
p-adic vector bundles on curves and abelian varieties
and representations of the fundamental group

Von der Fakultät Mathematik und Physik der Universität Stuttgart
zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Thomas Ludsteck

aus Regensburg

Hauptberichterin: Prof. Dr. Annette Werner
Mitberichter: Prof. Dr. Christopher Deninger

Tag der mündlichen Prüfung: 27. Mai 2008
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1 Deutschsprachige Zusammenfassung

p-adische Vektorbündel auf Kurven und Abelschen
Varietäten, und Darstellungen der Fundamentalgruppe

In vorliegender Arbeit werden verschiedene Zugänge zur p-adischen In-
tegration und p-adischen Riemann-Hilbert-Korrespondenz untersucht und
miteinander verglichen.

Für einen glatten K-analytischen Raum über einem abgeschlossenen Teil-
körper K von Cp hat V. Berkovich eine Theorie der p-adischen Integration
und des Paralleltransports entlang Wegen entwickelt. Insbesondere kann
man (lokal unipotenten) Vektorbündeln mit Zusammenhang diskrete Darstel-
lungen der topologischen Fundamentalgruppe auf endlich dimensionale K-
Vektorräume zuordnen.

In einer Arbeit von C. Deninger und A. Werner wird für eine Kategorie
von Vektorbündeln Bs

XCp
auf einer glatten projektiven Kurve X über Qp

ein Paralleltransport entlang étaler Wegen definiert. Insbesondere kann man
jedem dieser Vektorbündel eine stetige Darstellung auf einen endlich dimen-
sionalen Cp-Vektorraum der algebraischen Fundamentalgruppe von X zuord-
nen, welche wir DeWe-Darstellungen nennen wollen. Zur gleichen Zeit wurde
von G. Faltings eine p-adische Simpson-Korrespondenz beschrieben. Hierbei
kann gewissen Vektorbündeln auf einer Kurve X, die mit einem Higgs-Feld
ausgestattet sind, eine Darstellung der algebraischen Fundamentalgruppe von
X zugeordnet werden.

In der vorliegenden Arbeit wird gezeigt, dass man sogenannten tem-
perierten Darstellungen der algebraischen Fundamentalgruppe von X ein
Vektorbündel mit kanonischem Zusammenhang zuordnen kann. Diese Vek-
torbündel liegen dann in der Kategorie Bs

XCp
und die zugehörigen Darstellun-

gen sind mit den DeWe-Darstellungen kompatibel. Wir benutzen dann eine
Methode von G. Herz, um die stetigen DeWe-Darstellungen mit den diskreten
Darstellungen, die im Berkovich-Paralleltransport auftreten, zu vergleichen.
Wir zeigen weiter, dass die Konstruktion von G. Faltings in diesem Fall mit
den DeWe-Darstellungen übereinstimmt, falls das Higgs-Feld gleich Null ist.
Wir haben folglich gezeigt, dass die obig genannten Zugänge zur p-adischen
Integration und p-adischen Riemann-Hilbert Korrespondenz im Spezialfall
der temperierten Darstellungen miteinander kompatibel sind.

In einer weiteren Arbeit von C. Deninger und A. Werner wurde die Theo-
rie der DeWe-Darstellung auch für Abelsche Varietäten A/Qp mit guter Re-
duktion entwickelt. Wir konnten zeigen, dass die Kategorie der Vektorbündel
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BACp
auf einer Abelschen Varietät A, für die DeWe-Darstellungen definiert

sind, genau aus den translations-invarianten Vektorbündeln besteht (unter
der Annahme, dass der DeWe-Funktor volltreu ist). Im Falle gewöhnlicher
Reduktion konnte auch gezeigt werden, dass die zugehörigen Darstellun-
gen genau die temperierten Darstellungen sind. Insbesondere erhält man in
diesem Fall eine Kategorienäquivalenz zwischen temperierten Darstellungen
und translations-invarianten Vektorbündeln auf A, welche dann auch einen
kanonischen Zusammenhang besitzen.
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2 Introduction

On a Riemann surface X there is a well-known correspondence (Riemann-
Hilbert) between complex representations of the fundamental group π1(X, x)
and C∞ vector bundles with flat connections on X. In this correspondence
a local system corresponding to a representation gives rise to a vector bun-
dle with connection if tensored with the structure sheaf. Conversely, the
horizontal sections of a C∞ vector bundle with flat connection define a lo-
cal system. By a theorem of C. Simpson [Sim92] C∞ vector bundles with
flat connection correspond to holomorphic vector bundles equipped with a
so-called Higgs-field.

There are some analogues of this theory for varieties and vector bundles
defined over a p-adic field:

There is an algebraic p-adic analogue: Let X be a smooth proper curve
over Qp. In [DeWe05b] A.Werner and C. Deninger defined functorial isomor-
phisms of parallel transport along étale paths for a class of vector bundles on
XCp = X ×SpecQp SpecCp. The category of such vector bundles is denoted by
Bs
XCp

and contains all vector bundles of degree 0 that have strongly semistable

reduction. In particular, all vector bundles in Bs
XCp

give rise to continuous

representations of the algebraic fundamental group on finite dimensional Cp-
vector spaces. Their construction also works for abelian varieties A with
good reduction. To each vector bundle on A that lies in a certain category
BACp

they can associate a continuous representation of the Tate-module TA
of A on finite dimensional Cp-vector spaces. We will call the representations
attached to vector bundles in their theory DeWe-representations.

At the same time G. Faltings [Fal05] established a p-adic Simpson corre-
spondence. He showed that there is a correspondence between vector bundles
on X equipped with a Higgs-field θ and so called ”generalized representa-
tions” which contain the representations of the algebraic fundamental group
of X as a full subcategory. It is assumed that the construction of G. Falt-
ings is compatible with the construction of C. Deninger and A. Werner if the
Higgs-field θ is zero.

It is an interesting question to characterize the vector bundles that give
rise to representations without referring to the reduction behavior. It is also
an interesting question to characterize the representations that correspond
to zero Higgs-fields. Furthermore, connections on the vector bundles and
horizontal sections are missing.

There is a topological p-adic analogue: In [Ber07] V. Berkovich devel-
oped a theory of p-adic integration and parallel transport along paths in the
framework of Berkovich spaces. For a smooth K-analytic space Y there are
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isomorphisms of parallel transport along paths for all locally unipotent vec-
tor bundles with connection on this space. The parallel transport involves
the horizontal sections of these connections. To obtain a full set of horizontal
sections one has to work with a sheaf SλY on Y that is an extension of the
structure sheaf OY . In particular, each locally unipotent vector bundle with
connection gives rise to a representation of the topological fundamental group
of Y . A special case of locally unipotent vector bundles are vector bundles
that are attached to discrete representations of the topological fundamen-
tal group on finite dimensional K-vector spaces. These were considered in
[And03]. If one omits connections then there is theorem of G. Faltings [Fal83]
(see also [PuRe86]) that classifies an interesting class of vector bundles in the
case that Y is a Mumford curve. He shows that there is a bijective correspon-
dence between semi-stable vector bundles of degree 0 on Y and Φ-bounded
representation of the topological fundamental group of Y (Φ-bounded repre-
sentation are representations that satisfy certain growth conditions).

In this thesis we want to find a relation between the algebraic and the
analytic approach. We encounter several problems:

a) Representations in the topological case are of discrete nature, whereas
algebraic representation are continuous with respect to the p-adic topol-
ogy.

b) In the topological case vector bundles always have a connection, whereas
in the algebraic setting connections do not always appear.

c) In Faltings’ work one has to lift everything to the dual numbers of a
Fontaine ring to get a correspondence that is independent of certain
choices. The construction depends also on the choice of an exponential
function for the multiplicative group.

d) The parallel transport of Berkovich involves a sheaf of locally analytic
functions SλY .

Problem a) was partly solved by G. Herz in his dissertation [Her05] in
the case of Mumford curves. Problem b) is partly solved, because certain
algebraic vector bundles have a canonical connection. We conjecture that
every vector bundle lying in one of the categories Bs

XCp
or BACp

defined by

C. Deninger and A. Werner admits a canonical connection.
For Problem c) we omit the dual numbers and the Higgs field and use the

work of [DeWe05b].
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For Problem d) we only consider vector bundles that are attached to repre-
sentations of the topological fundamental group. Then the parallel transport
is more elementary, since the sheaf SλY is not needed anymore.

For an abelian variety A over Qp having good reduction we show that the
category BACp

of vector bundles onACp that give rise to DeWe-representations,
is equal to the category of translation-invariant vector bundles on ACp (un-
der the assumption, that the DeWe-functor is fully faithful). We also give a
characterization of DeWe-representations that are attached to vector bundles
in BACp

if they are defined over a finite extension K of Qp. In the case that
A has good ordinary reduction one obtains exactly the so called temperate
representations of TA. This implies also that the vector bundles in BACp

are
equipped with a canonical integrable connection.

Using the theory of temperate representations we can generalize the com-
parison theorem of G. Herz [Her05] between the theory of DeWe-representations
and Faltings Φ-bounded representations on Tate-elliptic curves to non-integral
coefficients.

As an application of canonical connections one can combine Faltings’ p-
adic Simpson correspondence with canonical connections to obtain a p-adic
Riemann-Hilbert correspondence on curves. We could prove the existence
of canonical connections for vector bundles on elliptic curves with ordinary
(good or bad) reduction and for line bundles of degree 0 on curves with or-
dinary reduction.

We give a short outline of the paper: In Section 3 we recall various
results that are already documented in the literature. In Section 4 we recall
in detail how to attach a vector bundle with connection to a continuous
representation of the étale fundamental group of a projective Zp-model X of
a projective variety X defined over Qp. This construction is motivated by the
Katz correspondence between representations and F -crystals. Using descent
theory this construction works also after a finite étale Galois covering Y → X
of the generic fiber. In Section 5 we relate the topological parallel transport
of V. Berkovich to the algebraic parallel transport of C. Deninger and A.
Werner for some vector bundles with connections on curves. This builds on
and generalizes the comparison theorem of G. Herz. In Section 6 we show
that for an abelian variety over Qp with good reduction the category BACp
defined by DeWe is equal to the category of homogeneous vector bundles on
A. In Section 7 we give some applications of the previous results.

Acknowledgement: I would like to thank my supervisor Annette Werner
for introducing me to this topic and her advice and encouragement during
the last three years. I want to thank all my academic teachers. Moreover,

8



I want to thank B. Ackermann, V. Berkovich, C. Deninger, G. Faltings, C.
Florentio, U. Hackstein G. Herz, R. Kasprowitz, W. Rump and S. Wiech for
useful discussions on vector bundles.
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3 Background

In this section we recall some known results about relations between p-adic
vector bundles on varieties and representations of their fundamental groups
(algebraic and analytic).

3.1 Notations

Let p be a prime number. Let Qp be an algebraic closure of the p-adic

numbers Qp. The completion of Qp is denoted by Cp, i.e. Cp := Q̂p. We
write o for the ring of integers in Cp, and denote its reduction modulo pn

by on := o/pno. In this case the ring on is isomorphic to the reduction
modulo pn of the p-adic integers Zp of Qp, i.e. on = o/pno ∼= Zp/p

nZp. For
a scheme, a sheaf, a morphism or a representation that is defined over o or
Zp a subscript n will denote its reduction modulo pn, e.g if X := SpecZp[X],
then Xn = X ×Zp Zp/p

nZp . If ρ : π1 → Auto(L) is a representation of a
group π1 on a free o-module L of rank r, then ρCp denotes its extension to

AutCp(L⊗o Cp). If X/SpecQp is a scheme, then XCp denotes its base change
with Cp. If X is a variety over a complete non-archimedean field, then Xan

resp. Xrig denotes its analytification (Berkovich), resp. its rigidification.

3.2 Deninger-Werner parallel transport on curves

X a smooth projective curve over Qp

We will review the étale parallel transport defined by Deninger and Werner
in the case of curves [DeWe05b].

Definition 3.1 (DeWe). - Let V be a valuation ring with quotient field Q.

a) A model of a smooth projective curve C over Q is a finitely presented,
flat and proper scheme C over SpecV together with an isomorphism
C ∼= C ⊗V Q.

b) For a model X of X over V and a divisor D in X the category SX ,D is
defined as follows: Objects are finitely presented proper V - morphisms
π : Y → X whose generic fiber πQ : YQ → X is finite and such that
πQ : π−1

Q (X \ D) → X \ D is étale. Morphisms are defined to be
compatible with the structure morphism.
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c) A full subcategory SgoodX ,D ⊂ SX ,D is defined by taking as objects models
Y in SX ,D whose structural morphism λ : Y → Spec(V ) is flat and
satisfies λ∗OY = OSpecV universally, and whose generic fiber λQ : YQ →
SpecQ is smooth.

Definition 3.2 (DeWe). -

a) For a model X of X over Zp and a divisor D in X the category BXo,D is
defined to be the full subcategory of VecXo consisting of vector bundles
E on Xo = X ⊗Zp o with the following property: For every n ≥ 1 there
is an object π : Y → X of SX ,D such that π∗nEn is a trivial bundle on
Yn. Here πn,Yn and En are the reductions mod pn of π, Y and E .

b) The full subcategory BXCp ,D
of VecXCp

consists of all vector bundles
on XCp which are isomorphic to a vector bundle of the form j∗E with
E in BXo,D for some model X of X. Here j is the open immersion of
XCp into Xo.

c) The full subcategory B#
XCp ,D

of VecXCp
consists of all vector bun-

dles E on XCp such that α∗CpE is in BYCp ,α
∗D for some finite covering

α : Y → X of X by a smooth projective curve Y over Qp such that α
is étale over X \D.

d) Finally define

Bs
XCp

:=
⋃
D

BXCp,D
.

These are are the vector bundles on XCp with strongly semi-stable
reduction (See the Introduction of [DeWe05b] and Theorem 36)

We describe now the construction of Deninger and Werner for vector
bundles in BXCp ,D

: Now, given γ in Iso(Fx, Fx′) (an étale path (Section 3.6)
between two points x and x′) and some n ≥ 1, let us construct ρE,n(γ).
By definition of BXo,D and by [DeWe05b] Corollary 3 there exists an object

π : Y → X of SgoodX ,D such that π∗nEn is a trivial bundle. Set Y := Y ⊗Zp Qp

and V := Y \ π∗D. Then V → U is a finite étale covering. Choose a point
y ∈ V (Cp) above x and let y′ = γy ∈ V (Cp) be the image of y under the
map

γV : Fx(V )→ Fx′(V ).

Then y′ lies over x′. Since the structural morphism λ : Y → SpecZp satis-
fies λ∗OY = OSpecZp universally we find λ∗OYn = OSpecon and therefore the
pullback map under yn : Specon → Yn is an isomorphism

y∗n : Γ(Yn, π∗nEn)→̃Γ(Specon, y
∗
nπ
∗
nEn) = Γ(Specon, y

∗
nEn) = Exn
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We can now define

ρE,n(γ) = γ(y)∗n ◦ (y∗n)
−1 = (y′)∗n ◦ (y∗n)

−1 : Exn → Ex′n

Note that by construction ρE,n factors over the finite set Iso(Fx(V ), Fx′(V )).

Theorem 3.3 (DeWe). - The preceding constructions are independent of
all choices and define a continuous functor ρE from

∏
1(X r D) into the

category of free o-modules of finite rank.

Proof. [DeWe05b] Theorem 22

This result can be extended to generic fibers:

Theorem 3.4 (DeWe). - Let X ′ be a smooth projective curve over Qp and
let f : X → X ′ be a morphism. Let D′ be a divisor on X ′.

a) The functor
ρ : BXCp,D

→ RepΠ1(X\D)(Cp)

is Cp-linear, exact and commutes with tensor products, duals, internal
homs and exterior powers.

b) Pullback of vector bundles induces an additive and exact functor

f ∗ : BX′
Cp,D′

→ BXCp,f∗D′

which commutes with tensor products, duals, internal homs and exterior
powers. The following diagram is commutative:

BX′
Cp,D′

ρ
- RepΠ1(X′\D′)(Cp)

BXCp,f∗D′

f ∗

? ρ
- RepΠ1(X\f∗D′)(Cp).

A(f)

?

In particular for E in BXCp ,D
we have

ρf∗E = ρE ◦ f∗

as functors from Π1(X \ f ∗D′) to VecCp.
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c) For every automorphism σ of Qp over Qp the following diagram com-
mutes

BXCp,D

ρ
- RepΠ1(X\D)(Cp)

BσXCp,σD

σ∗

? ρ
- RepΠ1(σ(X\D))(Cp).

Cσ

?

In particular, we have for E in BXCp,D
that

ρσE = σ∗ ◦ ρE ◦ (σ∗)
−1

as functors from Π1(
σ(X \ D)) to VecCp. If X = XK ⊗K Qp and

D = DK ⊗K Qp for some field Qp ⊂ K ⊂ Qp, so that (σX,σD) is
canonically identified with (X,D) over Qp for all σ ∈ GK, the functor

ρ : BXCp,D
→ RepΠ1(X\D)(Cp)

commutes with the left GK-actions on these categories, defined by let-
ting σ act via σ∗ respectively via Cσ.

Proof. [DeWe05b] Theorem 28

This parallel transport can be extended to vector bundles lying in the
category B#

XCp,D
and Bs

XCp
:

Theorem 3.5 (DeWe). - The preceding constructions give a well defined
functor

ρ : B#
XCp,D

→ RepΠ1(X\D)(Cp)

which extends the previously defined functor. For different divisors D on X
the corresponding functors are compatible and define a functor

ρ : Bs
XCp

=
⋃
D

BXCp,D
→ RepΠ1(X)(Cp)

Proof. [DeWe05b] Proposition 32 and Theorem 36. As it will be used later we
sketch the basic part of the construction: Choose a ramified Galois covering
α : Y → X which is étale over X \D such that α∗E lies in BYCp,α∗D

. For an

étale path γ from x1 to x2 in X \D we set

ρE(γ) = ρα∗E(γ′) : Ex1 = (α∗E)y1 → (α∗E)y2 = Ex2 .

where y1 ∈ V (Cp) (V := Y \ α∗D) lies above x1 and γ′ is the unique path in
V with α∗γ

′ = γ from y1 to a point y2 above x2.
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3.3 Deninger-Werner parallel transport on abelian va-
rieties

A an abelian variety over Qp having good reduction

A/Zp an abelian scheme over Zp with generic fiber A

x = SpecQp → A the zero section of A

We will review the étale parallel transport of Deninger and Werner in the
case of abelian varieties having good reduction [DeWe05a].

