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We study the initial-boundary value problem for a:u(t, x) + A(t)u(t, x) + B(t)a,u(t, x) = f ( z ,  x) on [0, T ]  
x R (R c R") with a homogeneous Dirichlet boundary condition; here A(t) denotes a family of uniformly 
strongly elliptic operators of order 2m, B ( t )  denotes a family of spatial differential operators of order less 
than or equal to m, and u is a scalar function. We prove the existence of a unique strong solution u. 
Furthermore, an energy estimate for u is given. 

1. Introduction 

Let Q c R" and me N be given. We consider the problem 

(1.1) 

a,"u(t, X) + A(t )u( t ,  X) + B(t)a,u(t, X) = f ( t ,  X) for t~ [o, TI, XEQ 
u(t, . ) E hyn) 
u(o, x) = ~ ( x ) ,  a,u(o, X) = u'(x) for x ~ n .  

for t E [0, TI, 

Here &'"(!A) denotes the closure of C;(Q) in the mth Sobolev space H"(Q), and 
A(t ) ,  B( t )  denote families of spatial differential operators of order 2m and less than or 
equal to m, respectively. Problems of this kind appear in the study of fully non-linear 
wave equations (compare [9]). We make the following assumptions. 

Assumption 1.1. (1) The operators A and B are given by 

A(t)cp:= 1 [a , ( t , . )+  ii,(t,.)la:cp for c p ~ h ~ ( ~ ) n ~ ~ ~ ( n ) ,  ( 1.2) 
1.1 < 2m 
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for ( a  I < 2m, [/.?I < m and some k 2 [n/2m] + 3 ( [ r ]  := max { j E N : j < r } ) .  
(2)  There exist constants c l ,  cz > 0 such that 

I I C A ( ~ )  - A * ( ~ ) I V I I  < ~ 2 1 1 c p ( I m  for c p ~ f i ~ ( ~ n ~ ~ ~ ( ~ ) , t ~ [ ~ ,  7-1, ( 1.6) 
where A*(t )  denotes the formal adjoint to the operator A(t),  and (1 . (I, (1 . (I,,, denote the 
norms in L2(R) and H"(R), respectively. 

(3) There exists a constant c3 2 0 such that 

- ~e (B(t)cp, cp> < c3 II cp II for cp E fim(0), t E ~0, 7-1 (1.7) 

(here ( . , . ) denotes the inner product in L,(Q)). 

Remarks. (1) We admit that the coefficients of A and B are divided into two different 
parts, one being continuously differentiable with bounded derivatives, and the other 
lying in some spatial Sobolev space for every tE[O, T I .  This is essential for the 
application to non-linear problems. 

(2)  Condition (1.6) means that the part of A( t )  containing the derivatives a:cp with 
m + 1 < la1 < 2m is symmetric. This condition is also used in [ 2 ] .  An equivalent 
formulation of (1.6) is used in [3], (3.9, (3.6). 

(3) Condition (1.7) is needed for the energy estimate. In the case m = 1, if b, + & is 
real valued for I /3I = 1, (1.7) holds automatically if k 2 [n/2m] + 4 in (1.4). This can be 
shown by integrating by parts (compare [9]). More practical conditions for E ( t )  
guaranteeing (1.7) are given in [ 9 ] .  

(4) By Sobolev's lemma it follows from (1.4) and k 2 [n/2m] + 3 that iia(t) E C @ )  
for t E [O, T I .  Hence (1.5) is well defined: 

The aim of this paper is to prove the existence of a unique solution 
k 

W ;  := n cj( LO, T I ,  wk-yn)) (1.8) 
j = O  

of (1.1). More precisely, we prove the following theorem. 

Theorem 1.1. Let Assumption 1.1 be satisfied for some k 2 k ,  := [n/2m] + 4 and let 
2 <  j < k . I f  

( C Q  7 - 1 7  Lz(Q)) (1.9) fEg+-ZnCj- l  

and uo E H'"(R), u1 E H ( j -  ""(0) such that (uo, u',f) satisfies the compatibility condition 
(defined in section 2) of order j ,  then (1.1) has a unique solution U E V ~ .  Furthermore 

(1.10) 
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where the constants C,, C, > 0 depend only on c,, c2, c3 (of Assumption l.l), j, and 

SUP SUP SUP- (laja:a,(t, 41 + laW,(t, 4l), (1.1 1) 
1.1 Q 2m. 1191 Q m  I y I  + j m Q ( k  - 1)m [O. f] x R 

(1.12) 

(1.13) 

Remarks. (1) The fact that D1, D, depend only on (1.13) and not on (1.12) is essential 
for the iteration procedure in [9], where this theorem is used. If D, , D, are allowed to 
depend on (1.12), then the condition k 2 [n/2m] + 4 in Theorem 1.1 could be relaxed 
to k 2 [n/2m] + 3. But this would require a more complicated proof. 

