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Abstract

Piecewise polynomial approximations are fundamental to geometric modeling, computer graph-

ics, and finite element methods. The classical finite element method uses low order piecewise

polynomials defined on polygonal domains. The domains are discretized into simple polygons

called the mesh. These polygons might be triangles, quadrilaterals, etc., for two-dimensional

domains, and tetrahedra, hexahedra, etc., for three-dimensional domains. Meshing is often the

most timeconsuming process in finite element methods. In classical two-dimensional finite ele-

ment methods, the basis functions are usually hat functions defined on triangulations. Another

possible selection of a finite element basis in two dimensions are tensor product b-splines.

Bivariate B-splines are piecewise polynomials of degree n with support having (n + 1)2 cells.

The domain is discretized via a uniform grid. Relevant are those b-splines for which the support

intersects the domain. To keep the support of a relevant B-spline within the domain, we mul-

tiply it by a weight function. The weight function is positive in the interior of the domain and

vanishes on the boundary and outside of the domain. The resulting weighted B-splines conform

to homogeneous boundary conditions. They satisfy the usual properties of a finite element basis.

The insertion of new knots into the grid is not a good adaptive strategy because of the global

effect of knot insertion. Instead, hierarchical refinement is very effective for tensor product

splines. It permits the change of control points and subsequent editing of fine details in some

parts while keeping the other parts unaffected. For programming, a data structure is required

that not only keeps track of the refinement but also stores the information about the discretiza-

tion of the domain. Moreover, algorithms for assembling and solving the finite element system

are needed. In this thesis, we have developed such adaptive schemes with weighted B-splines and

implemented them in Matlab with an appropriate data structure.
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We proposed two different adaptive schemes for the selection of the sequence of subdomains

characterizing the refinement. The first scheme uses a predefined and strongly nested domain

sequence, appropriate, e.g., near a reentrant corner of the domain. For strongly nested domains,

the distance between the boundary of the subdomain with grid width h and the subdomain with

grid width h/2 is ≥ (2n + 1)h. For such a domain sequence, an error estimate can be obtained.

The second adaptive scheme is an automatic refinement process. The refinement is determined

by comparing the B-spline coefficients of an approximation with those of an approximation ob-

tained by refining all subdomains. The hierarchical refinement is then based on the regions

where the difference between the coefficients exceeds a given tolerance. Both adaptive schemes

yield convergence of the hierarchical approximations. The adaptive schemes are tested by solving

Poisson’s problem on domains with reentrant corners with refinement in the neighborhood of the

geometric singularity.



Abstract

Stückweise polynomiale Approximationen spielen in der Geometrischen Modellierung, Computer

graphik und bei Finite-Elemente-Methoden eine fundamentale Rolle. Klassische Finite-Elemente-

Verfahren benutzen stückweise Polynome niedriger Ordnung auf polygonalen Gebieten. Die Ge-

biete werden in einfache Polygone, das so genannte Netz, zerlegt. Diese Polygone können für

zweidimensionale Gebiete beispielsweise Dreiecke oder Vierecke sein, für dreidimensionale Gebie-

te Tetraeder oder Hexaeder. Die Netzgenerierung ist oft der zeitaufwändigste Prozess in der

Finite-Elemente-Methode. In der klassischen Finite-Elemente-Methode sind die Basisfunktionen

in zwei Dimensionen meist auf Triangulierungen definierte Hut-Funktionen. Eine andere mögliche

Wahl einer bivariaten Finite-Elemente-Basis sind Tensor-Produkt-B-Splines.

Bivariate B-Splines sind stückweise Polynome vom Grad n mit einem Träger, bestehend aus

(n + 1)2 Gitterzellen. Das Gebiet wird durch ein uniformes Gitter diskretisiert. Relevant sind

diejenigen B-Splines, deren Träger das Gebiet schneidet. Um den Träger eines relevanten B-

Splines auf das Gebiet einzuschränken, wird er mit einer Gewichtsfunktion multipliziert. Die

Gewichtsfunktion ist im Innern des Gebietes positiv und verschwindet auf dem Rand und außer-

halb des Gebietes. Die resultierenden gewichteten B-Splines erfüllen homogene Randbedingun-

gen. Sie besitzen die üblichen Eigenschaften einer Finite-Elemente-Basis.

Das Einfügen neuer Knoten in das Gitter ist keine gute adaptive Strategie aufgrund der

globalen Auswirkung des Knoteneinfügens. Stattdessen ist eine hierarchische Verfeinerung für

Tensorprodukt-Splines sehr effektiv. Sie erlaubt eine lokale Änderung von Kontrollpunkten mit

anschließender Modifikation kleiner Details in einigen Bereichen, ohne dabei andere Bereiche zu

beeinflussen. Zur Programmierung ist eine Datenstruktur notwendig, die sowohl die Verfeinerung

beschreibt als auch die Diskretisierung des Gebietes berücksichtigt. Des Weiteren werden Algo-

rithmen zur Aufstellung und Lösung des Finite-Elemente-Systems benötigt. In dieser Dissertation
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wurden solche adaptive Verfahren für gewichtete B-Splines entwickelt und mit einer entsprechen-

den Datenstruktur in Matlab implementiert.

Es wurden zwei verschiedene adaptive Schemata für die Auswahl der Folge der Teilgebiete,

die die Verfeinerung beschreiben, vorgeschlagen. Das erste Schema benutzt eine vorab definierte

stark geschachtelte Gebietsfolge, wie sie beispielsweise in der Umgebung einer einspringenden

Ecke sinnvoll ist. Für eine stark geschachtelte Gebietsfolge ist der Abstand zwischen dem Rand

des Gebiets mit Gitterweite h und dem Gebiet mit Gitterweite h/2 größer gleich (2n + 1)h. Für

eine solche Gebietsfolge kann eine Fehlerabschätzung gezeigt werden.

Das zweite adaptive Schema ist ein automatischer Unterteilungsprozess. Die Unterteilung

wird durch Vergleich der B-Spline-Koeffizienten einer Approximation mit denen einer Approx-

imation, die durch Unterteilung aller Teilgebiete entsteht, bestimmt. Die hierarchische Un-

terteilung basiert dann auf den Bereichen, bei denen die Differenz zwischen den Koeffizienten

eine vorgegebene Toleranz überschreitet. Für beide adaptiven Schemata erhält man Konvergenz

der hierarchischen Approximationen. Die adaptiven Schemata wurden für das Poisson-Problem

auf Gebieten mit einspringenden Ecken mit Verfeinerung in der Umgebung der geometrischen

Singularität getestet.
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Chapter 1

Introduction

The finite element method is used to solve complex structural analysis problems in civil and aero-

nautical engineering. It was first introduced in the work of Courant [Cou43], Argyris, Turner et.

al. [TCMT56], Clough and Zienkiewics [KJ96] in the middle of the last century (1941 and 1942).

Previously, Hrennikoff (1941) [Hre41] used a similar discretization technique. Turner, Martin and

Topp [TCMT56] as well as Argyris [Arg60, Arg64] used variational approximation in particular

for problems in civil engineering. The method provided a rigorous mathematical foundation in

1978 with the publication of Strang and Fix [Str73]. Since then, it has been generalized and used

in many branches of applied mathematics for numerical modeling of physical systems.

The finite element method is particularly useful for problems that do not have a classical

solution. Solutions are obtained in Sobolev spaces named after the Russian mathematician S. L.

Sobolev [Sob38]. Using Galerkin’s method, we find approximate solutions by solving the varia-

tional problem in a finite dimensional subspace.

Most commonly, the finite elements, the basis of the trial space, are defined on a mesh i.e.,

a partition of domain D into triangles, quadrilateral, tetrahedral or hexahedral cells. Triangles

and tetrahedra are preferred because of their geometric flexibility. In particular, generating hex-

ahedral meshes in three dimensions is rather difficult.

Splines play an important role in approximation and geometric modeling. They are widely

used in data fitting, computer aided design (CAD), automated manufacturing (CAM), and com-

puter graphics. B-splines were first defined by Schoenberg [Sch46] over uniform knots. This early

work revealed that splines possess powerful approximation properties. As a result, many approx-
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2 CHAPTER 1. INTRODUCTION

imation schemes have been proposed [ANW67]. These schemes have become popular, especially,

after de Boor’s work about splines [dB72]. Another contribution to spline theory is due to Bézier

who introduced the modern techniques of CAD/CAM. He uses Bernstein polynomials [Ber13]

for the geometric description of free form of curves and surfaces. Similar results were obtained

by de Casteljau and soon generalized to splines.

The use of B-splines as finite element basis functions seems promising. But due to the uni-

form support, it seems to be infeasible for two reasons. The first one is the implementation of

the Dirichlet boundary conditions which is not so easy. To implement the boundary condition

the approximation must be zero on boundary and outside of the domain. To accomplish this,

the coefficients of the B-splines having a nonempty intersection with boundary must be zero,

which results in poor approximation order. The second reason is that the B-spline basis is not

uniformly stable due to very small support of some B-splines near the boundary. This leads to

a large condition number of the finite element system and can cause extremely slow convergence

of iterative methods.

These two problems were resolved by Prof. Klaus Höllig, Prof. Ulrich Reif and Dr. Joachim

Wipper [H0̈3, Wip05] by developing a new type of splines called Weighted Extended B-splines

(WEB splines). In the WEB method, the relevant B-splines are classified into two disjoint sets.

The inner B-splines have at least one complete grid cell of their support inside D. All other

B-splines with small support in D are classified as outer B-splines.

The first problem mentioned above can be resolved by modeling the essential boundary con-

dition through a weight function. This technique was already employed by Kantorowich and

Krylow [KK56]. For example, solutions which vanishes on boundary ∂D are approximated with

linear combinations of weighted B-splines:

wbk, k ∈ K,

where K denotes indices of the B-splines with some support in D and w is a smooth function

defined on D such that w|∂D = 0. The construction of weight functions has been extensively

studied by Rvachev et al.
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The stability problem caused by the outer B-splines can be resolved by forming appropriate

linear combinations

bi +
∑

j∈J(i)

ei,jbj , i ∈ I,

with inner B-splines as described in [HRW]. The sets J(i) ⊂ K \ I are the sets of neighbor-

ing outer indices j. These extended B-splines inherit all the basic characteristics of standard

B-splines bi. In particular their linear span maintains full approximation order.

