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Wechselspiel zwischen Geometrie

und Flüssigkeitseigenschaften

“Nehmen wir an, die Kuh sei eine Kugel im Vakuum” - viele kennen wohl den Witz,

in dem ein Physiker mit ebendiesen Worten seine Theorie zur Ertragssteigerung der

Milchkühe einleitet. Obwohl dieser Lösungsansatz für das Problem auf den ersten

Blick albern erscheinen mag, so illustriert er doch eines der erfolgreichsten Prinzipien

der Physik, nämlich die Idealisierung realer Systeme. Erst mit einfachen Modellen

lässt sich die ungeheure Vielfalt physikalischer Phänomene in der Natur verstehen.

Dabei ist jedoch Vorsicht geboten, denn entscheidend für die Entwicklung von erfolg-

reichen Modellen ist es, die tatsächlich relevanten Eigenschaften eines Systems zu

identifizieren und geeignet abzubilden. Oft ist das eine Gratwanderung, denn nicht

alles, was für eine zufriedenstellende Detailtreue nötig ist, ist auch theoretisch be-

schreibbar. Gerade die oft in der Natur vorkommenden geometrischen Formen sind

oftmals zu komplex, um diese in berechenbare Modelle zu integrieren. In günstigen

Fällen reicht es, auf einfachere Geometrien auszuweichen. Es gibt aber auch Objekte,

die man nicht durch eine einfache Kugel annähern sollte, um im Bild des Witzes zu

bleiben. Auch ein Vakuum ist zuweilen keine sonderlich realistische Beschreibung der

Umgebung.

Interessante Systeme, für die eine Näherung der Teilchen durch Kugeln im Vaku-

um sicherlich fehlschlägt, finden sich vielfach in jeder lebenden Zelle. Wir wollen davon

den Wirkungsmechanismus von Enzymen näher betrachten. Diese Biokatalysatoren

werden benötigt, um biochemische Vorgänge gezielt zu steuern. Erst die Anwesen-

heit von eben jenen Enzymen setzt die Energiebarriere der biochemischen Reaktion

hinreichend herab, so dass eine schnelle Umsetzung der Edukte möglich ist. Neben

dieser Effizienzsteigerung ist im Hinblick auf die Steuerungsfunktion von Enzymen

deren Selektivität von besonderer Bedeutung. Darunter versteht man, dass immer

jeweils nur genau eine Reaktion durch ein Enzym beschleunigt wird. Diese Tatsache

beschreibt man mit einem Schlüssel-Schloss-Bild, nach dem nur das passende Edukt

in ein Schlossmolekül passt und dort eine Reaktion auslösen kann.
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2 Zusammenfassung

Im Vorfeld einer enzymatischen Reaktion müssen die Moleküle an einem Ort zu-

sammenkommen. Nimmt man an, das überhaupt keine Kräfte zwischen beiden Teil-

chen wirken, dann führen diese eine zufällige Relativbewegung aus und es ist sehr

unwahrscheinlich, dass Schlüssel und Schloss zueinander finden. Die Reaktionsrate

wäre dementsprechend niedrig und das System als Ganzes betrachtet äußerst ineffi-

zient. Quantitative Überlegungen zeigen, dass dies keineswegs der Fall ist. Demnach

existiert ein Wechselwirkungspotential zwischen Schlüssel und Schloss, das die Mole-

küle nicht nur richtig orientiert, sondern diese auch geeignet zusammenführt.

Es gibt eine Vielzahl physikalischer Mechanismen, die für eine solche Anziehung

in Frage kommen. Elektrostatische Ladungen auf den Molekülen führen zu Coulomb-

kräften, van-der-Waals Wechselwirkungen entstehen bei der Kopplung von Dipolen

und Wasserstoffbrückenbindungen entstehen zwischen einem Wasserstoffatom und

einem entsprechenden Heteroatom. All die erwähnten Kräfte sind jedoch chemisch

spezifisch, d.h. sie hängen von dem konkreten molekularen Aufbau der beteiligten

Moleküle ab. Wären diese also für das nötige Wechselwirkungspotential verantwort-

lich, so müssten Freiheitsgrade beim Aufbau von Biomolekülen dazu verwendet wer-

den, geeignete Potentiale zu erzeugen. Das ist unwahrscheinlich, denn effizienter wäre

ein Mechanismus, der chemisch nicht spezifisch ist und somit bei einer großen Anzahl

von Schlüssel-Schloss-Systemen anwendbar ist.

Im Zusammenhang mit Kräften in einer Zelle ist zu beachten, dass das Zyto-

plasma eine dichte Mischung aus verschiedenen Molekülen und Ionen ist. Die gesam-

te Packungsdichte der Teilchen ist sehr hoch und man kann davon ausgehen, dass

eine vollständige Beschreibung jedes Schlüssel-Schloss-Systems auch den Einfluss der

umgebenden Moleküle mit in Betracht ziehen muss. Deren Einfluss kann theoretisch

durch eine effektive Wechselwirkung quantifiziert werden, welche in den letzten Jah-

ren als ein wichtiger Beitrag zu intermolekularen Kräften identifiziert wurde. Ein

qualitatives Ergebnis einfacher theoretischer Überlegungen mit kugelförmigen Enzy-

men ist, dass eine anziehende Kraft zwischen Schlüssel und Schloss wirkt, welche

die Effi-zienz der Enzyme günstig beeinflusst. Genauere Überlegungen zeigen jedoch,

dass die Annäherung des Schlüssels stets durch eine Energiebarriere verhindert wird.

Wir identifizieren in Section 5.4 die einfache sphärische Form des Schlüssels als Ur-

sache für die hohe energetische Barriere und zeigen mit einem einfachen Modell, dass

hinreichend asphärischen Schlüsselmoleküle nicht nur die Attraktivität der effekti-

ven Kräfte nutzen können, sondern auch durch entropische Drehmomente geeignet
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orientiert werden.

Das Berechnen von effektiven Wechselwirkungen zwischen asphärischen Teilchen

anhand von direkten Methoden ist extrem aufwändig in Bezug auf die numerische

Rechenzeit, da solche Systeme in der Regel auf einem dreidimensionalen Gitter in

einem Computer abgebildet werden müssen. Anstatt auf den massiven Einsatz von

Computerleistung zu setzen, verfolgen wir in dieser Arbeit einen systematischen Weg

um den Einfluss der Geometrie auf verschiedene Aspekte von Flüssigkeiten zu studie-

ren. Dabei steuern wir in drei Schritten auf die Berechnung der erwähnten effektiven

Wechselwirkungen hin, welche auch die Arbeit als solche gliedern. Im Einzelnen lassen

sich die Kapitel wie folgt zusammenfassen.

Kapitel 1. Es wird ein kurzer Abriss über die in der Arbeit verwendeten Me-

thoden gegeben. Der Leser wird mit den wichtigen Größen vertraut gemacht und

es werden Quellen für weiterführende Informationen zitiert. Die Dichtefunktionals-

theorie (DFT) ist die Basis für viele weiterführende Überlegungen in dieser Arbeit

und insbesondere ihre Anwendung auf eine Flüssigkeit von harten Kugeln wird de-

tailliert diskutiert. Die modernsten Theorien für solche Systeme beruhen auf der

Fundamentalmaßtheorie von Rosenfeld [15] und erlauben eine äußerst genaue Be-

rechnung von thermodynamischen Observablen. Hartkugelflüssigkeiten sind sehr gut

studierte Systeme, sie verhalten sich athermisch und haben nur eine stabile fluide

Phase für Packungsdichten η ≤ 0.494. In einigen Fällen ist es interessant, auch Syste-

me mit nicht ausschließlich harten Wechselwirkungen zu betrachten. Dazu verwenden

wir eine Störungstheorie, die so genannte Hochtemperaturentwicklung, die ebenfalls

in diesem Kapitel vorgestellt wird. Schließlich widmen wir uns der Berechnung von

effektiven Wechselwirkungen mit Methoden der DFT.

Kapitel 2. Flüssigkeiten an gekrümmten Wänden bilden Grenzflächen mit inter-

essanten physikalischen Effekten. Um diese zu beschreiben verwenden wir die Größen,

welche in diesem Kapitel vorgestellt werden. Dazu werden zunächst die Konzepte des

“dividing interface” und des “bulk reference systems” nachvollzogen, mit einem beson-

deren Augenmerk auf Feinheiten, die im Zusammenhang mit gekrümmten Wänden

besonders zu beachten sind. Wir definieren die Exzessadsorption Γ und die Grenz-

flächenspannung γ. Diese beiden thermodynamischen Größen sind nicht unabhängig,

sondern durch Summenregeln miteinander verknüpft. In diesem Zusammenhang wird

eine weitere zentrale Größe in dieser Arbeit, nämlich die mittlere Kontaktdichte ρ̄c

an einer harten Wand, definiert. Drei Summenregeln, welche wir ableiten, setzen Γ,
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γ und ρ̄c miteinander in Beziehung und erweisen sich in den folgenden Kapiteln als

sehr nützliche Relationen, da sie unter sehr allgemeinen Annahmen hergeleitet werden

können und somit für eine große Klasse von Flüssigkeiten gelten.

Kapitel 3. Üblicherweise ist es extrem aufwändig, Flüssigkeitseigenschaften an

komplex gekrümmten Wänden zu berechnen. In diesem Kapitel beschäftigen wir uns

zunächst mit thermodynamischen Eigenschaften, denjenigen Eigenschaften also, die

für eine statistische Beschreibung eines Systems verwendet werden. Dazu analysieren

wir die Abhängigkeit des großkanonischen Potentials Ω von der Geometrie des Sy-

stems S. Letzteres definieren wir als die Menge aller Punkte, die von den Flüssigkeits-

teilchen erreicht werden können. Um Ω[S] zu bestimmen nutzen wir die bekann-

te Annahme, dass thermodynamische Potentiale extensive Größen sind und deshalb

proportional zu der “Größe” des Systems S skalieren. Der Ausdruck “Größe” ist üb-

licherweise nicht näher definiert und man assoziiert damit meist das Volumen V [S]

eines Systems S, so dass man als Ansatz Ω[S] = ω · V [S] verwendet. Dieser Ansatz

gilt jedoch nur, wenn man den Einfluss der Wand, welche S umgibt, vernachlässigen

kann. Anderenfalls führt man weitere Terme ein, um den Einfluss der Umgrenzung auf

das thermodynamische Potential zu erfassen. In diesem Zusammenhang definiert man

Oberflächen-, Linien- und Punktspannungen, oder für nicht durch Ebenen begrenzte

Objekte auch eine unendliche Entwicklung in Potenzen der Wandkrümmungen.

In unserem Ansatz konkretisieren wir, ausgehend vom Extensivitätsbegriff, die

Geometrieabhänigkeit von freien Energien. Wir fordern insbesondere von einem ther-

modynamischen Potential, dass es unabhängig von der Lage und Orientierung des

Systems im Raum ist, dass es stetig von der Geometrie des Systems abhängt und

dass für zwei beliebige Systeme S1 und S2 die folgende Additivitätsrelation gilt:

Ω[S1 ∪ S2] = Ω[S1] + Ω[S2] − Ω[S1 ∩ S2]. Demnach muss sich ein Potential addi-

tiv aus Subsystemen zusammensetzen lassen und eventuell doppelt gezählte Bereiche

S1∩S2 werden nachträglich abgezogen. Diese drei Annahmen erweitern den gewöhnli-

chen Extensivitätsbegriff und wir bezeichnen eine Größe, die diese drei Eigenschaften

erfüllt, als morphometrisch. Ist Ω[S] morphometrisch, dann besagt das Hadwiger

Theorem, dass die allgemeinste funktionale Form gegeben ist durch

Ω[S] = −pV [S] + σA[S] + κC[S] + κ̄X[S] . (1)

Dabei bezeichnen wir p als Druck, σ als Oberflächenspannung an der ebenen Wand

und κ und κ̄ als Biegesteifigkeiten. Diese vier Größen sind intensiv, d.h. unabhän-
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gig von der Geometrie des Systems S. Hingegen sind die konjugierten Größen V [S],

A[S], C[S] und X[S] morphometrisch und beschreiben die Abhängigkeit von Ω[S] von

der Geometrie. Es sind die einzigen thermodynamisch relevanten Größen, die etwas

mit Geometrie zu tun haben. Die multiplikative Trennung in intensive und konju-

giert morphometrische Größen für das thermodynamischen Potential in Gleichung (1)

ist äußerst praktisch, weil dies eine Anwendung auch auf kompliziert geformte Geo-

metrien ermöglicht. Neben den geometrischen Maßen müssen nur die intensiven Para-

meter bekannt sein, wobei letztere in einfachen geometrischen Systemen im Vorfeld

effizient bestimmt werden können.

Die Konsequenzen aus der morphometrischen Form des großkanonischen Potenti-

als Ω für die thermodynamischen Größen Exzessadsorption Γ, Grenzflächenspannung

γ und mittlerer Kontaktdichte ρ̄c sind, dass diese eine morphometrische Form be-

sitzen. Das bedeutet, dass die Krümmungsabhängigkeit dieser Größen ausschließlich

durch lineare Terme in der mittleren und der Gaussschen Krümmung H und K be-

schrieben werden kann. In diesem Zusammenhang ist eine geschickte Wahl des “divi-

ding interface” von entscheidender Bedeutung. Nur damit bricht die Krümmungsent-

wicklung der thermodynamischen Größen bereits nach der linearen Ordnung in H

und K ab und besteht nicht, wie meist angenommen, aus einer unendlichen Reihe

von höheren Krümmungsordnungstermen.

Wir können nicht beweisen, dass Ω für eine nichttriviale Flüssigkeit die gewünsch-

ten drei Eigenschaften hat, dass also die “morphometrische Hypothese” gilt. Jedoch

präsentieren wir die Ergebnisse einer umfangreichen numerischen Studie, im Rah-

men derer wir auf keinen Widerspruch gestoßen sind. Dies gilt freilich nur, solange

die Voraussetzung erfüllt ist, dass das System S groß ist im Vergleich zu typischen

Längenskalen der Flüssigkeit. Eine Vielzahl der abgeleiteten Ergebnisse werden mit

hoher Genauigkeit bestätigt. Dazu präsentieren wir zunächst ein numerisches Schema,

um die thermodynamischen Koeffizienten in Gl (1) zu berechnen. Mit diesem demon-

strieren wir dann, dass Exzessadsorption Γ, Grenzflächenspannung γ und mittlere

Kontaktdichte ρ̄c an Zylindern und Kugeln mit unterschiedlichen Radien sehr genau

vorhergesagt werden können. Somit erweisen sich DFT Resultate konsistent mit dem

morphometrischen Ansatz. Neben numerischen Rechnungen kann mit einer Bulk-

theorie bei speziellen Dichtefunktionalen näherungsweise die morphometrische Form

für das großkanonische Potential Ω abgeleitet werden. Wir heben jedoch hervor, dass

die Bulktheorie genähert ist und dass die Aussage, DFT und die morphometrische
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Hypothese seien kompatibel, weder trivial ist, noch durch die Verwendung von FMT-

basierten Dichtefunktionalen impliziert wird.

Der enorme Vorteil der morphometrischen Formen besteht darin, dass diese auch

bei komplex geformten Objekten eine einfache Berechnung von thermodynamischen

Größen erlauben. Wir demonstrieren anhand von drei Monte-Carlo Simulationen von

harten Kugeln um Ellipsoide bzw. einen Sphärozylinder, dass die Vorhersagen unse-

rer Theorie mit sehr hoher Genauigkeit auch an komplex geformten Objekten erfüllt

sind. Es wird darauf hingewiesen, dass die thermodynamischen Größen über das Sy-

stem S gemittelte Größen sind und deshalb die morphometrische Hypothese dann

von besonderem Interesse ist, wenn man sich nicht für die mikroskopischen Details

einer Wand-Flüssigkeit Grenzfläche interessiert. Als Näherung lassen sich die mor-

phometrischen Formen jedoch auch lokal verwenden, wenn der Einfluss der lateralen

Krümmungsabhängigkeit vernachlässigbar ist.

Die morphometrische Form ist nicht auf die Anwendung auf rein konvexe Geo-

metrien S beschränkt. Die Ergebnisse lassen sich durch die Verwendung von negati-

ven Krümmungen H und K auch für die Vorhersage thermodynamischer Größen in

konkaven Systemen nutzen. In diesem Zusammenhang muss beachtet werden, dass

S groß gegen die Flüssigkeitsteilchen ist, um kaustische Effekte auszuschließen. Wir

quantifizieren diese mithilfe von DFT-Rechnungen einer Hartkugelflüssigkeit in einer

zylindrischen Kavität und bestätigen, dass für hinreichend große Zylinderradien die

morphometrische Form auf Basis von Daten an konvexen Wänden eine exzellente

Vorhersage auch für konkave Geometrien liefert.

Betrachtet man Flüssigkeiten an weichen Wänden, so bleiben die Aussagen der

morphometrischen Hypothese weiterhin gültig, man muss jedoch beachten, dass die

Kontaktdichte dann keine thermodynamische Größe mehr ist. Das hat zur Konse-

quenz, dass neben linearen Krümmungstermen noch höhere Potenzen in H und K

benötigt werden, um den vollständigen Einfluss der Geometrie auf ρ̄c zu beschrei-

ben. Diese Beobachtung steht im Gegensatz zu der bei Exzessadsorption und Grenz-

flächenspannung, welche trotz weicher Wände ihre morphometrische Form beibehal-

ten.

Für eine Square-Well-Flüssigkeit mit weicher Teilchen-Teilchen-Wechselwirkung

beobachten wir auch eine morphometrische Form für thermodynamische Größen, so-

lange es nicht zu Effekten wie Drying kommt. Das führt, wie Evans et. al. in [53] zei-

gen, zu einer nichtanalytischen Abhängigkeit der thermodynamischen Größen von der
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Geometrie. Wie beobachten diesen Effekt indirekt durch eine Verletzung der morpho-

metrischen Form.

Kapitel 4. Mit morphometrischen Formen lassen sich thermodynamische Größen

sehr genau berechnen. Dabei handelt es sich jedoch stets um gemittelte bzw. glo-

bale Größen. Diese können nicht die mikroskopischen Details einer Wand-Flüssigkeit

Grenzfläche beschreiben. Darunter verstehen wir insbesondere strukturelle Eigen-

schaften wie die Verteilung der Dichte von Flüssigkeitsteilchen. Mit deren Hilfe wer-

den wir, in einem weiteren Schritt, im folgenden Kapitel effektive Wechselwirkungs-

potentiale zwischen komplex geformten Körpern berechnen. Um die Geometrieabhä-

nigkeit der Dichte ρ(r) am Ort r zu beschreiben, führen wir Normalkoordinaten ein.

Aufbauend auf den Ergebnissen des vorherigen Kapitels benutzen wir als Ansatz für

ρ(r) eine analytische Entwicklung in Potenzen der Krümmungen H und K

ρ(r) =ρP (u) + ρH(u)H + ρK(u)K + ρH2(u)H2+

+ ρH3(u)H3 + ρHK(u)HK +O(R−4
1,2) .

(2)

Hier bezeichnen u den Normalabstand, ρP (u) das Dichteprofil an einer ebenen Wand

und ρξ(u) für ξ = H,K,H2, HK,H3, · · · die Krümmungsentwicklungskoeffizienten-

funktionen. Um diesen Ansatz zu testen betrachten wir eine Hartkugelflüssigkeit und

bestimmen die Koeffizientenfunktionen durch die Analyse von Dichteprofilen in ein-

fachen Geometrien. Da es aus praktischen Gründen kaum möglich ist, DFT auf kom-

plex geformte Objekte anzuwenden, nutzen wir Monte-Carlo Simulationen um die

Verteilung von harten Kugeln um ein biaxiales hartes Ellipsoid zu bestimmen. Die

Ergebnisse stimmen ausgezeichnet mit denen der Krümmungsentwicklung überein,

wobei beachtet werden muss, dass Gl. (2) nur den Einfluss der lokalen Krümmungen

auf die Dichte betrachtet. Die Geometrie der Wand muss also so beschaffen sein, dass

der Einfluss von lateralen Variationen von H und K vernachlässigbar ist.

Die Krümmungsentwicklung eines Dichteprofils und die morphometrische Form

thermodynamischer Größen sind eng miteinander verknüpft. Erstere stellt eine weit

allgemeinere Form der Krümmungsabhängigkeit als eine morphometrische Form dar.

Deshalb müssen die Krümmungsentwicklungskoeffizientenfunktionen ρξ(u) Summen-

regeln erfüllen. Ein naheliegender Zusammenhang ist ρc = ρ(u = 0), d.h. die Kontakt-

dichte ist die Dichte mit verschwindendem Normalabstand von der Wand. Da wir im

vorangehenden Kapitel zeigen, dass nichtmorphometrische Terme für ρ̄c an der harten

Wand verschwinden, muss folglich ρξ(u = 0) = 0 für alle ξ = H2, HK,H3, · · · gelten.
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Das beobachten wir numerisch mit hoher Genauigkeit sowohl für verschiedene Model-

le als auch Packungsdichten. Weitere Zusammenhänge zwischen der Exzessadsorption

Γ und dem Dichteprofil werden abgeleitet und numerisch verifiziert. Besonders bemer-

kenswert sind die Implikationen des Harte-Wand-Theorems in Verbindung mit dem

Gibbs-Adsorptions-Theorem. Es verbindet die Kontaktdichte mit der Exzessadsorp-

tion, also dem Integral über die Dichte. Nimmt man eine analytische Entwicklung

des Dichteprofils an, so folgt daraus ohne weitere Annahmen, dass ρH2(0) = 0 für

alle Flüssigkeiten, chemischen Potentiale und Temperaturen. Eine weitere Beziehung

schränkt die Krümmungsabhängigkeit der Kontaktdichte speziell an harten kugelför-

migen Wänden ein. Weitere Resultate sind zwar notwendig für die morphometrische

Form des großkanonischen Potentials, jedoch nicht hinreichend.

Verblüffenderweise kann die funktionale Form der Krümmungsentwicklungskoef-

fizientenfunktionen ρξ(u) und somit auch der Dichte ρ(r) an einer beliebig geformten

Wand für hinreichend große Normalenabstände u analytisch berechnet werden. Dazu

untersuchen wir die totale Korrelationsfunktion hwp(r) zwischen der Wand und den

Teilchen unter Verwendung der Ornstein-Zernike-Gleichung. Wir nehmen an, dass die

Flüssigkeit eine isotrope Bulkphase hat, dass also keine spontane Symmetriebrechung

auftritt und dass desweiteren die Wand-Teilchen- und Teilchen-Teilchen-Wechselwir-

kung kurzreichweitig sind. Für große Abstände von der Wand lässt sich dann eine Dif-

ferentialgleichung ableiten, die die totale Wand-Teilchen-Korrelationsfunktion hwp(u)

erfüllen muss. Diese lässt sich näherungsweise integrieren

hwp(u) =
A exp(−i=(k0)u) sin(<(k0)u+ θ)√

1 + 2Hu+Ku2
. (3)

Dabei sind k0 die (komplexe) Position des Pols führender Ordnung und A und θ un-

bekannte Amplituden und Phasen, die nicht mehr vom Normalabstand u abhängen.

Numerisch zeigt sich, dass diese nur sehr schwach von H und K abhängen, so dass die

asymptotische Form der Korrelationsfunktion hwp(u) vollständig definiert ist. Es las-

sen sich nun Dichteprofile und Krümmungsentwicklungskoeffizientenfunktionen ρξ(u)

bestimmen. Wir bestätigen eine ausgezeichnete Übereinstimmung mit numerischen

Daten.

Kapitel 5. Kennt man die Dichteverteilung von Flüssigkeitsteilchen um einen

Körper, kann man mit der sog. Einfügemethode effektive Wechselwirkungen zwischen

eben diesem und einem weiteren Körper berechnen. Diese Methode wurde erfolgreich

für einfach geformte Objekte getestet. In einem solchen Fall ist es nämlich möglich,
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herkömmliche DFT Verfahren zu verwenden, um die Dichteprofile um einen der Kör-

per zu bestimmen. Dies wird jedoch praktisch unmöglich, sobald beide Körper keine

hochsymmetrische Form mehr haben. Für ein biologisches Schlüssel-Schloss-System,

das wir hier näher studieren, ist das jedoch gerade wesentlich. Wir entwickeln deshalb

eine Methode, die solches leistet.

Wir beginnen dazu unsere Betrachtungen mit der effektiven Wechselwirkung zwi-

schen einer Kugel und einem Ellipsoid. Nach der Einfügemethode gibt es dann zwei

unterschiedliche Wege, das effektive Wechselwirkungspotential zu berechnen. In ei-

nem Fall beginnt man mit der Kugel und fixiert diese im Ursprung. Man errechnet

das Dichteprofil der Flüssigkeitsteilchen und fügt dann das Ellipsoid ein. Letzteres

geschieht mithilfe der FMT für asphärische Teilchen, was einen kleinen systemati-

schen Fehler mit sich bringt. Der alternative Weg besteht darin, mit dem Ellipsoid zu

beginnen, dieses zu fixieren und das Dichteprofil unter Verwendung der Krümmungs-

entwicklung zu bestimmen. Dann kann man die Kugel einfügen und erhält so al-

ternativ zum ersten Weg das effektive Wechselwirkungspotential. Für den zweiten

Weg kann man die FMT für Kugeln verwenden, jedoch erwartet man auch hier einen

kleinen Fehler, da die Krümmungsentwicklung nicht exakt ist. Der entscheidende

Punkt ist, dass beide Wege jeweils unabhängige systematische Fehler bei der Berech-

nung des Wechselwirkungspotentials liefern. Da aber beide Alternativen aus physi-

kalischen Überlegungen heraus ein identisches Resultat liefern müssen, kann man die

Abweichung beider Ergebnisse voneinander als ein Maß für die Genauigkeit beider

Verfahren nutzen. Wir finden eine sehr gute Übereinstimmung, solange die lateralen

Variationen der lokalen Krümmungen H und K klein sind. Der Grund ist, analog zu

den Beobachtungen bei dem Dichteprofil, dass die Krümmungsentwicklung nur lokale

Krümmungen betrachtet.

Mit dem Wissen, dass sowohl die Krümmungsentwicklung als auch die FMT für

asphärische Teilchen sehr gute Näherungen sind, können beide Methoden kombi-

niert verwenden, um effektive Wechselwirkungen zwischen zwei komplex geformten

Objekten zu bestimmen. Wir studieren aus der Fülle von möglichen Systemen zwei

Ellipsoide und zeigen ausgewählte Ergebnisse für verschiedene relative Lagen. Da

die Wechselwirkung zwischen diesen beiden Objekten neben der Lage auch von der

gegenseitigen Orientierung abhängt, entstehen für solche Systeme neben den effekti-

ven Kräften auch entropische Drehmomente, welche ebenfalls durch unseren Ansatz

berechnet werden können und präsentiert werden.
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Um den Einfluss der effektiven Wechselwirkungskräfte auf ein Schlüssel-Schloss-

System zu studieren, schlagen wir ein einfaches Modell vor. Es besteht aus einem

ellipsoidalen Schlüssel und einem Schloss mit einem ellipsenförmigen Hohlraum, in

den das Schlüsselteilchen passt. Beide Objekte sind von einer Hartkugelflüssigkeit

umgeben. Der entscheidende Unterschied zu den vorherigen Systemen besteht in der

Tatsache, dass es sich bei dem Schlüssel um ein teilweise konkaves Objekt handelt, so

dass in der Krümmungsentwicklung negative H und K auftreten. Wir haben bereits

für den Kontaktwert der Dichte gezeigt, dass sich Ergebnisse von konvexen auch auf

konkave Geometrien verallgemeinern lassen und erwarten deshalb auch in diesem Fall

sehr genaue Vorhersagen der Krümmungsentwicklung.

