale is optimize for our FDMRS technique. Too
fast or too slow relaxation time scale is beyond the limitation of the technique. At
the 5th resonance, the minimum relaxation time is too fast to observe. Therefore, in
this Thesis it is beyond our scope to discuss the parity effect due to the odd and even
resonances of the spin quantum tunneling [155].

Discussion: Magnetic field dependence of the resonance frequency shift

We investigated the frequency shift (∆ν± = ν∞± − ν0
±) behavior of the resonance line.

For instance, the Voigt relaxation spectra in Fig. 6.3(a)-(b) at 1.85 T, the resonance
line moves from 11.65 to 11.76 cm−1with ∆ν+ = 0.11 cm−1for ν+ spectra and from
8.46 to 8.34 cm−1with ∆ν− = 0.12 cm−1for ν− spectra.

Recall that the frequency shift in the static case measured in Section 5.2.1 is a
contribution of the shift from the dipolar field (∆νdip) and the shift from the offdiagonal
permeability term (∆νoff ). However, the shift from ∆νdip term can be 0.02 cm−1 at
most (see Section 5.2.1). The shift from ∆νoff term can be at most 0.07 cm−1.

However in the dynamic case and during the relaxation process, the situation can
be different. Our first assumption is that the shift is due to the distribution in ZFS
(D) parameter. The molecules with different D parameters have slightly different
relaxation times. For example, the molecules with higher D have slower relaxation
time than the molecules with the lower D. Therefore, at the appearing resonance line,
the shift moves to the higher frequency as we can see in Fig. 6.3 (a). However, for the
disappearing line, the molecules with the smaller D with faster relaxation time should
moves first but our observation, see Fig. 6.3(b), is opposite. Hence, this assumption is
no longer true.

Next assumption, the shift is due to the time dependent local dipolar field. In
our model, we have quantitatively corrected the frequency shift due to the local time
dependent dipolar field term as Hdip · (p− q) in Eq. 6.7. Note that, the time dependent
factor arises from p and q parameters. In our fit, we used Hdip ≈ 0.0265 T, which is the
value obtained from Section 5.2.1. In Fig. 6.10, we plotted Hdip · (p− q) as a function
of time for the relaxation field 1.85 T at 1.77 K. We found the exponential behavior
with time constant τdip = 1073± 70 s. The exponential behavior comes from the p− q
term which represents the different in population between | +10 > and | −10 > states
in the system.

In Fig. 6.10, we found time dependent dipolar field ranging from -265 to +265 Gauss
for a general case by using function Hdip · (p− q) for time t= [0..∞] → p− q= [-1..1].
If we consider the situation at the relaxation field at 1.85 T, we can calculate the
frequency shift; for example, from gµBHz = 11.68 cm−1to the demagnetized state
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Figure 6.10: Time dependent local dipolar field (Hdip ∗(p−q)) plotted as a function of time.
The experimental data belongs to the measurement at H=1.85 T, T=1.77 K. (See text).

(t ≈ 0 s, Hdip = −265 Gauss); gµB(Hz + Hdip) = 11.66 cm−1, or to the magnetized
state (t ≈ ∞, Hdip = +265 Gauss); gµB(Hz + Hdip) = 11.70 cm−1.

The calculated resonance frequency of 11.66 cm−1, which is due to the dipolar field
of -265 Gauss at t ≈ 0, is close to our observed value at 11.65 cm−1in Fig. 6.3(a).
However at t ≈ ∞, the resonance 11.70 cm−1which is due to the maximum dipo-
lar field (+265 Gauss), is not enough to explain the observed resonance spectra
at 11.76 cm−1in Fig. 6.3(a). The explanation of the additional frequency shift of
11.76 − 11.7 = 0.06 cm−1is from the effect of the offdiagonal magnetic permeability
term, see Section 5.2.