The combination of the above ideas lead us to the definition of weighted extended B-splines

(WEB-splines)[HRW]. These new basis functions exhibit all the usual properties of standard

finite elements.

For complex domains the mesh generation is the most difficult part of classical finite element

methods. The WEB method requires no mesh generation. Utilizing a regular grid, the WEB

method eliminates the mesh generating process. Furthermore it accelerates the solution algo-

rithms. The uniform grid is ideally suited for parallelization and multigrid techniques. Moreover,

the use of B-splines reduces the dimension of the trial space and hence the Galerkin system. Ac-

curate approximations are possible with relatively low-dimensional subspaces. Hierarchical spline

bases permit an adaptive refinement process which, however, has not yet been developed. In this

thesis we study hierarchical finite element approximations with weighted B-splines in detail and

develop an adaptive refinement strategy. For the sake of simplicity we use linear B-splines and

consider Poisson’s equation in two variables as a model problem. Extension of our ideas to a

higher degree and general multidimensional problems are straightforward.

Local grid refinement is necessary to assure the rapid convergence of numerical solutions of

boundary value problems. In particular, adaptive methods are well suited for domains with reen-

trant corners and local complexity in the solution. For classical finite element methods, adaptive

refinement is studied in detail. In particular, the local refinement via Lagrange functions is well

understood by Babus̆ka.

Forsey and Bartels [FB88, FB95, FW98] have introduced hierarchical B-spline refinement.

For curves, splines permit the change of control vertices and subsequent editing of fine details

in some parts of the curve while keeping the other parts unaffected. For tensor product surfaces

this editing and change of control points is not possible due to the global effect of knot insertion.
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Instead, hierarchical refinement is very effective.

Kraft in his Ph.D. thesis has approximated functions and data [Kra98] by using hierarchical

B-splines. He showed that by an iterative approximation algorithm, a good adaptive approxima-

tion with optimal local approximation order can be found.

Our approach builds on these techniques. Some ideas are similar. Key new features are

the approximation results for the weighted B-spline bases in the finite element context and an

adaptive refinement strategy based on B-spline subdivision.

1.1 Outline of the Thesis

After briefly introducing the history of splines as finite elements in chapter 1, we discuss elliptic

problems, in particular our model problem, Poisson’s problem in chapter 2. Moreover, we de-

fine Sobolev spaces. The weak form and variational formulation of Poisson’s problem are also

discussed in this chapter. Some of the properties of Galerkin systems along with Cea’s approxi-

mation lemma are described.

Chapter 3 focusses on the construction of weighted hierarchical B-spline bases. In section

3.1 we define weight functions and discuss their construction for constructive solid geometry via

the R-function method. In section 3.2 we define linear B-splines and their tensor product. The

description of weighted linear B-splines and the construction of hierarchical B-spline bases are

also part of this chapter. Finally, we introduce the concept of strongly nested domains and show

that hierarchical B-splines have optimal local approximation order.

In chapter 4, we sketch the implementation of our adaptive method. We used MATLAB as

programming language. In section 4.1, we explain the data structure to store different information

about the discretization and the B-spline bases. We also explain the procedure for assembling

the Ritz-Galerkin system. Numerical integration is used to generate the entries of the stiffness

matrix. In section 4.5, we describe our refinement strategy. We conclude with numerical results

taking an L-shaped region as a test case.

The last chapter consists of a summary and discussion of the main results and possible gener-

alizations.



Chapter 2

Finite Element Approximation

In this section, we review some basic facts about finite element discretizations. First, we describe

a standard elliptic boundary value problem. After introducing Sobolev spaces, we discuss the

concept of weak solution. Then we show how this variational form of a boundary value problem

leads to the Galerkin approximation.

2.1 Elliptic problems

The finite element method is particularly well suited for elliptic boundary value problems as

described below.

Definition 2.1.1 (Linear differential equation of second order). Let D be a bounded domain

in R2. We consider the Dirichlet boundary value problem for the general second order elliptic

partial differential equation

−div(A∇u) = f in D

u = 0 on ∂D
(1.1)

where A : D → R2×2 is Lipschitz, symmetric and positive definite with smallest eigenvalue λ1

and largest eigenvalue λ2; in particular

λ1(x)|ξ|2 ≤ ξtA(x)ξ ≤ λ2(x)|ξ|2, ∀ξ ∈ R2, x ∈ D. (1.2)

The solution u of (1.1) is smooth as long as the boundary ∂D and f is smooth. Singularities can

therefore only occur, when the boundary or some parts of the data are not smooth.

With the help of the linear differential operator of second order

L := −div(A∇)

the equation (1.1) can be written as

Lu = f in D, u = 0 on ∂D. (1.3)

5



6 CHAPTER 2. FINITE ELEMENT APPROXIMATION

The differential operator of the form L has divergence form.

An important example is the Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2
.

The differential operator ∆ is a linear elliptic operator L with A the unit matrix. The following

boundary value problem for Laplace’s equation often serves as a model problem.

Definition 2.1.2 (Poisson Problem). Let D be a bounded domain in R2 with boundary ∂D.

The boundary value problem

− ∆u = f in D (1.4)

and

u = 0 on ∂D,

where f is a real valued function on D, is referred to as Poisson problem.

Poisson’s equation is an elliptic, linear, non-homogeneous (if f 6= 0) second order partial

differential equation. We call (1.4) the strong formulation of Poisson’s equation.

Physically, u can represent the vertical displacement of an elastic membrane due to the appli-

cation of a force f .

A classical solution u of (1.4) belongs to C2(D) ∩ C0(D). Such a solution exists, e.g., if f

and the boundary ∂D are smooth. For a domain with corners or discontinuous f , the classical

formulation is inadequate. We have to use a weak formulation of Poisson’s problem as described

in the following sections.

2.2 Sobolev space

We denote by

L2(D) =

{
f : D 7→ R s.t.

∫

D

(f(x))2 dD < +∞
}

the space of square integrable functions on D. More precisely, L2(D) is a space of equivalence

classes of measurable functions, i.e., v is equivalent to w if and only if v and w are equal almost

everywhere.

The space L2(D) is a Hilbert space with the scalar product

〈f, g〉L2(D) =

∫

D

f(x)g(x) dD

and the induced norm

‖f‖L2(D) =
√

〈f, f〉L2(D).
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For a domain D ⊂ R2, D(D) is the space of infinitely differentiable functions with compact

support in D, i.e.,

D(D) = {f ∈ C∞(D) : ∃K ⊂ D, compact : supp f ⊂ K} .

With the aid of the space of test functions D(D), we now introduce the concept of weak differ-

entiation.

Let α = (α1, α2) be a tuple of non-negative integers and let f : D → R be a function defined on

D. We define

Dαf(x) =
∂|α|f(x)

∂xα1

1 ∂xα2

2

with |α| = α1 + α2 the order of the partial derivative of f .

We say that g ∈ L2(D) is the weak derivative Dαf of a function f ∈ L2(D) if

〈g, φ〉L2(D) = (−1)|α| 〈f,Dαφ〉L2(D) ∀φ ∈ D(D). (2.5)

By the formula for integrating by parts, this definition extends the classical notion of partial

derivatives. The Sobolev space of order k ∈ N0 on a domain D consists of all functions in L2(D)

for which all their derivatives up to order k belong to L2(D):

Hk(D) =
{
f ∈ L2(D) : Dαf ∈ L2(D) ∀α : |α| ≤ k

}
.

The Sobolev spaces Hk(D) are Hilbert spaces with respect to the scalar product

〈f, g〉Hk(D) :=
∑

|α|≤k

∫

D

(Dαf)(Dαg) dD

and the associated norm

‖f‖Hk(D) =
√
〈f, f〉Lk(D) =

√√√√
∑

|α|≤k

∫

D

(Dαf)2 dD. (2.6)

We frequently also use the semi-norm

|f |Hk(D)=

√√√√
∑

|α|=k

∫

D

(Dαf)2 dD.

With the aid of this definition, we can rewrite the Sobolev norm (2.6) as

‖f‖Hk(D) =

√√√√
k∑

m=0

|f |2Hm(D).

Finally, we want to investigate the continuity properties of functions in the Sobolev space Hk(D).



8 CHAPTER 2. FINITE ELEMENT APPROXIMATION

Theorem 2.2.1 (Sobolev Embedding Theorem). If D is a bounded open subset of R2 with

sufficiently regular boundary, then

Hk(D) ⊂ Cm(D) if k > m + 1.

In particular, functions in H2(D) are continuous. The subspace Hk
0 (D) ⊂ Hk(D) consists of

all functions which vanish on the boundary ∂D. More precisely, the space Hk
0 (D) is the closure

of all the smooth functions with compact support in D with respect to the norm (2.6).

2.3 Variational form

In this section we generalize the classical concept of solution and describe a weak formulation

which is better suited for finite element approximation.

Definition 2.3.1 (Weak formulation and weak solution). Let D be a bounded domain with

boundary ∂D, L a linear elliptic operator of second order and f ∈ L2(D). We define a symmetric

bilinear form

a : H1(D) × H1(D) → R

and a linear functional F : L2(D) → R by

a(u, v) :=

∫

D

[∇u]T A[∇v] dx

F (v) :=

∫

D

fv dx.

A function u ∈ H1
0 (D) satisfying the equation

a(u, v) = F (v) ∀v ∈ H1
0 (D) (3.7)

is known as a weak solution of the boundary value problem

{
Lu = f in D

u = 0 on ∂D.
(3.8)

The equation (3.7) is called the weak form of the elliptic problem (3.8).

In particular, for the Poisson’s equation −△u = f , we have

a(u, v) =

∫

D

∇u · ∇v dD.

Definition 2.3.2. (Elliptic bilinear form). The bilinear form a : V × V 7→ R over a Hilbert

space V is said to be bounded if there exists a constant αb > 0 such that

|a(u, v)| ≤ αb‖u‖V ‖v‖V ∀u, v ∈ V (3.9)



2.4. RITZ-GALERKIN SYSTEM 9

and elliptic if, in addition, there exists a constant αe > 0 such that

a(v, v) ≥ αe‖v‖2
V . (3.10)

In particular, this implies that a is positive definite since a(v, v) ≥ 0 for all v ∈ V and a(v, v) = 0

iff v = 0.

