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1 Deutschsprachige Zusammenfassung

p-adische Vektorbiindel auf Kurven und Abelschen
Varietaten, und Darstellungen der Fundamentalgruppe

In vorliegender Arbeit werden verschiedene Zugénge zur p-adischen In-
tegration und p-adischen Riemann-Hilbert-Korrespondenz untersucht und
miteinander verglichen.

Fiir einen glatten K-analytischen Raum iiber einem abgeschlossenen Teil-
korper K von C, hat V. Berkovich eine Theorie der p-adischen Integration
und des Paralleltransports entlang Wegen entwickelt. Insbesondere kann
man (lokal unipotenten) Vektorbiindeln mit Zusammenhang diskrete Darstel-
lungen der topologischen Fundamentalgruppe auf endlich dimensionale K-
Vektorraume zuordnen.

In einer Arbeit von C. Deninger und A. Werner wird fiir eine Kategorie
von Vektorbiindeln %ﬁ(% auf einer glatten projektiven Kurve X iiber QTD
ein Paralleltransport entlang étaler Wegen definiert. Insbesondere kann man
jedem dieser Vektorbiindel eine stetige Darstellung auf einen endlich dimen-
sionalen C,-Vektorraum der algebraischen Fundamentalgruppe von X zuord-
nen, welche wir DeWe-Darstellungen nennen wollen. Zur gleichen Zeit wurde
von G. Faltings eine p-adische Simpson-Korrespondenz beschrieben. Hierbei
kann gewissen Vektorbiindeln auf einer Kurve X, die mit einem Higgs-Feld
ausgestattet sind, eine Darstellung der algebraischen Fundamentalgruppe von
X zugeordnet werden.

In der vorliegenden Arbeit wird gezeigt, dass man sogenannten tem-
perierten Darstellungen der algebraischen Fundamentalgruppe von X ein
Vektorbtlindel mit kanonischem Zusammenhang zuordnen kann. Diese Vek-
torbiindel liegen dann in der Kategorie ‘Bf}’(cp und die zugehorigen Darstellun-
gen sind mit den DeWe-Darstellungen kompatibel. Wir benutzen dann eine
Methode von G. Herz, um die stetigen DeWe-Darstellungen mit den diskreten
Darstellungen, die im Berkovich-Paralleltransport auftreten, zu vergleichen.
Wir zeigen weiter, dass die Konstruktion von G. Faltings in diesem Fall mit
den DeWe-Darstellungen iibereinstimmt, falls das Higgs-Feld gleich Null ist.
Wir haben folglich gezeigt, dass die obig genannten Zugange zur p-adischen
Integration und p-adischen Riemann-Hilbert Korrespondenz im Spezialfall
der temperierten Darstellungen miteinander kompatibel sind.

In einer weiteren Arbeit von C. Deninger und A. Werner wurde die Theo-

rie der DeWe-Darstellung auch fiir Abelsche Varietdten A/ @ mit guter Re-
duktion entwickelt. Wir konnten zeigen, dass die Kategorie der Vektorbiindel
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B Ac, auf einer Abelschen Varietit A, fiir die DeWe-Darstellungen definiert
sind, genau aus den translations-invarianten Vektorbiindeln besteht (unter
der Annahme, dass der DeWe-Funktor volltreu ist). Im Falle gewthnlicher
Reduktion konnte auch gezeigt werden, dass die zugehorigen Darstellun-
gen genau die temperierten Darstellungen sind. Insbesondere erhélt man in
diesem Fall eine Kategoriendquivalenz zwischen temperierten Darstellungen
und translations-invarianten Vektorbiindeln auf A, welche dann auch einen
kanonischen Zusammenhang besitzen.



2 Introduction

On a Riemann surface X there is a well-known correspondence (Riemann-
Hilbert) between complex representations of the fundamental group (X, x)
and C* vector bundles with flat connections on X. In this correspondence
a local system corresponding to a representation gives rise to a vector bun-
dle with connection if tensored with the structure sheaf. Conversely, the
horizontal sections of a C'* vector bundle with flat connection define a lo-
cal system. By a theorem of C. Simpson [Sim92] C*° vector bundles with
flat connection correspond to holomorphic vector bundles equipped with a
so-called Higgs-field.

There are some analogues of this theory for varieties and vector bundles
defined over a p-adic field:

There is an algebraic p-adic analogue: Let X be a smooth proper curve
over Q,. In [DeWe05b] A.Werner and C. Deninger defined functorial isomor-
phisms of parallel transport along étale paths for a class of vector bundles on
Xe, = X Xgpeag, SpecC,. The category of such vector bundles is denoted by

%Cp and contains all vector bundles of degree 0 that have strongly semistable
reduction. In particular, all vector bundles in ’focp give rise to continuous
representations of the algebraic fundamental group on finite dimensional C,-
vector spaces. Their construction also works for abelian varieties A with
good reduction. To each vector bundle on A that lies in a certain category
B 4., they can associate a continuous representation of the Tate-module T'A
of A on finite dimensional C,-vector spaces. We will call the representations
attached to vector bundles in their theory DeWe-representations.

At the same time G. Faltings [Fal05] established a p-adic Simpson corre-
spondence. He showed that there is a correspondence between vector bundles
on X equipped with a Higgs-field # and so called ”generalized representa-
tions” which contain the representations of the algebraic fundamental group
of X as a full subcategory. It is assumed that the construction of G. Falt-
ings is compatible with the construction of C. Deninger and A. Werner if the
Higgs-field @ is zero.

It is an interesting question to characterize the vector bundles that give
rise to representations without referring to the reduction behavior. It is also
an interesting question to characterize the representations that correspond
to zero Higgs-fields. Furthermore, connections on the vector bundles and
horizontal sections are missing.

There is a topological p-adic analogue: In [Ber07] V. Berkovich devel-
oped a theory of p-adic integration and parallel transport along paths in the
framework of Berkovich spaces. For a smooth K-analytic space Y there are



isomorphisms of parallel transport along paths for all locally unipotent vec-
tor bundles with connection on this space. The parallel transport involves
the horizontal sections of these connections. To obtain a full set of horizontal
sections one has to work with a sheaf S on Y that is an extension of the
structure sheaf Oy. In particular, each locally unipotent vector bundle with
connection gives rise to a representation of the topological fundamental group
of Y. A special case of locally unipotent vector bundles are vector bundles
that are attached to discrete representations of the topological fundamen-
tal group on finite dimensional K-vector spaces. These were considered in
[And03]. If one omits connections then there is theorem of G. Faltings [Fal83]
(see also [PuRe86]) that classifies an interesting class of vector bundles in the
case that Y is a Mumford curve. He shows that there is a bijective correspon-
dence between semi-stable vector bundles of degree 0 on Y and ®-bounded
representation of the topological fundamental group of Y (®-bounded repre-
sentation are representations that satisfy certain growth conditions).

In this thesis we want to find a relation between the algebraic and the
analytic approach. We encounter several problems:

a) Representations in the topological case are of discrete nature, whereas
algebraic representation are continuous with respect to the p-adic topol-

ogy.

b) In the topological case vector bundles always have a connection, whereas
in the algebraic setting connections do not always appear.

c¢) In Faltings’ work one has to lift everything to the dual numbers of a
Fontaine ring to get a correspondence that is independent of certain
choices. The construction depends also on the choice of an exponential
function for the multiplicative group.

d) The parallel transport of Berkovich involves a sheaf of locally analytic
functions S3.

Problem a) was partly solved by G. Herz in his dissertation [Her05] in
the case of Mumford curves. Problem b) is partly solved, because certain
algebraic vector bundles have a canonical connection. We conjecture that
every vector bundle lying in one of the categories %j}cp or By, defined by
C. Deninger and A. Werner admits a canonical connection.

For Problem c¢) we omit the dual numbers and the Higgs field and use the
work of [DeWe05b].



For Problem d) we only consider vector bundles that are attached to repre-
sentations of the topological fundamental group. Then the parallel transport
is more elementary, since the sheaf S is not needed anymore.

For an abelian variety A over @p having good reduction we show that the
category ‘B Ac, of vector bundles on Ac, that give rise to DeWe-representations,
is equal to the category of translation-invariant vector bundles on Ac, (un-
der the assumption, that the DeWe-functor is fully faithful). We also give a
characterization of DeWe-representations that are attached to vector bundles
in B Ac, if they are defined over a finite extension K of QQ,. In the case that
A has good ordinary reduction one obtains exactly the so called temperate
representations of T'A. This implies also that the vector bundles in B Ac, are
equipped with a canonical integrable connection.

Using the theory of temperate representations we can generalize the com-
parison theorem of G. Herz [Her05] between the theory of DeWe-representations
and Faltings ®-bounded representations on Tate-elliptic curves to non-integral
coefficients.

As an application of canonical connections one can combine Faltings’ p-
adic Simpson correspondence with canonical connections to obtain a p-adic
Riemann-Hilbert correspondence on curves. We could prove the existence
of canonical connections for vector bundles on elliptic curves with ordinary
(good or bad) reduction and for line bundles of degree 0 on curves with or-
dinary reduction.

We give a short outline of the paper: In Section 3 we recall various
results that are already documented in the literature. In Section 4 we recall
in detail how to attach a vector bundle with connection to a continuous
representation of the étale fundamental group of a projective Zp—model X of
a projective variety X defined over @p. This construction is motivated by the
Katz correspondence between representations and F-crystals. Using descent
theory this construction works also after a finite étale Galois covering Y — X
of the generic fiber. In Section 5 we relate the topological parallel transport
of V. Berkovich to the algebraic parallel transport of C. Deninger and A.
Werner for some vector bundles with connections on curves. This builds on
and generalizes the comparison theorem of G. Herz. In Section 6 we show
that for an abelian variety over QT,, with good reduction the category B Ac,
defined by DeWe is equal to the category of homogeneous vector bundles on
A. In Section 7 we give some applications of the previous results.

Acknowledgement: I would like to thank my supervisor Annette Werner
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the last three years. I want to thank all my academic teachers. Moreover,
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3 Background

In this section we recall some known results about relations between p-adic
vector bundles on varieties and representations of their fundamental groups
(algebraic and analytic).

3.1 Notations

Let p be a prime number. Let @ be an algebraic closure of the p-adic

numbers Q,. The completion of Q, is denoted by C,, i.e. C, := Q,. We
write o for the ring of integers in C,, and denote its reduction modulo p"
by o0, := o/p"o. In this case the ring o, is isomorphic to the reduction
modulo p" of the p-adic integers Z, of Q,, i.e. o, = o/p"0 = Z,/p"Z,. For
a scheme, a sheaf, a morphism or a representation that is defined over o or
ZT, a subscript n will denote its reduction modulo p”, e.g if X := Spech,[X ],
then X, = X xz Zy|P Ly, . 1f p : m — Aut,(L) is a representation of a
group 7 on a free o-module IL of rank r, then pc, denotes its extension to
Aute, (L ®,C,). If X/SpecQ, is a scheme, then X¢, denotes its base change
with C,. If X is a variety over a complete non-archimedean field, then X"
resp. X" denotes its analytification (Berkovich), resp. its rigidification.

3.2 Deninger-Werner parallel transport on curves

X asmooth projective curve over Q,

We will review the étale parallel transport defined by Deninger and Werner
in the case of curves [DeWe05b].

Definition 3.1 (DeWe). - Let V be a valuation ring with quotient field Q.

a) A model of a smooth projective curve C over @) is a finitely presented,
flat and proper scheme C over SpecV together with an isomorphism

C=CoyQ.

b) For a model X of X over V and a divisor D in X the category Sy p is
defined as follows: Objects are finitely presented proper V- morphisms
m Y — X whose generic fiber mg : Vg — X is finite and such that
Qg wél(X \ D) — X \ D is étale. Morphisms are defined to be
compatible with the structure morphism.
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c)

A full subcategory S/,gvogl C Sy p is defined by taking as objects models
Y in Sy p whose structural morphism A : } — Spec(V) is flat and
satisfies A,y = Ogpecy universally, and whose generic fiber A\g : Vg —
Spec( is smooth.

Definition 3.2 (DeWe). -

a)

d)

For a model X of X over ZTD and a divisor D in X the category By, p is
defined to be the full subcategory of Vecy, consisting of vector bundles
EonkX,=4X ®7, 0 with the following property: For every n > 1 there
is an object m : Y — X of Sx p such that 7}&, is a trivial bundle on
Y,. Here 7,,), and &, are the reductions mod p” of w, ) and £.

The full subcategory B Xc,D of VecXCp consists of all vector bundles
on Xc, which are isomorphic to a vector bundle of the form j*& with
& in By, p for some model X of X. Here j is the open immersion of
Xc¢, into Xj.

The full subcategory ‘Bﬁc p of Vecy,, consists of all vector bun-
p7
dles £/ on X¢, such that Oz(*CpE is in SBYCWQ* p for some finite covering

a:Y — X of X by a smooth projective curve Y over QTP such that «
is étale over X \ D.

Finally define
B = JBxe, -
D

These are are the vector bundles on X¢, with strongly semi-stable
reduction (See the Introduction of [DeWe05b] and Theorem 36)

We describe now the construction of Deninger and Werner for vector
bundles in By, p: Now, given v in Iso(Fy, Fiy) (an étale path (Section 3.6)
between two points z and z') and some n > 1, let us construct pg, (7).
By definition of By, p and by [DeWe05b] Corollary 3 there exists an object
m:)Y — X of Sgg%l such that 7€, is a trivial bundle. Set Y := Y ®ZQTP
and V ;=Y \ 7*D. Then V — U is a finite étale covering. Choose a point
y € V(C,) above z and let y = vy € V(C,) be the image of y under the

map

v Fy (V) — Fu (V).

Then ¢ lies over 2’. Since the structural morphism A : ) — SpecZTD satis-
fies A.Oy = Ogpeez, universally we find A0y, = Ogpeco, and therefore the
pullback map under y,, : Speco,, — ), is an isomorphism

Yo T(Vn, 7 &) =T (Speco,,, yrmiE,) = I'(Speco,,, v &) = &,
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We can now define

pen() = 7W)ho (W)™ = W)ho (W)™ &y — &,
Note that by construction pg,, factors over the finite set Iso(F,(V), Fo (V)).

Theorem 3.3 (DeWe). - The preceding constructions are independent of
all choices and define a continuous functor pg from [[,(X ~\ D) into the
category of free o-modules of finite rank.

Proof. [DeWe05b] Theorem 22 O
This result can be extended to generic fibers:

Theorem 3.4 (DeWe). - Let X’ be a smooth projective curve over Q, and
let f: X — X' be a morphism. Let D' be a divisor on X'.

a) The functor
p- %ch,n - Reprh(X\D)((Cp)

is C,-linear, exact and commutes with tensor products, duals, internal
homs and exterior powers.

b) Pullback of vector bundles induces an additive and ezact functor
f : %X({:plﬂ - %ch,f*D’

which commutes with tensor products, duals, internal homs and exterior
powers. The following diagram is commutative:

p
By, —— Repy, xnp)(Cp)

I A(f)

EBXCW*D, _p» Repﬂl(X\f*D’)<(cp)'
In particular for E in %ch,D we have
PrE = PE© I«
as functors from 11, (X \ f*D') to Vecg, .
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¢) For every automorphism o of Q, over Q, the following diagram com-
mutes

p
%ch,p — Repﬂl(X\D) (Cp)

O« Co‘

P
%"ch,ap - Repnl(U(X\D))((Cp)'

In particular, we have for E in %chp,p that

por = 0.0 pgo(o,)”!
as functors from I1;(°(X \ D)) to Vecc,. If X = Xk ®x Q, and
D = Dk ®k Q, for some field Q, C K C Q,, so that (°X,° D) is
canonically identified with (X, D) over Q, for all 0 € Gk, the functor
p- sBXc,,,D - Rele(X\D)((Cp)

commutes with the left Gk -actions on these categories, defined by let-
ting o act via o, respectively via C,.

Proof. [DeWe05b] Theorem 28 O

This parallel transport can be extended to vector bundles lying in the
category SB}?C , and ‘Bﬁ(cp:
D>

Theorem 3.5 (DeWe). - The preceding constructions give a well defined
functor

P %ﬁcpp - Repﬂl(X\D)(Cp)

which extends the previously defined functor. For different divisors D on X
the corresponding functors are compatible and define a functor

p : %L;(CP = U%XCP,D - Repl‘[l(X) ((CP)
D

Proof. [DeWe05b] Proposition 32 and Theorem 36. As it will be used later we
sketch the basic part of the construction: Choose a ramified Galois covering
a:Y — X which is étale over X \ D such that o*F lies in By, orp- FOr an
étale path v from z7 to xs in X \ D we set

pE'(fV) = pa*E<7/) DBy, = (a*E)yl - (a*E)w = Ey,.
where y; € V(C,) (V :=Y \ a*D) lies above x; and 7/ is the unique path in
V with a,y' =~ from y; to a point y, above . O]
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3.3 Deninger-Werner parallel transport on abelian va-
rieties
A an abelian variety over @p having good reduction

A/Z, an abelian scheme over Z, with generic fiber A
x = SpecQ, — A the zero section of A

We will review the étale parallel transport of Deninger and Werner in the
case of abelian varieties having good reduction [DeWe05a].