(2) The term lu(0)lj can be estimated by 11 uo llul ( I ( j -  and If(0)lj-, (compare 

(3) Condition (1.9) can be relaxed to the assumption that f~4Zi - '  and a { - l f ~  L, 
(2.8)). 

([0, TI ,  L,(R)). Even (1.4) can be slightly relaxed. 

There are many papers dealing with problems of the type (1.1) with B = 0. We only 
mention Kato [7], Lions and Magenes [lo], and Dafermos and Hrusa [3]. In these 
papers the existence of the solution is proved in two different ways: by the aid of 
semigroups ([7] and [lo]) and by energy methods ([lo], 63.8.2, and [3]), In the case 
m =  l,if 

I W B W ,  c p ) ~  G CIICPII' for ~PE~WV, ~ E C O ,  TI, 

Ikawa [S] proved the existence of a solution using semigroups. He considers oper- 
ators A( t )  and B( t )  with vanishing ii, and gS. In addition to the Dirichlet boundary 
condition he studies the Neumann boundary condition. Recently Koch proved in [8] 
an existence theorem for systems of hyperbolic equations with real-valued coefficients. 
He assumes that R is bounded and studies the more complicated case of time- 
dependent boundary conditions. Furthermore, he considers a problem similar to (1.1) 
with m = 1 (compare (2.12) in [8]). He uses energy methods. 

The proof in this paper is also based on energy estimates but differs from the proof 
in [8]. Section 3 deals with elliptic equations of order 2m. In particular, the regularity 
of a solution of elliptic equations is studied. In section 4 the existence of a unique 
strong solution u E g$ of (11) is proved by the method of Faedo-Galerkin, which uses 
an approximation in finite-dimensional function-spaces. A higher degree of regularity 
is obtained by induction in section 5, by solving a system of a simple integral 
equations and an equation of the type of (1.1) (compare (5.3), (5.4)). 

2. Notation. The compatibility condition 

By R we denote a domain 51 c R" with  RE C" such that aR is bounded (or empty) 

R = R"'xR' (2.1) 
or such that 
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with n' -= n and bounded R' c W-"'. Let 

where la1 = a1  + . * - + a,,. We set 

C!(R):= (cp~C'(R):a;cp is bounded in R for la1 < k}. 
We use the abbreviation u' = a,u, u" = a;u for time-dependent functions. Further- 
more we write u ( t ) ~  h"(Q instead of u(t, . ) E h"'(R). Recalling the definition of %?; in 
(1.8) we set 

k 

Note that C([O, TI ,  Hkm(R)) contains U; but not @;. For UE@$ we set 
& 

Io(t)I;:= 1 II@U(t)II(k-j)m + IIu(t)II(k- 1)m 
j =  1 

= lu'(t)h-l + l l ~ ( C ) l l ~ ~ - 1 ) m  for ~ E C O ,  TI. (2.4) 
In order to give the compatibility condition we assume that E %?$ is a solution of 

(1.1). From u(t)~k"'(R) for ~ E [ O ,  T] it follows that #u(O)EH"'(R) for j = 0,. . . , 
k - 1 (compare [S]). Differentiating (1.1) formally ( j  - 2)-times, we obtain 

aju(0) = aj-2 f (0) - 1 ( j  ; 2 )  { [a;A(O)Iaj-2-"U(O) 
v = o  

where 

a;A(O) = 1 [a;a,(o, . I  + a;ci,(o, .)la; 
1.1 < Zm 

and ayB(0) is given analogously. We make the following definition. 

Definition 2.1. We say that (uo, u ' ,  f) satisfies the compatibility condition of order k E N 
if uj~k"'(R) for j = 0 , .  . . , k - 1, where u j  is recursively defined by 

for j 3 2. 

