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Zusammenfassung

Der Bruch fester Materie geschieht durch die Ausbreitung von Rissen
und ist uns aus dem Alltag vertraut. Ein zerbrochener Teller oder ein
zerschlagenes Glas ist lästig. Versagt dagegen der Rumpf eines Schif-
fes oder der eines Flugzeuges, kann dies Menschen das Leben kosten.
Gleichwohl wurde erst in den letzten Jahren Einblick in die grund-
legenden Mechanismen gewonnen, die zum Versagen von Festkörpern
durch Rissbildung führen. Ein Grund hierfür ist, dass Bruch ein Multi-
Skalen-Phänomen darstellt. Eine makroskopisch von außen angelegte
Spannung wird an der Rissspitze verstärkt. Daraufhin werden atomare
Bindungen gebrochen. Um Bruchmechanismen makroskopischer Bau-
teile zu verstehen, wird somit die Kenntnis von Prozessen auf atoma-
rer Ebene benötigt. Diese sind durch heutige experimentelle Techniken
kaum zugänglich, insbesondere dann nicht, wenn dynamische Aspekte
im Mittelpunkt des Interesses stehen. Solche Prozesse sind auch in der
klassischen Elastizitätstheorie des Bruchs nicht berücksichtigt. Compu-
tersimulationen haben sich als nützliches Hilfsmittel zur Untersuchung
atomarer Vorgänge erwiesen. In Molekulardynamik-Simulationen wer-
den die Bahnen der Atome durch Integration der Newton’schen Be-
wegungsgleichungen berechnet. Numerische Experimente mit einfachen
Kristallstrukturen und Modellwechselwirkungen lassen Effekte erken-
nen, für die der diskrete Aufbau der Materie verantwortlich ist. Konti-
nuumstheorien sind daher nicht geeignet, die erwähnten Phänomene zu
erklären. Die Vorgänge in komplexeren Festkörpern sind bis heute noch
nicht vollständig verstanden. Um einen Einblick in die grundlegenden
Mechanismen zu erhalten, wird in der vorliegende Arbeit das Bruchver-
halten komplexer metallischer Verbindungen bei tiefen Temperaturen
mit Hilfe der Molekulardynamik untersucht.

Komplexe intermetallische Verbindungen weisen große Einheitszellen
auf. Oft existieren Gruppierungen von Atomen, sogenannte Cluster,
die als Bausteine der Struktur angesehen werden können. Häufig sind
interessante physikalischen Eigenschaften kombiniert, wie z.B. ein ho-
her Schmelzpunkt und eine geringe Dichte. Allerdings sind die Ein-
satzmöglichkeiten der Materialien meist durch eine extreme Sprödigkeit
bei Raumtemperatur und bei tiefen Temperaturen begrenzt. Zwei struk-
turelle Extremfälle wurden ausgewählt, um zum Einfluss der Komple-
xität auf das Bruchverhalten untersucht zu werden: ein Modell-Quasi-
kristall und eine C15-Friauf-Laves-Phase. Quasikristalle besitzen eine
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Translationsordnung langer Reichweite, ohne periodisch zu sein. Eine
wohldefinierte atomare Ebenenstruktur führt dazu, dass Beugungsbilder
scharfe Braggpeaks zeigen. Cluster mit Ikosaedersymmetrie bestimmen
die Struktur. Bausteine des Quasikristalles (jedoch nicht die Cluster)
finden sich in der C15-Phase wieder. Die kubische Einheitszelle ist mit
24 Atomen besetzt. Die Friauf-Laves-Phasen sind der wichtigste Vertre-
ter der topologisch dicht gepackten intermetallischen Verbindungen.

Beim Dehnen einer Probe wird elastische Energie im System gespei-
chert. Läuft ein Riss durch einen gedehnten spröden Festkörper, werden
freie Oberflächen erzeugt. Daher sollte ein Riss sich ausbreiten können,
falls die elastische Energie zur Erzeugung der Bruchoberflächen genügt.
Diese Folgerung wird oft Griffith-Kriterium genannt. Solch ein globales
thermodynamisches Bild des Bruchs berücksichtigt nicht den Einfluss
des diskreten atomaren Aufbaus der Materie. Die Stärke und Anord-
nung lokaler Bindungen könnte jedoch das Bruchverhalten beeinflus-
sen. Auswirkungen jener Art werden in der vorliegenden Schrift mit
Hilfe atomistischer numerischer Bruchsimulationen untersucht.

Zunächst werden Modellwechselwirkungen angesetzt (siehe Kapitel 4.1).
Der Quasikristall zeigt ein sprödes Bruchverhalten unabhängig von der
Probenorientierung. Risse breiten sich nur für Lasten aus, die über den
Vorhersagen des Griffith-Kriteriums liegen. Ein solches Verhalten ist
bereits aus Simulationen einfacherer Systeme bekannt. Aufgrund des
Atomgitters müssen lokal Bindungen gebrochen werden. Das führt dazu,
dass ein Riss innerhalb eines Belastungsbereiches vom Gitter stabilisiert
wird und sich nicht ausbreitet oder schließt. Durch den lattice-trapping
genannten Effekt steht bei einer angelegten Last, die Rissausbreitung
ermöglicht, von Beginn an mehr Energie zur Verfügung als zur Gene-
rierung glatter Oberflächen notwendig wäre. Daher müssen Bruchober-
flächen nicht notwendigerweise die kleinste Oberflächenenergie oder die
geringste Rauigkeit aufweisen. Die Bruchoberflächen des Modellquasi-
kristalles sind auf Clusterskala rau. Auswertungen der Simulationen zei-
gen, dass die Anzahl und die Verteilung der Cluster das Bruchverhalten
beeinflussen. Risse wählen Pfade, die weniger Cluster durchtrennen aber
insgesamt mehr Energie benötigen als glatte, ebene Schnitte. Strukturen
in den Höhenprofilen der Bruchoberflächen und unterschiedliche Aus-
breitungsgeschwindigkeiten der Risse können durch die Anordnung der
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Cluster erklärt werden. Somit sind ein globales Energiekriterium und
eine Kontinuumsbeschreibung nicht ausreichend, um das Bruchverhal-
ten komplexer Systeme zu erklären. Ein weiterer interessanter Aspekt
tritt bei der Rauigkeit von Quasikristall-Bruchflächen auf. Trotz des
eindeutigen Einflusses der Cluster zeigen sich keine Auffälligkeiten in
der Selbstähnlichkeit der Höhen-Höhen-Korrelationsfunktion verglichen
mit anderen Substanzen. Die numerischen Simulationen hierzu sind in
Kapitel 4.1.1 und im Anhang geschildert. Aufgrund der strukturellen
Ähnlichkeit wird das Bruchverhalten einer C15-Friauf-Laves-Phase mit
den Modellwechselwirkungen des Quasikristalles untersucht. Das Fehlen
der Cluster im C15-Modellkristall äußert sich in einer nur auf atoma-
rer Skala rauen Bruchoberfläche. Die numerischen Experimente zeigen
somit, dass die grundlegenden Bausteine der Strukturen – Atome bzw.
Cluster – auch die Rissausbreitung beeinflussen. Somit erlauben die Mo-
dellsysteme eine qualitative Aussage über den Einfluss der Struktur auf
das Bruchverhalten.

Der Hauptteil der vorliegenden Arbeit beschäftigt sich mit der Simu-
lation der Friauf-Laves-Phase NbCr2 (siehe Kapitel 4.2), welche die-
selbe C15-Struktur wie der Modellkristall besitzt. Für die interato-
maren Wechselwirkungen werden Potenziale benötigt, die quantitativ
die physikalischen Eigenschaften der realen Verbindung wiedergeben.
Für einfache Metalle existieren diverse Wechselwirkungen, die experi-
mentell gemessene Werte oder quantenmechanisch berechnete Gleich-
gewichtseigenschaften reproduzieren. Meist werden hierzu analytisch
angesetzte Formulierungen benutzt, deren Parameter dann an einige
wenige materialspezifische Größen angepasst sind. Für komplexe inter-
metallische Verbindungen sind nahezu keine Potenziale erhältlich. Ei-
ne Methode, letztere zu erzeugen, ist das sogenannte force-matching-
Verfahren. Hierbei werden quantenmechanisch berechnete Kräfte zur
Anpassung der in der Molekulardynamik erforderlichen Wechselwirkun-
gen benutzt. Als Potenzialmodell wurde die embedded atom method
ausgewählt. Neben reinen Paartermen enthält das Modell auf einfa-
che Weise Mehrkörperwechselwirkungen. Die entsprechenden Potenzi-
alfunktionen wurden mit Spline-Kurven so angepasst, dass die ab-initio
Referenzwerte durch die effektiven Wechselwirkungen gut wiedergege-
ben werden. Tests zeigen, dass die so erzeugten Potenziale für NbCr2
auch für Materialeigenschaften zufriedenstellende Ergebnisse liefern, die
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nicht direkt in die Potenzialoptimierung eingegangen sind.

Mit Hilfe der Wechselwirkungen wurde die Rissausbreitung in NbCr2
in Abhängigkeit von der Orientierung und der angelegten Last unter-
sucht. Wie in den Modellsystemen breiten sich Risse nur für Lasten
oberhalb des Griffith-Kriteriums aus. Das lattice-trapping weist eine
Abhängigkeit von der Probenorientierung auf. Alle Proben zeigen ein
sprödes Bruchverhalten. Die Rauigkeit und die Oberflächenenergien der
Bruchoberflächen sowie der Pfad und die Geschwindigkeit des Risses
hängen hierbei nicht nur von der vorgegebenen Bruchebene ab, sondern
auch von der Ausbreitungsrichtung in der Ebene. Dieses Ergebnis ver-
deutlicht den Einfluss der atomistischen Struktur der Materie auf das
Bruchverhalten. Die Anzahl, Stärke und Orientierung der interatoma-
ren Bindungen entlang der Rissfront bestimmen, ob und wie sich ein
Riss ausbreitet.

Zusammenfassend wurde gezeigt, dass es möglich ist, qualitative und
quantitative Informationen zur Rissausbreitung in komplexen interme-
tallischen Verbindungen mit Hilfe numerischer Experimente zu gewin-
nen. Detaillierte Untersuchungen der Simulationen zeigen, dass Prozesse
auf atomarer Skala für das Bruchverhalten verantwortlich sind.



Introduction

The failure of solid matter is familiar to us from everyday life. A bro-
ken dish or a shattered glass is annoying. The breakage of a ship or
an airplane hull, however, can cost human lives. Nevertheless, insight
into the fundamental mechanisms leading to fracture has been gained
only within the last couple of years. One reason for this is that fracture
is a multi-scale phenomenon. A macroscopic external strain is directed
to the crack tip, where it breaks atomic bonds. Thus, to understand
fracture mechanisms in macroscopic devices, one also has to know the
processes on the atomic scale. These are hardly accessible by experi-
ments, in particular when dynamic aspects are the center of interest.
They are also not included in the classical elastic theory of fracture.
Computer simulations have proven to be a useful tool to examine frac-
ture processes on an atomic level. In molecular dynamics simulations
the trajectories of the atoms are calculated by integration of Newton‘s
equations of motion. Numerical experiments with simple crystal struc-
tures and model interactions reveal phenomena that are related to the
discrete nature of matter and therefore cannot be explained by contin-
uum theories. In more complex systems the mechanisms are not yet
clear.

In the current work two extreme cases of complex metallic alloys are
investigated. The model quasicrystal is built-up mainly from atomic
clusters. Due to the aperiodic long-range order, no unit cell exists. A
major building block of the quasicrystal can also be used to obtain a
periodic Friauf-Laves compound. The Friauf-Laves phases are topologi-
cally close-packed binary structures and form a huge class of intermetal-
lic compounds. Among them are many candidates for high-temperature
use. However, their brittleness at low and ambient temperature limits
applications. Molecular dynamics simulations are performed to examine
this brittle behavior at low temperature. First, model potentials are ap-
plied to qualitatively probe the influence of the underlying structure on
crack propagation. In a second step, a specific Friauf-Laves compound is
chosen. Interatomic potentials are constructed, which reproduce quanti-
ties obtained by quantum-mechanical calculations. Systematic fracture
simulations then are performed.

A short introduction to the structure of the model quasicrystal and
the Friauf-Laves phases is given in chapter 1. Chapter 2 contains fun-
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damental findings of fracture mechanics, which are important for the
simulations. The applied numerical methods are presented in detail in
chapter 3. The results of the simulations are summarized and discussed
in chapter 4.