Definition 3.6 (DeWe). -

a) Let BAo be the full category of the category of vector bundles on the
abelian scheme Ao consisting of all vector bundles E on Ao satisfying
the following property: For all n ≥ 1 there exists some N = N(n) ≥ 1
such that the reduction (N∗E)n of N∗E modulo pn is trivial on An =
A⊗Zp on. Here N : A → A denotes the multiplication by N .

b) Let BACp
be the full subcategory of the category of vector bundles on

ACp consisting of all vector bundles F on ACp which are isomorphic to
the generic fiber of a vector bundle E in the category BAo .

We will now sketch how to attach a p-adic representation of the Tate-
module TA of A to a vector bundle F in BACp

:
Let E be a vector bundle in BAo with generic fiber F . Fix some n ≥ 1.

Then there exists some N = N(n) ≥ 0, such that the reduction (N∗E)n is
trivial on An. The structure morphism λ : Ao → Speco satisfies λ∗OAo =
OSpeco universally. Hence Γ(An,O) = on, and therefore the pullback map

x∗n : Γ(An, (N∗E)n) 7→ Γ(Specon, x
∗
nEn) = En

is an isomorphism of free on-modules. (Note thatN◦xn = xn) On Γ(An, (N∗E)n)
the group AN(Qp) acts in a natural way by translation. Define a representa-
tion ρE,n : TA→ Auton(Exn) as the composition:

ρE,n : TA -- AN(Qp) - Auton(Γ(An, (N∗E)n))
∼
x∗n
- AutonExn

The representations ρE,n form a projective system and give a well defined
representation ρE : TA→ Aut(Ex). Taking generic fibers one obtains:

Theorem 3.7 (DeWe). -

14



a) The category BACp
is closed under direct sums, tensor products, duals,

internal homs and exterior powers. It contains all line bundles of degree
0. Besides, it is closed under extensions, i.e. if 0→ F ′ → F → F ′′ → 0
is an exact sequence of vector bundles on ACp such that F ′ and F ′′ are
in BACp

, then F is also contained in BACp
.

b) The association F 7→ ρF defines an additive exact functor

ρ : BACp
→ RepTA(Cp),

where RepTA(Cp) is the category of continuous representations of TA
on finite dimensional Cp-vector spaces. This functor commutes with
tensor products, duals, internal homs and exterior powers.

c) Let f : A → A′ be a homomorphism of abelian varieties over Qp with
good reduction. Then pullback of vector bundles induces an additive
exact functor

f ∗ : BA′Cp
→ BACp

,

which commutes with tensor products, duals internal homs and exte-
rior powers (up to canonical identifications). The following diagram is
commutative:

BA′Cp

f ∗
- BACp

RepTA′(Cp)

ρ

? F
- RepTA(Cp)

ρ

?

where F is the functor induced by composition with Tf : TA→ TA′.

d) Assume that A is defined over a finite extension K of Qp and set GK =
Gal(Qp/K). For every σ ∈ GK the following diagram is commutative:

BACp

ρ
- RepTA(Cp)

BACp

gσ

? ρ
- RepTA(Cp)

σ∗

?

where the functor gσ maps F to σF .
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e) If A is defined over a finite extension K of Qp, and if Â denotes the
dual abelian variety, that classifies line bundle of degree 0 on A, then
the association F 7→ ρF induces an isomorphism of topological groups

Â(Cp) ∼= CH∞(TA).

Here CH∞(TA) denotes the group of continuous characters χ : TA→
C∗p whose stabilizer in GK = Gal(Qp/K) is open.

Proof. [DeWe05a] Theorem 1 and Proposition 1

There is also a relation with the functor on curves: Let X be a smooth
irreducible projective curve over Qp which has good reduction. Fix a point
x ∈ X(Qp) and denote by π1(X, x) the algebraic fundamental group with
base point x. Let f : X → A := Jac(X) be the embedding induced by
x 7→ 0.

Proposition 3.8. The following diagram is commutative:

BACp

f ∗
- BXCp

RepTA(Cp)

ρ

? f̃
- Repπ1(X,x)(Cp)

ρ

?

where f̃ is the functor induced by composition with the homomorphism f∗ :
π1(X, x)→ TA.

Proof. [DeWe05a] Lemma 2

3.4 Faltings’ p-adic Simpson correspondence

K a finite extension of Qp

V the ring of integers in K
X a proper V -scheme

In [Fal05] Faltings constructs a p-adic analogue of the correspondence
described by Simpson and Corlette [Sim92]. We sketch his results briefly:

Definition 3.9 (Hitchin, Simpson). A Higgs bundle on an algebraic va-
riety Y over a field L is a pair (E , θ) where E is a vector bundle on Y and θ
an element of End(E) ⊗ Ω1

Y/L satisfying θ ∧ θ = 0 (In the case that Y is a

curve this condition is superfluous). The morphism θ is called a Higgs field.
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Remark 3.10. -

a) The scheme X is supposed to have ”toroidal singularities”, because
Faltings’ almost purity theorem ([Fal02] Theorem 4) is stated for schemes
having this kind of singularities. Examples of such schemes are schemes
that are smooth or semi-stable.

b) Faltings defines a sheaf O on a suitable situs on X \D for some divisor
D. He calls a vector bundle over O/ps (for some s ∈ Q, s > 0) a
”generalized representation”. Locally (affine) such generalized repre-
sentations are given by projective modules over a ring R equipped with
a semi-linear action of the étale fundamental group of the generic fiber.

c) We restrict us for simplicity to a field K that is a finite extension of
Qp, whereas Faltings considers a more general situation.

Faltings established the following p-adic analogue of Simpsons’ correspon-
dence for Higgs-bundles on XCp in the case of curves, i.e. XCp is a curve:

Theorem 3.11 (Faltings). There exists an equivalence of categories between
Higgs-bundles and generalized representations, if we allow Cp coefficients.

Proof. [Fal05] Theorem 6, Section 2

Remark 3.12. -

a) The equivalence depends on the choice of a p-adic exponential function
for the multiplicative group, and a lift of X to the dual numbers A2 of
a Fontaine ring ([Fal05] Section 1).

b) The category of generalized representations contains the category of
representations of the étale fundamental group of XQp on free finitely
generated o-modules L (étale local systems) as a full subcategory ([Fal05]
Section 2).

a) The constructions of Faltings and Deninger-Werner are assumed to
coincide for Higgs bundles (E , θ) with E ∈ Bs

XCp
and θ = 0 ([Fal05]

Section 5).

b) It is difficult to characterize the image of Faltings correspondence, i.e.
which Higgs bundles correspond to actual representation. It is known
that the (Higgs) vector bundles in the image are all semi-stable of slope
0 and all rank one Higgs bundles are in the image ([Fal05] Section 5).
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c) It is an interesting question which representations of the étale funda-
mental group correspond to Higgs-bundles with zero Higgs field i.e.
θ = 0.

We now state a key lemma used by Faltings to attach a Higgs bundle to
a generalized representation. The construction is affine, and Faltings uses in
[Fal05] Section 3 the following notation (in the case that X is a curve): Let
SpecR ⊂ X be a small affine, that is R is étale over over a toroidal model
(e.g. R is étale over V [x] (smooth) or étale over V [x, y]/(xy − p) (semi-
stable)). Denote by R the integral closure in the maximal étale extension of
U◦K = UK \DK (D a divisor as above) where UK := Spec(R⊗V K). Denote
by R∞ ⊂ R the sub-extension obtained by adjoining roots of characters
of the torus (e.g roots of x (smooth case)) and set R1 := R ⊗V V . Set
∆ := Gal(R/R1) and ∆∞ = Gal(R∞/R1). For a more detailed discussion
we refer the reader to [Fal02] Section 2c page 205, [Ols06] 3.5 and [Len97]
Section 6 Corollary 17.

Lemma 3.13 (Faltings). - Suppose that α > 1/(p−1) is a rational number,
and M ∼= R

r
/(ps) is a generalized representation (it admits a semi-linear ∆

operation).

a) Suppose that M is trivial modulo p2α. Then its reduction modulo ps−α

is given by a representation ∆∞ → GL(r, R1/(p
s−α)), and this repre-

sentation is trivial modulo pα.

b) Suppose given two representations ∆∞ → GL(ri, R1/(p
s−α)) (i=1,2),

trivial modulo pα, and a R−∆-linear map between the associated gen-
eralized representations. Then its reduction modulo ps−α is given by an
R1 −∆∞-linear map of representations.

Proof. [Fal05] Lemma 1. Faltings uses standard group cohomology to find
such representations. To compute certain cohomology groups appearing in
the construction, one needs to use Fatlings method of almost étale extensions

Remark 3.14. -

a) Let ∆∞ → AutR1/(ps−α)(M) be a representations as in 3.13 a), on a
free R1/(p

s−α)-module M . Then in [Fal05] Remark ii) associates a
Higgs-field θ to this representation by applying the logarithm map to
the images of generators of ∆∞ (This is possible because the logarithm
converges for arguments divisible by pα). The resulting Higgs-field θ is
an element of End(M)⊗ Ω̃1

R/V ⊗ V (−1) with commuting components.

18



b) If this representation is trivial then log(1) = 0 and the resulting Higgs-
field θ equals zero.

c) Faltings can extend this result to p-adic representations by using the
inductive method of liftings.

3.5 Unit-root F -crystals

K a finite extension of Qp

V its ring of integers
k the residue field of V
W the ring of Witt vectors of k
π a uniformizer in V
σ a lifting (to V ) of the q-power Frobenius on k leaving π invariant
Xk a smooth k-scheme
X/W a formally smooth lifting of Xk
φ a lifting (to X ) of the absolute Frobenius on Xk
x a geometric point of Xk

In [Katz73] Katz describes a correspondence between representations of
the étale fundamental group of a smooth scheme in characteristic p and for-
mal vector bundles equipped with a Frobenius morphism. Crew describes in
[Crew87] the image of this correspondence in certain cases. We will reproduce
some of their results here:

Definition 3.15 (Crew). A F -lattice on X/(V, φ) is a locally free V ⊗OX -
module M endowed with a map

Φ : φ∗M →M

such that Φ⊗Q is an isomorphism. If Φ is an isomorphism, then (M,Φ) is
called an unit-root F -lattice.

Theorem 3.16 (Crew, Katz). There is a natural equivalence of categories

H : RepV σπ1(X, x) ∼= (unit-root F -lattices on X/V )

Proof. ([Katz73] Proposition 4.1.1 page 74, [Crew87] Theorem 2.2). We re-
produce parts of [Crew87] Theorem 2.2: Let ρ : π1(Xk, x) → AutV σ(L) be
a continuous representation on a finite free V σ-module L. For n ≥ 1 let
Xn = X ⊗Wn and let Gn be the image of π1(X, x) in AutV σ(L/pnL). The
homomorphism π1(X, x)→ Gn classifies an étale cover Yk,n → Xk which has
a unique étale lifting Yn → Xn; the action of Gn on Yk,n extends uniquely to
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Yn, as does the action of φ on Xn. The ”opposite” action makes OYk,n into
a right Gn-module and we let

Mn := πn∗OYn ⊗Wn[Gn] Ln, M := lim
←−

Mn.

By uniqueness, the action of Gn on OYn commutes with φ, so that the map-
ping Φ = φ ⊗ id gives compatible isomorphisms Φ : φ∗Mn

∼= Mn, whence
Φ : φ∗M ∼= M . This (M,Φ) is H(ρ). The inverse functor for H is given
by mapping (M,Φ) to ”Ker(1 − Φ)”. More precisely, for n ≥ 1 the group
Gn acts on the finite dimensional V σ/pn module Ln = Ker(1n − Φn), where
1n − Φn : π∗nMn → π∗nMn. Then π1(X, x) acts on the inverse limit

L = lim
←−

Ln

3.6 Various fundamental groups

K a complete ultrametric field (K, | |)
V the ring of integers in K
S a K-analytic space (Berkovich analytic space)

In this section we recall some facts about fundamental groups of Berkovich
analytic spaces and schemes. Our sources are [Gro71], Andres’ book [And03]
Chapter III, [deJ95], [Her05] and [Len97].

Definition 3.17 (André). - A paracompact strictly K-analytic space is
called a K-manifold, if for any s ∈ S there is a neighborhood U(s) of s which
is isomorphic to an affinoid subdomain of some smooth space.

From now on we will assume that S is a K-manifold.

Remark 3.18 (Berkovich, André, deJong). -

a) If X is aK variety, thenX is smooth if and only if Xan is aK-manifold.

b) K-manifolds are locally arcwise-connected and locally simply connected,
hence any pointed K-manifold (S, s) admits a universal covering (S̃, s̃).

c) LetX be a smooth projective algebraic curve overK. Assume thatXan

has a semi-stable formal model X (what is true if e.g. K is algebraically
closed). Then πtop1 (Xan, x) is isomorphic to the fundamental group of
the graph associated to the special fiber of X. This group does not
depend on the choice of the semi-stable model ([deJ95] Proposition
5.3)
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d) A geometric point s of S is a point with value in some complete alge-
braically closed extension (Ω, | |) of (K, | |).

Definition 3.19 (Berkovich, De Jong, Herz). - A morphism f : S ′ → S
is a covering (resp. étale covering, resp. topological covering, resp. finite
topological covering) if S is covered by open subsets U such that f−1U is a
disjoint union of open subsets Vj ⊂ S ′ (i.e. f−1U =

∐
j∈J Vj), such that f

restricted to each Vj is finite (resp. étale finite , resp. an isomorphism, resp.
an isomorphism and f : S ′ → S is finite). The categories of étale coverings,
finite étale covering, topological coverings, topological finite coverings will be
denoted by CovetS , CovalgS , CovtopS , CovftopS .

Definition 3.20 (André). - An étale covering S ′ → S is called temperate
if it is a quotient ([And03] III Lemma 1.2.8) of a composite étale covering
T ′ → T → S, where T ′ → T is a topological covering, and T → S is a finite
étale covering.

I.e. there is a commutative diagram

T ′ - S ′

T

top

? alg
- S

et

?

with T ′ ∈ CovtopT , T ∈ CovalgS , S ′ ∈ CovetS .

Remark 3.21 (André, Herz, deJong). - There are inclusions (fully faith-
ful embeddings)

CovalgS ↪→ CovetS , CovtopS ↪→ CovetS , CovftopS ↪→ CovtopS ,

CovtopS ↪→ CovtempS , CovalgS ↪→ CovtempS , CovtempS ↪→ CovetS .

Let s be a geometric point of S. Consider the fiber functor

F et
S,s = F et

s : CovetS → Sets

S ′ 7→ geometric points s′ of S ′ above s

and its restrictions
F alg
s : CovalgS → Sets;

F top
s : CovtopS → Sets;

F ftop
s : CovftopS → Sets;
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F temp
s : CovtempS → Sets.

An étale path from s to another geometric point t of S is an isomorphism
of fiber functors F et

s
∼= F et

t
. The set of étale path is topologized by taking

as fundamental open neighborhoods of an étale path α the set StabS′,s′ ◦ α,
where StabS′,s′ runs among the stabilizers in Aut(F et

s ) of arbitrary geometric
points s′ above s in arbitrary étale coverings S ′/S.

One can define various fundamental groups of K-manifolds:
Let Cov•S be a full subcategory of CovetS which is stable under taking

connected components, fiber products and quotients. Examples are CovetS ,
CovalgS , CovtopS , CovftopS , CovtempS . Denote by F •s the restriction of F et

s to
Cov•S, and set

π•1(S, s) = AutF •s

where the topology is as above with t = s.

Lemma 3.22. The natural map

π•1(S, s)→ lim
←

Stab•
S′,s′

π•1(S, s)/Stab
•
S′,s′

is a homeomorphism. In particular π•1(S, s) is a separated pro-discrete topo-
logical space.

Proof. [And03] III Lemma 1.4.2

Proposition 3.23. Let Cov••S be a full subcategory of Cov•S stable under tak-
ing connected components, fiber products and quotients. Then the continuous
homomorphism

π•1(S, s)→ π••1 (S, s)

has dense image.

Proof. [And03] III Corollary 1.4.8.

The following remark relates the fundamental group of a variety with
automorphisms of finite étale Galois coverings.

Remark 3.24 ([Gro71]). - Let Z be a variety over Qp and choose a ge-
ometric point z in Z(Cp). Let Fz be the fiber functor from the category
of finite étale coverings Z ′ of Z to the category of finite sets defined by
Fz := MorZ(z, ). The functor Fz is strictly pro-representable: There is a
projective system Z̃ = (Zi, zi, ϕij)i∈I of pointed Galois coverings of Z where
I is a directed set, and the zi ∈ Zi(Cp) are points over z. Moreover, for i ≥ j
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the map ϕij : Zi → Zj is an epimorphism over Z such that ϕij(zi) = zj and
such that the natural map

lim
→
i

MorZ(Zi, Z
′)→ Fz(Z

′)

induced by evaluation on the zi’s is a bijection for every Z ′.
There is an isomorphism of topological groups

π1(Z, z) = Aut(Fz)→ (lim
→
i

AutZ(Zi))
op.

Here the natural transformation σFz : Fz → Fz given by the family of com-
patible bijections σFz(Zi) : Fz(Zi) ∼= Fz(Zi) for (i ∈ I) is sent to the projective
system (σi)i∈I where σi ∈ AutZ(Zi) is uniqueley defined by the relation:

σi(zi) = σFz(Zi)(zi).

Let Y/Z be a Galois étale cover with group G := AutZY . Choose a point y
in Y (Cp) lying over y. It determines a map of projective systems Z̃ → Y ,
represented by a morphism ai : Zi → Y over Z wit zi 7→ y. Consider the
induced epimorphism

ψi : AutZZi � AutZY

defined by ψi(σ)(y) = ai ◦ σ ◦ zi. The composition

ϕy : π1(Z, z) � AutopZ Zi � Gop

depends only on y, but not on i. For two different choices y, y′ of points in
Y (Cp) over z, we obtain the corresponding epimorphisms ai, a

′
i and ψi, ψ

′
i.

Because Y/Z is Galois, there is a τ ∈ G satisfying τy = y′. One can check,
that the two epimorphisms ψi and ψ′i satisfy the relation

ψ′i(σ) = τψi(σ)τ−1 for all σ ∈ AutZZi

in other words, they are conjugated.