However, when we further investigate the frequency shift as a function of Hz, we
found that the above frequency shift discussion is not true for all cases of Hz. We
notice that the frequency shift is dependent on Hz. See Fig. 6.11 for comparison. At
some values of the magnetic field, the frequency shift is less. Therefore, we investigated
the frequency shift of the | +10 >→| +9 > transition during the relaxation for each
Hz. The results are shown in Fig. 6.12. We observed the magnetic field dependence of
the frequency shift in the same manner as the field dependence of the relaxation time
(refer to Fig. 6.6). The minimum shift (0.025 cm−1) corresponds to the magnetic field
1.93 T, while the observed resonance field is 1.85 T. The other minimum should be
between 2.3-2.35 T, which we do not have the experimental data due to the fact that
the relaxation process is too fast to measure.

As discussed in Section 5.2.1, the frequency shift is due to the time dependent
dipolar field (∆νdip = gµBm[Hdip∗(p−q)]) and the effect of the offdiagonal permeability
(∆νoff = ν ′

√
1 + ∆µ). However, if the magnetic field approaches the resonance value

where the energy levels in +m and −m are matched, we observed smallest frequency
shift. For instance, at 1.9 T, the shift is about 0.025 cm−1 , which is approximately
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Figure 6.11: Transmission spectra of the transition between | +10 >→| +9 > levels during
the relaxation processes at magnetic field (a) Hz = 2.15 T (b) Hz = 1.93 T.
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equal to the maximum calculated dipolar field in Fig. 6.10. Therefore at the resonance
field, the dipolar field still remains while the offdiagonal term seems to approach zero.

However, it is difficult to relate the role of the offdiagonal permeability to the
resonance field, since they should be rather independent from each others. Due to the
big error bar in Fig. 6.12, the quantitative analyis is difficult. Therefore, at this level,
we have not understood the field dependence effect to the shift of the resonance line
during the relaxation process yet.

Discussion: The change of linewidth during the relaxation

In principle during the fit procedure, we found that, in order to improve the fit,
the linewidth was changed slightly. We investigated the FWHM linewidth of the
resonance lines due to the | +10 >→| +9 > transition before converting the field
(which is equivalent to t = ∞) as a function of the longitudinal field Hz. We chose to
investigate FWHM instead of Gaussian linewidth (σ) because we can identify FWHM
more precisely than σ. The results are shown in Fig. 6.13. Again, we observe the
magnetic field dependence of the linewidth in the same way as in Fig. 6.6 and Fig. 6.12.
The minimum linewidth (FWHM = 2.35 cm−1→ σ = 2/

√
2ln2 =0.92 cm−1) belongs

to the field 1.9 T. The other minimum should be in between 2.2-2.4 T.
From Chapter 4, we found the line broadening in the Mn12-acetate system is mainly

due to the inhomogeneous distribution of the ZFS parameters (D term). However, it
is not clear what causes the field dependence of the linewidth in Fig. 6.13, since the
distribution in D is the field independent term. It seems that the linewithd is linked
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to the relaxation mechanism. We currently do not understand this effect.

6.2.3 Relaxation time dependence of the longitudinal field:
Faraday geometry

Experimental results

In Faraday geometry, we repeated the relaxation measurement as a function of the
longitudinal applied field (Hz = 1.6− 2.1 T) as we have done in Voigt geometry. We
used the same set up as in Section 5.3.2, where we used linearly polarized light and the
analyzer angle at 0o. In this measurement, we only observe the relaxation spectra of
the increasing line (| +10 >→| +9 >). The example of the Faraday relaxation spectra
measured at 1.95 T and 1.86 K are shown in Fig. 6.14(a). The relaxation spectra grow
symmetrically, and the resonance frequency does not shift as in the Voigt relaxation
case. The relaxation time of the Faraday relaxation spectra can be analyzed as in
Section 6.1. The relaxation time curve in Fig. 6.14(b) is well defined by an exponential
function. The overall relaxation time curve of the Faraday measurement at 1.86 K as
a function of the longitudinal field (Hz) is plotted as in Fig. 6.6-(stars).
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Figure 6.14: Relaxation measurement in Faraday geometry at 1.86 K, 1.95 T. (a) Series
of the spectra growth measured right after switching the field to +1.95 K (t=1 min). (b)
population factor q of the spectra from (a) as a function of time (see text).
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Discussion