Chapter 1

Complex metallic alloys

Complex metallic alloys (CMAs) [109]1 are intermetallic compounds
with large unit cells containing from tens up to thousands of atoms.
Often, distinct local arrangements of atoms, clusters, can be viewed as
building units. CMAs frequently combine interesting properties such as
high melting point, high-temperature strength, and low density. How-
ever, possible applications are often limited by extreme brittleness at low
or ambient temperature. To enlighten the role of structural complexity
in fracture, we investigate two extreme cases of CMAs: An icosahedral
model quasicrystal and a C15 Friauf-Laves phase.

1.1 Quasicrystals

Quasicrystals (see, e.g., [27, 57, 60, 73, 101, 108]) are intermetallic
compounds with long-range quasi-periodic translational order. They
possess well-defined atomic planes and hence diffract electromagnetic
and matter waves into sharp Bragg spots. But they also display atomic
clusters as basic building blocks [32, 48], whose arrangement in space is
compatible with the planar structure. These clusters consist for example
of several shells of icosahedral symmetry (Bergman-, Mackay-, pseudo-
Mackay-clusters). Or they form polytopes, e.g. decagonal prisms, which
like the unit cells of periodic crystals fill space, although with large
overlaps (“quasi-unit-cell picture”) [103]. Janot and others [58, 59, 61]
have postulated that a self-similar hierarchical assembly of the clusters
is responsible for the stability of quasicrystals and for many physical
properties, like the low electric conductivity.

1.1.1 Icosahedral binary model

The three-dimensional model quasicrystal used in our numerical experi-
ments has been proposed by Henley and Elser [49] as a structure model
for the icosahedral phase of (Al,Zn)Mg. This is the simplest possible

1CMAs are sometimes also called “structurally complex alloy phases”.
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model quasicrystal that is stabilized by pair potentials. Furthermore it
allows Burgers circuit analysis and is a prototype of Bergman-type qua-
sicrystals. As we do not distinguish between Al and Zn atoms, we term
the decoration icosahedral binary model. It can be obtained by deco-
rating the structure elements of the three-dimensional Penrose tiling,
the oblate and the prolate rhombohedra (see figure 1.1, top). Al and
Zn atoms (X atoms) are placed on the vertices and the midpoints of
the edges of the rhombohedra. Two Mg atoms (Y atoms) divide the
long body diagonal of each prolate rhombohedron in ratios τ :1:τ , where
τ is the golden mean. Two prolate and two oblate rhombohedra with
a common vertex form a rhombic dodecahedron2. To obtain the icosa-
hedral binary model, in these dodecahedra the atom at the common
vertex is removed and the four neighboring X atoms are transformed
into Y atoms. Finally, these atoms are shifted to the common vertex
to divide the edges of the corresponding rhombohedra in a ratio of 1:τ .
Figure 1.1 (bottom left) shows the final decoration of the dodecahedra,
in which the Y atoms form hexagonal bipyramides. This modification
increases the number of Bergman-type clusters (see figure 1.1, bottom
right) inherent in the structure, leads to a higher stability with the po-
tentials used, and takes better into account the experimentally observed
stoichiometry of the quasicrystal. The Bergman-type clusters may also
be interpreted as building units of the quasicrystal and are the main
feature of the structure apart from the plane structure.

1.2 Friauf-Laves phases

The Friauf-Laves phases are often only named Laves phases, though
they were discovered by Friauf [38, 39] but extensively studied by Laves
[71, 72]. They are formed by elements whose atomic diameters are
approximately in the ratio of 1.2:1. Hence they often are termed size
components. The group of Friauf-Laves phases is the largest subset
of topologically close-packed intermetallic compounds [114]. There are
three main structural variants corresponding to MgZn2 (C14), MgCu2

(C15), and MgNi2 (C36). They can be described by different stackings

2In rings of oblate rhombohedra the number of clusters is maximized. No over-
lapping rhombic dodecahedra are generated. Remaining oblate rhombohedra stay
unchanged.
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Figure 1.1: Tiles of the icosahedral binary model decorated with two types
of atoms and the Bergman-type cluster. Top: prolate rhombohedron (left)
and oblate rhombohedron (right). Bottom: rhombic dodecahedron (left) and
the 45 atoms building the Bergman-type cluster (right) inherent in the model
quasicrystal. Small red and large blue spheres denote X and Y atoms respec-
tively.



16 Complex metallic alloys

of layers (see, e.g. [47, 76]) similarly to the relationship between face-
centered cubic and hexagonal close-packed structures. In the Friauf-
Laves phases YX2 two kinds of layers are present formed by a kagome
and a triangular net. The stacking sequences can be described as fol-
lows:

C14, hexagonal: α Aα c β B β c ... (1.1)

C15, cubic: α Aα c β B β a γ C γ b ... (1.2)

C36, dihexagonal: α Aα c β B β c α Aα b γ C γ b ... (1.3)

Here upper case letters represent kagome and lower case letters trian-
gular nets (see figure 1.2). Layers of big Y atoms are represented by
Greek and those of small X atoms by Latin letters. The letter itself
indicates the in-plane position of the atoms in the layer. In the C15
structure the Y atoms form a diamond lattice, whereas the X atoms
build a tetrahedral network (see figure 1.3). The Friauf-Laves phases
can also be formed by slightly deformed3 prolate rhombohedra [49, 115]
but not in a uniquely defined way. Because of the already quite complex
structure new deformation modes like synchro-shearing (see, e.g., [20])
might emerge.

3The angles formed by two edges at the tip of the rhombohedron (see upper left
corner of figure 1.1) are decreased from 63.43o to 60o. The corresponding tips are
formed by the tetrahedra in figure 1.3.
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Figure 1.2: The basic four-layer stacking unit α A α b of the Friauf-Laves
phase structures (from [76], modified).
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Figure 1.3: The C15 Friauf-Laves phase. Nearest neighbors of the same
kind are connected by lines. The cubic cell containing 24 basis atoms is also
indicated.



Chapter 2

Fracture mechanics

Condensed matter under heavy load can fail by fracture. Cracks prop-
agate – mostly from pre-existing defects – by breaking cohesive bonds
between atoms. At the macroscopic scale, the geometry of the sample
and its dimensions determine the stress concentration at a crack tip.

2.1 Linear elastic theory

In linear elastic fracture mechanics the specimen is treated as an elastic
continuum. Cracks are represented by free, plane surfaces. The crack
front is approximated as a straight line. Following Irwin [56], the strain
field of a crack can be split into contributions from three loading condi-
tions: an opening (I), a sliding (II), and a tearing (III) mode (see figure
2.1). Friction is neglected, although in modes II and III the fracture
surfaces stay in contact.

For a semi-infinite crack in an infinite plate of homogeneous, isotropic
material the components of the stress tensor Tij and the displacements
ui for mode m are given by (see, e.g., [36, 106]):

���������
���������
���������
���������

���������
���������
���������
��������� z

r

θ

    mode II  mode I         mode III

Figure 2.1: The three modes of crack loading.
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T m
ij (r, θ) =

Km

√
r

fm
ij (θ) , (2.1)

um
i (r, θ) = Km

√
rgm

i (θ) . (2.2)

Here, r is the distance from the crack tip and θ is the angle between the
fracture plane and the corresponding position vector r (see figure 2.1).
The stress field carries a singularity at the crack tip that decays as the
inverse square root of r. The strength of this singularity is characterized
by the stress intensity factor K. It includes the applied external load
and the geometry of the sample. The dependency on θ is contained in
the functions fij and gi. In general, they further depend on the orien-
tation of the system via appropriate elastic constants.

For very thin samples (z → 0) in mode I the stress field can be regarded
as two-dimensional. Thus, this case is called plane stress. In contrary,
for very thick samples (z → ∞) the displacement field becomes two-
dimensional and plane strain conditions are applicable.

When a crack moves through a solid, energy flows into the crack tip. The
elastic work delivered by the specimen per unit area of crack advance
is named energy release rate G. For mode m it is given by (see, e.g.,
[36, 106]):

Gm = (Km)2/Cm , (2.3)

where Cm is an appropriate elastic modulus.

2.2 The Griffith criterion

From the above equations it is possible to describe an idealized, sharp
crack in an elastic medium. However, to decide whether a specimen
fails or not, an additional criterion is needed. Following Griffith [40]
one may assume that the static crack is a reversible thermodynamic
system. The corresponding equilibrium condition for the system then
simply follows from energy conservation. An unstable equilibrium is
reached if the crack driving force, the energy release rate G, balances
the surface energy of the two freshly exposed surfaces 2γ:
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GGriffith = 2γ . (2.4)

For G > GGriffith the idealized crack opens up, for G < GGriffith the
crack closes.

2.3 Propagating cracks

For propagating cracks the kinetic energy of the material has to be
taken into account. A simple approximation by Mott [82] shows that
there exists an upper limit for the crack velocity vcrack. Stroh [104]
argumented that this velocity should be given by the Rayleigh wave
speed. In a more elaborate approach (see, e.g., [36]) the dynamic stress
intensity factors differ by a velocity dependent part from the static ones.
As a consequence, the dynamic energy release rate vanishes when the
limiting velocity is reached.

Yoffe [117] calculated the component Tθθ for a moving crack to decide
on its kinetic stability. In the static case Tθθ is maximal for θ = 0.
However, if a crack reaches about 60% of the transverse wave velocity
the maximum is shifted towards ±60◦. Thus, a crack then might be
expected to propagate off-axis.

2.4 Effects of discrete structures

From an atomistic point of view, brittle fracture is ultimately deter-
mined by the breaking of bonds. The discrete nature of matter, however,
is fully neglected in a continuum description. Such an approach there-
fore is not capable of explaining fundamental processes on the atomic
level. Additionally, the linear elastic approximation loses validity close
to the crack tip, which is also apparent from the stress singularity (see
Sec. 2.1).

Bonds are broken successively as a crack propagates (see figure 2.2).
Following Griffith, the energy consumed for brittle fracture increases lin-
early with the generated surface or the position of the crack tip (dashed
line in figure 2.2). However, in a simple atomistic picture energy only
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energy

position

Figure 2.2: Energy required for crack propagation (schematic drawing).

is required to break bonds at discrete positions (solid curve in figure
2.2). A somewhat more realistic case is drawn in between in figure 2.2.
Obviously, the arrangement of atoms close to the crack tip and the form
of the interatomic force law (see, e.g., [41]) can influence crack propa-
gation.

Thomson [107] showed that due to the discreteness of the lattice cracks
remain stable even under loads that deviate from the Griffith value
KGriffith. This effect is called lattice-trapping. It also can cause an
anisotropy with respect to the propagation direction on one and the
same cleavage plane. Another consequence is that cleavage does not
necessarily lead to surfaces with lowest energy (see, e.g., [43]).

2.5 Brittleness and ductility

Up to now perfectly brittle materials have been investigated. However,
plastic deformation accompanies and competes with fracture. Whether
a material essentially behaves ductile or brittle depends on the ability
to nucleate and emit dislocations from a crack tip or from other sources.
Dislocations can impede crack motion in three ways: First, they dissi-
pate energy. Secondly, their stress field can shield the forces acting on
a crack tip. Thirdly, they also may blunt a crack tip.

Following Kelly [64], materials are fully brittle if the ratio of the largest
tensile stress to the largest shear stress close to the crack tip is larger



2.5 Brittleness and ductility 23
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Figure 2.3: Possible orientations of a slip plane.

than the ratio of the ideal1 cleavage stress to the ideal1 shear stress. Rice
and Thomson [90] calculated the force on a fully formed blunting dislo-
cation in the presence of a crack. It follows that a straight dislocation
is in unstable equilibrium at a critical distance. A crack is regarded
as stable against dislocation emission if this value is smaller than a
characteristic core cut-off radius. Rice [89] further analyzed dislocation
formation using the Peierls concept. The resistance to dislocation nucle-
ation in this concept is characterized by the so-called unstable stacking
(fault) energy γus.

The orientation of the slip planes also influences the ability to nucleate
and emit dislocations from a crack tip. For isotropic solids under mode
I loading and plane strain conditions inclined planes (see figure 2.3)
experience high shear stress values (see, e.g., [16]).

1The ideal values are estimated theoretical strengths of the materials.
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Chapter 3

Numerical methods

Experiments are the foundation of science. Their results help to in-
terpret and understand fundamental physical principles and laws. Nu-
merical calculations and simulations help to assist, to interpret, and
sometimes even to substitute real experiments. Ab-initio calculations
(see, e.g., [63, 65, 85]) can predict material properties to a high ac-
curacy. However, they are limited to samples with a few hundreds of
atoms. On the other hand, classical molecular dynamics simulations
(see, e.g., [6, 45]) can deal with millions of atoms without problems.
But these then require effective potentials (see section 3.2.1) to mimic
the interactions between the particles.