Remark 3.25. In [Gro71] Grothendieck developed the theory of the étale
fundamental group for schemes that are locally noetherian. We will work
with schemes that are defined over o or Zp, both rings are not noethe-
rian. Grothendiecks’ theory was extended to arbitrary (not necessarily lo-
cally noetherian) connected schemes in [Len97]. We assume that an im-
portant reason to restrict to the locally noetherian case in [Gro71] was
that Grothendiecks’ existence theorem was only stated for noetherian for-
mal schemes, which played an crucial role in [Gro71] Expose X. It would
be interesting to generalize Expose X to the non noetherian situation (See
Section 3.7 for some available theorems).
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3.7 GAGA for vector bundles on formal schemes

V a valuation ring of Krull dimension 1 complete and separated
(π) an ideal generated by an element π 6= 0 of the maximal ideal

In this section we want to collect some information about vector bundles
defined over o on a projective scheme X defined over OK (the ring of integers
of a finite extension K of Qp) and their formal completions. We want to know
if a projective systems of vector bundles modulo pn defines an algebraic vector
bundle. In the noetherian case this is already in Grothendieck [EGA] I 10
(Schémas formels) and III . Most properties carry over to schemes that are
topologically of finite presentation over the ring o which is not noetherian.

Definition 3.26 ([BoLu93]). - An V -algebra A is called topologically of
finite type (tf type) if it is isomorphic to a quotient V 〈ξ〉/a, where ξ is a
finite set of variables and were a ⊂ V 〈ξ〉 is an ideal. If in addition a is finitely
generated, we call A of topologically finite presentation (tf presentation). An
V -algebra of tf presentation is called admissible, if it has no (π)-torsion.

Remark 3.27. The standard example for the valuation ring (V, π) is (o, p).

If A′ is a OK-algebra of finite type, then A := ̂A′ ⊗OK o is an o algebra of tf
presentation.

Proposition 3.28. Let A be an V -algebra of tf presentation. Then A is a
coherent ring; in particular each A-module of finite presentation is coherent.

Proof. [BoLu93] Proposition 1.3

Proposition 3.29 (Theorem A for formal schemes). Let M be a OX-
module on X = SpfA, where A is an V -algebra of tf presentation. Then M
is coherent if and only if there is a coherent A-module M such that as an
OX-module M is isomorphic to the OX-module M4 associated to M .

This A-module M is uniquely determined by M up to A-module isomor-
phism.

Proof. [Ull95] Proposition 2.3

Proposition 3.30 (Theorem B for formal schemes). Let M be a co-
herent OX-module on X = SpfA, where A is an V -algebra of tf presentation.
Then

Hq(X,M) = 0 for all q > 0.

Proof. [Ull95] Proposition 5.1
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Proposition 3.31. Let A be a finitely generated or a topologically finitely
generated V -algebra. Then each finitely generated A-module without (π)-torsion
is coherent over A.

Proof. [Ull95] Proposition 1.6

We will need the following three GAGA theorems for formal schemes from
[Ull95] Theorem 6.5:

Theorem 3.32 (1st GAGA). - Let X be a proper SpecV scheme. Assume
that X̂, the formal scheme associated to X is (locally) of topologically finite
presentation over V . Let M be a OX-module of finite presentation. Then
for each q ∈ Z one has canonical isomorphisms of V -modules

Hq(X,M) ∼= Hq(X̂,M̂).

Proof. [Ull95] Theorem 6.4. The theorem there is originally stated with some
restrictions on the sheafs. These restrictions are not necessary by a theorem
of Gabber: [Fuj95] Proposition 1.2.3, see also [Ull95] ”Note added in proof”
in the end of this paper

Theorem 3.33 (2nd GAGA). - Let X be a proper SpecV scheme. Assume
that X̂ is (locally) of topologically finite presentation over V . Let M, F be
finitely presented OX-module. Then one has a canonical isomorphism of V -
modules

HomOX (F ,M) ∼= HomOX̂ (F̂ ,M̂)

Proof. [Ull95] Theorem 6.5. The theorem there is originally stated with some
restrictions on the sheafs. These restrictions are not necessary by a theorem
of Gabber: [Fuj95] Proposition 1.2.3, see also [Ull95] ”Note added in proof”
in the end of this paper

Theorem 3.34 (3rd GAGA). - Let X be a projective SpecV scheme. As-
sume that X̂ is (locally) of topologically finite presentation over V . Then
for each coherent OX̂-moduleM there is a finitely presented OX-moduleM′

whose completion M̂′ is isomorphic to M.

Proof. [Ull95] Theorem 6.8

Lemma 3.35 (Gabber). - Let A′ be a finitely generated algebra over V .
For a finitely generated A′-algebra B the π-adic completion B̂ is flat over B.

Proof. [Fuj95] Proposition 1.2.3
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Corollary 3.36. Assumptions are as in Lemma 3.35. For a finitely gener-
ated module M with the π-adic topology, the Artin-Rees lemma is valid and
M̂ = M ⊗B B̂.

Proof. [Fuj95] Corollary 1.2.7

Corollary 3.37. Assumptions are as in Lemma 3.35. Let M , N be two
B-modules of finite type. Then there are canonical isomorphisms

M̂ ⊗B N ∼= M̂ ⊗B̂ N̂

If furthermore M is finitely presented then

̂HomB(M,N) ∼= HomB̂(M̂, N̂)

Proof. For noetherian rings this is shown in [EGA] Chap. 0new Corollaire
7.3.7. The proof works as well using Lemma 3.35 instead.

Corollary 3.38. Assumptions are as in Lemma 3.35. Let M be a B-module
of finite type. Assume that M̂ is a projective B̂-module. Then M is a pro-
jective B-module.

Proof. Use Corollary 3.37 and the universal property of projective modules

Lemma 3.39. Let A be a ring, I an ideal of A, such that A is separated
and complete for the I-preadic topology. Set An = A/In+1, and let Mn

be a projective system of An-modules, such that for all n the homomorphism
Mn+1⊗An+1An →Mn induced by the di-homomorphism of transition Mn+1 →
Mn is bijective. Suppose that the Mn are projective and M0 is of finite type.
Then M = lim

←
Mn is an projective A-module of finite type, such that the

canopnical morphism M ⊗A A0 →M0 is bijective.

Proof. [EGA] IV Quatrieme Partie, Lemme (18.3.2.1)

3.8 The universal topological covering of a curve

K a finite extension of Qp

V its ring of integers
k the residue field

In this section we recall the definition and the construction of the universal
topological (analytic) covering of a rigid curve. For our comparison between
Berkovich and DeWe parallel transport we need to work in the language
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of formal schemes. Thus we need also formal models of our curve and its
universal covering. For the relation between formal schemes, rigid spaces
and analytic spaces we refer the reader to [BoLu93], [FrPu04] Sections 4,5,
[Ber93] 1 and [Ber94] Section 1. We follow the exposition in [FrPu04] Section
5.7 and [Co00] Section 1.

Definition 3.40 (van der Put). - Let X be a geometrically connected rigid
space over a complete non-archimedean field L.

a) A trivial covering of X is a morphism of rigid spaces φ : Y → X such
that the restriction φ : Yi → X of φ to each connected component Yi
of Y is an isomorphism.

b) A morphism φ : Y → X of rigid spaces is called an analytic (topological)
covering if there exists an admissible covering {Xi}i∈I of X such that
each covering φ−1Xi → Xi is a trivial covering.

c) A geometrically connected rigid space X is called simply connected if
every analytic covering of X is trivial.

d) An analytic covering Ω→ X is called the universal analytic covering of
X if Ω is simply connected.

Remark 3.41. Choose a point x0 ∈ X and a point ω0 ∈ Ω satisfying u(ω0) =
x0. If Ω exists, then it satisfies the following universal property: If ϕ :
Y → X is any connected (topological) covering, and ϕ maps a fixed y0 ∈ Y
to x0, then there exists a unique (topological) covering v : Ω → Y with
v(ω0) = y0 such that ϕ ◦ v = u ([FrPu04] Section 5.7(1)). The corresponding
analytic morphism uan : Ωan → Xan is also the universal covering for analytic
spaces. This is true, because topological coverings of Xan correspond to
(rigid) topological covers of X (See [Ber90] 3.3.4 or [deJ95] Proposition 5.3
and proof, see also the description below)

To construct the universal covering of a rigid curve X, it will be useful
that X has a suitable analytic reduction. The existence of such a reduction
was remarked by Coleman [Co00] Section 1 (see also [FrPu04] Proposition
5.6.5 for an analytic description). We reproduce his remark with several
comments and changes:

Remark 3.42 (Coleman). Suppose that C is a smooth projective geomet-
rically integral algebraic curve over K with a minimal regular model C/V
that is semi-stable (this can be assumed after a finite extension of K by the
semi-stable reduction theorem and [Liu02] Theorem 10.3.34). After a finite
étale extension V ′ of V we can further assume that all singular points on the
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special fiber of CV ′ := C×SpecV SpecV ′ are split ordinary double points (apply
[Liu02] Corollary 10.3.22 a) inductively to each singular point). Note that
CV ′ is still the minimal regular model (of C ×SpecK SpecK ′ for K ′ = V ′[1/p],
over V ′) and semi-stable by [Liu02] Corollary 10.3.36 a) and proof of c). We
assume now that C has already a minimal regular model C/V that is semi-
stable and all singular points on the special fiber of C are split ordinary double
points. Because C is regular and semi-stable, all singularities on the special
fiber of C are of thickness one ([Liu02] Corollary 10.3.25 and C is already the
minimal desingularization). After adjoining a square root of a uniformizer to
V we can assume that each singular point on the special fiber is of thickness
2. This is true, because if x is a singular point on the special fiber, then there
is an isomorphism ÔC,x w V [[u, v]]/(uv − c) for some c ∈ V with v(c) = 1
([Liu02] Corollary 10.3.22 and x is of thickness one), and adjoining a square
root of a uniformizer to V changes the valuation of c to v(c) = 2. Then
blowing up C once at all these singular points (of thickness 2) on the special
fiber produces a regular semi-stable model and all irreducible components of
the special fiber are non-singular. The problem is again local, so we fix a
singular point x on the special fiber of C and remove all other singular points
from C. Then we can use [Liu02] Lemma 10.3.21 and its proof. We then have
to show that the blow up of SpecV [u, v]/(uv − c) (c ∈ V , v(c) = 2) at the
point (u, v, π) (π a uniformizer) is regular and semi-stable with non-singular
components on the special fiber. This was explicitly computed in [Liu02]
Example 8.3.53.

The universal covering of a rigid curveX/K is constructed in the following
theorem:

Theorem 3.43 (Existence of an universal covering). - Let X be a
geometrically irreducible, non-singular projective (rigid) curve over K. Then
after replacing K by a finite separable extension, X has a universal analytic
covering.

Proof. [FrPu04] Theorem 5.7.2. For the convenience of the reader we recall
the basic parts of the proof here: By Remark 3.42 we may suppose (after
replacing K by a finite extension) that there exists an analytic reduction
r : X → Z with semi-stable Z such that every irreducible component of Z
is a non-singular curve over k. Let G be the intersection graph of Z. For
each edge e of G one considers the affine open subset U(e) of Z obtained by
removing all the irreducible components of Z on which the double point e
does not lie. For each vertex v of G one defines the affine open subset U(v)
of Z obtained by removing all irreducible components different from v. Then
{r−1U(v)}v ∪ {r−1U(e)}e is a pure covering of X which induces the analytic
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reduction r : X → Z. Let uT : T → G denote the universal covering of this
graph. Then T is a tree, locally isomorphic to G. For every edge e of T one
defines Ω(e) to be the affinoid space r−1U(uT e). For each vertex v of T one
defines Ω(v) to be the affinoid space r−1U(uTv). The space Ω is obtained by
glueing the affinoid sets {Ω(e)}e ∪ {Ω(v)}v according to the tree T

We will now construct a formal scheme Ω̂◦. The construction is analogous
to the construction in Theorem 3.43. The only difference is, that we will
replace the affinoid algebras A by A◦, the integral elements in A.

Construction 3.44. Let C be a smooth geometrically integral projective
algebraic curve over K. Assume that C has a semi-stable (regular) model C
such that its special fiber has non-singular components. Write Z := Ĉs for
the special fiber of the formal scheme Ĉ associated to C. By the assumptions
Z is a semi-stable curve over K with non-singular components. Let G be
the intersection graph of Z. For each edge e of G one considers the affine
open subset U(e) of Z obtained by removing all the irreducible components
of Z on which the double point e does not lie. For each vertex v of G one
defines the affine open subset U(v) of Z obtained by removing all irreducible
components different from v. Let uT : T → G denote the universal covering
of the graph G. Then T is a tree, locally isomorphic to G. For every edge
e of T one defines Ω̂◦(e) to be the affine formal scheme SpfOĈ(U(uT e)).

For each vertex v of T one defines Ω̂◦(v) to be the affine formal scheme
SpfOĈ(U(uTv)). The formal scheme Ω̂◦ is obtained by glueing the affine

formal schemes {Ω̂◦(e)}e∪{Ω̂◦(v)}v according to the tree T . In this way one
obtains a topological covering u : Ω̂◦ → Ĉ in the Zariski topology.

Remark 3.45. a) We assume that one can show that Ω̂◦ is the universal
covering of Ĉ in the Zariski topology. The proof should be analogous
to [FrPu04] Section 5.7. We will not need this in this paper.

b) The formal scheme Ω̂◦ is admissible. This is true, because locally it is
isomorphic to Ĉ and we claim that this formal scheme is admissible.
Again this question is local, so let SpecA ⊂ C be an affine open, and
denote by Â its formal completion. Then Â is of topological finite
presentation over OK and also flat, because A is flat over OK and Â is
flat over A (Lemma 3.35). The flatness of Â over OK implies that Â is
admissible ([BoLu93] Remarks before Proposition 1.1)

c) The admissible formal scheme Ω̂◦ has a rigid generic fiber ([BoLu93]
Section 4). If SpfA ⊂ Ω̂◦ is an admissible open affine OK-algebra, then
Arig := A ⊗OK K is an affinoid K-algebra. The generic fiber of Ω̂◦ is
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obtained by glueing these affinoid algebras [BoLu93] Section 4. From
the construction in Ω (Theorem 3.43) and Ω̂◦ we can see that Ω is the
generic fiber of Ω̂◦.

d) A deck-transformation of u : Ω̂◦ → Ĉ gives rise to a deck-transformation
of u : Ω → Crig and vice versa. The group of deck-transformations of
u : Ω→ Crig is isomorphic to the topological fundamental group of the
graph G corresponding to Z [FrPu04] proof of Theorem 5.7.2.

e) By construction of the universal covering, the group of deck-transformations
Γ acts freely and discountinuously in the Zariski topology of the special
fiber of Ω̂◦.

f) If we replace C by CCp and C by Co (i.e. their base change with Cp

and o) then we can perform the previous construction also over o or
Cp. All points stated above, Construction 3.44 and Theorem 3.43 are
valid over o and Cp as well.

The following corollary is already known in the case of Mumford curves
[Her05] Chapter 1 Corollary 1.48

Corollary 3.46. Let C/K be a smooth geometrically integral projective curve
and assume that C admits a semi-stable V -model C with non-singular com-
ponents on the special fiber. Let L ⊂ Cp be a complete subfield. Then the
rigid fundamental groups of C and CL are isomorphic.

Proof. The models C and C ×SpecV SpecOL have the same reduction graph
because C is semi-stable. The rigid fundamental group of C resp. CL is
isomorphic to the reduction graph of C resp. C ×SpecV SpecOL

3.9 A p-adic Riemann-Hilbert correspondence

K a complete non-archimedean field
V its ring of integers
S a connected K-manifold
s a geometric point of S

On a complex manifold one can attach to every finite-dimensional repre-
sentation of the fundamental group a vector-bundle with integrable connec-
tion, and vice versa. This is the so called Riemann-Hilbert correspondence.

In [And03] Yves André defined a p-adic analogue on Berkovich-spaces.
We present his results here.
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Proposition 3.47 (Y. André). - There is a natural equivalence of cate-
gories

{discrete πet1 (S, s)− representations} ∼= {étale local systems on S}.

(Here representations are representation on the automorphism group of finite
dimensional K-vector spaces).

Proof. [And03] Y.André Proposition III.3.4.4

Theorem 3.48 (Y. André). - There is a natural equivalence of Tannakian
categories (the non-archimedean étale Riemann-Hilbert functor):

{discrete πet1 (S, s)− representations (on fin. dim. K-vector spaces)}

RHet
-

{vector bundles with integrable connection (M,∇) on S

such that M∇
et is an étale local system}.

The correspondence is given by

Vρ 7−→ (Mρ,∇ρ) := (V ⊗K OSet , id⊗ dSet)

(M,∇)←−M∇
et

where Vρ is the local system corresponding to a finite dimensional represen-

tation ρ, and M5
et is the sheaf of horizontal sections. In this correspondence,

the subspace of πet1 (S, s)-invariants corresponds to the space of global sections
of M5

et .

Proof. Y. Andre [And03] Theorem III 3.4.6.

Remark 3.49. The main open problem is to describe the image of the Rie-
mann Hilbert functor, i.e. those vector bundles with integrable connection
(M,∇) on S, such that M5

et is an étale local system.

We are interested in some special cases of Andres’ Riemann Hilbert cor-
respondence: For any full subcategory Cov•S ⊂ CovetS which is stable under
taking connected components, fiber products and quotients, there is a natural
continuous homomorphism:

πet1 (S, s)→ π•1(S, s)
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with dense image ([And03] Corollary 1.4.8). Any discrete representation of
π•1(S, s) gives rise to a discrete representation of πet1 (S, s) with the same co-
image. It follows, that the étale Riemann-Hilbert functor induces a fully
faithful functor

{discrete π•1(S, s)-representations on fin. dim. K-vector spaces}

RH•
-

{vector bundles with integrable connection (M,∇) on S}
(Y. André [And03] III Example 3.5.1). Of special interest for us is the
case that • = top i.e. we are interested in the topological fundamental
group πtop1 (S, s), and the topological Riemann-Hilbert functor RH top (See
also [And03] I 1.5).

There are some results describing the image of the topological Riemann-
Hilbert functor:

Theorem 3.50 (Faltings, van der Put, Reversat). - Let X be a Mumford-
curve over a closed subfield K of Cp, and x a geometric base point.

a) If ρ is a Φ-bounded representation of Γ := πtop1 (XCp , x) into GLr(K),
then Mρ is semi-stable of degree zero.

b) For any semi-stable vector bundle M on X of degree zero there exists
a Φ-bounded representation ρ with M ∼= Mρ

b) If X = K∗/qZ, v(q) = m > 0 is a Tate-curve, then the absolutely
indecomposable representations of Γ are obtained by sending a generator
of Γ = Z to  λ 1 0

. . . 1
0 λ


with λ ∈ K∗. Such a representation is Φ-bounded, if and only if 0 ≤
v(λ) < m (v is the p-adic valuation on K).

