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We study the initial-boundary value problem for dZu(t, x) + A()u(t, x) + B(£)d,u(t, x) = f(¢t, x) on [0, T]
x Q (Q = R") with a homogeneous Dirichlet boundary condition; here A(t) denotes a family of uniformly
strongly elliptic operators of order 2m, B(1) denotes a family of spatial differential operators of order less
than or equal to m, and u is a scalar function. We prove the existence of a unique strong solution u.
Furthermore, an energy estimate for u is given.

1. Introduction

Let Q = R” and me N be given. We consider the problem
B2u(t, x) + A(t)ul(t, x) + B()d,u(t, x) = f(t,x) forte[0,T], xeQ,
u(t,.) e H™(Q) for te[0, T], (1.1)
u(©0, x) = u®(x),  du(0, x) = u'(x) for xeQ.
Here H™(Q) denotes the closure of CP(Q) in the mth Sobolev space H™(Q), and
A(t), B(t) denote families of spatial differential operators of order 2m and less than or

equal to m, respectively. Problems of this kind appear in the study of fully non-linear
wave equations (compare [9]). We make the following assumptions.

Assumption 1.1. (1) The operators 4 and B are given by

A=Y [adt.)+3a,(.)]18%0 for pe H™Q) N H™Q), (1.2)
|a| €2m

B(:)<p:=”z [bs(t,.) + by(t,.)]8%e for pe H™(Q), (1.3)
Blsm

where a,, bye C¥ V™[0, T]x Q) and

G Bye () CULO, TY, HE 1 9m(@) (1.4)
j=1
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for |a| < 2m, |B| < m and some k > [n/2m] + 3 ([r]:=max {jeN:j<r}).
(2) There exist constants c,, ¢, > 0 such that

(=D"Re Y [a,(t, x) + d,(t, x)]&* = ¢y [E2"

lal=2m
for eR", te[0, T], xeQ, (1.5)
ILA(®) — A*(®]el < c,li@ll, for pe H™Q) N H*™Q),te[0, T, (1.6)
where 4* (t) denotes the formal adjoint to the operator A(t), and ||. |, || . |, denote the

norms in L,(Q) and H™(Q), respectively.
(3) There exists a constant c; > 0 such that

— Re<B(1)9, ) < csll@)|? for e H™(Q), te[0, T] (1.7)
(here {.,.)» denotes the inner product in L,(£2)).

Remarks. (1) We admit that the coefficients of 4 and B are divided into two different
parts, one being continuously differentiable with bounded derivatives, and the other
lying in some spatial Sobolev space for every te[0, T']. This is essential for the
application to non-linear problems.

(2) Condition (1.6) means that the part of A(t) containing the derivatives 0% ¢ with
m+ 1 < |a| € 2m is symmetric. This condition is also used in [2]. An equivalent
formulation of (1.6) is used in [3], (3.5), (3.6). .

(3) Condition (1.7) is needed for the energy estimate. In the case m = 1,if by + b, is
real valued for | | = 1, (1.7) holds automatically if k = [n/2m] + 4 in (1.4). This can be
shown by integrating by parts (compare [9]). More practical conditions for B(t)
guaranteeing (1.7) are given in [9].

(4) By Sobolev’s lemma it follows from (1.4) and k > [n/2m] + 3 that d4,(t)e C,(Q)
for te[0, T']. Hence (1.5) is well defined:

The aim of this paper is to prove the existence of a unique solution
k
ue€y = () C/([0, T], H*"I™(Q)) (1.8)
j=0
of (1.1). More precisely, we prove the following theorem.

Theorem 1.1. Let Assumption 1.1 be satisfied for some k = ky:= [n/2m] + 4 and let
2<j<kIf

fe€5 2N CIT ([0, T, L,(Q) (1.9)

and u® € Hi™(Q), u' € HY~Y™(Q) such that (u°, u', f) satisfies the compatibility condition
(defined in section 2) of order j, then (1.1) has a unique solution ue €. Furthermore

J
lu(e)l; = Zo 1137 (@)l ;- vym

< exp(Cy) (Dxlu(O)lj + sz Lo~ @ + lf(t)l;-z]df>
0

+ D, | f();-2 for te[0, T], (1.10)
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where the constants C,, C, > 0 depend only on c,, ¢,, ¢5 (of Assumption 1.1), j, and

sup sup sup _(18/02a,(t, x)| + 18j0Lb,(t, x)I), (1.11)

le|€2m,|gi<m |y|+jm<k-1)m [0.T)xQ

sup  sup (1d,(e-y + 155()lc-1) (1.12)
jal <2m,[pl<m (0,T]
(18 (Ole-1 = 13,8, ()~ 2 + | @() |- 2ym)> Whereas D, D, > 0 depend only on j, c,, c;,
¢y, (1.11), and

sup  sup (1@,(0h-2 + 1Ds(®)]-2). (1.13)

la| <2m,|B|<m [0,T}

Remarks. (1) The fact that D,, D, depend only on (1.13) and not on (1.12) is essential
for the iteration procedure in [9], where this theorem is used. If D,, D, are allowed to
depend on (1.12), then the condition k = [n/2m] + 4 in Theorem 1.1 could be relaxed
to k = [n/2m] + 3. But this would require a more complicated proof.