3.1 Ab-initio calculations

The Hamiltonian Ĥ of the non-relativistic Schrödinger equation for a
many-particle system is given by

Ĥ = Ĥe + Ĥn + Ven , (3.1)

where Ĥe and Ĥn contain the kinetic energies and the Coulomb inter-
actions of the Ne electrons:

Ĥe = K̂e + Ve =

Ne
∑

i=1

p̂2
i

2m
+

1

2

Ne
∑

i=1

Ne
∑

j=1
(j 6=i)

e2

|ri − rj |
(3.2)

and the Nn nuclei with the charge Zie:

Ĥn = K̂n + Vn =

Nn
∑

i=1

P̂2
i

2Mi

+
1

2

Nn
∑

i=1

Nn
∑

j=1
(j 6=i)

ZiZj e2

|Ri − Rj |
. (3.3)

Whereas V̂en determines the interactions between the electrons and the
nuclei:
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Ven = −
Nn
∑

i=1

Ne
∑

j=1

Zi e2

|Ri − rj |
. (3.4)

P̂i and p̂i are the momentum operators of the nuclei and the electrons.
The corresponding positions are Ri and ri. The normalized eigenfunc-
tion Ψ of Ĥ depends on the positions and spins of all electrons and
nuclei. The total energy E of the system then is:

E = 〈Ψ|Ĥ|Ψ〉 . (3.5)

The wave function Ψ0 that minimizes E defines the ground state of the
system.

The mass Mi of an atomic nucleus is at least three orders of magni-
tude bigger than the mass m of an electron. Therefore, the electrons
move much faster than the nuclei. In the adiabatic approximation [14]
the electrons instantaneously follow the nuclei and stay in their ground
state. The energy of this electronic ground state can be determined
with the help of density functional theory [66] for given positions of the
nuclei. In a further approximation the nuclei move like classical parti-
cles. The forces on them then can be calculated with the help of the
Hellmann-Feynman theorem [35].

3.1.1 Density functional theory

Hohenberg, Kohn, and Levy [51, 74] showed that the energy of an in-
teracting electron gas in an external potential is a functional of the
electron density. This functional is minimized by the correct ground-
state electron density n and then equals the ground-state energy. Kohn
and Sham [67] introduced a fictitious system of non-interacting parti-
cles that generate the same electron density as the interacting system.
These Kohn-Sham particles fulfill the Kohn-Sham equations:

{

− ~
2

2m
∇2 + veff(r)

}

ϕi(r) = ǫiϕi(r) . (3.6)

The effective potential veff,
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veff(r) = vext(r) + vH(r) + vxc(r) , (3.7)

is a sum of the external potential vext,

vext(r) = −
Nn
∑

i=1

Zi e2

|Ri − r| , (3.8)

the Hartree potential vH,

vH(r) = e2

∫

n(r′)

|r − r′| d3r′ , (3.9)

and the exchange-correlation potential vxc, which combines all the re-
maining contributions that allow to map the many-particle problem on
the effective one-particle Schrödinger equation 3.6. The electron density
n results from

n(r) =

Ne
∑

i=1

|ϕi(r)|2 . (3.10)

With the self-consistent solution, the ground-state energy now can be
derived from the energy functional. However, the form of the exchange-
correlation potential is still unknown. In the local density approxima-
tion (LDA) [67] the exchange-correlation part is approximated at each
position by a value arising from a homogeneous free-electron gas with
the same density. An extension to this method is the generalized gra-
dient approximation (GGA) (see, e.g., [65] and references therein).

3.1.2 Plane-wave basis

According to Bloch’s theorem a wavefunction ϕl in a periodic external
potential can be written as:

ϕl(r) = ϕjk(r) = eikrujk(r) , (3.11)

where the function ujk has the same periodicity as the lattice. Thus,
this part can be expanded using plane waves with reciprocal lattice
vectors G:
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ϕjk(r) =
∑

G

cjk
G

ei(k+G)r . (3.12)

All sums over occupied one-particle states now are transformed into
sums over k vectors and band indices j in the first Brillouin zone. Due
to the Ne index combinations, the summation can be replaced by an
integration, which in turn can be approximated by a summation over
selected nodes. One method to obtain a representative special set of k
points was invented by Monkhorst and Pack [80].

In general, an infinite basis set is required for the expansion in equa-
tion 3.12. But typically only coefficients cjk

G
with small kinetic energy

~
2

2m
|k + G|2 are important. Hence, the plane-wave basis set can be

truncated at a finite cutoff energy.

3.1.3 Valence and core electrons

The physical properties of bulk solids often are determined to a greater
extent by the valence electrons than by the core electrons. In the frozen-
core approximation, it may further be assumed that the localized core
orbitals are independent of the chemical environment [112]. In a region
occupied by the core electrons the valence wave functions show rapid
oscillations. This is due to the strong ionic potential and due to the or-
thogonality constraints, which arise from the exclusion principle. Thus,
a very large number of plane waves would be required to expand both
the tightly bound core orbitals and the oscillating valence electrons.
Several methods have been devised to circumvent this problem.

In the pseudopotential (PP) approach [46, norm-conserving] [110, ul-
trasoft] the core electrons and the ionic potential are replaced within
a certain region by a pseudopotential. The corresponding pseudo wave
functions agree with the true wave functions outside this region. Inside,
they can be very smooth. In the linear all-electron methods [8, LAPW
(linear augmented-plane-wave) / LMTO (linear muffin-tin orbital)], the
wavefunction is expanded in a variable basis set, which is atomic-like
in the vicinity of the atoms and more general elsewhere. The projector
augmented-wave (PAW) concept [12, 69] combines ideas from the PP
and the LAPW methods.
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3.2 Molecular dynamics simulations

The Hamiltonian for a configuration of N classical particles shall be
given by:

H(P,R) = K(P) + U(R) , (3.13)

where R = (R1, ...,RN )T and P = (P1, ...,PN )T contain the position
vectors Ri and the momenta Pi of all particles. U is the potential
energy and K the kinetic energy:

K(P) =

N
∑

i=1

P2
i

2Mi

. (3.14)

The equations of motion in the Hamiltonian form then become:

Ṙi =
Pi

Mi

, Ṗi = −∇Ri
U = Fi . (3.15)

Fi is the force on particle i with the mass Mi. Time is discretized to
numerically integrate these equations. The Taylor expansions of the
coordinates and velocities Vi help to calculate these values at a later
time. One of the various finite difference methods used is the half-step
leap-frog scheme (see, e.g., [6]). The trajectories of the particles so can
be approximated in a stepwise manner by applying a sufficiently small
time step.

3.2.1 Effective potentials

The potential energy may be broken up into contributions from individ-
ual particles, pairs, triplets, etcetera. If only the pair terms are taken
into account, the potential energy can be written as:

U = U2 =

N
∑

i,j<i

φkikj
(rij) . (3.16)

The pair potential φkikj
may then depend only on the distance rij =

|Ri−Rj| between the particles i and j. The species is denoted by ki. A
more sophisticated approach for metals is the embedded atom method
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(EAM) [25, 26]. Following the EAM formalism an embedding term is
added to the potential energy:

UEAM = U2 +

N
∑

i

Fki
(ρh

i ) , ρh
i =

N
∑

j 6=i

P at
kj

(rij) . (3.17)

The embedding function Fki
depends on the host density ρh

i of atom i,
which is a sum over the transfer functions P at

kj
of the neighboring atoms

j. In a physical interpretation, the additional terms arise from embed-
ding the host particle in a sea of “electrons” provided by the neighboring
atoms. Thus, many-body interactions without explicit angular depen-
dences are included. It is often stated that the pair term represents
the core repulsion. However, because of gauge degrees of freedom, the
“core” and “electronic” contributions are not uniquely defined. In an
extended EAM scheme [10, 116] further embedding functions Mki

are
included, which depend on the sum qh

i of the squared transfer functions:

UeEAM = UEAM +

N
∑

i

Mki
(qh

i ) , qh
i =

N
∑

j 6=i

(

P at
kj

(rij)
)2

. (3.18)

The pair potentials, the embedding functions, and the transfer func-
tions determine the interactions and thus the chosen material. Simple
model potentials can help to get insight into fundamental mechanisms
without being specific to a single material. Often, they already resem-
ble well essential features of real physical systems. In a further step the
potential functions can be fitted to properties known from experiment
or from ab-initio calculations. Ercolessi and Adams [33] proposed to
generate potentials that reproduce ab-initio forces of many configura-
tions. Such effective potentials then help to acquire material properties
quantitatively.

For large distances rij the corresponding potential functions vanish.
Thus, they can be set to zero at and beyond a finite cut-off radius
rcut. The functions should be continuous and continuously differentiable
everywhere. Dividing the simulation box into cells with sufficient size,
it can be guaranteed that a particle only interacts with other particles
in the same cell or in the neighboring 26 cells [88].
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3.2.2 Boundaries

In today’s computer simulations a high percentage of the atoms is lo-
cated at the sample boundaries. There are three main methods to
handle the borders of the simulation box:� Free boundaries

Atoms at the borders possess fewer nearest neighbors and thus
have a higher potential energy. Fluctuations may cause atoms at
the boundaries to evaporate.� Fixed boundaries
The motion of atoms is restricted totally or only in some direc-
tions. If atoms inside a cut-off distance from the borders are fixed,
the other atoms are not directly influenced by the boundaries.� Periodic boundaries
An infinitely extended sample without free surfaces can be real-
ized if the simulation box is extended periodically in each direc-
tion. An atom leaving the box reenters through the opposite side.
Ab-initio calculations with plane-wave basis make use of periodic
boundaries. Defects are then simulated using supercells (see, e.g.,
[85]).

3.2.3 Statistical mechanics

In thermodynamic equilibrium, a system is characterized by a few macro-
scopic variables like temperature or pressure. The values obtained by
equilibrium molecular dynamics simulations are microscopic quantities.
From these the corresponding macroscopic variables can be derived with
the help of statistical mechanics. In an ergodic system the average over
the statistical ensemble can be replaced by the time average. The tem-
perature T and the pressure P then can be written as follows:

T =
2 < K(P) >

3NkB
, P =

NkBT+ < V >

V
. (3.19)

V is the volume, kB is the Boltzmann constant. The brackets denote
time averages. The internal virial V is given by:
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V = −1

3

N
∑

i=1

Ri · ∇Ri
U . (3.20)

Momentary values of temperature and pressure may be defined accord-
ingly:

Tmom =
2K(P)

3NkB
, Pmom =

NkBT + V
V

. (3.21)

3.2.4 Ensembles and relaxators

Macroscopic constraints define different ensembles. In computer simu-
lations they can be realized as follows:� The microcanonical ensemble

The number of particles N , the volume V , and the energy E
are conserved for the integration algorithm defined in section 3.2.
Thus, an (N, V, E)-ensemble is realized.� The canonical ensemble
To arrive at the (N, V, T )-ensemble a thermostat has to be in-
cluded in the equations of motion [7, 54, 55, 83]:

Ṙi =
Pi

Mi

, Ṗi = Fi − ξPi . (3.22)

Here ξ should cause the momentary temperature Tmom to ap-
proach T . This is achieved if

ξ̇ ∝ (Tmom − T ) . (3.23)� The isothermal-isobaric ensemble
For the (N, P, T )-ensemble a barostat has to be introduced [7, 83]
in addition to the thermostat. For this purpose, scaled coordinates
are inserted in the equations of motion:

Ṙi =
Pi

Mi

+ ζRi , Ṗi = Fi − (ζ̇ + ξ)Pi . (3.24)
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The pressure P is maintained if

ζ̇ ∝ V

T
(Pmom − P ) . (3.25)

The following relaxators help to achieve a final state with minimal po-
tential energy. This is realized by a modification of the microcanonical
ensemble.� Micro convergence (MIK)

Before each integration step, it is checked for each atom i if the
scalar product Pi · Fi is smaller than zero. If so, its momentum
is set to zero: Pi = 0. The potential energy so is successively
removed from the system unless a local minimum is obtained.� Global convergence (GLOK)
The global potential energy minimum can be found if now P · F
(as defined in section 3.2) is considered instead of Pi ·Fi.