Proof. [Fal83], [PuRe86]

Remark 3.51. -

a) Φ-bounded representations are representations whose coefficients satisfy
certain growth conditions. Integral representations are Φ-bounded. In
this correspondence connections do not appear.
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b) If S is an analytic torus then homogeneous (translation invariant) vec-
tor bundles on S are in one to one correspondence with Φ-bounded
representations of the topological fundamental group of S [PuRe88].

c) It was shown by Florentino [Flo01] Theorem 1 that all maximally un-
stable vector bundles on a Schottky uniformized Riemann surface are
induced by representations of the Schottky group. A similar result
should hold for maximally unstable vector bundles on Mumford curves,
where the topological fundamental group is also a Schottky group.

Let K be a finite extension of Qp with ring of integers V . Let X be
a smooth geometrically integral projective curve over K admitting a semi-
stable (regular) model with non-singular components on the special fiber as
in 3.8. We will present the construction of Y. Andrés’ topological Riemann-
Hilbert functor RH top in detail in the case of curves. We will follow closely
the construction of Reversat and van der Put in [PuRe86] (1.11)-(1.13) and
Faltings [Fal83], Gieseker [Gie73]. Their construction can be extended to
curves with arbitrary reduction, to integral representations and integral vec-
tor bundles, and to vector bundles with connections:

Construction 3.52. - Let X nsc be a V -model of X as constructed in Section
3.8 and let X̂ nsc be the formal completion of X nsc for the ideal defined by
(p). Let u : Ω̂◦ → X̂ nsc be its universal covering. Denote by X̂ nsc

s , Ω̂◦s their
special fibers. Denote by Γ the automorphism group of Ω̂◦/X̂ nsc, and let
ρ : Γ→ Auto(L) be an integral representation on a free o-module L of rank
r. Set X̂ nsc

o = X̂ nsc ⊗V o for the base change with o, and similar for Ω̂◦. We
define a Γ-action on OΩ̂◦ by the rule γ(f) := (γ−1)∗f (This is consistent with
the literature [Gro56] Section 2 or [PuRe86]).

a) For U ⊂ X̂ nsc
o,s open we set

M◦
ρ (U) := {m ∈ L⊗o OΩ̂◦o

(u−1U)|γ(m) = m for all γ ∈ Γ}.

Here the action of Γ on (L⊗o OΩ̂◦o
(u−1U)) is the diagonal action, i.e.

γ(
r∑
i=1

ei ⊗ fi) =
r∑
i=1

ρ(γ)(ei)⊗ γ(fi) for ei ∈ L, fi ∈ OΩ̂◦o
(u−1U).

We claim that this defines a formal vector bundle on X̂ nsc
o .

b) We can also define a connection ∇◦ρ on M◦
ρ by setting

∇◦ρ(
r∑
i=1

ei ⊗ fi) :=
r∑
i=1

ei ⊗ dfi
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for U ⊂ X̂ nsc
o,s open, and ei ∈ L, fi ∈ OΩ̂◦o

(u−1U). This map is Γ-
equivariant:

γ(∇◦ρ(
r∑
i=1

ei ⊗ fi)) =
r∑
i=1

ρ(γ)(ei)⊗ γ(dfi) =

r∑
i=1

ρ(γ)(ei)⊗ dγ(fi) = ∇◦ρ(γ(
r∑
i=1

ei ⊗ fi)).

We claim that it descends to a connection ∇ρ : M◦
ρ → M◦

ρ ⊗OX̂nsco

Ω̂1
X̂nsco /o

. Here the sheaf of formal differential forms is defined to be the

projective limit of the sheafs of algebraic differential forms modulo pn.
The sheaf of formal differential forms Ω̂1

X̂nsco /o
is thus isomorphic to

lim
←

Ω1
(Xnsco )n/on

∼= lim
←

Ω1
Xnsco /o ⊗o on.

For more details about the module of formal differential forms we refer
the reader to [EGA] IV (Premiere Partie) Section 20.7.

Remark 3.53. It was already mentioned in [Gie73] Lemma 2 that a coherent
sheaf with descent datum descends to a coherent sheaf in the case that X is a
Mumford curve and the formal scheme is noetherian. Descent theory is also
available in our situation (over o) [BoGo98] Theorem 2.1. We will calculate
the sheaf of invariant sections and the connection explicitly, so we need not
to make use of the descent theory mentioned above.

Proposition 3.54. The sheaf M◦
ρ defined in Construction 3.52 a) is a vector

bundle (a locally free sheaf of rank r) on X̂ nsc
o . The connection defined in

Construction 3.52 b) descends to a connection on M◦
ρ .

Proof. The assertion is local so we can take a small Zariski open U ⊂ X̂ nsc
o

such that u−1U =
∐

g∈Γ U , i.e. the inverse image of U in Ω̂◦ is a disjoint union

of copies of U indexed by Γ. This is possible because Ω̂◦o is a covering of X̂ nsc
o

with deck-transformation group Γ in the Zariski topology. But then we are
in the situation of Lemma 3.55 with A := OX̂nsco

(U), B := OΩ̂nsco
(u−1U),

W := L, R = o and G = Γ and so M := M◦
ρ (U) is a free A = OX̂nsco

(U)-
module of rank r. To show that the connection descends we can work modulo
pn. We can then set C := Ω1

(Xnsco )n/on
(U). If we replace B, A, W , R by

their reductions modulo p then we are in the situation of Lemma 3.56 and
the connection descends modulo pn. Because of the explicit description in
Equation 1 we see that we get a projective system of such maps for varying
n, hence a map on the projective limit. So ∇ρ descends
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Lemma 3.55. Let R be a commutative ring with unit, and let A be a commu-
tative R-algebra with unit. Let G be a group with a simply transitive action
on the set H := G. Let B :=

∏
h∈H Ah be a direct product of copies of A,

i.e. Ah := A. Define a G-action on B by the rule g((ah)) = (ag(h)), i.e. G
permutes the ordering of an element. Then B is an A algebra and the ring
of G-invariants BG can be identified with A. Let W := e1R ⊕ . . . ⊕ erR be
a free R-module of rank r with basis e1, . . . , er. Let ρ : G → GLr(R) be a
representation. Define a semi-linear G-action on M := W ⊗R B by the rule

g(w ⊗R b) := ρ(g) · w ⊗R g(b) w ∈ W, b ∈ B

Then the A-module MG of G-invariant elements is free of rank r.

Proof. An element (ah) ∈ B is G-invariant if and only if ag(h) = ah for all
g ∈ G and all h ∈ H. As G acts simply transitive on H this is the case if and
only if ah′ = ah for all h, h′ ∈ H, so (ah) is represented by a single element
a ∈ A and so BG = A. We will give now an explicit description of MG: An
element m ∈M can be written as

m =
r∑

k=1

ek ⊗ (ah)k for (ah)k ∈ B

(For simplicity we have written the coefficients in R belonging to the ek on
the right hand side). By identifying M with Br we can write m as a column
vector, i.e.

m =

 (ah)1
...

(ah)r

 .

The G-action on m is given by the rule

g(m) = g

 (ah)1
...

(ah)r

 = ρ(g) ·

 g((ah)1)
...

g((ah)r)


if ρ(g) is considered as a matrix with coefficients in R⊗RB ∼= B. An element
m ∈M is invariant if and only if

ρ(g) ·

 g((ah)1)
...

g((ah)r)

 =

 (ah)1
...

(ah)r


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for all g ∈ G. This is the case if and only if

ρ(g) ·

 ag(h),1
...

ag(h),r

 =

 ah,1
...
ah,r


for all g ∈ G and h ∈ H. Because G acts simply transitive on H we can
deduce, that an elementm ∈M is fixed under theG-action if and only if there
are elements a1, . . . , ar ∈ A such that m = ((ah)1, . . . , (ah)r)

T with ah0,i = ai
for i = 1, . . . , r and some fixed h0, and ag(h0),i defined for i = 1, . . . , r by the
rule  ag(h0),1

...
ag(h0),r

 = ρ(g)−1 ·

 ah0,1
...

ah0,r


This shows that MG is a free A-module of rank r

Lemma 3.56. We use the same notation as in Lemma 3.55. Denote by
C := Ω1

A/R the module of differential forms. Set D :=
∏

g∈GCh for the direct
product of copies Ch := C indexed by the set H. Let G act on D by the
translation map, i.e. g((ch)) := (cg(h)). Define a map

∇ : M →M ⊗B D w ⊗R b 7→ w ⊗R 1⊗B db

(w ∈ W , b ∈ B). Then ∇ descends to a map of the fixed modules, i.e.
∇(MG) ⊂MG ⊗A DG = MG ⊗A C

Proof. As in the proof of Lemma 3.55 an G-invariant element of M can be
written as m = ((ah)1, . . . , (ah)r)

T with ah0,i = ai for i = 1, . . . , r and some
fixed h0 for a1, . . . , ar ∈ A, and ag(h0),i defined for i = 1, . . . , r by the rule ag(h0),1

...
ag(h0),r

 = ρ(g)−1 ·

 ah0,1
...

ah0,r

 .

By definition ∇ maps m = ((ah)1, . . . , (ah)r)
T to ((dah)1, . . . , (dah)r)

T . De-
fine elements (xh)

1, . . . , (xh)
r ∈M = W ⊗R B by the rule xig(h0),1

...
xig(h0),r

 = ρ(g)−1 · ei
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for i = 1, . . . , r and some fixed h0 (Note that by definition these elements are
in MG). Then dag(h0),1

...
dag(h0),r

 = ρ(g)−1 ·

 dah0,1
...

dah0,r

 = x1
g(h0)⊗B dah0,1 + . . .+xrg(h0)⊗B dah0,r.

for all g ∈ G. Hence

∇(m) = (xh)
1 ⊗B dah0,1 + . . .+ (xh)

r ⊗B dah0,1r ∈MG ⊗A C (1)

because (xh)
i ∈MG and ah0,i ∈ A for all i = 1, . . . , r

Remark 3.57. The rigid generic fiber M rig
ρ := M◦

ρ ⊗o Cp of M◦
ρ and the

connection∇◦ρ⊗oCp coincide with the rigid vector bundle defined in [PuRe86].

This can be seen locally. If Red : Xrig
Cp → X

nsc
o,s denotes the reduction map

corresponding to the model X nsc
o , then for U ⊂ X nsc

o affine open, Red−1U is
an admissible affinoid subset of Xrig

Cp . Then

(M◦
ρ ⊗o Cp)(U) = {m ∈ L⊗o OΩ̂◦o

(u−1U)|γ(m) = m for all γ ∈ Γ} ⊗o Cp =

= {m ∈ LCp ⊗Cp OΩCp
(u−1Red−1U)|γ(m) = m for all γ ∈ Γ} = M rig

ρ .

And similar for the connection. From the calculation one sees that (M rig
ρ ,∇ρ)

does not depend on the chosen model X nsc. The vector bundle with connec-
tion (Mρ,∇) on Xan defined in Theorem 3.48 corresponds to the rigid vector
bundle with connection (M rig

ρ ,∇ρ) (We refer the reader to [Ber93] Section 1.6
for the correspondence between vector bundles on analytic and rigid spaces).
We will write RH top,◦ for the integral topological Riemann-Hilbert functor
defined above, i.e. RH top,◦(ρ) := (M◦

ρ ,∇◦ρ).

3.10 Berkovich p-adic integration

K a non-Archimedean field in characteristic 0
X a smooth K-analytic space

We recall the main results of Berkovichs’ book [Ber07] on p-adic integration:

Remark 3.58. We use K for the base field, whereas Berkovich uses k. We
restrict for simplicity to characteristic 0.

Definition 3.59 (Berkovich). -

a) The sheaf of constant analytic functions is defined as cX = Ker(OX
d→ Ω1

X).

37



b) Let K be a filtered K algebra, i.e. a commutative K-algebra with
unity provided with an increasing sequence ofK-vector subspaces K0 ⊂
K1 ⊂ . . . such that Ki ·Kj ⊂ Ki+j and K = ∪∞i=0K

i. Given a strictly
K-analytic space X, we set OK,i

X = O ⊗K Ki. If X is reduced, we set
CK,iX = cX ⊗K Ki.

Definition 3.60 (Berkovich). -

a) Let X be a smooth K-analytic space. A DX-module on X is an étale
OX-module F provided with an integrable connection∇ : F → F ⊗OX Ω1

X .

b) A DX-algebra is an étale commutative OX-algebra A which is also a
DX-module whose connection ∇ satisfies the Leibnitz rule ∇(g · f) =
fdg + gdf . If in addition A is a filtered OX-algebra such that all Ai
are DX-submodules of A, then A is said to be a filtered DX-algebra.

Theorem 3.61 (Berkovich). Given a closed subfield K ⊂ Cp, a filtered
K-algebra K and an element λ ∈ K1, there is an unique way to provide
every smooth K-analytic space X with a filtered DX-algebra SλX such that the
following is true:

a) Sλ,0X = OK,0
X ;

b) Ker(Sλ,iX
d→ Ω1

Sλ,i,X) = CK,iX ;

c) Ker(Ω1
Sλ,i,X

d→ Ω2
Sλ,i,X) ⊂ dSλ,i+1

X ;

d) Sλ,i+1
X is generated by local sections f for which df is a local section of

Ker(Ω1
Sλ,i,X

d→ Ω2
Sλ,i,X);

e) Logλ(T ) ∈ Sλ,1(Gm).

f) for any morphism of smooth K-analytic spaces φ : X ′ → X, one has
φ∗(Sλ,iX ) ⊂ Sλ,iX′ .

Proof. [Ber07] Theorem 1.6.1

Definition 3.62 (Berkovich). - A DX-module F on a smooth K-analytic
space X is said to be unipotent if there exists a sequence of DX-submodules
F0 = 0 ⊂ F1 ⊂ . . . ⊂ Fn = F such that all of the quotients F i/F i−1

are isomorphic to the trivial DX-module OX . A DX-module F is said to
be unipotent (resp. quasi-unipotent) at a point x ∈ X, if x has an open
neighborhood U ⊂ X (resp. an étale neighborhood U → X) for which F|U
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is unipotent. A DX-module F is said to be locally unipotent (resp. quasi-
unipotent) if it is unipotent (resp. quasi-unipotent) at all points of X.

Furthermore the level of a unipotent DX-module F on X is the minimal
n for which there is a filtration of DX-submodules F0 = 0 ⊂ F1 ⊂ F2 ⊂
. . . ⊂ Fn = F such that each quotient F i/F i−1 is a trivial DX-module. If a
DX-module F is unipotent (resp. quasi-unipotent) at a point x ∈ X, its level
at x is the minimal number n, which is the level of the unipotent DU -module
F|U for some U (from the previous paragraph).

Lemma 3.63. Let F be a OX-coherent DX - module, x ∈ X and n ≥ 1.
Then the following statements are equivalent:

a) F is quasi-unipotent at x of level at most n;

b) the point x has an étale neighborhood U → X such that, for some
m ≥ 1, there is an embedding of DU -modules F|U ↪→ (Sλ,n−1

U )m.

Proof. [Ber07] Theorem 9.3.3

Theorem 3.64 (Berkovich). There is a unique way to construct, for every
closed subfield K ⊂ Cp, every filtered K-algebra K, every element λ ∈ K1,
every connected smooth K-analytic space X with πtop1 (X)→̃πtop1 (X), every
locally unipotent D-module F on X and every path γ : [0, 1]→ X with ends
x, y ∈ X(K) (also x, y ∈ Xst,K [Ber07] Page 3), an isomorphism (parallel
transport) of K-modules

TFγ = TF ,λγ : F∇x ⊗K K→̃F∇y ⊗K K

such that the following is true:

a) TFγ depends only on the homotopy type of γ;

b) given a second path τ : [0, 1] → X with ends y, z ∈ Xst,K, one has
TFτ◦γ = TFτ ◦ TFγ ;

c) if F is the unipotent D-module OXe1⊕OXe2 on X = Gm with ∇(e1) =
0 and ∇(e2) = dT

T
e1, γ(0) = 1 and γ(1) = a ∈ K∗, then

TFγ (e2 − log(T )e1) = (e2 − log(Ta )e1)− Logλ(a)e1;

d) TFγ is functorial with respect to F ;

e) TFγ commutes with tensor products;

f) TFγ is functorial with respect to (K,X, γ,K, λ).

Furthermore, the parallel transport posses the following properties:
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1) TFγ commutes with the Hom-functor;

2) If F is unipotent of level n, then TFγ (F∇x ) ⊂ F∇y ⊗K Kn−1;

3) If F is unipotent and γ([0, 1]) ⊂ Y , where Y is an analytic domain
with good reduction, then TFγ (F∇x ) ⊂ F∇x .

Proof. [Ber07] Theorem 9.4.1. The proof is interesting for our purposes,
so we will reproduce it here: Assume first, that K = Cp. In this case
the condition on X is automatically satisfied, cX is the constant sheaf KX

associated to K, and Xst,K = Xst. From Lemma 3.63 it follows that the sheaf
γ∗(F∇Sλ) is constant. It follows, that there are canonical isomorphisms from
γ∗(F∇Sλ)([0, 1]) onto γ∗(F∇Sλ)0 = F∇γ(0)⊗K K and γ∗(F∇Sλ)1 = F∇γ(1)⊗K K, and
so they give rise to an isomorphism of K-modules

TFγ : F∇γ(1) ⊗K K→̃F∇γ(1) ⊗K K.

IfK is not necessarily algebraically closed, we construct the parallel trans-
port as follows: By ([Ber07] Lemma 9.1.2), there exists a path γ′ : [0, 1]→ X
with α ◦ γ′ = γ. Since the points x = γ(0) and y = γ(1) are in Xst,K ,
they have unique pre-images x′ and y′ in X, respectively, and it follows that
γ′(0) = x′ and γ′(1) = y′. We denote by F the pullback F on X and, for an
element f ∈ F∇x we set

TFγ (f) = TFγ′ (f) ∈ F∇y′ ⊗Cp (K⊗K Cp) = (F∇y ⊗K K)⊗K Cp.

First of all, the element TFγ′ (f) does not depend on the choice of γ′. Indeed,

if γ′′ is another lifting of γ, then the loop γ′−1 ◦ γ′′ is homotopy trivial
(since π1(X)→̃π1(X) ) and, therefore TFγ′′(f) = TFγ′ (f). Furthermore given

an element σ of the Galois group G of K over K, the loop γ′−1 ◦ (σγ′) is
homotopy trivial. This implies that TFγ (f) ∈ F∇y ⊗K K

3.11 The comparison theorem of G. Herz

K a finite extension of Qp

V its ring of integers
X a Mumford curve over K of genus g (with semi-stable reduction )
Xrig the rigidification of X
X the minimal regular model of X

We present G. Herz’s ([Her05]) comparison between Faltings work ”semi-
stable vector bundles on Mumford curves” (Theorem 3.50) and DeWe parallel
transport.
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Definition 3.65 (Herz). Define by BXXrig the full subcategory of all semi-

stable rigid vector bundles of degree 0 on Xrig
Cp whose associated Faltings

(Reversat- van der Put) representation (Definition 3.52) is isomorphic to a
representation which has image in GLr(o).

