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Zusammenfassung 

Raffiniertes Design von piezoelektrischen und insbesondere ferroelektrischen keramischen 

Werkstoffen eröffnet hoch effiziente Möglichkeiten, elektrische Energie in mechanische Bewe-

gung zu konvertieren, und umgekehrt, die Verformung in elektrisches Signal umzuwandeln. 

Prominente Vertreter der Ferroelektrika sind Bariumtitanat BaTiO3 (BTO), Bleititanat PbTiO3 

(PTO) und Bleizirkonattitanat PbZrxTi1-xO3  (PZT). In Einspritzventilen von Dieselmotoren, hoch-

auflösenden Rastertunnelmikroskopen oder in Stellungsreglern für pneumatische Antriebe agie-

ren keramische Bauteile als Aktuatoren. In diesen Anwendungen formen sie elektrische Span-

nung in präzise Verfahrwege im Mikrometer- bzw. Nanometerbereich um. In Applikationen zur 

Energierückgewinnung sowie in Drucksensoren wandeln piezokeramischen Werkstoffe Kräfte 

bzw. Verformungen in elektrische Spannung bzw. Ladung um. In den oben genannten Anwen-

dungen werden überwiegend polykristalline Bulkkeramiken verwendet. Eine neue Klasse von 

keramischen Bauteilen mit wenigen hundert Nanometern Dicke, die sogenannten ferroelektri-

schen Dünnschichten, wurde in den letzten Jahrzehnten entwickelt. Diese Systeme fungieren als 

Mikroaktoren, nichtflüchtige Speichermedien (Ferroelectric Random Access Memory) oder Sen-

soren für Biomoleküle im medizinischen Bereich. Allgemein eröffnen ferroelektrische Dünn-

schichten vielfältige Möglichkeiten der Bauteilminiaturisierung und  -integration, zuallererst auf 

Basis der Siliziumtechnologie. 

 

Die Vorteile von piezoelektrischen Aktoren und Messumformern liegen in der hohen dielektri-

schen Permittivität, hohen piezoelektrischen und pyroelektrischen Kopplungskoeffizienten, kur-

zen Ansprechzeiten sowie in geringen Energieverlusten. Ein weiterer Vorteil besteht in den ge-

ringen Bauteilgrößen verglichen mit elektrostatischen, elektromagnetischen oder elektrothermi-

schen Alternativen. Zu den Nachteilen zählen hohe Entwicklungs- und Fertigungskosten. Diese 

hängen mit komplexen Struktur-Eigenschaftsbeziehungen der Ferroelektrika, die noch nicht 

vollständig erforscht und verstanden sind, zusammen. Die physikalischen Parameter von poly-

kristallinen Keramiken und ferroelektrischen Dünnschichten variieren stark mit der stöchio-

metrischen Zusammensetzung und hängen in erheblichem Maß von der Anisotropie und den 

extrinsischen Beiträgen aufgrund von Domänenwandbewegungen ab. Darüber hinaus führt die 

Abscheidung der keramischen Dünnschichten auf einem Substrat zu Eigenschaften, die sich sig-

nifikant von denen der Bulkkeramiken unterscheiden. Eine systematische und skalenübergrei-

fende physikalische Modellierung und numerische Simulation könnte sich als kostengünstige 
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und effektive Methode zur Untersuchung und Optimierung der komplexen Eigenschaften von 

ferroelektrischen Keramiken erweisen. 

 

Die mikromechanische Modellierung zählt zu den meist verbreiteten theoretischen Methoden 

zur Untersuchung der makroskopischen Materialeigenschaften in Abhängigkeit von der hetero-

genen Mikrostruktur [Böhm 1998]. Die Mehrzahl der bisher publizierten mikromechanischen 

Modelle beschäftigt sich mit der Berechnung von linearen piezoelektrischen, dielektrischen und 

elastischen Materialkonstanten in Abhängigkeit vom Polungsgrad der Keramik [Pertsev 1998], 

[Fröhlich 2001], [Jayachandran 2009]. Die verwendeten Methoden sind allerdings zumeist nicht 

in der Lage, die Konfiguration der mikroskopischen Polarisationen und daraus den remanenten 

Zustand und die wesentlich davon abhängigen effektiven Materialkonstanten vorherzusagen. 

Die genannten Parameter sind aber essentiell für das Design aktorischer und sensorischer Kom-

ponenten. Die Konfiguration der mikroskopischen Polarisationen, kurz die Domänenkonfigurati-

on des Polykristalls wird durch die Lasthistorie erheblich beeinflusst. Vordergründig wird also 

nach Modellierungsansätzen gesucht, die die Reaktion der Domänenkonfiguration auf  beliebige 

Laständerung in geeigneter und effektiver Weise beschreibt. 

 

Eine Vorschrift zur Polarisationsumorientierung in einem ferroelektrischen Polykristall, der einer 

elektrischen und/oder einer mechanischen Last ausgesetzt ist, bietet das Modell von Huber und 

Fleck [Huber 1999], [Huber 2001]. Das konstitutive Gesetz wurde mit Hilfe der Finite-

Elemente(FE)-Methode in 2D [Kamlah 2005] und in 3D [Pathak 2008] implementiert. Dabei wur-

den allerdings nur qualitative Untersuchungen von hypothetischen Bulkferroelektrika durchge-

führt. Nichtlineare Eigenschaften von realen Keramiken und Dünnschichten wurden nicht disku-

tiert. Darüber hinaus wurden einzelne Körner des Polykristalls durch reguläre (kubische) finite 

Elemente beschrieben, was von der Realität bedeutend abweicht. In der vorliegenden Arbeit 

wird eine 3D-Implementierung des Huber-Fleck-Modells zur Berechnung der ferroelektrischen 

Eigenschaften von realen Dünnschichten und Bulkkeramiken verwendet. Neben idealisierten 

(kubischen) Körnern kommen zum ersten Mal realitätsnahe polyederförmige Körner mit 5 bis 40 

Elementen pro Korn zum Einsatz. 

 

Polyederförmige Strukturen werden typischerweise mit stochastischen Methoden der Raumzer-

legung, wie etwa Voronoi- oder Laguerre-Mosaiken, erzeugt. Frühere Untersuchungen [Fröhlich 

2001] haben gezeigt, dass die genannten Verfahren schon bei zweidimensionalen Modellen mit 

wenigen Dutzend Körnern zu Schwierigkeiten bei der anschließenden Vernetzung mit finiten 
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Elementen führen. In der vorliegenden Arbeit wird eine neue Methode vorgestellt, die zuverläs-

sig vernetzbare Kornstrukturen mit bis zu tausend Einzelkörnern generiert. Ein weiterer Nachteil 

der Voronoi-Zerlegung betrifft die Verteilung der Kornvolumina. Laut Literatur erfüllt die Vertei-

lung bei realen polykristallinen Keramiken und Metallen eine Lognormalfunktion [Nettleship 

2002], [Fan 2004]. Die Voronoi-Zerlegung weist dagegen die Gammaverteilung auf. In der Arbeit 

werden existierende Verfahren zur Generierung realistischer Kornmodelle diskutiert, und es 

wird eine neue Methode vorgestellt, die dreidimensionale periodisch fortsetzbare Kornstruktu-

ren mit einer vorgegebenen lognormalen Verteilung der Korngrößen und periodisch fortsetzba-

re Finite-Elemente-Netze realisiert. Diese Art von Vernetzung ermöglicht Simulationen mit peri-

odischen Randbedingungen, die eine realistische Beschreibung von Materialien darstellen. 

 

Entscheidende Inputparameter jedes mikromechanischen Modells sind die piezoelektrischen, 

dielektrischen und elastischen Materialkonstanten des Einkristalls, die die Eigenschaften der 

einzelnen Körner beschreiben. Üblicherweise werden in mikromechanischen Berechnungen 

experimentelle Einkristallkoeffizienten verwendet. Das Verfahren wird allerdings äußerst inef-

fektiv, wenn zur Untersuchung neuartiger Materialien im ersten Schritt entsprechende Einkris-

talle synthetisiert und experimentell charakterisiert werden müssen. Für einige keramische 

Werkstoffe, z.B. für PZT, konnten bislang keine Einkristalle hergestellt werden und die notwen-

digen Inputparameter sind nicht verfügbar. Eine vielversprechende Technik, die das beschriebe-

ne Problem umgehen lässt, heißt Multiskalenmodellierung. Nach dieser Methode werden die 

erforderlichen Inputkonstanten anhand von Modellen, die das Werkstoffverhalten auf anderen 

Längen- oder Zeitskalen beschreiben, ermittelt. 

 

Im Projekt COMFEM1, das einen Rahmen für die vorliegende Arbeit darstellt, werden  i) Ab-

initio-Dichtefunktionalsimulationen und Berechnungen mit dem Shell-Modell, die Ferroelektrika 

auf der Nanoskala der Elektronen und Atomen beschreiben,  ii) Phasenfeldmodellierung, die auf 

der mesoskopischen Ebene der ferroelektrischen Domänen fungiert, sowie iii) mikromecha-

nische Berechnungsmethoden, die die Heterogenität der Polykristallkörner auf der Mikroskala 

erfassen, in einer Simulationskette kombiniert. Die Multiskalenmodellierung wurde zu unserer 

Kenntnis bisher nicht für Bulkkeramiken und insbesondere Dünnschichten vorgenommen. Sie 

                                                           

1
 „Computergestützte Multiskalenmodellierung zur virtuellen Entwicklung polykristalliner ferroelektri-

scher Materialien“ ist ein Teil des BMBF (Bundesministerium für Forschung und Bildung)-Programms 

WING, Projektnummer 03X0510: www.bmbf.de/de/de/3780.php 
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erlaubt eine wissensbasierte Beschreibung der Materialeigenschaften, frei von experimentellen 

Inputparametern. Die mikromechanische Simulation der Ferroelektrika und die Verknüpfung mit 

Modellen auf den Meso- und Nanoskalen ist eines der zentralen Themen der vorliegenden Ar-

beit. Es werden systematische Untersuchungen von BTO, PTO und PZT Bulk- und Schichtsyste-

men mit mehreren multi- und einskaligen Methoden vorgestellt. Dabei wird die Vorhersagekraft 

der verschiedenen Modelle anhand der Vergleiche von berechneten Materialparametern mit 

experimentellen Werten diskutiert. Insbesondere Simulationen von Bleizirkonattitanat (PZT) 

sind in der Literatur recht selten, da die Einkristallkonstanten bisher nicht gemessen werden 

konnten. Weiterhin sind nach aktuellem Kenntnisstand bislang keine Untersuchungen des Ein-

flusses von Materialklemmung durch das Substrat auf die ferroelektrischen Parameter publiziert 

worden. 

 

Die mit dem Huber-Fleck-Modell für verschiedene Materialsysteme berechneten Kennwerte 

zeigen eine gute Übereinstimmung mit experimentellen Werten unter der Bedingung, dass die 

im Versuch ermittelten Einkristallkonstanten oder die im Zuge der Phasenfeldsimulationen er-

mittelten Domänenwandbeiträge kombiniert mit Einkristallkonstanten aus DFT und Shell-Modell 

verwendet werden. Darüber hinaus erlauben die errechneten Polarisationskonfigurationen im 

remanenten Zustand einige bisher nicht gut verstandene Eigenschaften der Ferroelektrika, wie 

beispielsweise den sehr niedrigen dielektrischen Koeffizienten von PTO-Keramik im Vergleich zu 

PTO-Dünnschicht und BTO-Keramik, zu erklären. Weiterhin ermöglicht simulierte remanente 

Polarisation Ermittlung von Materialkonstanten aus anderen theoretischen Publikationen, die 

keine konkreten Werte sondern lediglich deren Abhängigkeiten vom Polungsgrad angegeben 

haben, wie etwa [Pertsev 1998]. So ermittelte Werkstoffparameter zeigen ebenfalls eine gute 

Übereinstimmung mit den entsprechenden experimentellen Werten.  

 

Es kann zusammengefasst werden, dass das Huber-Fleck-Modell sowie die vorgeschlagene Mul-

tiskalenmodellierung eine hohe Vorhersagekraft besitzen. Ihre Anwendung auf strukturell ähnli-

che Materialsysteme sollte zu ähnlich guten Ergebnissen führen und damit auch zur Entwicklung 

und Optimierung neuer keramischer Werkstoffe beitragen. 

 

 



 9

1 Introduction 

Sophisticated design of piezoelectric and especially ferroelectric ceramics offers highly efficient 

ways to convert electrical energy into motion and inversely to transmit deformation into electri-

cal signal. Prominent examples of ferroelectrica are barium titanate BaTiO3 (BTO), lead titanate 

PbTiO3 (PTO) and lead zirconate titanate PbZrxTi1-xO3 (PZT). In facilities converting electrical en-

ergy into mechanical work a ferroelectric material operates as an actuator. Typical industrial 

examples of such applications are given by fuel injectors of high-performance common rail die-

sel engines, scanning tunneling microscopes of highest resolution or by positioners for pneu-

matic drives. Apart from the implementation as an actuator the piezoelectric materials are used 

in numerous sensoric applications, in which the mechanical deformation is converted into an 

electrical signal. This type of the energy transmission is realized in piezoelectric energy harvest-

ers. In the active vibration damping systems bulk piezoelectric ceramics works in both regimes: 

as a sensor as well as an actuator. In the applications mentioned above the bulk polycrystalline 

ferroelectric ceramics is usually used. In the past decade, a new class of applications based on 

thin ceramic films of several hundred nanometers thickness has been developed [Hoffmann 

2003]. Among the thin-film based devices are the microactuators as well as the non-volatile 

Ferroelectric Random Access Memory cells. Other areas of utilization of ferroelectric thin films 

are medical and biological devices for resonant detecting of single molecules. Generally, the 

piezoelectric thin films offer a way of device miniaturization and their integration into the silicon 

technology. They add functionality to integrated circuits and enable invention of new applica-

tions. 

 

The advantages of using piezoelectric transducers are their high dielectric permittivity, high pie-

zoelectric and pyroelectric coupling coefficients causing low energy losses and fast response. 

Another incontestable advantage of piezoelectric converters is smaller area consumption as 

compared to their electrostatic, electromagnetic or electrothermic analogues. The main draw-

backs are the high costs for the device development and manufacturing caused by the complex 

physical properties of ferroelectrics, which are still not completely understood. 

 

The physical properties of polycrystalline ceramics and ferroelectric thin films are strongly influ-

enced by the stoichiometric constitution, anisotropy and extrinsic contributions from the do-

main wall displacements. These criteria are usually responsible for the frequency and field de-

pendence of the material parameters. In addition, the setup of thin ceramic films on a substrate 
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often leads to very different, in comparison to bulk materials, properties, which must be taken 

into account when modeling devices. A promising experimental way to accelerate development 

of ferroelectric devices and to screen vast material spaces are the High Throughput techniques, 

which include statistical design of experiment, automated sample synthesis and characteriza-

tion, data mining tools and “smart searching” strategies [Schröter 2007]. However, such meth-

ods may be cost intensive. Furthermore, the understanding and proving of physical mechanisms 

at the micro- and meso-scales is rarely possible in the framework of those methods. An alterna-

tive procedure enabling a fast and cheap access to the properties of hypothetic ferroelectrica is 

their computational simulation. 

 

For theoretical investigations of macroscopic material behavior in dependence on the heteroge-

neous microstructure the micromechanical methods are usually applied [Böhm 1998].  The most 

part of so far utilized models report on linear properties (piezoelectric, dielectric and elastic 

coefficients) of BTO and PTO in dependence of the misorientation angle [Pertsev 1998], [Fröh-

lich 2001], [Jayachandran 2009]. The utilized methods, however, are usually not able to predict 

configuration of microscopic polarizations, the total polarization and strain and so, the effective 

material constants in the remanent state, which are essential for the design of applications. In 

the last decade a constitutive model for polarization switching in polycrystalline ferroelectric 

systems has been developed [Huber 1999], [Huber 2001]. It was realized as 2D and 3D finite 

element implementations ([Kamlah 2005] and [Pathak 2008]). However, only qualitative investi-

gations of hypothetic bulk ferroelectric materials have been performed. Non-linear ferroelectric 

features of real bulk and thin film materials have not been calculated. Furthermore, each single 

grain has been modeled by a regular (cubic) finite element, which is not quite realistic. 

 

The key input parameters of each micromechanical model are single-crystal piezoelectric, di-

electric and elastic material constants. Typically, experimental single-crystal data are used as 

input parameters in the calculations. Such a procedure is, however, very inefficient on the pur-

pose of designing new materials as before a simulation can be started single crystals of a new 

material have to be synthesized and experimentally characterized. Moreover, for some ceram-

ics, e.g. PZT, single crystals could not been produced so far and the corresponding material con-

stants are not available. A promising method to overcome this lack of data is multi-scale mate-

rial modeling. In this approach the required input parameters are obtained from the models 

describing material on other length or time scales.  
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In the project COMFEM2 first-principles-density-functional and shell-model simulations acting on 

the nano-scale of electrons and atoms, phase-field simulations acting on the meso-scale of 

ferroelectric domains and the micromechanical Huber-Fleck model governing on the micro-scale 

of ceramic grains have been envisaged in order to give a knowledge based description of macro-

scopic properties of ferroelectrics free of experimental input parameters. The micromechanical 

simulations and their connection to the models on the nano- and meso-scales of the described 

above combination scheme is one of the main topics of the present thesis. To our knowledge 

such a procedure has not been utilized for theoretical treatment of ferroelectric ceramic materi-

als (in particular thin films) so far. We perform systematic calculations with different multi-scale 

coupling techniques and one-scale modeling procedures and discuss the results aiming at the 

prediction of macroscopic linear and non-linear properties of BTO, PTO and PZT thin films and 

bulk ceramics. Particularly, simulations of PZT ferroelectrics are very rare because of missing 

single-crystal coefficients. Investigations of the influence of the substrate clamping on the ferro-

electric behavior of thin films were not published to our knowledge so far.  It is demonstrated 

that the results of simulations allow the understanding of several previously non-conceivable 

experimental findings, such as an extremely low dielectric coefficient of PTO ceramics in com-

parison to the PTO thin film and BTO bulk ceramics. Furthermore, the scheme elaborated in this 

thesis has been shown to possess a high predictability under certain conditions. It might be 

therefore useful for simulation of further classes of ferroelectrics and for development of new 

ceramics, for which the experimental data are not yet available. 

 

The basis for our micromechanical Huber-Fleck simulations are three-dimensional finite-element 

models with realistic and idealistic grain shapes. Particularly, non-linear calculations with three-

dimensional realistic grain shapes have been quite rare so far. For the generation of realistic 

polycrystalline models stochastic methods of space tessellation (e.g. Voronoi or Laguerre mosa-

ics) are commonly used. Previous investigations have outlined that even in the case of small 

two-dimensional models with several dozen cells only, these methods lead to problems in the 

subsequent meshing with finite elements [Fröhlich 2001]. In the present work a procedure is 

proposed, which generates meshable three-dimensional polycrystalline models with up to thou-

sand grains. Another problem arising while using common Voronoi methods is that the log-

normal distribution function of grain sizes, which is reported to be typical for the real polycrys-

                                                           

2
 “Computational multiscale modeling for virtual development of polycrystalline ferroelectric materials” is 

a part of the BMBF (German Federal Ministry of Research and Education)-program WING, project code 

03X0510: www.bmbf.de/de/de/3780.php 
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talline ceramic materials, cannot be reproduced. In the present work we discuss existing ap-

proaches realizing realistic grain models and propose a new procedure generating 3D periodic 

extendable grain structures with a given lognormal grain size distribution and periodic extend-

able finite-element meshes. By means of the models produced with the proposed scheme FE 

simulations with periodic boundary conditions, giving a more realistic description of bulk mate-

rial than the calculations without periodic boundary conditions, can be performed. Up to forty 

finite elements per grain in our models assure a higher precision of FE-results than the previous 

Huber-Fleck simulations with one finite element per grain only. The possibility of a big number 

of grains in the model is a further step towards realistic description of polycrystals. Finally, mod-

els with realistic grain shapes allow the study of structure-property-relationships. 

 

The thesis is structured as follows: the background information on ferroelectric bulk and thin 

film ceramics is given in chapter 2; in chapter 3 the geometrical modeling of grain structures and 

finite-element meshes is discussed; physical models implemented on different size scales and 

their coupling possibilities are described in chapter 4; the following chapter 5 contains simula-

tion results, their evaluation and discussion; the summary given in chapter 6 concludes this the-

sis. 
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2 Basics of the piezoelectric ceramics 

This chapter describes phenomena of piezoelectricity, ferroelectricity and specific aspects of 

piezoelectric polycrystalline ceramics and thin films from the theoretical as well as from the 

experimental point of view. 