Definition 3.6 (DeWe). -

a) Let B 4, be the full category of the category of vector bundles on the
abelian scheme A, consisting of all vector bundles F on A, satisfying
the following property: For all n > 1 there exists some N = N(n) > 1
such that the reduction (N*FE), of N*E modulo p™ is trivial on A, =
A ®7z-0,. Here N : A — A denotes the multiplication by N.

b) Let B Ac, be the full subcategory of the category of vector bundles on
Ag, consisting of all vector bundles F' on Ac, which are isomorphic to
the generic fiber of a vector bundle E in the category ‘B 4, .

We will now sketch how to attach a p-adic representation of the Tate-
module T'A of A to a vector bundle F in ‘B A,

Let E be a vector bundle in B 4, with generic fiber F'. Fix some n > 1.
Then there exists some N = N(n) > 0, such that the reduction (N*E), is
trivial on A,,. The structure morphism A : A, — Speco satisfies \,O4, =
Ospeco universally. Hence I'(A,,, O) = o0,,, and therefore the pullback map

z; (A, (N*E),) — I'(Speco,, 2. E,) = E,

is an isomorphism of free o,-modules. (Note that Noz, = x,,) OnI'(A,, (N*E),)
the group Ay (Q,) acts in a natural way by translation. Define a representa-
tion pp, : TA — Aut,, (E,,) as the composition:

pin: TA— An(@,) — Aut,, (T(A,, (N*E),)) — Auty, B,

L,

The representations pg, form a projective system and give a well defined
representation pg : TA — Aut(F,). Taking generic fibers one obtains:

Theorem 3.7 (DeWe). -

14



a) The category B Ac, S closed under direct sums, tensor products, duals,
internal homs and exterior powers. It contains all line bundles of degree
0. Besides, it is closed under extensions, i.e. if0 - F' — F — F" — 0
is an exact sequence of vector bundles on Ac, such that F' and F" are
n Ba,, then F is also contained in B . .

b) The association F — pp defines an additive exact functor

p- %Acp — Repry(C,),

where Repp4(C,) is the category of continuous representations of T A
on finite dimensional C,-vector spaces. This functor commutes with
tensor products, duals, internal homs and exterior powers.

c) Let f: A — A" be a homomorphism of abelian varieties over @p with
good reduction. Then pullback of vector bundles induces an additive
exact functor

f* : %Aé:p - %ACP’

which commutes with tensor products, duals internal homs and exte-
rior powers (up to canonical identifications). The following diagram is
commutative:

*

%Agcp Bac,

F
Repr 4 (Cy) — Repra(Cy)
where F' is the functor induced by composition with Tf : TA — TA’.

d) Assume that A is defined over a finite extension K of Q, and set G =
Gal(Q,/K). For every o € G the following diagram is commutative:

p
EBA(CP —_— RepTA((Cp)

9o O«

p
B, — Reppy (Cyp)

where the functor g, maps F to °F.
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e) If A is defined over a finite extension K of Q,, and zfA denotes the
dual abelian variety, that classifies line bundle of degree 0 on A, then
the association F' +— pp induces an isomorphism of topological groups

A(C,) = CH®(TA).
Here CH>®(TA) denotes the group of continuous characters x : TA —
C,, whose stabilizer in G = Gal(Q,/K) is open.
Proof. [DeWe05a] Theorem 1 and Proposition 1 O

There is also a relation with the functor on curves: Let X be a smooth
irreducible projective curve over @ which has good reduction. Fix a point
r € X(Q,) and denote by m (X, z) the algebraic fundamental group with
base point x. Let f : X — A := Jac(X) be the embedding induced by

z — 0.

Proposition 3.8. The following diagram is commutative:

*

RepTA (CP) - Reprrl (X,x) (Cp)

where f is the functor induced by composition with the homomorphism f, :

m(X,z) = TA.
Proof. [DeWe05a] Lemma 2 O

3.4 Faltings’ p-adic Simpson correspondence

K  a finite extension of Q,
V' the ring of integers in K
X a proper V-scheme

In [Fal05] Faltings constructs a p-adic analogue of the correspondence
described by Simpson and Corlette [Sim92]. We sketch his results briefly:

Definition 3.9 (Hitchin, Simpson). A Higgs bundle on an algebraic va-
riety Y over a field L is a pair (£,60) where £ is a vector bundle on Y and 6
an element of End(€) @ ), satisfying @ A6 = 0 (In the case that Y is a
curve this condition is superfluous). The morphism 6 is called a Higgs field.

16



Remark 3.10. -

a) The scheme X is supposed to have “toroidal singularities”, because
Faltings” almost purity theorem ([Fal02] Theorem 4) is stated for schemes
having this kind of singularities. Examples of such schemes are schemes
that are smooth or semi-stable.

b) Faltings defines a sheaf O on a suitable situs on X'\ D for some divisor
D. He calls a vector bundle over O/p* (for some s € Q, s > 0) a
” generalized representation”. Locally (affine) such generalized repre-
sentations are given by projective modules over a ring R equipped with
a semi-linear action of the étale fundamental group of the generic fiber.

c) We restrict us for simplicity to a field K that is a finite extension of
Q,, whereas Faltings considers a more general situation.

Faltings established the following p-adic analogue of Simpsons’ correspon-
dence for Higgs-bundles on A, in the case of curves, i.e. A¢, is a curve:

Theorem 3.11 (Faltings). There exists an equivalence of categories between
Higgs-bundles and generalized representations, if we allow C,, coefficients.

Proof. [Fal05] Theorem 6, Section 2 O

Remark 3.12. -

a) The equivalence depends on the choice of a p-adic exponential function
for the multiplicative group, and a lift of X to the dual numbers A, of
a Fontaine ring ([Fal05] Section 1).

b) The category of generalized representations contains the category of
representations of the étale fundamental group of A~ on free finitely
generated o-modules L. (étale local systems) as a full subcategory ([Fal05]
Section 2).

a) The constructions of Faltings and Deninger-Werner are assumed to
coincide for Higgs bundles (£,0) with & € B5_. and § = 0 ([Fal05]
Section 5).

b) It is difficult to characterize the image of Faltings correspondence, i.e.
which Higgs bundles correspond to actual representation. It is known
that the (Higgs) vector bundles in the image are all semi-stable of slope
0 and all rank one Higgs bundles are in the image ([Fal05] Section 5).

17



c) It is an interesting question which representations of the étale funda-
mental group correspond to Higgs-bundles with zero Higgs field i.e.
0 =0.

We now state a key lemma used by Faltings to attach a Higgs bundle to
a generalized representation. The construction is affine, and Faltings uses in
[Fal05] Section 3 the following notation (in the case that X is a curve): Let
SpecR C X be a small affine, that is R is étale over over a toroidal model
(e.g. R is étale over V[z] (smooth) or étale over V[z,y|/(xy — p) (semi-
stable)). Denote by R the integral closure in the maximal étale extension of
Up = Uk \ Dk (D a divisor as above) where Uk := Spec(R ®y K). Denote
by Rs C R the sub-extension obtained by adjoining roots of characters
of the torus (e.g roots of x (smooth case)) and set R, := R ®y V. Set
A = Gal(R/R;) and A, = Gal(Rs/R;). For a more detailed discussion
we refer the reader to [Fal02] Section 2c page 205, [Ols06] 3.5 and [Len97]
Section 6 Corollary 17.

Lemma 3.13 (Faltings). - Suppose that a > 1/(p—1) is a rational number,
and M = R /(p®) is a generalized representation (it admits a semi-linear A
operation,).

a) Suppose that M is trivial modulo p**. Then its reduction modulo p*=
is given by a representation Ay, — GL(r,Ry/(p°~®)), and this repre-
sentation 1s trivial modulo p®.

b) Suppose given two representations Ao — GL(1;, R1/(p* %)) (i=1,2),
trivial modulo p®, and a R — A-linear map between the associated gen-
eralized representations. Then its reduction modulo p*~% is given by an
Ry — A -linear map of representations.

Proof. [Fal05] Lemma 1. Faltings uses standard group cohomology to find
such representations. To compute certain cohomology groups appearing in
the construction, one needs to use Fatlings method of almost étale extensions

O

Remark 3.14. -

a) Let Aye — Autg, jpe-o)(M) be a representations as in 3.13 a), on a
free Ry/(p°*~*)-module M. Then in [Fal05] Remark ii) associates a
Higgs-field 6 to this representation by applying the logarithm map to
the images of generators of A, (This is possible because the logarithm
converges for arguments divisible by p®). The resulting Higgs-field 6 is
an element of End(M) ® Q2 v ® V(—1) with commuting components.
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b) If this representation is trivial then log(1) = 0 and the resulting Higgs-
field 6 equals zero.

c¢) Faltings can extend this result to p-adic representations by using the
inductive method of liftings.

3.5 Unit-root F-crystals

a finite extension of Q,

its ring of integers

the residue field of V'

the ring of Witt vectors of k

a uniformizer in V'

a lifting (to V') of the g-power Frobenius on k leaving 7 invariant
a smooth k-scheme

X /W a formally smooth lifting of X}

¢ a lifting (to X') of the absolute Frobenius on A},

T a geometric point of A

x93 = X

In [Katz73] Katz describes a correspondence between representations of
the étale fundamental group of a smooth scheme in characteristic p and for-
mal vector bundles equipped with a Frobenius morphism. Crew describes in
[Crew87] the image of this correspondence in certain cases. We will reproduce
some of their results here:

Definition 3.15 (Crew). A F-lattice on X' /(V, ¢) is a locally free V ® Ox-
module M endowed with a map

"M — M

such that ® ® Q is an isomorphism. If ® is an isomorphism, then (M, ®) is
called an unit-root F-lattice.

Theorem 3.16 (Crew, Katz). There is a natural equivalence of categories
H : Repyom(X,T) =2 (unit-root F-lattices on X /V')

Proof. ([Katz73] Proposition 4.1.1 page 74, [Crew87] Theorem 2.2). We re-
produce parts of [Crew87] Theorem 2.2: Let p : m (X, T) — Autyo(L) be
a continuous representation on a finite free V?-module L. For n > 1 let
X, = X ® W, and let G,, be the image of m(X, ) in Auty.(L/p"LL). The
homomorphism (X, Z) — G,, classifies an étale cover Vi, — A} which has
a unique étale lifting ),, — &),; the action of G,, on ), extends uniquely to
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Yn, as does the action of ¢ on &,. The "opposite” action makes Oy,  into
a right G,,-module and we let

Mn = Wn*Oyn ®Wn[Gn] ]Ln, M = lim Mn

By uniqueness, the action of GG,, on Oy, commutes with ¢, so that the map-
ping & = ¢ ® 1d gives compatible isomorphisms ® : ¢*M, = M,, whence
O ¢o*M = M. This (M,®) is H(p). The inverse functor for H is given
by mapping (M, ®) to " Ker(l — ®)”. More precisely, for n > 1 the group
G, acts on the finite dimensional V7 /p™ module L,, = Ker(1,, — ®,), where
1, — @, : mi M, — 7t M,. Then m (X, T) acts on the inverse limit

L=IlimL,

3.6 Various fundamental groups

K a complete ultrametric field (K, | |)
V' the ring of integers in K
S a K-analytic space (Berkovich analytic space)

In this section we recall some facts about fundamental groups of Berkovich
analytic spaces and schemes. Our sources are [Gro71], Andres’ book [And03]
Chapter III, [deJ95], [Her05] and [Len97].

Definition 3.17 (André). - A paracompact strictly K-analytic space is
called a K-manifold, if for any s € S there is a neighborhood U (s) of s which
is isomorphic to an affinoid subdomain of some smooth space.

From now on we will assume that S is a K-manifold.

Remark 3.18 (Berkovich, André, deJong). -
a) If X is a K variety, then X is smooth if and only if X" is a K-manifold.

b) K-manifolds are locally arcwise-connected and locally simply connected,
hence any pointed K-manifold (S, s) admits a universal covering (.5, §).

c¢) Let X be a smooth projective algebraic curve over K. Assume that X"
has a semi-stable formal model X (what is true if e.g. K is algebraically
closed). Then 7 (X" 7) is isomorphic to the fundamental group of
the graph associated to the special fiber of X. This group does not
depend on the choice of the semi-stable model ([deJ95] Proposition
5.3)
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d) A geometric point § of S is a point with value in some complete alge-
braically closed extension (€, | |) of (K| |).

Definition 3.19 (Berkovich, De Jong, Herz). - A morphism f: 5" — S
is a covering (resp. étale covering, resp. topological covering, resp. finite
topological covering) if S is covered by open subsets U such that f~'U is a
disjoint union of open subsets V; C " (ie. f'U =[], Vj), such that f
restricted to each Vj is finite (resp. étale finite , resp. an isomorphism, resp.
an isomorphism and f: 8" — S is finite). The categories of étale coverings,
finite étale covering, topological coverings, topological finite coverings will be

denoted by Covg, Cov, Cov's”, C ovém’ .

Definition 3.20 (André). - An étale covering 5" — S is called temperate
if it is a quotient ([And03] III Lemma 1.2.8) of a composite étale covering
T'— T — S, where T" — T is a topological covering, and T" — S is a finite
étale covering.

L.e. there is a commutative diagram

T’ S’
top et
[
r— %9 g

with 7" € Covl, T € Covl, 8" € Covg.

Remark 3.21 (André, Herz, deJong). - There are inclusions (fully faith-
ful embeddings)

! ¢ ¢ ¢
Covg? — Cov¥, Covg? — Covg, Covl!? — Covl,
¢ ¢ ! ¢ ¢
Covd” — Covg™, Covg? — Covg™, Covg™ — Covg.

Let s be a geometric point of S. Consider the fiber functor
Fe = Fe': Covg — Sets

S’ + geometric points 5 of S” above 5

and its restrictions
FY . Cov¥ — Sets;

FLP . Covg? — Sets;

Fi'P . Covl!” — Sets;
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t t
F o Covg™ — Sets.

An étale path from s to another geometric point ¢ of S is an isomorphism
of fiber functors F<' = Fft. The set of étale path is topologized by taking
as fundamental open neighborhoods of an étale path a the set Stabs 3 o «,
where Stabg z runs among the stabilizers in Aut(F<") of arbitrary geometric
points 3 above § in arbitrary étale coverings S'/S.

One can define various fundamental groups of K-manifolds:

Let Cov¥ be a full subcategory of Covd which is stable under taking
connected components, fiber products and quotients. Examples are Covg,
Cov®, Cov'”, Covl! Covls™. Denote by F® the restriction of F¢ to
Covg, and set

71 (S,3) = AutFs

where the topology is as above with ¢ = 5.

Lemma 3.22. The natural map

m(5,3) — lim 7}(S,5)/Staby,

Sta%,}g,
is a homeomorphism. In particular ©3(S,S) is a separated pro-discrete topo-
logical space.

Proof. [And03] IIT Lemma 1.4.2 O

Proposition 3.23. Let Covg® be a full subcategory of C'ovy stable under tak-
ing connected components, fiber products and quotients. Then the continuous
homomorphism

m1(5,5) — m1°(S,5)
has dense image.
Proof. [And03] III Corollary 1.4.8. O

The following remark relates the fundamental group of a variety with
automorphisms of finite étale Galois coverings.

Remark 3.24 ([Gro71]). - Let Z be a variety over Q, and choose a ge-
ometric point z in Z(C,). Let F, be the fiber functor from the category
of finite étale coverings Z' of Z to the category of finite sets defined by
F, :== Morz(z,.). The functor F, is strictly pro-representable: There is a
projective system Z = (Zi, zi, pij)ie, of pointed Galois coverings of Z where
I is a directed set, and the z; € Z;(C,) are points over z. Moreover, for i > j
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the map ¢;; : Z; — Z; is an epimorphism over Z such that ¢;;(2;) = z; and
such that the natural map

lim Moryz(Z;, Z') — F.(Z')

induced by evaluation on the z;’s is a bijection for every Z’.
There is an isomorphism of topological groups

m(Z,2) = Aut(F,) — (hin Autz(Z;))°P.

i

Here the natural transformation op, : F, — F), given by the family of com-
patible bijections o, (z,) : F.(Z;) = F.(Z;) for (i € I) is sent to the projective
system (0;);e; where o; € Autz(Z;) is uniqueley defined by the relation:

0i(z) = UFZ(Zi)(Zi)-

Let Y/Z be a Galois étale cover with group G := AutzY. Choose a point y
in Y(C,) lying over y. It determines a map of projective systems Z — Y,
represented by a morphism a; : Z; — Y over Z wit z; — y. Consider the
induced epimorphism

W Autz Z; — AutzY

defined by v¥;(0)(y) = a; 0 0 0 z;. The composition
oy (2, 2) > Aut} Z; — G

depends only on ¥, but not on i. For two different choices y, 4" of points in
Y (C,) over z, we obtain the corresponding epimorphisms «a;, a; and ;, ;.
Because Y/Z is Galois, there is a 7 € G satisfying 7y = y'. One can check,
that the two epimorphisms ¢; and 1)} satisfy the relation

Vi(o) = (o)t for all 0 € Aut,Z;
in other words, they are conjugated.