(2) The term |u(0)|; can be estimated by || ° s 22 Il j-1ym and | f(0);- , (compare
(2.8)).

(3) Condition (1.9) can be relaxed to the assumption that fe %4 2 and 8/~ !fe L,
([0, T1, L,(2)). Even (1.4) can be slightly relaxed.

There are many papers dealing with problems of the type (1.1) with B = 0. We only
mention Kato [7], Lions and Magenes [10], and Dafermos and Hrusa [3]. In these
papers the existence of the solution is proved in two different ways: by the aid of
semigroups ([7] and [10]) and by energy methods ([10], §3.8.2, and [3]). In the case
m=1,if

IRe<B(t)9, 0> < cll@]|® for pe H™Q), te[0, T,

Ikawa [5] proved the existence of a solution using semigroups. He considers oper-
ators A(t) and B(t) with vanishing 4, and B,,. In addition to the Dirichlet boundary
condition he studies the Neumann boundary condition. Recently Koch proved in [8]
an existence theorem for systems of hyperbolic equations with real-valued coefficients.
He assumes that Q is bounded and studies the more complicated case of time-
dependent boundary conditions. Furthermore, he considers a problem similar to (1.1)
with m = 1 (compare (2.12) in [8]). He uses energy methods.

The proof in this paper is also based on energy estimates but differs from the proof
in [8]. Section 3 deals with elliptic equations of order 2m. In particular, the regularity
of a solution of elliptic equations is studied. In section 4 the existence of a unique
strong solution u e €2 of (1,1) is proved by the method of Faedo—Galerkin, which uses
an approximation in finite-dimensional function-spaces. A higher degree of regularity
is obtained by induction in section 5, by solving a system of a simple integral
equations and an equation of the type of (1.1) (compare (5.3), (5.4)).

2. Notation, The compatibility condition

By Q we denote a domain Q < R" with 3Q e C® such that 3Q is bounded (or empty)
or such that

Q=R"xQ 2.1
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with ' < n and bounded Q' = R"™". Let
. e "
ax(p = m for ae NO’
where |a| =a, + - + a,. We set
Ci(Q) == {pe C*(Q):0%¢ is bounded in Q for |a| < k}.

We use the abbreviation #' = d,u, u” = dtu for time-dependent functions. Further-
more we write u(t)e H™(Q) instead of u(t, .)€ H™(Q). Recalling the definition of €% in
(1.8) we set

k
fu(e) s == _Zo 07u(t) - jm forte[0, T] 22)
=
for ue €% Besides €% we use the linear space
~ k . =
€r= () CU[0, T], H* ™ Q). 23)
i=1

Note that C([0, T'], H*"(Q)) contains €% but not €%. For ve €% we set
k
(@) = Zl 187 ol k- jym + N0 ik - 1ym
s

=0 Ohk-1 + Iv@lg-1ym for te[0, T]. 2.4)

In order to give the compatibility condition we assume that 1:6‘6'} is a solution of
(1.1). From u(tye H™(Q) for te[0, T] it follows that d/u(0)e H™(Q) for j=0,.. .,
k — 1 (compare [9]). Differentiating (1.1} formally (j — 2)-times, we obtain

jiz2 i ,
ou(0)=2/"2/(0) - ¥, (’ Vz){[a:A(O)JarHu(O)

v=0
+ [6,"B(0)]6{"’"u(0)} 2.5)
where
AO) = Y [87a,(0,.) + 0/4,(0,.)]0% (2.6)
la]<2m

and 9; B(0) is given analogously. We make the following definition.

Definition 2.1. We say that (u®, u', f) satisfies the compatibility condition of order ke N
if WieH™Q) for j=0,...,k — 1, where w is recursively defined by

Wi=82f0)~ ¥ (j o ) {7 AOIW™2 ™ + [7BOIW ™) 2)

v=0

Jorj=2.