Remark

If an elliptic bilinear form a(·, ·) over a Hilbert space V is symmetric, then the following statements

are equivalent:

1. u ∈ V satisfies the variational equation

a(u, v) = F (v), ∀v ∈ V, (3.11)

2. u minimizes the quadratic functional

J : V → R, J(v) :=
1

2
a(v, v) − F (v),

i.e.,

J(u) = minv∈V J(v).

Ellipticity implies existence and uniqueness of a solution as asserted in the following theorem.

Theorem 2.3.1 (Lax-Milgram). Let V be a closed subspace of a Hilbert space H and a(·, ·) be

an elliptic, symmetric bilinear form over V . Then the minimization problem

J(u) = minv∈V J(v), J(v) =
1

2
a(v, v) − F (v)

has a unique solution u ∈ V for each F ∈ H ′.

Combining the above statements, we conclude that the boundary value problem (3.8) has a

unique weak solution for V = H = H1
0 .

2.4 Ritz-Galerkin system

As we have seen in the last section, the weak formulation (3.7) of an elliptic problem in the

domain D can be written as

find u ∈ V : a(u, v) = F (v) ∀v ∈ V (4.12)

where V is the appropriate Hilbert space, a(·, ·) is an elliptic bilinear form from V × V → R,

and F (·) is a continuous linear functional from V → R. Under such conditions, the Lax-Milgram
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theorem ensures the existence and uniqueness of the solution.

Let Vh be a family of spaces that depends on a positive parameter h, which is usually the grid

width of the domain discretization, such that

Vh ⊂ V, dim Vh = Nh < ∞ ∀h > 0.

The approximate problem takes the form

find u ∈ Vh : a(uh, vh) = F (vh) ∀vh ∈ Vh. (4.13)

Denoting the basis of Vh by {bj : j = 1, 2, · · · , Nh}, it is obvious that (4.13) holds for each linear

combination of the basis function bj , particularly for bj itself. Then

a(uh, bj) = F (bj) j = 1, 2, · · · , Nh. (4.14)

Expressing uh ∈ Vh in terms of the basis functions,

uh(x) =

Nh∑

i=1

uibi(x),

equation (4.14) becomes

Nh∑

i=1

uia(bi, bj) = F (bj), j = 1, 2, · · · , Nh. (4.15)

We denote by G the matrix (called stiffness matrix) with elements

gji = a(bi, bj) (4.16)

and by f the vector with components fj = F (bj). If we denote the vector by u having the

unknown components ui, then the linear equations (4.15) can be written as

Gu = f.

We point out some of the characteristics of the stiffness matrix that are independent of the basis

functions for Vh, but exclusively depend on the properties of the weak problem.

Lemma 2.4.1. The matrix G associated with the discretization of the elliptic problem (4.12) via

the Galerkin method is positive definite.

Proof. The matrix G is said to be positive definite if

XtGX ≥ 0, ∀X ∈ RNh and also XtGX = 0 ⇔ X = 0.

The correspondence
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X = (xi) ∈ RNh ↔ vh(X) =
Nh∑
j=1

xjbj ∈ Vh

defines a bijective mapping between the spaces RNh and Vh. By definition of the Galerkin matrix

we have

XtGX =

Nh∑

j=1

Nh∑

i=1

xjaj,ixi =

Nh∑

j=1

Nh∑

i=1

xia(bi, bj)xj

=

Nh∑

j=1

Nh∑

i=1

a(xibi, xjbj) = a




Nh∑

i=1

xibi,

Nh∑

j=1

xjbj




= a(vh, vh) ≥ αe‖vh‖2
V ≥ 0

Moreover, if XtGX = 0, then the above inequality implies ‖vh‖2
V = 0, i.e., X = 0, which proves

the statement.

The lemma guarantees the unique solvability of the Galerkin system. Alternatively, we can

invoke the Lax-Milgram theorem. It holds for any closed subspace of a Hilbert space, hence in

particular for the finite dimensional space Vh.

The Galerkin method is stable uniformly with respect to h, as the solution satisfies the fol-

lowing upper bound

‖uh‖V ≤ 1

αe
‖F‖V ′ .

In particular, if uh and wh are two numerical solutions corresponding to different data F and G,

then ‖uh − wh‖V ≤ 1
αe

‖F − G‖V ′ .

Now we want to prove that the solution of the Galerkin system is convergent with respect to h

as h tends to zero. Consequently, we can approximate the exact solution u as accurate as desired

by the Galerkin solution uh.

Lemma 2.4.2 (Céa Lemma). Consider the variational problem

a(u, v) = F (v), ∀v ∈ V. (4.17)

For the weak solution u ∈ V of (4.12) and the finite element solution uh ∈ Vh of (4.13), we have

‖u − uh‖V ≤ αb

αe
infwh∈Vh

‖u − wh‖V . (4.18)

Proof. Let us consider the bilinear form with the same arguments u − uh:

a(u − uh, u − uh) = a(u − uh, u − vh) + a(u − uh, vh − uh).
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Since vh − uh ∈ Vh, the last term is zero. Moreover,

|a(u − uh, u − vh)| ≤ αb‖u − uh‖V ‖u − vh‖V .

On the other hand, by the coercivity of a(·, ·), it follows that

a(u − uh, u − uh) ≥ αe‖u − uh‖2
V .

Hence we have

‖u − uh‖V ≤ αb

αe
‖u − vh‖V ∀vh ∈ Vh.

Since the inequality holds for all functions vh ∈ Vh , we can conclude

‖u − uh‖V ≤ αb

αe
infwh∈Vh

‖u − wh‖V .

It is then evident that, in order for the method to be convergent, h must be sufficiently small

so that the space Vh tends to fill the entire space V . In this case

limh→0 ‖u − uh‖V = 0.



Chapter 3

Weighted Hierarchical Bases

To get accurate approximations and efficient solution procedures, we often use adaptive refine-

ment of the grid. For piecewise linear basis functions, we already know many techniques, e.g., as

described for hierarchical grids by Yserentant in [Yse85] and for sparse grids by Zenger in [Zen90]

and J. Bungartz in [BG04]. The sparse grid technique is based on a higher-dimensional multiscale

basis, which is derived from a one-dimensional multiscale basis by a tensor product construction.

Comparing the hierarchical and the sparse grid methods, it is important to consider both the

accuracy of the approximation and the number of grid points. This has been studied in great

detail for piecewise linear approximations by Bungartz in [Bun92].

It is expected that discretizations using piecewise quadratic basis functions and, generally,

piecewise polynomials of higher degree will be more accurate than discretizations using piecewise

linear basis functions. However, for the sake of simplicity, we present our new technique for

piecewise linear splines only. The generalization to arbitrary degree is straightforward.

3.1 Weight functions

As we remarked before, weight functions are used to represent simulation domains. This means

that a domain D is described in implicit form as the set where a weight function ω is positive.

The boundary ∂D corresponds to the zero set of ω. Some mild requirements on the behavior of

weight functions are needed, which are made precise in the following definition.

Definition 3.1.1 (Weight function). For a domain D ⊂ R2, a weight function ω of order γ ∈ N0

is continuous on D and satisfies

ω(x) ≍ dist(x,Γ)γ , x ∈ D,

13
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for a subset Γ of ∂D. We assume that Γ has positive one-dimensional measure and is sufficiently

regular, so that the distance function has a bounded gradient. If ω is smooth and vanishes

linearly on the entire boundary (γ = 1), then it is called a standard weight function.

The majority of the boundary conditions requires that solutions vanish to first order on a

portion Γ of ∂D. Accordingly,

ω(x) ≍ dist(x,Γ)

holds for most applications. For such cases, a smoothed distance function can be used as weight

function. There are some other types of weight functions. We discuss some of them briefly.

Many simple domains permit adhoc definitions of weight functions. For example, the weight

function ω for the domain in figure 3.1 is constructed by the elementwise product of the equations

of five circles,

big circle : C(x, y) = x2 + y2 − 16
small circles : ci(x, y) = (x ± 2)2 + (y ± 2)2 − 1,

weight function : ω(x, y) = C(x, y) ·
4∏

i=1

ci(x, y)

Figure 3.1: Analytic weight function.

Such a construction is possible for some special domains. If the boundary of the domain is

smooth, then the distance function can be used to construct a weight function. The weight

analytic_wfct2.eps


3.1. WEIGHT FUNCTIONS 15

function is defined by

ω(x, y) = 1 −
(

max(δ − dist((x, y), ∂D), 0)

δ

)γ

(1.1)

where

dist((x, y), ∂D): distance of a point (x,y) from the boundary ∂D
δ: width of a boundary strip with increasing ω(x, y)
γ: smoothing parameter.

In an interior region of the domain, the weight function is blended with a plateau of height 1.

The width of the boundary strip depends on the curvature of the boundary curve.

For domains arising in constructive solid geometry, Rvachev ([RS95]) introduced a convenient

technique for constructing weight functions. It is based on signed weight functions and his R-

function calculus. A signed weight function is a continuous function which is positive on D and

negative on the complement of D. Such weight functions can be constructed with R-functions

r corresponding to Boolean set operations. More precisely, if ων are signed weight functions for

Dν , then

ω = rc(ω1), ω = rT(ω1, ω2), · · · ,

are signed weight functions for Dc
1,D1

⋂
D2, · · · .

The R-function method of Rvachev (cf., e.g.,[RS95, RSST00]) provides a mechanism for con-

structing suitable functions rc, r∩, · · · .

An R-function is a real valued function whose sign is completely determined by the sign of its

arguments. For example, the function xyz can be negative only when the number of arguments

is odd. A similar property holds for the functions x + y +
√

xy + x2 + y2 and xy + z + |z − yx|,
and so on. Such functions are called R-functions or Boolean Logic functions. As in constructive

solid geometry models, ”primitive” weight functions can be combined according to specified set

operations.

Set Operation Corresponding R-function
Complement: Dc rc(ω) = −ω

Intersection: D1 ∩ D2 r∩(ω1, ω2) = ω1 + ω2 −
√

ω2
1 + ω2

2

Union: D1 ∪ D2 r∪(ω1, ω2) = ω1 + ω2 +
√

ω2
1 + ω2

2

The theory of R-functions combines logical and set operations in geometric modeling. For

example, the domain in figure 3.2 can be defined as a Boolean set combination of three primitives,
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Figure 3.2: a,b. Two-dimensional domain with R-function vanishing on the boundary.

