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Abstract

In this work, a method for computer simulations of laser ablation in metals
is presented. The ambitious task to model the physical processes, that oc-
cur on different time and length scales, is overcome to some extent by the
combination of two techniques: Molecular dynamics and finite differences.
The former is needed to achieve atomistic resolution of the processes in-
volved. Material failure like melting, vaporization or spallation occur on
the atomic scale. Light absorption and electronic heat conduction, which
plays the major role in metals, is described by a generalized heat conduc-
tion equation solved by the finite differences method. From the so–called
Two–Temperature Model temperature, density and pressure evolution –
both in time and space – can be derived. With this, various studies on
laser heated metals were done. For reasons discussed in more detail later,
aluminum was chosen as a model system for most simulations on isotropic
materials. As a more complex structure, the metallic alloy Al13Co4 was
used because of its special material properties. As an approximant to the
decagonal phase of Al–Ni–Co, the alloy shows an anisotropy in its transport
properties, e.g. an anisotropic heat conduction.

It will be shown, that the model is able to describe the physics in laser
heated solids on time scales from 100 fs up to the ns–scale properly. Great
insight was gained about the processes occuring during and shortly after the
laser pulse. Many of the quantities interesting for experimentalists can be
predicted by the theory. From the simulations relevant parameters like the
electron–cooling time or the important ablation threshold were calculated.
All values match their experimental counterpart very well.
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Computersimulation der Laserablation

von einfachen Metallen hin zu

Komplexen Metallischen Phasen

Zusammenfassung in deutscher

Sprache

Die vorliegende Arbeit beschäftigt sich mit der Laserablation in Metallen.
Ziel ist es, mit Hilfe von numerischen Simulationen das Verhalten von Me-
tallen nach der Bestrahlung mit intensiven Laserpulsen vorherzusagen. Die
Arbeit ist inhaltlich in zwei Teile gegliedert. In der ersten Hälfte werden
theoretische Grundlagen, eine qualitative Beschreibung der Ablation und
die Implementierung des Modells gegeben. Im zweiten Teil folgen Ergebnis-
se sowie, falls vorhanden, Vergleiche mit Experimenten. Die Arbeit schließt
mit einer Zusammenfassung und einem Ausblick.

Einleitung

Mit dem Aufkommen von ultrakurzen Piko– und vor allem Femtosekunden–
Laserpulsen hat sich eine Vielzahl neuer Bearbeitungsmöglichkeiten von
Materialien eröffnet. Für die Anwendung ergeben sich industrielle Verfah-
ren wie Bohren, Erodieren, Schweißen, Strukturieren oder Markieren. Dar-
über hinaus ist die Laserablation ein wichtiger Bestandteil der modernen
Chirurgie geworden. Gerade für Anwendungen im Mikrostrukturbereich
liegt der Vorteil der Femtosekundenpulse in schärferen Lochgeometrien so-
wie einer, durch die kürzere Wärmeleitung bedingten, kleineren, wärme-
affektierten Zone. Das Material wird außerhalb des bearbeiteten Bereichs
erheblich geschont.

xv



xvi Zusammenfassung

Verschiedene experimentelle sowie theoretische Studien beschäftigen sich
mit den Vorgängen, die während der Ablation passieren. Je nach Schwer-
punkt geht es dabei um das Materialinnere, um Oberflächeneffekte oder
Vorgänge in der entstehenden Gas– und Plasmawolke. Aufgrund der kom-
plexen Natur der auf unterschiedlichen Zeit– und Längenskalen vorkom-
menden Prozesse ist es eine anspruchsvolle Aufgabe, theoretische sowie
numerische Modelle zu finden. Die auftretenden Prozesse umfassen dabei
mehr als vier Größenordnungen in ihrem zeitlichen Ablauf. Während der
Laserpuls im Bereich von Femtosekunden liegt, dauert es Nanosekunden
für den Austrieb von Schmelze oder das Abkühlen der Probe. Typische
Elektron–Gitter Relaxationszeiten liegen mit Pikosekunden dazwischen. Es
scheint unmöglich, innerhalb eines Modells alle Mechanismen zu beschrei-
ben. Erschwerend kommt hinzu, dass es sich bei den vorkommenden Me-
chanismen je nach Material (etwa bei der Wechselwirkung mit Licht) um
unterschiedliche Vorgänge handelt.

Werden Laserpulse bedeutend kürzer als die Elektron–Gitter Relaxati-
onszeit, befinden sich Elektronen und Gitter in einem Metall nicht mehr
im thermischen Gleichgewicht. Die beiden Systeme müssen getrennt behan-
delt werden. Einer der ersten theoretischen Ansätze, der dies berücksich-
tigte war das von Anisimov 1974 vorgestellte Zwei–Temperatur–Modell
(TTM, vom Englischen Two–Temperature Model). Es beschreibt die zeitli-
che Entwicklung der Elektronen- und Gittertemperatur durch zwei gekop-
pelte partielle Differenzialgleichungen. Das Zwei–Temperatur–Modell hat
sich über die Jahre als vielversprechender Ausgangspunkt für viele Unter-
suchungen und Theorien etabliert. Neben numerischen Rechnungen gibt es
relativistische Korrekturen um die instantane Wärmeausbreitung, wie sie
durch das Fourier Gesetz gegeben ist, zu verhindern. Es gibt Erweiterun-
gen der verwendeten Konstanten, wie der thermischen Leitfähigkeit oder
der Elektron–Phonon Wechselwirkung auf einen weiten Temperaturbereich.
Das Zwei–Temperatur–Modell wurde an Molekulardynamik Simulationen
oder an hydrodynamische Gleichungen gekoppelt. Bei Ultrakurzzeitphä-
nomenen diente es als Ausgangspunkt für Elektronendynamik außerhalb
des thermischen Gleichgewichts. Änderungen zur Fermi–Dirac Statistik
wurden untersucht.

Um die verschiedenen Längenskalen zu überwinden, nutzt man Multi–
Skalen–Simulationen. Eine laterale Erweiterung wurde durch die Kopplung
von Molekulardynamik an Finite–Elemente erreicht. In Einfallsrichtung des
Lasers sorgen Monte–Carlo–Methoden für die Berechnungen der Gaswolke
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bis zu mehreren Mikrometern Ausdehnung.
Für Anwendungen wie der gepulsten Laserdeposition von Materie (PLD

vom Englischen pulsed laser deposition) ist es von größter Wichtigkeit, die
Zusammensetzung der Gaswolke zu kontrollieren. Zusammensetzung so-
wie Entstehung finden ebenfalls auf verschiedenen Zeit– und Größenskalen
statt. Weiter gibt es Simulationen der Kraterbildung sowie zur Analyse
des abgetragenen Materials. Cluster–, Winkel–, Ladungs– oder Geschwin-
digkeitsverteilung sind dabei von besonderem Interesse.

Viele der bereits durchgeführten theoretischen Überlegungen wurden an
Modellsystemen wie Lennard–Jones Kristallen gemacht. Teilchenzahlen
waren dabei nicht selten vergleichsweise gering. Andere Rechnungen wa-
ren auf weniger als drei Raumdimensionen oder organische Materialien be-
schränkt. Wo eine Vergleichsmöglichkeit zu anderen Arbeiten bezüglich der
Systemgröße und der verwendeten Potenziale besteht, wurde auf eine Wär-
meleitung über das Zwei–Temperatur–Modell verzichtet.

Es ist das Bestreben dieser Arbeit, Methoden vorzustellen, mit denen
vollständige Studien der Laserablation in Metallen durchgeführt werden
können. Zusätzlich werden notwendige Simulations– und Analysewerkzeu-
ge vorgestellt, damit man anschließend die Ergebnisse qualitativ und quan-
titativ mit Experimenten vergleichen kann.

Theoretischer Hintergrund

Der Ablationsprozess kann materialunabhängig in vier Schritten zusam-
mengefasst werden. Diese sind:

1. Absorption von Laserstrahlung durch das Medium.

2. Umwandlung von eingestrahlter Energie in thermische Schwingungen.

3. Emission von Partikeln an der Oberfläche.

4. Unter gewissen Umständen die Bildung einer Plasmawolke.

Je nach Material handelt es sich dabei um unterschiedliche Prozesse. In
Metallen erfolgt die Absorption durch die freien bzw. schwach gebundenen
Elektronen. Nach einer Thermalisierung findet ein Energieübertrag durch
Stöße an das Atomgitter statt. Durch Stöße der Elektronen untereinan-
der wird die Wärme zusätzlich diffusiv unter die Oberfläche transportiert.
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Übersteigt die eingekoppelte Energie einen kritischen Wert, die Ablations–
oder Abtragsschwelle, findet ein Abtrag von Teilchen statt.

Gitterschwingungen sowie Phasenumwandlungen von fest nach flüssig
oder von flüssig nach gasförmig können bereits durch Molekulardynamik-
rechnungen beschrieben werden. Molekulardynamik (MD) bezeichnet Com-
putersimulationen, bei denen Wechselwirkungen zwischen Atomen oder
Molekülen berechnet und daraus Teilchentrajektorien bestimmt werden.
Es wird die Newtonsche Bewegungsgleichung für ein Vielteilchensystem
numerisch integriert. Im Gegensatz zu ab initio Methoden, die auf quan-
tenmechanischen Rechnungen basieren, verwendet die Molekulardynamik
Kraftfelder oder semiempirische Methoden, um Simulationen mit großen
Teilchenzahlen zu erreichen. Diese werden an theoretische Rechnungen so-
wie an experimentelle Daten, etwa die Schmelztemperatur oder die Git-
terkonstante, angepasst. Das makroskopische Verhalten des Stoffes wird
dadurch bestmöglich wiedergegeben. Im Vergleich zu ab initio Rechnungen
(bis max. 1000 Atome) sind Teilchenzahlen im dreistelligen Millionenbe-
reich möglich.

Die Temperatur eines Körpers lässt sich in MD Simulationen durch den
Mittelwert der kinetischen Energie der Atome definieren. Größere Ener-
gien entsprechen dabei höheren Temperaturen. Durch die Änderung der
Geschwindigkeitsverteilung nahe der Oberfläche kann eine Umwandlung
von Laserleistung in thermische Schwingungen modelliert werden. Je nach
Größe der Materialparameter kommt es im Vergleich mit dem Experiment
jedoch zu Abweichungen. Die fehlende Wärmeleitung der Elektronen, die
in Metallen den überwiegenden Teil ausmacht, sorgt für eine unphysikali-
sche Lokalisierung der eingebrachten Energie, ein Problem, das bereits bei
den ersten Simulationen der Laserablation in den 1990er Jahren bekannt
war.

Eine wesentlich realistischere Wärmeausbreitung kann durch ein 1974
vorgestelltes Modell für laserbestrahlte Metalloberflächen erreicht werden.
Das Zwei–Temperatur–Modell beschreibt die Lösung einer verallgemeiner-
ten Wärmeleitungsgleichung für Elektronen– und Gittertemperatur durch
inhomogene partielle Differenzialgleichungen. Von diesen Gleichungen wird
für die Modellierung der Ablation nur der elektronische Teil verwendet. Die
Gitterdynamik wird durch die Molekulardynamik übernommen und ent-
sprechend an das Kontinuumsmodell gekoppelt. Der Austausch von Ener-
gie wird über eine Elektron–Phonon–Kopplung ermöglicht. Es entsteht eine
Hybridsimulation, die Vorteile beider Methoden kombiniert. Dadurch ist es
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gelungen, die Laserleistung physikalisch sinnvoll in das System zu bringen:
Energie wird vom elektronischen System absorbiert und diffusiv unter die
Oberfläche geleitet. Gleichzeitig wechselwirkt es mit den Atomrümpfen, die
sich in Folge dessen aufheizen. Es ist somit möglich, die Prozesse bei der
Laserablation in atomarer Auflösung zu erfassen.

Ergebnisse

Für die Studien an Metallen wurde reines Aluminium als Material ausge-
wählt, nicht zuletzt, weil für dieses Metall bereits geeignete EAM–Potenziale
in der Literatur existieren. Weiter gibt es bei Aluminium im festen Zustand
keine temperatur– oder druckabhängigen Phasenumwandlungen, wie es an-
dere Metalle zeigen, die zusätzliche Modellierung erfordern würden. Da bei
der Ablation alle Aggregatzustände vorkommen können, ist es sinnvoll, im
Vorfeld das Phasendiagramm des Potenzials zu ermitteln. Dazu wurden
verschiedene Schmelz– sowie Verdampfungssimulationen durchgeführt. Es
konnte gezeigt werden, dass sich alle drei Phasen mehr als zufriedenstellend
reproduzieren lassen.

Für den Fall einfachen Aufheizens wurde eine räumlich konstante La-
serintensität verwendet. Im Experiment entspricht dies der Zone im Zen-
trum eines gaußförmigen Laserstrahls. Durch Simulationsreihen, bei denen
die Laserleistung sukzessiv erhöht wurde, konnte das Schmelz– und Ab-
tragungsverhalten bestimmt werden. Für das Modell mit elektronischer
Wärmeleitung ergibt sich dabei ein Wert für die Ablationsschwelle von
Fth = (858± 170) J/m2. Für die bestimmte thermische Eindringtiefe α−1

ergab die Simulation (27±6) nm. Die experimentellen Werte liegen je nach
Messung zwischen 580 und 1200 J/m2 für die Abtragsschwelle und bei
39 nm für die Eindringtiefe. Die aus der Simulation vorhergesagten Werte
stimmen demnach sehr gut mit den Experimenten überein.

Als weitere Ablationssimulation wurde eine inhomogene Leistungsdichte,
wie sie für TEM00–Moden vorliegt, durchgeführt. Aufgrund der begrenz-
ten Systemgröße von 60 Millionen Atome musste von einer Wärmeleitung
der Elektronen abgesehen werden. Wegen der großen Temperaturgradien-
ten, die an der Oberfläche entstehen, würde sich die Temperatur zu schnell
verteilen, sodass erneut ein homogenes Profil vorliegen würde. Die Simula-
tionen wurden deshalb mit dem einfacheren Modell, das lediglich die Ge-
schwindigkeiten der Atome verändert, durchgeführt. Als Ablationsschwel-
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le ergibt sich hier ein Wert von (1137 ± 166) J/m2, was noch immer im
Toleranzbereich der Experimente liegt. Anders ist es bei der thermischen
Eindringtiefe. Der gefundene Werte α−1 = (8.6 ± 1.7) nm liegt erheblich
unterhalb der experimentellen Vorgaben. Dieser Wert entspricht im Fall
fehlender Wärmeleitung in etwa der optischen Eindringtiefe lα = 8 nm.

Im Vergleich zum komplexeren Zwei–Temperatur–Modell entsteht über
der Probe wegen der inhomogenen Anregung eine Gasphase, die weiter ana-
lysiert werden kann. Für die sich mit ca. 6 km/s ausbreitenden Gaswolke
(experimentelle Werte schwanken zwischen 3 und 30 km/s) können Sta-
tistiken über Größen–, Winkel– und Geschwindigkeitsverteilung aufgestellt
werden. Es zeigt sich, dass die Größenverteilung der entstehenden Cluster
einem Potenzgesetz folgt. Der gefundene Exponent liegt mit δ = 5.1 nahe
an den experimentellen Werten (zwischen 7.7 und 9.3). Die experimentellen
Daten sind aus Ionenbeschuss von Metalloberflächen gewonnen, sodass es
sich für das Potenzgesetz um ein universales Verhalten zu handeln scheint.
Auch wenn die kleinsten erreichbaren Strahldurchmesser mit 0.5 − 1 µm
eine Größenordnung über der Simulation liegen, sind die gefundenen Er-
gebnisse gut vergleichbar.

Da das Institut für Theoretische und Angewandte Physik als Hintergrund
die Physik komplexer metallischer Legierung hat, bot es sich an, ebenfalls
deren Ablationsverhalten zu studieren. Als Einstiegssystem diente ein Ap-
proximant für die dekagonale Phase von Al–Ni–Co, Al13Co4. Strukturell
vereint diese Legierung Eigenschaften periodischer und quasiperiodischer
Festkörper: Sie besteht aus quasiperiodischen Ebenen, die periodisch ge-
schichtet sind. Die Wärmeleitfähigkeit erhält somit eine Richtungsabhän-
gigkeit.

Wie erwartet gibt es wegen der anisotropen Wärmeleitung unterschiedli-
che Schmelztiefen – wenn auch nicht sehr ausgeprägt (< 5 nm). Eine erste
Erklärung für diese schwache Richtungsabhängigkeit gibt die relativ ho-
he Elektron–Phonon–Kopplung in Aluminium–Cobalt. Diese sorgt für eine
sehr kurze Elektron–Gitter Relaxationszeit, wodurch die diffusive Wärme-
leitung der Elektronen verkürzt wird.