2.1 The piezoelectric effect 

When an ordinary solid is deformed by a tension T , a proportional strain S , related to T  via a 

stiffness tensor 
Es ,  

 = ⋅ES s T  (2.1) 

is built up in the sample. In piezoelectric material, additionally to the strain an electric charge Q  

and, hence, the dielectric displacement D (since Q d= ⋅∫
A

D A� ) are created: 

 = ⋅D d T . (2.2) 

 The direct piezoelectric effect describes the linear relation between the dielectric displacement 

and tension. The inverse piezoelectric effect characterizes the strain S occurring under an ac-

tion of the electric field E : 

 = ⋅S d E . (2.3) 

Hereby, ( )
1

21,2,3

3

i i

E

E E

E
=

 
 = =  
 
 

E and ( )
1

21,2,3

3

i i

D

D D

D
=

 
 = =  
 
 

D  are the first-order tensors, 

( )
11 12 13

21 22 23, 1,2,3

31 32 33

ij i j

T T T

T T T T

T T T
=

 
 = =  
 
 

T  and ( )
11 12 13

21 22 23, 1,2,3

31 32 33

ij i j

S S S

S S S S

S S S
=

 
 = =  
 
 

S  the second-order 

tensors. ( )
, , 1,2,3ijk i j k

d
=

=d  is a third-order piezoelectric tensor, which couples mechanical and 

electric fields. The latter tensor is defined as partial derivative of iD  with respect to jkT  evalu-

ated at a constant electric field (subscript E ) or as partial derivative of ijS  with respect to kE  

at a constant stress (subscript T ) [Jaffe 1956] : 

 
iji

ijk
jk k TE

SD
d

T E

  ∂ ∂
= =    ∂ ∂  

. (2.4) 

A further often utilized piezoelectric tensor is defined as 
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iji

ijk
jk k ST

TD
e

S E

  ∂ ∂
= =    ∂ ∂  

 (2.5) 

Both piezoelectric tensors are correlated via elasticity tensor ( )
, , , 1,2,3

E E
ijkl i j k l

c
=

=c of fourth order 

 
ijE

ijkl
kl E

T
c

S

∂ 
=  ∂ 

 (2.6) 

 
E

ijk ijlm lmke c d=  (2.7) 

The stiffness of a material is characterized by a tensor of fourth order 

( ) ( )
, , , 1,2,3

E E E
ijkl i j k l

s c
−

=
= =

1
s  with  
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The dielectric displacement D  is directly correlated with polarization P as 

 ε= +0D E P  (2.9) 

Since in linear piezoelectric materials εε ε= 0 0D E E≫ an approximation can be assumed 

 ≈D P . (2.10) 

Under combined mechanical and electrical excitation the strain and electric displacement result-

ing from piezoelectric response can be written as follows: 

 

E
ij ijkl kl kij k

T
i ikl kl ik k

S s T d E

D d T Eε

= +

= +
. (2.11) 

( )
, 1,2,3

T
ik i k

ε
=

=ε  is the dielectric tensor of second order with 

 T i
ik

k T

D

E
ε

 ∂
=  ∂ 

. (2.12) 

The described material tensors define deformation and electrical response in a loaded piezo-

electric material. In order to obtain the corresponding displacement 

1

2

3

u

u

u

 
 =  
 
 

u  and electrical 

potential ϕ  field equations 

 
0

0

∇ ⋅ =
∇ ⋅ =

T

D
 (2.13) 

using (2.11) and 
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( )( )1

2
T

ϕ

= ∇ + ∇

= −∇

S u u

E
 (2.14) 

have to be solved. 

 

The equations (2.11) describe solely the linear response of the piezoelectric material to small 

perturbations. In practice, however, the piezoelectric materials typically show significant non-

linear contributions to the response functions and, therefore, it is important to indicate, at 

which external field the coefficients 
T
ikε , ijkd  and 

E
ijkls  have been measured. In the literature, 

the so-called “small signal” response at very small (sub-switching) external fields is often pub-

lished. This is not identical to the “large signal” answer of a piezoelectric material to fields of 

high amplitude, which is relevant for actuator purposes. Nevertheless, the small and the large 

signal measurements are in most cases correlated. That is, the materials with high response to 

small fields are likely to show strong effects under the application of large fields as well. In the 

present work the effective material coefficients corresponding to the “small signal” excitations 

are calculated and compared with experimental values. However, the “large signal” coefficients 

can be obtained from our calculations as well. As it is common, the “large signal” evaluation of 

the polarization configuration and strain is presented in the results chapter. 

2.2 The Perovskite structure 

Pure piezoelectric materials (e.g. quartz) do not possess any electric dipoles if no external fields 

are applied. A ferroelectric material, in contrast, offers spontaneous strain and spontaneous 

polarization even at zero-field. The existence of spontaneous electric dipoles originates from the 

crystal structure. 

 

Many ferroelectric materials crystallize in the so-called perovskite structure with the general 

formula ABO3. This class of materials has got its name due to the German mineralogist Gustav 

Rose after his Russian colleague Lev Perovski. Above the critical temperature called Curie point 

the unit cell of a perovskite is cubic with the lattice constant 0a . Hereby, the large cations A are 

placed at the corners of the cubic cell of this ionic crystal, the smaller cation B in the cell’s cen-

ter, while the oxygen anions O at the centers of the facets (see Figure 2.1 a). The perovskite 

structure allows substituting of a vast variety of cations in its A-site (e.g. Ba, Pb, Ca, Na, Fe, Ce, 

Sr) and B-site (e.g. Ti, Nb, Zr, Ta). This opens a wide compositional space of materials. The cen-

ters of masses of negative and positive charges in the unit cell of a crystal coincide in the high 
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temperature phase of perovskites. The charges are mutually compensated and, hence, no per-

manent dipoles exist. Moreover, the symmetry operations applied to a B-site transform the 

crystal into itself. Therefore, the perovskite materials are neither piezoelectric nor ferroelectric 

above the Curie temperature. The high temperature phase is paraelectric. 

                 

a)       b) 

 

At the Curie point the perovskite materials undergo a lattice distortion. When the distortion 

occurs along the [100] direction of the crystal, the structure becomes tetragonal with the lattice 

constants a  and c  (see Figure 2.1 b). An orthorhombic or monocline structure is observed 

when the distortion occurs along the [110] direction. A rhombohedral structure is equivalent to 

a distortion along the [111] diagonal of the cubic lattice. In the distorted crystals the centers of 

positive and negative charges do not coincide anymore. Hence, the spontaneous polarization 

spP  arises (see Figure 2.1 b).  

 

The Curie point for BaTiO3 (BTO) lies at 130°C. At this temperature the crystallographic ordering 

of the material transforms from the cubic to the tetragonal phase. At 0°C the tetragonal struc-

ture transits to the monoclinic one, and finally, at -90°C it becomes rhombohedral [Jaffe 1956]. 

The high-temperature cubic phase of PbTiO3 (PTO) transforms into the tetragonal one similarly 

to BTO. However, the Curie temperature of 500°C is significantly higher than that of BTO. The 

tetragonal distortion and the spontaneous polarization of the tetragonal PTO widely exceed the 

Figure 2.1:  Perovskite structure with blue spheres as A-cations, small green sphere as B-cation and red 

spheres as oxygen-anions: a) cubic above the Curie temperature; b) tetragonal below the Curie tem-

perature. 

0a

0a

c  

a  
a  0a

spP  
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corresponding values for BTO (see Table 2.1) as well. The dielectric constants of PTO single crys-

tal are, in contrast, significantly smaller than those of BTO (see Table 2.1).  

 BTO PTO PZT 

sp c a
s

a

−=  0.01 0.05 - 

Psp (C/m2) 0.25 0.75 - 

33
Sε (-) 1910 [Pertsev 1998] 110 [Pertsev 1998] - 

333d  (pC/N) 110 [Pertsev 1998] 160 [Pertsev 1998] - 

 

In the most commonly industrially utilized ferroelectric material PbZrxTi1-xO3 (PZT) the Ti-cations 

are partially substituted by the Zr-cations. The cubic phase of Ti-rich PZT ( 0.5x < ) transforms at 

the Curie point into the tetragonal one, similarly to the transitions of the BTO and the PTO. In Zr-

rich PZT ( 0.5x > ), instead, the cubic-rhombohedral transition occurs [Jaffe 1956]. At the mor-

photropic phase boundary ( 0.5x ≈ ) both tetragonal and rhombohedral phases coexist at tem-

peratures below the Curie point. In the simulations of PZT the emphasis on the tetragonal phase 

has been made due to the purpose of simplification and to the temporal limitation of the pro-

ject. The tetragonal unit cell is depicted in Figure 2.1 b. The position of the B-cation is distorted 

along the c-axes in the direction of the upper oxygen-anion. In a similar way it could be dis-

placed in the direction of any of five other oxygen-ions. Hence, the tetragonal perovskite pro-

vides six equivalent polarization directions and so six different types of ferroelectric domains. 

Under mechanical, electrical or thermic loading the polarization may switch by 90° or by 180° 

between these distinguished polarization directions. For orthorhombic distortions, twelve pos-

sible polarization directions exist, while for rhombohedral distortions eight directions of polari-

zation within the unit cell are possible. 

2.3 Piezoelectric ceramics 

In many applications, ceramic polycrystalline materials are used because of their easier process-

ing and molding compared to single crystals. Generally, ceramic is a polycrystalline system; i.e. a 

crystalline order exists only within individual crystallites or grains. Different grains originating 

from high temperature sintering of compressed ceramic powder (see Figure 2.2) are usually 

randomly oriented. Due to the absence of globally preferred orientations, no piezoelectricity can 

Table 2.1:  Spontaneous strain, spontaneous polarization and „small signal“ 33
Sε  and 333d  material con-

stants for BTO and PTO single crystals found in the literature. 
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be observed in an unpoled sample as the piezoelectric responses of the single crystallites cancel 

each other on average. However, this symmetry in ferroelectric materials can be broken by ap-

plying of an external electric or mechanical field. Such a poled or strained ceramic shows piezo-

electricity or even ferroelectricity and can be incorporated in a wide range of applications. Nev-

ertheless, the total polarization of a ceramic sample in the saturated state is usually significantly 

lower than the spontaneous polarization of a single crystal because of the randomly oriented 

grains and limited number of possible polarization directions (six for tetragonal phase). In order 

to overcome this restriction different techniques allowing a more unique orientation of crystal 

lattices of the grains have been developed recently [Soller 2010]. A ceramic can be imposed to 

such an orientation (texture) procedure during the tape casting by use of plate-like seeds. The 

structural texturing makes a high degree of polarization possible as the orientation of certain 

crystallographic directions within each grain can be aligned with the direction of an external 

electric field (see Figure 2.3). Tetragonal samples, in which the (100) crystal directions are paral-

lel one to another in all grains, are called a-textured. The ceramic with global alignment of the 

(001) axes is known as the c-textured one. 

 

 

Figure 2.2: Polished section of a Nb-doped PZT bulk grain structure (courtesy of CeramTec). 

Figure 2.3:  Polished section of a textured Al2O3-ceramics manufactured by the templated grain growth 

with Al2O3-seeds (courtesy of T. Soller, Siemens AG). 

 20µm 
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Due to the complex set of elastic and electric boundary conditions at each grain, ferroelectric 

crystals in a ceramic are always split into many domains with different polarization orientations 

(see Figure 2.4). The application of an external electric or mechanical field cannot change the 

crystallographic orientation of grains, but can reorient domains within individual grains in the 

directions next to the field. Many of the reoriented domains in ferroelectric materials do not 

vanish if the external field is removed. The sample possesses a so-called remanent polarization 

Prem (see Figure 2.5) and so the remanent strain. In order to depolarize a previously poled ce-

ramic sample a so-called coercive field Ec in the direction opposite to the present remanent 

polarization has to be applied (see Figure 2.5). With increasing electric field the ferroelectric 

domains aligned with the field grow, while those misaligned with the field shrink. This process 

leads to the movement of domain walls. Further, it gives rise of the ferroelectric (see Figure 2.5) 

and ferroelastic hysteresis, which are macroscopic property and can be measured experimen-

tally. Hence, the macroscopic properties of the piezoelectric ceramics result from the properties 

of each domain and their interactions. 

 

        

Figure 2.4:  Piezoresponse Force Microscopy images of domain structure of single PZT grain with 90° 

and 180° domain walls (courtesy of G. Schneider, TU Hamburg).  
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One of the main goals of the present work is to compare simulation results on macroscopic 

properties of a ceramic with corresponding experimental data. In order to obtain a reasonable 

comparison, evaluation procedures in both cases should be congruent. Thus, in the following a 

standard experimental determination of “small signal” dielectric and piezoelectric constants is 

described. The theoretical calculation procedure of the constants is presented in section 4.5. 

 

According to the ANSI IEEE standard 176 (1987) the dielectric constants of a ceramic can be 

evaluated from measurements of the capacitance of material plates provided with electrodes 

covering the surfaces. The AC voltage is used to measure the capacitance. Simultaneously, the 

DC bias field is used to pole the sample.  The dielectric coefficient ijε  and the polarization iP  

can be derived directly from the measured capacitance C  (or from the measured charge Q ) 

and the bias voltage iU , if the geometry of the sample is known. For a brick sample with the 

thickness d  and the surface area A  

 

*

.

i
ij

j j

i
i i i

D Q d C d

E U A A

C UQ
P U d U d

A A

ε ⋅ ⋅= = =
⋅

⋅
= − ⋅ = − ⋅

 (2.15) 

In order to obtain the dielectric permittivity
*
ijε for constant stress the measurements have to be 

made at frequencies much lower than the lowest resonance frequency of the ceramic plate.  

 

Figure 2.5: Sketch of a ferroelectric hysteresis. P is the magnitude of the polarization, E is the magnitude 

of the electric field, while the indices “rem” and “c” correspond to the notions “remanent” and  “coer-

cive” respectively. 

Prem 

- Prem 

Ec 

-Ec 

E 

P 
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For the measurement of the piezoelectric coefficient a uniform electric field E (static or alter-

nating with frequency much less than the fundamental resonance frequency) is usually applied. 

Under condition of constant (or better zero) stress, the strain S  is measured by means of strain 

gauges or with interferrometric techniques. 
*
ijkd  is then obtained as 

 
* ij
ijk

k

S
d

E
= . (2.16) 

Experimental results on effective dielectric and piezoelectric coefficients of bulk BTO and PTO 

ceramics are summarized in Table 2.2. The piezoelectric coefficient of BTO ceramic significantly 

exceeds the corresponding single-crystal value (see Table 2.1), while the 
*
333d   of PTO ceramic is 

much smaller than its single-crystal 333d . These discrepancies can be understood with help of 

simulation results obtained in the present work. Corresponding discussion is provided in section 

5.3.1. 

 BTO PTO PZT 

*
33ε (-) 1400 [Jaffe 1956] 50 [Shirane 1951] 585 [Landolt 2001] 

*
333d  (pC/N) 190 [Jaffe 1956] 50 [Ikegami 1971] 173 [Landolt 2001] 

2.4 Piezoelectric thin films 

In the investigations addressing the ferroelectric films several issues, which are not present or 

may be neglected in bulk ceramics, have to be clarified. The most important differences concern 

the grain shape and size, the film-substrate coupling as well as the magnitude of the coercive 

field. The thickness of ceramic thin films typically ranges between 100 nm and several microme-

ters. The prominent deposition methods are sputtering (or epitaxial growth) and the sol-gel 

technique. Depending on deposition technique, thin films have either columnar (see Figure 2.6 b 

and Figure 2.7) or equiaxial “bulk-like” structure. Furthermore, the choice of the deposition pro-

cedure in combination with the crystal structure of the substrate often yields preferred grain 

orientations in the thin film. For instance, the PZT-samples grown on the Si-substrate in the 

scope of the COMFEM project exhibit a (111) fiber texture, that means most of the [111] crystal 

directions are parallel to the substrate normal direction. As-grown PZT films usually exhibit non-

zero polarization. To some extent this puzzling observation can be explained in the framework 

of our simulations as discussed in section 5.4.2.2. 

Table 2.2:  Effective dielectric and piezoelectric constants of bulk BTO und PTO ceramics found in the 

literature. 
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a) 

 

b) 

  

 

 

The grain and domain sizes of sputter deposited PZT thin films have been identified by means of 

Piezoresponse Force Microscopy (PFM) and Transmission Electron Microscopy (TEM) (see Figure 

Figure 2.6:  REM-images of the sputter deposited PZT thin films: a) top view, b) side view. 

Figure 2.7:  Sputter deposited ZnO thin films with columnar grains [Damjanovic 1998]. 
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2.8) in the scope of the COMFEM project. The grain sizes have been found to range between 100 

nm and 300 nm, the domain sizes – between 10 and 50 nm. 

  

a)       b) 

 

Domain configurations of bulk PZT ceramics differ considerably from those of PZT thin films. The 

bulk samples reveal complex domain structures with all six domain types and 90°- and 180°-

domain walls (see Figure 2.4) within one grain. The PZT thin films, in contrast, contain only two 

domain types with 90° domain walls in between (see Figure 2.8).  The orientation of the domain 

walls arising between neighboring domains has been derived in [Romanov 1999] from the condi-

tions of mechanical and charge compatibility: the domain walls are {101} boundaries, which is in 

agreement with TEM measurements performed within the COMFEM project (see Figure 2.8 a). 

The described domain configuration has been taken as the input data for the phase-field model 

of thin films. The results of these simulations have been subsequently used for derivation of the 

input parameters for the micromechanical simulations. The procedure is presented in detail in 

section 4.6.2. 

Figure 2.8:  Transmission electron microscopy image of a (111)-textured PZT thin film:  

a) side view (TEM); b) top view (PFM). 
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In order to motivate the theoretical model for thin films used in the present work the experi-

mental setup for the determination of the effective dielectric and piezoelectric coefficients of 

thin films is described in the following in some detail. The experimental method differs to some 

extent from the procedure for bulk materials. Here, the bottom electrode is deposited on the 

substrate and the thin film is grown on the electrode. Hence, the thin film sample is constrained 

at the interface to the electrode. Because of the infinitesimal thickness of the thin films the 

strain gauges technique is inapplicable in this case. Instead, the Piezoresponse Force Microscopy 

(PFM) can be used. Beyond the determination of piezoelectric coefficients, PFM allows charac-

terization of the domain configurations (see Figure 2.4 and Figure 2.8) of bulk ceramic samples 

and thin films. The PFM technique uses a conductive tip as a top electrode. The ferroelectric 

sample is grounded to the bottom electrode. When an AC voltage is applied to the electrodes, 

the inverse piezoelectric effect induces a local deformation of the sample under the tip simulta-

neously to the applied voltage. The local deformation causes deflections of the cantilever with 

the conducting tip. The direction of the deflection depends on the orientations of the electric 

field and the domain polarization. The movement of cantilever is sensed by the photodetector 

as movement of the laser spot (see Figure 2.10). The signal is then acquired using lock-in tech-

niques. Since the excitation of the sample is rather local than global, this measurement proce-

dure does not satisfy the IEEE standard described in the last section. Hence, the results on *
33d  

Figure 2.9:  Geometry of possible multidomain patterns in (111)-textured epitaxial PZT thin films [Ro-

manov 1999]. 
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for thin films available in the literature are to some extent subjective. In the experimental data 

on the dielectric constant *
33ε  large differences exist as well (see Table 2.3). 

 BTO PTO PZT 

*
33ε  (-) 

1500 [Desu 1993], 

700 [Kamalasnan 1993], 

385 [Tanaka 2004] 

110 [Bao 2002] 800 [Bruchhaus 1998] 

*
333d  (pC/N) 15 [Tanaka 2004] - 60 [Bruchhaus 1998] 

 

Covering the piezoelectric thin film with a top electrode the effective dielectric material con-

stant can be obtained in a similar way as in bulk sample (see section 2.3) by means of the capaci-

tance measurement. Special attention must be directed to the fact that the thin films are not 

stress free during measurement. Nevertheless, the piezoelectric and dielectric coefficients are 

usually obtained using equations (2.15) and (2.16) as these measures are essential for the appli-

cations. 

 

 

One of the most striking differences between bulk and thin film ferroelectrics is the coercive 

field strength, which may be an order of magnitude higher in films than in bulk materials of the 

same composition. The coercive electric field strength decreases with increasing of the film 

thickness. This effect can be qualitatively explained by the formation of the so-called depletion 

layer. This layer of up to few hundred nanometers thickness is an interface region nearby the 

metal electrodes. Within these regions, charge carriers are depleted and as a consequence, a so-

Table 2.3:  Effective dielectric and piezoelectric constants of BTO, PTO and PZT thin films found in the 

literature. 

Figure 2.10:  Experimental setup for electromechanical characterization of thin films by means of Pie-

zoresponse Force Microscopy. 
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called built-in field evolves. At the interfaces, the dipoles are oriented according to the built-in 

field, when no external field is applied. To switch the oppositely oriented dipoles the external 

field has to overcome the bulk coercive field plus the built-in field. 

 

In Figure 2.11 experimentally determined hysteresis loops of PZT films with different thicknesses 

are compared. The loop of the thinner film is more tilted. Until now this tilt was explained by the 

presence of a dielectric layer on the top of the ferroelectric, which is possibly a consequence of 

the production process. It has been supposed that the dielectric layer separates the bound 

charges, arising due to the ferroelectric polarization, from the compensating charges at the elec-

trode and, thus, gives rise to the depolarizing field. In section 5.7.2., it will be shown that some 

other mechanisms like clamping by the substrate (or electrode) might also provide a tilt of the 

hysteresis curve. In order to differ between these several mechanisms corresponding simula-

tions can be provided. The effects of depletion and dielectric layers have not been taken into 

account in the simulations performed so far. However, they can be easily incorporated into the 

proposed model. 

 

 

Due to the connection of the film to the substrate or to an electrode, the ferroelectric thin film 

material is clamped in the in-plane direction. Additionally, due to the different coefficients of 

thermal expansion of substrate/electrode and thin film materials the latter underlies a tensile 

stress. Because of these effects the measured *
33d  and *

33ε  coefficients of a thin film sample are 

typically lower than in unclamped materials. In PZT ceramics, the clamping results in a reduction 

Figure 2.11:  Ferroelectric hysteresis loops for two (111)-textured PZT films with different thicknesses 

[Damjanovic 1998]. 
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of a macroscopically measured piezoelectric coefficient to approximately half the bulk value. In 

contrast, in PTO thin films the effective dielectric constant *
33ε  is significantly higher than the 

corresponding bulk value. Our simulations reveal the reasons for this exception as described in 

section 5.6.2.  
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3 Geometrical modeling of polycrystalline materials 

A geometric model of a polycrystal is an important component for many types of mechanical, 

electrical, thermal etc. simulations of the grained materials on the micro-scale. In many cases 

idealistic models representing grains by cubes or tetrahedrons (see Figure 3.1) have been used 

for the micromechanical simulations of piezoelectric materials [Pathak 2008, Huber 2001]. As it 

will be shown in chapter 5 such a description is totally sufficient for certain problems and mod-

eling procedures, e.g. for the calculation of effective material coefficients. In contrast, models 

including a separate description of the grain boundaries [Müller 2010] or a study of the influ-

ence of local loading conditions and local material properties require a more realistic geometric 

model of a polycrystal [Raether 2006]. 