Remark. Let Assumption 1.1 be satisfied for some k 2 [n/2m] + 3 and let 2 < j < k. If 

U~E~~~( R ) , U ~ E H ( ~ - ~ ) ~(R),~~-~~(~)EH(~-~)~(R) for v = 2 , .  . . , j ,  

then u" is well defined by (2.7) for v = 2, . . . , j .  Furthermore, it follows from Lemma 
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8.2 of [9] and induction that 

j 

v = o  
Iu(O)Ij = C I I u v I I ( j - v ) m  Q D C I I u O I I j m  + IIul I I ( j - l ) m  + I f ( o ) I j - 2 I ,  

where D > 0 depends only on j ,  (1.1 1) and (1.13). 

3. Elliptic equations 

Consider the elliptic differential equations 

A(t )u( t )  = f ( t )  for t E [0, TI ,  
where A satisfies Assumption 1.1 for some k 2 ko = [n/2m] + 4. We choose 

CUB E C( [O, 7-1, 

ca - 2)m + 1.1 

- 3)m + 1.1 

such that 

Lemma 3.1. Let k 2 [n/2m] + 4 and let Assumption 1.1 be satisfied. If f ~ C ( [ 0 ,  TI ,  
Hj(R)) for some j Q ( k  - 2)m and if UEC([O, T ] ,  km(Q)) such that (3.6) holds, then 
u E C( [0, TI ,  HI+ 2m(Q)). Furthermore 

I Iu ( t ) l l j+2m d(llf(t)llj + Ilu(t) Ill for t ~ C o ,  TI, (3.7) 
where d > 0 depends only on j and on 

(3.8) ( la:aa(t, x)l + ~ ~ 6 m ( t ) ~ ~ ( k - 2 ) m  
l a l 6 2 m  IO.T] I y ( 6 ( k - Z ) m  x s n  

(and on 0). 

Proof: Let f2 be of the form (2.1). In the other cases Lemma 3.1 can be shown 
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analogously. At first we prove the assertion in the case j = 0. We set 

QR := { X E R : l X l  < R }  

and choose R > 0 so large that 

{X E Q  = R"' x Q' : )xil < 1 
Let 

Note that (k - 3)m 2 [n/2] + 1 and that therefore 

for i = 1 , .  . . , n ' }  c 0,. 

K ( Q R ) : =  (X + z : x E Q R )  for z = (z, , .  . . ,z,,,,O,. . . ,O). 

cap(t) + ?as(t)ECbPl(fi) for tat, 1/31 < m, ~ E C O ,  TI 
by the lemma of Sobolev. Hence a(t, cp, JI) is right m-smooth for every t E [0, T ]  in the 
sense of Definition 9.1 of [I]. By the proof of Theorem 9.8 in [ I ]  it follows from 
(3.6) that 

(3.9) 

(3.10) 

11 U(t)~~H2m(T,(R~)) < dl( l l f ( t ) IIL, (7 '=( f2~+ I ) )  + I ~ U ( t ) ~ ~ H m ( T z ( n ~ +  I ) ) ) .  (3.1 1 )  

for every z E S := Z"' x { (0, . . . , 0)}, where d ,  > 0 can be chosen to be independent of 
z. Note that 

(3.12) 

and that every x E Q is contained only in a fixed finite number of sets K(QR + , ). Hence 
summation over all z E S yields u ( t ) ~  Hzm(Q) and 

(3.13) I1 u( t )  It 2 m  < d z (  It f(t) I1 + It u(t)  IIm) 

for t E [0, TI .  In view of (3.4) there exist constants d , ,  d, > 0 such that 

R e 4 ,  cp, cp) 2 d311cpIl: - d411cp1t2 for cp~fi"'(Q),  ~ E C O ,  TI. (3.14) 

Hence it  follows from (3.6) (with cp := u(t))  and (3.13) that (3.7) holds in the casej = 0. 
In particular, we have that Itu(t)IIZm is bounded on [0, TI .  

If t, t ,  E [0, TI, we obtain from (3.6) that 

a( t ,u( t )  - u(tl) ,  cp) = (gl(t, d), cp> for every cp€COm(Q), t ~ C 0 ,  TI (3.15) 
with 

s,k t l )  :=m - f ( t , )  + CA(t,) - A(t)lu(t,)- (3.16) 

With Lemma 8.2 in [9] we conclude that I( g,( t ,  t l )  I( -+ 0 as t -, t , .  Hence (3.7) applied 
to (3.15) yields tIu(t) - u(tl)llZrn-,O as t + t l  and therefore UEC([O, T I ,  H2"(Q)). 
This proves the assertion for j = 0. 