Zusammenfassung

In der vorliegenden Arbeit wird ein Modell vorgestellt, mit dessen Hilfe
die Laserablation in Metallen quantitativ und qualitativ beschrieben wer-
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den kann. Im verwendeten Zwei–Temperatur–Modell wird die vom Laser
an das Material abgegebene Leistung von den freien Elektronen absorbiert
und anschließend diffusiv unter die Oberfläche transportiert. Gleichzeitig
findet ein Energieaustausch mit dem Atomgitter statt. Alle vorhergesagten
Parameter, wie beispielsweise die Elektron–Gitter Relaxationszeit oder die
Ablationsschwelle, liegen innerhalb der experimentell bestimmten Werte
oder sind vergleichbar. Eine tabellarische Zusammenfassung aller Parame-
ter sowie deren experimenteller Gegenstücke findet sich auf Seite 102.

Zusammenfassend konnte gezeigt werden, dass mit Hilfe von atomis-
tischen Computersimulationen vielversprechende Aus– und Vorhersagen
über das Verhalten von laserbestrahlten Metallen getroffen werden kön-
nen.
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Chapter 1

Introduction

Over the years material processing with intensive laser radiation has found
numerous applications such as micro–machining [110, 94], nano–technology,
e.g. the creation of nano diamond clusters [4] and carbon nanotubes [105] or
thin–film deposition [27]. Aside from industrial applications, laser ablation
is used in the medical world for the removal of biological tissue [134]. It
seems that for each process and material a best suitable laser source can be
found. While there are applications for nanosecond (ns) pulses [14], various
studies show the advantages of femtosecond (fs) pulses over the ns–regime
for microstructuring. Most important are the sharper hole geometries [26]
and the smaller damage due to the limited heat transfer perpendicular to
the incoming laser pulse, resulting in a reduced thermally effected area
around the laser spot [127].

Different studies, experimental and also theoretical ones, deal with the
processes occurring in the bulk material or the surface during or after the
laser pulse. Due to the complex character of the processes involved at dif-
ferent time and length scales, theoretical and computational investigations
are a challenging task. It seems impossible to describe all processes that
occur within a single model. In addition, the mechanisms, e.g. for photon
absorption, are different for different classes of materials [23].

An important quantity one has to look at is the electron–lattice relax-
ation time. When pulses became shorter than this time, the electrons and
the lattice are out of thermal equilibrium and have to be described sepa-
rately. One of the first theoretical models for laser heated solids was given
1974 by Anisimov [7]. Over the years his introduced Two–Temperature
Model (TTM) has become the starting point for many investigations. It is
also the basis of the simulations presented in this work. The TTM describes
the lattice and the electron temperature evolution via two coupled inhomo-
geneous partial differential equations. Besides numerical solutions of the
basic equations, various extensions exist. There are suggestions for rela-

23
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tivistic corrections, like the one given by Hüttner [58] or a generalization
of the used parameters, e.g. the heat conductivity or the electron–phonon
coupling constant to higher temperatures [28]. The TTM was coupled to
molecular dynamics [114, 61] or to hydrodynamic calculations [29]. It was
also used to describe ultrashort phenomena in non–equilibrium electron
dynamics as done by Rethfeld [108]. Multi–scale models exist, where
additionally to the TTM finite element methods were used to achieve lat-
eral dimensions up to 600 nm [60]. On top, Monte Carlo simulations were
done to describe the evolving gas plume and to increase the size of the
simulations to the µm–scale [142].

For applications like pulsed laser deposition (PLD) or matrix–assisted
laser deposition/ionization (MALDI) of biomolecules [55], the ability to
predict and control the cluster composition of the plume is critical. Exper-
imental studies for cluster formation exist over different time regimes from
many picoseconds down to less than 100 fs [22, 81, 74]. Also numerical
investigations of plume evolution were carried out by different methods,
such as molecular dynamics [1] or Monte Carlo simulations [46], and were
compared to experiments. There are simulations for crater formation or the
composition of the ablated material, i.e. cluster size, velocity and angular
distributions [10, 143].

However, many of the the existing simulations were either done on model
systems with Lennard–Jones potentials or have comparatively small
sample sizes [126, 1]. Others were restricted to less than three dimensions
or non–metallic systems [16, 141]. Where comparable conditions (regard-
ing sample size or used potentials) exist, a different approach for the heat
conduction was used instead of the TTM [6, 138]. It is the goal of this
work to present a method, containing simulation and analysis tools, for a
comprehensive study on heated metals by ultrashort laser pulses. A com-
plete study on aluminum will be shown and all relevant parameters will be
extracted from the simulation and compared to experiments.

The thesis is organized as follows. In the first part an introduction
to the theoretical background is given. The ablation process is described
qualitatively and a model for ultra–short laser pulses in metals is presented.
Then, the implementation scheme of the basic equations is proposed. In
the last part, results from the simulations of various scenarios are discussed.
Among them are simulations of homogenous laser fluences in aluminum,
melting and ablation experiments and studies of the evolving gas plume.
A short look is taken on a system with anisotropic material properties:
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Al13Co4. The thesis is summarized in the last chapter.
Parts of this work have already been published. A List of Publications

is given on page 125.
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Chapter 2

Theoretical Background

In the following chapter basic theories from solid state physics are pre-
sented. This includes an introduction to crystal lattices, solid state Hamil-

tonians, heat conduction in metals, quasicrystals and complex metallic
alloys. A key understanding of the processes involved in laser ablation is
necessary to invent a practical — but not too complex — model of the ab-
lation mechanisms. After a qualitative discussion of the ablation process,
the well established Two–Temperature Model (TTM) is presented. The
TTM describes the temperature evolution in laser heated solids with two
coupled partial differential equations. In the last part an improvement of
this model is proposed. The extended Two-Temperature Model (eTTM)
can be used within ultra–short phenomena, when the finite propagation of
heat plays a role.

2.1 Metal Physics

Classically there are three states of matter: The solid, the liquid and the
gaseous phase. The gas phase can be characterized such, that all particles
capture the whole available volume. In contrast are the solids, with a fixed
volume and a fixed shape. Liquids are in between, the volume is fixed, but
the shape is enforced by a surrounding container. Solids can be classified in
amorphous ones like glasses or ceramics in whose only a short range order
exist, and crystalline ones like metals. Additionally to this short range
order, the crystalline phases possess a long range order, accomplished by
the repetition of an identical unit cell in all space directions. Given the
fact that most simulations in this work were done on perfect metals, like
aluminum or copper, the focus will be on the description of perfect crystal
structures.

27
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Crystal Lattices

One may argue that perfect structures and also infinite crystals cannot
be found in nature. But for real crystals, having atom numbers in the
order of 1023, this approximation of an infinite solid is sufficient. Though
the restriction to perfect periodic structures lacks the regard of effects like
impurities or disorder. Impurities can be considered as a perturbation of
an ordered system, while disorder is needed to study other phenomena like
glassy behavior. Nevertheless, these effects are neglected, as they play a
minor role in the physics of laser ablation.

For a perfect crystal, a Bravais lattice has to be defined. This lattice
specifies the underlying structures, to which the basis is affixed. A basis
can be a single atom, atomic–groups, ions or molecules. A d–dimensional
Bravais lattice consists of all vectors

Ri =
d
∑

j=1

nijaj (2.1)

with integer-numbers nij . The ai with i = 1, . . . , d are the basis vectors
of the lattice. The simplest lattice is the primitive lattice, where the same
atom is put on each lattice point Ri of the Bravais lattice. The primitive
lattice is invariant under translation by any vector Ri, because it results
in the same infinite lattice. The translation TRi

is defined through an
operator, which acts on an arbitrary function f(r), e.g. the density or the
electronic wave function, by replacing r → r +Ri:

TRi
: f(r) → f(r +Ri). (2.2)

For most problems such a simple crystal lattice is not sufficient. For the
description of complex crystal structures, a lattice with basis has to be
introduced. The j different nuclei are grouped around the basis vectors rj
relative to the Bravais lattice points, i.e. at Ri + rj . To fill the whole
space without a gap or overlap, the concept of an elementary cell is used.
This unit cell does not have to share the symmetry of the lattice.

There are several ways to construct an elementary cell. One choice is
the parallelepiped spanned by the basis vectors of the Bravais lattice, see
Fig. 2.1(a). Another example for a primitive cell is the the Wigner–Seitz

cell of a lattice. It is defined as the set of points in space, that are closer
to the given lattice point than to any other lattice point. Geometrically,
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(a) One possible elementary cell as
well as different basis vectors.

(b) The Wigner–Seitz cell of
a two–dimensional lattice with
sixfold symmetry.

Figure 2.1: Examples of different elementary cells for the primitive lat-
tice and the construction of the Wigner–Seitz cell.

the cell is constructed by drawing the perpendicular bisector planes of
the translation vectors from one lattice point to its nearest neighbors (see
Fig. 2.1(b)). This volume shares the symmetry of the underlying lattice.
While in direct space this concept is not of highest interest, it is extremely
important in reciprocal space. There, the cell is called the first Brillouin

zone and contains all information about a material whether it will be a
conductor, semiconductor or an insulator.

The Reciprocal Space

For the sake of simplicity, all formulas will be limited to three dimensions
from now on. The volume of the elementary cell, spanned by its basis
vectors, is

Ω = a1 · (a2 × a3). (2.3)

The following three vectors are now defined as the basis vectors of the
reciprocal lattice:

b1 = (2π/Ω)a2 × a3

b2 = (2π/Ω)a3 × a1

b3 = (2π/Ω)a1 × a2























= bαi =
2π

Ω
εijkε

αβγaβj a
γ
k (2.4)
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εijk and εαβγ are the totally antisymmetric Levi–Civita tensors and the
indices are i, j, k = 1, 2, 3 and α, β, γ = x, y, z. From the definition of the
vectors bi it can be shown that the inner product is

ai · bj = 2πδij with δij =

{

1 if i = j
0 if i 6= j

. (2.5)

This new basis defines the reciprocal lattice, which has the same dimension
as the direct lattice. The reciprocal lattice vectors are given by

G =

3
∑

j=1

kjbj , (2.6)

where the kj are again integer numbers. Together with Eq. (2.1) the im-
portant property of the reciprocal lattice can be found:

G ·R =
∑

i,j

nikjai · bj

= 2π
∑

i

niki = 2πM, M ∈ N. (2.7)

It follows from Eq. (2.7), that:

exp(iG ·R) = 1. (2.8)

In reciprocal space the constructed Wigner–Seitz cell is called the first
Brillouin zone. Its volume can be obtained from the triple product of
the three basis vectors:

ΩB = b1 · (b2 × b3)
(2.4)
=

(2π)3

Ω
. (2.9)

Higher order zones, e.g. second or third Brillouin zone, can be con-
structed by connecting the translation vector to the second–, third–nearest,
etc. neighbors.

Solid State Hamiltonian

For a theory of solid state physics all forces but the Coulomb interactions
are neglected. While it seems to be wrong to not consider the gravitational
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force for large systems, the sample sizes of interest are still small and in the
order of 1023 atoms. Only Coulomb interactions between the electrons
(el) and nuclei (nuc) and a coupling between the two species (el–nuc) are
assumed. In doing so, the following Hamiltonian can be derived:

H = Hnuc +Hel +Hel–nuc. (2.10)

Neglecting relativistic effects like Lamb–shift, the three parts of the Hamil-

tonian can be written explicitly as:

Hnuc =

N
∑

i

P 2

i

2Mi
+

1

2

∑

i6=j

e2ZiZj

|Ri −Rj |
, (2.11)

Hel =

ZN
∑

i

p2

i

2me
+

1

2

∑

i6=j

e2

|xi − xj |
, (2.12)

Hel–nuc = −
∑

i,j

e2Zj

|xi −Rj |
. (2.13)

In these equations Ri denotes the position operator of the N nuclei and
P i = −i~∇Ri

the momentum operators. The subscript Ri implies that
the nabla operator only acts on the coordinates Ri. xi and pi = −i~∇xi

are the operators of the electrons respectively.
An exact Hamiltonian, like the one given above, is all that is needed to

solve a quantum mechanical problem, i.e. determining its wave functions
and corresponding eigenvalues. In reality things are somewhat different.
Analytic solutions only exist in the case of one and two particles. Even nu-
merical methods like the VASP code [71, 72, 69, 70] can only handle systems
of a few hundreds of atoms. This is because the Coulomb interaction of
the particles correlates the movement of all electrons and nuclei, so that
a quantum mechanical many–body problem has to be solved. The cal-
culation time for such problems scales exponentially with the number of
particles, so that it cannot be solved for a significant number of atoms. A
piece of metal, e.g. 1 cm3, has already O(1023) atoms – an impossible task.
Approximations to solve the above problem have to be made.

The Adiabatic Approximation

The adiabatic approximation is also known as Born–Oppenheimer ap-
proximation. In fact, the nuclei mass is about 1,800 times larger than the
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electrons mass. This implies that the average kinetic energy of the nuclei
is much smaller than that of the electrons. Physically it means, that the
electrons are able to instantaneously accommodate to the position of the
nuclei. With this condition the adiabatic theorem can be used [112].

For the solid state Hamiltonian (2.10), the coordinates of the nuclei
are functions of time Ri = Ri(t) which change slowly (adiabatically) in
comparison to the fast moving electrons. In the Born–Oppenheimer

approximation the Hamiltonian for the electrons is considered with fixed
nuclei positions at every time t. For fixed t the Schrödinger equation

(Hel +Hel-nuc)ψj(x,R) = Eel
j (R)ψj(x,R) (2.14)

with x = (x1, . . . ,xZN ), R = (R1, . . . ,RN ) and R giving the instanta-
neous positions of the nuclei, has to be solved. It is assumed, that the elec-
trons stay in the same eigenstate, e.g. the ground state ψ0. The eigenfunc-
tions for the complete Hamiltonian (2.10) can then be obtained through
the product ansatz

Ψ(x,R) = ψ0(x,R)Φ(R). (2.15)

After neglecting the non–adiabatic terms, the action of the Hamiltonian
(2.10) to this ansatz leads to so–called lattice dynamics (phonons). The
system is described by the following Schrödinger equation:

[

N
∑

i=1

P 2

i

2Mi
+ Eel

0
(R) + U0(R)

]

Φ(R) = EΦ(R). (2.16)

Nevertheless, the determination of the potential U(R) = Eel
0 + U0(R) still

is an ambitious task.
The most important correction for the Born–Oppenheimer approxi-

mation are not the non–adiabatic terms but comes from the incompleteness
of the product ansatz, Eq. (2.15). A full ansatz takes all eigenstates j of
the system into account:

Ψ(x,R) =
∑

j

ψj(x,R)Φ(R). (2.17)

For non–infinitely slow moving nuclei, transitions between the electron
eigenstates, given by terms of the form

∫

d3xψ∗
j

∂

∂Rj
ψj′ (2.18)
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occur. This is known as the electron–phonon coupling, describing how the
movement of the nuclei leads to transitions between the electronic states
j and j′. The electron–phonon coupling is needed later for the transfer of
deposited heat by the laser from the electrons to the lattice in the Two–
Temperature Model.

The above concepts are very general and are valid for gases, liquids or
solids. However, as the main interest of this work lies in metals, properties
of metals and alloys will be discussed in the next section.

2.1.1 Metals and Alloys

A very general definition of a metal is the following: It is a chemical el-
ement, that is a good conductor for electricity and heat. The metallic
bond arises from the delocalized electrons surrounding the positive charged
ions. Thus, the solid is held together by Coulomb interactions between
its constituents. A look into the periodic table shows, that metals occupy
the majority of it. A line drawn from boron (B) to polonium (Po) sepa-
rates the metals (elements to the lower left) from the non–metals (elements
to the upper right). For elements directly on the line, semiconductors are
found. These elements share properties common from both conductors and
insulators. Alternatively, metals can be defined via their band structure:
If the energy bands of the material are filled with all available electrons
and the top band is partly occupied, this material is a metal. The defi-
nition is somewhat more general and opens up the category for metallic
polymers and other organic metals, which have been made by researchers
and employed in high–tech devices.

Besides the high electrical and thermal conductivity, physical properties
of metals are luster, a high density and the ability to deform under stress
without cleaving. Most of the metals are extremely reactive, thus rarely
found in their elemental metallic state. Due to the large number of free
electrons, a metal is opaque, shiny and lustrous. Its microstructure makes
it opaque for light waves in the optical range. Compared to non–metals,
metals have on average higher densities. The tightly packed crystal lattice
of the metallic structure is the reason for the high densities of most met-
als. Nonetheless, there is a wide variance of the densities throughout the
periodic system.

The high electrical and thermal conductivity originates in the metallic
bond: The valence electrons of the atoms form a gas of nearly free electrons,
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moving as an electron cloud in the background of the ion cores. It will be
shown later, that the mathematical calculations for a free electron gas lead
to accurate predictions for the electron contribution to the heat capacity
and conductivity.

Mechanical properties include a high ductility, originating from the met-
als capacity for plastic deformation. For elastic deformation Hooke’s law
can be used for restoring forces. The stress–strain relation is a linear func-
tion. When the elastic limit is exceeded, the metal deforms permanently,
known as plasticity. This irreversible change in atomic arrangement occurs
as a result of the action of an applied force (tensile, compressive, shear
bend or torsion forces) or by a change in temperature. The applied heat
effects the mobility of structural defects like grain boundaries, point va-
cancies, line and screw dislocations or stacking faults. For an alloy two or
more elements are combined1. Usually the major component in this solid
solution is metal. A combination is especially interesting when it comes to
practical use of the metal. The pure metal can either be too soft, brittle
or chemical reactive. When different ratios of metals are combined, the
desired properties of the resulting alloy can be designed. Generally, the
aims are higher resistance to corrosion, different color, higher hardness or
less brittleness.