Remark. Let Assumption 1.1 be satisfied for some k = [n/2m] + 3andlet2 <j < k. If
e H™Q), ul e HU~Y™(Q), 0"~ 2f(0)e HV "™ Q) for v =2,. ..},

then u* is well defined by (2.7) for v= 2, .. .,j. Furthermore, it follows from Lemma
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8.2 of [9] and induction that

J
|“(0)|j = Z NullG-vym < D[llu® ljm + flut li-1m + |f(0)|j—z],

v=0

where D > 0 depends only on j, (1.11) and (1.13).

3. Elliptic equations

Consider the elliptic differential equations
Au(@)=f(@) forte[0,T],
where A satisfies Assumption 1.1 for some k = k, = [n/2m] + 4. We choose
g€ CEIm ([0, T] x ), }
gaﬂ eC([0, T3, H&—3m+ lal(Q))
such that
AQut)= Y (= D)™33{[cap(t) + Ep(6)10%u(t)}

lal, (8] <m
(compare, e.g., [1], section 8). It follows from (1.5) that

(— 1)"Re 'ZI [eaplt, X) + Eop(t, x)1E*H° 2> (1€
lal ={8l=m

for £eR", te[0, T] and xeQ. We set

at, g, ¥):= 3 (leaplt) + Cop() 1%, B2

lal= |8l €m
for @, ye H™(Q),te[0, T']
and study instead of (3.1) the equation
a(t, u(t), o) = { f(t), p) forevery peCI(Q),te[0, T].
We prove the following lemma.

457

2.8

3.1

32

(3.3

3.4)

(3.5)

(3.6)

Lemma 3.1. Let k = [n/2m] + 4 and let Assumption 1.1 be satisfied. If feC([0, T],
HI(Q)) for some j < (k — 2)m and if ue C([0, T], H™()) such that (3.6) holds, then

ue C([0, T], H'**™(Q)). Furthermore
Nu@ljs2m < A SOU; + Hu@ ) for te[0, T],
where d > 0 depends only on j and on

sup SUP< sup  sup [0}a,(t, x)| + ”aa(t)”(k—Z)m)

lxi<2m {0, T] \ [7|<(k—2)m xeQ

(and on Q).

3.7

(3.8)

Proof. Let Q be of the form (2.1). In the other cases Lemma 3.1 can be shown
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analogously. At first we prove the assertion in the case j = 0. We set
Q= {xeQ:|x| < R}
and choose R > 0 so large that
{xeQ=R"xQ:|x;| <1 fori=1,...,n"}cQ. (3.9)

Let
L) ={x+2:xeQy} forz=(z,...,2,,0,...,0) (3.10)

Note that (k — 3)m = [n/2] + 1 and that therefore
ca[](t) + Ecﬂ(t)e CL¢|(Q) for |a|, Iﬂl s m, te [Oa T]

by the lemma of Sobolev. Hence a(t, ¢, ¥) is right m-smooth for every t€[0, T] in the
sense of Definition 9.1 of [1]. By the proof of Theorem 9.8 in {1] it follows from
(3.6) that

lu() | g2mer ey < AU SO L,ma im0 0y + TN am(r, @gv ) (3.11)

for every ze S := Z" x {(0,. . ., 0)}, where d, > 0 can be chosen to be independent of
z. Note that

Q= US T.Qg) = | ) T(Qr+1), (3.12)

zeS

and that every x € Q is contained only in a fixed finite number of sets 7,(Q ., ,). Hence
summation over all ze S yields u(t)e H*™(Q) and

lu®)lzm < (1SN + (@) llm) (3.13)

for te[0, T). In view of (3.4) there exist constants d,, d, > 0 such that
Rea(t, 9. 0) > dy | @12 — du]l@||? for pe H™(Q), te[0, T1. (3.14)

Hence it follows from (3.6) (with ¢ := u(t}) and (3.13) that (3.7) holds in the case j = 0.
In particular, we have that | u(¢)|,,, is bounded on {0, T'].
If t, t, € [0, T], we obtain from (3.6) that
a(t, u(t) — u(t,), @) = <g4(t, 1{), 0> for every o CF(Q),te[0, T] (3.15)
with
g1t 1) :=f(8) — feg) + [A(ty) — A@®)]ufty). (3.16)
With Lemma 8.2 in [9] we conclude that ||g, (¢, t,)|| = O ast — t,. Hence (3.7) applied
to (3.15) yields [u(t) — u(t;)},m— 0 as t > ¢, and therefore ue C([0, T], H>*™(Q)).
This proves the assertion for j = 0.
Now let Lemma 3.1 be proved for j=0,...,J <(k — 2)m — 1. By the induction
hypothesis we have ue C([0, T], H'*?™(Q)) and (3.7) with j = J. Let Yy e CX(Q).
From (3.6) and (3.3) we conclude that

a(t, Yu(r), @) = <g2(1), 9> for peCF(Q), (0, T] (3.17)
g2(0) =y f (1) + A@) WYu() — Y AQ)u(). (3.18)