The relaxation time of Faraday measurement is slightly lower than from Voigt mea-
surement. Because the measurement in Faraday geometry was performed at slightly
higher temperature than the Voigt measurement, the relaxation time, which is expo-
nentially dependent on the temperature, is therefore slightly lower (see temperature
dependence behavior of the relaxation time in Fig 6.5). Therefore, the difference in
the observed relaxation time is purely from the temperature effect not the geometry
effect. The difference in the measurement geometry does not disturb the relaxation
time, since the relaxation mechanism is of purely molecular origin and does not depend
on the magneto-optical properties of the macroscooic sample.

In Faraday geometry, the spectra grow symmetrically and there is no shift of the
resonance frequency compared to Voigt case. The absence of the frequency shift is
due to the cancellation of the offdiagonal terms of the L.H.C. and R.H.C. The effect
of the frequency shift from the offdiagonal terms are cancelled out when we combine
both circular modes together. This is mainly due to the term +µxy and −µxy in the
effective permeability. In Voigt case, there is no such a cancellation effect. In other
words, in Faraday case, the denominator in the effective permeability does not change
as in the Voigt case (see Eq. 5.4-5.5 in comparison).

6.2.4 Zero field relaxation: Faraday geometry

Experimental results and analysis

Recall that there is a big difference between the lineshape in the zfc and fc experiment
in Section 5.3.1. In this Section, we repeated this experiment but we investigated the
changing of the lineshape as a function of time. However, we used the small relaxation
field from -0.02 to 0.05 T instead of a strong field. This is because we want to probe the
effect of the internal field in the system which is predicted to be in a millitesla range.
The experimental details is in Section 6.1.1. See also Fig. 6.2. The measurement was
performed at 3.3 K.

The example of the zero field relaxation spectra is shown in Fig. 6.15(a) measured in
zero magnetic field. The lineshapes are dramatically changed from the nonequilibrium
state (magnetized state) to the equilibrium state (demagnetized state).

The analysis of the relaxation time is the same as in Section 6.1. The lineshape
analysis of the nonequilibrium state (t=30 s) and equilibrium state (t=1260 s) were
discussed in Section 5.3.1. We fit the zero field relaxation spectra via the population
factor p in Eq. 5.6-5.7. In the nonequilibrium state, we set p = 0, whereas in the
equilibrium state, we set p = 1. During the relaxation from the nonequilibrium state to
the equilibrium state, p parameter is changed as a function of time. Fig. 6.15(b) shows
the time dependent behavior of the population factor p analyzed from the relaxation
spectra in Fig. 6.15(a). It can be well fit with a single exponential function.

We changed the relaxation field from -0.02 to 0.05 T in order to look for the
minimum relaxation time. We plotted the overall results in Fig. 6.16. The relaxation
time is dependent on the magnetic field with the minimum time belongs to the applied
magnetic field of -0.015 to +0.02 T due to the large error bar. These values correspond
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Figure 6.15: Transmission spectra of the transition | 10 >→| 9 > levels during the relaxation
process in zero field measured at 3.3 K.
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Figure 6.16: The relaxation measurement was performed at temperature 3.3 K in an applied
magnetic field (-0.02 to +0.05 T). The relaxation time is plotted as a function of the applied
magnetic field (H). +H represent the field is in +z-direction, and vice versa. The minimum
relaxation time corresponds to the applied magnetic field around +0.01 T.

to the real zero field in the system of ≈| 0.02 | T, which coincides very well with the
dipolar field (Hdip ≈ 0.0265 T ) found from the fit in Section 5.2.1. However, it also can
be the remnant field of the superconducting magnets which cannot be distinguished
in this case.