Now let Lemma 3.1 be proved for j = 0,. . . , J < (k - 2)m - 1. By the induction 
hypothesis we have UE C( [0, TI, H J + l r n  (Q)) and (3.7) with j = J. Let JI E Cg(Q). 
From (3.6) and (3.3) we conclude that 

(3.17) 

(3.18) 

Note that the derivatives of u of order 2m vanish on the right-hand side of (3.18). From 
G,EC(O, T] ,H(k-2 )m(Q) )  for la1 < 2m and Lemma 8.2 in [9] it follows that g2€ 
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C ([0, T I ,  H J + ' ( Q ) ) .  Setting cp = aQ,/axi in (3,17) with @ E C ~ ( R ) ,  we conclude that 

where 

We apply (3.7) with j = J to (3.19) and obtain 

(3.19) 

(3.20) 

(3.21) 

for C E  [0, T] and i = 1 , .  . . , n, where d, > 0 depends only on (3.8), J and $. 
An analogous procedure can be performed around the boundary points. In fact, let 

xOEi3R and let U be an open neighbourhood of xo such that there exists a C"- 
mapping transforming U n 0 in K; := {XE R": 1x1 < R, x, > 0) and n 3 0  in 
r R  := {x E R" : 1 x I G R, x, = O}. Since such a mapping preserves the properties of our 
elliptic equation; we can assume that u n R = K:, 0 n 

ForgivenR'E(0, R)wechoose$~C;(K~)with$ = 1 on K,.:= { X E I W " : I X I  -= R'}. 
Then (3.21) follows as above for i = 1 , .  . . , n - 1, since a($u(t))/axiEfim(KR+) for 
i =  1 , .  . . ,n- 1. 

= rR. 

Since U E  H2"(R), we conclude from (3.17) that 

A(t)C$u(t)l = 9 2 0 )  for t E C O ,  TI 
and hence 

(3.22) 

Since 

Iao,. . . ,o. 2m)(t, X) + G[O.. . . .o, zm) ( t ,  x)l 2 ~1 > 0 

by ( lS) ,  we conclude from (3.22) and (1.4) that 

X $u(t)llJ+l G d3(11$j(t)l lJ+1 + IIU(t)lIHI+2m(~~pp$))' (3.23) I a(0.. . . ,O, 2m) 

We choose a finite number of suitable functions 
(3.21) and (3.23) that 

. . , JI,. Then we conclude from 

II u(t)  l l ~ +  I + z m ( T , ( & ) )  G d4( IIf(t) l lH~+ l(T.(nR+ + I1 u(t)  I I H J + ~ ~ ( T = ( ~ , ,  I )J (3.24) 

for t E [O, T ]  and z = (0, . . . , 0), where d ,  > 0 depends only on (3.8) and J. Note that 
we can prove (3.24) for arbitrary Z E  S = Z" x { (0, . . . , 0)} by the same argument using 
the functions ijl (x - z), . . . , $,(x - 2). Hence d4 can be chosen such that (3.24) holds 
for every z E S. Using the argument leading to (3.13) we conclude with the induction 
hypothesis that (3.7) holds for j = J + 1.  Finally, UEC([O, TI, H J + 1 + 2 m ( i 2 ) )  follows 
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applying(3.7)withj = J + 1 to(3.15),since ~ ~ g l ( ~ , t l ) ~ ~ J + l  -+Oasc-+t, byLemma8.2 
of [9]. 

4. Existence and uniqueness of the solution 

In this section we suppose that Assumption 1.1 is satisfied for k = ko = [n/2m] + 4. 
Let a(t, ip, II/) be defined by (3.2)-(3.5). Note that (1.6) implies that we can choose the 
coefficients of a(r, ip, J / )  such that 

cUs + Eus = (csa + Zsa) for m + 1 < la1 + < 2m. (4.1) 

Furthermore it follows from (1.5) that there exist constants d, d ,  > 0 such that for 

it holds that 

ad( t ,  q, q) = Re ad(t,  ( P y  q) 2 dl 11 11; for t E [o, (4.3) 

Here and in the following we denote by d, d,, d,, . . . positive constants depending 
only on c,, c2,  c3 (of Assumption 1.1) and on (l . l l) ,  (1.13). 
In order to prove the existence of a solution of (1.1) we use the method of 

