
Statics and Dynamics of Simple Fluids

on Chemically Patterned Substrates

Von der Fakultät Mathematik und Physik der Universität Stuttgart
zur Erlangung der Würde eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von
Fabian Dörfler

aus Steinheim an der Murr

Hauptberichter: Prof. Dr. S. Dietrich
Mitberichter: Prof. Dr. J. Main

Tag der mündlichen Prüfung: 16.02.2010
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Einführung und

Zusammenfassung

Benetzungsphänomene sind eine alltägliche Erscheinung. Man denke etwa an
morgendliche Tautropfen auf Blättern und an Grashalmen, sich in einer Pfanne
ausbreitendes Olivenöl oder an einem Geländer hängende Regentropfen.

Die naturwissenschaftliche Beschreibung von Benetzungsphänomenen nahm
im neunzehnten Jahrhundert ihren Anfang mit den Arbeiten von Young und
Laplace [1–3]. Während Young den Kontaktwinkel eines auf einem festen
Substrat sitzenden Flüssigkeitströpfchens auf ein Kräftegleichgewicht an der
Kontaktlinie zurückführte, setzte Laplace die Krümmung der Oberfläche eines
solchen Tröpfchens in Verbindung zu seiner Oberflächenspannung und der Druck-
differenz der Flüssigkeit zur umgebenden Gasphase. Wenig später war es
Gauss, der erstmals eine Betrachtung der Flüssigkeitsoberfläche unter Anwend-
ung eines Minimalprinzips durchführte [4]. Die Arbeiten von Young, Laplace
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und Gauss münden in das sogenannte Kapillarmodell, in dessen Rahmen sich
die Benetzungseigenschaften aus der Variation eines phänomenologischen Funk-
tionals gewinnen lassen, welches die freie Energie des Systems aus Substrat,
Flüssigkeit und umgebender Gasphase erfasst. Heutzutage werden Benetzungs-
phänomene als das Resultat von Wechselwirkungen auf der molekularen bzw.
atomaren Ebene verstanden, begleitet von entropischen bzw. durch thermische
Fluktuation- en bedingte Effekte [5].

Die vorliegende Arbeit hat die theoretische Untersuchung des Benetzungsver-
haltens einfacher Fluide auf planaren, chemisch strukturierten Substraten zum
Thema.

Einfache Fluide bezeichnen dabei kondensierte oder gasförmige Systeme
bestehend aus Teilchen ohne Orientierungs- oder intrinsische Freiheitsgrade,
welche über kurz- oder lang- reichweitige Potentiale, beispielsweise Hartkugel-
oder Lennard-Jones-Potentiale, elastisch miteinander wechselwirken.

Das Benetzungsverhalten von solchen Fluiden auf einem festen Substrat ist
dabei das Resultat der Wechselwirkungen von Fluidteilchen untereinander und
von Fluidteilchen mit dem Substrat. Die Eigenschaften der Substratteilchen,
aus denen sich Stärke und Reichweite der Fluid-Substrat-Wechselwirkungspot-
entiale ergeben, werden als chemische Eigenschaften des Substrates bezeichnet.
Im Falle eines chemisch strukturierten Substrates verhalten sich diese Eigen-
schaften derart, daß sich auf der Substratoberfläche zusammenhängende Berei-
che jeweils unterschiedlichen Benetzungsverhaltens ergeben. Domänen hoher
Benetzbarkeit, d.h. Bereiche auf denen ein bestimmtes Fluid bevorzugt adsor-
biert, werden dabei als lyophil bezeichnet, gegenüber den lyophoben Domänen
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niederer Benetzbarkeit.

Zusätzlich zu den obengenannten Wechselwirkungen kann das Benetzungs-
verhalten durch eine topologische Sturktur der Substratoberfläche maßgeblich
beeinflusst werden - ein vielzitiertes Beispiel hierfür ist der sogenannte Lo-
tusblüteneffekt [6]. Darüber hinaus hat natürlich die Gravitation einen gewis-
sen Einfluß auf die Morphologie eines benetzenden Fluids. Im Rahmen dieser
Arbeit werden jedoch einerseits ausschließlich planare Oberflächen betrachtet
- d.h. Oberflächen, deren Rauhigkeit hinsichtlich des Benetzungsverhaltens
auf irrelevanten Längenskalen gegeben ist - und andererseits bewegen sich die
Abmessungen der betrachteten Fluide hinreichend weit unterhalb ihrer Kapil-
larlänge - d.h. der aus dem Einfluß der Gravitation auf das Benetzungsverhal-
ten eines bestimmten Fluids resultierenden Längenskala -, sodaß Gravitations-
effekte vernachlässigbar sind.

Chemisch strukturierte Substrate eröffnen interessante technologische Per-
spektiven im Bereich der sogennanten Mikrofluidik, in der mit Strukturen
und Fluidmengen operiert wird, deren charakteristische Abmessungen im µm-
Bereich und somit recht weit unterhalb der Kapillarlänge liegen. So ist es
etwa möglich, Flüssigkeiten auf streifenförmigen lyophilen Domänen in einer
lyophoben Umgebung - sogenannten chemischen Kanälen - gezielt über planare
Oberflächen zu leiten. Darauf gründet sich das Konzept der sogenannten
chemischen Chips, auf denen in Analogie zu den integrierten mikroelektro-
nischen Schaltkreisen auf CPUs integrierte Netzwerke chemischer Kanäle und
anderer lyophiler und lyophober Domänen mikrochemische Analyse- oder Reak-
tionseinheiten bilden (lab-on-a-chip concept) [7–9]. Solche chemischen Chips
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sollen die Handhabung und Verarbeitung kleinster Mengen wertvoller, seltener,
toxischer oder explosiver Substanzen ermöglichen.

Die durch chemische Strukturierung eines Substrates hergestellten Funk-
tionseinheiten werden dabei, wegen der Existenz einer freien, räumlich nicht
durch Substratkontakt einge- schränkten Fluidgrenzfläche, als offene mikroflu-
idale Einheiten bezeichnet [10–14]. Der Fluidtransport auf solchen offenen Ein-
heiten kann mittels Trägheitskräften, Scherfluß oder Benetzbarkeitsgradienten
erfolgen. Das Augenmerk bei der Entwicklung chemischer Chips richtet sich
momentan jedoch hauptsächlich auf geschlossene mikrofluidale Einheiten, in
denen Fuide in geometrisch geschlossenen Strukturen wie Kapillaren und Kam-
mern gehalten werden und der Fluidtransport mittels Druckgradienten und
Ventilen geregelt wird [15]. Gegenüber solchen geschlossenen Einheiten könnten
offene Einheiten einige Vorteile bieten, die hauptsächlich darin begründet liegen,
daß im Falle der reduzierten Längenskalen in der Mikrofluidik Grenzflächenphä-
nomene gegenüber Volumeneffekten an Bedeutung gewinnen.

So ist beispielsweis nach dem Gesetz von Hagen und Poiseuille der laminare,
schlupffreie Volumenstrom eines homogenen Fluids mit gegebener Viskosität
durch eine Kapillare gegebener Länge proportional zum Produkt des Druckgra-
dienten mit der vierten Potenz des Kapillarradiusses. Im Längenskalenbereich
der Mikrofluidik könnten somit chemische Kanäle den Kapillaren hinsichtlich
der Transporteigenschaften überlegen sein. Desweiteren sind Kapillare anfällig
für eine Verstopfung durch gelöste Teilchen, etwa in Form von Kolloiden oder
Polymeren, hervorgerufen durch eine Anlagerung derselben an den Kapillarwän-
den. Insbesondere in dieser Hinsicht kann man sich von chemischen Kanälen
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Vorteile erhoffen.

Die Miniaturisierung mikrofluidaler Einheiten mit Strukturen im Bereich
von µm führt zu Längenskalen im Bereich von 10−100nm , d.h. die Mikroflu-
idik wird zur Nanofluidik [16–18]. Während in der Mikroelektronik Quan-
teneffekte die Grenze der Miniaturisierung vorgeben, spielen im Falle offener
nanofluidaler Einheiten die thermischen Fluktuationen der freien Fluidgrenz-
fläche die ausschlaggebende Rolle.

Es existiert eine Reihe verschiedener Verfahren zur chemischen Strukturier-
ung von Substraten auf unterschiedlichen Längenskalen.

Chemische Strukturen im mm-Bereich können relativ einfach durch Schab-
lonendruck- oder Ätzverfahren hergestellt werden. Die µm-Skala ist durch die
Technik des Mikrokontaktdruckens, Molekularstrahlepitaxie mit Gittermasken,
elektrophoretische Aggregation von Kolloiden oder durch Aufreißen eines Poly-
merfilmes zugänglich [19–23]. Chemischen Strukturierung auf der nm-Skala
gelingt durch Photolithographische Methoden, lokale Oxydation mittels AFM-
Spitzen sowie Molekularstrahl- epitaxie mit Lichtmasken [24–26].

Für die Konzeption offener mikro- bzw. nanofluidaler Einheiten zum Auf-
bau chemischer Chips ist eine fundierte theoretische Beschreibung sowohl statis-
cher Benetzungsphänomene als auch der Benetzungsdynamik bzw. der Fluid-
dynamik auf chemisch strukturierten Substraten von großer Bedeutung. Eine
solche Beschreibung ist zuallererst eine Sache der betrachteten Längenskala.
Wie schon erwähnt, spielen sich Mikro- und Nanofluidik auf Längenskalen
recht weit unterhalb der Kapillarlänge der jeweiligen Fluide ab, sodaß Gravi-
tationseffekte der Beschreibung außen vor bleiben können. Die Beschreibung
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von Benetzungsphänomenen gründet sich somit auf einer für die betrachtete
Längenskala sinnvollen Erfassung molekularer Wechselwirkungen der Fluidteil-
chen untereinander sowie der Fluidteilchen mit dem Substrat.

Auf einer makroskopischen Skala, hinreichend groß gegenüber der Reich-
weite molekularer Wechselwirkungen, kann das Gleichgewichtsbenetzungsver-
halten eines Systems zweier fluider Phasen auf einem festen Substrat durch
das eingangs erwähnte Kapillarmodell sehr gut beschrieben werden. Demnach
ist die räumliche Konfiguration eines Systems zweier Fluide in Kontakt mit
einem festen Substrat durch eine Fluid-Fluid-Grenzfläche, die beiden Fluid-
Substrat-Grenzflächen sowie eine Drei-Phasen-Kontaktlinie gegeben. Diese ge-
ometrischen Objekte sind jeweils mit freien Energiedichten belegt, den soge-
nannten Grenz- flächenspannungen bzw. der sogenannten Linienspannung, in
denen die auf der makroskopischen Skala sehr kurzreichweitigen molekularen
Wechselwirkungen indirekt zum Ausdruck kommen. Die Konfiguration mini-
maler freier Energie zu gegebenen Volumina oder zu einer gegebenen Druckdif-
ferenz der beiden Fluide definiert dann die Krümmung der Fluid-Fluid Grenz-
fläche sowie den Gleichgewichtskontaktwinkel der Fluid-Fluid-Grenzfläche an
der Drei-Phasen-Kontaktline, der ein Maß für die Benetzbarkeit des Substrates
darstellt. Chemisch strukturierte Substrate sind somit im Rahmen des Kap-
illarmodells durch eine Variation des Kontaktwinkels gekennzeichnet, wobei
lyophile bzw. lyophobe Domänen einen Kontakt- winkel kleiner bzw. größer
als 90◦ aufweisen.

Auf einer mikroskopischen Skala im und unterhalb des Bereichs der Reich-
weite molekularer Wechselwirkungen, auf einer Skala also, auf der molekulare
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Wechselwirkungen von langer Reichweite sind, hat die Beschreibung unter di-
rekter Berücksichtigung der Wechselwirkungspotentiale zu erfolgen. Im Rah-
men einer Dichtefunktionaltheorie ist die freie Energie des System durch ein
Dichtefunktional gegeben. Die Gleichgewichtskonfiguration des Systems ist
dann durch kontinuierliche Dichteprofile gekennzeichnet, die einem Minimum
dieses Funktionals entsprechen. An Stelle der Grenzflächen und der Drei-
Phasen-Kontaktlinie als geometrische Objekte ohne innere Struktur treten somit
räumlich ausgedehnte Phasengrenzbereiche mit einer durch den Verlauf dieser
Profile gekennzeichneten inneren Struktur.

Im Hinblick auf eine Miniaturisierung mikrofluidaler Einheiten mit Struk-
turen im Bereich von µm hin zu Strukturen im nm-Bereich ist die dazwi-
schenliegende, sogenannte mesoskop- ische Längenskala von großer Bedeutung.
Auf dieser Skala betrachtet, sind zwar einerseits die molekularen Wechsel-
wirkungen nicht mehr als kurzreichweitig anzusehen, andererseits aber sind
makroskopische Konzepte wie zweidimensionale Grenzflächen belegt mit Grenz-
flächenspannungen immer noch sinnvoll. Dies entspricht der Feststellung, daß
die innere Struktur einer Phasengrenze auf der mesoskopischen Skala nicht
signifikant ist. So können die grundlegenden Konzepte des makroskopischen
Kapillarmodells und der obengenannten mikroskopischen Dichtefunktionalthe-
orie miteinander verschmolzen werden, um den auf der mesoskopischen Skala
mittel- bis langreichweitigen molekularen Wechselwirkungen Rechnung zu tra-
gen [5, 27–29]. Die Benetzungseigenschaften eines Substrates folgen im Rah-
men einer solchen mesoskopischen Beschreibung aus einem effektiven Gren-
zflächen- potential, welches die effektive Wechselwirkung eines Fluidfilms mit
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dem Substrat als Funktion der lokalen Filmdicke modelliert, wobei eine chemi-
sche Strukturierung des Substrates sich in der Topologie des effektiven Grenz-
flächenpotentials wiederspiegelt.

Die makroskopische Dynamik von Fluiden, und damit auch deren Benetz-
ungsdynamik, ist im Prinzip durch die Navier-Stokes-Gleichungen gegeben.
Wie im Kapillarmodell treten auch in diesen Gleichungen die molekularen
Wechselwikungen indirekt zu tage, und zwar in Form der sog. Transportko-
effizienten, welche die Viskosität und die thermische Leitfähigkeit eines Fluids
angeben, sowie in den fluiddynamischen Randbedingungen an den Phasengrenz-
en. Die Berücksichtigung langreichweitiger molekularer Wechselwirkungen und
thermischer Fluktuationen in den Navier-Stokes-Gleichungen sowie des fluiddy-
namischen Schlupfes in den Randbedingungen führt zur mesoskopischen Fluid-
dynamik [30, 31]. Ein wichtiges analytisches Hilfsmittel in diesem Zusammen-
hang ist die sogenannte Lubrikationsnäherung, mittels derer die Evolutionsgle-
ichung dünner Filme aus den Navier-Stokes-Gleichungen erhalten werden kann
[32].

Abgesehen vom Fall dünner Filme ist es äußerst schwer einen analytischen
Einblick in die Fluiddynamik auf mesoskopischer Ebene zu gewinnen. Das gilt
insbesondere für die Benetzungsdynamik, bei der eine mobile Fluidgrenzfläche
und eine mobile Drei-Phasen-Kontaktlinie vorliegt. Konventionelle Simula-
tionsmethoden, wie numerische Integration der Navier-Stokes-Gleichungen und
MD-Simulationen, sind hierbei hinsichtlich der benötigten Rechenkapazitäten
sehr ineffektiv. Im Bereich der mesoskopischen Fluiddynamik häufig angewen-
dete, thermische Fluktuationen einschließende Simulationansätze sind daher
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die dissipative Teilchendynamik (dissipative particle dynamics, DPD) und die
Vielteilchen-Kolli- sionsdynamik (multi-particle collision dynamics, MPD) [33].

Ein auf den statistischen Prinzipien der kinetischen Theorie beruhender
Lösungsansatz für die Navier-Stokes-Gleichungen ist die Gitter-Boltzmann-
Methode (lattice Boltzmann approach) [34–36]. Diese Methode ist vor allem
mit Blick auf die Simulation der Benetz- ungsdynamik von Fluiden sehr inter-
essant, da sie hochgradig parallele Algorithmen und gleichzeitig eine einfache
Implementierung komplizierter Randbedingungen erlaubt.

Die Methode basiert auf einer vollständig diskreten Version der Boltzmann-
Gleichung, der sogenannten Gitter-Boltzmann-Gleichung, und liefert im Kon-
tinuumslimit den Navier-Stokes-Gleichungen äquivalente, dynamische Gleichun-
gen.

Die Gitter-Boltzmann-Methode hat ihre volle Berechtigung auf der makros-
kopischen Skala. Bei einer Modifikation der zugrundeliegenden Boltzmann-
Gleichung zur Boltzmann-Enskog-Gleichung, reicht ihre Anwendbarkeit hin-
unter zur mesoskopischen Skala. Auf kleineren Skalen wird eine Anwendung
problematisch, stattdessen sind dort MD-Simulationen das Mittel der Wahl.

Es existiert eine Reihe von theoretischen Untersuchungen im makroskop.
Bereich, sowohl der Benetzungseigenschaften im Gleichgewicht als auch der
Fluiddynamik auf chemisch strukturierten Substraten. Dabei geht es beispiels-
weise um Fragen nach der Bildung spezieller Tröpfchenmorphologien und deren
Stabilität, der Dynamik der Drei-Phasen-Kontaktlinie, Entnetzung sowie der
Fluiddynamik in dünnen Filmen [21, 37–49].

Vor einigen Jahren wurde im Rahmen des Kapillarmodells das energetische
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Verhalten auf geraden chemischen Kanälen sitzender Flüssigkeitströpfchen durch
einen morphologischen Übergang beschrieben [38–41]. Dabei wurde der chemi-
sche Kanal durch eine Diskontinuität der Benetzbarkeit, bzw. einen zwischen
lyophilen und lyophoben Plateauwerten springenden Kontaktwinkel definiert.

Dieser morphologische Übergang wurde ebenfalls auf Grundlage des Kapil-
larmodells in der vorliegenden Arbeit verifiziert und weitergehend untersucht,
und zwar für den Fall chemischer Kanäle, die durch einen Benetzbarkeitsgradi-
enten, bzw. ein zwischen den Plateau- werten kontinuierlich verlaufendes Kon-
taktwinkelprofil definiert sind. Desweitern wurde der morphologische Übergang
in der vorliegenden Arbeit durch Simulationen der Benetzungsdynamik bzw.
der Relaxation von Flüssigkeitströpfchen auf geraden, durch eine Diskonti-
nuität der Benetzbarkeit definierten, chemischen Kanälen mittels der Gitter-
Boltzmann Methode qualitativ verifiziert.

Der morphologische Übergang eines Flüssigkeitströpfchens spielt eine Rolle,
wenn das Tröpfchen entlang eines chemischen Kanals geführt wird, dessen
laterale Translationsinvarianz in einer bestimmten Art und Weise gebrochen
ist. Durch eine quasi-statische Betracht- ung im Rahmen des Kapillarmodells
wurde dies in der vorliegenden Arbeit am Beispiel einer Verzweigung chem-
ischer Kanäle gezeigt. Die genannten Untersuchungen auf der Basis des Kap-
illarmodells und der Gitter-Boltzmann-Methode sowie deren Ergebnisse sind
in den Abschnitten 4.1 und 4.2 des Kapitels 4 dargestellt und beschrieben.
Das Kapillarmodell, die Gitter-Boltzmann Methode sowie die zugrundeliegende
kinetische Theorie sind in den ersten drei Kapiteln der Arbeit beschrieben. Der
Abschnitt 4.2 enthält zudem Daten aus Gitter-Boltzmann-Simulationen zum
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Verhalten von Flüssigkeitströpfchen auf geraden und verzweigten chemischen
Kanälen unter dem Einfluß treibender Trägheitskräfte. Diese Daten stammen
aus zur Zeit der Abfassung dieser Arbeit noch laufenden Untersuchungen und
haben somit nicht den Rang von endgültigen Ergebnissen. Gleichwohl sind sie
als Diskussionsgrundlage geeignet und wurden daher in die Arbeit aufgenom-
men.

Eine interessante und in einer Reihe von theoretischen und experimentellen
Arbeiten untersuchte Erscheinung auf der mesoskopischen Ebene ist die Ent-
netzung geschlossener Flüssigkeitsfilme auf homogenen Substraten [50–55].

Unter gewissen Bedingungen existieren in einem mesoskopischen Höhenbe-
reich über der Substratoberfläche verschiedene Höhenregime, in welchen Flüssig-
keitsfilme energetisch entweder stabil, instabil oder metastabil sind. Die Spin-
odale Entnetzung bedeutet in einem solchen Fall den fluktuationsbedingten
Kollaps energetisch instabiler Filme und das anschliessende Wachstum von
Löchern in denselben bis hin zur Bildung mesoskopischer Tröpfchen. Ener-
getisch metastabile Filme können ein analoges Schicksal erleiden, wobei hier
der Filmkollaps einer Nukleation bedarf.

In der Theorie sind diese Entnetzungsphänomene durch das effektive Grenz-
flächenpotential bestimmt, d.h. die obengenannten Höhenregime stabiler, in-
stabiler und metastabiler Filme ergeben sich aus dem Verlauf des effektiven
Grenzflächenpotentials als Funktion der lokalen Filmhöhe über dem Substrat.
Anhand einer generischen Form des effektiven Grenz- flächenpotentials wurden
in der vorliegenden Arbeit die Morphologie sowie die energeti- sche Stabilität
mesoskopischer Tröpfchen auf homogenen Substraten untersucht. Gegenstand
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zukünftiger Untersuchung in diesem Zusammenhang sind durch eine entsprech-
ende Topologie des effektiven Grenzflächenpotentials gekennzeichnete, chemisch
strukturierte Substrate.

