Ultrasonic spectroscopy in p-type silicon (*)

H. Zeile, O. Mathuni and K. Lassmann

Universität Stuttgart, Physikalisches Institut, Teilinstitut 1, 7000 Stuttgart 80, F.R.G.

(Réçu le 23 août 1978, révisé le 4 décembre 1978, accepté le 11 décembre 1978)

Abstract. — From ultrasonic resonant absorption over a wide frequency range we have determined the distribution of the energy splittings of the acceptor ground state in very pure Si(B) crystals. The measured distributions with maxima of the order of 10 μeV fit well to the expected electric field distribution from the ≈ 10^{12} cm^{-3} residual donors. The critical intensity for saturating the resonance attenuation has been measured in crystals of various acceptor concentrations and as a function of temperature. Although the average distance of acceptor atoms is much greater than the Bohr-radius of the bound defect-electrons, relaxation times are found to be shortened by the acceptor-acceptor interaction.

1. Introduction. — The ground state of a hole bound to an acceptor in cubic semiconductors at low temperatures is a fourfold degenerate \(\Gamma_8 \) state which may be split into a doublet by elastic or electric fields. Thus, random internal fields of the crystal originating from defects give rise to a distribution of splittings which in turn may be regarded as an indicator of residual defects. Furthermore, such a distribution of two-level systems (T.L.S.) is quite analogous to that in glasses, and the same questions arise as to the relaxation times and the possibility of a long range interaction between the T.L.S. [1].

Information on these questions can be obtained from measuring the ultrasonic resonant attenuation over a wide frequency range. Since the attenuation is proportional to the spectral density of the splittings at a certain frequency, the distribution is thus probed in the corresponding energy range. From measuring the critical intensity for saturating the resonance attenuation one obtains the product \(\tau_1 \cdot \tau_2 \) of the longitudinal and transverse relaxation times. We report here measurements of the ultrasonic attenuation at frequencies between 0.4 to 4 GHz in various silicon crystals doped with boron and indium acceptors of concentrations between 9 \times 10^{15} and 5 \times 10^{17} cm^{-3} with the aim (i) of correlating the measured distributions to the residual crystal defects, (ii) of determining the temperature dependence of the critical intensity; i.e., of \(\tau_1(T) \cdot \tau_2(T) \); and (iii) of seeing how the critical intensity depends on acceptor concentration; i.e., on the mean acceptor-acceptor distance.

2. Determination of the distribution of the splittings. — The resonance attenuation is given by

\[
\alpha_{\text{res}} = \frac{2^3 \hbar}{\rho v^3 k_B} D_{\text{res}}^2 N(E) \frac{v^2}{T}
\]

where \(N(E) \) is the spectral density of those splittings \(E \) of the distribution that are in resonance \(hv = E \) with the ultrasonic wave of frequency \(v \); \(D_{\text{res}} \) is an effective deformation potential constant; \(\rho \) is the mass density; and \(v \) is the sound velocity. To separate \(\alpha_{\text{res}} \) from other attenuation mechanisms (relaxation, geometrical effects) we make use of the saturation of \(\alpha_{\text{res}} \) at high acoustic intensities to obtain the residual attenuation to be subtracted. Figure 1 shows a typical

(*) This paper was presented at the LT 15 Conference as a post-deadline paper.
Critical intensity and relaxation times. — The critical intensity \(I_c \) for saturating the resonance attenuation is obtained by measuring the dependence on the acoustic intensity \(I \)

\[
I_c = \frac{\alpha \omega}{2} \sqrt{1 + I/I_c}. \tag{2}
\]

We relate \(I \) to the applied microwave power by an insertion loss measurement [8]. In a Bloch equation formalism we obtain \(I_c = \tau_1 \tau_2 \) for spin-lattice or energy relaxation times \(\tau_1 \) and the transverse or dephasing relaxation time \(\tau_2 \)

\[
I_c = \frac{\hbar^2 \rho \nu^2}{(2 D_{\text{res}} \tau_1 \tau_2)}. \tag{3}
\]