In Ref. [97] präsentiert Kinoshita effektive Wechselwirkungspotentiale zwischen

einem kugelförmigen Schlüssel und einem Schloss mit einem entsprechend halbkugel-

förmigen Hohlraum. Diese Berechnungen beruhen auf der numerischen Lösung von

genäherten Integralgleichungen auf einem dreidimensionalen Gitter. Wir bestimmen

mithilfe unseres Ansatzes die entropischen Wechselwirkungspotentials, wobei zu be-

achten ist, dass wir die verwendete Geometrie leicht modifizieren. Es ist erforderlich,

die Kanten am Schlüsselobjekt abzurunden, um so die Krümmungsentwicklung an-

wenden zu können. Demnach sind beide Geometrien nicht völlig identisch, jedoch

stimmen wichtige Beobachtungen qualitativ überein. Das resultierende Wert für das

effektive Wechselwirkungspotential ist stets sehr negativ, wenn sich Schlüssel und

Schloss berühren, d.h. die Anwesenheit von weiteren Teilchen führt dazu, dass der

gebundene Zustand energetisch stark begünstigt wird. Wir beobachten, dass geo-

metrisch kompatible Schlüssel und Schlösser eine besonders hohe stabilisierende freie

Energie für den gebundenen Zustand haben, was vor dem Hintergrund der hohen

Selektivität der enzymatischen Reaktion besonders interessant ist. Diese Beobach-

tung ist verständlich durch ein Argument der Asakura-Oosawa Näherung. Es besagt,

dass die stabilisierende freie Energie proportional zum Überlappungsbereichs der für

die umgebenden Teilchen ausgeschlossen Volumina ist, welches konsequenterweise am

größten ist, wenn Schlüssel und Schloss kompatible Formen haben. Ein sehr wichtiger

Aspekt wird jedoch nur von aufwändigeren Theorien vorhergesagt, nämlich dass das

Annähern von dem Schlüssel zum Schloss von einer energetischen Barriere begleitet

wird. Die Höhe überschreitet für große Schlüsselmoleküle die thermische Anregungs-

energie bei weitem, so dass zwar der gebundene Zustand nach wie vor energetisch

begünstigt ist, jedoch praktisch nie erreicht wird. Mit kugelförmigen Schlüsseln gibt
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es keine Möglichkeit, die Barriere zu umgehen.

Wir erweitern deshalb unser Modell und betrachten nun einen ellipsoidalen, also

asphärischen Schlüssel mit entsprechend kompatiblem Schloss. Führt man den Ellip-

soid wie gewohnt mit fester Orientierung in das Schloss, so tritt auch in diesem Fall

wieder eine energetische Barriere und ein stark negativer Kontaktwert auf. Allerdings

sind nun die Winkelfreiheitsgrade des Schlüssels nicht mehr energetisch entartet. Wir

zeigen, dass die Annäherung von einem gedrehten Schlüsselmolekül zwar das effek-

tive Wechselwirkungspotential quantitativ verändert, jedoch kann in allen Fällen ei-

ne Energiebarriere beobachtet werden. Desweiteren ist für einen gedrehten Schlüssel

keine vollständige Annäherung an das Schloss mehr möglich. Um das zu umgehen

betrachten wir außerdem die Annäherung des Schlüsselmoleküls unter der Annahme,

dass es sich stets nach dem lokalen entropischen Drehmoment ausrichtet. Es nutzt

also für alle Positionen seine Winkelfreiheitsgrade, um das effektive Wechselwirkungs-

potential zu minimieren. Mit dieser Annahme erhalten wir einen nahezu monotonen

Verlauf des Wechselwirkungspotentials bei Annäherung, d.h. ein asphärischer Schlüs-

sel kann in das Schloss finden, indem er stets den lokalen Kräften und Drehmomenten

folgt. Wir weisen darauf hin, dass einer solchen Interpretation die Annahme zugrunde

liegt, dass sich das Gesamtsystem zu jedem Zeitpunkt im thermischen Gleichgewicht

befindet, was nur genähert der Fall ist. Weiterhin ist unser Modell idealisiert, da kei-

ne nur Hartkörperwechselwirkungen betrachtet werden. Jedoch erlauben diese rein

entropischen effektiven Wechselwirkungspotentiale einen Mechanismus, der wesentli-

che Aspekte in einem Schlüssel-Schloss-System mithilfe rein geometrischer Argumente

erklärt.



Abstract

In a cell biochemical reactions are controlled by the use of enzymes, which catalyze

reactions by providing a binding site where other molecules can react with a highly

decreased activation energy. This means that enzymes increase the reaction rate of a

biochemical process. In order to use them to selectively control a certain reaction it

is necessary that they are specific, i.e. they should only promote a unique biochemical

reaction. This is observed experimentally and this finding is normally explained by

a key-lock picture, which describes the enzyme as a “lock” and the reacting molecule

as a “key”. Only if the key fits into the lock it can be used to trigger a specific action.

Prior to the chemical reaction, the key-molecule must be moved to the lock for

touching, which means that it must be positioned and oriented in a pre-defined way.

This is not trivially achieved. If there is no interaction between key and lock molecule,

the particles essentially exhibit a random walk - both concerning their positions and

orientations. In such a system it is very unlikely that touching occurs, because the

phase-space where the chemical reaction can be triggered is very small. Consequently,

the reaction rate would be low and the enzyme very inefficient. This is not observed

which means that for actual systems an interaction potential between key and lock

is present.

There are various physical effects which can be used to explain intermolecular

interaction potentials. Electric charges on the molecules lead to Coulomb forces,

van-der-Waals interactions are due to the coupling of dipoles, and hydrogen bonds

arise between the partial charges of a hydrogen atom and a heteroatom. Common to

these interactions is that they depend on the molecular structure of the molecules,

i.e. they are chemically specific. Therefore, if these potentials are responsible for

the interaction potential needed for a fast enzymatic reaction, all involved molecules

must be designed in a way that the resulting interaction potential leads to a bonding

between the key and the lock molecule. This constraint would limit the degrees of

freedom for the design of biomolecules which is unlikely as this would be inefficient.

It is more likely that the source of attraction between key and lock is based on

12
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a more fundamental, chemically unspecific mechanism. Effective interactions are a

good candidate for the intermolecular forces in such a system [1–3]. In the past years

they have been discussed to be essential for the understanding of many biological

processes which are controlled by interactions between macromolecules [4–6]. The

origin of effective interactions is that the key-lock system is immersed in a sea of

other molecules. Such a situation is typical in a physiological environment, as a cell

is a densely packed mixture of various particles. These “background” particles do

not take part in the actual reaction of key and lock, they however undergo thermal

motion and interact physically with the key, the lock, and among each other. The

interaction leads to a momentum transfer on key and lock, also referred to as osmotic

pressure. It is balanced, if both particles are at a large mutual distance, i.e. the

net effect of the momentum transfer vanishes. It however becomes unbalanced when

both particles are close to each other because of correlations within the fluid. The

net effect can be described by an effective interaction potential. According to a

simple model, the Asakura and Oosawa approximation [7], the effective potential is

minimal for touching, which means that such a configuration is thermodynamically

favored. In the thermodynamic equilibrium it is therefore likely that the key and

lock touch. This could explain the efficiency of key-lock reactions in particular as

this simple approximation agrees qualitatively also with more elaborate theories. It

however fails to predict other important features of the effective interactions as we

describe in Section 5.4. There are potential barriers that must be overcome during

the approach by the key-particle, which are not accounted for by the Asakura-Oosawa

approximation. It furthermore yields a vanishing effective force as the long-distance

behavior, which is an artifact of the assumptions made for the approximation.

In this thesis we develop a more elaborate technique to calculate effective inter-

actions between asymmetric particles, which we use as a model for a key and lock

system. It is however essential to understand that the reason for this work is not to

model a specific key-lock system with a high accuracy. From a physical viewpoint it

is rather interesting to study the influence of the depletion effects in such systems by

employing models which on the one hand capture all relevant effects but on the other

hand are sufficiently simple that the results can be interpreted and generalized to a

large class of different key-lock systems. One particular approximation we therefore

choose is the use of purely hard objects, which means that the effective interactions

are of purely entropic origin. In doing so we neglect all chemically specific forces

mentioned above. These are of minor interest here, because we aim to study the

influence of effective interactions on the biological key-lock system. Note that aside
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from this pragmatic argument, electric forces are also shielded on a short lengthscale

at physiological salt ion concentrations. The macromolecules, which act as key and

lock, are usually large compared to the range of electrical interactions such that we

expect that the use of hard objects represents an adequate approximation. A further

approximation is the use of a hard-sphere fluid to describe the background fluid of

objects the key-lock system is immersed in.

One aspect which we find to be essential for these systems is the geometry of the

key and the lock. A simple approximation of the key molecule as a sphere inevitably

leads to energetic barriers which are very unlikely to be overcome by thermal energy.

If however sufficiently asymmetric particles are considered, the potential barrier can

be overcome by using the angular degrees of freedom of the key, as we report in

Section 5.4. Unfortunately it is very complicated to calculate effective interactions

between non-symmetric objects by means of direct methods. They normally require

calculations on a three-dimensional grid which makes the numerical evaluation very

costly and inaccurate. Our approach is to systematically study the influence of a

object with a complex shape on the surrounding fluid by treating the influence of

the curvature perturbatively. This is done in three major steps, which we describe in

Chapters 3, 4, and 5.

Before the actual presentation of these results, we give in Chapter 1 a brief

overview concerning the different concepts used in this work. We review the models

and approximations employed in various places of the thesis. In Chapter 2 we in-

troduce thermodynamic quantities which are associated with a fluid in contact with

a curved wall. These quantities, such as excess adsorption or interfacial tension are

commonly used in the literature, such that here we particularly emphasize the sub-

tleties that arise near a curved interface. This allows us in Chapter 3 to formulate

a morphometric thermodynamics, which implies a simple dependence for thermody-

namic quantities on the shape of an immersed particle. These results are generalized

in Chapter 4 to predict also structural quantities, in particular density distributions

of solute particles near curved walls. In a final step we calculate effective interactions

in Chapter 5 and study the influence of these entropic interactions in the context of

biological key-lock systems.



Chapter 1

Basic Concepts

In this chapter we provide a brief introduction into the various theoretical concepts

that are used in this work. The general aim is not to provide a detailed review, which

would be beyond the scope of a thesis, but to define important quantities, quote useful

relations, and cite important references. In the first section, the basic ideas concerning

density-functional theory (DFT) of simple fluids are summarized. Then, in the second

section, we give a short introduction to the fundamental measure theory (FMT). This

theory provides, within the framework of DFT, the state-of-the-art description for

fluids with hard-core interactions. It is in particular successful to model a fluid that

consists of hard spherical particles, the so-called hard-sphere fluid. This system serves

as a“working horse” for many fundamental considerations and will be commonly used

to numerically verify the results derived in this work. For some studies however, we

use fluids which are not exclusively dominated by entropy. We review in section three

a high temperature perturbation theory which allows us to extend models used for

fluids with pure hard-core interactions to account also for colloids that feature in

addition to a hard core also a soft interparticle interaction potential. One particular

application of such a theory is the square-well fluid. Finally, in the fourth section, the

idea of integrating out internal degrees of freedom is addressed. This leads to effective

many-body interactions and a method is reviewed that, based on the FMT, allows to

calculate effective interaction potentials. We apply this theory later in Chapter 5 to

calculate the depletion interaction in a key-lock system.

15
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1.1 Density-Functional Theory

Density-functional theory is based on the finding that all thermodynamic quanti-

ties of a statistical system can be expressed as functionals of the equilibrium single-

particle density. This idea was originally formulated by Hohenberg, Kohn [8], and

Mermin [9] for quantum systems but later this finding was generalized also to clas-

sical fluids [10]. It was in particular proven that for a statistical system with given

interparticle interactions the equilibrium single-particle density ρ(r) can be used to

uniquely calculate the external potential acting on the fluid particles in the system.

With this knowledge, namely the external potential and the interparticle interac-

tion, the full Hamiltonian of the statistical system is in principle known and thus

a partition sum and all thermodynamic observables can be calculated. This shows

that in essence all thermodynamic quantities can be regarded as functionals of the

equilibrium single-particle density of the particles. The implications of this finding

alone are however limited, as it does not provide a systematic way to calculate the

actual equilibrium single-particle density ρ(r). In order to obtain it, a functional

Ω[f ] of the phase space density f(rN ,pN ;N) is constructed such that it has a global

minimum for the equilibrium phase space density f0(rN ,pN ;N), i.e. Ω[f ] ≥ Ω[f0] for

all phase space densities f . To this end it is essential to realize that the equilibrium

phase space density f0(rN ,pN ;N) itself is also a functional of the equilibrium density

distribution ρ(r) and therefore the constructed functional Ω[f ] with a minimum for

f = f0 can also be interpreted as a functional Ω[f [ρ]] = Ω[ρ] of the single-particle

density ρ(r). This density functional also has, by construction, a global minimum

for the equilibrium single-particle density. This special property allows one to use

a variational principle to find the equilibrium density distribution ρ(r). Once the

distribution of the density ρ(r) is found, all other thermodynamic quantities can in

principle be calculated as indicated above. Survey articles about DFT and a more

detailed presentation of these concepts can be found in Refs. [10–12].

The actual functional mapping Ω[ρ] is very complicated and can, for a general

fluid, usually not be expressed in a closed form. To proceed, one normally splits the

functional Ω[ρ(r)] into the following three contributions

Ω[ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)] +

∫
ρ(r)(Vext(r)− µ) dr . (1.1)

Fid[ρ] is the functional of the intrinsic free energy of an ideal gas and Fex[ρ] denotes

the excess free energy, where “excess” refers to the difference to the ideal contribution

Fid[ρ]. The third term in Eq. (1.1) describes the influence of the external potential
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Vext(r) on the grand potential. It includes the chemical potential µ, which is the

conjugated quantity to the total number of particles. The first term of Eq. (1.1),

Fid[ρ], is known in closed form

βFid[ρ(r)] =

∫
ρ(r)(ln(Λ3ρ(r))− 1) dr , (1.2)

where Λ =
√

2πβ~2/m stands for the thermal wavelength of the fluid particles with

mass m. β = 1/(kBT ) is the inverse temperature. In order to avoid dimensional

expression one normally substitutes Λ by the ideal chemical potential βµid = ln(Λ3ρb),

where ρb denotes the bulk density of the fluid. Eq. (1.2) then becomes

βFid[ρ(r)] =

∫
ρ(r)

(
ln(

ρ(r)

ρb
) + µid − 1

)
dr . (1.3)

It should be noted that up to this point no approximation is made. Therefore the

exact density functional Ω[ρ] of an ideal gas is obtained by setting Fex[ρ] = 0. In case

of a non-ideal fluid however, an expression for the functional Fex[ρ] 6= 0 must be used

to describe the correlation between the non-ideal fluid particles. This can usually

only be done approximately and we address this issue in more detail in Section 1.2.

Here we assume that Fex[ρ] and hence all terms in Eq. (1.1) are known for the fluid

of interest. With a given Ω[ρ], the equilibrium density distribution is obtained and

then, in a second step, other thermodynamic properties are derived. Note that an

expression for Fex[ρ] is normally hard to find. However, once it is found for a certain

type of fluid, it is independent of the external potential, such that the same expression

Fex[ρ] can be re-used for all Vext(r). This property makes DFT a very powerful tool

to study the influence of differently shaped walls, which enter the functional Ω[ρ] as

an external potential.

Suppose Fex[ρ] is known and therefore all three contributions in Eq. (1.1) for

Ω[ρ] are given. One then uses the fact that Ω[ρ] is minimal for the equilibrium

density profile ρ(r). The density profile ρ(r) is hence found by the necessary condition

δΩ/δρ(r) = 0, which demands that Ω[ρ] is stationary for the equilibrium density ρ(r).

In DFT, this condition is called the Euler-Lagrange equation and must be satisfied

for all positions r in space. Applying δΩ/δρ(r) = 0 to the expression in Eq. (1.1) and

using Eq. (1.3) for Fid[ρ] leads to

ρ(r) = ρb exp
(
c(1)(r)− βVext(r) + βµid − βµ

)
. (1.4)

Here we introduce the one-particle direct correlation function c(1)(r), which is the
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first function in a hierarchy of higher order direct correlation functions

c(n)(r1, . . . , rn) = − δnβFex[ρ]

δρ(r1) . . . δρ(rn)
. (1.5)

All direct correlation functions c(n), n = 1, 2, . . . are functionals of the density profile

ρ(r) and in general very complicated functions that depend on multiple positions

r1, . . . , rn in space. They however simplify significantly in the bulk, i.e. under the

assumption of a constant density profile ρ(r) = ρb. In particular the one-particle

direct correlation function c(1)(r) becomes a constant which is referred to as the excess

chemical potential βµex = − c(1)(r1)
∣∣
b

= µ− µid. With this definition, Eq. (1.4) can

be written as

ρ(r) = ρb exp(c(1)(r)− βVext(r)− βµex) . (1.6)

Note that Eq. (1.6) represents only a formal solution of the Euler-Lagrange equations

δΩ/δρ(r) = 0, as c(1)(r) on the right hand side is in general a functional of the density

profile ρ(r) itself, as indicated above. Therefore both sides of Eq. (1.6) depend on

ρ(r). The equation can however be solved iteratively by guessing an initial density

profile. Based on this profile we obtain in a first step c(1)(r) using Eq. (1.5) and

then, in a second step, a new guess for ρ(r) using Eq. (1.6). Usually the new guess is

closer to the actual equilibrium density profile such that this scheme converges after

multiple iterations.

1.2 Fundamental-Measure Theory

The construction of a practical expression for Fex[ρ] in Eq. (1.1) is usually compli-

cated. Although an exact expression for this functional is in principle known from

a systematic expansion in terms of single-particle density clusters [13], such an ex-

pansion is not practicable to be used numerically. It contains a slowly converging,

infinite series of multiple convolutions of the density ρ(r), which are very costly when

calculated numerically. Modern functionals Fex[ρ] therefore sacrifice the exactness of

the cluster expansions for the sake of more practical expressions. When considering

fluids of hard convex particle, a very powerful and successful framework for approx-

imate functionals is provided by the fundamental measure theory (FMT) [14, 15].

This theory makes an approximation concerning the functional form of Fex[ρ], but

still allows further theories to improve the density functional in order to model the

behavior of the respective fluid as close as possible. For reasons of clarity we review

the FMT for a monodisperse fluid of hard spheres with radius R, although this theory
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was developed originally for a fluid mixture of spheres. More recent generalizations

include a treatment of components which consist of nonspherical hard particles. We

review them at the end of this section.

If the center of one sphere i is at position ri and the center of another sphere j 6= i

is at rj, the pair interaction potential can be written in the following form

V (ri, rj) =




∞ if |ri − rj| ≤ 2R,

0 otherwise ,
(1.7)

where R denotes the radius of the spheres. Sometimes it is more convenient to rewrite

this equation using the so-called Mayer-f bond f(ri, rj) = exp(−βV (ri, rj))− 1 [13],

which for a fluid of hard spheres has the form

f(ri − rj) = −Θ(|ri − rj| − 2R) , (1.8)

where Θ denotes the usual Heaviside unit step function. In order to describe particles

that interact via this potential using DFT methods, a functional expression for the

excess free energy Fex[ρ] is needed. From the cluster expansion [13] it is known that

Fex[ρ] can be written to lowest order term in the density ρ in the following form

lim
ρ→0

βFex[ρ] = −1

2

∫
dridrj ρ(ri)ρ(rj)f(ri − rj) . (1.9)

One way to proceed was developed by Rosenfeld [15–17] and is motivated by the

findings in Percus-Yevick theory [18]. The idea is to decompose the Mayer-f bond

used in Eq. (1.9) into convolutions of the geometries of the two spheres. This is for

example achieved by

Θ(|ri − rj| − 2R) =ω(3)(ri)⊗ ω(0)(rj) + ω(0)(ri)⊗ ω(3)(rj) + ω(2)(ri)⊗ ω(1)(rj)

+ ω(1)(ri)⊗ ω(2)(rj)− ω(1)(ri)⊗ ω(2)(rj)− ω(2)(ri)⊗ ω(1)(rj) ,

(1.10)

where ω(α)(r) for α = 0, 1, 2, 3, 1, 2 are the geometries or fundamental measures of a

sphere with radius R. Note that this decomposition is not unique, but the resulting

functionals based on different decompositions are equivalent [19]. The geometries of

the spheres have the following form

4πR2w(0)(r) = 4πRw(1)(r) = w(2)(r) = δ(R− |r|) ,
w(3)(r) = Θ(R− |r|) , (1.11)

4πRw(1)(r) = w(2)(r) =
r

|r|δ(R− |r|) .
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The symbol ⊗ in Eq. (1.10) denotes a convolution between two fields f(r) and g(r)

f(ri)⊗ g(rj) =

∫
dx f(x− ri)g(x− rj) . (1.12)

Note that this definition implies a scalar product if f(r) and g(r) are vector-valued

weight functions. Inserting Eq. (1.10) in Eq. (1.9) yields expressions where the density

profile ρ(r) is convolved with the fundamental measures ω(α)(r). These expressions,

which are referred to as weighted densities nα(r), have the form

nα(r) =

∫
dr′ ρ(r′)ω(α)(r− r′) . (1.13)

With nα(r) as an abbreviation for the convolution integrals, the excess free energy

functional Fex[ρ] can, to lowest order in the density, be rewritten as follows

Fex[ρ] =

∫
drφ({n(r)}) . (1.14)

The function (not functional) φ({n(r)}) of all weighted densities nα(r) is explicitly

known in lowest order in the density ρ by virtue of Eq. (1.9) with Eqs. 1.8 and 1.10.

FMT however assumes that this functional form is approximately also true for all

higher orders in the density. With this assumption also the full density functional,

comprising all orders in the density ρ, has a functional form as indicated in Eq. (1.14).

Although this is necessarily an approximation to the exact expression of Fex[ρ], prac-

tice tells that with an appropriate φ({n(r)}) the properties of the hard-sphere fluid

can be modeled very accurately. There are several approaches that yield different

expressions for the function φ({n(r)}). In the original version of FMT [15], an ansatz

was chosen based on dimensional arguments and then the scaled particle differential

equation [14,20–22] was used to determine the unknown functions used for the ansatz.

This idea leads to the following excess free energy density φ({n(r)})

βφ = −n0 ln(1− n3) +
n1n2 − n1 · n2

1− n3
+
n3

2 − 3n2 (n2 · n2)

24π(1− n3)2
. (1.15)

This expression is referred to as the Rosenfeld functional which models various aspects

of the hard-sphere fluid accurately. One interesting aspect is for example the pressure

p of a hard-sphere fluid which we obtain within FMT via

βp = n0 − φ+
∑

α

nα
dφ

dnα
. (1.16)
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For the Rosenfeld functional, Eq. (1.15), the pressure p is given by the Percus-Yevick

(PY) Equation of State (EoS) [23]

βp = ρb
1 + η + η2

(1− η)3
, (1.17)

where η = 4πρb/3 is the bulk packing fraction. This EoS for hard spheres is in rela-

tively good agreement to the actual one, which can be determined either numerically

by simulations [24] or by experiments [25–27]. There are however limitations to the

original Rosenfeld functional. It was shown that the actual fluid of hard spheres

freezes for η > 0.494 [12, 28–30], which is not accounted for by the expression in

Eq. (1.15). For this reason the functional was modified later [31–34], however in

this thesis we are particularly interested in the fluid state and therefore exclusively

use the original version of the functional. Another ansatz to construct a function

φ({n(r)}) is to modify the Rosenfeld functional such that the pressure p obtained

from the density functional via Eq. (1.16) is closer to the actual EoS. A particu-

larly successful parameterization of the EoS of a hard-sphere fluid is given by the

Mansoori-Carnahan-Starling-Leland (MCSL) EoS [35], which reads for a monodis-

perse fluid [36]

βp = ρb
1 + η + η2 − η3

(1− η)3
. (1.18)

One can enforce this EoS by an appropriate function φ({n(r)}) that yields a pressure

according to Eq. (1.18) when inserted in Eq. (1.16). Such a function φ defines the

White-Bear version of FMT [37,38] and reads

βφ =− n0 ln(1− n3) +
n1n2 − n1 · n2

1− n3

+

+ (n3
2 − 3n2 (n2 · n2))

n3 + (1− n3)2 ln(1− n3)

36πn2
3(1− n3)2

.
(1.19)

The latter functional shows an excellent agreement with simulation data not only con-

cerning the equation of state, which is by construction given by Eq. (1.18), but also

concerning other thermodynamic quantities and structural properties of the hard-

sphere fluid like, e.g. density profiles or correlation functions. We will use it success-

fully in Section 3.3 to predict results of quasi-exact Monte-Carlo simulations.

The main advantage when using FMT-based functionals is the fact that the re-

sults found for a monodisperse fluid can easily be extended to fluid mixtures. Such

an extension leaves φ({n(r)}) unaltered, but leads to an extended definition of the
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weighted densities nα(r), which add up for each component of the fluid

nα(r) =
∑

i

∫
ρi(r

′)w(α)
i (r− r′) dr′ . (1.20)

Here, α labels the respective fundamental measure and i the different components

of the fluid mixture. Note that the weight functions w
(α)
i (r) depend on the different

radii of the particles of each component i. For each hard-sphere component with

radius Ri = R their functional form is given by Eq. (1.11). If a component consists of

hard, but nonspherical convex particles, yet another extension of FMT is possible as

described in Ref. [39]. The generalization to nonspherical particles follows closely the

ideas for spheres and again aims to decompose the Mayer-f bond into fundamental

measures of the particles. The expression has a similar form as in Eq. (1.10), however

the fundamental measures for an arbitrary convex object are more complicated as

the ones provided by Eq. (1.11)

w(0)(r) =
K(r)

4π
δ(R(r)− |r|) ,

w(1)(r) =
H(r)

4π
δ(R(r)− |r|) ,

w(2)(r) =δ(R(r)− |r|) ,
w(3)(r) =Θ(R(r)− |r|) ,

w(1)(r) =
H(r)

4π

r

|r|δ(R(r)− |r|) ,

w(2)(r) =
r

|r|δ(R(r)− |r|) .

