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Preface

This work presents quantum oscillation experiments in quasi-twodimensional multilayer
organic metals. They show that low integer Landau level filling factors ν are present in the
two-dimensional organic metal κ-(BEDT-TTF)2I3 and give strong indications for the
existence of the fractional filling factor ν = ½ in this material. By this the work shows the
presence of electron localisation and electron correlation in a bulk metallic two-dimensional
system. These effects are found in the normal conducting state of the organic superconductor
κ-(BEDT-TTF)2I3.
The revolutionary discovery of the integer as well as the fractional quantum Hall effect in
two-dimensional semiconducting single-layer systems invoked, i.a., the questions, whether
these effects may also be present in other types of conductors and, especially, whether they
may also occur in bulk three-dimensional crystals. Strong efforts were made to produce
bilayer two-dimensional semiconductors, to control their interlayer coupling as well as
electron tunnelling, to increase step by step the number of involved layers with the aim to
realise the quantised Hall effects in ‘bulk’ multilayer and, finally, in ‘infinite-layer’ systems.
Furthermore strong efforts are made in semiconducting two-dimensional systems to realise
carrier densities above 1011/cm2 with mobilities exceeding 107cm2/Vs.
κ-(BEDT-TTF)2I3 is a metallic compound with a very high electron density of 2*1019/cm2 and
a very high carrier mobility reaching about 5*108cm2/Vs. From its structural principle this
organic material represents a system of 105 coupled metallic multilayers, which can be
synthesised in very high purity and can be produced as three-dimensional bulk single
crystals. Despite of this, the material shows strongly two-dimensional electronic properties
under certain experimental conditions, as found in the frame of this work. In contrast to the
characteristic situation in semiconducting two-dimensional systems, where (correlated)
electrons move on a single quantised orbit, the strongly correlated carriers in
κ-(BEDT-TTF)2I3 move on various quantised orbits with even very different filling factors.
These are the main conditions under which the above mentioned filling factors are found in
κ-(BEDT-TTF)2I3. 
Besides these characteristics, the present two-dimensional organic metal holds a number of
further peculiarities, which may represent a challenge for the understanding of possible
fractional filling factors and quantum limit in a macroscopic multilayer crystal with
two-dimensional electronic properties.
In addition, the present work resumes experiments on the influence of low-dimensionality
onto the electronic properties of a number of low-dimensional multilayer organic conductors.

Stuttgart, March 2004     Eduard Balthes

              *              
dedicated to Beate Baßfeld
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1. Introduction 

The start for the development of organic conductors and superconductors may be dated to
1954, when Akamatu et al. realised a conductivity of σ ≈ 0.1Scm-1 in a perylene-bromine salt
[1,2]. With that synthesis of the first conducting organic material without any metal atoms
included, the class of ‘synthetic metals’ was introduced. The next great progress was made by
the synthesis of the electron acceptor TCNQ [3,4] and the electron donor TTF (see Fig. 1.1,
also for the abbreviations used in the following) [5]. From these two constituents a
TTF-TCNQ charge-transfer (CT) complex was synthesised by a diffusion method and it
showed anisotropic, i.e., quasi-onedimensional (Q1D) metallic properties [6,7]. This material
exhibits a conductivity σ ≈ 104Scm-1 at 60K (comp. with Cu: σ ≈ 106Scm-1 at 300K). Below
60K, however, the TTF-TCNQ salt undergoes a phase transition to a Peierls insulator [8].
As pointed out by Fröhlich, a 1D metal is on principle unstable against lattice distortion, so
that a concomitant gap may open at the Fermi level [9] and therefore a variety of very
different ground states are possible: a) In the presence of interactions, the aforementioned
instability may result in a charge-density or spin density wave (CDW or SDW), respectively
[8,10]. These collective phenomena indeed may describe the ground state of several Q1D
organic conductors [11]. b) Alternatively to the density-wave state even a superconducting
transition may occur [12]. c) In the presence of disorder the carriers may localise in a
so-called Mott-insulating phase [13]. d) As soon as strong electron interactions are present in
a  strictly 1D system, the carriers may no longer obey Fermi liquid theory [14,15], but instead
a so-called Tomonaga-Luttinger liquid [16,17] may develop. Indeed, the subsequently
synthesised Q1D organics show a variety of different ground states. These are determined not
only by the above mentioned conditions a) - d), but also by the ‘design’ of donor and
acceptor molecules and furthermore by external parameters, i.e., temperature, pressure and
magnetic fields (see, e.g., [18,19,20,21] for density-wave states, e.g. [22,23,24,25] for
non-Fermi-liquid behaviour; cons. Refs. therein).
The synthesis of Q1D organics was extremely pushed by the vision of room temperature
superconductivity based on an idea of Little [26,27], which is an extension of the BCS theory
for conventional superconductivity developed by Bardeen, Cooper and Schrieffer [28].
Little’s ideas suggests that a pairing of electrons might be possible via their coupling to
highly polarisable side-chains in a polymeric material. Since the characteristic excitation
energy of such an ‘excitonic’ mechanism exceeds that for lattice vibrations by about two
orders of magnitude, a tremendous increase of the superconducting transition temperatures Tc

seemed to be in prospect. In 1979 the first Q1D organic superconductor (TMTSF)2PF6 was
presented, which belongs to the so-called Bechgaard salts based on the planar donor
molecule TMTSF (see Fig. 1.1) [29] and is synthesised by electrocrystallisation. This
material with a Tc = 0.9K needs application of pressures of about 6.5kbar to suppress an
insulating transition at about 12K, which otherwise would result into a SDW state [30]. The
subsequent efforts led to a number of organic superconductors by replacing the anion PF6 by
SbF6, AsF6, TaF6, ReO4, FSO3, and ClO4. However from these materials only the ClO4 salt
(Tc ≈ 1K) is an ambient pressure superconductor [31] (for an insight to the development of
organic superconductors see, e.g., [30,32,33,34,18,35,36,37,25]). Subsequent pressure studies
showed that the superconducting state in these materials adjoins an insulating SDW state
(see, e.g., [18]).
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Fig. 1.1: Selection of most important organic
constituents in the history of organic conductors
with the following abbreviations:

TTF tetrathiafulvalene
TCNQ tetracyano-p-quinodimethane
TSF tetraselenafulvalene
TMTSF tetramethyltetraselenafulvalene
BEDO-TTF bis(ethylenedioxi)tetrathiafulvalene
DMET dimethyl-ethylenedithio-

diselenedithiafulvalene
BETS-TTF bis(ethylenediselena)-

tetrathiafulvalene
BEDT-TTF bis(ethylenedithio)tetrathiafulvalene
EDT-TTF ethylenedithiotetrathiafulvalene
MDT-TTF methylenedithiotetrathiafulvalene



However, it turned out that the superconducting transition temperatures in the Q1D TMTSF
salts remained limited to é 3K and that the pairing mechanism is most likely different from
that proposed by Little.
Especially in order to enhance Tc, but also to avoid the 1D Peierls instability, strong efforts
were made to enhance the dimensionality of the systems from Q1D to Q2D electronic
systems. This was realised during the late 1970’s and 80’s by the ‘design’ of nonplanar
donors, reduction of the molecular weight, widening of the lattice constants and also by the
synthesis of various donors and acceptors which allow a reduction of disorder during
electrocrystallisation. The further development of these low-dimensional conductors and
superconductors in the following decades is based on the characteristic that this class of CT
complexes crystallises in alternating sheets of organic donor monolayers separated by
acceptor monolayers1. By the electrocrystallisation process materials can be synthesised,
which on the one hand yield 3D bulk 105-layer single crystals (with even up to 0.5-1mm
thickness), but on the other hand show low-dimensional electronic properties. 

α-structure β-structure κ-structure
(Q2D)  (Q2D)         (pronounced ... strongly 2D)

Fig. 1.2: Schematic illustration of three of the most represented structures (α, β and κ) of low-dimensional
organic conductors including their unit cells. Top view on a single conducting layer (the acceptor layers are
skipped for clarity). Thick orange lines symbolise donor molecules in a view along the central C = C bond
(comp. Fig. 1.1), so that these molecules stand upright out of the plane. Dashed lines indicate the (simplified)
π-orbital overlap, whose network hints to the main orientation of electronic transport. This results in quasi-2D
(left and centre) or, more or less pronounced 2D transport (right).

These properties are determined a priori by ‘internal’ parameters, as, e.g. i) the
charge-transfer between donor and acceptor molecules and ii) the allocation pattern of the
donors within their successive layers, including dimerisation effects (see. Fig. 1.2). Both
these conditions determine the conduction mechanism by the band filling. The latter
circumstance is of additional importance, since the distances of the outer atoms of
neighbouring donor molecules may be less than the van der Waals radii (of 3.6 - 4Å) 2, so
that a π-orbital overlap enables an electronic transport within this so-called conducting plane.
Thus the allocation pattern of donor molecules prescribe the possible network of orbital
overlap and, in consequence, the dimensionality of in-plane electronic transport. Here the
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separating (low-conducting) acceptor layer comes into play and its influence on the interlayer
component of transport determines the resulting dimensionality of electronic transport in the
bulk single crystal. By a variation of donors, acceptors as well as their combinations, a wide
variety of Q1D, Q2D and, in rare cases even strongly two-dimensional (2D) organic
conductors were synthesised in the last decades. Figure 1.1 shows a selection of the most
important constituents from a meanwhile huge number of organic donors. The variety of
different structures are distinguished by a prefix, i.e., α-, β-, κ-, λ-, Θ-, ... where the first
three are most represented to date (see Fig. 1.2). In general α-phases show Q2D behaviour
with clear influences of one-dimensionality, β-phases show Q2D, whereas κ-phases exhibit
more or less pronounced 2D electronic behaviour.
One of the most successful donors in the production of meanwhile more than 60 organic
superconductors [34,38,39,35,36,25] is BEDT-TTF, which was first synthesised by Mizuno et
al. ([40,41], see Fig. 1.1). The first BEDT-TTF-based organic superconductor was
(BEDT-TTF)2ReO4 (Tc ≈ 2K at 4.5kbar [42]). It was the start of a series of meanwhile more
than 40 BEDT-TTF-based superconductors, from which the κ-structure (BEDT-TTF)2X-salts
held for a long time the highest superconducting transition temperatures, i.e., Tc ≈ 10.4K for
X = Cu(NSC)2 [43,44], Tc = 11.6K for X = Cu[N(CN)2]Br [45] and Tc = 12.8K for
Cu[N(CN)2]Cl at 0.3kbar [46]. This highest Tc was recently overcome by
β’-(BEDT-TTF)2ICl2 with Tc ≈ 13.5K, however at 82kbar [47]. Furthermore a number of
derivates of BEDT-TTF have been synthesised, as, e.g., DMET, MDT-TTF, BEDO-TTF,
BEDT-TSF and EDT-TTF (see Fig. 1.1), whose superconducting CT salts, however, have in
general lower Tc than the BEDT-TTF-based superconductors [48,49,50,51,52,53,37,25].
In these layered organic CT salts the bulk superconducting state is established by a tunnelling
of Cooper pairs via the intrinsic Josephson effect (see, e.g., Refs. [54,55,56]). The
vortex-state properties were found to be considerably different from those of the so-called
Abrikosov vortex lattice, including, e.g., lattice melting phenomena and even new
thermodynamic phases such as vortex-glass states (see, e.g., [57,58,59] and Refs. therein).
The relation of these layered organic superconductors to the well-known high-Tc cuprates by
their layered structure concomitant with Q2D electronic properties, directs attention to the
nature of superconductivity in the organics. This question is still in controversial discussion,
since a variety of experiments support either BCS or unconventional pairing. It is understood
as a sign for unconventional behaviour i.a., that in some experiments a so-called
Hebel-Schlichter peak [60] as expected in nuclear-magnetic relaxation experiments at about
0.85*Tc is absent, while an excessive peak occurs, however at 0.5*Tc [61,62,63]. Furthermore,
the proximity of antiferromagnetic ordering and superconductivity in TMTSF- and some
BEDT-TTF - based superconductors arises the question on a pairing mechanism by spin
fluctuations [32,64,65,66]. Moreover, some optical experiments report a strongly anisotrope
superconducting gap even with the indication for nodes in the superconducting order
parameter. Further indications for non-BCS behavior is suggested, e.g., by some Bc2

experiments [67,68]. Controversial results are obtained by London penetration depth
measurements, where a part of them suggest unconventional pairing (see, e.g., Refs.
[69,70,71,72,73,74]), whereas others propose conventional BCS-pairing (see, e.g., Refs.
[75,76,77,78,79,80,81]), however with a tendency to enhanced coupling. Furthermore, a
number of results from, e.g., specific heat, surface impedance, Bc(T), Tc(p) as well as
tunnelling experiments, as well as a conventional isotope effect (regarding the entire donor
molecules) and a conventional dependence of Tc from unit cell volumes, support rather BCS
behaviour. Even if contradictory results still stimulate the discussion, in general the
superconducting mechanism in the organics is understood as BCS-like, however with a
considerably enhanced coupling [82].
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Besides this, a series of further peculiarities attract interest onto organic conductors, e.g.,
field-induced superconductivity, the coexistence of antiferromagnetism and
superconductivity, the influence of charge ordering onto superconductivity, the investigation
of scattering and screening mechanisms in the Shubnikov phase by Haas-van Alphen (dHvA)
and Shubnikov-de Haas (SdH) experiments between Bc1 and Bc2. Furthermore also
normal-conducting properties of these organics achieve high interest, as, e.g., the presence of
ferroelectric phases, the synthesis of low-dimensional magnetic materials, organic molecular
magnets as well as magnetic conductors and especially the various influences of
low-dimensionality onto the electronic systems (for an insight see [37,25] and Refs. therein).
The wide variety of their low-dimensional electronic properties stimulated Fermi surface
(FS) investigations on the organic CT salts [83,58,84,37,25]. For this purpose, dHvA and
SdH experiments can be used as most powerful tools due to the very high crystal quality of
these organics, which may result in the detection of magneto-quantum oscillations (QOs)
even above 0.8T (see Ch. 5). This very favourable circumstance makes QO experiments a
very suited for detailed FS investigations over a wide magnetic field and temperature range.
It was found by QO measurements that tight-binding Hückel calculations yield in general
surprisingly correct band structures. However, results from QO investigations indicate also
clearly that corrections have to be made concerning, e.g., the presence of small closed
pockets on the FS which are not found in the calculations (see, e.g. Ch. 5), the size of gaps
between successive trajectories in k-space, the presence of superstructures or hidden 1D open
trajectories, which may act as electron reservoirs and therefore influence the electronic
properties of low-dimensional systems. Furthermore dHvA and SdH investigations on
low-dimensional organic metals allow the verification of the standard theories for QOs in 3D
metals [85,86,87] as well as for 2D systems [88,89,90,91] and show their application and
their limits (see, e.g., Ch. 5). Besides this the interplay of fermiology and low-dimensionality
can be studied in QO experiments. These features manifest themselves, i.a., by oscillations of
the chemical potential, in the carrier tunnelling between closed and open sheets of the FS (the
so-called magnetic breakdown), in quantum interference effects between different carrier
trajectories (see Chs. 4 and 5) or in interplane transport effects. These studies are very
stimulating for the progress in the theoretical understanding of the electronic properties of
low-dimensional systems (see, e.g., [88,89,90,91,92,93,94,95,96,97,98]).
Furthermore, QO experiments are found to be a very powerful tool to distinguish between
quasi-2D and strongly 2D systems by the determination of the corrugation of the FS and the
quantification of the interlayer transfer integral. This characteristic is of special importance
for the focus of the present work (see Ch. 5).

During the 1980’s a strong interest on two-dimensional electronic systems (2DESs) came up
with the discovery of the integer quantum Hall effect (IQHE) by von Klitzing et al. [99]
(resumed in Ch. 4). The coincidence of this pioneering finding in 2D semiconductors with the
progress in synthesis of low-dimensional organic conductors stimulated the research on these
organics in high magnetic fields. In the early 80’s this could be done only on the
quasi-onedimensional TMTSF salts, since pronounced 2D systems were not yet realised
within the organic CT salts. A decisive step was achieved by magnetotransport experiments
on the Q1D organic material (TMTSF)2PF6, whose metallic state was stabilised by pressures
above 6.5kbar. At high fields applied along the lowest-conductive crystallographic
c-direction, structures equidistant in [1/B] were observed in magnetoresistance which
remember to SdH oscillations [100]. A closer view on these oscillations revealed however
that the ‘oscillation frequency’ itself is temperature dependent and that the oscillations occur
only above a certain threshold field. This is in contrast to the behaviour of SdH oscillations
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and showed that they cannot be attributed to the presence of a small pocket on the FS. The
search for their origin was additionally stimulated by the detection of Hall steps in the Q1D
organic conductor (TMTSF)2ReO4 [101,102], which represent the first detection of the IQHE
in a 3D bulk material3. Subsequently such peculiar effects were subject of detailed
investigations and were also found in further (TMTSF)2X salts (e.g., with X = ClO4 and
AsF6) [102,103,104,105,106,107,108,109,110,111]. A theoretical description of this peculiar
behaviour of Q1D organics was developed in terms of so-called field-induced spin density
waves (FISDW) [112] and refined in Refs. [113,114,115,116,117,118,119,120] (see also [34]
for an insight). As already mentioned, the metallic state in the Q1D Bechgaard salts has to be
stabilised by an increase of dimensionality via the application of high pressure. However, as
aforementioned, this still Q1D electronic system is very sensitive to external parameters as,
e.g., magnetic fields. Application of a magnetic field forces the electrons to move along the
open 1D wavy trajectories. This causes an oscillation in the perpendicular direction and as
the field is increased, the motion becomes more and more one-dimensional. This makes the
system more and more unstable against density-wave transitions and finally magnetic fields
induce transitions to SDW states as described above. Within this approach it was shown that
in the presence of a FISDW no extended states are present at Fermi energy, which explains
perfectly the observation of Hall steps as well as dips in the SdH signals. In later experiments
a further apparent complication was found by the observation of sign-reversed quantised Hall
steps were found in (TMTSF)2X salts, which were proposed to be explained by the
coexistence of two successive SDWs in these materials [121,105,104,109,110,122].
These investigations of the FISDW states show that the mechanism leading to the IQHE in
Q1D organics is very different from the effects beyond the IQHE in 2D semiconductors.

During the 1980’s the interest on low-dimensional electronic systems was concentrated to 2D
systems not only by the discovery of the IQHE [99] but especially by the discovery of the
fractional quantum Hall effect (FQHE) by Tsui, Störmer and Gossard [123] (resumed in Ch.
4). Within this highly active field of research very elegant explanations for these effects were
found by Laughlin [124,125], which identified these effects as a result of two-dimensionality
and attribute them to electron localisation in high magnetic fields at low temperatures
[126,127,125,128]. Furthermore it was found, i.a., that the IQHE may be understood in a
single-particle picture (i.e., noninteracting particles), whereas the occurrence of the FQHE
requires strong electron correlation in a 2DES.
One of the most stimulating questions which accompanied the progress in the explanation of
both effects in 2D semiconductors was to ask whether electron localisation and strong
electron correlation is restricted to 2D single-layer semiconducting systems or whether they
may also occur in other 2D systems as, e.g., organic metals. During the same decade the
dimensionality of layered organic conductors was enhanced from 1D systems to quasi-2D
systems. The continued effort in the progress on donor molecules and the synthesis of new
structures resulted in the production of more and more pronounced 2D systems, from which a
few show even strongly 2D behaviour. Within this objective a number of Q2D organic were
synthesised precedent to this work. It was a very favourable circumstance that one of the
most promising candidates for twodimensionality, κ-(BEDT-TTF)2I3, could be produced as
very high quality single crystals and, within the frame of the present work, this material
turned out to represent the actually strongest 2DES within its class of materials. It was
therefore that this work was mainly concentrated on the search for results of
two-dimensionality in this material, especially for indications for electron localisation and
electron correlation effects. For reasons described below, quantum oscillation experiments
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were found to be the most powerful tool for this research and indeed, the existence of low
integer Landau level filling factors ν (i.e., ν = 1, 2, 3, 4) is found and even the very special
fractional filling factor ν = ½ seems to be present in κ-(BEDT-TTF)2I3. These results prove
that both, electron localisation and electron correlation, which are beyond the IQHE and the
FQHE, respectively, may also occur in 2D organic metals. 

Chapter 2 briefly resumes different ways to realise 2DESs and introduces to some of the
fundamental differences between 2D semiconductors and 2D multilayer organic metals.
Chapter 3 introduces to the theoretical descriptions of magneto-quantum oscillations in 3D
and 2D metals and includes a number of corrections which may be required by fermiological
peculiarities, low-dimensionality, etc. . In Ch. 4 the description of both, IQHE and FQHE is
resumed, focusing on electron localisation and electron correlation effects and the way in
which they may influence QO experiments. Detailed investigations on κ-(BEDT-TTF)2I3 are
discussed in Ch. 5. They show the above mentioned filling factors ν = ½, 1, 2, 3, 4 and
further effects of two-dimensionality in this material. Chapter 6 resumes the actual state of
research on other Q2D and pronounced 2D organic metals on the search for comparable
effects and further influences of two-dimensionality in this class of materials.
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2. The Realisation of Two - Dimensional Electronic Systems

The present chapter recalls the most important material-specific conditions which are
necessary to enable the quantised Hall effects to occur in semiconductors. Furthermore it
comprises methods to realise a two-dimensional electronic system (2DES)1 in different
material classes, in which the IQHE and FQHE may also be present.
One of the decisive requirements to a material exhibiting the quantised Hall effects is the
two-dimensionality of its electronic system, i.e. the restriction of the electron motion to a 2D
layer with a finite spatial extent of their wave function in the third dimension. The methods
by which such conditions are realized, is briefly summarized in the following (for details see
[129,130,131,132].

2D electronic systems may be created in different materials. An almost ideal 2DES is given
on the surface of liquid helium, where electrons approach the He surface from above being
attracted by the electric polarization of the He atoms. Since the 1s orbitals of He are
completely filled and the 2s state is of too high energy, the electrons cannot penetrate the
surface. The electron density can be controlled by a metal electrode below the surface and a
positive voltage [133]. By this a dimple on the He surface is formed below each bound
electron. The dimples are independent at sufficiently low electron concentrations ne, they
overlap at increasing ne accumulating electrons on the dimple bottom and finally, as ne is
further increased the electrons from the dimple bottom escape to the metal electrode. This
limits the variation of the carrier concentration within about 105 - 109 cm -2 and, due to this,
the resulting 2DES behaves classically.

Higher carrier densities are reached in so-called metal-oxide-semiconductor field effect
transistors (MOSFETs) [129,134,130]. These systems consist of metal-oxide- semiconductor
sandwich (see Fig. 2.1), where a 2DES is generated as follows. A semiconductor (p-Si) with
a planar interface is covered by a thin insulating film (SiO2) and a metal gate electrode.

Fig. 2.1: Schematic picture of a metal-oxide-silicon structure with the position of the induced 2DEG at the
interface between the Si and the SiO2 layer (thick blue line).
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Fig. 2.2: Energy levels in a MOSFET, where a sufficiently high Vg > 0 bends the conduction band of p-Si such
that a 2DEG is induced in an inversion layer (open circles: neutral acceptors, filled circles: negatively charged
acceptors).

A gate voltage Vg between the metal electrode and the Si/SiO2 interface bends the initially
unoccupied conduction band of p-Si (see Fig. 2.2). At sufficiently high Vg the bottom of the
conduction band dips below the Fermi energy EF in a thin plane (≈ 2.5 - 5nm) parallel to the
2D SiO2 interface. In this region the conduction band becomes occupied by electrons and the
system forms a so-called inversion layer (‘inversion’, since here the charge carriers are
electrons, whereas the doping is p-type). At low temperatures (kBT « ∆E, the subband
spacing) the electrons are trapped in the lowest subband, so that the system becomes a single
layer 2DEG.  Therein the electron number ne can be varied by the gate voltage, so that ne ≈ 0
- 1013 cm-2 can be reached. However only the region ne ≈ 1011-1013 cm-2 is of importance for
IQHE studies, since impurity effects are too strong at too low electron densities. MOSFETs
have the advantage that ne can be easily varied but the disadvantage, that crystal
discontinuities at the interface and impurities trapped in the SiO2 layer limit the electron
mobility to µe ≤ 105 cm2 (Vs)-1. This is sufficient to realise the IQHE, but insufficient to
generate the electron correlation which is required for the occurrence of the FQHE.
The mobility increase required for the presence of the FQHE can be achieved by the creating
a 2DEG in a semiconductor heterostructure which consists of a semiconductor-
semiconductor interface. Such a material was proposed in 1969 [135] first synthesised in
1978 [136] and in 1979 identified as 2DEG [137]. A well-known class of heterostructures is
based on GaAs/AlxGa1-xAs (x ≤ 1) where the lattice constants of both, GaAs and AlxGa1-xAs,
match very good to each other. This results in an interface, a so-called heterojunction, which
is nearly free of disorder. Now the band gap of the AlxGa1-xAs alloy increases by the Al
concentration x and is therefore wider as that of GaAs (see Fig. 2.3). When the alloy layer is
doped by donors, the carriers in the vicinity of the heterojunction move across the interface to
occupy the low-lying band edge states of the GaAs conduction band. The resulting electric
field bends the energy bands of both neighbouring materials at their interface such that the
GaAs conduction band is pushed below EF. Hereby a 2DEG of about 10nm thickness is
generated parallel to the heterojunction. During the last two decades the synthesis of
heterostructures strongly developed, e.g. by starting from different semiconductors (III-V and

2. The Realisation of Two - Dimensional Electronic Systems

9

p-Si
2

Si
OM
et

al

EFeVg

Depletion

Valence
band

Inversion

Conduction
band

2DEG

EF

E

z



II-IV materials) varying the doping of the two layers and introducing a spacer material
between the successive layers (along the dashed line in Fig 2.3) [138,139,140].

Fig. 2.3: Energy levels in a doped heterojunction with the generation of a 2DEG. 

By the latter procedure the electrons become spatially well-separated from the donors, so that
scattering is minimised and very high electron mobility (meanwhile up to µe ≈ 2•107 cm2

(Vs)-1 [132]) can be reached. The FQHE was first measured in GaAs/Al0.3Ga0.7As
heterostructure with ne ≈ 1011 cm-2 and µe ≈ 105 cm2 (Vs)-1 [123].
Whereas the advantage of heterostructures with respect to MOSFETs is their high quality and
their quite high mobility, the electron density, however, can be varied only in a relatively
narrow range between about ne ≈ 1011 cm-2 and ne ≈ 1012 cm-2.
Heterostructures can be grown layer by layer by molecular beam epitaxy (MBE). By this,
single layer as well as multilayer 2D electron gases can be realised. This method allows to
choose the thickness as well as the electron concentration of every heterojunction. In a
multilayer it enables to control interlayer coupling and electron tunneling between the
successive 2D layers. This is of special importance for the generation of the IQHE and FQHE
in multilayer systems. It should be emphasised that the single- as well as multilayer systems
are generally regarded as 2DESs, but in fact they are all quasi-2D systems, since the finite
width of the electron layer allows a finite motion perpendicular to the layer.
Moreover in multilayer 2DESs, the 2D electronic properties, i.e., the presence of the
quantised Hall effects are found to persist when interlayer coupling and even interlayer
electron tunneling occur (for details see Sec. 5.5. ff. ). 

It turned out that the upper mobility bound µe ≈ 105 cm2 (Vs)-1 reached by MOSFETs is just
the optimum for the IQHE but not sufficient for the FQHE. Especially for the occurrence of
the FQHE, high sample quality, high electron concentration and high mobility are required.
These conditions are not only given in heterostructures but may be also reached (or even
unified) in 2D layered organic metals.
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Fig. 2.4.a (top): View on a
conducting BEDT-TTF (b,c) plane
of κ-(BEDT-TTF)2I3 with a sheet of
linear I3 molecules on top of it and
one below, respectively.

Fig. 2.4.b (centre): Schematic
orientation of the BEDT-TTF
dimers nearly perpendicular to each
other.

Fig. 2.4.c (bottom): Single
BEDT-TTF layer with indicated
network electronic transport by S-S
orbital overlap (dashed lines).



Since the basics on the synthesis of organic metals and superconductors are already briefly
discussed in Ch. 1, in the following it is illustrated how especially a 2DES can be realised in
multilayer organic metals. As mentioned in Ch. 1, these materials are grown by
electrochemical synthesis [141] and crystallise in donor layers with the thickness of a single
donor molecule length. These sheets are separated by monolayers of anion molecules,
neighboured by the next donor monolayer and s.o., alternating (see Figs 2.4a and 2.5a). 
One condition for the realisation of a 2DES is a high electronic isotropy within the
conducting donor planes. Therefore the orbital overlap between neighouring donor molecules
should form a network of electronic transport which is as isotrope as possible. This can be
best reached by the choice of the non-planar BEDT-TTF as donor molecules and the
crystallisation in a so-called κ-structure, where these donor molecules build dimers and
neighbouring dimers are oriented nearly perpendicular to each other [142]. The resulting
transport network (sketched by dashed lines) in Fig 2.4.a hints to the high electronic isotropy
within the conducting BEDT-TTF (b,c)-planes. The conduction in the perpendicular
a*-direction is influenced by size, shape and electronic properties of the anions. Here it
turned out that the I3 molecule provides low interlayer coupling and, presumably since I3 is
small and linear, it allows a very good orientation of the BEDT-TTF molecules in the
neighbouring donor plane. The resulting organic superconductor κ-(BEDT-TTF)2I3 (TC ≈ 4K
[143,144, 145]) turned out to be in its normal conducting state the to-date strongest 2DES
within this class of material. This can be expressed by the ratio of transfer integrals
perpendicular and parallel to the conducting planes tΩ / tæ <10-4 [146] while the in-plane
anisotropy is nearly 1 in the entire temperature range between room temperature and the
superconducting transition [145,147]. The charge density of the 2DES can be illustrated by a
side view of the unit cell and a scheme of the electron density (Figs. 4.5.a and b).

Fig. 2.5.a (left): Side-view on the conducting BEDT-TTF plane of κ-(BEDT-TTF)2I3 separated by I3 sheets.
Fig. 2.5.b (right): Schematic illustration of the electron density on the BEDT-TTF molecules (increasing
density with grey-scale darkness).
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It was found by spin density measurements that the maximum charge density is located
around the C = C double bond in the centre of the BEDT-TTF molecules [148] and decreases
towards the donor/anion interface. This means that the maximum electron density is farest
possible apart from the donor/anion interface which is a source of scattering.
One power of electrocrystallisation is that the local electric potential on the electrode, where
the bulk crystals grow, cares for a strict alternation of donor and anion monolayers and,
furthermore, minimises the incorporation of impurities into the crystal. However the ordered
orientation of the end-standing CH3 groups on the donor molecules can be hardly controlled
by the growing parameters, since it is dominantly determined by the neighbouring anions. In
some CT salts such a possible disorder strongly influences the electronic properties, however
in κ-(BEDT-TTF)2I3 no CH3 disorder is found. These briefly sketched pecularities may
illustrate, why organic metals can be grown very pure, resulting in high electron mobilities
and how strongly 2DES can be realised in this class of materials. In κ-(BEDT-TTF)2I3 the
in-plane mobility was estimated as µe ≈ 5•108 cm2(Vs)-1, which is considerably higher than
the electron mobility in heterostructures. The typical electron density for κ-structured
BEDT-TTF salts is ne ≈ 1014 cm-2 per layer (for estimations see appendix A). A typical crystal
of the size 1.0 x 2.0 x 0.25 mm3 consists of about 105 layers. Its electronic properties are
determined by the bulk electron concentration which is in the order of ne ≈ 1017 per crystal,
or, ne é 7•1020 cm-3 (see appendix A). This is considerably higher as in multilayer
heterostructures.
It should be mentioned that κ-(BEDT-TTF)2I3 shows metallic intra- but also interlayer
transport [145], as a number of quasi-2D and 2D organic metals do [83]. Despite of this, it
shows the presence of typical strong 2D properties at high magnetic fields and low
temperatures, i.e. the presence of integer Landau level filling factors in the quantum limit and
indications for the existence of fractional filling factors ν in a bulk metallic 105-layer system,
whose electronic properties are surprisingly far away from the typical materials where the
FQHE is expected and usually observed.
These integer and fractional ν are observed in κ-(BEDT-TTF)2I3 by SdH experiments and are
interpreted as hints to the presence of electron correlation and electron localisation. For the
discussion of the results it seems indicated to recall briefly the basics of the behaviour of
electrons in strong magnetic fields (Ch. 3) as well as selected properties of semiconducting
2D systems in the IQHE and FQHE region (Ch. 4). 
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3. Electrons in Strong Magnetic Fields

The behaviour of electrons in strong magnetic fields is widely discussed in standard
condensed matter textbooks, in more detail in Ref. [87], but also in well-known reviews  on
the quantised Hall effects (see, e.g., [130,127,149,150]). Therefore the present chapter is
restricted to recall the most important details of this subject which are necessary for the
discussion of the experiments.

3.1. Landau Quantisation and Magneto - Quantum Oscillations (QOs)

The motion of a free electron with the effective mass meff = m*me in an uniform magnetic
field  (where A is the vector potential) can be expressed by the SchrödingerB ==%A
equation

(3.1)H = 1
2 meff

®
i = − e

c A
2

= E

If B is collinear to the z coordinate (B = (0, 0, Bz)) the solution in k-space represents an
electron motion which is quantised in the (kx,ky) plane perpendicular to B by a quantisation of
(kx

2 + ky
2), while the motion along B expressed by kz remains unaffected by quantisation. The

electrons condense onto Landau levels (LLs) which are the eigenvalues of Eq. (3.1), i.e.,

 (3.2)En = (n + ) ® c + ®2

2 meff
kz

2 with c = e
meff B ,

where ’ωc is the cyclotron energy determined by the cyclotron frequency ωc [151,152]. γ is
the Onsager phase factor1, which is exactly ½ for a parabolic band (i.e., free electrons), but in
general γ departs slightly from ½ by an energy and field dependent amount [153]. Such
departure hints to the presence of electron correlation. n counts the energy eigenstates with
n=0,1,2,3, ...  and n likewise represents Landau level index, however starting with 1,2,3, ... ,
as well as the LL filling factor (see Sec. 4.1, Fig. 4.2) 2.
In an infinitely thin 2D system kz vanishes, so that the electron states in k-space are
concentric Landau circles which are determined only by (kx

2 + ky
2). A real 2D single layer

system of finite thickness (like, e.g. a 2D semiconducting device) would be described in
k-space by a so-called pancake with a finite ‘thickness’ in kz-direction. For a system of free
electrons however, the quantisation results in a set of Landau cylinders, where kz is not
affected by B and is therefore free. The occupation of these cylinders by electrons is
determined by system specific properties and forms the shape of the Fermi surface (FS),
which encloses the occupied states. For a perfect 3D system the FS is a sphere [154,155],
whereas in the more general case of an anisotrope 3D system the FS is an ellipsoid (see Fig.
3.1).
The number of electrons condensed to every successive LL is given by the degeneration
factor
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called quantum limit (QL).

1 also known as Maslov constant



(3.3)D = e
h B V ,

which can be calculated either for a bulk sample of volume V or for a single layer system
with a certain area S (by replacing V by S). It should be noticed that D is controlled by the
magnetic field, not by the system’s fermiology, i.e., every successive occupied LL contains
the same number of electrons.

Fig. 3.1: Schematic illustration of a set of Landau cylinders counted by the LL index n in a Fermi surface (FS)
(dotted line) of a 3D system. The cut perpendicular to the B direction reveals the actual extremal area AF of the
FS and the Fermi energy EF.

The area  An in k-space perpendicular to B encircled by the n-th Landau cylinder (LC) is
given by

 (3.4)An = (n + ) 2 e
® B

[156,85,154]. As soon as B is raised, An increases until it parts company with the FS and the
electrons have to be redistributed onto the LCs below the FS. This occurs when the area of
the outermost LC reaches the extremal area AF of the FS perpendicular to B. Further increase
of B reproduces this feature equidistantly in [1/B] with a spacing

 (3.5)1
B = 1

Bn − 1
− 1

Bn
= 2 e

® AF
.

Variation of the eigenstates with B (see. Eq. (3.2)) and redistribution of the electrons when a
LC leaves the FS leads to oscillations of the thermodynamic potential

 (3.6)˜ = e
2 c ®

3/2 2 kB T B 3/2V
A” 1/2

∞

p =1

RT (p) & RD (p) & RS (p)
p 3/2 cos 2 p F

B − 1
2 ! 4
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where A” =  | ∂ 2A/∂ k2 |k = kF is the local curvature of  the FS, Rj are damping factors (discussed
below),  p is the harmonic index and

. (3.7)F = ®
2 e AF [Tesla]; AF = kF

2

F is the fundamental oscillation frequency of these so-called magneto-quantum oscillations
(QOs) [157,85,86,87]. These oscillations of Ω result in QOs in a series of thermodynamic
and transport properties which are obtained by partial derivative of . The best-known are
QOs of the magnetisation , i.e., the de Haas-van Alphen (dHvA) effect and QOs of theM
conductivity  (or the resistivity , respectively), which is the Shubnikov-de Haas (SdH)
effect.  is obtained byM

(3.8)M̃ ∏∏ = − Ø
ØB T,

and M̃z = − 1
B

Ø
Ø T, , B

as

  (3.9a)M̃ ∏∏ = − e
c ®

3/2 2F kB T V
(2 B A” )1/2

∞

p =1

RT(p) & RD(p) & RS(p)
p 3/2 sin 2 p F

B − 1
2 ! 4

and

(3.9b)M̃z = − 1
F

ØF
Ø M̃ ∏∏

for the components parallel and perpendicular to B. This is known as the Lifshitz-Kosevich
(LK) formula which describes the expected quantum oscillation amplitude. It should be
emphasised that the LK formula is valid for 3D metals where the chemical potential is
constant and where the total number of carriers Ne is conserved. The sign in the oscillatory
part introduces a phase and is ” - ” when the extremal area AF of the FS is a maximum and ” +
” when it is a minimum (see Fig. 3.5.a). The amplitude reduction factors RT(p), RD(p), RS(p),

respectively are discussed in detail in [87] (see also Refs. therein) and their meaning is
therefore only briefly sketched here.

3.2 Reduction of Quantum Oscillation Amplitudes by Phase Smearing Effects

3.2.1 Finite Curvature of the Fermi Surface of a 3DES

As already mentioned in context with Eq. (3.9), the standard LK formula is valid for QOs in
3D metals. The corresponding background is that the actual position of EF for the various
allowed kz in a 3D system is defined by a number of Landau cylinders inside the FS or even
by all of them (see Fig. 3.1). However the determination of their contribution to the
magnitude of QOs by integration over kz reveals a destructive interference for all those kz

values where EF varies with kz. Thus after integration the only persisting contributions come
from the extremal areas, where  [87]. These may be maximal (AMax) or minimalØEF /Økz h 0
areas (AMin) of the FS, i.e., bellies or constrictions of the FS (see Fig. 3.5.a or, e.g., as known
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from Cu [158]). The contribution of AMax and AMin to the oscillation amplitudes is of different
phase, which is considered by the above mentioned sign in the last term of Eq. (3.9). The
remaining contribution from the extremal areas is damped by the local curvature of the FS,
A” along kz, which enters into the denominator of Eq. (3.9). This makes straightforward to
see that in a 2D system where A” vanishes, the standard 3D LK formula is expected to
diverge and to lose its application.

3.2.2 Effect of Finite Temperature

Due to the temperature-induced broadening of the Fermi distribution function the Fermi level
EF is broadened at finite T, so that the redistribution of electrons to the lower lying LCs inside
the FS happens within a widened field range. This ends up in a reduction of the QO
amplitudes by the factor

(3.10)RT ( p) =
p meffT/B

sinh ( p meffT/B) with = 2 2mekB
® e = 14.69 [ T

K ] .

Here from the reduced carrier effective mass m* = meff / me can be obtained by a fit of the
temperature dependence of the QO amplitudes to Eq. (3.10). This can be done independently
for the p-th harmonic of a QO frequency and, moreover, for carriers moving on different
closed orbits in k-space.
In addition Eq. (3.10) holds an important possibility to control the application and limits of
the standard 3D LK formula (Eq. 3.9) to quasi two-dimensional (Q2D) electronic systems or
2DES, respectively. For this purpose Eq. (3.10) is converted into

(3.12)ln ( Ap / T (1 − exp (−2 p meffT/B)))
T = b = −

p
B meff ,

which means that a plot of the implicit amplitudes Ap versus temperature should be a straight
line whose gradient contains m*. In reversal, deviations from the expected straight line show
that the standard 3D LK theory for QOs has lost its application.   
 

3.2.3 Effect of Finite Relaxation Time 

Due to the presence of impurities and crystal defects the electrons of a real system have a
finite relaxation time τ. Via the Heisenberg uncertainity principle this leads to a Lorentzian
broadening of the Landau levels. Under the assumption of an energy independent τ,
R.B.Dingle showed that the problem can be solved by projection of the broadened LLs to a
broadened Fermi energy in conjunction with sharp LLs. This means that broadened LLs act
similarly as a broadened EF, i.e., a finite temperature. Therefore the measure for broadening
was defined as a temperature equivalent, the so-called Dingle temperature TD (see Eq. (3.14).
By a Fourier transform the oscillation amplitude for the p-th harmonic Ap is obtained as

(3.12)Ap(B) = Ap, 0
T B − nRD(p)

sinh ( meff pT/B) ,
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where Ap represents the undamped amplitude and depends on the QO detection method as n
does (n = -1/2 for dHvA torque experiments, whereas n = +1/2 for SdH measurements). RD is
the Dingle damping factor with

(3.13)RD (p) = e − ( p meff TD /B) = e − ( p / c ) =̂ ne, unscattered .

RD represents the square root of the number of unscattered electrons which have passed p
cyclotron orbits without being scattered [159]. TD can be understood as the temperature by
which an ideal reference crystal has to be heated with respect to the actual temperature T in
the measurement in order to produce the same reduced QO amplitudes as the real, imperfect
crystal at the same T. TD can be estimated independently for the electrons moving on every
successive closed orbit by a fit of the field dependence of the QO amplitudes to Eq. (3.12)
and τ is obtained therefrom by

(3.14)= ®
2 kB TD

.

It should be stressed that Eq. (3.12) holds a powerful possibility to control the validity of the
standard 3D LK for quasi-2D and 2D systems and its limits by conversion into the form

(3.15)ln ( Ap B n sinh ( p meffT/B))
1/B = d = − pTD

with α and n as given above. A plot of the implicit amplitudes Ap versus 1/B, the so-called
Dingle plot (DP), should be linear according to the 3D LK formula with a gradient containing
TD. However in the presence of magnetic breakdown between neighbouring trajectories of the
FS, the DP should be sublinear, deviating towards lower values at high B (see Sec. 3.4.2).
The DP is very sensitive to system specific peculiarities of the FS, as, e.g., to FS instabilities
or to a so-called warping (i.e., corrugation) of  the FS (see Sec. 3.5.2). In the latter case the
QO amplitudes are damped at certain field values, which are exactly equidistant in 1/B (see
Fig 3.5 and its discussion). This can be observed as equidistant local minima in the DP.

3.2.4 Effect of Electron Spin

In magnetic fields the energetic position of the Landau levels En are corrected by the
interaction energy between the magnetic field and the orientation of the spin magnetic
moment which lifts the spin degeneracy. By this En is modified to

    (3.16)En = (n + ) ® e B
meff !

®
4

g e B
me

The first term is the cyclotron energy and the second term is the Zeeman spin splitting (∆es).
It contains the g-value of the electrons averaged over the closed electron trajectory in k-space
[160]. A superposition of the contributions of LLs of different spin orientation to the QOs is
considered by

(3.17)Rs(p) = cos ( 1
2 p gmeff ( ))
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which enters into the LK formula (Eq. (3.9)) as the spin dependent amplitude reduction factor
[161,162]. As shown by Eq. (3.16), the Zeeman term is determined by the free electron mass,
whereas the cyclotron energy is given by meff, which is angular dependent. At certain angles
Θi, where ∆EZe is a multiple of , the successive spin states cannot be observed, since each® C
of the two spin states of a LL matches exactly with the spin-reversed state of a neighbouring
LL. At other angles Θj, however,  where  , the successive spin statesEZe = ((2n + 1)/2)® C
are best resolved, so that the double set of oscillations is observed (provided that 

 ). In the Fourier spectrum this leads to an enhancement of the amplitudes® C; EZe > kBT
of the even harmonics (i.e., p=2, 4, 6,...) and the absence of the fundamental frequency and its
odd harmonics (i.e., p=1, 3, 5,...). The angles Θj where this occurs are called spin zeros.
Knowing meff from a fit to Eq. (3.10) the electron g-value can be determined from the
sequence of spin zeros Θj.
It is noteworthy that according to Eq. (3.17) RS and therefore the position of the Θj is very
sensitive to changes of gmeff. By detection of the successive Θj at different magnetic fields
this can be utilised to verify whether meff, or, respectively, meff is magnetic field dependent or
not.
For cases where QOs cannot be detected over a sufficiently wide angular range, another
method allows the g-value determination and holds even more information. Equation (3.16)
can be read in the sense that Zeeman splitting shifts the field position where the n-th LL
intersects the FS (i.e., En ≡ EF) by its contribution to the total energy. This shift in B where g
contributes to, is a phase factor which added to the QO sequence. The field positions Bn,
where n-th LL reaches the FS is given by

(3.18)F
Bn

= (n + ) ! S with S = 1
4 g me ,

where F is the QO frequency and γ ≈ ½ is the Onsager phase factor. Under favourable
circumstances this allows the determination of the g-value, which is of importance when in a
2D system at high magnetic fields the possibility for the occurrence of skyrmions has to be
examined (see Sec. 5.8.4). Furthermore a more exact γ-value can be extracted, which may
give hints to the presence of electron correlation).

3.3 The Shubnikov-de Haas (SdH) Effect

Oscillations of the field dependence of the resistivity by Shubnikov and de Haas in 1930 on
Bi were in fact the first observation of quantum oscillations [163]. The theoretical
background was developed by Adams and Holstein in 1959 [164] and was rather complex,
since scattering in magnetic field had to be considered. A few years later the problem could
be simplified by Pippard [165] with the argument that the scattering probability is
proportional to the number of destination states in which electrons can be scattered. This
probability which determines the scattering time τ and the resistivity ρ, oscillates in
conjunction with the oscillating density of states D(EF) at EF. In Ref. [164] it could be shown
that even very different scattering mechanisms as, e.g., phonon or ionised impurity scattering,
act in a quantitatively very similar way, which simplifies the problem.
For electrons moving on a single closed orbit on a spherical FS of a 3DES, to which a
magnetic field is applied along the z-direction and an electric field along the x-direction, the
diagonal conductivity σxx(B) was obtained as
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(3.19)xx(B) = 0(B) [1 + ˜ 1(B) + ˜ 2(B)] .