If only spin-lattice relaxation were effective, one might assume \(\tau_1 \tau_2 = 2 \tau_1^2 \) [1], that is, \(I_c \) should not depend on concentration \(N_A \). To see whether an interaction between the acceptors (spin-spin relaxation) plays a role, we have measured \(I_c \) for three very pure Si(B) crystals from the same supplier with different acceptor concentrations \(N_A \), but otherwise essentially identical. The result is shown in figure 2. The value of a fourth crystal with the lowest concentration \(N_A \), but otherwise less pure, shows a leveling-off. This may be due to the quadratic Stark effects, we can fit Larsen’s Holtzmark distribution to our \(N(E) \) with reasonable parameters for the residual donor concentration \(N_D \) (comparable to the estimate from luminescence experiments), the coefficient \(B \) for the quadratic Stark effect (as estimated by Pikus, Bir, and Butikov [7]) and the coefficient \(\chi \) for the linear Stark effect (three times larger than the estimate [7] for shallow acceptors). To check our hypothesis we are preparing experiments with varying compensation ratios by neutron irradiation which leads to a uniform distribution of phosphorous donors by \(\text{Si} \to \text{P} \) transformation which should result in a corresponding shift of the distribution.

3. Critical intensity and relaxation times. — The critical intensity \(I_c \) for saturating the resonance attenuation is obtained by measuring the dependence on the acoustic intensity \(I \)

\[
I_c = \frac{\alpha \omega}{2} \sqrt{1 + I/I_c}. \tag{2}
\]

We relate \(I \) to the applied microwave power by an insertion loss measurement [8]. In a Bloch equation formalism we get from \(I_c \) the product \(\tau_1 \tau_2 \) of the spin-lattice or energy relaxation time \(\tau_1 \) and the transverse or dephasing relaxation time \(\tau_2 \)

\[
I_c = \frac{\hbar^2 \rho \nu^2}{(2 D_{\text{res}} \tau_1 \tau_2)}. \tag{3}
\]

If only spin-lattice relaxation were effective, one might assume \(\tau_1 \tau_2 = 2 \tau_1^2 \) [1], that is, \(I_c \) should not depend on concentration \(N_A \). To see whether an interaction between the acceptors (spin-spin relaxation) plays a role, we have measured \(I_c \) for three very pure Si(B) crystals from the same supplier with different acceptor concentrations \(N_A \), but otherwise essentially identical. The result is shown in figure 2. The value of a fourth crystal with the lowest concentration \(N_A \), but otherwise less pure, shows a leveling-off. This may be due to the quadratic Stark effects, we can fit Larsen’s Holtzmark distribution to our \(N(E) \) with reasonable parameters for the residual donor concentration \(N_D \) (comparable to the estimate from luminescence experiments), the coefficient \(B \) for the quadratic Stark effect (as estimated by Pikus, Bir, and Butikov [7]) and the coefficient \(\chi \) for the linear Stark effect (three times larger than the estimate [7] for shallow acceptors). To check our hypothesis we are preparing experiments with varying compensation ratios by neutron irradiation which leads to a uniform distribution of phosphorous donors by \(\text{Si} \to \text{P} \) transformation which should result in a corresponding shift of the distribution.

3. Critical intensity and relaxation times. — The critical intensity \(I_c \) for saturating the resonance attenuation is obtained by measuring the dependence on the acoustic intensity \(I \)

\[
I_c = \frac{\alpha \omega}{2} \sqrt{1 + I/I_c}. \tag{2}
\]

We relate \(I \) to the applied microwave power by an insertion loss measurement [8]. In a Bloch equation formalism we get from \(I_c \) the product \(\tau_1 \tau_2 \) of the spin-lattice or energy relaxation time \(\tau_1 \) and the transverse or dephasing relaxation time \(\tau_2 \)

\[
I_c = \frac{\hbar^2 \rho \nu^2}{(2 D_{\text{res}} \tau_1 \tau_2)}. \tag{3}
\]

If only spin-lattice relaxation were effective, one might assume \(\tau_1 \tau_2 = 2 \tau_1^2 \) [1], that is, \(I_c \) should not depend on concentration \(N_A \). To see whether an interaction between the acceptors (spin-spin relaxation) plays a role, we have measured \(I_c \) for three very pure Si(B) crystals from the same supplier with different acceptor concentrations \(N_A \), but otherwise essentially identical. The result is shown in figure 2. The value of a fourth crystal with the lowest concentration \(N_A \), but otherwise less pure, shows a leveling-off. This may be due to the quadratic Stark effects, we can fit Larsen’s Holtzmark distribution to our \(N(E) \) with reasonable parameters for the residual donor concentration \(N_D \) (comparable to the estimate from luminescence experiments), the coefficient \(B \) for the quadratic Stark effect (as estimated by Pikus, Bir, and Butikov [7]) and the coefficient \(\chi \) for the linear Stark effect (three times larger than the estimate [7] for shallow acceptors). To check our hypothesis we are preparing experiments with varying compensation ratios by neutron irradiation which leads to a uniform distribution of phosphorous donors by \(\text{Si} \to \text{P} \) transformation which should result in a corresponding shift of the distribution.