(1.21)

R(r) denotes the extend of the particle in r direction. H(r) and K(r) are the mean

and Gaussian curvatures of the particle and are only used together with a delta-

distribution δ which restricts r to the surface of the particle. They can be calculated

using the definitions derived in Eq. (G.8). It is interesting to note that both for

spherical and nonspherical particles only four scalar and two vectorial weight func-

tions are sufficient to model the interactions between variously shaped objects. This

observation will become important in Section 3.3.1 where we review a bulk theory

that is based on this very specific functional form of FMT based functionals. Note

that for nonspherical objects the decomposition of the Mayer-f bond as used in FMT

is approximate.



1.3. High Temperature Expansion Theory 23

1.3 High Temperature Expansion Theory

The well-established functionals for fluids with pure hard-core interactions can be

extended by means of a perturbation theory to account also for pair interaction po-

tentials that have in addition to a hard-core also a small, but non-zero soft interaction

for larger particle separations

V (ri, rj) =




∞ if |ri − rj| ≤ 2R ,

Vsoft(ri − rj) otherwise .
(1.22)

In order to apply the perturbation theory, βVsoft(r) must be sufficiently small, which

is in particular the case for high temperatures. Then the excess free energy density

functional Fex[ρ] is then approximately given by

Fex[ρ] = FHSex [ρ] +

∫
drdr′ρ(r)ρ(r′)Vsoft(r− r′) , (1.23)

where FHSex [ρ] denotes the excess free energy of the pure hard-core fluid and the

second term the perturbation contribution. The ansatz for Fex[ρ] in Eq. (1.23) is

relatively simple and there exist more elaborate methods to treat fluids in the high

temperature limit. It is however capable of qualitatively describing phenomena like

phase separations, wetting, or drying [40]. We use it in this thesis to describe a

square-well fluid, which has the following perturbation potential

βVsoft(r− r′) =




βε if |r− r′| < R +Rε ,

0 otherwise ,
(1.24)

where R is the hard core radius. Rε denotes the width and βε the depth of the sort-

ranged interaction. If the mutual attraction between the spherical particles is large

enough, which means that βε is sufficiently negative for fixed Rε, a phase separation

occurs, as displayed in the phase diagram in Fig. 1.1.

1.4 Effective Potentials

In order to describe the behavior of one or more big particles immersed in a sea

of small particles it is often favorable to trace out the internal degrees of freedom

of the smaller particles. This averaging over the phase-space of the small particles

leads to an effective picture of the system. It consists only of the big particles that

interact via effective many-body potentials. The one-body potential for instance
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Figure 1.1: Phase diagram of a square-well fluid for Rε/R = 2. The high tem-

perature expansion is applied using the White-Bear version of FMT as a reference

system and the expression in Eq. (1.24) as the soft perturbation potential. The

perturbation theory yields for this fluid a critical point at ηcr = 0.13044 and

βεcr = −0.78528. For constant ηliquid = 0.3 (arrow) and variable βε, the system is

in a one-phase fluid state until it reaches the dashed tie-line at βεgl = −0.96557.

At this state point the bulk square well fluid coexists with a gas-phase with a

smaller packing fraction of ηgas = 0.02404. If the system is close to the binodal

and the fluid is brought in contact with a hard wall, a gas-phase wets the wall

(drying).

equals the difference in the grand potential before and after the insertion of a single

big particle in the bulk fluid of the smaller particles. When additionally a second

big particle is added to the first one, the free energy cost for the insertion is again

given by the one-body potential of the second particle, but there is an additional

amount of energy associated with the insertion which is referred to as the two-body

potential. It equals the change in the grand potential when moving two big particles

from infinite separations to a position of finite mutual distance and it is therefore

called the effective interaction potential or depletion potential.

The first theoretical study of depletion potentials was done for a mixture of big

colloids and ideal, non-interacting polymers by Asakura and Oosawa [7,41] and, inde-

pendently, by Vrij [42]. According to their models the effective interaction potential

is proportional to the gain in accessible volume for the small polymers which is due
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to the depletion of excluded volume around two adjacent big colloids. The resulting

effective potential is purely attractive and in qualitative agreement even for other

solute mixtures as long as the bulk density of the small particles is low. This zeroth-

order model however fails to predict the oscillatory structure of depletion potentials

as it completely neglects correlations among the small solute particles. For this rea-

son more sophisticated methods like the Derjaguin approximation [43] or integral

equation techniques [44–46] were developed. In this work we employ a theory for

the calculation of the many-body potentials that is based on DFT [47]. It considers

as an elementary step the “insertion” of one additional big colloidal particle B in

an equilibrated fluid of small particles. The fluid may already contain zero or more

other big particles at fixed positions. The term “big” does not necessarily mean that

these particles must be larger than the small particles, it merely means that these

particles are held fixed at a certain position and their internal degrees of freedom

are not traced out, in contrast to the ones of the small particles. The reason for

such a nomenclature is that, if the size asymmetry between “big” and “small” particle

is large, the effective description of the big particles becomes increasingly effective

because higher order many-body potentials can be neglected [48].

Upon the insertion of a particle B into a system the grand potential of the system

changes. The potential distribution theorem, applied for a grand canonical ensemble,

provides an exact expression for this change in Ω

βΩ(rB)− βΩ = −c(1)
B (r) . (1.25)

In this equation, βΩ stands for the grand potential of the fluid before the insertion

of particle B and βΩ(rB) for the grand potential after the insertion of particle B at

position rB to the equilibrated fluid. On the right hand side of Eq. (1.25), c
(1)
B (r)

denotes the one-body direct correlation function of species B in the fluid. Note that

Eq. (1.25) is also valid if only some of the particles of species B are held fixed,

i.e. when one considers the particles of type B to make up a separate component of

the background fluid with a density ρB 6= 0. Here however, we take the so-called

dilute limit which means that there are no particles of species B except the fixed

ones, i.e. ρB → 0. In this limit we use the definition of the direct correlation function,

Eq. (1.5), together with the expression for the excess free energy density functional

Fex[ρ] as provided by FMT, Eq. (1.14). This yields

c
(1)
B (r) = −

∑

α

∫
dr′

∂βφ

∂nα(r′)
w

(α)
B (r′ − r) , (1.26)
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where α labels the six weight functions w
(α)
B (r) of the big particle B and nα are

the weighted densities of the background fluid. Note that in the dilute limit, ρB →
0, the weighted densities nα(r) are determined by the density distribution of the

small particles before the insertion of the additional particle B. Hence the density

distribution of the small fluid particles, which is needed to obtain c
(1)
B (r), can be

calculated without considering the inserted particle B. This makes Eq. (1.26) very

efficient concerning actual numerical calculations. After the weighted densities and

the fields ψα(r) = δβφ/δnα(r) have been determined the other big particle is, in a

second step, “inserted” in the system which yields a direct correlation function c
(1)
B (r)

according Eq. (1.26). The shape of B enters c
(1)
B (r) by the functional form of the

weight functions w
(α)
B (r).



Chapter 2

Fluids at Curved Interfaces

When a fluid is brought in contact with a wall it forms an interface. This leads to

interesting physical effects which we systematically study in this thesis. For instance,

the particular focus of Chapter 3 is the influence of curved interfaces on fluids, i.e. the

dependence of thermodynamic quantities of the fluid on the shape of the wall that

determines the interface. The present chapter servers as an introduction into this

field. In the first section, commonly used thermodynamic quantities associated with

an interface are reviewed and the concept of the dividing interface is presented in

detail. The particular focus concerns the subtleties involved when considering curved

interfaces or fluid mixtures. In the second section, three sum-rules are derived that

connect thermodynamic quantities and must be fulfilled for all types of fluids. Such

relations are very useful to validate numerical data and allow us in a later stage to

make rigorous statements about the shape dependence of different fluid properties in

Section 4.2.

2.1 Excess Adsorption and Interfacial Tension

We consider a fluid in contact with a wall as sketched in Fig. 2.1. For reasons of clarity

we limit our presentation in the beginning to a one-component fluid of spheres and

a hard curved wall, although generalizations of this simple situation are possible for

most of the following equations and will be provided separately whenever necessary.

Form the viewpoint of DFT, a monodisperse fluid is described by a density functional

Ω[ρ(r)] of the form as defined in Eq. (1.1). Although exact and practical expressions

for Ω[ρ(r)] are usually not known we can assume without loss of generality that such

a functional exists and that it has a form as required by Eq. (1.1). The shape of

27
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Figure 2.1: Sketch of fluid particles near a hard curved wall. The fluid particles

are excluded from the full region, the physical wall, which means that the centers of

the particles must not cross the surface indicated by the dashed line. For spherical

particles with radius R, the dashed line is a parallel surface with normal distance

u = R to the physical wall. We refer to it as an effective wall for the fluid and it

may serve as a dividing interface when calculating excess quantities.

the wall enters the functional Ω[ρ(r)] via the external potential Vext(r). In case of

a pure hard wall the potential is infinite if any part of the particle overlaps with

the wall and vanishes otherwise. For spherical particles this is equivalent to saying

that the external potential equals infinity if the centers of the particles are within

a volume bound by a parallel surface to this wall, indicated by the dashed line in

Fig. 2.1. The distinction between the two parallel surfaces becomes crucial later in

this thesis and we therefore introduce the following nomenclature. The volume in

space from which all points of the fluid particles are excluded is bound by a surface

which we refer to as “physical wall” (perimeter of the full region in Fig. 2.1). In

contrast to this, the “effective wall” bounds a volume that must not be crossed by the

centers of the particles. Note that for a fluid mixture the physical wall is the same

for every component whereas the effective wall is in general different for each species

of particles. For a mixture of polydisperse spheres, the physical and all effective walls

are mutual parallel surfaces. This is in principle also the case for components which
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consist of nonspherical particles as long as the particles can freely orient in space.

The external potential exerted by the wall leads to an equilibrium density distri-

bution of fluid particles, which can be determined e.g. by means of DFT. The density

profile ρ(r) tends for sufficient large normal separation from the wall to the bulk

density ρb, which is determined by the chemical potential µ. In order to quantify

the degree of perturbation induced by the external potential Vext one uses the excess

adsorption

Γ =
1

A

(∫
ρ(r) dr− ρbV

)
. (2.1)

It describes how many particles of the fluid are adsorbed at the wall per unit area

of the effective wall. The term “excess” refers to the fact that the total adsorption,

i.e. the number of particles
∫
ρ(r) dr in the system, is measured relative to the number

of particles in a virtual bulk reference system with an adsorption ρbV . This bulk

reference system extends up to a surface called the dividing interface and is defined

such that it has bulk properties everywhere within the volume bounded by the dividing

interface. The choice of the position of the dividing interface is in principle completely

arbitrary. For fluid mixtures, the most natural choice is the physical wall, however for

a single-component fluid in the literature often the effective wall is selected instead.

Unlike otherwise stated, the dividing interface in this thesis is chosen to lie on the

effective wall (dashed line in Fig. 2.1) for reasons that will be discussed in detail in

Section 3.2. This convention determines the surface area A of the dividing interface

and also the volume V of the bulk reference system that is confined by the dividing

interface. These two geometrical quantities, A and V , are used in Eq. (2.1) and it

is therefore obvious that the choice of the dividing interface influences the numerical

value of the excess adsorption Γ. This fact does not represent a practical problem as

excess absorptions obtained for different dividing interfaces can always be converted

using Eq. (G.14), however physical statements involving the adsorption should be

made such that they are independent of the actual choice of the dividing interface.

This important point will be discussed when deriving Eq. (3.5).

Similar to the change in the density profile ρ(r) the hard curved wall leads to a

grand potential Ω = Ω[ρ(r)] that is different from the grand potential of the bulk

reference system. The difference in the potentials can be interpreted as the free

energy cost to form the wall-fluid interface and is conventionally quantified using the

interfacial tension

γ =
1

A
(Ω[ρ(r)]− Ωb) , (2.2)

where Ωb = −pV is the grand potential of the bulk reference system. This definition
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also uses the volume V and area A as defined by the convention for the bulk reference

system or the dividing interface, respectively. Note that we distinguish the interfacial

tension γ from the surface tension. The latter denotes the interfacial tension at a

planar, infinitely extended wall.

2.2 Sum Rules and Contact Density

Excess adsorption Γ and interfacial tension γ are not independent thermodynamic

quantities of the interface, but connected through a sum rule, which can be derived

by forming partial derivatives with respect to the chemical potential µ on both sides

of Eq. (2.2). Using the definition of the density functional, Eq. (1.1), and the result of

the Gibbs-Duhem relation that ∂p/∂µ = ρb one finds the Gibbs adsorption theorem

(
∂γ

∂µ

)

T,V

= −Γ . (2.3)

The partial derivative is meant to be taken for a constant temperature T and, indi-

cated by the subscript V , at a fixed position of the physical wall which means, to be

more precise, that the geometry of the wall is unchanged. It is worthwhile to note

that the connection between γ and Γ is done by a partial derivative with respect to

an intensive quantity, where “intensive” means that it does not depend on any geo-

metrical feature of the wall. This observation is important as it results in the same

dependence for γ and Γ on the shape of the wall.

We find another sum rule for a hard wall by forming a normal derivative on both

sides of Eq. (2.2). The concept of a normal derivative is described in Appendix G and

defined in Eq. (G.15). In the case of a cylindrical or a spherical wall it is equivalent

to a derivative with respect to the radius of the wall. For the normal derivative of

Ω[ρ] we find

duβΩ[ρ(r)] =

∫
δβΩ[ρ(r)]

δρ(r′)︸ ︷︷ ︸
=0

duρ(r′) dr′ +

∫
ρ(r)du (βVext(r)) dr . (2.4)

The functional derivative in the first integral vanishes because of the Euler-Lagrange

equation for the equilibrium grand potential Ω[ρ(r)]. In order to evaluate the second

term we recall that the potential exerted by a hard wall is infinite inside the effective

wall and vanishes outside. One can formulate the potential exerted by the effective

wall on the centers of the particles using the normal coordinates generated by the
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effective wall, Eq. (G.17). If we denote u(r) the normal distance of the center r of a

particle from the effective wall, we can write for the wall-fluid potential Vext(r)

exp(−βVext(r)) = Θ(u(r)) . (2.5)

From this equation we evaluate the normal derivatives on both sides which yields

duβVext(r) = − exp(βVext(r))δ(u), where δ(u) denotes the usual Dirac δ-distribution.

This yields, inserted in Eq. (2.4),

duΩ[ρ(r)] = −
∫
ρ(r) exp(βVext(r))δ(u(r)) dr . (2.6)

The δ-distribution in the integrand on the right hand side restricts the integration to

u = 0, i.e. the volume integration becomes a surface integration along the effective

wall of the component. As this is the surface which no center of the particle must

cross, the density profile ρ(r) jumps at this locus between a finite contact density,

denoted ρc, and zero. One can show that in contrast to the discontinuity of ρ(r) the

integrand in Eq. (2.6), ρ(u) exp(βVext(u)) is a continuous function of u such that the

integrand yields for u→ 0+

−duβΩ[ρ(r)] =

∫

W

ρ(r) d2r =

∫

W

ρc d2r = Aρ̄c , (2.7)

where W denotes the effective wall and A its total surface area. We introduced ρ̄c,

the average contact density, where the averaging is done over the effective wall W .

The result found in Eq. (2.7) can be extended to account also for two more general

cases: a multi-component fluid and a wall that features aside from a hard interaction

also an additional soft potential V i
soft(u) for each component i = 1, 2, · · ·N . In this

more general case, Eq. (2.7) becomes

−duβΩ[ρ(r)] =

N∑

i=1

(
Aiρ̄

c
i +

∫

Wi

d2r

∫
du Ji(u)

dV i
soft(u)

du
ρi(u)

)
, (2.8)

where Wi denotes the effective wall of component i, Ai the total surface of Wi and

Ji(u) the Jacobi determinant, Eq. (G.13), of the normal coordinates generated by Wi.

ρi(u) is the density profile of species i. Equation (2.8) shows that for a pure hard wall,

V i
soft(u) = 0, the normal derivative duΩ is solely determined by the weighted sum of

all averaged contact densities ρ̄ci of each component i. Only in this case the grand

potential is linked directly to the contact densities, which will become important when

deriving the morphometric form of the contact density in Eq. (3.6). If, in contrast,
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the soft tail V i
soft(u) of the potential is not a constant, also densities aside from the

contact u = 0 contribute to duΩ.

We now return to the considerations for a pure hard wall. With the results of

Eq. (2.7) the normal derivative of Aβγ = βΩ[ρ] + βpV [Eq. (2.2)] can be written as

ρ̄c = βp+ 2H̄βγ + ∂uβγ . (2.9)

Here H̄ = C/A denotes the averaged mean curvature of the wall. This sum rule,

Eq. (2.9) represents a generalization of the relations derived in Refs. [49, 50] for a

cylindrical and a spherical wall. It applies to any fluid in contact with an arbitrarily

shaped hard wall. Note that in order to derive Eq. (2.9) in this form we assume that

the quantity A in Eq. (2.7), the surface area of the effective wall, is the same as the

quantity A in Eq. (2.2), the surface area of the dividing interface. This is indeed the

case by virtue of our convention for the dividing interface of a monodisperse fluid.

For a multi-component fluid, the sum-rule becomes

∑

i

Aei
Ad
ρ̄ci = βp+ 2H̄βγ + ∂uβγ . (2.10)

Aei denotes the surface area of the effective wall of component i and Ad the surface

area of the dividing interface.

A third sum rule is obtained by combining the two previous ones. For a monodis-

perse fluid we apply Eq. (2.9) and form a partial derivative with respect to the

chemical potential µ. Using Eq. (2.3) and the Gibbs-Duhem relation yields

∂ρ̄c

∂βµ
= ρb − 2H̄Γ− ∂uΓ . (2.11)

Again, H̄ = C/A is used. This sum-rule is remarkable as it connects ρ̄c, the contact

density averaged over the effective wall, to the excess adsorption Γ, which stems from

an integral over the whole density profile ρ(r). We elucidate the special status of the

contact density at a hard wall and its connection to the density profile in more detail

in Section 3.2.

The three sum rules, Eqs. (2.3), (2.9), and (2.11), are all exact relations provided

that the wall-particle interaction is hard and that the grand potential Ω depends

continuously on the geometry of the wall. The latter restriction is needed in order

to ensure that partial derivatives acting on Ω can be interchanged. Aside from these

assumptions, the sum rules are very general, i.e. they can be applied to all kinds of

fluids for all thermodynamic states. We use them in Sections 3.1 and 3.2 to connect

the shape dependence of thermodynamic quantity to other quantities.



Chapter 3

Shape Dependence of

Thermodynamic Quantities

When a fluid is brought in contact with a wall, it forms an interface which can be

described by thermodynamic quantities introduced in the previous chapter. These

thermodynamic quantities depend on a large variety of different parameters, such as

the type of fluid, the chemical potentials, or the temperature of the system. Some of

the parameters, as the ones mentioned, do not depend on the geometry of the wall

which determined the shape of the interface. Aside from these so-called intensive

parameters there is however also a dependence on the shape of the wall. It is the

main topic of this chapter to study this functional dependence on the geometric

properties of the wall in detail. Before we analyze it for different thermodynamic

quantities, we first examine the dependence of the grand potential Ω on the shape

of the wall. From this result we then deduce in Section 3.2 the shape-dependence of

other thermodynamic quantities.

3.1 Morphometric Thermodynamics

We consider fluid particles which are confined to a certain volume in space by a wall

which surrounds the system. We refer to the set of points accessible to the centers

of fluid particles as the system S. As indicated in the introduction, the particular

interest of this section is the dependence of the grand potential Ω on S, i.e. we regard

Ω as a functional Ω[S] of the system S. The actual form of the functional depends

on the intensive parameters of the fluid, which are however taken to be constant

throughout this section and their notion is consequently suppressed. In principle the

33
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functional mapping Ω[S] is known explicitly. If ρb denotes the bulk density, µex the

excess chemical potential and V (rN) the total potential of a given configuration rN

of centers of particles, Ω[S] is the logarithm of the grand partition sum

βΩ[S] = log

( ∞∑

N=0

(ρb exp(µex))
N

N !

∫

S

drN exp(βV (rN))

)
. (3.1)

Note that the functional dependence of Ω[S] on system S enters via the range of

integration over the phase-space in Eq. (3.1). Unfortunately, for a non-trivial fluid and

a complexly shaped S, it is usually impossible to calculate the integrals over the phase-

space exactly and therefore Eq. (3.1) provides little insight into the shape dependence

of Ω[S]. To proceed, various methods are used. DFT or integral equation techniques

provide approximate expressions for quantities that cannot be obtained exactly by

analytic means. In contrast to these analytic approaches, Monte-Carlo (MC) or

molecular dynamics (MD) simulations are conceptually exact numeric algorithms,

the results however are affected by inevitable statistical errors. These methods have

in common that a system S must be explicitly given parameterized by a formula or

in form of a numerical data set such that the problem can be implemented and solved

numerically. This however leads to problems if the boundary of S has a complex

shape, i.e. if S is not bound by a highly symmetric wall. Such geometric setups

demand in general that all calculations must be carried out on a three dimensional grid

space which makes the numerical solution very costly and usually at the same time

inaccurate. In our approach we include the system S in the configuration of the fluid

and aim to identify the thermodynamically relevant geometrical parameters. What

are these parameters? One usually argues that Ω[S] is as every other thermodynamic

potential an extensive quantity, which means that it scales linearly with the “size” of

the system S. For two disjunct systems S1 ∩ S2 = ∅ one demands that Ω[S1 ∪ S2] =

Ω[S1] + Ω[S2], i.e. that the grand potentials add up when two systems are considered

as a single system. Note that the total volume V [S] of the system fulfills V [S1∪S2] =

V [S1] + V [S2], and so does every constant multiple ωV [S]. One therefore assumes as

a preliminary ansatz that Ω[S] = ωV [S], where ω is an intensive quantity that must

not depend on S. In the case of the grand potential Ω, it equals the negative of the

pressure p in the system. This simple ansatz shows that V [S] is a thermodynamically

relevant geometrical measure. It is possible to continue this analysis by noting that

the surface area A[S] of the system also fulfills A[S1∪S2] = A[S1]+A[S2] for disjunct

S1 ∩ S2 = ∅. The respective conjugated quantity is conventionally denoted σ and is

referred to as the surface tension of the system. It is also an intensive quantity and
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depends, in contrast to the pressure p, also on the wall-particle interaction potential.

With this term, a more extended ansatz for the grand potential is Ω[S] = −pV [S] +

σA[S]. In principle one can continue to add further terms. If S is bound by a

polyhedron, i.e. bound by sections of planes, one normally introduces line- and point-

tensions of the fluid. Otherwise, an infinite expansion in integrated powers of the

local curvatures of the wall is used to describe the full influence of the shape of S on

Ω[S].

We perform a more systematic analysis of Ω[S] by extending the conventional

concept of extensivity. In particular we argue that the functional Ω[S] should have

certain mathematical properties. We impose the following three restrictions on the

mapping Ω[S].

(i) Motion invariance: The thermodynamic potential Ω[S] should be indepen-

dent of the location and orientation of the system S in space, i.e. Ω[gS] = Ω[S]

for all translations and rotations g in 3 dimensions. This property requires that

the total potential V (rN) in Eq. (3.1) is motion-invariant, which is the case if

the external potential is considered to be part of S and is also affected by the

action of g. Thus motion invariance is fulfilled for all types of fluids.

(ii) Conditional continuity: If a sequence of convex sets Sn converges towards

the convex set S for n → ∞, then we demand that Ω[Sn] → Ω[S]. Intuitively,

this continuity property expresses the fact that an approximation of a convex

domain by e.g. a convex polyhedron also yields an approximation of the thermo-

dynamic potential Ω[S] by Ω[Sn]. This property is not necessarily fulfilled in all

situations. It is shown in the context of scaled-particle theory (SPT) [51] that

conditional continuity is violated if the system S is of comparable size to the

fluid particles [20]. This is intuitively obvious as a small system can only hold

a few particles due to the high spacial confinement. Even a small variation of

S may increase or decrease the total number of particles allowed in the system

by one, i.e. the number of particles discontinuously depends on S. This discon-

tinuity in the particle number affects also the grand potential Ω and therefore

violates conditional continuity. However, this effect becomes negligible if the

number of particles in S is large, i.e. in the thermodynamic limit. Thus, in

order to exclude “few-particle” effects, we demand that the container S must be

sufficiently large. The typical radii of curvature must be large compared to the

size of fluid particles. In this case the fluid can be viewed macroscopically and

conditional continuity is fulfilled. The term “conditional” refers to the fact that
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we need this property in the following to be only fulfilled for convex systems S.

Note that this does not mean that all systems S for which our approach can be

applied must necessarily be convex [52].

(iii) Additivity: The functional of the union S1 ∪ S2 of two domains Si, i = 1, 2,

should be the sum of the functional of the single domains subtracted by the

intersection

Ω[S1 ∪ S2] = Ω[S1] + Ω[S2]− Ω[S1 ∩ S2] . (3.2)

This relation generalizes the common rule for the addition of an extensive quan-

tity for two disjunct domains S1 ∩ S2 = ∅, as presented above. In the case of

overlapping domains the grand potential of the double-counted intersection is

subtracted from the sum. Similar to restriction (ii), namely conditional conti-

nuity, additivity also requires large systems S1 and S2. This becomes evident

when considering two systems which are made such that both cannot hold a

particle on their own, although their union is large enough to do so. This ge-

dankenexperiment leads to a violation of Eq. (3.2). Note that this is not due

to our extensions of the concept of extensivity, but rather because extensivity

assumes from the outset that a macroscopic view on the fluid is a valid descrip-

tion. This normally requires large systems S such that the thermodynamic limit

is valid. Aside from these few-particle effects also long-ranged correlations in

the fluid violate Eq. (3.2), as this equation implies that perturbations induced

in the fluid by one part of the wall does not influence the formation of another

interface due to another part of the wall. We therefore demand S to be large

enough that e.g. for concave systems the typical distances between opposing

parts of the wall are large compared to the correlation length. This excludes

fluids with intrinsic long-ranged interactions or fluids near the critical point. We

also exclude wetting or drying, which leads to long-ranged correlations parallel

to the interface [53]. To summarize we demand that all systems S are large

compared to any internal length scale of the fluid.

We assume that a macroscopic view of the fluid is a valid and that Ω[S] therefore

fulfills conditions (i)-(iii). We will refer to quantities with these properties as mor-

phometric1 quantities. It should however be pointed out that we cannot rigorously

prove that the grand potential is morphometric for a specific non-trivial fluid. The

1The term “morphometric” is a synonym for “morphologic”. In this thesis we stick to the first

expression.
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three restrictions should rather be understood as more rigorous formulation of the

concept of extensivity motivated by physical intuition and we will show in Section 3.3

that we find, based on this assumption, a consistent description for all systems we

study. As already discussed above, there however are systems for which (ii) or (iii)

is violated, namely small containers S, where “small” means that geometrical fea-

tures of the container are comparable to the size of fluid particles, interaction length

scales, correlation lengths, or wetting layer thicknesses. If on the other hand motion-

invariance, conditional continuity and additivity are fulfilled, the question arises about

the most general form of Ω[S] which satisfies these three conditions. The Hadwiger

theorem [52,54] states that every functional in three dimensions with these properties

can be written as a linear combination of the volume V [S], the surface area A[S], the

integrated mean curvature C[S], and the Euler characteristic X[S] of the container

wall [for definitions see Eqs. (G.9) and (G.10)]. Therefore we write

Ω[S] = −pV [S] + σA[S] + κC[S] + κ̄X[S] , (3.3)

as an ansatz for Ω[S] and refer to this ansatz as the morphometric form of the grand

potential [55]. The pressure p, the surface tension at the planar wall σ, and the two

bending rigidities κ and κ̄ are independent of S, i.e. intensive parameters. They only

depend on other intensive properties such as the type of fluid, the chemical potential µ,

the temperature T , and the wall-fluid interaction potential. The conjugated quantities

to the intensive parameters in Eq. (3.3) are the four morphometric measures V , A, C,

and X. They obey restrictions (i)-(iii) and are the only thermodynamically relevant

variables associated with shape.