Faedo-Galerkin and follow the considerations in [3]. We suppose that 

uo E iim(n) n H ~ " ( Q ) ,  u1 E iim(n), j~ H' ( [o ,  TI, L,(Q)), (4.4) 

where the last condition means that J ~ ' E  L,( [0, T I ,  L2(!2)). Note that this implies 
that f~ C( [O, TI ,  L2(R)). Let 

{tl, t2,. . . ) = fim(n) n H'YW 
such that every finite subset is linearly independent and span {tl, 5 , , .  . . } is dense in 
L2(R).  We seek an approximate solution 

i 
uj( t )  = C u j v ( t ) t ; v  (4.5) 

v = 1  

of 

] (4.6) 
(uy(t) + A(t )uj ( t )  + B(t)uJ(t)  - f ( t ) ,  t,) = 0 for r E [0, TI ,  v = 1,. . . , j ,  

U i ( 0 )  = ui", UJ(0) = uj, 
where uy, uf Espan {t,,. . . , r j >  are chosen so that IIuJ - uv 11(2 -v ,m -, 0 as j 00 

( v  = 0, 1). Since (4.6) is a system of ordinary differential equations for the coefficients 
ujv(v  = 1,.  . . , j ) ,  it follows from standard classical theory that a solution 
(ujl,.  . . , ujj)~C2([0, T I )  exists. From (4.6) we conclude that (ujl,. . . ., ujj) 
E I f 3 (  [0, TI). Hence U ~ E  H 3 (  [0, T I ,  H2"(SZ)). 

We set 
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It holds that 

for t E [0, TI,  where 

a t ,  cp, $1 = c <Cchfl(t) + G&)la!cp, a:$>. (4.9) 
m+ 1 d 1.1 + d Zm 

Replacing 5 ,  in (4.6) by u;(t) E span {l1, . . . , Cj}, we conclude that 

(4.10) 

With Gronwall’s Lemma it follows that there is a constant C > 0 such that 
luj(t)lE G C for ~ E [ O ,  T ]  and j e N .  

In a similar way we prove that 1 u;(t)lE is bounded. We differentiate (4.6) with respect 
to t and obtain 

(u~’(z) + A(t )u; ( f )  + B(t)uy(t)  + A’(t)uj(t) + B’(t)u;(t) - f ‘ ( t ) ,  5 , )  = 0 (4.11) 

for t E [0, TI,  v = 1, , . . , j. We replace 5, by u[i‘(t) and conclude by the same argument 
as above that 

d 
- lu>(t)l; = - (~’( t )u~(t) ,  uy( t ) )  + r ( t )  dt 

lr(t)l G 2llf’(t)ll lu;m + 4lu;(t)l; s IIS’(t)1I2 + (d3 + l)lu;(t)l; 

(4.12) 

with 
(4.13) 

a.e. in [O, TI. Let t o  E [0, TI .  We use 
fl l-1 

( A ’ ( T ) U j ( T ) ,  u[i’(r)) dr = (A’( t )uj( t ) ,  u;(T))  I:=o - ( a7(A’(t)uj(r)), u; (T) )  d t  Jo 
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depending on c l r  c2 and c3,  and on (1.1 1) and (1.12). Integration of (4.12) yields 

d4 
IuJ(t)Ig < dsCI~>(o)Ii + Iuj(0)IiI + &IuJ(t)Ii + Iuj(t)ti 

Note that luI(0)Ii is bounded as j -+ 03, since II a:uj(0) - u" 1 1 ( 2 - v ) m  + 0 as j + 00 for 
1' = 0, 1,2, where u2 =f(O)  - A(0)uo - B(0)u'. In fact, (4.6) implies that uY(0) conver- 
ges weakly to u2 in L2(R) and 

lim IIu;(o)II2 = lim (f(0) - A(O)u3 - B(O)ui',u;(O)) < 11u211 lim IIu;(o)I(. 
j+ 50 j+ m j+ m 

Hence lim I1 uY(0) I( < 11 u2 11 and it follows that uY(0) + u2 in L,(R) as j --+ 00 . 
With Gronwall's lemma we conclude from (4.14) and the boundedness of luj(t)lZ. 

that there exists a C > 0 such that Iu>(t)Ii < C for t E [ O ,  TI, j E  N. Hence we can 
extract a subsequence converging weakly to a 

j- m 

~ E H ~ ( C O ,  TI, L2(W) nH'(C0, TI, km(Q)). 
By a standard argument (compare tj 3.8.2 in [lo]) it follows that 

u"(t) + A(t)u(c) + B(t)u'( t )  = f ( t )  a.e. in [0, TI, (4.15a) 

