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Phonon scattering experiments of various types in cubic semiconductors doped with deep effective 
mass acceptors indicate an extra resonance scattering at  some meV. It is shown, using Green's 
function and transformation techniques that these resonances are due to a dynamic Jahn-Teller 
effect of the rs acceptor ground state. 

Phononen-Streuexperimente verschiedener Art weisen in kubischen, mit tiefen Effektivmassen- 
Akzeptoren dotierten Halbleitern eine zusiitzliche Resonanzstreuung bei einigen meV auf. Es wird 
mit Hiife von Greenschen Funktionen und Transformationsmethoden gezeigt, daD diese Reso- 
nanzen durch einen dynamischen Jahn-Teller-Effekt des r,-Akzeptorgrundzustandes hervor- 
gerufen werden. 

1. Introduction 

The ground state of acceptors in cubic semiconductors is fourfold degenerate (I?,) and 
the interaction with the lattice vibrations leads to the possibility of a Jahn-Teller 
effect [l]. The extended nature of the wave function of these defects [ 2 ]  has two im- 
portant consequences : 

(i) the interaction is mainly with long-wavelength acoustic phonons, 
(ii) because of the large elastic energy associated with the center and the small 

Jahn-Teller energy residual static strains may destroy the Jahn-Teller effect. 
There is a series of phonon experiments [3 to 61 and optical measurements [7, 81 

which indicate a resonance energy in the meV range for the deeper acceptors GaAs 
(Mn), GaP(Zn), &(In), and Si(B). These energies are much larger than the splitting 
due to random internal fields, which are of the order of 10 to 100 peV in these crystals. 
In  the following we want to show that these resonance energies are related to the 
dynamic Jahn-Teller effect. The acceptor-hole-lattice interaction Hamiltonian can 
be written in the form 

We have disregarded the coupling term which is diagonal in the electronic operators. 
It gives only a shift of the center of gravity of the valence band edge and does not 
oontribute to the Jahn-Teller effect. 
The following abbreviations are introduced: 

l) Pfaffenwnldring 57, D-7000 Stuttgart, FRG. 
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Here the long-wavelength approximation is used, i.e. only acoustic phonons are 
coupled. 

b,A and b& are the annihilation and creation operators for the phonon with wave 
vector q in the branch 1. w , ~  is the angular frequency and c , ~  the velocity of sound. 
@ is the unit vector along q and epl is the polarization vector of the phonon. M is the 
mass of the crystal. D" and D* are the deformation potential constants for [ l ,  0, 01 
and [ l ,  1, 11 strains, respectively. These constants differ from the experimentally 
measured values of and Dt# shown in Table 1. The difference between the two sets 

Table 1 
Experimental and theoretical values of resonance energies 

GaAs(Mn) GaP(Zn) Si(In) Si(B) 
~~ 

experimental values (meV) 3.1 -j= 0.3 2.7 f 0.3 4.2 & 0.2 2 *) 

theoretical values (meV) 2.6 2.3 4.0 1.9 

*) Value not quite sure from experiment. 

of parameters lies in the Ham reduction of these coupling constants. The experimen- 
tally measured values are reduced by the Jahn-Teller interaction whereas for our 
calculation we need the unreduced values. I n  order to fit our experimental data we 
used as a first approximation the reduction factors calculated by Morgan [l] for the 
equal-coupling case. An extension of his numerical calculations to the case of unequal- 
coupling constants which is more realistic for our systems will be given in the next 
future. 

The original Hamiltonian, the electronic part of which is usually written in terms 
of the angular momentum operators [9, lo], is transformed in such a way as to contain 
& and ̂ a, (i, j = 1, 2, 3), which are Dirac's 4 x 4 matrices [ l l ,  121 with the commuta- 
tion relations 

The fact that the wave function is extended over many lattice sites is reflected in an 
approximate way by the cut-off function [13] 

(4) f ( d  = El + $,*%21-z Y 

where u* is the effective Bohr radius. 
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2. Phonon Relaxation Rate 

To discuss the phonon scattering a t  these acceptor systems we have to calculate the 
scattering rate (or inverse lifetime) which for a single phonon q, 1 is given by [14] 

T;, = -w$ lim Im T(w,i + iE),l, . ( 5 )  
&-+O 

T(wql  + ia) is the T-matrix defined by the phonon Green's functions (G = Go-G,TGo) 
of the unperturbed (Go) and perturbed (G)  crystals. 