3.2.5 Fracture studies

A propagating crack emits phonons. These can be reflected at the
sample boundaries and then disturb the motion of the crack. Therefore,
Holian and Ravelo [52] proposed a method to absorb these sound waves.
The geometry of the sample is shown in figure 3.1. The side lengths of
the specimen are Lx, Ly, and Lz. Inside an elliptical cylinder with semi-
major axis lx, standard Newtonian mechanics applies. The cylinder is
centered at (x0, y0)

T in the x-y-plane. Approaching the boundaries, the
damping is increased by the elliptical stadium function [44, 118]

d(x, y) = min






1, max






0,

(

x−x0

Lx

)2

+
(

y−y0

Ly

)2

−
(

lx
Lx

)2

1
4 −

(

lx
Lx

)2












. (3.26)

The strength of the damping

η = 2ωE

(

1 − T0

τ

)

d(x, y) (3.27)
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Figure 3.1: Sketch of the simulation set-up.

ensures that

τ =

∑N

i=1 d(x, y)MiV
2
i

3kB

∑N

i=1 d(x, y)
(3.28)

reaches a given temperature T0. The equations of motion are

Ṙi =
Pi

Mi

, Ṗi = Fi − ηPi . (3.29)

An atom in the mean force field of its neighbors vibrates in harmonic
approximation with the Einstein frequency

ωE =

√

< F2
i >

M2
i < V2

i >
. (3.30)

Sample preparation

A sample form is chosen that makes it possible to follow the dynamics
of the running crack for a long time. For this purpose, a strip geometry
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(see figure 3.1) is used to model crack propagation with constant energy
release rate [44] (see also section 2.1). The samples consist of about 4 to
5 million atoms. The length of the strips Lx is set to about 0.1 µm. The
dimensions of the samples are approximately Lx × Lx

3 × Lx

6 . Periodic
boundary conditions are applied in the direction parallel to the crack
front. For the other directions, all atoms in the outermost boundary
layers of width rcut are held fixed. An atomically sharp seed crack is
inserted in the relaxed samples at a plane of lowest surface energy from
one side to about Lx/4. The system is uniaxially strained perpendic-
ular to the crack plane up to the Griffith load (see section 2.2) and is
relaxed to obtain the displacement field of a stable crack at zero temper-
ature. As we want to explore dynamic fracture without strong thermal
fluctuations, we apply a temperature1 of about 10−4 of the melting
temperature to the configurations with2 and without the relaxed crack.
From the resulting configurations we obtain an averaged displacement
field for this temperature. The mode I crack (see figure 2.1) then is
further loaded by linear scaling of the displacement field. The response
of the system is monitored using the above equations. The sound waves
emitted by the propagating crack so are damped away outside of an
elliptical stadium to prevent reflections.

Visualization

Due to the large number of atoms required for the study of dynamic frac-
ture in three-dimensional systems, it is not feasible to always write out
the positions of all particles during the simulation. To obtain a first in-
sight, only the fracture surfaces are of interest. These can be visualized
in periodic crystals by plotting atoms whose potential energy exceeds
a certain threshold3. Alternatively, particles can be displayed, which
exhibit a coordination number that is smaller than a certain threshold
(see figure 3.2). As atoms near defects have a significantly lower coor-
dination number, it becomes possible to visualize fracture surfaces and
dislocation cores. With this method, the number of atoms to write out
or to display can be reduced by three orders of magnitude. From the

1Equations (3.27)–(3.29) with d ≡ 1 are used.
2Subsequently, a simulation with the correct stadium function d is run.
3However, this technique is not applicable for quasicrystals. Because of the largely

varying environments, the potential energy varies significantly from atom to atom,
even for atoms of the same type in a defect-free sample.
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Figure 3.2: Atoms with unusual coordination number form the fracture
surfaces. All other atoms are shown in faded colors.

x

y

Figure 3.3: Geometrical scanning of the fracture surfaces.

obtained data, it is also possible to evaluate the velocity of the crack.
The morphology of the fracture planes is analyzed via geometrical scan-
ning4 (see figure 3.3) of the atoms forming the surfaces. The roughness
can be visualized by color coding the height of the surface in a view
normal to the fracture plane.

Abbreviations

To characterize the applied load, the reduced stress intensity factor k is
defined as the ratio of the stress intensity factor K to the Griffith value
KGriffith (see sections 2.1 and 2.2):

k =
K

KGriffith
. (3.31)

4The scanning is performed with a Y atom at equidistant points separated by
0.5Å.



3.2 Molecular dynamics simulations 37

To identify the orientations of the samples the notation

yx (3.32)

is introduced. Here y is an axis perpendicular to the cleavage plane
and x is an axis in the crack propagation direction (see figure 3.1). An
f -fold axis is denoted by the number f .
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Chapter 4

Results and discussion

Many fracture simulations are performed with simplified interaction
laws and model systems (see, e.g., [1]). This approach helps to un-
derstand elementary processes of crack propagation and is reasonable
when qualitative mechanisms are the center of interest. Furthermore,
most of the available realistic effective potentials are fitted to simple
monoatomic systems and their equilibrium properties. For complex
metallic alloys (CMAs) reliable potentials are practically inexistent.

The effect of the structure on fracture behavior is investigated with
model potentials in section 4.1. Two extreme cases of CMAs are stud-
ied: In a model quasicrystal the structure is determined by clusters of
atoms, whereas the model C15 Friauf-Laves phase is a simple periodic
stacking of a unit cell (see chapter 1).

For the main part of this work, a specific material is chosen in section
4.2. Effective potential functions are generated by matching them to
ab-initio data from C15 NbCr2. The interactions are used for fracture
studies on differently oriented samples under diverse loads.

4.1 Model systems

Lennard-Jones pair potentials (see figure 4.1) are chosen for the interac-
tions of the model systems. These potentials keep the icosahedral binary
model stable even under strong mechanical deformation or irradiation1

and have been used in many simulations of dislocation motion [99] or
even shock waves [97]. Very similar interactions have shown to stabi-
lize the icosahedral atomic structure in a simpler model [98]. Because
of the close structural relationship between the model quasicrystal and
the Friauf-Laves phase (see chapter 1) the potentials can be applied in
both cases.

1Point defects are introduced.
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Figure 4.1: Lennard-Jones pair potentials.

The minima of the potentials for interactions between atoms of the
same type are set to ǫ0, whereas the minimum of the potential for the
interactions between atoms of different kind is set to 2ǫ0. The shortest
distance between two X atoms (see chapter 1 and figure 1.1) is denoted
r0. All masses are set to m0. The time is then measured in units of
t0 = r0

√

m0/ǫ0.

Using appropriate model potentials, the overall qualitative behavior of
the structures should be represented well. However, results certainly will
differ quantitatively for diverse materials (interactions), even for com-
pounds with the same crystal lattice structure. Especially, the lattice-
trapping effect (see section 2.4) strongly depends on the applied force
law.

All molecular dynamics simulations were carried out with the ITAP
molecular dynamics program IMD [102, 119]. It performs well on a large
variety of hardware, including single and dual processor workstations
and massively parallel supercomputers.
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4.1.1 Model quasicrystal

Fundamental results on the fracture behavior of the binary model qua-
sicrystal were obtained during the diploma thesis of the present author
[91]. Major findings from this work and some newer aspects [92, 94] are
reported here and compared to simulation results on the model Friauf-
Laves phase [94]. The goal of the sections 4.1.1 and 4.1.2 is to provide
a qualitative insight into the fracture behavior of model CMAs with
different structural complexity.

The model quasicrystal fails by brittle fracture without any crack tip
plasticity irrespective of the orientation of the fracture plane. For loads
below k = 1.2 the crack propagates at most a few atomic distances, and
then stops. Thus, the energy required for initiating crack propagation is
about 1.4 times the value predicted by the Griffith criterion (see section
2.1). This behavior can be assigned to the lattice-trapping effect (see
section 2.4).

Simulated fracture surfaces (see section 3.2.5) of the model quasicrystal
are displayed in figure 4.2. The average height is shown in gray, heights
above +2r0 are shown in white and heights below −2r0 are shown in
black. The crack propagation direction is from the left to the right.
The surfaces of the seed cracks2 are flat, as can be seen from the homo-
geneous regions on the left. The propagating crack, however, generates
surfaces with pronounced patterns of regions with different heights. The
peak-to-valley roughness3 is about 4r0 which corresponds to the diam-
eter of the Bergman-type clusters (see figure 1.1).

Fracture surfaces perpendicular to a fivefold axis are shown in the mid-
dle and bottom of figure 4.2. The initial seed cracks are inserted at the
same cleavage plane. Thus, their surface energies are identical. How-
ever, the in-plane crack propagation directions differ4. As can be seen
in figure 4.2 the corresponding fracture surfaces also vary. For the orien-
tation 5p2 ledges are produced, while no ledges form for the orientation
52. These ledges and the observed markings (see also figure 4.2, top) in

2These have been chosen as planes of low surface energy.
3for the surfaces without ledges
4Pseudo-twofold (p2) axes are perpendicular to fivefold (5) and twofold (2) axes.
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Figure 4.2: Height profiles of fracture surfaces of the model quasicrystal
[92]. Load: k = 1.3, orientation: 22 (top), 52 (middle), 5p2 (bottom).

the fracture surfaces can be related to lines along which the clusters are
located. The associated angles are determined by the symmetry and
thus reveal the orientation of the sample.

Figure 4.3 displays from bottom up: The density of the cluster centers,
the surface energy, a cluster in the proper length scale, the gray coding
of the heights (for figure 4.2, middle), and the position of the seed crack
(dashed vertical line). The figure shows that the seed crack is situated
close to a peak of the cluster density. Obviously, it is not possible to
circumvent all clusters by a planar cut. The gray coding is adjusted
to the average height of the fracture surfaces. Thus, it is evident from
figure 4.3 and figure 4.2 that the crack deviates for the orientation 52
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from the low energy cleavage plane of the seed crack to a parallel plane5.
Samples cut flat at this height show a slightly higher surface energy6

(see figure 4.3). However, the number of cluster intersections is reduced
dramatically7. This is visualized in figure 4.4. Only the smaller parts of
those clusters are displayed that were divided by the crack. Obviously,
the dynamic crack (right) intersects fewer clusters than the low energy
seed crack (left). Thus, there seems to be an influence of the clusters
on the crack path. Furthermore, dynamic cracks propagating in five-
fold planes with few cluster intersections are faster than those in twofold
planes, where the absolute number of cluster intersections is higher [92].

In conclusion, the atomistic structure of the samples strongly influences
fracture behavior. The plane structure of the quasicrystal (see sec-
tion 1.1) leads to fracture surfaces that show constant average heights.
The distribution of the clusters seems to control the crack speed, the
anisotropy with respect to the in-plane propagation direction, the sur-
face roughness, the observed patterns in the fracture surfaces, and the
fracture path. Less clusters are intersected by the propagating crack
than by the flat low energy cleavage planes. The cracks sometimes even
deviate to parallel planes to reduce the number of cluster intersections
in spite of the higher energy required. The clusters, too, are a reason
why the positions of the cleavage planes cannot be predicted by a simple
energy criterion.

Figure 4.5 compares a geometrically scanned fracture surface to an
STM-image of Ebert et al. [29, 30]. In the left picture, the atomically
sharp seed crack can be seen on the top, whereas below this area the
simulated fracture surface appears. The orientation of the sample is 22,
the load was k = 1.3. The right picture shows an STM-image of icosahe-

5To assure that the dynamic crack is departing from the initial plane not in a
random manner, the seed crack was built in at the position color coded as medium
gray in figure 4.3. The resulting fracture surface had a similar roughness, but the
crack did not change to a parallel plane.

6However, for low loads and low roughness the actual fracture surfaces of the
dynamic cracks have about 5-15% higher energies than those of the low energy seed
cracks.

7More detailed analyses for different orientations validate this statement. For the
orientations perpendicular to twofold and fivefold axes at k = 1.3 the ratio of clusters
cut by the dynamic crack to clusters intersected by flat cuts is approximately 0.6.
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Figure 4.3: Density of cluster centers and surface energy for the orientation
52 [92]. The corresponding fracture surface is shown in figure 4.2, middle.

Figure 4.4: Clusters cut by a 52 crack in a model quasicrystal [94].
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Figure 4.5: Fracture surfaces of quasicrystals perpendicular to twofold axes
[92]. Left: simulation, right: experiment (adopted from [30]).

dral Al-Mn-Pd cleaved in ultrahigh vacuum. As 20 r0 is approximately
5 nm, the surfaces are displayed at the same length scale. Al-Mn-Pd
has a more complicated atomic structure than the icosahedral binary
model and the clusters are not Bergman-type. However, the size of
the clusters, the icosahedral symmetry, and a distinct plane structure
are common features. Thus, qualitative aspects are reproduced well,
namely the size and shape of the patterns and the appearance of dis-
tinct angles on the fracture surfaces. As it is possible to correlate the
observed structures to the clusters in our model, the similarities cor-
roborate the assumption that the clusters are also responsible for the
globular structures observed in experiment.