U ( t ) E  Piyn) for t E [0, TI ,  (4.15b) 

u(0) = uo, u'(0) = u' .  (4.1%) 

From (4.15) we obtain by the argument leading to (4.10) that 

d 
lu(t)lE < IIf(t)II + dzlu(t)ls a t .  in LO, TI. (4.16) 

Using Gronwall's lemma we conclude that 

(4.17) 

and with (4.3) and (4.7) we obtain 

In the rest of this section we prove that ~€55'; and derive an estimate for lu(t)12. To 
this end we introduce a convenient concept of a weak solution. 

Definition 4.1. Let uo E km(f2), u' E L2(R) and f~ L ,  ([0, TI ,  L,(R)). We say that 

ueH'(C0, TI, L,(R))n L2(CO, TI, krn(W 
is a weak solution of (1.1) i f  u(0) = uo and 

joT C -  a(t7 u(t),  u ( t ) )  + ( ~ ( r ) u ( t )  + W, w ) )  + ( ~ ) u ( t )  +f(t), W>I  dt 

= (u' + Bu', ~(0))  (4.19) 
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for every U E H ' ( [ O ,  TI, L 2 ( R ) ) n  L2([0,  TI, k"(Q)) with v (T)  = 0 (note that a(t, u(t),  
v ( t ) )  is  dejned by (3.5)). 

Remarks. (1) Since a,u E L,( [O,  T I ,  L2(!2)) it holds u E C( [0, TI ,  L2(R)). Hence v(O), 
u(T)  are well defined. 

(2) Integration by parts shows that u E%$ is a solution of (1.1) if and only if it is a 
weak solution. 

In a first step we prove the uniqueness of a weak solution. 

Lemma 4.1. Let Assumption 1.1 be satisfied for k = k, . If uo = u1 = 0 and f ( t )  = 0 on 
LO, 7 - 1 9  and if 

~ E H ' ( C O ,  TI, LAO)) n L,W, 7-1, k ~ ) )  
is a weak solution of (l.l), then u(t)  = 0 on [0, TI. 

Prooj: We proceed analogously to the proof of the uniqueness in 53.8.2 of [lo]. Let 
s E (0, T) and 

for t < s, 
o(t )  := { 0 - l u ( 4 d o  for t 2 s. (4.20) 

Lemma 4.2. Let Assumption 1.1 be satisfied for k = k,. Furthermore let u O ~ H m ( Q ) ,  
u1 E L2(Q) and j~ L,  ( [0 ,  TI ,  L , (R)) .  Then there exists a weak solution u E U i  of (1.1). 

ProoJ We approximate uo, u1 and f by sequences (uy } in H2"(Q) n km(Q), {u; } 
in km(Q) and { A }  in H'( [O,T] ,  L,(Q)) such that 1 1 ~ ~ - ~ ~ 1 1 ~ ~ - ~ ~ ~ + O  as j +  GO 
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( v  = 0, 1) and 

joT IIf(r)-fj(r)IIdT-+O a s j +  a. (4.22) 

Let u j ~ H z ( [ O ,  TI, &(a)) n H1([O, TI,  km(Q)) c %fk be the solution of (4.15) with 
data uy, uf and fj ,  which we have constructed above. We apply (4.18) to 

u]i’(t) - uy(t)  + A(t)CUj(t)  - u,(t)I + B(t)Cu;(t) - u;(t)I =fj(t) -h(f) 
a.e. in [0, T] (4.23) 

and obtain that sup luj(t) - u,(t)ll -+ 0 asj ,  G + 00 .  Let UEU; be the limit of { u j } .  

Since every uj is a weak solution of (1.1) with data uy, uf and 4, it follows that u is a 
weak solution of (1.1). 

[O. TI 

We note that (4.16) implies 

IuWlE G lU(0)IE + J; Cllf(4II + dzl~(~)JEIdr .  

With (4.3) it follows that 

This estimate holds for every uj used in the above proof and therefore even for the 
weak solution U E V ~  of (1.1). 