Die Untersuchung mesoskopischer Tröpfchen ist im Kapitel 5 dargestellt,
während die dem effektiven Grenzflächenpotential zugrundeliegende Theorie
im ersten Kapitel zu finden ist. Die im Rahmen dieser Arbeit erzielten und
in den Kapiteln 4 und 5 dargestellten und beschriebenen Ergebnisse sind zur
Veröffentlichung in physikalischen Fachzeitschriften vorgesehen.



Introduction

Wetting phenomena are a daily experience. One may, e.g., think of dew drops
sitting on plant leaves in the morning, olive oil spreading in a coated frying
pan, or adherent rain drops at the underside of a balustrade.

The scientific interest in wetting phenomena dates back to the work of
Young and Laplace in the early nineteenth century [1–3]. It was Young who
explained the contact angle of sessile liquid droplets on solid substrates via a
force balance at the three-phase contact line, and Laplace related the interfacial
curvature of such droplets to the tension on and the pressure jump across
their interface. Later on it was Gauss, who firstly investigated the morphology
of liquid interfaces by means of a minimization principle [4]. The work of
Young, Laplace, and Gauss leads to the so-called capillary model, in which
wetting phenomena follow from the variation of a phenomenological free energy
functional associated with a system of fluid phases, e.g., liquid and gas, in
the presence of a solid substrate. Nowadays, wetting phenomena are traced
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back to an interplay of molecular interactions among the fluid molecules and
between fluid molecules and the substrate, accompanied by entropic effects due
to fluctuating fluid-fluid interfaces [5].

The subject of this thesis are theoretical investigations on the wetting be-
haviour of simple fluids on planar, chemically patterned substrates. The char-
acteristic simple means that the fluids are supposed to be made up of particles
without any orientational or internal degrees of freedom. The investigated
fluid systems consist of different phases or components, e.g., liquid droplets
surrounded by a gaseous phase or droplets of oil surrounded by water. The
chemical patterning of the substrate becomes manifest in different wettability
domains on the substrate surface. Domains of high wettability, where a certain
fluid preferentially adsorbs, thereby are called lyophilic with respect to the so-
called lyophobic domains of low wettability. The microscopic origin of lyophilic
and lyophobic domains are the chemical properties of the substrate particles,
which lead to a certain range and strength of the fluid-substrate interaction
potential.

In addition to that, the wetting behaviour can be influenced significantly
by a topological structure of the substrate - a well-known example is the so-
called Lotus effect [6] - and gravity may exert an impact on the morphology of
fluid-fluid interfaces. In the frame of this thesis, substrates are considered to be
planar, i.e., they do not have any topological roughness significant for the wet-
ting behaviour. Further, gravitational effects are neglected. This corresponds
to a situation in which the characteristic spatial dimensions of an investigated
fluid system are sufficiently far below the so-called capillary length, i.e., the
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length scale at which gravitation significantly affects the morphology of fluid-
fluid interfaces.

Chemically patterned substrates open interesting new perspectives in the
field of microfluidics. As the name implies, microfluidics deals with the con-
trol of fluid behaviour on the scale of microns. Since the capillary length of
most fluids is of the order of a few mm, gravitational effects generally do not
play any role in microfluidics. By means of striped lyophilic surface domains
in an otherwise lyophobic proximity, so-called chemical channels, it is possi-
ble to guide liquid over planar solid substrates. Based on this phenomenon,
arrangements of micron-sized lyophilic patterns in a lyophobic proximity, form-
ing, e.g., fluid reservoirs, transport channels, mixing or reaction areas, could
be combined to so-called open microfluidic devices. Fluid transport on such
devices could be managed by body-forces, wettability-gradients, or shear-flow.
This directly leads to a technologically relevant lab-on-a-chip concept [7–9],
which, in analogy to the integrated circuit of electronic devices on a CPU,
integrates a combination of microfluidic devices in a very compact way on a
chemical chip in order to enable the control of specific chemical and physical
processes with much smaller quantities of rare, toxic, or explosive educts and
products than standard laboratory equipment.

The main line of development with respect to the lab-on-a-chip concept are
so-called closed microfluidic devices. These are built up with closed geomet-
rical structures like tubes and chambers, in which fluid flow is controlled by
pressure gradients [15]. Since on small scales the effect of boundary conditions
gains importance with respect to bulk properties, open microfluidic devices
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could be a serious alternative to closed systems. The well-known law of Ha-
gen and Poiseuille, for instance, predicts, that the slip-less, viscous flow of a
homogeneous fluid through a tube of given length is proportional to the prod-
uct of an applied pressure gradient and the tube radius raised to the power
of four. Hence, open microfluidic devices given by chemically patterned slit
pores or single chemically patterned substrates with an uncovered fluid-fluid
interface might be more efficient with respect to fluid transport than closed
tubes [10–14]. In addition to that, blockage by solute particles like colloids or
large polymers due to an attachment to the walls creates a problem for closed
systems, which is supposed to be less serious or even avoided on open devices.

A miniaturization of open microfluidic devices leads towards the nano-scale,
i.e., fluid flow has to be controlled on length-scales in the range of 10-102 nm

[16–18]. The limit for a miniaturization thereby is set by entropic effects due
to thermal fluctuations.

There exists a number of methods for the fabrication of chemically patterned
substrates on different length-scales. Chemical patterns in the mm-range can
be obtained by means of printing or etching techniques. The micron-scale is
accessible via micro-contact printing, molecular beam epitaxy through grids,
electrophoretic aggregation of colloids, or via stripping of polymer films [19–
23]. Techniques like photolithography, local oxidation by means of AFM-tips,
and molecular beam epitaxy with light masks are adequate in order to obtain
chemical patterns on the nm-range [24–26].

In order to obtain design criteria for open micro- and nanofluidic devices,
a sound theoretical description of both, the wetting behaviour in equilibrium
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and the dynamics of wetting on chemically patterned substrates is necessary.
To mark the start of this, one has to think about characteristic length-scales.
As already mentioned, these scales in any case are quite far below the capillary
length, such that gravity does not matter. In fact, the description has to be
based on a reasonable compilation of molecular interactions for a given length-
scale regime.

On a macroscopic scale of microns, well above the range of molecular in-
teractions, equilibrium wetting phenomena can be described by means of the
abovementioned capillary model. The spatial configuration of a system of two
fluids in the presence of a solid substrate thereby is characterized by the fluid-
fluid interface, the fluid-substrate interfaces, and a three-phase contact line.
These geometrical objects are subject to free energy densities, the so-called
interfacial tensions, and the so-called line tension. These energy densities in-
directly model the effect of the underlying molecular interactions, which are
very short in range on the macroscopic scale. The configuration of minimal
integrated free energy for given fluid volumes or a given difference of the fluid
bulk pressures then defines the overall curvature of the fluid-fluid interface as
well as the macroscopic contact angle at the three-phase contact line. Ac-
cordingly, in the frame of the capillary model chemically patterned substrates
are characterized by a variation of the contact angle, whereupon lyophilic and
lyophobic domains have contact angles below and above π/2, respectively

On the microscopic scale of a few nm, on which the range of molecular in-
teractions is quite long, the corresponding interaction potentials have to be in-
corporated explicitely into the description. In a microscopic density functional
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theory, the interaction potentials enter into a functional of the particle density,
which gives the free energy of the system. The equilibrium configuration of the
system then is characterized by smoothly varying density profiles minimizing
the free energy functional. Accordingly, instead of interfaces and a three-phase
contact line, i.e., geometrical objects without an intrinsic structure, there ex-
ist three-dimensional interfacial domains with an inherent structure given by
equilibrium density profiles.

With respect to the miniaturization of microfluidic devices, the understand-
ing of fluid behaviour in the intermediate regime between the micron- and the
nano-scale, termed the mesoscopic scale, is of great importance. Based on the
assumption that the inherent structure of an interfacial domain is not signifi-
cant on this scale, the underlying concepts of the microscopic density functional
theory and the macroscopic capillary model can be merged in order to account
for the effect of long-ranged molecular interactions [5, 27–29]. The wetting be-
haviour in this regime is determined by a so-called effective interface potential,
which models the effective interaction of the fluid-fluid interface with the sub-
strate as a function of the local interfacial height. Chemical patterns in this
case are encoded in a certain topology of the effective interface potential.

Fluid flow on the macroscopic scale, and hence, the dynamics of wetting, in
principle is governed by the Navier-Stokes equations. In analogy to the capillary
model, the effect of microscopic interactions thereby is taken indirectly into
account via the viscosity and the thermal conductivity, the so-called transport
coefficients, and via the kinematic boundary conditions at interfaces.

Amending the Navier-Stokes equations with long-ranged fluid-substrate in-
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teractions and fluid-dynamic slip at the substrate leads to meso-scale fluid
dynamics. An important analytic tool in meso-scale fluid dynamics is the so-
called lubrication approximation, which leads to an evolution equation for thin
films [32]. The thin film equation has been used in the context of dewetting,
stability of fluid rivulets on chemical channels, and the influence of thermal
fluctuations on thin film flow [30, 31, 51–53]. Apart from the thin film case, it
is highly non-trivial to get analytic insight into meso-scale fluid dynamics. On
the other hand, conventional simulation methods like the numerical integra-
tion of the Navier-Stokes equation and MD-simulations make high demands on
computational resources. Investigations of meso-scale fluid dynamics thus are
mainly based on simulation techniques like dissipative particle dynamics, and
multi-particle collision dynamics, which take into account thermal fluctuations
[33].

An efficient solver for the Navier-Stokes equations with moving interfaces,
based on the statistical concepts of kinetic theory, is the lattice Boltzmann
approach [34–36]. Using a fully discrete version of the continuous Boltzmann
equation1, called the lattice Boltzmann equation, this approach models Navier-
Stokes dynamics on a scale large compared to the periodicity of the posi-
tional lattice. The approach applys for dilute fluids on macroscopic scales.
By means of a modification of the underlying Boltzmann equation, known as
the Boltzmann-Enskog equation, the applicability of the lattice Boltzmann ap-
proach can be extended to more dense fluids on the mesoscopic scale [56, 57].
The approach is inappropriate to model nano-scale fluid flow. In order to do

1discrete in time, positional degrees of freedom, and velocity degrees of freedom
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so, MD-simulations are the best way. Within its range of applicability, the
lattice Boltzmann approach is a very powerful method since, on the one hand,
it allows for very efficient, highly parallel algorithms, in which even complex
geometries can be implemented quite easily, and on the other hand, it relates
the transport coefficients within the fluid-dynamic level equations to quantities
defined on the kinetic level.

There exists a number of theoretical investigations on the macroscopic scale
dealing with both, equilibrium fluid properties and fluid flow on chemically
patterned substrates, addressing problems like the formation of droplet mor-
phologies and their stability, contact line motion, and thin film flow [21, 37–49].

Quite recently, equilibrium properties of sessile liquid droplets on straight
chemical channels have been described in the frame of the capillary model [38–
41]. The chemical channel thereby was defined by a step-like variation of the
wettability, i.e., a jump of the contact angle between lyophilic and lyophobic
plateau values. It turned out, that the energetic behaviour of sessile droplets
in this case corresponds to a morphologic transition.

Within this thesis, the morphologic transition of sessile droplets on straight
chemical channels has been verified and investigated further for the case of con-
tact angle profiles smoothly evolving between lyophilic and lyophobic plateau
values. As expected, the morphologic transition strongly depends on the smooth-
ness of the profiles. Further, simulations of the relaxation dynamics of droplets
on straight chemical channels in three dimensions have been performed by
means of the lattice Boltzmann approach, which give a qualitative verification
of the morphologic transition.
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The morphologic transition plays a role if the droplets are guided along
channels with a broken translation invariance. By means of a quasi-static
picture based on the capillary model this has been shown within this thesis for
a droplet guided through a junction of chemical channels.

A presentation of the abovementioned investigations is given in chapter
4, whereas the capillary model, the lattice Boltzmann approach, and the un-
derlying kinetic theory are presented in the preceding chapters. Chapter 4
additionally contains a presentation of lattice Boltzmann simulation data on
body-force-driven sessile droplets on straight and branched chemical channels.
Since this is work still in progress, these data are presented as a matter of
discussion, rather than being final results.

An interesting effect on the mesoscopic level investigated both, theoreti-
cally and experimentally [50, 54, 55], is the dewetting of extended fluid films on
homogeneous substrates. Under certain conditions there are different regimes
within a mesoscopic height range above the substrate surface, in which wet-
ting films are energetically either stable, or unstable, or metastable. Spinodal
dewetting in this case means the fluctuation induced collapse of an energeti-
cally unstable film, which is followed by a growth of film holes finally leading
to a set of mesoscopic droplets. Induced by a nucleation of holes, the analogue
happens in case of energetically metastable films. The dewetting process is
triggered by the effective interface potential, i.e, the abovementioned height
regimes for stable, unstable, and metastable films follow from the latter as a
function of the local interfacial film height above the substrate.

Mesoscopic droplets arising by reason of a dewetting process under the
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impact of the effective interface potential are interesting configurations since
in some sense they constitute the in-between of a droplet and a thin film.
Based on a generic potential form, the morphology and the energetic stability of
mesoscopic droplets on a homogeneous substrate has been investigated within
this thesis. A future perspective would be to extend these investigations to
chemically patterned substrates.

The investigations on mesoscopic droplets are presented in chapter 5. The
theoretical approach leading to the formulation of the effective interface po-
tential followed by a description of the generic potential form which triggers
dewetting is presented in the first chapter.

The results obtained in the frame of this thesis, as presented in the chapters
4 and 5, are designated for publication in scientific journals.



Symbols and Notations

The meaning of symbols and notations is supposed to be clear either by imme-
diate explanation, or from the context they appear in, or via explicit reference
to basic definitions and expressions in the frame of this thesis. The usual list
therefore has been abandoned.

29
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Chapter 1

Fluids in Equilibrium

In the following, the theoretical framework for an investigation of wetting mor-
phologies on solid substrates is presented.

Down to the mesoscopic scale, a wetting morphology is defined as the shape
of the interface A, separating two non-volatile fluid phases in contact with
a solid substrate. The mechanically stable equilibrium of the interface (not
necessarily going along with the thermodynamic equilibrium) corresponds to a
minimum value of the interfacial free energy

F̃ :=
∮

A
dA σ(rA) ,

where σ denotes the interfacial free energy density depending on the spatial
coordinates rA on the interface A. The most general and well known case of a

31
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wetting morphology is a liquid droplet surrounded by a gas sitting on a solid
substrate. In this case the interface A is a closed surface consisting of a fluid-
fluid and a fluid-substrate interfacial part, and the fluid and solid phases share
a boundary line, the so-called three-phase contact line.

From a universal, microscopic point of view, the formation of a specific
wetting morphology is the result of both, an interplay of molecular interactions
among the components of the system, and the action of external forces on
the system. Accordingly, there exist different length-scales at which a wetting
morphology has specific characteristics depending on the relative strength of
the above mentioned interactions.

The ratio of the interfacial free energy density σ created by molecular in-
teractions versus the density of external forces fext defines the capillary length,

lcap :=
√
σ/fext . (1.1)

The capillary length sets the scale at which the effect of external forces on
the wetting morphology has to be taken into account. It plays the role of a
screening length in the sense, that perturbations on a fluid-fluid interface due to
an interplay of molecular interactions and external forces die out exponentially
over the distance lcap. Hence, in the limit

V/l3cap ¿ 1 , (1.2)

where V is the volume of the wetting phase1, the effect of external forces can
1in case of a liquid droplet on a solid substrate surrounded by gas, the liquid would be

the wetting phase.
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be neglected.
Within the limit given by (1.2), two regimes may be distinguished. The

first one is the macroscopic regime characterized by the relation

lcap À l À l0 , (1.3)

i.e., the characteristic morphologic length-scale l is well below the capillary
length, but still well above the range l0 of molecular interactions. This means
that the different interfaces within the system are well separated from each
other in units of l0. Then, to a very good approximation, the effects of adhe-
sive and cohesive molecular interactions within the different phases result in
constant interfacial free energy densities, aka interfacial tensions, and wetting
morphologies form due to an interplay of the latter. An important charac-
teristic of this limit is a well defined three-phase contact line at which the
fluid phases and the substrate meet under a certain macroscopic contact angle.
These are the main features of the capillary model [58–62], presented in a more
detailed description within section 1.1.

The second, mesoscopic regime is characterized by the relation

lcap ≫ l & l0 À lmol , (1.4)

where lmol is the average separation of fluid molecules, i.e., the characteristic
length-scale l is of a similar or even the same order as the range l0 of molecular
interactions, which are long-ranged with respect to lmol. Within this regime,
extensive parts of the fluid-fluid interface now come close to the substrate in
units of l0, and hence, the fluid-fluid interfacial free energy depends on the
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net effect of molecular fluid-fluid and fluid-substrate interactions. This can be
accounted for by means of an effective interface potential, which models the
effective interaction of the fluid-fluid interface with the substrate as a function
of the local interfacial height [28, 29, 63]. The concept of an effective interface
potential is based on a microscopic density functional theory [5, 64] and will be
described within section 1.2.

Both, the macroscopic capillary model, and the mesoscopic effective in-
terface potential deal with sharp fluid-fluid interfaces to be parameterized as
two-dimensional mathematical manifolds. As a consequence, physical quanti-
ties like pressure and densities discontinuously jump across an interface and
the wetting behaviour results from boundary conditions on the interface and
at the three-phase contact line. While this approach is fully justified in the
limit (1.3), the general situation described by the microscopic density func-
tional theory is the formation of a fluid-fluid interfacial region characterized by
a smoothly varying density profile. However, the effective interface potential
simply captures the leading asymptotic behaviour of the underlying density
functional theory, which indeed is independent of the intrinsic structure of the
fluid-fluid interfacial region [63].
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Figure 1.1: Depiction of Young ’s law, which relates the liquid-gas, solid-liquid,
and solid-gas interfacial tensions, σlg, σsl, and σsg, respectively, to the macro-
scopic contact angle θ. The interfacial tensions can be seen as forces per unit
lenght acting on the three-phase contact line.

1.1 The capillary model

As already mentioned above, within the macroscopic capillary model molecu-
lar interactions are summarized into conditions at the phase boundaries, i.e,
the fluid-fluid interface and the three-phase contact line. The model explains
the formation of wetting morphologies by means of an interplay of constant
interfacial tensions acting on the fluid-fluid and solid-fluid interfaces and a line
tension acting on a continuous three-phase contact line, where the interfaces
meet under a certain contact angle. Line tension effects generally are considered
insignificant, hence, they are not taken into account in the following.

Based on the assumption that the interfacial tensions are given, the capillary
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model relates the resulting physical behaviour of the system to its morphologic
topology, i.e, the claim for a mechanical equilibrium of both, the fluid-fluid in-
terface, and the three-phase contact line yields the boundary conditions, which
relate the interfacial tensions, the pressure jump across the fluid-fluid inter-
face, the curvature of the fluid-fluid interface, and the contact angle at the
three-phase contact line to each other.

The capillary model by itself may be seen as a phenomenological, macro-
scopic approach with the interfacial tensions as input parameters. However, it
constitutes the macroscopic border case of the more fundamental density func-
tional theory, whereat the interfacial tensions and the line tension are related
to the underlying molecular interactions.

The interfacial free energy

The mechanical equilibrium of the fluid-fluid interface and the three-phase
contact line is expressed by means of vanishing first variations of a free energy,
which directly lead to the abovementioned boundary conditions.

The free energy F of a system of two fluids (say, liquid and gas) sharing
a three-phase contact line with a solid substrate is given as a functional of
the liquid volume Vl, the solid-liquid interfacial area Asl and the liquid-gas
interfacial area Alg (with surface elements dAsl and dAlg, respectively), i.e.,

F =
∫
dAlg σlg +

∫
dAsl (σsl − σsg)

︸ ︷︷ ︸
:=F̃

− ∆p
∫
dVl . (1.5)
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The interfacial free energy F̃ contains the interfacial tensions σsl, σsg, and
σlg, between solid and liquid, solid and gas, and liquid and gas, respectively.
The interfacial areas Alg and Asl are bounded by the three-phase contact line,
and the pressure jump across the liquid-gas interface, ∆p := pl − pg, defines
the so-called Laplace pressure.

Wetting

A wetting morphology has been defined as the configuration of the liquid-gas
interface Alg which for a given volume Vl minimizes the interfacial free energy
F̃ , i.e, both, the liquid-gas interface, and the three-phase contact line have to
be in mechanical equilibrium. The corresponding conditions follow from the
first variation of the free energy F .

. The first variation of F with respect to the liquid-gas interface Alg and
the liquid volume Vl for a fixed three-phase contact line Lslg ,

(δ(1)Alg,Vl
F )|Lslg

=
∫
dAlg (2σlgM −∆p)ψ , (1.6a)

yields the mechanical equilibrium condition for the liquid-gas interface
Alg ,

∆p = 2σlgM . (1.6b)

This is know as the Laplace equation, which states that in mechanical
equilibrium the liquid-gas interface Alg is characterized by a constant
mean curvature M .
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. The first variation of F with respect to the interfacial areas Asg and Asl

for a fixed liquid volume Vl ,

(δ(1)Asg,Asl
F )|Vl

= σlg

∫

Lslg

dl

(
cot θ − σsg − σsl

σlg sin θ

)
ψ , (1.7a)

yields the mechanical equilibrium condition for the three-phase contact
line Lslg ,

σlg cos θ = σsg − σsl . (1.7b)

This is know as the law of Young, which specifies the mechanical equilib-
rium of the three-phase contact line by relating the interfacial tensions
to the macroscopic contact angle θ, see figure 1.1.