 

 

One possible procedure to obtain such a realistic model of the grain structure is a digital recon-

struction of a 2D image of a polished cross-section trough the bulk ceramic (see [Anteboth 

2006]). However, such an approach delivers a 2D model with open, non-periodic boundaries, 

whereas a 3D periodically extendable structure is required. Moreover, the FE-meshing of the 

models reconstructed from polished cross-sections of ceramics often makes a huge number of 

elements necessary. It is therefore very expensive for numerical simulations. 

 

In order to avoid the drawbacks mentioned above we use methods of stochastic geometry, such 

as random space tessellations, for modeling of a realistic 3D polycrystalline structure. In the 

present chapter several common methods of spatial tessellations, like Voronoi or Laguerre tes-

sellation are introduced. In order to meet the characteristics of the real polycrystal structures, 

e.g. volume distribution of crystallites or distribution of the number of crystallite facets, several 

upgrades of the Voronoi und Laguerre processes have been developed. Among these advanced 

methods are rearrangement and thinning processes, which will also be described in the present 

Figure 3.1:  Idealistic model of a polycrystal. Polycrystal grains are represented by cubes. 
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chapter. Subsequently, a novel thinning method for creation of 3D periodic extendable struc-

tures with lognormal grain size distribution will be presented. 

 

A common problem of 2D as well as 3D grain generators consists in the fact that the produced 

polyhedron structures cannot be meshed or the quality of the FE-mesh is very poor [Fröhlich 

2001].  In the last section a method is presented which assures that the produced 3D grain 

structures are meshable with a very high reliability.  

3.1 Voronoi tessellations 

In this chapter the benefits and deficiencies of different kinds of Voronoi tessellations are dis-

cussed. 

3.1.1 General procedure 

In general, a tessellation or a tiling of the metric space S  is a collection of cells ,iC  i N∈ , 

{1... ,  }N n n= ∈ℕ  with no overlaps and no gaps: 

 
,

,  .i i j
i N i j N

i j

S C C C
∈ ∈

≠

= = ∅∪ ∩  (3.1) 

Each Voronoi tessellation is based on a set of generating points { , ,...}P S= ⊂1 2p p .  These 

points are usually randomly distributed within S . Each point ip  defines one Voronoi cell 

)V i(p . This Voronoi cell contains all the points v S∈ , whose distance to ip  is smaller than that 

to other generating points ( )j i P≠ ∈jp : 

 
\{ }

( ) {  |  }
P

V S
∈

= ∈ − ≤ −
j i

i i j
p p

p v v p v p∩ . (3.2) 

The Voronoi cells are closed and convex. In the present work  is an Euclidian metric 

2 2 2
1 2 3x x x x= + +  and S  is a closed subset of 3ℝ  for the geometric models of equiaxial 

polycrystals, e.g. 
3{( , , ) |  0.5, 0.5, 0.5}S x y z x y z= ∈ ≤ ≤ ≤ℝ . For the columnar structures 

(see section 2.4) S  is a closed subset of 2ℝ  as shown in Figure 3.2.   
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For determination of the boundaries of the Voronoi cells, firstly each generating point is con-

nected with its next neighbours via the Delaunay triangulation, see Figure 3.3 (right). By means 

of Delaunay triangulation triangles (tetrahedrons in 3D) are generated with the property that no 

further generating points lie within the circumscribed circle (sphere in 3D) , see Figure 3.3 

(right).  

           

 

The perpendicular bisectors of the Delaunay mesh enclose the Voronoi cells (red shaded region 

in Figure 3.4). In the 3D case perpendicular bisectors are not lines but planes. A result of a 3D 

Voronoi tessellation is shown in Figure 3.5 a. It is often called the Voronoi diagram. It can be 

shown that the Delaunay triangulation is a dual graph of the Voronoi diagram. This means that 

Figure 3.2:  Generating points for equiaxial (left) and columnar (right) structures. 

Figure 3.3: Generating points (left) and the corresponding Delaunay triangulation (right) in 2D. 
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the Voronoi tessellation of a Voronoi diagram is the Delaunay triangulation. The Voronoi tessel-

lations are produced by means of the free software PyXL [PyXL] in the present work. 

 

 

3.1.2 Poisson-Voronoi diagram 

The set of generating points should be chosen in such a way that the corresponding Voronoi 

diagram accurately describes the polycrystalline microstructure. An important requirement for 

the set of generating points (see section 3.1.1) is therefore its homogeneity and isotropy. This 

means that the number of generating points per unit area n  has to follow a distribution func-

tion which is translation- and rotation-invariant. An example of such a distribution is the Poisson 

distribution function  

( )
!

ne
P n

n

λ λ−

=  

with the mean point density λ . The corresponding Voronoi tessellation is called Poisson-

Voronoi (PV) diagram. 

 

Figure 3.4:  Construction of a Voronoi cell by means of the perpendicular bisectors of the Delaunay 

sides. 
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a)     b) 

 

Numerous properties of PV tessellations, e.g. distribution of volumes, number of facets per cell 

or edge length, have been derived analytically or by means of simulations [Ohser 2000, Okabe 

1992, and Muche 1992]. Within the PV procedure a vertex is shared by four edges and an edge - 

by three facets, which is consistent with observations in real materials. However, some inade-

quate features of the PV diagram do exist in representation of realistic polycrystals.  

 

Firstly, the PV cells do not look as globular and regular as ceramic grains. A second inadequate 

feature concerns grain size distribution. The PV cells are assumed to obey the gamma distribu-

tion [Kumar 1992], whereas ceramic grains are found to follow a lognormal distribution [Nettle-

ship 2002, Rhines 1982, Okazaki 1972]. Both distributions are fairly similar, as it can be seen in 

section 3.3.1 or in [Vaz 1988, Nettleship 2002]. Nevertheless, the goodness of the gamma fit was 

systematically better than the goodness of the lognormal fit for PV cells, which is on contrary to 

the real material. 

 

Another drawback of the PV tiling concerns the coefficient of variance cv of the grain volumes, 

which is defined as standard deviation of the grain volumes Vσ  divided by the mean grain vol-

ume V :  

 V

V

σ
=cv . (3.3) 

The corresponding definition for the coefficient of variation of grain size d  reads: 

 d

d

σ
=

d
cv . (3.4) 

Figure 3.5: An example of a polycrystalline model obtained via 3D Poisson-Voronoi diagram (a) and 3D 

Hard-Core-Voronoi diagram (b). 
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Hereby, d  and dσ  are the mean and the standard deviation of grain diameters . The cv-value 

of a PV partition is invariant and equal 0.424 [Kumar 1992], whereas in real polycrystalline met-

als cv ranges from 1.1 to 2.1 [Rhines 1982]. The cv-values for the grain sizes of alumina ceramics 

vary between 2 and 3 [Nettleship 2002]. 

3.1.3 Hard-core-Voronoi diagram 

One method, which can help to overcome the lack of regularity and globularity of the PV parti-

tion, is Hard-core Voronoi (HCV) tessellation. In this approach a minimum distance 2r  between 

two generating points is defined. A geometrical interpretation of this procedure is as follows: 

each generating point is a center of a sphere with a core of radius r . Within this core no other 

generating points may exist (hard core). The cell centers (generating points) which do not fulfill 

this constraint are deleted and thus the original point set becomes thinned. For that reason the 

Hard-core approach is a special case of the so called thinning processes. A 3D Hard-core-Voronoi 

diagram is shown in Figure 3.5 b). The Voronoi cells are more globular and regular than PV cells 

of Figure 3.5 a). However, it was found that the HCV cell volumes as well as these of the PV 

process follow the gamma distribution function [Reis 2006]. Moreover, the cv-value is even 

smaller than that of the PV partition (0.424), which exhibits an even larger deviation from ex-

perimental values presented in section 3.1.2, see also Table 3.1.  

3.1.4 Cluster-Voronoi diagram 

A Cluster-Voronoi (CV) partition is typically produced from a point field, where the density of the 

generating points strongly varies within the space to be tessellated. One possibility to do so is to 

systematically define the spatial elements (e.g. slices or cubes) with different point densities. An 

alternative procedure would be to identify such spatial elements (e.g. spheres) around the gen-

erating points of some space tessellation (e. g. PV tessellation). Two examples of a CV tiling are 

presented in Figure 3.6. 
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In CV diagrams the coefficient of variation is arbitrary adjustable, but the globularity and the 

lognormal distribution of grain sizes are missed. 

3.1.5 Constrained Voronoi diagram 

Xu and Li have proposed a rearrangement procedure for generating points from a PV mosaic 

with the intent to produce 3D Voronoi diagrams with lognormal distribution of grains [Xu 2009]. 

In this approach the generating points are rearranged by means of the Monte Carlo Method 

until the penalty distribution function is fulfilled with a certain tolerance. However, the good-

nesses of the different fit functions, e.g. lognormal, gamma or Gauß, were not compared for a 

certain adjustment procedure, so it was not proven that the adjusted function is the best fit. 

Moreover, the cv-values for the constrained Voronoi diagram range from 0.1 to 0.445, which is 

beyond the intervals typical for real metallic polycrystals (see Table 3.1). 

3.1.6 Summary and discussion 

The geometric features of different Voronoi tilings discussed in the last sections are summarized 

in Table 3.1.  All presented space tessellations have drawbacks in the description of the geomet-

ric properties of real polycrystalline materials. Therefore, in section 3.2 the method of Laguerre 

tessellations is considered and in section 3.3 a proposal for a novel constrained thinning Voronoi 

procedure is given. It will be shown that both approaches are superior in the description of real 

polycrystals.  

Figure 3.6: Cluster-Voronoi tessellations. 
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Type of tiling Globularity Lognormal grain 

size distribution 

Coefficient of varia-

tion cv 

Poisson-Voronoi no no 0.424 [Kumar 1992] 

Hard-core-Voronoi yes no 0.0…0.424 

Cluster-Voronoi no no arbitrary 

Constrained Vo-

ronoi 

unknown Comparison with 

gamma is missed 

0.1…0.445 

Real material yes yes 1…3 [Rhines 1982], 

[Nettleship 2002] 

3.2 Laguerre tessellation 

Laguerre tessellation can be considered as a weighted Voronoi diagram. In this procedure a 

weight iw ∈ℝ  is assigned to each generating point ip  of a set P . By that means a weight set 

1 2{ , ,..., }nw w w w=  is formed. Similarly to the Voronoi tessellation a cell of the Laguerre tiling 

corresponding to the generating point ip  is defined as 

 
\{ }

( ) {  |  }
P

L S
∈

= ∈ − ≤ −
j i

i i j
p p

p v v p v p∩ . (3.5) 

However, the distance between ip  and any other point v  in Laguerre geometry is measured as 

 
2 2

iw− = − −i iv p v p . (3.6) 

The Laguerre cells are space-filling convex polyhedrons without overlapping similarly to the Vo-

ronoi cells. However, in a general case not every point P∈ip  generates a tessellation cell or 

lies within the generated cell. An example of a Laguerre diagram based on six generating points, 

published in [Lautensack 2007], is presented in Figure 3.7. The circle radii characterize the as-

signed weights. Here, the point  does not generate a cell. The point � generates the shaded 

region but does not lie within this cell.  

Table 3.1:  Comparison of the characteristics and structure parameters of different Voronoi tessellations 

and real materials. 
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The cells of the Laguerre tessellation are interconnected in a topological manner in the same 

way as the grains of polycrystalline materials. In contrast to the Voronoi tessellation, grain 

boundaries are not obligatorily located in the middle of the Delaunay bond (see section 3.1.1) 

due to the different weights of generating points. Therefore, the coefficient of variation of cell 

sizes is not a fixed value as in PV diagram and can be varied in a broad range.  

 

For an accurate description of polycrystalline materials and their properties (see Table 3.1) Fan 

et al. have proposed a Laguerre tessellation based on random closed packing of spheres (LRCPS) 

[Fan 2004]. The procedure was investigated in more detail in [Redenbach 2009]. In the LRCPS 

model the generating points are centers and the weights are equal to the sphere radii of a 

closed packing with lognormal distributed sphere volumes, see Figure 3.8. The random dense 

packing can be simulated using various algorithms based on, e.g. sequential generation, collec-

tive rearrangement, molecular dynamics or gravitation. In [Fan 2004] and [Redenbach 2009] 

modified collective rearrangement procedures were utilized. The distribution function of 

spheres is shown to be strongly inherited by the cells of the Laguerre tiling. In this type of 

Laguerre partition every generating point produces a cell and the point lies within this cell. 

 

Figure 3.7:  The Laguerre diagram of six generating points in 
2ℝ [Lautensack 2007]. The circle radii 

characterize the assigned weights. The point  does not generate a cell. The point ���� generates the 

shaded cell. 
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The LRCPS diagram was shown to be superior to the PV tessellation in the description of realistic 

polycrystals because of its advantageous geometric properties. 

 

Voronoi and Laguerre tessellations are special cases of the Johnson-Mehl tessellation. In the 

general case the generating points are nucleated in a time-dependent manner with a constant 

frequency. The cells around the nucleated points grow with a constant velocity in all directions 

[Pineda 2004]. The described model is physically motivated. It is therefore well suitable for the 

description of growth processes. However, the cell boundaries are non-planar in this computa-

tional procedure (see Figure 3.9). Therefore, they cannot be treated numerically as effectively as 

Voronoi and Laguerre cell facets. 

 

3.3 A novel constrained hard-core thinning process  

In the present section a novel thinning process is proposed, evaluated and discussed. 

Figure 3.8:  Cross-section of a closed packing of spheres and its Laguerre tessellation [Fan 2004]. 

Figure 3.9:  A two-dimensional Johnson-Mehl tessellation. Different grey intensities correspond to crys-

tals with different birth times [Pineda 2004]. 
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3.3.1 Procedure and results 

The approach is similar to the Hard-core Voronoi (HCV) method (see section 3.1.3). The differ-

ence concerns the hard-core radius, which is not constant but is calculated as 

 

1

33

4
HC

HC

V
r

π
 =  
 

 (3.7) 

from the hard-core volumes HCV following the lognormal distribution function: 
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( )

2
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−
−

= . (3.8) 

In (3.8) µ  is the mean and σ the standard deviation of ln HCV . 

 

From the equations (3.7) and (3.8) it follows that the distribution function for the Hard-core radii 

is not exactly lognormal but very similar: 
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. (3.9) 

According to the Hard-core procedure generating points having the distance less than 2 HCr to 

the center of the Hard-core are eliminated. Subsequently, the Voronoi tessellation of the 

thinned point field is performed. In the following it will be shown that by means of the described 

Constrained Hard-core Voronoi (CHCV) procedure a grain ensemble with lognormal volume and 

diameter distributions as well as an arbitrary variation of grain sizes can be created.  

 

The CHC process with different distributions of the Hard-core sphere volumes was applied to 

sets of about 25 000 generating points. Equiaxial and columnar structures with 5000 to 20 000 

grains were produced on the basis of CHC point fields. In Figure 3.10 two examples of columnar 

structures with different σ -values are shown. Corresponding distributions of the equivalent 

grain diameters are presented in Figure 3.11. The fit functions were calculated by the method of 

least squares. For the left structure the cvd-value was obtained according to the definition (3.4) 

as 0.1, while for the grain ensemble on the right it is 1.2. Obviously, within our method the coef-

ficient of variation can be adjusted by the σ -value of distribution function of the hard-core set. 

In Figure 3.12 an equiaxial grain structure with about 7500 grains and cv-value of 1.1 is plotted. 

For the evaluation of the grain sizes the cut off edge grains were eliminated. 
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Figure 3.10:  Two cuttings of columnar structures with different coefficients of variance. 

Figure 3.11:  Distribution of equivalent grain diameters for the columnar structures from Figure 3.10. 

Figure 3.12:  Equiaxial grain structure with lognormal distribution of the grain volumes and coefficient 

of variation of 1.1. 
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In Figure 3.13 distributions of the CHC spheres volumes and corresponding Voronoi cells are 

compared. The cell volumes of the Voronoi tessellation are significantly larger than these of the 

CHC spheres. This effect is due to the CHC spheres, which are non-space-filling and which are 

not rearranged to form a closed packing, whereas the resulting Voronoi cells are space-filling. 

However, if the volumes of CHC spheres follow the lognormal distribution, the volumes of the 

corresponding CHCV cells can be expected to obey the same type of distribution. The validity of 

this statement is demonstrated in Figure 3.14 - Figure 3.19. 
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Figure 3.13:  Distributions of the CHC sphere volumes and the corresponding CHCV tessellation: a) grain 

structure with 19 266 cells and cv = 0.1; b) grain structure with 16 075 cells and cv = 1.1. 



 41 

0.
00

00
42

0.
00

00
40

0.
00

00
38

0.
00

00
36

0.
00

00
34

0.
00

00
32

99.99

99

95

80

50

20

5

1

0.01

Hard-core sphere volumes

P
e

rc
e

n
t

Loc -10.21

Scale 0.03395

N 1000

AD 0.154

P-Value 0.957

Lognormal - 95% CI

Probability Plot of Hard-core sphere volumes

0.
00

04
0

0.
00

03
5

0.
00

03
0

0.
00

02
5

0.
00

02
0

0.
00

01
5

0.
00

01
0

99.99

99

95

80

50

20

5

1

0.01

Voronoi cell volumes

P
e

rc
e

n
t

Loc -8.373

Scale 0.1401

N 1000

AD 0.672

P-Value 0.079

Lognormal - 95% CI

Probability Plot of Voronoi cell volumes

 

   a)      b) 

 

0.0520.0510.0500.0490.048

99.99

99

95

80

50

20

5

1

0.01

Hard-core radii

P
e

rc
e

n
t

Loc -2.996

Scale 0.01132

N 1000

AD 0.154

P-Value 0.957

Lognormal - 95% CI

Probability Plot of Hard-core radii

0.0460.0440.0420.0400.0380.0360.0340.0320.030

99.99

99

95

80

50

20

5

1

0.01

Equivalent Voronoi cell radii

P
e

rc
e

n
t

Loc -3.268

Scale 0.04669

N 1000

AD 0.672

P-Value 0.079

Lognormal - 95% CI

Probability Plot of equivalent Voronoi cell radii

 

 

For the determination of the goodness of the distribution fit the Anderson-Darling (AD) test has 

been chosen as it was found to be one of the best statistics for detecting most departures from 

the normality [Stephens 1974]. In particular, the AD test was found to be more sensitive than 

the prominent 2χ -Test utilized in [Fan 2004] or the Kolmogorov-Smirnov statistic performed in 

[Nettleship 2002]. One of the most important characteristics of the AD test is the 2A value, 

which measures a squared distance between the hypothesized distribution F (e.g. lognormal, 

gamma or Gauss) and the empirical sample cumulative distribution function nF . In the first step, 

the empirical data { }1 2 ... NV V V< < < will be rearranged in ascending order. Then, the AD sta-

tistic is calculated as 

Figure 3.14:  Lognormal probability plots of the CHC sphere volumes (a) and the CHCV grain volumes (b) 

for a 1000 cell subset of a 19 266 grain structure with cv = 0.1. 

Figure 3.15:  Lognormal probability plots of the CHC radii (a) and the CHCV equivalent grain radii (b) for 

a 1000 cell subset of a 19266 grain structure with cv = 0.1. 
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The AD test makes use of the fact that, when the sample data does arise from the supposed 

distribution, the data can be transformed to a uniform distribution and tested for uniformity 

with a distance test. The cumulative function of a uniform distribution is linear ascending (mid-

dle blue line in Figure 3.14). It can be, therefore, easily compared with the transformed sample 

data (red points in Figure 3.14). 

 

Another quantitative measure of the AD test is the so-called p -value, which represents a prob-

ability that the rejecting of a supposed distribution function is a mistake. The calculation proce-

dure for the p -value is variegated. It will be determined from the 2A statistic and the table 

given in [D’Agostino 1986]. In the following, the fit distribution function and the characteristic 

2A and p  values were calculated by means of the software Minitab. 

 

In Figure 3.14 a) almost all points of the cumulative frequency of the CHC sphere volumes lie 

within the confidence interval of the supposed distribution function (boundary blue lines). Val-

ues “Loc” and “Scale” in the diagram legend symbolize parameters σ  and µ  of the fit function 

(3.8). The measure “AD” represents the AD statistics 2A . 

 

The hypothesis that the CHC sphere volumes obey the lognormal distribution at the significance 

level 0.05 is accepted as the p-value is much larger than 0.05. In Figure 3.14 b) the cumulative 

frequency in the area of the small Voronoi cell volumes (red) is slightly below the confidence 

interval (blue). The detailed discussion of reasons for this effect will be given in section 3.3.2. It 

should be noted that the hypothesis of the lognormal distribution of the grain volumes is ac-

cepted since the p-value 0.079 is larger than 0.050. In contrast, the assumption that the CHCV 

cell volumes follow gamma or Gauss distribution is rejected since the corresponding p-values 

are smaller than 0.05 (see Figure 3.16). Furthermore, as the AD value of the lognormal fit is 

smaller than that of the gamma and Gauss fits the lognormal distribution function is identified 

to be the most suitable. 

 

Interestingly, the hypothesis of the lognormal distribution is accepted for the Hard-core radii 

and for the equivalent Voronoi cell radii as well. The p- and the AD values are equivalent with 

those for the corresponding volumes, although the fit parameters are different (compare Figure 

3.14 and Figure 3.15). 
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The AD statistics depends nonlinearly on the size of the data set. To take this feature into ac-

count, subsets of the same size (1000 cells) have been investigated for all structures. For each 

structure multiple samples have been analyzed until the convergency of the mean AD value is 

reached (see Figure 3.17). 
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a) cv = 0.1      b) cv = 2.3 

 

In Figure 3.18 and Figure 3.19 the probability plots for the 16 075 grain structure with cv = 1.1 

are shown. Deviations from the confidence interval are here larger than those in the case of the 

structure with cv = 0.1. For that reason the hypothesis of the lognormal distribution of the CHCV 

cells is here rejected. Nevertheless, the AD value of the lognormal fit is significantly smaller than 

that of the gamma and Gauss fits. Hence, the lognormal distribution is concluded as the best 

approximation. Different fit functions are compared in Figure 3.20. 