Remark 3.25. In [Gro71] Grothendieck developed the theory of the étale
fundamental group for schemes that are locally noetherian. We will work
with schemes that are defined over o or Z_p, both rings are not noethe-
rian. Grothendiecks’ theory was extended to arbitrary (not necessarily lo-
cally noetherian) connected schemes in [Len97]. We assume that an im-
portant reason to restrict to the locally noetherian case in [Gro71] was
that Grothendiecks’ existence theorem was only stated for noetherian for-
mal schemes, which played an crucial role in [Gro71] Expose X. It would
be interesting to generalize Expose X to the non noetherian situation (See
Section 3.7 for some available theorems).
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3.7 GAGA for vector bundles on formal schemes

V' a valuation ring of Krull dimension 1 complete and separated
(m) an ideal generated by an element 7w # 0 of the maximal ideal

In this section we want to collect some information about vector bundles
defined over o0 on a projective scheme X defined over Ok (the ring of integers
of a finite extension K of Q,) and their formal completions. We want to know
if a projective systems of vector bundles modulo p™ defines an algebraic vector
bundle. In the noetherian case this is already in Grothendieck [EGA] I 10
(Schémas formels) and III . Most properties carry over to schemes that are
topologically of finite presentation over the ring o which is not noetherian.

Definition 3.26 ([BoLu93]). - An V-algebra A is called topologically of
finite type (tf type) if it is isomorphic to a quotient V(¢)/a, where £ is a
finite set of variables and were a C V() is an ideal. If in addition a is finitely
generated, we call A of topologically finite presentation (tf presentation). An
V-algebra of tf presentation is called admissible, if it has no (7)-torsion.

Remark 3.27. The standard example for the valuation ring (V, ) is (o, p).

If A" is a Og-algebra of finite type, then A := A’ ®p, 0 is an o algebra of tf
presentation.

Proposition 3.28. Let A be an V-algebra of tf presentation. Then A is a
coherent ring; in particular each A-module of finite presentation is coherent.

Proof. [BoLu93] Proposition 1.3 O

Proposition 3.29 (Theorem A for formal schemes). Let M be a Ox-
module on X = SpfA, where A is an V-algebra of tf presentation. Then M
is coherent if and only if there is a coherent A-module M such that as an
Ox-module M s isomorphic to the Ox-module M* associated to M.

This A-module M is uniquely determined by M up to A-module isomor-
phism.

Proof. [U1195] Proposition 2.3 O

Proposition 3.30 (Theorem B for formal schemes). Let M be a co-
herent Ox-module on X = SpfA, where A is an V-algebra of tf presentation.
Then

HY(X,M)=0 for all ¢ > 0.

Proof. [U1195] Proposition 5.1 O
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Proposition 3.31. Let A be a finitely generated or a topologically finitely
generated V -algebra. Then each finitely generated A-module without (m)-torsion
is coherent over A.

Proof. [Ul195] Proposition 1.6 O

We will need the following three GAGA theorems for formal schemes from
[U1195] Theorem 6.5:

Theorem 3.32 (1st GAGA). - Let X be a proper SpecV scheme. Assume
that X, the formal scheme associated to X is (locally) of topologically finite
presentation over V. Let M be a Ox-module of finite presentation. Then
for each q € Z one has canonical isomorphisms of V -modules

HY(X, M) = HI(X, M).

Proof. [Ull95] Theorem 6.4. The theorem there is originally stated with some
restrictions on the sheafs. These restrictions are not necessary by a theorem
of Gabber: [Fuj95] Proposition 1.2.3, see also [Ul195] ”Note added in proof”
in the end of this paper O]

Theorem 3.33 (2nd GAGA). - Let X be a proper SpecV scheme. Assume
that X is (locally) of topologically finite presentation over V. Let M, F be
finitely presented Ox-module. Then one has a canonical isomorphism of V -
modules

Homeo (F, M) = HomoX(]},/\;l)

Proof. [Ul195] Theorem 6.5. The theorem there is originally stated with some
restrictions on the sheafs. These restrictions are not necessary by a theorem
of Gabber: [Fuj95] Proposition 1.2.3, see also [Ul195] ”"Note added in proof”
in the end of this paper O

Theorem 3.34 (3rd GAGA). - Let X be a projective SpecV scheme. As-
sume that X is (locally) of topologically finite presentation over V. Then
for each coherent O ;-module M there is a finitely presented Ox-module M’

whose completion M is 1somorphic to M.
Proof. [Ul195] Theorem 6.8 O

Lemma 3.35 (Gabber). - Let A" be a finitely generated algebra over V.
For a finitely generated A’'-algebra B the w-adic completion B is flat over B.

Proof. [Fuj95] Proposition 1.2.3 O
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Corollary 3.36. Assumptions are as in Lemma 3.35. For a finitely gener-
ated module M with the m-adic topology, the Artin-Rees lemma is valid and
M =M ®gB.

Proof. [Fuj95] Corollary 1.2.7 O

Corollary 3.37. Assumptions are as in Lemma 3.35. Let M, N be two
B-modules of finite type. Then there are canonical isomorphisms

MesN2M®,N
If furthermore M 1is finitely presented then
How@, N) = Homg(M,N)

Proof. For noetherian rings this is shown in [EGA] Chap. 0,., Corollaire
7.3.7. The proof works as well using Lemma 3.35 instead. [

Corollary 3.38. Assumptz’orfs are as in Lemma 3.35. Let M be a B-module
of finite type. Assume that M is a projective B-module. Then M is a pro-
jective B-module.

Proof. Use Corollary 3.37 and the universal property of projective modules
m

Lemma 3.39. Let A be a ring, Z an ideal of A, such that A is separated
and complete for the I-preadic topology. Set A, = AJI"™', and let M,
be a projective system of A,-modules, such that for all n the homomorphism
Mpi1®a,. Ay — M, induced by the di-homomorphism of transition M, 1 —
M, is bijective. Suppose that the M, are projective and My is of finite type.
Then M = liinMn is an projective A-module of finite type, such that the

canopnical morphism M &4 Ay — My is bijective.

Proof. [EGA] IV Quatrieme Partie, Lemme (18.3.2.1) O

3.8 The universal topological covering of a curve

K a finite extension of Q,
V' its ring of integers
k  the residue field

In this section we recall the definition and the construction of the universal
topological (analytic) covering of a rigid curve. For our comparison between
Berkovich and DeWe parallel transport we need to work in the language
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of formal schemes. Thus we need also formal models of our curve and its
universal covering. For the relation between formal schemes, rigid spaces
and analytic spaces we refer the reader to [BoLu93|, [FrPu04] Sections 4,5,
[Ber93] 1 and [Ber94] Section 1. We follow the exposition in [FrPu04] Section
5.7 and [Co00] Section 1.

Definition 3.40 (van der Put). - Let X be a geometrically connected rigid
space over a complete non-archimedean field L.

a) A trivial covering of X is a morphism of rigid spaces ¢ : Y — X such
that the restriction ¢ : Y; — X of ¢ to each connected component Y;
of Y is an isomorphism.

b) A morphism ¢ : Y — X of rigid spaces is called an analytic (topological)
covering if there exists an admissible covering {X;};c; of X such that
each covering ¢~'X,; — X; is a trivial covering.

¢) A geometrically connected rigid space X is called simply connected if
every analytic covering of X is trivial.

d) An analytic covering 2 — X is called the universal analytic covering of
X if € is simply connected.

Remark 3.41. Choose a point o € X and a point wy € € satisfying u(wg) =
xo. If Q exists, then it satisfies the following universal property: If ¢ :
Y — X is any connected (topological) covering, and ¢ maps a fixed yp € Y
to zp, then there exists a unique (topological) covering v :  — Y with
v(wo) = yo such that ¢ ov = u ([FrPu04] Section 5.7(1)). The corresponding
analytic morphism u®" : Q% — X" is also the universal covering for analytic
spaces. This is true, because topological coverings of X" correspond to
(rigid) topological covers of X (See [Ber90] 3.3.4 or [deJ95] Proposition 5.3
and proof, see also the description below)

To construct the universal covering of a rigid curve X, it will be useful
that X has a suitable analytic reduction. The existence of such a reduction
was remarked by Coleman [Co00] Section 1 (see also [FrPu04] Proposition
5.6.5 for an analytic description). We reproduce his remark with several
comments and changes:

Remark 3.42 (Coleman). Suppose that C' is a smooth projective geomet-
rically integral algebraic curve over K with a minimal regular model C/V
that is semi-stable (this can be assumed after a finite extension of K by the
semi-stable reduction theorem and [Liu02] Theorem 10.3.34). After a finite
étale extension V' of V' we can further assume that all singular points on the
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special fiber of Cy 1= C X gpecy SpecV” are split ordinary double points (apply
[Liu02] Corollary 10.3.22 a) inductively to each singular point). Note that
Cy- is still the minimal regular model (of C' X gpecx SpecK’ for K/ = V'[1/p],
over V') and semi-stable by [Liu02] Corollary 10.3.36 a) and proof of ¢). We
assume now that C' has already a minimal regular model C/V that is semi-
stable and all singular points on the special fiber of C are split ordinary double
points. Because C is regular and semi-stable, all singularities on the special
fiber of C are of thickness one ([Liu02] Corollary 10.3.25 and C is already the
minimal desingularization). After adjoining a square root of a uniformizer to
V' we can assume that each singular point on the special fiber is of thickness
2. This is true, because if x is a singular point on the special fiber, then there
is an isomorphism O¢, « V([[u,v]]/(uv — ¢) for some ¢ € V with v(c) = 1
([Liu02] Corollary 10.3.22 and =z is of thickness one), and adjoining a square
root of a uniformizer to V' changes the valuation of ¢ to v(¢) = 2. Then
blowing up C once at all these singular points (of thickness 2) on the special
fiber produces a regular semi-stable model and all irreducible components of
the special fiber are non-singular. The problem is again local, so we fix a
singular point x on the special fiber of C and remove all other singular points
from C. Then we can use [Liu02] Lemma 10.3.21 and its proof. We then have
to show that the blow up of SpecV|u,v]/(uv — ¢) (¢ € V, v(c) = 2) at the
point (u,v, ) (7 a uniformizer) is regular and semi-stable with non-singular
components on the special fiber. This was explicitly computed in [Liu02]
Example 8.3.53.

The universal covering of a rigid curve X /K is constructed in the following
theorem:

Theorem 3.43 (Existence of an universal covering). - Let X be a
geometrically irreducible, non-singular projective (rigid) curve over K. Then
after replacing K by a finite separable extension, X has a universal analytic
COVETING.

Proof. [FrPu04] Theorem 5.7.2. For the convenience of the reader we recall
the basic parts of the proof here: By Remark 3.42 we may suppose (after
replacing K by a finite extension) that there exists an analytic reduction
r : X — Z with semi-stable Z such that every irreducible component of 7
is a non-singular curve over k. Let G be the intersection graph of Z. For
each edge e of G one considers the affine open subset U(e) of Z obtained by
removing all the irreducible components of Z on which the double point e
does not lie. For each vertex v of G one defines the affine open subset U(v)
of Z obtained by removing all irreducible components different from v. Then
{r7'U(v)}, U{r~'U(e)}. is a pure covering of X which induces the analytic
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reduction r : X — Z. Let ur : T'— G denote the universal covering of this
graph. Then T is a tree, locally isomorphic to G. For every edge e of T" one
defines Q(e) to be the affinoid space r~'U(ure). For each vertex v of T one
defines Q(v) to be the affinoid space 7~ *U(urv). The space €2 is obtained by
glueing the affinoid sets {€2(e)}. U {€2(v)}, according to the tree T O

We will now construct a formal scheme °. The construction is analogous
to the construction in Theorem 3.43. The only difference is, that we will
replace the affinoid algebras A by A°, the integral elements in A.

Construction 3.44. Let C be a smooth geometrically integral projective
algebraic curve over K. Assume that C' has a semi-stable (regular) model C
such that its special fiber has non-singular components. Write Z := C, for
the special fiber of the formal scheme C associated to C. By the assumptions
Z is a semi-stable curve over K with non-singular components. Let G be
the intersection graph of Z. For each edge e of G one considers the affine
open subset U(e) of Z obtained by removing all the irreducible components
of Z on which the double point e does not lie. For each vertex v of G one
defines the affine open subset U(v) of Z obtained by removing all irreducible
components different from v. Let ur : T'— G denote the universal covering
of the graph G. Then T is a tree, locally isomorphic to G. For every edge
e of T one defines Q°(e) to be the affine formal scheme SpfOs(U (ure)).
For each vertex v of T one defines °(v) to be the affine formal scheme
SpfOs(U(urv)). The formal scheme Q° is obtained by glueing the affine
formal schemes {Q°(e)}. U{Q°(v)}, according to the tree T'. In this way one
obtains a topological covering u : Q° — C in the Zariski topology.

Remark 3.45.  a) We assume that one can show that 2° is the universal
covering of C in the Zariski topology. The proof should be analogous
to [FrPu04] Section 5.7. We will not need this in this paper.

b) The formal scheme Q° is admissible. This is true, because locally it is
isomorphic to C and we claim that this formal scheme is admissible.
Again this question is local, so let SpecA C C be an affine open, and
denote by A its formal completion. Then A is of topological finite
presentation over Ok and also flat, because A is flat over Ok and Ais
flat over A (Lemma 3.35). The flatness of A over Ok implies that A is
admissible ([BoLu93] Remarks before Proposition 1.1)

¢) The admissible formal scheme Q° has a rigid generic fiber ([BoLu93]
Section 4). If SpfA C Q° is an admissible open affine Ok-algebra, then
Ayig := A®o, K is an affinoid K-algebra. The generic fiber of 2° is
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obtained by glueing these affinoid algebrasA[BoLuQS] Section 4. From
the construction in 2 (Theorem 3.43) and (2° we can see that (2 is the
generic fiber of €2°.

d) A deck-transformation of u : Q° — C gives rise to a deck-transformation
of u: Q — C"9 and vice versa. The group of deck-transformations of
u: Q — O™ is isomorphic to the topological fundamental group of the
graph G corresponding to Z [FrPu04] proof of Theorem 5.7.2.

e) By construction of the universal covering, the group of deck-transformations

I" acts freely and discountinuously in the Zariski topology of the special
fiber of Q°.

f) If we replace C' by C¢, and C by C, (i.e. their base change with C,
and o) then we can perform the previous construction also over o or
C,. All points stated above, Construction 3.44 and Theorem 3.43 are
valid over o and C, as well.

The following corollary is already known in the case of Mumford curves
[Her05] Chapter 1 Corollary 1.48

Corollary 3.46. Let C'/K be a smooth geometrically integral projective curve
and assume that C' admits a semi-stable V -model C with non-singular com-
ponents on the special fiber. Let L C C, be a complete subfield. Then the
rigid fundamental groups of C' and Cp are isomorphic.

Proof. The models C and C Xgpecy SpecO;, have the same reduction graph
because C is semi-stable. The rigid fundamental group of C resp. Cp is
isomorphic to the reduction graph of C resp. C Xgpecv SpecO O

3.9 A p-adic Riemann-Hilbert correspondence

K a complete non-archimedean field
its ring of integers

a connected K-manifold

a geometric point of S

wl <

On a complex manifold one can attach to every finite-dimensional repre-
sentation of the fundamental group a vector-bundle with integrable connec-
tion, and vice versa. This is the so called Riemann-Hilbert correspondence.

In [And03] Yves André defined a p-adic analogue on Berkovich-spaces.
We present his results here.
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Proposition 3.47 (Y. André). - There is a natural equivalence of cate-
gories

{discrete 7"(S,3) — representations} = { étale local systems on S}.

(Here representations are representation on the automorphism group of finite
dimensional K -vector spaces).