The variations have been carried out by means of suitable scalar displacement
fields ψ defined on Alg and Lslg, respectively, and the three-phase contact line
Lslg has been parameterized by means of its arc lenght l [38, 41].

The first variations (1.6a) and (1.7a) do not allow to determine the stability
of a mechanical equilibrium, i.e., whether the morphology of Alg corresponds
to a local energetic maximum, a minimum, or a saddle point. This follows from
the definiteness of the second variation of the free energy, which is a quadratic
form with respect to the displacement field ψ.

From equations (1.6b) and (1.7b) it follows that the wetting morphology
on a planar, homogeneous substrate is given by a spherical cap meeting the
substrate at an angle θ. Hence, the macroscopic contact angle θ is the pa-
rameter the capillary model provides in order to specify the degree of wetting
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and to make some qualitative statements on the average ratio of the molecular
interactions

. In the case of adhesive liquid-substrate interactions which are predom-
inant compared to cohesive liquid-liquid interactions, the contact angle
θ may approach very small values close zero degrees. The limiting case
θ = 0 is called perfect wetting or complete wetting.

. In the case of predominant cohesive fluid-fluid interactions, the contact
angle θ on planar substrates may approach large values2 up to 150◦. This
case it called non-wetting.

. If adhesive liquid-substrate and cohesive liquid-liquid interactions are of
the same order of magnitude, the contact angle is about 90◦.

According to that, one can define the regime of high wettability by 0◦ < θ < 90◦

and the regime of low wettability by 90◦ ≤ θ < 180◦. Alternatively, the degree
of wetting can be specified by means of the so-called spreading parameter

S := σsg − (σsl + σlg) = σlg (cos θ − 1) , (1.8)

which is defined as the difference in the interfacial free energy of the system in
case of a completely dry or a completely wet substrate. It measures the degree
of wetting such, that S < 0 corresponds to partial wetting, whereas total
wetting means S ↗ 0. The spreading parameter is related to the macroscopic
contact angle θ via Young ’s law (1.7b).

2values up to 180◦ can be reached on structured, super-hydrophobic substrates
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1.2 Microscopic density functional theory

In the capillary model intermolecular interactions are taken into account in
terms of interfacial and line tensions. This was justified by the fact that the
model applies on lenghtscales well above the range l0 of molecular interactions.
On length-scales of the order of l0 a so-called effective interface potential can be
introduced, which, based on a microscopic density functional theory, accounts
for the net effect of fluid-substrate and fluid-fluid interactions on the wetting
morphology. [5, 28, 29, 63–65].

The grand canonical density functional

In the framework of density functional theory, a thermodynamic potential is
expressed as a functional of a spatial density distribution and in the Hilbert
space of allowed distributions the equilibrium distribution therefore is the one
which minimizes the functional. The grand canonical density functional Ω[%(r)]
for an inhomogeneous fluid which is characterized by the number density %(r)
reads

Ω[%(r), T, µ] =
∫

V

d3r fHS (%(r), T ) +
∫

V

d3r [W (r)− µ ] %(r)

+
1
2

∫

V ′

∫

V

d3rd3r′ w(|r− r′|) %(r)%(r′) . (1.9)

The range of integration is given by the volume V of a system of liquid and
vapour. W (r) is the substrate potential, i.e., the fluid-substrate pair interaction
integrated over the region occupied by the substrate, and µ is the chemical
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potential. The long-ranged attractive part of the fluid-fluid pair interaction
within the system is modeled by the potential w(|r−r′|), whereas the repulsive
part at short ranges is taken into account via the bulk free energy density
fHS (%(r), T ) of a hard sphere fluid in a local approximation.

The density functional Ω[%(r)] is minimized by the equilibrium density dis-
tribution %0(r), which in the fluid-fluid interfacial region in principle is a func-
tion smoothly varying between the number densities %l and %g of the liquid and
gas bulk phases, respectively. Neglecting the intrinsic structure of the diffuse
fluid-fluid interface corresponding to such a density profile, one can apply the
so-called sharp-kink approximation, which implies that Ω[%(r)] is minimized
within the subspace of steplike varying density profiles.

On a flat substrate the density is then given by

%(r)sk := Θ(z − hex)
{
%lΘ

(
h(R‖)− z

)
+ %gΘ

(
z − h(R‖)

) }
, (1.10)

where z = h(R‖) is the local height of the liquid-gas interface with respect
to lateral coordinates R‖ on the substrate. The above parameterization for
the local interfacial height is valid if no overhangs are present. The level hex

accounts for the excluded volume near the substrate due to the repulsive part
of the fluid-substrate interaction W (r) and Θ is the Heaviside function.

Inserting the expression (1.10) into (1.9), applying a small gradient expan-
sion, and assuming that the system is close to the liquid-gas coexistence, one
obtains a local approximation for the grand canonical free energy as a func-
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tional of the liquid-gas interface morphology h(R‖),

Ω[h(R‖)] =
∫

Asl

d2R‖
{
σlg

√
1 + |∇‖h|2 + ∆µ∆% h(R‖) + φ

(
h(R‖)

)}
+C ,

(1.11)
where Asl denotes the solid-liquid interface, ∇‖h denotes the two-dimensional
gradient with respect to the lateral coordinates, and the constant C contains
all terms independent of h(R‖). The deviation from phase coexistence is given
by ∆µ = µ0(T )− µ , where µ0(T ) describes the liquid-gas coexistence line and
∆% := %l − %g is the difference of the bulk densities.

Within the sharp-kink approximation, the interactions in the system give
rise to the liquid-gas interfacial tension

σlg = −1
2
(∆%)2

∫ ∞

0

dz t(z) (1.12a)

and the effective interface potential

φ(h) = ∆%
{
%l

∫ ∞

h−hex

dz t(z)−
∫ ∞

h

dz W (z)
}

. (1.12b)

In the expressions (1.12a) and (1.12b), the interaction potential of a fluid par-
ticle at z with the space above z occupied by fluid particles is

t(z) =
∫ ∞

z

dz′
∫

R‖
d2R‖ w(|r− r′|) .

The effective interface potential φ(h) (1.12b) captures the net effect of the
long-ranged fluid-fluid pair interactions given by w(|r− r′|) and fluid-substrate



1.2. MICROSCOPIC DENSITY FUNCTIONAL THEORY 43

interactions given by W (z). It measures an effective energy density on the
liquid-gas interface h(R‖) due to the presence of the substrate, in other words,
an effective interaction between the substrate and an interface with a local
height profile h(R‖).

The effective interfacial free energy

Inspired by the expression (1.11) for the local approximation of the grand
canonical free energy, the effective free energy F of non-volatile liquid sur-
rounded by a gas phase in contact with a planar substrate is written as

F =
∫

Asl

d2R‖
{
σlg

√
1 + |∇‖h|2 + φ

(
h(R‖)

) }

︸ ︷︷ ︸
:=F̃

− ∆p
∫

Asl

d2R‖ h(R‖) .

(1.13)
The range of integration is the solid-liquid interface Asl, the liquid-gas inter-
facial profile is given by the parameterization h(R‖), where R‖ denotes lateral
coordinates in the substrate plane, and the two-dimensional gradient with re-
spect to the lateral coordinates is denoted by ∇‖.

The interfacial part F̃ incorporates the liquid-gas interfacial tension σlg

and the effective interface potential φ(h), whereas the bulk part is given by the
Laplace pressure ∆p times the integrated liquid volume. The expression (1.11)
can be seen as an extension of the phenomenological, macroscopic interface
displacement model [63, 66] towards the mesoscopic scale.

The variation problem of the effective free energy F (1.13) seen as a func-
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tional of the lateral coordinates R‖ yields the Euler-Lagrange equation,

∆p+ Π(h) + σlg∇2
‖h

!= 0 , (1.14)

which is the constraint on the equilibrium profile h0(R‖). The so-called dis-
joining pressure Π(h) is defined by the relation

Π(h) := −∂hφ(h) . (1.15)

Within (1.13) the liquid-gas interfacial tension σlg is supposed to be in-
dependent of the lateral coordinates R‖ and therefore it serves as a scaling
parameter for the free energy per unit surface area.

Wetting

The wetting behaviour of a system described by the effective free energy F
(1.13) is determined by the analytic properties of the effective interface po-
tential φ(h). In case of Lennard-Jones like fluid-fluid interactions the effective
interface potential has an algebraic form,

φ(h) =
∑

j≥2

aj h
−j , (1.16)

where a2 is known as the Hamaker constant. The figure 1.2 shows a generic
potential φ(h) and the corresponding disjoining pressure Π(h) for a partially
wetting substrate.
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Figure 1.2: Generic form of the effective interface potential φ(h) and the dis-
joining pressure Π(h) := −∂hφ(h) as a function of the interfacial height h for
a partially wetting substrate.

The characteristic mesoscopic scale is given by the height h0 at which the
effective interface potential attains its global minimum φ0. According to the
Euler-Lagrange equation (1.14), the Laplace pressure vanishes on the level h0,

∆p ≡ −Π|h0 = 0 .

Hence, h0 is the height of a stable equilibrium film at liquid-vapour coexistence.
The height range in-between the two inflection points is characterized by
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a negative curvature, ∂2
h φ(h) < 0, which means that Π(h) increases for in-

creasing heights h. Within this range, wetting films are unstable and spinodal
dewetting [5, 67] occurs. This means that an exponential growth of infinitesi-
mal perturbations of the film surface, e.g., generated by thermal fluctuations,
leads to a film rupture and finally the formation of droplets. The repulsive tail
beyond the second inflection point, where ∂2

h φ(h) > 0, allows for metastable
films since a nucleation of holes is necessary in order to induce dewetting.

Following (1.14), the droplets which constitute the final state of the dewet-
ting process are characterized by a non-trivial local balance of a non-vanishing
Laplace pressure ∆p > 0, the disjoining pressure Π(h), and the curvature term
σlg∇2

‖h. Due to the fact that the potential diverges at very small interfacial
heights, φ(h → 0) ↗ ∞, the droplets are not surrounded by dry substrate
areas, instead, they are floating on a thin film with a height h̃ determined by
a balance of the Laplace pressure and the disjoining pressure,

∆p ≡ −Π|h̃ . (1.17)

Based on mechanical equilibrium arguments, the depth φ0 < 0 of the effec-
tive interface potential can be related to an effective contact angle θ̃ defined at
the intersection of the level h0 and an approximated sessile height profile, i.e.,

φ0 = σlg

(
cos θ̃ − 1

)
. (1.18)

The expression (1.18) is congruent with the spreading parameter S (1.8) for the
partial wetting case. In the limit of macroscopic droplets where h0 → 0, the
effective contact angle θ̃ asymptotically approaches the macroscopic contact
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angle θ. In this sense, the generic potential φ(h) in figure 1.2 corresponds
to a partially wetting substrate. Contrary to the capillary model, metastable
wetting films exist due to the repulsive tail of φ(h) for any depth φ0 < 0, and
hence, for any possible contact angle.
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1.3 Minimization of the free energy

In the preceding sections, the description of wetting in solid-liquid-gas sys-
tems on different length-scales has been based on suitable expressions for the
free energy. Wetting morphologies have been specified by interfacial profiles
which minimize the interfacial part of these expressions under the constraint
of a constant enclosed volume. In the following, some technical aspects of the
constrained minimization are explained.

Within the macroscopic limit (1.3) governed by the capillary model, the
free energy F (1.5),

F =
∫
dAlg σlg +

∫
dAsl (σsl − σsg)

︸ ︷︷ ︸
:=F̃

− ∆p
∫
dVl , (1.19)

with the interfacial part F̃ has been given, and, as a measure of the degree of
wetting, the spreading parameter S (1.8) has been defined,

S := σsg − (σsl + σlg) = σlg (cos θ − 1) , (1.20)

related to the macroscopic contact angle θ.
Within the mesoscopic limit (1.4), the effective free energy F (1.13),

F =
∫

Asl

d2R‖
{
σlg

√
1 + |∇‖h|2 + φ

(
h(R‖)

) }

︸ ︷︷ ︸
:=F̃

− ∆p
∫

Asl

d2R‖ h(R‖) ,

(1.21)
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has been given, inspired by the local approximation (1.11) of a microscopic
density functional. The depth φ0 of the effective interface potential φ(h) at a
finite level h0 plays the role of a spreading parameter, i.e.,

φ0 = σlg

(
cos θ̃ − 1

)
, (1.22)

where the so-called mesoscopic contact angle θ̃ corresponds to a droplet floating
on a surrounding film with a certain height h̃ > h0 determined by the balance
∆p ≡ Π|h̃.

The numerical minimization of F̃ and F̃ leading to the wetting morhpologies
in the corresponding length-scale regimes is done via a finite element algorithm
[68]. Within this algorithm, the interfacial free energy is evaluated on an ori-
ented liquid-gas interface Alg bounded by the three-phase contact line Lslg,
whereupon Alg is represented by a mesh of oriented triangles and Lslg consists
of oriented marginal triangle edges. Hence, the interfacial free energies F̃ and
F̃ have to be reformulated such, that the integrations are carried out on Alg

and Lslg, respectively.
For the interfacial free energy F̃ (1.19), this means that the energetic con-

tribution of the solid-liquid interface Asl has to be transfered to Lslg. Thereto,
Young ’s law (1.7b) and the circulation theorem of Stokes yield

F̃ = σlg

{ ∫
dAlg · n̂lg −

∮

Lslg

ds · k
}

, (1.23a)

where n̂lg is the unit normal on Alg, i.e., dAlg = Algn̂lg, and ds is a vectorial
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line element of the three-phase contact line Lslg. The kernel

k = x cos θ êy . (1.23b)

follows from the circulation theorem, i.e., ∇× k != cos θ êz.
The effective interfacial free energy F̃ (1.21) is reformulated via the relation

dAlg =

(
−∇‖h

1

)
d2R‖

for an oriented surface element dAlg . One finds

F̃ = σlg

∫
dAlg · n̂lg +

∫
dAlg · êz φ|Alg

, (1.24)

where φ|Alg
means the evaluation of φ on the liquid gas interface Alg and êz is

the unit normal on the substrate plane.
Via a gradient projection method, the triangulated interface Alg iteratively

is evolved towards a configuration of minimal interfacial free energy while obey-
ing the volume constraint and any other given constraints on integrated quan-
tities. The constraints are taken into account by Lagrange multipliers, which in
a physical interpretation correspond to homogeneous force densities. Accord-
ingly, the Lagrange multiplier of the volume constraint is given by the Laplace
pressure ∆p.

For an evaluation of the volume constraint on the interface Alg the flux
theorem yields

∫
dVl =

∫

As

d2R‖ h(R‖) =
∫
dAlg · f , (1.25)
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where the kernel f = z ez follows from ∇ · f != 1.
An example for the graphical output of the algorithm is given in figure 1.3.
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Figure 1.3: Top and bottom view of the triangulated liquid-gas interface Alg of
a sessile droplet on a chemical channel close to the minimum of the interfacial
free energy F̃ given by (1.19). The chemical channel is given by a step-like
variation of the local macroscopic contact angle θ. The channel edges are
marked by the red lines. The mesh size of the triangulation was coupled to the
interfacial height with respect to the substrate in order to have a high spatial
resolution near the three-phase contact line.



Chapter 2

Fluid Dynamics from

Kinetic Theory

From the macroscopic point of view, fluid dynamics in principle is governed by
the Navier-Stokes equations, i.e., a set of coupled, non-linear, partial differential
equations, which relate the diffusion and convection of mass, momentum and
internal energy to the gradient of a stress tensor, to heat conduction, and to
external fields [61, 69, 70]. The intrinsic fluid properties, which lead to a certain
transport of momentum and energy independently from the transport of mass
thereby are characterized by transport coefficients. The transport coefficients
are given by the viscosity and the thermal conductivity, which appear within

53



54 CHAPTER 2. FLUID DYNAMICS FROM KINETIC THEORY

the stress tensor and the vector of heat conduction, respectively.
The Navier-Stokes equations provide a phenomenological approach to fluid

dynamics in the sense that,

. the analytic expressions for the stress tensor and the vector of heat con-
duction, the so-called constitutive equations, have to be postulated,

. the transport coefficients are input parameters to be specified by experi-
ment or a more fundamental theory,

. a thermodynamic equation of state for the hydrostatic pressure is needed
in order to close the set of equations.

An alternative and more fundamental point of view on fluid dynamics is
given by the framework of kinetic theory [57, 71–74]. Within kinetic theory,
the complete physical information on the dynamics of the system is carried
by the single-particle phase space distribution function, which is determined
via an integro-differential equation, known as the Boltzmann equation. The
physical properties on the fluid-dynamic level follow from the nature of the
particle interactions incorporated in the Boltzmann equation. In the kinetic
equilibrium the particle interactions become manifest in the wetting behaviour
of different components or phases in the system, e.g., the formation of the
macroscopic contact angle of a sessile fluid droplet.

Originally, these interactions are given by elastic two-body collisions, which
corresponds to the limit of sufficiently dilute fluids. However, there exist mod-
ifications of the Boltzmann equation which describe the behaviour of non-ideal
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fluids, i.e., fluids which in the equilibrium case would be characterized by a
non-ideal equation of state. The most prominent one is the Boltzmann-Enskog
equation [57, 74, 75], which models effects on the kinetic level coming into play
due to a finite fluid density. In the framework of the lattice Boltzmann equa-
tion, see chapter 3, additional two-body interactions are formally introduced
based on both, mean field arguments and nearest neighbour interactions.

The fluid-dynamic limit of the Boltzmann equation is given by a set of dy-
namic equations for the so-called fluid-dynamic moments, formally equivalent
to the phenomenological Navier-Stokes equations. The fluid-dynamic moments
are local averages of physical quantities defined on the kinetic level, which di-
rectly correspond to physical quantities on the fluid-dynamic level, e.g, number
density, momentum, stress, internal energy, and the fluxes of heat and energy.
However, there are no explicite expressions for the hydrostatic pressure and the
transport coefficients in terms of fluid-dynamic moments.

This problem can be approached by means of the Chapman-Enskog anal-
ysis [35, 57, 74–76], a multi-scaling analysis, which is based on the idea, that
on the fluid-dynamic level ballistic and viscous effects in an incompressible,
isothermal system appear on different time scales. These time scales are spec-
ified by the ratio of characteristic microscopic and macroscopic scales within
the system. Applied to the Boltzmann equation, this analytic scheme yields
kinetic equations with a fluid-dynamic limit in which the transport coefficients
and the hydrostatic pressure explicitely appear as functions of specific physical
quantities defined on the kinetic level.

The structure of the Boltzmann equation can be simplified drastically with-
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out any loss of the algebraic properties decisive for the physics encoded in the
fluid-dynamic level equations. Hence, the calculation of the fluid-dynamic limit
from a solution of the Boltzmann equation in many cases offers a great bene-
fit compared to a direct integration of the Navier-Stokes equations, e.g, with
respect to the implementation of boundary conditions. Simplifications of the
Boltzmann equation, the so-called kinetic models, arise form a simplified treat-
ment of interactions in the system. A well-known kinetic model is given by
the so-called BGK-approximation of the Boltzmann equation [72, 77, 78]. The
BGK-model is a very powerful approach, since, on the one hand, its linearized
form allows for an algebraic treatment of the Boltzmann equation, and on the
other hand, a very efficient iterative algorithm can be based on it. Numer-
ical implementations of this algorithm rely on a fully discrete version of the
Boltzmann equation, the lattice Boltzmann equation, see chapter 3.

In the following section, the basic features of the Boltzmann equation are
briefly revised in order to provide the basis for a presentation of the fluid-
dynamic limit in section 2.2, the BGK-approximation in section 2.3, and the
Chapman-Enskog analysis in section 2.4.
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2.1 The Boltzmann equation

The Boltzmann equation gives the convection of the single-particle phase space
distribution function f(r, ζ, t) for a sufficiently dilute fluid composed of N
particles in the volume V with an interaction range r0 in the limit

N → ∞ , Nr30 → 0 , Nr20 : finite , (2.1a)

where the mean free path stays finite,

l0 ∼ V

Nr20
, (2.1b)

while the total interaction volume Nr30 approaches zero. The particles do not
have any internal degrees of freedom, i.e., they are fully characterized by their
positional and velocity degrees of freedom, embraced by r = (r1, r2, r3) and
ζ = (ζ1, ζ2, ζ3), respectively.

In case of a multi-component system, the Boltzmann equation for the par-
ticle type σ reads

[∂t + ζσ · ∇+ a · ∇ζ ] fσ(r, ζσ, t) =
∑

σ̃

J [f, f∗]σσ̃ . (2.2)

The directional derivatives ζσ · ∇ and a · ∇ζ on left hand side model the
convection and the influence of an external field a, respectively, where ∇ζ is
defined as the gradient in the velocity sub-space. The right hand side of the
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Boltzmann equation (2.2) is given by a summation of the collision integrals,

J [f, f∗]σσ̃ =
∫
d3ζσ̃∗

∫
dΩ |∆ζ|σσ̃ σσσ̃ {f ′σf ′σ̃∗ − fσfσ̃∗} (2.3a)

= Γ(+)
σσ̃ − Γ(−)

σσ̃ , (2.3b)

where dΩ is the solid angle element in the positional sub-space, σσσ̃ denotes
the differential cross section of the collision process, fσ := fσ(r, ζσ, t) and
f ′σ̃∗ := fσ̃∗(r, ζ′σ̃∗, t) denote pre- and post-collisional states, respectively, and
|∆ζ|σσ̃ := |ζσ − ζσ̃∗| is the absolute difference of the pre-collisional velocities.
The collision integral (2.3) models the effective change of fσ per unit time due
to elastic two-body collisions. In case of collisions among particles of the same
type, i.e., σ = σ̃, the distribution functions f and f∗ refer to different particles
of the same type.