Figure 3.16:  Gamma (left) and Gauss (right) probability plots for a 1000 cell subset of a 19266 grains 

structure with cv = 0.1. 

Figure 3.17:  Convergency of the mean AD-values for two different structures. 
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a) cv = 0.1 

Figure 3.18:  Lognormal probability plots of the CHC sphere volumes (left) and the CHCV grain volumes 

(right) for a subset of 1000 cells of a structure with 16 075 grains and cv = 1.1. 

Figure 3.19:  Gamma (left) and Gauss (right) probability plots for a subset of 1000 cells of a 16075 grains 

structure with cv = 1.1. 
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b) cv = 1.1 
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The mean AD values for equiaxial structures with different cv-values are compared in Figure 

3.21. Although the lognormal and gamma distribution functions are very similar (see Figure 

3.20), the AD characteristics of the lognormal fit are systematically smaller than that of the 

gamma assumption. Hence, it can be concluded that the developed CHCV method delivers reli-

able lognormal-distributed cell structures of arbitrary grain size variation. For that reason the 

novel CHCV method is much more suitable for a realistic modeling of the polycrystalline materi-

als than the PV, HCV, Cluster-Voronoi and Constrained Voronoi procedures. 

Figure 3.20:  Lognormal, gamma and Gauss fits of the CHCV cells with different cv-values. 
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3.3.2 Discussion 

The results shown in Figure 3.21 are similar to those obtained by Z. Fan with the LRCPS method 

(see Figure 3.22). The author utilized the 2χ -test instead of the Anderson-Darling test for the 

quantitative evaluation of fit goodness. In [Fan 2004] 2χ -values of the lognormal fit lie below 

the corresponding values of the gamma approximation for all cv-values of the closed packing of 

spheres3. However, the novel CHCV method is much less time-consuming in comparison to the 

LRCPS procedure. Here, the hard-core spheres are neither modeled geometrically nor rear-

ranged by any time-consuming algorithm. Instead, in the proposed CHCV tessellation only the 

generating points which do not fulfill the constraining Hard-core condition are eliminated. By 

numerical experience this algorithm is very fast. Moreover, the simple non-weighted Voronoi 

tessellation is applied which is also less time-consuming than the weighted Laguerre tiling as, for 

instance, in the LRCPS procedure. 

                                                           

3
 One should keep in mind that the cv-values of the closed packing of spheres are not equal to the cv-

values of the corresponding Laguerre cells. However, it has been shown that the correlation between the 

both characteristics is almost linear [Fan 2004, Redenbach 2009]. 

Figure 3.21:  AD-values of CHCV grain structures with different coefficients of variation.
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The cell size distribution in the result of tessellation depends not only on the parameters of the 

distribution of the HC spheres but also on the number of the generating points before applying 

the constraining HC procedure. For instance, in order to produce structures with several thou-

sand cells and cv > 1.5 sets with more than 200 000 generating points are required. Another 

example concerns an adjustment of a preset distribution function with given parameters µ  and 

σ . For the small grain ensembles (< 10 000 cells) produced from the small sets of generating 

points (< 200 000) usually  several realization are have to be performed until the given fit pa-

rameters are met with a small tolerance. The number of the necessary realizations can be sig-

nificantly reduced by means of large grain structures (> 15 000 cells) originating from a big set of 

generating points (> 300 000). Then, a correlation function between the parameters of the input 

and output distributions (e.g. ( ),
in

out out

in

µ µ σ
σ
 
 
 

) for a certain size of the set of generating 

points can be determined empirically. 

 

Because of the stochastic nature of the CHCV procedure the number of the resulting CHCV 

grains cannot be predicted exactly. However, with a fair tolerance it is defined by the parame-

ters of the HC volume distribution. For instance, for small values of σ  the cell number grows 

with descending parameter µ . Thus, a given number of cell sizes can be adjusted by several 

iteration steps, in which characteristics µ , σ  or n  (the number of generating points) are tuned. 

 

Figure 3.22:  Values of the 
2χ -test statistics for the LRCPS grain structures with different coefficients of 

variation of the closed packing of spheres [Fan 2004]. 
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In the introduced CHCV procedure the non-weighted Voronoi tessellation is applied. This means 

that the cell boundaries are located in the middle of the Delaunay bonds, although the HC 

spheres belonging to the same bond probably have different radii. In this manner the sizes of 

the small cells are overestimated and vice versa, the sizes of the big cells are underestimated. 

This effect, however, does not harm the lognormal grain size distribution. The Voronoi tessella-

tions with different cv-values based on the lognormal distributed HC spheres fulfill the log-

normal distribution function very precisely (see section 3.3.1). In contrast, in the Voronoi tilings 

based on the Gauss distributed HC sphere volumes the effect of the over- and underestimated 

cell volumes becomes considerable. 

 

In the following we discuss, whether every type of the HC distribution function is inherited by 

the cell volumes or not. It will be shown, that for the Gauss and gamma distributed HC spheres it 

is not true. In Figure 3.23 the histograms of two different structures with Gauss distributed HC 

sphere volumes are presented. The probability plot of the CHC volumes (see Figure 3.24 a) 

shows a very good adjustment to the Gauss distribution function ( 0.254 0.05p = ≫ ). In con-

trast, the derived CHCV cells are not Gauss distributed. The frequency plots of the CHCV cell 

volumes (see Figure 3.23 a) and b) are non-symmetric. They offer less small and big cells than 

the Gauss fit curve predicts (see also Figure 3.24 b)). Due to the underestimation of the largest 

cells the number of the grains with volumes of size 0.0003 in Figure 3.23 a) and 0.0002 in case of 

Figure 3.23 b) exceed the corresponding Gauss fit. The best description of the structure consist-

ing of 3230 grains is achieved with the help of the lognormal distribution function (see Figure 

3.23 and Figure 3.25), whereas for the structure with 6110 grains the best fit can be reached by 

means of the gamma function. In case of the CHCV tilings based on the gamma distributed HC 

spheres either lognormal or gamma distribution are best suited. It can be assumed that the ap-

plication of a weighted Voronoi tessellation (Laguerre diagram) instead of the non-weighted 

one, where the utilized Hard-core radii serve as weights, might minimize the described effect. 

The proposed modification might also broaden the range of the mean number of facets per 

grain which lies in the CHCV cell structures between 15.1 and 15.4. 
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a) cv = 0.1; 3230 grains  
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b) cv = 0.2; 6110 grains 

Figure 3.23:  Histograms of the CHCV cells for two different structures with Gauss distributed sphere 

volumes. 
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All types of space tessellations discussed in sections 3.1 to 3.3 are compared in Table 3.2. It can 

be seen that the LRCPS and the novel CHCV methods are superior to the Poisson-Voronoi, Hard-

core-Voronoi, Cluster-Voronoi and Constrained Voronoi tilings with respect to the accurate de-

scription of the real polycrystalline structures. Though, the proposed CHCV procedure is numeri-

cally much simpler and faster than the LRCPS tessellation. 

 

Figure 3.24:  Normal probability plots: a) the Gauss distributed volumes of the CHC spheres; b) the cor-

responding CHCV cells. 

Figure 3.25:  Probability plots for the volumes of the CHCV cells with Gauss distributed Hard-core 

sphere volumes. 
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Type of tiling Globularity 
Lognormal grain size dis-

tribution 
cv range 

Poisson-Voronoi no no 0.424 

Hard-core-Voronoi yes no 0.0…0.424 

Cluster-Voronoi no no arbitrary 

Constrained Voronoi unknown 
Comparison with gamma 

is missed 
0.1…0.445 

LRCPS yes yes arbitrary 

Novel CHCV yes yes 0.0…3.0 

Real material yes yes 
1…3 [Rhines 1982] [Net-

tleship 2002] 

3.4 Modeling of thin films 

The columnar thin film models are built on the basis of a 2D CHCV tessellation (see Figure 

3.26 a), which is then extruded in the direction of the cells normal (“growth direction”, see 

Figure 3.26 b). An alternative method to produce columnar structures with the 3D Voronoi tes-

sellation is based on the confinement of the generating points in a plane perpendicular to the 

orientation of the columnar structures. In that case the software producing Voronoi tessella-

tions could fail, since the Voronoi cells are not bounded in the growth direction. One possibility 

to avoid the problem of the unbounded Voronoi cells is to confine generating points within a 

very thin slice instead of a plane. However, this procedure is significantly less efficient than the 

extrusion of a 2D Voronoi tessellation, since the creation of a 3D tiling is more time-consuming. 

Moreover, the 3D tessellation bears a higher probability for the appearance of the problem of 

the short edges (see section 3.8). 

 

Table 3.2:  Comparison of the features of different space tessellations and a real material. 
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   a)      b) 

3.5 Periodically extendable structures 

In order to avoid any influence of the structural boundaries onto the microscopic and macro-

scopic properties in some cases it is necessary to extend the grain structure in 2 or 3 dimensions 

periodically (see Figure 3.27). For that purpose the set of generating points has to be periodi-

cally extended (see Figure 3.28). The CHCV tessellation is then performed in the extended point 

set. In order to simultaneously assure the lognormal distribution of the grain sizes and the peri-

odic extendability of grain structures, the generating points in the extended set originating from 

the same point in the initial configuration (marked by the red circles in Figure 3.28) have to pos-

sess the same Hard-core radius.  

 

 

a) 

Figure 3.26:  2D Voronoi tessellation (a) and its extrusion (b). 
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b) 

 

 

 

In case of columnar structures the extended set of generating points is 3²=9 times larger than 

the initial configuration of vertices. The point set of equiaxial bulk structures exceeds 3³=27 

Figure 3.27:  Periodically extendable grain structures: a) with planar sample boundaries; b) with sample 

boundaries aligned with grain boundaries. 

Figure 3.28:  2D-extension of the set of generating points for the construction of periodically extendable 

structures. To the points within the red circles the same Hard-core radius is assigned. 
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times the non-extended grain structure. For large grain ensembles this can lead to enormous 

calculation times. In order to minimize the computational efforts the original set of generating 

points can be extended only partially as shown in Figure 3.29. 

 

 

The Constrained Hard-core procedure and the Voronoi tessellation are performed in the ex-

tended set of generating points. Subsequently, the geometry is converted into the ANSYS for-

mat. By means of ANSYS tools the structure is then cut off to the original size l. 

3.6 Modeling of pores 

As an approximation the pores can be modeled by a random elimination of several cells until a 

given porosity is achieved (see Figure 3.30). In periodically extendable grain structures with 

plane sample boundaries all fragments of the same grain have to be deleted (see Figure 3.31). 

XY

Z

 

 

Figure 3.29: 2D-extension of the set of generating points for ensembles with a high density of generat-

ing points after performing CHC procedure.    

Figure 3.30:  A grain model with pores. 

x = xmin x = xmin+ l x 
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3.7 Meshing of the periodically extendable grain structures        

The virtual grain structures are meshed by means of the ANSYS meshing tools (see Figure 3.32). 

In the most common case of samples with planar boundaries and periodic grain structure the 

boundary grains are divided into two or more parts (see Figure 3.32 b). All parts of each split 

grain are assigned to the same crystal orientation and identical physical properties which is 

demonstrated in Figure 3.32 b by the same colors. However, the separate meshing of the split 

grain parts causes a larger number of finite elements than for samples with boundaries aligned 

with the grain boundaries (see Figure 3.32 a). In the case of the small columnar grain ensemble 

of Figure 3.32 (31 crystallites) the difference is about 30%. For small equiaxial structures it can 

be even larger, whereas in configurations with high grain numbers the difference decreases. 

Another advantage of the non-planar sample boundaries is a better quality of the shape of finite 

elements because of absence of more or less regular split grains. Despite the advantages de-

scribed above it might be difficult to construct a reliable fully automated identification of the 

boundary surfaces for that kind of boundary structure which is necessary to assign the boundary 

conditions. This is an essential drawback of the grain structures with non-planar sample bounda-

ries. For this reason the following analyses are exclusively concentrated on grain structures with 

plane boundaries as shown in Figure 3.32 b). 

 

Figure 3.31:  A periodically extendable grain model with pores.
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a) b) 

 

In the present work generation of periodically extendable meshes has been fully automated by 

means of the ANSYS script language APDL. In the following, the corresponding algorithm is 

briefly described. In the first stage, three non-collinear sample edges are meshed. The resulting 

one-dimensional finite elements are then copied to the corresponding three parallel edges of 

each of three flanks. Subsequently three non-coplanar boundary surfaces are meshed with re-

spect to all edges already meshed. The produced 2D finite elements are then copied to the op-

posite boundary surfaces. Finally, the cell volumes are meshed with respect to the periodic sur-

face finite elements. 

3.8 Numerical problems in large tilings and proposed solutions 

For statistical reasons the cells of the Voronoi tessellation sometimes have extremely short 

edges. When the relation of the shortest edge to the longest edge min

max

l

l
of the Voronoi cells goes 

bellow a critical value (typically 
1

100
 or

1

500
) the structure can not be meshed or a mesh would 

result in ill conditioning of the finite element matrices. A recent study [Fröhlich 2001] has shown 

that the probability of min

max

1

100

l

l
≥  in a 2D Voronoi tessellation with 200 cells is less than 0.4%. 

This means that on average not even every hundredth grain structure can be meshed without 

any complication. This result will be even more dramatic in case of 3D tessellations since the 

number of edges of 3D tessellation cells is about two times larger than the number of edges in 

2D cells. 

 

Figure 3.32:  Meshed grain structures: a) with sample boundaries aligned with the grain boundaries; b) 

with planar sample boundaries. 
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In the framework of the freeware PyXL4 [PyXL] C. Myers proposed an algorithm, which acciden-

tally displaces generating points until a given min

max

l

l
 ratio is exceeded. However, as follows from 

the results of A. Fröhlich [Fröhlich 2001] the algorithm proposed by C. Myers might take a very 

long time for large structures (>200 grains) until convergence is reached. Moreover, because of 

the accidental displacements of generating points the resulting structures might not be able to 

render the desired size distribution function. Hence, a more efficient and reliable method for 

elimination of the short edges is required. 

 

Besides the short edges, which originate from the Voronoi tessellation itself, the short edges 

resulting from the sample cutting procedure (see Figure 3.33) might retard the meshing process. 

In the present work two merging schemes were utilized in order to eliminate the short edges at 

the sample boundaries as well as in the interior of the sample.  

 

 

One of the merging procedures has been proper developed and integrated into our software 

converting space tessellations from the PyXL-format to the ANSYS-format, since structures with 

a large number of grains (>500) often could not be read (and consequently could not be merged 

and meshed) in ANSYS. In the first step the algorithm identifies cell vertices whose distances to a 

certain vertex lie below some critical value mr , which is called merging radius. In the following 

these sets of cell corners with mutual low distances are called groups of critical points. In order 

to preserve periodic boundary geometry, in each group of critical points the so-called master 

point is identified. The master point always remains in the structure. For the identification of the 

master vertex the so-called boundary level bl is essential. We assign zero boundary level bl=0 to 

                                                           

4
 The tool was utilized in the present work for generation of Voronoi tessellations. 

Figure 3.33:  Short edges originating from the plane sample cut. 
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the points, which do not belong to the sample outer surfaces. The vertices belonging to the 

sample surfaces but not to the edges obtain bl=1. The points belonging to the model edges but 

not to the model corners are assigned with bl=2.  The master vertex is required to have the 

highest bl-value in the group of critical points. Other critical points in the group are eliminated. 

We call these vertices victim points. The striking fact is that the eliminated vertices belonged to 

edges and facets of several grains. In the whole topological setup of the structure they have to 

be replaced by the non-eliminated points. This is, however, a challenging task since the planarity 

of several areas might be distorted or some edges, areas and volumes have to be additionally 

eliminated. An example is treated in the following paragraph. 

 

In Figure 3.34 a) four facets of a Voronoi cell are presented. A group of critical points contains 

only two vertices. The victim point has to be deleted and substituted by the master point in the 

facets A, B and C. The master vertex lies in the plane of the areas A and B. Therefore, the victim 

point can be substituted by the master without difficulty for these facets. The master vertex, 

however, does not belong to the area C and, hence, it cannot easily replace the victim (see 

Figure 3.34 b). In such common case our algorithm provides a supplementary triangle, which 

contains the neighbor points of the victim and the master vertex (see Figure 3.34 c).    

 

            a)       b)        c) 

 

As the merging distance mr  becomes larger the number of critical points per group of critical 

points grows. In the case of the structure from Figure 3.35 a) two victim points have to be elimi-

nated. As a consequence of this action the facet A has to be deleted (see Figure 3.35 b). In other, 

more complicated configurations several facets or even volumes have to be deleted and the 

resulting gaps have to be artfully corrected by the supplementary triangles. It is a challenging 

Figure 3.34:  Several facets of a Voronoi cell; an example of the merging procedure: a) identification of 

the master and victim vertices; b) victim vertex is eliminated; c) supplementary triangle is added. 

master vertex supplementary 

triangle 

victim vertex 

A 
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task to develop an algorithm considering all possible complicated special cases of the geometri-

cal constellations. Therefore even commercial software packages like ANSYS and Sinterdict [Sin-

terdict] sometimes exhibit algorithmic problems in merging and meshing procedu-

res.

 

           a)     b)    c) 

 

The developed merging procedure is specified for 0.0005mr l≤ ⋅ , where l  is the length of the 

largest sample edge. In the case 0.0005mr l> ⋅  the algorithm occasionally fails. For this reason 

a second merging procedure based on the ANSYS macro NUMMRG has been additionally used. 

In the output of the NUMMRG command only the vertex point with the lowest number from 

every group of critical points remains in the structure. In order to preserve the boundary ge-

ometry, a renumbering algorithm has been implemented in the ANSYS-APDL macro language. 

This algorithm assigns ascending numbers to the vertices with decreasing bl value and updates 

corresponding topological relations. Then, a subsequent execution of the NUMMRG macro does 

not affect the boundary geometry. 

 

The NUMMRG command rectifies in many cases correctly the topological drawback of elimi-

nated points and edges. However, casually this merging algorithm fails as well. As a conse-

quence problems with the meshing procedure arise. The variation of the critical merging dis-

tance mr  often helps in the described situations. The use of too small merging radii 

Figure 3.35:  Several facets of a Voronoi cell; an example of the merging procedure: a) identification of 

the master and two victim vertices; b) two victim vertices and so the whole facet are eliminated; c) 

supplementary triangle is added. 
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( 0.0005mr l≤ ⋅ ), however, should be avoided, since the quality of the finite elements gets 

worse. 

 

The described procedure for generation of periodically extendable grain structures and FE-

meshes developed in the present work was extensively tested for 3D grain ensembles up to 

1000 cells. Although a universal merging algorithm is still an unsolved problem, 90 % - 95 % of 

produced models were periodically meshable by our fully automated procedure. This result con-

stitutes a great improvement comparably to the procedure proposed in [Fröhlich 2001], where 

less than 0.4% of 2D Voronoi mosaics with 200 cells could be meshed by finite elements. 

 

The implemented merging procedures are important not only for the purpose of FE-meshing but 

also for the quality and number of finite elements. The FE-meshes produced with and without 

developed merging algorithms are compared in Figure 3.36. The latter structure offers smaller 

and less regularly formed elements than the model created using the developed merging proce-

dures. In mosaics, where the short edges are eliminated, the meshing with larger element sizes 

is possible and thus, the number of finite elements can be reduced down to 50%. 

 

 

a)         b) 

 

Because of the accidental location of the sample boundary within the boundary grains a conjec-

ture could arise that some of grain fragments can become indefinitely sharp and small 

( , 0d ϕ → , see Figure 3.37). This fact might be critical for the reliable numerical handling and 

meshing of the boundary grains. However, this scenario is impossible because of the finite merg-

Figure 3.36:  Periodic extendable meshed grain structures: a) produced with application of developed 

merging algorithms; b) produced without application of developed merging algorithms. 
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ing radius and finite grain size. In the last part of the present section a mathematical proof is 

provided for the existence of a lower bound for the values d and ϕ (see Figure 3.37), which are 

critical for the reliable FE-meshing.  

 

Claim: 

Let V be a Constrained Hard-core Voronoi tessellation of the metric space 3ℝ  with lognormal 

distribution of hard-core volumes HCV ∈ℝ according to (3.8), merging radius mr ∈ℝ , 0mr >  

and density of generating points λ .  Then a lower bound for the values d and ϕ exists. 

 

Proof: 

In Figure 3.38 the critical splinter of a boundary grain (yellow), the corresponding Delaunay tri-

angle (dashed black lines) and the circumcircle of the triangle together with circle radii (doted 

blue lines) are presented. The idea of the proof is as follows: in order that the parameters d and 

ϕ  become infinitesimal small, the chord length of a Poisson cell c  has to be infinitely large or 

the merging radius mr - infinitesimal small; both requirements can be, however, neglected due 

to the finite density of generating points λ  and finite merging radius mr as preconditions of the 

claim. In following, an estimation procedure for the lower bounds mind  and minϕ  is given. 

Figure 3.37:  Critical fragment (splinter) of the boundary grain. 

d ϕ  
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The probability distribution function (pdf) for the Delaunay circumcircle of radius Dr  was de-

rived by R. Miles [Miles 1970] and J. Møller [Møller 1996], [Cowan 2007]: 
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The latter calculation was performed by means of partial integration. 

With 
6 8[10 ,10 ]HCt − −∈  - the probability that the hard-core distance ,minHC HCr r< exists - the 

lower bound ,minHCr  can be estimated from 

 

,min

0

( )
HCr

HC HC HCf r dr t=∫ . (3.13) 

From the law of cosines and the relations of angles within a circle the lower bound for the angle 

α (see Figure 3.38) equals: 

 

2
,min

min 2
,max

1
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2 2
HC

D

r

r
α

 
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. (3.14) 

 

Figure 3.38:  Critical splinter of a boundary grain (solid red lines), corresponding Delaunay triangle 

(dashed black lines) and its circumcircle (dotted blue line). 
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According to [Muche 1992] the pdf for the PV chord length reads 
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 With 
6 8[10 ,10 ]ct

− −∈  - the probability that a cell chord with length maxc c> exists - the upper 

bound maxc  can be estimated from 

 
max

0

( ) 1
c

cf c dc t= −∫ .  (3.16) 

From the sine law for the grain fragment triangle (solid red line in Figure 3.38) follows:  

( )arcsin sin arcsin sinm mr r

c c
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. 