During the last years Complex Metallic Alloys (CMAs) have become in-
creasingly interesting for metal–based industries. They rely on materials
based on elementary metals and binary metallic alloys. To tailor the prop-
erties for practical purposes, other elements are added. An example is the
much smaller surface energy of highly complex intermetallics compared to
the metallic constituents [113]. The reduced friction and wetting against
polar liquids was taken as the best example of applications of CMAs. Three
key features, which influence the properties of CMAs, can be found:

1. A large unit cell (up to hundreds or thousands of atoms).

2. The unit cell has a cluster substructure.

3. There is inherent disorder in various ways.

CMAs are formed with crystal structures based on giant unit cells. As a
result, these materials can offer unique combinations of properties, which

1Alloys designed for very special demands like the application in jet engines may contain
more than ten elements.
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are excluded to conventional materials. CMAs are mentioned here because
they show an affinity to quasicrystals (QCs). In Sec. 4.5 ablation is studied
on an alloy, Al13Co4, which is an approximant to the decagonal phase of
Al–Ni–Co.

Quasicrystals

Quasicrystals were discovered in 1984 by Shechtman et al., who observed
a perfect fivefold X–ray diffraction pattern of an Al–Mn alloy [116]. This
indicated a long–range order. The point group symmetry was that of the
icosahedral group – a symmetry group that is not compatible with peri-
odic order. Quasicrystals are structures that are both ordered and non–
periodic. They form patterns that fill all the space but lack translational
symmetry. In the classical theory of crystals only two–, three–, four– and
sixfold rotational symmetries are allowed [67]. In the early 1960s aperiodic
tilings, like the two–dimensional Penrose tiling [101], were discovered by
mathematicians. Twenty years later the relationship between the materials
and the quasiperiodic tilings was recognized. Aside from the icosahedral
quasicrystals also octagonal, dodecagonal or decagonal quasicrystals exist.
The latter one is of special interest. Decagonal quasicrystals (d -QCs) are
ordered periodically in one direction and quasi–periodically with eight–,
ten– or twelvefold symmetry in the plane normal to it. Due to this struc-
ture, they combine properties from both, the periodic and the quasiperiodic
world. It is shown later, that this stacking of quasiperiodic planes leads to
an inherent anisotropy in most physical quantities.

2.1.2 Electrons in Metals

A lot of physical quantities could be understood by the model of the free
electron gas. According to this theory, the weakly bound electrons can
move freely through the crystal lattice. The valence electrons become
conduction–band electrons. Many attributes of the metal – and also other
materials – could be explained with the free electron gas years before the
discovery of quantum mechanics. The classical theory was very helpful in
deducting Ohms law and also the connection between the electrical and the
thermal conductivity, known as Wiedemann–Franz law. However, other
properties, like the magnetic susceptibility of the conducting electrons or
the heat capacity cannot be explained by the classical theory.
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Energy Levels of the Free Electron Gas

For a three–dimensional free electron the Schrödinger equation

− ~
2

2m

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

ψk(r) = Ekψk(r). (2.19)

has to be solved. When confined in a rectangular box of length L and
origin in one corner, the solution of Eq. (2.19) are standing waves:

ψn(x, y, z) = A sin
(πnx

L
x
)

sin
(πny

L
y
)

sin
(πnz

L
z
)

, (2.20)

with nx, ny and nz being positive integers. It is convenient to claim a
certain periodicity, i.e.

ψ(x+ L, y, z) = ψ(x, y, z) (2.21)

and also with respect to y and z. Wave functions conform with the above
condition and also solving the Schrödinger equation are called plane
waves:

ψk(r) = exp(ik · r). (2.22)

The components of the wave vector k satisfy the condition:

kx = 0,±2π

L
,±4π

L
, . . . (2.23)

Analogously for ky and kz , i.e. each component of k has the form 2nπ/L,
where n is a positive or negative integer. These components of k together
with the spin orientation ms are the quantum numbers of the problem. It
follows from Eq. (2.22) and (2.19) that the energy corresponding to the
wave vector k is

Ek =
~
2

2m
k2 =

~
2

2m
(k2x + k2y + k2z). (2.24)

Wave number k = |k| and wavelength λ are related over k = 2π/λ. Looking
at the ground state of N free electrons, the orbitals can be interpreted as
points inside a sphere in k–space. The energy on the surface of this sphere
is called the Fermi–energy. With a radius of kF the energy on the Fermi–
surface is:

EF =
~
2

2m
k2F. (2.25)
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Inside the above defined Fermi–sphere the number of energy levels is equal
to

2 · 4πk3F/3

(2π/L)3
=

V

2π2
k3F = N. (2.26)

The factor 2 arises from the two possible values of the spin quantum number
ms for each value of k. The Fermi radius is then a function of only the
electron density:

kF =

(

3π2N

V

)1/3

. (2.27)

Together with Eq. (2.25) the Fermi energy can be related to the electron
density N/V and its mass m:

EF =
~
2

2m

(

3π2N

V

)2/3

. (2.28)

From Eq. (2.28) the density of states is derived for the electrons by taking
the derivative of N with respect to the energy E:

D(E) =
dN
dE

=
V

2π2

(

2m

~2

)3/2

E1/2. (2.29)

Heat Capacity of the Free Electron Gas

In the classical theory the electrons add 3

2
NkB to the heat capacity of the

electron gas – just as in a monoatomic ideal gas. Measurements show, that
at room temperature the actual contribution of the electrons is less than
1% of the expected value. The correct equation was found by E. Fermi.
Making the right conclusions, he said “One recognizes that the specific heat
vanishes at absolute zero and that at low temperatures it is proportional to
the absolute temperature.” [67].

When heating up a sample from zero temperature, not all electrons gain
the same amount of energy, which would be in the order of kBT . Instead,
only the electrons in a small region kBT around the Fermi energy get ther-
mally activated. This is the solution to the above problem: In a system
with N electrons, a small portion in the order of T/TF are activated ther-
mally. Only the electrons which lie inside a small range around the Fermi

energy gain thermal energy in magnitude of kBT . Each of these NT/TF



38 Chapter 2. Theoretical Background

electrons has a thermal energy of kBT . The total inner energy of the free
electron gas is given by

U ≈ NT

TF
kBT. (2.30)

The electrons add just a small portion to the specific heat that is propor-
tional to T

Cel =
dU
dT

≈ NkBT

TF
, (2.31)

which is in good agreement with experiments. An exact equation for the
specific heat, which is a function of the density of states at the Fermi

energy EF, can be derived [67]:

Cel =
1

3
π2D(EF)k

2

BT =
1

2
π2NkBT/TF. (2.32)

This dependency of Cel on the temperature is later used to simplify the
equations of the Two–Temperature Model.

Thermal Conductivity of Metals

The thermal conductivity K for particles moving with velocity v is given
by

K =
1

3
Cvl, (2.33)

where C is the specific heat per volume and l the mean free path length.
Together with Eq. (2.32) the thermal conductivity for the Fermi gas is:

Kel =
π2

3
· nk

2

BT

mv2F
· vF · l = π2nk2BTτ

3m
. (2.34)

With l = vFτ , n the electron density and τ their collision time. For pure
metals the major part of the heat flux comes from the electrons and not
from the phonons. Nevertheless, in contaminated metals or alloys the con-
tribution from the phonons may become comparable to the electrons.

2.2 The Ablation Process

Theoretical and computational investigations of the laser ablation phe-
nomenon are challenging tasks. The complex nature of the involved pro-
cesses at different time and length scales makes it difficult to find an overall
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laser excitation
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Figure 2.2: Time scales and processes of ablation in metals. After the
pulse energy is absorbed, the electrons thermalize quickly
(< 500 fs). Typical electron–lattice relaxation times are 5 ps.
At this time the system can be described with a unified tem-
perature. The ablation process and melt overflow take more
than ten times as long.

model. A qualitative description of the ablation process includes primary
elementary excitations of optically active states in a solid, thermalization
of the deposited laser energy, formation of high–temperature and high–
pressure regions, explosive disintegration and ejection of material, inten-
sive processes in the ejected plume, propagation of a pressure wave into the
bulk away from the surface, etc. It is impossible to address all the processes
that occur within a single model. However, the macroscopic observations
are always the same:

1. Laser energy is absorbed by the medium.

2. The energy is transformed into thermal vibrations.

3. In case the atoms have gained enough energy, emission of particles
(electrons, ions, neutral atoms or molecules) can take place at the
surface.

4. Under certain circumstances a plasma cloud is formed in front of the
target.

What happens – and on which time scales – depends entirely on the mate-
rial and the laser parameters like wave length or pulse duration. For metals
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the time scales and processes are shown in Fig. 2.2. For a complete model
four orders of magnitude in time have to be taken into account.

All events were caused by the incident laser light on the targets surface.
The propagation of electromagnetic waves is governed by the Maxwell

equations [62]. For zero charge and current densities the wave equation
can be derived from the inhomogeneous Maxwell equations:

1

c2
∂2E

∂t2
−∆E = 0, (2.35)

1

c2
∂2B

∂t2
−∆B = 0. (2.36)

E and B are the electric and magnetic field vectors, c is the vacuum speed
of light. The solutions to these equations are waves that propagate with the
speed of light. The signal speed in a media is different and is determined
by the permeability ǫ and permittivity µ of the material. The ratio of the
vacuum speed of light to the one in a media is called index of refraction:

n′ = n+ ik =

√

ǫµ

ǫ0µ0

. (2.37)

Generally n and k are frequency dependent quantities, ǫ and µ are functions
of E and B. In media with absorption the imaginary part of Eq. (2.37)
leads to a damping of the wave according to Lambert–Beers law:

Ex = E0e
−αx = E0e

−x/lα . (2.38)

lα is the characteristic absorption length along the direction of propagation
of the wave.

Initially, the laser energy is absorbed by the metal from the free or weakly
bound electrons. After some femtoseconds the electron gas is thermalized
via electron–electron collisions. In the frame of the Fermi liquid theory the
electron–electron scattering time for an electron with energy E is defined
by

τee =
1

a(E − EF)2 + b(kBTe)2
(2.39)

where a and b are independent of E and Te [11]. In the case of laser exci-
tations, the electrons’ energy is approximately the Fermi energy. In addi-
tion, the temperature can rise above 15,000 K. In consequence τee becomes
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small. The physical reason for this short time can be given in k–space:
The phase–space for scattering is huge and is not restricted to Paulis
principle since there are many empty places for scattering events. After
thermalizing, a temperature Te can be assigned to the electrons according
to the Fermi–Dirac distribution. Only the reduction of the quantum me-
chanical many–body system to a single thermodynamic quantity allows a
macroscopic description.

Due to their inertia, the ions cannot follow the fast oscillating electro-
magnetic field of the laser. Still, the ions gain kinetic energy from collisions
with the hot electrons. The mass difference between the electrons and ions
is huge, therefore, only a small portion of the energy is transferred per
collision. The electron–lattice relaxation time can be calculated by

τel =
γTe

κ
(2.40)

with γ the electron constant of specific heat, Te the electron temperature
and κ the electron–phonon coupling constant [3]. The equation can be
used to estimate the time scales of electron–lattice thermalization and is
usually one order of magnitude larger than τee. For metals with strong
electron–phonon coupling like iron τel is around 0.5 ps, while for aluminum
τel is approximately 5 ps [58].

In general the laser affected zone is small compared to the whole sample,
thus only a local equilibrium exists. The energy transfer to regions deeper
inside the system again takes place by collisions between the electrons.

Depending on the time scales of interest, the electron–electron collisions
self have to be considered [107]. For the systems and pulses under study in
this work, all times were considerably longer than τee, therefore, a classical
description of heat conduction can be applied.

2.2.1 Heat Conduction

For a stationary solid the energy balance can be expressed as

c(T )ρ
∂T

∂t
+∇ · q = Q(x, t), (2.41)

where ρ is the mass density, c(T ) is the specific heat at a given temperature
T , q is the thermal heat flux vector and Q(x, t) is the heat source. It is
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assumed that the light energy is absorbed within the medium and is totally
transformed into heat. The source term can then be written as

Q(x, t) = −∇〈S(x, t)〉+ U(x, t). (2.42)

U(x, t) describes the additional energy that is required or provided in phase
changes or if chemical reactions take place. It will be neglected for all fur-
ther calculations. 〈S〉 = c〈E×H〉/4π is the time average of the Poynting

vector. For monochromatic light absorbed in an isotropic medium, −∇〈S〉
equals the well–known Lambert–Beer law [14]. In case of an isotropic
and homogenous material, Fouriers linear approximation q = −K∇T of
the heat flux can be inserted in Eq. (2.41). The combination leads to the
Fourier equation of heat conduction:

∂T

∂t
= β∇2T +Q(x, t), (2.43)

where K is the thermal conductivity and β = K/cρ the thermal diffusivity.
The heat conduction of the electrons is around 100 times larger than from
the ions [21]. Thus K can be written as the heat conductivity of the
electrons Ke only.

For the problem given in Eq. (2.43), analytic solutions exist for very
special boundary conditions and heat sources Q(x, t) only. A solution for
a point source Q(x, t) = Q0δ(x, t)/β in infinite space can be derived from
the linear heat equation. For three dimensions the Greens function is of
the form [24]:

T (x, t) =
Q0

8(πβt)3/2
exp

{

−|x|2
4βt

}

. (2.44)

For a more general heat source S(x′, t′) and an infinite sample it follows
from superposition that

T (x, t) =

t
∫

t′=0

∫∫∫

S(x′, t′)

8(πβ)(t − t′)3/2
exp

{

− |x− x′|2
4β(t− t′)

}

d3x′dt′. (2.45)

For specific, e.g. finite, geometries or more complex heat sources the solu-
tions rapidly get complicated, so that numerical methods are applied for
most practically relevant problems [45].
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2.3 The Two-Temperature Model (TTM)

As already mentioned, the diffuse heat conduction into bulk material is gov-
erned mainly by the electrons. Together with the heat conduction equation
(see Sec. 2.2.1) a solution for the temperature evolution of the electrons in a
laser heated metal can be derived. However, this is only half of the truth.
The melting, pressure waves and most ablation phenomena are happen-
ing because the crystal lattice breaks down. Thus, a description for the
temperature of the phonons is needed.

For the calculations of the electron and phonon temperatures after ul-
trashort laser irradiation the Two–Temperature Model (TTM) has been
established [7]. The continuous model describes the time evolution of the
temperatures of the sub–systems by inhomogenous coupled partial differ-
ential equations

Ce(Te)
∂Te

∂t
= ∇ [Ke(Te)∇Te]− κ(Te − Tl) + S(x, t), (2.46)

Cl(Tl)
∂Tl

∂t
= ∇ [Kl(Tl)∇Tl] + κ(Te − Tl) (2.47)

where C and K are the heat capacity and thermal conductivity of the
electrons (Ce,Ke) and the lattice (Cl,Kl). κ is the electron–phonon coupling
constant and S(x, t) is the laser source term, which for historical reasons
will be written as S(x, t) instead ofQ(x, t). It can be seen, that for constant
Ke, Eq. (2.46) is the heat conduction equation (2.43) with the additional
term κ(Te − Tl). The lattice temperature Tl is described with the same
differential equation. In most cases the phonon diffusion ∇[Kl(Tl)∇Tl] can
be neglected due to the small phonon temperature gradient.

The essential new quantity is the electron–phonon coupling constant κ.
κ can be measured and calculated in different ways [20]. This will be
important in Sec. 4.5, were κ is needed for Al13Co4 for which κ has not
been measured yet. It is therefore very useful to compare methods to
estimate κ. The electron–phonon coupling also is an important quantity in
the theory of superconductivity. It can be shown that its value is related
to the transition temperature of superconductors [84].

Following the work of Wang et al., a relation for κ is given by [133]:

κ =
π4(kBvsne)

2

18Lσe(Te)Te
, (2.48)
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where vs is the speed of sound, ne the electron–density, σe the electrical con-
ductivity and L the Lorenz number known from the Wiedemann–Franz

law. A second equation was derived by Allen, comparing the relaxation
rate of the electron temperature Te to the electron–phonon enhancement
parameter λ(T ) and the averaged square of the phonon frequency 〈ω2〉
using standard scattering formulas [3]:

κ =
3~γλ〈ω2〉
πkB

. (2.49)

The electron–phonon enhancement of the diffusion thermopower can be
written as [65]:

S

T
=
S0

T
[1 + λ(T )] , (2.50)

where S0 is the thermopower in the absence of electron–phonon interac-
tions. The electron–phonon mass enhancement parameter λ(T ) is given
by

λ(T ) =

∞
∫

0

α2(ω)F (ω)

ω
G

(

~ω

kBT

)

dω. (2.51)

G(~ω/kBT ) is a universal function, introduced by Kaiser and α2F (ω) is
the Eliashberg function [65]. F (ω) is the phonon density of states and
α2 an average of the electron–phonon interaction. It can be seen from
Eq. (2.51) that a lot of theoretical and experimental knowledge is needed
to calculate exact values for the electron–phonon coupling κ. Taking all
functional dependencies into account is beyond the scope of this work.
However, with formula (2.50), the electron–phonon coupling can be related
to the Seebeck–coefficient S of thermoelectric power. It can be measured
by standard temperature–gradient techniques, which later on will be very
useful for the treatment of Al13Co4 in Sec. 4.5.