The expressions d3ζσ d
3r Γ(+)

σσ̃ dt and d3ζσ d
3r Γ(−)

σσ̃ dt give the increase and
the decrease of the particle number in the µ-space element d3ζσd

3r due to
collisions during the time interval dt, respectively. Accordingly, the collision
integral (2.3) is given by a difference of collision frequencies Γ(+)

σσ̃ and Γ(−)
σσ̃

corresponding to inverse scattering geometries.
Formally, the Boltzmann equation is derived from the Liouville theorem,

which, for an N -particle system expresses the conservation of probability by
stating that the distribution function f (N)( ~R, ~C) in the N -particle phase space,
Γ := span[ ~R, ~C], behaves like an incompressible fluid. The vectors ~R =
(r1, . . . , r3N ) and ~C = (ζ1, . . . , ζ3N ) embrace the 6N positional and velocity
degrees of freedom of the system, respectively.



2.1. THE BOLTZMANN EQUATION 59

The Liouville theorem is given by1

0 =
[
∂t +

∂H
∂pη

∂

∂rη
− ∂H
∂rη

∂

∂pη

]
f (N)( ~R, ~C) (2.4a)

=
[
∂t + ζκ · ∇κ −

(
a(int)

κ + a(ext)
κ

)
· ∇ζ,κ

]
f (N)( ~R, ~C) . (2.4b)

The formulation (2.4b) which explicitely refers to the 6N degrees of freedom
labeled by η = (1, . . . , 3N) is given by the Poisson bracket of f (N) and the N -
particle Hamiltonian H. The formulation (2.4b) which refers to the particles
labeled by κ = (1, . . . , N), is obtained from (2.4b) by means of the Hamilton
equations for the canonic variables rη and pη,

∂H
∂pη

= ṙη ,
∂H
∂rη

= −ṗη .

In (2.4b) the time derivative of the momentum per unit mass has been split
into a part a(int)

κ due to the particle interactions and a part a(ext)
κ due to an

external field.
Integrating out 6(N − 1) degrees of freedom and assuming a two-body in-

teraction aσσ̃ between particles of types σ and σ̃ yields

[
∂t + ζ · ∇ − a(ext) · ∇ζ

]
fσ(r, ζ, t) =

∑

σ̃

∫
d3ζσ̃

∫
d3rσ̃ (aσσ̃ · ∇ζ) f

(2)
σσ̃ ,

(2.5)
where f (2)

σσ̃ := f
(2)
σσ̃ (rσ, rσ̃, ζσ, ζσ̃, t) is the two-particle distribution function.

1Einstein ’s Σ-convention is used here and in the following.
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The integrated Liouville equation (2.5) can be reduced to the Boltzmann
equation (2.2) under the following conditions [57, 72]:

. The particle interactions are short-ranged with a cut-off at r0, i.e.,

r0 ¿ l0 , aσσ̃ ≡ 0 for |rσ − rσ̃| ≥ r0 . (2.6a)

. Molecular chaos is equivalent to the absence of correlations, i.e.,

f
(2)
σσ̃ (t) = fσ(rσ, ζσ, t)fσ̃(rσ̃, ζσ̃, t) for |rσ − rσ̃| ≥ r0 . (2.6b)

. Three-body collisions may be neglected, i.e.,

f
(2)
σσ̃ (r′σ, r

′
σ̃, ζ

′
σ, ζ

′
σ̃, t− δt) = f

(2)
σσ̃ (rσ, rσ̃, ζσ, ζσ̃, t) . (2.6c)

These conditions correspond to the the limit (2.1).

The collision integral

In a one component system the collision integral

J [f, f∗] :=
∫
d3ζ∗

∫
dΩ |∆ζ|σ {f ′f ′∗ − ff∗} (2.7)

models the modification of the distribution function f due to collisions. Of
course, this has to be in accordance with the fundamental conservation laws,
i.e., the conservation of particle number, momentum, and energy.
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The basic property of J [f, f∗] which assures these conservation laws is given
by the symmetry J [f, g] = J [g, f ]. The consequence of this symmetry is that,
by means of simple transformations [57, 72], the convolution of an arbitrary
function ψ(ζ) and J [f, f∗] in the velocity sub-space can be written as

∫
d3ζ ψ(ζ)J [f, f∗] =

1
4

∫
d3ζ

∫
d3ζ∗

∫
dΩ |∆ζ|σ{

ψ(ζ)+ψ(ζ∗)−ψ(ζ′)−ψ(ζ′∗)
} {f ′f ′∗ − ff∗} .

(2.8)

According to this relation the function ψ(ζ) represents a collision invariant,
i.e., a quantity which is not changed by a collision, if

ψ(ζ) + ψ(ζ∗) = ψ(ζ′) + ψ(ζ′∗) , (2.9a)

which is equivalent to
∫
d3ζ ψ(ζ)J [f, f∗] ≡ 0 , (2.9b)

for a non-vanishing collision integral J [f, f∗].
The relations (2.8) and (2.9) in combination with the fundamental conser-

vation laws give rise to the algebraic structure of a collision invariant ψ(ζ),

ψ(ζ) =
4∑

η=0

a(η) ψ(η)(ζ) , (2.10)
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which is an expansion in terms of the set
{
ψ(η)(ζ)

}
of so-called fundamental

collision invariants. The set is given by the quantities

ψ(0) = 1 (2.11a)

ψ(i) = ζi for i = 1, 2, 3 (2.11b)

ψ(4) =
1
2
ζiζi , (2.11c)

which reflect the fundamental conservation laws for particle number, momen-
tum, and energy, respectively.

In case of a multi-component system and in the absence of chemical reac-
tions the number conservation for particles of type σ corresponds to the term
by term vanishing summation

∑

σ̃

∫
d3ζ ψ(0)

σ J [f, f∗]σσ̃ ≡ 0 , (2.12)

where J [f, f∗]σσ̃ is given by (2.3). By means of the expansions

ψσ(ζ) =
4∑

η=0

a(η)
σ ψ(η)

σ (ζ) , (2.13)

where the sets
{
ψ

(η)
σ (ζ)

}
correspond to the set (2.11) labeled by σ, the conser-

vation of the total particle number, the total momentum, and the total energy
is given by the overall summation

∑
σ

∑

σ̃

∫
d3ζ ψσ(ζ)J [f, f∗]σσ̃ ≡ 0 . (2.14)
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The equilibrium distribution

In the equilibrium case the physical behaviour on a macroscopic scale is not
affected by the single-particle collisions taking place on the kinetic level. Hence,
the equilibrium distribution function f (eq) is stationary,

f
(eq)

f
(eq)
∗ = f

(eq)’
f

(eq)’
∗ , (2.15a)

which means that the collision integral vanishes,

J [f (eq), f
(eq)
∗ ] ≡ 0 . (2.15b)

The form of f (eq), is a matter of the basic symmetry of the collision integral
J [f, f∗]. Insertion of ψ != ln[f ] into the convolution (2.8) yields
∫
d3ζ ln[f ]J [f, f∗] =

1
4

∫
d3ζ

∫
d3ζ∗

∫
dΩ |∆ζ|σ ln

[
ff∗
f ′f ′∗

]
{f ′f ′∗ − ff∗} ,

(2.16)
which implies that the system is in equilibrium if ln[f ] is a collision invariant.
Accordingly, ln[f (eq)] is given by an expansion in terms of the set of fundamental
collision invariants (2.11),

ln[f (eq)] != a+ b · ζ − ζiζi
c2

. (2.17)

On the other hand, the local equilibrium situation is characterized by a sta-
tionary velocity field u(r) which gives the ordered motion of the system on
the macroscopic level2. The equilibrium distribution function f (eq) therefore

2A definition of u(r, t) in terms of fluid-dynamic moments of f(r, ζ, t) will be given in

section 2.2
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should depend on the random deviation of the molecular velocity ζ from a
constant macroscopic velocity u0.

With this physical picture in mind the choice for coefficients a and b in
(2.17) is

b != 2
u0

c2
, (2.18a)

a
!= ln[A]−

(u0

c

)2

. (2.18b)

This yields the basic form of the equilibrium distribution function, given by a
Maxwellian centered around the constant velocity3 u0,

f (eq) = A(r, t) exp

[
−U(r)

c2
− (ζ − u0)

2

c2

]
, (2.19)

where U(r) is a potential related to the external body force per unit mass a,
i.e.,

a := −∇U(r) =
d

dt
ζ , (2.20)

and the parameters A and c may depend on r and t but not on ζ. By means
of phenomenologic thermodynamics these parameters can be related to the
equilibrium density %0 = N/V and the temperature T .

In the multi component case one has
∑

σ

∑

σ̃

∫
d3ζ ln[f (eq)

σ ]Jσσ̃[f (eq)
σ , f

(eq)
σ̃∗ ] = 0 (2.21)

3Of course, u0 is not significant here, since it can be removed by means of a Galileo

transformation. The local Maxwellian, in which u0 is replaced by u(r), plays a role in the

framework of the BGK-approximation, see section 2.3.
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and

f (eq)
σ = Aσ exp

[
−φ(r)

c2σ
− (ζσ − u0,σ)2

c2σ

]
. (2.22)

The H-theorem

The H-theorem is a fundamental statement, which relates the level of disorder
within a closed system to the irreversibility of relaxation processes.

The local level of disorder is expressed by means of the entropy density,

H(r, t) := −
∫
d3ζ ln[f ] f , (2.23a)

and its corresponding flux,

H(r, t) := −
∫
d3ζ ζ ln[f ] f . (2.23b)

The theorem is based on a fundamental property of the collision integral,

0 ≥
∫
d3ζ ln[f ]J [f, f∗] , (2.24)

which directly follows from the convolution (2.16).
Multiplying the Boltzmann equation (2.2) by {1 + ln[f ]}, integrating out

the velocity degrees of freedom, and taking into account the inequality (2.24)
as well as the fact that 1 is a collision invariant, one finds the relation [72]

∂tH+∇ ·H =
∫
d3ζ J [f, f∗] ln[f ] ≥ 0 . (2.25)
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The overall entropy in the volume V ,

H̄(t) :=
∫

V

d3r H , (2.26)

then in case of a non-moving boundary ∂(V ) of V obeys

dH̄
dt

−
∫

∂(V )

dA n ·H ≥ 0 , (2.27)

where the vector n is the inward unit normal on the surface element dA of
∂(V ).

Hence, the surface integral in (2.27) gives the influx of entropy into V and
it can be shown that this influx of entropy is equivalent to an influx of energy
[72], i.e., ∫

∂(V )

dA n ·H =
∫

∂(V )

dA
1
RT

(qi + pijvj) . (2.28)

All together, one has the H-theorem formed by the equations

dH̄
dt

≥
∫

∂(V )

dA
1
RT

(qi + pijvj) (2.29a)

and
∂tH+∇ ·H =

∫
d3ζ ln[f ]J [f, f∗] ≥ 0 . (2.29b)

The H-theorem states, that according to (2.29a), the entropy of a closed
system is not decreasing in time, and that, according to (2.29b), the entropy
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is constant in time only in equilibrium systems. Concisely, a closed system
irreversibly relaxes towards an equilibrium state characterized by a maximum
level of disorder. The H-theorem is the fundamental kinetic statement under-
lying the second law of thermodynamics as formulated by Clausius, Kelvin,
and Planck.
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2.2 The fluid-dynamic limit of the Boltzmann

equation

The framework of the Boltzmann equation (2.2) presented in the preceeding
section provides a statistical point of view on the kinetics of the particles in a
dilute fluid via the distribution function f(r, ζ, t) of the independent, micro-
scopic positions r and velocities ζ.

From a macroscopic point of view however, a fluid may be characterized by
an ordered motion, i.e., a whole fluid element with a certain particle density
%(r, ζ) travels within a macroscopic velocity field u(r, t) and the kinetic energy
per unit mass associated with this ordered motion of a fluid element is

Ekin :=
1
2
uiui . (2.30)

Within such a fluid element the particles perform a random motion char-
acterized by the microscopic velocities ζ. Hence, the internal energy per unit
mass, i.e., the contribution of a single particle whirring around at ζ to the
internal energy, is given by the expression

E :=
1
2
|ζi − ui|2 :=

1
2
cici . (2.31)

The vector c is the so-called random velocity deviation. To obtain the internal
energy E of a whole fluid element centered around r the distribution of the
microscopic velocities encoded in the distribution function f(r, ζ, t) has to be
taken into account.



2.2. THE FLUID-DYNAMIC LIMIT OF THE BOLTZMANN EQUATION69

The fluid-dynamic level of the Boltzmann equation is given by a set of dy-
namic equations for the quantities %, u, Ekin, and E. This set of equations, the
Navier-Stokes equations, is obtained by means of a local averaging procedure
applied to the Boltzmann equation.

The fluid-dynamic moments

The quantities which bridge the gap between the kinetic theory governed by the
Boltzmann equation (2.2) and fluid dynamics governed by the Navier-Stokes
equations are given by velocity moments of adequate physical quantities, the
so-called fluid-dynamic moments. Generally, such a velocity moment is a local
average of a function q(r, ζ, t), defined as a convolution in the velocity sub-space
of the phase space µ := span[r, ζ].

The definitions of the zeroth, first, and second fluid-dynamic moment of an
arbitrary microscopic quantity q(r, ζ, t) read

M(0)[q] :=
∫

µ

dDζ qf , (2.32a)

M(1)
i [q] :=

∫

µ

dDζ ζiqf , (2.32b)

M(2)
ij [q] :=

∫

µ

dDζ ζiζj qf , (2.32c)

whereas the integration range covers the whole velocity sub-space of µ.

The fluid-dynamic moments are local objects given at a certain position r
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and time t. The mean value of the quantity q(r, ζ, t) therefore reads

〈 q 〉 :=
∫

µ

dDrM(0)[q] =
∫

µ

dDr

∫

µ

dDζ qf , (2.33)

and the normalization of the distribution function f to the particle number N ,

N
!= 〈1 〉 =

∫
dDr

∫
dDζ f , (2.34)

yields the number density

%(r) =
∫
dDζ f = M(0)[1] . (2.35)

The physical meaning of the zeroth and first moment, M(0)[q] and M(1)
i [q], is

the local density and the flux of q, respectively. Since in the definitions (2.32)
the higher moments are not unique, their corresponding mean values may be
interpreted by means of the relation

M(2)
ij [q] = M(1)

i [ζjq] = M(0)[ζiζjq] .

The fluid-dynamic moments decisive for the derivation of the fluid-dynamic
level equations are those of the fundamental collision invariants ψ(η) (2.11),
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i.e.,

M(0)[ψ(0)] = %(r) , (2.36a)

M(0)[ψ(i)] = %(r)ui(r) , (2.36b)

M(1)
i [ψ(j)] = pij + %uiuj , (2.36c)

M(0)[ψ(4)] = %E +
1
2
% ujuj , (2.36d)

M(1)
i [ψ(4)] = Qi + uj pij +

1
2
ui pjj +

1
2
% uiujuj . (2.36e)

The quantities %ui in (2.36) are the components of the momentum density
or, according to (2.2), the components of the particle flux. The quantities

pij := M(0)[cicj ] (2.37)

in (2.36c) and (2.36e) are the components of the stress tensor, also called the
pressure tensor, where the components ci of the random velocity deviation are
given by (2.31). The internal energy density %E and the components of the
heat flux Q in (2.36d) and (2.36e) are defined as

%E := M(0)[E ] , (2.38a)

and

Qi := M(1)
i [E ] , (2.38b)
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where the internal energy per unit mass E is given by (2.31). The expressions
(2.36d) and (2.36e) thus are the total energy density and the total energy flux,
respectively.

For the kernel a · ∇ζ = ak∂ζk
, partial integration yields

M(0)[ak∂ζk
] = 0 , (2.39a)

M(1)
i [ak∂ζk

] = −%ai , (2.39b)

M(2)
ij [ak∂ζk

] = −% (aiuj + ajui) . (2.39c)

The expressions (2.39b) and (2.39c) are components of the local density and
the corresponding flux associated with the external field a.

The fluid-dynamic level equations

By means of the definitions (2.32) of fluid-dynamic moments, the Boltzmann
equation for a one-component system,

[∂t + ζ · ∇+ a · ∇ζ ] f(r, ζ, t) = J [f, f∗] , (2.40)

can be transformed into an equation of zeroth moments of a microscopic quan-
tity q(r, ζ, t),

M(0)[∂tq] +M(0)[ζi∂iq] +M(0)[ak∂ζk
q] =

∫

µ

d3ζ qJ [f, f∗] . (2.41)

The kernels on the left hand side of this equation reflect the analytic struc-
ture of the underlying Boltzmann equation. Taking into account, firstly, the
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properties (2.11) of the collision integral with respect to the fundamental colli-
sion invariants ψ(η), and secondly, that r and ζ are independent variables, the
assignments q != 1, q != ci, and q != 1

2cici in (2.41) yield

∂t%+ ∂i%ui = 0 , (2.42a)

[∂t + uj∂j ] %ui = −∂j pij + %ai , (2.42b)

[∂t + uj∂j ] %E = −∂j(pijui +Qj) + %aiui , (2.42c)

respectively. This set of equations expresses the fundamental conservation
laws. The continuity equation (2.42a) corresponds to number conservation.
The equations (2.42b) and (2.42c) corresponds to the balance of momentum
and the conservation of internal energy, respectively. The set (2.42) is formally
equivalent to the phenomenological Navier-Stokes equations [61, 69, 70].

According to (2.31), (2.37), and (2.38b), the quantities pij and Qi within
(2.42) are given in terms of the random velocity c,

pij = M(0)[cicj ] , (2.43a)

Qi = M(1)
i [E ] =

1
2
M(1)

i [cjcj ] , (2.43b)

which reflects the microscopic point of view of the underlying kinetic theory.
From the point of view of the phenomenological Navier-Stokes equations, how-
ever, constitutive equations have to be postulated, which relate these quantities
to the macroscopic variables %, u, and the temperature T :

. In a non-viscous and thermally non-conducting fluid, a so-called Euler
fluid, the transport of momentum and energy mainly happens due to the
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transport of mass. The constitutive equations thus read

pij
!= p(%, T )δij , (2.44a)

Qi
!= 0 . (2.44b)

. In a viscous and thermally conducting fluid, a so-called Navier-Stokes-
Fourier fluid, the transport of momentum and energy happens due to a
combination of mass transport, internal friction, and thermal conduction.
Assuming linear response, the constitutive equations in this case read

pij
!= p(%, T )δij − µ [∂jui + ∂iuj ]− ν∂kukδij , (2.45a)

Qi
!= −κ∂iT . (2.45b)

In the framework of thermodynamics, the pressure p(%, T ) is given via an
equation of state, whereas the dynamic viscosity µ, the second viscosity ν, and
the thermal conductivity κ are material parameters, which are supposed to
picture intrinsic fluid properties as functions of % and T . The kinetic theory by
itself, however, does not provide any expressions, which in the fluid-dynamic
limit directly correspond to p(%, T ) and the material parameters µ, ν, and κ.

Via the Chapman-Enskog analysis of the Boltzmann equation with the
BGK-operator, see sections 2.3 and 2.4, both, the thermodynamic equation
of state is recovered, and the material parameters are related to microscopic
parameters defined on the kinetic level.
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Thermodynamic relations

The internal energy per unit mass E in (2.42c) is a quantity specified in terms
of the microscopic variable ci. From the point of view of thermodynamics, E
is given as a function of the temperature T . Further, there are equations of
state, which relate the internal energy E, the hydrostatic pressure p0, and the
temperature T to each other.

In a general equilibrium case, (2.31), (2.37), and (2.45) suggest that in a D-
dimensional system the hydrostatic pressure p0 may be identified by the trace
of the isotropic part of the stress tensor, i.e.,

p0
!=

1
D

tr[pδij ] = p(%, T ) . (2.46)

Thus, the general form of the equation of state reads

p0 =
2
D
%E . (2.47)

On the other hand, the conditions (2.1) for the derivation of the Boltz-
mann equation from the Liouville theorem correspond to an ideal gas with the
thermodynamic equation of state

p0 = %
kBT

m
. (2.48)

Accordingly, the internal energy E obeys

E =
D

2
kBT

m
. (2.49)
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By means of (2.48) the width c of the equilibrium distribution function f (eq)

(2.19) can be specified, i.e.,

f (eq) =
1
z
%0(2πc2T )−D/2 exp

[
−E + U(r)

c2T

]
, (2.50)

with the thermal velocity,

c2T := (∂%p0)|adiabat =
kBT

m
, (2.51)

as the scaling parameter for the internal energy4 per unit mass E , the equi-
librium density distribution %, and the potential U(r) related to the external
body force per unit mass a, i.e.,

a := −∇U(r) =
d

dt
ζ . (2.52)

Finally, the normalization (2.34) yields

z =
1
V

∫
dDr exp

[
−U(r)

c2T

]
. (2.53)

According to equation (2.51) the width of the equilibrium distribution func-
tion f (eq) (2.50) in equilibrium, as in any isothermal system, is equal at any
point in space. In case of an inhomogeneous system, the equilibrium density
distribution %0 minimizes the Helmholtz free energy density

Ψ(%) = %E

∫
d%

1
%

= %E ln % , (2.54)

4In statistical mechanics the temperature T is defined via the change of entropy S with

respect to the internal energy E in a closed system, i.e., 1
T

:=
“

∂S
∂E

”
|V,N

.
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which itself follows from a Legendre transformation of the hydrostatic pressure
p0,

p0 = %
dΨ
d%

−Ψ , (2.55)

and the equation of state (2.47).
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2.3 The BGK-model

The collision integral J [f, f∗] (2.7) forming the right hand side of the Boltz-
mann equation of a one-component system contains detailed information on the
kinetic level and its structure thus is very complicated to deal with. On the
other hand, the whole fine structure of the collision integral is averaged out at
the fluid-dynamic level and therefore the details of the interactions expressed
in J [f, f∗] are not likely to influence the fluid dynamics qualitatively.