6.3 Conclusion

We have qualitative and quantitatively studied the magnetic quantum tunneling phe-
nomenon in Mn12-acetate (mosaics of single crystals) by using FDMRS technique. We
performed the measurement within the temperature range of 1.75-3.3 K in both Voigt
and Faraday geometries. For both cases, we obtained totally different lineshapes of the
relaxation spectra but slightly different relaxation time (relaxation rate), which is due
to slightly different temperature. The results indicate that the relaxation mechanism
is independent on the measurement geometries but mainly on the temperature of the
system and the applied magnetic field. The relaxation time behavior can be fitted
nicely with a single exponential function. This implies that our temperature regime is
not in the pure quantum tunneling regime but rather in the thermal regime.

We found that for nonresonance relaxation, higher magnetic field induces faster
relaxation rate because it makes the energy barrier lower. For resonance relaxation,
the relaxation rate is fastest at the certain values of the magnetic field, namely the
resonance field, which matches the energy levels between (m,m′) states and induces
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the fast quantum tunneling process. We qualitatively and quantitatively explained the
relaxation time behavior of both relaxation processes as function of the temperature
and the applied magnetic field. We described the distribution of the relaxation time
in the field domain via the phonon assisted spin tunneling model. We identified the
dominant relaxation path for the tunneling at the fourth level crossing as the (6,-2)
path. We observed the effect of the local dipolar field and the offdiagonal terms of the
magnetic permeability tensor, which shift the resonance frequency during the relax-
ation process. However, we have not completely understood the relaxation lineshape
studies e.g. the relation between the resonance frequency shift, the changes of the
linewidth as a function of the applied magnetic field during the relaxation mechanism.
Note that the mentioned results are under large error bars. We do not have the fine
evidences that can lead to a precise conclusion at this level.

In conclusion, we believe that the relaxation studies in the frequency domain by
using the FDMRS technique can reveal useful local information of the system during
the relaxation process. We can directly observe the dynamics of the individual transi-
tions as well as we can observe the quantum tunneling phenomenon whilst the other
techniques such as the magnetometry technique cannot. However, the disadvantage of
FDMRS technique is that the detailed spectra analysis is rather complicate.



Chapter 7

Summary

7.1 Results

The Mn12-acetate single molecule magnet is the most widely investigated mesoscopic
system. It consists of exchanged couple clusters of paramagnetic metal ions, which
show the quantum effects similar to the magnetic quantum tunneling of purely molec-
ular origin. Mn12-acetate consists of 8 Mn3+ and 4 Mn4+ ions, which are antiferromag-
netically coupled, giving rise to the large spin ground state, S=10. The manganese
ions are bridged by oxide and acetate ligands, in which each molecule is well shielded
from the others. Mn12-acetate has a large uniaxial magnetic anisotropy, leading to a
65 K zero field energy barrier acting against the magnetization reversal; + → − or
− → +. The magnetization reversal can occur via three different processes; thermal
activation, quantum tunneling, and thermal assisted tunneling. The full description
of Mn12-acetate properties can be found in Chapter 1.

In the past ten years, there were around several hundred publications on the Mn12-
acetate system by using several techniques e.g. electron paramagnetic resonance (EPR
in field domain), nuclear magnetic resonance (NMR), SQUID magnetometry, inelastic
neutron scattering (INS), etc. Nevertheless, there still is a number of open questions
and problems, which are worthwhile to investigate with the help of a different tech-
nique. Here, we introduce an alternative EPR technique in a frequency domain, namely
frequency domain magnetic resonance spectroscopy (FDMRS), to investigate the static
(time independent) and the dynamic (time dependent) properties of the Mn12-acetate
single molecular magnet system. Theoretical background of electrodynamics of solids
and magnetic resonance is described in Chapter 2.

In our setup, we can apply an external magnetic field H=0-8 T within the temper-
ature range of 1.5-300 K. We can control the direction of the wave propagation (q)
with respect to the direction of the external magnetic field (Hext), resulting in two
different geometries, namely Voigt (q ⊥ Hext) and Faraday (q ‖ Hext) geometries.
The frequency of the radiation can be either scanned or fixed within the range of 1-
48 cm−1(= 30-1440 GHz which corresponds to the wavelength of 208 µm - 10 mm).
Full description of FDMRS setup and measurement is described in Chapter 3.