Proof. [And03] Y.André Proposition I11.3.4.4 O

Theorem 3.48 (Y. André). - There is a natural equivalence of Tannakian
categories (the non-archimedean étale Riemann-Hilbert functor):

{discrete '(S,3) — representations (on fin. dim. K-vector spaces)}

RHet

{vector bundles with integrable connection (M,V) on S
such that MY is an étale local system}.

The correspondence is given by
Vp | — (Mp, Vp) = (V QK Oset,id & dSet)

(M, V) «— Mg

where V, is the local system corresponding to a finite dimensional represen-
tation p, and M,] is the sheaf of horizontal sections. In this correspondence,
the subspace of w*(S, 5)-invariants corresponds to the space of global sections
of M/ .

Proof. Y. Andre [And03] Theorem III 3.4.6. O

Remark 3.49. The main open problem is to describe the image of the Rie-
mann Hilbert functor, i.e. those vector bundles with integrable connection
(M, V) on S, such that M,/ is an étale local system.

We are interested in some special cases of Andres’ Riemann Hilbert cor-
respondence: For any full subcategory Covg C Covg which is stable under
taking connected components, fiber products and quotients, there is a natural
continuous homomorphism:

Ti(S,5) — 71(S.5)
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with dense image ([And03] Corollary 1.4.8). Any discrete representation of
71 (S,3) gives rise to a discrete representation of 7{(S,s) with the same co-
image. It follows, that the étale Riemann-Hilbert functor induces a fully
faithful functor

{discrete 7} (.S, s)-representations on fin. dim. K-vector spaces}

RH*

{vector bundles with integrable connection (M, V) on S}

(Y. André [And03] III Example 3.5.1). Of special interest for us is the
case that e = top i.e. we are interested in the topological fundamental
group m(S,3), and the topological Riemann-Hilbert functor RH™ P (See
also [And03] I 1.5).

There are some results describing the image of the topological Riemann-
Hilbert functor:

Theorem 3.50 (Faltings, van der Put, Reversat). - Let X be a Mumford-
curve over a closed subfield K of C,, and T a geometric base point.

a) If p is a ®-bounded representation of I' == 7" (Xc,, ) into GL,(K),
then M, is semi-stable of degree zero.

b) For any semi-stable vector bundle M on X of degree zero there exists
a ®-bounded representation p with M = M,

b) If X = K*/q¢%, v(q) = m > 0 is a Tate-curve, then the absolutely
indecomposable representations of I' are obtained by sending a generator

of ' =7 to
A1 0
0 A

with A € K*. Such a representation is ®-bounded, if and only if 0 <
v(A) <m (v is the p-adic valuation on K ).

Proof. [Fal83], [PuRe86] O
Remark 3.51. -

a) ®-bounded representations are representations whose coefficients satisfy
certain growth conditions. Integral representations are ®-bounded. In
this correspondence connections do not appear.
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b) If S is an analytic torus then homogeneous (translation invariant) vec-
tor bundles on S are in one to one correspondence with ®-bounded
representations of the topological fundamental group of S [PuRe88].

c¢) It was shown by Florentino [Flo01] Theorem 1 that all mazimally un-
stable vector bundles on a Schottky uniformized Riemann surface are
induced by representations of the Schottky group. A similar result
should hold for maximally unstable vector bundles on Mumford curves,
where the topological fundamental group is also a Schottky group.

Let K be a finite extension of Q, with ring of integers V. Let X be
a smooth geometrically integral projective curve over K admitting a semi-
stable (regular) model with non-singular components on the special fiber as
in 3.8. We will present the construction of Y. Andrés’ topological Riemann-
Hilbert functor RH'P in detail in the case of curves. We will follow closely
the construction of Reversat and van der Put in [PuRe86] (1.11)-(1.13) and
Faltings [Fal83], Gieseker [Gie73]. Their construction can be extended to
curves with arbitrary reduction, to integral representations and integral vec-
tor bundles, and to vector bundles with connections:

Construction 3.52. - Let X" be a VV-model of X as constructed in Section
3.8 and let X" be the formal completion of X" for the ideal defined by
(p). Let u : Q° — X™ be its universal covering. Denote by X7, Q° their
special fibers. Denote by I' the automorphism group of Qe / X7 and let
p: ' — Aut,(LL) be an integral representation on a free o-module L of rank
r. Set X nse — xYnse @ 0 for the base change with o, and similar for Q°. We
define a I'-action on Og, by the rule y(f) := (y1)* f (This is consistent with
the literature [Gro56] Section 2 or [PuRe86]).

a) For U C /'%D”ch open we set
M;(U) :={m e L®, OQg(u_lU)h(m) =m for all v € T'}.

Here the action of I on (L ®, Og, (u~'U)) is the diagonal action, i.e.
'y(Zei@fZ Zp (ei) @ v(fi) for e; € L, fi € Ogo(u™ ).
i=1

We claim that this defines a formal vector bundle on X,

b) We can also define a connection V7 on M] by setting

Zeﬂi@fZ : Zeﬂi{)dfl
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for U C /\A,’U’f;’c open, and e; € L, f; € (’)Qg(u_lU). This map is I'-
equivariant:

7(v;<zez®fz Zp 61 ®7 dfz)—
=1

Zp () ®dy(fi) = Ze@®f@

We claim that it descends to a connection Vp My — M) ®0, ..

Q;m Jo Here the sheaf of formal differential forms is defined to be the
projective limit of the sheafs of algebraic differential forms modulo p".
The sheaf of formal differential forms Q;W /o is thus isomorphic to

Qe 6, = BNz /6 Do 0.

For more details about the module of formal differential forms we refer
the reader to [EGA] IV (Premiere Partie) Section 20.7.

Remark 3.53. It was already mentioned in [Gie73] Lemma 2 that a coherent
sheaf with descent datum descends to a coherent sheaf in the case that X is a
Mumford curve and the formal scheme is noetherian. Descent theory is also
available in our situation (over o) [BoGo98] Theorem 2.1. We will calculate
the sheaf of invariant sections and the connection explicitly, so we need not
to make use of the descent theory mentioned above.

Proposition 3.54. The sheaf M, defined in Construction 3.52 a) is a vector

bundle (a locally free sheaf of rank r) on é‘a}wc. The connection defined in
Construction 3.52 b) descends to a connection on M3 .

Proof. The assertion is local so we can take a small Zariski open U C 2?0”5"’
such that v U = ngr U, i.e. the inverse image of U in §2° is a disjoint union

of copies of U indexed by I'. This is possible because Qg is a covering of )30”50
with deck-transformation group I' in the Zariski topology. But then we are
in the situation of Lemma 3.55 with A 1= O4.c(U), B 1= Oguc(u™'U),
W:=L R=o0and G =T and so M : MO(U) is a free A = Ogpnec(U)-
module of rank r. To show that the connection descends we can work modulo
p". We can then set C = Q(Xm) Jon (U). If we replace B, A, W, R by
their reductions modulo p then we are in the situation of Lemma 3.56 and
the connection descends modulo p™. Because of the explicit description in
Equation 1 we see that we get a projective system of such maps for varying
n, hence a map on the projective limit. So V, descends O
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Lemma 3.55. Let R be a commutative ring with unit, and let A be a commu-
tative R-algebra with unit. Let G be a group with a simply transitive action
on the set H := G. Let B := [],cpy An be a direct product of copies of A,
i.e. Ay = A. Define a G-action on B by the rule g((ax)) = (agm), t-e. G
permutes the ordering of an element. Then B is an A algebra and the ring
of G-invariants B¢ can be identified with A. Let W := et R® ... ® e, R be
a free R-module of rank r with basis eq,...,e.. Let p: G — GL.(R) be a
representation. Define a semi-linear G-action on M =W ®pr B by the rule

g(w®pb) :=p(g) - w@prg(d) weW,beDB
Then the A-module MC of G-invariant elements is free of rank r.

Proof. An element (ap) € B is G-invariant if and only if agp) = aj for all
g€ Gandall h € H. As G acts simply transitive on H this is the case if and
only if ap = ay, for all h,h' € H, so (ay,) is represented by a single element
a € A and so BY = A. We will give now an explicit description of M%: An
element m € M can be written as

m = Zek ® (ap)k for (ap)r € B
k=1

(For simplicity we have written the coefficients in R belonging to the e, on
the right hand side). By identifying M with B" we can write m as a column
vector, i.e.

(ah)l

(ah>r

The G-action on m is given by the rule

(an)1 g((an)1)
gm) =g : = p(g) - :
(an)r g((an)r)

if p(g) is considered as a matrix with coefficients in R®z B = B. An element
m € M is invariant if and only if

g9((an)1) (an)1
p(g) - : = :
g((an),) (an)r
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for all ¢ € G. This is the case if and only if

Qg(h),r Qh,r

for all g € G and h € H. Because G acts simply transitive on H we can
deduce, that an element m € M is fixed under the G-action if and only if there
are elements ay, ..., a, € A such that m = ((ap)1, ..., (ap),)" with ap; = q
for i = 1,...,r and some fixed h°, and ay0); defined for i = 1,...,r by the
rule

Qg(n0),1 apo 1
=p(g)"-
ag(ho%,, ahoﬂn
This shows that M is a free A-module of rank r O

Lemma 3.56. We use the same notation as in Lemma 3.55. Denote by
C = QA/R the module of differential forms. Set D := ngG C}, for the direct
product of copies Cy := C indexed by the set H. Let G act on D by the
translation map, i.e. g((cn)) := (cqny). Define a map

V:M— M®gD WRprb— wRr1 KR db

(we W,be B). Then V descends to a map of the fixred modules, i.e.
V(MS) ¢ M€ ®, D¢ = M€ ®,C

Proof. As in the proof of Lemma 3.55 an G-invariant element of M can be
written as m = ((ap)1, ..., (an),)" with ajo; = a; for i = 1,...,7 and some
fixed A® for a4,...,a, € A, and ag(roy,; defined for ¢ = 1,...,r by the rule

(g(h0),1 ARo,1

Ag(h0),r o r

By definition V maps m = ((an)1, - - -, (an).)* to ((dap)s, ..., (day),)*. De-
fine elements (z,)', ..., (x,)" € M = W ®g B by the rule

“’"é(hO),l
: =p(g)"" e

i
Lg(ho),r
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fori =1,...,r and some fixed h° (Note that by definition these elements are
in M%). Then

dag(noy,1 dapo 1
: = p(g)il' = Q7;(;10)®Bdaho,1"|‘- . -+$Z(h0) ®Bdaho¢.
dag(how dahO’T

for all g € G. Hence
V(m) = (x4)! ®@p dapoy + ...+ (v4)" @p dapo,, € MY @4 C (1)
because (z,)" € M and apo, € Aforalli=1,...,r O

Remark 3.57. The rigid generic fiber M;ig = M, ®, C, of M7 and the
connection V§®,C, coincide with the rigid vector bundle defined in [PuRe86].

This can be seen locally. If Red : X&g — AJ'5¢ denotes the reduction map

corresponding to the model X;'*¢, then for U C A*¢ affine open, Red U is
an admissible affinoid subset of X&q . Then

(M, ®,C,)(U) ={m e L®, (’)Qg(u_lU)h(m) =mforallyel'} ®,C, =

= {m € L¢, ®c, Ogcp(u_lRed_lU)h(m) =m forall y e I'} = M.

And similar for the connection. From the calculation one sees that (M}, V)
does not depend on the chosen model X™*¢. The vector bundle with connec-
tion (M,, V) on X*" defined in Theorem 3.48 corresponds to the rigid vector
bundle with connection (M}*,V,) (We refer the reader to [Ber93] Section 1.6
for the correspondence between vector bundles on analytic and rigid spaces).
We will write RH'™P° for the integral topological Riemann-Hilbert functor
defined above, i.e. RH"P°(p) := (Mg, V).

3.10 Berkovich p-adic integration

K anon-Archimedean field in characteristic 0
X asmooth K-analytic space

We recall the main results of Berkovichs’ book [Ber07] on p-adic integration:

Remark 3.58. We use K for the base field, whereas Berkovich uses k. We
restrict for simplicity to characteristic 0.

Definition 3.59 (Berkovich). -

a) The sheaf of constant analytic functions is defined as cx = Ker(Ox <, QL).
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b) Let K be a filtered K algebra, i.e. a commutative K-algebra with
unity provided with an increasing sequence of K-vector subspaces K° C
K' C ... such that K’ - K/ € K'*7 and K = U2 K'. Given a strictly
K-analytic space X, we set O?’Z = 0 @k K'. If X is reduced, we set
Cﬁ?’i =Ccx QK K.

Definition 3.60 (Berkovich). -

a) Let X be a smooth K-analytic space. A Dx-module on X is an étale
Ox-module F provided with an integrable connection V : F — F ®o, Q.

b) A Dx-algebra is an étale commutative Ox-algebra A which is also a
Dx-module whose connection V satisfies the Leibnitz rule V(g - f) =
fdg + gdf. If in addition A is a filtered Ox-algebra such that all A’
are Dx-submodules of A, then A is said to be a filtered Dx-algebra.

Theorem 3.61 (Berkovich). Given a closed subfield K C C,, a filtered
K-algebra K and an element A € K', there is an unique way to provide
every smooth K -analytic space X with a filtered Dx-algebra Sy such that the
following is true:

a) S’ = 0%,
b) Ker(Sy' <, Qi ) = cR’

1 d ~2 Ai+1
¢) Ker(Qgni y = Qgai x) CdSY;

d) S;‘C’Hl s generated by local sections f for which df is a local section of

d
KGT(Q}SM’X — Q?SM,X)f

e) LogM(T) € SM(G,,).

f) for any morphism of smooth K-analytic spaces ¢ : X' — X, one has
" (S € Syl

Proof. [Ber07] Theorem 1.6.1 O

Definition 3.62 (Berkovich). - A Dx-module F on a smooth K-analytic
space X is said to be unipotent if there exists a sequence of D y-submodules
FO=0cCc F' C ... C F* = F such that all of the quotients F*/F'~!
are isomorphic to the trivial Dxy-module Ox. A Dx-module F is said to
be unipotent (resp. quasi-unipotent) at a point x € X, if x has an open
neighborhood U C X (resp. an étale neighborhood U — X) for which F|y
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is unipotent. A Dx-module F is said to be locally unipotent (resp. quasi-
unipotent) if it is unipotent (resp. quasi-unipotent) at all points of X.

Furthermore the level of a unipotent Dx-module F on X is the minimal
n for which there is a filtration of Dx-submodules F° =0 C F' C F? C
... C F" = F such that each quotient F'/F"! is a trivial Dx-module. If a
Dx-module F is unipotent (resp. quasi-unipotent) at a point = € X, its level
at x is the minimal number n, which is the level of the unipotent Dy -module
F|u for some U (from the previous paragraph).

Lemma 3.63. Let F be a Ox-coherent Dx - module, x € X and n > 1.
Then the following statements are equivalent:

a) F is quasi-unipotent at x of level at most n;

b) the point x has an étale neighborhood U — X such that, for some
m > 1, there is an embedding of Dy-modules Fly < (S )™

Proof. [Ber07] Theorem 9.3.3 O

Theorem 3.64 (Berkovich). There is a unique way to construct, for every
closed subfield K C C,, every filtered K -algebra K, every element A € K',

every connected smooth K -analytic space X with mi%(X)Smt(X), every

locally unipotent D-module F on X and every path v : [0,1] — X with ends
z,y € X(K) (also x,y € Xg x [Ber07] Page 3), an isomorphism (parallel
transport) of K-modules

T7 =TI FY ok K=F) o K
such that the following is true:
a) Tf depends only on the homotopy type of ~;

b) given a second path T : [0,1] — X with ends y,z € Xqx, one has
T = Tfon;

TO7Y

c) if F is the unipotent D-module Oxe1 @ Oxey on X = G, with V(ey) =

0 and V(e2) = Ley, y(0) =1 and y(1) = a € K*, then

Tf(eg —log(T)ey) = (ea — log(%)el) — Log*(a)ey;
d) Tf 1s functorial with respect to F;
e) Tf commutes with tensor products;
f) Tf is functorial with respect to (K, X,~v, K, \).

Furthermore, the parallel transport posses the following properties:
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1) Tf commutes with the Hom-functor;
2) If F is unipotent of level n, then T (FY) C F) @k K"

3) If F is unipotent and v([0,1]) C Y, where Y is an analytic domain
with good reduction, then T (FY) C Fy.