The Simplified Two–Temperature Model (sTTM)

In general, all parameters in the TTM equations (2.46) and (2.47) are
temperature dependent. An analytic solution cannot be given.

When thin metal films of 100 nm thickness and below are heated by laser
radiation, the temperature gradients between the surface and the back side
can be neglected [61]. With the approximation of constant specific heat



2.3 The Two-Temperature Model (TTM) 45

and an instantaneous heating of the electrons, analytic expressions for Te(t)
and Tl(t) can be derived. In this case the TTM equations simplify to

− Ce
∂Te

∂t
= Cl

∂Tl

∂t
= κ(Te − Tl). (2.52)

The ansatz

Te(t) = Ae−t/τ + T∞,

Tl(t) = Be−t/τ + T∞ (2.53)

with a relaxation constant τ and the equilibrium temperature T∞ is chosen.
It follows from Eq. (2.52) that

τ =
CeCl

κCe + Cl
=
Cr

κ
(2.54)

with the reduced heat capacity Cr. Usually Ce is much smaller than Cl,
thus τ can be written as τ = Ce/κ. This is the already known relaxation
time, given in Eq. (2.40). Together with initial conditions

Te(0) = T 0

e , (2.55)

Tl(0) = T 0

l (2.56)

the solutions for the sTTM are

Te(t) =

(

T 0

e − T 0

l
Ce

Ci
+ 1

)

e−t/τ + T∞, (2.57)

Tl(t) =

(

T 0

i − T 0
e

Ci

Ce
+ 1

)

e−t/τ + T∞. (2.58)

The solutions can be seen for a given set of parameters in Fig. 2.3. The
equilibrium temperature T∞ turns out to be a weighted average of the two
initial temperatures:

T∞ = T 0

e

Ce

Ce + Cl
+ T 0

l

Cl

Ce + Cl
. (2.59)

For larger samples the diffusive part in Eq. (2.46) cannot be neglected
anymore. Additionally, for real systems all parameters have a temperature
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Figure 2.3: Solutions for the simplified TTM. The parameters are
Ce = 1, Cl = 10, Te(0) = 1500, Tl(0) = 300 and κ = 0.65.
The equilibrium temperature T∞ = 409 is reached after ap-
proximately four relaxation times τ = 1.4.

dependence. Although analytic models exist, it is difficult to find equations
for the parameters valid over a large temperature range [9, 132]. Tabulated
functions, gathered from experiments or from complex simulations have
to be used [78, 79]. However, there are more pitfalls within the Two–
Temperature Model.

2.3.1 The Extended Two–Temperature Model (eTTM)

The Two–Temperature Model as it was introduced by Anisimov [7] and
discussed in the last section has an intrinsic shortcoming. As it is based on
the classical Fourier law of heat conduction, it assumes an infinite speed of
propagation for the heat. One of the implications of the theory of relativity
is the principle of no action at a distance. A finite speed of propagation
for any given signal is needed [109]. The basic idea can be traced back to
Maxwell [83]. He derived Fouriers law with an additional term

τth
∂q

∂t
+ q = −K∇T. (2.60)
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τth is a relaxation time of the heat conducting medium. Maxwell con-
cluded that “The first term may be neglected, as the rate of conduction
will rapidly establish itself.”. 150 years ago this might have been true, but
does not hold for todays femtosecond time scales. It is not clear what this
characteristic time τth is. Zhang et al. argue, that τth is the relaxation
time needed for the target temperature to reach a new equilibrium after
the surface experiences a very high temperature gradient [139]. Other in-
terpretations are that of a mean free time in the energy carriers’ collision
process [131]. For metals the free electron relaxation time can be used as a
typical relaxation time. Eq. (2.60) was rediscovered in 1958 by Cattaneo

and Vernotte. A modern derivation can also be given in the framework
of extended thermodynamics [64].

It is argued in the literature, that the TTM fails to make correct predic-
tions on the sub–picosecond time scale [49, 115]. In contrast, other authors
conclude that the TTM also is valid to describe the physics for ultra short
pulses [135, 56]. However, an extended version of the Two–Temperature
Model (eTTM) is given on the basis of Eq. (2.60) by Hüttner [57]. To-
gether with the energy conservation law

∇ · q = −Ce
∂Te

∂t
+ S(x, t)− κ(Te − Tl) (2.61)

the eTTM equations can be derived. The general Fourier equation (2.60)
is re–written to

(

1 + τth
∂

∂t

)

∇ · q = −∇Ke∇Te. (2.62)

The combination with Eq. (2.61) leads to a hyperbolic partial differential
equation for the electron temperature:

Ceτth
∂2Te

∂t2
+ Ce

∂Te

∂t
= ∇ [Ke∇Te] +

(

1 + τth
∂

∂t

)

S(x, t)

−
(

1 + τth
∂

∂t

)

κ(Te − Ti). (2.63)

The above equation is similar to the telegrapher’s equation, which also has
a second derivative in time. It is a more general form of the wave equation
and was initially used to describe the signal propagation in undersea cables.

For the phonon part, the equation stays unchanged as proposed in the
TTM, Eq. (2.47). Physically the heat flow occurs within a characteristic



48 Chapter 2. Theoretical Background

time τth, because it cannot be established within arbitrary short times. In
the limit of τth → 0, the old TTM equations are obtained.

It was shown by Metzler et al., that the eTTM possesses a principal
solution with a ballistic behavior at very short times [86]. A diffusive model
like the TTM predicts a linear time dependence for the mean square of the
thermal displacement. For ballistic motion a time dependence proportional
to t2 is observed.

At least for aluminum the standard Two–Temperature Model can be used
because τth is small. Hüttner gives a value for the electron relaxation time
with 67 fs, which is comparatively small [58]. However, one has to keep
in mind, that for larger τth, e.g. for copper, which has as temperature
relaxation time of 467 fs, the TTM may not be the appropriate model
anymore.



Chapter 3

Numerical Methods and

Implementation

The methods necessary for a laser ablation simulation are discussed in this
chapter. In the beginning a short introduction to ab initio calculations
is given. These complicated quantum mechanical methods are used to
create interaction potentials for computer simulations. A description of
molecular dynamics follows, then a model for the energy deposition of the
laser is given. The simple model is improved in the last section, where the
Two–Temperature Model (TTM) is combined with molecular dynamics to
a hybrid simulation scheme.

3.1 Atomistic Computer Simulations

Ab Initio Calculations and Force Matching

The phrase ab initio has its origin in the Latin language, meaning from the
beginning. Thus, depending on the branch of science, it has different senses:
In chemistry an ab initio synthesis is based on fundamental chemicals only.
In aerospace an ab initio education is from the very beginning, i.e. from a
pedestrian to an aviator. In physics, usually the Schrödinger equation

Ĥ|ψ〉 = i~
∂

∂t
|ψ〉 (3.1)

has to be solved for a many–body system to arrive at an ab initio calcula-
tion. The solutions for the eigenvalue problem (3.1) are the energies and
corresponding wave functions of the system. The Schrödinger equation
has no further parameters beyond natural constants and the types and
positions of the atoms, giving the methods the prefix ab initio or first–
principle calculations. Many quantum mechanical problems, especially for

49
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solid state physics, fit the conditions described in sec. 2.1, so that the equa-
tions can be further simplified. Nevertheless, as simple as equation (3.1)
may look, it cannot be solved for significantly more than 100 or 1000 atoms.
More precisely, a reasonable sized laser ablation simulation based on pure
ab initio methods can not be carried out in an acceptable time. Effective
potentials for bigger simulations have to be used – ab initio data and the
force matching method will be applied for their generation [38].

The method can be described in a few sentences, yet its application is a
very demanding task. α indicates an entire set of L parameters α1, . . . , αL,
which are used to characterize the effective potentials, e.g. parameters for
a Lennard–Jones potential or a set of points to describe a function. A
force database is built by using ab initio pseudo potential calculations, done
with an ab initio code like VASP [71, 72, 69, 70]. Ideally different structures
and conditions, like stressed or molten samples, free surfaces, vacancies etc.
are included in the database. The optimal set of parameters 〈α〉 is then
found by trying to match the ab initio forces to the effective potentials.
Simultaneously the data is fitted to experimental values as cohesive ener-
gies, vacancy formation energy or elastic constants. Mathematically, this
reduces to a non–linear minimization problem in a L–dimensional space
with an objective function given by

Z(〈α〉) = Zforces(〈α〉) + Zexp. data(〈α〉), (3.2)

where Z is the mean square error in the fitting. There is a very powerful
tool, called potfit, already available which does exactly the above process
[19]. potfit is able to fit data for all sorts of potentials, which can then
be used in large–scale molecular dynamics simulations.

Molecular Dynamics Simulations

Although it is possible to predict material properties from ab initio simu-
lations to high accuracy, the method has an immense drawback. The large
computational times required for these calculations make them unpractical
for typical simulations, e.g. material failure. The system sizes which can
be simulated on modern computers still are in the order of a few hundreds
of atoms – which is way too small. In the case of molecular dynamics (MD)
simulations the system is simplified by not treating the ions and electrons
separately. The modeled atoms do not have inner degrees of freedom any-
more, they interact as classical particles with each other. For the solution
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of the many–body problem, the classical Hamiltonian equations of motion
are integrated. In general, for a N−particle system, this leads to 6N first
order differential equations. Let

H(p1, . . . ,pN , r1, . . . , rN ) =

N
∑

i=1

p2

i

2mi
+ U(r1, . . . , rN ) (3.3)

be the Hamiltonian of a configuration of N classical particles, U({ri})
being the potential. The equations of motion then become:

ṙj =
pj

mj
, ṗj = F j = −∇rj

U({ri}). (3.4)

The force F j = ṗj , acting on atom j, is calculated by taking the gradi-
ent of the potential U with respect to the coordinate rj . These equations
cannot be solved analytically for large N . Instead, the equations are dis-
cretized in time: For a given configuration (coordinates and momenta) at
time t, the forces on all the atoms are calculated. After this, their positions
and momenta are adjusted accordingly for t + δt (see Fig. 3.1). The time
step δt is not arbitrary, in contrast, it has to be suitable for the underly-
ing problem. While for a simulation of the universe a time step of years
might be adequate [120], femtoseconds or even less are necessary for atom-
istic simulations. The time step has to be smaller than the time scales
of characteristic motions to be resolved in the system. This dictates an
upper bound for δt. For atomistic simulations of solids a time step be-
tween 0.1 and 2 fs has been established. There are well–known algorithms
like Gauss, Runge–Kutta or Verlet in the literature which are used to
solve ordinary first order differential equations. The latter one is applied
in the code IMD [121] which was used throughout this work. Details on the
implementation can be seen for example in Numerical Recipes [103].

Solving the standard Hamilton equations characterizes a system which
does not exchange particles (N), volume (V) or energy (E) with its environ-
ment. In statistical mechanics, a system like this is called microcanonical
ensemble. However, there are situations (e.g. the phase diagram calcula-
tions in Sec. 4.1) when energy or pressure control is required. Usually this is
achieved by introducing a coupling constant to an external heat bath. This
reservoir allows the control of temperature during the simulation (NVT),
which is equivalent to the canonical ensemble in thermodynamics [95, 96].
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Figure 3.1: Scheme of a molecular dynamics (MD) simulation. First the
net–force on a single participant for a given configuration
is calculated (left side). This is done for all particles be-
fore their positions are adjusted accordingly (right side). By
repeating this scheme, a trajectory is generated.

By the coupling of an additional volume reservoir, the pressure can be
controlled during the simulation (NPT).

For the solution of Eq. (3.4) a potential has to be specified. A general
potential is given by taking multi–body contributions into account. The
potential energy can be expanded in a part from an external potential, a
pair term, a three body term and so on. This leads to:

U({rj}) =
∑

i

φ1(ri)+
1

2

∑

i,j

i6=j

φ2(ri, rj)+
1

6

∑

i,j,k
i6=j 6=k
i6=k

φ3(ri, rj , rk)+ . . . (3.5)

In this work only EAM potentials were used. The potentials are assumed
to be isotropic and homogeneous, i.e. their dependence on the atomic
coordinates is restricted to the euclidian distance rij = |ri − rj |. The
potential energy of the system is thus

U({r}) = 1

2

∑

i,j

i6=j

φsisj (rij), i, j = 1, . . . N (3.6)

where the pair potential φij only depends on the species si,j of atoms
i and j. Although pair potentials are probably the simplest ones, still
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many systems like noble gas solids, metals or liquids can be described
very well. More information about pair potentials and molecular dynamics
applications in general can be found in textbooks like the one of Allen

and Tildesley [2].

Embedded Atom Method (EAM) Potentials

The embedded atom method (EAM) potential, which was originally mod-
eled by Daw and Baskes [32], will now be introduced. The EAM approach
is related to the second moment approximation to the tight binding theory,
also known as the Finnis–Sinclair model and is particularly appropriate
to describe metals and metallic alloys. The total energy of the system can
be written as:

U =
∑

i

Ui (3.7)

with
Ui =

1

2

∑

i6=j

φ(rij) + F (ni). (3.8)

φ(r) is the pair potential, F (n) is the embedding energy function and ni is
the total atomic density at the atom i from the surrounding atoms. It is
assumed that

ni =
∑

i6=j

ρ(rij). (3.9)

While the original authors identify the ni with the local electronic density
and the repulsive pair term with the screened Coulomb interactions from
the nuclei, alternative views exists. Potentials that can be written as in
Eq. (3.8) show certain invariance properties. In monatomic system the
potential is invariant under the transformation

φ(r) → φ(r) + 2λρ(r)

F (ni) → F (ni)− λni, with ni =
∑

i6=j

ρ(rij), (3.10)

where λ is an arbitrary real number [37]. A linear embedding function F
can be entirely replaced by pair potentials. An energy contribution linear
in n can always be shifted from one function to another. Thus, assigning
any physical meaning (like the electronic density suggested initially) to
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each of these functions seems false. From that conclusion it can be seen
that only quantities that are invariant under the above transformation are
physically relevant.

The gauge invariance can be generalized to a system with m different
species, in whichm+1 gauge degrees of freedom exist. When comparing dif-
ferent potentials, these invariances have to be fixed. Force calculations for
EAM potentials take more computing time than standard pair potentials.
Nevertheless, a lot of metallic systems cannot be sufficiently described by
pair potentials only. The Embedded Atom Method was successfully applied
to many systems, see e.g. Daw, Foiles and Baskes [33] for an overview.

More empirical interatomic potentials exist in the literature. Two that
are also included in the IMD code are the Stillinger–Weber [122] and the
Tersoff potential [123]. The former was originally used to describe inter-
actions in solid and liquid forms of silicon. The potential energy function
comprises both two– and three–atom contributions. The other one was
designed for multi–component systems, interpolating between potentials
for the different elements to treat heteronuclear bonds. It was successfully
applied to C–Si and Si–Ge systems. These potentials can also be used
in ablation simulations, at least with the method described in the next
section.

3.2 The Direct Approach: Rescaling the
Kinetic Energy

Phenomenologically all laser heated materials behave the same: They heat
up in the laser affected zone. Nevertheless, depending on the material,
different coupling mechanisms are involved. For metals the laser field ex-
cites electrons into the conduction band [14], which then transfer energy to
the lattice via electron phonon–coupling. For organic materials the mecha-
nisms are different. The photons excite vibrational states and induce pho-
tochemical fragmentation [143]. If the physical mechanisms involved are
not known — or too complicated for a computer simulation — a modeling
of the macroscopic behavior can be a workaround.