In FDMRS the radiation propagation is in free space, while in EPR it often requires
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a waveguide. Therefore, we can control the polarization of the radiation e.g. linear,
elliptic, and circular polarization. Up to now, no full report on the studies of magneto-
optical properties of Mn12-acetate single molecular magnet has been produced. The
other major advantage of FDMRS is that the individual magnetic transitions are mea-
sured, while the whole magnetization of the sample is measured by SQUID technique.
Moreover, the magnetic field is always required by EPR, while in FDMRS we can
measure both in the zero and nonzero magnetic fields. It is interesting that FDMRS
can measure the individual magnetic transitions in zero and nonzero magnetic field
environments, with the possibility of using different light polarizations. Moreover, we
can use FDMRS to investigate the individual magnetic transition during the magnetic
relaxation process. In this case, we can do the real time analysis, where we can obtain
both the spectra lineshape and the relaxation time.

In this Thesis, we used the FDMRS technique to study the magnetic transitions
of the | ±10 >→| ±9 >, | ±9 >→| ±8 >, and | ±8 >→| ±7 > levels individually.
We used the Fresnel formulas for transmission to fit the spectra and to obtain the
electrodynamic response functions of the materials i.e. complex dielectric permittivity
(ε̂), and complex magnetic permeability (µ̂). We used the equation µ̂ = 1 + ∆µ · g(ν)
to relate between the complex permeability (µ̂) and the magnetic mode contribution
(∆µ) in the analysis.

In Chapter 4, we performed temperature dependent transmission measurements
in the zero magnetic field. In this Thesis, we report the zero field splitting pa-
rameters (ZFS); D = −0.389 ± 0.01 cm−1, B = −7.65 ± 0.05 × 10−4 cm−1, and
C = ±2 × 10−5 cm−1. This result is in agreement with the observations from several
other previously used techniques. However, the results from HFEPR were extrapo-
lated from the measurement in the magnetic field. Only FDMRS and INS results were
obtained from a real zero field measurement. However, for an INS technique, grams
of deuterate sample are required. Our main advantage is that only about a hundred
milligrams of the sample (either single crystals or polycrystalline sample) are needed.
The FDMRS measurement is fast and the results are directly obtained from a real zero
field measurement.

We also obtained the ZFS parameters, and found that the magnetic mode contribu-
tion (∆µ) obeys the Boltzmann distribution law as a function of the temperature. The
resonance lines are well fitted with Gaussian lineshapes rather than with Lorentzian
ones. The Gaussian lineshapes indicate that there is an inhomogeneous broadening,
which is at least partly due to the local variations in the zero field splitting (ZFS)
parameter (D-strain) of Mn12-acetate. The Gaussian linewidth (σ) is found to be tem-
perature dependent, which indicates the contribution of the internal dipolar field to
the line broadening. The resonance frequency (ν) is temperature independent, mean-
ing that the temperature does not effect the zero field splitting parameters in the
studied temperature range. Next, we studied the magnetic transitions in an applied
magnetic field. We observed the lineshift as a function of the Zeeman splitting term;
gµBm ·Hext. Here we report the g‖ = 1.93 obtained by calculating the average slope of
the plot of the resonance frequencies as a function of the magnetic field. The g-value
is in agreement with the HFEPR measurement.

In Chapter 5, we studied the lineshape of the | +10 >→| +9 > transition in single
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crystalline Mn12-acetate samples in Voigt and Faraday geometries. Since we are able
to do the zero field measurements on a zero field cooled (zfc) and field cooled (fc)
single crystalline Mn12-acetate sample, the measurements were performed in zero field
at low temperatures (T=1.75-3.3 K) on both nonmagnetized (zfc) and magnetized
(fc) samples. In both geometries, we found a large difference in lineshapes depending
on the magnetization state of the sample. We have developed a model to describe
the lineshape of the magnetic resonance transitions in Mn12-acetate system under
these conditions. The lineshape differences can be explained by the occurrence of the
offdiagonal elements in the magnetic permeability tensor for the case of the magnetized
samples. The permeability tensor is a consequence of the interaction between the
electromagnetic radiation, the external magnetic field and the magnetic state of the
anisotropic sample in different magneto-optical geometries.