σxx consists of the classical background resistivity σ0(B) and two oscillating components

(3.20)˜ 1(B) = 5
2 0(B) ® c(B)

EF

1
2 1

2
® c(B)

E

1
2

− 1
2 + E

® c(B)

1
2

and 

(3.21)˜ 2(B) = 3
2 0(B) ® c(B)

EF
1
2

® c(B)
E

1
2

− 1
2 + E

® c(B)

1
2

2

.

 represents the contributions coming from inter-LL scattering, whereas  is the˜ 1(B) ˜ 2(B)
contribution from intra-LL scattering. At low fields, where a number of LLs are inside the
FS,  dominates, whereas in field regions, where only a few LLs are within the FS, ˜ 1(B)

 becomes dominant. Both terms are determined by the cyclotron energy and EF.˜ 2(B)
However a decisive variable is , which denotes the energy difference between EF and theE
energetic state on the outermost LL (i.e., the LL being closest to the FS) with kz = 0. When
the field is increased and the outermost LL reaches the FS,   vanishes3, so that the SdHE
oscillations would tend to diverge. However, broadening and collisions avoid a divergence of

. ˜
It should be stressed that in a spherical FS the Landau cylinders intersect the FS ‘smoothly’
(see Fig. 3.1), which means that electron states from higher to lower  are emptied, endingkz
up with kz = 0 (see 3). This means that the electron occupation of the outermost LL is lowered
smoothly, which limits the QO amplitudes. As will be shown later, in the 2D FS of a bulk
metal, where the FS itself is a cylinder, the vanishing of  occurs instantaneously for all kz,E
so that much higher SdH oscillation amplitudes with a rich harmonic content are expected in
such a 2D system. For real conditions a formula for the oscillating part of the conductivity
was obtained as

(3.22)˜
0 = 5

2
p e B
®A”

1
2 ∞

p=1

RT(p) & RD(p) & RS(p)
p3/2 sin 2 p F

B − 1
2 ! 4

with the same amplitude reduction factors RT, RD, RS as discussed in Sec. 3.2, except for the
exponent n in RD as discussed with Eqs. (3.12) and (3.15). This means that SdH
measurements can be used just as dHvA experiments for fermiological investigations and for
the estimation of m*, TD, τ as well as the electron g-value. This is in agreement with the
general experience made in the investigations of a series of conventional metals [87] as well
as organic metals [25,37], even though especially the Fermi surfaces of the latter materials
typically consist of several orbits, whereas the description for the SdH effect discussed here
is made for a single orbit 4.

Furthermore it should be mentioned, that organic metals are relatively high conductive, so
that in pulsed magnetic fields the experimental technique itself may introduce subtle
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magnetoresistivity.

3 This energetic state on the outermost LL can be imagined as the equator line of a spherical FS when the field
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problems, e.g., by eddy currents. These are induced by the strong , and moreover, eddyØB/Ø t
currents may themselves oscillate because of the dHvA oscillations of M. By this the dHvA
effect may influence the SdH effect in pulsed fields, but also vice versa. Namely, when a
pickup coil is used to detect the dHvA effect, SdH oscillations may enter the obtained signal
through eddy current effects [87]. Furthermore, in some cases the dissipation of eddy currents
may heat the sample. 

In a survey, the SdH effect was found to be a comparably powerful tool for Fermi surface
investigations as the dHvA effect. The standard SdH formalism however was made for a
3DES with a constant chemical potential and for a system where the total number of
electrons is conserved. Strong deviation from this formalism are expected for 2D systems,
where an amplification of the QO amplitude is expected. This amplification should be
stronger with increasing field, since  is in the numerator of Eqs. (3.20) and (3.21) and® c
since the LL degeneration increases with field.
A further increase of the oscillation amplitude is expected when only a few LLs are inside the
FS since according to Eq. (3.21) the amplitude is then proportional to  instead of (® c)2 ® c.

3.4 Departures from the Standard LK Theory for 3DES

The derivation of the standard LK formula (Eq. (3.9)) is based on several simplifying
assumptions. It is assumed, e.g., 1) that the magnetic field in the material is not considerably
modified by magnetisation, 2) that the carriers move on a closed orbit in k-space without a
possibility to tunnel to a neighbouring trajectory, 3) that the chemical potential is practically
fix, i.e. the system is a 3DES and 4) that the electronic system is a metal where carriers are
free and the absolute number of carriers Ne is conserved. The latter assumption means that as
soon as Ne is varied by effects as, e.g. phase transitions or electron localisation, the QO
amplitudes show deviations from the LK formula.
These most important corrections (in view of the experimental results) are sketched in the
following and experimental features are recalled by which their occurrence may be
recognised in QO experiments.

3.4.1 Magnetic Interaction (MI)

The derivation of Eq. (3.9) is based on the assumption that the magnetic field in the sample Bi

is the applied external field Bext, i.e., that the oscillating magnetisation  of the sample isM
negligible. At high field and low temperatures however it is possible that  caused by theM
redistribution of electrons to lower LLs feeds back onto the field during the oscillation cycle
itself, so that Bi may be changed. This effect is called magnetic interaction (MI) or
Shoenberg-effect and was first reported 1962 by Shoenberg on noble metals [166], followed
by Plummer and Gordon [167] and Condon [168].
If the magnitude of  is so high as to cause an oscillating Bi during every oscillation cycle,M
shape and magnitude of the QOs are influenced and the field and temperature dependence of
the QO amplitudes deviates from the expected behaviour in the standard LK formalism (Eq.
(3.9)). In view of the QO experiments on κ-(BEDT-TTF)2I3, which state strong deviations in
the field and temperature dependence of the SdH amplitudes under certain experimental
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conditions (see Secs. 5.3 ff.), the main ‘fingerprints’ of MI are collected in the following
which allow to distinguish, whether MI is their origin or not.

A quantity a for the feedback generated by MI to be significant is the inequality

(3.23)a h 4 dM̃ / dB m 1

A schematic illustration of the modification of the QOs, i.e., the significance of MI for
different a is shown in the following Fig. 3.2 [87]. Figure 3.2.a starts from a simulated dHvA
oscillation which is assumed to be a simple sine curve in the absence of MI, as plotted in
reduced coordinates y/a~M versus x~B. 
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Fig. 3.2.a: Modification of a dHvA oscillation (y/a
~ M)  within one oscillation period (x ~ B). Dotted
line: dHvA signal (assumed to be sine-shaped in
the absence of MI). Minor influence of MI, i.e., a =
0.5 and a = 1 change the shape of the dHvA signal
[87].

Fig. 3.2.b: For strong MI (a > 1) the x(y)-course
becomes multivalued. The system takes an x(y)-,
i.e., M(B)-course given by a Maxwell construction,
where the areas p and q have to be identical. This
results in a sawtooth shape of the QO and in an
amplitude reduction by δy.

As soon as minor MI are introduced (0 < a < 1), the superposition between Bext and  shiftsM
the x(y)-curve as shown in Fig. 3.2.a into the x-, i.e., B-direction. This situation is
recognisable in the Fourier spectrum by the presence of a large number of harmonics n*F
with enhanced amplitudes. Since this is driven by , the shift and therefore the amplitudes ofM
the harmonics should strongly increase with field and especially with decreasing temperature.
This feature is a precursor necessary to occur before strong MI are possible. In the presence
of several QO frequencies Fj as given in the κ-phases of organic metals, combination and
difference freqencies (i.e., Fi ± nFk, with Fk < Fi) of the fundamental frequencies are
expected.
For strong MI (i.e., a < 1), a sawtooth shape of the oscillation is observed [169,170] and an
amplitude reduction by δy is indicated (see Fig. 3.2.b). It is a matter of fact that the sawtooth
is ‘inverse’, which means that its sharp drop is on the low-field flank of an oscillation5. For
completeness it should be mentioned, that the sample may break up into so-called Condon
domains [168], if the magnitude of MI is further increased.
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sharp drop of the sawtooth is on the high-field flank of a QO (see Fig. 3.7).



In general it can be recorded that an amplitude reduction by MI announces itself by a
preceding strong enhancement of the harmonics at high B and especially at low T.
Furthermore, when  is ‘smooth’, i.e., hardly angular dependent, the action of MI, whenM
present, must also be hardly angular dependent.

Besides MI a further effect may occur which modifies the QO amplitudes and spectra with
respect to the standard LK formalism (Eq. (3.9)). This effect, known as magnetic breakdown
(MB), is described in the following Sec. 3.4.2 . Since both, MI and MB, manifest themselves
by partially very similar experimental features (e.g., occurrence of difference and
combination frequencies between F3 and F2), a collection of distinguishing features is given
at the end of Sec. 3.4.2 .

3.4.2 Magnetic Breakdown (MB)

The derivation of the LK formula (Eq. (3.9) is based on the assumption that the electrons
move on a closed orbit in k-space. Depending on the band structure, however, individual
closed and/or open orbits can lie close to each other, i.e., separated by a finite energy gap Eg.
Enabled by an increasing B, the electrons may tunnel through the potential barrier and thus
leave their initial trajectory. This effect is known as magnetic breakdown (MB), by which
new closed orbits may be realised, while the QO amplitudes of the left orbits are damped
with increasing field. MB was first observed by Shoenberg [171] and Priestly [172].
Stimulation for its understanding was given by Cohen and Falicov [173], Blount [174] as
well as Pippard [175,176,165,177]. An overview is provided by Ref. [87].
The description of the MB can be illustrated by Fig. 3.3 according to Ref. [178] on a FS
which is very similar to that of the k-phases of organic metals. 
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Fig. 3.3.a: Cut of the FS with a closed orbit
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trajectory by an energy gap Eg,MB. At
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shown by arrows in one of the gaps), thus
closing the trajectory around A3. For clarity
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The cut of this FS consists of a closed 2D trajectory encircling A2, as well as an open
one-dimensional (1D) trajectory. Therefore at low fields the QO frequency F2 corresponding
to A2 is the only observed frequency6 [179]. Both trajectories are separated from each other
by a ∆k which corresponds to an energy gap Eg,MB. In the gap region the passing electrons of
both trajectories can undergo either Bragg reflection or tunnelling to the neighbouring orbit,
so that in the latter case the orbit around A3 becomes closed and the corresponding frequency
F3 arises. According to the following so-called Blount criterion [174], tunnelling should
dominate when

(3.24)® C = ® e BMB
meff m (Eg, MB)2 / EF .

This equation relates also the gap energy with the so-called magnetic breakdown field BMB.
Different approaches to the estimation of BMB were proposed in Ref. [180] and by various
other authors (for Refs. see [178]), ending up in very similar results for BMB.
In the gap region the probabilities for both, tunnelling or Bragg reflection, are controlled by
the applied field B as well as the MB field, resulting in the probabilities P for MB and Q for
Bragg reflection with

 . (3.25)P = e − ( B MB /B ) and Q = (1 − e − ( B MB /B ) ) with P + Q = 1

The ‘loss’ and ‘gain’ of electrons on each orbit can be calculated by multiplying an assumed
initial number of electrons by P or Q for every time when they pass a gap or when they are
reflected. This has to be done until the carriers have passed one complete closed orbit.
However for a correct quantitative description it has to be considered, that the trajectories
leave the first Brillouin zone, i.e., that the corresponding particle exchange also contributes to
the amplitudes. But this consideration expands the problem by arising complex questions on
the quantisation due to the lattice structure coinciding with that by the magnetic field.
Pippard solved this complication by introduction of the so-called coupled network
description (CND) [175,176]. He projected the problem to a coupled network of possible
trajectories in real space (see Fig. 3.3.b), where the MB and Bragg reflection probabilities are
transferred into switching probabilities at the junctions of this coupled ‘electrical network’.
Detailed analysis (see also [180,87]) reveals the ‘magnetic breakdown reduction factor’

 , Eq. (3.26)RMB = (ip)n1qn2

which has to be introduced to the LK formula (Eq. (3.9)) for each possible closed trajectory.
p=(P)1/2 and q=(Q)1/2 represent the amplitudes of the propagating electron wave functions for
MB and Bragg reflection, respectively. n1 is the number of branches, where MB occurs, n1 is
the number at which Bragg reflection takes place during one orbit. The phase factor i
considers the possibly different phases of non-equivalent paths, by which an orbit is realised.
If the same orbit is realised by a number C of equivalent paths, this ‘weight factor’ C has to
be multiplied to Eq. (3.26). The introduction of the MB by Eqs. (3.24)-(3.26) to the field
dependent reduction factor RD (Eq. (3.13)) of the LK formula allows in reversal the
estimation of BMB and Eg,MB, respectively.
Within the MB region, i.e., when the gap between two neighbouring orbits is indeed
tunnelled but not yet overcome, the probability for Bragg reflection at one of the gaps is still
non-vanishing. This manifests itself by the occurrence of combination and difference
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in Ch. 5 .



frequencies between the two fundamental frequencies (here F2 and F3) [178]. The most
relevant QO frequencies Fj are illustrated in Fig. 3.4 by their enclosed areas Aj in k-space.

According to this the Fourier spectrum of the dHvA oscillations should consist of the
fundamental frequencies F2, F3, their harmonics nFj, the combination frequency F3+F2 as
well as the difference frequency 2F3-F2. It should be stressed that according to the CND
description of the magnetic breakdown in a 3DES the difference frequency F3-F2 is forbidden
due to the fact that it can be only realised by a reversal of the k-direction in the gap region,
for which the probability vanishes.
From Eqs. (3.25) and (3.26) it is straightforward to see that MB introduces only a smooth
field dependent correction to the LK formula, which is determined by BMB/B.

3. Electrons in Strong Magnetic Fields

25

+ F2F33FA3⇔
F2

A 2

⇔

3F2

3F 2F-2 3F 2F-
'forbidden'

Fig. 3.4: Schematic illustration of the
QO frequencies expected in the MB
region. The dots indicate the points of
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It should be also noted that the MB probabilities are not temperature dependent as long as
. For two organic metals, κ-(BEDT-TTF)2I3 (see Ch. 5) as well asEg, MB > kB T

(BEDT-TTF)4[Ni(dto)2] (see Sec. 6.2.1), it was found that in fact  [146,181].Eg, MB p kB T
Furthermore, the MB probabilities for a cylindrical FS with a cut as shown in Fig. 3.3.a
dependent only smoothly on the tilting angle Θ between  and kz.B

The occurrence of difference and combination frequencies in the MB region remembers to
MI, where combination frequencies are also generated. Therefore the most important features
are discussed in the following, which may help to trace back whether MI or MB are
responsible for observed experimental features.

1) The temperature dependence of the combination frequencies.
As already mentioned, the MB probability is temperature independent, whereas MI is
strongly field dependent. Therefore, in the presence of MB the temperature dependence of
the ‘mixed’ frequencies F3+F2 and 2F3-F2 should be only given by their respecting m*j

(which are m*F3+m*F2 and 2m*F3-m*F2, respectively). However in the presence of MI a strong
temperature dependence of the amplitudes should be superimposed to this.
2) The field dependence of combination frequencies.
As mentioned in context with MB, frequency mixing should be restricted to the MB region,
where Eg,MB is not yet overcome. Therefore the amplitudes of combination frequencies
induced by MB should decrease with increasing field. In contrast, MI, if present, strongly
increases with field and this is just what would be expected for the amplitudes of the
resulting difference and combination frequencies.
3) Fermiological features which determine the spectral weight of difference and
combination frequencies.
Knowing the shape of the FS, especially in the gap region, the possibilities for frequency
mixing can be assessed. For a FS as shown in Fig. 3.3, according to the LK theory expanded
by the MB, combination frequencies (i.e., F3 + nF2) should be favoured with respect to
difference frequencies (i.e., F3 - nF2), since the latter ones require a stronger change in the
momentum ∆k during the Bragg reflection at the gap as the former ones. Therefore the F3 +
nF2 combination frequencies should have a higher spectral weight in the Fourier spectrum
than the F3 - nF2 difference frequencies. In contrast, in the presence of MI, both, F3 ± nF2

should have the same spectral weight for the same n.
These features may be utilised to distinguish between the possible occurrence of MB or MI,
however keeping in mind that further deviations from LK behaviour may be produced by
completely different effects, as, e.g. two-dimensionality of the electronic system. 

Therefore the effects of quasi- and twodimensionality are discussed in the following two
sections, starting with some principal properties of Q2D and 2D systems, which may even
push the LK formalism to its limits. The influence of two-dimensionality onto the magnetic
breakdown is described in Sec. 3.4.5 .
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3.4.3 Effects of Quasi-Twodimensionality and Twodimensionality of the System

A Quasi-2D and 2D Fermi Surface in a Multilayer Metallic System 

As already mentioned in the discussion of Eq. (3.2), the Landau-quantised states in an
infinitely thin 2D system are concentric circles, since kz vanishes. In a metallic multilayer
system however, a motion along kz is not only possible, but even free and, moreover, the
motion is not influenced by a magnetic field oriented collinear to kz. The resulting quantised
states are concentric Landau cylinders. According to Eq. (3.2), the effective mass determines
the contribution of kz to the energy states. In a modestly anisotrope system this contribution is
considerable and it is therefore called a quasi-2D system. Its typical FS is ‘warped’, i.e.,
corrugated along the kz-direction as shown in Fig. 3.5.a .

If however the system is strongly anisotrope, the contribution of kz vanishes and the FS
approaches an ideal cylinder (see Fig. 3.5.b). Both situations are responsible for deviations in
the QO amplitudes from the standard 3D LK formalism (Eq. (3.9)), as will be sketched in the
following.
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Fig. 3.5.b: Fermi surface (FS) of an ideal 2D
electronic system of a multilayer metal, where kz is
not restricted. The actual position of µ is defined by
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Departures from the LK Formalism by a Warping of the FS

For the evaluation of a warped FS of a Q2D system it is useful to define a minimal area AMin

and a maximal area AMax in k-space (see Fig. 3.5.a). In general the intercept between AMax and
AMin is intersected by a number of LCs (dashed lines). Now, increasing the field means that
the LCs within this intercept cross an intermediate extremal area Aint which varies its size
from AMin to AMax. Since , the varying Aint contributes with a varying frequency to theA i F
QOs. The superposition of these contributions coming from AMin < Aint < AMax results in their
destructive interference. The only remaining contributions to QOs originate fromA h AMin
and  themselves 7, which corresponds to the occurrence of two slightly different QOA h AMax
frequencies  and , respectively. The superposition of both theseFMin i AMin FMax i AMax
frequencies leads to a destructive interference at certain field values, i.e., the occurrence of
so-called warping nodes8 in the field dependence of the QO amplitudes (see simulation in
Fig. 3.6).

Fig. 3.6: Warping nodes generated by a corrugated FS as shown in Fig. 3.5.a with a warping frequency ∆F. In
general, the two effective masses of the carriers which encircle AMin and AMax may be different. Since meff

determines the QO amplitudes, this leads to different superposing amplitudes. Therefore the resulting amplitude
in the warping nodes does not vanish for different meff, whereas it vanishes when the effective masses are
identical.

The position of these nodes is exactly equidistant in 1/B and corresponds to the difference
between the two superposing frequencies, i.e., ∆F = FMax - FMin

9. The ratio ∆F/F quantifies the
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9 The value of F counts the number of LCs inside the FS at 1T. Accordingly, ∆F counts the number of LCs
between  AMin and AMax at this field.

8 also called beating nodes

7 As already mentioned in context with Eqs. (3.6) and (3.9), the contribution to the phase of the QOs coming
from AMin is a ‘+’, whereas from AMax it is a ‘-’. 
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warping of the FS related to its diameter 10 in terms of a deviation of the FS from a perfect
cylinder. ∆F is obtained by use of Eqs. (3.5) and (3.7) from the field intercept between two
warping nodes, or, alternatively, ∆F can be read out from the local minima of a Dingle plot of
the signal (plotted according to Eq. (3.15)), where exactly equidistant local minima are
present. In the absence of such nodes, the maximal field intercept where warping nodes are
absent allows to estimate at least an upper limit for the warping (see Sec. 5.3.1). From the
amount of warping the interlayer transfer integral t⊥ perpendicular to the conducting planes
can be estimated. Assuming a cosine-shaped corrugation of the FS in kz-direction the energy
dispersion can be described by a cosine-modulation as

 , (3.27)E(k) = ®2

2 meff
kx

2 + ky
2 + 2 t z cos (kz a)

where a is the spacing between the conducting planes [182,183,184]. The sum (kx
2+ky

2) = kF
2

is a measure for t//. t⊥ represents the warping of the FS and can be obtained from ∆A (see Fig.
3.5.a) via Eq. (3.7) in terms of a . With this the intrinsic two-dimensionality of ank
electronic system can be expressed by the ratio between the inter- and intralayer transfer
integrals t⊥/t//, where t// = EF /4 in a 2D system.
It should be emphasised that according to the LK theory the warping nodes should occur at
exactly the same field positions in dHvA and SdH experiments.

3.4.4 De Haas-van Alphen Effect in Two-Dimensional Electronic Systems

For a perfect 2DES the warping vanishes, so that the Landau-quantised states as well as the
FS are perfect cylinders (see Fig. 3.5.b). In such a 2DES the actual position of the chemical
potential µ is defined by the outermost occupied LC as long as . As soon as this LC® c p kBT
passes the FS and is emptied, µ drops to the next lower lying LC and increases again with the
area of this LC until its next drop. This means that in a 2DES µ oscillates sawtooth-like with
the present QO frequency [185]. In contrast, a spherical Fermi surface of a 3D system is
intersected by all LCs inside the FS (see Fig. 2.1), so that all of them define the actual
position of µ. The contribution of the inner LCs to µ is non-oscillatory for the same reason as
they do not contribute to QOs. The only oscillatory contribution to µ originates from the
outermost LC as it leaves the FS. However since the curvature A” of  the FS is finite, this
contribution is negligible, so that in a 3DES µ is practically fix.
For the derivation of the 3D LK formula a sum over all LCs inside the FS is required [186],
whereas in the 2D case only the sum over the two outermost LCs is needed, since the inner
ones are assumed not contribute to the oscillatory part of µ [88,89,90]. In consequence, in a
3DES the field dependence of the oscillation amplitudes is given by an exponential function
(see Eq. (3.13)) entering the LK formula [186], whereas in the 2D case the field dependence
is more complex. In contrast to the first description for an ideal 2DES at T=0K and with
TD=0K [185], the field dependence of the magnetisation of a real 2DES at finite T was
obtained later (see Refs. [88,89,90]) as
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10  The correct quantity is  with  obtained from   (see Fig. 3.4.a), however sinceF / F F A = (AMax + AMin)/2
mostly ∆F << F, the simplification made in the text can be justified.



M(B) i (B) + ® C A nF + sinh
2 sinh(xF) − ® C (nF

2 + 1) + kBT ln(2 cosh(xF) + 2 cosh )

 . (3.28)with A = sinh xF
cosh xF + cosh = nF − N 0

VB ; xF =
nF ® C −

kBT ; = ® C
2kBT

nF is the highest occupied LC and xF is its contribution to M. An example for such a curve
generated by numerical calculations is shown in Fig. 3.7 [90].

Fig. 3.7: Field dependence of the magnetisation (numerical according to Eq. (3.28)) with meff=0.3me, EF=0.3eV,
TD=0K and T=10K (see Ref. [90]).

In contrast to the exponential field dependence of the QO amplitudes expected for the 3D
case, this curve for a 2DES with an oscillating µ (called  in the following) describes a
sublinear increase of the amplitude with B. Equation (3.28) shows that is driven by M(B) ® c
(which contains m*(Θ) ) and . A consequence of this is that the resulting deviations fromkBT
the LK formula are smoothly field and only weakly angle dependent.
A further result of  is a sawtooth-shaped magnetisation curve (see inset of Fig. 3.7), which
is here rounded off by effects of finite temperature. It is noteworthy that the steep flank of the
sawtooth is on the high-field side of an oscillation when µ oscillates [88,187,91], whereas it
is on the low-field side when the sawtooth is generated by MI instead of  (see Fig. 3.2.b).
When µ oscillates such a sawtooth-shaped magnetisation curve (including its orientation) is
indeed observed in experiments on 2D semiconductors (see, e.g., Refs. [188,189]; consider
the [1/B]-plotting in [189]). However it should be pointed out that the theoretical and
experimental works quoted above consider only the simple situation of one single quantised
orbit. The general case of several quantised orbits with different LL spacing is much more
complex, since their density-of-states modulations intersect each other at the FS and
therefore may prevent the development of a sawtooth - at least at actually available fields and
temperatures. This latter situation is given in the 2D organic metal κ-(BEDT-TTF)2I3 (see
Fig. 4.4 and Ch. 5).

3. Electrons in Strong Magnetic Fields

30



A further influence of an oscillating µ manifests itself by a modification of the field positions
of the spin-split quantum oscillations. A general treatment of this feature on the basis of
experiments on the 2D organic metal κ-(BEDT-TTF)2I3 is given in [91] and will be discussed
in Sec. 5.3.1 .

It should be noted that the description of the dHvA effect in 2DES recalled in this section is
based on a conservation of the total number of carriers in the system contributing to QOs11.

3.4.5 Influence of the Oscillating Chemical Potential on the Magnetic Breakdown

The description of conventional MB as discussed in Sec. 3.4.2, was derived initially for
3DES. The situation becomes more complex in a 2DES, where the chemical potential µ
oscillates. In order to illustrate this, it is useful to switch from the picture in k-space (as used
in Fig. 3.3.a) to an energetic picture as sketched in Fig. 3.8 .

Figure 3.8 shows a simplified energy scheme of the completely quantised subsystem
corresponding to the extremal area  A2 in Fig. 3.3.a and to the QO frequency F2. The
subsystem representing F3 is separated  by a gap from the former one. It is Landau quantised
in turn with the MB, so that an uniform electron distribution is still present (illustrated as
grey-scaled background). In a 3DES, the chemical potential is practically fix, so that the
electron density at EF is only modulated by the broadened 3D electron density of the LL
structure corresponding to F2 (left part) and by the weakly modulated 3D electron density
brought in by F3. These (relatively moderate) modulations determine the tunnelling
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11 A 2D electronic system with a fixed number of electrons and an oscillating µ is also called a ‘canonical
ensemble’ of electrons, whereas a ‘grand canonical ensemble’ is present in a 3D system where µ is fix. 

Fig. 3.8: Simplified sketch of the quantised
subsystem corresponding to A2 in Fig. 3.3.a and
to the QO frequency F2. The subsystem
belonging to F3 is closed in conjunction with the
MB. Both subsystems are separated by an
energetic gap. The bands are assumed to be
parabolic.
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probabilities and -directions in the gap and contribute to the MB and Bragg reflection
probabilities discussed in Sec. 3.4.2. In a 2D system however the electron density is much
sharper and, moreover, µ oscillates. This means that at low fields B<BMB µ is defined by the
highest LL of the only quantised subsystem belonging to F2. As the field is such increased
that the LLs corresponding F3  are sufficiently sharp, µ is defined alternately by the actual
highest occupied LL provided by F2 or F3, respectively. The oscillation of µ changes the
height and with of the gap and therefore the tunnelling probabilities. The modulation of this
oscillation by F2 and F3 generates difference frequencies in the Fourier spectrum in the MB
region, especially F3-F2, which is forbidden in the ‘pure’ MB when µ is fix (see Fig. 3.7)
[190,191]. 
Briefly worded,  the oscillation of µ in a 2DES modifies the Fourier spectrum in the MB
region significantly. Before this can be compared with the spectrum of MB at fixed µ, it has
to be considered that a further effect, namely quantum interference, may also influence the
Fourier spectrum. This effect is described in the following, ending up with a comparison of
the Fourier spectra of MB at fixed µ, at oscillating µ, as well as under the influence of
quantum interference. 

3.4.6 Modification of the QO Spectrum in the MB Region by Quantum Interference

The effect of quantum interference [192,193] can be illustrated by means of the coupled
network description of orbits in real space [175,165,194] as reproduced in Fig 3.9. The points
A and B within the network can be reached by different paths where electrons move in the
same direction , e.g., C2 and C3. Two electron waves starting at A on the different paths C2

and C3 arrive with a phase difference in B, where they interfere. The phase difference is
given by the enclosed area [192]. In k-space this corresponds to the difference between the
extremal areas A3 and A2 (see Fig. 3.3.a) and represents a QO frequency F3-F2. This is one of
the frequencies which may be generated by this so-called quantum interference (QI) effect.
However, since no net current is circulating along the loop composed of C2 and C3, this
motion does not result in a dHvA oscillation, so that in the dHvA spectrum a QI frequency on
principle cannot be observed. However when a current is transported through the sample, the
phase differences lying beyond QI may influence the magnetoresistance such that QI may
observed in SdH experiments under appropriate conditions. When present in transport
experiments, QI modifies the Fourier spectrum as shown in Sec. 3.4.7 .
In a stable FS the paths in k-space are not temperature dependent and the temperature
dependence of the QO amplitudes of the fundamental frequencies (as given by m*, see Eq.
3.10) is not considerably modified by QI. However it should be mentioned that for certain QI
combination frequencies as e.g. F3 -2F2, the effective masses m*F3-2F2 = m*F3 -2m*F2 may be
very small, so that the amplitudes of F3 -2F2 can persist even up to T ≥ 4.2K, where they may
be even the only observed QOs [195].
It should not be suppressed that the conditions for QI are determined not only by
semiclassical path differences as discussed here, but also by gap widths, or by the different
effective masses and Fermi velocities of the electrons moving along the various trajectories.
This implies that even in materials, which are very similar from the fermiological point of
view, the conditions for QI may differ.
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In the following section the results of QI onto SdH oscillations are compared with the
influence onto QOs coming from MB or an oscillating µ.

3.4.7 Comparison of the Fourier Spectra in the Presence of MB, an Oscillating
Chemical          Potential or QI

This section illustrates how Fourier spectra in the MB region might be modified by ‘pure’
MB in a 3DES, by an oscillating chemical potential in a 2DES or by QI. A number of authors
have contributed to the understanding of MB (see, e.g., Refs.
[171,172,173,174,175,176,165,177,178]) and to investigations of an oscillating µ  as well as
quantum interference in the MB region (see, for instance, Refs.,
[196,197,198,199,200,201,202,203,204,195,191,205,206,207,208,209,210,211,212,213],
specified later).
Under very favourable circumstances the Fourier spectrum in the MB region might be a tool
to recognise which of the above mentioned features are present in a material. However
unfortunately a general unambiguous assignment between a Fourier spectrum and MB, with
or without an oscillating chemical potential and with or without QI is unfortunately not given
to date. Actually neither the experiments, nor the theoretical descriptions can be brought to a
full general agreement. It would be beyond the scope of the present work to discuss these
subjects in detail. Instead, a brief insight is given as far as necessary for the discussion of the
experiments on κ-(BEDT-TTF)2I3 in Ch. 5. Furthermore some characteristics especially of an
oscillating µ and QI are pointed out, which turned out to be at least a ‘common denominator’
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Fig. 3.9.a: Coupled network of orbits in real
space. The points A and B can be reached by
the different trajectories C2 and C3, which
gives rise to interference effects.

Fig. 3.9.b: The difference of path lengths is
sketched. C3-C2 is the path difference of a
pure in-plane motion, whereas C’3-C’2 is the
difference when a motion along z is
superimposed.



within the variety of experiments and the different theoretical approaches to these subjects.
For clarity the insight starts, based on a study performed in Ref. [191] by experiments and
numerical calculations on the organic metal κ-(BEDT-TTF)2Cu(NCS)2, which is closely
related in many aspects to the material κ-(BEDT-TTF)2I3 discussed in Ch. 5, i.a., by their
similar Fermi surfaces [214,143,144]. In Ref. [191] the influence on of a fixed vs. an
oscillating µ on magnetisation is studied in the MB regime and furthermore the effects of QI
on transport measurements are included.

Fig. 3.10: Fourier spectra (numerical calculations) for magnetisation (parts a) and b)) and magnetotransport
(part c)) on κ-(BEDT-TTF)2Cu(NCS)2 according to Ref. [191]. Filled areas represent the spectra at 1.4K while
thin lines represent the spectra at 0.4K. a): ‘Pure’ magnetic breakdown with a fixed chemical potential µ (‘3D
CND approach’). b): MB in the presence of an oscillating µ (‘2D approach’). c): Magnetotransport in a 2DES
(oscillating µ) with quantum interference present.

As already mentioned in Sec. 3.4.2, the conventional coupled network description (CND) of
magnetic breakdown in a 3DES is based on a fixed chemical potential and, furthermore, on
an energy spectrum of the electrons, which is not influenced by the external magnetic fields
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[173,174,175,176,165,177,178]. According to the CND, a typical Fourier spectrum in the
MB region with fixed µ should consist of the fundamental frequencies denoted as F2 and F3 in
Fig. 3.10.a [179], their harmonics, furthermore combination frequencies as F3+F2, F3+2F2 as
well as allowed difference frequencies as 2F3-F2 (see also Fig. 3.4 and Ref. [178]). However
those difference frequencies which are connected with a reversal of momentum at the MB
gap, especially F3-F2 and F3-2F2, are forbidden on principle in this picture. In contrast in a
2DES, i.e., with an oscillating µ, a dHvA Fourier spectrum in the MB region would be
expected to tend to that shown in Fig. 3.10.b. It contains the fundamental frequencies and
their harmonics, but contrary to Fig. 3.10.a it contains the ‘forbidden’ difference frequencies
F3-F2 and F3-2F2, while the allowed combination frequencies F3+F2 and F3+2F2 are absent.
However, for reasons sketched in the following, it should not be suppressed here that it
would be exaggerated to suggest that an unambiguous connection between a certain Fourier
spectrum and an oscillating µ in the MB is actually available.
1) The spectral weights of the successive difference frequencies, for instance, are shown to
vary with the MB gap width [202].
2) DHvA torque experiments on the same material κ-(BEDT-TTF)2Cu(NCS)2 as underlying
to Fig. 3.10 were made by another group. As in Fig. 3.10.b they show F3-F2, but in contrast
also F3+F2, both with even similar magnitudes in amplitude [213]. There however the result
is explained by a ‘coherent magnetic breakdown’ model with a fixed µ, where the energy
spectrum of the electrons is influenced by the external magnetic field. This results in Landau
bands with both, oscillating bandwidth and oscillating band spacing, which generate such a
Fourier spectrum.
3) In Refs. [203,204] a similar Fourier spectrum to those in Fig. 3.10.b and in Ref. [213] is
explained by a recursive band structure model with fixed µ. 
4) However, Refs. [202,206,208] explain such a Fourier spectrum again with oscillating µ
(Refs. [202,206] by full 2D quantum numerical calculations, whereas [208] by extending the
model introduced in Ref. [194]).
5) A similar FFT pattern is explained in Ref. [207] by a multiband model.
6) Additional aspects are introduced by Ref. [212] by a tight binding Hofstadter approach,
which shows that the spectral weight of the frequencies F3-F2 and F3+F2 is even influenced
by the spin g-value.
7) It was illustrated in Ref. [210] that in the same material κ-(BEDT-TTF)2Cu(NCS)2 µ is
expected to oscillate not only with F3-F2, but also in the same order of magnitude with F3+F2,
which is not observed in Fig. 3.10.b. In the same reference a Fourier spectrum very similar to
that shown in Fig. 3.10.b is calculated for the material α-(BEDT-TTF)2KHg(NCS)4 assuming
the case of . However there the forbidden frequency F3-F2 also appears in comparative
numerical calculations when a fixed µ is put in. The significant difference is that an
oscillating µ ‘amplifies’ the amplitudes of difference frequencies as F3-F2 and F3-2F2,
whereas a fixed µ ‘amplifies’ combination frequencies as F3+F2 and F3+2F2. This result
would agree with parts b) and a) of Fig. 3.10. . However the authors of Ref. [210] come to the
conclusion that the forbidden frequencies are generated by the interplay of two partially
occupied bands near EF rather than .
8) Finally, a further point of discussion is given by dHvA measurements on the conventional
3D metal magnesium, where forbidden frequencies were observed, even though µ
oscillations must be irrelevant [196]. 
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The situation becomes even more complex when quantum interference (QI) is introduced.
Figure 3.10.c reproduces the results of numerical calculations made for magnetotransport on
κ-(BEDT-TTF)2Cu(NCS)2 in the MB region with oscillating µ and QI present [191].
Especially at low temperatures (thin lines in Fig. 3.10.c) the spectral weight of the occurring
combination frequencies F3+F2 and F3+2F2 remembers to the case of ‘pure’ MB with fixed µ
(comp part c) with part a) of the figure). However with QI the forbidden frequency F3-F2 is
present with a similar spectral weight as F3+F2 (part c)). With QI the amplitudes of both,
F3-F2 and F3+F2 at low T are even stronger than that of F3 itself. These results are in
agreement with SdH studies between 30T and 50T presented in the same reference.
However SdH studies on the same material made by another group [195] report on the
occurrence of the forbidden frequency F3-2F2, which is absent in Fig. 3.10.c, whereas in
return especially F3-F2,F3+F2 and F3+2F2 are absent in the study presented by Ref. [195].

The precedent aspects are collected to show that a unambiguous spectral ‘fingerprint’ of MB
with fixed or oscillating µ and QI is not yet available. The results of theoretical approaches to
these problems depend on the model used, whereas experimental results seem to depend on
experimental parameters as fields, temperatures, scattering times, etc. .
For reasons of pragmatism at least a ‘common denominator’ is brought out in the following,
which should be sufficient to assess whether  and/or QI influence the experiments on
κ-(BEDT-TTF)2I3 discussed in Ch. 5.

i) In the MB region an oscillating µ tends to support the occurrence of difference frequencies
F3-F2 and F3-2F2 and to suppress combination frequencies F3+F2 and F3+2F2. In contrast, QI
tends to suppress difference frequencies and to support combination frequencies. At
temperatures which are sufficiently low that F3 is observed a presence of QI without the
occurrence of F3+F2 is not reported.
ii) At finite T and τ, an oscillating µ neither damps the amplitudes of F2 and F3 themselves
nor changes the ratio of their amplitudes significantly (compare parts a) and b) of Fig. 3.10).
iii) QI is irrelevant, when even at low temperatures both, difference and combination
frequencies have much lower amplitudes than F3 and/or F2 themselves. This means that most
of the electrons may move along the closed orbits corresponding to F3 and/or F2, while only a
small part is influenced by QI effects (see Figs. 3.3.a and 3.9).
iv) In the preceding discussion an oscillation of µ means that in the MB regime the chemical
potential may oscillate with the QO frequency F2, since the corresponding orbit is the only
closed and Landau-quantised one. However as soon as the MB is completed, this µ
oscillations with F2 loose importance in favour of µ oscillations with F3, since less and less
electrons stay on the F2 orbit, while the F3 orbit is more and more populated and becomes
fully quantised. Therefore µ oscillations with F2 are restricted to the MB region.
v) The magnitude of µ oscillations is given by the effective magnetic field along the Landau
cylinders. Therefore the influence of  should depend only weakly and in any case smoothly
on the tilting angle Θ between the magnetic field and the 2DES, i.e., the conducting plane of
layered materials.
vi) For the same principle the influence of QI should be weakly and smoothly angle
dependent, since the underlying path differences on cylindrical Fermi surfaces are only
smoothly angle dependent within an order δΘ of degrees.
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Since unfortunately an oscillating µ cannot be identified unambiguously by a clear spectral
‘fingerprint’, two different methods were introduced in Refs. [91,215] and [216],
respectively, to detect µ oscillations. Furthermore the second of these methods is expanded in
Ch. 5 where it reveals decisive new results.

The standard Lifshitz-Kosevich theory for quantum oscillations in 3D metals (Secs. 3.1 - 3.3)
as well as all corrections to it as discussed in Secs. 3.4, including the theories for 2DES have
the common assumptions that the electrons are noninteracting and that the total number of
carriers Ne in a system contributing to quantum oscillations is conserved.
However it is well-known that in 2D electronic systems, which are exposed to high magnetic
fields and low temperatures, electrons may be localised thus leading to the quantum Hall
effects. The understanding of certain results of QO experiments carried out on the 2D organic
metal κ-(BEDT-TTF)2I3 presented in Ch. 5 requires an insight to the understanding of the
quantum Hall effects in Ch. 4.

3. Electrons in Strong Magnetic Fields

37



4. The Quantised Hall Effects

As already mentioned earlier, conventional descriptions of quantum oscillations in 3D and
even in 2D metals do not include the possibility that in 2D electronic systems electrons may
be correlated as well as localised at high magnetic fields and low temperatures. Such electron
localisation may occur in 2D systems of non-interacting carriers (as known from the IQHE),
but also as a result of electron correlation (EC), as present in the FQHE.
In  the present chapter it is not intended to reproduce a detailed review of the quantum Hall
effects. This is already done extensively (see, e.g., Refs. [130,127,217,150]). However most
of the work reviewed here is devoted to 2D systems based on semiconductors, whereas the
experimental part of the work concentrates on a 2D metal. Therefore in the following
especially those of the properties are discussed, which are most important for the
understanding of the experiments on the 2D organic metal κ-(BEDT-TTF)2I3 presented in
Ch. 5. In addition some aspects are worked in, which may illustrate, how electron localisation
(EL) may influence QO experiments and which point out, where common features and
significant differences of EC and EL in 2D semiconductors and in 2D multilayer organic
metals may be.
It is noteworthy that a number of properties in the IQHE and FQHE are determined by the
number of electrons, filling factors, carrier mobilities, dielectric constants, effective masses
as well as the cyclotron radii. All these quantities may be very different in semiconductors
and metals. It is, e.g., worth mentioning that the cyclotron radii1 are

(4.1)´0 = ®/eB i 1/ B

in a semiconductor (hopping motion), whereas

(4.2)Rc = ®kF
eB i 1/B

in a metal, where free electron motion is assumed. Furthermore, in a metal Rc is not universal,
but depends on the Fermi wave vector kF, i.e., the size AF of a quantised orbit of an electron
(as illustrated, e.g., in Fig. 3.1).
As already mentioned, nearly all calculations referred to here were carried out for 2D
semiconductor devices. The influences of the above mentioned quantities onto the IQHE and
FQHE may be a guide in the following as to stimulate to think over differences and
similarities between the quantised Hall effects in 2D semiconductors and 2D metals.

4.1 The Integer Quantum Hall Effect (IQHE)

After the suggestion of Ando et al., according to which the Hall resistivity ρxy may be
quantised [218] and after plateau-like behaviour was observed in ρxy [219] and σxy [220], the
quantum Hall effect at integer Landau level filling factors (IQHE) was discovered by von
Klitzing et al. [99]. The IQHE is an exciting macroscopic result of a quantum phenomenon
which was first observed in semiconducting two-dimensional electronic systems (2DES) in
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high perpendicular magnetic fields at low temperatures (see Fig. 4.1). Under these conditions
the Hall resistance RH (≡ Rxy ≡ ρxy) exhibits plateaux at integer multiples n of h/e2, i.e., ρxy=
h/ne2 = RK/n with the von Klitzing constant RK = 25812.807 ± 0.05Ω [221,222]. By this ρxy

was shown to be determined by universal constants (to an accuracy of 10-8 ) without any
influence of, e.g. sample impurity or system geometry.

Coinciding with the Hall plateaux the diagonal resistance ρxx tends to vanish (i.e., Rxx <
10-10Ω [131]), thus indicating dissipationless current flow at integer Landau level filling
factors n. Within the Hall plateau region both, ρxx and σxx, vanish, since 

 provided that  and . The fillingxx = xx/ xx
2 + xy

2 d 0 xy ! 0 xy = − xy/ xx
2 + xy

2 = −1/ xy

factors n (later ν in the fractional effect) around which the successive Hall plateaux and
resistance minima are centred, are given by the Landau level filling factor

;  n = integer, (4.3)h n = h ne
eB h

ne
D

where ne is the electron density and D is the Landau level degeneration factor as defined in
Eq. (3.3). Both, ne and D are expressed for a single layer 2D system. The most important
aspects for the understanding of the FQHE are given in the following figures. Parts a) and b)
of Fig. 4.2 show Landau quantisation in a perfect 2D system onto sharp Landau levels. In the
presence of impurities (part c)) these energetic states are broadened to a density of states
(DOS) as shown in part d). The presence of impurities, which results in a broadening of the
DOS, is decisive for the understanding of integer Hall quantisation. At magnetic field
positions where a LL is brought to the FS, the corresponding DOS represents free mobile
carriers, the so-called extended states, which contribute to transport (see Fig. 4.3).
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Fig. 4.1: Integer quantum Hall
effect as detected by von Klitzing
et al. (Ref. [99]) on a Si-MOSFET
sample. UH is the Hall voltage,
whereas UPP is proportional to the
diagonal resistivity ρxx, i.e., the
SdH signal. Further experimental
parameters were B=18T, T=1.5K,
source-drain current I=1µA. The
Landau level filling factor was
controlled by the gate voltage Vg

(i.e. by the electron population in
the 2DEG) rather than by a
magnetic field variation. Both
signals, UH and UPP, include spin
as well as valley splitting. 



Fig. 4.2: Landau quantisation and density of states in a 2DES at T = 0 without and with impurities, respectively.
a): Electron distribution (shaded) in a clean system at zero field. b): Condensation onto sharp energetic
eigenstates (i.e. Landau levels) at nonvanishing B according to Eq. (3.2). Note that the counter starts with n=0
when the correct energetic position should be expressed. c): Electron distribution with random potential
impurities (bottom of the potential pot) at zero field. d): Resulting broadened density of states (LL degeneration
disregarded). The y-axis can be scaled in 1/B, thus representing the LL filling factor n and the LL index. Note
that contrary to b) n starts with n=1 when the number of filled LLs is expressed. Here n=4 is illustrated. The
outermost y-axis shows the positions 1/Bn,FS, where the nth LL reaches the FS (coinciding with a ρxx maximum). 

Fig. 4.3: Connection between the Hall plateaux, ρxx minima and the presence of localised states in the IQHE.
The LL filling factor n is integer, when EF is situated exactly midway between two adjacent Landau levels.
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However at fields where the Fermi energy EF lies between two adjacent LLs, the chemical
potential either drops to the next lower LL when the system is clean, or is pinned to
impurities when these are present. Caused by this, the actual DOS at the Fermi level contains
only the carriers in the vicinity of impurities.
These carriers however are trapped to the impurities, so that they are localised. The DOS at
the Fermi level is given by localised states as long as the Fermi level is pinned to the
potential of localised impurities (shaded regions in Fig. 4.3). The role of the localised states
in the IQHE is discussed in more detail in the following.

4.1.1 The Role of Localised States in the IQHE

The quantisation of ρxy in a 2DES can be understood as a result of the alternation of extended
and localised states at the Fermi level when B is varied. This was proposed already in the
original work [99] and is confirmed by different approaches to the IQHE. According to the
Kubo formalism [223,224] it was found that at T=0K ρxy shows plateaux as long as the Fermi
level lies within the regions of localised states (shaded areas in Fig. 4.3). Aoki found by
numerical simulations that extended states are situated around the centre of a Landau level,
whereas localised states are found on the tails of the LLs [126].  Aoki and Ando showed that
the Hall plateau values are  and that in this region  [225]. Prangexy = n e2/h xx = 0
confirmed the connection between the occurrence of Hall plateaux and impurities. Moreover
he showed that the current is carried exclusively by extended states, whereas localised ones
do not contribute to transport [226].
Based on the Kubo formula, Thouless found that at integer n the Hall conductivity is
unaffected by a weak variation of the impurity potential [227], which explains the perfect
reproducibility of the Hall plateau values.
A further approach proposed by Laughlin is based on a gauge invariance argument [124] and
accounts to the universal character of the IQHE. The author shows by a
‘Gedankenexperiment’ that the energies of localised electrons are stable against an adiabatic
variation δΦ of the magnetic flux Φ. This generates the Hall plateaux around integer n. In the
region of extended states however a Laughlin gauge transformation is only allowed when δΦ
is an integer multiple of Φ, which means that the electron distribution maps into itself after
the unitary gauge transformation. Laughlin’s approach is based on this gauge invariance and
moreover on the existence of a mobility gap, i.e., localised states.
Laughlin’s work has been extended to the case of dirty systems [228] and, furthermore, the
role of edge states was included by Halperin [229] (see Sec. 4.1.4).

4.1.2 Fundamental Difference Between Typical Semiconducting 2DESs and 2D Organic
Metals

In a typical semiconducting 2DES, which exhibits the IQHE, all electrons move on the same
quantised orbit in k-space. In consequence only a single QO frequency is present in the ρxx

signal. Furthermore the regions of extended and localised states can be well separated, thus
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defining clearly the regions where the IQHE plateaux are expected (see Fig. 4.3). However
such a situation is not necessarily given in a 2DES.
In a 2D organic system as, for instance, κ-(BEDT-TTF)2I3, the FS is intersected by several
bands, so that different quantised orbits are present (see, e.g., Fig. 3.3 and Ch. 5). This results
in the coexistence of several different QO frequencies, whose successive DOS alters between
extended and localised states as the field is varied (see Fig. 4.4). A cut through the DOS at
arbitrary field (blue dashed lines) makes clear that the ‘standard’ situation in such a 2D
system is a coexistence of extended and localised states.