Nevertheless, there is still an ongoing discussion whether the clusters
are merely geometrical entities or also responsible for physical proper-
ties. The debate has been fueled by a recent article of Ponson et al.
[86]. They measured the roughness exponent of the fracture surfaces
of Ebert et al. and questioned a signature of the clusters. However,
from height-height correlation functions of the simulated fracture sur-
faces and from a comparison to the experimental ones, one can conclude
that the results of Ponson et al. cannot negate the role of the clusters
in the fracture process [93]. Quite the contrary, the cluster structure
of the quasicrystals can be used to interpret details of the correlation
function. A profound discussion on this topic is given in the appendix.
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4.1.2 Model Friauf-Laves phase

A fundamental building unit of the model quasicrystal – the prolate
rhombohedron – in a slightly deformed way forms the cubic C15 Friauf-
Laves phase by periodic arrangement (see chapter 1). No Bergman-
type clusters are present in this structure. Brittle fracture is observed
using the Lennard-Jones model interactions. The samples already fail
at k = 1.1. This shows that the lattice-trapping effect does not only
depend on the force law but also on the structure.

A 11121̄1̄ seed crack (see figure 4.6, top) results in perfect brittle cleavage
fracture for k = 1.1 (see figure 4.6, bottom). The surfaces are smooth.
However, the fracture surfaces for 011100 and 010101 cracks at k = 1.1
are rough on an atomic scale. The fracture behavior is similar for the
two cases. A time sequence for a propagating 011100 crack is illustrated
in figure 4.7. If the seed crack there would be continued, the red lines
would terminate the upper and lower halves of the sample. However,
the dynamic crack instead takes a zig-zag like route. Entire atomic
rows alternately move upwards and downwards. This leads to rather
symmetric upper and lower fracture surfaces, the creation of which also
requires a comparable amount of energy. These surfaces are favored,
even though a planar cut would lead to surfaces with lower total en-
ergy8. Thus, the actual fracture path again cannot be predicted by a
simple energy criterion. A similar behavior has been observed in B2
NiAl (see, e.g., [42]). The increased load for a crack to propagate also
results in a surplus of energy. Thus, fracture surfaces are not necessarily
those of lowest energy.

If the load is increased further, the fracture surfaces exhibit a more
pronounced roughness. Additionally, the height profiles are no longer
strictly periodical. This is illustrated in figure 4.8. On the left a 010101

fracture surface is displayed for k = 1.3, whereas on the right the load
was k = 1.1. The color coding has been adjusted to visualize the differ-
ent atomic planes.

Sections of typical fracture surfaces of the icosahedral model quasicrys-

8The increase in energy is about 6% for the 010101 crack and about 1% for the
011100 crack.
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Figure 4.6: A 11121̄1̄ crack in the C15 model Friauf-Laves phase [94].

tal and of the C15 model Friauf-Laves phase are compared in figure
4.9. The corresponding loads have been chosen to assure crack prop-
agation. The side length of the squares is about 14 nm. The color
coding in the left and middle picture has been adjusted to the diameter
of the Bergman-type cluster (from blue to red). The fracture surfaces
of the C15 Friauf-Laves phase lack any roughness when they are color
coded like the quasicrystal (figure 4.9, middle). After adjusting the
color coding, atomic rows become visible (figure 4.9, right). Thus, frac-
ture surfaces of the quasicrystal are rough on the cluster scale, whereas
those of the Friauf-Laves phase only are rough on an atomic scale.

In conclusion, the simulation results of the two extreme cases of model
CMAs indicate that the basic building units of the structures also gov-
ern their fracture behavior. Atoms in the Friauf-Laves phase play a
comparable role to the clusters in the quasicrystal – they determine
the overall roughness of the fracture surfaces. The fracture path in the
model materials is strongly influenced by the arrangement of atoms and
clusters near the crack front. Therefore, not only the initial cleavage
plane but also the crack propagation direction can have an influence
on fracture behavior. The discrete nature of matter manifests itself in
the lattice-trapping effect. Loads above the Griffith load are needed to
allow crack propagation. This also causes excess energy. Thus, fracture
surfaces are not implicitly those of lowest energy or lowest roughness.
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a) b)

c) d)

Figure 4.7: Fracture of the C15 model Friauf-Laves phase [94]: Atomic
configurations in the vicinity of a propagating 011100 crack.

Figure 4.8: 010101 fracture surfaces of the C15 model Friauf-Laves phase.
Left: k = 1.3, right: k = 1.1.
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Figure 4.9: Fracture surfaces of the model quasicrystal (left; orientation 22,
k = 1.3) and of the C15 model Friauf-Laves phase (middle, right; orientation
010101, k = 1.1) [94].

4.2 C15 NbCr2

The findings from the model systems allow a qualitative physical un-
derstanding of fracture behavior in CMAs. In materials science and
engineering, however, quantitative results for specific materials often
are the center of interest. Thus, this chapter will focus on a particular
Friauf-Laves phase, namely C15 NbCr2. Quantum mechanical calcula-
tions are performed on this compound to obtain reference data. Inter-
atomic potentials are matched to reproduce these ab-initio values. The
interactions are then applied to an extensive molecular dynamics study
on crack propagation in NbCr2.

A possible relevance for technical applications and the compatibility
with EAM potentials guided the search for a specific material. Anoma-
lous shear moduli and strong electron-phonon coupling e.g. exclude C15
HfV2 and ZrV2 [22]. Literature search lead to the choice of NbCr2.
Although the interatomic interactions are difficult to describe for the
body-centered cubic (bcc) metals Nb and Cr [3, 5, 11, 34], these ele-
ments seem favorable for the simulation of the C15 Friauf-Laves phase
because of the rather simple electronic [23, 84] and spatially close-packed
structure of NbCr2. Here, one has to point out that the potentials are
matched for the Friauf-Laves phase and not for the elemental metals.
Thus, the generated potentials may not be transferable to the elements.
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4.2.1 Effective potentials

In a first step, forces, total energies, and stresses for diverse represen-
tative configurations are determined by ab-initio calculations. Density
functional theory (DFT) calculations are performed within the general-
ized gradient approximation (GGA) for the exchange-correlation energy
using the Vienna ab-initio simulation package VASP [68, 69, 122]. For
Nb and Cr projector augmented-wave (PAW) potentials are applied,
which treat the semi-core p states as valence. The maximal energy cut-
off is increased by 30%. The samples consist of 24 to 144 atoms. The
k-mesh is automatically generated using the Monkhorst-Pack scheme
with up to 5 × 5 × 5 points. The 50 reference configurations include
compressed, elongated, and sheared samples; vacancies are introduced
and atoms are exchanged. Especially, calculations for free surfaces are
carried out. To overcome the number of limited environments in ordered
structures, samples at higher temperatures are used to obtain sufficient
information on forces at various interaction distances. Furthermore, to
get some sort of cohesion energy, the energies of single atoms in a tri-
clinic box are calculated.

In the next step, the ab-initio data is used as input for the program
potfit [17–19, 121], which has been developed by P. Brommer and F.
Gähler. Following the force-matching method [33], the parameters of an
effective potential are adjusted to optimally reproduce the ab-initio ref-
erence values. The program uses conjugate gradient [87] and simulated
annealing [24] techniques within a least-squares method. The EAM po-
tential functions are represented by splines. The number of sampling
points used for the pair and transfer functions is typically about 15,
the corresponding value for the embedding functions is about 10. To
assure that the obtained potentials are defined even for extreme cases,
they are manually extended: The pair potential for short distances with
a term proportional to r−12

ij , the transfer functions for short distances
and the embedding functions for high densities with terms linear in rij

and ρh
i . The thus obtained potential functions for NbCr2 are shown in

figure 4.10. From now on the abbreviation “fm-EAM” is used for these
force-matched interactions.

Additionally, analytical EAM potentials for the bcc metals Nb and Cr
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Figure 4.10: Force-matched EAM potential functions for NbCr2.

are taken from the literature [10, 116]. These interactions will in the fol-
lowing be termed “e-EAM” and are shown in figure 4.11. The extended
EAM scheme (see equation 3.18) allows e.g. to reproduce the negative
Cauchy pressure PC = (C12 − C44)/2 of Cr. However, the peculiar elas-
tic properties of Cr already change, when about 5 at. % V is added [5].
Thus, simulations on NbCr2 with the e-EAM interactions also probe if
potentials fitted to properties of elemental metals give reasonable results
for compounds.

4.2.2 Validation of the potentials

The fm-EAM potentials have been fitted to reproduce forces, total en-
ergies, and stresses. Thus, the evaluation of other properties already
tests the validity and transferability of the interactions.
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Figure 4.11: Analytical EAM potential functions for Nb-Nb, Cr-Cr, and
Nb-Cr interactions [10, 116].

Lattice constant

The lattice constant alattice of NbCr2 is derived by scaling the infinitely
repeated unit cell, such that the pressure vanishes and the potential
energy reaches its minimum. For the fm-EAM interactions alattice is
6.94 Å, the e-EAM potentials give 6.79 Å. Ab-initio calculations with
VASP result in 6.97 Å. Calculations by Hong et al. [53] and Mayer et
al. [79] yield values between 6.82 Å and 6.92 Å. The lattice parameter
measured by experiment is 6.99 Å [105]. Thus, all values are very similar
(see also table 4.1).

Elastic properties

The elastic constants are deduced from three independent lattice distor-
tions as described in Hong et al. [53]. The obtained values are C11 = 300
GPa, C12 = 181 GPa, and C44 = 55 GPa for the fm-EAM potentials,
whereas they are C11 = 558 GPa, C12 = 259 GPa, and C44 = 102 GPa
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for the e-EAM potentials. Thus, the values obtained for the e-EAM
potentials are noticeably larger. The EAM values are compared with
ab-initio and experimental data in table 4.1. The three ab-initio results
presented there (columns VASP, Hong et al. [53], and Mayer et al. [79])
are in good agreement: C11 lies between 309 and 322 GPa, C12 between
185 and 216 GPa, and C44 between 69 and 83 GPa. The deviations can
be assigned to different methods and approximations in the ab-initio cal-
culations and the determinations of the elastic constants. A comparison
to the values for the fm-EAM interactions indicates that the ab-initio
data is resembled very well. If the VASP values are taken as reference,
the fm-EAM results differ by about -3% for C11, -9% for C12, and -20%
for C44. The deviations between the different ab-initio calculations have
the same order of magnitude. Thus, the fm-EAM potentials correctly
describe the elastic constants, whereas the e-EAM potentials overesti-
mate them (with VASP as reference: +81% (C11), +31% (C12), +48%
(C44)). This behavior can be attributed to a limited transferability of
the e-EAM potentials, which have been fitted to the elastic properties of
the bcc elemental metals. The bulk, the Young’s, and the shear moduli
are calculated for all methods from the elastic constants and are shown
together with experimental values in table 4.1. Obviously, experimental
data confirm the calculations.

Elastic properties at large strains may also play a significant role for
the simulation of fracture. To investigate this behavior we scale the
coordinates of the atoms in [010] direction by 1 + β. The positions are
kept fixed and the stresses are calculated. So, a stress-strain relation-
ship for the perfect crystal can be obtained. This procedure is rather
artificial as the atoms would move and relax in a molecular dynamics
simulation. However, it has been shown by Abraham [2] that e.g. the
instability onset of brittle fracture is related to the secant modulus at
the stability limit. Thus, the maximum stress and the corresponding
strain should be represented well. In figure 4.12 the stress-strain behav-
ior for the EAM potentials and for VASP calculations are shown. It is
evident that the fm-EAM potentials reproduce the point of maximum
stress well, whereas the e-EAM potentials underestimate it (see arrows
in figure 4.12). For small strains it is again obvious that the e-EAM
potentials overestimate the elastic constants. In contrary, the fm-EAM
stresses coincide with the ab-initio values up to about 15% strain. How-
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Figure 4.12: Stress-strain diagram [95].

ever, it is also apparent from the figure that the e-EAM potentials result
in a smoother curve than the fm-EAM potentials. This is due to the fact
that the atoms are not allowed to relax, due to the analytical expres-
sions used for the e-EAM potentials, and due to their shorter interaction
range. Increasing this range can help e.g. to distinguish systems with
different stackings of layers (see section 1.2). Potentials with additional
features in their long-range part also can help to stabilize structures.
For example, the simple pairwise Dzugutov potential [28] is able to favor
bcc [96] over close-packed structures like fcc. This is achieved by an ad-
ditional maximum in the potentials at a larger distance. An advantage
of the force-matching method is that one is able to define a reasonable
interaction range. Potentials that are essentially zero after a certain
distance may be truncated. The long-range part of the potentials, how-
ever, will also alter e.g. stress-strain curves. Thus, that these are a bit
wavy for the fm-EAM potentials may be seen as a direct consequence
of trying to describe accurately both equilibrium properties as well as
the behavior at e.g. large strains or high temperatures.