Consequently, the lower bound for minϕ exists: 
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Consistent, 

 ( )min min minsin sinm md r rω α ϕ= = − . (3.18) 
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3.9 Summary: grain and mesh generator 

Figure 3.39 gives an overview for the procedure of grain and FE-mesh generation developed in 

the present work. The green highlighted methods are proper implementations either in C++ or 

in ANSYS®-APLD macro language. Important progresses have been achieved in the field of effi-

cient generation of periodically extendable grain structures with lognormal distribution of vol-

umes and diameters as well as in the area of reliable meshability of the space tessellations. 

 

 

The resulting FE-meshes were either directly utilized for the linear piezoelectric studies within 

the ANSYS® package or converted into FEAP format for the non-linear Huber-Fleck calculations. 

The basics of these physical models for ferroelectric materials are described in the next chapter.

Figure 3.39:  Scheme of the developed procedure for grain and mesh generation: green font symbolizes 

methods, which were partially or completely implemented within the present work. 
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4 Physical modeling of the ferroelectric materials 

In the present chapter several physical models of the ferroelectric materials, which act on dif-

ferent scales, will be introduced. On the scale of electrons and atomic nuclei quantum mechani-

cal Density Functional Theory (DFT) is an effective tool for computation of miscellaneous proper-

ties of ferroelectrics. It is briefly described in the first section of the chapter. The DFT approach 

is, however, too time-consuming for systems with more than 200 atoms. Therefore, for studies 

of structural defects or crack propagation in larger systems classical atomistic calculations are 

usually utilized. The empirical shell-model, which is described in the second section of the pre-

sent chapter, is one of the classical atomistic approaches. Fitted to the data obtained in DFT-

calculations it was shown to be capable to reproduce intrinsic features and domain wall proper-

ties of PTO [Sepliarsky 2005, Shimada 2008]. The DFT and shell-model simulations in the project 

COMFEM were performed at the Fraunhofer Institut für Werkstoffmechanik (Freiburg, Ger-

many) by P. Marton and C. Elsässer. On the meso-scale of several hundred nanometers the 

phase-field modeling is a good choice to describe the evolution of ferroelectric domains [Völker 

2010]. In order to give a knowledge based description of ferroelectric material a linkage be-

tween DFT, shell-model and phase-field theories was developed within the scope of the BMBF-

project COMFEM [Völker 2010]. As will be demonstrated in the present chapter, the developed 

multi-scale scheme is a powerful tool for calculation of necessary input data for further micro-

mechanical simulations of PTO and PZT. The phase-field model and its coupling to the DFT and 

atomistic simulations are outlined in the third section.  

 

In the fourth section available results on effective macroscopic material properties in thin films 

and bulk BTO and PTO are summarized. The described numerical results depend on the misori-

entation or on the texture angle. The models utilized up to now to describe the macroscopic 

properties of BTO and PTO ferroelectrica are not able to predict the polarization configuration, 

remanent polarization and, hence, the effective piezoelectric and dielectric material constants 

at remanence. Moreover, the ferroelectric hysteresis of BTO and PTO ceramics could not been 

determined theoretically. In order to bridge this gap we use the recently published model of 

Huber and Fleck, described in the fifth section of the chapter, for our micromechanical calcula-

tions. Another drawback of the theoretical investigations performed so far is use of experimen-

tal single-crystal constants. Such a procedure is, however, ineffective or even misleading for 

design of new materials with unknown parameters. Moreover, even for some known ceramics, 

e.g. PZT, experimental data on single-crystal constants are not available and so no theoretical 
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results for this material from a micromechanical model exist. For these reasons in the last sec-

tion of the chapter we propose different possibilities of bridging of micromechanical Huber-

Fleck calculations with DFT, shell-model and phase-field single-crystal data. The elaboration of 

such a multi-scale simulation chain (see Figure 4.1), which has been defined as the goal of the 

COMFEM project, is the main topic of the present thesis and, as it will be shown below, can pro-

vide an effective theoretical tool for the modeling of materials free of experimental input pa-

rameters. The results of the multi-scale simulations and comparison with experimentally meas-

ured properties are presented and discussed in the next chapter. 

 

4.1 DFT calculations 

Knowledge of the total ground state energy of a system consisting of electrons and atomic nu-

clei 0E  allows to estimate various material properties like lattice constants [Vedmedenko 2007], 

elastic [Panda 2006] and piezoelectric [Saghi 1999] tensors, lattice dynamics [Ghosez 1999], 

deformation mechanisms [Vedmedenko 2008], etc. According to [Panda 2006], the total energy 

of a crystal 0E  under strain ijS can be expressed in terms of the Taylor’s series as 

 
3 3

0
0 0 0 0

, 1 , , , 1

ˆ( ) ( ) ...
2!ij ij ijkl ij kl

i j i j k l

V
E V E V V T S c S S

= =

= + + +∑ ∑ . (4.1) 

Here, 0V  is the volume of the unstrained crystal, 0 0( )E V  - the total energy of the unstrained 

crystal, ijT  are the elements of the stress tensor and îjklc - components of the elastic tensor. 

Hence, the elastic constants can be obtained as a curvature of the energy-strain function: 

 

2
0

îjkl
ij kl

E
c

S S

∂
=

∂ ∂
. (4.2) 

Figure 4.1:  Multi-scale simulation chain for ferroelectrics implemented in the scope of the BMBF-

project COMFEM. 

  nano-scale   meso-scale        micro-scale 

DFT, shell-model  phase-field method      micromechanics   
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In a similar way the piezoelectric coefficients ijke  can be calculated from polarization differences 

as a function of strain: 

 ˆ i
ijk

jk

P
e

S

∂
=

∂
. (4.3) 

The polarization can be estimated using 
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∑ ∫P R r r . (4.4) 

Hereby NN  is the number of the nuclei in the system, αR and Zα ( 1... NNα = ) the positions 

and charges of the nuclei, 0n  the ground state electron density and e  electron charge.  

 

The equilibrium domain wall thickness is typically identified with that corresponding to the con-

figuration possessing minimal total ground state energy among all investigated systems with 

different domain wall thicknesses. 

 

Determination of the ground state density and the total energy of an electronic system is, how-

ever, a challenging task. On this scale a quantum mechanical treatment is required. In general, 

the non-relativistic time-independent Schrödinger equation for NN  nuclei and eN electrons has 

to be solved: 
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 (4.5) 

Hereby ( ),..., , ,...,
NNΨ

e1 1 NR R r r  is a many-particle wave function, em  - the mass of an elec-

tron, Mα - the masses of the nuclei, 
α

∆R - the Laplace operator regarding variables αR , 
i

∆r  - 

the Laplace operator regarding variables ir  and ℏ  - the reduced Planck constant. An analytical 

solution of this differential equation is available only for some selected cases, such as hydrogen 

atom with one proton and one electron or helium ion with two protons, two neutrons and one 

electron. A numerical treatment of the many-particle problem (4.5) is possible for systems with 

less than 10 atoms only. 
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Density functional theory (DFT) is a computational quantum mechanical approach, which is able 

to predict the total ground state energy 0E  for systems consisting of electrons and atomic nu-

clei up to several hundred atoms: 

 0 0
1

( ) ( )
| |

N NN N
el

Z Z
E Eα β

α α
α β α α β= >

= +
−∑∑R R

R R
. (4.6) 

0 ( )elE αR  is the ground state energy of an electronic system in presence of nuclei. According to 

the theorems of Hohenberg and Kohn [Hohenberg 1964] 0
elE  is a unique functional of the 

ground state electron density 0n : 

 0 0[ ]el elE E n= . (4.7) 

The functional consists of several terms like kinetic, Hartree, exchange and correlation energies, 

for details see [Vedmedenko 2007] or [Elsässer 1990]. Using the theorems of Hohenberg and 

Kohn the Schrödinger equation (4.5) containing many-particle wave function can be divided 

into eN differential equations with one-particle wave functions ( )iφ r : 

 ( ) ( ) ( )
2

,     1...
2 eff i i i e

e

V i N
m

φ ε φ
 

− ∆ + = ∈ 
 

r r
ℏ

. (4.8) 

This formulation describes a hypothetic system of eN  non-interacting electrons in an effective 

potential effV . The particle density of the hypothetic system is equal to that of the original set of 

interacting electrons: 

 ( ) ( ) 2| |in φ
=

=∑
eN

i 1

r r . (4.9) 

The effective potential effV  is a functional of the particle density: 
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Equations (4.8), (4.9) and (4.10) are called Kohn-Sham equations. Knowing xcE  they can be it-

eratively solved according to the following scheme: 

 
(0) (1) (1) ...eff in V nφ→ → → →  (4.11) 

From the solution the particle density and the ground state energy can be determined. 

 

In the course of DFT investigations within the project COMFEM it was found that the ground 

state of PZT within the utilized virtual crystal approximation is not exactly tetragonal but slightly 

monoclinic, which is in agreement with experimental observations [Völker 2011]. Therefore, 
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some components of the tetragonal material tensors for PZT cannot be obtained within the DFT 

scheme. Another example is given by properties of 90° domain walls, deformed because of the 

broken tetragonal symmetry and, therefore, inapplicable for the development of the phase-field 

model. Moreover, the dielectric constants cannot be estimated from the DFT simulations be-

cause of the difficulty to apply an electric field to a super cell with periodic boundary conditions. 

In order to overcome these problems, the DFT data have been used to develop parameters for a 

classical empirical shell-model of PTO and PZT with a strictly tetragonal equilibrium ground 

state.  

 

To illustrate the resulting effective elasticity and piezoelectricity tensors in the form of matrix 

arrays, the compressed matrix notation (also denoted as Voigt notation) is used: 

 ,   E E
ijkl pq ikl ipc c e e≡ ≡ . (4.12) 

According to this notation the indices i, j, k, l are replaced by p,q as shown in Table 4.1. 

ij or kl p or q 

11 1 

22 2 

33 3 

12 or 21 4 

13 or 31 5 

23 or 32 6 

4.2 Shell-model 

In the shell-model [Dick 1958] an ion consists of two hypothetical particles, a core and a shell, 

which imitate the atomic nucleus and electron shell, respectively. The core has a charge X and 

the mass of the corresponding atom, whereas the shell has a charge Y and no mass. The sum of 

X and Y is equal to the charge of the ion Z. The displacement between the core and shell repre-

sents polarization. Figure 4.2 shows a schematic illustration of the interactions between cores 

and shells of two arbitrary ions. 

Table 4.1:  Compressed matrix (Voigt) notation. 
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Three types of interactions are defined in the shell-model. The long-range interaction LRV  is 

represented by the Coulomb potential between cores and/or shells and by the interaction be-

tween dipoles and macroscopic electric field E : 
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(| |)

4 | |
i j

LR i i j
i

q q
V q q

πε
− = − + ⋅

−j i j
j

r r r r E
r r

. (4.13) 

Here, iq  and ir  denote the charge and the position of the core or shell respectively.  

The short-range SRV  interaction includes the van-der-Waals attraction vWV  and the overlap 

repulsion oV , which originate from the quantum mechanical Pauli principle: 
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Here ijA , ijρ  and ijC  denote the potential parameters, which determine the pair interaction 

between ions. The last, third type of interactions is represented by the non-linear spring poten-

tial between a core and a shell of an ion: 

 
2 4

2 4

1 1
( )

2 24CSV r k r k r= + , (4.15) 

where 2k  and 4k  are the spring parameters and r  the distance between the two hypothetic 

particles. The fourth-order anharmonic term is introduced to describe the effect of hybridization 

on the ionic polarizability of perovskite oxides [Shimada 2008]. 

 

Figure 4.2:  Interactions within the shell-model. 

Core i 

Ion i 

Shell i 

Core j 

Ion j 

Shell j 

N
o

n
-l

in
e

ar
 

sp
ri

n
g 

N
o

n
-l

in
e

ar
 

sp
ri

n
g 

Short range van-der-Waals  

attraction and overlap repulsion 

Long-range  

Coulomb interaction 



 71 

The total potential, which summarizes the interaction of a particle i with all other particles and 

an external electric field, equals   

 ( )i LR SR CS
j

V V V V= + +∑ . (4.16) 

Knowing iV  and equilibrium positions of cores and shells their dynamics can be estimated solv-

ing classical Newton’s equations: 

 
2

2i im V
t

∂ = −∇
∂ ir . (4.17) 

Furthermore, the knowledge of equilibrium particle locations ir  allows to derive the lattice con-

stants, thickness and energies of domain walls as well as the total polarization 

 ( )1
i j

j i

q q
V >

= +∑∑ i j
i

P r r  (4.18) 

of a crystal. Hereby V is the volume of the super cell containing cores and shells. Consequently, 

the effective dielectric constant ˆ
klε  can be estimated as 

 ˆ k
kl

l

P

E
ε ∂

=
∂

. (4.19) 

In the scope of the COMFEM-project the shell-model parameters ijA , ijρ , ijC , 2k  and 4k  for 

PTO and PZT were determined by fitting several materials properties obtained from the shell-

model to those derived from the DFT calculations. The target properties were lattice constants, 

equilibrium positions of atoms, energy differences between selected configurations (e.g. with 

and without certain stacking faults), Born effective charges, elastic constants and phonon fre-

quencies.  

4.3 Phase-field method 

This subsection is based on the thesis of B. Völker [Völker 2010], who developed the described 

phase-field model.  

 

The key quantity of the phase-field model utilized in the multi-scale simulation chain within the 

project COMFEM is the Helmholtz free energy ,( , , , )i i j ij iP P S DΨ , which describes an energy 

density per unit volume. The Helmholtz energy is a polynomial series expansion depending on 

the components of the polarization vector iP , the polarizations gradient ,
i

i j
j

P
P

P

∂
≡

∂
, the strain 

ijS  and the dielectric displacement iD . The energy functional consists of five parts: the Landau 
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energy Landauψ , the gradient energy gradψ , the electrostrictive coupling energy coupψ , the elastic 

energy elastψ  and the electric energy elecψ : 
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 (4.20) 

The Landau potential Landauψ  describes an energy landscape with a certain number of energeti-

cally equivalent global minima. These global minima define the states of spontaneous polariza-

tion. The spatial symmetry of the degenerated energy minima specifies the phase of the mate-

rial. For a tetragonal ferroelectric material like BTO, four equivalent minima are located in the x-

y-plane along the <100> and <010> axes (see Figure 4.3).  Two further equivalent minima are 

positioned along the <001> direction. Landau energy represents the potential of a bulk material 

in the absence of mechanical stress, electromechanical coupling and structural inhomogeneities 

(for example domain walls). In the scope of the project COMFEM the expansion of Landauψ  up to 

the sixth order has been implemented. 

 

 

The gradient energy gradψ  contributes in the cases, when the polarization changes spatially, e.g. 

in domain walls. Hence, it enforces formation of any polarization gradients including domain 

walls. elastψ  describes energy resulting from the applied external mechanical stresses, while 

Figure 4.3:  Three-dimensional representation of the Landau energy potential ( , )x yP Pψ  for a tetrago-

nal ferroelectric material [Völker 2010]. Four equivalent minima define the degenerated ground states 

of the spontaneous polarization in the x-y-plane. 



 73 

coupψ  takes into account the effect of mechanical loading on spontaneous polarization and 

strain. In a cubic phase (in absence of spontaneous polarization) elastψ  and coupψ  vanish when 

no mechanical fields are applied. In a homogeneously polarized material without any external 

mechanical or electrical loading elastψ  and coupψ  have the same value but different signs and, 

hence, cancel each other. The electric potential electψ  represents the energy of electric field, 

stored in the space occupied by the material. 

 

In the phase-field model temporal and spatial evolution of the polarization is governed by the 

Ginzburg-Landau equation, which requires minimization of the Helmholtz free energy. 

 
, ,

j
ij

i j ij

P

P P t
β

  ∂∂Ψ ∂Ψ− =  ∂ ∂ ∂ 
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According to [Völker 2011] the Helmholtz energy (4.20) is uniquely defined by the 15 independ-

ent coefficients, which are called 1 11 111 12 112 123, , , , , ,α α α α α α 11 12, ,G G  44,G 11 12 44, ,Q Q Q  and 

11 12 44, ,c c c . For the latter three elastic constants the Voigt notation has been used (see Table 

4.1). All these constants can be adjusted to physical properties obtained by DFT calculations in 

several steps presented in the following [Völker 2010]. 

 

The sensitivity study of the Helmholtz energy, where all model parameters have been slightly 

varied, has pointed out that the elastic constants 11 12,c c  and 44c  are completely decoupled 

from all other coefficients and can be directly transferred from the elastic stiffness tensor ob-

tained by DFT-calculations (see equation (4.2)): 

 ˆij ijc c= . (4.22) 

The electrostrictive coupling coefficients have been determined via the procedure described in 

[Devonshire 1954] from the spontaneous strains Ŝ� , Ŝ⊥  and spontaneous polarization 0̂P  ob-

tained in DFT-calculations: 

 11 2
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The curvature of the Helmholtz energy as a function of polarization defines the dielectric per-

mittivities 11ε̂  and 33ε̂  [Devonshire 1948]: 
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Introducing the Helmholtz free energy (4.20) into equation (4.24) for the homogeneously polar-

ized stress- and field-free state with magnitude of spontaneous polarization 0̂P  the Landau en-

ergy coefficients 1 111,α α  and 112α  can be expressed in terms of the 11α -constant [Völker 2011]. 

 

The Landau coefficient 11α as well as the gradient coefficient 44G  have been derived in the next 

step from two non-linear algebraic equations for the thickness 180ξ̂  and the energy 180γ̂ of a 

180° domain wall: 

 

1

0
180

3 1

1 0

ˆ2ˆ
( )

x

P

P x

x

ξ

=

=
∂

∂

, ( ) ( ) ( )( )( )180 3 1 3,1 1 11 1 1ˆ , , bulkP x P x S x dxγ
∞

−∞

= Ψ − Ψ∫ . (4.25) 

The first equation implements the geometrical definition of the domain wall thickness, see 

Figure 4.4.  bulkΨ  in the second equation symbolizes the equilibrium bulk energy density. 

 

 

 

Figure 4.4:  Polarization profile and  thickness 180ξ̂ of a 180° domain wall [Völker 2010]. 

Figure 4.5:  Polarization profile and  thickness 90ξ̂ of a 90° domain wall [Völker 2010]. 
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In the case of a 90° domain wall the Landau-Ginzburg equation (4.21) cannot be solved analyti-

cally. In order to overcome this difficulty the minimization of the Helmholtz energy can be car-

ried out numerically in a finite element formulation [Su 2007], where the components of the 

polarization iP , the mechanical displacement iu  and the electrical potential φ  are used as de-

grees of freedom. The domain wall thickness 90ξ  and energy 90γ  can than be calculated in the 

notation of Figure 4.5 from the following two equations: 
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 (4.26) 

For the calculation of 90ξ  and 90γ  an extended 2D-model has been utilized. In this model, three 

components of the polarization and three components of the mechanical displacement are im-

plemented as degrees of freedom, although the model is spatially confined to the two-

dimensional plane. The confinement of three-dimensional vectorial characteristics to the two-

dimensional geometry has been dictated by enormous computational effort required for three-

dimensional models. 

 

Sensitivity analysis [Völker 2010] has shown that the 90° domain wall properties depend on the 

energy coefficients 12α , 11G  and 12G . In particular, 12α  determines the height of the energy 

barrier between the neighboring minima, while 11G  and 12G  determine the shift, the thickness 

and the energy of a 90° domain wall. Hence, the coefficients 12α , 11G  and 12G  have been sys-

tematically varied, the stable polarization configurations, the ( )sP s  and ( )rP s  curves have 

been calculated. Domain wall thickness 90ξ  and energy 90γ have been then obtained using 

equation (4.26). The above described steps have been iterated until a set of Helmholtz coeffi-

cients is found that matches the predictions of DFT-calculations  90ξ̂  and 90γ̂ [Völker 2010]. 

 

According to [Völker 2010], the Landau energy coefficient 123α  has no influence on the tetrago-

nal material properties, but rather controls the energy barrier between neighboring minima of 

the Landau energy changing the height of the saddle point along the <111> direction. Parameter 

123α  has been chosen in such a way that the heights of the energy barriers in <110> and <111> 
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directions become identical. The last unknown coefficient 44Q  has been adjusted to match the 

piezoelectric coefficient 15d̂  obtained from the DFT simulations. Since in the described phase-

field approach the sixth order expansion of the Landau energy was implemented5 the 31d̂  and 

33d̂ -constants were not used in the adjustment, which restricts predictability of the multi-scale 

approach. 

 

For the evaluation of the small-signal parameters of the entire equilibrium domain configuration 

the average values of the stress iT , strain iS , electric field iE  and dielectric displace-

ment iD  tensors have been calculated from the nodal results as 

 ( )1 2 1 2

1
,i i

A

X X x x dx dx
A

= ∫ , (4.27) 

where A  is the area of the extended 2D-model in the 1x - 2x -plane. The dielectric and piezo-

electric constants 
S
ijε  and ikle  have been obtained via application of the electrical load iE while 

keeping the global strain constant as: 
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Correspondingly, the application of a mechanical load at a constant electric field yields the elas-

tic small-signal constants: 

 
ijE

ijkl
kl

T
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∂
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∂
. (4.30) 

The obtained results (see section 3.6) are given in Voigt notation (see section 4.1, Table 4.1). 

4.4 Micromechanical modeling 

The basic idea of the micromechanics is homogenization of the microstructure. Hereby the ho-

mogeneous material properties on the macro-scale have to be derived from the heterogeneous 

structure on the micro-scale. The region under investigation on the micro-scale has to be large 

enough to ensure the independence of the effective physical properties on the microstructure. 