Remark 3.66. Herz defined a group πftop1 (Xan, x)(∼= Ẑg) that classifies finite
analytic (topological) coverings of Xan (see 3.6). This group is also the
pro-finite completion of πtop1 (Xan, x)(∼= Zg) (similar to the classical case).
He further defined the pro-finite completion of a representation using the
following fact

Hom(Zg, GLr(o)) = Homcont(Ẑg, GLr(o)).

Theorem 3.67 (Herz). Let L ⊂ Cp be a complete subfield of Cp which is
an algebraic extension of K, and let V ′ be its ring of integers. Let E be
a vector bundle in B

XV ′
Xrig
L

. Then the completed Faltings (Reversat- van der

Put) representation attached to E extended to Cp is isomorphic to the DeWe
-representation attached to the algebraization of E.

Proof. [Her05] Theorem 2.31

Remark 3.68. We will sketch his proof:

Proof. Let Êρ be the formal vector bundle on X̂ attached to an integral
representation ρ of πtop1 (Xan

Cp , x). Let Eρ be the corresponding algebraic vector
bundle on X . For each n ≥ 1 there exists an G equivariant covering π : Y →
X in SgoodX for a group G acting on Y , such that the covering πK : YK → XK
is finite étale and even analytic (topological) and Galois with group G.

πalg1 (XCp , x)
φyi- GalXCp

Yi
φy- GalXCp

Y
=

- AutopXY
=

- Gop

| |φy′i

πftop1 (Xan
Cp , x)

φy′i- GalXCp
Y ′i .

φ y
′

-

The reduction modulo pn of the DeWe representation attached to Eρ de-
noted by ρDeWe

n is the morphism

ρDeWe
n : Gop - AutExn

σ 7→ (y∗n)
−1σ∗y∗n

41



as in the following diagram where we abbreviated

H0 := Γ(Yn, π∗nÊn) = Γ(Yn, π∗nEn)

σ 7→ (En
(y∗n)

−1
- H0 σ∗

- H0 y∗n - Exn)

The morphism σ∗ is defined as follows:

H0 3 f 7→ f ◦ σ = ρPuRen (σ)f ∈ H0

Then
ρDeWe
n (σ) = (y∗n)

−1(ρPuRen )(σ)(y∗n)

Hence ρDeWe
n and ρPuRen are isomorphic representations.

3.12 Galois Theory for schemes and commutative rings

We recall some facts about Galois theory for schemes and commutative rings.
Most of the results we will need are in [Gro71] (especially Section V.2 pp.110-
116 ), but are only stated for locally noetherian schemes. For schemes that
are not necessarily locally noetherian we will refer to [Len97] (Galois The-
ory for schemes). For the Galois theory for commutative rings we refer to
[ChHaRo65].

We recall the definition of Galois-coverings of (commutative) rings and
schemes:

Definition 3.69.

a) Let Y → X be a finite étale covering of schemes, and let G be a finite
group of X-automorphisms of Y . The covering Y/X is called Galois if the
canonical morphism

Y ×X G→ Y ×X Y, (y, g) 7→ (gy, y)

is an isomorphism

b) Let A → B be an étale covering of (commutative) rings, and let G be a
finite group of automorphisms of B over A. We say that B/A is Galois with
group G if the natural map

B ⊗A B →
∏
g∈G

B, b⊗ c 7→ (. . . , b · g(c), . . .)

is an isomorphism.
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Remark 3.70. There are many equivalent definitions of Galois étale covers of
commutative rings or schemes. We refer the reader to [ChHaRo65] Theorem
1.3 page 18 for commutative rings, to [Gro71] Exp. V, Proposition 2.6,
Definition 2.8 and Section 7 and to [Len97] Section 3.14. We just mention
some characterizations of interest to us:

a) A covering Y → X (with a group G of automorphisms) of schemes is
Galois if and only if Y is finite overX, X = Y/G, and the inertia groups
at points of Y are reduced to the identity ([Gro71] V Proposition 2.6
i))

b) If X is connected, Y → X a finite étale covering, then the condition
X = Y/G is equivalent to the condition Y (Ω)/G = X(Ω), for any
algebraically closed extension Ω/K(x) for any point x ∈ X ([Gro71] V
Proposition 3.7 or [Len97] Section 3.14)

We will need the following descent lemma:

Lemma 3.71. Let B/A be an finite étale Galois covering with group G.
Let M be a B-module with semi-linear G-action. Then the natural map
s : B ⊗AMG →M is an isomorphism.

Proof. [ChHaRo65] Theorem 1.3 d)

The following lemma is assumed to be well known but we did not find
an exact reference in the literature. A similar statement can be found in
[ChHaRo65] Lemma 1.7 page 21.

Lemma 3.72. Let B/A be an finite étale Galois covering with group G. Let
N be a A-module. Define a G-action on B⊗AN by the rule g(b⊗n) := g(b)⊗n
for g ∈ G, b ∈ B, n ∈ N . Then the natural map

BG ⊗A N → (B ⊗A N)G (2)

is an isomorphism

Proof. The natural map (2) is an isomorphism if and only if the natural
morphism

B′ ⊗A BG ⊗A N → B′ ⊗A (B ⊗A N)G (3)

is an morphism because B′ := B is a faithfully flat A-algebra. We also have
a canonical isomorphism B′ ⊗A BG → (B′ ⊗A B)G if we let G act on B′

trivially. This can be seen using the following standard argument. The ring
BG is the kernel of the exact sequence

0→ BG → B →
∏
g∈G

B
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where the last map sends b to (. . . , g(b)−b, . . .). This sequence remains exact
if we tensor with the (faithfully) flat A-algebra B′:

0→ B′ ⊗A BG → B′ ⊗A B →
∏
g∈G

(B′ ⊗A B).

The ring (B′ ⊗A B)G is by definition the kernel of this sequence, hence iso-
morphic to B′ ⊗A BG. By the same reasoning we can rewrite the right hand
side of (3) and obtain thus a morphism

(B′ ⊗A B)G ⊗A N → (B′ ⊗A B ⊗A N)G. (4)

Using simplification by B′ we can rewrite this as

(B′ ⊗A B)G ⊗B′ (B′ ⊗A N)→ ((B′ ⊗A B)⊗B′ (B′ ⊗A N))G. (5)

The extension B/A is Galois, hence (B′⊗A B)/B′ is a trivial G-covering, by
this we mean B′ ⊗A B ∼=

∏
h∈H B

′ where H := G as a set and G acts via
permutations, i.e. g((bh)) := (bg(h)) if (bh) ∈

∏
h∈H B

′. We can thus write

(
∏
h∈H

B′)G ⊗B′ N ′ → (
∏
h∈H

N ′)G. (6)

where we abbreviated N ′ := B′ ⊗A N and used that the tensor product
respects direct sums on the right hand side. From this explicit description it
follows that the morphism is an isomorphism

Lemma 3.73. Let B/A be a finite étale Galois covering with group G. Let
A→ C be a commutative A-algebra and let M be a B-module with semi-linear
G-action. Let G act on the tensor product C ⊗AM by the rule g(c⊗m) :=
c⊗ g(m). Then the canonical morphism

C ⊗AMG → (C ⊗AM)G

is an isomorphism.

Proof. By Lemma 3.71 we have an isomorphism of modules with semi-linear
G-action B ⊗AMG ∼= M . The we can rewrite the morphism above as

C ⊗AMG → (B ⊗A (C ⊗AMG))G.

By definition the group G acts trivially on the module N := (C ⊗A MG).
Hence we can apply Lemma 3.72
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4 Flat vector bundles attached to represen-

tations

In this section we will explain how to attach a vector bundle with connection
to a continuous p-adic representation of the étale fundamental group of a
variety over a p-adic field in certain cases. This construction is classical and
already carried out in a different context by H. Lange, U. Stuhler [LaSt77],
R. Crew, N. Katz (Section 3.5), J. deJong [deJ95].

4.1 Vector bundles attached to representations of a fi-
nite group

R a ”base” ring (commutative with unit)
π : Y → X a finite étale Galois cover of schemes with Group G
L a free R module of rank r
ρ : G→ AutR(L) a representation of G on L

In this section we recall in detail how to attach a vector bundle with
connection to a representation of the Galois group of a finite étale cover of
a scheme. The construction is classical, see for example [Mum70] Theorem
1 page 111 or [BoLuRa90] Section 6. By a vector bundle we mean a locally
free sheaf of constant rank r.

Remark 4.1. If W ⊂ Y is a G invariant open subset, then we let G act on
OY (W ) via the rule g(f) := (g−1)∗f for all f ∈ OY (W ).

Construction 4.2. -

a) The Group G acts on the presheaf F ′
:= L⊗R π∗OY via

g(v ⊗R f) = ρ(g)(v)⊗R g(f) f ∈ OY (π−1(U)), v ∈ L, g ∈ G

for U ⊂ X open. This G-action extends to the associated sheaf F :=
(F ′)†. Denote by Fρ := FG the sheaf of elements fixed under the action
of G.

b) Let ρ1 and ρ2 be two representation on two R-modules L1 and L2. Let
ϕ : L1 → L2 be a compatible map for the G-action. Then ϕ induces a
map

L1 ⊗R π∗OY
ϕ⊗id−→ L2 ⊗R π∗OY

which in turn induces a map Fρ1
ϕ−→ Fρ2 because the map ϕ ⊗ id is

G-equivariant.
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Proposition 4.3. The sheaf Fρ defined in Construction 4.2 is a vector bun-
dle of rank r and π∗Fρ ∼= F

Proof. The assertion is local so we may take SpecA ⊂ X and SpecB =
π−1(SpecA) and we set M := L ⊗R B. The canonical map B ⊗A MG → M
is an isomorphism by Lemma 3.71. The morphism A → B is faithfully flat
and B⊗AMG ∼= M is a free (hence projective) finitely generated B-module.
We can then apply [Len97] Proposition 4.12 p. 64 to deduce that MG is a
finitely generated projective A-module. The rank of MG is equal to r because
M ∼= B ⊗AMG has rank r.

We will now construct a connection

∇ρ : Fρ → Fρ ⊗OX Ω1
X/SpecR

attached to ρ and Fρ:
For U ⊂ X open let us define a morphism (the ”constant” connection)

∇ : (L⊗R π∗OY )(U)→ ((L⊗R π∗OY )⊗π∗OY π∗Ω1
Y/R)(U)

∇(v ⊗R f) := v ⊗R df for v ∈ L, f ∈ OY (π−1U).

(here the tensor product is the tensor product of presheaves) These mor-
phisms define a morphism of presheaves and of the corresponding associated
sheaf. For any g ∈ G we have

∇(g(v ⊗R f)) = ∇(ρ(g)(v)⊗R g(f)) = ρ(g)(v)⊗R dg(f) =

= ρ(σ)(v)⊗R g(df) = g(∇(v ⊗R f)).

In other words the map ∇ is G-equivariant. We claim that it descends to a
map Fρ → Fρ⊗OX Ω1

X/SpecR of vector bundles on X. The assertion is local so

we may take SpecA ⊂ X and SpecB = π−1(SpecA) and we set M := L⊗RB.
Because A→ B is étale there is a canonical isomorphism B⊗AΩ1

A/R
∼= Ω1

B/R

([EGA] IV (Quatriéme partie) No. 32, Corollaire 17.2.4.). We have to show
that the canonical morphism

MG ⊗ Ω1
A/R → ((MG ⊗A B)⊗B (B ⊗A Ω1

A/R))G (7)

is an isomorphism. We can simplify the right hand side by B and change the
ordering of MG and B:

(B ⊗A (MG ⊗A Ω1
A/R))G

Now this is a tensor product of B with a module with trivial G-action. By
Lemma 3.72 the module of G invariants is A⊗A (MG ⊗A Ω1

A/R) which is the

left hand side of (7) what we wanted to show.
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4.2 Vector bundles attached to continuous representa-
tions of algebraic fundamental groups

λ : X → SpecZp a projective, integral, normal and flat Zp-scheme

x a Qp-valued base point of X
ρ : πalg1 (X , x)→ Auto(L) a continuous representation on a free o-module L of rank r

In this section we attach a vector bundle with connection to a continuous
representation of the algebraic fundamental group of X . We use the previous
construction modulo pn, then we apply the inductive method of liftings. This
is a variant of Katz/Crews construction (Section 3.5).

Remark 4.4. a) An example of a scheme X that satisfies the properties
above is a smooth integral projective scheme over Zp. Another example
arises when one considers X = X ′×V ′Zp where X ′ is a semi-stable curve
over the ring of integers V ′ of a finite extension K ′ of Qp, such that
the generic fiber X ′ of X ′ is smooth and geometrically integral. The
generic fiber X of X is integral and Zp is integral, hence X (flat over
Zp) is also integral by [Liu02] Proposition 4.3.8. If X ′ is smooth over
K ′ then the same is true for every finite extension of K ′, and hence
X ′ ×K′ K ′′ is normal for every finite extension K ′′ of K ′. By [Liu02]
Proposition 10.3.15 every scheme X ′ ×V ′ V ′′ is normal when V ′′ is the
ring of integers of a finite extension K ′′ of K ′. This implies that X
is also normal, because equations for integral elements can always be
defined over a finite extension of Qp. For a more general discussion of
such models we refer the reader to [Fal02] Remark 5 and page 205

b) Let Y → X be a finite étale covering with Y connected. Then Y is
also integral and normal by [Gro71] I Corollaire 9.10, 9.11 and Propo-
sition 10.1. This will allow us to apply the Galois theory of (integral)
commutative rings in [ChHaRo65] or [Len97] Corollary 6.17.

c) Because Xo is projective, the structure sheaf of X̂o is coherent. This is
true because locally Xo can be covered by o-algebras Ai of finite type
whose completion is of topologically finite representations (see Section
3.7).

Construction 4.5. We will use freely the formal GAGA results from Section
3.7.

Consider the ρ : πalg1 (X , x)→ Auto(L). The representation modulo pn

ρn : πalg1 (X , x)→ Auto(L)→ Auton(Ln)
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factors over a finite group G, because πalg1 (X , x) is pro-finite and Auton(Ln)
is discrete. By Remark 3.24 there exists a finite étale Galois covering π :
Y → X such that G can be identified (up to conjugation) with AutXY . We
can use the construction of Section 4.1 to construct a vector bundle with
connection (Fρn ,∇ρn) on Xo,n. The pairs (Fρn ,∇ρn) define (for varying n) a
projective system of vector bundles with connection (see Lemma 4.6 below
for the projectivity). The projective limit

(F̂ρ, ∇̂ρ) := lim
←

(Fρn ,∇ρn)

is a formal vector bundle with connection on the formal scheme X̂o (the p-adic
completion of Xo). Because Xo is projective we can apply the formal GAGA
- Theorem and obtain an algebraic vector bundle with connection (Fρ,∇ρ)

on Xo. If ϕ is a morphism between two representations of πalg1 (X , x), then
one applies the construction in Section 4.1 inductively modulo pn to obtain
a morphism between the corresponding vector bundles with connection.

We now check that the system of vector bundles and connection is in fact
projective:

Lemma 4.6. The system of pairs (Fρn ,∇ρn) forms a projective system, i.e.

(Fρn ,∇ρn)
∼= (vn,n+1)

∗(Fρn+1 ,∇ρn+1)

where vn,n+1 : Xn → Xn+1 is the reduction map.

Proof. Let Gn+1, Gn be the corresponding groups and denote by H the kernel
of Gn+1 � Gn. The assertion is local, so let SpecA ⊂ Xo be an affine open
and let B/A resp. C/A be the corresponding finite étale Galois-coverings
with group Gn resp. Gn+1. Let us also set Mn := Fρn(SpecAn) and Mn+1 :=
Fρn+1(SpecAn+1). Because A,B,C are integral (Remark 4.4) we can apply
the Galois theory of commutative rings [ChHaRo65] Section 2.2 pages 22-24
or [Len97] Corollary 6.17 to deduce that C/B is Galois with group H. If we
set An := A⊗o on, Bn := B ⊗A An, Cn := C ⊗A An then Cn/An, Cn/Bn and
Bn/An are also Galois with groups Gn+1, H and Gn ([ChHaRo65] Lemma
1.7 page 21). We want to compute

An ⊗An+1 Mn+1 = An ⊗An+1 (Cn+1 ⊗o Ln+1)
Gn+1 .

Because of Lemma 3.73 we can rewrite this as

(An ⊗An+1 Cn+1 ⊗o Ln+1)
Gn+1 .
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Because H is a normal subgroup of Gn+1 with quotient Gn we can rewrite
this as

((An ⊗An+1 Cn+1 ⊗o Ln+1)
H)Gn .

For the H-invariants we can also write (replacing n+1 by n everywhere and
using simplification by An and Bn)

(Cn ⊗Bn (Bn ⊗o Ln))
H .

Now H acts on Cn and trivially on Bn ⊗o Ln (note that ρn is trivial on H),
thus by Lemma 3.72 the module of H-invariants is isomorphic to Bn ⊗o Ln

(using simplification by Bn again). The group Gn acts on this module by its
usual action on Bn and via ρn on L. By definition the module ofGn-invariants
of this module is isomorphic to Mn. The connections ∇n resp. ∇n+1 are by
definition induced from the ”constant” connection on B⊗oLn resp. C⊗oLn+1

and the ”constant” connection on the first module is compatible with the
”constant” connection on the second modulo pn.

Definition 4.7. We denote the category of vector bundles attached to con-
tinuous representations ρ : πalg1 (X , x) → Auto(L) on free finitely generated
o-modules L by Brep

Xo
.

Let (F ,∇) be a vector bundle with connection on Xo. Assume that
for any n ≥ 1 the sheaf Fn (the reduction modulo pn of F) can be étale
trivialized. I.e. there exists a finite étale covering Y → X which satisfies
π∗n(Fn,∇n) ∼= (OYn , dYn)r.

Assumption 4.8. For all n ≥ 1 and for all finite étale Galois covers Y → X
the following holds:

H0(Yo,n,OYo,n)
∼= on.

To each vector bundle F satisfying this properties one can use the con-
struction of Deninger and Werner (Sections 3.2 and 3.3) and attach a repre-
sentation ρF of πalg1 (X , x) to the vector bundle F .

Remark 4.9. The Assumption (4.8) on X is satisfied if X is induced by
base change with Zp from a semi-stable curve that is defined over the ring
of integers of a finite extension of Qp. To see this note that finite étale
covers of semi-stable curves are semi-stable [Liu02] Exercise 3.9 page 529
and the assumption is true for semi-stable curves (after base change with
Zp) as shown in [DeWe05b] Theorem 1(1).