Note that the derivatives of # of order 2m vanish on the right-hand side of (3.18). From
4,eC(0, T], H*~2™(Q)) for |a| < 2m and Lemma 8.2 in [9] it follows that g,€

with
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C ([0, T3, H'*'(Q)). Setting ¢ = 0®/0x; in (3,17) with ® e C3(Q), we conclude that

a(t, B(La?t—)—), Q) ={g;(1), ®) for ®eCZ(N), te[0, T], (3.19)

where
og,(t 0 -

n=220 5 (2 a0+ 401 gm0, (.20

We apply (3.7) with j = J to (3.19) and obtain
0
” WOl <dligal + 19uon)
Xi [a+2m

oS ()
Ox;

o

forte[0,T]and i=1,...,n, where d, > 0 depends only on (3.8), J and .

An analogous procedure can be performed around the boundary points. In fact, let
xo€0Q and let U be an open neighbourhood of x, such that there exists a C*-
mapping transforming UnQ in K3 == {xeR":|x| <R, x,>0} and UndQ in
I'g:= {xeR":|x| < R, x,, = 0}. Since such a mapping preserves the properties of our
elliptic equation; we can assume that UnQ = K}, Un3Q = T'.

For given R’ €(0, R) we choose y € CJ(Kg) withy = 1 on Ky == {xeR":|x| < R’}.
Then (3.21) follows as above for i=1,...,n — 1, since a(wu(t))/ax,.eﬂ'"(K,’{) for
i=1,...,n—~ 1

Since ue H*™(Q), we conclude from (3.17) that

A@)[Yu@)] = g,(t) forte[0, T]
and hence

[40.....0.2m(0) + Go.....0.2m(D]BL 2™ (Yu(t)) = ga(0) (.22
with a suitable g,, where according to (3.18) and (3.21)

1ga@®ly+1 < LIS O N4y + 180 |5+ 2misuppur -

+ “u(t) ”H’*Z"'(suppw)) (3.21)

J

Since
la.. ...0,2mts X) + do.. .. .0.2m{t )| Z ¢, >0

by (1.5), we conclude from (3.22) and (1.4) that
100 O 2™ u(®) 54y S ds(NYSO N4 1 + N g 2m supp ¥) - (3.23)

We choose a finite number of suitable functions ¥, . . . , ,. Then we conclude from
(3.21) and (3.23) that

Nl gre oo 2mr, my) < dal SOl gss 1 (7o@ma 1y + 18O I se2mr, @p.y) (3-29)

forte{0,T]and z = (0,. . .,0), where d, > 0 depends only on (3.8) and J. Note that
we can prove (3.24) for arbitrary ze § = Z" x {(0, . . . , 0)} by the same argument using
the functions ¢, (x — z),. . ., ¥,(x — z). Hence d, can be chosen such that (3.24) holds
for every ze S. Using the argument leading to (3.13) we conclude with the induction
hypothesis that (3.7) holds for j = J + 1. Finally, ue C([0, T], H’*!*2™(Q)) follows
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applying (3.7) with j = J + 1 to (3.15), since || g, (¢, £1)ll;+1 = 0ast — t, by Lemma 8.2
of [9].

4. Existence and uniqueness of the solution

In this section we suppose that Assumption 1.1 is satisfied for k = k, = [n/2m] + 4.
Let a(t, @, ) be defined by (3.2)-(3.5). Note that (1.6) implies that we can choose the
coeflicients of a(t, ¢, ¥) such that

Cap + Cap = (Cpa + Cpp) form + 1 < o + || < 2m. “4.1)

Furthermore it follows from (1.5) that there exist constants d, d, > 0 such that for

atb o= % - eplt) + (0100, 32> + o, ¥ 42)
laf + |'ﬂ| z\mm+ 1

it holds that
a,(t, o, ) = Reay(t, 9, ) > d |2 for e H™Q), te[0, T]. 4.3)

Here and in the following we denote by d, d,, d,,. . . positive constants depending
only on ¢,, ¢,, ¢; (of Assumption 1.1} and on (1.11), (1.13).