Proof. [Ber07] Theorem 9.4.1. The proof is interesting for our purposes,
so we will reproduce it here: Assume first, that K = C,. In this case
the condition on X is automatically satisfied, c¢x is the constant sheaf Ky
associated to K, and Xy g = Xg. From Lemma 3.63 it follows that the sheaf
v*(F§,) is constant. It follows, that there are canonical isomorphisms from
Y (F)([0,1]) onto v*(Fh)o = ‘7-7(0) ®x K and v*(F5 )1 = fy(l) ®k K, and
so they give rise to an isomorphism of K-modules

If K is not necessarily algebraically closed, we construct the parallel trans-
port as follows: By ([Ber07] Lemma 9.1.2), there exists a path 4/ : [0,1] — X
with @ o4’ = 7. Since the points * = 7(0) and y = (1) are in Xy g,
they have unique pre-images 2’ and 3/ in X, respectively, and it follows that
7'(0) = 2" and +/(1) = 3'. We denote by F the pullback F on X and, for an
element f € F we set

T7(f) = T7(f) € Fy @c, (K @k C,) = (Fy @k K) @k C,.

First of all, the element Tf, (f) does not depend on the choice of 4. Indeed,
if 4" is another lifting of v, then the loop '~ o 4” is homotopy trivial
(since m(X)=my(X) ) and, therefore T7,(f) = T7(f). Furthermore given
an element o of the Galois group G of K over K, the loop 7/ o (79') is
homotopy trivial. This implies that T (f) € F) ®@x K O

3.11 The comparison theorem of G. Herz

K a finite extension of Q,

V its ring of integers

X a Mumford curve over K of genus g (with semi-stable reduction )
X" the rigidification of X

X the minimal regular model of X

We present G. Herz’s ([Her05]) comparison between Faltings work ”semi-
stable vector bundles on Mumford curves” (Theorem 3.50) and DeWe parallel
transport.
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Definition 3.65 (Herz). Define by B7%,,, the full subcategory of all semi-

stable rigid vector bundles of degree 0 on X(Cg whose associated Faltings
(Reversat- van der Put) representation (Deﬁmtlon 3.52) is isomorphic to a
representation which has image in GL,(0).

Remark 3.66. Herz defined a group /"7 (X ", 7)(= 79) that classifies finite
analytic (topological) coverings of X (see 3.6). This group is also the
pro-finite completion of (X%, Z)(= Z9) (similar to the classical case).
He further defined the pro-finite completion of a representation using the
following fact

Hom(Z¢,GL,(0)) = Homeon (29, GL,(0)).

Theorem 3.67 (Herz). Let L C C, be a complete subfield of C, which is
an algebraic extenszon of K, and let V' be its ring of integers. Let E be
a vector bundle in B ‘Zlg Then the completed Faltings (Reversat- van der

Put) representation attached to I/ extended to C, is isomorphic to the DeWe
-representation attached to the algebraization of E.

Proof. [Her05] Theorem 2.31 O
Remark 3.68. We will sketch his proof:

Proof. Let ép be the formal vector bundle on X attached to an integral
representation p of w1 (XEZ, 7). Let &, be the corresponding algebraic vector
bundle on X. For each n > 1 there exists an GG equivariant covering 7 : ) —
X in 89 for a group G acting on Y, such that the covering 7 : Vi — Xk
is finite étale and even analytic (topological) and Galois with group G.

(X, T) —2 O, Galx,)Y; Rk Galyx, Y — Aut®¥Y —— G

¢
| 4

Oy
(X, 7) 4 Galy,, Y.

The reduction modulo p™ of the DeWe representation attached to &, de-
noted by pP°"e is the morphism

pPeWe . QP —— AutE,,
= (yn) "oy,
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as in the following diagram where we abbreviated

HY =TV, m:&,) = T( Vo, 75E,)

(yp) ! qo_ o yr

o (&
The morphism ¢* is defined as follows:
H'S fro foo=pl"(o)f € HY

Then

pRVe(a) = (yn) " (pr ) (o) (y3)

PuRe
n

DeWe

. are isomorphic representations. ]

Hence p and p

3.12 (Galois Theory for schemes and commutative rings

We recall some facts about Galois theory for schemes and commutative rings.
Most of the results we will need are in [Gro71] (especially Section V.2 pp.110-
116 ), but are only stated for locally noetherian schemes. For schemes that
are not necessarily locally noetherian we will refer to [Len97] (Galois The-
ory for schemes). For the Galois theory for commutative rings we refer to
[ChHaRo065].

We recall the definition of Galois-coverings of (commutative) rings and
schemes:

Definition 3.69.

a) Let Y — X be a finite étale covering of schemes, and let G be a finite
group of X-automorphisms of Y. The covering Y/X is called Galois if the
canonical morphism

Y xxG—Y xxY, (Y, 9) — (9v,9)

is an isomorphism

b) Let A — B be an étale covering of (commutative) rings, and let G be a
finite group of automorphisms of B over A. We say that B/A is Galois with
group G if the natural map

BoaB—[[B  b®c—(..,b-glc),...)

geG

is an isomorphism.
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Remark 3.70. There are many equivalent definitions of Galois étale covers of
commutative rings or schemes. We refer the reader to [ChHaRo65] Theorem
1.3 page 18 for commutative rings, to [Gro71] Exp. V, Proposition 2.6,
Definition 2.8 and Section 7 and to [Len97| Section 3.14. We just mention
some characterizations of interest to us:

a) A covering Y — X (with a group G of automorphisms) of schemes is
Galois if and only if Y is finite over X, X = Y/G, and the inertia groups
at points of Y are reduced to the identity ([Gro71] V Proposition 2.6
i)

b) If X is connected, Y — X a finite étale covering, then the condition
X = Y/G is equivalent to the condition Y(Q)/G = X(9), for any
algebraically closed extension Q/K (x) for any point x € X ([Gro71] V
Proposition 3.7 or [Len97] Section 3.14)

We will need the following descent lemma:

Lemma 3.71. Let B/A be an finite étale Galois covering with group G.
Let M be a B-module with semi-linear G-action. Then the natural map
s:B®y MY — M is an isomorphism.

Proof. [ChHaRo65] Theorem 1.3 d) O

The following lemma is assumed to be well known but we did not find
an exact reference in the literature. A similar statement can be found in
[ChHaRo65] Lemma 1.7 page 21.

Lemma 3.72. Let B/A be an finite étale Galois covering with group G. Let
N be a A-module. Define a G-action on BN by the rule g(b&n) := g(b)®n
forge G, be B, ne N. Then the natural map

B @4 N — (B®a N)° (2)
1S an isomorphism

Proof. The natural map (2) is an isomorphism if and only if the natural
morphism

B ®4BY®4 N — B ®4(B®aN)° (3)
is an morphism because B’ := B is a faithfully flat A-algebra. We also have
a canonical isomorphism B’ ®, BY — (B’ ®4 B)Y if we let G act on B’
trivially. This can be seen using the following standard argument. The ring
B¢ is the kernel of the exact sequence

0—-BY-B—]]|B

geqG
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where the last map sends b to (..., g(b)—b,...). This sequence remains exact
if we tensor with the (faithfully) flat A-algebra B’

0— B'®4 B — B @4 B— [[(B ®4B).

geG

The ring (B’ ®4 B)“ is by definition the kernel of this sequence, hence iso-
morphic to B’ ®4 B®. By the same reasoning we can rewrite the right hand
side of (3) and obtain thus a morphism

(B®4B)°®@4N — (B'®4B®4N)°. (4)
Using simplification by B’ we can rewrite this as
(B'©4 B)" ®p (B'©a N) = (B'®a B)@p (B'®@aN)° (5

The extension B/A is Galois, hence (B’ ® 4 B)/B’ is a trivial G-covering, by
this we mean B’ ®4 B = [],.y B’ where H := G as a set and G acts via
permutations, i.e. g((bn)) := (bgn) if (bn) € [,ey B'- We can thus write

(11 B @s N — (] M)°. (6)
heH heH

where we abbreviated N’ := B’ ® 4 N and used that the tensor product
respects direct sums on the right hand side. From this explicit description it
follows that the morphism is an isomorphism O

Lemma 3.73. Let B/A be a finite étale Galois covering with group G. Let
A — C be a commutative A-algebra and let M be a B-module with semi-linear
G-action. Let G act on the tensor product C @4 M by the rule g(c ® m) :=
c® g(m). Then the canonical morphism

C @4 ME — (C®4M)EC
s an isomorphism.

Proof. By Lemma 3.71 we have an isomorphism of modules with semi-linear
G-action B ®4 M© = M. The we can rewrite the morphism above as

C ®a M — (B & A (C@A MG))G.

By definition the group G acts trivially on the module N := (C @4 M%).
Hence we can apply Lemma 3.72 O
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4 Flat vector bundles attached to represen-
tations

In this section we will explain how to attach a vector bundle with connection
to a continuous p-adic representation of the étale fundamental group of a
variety over a p-adic field in certain cases. This construction is classical and
already carried out in a different context by H. Lange, U. Stuhler [LaSt77],
R. Crew, N. Katz (Section 3.5), J. deJong [de]J95].

4.1 Vector bundles attached to representations of a fi-
nite group

R a "base” ring (commutative with unit)
T:Y — X a finite étale Galois cover of schemes with Group G
L a free R module of rank r

p: G — Autg(L) a representation of G on L

In this section we recall in detail how to attach a vector bundle with
connection to a representation of the Galois group of a finite étale cover of
a scheme. The construction is classical, see for example [Mum70] Theorem
1 page 111 or [BoLuRa90] Section 6. By a vector bundle we mean a locally
free sheaf of constant rank 7.

Remark 4.1. If W C Y is a (G invariant open subset, then we let G act on
Oy (W) via the rule g(f) := (¢~ ")*f for all f € Oy(W).

Construction 4.2. -

a) The Group G acts on the presheaf F := L ®z 7,0y via

gwer f)=pl9)v)@rg(f) feOy(x '(U),vel,geq

for U C X open. This G-action extends to the associated sheaf F :=
(F')I. Denote by F, := F¢ the sheaf of elements fixed under the action
of G.

b) Let p; and ps be two representation on two R-modules Ly and L,. Let
¢ : Ly — Ly be a compatible map for the G-action. Then ¢ induces a
map

L ®p W*OY (M L, ®r 71'*(QY

which in turn induces a map F,, = F,, because the map ¢ ® id is
G-equivariant.
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Proposition 4.3. The sheaf F, defined in Construction 4.2 is a vector bun-
dle of rank r and 7*F, = F

Proof. The assertion is local so we may take SpecA C X and SpecB =
7~ 1(SpecA) and we set M := L @ B. The canonical map B ®4 M% — M
is an isomorphism by Lemma 3.71. The morphism A — B is faithfully flat
and B®4 MY = M is a free (hence projective) finitely generated B-module.
We can then apply [Len97] Proposition 4.12 p. 64 to deduce that M¢ is a
finitely generated projective A-module. The rank of M¢ is equal to r because
M = B ®4 MC has rank r. ]

We will now construct a connection
. 1
Vp : fp - -,'tp ®(’)X QX/SpecR

attached to p and F,:
For U C X open let us define a morphism (the ”constant” connection)

V: (L@ mO0y)(U) = (L @ m0y) @r0, m,5)(U)
V(U XR f) 2:U®Rdf fOI‘UEL,fEOy(TFﬁlU).

(here the tensor product is the tensor product of presheaves) These mor-
phisms define a morphism of presheaves and of the corresponding associated
sheaf. For any g € G we have

Viglv®r f)) = V(p(g)(v) ®r g(f)) = p(g)(v) ®r dg(f) =
= p(0)(v) ®@r g(df) = g(V(v ®r [)).

In other words the map V is G-equivariant. We claim that it descends to a
map F, — F,®0, % sspecr Of vector bundles on X' The assertion is local so
we may take SpecA C X and SpecB = 7~ !(SpecA) and we set M := L®y B.
Because A — B is étale there is a canonical isomorphism B ®4 Q4 /R = Q3 IR
([EGA] IV (Quatriéme partie) No. 32, Corollaire 17.2.4.). We have to show
that the canonical morphism

ME @05 — (M® @4 B)®p (B®aQy)° (7)

is an isomorphism. We can simplify the right hand side by B and change the
ordering of M and B:

(B®a (MY @4 Q) 5)°

Now this is a tensor product of B with a module with trivial G-action. By
Lemma 3.72 the module of G invariants is A ®4 (MY ®4 QL/R) which is the
left hand side of (7) what we wanted to show.
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4.2 Vector bundles attached to continuous representa-
tions of algebraic fundamental groups

A X — SpecZTa a projective, integral, normal and flat Zp—scheme
x a Qp-valued base point of X
p (X, x) — Auto(L) a continuous representation on a free o-module L of rank r

In this section we attach a vector bundle with connection to a continuous
representation of the algebraic fundamental group of X'. We use the previous
construction modulo p", then we apply the inductive method of liftings. This
is a variant of Katz/Crews construction (Section 3.5).

Remark 4.4. a) An example of a scheme X that satisfies the properties
above is a smooth integral projective scheme over Z,. Another example
arises when one considers X = X’ xyZ, where X" is a semi-stable curve
over the ring of integers V' of a finite extension K’ of Q,, such that
the generic fiber X’ of X’ is smooth and geometrically integral. The
generic fiber X of X is integral and Z, is integral, hence X (flat over
7Z,) is also integral by [Liu02] Proposition 4.3.8. If X’ is smooth over
K’ then the same is true for every finite extension of K’, and hence
X' x g K" is normal for every finite extension K” of K’. By [Liu02]
Proposition 10.3.15 every scheme X’ Xy V" is normal when V" is the
ring of integers of a finite extension K” of K’. This implies that X
is also normal, because equations for integral elements can always be
defined over a finite extension of Q,. For a more general discussion of
such models we refer the reader to [Fal02] Remark 5 and page 205

b) Let Y — X be a finite étale covering with )} connected. Then ) is
also integral and normal by [Gro71] I Corollaire 9.10, 9.11 and Propo-
sition 10.1. This will allow us to apply the Galois theory of (integral)
commutative rings in [ChHaRo65] or [Len97] Corollary 6.17.

c¢) Because X, is projective, the structure sheaf of )?0 is coherent. This is
true because locally &, can be covered by o-algebras A; of finite type
whose completion is of topologically finite representations (see Section

3.7).

Construction 4.5. We will use freely the formal GAGA results from Section
3.7.
Consider the p : 70%(X, x) — Auto(L). The representation modulo p”

Pn - ﬂ'?l‘g(X’ x) — AUtO(L) — Autan (Ln)
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factors over a finite group G, because 7" (X, ) is pro-finite and Aut,, (L)
is discrete. By Remark 3.24 there exists a finite étale Galois covering 7 :
Y — X such that G can be identified (up to conjugation) with Auty). We
can use the construction of Section 4.1 to construct a vector bundle with
connection (F,,,V,, ) on X,,. The pairs (F,,,V,,) define (for varying n) a
projective system of vector bundles with connection (see Lemma 4.6 below
for the projectivity). The projective limit

(j:\m%\p) = hin(}-pm vpn)

is a formal vector bundle with connection on the formal scheme X, (the p-adic
completion of X,). Because X, is projective we can apply the formal GAGA
- Theorem and obtain an algebraic vector bundle with connection (F,,V,)
on X,. If ¢ is a morphism between two representations of 7%9(X, x), then
one applies the construction in Section 4.1 inductively modulo p" to obtain
a morphism between the corresponding vector bundles with connection.

We now check that the system of vector bundles and connection is in fact
projective:

Lemma 4.6. The system of pairs (F,,,V,,) forms a projective system, i.e.

(}—pna Vﬂn) = (Un,n-I-l)*(JTpmn Vpn+1)
where Uy pt1 @ X, — Xpy1 s the reduction map.

Proof. Let G411, G, be the corresponding groups and denote by H the kernel
of G411 — G,. The assertion is local, so let SpecA C X, be an affine open
and let B/A resp. C/A be the corresponding finite étale Galois-coverings
with group G, resp. Gn+1. Let us also set M,, :== F,, (SpecA,) and M, :=
Fpnii(SpecA,11). Because A, B,C are integral (Remark 4.4) we can apply
the Galois theory of commutative rings [ChHaRo065] Section 2.2 pages 22-24
or [Len97] Corollary 6.17 to deduce that C/B is Galois with group H. If we
set A, = A®,0,, B,:=B®j A, C,:=C®y A, then C,/A,, C,/B, and
B, /A, are also Galois with groups G,.1, H and G,, ([ChHaRo65] Lemma
1.7 page 21). We want to compute

Ay @y Mpy1 = A, ®a,,, (Coi1 Lipy1) ot
Because of Lemma 3.73 we can rewrite this as

(An ®An+1 Cn—l—l @0 Ln+1>Gn+l‘
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Because H is a normal subgroup of G, with quotient GG,, we can rewrite
this as
((An ®An+1 On-i-l ®o Ln—f—l)H)Gn-

For the H-invariants we can also write (replacing n+ 1 by n everywhere and
using simplification by A,, and B,,)

(Cn ®Bn (Bn ®0 Ln))H

Now H acts on C,, and trivially on B, ®, L, (note that p, is trivial on H),
thus by Lemma 3.72 the module of H-invariants is isomorphic to B,, ®, L,
(using simplification by B,, again). The group G,, acts on this module by its
usual action on B,, and via p,, on L. By definition the module of G, -invariants
of this module is isomorphic to M,,. The connections V,, resp. V, .1 are by
definition induced from the ”constant” connection on B®,L, resp. C®,L, 1
and the ”constant” connection on the first module is compatible with the
”constant” connection on the second modulo p”. O

Definition 4.7. We denote the category of vector bundles attached to con-
tinuous representations p : wi¥(X, x) — Auto(L) on free finitely generated
o-modules L by B”.