Consider thesolution ueH2( [0 ,  T],L,(R))n H’([O, TI, fim(fi))of(4.l5)construc- 
ted above. It holds that 

(4.25) 

a.e. in [0, TI. We consider a fixed t E [0, T] and conclude by Lemma 3.1 (applied to 
functions being constant in t )  that 

d ,  C II f(t) II + 11 ~ ” ( t )  II + II ~ ‘ ( t )  Ilm + II ~ ( t )  II 1. (4.26) 

Since this inequality holds a.e. in [O, TI ,  we obtain that u E L2( [0, TI, H2“(Q)).  
From (4.1 I),  u;(O) -+ ul, uY(0) -+ uz and the construction of the solution u of (4.15) it 

follows by a standard argument (compare 53.8.2 of [ lo]) that u := u’ is a weak solution of 

u”(t)  + A(t )u( t )  + B(t)u’(t) = f ’ ( t )  - A’(t)u(t) - B’(t)u’(t) for ~ E [ O ,  TI, 
(4.27a) 

UQ)E iim(n) for C E  LO, TI, (4.27b) 

u(0) = u l ,  v’(0) = uz. (4.27~) 

Since f ‘  - A’u - B’ur~L2( [0 ,  T I ,  L,(Q)), Lemma 4.2 yields the existence of a weak 
solution u E V i of (4.27). From the uniqueness of u we obtain u’ = u and hence u’ E U i .  
With u EW;, (4.25) and Lemma 3.1 we conclude that u E U$. We apply (4.24) to (4.27) 
and obtain 

A(t )u( t )  = f ( t )  - u“(t )  - B(t)u’(t) 

I1 ~ ( t )  II z m  

(4.28) 
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With (4.24) and (4.26) it follows that 

for CE [0, TI. Thus we have proved the following lemma. 

Lemma 4.3. Let Assumption 1.1 be satisjed for k = k,. If uo~H2" ' (R)n  k ' ( i2 ) ,  
u1 ~k'"(S2) and f € H ' ( [ O ,  TI, &(a)), then (1.1) has a unique solution UEV;. Further- 
more (4.29) holds, where d8 > 0 depends only on c l ,  c2, c, of Assumption 1.1 and on 
(l.ll), (1.13). 

5. Higher regularity 

We prove Theorem 1.1 by induction with respect to j .  Instead of (1.10) we prove 

+ D41f(t)lj-2 for t E C O ,  TI,  (5.1) 
where C, > 0 depends only on j ,  cl, c2 and c, (of Assumption 1 . l) and on (1.1 l), (1.12), 
while D,, D, > 0 depend only on j ,  cl, c2, c, and on (1.1 l), (1.13). Note that it follows 
from (5.1) by Gronwall's lemma that 

+ D41f(t)lj-z for t E [ O ,  TI .  (5.2) 

Hence (5.1) implies (1.10). 

j 2 3, we differentiate (1.1) with respect to t (formally) and set u := u'. This yields 
For j = 2, Theorem 1.1 is proved by Lemma 4.3. In order to prove Theorem 1.1 for 

u"(t) + A(t)u(t)  + B(t)u'(t)  = f ' ( t )  - A'(t)u(t) - B'(t)u'(t) for t E [0, TI,  (5.3a) 

u ( t ) E  pim(i2) for t E 10, TI, (5.3b) 

u(0) = ul, d(0) = u2, (5.3c) 

(5.4) u(t)  = Uo + 1: v(T)dT for t E  [o, T] 

with u2 =f(O) - A(0)uo - B(0)u'. On the other hand, if (u, Y)E~?$+' x U$. is a solu- 
tion of (5.3), (5.4) (with j 2 2), then UEWF' and u solves (1.1). In fact, it follows from 
uo E hm(i2), o ( t ) ~  H"'(S2) for t E [0, T] and (5.4) that u(t)  E h"'(Q) for t E [0, TI. Further- 
more (5.4) implies u' = u and u(0) = uo, u'(0) = ul. Integrating (5.3) with respect to t we 
obtain that (1.1) holds. Finally, it follows from 