Fig. 4.4: Density of states versus 1/B when several different quantised orbits are present. The shaded areas
represent localised states within the different electron distributions. The notation Fj for the QO frequencies is
chosen with reference to the experimental results on the 2D organic metal κ-(BEDT-TTF)2I3 discussed in Ch. 5.
However, two of the occurring QO frequencies are omitted for clarity. 

Since a theoretical description of such a rather complex situation is outstanding to date, a
statement on the expected behaviour of Hall plateaux and ρxx cannot be given actually. It can
be supposed that the contribution of the electrons on the different quantised orbits to the
diagonal and the Hall resistivity is determined by
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• the different filling factors νFj of the successive Landau level structures, or, respectively the
ratio .® C, F j / kBT
• the effective masses, Fermi wave vectors and Fermi velocities,
• mobilities and scattering times of the different types of carriers

Despite this complication two central features are expected to be still given in such a 2D
organic metal:

1) the presence of extended states,
2) a localisation of a part of the electrons in the vicinity of impurities trapped by their              
    potential.

In view of this, Fig. 4.4 illustrates that as the field is varied the DOS at the Fermi level
contains both, extended and localised states. The ratio of both varies with the DOS of the
contributing LL structures, i.e., with the filling factors of the successive subsystems. In
consequence the total number of mobile (here: metallic) carriers at the FS is reduced and,
moreover, this number varies with Landau level filling.
It is therefore suggested to assume that such effects would influence magnetotransport and
that they are therefore observable in SdH experiments on 2D organic metals.

4.1.3 Electron Localisation in the IQHE Regime - Microscopic Picture

An important precedent work on the understanding of localisation in 1D and 2D systems at
B=0 has been provided by Anderson [230]. He starts from the simple picture where a low
density of impurities (i.e., donors and acceptors) is randomly placed in a semiconductor and
forms bound states there. At low temperatures carriers are localised around these impurities.
As the density of impurities is enhanced such that impurity potentials and therefore carrier
wave functions overlap, the situation changes in so far, that the idea of localisation has to be
expanded. Under such conditions carriers may be almost free on an atomic scale (or, e.g., on
the scale of a cyclotron radius), but they are localised on a larger scale due to the finite extent
of their wave function. Such kind of localisation, where the wave function is spread over
more than the average distance between impurities is called Anderson localisation. An
important contribution for the understanding of Anderson localisation was given by a scaling
theory [231]. Therein Abrahams et al. show that in a macroscopic 2D system at B=0 and T=0
all states are localised2. This shows that Anderson localisation cannot be straightforward
related to the IQHE, since the latter effect requires extended states. The situation changes at
B>0, where the system’s symmetry breaks. Aoki showed that for σxy>0 at least one extended
state must exist [127]. By numerical calculations it was found that the extended states are
situated in the centre of a Landau band, whereas the localised ones are found on its tails
[126].
A number of authors have studied the role of impurity potentials in the IQHE regime
[232,233,234,235,236,237] and contributed to the following picture of electron localisation in
the IQHE.
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A carrier motion in an impurity potential U(r), which varies slowly along a length scale of
the order of the cyclotron radius   (see Eq. (4.1)), can be reduced to a linear drift along the´0
actual equipotential line U(r) = constant. The state of an electron, which is by ∆E out of the
centre of the Landau band, is localised on the equipotential line U(r) = ∆E in the vicinity of
the impurity (see Fig. 4.5). Based on the classical percolation model [238] it was found that
the equipotential lines in a 2D random potential at ∆E ≠ 0 are closed curves of finite length
and correspond to localised states. If the regions with U(r) > 0 are represented as land and
those with U(r) < 0 as water, we obtain a set of islands when the Fermi level is situated at ∆E
> 0 and a set of lakes when EF = ∆E < 0 (see Fig. 4.5). However when the Fermi level is
congruent with the centre of the Landau band, at least one extended coast line exists, on
which a carrier can leave the impurity and thus contributes to macroscopic transport (red
trajectories in Fig. 4.5). These delocalised drift trajectories in an external electric field were
analysed by several groups [232,233,234,235] and the quantisation of σxy was reproduced.

Fig. 4.5 left: Density of states (DOS) of one Landau band with extended states on its centre. Localised states
are shaded. right: Topological sketch of a random impurity potential. A number of localised states (closed
orbits) for ∆E ≠ 0 are selected. Extended states at the centre of the band are indicated by red trajectories.  

The extent of the electronic wave function in dependence of ∆E, i.e., the localisation length ξ
has been studied by several groups [239,240] starting from the suggestion that only the centre
of the Landau band is extended, whereas the other states are exponentially localised [241].
The finite size calculations were done under neglect of electron interaction.
It was obtained that the localisation length ξ(∆E) for the lowest Landau band is given by the
equation

(4.4)( E) i E − EC
− with = 2.3 ! 0.1

4. The Quantised Hall Effects

44

0

E
ne

rg
y

∆E ∼ξ

 

 

•

x

•

0 

DOS  [ a. u. ] 

E
ne

rg
y



where Ec is the centre of the Landau band (set to zero in Fig. 4.5). As soon as ξ diverges in
the centre of the Landau band, the state is regarded as extended. Moreover, Eq. (4.4) shows
that carriers which are energetically far away from the centre of the Landau band are
strongest localised. Furthermore the results show that in an infinitely large system there is
only one extended state in centre of the band. However in finite systems of size L, all states
with L < ξ(∆E) can be considered as extended, which widens the region of extended states to
a subband. (see Fig. 4.5).

4.1.4 The Role of Edge States in the IQHE

First interpretations of the IQHE assumed that the current is distributed over the entire
surface of the 2D layer. However upon closer examination this assumption results in a
paradox: According to the simple Landau quantisation picture, within the Hall plateau
regions only localised states are at the Fermi surface. These states do not enable a transport,
whereas a non-vanishing Hall current within the plateau regions is a transport. This means
that the presence of a finite quantised Hall current requires the existence of extended states.
These extended states are provided, i.a, at the edge of the 2DES by so-called edge states.
Some authors have pointed out that in fact the current must flow in the one-dimensional
channel at the edge of a 2D layer [229,242,243,244,245]. As first Halperin [229] obtained
this result by continuing Laughlin’s gauge invariance description [124]. Halperin found that
localised states do not play any role in the response to a change of the magnetic flux. This
means that they are incompressible. If however a non-vanishing Hall current is present, it can
only be realised by extended states, which respond to the magnetic flux (i.e. they are
compressible). In particular the edge states at the FS have to be extended states. By this the
edge state concept explains the existence of extended states which enable nonvanishing Hall
currents in a situation where in the bulk sample only localised states are present at the Fermi
surface.
The description of edge states is based on a single layer 2DEG as realised in a
semiconductor, with all electrons being quantised on one single closed orbit. This 2DEG is
confined to an electrostatic potential V(x) which vanishes inside the sample and is infinite
outside. First descriptions for a hard-wall, i.e., perfectly stair-like potential at the sample edge
were replaced by a more realistic soft-wall potential profile [242], where V(x) changes slowly
with the length scale of the cyclotron radius . In this arrangement an eigenstate En is given´0
by the sum of Landau energy and electrostatic energy and therefore the energy of all En is
enhanced in the vicinity of the sample edges (see Fig. 4.6). Owing to this, even when the
Fermi surface inside the ‘bulk’ 2D layer lies in a region of localised states, extended states
are brought to the FS at the edges, where successive Landau levels cross the Fermi energy.
This causes that in a magnetic field applied perpendicular to such a 2DEG the electrons on
both edges of the sample receive opposite velocities. For n filled LLs one obtains n quasi
one-dimensional edge channels along the layer edges. Each of them carries a dissipationless
current

 , (4.5)In = e
h ( R − L )
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which depends on the chemical potential difference between the right ( ) and the leftR

sample edge ( ) in the semiconducting device [242]. For non-interacting electrons this netL

current would flow along the layer edges and the quantised Hall current would be just the
difference between the two opposite edge currents.

Fig. 4.6: Modification of the energy spectrum of a 2DEG of non-interacting electrons in an infinite soft-wall
potential. xL and xR are the left and right sample edges, respectively. Edge currents (arrows) are induced by a
present magnetic field B = Bz.

It was also found in Ref. [242] that these results hold for the inclusion of random potential.
An alternative approach to edge currents was performed in Ref. [244], which confirms the
importance of edge states in the IQHE in general. Experiments on edge states are reported in
Refs. [246,247,248,249]. Furthermore it has been proposed that edge currents might be
observed also in magnetic susceptibility [250].
Further experiments on edge currents under different contact arrangements are reported for
conventional four-probe Hall as well as quasi-Corbino geometry3 in Ref. [251]. It was shown
that in the presence of edge channels the contact arrangement plays a decisive role for any
current to flow. At magnetic field values corresponding to one of the Hall plateaux an electric
current through a 2DEG can only flow when both, source and drain, are situated within the
narrow edge region and are contacted to the edge channels (see Fig. 4.7, left). As soon as one
or both current contacts are not connected to the narrow region of edge channels (right part of
Fig. 4.7) , the sample resistance diverges, since the current flow through the sample vanishes.
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Fig. 4.7: Schematic illustration for the contact arrangements of source (S), drain (D) Hall contacts (H) (RSD and
ISD are resistance and current between source and drain). The edge regions of the 2DEG, where the current flows
(arrows), are shaded. The bulk, which is supposed to be free of current, is kept white. left: Standard Hall
geometry, where S, D and H are on the same edge. right: One (or more) of the contacts is not at the edge. Thus
a current flow in the Hall plateau is not possible.
 

Fig. 4.8: Edge states in a 2DEG in the IQHE regime (according to Ref. [252]). left: In the single-electron
picture. a): Top view on the left edge of a 2DEG. Arrows represent the current flow in the narrow edge
channels. b): Landau level bending in the edge region according to Fig. 4.6 . Filled circles represent occupied
states. c): Stair-like electron distribution near the boundary. right: The same in the self-consistent electrostatic
picture. d): Top view on a 2DEG with incompressible (shaded) stripes and compressible (unshaded) stripes. e):
Bending of the energy profile. f): Electron density vs. the distance to the middle of the depletion region.   
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So far the description is based on a simplified one-electron picture. The position of the edge
channel is given by the intersection between Landau level energy and Fermi energy (see Fig.
4.8.b). The edge channel width corresponds to the spatial extent of the wave function on the
Landau level, which is of the order of the magnetic length . In this description the edge´0
channels are narrow (see Fig. 4.8.a). However this requires a stair-like change of the electron
density at every edge channel (see Fig. 4.8.c). But in a real sample at zero field the electron
density decreases rather gradually close to the surface. If such a gradual density profile at
B = 0 should be changed into stair-like one at B > 0, this deformation would cost an extra
amount of electrostatic energy. This disadvantage is overcome when partially filled Landau
levels are spread on a spatially wider region on the FS (see Fig. 4.8.e). These partially filled
LLs can take in charges without changing their energy, i.e., they are compressible. These
widened intersection lines between the partially filled LLs and the Fermi energy form
compressible edge stripes, which contain the extended states (see Fig. 4.8.d). In the regions
between adjacent edge stripes, the Fermi level is situated between two LLs and the filling
factor is integer. Adding a charge means that it has to occupy the next upper LL, which costs
a finite energy. Therefore these states are incompressible (shaded in Fig 4.8.d). In this
so-called self-consistent electrostatic picture (right part of Fig. 4.8), an alternation of
compressible (i.e., current-carrying) and incompressible (current-free) stripes are aligned
along sample boundary.

The role of edge states in the IQHE is tantamount to the question how much of the Hall
current may be carried by them. The ratio between edge and bulk current has been calculated
in Ref. [253]. It was found that for (realistic) soft-wall potential the bulk current dominates
the edge current contribution, whereas only for the hard-wall case the edge currents dominate
[254]. This means that for realistic situations the IQHE cannot be described exclusively by
edge currents. It should be emphasised that the contribution of edge currents also depends on
the total current Itot. For Itot < 100nA edge currents were found to be dominant [251] whereas
for higher current densities the current penetrates into the bulk and the edge contribution
finally becomes even unimportant. Correspondingly, it was demonstrated that a quantised
Hall current occurs even in Corbino geometry, i.e., without any edge [255].

In conclusion the most important properties of edge states and edge currents are summarised
in the following, which allow to assess the role of edge states in κ-(BEDT-TTF)2I3 (see
Ch. 5):
1) Edge states are introduced to explain a non-vanishing Hall current in the Hall plateau
regions, i.e. where extended states at the FS are not expected. However, as the edge state
concept was proposed to explain extended states, it is rather unfavourable to describe
localised states.
2) Edge currents are dissipationless and they are connected with the occurrence of a
quantised Hall plateau.
3) Edge states can only occur when scattering between the edges is not possible. The
condition beyond is that no electron may be transferred from one sample edge to the other.
This implies that there are no extended states within the bulk of the sample which would
allow such a transport.
4) Edge currents exist even when no external voltage is applied to the sample. Therefore it is
expected that the effects of edge currents are also observed in magnetisation.
5) The filling factor regions ν in which edge states may occur, are given by
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 , (4.6)N − ´0
W < < N

where N is the number of edge states (N is just the actual number of LLs below the FS),  is´0
the cyclotron radius and W is the sample width. Since  is a microscopic quantity, whereas´0
W is macroscopic, edge currents may not occur in a continuous but only in a very limited
filling factor region around integer .l N
6) Edge currents are only weakly dependent on tilting the angle Θ between the magnetic field
direction and the 2D plane out of the orientation normal to the plane.
7) The ratio between edge and bulk states is given by

 , (4.7)≠ = ´0
W

i.e., the cyclotron radius and the sample width. This ratio decreases with increasing magnetic
field.
8) Edge states are able to carry only very limited currents. In 2D semiconductors they lose
importance above about 100nA in favour of bulk currents and for Itot >> 100nA their role in
the IQHE tends to be negligible.

The 1D Chiral Tomonaga-Luttinger Liquid

As shown in the preceding, a (quasi) one-dimensional electron gas (1DEG) may be
established at the edges of a 2D system, an effect which may lead to the occurrence of edge
states. However under special circumstances the electron system becomes a perfectly 1DEG
which cannot be described as a Fermi liquid any more, but represents a so-called
Tomonaga-Luttinger liquid (TLL) [16,17]. If a 2D material provides an ideal edge and is
brought onto a quantum hall plateau, this plateau is realised exactly up to the sample edge.
Projected on Fig. 4.6, the ideal character of the sample means, that the Hall plateaux are flat
up to the sample edges. In consequence edge states and edge stripes do not occur and when
the magnetic field corresponds to a quantised Hall plateau value, i.e., there are no extended
states at the FS inside the sample. The resulting 1DES on the sample edge represents a chiral
one-dimensional TLL. It was shown that the system can be described by a boson operator,
but not by Fermi liquid theory (see also Ref. [256]).
One of the most important properties of the TLL is that low-energy excitations of the system
may exist only at the sample edge in terms of a carrier fluctuation at the edge itself.
Regarding momentum distribution, the TLL shows no discontinuity at k ≡ kF, which means,
that the system has no Fermi surface.

In summary, the 1D chiral Tomonaga-Luttinger liquid is characterised by the following
properties which are important for the assessment of its role in the experiments on the 2D
organic metal κ-(BEDT-TTF)2I3 in Ch. 5:

i) The occurrence of a TLL requires ideal samples up to the sample edge without impurities,
defects or carrier density fluctuations.
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ii) In the presence of a TLL, the system cannot be described by Fermi liquid theory,
especially:
iii) A Fermi surface is absent and therefore cannot be investigated.

In an organic metal the role of edge states is certainly influenced by several additional, even
decisive conditions, as, e.g., cyclotron radii, different closed orbits on the FS, but also sample
qualities at the edges. However in order to avoid needless repetition and for a better
illustration, these are discussed with the experiments on the 2D organic metal
κ-(BEDT-TTF)2I3 in Ch. 5 .

Up to now electron localisation and further results of two-dimensionality were illustrated as
they occur in the integer IQHE, i.e., in a single-particle picture under neglect of electron
correlation. The next sections describe the occurrence of electron localisation in the
fractional IQHE as a result of electron correlation.

4.2 The Fractional Quantum Hall Effect

The present section recalls the most important basic information for the understanding of the
fractional quantum Hall effect. Besides this, some selected topics are collected, which are
important for the interpretation of the experiments on the 2D organic metal κ-(BEDT-TTF)2I3

in Ch. 5 . The focus is put on two features beyond the FQHE, i.e., electron correlation and
electron localisation. Special weight is also put on the understanding of the FQHE in 2D
multilayer systems.
It should be noted that most of the work on the understanding of the FQHE is done on
semiconductors, where the effect is mainly observed. In contrast, the organic material
κ-(BEDT-TTF)2I3 discussed in Ch. 5 is a metal and has moreover a rather complex electronic
structure compared to the ‘standard’ FQHE devices. Thus it is straightforward to see that a
number of even basic features of the FQHE possibly have to be thought over. This cannot be
worked out in detail within the present work, so that in some aspects only a stimulation can
be given. This is done to some extent in the following and with the discussion of the
experiments in Ch. 5, as appropriate.

In 1981 Tsui et al. investigated a single-layer high mobility GaAs/AlxGa1-xAs heterostructure
in high magnetic fields at low temperatures4 on the search of a Wigner crystallisation, i.e., a
crystalline ground state of a correlated electronic system, in which the potential energy
dominates the kinetic energy [257]. In order to reach this imbalance of energies, the kinetic
energy of the carriers can be minimised by limiting their motion within a 2D plane.  In a
single-layer 2D heterostructure an out-of-plane motion is prohibited on principle by the finite
width of the 2DEG. The in-plane motion is limited as a by-product of Landau quantisation
[151,152]. Under such conditions Tsui et al. discovered the fractional quantum Hall effect
[123]. Besides the well-known Hall plateaux at integer filling factors νj ≡ nj, Hall plateaux
were also present at fractional ν =1/3 and at lowest T=0.48K also indicated at ν =2/3. In later
experiments on higher mobility samples (µe ≈ 106 ... 2·107cm2/Vs) a series of further
fractional filling factors were observed (see Fig. 4.9) [258,132]. The Hall plateau widths are
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T ≥ 0.48K, B ≤ 21T [123].



different at successive fractional ν and in conjunction, the minima in the diagonal resistance
are differently pronounced, tending to zero resistance in the plateau regions. 

Fig. 4.9: Fractional quantum Hall effect as observed in a single-layer modulation-doped 2D GaAs/AlxGa1-xAs
heterostructure with µe = 2·107 cm2/Vs ([132], see also [258]).  
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Fig. 4.10: Fractional filling factors ν ordered by their denominator (left) and by their hierarchy (right) after
Ref. [259] (see also [260]). The hierarchy scheme is discussed in Sec. 4.2.6 whereas the transition to a Wigner
crystal is sketched in Sec. 4.2.4.
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A number of further experiments were carried out in GaAs/AlxGa1-xAs heterostructures
[261,131,262,263,264]. Besides, the FQHE was also observed in high mobility Si-MOSFETs
[265,266], n-type Si/SiGe heterostructures [267] and multiple quantum well heterostructures
[268].
Among the fractional ν observed in detailed studies [269,270,271,272,273,258,274,275,
276,277,278,279] the most prominent ones are collected in Fig. 4.10. Further fractions p/q
with q = 9, 11, 13 and even 15 were found in the SdH signal. The Hall resistance was found
to be quantised to rational νj by

. (4.8)xy = h
j e2

It is common to the observed fractions that they occur nearly exclusively at odd denominator
filling factors. A breaking of this rule has been detected by Clark et al. [273] and Willett et
al. [258] who found the FQHE at ν = 5/2. However in a single-layer 2D system especially
ν = 1/2 does not occur. At this special fraction ρxy follows exactly the classical Hall curve
(see Fig. 4.9). However Chakraborty et al. predicted theoretically that ν = 1/2 should occur
in multiple-layer rather than single-layer systems [280,281] and indeed Eisenstein et al.
found ν = 1/2 to be realised in double-layer systems [282,283]. The background of this
striking result will be discussed in detail in Sec. 4.2.8.

4.2.1 The Ground State

The observation of Hall plateaux and strong minima in the diagonal resistance, where ρxx

even vanishes at certain rational ν, hints to the presence dissipationless currents, the
existence of a gap and the occurrence of localised states. These states arise in a filling factor
region, where a single-particle Landau level structure under neglect of electron correlation
cannot generate localised states. These states and in conjunction the FQHE were shown to be
generated by electron correlation. As the width as well as the variety of the FQHE plateaux
increases with the carrier mobility, impurity potentials were supposed to be less important
than electron interaction. This suggests to base the explanation of the FQHE on the
description of a 2D correlated electronic system in an uniform positive background, where
the impurities represent local perturbations. This system is exposed to low temperatures and
such high fields, that the potential energy is lower than the cyclotron energy

, (4.9)e2

´0
é ® c

where is the magnetic length (see Eq. (4.1)), ε is the dielectric constant (ε ≈ 12.9 and´0
m* ≈ 0.067 me in GaAs5). This inequality avoids Landau level mixing, i.e., the admixture of
states in higher LLs, so that the system is in the so-called extreme quantum limit.
Furthermore full spin polarisation is assumed.
The first studies of the ground state of such a system under Coulomb interaction between
electrons was carried out by Yoshioka et al. by numerical calculations [284,285] (see Fig.
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[287] and might be even magnetic field dependent. This enhances the inequality in Eq. (4.9).



4.11). As one of the most important results they found a ground state with a significantly
lower energy than that of a Hartree-Fock (HF) Wigner crystal. Furthermore the energies of
the correlated ground state at certain filling fractions (i.e.,ν = 1/3; 2/5) are insensitive to the
system size and, as found later, very similar to the infinite system results. Moreover, at these
fractions a dip in the particle energy curve is indicated. This would mean that the
compressibility

(4.10)i ØE
Ø

−1

diverges with different signs when approaching to the dips from both sides and vanishes at
these fractions. Therefore the system represents an incompressible state at these filling
factors. This finding is important in connection with Laughlin’s description of the ground
state discussed later.

Fig. 4.11: Energies per particle for finite electron systems in a periodic rectangular geometry vs. filling factor of
the lowest LL (according to Ref. [284]). The dashed and dotted lines result from Hartree-Fock (HF)
approximation for an electron or hole crystal of infinite particle number [286]. Open circles, closed circles and
open triangles are results for particle numbers Ne = 4, 5 and 6 for electron (ν < 1/2) and hole states (ν < 1/2).
Closed squares show the crystal state energies and open squares the HF crystal states for Ne = 4. The solid line
drawn through the Ne = 5 data is a guide to the eye. The crystalline and liquid state, respectively, are discussed
in Sec. 4.2.2.    

A dip in the ground state energies of the correlated system might be supposed also at ν = ½.
However a closer view reveals that there the energy is strongest system size dependent and is
therefore an artefact of the very limited particle number.
It should be noted that the data for crystalline realisations of a ground state do not show any
dips at fractional ν values. This underlines that they cannot represent the ground state, which
‘prefers’ certain fractional ν. Furthermore the data at low ν suggest that the energies of the
Wigner crystal and the correlated state approach towards lower ν. Indeed the crystalline state
was found to have lower energy at latest at ν < 1/70 (see Secs. 4.2.2 and 4.2.4).
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4.2.2 Laughlin’s Description of the ν = 1/3 Ground State

The work discussed yet describes some basic properties underlying to the FQHE. However
the key of a microscopic understanding was given by Laughlin, who proposed to describe the
FQHE in terms of a condensation of the electronic system into a novel liquid state of matter
[125,288,289,290]. His description starts from a 2D electronic system where the carriers are
correlated by logarithmic (i.e., 2D) Coulomb interaction. The magnetic field is assumed to be
strong enough to generate ν = 1/3. The choice of an uniform neutralising background
potential allowed to benefit from analogies to a 2D one-component plasma (OCP) [291].
Laughlin proposed a trial ground state wave function  for ν = 1/3, which consists of a(x)
product of Yastrow-type functions. It had to be optimised with respect to energy
minimisation and symmetry. In order to describe a ground state which obeys Fermi statistics,
Ψ has to be antisymmetric. This restricts its validity to filling factors with odd denominator.
The resulting wave function at ν = 1/m = 1/3 for N particles with complex coordinates
z = x + iy reads

, (4.11)(z1, ..., zN ) =
N

j< k
(zj − zk )m exp − 1

4´0
2 l

zl
2

where all particles are in the lowest Landau level and fully spin-polarised. In analogy with
the OCP it was shown that the states described by Eq. (4.11) stay liquid upon lowering ν
until ν ≈ 1/70, whereas below the Wigner crystal state is favoured. This liquid nature can be
also illustrated as shown in Fig. 4.12 by the correlation function g(x) [291,125,292].

When one particle is assumed to be located at the origin, g(x) is the probability to find the
neighbouring particle placed at a distance x, i.e., g(x) is a measure for charge separation in
real space. For the Wigner crystal g(x) provides a clear short-range order for low particle
distances (since g(x) decreases markedly, as x2). For longer distances g(x) oscillates, which
shows the presence of a long-range order. These are the characteristics of a crystalline
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system. However in the Laughlin state g(x) provides an even better short-range order (since 
, whereas for longer distances g(x) shows no particular structure,g(x) i 1 − exp(−x2/2´0

2) i x2m

i.e., a low long-range order. These properties are characteristic for a liquid state.

It should be noted that g(x) depends on the particle distance as well as the cyclotron radius,
which both may be very different in 2D semiconductors and 2D metals. This may allow a
different density of charge packing in the two classes of materials.

4.2.3 The Ground State Energy and the Energy Gap

In order to calculate the energy of the ground state, Laughlin used a modified ‘hypernetted
chain’ theory introduced in Ref. [291] and obtained for the ground states at the special
ν = 1/m [125]

.   (4.12)EGS (m = 3) = (−0.4156 ! 0.0012) e2

´0
and EGS (m = 5) = (−0.3340 ! 0.0028) e2

´0

The ground state energies for various filling factors can be fitted to the following
approximate formula:

. (4.13)EGS (m) j −0.814
m 1 − 0.230

m 0.64
e2

´0

It is noteworthy that the ground state energy is determined, i.a., by the dielectric constant ε as
well as the cyclotron radius  which may be very different in semiconductors and metals´0
(comp. Eqs. (4.1) and (4.2), for ε in organic conductors cons. Fn. 5 in Sec. 4.2.1). All
calculations referred to in the following, were carried out for 2D semiconductor devices.
Haldane and Rezayi (Ref. [293]) calculated the ground state energy in spherical geometry by
considering periodic boundary conditions [294]. They concluded that Laughlin’s wave
function indeed represents the exact ground state.
A number of groups have contributed to calculate the energy of the ground state using
different methods, particle numbers and sample geometry. They obtained either perfect
agreement with the results cited above or at most minor deviations to them. These deviations
appear to be of minor importance from the viewpoint of this work, which focuses on the
occurrence of fractional filling factors in a 2D metal instead of a semiconductor. Details of
these calculations are found in [284,292,295,296,259,293,297,298,299,300,301].

Experimental access to the quasiparticle-quasihole energy gap is given by temperature
dependence of the magnetoresistance, especially of the ρxx minima. In a semiconductor these
properties show activated behaviour. Further access to the gap energy6, is provided by
microwave photoresistivity measurements. [270,265,302,303,304,305,306,307,308,309,310,
278].
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4.2.4 Transition From a Laughlin Liquid to a Wigner Crystal at Low ν

It was mentioned already in connection with Fig. 4.12 that the ground state in the FQHE is a
quantum liquid state. It was also remarked that the 2D one-component plasma (OCP)
undergoes a transition into a Wigner crystal at   [291].é 1/70
In order to obtain the crystal energies which compete with the liquid state energies of a
FQHE system, most calculations were carried out in the framework of Hartree-Fock (HF)
approximation [284,286,292,311]. Monte Carlo results for the Laughlin liquid state were
compared with the HF crystal energies in dependence of ν and a critical filling factor νc for a
liquid-to-solid transition was estimated as  [292], which is very similar toc l 1/10
Laughlin’s value [125]. Slightly higher  were obtained in Refs. [312,313]. A numberc l 1/7
of experiments show that filling factors down to  and 2/11 [276],   [274,314]= 1/5 = 1/7
occur, thus giving an upper limit for νc.

A common conclusion of all calculations and experiments is that the Wigner crystal state
adjoins the Laughlin liquid state at low filling factors ν < νc (see Fig. 4.10). For ν > νc

however the liquid state is the more favourable one until it is destroyed at magnetic fields,
which are too low to establish FQHE conditions.

4.2.5 Excited States: Quasiparticles and Their Main Properties

An important interpretation of Laughlin’s ground state wave function for ν = 1/m (Eq. 4.9)
was given by Halperin [128] (see also [297]). When the positions of N-1 electrons are fixed
at Zk, the wave function for the one remaining electron reduces to

 . (4.14)(z1 ) =
M

k = 1
(zj − Zk ) exp − 1

4´0
2 z1

2

According to the theory of functions a polynomial is completely determined by its zeros. The
zeros of Eq. (4.14) can be identified with charges which repel the electron at z1. In order to
minimise energy, all zeros are distributed homogeneously in real space. Halperin observed
that the zeros are allocated exactly at the particle positions. This means that at ν = 1/m every
charge position is defined exactly by m zeros [128].  Moreover, these m zeros not only
correspond to one electron charge, but, by ν = 1/m, the number of zeros is identical to the
number of flux quanta per electron. The analogy with the OCP gives strong support that this
Laughlin ground state is a translationally invariant liquid state [125,291]. This means that at
ν = 1/m the electronic states are extended states.
The creation of elementary excitations can be illustrated according to Refs. [125,128] by the
following Fig. 4.13, which shows the situation around a liquid ground state of fractional
ν = 1/m, e.g., 1/3. Part a) of the figure shows the situation exactly at fractional ν = 1/m. The
position of every electron is defined by m zeros of Eq. (4.14) or m flux quanta, i.e., here by m
= 3Φ0. The charges are distributed uniformly on the neutralising background as in an OCP. In
this Laughlin liquid state the optimal ratio between charge and flux is realised and thus the
energy is minimised. As the field is increased by adding, e.g., one flux quantum, the system
tries to keep its favourable ground state (Fig. 4.13.b). Therefore it avoids an overall change,
i.e., a compression of the favourable ratio between charge and flux. 
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Fig. 4.13: Illustration of a correlated 2DES
(schematic top view on a single layer) around
fractional ν = 1/m, e.g., 1/3. Full black circles
represent electrons, grey-shaded areas represent
the corresponding magnetic flux at ν, here
Φm = 3Φ0 . The position of every electron is
defined by m zeros of Eq. (4.11), i.e., here by m =
3 flux quanta Φ0.

Fig. 4.13.a: Situation at ν ≡ 1/m, i.e., B = Bm. The
charges are distributed uniformly on the
neutralising background. The optimal ratio
between charge and flux is realised, which is
inherent to the Laughlin liquid state.
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Fig. 4.13.c: Correlated 2DES at B = Bm+δB after
accumulation of a screening charge. The situation is
symmetric with respect to the sign of the charges.

Fig. 4.13.b: Correlated 2DES at B = Bm+δB, i.e.,
one flux quantum is added to the system. One
quasiparticle with fractional charge is generated.



Instead, one single zero is generated formally in Eq. (4.14) and the flux is placed there. Since
at ν = 1/m there are m zeros required to accommodate one charge, the corresponding single
zero position is unoccupied and represents the lack of a charge of magnitude +e/m. This
unoccupied charge position can be regarded as quasiparticle excitation with fractional charge
([125], see also [315,316,317,318,319]) i.e., as local charged perturbation. This quasiparticle
(here it is a quasihole) is separated by a finite gap from the incompressible ground state.

Electron Localisation in the FQHE Region

After the generation of a quasiparticle (QP) with fractional charge +e/m (see Fig. 4.13.b) the
system minimises its total energy by keeping itself neutral on a mesoscopic scale. Therefore a
negative counterpart charge of -e/m in all is accumulated around the excitation until it is
completely screened (Fig. 4.13.c)7. This screening object represents itself a quasiparticle of
fractional charge. Up to now the generation of QPs was described for the situation 

. In the symmetric case   the created QPs have opposite sign but theB t B + B B t B − B
same properties.
Experiments on the detection of QPs with fractional charges were carried out by a number of
groups [310,320,321,322,323,324,325].
The quasiparticle excitations were shown to be allocated preferably at impurities [125] or at
disorder sites. By this the QPs as well as the screening electrons are localised there. A further
deviation of B from the value corresponding to ν ≡ 1/m results in the generation of further
localised quasiparticle pairs which are expected to form a regular triangular lattice [128].
The role of the generated quasiparticles is to accommodate the flux difference which
separates the system at actual internal magnetic flux from that of optimum flux at ν ≡ 1/m
and to enable the major part of the system to stay incompressible. This procedure persists up
to a critical flux value around fractional ν and is responsible for the occurrence of Hall
plateaux.

By this process electron correlation in a 2D system may generate extended electronic states at
low fractional ν. They are responsible for the ρxx minima in the FQHE. Around these
fractions however, mobile as well as localised electrons were found to coexist, from which
the localised carriers may not contribute to transport.

Fractional Statistics

The fact that the quasiparticle excitations generated around fractional ν = 1/m carry fractional
charge ± e* = ± e/m [125,128,326] invokes questions on their further properties. It could be
shown by Arovas in a gedankenexperiment that the interchange of two QPs of charge e
leads to a Berry phase shift of  introduced to their wave functions. For ν = 1 the QPs=
would behave like fermions, however for fractional ν  the QPs obey neither Fermi, nor Bose,
but fractional statistics. This behaviour was also suggested in Ref. [327]. According to
Wilczek this kind of particles can be called anyons, since for continuous ν any phase shift
and therefore any statistics may be realised in a 2D system [328,329,326,315,330,331].
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One of the important results of fractional statistics is to determine the way in which
quasiparticles pack in the 2DES [327,290]. This is done in dependence of the actual
fractional ν and accounts, e.g., for the observed fractions 2/7 and 2/5 [327].

The Role of Impurities and Sample Inhomogeneities

The role of impurities in the FQHE was investigated by a number of groups
[125,332,333,334,335]. As already pointed out in the original work [125], impurities and
sample inhomogeneities lead to a broadening of the carrier bands which then consist of
regions of extended and localised states. The FQHE is expected to be destroyed as soon as
the zero-field scattering time , where  is the quasiparticle energy gap. < ®/

The Size of Quasiparticles - Localisation Lengths

Important information on the size of quasiparticles and localisation lengths can be deduced
from studies of the influence of impurities in the FQHE. It was found that the screening
charge (see Fig. 4.13.c)  which accumulates at an impurity, oscillates around the impurity on
a characteristic length scale of

 , (4.15)LQP l ´0

where  is the cyclotron radius in a semiconductor (see, e.g., [334]). This length scale ´0 LQP
can be understood as localisation length for those carriers which build the screening object. It
means that those carriers can be considered as free as long as their motion is restricted to an
area of radius below about  around the impurity. However since they are trapped to the´0
corresponding area

, (4.16)SQP l (LQP)2

they have to be considered as localised on any larger length scale. This is expected to
influence all experiments on longer length scales as, e.g., magnetotransport experiments and
the result is indeed observed in the FQHE. The area SQP can be interpreted as the size of a
quasiparticle.
It should be recalled that the cyclotron radii  in semiconductors and the corresponding´0
quantity in metals may be very different quantities (see Eqs. (4.1) and (4.2)) and thereforeRc
localisation lengths and the size of quasiparticles may be very different in these classes of
materials.
Furthermore it should be noted that the understanding of these quantities in multilayer
systems is of course and additional challenge.

 4.2.6 Hierarchy of Higher Order Fractions: From ν = 1/m to ν = p/q

The theory of Laughlin for the ground state and localised quasiparticle excitations is a
successful description for the filling factors ν = 1/m (e.g., 1/3, 1/5). It should be kept in mind
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that this approach was made to understand the FQHE in 2D semiconducting single-layer
systems. It is furthermore assumed that all electrons are in the lowest Landau level and that
their spins are completely polarised. The fact that the ground state wave function (Eq. (4.11))
must obey Fermi statistics, requires that m is odd. By electron-hole symmetry the description
can be extended to , e.g., 2/3, 4/5 (see Fig. 4.10 and Tab. 4.1).= (1 − 1/m)

The next step for the understanding of the realisation of more complex ν has been made by
thinking over the role of spin polarisation. Halperin pointed out [128] that the electron
g-value in GaAs is about 0.25 of the free electron value [336] and by comparison of Zeeman
and cyclotron energy he argued that at moderate fields some of the spins may be reversed.
Using the classical plasma approach [337,338,339,291], the filling factor region could be
extended to fractions

, (4.15)= 2
(m + n)

where, e.g.,  and   would result in . Further investigations revealed that them = 3 n = 2 = 2/5
5/2 state is indeed spin unpolarised [340,295,300]. A later systematic calculation [341]
showed that besides 5/2 also the 2/7 state is unpolarised, whereas the states at fractions 4/13,
4/11 and 4/9 are partially polarised (the latter fraction was observed in experiments and is
reported in Ref. [261]).

The presence of the FQHE at a number of further ν with more complex fractions (see Figs.
4.9 and 4.10) asked to extend Laughlin’s theory and to develop a hierarchy scheme for the
filling fractions at which the FQHE and electron localisation may occur. Main efforts on this
purpose were made by Haldane [259,342], Halperin [327], Laughlin [288,343] and Jain
[344].
Haldane’s approach is based on the idea that a first generation of quasiparticles at ν = 1/m
(m = 3,5,7, i.e., first line in Fig. 4.10) is built by correlated electrons. These quasiparticles
themselves can be understood as ‘parent’ states which couple and thus build the next
generation of QPs (second line in Fig. 4.10). These again may couple and as the scheme is
continued, a wide variety of fractions is realised. The sequence of possible filling fractions
(see, e.g., Fig. 4.10) is given by

(4.18)= 1
m + 1

p1 − 2

p2 − 3
p3 − ...

where  is an odd or even integer for a Fermi or Bose system, respectively. The factors m > 0
 are -1 for the creation of particles and +1 for holes, while  are even quantities. In thisj pj

picture the elementary excitations obey Bose statistics. Considering particle-hole symmetry
this formula holds for all filling fractions  built on the lowest Landau level. Based on0 < < 1

, however, Eq. (4.18) generates all odd denominator fractions with m = 1 0 < < ∞
(particle-hole symmetry included).
Halperin’s hierarchial scheme [327] keeps very close to Laughlin’s theory. The first set of
quasiparticles at  (first line in Fig. 4.10) is generated as described in Sec. 4.2.5,= 1/m
restricting ν to  with odd denominators (see Tab. 4.1). Particle-hole symmetry0 < < 1/2
extends the fractions to . Inclusion of the second spin state allows certain fractions= 1 − 1/m
with . The coupling of electrons to pairs enables the realisation of  with= 1 + 1/m = 1/p
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arbitrary p, including even values. Coupling between paired and unpaired electrons extends
the ν region as shown in Tab. 4.1, where m (odd) controls the correlation between unpaired
electrons, p (even) represents the correlated pairs and r (odd or even) introduces the
electron-pair correlation.

p, q = arb. ν > 1; arb.ν = p/qInclusion of Higher Landau Levels 

n, m = arb.ν = arb.ν = n2/mn - Tuplets of Electrons

m = odd
p = even

r = odd/even

=
4 m + p − 4 r

m p − r2
Pairs + Single Electrons

q = arb.ν < 1ν = 1/qElectron - Electron  Pairs
m = oddν > 1ν = (1+1/m)Abrogation of Spin Polarization
m = oddν < 1ν = (1-1/m)Electron - Hole  Symmetry
m = oddν < 1/2ν = 1/mSystem  Spin - Polarized

Possible  Filling  FactorsAssumption

Tab. 4.1: Extension of possible fractional filling factors ν from  to arbitrary  according to the= 1/m = p/q
hierarchial scheme in Ref. [327].

This scheme can be extended to the generation of n-tuplets of electrons and ends up with 
, which can, in principle, reach any rational filling factor, especially when higher= n2/m

Landau levels are included. In this picture the elementary excitations obey fractional
statistics.

The following features are essential in the FQHE and in the above described hierarchial
schemes.

1) The hierarchial schemes describe the FQHE in semiconducting single-layer 2D systems.
2) They allow indeed arbitrary ν in the liquid state above the critical value νc of Wigner
crystallisation.
3) They ‘propose’ possible filling factors to the system and the system ‘decides’ whether they
are sufficiently stable to be realised and in which Landau level occupation and spin
conformation this can be done.
4) In both pictures the variety of possible ν is given by the coupling of electrons and/or
quasiparticles.

From the experimental experience further characteristic properties of the FQHE states have
been deduced:
5) The higher the carrier mobility is, the higher the variety of fractional ν is, where the FQHE
occurs.
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6) With increasing denominator value, both, the quantised Hall plateau width as well as the
depth of the ρxx minima decrease.
7) The FQHE has a characteristic energy scale of a few degrees Kelvin.

It is straightforward to see that, provided that two-dimensionality is given, most of the
characteristics are determined by system specific properties as, e.g., electron density,
mobility, cyclotron radii and furthermore by scattering times, mean free paths of coherent
motion gap energies and dielectric constants. All these quantities may be very different in 2D
semiconductors and 2D metals, respectively.
It should be also noted that spin reversal depends on the spin interaction energy, which may
be also very different in 2D semiconductors and metals.
Moreover, the above mentioned stability calculations were performed for finite systems
containing only a few carriers, whereas metals have a huge number of electrons. This holds
the possibility that in systems with a huge particle number complex coupling patterns may
lead to stable states.

For these reasons the sequence of allowed ν in 2D metals might differ strongly from that
observed in semiconducting 2D systems.

4.2.7 The Special Fraction ν = 1/2 in a Single-Layer 2DES: Composite Fermions

As already mentioned, Laughlin’s description of the FQHE as well as the major part of the
subsequent work concentrates on the treatment of filling factors with odd denominators. This
is motivated by the fact that in experiments on single-layer 2DES odd denominator fractions
are found to be strongly favoured. This is considered in the theoretical description by the
requirement of antisymmetry of the wave functions of the first generation of quasiparticles.
The same condition is also worked into the hierarchial schemes, thus leading to odd
denominators also in higher order fractions (see Fig. 4.10 and Eq. (4.18)). However the
possibility of even denominator filling factors is not excluded in these theories. Indeed
minima in ρxx indicate the presence of ν = 3/4 [270] and ν = 9/4, 5/2 and 11/4 [273,345].
The most exciting even denominator filling factor is certainly ν = 1/2. In this case a
Laughlin-type wave function for a single-layer 2DES would describe a system obeying Bose
statistics. Transport experiments on heterostructures show in the region of ν = 1/2 dips in ρxx

but no FQHE plateau (see, e.g., [258,264]). This finding invoked the question whether the
occurrence of the FQHE at ν = 1/2 either requires higher sample quality or whether the liquid
state underlying to the FQHE can be ever established at ν = 1/2 in a single-layer system. The
question whether this liquid state is the stable ground state at ν = 1/2 was followed by
calculations of the ground state energies ([284,285], see also Fig. 4.11).  Especially at this ν
the ground state energies show system size dependence without tendency to convergence,
thus leaving the question open. A number of further studies on the nature of the ν = 1/2 state
in a single-layer system were carried out (see, e.g., [128,346,337,347]). From isotropy
arguments of the pair correlation function g(r) it was concluded in Ref. [347] that at ν = 1/2
the liquid state is not a stable ground state in a single-layer 2DES.
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Composite Fermions

A decisive progress in the description of a half filled Landau level was achieved by a picture
developed by different authors ([348,349,330,350,351,352,353] for a review see, e.g., [354]).
It is based on the statistical transmutation of a system of electrons to one of composite
fermions, which is reached by the introduction of a fictitious magnetic gauge field. The
hamiltonian in this so-called Chern-Simons-Landau-Ginzburg (CSLG) description reads

, (4.19)H ∏ = 1
2m i

p i − e
c A(xi ) − e

c a (xi )
2

+
i

eA0(xi ) +
i<j

U (xi − xj )

where A represents the vector potential of the external magnetic field, A0 is the scalar
potential of the electric field and U represents the electron interaction term. The vector
potential a(x) generates the fictitious magnetic gauge field and is given by the particle density
ρ(x) and the flux quantum in terms of

. (4.20)∫ % a (x) = ¨ 0 (x)

It contains a statistical phase factor  which can be chosen as appropriate. The basic idea of¨
the CSLG description of the FQHE is to attach the fictitious flux generated by a(x) to the
electrons in the system and thus to transform electrons to composite particles consisting of
charge and flux. Odd integer values of , i.e., , attach an odd number of flux¨ ¨ = (2k + 1)
quanta to each electron, whereas even values ( ) attach an even number of flux quanta¨ = 2k
to each electron. By interchange of such composites it can be shown that in the former case
these composite particles behave as bosons, while in the latter case they behave as fermions.
Therefore they are denoted as composite bosons and composite fermions, respectively.
At ν = 1/2 (i.e., ) there are two flux quanta attached to each electron. The orientation ofk = 1
the fictitious gauge field can be chosen to be opposite to the external magnetic field. Thus in
a mean field approximation the fictitious field generated by a(x) cancels exactly the real
external field , so that at ν = 1/2 composite fermions ‘feel’ an effective field .Bext,1/2 BCF

& h 0
By this vanishing of  the CF picture illustrates why the FQHE is not observed at ν = 1/2BCF

&

in single-layer 2DES. As soon as the external field is varied from the value , theBext,1/2
composite fermions (CFs) are exposed to a non-vanishing effective field, i.e., . As theBCF

& ! 0
field is further varied, CFs show the IQHE, which occurs exactly at external field values
where the FQHE of electrons is observed. This holds the considerable advantage to map the
FQHE of electrons into the IQHE of composite fermions, viz, to turn the description from a
many-particle problem of interacting particles to a single-particle problem of non-interacting
CFs. This is indeed a very elegant simplification.
Composite fermions have a series of further very interesting properties, up to the fact that
CFs themselves may couple and thus may lead to a FQHE of composite fermions [355].

Some of the most powerful features of the CF picture is to simplify the description of the
FQHE in a single-layer 2DES and to illustrate why there the FQHE is not expected to occur
at ν = 1/2. However it has to be kept in mind that the CF picture, especially for ν = 1/2 is
developed just for single-layer 2DES. The situation may change drastically as soon as a
2DES consists of two or more layers.

4. The Quantised Hall Effects

63



4.2.8 The Special Filling Factors ν = ½ and ν = 1 in Multiple-Layer Systems

Most of the experimental and therefore also of the theoretical work on the FQHE was
performed on single-layer 2DES based on semiconducting materials. The step from
single-layer to double-layer and further to multiple-layer 2DES gave access to new exciting
phenomena in the FQHE. After preceding theoretical studies of multilayer electron systems
[356,357,358,359] outstanding works were presented by Rezayi et al. [360] and Chakraborty
et al. [280,281]. These latter publications provide the theoretical description of the excitation
spectrum in a double-layer 2DES of interacting electrons and predict the possible occurrence
of new FQHE states, as, e.g., at ν = 1/2 in layered 2D systems. For such new states to exist
interlayer electron-electron interaction is required to be comparable to intralayer
electron-electron interaction. The length scale for the latter is the magnetic length  (see Eq.´0
(4.1)8), so that interlayer separation is required to be of the same order as well.
The system is described in [280,281] in terms of the so-called Visscher-Falicov model [356]
which assumes that equal electron densities are present in each plane. The two planes are
coupled by Coulomb interaction, so that the twofold degeneracy of the states is lifted. The
electrons are in their lowest subband, i.e., spin polarised. They may move freely in each
plane, however in this first step of description, they are not allowed to tunnel between the
layers. This latter condition allowed to describe the system by a simplified hamiltonian which
conserves the total momentum as well as the electron number in each layer. In consequence
the hamiltonian could be diagonalised and this simplification allowed to calculate the ground
state and excitation spectrum of a two-layer 2DES of eight electrons in total at ν = 1/2 in
each layer. It was found that

1) In contrast to the result for a single layer, a stable liquid ground state exists in a layered
system at ν = 1/2 uniquely at a momentum k = 0.
2) The results are nearly independent from system size and geometry. This is in contrast to
the results on the unstable single layer ν = 1/2 state.
3) An energy gap is present which separates a series of excited states from the ground state.
4) This gap of the ν = 1/2 double-layer FQHE state is found to be even larger than the gap of
the ν = 1/3 single-layer state, so that under these conditions the FQHE at ν = 1/2 is expected
to be even very stable in a double-layer.
5) The excitation spectrum for k = 0 and finite k, respectively, corresponds to the results for
the Laughlin liquid state at ν = 1/3 [361] including indications for collective modes.