Following [14, 151, the phonon Green's functions can be replaced by Green's 
functions between the electronic operators & and ̂ oi (i, j = 1,2, 3). Then (5) takes the 
form 

-c>' = 4n lim Im ((A@; A @ )  , 

A@ = D"(&T:~ + 

(6 )  

( 7 )  

&-+O 

where A,A reads 
+ D763(&s!A + Z2s'$l + ̂ .,S$l) . 

We see that treating (6) 25 different Green's functions have to be calculated, 15 of 
which are independent of each other. The mean scattering rate for phonons of frequen- 
cy w , ~  = w is defined by 

( t (w) - l>  = c t&3(w,n - w )  c 6(w,n - w )  - (8) 
P l  11w 1 

I n  the following we consider a longitudinally polarized phonon in a [l, 0, 01 direction. 
This simplifies the further treatments considerably, for in this case we are only con- 
cerned with the "spin-spin" Green's function (&; &). Using the equation of motion 
method we expand the Green's function hierarchy up to the fourth order. In  second 
order we factorize the quadratic forms of the phonon operators, 

(9) 
ti, 5, are operators belonging to the algebra built up by the operators & and G33i 
(i = 1 , 2 , 3 )  of the initial Hamiltonian. In  fourth order we close the hierarchy by 
taking into account only the inhomogeneous part of the Green's functions. To make the 
results more accurate we calculate the thermal expectation values not in the original 
but in a transformed space. This can be done by using an exponential transformation 
tJ = exp (S) of the form [IS] 

PA 

(((bql + b;l) (b,+ + bp+'l,) &; &) = ( (b , l  + bid (b,T + b;nt)>o ((it; 4) * 
h , .  

S = c W ; w ( b , l  - b;A)/h . 

[Ho, 81 = --HI (11) 

(10) 

The transformed Haniiltonian contains no longer linear terms in the electron-phonon 
coupling strength, since the relation 

holds. ( H ,  is the diagonal Hamiltonian of the uncoupled systems). This leads to the 
energies and expectation values which are exact a t  least up to  second order in the 
coupling parameters. 

For example we get 
<@,A - QA) (b,T + b:.,,)), = 6,,,!1l, , (12a) 
(@,A + (b,T + bJl,))O = 

= 6,,& coth (ho&/2) + 4 
3 

i=l i = l  
(12b) 

q l  ,'A' 
ri ra + C s:'&".)/hw,lhwq,i, , 

((b,n + = (-2r;A/hw,d + ... , etc. 
with lip = kBT and k ,  the Boltzmann constant. 
41 physics (b) llljr 
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For the crystal an isotropic model is introduced and all sums are converted into 
integrals over frequency dependent and angular dependent parts, which can be 
solved analytically for zero temperature. As a final result for the mean scattering rate 
we get the Lorentzian-like form 

The functions P(w) ,  d(w), and r ( w )  as calculated in the described way are exact up to 
the fourth order in the coupling constants. 

They read for T = 0 K 

m) = [ { w  - 44) B ( 0 )  - 40) m4l Y ( 4  9 (144 

XA(0)  = [ f (W) ]1 '2  = l/(l + 4) 9 

where 

(enr = iMjV). s counts the number of atoms in the unit cell, p is the defect concen- 
tration, and the normalized density of phonon states reads 

go = (VV/2n2) (wz/c:) . (14h) 
1 

The functions 

3 
3 

3 a" 2 2 + 2 1nuA + 3ui + -uf + 1 R(l) = -- - -- 

4 a  
1 R(3) = - > , 
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result from the wql dependent integrations, whereas the A; are the solutions of the 
angular dependent integrations, 

1 - 16 A ,  - 4s z ( D " ) ~  , A; = f z ( D " ) ~ ,  A: = z ( D " ) ~ ,  
A; = A1 - A1 - 16 

4 - 5 - 4w2, 
A: = A: = T C ( D ' ) ~ ,  A; = 2 z ( D ' ) ~ ,  
A! = A: = % z ( D ' ) ~ ,  A: = $ z ( D ' ) ~ ,  

T ( w )  represents the "width" of the resonance. For zero temperature it contains no 
quadratic terms in the coupling parameters. The quadratic terms, however, are 
important a t  finite temperatures. 