D = D1∩(D2∩D3)
c. The weight functions ω1, ω2, ω3 corresponding to the domains D1, D2, D3

are defined by

ω1 =
1

2r
(r

2 − x2 − y2)

ω2 = x − r + b

ω3 =
a2 − y2

2a

The R-functions for D4 = D2 ∩D3, D5 = Dc
4 and D = D1 ∩D5 = D1 ∩Dc

4 = D1 ∩ (D2 ∩D3)
c

are

ω4 = r∩(ω2, ω3)

ω5 = rc(ω4)

ω = r∩(ω1, ω5)

where the operators r∩, r∪ and rc are given in the above table. The final weight function w is

parameterized by r, b, and a. This function is analytic everywhere except for the corner points

and has normal derivative 1 on all regular points of the boundary.

3.2 Linear B-splines

Linear B-splines are the usual hat functions. In the one-dimensional case, they correspond to a

uniform partition of the real line.

untitled.eps
R_function.eps
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Definition 3.2.1 (Univariate B-splines). The linear B-splines bk,h for a uniform grid

hZ : · · · ,−2h,−h, 0, h, 2h, · · ·

with grid width h are defined by

bk,h =





x
h − k if x ∈ [k, k + 1]h

−x
h + k + 2 if x ∈ [k + 1, k + 2]h

0 otherwise.

kh

b
k,h

h

Figure 3.3: Univariate linear B-splines bk,h, k ∈ Z, with grid width h.

The B-spline bk,h has the value 1 at x = (k + 1)h and vanishes at all other grid points

lh, l 6= k + 1, as shown in figure 3.3. The support of bk,h is kh + [0, 2]h. The linear B-splines

bk,h, k ∈ Z, span the space of linear splines with uniform knots.

The definition of univariate linear B-splines can be extended to two variables. There are several

methods to construct bivariate linear B-splines which differ in the structure of the partition for

polynomial segments. The simplest way is to form the tensor product of univariate B-splines.

Definition 3.2.2 (Tensor product linear B-splines). The bivariate B-spline bk,h with index

k = (k1, k2) and grid width h is defined by

bk,h(x) = bk1,h(x1)bk2,h(x2)

where bkν ,h, ν = 1, 2, are linear univariate B-splines along the x1 and x2 direction, respectively.

Figure 3.4 shows the bilinear B-spline bk,h. The support of bk,h is

supp bk,h = [k1, k1 + 2]h × [k2, k2 + 2]h (2.2)

and the values along the grid lines correspond to multiples of the univariate B-splines. Moreover,

we have marked the lower left corner kh of the support, which can be used to identify B-splines

on the tensor product grid.

univarite_bspl.eps
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Figure 3.4: Bilinear B-spline.

The bivariate linear B-splines, like univariate linear B-splines, are positive on kh + (0, 2)2h

and vanish outside this square. On each grid cell

Dℓ,h = lh + Q∗h, Q∗ = [0, 1]2, l = (l1, l2) ∈ Z2

bk,h is a linear polynomial in each variable.

Linear combinations of bivariate B-splines span the space of linear bivariate splines with

uniform grid. For a bounded domain D covered by a uniform grid with grid width h, we can

define linear splines as follows:

Definition 3.2.3 (Spline functions on a bounded domain D). A spline function is a linear

combination of bivariate B-splines ∑

k∈K

ckbk,h.

The set K of relevant indices contains all k for which the B-spline bk,h(x) 6= 0 for some x ∈ D.

The space consisting of all such splines is denoted by Bh(D).

In figure 3.5, we illustrate the definition (3.2.3). The relevant B-splines bk,h, k ∈ K, are

marked at the lower left corner of their support kh + [0, 2]2h. Depending on the shape of the

m_variate_Bspline.eps
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kh

Figure 3.5: Relevant bilinear B-splines bk,h, k ∈ K.

domain, the set of relevant indices can be irregular. Moreover, the intersection supp bk,h ∩D can

be very small which can lead to instabilities in numerical computations.

3.3 Approximation with linear splines

Error estimates for splines are based on local polynomial approximations. These multivariate

estimates play a fundamental role in finite element error analysis. Bramble-Hilbert’s lemma

([BH70]) helps in finding error estimation for polynomial basis functions.

Lemma 3.3.1 (Bramble-Hilbert Lemma). Let D ⊂ R2 be a starshaped Lipschitz domain with

diameter ̺ and u ∈ Hn(D). Let Lnu be the orthogonal projection onto polynomials Pn−1(D) of

total degree < n on D. Then

‖u − Lnu‖Hℓ(D) ≤ const(D,n)̺k−ℓ‖u‖Hk(D) for 0 ≤ ℓ < k ≤ n.

The Bramble-Hilbert lemma is the prototype for error bounds for polynomial approximation

in Sobolev spaces. An analogous estimate holds for linear splines.

m_variate_spline.eps
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Theorem 3.3.2. The approximation error of a spline function uh =
∑

k∈K ckbk,h to u ∈ H2(D)

satisfies

‖u −
∑

k∈K

ckbk,h‖Hℓ(D) � h2−ℓ‖u‖H2(D) for 0 ≤ ℓ < 2.

Proof. The estimate is proved by analyzing the error separately on each grid cell Dℓ,h. Further-

more we use a quasi-interpolant

uh = Qu =
∑

k∈K

(Qkũ)︸ ︷︷ ︸
ck

bk,h

as convenient approximation to u, where ũ is a smooth extension of u ∈ Hℓ(D) to Hℓ(Rm), as

described by Stein ([Ste73]). The operator Q is a tensor product quasi-interpolant.

Let K ′ be the subset of the set of relevant indices K such that Dk,h ⊆ supp bk′,h for k′ ∈ K ′.

Let pk ∈ P1(Wk), where Wk =
⋃

k′∈K′ supp bk′,h, be the approximation to ũ|Wk
over Wk. Then

‖u −Qu‖Hℓ(Dk,h∩D) ≤ ‖u − pk‖Hℓ(Dk,h∩D) + ‖Qu − pk‖Hℓ(Dk,h∩D)

= ‖u − pk‖Hℓ(Dk,h∩D) + ‖Q(u − pk)‖Hℓ(Dk,h∩D) (3.3)

for ℓ ∈ {0, 1}, where we used that Qpk = pk by a standard property of quasi-interpolants. By

using Bramble-Hilbert’s theorem, we obtain for the first term of the right hand side of (3.3)

‖u − pk‖Hℓ(Dk,h∩D) ≤ ‖ũ − pk‖Hℓ(Wk) 4 h2−ℓ‖ũ‖H2(Wk). (3.4)

By the boundedness of the quasi-interpolant, the second term gives

‖Q(u − pk)‖Hℓ(Dk,h∩D) = ‖
∑

j∈K′

Qj(ũ − pk)bj‖Hℓ(Dk,h∩D)

≤
∑

j∈K′

|Qj(ũ − pk)| ‖bj‖Hℓ(Dk,h∩D)

≤
∑

j∈K′

‖Qj‖‖ũ − pk‖L2(Wk)‖bj‖Hℓ(Dk,h∩D). (3.5)

We estimate the three factors in turn. By standard properties of quasi-interpolants,

‖Qj‖ 4 h−1.

Moreover, we can deduce from (3.4) that

‖ũ − pk‖L2(Wk) 4 h2‖ũ‖H2(Wk).

Finally,

‖bj‖2
Hℓ(Dk,h∩D) 4 h1−2ℓ.

Substituting all the values in (3.5),

‖Q(u − pk)‖Hℓ(Dk,h∩D) � h2−ℓ‖ũ‖H2(Wk).

Now squaring both sides of the inequality and summing this inequality over all grid cells Dk,h, k ∈
K, completes the proof for ℓ ∈ {0, 1}.
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Figure 3.6: Weighted linear B-spline basis for a two-dimensional domain.

3.4 Weighted linear B-splines

We now adapt the linear splines to curved boundaries. To this end, we represent the simulation

domain in implicit form:

D : w > 0.

Suitable weight functions can be defined by any of the methods described in section 3.1.

Definition 3.4.1 (Weighted linear splines). The weighted linear splines wBh(D) are defined as

the space spanned by weighted linear B-splines i.e.,

wBh(D) = spank∈K wbk,h

where K is the set of relevant indices.

The positivity of the weight function is essential. If ω(x) = 0 for some x ∈ D, this will affect

the approximation order of weighted spline spaces. Similarly, it is also essential that ω = 0 with

minimum order on ∂D.

Figure 3.6 illustrates the relevant indices of linear B-splines over a bounded domain. The

splines are marked by dots at the lower left corner of their support.

Results for linear splines Bh(D) easily extend to the weighted space wBh(D). For example,

if u is a smooth function which vanishes on the smooth boundary of a domain D, then, for a

weightedspl4.eps


22 CHAPTER 3. WEIGHTED HIERARCHICAL BASES

smooth weight function of order 1,

infwph∈wBh(D) ‖u − wph‖ℓ = O(h2−ℓ), ℓ = 0, 1.

This estimate is an immediate consequence of theorem 3.3.2, since v = u/w is smooth on D.

Hence,

‖u − wph‖ℓ = ‖wv − wph‖ℓ ≤ const(w)‖v − ph‖ℓ.

3.5 Hierarchical refinement

When the domain is discretized into a finite element mesh, it is necessary to create a new finer

mesh with an improved resolution. An alternative to remeshing is to adjust the density of the

mesh by performing local refinement of the existing mesh. This means that in some regions finite

elements are split to decrease their size, in other regions they are merged to reduce the resolution.

When using adaptive remeshing, we should keep in mind that it should be efficient and it

should not become a bottleneck of the adaptive computations. B-splines are ideally suited for

such grid refinement procedures. As is apparent from the following definition, adjusting the B-

splines to a finer grid is very simple.

Lemma 3.5.1 (Subdivision). The linear B-spline with grid width h can be expressed as a linear

combination of linear B-splines with grid width h/2:

bk,h =
1

2

2∑

l=0

(
2

l

)
b2k+l,h/2.