Our construction is compatible with Faltings’ construction in Section 3.4,
especially Lemma 3.13:
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Remark 4.10. Let V be the ring of integers of a finite extension of Qp and
let X ′ be a proper V -scheme with toroidal singularities (e.g. X ′ is smooth
or semi-stable). Assume that the scheme X satisfies X = X ′ ⊗V Zp. Let
SpecR ⊂ X ′ be a small affine open. The inclusion U := SpecR1 ⊂ X
induces a morphism of fundamental groups πalg1 (U) → πalg1 (X ), and πalg1 (U)
is isomorphic to the Galois group of the maximal étale extension Ret

1 of R1

(i.e. the union of all finite étale extensions of R1) by [Len97] 6 Corollary 17.
We define ∆et := Gal(Ret

1 /R1). Consider the following sequence

∆ = Gal(R/R1)→ Gal(Ret
1 /R1) ∼= πalg1 (U)→ πalg1 (X )

ρ→ Auto(L) (8)

(here the first map is the restriction of R1-automorphisms of R to Ret
1 ). We

need to assume, that the representation ρ is trivial modulo p2α as in Lemma
3.13. The module

M := R⊗Zp Ln

can be equipped with a semi-linear ∆ operation, if we let ∆ act via the
diagonal action, i.e. ∆ acts on R via the obvious action and on Ln via the
diagram (8). The generalized representation M is induced from the Ret

1 -
module

M et
1 := Ret

1 ⊗Zp Ln

equipped with the ∆et diagonal action by diagram (8). Let S ⊂ Ret
1 be the

finite étale Galois extension (with group G) of R1 that trivializes ρn. The
module

M1 := (S ⊗Zp Ln)
G

is by definition isomorphic to Fρ,n(SpecR1), the module of Construction 4.5
modulo pn. The module M1 is projective over R1/p

n of rank r, and induces
an isomorphism of Ret

1 − ∆et-modules M et
1
∼= Ret

1 ⊗R1 M1 . If we equip M1

with the trivial ∆∞ action, then there is an isomorphism of modules equipped
with a semi-linear ∆-action

M = R⊗Zp Ln
∼= R⊗R1 M1. (9)

(The ∆-action on the right hand side is given by the obvious action on R
and by the (trivial) ∆-action on M1 induced by ∆ → ∆∞). If M ′

1 is the
∆∞-module of Lemma 3.13 a) associated to the generalized representation
M , then M ′

1 and M1 are almost isomorphic (as R1 −∆∞ modules) modulo
pn−α if R/R1 is almost faithfully flat. This is true (assuming that R/R1 is
almost faithfully flat), because their associated generalized representations
are isomorphic (9) and one can apply Lemma 3.13 b) to get a morphism
(modulo pn−α) between the two, which is actually an almost isomorphism
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(modulo pn−α) by almost faithfully flat descent for R/R1 (we assume that
R/R1 is almost faithfully flat, which would follow from the explicit descrip-
tion of R∞/R1 and Faltings’ almost purity theorem ([Fal02] Theorem 4) for
R/R∞). Because the action of ∆∞ on M1 is trivial, the associated Higgs field
θ is zero.

4.3 Compatibility for different models

X/SpecQp a smooth projective variety

SpecQp = x→ X a base point of X

Let X be a projective, integral, normal, flat Zp-model of X and let j :

X → X be the canonical open immersion. Let ρ : πalg1 (X, x) → Auto(L)
be a representation on a free o-module L of rank r, such that ρ factors over
πalg1 (X , x). Then we obtain a vector bundle with connection (Fρ,∇ρ) :=
j∗(Fρ,∇ρ) on XCp using the construction of Section 4.2. We will show that
this construction is compatible for different models. In the case that X
is a curve, two models are dominated by a third one, and therefore this
construction does not depend on a chosen model.

Proposition 4.11. Let X1 and X2 be two projective, integral, connected and
flat Zp - models of X, and let α : X1 → X2 be a morphism restricting to the
identity on the generic fiber.

Then the following diagram is commutative:

Repπalg1 (X2,x)
(L)

τX2

- BX2,o

Repπalg1 (X,x)(L)
�

j
∗
2

BXCp

j ∗
2

-

Repπalg1 (X1,x)
(L)

α∗

? τX1

-

�

j ∗
1

BX1,o.

α∗

?

j
∗
1

-

In this diagram the two α∗ are the obvious pullback maps, and τ is the
map attaching a bundle with connection to a representation studied in Section
4.2.

We divide the proof in three lemmas:
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Lemma 4.12. Let ρ ∈ Repπalg1 (X2,x)
(L) be a representation. Then there is a

canonical isomorphism

α∗(Fρ,∇ρ) ∼= (Fα∗ρ,∇α∗ρ)

(In this lemma the assumption that α restricts to the identity on the generic
fiber is not needed).

Proof. It suffices to proof the assertion modulo pn i.e.:

α∗n(Fρn ,∇ρn)
∼= (Fα∗ρn ,∇α∗ρn)

Let cov2 : Yn → X2,n be a finite étale Galois cover trivializing ρn with Galois-
group G = Aut(Yn/X2,n). Consider the fiber product

Wn := X1,n ×X2,n Yn
pr2 - Yn

X1,n

cov1 G

? α
- X2,n

cov2 G

?

(The covering cov1 is also an étale Galois cover with automorphism group G
(see [ChHaRo65] Lemma 1.7 page 21 for the affine case))

The assertion is local, so let SpecA2 ⊂ X2,n, SpecA1 ⊂ X1,n affine open
subsets satisfying α(SpecA1) ⊂ Spec(A2), and let SpecB := cov−1

2 (SpecA2).
Then we have to show that the canonical map

A1 ⊗A2 (B ⊗on Ln)
G → ((A1 ⊗A2 B)⊗on Ln)

G

is an isomorphism. If we set M := B ⊗on Ln, A := A2 and C := A1 then
we can apply Lemma 3.73. This shows the assertion for the vector bundles.
The ”constant” connection on OWo,n ⊗o Ln is equal to the pullback of the
”constant” connection on OYo,n ⊗o Ln. This implies that the connections
restricted to the G-invariant elements are compatible

Lemma 4.13. Let (F1,∇1) and (F2,∇2) be two vector bundles with connec-
tions on X1,o and X2,o that satisfy α∗(F2,∇2) = (F1,∇1). Then (F1,∇1) :=
j∗1(F1,∇1) and (F2,∇2) := j∗2(F2,∇2) are isomorphic vector bundles with
connection.
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Proof. The following diagram is commutative

X1,o

α
- X2,o

XCp

j 2

-
�

j
1

hence
F1 = j∗1F1

∼= j∗1α
∗F2
∼= (α ◦ j1)∗F2 = j∗2F2 = F2

and by the same reasoning ∇1
∼= ∇2

Lemma 4.14. Let ρ1 and ρ2 be two representations of πalg1 (X1, x) and πalg1 (X2, x)
respectively. Assume that pullback induces identical representation of πalg1 (X, x),
i.e. j∗1ρ1 = j∗2ρ2. Then α∗ρ2

∼= ρ1.

Proof. We have α ◦ j1 = j2. This induces a commutative diagram between
the fundamental groups:

πalg1 (X2, x)

πalg1 (X, x)

j 2,
∗

--

πalg1 (X1, x)

α∗

66

j
1,∗

--

The two maps on the left hand side are surjective, because the functor H that
maps finite étale covers of Xi (i = 1, 2) to the generic fiber maps connected
covers to connected covers and one can apply [Gro71] V Proposition 6.9.
The pullback maps for representations satisfy j∗1 ◦ α∗ ∼= j∗2 . By assumption
j∗1ρ1 = j∗2ρ2

∼= j∗1 ◦ α∗ρ2. The morphism j1,∗ : πalg1 (X, x) → πalg1 (X1, x) is
surjective, hence the corresponding map j∗1 on representations is injective.
This implies ρ1

∼= α∗ρ2

The following lemma from [DeWe05b] shows that in the case of curves,
that two arbitrary models are dominated by a third having nice properties.
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Lemma 4.15. Let X be a smooth projective curve over Qp and let X1 and
X2 be two projective, integral, normal and flat Zp-models of X. Then there
is a third (projective, integral, normal, flat) model X3 of X together with
morphisms

X1
�

p1 X3

p2 - X2

restricting to the identity on the generic fibers (after their identification with
X).

Proof. That two models can be (strictly) dominated by a third one is proven
[DeWe05b] Proposition 27, page 586. The model can be chosen to be semi-
stable by [DeWe05b] Theorem 1, page 556. If a semi-stable model of X is
already defined over the ring of integers of a finite extension of Qp, then we
can apply Lipmans’ resolution of singularities to obtain a regular semi-stable
model, which is projective by a theorem of Lichtenbaum. But a semi-stable
Zp model of X is defined over a the ring of integers V of a finite extension of
Qp, and the base change with SpecZp of a projective V -model is a projective
Zp-model. This model is also integral, normal and flat as was shown in
Remark 4.4

Theorem 4.16. Let X be a smooth projective curve over Qp and let X1 and
X2 be projective, integral, normal and flat Zp-models of X and let j1, j2 be
the corresponding open immersions. Let

ρ : πalg1 (X, x)→ Auto(L)

be a continuous representation on a free o-module L of rank r. Assume that
ρ factors over πalg1 (X1, x) and πalg1 (X2, x). Denote the corresponding rep-
resentations of these groups ρ1 and ρ2. Set (F1,∇1) := j∗1(Fρ1 ,∇ρ1) and
(F2,∇2) := j∗2(Fρ2 ,∇ρ2). Then both vector bundles with connection are iso-
morphic

(F1,∇1) ∼= (F2,∇2)

In other words the association ρ 7→ j∗(Fρ,∇ρ) does not depend on the choice
of a projective model X .

Proof. Choose a projective model X3 of X as in Lemma 4.15 and denote the
canonical open immersion by j3. Then there exists a commutative diagram

πalg1 (X3, x)

πalg1 (X, x)
j1,∗
--

j 3,
∗

--

πalg1 (X1, x)

p1,∗
??

ρ1- Auto(L).

ρ
3 :=

p ∗
1 ρ

1
-
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By Proposition 4.11 the vector bundles j∗1Fρ1 and j∗3Fρ3 are isomorphic on
XCp . The same is true for j∗2Fρ2 if one replaces 1 by 2. The same reasoning
applies to the connections

4.4 Vector bundles attached to temperate representa-
tions

X a smooth projective Qp-variety
π : Y → X a finite connected étale Galois covering (with group G)

Y a projective, integral, normal, flat Zp-model of Y

From Section 4.2 we already know how to attach a vector bundle with
connection to a representation of the étale fundamental group of Y . Using
descent theory we can attach a vector bundle to a representation of the fun-
damental group of X that factors over the fundamental group of Y when
restricted to the fundamental group of Y . We call a representation that sat-
isfies this property temperate. In [And03] Chapter III (see also 3.6) André
calls a Berkovich étale covering temperate if it decomposes as a finite étale
covering and a topological covering. (The relation between these two termi-
nologies will be explained in Section 5)

Definition 4.17 (temperate representations). - Let ρ : πalg1 (X, x) →
Auto(L) be a continuous representation of the étale fundamental group of X
with base point x on a finitely generated free o-module L. The representation
ρ is called temperate if there is a commutative diagram

πalg1 (Y, y)
can
-- πalg1 (Y , y)

πalg1 (X, x)

π∗

?
ρ

- Auto(L)
?

where π : Y → X is a finite étale Galois covering with group G, y =
SpecQp a point above x and Y a projective, integral, normal, flat Zp model
of Y .

Remark 4.18. a) In this definition the Zp-model Y is unspecified. We
say that ρ is temperate with respect to a certain kind of model if there
is a diagram as above with Y a certain kind of model (e.g minimal
regular model, Néron model). In the case of abelian varieties with
good reduction we will restrict us for simplicity to N -covers and Néron
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models. If Y is a smooth projective curve then we require that the G-
action on Y extends to Y . This is the case for minimal regular models
that are defined over the valuation ring of a finite extension of Qp

[Liu02] (Proposition 9.3.13). Also every model of Y can be dominated
by a model such that the G-action extends ([Liu06] proof of Lemma
2.4).

b) One could define temperate representations more generally for arbitrary
proper models Y . If Y ′ is another model of Y that strictly dominates
Y (being the identity on Y ) then ρ it is also temperate with respect to
Y ′, this can be seen from the proof of Lemma 4.14.

The following proposition will be useful to compare two temperate rep-
resentations:

Proposition 4.19. Let X/SpecQp be a smooth proper curve or an abelian va-

riety with good reduction. Let x be a base point of X and let ρi : πalg1 (X, x)→
Auto(Li) (i = 1, 2) be two temperate representations on finite dimensional o-
modules. Then ρ1, ρ2 are temperate with respect to a common covering and
model. To be precise there exists a finite étale Galois covering π : Y → X
with group G, a point y above x and Y a projective, integral, normal and flat
model of Y such that there exists commutative diagram

πalg1 (Y, y)
can
-- πalg1 (Y , y)

πalg1 (X, x)

π∗

?
ρi- Auto(L)

ρ̃i

?

for i = 1, 2 and representations ρ̃i.

Proof. We first consider the case when A := X is an abelian variety with
smooth Néron model A. The two representations ρ1, ρ2 are temperate, hence
there exists positive integers N1, N2 such that there exists commutative di-
agrams as in Definition 4.17 with Yi = A, Yi = A and π = Ni for i = 1, 2.
We claim that we can choose a common N = N1 = N2 satisfying the same
properties. Set N := N1 ·N2 and consider the following commutative diagram
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of abelian schemes and their corresponding fundamental groups:

A �
can

A πalg1 (A, 0) �
can

πalg1 (A, 0)

A

N1

?
�

can
A

N1

?
πalg1 (A, 0)

N1,∗

?
�
can

πalg1 (A, 0)

N1,∗

?

A

N2

?
�

can
A

N2

?
πalg1 (A, 0)

N2,∗

?
�
can

πalg1 (A, 0)

N2,∗

?

The representation ρ2 (restricted to N2,∗π
alg
1 (A, 0)) factors as

πalg1 (A, 0)
can→ πalg1 (A, 0)

ρ̃2→ Auto(L).

From the commutative diagram it follows that ρ2 (restricted toN2,∗◦N1,∗π
alg
1 (A, 0))

factors also as

πalg1 (A, 0)
can→ πalg1 (A, 0)

N1,∗→ πalg1 (A, 0)
ρ̃2→ Auto(L)

This implies that ρ2 is also a temperate representation with the N covering
instead of N2. The same reasoning applies to ρ1 because we can interchange 1
and 2. IfX is a curve with finite étale Galois coverings Y1 and Y2, then we can
take a finite étale Galois covering Y such that Y1 and Y2 are subextensions
of Y . If Y1 is a projective, integral, normal and flat model of Y1 then Ỹ1, the
normalization of Y1 is a model of Y together with an morphism Ỹ1 → Y1.
By the same reasoning we obtain a second model Ỹ2 of Y with a morphism
to Y1. By Lemma 4.15 the models Ỹ1 and Ỹ2 of Y are dominated by a
projective, integral, normal and flat model Y of Y . Now we can apply the
same reasoning as in the case of abelian varieties to show that ρ1 and ρ2 are
temperate for the covering Y and the model Y

We will attach now a vector bundle with connection to a temperate rep-
resentation:

Construction 4.20. We proceed with the previous notations. Assume that
the action of G on Y extends to Y , and assume that every point y of Y has
an affine open neighborhood that is stable under the action of G. The last
condition is satisfied if Y is quasi-projective.
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Let ρ : πalg1 (X, x) → Auto(L) be an integral temperate representation.
Fix some n ≥ 1. Denote the kernel of the representation

ρn|πalg1 (Y,y) : πalg1 (Y, y)→ Auto(Ln)

by N . Then we have an exact sequence

0→ πalg1 (Y, y)/N︸ ︷︷ ︸
H:=

→ πalg1 (X, x)/N︸ ︷︷ ︸
P :=

→ πalg1 (X, x)/πalg1 (Y, y)︸ ︷︷ ︸
=G

→ 0

Let U := SpecA ⊂ Y be an affine open subset that is stable under the
G-action. Let SpecB be the inverse image of U under the finite étale Galois
covering of Y corresponding to H. The action of P on BQp extends to an
action on B. This can be seen by the following reasoning. The ring B is
integral and normal, because A has these properties ([Gro71] I Corollaire
9.10, Proposition 10.1). Moreover all elements of B are integral over A
because A = BH ([Gro71] V Proposition 1.1 (i)). By the same reasoning all
elements of A are integral over C := AG. Then B is an integral normal ring
whose elements are integral over C, in other words B is the normalization of
C in the corresponding quotient fields whose Galois group is P . This implies
that the action of P on the quotient field of B or on BQp extends to B.
By definition the vector bundle Fρn|H attached to the representation ρn|H is
defined on Uo as the set of H invariant sections:

Fρn|H (Uo) = (Bo,n ⊗on Ln)
H

where the action is the diagonal action. Also the group P acts on Bo,n⊗on Ln

by the diagonal action and mapsH-invariant sections toH-invariant sections:

h(pm) = ph′p−1(pm) = ph′m = pm

for m ∈ (Bo,n ⊗on Ln)
H , p ∈ P h, h′ ∈ H (N is a normal divisor in P ). By

the same reasoning one can show, that the corresponding connection ∇ρn|H
is equivariant under the P -action. As N acts trivial, the quotient G = P/N
acts on Fρn|H (Uo) and the action is equivariant for the connection. As this
is true for all n, we get an G-action on the inverse limit

lim
←−
n

(Fρn|
π
alg
1 (Y,y)

,∇ρn|
π
alg
1 (Y,y)

)

and also on its generic fiber. Now we can use descent theory to obtain a
vector bundle (Fρ,∇ρ) with connection on Xo attached to the temperate
representation ρ. This follows by the same reasoning as in Section 4.1 or one
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can alternatively apply [Mum70] III Theorem 1 page 111. Let ϕ be a mor-
phism between two temperate representations. If X is a curve or an abelian
variety we can assume that both are temperate with the same covering Y and
model Y by Proposition 4.19. The morphism ϕ induces a morphism between
the corresponding vector bundles with connection. (by the same reasoning
as in Sections 4.1 and 4.2)

The construction depends on the choice of a covering Y → X and the
choice of a model Y of Y with G-operation. We assume that one can check as
in [DeWe05a] and [DeWe05b] that the construction is well defined (at least
in the case of abelian varieties or curves). We will not do this but use an
indirect argument: In Section 4.5 we will show that the construction is an
inverse to the functor defined by Deninger-Werner. We will need to make
the following assumption:

Assumption 4.21. The DeWe-functor is fully faithful.