A ( t ) u ( t )  =f(t)  - u"(t) - B(t)u'(t) for t E [ O ,  T] (5.5) 

by Lemma 3.1 that u E C( [0, TI,  H(j+ ')"'(S2)). This and u E @",' imply u E U$+ '. 
Let Theorem 1.1 be proved for j = 2, . . . , J < k - 1. We prove the existence of a 

solution (u, u)E@;+ x %'; of (5.3), (5.4) by the method of successive approximations 
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(as in [ S ] ) .  Let uo E %?v such that a;uo(0) = u” for v = 0, . . . , J (compare Lemma 8.8 
of [9]); here u” is defined by (2.7) for v 2 2. We define u, for p 2 1 by 

v;’(t) + A(t)u,(t) + B(t)u;( t )  = f ’ ( t )  - A ‘ ( t ) ~ , , - ~ ( t )  - B ’ ( t ) u l - l ( t )  for ~ E [ O ,  T ] ,  
(5.6a) 

u , ( t ) E  iim(n) for t E 10, TI, (5.6b) 

U,(O) = ul, Ub(0) = u2, (5.6~) 

Then U ~ E  GJ,. for p = 1,2,. . . , as can be seen in the following way: assume that 
u,- e % ? r 1  and a;u,- 1(0) = u” for v = 0,. . . , J. Then (u’, u2,f’  - A’u,- - B’ul- 1)  

satisfies the compatibility condition for (5.6) of order J. Corollary 8.3 of [9] yields - 
f‘- A’u,-, - B’u;-lE%$-l C % $ - ~ ~ C ~ - ’ ( [ O ,  T],L,(R)). (5.8) 

By the induction hypothesis we obtain the existence of a unique solution u,E%$ of 
(5.6), and (5.7) yields u, E @-JTf l .  Finally it follows from (5.6) and (5.7) that a;u,(O) = u” 
for v = 0,.  . . , J .  

Consider w, := u,+ - up, 3, := u,+ - up. It holds 

3;‘(t) + A(t)G,(t) + B(t)3;(t) = - A’ ( t )w ,_ l ( t )  - B’( t )~ ; -~( t )  

for t E [0, TI, (5.9a) 

G,,(r) E iim(n) for t E [o, T I ,  (5.9b) 

(5.9c) a:3,(0) = 0 for v = 0, 1 , .  . . , J ,  

(5.10) 

for p 2 1. By Corollary 8.3 in [9] we obtain - 
I A’(Ow, - 1 0 )  + B’(t)w&- 1 (t)l, 1 < $1 I wp- 1 (OI,+ 1, 

I A’(t)w,- l ( t )  + B’(w;- 1 0)IJ - 2 G $2 I w,- 1 (OlJ 
(5.1 1 )  

(5.12) 

for t E [0, TI. Here and in the following we denote by d ; ,  d ; ,  . . . , positive constants 
that may depend on cl, c2, c3 (of Assumption l.l), J and on (1 .1  l), (1.12). We apply the 
induction hypothesis and (5.2) to (5.9). This yields 

ct Pl 

(5.13) 

(5.14) 

for t E [ O ,  TI. 
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Let K ( T )  := (d;  + d;)(l + T)ediT. By induction it follows that 

Note that wp = u , , + ~  - up, w; = - up. Hence we obtain from (5.16) that 

Iu,(t) - vv(t)lJ G lu,(t) - u&)I,-+ I 

(5.15) 

(5.16) 

(5.17) 

with some C > 0. Hence { (up,  u p ) }  converges in ‘i?F ’ x U;. From (5.6), (5.7) it follows 
that the limit (u, u ) E @ ~ ’  x U; is a solution of (5.3), (5.4). Thus U E % ~ ’  and u is a 
solution of (1.1) by the considerations following (5.4). 

It remains to prove (5.1) for j = J + 1. In order to apply (5.1) withj = J to (5.3) we 
note that 

(5.19) 

by Corollary 8.3 of [9]; here d ,  depends on J, cl, c2, c3 and on (1.1 l), (1.13). Note that 
u = u’ in (5.3), (5.4). Applying (5.1) with j = J to (5.3) and using (5.18), (5.19), we 
conclude that 

[ D 3 ( c 3  dk) + D4dil Iu(r)I;+i dr -k D4If‘(t)I~-2 

(5.20) 
1: 

for t E [0, TI. 

From (5.5) we obtain by Lemma 8.2 of [9] and by Lemma 3.1 that 

Il~(t)lI(.,+l)rn < d2ClIf(t)Il(~-1)rn + l ~ ’ ( ~ ) l ~ - 1  + IIu(t)lIl (5.21) 

for t E [0, TI ,  where d2 > 0 depends on J, cl, cz, c3 and (1.1 l), (1.13). Combining (5.1) 
(withj = J), (5.20) and (5.21) we conclude that (5.1) holds with j = J + 1. 
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