For this approach, the temperature near the surface has to be increased
during the simulation. The temperature of a system is related to the aver-
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age kinetic energy of its atoms via

〈Ekin〉 =
f

2
kBT, (3.11)

where f is the number of degrees of freedom, f = 3 in the existing case. The
basic idea of the direct approach is a rescaling of the kinetic energy of the
atoms. After each time step δt the momentum vector pi of the i–th atom
is rescaled accordingly, leading to an immediate rise in temperature. The
amount of energy that is absorbed by the lattice atoms can be determined
by taking the equations of the Two–Temperature Model into account. The
power density S(x, t), which serves as a source term in the heat–conduction
equation of the electrons, stays the same for the rescale model. A general
form for the power density contains an amplitude factor S0, an absorption
law d(x), an intensity distribution on the surface I(y, z), consideration of
the reflectivity (1−R) and the temporal beam shape f(t):

S(x, t) = (1 −R)S0d(x)I(y, z)f(t). (3.12)

For the absorption d(x) the Lambert–Beer law is used, where α is the
inverse absorption length. The intensity I(y, z) can be adjusted according
to the problem, while the temporal distribution f(t) is assumed with a
Gaussian shape:

S(x, t) = (1 −R)S0αe
−αxI(y, z)e

−
(t−t0)2

2σ2
t . (3.13)

The power density S(x, t) is multiplied by the time step δt and is divided
by the average atomic density ρn to achieve a small energy difference. After
each time step δt that amount of energy is added to the kinetic energy of
the i-th particle:

Ei
kin(t+ δt) = Ei

kin(t) +
δt

ρn
S(xi, t). (3.14)

The atomic number density ρn can be calculated on–the–fly by averaging
the atomic masses over the irradiated volume. This density is assumed as
constant for pulses less than 1000 fs. For significantly longer pulses the
material may change its phase, which results in a time dependent density
ρn(t).
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The huge advantage of this model clearly lies in its simplicity: No know-
ledge of material properties like electron–phonon coupling or processes dur-
ing ablation are needed. Heat transfer, melting or vaporization are all
governed by the potentials used for the molecular dynamics. It will be
shown later, that especially for inhomogeneous intensities this model is an
ideal starting point (see Sec. 4.4). However, the lack of electronic heat
conduction — the dominant part in metals — makes it somewhat limited
for applications in metals and more complex systems. First and foremost
anisotropic systems, both structural and thermo–conductive, cannot be
treated without a proper model of the electrons.

3.3 A Hybrid Approach with the
Two–Temperature Model

The great advantage of a pure molecular dynamics simulation is that only
details of the interatomic potentials are needed. No assumptions have to be
made about the processes under investigation. However, it is not directly
applicable for simulations of laser interactions with metals. In metals the
electronic contribution to the thermal heat conduction is dominant, thus
the classical MD method, where only heat conduction via the lattice is
present, underestimates the total thermal conductivity. The result is an
unphysical confinement of the deposited laser energy near the sample’s sur-
face. The problem of over–heating has been recognized by Ohmura et al.
in first simulations of laser ablation [97]. Later a modified method, in which
the simulation box was divided into small blocks in which Fouriers law
was applied to account for the heat conduction between adjacent cells, was
suggested [98]. The following model aims to overcome these problems by
combining the advantages of MD and TTM for a more realistic description
of the physics involved.

The Two–Temperature Model describes the temperature evolution of the
lattice and the electrons with two coupled partial differential equations (see
Sec. 2.3) [7]. The two equations are

Ce(Te)
∂Te

∂t
= ∇ [Ke(Te)∇Te]− κ(Te − Tl) + S(x, t), (3.15)

Cl(Tl)
∂Tl

∂t
= ∇ [Kl(Tl)∇Tl] + κ(Te − Tl) (3.16)
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where C and K are the heat capacities and thermal conductivities of the
electrons (Ce,Ke) and the lattice (Cl,Kl). κ is the electron–phonon coupling
constant and S(x, t) is the laser source term, already given in Eq. (3.12).
The advantages of two methods — MD and TTM — are combined by
substituting Eq. (3.16) from the TTM completely by molecular dynamics
[114, 42, 53, 125]. The heat diffusion equation for the electrons, Eq. (3.15),
is solved by a finite difference (FD) method.

The heat equation is a partial differential equation. For its solution a
forward in time central in space (FTCS) method is used [103]. This first–
order method is explicit in time. For equations of the form

∂u(x, t)

∂t
= β

∂2u(x, t)

∂x2
(3.17)

the FCTS scheme is conditionally stable if the following von Neumann

condition is satisfied:
2β∆t

(∆x)2
≤ 1. (3.18)

∆t and ∆x are the time step and the size of the finite differences, respec-
tively. For the problem given in Eq. (3.15) the upper bound for the time
step is ∆t ≈ 10−18 s when estimating it for typical metals. Due to the
explicit1 nature of the FCTS scheme, the solution is computationally in-
expensive. This is important, because of the small time step ∆t, the heat
conduction equation has to be solved many times for one time step δt in
the molecular dynamics (typically 10−15 s).

The used hybrid scheme works in three–dimensions, but to show its func-
tion a two–dimensional version is shown in Fig. 3.2. For the molecular
dynamics part a geometric algorithm based on the linked–cell method is
used [2]. A cubical simulation box is subdivided into MD cells. The atoms
are assigned to the cells according to their position in the sample. The
size of one MD cell is chosen such, that only particles in adjacent cells can
interact with each other. Usually this is in the order of the used poten-
tials range, the cutoff radius Rcut. At this point the simulation contains
m1 ×m2 ×m3 MD cells. For reasons discussed later, aluminum was used
as a model system throughout this work. The cutoff radius of the used
potentials is Rcut ≈ 5.6 Å and its inverse density is 16.6 Å3/atom. From

1For the computation of the discretized u(x, t)–field, no system of algebraic equations
has to be solved.
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Figure 3.2: Schematic representation of the hybrid simulation. The elec-
tron temperature is described by Eq. (3.15), which is solved
on the coarse lattice. For the motion of the atoms the MD
method is used. The lattices are coupled via an electron–
phonon coupling term κ. Time step δt used for MD has to
be a multiple of the FD time step ∆t.

these values, roughly 11 atoms per MD cell can be found. This number is
too small to calculate a reasonable lattice temperature per cell. Therefore
several MD cells are grouped commensurably into larger finite difference
(FD) cells. The MD lattice is coarse grained into f1 × f2 × f3 FD cells, so
that at least 500 atoms are inside each of them. The lattice temperature
T i

l of the i–th cell can be calculated by averaging the kinetic energy of the
atoms inside:

〈Ekin〉i =
3

2
kBT

i
l . (3.19)

To each of the f1 × f2 × f3 FD cells an electronic (T i
e) and a lattice (T i

l )
temperature is associated. The lattice temperature is used in the heat con-
duction equation, Eq. (3.15), and also in the coupling term ξi in the MD
equations2. For the MD part, which completely substitutes Eq. (3.16), the
IMD code with an altered equation of motion is used [121]. Both temper-
atures enter the coupling term, which is responsible for energy exchange

2The coupling term ξi is not global, in contrast it has to be defined for each of the
f1 × f2 × f3 FD cells during the simulation.
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between the electrons and the lattice. The index i corresponds to the FD
cell to which the j–th atom belongs:

mjẍj = −∇xj
U(x1,x2, . . . ,xN ) + ξimjv

t
j , (3.20)

with ξi =

n
∑

α=1

κVcell(T
α,i
e − T i

l )

n
∑

k

mk(vt
k)

2
. (3.21)

In Eq. (3.21) mk and vt
k are the mass and the velocity of the k–th atom.

The forces are given in the common form by the negative gradient of the
potential. For the particle velocities thermal values are used, i.e. vt

k =
vk − vc, where vc is the center of mass velocity of the FD cell to which
the k–th atom belongs. The temperature T i

e,l and the coupling term ξi are
defined for each FD cell with volume Vcell. Thus, T i

e,l are functions of x
and t. The summation over k in Eq. (3.21) is performed over all atoms in
a given cell. While for each MD time step δt the diffusion equation has
to be solved numerous times (n = δt/∆t), an average value of ξi after n
iterations is passed to the MD equations, explaining the summation over
α in Eq. (3.21). For a better readability, the cell index i, and the space
and time coordinates (x, t) for the temperature fields T i

e,l are omitted from
now on: T i

e,l(t) = Te,l(x, t) = Te,l.

In general, the FD lattice is three–dimensional, resulting in a three–
dimensional heat conduction. In short laser irradiation the laser spot size
is typically much larger than the depth affected by laser heating (order of
nm’s compared to µm’s). In this special case a one–dimensional diffusion
equation for the electrons can be used [15]. Eq. (3.15) becomes

Ce(Te)
∂Te

∂t
=

∂

∂x

[

Ke(Te)
∂

∂x
Te

]

− κ(Te − Tl) + S(x, t). (3.22)

This will be used later on for the application of the hybrid model to ho-
mogenous laser pulses in metals, see Sec. 4.2.

Assumptions for the temperature behavior of Ce and Ke have to be made
as further simplifications. The electrons heat capacity can be calculated
by taking the derivative of the total electron energy density with respect
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to the electron temperature [11]:

Ce(Te) =

∞
∫

0

ǫ
∂f(ǫ, µ, Te)

∂Te
g(ǫ)dǫ, (3.23)

where g(ǫ) is the electron density of state at the energy level ǫ, µ is the
chemical potential at Te and f(ǫ, µ, Te) is the Fermi distribution function.
For low temperatures the Sommerfeld expansion of the electronic free
energy is used. The result was already derived in Sec. 2.1.2, where the
heat capacity for the free electron gas was given with Ce = γTe, γ being
the electron heat capacity constant. Especially for aluminum this approxi-
mation is valid even for temperatures above 20,000 K [79]. The coefficient
of the electron heat conductivity Ke is more difficult to model, since it
depends on the local electronic and atomic temperature. Low temperature
approximations for Ke exist, but in laser ablation the temperatures can
rise as high as the Fermi temperature of the metal [132, 9]. However, us-
ing a formula valid for low temperatures at higher values, or assuming Ke

as constant will both result in an error. Throughout this work a constant
value for Ke was favored. In addition, a fixed value for Ke simplifies the
diffusion equation such that the FTCS scheme solves

γTe
∂Te

∂t
= Ke

∂2

∂x2
Te − κ(Te − Tl) + S(x, t). (3.24)

When further on referred to the Two–Temperature Model (TTM) or the hy-
brid model, the solution of the two equations (3.24), or its three–dimensional
counterpart Eq. (3.15) and Eq. (3.20) is meant.



Chapter 4

Calculations and Results

The theoretical background was given in chapter 2. Then, in chapter 3,
the computational model and the implementation was discussed in detail.
Now, for a laser ablation simulation a system has to be chosen. Due to the
nature of the Two–Temperature Model (TTM), this choice is restricted to
metals or metallic alloys.

For the simulations of a material with isotropic heat conduction alu-
minum was chosen, while for an anisotropic material Al13Co4 was used.
The choice of aluminum was not at all arbitrary, it has some advantages
in the computational description compared to other metals. The applied
effective potentials do not have to describe phase transitions in the solid
state like the bcc–fcc transition in iron. Additionally, the small electron
temperature relaxation time of 67 fs makes it an ideal candidate for the
TTM. The more complex eTTM, that was introduced in Sec. 2.3.1, is not
required. As a third argument, potentials already exist in the literature.
Especially the last argument is of great importance, because for ablation
simulations the results are only as good as the potentials used.

For metals, EAM potentials have been established. During ablation, free
surfaces, clusters, vacancies or stacking faults occur, which have already
successfully been modeled by EAM potentials [33]. From the various EAM
potentials that exist in the literature, the focus will be limited to two
of them: The potential from Ercolessi and Adams [38] and the one
developed by Mishin and Farkas [90]. As a test for their capability, the
P − ρ phase diagram was calculated via molecular dynamics simulations.
A correct description of the three phases is the minimal pre–condition for a
potential. The transitions solid–liquid and liquid–gas do not have to match
experimental data in detail, but the change of phase should be distinct.
This is important for the analysis of the gas phase in Sec. 4.4 and to make
rough predictions about the compositions of the ablated material.

After the validation of the potentials, ablation experiments for aluminum

61
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follow. The simple case of homogenously heated aluminum with electronic
heat conduction is considered. In the next section, the simulations are ex-
panded to more general laser intensities. Simulations with inhomogeneous
beam profiles are of special interest because todays techniques allow foci
smaller than the wavelength [111]. It is possible to achieve these length
scales with todays’ MD simulations. From the data, the ablation thresh-
old, velocity, angular or cluster size distributions can be determined and
compared to experiments. In the end a more complex system, the metal-
lic alloy Al13Co4, which is related to the decagonal phase of Al–Ni–Co (a
system with anisotropic heat conduction) is studied.

4.1 Pre–Survey: The Phase Diagram of
Aluminum

Although the potentials were fitted to properties like the surface energy or
the melting point, their application is limited to moderate temperatures
and bulk samples in most cases.

The processes during laser ablation were described quantitatively in
Sec. 2.2. It was shown, that for a thorough description at least the solid,
liquid and the gas phase are necessary. Even more: Under specific circum-
stances plasma can arise above the surface [54]. However, plasma cannot
be treated within the used models and was therefore neglected for all simu-
lations. A two–fold justification can be given. First, the laser pulses are in
the order of 500 fs and shorter. At these short times, an eventually expand-
ing plasma has dimensions of nm’s only [54]. Second, only single laser pulse
excitations were investigated. An existing plasma would interact with the
radiation followed from a second pulse.

The Solid-Liquid Transition

For the P − ρ phase diagram, the solid–liquid and the liquid–gas coexis-
tence line have to be determined by MD simulations. For all simulations,
the same sample containing 32,000 atoms was used. The aluminum block,
with an edge length of 8.1 nm, was initially equilibrated to 301 K. With
a lattice constant of a0 = 0.4032 nm the pressure on the sample is ap-
proximately 0 GPa. During the heating simulation of the solid the density
was monitored. At the actual solid–liquid phase transition a jump can be
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Figure 4.1: The solid–liquid transition as a result of the MD simulations.
The circles and triangles correspond to the values of ρ and P
during the heating simulation. The arrow marks the actual
melting temperature.

observed (see Fig. 4.1). From the same figure, the values for (ρmelt, Pmelt)
can be obtained and collected in the P − ρ diagram. For each point of the
solid–liquid phase transition line a two–step MD simulation was carried
out.

1. The pressure was increased at constant temperature to the desired
value P . During the run isotropic1 volume scaling was allowed.

2. T was increased via a Nosé–Hoover thermostat at constant pressure
over the melting point.

The rate of heating was constant for 50,000 steps with 1.018 fs each from
301 K to 1,500 K. The simulations correspond to path No. 2 in Fig. 4.2.

The melting temperature with T sim
melt = (1280± 50) K for the Ercolessi

potential turns out to be too high compared to the literature value of
T lit

melt = 934 K. One reason for the overheating is the non–physical heating

1The simulation box is scaled isotropic in all three directions while for an axial scaling
– also possible with IMD – two directions are fixed.
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Figure 4.2: Sketch of the T–P phase diagram for a material without
anomaly. The arrows and numbers indicate the paths that
were simulated to determine the coexistence lines.

rate of 1012 K/s. Besides that, the perfect crystal without seeds for melting
and the periodic boundary conditions lead to a delayed melting. Without
free surfaces, nucleation is hindered for the melting process [44, 63]. With
a more realistic sample, including vacancies and a free surface, the melting
temperature can be reduced by several K’s, however the effect is small. A
better way to determine the melting temperature is done by a two–phase
simulation. Here, a liquid and a solid phase are brought into contact.
The simulation is carried out at different temperatures and the boundary
between solid and liquid is tracked. At temperatures below Tmelt the liquid
part solidifies, while for higher temperatures the solid part melts. However,
this procedure is too complex for a whole phase diagram where between
100 and 200 individual simulations are needed.

The Liquid-Gas Transition

The points in the liquid–vapor coexistence region were more difficult to
obtain, because the transition cannot be seen by a further increase of tem-
perature, which would correspond to path No. 3 in Fig. 4.2. As a remedy,
the fact was used that the gaseous phase has the same symmetry as the
liquid state. The coordinates of a liquid sample were scaled by a factor
of 1.5, leading to a gaseous state (step No. 4 in Fig. 4.2). T and P are
not known for this artificially created gas state, thus the sample had to
be equilibrated again to determine its temperature and pressure. For each
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Figure 4.3: Four different isobaric curves for the condensation. The ar-
rows mark the estimated values for the liquid vapor coexis-
tence line in the P–ρ diagram.

point (Pvap, Tvap) of the gas–liquid coexistence line a two–step simulation
was done.

1. The pressure was adjusted to the desired value P .

2. A cooling simulation at constant pressure follows, step No. 5 in
Fig. 4.2.

In Fig. 4.3 different isobaric simulations are shown. According to the ar-
rows, the points in the P − ρ diagram (see Fig. 4.4) were estimated.

Comparison to Experiments

Although the above method seems to be rather simple, the phase diagram
shows all the relevant features. Three phases can be clearly seen in the
P − ρ phase diagram, Fig. 4.4. The potential given by Mishin et al. leads
roughly to the same behavior for melting, but fails to produce vaporization
in the coexistence region when the pressure approaches the critical point.
These regions are of interest especially for dynamics in the evolving plume.
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Figure 4.4: The calculated phase diagram for aluminum. The potentials
developed by Ercolessi et al. better describe the system in
the the coexistence regime.

Therefore all further simulations were done with the potentials developed
by Ercolessi and Adams.