In  Fig. 1 the relaxation rate of a longitudinal phonon scattered by the J T  defect 
In  in Si as derived in this paper is plotted (~7; ) .  For comparison the result of a second- 
order perturbational calculation (t?') is given. The small width of our result is caused 
by the resonance structure of (13). For w -+ 0 7:; approaches t S 1  asymptotically. 

Fig. 1. Scattering rate of our result (T& and the pertur- 
bational result (z?') in dependence on the phonon energy. 
For the calculation we assumed an In concentration of 

1 -  I I I 1 x lox6 crn+ 
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3. Resonance Frequencies 
In  this paper we restrict ourselves to the discussion of the resonance frequency. It is 
given by the relation 

w - d(0) = 0 .  

We have calculated the resonance frequencies for several acceptors. The results are 
written in Table 1. I n  Table 2 the parameters are given which enter into the calcula- 
tion. Since as yet we did not calculate the Ham reduction factors p e  and p' for the 
ratios D"/D; and D'/Dt, respectively, we have taken them as one fit parameter p e  = 
= p" = p ,  the range of its possible values is given by the equal coupling theory 
(Morgan [l]). It turned out that the Bohr radius a* had to be somewhat reduced as 
compared with the value resulting from the effective mass approximation. 
The experimental data are found by the following measurements : 

a) Thermal conductivity measurements for Si(1n) and GaAs(Mn). These indicate a 
pronounced additional scattering mechanism a t  temperatures around 23 and 18 K, 
respectively [3]. 

b) Measurements with quasimonochromatic phonons 
generated by superconducting tunneling junctions in 
Si(1n). They show a broad extra scattering with 
maximum a t  4.1 meV [a]. 

c) Luminescence spectrum of bound excitons in 
Si(1n). A broad satellite line occurs a t  about 4.2 meV 
above the ground state [8]. 

Fig. 1. Scattering rate of our result (~y;) and the pertur- 
bational result (z?') in dependence on the phonon energy. 
For the calculation we assumed an In concentration of 
1 x lox6 crn+ 

J1* 
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Table 2 

Experimental values of physical parameters used in the calculation (explanation see 
text) 

GaAs(J1n) GaP(Zn) Si(In) Si(J3) 

0: (eV) 0.53 [15] 1.56 [7]  1.47 [18] 2.13 [18] 
D$ (eV) 0.69 3.03 2.32 3.20 
P 0.5 0.8 1.0 0.7 
a* (-4 4.4 7.4 5.2 10.4 
Q>{ (lo3 kg/m3) 5.3 4.13 2.33 2.33 
c1(1@ 4 s )  5.21 6.3 9.1 9.1 
C t  (103 4 s )  3.0 3.54 4.55 4.55 

d) Ultrasonic relaxation attenuation in the case of Si(In), Si(B), and GaAs(3fn) can 
be explained by Orbach-like relaxation rates assuming a level a t  4.2,2.0, and 3.lmeV, 
respectively, above the relaxing ground state [5, 61. I n  the case of Si(B) the given 
value is less sure, because Raman and Orbach relaxations seem to be involved. 

e) Raman scattering experiments in the case of GaP(Zn). They show some additional 
structure 2.7 meV apart from the ground state [7]. 

A comparison of the resonance width and the temperature dependence of the whole 
scattering rate with the experimental data will be shown in a detailed discussion of a 
forthcoming paper. 

I n  conclusion we state that the resonance structure, which has been seen by several 
types of experiments, can be accounted for by the Jahn-Teller effect of the Fa ground 
state of deep effective mass acceptors. 

4. Conclusion 

To derive our results we started with Hamiltonian (l), which describes a dynamic 
Jahn-Teller system of r8-(t + e) type. I n  contrast to former calculations of phonon 
scattering with second-order Born approximation [lo], we used a nonperturbative 
approach (Green's functions and transformation techniques) for a better inclusion of 
the internal phonon dynamics. Our formulas contain the perturbative results of [ 101 
for sniall coupling parameters D" and D" as a special case. 
d better knowledge of the wave function of the deeper effective mass acceptors and 

a calculation of the quenching factors for the coupling constants (extending Morgan's 
equal-coupling case) arc necessary for an absolute determination of the resonance. 
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