From these results it was concluded that in coupled multilayer 2DESs an incompressible
liquid ground state exists at ν = 1/2 and that therefore the FQHE may be observed in such
systems at half filling. Furthermore it was found that

6) The two lowest lying excitations can be interpreted as eigenmodes of the coupled
double-layer system.
7) The number of excited collective modes was shown to be proportional to the number of
layers NL, so that for , i.e., in a superlattice, a band of excited states is generated.NL t∞

4. The Quantised Hall Effects

64

8 Note the difference between semiconductors and metals (Eq. (4.1) vs. (4.2)).



The answer to the question, why filling fractions which are ‘forbidden’ in single-layer
systems may occur in multiple-layer systems, was illustrated by a contribution of Yoshioka et
al. [362]. The authors employed the generalised Jastrow-type wave function [128] and
outlined the possibilities of new FQHE states in double-layer systems. They pointed out that
electron-electron interaction is not independent of the layer in which the electrons reside.
Furthermore they showed this makes certain wave functions which are ‘forbidden’ in
single-layer systems acceptable for double-layer systems. 

In a number of subsequent works the role of interlayer Coulomb coupling was studied on
double-layer systems and even finite interlayer tunnelling was introduced (see, e.g.,
[362,363,364,365,366,282,283]).
As long as the two layers are well-decoupled, the observed IQHE states in each layer are the
same as in single-layer systems. The total system can be described either by the total filling
factor νtot, or by those of the successive layers νL1, νL2, where 

. (4.20)tot = hNtot
eB = L1 + L2

This restricts the observation of the IQHE to even values of νtot when νL1 = νL2 is odd or even
(this situation is referred to as a) below). The same argument limits the variety of FQHE
filling fractions to the sum of the allowed single-layer fractions.
The notation introduced by Eq. (4.20) holds even when the two layers are coupled but
tunnelling is prohibited. However coupling introduces new allowed filling factors, as, e.g.,
νtot = 1 realised by νL1 = νL2 = 1/2 (see above) and νtot = 1/2 (see, e.g., Ref. [282]). When
tunnelling is introduced, the above mentioned filling factor selection roles are lifted. States of
symmetric and antisymmetric wave functions can be constructed, which are separated by a
single-particle symmetric-antisymmetric tunnelling gap (∆SAS) [363,364,283]. From now it is
more appropriate to describe the system by νtot instead of νL1 and νL2, since the latter are no
more conserved. For very strong tunnelling the system behaves as a bulk single layer (since
only the lowest symmetric state is occupied) and both, IQHE and FQHE show their familiar
single-layer spectra, however with respect to νtot instead of νL1 and νL2, respectively.
The preceding aspects show that odd-filling IQHE states are very sensitive to interlayer
effects. Therefore the role of interlayer coupling and tunnelling on the IQHE and FQHE in a
semiconducting double-layer system can be illustrated by means of a phase diagram for the
IQHE just at νtot = 1 [364,283], which is shown in a revised version in Fig. 4.14. There the
role of interlayer coupling is represented on the y-axis by the reciprocal interlayer Coulomb
energy (ε d/e2) rescaled by the intralayer Coulomb energy  , whereas the(e2/ ´0)
single-particle tunnelling is represented on the x-axis by ∆SAS, also rescaled by the intralayer
Coulomb energy. The competition of interlayer Coulomb interaction (which generates
interlayer collective phenomena) and single-particle interlayer tunnelling leads to the
following situations:

a) Well-decoupled layers without tunnelling. This situation, where the νtot = 1 IQHE is
absent, is described above. In Fig. 4.14 this case is found collinear to the y-axis at sufficiently
high d/´0 á 2.
b) Coupled layers without tunnelling. The νtot = 1 IQHE is realised by νL1 = νL2 = 1/2 (see
above) [280,362,363]. The FQHE at νtot = 1/2 is present [282]. This case is illustrated by the
y-axis for .d/´0 é 2
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c) Coupled layers with finite tunnelling. The νtot = odd IQHE occurs and can be generated
either by pure Coulomb coupling or by single-particle tunnelling, respectively (see, e.g., Ref.
[283]). This condition is represented by the whole area under the curves for finite ∆SAS values.
The FQHE at νtot = 1/2 is present [366]. Under these conditions the IQHE is even more stable
against coupling variations. This situation will be of special interest in connection with
quantum oscillation experiments on the 2D multilayer organic metal κ-(BEDT-TTF)2I3 (see
Sec. 5.8).
d) Coupled layers with strong tunnelling. This case is represented by the right margin of  Fig.
4.14. The odd-value IQHE is present and the IQHE persists even for lower plane coupling up
to a critical value. The system behaves like a bulk single-layer system (see, e.g., Ref. [282])
and is therefore expected to show the IQHE and FQHE as in single-layer systems, but with
νtot as filling factor.
Of course, with too strong tunnelling the system becomes three-dimensional and the
quantised Hall effects break down.

Fig. 4.14: Phase diagram for the occurrence of the IQHE at νtot = 1 in a double-layer system. The influence of
interlayer coupling (y-axis) and single-particle interlayer tunnelling (x-axis) results in the presence of the two
phases. The dotted and dashed lines are calculated in Refs. [364] and [283] (consider the different conditions in
both Refs., which however are not of importance in the present context). The cases a) - d) are discussed in the
text.

Thus it can be summarised for IQHE and FQHE in double-layer systems:

i) The IQHE is realised for odd and even νtot values as soon as coupling (and tunnelling) is
present.
ii) Under these conditions the FQHE is realised at νtot = 1/2.
iii) If it is that the system is described by νtot rather than by the single-layer values νLj, then
interlayer tunnelling is clearly present.
iv) Both, Coulomb coupling and finite tunnelling stabilise the IQHE and FQHE in a
double-layer system. With tunnelling the IQHE is even more stable than without tunnelling.
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v) As tunnelling is increased, the layered 2DES shows the behaviour of a bulk single-layer
2DES.

All these multiple-effects are shown to influence IQHE and FQHE experiments and therefore
may be observed also in other transport measurements.

4.3 Other Results of Two-Dimensionality: Skyrmions

In the preceding sections of the present chapter it is described, how a 2D system minimises
its total energy around integer and fractional Landau level filling factors. The contribution of
electron spin has been either disregarded or restricted to the case of sufficiently strong
Zeeman splitting as to generate spin-flipped quasiparticles as described in Sec. 4.2.6.
However a lower Zeeman energy gives the 2D system further possibilities to realise the
minimum of total energy by deriving a benefit from spin correlation. This is done by
minimising both, Coulomb energy  and Zeeman energy . Since ECEC = (e2/ 0 r´0) EZ = g BB
is minimised by lowering the total spin whereas EZ is lowered by enhancing the total spin, the
minimum is found by setting both equal, i.e.,

. (4.21)e2

0 r´0
= g B B

The conclusion of this equation is that the system will play with the local spin orientation in
order to realise the total energy minimum. Illustrated on a completely spin-polarised system
(e.g., spins parallel to B, see Fig. 4.15), this results in the possibility to invert a spin at a
certain position r ≡ 0 (downward arrow in Fig. 4.15) and to generate a ‘spin texture’ around,
where the spin orientation changes gradually from antiparallel orientation at the origin to the
expected parallel orientation at sufficiently large r. 

Fig. 4.15: Schematic illustration of a skyrmion, i.e., a ‘charged spin texture excitation’ in a 2D system. The
skyrmion comprises all spins, which are declined from the totally spin polarised ground state (here: from the
z-direction).
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This object, which carries a charge of , can be regarded as ‘charged spin texture! e
excitation’ and this quasiparticle is defined as ‘skyrmion’ 9 [367,368,369,370]. For given εr

and , the electron g-value decides if skyrmions may be generated or not and it marks´0
roughly the field region, in which they are stable [368,369]. Especially, g determines the
number of spins involved, as well as the size of a skyrmion. These quasiparticles are
characterised by their quantum numbers K (i.e., the number of involved spins), Q (i.e., their
total charge) as well as their angular momentum. It should be noted that these charged
quasiparticles are localised at impurities.
Depending on the electron g-value in a 2D system, different cases can be distinguished:

1) Small g-value ( ): large skyrmionsg à 0
In this case the gain in EC is huge by lowering the total spin, whereas the cost in EZ is finite
due to the low g-value. Therefore large-K skyrmions are generated. The spin orientation
around the spin flip changes only gradually (see Fig. 4.15). This spin texture can be
described by the unit vector n(r) given by its components

(4.22)nx(r) = 4 x
r2 + 4 2 ; ny(r) =

4 y
r2 + 4 2 ; nz(r) = r2 − 4 2

r2 + 4 2 ,

where λ represents the size of the skyrmion.

2) Finite g-value  ( ): small skyrmions0 < g é gc
In the case of an increasing g-value, each spin flip enhances the Zeeman energy considerably.
Therefore the system tends to an equilibrium of EC and EZ (see Eq. (4.21)) at a low number of
spin flips. This reduces the size of skyrmions with increasing g.

3) Limit of high g-value ( ): ‘normal’ quasiparticle excitationsg á gc
As soon as g reaches and exceeds a critical value gc (with , see, e.g.,gc l 0.054e2/ ( ´0 B B)
[368,369]), skyrmions become ‘normal’ quasiparticle excitations as described in Secs. 4.2.2
ff.

The generation of skyrmions obeys a selection role regarding the filling factors, where these
spin texture excitations are allowed to occur (see, e.g., Refs. [371]). A priori one might
expect skyrmions around odd integer ν close to quantum limit10. However theoretical
expectations [371] and experimental results [372] have shown that the low-energy spectrum
at ν = 3, 5, ... does not contain any skyrmion-like structure, also ruling out such excitations
near the filling fractions 3/5, 3/7, 5/7, etc. These studies leave the possibility for the
generation of skyrmions near odd denominator fractions ν = 1/(2m+1). At special fractions,
as, e.g., ν = 1/3, even skyrmions of composite fermions are discussed [373].

Experimental verification for the occurrence of skyrmions can be achieved by electronic
transport measurements [372,374], optical methods [375], hybrid methods
[376,377,378,379,380,381,382] or, e.g., nuclear-magnetic resonance (NMR) experiments
[383,384].

4. The Quantised Hall Effects

68

10 Of course skyrmions are prohibited around any even integer ν, since the system is already spin unpolarised
there.

9 The skyrmion was originally proposed by T.H.R. Skyrme as a model of a nucleon in terms of a soliton
solution for a π-meson field.



One of these methods, where skyrmions are identified in optically pumped NMR [383], is
briefly quoted in the following. In these experiments the Knight shift (KS) was investigated
on multiple quantum wells at Landau level filling 0.66 < ν < 1.76 (see Fig. 4.16). The Knight
shift signal is influenced by the electron spin polarisation and is therefore sensitive for
deviations of the spin polarisation from the expected behaviour, which is filling factor, i.e.,
magnetic field dependent. The solid lines in Fig. 4.16 represent the behaviour as expected
without the occurrence of skyrmions, i.e., the limit of large g-values (which is case 3) above).
Below ν = 1 the constant signal accounts for the fully polarised spin system. Above ν = 1 the
Knight shift decreases with decreasing total spin polarisation. As soon as skyrmions are
generated around ν = 1, the measured Knight shift signal (full circles) deviates from the
expected solid curve. The bigger a skyrmion is, the more spins are involved and therefore the
stronger the deviation from the solid curve is. In these experiments the skyrmions around ν =
1 were found to comprise K = 3.6 (±0.3) spins in agreement with theoretical studies, which
expect (K = 3)-skyrmions to be the most stable ones under these conditions.

Fig. 4.16: Knight shift K S in an n-doped multiple quantum well vs. filling factor ν (according to Ref. [383]).
The solid lines represent the behaviour expected for large g-values ( ). The dashed line represents theg á gc
behaviour expected for finite-size skyrmions comprising K = 3.6 spins.     

Some of the most important properties of skyrmions are summarised in the following:

1) Skyrmions are localised charged spin texture excitations, which modify the total spin
polarisation and lower the number of mobile charge carriers.
2) Their occurrence is restricted to ν = 1 as well as odd denominator fractions ν = 1/(2m+1).
3) Their size, i.e., the number of involved spins decreases with increasing electron g-value.
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4.4 Interjection

The preceding theoretical part concentrates on the description of the influences of
two-dimensionality onto magnetotransport and thermodynamic properties of 2D electronic
systems. Within this framework, Ch. 3 focuses on the description of quantum oscillations and
involves tools which allow to distinguish between these influences of two-dimensionality and
those arising from other effects. However there, electron localisation effects are disregarded.
Chapter 4 is devoted to the quantised Hall effects and focuses on the role of electron
localisation in the IQHE and FQHE in single-layer and especially in multilayer 2D systems.
Unfortunately most of the work is done for semiconductor-based 2DESs. Within the
reviewed literature there is no condition recognisable, which would restrict the occurrence of
the quantum Hall effects and electron localisation to semiconductors. This stimulated our
work on 2D and Q2D organic metals with the aim to observe low integer and, if possible,
even fractional ν in a multilayer organic metal. The results are presented in the following
chapters.
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5. Electronic Properties of the 2D Multilayer Organic Metal
κ-(BEDT-TTF)2I3

The following two chapters comprise investigations of electronic properties performed on
different multilayer organic metals and superconductors, which exhibit two-dimensional (2D)
and quasi-twodimensional (Q2D) electronic behaviour. Chapter 5 concentrates on quantum
oscillation (QO) studied on the 2D normal conducting state properties of the organic
superconductor κ-(BEDT-TTF)2I3, where influences of the two-dimensionality have been
examined intensively. For comparison, effects of quasi-twodimensionality onto QO
experiments of a number of further organic metals are presented in Ch. 6.

Quantum oscillation experiments were performed as de Haas-van Alphen (dHvA) as well as
Shubnikov-de Haas (SdH) measurements. Therefrom, dHvA experiments were carried out
mostly by torque technique whereas only to a minor part by field modulation and inductive
techniques ([87], see also [385]). SdH experiments were carried out by standard four-probe
method (see, e.g., [6b]), which prohibits influences of contact resistances onto potential
detection. Different sample contacting methods were applied in order to avoid subtle contact
effects. Annealed gold wires of 15 - 25µm thickness where applied either directly to the
samples or on evaporated gold contacts. The wires were attached by gold, platinum or carbon
paint, respectively. Low metallic contact resistances of about 2 - 5Ω (at room temperature)
could be obtained, even if the evaporation of gold was refused (in order to save the sample
surface from possible overheating). AC currents of frequencies between 90Hz and 4kHz were
applied perpendicular and parallel to the conducting planes and were limited to 50 - 300µA,
keeping the current well below values of about 3mA, where sample heating was found to set
in at pumped 3He temperatures. Quantum oscillation experiments were carried out on about
40 samples of different batches. The experimental conditions mentioned above were found to
lead to consistent results.
High magnetic fields were provided by superconducting magnets (up to 10T), by steady
resistive magnets (up to 28T, in a few measurements up to 36T) and by pulsed field magnets
(up to 52T and 60T, respectively). Most of the QO measurements have been performed at the
High Magnetic Field Laboratory MPI-FKF/CNRS Grenoble/France (GHMFL). They were
completed by experiments at the pulsed field laboratory Laboratoire National de Champs
Magnétiques Pulsés (LNCMP) Toulouse/France, the National High Magnetic Field
Laboratory (LANL) Los Alamos/USA, the National High Magnetic Field Laboratory
Tallahassee/USA and the Walther-Meissner-Institut in Garching/Germany.
Low temperatures down to 0.38K were realised by pumping on both, a 4He bath cryostat and
its 3He insert, whereas temperatures down to 20mK were realised in a 3He/4He dilution
refrigerator. Angle-dependent QO experiments at ambient pressure were carried out by
mounting the samples on a rotatable sample-holder. SdH experiments at hydrostatic pressures
up to 10kbar were carried out in a CuBe pressure cell.

The present chapter comprises the most important results obtained on the organic
superconductor κ-(BEDT-TTF)2I3. The investigations presented here concentrate on the
normal conducting state of this compound, which was found to realise the to date strongest
2D electronic system in its class of materials.
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5.1 A Selection of General Electronic Properties of κ-(BEDT-TTF)2I3

Crystal Structure

The organic superconductor κ-(BEDT-TTF)2I3 was first synthesised by [143,144,386] by
electrochemical methods. The crystal growth process was based on the supporting electrolyte
(n-C4H9)4NI3, where a small amount of (n-C4H9)4NAuI2 was added in order to support
especially the growth of κ-structured crystals. In contrast, the single crystals used for our
investigations were synthesized as described in Ref. [141] without any AuI2-based
electrolyte. The obtained crystals have a typical size of 1 * 2 * 0.25mm3. The crystal structure
of κ-(BEDT-TTF)2I3 is shown in Figs. 2.4 and 2.5. The structural data for crystals
synthesised by different groups are shown in Tab. 5.1.

[387]41.710108, 5312, 8888, 50616, 453

[387]31.704108, 5112, 8718, 50016, 433

[145]21 705,97108, 5012, 8768, 50416, 429

[143]1108,5612,838,4716,39
monoclinic

P21/c (at 300K>Τ≥150Κ)

P21 (at T< 150K)

Ref.V [Å3]β [Å]c [Å]b [Å]a [Å]κ-(BEDT-TTF)2I3

Tab. 5.1: Structure data of κ-(BEDT-TTF)2I3 obtained from crystals of different synthesis processes.   

A comparison of the crystal data calculated by several groups reveals slight but significant
differences, which may be attributed to the diverse underlying synthesis processes.
It should be noted that slightly different structures above and below about 150K are reported
in [387] (see Tab. 5.1). This corresponds to a breaking of the c-axis symmetry at
temperatures below about 150K. The structural phase transition coincides with an anomaly in
the temperature dependent volume cell data at about 170K. From the absence of
corresponding superlattice spots in the X-ray structure investigations the occurrence of a
superlattice between 150K and 10K could be excluded. The phase transition proposed in
[387] is in agreement with preceding resistivity and thermopower experiments [145,147]
touched on below. Fermiologically this phase transition is found to cause the lifting of the
degeneration between two bands, i.e., the opening of a gap (see Fig. 5.9), which can be
tunneled by the magnetic breakdown at sufficiently high fields.
The highly conducting (b,c) planes of κ-(BEDT-TTF)2I3 are denoted as 2D planes in the
following. It should be emphasised that a typical bulk single crystal contains about 105

successive conducting layers. This is a typical order of magnitude within these so-called
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2 without AuI2
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are interchanged. The data shown in Tab. 5.1 are transferred to P21/c.

1 with an amount of AuI2-based electrolyte during the synthesis



organic charge-transfer (CT) salts. In the framework of quantum oscillation experiments the
present compound turned out to represent in fact a bulk multilayer organic metal with
strongly 2D electronic properties (see Sec. 5.2 ff.).

Resistivity Measurements on κ-(BEDT-TTF)2I3 Single Crystals 

Preceding measurements of the temperature dependence of the resistivity were carried out on
single crystals between room temperature and 1.3K ([145], for details see [147]). In contrast
to other κ-phase organic metals the present material was found to be a normal metal below
room temperature (even below 350K, [388]) down to 4.2K, where the onset of the
superconducting transition is observed in resistivity. A metal-metal transition occurs between
130K and 200K, whose transition temperature depends on the crystal axes. This transition
may be attributed to the structural phase transition reported later in Ref. [387]. The high
resistivity ratio of ρ(300K)/ρ(4.5K), reaching values op to 8 * 103, reflects the high crystal
quality [389].
The anisotropy of the resistivities reflected in the ratio of the interplane and in-plane
resistivities (i.e., ρa*/ρ(b,c)) was studied on bulk single crystals by standard-four point method,
whereas the in-plane anisotropy ρb/ρc was investigated on thin extended platelets in Ref.
[147,145]5 by use of Montgomery method [390]. While the in-plane anisotropy was found to
be only in the order of unity in the whole temperature range (300K - 10K), ρa*/ρ(b,c) was found
to reach high values, even up to 103. Figure 5.1 shows more recent anisotropy measurements
[391].

Fig. 5.1: Anisotropy of the resistivity of κ-(BEDT-TTF)2I3 single crystals [391].
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The interplane anisotropy is in accordance with the values reported in Ref. [143]. It indicates
the pronounced two-dimensionality of the electronic system. However the value ρa*/ρ(b,c)

itself is not very suited to quantify the anisotropy exactly, since impurities and crystal defects
may influence both, the interplane as well as the in-plane resistivities.
The pronounced quasi-twodimensionality indicated not only by the anisotropy of resistivity,
but also by crystal and band structure calculations [143,387] was a strong motivation to
quantify the two-dimensionality by more sensitive methods (see Sec. 5.2.2) and to investigate
possible influences of two-dimensionality onto electronic properties of this material.

Thermopower Experiments at Zero Magnetic Field

Thermopower experiments at zero magnetic field were carried out by use of a slightly revised
version of setup as proposed in Ref. [392]. The temperature range between 300K and 4.5K
was covered by use of a 4He flow cryostat. The results are plotted in Fig. 5.2 (see [145].

Fig. 5.2: Temperature dependence of the thermopower S of κ-(BEDT-TTF)2I3 single crystals along the different
crystal axes. The direction a* is oriented perpendicular to the 2D conducting planes ([145], where, however, the
space group P21/a was used).

It is a matter of fact that a linearity of the thermopower S(T) is characteristic for normal
metallic behaviour. This means that κ-(BEDT-TTF)2I3 single crystals show metallic
behaviour not only within the 2D conducting planes, but also perpendicular to them, i.e.,
along a*. By the measurements plotted in Fig. 5.2 thermopower proves its well-known high
sensitivity for phase transitions. S(T) shows clearly the metal-metal phase transition by a
change of the slopes of different linear S(T) regions. Moreover, S(T) reveals that this phase
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transition occurs crystal axis dependent at temperatures between about 150K and 200K.
These results are in good agreement with the phase transition proposed later on the basis of
structure investigations at 295K, 150K and 10K, respectively ([387], see above).
It should be mentioned that the detected thermopower values are fairly low along each crystal
axis and over the entire temperature range 300K > T > 4.5K. Below about 20K S(T) tends to
zero, the value expected for a superconductor.

Superconducting Properties

κ-(BEDT-TTF)2I3 is a strong type-II superconductor, as all organic metals to date. It was
already mentioned that the superconducting transition occurs in resistivity typically at 4K
(where resistivity vanishes) with an onset at about 4.2K [145], however in some cases even
exceeding 5K. In AC-susceptibility the transition is observed at about 3.9K (see Fig. 5.3).

Fig. 5.3: Superconducting transition of κ-(BEDT-TTF)2I3 single crystals, as observed in resistivity (ρ(b,c)) and
AC-susceptibility (χAC).

The very sharp transition in AC-susceptibility shows that superconductivity spreads to the
bulk within a very narrow temperature range, thus reflecting the very high crystal quality.
The superconducting and mixed-state properties of crystals from the syntheses described
above were investigated in detail and are reported in Ref. [59]. Some of the results are shown
in Tab. 5.2 and compared with those of other groups. 
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[59]≈2,86 *10-2≈1,25 *10-2

Bc2,Ω
Bc2, //

Bc1, //
Bc1,Ω

anisotropy

[59]
[143]

73001,1
1,35

0,2
0,256

2 * 10-34 * 10-3
⊥ (b,c) plane

[59]
[143]

67570.00041
35,9

7
6,8

7 * 10-35 * 10-5
// (b,c) plane

Ref.κλ [nm]ξ [nm]Bc2 [T]Bc,th [T]Bc1 [T]κ-(BEDT-TTF)2I3

Tab. 5.2: Extrapolated and calculated superconducting parameters for κ-(BEDT-TTF)2I3 with lower,
thermodynamic and upper critical fields Bc1, Bc,th and Bc2, respectively. ξ are the Ginzburg-Landau coherence
lengths, λ the London penetration depths, and κ the Ginzburg-Landau parameters as obtained from
Bc1 /Bc2 = lnκ/2κ2. The results reported in [59] were obtained by magnetisation, AC-susceptibility and specific
heat measurements, whereas those from [143] were obtained from the half values of onset resistivities. 

The difference between Bc1 and Bc2, which results in a large Ginzburg-Landau parameter κ,
shows that the material is a strong type-II superconductor. The coherence length ξ⊥

perpendicular to the conducting planes is found to be less than the interlayer spacing. This is
typical for organic superconductors and results in enhanced fluctuation effects, as observed,
e.g., in Ref. [393]. In the wide mixed-state region flux pinning effects are expected to be
rather weak in these very pure materials, whereas flux-flow and irreversibility effects are
found to play an important role, as reported in [59].
It should be emphasized that from the very low ratios of Bc1,// /Bc1,⊥ and Bc2,⊥ /Bc2,// compared to
other organic superconductors it was concluded in Ref. [59] that the superconducting
properties of κ-(BEDT-TTF)2I3 show extreme two-dimensionality.
It is noted, that the nature of the superconducting state of these organic materials is still far
from being understood. The continuous debate on conventional BCS-type or a more exotic
mechanism is supported by a number of ambiguous or in some cases even contradictory
experimental results (see, e.g., [37,25]). However, since the present work is dedicated to the
complex normal state behaviour of organic metals, the detailed discussion on this point
cannot be quoted here.

5.2 Fermiological Studies on κ-(BEDT-TTF)2I3 by Quantum Oscillation Experiments

It was already mentioned, that transport experiments as well as preceding band structure
calculations gave hints to a pronounced two-dimensionality of the electronic system of
κ-(BEDT-TTF)2I3. This motivated at first to detailed investigations of its Fermi surface by
quantum oscillation experiments, followed by the search for influences of the pronounced
two-dimensionality onto QOs (see Secs. 3.4.3 ff.). However from the obtained results it
turned out that further, even more drastic effects of two-dimensionality have to be
considered. The results are discussed in the following sections.
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Fig. 5.4: De Haas-van Alphen torque signal (raw data) of κ-(BEDT-TTF)2I3 detected at Θ = 16° at 0.37K. A
high frequency oscillation (denoted as F3 in the following) is observed with a strong field dependence (the
double-peak structure of the F3 oscillations is caused by spin splitting). In the envelope of the signal a lower
frequency oscillation can be recognized, called F2 subsequently.  

Fig. 5.5: Typical Shubnikov-de Haas signal (raw data) of κ-(BEDT-TTF)2I3 obtained at Θ = 0° at 30mK  
showing both, the F2 as well as the F3 oscillations.
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Quantum oscillations on κ-(BEDT-TTF)2I3 were first detected by dHvA technique above 8T
[394]. In parallel, dHvA as well as SdH measurements were carried out as a starting point for
the experiments collected here [395].  
Figure 5.4 shows a dHvA torque signal detected at 0.37K and a tilt angle Θ between the
magnetic field and the normal to the conducting (b,c) planes of 16°. In Figure 5.5 a typical
SdH signal at Θ = 0° and T = 30mK is plotted. At 30mK SdH oscillations are observed above
0.8T at this angle, whereas at 0.4K they arise above 1.25T. At high fields the oscillatory part
of the signal reaches even 90% of the background signal6, which reflects the very good
sample quality.

Fig. 5.6: SdH signal of κ-(BEDT-TTF)2I3 at Θ = 0° and 1.6K. The oscillation amplitudes of both, F2 and F3

increase steadily with field.

Figure 5.6 shows a SdH signal of κ-(BEDT-TTF)2I3 at Θ = 0° and 1.6K [396]. Both
frequencies F2 as well as F3 are observed. It is noteworthy that their amplitudes increase
continuously with field without indication of any beating node or saturation. This will be of
special interest for the quantification of the anisotropy of the system (discussed in detail in
Sec. 5.2.2).

A fast Fourier transform (FFT) of SdH signals is shown in Fig. 5.7. The prominent QO
frequencies in the FFT are F2 = 571T and F3 = 3883T as well as their harmonics n*Fj. It
should be noted that even 13*F3 is observed at high Fields. A rich harmonic content of the
QOs is indeed expected in a 2DES (see Sec. 3.3), however it can only be observed when
sufficiently high crystal quality is given. 
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low resistivity values. 
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Fig. 5.7: Fast Fourier transforms (FFT) of SdH signals detected at 0.37K and Θ = 0°. The FFT in the inset is
performed at an effective field Beff = 8T, whereas the FFT in the main part is obtained at Beff = 25T. The x-axis
in the main figure is scaled to the value of the frequency F3 = 3883T in order to illustrate the high harmonic
content of the signal.  

Fig. 5.8: Plot of the Landau level indices nF2 of F2 and nF3 of F3 for κ-(BEDT-TTF)2I3 versus 1/B. Every single
circle represents the position of a Landau level. 
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Figure 5.8 shows a plot of the Landau level indices nFj of both QO frequencies Fj versus 1/B.
The values of nFj can be determined very precisely (with δnFj about ±1) by substituting the
right part of Eq. (3.5) by Eqs. (3.4) and (3.7). From the slopes of the plots the exact values of
the corresponding frequencies F2 = 570T and F3 = 3883T can be obtained according to Eq.
(3.18) with a very high accuracy (±1T)7 (see also [397,398,399]. Before discussing these
frequencies it should be emphasized that Fig. 5.8 contains further important information.
According to Eqs. (3.5) and (3.18) QOs should be equidistant in 1/B where B is the real
internal magnetic field acting on the electrons. If the internal field corresponds indeed to the
applied magnetic field, then a plot of the LLs vs. 1/B has to be linear. This is in fact the case
in Fig. 5.8 even up to 52T and means that the steady magnetisation of the sample is
negligible. This is in perfect accordance with the absence of any steady background in the
raw dHvA torque signal plotted in Fig. 5.4.

From the obtained QO frequencies Fj the corresponding extremal closed areas Aj in k-space
were determined by Eq. (3.7) and the results were compared to those obtained by band
structure calculations. Figure 5.9 shows the band structure according to tight binding
calculations reported in [143,387].

Fig. 5.9: Band structure of κ-(BEDT-TTF)2I3 as obtained by tight binding calculations in Refs. [143,387]. At
10K the degeneration of two bands between Z and V is lifted and a gap opens (shaded area). EF represents the
Fermi energy.

At room temperature the two bands between Z and V are degenerate due to the P21/c
symmetry. At 10K this degeneration is lifted and a gap opens (grey shaded area). In
κ-(BEDT-TTF)2I3 this gap is very narrow compared to related κ-structured organic metals
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7 It should be mentioned that experiments on crystals of different batches show quite different QO frequencies,
exceeding by far the linewidth of the corresponding FFT peak (e.g., for F3 values between 3811T and 3963T
are found on samples from different batches). This peculiarity is typical for organic metals and may be
attributed to slight variations in structural details. In the following, error bars of QO frequency values are
skipped, since they are of minor interest in the context.    



(see, e.g., [387]). A cut of the band structure at the Fermi energy EF shows the trajectories in
k-space on the Fermi surface (see Fig. 5.10, according to [143,387]). For these κ-phase
materials the FS is expected to consist of two extremal areas. One of them is a closed
lens-shaped orbit around Z which encircles the extremal area A2 and corresponds to the QO
frequency with F2 = 570T. The second one, a circular orbit covering A3 corresponds to
F3 = 3883T and is only closed as the gap between V and Z is overcome by the magnetic
breakdown (MB, see Sec. 3.4.2) at sufficiently high magnetic fields.

In later SdH experiments in pulsed fields a further QO frequency of about 100T was detected
[146,400,401]8. The presence of a frequency F1 is not indicated in band structure calculations.
However this is not surprising, since not all structural details can be considered in such
calculations9. Possible realisations of F1 are discussed in [146,402], however the origin of F1

could not yet be clarified.
From the values of the QO frequencies a set of fermiological data on κ-(BEDT-TTF)2I3 can
be derived (see Tab. 5.3). These are the corresponding extremal areas Aj of the orbits in
k-space (as obtained by help of Eq. (3.7)), the average Fermi wave vectors kF,j for the
successive orbits, as obtained by the simple relation Aj = π(kF,j)2, as well as the part of the
first Brillouin zone (FBZ) which is covered by an orbit.
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9 Usually in band structure calculations structural details as, e.g., the position of CH2 end groups on the
BEDT-TTF molecules at low temperatures, etc. cannot be completely considered. Furthermore, the calculations
are simplified by symmetry considerations, so that the calculated topology of a FS has a finite resolution. Under
such conditions especially small pockets on the FS might be disregarded.

8 The frequency F1 was not further investigated in detail, since it was found to play no special role in the
context of the influences of two-dimensionality reported here. Therefore F1 occurs in the following discussion,
if at all, only for completeness. 
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Fig. 5.10: Fermi surface of
κ-(BEDT-TTF)2I3 according to
[143,387]. The closed orbit
encircling A2 corresponds to the
QO frequency with F2 = 570T,
whereas the circular orbit
covering A3 is only closed as the
gap between V and Z is overcome
by MB. A3 corresponds to F3 =
3883T.



(2,6)(0,55)(0,95)(F1 = 100T)

14,7
14 *) 

1,3
1,3 *)

5,44
5,08 *)F2 = 570T

100
100 *)

3,4
3,4 *)

37,0
36,3 *)F3 = 3883T

Part of the FBZ [%] kF, j [nm-1]A j [nm-2]κ-(BEDT-TTF)2I3

Tab. 5.3: Fermiological data of κ-(BEDT-TTF)2I3 as obtained by quantum oscillation experiments, i.e., the
values for the extremal areas Aj and the part which they represent on the first Brillouin zone and the average
Fermi wave vectors kF,j. Theoretical values*) at 10K taken from [387] are included for comparison. 

It is notable that the data obtained by quantum oscillation experiments correspond very well
with the theoretical data determined by band structure calculations based on the 10K
structure [387]. 

5.2.1 Further Fermiological Properties of κ-(BEDT-TTF)2I3

Magnetic Breakdown

As already mentioned in Sec. 5.1 and discussed with Fig. 5.9, the band structure derived from
the room temperature structure suggested that the two bands between the points Z and V in
Fig. 5.9 are degenerate, so that the F3 orbit around A3 is completely closed without any gap.
In contrast, 10K data (quoted in Figs. 5.9 and 5.10) show a gap between these orbits, which
was estimated to be in the order of 20-30meV [387]. In first dHvA measurements on this
material, the question on the existence of the gap could not be answered, since at 8T, where
dHvA oscillations appeared, the high frequency oscillation was already present. Thus the
magnetic breakdown field BMB could not be estimated and therefore the gap (see Eqs.
(3.24)-(3.26)) could not be determined. This field value of 8T, where F3 is already present in
the I3 salt [395a], is considerably lower than BMB ≈ 30T observed on
κ-(BEDT-TTF)2Cu(NCS)2 [403,198,404,199,201]10. Therefrom it was suspected that the gap
might be even completely closed in κ-(BEDT-TTF)2I3.
In preceding SdH experiments on κ-(BEDT-TTF)2I3 at 0.4K a magnetic breakdown field BMB

of about 2.5T was determined [146]. Therefrom a gap value  was estimatedEg è 3.2meV
according to Eq. (3.24). In later SdH experiments at 20mK F3 was observed already
beginning from 2T (see plots of the LLs of F3 in Fig. 5.8). From these results the gap can be
redetermined as about

 . (5.1)Eg è 3 meV
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This gap value is considerably higher than , which means that thekBT l 1.7 & 10−3meV
magnetic breakdown itself does not contribute to the temperature dependence of the QO
amplitudes of the involved QO frequencies F2 and F3, respectively.
The gap value in the present I3 salt is also considerably lower than Eg ≈ 9-11meV10

determined for κ-(BEDT-TTF)2Cu(SCN)2 and moreover the present gap is by about one order
of magnitude lower than the value of 20-30meV proposed by band structure calculations for
the 10K structure [387]. In consequence this means that in κ-(BEDT-TTF)2I3 the shape of the
large orbit enclosing A3 is closest to an ideal circle, which ensures a nearly isotropic carrier
motion within the 2D (b,c) conducting planes. This is an important condition for strongly 2D
electronic properties.

Electron g-Values, Dingle Temperatures TD and Carrier Scattering Times τ

The electron g-value for the carriers contributing to F3 was first determined by dHvA
measurements at 11T and reported in Ref. [395a]. As usual within QO experiments, g was
extracted from the spin damping factor Rs of the LK Formula (Eq. (3.17)), which allows to
deduce a value for g*m* from the angular positions of so-called spin zeros [87]. Thus, from 5
observed spin zeros gF3*mF3* = 8.63 was ascertained and with the known carrier effective
mass mF3* = 3.8 (see Sec. 5.3) a value of gF3 = 2.27 was obtained for the F3 orbit [395a]. This
value for gF3*mF3* was confirmed by the observation of 12 spin zeros in dHvA experiments at
12T as [405] well as by SdH measurements at 22.5T11 [399]. The interpretation of the g*m* in
the class of organic CT salts is controversial. Some groups assume a renormalisation of m*
by electron-phonon interaction [406,407,393], whereas other groups (e.g., [200,408,409])
assume that electron-electron interaction may renormalise g with respect to the gF3 ≈ 2 value
measured by electron spin resonance. 
It should be noted that in the present material κ-(BEDT-TTF)2I3 up to now no spin zero could
be detected for the QO frequency F2 within an angular range -70° ≤ Θ ≤ +70°. This suggests
that gF2 may deviate considerably from g ≈ 2.

It was described in Sec. 3.2.3, that the so-called Dingle temperature TD is connected with the
carrier relaxation time τ by Eq. (3.14) and a low TD is therefore an indication as well as
quantification for high crystal quality. In organic metals Dingle temperatures vary usually
between 0.5K and about 3K (for an overview see, e.g., [83]). In ordinary metals finite Dingle
temperatures generated by impurity scattering are of the order 10-100K per atomic % of
impurities [87]. Usually TD is obtained by the so-called Dingle plot, i.e., a plot of the implicit
FFT amplitudes of QOs with a certain frequency Fj versus 1/B (see Eq. 3.15). For a number
of organic metals reasonable TD values are obtained by this procedure provided that system
specific details as, e.g., magnetic break down, are considered. This shows that even in its
standard 3D formulation the LK theory (Secs. 3.1-3.2) can be widely used to describe the
field dependence of the QO amplitudes in quasi-2D organic metals.
It was however shown in [410] that under certain experimental conditions this standard
procedure for the Dingle temperature determination cannot be used for the present material
κ-(BEDT-TTF)2I3 due to the strong two-dimensionality of the material (see also Sec. 5.3).
Instead, TD was obtained in [410] via τ according to a method proposed in [164]. By this at
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10Considerably different MB fields and therefore gap values of roughly 10meV are determined by different
groups.



least a lower limit of τF3 > 10ps was obtained for the carriers on the F3 orbit, which
corresponds to a TD < 0.12K. In order to verify this result, τ and therefrom TD are
redetermined here by the simple condition that

. (5.2)c,F j& Fj > 1

This condition means that at the field where QOs with Fj may arise, a closed coherent
electron motion must encircle at least one complete cyclotron orbit. In reverse, from the field
where Fj arises, a lower limit for τFj and in turn TD,Fj can be estimated for the successive QO
frequencies F2 and F3. The results obtained from the observation of F2 above 0.8T and F3

above 2T the following values for τ and TD are obtained (see Tab. 5.4).

Tab. 5.4: A selection of fermiological data for κ-(BEDT-TTF)2I3: Lower limits for the carrier scattering times τ
and the mean free paths λ, upper limits for TD as well as Fermi velocities for the carriers contributing to F2 and
F3, respectively.

It should be noted that finite temperature is not considered in Eq. (5.2). In consequence, τFj

may be markedly higher and TD,Fj considerably lower than the obtained values. Furthermore
magnetic breakdown (MB) is likewise not considered in Eq. (5.2). This means that for F3 the
bare condition (5.2) may be fulfilled already at considerably lower fields, but only enhanced
to 2T by the finite energy gap (see Fig. 5.10), which prevent the electrons from closing the
orbit around A3. This means that τF3 may be even much higher and TD,F3 even much lower
than estimated here. Finally it has to be considered that the τ values in Tab. 5.4 were
determined from interplane SdH experiments12 so that the carrier motion contains an
interplane component. In the pure intraplane direction however, τF3 is expected to be
considerably higher owing to the fact that scattering is minimised within the highly
conducting planes.
At first, the estimations performed here on the simple, but fundamental condition (5.2)
confirm the preceding data. They show that crystals of κ-(BEDT-TTF)2I3 can be grown very
pure.
From the known Fermi wave vectors kF given in Tab. 5.3 the corresponding Fermi velocities
vF,Fj can be obtained via the quantisation of momentum  and with τFj the meanp = ®kF = m&vF
free paths λ are found for the carriers on each of the orbits. The results are added to Tab. 5.4.
Finally, if desired, the effect of MB can be at least roughly considered by the argument, that
the carriers move already coherently along an orbit corresponding to the full length of the F3

orbit, as soon as a combination frequency of F2 and F3 arises. This is the case above 0.8T at
20mK. Therefrom the values τ, TD and λ for F3 are included in Tab. 5.4 for completeness.
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ratio allows to extend the verification of Eq. (5.2) down to lower fields.

> 18*104< 0,08> 13F2 = 570T

> 1,1
≥ 2,81*105< 0,11

≤ 0,04
> 11
≥ 28

F3 = 3883T (disreg. MB)
F3, considering MB

λ [µm]vF [m/s] TD [K]τ  [ps]κ-(BEDT-TTF)2I3



5.2.2 Quantification of the Two-Dimensionality

It was already mentioned in the preceding, structural aspects as well as a number of
experiments hint to the strong two-dimensionality of the electronic system of the organic
metal κ-(BEDT-TTF)2I3. They are collected here for an overview. In addition, the
quantification of the two-dimensionality is given in terms of the ratio of transfer integrals
perpendicular and parallel to the conducting (b,c) planes respectively, i.e., t⊥/t//. The
following arguments identify κ-(BEDT-TTF)2I3 as a strongly 2DES:

1) Structure and band structure calculations with a high in-plane symmetry and an almost
circular orbit (nearly vanishing gap) within the (kb,kc) plane (see Fig. 5.10).
2) A Strong interplane/in-plane anisotropy versus almost perfect in-plane isotropy of
resistivity (see Fig. 5.2). 
3) A Strong oscillatory content ∆σ/σ ≈ 90% of SdH oscillations in high fields (see Fig. 5.5)
and a rich harmonic content.
4) The angular dependence of the QO frequency F3 [395a,399], which follows up to at least
Θ = 68° the 1/cos(Θ) law expected for the cylindrical FS of a 2D metal (see Fig. 3.5b).
The same 1/cos(Θ) dependence is found for the effective mass m*

F3(Θ) at low fields (see
[411,402] and Sec. 5.3). A statement on the two-dimensionality would require the
verification of the 1/cos(Θ)-law of Fj or m* up to angles closest possible to 90°, but
unfortunately QOs disappeared above 68° in the experiments at 0.4K.

All these aspects are clear indications for the two-dimensionality of the system, but not very
suited to quantify the 2D character (the reasons for this are already discussed partly Sec. 5.1).
The following experiments are much more suitable for this purpose.

5) The anisotropy of Bc1 and Bc2 reported in Ref. [59] allows experiments up to Θ = 90°. The
results reproduced in Fig. 5.11 show the angular dependence of Bc2. The main part of the
figure shows the observed Bc2 values at different temperatures. The inset shows that the data
around the crucial angle Θ = 90° (i.e., B // to the conducting planes) deviate significantly
from the fit according to the 3D anisotropic Ginzburg-Landau formula

, (5.3)1 = Bc2( ) cos
Bc2,Ω

2

+ Bc2( ) sin
Bc2,//

2

which is represented by a dashed line. Instead, the data can be fitted perfectly by the
so-called Tinkham formula for 2D superconducting thin films [412], which follows the
equation

(5.4)1 = Bc2( ) cos
Bc2,Ω

+ Bc2( ) sin
Bc2,//

2

and is plotted as a solid line in Fig. 5.11. These results show that the organic superconductor
κ-(BEDT-TTF)2I3 behaves almost as a 2D thin film but not as a bulk 3D system. From the
results in Ref. [59] the ratio of transfer integrals can be estimated as .tΩ/t// é 5.3 & 10−4

5. Electronic Properties of the 2D Multilayer Organic Metal κ-(BEDT-TTF)2I3

85



Fig. 5.11: Angular dependence of the upper critical field Bc2 in crystals of the organic superconductor
κ-(BEDT-TTF)2I3 according to Ref. [59] (Bc2 was obtained by AC-susceptibility measurements; BEDT-TTF is
abbreviated as ‘ET’). Dashed lines in the inset represent a fit of the data according to the anisotropic
Ginzburg-Landau model, whereas the full line shows the fit according the Tinkham formula for 2D thin films.    

6) One favourable consequence of the very high crystal quality is the fact that QOs can be
observed in κ-(BEDT-TTF)2I3 beginning from very low fields, i.e., in a wide field window.
Owing to this the so-called warping (i.e., corrugation) of the Fermi surface can be estimated
as described in Sec. 3.4.3 by the search for so-called beating nodes in the envelope of the
QOs (see simulation in Fig. 3.6). From the estimated warping (i.e., δF/F) the ratio of transfer
integrals t⊥/t// as a measure for the electronic anisotropy can be obtained directly when
beating nodes are indeed present. In cases where such nodes are absent, at least upper limits
for δF/F and t⊥/t//, respectively, can be estimated from the total field window covered by QO
experiments (this was used in Ref. [146] for a first estimation of the warping).
As already mentioned, the QO frequency F2 is observed at dilution temperatures already
above 0.8T, while F3 arises at about 1.13T. In the entire field region from this minimum field
Bmin up to the maximum field Bmax = 52.5T, no beating nodes were observed in
κ-(BEDT-TTF)2I3 13 and even no saturation of the QO amplitudes is indicated at high fields.
These facts illustrate that above 52.5T no further beating node may occur (conf. Fig. 3.6).
This means that the last node must be located at fields below 1.13T and 0.8T, respectively. In
such special cases the upper limit for the warping can be determined by the relation 

  14 if the last node is indeed observed at Bmin=Bnode. In the present case where F = (3/4)Bnode
, this relation is used as limiting conditionBmin m Bnode
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14  This relation can be easily derived from Eq. (3.9) by superposition of the contributions from two frequencies
(F, F+δF) with the different phases +π/4 for a minimum and -π/4 for a maximum orbit.

13  In order to avoid needless repetition, the absence of beating nodes is illustrated later in Sec. 5.5, where field
dependent QO measurements are discussed especially in connection with results of the two-dimensionality of
the system. 