With this situation in mind, the idea behind the so-called BGK-model [72,
77], named by its developers P.L. Bhatnagar, E.P. Gross, and M. Krook5,
is, to replace the collision integral J [f, f∗] by a model operator, which spares
insignificant details and retains the essential average properties of J [f, f∗] only,
in order to obtain a model equation which has an algebraic structure suitable
for an iterative treatment.

According to the expressions (2.9) and (2.16) discussed in section 2.1, the
essential average properties of J [f, f∗] are the following:

. The convolution of J [f, f∗] with a collision invariant ψ in the velocity
sub-space vanishes, i.e.,

∫
d3ζ ψ(ζ)J [f, f∗] ≡ 0 . (2.56)

According to the expansion (2.10), ψ thereby is given in terms of the set{
ψ(η)

}
of fundamental collision invariants. The property (2.56) ensures

5P. Welander [78] independently proposed the model at about the same time.
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the validity of the fundamental conservation laws of particle number,
momentum, and energy.

. The collision integral generally obeys
∫
d3ζ J [f, f∗] ln[f ] ≤ 0 , (2.57)

whereupon the equality sign holds in the equilibrium case. Based on the
relation (2.57) the H-theorem shows that the collision integral models
an irreversible relaxation of the system towards the equilibrium state
determined by the Maxwellian f (eq) (2.19).

In a straightforward way, the BGK-operator maps the average effect of the
interactions encoded in the collision integral J [f, f∗] by a change of the distri-
bution function f(r, ζ, t) proportional to its deviation from a local Maxwellian

φ := A(r, t) exp

[
−U(r)

c2T
−

(
ζ − u(r, t)

)2

c2T

]
, (2.58)

with the density %(r, t), the average velocity u(r, t), and the potential U(r)
related to the external body force per unit mass a via

a := −∇U(r) =
d

dt
ζ . (2.59)

The BGK-operator is defined as

JBGK[f ] := − 1
λ

[
f(r, ζ, t)− φ|(r,ζ,t)

]
, (2.60)



80 CHAPTER 2. FLUID DYNAMICS FROM KINETIC THEORY

and thus, the Boltzmann equation is replaced by the BGK-model equation

[∂t + ζ · ∇+ a · ∇ζ ] f(r, ζ, t) = − 1
λ

[
f(r, ζ, t)− φ|(r,ζ,t)

]
, (2.61)

whereupon the parameter λ plays the role of a relaxation time.

According to (2.56), the fundamental conservation laws require

∫
d3ζ ψ(ζ)JBGK[f ] != 0 , (2.62a)

which implies

M(0)[ψ(η)] :=
∫
d2ζ ψ(η)f(r, ζ, t) !=

∫
d2ζ ψ(η)φ(%,u, cT ) . (2.62b)

This means that the local Maxwellian φ (2.58) is constrained by f(r, t) at
any position r and time instant t, i.e., the quantities %(r, t), u(r, t), and cT

are calculated from the distribution function f(r, ζ, t) via the relations (2.36a),
(2.36b), (2.38a), and (2.49).

Following (2.57), the requirement for irreversibility is

∫
d3ζ ln[f ]JBGK

!≤ 0 . (2.63)

This requirement is automatically fulfilled since φ is a Maxwellian, i.e.,
∫
d3ζ JBGK ln[φ] ≡ 0 , (2.64)
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and hence,

∫
d3ζ ln[f ]JBGK =

∫
d3ζ JBGK ln

[
f

φ

]
+

∫
d3ζ JBGK ln[φ] =

=
1
λ

∫
d3ζ φ

(
1− f

φ

)
ln

[
f

φ

]
≤ 0 . (2.65)

Integral solution

An integration of (2.61) over a time interval ∆t along an approximated phase
space trajectory yields a formal integral solution of the BGK-model equation
[73],

f(r + ζ∆t+
1
2
a∆t2, ζ + a∆t, t+ ∆t) = e−

gr0
λ ∆t

[
f(r, ζ, t)

+
gr0

λ

∫ ∆t

0

dt′ e−
gr0

λ t′ φ|(t+t′)

+ a ·
∫ ∆t

0

dt′ e−
gr0

λ t′ ∇ζf(t+ t′)
]

,

(2.66)

where r′ = r + ζt′ + 1
2at

′2 and ζ′ = ζ + at′.
An application of the mean-value theorem, and a Taylor expansion in time

up to the linear order yields a time-discrete version of (2.66),

f(r+ζ∆t, ζ, t+∆t)−f(r, ζ, t) = −1
τ

[
f(r, ζ, t)− φ|(r,ζ,t)

]
−a·∇ζf(r, ζ, t)∆t ,

(2.67)
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where τ := λ/∆t is the dimensionless relaxation time.
In the limit of small Mach numbers, |u|/cT ¿ 1, both the local Maxwellian

φ (2.58) and the forcing-term a · ∇ζf(r, ζ, t) can be expanded up to the order
u2. For the local Maxwellian φ one finds

φ(ζ,u) ≈ %(r)ω(ζ)
{

1 +
1
c2T

(ζ · u) +
1

2c4T
(ζ · u)2 − 1

2c2T
u2

}
, (2.68)

with

ω(ζ) =
(2πc2T )−D/2

z
exp

[
− 1
c2T

(
1
2
ζ2 + U

)]
(2.69)

and the normalization factor

z =
1
V

∫
dDr exp

[
−U(r)

c2T

]
. (2.70)

Via the relations (2.39) and the constraint (2.62), an expansion of the forcing
term a · ∇ζf up to the order ζ2,

a · ∇ζf ≈ %(r)ω(ζ)
[
c(0) + c

(1)
i ζi + c

(2)
ij ζiζj

]
, (2.71)

yields the low Mach number expression [56]

a · ∇ζf ≈ F := −ω(ζ) %(r)
[

1
c2T

(ζ − u) +
1
c4T

(ζ · u)ζ
]
· a . (2.72)

Both, the local Maxwellian φ (2.58) and the forcing term F on the right
hand side of (2.67) are constrained by f(r, ζ, t) for any r and t via (2.36a),



2.3. THE BGK-MODEL 83

(2.36b), (2.38a), (2.49), and (2.51). This means that the time-discrete BGK-
model equation (2.67) in the small Mach number limit can be solved iteratively,
since the change of the distribution function f(r, ζ, t) due to convection during
the time step ∆t is fully determined by f(r, ζ, t) itself.
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2.4 The Chapman-Enskog analysis

In section 2.2, the fluid-dynamic level equations (2.42) of the Boltzmann equa-
tion (2.40) have been presented. Further, the stress tensor pij and the heat
conduction Qi therein, which are given by fluid-dynamic moments of the ran-
dom velocity deviation ci (2.31),

pij = M(0)[cicj ] , (2.73a)

Qi = M(1)
i [E ] =

1
2
M(1)

i [cjcj ] , (2.73b)

have been opposed to the phenomenological, constitutive equations of a vis-
cous, thermally conducting fluid,

pij = pδij − µ [∂jui + ∂iuj ]− ν∂kukδij , (2.74a)

Qi = −κ∂iT . (2.74b)

This has been done in order to reveal the conceptual gap between the macro-
scopic and the kinetic approach to fluid dynamics, which is given by a missing
link between microscopic quantities defined on the kinetic level and the trans-
port coefficients µ, ν, and κ within the constitutive equations (2.74).

In case of an incompressible and isothermal fluid, i.e.,

pij = pδij − µ [∂jui + ∂iuj ] , (2.75a)

Qi = 0 , (2.75b)

this conceptual gap can be bridged by the Chapman-Enskog analysis of the
BGK-model equation (2.61). The Chapman-Enskog analysis is based on the
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idea that the characteristic fluid dynamic properties encoded in (2.75b) emerge
on two well-separated time scales: A microscopic time scale is associated with
the ballistic regime, in which the transport of momentum due to advection
leads to the pressure p, whereas a macroscopic time scale is associated with the
viscous regime, in which the transport of momentum due to internal friction is
modeled by the viscosity µ.

The starting point of the Chapman-Enskog analysis is the time-discrete
BGK-model equation (2.67),

f(r + ζ∆t, ζ, t+ ∆t)− f(r, ζ, t) = −1
τ

[
f(r, ζ, t)− φ|(r,ζ,t)

]
−F∆t , (2.76)

with the finite time interval ∆t, the dimensionless relaxation time τ := λ/∆t,
and the low Mach number expression (2.72) for the forcing term a ·∇ζf(r, ζ, t),

F = %(r)ω(ζ) a ·
[

1
c2T

(ζ − u) +
1
c4T

(ζ · u)ζ
]

. (2.77)

The essential element of the analysis is a multi-scaling expansion scheme
for equation (2.76). Within this scheme, the microscopic and macroscopic time
scales t0 and t1, respectively, are separated by a dimensionless small parameter
ε, which is to be specified by a ratio of characteristic scales within the system,
e.g., the relaxation time versus a characteristic fluid-dynamic time scale.

With
t

!= t0 + ε−1t1 , (2.78a)

one obtains the time derivative,

∂t = ∂t0 + ε ∂t1 . (2.78b)
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For, e.g., ε = 1/60 this means, that the time scale t0 is measured in seconds if
the scale t1 is given in minutes.

Upon introducing expansions in terms of the parameter ε for the distribution
function f(r, ζ, t) and the advanced distribution function f(r+ζ∆t, ζ, t+∆t),

f
!= f (0) + εf (1) + ε2f (2) (2.79a)

and
f(r + ζ∆t, ζ, t+ ∆t) !=

∑
n=0

εn

n!
Dn

t f(r, ζ, t) , (2.79b)

respectively, with the derivative

Dt := [∂t + ζ · ∇] , (2.79c)

the time-discrete Boltzmann equation (2.76) can be broken down to equations
in consecutive orders O(εn):

. O(ε0):
f (0) = φ , (2.80a)

. O(ε1):

Dt0f
(0) = −1

τ
f (1) − F , (2.80b)

. O(ε2): {
1
2
D2

t0 + ∂t1

}
f (0) +Dt0f

(1) = −1
τ
f (2) . (2.80c)
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In the scheme (2.80), the time step ∆t as well as the relaxation time λ thereby
are supposed to be of the order ε, hence, the dimensionless relaxation time
τ := λ/∆t is of order one.

At the lowest order O(ε0) (2.80a) the local Maxwellian φ is associated with
the lowest order f (0) of the distribution function. The kinetic behaviour on the
time scales t0 and t1 at the orders O(ε0) (2.80b) and O(ε0) (2.80c), respectively,
thus is determined by the deviations f (1) and f (2) from the local Maxwellian
φ. This reflects the structure of the BGK-operator (2.60). The orders f (n>0)

therefore have to be constrained such, that they do not contribute to the fluid-
dynamic moments, i.e.,

M(0)[ψ(η)] ≡
∫
d2ζ ψ(η)f (0) , (2.81a)

and, following (2.62), the fundamental conservation laws require

∫
d3ζ ψ(η) f (n>0) != 0 . (2.81b)

Taking the constraints (2.81) into account, the fluid-dynamic level equations
for the time scales t0 and t1 follow from the fluid-dynamic averaging procedure
described in section 2.2. Briefly reviewed, the assignments q != 1 and q != ci for
an arbitrary kernel q in the equations of zeroth moments obtained from (2.80b)
and (2.80c) yield the fluid-dynamic level equations,
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. O(ε1):

∂t0%+ ∂j(%uj) = 0 , (2.82a)

[∂t0 + uj∂j ] (%ui) = −∂j%c
2
T δij + %ai , (2.82b)

. O(ε2):

∂t1% = 0 , (2.83a)

% ∂t1ui = ∂j

{
%c2T

(
τ − 1

2

) (
∂jui + ∂iuj

)}
. (2.83b)

As implied, the microscopic time scale t0 corresponds to the ballistic regime,
i.e., the transport of momentum due to advection is governed by the Euler
equations (2.82). The pressure in the momentum balance equation (2.82b),

p := %c2T , (2.84)

exactly corresponds to the equation of state (2.48).
The vanishing partial time derivative (2.83a) means that there is no addi-

tional mechanism for mass transport in the viscous regime associated with the
macroscopic time scale t1. The transport of momentum due to internal friction
is modeled by the dynamic viscosity

µ := %cT

(
τ − 1

2

)
(2.85)
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in the momentum balance equation (2.83b). Via the dimensionless relaxation
time τ := λ/∆t, the viscosity is related to the underlying kinetic operator
(2.60).

The orders O(ε1) and O(ε2) combined result in the complete fluid-dynamic
level equations for an isothermal, incompressible system,

∂t%+ ∂j(%uj) = 0 (2.86a)

% [∂t + uj∂j ]ui = −∂j pij + %ai . (2.86b)

The stress tensor therein,

pij := p δij − µ
(
∂jui + ∂iuj

)
, (2.87)

is formally equivalent to the phenomenological constitutive equation (2.75a).
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Chapter 3

The Lattice Boltzmann

Approach

Historically, the lattice Boltzmann equation emanated from the evolution equa-
tion of the lattice gas cellular automata [35, 36, 79]. In the small Mach number
limit, |u|/cT ¿ 1, where the macroscopic velocity u of fluid motion is small
compared to the thermal velocity cT , it has been shown that the lattice Boltz-
mann equation is equivalent to a fully discrete version of the continuous Boltz-
mann equation with the BGK-approximation [56, 80]. The discretization of
the phase space in the lattice Boltzmann approach is such, that the positional
subspace is discrete by a spatial lattice and the velocity subspace is discrete

91
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by the set of velocity vectors which, within one time step, would transfer a
particle from a certain site of the positional lattice to one of the neighbouring
sites. Two examples of this discretization scheme are given by the unit cells
in the figures 3.1 and 3.2. The lattice Boltzmann equation is a designated
tool in order to simulate fluid behaviour for very complex situations with high
efficiency, since it allows for highly parallel numerical algorithms and an easy
implementation of boundary conditions.

There are two prominent numerical implementations of the lattice Boltz-
mann equation, the so-called Shan-Chen model, named after its developers X.
Shan and H. Chen [81–83], and the free-energy model, developed by J. M.
Yeomans and collaborators [84–86]. These models have been set up in order
to simulate the behaviour of non-ideal fluids, i.e., fluids which in equilibrium
would be characterized by a non-ideal equation of state. However, following
the description of the continuous Boltzmann equation in chapter 2, the lattice
Boltzmann equation per se leads to ideal fluid behaviour in the above sense. In
order to obtain non-ideal fluid behaviour, effective particle interactions there-
fore have been introduced into the lattice Boltzmann equation in the frame of
both, the Shan-Chen model and the free energy model.

Conceptually, the free energy model is a top-down approach in the sense
that non-ideal fluid behaviour is generated via mean-field arguments on the
fluid-dynamic level, from which constraints on the kinetic level governed by
the lattice Boltzmann equation arise. Specifically, the stress tensor is derived
from a Cahn-Hilliard free energy functional by means of the Noether theorem
such, that its diagonal part corresponds to a desired non-ideal equation of state.
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The connection to the kinetic level is then established by imposing constraints
on the the BGK-operator.

In contrast, the Shan-Chen model has been set up as a bottom up ap-
proach in which, analog to the Ising model, a particle interaction is defined on
the positional lattice. In the fluid-dynamic limit this interaction results in a
potential term within the Navier-Stokes-Fourier stress tensor, which leads to
non-ideal fluid behaviour, i.e., intrinsic particle interactions on the kinetic level
are modeled by a mean field on the fluid-dynamic level [56].

The discretization scheme leading from the continuous Boltzmann equation
to the lattice Boltzmann equation is presented in section 3.1, together with
a brief discussion of the corresponding fluid-dynamics level equations. A pre-
sentation of the Shan-Chen model and the free energy model follows in the
sections 3.2 and 3.3, respectively.
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3.1 The lattice Boltzmann equation

The Lattice-Boltzmann equation described in the following is the fully discrete
version of the time-discrete BGK-model equation (2.67) in the small Mach
number limit,

f(r + ζ∆t, ζ, t+ ∆t)− f(r, ζ, t) = −1
τ

[
f(r, ζ, t)− φ|(r,ζ,t)

]
− F∆t , (3.1)

with the dimensionless relaxation time τ := λ/∆t and the low Mach number
expressions for the local Maxwellian (2.68) and the forcing-term (2.72),

φ(ζ,u) = %(r)ω(ζ)
{

1 +
1
c2T

(ζ · u) +
1

2c4T
(ζ · u)2 − 1

2c2T
u2

}
(3.2a)

and

F = −%(r)ω(ζ) a ·
[

1
c2T

(ζ − u) +
1
c4T

(ζ · u)ζ
]

, (3.2b)

respectively, see (2.68), (2.72), and (2.69).
More generally, the lattice Boltzmann equation is an explicite finite-difference

scheme for the evaluation of the integral solution (2.66) of the BGK-model
equation (2.61) in the low Mach number limit.

Discretization in time an phase space

The discretization schema for the six-dimensional phase space, µ = span[r, ζ],
which yields the lattice Boltzmann equation as a fully discrete version of (3.1),
is depicted by the unit cells in figures 3.1 and 3.2. The continuous variable
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ζ therein is replaced by a set of discrete velocities, {cα}, in which the zero-
velocity of particles at rest is contained. The set {cα} corresponds to the three-
dimensional unit cell of the positional lattice in such a way, that the possibilities
of particle transfer the set {cα} offers between neighbouring lattice sites r and
r + ∆rα within one time step ∆t is defined by the relation

∆rα = cα∆t . (3.3)

The lattice constant a of the cubic unit cells in the figures 3.1 and 3.2 is related
to the thermal velocity cT via [56, 87]

a

∆t
=: c =

√
3cT . (3.4)

Of course, Galilean invariance as well as isotropy per se are broken by any
discrete lattice symmetry and these violations show up as higher order er-
ror terms in the fluid-dynamic level equations. However, in case of the cubic
D3Q19- and D3Q15-lattices these error terms are negligible in the low Mach
number regime underlying the expressions (3.2a) and (3.2b) [56, 88]. In prin-
ciple, any lattice can be chosen for the phase space discretization, which to a
reasonable approximation yields isotropic and Galilean invariant fluid-dynamic
level equations.

The phase space discretization described above means that any continuous
quantity q(r, ζ, t) is replaced by a set {qα(r, cα, t)}. The discrete versions of
the local Maxwellian (3.2a) and the forcing-term (3.2b) therefore read

φα(cα, ũ) = ωα(cα)%α(r)
[
1 +

1
c2T

cα · ũ +
1

2c4T
(cα · ũ)2 − 1

2c2T
ũ2

]
(3.5a)
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and

Fα = −ωα(cα)%(r)
[

1
c2T

(cα − u) +
1
c4T

(cα · u) cα

]
· a , (3.5b)

respectively, and hence, the phase-space discretization of the time-discrete
BGK-model equation (2.76) results in the lattice Boltzmann equation,

fα(r + cα∆t, t+ ∆t)− fα(r, t) = −1
τ

[
fα(r, t)− φα(u)|r,t

]− Fα∆t . (3.6)

The fluid-dynamic limit and thermodynamic relations

In order to obtain the fluid-dynamic level equations of the lattice Boltzmann
equation (3.6), an integration over the velocity subspace is represented by a
summation over the index α. In case of the fluid-dynamic moments one has,
e.g.,

M(0)[q] :=
∫
dDζ qf −→

∑
α

qαfα (3.7a)

M(0)
i [q] :=

∫
dDζ ζi qf −→

∑
α

ci,α qαfα (3.7b)

M(2)
ij [q] :=

∫
dDζ ζiζj qf −→

∑
α

ci,αcj,α qαfα . (3.7c)

The flud-dynamic level equations of the lattice Boltzmann equation (3.6) are
obtained via a Chapman-Enskog analysis as described in section 2.4, followed
by a fluid-dynamic averageing procedure as described in 2.2. The fluid-dynamic
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behaviour in the ballistic regime at the microscopic time scale t0 is governed
by the Euler equations,

∂t0%+ ∂j(%uj) = 0 (3.8a)

[∂t0 + uj∂j ] (%ui) = −∂j pδij + %ai , (3.8b)

whereas the full fluid-dynamic behaviour incorporating ballistic as well as
viscous effects is governed by the Navier-Stokes equations,

∂t%+ ∂j (%uj) = 0 (3.9a)

[∂t + uj∂j ] (%ui) = −∂j pij + %ai , (3.9b)

with the stress tensor pij , the dynamic viscosity µ, and the equation of state
for the pressure p given by the well-know expressions,

pij = pδij + µ (∂jui + ∂iuj) , (3.10a)

µ = %cT

(
τ − 1

2

)
, (3.10b)

p = %c2T . (3.10c)
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x

y

z

c1 = (1, 0, 0)

c2 = (−1, 0, 0)

c3 = (0, 1, 0)

c4 = (0,−1, 0)

c5 = (0, 0, 1)

c6 = (0, 0,−1)

c7 = (1, 1, 0)

c8 = (1,−1, 0)

c9 = (1, 0, 1)

c10 = (1, 0,−1)

c11 = (−1, 1, 0)

c12 = (−1,−1, 0)

c13 = (−1, 0, 1)

c14 = (−1, 0,−1)

c15 = (0, 1, 1)

c16 = (0, 1,−1)

c17 = (0,−1, 1)

c18 = (0,−1,−1)

c19 = (0, 0, 0)

Figure 3.1: The set of 19 velocity vectors situated in the xy-plane, the xz-
plane, and the yz-plane, defining the D3Q19-lattice. The velocities are scaled
by
√

3cT , where cT is the thermal velocity.
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Figure 3.2: The set of 15 velocity vectors defining the D3Q15-lattice.
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3.2 The Shan-Chen model

The so-called Shan-Chen model is a lattice Boltzmann scheme for the simula-
tion of multi-phase and multi-component fluid flow. Originally developed by
X. Shan and H. Chen [81, 82], it was extended later on by H. Chen and B. M.
Boghosian [83] in order to model the dynamics of interacting amphiphilic fluids.
The key feature of the model is an intrinsic particle interaction, which is given
by a self-consistently generated force acting between neighbouring sites of the
positional lattice. This intrinsic force is not based on physical considerations
on the level of the continuous Boltzmann equation, instead, it is introduced
in a phenomenological way into the lattice Boltzmann equation, such that the
equation of state on the fluid-dynamic level has a tunable, non-ideal form.