In Voigt geometry, we used a linear polarized light to measure the zfc (demagnetized
sample) and then the fc (magnetized sample) Mn12-acetate sample in zero magnetic
field. We found a symmetric Gaussian lineshape for the zfc sample and an asymmetric
Gaussian lineshape for the fc sample. We found a slight lineshift of ≈ 0.1 cm−1 between
the two samples. This effect is due to the influence of the internal fields such as the
dipolar and hyperfine fields (≈ 0.02 − 0.03 cm−1) together with the contribution of
the offdiagnonal permeability (≈ 0.07 cm−1). The latter contribution is a consequence
of the appearance of the offdiagonal permeability terms, because the sample is in the
magnetized state. The asymmetry of the Gaussian lineshape of the magnetized sample
in the zero magnetic field measurement implies that the asymmetry of the line is not
due to the tilting of the easy axis of the crystal, but rather due to the effect of the
D-strain.

In Faraday geometry, we performed the transmission measurement by using the
linearly and circularly polarized lights. We observed the difference in the lineshapes
from applying left hand circularly (L.H.C.), right hand circularly (R.H.C.), and linearly
polarized light to the Mn12-acetate sample. In the linearly polarized case, we found
that the absorption line of the zfc Mn12-acetate has a symmetric Gaussian lineshape.
In the fc case, the lineshape remains the same, but it has half the intensity compared to
the Voigt spectra. By placing an analyzer unit in front of the detector, we observed the
change to the lineshape, where the extra two minima are found beside the resonance
absorption line. We also found that by using linearly polarized light, we observed the
Faraday effect, where the major axis of the light polarization is rotated as a function
of the radiation frequencies. The Faraday rotation is found to be ranging from +100o

to -100o for a given sample thickness of 0.5 mm. This suggests that the Mn12-acetate
single molecule magnet can be used as a molecular rotator or a molecular polarization
transformer.

In the case of using circularly polarized light in Faraday geometry, we found a single
Gaussian absorption line from both the zfc and the fc Mn12-acetate sample, as also
observed in the Voigt geometry. However, this absorption depends on the direction
of the magnetization in the Mn12-acetate sample and the rotation direction of the
light polarization. In Faraday geometry, the magnetic resonance is sensitive to the
circular polarization direction of light (L.H.C. and R.H.C. radiation). For example,
if the sample is magnetized with +Hext field, only L.H.C. light interacts with the
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sample. For the sample magnetized in -Hext field, the absorption line is found by
using the R.H.C. light. This result is related to the optical selection rule; ∆m = +1
for L.H.C., and ∆m = −1 for R.H.C. radiation. If the sample is demagnetized, the
sample interacts with both the L.H.C. and the R.H.C. radiation.

In concluding our lineshape studies, we successfully developed a self-inclusive model
to describe the lineshapes for both the geometries (Voigt, and Faraday) and the magne-
tization states. We have qualitatively and quantitatively studied the electrodynamics
of the Mn12-acetate system via the effects of the light polarization and the magneto-
optical geometry.

In Chapter 6, we applied the FDMRS technique to investigate the dynamical prop-
erties, namely the relaxation of the magnetization of the Mn12-acetate system. During
the relaxation process, the spin changes from the spin up state (+) to a spin down
state (-) or vice versa.