Literature values for the critical density are ρc = 0.28− 0.79 g/cm3 and
Pc = 0.19−0.55 GPa for the critical pressure (see [41] for an overview). The
above calculations lead to values of ρc ≈ 0.7−0.9 g/cm3 and Pc ≈ 0.45 GPa
which is quite comparable. In the small pressure region the results are in
good agreement with experimental values, e.g. at P = 0.1 GPa the density
is ρ = 2.35 g/cm3 (ρexp ≈ 2.4 g/cm3). For higher pressures, the calculated
values deviate more. The highest experimental accessible data for melting
is at Pexp ≈ 1.2 GPa, while in the simulation melting at pressures higher
than P = 5 GPa is observed. Most ablation simulations are in extreme non–
equilibrium, legitimating this crude way of calculating the phase diagram.
The heating of the lattice occurs typically in times less than 10 ps, so it
is already an important result that the potentials used can reproduce the
phase transitions more than qualitatively.
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Other Materials

By following the above recipe, phase diagrams for all kinds of materials
can be at least estimated. The P − ρ diagrams for iron, copper and Ni3Al
are shown in Fig. 4.5. Calculating the phase diagrams for these systems
turned out to be more difficult than it was for aluminum. First, melting
temperatures for the pure metals are — again — higher than the literature
values: More than 800 K for iron and 400 K for copper. Second, the vapor–
liquid coexistence lines near the critical point could not be calculated.

EAM potentials were used for copper [93]. These potentials were fitted
to a database containing both ab initio and experimental data like phonon
frequencies νL(X) and νT(X), elastic constants cij or thermal expansion
factors for fcc copper at several temperatures.

In the case of iron a more complex potential type, including angular–
dependent interactions was used. To distinguish them from MEAM [12]
or EDM [100] potentials, they are denoted the Angular-Dependent Poten-
tials (ADP) [92, 91]. The fitting database included experimental values of
the lattice constant, three elastic constants cij , vacancy formation Ef

v and
migration Em

v energies and the surface energy γs. Interpreting these data,
the potential was trained mainly for simulations of bulk properties instead
of high temperature applications. This can be seen in the bad shape of
the coexistence region, Fig. 4.5. Additionally it is difficult to model the
hcp–fcc transition and the magnetic properties of iron. In other words,
these potentials were not suitable for laser ablation simulations.

EAM potentials were used again for Ni3Al [89]. In Fig. 4.5 the results are
shown. More points towards the critical point can be resolved. Therefore,
these potentials are suitable for further ablation simulations. Mishin et
al. designed the potentials to describe lattice properties of Ni3Al, point
defects, planar faults as well as the γ and γ′ field of the Ni–Al phase
diagram. The fitting database contained experimental values of the lattice
parameters, cohesive energies, elastic constants cij , vacation formation and
migration energy. Thermal expansion factors at several temperatures were
also included with a small weight. Additional ab initio data was added
in the form of energy–volume relations for several structures like fcc, hcp,
bcc, simple cubic (sc) and diamond.
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Figure 4.5: The phase diagrams for iron, copper and Ni3Al.

4.2 Laser Ablation in Isotropic Materials:
Metals

The phase diagram and simulation tools described in chapter 3 are all
that is needed for an ablation simulation. It can be seen that the laser
source term S(x, t) in the TTM equations from section 3.3, becomes one–
dimensional in space for a spatially homogenous power density. Assuming
that the x–axis is the laser incident direction, the power source density is
given by

S(x, t) = (1−R)S0αe
−αxe

−
(t−t0)2

2σ2
t , (4.1)

The density relates to the innermost area of a Gaussian laser beam. For
these kind of beams, the radial temperature gradient can be neglected com-
pared to the one in normal direction [15]. In this case, the heat conduction
can be treated as one–dimensional. The equation in the Two–Temperature
Model simplifies to

Ce(Te)
∂Te

∂t
= Ke

∂2Te

∂x2
− κ(Te − Tl) + S(x, t). (4.2)
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Figure 4.6: Scheme for the partitioning of the simulated volume into
cells. There are two different kinds of cells: One for the FD
lattice on which the electron temperature Te(x, t) is calcu-
lated, and a second mesh on which the average quantities for
MD are calculated. The two meshes do not need to have the
same size (figure was created using AtomEye [76]).

The method to solve this partial differential equation was explained in
Sec. 3.3. There, the concept of molecular dynamics (MD) and finite dif-
ference (FD) cells was introduced. The latter ones are used to allocate
an electronic temperature to a certain volume in space, the orange cells in
Fig. 4.6. The decomposition of the volume in MD cells is a computational
trick to speed up the algorithm. Now a third kind of cell is introduced, the
coarse molecular dynamics (cMD) cell.

The calculations for the lattice dynamics stay — independent of the
underlying electronic system — three–dimensional. All observables, except
the temperature of the electrons, are based on the atomic data gathered
from MD simulations by ensemble averages. The time evolution of an
arbitrary observable would be a four–dimensional function, f = f(r, t). To
avoid this, the volume is divided into slices along the x–axis, the direction
of incident light. The physical quantities are calculated inside these coarse
MD cells, the blue cells in Fig. 4.6. The two meshes are coupled to each
other by the electron–phonon coupling κ in the TTM equations but do
not have to match in size. In general, the FD cells are chosen such that
they contain 500 or more atoms. This ensures reasonable statistics for the
averages. By the reduction to a two–dimensional function, contour plots
for time evolutions can be generated.
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Three different laser intensity regions can be defined:

1. Small fluence: When the laser fluence is small compared to the abla-
tion threshold Fth, the atoms near the surface are heated up slightly,
no melting occurs.

2. Medium fluence: The applied laser intensity is comparable to the
threshold value of ablation. Melting near the surface can be observed
[129]. The phenomenon is called laser induced surface melting.

3. High fluence: When the fluence is at the ablation value or higher,
material floats from the surface into the ambient gas.

The first case is trivial and will not be discussed. The second scenario is
investigated in this section, where melting depths for various pulses and
energies are given. In Sec. 4.4 pulses with higher energy are considered,
there the important parameter of the ablation threshold Fth is determined.

4.2.1 Parameters for Aluminum

For the solutions of the TTM equations a small number of parameters
have to be specified. For the electron–phonon coupling constant κ a value
of 5.69·1017 J/Km3s was chosen [58]. The electronic heat conductivity was
treated as a constant Ke = 235 J/mKs, while the specific heat is tempera-
ture dependent: Ce = γTe. The coefficient γ was used with 134.5 J/m3K2

throughout this work [67]. For the optical penetration depth two different
values were used for the different models. α−1 = 6.5 nm for the TTM and
8 nm for the rescale model respectively. Fisher et al. give R ≈ 0.85 as
reflectivity for a beam with 800 nm wavelength [43], while a more recent
work reports a value of R ≈ 0.8 [66]. The average of these two experiments
R = 0.825 was taken.

4.2.2 Laser Induced Surface Melting

For the simulations a box of size 172.1 × 4.86 × 4.86 nm3 with 230,400
aluminum atoms was used. This box was divided into 400 FD cells along
the x–axis. On average 600 atoms are inside each of these cells. A Gaussian
shaped pulse in time with durations σt between 100 and 1000 fs was applied.
The fluences were varied between 571 and 1029 J/m2. For the absorption
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Figure 4.7: Time evolution of the electronic temperature Te(x, t) as it
is calculated via the FD scheme. The laser hits the surface
at t = 5 ps and lasts only 100 fs (less than one pixel in the
graph). Iso–temperature lines are shown for 350 K, 500 K,
750 K, 1,000 K and 2,500 K. A very small volume is heated
up to more than 10,000 K

length a value of α−1 = 6.5 nm, which corresponds to a laser wavelength of
λ = 250 nm was chosen [14]. The pulses had their intensity maximum 5 ps
after the simulation started. Combined, 54 separate simulations were done,
each of them representing one point in Fig. 4.12 on page 76. The figures
on the next pages show typical contour plots for all relevant observables
for a 100 fs laser pulse with fluence F = 1029 J/m2.

The electrons, which interact first with the laser, immediately heat up
to over 10,000 K — even for moderate intensities. A sharp rise in temper-
ature can be seen in Fig. 4.7, where the time evolution of the electronic
temperature is plotted. A cut along the x–axis shows, that 0.10 ps after
the intensity maximum of the laser, the electron temperature mainly fol-
lows the pulse shape, Fig. 4.8. The exponential decay has its origin in the
absorption behavior of the metal, the Lambert–Beer law that is propor-
tional to exp(−αx). At this time, the lattice temperature has risen only
slightly above room temperature. With advancing time, a convergence of
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Figure 4.8: Electron and lattice temperatures are shown for three dif-
ferent times 0.10 ps, 1.10 ps and 15.4 ps after the intensity
maximum hits the surface. Te(x, t) mainly follows the ex-
ternal laser field, which is an exponential in this case. Bit
by bit the two temperatures converge to their equilibrium
value, which is almost reached at 15.4 ps.

the lattice and electron temperature can be seen. Indicated by an arrow
is the initial surface coordinate at x = 10.1 nm. Towards the end of the
simulation (t & 15 ps) temperatures are measured for x < 10.1 nm. This
is a clear indication of the thermal expansion and melting of the aluminum
block. Due to the electron–phonon coupling the temperatures of the lattice
and the electrons converge. An estimation of the electron–cooling time τel
can be made by comparing the heat capacity of the electrons Ce to the
value of the coupling constant κ [3]:

τel =
Ce

κ
. (4.3)

In general Ce is a non–analytic function of temperature Te, making it diffi-
cult to give accurate values for τel. While tabulated functions for Ce exist
[78, 79], the TTM model uses a linear scaling with temperature for Ce. An
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approximation for τel can be given via

τel =
Ce(Tmax) + Ce(Tmin)

2κ
. (4.4)

For aluminum this results in τel ≈ 1.58 ps. Due to the temperature de-
pendence of Ce, τel also depends on the temperature. However, two esti-
mations from the simulations of an 100 fs pulse are given within Fig. 4.9,
which shows a cut along the t–axis of the contour plot. The time where
Te = Tl is indicated by the arrow. This is at t = τel = 2.53 ps after the
pulse. Rethfeld approximates the relaxation time by the intersection of
the tangent of Te(t) with the t–axis [106]. This method leads to τel = 2 ps.
Hüttner reports a relaxation time for aluminum with τexp

el = 4.27 ps [58],
a value which is quite comparable with the predictions derived from the
TTM.

The contour plot for the lattice temperature is shown in Fig. 4.10. The
heating process is much slower compared to the electrons, also the tem-
peratures are considerably lower. The highest value is achieved near the
surface and is 1,700 K.
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The next quantity discussed is the mass density ρ shown in Fig. 4.11.
In the plot, density oscillations can be noticed even at times where no
laser field is present (t < 5 ps). The appearance of the oscillations can be
explained by the overlapping of two grids, the so–called Moiré–pattern.
These interference patterns are created when two grids were overlaid at
an angle, or when — as in this case — the grids have slightly different
mesh sizes. One grid is the intrinsic lattice constant of the fcc crystal
(d1 = a0/2 = 2.016 Å), the other is from the above described cell–based
method for the ensemble averages. The length of one MD cell is d2 = 1.81
Å. For the Moiré–patterns the spacing can be calculated by

d3 =
d1 · d2

|d1 − d2|
= 17.9 Å. (4.5)

This value matches the distance of the lines in Fig. 4.11. The oscillations
have no physical meaning, they are rather an effect of the numerical meth-
ods applied. Near the surface, where the crystal is already molten, no
perfect lattice exists. In conclusion, the patterns vanish.

For the melting depth the distance from the actual surface coordinate
to the point where the Moiré–pattern starts can be used. A sharp solid–
liquid interface can be seen, making the determination of the melting front
straightforward. Alternatively, a sudden drop in density from ρsolid = 2.7
g/cm3 to ρliquid = 2.0 g/cm3 where the melting front proceeds can be seen.
Results for different pulse lengths and energies are shown in Fig. 4.12. The
melting depth scales linearly with log(F ). On the other hand, the melting
depth remains stationary when the pulse length σt is varied. This is because
the normalization of S0 in Eq. (4.1) is chosen such, that

∫

SdV = Epulse,
with Epulse the total pulse energy. Thus, a longer pulse leads to a smaller
power density S(x, t). In conclusion, the melting depth is a function of
absolute absorbed energy only. In experiments the melting behavior is
of minor interest, making it difficult to compare the calculated results.
Williamson et al. report 20 ps as sufficient melting time for 25 nm thick
aluminum films [136]. The time depends on the actual laser conditions,
but it can be seen in Fig. 4.11 that after 19 ps the melting depth in the
simulation is around 27 nm, which compares well with the experiment.
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Figure 4.12: Melting depth for aluminum for different laser pulses.
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Figure 4.13: Contour plot of the mass density. The fluence applied to
the target is above the threshold value Fth. The arrows
indicate the ablation depth dabl.

4.2.3 The Ablation Threshold

In the last section moderate fluences were discussed. The laser was strong
enough to melt the surface, but was too weak to remove material. When
the fluence is further increased, the ablation threshold Fth is reached and
material starts to ablate from the target. From now on, only pulse durations
with σt = 100 fs are used. In Fig. 4.13 a density contour plot is shown for
a fluence F = 1487 J/m2. It can be seen, that this value is above the
threshold for ablation. From around 15 ps on, a layer of liquid aluminum
starts to detach from the surface. This ablated layer forms a moving shell
with constant velocity [59]. The layer and the bulk material build a pair
of optically flat, sharp interfaces. Interference happens due to the sudden
drop of optical density over a distance in the order of the wavelength.
Pump and probe experiments with a 120 fs pulse at 620 nm wavelength
were done showing these patterns, called Newtonian rings [119]. Although
the pulse duration is comparable (σt = 100 fs), the wavelength is smaller
with λ = 250 nm. However, the same phenomena can be reproduced by
the simulation.
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The ablation threshold can be calculated following a method from exper-
imental ablation studies. Preuss et al. derived a formula for the ablation
depth, bringing the applied fluence F and the inverse thermal penetration
depth α in relation to the ablation depth dabl [104]:

dabl =
1

α
ln

(

F

Fth

)

. (4.6)

The equation is valid only if the following assumptions are made:

1. Absorption can be described by the Lambert–Beer law and the
reflectivity is constant during the pulse.

2. Ablation takes place after the pulse is over and no redeposition occurs.

3. The heat conduction is negligible.

While for ns–pulses not all of the above statements can be satisfied, they
can for sub–picosecond pulses. Although heat conduction occurs, the ther-
mal diffusion length lth ∝

√
Ket is much smaller than for ns–pulses, where

lth is two orders of magnitude larger than the optical penetration depth.
dabl is shown in Fig. 4.14. From a linear fit the values obtained are
Fth = (858 ± 170) J/m2 and α−1 = (27 ± 6) nm. As done in experi-
ments, both constants, α−1 and Fth, serve as fitting parameters [73, 104].
It should be noted that the points can not be fitted very well with the
above equation, therefore the errors are quite large.

Vorobyev et al. determine 580 J/m2 as ablation threshold in vacuum
[130], while in [52] a fluence of 340 J/m2 as damage threshold for aluminum
is reported. In contrast Le Harzic et al. gave Fth = 1200 J/m2 [73] as ab-
lation threshold. In the same work α−1 is found to be 39 nm for aluminum.
However, different fluence regimes were studied in the experiments using
120 fs pulses, and only a few points for the low fluence regime (F < 2000
J/m2) were taken into account for the fitting procedure. An error range
was not given, so the values gained from simulations and experiments might
still overlap. In other numerical studies, an ablation threshold of 700 J/m2

is found [6], but (i) a slightly different model (no TTM) and (ii) different
potentials were used, which makes a direct comparison difficult.

The last observable gained from the simulations is the pressure inside
the bulk material. A contour plot is shown in Fig. 4.15. During the laser
pulse the metal is heated iso–choric. This change of state leads to an
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Figure 4.14: Ablation depth for the homogeneous 100 fs pulse in alu-
minum.

immediate increase of pressure, generating a pressure wave. Its speed can
be estimated directly from the slope of the pressure maximum in the x− t–
diagram. For the given parameters the speed is vs ≈ 6522 m/s . Compared
to the longitudinal speed of sound in aluminum (vs = 6420 m/s [77]), this
wave is an ordinary sound wave and not a shock wave. The fluence values
to induce shock waves have to be considerably higher than the intensities
applied here [40]. Interesting for laser induced waves is an effect called
back–spallation [30]. Back–spallation occurs when the pressure wave is
reflected at the back of a thin film, thus reversing it to a tensile wave. The
tensile pressure then exceeds the critical value of the bulk modulus. What
follows is material failure, similar to laser ablation.

Being able to reproduce a number of physically relevance with the sim-
ulations is already a great result, but one problem arises when longer sim-
ulation times are of interest. The samples finite size effects the physics in
the surface region. The pressure wave is reflected at the back side of the
sample, thus traveling back to the surface.
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Figure 4.15: Time evolution of the pressure inside the sample. A pres-
sure wave forming near the laser affected zone that travels
into the bulk is observed.

4.3 Non–reflecting Boundary Conditions

Laser heated solids were studied in detail in the last section. It was shown,
that due to the iso–choric heating, large stresses arise in the laser affected
zone. The stress reloads itself into the bulk material, generating a pressure
wave. In infinite samples, or for systems in a laboratory with dimensions
of mm or cm, these stresses have long enough time to vanish in the bulk.
For finite samples the time a wave needs to reach the end of the box is very
short. In the existing case this leads to a reflection of the wave at the back
side. The generated tensile pressure can fall below the Youngs modulus,
rupture of the material is the result. Back–spallation is also observed in
experiments or simulations [30, 140]. It totally depends on the processes
of interest, if this wave is an artefact of the simulation or a physical effect.
For studies on the ablation rate or the ablation threshold Fth the wave is
an unwanted side effect.