The Shan-Chen model is based on the lattice Boltzmann equation (3.6) for
multiple components labeled by σ,

f (σ)
α (r+cα∆t, t+∆t)−f (σ)

α (r, t) = − 1
τ (σ)

[
f (σ)

α (r, t)− φ(σ)
α (ũ)|(r,t)

]
−F (σ)

α ∆t ,

(3.11a)
with the small Mach number expressions for the local Maxwellian and the
external forcing-term,

φ(σ)
α (cα, ũ) = ωα%

(σ)
α

[
1 +

1
c2T

cα · ũ +
1

2c4T
(cα · ũ)2 − 1

2c2T
ũ2

]
, (3.11b)

and

F (σ)
α = −ωα%

(σ)
α

[
1
c2T

(cα − u) +
1
c4T

(cα · u) cα

]
· a(σ) , (3.11c)



3.2. THE SHAN-CHEN MODEL 101

respectively.
The so-called common velocity ũ in (3.11) is defined as the mean velocity

of all components weighted by the local particle number,

ũ :=

∑
σ

1
τ (σ)

M(1,σ)
i [ψ(0)]

∑
σ

1
τ (σ)

M(0,σ)[ψ(0)]
=

∑
σ

1
τ (σ)

%(σ)u(σ)

∑
σ

1
τ (σ)

%(σ)

. (3.12)

According to the discrete form (3.7), the fluid-dynamic moments of a quan-
tity q(σ) related to the component σ read

M(0,σ)[q(σ)] =
∑
α

q(σ)
α f (σ)

α , (3.13a)

M(1,σ)
i [q(σ)] =

∑
α

cα,i q
(σ)
α f (σ)

α , (3.13b)

... .

The number of the fundamental collision invariants {ψ(η)} (2.11) is multiplied
by the number of components and one has

M(0,σ)[ψ(0)] = %(σ) , (3.14a)

M(1,σ)
i [ψ(0)] = %(σ)u(σ) , (3.14b)

... .

In the frame of the BGK-model, the local conservation of both, the particle
number for each type σ and the total momentum of all types, is ensured by
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constraints on the local Maxwellian φ(σ)
α ,

M(0,σ)[ψ(0)] =
∑
α

f (σ)
α (r, t) ≡

∑
α

φ(σ)
α (ũ)|(r,t)

, (3.15a)

and
∑

σ

M(0,σ)[ψ(i)] =
∑

σ

∑
α

cα,i f
(σ)
α (r, t) ≡

∑
σ

∑
α

cα,i φ
(σ)
α (ũ)|(r,t)

,

(3.15b)
respectively.

Lattice interactions

Like in the Ising model, one introduces an interaction between neighbouring
lattice sites, i.e., between the sites {r + cα∆t} accessible from a certain site r
within one time step ∆t.

The force a particle of type σ on a certain lattice site r feels due to particles
of types {σ̃} at the neighbouring sites is defined as [83]

F(σ)
int (r, t) = −ξ(σ)

|(r,t)

∑

{σ̃}

∑
α

Gσσ̃ξ
(σ̃)
|(r+cα∆t,t)

cα∆t . (3.16)

The sign of the coupling constant Gσσ̄ determines attraction (negative sign) and
repulsion (positive sign) between the types σ and σ̃, whereas the interaction
strength for single particles is given by its absolute value. The non-negative
quantity ξ(σ) is an effective density as a function of the real particle density
%(σ),

ξ(σ) != ξ(σ)
(
%(σ)

)
. (3.17)
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It will be shown later on, that the equation of state in the fluid-dynamic limit
can be tuned by choosing a certain form for ξ(σ)

(
%(σ)

)
.

The intrinsic force F(σ)
int (3.16) is incorporated into the lattice Boltzmann

scheme by adding an increment δũ(σ) to the common velocity ũ,

δũ(σ) :=
F(σ)

int

%(σ)
λ(σ) = a(σ)

int τ
(σ)∆t , (3.18)

where a(σ)
int is the acceleration associated with F(σ)

int . This means, that the local
Maxwellian φ(σ)

α on the right hand side of the lattice Boltzmann equation (3.11)
is shifted, i.e.,

f (σ)
α (r + cα∆t, t+ ∆t)− f (σ)

α (r, t) != − 1
τ (σ)

[
f (σ)

α (r, t)− φ(σ)
α (ũ + δũ)|(r,t)

]

= − 1
τ (σ)

[
f (σ)

α (r, t)− φ(σ)
α (ũ)|(r,t)

]
− F (σ)

α ∆t− F (σ)
α ∆t+ T (σ)

α ∆t2 .

(3.19a)

The second line of (3.19a) shows, that the velocity shift of the local Maxwellian
due to the intrinsic force F(σ)

int is equivalent to a modification of the original
lattice Boltzmann equation (3.11) by additional terms

F (σ)
α = −ωα%

(σ)

[
1
c2T

(cα − ũ) +
1
c4T

(cα · ũ) cα

]
· a(σ)

int (3.19b)

and

T (σ)
α = −1

2
ωα%

(σ)

[
1
c2T

a(σ)2
int − 1

c4T

(
cα · a(σ)

int

)2
]
τ (σ) . (3.19c)
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A comparison of expression (3.19b) and the forcing-term (3.2b) shows, that,
to the order a(σ)

int , an incorporation of intrinsic particle interactions into the
lattice Boltzmann equation as described above is formally equivalent to an
applied external body force field in the low Mach number limit. This means
that for sufficiently small absolute values of a(σ)

int , i.e., (a(σ)
int )2 → 0 in (3.19c),

the form of the particle interactions in the Shan-Chen model corresponds to a
mean field approximation.

Fluid dynamics and equilibrium properties

For a one component system1 and the neglect of the term Tα (3.19c), the
Chapman-Enskog analysis of equation (3.19a) as described in section 2.4, fol-
lowed by a fluid-dynamic averageing procedure as described in 2.2, yields the
fluid-dynamic level equations [81, 82],

∂t%+∇ · (%u) = 0 (3.20a)

and

% [∂t + u · ∇]u = −∇
(

(1− d0)
D

c2T %

)
+∇ · (µ∇u) + %a + %aint . (3.20b)

In (3.20b), d0 denotes the equilibrium fraction of particles with zero speed,
D is the dimension, and the shear viscosity is given by

µ = %cT

(
τ − 1

2

)
. (3.21)

1Since σ ≡ σ̃ the indices σ and σ̃ will be skipped in the following
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The intrinsic particle interaction Fint appears as a mean field forcing-term
%aint in the momentum balance equation (3.20b), while the shear viscosity µ

(3.21) is independent of Fint. Expanding the effective density ξ in Fα (3.19b)
up to the linear order in the lattice constant, i.e.,

ξ(r + cα∆t)
!≈ ξ(r) +∇ξ · cα∆t , (3.22)

the mean field forcing-term %a can be interpreted as a discrete gradient,

%aint = −∇ b

2D
Gc2T ξ2 =: −∇V , (3.23)

which leads to a non-ideal equation of state in the momentum balance equation
(3.20b),

p :=
(1− d0)

D
c2T % + V . (3.24a)

In the weak interaction limit, G → 0, the equation of state (3.24a) approaches
an ideal form with

(1− d0)
D

c2T =
(1− d0)

D

kBT

m
(3.24b)

as a temperature scale. This temperature scale does not match the width
c2T of the equilibrium distribution function (2.19), which appears as a scaling
parameter in the small Mach number expansion (3.11b). Nevertheless, the
equation of state (3.24a) is consistent if the equilibrium fraction of resting
particles, d0, does not vary in space.

For G 6= 0, the non-ideal part of the equation of state (3.24a),

V =
b

2D
Gc2T ξ2 (3.24c)
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specifies the equilibrium properties of the system. The choice

ξ(%) != ξ0 (1− exp [−%/%0]) (3.25)

with arbitrary constants ξ0 and %0 leads to a van der Waals loop for (3.24a).

Wetting

As explained in section 1.1, the wetting behaviour of two fluid components on
a solid substrate in principle arises from an interplay of cohesive fluid-fluid and
adhesive fluid-substrate interactions.

In the frame of the Shan-Chen model, the wetting behaviour thus is deter-
mined by the sets of coupling constants and effective densities, {Gσσ̃}, {ξ(σ)},
and {ξ(σ̃)}, respectively, within the intrinsic force F(σ)

int (r, t) (3.16) between
particles of the type σ and particles of other types {σ̃},

F(σ)
int (r, t) = −ξ(σ)

|(r,t)

∑

{σ̃}

∑
α

Gσσ̃ξ
(σ̃)
|(r+cα∆t,t)

cα∆t . (3.26)

Cohesive fluid-fluid and adhesive fluid-substrate interactions thereby corre-
spond to a negative sign of the corresponding coupling constants, whereas a
positive sign of the latter would correspond to a repulsive interaction.

Technically, a planar solid substrate can be modeled by a layer of particles
which are pinned to their lattice sites, i.e, the distribution function for the zero
velocity for the solid component is fixed to a constant value at a certain layer
of lattice sites, while the distribution functions for non-zero velocities vanish.
A no-slip boundary condition at the substrate then is obtained by means of
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a particle bounce-back [34, 89, 90], which means that particles arriving at the
substrate layer at a certain time-step are sent back to the lattice point they
came from in a consecutive time-step, instead of undergoing specular reflection.

There is no means of defining interfacial tensions in the Shan-Chen model,
i.e, the macroscopic contact angle θ of a sessile droplet on a homogeneous
substrate is not a direct input parameter. Measured geometrically from sim-
ulation results, it can be related to a certain initial set of coupling constants
and effective densities, {(Gσσ̃, ξ

(σ), ξ(σ̃)
)}.

Naively, a sessile droplet on a solid substrate surrounded by a different
fluid component would correspond to a three-component system. However, the
interplay of cohesive fluid-fluid and adhesive fluid-substrate interactions leading
to a certain macroscopic contact angle can be modeled effectively by means of
a two-component system, in which particles of the same type do not interact
whereas particles of different types have a repulsive interaction, i.e, Gσσ ≡ 0
and Gσσ̃ > 0. A way to implement such a system of two immiscible fluids on
a chemically patterned solid substrate by specifying two different components
only is described in section 4.2.
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3.3 The free energy model

The free energy model is a lattice Boltzmann scheme developed by J.M. Yeo-
mans and collaborators in order to model the dynamics of phase separation
and two phase fluid flow. The model is a top-down approach in the sense that,
following the Cahn-Hilliard theory of non-equilibrium dynamics [59, 64, 91, 92],
the stress tensor on the fluid-dynamic limit is constructed from a free energy
density Ψ as a function of the particle density %.

The free energy density Ψ(%) is chosen in the frame of the van der Waals
theory of quasi-local thermodynamics, i.e.,

Ψ(%) = Ψb(%, T ) +
κ

2
|∂k%|2 . (3.27)

where Ψb(%, T ) is the bulk free energy density and the gradient term describes
the contribution necessary to build up an interface within the system. The
integral of Ψ(%) over the fluid volume is minimized by the equilibrium density.
The bulk free energy density,

Ψb(%, T ) = W (%, T )− pb(T ) + µb(T )% , (3.28)

incorporates an excess free energy density W (%, T ), the bulk pressure pb(T ),
and the chemical potential of the bulk, µb(T ). The excess free energy density
W (%, T ) has a double well structure with respect to the density % such, that
both W (%) and its partial derivative vanish in the bulk,

W (%)|%b
= 0 , (3.29a)

∂%W (%)|%b
= 0 . (3.29b)
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The connection to the underlying kinetic level is established by imposing con-
straints on the fluid-dynamic moments obtained from the single-particle phase
space distribution function f such, that the desired fluid-dynamic level equa-
tions are obtained.

The free energy model is based on the single-component lattice Boltzmann
equation2

fα(r+ cα∆t, t+∆t)− fα(r, t) = − 1
λ

[
fα(r, t)− φα (cα,u)|(r,t)

]
∆t . (3.30)

The local Maxwellian φα is given by an expansion in the local velocity u,

φα
!=
Aα

c2T
+
Bα

c2T
(ζα · u) +

Cα

c2T
u2 +

Dα

c4T
(ζα · u)2 +

Gα,ij

c4T
ζα,iζα,j , (3.31)

where, according to (2.51), the thermal velocity cT is proportional to the lattice
constant. The coefficients, Aα, Bα, Cα, and Gα,ij , within the expansion (3.31)
are determined via the fluid dynamic moments of the fundamental collision
invariants {ψ(η)} (2.11),

M(0)
[
ψ(0)

]
= % , (3.32a)

M(0)
[
ψ(i)

]
= %ui , (3.32b)

M(1)
i

[
ψ(j)

]
= Pij + %uiuj , (3.32c)

M(2)
ij

[
ψ(k)

]
=

1
3
% (uiδjk + ujδik + ukδij) . (3.32d)

2A forcing-term due to an external field is not taken into account in the following.
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In the framework of the BGK-model, the above fluid-dynamic moments corre-
spond to constraints on the local Maxwellian φα, i.e, according to (2.62),

M(0)[ψ(η)] :=
∑
α

ψ(η)
α fα ≡

∑
α

ψ(η)
α φα , (3.33a)

M(1)
i [ψ(η)] . . . , (3.33b)

... .

The free energy density Ψ(%) enters into this scheme via the stress tensor
Pij in (3.32c). Following Cahn-Hilliard theory, the stress tensor reads

Pij
!= Πij [ψ] + µ (∂jui + ∂iuj) . (3.34a)

Since the free energy density Ψ does not explicitely depend on the positional
degrees of freedom, the tensor Πij follows from the Noether theorem, i.e.,

Πij [ψ] !=
[
δij − (∂i%) ∂(∂j%)

]
(Ψ− µb%) = p̃δij + κ(∂i%)(∂j%) , (3.34b)

where

p̃ = p− κ% ∂2
i %−

κ

2
(∂i%)2 . (3.34c)

The expression p̃ (3.34c) is the local pressure and the quantity p therein is
associated with the bulk free energy density Ψb via Legendre transformation,

p
!=

(
1− %

d

d%

)
Ψb . (3.35)
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Hence, in the equilibrium case one has p = pb in the bulk regions, according to
(3.27), (3.28), and (3.29), and the conservation of momentum takes the form
∂iΠij = 0.

In the low Mach number regime, the fluid-dynamic momentum equation
obtained from the lattice Boltzmann equation reads [88]

% [∂t + uj∂j ]ui = −∂j

{
Πij − µ (∂jui + ∂iuj)

}
, (3.36)

with the dynamic viscosity,

µ = %cT

(
τ − 1

2

)
, (3.37)

equivalent to the expression (2.85).

Wetting

The local interfacial tension σff of an interface separating two fluids in equilib-
rium may be obtained via an integration of the free energy density Ψb along
the direction r⊥ perpendicular to the interface,

σff :=
∫
dr⊥

{
Ψb(%, T ) +

κ

2
|∂k%|2

}
eq

. (3.38)

In order to model the formation of a three-phase contact line due to the presence
of a solid substrate, the surface free energy density of the solid Ψs(%s) has to
be taken into account, which, according to the Cahn theory [93, 94], is given
by an expansion in powers of the fluid density %s at the substrate.
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In the free energy model, the linear order is taken into account exclusively,

Ψs(%s) := −pw%s , (3.39a)

where the constant pw is called the wetting potential.
Accordingly, the general expression for the solid-fluid interfacial tension is

σsf :=
[ ∫

dr⊥
{

Ψb(%, T ) +
κ

2
|∂r⊥%|2

}
+ pw%s

]

eq

. (3.39b)

The minimization of the kernel in (3.39b) with respect to the fluid density %
yields an Euler-Lagrange equation for the fluid region,

∂% Ψb − κ (∂2
r⊥%)

!= 0 , (3.40a)

and a natural boundary condition [93, 94] on the substrate,

κ (∂r⊥%)
!=
dΨs

d%s
= −pw . (3.40b)

By means of a first integral of (3.39a) and the boundary condition (3.39b),
the density %s follows from the wetting potential pw, and thus, the solid-fluid
interfacial tension σsf and the fluid-fluid (liquid-gas) interfacial tension σlg are
specified by the wetting potential pw, the bulk free energy density Ψb, and the
bulk density of the fluid %b, i.e.,

σsf = −pw%s +
∫ %s

%b

d%
√

2κΨb , (3.41a)
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and
σlg =

∫ %s

%g

d%
√

2κΨb . (3.41b)

According to the relations (3.41) and Young ’s Law (1.7b), the macroscopic
contact angle θ plays the role of an input parameter within the free energy
model.
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Chapter 4

Macroscopic Fluid

Properties

In the following, the numerical determination of fluid morphologies on chemical
channels is presented. The calculations include both, the formation of equilib-
rium morphologies, and the morphologic behaviour in the presence of driving
body forces. The length-scale regime is defined by (1.3), i.e., the equilibrium
morphologies are well described by the capillary model.

Inspired by the detection of a morphologic transition of fluid droplets on
straight chemical channels [38–41], the equilibrium morphologies of fluid droplets
on straight and branched chemical channels have been investigated based on

115
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the free energy (1.5),

F =
∫
dAlg σlg +

∫
dAsl (σsl − σsg)

︸ ︷︷ ︸
:=F̃

− ∆p
∫
dVl , (4.1)

i.e., the interfacial free energy F̃ is minimized under the constraint of a fixed
fluid volume Vl by means of the finite element algorithm described in section
1.3.

Under certain conditions, the morphologic behaviour of a fluid droplet on
a straight chemical channel is more complex than it might appear at first
sight. If the fluid volume and the wettability on the channel are chosen such,
that a sufficiently large part of the three-phase contact line is pinned at the
channel edges, the minimization problem of the interfacial free energy exhibits
a bifurcation depending on the fluid volume and the wettability on the channel,
which means that the droplet may undergo a so-called morphologic transition.
This scenario is shown to be a matter of the smoothness of the channel edges,
i.e., the smoothness of a corresponding wettability profile.

The morphologic transition matters if the fluid is placed in the vicinity of
a junction of chemical channels. In terms of the interfacial free energy F̃ , this
may be explained by the topology of the energetic landscape with respect to
the lateral coordinates the fluid is subject to at the junction.

The relaxation and the driven dynamics of fluid droplets on chemical chan-
nels have been investigated by means of lattice Boltzmann simulations. The
algorithm used is based on a numerical implementation of the Shan-Chen model
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[83, 87, 95, 96] described in section 3.2. In the lattice Boltzmann simulations on
the relaxation of fluid droplets on straight chemical channels, the abovemen-
tioned bifurcation detected in the free energy approach was reproduced qual-
itatively. The simulations of fluid droplets driven by an external body force
reveal a morphologic behaviour which is reminiscent of the Landau-Levich ef-
fect [97–100].



118 CHAPTER 4. MACROSCOPIC FLUID PROPERTIES

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

t s
(x

)/
[σ

lg
]

x/[x0]

(1.23b)⇐⇒

 40

 60

 80

 100

 120

 140

 160

 180

 0  0.5  1  1.5  2

θ s
(x

)/
[d

eg
]

x/[x0]

Figure 4.1: Chemical steps modeled by smooth wettability profiles ts(x) of the
line integral kernel (1.23b) according to (4.3). The profiles ts(x) translate into
corresponding profiles θs(x) of the macroscopic contact angle. The wettability
contrast corresponds to plateau values θphob = 140◦ and θphob = 180◦, and
the common plateau value corresponds to θphil = 38◦. The smoothness is
s/[w] = 0.05 and the range [x − f(y)] = ±s is marked by the black vertical
lines.

4.1 Morphologic transitions on chemical chan-

nels

Numerical calculations of the equilibrium morphology of fluid droplets on straight
and branched chemical channels are presented within this section. A straight
chemical channel is defined by two parallel, confining chemical steps. In terms
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θphob

θphil
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y = g(x)

x = f(y)w w

x
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Figure 4.2: Sketch of the channel geometries in the xy-plane. The parameters
θphil and θphob correspond to the plateau values of the macroscopic contact an-
gle. The transtion between the plateau values which characterizes the channel
edges may be given by (4.2) or (4.3), i.e., the edges may be sharp or smooth,
respectively. The opening angle α of the y-junction is 45◦. The shape of the
corners (1) and (2) is determined by the parameters b and c in (4.4).

of the interfacial free energy F̃ (1.23a), a chemical step is represented by a
modification of the line integral kernel k (1.23b) such, that the expression
t := (σlg/x)k ·ey = σlg cos θ interpolates between a lyophilic plateau value tphil

and a lyophobic plateau value tphob.