                                                           

5
 due to the limited duration of the COMFEM project 
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At the same time the investigated sample has to be small enough to neglect the stress gradients 

on the macroscopic scale within the micro-region. A region which fulfills these requirements is 

called representative volume element. Geometrical modeling of the representative volume ele-

ment has been discussed in the previous chapter. In the present and following sections different 

physical modeling procedures of the representative volume element are introduced. 

 

An often used micromechanical approach for the determination of effective material parame-

ters is the self-consistent method of effective medium. In this model a micro component like a 

grain, a pore or a crack with a known elastic tensor 
Ic , dielectric tensor 

I
ε  and piezoelectric 

tensor 
Ie is surrounded by an infinitely large effective medium. This medium possesses effective 

material parameters 
*c , 

*
ε  and 

*e to be determined. According to [Dunn 1995] the required 

macroscopic effective material tensors depend on those of the inclusion 
Ic , 

I
ε  and 

Ie and on 

the so-called concentration tensors IA , 
Ia , IB  and 

Ib : 
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Hereby { }  represents an average over grain orientations weighted by the orientation distribu-

tion function ( ), ,w ζ ψ ϕ ; i.e. 
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Dunn and Taya derived the dependency of the concentration tensors on the material properties 

of the inclusion and on that of the effective medium [Dunn 1993]: 
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where 
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(4.34) 

In the latter equations * * * 1 * 1 * * 1− − −= =g d ε c e ε . eS , deS , deS  and dS  are the piezoelectric 

analog of the Eshelby’s tensor in elasticity (see [Dunn 1993]). Equations (4.31) with (4.33) and 

(4.34) are self-consistent and can be iteratively solved for the effective material parameters 
*c , 

*
ε  and 

*e .  

 

By means of the above presented method the influence of the aspect ratio of spheroidal grains 

on the effective material constants of BTO has been investigated in [Dunn 1995]. Differences 

between elastic coefficients for oblate and prolate grains of an unpoled ceramic were found to 

be small. The calculated effective dielectric constant of spherical and prolate grains (1400) lies in 

the range of the corresponding experimental value, while the same coefficient for the oblate 

grains is by more than 50% smaller. 

 

Nan and Clarke applied the self-consistent method in order to evaluate the effect of the grain 

shape and orientation on the effective piezoelectric properties of polarized BTO ceramics [Nan 

1996]. The piezoelectric modules have been found to be nonsensitive to a wide range of the 

grain shapes. 

 

Pertsev used an advanced self-consistent method of effective piezoelectric medium, “which 

takes into account the piezoelectric interactions between grains in full measure” [Pertsev 1998]. 

In this work besides the effective parameters for bulk BTO and PTO ceramics the influence of 

the two-dimensional clamping by the substrate on the ferroelectric thin films has been investi-

gated. The results are illustrated in Figure 4.6. 
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In the work of Pertsev as well as in the publication of Nan polarizations are assumed to be uni-

formly distributed within a cone with a threshold opening angle Eθ  around the applied electric 

field (see Figure 4.7). However, the prediction and physical motivation of the total remanent 

polarization as well as the corresponding polarization distribution seems to be impossible within 

this approach. For this reason all calculated material parameters in [Pertsev 1998, Nan 1996] are 

presented as a functions of the critical angle Eθ  or corresponding remanent polarization 
*

rP , 

while the expectation values of the material parameters are not discussed.   

Figure 4.6: Variations of the effective dielectric and piezoelectric coefficients as a function of the rema-

nent polarization for BTO and PTO thin films and bulk ceramics [Pertsev 1998]. 
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In [Fröhlich 2002] the next step has been made and the tetragonal symmetry of BTO has been 

taken into account for the determination of the polarization configuration. Initially, the polariza-

tion is distributed uniformly in this model. Then, the domains having Eθ θ>  switch into one of 

six crystallographic directions building the smallest angle with the applied electric field. In the 

present investigation the model [Fröhlich 2002] with 0Eθ = has been implemented. We ad-

dress this prescription for the polarization orientation as the “smallest (or least) angle model”.  

 

 

In [Fröhlich 2002] the procedure of homogenization was carried out by means of a numerical 2D 

finite element model instead of an analytical self-consistent method. A 2D representative vol-

ume element was filled with polygons (see chapter 3) and discretized with 2D finite elements. 

For all nodes coupled mechanical and electric field equations were solved: 

 
( )
( )

0

0.

E
ijkl kl ijk k

S
ijk kl ij j

c S e E

e S Eε

∇ ⋅ − =

∇ ⋅ + =
 (4.35) 

Figure 4.7:  Orientations of polarizations in the models of [Nan 1996], [Pertsev 1998], [Fröhlich 2002] 

and [Jayachandran 2007] are assumed to lie within a cone with opening angle θθθθ around the applied 

electric field. 

Figure 4.8:  Switching event of polarization direction (orange cylinder) in the „least angle model“.

E  

θ
 

E
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The mean values of elastic modules of 2D grain models from the Hard-core-Voronoi, Poisson-

Voronoi and Cluster-Voronoi tessellations (see chapter 2) were compared and no differences 

were found [Fröhlich 2002]. 

 

According to the above introduced models of the poling by an external electric field the thresh-

old angle Eθ  exists, which is considerably smaller than 90° at the late stages of poling, which 

means in the fully saturated or in the remanent state. In contrast, the models of polarization 

ensembles described in [Jayachandran 2008] and [Jayachandran 2009] assume that the Euler 

angle θ  of the polarization vector follows the normal (Gaussian) probability distribution func-

tion with 0 as the mean value: 

 ( )
2

221

2
f e

θ
σθ

σ π

−
= . (4.36) 

Here, the standard deviation σ  controls the distribution of polarization orientations. For 

0σ →  the ferroelectric domains are highly textured. In contrast, for σ → ∞  the polarizations 

configuration is isotropic. In the mentioned publications a maximum for the effective piezoelec-

tric coefficient 
*
33d in thin film and in bulk BTO ceramics has been found at 0.6σ ≈ , which is 

quite high textured (see Figure 4.9). Corresponding distribution function of the Euler angle θ   

and that of the z-components of polarization Pz in the direction of the applied electric field is 

plotted in Figure 4.9. Obviously, in this model orientations with 90θ > °  in the poled, highly 

anisotropic state are predicted. 
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Models from [Jayachandran 2009] provide identical polarization configurations for all materials 

at a certain value of the total remanent polarization, which might be false. In the next section 

we introduce the Huber-Fleck model. It allows to simulate the development of polarization con-

Figure 4.9:  Polarization distribution according to [Jayachandran 2008] and [Jayachandran 2009]. 
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figuration during a large-signal excitation in dependence on the material specific single-crystal 

constants, spontaneous strain, spontaneous polarization, switching energy etc.   

4.5 Calculations in the framework of the Huber-Fleck model 

The Huber-Fleck procedure is a constitutive model for the non-linear switching of ferroelectric 

polycrystals under a combination of mechanical stress and electric field [Huber 1999], [Huber 

2001]. In [Huber 1999], [Huber 2001] a self-consistent analysis has been performed in order to 

estimate the macroscopic response of tetragonal crystals. In the present work a three-

dimensional finite element simulation according to [Pathak 2009] is utilized. For the case of 

tetragonal polycrystals the model was implemented by L. Kunz [Kunz]. 

 

In the implementation of Pathak every polycrystalline grain is represented by the 8-noded cubic 

element. In our model single grains may have complex polyhedral shape (see chapter 3.3). For 

this reason they cannot be discretized by the regular cubical elements. Instead, 5 to 40 4-noded 

tetrahedral elements are located in a grain. Each finite element possesses four Gaussian integra-

tion points used to compute all necessary volume integrals. At every integration point volume 

fractions 
Ic  of domain type I are defined. In a tetragonal crystal there are 6M =  variants of 

polarization direction 1...6I =  and ( )1 30N M M= − =  switching systems (possibilities for 

the orientation switching).  

 

The load-depending change of the domain volume fractions 
Ic  is calculated in several steps. We 

call these loading steps also time steps. The size of a time step is adaptively varied during the 

large-signal excitation. At the loading level, at which many domains switch and the total strain 

as well as polarization grow rapidly, somewhat smaller steps have been used for the sake of 

convergency. In contrast, in the case when no switching took place, larger time steps were suffi-

cient. 

 

For each time step the calculations start with the values of stress tensor ijT , electric field iE , 

dielectric displacement iD  as well as domain volume fractions 
Ic  at each Gauss point. Further 

input parameters of the Huber-Fleck model are summarized in Table 4.2. At the beginning of the 

first loading step the volume fractions of polarization domains were assumed to be 



 83 

equal:
1 2 6 1

6
c c c= = = =… . Consequently, the stress and the strain at each Gauss point van-

ish. 

 

Input parameter Identifier 

Single-crystal stiffness tensor E
ijkls  

Single-crystal dielectricity tensor S
ijε  

Single-crystal piezoelectricity tensor 
ijkd  

Spontaneous polarization 0P  

Spontaneous strain 0S  

Critical driving force for a 90° domain switch 90
cG °

 

Critical driving force for a 180° domain switch 180
cG °

 

Scaling factor Bα  

Creep exponent n  

Hardening parameter 
0C  

 

At every time step mechanical and electrical field equations are solved. For the finite element 

implementation the finite element interpolation matrices for strain [ ]SB , displacement [ ]uA , 

electric field [ ]EB  and for electric potential Aφ    were defined, such that { } [ ]{ }S nS B u= , 

{ } [ ]{ }u nu A u= , { } [ ]{ }E nE B φ=  and { } { }nAφφ φ =   . Hereby { }nu  and { }nφ are the nodal 

displacements and the nodal values of the electric potential for the finite element model. By 

means of the interpolation matrices field equations can be written in the weak form 

 

[ ]{ } [ ] { }

[ ]{ } { } .

T

S u

V A

T

E

V A

B T dV A T dA

B D dV A q dAφ

′=

 =  

∫ ∫

∫ ∫
 (4.37) 

Here, { }T ′ is an array of surface traction components and q  is the surface charge density. 

 

With the effective stiffness matrix 

 [ ] [ ] [ ] [ ]1
ˆ

T

Fu S S

V

K B s B dV
−= ∫ , (4.38) 

the effective piezoelectric matrix 

Table 4.2:  Input parameters of the Huber-Fleck model.
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 [ ] [ ] [ ]1ˆ ˆ
T

qu E E

V

K B d s B dV
−   =   ∫ , (4.39) 

the effective capacitance matrix 

 [ ] [ ] [ ] [ ]1ˆ ˆˆ ˆ
TT

q E E

V

K B d s d B dVφ ε −      = −       ∫ , (4.40) 

the incremental nodal forces 

 { } [ ] { } [ ] { } [ ]1 ˆ ˆT T T R
n u S S

A V V

F A T dA B T dV B C S dV
ν ν −    ′∆ = − + ∆   ∫ ∫ ∫ , (4.41) 

and the incremental nodal charges 

 

{ } [ ] { }

[ ] [ ] [ ] { }

1

1ˆ ˆ ˆˆ            .

T T

n E

A V

T TR R
E E

V V

q A q dA B D dV

B d s S dV B D dV

νν
φ

−

−

 ∆ = − + 

   + ∆ − ∆  

∫ ∫

∫ ∫
 (4.42) 

equations (4.37) can be written as system of equations for the change of the nodal displace-

ments { }nu∆  and electric potentials { }nφ∆  during the loading (time) step ν : 

 
[ ]{ } { } { }

{ } { } { }.

T

Fu n qu n n

T

qu n q n n

K u K F

K u K qφ

φ

φ

 ∆ − ∆ = ∆ 

   ∆ − ∆ = ∆   

 (4.43) 

Tensors ŝ , d̂ , ε̂ , ˆ RS∆  and ˆ RD∆  originate from the previous loading step.  

 

Change of the strain S∆ and electric field E∆  as well as the new total strain Sν
 and electric 

field Eν at the loading step ν  for each Gauss point can be calculated from the solution of (4.43) 

as 

 
{ } [ ]{ }
{ } [ ]{ }

S n

E n

S B u

E B φ
∆ = ∆

∆ = ∆
 (4.44) 

 
{ } { } { }
{ } { } { }

1

1 .

S S S

E E E

ν ν

ν ν

−

−

= + ∆

= + ∆
 (4.45) 

For calculation of the input data for the next step S∆  , E∆  (equations (4.44)) and the opera-

tion rate f αɺ of switching system α   from the previous loading step are required. The value f αɺ  

describes how large the change of the volume fractions 
Ic  is.  The change of stress T∆ , dielec-

tric displacement D∆ , rate of operation f α∆  and domain volume fraction 
Ic∆ during the pre-

sent loading step in each Gauss point can be obtained via 
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{ } [ ] { } [ ] { } [ ] { }
{ } [ ] { } [ ] [ ] { } { }

( )

1 1

1 1

30

1

ˆ ˆˆ

ˆ ˆ ˆ ˆˆ

ˆˆ1

.

R

T
R

i i ij ij

I I

T s S s d E s S

D d s S d s d E D

n
f f t D E S T

G

c A f

α α α α
α

α α

α

ε

θ

− −

− −

=

 ∆ = ∆ − ∆ − ∆ 

      ∆ = ∆ − − ∆ − ∆       

 ∆ = ∆ + ∆ + ∆ 
 

∆ = ∆∑

ɺ
 (4.46) 

The matrix IA α  indicates, which domain I increases ( 1IA α = ), depletes ( 1IA α = − ) or remains 

unchanged ( 0IA α = ) in the course of the switching process α . 

The new values of stress, dielectric displacement and domain volume fraction are consequently 

 

{ } { } { }
{ } { } { }

1

1

, , 1 .I I I

T T T

D D D

c c c

ν ν

ν ν

ν ν

−

−

−

= + ∆

= + ∆

= + ∆

 (4.47) 

For each possible switching system α  the linear response of the strain ijSαɶ  and dielectric dis-

placement iDαɶ of the changed domains can be calculated as  

 

( )
( )

( ) ( )

( ) ( ) .

I E I I
ij ijkl kl kij k

I

I I T I
i ikl mn ik k

I

S A s T d E

D A d T E

α α

α α ε

= +

= +

∑

∑

ɶ

ɶ
 (4.48) 

Hereby 
( )E I

ijkls , 
( )I
ikld  and 

( )T I
ikε  are elastic, piezoelectric and dielectric tensors of the different 

domains I , which can be obtained from the single-crystal values 
E
ijkls , ikld , 

T
ikε  and Euler angles 

ψ , θ  , ϕ . If Euler angles describe transformation from the local coordinate system of the crys-

tal into the global coordinate system of the sample accordingly to the Z-X-Z convention (right-

handed rotation around the z axes by angle ψ , followed by the right-handed rotations around 

the new axes x’ by θ , and around the resulting z’’ axes by angle ϕ ), the rotation matrix is 

 

cos sin 0 1 0 0 cos sin 0

sin cos 0 0 cos sin sin cos 0

0 0 1 0 sin cos 0 0 1

M

ϕ ϕ ψ ψ
ϕ ϕ θ θ ψ ψ

θ θ

− −   
   = −   
   
   

. (4.49) 

Material tensors in the global coordinate system can be obtained as 

 

( )

( )

( )

,

,

.

T I T
ik ip kq pq

I
ikl ip kq ls pqs

E I E
ijkl ip jq ks lt pqst

M M

d M M M d

s M M M M s

ε ε=

=

=

 (4.50) 
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With non-linear contributions to the strain Sα∆  and polarization Pα∆  due to the switching 

process α , the total strain Ŝα
, and polarization P̂α  at the end of the switching process α  can 

be written as 

 
ˆ

ˆ .

S S S

P P P

α α α

α α α

= + ∆

= + ∆

ɶ

ɶ
 (4.51) 

The driving force leading to a specific switching α  is defined as 

 
1 1

2 2i i i ij ij ijG P D E S S Tα α α α α   = ∆ + + ∆ +   
   

ɶɶ . (4.52) 

Dependence of f αɺ  on the driving force Gα
is proposed [Kamlah 2005] as 

 

1n

c c

G G
f B

G G

α α
α α

α α

−
 

=  
 

ɺ . (4.53) 

Hereby Bα is a scaling factor, n  is a creep exponent and cGα
is the critical driving force. Reason-

able values for the creep exponent were identified to vary between 10 and 50. Accordingly to 

the relation (4.53) a switching event α occurs even in the case of cG Gα α< . However it is rather 

sluggish. In contrast, if cG Gα α>  the rate of operation is high. 

 

Using (4.48), (4.51), (4.52) and (4.53) one finds 
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 (4.54) 

where λ  is a weighting factor 0 1λ≤ ≤ . With tensors (4.54), rates of operation f αɺ , and do-

main volume fractions 
Ic  the next loading step can be carried out. 
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The macroscopic values of strain S , electric field E  and dielectric displacement D  for 

each time step ν  have been calculated from the nodal values { }S , { }E  and { }D obtained in 

(4.45) and (4.47) via integration over the volume V of the representative volume element: 

 

{ }

{ }

{ }

1
,

1
,

1
,  etc.

V

V

V

S S dV
V

E E dV
V

D D dV
V

=

=

=

∫

∫

∫

 (4.55) 

The effective piezoelectric 
*
33d  and dielectric 

*
33ε  material coefficients of a polycrystal have been 

obtained from these macroscopic mean values via numerical differentiation (similar to (4.28), 

(4.29) and (4.30)): 

 
3*

33
3

S
d

E

∂
=

∂
, (4.56) 

 
3*

33
3

D

E
ε

∂
=

∂
. (4.57) 

4.6 Multi-scale coupling 

In the present chapter practical procedures connecting the micromechanical Huber-Fleck simu-

lations with the DFT, shell-model and phase-field procedures are proposed in order to efficiently 

determine the effective macroscopic parameters of ferroelectric materials. Coupling of the four 

simulation scales is realized by means of the parameter transfer. Elastic, dielectric and piezo-

electric tensors, domain boundary energies and thicknesses calculated by means of DFT and 

atomistics are used as input and fit parameters in the phase-field simulations (see section 4.3). 

Subsequently, the results of the phase-field procedure accounting for the domain wall dynamics 

are used to identify the entry values for the micromechanical model. However, at the current 

stage of development of the multi-scale simulation chain not all phase-field results can be util-

ized in the Huber-Fleck model. Hence, input parameters from DFT and shell-model calculations 

have been utilizes as well. Several different multi-scale coupling schemes are proposed in the 

present section. They will be evaluated, compared with simulations based on the experimental 

input parameters and discussed in chapter 5. 
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4.6.1 Input data from experiments, DFT and atomistic calculations 

In the present section we start with the analysis of the experimental, DFT, shell-model and 

phase-field data available for the micromechanical simulations. 

 

BaTiO3 is one of the most studied ferroelectric materials. Since many experimental results are 

available for ceramic and single crystal BTO, it is very well suited for the evaluation of the Huber-

Fleck model. Unfortunately, no DFT, atomistic and phase-field calculations have been performed 

on BTO within the project COMFEM, where the focus laid on the PTO and PZT ferroelectrics. 

Therefore, all calculations on BaTiO3 have been performed using the experimental material con-

stants gathered in [Pertsev 1998] (see Table 4.3), while the spontaneous polarization Psp as well 

as a longitudinal strain ssp  stem from [Landolt 2001].  

 

For the micromechanical modeling of hysteretic behavior the critical energies of 90°-switching 

G90° and 180°-switching G180° are needed (see details in sections 2.2 and 4.5). These energies 

have been determined via following procedure. First, an ansatz for the energy released by a 

switching event has been defined as 

 Gα = ⋅ ⋅T ∆S + E ∆P , (4.58) 

where T  is the stress tensor, ∆S  is the tensor describing the change of the strain during the 

switching process, E  is the vector of electric field and ∆P  is the vector of the polarization 

change.  

 

In case of purely electrically loaded bulk ceramics the term ⋅ ∆T S  vanishes and the switching 

energy is directly correlated with the coercive electric field cE , since in the range of cE  most 

switches occur: 

 
max

cGα = ⋅ ∆E P . (4.59) 

Examples of 90° and 180°switching events with maximal energy benefit are depicted in Figure 

4.10 a), b).  
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From the equation (4.59) and Figure 4.10 the upper limit of the critical switching energies can be 

estimated as: 

 

90

180

2 ,

2 .

sp
c

sp
c

G P E

G P E

°

°

=

=
 (4.60) 

For calculation of G90°- und G180°- values for BTO, PTO and PZT crystals the strength of the coer-

cive field has been taken to be Ec = 1 kV/mm. 

 

Simulation parameters  BTO Experiment 

11
Sε  ( ) 1910 

33
Sε  117 

33d  (pC/N) 110 

31d  -38 

15d  407 

11
Ec  (GPa) 327 

12
Ec  233 

13
Ec  196 

33
Ec  199 

44
Ec  64.9 

66
Ec  107 

P
sp

 (C/m
2
) 0.25 

s
sp 

(-) 0.01 

G
90°

 (MJ/ m
3
) 0.35 

Figure 4.10:  90°- und 180°- switching with highest gain of energy. 
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The material constants for a single-domain PTO crystal have been derived by the project partner 

FhG-IWM in the framework of the DFT and shell-model calculations (see sections 4.1 and 4.2). 

They are collected and compared with experimental data in Table 4.4. In the following microme-

chanical calculations both theoretical as well as experimental coefficients have been used as 

input parameters. 

 

Simulation parameters 

PTO 

DFT / 

shell-model (a) 
Experiment 

11
Sε  ( ) 53

a)
 110 [Pertsev 1998] 

33
Sε  16

a)
 37 

33d  (pC/N) 122 160 

31d  -29 -26 

15d  99 56 

11
Ec  (GPa) 279 264 

12
Ec  118 149 

13
Ec  83 75 

33
Ec  99 56 

44
Ec  70 77.5 

66
Ec  109 132 

Psp (C/m
2
) 0.88 0.75 

ssp
 
(-) 0.05 0.05 [Landolt 2001] 

G
90°

(MJ/ m
3
)  0.7 

G
180°

  1 

 

Theoretically derived piezoelectric and elastic constants for PTO are very close to those obtained 

experimentally (see Table Table 4.4). This means that dynamical processes like, e.g., the domain 

wall motions, which are always present in the experimental studies but are neglected in the DFT 

Table 4.3:  Experimental constants for BTO used for simulations. 