If this assumption is true, then the construction is well defined by looking
at the homomorphisms. So far the fully faithfulness of the DeWe-functor
is only known for abelian varieties with good ordinary reduction [Wie06].
This implies also the fully faithfulness for line bundles on curves with good
ordinary reduction by using the Jacobian embedding.

4.5 Vector bundles attached to representations and
their relation to DeWe-representations

X a smooth projective curve over Qp

x a Qp-valued base point of X

A an abelian variety over Qp having good reduction

In this section we want to show, that the assignment ρ→ (Fρ,∇ρ) of Sec-
tion 4.4 defines an inverse functor to the construction of Deninger and Werner
(Section 3.2) (for vector bundles attached to temperate representations).

We only study the case of vector bundles attached to temperate repre-
sentations of the fundamental group of the curve X. The case of abelian
varieties is similar and easier.

Proposition 4.22. Let ρ : πalg1 (X, x)→ Auto(L) be a continuous temperate
representation on a free o -module L of rank r. Then the vector bundle Fρ
lies in Bs

XCp
and the associated DeWe representation satisfies

ρDWFρ
∼= ρCp
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i.e. the association ρ → (Fρ,∇ρ) defines an inverse functor to the con-
struction of Deninger and Werner (for vector bundles attached to temperate
representations).

Proof. Let α : Y → X be the corresponding étale Galois covering with group
G, and let y be a point above x. Let Y be a semi-stable, integral, normal,
flat and projective model of Y such that the G action on Y extends to Y ,
and such that ρ|πalg1 (Y,y) factors over πalg1 (Y , y) (See Remark 4.18). Fix some

n ≥ 1. Denote the kernel of the representation

ρn|πalg1 (Y,y) : πalg1 (Y, y) � πalg1 (Y , y)→ Auto(Ln)

by N . Then we have an exact sequence

0→ πalg1 (Y, y)/N︸ ︷︷ ︸
H:=

→ πalg1 (X, x)/α∗N︸ ︷︷ ︸
P :=

→ πalg1 (X, x)/πalg1 (Y, y)︸ ︷︷ ︸
=G

→ 0

Let π : Z → Y be the finite étale covering corresponding to N . Because Y
is semi-stable Z is also semi-stable hence we have Γ(Zo,n,OZo,n)

∼= on (see
Remark 4.9). Fix a point z in ZQp lying over y.

Let E be the vector bundle on Yo attached to the representation ρ|πalg1 (Y,y)

as in Section 4.4. Then E is a model of α∗F .
Let γ ∈ πalg1 (X, x) be a path, and let γ′ be the unique path with α∗γ

′ = γ
from y to another point y′ over x. Consider the diagram:

Eyn �
z∗n Γ(Zn, π∗nEn)

(γ′z)∗n- Ey′n .

By definition of the DeWe parallel transport (proof of Theorem 3.5)

ρE,n(γ
′) = (γ′z)∗n ◦ (z∗n)

−1.

Let σ ∈ P be the unique automorphism of ZQp mapping z to γz. Then σ
extends uniquely to an automorphism of Z (mapping z to γz). We also have
γ′z = σ(z). By construction of the vector bundle Eρ the module Γ(Zn, π∗nEn)
is isomorphic to Ln ⊗o Γ(Zn,OZn) ∼= Ln ⊗o on as a P -module. Therefore for
v ⊗ f ∈ Ln ⊗o Γ(Zn,OZn)

(γ′z)∗n(v ⊗ f) = (σz)∗n(v ⊗ f) = z∗n ◦ σ∗(v ⊗ f) = z∗n(ρ(σ)m⊗ σ∗f)

As σ∗f = f (f is constant) we have the following relation:

ρE,n(γ
′) = γ′(z)∗n ◦ (z∗n)

−1 = z∗n ◦ ρn(σ) ◦ (z∗n)
−1.
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By construction of the DeWe representations (proof of Theorem 3.5) we have

(ρFρ)n(γ) = ρEn(γ
′)

This implies that the projective limits of the representations (ρFρ)n and ρn
are isomorphic, i.e.

ρDWFρ
∼= ρ
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5 A comparison between the algebraic and

the topological Riemann-Hilbert correspon-

dence

X/Qp a proper smooth curve over Qp

x a base point of X
Xan

Cp the analytification of XCp
Γ := πtop1 (Xan

Cp , x) the topological fundamental group of Xan
Cp

πalg1 (X, x) the algebraic fundamental group of X

5.1 A comparison between the algebraic and the topo-
logical Riemann-Hilbert correspondence

L a free rank r module over o

ρ a representation πtop1 (Xan
Cp , x)→ Auto(L)

In this section we will relate the topological and the algebraic approach
to the Riemann-Hilbert correspondence. This was already done in the case
of Mumford curves omitting connections by G. Herz (Section 3.11) in his
dissertation. Our comparison is a generalization of his work to arbitrary
curves, vector bundles equipped with connections and works over Cp.

Let X nsc be a projective integral normal flat Zp model of X with non-

singular components as defined in Section 3.8. The formal completion X̂ nsc
o

of X nsc
o has an universal covering u : Ω̂◦o → X̂ nsc

o whose (analytic) generic
fiber is the universal covering of Xan

Cp . The group πftop1 (XCp , x) (Section 3.6)
classifies finite topological covers of Xan

Cp and is the the pro-finite completion

of Γ := πtop1 (Xan
Cp , x) ([Her05] Remark 1.4.1 (7)). Let πalg1 (X nsc, x) be the

algebraic fundamental group of the model X nsc. The morphism X → X nsc

induces a morphism
πalg1 (X, x)→ πalg1 (X nsc, x).

The representation ρ induces a continuous representation ρ̂ of πftop1 (Xan
Cp , x),

the pro-finite completion of ρ. The representation ρ̂ induces a continuous
representation ψ of πalg1 (X nsc, x). This can be seen as follows: The reduction
modulo pn of ρ̂ factors over a finite group Gn because πftop1 (Xan

Cp , x) has the
pro-finite topology and Auto(L) the discrete one. To this group Gn there
corresponds a finite topological Galois covering Y → Xan

Cp . By the universal
property of the universal covering Ωan

Cp of XCp there exist a normal subgroup
N ⊂ Γ with Gn

∼= Γ/N and Ωan
Cp/N

∼= Y . The universal covering Ωan
Cp

is the generic fiber of the formal scheme Ω̂◦o and Y is the generic fiber of
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the formal scheme Ω̂◦o/N . We also have (Ω̂◦o/N)/G ∼= X̂ nsc
o and Ω̂◦o/N is a

finite topological covering of X̂ nsc
o in the Zariski (hence étale) topology. We

note that Ω̂◦o and all its quotients are defined over the ring of integers of a
finite extension of Qp, because this is true for X nsc

o . By [EGA] III (premiere

partie) Proposition 5.4.4 the formal scheme Ω̂◦o/N is the formal completion of
an algebraic model Y (after base change with o) which is a finite étale Galois
cover of X nsc

o with group Gn. Hence the topological covering Y → Xan
Cp is

the generic fiber of the finite étale Galois covering Yo → X nsc
o . We can then

define
ψn : πalg1 (X nsc, x)→ Gn → Auton(Ln).

The projective limit over these representations defines a representation

ψ : πalg1 (X nsc, x)→ Auto(L).

We can now compare the algebraic and the topological Riemann-Hilbert cor-
respondence:

Theorem 5.1. The formal vector bundle with connection RH top,◦(ρ) = (M◦
ρ ,∇◦ρ)

attached to the representation ρ of πtop1 (Xan
Cp , x) is isomorphic to (F̂ψ, ∇̂ψ),

the formal completion of the algebraic vector bundle attached to the represen-
tation ψ of πalg1 (X nsc

o , x), i.e.

(M◦
ρ ,∇◦ρ) ∼= (F̂ψ, ∇̂ψ) on X̂ nsc

o .

The same is true for the generic fibers, i.e.

(Mρ,∇ρ) ∼= (F̂ψ ⊗o Cp, ∇̂ψ ⊗o Cp) on Xan
Cp .

Proof. It suffices to compare both constructions on the model X nsc
o modulo

pn. We write ρn and ψn for the reduction modulo pn. The representation
ψn factors over a finite group G. Let ϕ : Y → X nsc be the correspond-
ing finite étale G-cover and write ϕ̂ for the corresponding map of formal
schemes. The analytic generic fiber of the covering ϕ : Yo → X nsc

o is a
finite topological Galois covering with the same group G, and ρn factors
over this group. Denote by N and N̂ the kernels of ρn and ψn. Note, that
πalg1 (X nsc, x)/N̂ ∼= G ∼= Γ/N .

We want to calculate the reduction modulo pn of the formal vector bundle
(M◦

ρ ,∇◦ρ) attached to ρ. Let U ⊂ X̂ nsc
o be an open subset, then

M◦
ρ (U) = {m ∈ L⊗o OΩ̂◦o

(u−1U)|γ(m) = m for all γ ∈ Γ}.
If we restrict the representation ρ to N ⊂ Γ (its kernel mod pn), then

M◦
ρ|N (ϕ̂−1U) = {m ∈ L⊗o OΩ̂◦o

(u−1U)|γ(m) = m for all γ ∈ N}. (10)
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The reduction modulo pn of the vector bundle M◦
ρ|N attached to ρ|N on Ŷo is

isomorphic to the trivial vector bundle OŶo,n
⊗on Ln because ρn|N ≡ 1, and

hence ρn acts trivially on Ln in (10). This implies, that

(M◦
ρ (U))n = (((L⊗o OΩ̂◦o

(u−1U))N)Γ/N)n =

= ((M◦
ρ|N (ϕ̂−1U))n)

G = (OŶo,n
(ϕ̂−1U)⊗on Ln)

G,

and we recover the construction of the vector bundle Fψn attached to the rep-
resentation ψn : G → Auton(Ln) as in Section 4.1. But this is the reduction
modulo pn of the vector bundle Fψ.

It remains to calculate the reduction modulo pn of the connection of
RH top,◦(ρ).

∇◦ρ(
r∑
i=1

ei ⊗ fi) =
r∑
i=1

ei ⊗ dfi

for U ⊂ X̂ nsc
o open, ei a basis of L, fi ∈ OΩ̂◦o

(u−1U).
As calculated above

(M◦
ρ (U))n = ((M◦

ρ|N (ϕ̂−1U))n)
G ∼= (OŶo,n

(ϕ̂−1U)⊗on Ln)
G

and∇◦ρ|N ,n is the ”constant” connection on the trivial bundleM◦
ρ|N ,n(U). This

connection is G equivariant and descends to a connection on (M◦
ρ )n that is

isomorphic to (∇◦ρ)n and (∇ψ)n

5.2 Comparison between Berkovich and DeWe parallel
transport

In this section we will compare the parallel transport of Berkovich and
Denigner-Werner using the comparison in Section 5.1.

Definition 5.2. Let Btop−rep
Xan

Cp
be the category of vector bundles with connec-

tion on XCp , that are attached to a representation ρ : πtop1 (Xan
Cp , x)→ Auto(L)

on finitely generated free o-modules L. This is also the image of Andrés’
topological Riemann-Hilbert functor RH top (for integral representations).

The vector bundles with connections in Btop−rep
Xan

Cp
satisfy the following

properties:

Proposition 5.3. Let (Mρ,∇ρ) ∈ Btop−rep
Xan

Cp
be a vector bundle attached to an

integral representation ρ of πtop1 (Xan
Cp , x) on Auto(L). Then
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a) (Mρ,∇ρ) is a quasi-unipotent DX-module of level 1 at each point x ∈
Xan

Cp ;

b) Every point x ∈ Xan
Cp has an étale neighborhood U → Xan

Cp such that
there is an embedding (even an isomorphism) of DU -modules

Mρ|U ↪→ (Sλ,0U )1 = OrU ;

c) The sheaf (Mρ)
∇ρ
Sλ
XanCp

of horizontal sections is equal to M
∇ρ
ρ , the locally

constant sheaf on Xan
Cp attached to the representation ρ;

d) The representations of πtop1 (Xan
Cp , x) attached to (Mρ,∇ρ) by André and

Berkovich are both isomorphic to ρCp, the extension of ρ to L⊗o Cp.

Proof. The pullback of (Mρ,∇ρ) under the universal covering map u : Ωan
Cp →

Xan
Cp is by construction the trivial bundle on Ωan

Cp . Topological coverings are
(Berkovich) étale, so we can take U = Ωan

Cp in b). Hence a),b) follow. c)
follows from the construction of the sheaf (Mρ,∇ρ) and b). Finally d) follows

from c) and the fact thatM
∇ρ
ρ is the locally constant sheaf VρCp

corresponding
to the representation ρCp in Andrés Riemann-Hilbert correspondence

We can now summarize our results in

Theorem 5.4. Let (Mρ,∇ρ) ∈ Btop−rep
Xan

Cp
be a vector bundle with connection

attached to a (discrete) representation ρ : πtop1 (Xan
Cp , x) → Auto(L), where L

is a free o-module of rank r. Let ρ̂ be the pro-finite completion of ρ, and let ψ
be the induced representation of πalg1 (X , x) and πalg1 (X, x) (see Section 5.1).
Then

a) (Mρ,∇ρ) is the analytification of the algebraic vector bundle with con-
nection (Fψ ⊗o Cp,∇ψ ⊗o Cp) on XCp attached to the representation
ψ;

b) The vector bundle Fψ := Fψ ⊗o Cp lies in Bs
XCp

, the category defined

by Deninger and Werner;

c) The corresponding DeWe-representation ρDeWe
Fψ

is defined and isomor-

phic to ψCp, where ψCp is the extension of ψ : πalg1 (X, x)→ Auto(L) to
AutCp(L⊗o Cp);

d) (Mρ,∇ρ) is étale locally unipotent, and Berkovich parallel transport is
defined;
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e) Let ρBer : πtop1 (Xan
Cp , x)→ AutCp((Mρ)

∇ρ
x ) be the representation obtained

by Berkovich parallel transport along paths from x to x of elements of
the fiber (Mρ)

∇ρ
x over x of horizontal sections of ∇ρ. Then ρBer is

isomorphic to ρCp, the extension of ρ to AutCp(L⊗o Cp).

Hence for all vector bundles in Btop−rep
Xan

Cp
the parallel transports of André,

Berkovich, Faltings, van der Put-Reversat (topological) and Deninger-Werner,
Faltings (algebraic) are compatible.

Remark 5.5. We assume that this correspondence can be extended vector
bundles with connection attached to representations of πtemp1 (Xan

Cp , x), i.e. to

vector bundles with connection that lie in the image of RH temp (Andrés’
temperate Riemann-Hilbert functor).
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6 Homogeneous vector bundles on abelian va-

rieties

A an abelian variety over Qp with good reduction

A an abelian scheme over Zp with generic fiber A

x : SpecQp → A the zero section of A

In this section we will show that the category BACp
defined by Deninger

Werner in Section 3.3 consists of the homogeneous (translation invariant)
vector bundles on ACp under the assumption that the DeWe functor ρDeWe

is fully faithful.

Definition 6.1. A vector bundle F on ACp is called homogeneous (or transla-
tion invariant) if T ∗aF

∼= F for all a ∈ A(Cp), where Ta denotes the translation
by a map.

The following theorem of Matsushima and Morimoto classifies homoge-
neous vector bundles on complex tori:

Theorem 6.2 (Matsushima, Morimoto). Let S be a complex torus, and
let F be a vector bundle on S. Then the following are equivalent:

a) F has a connection.

b) T ∗aF
∼= F for all a in S (F is homogeneous).

c) F has an integrable connection.

d) Each indecomposable component is uniquely of the form

L⊗ U

where L is a line bundle of degree zero, and U is a unipotent vector
bundle, i.e. a successive extension of the trivial line bundle.

Proof. See [Oda71] for references

Proposition 6.3. Let F ∈ BACp
be a vector bundle, and let a ∈ A(Cp) be a

point. Then the DeWe-representations ρF and ρT ∗aF attached to F and T ∗aF
are isomorphic.

Proof. By definition F has a model F on Ao, and for every n ≥ 1 there exists
a N ≥ 1 such that (N∗F)n is isomorphic to the trivial vector bundle on An.
The vector bundle T ∗aF has the model T ∗aF on Ao and (N∗T ∗aF)n is isomor-
phic to the trivial vector bundle on An. This can be seen as follows: Let
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b ∈ A(Cp) be a point satisfying N · b = a. Then N ◦Tb = Ta ◦N , hence there
is a canonical isomorphism (T ∗bN

∗F)n ∼= (N∗T ∗aF)n and (N∗T ∗aF)n is iso-
morphic to the trivial vector bundle. We can now compute and compare the
representations ρF and ρT ∗aF modulo pn: Consider the following commutative
diagram:

Γ(An, (N∗F)n)
x∗n
∼

- Γ(Specon, x
∗
nFn) = Fxn

Γ(An, (T ∗bN∗F)n)

T ∗b o

?

Γ(An, (N∗T ∗aF)n)

can o

? x∗n
∼
- Γ(Specon, x

∗
n(T

∗
aF)n)= (T ∗aF)xn

T ∗a o

?

Note that the composition can ◦T ∗b on the left hand side does not depend on
the choice of the point b, because the other three morphisms x∗n, x

∗
n and T ∗a

do not depend on b. The group AN(Qp) of torsion points acts on the modules
Γ(An, (N∗F)n), Γ(An, (T ∗bN∗F)n) and Γ(An, (N∗T ∗aF)n) by translation. The
isomorphisms on the left hand side T ∗b and can are equivariant under the
action of AN(Qp), because T ∗b T

∗
y
∼= T ∗y T

∗
b for all y ∈ AN(Qp). This implies

that the representations ρF,n and ρT ∗aF,n are isomorphic. The same holds for
the ρF and ρT ∗aF by taking limits

Proposition 6.4. Assume that the DeWe-functor ρDeWe is fully faithful.
Then a vector bundle lies in BACp

if and only if it is a homogeneous vector
bundle.