In the discontinuous border case, the wettability profile is given by a jump
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Figure 4.3: Stable bulge-like and metastable ridge-like morphology on a sharp
chemical channel. The lyophilic contact angle and the specific volume are
θphil = 38◦ and Vl/[w3] = 4.0, respectively. The configurations are obtained
via the numerical minimization of the interfacial free energy F̃ (1.23a) as an
output of the finite element algorithm described in section 1.3. The channel
edges are indicated by the red lines and the black line indicates the three-phase
contact line.

∆t := tphob − tphil between the plateau values tphil and tphob, i.e.,

t(x, y) != tphil + ∆tΘ
(
x− f(y)

)
, (4.2)

where the analytic function x = f(y) parameterizes the position of the step in
the xy-plane. A smooth wettability transition can be parameterized by

ts(x, y) = tphil +
∆t
2

{
tanh

[(
x− f(y)

)

s

]
+ 1

}
, (4.3)
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where s = |x − f(y)| defines the range in which the slope of the profile can
chosen to be constant. The parameter s thus is a measure for the smoothness
of a channel edge. According to (1.23b) the profile ts(x) translates into a profile
θs(x) for the macroscopic contact angle with plateau values θphil and θphob, see
figure 4.1. Concisely, chemical channel edges modeled by (4.2) and (4.3) are
called “sharp” and “smooth”, respectively.

The investigated channel patterns are depicted in figure 4.2. In case of the
y-shaped junction one has

f(y) =
b

2

(√
1 +

(y
b

)2
)

tanα+
w

2
(4.4a)

and

g(x) = −c
√

1 +
(y
c

)2

tanα− w

(
1

sinα
+

1
2 tanα

)
, (4.4b)

where the parameters b and c define the shape of the corners (1) and (2),
respectively.

The uniform channel width w serves as a scaling parameter, hence, the
specific liquid volume on a chemical channel and the relative smoothness of the
channel edges are defined as Vl/[w3] and s/[w], respectively. The parameter
space for the investigation of liquid morphologies on straight chemical channels
is spanned by Vl/[w3], s/[w], and the lyophilic contact angle θphil.
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Droplets on straight chemical channels

The geometrically simplest system to look at is a straight chemical channel with
sharp edges, a so-called sharp channel. For a lyophilic contact angle θphil = 38◦

and a specific liquid volume Vl/[w3] = 4.0, the configurations shown in figure
4.3 are the equilibrium liquid morphologies on such a channel.

The bulge-like morphology on the left is energetically stable whereas the
ridge-like morphology on the right is metastable, i.e., these morphologies cor-
respond to a global and a local minimum of F̃ , respectively. In case of a
specific volume Vl/[w3] = 3.0 however, the situation changes and a ridge-like
morphology is the only stable configuration.

In order to unfold this energetic behaviour, the interfacial free energy F̃

is minimized under the additional constraint of a fixed center of mass height,
denoted z̄, where the substrate at z = 0 is the plane of reference. The constraint
on the center of mass corresponds to a homogeneous body force acting in the
z-direction perpendicular to the substrate. Hence, fixing z̄ successively during
the minimization of F̃ means pushing or pulling the liquid onto or away from
the substrate.

In figure 4.4, the interfacial free energy F̃ (4.1) as a function of z̄ is shown
for different values of the specific volume, 3.0 ≤ Vl/[w3] ≤ 4.0. The two well
pronounced energetic minima in the graph for Vl/[w3] = 4.0 correspond to the
equilibrium morphologies shown in figure 4.3.

Starting from large values, the change of F̃ as a function of z̄ for decreas-
ing values of Vl/[w3] illustrates the morphologic transition between bulge-like
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and ridge-like morphologies, i.e., stable bulges at Vl/[w3] = 4.0 first become
metastable and finally unstable, while simultaneously the ridges switch from
metastability at Vl/[w3] = 4.0 to stability at Vl/[w3] = 3.0. The position of the
energetic minima of the ridge-like morphologies hardly depends on z̄, which
means that the ridges only become longer when increasing V/[w3]. For very
large values of V/[w3], however, the ridges become unstable.

Based on this scenario for a fixed lyophilic contact angle θphil, the bifurca-
tion diagramm in figure 4.5 gives the regions of stability and metastability of
liquid bulges and ridges on a sharp chemical channel in the parameter space
spanned by θphil and Vl/[w3], [40, 41].

The line marked by θ∗ separates the region of stable ridges (II) from the
region of stable bulges (III), i.e., F̃ as a function of z̄ has two equally deep min-
ima on this line. In the regions between the line marked by θ∗ and the border
lines marked by θbu and θch, the bulge-like and ridge-like morphologies, respec-
tively, are metastable. On these border lines no local minimum exists, instead,
F̃ is characterized by an inflection point and a single global minimum. Hence,
only one stable configuration exists, either bulge-like or ridge-like. Beyond, F̃
has only one global minimum. In the region (I) corresponding to low specific
volumes Vl/[w3], the liquid collects in spherical caps, which do not touch the
channel edges. The plots of the interfacial free energy F̃ as a function of z̄ may
be seen as a deconvolution of the bifurcation diagram along an axis of constant
θ.

The analysis of the interfacial free energy F̃ for smooth channel edges mod-
eled by (4.3) shows, that the morphologic transition is strongly influenced by
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the relative smoothness s/[w]. The impact of s/[w] on the interfacial free energy
F̃ as a function of z̄ is shown in figures 4.6 and 4.7. Enhancing s/[w] destabi-
lizes the ridges, i.e., there is a gain in interfacial free energy accompanied by a
disappearance of the energy barrier with respect to liquid bulges.

Figure 4.6 illustrates the destabilization of an initially metastable ridge with
a specific volume Vl/[w3] = 4.0, and figure 4.7 illustrates the same for an ini-
tially stable ridge with Vl/[w3] = 3.0. In principle, this can be understood by
means of the border case s→∞ of infinitely smooth channel edges. This case
asymptotically approximates a homogeneous substrate on which the equilib-
rium liquid morphology has the shape of a spherical cap and liquid ridges are
not stable. However, this point of view is not very satisfying since the relative
smoothness s/[w] needed to destabilize the ridges is rather far from this border
case. Instead, it is more instructive to have a look at the behaviour of the
three-phase contact line. The figure 4.8 shows the three-phase contact lines at
the tongue of liquid ridges for different values of the relative smoothness s/[w],
and for specific volumina Vl/[w3] = 3.0 and Vl/[w3] = 4.0. The parameters
in figure 4.8 correspond to the parameters in the figures 4.6 and 4.7 , i.e., the
ridges correspond to the left minima. The channel is aligned with the y-axis,
which means that the channel edges are at x = ±w/2 and the niveau x = 0
corresponds to the longitudinal symmetry axis of the channel.

In the case of sharp channel edges, the three-phase contact line is pinned
at the channel edge, i.e., it exactly follows the edge at x = w/2 and it exhibits
a kink when entering the channel area. The contact angle at the pinned part
of the three-phase contact line may take any value between θphil and θphob.



4.1. MORPHOLOGIC TRANSITIONS ON CHEMICAL CHANNELS 125

In the case of a smooth wettability profile ts(x), the three-phase contact line
depins from the edge for increasing values of the relative smoothness s/[w], i.e.,
it does not follow the niveau x = w/2 any longer.

The depinning of the three-phase contact line has two effects. Firstly, the
contact angle along the entire three-phase contact line is given by the locally
varying contact angle θs(x), and secondly, the specific volume effectively in-
creases for increasing values of the smoothness s/[w], since the ridges are com-
pressed at the base. For Vl/[w3] = 4.0 and s/[w] = 1/50 the effective value of
the specific volume is approximated by Vl/[(0.9w)3] ≈ 5.487. A look on the
bifurcation diagram 4.5 shows, that this effective increase of the specific volume
by itself does not cause the ridge to be unstable. Hence, the local contact angle
profile θs(x) has to be taken into account in order to explain the instability.
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Figure 4.4: Morphologic transition between bulge-like and ridge-like liquid mor-
phologies on a sharp chemical channel illustrated by the behaviour of the in-
terfacial free energy F̃ with respect to the center of mass height z̄ for different
specific volumina Vl/[w3] and a fixed contact angle θ = 38◦. Equivalent calcu-
lations are described in [40, 41].
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Figure 4.5: Bifurcation diagram [40, 41] displaying the regions of
(meta)stability of liquid ridges (II) and bulges (III) in the parameter space
spanned by the lyophilic contact angle and the specific volume. The figure 4.4
unfolds this diagram along the ordinate at θphil ≡ θγ = 38◦
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Figure 4.6: Destabilization of an initially metastable liquid ridge with a specific
volume Vl/[w3] = 4.0 on a chemical channel due to a certain relative smoothness
s/[w] of the channel edges. The smoothness parameter s is defined in (4.3).
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Figure 4.7: Destabilization of an initially stable liquid ridge with a specific
volume Vl/[w3] = 3.0 on a chemical channel due to a certain relative smoothness
s/[w] of the channel edges. The smoothness parameter s is defined in (4.3).
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Figure 4.8: Three-phase contact lines at the tongue of a liquid ridge on a
chemical channel for different values of the relative smoothness s/[w]. The
ordinate is the lateral direction perpendicular to the channel and the channel
edge is at w/2. The plots for the specific volumina Vl/[w3] = 3.0 and Vl/[w3] =
4.0 correspond to the plots of the interfacial free energy F̃ (z̄) in the figures 4.6
and 4.7, respectively. For sharp channel edges, the three-phase contact line is
pinned at the edge at x = w/2, which gives rise to a minimum of the interfacial
free energy F̃ . In the case of smooth channel edges given by profiles ts(x) (4.3),
the three-phase contact line depins.
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Figure 4.9: Top and bottom view of a droplet sitting on a chemical junction.
The geometry of the junction is given in figure 4.2 and the blue lines denote
the coordinate axes. The center of mass components x̄ and ȳ have been fixed
during the minimization of F̃ in order to keep the droplet at a fixed position.
The lyophilic contact angle and the specific liquid volume are θphil = 60◦ and
Vl/[w3] = 1.2, respectively.

Droplets on branched chemical channels

A consequence of the morphologic transition on straight chemical channel de-
scribed above is, that an energetically stable bulge-like morphology may be
transformed into the metastable ridge if the fluid passes an intersection of
channels. This is shown in the following for the case of the y-junction depicted
in figure 4.2.

Apart from spilling, a droplet sitting on a straight channel can spread only
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along the channel axis, while lateral spreading is facilitated for a droplet sitting
in the junction area. Hence, there is a reduced specific volume in the junction
area compared to the value Vl/[w3] out on the channels. This kind of inho-
mogeneity transforms into a global minimum of the free energy landscape the
droplet is subject to, since a droplet sitting in the junction area is enabled to
approximate a spherical shape a little bit better than a droplet sitting on a
channel.

The free energy landscape for a droplet on the y-junction may be obtained
via the minimization of the interfacial free energy under a constraint on the
center of mass of the fluid in such a way, that the center of mass components
in the xy-plane, x̄ and ȳ, are fixed while z̄ remains unconstrained. Effectively,
this corresponds to a two-component, homogeneous body force which keeps the
droplet at a certain lateral position on the junction while it is taking a shape
of minimal interfacial free energy. The free energy landscape F̃ (x, y) then is
scanned by minimizing F̃ (1.23) for given parameters θphil and Vl/[w3] while
moving the center of mass around in the xy-plane.

The figures 4.10 and 4.11 show the free energy landscape and the corre-
sponding contour plot of the y-junction, respectively, and the figure 4.9 shows
a top and bottom view of the probing droplet as it expands into the channel
region. The chemical steps defining the junction, indicated by the thick red
lines, are sharp, the lyophilic contact angle is θphil = 60◦, and the specific fluid
volume is Vl/[w3] = 1.2.

The energetic minimum clearly shows up at the center of the junction. For
a given value of Vl/[w3] and a decreasing contact angle contrast, the energy
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landscape evidently flattens. This is shown in figure 4.12 via cuts of F̃ (x̄, ȳ) for
different lyophilic contact angles θphil. The cuts along x̄ show an overshoot at
the channel edges. This overshoot occurs due to the pinning of the three-phase
contact line at the channel edges if the center of mass components x̄ and ȳ are
fixed in the lyophobic vicinity of the channel edge. If they are fixed sufficiently
far away from the channel edges, the three-phase contact line is forced to depin
and the energy landscape is flat.

The figures 4.13 and 4.14 depict the scenario when an initially stable droplet,
characterized by V/[w3] = 4.0 and θphil = 38◦, passes the y-junction. There-
fore, the droplet sitting on the ingoing channel has been guided through the
junction onto one of the outgoing branches such, that the center of mass pro-
jection on the substrate follows the bottom of the energetic valley of the free
energy landscape.

The interfacial free energy F̃ has been minimized for successively fixed val-
ues of ȳ while x̄ was left unconstrained, i.e., ȳ defines the position on the junc-
tion and x̄ is adjusted self-consistently during the minimization process. Via
an additional constraint on the center of mass height z̄ the energetic behaviour
of the liquid has been unfolded analog to the plots in figure 4.4.

The graph for ȳ/[w] = 10.0 in the upper part of figure 4.13 is congruent
with the graph for V/[w3] = 4.0 in figure 4.4. Hence, the droplet in this case is
too far away from the junction to be aware of the energetic minimum. Upon
approaching the junction, i.e., for ȳ/[w] → 2.0, ridge-like configurations are
energetically stabilized and bulges are destabilized. This is due to the fact that
a certain amount of fluid in the ridge is sucked into the energetic minimum
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at the center of the junction, while the bulge is not influenced significantly.
Evidently, the liquid takes a state of lowest interfacial free energy possible if it
is sucked completely into the junction.

The process when a liquid bulge initially sitting at ȳ = 0.0 is pulled onto
one of the outgoing branches, i.e., ȳ → −10.0, is depicted in the lower part
of figure 4.13. In this case the effect of the energetic minimum is to retain
some liquid in the junction while the rest is pulled out, hence, only meta-stable
bulges are possible in the vicinity of the junction. Figure 4.14 shows stable
and metastable liquid morphologies at different positions ȳ/[w] on the junction
corresponding to global and local energetic minima in figure 4.13, respectively.
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the droplet shown in figure 4.9.
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Figure 4.11: Contour plot corresponding to the free energy landscape in figure
4.10.
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Figure 4.12: Cuts of free energy landscapes along x̄ through the global min-
imum and along ȳ at x̄ ≡ 0. The cuts are taken for a decreasing maximum
contact angle contrast, i.e., for different values of θphil and θphob ≡ 180◦. The
cuts along ȳ are shifted such, that they are at the level zero at high values ȳ.
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Figure 4.13: Quasi-stationary picture of a liquid droplet driven into and out of
a chemical junction. The geometry of the junction is given by figure 4.2. The
interfacial free energy F̃ is plotted versus z̄ for θphil = 38◦, Vl/[w3] = 4.0, and
different positions ȳ of the droplet.
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ȳ/[w] = 5.0
ȳ/[w] = 0.0

ȳ/[w] = −1.0
ȳ/[w] = −5.0

Figure 4.14: Stabilized ridge morphologies and metastable bulge morphologies
on the junction at different positions ȳ/[w].
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4.2 Dynamics on chemical channels

Within this section, lattice Boltzmann simulations on the time evolution of fluid
morphologies on chemical channels are presented. The numerical algorithm
used for the simulations is version 5.0 of the LB3D-algorithm [83, 87, 95, 96],
a three-dimensional, parallel implementation of the Shan-Chen model. The
simulations have been performed on a system of two immiscible fluids in contact
with a solid substrate. The fluid system corresponds to, e.g., a droplet of oil
surrounded by water.

According to (3.16), the immiscibility between oil and water (indices “o”
and “w”) is modeled by an interaction defined on neighbouring lattice sites r
and r + cα∆t,

F(o)
int(r, t) = −ξ(o)|(r,t)

∑
α

Gow ξ
(w)
|(r+cα∆t,t)

cα∆t , (4.5)

with effective densities ξ(o) and ξ(w) depending on the actual oil and water
densities %(o) and %(w), respectively, according to (3.25),

ξ(o,w) = 1− exp[%(o,w)] . (4.6)

A positive value of the oil-water coupling constant Gow leads to a repulsion
between oil and water particles. Particles of the same type are supposed to
interact via elastic collisions only. Hence, there are no oil-oil and water-water
interaction terms in (4.5), i.e., Goo = Gww ≡ 0.0. Further, oil and water are
characterized by equal values of the particle mass, the relaxation time, and,
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according to (3.21), the viscosity, i.e., mo = mw ≡ m, τo = τw ≡ τ , and
µo = µw ≡ µ, respectively. The choice of parameters in the simulations was
Gow = 0.2, m = 1.0, and τ = 1.0. The viscosity therefore is µ/[mc2T ] = 1/6
with the thermal velocity cT related to the lattice constant a via (3.4), i.e.,
a =

√
3 cT /∆t.

Since one-component-two-phase systems modeled by lattice Boltzmann al-
gorithms generally are characterized by quite diffuse interfaces prone to insta-
bilities under drive like, e.g., the Kelvin-Helmholtz instability, the oil-water
set-up described above has been chosen in order to guarantee a well-defined
and stable fluid-fluid interface [101–104].

Figure 4.15 depicts a droplet of oil sitting on a chemical channel close to
equilibrium1. The simulation box in figure 4.15 has a length of 600a, a width
of 200a, and a height of 100a, where a is the periodicity of the positional
lattice. The chemical channel marked red has a width w/[a] = 20 and the
specific volume of the droplet is Vo/[w3] = 4.0. The channel is defined by a
sharp wettability contrast to the non-wetting vicinity, i.e, the wettability jumps
between plateau values on the red and blue areas within one lattice unit a. The
substrate is posed as the bottom of the simulation box, and the box is capped
by a homogeneous solid plate with the same wettability as the non-wetting blue
parts of the substrate.

Both, the substrate, and the top plate consist of a layer of oil particles which
are pinned to their lattice sites, i.e., in collisions these layers act as solid walls
unable to take neither momentum nor energy. No-slip boundary conditions

1The initial configuration and the relaxation process will be discussed later on.



144 CHAPTER 4. MACROSCOPIC FLUID PROPERTIES

at these layers are modeled via a particle bounce-back [89, 90], i.e, particles
arriving at the substrate layers are sent back to the lattice point they came
from instead of undergoing specular reflection. Periodic boundary conditions
are applied at the lateral front ends of the box.

The wettability of a layer of fixed oil particles imitating a solid substrate
is specified via the density of the pinned oil %(o)

|substrate
within the oil-water in-

teraction F(o)
int (4.5), i.e., chemical patterns are given by a certain dependence

of %(o)
|substrate

on lateral coordinates. There is no means of defining interfacial
tensions in the Shan-Chen model, i.e, the macroscopic contact angle θ as a
measure of wettability is not a direct simulation input parameter. Measured
from separate simulations on a homogeneous substrate for a given oil-water
coupling Gow, the contact angle θ has to be related to the initial set-up of the
densities of fixed oil, mobile oil, and water, respectively.

The set-up of initial densities for the system in figure 4.15 has been chosen
such, that the macroscopic contact angle in equilibrium on and beyond the
channel is θphil ≈ 38◦ and θpob ≈ 140◦, respectively [105]. The oil droplet
in figure 4.15 is displayed by a contour corresponding to half the value of the
maximum density of mobile oil. Figure 4.16 shows vertical cuts of the droplet
along and perpendicular to the symmetry axis of the channel and figure 4.17
shows lateral cuts of the droplet given by the first and second layer of lattice
points above the substrate. The color code assigned to the lattice points refers
to the local mass density of the oil. The top plate and the surrounding water
are not shown in the figures. The droplet has a well defined interface of about
three to four lattice points in thickness and a homogeneous density inside. In
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contrast to the pinning of the three-phase contact line to the channel edges
observed in the free energy picture, see figure 4.8, there is a spillage onto the
lyophobic part of the substrate. The snapshot of the droplet in figure 4.15 has
been taken after 104 time-steps ∆t. Since at this simulation time there has
not been any appreciable changes in the density distribution with respect to
the situation a several hundred ∆t ago, the configuration is considered close to
equilibrium.

Relaxation of droplets on chemical channels

It has been shown in the preceding sections, that for a specific volumes Vl/[w3] =
4.0 and Vl/[w3] = 3.0 liquid bulges and ridges, respectively, are energetically
stable configurations on a sharp chemical channel with a macroscopic contact
angle θ = 38◦, see figures 4.3 and 4.4. Accordingly, configurations like these
should be given as the endpoint of a relaxation process governed by the Navier-
Stokes equations, i.e., the underlying Boltzmann equation.

The droplet in figure 4.15 therefore corresponds to the stable bulge-like
equilibrium morphology in figure 4.3. The relaxation process of the droplet
is depicted on the left hand side of figure 4.18. The initial configuration is a
sphere of oil with a density %o = 0.7, which touches the stripe. The relaxation
happens very fast, due to the fact that the bulge-like equilibrium configuration
is quite similar to the initial sphere. The initial set-up on the right hand
side of figure 4.18 as well as the sequence of time-steps is the same as on the
left. However, the specific volume is reduced to Vo/[w3] = 3.0. The oil now



146 CHAPTER 4. MACROSCOPIC FLUID PROPERTIES

approaches a ridge-like equilibrium configuration and the relaxation process
is much slower. The scenario shown in figure 4.18 qualitatively confirms the
bifurcation detected in the free energy picture underlying the figures 4.3 and
4.4.