In order to prove the existence of a solution of (1.1) we use the method of
Faedo-Galerkin and follow the considerations in [3]. We suppose that

WeH"Q) N H™Q), u'eH™(Q), feH ([0, T], L,(Q)), 4.4)

where the last condition means that f, f"e L,([0, T'], L,(€)). Note that this implies
that fe C([0, T], L,(9)). Let

{¢1,&,...} € H"Q)n H™Q)

such that every finite subset is linearly independent and span {£,, £,,. . .} is dense in
L,(2). We seek an approximate solution

uj(t) = 21 ujv(t)iv (45)

of

uj () + A@Qu;(0) + B@u;() —f(1),¢,> =0 forte[0,T]v=1,...,j, 46)
u(0) = u?, u;(0)=u}, '

where uf, u} espan {£,,...,¢;} are chosen so that |[u} — u"|[;_,m =0 as j— oo
(v =0, 1). Since (4.6) is a system of ordinary differential equations for the coefficients
u,(v=1,...,j) it follows from standard classical theory that a solution
(4j1,. .. ,u;)eC*([0,T]) exists. From (4.6) we conclude that (u;,....,u;)
€ H3([0, T'}). Hence u;e H([0, T}, H*"(Q)).

We set

lu@)g = Lagt, us(e), u(8)) + i) 212 for te[0, T]. (4.7)
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It holds that

%lu,-(t)lﬁ = 2Re[a,(t, u;(t), wj(t)) + <uj (1), (1) > + ay(t, uy(e), uy(t)) (4.8)
for te[0, T, where

ay(t, @, ¥) = > leap(t) + Eop()100 00, B3Y. (4.9)

m+1<|al+|p)<2m

Replacing ¢, in (4.6) by uj(t)espan {£,,. .., ¢;}, we conclude that

d
dr I“j(t)l%

=2Re<f(t)—B(t)u;-(t)— Y 0t {[Caplt) + Eup(t)1080s(0)}) + duy), u;-(t)>

lal +iBl<m
+ ag(t, uy(t), u;(t)).
With (1.7) and (4.3) we obtain

% [u;()1E < 201 SO + da|u;(®)s]1u;(0)]e
and

d
3 O < UfOI + da|uj(t)]s for te[0, T, (4.10)

With Gronwall’'s Lemma it follows that there is a constant C > 0 such that
luj(t)|z < C for t[0, T] and jeN.

In a similar way we prove that |u)(t)|¢ is bounded. We differentiate (4.6) with respect
to t and obtain

(1) + AQUD) + BOW (@) + A'@u ) + BOUE) — £, 6> =0  (4.11)

forte[0,T],v=1,...,j Wereplace £, by uj(t) and conclude by the same argument
as above that

d

@ [tz = — <A (Out), u](®)> + r(t) (4.12)
with

(r(®)] < 21 @O w0l + daluwi (O < 1O + (d5 + D013 (4.13)

a.e. in [0, T]. Let t,e[0, T]. We use

j CA'(@uy(), uj (1)) dr = LA (Duy(1), uj(D)D = — J. €0,(4' (D)uy{2)), ujfr) ) dt
0 o}

and
d
[KA' (O u;(t), wi ) D1 = (a'(t, ue), uj(e)] < e{ui(t)f + f [u;(0){E,

04’ (Duy(v), ui(1)> < di(lu (D7 + lui()lz)

with ¢ > 0. Here and in the following we denote by d, d,,. .. positive constants
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depending on ¢,, ¢, and ¢,, and on (1.11) and (1.12). Integration of (4.12) yields

d
lu(0)1F < ds[1uj0)1z + |u(0)IF] + eluj(t)IE + f luj ()i

+d; f [u@IE + ly@IE + 1 (0))*]dr. (4.14)
0

Note that |u;(0)|% is bounded as j — 0, since | Ou;(0) —u' | 2-yym—0as j— oo for
v =0, 1,2, where u> = f(0) — A(0)u® — B(0)u". In fact, (4.6) implies that u;(0) conver-
ges weakly to u? in L,(Q) and

lim [|u}(0)|12 = lim < f(0) — A(O)u — BO)u},u(0)) < ||u?| lim |} (0)].

j=© jm o gl

Hence lim | u;(0)|| < |lu?|| and it follows that u}(0) - u? in L,(Q) as j » .
j—r o

With Gronwall’s lemma we conclude from (4.14) and the boundedness of |uj(t)|,2E
that there exists a C > 0 such that |u)(t)|2 < C for te[0, T], jeN. Hence we can
extract a subsequence converging weakly to a

ue H*([0, T], L,(Q)) » H*([0, T1, H™(Q)).
By a standard argument (compare §3.8.2 in [10]) it follows that

u'(t) + A(u@) + BOw' () =f(t) ae.in [0, T], (4.15a)
u(t)e H™(Q) for 1[0, T, (4.15b)
u(0)=u’ u(0)=u'. (4.15¢)

From (4.15) we obtain by the argument leading to (4.10) that

d .

ar lu(®)le < 1 f O + dalu()lg ae. in [0, T] (4.16)
Using Gronwall’s lemma we conclude that

lu()]e < e""(lu(O)Is + Jﬁ I/ @)l df) for 1[0, T], (4.17)
0

and with (4.3) and (4.7) we obtain

lu()l, < dse‘2'<|u(0)|, + f @ df) for te[0, T]. (4.18)
]

In the rest of this section we prove that uc %2 and derive an estimate for |u(t)|,. To
this end we introduce a convenient concept of a weak solution.