Proof. If a vector bundle is homogeneous, then by Theorem 6.2 it is the tensor
product of an unipotent vector bundle and a line bundle of degree zero (We
use the fact that there exists an isomorphism C ∼= Cp [Rob00] Section 3.5
page 144). Any such vector bundles lie in BACp

by Theorem 3.7. If F is a
vector bundle in BACp

, and a ∈ A(Cp) is a point, then by Proposition 6.3

the DeWe-representations ρDeWe
F and ρDeWe

T ∗aF
attached to the vector bundles

F and T ∗aF are isomorphic. Under the assumption, that the DeWe-functor
is fully faithful we obtain an isomorphism between F and T ∗aF and so F is
homogeneous

Remark 6.5. For an abelian variety A with totally degenerate reduction, it
was shown by van der Put - Reverasat [PuRe88], that homogeneous vector
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bundles correspond to ”Φ-bounded” representations on finite dimensional Cp-
vector spaces, of the topological fundamental group of A, using the methods
of Faltings [Fal83]. We assume that after developing the theory of Deninger
and Werner to abelian varieties with bad reduction, one can compare the
algebraic approach and the topological as for curves.
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7 Applications and remarks

7.1 Representations attached to vector bundles on abelian
varieties

K a finite extension of Qp

V its ring of integers
k its residue field
A an abelian scheme over V of dimension d
A its generic fiber

In this section we characterize the DeWe-representations that are at-
tached to vector bundles in BACp

. These were already classified in the case of
line bundles of degree 0 [DeWe05a] and in the case of unipotent vector bun-
dles if A has good ordinary reduction and is a canonical lift [Wie06] Chapter
4.

Remark 7.1. Let
ρ : TA→ GLr(o)

be a continuous representation. Let U ⊂ GLr(o) be the open subgroup of
matrices reducing to the identity Er modulo p1/(p−1). As ρ is continuous, the
group P := ρ−1(U) ⊂ TA is an open subgroup. Hence ρ restricted to P maps
into U . The logarithm series converges for arguments divisible by p1/(p−1).
Hence we obtain a map

P
ρ

- U
log

- Mr(Cp)

We will use Hodge-Tate theory to investigate this map:

Proposition 7.2 (Tate). Let G = Gal(Qp/K) be the absolute Galois group
of K. Then

H0(GK ,Cp) = K

and for n 6= 0
H0(GK ,Cp(n)) = 0

Proof. [Tate66] Theorem 1, Theorem 2

Proposition 7.3 (Tate). There is a Hodge-Tate (CHT ) decomposition (of
Galois modules)

HomZp(TpA,Zp)⊗Zp Cp
∼= H1

et(AK ,Zp)⊗Zp Cp
∼= Cp(−1)dimA ⊕ CdimA

p

Proof. [Tate66] Corollary 2
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Corollary 7.4. The following holds:

dimKHomc,GK (TA,Cp) = dimA.

Proof. Use the fact that Homc(TA,Cp) = HomZp(TpA,Cp) and Hodge-Tate
theory

Corollary 7.5. If A has (good) ordinary reduction, then the map

TA = πalg1 (AK , 0) � πalg1 (AZp , 0)

induces an isomorphism

Homc,GK (πalg1 (AZp , 0),Cp) ∼= Homc,GK (TA,Cp).

Proof. The left hand side is a K sub-vector-space of the right hand side.
It suffices to show, that its dimension is dimA. Let Aet[p∞] be the étale
part of the connected-étale sequence corresponding to the p-Barsotti-Tate
group A[p∞] associated to the p torsion points of A. Because A has ordinary
reduction we have

TAet[p∞] ∼= (lim
←
n

Z/pn)d = (Zp)
d.

The claim follows as

Homc(π
alg
1 (AZp , 0),Cp) = Homc(TAet[p∞],Cp)

Proposition 7.6. Assume that A has (good) ordinary reduction and let
ρ : TA→ GLr(o) be a continuous Galois-invariant representation. Then
there exists some N ≥ 1 such that the composition

ψ : TA
TN

- TA
ρ
- GLr(o)

factors over πalg1 (AZp , 0), i.e. it is a temperate representation. Here TN is
the map induced by N-multiplication on A.

Proof. Choose a N ≥ 1 such that TN(TA) ⊂ P := ρ−1(U). Then the
logarithm series converges for elements in U and is injective on U (exp is the
inverse). Consider the composite map

ψ : TA
TN

- TA
ρ
- GLr(o).

By Corollary 7.5 the map

log ◦ψ : TA→Mr(Cp)

factors over πalg1 (AZp , 0), because each component does. Because log re-

stricted to imψ is injective, the map ψ also factors over πalg1 (AZp , 0)
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Remark 7.7. We assume that a similar description of DeWe representations
is possible if A has non-ordinary (good) reduction. Let M ⊂ TA be the
intersection of all kernels of elements in Homc,GK (TA,Cp). If ρ is attached
to vector bundle on A, then there exists a N ≥ 1 such that ρ ◦ TN factors
over TA/M . This is analogous to the definition of temperate representations
and TA/M plays the role of πalg1 (AZp , 0). However we do not know wether to
any such representation one can attach a vector bundle, as in the ordinary
case.

Corollary 7.8. Let E be a vector bundle in BACp
, which is defined over K.

Then it is associated to a temperate representation of TA = πalg1 (AQp , 0).
The same holds if the vector bundle is defined over a finite extension K ′ of
K.

Proof. This follows from Proposition 7.6

To show the same result for vector bundles defined over Cp we need to
approximate vector bundles p-adically by a family of vector bundles defined
over finite extensions of K.

We need to make the following assumption:

Assumption 7.9. Let K ′ be a finite extension of K with ring of integers
V ′. Let E be a vector bundle on Ao, and let EV ′n be a vector bundle on AV ′n
(V ′n = V ′/pn). Assume that EV ′n ⊗V ′n on ∼= En. Then EV ′n can be lifted to a
vector bundle EV ′ on AV ′ .

Remark 7.10. The assumption is satisfied is A is an elliptic curve ([Her05]
Lemma 2.20) because the obstruction lies in the second cohomology group
that vanishes for curves. If E is a line bundle on Ao then it corresponds to
a o-valued point on the dual abelian scheme Âo. Because Zp/p

n = o/pn we

see that Â(Zp/p
n) = Â(o/pn), and the assumption is true also in the case of

line bundles.

Corollary 7.11. Let E be a vector bundle in BACp
, which is defined over Cp

and assume that Assumption 7.9 holds. Then it is associated to a temperate
representation of πalg1 (AQp , 0).

Proof. Choose a N ≥ 1 such that TN(TA) ⊂ P := ρ−1(U) (Notation as in
Remark 7.1). We claim that the map ψ := ρ ◦ TN factors over πalg1 (AZp , 0).
It suffices to show that ψn = ρn ◦ TN satisfies this property for every n ≥ 1.
Let E be a vector bundle on Ao with generic fiber E. Because on = Zp/p

n,
the vector bundle En is already defined over V ′/pn for some finite extension
K ′ of K with ring of integers V ′. Assume that there exists a vector bundle
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EV ′ on AV ′ defined over V ′, and satisfying EV ′⊗V ′ on ∼= En (Assumption 7.9).
Then the representations ρ and ρ′ attached to the vector bundles EV ′ ⊗V ′ o
and E are isomorphic modulo pn. By Corollary 7.8 (with K replaced by K ′),
the representation ψ′ := ρ′◦TN corresponding to ρ′ factors over πalg1 (AZp , 0).
Because ψ and ψ′ are isomorphic modulo pn, the claim follows

7.2 A relation between Φ-bounded representations and
representations of the algebraic fundamental group

K a finite extension of Qp

V its ring of integers

Let X/K be a Mumford curve and let ρ : Γ = πtop1 (X, x)→ GLr(K) be a
Φ-bounded representation (x ∈ X is a geometric base point). It was shown by
Faltings (Theorem 3.50) that Φ -bounded representations correspond to semi-
stable vector bundles of degree 0 on X. It was shown by G. Herz (see Section
3.11), that if this representation is integral, i.e. it is a representation into
GLr(V ), then the vector bundle Mρ attached to ρ lies in Bs

X , the category
defined by Deninger-Werner, and the attached DeWe-representation is the
pro-finite completion of ρ.

We will examine now the case of arbitrary Φ-bounded representations, i.e.
Φ-bounded representations that are not necessarily integral. We will restrict
us the case that X is a Tate elliptic curve:

We will need a criterion to decide wether two vector bundles attached to
two different representations are isomorphic:

Lemma 7.12. Let X be a smooth proper curve over Cp, and denote by Xan

its analyticification. Let X̃/Xan be an (Berkovich-) étale Galois covering
with group G (e.g topological or finite étale). Let ρ1, ρ2 : G→ GLr(o) be two
continuous (discrete topology) representations and denote by Mρ1, Mρ2 the
attached vector bundles. Then the following two conditions are equivalent:

a) Mρ1
∼= Mρ2;

b) There is an (Berkovich-) analytic function f : X̃ → GLr(Cp) such that

f(γz) = ρ2(γ)f(z)ρ1(γ)
−1 ∀γ ∈ G, z ∈ X̃.

Proof. The proof is the same as for Riemann surfaces, see for example [Flo01]
Lemma 2

Let X = C∗p/qZ (|q| < 1) be a Tate elliptic curve. A representation ρ of

πtop1 (X, 0) ∼= Z ∼= qZ is given by sending a generater to a matrix A ∈ GLr(Cp).
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Let Mρ be the vector bundle attached to ρ. We will show that the pullback by
N -multiplication N∗Mρ is isomorphic to a vector bundle attached to an inte-
gral representation for some suitable integer N (if we omit the corresponding
connections):

Remark 7.13. There is an exact sequence of fundamental groups ([And03]
III 2.3.2):

πtemp1 (C∗p) - πtemp1 (X, 0) -- qZ = πtop1 (X, 0)

For an integer N ≥ 1 the N multiplication N : X → X induces N -
multiplication on the corresponding fundamental groups, i.e.

N : πtemp1 (X, 0)→ πtemp1 (X, 0), γ 7→ N · γ.

Lemma 7.14. Let

ρ : πtop1 (X, 0)→ GLr(Cp), q 7→ A

be a discrete representation. Then the pull-back representation N∗ρ induced
by

πtemp1 (X, 0)
N ·
- πtemp1 (X, 0) -- πtop1 (X, 0)

ρ
- GLr(Cp)

factors over πtop1 (X, 0) and is given explicitly by q 7→ AN .

Proposition 7.15. Let

ρ : πtop1 (X, 0)→ GLr(Cp), q 7→ A

be a Φ − bounded representation corresponding to an indecomposable vector
bundle. We assume that A is in Jordan normal form with eigenvalues λ on
the diagonal with 0 ≤ v(λ) < m = v(q) as described in Faltings theorem (see
Theorem 3.50). Choose a N ∈ N, N > 0 such that N ·v(λ) = k ·v(q) for some
k ∈ N. Then the DeWe representation corresponding to the N-pullback of
the Φ-bounded representation N∗ρ is conjugated to the pro-finite completion
of the integral representation

ρ′ : πtop1 (X, 0)→ GLr(o), q 7→ A′

where A′ is defined by

(A′)−1 :=

 λN/qk 1 0
. . . 1

0 λN/qk


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Proof. We will apply Lemma 7.12: Choose the function

f : C∗p → GLr(Cp), z 7→ zk · Er (Er = identity)

The matrix AN is conjugated (Jordan normal form) to the matrix

Ã :=

 λN qk 0
. . . qk

0 λN

 .

Then we have the following relation

f(qz) = qkf(z) =

 λN qk 0
. . . qk

0 λN


︸ ︷︷ ︸

Ã

·f(z) ·

 λN/qk 1 0
. . . 1

0 λN/qk


−1

︸ ︷︷ ︸
(A′)−1

.

Hence the vector bundles attached to the representations given by the ma-
trices AN and A′ are isomorphic

Remark 7.16. We assume that this relation can be extended partly to
Mumford curves of genus g ≥ 2. However it will be more difficult than
in the genus one case to find suitable functions f because the fundamental
group is non-abelian and the universal covering is more complex than C∗p.
If one considers line bundles one should be able to deduce results from the
corresponding line bundles on the Jacobian which is p-adically uniformized.

Remark 7.17. It is true that the connections attached to integral Φ-bounded
representations coincide with connections induced by the corresponding al-
gebraic representation. If the Φ-bounded representation is non integral, then
this is not the case as can be seen in the proof of Theorem 7.15 in the case
of Tate elliptic curves. The connections attached to the representation given
by the integer λN is not equal to the connection corresponding to λN/qk.

7.3 Canonical connections and a Riemann-Hilbert cor-
respondence

K a finite extension of Qp

V its ring of integers
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In this section we show that certain vector bundles in the categories Bs
XCp

and BACp
defined by Deninger and Werner are equipped with canonical con-

nections. As an application one can combine the canonical connections with
Faltings p-adic Simpson correspondence to obtain a p-adic Riemann-Hilbert
correspondence.

Theorem 7.18. Let A/K be an abelian variety with good ordinary reduction.
There is a category equivalence between the category of temperate represen-
tations of TA (on K-vector spaces) and the category of homogeneous vector
bundles on A. In particular, each homogeneous vector bundle has a canoni-
cal connection. The correspondence is compatible with tensor products, duals,
internal homs and exterior powers.

If Assumption 7.9 is true, than the same is true for vector bundles and
representations defined over Cp.

Proof. The equivalence of categories follows from Sections 6 and 7.1. The
correspondence is compatible with tensor products, duals, internal homs and
exterior powers because this is the case for the construction of Deninger-
Werner (Section 3.3)

Theorem 7.19. Let E/K be an elliptic curve which has either ordinary good
reduction, or is a Tate elliptic curve (in the latter case we assume that the
DeWe-functor is fully faithful). Then there is an equivalence of categories
between the category of temperate representations of πalg1 (E, 0) and the cate-
gory of homogeneous vector bundles on ECp. In particular every homogeneous
vector bundle on ECp admits a canonical connection.

Proof. In the case of curves Assumption 7.9 is true, hence the result follows
from Theorem 7.18 in the ordinary good reduction case. If E is a Tate curve,
then the result follows from Proposition 7.15

Theorem 7.20. If X/K is curve having good ordinary reduction and x a K
valued base point, then there is an equivalence of categories between the cate-
gory of temperate characters (one-dimensional temperate representations) of
π1(XQp , x) to C∗p, and the category of line bundles of degree 0 on XCp. In
particular, each line bundle of degree 0 on XCp admits a canonical connection.

Proof. We deduce this by pulling back line bundles on the Jacobian: Let X
be a smooth model of X, and let A be its Jacobian. Let j = jP : X ↪→ A
be the Jacobian embedding corresponding to a point P . If L is a line bundle
of degree 0 on XCp then there exists a line bundle L′ of degree 0 on ACp
satisfying L = j∗CpL

′. Let L′ be a o-model of L′, then j∗oL′ is also a model
of L. Because L′ is associated to a temperate representation, there exists an
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integer N > 0 such that N∗L′ can be trivialized by finite étale coverings of
A modulo pn for every n > 0 (N denotes the multiplication by N on A).
So fix a n > 0, and choose an étale trivializing cover π : A′ → A for N∗L′
modulo pn. Consider the following diagram of coverings:

X ×A,N A×A,π A′
pr2

- A′

X ×A,N A

π̃

?

pr2
- A

π

?

X

Ñ

? j
- A.

N

?

Here the map π̃ is étale and the map Ñ is étale on the generic fiber. By the
diagram there is an isomorphism

π̃∗Ñ∗L ∼= π̃∗Ñ∗j∗L′ ∼= pr∗π∗N∗L′.

This implies that π̃∗Ñ∗L is trivial modulo pn because this is the case for
pr∗π∗N∗L′. It follows that L = LCp is associated to a temperate representa-
tion of π1(XQp , x)

There is a well known relation between connections and Higgs fields on
vector bundles:

Remark 7.21. Let Y/S be a scheme smooth and of finite type over a base
scheme S. Let E be a vector bundle on Y . Then the set of S-connections nat-
urally form a EndE⊗Ω1

Y/S pseudotorsor (i.e. a torsor if the set of connections

is not empty). If ∇ and ∇′ are two S-connections then

∇−∇′ = θ ∈ EndE ⊗ Ω1
Y/S.

Remark 7.22 (a p-adic Riemann-Hilbert correspondence). We have
seen that for elliptic curves with ordinary good reduction or Tate-elliptic
curves each homogeneous vector bundle has a canonical connection. Also
each line bundle of degree 0 on a curve with ordinary reduction has a canon-
ical connection. In these cases one can combine Faltings’ p-adic Simpson
correspondence (Section 3.4) with Remark 7.21 and the canonical connec-
tions to obtain a p-adic Riemann Hilbert correspondence (if we allow A2(V )-
coefficients as in Faltings work).

(F,∇) ←→
∇−∇can=θ

(F, (∇can + θ))←→ (F, θ) ←→
p−adic Simpson

ρ(F,θ)
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Here F is a vector bundle with connection ∇. The connection ∇ can be
written as ∇ = θ + ∇can for a Higgs field θ and the canonical connection
∇can.

It would be interesting to know how the sheaf of locally analytic function
defined by Coleman and Berkovich (Section 3.10) fits into this picture if a
vector bundle with connection is not attached to a topological or temperate
representation.

Example 7.23 (Horizontal sections). If X/SpecQp is a curve then each
rank one Higgs-bundle (L, θ) (of degree 0) lies in the image of Faltings functor
[Fal05] Section 5. By Remark 7.22 there is an equivalence of categories
between the characters of πalg1 (X, x) and line bundles with connection on XCp
(if X has good ordinary reduction or is a Tate curve). The vector bundle with
connection (OX ,∇) with ∇ := d+ θ (θ a Higgs field) is not locally unipotent
whenever θ 6= 0, hence Berkovichs’ p-adic integration does not apply directly.
To find a solution f (a horizontal section of ∇) of the differential equation
df + θf = 0 one has to exponentiate a primitive gθ of θ, i.e. we set f =
Exp(gθ). A primitive gθ of θ that is unique up to a constant can be found
using Coleman-Berkovich integration (Theorem 3.61 a), b)). One has to
choose an exponential function Exp because the exponential series does not
converge in general (See [Rob00] Section 5.4.4). Faltings’ p-adic Simpson
correspondence depends on the choice of an exponential function, so one can
take this one to make things canonical. The set {a · Exp(gθ)|a ∈ Cp} is a
one-dimensional Cp-vector space of horizontal sections of the connection ∇ =
d+ θ. The same reasoning applies to arbitrary line bundles with connection.
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to Cp, Tôhoku-Hokkaidô lectures in arithmetic Geometry (2003).

[Ber90] BERKOVICH, V., Spectral theory and analytic geometry over non-
Archimedean fields, Mathematical Surveys and Monographs, no. 33,
A.M.S., (1990).

[Ber93] BERKOVICH, V., Étale cohomology for non-Archimedean analytc
spaces, Publ. Math. IHES, tome 78 (1993).

[Ber94] BERKOVICH, V., Vanishing cycles for formal schemes, Invent.
Math. 115, no. 3 (1994).

[Ber07] BERKOVICH, V., Integration of one-forms on p-adic analytic
spaces, Annals of Mathematics Studies 162, Princeton University Press,
Princeton and Oxford, (2007).
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