Figure 3.7: Subdivision of a univariate linear B-spline and a bivariate linear B-spline.

The univariate subdivision formula can easily be extended to the tensor product of B-splines.

The definition (3.2.2) implies

subdivision_one_dim.eps
subdivision_two_dim.eps
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Lemma 3.5.2 (Bivariate Subdivision). The relevant B-splines bk,h with grid width h can be

expressed as linear combination of B-splines with grid width h/2,

bk,h(x) = bk1,h(x1)bk2,h(x2)

=

(
1
2

2∑
l1=0

(
2

l1

)
b2k1+l1,h/2(x1)

)(
1
2

2∑
l2=0

(
2

l2

)
b2k2+l2,h/2(x2)

)

=
2∑

l=0

slb2k+l,h/2(x),

where

sl =

2∏

ν=1

1

4

(
2

lν

)
.

Let Uh denote the coefficients of a spline function uh =
∑

k uk,hbl,h on the coarse grid as

defined in (3.2.3). The spline uh on the coarser grid is represented on the fine grid as

uh =
∑

l∈Kh

ul,hbl,h(x) =
∑

l∈Kh



∑

k∈Kh/2

sk−2lul,h


 bk,h/2(x) =

∑

k∈Kh/2

uk,h/2bk,h/2, (5.6)

where the coefficients are related by

Uh/2 = PUh, pk,l = sk−2l. (5.7)

Figure 3.8: Relevant bilinear B-splines bk,h on the coarse grid and bk,h/2 on the fine grid.

Figure 3.8 illustrates the grid refinement. We showed two consecutive grids with grid width h

and h/2. The relevant B-splines are marked with large and small circles, respectively.

coarse_n_fine_grid.eps
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Adaptive finite element computations rely on adjustment of the spatial resolution of the do-

main discretization to deliver high accuracy where it is needed. It requires the insertion of new

basis functions with smaller grid width than the coarse basis functions have. Some of the basis

functions on the coarse grid must be removed to keep the finite elements linearly independent.

Now we explain the process of the construction of the adaptive space for two levels of nested

domains.

Let D : Dh ⊇ Dh/2 be two nested domains with the following properties:

Dh/2 = D ∩ ∪k∈K′ supp bk,h

∂Dh ∩ ∂Dh/2 = ∅

From the B-splines bk,h, we select those B-splines with support not contained in Dh/2 as basis

functions. In other words, we set

K ′ ⊂ Kh := {k ∈ Z2 : D ∩ supp bk,h ⊆ Dh and D ∩ supp bk,h * Dh/2}.

We replace the relevant B-splines bk,h with k /∈ Kh by finer B-splines via subdivision. Then the

refined space is spanned by

bk,h, k ∈ Kh, bl,h/2, l ∈ Kh/2

where Kh/2 contains the indices k′ with D ∩ supp bk,h/2 ⊆ Dh/2. By successive repetition of this

procedure, we can define the hierarchical space B(h+,h−)(D) as follows (cf. [H0̈3]):

Definition 3.5.1 (Hierarchical spline space). A basis for a hierarchical spline space B(h+,h−)(D)

consists of the bivariate linear B-splines

bk,h, k ∈ Kh, h ∈ {h+, h+/2, · · · , h−}. (5.8)

The refinement is determined by a nested sequence of domains

D := Dh+ ⊃ Dh+/2 ⊃ ... ⊃ Dh− . (5.9)

The set Kh contains the indices (k1, k2) for which D
⋂

supp bk,h is a subset of Dh (with non zero

measure), but, not contained in Dh/2 for h > h− .

As is illustrated in figure 3.9, each set Dh/2 is the intersection of D with the union of supports

of B-splines with grid width h. These B-splines are not part of the hierarchical basis, but are

replaced, via subdivision, by B-splines bk,h/2 on the finer grid.
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corner

Figure 3.9: Bilinear hierarchical B-spline basis.

Example 3.5.1. A typical example of a hierarchical spline space results from refinement at the

corner of a domain as occurs, e.g., in finite element approximation of singularities. As is shown

in figure 3.10, for D = (0, 1)2, we choose h+ = 1/4, h− = h+/8 and Dh = (0, 4h1) × (0, 4h2).

The B-splines which belong to the corresponding hierarchical basis are marked at the lower left

corners of their supports with the size of the circles indicating the grid level. On the coarsest

grid, the B-splines

bk,1/4, k ∈ K1/4 : − 1 ≤ kµ < 4, k1 > 0 ∨ k2 > 0. (5.10)

have support in D1/4 and do not vanish on D1/4\D1/8. The B-splines

bk,1/4, − 1 ≤ kµ < 1, (5.11)

are replaced by B-splines bk,1/8 on the finer grid. They become part of the hierarchical basis if

their support intersected with D is not contained in D1/16, i.e.

K1/8 : − 1 ≤ kµ < 3, k1 > 0 ∨ k2 > 0. (5.12)

Continuing in this fashion, we see that for this example the subsequent index set K1/16 has the

same form. For the finest grid level, K1/32 = {−1, ..., 2}2.

Theorem 3.5.3. The B-splines spanning B(h+,h−)(D) are linearly independent.

Proof. If ∑

h

∑

k∈ Kh

ck,hbk,h(x) = 0 ∀x ∈ D, (5.13)

we can show inductively for h = h+, h+/2, ..., h−, that the coefficients ck,h are zero. First, we

restrict x to the open set U = Dh+\Dh+/2. By definition of the hierarchical spline space, all

heart.eps
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corner

Figure 3.10: Basis for hierarchical splines on a rectangular domain.

B-splines with grid width h < h+ vanish on this set. On the other hand, for each B-spline

bk,h+ , k ∈ Kh+ , there exists a point x, and hence also a neighborhood in U , where this B-spline

is nonzero. Hence, by the local linear independence of the B-splines with grid width h+, all

coefficients ck,h+ must be zero.

Now we repeat the argument, restricting x successively to the set Dh\Dh/2, h = h+/2, h+/4, ..., h−,

and setting Dh−/2 = ∅. Arguing as above, we conclude that the coefficients ck,h for all levels are

zero.

3.6 Error estimate

In this section we derive a local error estimate. This is facilitated if the number of B-splines

which are non-zero at any given point is uniformly bounded with respect to the number of grid

levels. To this end, we need some restriction on the choice of the domains.

Definition 3.6.1 (Strongly nested domains). The domains Dh which characterize the refinement

of a hierarchical spline space B(h+,h−)(D) are strongly nested if the support of any B-spline bk,2h

in the basis does not intersect Dh/2.

Strongly nested domains have the following properties:

• B-splines in the basis with non-empty intersection of their supports must belong to two

consecutive hierarchical levels.

• The distance between the boundary ∂Dh and ∂Dh/2 is greater than 2h.

rectlevelend.eps
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corner

Figure 3.11: Strongly nested domains with four levels of refinement.

Figure 3.11 shows a sequence of strongly nested domains over an L-shaped domain up to four

levels.

Theorem 3.6.1. Assume that the domains Dh, which characterize the refinement of a hierar-

chical spline space B(h+,h−)(D), are strongly nested. Then, for any smooth bivariate function f ,

there exists a hierarchical spline p with

|f(x) − p(x)| ≤ const h2
2∑

ν=1

‖∂2
ν f̃‖∞,Dx,h

, x ∈ Dh\Dh/2, (6.14)

where we set Dh−/2 = ∅, f̃ is a smooth extension of f to R2, and Dx,h denotes a disc with radius

≤ const h.

Proof. The proof is divided into three steps: some preliminary considerations, a construction of

a projector onto B(h+,h−)(D) , and a local Taylor approximation.

(i) To avoid a special treatment of the domain boundary, we work with a smooth extension f̃

to R2 and, accordingly, we replace D by R2 as well. Clearly, restricted to the original domain,

the B-spline basis for the hierarchical spline space remains unchanged.

(ii) An approximation of the asserted optimal order is obtained as a projection

f 7→ p = Qf = Σh−≤h≤h+Σk∈Kh
(Qk,hf) bk,h. (6.15)

For the construction of an appropriate projector Q we use the functionals Qk,h of standard

projectors onto the spline space Bh(R2). As is possible, we choose, for k ∈ Kh, the support of

these functionals in grid cells Dk,h which are outside but closest to Dh/2. Denoting by Kk,2h the

indices k′ in K2h for which the support of bk′,2h intersects Dk,h, we now define

Qk,hf = Qk,h


f −

∑

k′∈Kk,2h

(Qk′,2hf) bk′,2h


 . (6.16)

str_nested_domain.eps
str_nested_domain_spl.eps


28 CHAPTER 3. WEIGHTED HIERARCHICAL BASES

In order to check that these functionals define indeed a projector we have to show that

c = Qk,hbk′′,h′′ = δk,k′′δh,h′′ (6.17)

for all relevant indices and grid widths. We consider four cases:

(a) h′′ < h: Since the support of all functionals appearing in the definition of Qk,h lies outside

of the set Dh/2, which contains the support of bk′′,h′′ , c = 0.

(b) h′′ = h: Since the support of the functionals Qk′,2h lies outside of Dh,

c = Qk,h(bk,h′′ − 0) = δk,k′′ (6.18)

by the orthogonality on a fixed grid level.

(c) h′′ = 2h: If supp bk′′,2h does not intersect Dk,h, Qk,hbk′′,2h = 0 and k′′ /∈ Kk,2h. Hence,

c = 0. If on the other hand the intersection is not empty,
∑

k′∈Kk,2h
... = bk′′,2h by the orthogo-

nality of the functionals Qk′,2h. Hence, c = 0 also in this case.

(d) h′′ > 2h: For k′ ∈ Kk,2h the support of the B-spline bk′,2h intersects Dh. Hence, Dk′,2h

touches the boundary of Dh. This implies c = 0, since for strongly nested domains supp bk′′,h′′

does not touch Dh and, as a consequence,

Qk′,2hbk′′,h′′ = 0 ∀k′ ∈ Kk,2h.

Moreover, since supp bk′′,h′′ ∩ Dk,h = ∅, Qk,hbk′′,h′′ = 0, too.