Driven droplet dynamics on chemical channels

The figures 4.19 show body-force driven droplets with Vo/[w3] = 4.0 on straight
chemical channels. There is a homogeneous acceleration aligned with the chan-
nel axis acting on both, the oil and the water. Since the simulation box is
capped, this leads to a non-linear Poiseuille-type flow profile. No-slip bound-
ary conditions modeled by a particle bounce-back are applied at the substrate
and the top plate, whereas the system is periodic with respect to the lateral,
open ends of the box. On the left hand side, the acceleration has an absolute
value a/[mcT τ−1] = 1.7 · 10−6 and the time window of the simulation spans
105 ∆t. The droplet moves along the channel without a considerable change
of its morphology, i.e, the thermal velocity cT characteristic for the relaxation
process is much higher than the macroscopic velocity field due to the drive. On
the right, the acceleration is increased, a/[mcT τ−1] = 1.4 · 10−5, and the time
window spans 4 · 104 ∆t. The morphologic behaviour of the moving droplet
reminds of the Landau-Levich effect [97–100], i.e., the tailing contact line falls
back behind the droplet and a thin film is formed on the channel. This is a
purely hydrodynamic effect studied in detail for coating problems.

The figures 4.20 - 4.22 show the driven case on a branched channel system
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for Vo/[w3] = 4.0. The acceleration is aligned along the axis of the straight
channel with an absolute value a/[mcT τ−1] = 1.4 · 10−5 and the time window
spans 105 ∆t. The patterning is asymmetric in the sense that one of the
branches forming the ring is slightly broader. In the symmetric case, the liquid
is either trapped at the junction or driven off the pattern onto the lyophobic
area depending on the strength of the driving force. The free energy landscape
of a y-junction shown in figure 4.10 has a global minimum, which acts as a
trap for the liquid. The situation qualitatively is the same in the figures 4.20
- 4.22. In the lattice Boltzmann simulations, the droplet would be trapped for
an acceleration a/[mcT τ−1] < 1.7 · 10−6.
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Figure 4.15: Lattice Boltzmann simulation of an oil droplet immersed in water
(not shown) on a chemical channel close to equilibrium. The macroscopic
contact angle on the channel is θphil ≈ 38◦ and the specific volume of the oil
droplet is V0/[w3] = 4.0.
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Figure 4.16: Vertical cuts of the droplet in figure 4.15 along and perpendicular
to the symmetry axis of the channel. The color code assigned to the lattice
points refers to the mass density of the oil. The substrate is not shown.
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Figure 4.17: Lateral cuts of the droplet in figure 4.15 showing first (left) and
second (right) layer of lattice points above the substrate. The color code as-
signed to the lattice points refers to the mass density of the oil.
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Figure 4.18: Relaxation process of a droplet of oil immersed in water on a
chemical channel. The macroscopic contact angle on the channel is θphil ≈ 38◦

and the specific volume of the oil droplet is V0/[w3] = 4.0 (left hand side) and
V0/[w3] = 3.0 (right hand side). In both cases, the sequence of time-steps ∆t
is the same.
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Figure 4.19: Droplet driven along a chemical channel for Vl/[w3] = 4.0 and
θphil ≈ 38◦. The acceleration is aligned parallel to channel axis with an absolute
value a/[mcT τ−1] = 1.7 · 10−6 (left hand side) and a/[mcT τ−1] = 1.4 · 10−5

(right hand side).



4.2. DYNAMICS ON CHEMICAL CHANNELS 155

2 · 103 ∆t

104 ∆t

3 · 104 ∆t



156 CHAPTER 4. MACROSCOPIC FLUID PROPERTIES

Figure 4.20: Droplet driven along a branched channel system for Vl/[w3] = 4.0
and θphil ≈ 38◦. The acceleration is aligned parallel to the axis of the straight
channel with an absolute value a/[mcT τ−1] = 1.7 · 10−5.
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Figure 4.21: Droplet driven along a branched channel system for Vl/[w3] = 4.0
and θphil ≈ 38◦. The acceleration is aligned parallel to the axis of the straight
channel with an absolute value a/[mcT τ−1] = 1.7 · 10−5.



4.2. DYNAMICS ON CHEMICAL CHANNELS 159

9 · 104 ∆t

10.5 · 104 ∆t

11 · 104 ∆t



160 CHAPTER 4. MACROSCOPIC FLUID PROPERTIES

Figure 4.22: Droplet driven along a branched channel system for Vl/[w3] = 4.0
and θphil ≈ 38◦. The acceleration is aligned parallel to the axis of the straight
channel with an absolute value a/[mcT τ−1] = 1.7 · 10−5.



Chapter 5

Mesoscopic Fluid

Properties

The matter of interest in the following is the energetic stability of mesoscop-
ically thin wetting films and the formation of mesoscopic fluid droplets. The
investigation is based on the effective free energy F (1.13) introduced in section
1.2 with a generic form of the effective interface potential φ(h).

Briefly reviewed, the effective interface potential φ(h) (1.12b) captures the
net effect of long-ranged fluid-fluid and fluid-substrate interactions as a function
of the fluid-fluid interfacial height h. The local not-overhanging interfacial
height profile h(R‖) parameterized by lateral coordinates R‖ on a planar solid

161
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Figure 5.1: Generic form of the effective interface potential φ(h) and the dis-
joining pressure Π(h) := −∂hφ(h) as a function of the interfacial height h for
a partially wetting substrate.

substrate is subject to the Euler-Lagrange equation (1.14),

∆p+ Π(h) + σlg∇2
‖h

!= 0 . (5.1)

Solving equation (5.1) is equivalent to an extremization of the effective free
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Figure 5.2: Effective interface potential φ(h), and disjoining pressure Π(h) =
−∂hφ(h) as a function of the interfacial height h according to the model (5.4).

energy F (1.13),

F =
∫

As

d2R‖
{
σlg

√
1 + |∇‖h|2 + φ

(
h(R‖)

) }

︸ ︷︷ ︸
=:F̃

− ∆p
∫

As

d2R‖ h(R‖) ,

(5.2)
with respect to the local interfacial height profile h(R‖), i.e., profiles which cor-
respond to global or local minima of F are energetically stable or metastable
equilibrium configurations, respectively, and profiles which correspond to max-
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ima of F are energetically unstable equilibrium configurations.
In (5.1) and (5.2) ∆p is the Laplace pressure, Π(h) is the disjoining pressure,

σlg is the liquid-gas interfacial tension, ∇‖ is the two-dimensional gradient with
respect to the lateral coordinates, As is the solid-liquid interfacial area, and F̃
is the effective interfacial free energy.

For the case that the underlying molecular interactions are of Lennard-Jones
type, the effective interface potential φ(h) has the algebraic form (1.16),

φ(h) =
∑

j≥2

aj h
−j . (5.3)

The energetic stability of wetting films with a certain height h stems from
the analytical properties of φ(h). The endpoint of a dewetting process driven
by φ(h), i.e., the collapse of energetically unstable or metastable films into
a set of droplets, is referred to as partial wetting. In case of unstable films,
dewetting happens spontaneously and one speaks of spinodal dewetting whereas
in case of metastable films the dewetting process has to be induced by the
nucleation of holes. In section 1.2, dewetting has been discussed by means
of the generic potential form displayed in figure 5.1. The finite equilibrium
film height h0 at which the effective interface potential φ(h) takes its global
minimum φ0, and hence, the disjoining pressure Π(h) := −∂hφ(h) vanishes,
defines the characteristic mesoscopic scale. Unstable film prone to spinodal
dewetting occur in the height regime between the two inflection points of φ(h)
where ∂2

hφ(h) < 0, and hence, Π(h) increases for increasing local interfacial
heights h.
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The thickness of the wetting films investigated in the following lies in the
range between h0 and the height hi of the subsequent inflection point. A
suitable generic potential form therefore is

φ(h) != η

(
1

8h8
− 1

2h2

)
, (5.4)

with an adjustable global minimum φ0 = −3/8η at h0 = 1, see figure 5.2.
The potential form (5.4) induces spinodal dewetting for any wetting film

with a height above the level hi, on the other hand, the level h0 corresponds
to a stable equilibrium wetting film at phase coexistence, i.e,

∆p = −Π|h0 ≡ 0 . (5.5)

Accordingly, in the range of film heights between h0 and hi a morphologic
transition takes place between a mesoscopically thin film and a set of mesoscopic
droplets, which means that initially stable wetting films become metastable
and finally unstable upon approaching the height hi, while simultaneously an
initially unstable configuration of mesoscopic droplets becomes stable.

The morphologic transition corresponds to a bifurcation with respect to the
extremization of the effective interfacial free energy F̃ (5.2), i.e, along a certain
path in the parameter space spanned by Vl, As, and the relative potential depth
|φ0/σlg|, there exist several solution branches of the Euler-Lagrange equation
(5.1). One of these branches corresponds to wetting films with a certain height
hf = Vl/As determined by the balance of a non-zero Laplace pressure and the
disjoining pressure,

∆p ≡ −Π|hf
. (5.6)
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The other branches correspond to configurations of mesoscopic droplets with
local interfacial height profiles h(R‖) determined by a non-trivial local bal-
ance of a non-zero Laplace pressure ∆p, the disjoining pressure Π(h), and the
curvature term σlg∇2

‖h.
Within the following sections, the calculation of the height profile h(R‖) of

mesoscopic droplets and the energetic deconvolution of the morphologic tran-
sition in the parameter space spanned by Vl, As, and |φ0/σlg| is the matter of
interest, based on the effective free energy F (5.2) with an effective interface
potential φ(h) modeled by (5.4).
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5.1 Mesoscopic droplet morphologies

As explained above, an extended wetting film with a height hf within the range
h0 < hf < hi might be stable or metastable with respect to the breakup into
a set of droplets, where h0 is the level of the global minimum φ0 and hi is the
level of the inflection point of φ(h).

This means that a film sector covering a certain substrate area As with a
certain interfacial height hf = Vl/As, enclosing the volume Vl, might represent
a local minimum of the interfacial free energy F̃ (5.2), while for the same values
of As and Vl a mesoscopic droplet given by a non-trivial local interfacial height
profile h(R‖) might represent a global minimum of F̃ , and vice versa.

The figure 5.3 shows the interfacial height profile of a mesoscopic droplet
with a solid-liquid interfacial areaAs/[πh2

0] = 1002, a liquid volume Vl/[Ash0] =
1.1273, and a relative potential depth |φ0/σlg| = 0.5. The profile is given by
a triangulated surface obtained via the numerical minimization of the effective
free energy F (5.2) with the model potential (5.4) by means of the finite element
algorithm described in section 1.3. Since the disjoining pressure Π(h) strongly
diverges at very small interfacial heights, see figure 5.2, the interfacial height
profile h(R‖) of the mesoscopic droplet is given by a cap smoothly evolving out
of a surrounding film, i.e., the substrate never falls dry. The Laplace pressure
∆p, which in the minimization of F plays the role of a Lagrange multiplier, in
this case is a positive constant. The height h̃ of the surrounding film exceeds
the equilibrium film height h0 due to the fact that on flat interfacial domains a
non-vanishing Laplace pressure has to be balanced by the disjoining pressure,
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i.e., ∆p = −Π|h̃.
Numerical minimization results for different ratios Vl/As indicate the mor-

phologic transition between a wetting film and a mesoscopic droplet.

. For Vl/As = h0, a wetting film is stable and a droplet does not exist as
an equilibrium configuration.

. For increasing values Vl/As → hi, droplets become first metastable and
finally stable with respect to flat wetting films.

. For Vl/As > hi, flat wetting films are unstable, i.e., even the slightest
bump in the triangulation causes a flat film to collapse into a droplet.

5.2 Analytical model

In order to unfold the morphologic transition energetically, the shape of the
free energy barrier between stable and metastable interfacial profiles has to be
calculated with respect to suitable parameters. Thereto, an approach is pre-
sented in the following, which allows for an analytic treatment of the effective
free energy F (5.2).

Within this approach, see figure 5.4 for a schematic sketch, the interfacial
height profile h(R‖) of a mesoscopic droplet is associated with a model profile
Ãlg, which is given by a spherical cap intersecting the surrounding film with a
height h̃ = h0 + ∆h at a certain angle α. The profile Ãlg covers the solid-fluid
interfacial area As and the liquid volume Vl corresponds to the space enclosed
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Vex/[Ash0] ∆h/[h0]anal. δh/[h0]num. ∆p/[σlgh
−1
0 ]anal. ∆p/[σlgh

−1
0 ]num.

0.05 0.02445 0.02501 0.16734 0.17110
0.1 0.01647 0.01583 0.11856 0.11442
0.5 0.01076 0.00836 0.08033 0.06221

Vex/[Ash0] F̃/[φ0As]anal. F̃/[φ0As]num.

0.05 1.01580 1.01646
0.1 1.02928 1.03048
0.5 1.09557 1.09881

Table 5.1: Comparison of numerical results versus the analytical results corre-
sponding to the profiles in figure 5.6.

by As and Ãlg. With the equilibrium film height h0 as the level of reference,
the following parameters are specified:

. ∆h denotes the excess height of the surrounding film.

. Vex := Vl −Ash0 denotes the excess liquid volume.

. hcap and Vcap denote the apex height and the volume of the cap, respec-
tively.
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By means of mechanical equilibrium arguments relying on φ0 ≈ φ|(h0=∆h),
the effective contact angle θ, at which the model profile Ãlg intersects the level
h0, can be related to the global minimum φ0 of the effective interface potential,

φ0 = σlg (cos θ − 1) . (5.7)

The underlying idea of the approach is to associate the interfacial height profile
h(R‖) of a mesoscopic droplet with a spherical cap, which is determined by
the global minimum φ0 of the effective interface potential and the liquid-gas
interfacial tension σlg.

The angle α thereby is an integration parameter for the evaluation of the
free energy F (5.2) on the profile Ãlg, which for a given potential depth φ0 is
determined by the excess volume Vex and the excess height ∆h. This means,
that for a given set (φ0, Vex) different sets (Vcap,∆h), and thus, different model
profiles Ãlg with different free energies F are possible. The set of possible
profiles Ãlg for a given set (φ0, Vex) can be specified by means of the two
limiting cases depicted in figure 5.5.

. The first limiting case for Ãlg is determined by ∆h = 0. This means
Vcap ≡ Vex, i.e., the cap has a maximum apex height h(max)

cap . The profile
Ãlg therefore consists of the spherical cap intersecting the surrounding
film at the level h0 under an angle α = θ. This case is depicted by the
blue line in figure 5.5.

. The second limiting case for Ãlg, depicted by the thick red line in figure
5.5, corresponds to a flat wetting film with a height ∆hmax := Vex/As.
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The associated spherical cap in this case does not intersect but touches
the film, i.e., the cap has has a minimum apex height h(min)

cap ≡ ∆hmax

and a minimum volume V (min)
cap while the angle α equals zero.

Accordingly, the model profiles Ãlg which for a given set (φ0, Vex) correspond to
mesoscopic droplets are given by spherical caps with a volume Vcap, intersecting
the surrounding film with an excess height ∆h at an angle α, where

V (min)
cap < Vcap ≤ Vex , 0 ≤ ∆h < ∆hmax , 0 < α ≤ θ .

The free energy F (5.2) now can be analyzed with respect to the parameter
∆h as follows.

. For fixed values of Vex, θ, and As, the parameters hcap and ∆h are cal-
culated for a certain number of profiles Ãlg.

. The interfacial free energy F̃ integrated on those profiles Ãlg is plotted
versus ∆h.

The Figure 5.6 shows interfacial height profiles obtained by means of the
analytical model compared to profiles obtained via numerical minimization by
means of the finite element algorithm for different values of the excess volume
Vex. The numerical data points represent vertical cuts of triangulated surfaces,
and the solid analytical curves are calculated by means of the parameter sets
(∆h, hcap) which correspond to minima of the interfacial free energy F̃ for
given values of As, Vex, and θ. The numerical profiles are flattened due to
the effective interface potential φ(h), which acts like an external field on the
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interfacial profile. A comparison of analytical and numerical values of the excess
film height ∆h, the Laplace pressure ∆p, and the interfacial free energy F̃ is
given in table 5.1.

5.3 The morphologic transition of mesoscopic

droplets

Based on the analytical approach introduced above, an investigation of the
morphologic transition between a mesoscopic droplet and a flat wetting film
in the parameter space spanned by the excess liquid volume Vex, the solid-
liquid interfacial area As, and the effective contact angle θ is presented in the
following.

The figure 5.7 shows plots of the interfacial free energy F̃ (5.2) as a function
of the excess film height ∆h for different values of Vex and fixed values of As and
θ. The excess film height ∆h is scaled by its maximum value ∆hmax and the
interfacial free energy F̃ is scaled by (φ∆ + σlg)As, where φ∆ := φ|(h0+∆hmax).
Hence, the point (1, 1) in which all plots coincide corresponds to flat wetting
films with excess heights ∆hmax ∈ { (Vex/As) }, as given by the second limiting
case of the analytical model, and the range ∆h/[∆hmax] < 1 corresponds to
mesoscopic droplets.

The plots for different values of the excess volume Vex in figure 5.7 reveal a
bifurcation leading to the morphologic transition: Below a certain threshold of
Vex a flat film is the only stable configuration. For increasing values of Vex, first
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a local minimum, and then a global minimum develops for ∆h/[∆hmax] < 1,
i.e, the mesoscopic droplet first becomes metastable while the flat film remains
stable, then it becomes stable while the film becomes metastable, and finally,
at high values of Vex, the flat film becomes unstable. The insert in figure 5.7
depicts the same data in a different scaling and the graphs are shifted vertically
such that the global minima have height zero.

The bifurcation revealed in figure 5.7 translates into a hysteresis of the
Laplace pressure ∆p with respect to the excess volume Vex, as shown in figure
5.8. The graph consists of two branches. The lower one refers to mesoscopic
droplets and the upper one refers to flat wetting films. Both branches have
an endpoint at which the corresponding morphology becomes unstable. The
red and blue squares correspond to stable and metastable configurations, re-
spectively, i.e., local or global minima of F̃ as shown in figure 5.7. The green
squares correspond to unstable equilibria, i.e., local maxima of F̃ . The non-
chained black squares are obtained via the numerical minimization of F with
∆p as a Lagrange parameter. The value of the excess liquid volume Ṽex for
which a morphology switches from stability to metastability is marked by a
blue vertical line. In this case, the interfacial free energy F̃ as a function of the
excess height ∆h has two equally deep minima.

The hysteresis may be described as follows. By increasing the liquid volume
a flat film may be driven along the upper branch until at the endpoint it
becomes unstable. Then, a jump happens to the lower branch, i.e., the film
collapses and a mesoscopic droplet forms. By decreasing the liquid volume
again, the system then can be driven on the lower branch until at the endpoint
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it jumps back again to the flat film morphology.

Figure 5.9 shows the morphologic transition with respect to the effective
contact angle θ for a fixed ratio Vex/As. There is a certain minimal value of θ,
i.e., a certain threshold for the relative potential depth |φ0/σlg|, above which a
mesoscopic droplet exists as a metastable configuration. For increasing values
of θ an energy barrier successively grows in height, which means an increase of
stability for both, mesoscopic droplets, and flat wetting films.

As already mentioned, the stability of the mesoscopic droplet is character-
ized by a local balance of ∆p, Π(h), and σlg∇2

‖ on the interfacial profile h(R‖),
while for the flat film with the height hf the balance ∆p = Π|hf

holds.

Accordingly, the morphologic transition is triggered by a competition be-
tween the disjoining pressure Π(h) := −∂hφ(h) and the interfacial tension σlg.
For a given ratio Vl/As, this competition affects the effective interfacial free
energy F̃ (5.2) in such a way, that the displacement of the curved interfacial
profile h(R‖) from the film level hf generates an energetic gain due to the in-
terfacial tension σlg, while an energetic loss might occur at the same time since
extensive parts of the displaced interface come closer to the global minimum
value φ0 at the level h0.

The figure 5.10 shows the impact on F̃ due to a change of Vex and As while
the ratio Vex/[Ash0] is kept constant. This corresponds to a flat wetting film
which spreads or shrinks at constant height due to an injection or an extraction
of liquid. The analysis of this scenario in terms of energetic loss due to φ and
energetic gain due to σlg as a function of As is given in figure 5.11, i.e., the
difference of loss and gain reveals whether the mesoscopic droplet may exist as
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a stable or a metastable configuration.
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Figure 5.3: Mesoscopic droplet morphology obtained by numerical minimiza-
tion of the effective interfacial free energy F̃ (5.2) for an effective contact angle
θ = 60◦ corresponding to a relative potential depth |φ0/σlg| = 0.5. The sub-
strate lying underneath is not shown. Due to rotational symmetry, it is possible
to simulate a quarter of the satem in order to save computational resources.
The refinement of the triangulation has been coupled to the need for spatial
resolution in an adaptive way in order to keep the mesh size sufficiently small
in the regions where the droplet evolves out of the film and bigger elsewhere.
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Figure 5.4: Schematic sketch of the analytical model. The thick black line
represents the analytic interfacial model profile Ãlg. The graph on right depicts
the effective interface potential φ(h) with a minimum at the level h0 as a
function of the interfacial height h.
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Figure 5.5: Schematic sketch of the border cases of the analytical model. The
thick blue line depicts the first border case determined by ∆h = 0 and Vcap ≡
Vex. The red lines represent the second border case, i.e., the case in which
the interfacial profile Ãlg is a flat film determined by ∆hmax := Vex/As and
h

(min)
cap ≡ ∆hmax.
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Figure 5.7: The morphologic transition with respect to the excess volume Vex

for fixed values of the effective contact angle θ and the solid-liquid interfacial
area As. The effective interfacial free energy F̃ is scaled by means of φ∆ :=
φ|(h0+∆hmax), i.e., the point (1, 1) corresponds to uniform films with a height
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