Melting temperature

The fracture simulations are performed at low temperature (see section
3.2.5). However, the region close to the crack tip can get very hot.
Thus, the melting temperature at vanishing pressure should not be too
low. Determining Tmelt with atomistic simulations may lead to some
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difficulties (see, e.g., [37, 62, 81]). If no free surfaces are present, the
nucleation in the melting process is hindered. For monoatomic bulk
Al it was reported [81] that the solid phase could be heated to tem-
peratures 500 K above the melting temperature. Furthermore, NbCr2
transforms from a C15 to a C14 structure (see, e.g., [105]) before melting
at kBTmelt = 0.176 eV (see table 4.1). It is questionable if EAM poten-
tials are capable of describing this behavior satisfactorily. Anyway, the
limited time scale of molecular dynamics simulations could impede the
occurrence of such a transformation. By gradually and slowly increas-
ing the temperature of a bulk sample in NPT -simulations, an upper
bound for Tmelt can be obtained. A distinct jump in the volume and
in the mean square displacements indicates the melting of the sample.
The obtained values (see table 4.1) seem reasonable for both e-EAM
and fm-EAM potentials. However, the value for the e-EAM potential
is already a bit too low (0.17 eV) and that for the fm-EAM poten-
tials (0.24 eV) seems too high. The melting temperature can also be
determined with the help of two-phase systems. There, a solid-liquid
interface exists, so that some of the above mentioned problems can be
circumvented. To evaluate the melting temperature of such a system, a
periodically repeated cubic box is prepared. A central ball consists of
the solid C15 Friauf-Laves phase and the rest is filled with the molten
sample. Various NPT -simulations at constant temperatures near the
melting temperature and at zero pressure are performed. If the central
region totally melts, the temperature is above the melting temperature.
The observation and simulation time has been limited to a maximum of
30 ns. The samples contain about 24 000 atoms. The obtained values
for the melting temperature are given in table 4.1. With kBTmelt = 0.17
eV the experimental data is resembled very well by the fm-EAM po-
tentials, whereas the value for the e-EAM potentials (0.10 eV) is too
low.

Free surfaces

A moving mode I crack generates free surfaces. Following Griffith (see
section 2.2), potential cleavage planes should be those of low surface
energy. To determine such planes for the EAM potentials, we relax
a specimen and split it into two parts. Subsequently, the two regions
are shifted rigidly apart. The mean surface energy γ̄ of the two gener-
ated free surfaces then is calculated from the energy difference of the
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Table 4.1: Results obtained for the fm-EAM and the e-EAM interactions, ab-initio and experimental data for
bulk C15 NbCr2 [95]. B is the bulk modulus. V and R denote Voigt and Reuss averages of Young’s modulus E

and the shear modulus G; Hill values are given where only one number appears.

fm-EAM e-EAM VASP Hong et al. Mayer et al. exp.
[53] [79] [21, 105]

alattice [Å] 6.94 6.79 6.97 6.82 6.82 - 6.92 6.99
C11 [GPa] 300 558 309 316 316 - 322
C12 [GPa] 181 259 198 216 185 - 216
C44 [GPa] 55 102 69 71 69 - 83
B [GPa] 221 359 235 249 229 229.4

EV/R [GPa] 157/157 326/316 175/173 173/168 205 214.1
GV/R [GPa] 57/57 121/117 64/63 62/61 76 79.6
kBTmelt [eV] < 0.24 < 0.17 0.176

0.17 0.10
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Table 4.2: Surface energies (in J/m2) for the fm-EAM and the e-EAM
potentials.

surface fm-EAM e-EAM
unrelaxed / relaxed unrelaxed / relaxed

010 3.01 / 2.90 2.35 / 2.12
011 2.93 / 2.81 2.21 / 1.84
111 2.80 / 2.75 2.18 / 1.97

3.31 / 3.08 2.76 / 2.42

artificially cleaved and the undisturbed specimen. The corresponding
results for (010), (011), and (111) surfaces are given in table 4.2. The
calculations are repeated for free surfaces that are allowed to relax9.
The “unrelaxed” surface energies for the e-EAM potentials lie between
2.18 and 2.76 J/m

2
, the “relaxed” values range from 1.84 to 2.42 J/m

2
.

The fm-EAM potentials result in 2.80–3.31 J/m
2

for the unrelaxed case

and give 2.75–3.08 J/m
2

for the relaxed case. Although the absolute
values differ for the e-EAM and the fm-EAM interactions, there are
common features as can be seen from figures 4.13 and 4.14. There,
the unrelaxed surface energies are given for different cutting positions
y (defined as in figures 3.1 and 3.2). As can be seen directly, γ̄ does
not depend on y for the (010) and (011) surfaces. In contrary, γ̄ for the
(111) surfaces takes two different values depending on y. The smaller
value γ̄I

111 is realized if the specimen is cut between a kagome and a tri-
angular net (see section 1.2). For both EAM potentials the unrelaxed
surface energies are ordered in the same way: γ̄I

111 < γ̄011 < γ̄010 < γ̄II
111.

Ab-initio values of the surface energies have been computed in collab-
oration with Ali Al-Zu’bi. He performed his master’s thesis[4] on this
topic and was supervised by Prof. Dr. C. Elsässer. The calculations
have been carried out with the mixed-basis pseudopotential code MBPP
[31, 50, 77, 120] using the local density approximation (LDA). The lat-
tice and elastic constants also have been evaluated (see table 4.3). These
are in good agreement with the previous findings (see table 4.1). The
values for the unrelaxed and relaxed surface energies are given in table

9The GLOK relaxator is used.
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Figure 4.13: Surface energies (unrelaxed) for the e-EAM potentials.
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Figure 4.14: Surface energies (unrelaxed) for the fm-EAM potentials.
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Table 4.3: Ab-initio results obtained by A. Al-Zu’bi [4] with the MBPP
code.

alattice [Å] 6.85
C11 [GPa] 304
C12 [GPa] 218
C44 [GPa] 63

surface surface energy [J/m
2
]

unrelaxed / relaxed
010 3.85 / 3.48
011 3.73 / 3.34
111 3.72 / 3.50

4.3. A comparison of these results to those of table 4.2 shows that both
EAM potentials seem to underestimate the surface energies. Taking the
ab-initio results as reference, the unrelaxed values for γ̄010, γ̄011, and
γ̄I
111 are smaller by 39%, 41%, and 41% for the e-EAM potentials and

by 22%, 21%, and 25% for the fm-EAM potentials. The deviations for
the relaxed case are -39%, -45%, and -44% for the e-EAM interactions
and -17%, -16%, and -21% for the fm-EAM interactions. Studies on
metals show that the use of the LDA can give about 10-20% larger sur-
face energies than with the GGA [70, 111]10. As such an uncertainty
may already be applied to the ab-initio results, the estimates of the
surface energies appear reasonable for both EAM potentials. However,
the fm-EAM results again are closer to the ab-initio values.

Free surfaces should be stabilized in fracture simulations. Especially, no
atoms should evaporate. This is not guaranteed for e.g. effective pair
potentials which lack a deep first minimum. The relaxation behavior
of a close-packed (111) surface is investigated in figure 4.15. Red and
blue discs represent the initial positions of Cr and Nb atoms at the top-
most layers. The yellow spots indicate their location after relaxation.
Obviously, the surfaces are stabilized for the fm-EAM potentials (figure
4.15, left) and for the e-EAM potentials (figure 4.15, right). However,
the atoms close to the surface behave differently. For the fm-EAM po-
tentials the two top layers relax towards the bulk. Using the e-EAM
potentials, the first layer of Nb atoms also moves inwards, but the next

10(010) surface energies calculated by Li et al. [75] (3.07 J/m2) using the GGA
are in excellent agreement with the results of the fm-EAM potentials (3.01 J/m2)
and lie below the values obtained with the MBPP code using the LDA (3.85 J/m2).
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Figure 4.15: Relaxation of a (111) surface using fm-EAM potentials (left),
e-EAM potentials (right), and ab-initio molecular dynamics (bottom) [95].

layer of Cr atoms moves away from the bulk. Ab-initio results obtained
with VASP (figure 4.15, bottom) agree with the fm-EAM findings. The
e-EAM interactions have been fitted to the properties of the elemental
metals, e.g. the negative Cauchy pressure of bcc Cr. This may be the
reason for the observed motion of the e-EAM Cr atoms at the surface
of the simulated C15 compound (figure 4.15, right).

This difference in relaxation behavior may also influence crack propa-
gation. 11121̄1̄ (see abbreviation 3.32) fracture is investigated to test
this effect. A seed crack of lowest surface energy γ̄I

111 is inserted. The
response of the system then is simulated as described in section 3.2.5.
For the fm-EAM potentials the crack propagates in [21̄1̄] direction for
k ≥ 1.2 (see abbreviation 3.31). Brittle cleavage fracture with no indica-
tion of any dislocation activity is observed (see inset of figure 4.16). The
crack moves up one atomic layer. This does not alter the surface energy,
as cuts between α A or Aα in the C15 stacking sequence (see section
1.2) require the same amount of energy. The surfaces of the fractured
sample are geometrically scanned as described in section 3.2.5. A small
square part with an edge length of about 5 nm is shown in figure 4.16.
The kagome net (with a few defects) is clearly visible. The result of the
same numerical experiment with the e-EAM potentials is also shown in
figure 4.16. At first glance, the seed crack seems to emit a dislocation
for k = 1.1. Cracks propagate only for very high loads (e.g. k = 1.8)
and then leave rough fracture surfaces. The “ductile” manner of the
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Figure 4.16: Atomic configurations near a 11121̄1̄ crack tip using e-EAM
and fm-EAM (inset) interactions [95].

e-EAM sample opposes the brittle behavior of the fm-EAM material.
Experiments show that NbCr2 is brittle up to about two-thirds of the
melting temperature and fails by macroscopic fracture (see, e.g., [113]).
Thus, the e-EAM potentials here yield questionable results. This indi-
cates that EAM potentials fitted to properties of elemental metals can
produce qualitatively wrong behavior when they are used for the inter-
actions in intermetallic compounds.

Figure 4.17 shows atoms of the e-EAM sample near the faulted region.
The initial configuration (left) resembles the C15 structure. The hori-
zontal lines correspond to (1̄11) layers. The vertical lines help to identify
the layer type. The stacking sequence (from bottom to top beginning
with the first horizontal line) is given below the picture (see equation
1.2). After the loading (figure 4.17, right) the upper half of the region
is shifted by b = alattice/6 · [211] relatively to the lower half. This cor-
responds to a Shockley partial. However, the deformation is not caused
by a simple dislocation or by synchro-shearing (see, e.g., [20]). The
new stacking sequence indicates that layers have been exchanged in the



62 Results and discussion

layer:   C B A   − type

stacking:   B β a γ − C γ b α − A α c β − B ...
                      X             Y             Z                  (C15)

layer:   C B A   − type

                         exchanged layers
stacking:   B β a γ − C (c α) β − B β a γ − C γ ...

Figure 4.17: Stacking sequence before and after (see figure 4.16) the loading
of a crack using e-EAM potentials [95].

middle of the configuration. Only the atoms in these layers lose their
usual coordination. Thus, two layers of atoms mark the fault in figure
4.16. This leads to a stacking sequence (cα)β that cannot be found in
any Friauf-Laves phase (compare to equations 1.1, 1.2, and 1.3). Such
a relative movement of atomic layers has also been observed at the free
surface (see figure 4.15, right). Therefore, this defect mechanism can be
regarded as an artefact caused by the e-EAM potentials.

Concluding this section 4.2.2, it has been shown that the fm-EAM po-
tentials resemble well ab-initio and experimental data. These interac-
tions outperform available (e-EAM) potentials when properties of the
intermetallic compound NbCr2 are investigated. The reliability allows
for a systematic study on crack propagation in this compound.

4.2.3 Fracture simulations

Crack propagation in NbCr2 is studied in detail in this section. The
fm-EAM potentials are used in the numerical simulations as they have
proven to give reasonable results (see section 4.2.2). The system is
prepared and visualized as described in section 3.2.5. Diverse loads are
applied to differently oriented samples. The results are then analyzed
and discussed.
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Orientations

The investigated orientations are displayed in figure 4.18. The crack
propagation direction x and an axis y perpendicular to the cleavage
plane are given by the notation yx (see abbreviation 3.32). A cubic
cell in the corresponding arrangement is projected onto the xy-plane
(figure 4.18, left). Slightly tilted samples are also depicted (figure 4.18,
right) to show how the atoms are arranged in the z-direction. The
chosen cleavage plane is indicated by a line and a pair of scissors. A cut
that gives the lowest surface energy γ̄I

111 is chosen in the cases where
y is a [111] direction. For the other samples, the surface energy does
not depend on the y-position of the plane (see figure 4.14). This is
directly evident from the 011100 sample (figure 4.18, left). However, the
010101 orientation reveals that for different y-positions atoms are not
approached in the same way by the crack. The projection of a slightly
deformed prolate rhombohedron (see section 1.2) is indicated in figure
4.18. Obviously, one can cut the highlighted 010101 rhombohedron with
or without separating the two blue spheres.