Let (F,V) be a vector bundle with connection on X,. Assume that
for any n > 1 the sheaf F,, (the reduction modulo p" of F) can be étale
trivialized. l.e. there exists a finite étale covering ) — X which satisfies
71-7>"<1,(‘F:’7/7 Vn) = <Oyn’ dyn)r'

Assumption 4.8. For all n > 1 and for all finite étale Galois covers Y — X
the following holds:
HO(J}U:"’ Oyo,n> = on

To each vector bundle F satisfying this properties one can use the con-
struction of Deninger and Werner (Sections 3.2 and 3.3) and attach a repre-
sentation pr of 79(X, x) to the vector bundle F.

Remark 4.9. The Assumption (4.8) on X is satisfied if X' is induced by
base change with Z, from a semi-stable curve that is defined over the ring
of integers of a finite extension of Q,. To see this note that finite étale
covers of semi-stable curves are semi-stable [Liu02] Exercise 3.9 page 529

and the assumption is true for semi-stable curves (after base change with
Z,) as shown in [DeWe05b] Theorem 1(1).

Our construction is compatible with Faltings’ construction in Section 3.4,
especially Lemma 3.13:
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Remark 4.10. Let V' be the ring of integers of a finite extension of @, and
let X’ be a proper V-scheme with toroidal singularities (e.g. X’ is smooth
or semi-stable). Assume that the scheme X satisfies X = X’ @y Z,. Let
SpecR C X’ be a small affine open. The inclusion U := SpecR; C X
induces a morphism of fundamental groups 7% (U) — #%9(X), and =¥ (U)
is isomorphic to the Galois group of the maximal étale extension R{ of Ry
(i.e. the union of all finite étale extensions of R;) by [Len97] 6 Corollary 17.
We define A := Gal(R$'/R;). Consider the following sequence

A = Gal(R/Ry) — Gal(R'/Ry) = 79 (U) — n™9(X) L Aut,(L)  (8)

(here the first map is the restriction of Rj-automorphisms of R to R'). We
need to assume, that the representation p is trivial modulo p** as in Lemma
3.13. The module

M:=R ®Z L,

can be equipped with a semi-linear A operation, if we let A act via the
diagonal action, i.e. A acts on R via the obvious action and on L, via the
diagram (8). The generalized representation M is induced from the RS-
module

M" = RS ®7 Ly

equipped with the A.; diagonal action by diagram (8). Let S C R$* be the
finite étale Galois extension (with group G) of R; that trivializes p,. The
module

My = (S @7 L)

is by definition isomorphic to F,,(SpecR;), the module of Construction 4.5
modulo p". The module M; is projective over R;/p™ of rank r, and induces
an isomorphism of R — A®-modules M{* = RS @p, M; . If we equip M,
with the trivial A, action, then there is an isomorphism of modules equipped
with a semi-linear A-action

MZE@ZLngﬁ(@RI M. 9)

(The A-action on the right hand side is given by the obvious action on R
and by the (trivial) A-action on M; induced by A — Ay). If M/ is the
A-module of Lemma 3.13 a) associated to the generalized representation
M, then M| and M; are almost isomorphic (as R; — A, modules) modulo
p"® if R/R, is almost faithfully flat. This is true (assuming that R/R; is
almost faithfully flat), because their associated generalized representations
are isomorphic (9) and one can apply Lemma 3.13 b) to get a morphism
(modulo p"~*) between the two, which is actually an almost isomorphism
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(modulo p"~*) by almost faithfully flat descent for R/R; (we assume that
R/R; is almost faithfully flat, which would follow from the explicit descrip-
tion of R.,/R; and Faltings’ almost purity theorem ([Fal02] Theorem 4) for
}_3/ R.). Because the action of A, on M; is trivial, the associated Higgs field
0 is zero.

4.3 Compatibility for different models

X/ Spec@p a smooth projective variety
SpecQ, = — X a base point of X

Let X be a projective, integral, normal, flat ZT,—model of X and let j :
X — X be the canonical open immersion. Let p : 7{%(X,z) — Aut,(L)
be a representation on a free o-module L of rank r, such that p factors over
79(X x). Then we obtain a vector bundle with connection (F,, V,) :=
J7*(Fp, V,) on X¢, using the construction of Section 4.2. We will show that
this construction is compatible for different models. In the case that X
is a curve, two models are dominated by a third one, and therefore this
construction does not depend on a chosen model.

Proposition 4.11. Let X and X5 be two projective, integral, connected and
flat ZTD - models of X, and let o : X} — X5 be a morphism restricting to the
identity on the generic fiber.

Then the following diagram is commutative:

T2
Repﬂ'(lllg()(g,x) (L) —— %){270
.%e% {9*
Repﬂ_(lllg(X7$) (L) Oé* O[* %ch
.‘i\
{)J'%
X1

T
Repﬂ_(lllg()(l’z) (IL) —— %Xl,ﬁ'

In this diagram the two o are the obvious pullback maps, and T is the
map attaching a bundle with connection to a representation studied in Section

4.2.

We divide the proof in three lemmas:
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Lemma 4.12. Let p € Rep aigy, (L) be a representation. Then there is a
canonical isomorphism

o (F,, V,) = (Farp, Varp)

(In this lemma the assumption that o restricts to the identity on the generic
fiber is not needed).

Proof. 1t suffices to proof the assertion modulo p™ i.e.:
a;(:'rpn?vpn) = (fa*pnvva*pn)

Let covy : YV, — Ah,, be a finite étale Galois cover trivializing p,, with Galois-
group G = Aut(Y,/Xs,). Consider the fiber product

. pra
W’rz = Xl,n Xngn yn yn
covy |G covy | G
o
Xl,n XQ,n

(The covering cov; is also an étale Galois cover with automorphism group G
(see [ChHaRo65] Lemma 1.7 page 21 for the affine case))

The assertion is local, so let SpecAy; C A%, SpecA; C X, affine open
subsets satisfying a(SpecA;) C Spec(A,), and let SpecB := cov, ' (SpecAy).
Then we have to show that the canonical map

A1 ®a4, (B ®o, Ln)% = (A1 ®4, B) ®o, L)

is an isomorphism. If we set M := B ®,, L,, A := Ay and C := A; then
we can apply Lemma 3.73. This shows the assertion for the vector bundles.
The ”constant” connection on Oy, , ®, L, is equal to the pullback of the
"constant” connection on Oy, , ®, L,. This implies that the connections
restricted to the G-invariant elements are compatible O

Lemma 4.13. Let (F1,V1) and (Fs, Va) be two vector bundles with connec-
tions on Xy, and Xs, that satisfy o (Fa, Vo) = (F1,V1). Then (F1, V) =
Ji(F1, V1) and (Fy,Va) = j3(Fs,Va) are isomorphic vector bundles with
connection.
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Proof. The following diagram is commutative

o
Xl,o X2,0
G N
Xc,
hence
=R 2 F =2 (aoj) Fo=ji;Fo = F
and by the same reasoning V; = V, [

Lemma 4.14. Let py and p, be two representations of 9 (Xy, x) and 78" (X, x)
respectively. Assume that pullback induces identical representation ofﬂflg (X, z),
i.e. jip1 = Jsp2. Then a*ps = pr.

Proof. We have « o j; = js. This induces a commutative diagram between
the fundamental groups:

Tr?lg(XQa ZL‘)

alg
T

(X, @)

The two maps on the left hand side are surjective, because the functor H that
maps finite étale covers of &; (i = 1,2) to the generic fiber maps connected
covers to connected covers and one can apply [Gro71] V Proposition 6.9.
The pullback maps for representations satisfy ji o a* = j;. By assumption
Jip1 = jipy = ji o a*py. The morphism ji, : 719(X,z) — 78 (X, x) is
surjective, hence the corresponding map ji on representations is injective.
This implies p; = a*p, [l

The following lemma from [DeWe05b] shows that in the case of curves,
that two arbitrary models are dominated by a third having nice properties.
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Lemma 4.15. Let X be a smooth projective curve over Q, and let X, and
Xy be two projective, integral, normal and flat Zp-models of X. Then there
is a third (projective, integral, normal, flat) model X5 of X together with
morphisms

D1 D2

X A3 X

restricting to the identity on the generic fibers (after their identification with
X).

Proof. That two models can be (strictly) dominated by a third one is proven
[DeWe05b] Proposition 27, page 586. The model can be chosen to be semi-
stable by [DeWe05b] Theorem 1, page 556. If a semi-stable model of X is
already defined over the ring of integers of a finite extension of @Q,, then we
can apply Lipmans’ resolution of singularities to obtain a regular semi-stable
model, which is projective by a theorem of Lichtenbaum. But a semi-stable
ZTJ model of X is defined over a the ring of integers V' of a finite extension of
Q,, and the base change with SpecZTD of a projective V-model is a projective
ZT,—model. This model is also integral, normal and flat as was shown in
Remark 4.4 O

Theorem 4.16. Let X be a smooth projective curve over Q, and let X; and
Xy be projective, integral, normal and flat Z,-models of X and let ji, jo be
the corresponding open immersions. Let

p (X, x) — Auto(LL)

be a continuous representation on a free o-module I of rank r. Assume that
p factors over (X, ) and 7'9(Xy,z). Denote the corresponding rep-
resentations of these groups py and py. Set (F1,V1) = j5(F,,V,,) and
(F2,Va) == j5(Fpy, Vy,). Then both vector bundles with connection are iso-
morphic

(F1, V1) = (Fy, Vs)

In other words the association p — j*(F,,V,) does not depend on the choice
of a projective model X .

Proof. Choose a projective model X3 of X as in Lemma 4.15 and denote the
canonical open immersion by j3. Then there exists a commutative diagram

7T(lllg(‘)c’?n .T)




By Proposition 4.11 the vector bundles jiF, and j;F,, are isomorphic on
Xc,. The same is true for j;3F,, if one replaces 1 by 2. The same reasoning
applies to the connections O

4.4 Vector bundles attached to temperate representa-

tions
X a smooth projective @—Variety
m:Y — X a finite connected étale Galois covering (with group G)
Yy a projective, integral, normal, flat Z,-model of Y’

From Section 4.2 we already know how to attach a vector bundle with
connection to a representation of the étale fundamental group of ). Using
descent theory we can attach a vector bundle to a representation of the fun-
damental group of X that factors over the fundamental group of ) when
restricted to the fundamental group of Y. We call a representation that sat-
isfies this property temperate. In [And03] Chapter III (see also 3.6) André
calls a Berkovich étale covering temperate if it decomposes as a finite étale
covering and a topological covering. (The relation between these two termi-
nologies will be explained in Section 5)

Definition 4.17 (temperate representations). - Let p : 7/(X, z) —
Aut,o(LL) be a continuous representation of the étale fundamental group of X
with base point x on a finitely generated free o-module L.. The representation
p is called temperate if there is a commutative diagram

s

79X, ) L Auto(L)

where 7 : Y — X is a finite étale Galois covering with group G, y =
SpecQ,, a point above x and Y a projective, integral, normal, flat Z, model
of Y.

Remark 4.18. a) In this definition the Z_p—model Y is unspecified. We
say that p is temperate with respect to a certain kind of model if there
is a diagram as above with ) a certain kind of model (e.g minimal
regular model, Néron model). In the case of abelian varieties with
good reduction we will restrict us for simplicity to N-covers and Néron
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models. If Y is a smooth projective curve then we require that the G-
action on Y extends to ). This is the case for minimal regular models
that are defined over the valuation ring of a finite extension of Q,
[Liu02] (Proposition 9.3.13). Also every model of ¥ can be dominated
by a model such that the G-action extends ([Liu06] proof of Lemma
2.4).

b) One could define temperate representations more generally for arbitrary
proper models ). If )’ is another model of Y that strictly dominates
Y (being the identity on Y') then p it is also temperate with respect to
)’ this can be seen from the proof of Lemma 4.14.

The following proposition will be useful to compare two temperate rep-
resentations:

Proposition 4.19. Let X/Spec@ be a smooth proper curve or an abelian va-
riety with good reduction. Let x be a base point of X and let p; : W‘flg(X, x) —
Aut,(IL;) (i = 1,2) be two temperate representations on finite dimensional o-
modules. Then py, py are temperate with respect to a common covering and
model. To be precise there exists a finite étale Galois covering ™ :Y — X
with group G, a point y above x and Y a projective, integral, normal and flat
model of Y such that there exists commutative diagram

Ty Pi

(X, x) P Aut,o(L)

for i1 =1,2 and representations p;.

Proof. We first consider the case when A := X is an abelian variety with
smooth Néron model A. The two representations p1, po are temperate, hence
there exists positive integers Ny, Ny such that there exists commutative di-
agrams as in Definition 4.17 with ¥; = A, V; = Aand 7 = N, for : = 1, 2.
We claim that we can choose a common N = N; = N, satisfying the same
properties. Set N := N;-N, and consider the following commutative diagram
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of abelian schemes and their corresponding fundamental groups:

Ay 79 (A,0) <L pala( 4 )
N N N M.

Ay 719 A, 0) < 79194, 0)
N N, Na. Ny

Ay 749(A,0) <L 7ala( 4 o)

The representation p, (restricted to Ny ,m"(A,0)) factors as
' (A,0) 2 7' (A,0) 2 Aut,(L).

From the commutative diagram it follows that p, (restricted to Ny 0Ny .7 (A, 0))
factors also as

N1«

79 A,0) 2 79 A,0) 2 79(A,0) B Auty(L)

This implies that ps is also a temperate representation with the N covering
instead of Ny. The same reasoning applies to p; because we can interchange 1
and 2. If X is a curve with finite étale Galois coverings Y; and Y5, then we can
take a finite étale Galois covering Y such that Y} and Y, are subextensions
of Y. If ) is a projective, integral, normal and flat model of Y; then ), the
normalization of ) is a model of Y together with an morphism )}, — ).
By the same reasoning we obtain a second model ), of Y with a morphism
to V1. By Lemma 4.15 the models Y; and ), of Y are dominated by a
projective, integral, normal and flat model ) of Y. Now we can apply the
same reasoning as in the case of abelian varieties to show that p; and p, are
temperate for the covering Y and the model ) O]

We will attach now a vector bundle with connection to a temperate rep-
resentation:

Construction 4.20. We proceed with the previous notations. Assume that
the action of G on Y extends to ), and assume that every point y of ) has
an affine open neighborhood that is stable under the action of G. The last
condition is satisfied if ) is quasi-projective.

o7



Let p : 79(X,2) — Aut,(L) be an integral temperate representation.
Fix some n > 1. Denote the kernel of the representation

pn|ﬁ”"(Y,y) alg(y y) — Auto(Ly)
by N. Then we have an exact sequence

0— 7r‘”“’(Y y)/N — 7r“lg(X z)/N — 71(X, w)/ﬂ“lg(Y, y)—0

H— P— —G

Let U := SpecA C Y be an affine open subset that is stable under the
G-action. Let SpecB be the inverse image of U under the finite étale Galois
covering of ) corresponding to H. The action of P on B@ extends to an
action on B. This can be seen by the following reasoning. The ring B is
integral and normal, because A has these properties ([Gro71] I Corollaire
9.10, Proposition 10.1). Moreover all elements of B are integral over A
because A = B ([Gro71] V Proposition 1.1 (i)). By the same reasoning all
elements of A are integral over C' := AY. Then B is an integral normal ring
whose elements are integral over C, in other words B is the normalization of
C' in the corresponding quotient fields whose Galois group is P. This implies
that the action of P on the quotient field of B or on Bg- extends to B.
By definition the vector bundle F,,,, attached to the representatlon Pnlm s
defined on U, as the set of H invariant sections:

fpn'H(Uo) = (BO,n Ko, Ln)H

where the action is the diagonal action. Also the group P acts on B, ®,, L,
by the diagonal action and maps H-invariant sections to H-invariant sections:

h(pm) = ph'p~"(pm) = ph'm = pm

for m € (Bon @0, L,)?, p € P hyh' € H (N is a normal divisor in P). By
the same reasoning one can show, that the corresponding connection Vg
is equivariant under the P-action. As N acts trivial, the quotient G = P/N
acts on F,, |, (U,) and the action is equivariant for the connection. As this
is true for all n, we get an G-action on the inverse limit

lim(}"pn\

\Y
. w190y Y Prlasto ) )

and also on its generic fiber. Now we can use descent theory to obtain a
vector bundle (F,,V,) with connection on X, attached to the temperate
representation p. This follows by the same reasoning as in Section 4.1 or one
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can alternatively apply [Mum70] III Theorem 1 page 111. Let ¢ be a mor-
phism between two temperate representations. If X is a curve or an abelian
variety we can assume that both are temperate with the same covering ¥ and
model Y by Proposition 4.19. The morphism ¢ induces a morphism between
the corresponding vector bundles with connection. (by the same reasoning
as in Sections 4.1 and 4.2)

The construction depends on the choice of a covering ¥ — X and the
choice of a model ) of Y with G-operation. We assume that one can check as
in [DeWe05a| and [DeWe05b| that the construction is well defined (at least
in the case of abelian varieties or curves). We will not do this but use an
indirect argument: In Section 4.5 we will show that the construction is an
inverse to the functor defined by Deninger-Werner. We will need to make
the following assumption:

Assumption 4.21. The DeWe-functor is fully faithful.