(iii) With q, the Taylor polynomial of coordinate degree 1 at x,

|f(x) − p(x)| ≤ |f(x) − q(x)|︸ ︷︷ ︸
0

+|Qq −Qf(x)|

≤
∑

h′

∑

Kh′

|Qk,h′(f − q)|bk,h′(x).

Because of the small support of the B-spline, only few terms contribute to the sum. For x ∈
Dh\Dh/2, h′ = h or h′ = 2h, the number of relevant B-splines is ≤ const1. Similarly, the number

of functionals Qk,h′′ in the definition of Qk,h′ is ≤ const2 and h′′ ∈ {h, 2h, 4h}. Moreover,

supp bk,h′′

⋂
supp bk,h′ 6= ∅ ∧ x ∈ supp bk,h′ (6.19)

which implies that the support of any of the functionals Qk,h′′ is contained in an open disc Dx,h

with radius ≤ const3 h and center x. Hence, it follows that

|f(x) − p(x)| ≤ const1 const2 supk,h′′ ‖Qk,h′′‖ ‖f − p‖∞,Dx,h
. (6.20)

By the uniform boundedness of the functionals of standard projectors and the error estimate for

the Taylor polynomial of coordinate degree 1, we obtain the asserted error bound.

The theorem easily extends to weighted hierarchical approximations wph, ph ∈ B(h+,h−)(D).

Clearly, if u = wv with smooth w and v, then the error wph − u can be estimated in terms of

bounds for ph − v.



Chapter 4

Implementation

In the previous chapter we have defined the hierarchical B-spline basis and described the construc-

tion of the FE space. In this chapter we shall discuss the data structure for the implementation

of FE schemes.

Matlab provides a convenient way to construct the data structure to implement the FE dis-

cretizations. First, we shall discuss how to store the information about the hierarchical basis

in Matlab. Then, we describe the assembly of the Ritz-Galerkin matrix. Numerical integration

plays a crucial role. Appropriate procedures are explained in section 3. Sections 4 and 5 are

devoted to matrix assembly and adaptive refinement. Finally, numerical examples are given.

4.1 Grid data structure

Mesh based computations require a data structure to store the geometric information. The in-

formation should be generated at the preprocessing stage, so that the processing module knows

in particular

- the vertices belonging to each element

- the spatial coordinates of each vertex

- the elements or vertices whose supports are intersected by ∂D.

Since the hierarchical B-spline space involves B-splines of different support sizes at different hi-

erarchical levels, the data structure requires more information. When an adaptive refinement is

performed, the data structure becomes more complex.

29
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Figure 4.1: Phases of an adaptive FE code.

The parameters for a hierarchical spline space are stored in an array of structures HB(ℓ), ℓ =

1, 2, · · · , L:

• HB(ℓ).h: grid width

• HB(ℓ).R: rectangular region [r1h, r2h]× [r3h, r4h] comprising the support of the B-splines

• HB(ℓ).C: coefficients [c1,1, · · · , cm,n] of the B-splines corresponding to R (m = r2 − r1 −
1, n = r4 − r3 − 1)

• HB(ℓ).L: indices [ℓ1, · · · ] of the substructures generated via refinement.

Initially, the matrix of coefficients C is filled with zeros. If some portion of region R at level

ℓ is further subdivided, then by the construction of hierarchical B-spline space, this subregion of

R must be the union of supports of B-splines at level ℓ. As these B-splines are removed from the

spline space, the coefficients of these B-splines are fixed as ’NaN ’.

The data structure for figure 4.2 can be described as follows. Initially, the first level of dis-

cretization is stored in a simple manner under the fields HB(1).h = 1, HB(1).R = [0, 6, 0, 6],

HB(1).C = O5×5, and HB(1).L = [ ]. To proceed to the next level, suppose we are in-

terested in two sets of rectangular regions to be subdivided which comprise supp b(1,1),h and

scheme.eps
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Figure 4.2: Hierarchical grid with three refinements.

∪5
i,j=4 supp b(i,j),h. The data for these two regions are stored in HB(2) and HB(3). The sub-

division process affects the initial setting of HB(1). The entries c1,1, c4,4, c4,5, c5,4, c5,5 in the

coefficient matrix HB(1).C are now replaced by ’NaN ’, and the field HB(1).L becomes [2, 3]

depicting two sub data fields HB(2) and HB(3). After the subdivision process, the data for the

first level become:

HB(1).h = 1

HB(1).R = [0, 6, 0, 6]

HB(1).C = O5×5, c1,1 = c4,4 = c4,5 = c5,4 = c5,5 = NaN

HB(1).L = [2, 3]

Grid_data_str.eps
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Since HB(2) has no further fields of interest, the data are

HB(2).h = 1/2

HB(2).R = [0, 4, 0, 4]

HB(2).C = O3×3

HB(2).L = [ ]

The field HB(3) has a further region to be subdivided and stored in the subdata field HB(4).

The rectangular region in HB(4) is ∪3
i,j=2 supp b(i,j),h, where b(i,j),h are B-splines of the second

level. The entries of the coefficient matrix in HB(3).C which are associated with b(i,j),h, i, j = 2, 3

are replaced by ’NaN’. The final data fields are

HB(3).h = 1/2

HB(3).R = [6, 12, 6, 12]

HB(3).C = O5×5, c2,2 = c2.3 = c3.2 = c3,3 = NaN

HB(3).L = [4]

HB(4).h = 1/4

HB(4).R = [14, 20, 14, 20]

HB(4).C = O5×5,

HB(4).L = [ ]

In figure 4.2, the active B-splines are marked with circles of different sizes at the lower left

corners of their support which correspond to different hierarchical levels , while the inactive or

subdivided B-splines are marked with an ’×’ at the lower left corner of their support.

4.2 Assembly of the Ritz-Galerkin system

Having discretized the domain, the next step is to generate and assemble the stiffness matrix

and load vector by using the hierarchical linear B-spline basis. In this phase, we construct the

functional data structure starting from the geometric data structure obtained by the mesh.

Each basis function can be identified by the indices (ν, µ) of its grid position within a rectangle

HB(k).R of the structure array. We recall that we have set the coefficients of irrelevant B-splines

equal to ’NaN’. We eliminate all irrelevant B-splines from the list of indices. Only the relevant

B-splines take part in the further calculations.

We represent the relevant B-splines by a list of triplets (k, ν, µ). From this list, the exact

position of each B-spline is easily determined. The position of the B-spline is identified by the
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lower left corner of its support. For instance, let bℓ be determined by the triplet (k, ν, µ), then

the lower left corner of the support of the B-spline bℓ is (r1 + ν − 1, r3 + µ − 1)h, where h and

r1, r3 can be obtained from the data structure HB(k).

3h

2h

(r
2
,r

4
)

(r
1
,r

3
)

Figure 4.3: Support of the B-spline b(3,2),h of the k-th rectangular region.

As an example, the lower left corner of the support of the B-spline with index (3, 2) is (r1 +

2, r3 + 1)h. The support of the B-spline is shown in figure 4.3 as the darker region. The lower

left corner of the support is marked by a circle.

The hierarchical spline space in figure 4.2 with four rectangular domains has 20+9+21+25 = 75

relevant B-splines. Scanning the grids in the natural order, the list has the following form:

spl_position.eps
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HBLIST =




1, 2, 1
· · ·

1, 3, 5
2, 1, 1
· · ·

2, 3, 3
3, 1, 1
· · ·

3, 5, 5
4, 1, 1
· · ·

4, 5, 5




4.3 Numerical integration

To assemble the Ritz-Galerkin system, we need to compute integrals over subsets of the domain

D. This is done by summing the contributions from each grid cell Dℓ,h; i.e., the integrals have

the form ∫

Dℓ,h∩D

φ,

where φ depends on the basis functions, coefficients of the differential equation and other param-

eters.

There are different methods for numerical integration. However, for our application, Gauss

quadrature yields the most efficient approximation.

For a univariate function φ, the integral is the weighted sum of the values of φ on M points,

i.e.,
∫ b

a

ϕ(x)dx ≈
M∑

l=1

wlϕ(xl) (3.1)

The points can be constructed with the help of orthogonal polynomials. The resulting Gauss

Legendre formula is exact for polynomials of degree ≤ 2M − 1, i.e.,

∫ b

a

p(x)dx =
M∑

l=1

wlp(xl) ∀p ∈ P2M−1([a, b]).

If [a, b] is not the standard interval [−1, 1], then we can transform the Gauss points and the

weights via:

x̃l := 1
2 (a + b + (b − a)xl) and

w̃l := 1
2 (b − a)wl

for all l ∈ {1, · · · ,M}.



4.4. MATRIX ASSEMBLY 35

Let W = [a, b] × [c, d] be a rectangle on R2. Then the integral over W can be approximated

by the product rule:

∫

W

ϕ(x)dx =

∫ b

a

∫ d

c

ϕ(x, y)dxdy ≈
M∑

k=1

M∑

l=1

vkwlϕ(xk, yl). (3.2)

The bivariate Gauss Legendre formula is exact for all bivariate polynomials of degree ≤ 2M − 1.

We now turn to the discussion of the domain integral
∫

Dℓ,h∩D
φ. The grid cells Dℓ,h can be

classified into inner, boundary and outer cells. For inner grid cells, the Gauss product formula

can be used directly.
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Figure 4.4: Transformation of Gauss points.

Boundary cells have to be partitioned into deformed rectangles. Very few cuts are required

for the partition. Figure 4.4 shows an example.

The standard Gauss formula is easily mapped onto the subdomain. For example, if t 7−→
γ(t), 0 ≤ t ≤ 1 parametrizes the curved boundary segment of the left domain D in the figure 4.4,

then

[0, 1]2 ∋
(

s
t

)
7→ α

(
s, t
)

=

(
γ1(s)

y− + (γ2(s) − y−)t

)

is a parameterization of ∂D. We can apply the tensor product formula in a straightforward way

and obtain ∫

Dℓ,h∩D

ϕ(x)dx =

∫ 1

0

∫ 1

0

ϕ(α(s, t))
∣∣∣γ

′

1(s) (γ2(s) − y−)
∣∣∣ dsdt,

and we can use the standard Gauss formula for [0, 1]2 to approximate the integral over D.