It is worthwhile to note that Eq. (3.3) provides a complete multiplicative sepa-

ration of the grand potential in intensive and morphometric quantities. This is very

favorable, both conceptually and practically. Ω can be obtained even for complexly

shaped systems S, as the geometry of S enters the thermodynamic potential only via

four morphometric measures V , A, C, and X. The thermodynamic coefficients p, σ,

κ, and κ̄ are independent of S and can hence be obtained from simple geometric se-

tups. Note that similar quantities as we introduce in Eq. (3.3) are commonly used in

the context of an effective Hamiltonian of an interface, the Helfrich Hamiltonian [56].

It is compatible with Eq. (3.3) on a length scale larger than the persistence length

of the interface, where renormalized contributions proportional to H2 vanish due to

thermal fluctuations.
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3.2 Morphometric Form of Thermodynamic Quan-

tities

The application of the morphometric form of Ω[S] to a fluid in contact with a wall

requires a closer look to the definition of S. As pointed out in Section 2.1 a clear

distinction should be made between the physical and the effective wall for each com-

ponent of the fluid. Each of these walls may serve as an alternative perimeter for a

system S, which consequently leads to different morphometric measures. It is however

an advantage of Eq. (3.3) that all descriptions for different definitions of the system

S are equivalent. The grand potential is a well-defined quantity and therefore the

choice of S must not influence actual value of Ω[S]. It however determines how the

grand potential is distributed among the four terms in Eq. (3.3). By using Eq. (G.14)

one can show that only the thermodynamic coefficients σ, κ, and κ̄ are affected by

the choice of a different parallel surface as a wall for S, whereas the general form of

Eq. (3.3) is conserved. Therefore the choice of the boundary of S is arbitrary and in

this thesis we choose, unless otherwise stated, the effective wall for all monodisperse

fluids.

The reason for this choice becomes evident when considering thermodynamic

quantities associated with the interface as introduced in Sections 2.1 and 2.2. In-

serting the morphometric form of Ω in Eq. (2.2) yields

γ =
1

A
((−pV [S] + σA[S] + κC[S] + κ̄X[S]) + pV )

= σ + κH̄ + κ̄K̄ , (3.4)

where we have introduced H̄ = C[S]/A and K̄ = X[S]/A as the averaged mean and

averaged Gaussian curvature of the effective wall or the dividing interface respectively

[for definitions see Eq. (G.8)]. As expected, the contribution proportional to the vol-

ume V [S] cancels because γ is an excess quantity. This is always the case, irrespective

of the definition of the dividing interface. The reason for choosing our convention for

the boundary of S and the dividing interface is that it allows us to identify V [S] = V

and A[S] = A, which is essential in order to obtain a simple expression for γ such

as in Eq. (3.4). According to this equation, the interfacial tension shows an analytic

dependence on the radii of curvature of the wall which supports e.g. the ansatz used

in SPT [50, 51, 57]. Here, the analytic dependence on the radii of curvatures is a

direct consequence of the additivity of the grand potential. In contrast to earlier

approaches with an infinite series expansion in the radii of curvature, our expansion
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of γ in powers of H and K truncates already after the linear terms. We refer to

this particular simple dependence of γ on the shape of the wall as the “morphometric

form” of the interfacial tension. Its characteristic is that it does not require higher

powers or derivatives of H̄ or K̄ to describe the influence of the curved wall.

The excess adsorption Γ of the interface is found by forming the derivative of

Eq. (3.4) with respect to the chemical potential µ for constant temperature and

shape S. This yields by virtue of the Gibbs adsorption theorem, Eq. (2.3), for the

excess adsorption

−Γ =

(
∂γ

∂µ

)

T,S

=
∂σ

∂µ
+
∂κ

∂µ
H̄ +

∂κ̄

∂µ
K̄. (3.5)

It is important to realize that the derivative is taken at constant shape S and therefore

the geometrical measures H̄ and K̄ are not affected by the derivative with respect

to the intensive quantity µ. We therefore find also for the excess adsorption Γ a

morphometric form. There is only a linear dependence on both curvatures H and K.

In the case that the system S is bound by a hard wall we insert the morphometric

form of the interfacial tension, Eq. (3.4), in the contact theorem Eq. (2.9). The

normal derivatives of the geometric measures are summarized in Eq. (G.16) and the

resulting relation is

ρ̄c = βp+ 2βσH̄ + βκK̄. (3.6)

Therefore, also the average contact density ρ̄c at a hard wall has a morphometric

form. This is remarkable insofar as Eq. (3.6) is derived using a normal derivative,

i.e. a derivative with respect to a geometric quantity. Nonetheless only a linear

dependence in both curvatures H and K is needed to describe ρ̄c[S].

Equations (3.4), (3.5), and (3.6) provide very simple expressions for the depen-

dence of γ, Γ, and ρ̄c on the shape of the wall. We will refer to all quantities which

feature such morphometric dependence on the shape of the wall as “thermodynamic

quantities”. It should be noted that thermodynamic quantities are averages over the

whole surface of S. This is in particular also the case for ρ̄c, indicated by a bar on top

of the symbol. These three quantities are related to the averaged curvatures H̄ and K̄

via their morphometric forms. Therefore the morphometric expressions can, strictly

speaking, only be used when one is interested in a thermodynamic description of a

system as a whole and if one is not interested in microscopic details of the interface.

If however the lateral variation of the curvatures H and K along the surface can be

neglected, one can replace averaged quantities by their respective local counterparts.

We term these relations local morphometric forms. They are exact if H and K are

constant on the surface, which is the case for a planar, a cylindrical, and a spherical
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walls. Otherwise, for walls with varying H and K, the local morphometric forms

can be used as an approximation. We show numerically in the next section that the

local forms of Eqs. (3.4), (3.5), and (3.6) provide good predictions when applied to

surfaces with a smooth variation of the curvature.

3.3 Numerical Results

This section summarizes a large numerical study that we conducted in order to test

the morphometric form of thermodynamic quantities. No violations are found, which

means that the predictions of Section 3.1 provide an excellent numerical description

for the studied fluids. We start our analysis by considering a fluid of monodisperse,

hard spheres. Such a fluid features short-ranged interactions and has no critical point.

In the fluid phase, which is stable for η ≤ 0.494, the correlation length is in the or-

der of the diameter 2R of the fluid spheres. Due to these properties we expect that

morphometry is fulfilled for this system. Another advantage of the hard-sphere fluid

is that it is very well studied and excellent numerical methods exist to describe it.

We use the Rosenfeld and the White-Bear functional which both support our con-

jecture and give qualitatively the same results in the following analysis. In the first

subsection we do not test the morphometric hypothesis but rather assume that it

is valid, which is justified numerically in the subsequent subsections. Based on this

assumption, we present a numerical scheme that allows to calculate all four thermo-

dynamic coefficients p, σ, κ, and κ̄ based on data obtained from DFT calculations

or other numerical methods. We present our results and compare them to an ap-

proximate bulk theory. In the second subsection, we use the four thermodynamic

coefficients to predict the thermodynamic quantities around various objects and find

that the agreement between the morphometric hypothesis on the one hand and DFT

or Monte-Carlo results on the other hand is excellent. In the third subsection we in-

clude for the analysis of our numerical data also terms of higher powers in H and K

for thermodynamic quantities, which would be a contradiction to the morphometric

forms. We then show numerically that the expansion coefficients corresponding to

higher powers of H or K are numerically zero, i.e. very small which is in agreement

with the overall accuracy of the DFT results. In the final subsection we verify that

the results obtained for a hard-sphere fluid in contact with a hard wall are not an ar-

tifact of the pure hard interactions. We generalize the findings to soft walls and also

discuss results obtained for a square-well fluid, which features a phase coexistence

close to which the morphometric arguments fail due to drying effects, as expected.
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3.3.1 Thermodynamic Coefficients

In order to apply the morphometric form of Ω the four thermodynamic coefficients

must be determined. For this we consider a fluid of hard spheres with radius R with

a fixed bulk density η. Such a fluid is in contact with a spherical wall with radius

RS, where RS denotes the radius of the physical wall. The effective wall, which is

by our convention identical to the dividing interface, is therefore also a spherical

surface but has a radius RS + R with the corresponding dimensionless curvatures

H̄ = H = R/(RS+R) and K̄ = K = (R/(RS+R))2. According to the morphometric

expressions Eq. (3.4) for the interfacial tension γ and Eq. (3.6) for the average contact

density ρ̄c, the following relations apply for a wall with constant curvatures

βγ(RS) =βσ + βκ
R

RS +R
+ βκ̄

R2

(RS +R)2
,

ρ̄c(RS) =βp+ 2βσ
R

RS +R
+ βκ

R2

(RS +R)2
.

(3.7)

If the interfacial tension and the contact density are known only for two different

radii RS, Eq. (3.7) provides four linear equations which can be solved for all four

thermodynamic variables p, σ, κ, and κ̄. It must however be noted that such an

approach is very sensitive to numerical errors. Therefore it can only be applied if

the numerical values for γ(RS) or ρ̄c(RS) are known very accurately. Results found

by means of DFT are sufficiently reliable, which does not mean that they are exact

but merely that they can be reproduced with very high accuracy and not affected by

statistical noise. In this case we use data obtained for two arbitrary values of RS to

find the thermodynamic coefficients as described above. The results are independent

of the choice of RS, as long as RS is not too large such that too many significant

digits of the numerical data cancel.

If only noisy data is available, which may for instance be the case for thermo-

dynamic quantities obtained from MD or MC simulations, the thermodynamic co-

efficients can be obtained by choosing a large set of various values of RS. For each

value of RS, γ and ρ̄c are needed and the results are fitted for the thermodynamic

coefficients using Eq. (3.7) as an ansatz. This scheme is more stable under the influ-

ence of numerical noise than the previous approach. When using DFT results, the

coefficients we find by the second scheme agree with those found by the previous one

very accurately. This already indicates that the morphometric hypothesis yields a

consistent description of γ and ρ̄c for the hard-sphere fluid at a spherical wall.

We repeat the analysis as described above for various bulk packing fractions η.
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Figure 3.1: Thermodynamic coefficients for a fluid of hard spheres versus the bulk

packing fraction η modeled via the Rosenfeld functional. The lines show the results

of the approximate bulk theory, Eq. (3.11), while the points are obtained using

DFT results of simple geometries. For the pressure p a perfect agreement is ob-

served, because the Rosenfeld functional is built on the scaled particle differential

equation. The other thermodynamic coefficients are only reproduced qualitatively

by the bulk theory.

The symbols in Fig. 3.1 and Fig. 3.2 show the results for the Rosenfeld and the White-

Bear functional, respectively. In these figures the numerical data is compared with the

results of an approximate bulk theory (lines), which predicts analytical expressions for

the thermodynamic coefficients based on the the special form of FMT-based density

functionals. For this theory one considers the bulk state of the fluid for which the

thermodynamic quantities should be calculated. In this bulk fluid a big particle B is

inserted that excludes the particles of the fluid from a certain volume. Hence, particle

B acts as a wall to the fluid and defines a system S. According to Section 1.4 the

change ∆Ω in the grand potential upon insertion is

∆Ω = lim
ρB→0

−c(1)
B

β
= lim

ρB→0

δFex[ρs, ρB]

δρB
, (3.8)

where Fex[{ρi}] is an excess free energy density functional that describes the mixture

of a hard-sphere component with density ρs and a big particle B component with

density ρB. If Fex[{ρi}] is a FMT-based functional given by Eq. (1.14) a description

of the mixture is always available, because FMT itself provides a framework to treat
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Figure 3.2: Same as in Fig. 3.1, except that the White-Bear version of FMT

was used as a model. Although the pressure p is reproduced quite accurately

by the bulk theory, the other thermodynamic coefficients are only qualitatively

reproduced. We find that the numerically determined coefficients of this functional

provide an excellent predictions for quasi-exact MC simulation data, see Fig. 3.4.

fluid mixtures, see Eq. (1.20). With these assumptions we write the change in Ω upon

insertion of B in the bulk fluid as

∆Ω =
δφ

δn3

∫
w

(3)
B (r) dr +

δφ

δn2

∫
w

(2)
B (r) dr+

+
δφ

δn1

∫
w

(1)
B (r) dr +

δφ

δn0

∫
w

(0)
B (r) dr .

(3.9)

The partial derivatives with respect to the vector-weighted densities n1 and n2 are

zero in the bulk. For the weight functions w
(α)
B of the particle of species B we use the

expressions provided by the approximate FMT for convex hard particles, Eq. (1.21).

One can evaluate the integrals over the weight functions analytically
∫
w

(3)
B (r) dr =VB,

∫
w

(2)
B (r) dr = AB,

∫
w

(1)
B (r) dr =

CB
4π

,

∫
w

(0)
B (r) dr =

XB

4π
.

(3.10)

VB, AB, CB, and XB denote the respective geometrical measures of particle B which

was inserted in the bulk fluid and now acts as a physical wall. Under the assumption

that the thermodynamic coefficients for the physical wall are sought, we readily iden-

tify p′ = ∂φ/∂n3, σ′ = ∂φ/∂n2, 4πκ′ = ∂φ/∂n1, and κ̄′ = ∂φ/∂n0. Note that there
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is no minus-sign in the definition of the pressure. It cancels because of our definition

of the system S, which comprises all points in space that are accessible to the small

particles of the fluid. Thus S is the whole space less the points of particle B.

Our convention is to calculate the thermodynamic coefficients for the effective

wall. Therefore we write the geometric measures of the effective wall as a function of

the measures of particle B, the physical wall. This is done using Eq. (G.14) and leads

to a linear combination of the ∂φ/∂nα-terms. For the original Rosenfeld functional

we obtain

βp = ρ
1 + η + η2

(1− η)3
, βσ = −3ρ

2

1 + η

(1− η)3
,

βκ = 3ρ
η2

(1− η)3
, βκ̄ =

ρ

6

(−2 + 7η − 11η2)

(1− η)3
− 1

4π
ln(1− η) .

(3.11)

Similarly we derive for the White-Bear version of FMT that

βp = ρ
−1 + 6η − 3η2

(1− η)3
− 3

2π
ln(1− η) , βσ = ρ

3− 9η − 4η2

(1− η)3
+

9

4π
ln(1− η) ,

βκ = ρ
−4 + 10η − 4η2

(1− η)3
+

3

π
ln(1− η) , βκ̄ =

ρ

3

(4− 9η + 3η2)

(1− η)3
− 1

π
ln(1− η) .

(3.12)

Note in particular that the pressure p = p′ = ∂φ/∂n3 in the case of the White-Bear

functional does not yield the MCSL-EoS for one component, Eq. (1.18). This is due

to the fact that the functional does not respect the SPT differential equation. Fig-

ure 3.1 shows these results for various bulk densities and compares the results of the

approximate bulk theory, Eq. (3.11), to the data obtained from direct minimization

of the Rosenfeld functional. In Fig. 3.2 we show the respective comparison for the

White-Bear functional.

Although the general trend is the same when comparing bulk theory and direct

DFT data it is obvious that the bulk theory only yields approximate expressions for

the thermodynamic coefficients. The reason for this is twofold: FMT-based function-

als are approximate and cannot exactly produce all correlations between the fluid

particles and particle B which would be needed to apply the insertion method ex-

actly. Additionally, FMT for nonspherical particles introduces approximations even

in the low density limit, which are however recovered exactly in the spherical case.

In the following we will therefore use the numerically determined thermodynamic

coefficients. Their dependence on the bulk packing fraction η is well fitted via the
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following relations. For the Rosenfeld functional

βσ(1− η)3

ρ
≈− 1.502η − 1.849η2 − 0.070η3 + 0.657η4 ,

βκ(1− η)3

ρ
≈4.052η2 − 0.654η33.096η4 − 8.734η5 ,

βκ̄(1− η)3

ρ
≈− 0.168η + 0.949η2 − 5.457η3 + 5.045η4 .

(3.13)

The coefficients are determined by a least-square fit of the numerical data for the

thermodynamic coefficients. Packing fractions up to η = 0.35 are used. Although

the values of the pressure p obtained from the DFT data (not shown) are in excellent

agreement to the PY-EoS, Eq. (1.16), the functions shown in Eq. (3.13) are approx-

imations. The relative error is below 1% for η ≤ 0.46. By analogous means we find

for the White-Bear version of FMT

βσ(1− η)3

ρ
≈− 1.501η − 1.876η2 + 0.383η3 + 1.508η4 ,

βκ(1− η)3

ρ
≈4.019η2 − 0.148η3 − 0.933η4 − 4.640η5 ,

βκ̄(1− η)3

ρ
≈− 0.166η + 0.923η2 − 5.360η3 + 5.273η4 .

(3.14)

The pressure of this model is given by the CS-EoS, Eq. (1.18) and agrees very ac-

curately with the numerical data obtained by direct minimization of the functional.

The relative error of the parameterization in Eq. (3.14) is below 1% for η ≤ 0.47.

3.3.2 Applications

We calculate thermodynamic quantities for a fluid in contact with an arbitrarily

shaped hard wall based on the four thermodynamic coefficients determined in the

previous section. Figure 3.3 shows the interfacial tension γ and the excess adsorption

Γ for a cylindrical (C) and a spherical (S) wall for various radii Rα, α = C, S. The

results obtained by direct DFT calculations are compared to the predictions of the

morphometric conjecture, for which we use the numerically determined thermody-

namic coefficients of the Rosenfeld functional as displayed in Fig. 3.1.

We observe an excellent agreement between direct DFT data and the morpho-

metric prediction as displayed in Fig. 3.3. The figure shows a typical example, for

other values of the bulk packing fraction and for the White-Bear version of FMT the

agreement is similarly excellent. In addition to γ and Γ, also the average contact
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Figure 3.3: Thermodynamic quantities for a hard-sphere fluid in contact with a

hard cylindrical and spherical wall of radius Rα. The lines are predictions based

on the morphometric approach. For the interfacial tension we use Eq. (3.4), for the

excess adsorption Γ we use Eq. (3.5). The agreement to direct DFT data, shown

as symbols, is excellent. For this figure we use the Rosenfeld functional and a bulk

packing fraction of η = 0.3. We verified that other η and the White-Bear version

of FMT give similar results. Note that for Rα →∞, i.e. for R/(Rα +R)→ 0 the

results for both cylinder (α = C) and sphere (α = S) must coincide with the ones

for a planar wall.

density ρ̄c is predicted accurately by the morphometric form, as we show in Fig. 3.4

below. These findings show that DFT results of a hard-sphere fluid in contact with

hard cylindrical or spherical walls are compatible with the morphometric forms for

thermodynamic quantities.

We emphasize that the morphometric form of a thermodynamic quantity is not a

truncated power series in the inverse radii of curvatures. It can therefore be used to

predict thermodynamic quantities of fluids at walls with very high curvatures without

the loss of accuracy. As an illustration, Fig. 3.4 shows the average contact density ρ̄c

at a spherical wall with radius RS.

Even for RS → 0 the agreement between direct DFT results and morphomet-

ric prediction is excellent. As already mentioned, DFT yields results that are in full

agreement to the morphometric prediction. This is remarkable insofar as a very small

wall leads inevitably to “few-particle” effects as discussed in the context of SPT [51].
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Figure 3.4: Contact density of a hard sphere fluid with η = 0.3 in contact with

a hard spherical wall of radius RS . DFT results are shown as symbols, the mor-

phometric prediction is shown as a line. We display results for both the original

Rosenfeld functional and the White-Bear version of FMT. The agreement between

morphometric prediction and direct DFT calculations is excellent for all values of

RS . In order to estimate the influence of “few-particle” effects as discussed in Sec-

tion 3.1, the arrow indicates the exact SPT result, Eq. (3.15), for RS = 0. For

both density functionals the agreement is surprisingly good. We verified that a

similar good agreement is also observed for other bulk packing fractions η.

We excluded such effects when deriving the morphometric form of the grand poten-

tial Ω in Section 3.1. Therefore an agreement as good as shown in Fig. 3.4 cannot

be expected from the outset. One may argue that DFT, as the morphometric ap-

proach, does not respect “few-particle” effects either and that therefore the numerical

values both for the morphometric form and direct DFT minimization are practically

meaningless. It is however possible to independently check both predictions, as SPT

provides an exact expression for the contact density of a hard-sphere fluid at a point-

like wall, i.e. a spherical wall with radius RS = 0

ρ̄c(RS = 0) =
ρ

1− η . (3.15)

We show this result as an arrow in Fig. 3.4. The agreement to the results of DFT

and morphometry is surprisingly good. For a bulk packing fraction of η = 0.3, the

relative error for the Rosenfeld functional is 1.1×10−2, for the White-Bear functional

even 2.2×10−3. We find that the relative error increases with increasing bulk packing
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Figure 3.5: Local curvatures of a biaxial ellipsoid with half axes (4, 4, 10)R (pro-

late ellipsoid). The physical wall is given by Eq. (G.21) with a = b = 4R and

c = 10R and the curvature of the physical wall are calculated from Eq. (G.22).

For the effective wall with parallel distance u = R we use Eq. (G.12) to obtain the

local curvatures. For small θ, the curvatures H and K are the largest and also

their lateral derivatives are maximal. Note that for θ → 0 the surface of the biaxial

ellipsoid locally looks like a sphere, i.e. H2 ≈ K. The thermodynamically relevant

morphometric measures of the physical wall are V = 640π/3R3, A ≈ 418.43R2,

C ≈ 80.018R, and X = 4π. The measures for the effective wall can be obtained

using Eq. (G.14) with u = R.

fraction η, however it is e.g. for the White-Bear functional below 0.5% for η ≤ 0.42.

Obviously the influence of the “few-particle” effects discussed in SPT on the contact

density is not very strong and we therefore conclude that the morphometric forms

for thermodynamic quantities at highly curved objects are not exact, but very good

approximations.

Up to now we tested thermodynamic properties at walls with constant curvatures.

In order to furthermore substantiate the morphometric approach we also consider

more complexly shaped solutes. As a first system we study an ellipsoid immersed in

a sea of hard spheres. The surface of the ellipsoid is given by Eq. (G.21) and the

curvatures can be calculated using Eq. (G.22). In Fig. 3.5 we display the local mean

and Gaussian curvatures H and K of the ellipsoid we consider here.

The data is shown for the physical wall, the surface of biaxial ellipsoid itself, and
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additionally for the effective wall which is a parallel surface with distance u = R for

fluid particles with radius R. The latter wall is by our convention also the dividing

interface of the system. When we use morphometric forms in order to calculate

local thermodynamic quantities, the influence of lateral variations of the curvatures

is neglected. For positions with a parameter θ near 90 deg, Fig. 3.5 shows that the

lateral variations of the curvatures are minimal and we therefore expect that the local

morphometric form yields the best predictions near the symmetry plane of the biaxial

ellipsoid at θ ≈ 90 deg.

It is important to realize that it is very costly from the numerical point of view

to obtain accurate density distributions of particles around an object which does not

feature a high spacial symmetry. DFT calculations for a hard-sphere fluid in contact

with a planar, cylindrical, or spherical wall can analytically be mapped on an effec-

tive one-dimensional system and thus be solved very efficiently. This is not possible

for an ellipsoidal geometry which would make the application of DFT methods very

complicated. We use Monte-Carlo (MC) simulations of a hard-sphere fluid instead

which are easier to implement for complexly shaped walls but nonetheless require a

considerable calculation effort. A further advantage of simulation data is that this

allows us to compare the morphometric predictions based on approximate DFT data

with Monte-Carlo results which do not involve any approximation. For the actual im-

plementation of the system the special type of symmetry of the problem suggests one

should evaluate the density profile using a grid space generated by the normal coor-

dinates of the physical wall, i.e. by the prolate ellipsoid. Such a procedure eliminates

potential problems concerning the accurate evaluation of the local contact value ρc of

the density profile that would arise e.g. on a Cartesian grid. The fact that the biaxial

ellipsoid has rotational symmetry allows us to average the gathered statistics over the

azimuthal angle φ. Note that due to this averaging we expect the largest statistical

error for θ → 0, where the Jacobi determinant of the normal coordinate system is

minimal. The whole simulation comprises a total number of 70 × 109 Monte-Carlo

steps, and we determined the bulk packing fraction to be approximately η = 0.3314.

In Fig. 3.6 we show the contact density versus the parameter θ for a biaxial ellipsoid.

The general agreement between MC simulation data and morphometry is very

good. Note that in particular no fitting parameter is used in Fig. 3.6. We determine

the bulk packing fraction from the density ρ(r) at a large normal distances from the

wall and obtain with this value for η in a second step the thermodynamic coefficients

based on the analysis of independent DFT results, which are shown in Fig. 3.2. Aside

from these thermodynamic coefficients, only the local curvatures of the effective wall
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Figure 3.6: The contact density of a hard-sphere fluid around a biaxial prolate

ellipsoid with half axes (4, 4, 10)R. Results from a grand canonical Monte-Carlo

simulation for a bulk packing fraction of η = 0.3314 are shown as symbols [58],

the local morphometric prediction as lines. For the dashed line, the coefficients of

the Rosenfeld functional, as shown in Fig. 3.1, are used. The solid curve shows

a prediction based on the coefficients of the White-Bear functional, as displayed

in Fig. 3.2. In particular the results for the latter functional are in excellent

agreement with the numerical data. The statistical error of the simulation data is

largest for θ→ 0, as expected.

are needed, which we obtain from Eq. (G.22). Note that the numerical effort for the

whole morphometric prediction is negligible compared to the numerical cost of a MC

simulation.

Strictly speaking, the morphometric hypothesis applies only for averaged quan-

tities of the whole system. In order to test it, we calculate from the local con-

tact densities displayed in Fig. 3.6 the average contact density ρ̄c by integrating the

(smoothed) simulation data over the effective wall. For the MC data the result is

R3ρ̄c = 0.318972 which is in excellent agreement to the morphometric prediction,

R3ρ̄c = 0.318483. For this prediction the data obtained from the White-Bear func-

tional for η = 0.3314 is used. The agreement is remarkable insofar as we compare

quasi-exact MC data with the morphometric results based on DFT data of an approx-

imate functional. Furthermore the bulk packing fraction of the MC fluid can only be

determined approximately in a grand canonical simulation such that an agreement
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within a relative error of 1.6× 10−3 fully supports the morphometric conjecture.