If this assumption is true, then the construction is well defined by looking
at the homomorphisms. So far the fully faithfulness of the DeWe-functor
is only known for abelian varieties with good ordinary reduction [Wie06].
This implies also the fully faithfulness for line bundles on curves with good
ordinary reduction by using the Jacobian embedding.

4.5 Vector bundles attached to representations and
their relation to DeWe-representations

X asmooth projective curve over @p
x  a Qy-valued base point of X
A an abelian variety over QQ, having good reduction

In this section we want to show, that the assignment p — (F,,V,) of Sec-
tion 4.4 defines an inverse functor to the construction of Deninger and Werner
(Section 3.2) (for vector bundles attached to temperate representations).

We only study the case of vector bundles attached to temperate repre-
sentations of the fundamental group of the curve X. The case of abelian
varieties is similar and easier.

Proposition 4.22. Let p : 7%(X, x) — Auto(LL) be a continuous temperate
representation on a free o -module I. of rank r. Then the vector bundle F),
lies in B, and the associated DeWe representation satisfies

P

DW
PF, = pc,
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i.e. the association p — (F,,V,) defines an inverse functor to the con-
struction of Deninger and Werner (for vector bundles attached to temperate
representations).

Proof. Let a: Y — X be the corresponding étale Galois covering with group
G, and let y be a point above x. Let ) be a semi-stable, integral, normal,
flat and projective model of Y such that the G action on Y extends to ),
and such that p| s, factors over 79V, y) (See Remark 4.18). Fix some
n > 1. Denote the kernel of the representation

alg alg

p"'ﬂflg(Y,y) LM (}/7 y) — T (y7y) - AUto(Ln)

by N. Then we have an exact sequence

0 — 7(Y,y)/N — m*(X,2)/a.N — 7"(X, ) /2" (Y, y) — 0
Hi= P= -G
Let 7 : Z — Y be the finite étale covering corresponding to N. Because Y
is semi-stable Z is also semi-stable hence we have I'(Z,,, 0z, ,) = o, (see
Remark 4.9). Fix a point z in Z@ lying over y.
Let £ be the vector bundle on ), attached to the representation p|7r(1ug(yy)

as in Section 4.4. Then & is a model of o*F'.
alg

Let v € n1(X, x) be a path, and let 4" be the unique path with a,y =~
from y to another point ' over x. Consider the diagram:

*

£, (2, 15E0)

*

(Y'2);
gy

By definition of the DeWe parallel transport (proof of Theorem 3.5)

*

pen(Y) = (72)5 o (2)7h.

Let 0 € P be the unique automorphism of Zg, mapping z to yz. Then o
extends uniquely to an automorphism of Z (mapping z to vz). We also have
7'z = 0(z). By construction of the vector bundle £, the module I'(Z,, 7} &,,)
is isomorphic to L, ®, I'(Z,,0z,) = L, ®, 0, as a P-module. Therefore for
v® fel,®,I'(Z,,0z,)

(Yo @ f) = (02),(v® f) =z 00" (v ® ) = z,(p(0)m @ 07 f)
As o*f = f (f is constant) we have the following relation:
pen() =7 ()0 ()7 = 2zp 0 pul) o ()"

60



By construction of the DeWe representations (proof of Theorem 3.5) we have

(pr,)n(7) = pe,(7)

This implies that the projective limits of the representations (pr,), and py,

are isomorphic, i.e.
DW ~

PF, P
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5 A comparison between the algebraic and
the topological Riemann-Hilbert correspon-

dence
X/Q, a proper smooth curve over Q,
x a base point of X
Xan the analytification of X¢,

P
[:=nm" (Xg,z) the topological fundamental group of X¢"
(X, x) the algebraic fundamental group of X

5.1 A comparison between the algebraic and the topo-
logical Riemann-Hilbert correspondence

L  a free rank » module over o
p a representation 7. (X&, x) — Auto(L)

In this section we will relate the topological and the algebraic approach
to the Riemann-Hilbert correspondence. This was already done in the case
of Mumford curves omitting connections by G. Herz (Section 3.11) in his
dissertation. Our comparison is a generalization of his work to arbitrary
curves, vector bundles equipped with connections and works over C,,.

Let X" be a projective integral normal flat Z, model of X with non-
singular components as defined in Section 3.8. The formal completion /'\A,’D’"”“
of X™¢ has an universal covering u : 2 — X whose (analytic) generic
fiber is the universal covering of X¢". The group ftop (Xc,, ) (Section 3.6)
classifies finite topological covers of X¢" and is the the pro-finite completion
of T := WiOP(X(‘éZ,x) ([Her05] Remark 1.4.1 (7)). Let 7{(Xx™¢ z) be the
algebraic fundamental group of the model A™*¢. The morphism X — A"
induces a morphism

(X, x) — (X ).

The representation p induces a continuous representation p of ' (X&n, x),
the pro-finite completion of p. The representation p induces a continuous
representation 1 of ﬂ?lg (X" z). This can be seen as follows: The reduction
modulo p™ of p factors over a finite group G,, because 7T{ fop (X@:, x) has the
pro-finite topology and Aut,(L) the discrete one. To this group G, there
corresponds a finite topological Galois covering ¥ — X¢. By the universal
property of the universal covering 2" of Xc, there exist a normal subgroup
N C I with G, = I'/N and Qg'/N = Y. The universal covering 2"

is the generic fiber of the formal scheme Q‘; and Y is the generic fiber of
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the formal scheme Q%/N. We also have (Q°/N)/G = X7 and Q2/N is a
finite topological covering of X5 in the Zariski (hence étale) topology. We
note that Q‘; and all its quotients are defined over the ring of integers of a
finite extension of Q,, because this is true for A7**¢. By [EGA] III (premiere
partie) Proposition 5.4.4 the formal scheme /N is the formal completion of
an algebraic model ) (after base change with o) which is a finite étale Galois
cover of X7*¢ with group G,. Hence the topological covering ¥ — Xg" is
the generic fiber of the finite étale Galois covering )V, — &,'*°. We can then
define
Yy T 1) — G — Aut,, (Ly).

The projective limit over these representations defines a representation
Yl z) — Aut,(LL).

We can now compare the algebraic and the topological Riemann-Hilbert cor-
respondence:

Theorem 5.1. The formal vector bundle with connection RH*P°(p) = (M3, V?)
attached to the representation p of ﬁ"p(XEZ,:(:) is isomorphic to (Fy, V),

the formal completion of the algebraic vector bundle attached to the represen-
i alg nsc ;
tation ¢ of w9 (X, x), i.e.

(M3, V) = (Fy,Vy)  on XJ=.
The same is true for the generic fibers, i.e.
(M,,V,) = (ﬁw ®o Cp, @d, ®, C,) on X¢.

Proof. It suffices to compare both constructions on the model A} modulo
p". We write p, and 1, for the reduction modulo p™. The representation
¥, factors over a finite group G. Let ¢ : Y — X™° be the correspond-
ing finite étale G-cover and write ¢ for the corresponding map of formal
schemes. The analytic generic fiber of the covering ¢ : ), — A is a
finite topological Galois covering with the same group G, and p, factors
over this group. Denote by N and N the kernels of pn and ¢,. Note, that
(X x) /N = G =T/N.

We want to calculate the reduction modulo p™ of the formal vector bundle
(M7, V5) attached to p. Let U C é\?f“ be an open subset, then

M (U) ={m e L ®, OQg(u_lU)h(m) =m for all y € T'}.
If we restrict the representation p to N C I' (its kernel mod p™), then
* (p'U)={melL@a, Oge (utU)|y(m) =m for all y € N}.  (10)

pln
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The reduction modulo p" of the vector bundle M:;lN attached to p|y on Y, is
isomorphic to the trivial vector bundle (95,n . ®o, L, because pnly = 1, and
hence p,, acts trivially on L, in (10). This implies, that

(M5 (U))n = (L @ Ope (u™ U)M)TY),, =

= (M), (¢7'U))a)" = (05, (67'0) @, L),

and we recover the construction of the vector bundle 7, attached to the rep-
resentation ¢, : G — Aut,, (L) as in Section 4.1. But this is the reduction
modulo p" of the vector bundle F.

It remains to calculate the reduction modulo p™ of the connection of
RH"P*(p).

V;(Z e ® fi) = Z e; @ df;
i=1 i=1

for U C )EU”SC open, e; a basis of L, f; € Oge (u=tU).
As calculated above

(Mp(U))n = (Mg (¢7'0))n)" = (O, (¢7'U) @q, Ln)”

and V¢ is the "constant” connection on the trivial bundle M€ (U). This
pln.m plw,n

connection is G equivariant and descends to a connection on (My),, that is
isomorphic to (V5), and (Vy), O

5.2 Comparison between Berkovich and DeWe parallel
transport

In this section we will compare the parallel transport of Berkovich and

Denigner-Werner using the comparison in Section 5.1.

Definition 5.2. Let ‘Bt)?gﬁ "P be the category of vector bundles with connec-
P

tion on Xc,, that are attached to a representation p : 71 (X&, @) — Auto(L)
on finitely generated free o-modules L. This is also the image of Andrés’
topological Riemann-Hilbert functor RH'™ (for integral representations).

The vector bundles with connections in %3‘;@;’““’ satisfy the following
properties: ’

Proposition 5.3. Let (M,,V,) € %Z?EZMP be a vector bundle attached to an
P

integral representation p of WiOP(X“Z, x) on Auto(LL). Then
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a) (M,,V,) is a quasi-unipotent Dx-module of level 1 at each point x €
X(gjn;

b) Every point x € X¢" has an étale neighborhood U — Xg" such that
there is an embedding (even an isomorphism) of Dy-modules

M,y = (§)) = 0} ;

c) The sheaf (M,;)Zf of horizontal sections is equal to M, *, the locally
xgn

constant sheaf on 5({52 attached to the representation p;

d) The representations of WiOp(X(g:, x) attached to (M,,V,) by André and
Berkovich are both isomorphic to pc,, the extension of p to L ®, C,.

Proof. The pullback of (M,, V,) under the universal covering map u : Q%’; —
X{é: is by construction the trivial bundle on Q%Z Topological coverings are
(Berkovich) étale, so we can take U = Q" in b). Hence a),b) follow. c)
follows from the construction of the sheaf (M,, V,) and b). Finally d) follows
from c) and the fact that M, pv * is the locally constant sheaf V, = corresponding
to the representation pc, in Andrés Riemann-Hilbert correspondence O

We can now summarize our results in

Theorem 5.4. Let (M,,V,) € %ﬂﬁgz’"e” be a vector bundle with connection
D

attached to a (discrete) representation p : Wi[’p(XéZ,x) — Aut,(LL), where L
is a free o-module of rank r. Let p be the pro-finite completion of p, and let ¥
be the induced representation of 71 (X, x) and 7{(X,x) (see Section 5.1).
Then

a) (M,,V,) is the analytification of the algebraic vector bundle with con-
nection (Fy @, Cp, Vy ®, C,) on Xc, attached to the representation

Y;
b) The vector bundle Fy = Fy ®, C, lies in BY_ , the category defined
by Deninger and Werner;

c) The corresponding DeWe-representation p?jwe 1s defined and isomor-

phic to vc,, where Yc, is the extension of i : (X, 2) — Auto(L) to
Aut(cp (L ®g Cp);

d) (M,,V,) is étale locally unipotent, and Berkovich parallel transport is
defined;

65



e) Let pBer : 7T§OP<XEZ, T) — Autcp((Mp)X”) be the representation obtained
by Berkovich parallel transport along paths from x to x of elements of
the fiber (Mp)g’“ over x of horizontal sections of V,. Then pP°" is
isomorphic to pc,, the extension of p to Autc, (L ®,C,).

Hence for all vector bundles in %ﬁﬁgz’“e” the parallel transports of André,

P
Berkovich, Faltings, van der Put-Reversat (topological) and Deninger- Werner,
Faltings (algebraic) are compatible.

Remark 5.5. We assume that this correspondence can be extended vector
bundles with connection attached to representations of 7} (Xgr,z), ie. to
vector bundles with connection that lie in the image of RH™" (Andrés’
temperate Riemann-Hilbert functor).

66



6 Homogeneous vector bundles on abelian va-
rieties
A an abelian variety over Q, with good reduction

A an abelian scheme over Zp with generic fiber A
x : SpecQ, — A the zero section of A

In this section we will show that the category ‘B Ac, defined by Deninger
Werner in Section 3.3 consists of the homogeneous (translation invariant)
vector bundles on Ac, under the assumption that the DeWe functor pP"e
is fully faithful.

Definition 6.1. A vector bundle F" on Ag, is called homogeneous (or transla-
tion invariant) if 7' F = F for all a € A(C,), where T, denotes the translation
by a map.

The following theorem of Matsushima and Morimoto classifies homoge-
neous vector bundles on complex tori:

Theorem 6.2 (Matsushima, Morimoto). Let S be a complex torus, and
let F' be a vector bundle on S. Then the following are equivalent:

a) F has a connection.
b) TXF = F for alla in S (F is homogeneous).
¢) F has an integrable connection.

d) Each indecomposable component is uniquely of the form
L®U

where L is a line bundle of degree zero, and U is a unipotent vector
bundle, i.e. a successive extension of the trivial line bundle.

Proof. See [Oda71] for references O

Proposition 6.3. Let F' € B, be a vector bundle, and let a € A(C,) be a
point. Then the DeWe-representations pp and pr=p attached to F' and T; F
are 1somorphic.

Proof. By definition F' has a model F on A,, and for every n > 1 there exists
a N > 1 such that (N*F), is isomorphic to the trivial vector bundle on A4,,.
The vector bundle T} F" has the model T))F on A, and (N*T}F), is isomor-
phic to the trivial vector bundle on A,,. This can be seen as follows: Let
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b € A(C,) be a point satisfying N -b = a. Then N oT, =T, o N, hence there
is a canonical isomorphism (T N*F), = (N*TFF), and (N*T;F), is iso-
morphic to the trivial vector bundle. We can now compute and compare the
representations pp and pr:p modulo p™: Consider the following commutative
diagram:

*

D(Ay, (N*F)y) —2s D(Specon, 3 F) = F,
Ty 1

D(A,, (TyN*F),) T
can |

T(Ay, (N*TF),) 22 T(Specon, 2 (T* F)o)= (T*F)a.

Note that the composition can o7} on the left hand side does not depend on
the choice of the point b, because the other three morphisms z},, x; and T
do not depend on b. The group Ax(Q,) of torsion points acts on the modules
D(Ap, (N*F)p), T'(Ap, (Ty N*F),,) and T'(A,,, (N*TF),,) by translation. The
isomorphisms on the left hand side 7} and can are equivariant under the
action of Ay(Qp), because Ty T = TxTy for all y € Ax(Q,). This implies
that the representations pr, and pr:p, are isomorphic. The same holds for
the pp and pr:p by taking limits O

Proposition 6.4. Assume that the DeWe-functor pPVe is fully faithful.
Then a vector bundle lies in %Acp if and only if it is a homogeneous vector

bundle.