Velocities

Figures 4.19, 4.20, 4.21, and 4.22 show the position of the crack tip
versus time. The applied load is characterized by the reduced stress
intensity factor k (see abbreviation 3.31) and is varied up to k = 1.8.
Thus, the energy release rate would in principle be sufficient to generate
surfaces that require up to k2 = 3.24 times the energy of the flat seed
crack. As is evident from the figures, loads above the Griffith value
(k = 1) are needed for crack propagation. The seed crack moves at
least several nanometers for k ≥ 1.2. Crack motion at a lower value of
k = 1.1 is only observed for the 11101̄1 sample. So, the lattice trapping
effect (see section 2.4) causes initial energy release rates that exceed the
Griffith value by about 20 to 40%. This surplus of energy can cause
radiation and rough fracture surfaces.� Figure 4.19 shows that the 010101 crack moves at steady state for

k > 1.1. Small fluctuations of the velocity are visible for k = 1.2
and k = 1.3. The average crack velocities (dashed lines in figure
4.19) increase with increasing load.� The same statements are true for the 011100 sample (see figure
4.20). However, for k = 1.2 the crack is arrested after about 15
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Figure 4.18: Orientations of the samples.



4.2 C15 NbCr2 65

ps. The fluctuations around the mean velocity for k = 1.3 are
larger than for the 010101 crack.� A similar behavior is also observed for the orientation 11101̄1 (see
figure 4.21). It is only shifted to lower k values. Crack arrest is
observed after about 25 ps for k = 1.1. For k = 1.2 a steady state
velocity cannot be defined.� The 11121̄1̄ seed cracks achieve already a high mean velocity at
low loads (see figure 4.22). At the onset of fracture, the cracks
seem to accelerate for k ≤ 1.3.

The average crack velocities v for the diverse loads and orientations are
summarized in figure 4.23. The speed increases with increasing k. The
cruxes indicate that only a selected part of the data has been included
in the fit of v. The marked 11101̄1 and 011100 cracks are arrested after a
certain time. Only data before this incident is used to obtain v (see fig-
ures 4.21 and 4.20). In contrary, only data after the initial acceleration
time is chosen for the 11121̄1̄ cracks tagged in figure 4.23 (see figure 4.22).

The measured velocities lie in a range of about 0.4 km
s to 1.5 km

s . An-
derson [9] defined an average transverse sound velocity v̄t,

v̄t =

√

GR + GV

2ρ
,

where ρ is the density. The elastic and lattice constants of table 4.1 for
the fm-EAM potentials together with the atomic masses of the chemical
elements yield v̄t ≈ 2.7 km

s . Thus, the observed crack velocities are in a
range of about 15-56% of v̄t.

A minimal non-zero value of the crack velocity (a velocity gap) is often
observed in molecular dynamics simulations. According to Marder [78]
it is a consequence of rapidly snapping bonds. If crack propagation
becomes too slow, too much energy is dispersed from the crack tip
by phonons before the crack arrives at the next bond. At a critical
velocity, this bond will not break. The maximal observed velocity lies
below the Yoffe value vY ≈ 0.6vt (see section 2.3). A maximal crack
velocity vmax = vRayleigh ≈ vt was proposed by Stroh [104], as a crack
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Figure 4.19: Crack-tip position vs. time for the orientation 010101 .
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Figure 4.20: Crack-tip position vs. time for the orientation 011100 .
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Figure 4.21: Crack-tip position vs. time for the orientation 11101̄1.
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Figure 4.22: Crack-tip position vs. time for the orientation 11121̄1̄.



68 Results and discussion

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8

v 
[ k

m
/s

 ]

k

010101
011100
111011

−
111211

−−

Figure 4.23: Crack velocities.

resembles a strong deformation of a free surface. Thus, the velocity
range obtained by the simulations is reasonable. Further knowledge
is needed to understand details of the orientation dependence of crack
propagation. For this purpose, the fracture surfaces are investigated in
the next section.

Fracture surfaces

The fracture surfaces of the samples are geometrically scanned as de-
scribed in section 3.2.5. The height h0 of the seed crack is encoded in
green. Regions in blue lie at least 5Å below this initial level. The color
red is used to represent values h ≥ h0 + 5Å. Large red areas indicate
that the crack has not propagated through this region within the sim-
ulation time. A surface is denoted “upper” (“lower”) fracture surface,
if the y-position of the corresponding atoms is higher (lower) than the
crack height (see, e.g., figure 3.2). The roughness and surface energy of
the upper and lower surfaces may differ, as these can be formed by dif-
ferent atomic species in various arrangements. Thus, both surfaces are
displayed. For this purpose, the upper part of the specimen is rotated
by 180◦ around the x-axis and scanned. So, red areas in the lower frac-
ture surface should give rise to blue areas in the upper fracture surfaces,
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and so on. Color-coded sections of lower (upper) fracture surfaces are
given in figures 4.24, 4.26, 4.28, and 4.30 (4.25, 4.27, 4.29, and 4.31) for
the orientations 010101, 011100, 11101̄1, and 11121̄1̄.� The lower fracture surfaces of the 010101 sample are displayed for

k = 1.2, k = 1.3, and k = 1.6 in figure 4.24. The corresponding
upper fracture surfaces are given in figure 4.25. The surfaces are
rough on an atomic scale. Yellow areas on the lower surfaces and
turquoise features on the upper surfaces indicate that the crack
has moved up about one atomic layer from its initial position.� The 011100 crack stops moving after several nanometers (see figure
4.20) for k = 1.2. From figures 4.26 and 4.27 one might conclude
that an increased roughness hinders further crack advance. For
higher k values, there are larger regions where atoms of other
layers appear. There is no clear tendency for the crack height. For
k = 1.3 it increases on average (due to yellow regions in figure 4.26,
middle), for k = 1.6 it decreases (due to turquoise regions in figure
4.26, bottom). However, the resulting structures on these surfaces
look quite similar (compare figure 4.26 (middle) with figure 4.27
(bottom)).� The propagating 11101̄1 crack is arrested for k = 1.1 (see figure
4.21). The resulting fracture surface seems to be flat apart from
some point defects (see figures 4.28 (top) and 4.29 (top)). At
higher loads, the fracture surfaces are formed by atoms of the
initial and the subsequent layer.� The crack in the 11121̄1̄ specimen moves up one atomic layer and
stays on this height. Perfect brittle cleavage fracture is observed.
Some point defects are present for k = 1.2. The defects and
the roughness increase for k = 1.3 and k = 1.6 (see figures 4.30
and 4.31). One has to note here the dissimilarity of the 11121̄1̄

and the 11101̄1 surfaces. The different in-plane crack propagation
directions seem to strongly influence fracture behavior.

There are similarities to the results of the fracture simulations with the
Lennard-Jones model interactions (see section 4.1.2). The fracture sur-
faces are rough on an atomic scale. Propagating 11121̄1̄ cracks result
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in smooth fracture surfaces. The surfaces of the other orientations are
rougher. However, the 011100 and 010101 cracks do not result in per-
fectly periodic patterns as shown in figures 4.7 and 4.8 (right). As the
EAM interactions include many-body terms, these could give rise to
a more pronounced roughness. But the higher lattice trapping (crack
propagation is initiated at higher k values) of the EAM potentials for
NbCr2 has also be taken into account. The 010101 surfaces at a com-
parable load again look similar, as can be seen from a comparison of
figure 4.24 (middle) and figure 4.8 (left) at k = 1.3. So, the results of
the model potentials qualitatively resemble those of the material specific
interactions.

The peak-to-valley roughness and the root-mean-square roughness of
the fracture surfaces of figures 4.24 – 4.31 are given in figures 4.32 and
4.33. The values of the lower (upper) surfaces are marked by triangles
pointing downwards (upwards). The initial flat cuts have the lowest un-
evenness. The roughness seems to increase with increasing load. This
tendency is violated for the propagating 010101 and 011100 cracks at the
lowest loads. The 11121̄1̄ fracture surfaces are those of lowest roughness
for low loads, as is already obvious from visual inspection of figures 4.24
– 4.31. The upper surfaces of the 11121̄1̄ crack are rougher (see red lines
in figure 4.33) than the lower ones. This is in contrast to the planes of
the initial seed crack. Thus, the role of the upper and the role of the
lower fracture surface seem to interchange.

All the samples have also been relaxed at k = 1.3 with the GLOK
algorithm (see section 3.2.4). The corresponding results are given in
figure 4.34. No remarkable differences to the previous surfaces (see
figures 4.24, 4.28, and 4.30, middle) are obvious for the orientations
010101 (figure 4.34, top left), 11101̄1 (figure 4.34, top right), and 11121̄1̄

(figure 4.34, bottom right). In the 011100 case (figure 4.34, bottom left)
the crack climbed about one atomic layer. This is not observed for the
propagating crack in figure 4.26, middle. However, it has already been
pointed out that there is no clear tendency for the crack height in this
sample for different k values. So, ignoring the height, the patterns again
look similar. Thus, one might conclude that the dynamics of the system
does not influence the resulting fracture surfaces very much.
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Figure 4.25: Upper 010101 fracture surfaces, loads: k = 1.2 (top), k = 1.3 (middle), and k = 1.6 (bottom).
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Figure 4.27: Upper 011100 fracture surfaces, loads: k = 1.2 (top), k = 1.3 (middle), and k = 1.6 (bottom).
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Figure 4.29: Upper 11101̄1 fracture surfaces, loads: k = 1.1 (top), k = 1.3 (middle), and k = 1.6 (bottom).



4
.2

C
1
5

N
bC

r
2

7
7Figure 4.30: Lower 11121̄1̄ fracture surfaces, loads: k = 1.2 (top), k = 1.3 (middle), and k = 1.6 (bottom).



7
8

R
es

u
lt
s

a
n
d

d
is
cu

ss
io

n

Figure 4.31: Upper 11121̄1̄ fracture surfaces, loads: k = 1.2 (top), k = 1.3 (middle), and k = 1.6 (bottom).
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Figure 4.32: Peak-to-valley (ptv) roughness of the fracture surfaces.
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Shifted seed cracks

Yellow areas in figures 4.24, 4.28, and 4.30 indicate that the cracks
systematically deviate upwards from the initial layer. To further test
this behavior, the initial seed cracks are shifted up one atomic layer.
The corresponding surfaces for k = 1.2 are shown in figure 4.35. The
fractured 010101 (left), 11101̄1 (middle), and 11121̄1̄ (right) samples are
very similar to the ones with the unshifted seed crack. Green regions in
the images indicate that the crack stays on the new initial level.� In the 010101 case, the mean surface level (see figure 4.35, left) does

not deviate much from the primary height. Crack propagation and
the final fracture surfaces seem not to be influenced by the height
of the seed crack.� Turquoise features in the 11101̄1 surface (see figure 4.35, middle)
show that the crack fluctuates around the kagome layer. There
are no obvious differences to the unshifted case.� The 11121̄1̄ seed crack results in nearly perfect brittle cleavage
(see figure 4.35 (right) and figure 4.36). Thus, the (111) fracture
surfaces for different propagation directions disagree as before.
The shift of the seed crack gives a smaller lattice trapping, as
the initial change of the layer is omitted. Propagation already is
possible at k = 1.1 (see figure 4.37) instead of k = 1.2 (see figure
4.22).

Summarizing, the y position of the seed crack also does not significantly
change fracture behavior. The characteristics of the fracture surfaces
stay the same.

Energy considerations

The samples of figures 4.24 – 4.31 now are investigated from an energy
viewpoint. The atoms forming the upper and lower part of the fractured
sample are taken back to their positions in the relaxed initial sample.
The two parts are then shifted apart rigidly. The surface energy now
is calculated from the energy difference of these two specimens. In fig-
ure 4.38 the values of the upper (triangles pointing upwards) and lower
(triangles pointing downwards) surfaces, as well as the averages (discs)
are displayed in red color for k = 1.3. At this load it is possible for all



4.2 C15 NbCr2 81

Figure 4.34: Surfaces obtained with the GLOK relaxator (k = 1.3).