4.4 Matrix assembly

First, we consider the assembly of Ritz-Galerkin matrix. Since the bilinear form a(·, ·) is defined

in terms of integrals, it can be computed by adding the contributions from each grid cell. In

aa.eps
arrow.eps
ee.eps
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our data structure, we represented each B-spline as a triple (k, ν, µ), where k is the index of the

structure array and (ν, µ) is the index of the B-spline corresponding to the rectangular region

stored as HB(k).R. To assemble the Galerkin matrix G we loop over the list of B-splines, i.e.,

G = [gℓ,ℓ′ ] , gℓ,ℓ′ =

∫

D

∇(wbℓ)∇(wbℓ′).

Let bℓ and bℓ′ be determined by the triplets (k, ν, µ) and (k′, ν′, µ′), respectively. Their support

intersects only when the difference between their lower left corners is < hk+hk′ , where hk and hk′

are the grid width of bℓ and bℓ′ . We add the contributions from the grid cells in the intersection.

In the list of B-splines there are also some irrelevant B-splines whose support is outside the

domain D. The entries in the Galerkin matrix corresponding to such B-splines produce a zero

row and a zero column. We add 1 on the diagonal to make the system non-singular and 0 on the

corresponding entry of the right hand side.

The right hand side of the Galerkin system is

F = [fℓ′ ] , fℓ′ =

∫

D

fwbℓ′ .

To compute this integral, we loop over the list of B-splines and add the contributions of each

grid cell.

4.5 Adaptive refinement

Adaptive refinement is a very crucial step in finite element approximation. An appropriate strat-

egy yields a reduction in error. Here we first describe the refinement procedure and then it is

explained in a one dimensional example.

Consider an approximation in a weighted hierarchical spline space

wB(h+,h−) ∋ p = w

h−∑

h=h+

∑

k∈Kh

ck,hbk,h

over a nested sequence of domains

D : Dh+ ⊃ Dh+/2 ⊃ · · · ⊃ Dh− .

The key step of an adaptive method is to decide in which region further refinement is needed.

To achieve this goal, we refine the existing grid and compute an approximation on the refined

grid. Let the new approximation be

wB(h+/2,h−/2) ∋ p̃ = w

h−/2∑

h=h+/2

∑

k∈Kh

c̃k,hbk,h.
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Here it is important to note that the domains Dh+ ,Dh+/2, · · · ,Dh− have not been changed in size

but in grid width. A comparison of p̃ and p is facilitated by converting to the same representation

via subdivision. We express p in terms of the basis for wB(h+/2,h−/s)(D) i.e.,

p = p′ = w

h−/2∑

h=h+/2

∑

k∈Kh

c′k,hbk,h.

Now, both p and p̃ are represented on the same weighted hierarchical spline space and can be

compared more easily. We compare them with respect to the coefficients of the basis functions.

We refine the domain where |c′k,h − c̃k,h| is greater than the given tolerance. This means that we

enlarge the domain, Dh → D′
h, so that it covers the support of all B-splines for which |c′k,h− c̃k,h|

exceeds the tolerance tol. For h = h−/2, a new domain Dh−/2 can be defined in this fashion. As

a result we obtain a new sequence of nested domains

D : Dh+ ⊃ D′
h+/2 ⊃ · · · ⊃ D′

h− ⊃ Dh−/2,

describing the refinement.

We illustrate this strategy for a simple univariate example, for simplicity without weight

function.

Let a function f be defined on a domain D = (0, 6). The domain D is discretized into a nested

sequence of domains up to two levels with grid width h+ = 1 and h− = 1/2.

Let D1 = (−1, 7),D1/2 = (−1/2, 3). The corresponding sets of indices are K1 = {2, 3, 4, 5},K2 =

{−1, 0, 1, 2, 3, 4}. There are ten relevant B-splines that form hierarchical B-spline space over D.

Let p ∈ B1,1/2(D) be an approximation to f .
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Figure 4.5: The function f (blue), its approximation p (black *) on D1 (green) and D1/2 (red).
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The figure 4.5 shows the hierarchical discretization D1 (green) and D1/2 (red). The function f

(blue) and an approximation p (black *) are also shown in the figure. We consider the three

steps of refinement procedure in turn. First comes the refinement of the hierarchical grid and

the subdivision of the existing approximation p ∈ B1,1/2(D) by the subdivision algorithm. The

refinement p′ = p is now expressed as an element of the refined hierarchical space B1/2,1/4(D).

The second step is to find an approximation p̃ from the refined space B1/2,1/4(D) and compare

its coefficient with the approximation p′. The figure 4.6 shows the refinement p′ in black while

the approximation p̃ from the refined space is shown in red.
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Figure 4.6: The function f (blue), subdivision of the approximation p = p′ (black *) and approx-

imation p̃ (red *) on refined grid D1 (green) and D1/2 (red).

The refinement p′ and the approximation p̃ are now defined on the same refined space, there-

fore they can be compared in terms of their coefficients. The discrepancy of coefficients > tol is

indicated by the rectangular regions A and B.

The third step is to refine the grid according to the rectangular regions A and B. First we

look at the rectangular region B. Errors |c′k,h − c̃k,h| > tol occur for k = 6 and k = 8. The

corresponding B-splines b6,1/2, b8,1/2 have supports [3, 4] and [4, 5]. The domain D1/2 has to be

enlarged so that its closure covers these intervals, i.e. D1/2 → (−1/2, 5). Similarly for the region

A, the discrepancy occurs for the B-splines bk,1/4, k = 0, 1, · · · , 6, with ∪6
k=0 supp bk,1/4 = [0, 2].

Accordingly, a new domain D′
1/4 = (0, 2) is defined. This leads to the new hierarchical spline

space B(1,1/4)(D′) defined on the nested domains

D′ : D1 ⊃ D′
1/2 ⊃ D′

1/4.

adaptive_ref_echeme2.eps
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Figure 4.7: The function f (blue), its approximation p (black *) on D1 (green), D′
1/2 (red), and

D′
1/4 (blue).

In figure 4.7 we show D1 (green), D′
1/2 (red solid and doted) and D′

1/4 (blue) along with the

functions f (blue) and an approximation p (black *) to f on D1, D′
1/2 and D′

1/4.

The application of the refinement strategy to the solution of the Poisson problem

−∆u = f in D
u = 0 on ∂D

is straightforward. For the refinement step we compare a refined Galerkin solution with the

Galerkin solution from the refined space. Some examples will be given in the next section.

4.6 Numerical examples

In this section, we discuss some numerical examples. We compare the solutions obtained from

the WEB and WB methods with the solutions and error estimates obtained from our adaptive

method.

Example 4.6.1. Our first example deals with the solution of the Poisson problem

−∆u = 1 in D

u = 0 on ∂D

where D is an L-shaped domain. The domain D has a reentrant corner at (1, 1).

The solution shows a singularity at the reentrant corner. We approximated the solution by the

WEB method and the adaptive method. First, we choose a sequence of strongly nested domains

(figure 4.8, left) with an appropriate refinement near the reentrant corner. Second, we illustrate

one step of automatic refinement as described in section 4.5.

adaptive_ref_echeme3.eps
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corner

Figure 4.8: L-shaped domain and solution of Poisson’s equation.

The figure 4.8 shows the relevant splines over the strongly nested domains near the reentrant

corner (1, 1) with grid widths h+ = 1/6 and h− = 1/48. The right figure shows the solution of

the Poisson problem.

h DOF(WEB) H0 error CondG DOF(WB) CondG

1/2 12 - 7.6360e+00 32 1.1477e+04

1/4 48 0.0745 4.5163e+01 84 7.1285e+04

1/8 192 0.0270 1.4410e+02 260 3.1590e+05

1/16 768 0.0095 5.2558e+02 900 1.2810e+06

1/32 3072 0.0031 2.0291e+03 3332 5.1446e+06

1/64 12288 0.0010 7.9956e+03 12804 2.0604e+07

Table 4.1: Grid width h, Degree of freedom (DOF), H0-error and condition number of Galerkin

matrix for WEB and WB methods.

The first four columns of table 4.1 show the grid width h, degrees of freedom (DOF), H0-

error and the condition number of the Galerkin matrix obtained from the WEB method. The

last two columns of the table show the DOF and the condition number of the Galerkin matrix

obtained from the WB method. The rate of convergence, estimated from ℓd(0.0745/0.0270),

ℓd(0.0270/0.0095), · · · is less than the optimal order 2 as is expexted in view of the singularity.

The table 4.2 shows the DOF and H0-error of the Galerkin solution obtained from hierarchical

approximation. Since, for strongly nested domains, the distance between the boundary ∂Dh and

∂Dh/2 is greater than 2h, we fix this distance as 3h. We approximate the solution up to six

L_shaped_domain.eps
L_shaped_domain_solution1.eps


4.6. NUMERICAL EXAMPLES 41

Hierarchical levels DOF(WHB) H0-error

1 133 -

2 231 0.028107

3 329 0.010267

4 427 0.003495

5 525 0.001161

6 623 0.000394

Table 4.2: H0-error for adaptive method over strongly nested domain with h+ = 1/6.

hierarchical levels. The resulting sequence of domain is

D = Dh+ ⊃ Dh+/2 ⊃ · · · ⊃ Dh− .

where h+ = 1/6 and h− = 1/192. As is expected, the results are slightly better. For example,

with 623 DOF an error of 0.000394 is achieved which is less than 0.0095 as obtained with 768

WEB basis functions.

Hierarchical levels DOF(Adaptive Method) H0-error

1 133 -

2 187 0.013549

3 339 0.006276

Table 4.3: H0-error for adaptive method with h+ = 1/6 and tol. = 10−2.

The last table 4.3 shows the DOF and the H0-error obtained from the adaptive scheme dis-

cussed in section 4.5. Here we show only two refinement steps which indicate a slight improvement

over a user-defined domain selection.

Example 4.6.2. Our second example is the domain consisting of a 3/4-th portion of the unit

circle with center at (0, 0). The exact solution is

u(x, y) = (1 − x2 − y2)(x + y −
√

x2 + y2)

with f = 8x + 8y − 9
√

x2 + y2 + 1√
x2+y2

.
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corner

Figure 4.9: Domain with reentrant corner and solution of Poisson’s equation.

Figure 4.9 shows the B-splines over domains of different hierarchical levels and the solution of

the Poisson problem.