Definition 4.1. Let u®e H™(Q), u* € L,(Q) and fe L,([0, T1, L,(Q)). We say that
ue H'([0, T, L,(Q)) n Ly([0, T1, H™(QY)
is a weak solution of (1.1) if u(0) = u° and

T
J [— a(t, u(t), v(t)) + <B(Du(e) + w'(t), v'(1) > + <B'(Ou(®) + £ (1), v()>1de

0
= {u' + Bu® v(0)) 4.19)
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for every ve HY([0, T, L,()) n~ L,([0, T], fl"’(Q)) with v(T) = 0 (note that a(t, u(t),
v(t)) is defined by (3.5)).

Remarks. (1) Since 0,ve L,([0, T, L,(€2)) it holds ve C([0, T'], L,(Q)). Hence v(0),
v(T) are well defined.

(2) Integration by parts shows that ue ¢2 is a solution of (1.1) if and only if it is a
weak solution.
In a first step we prove the uniqueness of a weak solution.

Lemma 4.1. Let Assumption 1.1 be satisfied for k = ky. If u® = u* =0and f(t) = Oon
[0, T], and if

ue HY([0, T1, L,(Q)) n L,([0, T, H™(Q))
is a weak solution of (1.1), then u(t) =0 on [0, T].

Proof. We proceed analogously to the proof of the uniqueness in §3.8.2 of [10]. Let
s€(0, T) and

- f fort < s,
o(t) = 0 u(o)do fort>s (4.20)

Note that
d%[aa(t, v(t), v(t)) + 2Re<B' ()v(t), v()> + u(®)|?]

= 2Re[a,(t, u(t), v(1)) + <B'([Qu(), v(1)) + W (@), V(5] + r(®)
with

Ir@)] < ds[llv@117 + Ju@))?]
a.e. in [0, s). We conclude from (4.19) that

a,(0, v(0), (0)) + 2Re{(B'(0)p(0), v(0)> + llu(s)|1* < d, J Clo@ 7 + lu@)?]de.
0

4.21)
There exists a ds > 0 such that

d
a4(0, v(0), v(0)) + 2 Re<B'(0)v(0), v(0))> = 7’ o) lI7 — dsllv(0) .
Hence we obtain from (4.21) with the argument proving the uniqueness in §3.8.2 of

[10] that u(¢) = 0 for te[0, T'].
In the next step we prove the existence of a weak solution ue 7 of (1.1).

Lemma 4.2, Let Assumption 1.1 be satisfied for k = ko. Furthermore let u®e H™(Q),
ule L,(Q) and fe L ([0, T, L,(Q)). Then there exists a weak solution ue €1 of (1.1).

Proof. We approximate % u' and f by sequences {uf} in H Q) ~ H™(S), {ul}
in H™(Q) and {f;} in H'([0, T], L,()) such that |u" — uj[l;-ym =0 as j— o
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(v=0,1) and
T
j | f(x) = fi(x)lldt -0 asj— co. 4.22)
1]
Let u;e H*([0, T3, L,(Q)) n H'([0, T], H™(Q)) = €% be the solution of (4.15) with
data u), u} and f;, which we have constructed above. We apply (4.18) to

uj(t) — ui(e) + A [u () — u, (0] + B() [u(t) — w ()] = f;(8) — [,())
a.e. in [0, T] (4.23)

and obtain that sup |u;(t) — u, ()], >0 as j, £ - oo. Let ue %7 be the limit of {u;}.
[, 7]

Since every u; is a weak solution of (1.1) with data u?, u} and f;, it follows that u is a
weak solution of (1.1).
We note that (4.16) implies

lu(r)lg < [u(0)g + J LI /@ + dylu(t)lg] dr.
0
With (4.3) it follows that

lu@®l; < ds(lu(o)h +J Lif@i+ lu(f)h]dT) for te[0, T]. (4.24)
[

This estimate holds for every u; used in the above proof and therefore even for the
weak solution ue €% of (1.1). .
Consider the solution ue H2([0, T, L,(Q)) ~ H'([0, T, H™(Q)) of (4.15) construc-
ted above. It holds that
Au(t) = f(t) — u"(t) — B(t)u' (1) (4.25)

a.e. in [0, T). We consider a fixed te[0, T'] and conclude by Lemma 3.1 (applied to
functions being constant in t) that