 

Table 4.4:  Comparison of theoretically (DFT, shell-model) as well as experimentally [Pertsev 1998] ob-

tained single-crystal constants used in micromechanical simulations on PTO films and PTO ceramics. 
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calculations, are insignificant in PTO for ijd  and ijc  parameters. Recent investigations concern-

ing the reversible domain wall motion [Jones 2010] have shown that the dynamical domain wall 

contribution to the effective material constant *
33d  can be very weak as well as very strong de-

pending on circumstances. In section 5.4 it will be demonstrated that for PZT, on contrary to 

PTO, the dynamical contributions coming from the reversible motion of the domain walls have 

to be taken into account when calculating piezoelectric constants of this material.  

 

The dielectric constants for PTO used in micromechanics have been obtained within the shell-

model of atomistic calculations.  The data are much smaller than the experimental single-crystal 

values. Hence, we suppose that the domain wall contribution to ijε  parameters in PTO is con-

siderable. 

  

The material constants of a single domain PZT crystal are collected in Table 4.5. The dielectric 

constants derived within the shell-model are at least one order of magnitude smaller than ex-

perimental values for the bulk crystal. This fact gives a hint that the domain wall contribution to 

the ijε  coefficients of PZT is significant as well as in the case of PTO. In contrast to the PTO, the 

experimental material constants for PZT are not available. Hence, according to the work of A. 

Dent [Dent2007], we utilized the effective polycrystalline dielectric coefficients as single-crystal 

constants 
exp*ε . In contrast to the dielectric parameters, the piezoelectric constants determined 

by means of DFT are significantly closer to the experimental polycrystal values. Hence, 
DFTc  and 

DFTd were used as input constants in our calculations. 

 

The piezoelectric constants determined by the phase-field model (see section 4.3) considerably 

underestimate the DFT- and experimental values: they are more than eight times smaller. The 

main reason for this deviation is that the corresponding mesoscopic calculations have been per-

formed using the Landau-function of the sixth order only. The more recent tests have shown 

that the functional of eighth-order yields much better agreement between theoretical and ex-

perimental results [Völker 2011]. 

 

Simulation parame-

ters PZT 

DFT / 

shell-model (a) 
Phase-field 

Experimental values for bulk 

polycrystals used as single-

crystal values 

11
Sε  ( ) 76

a)
  630 
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33
Sε  18

a)
  585 

33d  (pC/N) 51 6.0 150 

31d  -12 -1.14 -20 

15d  159 9.4 250 

11
Ec  (GPa) 327  - 

12
Ec  175  - 

13
Ec  134  - 

33
Ec  276  - 

44
Ec  50  - 

66
Ec  92  - 

Psp 0.58   

ssp 0.015   

G
90°

 ; G
180°

 (MJ/m
3
) 0.7; 1

 
  

4.6.2 Linking phase-field simulations and micromechanical modeling 

TEM and AFM investigations (see Figure 2.8) have demonstrated that thin film ceramics usually 

contain two types of domains only. The possible domain configurations for this class of materials 

have been derived in [Romanov 1999] on an example of (111) thin films (see section 2.4). Ac-

cording to this study the polarization axes of the two domains types exhibit an angle of 90° with 

respect one to another. Assuming this polarization configuration as a thermodynamically ground 

state for samples under investigation an extended 2D phase-field model containing three com-

ponents of polarization, three components of displacement, electric potential as degrees of 

freedom and a FE-mesh confined to the 2D plane has been developed in cooperation with B. 

Völker (see Figure 4.11, [Völker 2010]). In the framework of this model material constants 

needed as input for the micromechanical simulations have been identified according to the de-

scription in section 4.3.  

 

Table 4.5: Comparison of intrinsic material constants for PZT obtained in the framework of different 

theoretical methods. 

1x  

3x  
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Equations (4.61)-(4.63) give the results of the phase-field modeling for the dielectric εPTO,PF, the 

piezoelectric ePTO,PF and the elastic cPTO,PF tensor of a two-domain system. The absolute values of 

ε
PTO,PF and cPTO,PF tensor elements lie in the range of experimental material constants. The struc-

tures of different tensors, however, show considerable deviations. 

 
,

97 0 73

0 39 0

73 0 97

PTO PF

− 
 =  
 − 

ε  (4.61) 

 
,

9.92 0.295 7.836 1.039 0 0

0 0 0 0 1.094 1.094

7.836 0.295 9.92 1.039 0 0

PTO PF pC

N

− 
 =  
 − 

e  (4.62) 

 
, 11

2.03 1.22 2.03 0 0 0

1.22 3.39 1.22 0 0 0

2.03 1.22 2.03 0 0 0
10

0 0 0 0.875 0 0

0 0 0 0 1.0 0

0 0 0 0 0 1.0

PTO PF Pa

 
 
 
 

= ⋅ 
 
 
  
 

c  (4.63) 

The permeability tensor possesses off-diagonal elements. The reason for their existence is the 

motion of the domain walls and, hence, microscopic switching of individual grains. 

 

When dipoles in a ferroelectric sample switch their direction, the components of dielectric dis-

placement iD  are composed of two contributions: the linear part 
L
iD  and the remanent part 

R
iP  

 
L R

i i iD D P= + . (4.64) 

 Consequently, the dielectric permeability calculated with the phase-field method is given by 

 

L R R
PF Li i i i
ij ij

j j j j

D D P P

E E E E
ε ε∂ ∂ ∂ ∂

= = + = +
∂ ∂ ∂ ∂

. (4.65) 

For the two-domain model depicted in Figure 4.11 

 

11 33
3 1

11 11

33 11

0 0 0 0

0 0 0 0

0 0 0 0

SM SM

L SM SM

SM SM

c c

ε ε
ε ε

ε ε

   
   = ⋅ + ⋅   
   
   

ε , (4.66) 

Figure 4.11:  Phase-field model of a double-domain structure. 
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where 
SM
ijε  are the dielectric coefficients calculated with the shell-model (see section 4.2), 

1c  

and 
3c  are the volume fractions of the both domains. For small magnitude of the applied elec-

tric field  
1c  and 

3c  can be assessed as 
1 3 0.5c c= = . 

 

Since 2 0P =  in the two-domain model  

 2 0
i

P

E

∂
=

∂
 for 1,2,3i = . (4.67) 

Further, a small variation of 2

0

0

E

 
 
 
 
 

 does not affect domains with 

1

0

0

P 
 
 
 
 

 and 

3

0

0

P

 
 
 
 
 

. Hence, 

 31

2 2

0
PP

E E

∂∂
= =

∂ ∂
. (4.68) 

Assuming that the domain wall thickness remains unchanged during an infinitesimal domain 

wall motion, the increase of one domain due to the switching process should be equal to the 

decrease of another domain: 

 3 1

1 1

P P

E E

∂ ∂
= −

∂ ∂
 and 31

3 3

PP

E E

∂∂
= −

∂ ∂
. (4.69) 

With (4.67), (4.68) and (4.69) the non-linear contribution to the permittivity for the discussed 

two-domain sample reads 

 

1 1 1
31

1 2 3
1 3

2 2 2

1 2 3
31

3 3 3
1 3

1 2 3

0

0 0 0

0

P P P
PP

E E E
E E

P P P

E E E
PP

P P P
E E

E E E

 ∂ ∂ ∂
∂∂   −∂ ∂ ∂    ∂ ∂  ∂ ∂ ∂∂

 = = 
∂ ∂ ∂ ∂    ∂∂   −∂ ∂ ∂  ∂ ∂    ∂ ∂ ∂ 

P
E

.  (4.70) 

Introducing equations (4.66) and (4.70) into (4.65) leads to a relationship between the dielectric 

phase-field- and shell-model-tensors: 

 

31

1 311 33

11 11

33 11 31

1 3

0
0 0 0 0

0.5 0 0 0.5 0 0 0 0 0

0 0 0 0
0

SM SM

PF SM SM

SM SM

PP

E E

PP

E E

ε ε
ε ε

ε ε

∂∂ −     ∂ ∂    
 = ⋅ + ⋅ +   
     ∂∂     − ∂ ∂ 

ε .(4.71) 
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 Now, relation (4.71) allows to extract the contributions of the domain wall motion to the dielec-

tric constants 1

1

P

E

∂
∂

and 3

3

P

E

∂
∂

. In the above described two-domain model these contributions for 

PTO are equal  

 31

1 3

73
PTOPTO

PP

E E

   ∂∂
= =  ∂ ∂   

. (4.72) 

In reality the two contributions might be different. 

 

The relationship between the results of DFT- and phase-field description of piezoelectric tensors 

can be obtained in a similar manner: 

 

15

15

31 31 33

31 31 33

15

15

31

1 3

31

1 3

0 0 0 0 0

0.5 0 0 0 0 0

0 0 0

0 0 0

      0.5 0 0 0 0 0

0 0 0 0 0

0 0 0 0

       0 0 0 0 0 0 .

0 0 0 0

DFT

PF DFT

DFT DFT DFT

DFT DFT DFT

DFT

DFT

d

d

d d d

d d d

d

d

SS

E E

SS

E E

 
 = ⋅ + 
 
 

 
 + ⋅ + 
 
 

∂∂ − ∂ ∂ 
 +
 ∂∂ − ∂ ∂ 

d

 (4.73) 

Via this ansatz the contribution of the domain wall motion to the piezoelectric constants  1

1

S

E

∂
∂

 

and 3

3

S

E

∂
∂

 can be separated.  

 

Tensor 
PFd  has to be estimated from (4.62) and (4.63) according to (2.7) as 

 ( ) 1−
=PF PF PFd c e . (4.74) 

However, 
PTO,PFc  has a vanishing determinant. Consequently, the tensor 

PTO,PFc is not invert-

ible. The reason for such a behavior is hidden in the vanishing stiffness of the idealistic two-

domain configuration during shear deformation in the 1 2y y− -plane (see Figure 4.12). The cor-

responding shear stress is almost completely released by the domain wall motion in 1y -

direction. Incorporation of defects or charged impurities into the model might lead to more 
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realistic results with a finite stress during shearing. However, an appropriate theoretical descrip-

tion is not yet available.  

 

 

To eliminate this problem several approaches can be applied. One possibility would be a direct 

introduction of the intrinsic constant from the DFT or atomistic calculations. Such a procedure 

can be motivated by the similarities between the experimental and DFT simulated c and d ten-

sors (see section 4.6.1). However, the dielectric constants obtained by the shell-model are sig-

nificantly lower than the corresponding experimental single-crystal values. Hence, another pos-

sibility is to perform a mixed multi-scaling analysis by introduction into the micromechanical 

calculations the piezo- and elasticity constants stemming from the DFT calculations together 

with the permeability tensor obtained in the phase-field scheme.  

 

Referring to the latter approach two different possibilities are proposed in the present thesis. 

For linear calculations of polycrystal consisting of single-domain grains we propose to use the 

PF
ε  tensor as it comes out of the phase-field calculations. For Huber-Fleck calculations, in con-

trast, new single-crystal dielectric constants *
11
PFε and *

33
PFε  have to be defined. According to the 

ansatz (4.65), these constants are assumed to be a sum of dielectric parameters obtained within 

the atomistic shell-model *
11
PFε and *

33
PFε  and the domain wall contributions 1

1

P

E

∂
∂

and 3

3

P

E

∂
∂  

com-

ing from the phase-field approach.  

 

* 1
11 11

1

* 3
33 33

3

,

.

PF SM

PF SM

P

E

P

E

ε ε

ε ε

∂
= +

∂
∂

= +
∂

 (4.75) 

In the case of PTO one gets  

 

*,
11

*,
33

126,

89.

PF PTO

PF PTO

ε
ε

=

=
 (4.76) 

The first constant in equation (4.76) lies very close to experimentally determined single-crystal 

values 110 [Pertsev 1998] und 115 [Gavrilyachenko 1971]. The second matrix element , *
33
PTO PFε  

Figure 4.12:  Shear leading to practically resistance-less motion of the domain walls. 

2y  

1y  
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obtained with this procedure overestimates the corresponding experimental data 37 [Pertsev 

1998] and 51 [Gavrilyachenko 1971].  

 

The complete dielectric tensor resulting from the phase-field calculations for the two-domain 

PZT-model reads 

 
,

407 0 372

0 42 0

372 0 407

PZT PF

− 
 =  
 − 

ε . (4.77) 

 

According to the relation (4.71), the domain wall contributions for PZT can be estimated as  

 31

1 3

372
PZTPZT

PP

E E

   ∂∂
= =  ∂ ∂   

. (4.78) 

This value is considerably higher than that of PTO. Using (4.78) and the shell-model results (see 

Table 4.5) we obtain with (4.75) 

 

, *
11

, *
33

448,

390.

PZT PF

PZT PF

ε
ε

=

=
 (4.79) 

The elasticity tensor calculated by means of the phase-field model for PZT is, similarly to PTO, 

singular. For that reason it is not possible to determine the piezoelectric d tensor as well as 

corresponding domain wall contributions 1

1

S

E

∂
∂

 and 3

3

S

E

∂
∂

 : 

 
, 11

2.285 1.082 2.284 0 0 0

1.082 3.636 1.082 0 0 0

2.284 1.082 2.285 0 0 0
10 ,

0 0 0 0.936 0 0

0 0 0 0 0.8335 0

0 0 0 0 0 0.8335

PZT PFc Pa

 
 
 
 

= ⋅ 
 
 
  
 

 (4.80) 

 
,

21.528 0.114 20.425 0.383 0 0

0 0 0 0 0.395 0.395 .

20.425 0.114 21.528 0.383 0 0

PZT PFe

− 
 =  
 − 

 (4.81) 

Material data presented in section 4.6 partly differs from that published in [Völker 2010]. One 

reason for this deviation is usage of different coordinate systems. A further reason is origination 

of material data from distinct development stages of project partners. Meanwhile in [Völker 

2010] the latest results from DFT, shell-model and phase-field simulations could be published, 

the micromechanical calculations, which were developed simultaneously to the nano-scale 
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models, used the preliminary material constants from a previous development stage. Due to the 

time restriction of the project COMFEM, the repetition of all micromechanical simulations with 

latest material data was not possible and, considering practical benefit, not reasonable.
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5 Simulation results 

5.1 Setup of micromechanical simulations 

The microstructural evolution and electromechanical behavior of polycrystalline materials can 

be successfully studied in the framework of micromechanical simulations. While the microme-

chanical simulations of bulk grained structures is a well developed area of scientific research, 

the literature on micromechanical simulations of thin ceramic films is very limited. To make a 

first step along this line we explore two different possibilities: the non-linear simulations accord-

ing to the so-called Huber-Fleck procedure (see section 4.5), and a linear FE-model (see equa-

tions (4.35)), where the polarizations are oriented according to “the model of least angle” (see 

Figure 4.8).  The variety of input parameters utilized in both simulation methods are summa-

rized in Table 5.1. 

 

 The following sections document preparatory investigations necessary for the setup of micro-

mechanical simulations on ceramic materials. Here, such interesting and so far non-treated 

questions as the influence of the grain shape on the results of non-linear Huber-Fleck calcula-

tions will be discussed. 

5.1.1 Influence of the boundary conditions 

Different kinds of boundary conditions have been investigated in the present work. For the bulk 

structures the condition “ =T 0  at the sample surface” (see Figure 5.1 a) has been compared 

with periodic boundary conditions in three directions (see Figure 5.1 b):  

 

1 1

1

1.

i i j j
x x x x

i i
y y

i i
z z

u u u u

u u

u u

+ +

+

+

− = −

=

=

 (5.1) 

Input data for single-crystal constants 
Material 

Linear piezoelectric Huber-Fleck 

BTO c
Exp

, d
Exp

, ε
Exp

 c
Exp

, d
Exp

, ε
Exp

 

PTO cExp, dExp, εExp c
DFT

, d
DFT, εSM c

DFT
, d

DFT
, ε

PF
 c

DFT
, d

DFT
, ε

PF* 
c

Exp
, d

Exp
, ε

Exp
 c

DFT
, d

DFT
, ε

SM
 

PZT c
DFT

, d
DFT, εSM c

DFT
, d

DFT
, ε

PF
 c

DFT
, d

DFT
, ε

PF* 
c

DFT
, d

DFT
, ε

SM
 

Table 5.1:  Overview of the performed calculations and corresponding input parameters. 
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For the calculated effective dielectric and piezoelectric coefficients no differences between two 

boundary condition types have been found. The most calculations on bulk structures were per-

formed with boundary conditions from Figure 5.1 a. 

 

For the thin film structures three different possibilities of clamping depicted in Figure 5.2 have 

been tested. Linear as well as non-linear calculations demonstrate equal behavior for the clamp-

ing cases a and c from Figure 5.2  as shown in Figure 5.3. Results obtained with boundary condi-

tions as shown in Figure 5.2 b offer non-realistic deformations at the free sample edges, which 

are perpendicular to the substrate. This finding is consistent with results obtained in [Zalachas 

2008]. In thin film simulations boundary conditions from Figure 5.2 a) were utilized. Additionally, 

due to the different coefficients of thermal expansion for substrate and thin film materials a 

non-zero strain at the boundaries and so a tensile stress parallel to the substrate is applied. 

Figure 5.1:  Two types of boundary conditions for the modeling of bulk materials: a) stress-free at the 

sample surface; b) periodic boundary conditions in three directions. 

a) b) 

z 

i  1i +  

j  1j +  x 
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Figure 5.4 shows the influence of the above described clamping (Figure 5.2 a) on the simulated 

strain hysteresis for a BTO sample. The curve corresponding to the clamped sample becomes 

flatter and the low-signal-
*
33d  smaller. This result is obvious as the clamped sample is restricted 

to contract in the plane parallel to the substrate. This contraction is, however, necessary for a 

Figure 5.2:  Three types of boundary conditions for the modeling of thin polycrystalline films, bounda-

ries B1 and B2 are parallel to the drawing plane: 

a) Displacements in z-direction at the sample-substrate interface as well as in x- and y-directions of the 

sample edges perpendicular to the substrate are fixed; 

b) Displacements at the substrate-sample interface only are fixed (has been proven to be inapplicable); 

c) All displacements at the sample-substrate interface are fixed, periodic boundary conditions at the 

sample edges which are perpendicular to the substrate. 

Figure 5.3:  Influence of the periodic boundary conditions on the ferroelectric hysteresis of a (111)-

textured thin film with two types of boundary conditions. 
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large deformation in the direction perpendicular to the substrate as in the case of the non-

clamped bulk samples. 

0 1 2 3 4

0.0

0.5

1.0  non-clamped
 clamped

st
ra

in
 [‰

]

electric field [kV/mm]  

 

5.1.2 Creep parameter and direction of loading  

The creep parameter n  of the Huber-Fleck model defines alongside with the critical switching 

energy the activity of a switching process (see section 4.5). In [Pathak 2008] the creep constant 

50n =  has been used for a hypothetic model of polycrystal. In the present work we were able 

to show that many physical properties like ferroelectric and ferroelastic response in the range  

between 10n =  and 50n =  are almost identical, while for 10n <  significant changes occur as 

shown in Figure 5.5. Hence, in our simulations the creep parameter 10n =  has been utilized.  

This finding permits to achieve a strong reduction of computational time without loss of the 

reliability of results.  
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Figure 5.4: The effect of the clamping on the strain hysteresis on an example of a BTO sample. 

Figure 5.5:  Influence of the creep parameter on the strain and the dielectric field as a function of ap-

plied electric field for an unclamped BTO. 
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Additionally, the influence of the direction of electrical loading can be clearly seen in Figure 5.5. 

The slope of curves in the range of zero electric field depends on the sign of the field gradient: 

for 0E∇ <  before achieving the remanent point at 0
kV

E
mm

= the slope is higher than for 

0E∇ >  after achieving the remanence. The effective macroscopic constants have been deter-

mined from the latter slope. 

5.1.3 Influence of the number of grains in the volume element 

In order to ensure the reliability of results the influence of the grain number used in our micro-

mechanical simulations has to be investigated. The effect of the number of different grain orien-

tations in the representative volume element on the results of the calculations has been studied 

in the present work for several idealized samples. Two examples of structures with different 

grain number are given in Figure 5.6, while the polarization and strain hysteresis curves are 

shown in Figure 5.7.  Resulting material parameters are collected in Table 5.2. The effective di-

electric and piezoelectric constants as well as remanent polarization of a clamped and un-

clamped 16- and 100-grain model do not show any significant differences. Merely the remanent 

strain of the 100-grain unclamped model is smaller than that of the unclamped 16-grain model. 

For the clamped thin film, however, this value is identical in samples with different grain density. 

Therefore, for the sake of reduction of the CPU time the most simulations has been performed 

on the basis of the smaller model, while in critical cases the results have been checked on the 

100-grain sample.  

 

At first glance the sufficient statistical weight of polarization distribution for a sample consisting 

of 16 grains might seem surprising. One has, however, to keep in mind that each grain consists 

of at least five finite elements, and that each element allows for six polarization orientations.  As 

these orientations multiplied with domain volume fraction can be combined to any orientation 

of the element (see equation (4.54)) the entire sample containing at least 80 elements, in turn, 

possesses a big manifold of polarization directions. Therefore, in total one gets a representative 

sample of a polycrystal with a model consisting of 16 grains only.  
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16 columnar grains 100 columnar grains 
 

unclamped clamped unclamped clamped 

*
33ε  (-) 1240 1140 1230 1140 

*
33d  (pC/N) 124 45 122 45 

Prem (C/m2) 0.13 0.12 0.13 0.12 

srem (-) 0.3 0.01 0.17 0.01 

Figure 5.6:  Polycrystalline models: a) 16 columnar grains; b) 100 columnar grains. 