A method to damp the emitted waves can be adopted from fracture
simulations [51]. In simulations of fracture, pressure waves are emitted by
the tip of the crack. There, a stadium damping is used to damp the waves.
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For ablation, a slightly different method is applied. An additional damping
force is added to the equations of motion in a certain sub–volume V of the
simulation box:

mjẍj = F j − ζ0f(xj) · vjmj. (4.7)

F j is the net force on the j–th particle due to the interactions with the
other atoms and the energy transfer from or to the FD lattice. A linear
increasing friction force is applied to the particles inside V . This is done
by the function f(xj) in Eq. (4.7). The rate of damping depends on the
particles x–coordinate. While particles in the very beginning of the zone
only notice a small friction, particles towards the end were affected by a
force up to ζ0vjmj . The special boundary conditions act like a damping
ramp at the end of the simulation box. On the left side of Fig. 4.16 the
laser induced pressure wave is shown. The arrow marks the spot where
the wave is reflected, thus changing its sign. In case where the damping
ramp is active, the reflected wave is much smaller. Compared to thermal
fluctuations the reflected energy can be neglected.

Summary

For a basic understanding of laser heated solids, an isotropic medium ir-
radiated with homogenous intensities, was studied. The metal chosen was
aluminum which has a simple phase diagram and isotropic material prop-
erties. With realistic interatomic potentials and considerably large simula-
tions, results can be directly compared to experiments. The laser intensity
was distributed homogeneously on the surface, which resulted in a one–
dimensional treatment for the electrons. However, the model is already
useful to gain insight into the physics of laser heated solids. Basic phe-
nomena that are observed in experiments like surface melting, ablation,
interference patterns and pressure waves can be reproduced. In the next
section a step towards more complex simulations, by using an inhomoge-
neous intensity profile, is taken.
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Figure 4.16: Non–reflecting boundary conditions. On the left side the
original simulation is shown. The pressure wave is reflected
at the back side (the white line) of the sample, indicated
by the arrow. On the right hand side this reflection is pre-
vented by an additional friction term in the equations of
motion.

4.4 Inhomogeneous Ablation Experiments on
Metals

Up to now, the applied laser fluence was distributed homogeneously on the
target surface. The experimental setup corresponding to these simulations
is that of matter heated in the center of a Gaussian laser beam. In this
section, the effects of femtosecond laser pulses with inhomogeneous profiles
on aluminum will be investigated. As a consequence, a plume is evolving
into the vacuum, where all kinds of distributions can be evaluated. Besides
the ablated particles, a crater is formed in the bulk material.

For practical and computational reasons the system size was limited to
6 · 107 atoms. The practical aspect is the manageable size of a complete
snapshot, which contains the masses, velocities, the potential energy, the
electron density and the coordinates of all atoms. A single snapshot already
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uses six GB of disc space2. The tools used for data manipulation like
MegaMol [50] were at the limit of handling samples that large. The second
argument is the computational time that is needed for a single simulation.
On the High Performance Computing Center Stuttgart (HLRS) with 512
CPUs in parallel, a series of five different pulses consumes over 500,000
hours of CPU time.

With 60,000,000 atoms and a rectangular shaped surface of A = 101 ×
101 nm2, the sample thickness is 108 nm. This geometry is too small for
a three–dimensional diffusion equation, as it was introduced in Sec. 2.3.
Large temperature gradients on the surface lead to very short diffusion
times. As result, a quick thermalization on the target’s surface to a ho-
mogenous temperature profile occurs. Instead, the method described in
Sec. 3.2, where the kinetic energy of the atoms is scaled accordingly, will
be used. The general power density S(x, t) was given with

S(x, t) = (1 −R)S0αe
−αxI(y, z)e

−
(t−t0)2

2σ2
t . (4.8)

For the pulses applied, the spatial intensity I(y, z) on the target surface is
chosen to be Gaussian:

I(y, z) = e−
(y2+z2)

ω2 . (4.9)

The system is again aluminum, using the same potentials as in Sec. 4.2 for
the homogenous fluences. Because the gas phase was of interest, simulation
times of 255 ps real time were necessary. At this time, the plume has al-
ready expanded up to 1.5 µm above the surface. For reliable statistics, five
different initial conditions (velocity distributions corresponding to 300 K)
were used. The main reason is, that only 3–10% of the bulk volume evapo-
rate into the gas phase per single pulse, making conclusions about clusters
based on a single simulation difficult.

The pulse duration was set to σt = 100 fs, α−1 in Eq. (4.8) was chosen
to be 8.0 nm [14]. A series of varying laser fluences between 1373 J/m2

and 3204 J/m2 was performed. The values seem to be rather high, but it
has to be noted, that the fluences correspond to the peak intensity, which
is only achieved in the very center of the profile. For all simulations the
half beam width was set to ω = 15 nm.
2In 2010 the average disc space of a computer is around 500 GB, so less than 100

snapshots could be stored. Typical memory is between four and eight GB, so only
one snapshot at a time could be visualized.
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Figure 4.17: Melting and ablation depth for inhomogeneous pulses in the
rescale model (RES). The penetration depth α−1 can be
determined from the slope, while the axis intersection gives
the ablation threshold Fth. For comparison the ablation
depths from the TTM are shown.

4.4.1 The Ablation Threshold

The ablation threshold Fth can be determined following the same method
as for the TTM simulations, Eq. (4.6). In a half–logarithmic plot, the
ablation depth scales linear with applied fluence, see Fig. 4.17. In the same
figure TTM results are shown for comparison. The threshold value gained
from fitting is Fth = (1137 ± 166) J/m2 for the rescale model (RES), the
penetration depth is α−1 = (8.6± 1.7) nm. While Fth(RES) is comparable
to the TTM model, α−1 is considerably smaller. The origin lies in the
missing heat conduction of the electrons. For RES, no heat conduction
is considered. The heat affected zone is smaller and in the order of the
optical penetration depth α−1, which is 8 nm for aluminum. However,
the linear scaling is well pronounced and observed in experiments [73].
In experiments the slope of the ablation depth (ablation rate) strongly
depends on the ambient gas, while the actual ablation threshold is not
affected by the environment [104]. All simulations were done in vacuum,
thus the environment for all simulations was exactly the same. In the
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System Quantity Theory (this work) Experiments

Al

Fth (TTM) (858± 170) J/m2

580 . . .1200 J/m2

Fth (RES) (1137± 166) J/m2

α−1 (TTM) (27± 6) nm
39 nm

α−1 (RES) (8.6± 1.7) nm
tmelt (TTM) 19 ps for 27 nm 20 ps for 25 nm
Fmelt (TTM) (469± 6) J/m2 340 J/m2

Table 4.1: Comparison of the ablation thresholds Fth, the penetration
lengths α−1 and the melting time tmelt determined by the
different models.

present case, different ablation rates reflect different models, one with and
the other without fast heat conduction. See Tab. 4.1 for a comparison of
the calculated parameters with experimental data.

4.4.2 Cluster Detection in the Plume

In the expanding gas plume, different sized clusters can develop. For the
analysis of the cluster size distribution the DBSCAN (Density Based Spatial
Clustering of Applications with Noise) algorithm was used [39]. Many
advantages over other algorithms have set the choice to especially this one:
(i) DBSCAN does not require the prior knowledge of the number of clusters
in the volume, (ii) the shape of the clusters does not matter and (iii) it has
a notion of noise. Noise in the case of atomic data corresponds to clusters
with exactly one atom. All clusters with Natoms = 1 can be regarded as the
gas phase of the ablated material. Two atoms are considered as a cluster,
when their euclidian distance is below a certain value, ǫ = 0.35 nm.

An average particle–cloud contains approximately 250,000 atoms for the
lowest and 850,000 atoms for the highest fluence respectively. The algo-
rithm was applied to the coordinates above the samples surface, i.e. the
bulk material was removed. After the analysis, each atom is assigned with a
new attribute CN called clusterID. The assignment to a cluster is simple:
If two atoms have the same CN , they belong to the same cluster. Look-
ing at the snapshot in Fig. 4.22, it can be seen that most of the clusters
have spherical shape. This allows the determination of an average radius
RN = 3

√
Natoms for each cluster in units of the atomic radius. The largest
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Figure 4.18: Cluster distribution for five different fluences between 1373
J/m2 and 3204 J/m2. For the ablation yield Y (N) a power
law Y (N) ∝ N−δ can be found with different δ values in
the low–mass and the high–mass (N>10) ranges.

clusters in the plume contain approximately 100,000 atoms, corresponding
to a radius of R = 17.5 nm. For the results shown in the Fig. 4.18 the
number of atoms per cluster is shown instead of their radii. For a better
overview, not all cluster sizes were shown. The x–axis was divided into
suitable intervals. Also, the intensity was normalized to 1/ω2.

In sputtering experiments, where a high energetic particle is shot onto
the target, a bimodal power–law for the size distribution Y (N) is found [31,
137]. The ablation process is somewhat different, as the energy is deposited
only by radiation. The complex character of the processes involved makes
it difficult to establish a direct link between the existing theoretical models
and the simulations done in this work. However, a power–law Y (N) ∝ N−δ

for the yield distribution seems to be a fairly general phenomenon, as it
is also observed in other ablation studies [75, 141]. There is no clear cut
between the two ranges, thus the data was fitted for N . 6 and above.
The observed range for the exponent is δ = 3.9 to 5.1 and from 0.3 to 0.9
for the high–mass region. As it can be seen in Fig. 4.18, the values for δ
are very sensitive to the used fitting interval, the exponents are therefore
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only rough estimates. In experiments, the exponents are found not to be
constant also. Wuchner et al. gave δ = 7.7 while in [31] a value of δ = 9.3
is reported – both for the low–mass region N ≤ 10. The experiments were
ion sputtering on aluminum, so no fluence dependence could be reported,
but the values from the simulations, e.g. δ = 5.1, are quite comparable to
the experiments. For the high–mass exponent a value between 1.21 and
1.31 was found in other simulations done by Zhigilei [141]. It also has
to be taken into account, that the used potentials were not fitted to such
applications, thus an intrinsic error by the used potential might occur.

4.4.3 Velocity and Angular Distribution

From the MD data the velocity and angular distribution functions of the
plume can be calculated. The temperature of the plume is estimated by
averaging the kinetic energy. Due to the directional expansion, the in-
dividual center of mass velocity of clusters with Natoms > 1 has to be
subtracted from its members. Fig. 4.19 shows the velocity distributions
for five different laser pulses. It can be seen that the gas phase seems to
have roughly the same temperature for all pulses. A fit to a Maxwell–

Boltzmann distribution shows, that all temperatures lie within an error
of 200 K. For comparison a distribution for T = 3107 K is shown. The
asymptotic standard error for the fitting procedure is less than 2 %. A
slight deviation, especially in the region with small and large velocities to
the ideal distribution can be seen. Usually a modified distribution function
is used to describe the ablated particles [17]. The difference to the above
method is, that an off–set or steam velocity is subtracted just in the di-
rection of plume propagation instead of the center of mass velocity. The
fastest particles found in the plume move with over 6 km/s. Velocities even
higher (between 3 and 30 km/s) are reported in experiments, done with
femtosecond pulses [99].

From the same data set angular distribution functions can be calculated.
Several approaches for determining analytic expressions for them exist.
Konomi et al. compare two different functions to their experiments [68].
These were done by analyzing an aluminum foil, which was positioned
above the experimental setup. The ablation was carried out in vacuum
(4 ×10−4 Pa) with a Gaussian–like intensity. Hence, the experiments
should be comparable to the ideal Gaussian intensity profile used here.
Unfortunately aluminum was not among the studied metals. In addition
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Figure 4.19: Velocity distribution calculated from MD simulations for
the different fluences. For comparison a 3107 K Maxwell–

Boltzmann velocity distribution is shown.

no fluence dependence of the plume, i.e. the distribution functions, was
discussed. A more recent work by Donelly et al. compares different
fluences – again not for aluminum but for nickel [36].

Other than for the velocity distribution, which was calculated over all
the atoms inside the plume, the angular functions are calculated only for
the clusters. This should better match the experimental conditions: Most
of the material deposited — and countable — on the foil comes from larger
chunks of matter, rather than from single atoms. Therefore, the calculated
center of mass velocities were assigned to the according clusters. From the
clustered data the distribution functions were calculated with respect to
the center of mass velocity vectors.

All data points in Fig. 4.21 can be very well fitted to functions also used
by Konomi et al. to interpret their experiments. The first function used
contains the sum of two distributions, a broader (first term) and a narrower
(second term) part:

f1(ϑ) = r[a cosm(ϑ) + (1 − a) cosn(ϑ)], (m < n), (4.10)

where r is the value at ϑ = 0, a describes the ratio of the cosm(ϑ) compo-
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nent to the whole distribution and ϑ is the angle with respect to the laser
incident, see Fig. 4.20. In general, the curve describes the simulated data
very well over the whole range. It can be seen (Tab. 4.2), that the ratio
a of the broader distribution scales down roughly linear with increasing
energy. This indicates a more directed ablation process with increasing
fluence. Konomi reports values between m = 1.0 (Cu) up to m = 4.0 (Zr)
and from n = 3.0 (In) to n = 24 (Ta) [68]. Tab. 4.2 summarizes the values
from the simulations. For m, they lie in reasonable agreement with the
experiments, while the n values came out slightly too small.

A second equation used to interpret experimental data can be derived
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F [J/m2] r a m n k
1373 3.36 0.37 0.65 7.84 1.67
1831 7.29 0.33 2.35 20.9 2.47
2289 11.46 0.32 4.39 35.43 2.88
2746 16.49 0.27 6.10 48.45 3.06
3204 19.45 0.24 6.9 53.8 3.26

Table 4.2: Fit parameters for the angular distribution functions f1(ϑ)
and f2(ϑ).

from a model based on gas dynamics by Anisimov [5, 8, 124]:

f2(ϑ) = r
(1 + tan2(ϑ))3/2

(1 + k2 tan2(ϑ))3/2
. (4.11)

The fitting parameter k denotes the ratio of the cloud front along the
surface normal direction and the front in direction of the surface, k =
Xinf/Yinf, respectively. While for small angles both functions fit the data
set reasonable, for angles larger than 1 rad Eq. (4.11) leads to a smaller
error in general, see Fig. 4.21. For different metals values for k between 1.1
(Cu) and 3.2 (Ta) are reported [68]. As mentioned above, all experiments
were done with constant fluence, so it is impossible to compare the energy
dependence of k. But from the simulations the dependence on the applied
fluence can be very well fitted to k(F ) = χ

√
F − F0 + k0 with χ = (38 ±

2) · 10−3 m/
√

J, k0 = 1.68 ± 0.05 and F0 = (1373 ± 96) J/m2. A larger
value of k corresponds to a more forwarded ablation plume, which has
been reported at least for the ions in [36]. For the un–charged particles,
the exact opposite is reported: The angular distribution gets broader with
higher fluences. One distribution of the azimuthal angle f̂(ϕ) is shown
in Fig. 4.21. Since the problem has axial symmetry with respect to the
laser incident — as expected — a constant particle flux to all directions is
observed.

Summary

Simulations of inhomogeneous laser pulses were done and evaluated. It was
shown that all accessible quantities compare well to experiments. The ab-
lation threshold agrees with measurements, even if it is different from the
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Figure 4.21: Angular distributions for different fluences between 1373
J/m2 and 3204 J/m2. The line shows the fit to Eq. (4.10).
The inlay shows a direct comparison of the two analytic
functions f1 and f2. In general Eq. (4.11) describes the
data better than Eq. (4.10). The red crosses exemplarily
show one azimuthal distribution f̂(ϕ) for the lowest fluence.

Figure 4.22: Snapshots of a 60 million atoms simulation 4, 40 and 70 ps
after a 100 fs laser pulse hits the surface. The colors map
the kinetic energy of the atoms. For visualization MegaMol

[50] was used.
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threshold value obtained by the Two–Temperature Model. Cluster statis-
tics and velocity distributions were calculated from the MD data. Where
available, experiments were compared to the simulations. Although the
ablation simulation is one order of magnitude smaller in lateral direction
than the smallest experiments, the detected angular distributions fit very
well to the experiments. This indicates a scaling invariance concerning the
evolving plume. Still, it is debatable if this simple model is good enough
to describe the complex processes happening in the expanding plume. In
comparison to experiments, it seems that a closer look at the ions has to be
taken into account, even though they only make up 10–20% of the whole
plume [36]. Additionally, recent experiments indicate, that the beam in-
tensity profile I(y, z) indeed has an impact on the particle size distribution
[85].

4.5 Laser Ablation in Anisotropic Materials: A
Case Study

Quasicrystals (QC) form a subgroup of complex metallic alloys (CMAs),
which are locally similar due to their cluster sub–structure. Most of the
known quasicrystals are found in Al–rich binary or ternary alloys like Al–
Ni–Co, Al–Cu–Co or Al–Pd–Mn. Basically there are two sorts of stable
quasicrystals interesting for laser ablation: Icosahedral and decagonal ones.
This chapter will focus on an approximant to the decagonal phase of Al–
Ni–Co.