@)l zm < d7 LIS + " @) + 14 @Ol + Tu)il]- (4.26)

Since this inequality holds a.e. in [0, T'], we obtain that ue L,([0, TJ, H>™(Q)).
From (4.11), «}(0) — u', u;(0) — u? and the construction of the solution u of (4.15) it
follows by a standard argument (compare §3.8.2 of [10]) that v := u' is a weak solution of

V() + A@)v(t) + BQU' () =f'(t) — A'(t)u(t) — B'(t)u'(t) for te[0, T],

(4.27a)
v(t)e H™Q) for te[0, T, (4.27b)
v(0) = ut, v'(0)=u? 4.27¢)

Since f'— A'u — B'u'e L,({0, T], L,(2)), Lemma 4.2 yields the existence of a weak
solution ve €} of (4.27). From the uniqueness of v we obtain ¥’ = v and hence ' € €}.
With ue %}, (4.25) and Lemma 3.1 we conclude that ue ¢%. We apply (4.24) to (4.27)
and obtain

I GIFES de(lu'(O)h + J 1/'(@) — A'@u() — B'()u'(1) | dt ) (4.28)
0o
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With (4.24) and (4.26) it follows that

lu(@®, < ds(lu(O)lz + J LI/ @I+ 1 7@0 + Ju]de + 110 II) (4.29)
0
for te[0, T]. Thus we have proved the following lemma.

Lemma 4.3. Let Assumption 1.1 be satisfied for k=ko. If u®e H*™Q)n H™(Q),
u'e H™(Q) and fe H'([0, T, L,(Q)), then (1.1) has a unique solution ue €%. Further-
more (4.29) holds, where dg > 0 depends only on c,, c,, ¢y of Assumption 1.1 and on
(1.11), (1.13).

5. Higher regularity

We prove Theorem 1.1 by induction with respect to j. Instead of (1.10) we prove

lu(®)l; < Ds(lu(O)l,- + L LI~ /@I + 1 @)~z + Cslu(@)];] df)

+ D, f(t)lj-, forte[0, T], (5.1)

where C; > 0 depends only on j, ¢,, ¢, and c; (of Assumption 1.1) and on (1.11),(1.12),
while D;, D, > 0 depend only on j, ¢,, ¢;, ¢3 and on (1.11), (1.13). Note that it follows
from (5.1) by Gronwall's lemma that

lu()]; < e"’c"<21>3|u(0)|; + D32 + C3D4)j Lnei~ @l + |f(t)|j-z]dr>

+ D, f(t)l;-, forte[0, T]. (5.2)

Hence (5.1) implies (1.10).
For j = 2, Theorem 1.1 is proved by Lemma 4.3. In order to prove Theorem 1.1 for
j = 3, we differentiate (1.1) with respect to t (formally) and set v := u'. This yields

V() + A@)v(t) + B@)v'(t) =f'(t) — A'(Hu(t) — B'(t)w'(¢t) for te[0, T], (5.3a)

v(t)e H(Q) for te[0, T], (5.3b)

v(0) =u!, v (0)=u? (5.3¢)

u(t) = u® + Jﬁ v(t)dr for te[0, T] (5.4)
4]

with u? = f(0) — A(0)u® — B(0)u'. On the other hand, if (4, ) €%+ ! x €7, is a solu-
tlon of (5.3), (5.4) (with j > 2), then ue €}’ * and u solves (1.1). In fact, it follows from
u®e H™(Q), v(t)e H™(Q) for te [0, T'] and (5.4) that u(t)eH"'(Q) for te [0, T]. Further-
more (5.4) implies &' = vand u(0) = u°, «'(0) = u'. Integrating (5.3) with respect to t we
obtain that (1.1) holds. Finally, it follows from

AQu(t)y =f(@t) —u’(t) — B(t)u'(t) forte[0,T] (5.5)

by Lemma 3.1 that ue C([0, T], HY* "™(Q)). This and ue €' ! imply ue ¢}*".
Let Theorem 1.1 be proved for j=2,...,J <k — 1. We prove the existence of a
solution (u, v)e €7+ ! x €4 of (5.3), (5.4) by the method of successive approximations
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(asin [5]). Let uge €5 such that 8'uy(0) = w’ forv=0,. . ., J (compare Lemma 8.8
of [9]); here u* is defined by (2.7) for v > 2. We define u, for p > 1 by

vy (t) + A(t)v, (1) + B(t)v,(t) = f'(t) — A'(u, -, (1) — B'(t)u,_,(t) for te[0, T],