We have successfully used FDMRS to observe three different relaxation processes
within the temperature range of 1.75-3.3 K, magnetic field range of 1.6-2.63 T, and
the two measurement geometries. We found that the relaxation is dependent on the
temperature and the applied magnetic field, rather than on the measurement geometry.
In the temperature range 1.75-3.3 K, the relaxation time is strongly dependent on the
temperature following an Arrhenius function. In the magnetic field 1.6-2.63 T, we
observed the two minima of the relaxation time, the first minimum is around 1.85 T,
while the second minimum is around 2.3-2.35 T. These two minima correspond with
the magnetic field, Hmm′

n ≈ 0.45n, where n = 4, 5, that can match the energy levels
on both sides of the double-well energy potential.

During the analysis, we divided our relaxation measurements into two parts; the
first part is about the relaxation spectra in the frequency domain, and the second part
is about the relaxation time in the field domain.

In the first part, we studied the relaxation spectra in the frequency domain. We
have developed a model to analyze the time dependent spectra for both the Voigt
and Faraday geometries. Consequently we described the lineshape of the relaxation
spectra. We also introduced the population factor, which represents how much of the
spin population contributes to the absorption line intensity. We found an exponential
relationship between the population factor and the time, from which the relaxation
time is obtained. In Voigt geometry, we observed a shift of the resonance line and the
change of the Gaussian linewidth during the relaxation process. We suggested that
the shift of the resonance line is due to the local dipolar field and the effect of the
offdiagonal element in the magnetic permeability tensor.

In the second part, we plotted the relaxation time in the field domain (Hz) regime.
We observed two distinct relaxation mechanisms; thermal activation with a slower
relaxation rate, and thermal assisted tunneling with a much faster relaxation rate. We
have compared our relaxation time results to the results obtained by the magnetometric
techniques, and we found that these results are in good agreement.

We have qualitatively and quantitatively explained the relaxation time curve in
the field domain via the phonon assisted spin tunneling model. We calculated the
relaxation time via the three contributions; time required for the spin-phonon coupling
(m → m ± 1,±2), time required for the tunneling (m → m′), and time required for
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m′ → m′ ± 1,±2 process. The longitudinal field parameter (Hz) was substituted into
the energy level parameters. In this model, the relaxation time distribution has a
Lorentzian lineshape around the level crossing field (Hmm′

n ).
The spin tunneling process occurs via the two different tunneling paths; the dom-

inant path and the satellite path. In this Thesis, we identified these tunneling paths
by simulating a single Lorentzian curve of the relaxation time distribution that corre-
sponds to each (m,m′). The dominant path corresponds to the Lorentzian curve with
the highest amplitude and broadest linewidth. At the fourth crossing (Hz,theo ≈ 1.8 T),
the dominant paths with the highest amplitude are found to be (6,-2), whilst the broad-
est linewidth is found in the (4,0) path.

The study of the relaxation phenomenon by using FDMRS can reveal many de-
tailed findings such as the relaxation time, the system temperature and magnetic field
influences, as well as the dynamics of the relaxation spectra and the influences of the
tunneling on an individual transition lineshape. However, in the latter case, we have
not completely understood the real mechanism of how the tunneling can effect the
individual relaxation spectra.

In conclusion, FDMRS technique is a promising technique in the study of both the
static and dynamic properties of the Mn12-acetate single molecule magnet.

7.2 Future plans

Mn12-acetate single molecule magnet and its analogous clusters offer potential access
to very high density data storage devices. This is due to its well defined nanoscale
size and its single magnetic domain properties. To achieve this, the molecules need to
be oriented properly in order to be addressed individually, where each molecule can
be used as an individual bit of information. Many research groups are now trying to
arrange the molecules onto the polymer film, which is combined with the conducting
or semi-conducting substrate. Within this trend, the research topics on Mn12-acetate
are moving towards to the 2-dimensional (2D) mesoscopic physics. A very interesting
field involves investigating the semi-conducting properties and the MQT phenomenon
of the Mn12-acetate thin film, which is spin coated over the conducting substrate.
The film properties also strongly depend on the substrate materials and their surface
properties. Since FDMRS can study both the electric and the magnetic properties of
the materials, FDMRS has potential to be one of the major tools in this field.
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[43] J.L. van Hemmen, and A. Sütő, Europhys. Lett. 1, 481, (1986).
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