3. Critical intensity and relaxation times. — The critical intensity \(I_c \) for saturating the resonance attenuation is obtained by measuring the dependence on the acoustic intensity \(I \)

\[
I_c = \frac{\alpha \omega}{2} \sqrt{1 + I/I_c}. \tag{2}
\]

We relate \(I \) to the applied microwave power by an insertion loss measurement [8]. In a Bloch equation formalism we get from \(I_c \) the product \(\tau_1 \tau_2 \) of the spin-lattice or energy relaxation time \(\tau_1 \) and the transverse or dephasing relaxation time \(\tau_2 \)

\[
I_c = \frac{\hbar^2 \rho \nu^2}{(2 D_{\text{res}} \tau_1 \tau_2)}. \tag{3}
\]

If only spin-lattice relaxation were effective, one might assume \(\tau_1 \tau_2 = 2 \tau_1^2 \) [1], that is, \(I_c \) should not depend on concentration \(N_A \). To see whether an interaction between the acceptors (spin-spin relaxation) plays a role, we have measured \(I_c \) for three very pure Si(B) crystals from the same supplier with different acceptor concentrations \(N_A \), but otherwise essentially identical. The result is shown in figure 2. The value of a fourth crystal with the lowest concentration \(N_A \), but otherwise less pure, shows a leveling-off. This may be due to the
extra impurities or may indicate a tendency to non-interaction. As can be seen from the upper abscissa, the most probable distances are at least 10 times larger than the Bohr-radius, so that direct overlap effects can be excluded. This is in accordance with the fact that we do not see a dependence of the distribution of the splittings on \(N_A \). If we know the temperature dependence of \(\tau_1 \), we can deduce \(\tau_2(T) \) by measuring the temperature dependence of \(I_c \). This is valid only if the measuring pulse length (2 \(\mu s \)) is longer than \(\tau_1 \), which is true in the case of Si(B) for temperatures higher than 2 K at 1 GHz. For instance, at 4.15 K and 1 GHz for Si(B) we have

\[
\tau_1 = 1.3 \times 10^{-8} \text{s} \]

as extrapolated from an analysis of the relaxation attenuation between 5 K and 20 K. In this case \(\tau_1 \) is determined by Raman and Orbach processes (relaxation via a Jahn-Teller level of the \(\Gamma_R \) state). In this temperature range, in the case of Si(B), we would expect the relaxation time to vary as \(\tau_1^{-1} \propto T^5 \). However, the measured temperature dependence of the critical intensity varies more slowly than expected and depends on acceptor concentration. We find \(I_c \propto T^5 \) for the crystal with \(N_A = 9 \times 10^{15} \text{cm}^{-3} \) and \(I_c \propto T \) for \(N_A = 8.5 \times 10^{16} \text{cm}^{-3} \). The frequency dependence of \(I_c \) is roughly as \(\omega^{-1.5} \) in the range from 0.5 to 3 GHz at 4.2 K. This would mean \(\tau_2 \propto \omega^{-1.5} \), since at 4.2 K Raman and Orbach processes dominate in \(\tau_1 \), both being frequency independent.

In the case of Si(In) we find at temperatures between 0.5 and 4.0 K a \(T^2 \) dependence of \(I_c \) (Fig. 3), as one might expect if direct relaxation were dominant. However, the absolute value \(I_c \) is too high by two orders of magnitude, and also at temperatures above 2 K we estimate the Raman process to be the most important, whilst for temperatures below 3 K, \(\tau_1 \) is estimated to be longer than the duration of the ultrasonic pulse. This shows that measurements of the critical intensity alone do not give sufficient information on the relaxation processes.

Clearly, a more direct determination of \(\tau_2 \) is necessary before discussing the possible interaction mechanisms.

In conclusion, we have shown that in very pure silicon crystals the splitting of the acceptor ground state is determined by the random electric fields from residual donors and that there is a dynamical interaction between the acceptors.

References