Decagonal quasicrystals (d–QC) can be understood as periodic stack-
ing of quasiperiodic two–dimensional planes, combining properties of peri-
odic and quasiperiodic crystals. Due to the inherent structural anisotropy,
d–QCs show a large anisotropy in their thermal transport properties [35,
118], and similarly in other parameters like the electrical resistivity [82],
thermoelectric power [117], Hall coefficient [34] or optical conductivity
[13]. For the simulations of a material with anisotropic properties the
aluminum–cobalt alloy Al13Co4 was chosen. The alloy shows large affin-
ity to decagonal quasicrystals, as a consequence, slight anisotropic melting
behavior is observed.
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4.5.1 Parameters for Al13Co4

The introduced hybrid simulation scheme in Sec. 3.3 describes the heat
diffusion in isotropic materials. In Al13Co4 this isotropy is missing. Related
to the three principal crystal directions a, b, and c, the thermal conductivity
has different values. In the heat conduction equation (2.46) different — but
constant — values for Ke have to be used for each direction. The equation
is re–written into a more general form:

Ce(Te)
∂Te

∂t
=

(

Ka
e

∂2

∂x2
+Kb

e

∂2

∂y2
+Kc

e

∂2

∂z2

)

Te − κ(Te − Tl) + S(x, t).

(4.12)
The interactions for the MD part are described by potentials of the EAM
type, developed by Brommer et al. [18]. These potentials were fitted
to ab initio data and were initially designed for high temperature diffusion
studies. They can reproduce the melting point but are also able to stabilize
surfaces at temperatures around 300 K for the three crystal directions. This
is important because for ablation simulations periodic boundary conditions
can only be used in two directions.

The orthorhombic Al13Co4 can be found in the Al–rich part of the Al–Co
phase diagram [47]. The alloy belongs to the Al13TM4 group of decagonal
approximants like Al13Fe4. According to the model of Grin et al. the
lattice parameters are a = 8.158 Å, b = 12.342 Å and c = 14.452 Å with
102 atoms in the unit cell (space group Pmn21 and Pearson symbol
oP102) [48]. Fig. 4.23 shows several unit cells, combined to one of the
stacked layers.

There are no high temperature measurements for Ke, hence Ke is treated
as constant3. All values are based on work done by Dolinšek et al. [35].
The values are

Ke = {Ka
e ,K

b
e ,K

c
e} = {10.2, 4.4, 4.1} J

mKs
, (4.13)

with respect to the a–, b– and c–direction. For the specific heat of the
electrons, a linear temperature behavior Ce = γTe is used. Because no
measurements existed, γ was used from the similar Al13Fe4 alloy, where
data is available, γ = 170 J/m3K2 [102]. α−1 was chosen to be 8 nm.

3For real QCs it is even more difficult to determine the relevant constants like heat
conductivity or electron–phonon coupling.
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c

b

a

Figure 4.23: Several unit cells of the Al13Co4 alloy. The lattice parame-
ters are a = 8.158 Å, b = 12.342 Å and c = 14.452 Å with
102 atoms in the unit cell. Blue are the aluminum atoms,
in red cobalt is shown.

Different methods for the calculation of the electron–phonon coupling κ
were given in Sec. 2.3. Following the equation of Wang et al. [133], κ is:

κ =
π4(kBvsne)

2

18Lσe(Te)Te
= 1.21 · 1018 W

m3K
. (4.14)

The speed of sound vs is independent of the crystal direction in d -QCs [25],
ne can be estimated from measurements of the Hall–coefficient [35]

RH = − 1

nee
. (4.15)

The Wiedemann–Franz law Ke(Te) = Lσe(Te)Te is valid for quasicrys-
tals over a wide temperature range, thus Ke(Te) and κ can be related
[128, 35]. To avoid an anisotropy in κ, Ke and also ne were averaged for
the different crystal directions. The second equation derived by Allen [3]
gives

κ =
3~γλ〈ω2〉
πkB

= 1.26 · 1018 W
m3K

. (4.16)

For 〈ω2〉 the value 1050 meV2 is taken [88], a value higher than for most pure
metals. It can be explained by the strong Al–transition metal interactions
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Figure 4.24: Melting depth for different laser fluences (σt = 100 fs).
For comparison the values gained for pure aluminum by
the TTM (see Sec. 4.2) are shown. Only a small effect of
anisotropy can be seen.

dominating the dynamics of the system. λ is related to the Seebeck

coefficient of thermal power, Eq. (2.50), and was measured by Dolinšek

et al. for Al13Co4 [35]. The values from Eq. (4.14) and (4.16) are quite
similar, giving confidence to use the mean value, κ̄ = 1.24 · 1018 W

m3K , for
future simulations.

4.5.2 Laser Induced Surface Melting

The sample volume was 79× 18.3× 21.5 nm3, containing 2,295,000 atoms.
For each of the crystal directions, a series of varying laser fluences be-
tween 91 and 1463 J/m2 was performed. The pulse duration was set to
σt = 100 fs. The results of the simulations is summarized in Fig. 4.24,
where the melting depth dmelt is shown. For better comparison, dmelt for
aluminum is also given4. A difference can be seen in the slope of dmelt(F ),
resulting in different melting thresholds. For the same fluence, the melted

4The points correspond to a cut through the surface in Fig. 4.12 on page 76 along
σt = 100 fs.
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layer in the alloy is less pronounced. Due to the comparatively small heat
conduction (20 times smaller than in aluminum) the heat affected zone is
smaller, thus the melting depth is decreased. The onset of melting for alu-
minum is determined to be Fmelt = (469 ± 6) J/m2, which is comparable
to the damage threshold of 340 J/m2 given by Guo et al. [52]. In Al13Co4
melting thresholds are found at F a

melt = (291± 9) J/m2, F b
melt = (299± 9)

J/m2 and F c
melt = (277± 8) J/m2 for the a–, b– and c–direction. Beyond

that, the deepest melting is found in the a–direction5. Up to now, no exper-
iments on this alloy — or on comparable quasicrystals — were done. This
makes conclusions on the validity of the results based on the simulations
difficult.

However, a closer look reveals that the effect of anisotropic melting is very
small. The difference in melting between the a– and the b–,c–directions is
less than 5 nm, whereas the heat conduction is 2.5 times larger in the peri-
odic direction. An explanation can be given by the small electron cooling
time (τel = Ce/κ) due to the comparatively high electron–phonon coupling
constant. κ is more than twice as large compared to aluminum and more
than 20 times bigger than in copper. The cooling time is 1 ps. In case of
short relaxation times, the heat is confined to the atomic layers near the
surface, leading to a weak direction dependent melting depth. It is also
debatable if this simple approach of modeling the properties of the alloy
is realistic enough. Therefore, future investigations should introduce more
general material properties. κ also has a direction dependence. Addition-
ally a temperature dependence in κ and Ke can be used.

Summary

The results for laser induced surface melting, calculated by the hybrid
simulation scheme were shown. The model is able to describe laser ab-
sorption of the electrons and an anisotropic heat transfer to the lattice.
The anisotropic heat conduction occurs due to the anisotropic structure of
Al13Co4. The simulations showed that there is an effect of anisotropy but
it is rather small. This leads to the conclusion, that before more complex
structures like quasicrystals are investigated, the model has to be improved.
However, the used TTM equations are designed mainly for metals. It is

5The direction with the highest value of heat conduction and the direction perpendic-
ular to the semi–aperiodic plane.
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debatable if a complex structure like an alloy or a quasicrystal is suitable
for the Two–Temperature Model.
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Chapter 5

Conclusion and Outlook

In this thesis, computer simulations of laser ablation in metals were studied.
By the coupling of molecular dynamics (MD) to finite differences (FD) the
advantages of both methods could be combined. Together, an approach
for numerical experiments on the ablation process is given. With the FD
equations, the model is able to describe the absorption of the laser energy by
the electrons and the fast diffusive heat transport characteristic for metals.
Parallel, a coupling to the phonons heats up the lattice atoms. The power
of the MD method lies in the atomic resolution of all physical processes
that occur. Melting, ablation, spallation, vaporization or cluster formation
can all be seen from processed MD data. The results are delicate, because
the majority of them is governed by the used potentials. Thus, choosing
or creating potentials is an important task.

For aluminum an appropriate EAM potential was used. The poten-
tial is able to describe the solid–liquid and the liquid–gas phase transition
very well. Different laser pulses (durations and intensity profiles) and also
different models were studied. Where experiments were available, all pre-
dicted parameters match their experimental counterpart, see Tab. 5.1 for
an overview. The important parameter of the ablation threshold from
both methods, the more sophisticated TTM and the simpler rescale model
(RES), compare very well to experiments. Ablation characteristics, i.e.
cluster size and angular distributions or velocity of expansion, in the plume
match qualitatively to experiments.

The model was additionally applied in ablation simulations of a more
complex structure, Al13Co4. As an approximant to the decagonal phase
of Al–Ni–Co, the alloy is built of periodically stacked semi–fivefold layers.
Therefore, all transport properties show an anisotropy. Although all mate-
rial parameters could be derived from theory or experiments, the expected
anisotropy in the ablation behavior is missing. An explanation was given
by the comparatively small electron–lattice relaxation time.
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However, the model has room for improvement. It was shown that alu-
minum is an ideal material for the Two–Temperature Model (TTM) be-
cause of its short electron–thermalization time. Additional, the simple
phase diagram makes the selection of a good potential a more straightfor-
ward task. For other system, like copper or gold, whose thermalization
lasts ten times longer, the extended TTM given by Hüttner can be used
as a starting point. For the electron heat conduction and the electron–
phonon coupling constants were used. In reality, these quantities depend
on the local lattice and electron temperature.

Outlook

Although the applied methods are very promising, it seems that they are
too simple for more complex systems like metallic alloys. Also, it has to be
noticed that only single pulse laser ablation into vacuum was studied. For
typical applications like drilling, tens of thousands of pulses are needed.
It was shown in experiments that the ambient gas or liquid has an im-
pact on the ablation efficiency. Modeling an atmosphere or the evolving
plasma cloud lies beyond the possibilities of standard molecular dynamics.
Even for a second pulse problems arise. For a non–planar surface, interfer-
ence between incoming and reflecting waves occur, thus solutions for the
Maxwell equations are needed.

For technological applications covalent systems are of special interest.
For simulations of laser ablation in semiconductors, a computational ap-
proach that includes a description of the relaxation of a dense gas of hot
electrons and holes generated by the laser pulse into classical MD is being
developed by Lorazo et al. [80].

The system size also is an issue. In the simulations done, the beam
diameter for inhomogeneous fluences was 30 nm. With todays technologies
it is already possible to achieve beam diameters of 100 nm with so–called
λ/4–pulses [111]. Still, a factor of three to five means a factor between 10
and 251 when it comes to simulation time.

The actual laser light was only modeled via its intensity on the surface.
Experiments show, that also the polarization of the light has an influence
on the physics. Ripples, whose orientation depends on the polarization
formate on the irradiated surface.
1This assumes that only the lateral dimension matters. In direction parallel to the laser,

typical penetration depths of 5–20 nm are already covered by todays simulations.
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Summarizing, it could be shown, that for suitable systems the combina-
tion of the Two–Temperature Model to molecular dynamics is a powerful
tool to predict and describe what is happening in laser heated metals by
ultra short pulses.
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Table 5.1: Overview of all determined parameters and comparison to ex-
periments where available. Additional for reference, the pages
where the calculations were done are given. The numbers (1)
and (2) for the ablation thresholds denote the different mod-
els, (1) for the TTM and (2) for the rescale method.



Appendix A

Used Software

A.1 IMD

IMD is a software package for classical molecular dynamics simulations.
It is the abbreviation for ITAP Molecular Dynamics, where it is further
developed [121]. Several types of interactions are already supported, such
as simple pair potentials, EAM potentials for metals, Stillinger–Weber

or Tersoff potentials for covalent system. At this time, methods to deal
with polarizable atoms are being implemented. Different integrators for the
simulation of various thermodynamic ensembles, options that allow to shear
or deform the sample during the simulation and many more are available.
It is designed to run on massive parallel architectures, parallelized using
the Message Passing Interface (MPI). Thus no restriction to the number
of particles is given. Truly a great advantage of IMD is its compatibility
to a wide range of systems from desktop PCs over large clusters up to
supercomputers. Thereby IMD has an excellent scaling behavior with the
number of processors. Typical execution times are in the order of 10−5 s per
atom and time step. For a typical laser ablation simulation with 60,000,000
atoms and 50,000 time steps this results in 15 · 106 s computation time on
a single CPU. On 512 CPUs it only takes eight hours.

During the last years IMD was extended with several features regard-
ing laser ablation simulations in metals. Besides a simple rescaling model,
where the kinetic energy of each atom is rescaled according to the outer
laser field, a more complex hybrid model was implemented. In the so–
called Two–Temperature Model an additional equation is solved in parallel
to the standard molecular dynamics. This equation — a generalized heat
conduction equation — describes the time evolution of the electronic tem-
perature. Fast heat conduction in metals throughout the electronic system
can be simulated. Current IMD versions are not only expanded by new
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Quantity Unit SI value

length x Å 10−10 m
time t Å

√

u/eV 10.18 ·10−15 s
force f eV/Å 1.602 · 10−09 N
stress σ eV/Å3 1.602 · 10−11 Pa
mass m u 1.661 · 10−27 kg
fluence F eV/Å2 16.02 J/m2

temperature T eV 11605 K
heat capacity C eV/(Å

3

K) 1.381 · 107 J/(m3K)
specific heat coefficient γ eV/(Å

3

K2) 1189.7 J/(m3K2)
heat conductivity K

√
eV3/(

√
uKÅ) 13.561 J/(sKm)

electron–phonon coupling κ
√

eV3/(
√

uÅ
4

K) 1.356 · 1021 J/(m3Ks)

Table A.1: Table of IMD units.

physical methods, there are ongoing projects were the code is ported to
most current architectures like the Cell processor or the Blue Gene super-
computer.

Units

Although the used units in IMD can be chosen by the user, certain values
have been established during the years. IMD determines the unit length
after reading a configuration file, thus the user can give his own units to
the program. The time step also is given by the user via a parameter file
in multiples of 10.18 fs, see Tab. A.1

A.2 Rapidminer

Rapidminer is a tool for data mining, a process which can be generally
defined as the extraction of patterns from data. It is currently used in
wide ranges of research such as marketing, fraud detection or scientific dis-
coveries. The manual extraction of patterns from given data sets has been
done for many years. With growing data sets — both in size and com-
plexity — direct hands–on analysis has become more and more tedious.
The computer aided processing like neuronal networks, clustering, decision
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trees or genetic algorithms have come to the fore. Rapidminer combines
many modern tools for data mining in one framework. It has a powerful
but intuitive graphical user interface and an on–the–fly error recognition
system. It can handle all kinds of input format, especially data from IMD

can be used without major pre–processing. Most comprehensive solutions
like data integration, transformation, data modeling, evaluation and visu-
alization are already included. Besides all these features, Rapidminer is
availably freely as an open source project1 [87].

Usually the process of data mining can be reduced into four classes of
tasks:

1. Clustering, where the task is the discovery of groups and structures
in the data without using known structures in the data.

2. Classification, where a known structure is applied to new data like in
neuronal nets (the net is trained on a known data set and applied to
new data to predict certain attributes like stock prices).

3. Regression, where the attempt is to find a function which models a
given data with the least error.

4. Association rule learning, is the search for a relationship between
variables.

Data mining was used in a variety of research fields. It was used for pat-
tern recognition in chess games and also in economics, e.g. the market
basket analysis, which tells retailers which goods customers like to pur-
chase together. Data mining also is used in science and engineering like
bio–informatics, genetics or medicine. However, from all great features
available, only the clustering algorithms were used.

Fig. A.1 shows a screenshot of the actual worksheet that was used for the
detection of the clusters in Sec. 4.4.2. The main window can be grouped
into three parts. On the left a collection of tools can be seen. On the
right side, parameters for the used algorithms can be changed. In the main
window, all functions (which are called operators) can be used in a drag–
and–drop fashion. For the clustering of atomic data a few operators (order
from left to right) are necessary.

1. The data is read with a cvs reader.
1http://rapid-i.com/
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Figure A.1: Screenshot of the used tool Rapidminer for the cluster anal-
ysis. The circles show the four main modules used for the
clustering of the atomic data.
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2. The data set (in x y z format) is scanned for clusters using the
DBSCAN algorithm.

3. The found attributes are converted from a string to a number. This
makes post–processing with script languages like awk much easier.

4. The data set is written in the format x y z id.

Rapidminer lacks when it comes to efficiency. It is programmed in Java

and runs on a single CPU only. Thus, clustering data in the order of 106

atoms takes up to 7 days. The same applies to its visualization capabilities.
For large data sets (> 105 atoms) Rapidminer cannot be used in a user
friendly way.
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