Proof. 1f a vector bundle is homogeneous, then by Theorem 6.2 it is the tensor
product of an unipotent vector bundle and a line bundle of degree zero (We
use the fact that there exists an isomorphism C = C, [Rob00] Section 3.5
page 144). Any such vector bundles lie in B Ac, by Theorem 3.7. If F'is a
vector bundle in %Acp, and a € A(C,) is a point, then by Proposition 6.3
the DeWe-representations p2"e and ,OITD;}?V‘Z attached to the vector bundles
F and T} F' are isomorphic. Under the assumption, that the DeWe-functor
is fully faithful we obtain an isomorphism between F' and 77F and so F' is

homogeneous O]

Remark 6.5. For an abelian variety A with totally degenerate reduction, it
was shown by van der Put - Reverasat [PuRe88|, that homogeneous vector
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bundles correspond to ”®-bounded” representations on finite dimensional C,,-
vector spaces, of the topological fundamental group of A, using the methods
of Faltings [Fal83]. We assume that after developing the theory of Deninger
and Werner to abelian varieties with bad reduction, one can compare the
algebraic approach and the topological as for curves.
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7 Applications and remarks

7.1 Representations attached to vector bundles on abelian
varieties

a finite extension of Q,

its ring of integers

its residue field

an abelian scheme over V' of dimension d
its generic fiber

o <X

In this section we characterize the DeWe-representations that are at-
tached to vector bundles in B4, . These were already classified in the case of
line bundles of degree 0 [DeWe05a] and in the case of unipotent vector bun-
dles if A has good ordinary reduction and is a canonical lift [Wie06] Chapter
4.

Remark 7.1. Let
p:TA— GL,(0)

be a continuous representation. Let U C GL,(0) be the open subgroup of
matrices reducing to the identity E, modulo p/®~Y. As p is continuous, the
group P := p~}(U) C T A is an open subgroup. Hence p restricted to P maps
into U. The logarithm series converges for arguments divisible by p!/(=1.
Hence we obtain a map

log

P U M,(C,)

We will use Hodge-Tate theory to investigate this map:

Proposition 7.2 (Tate). Let G = Gal(Q,/K) be the absolute Galois group
of K. Then
H°(Gk,C)) =K

and forn # 0
H%(Gx,Cp(n)) =0

Proof. [Tate66] Theorem 1, Theorem 2 O

Proposition 7.3 (Tate). There is a Hodge-Tate (Cyr) decomposition (of
Galois modules)

Homg,(T,A, Z,) ®z, C, = H(Ag, Z,) @z, C, = Cy(=1)%"4 @ CI™4

Proof. [Tate66] Corollary 2 O
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Corollary 7.4. The following holds:
dimxgHom. g, (TA,C,) = dimA.

Proof. Use the fact that Hom.(TA,C,) = Homg,(1,A,C,) and Hodge-Tate
theory O

Corollary 7.5. If A has (good) ordinary reduction, then the map
TA = 7i"(Ag,0) - 71"(Az, 0)
induces an isomorphism
Hom, g, (WTZQ(AZ, 0),C,) = Hom.g,(TA,C,).

Proof. The left hand side is a K sub-vector-space of the right hand side.
It suffices to show, that its dimension is dimA. Let A®[p>] be the étale
part of the connected-étale sequence corresponding to the p-Barsotti-Tate
group A[p™] associated to the p torsion points of A. Because A has ordinary
reduction we have

TA[p™] = (LmZ/p")! = (Z,)".

n

The claim follows as
Hom,(w{"(Az,0),C,) = Homo(T A% [p™],C,)
O]

Proposition 7.6. Assume that A has (good) ordinary reduction and let
p:TA— GL,.(0) be a continuous Galois-invariant representation. Then
there exists some N > 1 such that the composition

TN
b TA TA L GL.(0)

factors over Wflg(AZ, 0), i.e. it is a temperate representation. Here TN is
the map induced by N-multiplication on A.

Proof. Choose a N > 1 such that TN(TA) C P := p '(U). Then the
logarithm series converges for elements in U and is injective on U (exp is the
inverse). Consider the composite map

TN
b :TA T4 L

GL,(0).
By Corollary 7.5 the map
logoy : TA — M,(C,)
factors over Wflg (’AZ’ 0), because each component does. Because log re-

stricted to ima) is injective, the map v also factors over W?lg (AZ’ 0) O]
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Remark 7.7. We assume that a similar description of DeWe representations
is possible if A has non-ordinary (good) reduction. Let M C TA be the
intersection of all kernels of elements in Hom. g, (T A,C,). If p is attached
to vector bundle on A, then there exists a N > 1 such that p o T'N factors
over TA/M. This is analogous to the definition of temperate representations
and T A/M plays the role of 7% (Az,0). However we do not know wether to
any such representation one can attach a vector bundle, as in the ordinary
case.

Corollary 7.8. Let E be a vector bundle in Bac, which s defined over K.

Then it is associated to a temperate representation of TA = W?lg(A@, 0).

The same holds if the vector bundle is defined over a finite extension K' of
K.

Proof. This follows from Proposition 7.6 [

To show the same result for vector bundles defined over C, we need to
approximate vector bundles p-adically by a family of vector bundles defined
over finite extensions of K.

We need to make the following assumption:

Assumption 7.9. Let K’ be a finite extension of K with ring of integers
V’. Let € be a vector bundle on A,, and let £V be a vector bundle on Ay
(V! = V'/p"). Assume that £ ®y; 0, 2 &,. Then £ can be lifted to a
vector bundle £V on Ay-.

Remark 7.10. The assumption is satisfied is A is an elliptic curve ([Her05]
Lemma 2.20) because the obstruction lies in the second cohomology group
that vanishes for curves. If £ is a line bundle on A, then it corresponds to
a o-valued point on the dual abelian scheme A,. Because ZTD/ Pt =o/p" we
see that A(Z,/p") = A(o/p"), and the assumption is true also in the case of
line bundles.

Corollary 7.11. Let E be a vector bundle in %Acp, which is defined over C,
and assume that Assumption 7.9 holds. Then it is associated to a temperate
representation of Wflg(A@, 0).

Proof. Choose a N > 1 such that TN(T'A) C P := p~'(U) (Notation as in
Remark 7.1). We claim that the map 1) := p o T'N factors over T(flg(AZ, ).
It suffices to show that v,, = p,, o T'N satisfies this property for every n > 1.
Let £ be a vector bundle on A, with generic fiber F. Because o0,, = ZT)/ p",
the vector bundle &, is already defined over V'/p™ for some finite extension
K’ of K with ring of integers V'. Assume that there exists a vector bundle
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EV' on Ay defined over V', and satisfying £ @y 0,, 2 &, (Assumption 7.9).
Then the representations p and p’ attached to the vector bundles £V ®y- o
and & are isomorphic modulo p". By Corollary 7.8 (with K replaced by K'),
the representation ¢’ := p’oT'N corresponding to p’ factors over W‘flg ("4@’ 0).

Because 1 and ¢’ are isomorphic modulo p™, the claim follows

7.2 A relation between ®-bounded representations and
representations of the algebraic fundamental group

K a finite extension of Q,
V' its ring of integers

Let X/K be a Mumford curve and let p : ' = 7i(X,z) — GL.(K) be a
®-bounded representation (z € X is a geometric base point). It was shown by
Faltings (Theorem 3.50) that ® -bounded representations correspond to semi-
stable vector bundles of degree 0 on X. It was shown by G. Herz (see Section
3.11), that if this representation is integral, i.e. it is a representation into
GL,(V), then the vector bundle M, attached to p lies in B%, the category
defined by Deninger-Werner, and the attached DeWe-representation is the
pro-finite completion of p.

We will examine now the case of arbitrary ®-bounded representations, i.e.
d-bounded representations that are not necessarily integral. We will restrict
us the case that X is a Tate elliptic curve:

We will need a criterion to decide wether two vector bundles attached to
two different representations are isomorphic:

Lemma 7.12. Let X be a smooth proper curve over C,, and denote by X"
its analyticification. Let X /X" be an (Berkovich-) étale Galois covering
with group G (e.g topological or finite étale). Let py, py : G — GL.(0) be two

continuous (discrete topology) representations and denote by M, , M,, the

attached vector bundles. Then the following two conditions are equivalent:
a) M, = M,,;
b) There is an (Berkovich-) analytic function f : X — GL,(C,) such that

f(vz) = p(MNf)p(1)™" Yy eG,zeX.

Proof. The proof is the same as for Riemann surfaces, see for example [Flo01]
Lemma 2 ]

Let X = C:/q” (lq| < 1) be a Tate elliptic curve. A representation p of
TP(X,0) = Z = ¢” is given by sending a generater to a matrix A € GL,(C,).
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Let M, be the vector bundle attached to p. We will show that the pullback by
N-multiplication N*M, is isomorphic to a vector bundle attached to an inte-
gral representation for some suitable integer N (if we omit the corresponding
connections):

Remark 7.13. There is an exact sequence of fundamental groups ([And03]
111 2.3.2):

(G — m (X, 0) - ¢F = m(X,0)

For an integer N > 1 the N multiplication N : X — X induces N-
multiplication on the corresponding fundamental groups, i.e.

N :m™(X,0) — 7™ (X,0), v N 7.

Lemma 7.14. Let

p:mP(X,0) — GL,(C,), qg— A
be a discrete representation. Then the pull-back representation N*p induced
by

emrix 0y N2 ptemr x 0) en wto(X,0) Lo GL(C,)

factors over w'(X,0) and is given explicitly by q — AN .
Proposition 7.15. Let

p:TP(X,0) — GL,(C,), qg— A

be a ® — bounded representation corresponding to an indecomposable vector
bundle. We assume that A is in Jordan normal form with eigenvalues A on
the diagonal with 0 < v(A\) < m = v(q) as described in Faltings theorem (see
Theorem 3.50). Choose a N € N, N > 0 such that N-v(\) = k-v(q) for some
k € N. Then the DeWe representation corresponding to the N -pullback of
the ®-bounded representation N*p is conjugated to the pro-finite completion
of the integral representation

P mP(X,0) — GL, (o), qg— A
where A" is defined by
M/g* 1 0

(A)7h = SPR
0 AV /q*
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Proof. We will apply Lemma 7.12: Choose the function
f:C,— GL.(C,), z—2"-E, (E,=identity)

The matrix A is conjugated (Jordan normal form) to the matrix

AVogdh 0
A = : qk
0 ANV

-1

AVogdb 0 AV /gk 1 0
flgz) = ¢"f(z) = b | f(2) S
0 AN 0 AN /gt
) (4n-1

Hence the vector bundles attached to the representations given by the ma-
trices AN and A’ are isomorphic O

Remark 7.16. We assume that this relation can be extended partly to
Mumford curves of genus g > 2. However it will be more difficult than
in the genus one case to find suitable functions f because the fundamental
group is non-abelian and the universal covering is more complex than Cj.
If one considers line bundles one should be able to deduce results from the
corresponding line bundles on the Jacobian which is p-adically uniformized.

Remark 7.17. It is true that the connections attached to integral ®-bounded
representations coincide with connections induced by the corresponding al-
gebraic representation. If the ®-bounded representation is non integral, then
this is not the case as can be seen in the proof of Theorem 7.15 in the case
of Tate elliptic curves. The connections attached to the representation given
by the integer AV is not equal to the connection corresponding to AV /g

7.3 Canonical connections and a Riemann-Hilbert cor-
respondence

K a finite extension of Q,
V' its ring of integers
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In this section we show that certain vector bundles in the categories %ﬁﬂcp
and B Ac, defined by Deninger and Werner are equipped with canonical con-
nections. As an application one can combine the canonical connections with
Faltings p-adic Simpson correspondence to obtain a p-adic Riemann-Hilbert
correspondence.

Theorem 7.18. Let A/K be an abelian variety with good ordinary reduction.
There is a category equivalence between the category of temperate represen-
tations of TA (on K-vector spaces) and the category of homogeneous vector
bundles on A. In particular, each homogeneous vector bundle has a canoni-
cal connection. The correspondence is compatible with tensor products, duals,
internal homs and exterior powers.

If Assumption 7.9 is true, than the same is true for vector bundles and
representations defined over C,.

Proof. The equivalence of categories follows from Sections 6 and 7.1. The
correspondence is compatible with tensor products, duals, internal homs and
exterior powers because this is the case for the construction of Deninger-
Werner (Section 3.3) O

Theorem 7.19. Let E/K be an elliptic curve which has either ordinary good
reduction, or is a Tate elliptic curve (in the latter case we assume that the
DeWe-functor is fully faithful). Then there is an equivalence of categories
between the category of temperate representations of ﬂflg (E,0) and the cate-
gory of homogeneous vector bundles on Ec,. In particular every homogeneous
vector bundle on Ec, admits a canonical connection.

Proof. In the case of curves Assumption 7.9 is true, hence the result follows
from Theorem 7.18 in the ordinary good reduction case. If E is a Tate curve,
then the result follows from Proposition 7.15 O

Theorem 7.20. If X/K is curve having good ordinary reduction and x a K
valued base point, then there is an equivalence of categories between the cate-
gory of temperate characters (one-dimensional temperate representations) of
Wl(X@, x) to Cy, and the category of line bundles of degree 0 on Xc,. In
particular, each line bundle of degree 0 on X¢, admits a canonical connection.

Proof. We deduce this by pulling back line bundles on the Jacobian: Let X
be a smooth model of X, and let A be its Jacobian. Let j = jp : X — A
be the Jacobian embedding corresponding to a point P. If L is a line bundle
of degree 0 on X¢, then there exists a line bundle L’ of degree 0 on Ag,
satisfying L = j(’épL’. Let £ be a o-model of L', then ji£’ is also a model
of L. Because L’ is associated to a temperate representation, there exists an
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integer N > 0 such that N*L’ can be trivialized by finite étale coverings of
A modulo p™ for every n > 0 (N denotes the multiplication by N on A).
So fix a n > 0, and choose an étale trivializing cover 7 : A" — A for N*L'
modulo p™. Consider the following diagram of coverings:

X Xan AXpr A /

pra
T T
X X AN A A
bra
N N
X I A

Here the map 7 is étale and the map N is étale on the generic fiber. By the
diagram there is an isomorphism

FN*L 2 FN* L = pren* N* L.

This implies that #*N*£ is trivial modulo p" because this is the case for
prim*N*L'. It follows that L = L¢, is associated to a temperate representa-
tion of m (Xg,, x) O

There is a well known relation between connections and Higgs fields on
vector bundles:

Remark 7.21. Let Y/S be a scheme smooth and of finite type over a base
scheme S. Let £ be a vector bundle on Y. Then the set of S-connections nat-
urally form a End€ Q4 /s Pseudotorsor (i.e. atorsor if the set of connections
is not empty). If V and V’ are two S-connections then

V-V =0¢€ Endé ®Qys.

Remark 7.22 (a p-adic Riemann-Hilbert correspondence). We have
seen that for elliptic curves with ordinary good reduction or Tate-elliptic
curves each homogeneous vector bundle has a canonical connection. Also
each line bundle of degree 0 on a curve with ordinary reduction has a canon-
ical connection. In these cases one can combine Faltings’ p-adic Simpson
correspondence (Section 3.4) with Remark 7.21 and the canonical connec-
tions to obtain a p-adic Riemann Hilbert correspondence (if we allow As(V)-
coefficients as in Faltings work).
(F.V) o BV +0)) «— (F.0) = pirg)

—Vean— p—adic Simpson

77



Here F'is a vector bundle with connection V. The connection V can be
written as V = 0 + V" for a Higgs field # and the canonical connection
vear,

It would be interesting to know how the sheaf of locally analytic function
defined by Coleman and Berkovich (Section 3.10) fits into this picture if a
vector bundle with connection is not attached to a topological or temperate
representation.

Example 7.23 (Horizontal sections). If X/SpecQ, is a curve then each
rank one Higgs-bundle (£, #) (of degree 0) lies in the image of Faltings functor
[Fal05] Section 5. By Remark 7.22 there is an equivalence of categories
between the characters of Wflg (X, z) and line bundles with connection on X¢,
(if X has good ordinary reduction or is a Tate curve). The vector bundle with
connection (Ox, V) with V := d+ 6 (6 a Higgs field) is not locally unipotent
whenever 0 # 0, hence Berkovichs’ p-adic integration does not apply directly.
To find a solution f (a horizontal section of V) of the differential equation
df +0f = 0 one has to exponentiate a primitive gy of 0, i.e. we set f =
Exp(ge). A primitive gy of 6 that is unique up to a constant can be found
using Coleman-Berkovich integration (Theorem 3.61 a), b)). One has to
choose an exponential function Exp because the exponential series does not
converge in general (See [Rob00] Section 5.4.4). Faltings’ p-adic Simpson
correspondence depends on the choice of an exponential function, so one can
take this one to make things canonical. The set {a - Exp(gg)|la € C,} is a
one-dimensional C,-vector space of horizontal sections of the connection V =
d+ 6. The same reasoning applies to arbitrary line bundles with connection.
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