The error bars of the simulation shown in Fig. 3.6 are relatively large, in particular

for the data points close to the pole of the ellipsoid (θ → 0). It would however be

interesting to obtain also a good estimate for the contact density near the pole where

the lateral variations of the curvature are largest and hence the largest deviation from

the local morphometric form is expected. Instead of running an even larger simulation

we consider a slightly different geometry instead. The reason for this is that the

relatively poor statistics is due to the use of an ellipsoid as a physical wall. Such an

object has relatively complicated effective surface and it must be checked repeatedly

during the simulation whether the centers of the particles are outside this complicated

effective wall or not. Therefore the simulation is very costly from a numerical point of

view. The fact that we are not particularly interested in ellipsoidal walls suggests to

consider a “shrunk ellipsoid” as a physical wall instead [see Eq. (G.23)]. It is defined

such that the effective wall is a generic ellipsoid and for such a geometry it is much

easier to determine whether a center of a fluid sphere lies within the effective wall or

not. Therefore the MC steps consume significantly less CPU time and statistics can

be gathered more efficiently. Figure 3.7 shows results obtained after 500 × 109 MC

steps and a shrunk ellipsoid with a = b = 4R and c = 10R.

Again, the agreement for larger values of θ is very good, in particular for the

morphometric results based on the White-Bear version of FMT. For θ → 0 however

there is a small discrepancy between the simulation results and the locally applied

morphometric prediction, Eq. (3.6). The deviation is probably due to lateral vari-

ations in the curvature, which are the largest for θ → 0 (see Fig. 3.5). However,

when we integrate the data shown in Fig. 3.7 in order to obtain the average contact

density ρ̄c, the result is R3ρ̄c = 0.239789. This is again in perfect agreement with the

morphometric prediction R3ρ̄c = 0.239085 based on the thermodynamic coefficients

obtained from the White-Bear version of FMT and η = 0.3. The small relative error

of 3.0× 10−3 is due to the approximate nature of the density functional, the numeri-

cally measured bulk packing fraction, and the statistical error of the MC simulation.

The morphometric form of ρ̄c is therefore also supported by these results.

The morphometric form of thermodynamic quantities applies also to objects which

have discontinuities in the local curvatures along their surface. A commonly studied

object with such properties is a spherocylinder. It is a joint object of a cylinder with

radius RSC and length LSC and two half-spheres with the same radius RSC attached

to the end of the cylinder. A spherocylinder therefore discontinuously changes its

shape from cylinder-like to sphere-like. Although the surface seems smooth, both
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Figure 3.7: The contact density of a hard sphere fluid around a shrunk ellipsoid.

The effective wall is a biaxial ellipsoid with half axes (4, 4, 10)R. Such an object

is algorithmically easier to implement as the setup for Fig. 3.6 and therefore more

statistics can be gathered. The symbols show MC simulation data, the lines are

obtained from the morphometric form of the contact density, Eq. (3.6), applied

locally. The dashed line is based on the Rosenfeld FMT, the solid line on the

White-Bear version of FMT. In particular the latter functional provides a good

description of the contact density, provided that lateral variations of the curva-

ture are not too large as it is the case for θ → 0. The bulk packing fraction is

approximately η = 0.300.

the mean and the Gaussian curvature H and K feature a discontinuous jump at the

touching line between the cylinder and the spherical cap. The lateral variations of

the curvatures diverge. In this situation it is obviously impossible to predict the local

contact density ρc by use of a local morphometric form. The average mean H̄ and

average Gaussian K̄ curvatures however are well-defined and finite quantities and we

therefore use them to predict the average contact density ρ̄c. For this we consider a

spherocylindrical solute with R′SC = 3R and L′SC = 10R, which has as an effective

wall a spherocylinder with RSC = R′SC +R = 4R and LSC = L′SC = 10R. For a bulk

packing fraction of η = 0.3 and the White-Bear data we obtain R3ρ̄c = 0.241586 as

the morphometric prediction. The corresponding simulation yields

R3ρ̄c = 0.241335 , (3.16)

which represents a relative error of 1.1 × 10−3. Hence this data also supports the



3.3. Numerical Results 53

Y�Z![#\�]&^�_(Z!`a

b(c `�d:^�]!e#[f`g9hCiC`[fj=_(g9k

l4m�n

opq r
s t
u

v�vv�wxyz{|}~�vw

w�����{
w����||
w�����|
w���� } |
w���� }
w�����~�|
w�����~
w�����|

Figure 3.8: Contact density of a hard-sphere fluid around an effective sphero-

cylinder with LSC = 10R and RSC = 4R. The parameter L on the abscissa

parameterizes the distance of the contact position to the symmetry plane of the

spherocylinder measured on its effective surface. For L < LSC/2, the spherocylin-

der locally looks like a cylinder, for LSC/2 < L < LSC/2 + π/2RSC like a sphere.

The symbols show the results of a MC simulation for a bulk packing fraction

η = 0.300, the line shows the prediction based on the locally applied morphomet-

ric form of ρ̄c, Eq. (3.6). Only the averaged contact density ρ̄c shown in Eq. (3.16)

is in perfect agreement with the prediction. For this figure, the thermodynamic

coefficients of the White-Bear functional were used.

morphometric conjecture. In Fig. 3.8 we show the dependence of the contact density

versus the position on the surface together with the local morphometric prediction,

which does not reproduce the continuous transition between the cylinder and the

sphere. Therefore, for discontinuous H and K, the morphometric form of thermo-

dynamic quantities should only be applied to globally averaged quantities, where it

provides a very accurate description.

So far, thermodynamic quantities have been shown for a fluid outside a hard wall

and the question arises whether the morphometric approach can be extended also to

fluids inside a concave cavity. The three conditions we impose on the grand potential

do not limit the walls that bound S to be convex surfaces and we therefore predict

thermodynamic quantities inside an object by using negative curvatures H̄ or K̄.

Such an approach can however only be valid as long as the cavity S is not too small.



54 3. Shape Dependence of Thermodynamic Quantities

�������������
����������

����C� �5��� ����� ���1�

���¡ £¢C¤ � ¤¥ §¦ �  £¨9¨

© ª«
¬

®�¯.°�±®�¯X°®�¯�®�±®² ®�¯�®±² ®�¯X°² ®�¯X°³±

®�¯�´�µ

®�¯�´ �

®�¯�´

®�¯ ��¶

®�¯ ��·

®�¯ � µ

Figure 3.9: Contact density ρ̄c of a hard sphere fluid with a bulk packing fraction

of η = 0.3. The fluid is in contact with a cylinder either from outside (convex,

RC > 0) or inside (concave, RC < 0). The symbols [59] are results of the direct

minimization of the Rosenfeld functional while the line is calculated using the

morphometric approach and the coefficients of the Rosenfeld functional shown

in Fig. 3.1. If the concave cylinder is sufficiently large, the morphometric from

Eq. (3.6) provides an excellent approximation for the actual DFT results. Only

for H → −∞, i.e. very narrow cavities, small deviations can be observed.

The wall that makes up the cavity introduces correlations in the fluid that decay for

large normal distance from the wall. If however two opposing segments of a wall are

sufficiently close, correlations introduced by both segments “interfere” and thermo-

dynamic properties of the interface will therefore deviate from the values predicted

by morphometry. This is in particular the case when correlations are still significant

near caustic points. The reason for the failure of the morphometric prediction is

the fact that the insertion of the second segment of the wall cannot be considered

independently from the insertion of the first segment. This represents a violation of

the additivity property of Ω. If however the cavity is large enough, the morphome-

tric forms of thermodynamic quantities provide an excellent approximation. As an

illustration, Fig. 3.9 shows the contact density of a fluid of hard spheres inside and

outside a cylinder for various values of RC , including results for RC < 0, a concave

cavity.

According to the figure, thermodynamic coefficients obtained from the analysis of
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a fluid outside a hard wall can indeed be used to predict thermodynamic properties of

a fluid in a concave object. This can however only be done as long as no caustic effects

occur, i.e. the density at the symmetry axis of the cylinder must be close to the bulk

density ρb. Otherwise, if the cylinder is small, the influence of caustic effects yields

DFT results that oscillate around the morphometric prediction for different values of

RC . For a bulk packing fraction of η = 0.3 and a radius of curvature of the physical

wall of RC = −4R, the relative error between morphometric results and direct DFT

minimization is below 1.1× 10−2. It increases with increasing bulk packing fraction

η, because the decay length of correlations increases.

3.3.3 Accuracy and Error Estimates

Here we show that for the shape-dependence of the grand potential Ω[S] as stated

in Eq. (3.3) and the morphometric expressions for the related thermodynamic coeffi-

cients cannot be improved by adding additional higher order terms of the local cur-

vatures. For this we include for the analysis of our numerical data additional terms

which scale with higher powers of H and K. Such terms are not morphometric. Their

numeric coefficients to the thermodynamic quantities γ, Γ, and ρc must therefore all

vanish according to the morphometric conjecture presented in Section 3.2. To this

end we introduce the “curvature expansion” of an arbitrary quantity, which reads,

e.g. for the contact density ρc

ρ̄c = ρcP + ρcHH + ρcKK + ρcH2H2 + ρcHKHK + ρcH3H3 +O(R−4
1,2) . (3.17)

The curvature expansion coefficients ρcξ for ξ = P,H,K,H2, HK,H3, . . . can be de-

termined by analyzing the curvature dependence of the contact density for simple

geometries as obtained e.g. by direct minimization of a density functional. A numer-

ical scheme for such an analysis is described in Appendix H. Based on DFT data for

a hard-sphere fluid we obtain the expansion coefficients as displayed in Fig. 3.10.

This figure shows that irrespective of the bulk density only morphometric terms,

i.e. ρcP , ρcH , and ρcK contribute to ρ̄c. Note that in particular the morphometric term

ρcK contributes to the contact density whereas the non-morphometric term ρcH2 does

not although both coefficients K and H2 feature a quadratic dependence on the radii

of curvature. This suggests that the expansion of thermodynamic quantities in H and

K should not be considered as a truncated power series. The higher order terms in the

curvatures have virtually vanishing coefficients. Note that the numerically determined

coefficients are not exactly zero due to numerical inaccuracies. We however observe
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Figure 3.10: Curvature expansion coefficients of the contact density ρc as defined

in Eq. (3.17) for various values of the bulk packing fraction η. Here we display the

results of a hard-sphere fluid modeled via the Rosenfeld functional. The morpho-

metric ansatz predicts that only the coefficients ρcP , ρcH , and ρcK of additive terms

contribute to ρc. Our data confirms this numerically as non-additive terms are

numerically zero for all values of the packing fraction η. In addition to the results

shown here, we verified that also the results obtained from the White-Bear version

of FMT and the Tarazona Mark I functional [60] show this behavior and hence

confirm the morphometric form of the average contact density. This is analogously

the case for the surface tension γ and the excess adsorption Γ.

that they decrease when the resolution of the DFT calculation is increased which is

a strong evidence for a parasitic effect. For the data shown in Fig. 3.10, the ratio

ρcK/ρ
c
H2 is above 103 for all packing fractions η.

With the curvature expansion coefficients ρcξ it is also possible to calculate the con-

tact density around a curved wall. In contrast to the morphometric form which needs

only three parameters, the full curvature is based on in principle an infinite number

of coefficients. It is however important to realize that these additional parameters

do not improve the prediction of ρ̄c, as we show in Fig. 3.11. The non-morphometric

terms are obviously unnecessary and we therefore conclude that no higher than linear

powers in the curvatures H or K are needed to fully describe the influence of the

hard curved wall on a thermodynamic quantity.
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Figure 3.11: Relative error for the prediction of the contact density of a hard-

sphere fluid in contact with a spherical wall with RS = 5R. We consider the results

obtained by a direct minimization of the Rosenfeld functional as a reference system.

By the solid line we show the relative error compared to the prediction of the full

curvature expansion of the contact density using the coefficients of Fig. 3.10. The

dashed line shows the relative error of the morphometric ansatz, Eq. (3.6). In both

cases, the result is nearly the same for all packing fractions η which shows that

higher order terms do not improve the prediction of ρ̄c. The error is in both cases

due to numerical inaccuracies of the DFT calculation and decreases for a higher

resolution in the DFT program.

3.3.4 Beyond Pure Hard-Core Interactions

In the previous subsections we showed that thermodynamic properties of a fluid of

hard spheres in contact with a hard curved wall can very accurately be explained using

a morphometric approach. Our ansatz can however also be applied if the interactions

are non purely hard. In order to show this we introduce a soft tail to the wall-particle

interaction. For normal distances u > 0 we choose a potential of the form

βVsoft(u) = βV0 exp(−u/λ) . (3.18)

V0 measures the strength and λ the decay length of the soft potential. For V0 = 0

the situation of a pure hard wall is recovered. Otherwise, the wall is either attrac-

tive for V0 < 0, or repulsive for V0 > 0. We bring a fluid of hard spheres with

radius R in contact with such a wall and analyze the dependence of thermodynamic
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Figure 3.12: Curvature expansion coefficients of the excess adsorption Γ. As a

system we use a hard-sphere fluid modeled via the Rosenfeld functional in contact

with a hard-core cylindrical wall with a soft tail. The interaction potential is given

by Eq. (3.18) with λ = R. The morphometric terms, ΓP and ΓH are large for

all values of V0 which means that they are necessary to describe the influence of

the curved wall. This is in contrast to the non-morphometric terms ΓH2 and ΓH3 ,

which are very small for all values of V0 and thus do not contribute to Γ. The

non-morphometric terms are not exactly zero because of numerical inaccuracies.

The bulk packing fraction is η = 0.3.

quantities on the shape. In order to estimate whether a morphometric form is suffi-

cient to describe the influence of thermodynamic quantities on the shape we use the

full curvature expansion as introduced in Eq. (3.17), which is more general than a

morphometric expression. With this expansion we test numerically whether the coef-

ficients of the non-morphometric terms vanish. In Fig. 3.12 we show some curvature

expansion coefficients of the excess adsorption Γ as obtained from the minimization

of the Rosenfeld functional at a hard-core cylindrical wall with a soft tail. In such a

geometry the Gaussian curvature K = 0 and we therefore obtain only the coefficients

which belong to terms that scale with a pure power of the mean curvature H.

The excess adsorption Γ, as well as the interfacial tension γ are both thermody-

namic quantities independent of the value V0 and hence can be described by mor-

phometric forms. In contrast to this, the average contact density ρ̄c is only a ther-

modynamic quantity for V0 = 0 by virtue of the contact theorem. For nonzero V0
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Figure 3.13: Identical setup as in Fig. 3.12, but here we show curvature expansion

coefficients for the contact density ρ̄c. For βV0 = 0 the morphometric form of ρ̄c,

Eq. (3.6), is sufficient but even for relatively small values of βV0 6= 0 also higher

powers of the curvatures are needed to fully describe the influence of the curved

wall.

the contact theorem, Eq. (2.7), cannot be applied in this form any more. For walls

with a soft potential also densities ρ(u) at normal distances u 6= 0 contribute to the

normal derivative of the grand potential Ω, as shown in Eq. (2.8). This means that,

although the morphometric form of Ω is conserved independently of the value of V0,

one cannot expect that the morphometric form of ρ̄c is sufficient to describe the in-

fluence of the curved wall. Higher terms of the curvature expansion are needed. We

show in Fig. 3.13 the expansion coefficients for ρ̄c.

Aside from non-hard wall-particle interactions we also consider non-hard inter-

particle interactions. To this end we employ the perturbation theory as reviewed

in Section 1.3 in order to calculate thermodynamic properties of a square-well fluid.

Such a fluid features a binodal for sufficiently large attractive interactions βε and

we expect from the discussion of the additivity constraint for Ω[S] in Section 3.1

that morphometry of thermodynamic quantities is only fulfilled if neither wetting nor

drying occurs. In order to study this, we consider a square-well fluid with a fixed

potential width Rε = 2R and variable βε, i.e. variable temperature or potential depth

respectively. The bulk density of the fluid will be held constant at η = 0.3. For the

bulk fluid we show the corresponding phase diagram in Fig. 1.1. The line with the
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arrow-head marks the thermodynamic states of the fluid under consideration when

the potential depth βε is varied. The bulk fluid is brought in contact with a spherical

hard wall of radius RS. For sufficiently negative βε drying occurs, i.e. a film of finite

thickness and reduced density wets the hard spherical wall. The quantitative extend

of this effect is strongly influenced by the shape of the wall. It has been shown that

there are non-analytical contributions to all thermodynamic quantities [40]. However,

for sufficient “distance” δµ from phase coexistence, no drying occurs and we therefore

expect that the morphometric arguments are valid. In order to test this we consider

an expansion of the contact density ρ̄c in powers of the inverse radius RS

ρ̄c =
∑

i=0

ρ(i)

(
R

RS +R

)i
, (3.19)

where ρ(i) (i = 0, 1, . . . ) are expansion coefficients. If the morphometric form of ρ̄c is

fulfilled, ρ(i) must be zero for all i ≥ 3. We display our result in Fig. 3.14 for various

values of the potential depth βε.

It can be seen that the morphometric arguments are valid for a large interval of

ε, however close to the binodal the prediction fails due to drying. Evans et. al. intro-

duced a length scale Rc that determines the crossover from analytic to non-analytic

behavior of thermodynamic quantities [53]. They derived that

Rc =
2γ∞gl

∆ρ δµ
, (3.20)

where γ∞gl is the interfacial tension of the free planar interface, ∆ρ = ρliquid − ρgas

the difference in the bulk densities of the coexisting phases, and δµ the distance

of the state of the fluid to the binodal. In order to obtain the coefficients for the

expansion in Eq. (3.19) we use DFT data of spherical walls with RS ≥ 100R. We

expect non-morphometric behavior when Rc is larger than the smallest radius RS

used. The system under consideration approaches the binodal along the path shown

in Fig. 1.1 with a constant bulk packing fraction η = 0.3. Given these figures, the

crossover radius Rc exceeds 100RS for |βε− βεgl| < 0.00343, where βεgl = −0.96557

is the perturbation parameter for which a fluid phase with η = 0.3 coexists with a

gas phase. The right end of the range where non-analytic terms dominate the system

is shown in Fig. 3.14 as a vertical dotted line and approximately determines the

interval where ρ(3) is larger than the other expansion coefficients. This is an indirect

observation for non-analytic behavior of the contact density. The morphometric form

can only be applied if the radii of curvatures are large compared to Rc.
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Figure 3.14: Radius expansion of the contact density of a square well fluid ad-

sorbed at a hard spherical wall according to Eq. (3.19). The expansion is performed

for various well-depths ε with constant Rε/R = 2 and η = 0.3. For sufficient

separation from the binodal at βεgl = −0.96557, the coefficient ρ(3) vanished nu-

merically as expected by virtue of morphometric arguments. This is in contrast

to the behavior close to phase separation where ρ(3) increases sharply. The verti-

cal dashed line estimates the crossover to non-analytical behavior of the contact

density according to Eq. (3.20).

We also verified that the breakdown of the morphometric form does not occur

when the binodal is approached from the gas-phase. In this case neither drying nor

wetting occurs and the contact density ρ̄c has a morphometric form even very close to

phase coexistence. This shows that a the morphometric arguments do not necessarily

fail near a two-phase region, their breakdown is rather due to the long-ranged parallel

correlations associated with drying or wetting [53].

3.4 Summary

We showed numerical evidence that the thermodynamic quantities as obtained by di-

rect DFT calculations can be very accurately predicted using a morphometric form.

Obviously DFT calculations yield a grand potential that is consistent with the three

restrictions we impose on an extensive quantity. It is however important that this

result is not an artifact of the approximations involved in the density functionals we
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use. Although the bulk theory for FMT-based functionals predicts a morphometric Ω

it is important to realize that by a minimization of the density functional the result-

ing thermodynamical quantities can deviate significantly from predictions based on

underlying bulk theories [40, 50, 61]. To completely rule out that the morphometric

form of Ω is implied by the use of FMT-based functionals we verified our conjecture

additionally by using the Tarazona Mark I functional [60], which has a completely dif-

ferent structure. For this functional we also find an agreement with the morphometric

prediction.

Furthermore we verified the predictions of the morphometric forms with quasi-

exact simulation data - both globally and locally. In particular the morphometric

predictions based on the White-Bear version of FMT provide an excellent description

of the average contact density for various complex objects. The local form of the mor-

phometric prediction constitutes a good approximation when the lateral variations of

curvatures are small.

The morphometric form of Ω is not an artifact of the pure hard interactions. We

verified that thermodynamic quantities of a hard-sphere fluid in contact with a wall

with a soft potential also have a morphometric form. Non-morphometric terms in

the full curvature expansion are numerically zero for various parameters of the wall-

particle potential. This behavior of thermodynamic quantities is distinctively different

to the contact density which looses its direct connection to the grand potential when a

non-zero soft tail is added to the wall-particle potential. In this situation it cannot be

considered as a thermodynamic quantity any more. Consequently, non-morphometric

terms contribute to the curvature dependence of ρ̄c.

We also studied a square-well fluid at a hard wall. The interparticle interaction

has a hard core but additionally a soft contribution. The thermodynamic quantities

are found to have a morphometric form, as long as no drying occurs. In the latter

case, the full curvature expansion in terms of powers of the curvatures H and K is

not an appropriate description of the influence of the shape of the wall. Non-analytic

contributions become significant and yield a more complex curvature dependence.

These results are relevant because the expansion of thermodynamic quantities

in powers of the curvatures is a commonly used approach to treat the influence of

curvature on interfaces. For example, the well-established Helfrich Hamiltonian [56]

uses H and K to empirically quantify the energy cost for bending of an interface

and is in agreement with our ansatz on a length scale larger than the persistence

length of the interface. Furthermore the idea that the grand potential depends solely

on four fundamental measures [62] has been successfully applied in the context of
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porous media [63–66], biological cells [67], or to predict phase diagrams of complex

fluids such as microemulsions [68].



Chapter 4

Shape Dependence of Density

Profiles

In the previous Chapter 3 we study how interfacial properties are influenced by the

shape of a wall and find morphometric forms for thermodynamic quantities. It is

common to all thermodynamic quantities that they are averaged over the surface of

the wall, i.e. they are of particular interest when one is interested in a thermody-

namic description of the wall-fluid interface as a whole. In contrast to this we study

in this chapter the influence of curvatures on a local quantity, namely the density

of particles at a given point r outside a hard wall. Similar as in the case for ther-

modynamic quantities, the density distribution ρ(r) around highly symmetric walls

can usually be found efficiently using conventional numerical approaches, but little is

known concerning the density distribution of fluid particles around more complexly

shaped objects. Such an information is however very useful as it is connected to other

interesting structural properties of the fluid such as correlation functions or depletion

potentials between two complexly shaped particles.

In the first section we introduce the concept of a curvature expansion of the density

profile, which describes the influence of the local curvatures on the density. It enables

us, based on the accurate knowledge of the density profiles of a hard-sphere fluid

in simple geometries, to accurately predict density distributions around complexly

shaped objects. This includes in particular the contact density, for which we already

found a morphometric form in Section 3.2. Other thermodynamic quantities can

also be derived from the curvature expansion of the density profile and we elucidate

the connection of the curvature expansion to morphometry in the second section.

Finally, in section three, we present a general theory for the asymptotic form of

64
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density profiles in a fluid at arbitrarily shaped walls. This furthermore substantiates

our curvature expansion approach and provides some deep insight concerning the

influence of geometry on the decay of correlation functions.

4.1 Curvature Expansion of the Density Profile

The morphometric form of thermodynamic quantities predicts a curvature dependence

that is at most linear in the mean and Gaussian curvature H and K. This is a

peculiar feature of these quantities and we cannot expect that such a remarkably

simple dependence is sufficient for the density profile to fully describe the influence

of a curved wall. As an indication of this fact we quote the results presented in

Section 3.3.4, where the contact density at a hard-core wall with a soft potential

looses its direct connection to the grand potential Ω and hence gains a curvature

dependence which must be described by a infinite curvature expansion which includes

also higher powers in H and K. We apply this concept of a full curvature expansion

also to the density profile ρ(r).

To this end we consider a big hard particle as a wall for the surrounding fluid

and introduce the normal coordinates generated by its effective surface [69, 70], see

Fig. 4.1. With these definitions we write for the curvature dependence of the density

profile

ρ(r) =ρP (u) + ρH(u)H + ρK(u)K + ρH2(u)H2+

+ ρH3(u)H3 + ρHK(u)HK +O(R−4
1,2) ,

(4.1)

where ρP (u) is the density profile at a planar wall and ρξ(u) for ξ = H,K,H2, H3,

HK, . . . are expansion coefficient functions. These functions are intensive. They

depend in general on the type of fluid, its temperature and thermodynamic state

and on the wall-fluid interaction potential, but are independent of the shape of the

wall described by H and K. Note that there are infinitely many expansion coeffi-

cients because the density at an arbitrary normal distance u is not a thermodynamic

quantity in the sense we define in Sec. 3.1. There are two fundamental assumptions

involved in Eq. (4.1). The first is that the density ρ(r) is only influenced by the

local properties of the wall, which are described by the local mean and local Gaussian

curvature. Therefore the curvature expansion assumes that the lateral variations of

H and K can be neglected and we therefore expect that it is best fulfilled for surfaces

with slowly varying curvatures. The second assumption is that the density profile

can be analytically expanded around the planar density profile. This assumption is
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Figure 4.1: Normal coordinates generated by a segment of a convex wall. Any

point r outside the wall can be reached starting from x, the point closest to r

on the surface. The difference vector r− x is parallel to the local surface normal

n(x) at position x and we denote u = |r − x| as the normal distance of r. The

principal radii of curvature of the wall at x are R1 and R2, the local mean curvature

H(x) = (R/R1 + R/R2)/2 and the Gaussian curvature K(x) = R2/(R1R2). For

more details see Appendix G.

non-trivial as we point out in Section 4.2. It can however be motivated by the finding

for thermodynamic quantities in section 3.1, which feature an analytic dependence on

H and K. As however already mentioned there it is known that e.g. drying destroys

the analytic behavior of the contact density [53]. We therefore restrict the application

of the curvature expansion to systems with a morphometric grand potential.

In analogy to the morphometric ansatz, Eq. (3.3), the curvature expansion of the

density profile as shown in Eq. (4.1) multiplicatively separates geometric and fluid

properties. Therefore the problem of obtaining the density profiles around complexly

shaped objects is shifted to the problem of determining the coefficient functions ρξ(u).

In order to demonstrate the practicability of our ansatz we study a fluid of hard

spheres with radius R in contact with a hard wall. For each normal distance u, we

analyze the dependence of the density ρ(u) of the fluid at a cylindrical and a spherical

wall and evaluate the coefficient functions ρξ(u) as described in Appendix H. The

results are shown in Fig. 4.2.