, (5.5)F [ (3/4)Bmin

which allows to estimate an upper limit for the beating frequency  from the field BminF
where QOs arise. From this an upper limit for the warping  is obtained and byF/F = tΩ/t//
considering that in a 2DES , both transfer integrals can be determined.t// = EF/4
At a first glance this would reveal δF/F<2.2*10-4 for the QO frequency F3 itself. However it
should be recalled that the minimum field at which F3 arises is limited by both, the MB as
well as the strong temperature dependence of the F3 amplitudes. This complication can be
overcome by considering the fundamental fact that all beating node positions Bnode are
prescribed solely by the QO frequency difference δF itself, but not by the involved QO
frequency values Fj. This means that if, e.g, between 0.8T and 1.13T, a beating node is absent
in the amplitudes of one of the frequencies (here F2), it is also absent in those of the other QO
frequencies (thus F3), which ‘contain’ the corresponding orbit (i.e., A2, see Fig. 5.10). From
this general fact it can be deduced that above 0.8T no further node is present in the
amplitudes of both, F2 and F3, so that according to Eq. (5.5)   0.6T. The correspondingF [
results for the upper limit the warping δF/F and the anisotropy t⊥/t// are given in Tab. 5.5.

< 1,5*10 -4< 1,5*10 -4κ-(BEDT-TTF)2I3

 t⊥ / t//‘warping’  δ F /F

Tab. 5.5: Estimates for the two-dimensionality of the electronic system of κ-(BEDT-TTF)2I3 by values for the
warping and the corresponding ratio of transfer integrals t⊥ / t// perpendicular an parallel to the conducting (b,c)
planes. The results are obtained by quantum oscillation experiments.

It should be noted that  both, finite temperature and the steep background magnetoresistance
above the superconducting transition make the observation of QOs at low fields quite
difficult, so that certainly . This asks to consider that the warping δF/F may beBmin m Bnode
may be even lower i.e., the two-dimensionality may be even more pronounced than estimated
here.
By these results, κ-(BEDT-TTF)2I3 is identified as the to date strongest two-dimensional
electronic system within the class of organic CT salts (see, e.g., [25,37,83] for comparison).

5.3 Strong Anomalies in the Quantum Oscillation Amplitudes at High Fields, Low
Temperatures and B ⊥ (b,c) ≡ Θ = 0° as a Result of Two-Dimensionality

During the investigations of κ-(BEDT-TTF)2I3 single crystals by QO experiments it turned
out that, regardless of the strong two-dimensionality of its electronic systems, the standard
Lifshitz-Kosevich (LK) description for QOs in 3D metals (Eq. (3.9) ff.) applies very well in
the entire field, temperature and angular range covered by the experiments. Minor deviations
can be understood by considering oscillations of the chemical potential with the QO
frequency F3 (as reported in [91,215] and discussed in Sec. 5.3.1). However at high fields,
low temperatures and the special field orientation B ⊥ (b,c), i.e., Θ = 0° strong deviations
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from LK behaviour are observed, which manifest themselves as a dramatic reduction of the
SdH amplitudes under these conditions. Since these damping effects influence (or may even
prohibit) the estimation of the effecting mass m*, they are illustrated concomitant to the
discussion of m* in the following.

Determination of the Carrier Effective Masses m* by Quantum Oscillation Experiments

Within the scope of dHvA and SdH experiments underlying to this work, the effective masses
m*Fj of the carriers contributing to F2 and F3, respectively, were estimated. The values for
m*Fj were obtained by a fit of the temperature dependence of the FFT amplitudes15 of Fj to
the temperature damping factor RT of the LK formula, as discussed with Eq. (3.10). The data
obtained by this standard procedure are shown in Tab. 5.6. The m*F3 value estimated by both,
dHvA and SdH experiments is in agreement with data obtained by dHvA experiments at
Θ = 0° and B = 11T reported in [395a]. From m*F3 = 3.90 the value for the Fermi energy was
determined by Eq. (3.2). The obtained EF = 0.114eV corresponds very well to the value of
0.113eV calculated from structure data. For F2 m*F2 = 1.90 and a Fermi energy of 35meV
was found.

These results show that dHvA and SdH experiments give access to very reasonable values for
m* and it shows in reverse that in general the standard 3D LK formalism applies very well
for the description of QOs even in such 2DES.

0,0351,9F2 = 570T

0,114
0,113 **)

3,90
3,80 *)F3 = 3883T 

Fermi Energy
EF [eV]m* (Θ = 0°) [me]κ-(BEDT-TTF)2I3

Tab. 5.6: Effective masses m* of the carriers contributing to the F2 and F3 orbit, respectively ( * ) is the value
from Ref. [395a]). The values obtained from dHvA and SdH experiments at different angles Θ were rescaled to
Θ = 0° by the 1/cosΘ-law given for a 2D system. The Fermi energy values for the two corresponding bands are
obtained from the frequency values and Landau level spacing ( ** ) is EF as obtained from structure data).

However, comparative dHvA and SdH studies of the temperature dependence of the QO
amplitudes at various fields revealed decisive peculiarities, as shown in the following.
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15 It is noted, that for the SdH effect the QO amplitudes have to be rescaled by the non-oscillating background
(see Eq. (3.22)). However this may generate artefacts, since the estimation of the background is not
straightforward to carry out in a 2DES and is therefore a point of controversial discussion in the quasi-2D
organics. However in the present material, the background is very weakly temperature dependent in the
investigated temperature region. Therefore both, the rescaled SdH amplitudes just as those from the raw data,
yield consistent results within the error bars plotted in Figs. 5.12 and 5.13.  



Application and Limits of the Lifshitz-Kosevich Formula

For the present 2DES the application and the limits of the standard 3D description of QOs in
metals can be best illustrated by the investigation of the temperature as well as the field
dependence of the QO amplitudes (the latter is discussed in Secs. 5.4 ff.).
At first, investigations of the temperature dependence of the QO amplitudes (i.e., m*) were
performed by SdH and dHvA experiments under various experimental conditions and the
results are discussed in the following. Figure 5.12 shows as an example the values for mF3*
obtained by SdH and dHvA experiments at different fields and angles. First, SdH
measurements were carried out at Θ = 0° between 8 and 10T and the data reported in Ref.
[395a] were reproduced (see Tab. 5.6). Further mF3* determinations were continued to higher
fields by SdH experiments at 0°, since the amplitudes were found to be maximal at this angle.
Surprisingly, it turned out that the fit of the temperature dependence of the SdH amplitudes to
the LK formula (Eq. (3.10) suggested a strong decrease of mF3* with increasing field (see
lower curve of Fig. 5.12). This was interpreted as an indication for a field dependent mF3*
[397].
Subsequent experiments focused on the invoked questions, whether i) mF3* is indeed field
dependent or, whether ii) SdH experiments might be on principle not suited to determine
mF3* (since they are transport experiments and might be afflicted by scattering) or, whether
iii) this effect occurs only at Θ = 0°.

Fig. 5.12: Values for the carrier effective mass mF3* in κ-(BEDT-TTF)2I3. The filled circles represent estimates
obtained by SdH experiments at Θ = 0°. The green squares are results from dHvA experiments at various angles
Θ. The black filled square is obtained by the set of angle-dependent SdH and dHvA measurements shown in
Fig. 5.13. The mF3* values estimated at Θ ≠ 0° are rescaled to 0° by the 1/cosΘ - law valid for 2D systems. The
right y-axis illustrates the apparent decrease of m* at 0° (the scale of the right y-axis is no real quantity, but is
only applied to show the magnitude of the effect). For discussion see text.
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Fig. 5.13: The angular dependence of mF3* in κ-(BEDT-TTF)2I3 is in perfect agreement with the 1/cosΘ - law
(full curve) as expected for 2D systems. SdH and dHvA experiments show consistent results at Θ ≠ 0° even at
high fields.

Unfortunately dHvA torque experiments are a priori excluded at 0°, since the torque signal
itself vanishes due to the symmetry of the FS at this angle16. Therefore a direct comparison
between dHvA torque and SdH results at exactly 0° is not possible in this system. This
problem was got round by comparative SdH and dHvA experiments at various tilted-field
angles 0° < Θ ≤ 57°, which were carried out at different fields. The results are shown in Fig.
5.13 and the obtained mF3* values can be rescaled to 0° by the 1/cosΘ behaviour of m* in 2D
systems. Fig. 5.13 shows that angle-dependent SdH and dHvA experiments follow this
1/cosΘ law and that both types of experiments reveal perfectly consistent results at Θ ≠ 0°.
Rescaled to 0°, both types of experiments reveal mF3* = 3.9 (see Fig. 3.13). This value is
transferred to Fig. 5.12 (upper plot) and completed by dHvA measurements at various fields
and different angles (full green squares). Rescaled to 0°, these measurements show that mF3*
in fact is constant within the error bars up to high fields. This is confirmed by the fact that the
QO frequency values themselves (which are determined by m* via , see Eq. (3.2)) remain® c
constant up to 52T. From these detailed experiments it was concluded, that

- there is no general difference between the results obtained from dHvA (i.e., magnetisation)
and SdH (i.e., transport) experiments17 and
- mF3* is not field dependent within the error bars of its determination.

These results prove, that this anomalous effect is clearly restricted to Θ = 0°, which is the
field orientation exactly perpendicular to the conducting (b,c) planes and, furthermore they
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17 The situation at Θ ≈ 0° at high fields is discussed in Sec. 5.3.1 by comparative dHvA and SdH measurements
performed on the same sample at Θ = 0.07°.

16 In Eq. (3.9b)   and therefore the torque signal vanishes at Θ = 0°.ØF/Ø

-30 -20 -10 0 10 20 30 40 50 60

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

dHvA
SdH

   
8T < B < 12T
B = 18T
B = 22.5T

m eff,F
3

(Θ ) = 3.90 me / cos Θ
E

ffe
ct

iv
e 

 M
as

s 
 m

* F
3 

 [ 
m

e 
]

Angle  Θ   [ deg. ]



show, that the origin of the apparent decrease of mF3* at 0° can be best found by thinking
over the way to determine mF3* from the temperature dependence of the QO amplitudes.
Apparently lower m* values mean that at low temperatures the QO amplitudes are lower than
expected by LK theory. Furthermore, continual ‘decreasing’ m* values with increasing field
mean, that this deviation from LK behaviour becomes stronger with increasing field.
Considering this it was concluded that the results shown in Figs. 5.12 and 5.13 have to be
understood in terms of strong field and temperature dependent damping effects of the SdH
amplitudes at Θ = 0°, which lead to an apparent decrease of mF3* as soon as the standard LK
formalism is applied for its estimation [399,411,146]. 

Fig. 5.14: Temperature dependence of the SdH amplitudes of F2 and F3 at 25T and Θ = 0°. The dashed lines
show the expected behaviour according to the standard Lifshitz-Kosevich theory whereas the full lines are a
guide to the eye.

This means that the LK formalism applies very well for the description of both, dHvA as well
as SdH measurements18 at Θ ≠ 0° and at 0° at B < 12T, but it cannot be applied for the
description of SdH amplitudes at high fields, low temperatures at this special field orientation
Θ = 0°.
As the field is further increased, the strong anomalous damping effects (DEs) at Θ = 0°
become such dramatic, that the amplitudes even decrease with decreasing temperature (see
Fig. 5.14). A comparison of the experimental results with the expected LK behaviour (dashed
lines) shows the strength of the damping effects. They are observed in the amplitudes of both
QO frequencies, F2 and F3, respectively.
Further SdH investigations were carried out concerning the field dependence of these
damping effects. The results are plotted in Fig. 5.15, where the left part compares the
measured SdH amplitudes with the expected field dependence according to LK theory
(dashed line, according to Eqs. (3.12)-(3.15)). At high fields the observed QO amplitudes
even decrease at Θ = 0°. 
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18 Minor deviations from standard 3D LK behaviour at high fields and can be understood by0o < é 20o

considering oscillations of the chemical potential with the QO frequency F3. These effects are discussed in Sec.
5.3.1.
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Fig. 5.15: Illustration of the anomalous damping effects of SdH oscillations in κ-(BEDT-TTF)2I3 at Θ = 0°. left:
Field dependence of the SdH amplitudes (circles) compared to LK behaviour (dashed line). The amplitudes
were determined by FFT from neighbouring narrow field windows. right: Temperature dependence of the SdH
amplitudes AF3 at different fields (discussion see text).

.

Fig. 5.16: left: Temperature dependence of the FFT amplitudes from SdH and dHvA oscillations at tilt angles
-2° ≤ Θ ≤ 4° at 19T. The grey-shaded area illustrates how sharply the damping effects are restricted to Θ < 1°.
right: The integration over the whole FFT represents the entire magnitude of QOs. The angular dependence of
the SdH amplitudes below 6° illustrate the damping effects (grey-shaded area) and confirms their restriction to
Θ < 1°.
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The right part of the figure shows the temperature dependence of the SdH FFT amplitudes
AF3 at 0° and different fields. According to LK theory this implicit plot should be a straight
line whose gradient should be constant and should give access to mF3* (see Eq. (3.11)). The
gradient at 9T accounts for normal 3D LK behaviour and reveals mF3* = 3.9. Every deviation
from this line with increasing field illustrates the strong damping effects at low temperatures
and Θ = 0° (note the logarithmic scale).
In a further set of experiments the angular dependence of the DEs was investigated in a
narrow region around 0°. The left part of Fig. 5.16 shows the temperature dependence of the
QO amplitudes at . Between 4° and 1° the amplitudes show quite normal 3D LK[ 4o

behaviour (cons. Fn. 16). It should be emphasised that comparative SdH and dHvA results at
1° are nearly congruent, even though they are obtained from different samples. As soon as
the angle is switched from 1° to 0°, the anomalous DEs of SdH amplitudes set in (illustrated
by the grey-shaded area)19. It is emphasised that these damping effects at 0° are also observed
in the amplitudes of the harmonics 2*F3 and 3*F3 themselves [402]. This excludes already,
that the amplitudes of the fundamental are simply reduced in favour of an amplification of
those of the harmonics. Nevertheless, in order to account for the entire rich harmonic content
of the QO amplitudes, the integration of the entire FFT was performed as a measure for the
entire magnitude of QOs. It is plotted in the right part of Fig. 5.16 as a qualitative illustration
of the anomalous DEs. The strong increase of the plots for 6° ≥ Θ ≥ 1° symbolise quite
normal LK behaviour. The drastic deviation at 0° illustrates once again the strong amplitude
reduction at this angle. By reproducing these results on a number of samples of different
batches the experience was made that the higher the sample quality is, the stronger the
damping effects at 0° are. The results for a further sample (open circles) are plotted for
comparison.

In consequence, a number of well-known, i.e., ‘conventional’ effects were considered, asking
whether they may explain the most prominent features of the observed damping effects, i.e.
their increasing strength with increasing field and decreasing temperature, as well as their
sharp restriction to 0°, the field orientation exactly perpendicular to the conducting planes.
The results are summarised in the following (since a part of them is already reported in detail,
they are not reproduced in all detail).

5.3.1 Possible Reasons For the Anomalous Damping Effects of the SdH Amplitudes of
κ-(BEDT-TTF)2I3 at High B Low T and Θ = 0°

Spin Splitting and/or a Field Dependent g-Value

It is a typical observation in κ-(BEDT-TTF)2I3 at 0°, that spin splitting arises at high B, and
low T leading to a double-peak structure of the QOs (see Fig. 5.5) and a strong representation
of the second as well as all even harmonics in the FFT spectrum (see Fig. 5.7). This may give
rise to the question, whether spin splitting can be the origin of the anomalous damping
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19 In the wide angular range of the sample rotation unit (about 330° in total) the absolute angle can be typically
resolved with an error of about 0.5°-1° (depending on the angle itself). At the most interesting angles é 2o

however, a very good angular resolution of could be realised. This was enabled by mounting the[ 0.04o

SdH sample on a torque platelet and tilting the angle within . The exact reproduction of the vanishingé 2o

torque signal at  provided the high resolution . Furthermore it allowed i) the exact finding of thish 0o

angle, it ensured that ii) the sample is not tilted into the direction perpendicular to the sample rotation axis and
that iii) the sample is exactly in the magnetic field centre.    



effects. However, from the obtained results this possibility has to be ruled out for the
following arguments.
-  From the finding that the spin zero positions do not shift between 11T and 22.5T it was
concluded in Sec. 5.2.1 that gm* and therefore the spin damping factor Rs of the LK formula
(Eq. (3.17)) remains constant within this field range. This excludes a field dependent
damping of the QOs by a change of Rs, i.e., by spin splitting. 
- The magnitude of spin splitting increases with the tilting angle Θ and is maximal, e.g., at
15.5°. The assumption of spin splitting as an origin of the DEs would require, that these
effects would become even stronger with increasing tilt angles and would be strongest just at
the spin zero angles, e.g., at 15.5°. In contrast, at this angle and in the whole angular range ,
0° <  ≤ 68°, such DEs do not occur.
- The magnitude of spin splitting varies very smoothly (via gm*) with the tilt angle.
Therefore it cannot explain such a sharp angular dependence of the DEs as observed between
0° and 1°. 
For these reasons spin splitting can be excluded as an origin of the anomalous DEs at 0°.

Magnetic Interaction 

It is a matter of fact that magnetic interaction (MI) may influence the field and temperature
dependence of QOs (see Sec. 3.4.1). 
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One of the characteristics of MI is that even in the presence of weak MI the QO amplitudes
are considerably deformed (see Fig. 3.2.b, reproduced in Fig 5.17.a)), while for negligible MI
the QO curve (dashed line) is symmetric.
In the case of strong MI an inverse sawtooth curve is expected (steep flank at the low-field
side of the QO) and the amplitude of the fundamental frequency is reduced (see part b)). In
comparison to this expectation, the measured SdH curve plotted in part c) of the figure does
not show any indication for such an inverse sawtooth, even at B > 17T. This proves already
that the role of MI is negligible in the SdH experiments.
Furthermore, the harmonic content of the QO amplitudes is indeed high, but if caused by MI,
it should be much stronger temperature dependent as expected by the LK formula. Thus, an
‘estimation’ of mnF3* from each of the observed harmonics n*F3 should result in apparently
higher mnF3* values than the correct mF3* = 3.9. Figure 5.17.d) shows that the opposite is the
case in κ-(BEDT-TTF)2I3. The lowered values ‘mnF3*’ illustrate that the amplitudes of the
harmonics are damped at low T, which is in strong contrast to the behaviour expected for MI.
Moreover it was shown that the strong harmonic content itself can be explained completely
by considering spin splitting as well as the oscillation of the chemical potential with the QO
frequency F3 [91] (see also end of this Sec.). This explanation applies for both, dHvA as well
as SdH measurements, including those at 0°.
Finally it has to be considered that MI depends on the absolute field. Therefore effects of MI
would be observable also at Θ > 0° at high fields and they would be least of all restricted to
0° in such a sharp manner as observed.

These arguments exclude magnetic interaction as an origin for the strong DEs of SdH
oscillations at 0°.

Magnetic Breakdown

As next the possibility was followed that the strong damping effects might be a result of
magnetic breakdown (MB). The following arguments were found to be crucial in this context.

i) The MB gap is overcome above a breakdown field of about 2T (see Sec. 5.2.1). Therefore
with increasing field the electrons are more and more unimpeded on following the orbit
corresponding to F3, i.e., the higher the field is, the lower the influence of MB can be. This is
in contrast to the observation that the damping effects in the F3 oscillations just increase with
field. Furthermore if ever MB itself would generate the damping effects, they would be also
present in the closely related material κ-(BEDT-TTF)2Cu(NCS)2, which has an almost
identical FS. More than this, the DEs would be expected to be even stronger there, since the
MB itself occurs only at higher fields in that material. However such effects are absent in the
Cu(NCS) salt.
ii) The energy gap  is much bigger than . Therefore thermalEg è 3meV kBT l 1.7 & 10−3meV
energy cannot contribute to tunnelling and Bragg reflection probabilities and thus the results
of MB should be temperature independent (see Sec. 3.4.2). In contrast, the present DEs are
found to be strongly temperature dependent.
iii) The MB probability (Eq. (3.25)) depends on the absolute field. Therefore effects of MB
must be observable also at Θ > 0° at high fields and they would be least of all restricted to 0°
in such a strict way as observed.

5. Electronic Properties of the 2D Multilayer Organic Metal κ-(BEDT-TTF)2I3

95



These arguments show that the strong DEs of SdH oscillations at 0° cannot be generated by
magnetic breakdown. A further illustration of this finding is postponed to the discussion of
Fig. 5.24 in Sec. 5.4, since appropriate.

Warping

On the search for a ‘conventional’ explanation for the anomalous damping effects of QOs at
Θ = 0° the possibility was followed that they might be the result of a warping, i.e., a
corrugation of the Fermi surface (as illustrated in Fig. 3.5a). However it was found that a
warping cannot be the origin of these DEs. Since this feature is already set out in Refs.
[402,146,410,413,414,216] the discussion is not carried out in detail here. Instead, two of the
characteristics of a warping are selected, which show that it cannot be the origin of the DEs.
i) A warping is not temperature dependent, while the damping effects are found to be even
strongly temperature dependent.
ii) A warping is not restricted to a certain field orientation, i.e., angle Θ. Its angular
dependence is given by the angular dependence  of the participating QO frequencies.ØF/Ø
Since  even vanishes around Θ = 0° (see Refs. [395a,399]), an assumed warping wouldØF/Ø
be only very smoothly angle dependent around 0° and therefore observable in a wide angular
range Θ > 0°. This consequence of a warping is in clear contrast with the restriction of the
DEs to 0°.

This disagreement between the characteristics of the damping effects of QOs and those of a
warping shows that the latter cannot be the origin of the DEs20.

Quantum Interference

It was already pointed out in Sec. 3.4.7, that an unambiguous assignment between a certain
Fourier spectrum and quantum interference (QI) or magnetic breakdown (MB) with or
without an oscillation of the chemical potential  is not given to date. However the FFT may
give at last hints for the situation present, which have to be verified with additional
arguments.
Therefore the FFT spectrum of SdH oscillations in κ-(BEDT-TTF)2I3 detected in the MB
region (Fig. 5.18.a) and d)) was compared with the situations for   and QI (see parts b) and
c), taken from Fig. 3.10) as studied in the very closely related quasi-2D material
κ-(BEDT-TTF)2Cu(NSC)2 [191]. The results of this comparison are the following.
It was found that the FFT spectrum of SdH oscillations in the I3 salt (Fig. 5.18.a))
corresponds very well in a number of aspects to the dHvA spectrum just for the case of  
calculated for the Cu(NSC)2 salt21 , while it deviates clearly from the cases of pure MB (Fig.
3.10.a)) as well as QI (Fig. 5.18.c)). This turns out in several aspects.
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SdH) at Θ = 0° and low fields is almost identical to the behaviour calculated for a pure thermodynamic property
(i.e., dHvA). This supports the statement of general correspondence of dHvA and SdH results given in Sec. 5.3.

20 For completeness it is anticipated here that a further argument which excludes warping, is discussed in Sec.
5.5.



Fig. 5.18. a) and d): FFT spectrum (SdH) of κ-(BEDT-TTF)2I3 detected in the MB region at Θ = 0° (with
different y-scale). b) dHvA FFT spectrum of κ-(BEDT-TTF)2Cu(NSC)2 in the MB region as calculated for the
case of an oscillating chemical potential. c) SdH spectrum of the latter material for the case of quantum
interference (both, b) and c) are plots according to Ref. [191]). The black filled areas in b) and c) correspond to
1.4K, whereas the solid lines correspond to 0.4K.

- The presence of both forbidden difference frequencies F3-F2 and F3-2F2 in a decreasing
spectral weight is found in the studies reported in [191] to be characteristic of the oscillating
µ case, but not of the QI case.
- The absence of the allowed combination frequencies F3+F2 and F3+2F2 is, likewise,
characteristic of the oscillating µ case (comp. Figs. 5.18. a) and b)), but in strong contrast to
the QI case, where the combination frequencies F3+F2 and F3+2F2 are not only present, but
even higher in magnitude as F3 itself (Fig. 5.18.c)).
- Furthermore, in the case of QI (part c)), both, F3-F2 and F3+F2, should be observed even at
high temperatures, where F3-F2 should have even a higher magnitude than F3 itself. This is
not observed in the present material (part d)).
- Moreover, in the case of present QI the combination frequencies F3+F2 and F3+2F2 should
be not only present, but at 0.4K they should both even exceed the amplitude of F3 itself (part
c)). In contrast, these frequencies are completely absent in κ-(BEDT-TTF)2I3 (part d)).
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These aspects hint to the fact that µ may oscillate in this 2D I3-salt even at low fields (a fact
which is meanwhile confirmed) and moreover, that QI is most likely not the origin of the
anomalous damping of the SdH amplitudes at high field, low temperatures and 0°.
This latter indication is supported by further aspects.
- The difference frequencies are restricted to the MB region [402], as expected for the case of
an oscillating µ in the MB region. If they were ever generated by QI and the underlying path
differences (see Fig. 3.9.b), they would persist up to high fields, since the path differences are
not restricted to the MB region. Thus, such a field dependent behaviour of the difference
frequencies cannot be generated by QI.
- The mentioned path differences shown in Fig. 3.9.b are very weakly tilt-angle dependent,
especially at 0°. This is due to the symmetry of the coupled network geometry with respect to
this angle. Therefore, if an assumed QI were the origin of the anomalous DEs it would
necessarily generate them in a wide angular range. This is in clear contrast, the observed
restriction of the DEs to 0°.

These aspects show that the strong anomalous damping effects in the SdH amplitudes of
κ-(BEDT-TTF)2I3 at high B, low T and Θ = 0° cannot be attributed to quantum interference.

Further Possibilities: Superlattice and FS Instability

In the scope of the present work further possibilities were followed which might modify the
amplitudes of QOs in an anomalous way.
As already mentioned in the discussion of the structure in Sec. 5.1, superlattice spots in the
X-ray structure investigations were not observed, so that the occurrence of a superlattice at
low temperature can be excluded in the present I3 salt. Therefore the anomalous DEs of the
SdH amplitudes cannot be attributed to a superlattice effect.
Especially, indications for a superlattice structure as proposed for the isostructural quasi-2D
organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br [415,416] are not observed in the
present I3 salt. 
Furthermore, the linearity of the plot of the Landau levels versus 1/B in Fig. 5.8 shows, that
the QO frequencies and thus also the Fermi surface are stable up to at least 52T, so that a
field-induced Fermi surface instability can be excluded as an origin of the damping effects.

Eddy Currents

It has to be considered that especially in highly conductive metals as the present one, eddy
currents might be induced during QO experiments owing to a finite . Indeed, in pulsedØB/Øt
field dHvA experiments indications for the presence of such currents were observed [215].
Their induction would be not surprising in view of the strong  reaching even 103 T/s.ØB/Øt
However it could not be clarified in the framework of those dHvA studies, whether eddy
currents may influence SdH experiments and to which extent they might contribute to the
strong damping effects at 0°. This question accompanied our later SdH measurements at high
fields especially at 0°. In order to minimise a possible induction of eddy currents, SdH
measurements with low field sweeping rates of typically 1.7*10-3 T/s were carried out in
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steady resistive magnets and compared with results obtained at lowest sweeping rates of
2.3*10-4 T/s in superconducting coils (see also results discussed in Sec. 5.5).
It was not only found that the strong damping effects persist in experiments at lowest
sweeping rates, even more, they can be excellently observed and they occur even at by far
lower field values than in pulsed fields (at the same temperature 0.4K the DEs occur already
at about 2T in resistive coils (see, e.g., Fig. 5.30) instead of more than 20-30T in pulsed
fields). 

In further comparative pulsed field/steady field SdH experiments at 0° it was confirmed that
the pulsed field and the steady field SdH results are perfectly consistent in the sense that the
magnitude of damping effects is neither influenced by the sweeping rate, nor, by the way, by
a certain critical field or temperature value, but exclusively by the ratio of . ® c/kBT

The consistence of results obtained in an order of magnitude of seven decades in the
sweeping rate  illustrate that the strong anomalous reduction of SdH amplitudes atØB/Øt
Θ = 0° cannot be attributed to the occurrence of supposed field induced eddy currents.

Theory of the dHvA Effect in 2D Systems

In the frame of a search for a ‘conventional’ explanation for the origin of the above
mentioned damping effects of QO amplitudes, the theory of the dHvA effect in 2DES
proposed by Vagner et al. [88,89,90] (see Sec. 3.4.4) was taken up.
An estimate for the field dependence of the envelope of the dHvA amplitude as proposed in
[90] was performed in order to probe whether the QO amplitudes of the 2DES of
κ-(BEDT-TTF)2I3 can be at least roughly understood by this theory. Figure 5.19 shows the
dHvA signal of this I3 salt measured at 16°. Added to the figure is the envelope of the signal
(grey curve) as expected by the initial theory for the dHvA effect in a 2DES. The estimate
obtained by the system parameters as given in the figure caption shows rather disagreement
with the measured data.
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Motivated by the very striking results obtained on this 2D organic metal, effort was put in the
progress of a more appropriate theoretical description. The results are discussed in the
following.

Oscillation of the Chemical Potential with the QO Frequency F3

In order to improve the theoretical understanding of the complex behaviour of dHvA and
SdH amplitudes in κ-(BEDT-TTF)2I3 at high magnetic fields, the system parameters were
introduced in the simulations for the QO amplitudes in 2D systems.
In an analytical approach based on Refs. [88,90,92,417], the two-dimensionality of the
electronic system of κ-(BEDT-TTF)2I3 was considered by an oscillating chemical potential
[91]. For simplicity, only a µ oscillation with the QO frequency F3, i.e.,  , was introducedF3
and it was shown that   acts in a retrospective way onto the wave form of the actual QOF3
with F3. In contrast to a preceding approach for 2D systems proposed in [418,87], which was
derived only for vanishing temperature and Dingle temperature, finite T and TD was now
considered in the improved description [91]. For a further refinement, the summation of the
contribution of an arbitrary number of Landau levels was enabled, whereas the preceding
approach in Refs. [88,90] accounts only for the main contribution of the two LLs lying
closest to the Fermi cylinder (see Sec. 3.4.4).
Thus the retrospective action of  onto the wave form of the F3 oscillations was analysed atF3
high fields, low temperatures and different tilt angles. This approach [91] could identify the
following experimental features as results of the two-dimensionality, i.e., an oscillating µF3 in
κ-(BEDT-TTF)2I3:
- The temperature dependence of the dHvA amplitudes could be perfectly reproduced down
to 0.4K even at high fields (27T).
- The position of spin-split oscillations was shown to be always midway between the
prominent oscillations, independently from the tilt angle Θ between B and the 2D conducting
planes. This is a result of the pinning of the spin levels to  and is therefore in contrast toF3
the behaviour in 3D systems, where the positions of spin-split amplitudes vary with the tilt
angle (as discussed in Sec. 3.2.4).
- The oscillation of µF3 in the 2D system leads to a sawtooth of the QOs whose steep flank is
on the high-field part of a QO, whereas for the 3D system the sawtooth22 is inversed, i.e., the
steep flank is in the low-field part of a QO.

The properties found, can explain the dHvA amplitudes and the spectral weight in the FFT in
the whole angular range 0 < Θ ≤ 40°, where spin splitting was observed. The theoretical
approach applies perfectly even at 0.4K and 27T, i.e., at fields, where the strong damping
effects of SdH amplitudes are observed at 0°.
Later it was found that the description reproduces also the spectral weight of the SdH
amplitudes at these angles, even including Θ = 0°. This confirms the general correspondence
of dHvA and SdH experiments and the general application of this approach to SdH results.

Thus, spin splitting of the QOs, spectral weight in the FFTs and minor deviations of the
temperature dependence of the QO amplitudes are indeed understood by considering
two-dimensionality, i.e., the oscillating . In contrast, the absolute SdH amplitudes i.e., theF3
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strong anomalous damping effects at Θ = 0° and especially their field and temperature
dependence as well as their restriction to 0°, cannot be explained even by this special 2D
approach.

In a further study the use of inductive technique (see, e.g., [87]) enabled dHvA experiments
in pulsed fields up to 60T at Θ = 0° [215]. Figure 5.20 (left) shows the temperature
dependence of the dHvA FFT amplitudes of F3 and its harmonic 2*F3 at 40T.

Fig. 5.20: Temperature dependence of QO amplitudes from different κ-(BEDT-TTF)2I3 single crystals at
Θ = 0°. left: dHvA FFT amplitudes of F3 and 2* F3 at 40T, including fits according to the 2D Lifshitz-Kosevich
theory [87] and a numerical approach for a 2D canonical ensemble of electrons (from [215]). right: SdH FFT
amplitudes at 25T (see also Fig. 5.14.a; the connecting line is a guide to the eye). Note the logarithmic y-scale in
the figures. 

In the left part of Fig. 5.20 the dHvA amplitudes recorded at 0° show minor but significant
deviations from standard 3D LK behaviour by a sublinear behaviour i.e., a slight amplitude
reduction at low temperatures. An improved approach to the experimental curve is achieved
by the 2D Lifshitz-Kosevich theory (dashed line). A considerably better correspondence is
reached by numerical calculations based on the 2D model introduced in Ref. [417], where the
temperature dependence of dHvA oscillations was estimated including finite temperature,
Dingle temperature and µ oscillations with F3 [215]. The resulting full curve in Fig. 5.20
(left) shows a good agreement with the experimental data.
However it has to be emphasized that in dHvA studies at 0° only minor deviations from 3D
LK behaviour are found (see Fig. 5.20, left), which do not compare to the dramatic damping
effects found in SdH experiments at the same angle (right part of the figure).

Comparative dHvA and SdH Experiments at Θ = 0.07° on the Same Crystal

The finding illustrated in Fig. 5.20 indicates a discrepancy of SdH and dHvA experiments
which is not general but occurs exclusively at 0°, high B and low T. In view of this it was
unsatisfactory that the aforementioned two types of experiments were carried out on different
crystals. In order to exclude possible influences by different crystal quality, comparative
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dHvA and SdH experiments were performed in steady fields up to 26T on the same sample
[419].

Fig. 5.21: Comparative dHvA and SdH studies on the same κ-(BEDT-TTF)2I3 single crystal at Θ = 0.07°. left:
Field dependence of the FFT amplitudes taken from narrow field windows. right: Temperature dependence of
the amplitudes at 25T in a logarithmic plot according to Eq. (3.11). The dashed line is a fit to the standard 3D
LK theory, the full line is a guide to the eye.

For these experiments a special technique was used to reach best possible angular resolution.
Therefore the sample as contacted for SdH experiments was mounted onto a dHvA torque
cantilever. This allowed to take advantage from a property inherent to torque measurements,
namely that the dHvA oscillations vanish at  due to the FS symmetry. This was used ath 0o

highest field to find the exact 0° position. The vanishing of the signal at exactly 0° allowed
not only i) the exact finding of this angle, but moreover it ensured that ii) the sample is not
tilted into the direction perpendicular to the sample rotation axis and iii) the crystal is exactly
in the magnetic field centre. Owing to the high crystal quality dHvA oscillations could be
already observed by tilting the sample by 0.04°. Then the dHvA amplitudes were reproduced
at angles , passing the zero several times and an excellent reproducibility was foundé 2o

within a resolution . After this the crystal was turned to Θ = 0.07° and the set of[ 0.04o

SdH measurements were performed. In order to avoid any mechanical or inductive influences
onto the subsequent dHvA experiments, the gold wires were disconnected from the sample,
however leaving the sample on the torquemeter in its initial position. After reproducing the
entire adjusting procedure, dHvA torque experiments were carried out at 0.07°. The results of
the comparative dHvA and SdH experiments on the same sample are plotted in Fig. 5.21. The
left part of the figure shows the field dependence of the QO amplitudes at 0.07° and 0.4K.
Above about 11T the dHvA and SdH amplitudes (rescaled to the same values at low fields)
show increasing discrepancy with increasing field. While the dHvA still increase strongly
with field, the SdH amplitudes even decrease above about 20T. This dramatic damping is
particularly anomalous, since according to the theory of the SdH effect, the SdH amplitude in
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such a high-quality 2DES should rather tend to diverge at high fields instead of being
reduced (see Sec. 3.3). Moreover, most of the known possible deviations of SdH amplitudes
from dHvA amplitudes are given by the fact that, as a transport experiment, the SdH effect
may be influenced by additional scattering. Such effects should be however minimised in
intraplane transport, so that, again, strongest SdH amplitudes would be expected just at 0°. 
In the right part of Fig. 5.21 the temperature dependence of the dHvA and SdH amplitudes is
plotted in the standard 3D LK manner, where the plot according to Eq. (3.11) should result in
the straight dashed line. The deviation of the dHvA amplitudes from this 3D behaviour is
weak and can be clearly understood by the 2D approach described in the preceding section.
In contrast, the dramatic magnitude of the damping effects in the SdH amplitudes is evident
even in this logarithmic scale. 

Interjection

The actual section comprised a number of ‘conventional’ fermiological possibilities, which
were followed on the search for an explanation for the anomalous damping effects of SdH
amplitudes at high B, low T and 0°. A partial success could be achieved by considering the
general influence of two-dimensionality, i.e., onto the QOs. It was found that a theoreticalF3
understanding is indeed reached for

a) the slight deviations from standard 3D LK theory, which are generated by  at high BF3

and low T and which are observable in a wide range of the tilt angle Θ between field and 2D
conducting planes.
b) the general correspondence of dHvA and SdH in the entire field, temperature and angular
range covered by the experiments, except at 0°, high B and low T.
c) the shape and magnitude of dHvA amplitudes at 0° even at high B and low T.

However, by all these considerations the strong damping effects in the SdH amplitudes at
high B, low T and 0° could not be explained and least of all their restriction to this angle.
After inclusion of  at both, finite T and TD, the numerical and analytical treatments of QOsF3
are in very good agreement with the experiments at high B and low T and  Θ > 0°, for dHvA
measurements even including 0°. This shows that a pure thermodynamic property (i.e., dHvA
effect) can be well described by the models used and confirms that the results of
two-dimensionality, i.e.,  in principle have been considered in an appropriate way - at least
at a first glance.
However, the fact that the behaviour of SdH amplitudes at 0° are still not understood, asked
to find an additional mechanism, which

1) is inherent to 2D systems,
2) acts at high fields and low temperatures (as can be reflected by ),® c/kBT
3) is restricted to Θ = 0°,
4) influences only SdH, i.e., transport experiments.

One key of understanding is the restriction of the damping effects to 0°. A further stimulating
aspect is the fact that the standard 3D LK theory and all corrections to it as discussed in the
preceding, are based on the common assumption that the total number of carriers contributing
to QOs in a system is constant. Both these features are taken up in the following.
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5.3.2 The Very Special Experimental Conditions in a 2D Multilayer Metal at Θ = 0°
Compared to Θ ≠ 0°

The restriction of the strong damping effects of the SdH amplitudes to Θ = 0° asks to think
over the special role of this angle in a 2D multilayer metal.
It was described in Chap. 2, that most of the widely investigated 2D systems are based on
semiconductors, where a 2DES is generated in one single 2D layer of finite thickness. By this
the electron motion is naturally restricted to this 2D plane and a tilting of the external field
with respect to the normal to this plane can be considered by replacing the absolute field
value by the component normal to the plane.
However the situation in a 2D multilayer metal is fundamentally different. In order to
illustrate this, a schematic cyclotron motion in real space is drawn for a 2D multilayer metal
in Fig. 5.22 for tilt angles between field and conducting planes Θ ≠ 0° and Θ = 0°,
respectively. The left part of the figure sketches an idealised cyclotron orbit at arbitrary angle
Θ ≠ 0°. This situation leads to a competition between the intrinsic two-dimensionality of the
system, which tends to keep the carriers within the 2D planes, and the perpendicular
component of Lorentz force FL,⊥, which compels the carriers to tunnel between the successive
conducting layers. Therefore, when Θ ≠ 0°, the electrons of a multilayer metal will
undoubtedly leave the conducting planes and follow a cyclotron orbit in the third dimension.
This fact is proven by a metallic, relatively low interplane resistivity (see Fig. 5.1) as well as
a by metallic, low thermopower in the interplane direction (see Fig. 5.2). This means that a
finite potential gradient or even a low temperature gradient (of about < 0.5K) perpendicular
to the planes is able to compel the electrons to leave their planes and therefore the same can
be forced by the perpendicular component of Lorentz force. By the motion into the third
direction the intrinsic two-dimensionality is clearly disturbed at all angles Θ ≠ 0° (or, at least
at Θ ≥ 1°, as suggested by Fig. 5.16). 

      Two - dimensionality "disabled"    Two - dimensionality "supported"

Fig. 5.22: Idealised cyclotron motion (real space) in a 2D multilayer metal as, e.g., κ-(BEDT-TTF)2I3. The
horizontal lines indicate the successive 2D conducting BEDT-TTF layers. left: At Θ ≠ 0° the carriers leave the
conducting planes (the real trajectory is of course more complex, but may be disregarded here). right: At
Θ = 0° the carriers stay within their conducting planes.

However despite this 3D motion forced onto the system by the experimental conditions at
Θ ≠ 0°, some of the typical 2D properties may be expected to survive: Since the interplane
carrier motion is not only ‘free’ (metallic), but even coherent in κ-(BEDT-TTF)2I3 [420], the
Fermi surface can be regarded as an almost perfect cylinder with free kz motion (see Fig.
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3.5.b). Therefore the main properties of a cylindrical FS persist even at Θ ≠ 0°. These are,
e.g., the 1/cosΘ behaviour of both, m* as well as the frequency values of Fj. In addition, µ
oscillations of this Fermi cylinder may be observed also at angles Θ ≠ 0°. All these aspects
are in full agreement with the experimental results of the preceding sections.
At Θ = 0°, however, both, the intrinsic two-dimensionality as well as the field orientation
keep the cyclotron motion of the carriers within the conducting planes. This point reveals a
fundamental difference between a metallic multilayer 2D system and, e.g., a well-known
single-layer semiconducting 2DES: It turns out that in a 2D multilayer metal Θ = 0° is the
exclusive angle where the intrinsic two-dimensionality can take full effect, since the 2D
character is not perturbed by the field orientation, but even ‘supported’ by it. Hence this
angle is the exclusive field orientation, where a 2D multilayer metal has the chance to
approach a 2D semiconductor in the possibility to realise its almost perfect
two-dimensionality. 

In view of this, the fact that the strong damping effects of the SdH amplitudes of a cyclotron
motion at high B and low T are observed just at the exclusive field orientation, where the
two-dimensionality of the system may take full effect, may be understood as a request: It asks
to consider more subtle influences of two-dimensionality, going beyond ‘merely’ µ
oscillations - effects which occur in such systems at high B and low T, i.e., electron
correlation and electron localisation, as known from the quantum Hall effects. In this
framework it was proposed that the strong damping effects in the SdH amplitudes at 0° may
be understood in the sense that electron localisation at high B low T and 0° may cause a loss
of mobile electrons which may contribute to magnetotransport, i.e., SdH amplitudes
[399,411,146]. In consequence, the SdH amplitudes at 0° produced by the remaining mobile
carriers must appear as strongly damped from the viewpoint of all ‘conventional’ descriptions
of QOs, including corrections and the theories for 2D systems (see Chap. 3), since all of them
assume that the total number of mobile carriers is constant.

When taking up this possibility, it was immediately outstanding, that the quantised Hall
effects were observed experimentally only at low Landau level filling factors ν with typically

 (as quoted in Ch. 4) and sometimes even only in the quantum limit (ν ≈ 1). This is iné 5
strong contrast to the known ν in κ-(BEDT-TTF)2I3 (e.g., νF2 = 114 at 10T, whereas
νF3 = 777, both considering spin splitting). Even if in theories a clear statement on ‘cutoff’
filling factors for the quantised Hall effects is not found, the filling factors present here
seemed to be very high.
In view of the fact that band structure calculations are only of finite resolution (see Sec. 5.2),
especially small pockets on the FS might be disregarded. Therefore effort was put in detailed
QO experiments on the search for low-frequency quantum oscillations, i.e., the presence of
low LL filling factors in κ-(BEDT-TTF)2I3. The results are discussed in the following
sections.

5.4 The Role of the Low Frequency QO With F0 = 13T

The search for low-frequency oscillations requires to extend QO experiments at lowest
possible fields, since for their identification widest possible field windows in [1/B] are
needed. On κ-(BEDT-TTF)2I3 such low-field experiments are enabled by the high crystal
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quality and they were performed as SdH experiments, since this method is by far more
sensitive as dHvA torque technique23. 

Fig. 5.23: Low-field SdH signal of a κ-(BEDT-TTF)2I3 single crystal at 0.38K and Θ = 0° [413]. a) Raw data
versus 1/B, showing dips which correspond to F0 = 13T. b) The same signal after division by the background. c)
The Fourier transform of the signal shows F0 = 13.23T and its harmonics [410].

Further aims of these measurements were i) the search for DEs of SdH amplitudes at low
fields and ii) to extend their investigation to their field instead of their temperature
dependence. In order to detect even the high-frequency SdH oscillations in best possible
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23 It is recalled that the torque cantilever itself provides a sensitivity which increases linearly with B.
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resolution down to lowest possible fields, the experiments were carried out with very low
field sweeping rates (in the order of 10-4 T/s) in steady resistive and superconducting
magnets, respectively.
Figure 5.23 shows a low-field SdH experiment at 0° and 0.38K where part a) of the figure
shows the raw data [413]. In the steep background resistivity significant dips are observed
which occur equidistantly in 1/B (stressed by grid lines). This finding is more evident in part
b) of the figure, where the signal is plotted after division by the background resistivity. The
variation in the depth of the oscillations suggests to recognise a main frequency (blue dashes)
which corresponds to F0 = 13T as well as its spin-split oscillation24 (green pointed grids). An
FFT of the signal (part c)) confirms this finding and shows F0 as well as its harmonics [410].
The relatively exact value F0 = 13.23(±0.1)T obtained by the intercept of the dips in the
low-field range and is confirmed by the FFT and the slope of the plot of the Landau level
indices of F0 versus 1/B [410]. From this value the fermiological data of Tab. 5.7 are
obtained.

Tab. 5.7: Fermiological data for the QO frequency F0 in κ-(BEDT-TTF)2I3. AF0 is the extremal area in k-space,
kF is the corresponding Fermi wave vector. 

These data illustrate that the closed area AF0 corresponding to F0 represents only a very small
pocket of the FS. In view of this it is not very surprising that this closed orbit might be
beyond the resolution of standard band structure calculations. It should be mentioned, that a
similar low frequency is not yet observed in isostructural organic compounds as, e.g.,
κ-(BEDT-TTF)2Cu[N(CN)2]Br or, respectively, the Cu(NCS)2 salt. While the occurrence of
such a low frequency in the Cu[N(CN)2]Br salt might be a priori excluded by the formation
of a superstructure below about 200K [415,416], the presence of such a low QO frequency as
F0 is not excluded in the Cu(NCS)2 material. However, the relatively high Bc2 value (≈ 6T,
[57]) of this material restricts the available field window to about one single complete
oscillation with a frequency as low as F0. This might impede the search for an analogon of F0

in the Cu(NCS)2 salt.

In the present I3 salt F0 is observed at 0.4K above about 1.25T (see Fig. 5.24, right). At 2T the
SdH amplitudes of F0 reach about 0.04% of the background resistivity. Above about 2.4T the
amplitudes of F0 could not be observed directly, since the amplitudes of F2 and F3 increase
strongly with field and dominate over those of F0 (see Fig. 5.23.b). 
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Fig. 5.24: right: SdH oscillations of F0 in κ-(BEDT-TTF)2I3 single crystals [413]. The filling factor ν of F0 is
indicated on the top axis. left: 'Dingle plots' of F2 and F3, where AFj are the respective FFT amplitudes (taken
from neighbouring narrow field windows). m*F2 = 1.9 whereas  m*F3 = 3.9 is considered. The estimated dashed
and dotted curves represent the expected amplitudes (accounting for magnetic breakdown). The grey-shaded
areas represent the magnitude of the damping effects.