Figure 4.35: Sections of fracture surfaces caused by the shifted seed cracks,
k = 1.2.
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Figure 4.36: Atoms forming the fracture surfaces for the orientation 11121̄1̄,
k = 1.15, and the shifted seed crack. Top: t = 0, bottom: t = 102 ps.
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cracks to overcome the lattice-trapped state and to move at constant
velocity (see figures 4.19 – 4.22). The corresponding surface energies
for flat cuts are given in blue in figure 4.38. The values γ̄ represented
by the blue circles have already been calculated in section 4.2.2. In
this section, it has also been pointed out that γ̄ for the (010) and (011)
surfaces does not depend on the height y of the cut. In contrast, γ̄
does depend on y for the (111) surfaces (see figure 4.14). The mini-
mal value has been chosen for the initial seed cracks in the 11101̄1 and
11121̄1̄ samples. However, this value is also realized for a crack that
is shifted up one atomic layer. This corresponds to cuts between e.g.
α A or Aα in the C15 stacking sequence (see section 1.2 and figure 4.18).

It is evident from figure 4.38 (blue symbols) that the upper surface
energy of the flat cuts differs significantly from the lower one for the
010101, 11101̄1, and 11121̄1̄ samples. This is not the case for the 011100

orientation. Of course, the values for the flat cuts have to be the same
for the 11101̄1 and the 11121̄1̄ specimen. They only differ by the crack
propagation direction. The average surface energies of the fractured
samples γ̄frac (red discs) always lie above those of the seed cracks γ̄cut
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(blue discs). Some of the energy surplus – which is needed to overcome
the lattice-trapping – obviously causes surfaces of higher energy. The
biggest raise is observed for the 11101̄1 case (see figure 4.38), where
γ̄frac ≈ 1.28γ̄cut

11. For k = 1.3 the energy release rate is increased to
about 169% of the Griffith value. Thus, most of the energy surplus al-
ways goes into radiation. For the orientations 010101, 011100, and 11101̄1

the energy of the upper surface equals the energy of the lower surface
in the fractured samples (red triangles in figure 4.38). These energies
only differ for the 11121̄1̄ case, where nearly perfect cleavage occurs on
an atomic plane. Thus, when a roughening of the surface occurs, the
crack seems to choose a path that tends to generate upper and lower
surfaces of the same energy. Due to defects (see figure 4.30, middle),
γ̄ is also higher in the 11121̄1̄ fractured sample (γ̄frac ≈ 1.13 γ̄cut). A
switching order of the triangles in figure 4.38 indicates (as in the case
of the roughness) that the roles of the upper and of the lower surface
have interchanged (a cut between α A leads to fracture between Aα, as
mentioned above).

Atomistic aspects

The previous results demonstrate that it is possible to derive quantita-
tive macroscopic data from atomistic fracture simulations. It has also
been shown that the crack propagation direction within the same cleav-
age plane can affect this data. Crack velocities and fracture surfaces
significantly differ for the 11101̄1 and the 11121̄1̄ samples. Pure global
energy considerations are not able to predict this. So, the simulations
further indicate that investigations on an atomic scale are necessary
to fully capture fracture behavior. To motivate the relevance of the
discrete nature of matter, the local energy cost for 11121̄1̄ cleavage is
displayed in figure 4.39. The radius of the discs is proportional to the
energy needed for a local increase of the cleavage planes. Expressed in
an oversimplified picture, the figure shows, how much energy is required
to snap the bonds between the atoms (see section 2.4). A vertical line
represents a straight 11121̄1̄ crack front in figure 4.39, a horizontal line
a 11101̄1 crack front. Two such lines with the same length are indicated
in figure 4.39. Obviously, the maximum number of large discs per crack

11If a similar increase of γ̄frac is assumed for k = 1.1, then the surplus of 21% in
elastic energy might not be sufficient for the fracture of the whole sample. Indeed,
crack arrest is observed in this case (see figure 4.21).
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Figure 4.39: Local energy cost for 11121̄1̄ cleavage.

length differs for the two propagation directions. Hence, a different lat-
tice trapping and fracture behavior of the two orientations is reasonable
and understandable.
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Summary

In this thesis, the fracture behavior of complex metallic alloys at low
temperature has been simulated by atomistic molecular dynamics sim-
ulations.

In simplified model systems, the influence of the structure on crack
propagation has been studied. An icosahedral quasicrystal and a C15
Friauf-Laves phase with Lennard-Jones interactions indicate that the
basic building blocks of the structures strongly influence fracture be-
havior. The clusters in the quasicrystal play a comparable role to the
atoms in the Friauf-Laves phase as they affect the overall roughness
of the fracture surfaces. It has been shown that crack propagation is
strongly influenced by the local arrangement of atoms or clusters close
to the crack tip.

To gain material specific information on C15 NbCr2, interactions have
been matched to ab-initio data. The corresponding potentials reproduce
well physical properties related to fracture. Crack propagation has been
investigated in differently oriented samples under diverse applied loads.
Cracks propagate only for loads above the Griffith criterion due to the
lattice-trapping effect. So, the fracture surfaces are not implicitly those
of lowest energy or lowest roughness. However, most of the surplus of
energy causes radiation. Brittle fracture is observed for all orientations.
The roughness and energy of the fracture surfaces as well as the path
and speed of the cracks do not only depend on the cleavage plane but
also on the crack propagation direction. This reveals the influence of
the atomistic nature of matter. The number, strength, and orientation
of “bonds” approached by a crack define whether, where, and how it
propagates.

Summarizing, it has been shown that it is possible to derive qualita-
tive and quantitative information on crack propagation in intermetallic
alloys by numerical experiments. Detailed analyses of the simulations
highlight that processes on the atomic level determine fracture behavior.
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Appendix

Height-height correlation function

Quasicrystals are composed of atomic clusters (see section 1.1). It is
an ongoing and persistent discussion, whether these geometric build-
ing blocks also represent physical entities. Experiment and simulation
show that cleavage surfaces of icosahedral quasicrystals are rough with
cluster-like protrusions (see section 4.1.1). However, by sputtering and
annealing at high temperatures, nearly flat surfaces can be produced.
So, obviously, the clusters cannot be termed supermolecules. At first
glance, recent findings also seem to deny a physical role of the clusters
in the fracture process. Ponson et al. [86] measured the roughness ex-
ponent of experimental fracture surfaces and questioned a signature of
clusters. In this appendix, it is shown that the results of Ponson et al.
cannot negate the role of the clusters in the fracture process.

A method to study the roughness of fracture surfaces is to calculate the
height-height correlation functions. These uncover scaling properties
with a “universal” roughness exponent of about 0.8 for a wide range
of materials [15]. However, so far, no theoretical model is able to sat-
isfactorily comprise this self-affinity. So, it seems to be impossible to
interpret microscopic properties of the investigated structures starting
from the scaling behavior. It is even hard to distinguish a fractured from
a sputtered surface, as the roughness exponents of both surfaces can lie
in the same range. Although the scaling properties of cracks seems to
be “universal”, the range of length scales in which this universality is
valid strongly varies for different materials. It has been proposed that
the associated cutoff length ξ is related to the size of the process zone
Rc[13]. Inside this area, linear elastic predictions deviate from the real
deformation field. Such a nonlinear and dissipative region always has
to exist, as atomic bonds break at the crack tip. The behavior on and
below this scale defines whether, how, and where a crack propagates.
Rc should therefore depend on the microstructure.

Ponson et al. [86] analyzed the roughness of i-AlPdMn fracture surfaces.
The scaling properties resemble those of various disordered materials.
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The height-height correlation function reveals a self-affine behavior from
the atomic scale up to ξ ≈ 2nm. The Hurst exponent H is close to 0.72
(see Fig. 2 in Ponson et al. [86]). As the self-affine region includes the
radius of the clusters rc ≈ 0.5nm, the authors state that the morphology
of the fracture surfaces does not reflect the cluster distribution. There-
fore, an influence of the clusters on physical properties is questioned.

The dispute whether or not the clusters should influence the height-
height correlation function ∆h1 can be enlightened with the help of
numerical experiments. Thus, the experimental findings at room tem-
perature are compared to the results from atomistic simulations. The
experimental surface data has been obtained by scanning tunneling mi-
croscopy. The molecular dynamics simulations have been performed in
a representative icosahedral binary model quasicrystal at low tempera-
ture and load (see section 4.1.1). The fracture surfaces are geometrically
scanned (see figure 3.3). The length scale of the model is given by r0, the
shortest distance between two X atoms (see chapter 1 and figure 1.1).
Thus, the icosahedral system, the temperature as well as the contrast
of the scanning images do not agree with the experimental situation.
The experimental surfaces further may suffer from e.g. noise, anisotropy
due to imaging, misorientation, signal amplification, and local geomet-
ric filtering[100]. In spite of these difficulties and differences, qualitative
aspects of the experiments are resembled well by the simulations (see
section 4.1.1).

In figure A.1 experimental findings (open symbols, Fig. 2 in [86]) are
shown together with simulated results (solid symbols: orientation 22,
load k = 1.3). As the data sets differ due to e.g. the different scan-
ning techniques, temperatures, and models, ∆hsim has to be scaled by
a factor of 3 for the simulations to allow a direct comparison. This
shift e.g. indirectly indicates that the experimental surface has a higher
root-mean-square roughness than the one simulated at very controlled
conditions at low temperature. The absolute value of ∆h, however, is
not relevant for the following considerations. The characteristics of the
curves and ξ already allow to decide whether ∆h can give valuable in-

1The height-height correlation function ∆h is defined by ∆h(∆r) =
D

[h(r′ + er∆r) − h(r′)]2
E0.5

. Angular brackets denote the average over all r
′.
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Figure A.1: Height-height correlation function ∆h (open symbols: experi-
ment, solid symbols: simulations). The size of an atom (discs), r0 (squares),
and 2r0 (diamonds) are used for the radius r of the scanning sphere. The
atomic radius, the cluster radius, and ξ are indicated by vertical lines. The
simulated results are scaled to allow a direct comparison of the characteristics
of the curves.

formation on the role of the clusters.

Assuming that the crack front is propagating between indestructible
spherical clusters, a drastic change in the behavior of ∆h for ∆r ≈ rc

could be expected. However, figure A.1 clearly shows that neither for
the experiment nor for the simulations a hard crossover can be observed.
However, ∆hsim is a bit more curved2. To investigate the influence of
the scanning conditions on ∆h, the radius r of the scanning sphere is
varied (see figure A.1 and caption). Obviously, ∆h depends on the tip
size. Nevertheless, for the first few points on the left in figure A.1 all
curves give H ≈ 0.7. For the simulations, ξ ≈ 1nm is a reasonable
assumption. Thus, as in the experimental findings, the self-affine re-
gion can include the radius of the clusters rc. Detailed analyses of the
simulated fracture surfaces prove that the clusters affect crack propa-
gation in the model system (see section 4.1.1). So, in the simulations,

2In this context, one has to note that the model system does not fully capture
the self-similarity rules of icosahedral quasicrystals.
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the clusters play a crucial role despite ξ & rc. Consequently, one can-
not conclude from ξ > rc that the clusters are not responsible for the
morphology of the fracture surfaces. Moreover, ∆hsim shows a rather
smooth behavior in figure A.1. Thus, even clusters that influence crack
propagation do not necessarily lead to an obvious feature in the height-
height correlation function. This is reasonable as the clusters are not
unbreakable supermolecules. Without a sole relevant length scale, the
lower limit of the power-law behavior is caused by the atomic size and
not by the clusters. Furthermore, as shown by varying the tip size, de-
tails of the height-height correlation function may easily be hidden in
experiments by limitations in the resolution of the scanning devices and
any additional noise. In conclusion, a lack of a characteristic feature in
the ∆h curves does not allow to exclude an influence of the clusters on
the fracture process.

From this discussion it is evident that the results of Ponson et al. [86]
cannot be used to disprove a physical role of the clusters. In contrary,
the clusters help to understand the magnitude of ξ, which is related
to the process zone size Rc. Icosahedral quasicrystals macroscopically
behave elastically isotropic. However, locally, the response can change
due to the clusters and the glue atoms in-between. If the clusters should
directly affect crack propagation, their local deformation close to the
crack tip should deviate from the linear elastic prediction. By definition,
such a deviation only is possible within the process zone. Thus, the
cluster scale should give an estimate for the size of the process zone.
So, the relation Rc & rc observed in experiment and simulation can
be seen as a direct consequence of the physical role of the clusters in
quasicrystals.
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[92] F. Rösch, C. Rudhart, J. Roth, H.-R. Trebin, and P. Gumbsch,
Dynamic fracture of icosahedral model quasicrystals: A molecular
dynamics study, Phys. Rev. B 72 (2005) 014128.
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