Note that, with the knowledge of the density profile around cylindrical and spher-
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Figure 4.2: Typical curvature expansion coefficient functions ρξ(u) as defined

in Eq. (4.1). The upper two figures show the results for the original Rosenfeld

functional and a bulk packing fraction of η = 0.3, the lower to show results for the

White-Bear version of FMT and a higher bulk packing fraction of η = 0.3314. For

this system we compare DFT results with MC data in Fig. 4.3. Common to the

coefficient functions ρξ(u) in the left column with ξ = P,H,K is the finite contact

value for u = 0, which is in contrast to the functions in the right column with

ξ = H2,H3,HK. We verified that this behavior and the characteristic oscillatory

structure is also observed for other bulk packing fractions η and elucidate this

issue in detail in Sections 4.2 and 4.3.
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ical walls, the curvature expansion coefficient functions can only be determined up

to the third order in the inverse radii of curvature (see Appendix H). For higher

order coefficient functions, the accurate knowledge of density profiles around more

complexly shaped walls would be needed, which is normally not available. For this

practical reason we truncate the curvature expansion after the third order terms and

use only the terms that are explicitly shown in Eq. (4.1). In contrast to thermody-

namic quantities, where higher order terms vanish and thus a truncation does not

represent a problem, the situation for the density profile is different. The neglected

terms inevitable lead to an error which is the largest when the absolute value of the

curvatures H and K are large. This is not a conceptual problem but due to prac-

tical limitations and we restrict the application of the curvature expansion to walls

with small H and K. This corresponds to objects which are large compared to the

particles in the surrounding fluid.

We test the practicability of the ansatz in Eq. (4.1) by considering a hard-sphere

fluid in contact with a prolate ellipsoidal wall a half axes (4, 4, 10)R. We compare MC

simulation data and the results of the curvature expansion. From the simulation we

determined the bulk packing fraction of the small spheres to be η = 0.3314 and already

verified in Section 3.3.2 that the contact density ρc = ρ(u)|u=0 can be predicted

very accurately by means of a morphometric expansion, as displayed in Fig. 3.6.

The full curvature expansion reproduces these results for u = 0, as it also includes

“morphometric” terms proportional to H and K. Hence it is a more stringent test for

the curvature expansion to predict the density profile for all u, because this requires

also the knowledge of higher order coefficient functions ρξ(u), ξ = H2, H3, HK, · · · .
Selected typical cuts through the density profile are shown in Fig. 4.3.

Within the error bars of the simulation the agreement between the prediction of

the curvature expansion and the direct simulation data is excellent for all values of

u and θ. For θ = 0 the curvatures are the largest for a prolate ellipsoid, see Fig. 3.5.

Note that at this position the Jacobi determinant close to the surface is very small and

therefore the statistics is relatively poor. We verified that the higher order coefficient

functions contribute to the density profile and it is not sufficient to consider only the

“morphometric” terms ρP (u), ρH(u), and ρK(u).

We also analyzed the density profile around the shrunk ellipsoid and the sphero-

cylinder as obtained by the simulation presented in Section 3.3.2. As expected from

the analysis of the contact density in Section 3.3.2 we find a very good agreement

between simulation data and curvature expansion as long as the influence of lateral

variations in the curvatures can be neglected. We therefore conclude that the curva-
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Figure 4.3: Cuts through the density profile ρ(r) of a fluid of hard spheres with

radius R around a biaxial ellipsoid with half axes (4, 4, 10)R [58]. The bulk packing

fraction is η = 0.3314. We show the density along paths that start perpendicular

from the effective surface of ellipsoid, which we parameterize by θ and φ [see

Eq. (G.21)]. The normal coordinate u denotes the distance to the effective wall.

Monte-Carlo results (symbols) are compared with the results of the curvature

expansion, Eq. (4.1), based on data obtained from the White-Bear version of FMT

(lines). We already verified the accurate prediction of the contact density (u = 0)

in Fig. 3.6. The agreement shown here is typical also for other cuts through the

density profile.

ture expansion of the density profile represents a good approximation to the actual

density profile if the curvatures H and K are small and vary slowly along the surface.

4.2 Implications

By using the curvature expansion approach presented in the previous section it is

possible to determine the density distributions around complexly shaped interfaces

and with this knowledge, in a second step, thermodynamic quantities associated with

the interface can be obtained. These thermodynamic quantities have, as we discuss

in Chapter 3, a morphometric form which represents a more restricted dependence

on the shape of the wall than a full curvature expansion. We show in this section

that the morphometric form of thermodynamic quantities is not a priori implied by
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the full curvature expansion of the density profile, Eq. (4.1), and hence the expan-

sion coefficient functions ρξ(u) must satisfy sum-rules that ensure that the derived

thermodynamic quantities are morphometric.

The most obvious connection between the curvature expansion and the morpho-

metric approach is obtained by noting that the curvature expansion coefficients func-

tions ρξ(u) at u = 0 are identical to the expansion coefficients ρcξ used in Eq. (3.17)

for a full curvature expansion of the contact density ρc. We showed numerically in

this context that ρcξ ≈ 0 for all ξ = H2, HK,H3, as predicted by the morphometric

form. This result can also be observed in Fig. 4.2, where the higher order expansion

coefficients in the right column vanish numerically for u = 0. This is in contrast to

other normal distances u, where the higher order expansion functions contribute to

the density ρ(r). It is particularly striking that the non-morphometric term ρH2(u)

vanishes for u→ 0 while the morphometric term ρK(u) does not, although both fea-

ture a quadratic dependence on the principal curvatures and are of the same order of

magnitude for other values of u.

Another prediction of the morphometric ansatz for Ω is that the excess adsorption

Γ is a morphometric quantity. The excess adsorption is defined in Eq. (2.1) and can be

calculated using for the density profile ρ(r) the curvature expansion formula provided

by Eq. (4.1). Assuming a constant H = H̄ and K = K̄ we obtain

Γ =

∫
du
(
1 + 2Hu+Ku2

)
·
(
ρP (u)− ρb +

∑

ξ

ρξ(u) ξ

)
. (4.2)

The factor (1 + 2Hu+Ku2) = J(u) represents the Jacobi determinant of the normal

coordinate system generated by the effective wall. By comparing the two expressions

for Γ in Eq. (3.5) and Eq. (4.2) we find that the following integrals must vanish
∫
du (2uρH(u) + ρH2(u)) = 0 ,

∫
du (2uρH2(u) + ρH3(u)) = 0 ,

∫
du
(
2uρK(u) + u2ρH(u) + ρHK(u)

)
= 0 .

(4.3)

There are in principle further restrictions for higher order coefficients ρξ(u). They

however involve expansion coefficients that are not accessible by our numerical data

analysis and we therefore do not considered them here. We verify that all integrals in

Eq. (4.3) vanish for various bulk packing fractions and different DFT models for the

hard-sphere fluid. We furthermore found that Eqs. 4.3 are not fulfilled because the
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integrands vanish for all u, which would represent an even stronger restriction for the

coefficient functions. Note that the conditions presented in Eq. (4.3) are necessary to

obtain a morphometric form for the excess adsorption Γ, what we already verified in

Section 3.3.

The richest set of restrictions on the coefficients functions is obtained by consid-

ering the sum rule in Eq. (2.11), which relates a local quantity, the contact density

ρ̄c, to a global quantity, the excess adsorption Γ. For a spherical wall the sum rule

was already analyzed in Ref. [53], here however we generalize the arguments to arbi-

trarily shaped hard walls. By inserting the curvature expansion of the density profile,

Eq. (4.1) in the sum-rule, we find by comparing the terms with the same powers in

H̄ and K̄ that

∂ρ̄cP /∂βµ = ρb , (4.4)

∂ρ̄cH/∂βµ = −2ΓP , (4.5)

∂ρ̄cK/∂βµ = −ΓH , (4.6)

∂ρ̄cH2/∂βµ = 0 , (4.7)

∂ρ̄cH3/∂βµ = 2ΓH2 , (4.8)

∂ρ̄cHK/∂βµ = −2ΓH2 , (4.9)

∂ρ̄cH4/∂βµ = 4ΓH3 , (4.10)

∂ρ̄cH2K/∂βµ = 2ΓHK − 3ΓH3 , (4.11)

∂ρ̄cK2/∂βµ = −ΓHK . (4.12)

These differential equations are valid for all fluids in contact with a hard wall provided

that an analytic curvature expansion of ρ̄c and Γ exists. The first relation, Eq. (4.4),

can be rewritten using the result of the planar hard wall contact theorem which

states that ρ̄cP = βp. This yields ∂p/∂µ = ρb, which follows also from the Gibbs-

Duhem relation and is hence fulfilled by all numerical approaches which are consistent

with thermodynamics. The relation in Eq. (4.5) is identical to the Gibbs adsorption

theorem, Eq. (2.3), provided one identifies ρ̄cH with the planar surface tension 2βγ.

We do this in the morphometric ansatz, which hence fulfills Eq. (4.5). It is also in

agreement with Eq. (4.6) as we use ρ̄cK = βκ and ΓH = −∂κ/∂µ in the respective

morphometric forms (3.6) and (3.5).

A very remarkable relation is obtained from the differential equation (4.7). As it

is valid for all values of µ, one can integrate it with respect to µ. We use as a starting

condition that ρ̄cH2 = 0 for µ→ −∞, which means ρb → 0. According to this rigorous

argument we obtain ρ̄cH2 = 0. This result agrees with the findings of Stillinger and
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Cotter in Ref. [57], where they used SPT arguments to analyze molecular distribution

functions. It is furthermore implied by the morphometric form of the contact density,

Eq. (3.6) and therefore furthermore substantiates the approach presented in Section 3.

Note that this relation is fulfilled for all fluids that allow a curvature expansion of

the density profile, i.e. for which one can write down an analytic expansion of the

density profile in terms of the curvatures of the wall. This class of fluids is very large,

however we already pointed out that e.g. wetting or drying layers at a wall destroy the

analytic form of curvature expansion of thermodynamic quantities and consequently

also of the density profile [53].

All further relations, Eqs. (4.8) - (4.12) are trivially fulfilled by the morphometric

approach that states ρ̄cξ = 0 = Γξ for all ξ = H2, H3, HK, · · · . However, the vanishing

of these higher order expansion coefficients is not implied by the existence of the

curvature expansion. By adding Eqs. (4.8) and (4.9) and integrating the result with

respect to µ we merely find that ρ̄cHK = −ρ̄cH3 . This result is nonetheless useful in a

spherical geometry, where HK = H3 = (R/(R+RS))3. It states that the third order

term in a power-series expansion of the contact density in R/(R + RS) vanishes for

all fluids that allow an analytic curvature expansion. This result was derived earlier

not assuming any morphometric arguments for the special case of a pure hard-sphere

fluid in the limit of small curvatures [71] and generalized later to arbitrary fluids in

Ref. [57]. Similarly, by combining Eqs. (4.10), (4.11), and (4.12), we derive that

8ρ̄cK2 + 4ρ̄cH2K + 3ρ̄cH4 = 0 for all µ and β.

4.3 Asymptotic Form of Density Profiles

One of the striking features of the curvature expansion coefficient functions ρξ(u) is

that they all seem to oscillate around common zeros. These zeros seem to coincide

with those of ρP (u) − ρb. As far as the curvature expansion ansatz in Eq. (4.1) is

concerned this would imply that there is a set of normal distances u where the density

ρ(u) = ρb. This set if values for u would be independent of H and K, i.e. the same

for differently shaped walls. This is indeed approximately the case, large normal

distances from the wall. We discuss this so-called asymptotic limit by analytic means

later in this section. In order to show the accuracy of our assumption, we consider

a fluid of hard spheres with radius R in contact with a big sphere of radius RS. By

means of DFT calculations we obtain for each RS a density profile ρ(u) and label the

normal positions where ρ(u) = ρb as un(RS), where n = 1, 2, · · · labels the index of

the zero. Figure 4.4 shows the positions un(RS) at the spherical wall relative to the
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Figure 4.4: Deviation of the normal position of the zeros un(RS) of a density

profile ρ(u) − ρb = 0 at a hard spherical wall to the positions un(∞) of a profile

at a planar wall. The results are obtained for a hard-sphere fluid modeled via

the Rosenfeld functional with a packing fraction η = 0.3. We verified that the

White-Bear functional gives similar results and that all deviations have the same

sign, i.e. the position un(RS) ≥ un(∞) for all n. The deviations for small index n

depend on RS in a complicated manner, however for large index n the deviations

can be described by a single curve which means that all zeros are shifted by the

same amount as compared to the zeros of the planar density profile. The absolute

value of the shift depends on the bulk packing fraction η.

positions un(∞) at a planar wall.

The assumption that all curvature expansion coefficient functions ρξ(u) have the

same zeros implies that ρ(u) − ρb = 0 is fulfilled for the same un(RS) independent

of RS. In this case all functions shown in Fig. 4.4 must vanish. This is obviously

not strictly the case. Note however that it represents a relatively good approxima-

tion as the absolute values for the deviations shown in Fig. 4.4 are small compared

to the wavelength of the oscillations in the density profile ρ(u). The latter equals

approximately 2R for the hard-sphere fluid. Therefore the approximation that the

zeros are at the same positions for all RS is fulfilled with a relatively good accuracy.

Furthermore, for large n, the deviations un(RS)−un(∞) fall on the same curve. This

means that for large normal distance u all zeros are shifted by the same small dis-

tance, which weakly depends on the radius of curvature RS. We discuss this point
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further in this section below. Under the approximation that all curvature expansion

coefficient functions have common zeros we write as an ansatz

ρξ(u) = (ρP (u)− ρb) · fξ(u) , (4.13)

where ρP (u) is the density profile at a planar wall. The first factor in Eq. (4.13) is

responsible for the oscillations and the exponential decay of the expansion functions

ρξ(u) while the newly defined function fξ(u) in the second factor is a non-oscillatory

function and describes the variation of the amplitude of the respective curvature

expansion function ρξ(u). It turns out later in our analysis that the functions fξ(u)

are independent of the bulk packing fraction and the fluid, i.e. they are purely defined

by geometric means. What does this imply? We can use the curvature expansion of

the density profile, Eq. (4.1) and insert Eq. (4.13) as an ansatz for ρξ(u) which yields

ρ(r) = ρb + (ρP (u)− ρb) ·
(

1 +
∑

ξ

fξ(u)ξ

)
. (4.14)

This equation suggests that the geometric functions fξ(u) and the density profile at

a planar wall are sufficient to calculate the density profile around even complexly

shaped objects. This is indeed possible, however only accurately in the asymptotic

limit. This limit is characterized by a large normal distance u from the wall. The

meaning of “large” normal distance is discussed in more detail below.

The geometric coefficients can in principle be determined from numerical data,

however their functional form can also be analytically obtained using the Ornstein-

Zernike equation [13, 72]. For this we follow some arguments of the general theory

of the asymptotic decay [73–77] and consider a general fluid with short-ranged inter-

actions and an isotropic bulk phase. This excludes for instance fluids that feature a

spontaneous symmetry breaking as it occurs e.g. in nematic phases. If the bulk phase

is isotropic, the particle-particle direct correlation function cpp(r) depends only on

the mutual distance of the centers of two particles, which is essential for the following

derivation.

We consider a mixture of fluid particles (labeled p) with an additional component

w, which constitutes the wall. We are interested in the total correlation function

hwp(r) between a wall-particle w and a fluid particle p. This correlation function

is connected to the density distribution ρ(r) of fluid particles around the wall via

hwp(r) = (ρ(r) − ρb)/ρb. In order to suppress wall-wall correlations we consider the

dilute limit of component w, i.e. a bulk density of wall particles ρw → 0. The bulk
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density ρb of the fluid particles is kept constant at a non-zero value. We describe this

quasi two-component bulk mixture by use of the Ornstein-Zernike equation,

hij(r) = cij(r) +
∑

k

ρk

∫
cik(r

′)hkj(r
′ − r) dr′ , (4.15)

where c denotes the direct and h the total correlation function. The indices i,j, and

k label the different components i, j, k ∈ p, w. The integral is a three-dimensional

convolution which suggest to solve Eq. (4.15) in Fourier space. Taking the explicit

limit ρw → 0 we find formally for the Fourier transformed of hwp

ĥwp(k) =
ĉwp(k)

(1− ρpĉpp(k))
. (4.16)

Here, the hat denotes the respective Fourier transforms of the correlation functions.

By providing explicit analytical expressions for the Fourier transforms of the two

direct correlation functions ĉwp and ĉpp, Eq. (4.16) can in principle be solved. How-

ever, in particular for cwp, no closed analytical expression is known. To proceed, we

transform Eq. (4.16) back to real space and use the Fourier representation of ĉwp(k),

ĉwp(k) ∝
∫
dr′ cwp(r′) exp(−ik · r′). This transforms Eq. (4.16) to

hwp(r) ∝
∫
dr′ cwp(r

′)

∫
dk

eik·(r−r′)

1− ρpcpp(k)︸ ︷︷ ︸
G(r−r′)

, (4.17)

where the overall constant proportionality factor is not important for this analysis and

is therefore suppressed. This equation shows that in real space hwp = cwp ∗G, where

G can be interpreted as a Greens function of a certain linear differential operator,

which will be determined later. Here we simplify G(r−r′) further by using that for an

isotropic bulk phase cpp(k) = cpp(|k|). Defining s = |r− r′| and introducing spherical

coordinates for k leads us to a spherically symmetric Greens function G(r−r′) = G(s),

where

G(s) ∝ 1

s

∫ ∞

0

dk
k sin(ks)

1− ρpcpp(k)
. (4.18)

We extend the integration to a closed contour in the complex plane and apply the

residue theorem. Note that for short-ranged interactions the positions of all poles with

finite k are given by the complex zeros of the denominator 1 − ρpcpp(k) [78]. Each

pole with position k contributes to the total correlation function a term proportional

to exp(iku), i.e. an oscillation that is exponentially damped. An analogue argument

holds also for the more general case of polydisperse particles p, where the denominator
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is a lengthy expression but analogously yields a set of zeros which contribute to the

total pair correlation function [79, 80].

No assumptions have been made so far, except of the applicability of the bulk

Ornstein-Zernike equations, Eq. (4.15) and the assumption that the interactions in

the fluid are short-ranged. Now however we employ the asymptotic limit. This means

that we consider s = |s| to be sufficiently large in the sense that the contributions of

all poles except the one of the leading order pole at position k0 can be neglected [74,

80–82]. This can be done as the contributions of all other poles decay exponentially

on a shorter length scale than the contributions of the leading order pole. The decay

length of the contributions of each pole is determined by the inverse of the imaginary

part of the position of the pole. Therefore, the pole with the smallest imaginary

part dominates for large values of s. Experience tells the asymptotic regime sets in

already for relatively small values of s, in particular in the case of a monodisperse

hard-sphere fluid. With this assumption, Eq. (4.18) simplifies from a sum over all

poles to a single term

G(s) ∝ k0

s
sin(k0s) , (4.19)

where the residue of the leading order pole is, being a constant with respect to s,

absorbed in the proportionality factor. At this point we come back to the interpre-

tation of G(s) as a Greens function. The same Greens function G as in Eq. (4.19)

is found for the φ2-model with the Lagrangian L = (∇φ)2 + k2
0φ

2 which has the

extremal condition (∆ + k2
0)φ = 0. Both for the Ornstein-Zernike equation and for

the φ2-model the complex scalar 1/k0 is interpreted as a (complex) correlation length

which determines the wave- and decay length of total correlation functions and other

structural properties of the fluids. Therefore, to “leading order pole approximation”,

the solution Eq. (4.17) of the Ornstein-Zernike equation is equivalent to the solution

of the linear differential equation

(∆ + k2
0)hwp(r) = cwp(r) . (4.20)

Note that the equation does not explicitly contain cpp(r). Its properties enter only

implicitly through the position of the leading order pole k0. We continue to analyze

the asymptotic decay of hwp further and assume that r is sufficiently far away from

the wall such that the inhomogeneity of the differential equation (4.20) vanishes,

i.e. cwp(r) = 0. One can show with the help of a cluster expansion that for large

|r| cwp(r) ≈ −βVwp(r), where βVwp(r) denotes the wall-particle interaction potential.

In the asymptotic limit, r lies far outside the wall, such that a neglect of cwp(r)
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represents a very good approximation for walls with an interaction potential that

decays fast. Note that this in particular includes hard walls. For the next step we

introduce normal coordinates [see Eq. (G.17)] and assume a multiplicative separation

of the total correlation function hwp(r) = h(α, β)h(u). Using ∆ = J(u)−1∂uJ(u)∂u for

the u-coordinate and the Jacobi-determinant J(u) = 1 + 2Hu+Ku2 [see Eq. (G.13)]

yields for the u-dependence h(u) of hwp(r)

1

J(u)
∂uJ(u)∂uh(u) + k2

0h(u) = 0 . (4.21)

This differential equation can be simplified using the ansatz h(u) = f(u)/
√
J(u)

∂2
uf(u) + (k2

0 +
H2 −K
J(u)2

︸ ︷︷ ︸
O(u−4)

)f(u) = 0 . (4.22)

The solution of this differential equation gives the exact functional form of the cor-

relation function in the asymptotic limit. Unfortunately, for general J(u), Eq. (4.22)

cannot be solved in closed form. Nonetheless, for particular choices of H and K,

Eq. (4.22) can be integrated. These are planar, cylindrical, or spherical walls. For

other geometric setups, Eq. (4.22) must either be solved numerically or approximated

by neglecting the underbraced term which, for large u, decays as 1/u4 for nonzero1

Gaussian curvature K. With this approximation the solution of the differential equa-

tion Eq. (4.22) is f(u) ∝ exp(ik0u), which eventually leads to the final expression for

h(u) for the limit of large u

h(u) ∝ exp(ik0u)√
J(u)

. (4.23)

The asymptotic functional form of the correlation function is therefore given by an

exponentially damped oscillation according to the real and imaginary part of the

position k0 of the leading order pole and a purely geometrical factor, which becomes

1/
√
J(u) for large values of u. This geometrical factor is independent of the type

of fluid, as long as it features an isotropic bulk phase and short-ranged interaction

potentials. However in order to fully obtain the asymptotic form of the correlation

function, the proportionality factor in Eq. (4.23) must be determined. It is in principle

given by the properties of the direct wall-particle correlation function cwp(r) according

to Eq. (4.20). Unfortunately, in case of a generally shaped wall, no closed expressions

for cwp(r) are known. We therefore write

hwp(u) =
A exp(−i=(k0)u) sin(<(k0)u+ θ)√

J(u)
, (4.24)

1This excludes cylinders, which are inventions of the devil [78].
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where the denominator denotes the asymptotic decay of the correlation function at a

planar wall. The amplitude A and the phase θ do not depend on the normal distance

u and are determined by the direct wall-particle correlation function cwp(r) and the

value of k0. We find numerically for a hard-sphere fluid that they depend strongly on

the bulk density ρb, but only weakly on the shape of the wall. It would be interesting

to study this issue in more detail, for this thesis however we assume that A and θ are

constants of the curvatures H and K.

This assumption provides us with an analytic expression for the correlation func-

tion in the asymptotic limit, Eq. (4.24). Hence we obtain the density profiles of a

fluid around an arbitrary wall for large u via

ρ(r) = ρb + (ρP (u)− ρb)/
√
J(u), J(u) = 1 + 2Hu+Ku2 . (4.25)

This equation is very remarkable. It allows to determine the asymptotic form of

density profiles around arbitrarily shaped convex walls based on the knowledge of the

density profile ρP (u) at a planar wall. The latter is normally relatively easy to obtain

by numeric means. Equation (4.25) also implies that the positions of the zeros un(RS)

shown in Fig. 4.4 are independent of H and K, which we find to be approximately

fulfilled.

With the knowledge of an analytic expression for the asymptotic form of density

profile we can find the asymptotic form of curvature expansion coefficients by ex-

panding Eq. (4.25) in a power series in terms of both H and K. The convergence and

the implications of such an expansion are discussed below, here we merely note that

all resulting curvature expansion coefficient functions ρξ(u) for ξ = H,K,H2, · · · are

products, as we guessed in Eq. (4.13)

ρξ(u) = (ρP (u)− ρb)fξ(u) . (4.26)

The first factor on the right hand side, (ρP (u) − ρb), is determined exclusively by

the properties of the fluid at a planar wall, while the second factor fξ(u) for ξ =

H,K,H2, · · · stems from the series expansion of 1/
√
J(u) and is thus the same for

all thermodynamic states and all types of fluids. The geometric factors fξ(u) are

therefore determined by purely geometric considerations. The lowest order factors

fξ(u) can be written as

fH(u) = −u ,
fK(u) = −u2/2 , fH2(u) = 3u2/2 ,

fH3(u) = −5u3/2 , fHK(u) = 3u3/2 .

(4.27)
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We test Eq. (4.26) and the functions shown in Eq. (4.27) by considering the expansion

coefficients which we obtained for a hard-sphere fluid. The results are shown in

Fig. 4.5.

The multiplicative decomposition between fluid properties and geometry, Eq. (4.26)

is indeed valid for a hard-sphere fluid, in particular the zeros of the expansion func-

tions ρξ(u) are all nearly at the same position in the asymptotic limit. The agreement

to the analytically predicted geometric coefficient functions in Eq. (4.27) is excellent.

We study the convergence of the curvature expansion by using the approximate

expressions for ρξ(u) as provided by Eq. (4.26). These are in very good agreement to

the actual coefficient functions for large u (see Fig. 4.5). From dimensional considera-

tions we find for the higher order expansion coefficients that ρξ(u) ∝ (ρP (u)−ρb)ua+2b

what raises the question whether the convergence of the curvature expansion series is

assured also for large u. Higher order coefficient functions for a, b � 1 become very

large. Luckily, despite of the increase of the powers in u, the curvature expansion

coefficient functions ρξ(u) as a whole always converge by virtue of the exponential

decay of (ρP (u)− ρb) ∝ hP (u), see Eq. (4.23). Therefore the correct bulk properties

are always recovered for u → ∞. However the functional form of the decay is not

reproduced correctly. The reason for this is that for very large distances u all walls

look either like a plane (H = 0 = K), a line (K = 0), or a point. These tree dif-

ferent “topologies” result in density profiles that decay asymptotically according to

Eq. (4.25) as

ρ(u)− ρb ∝ exp(ik0u)





1√
1/u

1/u




. (4.28)

The curvature expansion series, which always includes the density profile at a planar

wall as the lowest order term, can therefore not reproduce the asymptotic decay of

the latter two topologies. The curvature expansion should consequently only be used

in an intermediate range where u is smaller than the typical size of the wall object. If

one is interested in large-u behavior, one should use Eq. (4.25) instead of the curvature

expansion. Note that for most practical purposes these issues should not represent a

problem, as the for large values of the normal distance u the density profile can be

replaced by the bulk density very accurately.
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Figure 4.5: Curvature expansion coefficient functions ρξ(u) for various ξ in a

logarithmic plot. For large u, the agreement between the prediction based on the

asymptotic theory (full line) agrees perfectly with the numerical results based on

DFT (dashed line). The plot shows results for a hard sphere fluid with a bulk

packing fraction of η = 0.3 modeled via the original Rosenfeld functional. We

verified that other bulk packing fractions and the White-Bear version of FMT give

similar results. The signs of the functions in Eq. (4.27), which cannot be observed

in this plot, are also correctly predicted, what can be verified in Fig. 4.2.