However the action of F0 onto the amplitudes of F2 and F3 can be unambiguously observed
up to high fields. This is illustrated by means of the so-called 'Dingle plots' (DPs) of the
implicit values of the FFT amplitudes of F2 and F3 (see left y-axis in Fig. 5.24 and Eq. (3.15))
versus 1/B. In the standard LK theory the slope of a DP should be linear and is a measure for
the Dingle temperature TD and the scattering time τ (see Eqs. (3.14) and (3.15)). In the
present case of magnetic breakdown (MB) the LK theory has to be extended by the so-called
'coupled network description' (CND) to take account for the magnetic field dependence of the
MB probabilities (see Sec. 3.4.2). According to the LK theory and the CND, the Dingle plot
of F2 should be sublinear, while that of the MB orbit F3 is expected to be a straight line (the
curves are determined by the Dingle temperatures and the magnetic breakdown field BMB).
Even though the low field region is least influenced by the anomalous damping effects, it can
only hardly be fitted by taking an exaggerated BMB ≈ 4T and a by far too high TD ≈ 0.4K (see
dotted curve in Fig. 5.24 for F2 and dashed line for F3). This indicates that already at low
fields the behaviour of the QO amplitudes can be only hardly described by the LK theory and
the CND. At higher fields the discrepancy becomes much stronger. Above 2T the DP of F2

strongly deviates from the estimated curve (note the logarithmic scale). The DP of F3 shows
strong deviations from linearity above about 4T. At high fields both DPs show strong
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damping effects (grey-shaded areas), which can neither be explained by MB, nor by the
collection of effects summarised in Sec. 5.3.1.

The most important features in the DPs of both, F2 and F3, are revealed by the ‘fine structure’
of the DPs. These are the discontinuities in their curvature at high fields. For their
understanding the field positions of the minima in the SdH signal of F0 (where the Fermi
energy EF lies just between two successive spin-splitted Landau levels), are marked by grid
lines and continued to high fields. The discontinuities and minima in the DP of F2 show the
same oscillatory structure as the oscillations with F0. They occur just at the field values
where the resistance minima of the F0 oscillations are expected (i.e., where EF lies between
two adjacent spin levels of F0). The same behaviour (even though weaker in magnitude) is
present in the DP of F3. An oscillatory structure with F0 is observed in SdH experiments at
Θ = 0° on several crystals [413,414]. By this, F0 is identified to be directly involved in the
damping of the amplitudes of F2 and F3. The filling factor νF0 of F0, as indicated on the top
axis, turns out to be a controlling parameter for these effects [410,413]. While the amplitude
of F2 is already damped at νF0 < 13, that of F3 is first demonstrably damped in the MB regime
for νF0 < 7. The magnitude of the damping effects increases strongly with decreasing νF0. At
the highest applied field, νF0 = 2 is reached with only two spin levels of the lowest Landau
level of F0 being occupied below the FS. While F2 and F3 are at fairly high filling factors
when the damping effects in their amplitudes occur, F0 is already close to the quantum limit
(QL), i.e., at low ν. It is noted that the special situations at inverse field values B-1 ≈ 0.43;
0.17 and 0.09 are discussed later in Secs. 5.5. ff.

The fact that the damping of the amplitudes of F2 and F3 are found to be equidistant in 1/B
might give rise to the question, whether they may be attributed to warping nodes, i.e., a
corrugation of the FS with a warping frequency corresponding to F0. It can be anticipated
here, that there are several arguments which clearly contradict to this possibility, so that F0

has to be attributed to a low-frequency quantum oscillation. Since more appropriate, a
discussion of this point is postponed to Sec. 5.5., where further aspects arising in that section
can be included in the discussion.

The observation illustrated by Fig. 5.24, that the damping effects of the QO amplitudes of F2

and F3 show an oscillatory pattern just with F0, proves that the electrons of all the
corresponding subsystems (i.e., bands) are strongly correlated. This correlation persists even
though the involved bands are at very different ν.
This established correlation means in reverse, that the carriers contributing to F2 and F3 on
the one side are themselves sensitive to the conditions introduced by F0 on the other side.
This makes easier to understand why the filling factor νF0 of F0 becomes a controlling
parameter of the entire system and why at high fields it is able to force quantum limit
conditions on the entire correlated electronic system.
Two-dimensionality and the obvious presence of electron correlation ask to consider also
their consequence, i.e., electron localisation around integer and noninteger low filling factors
νF0. The correlation between the electrons of all orbits prove that such localisation effects
may, accordingly, involve all carriers, not only those on the low-νF0 orbit itself.

Based on this the damping effects of the QO amplitudes of F2 and F3 may be understood at
this stage as a reduction of the carrier number contributing to these QOs, which is caused by
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localisation effects, as generated by the low filling factors of F0 [410,413]. However, before
going into detail with the discussion of this point, further decisive results have to be included
in the following sections.

Oscillation of the Chemical Potential with F0

It was already shown in Sec. 5.3.1, that in view of the two-dimensionality of
κ-(BEDT-TTF)2I3 oscillations of the chemical potential µ have to be considered. However
due to the complexity of the system only those oscillations with the QO frequency F3 could
be treated in the numerical and analytical studies reported in Sec. 5.3.1. Therefore the
subsequent, more intensive search for µ oscillations suggested to find a more direct and less
lavish approach to , whose results are described in the following.
One of the fundamental differences between a well-known semiconducting 2DES and the 2D
organic metal κ-(BEDT-TTF)2I3 is the fact that in the former ones all electrons follow one
single orbit, whereas in the latter they move on various orbits corresponding to very different
QO frequencies. This condition can be excellently used to probe variations of µ with the
successive QO frequencies. The huge difference between the frequency values of F0, F2 and
F3 themselves allow to use the high-frequency QOs as a ‘high-resolution’ sensor, which
probes the actual position of µ as well as its low-frequency variations, if present.  

In order to investigate the behaviour of µ in κ-(BEDT-TTF)2I3 more thoroughly, the
successive field positions Bn were determined, at which the actually highest occupied nth

Landau cylinder (LC) of a certain frequency (here, e.g., F3) passes the Fermi cylinder (see
Fig. 5.25). The corresponding Landau level indices nF3 can be obtained as a result of Landau
quantisation by a variation of Eq. (3.18), i.e.,

. (5.6)F3
Bn, F3

= nF3 + 1
2

With the exact F3 and nF3 values obtained 
from Fig. 5.8 and with

, (5.7)= (nF3 + 1
2 ) e ®Bn, F3

m& me
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the actual position of µ can be obtained according to Eq. (5.7) simply by ‘filling’ the
corresponding band by (nF3 + 1/2) Landau levels with a spacing of  . By this procedure,® c
the QOs with F3 as well as those with F2 can be utilised as ‘sensors’ to probe the actual
position of µ [414].
In a 3D system, where µ is practically fix, the sequence of Bn is prescribed to be exactly
equidistant in 1/B (see, e.g., [87]). In a 2D system however, where µ itself oscillates, Landau
quantisation directly connects these µ oscillations with a variation of the field positions of the
successive Bn. In reversal of this, the detection of the successive Bn in a wide field range can
be used to determine not only the actual position of µ but also its variation from the steady
average value. In a system with several different QO frequencies this allows the use of the
successive field positions of, e.g., a high-frequency QO as a 'sensor' in order to probe the
actual position of µ and all its variations with frequencies lower than the 'sensor' frequency.
Thus in our case the QOs of both, F3 as well as F2, can be used to investigate the
low-frequency variations of µ by use of Eq. (5.7). In order to obtain µ with 'highest possible
resolution', i.e., for most narrow field values, we started by using the F3 oscillations as
'sensor', since these are most narrow to each other. By detection of the successive Bn,F3 over a
wide field window, the field dependence of µ was obtained by Eqs. (5.6) and (5.7) and the
result is plotted in Fig. 5.26 after normalization by the steady part µ St,F3 = 114 meV for F3

(Tab. 5.6).
The curve obtained from SdH measurements at Θ = 0° (curve a)) shows pronounced sawtooth
oscillations of µ above about 6 T with an oscillatory sequence corresponding just to the low
QO frequency F0 = 13 T (called  in the following) [414]. The filling factor νFo and theF0
corresponding magnetic field values are plotted on the top axes of the figure. At lower fields
6T ≥ B ≥ 3.8T even a further oscillatory structure of  with F2 is indicated. However theF2
discussion of this low field region would require the detailed consideration of the coincidence
of  and magnetic breakdown and is therefore skipped here. After verification of beingF2
deep enough in the complete MB region [414], the subsequent measurements were focused
on B ≥ 6T (i.e., above the MB) for further investigations of  .F0
For comparison with the results in Fig. 5.26.a obtained with F3 as a 'sensor', as next F2 and its
sequence Bn,F2 were used in the same way for the determination of µ. The high field part of
the result above the MB is plotted in Fig. 5.26.b after rescaling by the steady part µ St,F2 = 35
meV (see Tab. 5.6). It confirms the behaviour shown in Fig. 5.26.a. The results in both parts
a) and b) were obtained from SdH, i.e., transport measurements. In order to verify this
finding, we investigated µ also by dHvA experiments, which directly probe the
thermodynamics of the system [87]. As aforementioned, the dHvA torque signal vanishes at
0° itself for reasons of band structural symmetry. In the dHvA experiments best conditions
for the detection of F3 were given at 9° and for F2 at 16°, respectively. The obtained results
were rescaled to Θ = 0° by the 1/cosΘ - law valid for 2D systems. Figure 5.26.c shows the
normalized  from dHvA experiments at 9° determined by investigating the field positions
Bn,F3 of the F3 oscillations, while Fig. 5.26.d shows  as obtained by the F2 oscillations at 16°.
Both show a low-frequency oscillatory structure .F0
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Fig. 5.26: Quantum oscillations of the chemical potential  with F0 at 0.38K, where  is rescaled by theF0 F0
steady part µSt (see text).  was obtained from SdH experiments at Θ = 0° (parts a) and b)), and from dHvAF0
measurements at 9° and 16° (parts c) and d)), respectively [414]. The latter results were rescaled to Θ = 0° by
the 1/cosΘ - law valid for 2D systems. The red dashed line in part a) is a guide to the eye. During the field
window ‘p’ µ is pinned to a Landau level of F0, whereas during ‘d’ it drops down to the very next occupied LL
on the FS (discussion see Sec. 5.8.1).

At first these results show the power of the detection method introduced in [414]. By simply
filling the corresponding band according to Eq. 5.7  with the n actual LLs as detected by the
‘sensor’ one obtains the correct values for the Fermi energies (113meV and 35meV,
respectively), which means in reverse that both, nFj as well as m*

Fj are obtained correctly by
QO experiments. This shows that even in a rather complex system with several orbits present
the method applied here is very sited to probe the actual position of the chemical potential as
well as its variations with magnetic field.

At this point the results reveal further important aspects.
1) In Fig. 5.24, F0 could not be detected above about 2.3T due to its low amplitude compared
with the other QOs as well as the background resistivity [413]. In contrast, the µ oscillations
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with F0 shown in Fig. 5.26 represent the first detection of F0 above 2.3T up to high fields,
where the concomitant damping effects in the SdH oscillations are prominent.
2) The µ oscillations with F0 prove the presence of both, a corresponding Landau cylinder
structure and a closed orbit on the FS.
3) The results from both, transport (SdH) as well as thermodynamic (dHvA) measurements in
Fig. 5.26 confirm the realisation of low ν and their importance in κ-(BEDT-TTF)2I3.
4) The fact that ‘sensors’ as the F2 and F3 oscillations, are able to probe results of F0

confirms, that the electrons on the F0, F2 and F3 orbits are correlated.
5) The very different filling factors of the ‘sensors’ F2 and F3 and the correlated ‘object’, i.e.,
F0 proves that electron correlation (EC) bridges the very different ν and that EC is operative
even at very high ν of F2 and F3.

Before going into further discussion, very recent investigations are included in the following.
They are results of experiments motivated by an open question as invoked by Fig. 5.24: In
the left part of the figure the Dingle plot of F2 shows strongest damping effects at νF0 = 3, 5
and 12. Even if at first glance they seem to be connected with the filling of F0, they cannot be
attributed in a simple way to this QO frequency, since they are by far stronger than the DEs
at neighbouring filling factors νF0. At a first glance the DEs at νF0 = 3 and 5 might be
attributed to strong spin polarisation and proximity to quantum limit, but the strong amplitude
reduction at νF0 = 12 clearly contradicts to both these possibilities. The strength of these
features gives rise to the question whether they may have a common origin. After vain
attempts to find a conventional explanation, this latter possibility was taken up, i.e., that a
further low-frequency QO might be present in κ-(BEDT-TTF)2I3, from which only the lowest
LL may be observed at high fields.

5.5 The New Quantum Limit QO Frequency Fnew = 3.8T

The pursue of the possibility that a further low-frequency oscillation might be present in
κ-(BEDT-TTF)2I3, required to extend the SdH experiments far into the low-field range. They
were enabled by decreasing T to dilution temperatures. It should be emphasised that this field
region covers the magnetic breakdown between the closed F2 orbit and the open F3 orbit (see
Fig. 5.10). For this reason the oscillations of the F3 orbit are a priori excluded in the
following investigations of the strong damping effects, since at these fields the F3 orbit is not
properly quantised and its investigation would be influenced by MB effects..
On several κ-(BEDT-TTF)2I3 single crystals field sweeps of very low sweeping rate were
carried out at field orientation perpendicular to the conducting planes (i.e., 0°±0.04°) in
superconducting and steady resistive magnets. The results are discussed in the present
section. In Fig. 5.27 a typical result is confronted with the Dingle plot of F2 from Fig 5.24.
At first the experiments on a number of crystals (as shown in the following) establish that the
Dingle plots show consistently the patterns of strongest damping effects at certain field
values and that these patterns have a common origin. At second, the low-field part of the
detected DPs show a new oscillatory structure with a frequency of 3.8(±0.3)T, called Fnew in
the following (see also Figs. 5.28 - 5.30) [491]. The corresponding frequency is confirmed in
the FFT of the SdH signal in the inset of Fig. 5.27. The results are confirmed on several
additional single crystals from different batches of which a few are included in the
subsequent figures. They show clearly that the strongest damping effects are governed by the
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oscillatory structure with Fnew. It is indicated that the discussion of the high field part of the
signals is postponed to Sec. 5.8.

Fig. 5.27: Dingle plots of the F2 FFT amplitudes AF2 of two κ-(BEDT-TTF)2I3 single crystals at Θ = 0° (the FFT
amplitudes were obtained from SdH oscillations in narrow neighbouring field windows). The dashed line recalls
the behaviour expected by standard LK theory including the magnetic breakdown by the coupled network
description (CND). The parameters are TD = 0.03K, BMB = 2T, T = 380mK (Samp.1), 60mK (Samp. 4), 30mK
(Samp. 5). The grey-shaded area illustrates the damping effects. The curve for Samp. 5 is offset for clarity. The
inset shows the FFT of a SdH signal of Samp. 4 from a field window between 0.8T and 10T. 

On the search for an angular dependence of the low-frequency oscillations Fnew = 3.8T and
F0 = 13T, the whole angular range 0° < B ≤ 90° was examined with special focus on Θ = 90°.
This was done in reminiscence to the Θ-phase of (BEDT-TTF)2I3, where a small pocket is
likewise present (see Sec. 6.2.5). However in the latter material the low-frequency oscillation
is also observed when B is aligned parallel to the conducting planes [421], which corresponds
to 90° in the present notation. Therefore the low-frequency oscillation in Θ-(BEDT-TTF)2I3

was attributed to a 3D pocket of the FS. In contrast, in κ-(BEDT-TTF)2I3 the oscillatory
structure with Fnew and that with F0 where observed exclusively at 0°. This means that the
behaviour of both, Fnew and F0 in the present material is not that of a 3D pocket of the FS.

The further interpretation of the results of Secs. 5.4 and 5.5 in terms of the role of F0 and Fnew

needs however the clarification of a decisive question, inserted in the following.
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Could the Oscillations with F0 = 13T and Fnew = 3.8T be Generated by Warping

The search for an interpretation of the oscillatory structures with F0 and Fnew gives new rise to
the question, whether they might be generated by a warping of the FS. In such a case the
damping effects, showing structures of these frequencies, may be simply understood as
warping nodes (see Fig. 3.6) as described in Sec. 3.4.3. This possibility is discussed in the
following.
As shown in Fig. 3.5.a, a warping of the FS means that different extremal areas AMin, AMax are
present on the FS. They correspond to distinct QO frequency values Fj,Min, Fj,Max which differ
just by the value of the warping frequency ∆F. Hence, assuming a warping, ∆F would be just
13T or 3.8T, respectively. In the case of a warping the total amplitude of a QO is a
superposition of the contributions of Fj,Min and Fj,Max, respectively, which enters into the LK
formula (Eq. (3.9.a)). In consequence the field dependence of the QOs shows warping nodes
with a field intercept (in 1/B) which corresponds to ∆F.

Fig. 5.28: Dingle Plots (DPs, blue and grey curves) and SdH oscillations (black curve) of κ-(BEDT-TTF)2I3

single crystals (from Figs. 5.24 and 5.27) at Θ = 0°. These experimental results are confronted with DPs of
simulated quantum oscillations (red curves) with an assumed warping of 3.8T (part a)) and 13T (part b)). The
vertical arrows show selected situations showing that experiments and simulations do not correspond. They
show that the anomalous damping effects cannot be explained by warping (discussion see text).  
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In order to verify this, the general treatment for a warping shown in Fig. 3.6 was carried out
in the present situation for all combinations, i.e., Fj = F2 and F3, whereas ∆F = 13T and 3.8T,
respectively. The results are shown in Fig. 5.28. The two parts of Fig. 5.28 compare
experimental results, i.e., Dingle plots and SdH oscillations at Θ = 0° (from Figs. 5.24 and
5.27) with DPs of simulated quantum oscillations, where a warping was assumed. Part a) of
the Fig. 5.28 represents the situation for an assumed warping of 3.8T and part b) for 13T.
It can be anticipated that there are a number of arguments (going beyond those collected in
Sec. 5.3.1), even each argument taken for itself, show that the strong damping effects of SdH
oscillations at 0° cannot be explained by a warping of the FS by 3.8T and/or 13T,
respectively. Some of these aspects are listed in the following and refer to the vertical arrows
in the figure, which illustrate the discrepancies between simulations and experiments.
Before going into discussion, it might be necessary to recall that, according to Landau
quantisation, the phase of a QO with a frequency Fj is prescribed except for an absolute
phase, which may be regarded as a ‘free’ parameter in the simulations. This absolute phase
may drift merely within one single oscillation of Fj itself [87]. This restriction persists in the
case of warping and the involved maximum and minimum of the FS enter the LK formula
(Eq. 3.9) only with a phase of -π/4 and +π/4 of a single oscillation of Fj. In consequence, the
field positions of the warping nodes in the QOs (Fig. 3.6) and in the Dingle plots are
prescribed a priori by the warping frequency ∆F and can only be varied within one oscillation
of the fundamental frequency Fj itself, i.e., in a very narrow field window. This means that in
Fig. 5.28 the field positions of the minima in the simulated Dingle plots are prescribed in
x-direction by the assumed warping frequency ∆F except for a ‘free’ shift, which is however
less than the thickness of a dashed grid line. 

i) The simulated DP in Fig. 5.28.a with an assumed warping with ∆F = 3.8T (red curve)
shows warping nodes at field positions, which clearly do not correspond to the observed
minima in the measurements (see Pos. 1) in the figure). It should be emphasised that this shift
exceeds the above mentioned limit by orders of magnitude.
ii) In high fields a strong damping minimum is observed in the experiments (see 2)), which
contradicts to the continuously increasing DP as predicted by a warping with 3.8T.
iii) Warping nodes must be equidistant in 1/B, whereas the observed DPs clearly break this
sequence at high B. A warping with 3.8T forbids any node for 1/B < 0.2T-1 (see 2)).
iv) Likewise, the high field damping minima in the Dingle plots (see 3)) cannot be explained
by an assumed warping with ∆F = 13T (red curve Fig. 5.28.b), which prescribe amplitude
maxima at these field positions. This shows together with ii) and iii), that even a possible
superposition, i.e., a double warping by 3.8T as well as 13T (which might be supposed on
different parts of the FS), cannot explain the high-field damping minima in the detected DPs. 
v) An assumed warping with 13T (red curve Fig. 5.28.b) shows also a significant phase shift
(see 4)) with respect to the SdH oscillations (black curve), exceeding by far the above
mentioned limit.
vi) A warping with 13T would not reproduce the spin splitting pattern of the SdH curve (see
5)).
vii) A 13T warping would place amplitude maxima just at the damping minima of the
detected DPs and vice versa (see 6)).
viii) Moreover, an assumed warping with 3.8T would comprise about 1000 Landau levels of
F3 (whereas a 13T warping would include 300). This means that the warping is much bigger
than LL spacing which itself is much bigger than kBT (otherwise QOs with F3 would be not
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observable). Hence the assumed warping would exceed the thermal energy by orders of
magnitude. Therefore such a warping could never influence the temperature dependence of
the QO amplitudes so that it could never be the origin of the observed strong damping
effects.

In addition to these arguments, the entire set of aspects collected in Sec. 5.3.1 apply also in
the present situation. They all prove that the strong anomalous damping effects of the SdH
amplitudes at high fields, low temperatures and Θ = 0° cannot be explained by a warping of
the FS.
These results suggest to attribute the oscillatory structure with Fnew = 3.8T to a new quantum
oscillation. Comparative measurements on different crystals yield values Fnew = 3.8(±0.08)T.
The fermiological data corresponding to Fnew are given in Tab. 5.8.

1*10 -30,110,036Fnew = 3,8T

Part of the FBZ kF [nm-1]A Fnew [nm-2]κ-(BEDT-TTF)2I3

Tab. 5.8: Fermiological data for the QO frequency Fnew = 3.8T in κ-(BEDT-TTF)2I3. AFnew is the extremal area
in k-space, kF is the corresponding Fermi wave vector [491].

These data show that the extremal area AFnew is very small, representing merely 10-3 of the
first Brillouin zone (FBZ). In view of this it is not surprising that the small pocket
corresponding to Fnew is not yet found by band structure calculations.
Asking for a possible realisation for Fnew, two aspects are briefly discussed here. At first, the
fact that an oscillatory structure with Fnew is observed at lowest field (actually B ≥ 0.8T),
where only F2 is also present, shows that Fnew cannot be understood as the result of a
resonance effect between several present QO frequencies.
At second, the possibility was followed, whether Fnew might be the result of a so-called
geometrical resonance [32] between open orbits. This effect is generated in quasi-1D
charge-transfer salts by electrons moving on the 1D wavy trajectory along c* (see Fig. 5.10)
As a result they oscillate in real space and may tunnel to the neighboring 1D trajectory at
certain magnetic field values, where the amplitude of their oscillating motion in real space is
commensurate with the lattice parameter. Such a geometrical resonance is discussed in
connection with the quasi-1D CT-salt (TMTSF)2ClO4, where the respective trajectory in fact
is an open orbit. In contrast to that, in κ-(BEDT-TTF)2I3 the trajectory along c* is part of a
closed orbit above about 3T, so that the above mentioned conditions are not given here, least
of all at high fields. In addition it is argued that such a geometrical resonance would require a
strong anisotropy within the 2D conducting plane. This requirement is not given in the case
of the present I3 salt, where nearly isotropic electronic properties are observed within the
conducting (b,c)-planes (see Sec. 5.1 and [147]). Therefore a geometrical resonance has to be
excluded as an explanation for Fnew (and for the same reasons it was also excluded as an
origin for F0 in [410]). Hence the origin of the closed orbit corresponding to Fnew remains to
date an open question and gives motivation for refined band structure calculations.

A further argument which proves that Fnew indeed corresponds to a quantised orbit, is given in
the following section.
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5.6 Oscillations of the  Chemical Potential With the Quantum Oscillation Frequency
Fnew = 3.8T

In order to verify the presence of a Landau level structure corresponding to Fnew by a
thermodynamic property, the position of the chemical potential µ and its variation was
probed by the method described in Sec. 5.4. For the same arguments as discussed there, the
QOs with F2 where taken as ‘sensor’ oscillations to probe µ. The results obtained on different
crystals by SdH measurements at Θ = 0°, are shown in Fig. 5.29.
The data in Fig. 5.29 show in very good agreement an oscillatory structure with Fnew. This
shows that Fnew indeed corresponds to a thermodynamic quantity and confirms that Fnew can
be identified with a quantised orbit on the FS and a Landau level structure. It should be
emphasised that the µ oscillations with Fnew (called  in the following) draw a sharpFnew
sawtooth with its steep flank at the high-field side, as expected for µ oscillations in an almost
ideal 2D system.
Questions arising on the high-field pattern in  are clarified in the following section.Fnew

Fig. 5.29: Quantum oscillations of the chemical potential  with Fnew in κ-(BEDT-TTF)2I3 at Θ = 0° as observed
by SdH experiments on different single crystals. (Sample 4: T = 60mK, Samp. 5: 30mK, Samp. 6: 60mK, Samp.
7: 400mK). The curves are rescaled by the steady part of µ (i.e., µSt) and offset for clarity.

5.7 Connection Between the Damping Effects and the Filling Factors of Fnew

In the following figure 5.30 the Landau level filling factors νFnew are attributed to the QO
frequency Fnew, which is identified in Figs. 5.27-5.29 by SdH measurements at Θ = 0°. The
low frequency value of 3.8T itself and Eq. (3.18) make clear that quantum limit (i.e.,
νFnew = 1) is reached in available magnetic fields. Therefore νFnew = 1, 2, 3, 4 can be easily
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related to the equidistant oscillatory pattern of  . This relation is unambiguous, since noFnew
further Landau level can be placed between the field position of the innermost LL, i.e.,
νFnew = 1 and infinite field (i.e., 1/B = 0) [491].
Part a) of Fig. 5.30 shows the attribution of the LL filling factors νFnew of Fnew to the sawtooth
chemical potential oscillations discussed in Fig. 5.29. Quantum limit (QL), i.e., νFnew = 1 is
reached at about 0.171T-1, i.e., 5.85(±0.3)T (cons. Fn. 25). The equidistant sawtooth track of
µFnew fits perfectly to the equidistant LL spacing of Fnew between νFnew = 1 and 4.
However at higher fields, i.e., νFnew < 1, two fundamental circumstances preset the
interpretation of this extreme quantum limit region. At first and as already mentioned,
νFnew = 1 is unambiguously identified, since no further assumed LL can be placed
equidistantly at higher fields, i.e., on the left-hand side of νFnew = 1 in Fig. 5.30.a. 

Fig. 5.30: Identification of Landau level filling factors νFnew of Fnew in the 2D multilayer organic metal
κ-(BEDT-TTF)2I3. a) Chemical potential oscillations detected on different single crystals versus νFnew (see Fig.
5.29). b) Dingle plots from different single crystals as obtained by SdH measurements at Θ = 0° (see also Figs.
5.27 and 5.28). Note that the x-axes of both, a) and b), end up at infinite magnetic field, i.e., ν ≡ 0 [491].
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At second, the left margin of Fig. 5.30 is given by 1/B = 0, i.e., infinite field. This means
according to Eq. (4.3) that ν ≡ 0 there. These two definite circumstances require that in this
extreme QL the LL filling νFnew is to be defined in rational parts of this remaining field
intercept between νFnew = 1 and 0, which covers ∆[1/B] = [0T-1, 0.171T-1]. This reveals that
the additional sawtooth oscillation at 1/B = 0.086T-1 (i.e., B = 11.6(±0.5)T) occurs at exactly
νFnew = ½ in this multilayer 2D system [491]. The fact that the thermodynamic property µ
oscillates at νFnew = ½ strongly indicates the existence of a thermodynamically stable state
there. The presence of this state is also observed by strong damping effects of the SdH
oscillations at Θ = 0° at νFnew = ½, as illustrated by the Dingle plots of several crystals in Fig.
5.30.b. Likewise, the integer νFnew = 1 - 4 can be identified in the Dingle plots as just those
field regions where the damping effects of the SdH oscillations at 0° are strongest (note that
strong DEs are observed even at νFnew = 4, i.e., at about 1T).
These results reveal that in the 2D multilayer organic metal κ-(BEDT-TTF)2I3 low integer ν
and, moreover, νFnew = ½ are present. Furthermore the results show that the strongest damping
effects in the SdH oscillations at 0° are correlated just with the low integer and fractional ν in
this 2DES.

On the one hand, these most recent results and the rather detailed ‘background’ investigations
discussed in the present section, ask for further extensive efforts for their detailed
understanding. On the other hand, the preceding sections have certainly shown that
κ-(BEDT-TTF)2I3 is in many fundamental aspects very different from the widely investigated
semiconducting single-layer 2DES. The most unpleasant result of this is, that actually there is
a very limited scope of theoretical descriptions, which may be applied for an at least
qualitative understanding of the electronic properties of κ-(BEDT-TTF)2I3. This is one of the
reasons, why the electronic properties of this 2DES in high magnetic fields is far from being
completely understood to date.
However, the experimental results were found to be in agreement with a number of
fundamental aspects found in experiments and theoretical descriptions for semiconducting
2DES. Therefore these properties may be understood even satisfactorily within this
framework. A discussion of the most important results is given in the following section.
Besides this, open questions are not concealed, where further experimental but especially
theoretical work is required. It is attempted to include information which may be stimulating
for this further work. 

5.8 Indications for Fractional and Low Integer ν in the 2D Multilayer Organic Metal
κ-(BEDT-TTF)2I3 and Its Consequences

The results of the preceding sections show the presence of the fractional filling factor
νFnew = ½ as well as low integer filling factors νFnew ≤ 4 and νF0 ≤ 12 in the 2D multilayer
organic metal κ-(BEDT-TTF)2I3.
One of the most exciting results in this context is the observation of the ν = ½ state, whereas
the single-layer fractional states of highest hierarchy, i.e., νFnew = 1/3, 2/3, ... (see Fig. 4.10)
are not observed here. This is however not surprising in view of the fact that
κ-(BEDT-TTF)2I3 is a multilayer 2DES.
The present layered organic metal belongs undoubtedly to the category of coupled-multilayer
systems with finite tunnelling (case c) in sec. 4.2.8). The existence of tunnelling is proven by,
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interlayer thermopower (Fig. 5.2), interlayer metallic resistivity (Fig. 5.1) (for both see [145])
as well as coherent interlayer transport at field orientation parallel to the planes [420].
The results shown in the preceding sections agree with the behaviour expected for the case of
coupled 2D layers with finite tunnelling in the following features:

1) The state of fractional quantisation at ν = ½ is observed, as expected for such a multilayer
semiconducting 2DESs (see, e.g., [366]).
2) Odd integer filling factors are present in this 2DES, as expected for the case of finite
tunnelling (see, e.g., [283]).

It is noted that all νFj of the different QO frequencies in κ-(BEDT-TTF)2I3 are undoubtedly
total filling factors (i.e., they count the total filling of the bulk 2DES, not a ‘single-layer’
filling). This can be concluded, e.g., from the fact that the values for the QO frequencies F2

and F3 are quite identical with the values of their analogues in their κ-structured relatives
(see, e.g., [83]). However these relatives of the present I3 salt are quasi-2D systems with an
amount of 3D dispersion, where ν clearly represents the total filling. This means that in the
present material F2, F3 and their filling factors represent the number of electrons in the bulk
material. Likewise, νFnew = ½ represents a total filling factor of the bulk, not the filling of a
single layer26. The fact that the present νFj are bulk multilayer filling factors, corresponds
perfectly to the case of coupled 2D layers with finite tunnelling.
However one of the differences between semiconducting 2D coupled multiple layers and the
metallic multilayer 2D system κ-(BEDT-TTF)2I3 is their different interlayer transport
mechanism. While in the former one hopping mechanism is given, the present material shows
metallic [145], even coherent interlayer transport [420], from which the latter is found by
tilting the magnetic field parallel to the conducting planes. This may help to understand,
- why the results of two-dimensionality in κ-(BEDT-TTF)2I3 may take effect only in the field
orientation perpendicular to the planes (i.e., 0°),
- why the fractional and low integer quantised states may only occur at 0° and
- why they can generate the strong damping effects of SdH amplitudes only at this angle.

All in all the results of the preceding sections show the presence of low integer filling factors
as well as strong indications27 for the presence of the fractional filling factor νFnew = ½ in the
2D multilayer organic metal κ-(BEDT-TTF)2I3. These low ν are brought into the system only
by subsystems, i.e., the small pockets on the FS corresponding to Fnew and F0, respectively,
while the rest of the system i.e., the F2 as well as the F3 orbit, is at fairly high ν. The fact that
the low integer and fractional ν can be observed by their action on the electrons of the rest of
the system, proves the presence of electron correlation which is sufficiently strong to bridge
over very different ν, thus involving even electrons with very high kinetic energy.
Possible results of such correlation effects are discussed in the following. 
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27 As discussed in the preceding sections, none of the current theories can explain the strong anomalous
damping effects at 0° in high fields and especially at B-1=0.086T-1 accompanied by the sharp µ drop there. The
interpretation of the B-1=0.086T-1 state as ν = ½ is based on the proposition of such a state in 2D multilayer
systems. However, especially in view of the complexity of the present system, it is of course not excluded that
after theoretical treatment the understanding of this ν = ½ state might turn out to be more complex than it
appears to date.    

26 In a single layer, νFnew = ½ would be prohibited, since no stable ground state is possible at this filling. But,
even if this law is put into question, an assumed single-layer filling factor νFnew = ½ multiplied by 105 layers
would yield such a high total electron number in the bulk crystal, that charge neutrality could not be reached in
the crystal. 



5.8.1 Coexistence of Extended and Localised States

The fact that the 2DES of κ-(BEDT-TTF)2I3 brought into magnetic fields consists of a
number of QO frequencies Fj, turns the attention to a further fundamental difference between
the present material and a well-known semiconducting 2DES. This may be illustrated by help
of Fig. 5.26, by focusing on a single sawtooth cycle of µ, where µ is pinned to a Landau level
during the sequence ‘p’ and drops sharply within a narrow field window ‘d’28. Normally in
quantum Hall systems containing one single closed orbit corresponding to one QO frequency
F, ‘p’ represents the field window where extended states are at the FS. It is well-separated
from ‘d’, where only localised states are present. In contrast the situation is more complex in
presence of several, very different Fj as, e.g., in the actual material. This means that even
within the field window ‘d’, where µ is situated within the region of those localised states
defined by one of the frequencies (i.e., by F0 or Fnew), this window ‘d’ is intersected by a
number of more narrow LLs belonging to F2 as well as F3. Now these narrow LLs
themselves introduce both, localised as well as extended states into this region ‘d’. In reverse,
the region ‘p’ of extended states of a low-frequency QO (e.g., of Fnew) is intersected by an
alternating series of both, extended and localised states of F0, F2 and F3, respectively.
Therefore in the present 2DES we find a coexistence of localised and extended states in a
wide magnetic field region, with flowing borders between them. Thus sweeping the field
generates alternating situations at the FS, where either the localised, or the extended states,
respectively, dominate and thus determine the electronic properties at the FS.
This rather complex situation is one of the reasons, why a complete theoretical understanding
of the actual results on κ-(BEDT-TTF)2I3 is not available to date.

5.8.2 Indications for Electron Localisation in κ-(BEDT-TTF)2I3 Around Fractional and
Low Integer ν

It was shown in Secs. 5.4 - 5.7, that the strong damping effects of the SdH amplitudes in
κ-(BEDT-TTF)2I3 at high B, low T and 0° are connected to a moderate extent to the integer
νF0 of F0 (see Fig. 5.24) and to a much stronger extent to the integer and fractional νFnew of
Fnew (see Fig. 5.30). The preceding section shows that the coexistence of very different QO
frequencies Fj leads undoubtedly to a coexistence of extended and localised electronic states,
from which the latter are mainly introduced by the low-frequency oscillations Fnew and F0.
The fact that the quantum limit (QL) and extreme QL conditions, introduced by parts of the
system, are best observed by their action onto the rest of the 2DES, proves the presence of
electron correlation. This government of low ν over the entire rest of the system asks to
consider that one of the main properties of a 2DES in the quantum limit, i.e., electron
localisation, may likewise determine the rest of the system. This would involve even the
high-frequency QOs in the coexistence of extended and localised states, thus localising a part
of their electrons. These cannot contribute to QOs in transport any more, so that the
amplitudes of the respective QOs (F2 and F3) appear as strongly damped owing to the
reduction of contributing electrons. In consequence the Dingle plots would show strong
damping effects in regions where localised states are present, since the theory beyond
assumes a constant total number of electrons. This assumed constant total carrier number
may be a also plausible reason why the considerations in Sec. 5.3.1, including oscillations of
µ, cannot explain the strong damping effects.
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The results discussed in Secs. 5.4 and 5.5 provide a progress in the sense that they clearly
attribute the structure in the magnitude of the damping effects (see Figs. 5.26 ff.) to low
integer and fractional ν present in κ-(BEDT-TTF)2I3.

5.8.3 Localisation Lengths

On the search for an understanding of further peculiarities in connection with the strong
damping effects of SdH amplitudes it turned out that a closer review of carrier localisation
lengths may be very helpful. The occurrence of integer as well as fractional ν in
κ-(BEDT-TTF)2I3 (see preceding sections) shows that the problem of electron localisation
has to be considered in the single-particle picture (for integer ν) as well as in the
correlated-particle picture (for fractional ν). This is performed in the following.

In Section 4.1.3 an insight into a microscopic understanding of electron localisation in the
single-particle picture is discussed in connection with the IQHE. In this picture a
non-interacting electron is assumed to be trapped to an impurity and the localisation length
ξ(∆E) is assumed to be described by the distance of the carrier’s energy from the centre of
the Landau band (see Eq. (4.4)). This description assumes a negligible spatial variation of the
impurity potential on a scale of the magnetic length  (which is the carrier cyclotron radius,´0
see Eq. (4.1)), so that an explicit consideration of  might be skipped in that picture,´0
especially when all carriers have the same . However the situation is different in a 2D metal´0
as κ-(BEDT-TTF)2I3. Here the electrons move on distinct orbits with different cyclotron radii
Rc,Fj, corresponding to their QO frequencies Fj. In a metal these Rc,Fj have a different field
dependence from that of  in a semiconductor (comp. Eqs. (4.1) and (4.2)) and they may be´0
considerably bigger than . For a better illustration   and the cyclotron radii of the carriers´0 ´0
in κ-(BEDT-TTF)2I3 are plotted in Fig. 5.31 in comparison.

Fig. 5.31: Comparison between cyclotron radii for a semiconducting 2DES (dashed line) and Rc for the´0
organic metal κ-(BEDT-TTF)2I3, corresponding to the different QO frequencies Fj. The average intraplane drift
length Ld,// of magnetotransport at low temperatures is included in the figure (grey bar and dashed line; its
variation with field can be disregarded in the present context). Discussion see text.
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The figure shows that the cyclotron radii Rc of the big, i.e., high-frequency orbits F3 and F2

exceed the magnetic length (dashed line) by more than an order of magnitude over the entire
available field region. In contrast, the Rc,Fj of the low-frequency orbit Fnew compare at least at
low fields roughly to  in a semiconductor, falling below  at higher fields due to their 1/B´0 ´0
dependence.
Now the fact that an electron has to feel the impurity potential U(r) in order to get trapped by
it, suggests to consider that all electrons in a distance within their own Rc may be concerned.
In reverse, both the profile of U(r) and Rc,Fj would control, how far a carrier may move away
from the impurity centre. Therefore both, localisation strength and localisation length might
be determined by an interplay of the impurity potential profile and the successive Rc,Fj. Since
the latter are different for the present orbits, localisation lengths may be also different for
successive Fj. This may lead to a shorter localisation length for the carriers of F2 owing to
their smaller cyclotron radius.
This consideration may help to understand why the SdH oscillations F2 are stronger damped
(see Fig. 5.24), i.e., more influenced by localisation effects than those with F3, since the
carriers on F2 are stronger localised than those on F3.

Localisation Lengths Around Fractional νFnew

A microscopic picture of carrier localisation in the fractional quantum Hall regime is given in
Sec. 4.2.5. Unfortunately such a picture is not available for a multilayer 2DES to date.
However carrier localisation itself is a direct result of electron correlation. Therefore the
picture of electron localisation at fractional ν should be - at least in its essential features -
common in both, single layer as well as multilayer systems, so that this picture may allow at
least a qualitative understanding of electron localisation in multilayer 2DESs.
According to Eq. (4.15) the size LQP of a localised quasiparticle (QP) with fractional charge
corresponds to its cyclotron radius . This quantity is understood likewise as the localisation´0
length of a screening electron, since the QP size is defined by the screening electrons
involved, which belong all to the same ‘family’ and their own cyclotron orbits are therefore
of the same size . Therefore  in such a 2DES. However the situation changes´0 ´0 = LQP
drastically in a 2D metal as κ-(BEDT-TTF)2I3, when various orbits with different Rc,Fj come
into play. The resulting modifications are similar as described above in the single-particle
picture (see Fig. 5.31 for illustration). Now it has to be considered that, e.g., an electron
moving on the F3 orbit may already be trapped by the quasiparticle, when it is Rc,F3 away
from it, since it couples necessarily with the QP when it continues its orbit. Hence its
localisation length is Rc,F3 instead of   and, especially Rc,F3 > Rc,F2 > ... (see Fig. 5.31).´0

A first consequence of this is that also in the correlated-paricle picture the SdH oscillations
F2 are stronger damped (see Fig. 5.24), i.e., more influenced by localisation effects than those
with F3, since the carriers on F2 are stronger localised than those on F3.
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Drift Lengths in Magnetotransport

The drift length Ld in magnetotransport is the average distance which a carrier situated on the
FS moves along an applied potential gradient during its average scattering time t. 
The intraplane drift length Ld,// can be estimated from resistivity measurements (see, e.g.,
[422]) and is obtained as   at low temperatures. This value is introduced in Fig.Ld, // á 600nm
5.31 (grey area with the dark dashed line as lower limit, given by the lower limit for the
scattering time t). A comparison of the drift length Ld,// with the cyclotron radii shows that all
Rc,Fj fall far below Ld,// at high fields. This means that at high fields a number of carriers are
localised on a scale of Rc,Fj << Ld,//. However a transport experiment to which as expected the
total number of electrons on the FS may contribute, would require an average drift exceeding
Rc,Fj by far. Those electrons which are localised within Rc,Fj may not provide this motion, so
that the SdH oscillations appear as damped due to a loss of contributing carriers.
Furthermore Rc,F2 < Ld,// is reached at about 1.5T, while Rc,F3 < Ld,// is given at roughly 4T.
These values may explain, why the F2 oscillations are already damped at lower fields than the
F3 oscillations. Even more, the ‘cut-off’ field values estimated here correspond surprisingly
well to those where damping effects of the QOs with F2 and F3 are indeed observed.
Moreover Rc,F2 < Rc,F3 << Ld,// at high fields, which may help to answer the question, why the
oscillations of F2 are much stronger damped as those of F3 (see Figs. 5.23 and 5.26,
respectively). Finally the competition of localisation length Rc and drift length Ld may also
explain, why SdH amplitudes do not diverge at high fields - as expected in a 2D system (see
Eq. 3.22) without localisation - but, instead, why they are strongly damped by the dominating
localisation process.

This surprisingly good correspondence between the experiments and the localisation picture,
as adapted to the special system conditions, shows that the proposed picture is at least
reasonable. Therefore it may be used as an explanation for a further open question taken up
in the following.

The Discrepancy Between Results of dHvA and SdH Experiments at High B
Low T and Θ ≈ 0°

The discussion in Ch. 4 shows that electron localisation is a term which is relative to the
length scale focused on. This means that a localised electronic state has to be regarded as
extended within the length scale of its cyclotron radius, while it is localised on every length
scale bigger than its Rc, since it is not allowed to leave an impurity (in the IQHE) or a
localised quasiparticle excitation (in the FQHE).
Now if a 2D system as, e.g., κ-(BEDT-TTF)2I3, is exposed to high magnetic fields, all
electrons are expected to follow a cyclotron radius around a practically fixed centre position.
Considering this, a dHvA experiment is not expected to be able to distinguish between
extended and localised states (possible different scattering rates disregarded), since in both
states the electrons may follow the same cyclotron trace Rc around the fixed centre. The
situation changes drastically when a displacement of the centre position is required by a
transport, i.e., SdH experiment. As described above, in this case the electron is asked to leave
the localised impurity (in the IQHE case) or the localised quasiparticle excitation (in the
FQHE) and to bring about a drift of a certain average drift length Ld. This length can be
regarded as relatively constant (due to a weak magnetoresistance), whereas Rc, i.e.,
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localisation lengths strongly decrease with increasing B. At low fields where Rc ≥ Ld all
electrons may contribute to the SdH experiment, so that its results are in line with those of the
dHvA measurement. In contrast, at sufficiently high B where Rc < Ld, the SdH experiment is
expected to probe only the extended states and hence the SdH amplitudes are expected to be
damped owing to the ‘loss’ of contributing extended electrons. 
Thus the inequality of localisation length Rc and drift length Ld,// would lead to a discrepancy
between dHvA and SdH experiments at high fields and this discrepancy increases with field
in sympathy with the inequality of Rc and Ld,//. By this the localisation picture may explain the
discrepancy between dHvA and SdH measurements at low T and 0° itself as well as its
arising at high B and its strong amplification with B (see Fig. 5.21).

5.8.4 Questions on the Occurrence of Further Results of Two-Dimensionality 

Edge States

At low integer Landau level filling edge states (ES) are found to play a considerable role in
semiconducting 2DES under certain conditions (see Sec. 4.1.4). The experiments carried out
on κ-(BEDT-TTF)2I3 may give rise to the question on the role of ES in this 2D organic metal.
On a closer view several arguments listed below make clear that ES cannot explain the strong
damping effects of SdH oscillations at high B, low T and 0°.

1) Edge states and resulting circular edge currents are ‘necessary’ to explain a non-vanishing
Hall current around integer ν, i.e., in a region where the existence of extended states at the FS
is prohibited. Even more, ES can only occur, when no electron may be transported from one
sample edge to the other via the bulk of the sample. In contrast, in κ-(BEDT-TTF)2I3 in high
B, we have practically always a coexistence of localised and extended states (see Sec. 5.8.1),
from which the latter of course allow a conventional carrier transport via the bulk. This
clearly prohibits the occurrence of ES.
2) Edge currents would exist even when no external voltage is applied and therefore their
results must be observable in dHvA just as in SdH experiments. Therefore if the damping
effects would be generated by ES, they would be inevitably observed also in dHvA
experiments at Θ ≈ 0° as well as Θ ≠ 0°. This contradicts clearly to the experimental results
on κ-(BEDT-TTF)2I3 at Θ = 0.07°.
3) Owing to the relatively high conductivity of organic metals dHvA field modulation
technique probes especially the sample surface, since the contribution of the bulk is screened
by skin effect. Thus, if generated by edge states, the strong damping effects of QO
amplitudes would be even best observable by dHvA field modulation technique. In contrast
no such effects are observed in such experiments [395a].
4) Edge currents are only weakly dependent on the tilt angle Θ between B and the 2DES.
This is in clear contrast to the restriction of the damping effects to 0°.
5) A dependence of edge currents on even macroscopic magnetic field variation is not
expected. This contradicts to the strongly increasing damping effects at high fields.
6) ES are able to transport currents merely below about 100nA. Above, their role is shown to
be negligible. In contrast in the SdH experiments on the present material currents between 50
and 300µA where applied, which are by far above the critical currents of ES.
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7) Furthermore a current transport by ES requires to place the contacts exactly at the sample
edge (see. Fig. 4.7). For the SdH experiments discussed in the preceding the contacts where
placed alternately at the edge and in the centre of the sample surface. The results were
perfectly consistent, thus excluding an influence of edge states.

These arguments show in symphony that edge states most likely do not play any role in the
generation of the strong damping effects of SdH amplitudes as present under the above
mentioned conditions.