The first four columns of table 4.4 show the grid width h, degree of freedom (DOF), H0-error

and the condition number of the Galerkin matrix obtained from the WEB method. The last two

columns of the table show the DOF and condition number of the Galerkin matrix obtained from

the WB method.

h DOF(WEB) H0 error CondG DOF(WB) CondG

1/2 7 0.013086148 8.3984e+00 29 5.7269e+03

1/4 37 0.003289313 3.1660e+01 73 2.7415e+08

1/8 156 0.000616409 1.2855e+02 224 6.3688e+08

1/16 609 0.000145764 6.4816e+02 741 1.5162e+11

1/32 2421 0.000035975 3.3423e+03 2681 2.8203e+13

1/64 9638 0.000008925 1.1870e+04 10154 2.0407e+19

Table 4.4: Grid width h, Degree of freedom (DOF), H0-error and condition number of the

Galerkin matrix for WEB and WB methods.

The table 4.5 shows the data for solving the Poisson problem via the adaptive scheme for

strongly nested domains with up to four hierarchical levels with refinement near (0, 0). The error

is calculated with respect to the exact solution of the Poisson problem.

example_22.eps
example_2_sol.eps
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Hierarchical levels DOF(WHB) H0-error

1 136 0.0011424

2 264 0.0004612

3 403 0.0000822

4 555 0.0000248

Table 4.5: H0-error for adaptive method over strongly nested domains with h0 = 1/6.

Hierarchical levels DOF(Adaptive Method) H0-error

1 136 0.0011424

2 427 0.0007591

3 1563 8.2702 e -6

Table 4.6: H0-error for adaptive method with h+ = 1/6 and tol. = 10−2.

Table 4.6 shows the DOF and the H0-error for the solution of the Poisson problem solved over

the nested domain obtained by comparing the approximation uh with the exact solution u. The

nested domains have the grid widths h+ = 1/6 and h− = 1/24.

As for the previous example, the tables confirm a slightly better performance of our hierarchical

approximations compared to the WEB method.
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Chapter 5

Summary and Discussion

This chapter outlines the contents of the thesis which discussed the finite element approximation

of an elliptic boundary value problem by using hierarchical weighted B-splines. It was often asked

about the adaptivity of WEB-splines for boundary value problems. We developed a scheme of

adaptivity for weighted linear B-splines.

In the second chapter, we gave a short introduction to the theory of the finite element method.

As a model problem, we considered Poisson’s equation with Dirichlet boundary conditions

−∆u = f in D

u = 0 on ∂D

on a bounded domain D ⊂ R2.

Since, in general, there does not exist a classical solution of this boundary value problem, it

is solved in a generalized function space, the Sobolev space, which is discussed in section 2.2.

Its definition uses a weak derivative, a generalization of the classical derivative via Lebesgue

integration by parts.

The variational formulation of our model problem is

∫

D

∇u.∇v dD =

∫

D

fv dD ∀v ∈ H1
0 (D).

The Lax-Milgram theorem guarantees the existence of a unique solution u of the variational

problem

J(u) = minv∈V J(v),

J(v) =
1

2
a(v, v) − F (v)

45
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and hence of our model problem.

For the computation of an approximate solution uh, the Ritz-Galerkin method employs a finite

subspace Vh of H1
0 (D) using basis functions bk with the local support. Then uh has a unique

representation of the form uh =
∑Nh

k=1 ckbk, where Nh = dim(Vh). Substituting uh in variational

formulation and restricting v to {b1, · · · , bNh
}, one obtains the Galerkin system

Gu = f

where the entries of G are given by (4.16). Lemma 2.4.1 shows the positive definiteness of the

stiffness matrix G. According to Cea’s lemma 2.4.2, the error of the Ritz-Galerkin solution uh

corresponds to the error of the best approximation of u in Vh.

B-splines play an important role. We use B-splines as finite element basis functions. Two

major problems arise when using B-splines as basis functions in finite element approximations

on arbitrary domains. One is the fulfillment of homogeneous Dirichlet boundary conditions and

the other is the stability problem.

We can remove these difficulties by simple modifications. The homogeneous Dirichlet bound-

ary condition causes, in general, all the coefficients near the boundary to be zero. As a result,

the approximation power is lost. This deficit can easily be removed by multiplying the B-splines

with a sufficiently smooth weight function which vanishes on the boundary and is positive inside

D. For domains with smooth boundary ∂D, the distance function can be used as a weight func-

tion. An alternative approach for generating weight functions is the R-function method. This

technique is useful for the domains designed by CSG techniques. In this case, the R-function

method supplies set operations to construct a global weight function from the boundary segments.

Weighting the B-splines leads us to the weighted B-spline basis (WB-basis), which incorporates

essential boundary conditions to the finite element basis. The Bramble-Hilbert’s lemma helps

us to find the error bound for u ∈ Hn(D) using the orthogonal projection Lnu onto polynomial

Pn−1(D) of total degree < n on D. The error bound for the Sobolev norm on Hℓ(D) for

0 ≤ ℓ < k ≤ n is

‖u − Lnu‖Hℓ(D) ≤ const(D,n)̺k−ℓ‖u‖Hk(D) for 0 ≤ ℓ < k ≤ n,
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where ̺ is the diameter of the domain D. For the spline function uh =
∑

k∈K ckbk,h, the error

bound for u ∈ H2(D) is

‖u −
∑

k∈K

ckbk,h‖Hℓ(D) � h2−ℓ‖u‖H2(D) for 0 ≤ ℓ < 2.

In section 3.5, we explain the adaptive refinement with hierarchical bases. For the refinement

step some of the B-splines on the coarser grid are subdivided. The subdivision is accomplished

by the formula

bk,h(x) =

2∑

l=0

slb2k+l,h/2(x)

where

sl =
2∏

ν=1

1

4

(
2
lν

)
.

If by Uh we denote the coefficients of a spline function uh =
∑

k uk,hbl,h on the coarser grid,

then uh is represented on the fine grid by the representation (5.6).

The coefficients on the fine grid and on the coarse grid are related by

Uh/2 = PUh, pk,l = sk−2l.

In adaptive finite element computations, we adjust the spatial resolution of the domain dis-

cretization to obtain high accuracy on some subregions of D. To fulfill this requirement we insert

a new set of basis functions having a smaller grid width than the coarser basis functions.

We define hierarchical splines in definition 3.5.1 corresponding to a nested sequence of domains

D : Dh+ ⊃ Dh+/2 ⊃ ... ⊃ Dh− .

We replace the relevant B-splines bk,h with k ∈ Kh by the finer B-splines via subdivision. The

spanning set is then

bk,h, k ∈ Kh, h ∈ {h+h+/2, · · · , h−}.

The hierarchical B-splines which span B(h+,h−)(D) are linearly independent. We prove the linear

independence in theorem 3.5.3.

To keep the basis uniformly conditioned, we impose some restrictions on the nested sequence

of domains. We introduced strongly nested domains in definition 3.6.1.

Strongly nested domains obey the following properties:
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• B-splines in the basis with non-empty intersection of their supports must belong to two

consecutive hierarchical levels.

• The distance between the boundary ∂Dh and ∂Dh/2 is greater than 2h.

The error of a hierarchical approximation p to a smooth bivariate function f is bounded by

|f(x) − p(x)| ≤ const h2
2∑

ν=1

‖∂2
ν f̃‖∞,Dx,h

, x ∈ Dh\Dh/2.

A proof of this statement is given in theorem 3.6.1.

Chapter 4 is devoted to the numerical implementation of an adaptive scheme. We used MAT-

LAB as a software package. In section 4.1 we explain the data structure to store the information

obtained from the adaptive grid discretization and the resulting spline space. The grid data

consists of an array of structures HB(ℓ), where ℓ denotes the discretization level. To assemble

the Ritz-Galerkin system we make a list of all relevant B-splines in the form of triplets (k, ν, µ)

containing the level k and the index (ν, µ) of the B-spline. The entries of the Galerkin system

gk,l =

∫

D

grad bk grad bl

are computed with the help of numerical integration. The techniques for numerical integration

over grid cells is explained in section 4.3. The Galerkin matrix is obtained by adding the con-

tributions from each grid cell. We conclude by describing our refinement strategy and some

numerical examples.

5.1 Possible generalizations

An adaptive refinement can be generalized in different ways. The possible generalization concerns

the selection of the finite element basis function and the refinement strategy.

As far as the finite element basis is concerned, splines of arbitrary degree can be used as

finite element basis functions. The basis functions may be defined on three or higher dimensional

domains. The discretization and the adaptivity for such domains are difficult to program.

One can classify the inner and outer B-splines for different hierarchical levels and construct the

WEB splines as finite element basis functions. WEB splines also permit an adaptive refinement

strategy. Error estimates for our refinement strategy are also an open problem.
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As far as the refinement strategy is concerned, the assumption of a ”strongly nested domain”

can be removed and one can form a strategy that deals with the general sequence of domains.

The stability of the hierarchical basis is also included in our future work. Moreover, the Galerkin

system constructed over a nested sequence of domains can be solved with multigrid solvers.
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Appendix A

Appendix A

Definition A.0.1. (Quasi-Interpolant).

A quasi-interpolant Q : L2(R2) → Bh(R2) with uniform B-splines bk,h of coordinate degree n

on the grid hZ2 has the form

Qf =
∑

k∈Z2

(Qkf)bk,h

where Qk : L2(supp bk,h) → R are continuous linear functionals. Moreover,

• |Qkf | ≤ ‖Q‖ ‖f‖L2(supp bk,h) ∀ k ∈ Z2

• Qf = f ∀f ∈ Pn(R2).

The uniform boundedness and the reproduction of polynomials in particular imply that Q has

the optimal approximation order.

Definition A.0.2. (Extension Operator). Let D be a Lipschitz domain in Rm. For ℓ ∈ N, a

linear operator E mapping Hℓ(D) into Hℓ(Rm) is called an extension operator for D if there

exists a constant K such that for every u ∈ Hℓ(D) the following holds:

• Eu(x) = u(x) for x ∈ D

• ‖Eu‖Hℓ(Rm) ≤ K‖u‖Hℓ(D).

An extension operator E , valid for any ℓ, was constructed by Stein ([Ste73]), improving the

earlier result by Calderón ([Cal61]) where the extensions were not independent of the order of

the differentiability.

51
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