Chapter 5

Depletion Potentials

Depletion potentials arise when two big colloidal particles are immersed in a fluid of

smaller particles. In such a situation it is often favorable to describe the behavior of

the big particles using an effective picture, where the internal degrees of freedom of

the small particles are integrated out and the big particles interact via an effective

two-body potential. In the case of big hard particles, the two-body interaction po-

tential is called depletion potential as it can be associated with the depletion of the

excluded volume around two big colloidal particles [7]. Such an effective picture is

very useful from a practical point of view. It allows for example to understand the

phase behavior and the structure of asymmetric colloidal mixtures [82–85]. Further-

more, effective potentials play an important role in biophysical processes, which are

often controlled by the interaction between involved macromolecules [1–3]. Consid-

ering that the cytoplasm of a cell is a densely packed suspension of other molecules

and ions [86–90], any realistic description of the behavior of big macromolecules must

necessarily include the effects due to the presence of other particles in a cell.

A versatile method to calculate depletion potentials within FMT-based DFT is

developed in Ref. [47]. This theory uses the equilibrium density distribution of small

particles around one big particle and then inserts a second big particle in order to

obtain the mutual depletion potential. It has been successfully applied to systems

where the big particles are either planar walls or spheres [44,47,48,91–93]. More recent

works obtain depletion interactions also if one of the big objects has a more complex

shape [94–96]. Common to these studied geometric setups is that at least one of

the objects is sufficiently simple such that the calculation of the density distribution

of small particles around it can be done by means of direct DFT techniques. We

are however interested in biological key-lock systems, which are characterized by the

81
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property that both the key and the lock particle are too complexly shaped to apply

standard DFT methods directly. One way to proceed would be the use of more

approximate theories and large-scale computer calculations. Kinoshita et. al. for

example solved integral equations on a three-dimensional cubic grid in order to obtain

depletion potentials between discs, rectangular solids and a simple key-lock systems

[2, 3, 97].

In this chapter we however follow the approach developed in Ref. [47] and com-

bine it with the curvature expansion technique we present in the previous section.

This allows us to efficiently obtain depletion potentials between arbitrarily shaped

big objects. In the first section of this chapter we present our approach in detail.

Then, in section two, we test the accuracy of the involved curvature expansion by

considering the depletion interaction between a sphere and a biaxial ellipsoid. The

results displayed there support our approach and show that it is very accurate pro-

vided that the lateral variations of the curvatures of one big object are small. Section

three generalizes the approach to account also for depletion interactions between two

convex, nonspherical particles. We present depletion potentials and depletion torques

between two ellipsoids immersed in a sea of hard spheres. Finally, in section four,

a simple model for a biological key-lock system is proposed and the influence of the

depletion interaction concerning the bonding of key and lock particle is discussed.

5.1 Preparatory Considerations

Depletion potentials can be calculated within the framework of DFT using the inser-

tion method [47] reviewed in Section 1.4. According to this theory, the total change

of the grand potential Ω[ρ] upon adding one big particle B into an inhomogeneous

fluid of small particles is given for an FMT-based functional by

c
(1)
B (r) = −

∑

α

∫
∂βφ

∂nα
(r′)w(α)

B (r− r′) dr′ . (5.1)

In this equation, c
(1)
B (r) denotes the one-body direct correlation function of the in-

serted big particle for an equilibrated density distribution of the depletion agent (small

particles) around the fixed big particle. The sum on the right hand side of Eq. (5.1)

extends over all weight functions w
(α)
B (r) of the big particle, i.e. α = 0, 1, 2, 3, 1, 2.

φ = φ({n(r)}) denotes the excess free energy density as provided by an FMT func-

tional. The actual depletion potential W (r) is defined as the amount of free energy

associated with moving the second big particle from an infinite separation to a finite
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position r relative to the first particle. It is the energy difference between a config-

uration where a big particle is added at infinite position and configuration where it

is added at position r. According to Eq. (5.1) this energy is given by a difference of

direct correlation functions

−βW (r) = lim
ρB→0

(
c

(1)
B (r)− c(1)

B (∞)
)
. (5.2)

Note that the depletion potential is defined in the absence of other big particles, the

so-called dilute limit, where the bulk density ρB of the big particles vanishes. The

second term in the definition, c
(1)
B (∞), is the energy cost for the insertion of the second

particle at infinite separation in a bulk fluid and equals the excess chemical potential

µex,B of particle B in the dilute limit. If the four morphometric measures of the

inserted particle are known, it can be calculated using Eq. (3.9). The inhomogeneous

one-body direct correlation function c
(1)
B (r) is more complicated to obtain. Based on

the special form of Eq. (5.1), we use for its evaluation a scheme that consists of two

steps. First we fix one of the two particles at the origin of the coordinate system and

calculate the density profile of the depletion agent around it. From the density profile

we derive subsequently the weighted densities and the six fields ψα(r) = ∂βφ/∂nα(r).

Then, in a second step, we “insert” the second big particle in the system at a position

r and calculate the direct correlation function by evaluating the convolution integrals

in Eq. (5.1) and summing all six contributions. It is interesting to note that the

influence of both big particles on the depletion potential is separated among the

two factors of the convolutions in Eq. (5.1). The fields ψα(r) are, in the dilute limit,

exclusively determined by the properties of the first particle while the weight functions

wαB(r) are determined by the shape of the second particle only. The fact that each

of the convolution factors is influenced only by the properties of one of the two big

particles makes Eq. (5.1) very efficient for a numerical evaluation of direct correlation

functions.

If the first big particle is not simple, i.e. if it does not have a high spacial symmetry,

the density distribution of the depletion agent around it and consequently the fields

ψα(r) can for practical reasons not be determined by direct DFT methods. In order to

proceed, we use the curvature expansion which we successfully tested for the density

profile ρ(r) in the previous chapter. Instead of using the curvature expansion of the

density profile we directly expand all six fields ψα(r) in terms of the curvatures H and

K of the wall. Unfortunately we can only show for simple walls that the existence of

a curvature expansion of the density profile implies also the existence of a curvature

expansion for all six fields, however there exists no argument that this is not the case
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in general. We additionally verified numerically for simple walls that such a curvature

expansion describes the influence of the curved wall on the fields ψα(r) accurately.

With this assumption the curvature expansion coefficients can also be used to predict

the six fields for various geometric setups. It must however be pointed out that the

curvature expansion involves approximations - in analogy to the curvature expansion

of the density profile. It considers only the influence of the local curvatures and we

showed e.g. for the contact density in Fig. 3.7 that this assumption requires smooth

lateral variations of curvatures H and K. In addition to this approximation the

curvature expansion must for practical reasons be truncated after the third order

terms, as discussed in Appendix H. For the density profile we show in Fig. 4.3 that

the predictions are nonetheless very good if the big object is large. This is the limit

we are interested in concerning the depletion potentials in key-lock systems and we

therefore expect accurate results using this approach. One additional subtlety which

is unique to the curvature expansion of the fields ψα(r) is that the vector-valued

weight functions wα
B(r) for α = 1, 2 are strictly parallel to the surface normal in all

simple geometries due to the spacial symmetry of the problem. As we use this data to

obtain the curvature expansion coefficients, the curvature expansion technique cannot

be used to determine eventual lateral components of the vector-valued ψ1(r) or ψ2(r).

We therefore assume that these fields are always parallel to the surface normal even

for complexly shaped objects. This approximation will be justified numerically in

Section 5.2.

Once all six fields are determined, we insert the second particle by evaluating

the convolution integrals of the type ψα(r) ∗ wαB for all α in Eq. (5.1). Formally,

these convolutions are all three-dimensional volume integrals, however the special

functional form of the weight functions wα
B for nonspherical convex particles [see

Eq. (1.21)] restricts most of the volume integrals to two-dimensional integrals over

the surface of the inserted big particle. Only for α = 3 an actual volume integration

must be performed. Concerning the numerical cost of evaluating the integrals, the

convolution for α = 3 thus takes by far the longest and therefore determines the time

to evaluate a depletion potential.

5.2 Spherical-Nonspherical Setup

In this section we calculate the depletion potential between a sphere and a nonspher-

ical particle. We follow the insertion method and fix one of the big particles at the

origin and then insert the other particle at position r. The result should obviously
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not depend on the choice which of the particles has been fixed and therefore there

exist two alternative approaches to obtain the mutual depletion potential.

(1) If the sphere is fixed at the origin one can easily calculate the density distri-

bution of the solvent particles by means of standard DFT techniques because

of the high spacial symmetry of the problem. The density profile is therefore

known very accurately. This is also the case for the weighted densities and all

fields ψα(r) which need to be determined in the first step. We therefore continue

with step two and insert the second, nonspherical particle at position r in the

equilibrated fluid. According to Eq. (5.1) this is done by calculating the convo-

lution integrals with the weight functions of a nonspherical particle as given in

Eq. (1.21). Note that, concerning the accuracy of this approach, for the FMT

an expression for the decomposition of the Mayer-f bond is used [Eq. (1.10)]

which is only exact in the case of two spheres. For nonspherical particles it is

approximate and we therefore expect a small systematic error when pursuing

this approach.

(2) For the second approach we fix the nonspherical particle at the origin. The

density distribution of small particles around this object is now more complex

to obtain, as in general no spacial symmetry can be used and the application

of direct methods is not practical any more. As indicated above, we use the

curvature expansion to determine the six fields ψα(r) around the fixed particle.

This yields accurate results provided that the lateral variations of the curvatures

along the surface of the fixed particle are small. We however discussed in the

previous section that the curvature expansion leads to small systematic errors.

This limitation consequently leads to an error in the depletion potential, which

is calculated by the insertion of a sphere at position r. Note that in contrast

to approach (1), we use the FMT for spheres here, which is based on an exact

decomposition of the Mayer-f bond. Nonetheless, the result will be affected by

the systematic error in the fields ψα(r) due to the curvature expansion.

Both approaches involve a certain approximation - (1) because of the application of

FMT to nonspherical objects and (2) because of the curvature expansion of the fields

ψα(r). It is however obvious from general physical consideration that the mutual

interaction must not depend on the approach chosen and therefore both (1) and

(2) should yield the same result. Due to systematic approximations in both cases

we however expect a small discrepancy between both results. It is crucial to note
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Figure 5.1: Depletion interaction between an oblate ellipsoid with half-axes

(10, 10, 4)R and a sphere with RS = 10R. The center of the inserted sphere

approaches the north pole of the fixed ellipsoid normal to the surface. Both par-

ticles touch if u = RS . The symbols denote results obtained by approach (1),

for which we employ FMT for convex objects, and the line denotes corresponding

results from approach (2), for which we used the curvature expansion. As both

approaches involve approximations of very different nature, the excellent agree-

ment is very likely to be due to the fact that the systematic error is very small in

both approaches. We verified this observation also for various other setups. For

this data the depletion agent is a hard-sphere fluid modeled via the White-Bear

version of FMT. The bulk packing fraction is η = 0.3.

that the source of error in both approaches is of a completely different nature and

there is no reason that the respective approximations involved in both approaches

influence the resulting depletion potential in the same way. Therefore a discrepancy

between approach (1) and (2) can be used to quantify the accuracy of the involved

approximations. For both approaches we show in Fig. 5.1 the depletion interaction

between an oblate ellipsoid and a sphere. Figure 5.2 shows analogue results for a

prolate ellipsoid and a sphere. In the latter setup, the involved curvatures are larger.

If the curvatures vary only slowly parallel to the surface the results of the curvature

expansion are in excellent agreement with the results using FMT for convex particles,

as it can be seen for the oblate setup in Fig. 5.1. For this setup we conclude that

both approaches, (1) and (2), yield very accurate results. If however the curvatures
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Figure 5.2: Depletion interaction between a prolate ellipsoid with half-axes

(4, 4, 10)R and a sphere with RS = 10R. The sphere approaches the north pole of

the ellipsoid like in Fig. 5.1. In this geometry, the curvatures are the same as shown

in Fig. 3.5. Note that near the north pole at θ = 0, the curvatures and additionally

the lateral variation of the curvatures along the ellipsoid are relatively high, such

that one expects a larger error from the curvature expansion as compared to the

oblate setup, Fig. 5.1. A comparison also shows that the contact value and the

amplitude of the oscillations of the depletion potential are much smaller.

and their lateral variations are large, as for the prolate ellipsoid used for Fig. 5.2, the

results obtained from both approaches differ. This is an indication that the accuracy

of at least one approach deteriorates slightly. We know from the curvature expansion

of the contact density shown in Fig. 3.7 that lateral effects play an increasing role near

the pole of an prolate where the curvatures are the largest and change quickly (see

Fig. 3.5). Therefore we expect that also the fields ψα(r) obtained from a curvature

expansion are affected by a small systematic error. We verified that the agreement

between both methods (1) and (2) is very good if the sphere approaches the prolate on

the “flat” side in the symmetry plane where the curvatures and their lateral variations

are smaller. We therefore demand that fixed big object must be large compared to

the fluid particles in order allow an accurate application of the truncated curvature

expansion. Note that this does not restrict the size of the inserted particle, which

may be of any size.
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If one of the particles is a sphere, there is a third alternative (3) to calculate the

depletion potential, namely by a direct curvature expansion of the depletion potential

itself. For this we consider the inserted big spherical particle as a diluted component

of the solute, i.e. a component with a bulk density ρB → 0. Although this means that

the density profile of big particles ρB(r) also vanishes one can show that the ratio

ρB(r)/ρB stays finite. It is connected to the depletion potential via

exp(−βW (r)) = lim
ρB→0

ρB(r)

ρB
. (5.3)

Assuming that an analytic curvature expansion is possible for the density profile ρB(r)

independently of the bulk state of the fluid we find that also exp(−βW (r)) can be

expanded in powers of the curvature. We obtain the respective curvature expansion

coefficients by similar means as the coefficients for the density profile by a numerical

analysis of the curvature dependence of the depletion potential between a sphere

of fixed size and cylindrical or spherical particles of variable size. These potentials

can be obtained very accurately using DFT. The numerical analysis is described in

Appendix H. With the expansion coefficients we can obtain exp(−βW (r)) between a

sphere of the given radius and an arbitrarily shaped object and consequently also the

depletion potential βW (r). In Fig. 5.3 we use this expansion to calculate the contact

value of the depletion potential between an oblate ellipsoid with half-axes (10, 10, 4)

and a sphere with radius 5R.

The general agreement between approach (2) and (3) is very good for small θ

were the curvatures are low for the oblate ellipsoid. This supports our approach. If

however θ is near 90 deg, the curvatures are maximal and lateral variations become

increasingly important. Note that the insertion of a big sphere is done by a three

dimensional integration over the fields ψα(r). The fields must therefore be evaluated

for multiple positions r, which are reached following the normal from multiple points

x on the surface of the ellipsoid (see Fig. 4.1). Therefore the integration averages

over a finite area on the surface of the ellipsoid such that one can expect that lateral

variations influence the curvature expansion of the depletion potential more than it

is the case for the density profile of the fields ψα(r).
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Figure 5.3: Contact density of the depletion potential between an oblate ellipsoid

with half-axes (10, 10, 4)R and a sphere with radius RS = 5. Both objects are im-

mersed in a sea of hard spheres with a packing fraction of η = 0.3. The parameter

θ is one of the normal coordinates of the center of the sphere in the coordinate

system generated by the ellipsoid, see Eq. (G.21). The line shows results based on

the insertion of a sphere according to approach (2), the dots give the results from

a direct curvature expansion, approach (3).

5.3 Depletion Potential Between Two Convex Ob-

jects

In this section we combine the approximations of approach (1) and (2) which we

employ and successfully test in the previous section. This allows us to obtain the

depletion potential also between two colloids of arbitrary shape. Unfortunately it is,

in contrast to the previous section, not possible for generally shaped objects to inde-

pendently check the accuracy of the results of our approach, however the agreement

between of the two routes as illustrated in Fig. 5.1 shows that the approximations we

use are very accurate. We obtain the interaction potential by evaluating the direct

correlation function, Eq. (5.1). As described in Section 5.1, we use for the first step

the curvature expansion of the fields ψα(r) around the fixed nonspherical object as

already employed in approach (2). For the second step we use the insertion of a non-

spherical object from approach (1). Both methods have been found to be accurate,

provided that the particle which is used for the curvature expansion has curvatures
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Figure 5.4: Depletion interaction between two oblates with half axes (10, 10, 4)R.

The inserted particle approaches the north pole of the first ellipsoid perpendicular

to the surface. γ denotes the angle between the main axes of the two biaxial

ellipsoids. If both ellipsoids are aligned, i.e. γ = 0, the minimal separation of the

centers is then zmin = 8R, while for γ = 90 deg it is zmin = 14R. The solute is a

hard-sphere fluid with η = 0.3 and is modeled via the White-Bear functional.

which vary smoothly along the surface. For practical purposes we also demand that

the particle is large to account for the truncation of the curvature expansion.

With this method it is possible to evaluate depletion potentials between a large

class of differently shaped objects and to study the influence of various geometri-

cal parameters on the depletion potential. Additionally, as the loss of symmetry in

the problem removes the degeneracy of angular and lateral degrees of freedom, one-

dimensional cuts through the depletion potential W (r) contain only a limited amount

of information. We do not want to give a broad overview over depletion potentials

between various objects here and therefore limit the presentation to the typical ex-

amples shown in Figs. 5.4 and 5.5, where we display depletion potential between two

hard oblate ellipsoids immersed in a sea of hard spheres.

The depletion interaction between nonspherical colloid depends not only on the

separation of the particles, but also on the mutual orientation. The derivative of the

depletion potential with respect to an angular degree of freedom of one particle is

referred to as the entropic torque on this particle. In Ref. [96], Roth et al. analyzed

the torque of a spherocylinder near a planar wall. As the planar wall has a simple

geometry, the density profiles and the ψα(r) were obtained without using the ap-
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Figure 5.5: Same setup as in Fig. 5.4 with fixed γ = 0. The angle α parameterizes

in what angle the inserted ellipsoid is moved away from its contact position (see

sketch to the right hand side). The abscissa shows the normal distance u of the

center of inserted ellipsoid to the surface of the fixed one. For small α the curves

almost coincide due to the oblate shape of the fixed ellipsoid.

proximate curvature expansion. Here we apply the concept of entropic torque to two

non-simple objects by using the curvature expansion technique. In Fig. 5.6 we show

the entropic torque between two biaxial ellipsoids immersed in a sea of a hard-sphere

fluid with η = 0.3.

Due to the symmetry of the problem, the torque M vanishes always for γ = 0

and γ = 90 deg. In between these highly symmetric configurations the ellipsoid

experiences a torque with alternating signs. If the torque vanishes the system is in

a mechanical equilibrium. Note that a stable orientation requires ∂2W/∂γ2 > 0 in

addition which means a negative slope of the curves in Fig. 5.6.

5.4 Depletion Potential in Key-Lock Systems

We discuss in the introduction of this chapter that a biological cell contains a dense

mixture of various macromolecules. The presence of other molecules requires for a

realistic model that it includes also the effective interactions between key and lock

particles. We present a simple model here, however emphasize that we do not aim to

model a specific key-lock system very accurately. It is rather interesting to study a
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Figure 5.6: Entropic torque between two biaxial ellipsoids with half axes

(10, 10, 4)R as sketched to the right. The angle γ parameterizes the rotation of

the inserted ellipsoid and ∆z its separation to the fixed ellipsoid. In such a setup

an entropic torque M can be defined via M = −∂W/∂γ [96]. If ∆z > 8R, the

inserted ellipsoid can however be rotated and experiences an entropic torque. Pos-

itive values of M mean that the ellipsoid is pushed clockwise towards larger values

of γ. The curves end when the two ellipsoids overlap. Note that the discontinuities

in the first derivative of the curves with parameters ∆z = 12R and ∆z = 14R is

not an artifact. They occur when both ellipsoids come so close that only one small

sphere with radius R can be fit in between.

simplified model that still captures the relevant physics of the system. We therefore

consider only hard-core interactions here, which brings as an advantage that the

findings are not chemically specific, i.e. they apply at least qualitatively to a large

class of actual key-lock systems. Furthermore such an approximation is justified by

the fact that intrinsic interaction potentials are usually shielded on a short lengthscale

due to the high physiological salt concentrations in the cytoplasm. We find that

geometric aspects of the key and the lock are very important for the role of effective

interactions in such systems and we therefore propose a versatile model as sketched

in Fig. 5.7.

We calculate depletion potentials between these two objects by determining in a

first step the six fields ψα(r) around the lock particle. For this we use the curvature

expansion technique that was successfully tested in Section 5.2 using approach (2).
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Figure 5.7: A model of a key-lock system. The lock is a hard wall which is

rotationally symmetric around the z-axis. It is constructed in two steps. In the

first step a biaxial ellipsoid with half-axes (a, a, c) is cut out of the half-space

z ≤ 0. The center of the ellipsoid is at (0, 0, (1 −A)c), where we refer to A as the

penetration parameter which describes the depth of the resulting cavity. Its values

range between A = 0 for a planar wall and A = 1 for half an ellipsoid cut out of the

half-space. Such a construction would yield a edge. As the curvature expansion

cannot be applied to edges, we round them off in a second step. For all |x| ≥ aε

the lock is replaced by a polynom in 1/x with coefficients such that for x = aε the

curve and its first and second derivative with respect to x are continuous. We will

set ε = 0.9 unless otherwise stated. For smaller |x|, the lock keeps its ellipsoidal

shape. This yields a smooth surface, in particular the mean and the Gaussian

curvature H and K depend continuously on the surface. For large x the surface

becomes a planar wall at z = 0. The other particle, the key, is a biaxial hard

ellipsoid given via its half-axes. We parameterize its rotation using the usual three

Euler angles. The first, denoted Θ, parameterizes a rotation around the z-Axis.

This does not affect the biaxial ellipsoid, but rotates the direction of the x-axis to

an new x′-axis. The second angle Ψ is the used to rotate the object around this

new x-axis x′. The third Euler angle, which would rotate the ellipsoid around z ′′

does not affect the biaxial ellipsoid. It is not considered here. The depletion agent

is a fluid of hard spheres with radius R and a bulk packing fraction η modeled

via the White-Bear version of FMT. Note that the sketched walls are hard and

considered to be physical walls.
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One important difference to the previous geometric setups however is that the lock

is partially concave which means that the values of H or K may become negative.

We however showed in Fig. 3.9 for the contact density ρ̄c that results, obtained with

the curvature expansion based on results of convex geometries, can also be used for

concave systems as long as no caustic effects occur. We expect this analogously also

for the fields ψα(r). To prevent caustic effects we chose the lock large compared to

the size of the small hard spheres with radius R.

Another issue concerning concave walls is that the normal coordinates of some

points are not unique, i.e. the same point r can be reached starting from multiple

points x on the surface (see Fig. 4.1). In such a case we chose the point x with the

minimal normal distance u, which is usually much smaller than alternative normal

distances u′ obtained for a different point x′. Our approximation should therefore

yield accurate predictions. Only if r is at a large normal distance u to the surface,

two or more values for the normal distances may become comparable. This however

also does not represent a practical problem, as for these points r the fluid assumes

bulk properties with high accuracy and the curvature expansion is not needed at all.

When all fields ψα(r) can determined for all positions r, we insert the ellipsoidal key-

particle as described in Section 5.1 by integrating the convolution integrals between

the fields and the fundamental measures w
(α)
B (r) of the inserted ellipsoid.

We begin our study with a system that was proposed as a key-lock system in

Ref. [97] and is sketched as setup (a) in Fig. 5.8. It consists of a spherical key and a

lock, which is a plane with a hemispherical cavity. Note that such a setup features an

edge such that the curvature expansion technique cannot be applied. We therefore

alter the geometry slightly by considering a system which is sketched as setup (b) in

Fig. 5.8. It has a rounded “edge” and is a special case of the more general setup we

present in Fig. 5.7. It is designed such that the curvature expansion can be applied

for all points r and we expect accurate predictions for the six fields ψα(r) if the cavity

of the lock is sufficiently large. In order to be able to compare the data with Ref. [97],

we consider a lock with a radius of 5R and keys with three different radii Rkey. Both

are immersed in a hard-sphere fluid with a bulk density of η = 0.367 which we model

using DFT. The corresponding depletion potential is shown in Fig. 5.8.

As the two setups are not completely identical, the results agree only qualitatively.

Furthermore, hypernetted-chain integral equations neglect bridge functions which

lowers the accuracy of the results of setup (a). Considering the small radius of

cavity of the lock and the relatively high packing fraction η of the depletion agent

we can for our approach not exclude that caustic effects affect the results obtained
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Figure 5.8: Depletion potential between a hemispherical cavity of radius 5R

(“lock”) and a spherical key with variable radius Rkey. We compare two slightly

different geometric setups. On the one hand the symbols are obtained for setup

(a) by solving the hypernetted-chain equation on a 3D grid [98]. On the other

hand we obtain the data shown as lines for setup (b) by employing the curvature

expansion technique. There are, as expected, quantitative differences between the

two approaches/geometries. However both results agree insofar as the contact

value of the depletion potential is most negative for Rkey = 5R, i.e. for the case

when the key fits best into the lock. For our data shown as lines the contact

values of the depletion potential are βW c ≈ −30,−70,−41 for Rkey = 4R, 5R, 6R,

respectively. Note also that both approaches predict a high free-energy barrier for

the key upon approaching the lock. The bulk packing fraction of the hard-sphere

fluid is η = 0.367 in both setups.
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for setup (b). Nonetheless, important qualitative features can be observed in either

model. The contact value of the depletion potential, which is the stabilization free

energy for touching, is always negative. The touching of key and lock is therefore

entropically favored compared to any other configuration and effective interactions

therefore indeed contribute to the efficiency of the key-lock-system. In addition to this

observation, the key with the most“compatible”shape with respect to the lock has the

highest stabilization free energy and it is therefore most likely that this compatible key

binds to the cavity of the lock. This observation suggests an interesting mechanism

concerning the selectivity of enzymes.

We investigate this observation further and consider another system which consists

of a nonspherical key particle and a compatible lock. This system is drawn to scale in

Fig. 5.7. The half-axes of the biaxial “key”-ellipsoid are (10, 10, 4)R and the lock is a

plane with a cavity with the shape of an identical ellipsoid. In this setup we vary the

penetration parameter A between A = 0 (planar wall) and A = 1 (full half-elliptical

cavity with rounded edge). Figure 5.9 shows the results for the contact value of the

depletion potential using our approach and compares the results with data obtained

by employing the Asakura-Oosawa approximation (AOa) [7].

Both models agree insofar that the stabilization free energy is most negative if A is

the largest, i.e. if the key and the lock particle have the most compatible shape. This

can be understood to some extend geometrically within the AOa which states that the

depletion interaction is proportional to the overlap of the excluded volumes around

the key and the lock. The overlap volume increases if both particles touch on a larger

part of their surface. Aside from this qualitative trend we however observe that the

predictions of the AOa fail quantitatively if the depleted excluded volume becomes

large. This is unexpected because it was reported commonly in the past that the

contact value of the depletion potential between the AOa and more elaborate theories

agrees surprisingly well. For A = 0, there is indeed a relatively good agreement (see

Fig. 5.9), otherwise however the AOa underestimates the absolute contact value of

the depletion potential by far. This effect was recently also reported by Kinoshita in

Ref. [97].