(5.6a)

v,()e H™Q) for te[0, T, (5.6b)

v, (0) =u', v, (0)=u? (5.6¢)

u,(t) = u® + J' v (rydr for te[0, T 5.7
o

Then u"eQ?’T“ for u=1,2,..., as can be seen in the following way: assume that

u,_,€€r anddju, ,(0)=u"forv=0,...,J. Then(u', u® /' — A'u,_, — Bu,_,)

satisfies the compatibility condition for (5.6) of order J. Corollary 8.3 of [9] ylelds
f'—Au,_, — Bu,_, e(g"‘ c €3 1A CITY[0, T, L, (D). (5.8)

By the induction hypothes:s we obtain the existence of a unique solution v, €7 of
(5.6), and (5.7) yields u, €€J*!. Finally it follows from (5.6) and (5.7) that 8’u ,,(0) =u’
forv=0,...,J.

Consider w, == u, ., — u,, W, = v,,, — v,. It holds

WL (D) + AW, (0) + BOW, () = — A (Ow,- () — B@OW,-,()

for te[0, T], (5.9a)
w,(tye H™(Q) for te[0, T], (5.9b)
w0 =0 forv=0,1,...,J, (5:9¢)
w,(t) = j wy(t)dt for te[0, T] (5.10)
0

for 4 = 1. By Corollary 8.3 in {9] we obtain
A" (©)w, -1 () + BOW,_(O);-, <diw,o (D741 (5.11)
A (Ow, -, (0) + B (w1 (1))~ < dj|w, 1 (O)]; (5.12)
for te[0, T]. Here and in the following we denote by d', d5, . . ., positive constants

that may depend on ¢, ¢,, ¢, (of Assumption 1.1), J and on (1.11),(1.12). We apply the
induction hypothesis and (5.2) to (5.9). This yields

1
Iwu (D)1, < d'ﬁ""f W1 (Dy 41 de + dis|w, (1),
0

t
<(d; + d%)C“J [Wy— 1 (D41 dr, (5.13)
V]
since O;w,(0) =0 for v=0,...,J and therefore
t t
lwu-—l(t)ll < J- IW;—l(T)bdr < J. |Wy—1(7)|1+1d7 (5.14)
0 o]

for te[0, T].
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From (5.10) and (5.13) we conclude that

W, (O5+1 = W (O llym + WO

t
SJ W, (@D lymdt + (W, (D]
0

4
< +dy)(1 + T)e"”J W1 (@)1 dr. (5.15)
0
Let K(T):= (d5 + d%)(1 + T)e%”. By induction it follows that
u—l T
Iw,(D)]741 < K(T)"( Y j |wo(t)l;+1dt for te[0, T]. (5.16)

Note that w, = u, ,, — u,, W, = v,,, — v,. Hence we obtain from (5.16) that

[0,8) = 0,1y < [, (0) — ()],

-1
(-1
with some C > 0. Hence {(u,, v,)} converges in €11 x €%. From (5.6), (5.7) it follows
that the limit (4, )e €4+1 x %’T is a solution of (5 3), (5.4). Thus ue%3* and u is a
solution of (1.1) by the considerations following (5.4).

It remains to prove (5.1) for j = J + 1. In order to apply (5.1) with j = J to (5.3) we
note that

<C Z K(TY for u > v, te[0, T] (5.17)

18] "1 [ A’ @)u(®) + B'(O)u(®)] || + | A'()u(t) + B ()u(t)l, -,
< A Bu) + B @Ou);—, < delu®lysy, (5.18)
|4 @u(t) + BOut); -, < dlu@)l,

13
<d, (Iu(O)IJ + J [u(@)]y 4+, dr) (5.19)
/]
by Corollary 8.3 of [9]; here d, depends on J, ¢, ¢;, ¢ and on (1.11), (1.13). Note that

v=u in (5.3), (5.4). Applying (5.1) with j =J to (5.3) and using (5.18), (5.19), we
conclude that

[W'(®)l; <(D3 + Dady)[u(0)l; + Dy L LIS f@I + 1f '@y -,1de

t
+ [D3(C; + ds) + Dyd, ] J‘ [u(@)ly+ 1 dt + Dal S/ @15 -2
0

for te[0, T1. (5.20)
From (5.5) we obtain by Lemma 8.2 of [9] and by Lemma 3.1 that
Tu@ g+ ym < 20Ol 1ym + 160 -5 + Nu@]] (521)

for te[0, T'], where d, > 0 depends on J, ¢,, ¢,, ¢5 and (1.11), (1.13). Combining (5.1)
(with j = J), (5.20) and (5.21) we conclude that (5.1) holds with j = J + 1.
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