On the 1D Chiral Tomonaga-Luttinger Liquid

In section 4.1.4 the most important conditions for the occurrence of a 1D chiral
Tomonaga-Luttinger liquid (TLL) at the sample edge were sketched. It was found that

i) The occurrence of a TLL requires ideal samples up to the sample edge without impurities,
defects or carrier density fluctuations. This is necessary to provide that the Landau levels are
flat up to the sample edge, i.e., that no charge/filling factor fluctuation is present there. This
is not given on organic metals29. Their surfaces are generally covered by semiconducting
donor molecules, so that stoichiometry and charge balance is far from being given at the
sample edge. 
ii) In the presence of a TLL, the system cannot be described by Fermi liquid theory,
especially, a Fermi surface is absent and therefore cannot be investigated. In contrast, the
present material shows a FS, it can be investigated (e.g., by QOs as shown in the preceding)
and the results are in best agreement with those from band structure calculations.

These aspects show that a 1D Tomonaga-Luttinger liquid is most likely not the origin of the
DEs of the SdH amplitudes, since it may not occur in this 2DES.

Wigner Crystallisation

As reported in Sec. 4.2.4 a so-called Wigner crystallisation is a process where electrons turn
to be localised by forcing them to establish a stable, so-called Wigner lattice. Thus, such a
process indeed would influence transport and therefore, in principle, a Wigner crystallisation
would be a possible explanation for the damping effects of the SdH oscillations. However a
Wigner crystallisation was found to be possible only below about ν = 1/10. In
κ-(BEDT-TTF)2I3 this condition is not even not fulfilled by Fnew, but least of all by the other
QO frequencies at  ν = 101 ... 102.
This shows that a Wigner crystallisation can be practically excluded in κ-(BEDT-TTF)2I3 at
actually available fields.
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Composite Fermions

The application of the composite fermion (CF) picture was reported in Sec. 4.2.7. It was
developed to describe why a single-layer 2DES remains completely fermionic at, e.g., ν = ½,
instead of being completely bosonic, as expected by a direct application of Laughlin’s theory
at this filling factor.
In contrast the present 2DES of κ-(BEDT-TTF)2I3 does not meet the prerequisites for the
occurrence of CFs in several senses:

a) The present material is a multilayer 2DES.
b) It shows indications for electron localisation, i.e., deviations from pure fermionic
behaviour, around integer ν and in the same manner just at ν = ½. This means that at ν = ½,
κ-(BEDT-TTF)2I3 shows aspects of both, fermionic as well as non-fermionic behaviour. This
does not agree with a pure fermionic CF picture.
c) As a pure fermionic picture, the CF approach would not explain the strong damping effects
of SdH amplitudes and least of all their restriction to 0°.

These arguments show, that the strong damping effects of SdH amplitudes at low T, 0° at
integer and fractional νFnew cannot be understood in the framework of the composite fermion
picture.

Skyrmions

It was reported in Sec. 4.3 that skyrmions are charged spin texture excitations (see Fig. 4.15)
in a 2DES, which reduce the total spin and lower the number of mobile charge carriers. They
are a result of a competition between Coulomb energy and Zeeman energy in lowering the
total system energy (se Eq. 4.21). In consequence, the formation of skyrmions is supported
by a lowest possible g-value and their size is biggest around vanishing g.
In the present material the electrons are quantised on different orbits and may therefore have
different g-values, owing to, e.g., spin-orbit interaction or many-particle effects as
electron-electron or electron-phonon coupling. For the F3 orbit g = 2.27 was found
[395a,402], for the F2 orbit g could not yet be investigated, whereas concerning the F0 - orbit
it was found that g is at least non-vanishing. In the case of the Fnew orbit the quantum limit
allows to identify the field position of the last LL and to use Eq. (3.18) in order to find the
different possible values for g and the Onsager phase γ, which fulfill the equation. It was
found that a vanishing g is one possible solution of the equation, so that the occurrence of
skyrmions in κ-(BEDT-TTF)2I3 is not a priori excluded.
However, skyrmions are on principle possible only around odd ν from which only ν = 1 is
expected to provide a stable state. Therefore they cannot be the reason for the strong damping
effect of SdH amplitudes at low T and 0°, since these occur (besides at ν = ½) at both, odd
just as even integer ν (see Fig. 5.30). 
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5.8.5 Further Aspects and Open Questions

The minima in the Dingle plots of SdH amplitudes of κ-(BEDT-TTF)2I3 at 0° show that at
exactly νFnew = ½, 1, 2, ... the damping effects (DEs) of SdH amplitudes are strongest (see
Figs. 5.24, 5.27-5.30). This is not surprising, since carrier localisation is strongest around
exact such filling factor values (see Discussion of Figs. 4.4 and 4.5). 

Fig. 5.32: Chemical potential oscillations (a)) and a typical Dingle Plot (c)) of κ-(BEDT-TTF)2I3 vs. νFnew (from
Fig. 5.30). The grey-shaded areas in c) illustrate the damping effects attributed to electron localisation.
Distribution of the density of states (schematic) of F0 (b)) and Fnew (d)) with assumed localised states (grey
shaded areas).
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However a comparison with the chemical potential oscillations  in Figs. 5.26 and 5.29Fnew
arises a question, which is illustrated in Fig. 5.32. For this purpose the figure confronts
typical SdH measurements on κ-(BEDT-TTF)2I3 as, e.g., shown in Fig. 5.30, with schematic
illustrations of the density of states of F0 and Fnew. A closer view on the measurements shows
that the chemical potential drops within a very narrow field window ‘d’ in 1/B (see part a) of
the figure)). In a ‘simple’ semiconducting 2DES with only one single closed orbit present,
this would be just the region where IQHE plateaus would be expected and where localised
states would be restricted to. The microscopic situation lying beyond is that µ drops to
doping-induced states whose electrons are localised at the impurity sites.
Now, these field windows ‘d’, being very narrow, arise the question whether the rather broad
damping regions in the SdH amplitudes (shaded areas in c)) may be indeed reasonably
connected with localised states. At a first glance the narrow localisation regions ‘d’ seem to
be in contradiction with the (roughly assumed) wide localisation region of Fnew in part d) of
the figure. However a key of understanding may be the following. The chemical potential is
on principle defined by the highest occupied electronic state. As soon as a LL of Fnew is
emptied, µ would tend to drop either to the next lower LL of Fnew (ideal crystal) or to an
impurity site, provided that only this single orbit is present. However in the case of several
orbits, as given in κ-(BEDT-TTF)2I3, µ drops to the very next occupied LL, which can belong
to F3 or F2, respectively. Since these are very narrow the µ drop is restricted to a narrow field
window and then, upon further field variation the LLs of the frequencies Fj define, i.e., keep
the actual position of µ. They provide the FS with localised as well as extended states
(illustrated in part c) exemplarily on F0), despite that from the viewpoint of Fnew only
localised states would be possible and a broad Hall plateau would be expected. This
consideration allows to understand at least qualitatively, why the damping region in the SdH
oscillations (grey area in part c)) is much wider than suggested by the narrow drop of µ in
part a). It is suggested to consider that the electrons may be influenced by this coexistence of
localised and extended states over a much wider field region as suggested by ‘d’.

However, clearly, it is not claimed here that this is the ultimate understanding of the rather
complex behaviour of κ-(BEDT-TTF)2I3. Instead, this picture is mainly drawn to illustrate
that considerable - especially theoretical - work has to be done until this 2DES is really
understood. In the framework of this challenge,

1) the role of the various correlated orbits corresponding to Fj with their very different filling
factors,
2) multilayer effects, as coupling and tunnelling,
3) the very high electron density and high mobility

may be taken into account. Even further considerations may play a role:

4) Collective excited modes due to the inclusion of higher Landau levels (for a review see,
e.g., [217]).
5) Filling factor fluctuations may be of importance which are caused by impurities and
crystal defects in this 105-multilayer system.
6) Finally, in a semiconducting 2DES with a relatively low carrier concentration, the
cyclotron radius corresponds approximately to the spacing between two electrons. In
κ-(BEDT-TTF)2I3 the electron concentration is such high (about 1.1*1014/cm2 per layer, see
App. A), that the big Rc encircle a huge number of electrons (e.g., at νFnew = ½ about 105
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carriers are encircled by an electron on the F3 orbit). It may have to be considered that these
intersected cyclotron motions of neighbouring carriers may represent an interchange of
particles and quasiparticles, so that influences on their statistics might play a role in this
2DES.  

This task is beyond the scope of the present experimental work, so that a number of questions
have to be left open.

Hall Effect Experiments 

The presence of low integer and fractional ν in κ-(BEDT-TTF)2I3 raises the principle
question on the presence of Hall plateaus at those ν. However the fundamental difference
between, e.g., a ‘well-known’ semiconducting 2DES and the present metallic 2EDS brings
out further interesting aspects of this question, which can be recognised by Fig. 5.32. Part d)
of the figure would suggest the occurrence of even very broad Hall plateaus corresponding to
a wide localised-state region introduced by Fnew. On the other hand, part a) would propose
merely narrow Hall plateaus of a width ‘d’, where the chemical potential is situated between
occupied LLs, i.e., extended states.
Motivated by this, Hall effect experiments at Θ = 0° where carried out in steady resistive as
well as superconducting magnets on about 10 very thin single crystal platelets of typically
0.12*2.5*2.5mm3. Saying it right away, these results are unsatisfactory to date. In some of the
experiments an oscillatory structure with Fnew and furthermore narrow steps are indicated in
Rxy. However, clearly spoken, these results have to be reproduced before any further
interpretation. The latter task is afflicted with a number of difficulties, briefly sketched in the
following:
- Hall contacts have to be applied on the edges of these rather thin crystals. Repeated cooling
cycles for reproduction of the experiments in different setups led to contact cracks in several
cases.
- The present metallic 2DES shows even at high fields a Hall signal of merely about 70nΩ.
An increase of the signal-to-noise ration by enhancing the current is prohibited in view of
possible sample heating as well as generation of further artefacts.
- In all examined contact arrangements a strong competition between the very low Hall and a
huge SdH signal was found in κ-(BEDT-TTF)2I3.
- Compared to the rather low amplitudes of the low frequencies F0 and Fnew very strong
amplitudes are contributed by F2 and F3, which - in addition - strongly increase with lowering
the temperature. Therefore the presence of strong SdH and Hall components coming from F2

as well as F3 have to be accepted in all Hall experiments.
- The low Hall signals themselves and the relatively strong contributions from F2 and F3

make an extraction of the Hall component rather difficult. A decisive condition for this is a
detection of the rather complex signal (including F2 and F3) as properly as possible. This
resolution requires lowest sweeping rates of about 0.8T/h in order to avoid possible
inductions. But even for a single set of two field-reversed Hall sweeps this requires a stability
of the setup over about 24h with parasite signals below about 20nV (which is the actual order
of magnitude of the indicated Hall steps in the signals).
These are the presumably most important experimental limiting conditions for successful
Hall experiments. Despite of several attempts up to now, such a high stability of magnets,
setups, and especially of power supplies for the experiments on such a long time scale, could
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not yet be reached within the limited magnet time periods on high field magnets and may
therefore not be guaranteed for such long Hall sweeps.
Therefore, the question on the occurrence of quantised Hall states of κ-(BEDT-TTF)2I3 must
be left open to date. Especially the investigation of an exact shape of the Hall signal of this
rather complex 2DES

- with fractional, low integer as well as very different high ν present,
- a very high electron number,
- a high carrier mobility,
- a coexistence of extended and localised states
- in a metallic system of correlated electrons,
- bound in a 105-layer bulk crystal
- with interlayer coupling as well as tunnelling
 
motivates for further improvement of the experimental conditions in order to achieve a
progress in Hall experiments.
However the actual Hall experiments reveal the at least a clear result on Rxx. It is observed on
all samples that Rxx remains finite even around integer ν as well as ν = ½. This result is in line
with those obtained, e.g., on the organic multilayer conductor (TMTSF)2PF6 where Rxx

remains also finite even during clearly observable Hall steps in Rxy [101,102]. This is in clear
contrast to the experience made with the IQHE in ‘well-known’ semiconducting 2DESs. This
peculiarity is an additional motivation for a closer investigation of the IQHE in organic
multilayer systems. Here special interest may be devoted to the role of the aforementioned
coexistence of localised and extended states on different quantised orbits onto i) the
behaviour of Rxx and Rxy, just as onto ii) the possibility (or not) to develop sawtooth quantum
oscillations under such rather complex conditions.

5.9 Provisional Appraisal

In the present chapter it was shown that κ-(BEDT-TTF)2I3 is a 2D multilayer organic metal in
which the intrinsic two-dimensionality requires magnetic field orientation exactly
perpendicular to the conducting crystallographic (b,c) planes (i.e., 0°) in order to take full
effect. In this field orientation strong anomalous damping effects of SdH oscillations are
observed at high magnetic fields and low temperatures. These damping effects cannot be
explained by the known ‘classical’ corrections to the 3D LK theory of quantum oscillations
in metals, even when taking into account results of two-dimensionality as oscillations of the
chemical potential.
It was found that low integer filling factors ν = 1,2,3,4 are present and ν = ½ is strongly
indicated by experiments in κ-(BEDT-TTF)2I3 and that these ν couple with the rest of the
correlated 2DES. Considering this, the fact that the strength of the damping effects is
evidently controlled by the low integer and fractional ν and coincide with the regions of
localised states, the strong damping effects of the SdH oscillations in κ-(BEDT-TTF)2I3 at 0°
are proposed to be understood in terms of a loss of mobile carriers due to localisation of this
part of the carriers, whereas the detected SdH signal is supposed to originate from the
remaining mobile electrons in this 2D multilayer organic metal. 
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It is emphasised that considerable - especially theoretical - work has to be done until this
2DES is really understood. In the framework of this challenge,
1) the role of the various correlated orbits corresponding to Fj with their very different filling
factors,
2) the coexistence of localised and extended states
3) the very high electron density and high mobility,
4) multilayer effects, as interlayer tunnelling, Coulomb coupling of the layers, as well as
extension of localised excitations over more than one layer and their interlayer coupling

may be considered. In addition, more complex features play a role:

5) Collective excited modes due to the inclusion of higher Landau levels.
6) Filling factor fluctuations in this 105-multilayer system may be of importance.
7) Finally, in view of the high carrier concentration and the big Rc, it may have to be
considered that the intersected cyclotron motions of neighbouring carriers may represent an
interchange of particles and quasiparticles, so that influences on their statistics might play a
role.

This task, however, is beyond the scope of the present experimental work, so that a number
of questions have to be left open.
Instead, the work of the last years followed the aim to search for similar effects on related
materials, to crystallise or to prepare further layered organic metals, which may provide the
required conditions for similar effects and to investigate them. The results of these studies are
discussed in the following chapter.

5. Electronic Properties of the 2D Multilayer Organic Metal κ-(BEDT-TTF)2I3
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6. Search For Effects of Two-Dimensionality in Further Quasi-2D
Organic Metals 

The present chapter focuses on the possibility for the occurrence of electron correlation (EC),
electron localisation (EL) and gives an insight to further results of pronounced
two-dimensionality in quasi-2D organic metals. 
It is anticipated that such direct indications for EC and EL as found in κ-(BEDT-TTF)2I3

(denoted as κ-I3 in the following) are not yet reported on other organic CT salts. However the
scope of investigations in this class of materials is very wide, whereas the conditions, under
which indications for EL is found in κ-(BEDT-TTF)2I3, are very specific. Therefore, on the
basis of the actual results the presence of electron localisation and electron correlation on
other (quasi-)2D1 organic metals is of course not excluded.

The possibility for the occurrence of electron localisation in further (quasi-)2D organic
metals is taken up in the following by asking whether the main conditions for EL, i.e.,

1) sufficiently strong two-dimensionality, i.e., low intraplane anisotropy and high
inter-/intraplane anisotropy,
2) low filling factors (i.e. proximity to quantum limit) and
3) high crystal quality

are given in other quasi-2D layered organic metals.
Since κ-structures themselves are known to provide most pronounced two-dimensionality to
date, Sec. 6.1 examines the possibility of EL just in a series of κ-structured charge-transfer
(CT) salts, which are isostructural to the present κ-I3 salt. Section 6.2 resumes the
experiments on (quasi-)2D organic metals with structures different from κ-type. Section 6.2.1
reports on QO experiments performed on (BEDT-TTF)4[Ni(dto)2], Sec. 6.2.2 is dedicated to
β”-(BEDT-TTF)2SF5CH2CF2SO3 Sec. 6.2.3 gives an insight to the Q2D α-phase salts
α-(BEDT-TTF)2MHg(SCN)4 (M = K, NH4, Tl, Rb) and Sec. 6.2.4 introduces to the actual
state of preliminary QO experiments on a stable high-Tc variation of β-(BEDT-TTF)2I3 at
ambient pressure. The latter material was obtained by a preparation process different from
the usual pressure-induced one.

6.1 κ-Phase Organic Metals with Quasi-2D Electronic Properties

The present section follows the question, whether indications for EL might be observed in
κ-structure charge-transfer (CT) salts which are closest related to κ-I3. These materials may
be based either on BEDT-TTF or related donor molecules, from which
κ-(BEDT-TTF)2Cu(NCS)2, as well as the Cu[N(CN)2]Br and the Cu[N(CN)2]Cl salts are the
most intensively investigated ones.
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κ-(BEDT-TTF)2Cu(NCS)2

The charge-transfer salt κ-(BEDT-TTF)2Cu(NCS)2 (referred to as κ-Cu(NCS)2 in the
following), was first synthesised by electrochemical methods2 by Urayama et al. [43]. This
compound is an organic superconductor with one of the to date highest transition
temperatures within its class of materials (Tc ≈ 10.4K at ambient pressure [214,44]).
κ-Cu(NCS)2 has a very similar structure and band structure [43,44] to that of the κ-I3 salt
[143,144]. First quantum oscillations on κ-Cu(NCS)2 were recorded by SdH technique
[214,423]. In these studies SdH oscillations with Fα

3 were detected at 0.55K above about
8.5T. In later experiments the magnetic breakdown frequency Fβ was observed above about
16T. Due to its high crystal quality (Dingle temperature TD ≈ 0.4K), κ-Cu(NCS)2 is
meanwhile one of the most extensively investigated quasi-2D CT salt, on which a number of
groups have carried out dHvA and SdH measurements (see, e.g., Refs.
[403,424,198,425,426,427,404,428,406,407,429,201,191]). A selection of fermiological data
is collected in the following table 6.1.

Tab. 6.1: Fermiological data of κ-(BEDT-TTF)2Cu(NCS)2 obtained from dHvA and SdH studies by different
groups: 1) [214]; 2) [403]; 3) [198]; 4) [429,201]; 5) [191].

These data show the close relation to the κ-I3 salt by the very similar QO frequency values,
the sizes AFj of the orbits in k-space and the part of the first Brillouin zone which they
represent (comp. with Tabs. 5.3 and 5.4). However the values for the effective masses mFj* in
κ-Cu(NCS)2 are significantly higher than in the κ-I3 salt (comp. with Tab. 5.6). Note that the
average scattering times τ in κ-Cu(NCS)2 are markedly lower than in the κ-I3 salt (comp.
with Tab. 5.4).

Within QO experiments a warping of the FS of κ-Cu(NCS)2 is not reported. However to date
QO experiments cover a rather limited field window of roughly [6T,50T], from which the
absence of warping nodes allows merely a careful statement on the two-dimensionality of the
system. Further clear indications for pronounced 2D properties are given by the angular
dependence of the QO frequencies Fα [214], Fβ [201] as well as mFα* [406,407]. These hints
are confirmed by the angular dependence of the upper critical fields Bc2 of the
superconducting transition [57], which indicate an inter-/intraplane anisotropy of Bc2,⊥ /Bc2,// ≈
0.1. However this anisotropy is considerably lower than that of κ-I3, where Bc2,⊥ /Bc2,// < 0.028
was found ([59], see Tab. 5.2 and Sec. 5.2.2). This means that the electronic system of
κ-(BEDT-TTF)2Cu(NCS)2 has to be regarded as considerably less two-dimensional as that of
the κ-I3 salt discussed in Ch. 5. This finding identifies κ-(BEDT-TTF)2Cu(NCS)2 as a
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quasi-2D system (i.e., with a considerable interplane transfer integral t⊥) and arises the
question whether its two-dimensionality is sufficiently high to generate effects as observed
on the κ-I3 salt.
Furthermore, in κ-Cu(NCS)2 a presence of low frequency oscillations as found in the I3-salt
(i.e., F0 and Fnew, see Secs. 5.4. ff.) is not reported to date. The existence of such orbits in
κ-Cu(NCS)2 are not excluded in view of the close relation to κ-I3, but might be put into
question due to the slight structural differences between these materials. They manifest
themselves also in the FS, e.g., by a considerably larger magnetic breakdown (MB) gap
Eg ≈ 4.5-6meV in κ-Cu(NCS)2 (for comparison Eg ≤ 3meV in κ-I3, see Sec. 5.2.1).
From the absence of low-frequency oscillations in κ-Cu(NCS)2 it may be concluded that low
Landau level filling factors (i.e., proximity to quantum limit) are likewise absent in
κ-Cu(NCS)2. This would suggest that a further - possibly decisive - condition for the
occurrence of such strong effects of two-dimensionality as observed in κ-I3 is not fulfilled in
κ-Cu(NCS)2. But even further, more subtle influences may play a role. The large MB gap
results in a high MB field of roughly BMB ≈ 16 - 30.5T4 [198,199,404,426,201]. This means
that even in high fields the carrier motions on both, the Fα and the Fβ orbit may be influenced
by both, tunnelling and Bragg reflection of the carriers on their trajectories. Moreover,
significant influences of quantum interference on the magnetotransport of κ-Cu(NCS)2 are
reported ([191], see also Sec. 3.4.6). The influences of such effects on electron correlation
effects in 2DESs are not yet studied.
Despite the less pronounced two-dimensionality of κ-Cu(NCS)2 compared to κ-I3, chemical
potential oscillations with Fβ are reported also in the former compound. Nevertheless, in
κ-Cu(NCS)2 the dHvA and SdH amplitudes of both, Fα and Fβ are reported to follow
perfectly the standard 3D theory. Indications for electron localisation, as present in
κ-(BEDT-TTF)2I3, are not observed in κ-Cu(NCS)2. In view of the less pronounced
two-dimensionality of κ-(BEDT-TTF)2Cu(NCS)2 and the absence of quantum limit
conditions, the presence of considerable electron localisation effects as a result of
two-dimensionality can be put into question in this material.

κ-(BEDT-TTF)2Cu[N(CN)2]Br

The organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br (hereafter referred to as
κ-Cu[N(CN)2]Br) reaches the to date highest ambient pressure transition temperature
(Tc ≈ 11.6K, [45,430]) within its class of materials. This material is supposed to belong to an
universal phase diagram [431] with the unique κ-phase feature that the physical pressure and
the ‘chemical’ pressure work in opposite directions. With respect to the pressure axis
κ-Cu[N(CN)2]Br is supposed to be placed closer to the insulating state as κ-Cu(NCS)2.
During the first years of syntheses, single crystals of κ-Cu[N(CN)2]Br produced by different
groups showed significant differences in their temperature dependence of resistivity. In most
cases a hump in ρ(T) is observed at about 100K (see, e.g., [432] or [433]), while this hump is
absent in measurements on crystals obtained by a slightly different synthesis [434]. This
resistivity hump was suggested to be due to the generation of Cu(II) during the
electrocrystallisation process [435], where Cu(II) may be regarded as paramagnetic impurity,
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thus influencing the low temperature properties of this compound. This idea was taken up in
[436] and later confirmed in [437].
The calculated Fermi surface of κ-Cu[N(CN)2]Br [45] is very similar to that of κ-I3 ([143],
see also Fig. 5.10). However first FS investigations by SdH experiments revealed confusing
results. While at ambient pressure no QO signal could be found, SdH curves at high pressures
(≥5kbar) showed a surprisingly low QO frequency Fα’ [438,439] and at high fields the MB
frequency Fβ. The latter is indeed one of the expected frequencies. In later experiments Fβ

[440,436] and finally Fα itself [415] were found also at ambient pressure. A selection of
fermiological data obtained by different groups [438,439,440,436,415,416,441,442] is
collected in the following table 6.2.

Tab. 6.2: Fermiological data of κ-(BEDT-TTF)2Cu[N(CN)2]Br obtained from dHvA and SdH studies by
different groups: 1) [438]; 2) [439]; 3) [416]; 4) [441]; 5) [442]; 6) [436]; 7) [440];. Note that Fα’ is only observed
above about 5kbar. Its fermiological data refer to 5kbar.

The fact that for a couple of years no QOs could be found at ambient pressure, was widely
discussed and, e.g., low-temperature magnetic ordering with a field-induced magnetic phase
transition or the presence of paramagnetic Cu(II) impurities were proposed as possible
reasons. While the frequencies Fα and Fβ correspond to the values expected by band structure
calculations [45], Fα’ is not represented in the initially proposed band structure. However the
generation of Fα’ at high pressures could be attributed in Refs. [416,415] to the presence of a
superstructure which doubles the lattice constant in the c-direction [443].
Hints for pronounced 2D properties were found by a 1/cosΘ behaviour of Fα’, Fα and Fβ

[438,439,442]. From angle-dependent Bc2 measurements a ratio Bc2,⊥/Bc2,// ≈ 0.18 was
estimated [57]. This indicates that in κ-Cu[N(CN)2]Br two-dimensionality is less pronounced
than in both, κ-Cu(NCS)2 (Bc2,⊥/Bc2,// ≈ 0.1) and κ-I3, where in the latter Bc2,⊥ /Bc2,// < 0.028 was
found ([59], see Tab. 5.2 and Sec. 5.2.2). In ambient pressure QO experiments on
κ-Cu[N(CN)2]Br no indications for beating nodes were found between 20T and 60T
[416,436]. The search for possible beating nodes was extended to tilted angles, thus
benefiting from the fact that the angle-dependence of beating frequencies push beating nodes
from inaccessible fields to experimental field values. By this, such nodes could be indeed
identified at tilted angles, and they allowed the crude estimation of the warping of the FS as
δAF3/AF3 ≈ 0.7% ... 1.7%. This is considerably larger than estimated for κ-I3 (δAF3/AF3 <
0.027%, see Tab. 5.5). By this, κ-(BEDT-TTF)2Cu[N(CN)2]Br is identified as a quasi-2D
electronic system with less pronounced anisotropy as κ-Cu(NCS)2 and by far less than
κ-(BEDT-TTF)2I3.
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A low-frequency oscillation, which may turn a part of the electronic system to quantum limit,
is not reported in κ-Cu[N(CN)2]Br. This suggests that two main conditions for the occurrence
of strong electron localisation in 2DESs, i.e., sufficient two-dimensionality and low ν, are
most likely not given in κ-(BEDT-TTF)2Cu[N(CN)2]Br.

κ-(BEDT-TTF)2Cu[N(CN)2]Cl

The layered organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl (hereafter referred to as
κ-Cu[N(CN)2]Cl) held for several years the highest Tc = 12.8K [46] among the organics,
however only under a moderate pressure of 0.3kbar. At ambient pressure the material
undergoes a semiconductor/insulator transition at about 40K. It is supposed that the
substitution of Br by Cl in the anion increases the ‘chemical’ pressure and drives the
κ-Cu[N(CN)2]Cl salt into the insulating region of the universal phase diagram for
κ-structures [431]. Band structure calculations show that κ-Cu[N(CN)2]Cl has practically the
same band dispersion relation and FS as the related κ-phase salts (see [46] and Refs. therein).
Indeed, both corresponding QO frequencies Fα and Fβ have been observed by SdH
experiments above about 3.8kbar [444]. The determined extremal areas in k-space correspond
to the values calculated for κ-phases. At about 6kbar a beating node is observed in the
amplitudes of Fβ, proving a considerable warping of the FS. This reveals the presence of a
notable 3D component to the dispersion and thus identifies κ-(BEDT-TTF)2Cu[N(CN)2]Cl as
a quasi-2D electronic system.
A low-frequency oscillation, which may push a part of the electronic system to quantum
limit, is not reported in κ-Cu[N(CN)2]Cl. This suggests that two main conditions for the
occurrence of electron localisation in 2DESs, i.e., sufficient two-dimensionality and low ν,
are most likely not fulfilled in κ-(BEDT-TTF)2Cu[N(CN)2]Cl.

Further Organic κ-Phase Materials

κ-(BEDT-TTF)2Ag(CN)2H2O is an organic superconductor with a Tc ≈ 5K [445] and a
structure equivalent to κ-Cu(NCS)2. Quantum oscillation experiments report on a clear
beating of the amplitudes of Fα [446]. This proves a warping of the FS and indicates an even
stronger interlayer integral t⊥ than observed for the preceding κ-phase materials, so that
strong two-dimensionality is certainly not given in this compound.
κ-(BEDT-TSF)2Cu[N(CN)2]Br is an organic metal based on BEDT-TSF which represents
the modified donor (i.e., bis(ethylenedithio)tetraselenafulvalene, also abbreviated as BETS).
This material is isostructural to κ-Cu[N(CN)2]Br [447]. QO measurements on this compound
report on beating nodes in the dHvA amplitudes of Fβ, which show that the FS of this
quasi-twodimensional material is considerably warped.
κ-(BEDT-TSF)2C(CN)3 is a quasi-twodimensional organic metal synthesised by [448]. Band
structure calculations show that its FS is expected to be very similar to that of the related
κ-phase materials. The main features of the FS were confirmed by dHvA and SdH
experiments [449]. However in addition to the well-known QO frequencies Fα and Fβ,
lower-frequency oscillations Fλ = 120T and Fγ = 230T ≈ 2*Fλ were observed, whose
realisation in k-space were not clear. It is pointed out that Fλ has very similar value to
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F1 ≈ 100Τ observed in the related κ-I3 salt (see Tab. 5.3). QO studies on
κ-(BEDT-TSF)2C(CN)3 [449] do not report any indication for pronounced two-
dimensionality of the electronic system.

κ-(DMET)2AuBr2 is an organic superconductor with a Tc ≈ 1.9K [48] and is based on the
electron donor molecule dimethyl-ethylenedithio-diselenedithiafulvalene. This compound is
the first organic κ-phase material with a donor different from BEDT-TTF, where dHvA
oscillations were observed. DHvA oscillations were detected above about 9T showing both
frequencies Fα and Fβ above this field [450]. From this it can be concluded that the MB gap
(see Fig. 5.10) is smaller than, e.g., in κ-(BEDT-TTF)2Cu(NCS)2. Within the narrow field
window where QOs are present, a statement on the two-dimensionality of the system cannot
be given satisfactorily. However those measurements show a strong inverse sawtooth which
reveals important details on the electronic properties of this material. Such an inverse
sawtooth, whose steep flank is on the low-field part of a QO, is in strong contrast (i.e., just
mirror-imaged) to the sawtooth shape expected in a strongly 2DES [88,90,91]. Such a
sawtooth orientation can be explained, e.g., by the presence of a 1D electron reservoir with a
carrier tunnelling between the closed quantised orbits and the open 1D reservoir orbit [417].
A similar inverse sawtooth with an electron reservoir supposed beyond was also found, e.g.,
in the organic metal β”-(BEDT-TTF)2SF5CH2CF2SO3 [451].
The presence of such an 1D reservoir (whose corrugation is not known in κ-(DMET)2AuBr2)
and the resulting carrier tunnelling to this reservoir are known to influence strongly the
electronic properties of quasi-2D electronic systems.
In κ-(DMET)2AuBr2, but also in further κ-phase materials as, e.g.,
κ-(BEDT-TTF)2Cu(CN)[N(CN)2] and κ-(BEDT-TTF)2Cu2(CN)3 [452] indications of such
strong two-dimensionality as realised in κ-I3 are not reported.

It is emphasised that such low-frequency oscillations as F0 and Fnew, present in
κ-(BEDT-TTF)2I3, are not reported to date in any other of the κ-phase materials. This
suggests that among the κ-phase materials such strong two-dimensionality and/or quantum
limit (and even fractionally quantised) conditions seem to be realised exclusively in
κ-(BEDT-TTF)2I3 to date.

6.2 Quasi-2D Organic Metals with Structures Different from κ-Phase

Within the organic CT salts those with a κ-structure are known to be most promising
candidates for pronounced 2D electronic properties, however two-dimensionality is not a
priori restricted to these κ-phase materials. In view of the limited number of synthesisable
κ-phase compounds, it was attempted to reach pronounced 2D properties in further structures
by synthesis or by specific physical treatment of organic CT salts. The results of selected
materials are briefly discussed in the following and further classes of CT salts are quoted.
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6.2.1 The Quasi-2D Organic Metal (BEDT-TTF)4[Ni(dto)2]

The first charge transfer complex based on the electron donor BEDT-TTF and the acceptor
Ni(dto)2) (i.e., nickelbis(dithiaoxalate)) has been synthesised in a 2:1 stoichiometry by Saito
et al. [453] and shows semiconducting behaviour. In contrast, the material discussed here is a
4:1 complex [545], showing metallic behaviour down to 20mK [419]. The resistivity ratio of
ρa : ρb : ρc : ≈ 1 : 1 : 100 indicates quasi-2D electronic properties of (BEDT-TTF)4[Ni(dto)2]
single crystals. Tight-binding band structure calculations show the presence of a lens-shaped
hole pocket Aα (14% of the FBZ) and a 1D open trajectory (see Ref. [455] and inset of Fig.
6.1). 

Fig. 6.1: SdH signal of a typical (BEDT-TTF)4[Ni(dto)2] single crystal at 0.38K and Θ = 0° [419]. inset: Fermi
surface of the compound (according to [455]).

Tab. 6.3: Fermiological data of (BEDT-TTF)4[Ni(dto)2] obtained from dHvA and SdH studies (data for Fα and
Fβ see also [181,419,456], for Flow see [457].
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The shape of the FS was confirmed by dHvA and SdH experiments carried out up to 28T and
down to 20mK [181,456]. At 0.38K QOs are observed above about 2T. A typical result of a
SdH field sweep is shown in Fig. 6.1. The two observed frequencies Fα and  Fβ correspond
very well to the size of the extremal areas Aα and Aβ in k-space. A collection of fermiological
data obtained by QO experiments is shown in Tab. 6.3.  The gap between the closed Fα orbit
and the open part of the FS was found to be overcome above about the magnetic breakdown
field of BMB ≈ 9(±1)T [181]. 

Fig. 6.2: DHvA torque signal (top, at Θ = 8° and 0.4K) and SdH signal (bottom, at 0° and 30mK) of
(BEDT-TTF)4[Ni(dto)2] single crystals. The new low-frequency Flow oscillation Flow is observable in the
envelopes of both types of experiments (the slightly different oscillation period is due to the different tilt angle
Θ). inset: FFT from both signals, where the FFT from the dHvA signal recorded at 8° was rescaled to 0° by the
1/cosΘ-law. Flow (Θ = 0°) = 179(±20)T is obtained.

The two main frequencies Fα and Fβ as well as the effective carrier masses mα* and  mβ*
were found to show a 1/cosΘ behaviour up to high Θ, which indicates pronounced 2D
properties. However in angular dependent measurements beating nodes were observed in
SdH as well as dHvA measurements, from which the warping of the FS was estimated for the
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two orbits as δFα/Fα ≈ 0.007 and δFβ/Fβ < 0.007, respectively. This identifies
(BEDT-TTF)4[Ni(dto)2] as quasi-2D electronic system.
Special focus was put on the search for low-frequency oscillations and deviations from
standard LK theory in this compound. Indeed in more recent dHvA and SdH studies a
low-frequency oscillation Flow = 179(±20)T was observed (see Fig. 6.2). The presence of such
a frequency Flow is not suggested by band structure calculations. The fact that Flow is observed
in both, SdH (i.e., transport) as well as dHvA (i.e., ‘pure thermodynamic’) experiments,
excludes quantum interference effects (discussed in Sec. 3.4.6) as an origin but indicates, that
Flow is most likely generated by a further pocket on the FS.
It is well-known that the calculated Fermi surfaces of most organic CT salts correspond very
well with the experimental results obtained, e.g., by QO experiments. However it is striking
that in more and more cases additional oscillations are found, which are not suggested by
band structure calculations (see, e.g., Fα’ in κ-(BEDT-TTF)2Cu[N(CN)2]Br [438,439], Tab.
6.2; Fnew and F0 in κ-(BEDT-TTF)2I3, Tabs. 5.7 and 5.8, Fλ and Fγ in κ-(BEDT-TSF)2C(CN)3

[449], Flow in the present Ni(dto)2 salt or a very low-frequency oscillation in
Θ-(BEDT-TTF)2I3 [421], see also Sec. 6.2.5). In view of this it would be most desirable to
succeed in a refinement of band structure calculations.
Owing to the presence of Flow, (BEDT-TTF)4[Ni(dto)2] reaches relatively low filling factors
νFlow ≈ 12 5) at 28T. Despite its quasi-twodimensionality and the relatively low ν, both, dHvA
and SdH amplitudes can be perfectly described by standard 3D LK theory under
consideration of MB by the coupled network description (CND, see Sec. 3.4.2), except for a
correction which is quoted in the following. 
This correction to the 3D LK formula and the CND concerns not the absolute amplitudes
themselves but the position of the beating nodes [181]. In the dHvA experiment the positions
of these beating nodes in the oscillations of (BEDT-TTF)4[Ni(dto)2] single crystals were
found to be in line with the field positions prescribed by the LK formula6 for two contributing
frequencies Fα and Fα’, where the warping frequency ∆Fα= Fα - Fα’ ≈ 4.5T. However in the
SdH signal detected on the same crystal at the same tilt angle, the beating nodes were found
to be shifted by a phase of roughly π of the warping frequency ∆Fα. Any phase shift of these
nodes is in contradiction with the standard LK formalism, which expects the beating nodes to
be exactly at the same field positions in all types of QO experiments. It was shown in [181]
that such a high phase shift cannot be explained by scattering processes as inherent to
transport experiments [164]. A similar behaviour was suspected in
κ-(BEDT-TTF)2Cu[N(CN)2]Br where a beating node was observed in the dHvA signal, while
it was clearly absent in the SdH signal [441]. In a later study it was shown that such a phase
shift in transport measurements may occur in quasi-2DES with a warped FS in the special
case, where the cyclotron energy  is comparable to the interlayer transfer integral t⊥ [96].® c
It was found that the proposed description applies to the phase shift of beating nodes in the
quasi-2D organic metal β-(BEDT-TTF)2IBr2, where however the shift between the nodes is
much lower than in the Ni(dto)2 salt. A further developed theory, which may explain even the
drastic shift in the Ni(dto)2 compound, is in progress [458].
This latter feature found on the Ni(dto)2, the κ-[N(CN)2]Br and the β-(BEDT-TTF)2IBr2 salts,
turned out to be a peculiar property of the ratio  i.e., the presence of a considerable t⊥® c/tΩ
as inherent to quasi-2D electronic systems.
Besides this peculiarity, (BEDT-TTF)4[Ni(dto)2] shows conventional 3D LK behaviour even
despite of the low νFlow ≈ 12 at high fields for all angles Θ including 0°. This is striking since
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νFlow in Ni(dto)2 is comparable to νF0 found in κ-(BEDT-TTF)2I3, where already strong
deviations from LK behaviour were found in the latter material (see Sec. 5.4). This suggests
to consider that the quasi-twodimensionality of the Ni(dto)2 salt may avoid more far-reaching
results of two-dimensionality, e.g., electron localisation effects, as indicated in the κ-I3 salt.

6.2.2 The Organic Superconductor β”-(BEDT-TTF)2SF5CH2CF2SO3 

The organic superconductor β”-(BEDT-TTF)2SF5CH2CF2SO3 (Tc ≈ 4.4K, [459];
β”-SF5CH2CF2SO3 in short) shows quantum oscillations with a frequency F ≈ 200T [460]. Its
angular dependence follows the 1/cosΘ-law as expected for 2DESs [451,461]. From the field
window of observed QOs a warping of this part of the FS can be estimated as  ,F/F é 10−2

which shows the pronounced two-dimensionality of this system. As a result the material
shows sawtooth QOs [451], where however the orientation of this sawtooth is inverse and
hints to the presence of a 1D open trajectory, which acts as electron reservoir (as described,
e.g., in [417]). The inverse sawtooth of the QOs illustrates how strongly the supposed 1D
pocket determines the electronic behaviour at the FS. Information on a warping of this 1D
reservoir  (as, e.g., possible in the quasi-1D organics) could not yet be obtained.
In addition, β”-SF5CH2CF2SO3 shows a series of further unusual properties. At high B and
low T the material undergoes a field-induced metal-insulator transition [462], which may
influence, i.a., the interlayer transport of this material [420].
In this compound considerable deviations from standard LK behaviour are observed in
magnetotransport. However after a careful extraction of the anomalous background
magnetoresistivity, the rescaled QOs in transport can be perfectly described by the 2D dHvA
theory [462,460].
Indications for electron localisation effects such as present in the κ-I3 salt are not observed in
β”-SF5CH2CF2SO3. Especially at Θ = 0°, the SdH signal up to 60T does not show comparable
anomalies as in the κ-I3 material. Nevertheless β”-(BEDT-TTF)2SF5CH2CF2SO3 is a most
promising system for the presence of localisation effects [461]. This may not only be
assumed from the low ν at high fields, (ν ≈ 6 at 60T), but also from the fact that one single
closed orbit is present at available fields. This means that a relatively wide Landau level
spacing (i.e., a wide region of localised states) is present which is not intersected by further
narrow Landau structures of additional QO frequencies, which would introduce extended
states to this region. Thus the β”-SF5CH2CF2SO3 salt maintains expectations on electron
localisation at high B and low T, where, if present, especially the metal-insulator transition
arises the exciting question, whether the mechanism of possible EL may be similar to that in
the κ-I3 salt.

6.2.3 The Quasi-Twodimensional α-Phase Salts α-(BEDT-TTF)2MHg(SCN)4

The Fermi surfaces of the Q2D α-phase salts α-(BEDT-TTF)2MHg(SCN)4 (M = K, NH4, Tl,
Rb) consist of a closed 2D lens-shaped orbit from which 1D open trajectories are separated
by a gap [445,463,464]. This gap is rather large and may be overcome by the magnetic
breakdown effect only at very high magnetic fields. This coexistence of 2D and 1D FS sheets
locates these materials between 1D and 2D systems. Influences of these different

6. Search For Effects of Twodimensionality in Quasi-2D Organic Metals

143



dimensionalities manifest themselves not only by a competition of density-wave, metallic and
superconducting behaviour at low temperatures, but also in high magnetic fields. It was
found, e.g., by QO experiments and numerical calculations, that the 1D trajectory strongly
influences the 2D part of the FS by acting as an electron reservoir, thus governing the
behaviour of the chemical potential in high fields [417]. Besides this action of the 1D part of
the FS, especially the behaviour of QOs at very high fields ( ) is attributed to possibleB á 35T
effects of two-dimensionality. The presence of these effects is deduced in a subtle way from
pulsed field QO experiments. The subtraction of the QO signals recorded in the very short
pulse-up measurements and the longer pulse-down measurements are subtracted from each
other and show a hysteresis in the QO signal [465,466]. This is attributed to the presence of
eddy current ‘resonances’ in the crystal (as generated by the field pulse), which occur in
conjunction with edge states as present in the IQHE. From this it was supposed that quantised
Hall states may be present in some of these salts (M = Tl, K). In a later pulsed field
experiment on α-(BEDT-TTF)2TlHg(SCN)4 strong SdH oscillations were found in ρxy with
flat-top saturation effects at about 33T, i.e., at ν ≈ 40 [467]. Actually the question is open if
these effects may be attributed to the IQHE [467], if other, more exotic explanations have to
be considered [84] or whether they might be generated by spin splitting arising at high fields.

6.2.4 The Stable 8K Organic Superconductor βT-(BEDT-TTF)2I3

β-(BEDT-TTF)2I3 is an organic superconductor with an ambient pressure Tc ≈ 1K [468].
Application of a moderate pressure (p  300bar, [469]) suppresses a metal-metal transition atá
175K and results in an enhancement of Tc to about 8.1K. This high-Tc phase is called
βH-(BEDT-TTF)2I3 [469,470] (or βH-I3 for short, whereas the low-Tc phase is also called
βL-I3). βH-I3 is stable even when pressure is released unless temperature exceeds about 120K
[471]. Quantum oscillations on βH-I3 were first reported in Ref. [472].
For a couple of years it was a challenge to find a method, which allows the preparation of
such a high-Tc phase of β-I3, which is stable not only at ambient pressure but even at room
temperature. This aim was reached by a thermal treatment of β-I3 [473]. For this procedure
β-I3 single crystals are locked in a glass ampoule under nitrogen or argon gas together with a
few crystallites of pure I2. The latter additive lowers evaporation of I3 during annealing. The
ampoule is heated up to about 390K for about 2h. The crystals treated by this, called
βT-(BEDT-TTF)2I3 (or simply βT-I3) in the following are stable at ambient pressure below
390K and after cooling they show a superconducting transition with Tc ≈ 8K in resistivity
(see Fig. 6.3.a). This transition temperature remembers to βH-I3.
DHvA torque experiments were carried out on βT-I3 crystals up to 28T at 1.3K < T < 30mK.
A typical result is shown in Fig. 6.3. A collection of the fermiological data obtained from
these preliminary experiments is given in Tab. 6.4. βT-I3 holds a series of striking results: The
observed low-frequency oscillation Flow can be attributed to βL-I3 [474,475], while Fβ is up to
now only observed in βH-I3 [472], but not in βL-I3. Moreover Fα’ is not known from band
structure calculations, even if their results are supposed to be very similar for both, βL-I3 and
βH-I3 (see, e.g. [476,477]).
It should be mentioned that first SdH experiments performed on βT-I3 show Fβ, however only
above about 26T. A rather low signal-to-noise ratio in these SdH experiments indicates that
the thermally induced phase transition from βL-I3 to βT-I3 generates most likely crystal
imperfections, so that the annealing process has to be further optimised.
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Fig. 6.3: a): Superconducting transition of the stable annealed phase βT-(BEDT-TTF)2I3; (main part): Typical
dHvA torque signal detected on βT-(BEDT-TTF)2I3 crystals; b) High-field part of a dHvA signal ([473]).

Tab. 6.4: Fermiological data of βT-(BEDT-TTF)2I3 obtained from dHvA experiments [473].

The QO frequencies Flow, Fα’ as well as Fβ show an 1/cosΘ-behaviour as expected for a
pronounced 2D system. A further frequency Fnew is observed in dHvA experiments, which is
likewise not represented in band structure calculations. The fact that it is detected in a dHvA
experiment excludes that it originates, e.g., from an interference process, since the latter
would only influence transport. The angular dependence of Fnew could not yet be determined,
i.a., due to the presence of an angular dependent background signal as well as indications for
spin zeros of Fnew. Especially the latter finding suggests that Fnew indeed originates from a
very small closed pocket in k-space. In this case βT-I3 would reach quantum limit and even
νFnew < 1 at high fields.
The actual results hint to a corrugation of the band connected with Fα’ with a warping of
∆Fα’/Fα’ ≈ 3.7%. However it is stressed that ∆Fα’/Fα’ could not be obtained as usual from the
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intercept of two neighbouring beating nodes, since this low warping causes that only one
node is indicated in the field range covered by the experiments. Therefore ∆Fα’/Fα’ is
estimated from the distance ∆Fα’ of a double-peak structure in the FFT of the entire signal, as
present at certain tilt angles (e.g., at 9°). In view of the limited resolution of the FFT itself, it
is emphasised that the actual ∆Fα’/Fα’ estimation can be only rather crude. The warping
frequency itself (∆Fα’(9°) = 65T) indicated in βT-I3 remembers to the values ∆Fβ = 74T (at 0°)
[472] and ∆Fβ = 57.3T (at 4°) [478] found in βH-I3 which, however, where found in Fβ instead
of Fα’.
This indication of a warping hints to the presence of a notable interlayer transfer integral and
thus to the fact that βT-(BEDT-TTF)2I3 is a quasi-2D electronic system. Except for a
considerable anharmonicity of the dHvA signals, no further signs for deviations from
standard QO theories are found in this material. However in view of the facts that detailed
SdH experiments at the special angle Θ = 0° could not yet be carried out and that crystal
quality (TD = 1.2K) has to be improved, βT-(BEDT-TTF)2I3 might still remain a candidate for
the occurrence of electron localisation effects especially at high fields, where νFnew < 1 might
be reached in this material.