As far as the behavior of the contact value of the depletion potential is concerned,

effective interactions offer a very interesting mechanism to explain the efficiency and

the selectivity of an enzyme. One important issue however, which we did not con-

sidered so far, is the free-energy barrier which the key-particle experiences when

approaching the lock. It can be seen in all potentials shown in Fig. 5.8 and is due to

correlation effects of the depletion agent in the system. Note that the AOa neglects
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Figure 5.9: Contact value of the depletion interaction between a key and a lock

particle as sketched in Fig. 5.7. The full line gives the results using the insertion

method and the curvature expansion. It can be seen that the value of the depletion

potential becomes more negative for an increased penetration parameter A of the

lock. This means that the contact value decreases if the shapes of the key and

the lock become more compatible. This is qualitatively also expected from the

results of the Asakura-Oosawa approximation [7], shown as a dashed line. It is, in

accordance with earlier works, surprisingly reliable for A = 0. It however fails to

predict the contact value for geometries with a heavily depleted excluded volume.

In this figure, the depletion agent is a hard-sphere fluid modeled via the White-

Bear functional and a bulk packing fraction of η = 0.3.

these correlations completely. This is a poor approximation for the dense colloidal

suspension. Taking the non-ideal character of the cytoplasm into account leads, ac-

cording to the theory of asymptotic decay of correlation functions presented in Section

4.3, to an oscillatory structure of the depletion potential. Consequently a negative

contact value inevitably leads to a positive value of the depletion potential for another

normal distance. Note that, although the height of the barrier is smaller than the

contact value, it exceeds the thermal energy by far and therefore prevents key and

lock particle from coming together.

One possibility to solve this problem would be to bypass the barrier by choosing

an alternative path for the key towards the lock. So far, only results for paths along

the symmetry axes have been shown, but we also tested that the key experiences
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Figure 5.10: Depletion interaction between a biaxial ellipsoid with half axes

(10, 10, 4)R and a lock particle with a compatible shape as sketched in Fig. 5.7.

The penetration parameter is A = 1. The solid line shows the effective interaction

when the ellipsoid is not turned, which corresponds to a situation as shown as (a)

on the right hand side. It touches the lock not until z = 0. The dashed line shows

the result when the key is rotated around the x-Axis by Ψ = 90 deg [configuration

(b)]. In this case touching occurs already for z = 6R. Note that the depletion

potential is enlarged by a factor of 10 as it is small compared to the first case. The

depletion agent is a hard-sphere fluids with η = 0.3.

a high barrier also for various other trajectories. In some cases the height is lower,

but there is no path with a monotonic run of the depletion potential which would

be needed to use effective interactions as an explanation for the efficiency of key-lock

systems. Fortunately this problem can be resolved by introducing further degrees of

freedom. We do this by considering a sufficiently nonspherical particle as a key. This

situation is qualitatively different insofar as the degeneracy of the depletion potential

with respect to the angular degrees of freedom of the key is removed. The orientation

of the key then has a large influence on the depletion potential, as we show for a

biaxial ellipsoid and a compatible key in Fig. 5.10.

The amplitude of the depletion potential strongly depends on the orientation of

the key particle. This finding suggests to use an orientation for the approach such

that the entropic barrier is minimal. This extreme case corresponds to a key rotated

by 90 deg and sketched as configuration (b) in Fig. 5.10. In this case the overlap of
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Figure 5.11: Depletion potential between an elliptical key and a lock particle

as sketched in Fig. 5.7. For a setup where the key approaches the lock on the

symmetry axes with a fixed orientation, the corresponding depletion potential

is shown as a solid line. The particle has a very high contact value but also a

high entropic barrier which is very unlikely to be overcome. If however the key

approaches with a free orientation and is additionally allowed to move away from

the symmetry axis, the barrier is practically fully attenuated and the system can

follow the local gradients of the effective force and torques towards touching. Close

to touching, the key follows a very similar trajectory in both cases (see Fig. 5.12).

The depletion agent is a hard-sphere fluid with η = 0.3.

the excluded volumes is the lowest and, according to the qualitative prediction of

the AOa, the contact value of the depletion potential is the lowest, too. This means

that also the free-energy barrier is very much attenuated. This however brings two

problems. First the effective interactions as a whole are not very strong and therefore

cannot be used to explain the effectivity of key-lock systems. Furthermore a rotated

key cannot be fit into the lock, i.e. it must be rotated after it reached the touching

position. This rotation is influenced by an entropic torque and also hindered by a

free-energy barrier.

No barrier is found when considering an approach of the key towards the lock

where one gives up the unphysical constraint that the Euler angles and the position

x of the center of the key are fixed. In a model we chose for each position z these

parameters such that the key is in a local minimum of the depletion potential. We

achieve this by a numerical minimization scheme which additionally ensures that the
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Figure 5.12: Orientation and position of the key when approaching with a free

orientation. The depletion potential is shown as a dashed line in Fig. 5.11. For

large distance z the Euler angle Φ ≈ −90 deg, i.e. the key is rotated perpendicular

to its orientation at touching. Its center is at a large distance x to the symmetry

axis. The depletion forces and torques in this model ensure that for z ≈ 0 both

the Euler angles Θ and Φ as well as the deviation x from the symmetry axis are

close to zero which means that the particle is oriented and positioned optimal for

touching. For the illustration of the trajectory see Fig. 5.13.

trajectory of the key through the phase space is continuous. This model is more

realistic as it allows the key particle to orient according to the local entropic torque.

With this assumptions we obtain a potential as shown by the dashed line in Fig. 5.11.

The resulting depletion potential is almost monotonic, in particular the free-energy

barrier is very much attenuated and it is very likely to be overcome by the key particle.

The effective interaction provides a force and a torque that “guides” the key to the

lock for touching, whereby guiding refers not only to positioning, but also to a correct

orientation of the key. This is a very remarkable mechanism. Obviously the additional

degrees of freedom of a nonspherical particle do not only allow to bypass the energetic

barrier which is always present for spherical particles but are also influenced by the

local gradients of the depletion potential in a way that the key is correctly oriented

when it comes close to the lock. This can be seen in Fig. 5.12 where the orientation and

the position of the key is shown versus the distance from the lock. The corresponding

trajectory is illustrated in Fig. 5.13.
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Figure 5.13: Sketches of the key-lock system. The figures illustrate a trajectory

of the key particle along which it experiences a practically monotonic depletion

potential. The sequence shows, going line-wise from top left to bottom right, the

configuration of the system for z = 12, 11, · · · , 1. The respective positions and

Euler angles are shown in Fig. 5.12, the potential is displayed in Fig. 5.11. Note

the for practical reasons the lock is shown with an edge, although the calculation

was done using the system with a rounded edge presented in Fig. 5.7.
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Such a mechanism assumes thermodynamic equilibrium for all separation z which

may be violated and therefore the results presented here should not be seen as effective

potentials that quantitatively describes the dynamics of our key and lock system.

Additionally we applied several approximations. However the idea that orientational

degrees of freedom of sufficiently asymmetric key-objects can be used to bypass free-

energy barriers should be qualitatively valid in more general situations.



Chapter 6

Summary and Outlook

It is usually very complicated to use direct numerical methods to obtain properties of

fluids near complexly shaped walls. For this reason we develop and test a curvature

expansion technique and apply it successfully to predict various thermodynamic ob-

servables near curved walls. This method treats the influence of the local curvatures

H and K perturbatively, which allows to predict a quantity at complexly shaped

walls based on the knowledge of the quantity for selected simple walls. This method

is numerically far less costly than the application of numerical brute-force approaches.

We propose a morphometric form for thermodynamic potentials of fluids which

satisfy three physically motivated restrictions [55]. This conjecture implies that ther-

modynamic excess quantities have only a linear contribution in the mean and the

Gaussian curvature and not an infinite series of terms as assumed before. We ver-

ified this result for various systems by an extensive numerical study using density-

functional theory and Monte-Carlo simulation data. It was however not possible to

rigorously prove the morphometric conjecture for a non-trivial fluid. Considering

the far-reaching implications of a multiplicative separation of the grand potential

in geometric measures and thermodynamic properties it would be very interesting

to investigate this issue further. There exist fluids which are known not to have a

morphometric form of the grand potential [40, 50] and it should be elucidated under

which conditions morphometric thermodynamics can be applied and when it breaks

down.

The morphometric form of thermodynamic quantities is a very convenient ansatz

for theoretical considerations when fluid interfaces have a complex shape so that di-

rect methods cannot be applied. This is e.g. the case in porous media, where a fluid is

confined by a complexly shaped solid matrix. Based on the thermodynamic quantities
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found by geometric means only, transport properties can be derived in such systems.

In microemulsions, where the thermodynamic state of a fluid determines the shape

of its phase, morphometric thermodynamics provides a basis to understand the cor-

responding phase-diagram. A further application could be protein folding, which is

currently researched using large-scale computer simulations to account for the influ-

ence of the surrounding fluid matrix. If the grand potential depends morphometrically

on the geometry, the energy cost for a specific configuration of the protein molecule

can be estimated based on pure geometric arguments with a largely reduced numeri-

cal effort. Calculating phase-diagrams for experimentally accessible types of fluids is

usually very hard, as these fluids are usually polydisperse mixtures of various com-

plexly shaped particles. Morphometry offers a practical ansatz within free-volume

theory to understand thermodynamic properties of such systems and to derive their

phase diagrams.

The next step of this work is concerned with structural properties of fluids, in

particular the local density distribution of fluid particles near a wall. Based on the

morphometric form of thermodynamic quantities we propose a curvature expansion

of the density profile. This method assumes that the density depends only on the

local geometric measures and can therefore be used to predict the density distribution

around complexly shaped objects. For the prediction we use curvature expansion coef-

ficients functions which we obtain from simple geometric setups. Some mathematical

properties of the expansion functions can be understood by sum-rules that ensure a

morphometric form for derived thermodynamic quantities. In the asymptotic limit

we derive a general functional form for density profiles in arbitrary geometries and

found numerically for a hard-sphere fluid that they can be predicted using only the

density profile at a planar wall. Considering the very general assumptions exercised

when deriving this form this finding should apply also to other fluids and would be

very interesting to establish some of the numerical findings also analytically.

The curvature expansion of density profiles allows to study distributions of par-

ticles on complicated geometries. This is interesting e.g. in microfluidics, where very

small amounts of a suspension are processed on a chip. In this regime fluids can-

not be considered to have a continuous density distribution because surface effects

dominate the system. For practical applications it is necessary to control the density

distribution and the influence of curvature could be used for this purpose.

In the final chapter we employ the curvature expansion technique to calculate

depletion interactions between two arbitrarily shaped objects. Depletion potentials

are always negative for touching and hence offer a chemically non-specific mechanism
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for the attractive forces. These are needed to explain the efficiency of enzymatic

reactions. We propose a simple model for a biological key-lock system. The depletion

interaction favors the touching state of the key particle the most which fits best into

the cavity provided by the lock. This is an interesting mechanism concerning the

selectivity of enzymes. We find furthermore that only sufficiently asymmetric key

particles can reach touching with essentially no free-energy barrier, i.e. the effective

interactions do not hinder both particles from coming together. Moreover, depletion

forces and entropic torques even “guide” an asymmetric key such that it assumes a

correct position and orientation when touching the lock. We present results for one

system and it would be interesting to investigate also other systems in order to study

the stability of the mechanism concerning the geometry of the involved objects. The

selectivity of enzymatic reactions was not studied here within the context of effective

forces and torques but it is tempting to assume that it can also be explained by using

purely geometric arguments. If the key-particle has a sufficiently incompatible shape,

it might experience a potential barrier or alternatively the correct positioning and

orienting might not be promoted by depletion interactions any more.

Key-lock systems are a more realistically described by including effective interac-

tions in the models. This is not only important to understand generically biologic

processes but is also valuable for drug design for instance. Many drugs also act like

a key and trigger a certain biochemical reaction. To create new agents one is inter-

ested to find appropriate molecules that on the one hand react efficiently with a given

binding site and on the other hand are selective to reduce adverse reactions.



Appendix G

Geometric Quantities

A hard physical object - either infinite of finite - can be described mathematically by

its surface S that divides the “inside” of the object from the “outside”. This section is

devoted to an overview over all geometrical shape descriptors used in this thesis and

does not aim to provide an accurate mathematical introduction into this field. The

interested reader is referred to Refs. [52, 99]. This section provides formulas which

are useful for actual calculations of geometrical quantities in three dimensions and

points out mutual relations between the quantities as needed in this thesis.

A surface can be regarded as a mapping S : U ⊂ R2 → R3, i.e. there exists a

function r(α, β) that yields all points of the surface S. We assume that the function is

“well behaved”, in particular it must be differentiable with respect to both arguments.

Two tangential vectors are defined via

tα =
∂r(α, β)

∂α
and tβ =

∂r(α, β)

∂β
. (G.1)

For every point r(α, β) there exists a normal n(α, β) which is defined via

n(α, β) =
tα × tβ
||tα × tβ||

, (G.2)

where ||r|| = √r2
x + r2

y + r2
z denotes the usual Euclidean norm. The orientation of the

normal n depends on the parameterization of r(α, β) and by convention we choose

that the normal n points away from the hard object we describe via its perimeter S.

The Weingarten-mapping or the shape operator W is defined using the short hand

notation

W (t) = ∂tn , (G.3)

and describes the variation of the surface normal n. For every linear combination

t of tα and tβ, i.e. for every vector pointing along the surface, W maps this vector
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on the change of the normal vector along the direction of t. One can show that

W (t) · n = 0, i.e. the change of the normal is always perpendicular to the normal.

As the Weingarten mapping is a linear mapping from and to the tangential space

span(tα, tβ) of the surface S it can, for the basis {tα, tβ}, be expressed by a matrix

multiplication with a 2× 2 - matrix W

(
W (tα)

W (tβ)

)
= W ·

(
tα

tβ

)
. (G.4)

For the actual calculation one uses that

W (tα) =
∂n(α, β)

∂α
, W (tβ) =

∂n(α, β)

∂β
, (G.5)

and forms the outer vector product between Eq. (G.4) and (tα, tβ) which yields the

following matrix equation

(
∂αn · tα ∂αn · tβ
∂βn · tα ∂βn · tβ

)
= W

(
tα · tα tα · tβ
tβ · tα tβ · tβ

)
, (G.6)

which can be solved for W . The scalar products in the elements of the matrices are

conventionally abbreviated by upper- and lower-case characters as indicated by the

following short-hand notation of Eq. (G.6)

(
e f

f g

)
= W

(
E F

F G

)
⇒W =

1

EG− F 2

(
−fF + eG Ef − eF
−Fg + fG −fF + Eg

)
.

(G.7)

The eigenvalues of W are the inverse radii of curvature κ1 and κ2 and one therefore

defines

H =
1

2
tr(W ) =

−2 f F + E g + eG

2(−F 2 + eG)
, K = det(W ) =

f 2 − e g
F 2 − eG , (G.8)

to be the mean H and Gaussian K curvature respectively. Note that H = 1
2
(κ1 +κ2)

and K = κ1κ2 as both trace tr(.) and determinate det(.) are independent of the

choice of the basis. H and K are sufficient to describe the shape of the surface S,

but contain no information concerning the orientation and position of the surface in

space.

The total area A of the surface can be calculated using

A[S] =

∫

S

dx =

∫

U

||tα(α, β)× tβ(α, β)|| dαdβ . (G.9)
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Similarly one defines

C[S] =

∫

S

H(α, β) dx and X[S] =

∫

S

K(α, β) dx , (G.10)

to be the integral mean C and integral Gaussian X curvature of S. The latter is

also denoted as Euler characteristic and equals 4π for every single-connected object

independent of its shape.

One defines a parallel surface S ′ with a fixed normal distance u with respect to

the original S using

r′(α, β) = r(α, β) + un(α, β). (G.11)

All geometrical quantities presented in this section for the surface S can equally well

be calculated for S ′. One can prove the following useful relations, where primed

quantities belong to the parallel surface S ′ with distance u

H ′ =
H +Ku

1 + 2Hu+Ku2
and K ′ =

K

1 + 2Hu+Ku2
. (G.12)

Note that the solving these equations for H and K can be easily done by setting

u → −u and interchanging primed and unprimed quantities. An integration over S ′

can be performed using the Jacobian J(u)

dx′ = J(u) dx, J(u) = 1 + 2Hu+Ku2 , (G.13)

which allows one to derive the following relations

V ′ = V + Au+ Cu2 + 1
3
Xu3 ,

A′ = A+ 2Cu+Xu2 ,

C ′ = C +Xu ,

X ′ = X .

(G.14)

These relations are remarkable insofar as the knowledge of V , A, C, and X on one

surface is sufficient to calculate the respective quantities for any parallel distance.

This is a direct consequence of the Hadwiger theorem, which states that every motion-

invariant, continuous and additive functional of S must be a linear combination of

V [S], A[S], C[S], and X[S]. The three conditions are also fulfilled for the primed

quantities V ′, A′, C ′, and X ′ which can according to Eq. (G.14) indeed be written in

the predicted form.

If a quantity Q is a functional of S, i.e. if Q is a mapping S → R, we introduce

the “normal derivative” ∂uQ[S] of Q which we define via

∂uQ[S] = lim
u→0

Q[S ′]−Q[S]

u
, (G.15)
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where S ′ is a parallel surface to S with normal distance u. Using Eq. (G.12) and

Eq. (G.14) one can evaluate the following normal derivatives using the definition in

Eq. (G.15)

∂uV = A, ∂uA = 2C, ∂uC = X, ∂uX = 0

∂uH = K − 2H2, ∂uK = −2HK, ∂uH̄ = K̄ − 2H̄2, ∂uK̄ = −2H̄K̄,
(G.16)

where H̄ = C/A and K̄ = X/A. Note that H̄2 = (H̄)2 6= H̄2.

For a given triple of parameters (α, β, u) one can define the following point r′ in

space

r′(α, β, u) = r(α, β) + un(α, β) , (G.17)

and refer to (α, β, u) as the normal coordinates of r′. The transformation from the

normal to Cartesian coordinates is trivially achieved by Eq. (G.17) and can be ap-

plied for any (α, β, u) , the inverse transformation from a point r′ given in Cartesian

coordinates to normal coordinates (α, β, u) however is not necessarily unique. This

is because some points outside a surface may be reached from multiple points r(α, β)

on S. One can ensure a global (for all points outside S) bijective mapping between

Cartesian and normal coordinates by demanding that S is convex [κ1, κ2 > 0 for all

(α, β)]. Otherwise bijectivity can only be fulfilled piecewise.

Finally, some surfaces are discussed explicitly as they are commonly used in this

thesis. In all cases, (x, y, z) denote Cartesian coordinates of a point while the two

lateral coordinates α and β are commonly renamed for reasons of clarity. Note that

the locus where the external potential exerted on the fluid particles is discontinuous,

represents a parallel surface to the actual physical wall. The parallel distance of the

surfaces is R, where R is the radius of the fluid particles.

• Planar wall: The physical wall is located at

r = (x, y,−R) , (G.18)

where x, y ∈ R. The external potential is discontinuous at z = 0 and the

curvatures H = 0 = K vanish for all x and y.

• Cylindrical wall: The physical wall is located at

r = (RC sin(φ), RC cos(φ), z) , (G.19)

where φ ∈ (−π, π) and z ∈ R. The external potential is discontinuous at a

cylindrical wall with R′C = RC + R, which has the dimensionless curvatures

H = R/(2(RC +R)) and K = 0.
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• Spherical wall: The physical wall is located at

r = RS(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) , (G.20)

where θ ∈ (0, π) and φ ∈ (0, 2π). The external potential is discontinuous at

a spherical wall with R′S = RS + R, which has the dimensionless curvatures

H = R/(RS +R) and K = (R/(R +RS))2.

• Ellipsoidal wall: The physical wall is located at

r = (a sin(θ) cos(φ), b sin(θ) sin(φ), c cos(θ)) , (G.21)

where θ ∈ (0, π) and φ ∈ (0, 2π). Note that the effective wall where the po-

tential is discontinuous is not an ellipsoid. For a general triaxial ellipsoid, the

dimensionless curvatures H and K are lengthy expressions which simplify for a

biaxial ellipsoid with b = a to

H =
Rc√
2a

2a2 +M2

M3
, K =

4c2R2

M4
, (G.22)

where M =
√

(a2 + c2) + (a2 − c2) cos(2θ). If c > a = b the object is called

“prolate”, for c < a = b “oblate”.

• Shrunk ellipsoid: For simulations it is inconvenient to consider an ellipsoid

as a physical wall. Normally it is easier to implement an effective wall with the

shape of an ellipsoid. In this case the corresponding physical wall is a parallel

surface with distance u = −R to an ellipsoid. We refer to it as a “shrunk

ellipsoid” as it is not an generic ellipsoid. The surface can be parameterized

r′(θ, φ) = r(θ, φ)−Rn(θ, φ) (G.23)

where r(θ, φ) is a point on the surface of the underlying ellipsoid with half axes

(a, b, c) and n(θ, φ) is the surface normal.
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Obtaining Curvature Expansion

Coefficients

The properties of a fluid in contact with curved walls are normally very complicated

to be obtained by means of direct methods. Every quantity Q associated with the

interface can be considered as a functional of the wall, where the actual form of the

functional mapping depends on the intrinsic parameters of the fluid. One intuitive

approximation of the functional mapping is the curvature expansion of Q which as-

sumes that the numerical value of Q does only depend on the local curvatures H and

K of the wall. This approximation neglects the possible influence of lateral variations

of the curvatures along the wall and furthermore assumes an analytic dependence on

both H and K

Q = QP +HQH +KQK +H2QH2 +HKQHK +H3QH3 +O(R−4
1,2) . (H.1)

Here, QP denotes the value of Q at a planar and infinitely extended interface. Qξ for

ξ = H,K,H2, HK,H3, · · · are curvature expansion coefficients. Equation (H.1) shifts

the problem of determining Q in complex geometries to the problem of determining

the coefficient functions Qξ. To this end, we propose the following scheme. Assuming

that Eq. (H.1) is valid for arbitrary geometries we apply it also for selected simple

geometric setups. One particularly simple wall geometry is a planar wall, which can

usually be most easily implemented in numerical calculations. We denote the result

for the quantity Q at a planar wall by QP . In order to find higher order curvature

expansion coefficients Qξ, we consider two other geometric setups that can usually

also be treated numerically. These are an infinitely long cylindrical wall with radius

RC and a spherical wall with radius RS. In the context of a fluid of hard spheres

111
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with radius R, the effective walls have dimensionless curvatures H = R/(2(R+RC))

and K = 0 for the cylinder and H = R/(R + RS) and K = (R/(R + RS))2 for the

sphere. Inserting the dimensionless curvatures for the cylinder in Eq. (H.1) yields

Q = QP +
(

R
2(R+RC )

)
QH +

(
R

2(R+RC )

)2

QH2 +
(

R
2(R+RC )

)3

QH3 + · · · ,

= QP +
∞∑
α=0

(
R

2(R+RC )

)α
QHα .

(H.2)

Note that all coefficients which contain K drop out of the expansion as K = 0 for the

cylinder. Therefore the dependence on the radius RC of the cylinder is a polynom

in R/(2(R + RC)) = H. Based on numerical data we fit the expansion coefficients

QP and QHα for α = 1, 2, · · · . Note that the fit should, as a test for the internal

consistency of the numerical data, yield the same QP as obtained for the planar wall.

We confirmed this in the context of various quantities Q with very high accuracy.

To obtain further coefficient functions we calculate Q for a spherical wall. Ac-

cording to Eq. (H.1), we expect the following behavior:

Q = QP +
(

R
R+RS

)
QH +

(
R

R+RS

)2

(QH2 +QK) +
(

R
R+RS

)3

(QH3 +QHK) + · · · ,

= QP +
∞∑
α=0

(
R

R+RS

)α
Q(α) .

(H.3)

Similarly to the cylinder, the shape dependence on the radius RS of the sphere reduces

to a polynom in R/(R + RS). We abbreviate the respective coefficients by Q(α) and

obtain them also from a fit of numerical data. We again verified for various Q that

QP obtained from this fit is the same as the Q obtained at a planar wall. The

internal consistency of the curvature expansion approach, Eq. (H.1), can be tested by

comparing QH and Q(1), which must be equal. We found this relation fulfilled very

accurately for all quantities Q analyzed.

For the radius expansion for a spherical wall, Eq. (H.3), all curvature expansion

coefficients Qξ used in the full curvature expansion contribute to Q. As some of the

coefficients feature the same order in R/(R+RS), they cannot be distinguished based

on the data for a spherical wall alone. However, in combination with the results of

the cylinder, which yields all QHα , we identify together with the Q(α) obtained from

the spherical wall

QK = Q(2) −QH2 , QHK = Q(3) −QH3 . (H.4)

This idea can unfortunately not be extended beyond the third order terms, as the

fourth order coefficient Q(4) for a sphere is already a sum of the three curvature
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expansion coefficients QH4 , QH2K , and QK2. Additional data would be needed to

distinguish between QH2K and QK2 . As such data must be obtained from calculations

of Q at a complexly shaped wall (neither spherical nor cylindrical), it is normally not

available with sufficient accuracy to be used for a curvature expansion. For this

practical reason, we truncate the curvature expansion after the third order terms, as

indicated in Eq. (H.1). Note that by considering only walls with globally constant

curvatures also no contributions due to lateral variations in the curvature can be

obtained.

In the case of a cylindrical and spherical wall, we fit numerical data versus an

inverse radius, RC or RS respectively. For the practical implementation of the fit the

question arises how many powers of the inverse radius should be included in the fit

and what numerical data should be actually used for the fit. In this thesis we use the

following two methods.

• If one is interested to find the curvature expansion coefficients such that the

results obtained from Eq. (H.1) are very good predictions for the actual cal-

culations, one may choose a set of relatively small radii RC and RS and do

a fit as sketched in Eq. (H.2) and in Eq. (H.3). As only three power can be

analyzed, not higher powers should be included for the fit. In doing such an

analysis, not enough fitting orders are available to capture the full influence of

the curved wall, however one can be sure that, by constructions, predictions

based on Eq. (H.1) have the least square error compared to the actual numeri-

cal results. The disadvantage of such a procedure is that the fitting parameters

depend on the set of data chosen and can therefore usually not be compared to

analytical results.

• The other extreme case for an analysis is applied if one is not interested in an

optimal fit of the data but in the correct values of the expansion coefficients. For

this purpose, more than three powers in the curvature must be included in the

fit to fully describe the influence of the curved wall. However it is numerically

not reliable to include too many fitting coefficients. For the data in this thesis

we use a fit up to the fourth order in the curvature. In order to allow a clear

distinction between the different orders in the fit, numerical data of large radii

RC and RS is used for the fit (100R and beyond). We refer to this procedure as

“leading order curvature expansion”. As this method leads to poorly conditioned

numerical problems it requires data with very low noise, which is usually only

available for DFT results.
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Coefficients found by the first procedure are used to predict quantities around complex

and highly curved objects while otherwise the leading order curvature expansion

coefficients are preferred. Note that in case of Q being a thermodynamic quantity,

which is characterized by a truncated expansion Eq. (H.1), both procedures yield the

same coefficients Qξ.
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