6.2.5 The Organic Superconductor Θ-(BEDT-TTF)2I3

Θ-(BEDT-TTF)2I3 is an organic superconductor with a Tc ≈ 3.6K [479]. It is recalled that the
correct stoichiometry of the first syntheses reads Θ-(BEDT-TTF)2(I3)1-x(AuI2)x with x < 0.02,
since a small amount of AuI2 was needed during the syntheses to succeed in the
crystallisation of Θ-phase crystals. Initially there has been confusion on the crystal structure
in the sense that an orthorhombic unit cell was found in first structure investigations [479],
whereas a superstructure with a double-sized monoclinic unit cell was found later [480,481].
Correspondingly, different band structures and Fermi surfaces were proposed in Refs.
[479,480,482]. Quantum oscillation experiments show two dominant oscillations with the
frequencies Fα = 779T and Fβ = 4234T [482,483], which correspond very good to the latter of
the proposed Fermi surfaces [482]. This agreement is confirmed by angular
magnetoresistance oscillations, which in addition indicate a warped quasi-twodimensional FS
[484]. However this latter finding is rather contradictory to the presence of a sharp sawtooth
dHvA signal, which is interpreted in terms of even strong two-dimensionality [482,485].
In addition to Fα and Fβ a further very low-frequency oscillatory structure was observed in
magnetotransport with a frequency between 2T and 12T [421], which cannot be attributed to
any of the band structure calculations quoted above. The very striking observation was that
this oscillatory pattern is observed only below about 2T. A careful angular dependent
investigation showed that this oscillation is present not only for field orientation
perpendicular to the quasi-2D conducting planes (called 0° here), but even in the field
orientation parallel to the planes (denoted as 90° here). From these results it was concluded
that the oscillatory structure may be attributed to a 3D pocket on the Fermi surface.
Especially the presence of a low-frequency oscillation in the SdH signal was a motivation for
our reproduction of this compound. The residual confusion on the structure of
Θ-(BEDT-TTF)2(I3)1-x(AuI2)x asked to aspire to a synthesis without the use of AuI2, which
was indeed realised, so that the crystals have the stoichiometry Θ-(BEDT-TTF)2I3.
Our SdH experiments reproduce clearly the QO frequencies Fα and Fβ as well as the very
low-frequency oscillation. The presence of the latter was verified and confirmed in the field
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orientations perpendicular and especially parallel to the conducting planes. Following the
attribution of the low-frequency oscillation to a small 3D pocket on the FS, i.e., to a real
quantised orbit, means that this Θ-phase salt would reach indeed quantum limit at available
fields. In view of this and taking up the question on the strength of the electronic
two-dimesnionality, we concentrated on the search for deviations in the temperature
dependence of the SdH amplitudes especially at Θ = 0°. This was verified in order to find out
whether this (quasi-)2D material might show similarly strong effects of two-dimensionality
(i.e., damping effects of the QO amplitudes) as observed in the κ-phase of (BEDT-TTF)2I3

(see Sec.  5.3 ff.). By very recent SdH measurements it was found that the temperature
dependence of the oscillation amplitudes of both, Fα and Fβ, show the same behaviour at low
fields (9T) and high fields (23T) [486]. Consequently for each of these frequencies the values
mα*(9T) = mα*(23T) and mβ*(9T) = mβ*(23T) were obtained. The same behaviour was found
for other tilt angles between field and conducting planes, i.e., Θ ≠ 0°. Hence, contrary to the
behaviour of the 2D κ-phase salt, where this tilt angle plays a decisive role (see Sec. 5.3), in
the Θ-phase no difference in the behaviour of the SdH oscillations were found for Θ = 0° and
Θ ≠ 0°, respectively.
This means that despite its presumably low filling factors, the Θ-phase of (BEDT-TTF)2I3

does not show strong field dependent damping effects of the SdH amplitudes as present in
κ-(BEDT-TTF)2I3 at 0°, which is however not surprising in view of the influence of the small
3D pocket on the Fermi surface. A more conclusive statement on the
quasi-twodimensionality of Θ-(BEDT-TTF)2I3 cannot be given from the actual scope of
results. However the proposed presence of the 3D small pocket on the FS suggests to
consider that the electronic behaviour of this latter material may indeed be influenced by 3D
properties.
In summary it was found that even though Θ-(BEDT-TTF)2I3 reaches most probably quantum
limit, it does not show comparable effects of two dimensionality as observed in the κ-phase.
Instead, the results on Θ-(BEDT-TTF)2I3 indicate the presence of a 3D pocket on the FS
which might influence the (quasi-)2D electronic behaviour of this material.

In the present chapter a number of materials was examined, concentrating on the question
whether the most important conditions, i.e.,
- strong two-dimensionality and
- low filling factors é 1
are given, which may enable the occurrence of electron localisation effects as indicated in
κ-(BEDT-TTF)2I3. This question was first followed within the κ-phase materials, which are
known to be most promising for the realisation of 2DESs within the organics. In addition
further compounds were synthesised, prepared, examined or reviewed, respectively, on the
search for the realisation of the above mentioned conditions.
Actually it can be summarised that an electronic behaviour, which compares to that of
κ-(BEDT-TTF)2I3, is not yet observed in any of the known quasi-2D organic conductors,
least of all the presence of ν = 1/2. Furthermore, among the organics, a material which meets
both above mentioned requirements, is not available to date. This is the reason, why the
present work had to be concentrated on the investigation of this most 2D organic metal
κ-(BEDT-TTF)2I3 in its quantum limit and extreme quantum limit (ν ≤ 1).

Besides a number of open questions on the behaviour of κ-(BEDT-TTF)2I3 in high magnetic
fields, further efforts have to be done on the synthesis of such multilayer 2DESs, which are in
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many aspects very different from the ‘well-known’ semiconducting 2DESs. Of course this
challenge includes also further possibilities which could not be discussed here as, e.g., the
fabrication of thin films of 2D organic CT salts [487,488,489,490], the possibilities of their
doping, but also the closer investigation of different classes of multilayer 2DESs as, e.g.,
high-Tc superconductors on the search for results of strong two-dimensionality.
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7. Summary 

This work presents quantum oscillation experiments in quasi-twodimensional multilayer
organic metals. They show that low integer Landau level filling factors ν are present in the
two-dimensional organic metal κ-(BEDT-TTF)2I3 and give strong indications for the
existence of the fractional filling factor ν = ½ in this material. By this the work shows the
presence of electron localisation and electron correlation in a bulk metallic two-dimensional
system.
The underlying investigations had to be concentrated on the organic metal κ-(BEDT-TTF)2I3

since it meets the most important conditions for such effects, i.e., strongest
two-dimensionality and the presence of quantised orbits (corresponding, e.g., to Fnew), which
impose extreme quantum limit to the entire electronic system.
κ-(BEDT-TTF)2I3 holds in many respects strongly different conditions compared to the
well-known semiconducting single-layer 2D systems. The former material is metallic, it
provides a very high electron density of 1019/cm2 and also a very high carrier mobility
reaching 5*108cm2/Vs. It represents a system of 105 coupled metallic multilayers including
interlayer tunnelling and it can be synthesised in very high purity as three-dimensional bulk
single crystals. Despite of this, the material is found to show strongly two-dimensional
electronic properties under certain experimental conditions, i.e., low temperatures and high
magnetic fields applied perpendicular to the conducting planes. In contrast to the general
situation in semiconducting two-dimensional systems, where (correlated) electrons move on
one single quantised orbit, the carriers in κ-(BEDT-TTF)2I3 move on various quantised orbits
with even very different filling factors, whose carriers are nevertheless strongly correlated.
These are the main conditions under which the total filling factors νtot = ½ as well as 1, 2, 3, 4
are observed experimentally in κ-(BEDT-TTF)2I3.
Besides its very high electron number and mobility, its metallic properties, the correlation of
different orbits, the very high number of coupled layers, κ-(BEDT-TTF)2I3 holds a number of
further peculiarities, e.g., the coexistence of extended and localised electronic states or a field
dependent dielectric constant. This combination of conditions may represent a challenge for
the theoretical understanding of the ground states, which may be realised in bulk multilayer
2D electronic systems at high magnetic fields and low temperatures.

Besides this, the present work gives an insight to the power of quantum oscillation
experiments in the investigations of influences of low-dimensionality onto the electronic
properties of such materials. By this type of experiments, i.a., the electronic
two-dimensionality can be probed and quantified in terms of the ratio of intra- and interlayer
transfer integrals. The application of theories for quantum oscillations in 3D and 2D metals
can be verified and their limits can be explored.
In addition, quantum oscillation measurements were found to be a very suited tool for the
direct detection of the chemical potential and its variations - even under rather complex
fermiological conditions. 
The sensitivity of quantum oscillation experiments to electronic low-dimensionality as well
as a series of further fermiological peculiarities was shown to reveal a number of surprising
experimental results which may stimulate the progress and refinement of their theoretical
description.
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Appendix A

Selected Characteristics of the 2D Multilayer Organic Metal κ-(BEDT-TTF)2I3

• typical single crystal size: 1 * 2 * 0.25mm3

• layer spacing d ≈ 1.56nm (centre - to - centre, see Fig. 2.5.a) 
• number of layers in a crystal NL ≈ 1.6 * 105

• dielectric constant ε ≈ 8 ... 50; indications for magnetic field dependence
• carrier mobility µ ≈ 5 * 108cm2/Vs
• electron density: Ne,bulk ≈ 7*1020/cm3

in detail on each of the correlated orbits:

á 2*1020total Ne,sto from
stoichiometry 2)

≈ 7*10201,8*10191,1*1014total Ne,QO

from QOs 1)

6,1*10201,5*10199,5*1013F3 = 3883T 1)

9*10192,2*10181,4*1013F2 = 570T 1)

1,5*10193,7*10172,4*1012F1 = 100T 1)

1.9*10184,7*10163*1011F0 = 13,2T 1)

5*10171,2*10168*1010Fnew = 3,8T

ne,bulk [cm-3]
per volume

ne,sample [cm-2]
per bulk sample surface

ne,layer [cm-2]
per single layer κ-(BEDT-TTF)2I3

Tab. A1: Experimental values for the number of electrons ne on each of the correlated orbits corresponding to
the QO frequencies Fj.
ne,layer is given per single layer and cm -2,
ne,sample per cm -2 in a typical sample  (thickness 0.25mm) and 
ne,bulk per unit volume, respectively.

Lower lines: total number of carriers 
1) Ne,QO obtained from QO measurements, considering the Landau level degeneration factor.
2) Ne,sto obtained from stoichiometry where 0.5 charge transfer per BEDT-TTF molecule, two molecules per unit
cell and dimeristaion is considered.

              *              
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Zusammenfassung 

Im Folgenden ist eine deutschsprachige Zusammenfassung der vorliegenden Arbeit gegeben.
Sie umreißt in einem Leitfaden die wichtigsten Schwerpunkte bzw. Ergebnisse der einzelnen
Kapitel. Dadurch und mit Hilfe einiger ausgesuchter Bilder soll der Einblick in die Arbeit
erleichtert werden1.

Übersicht

Die vorliegende Arbeit konzentriert sich auf Quantenoszillationsexperimente in quasi-
zweidimensionalen kristallinen Vielschichtstrukturen organischer Metalle. Die hier
vorgestellten Experimente belegen das Auftreten von niedrigen ganzzahligen Landauniveau-
Füllfaktoren ν = 1-4 im zweidimensionalen (2D) organischen Metall κ-(BEDT-TTF)2I3.
Darüber hinaus ergeben sich aus diesen Messungen starke Anzeichen für das Auftreten des
sehr speziellen Füllfaktors ν = ½ im vorliegenden Material. Damit belegen die hier dis-
kutierten Ergebnisse das Auftreten von Elektronenlokalisierung und Elektronenkorrelationen
in einem makroskopischen metallischen zweidimensionalen Elektronensystem. Diese Effekte
treten im normalleitenden Zustand des organischen Supraleiters κ-(BEDT-TTF)2I3 auf.
Die revolutionäre Entdeckung des ganzzahligen sowie des fraktionierten Quanten-Hall-
Effekts (QHE bzw. FQHE) in zweidimensionalen halbleitenden Einschichtsystemen (auf
Basis von Si/SiO2-Feldeffekttransistoren bzw. GaAs/AlGaAs-Heterostrukturen) in den 80er
Jahren warf u.a. die Frage auf, ob derartige Effekte auch in anderen Materialklassen auftreten
könnten und ob sie auch in dreidimensionalen Systemen, d.h. in makroskopischen Kristallen
auftreten könnten. Große Anstrengungen wurden zunächst unternommen, um auf Basis von
Halbleitern zweidimensionale Zweischichtsysteme herzustellen, die Kopplung der einzelnen
Schichten und das Tunneln von Elektronen zwischen den beiden Schichten zu kontrollieren.
Später wurde nach und nach die Anzahl der Schichten erhöht. Diese Entwicklung war
motiviert durch die Ergebnisse von theoretischen Arbeiten Mitte der 80er Jahre, wonach die
Quanten-Hall-Effekte auch in 2D Zwei- bzw. sogar in Vielschichtsystemen als stabiler
Grundzustand eines zweidimensionalen Elektronensystems (2DES) vorhanden sein könnte.
Seither wird mit beachtlichem Aufwand das experimentelle Ziel verfolgt, diese theoretischen
Vorhersagen zu überprüfen und möglichst den QHE und den FQHE in Zwei- und schließlich
in Vielschichtsystemen nachzuweisen. Das würde nicht nur die beiden Hall-Effekte aus dem
Bereich der extremen Zweidimensionalität „befreien“, sondern sehr viele neue Aspekte zu
deren Verständnis  einbringen und sogar grundlegende neue Fragen aufwerfen.
κ-(BEDT-TTF)2I3 ist in seinem normalleitenden Zustand metallisch und weist eine sehr hohe
Elektronendichte (2*1019/cm2) und Elektronenbeweglichkeit (ca. 5*108cm2/Vs) auf. Diese
Werte liegen deutlich über denjenigen, welche 2DES auf Halbleiterbasis erzielen (derzeit ca.
1011/cm2 bzw. 107cm2/Vs). Ein typischer κ-(BEDT-TTF)2I3-Einkristall besteht aus ca. 105

gekoppelten metallischen zweidimensionalen Schichten und kann in exzellenter Qualität als
makroskopischer dreidimensionaler Einkristall (ca. 1x2x0.25mm3 und größer) hergestellt
werden. Dennoch zeigt dieses Material zweidimensionale elektronische Eigenschaften unter
bestimmten experimentellen Bedingungen, wie im Rahmen der vorliegenden Arbeit gezeigt
wird. Im Gegensatz zur charakteristischen Situation in einem 2DES auf Halbleiterbasis, in
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welchem die (korrelierten) Elektronen sich alle auf einer einzigen quantisierten
Ladungsträgerbahn im k-Raum bewegen, verfolgen die stark korrelierten Ladungsträger in
κ-(BEDT-TTF)2I3 eine Reihe von verschiedenen Bahnen welche dementsprechend
verschiedene, sogar sehr unterschiedliche Landauniveau-Füllfaktoren ν aufweisen. Dies sind
die wichtigsten charakteristischen Bedingungen, unter welchen in κ-(BEDT-TTF)2I3 die oben
erwähnten Füllfaktoren ν experimentell beobachtet werden.
Darüber hinaus birgt das hier vorwiegend untersuchte organische Metall als durchaus
komplexes elektronisches System eine Reihe weiterer Besonderheiten. Sie stellen eine
Herausforderung dar für die theoretische Beschreibung eines makroskopischen Systems mit
zweidimensionalen elektronischen Eigenschaften, in welchem Quantenlimes (ν ≈ 1) und
möglicherweise sogar fraktionierte ν auftreten.
Schließlich umfasst die vorliegende Arbeit Experimente zum Einfluss der Quasi-Zwei-
dimensionalität auf die elektronischen Eigenschaften einer Reihe von niederdimensionaler
organischer Leiter. Die Auswahl der dabei diskutierten Substanzen beschränkt sich auf
solche, die vielversprechend für das Auftreten von vergleichbaren Effekten wie in
κ-(BEDT-TTF)2I3 erschienen.

Organische Leiter und zweidimensionale Elektronensysteme

Ein Einblick in die Historie organischer Leiter ist in Kapitel 1 gegeben. Darin werden u.a. die
wichtigsten verwendeten Elektronen-Donormoleküle vorgestellt und die auf dem Wege der
Elektrokristallisation hauptsächlich auftretenden Strukturen (s. Fig. 1.2) gezeigt. Ausgangs-
punkt für die hier diskutierten Substanzen ist der Donor Bis(ethylendithiolo)tetrathiofulvalen
(BEDT-TTF; s. Fig. 1.1).
Das zweite Kapitel gibt einen Einblick in die verschiedenen Möglichkeiten, ein zwei-
dimensionales Elektronensystem zu realisieren. Die mit Abstand bekanntesten Methoden zur
Herstellung von zweidimensionalen Einschichtsystemen basieren auf halbleitenden
Ausgangsmaterialien und treten z.B. an Si/SiO2-Grenzschichten von Feldeffekttransistoren
bzw. In GaAs/AlGaAs-Heterostrukturen auf (s. Fig. 2.1-2.3). Das metallische Vielschicht-
system κ-(BEDT-TTF)2I3 unterscheidet sich jedoch grundlegend von derartigen Systemen.
Ein typischer κ-(BEDT-TTF)2I3-Einkristall ist aufgebaut aus ca. 105 alternierenden
BEDT-TTF- bzw. I3-Schichten. Eine dieser leitfähigen Ebenen ist in Fig. 2.4.a dargestellt.
Die Seitenansicht in Fig. 2.5 verdeutlicht, dass die höchsten Elektronendichten innerhalb
dieser leitfähigen Ebenen um die zentrale C=C Bindung der BEDT-TTF-Moleküle auftreten.
Dies verleiht zahlreichen Vertretern dieser organischen Leiter quasi-zweidimensionale
elektronische Eigenschaften. κ-(BEDT-TTF)2I3 erhält seine ausgeprägt zweidimensionalen
Eigenschaften aufgrund seiner hohen elektronischen Anisotropie (ausgedrückt durch das
niedrige Verhältnis der Transferintegrale t senkrecht bzw. parallel zu den Ebenen tΩ / tæ <
1.5*10-4). Durch diesen geringen Wert gilt κ-(BEDT-TTF)2I3 als extremstes 2DES in der
Klasse der organischen Metalle.
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Theoretische Grundlagen: Beschreibung von Quantenoszillationen in Metallen,
ganzzahligem sowie fraktioniertem Quanten-Hall-Effekt (QHE bzw. FQHE)

Der überwiegende Teil der Ergebnisse wurde aus Quantenoszillationsexperimenten, d.h. de
Haas-van Alphen- (dHvA) sowie Shubnikov-de Haas- (SdH)-Experimenten an organischen
Metallen gewonnen. Dies erfordert eine Einführung in die so genannte Lifshitz-Kosevich-
(LK)-Theorie von Quantenoszillationen (s. Kap. 3). Sie beschreibt die zu erwartenden
Quantenoszillationsamplituden in Metallen mit dreidimensionalen (3D) elektronischen
Eigenschaften (s. Gl. 3.9).
Nachdem sich der experimentelle Teil der Arbeit auf die Diskussion von Anomalien in
Oszillationsamplituden verschiedener organischer Materialien konzentriert, werden in den
theoretischen Kapiteln (3 und 4) eine Reihe von Effekten besonders hervorgehoben, die
Abweichungen bzw. Anomalien in Quantenoszillationen generieren können und den in Kap.
5 diskutierten sehr spezifischen experimentellen Befund an κ-(BEDT-TTF)2I3 erklären
könnten. Auf dem Gebiet der Quantenoszillationen in Metallen sind dies insbesondere die in
Kap. 3.4 angeführten Effekte:

- Magnetische Wechselwirkung (‘magnetic interaction’, MI):
Sie beschreibt die Modifikation des externen Magnetfeldes auf Grund der Rückwirkung des
magnetischen Moments der Elektronen während einer Quantenoszillation (s. Kap. 3.4.1).
Im Falle eines Auftretens von MI entspräche das effektive Magnetfeld nicht mehr dem
externen Feld und würde zusätzlich während einer Quantenoszillation nichtlinear variieren.
Dies würde zu feld- und temperaturabhängigen Anomalien bzw. Dämpfungen in Quanten-
oszillationsamplituden führen (s. Fig. 3.2).

Zusammenfassung

Z 3

1.
6 

nm
≈

a
b

c
Fig. 2.4.a (links): Blick auf eine einzelne leitfähige (b,c)-Ebene von κ-(BEDT-TTF)2I3. C- (grau) bzw.
S-Atome (gelb) des BEDT-TTF-Moleküls mit jeweils darüber bzw. darunter liegender I3-Ebene (magenta).
Fig. 2.5a (Mitte): Seitenansicht auf zwei leitfähige BEDT-TTF-Ebenen von κ-(BEDT-TTF)2I3.
Fig. 2.5b (rechts): Schematische Darstellung der Elektronendichte (steigend mit steigender Graustufe) zur
Veranschaulichung der zweidimensionalen Elektronenstruktur.



- Magnetischer Zusammenbruch (‘magnetic breakdown’, MB):
Dieser Effekt beschreibt den Durchbruch bzw. das Tunneln von Ladungsträgern zwischen
zwei benachbarten Trajektorien im k-Raum, welche durch einen endlichen Potentialwall
voneinander getrennt sind (s. Fig. 3.3). Die resultierende Variation der Ladungsträgerzahl
auf jeder Bahn führt daher zu Anomalien in den Oszillationsamplituden (s. Kap. 3.4.2).

- Effekte der Quasi-Zweidimensionalität (‘warping’ der Fermifläche):
Ein quasi-zweidimensionales (Q2D) elektronisches System ist durch eine Fermifläche
charakterisiert, welche einem eingeschnürten Zylinder entspricht (s. Kap. 3.4.3). Dies führt
zum Auftreten von verschieden großen Extremalflächen auf der Fermifläche, welche mit
entsprechend unterschiedlichen Oszillationsfrequenzen zu Quantenoszillationen beitragen
(s. Fig. 3.5.a). Die Superposition dieser Beiträge führt zu einer Modifikation der Gesamt-
amplitude und ist als Einschnürungsknoten (sog. ‘warping’-Knoten) erkennbar (s. Fig. 3.6).

- Effekte ausgeprägter Zweidimensionalität: Oszillationen des chemischen Potentials µ:
Die o.g. Standard-LK-Theorie wurde für 3D elektronische Systeme mit einer sphärischen
Fermifläche entwickelt. In Gleichung 3.9 ist leicht zu erkennen, dass die verschwindende
Krümmung A“ einer zylindrischen Fermifläche eines 2DES zu einer Divergenz der
Quantenoszillationsamplituden M führen würden und diese Theorie auf 2DES so nicht mehr
anwendbar sein kann. In Kapitel 3.4.4 wird die Modifikation der LK-Theorie für 2DES
angerissen. Den größten Einfluss hat dabei die zu erwartende sägezahnartige Oszillation des
chemischen Potentials µ in einem 2DES. Sie tritt in einem 2DES (im Gegensatz zum 3DES)
deshalb auf, weil die Landauzylinder die im 2DES ebenfalls zylindrische Fermifläche
‘instantan’ verlassen, so dass µ innerhalb eines engen Magnetfeldbereichs auf das nächst
niedrigere Landau- d.h. Energieniveau springt (s. Fig. 3.5.b). Dies führt zu sägezahnartigen
Sprüngen von µ die u.a. daran von anderen Effekten zu unterscheiden sind, dass die steile
Flanke des Sägezahns in µ auf der Hochfeldseite einer solchen Sägezahnoszillation liegt. Im
experimentellen Teil werden derartige Sägezahnoszillationen von µ an κ-(BEDT-TTF)2I3

vorgestellt und diskutiert (s. Fig. 5.26, 5.29-30). Ihr Auftreten belegt, dass es sich bei dieser
Substanz tatsächlich um ein sehr ausgeprägt zweidimensionales Elektronensystem handelt.

- Quanteninterferenzen (QI):
Quanteninterferenzen können auftreten, wenn im k-Raum Knotenpunkte auftreten, die
durch unterschiedliche Trajektorien verbunden sind (s. Fig. 3.9). Die Interferenzen der
Beiträge dieser unterschiedlichen Trajektorien werden als QI bezeichnet und können
Oszillationsamplituden bzw. deren Fourierspektrum modifizieren (s. Kap. 3.4.6).
Insbesondere in Kap. 3.4.7 werden eine Reihe von charakteristischen Unter-
scheidungsmerkmalen ausführlich diskutiert, die es erlauben, aus den experimentell
gefundenen Fourierspektren die tatsächlich zu Grunde liegenden Effekte zu identifizieren
bzw. auszuschließen.

Beschreibung des Ganzzahligen Quanten-Hall-Effekts (QHE)

In Kapitel 5 werden Messungen an κ-(BEDT-TTF)2I3 diskutiert, die u.a. starke Dämpfungen
von Quantenoszillationsamplituden im Bereich niedriger ganzzahliger Landauniveau-
Füllfaktoren zeigen. Sie werden dort als Anzeichen für eine Elektronenlokalisierung
interpretiert, wie sie in 2DES bei hohen Magnetfeldern auftreten kann und im Zusammen-
hang mit dem QHE bekannt sind. Zum Verständnis dieses Lokalisierungsmechanismus’ wird
in Kap. 4 die Beschreibung des QHE wiedergegeben. Dabei wird besonders betont, dass der
QHE im Einteilchenbild verstanden werden kann, d.h. dass in der Beschreibung des QHE
Elektronenkorrelationen nicht berücksichtigt sind.
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In Kapitel 4.1.4 wird eine modernere Methode zur Beschreibung des QHE über sog. ‘Edge
States’ bzw. ‘Edge Stripes’ wiedergegeben. Es sei hier noch einmal hervorgehoben, dass in
‘gängigen’ d.h. halbleiterbasierten 2DES (z.B. MOSFETS sowie GaAs/AlGaAs-Hetero-
strukturen) die Fermifläche eine einzige geschlossene Ladungsträgerbahn aufweist, auf der
sich alle Ladungsträger bewegen. Im jeweiligen Zentrum eines Landauniveaus liegen nun die
mobilen Ladungsträgerzustände (s. Fig. 4.5), während an den Flanken der verbreiteten
Landauniveaus die durch Potentiale von Verunreinigungen modifizierten Energiezustände
liegen. Die Bewegung dieser Ladungsträger ist wegen des Pauli-Prinzips im Bereich der
Verunreinigungen beschränkt, d.h. aus der Sicht einer makroskopischen Längenskala
lokalisiert. Liegt nun die Fermienergie in diesem Bereich und ist nur eine einzige
Landauniveau-Struktur im System vorhanden (s.o.), so existieren in diesem Bereich (es ist
exakt der Bereich des Hall-Plateaus im QHE) keinerlei mobile Ladungsträger, die einen
Hall-Strom zwischen den Probenkanten transportieren könnten. Aus dieser Erklärungs-
notwendigkeit für das Auftreten eines nicht verschwindenden Hall-Stroms wurde
vorgeschlagen, dass im Bereich des Hall-Plateaus der Ladungstransport entlang der
Probenkanten mittels ‘Edge States’ bzw. Edge Stripes’ stattfindet (s. Fig. 4.7).
Schließlich wird in diesem Zusammenhang das mögliche Auftreten einer eindimensionalen
chiralen Tomonaga-Luttinger-Flüssigkeit an der Probenkante eines 2DES angerissen.

Beschreibung des Fraktionierten Quanten-Hall-Effekts (FQHE)

Nachdem sich herausgestellt hat, dass κ-(BEDT-TTF)2I3 bei hohen Magnetfeldern ein
hochgradig korreliertes 2DES bei niedrigen Füllfaktoren darstellt, in welchem ein Teil der
Fermifläche sogar den Quantenlimes erreicht (s. Kap. 5.4-5.8), muss zum Verständnis der
dort diskutierten Ergebnisse die theoretische Beschreibung des FQHE berücksichtigt werden
(s. Kap. 4.2). Der FQHE beschreibt bekanntlich Das Verhalten eines korrelierten 2D
Elektronensystems im Bereich des Quantenlimes’ und illustriert den Mechanismus, der dort
zu Elektronenlokalisierung führen kann (Auftreten von Quasiteilchen mit fraktionierter
Statistik, s. Fig. 4.13). Diese Stichworte beschreiben die Schwerpunkte der in Kap. 4.2
wiedergegebenen Beschreibung des FQHE. Es sei hervorgehoben, dass bislang lediglich für
den FQHE in Einschicht-2DES eine detaillierte Beschreibung existiert.
Auf Basis der Laughlin’schen Beschreibung des FQHE-Grundzustandes am Beispiel von ν =
1/3 werden die bekanntesten Hierarchie-Modelle für das Auftreten weiterer stabiler
Grundzustände diskutiert. Diese Modelle erlauben das Auftreten des FQHE bei sehr viel
mehr Füllfaktoren als bisher beobachtet und schließen letztlich sogar das Auftreten beliebiger
Füllfaktoren und das Verlassen des unmittelbaren Quantenlimes’ nicht aus (s. Kap. 4.2.6).
Die oben erwähnten Quasiteilchen mit fraktionierter Statistik (QTFS) werden als
Elementaranregungen eines korrelierten Elektronensystems beschrieben, welches sich selbst
wie eine inkompressible ‘Laughlin’-Flüssigkeit verhält (s. Kap. 4.2.5). Diese QTFS treten aus
energetischen Gründen im Bereich von Verunreinigungen auf und sind dort lokalisiert. Es
konnte gezeigt werden, dass das Gesamtsystem seine Gesamtenergie dadurch minimieren
kann, dass es diese geladenen Quasiteilchenanregungen durch Elektronen abschirmen lässt,
welche dadurch selbst lokalisiert werden. Es kommt also im FQHE zu einer Koexistenz von
mobilen und lokalisierten Elektronenzuständen.
Trotz der oben erwähnten Hierarchien, die eine Reihe weiterer Füllfaktoren erlauben, stellte
sich heraus, dass in einem 2D Einschichtsystem der spezielle Füllfaktor ν = ½ kein stabiler
Grundzustand ist und der FQHE dort nicht auftreten darf. Stattdessen bleibt das 2DES bei ν =
½ fermionisch und kann sehr elegant mit Hilfe des sog. ‘Composite Fermion’-Bildes
beschrieben werden. Beim Übergang von Elektronen zu ‘Composite Fermions’ mittels einer
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statistischen Transmutation wird einem Elektron eine bestimmte Anzahl magnetischer
Flussquanten angeheftet, die gerade bewirkt, dass sich das so zusammengesetzte Gebilde
beim entsprechenden Magnetfeld (d.h. Füllfaktor) gerade wie ein Elektron verhält (s. Kap.
4.2.7). Einfach ausgedrückt gesagt: ‘Composite Fermions’ zeigen, warum sich ein 2D
Einschichtsystem bei ν = ½ wie ein normales Fermi-Gas verhält. Dieses Bild ist daher nicht
geeignet um zu zeigen, warum ein 2D Vielschichtsystem dies nicht tut, sondern einen
nichtfermionischen Grundzustand einnimmt.

Die Stabilitätskriterien für den FQHE und damit die erlaubten Füllfaktoren ändern sich
drastisch beim Übergang von einem Einschicht- zu einem 2D Zwei- bzw. Vielschichtsystem
(s. Kap. 4.2.8).
Erste Ansätze für die theoretische Beschreibung eines 2D Zweischichtsystems wurden Mitte
der 80er Jahre veröffentlicht. Sie beschränkten sich zunächst auf die Behandlung
entkoppelter und dann gekoppelter Schichten, ohne Elektronentunneln zwischen den
Schichten zuzulassen. Einer der Gründe für diese Restriktionen sind die Probleme bei der
Diagonalisierbarkeit der entsprechenden Hamiltonian. Es stellte sich heraus, dass sowohl
QHE als auch FQHE weiterhin auftreten dürfen, wobei die Auswahl der erlaubten
Füllfaktoren sich ändert. Insbesondere wird der FQHE bei einem Füllfaktor von jeweils ½ in
jeder Schicht möglich. Sobald Tunneln zwischen den Schichten zugelassen ist, wird das
Gesamtsystem mit dem totalen Füllfaktor des Gesamtsystems beschrieben. Dieser kann nun
den Wert ½ annehmen, so dass FQHE und Elektronenlokalisierung bei ν = ½ auftreten
können. Der ν = ½-Grundzustand wird dadurch stabil, dass die aus Einschichtsystemen
bekannten innerhalb der Ebenen vorhandenen Elektronenkorrelationen zusätzlich durch
Korrelationen zwischen den Ebenen stabilisiert werden. Damit wird der im 2D Einschicht-
system verbotene ν = ½-Zustand im Zwei- und auch im Vielschichtsystem nicht nur erlaubt,
sondern seine Stabilität steigt sogar mit dem Grad des Tunnelns, d.h. der Ebenenkopplung.
Diese theoretischen Vorhersagen haben seit Mitte der 80er Jahre die sehr intensive Suche
nach dem QHE und insbesondere nach dem FQHE und dem ν = ½-Zustand in 2D Zwei- und
Vielschichtsystemen stimuliert. Dabei hat sich bisherige Suche auf stetig optimierte
halbleiterbasierte 2DES konzentriert.

Experimenteller Teil: Elektronische Eigenschaften verschiedener
quasi-zweidimensionaler organischer Metalle 

Der Schwerpunkt der in Kap. 5 und 6 vorgestellten experimentellen Untersuchungen liegt
beim Vielschichtsystem κ-(BEDT-TTF)2I3 (s. Kap. 5), da es zurzeit die ausgeprägtesten
zweidimensionalen elektronischen Eigenschaften innerhalb dieser Substanzklasse aufweist.
Die Fermifläche dieses Materials besteht aus zwei bislang durch Bandstrukturrechnungen
nachgewiesenen Extremalbahnen um A2 bzw. A3 mit den dazugehörigen Quantenoszillations-
frequenzen F2 = 570T und F3 = 3883T (s. Fig. 5.10).
Neben einer Auswahl allgemeiner elektronischer sowie supraleitender Eigenschaften von
κ-(BEDT-TTF)2I3 werden am Anfang von Kap. 5 u.a. die wichtigsten aus Quanten-
oszillationsexperimenten ermittelten fermiologischen Daten zusammengestellt und mit den
Ergebnissen von Bandstrukturrechnungen verglichen. Es sind dies z.B. die effektiven Massen
m*Fj der Ladungsträger auf den Umlaufbahnen zu den Frequenzen F2, F3, sowie einer neu
gefundenen Frequenz F1 = 100T, die Streuzeiten und die damit verbundenen sog. Dingle-
Temperaturen TD sowie Streulängen τ, die Fermi-Wellenvektoren kF,  -Geschwindigkeiten vF

sowie die Flächeninhalte der zugehörigen Extremalbahnen Aj auf der Fermifläche.
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Weiterhin werden die g-Faktoren bestimmt und die Energielücke Eg,MB abgeschätzt, die durch
den magnetischen Zusammenbruch überwunden wird. Als Quantifizierung der Zwei-
dimensionalität wird das ‘warping’ ≡ tΩ / tæ, d.h. die prozentuale Abweichung der Fermifläche
vom perfekten Zylinder eines idealen 2DES bestimmt. Der sehr niedrige ermittelte Wert tΩ / tæ
< 1.5*10-4 identifiziert κ-(BEDT-TTF)2I3 als das derzeit ausgeprägteste zweidimensionale
System in der Klasse der organischen Metalle.
Dieses Ergebnis erfordert die Überprüfung der Gültigkeit und Grenzen der an sich für 3D
Metalle entwickelten LK-Theorie der Quantenoszillationen (s. Kap. 5.3). Es stellte sich
heraus dass in diesem Zusammenhang der Winkel Θ zwischen der externen Magnet-
feldrichtung und den leitfähigen Ebenen der κ-(BEDT-TTF)2I3-Einkristalle ausschlaggebend
ist. Dabei bezeichnet Θ = 0° die Feldorientierung genau senkrecht zu den leitfähigen Ebenen
und ist im Folgenden besonders wichtig (s. Fig. 5.22).
Umfangreiche Untersuchungen der Temperatur- Feld- und Winkelabhängigkeit der
Quantenoszillationsamplituden haben gezeigt, dass die LK-Theorie der Quantenoszillationen
im gesamten untersuchten Winkelbereich Θ ≠ 0° sehr gut anwendbar ist, obwohl das hier
untersuchte Material ein nahezu perfektes 2DES ist (s. Kap. 5.3). Geringere Abweichungen
der Oszillationsamplituden von deren LK-Werten können durch die Einflüsse der Oszillation
von µ auf Grund der Zweidimensionalität erklärt werden.
Bei Θ = 0° hingegen treten anomale starke Dämpfungen der SdH-Amplituden auf, die mit
steigenden Feld (≥12T) und sinkender Temperatur (≤1K) extrem zunehmen (s. Fig. 5.14-16).
Die Diskussion möglicher Ursachen kommt zu dem Schluss, dass es derzeit keine
theoretische Erklärung (z.B. aus den Bereichen Fermiologie, Quantenoszillationen in 3D und
2DES, Phasenübergänge, Interferenzeffekte) gibt, die derartig drastische Dämpfungen und
insbesondere ihre starke Beschränkung auf die spezielle Feldorientierung Θ = 0° erklären
könnte.
Der Schlüssel zu einem möglichen Verständnis deren Ursache ist die Veranschaulichung
dessen, was die Feldorientierung Θ = 0° gegenüber allen anderen Orientierungen Θ ≠ 0°
auszeichnet (s. Fig. 5.22). Diese schematische Darstellung zeigt, dass Θ = 0° die einzige
Magnetfeldorientierung darstellt, bei der in einem metallischen Vielschichtsystem die
Ladungsträger auf ihren Zyklotronbahnen innerhalb der leitfähigen Ebenen verbleiben, bis
sie gestreut werden. Das bedeutet, dass ausschließlich bei Θ = 0° die intrinsische
Zweidimensionalität des Systems ungestört zum Tragen kommen kann.
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Fig. 5.22: Zyklotronbahn im Ortsraum (schematisch) in einem 2D Vielschicht-Metall wie z.B.
κ-(BEDT-TTF)2I3. Die waagerechten Linien deuten die einzelnen leitenden BEDT-TTF-Schichten an. Links:
Bei Θ ≠ 0° verlassen die Ladungsträger die leitfähigen Ebenen (hier: idealisierte Bahn) rechts: Bei Θ = 0°
verbleiben die Ladungsträger in der jeweiligen Ebene. 

Die Tatsache, dass elektronische Zweidimensionalität bei hohen Magnetfeldern zu
Elektronenlokalisierung führen kann, warf die Frage auf, ob die starken Dämpfungen der
SdH-Amplituden von κ-(BEDT-TTF)2I3 im Hochfeld als ein Verlust von Elektronen durch
Lokalisierung eines Teils der Ladungsträger verstanden werden könnte. Die Diskussion von
Fig. 5.22 veranschaulicht, warum dieser Effekt der Zweidimensionalität in einem derartigen
Vielschicht-Metall nur bei Θ = 0° zu erwarten ist.
Die Überprüfung dieser Idee warf die Frage nach den Füllfaktoren auf: Währen die
quantisierten Hall-Effekte und die damit verbundene Elektronenlokalisierung bislang ledig-
lich bei niedrigen Füllfaktoren (ca. ν ≤ 5) beobachtet wurde, wiesen die bislang bekannten
Extremalbahnen in κ-(BEDT-TTF)2I3 Füllfaktoren von ca. 50 bis über 100 auf. Diese
Extremalbahnen beruhten jedoch auf Bandstrukturrechnungen aus den 80er Jahren, die mit
geringen Rechnerleistungen und unter erheblichen vereinfachenden Annahmen durchgeführt
wurden, so dass die Möglichkeit besteht, dass dabei kleine Taschen auf der Fermifläche un-
berücksichtigt blieben. Dies motivierte zur experimentellen Suche nach niedrigen Füll-
faktoren in κ-(BEDT-TTF)2I3 also niedrigen Oszillationsfrequenzen und in der Tat konnte
nach aufwändigen Messungen eine neue Frequenz F0 = 13T gefunden werden (Fig. 5.23-24).
Mehr noch, nach weiteren detaillierten Messungen stellte sich heraus, dass tatsächlich F0

unmittelbar für die Dämpfungen in den Amplituden von F2 und F3 verantwortlich war und
zwar in der Weise, dass die Dämpfungen besonders stark bei ganzzahligen ν von F0 waren.
Die Tatsache, dass F0 offensichtlich dazu in der Lage ist, seine eigenen Eigenschaften
(Füllfaktoren) dem Gesamtsystem aufzuzwingen, d.h. das Verhalten aller Elektronen zu
bestimmen, beweist das Auftreten starker Elektronenkorrelationen in diesem 2D Material. Im
Hochfeld bringt F0 mit ν = 2 das Gesamtsystem sogar in die Nähe des Quantenlimes’. Dies
und der Zusammenhang der Dämpfungen mit den ganzzahligen ν von F0 bestätigte die
Vermutung, dass die starken Dämpfungen in den Amplituden von F2 und F3 bei Θ = 0°
tatsächlich mit der Lokalisierung eines Teils der Elektronen zu tun haben können.
Es konnte zwar gezeigt werden, dass diese neue niedrige Frequenz F0 nicht auf
fermiologische Effekte (wie z.B. ein ‘warping’ der Fermifläche oder aber Interferenzeffekte)
zurückzuführen ist, dennoch blieb auf Grund des indirekten Nachweises von F0 zunächst die
Frage offen, ob F0 mit einer tatsächlich existierenden Umlaufbahn und einer entsprechenden
Landauniveau-Struktur identifiziert werden kann. Auf der Suche nach einer
thermodynamischen Größe, welche die Existenz von F0 überprüfen könnte, wurde im
Rahmen dieser Arbeit eine zwar aufwändige aber dennoch im Prinzip sehr einfache Methode
entwickelt und erfolgreich eingesetzt,
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Fig. 5.24: rechts: SdH-Oszillationen mit F0 in κ-(BEDT-TTF)2I3-Einkristallen bei 0°. Obere Abszisse:
Füllfaktor ν von F0. links: 'Dingle plots' (vgl. Kap. 3.2.3) der FFT-Amplituden AFj von F2 und F3 (Afj-Werte
stammen jeweils aus engen benachbarten Feldfenstern). Die effektiven Massen m*F2 = 1.9 bzw.  m*F3 = 3.9
wurden berücksichtigt. Die gestrichelte und gepunktete Kurve markiert jeweils den erwarteten Amplituden-
verlauf. Die grau unterlegten Flächen illustrieren die starken Dämpfungen im Hochfeld bei 0°.

die Position des chemischen Potentials µ und seine Variation mit dem Magnetfeld mit sehr
hoher Auflösung unmittelbar zu detektieren (s. Fig. 5.25). Mit den so detektierten
sägezahnartigen Oszillationen von µ mit F0 (s. Fig. 5.26) konnte die Existenz von F0 mit
Hilfe einer thermodynamischen Größe eindeutig nachgewiesen werden. Darüber hinaus sind
sowohl die scharfe Sägezahnform der µ-Oszillationen, als auch die Orientierung des
Sägezahns (steile Flanke zur Hochfeldseite) weitere anschauliche Belege für die extreme
Zweidimensionalität des Systems, einschließlich des zu F0 gehörenden Teils.
Dennoch blieb die Frage zunächst offen, warum bei den bestimmten Feldwerten B-1 = 0.09T-1,
0.17T-1, 0.43T-1 die Dämpfungen besonders drastisch sind. Nachdem auch dafür keinerlei
konventionelle Erklärung gefunden werden konnte, wurde der Möglichkeit nachgegangen,
dass eine zusätzliche, noch niedrigere Frequenz im System vorhanden sein könnte. Unter
weiter erhöhtem Aufwand wurden SdH-Messungen ins Niedrigfeld ausgedehnt. Tatsächlich
konnte damit die Existenz einer neuen, sehr niedrigen Oszillationsfrequenz Fneu = 3.8T nach-
gewiesen werden, inklusive sägezahnartiger Oszillationen von µ mit Fneu (s. Fig. 5.30). Diese
Messungen erlauben eine eindeutige Zuordnung der ganzzahligen Füllfaktoren νFneu = 4,3,2,1.
Insbesondere νFneu = 1 ist dadurch eindeutig festgelegt, dass bei endlichen Feldern (also ν ≥ 0)
kein weiteres niedrigeres Landauniveau platziert werden kann, ohne dass die Äquidistanz der
einzelnen Landauniveaus verletzt werden müsste (s. Kap. 5.7). Damit ist B-1 = 1.71T-1 als
νFneu = 1 ≡ Quantenlimes identifiziert. Der untere Teil des Bildes zeigt, dass gerade diese
niedrigen νFneu für die extremsten Dämpfungen der Oszillationsamplituden verantwortlich
sind und bestätigt erneut die Vermutung von Elektronenlokalisierung als deren Ursache.
Unterhalb von νFneu = 1 tritt jedoch eine weitere starke Dämpfung auf, die mit keinem
ganzzahligen νFneu identifiziert werden kann.
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Fig. 5.30: Identifizierung der Füllfaktoren νFneu von Fneu=3.8T im organischen 2D Vielschicht-Metall
κ-(BEDT-TTF)2I3. a) Sägezahn-Oszillationen des Chemisches Potentials (an verschiedenen Proben)
aufgetragen über νFnew (vgl. Fig. 5.29). b) ‘Dingle plots’ aus SdH-Messungen an verschiedenen Einkristallen bei
Θ = 0° (vgl. Fig. 5.27-28). Es ist zu beachten dass die x-Achsen in a) und b) bei unendlichem Magnetfeld d.h.
ν ≡ 0 enden.

Das Bild zeigt, dass diese Dämpfung genau zwischen νFneu = 1 und νFneu ≡ 0 liegt und weist
damit klar darauf hin, dass hier tatsächlich νFneu = ½ vorliegt. Die Oszillation von µ bei νFneu =
½ im oberen Bild bestätigt, dass bei diesem Füllfaktor tatsächlich ein thermodynamisch
stabiler Grundzustand vorliegt [491]. Dies entspricht den theoretischen Vorhersagen, wonach
in 2D Vielschichtsystemen νFneu = ½ im Gegensatz zu Einschichtsystemen auftreten könnte.

Die im Rahmen dieser Arbeit vorgestellten Experimente belegen das Auftreten von niedrigen
ganzzahligen Landauniveau-Füllfaktoren ν im zweidimensionalen (2D) organischen Metall
κ-(BEDT-TTF)2I3. Darüber hinaus ergeben sich aus diesen Messungen starke Anzeichen für
das Auftreten des seit nunmehr fast zwei Jahrzehnten gesuchten sehr speziellen fraktionierten
Füllfaktors ν = ½ im vorliegenden Material. Dadurch belegen die hier diskutierten
Ergebnisse das Auftreten von Elektronenlokalisierung und Elektronenkorrelationen in einem
makroskopischen metallischen zweidimensionalen Elektronensystem. Vergleichende
Untersuchungen mir einigen anderen vielversprechenden quasi-zweidimensionalen
Vertretern dieser Substanzklasse (s. Kap. 6) haben gezeigt, dass die komplexen Bedingungen
(z.B. Zweidimensionalität, niedrige Füllfaktoren und hohe Kristallqualität) für derartige
Effekte bislang wahrscheinlich noch nur im 2D organischen Metall κ-(BEDT-TTF)2I3

vereinigt sind.
              *              
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