Figure 5.7:  Polarization- and strain-hysteresis of several BTO samples with different number of grains. 
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5.1.4 Influence of the mesh size 

Another important parameter for the quality of the micromechanical calculations, apart from 

the number of grains with different crystal orientations in a sample, is given by the number of 

finite elements in each grain. The influence of the mesh size is discussed on the example of 

clamped thin films shown in Figure 5.8 and Table 5.3. A somewhat considerable deviation be-

tween the coarse- and fine-meshed samples has been found only for values of the remanent 

strain. Apart from that the deviations were less than 12%, which permits us to use the coarse 

mesh for determination of dielectric and piezoelectric constants as well as remanent polariza-

tion without loss of accuracy but with a great gain in the computational efforts. One possible 

reason for the differences in physical parameters calculated on the basis of models with fine- 

and coarse meshing is the first degree of polynomials used as shape functions for nodal dis-

placements and electric potentials in the FEAP implementation of the Huber-Fleck law. 
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 5 elements per grain 30 elements per grain 

*
33ε  (-) 890 800 

*
33d  (pC/N) 55 58 

Prem (C/m2) 0.16 0.17 

srem (-) 0.110 0.160 

Table 5.2:  Comparison of the effective dielectric and piezoelectric constants as well as the remanent 

polarization and strain of two BTO samples consisting of 16 and 100 grains (see Figure 5.7). 

Figure 5.8:  Polarization- and strain hysteresis curves calculated for a clamped BTO thin film consisting 

of 16 columnar grains. 

 

Table 5.3:  Comparison of the effective dielectric and piezoelectric constants as well as remanent polari-

zation and strain of two clamped BTO samples with coarse- (5 elements per grain) and fine-meshing (30 

elements per grain). 
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Calculations with the linear piezoelectric model with “least angle” polarizations (see equations 

(4.35) and Figure 4.8 in section 4.4) have been performed by means of the software ANSYS. Sin-

ce the linear model is numerically very fast, polynomials of second degree used as shape func-

tions for degrees of freedom and a fine meshing (more than 30 elements per grain) could been 

utilized in ANSYS calculations. The deviations for effective dielectric and piezoelectric coeffi-

cients obtained with different mesh densities are negligible (<1%) in these calculations (see 

Figure 5.9).   
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5.1.5 Effects of the realization of crystal orientations in a polycrystal 

The distribution of orientations of crystallites in a polycrystal is typically random. In our simula-

tions a standard uniform random number generator has been used to ensure the arbitrariness 

of the orientation realization. In the following we check whether the generated realization influ-

ences the results of calculations. Two different realizations of ensembles of 16 crystallites are 

shown in Figure 5.10. Here, each green multi-arm represents the occupied polarization direc-

tions. The arm lengths correspond to the domain volume fractions 
Ic (see section 4.5).  The 

polarization and strain hysteresis curves of three different orientations realizations are depicted 

in Figure 5.11. The three curves in both cases are almost identical. It means that in the frame-

work of Huber-Fleck calculations already 16-grain samples give a representative statistics of 

polarization orientations.  

Figure 5.9:  Influence of the mesh size on the piezoelectric constant 
*
33e  within the linear piezoelectric 

model with “least angle” polarizations performed within the ANSYS package. 
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5.1.6 Effect of the texture 

The polarization hysteresis of a texture free and a (111)-textured polycrystal are compared in 

Figure 5.12. The slope of the hysteresis curve for the perfectly (111)-textured sample shows 

drastic changes with respect to that of the untextured one. The change of the direction of load-

ing close to remanence in the texture-free model leads to the change of the slope gradient. In 

the perfect (111) texture, in contrast, the change of the loading direction does not influence the 

shape of the hysteresis curve at remanence. Moreover, the ferroelastic hysteresis of an exactly 

(111)-textured sample is linear and hysteresis free as shown in Figure 5.13, because the allowed 

 

Figure 5.10:  Two realization of orientation of crystallites in a polycrystal consisting of 16 grains. 

Figure 5.11:  Polarization and strain hysteresis of three different realizations of a BTO sample consisting 

of 16 crystallites. 
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90° and 180° domain processes (tetragonal phase) do not change the remanent strain for this 

structure. 

 

In order to show the influence of the non-perfect (111) fiber texture, which is closer to reality, a 

random uniform deviation from the perfect texture of maximal 10° has been introduced in the 

model. Consequently, the hysteresis becomes softer (see Figure 5.14).  

-4 -2 0 2 4

-0.2

-0.1

0.0

0.1

0.2

di
el

ec
tr

ic
 d

is
pl

ac
em

en
t [

C
/m

2 ]

electric field [kV/mm]

 (111)-texture
 no texture

 

-2 -1 0 1 2

-200

-100

0

100

200

in
-p

la
ne

 s
tr

es
s 

[M
P

a]

strain [‰]

 no texture
 (111)-texture

 

Figure 5.12:  Influence of the texture on the polarization hysteresis. 

Figure 5.13:  Comparison of the ferroelastic hysteresis of a texture free and a (111)-textured model. 
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5.1.7 Influence of the spontaneous strain 

The impact of the spontaneous strain on the ferroelectric as well as ferroelastic hysteresis cur-

ves is shown in Figure 5.15 and Figure 5.16. Under electrical loading (Figure 5.15) remanent 

strain and polarization of a sample with smaller spontaneous strain are higher than the corre-

sponding parameters of a model with larger spontaneous strain. In contrast, under mechanical 

loading (Figure 5.16) remanent strain of a sample with smaller spontaneous strain is less than 

the corresponding value of a model with larger spontaneous strain. Results of this sort can be 

used to design materials with desired properties. 
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Figure 5.14:  Influence of the texture accuracy on the shape of the hysteresis curve. 

Figure 5.15: Influence of the strength of spontaneous polarization on the strain on an example of an 

unclamped BTO sample. 
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5.1.8 Effect of the grain shape 

An essential question is how the modeled hysteretic properties of the ceramics depend on the 

grain shape. To address this issue the polarization and strain hysteresis of three polycrystalline 

samples with different grain shape (see Figure 5.17) have been calculated. They are compared in 

Figure 5.18, while the corresponding effective material constants are summarized in Table 5.4. 

The hysteresis curves as well as the calculated coefficients do not show any significant depend-

ence on the grain shape. This result is consistent with previous investigations within alternative 

theoretical methods [Dunn 1995], [Qui 1991] and [Nan 1996]. One possible reason for this find-

ing is the fact that no special physical properties were assigned to the grain boundaries beyond 

different lattice orientations of the adjacent grains. 

 

       

 

a) 108 idealized equiaxial 

grains 

b) 91 realistic columnar 

grains 

c) 86 realistic equiaxial grains  

 

Figure 5.16:  Stress-strain correlation for an unclamped BTO sample. 

Figure 5.17:  Models of polycrystals with different grain shapes. 
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BaTiO3 
108 idealized 

equiaxial grains 

84 realistic equia-

xial grains 

91 realistic colum-

nar grains 

*
33ε  (-) 1150 1140 1130 

*
33d  (pC/N) 44 44 43 

5.2 Investigations of BaTiO3 

5.2.1 Bulk crystal 

The effective material tensors of a polycrystal are determined by the polarization distribution of 

individual grains. Therefore, the domain volume fractions, describing the occupation of domains 

polarized in different directions within the Huber-Fleck model, are one of the most important 

characteristics of a ferroelectric polycrystal. In an unpoled polycrystal the configuration of po-

larization is known: all domain types are more or less equally occupied. Hence, the “least angle” 

model as well as Huber-Fleck calculations provides similar dielectric constant, comparable to the 

experimental value (see Table 5.5). The piezoelectric coefficients of an unpoled ceramic are 

equal zero. 

 

Figure 5.18:  Influence of the grain shape on the hysteretic properties of polycrystals. 

 

Table 5.4: Comparison of effective material constants of three polycrystals with different grain shape. 

The studied shapes are presented in Figure 5.17. 
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Present work Method of eff. piezoel. me-

dium (Pertsev 1998) BaTiO3 bulk 
“Least angle” Huber-Fleck 

Prem/Psp=0.8 Prem/Psp=0.5 

Experimental results 

 *
33ε  (unpoled)(-) 1300 1300±60 - - 1400 

*
33ε  (-) 490±3 1240 800 1300±100 1420 [Jaffe 1958] 

*
33d  (pC/N) 117±1 120 110±10 110±10 

190 [Jaffe 1958] 

130 [Bechmann1966] 

Prem (C/m2) 0.8 Psp=0.19 0.5 Psp=0.12 - - 0.08 [Jaffe 1958] 

 

 In a poled state the configuration of domains is not generally known: different theoretical mod-

els propose miscellaneous ensembles of polarizations. A typical configuration of polarizations 

for an unclamped (bulk) BTO sample at remanence calculated within the Huber-Fleck-Model is 

shown in Figure 5.19. Since only six orthogonal polarization directions are allowed in each grain 

there is no possibility to completely align the polarization of a polycrystal in the direction of the 

applied electric field (z-axis). Nevertheless, it is expected that at high strength of electric field 

close to the saturation the grains will be polarized along the directions making the smallest pos-

sible angle with the z-axis.  Furthermore, within the so-called model of the “least angle” a similar 

polarization configuration is expected to persist in the remanent state. Figure 5.19 demon-

strates, however, that some domains exist which are oriented at rather large angle or even per-

pendicular to the applied electric field in the saturated as well as in the remanent state. The 

physical reason for this phenomenon is probably the complex electromechanical interaction 

between the multi-domain grains yielding the state of minimal energy. Due to this nontrivial 

distribution of polarizations the large single-crystal dielectric constant ε11=1910 significantly 

contributes to the effective dielectric constant *
33ε . Consequently, the results obtained within the 

Huber-Fleck procedure ( *
33ε (Huber-Fleck) = 1240) are much closer to experimental value ( *

33ε (ex-

periment) = 1400) than that of the model of the least angle ( *
33ε (least angle) = 490) as shown in 

Table 5.5. 

 

The difference in the polarization configurations of the poled state for the above described two 

models becomes clearer after statistical analysis in Figure 5.20. The average value of the normal-

ized polarizations Pz/Psp in the “least angle” model equals approximately 0.8 for the remanent 

state, while the same quantity calculated in the framework of the Huber-Fleck-scheme is about 

Table 5.5:  Comparison of the material constants of bulk BTO calculated within different theoretical 

methods and obtained experimentally. 
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0.5. In the present work these values have been identified as the normalized remanent polariza-

tion. The Huber-Fleck result is significantly closer to the experimental magnitude of remanent 

polarization than the corresponding “least angle” outcome (see Table 5.5). 

 

a) saturated state 

 

b) remanent state 
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a) “least angle” model b) the Huber-Fleck model 

<Pz/Psp>= 0.8 <Pz/Psp>= 0.5 

Figure 5.19:  Configuration of the domain volume fractions in the saturated (a) and in the remanent (b) 

state. 

,z E  
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The dependence of the effective material constants on the remanent polarization has been 

studied theoretically in [Pertsev 1998], [Jayachandran 2009], [Rödel 2003] and [Nan 1996]. The 

direct comparison of their data with experimental values, however, seems to be barely possible 

because theoretical data on the polarization or texture angle at the remanent state are not avai-

lable. Hence, the averaged remanent polarizations determined within the linear “least angle” 

model and non-linear Huber-Fleck model (see Figure 5.20) were used to obtain the effective *
33ε  

and 
*
33d  constants of a poled BTO bulk ceramic from the curves of alternative theoretical me-

thod [Pertsev 1998]. These values are compared with theoretical results obtained in the present 

work as well as with experimental data in Table 5.5. The values of effective 
*
33d  coefficients ob-

tained from different theoretical procedures are similar. The corresponding experimental values 

found in the literature vary considerably. The range of variation includes theoretical predictions. 

The effective dielectric constant for <Prem/Psp>=0.5 determined from the method of effective 

piezoelectric medium [Pertsev 1998] is of order of 1300 and is very close to the experimentally 

derived value of 1400.  In contrast, the *
33ε  constant calculated on the basis of <Prem/Psp>=0.8 is 

much smaller (800) and therewith incomparable with the experimental data. The results dis-

cussed above demonstrate that the Huber-Fleck procedure provides realistic values of total re-

manent polarization, which can be used to obtain effective material coefficients from various 

theoretical models.  

5.2.2 Thin film 

The Huber-Fleck simulations for BTO thin films have been performed by means of clamped mo-

dels with different in-plane tensile stresses (see section 5.1.1). The hysteretic properties of thin 

films as a function of the tensile stress caused by the substrate are given in Figure 5.21, Figure 

5.22 and Table 5.6. The effective dielectric constant *
33ε  is almost independent on the in-plane 

stress. The remanent polarization as well as the piezoelectric parameter 
*
33d , in contrast, are 

very sensitive to the tensile stress: the larger the tension, the lower the remanent polarization 

and the piezoelectric response. Unfortunately, the direct comparison of our results with experi-

mental data is impossible as in the measurements of piezoelectric constants the in-plane stress 

is usually not published and the variation of experimental results is very large (see Table 5.6).  

Figure 5.20:  Distribution of z-components of the polarizations obtained at remanence within two dif-

ferent numerical models. 
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Present work 

Huber-Fleck 
BaTiO3  

thin film 
“Least 

angle” Tin-plane=5 MPa Tin-plane=35 MPa 

Method of eff. 

piezoel. medium 

[Pertsev 1998] 

<Prem/Psp>=0.27 

Experimental results 

 *
33ε  (-) 560±20 1150 1120 1400 

1500 [Desu 1993] 

700 [Kamlasanan 1993] 

385 [Tanaka 2004] 

*
33d  (pC/N) 54±1 44 ±1 26±1 15 ±5 15 [Tanaka 2004] 

Figure 5.21:  Strain hysteresis of a BTO thin film as a function of the tensile stress acting in the film pla-

ne. 

Figure 5.22:  Polarization hysteresis of a BTO thin film as a function of the tensile stress acting in the 

film plane. 
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The derived effective piezoelectric constants of thin films are considerably smaller than those of 

the bulk samples (compare with data of Table 5.5). The main reason for such a behavior is the 

polarization configuration of the thin film sample at remanence (see Figure 5.23 and Figure 

5.24). Due to the tensile in-plane stress it exhibits much more domains with negative and nearly 

zero z-components of polarization than that of a bulk samples. Consequently, the normalized 

remanent polarization of a BTO film staying under the tensile stress of 35 MPa is of order 0.3, 

what is 40% lower than the same parameter of a bulk ceramic (0.5, see section 5.1.1). According 

to [Pertsev 1998], the normalized polarization of <Prem/Psp>=0.3 results in the effective piezo-

electric constant ( )*
33 15 5 /d pC N= ± . This value is in agreement with the experimental data 

of Ref. [Tanaka 2004]. The excellent agreement between the experiment and our simulations 

confirms the Huber-Fleck model to be very reliable not only for calculations of the hysteresis 

curves and material parameters but also for the indirect determination of material properties 

via the normalized remanent polarization.  

 

a) clamped BTO thin film with the in-plane stress of 35 MPa 

 

b) BTO bulk sample without stress (see Section 5.2.1) 

Table 5.6:  Effective material constants of a BTO thin film derived from different theoretical models and 

from experiments. 

,z E  
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Comparing the polarization configurations of the thin film and bulk ceramics at remanence (see 

Figure 5.23) one notices immediately that the fraction of domains polarized in the surface plane 

is larger for the thin film than for the bulk sample.  With this knowledge it seems to be plausible 

to expect that the effective dielectric constant *
33ε  for the thin film is larger in comparison to the 

bulk polycrystal since the high single-crystal coefficient 11ε  predominates over the small single-

crystal coefficient 33ε . The expectation is, however, not true. In contrast, the *
33ε  of the thin film 

BTO is about 1120-1150 which is at least 10% smaller than *
33ε  of the bulk BTO (1240). The rea-

son for the non-trivial behavior of the dielectric constants is the significant fraction of polariza-

tion domains with negative z-components enhancing the influence of the small single-crystal 

33ε -constant. The experimental value *
33ε = 385 [Tanaka 2004] is lower than both of the calcu-

lated constants and, therefore, cannot be explained just on the basis of clamping or strain in-

duced by the substrate. One possible reason for the extremely small value of dielectric constant 

obtained by Tanaka is the so-called „dead layer“ with a very low dielectric susceptibility at the 

interface to the electrodes (see section 2.4). This effect has not been modeled in the present 

work. It can be, however, incorporated in the model if required. 

 

According to the reference [Damjanovic 1998] the hysteresis curves of ferroelectric thin films 

show a very low remanent polarization and significantly larger coercivity than the bulk materials 

of similar composition. The results of the present section indicate that the decrease of the re-

manent polarization can be explained by the in-plane strain arising due to the substrate. How-

ever, the tensile strain cannot be the only reason for the increase of the coercive field (see 

Figure 5.23:  Configuration of the domain volume fractions for a thin film (a) and a bulk BTO samples (b) 

at remanence. 

Figure 5.24:  Distribution of z-Components of domain polarization in a clamped BTO thin film staying 

under in-plane tensile stress of 35 MPa. 
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Figure 5.22). The huge enhancement of the coercivity might be caused by the „dead layer“- ef-

fect or by the pinning of domain walls at the crystal surface or at the grain interfaces [Damjano-

vic 1998]. 

 

Within the Huber-Fleck model the coercivity can be influenced by the strength of the critical 

switching energy. In order to determine the sensitivity the critical switching energy has been 

varied between 
3

0.5
MJ

m
 and 

3
2

MJ

m  
for the models with the tensile in-plane stress of 35 MPa 

(see Table 5.7 and Figure 5.25). Increase of the critical energy density G180° from 
3

0.5
MJ

m
 to 

3
2

MJ

m
 leads to enhancement of coercive field, remanent strain and to decrease of the effective 

piezoelectric constant *
33d  (see Table 5.7). 

 

The enlargement of the switching energy and the coercive field could be caused by the lower 

grain and domain sizes, because the propagation of domain walls is then stronger constrained 

by the grain and domain boundaries. From this argument it is justified to increase the switching 

energy for modeling fine-grained systems, which yield lower effective piezoelectric coefficients 

than in the case of coarse-grained structures as confirmed by the calculations within the Huber-

Fleck model. 

BaTiO3 

thin film 

Tin-plane=35 MPa 

G180°=0.5 MJ/m3 G180°=2 MJ/m3 Experimental results 

*
33ε  (-) 1120 1180 

1500 [Desu 1993], 

700 [Kamlasanan 1993], 

385 [Tanaka 2004] 

*
33d  (pC/N) 26 ±1 21 ±1 15 [Tanaka 2004] 

Table 5.7:  Influence of the critical switching energy on the dielectric and the piezoelectric constants on 

the example of a clamped BTO sample under the in-plane tensile stress of 35MPa. 
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5.3 Simulations of PbTiO3 

Similar to the investigations on BTO in section 5.2, theoretical results on linear and non-linear 

properties of PTO thin films and bulk ceramics are provided in the following. Hereby, several 

theoretical models are evaluated as to be able to predict properties of the real material.  

5.3.1 Bulk 

The polarization and strain hysteresis of a non-clamped, stress-free bulk sample have been stud-

ied in the framework of the Huber-Fleck procedure using experimental single-crystal constants. 

The results are shown together with outcomes for PTO thin films in Figure 5.26. The effective 

dielectric and piezoelectric constants obtained in the Huber-Fleck simulations are collected in 

Table 5.8 and compared with the corresponding parameters derived from the model of least 

angle to the applied field as well as from the method of the effective piezoelectric medium. 

Apart from the last model the calculated constants lie in the range of experimentally deter-

mined parameters.  

Figure 5.25: Influence of the critical switching energy on the strain hysteresis. 
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COMFEM 

PbTiO3 bulk 
Least angle Huber-Fleck  

Method of eff. piezoel. 

medium [Pertsev 1998] 

Prem/Psp=0.53 

Experimental results 

 *
33ε  (-) 54±1 68 100 50 [Shirane 1951] 

*
33d  (pC/N) 62±2 53 30 

51 [Ikegami 1971] 

28 [Ueda 1972] 

The experimental value of effective dielectric constant for PTO (50) is considerably smaller than 

that of BTO (1400), which significantly affects capacitive properties of PTO. This striking fact can 

be explained by means of Huber-Fleck calculations. In Figure 5.27 the polarizations configuration 

of a polarized PTO ceramic is compared with that of an equivalent BTO sample. In the PTO mo-

del the orientations near to the applied field are populated stronger than that of the BTO poly-

crystal, while the directions perpendicular to the field have smaller domain volume fractions 

compared to the BTO model. So the contribution of the single-crystal dielectric constant ε33=37 

to the *
33ε  value of bulk PTO is considerably larger than that of single-crystal ε11=110. In contrast, 

in BTO the contribution of ε11=1910 is stronger than that of ε33=117. The differences in magni-

tude of domain fractions give a plausible explanation for the very small dielectric constant of a 

pure PTO. In order to increase the dielectric constant and so the dielectric capacitance of PTO 

ceramics different kinds of doping are usually used [Ikegami 1971]. A possible reason for the 

difference between the polarizations configurations of BTO and PTO in remanent state is the 

larger value of the spontaneous polarization of PTO. It is almost five times larger than that of 

BTO (see Table 4.3 and Table 4.4:).  
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Figure 5.26:  Polarization - and strain hysteresis of PTO bulk and thin film models. 

Table 5.8:  Effective material constants of a bulk PTO sample, calculated using the experimental con-

stants as input. 
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a) PTO        b) BTO 

 

In order to evaluate the multi-scale procedure proposed in section 4.6 the effective dielectric 

and piezoelectric coefficients of PTO were calculated not only with experimental input data but 

also using DFT/atomistics as well as DFT/phase-field single-crystal constants. The results of these 

calculations are summarized in Table 5.9. The computations using the DFT/atomistics data un-

derestimate the experimental dielectric constant *
33ε  because of missing contributions from the 

domain wall motion. The simulations with εPF*, in contrast, overestimate  the experimental value 

of the effective dielectric constant as the contribution of the domain walls 
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 within this approach presumably exceeds its real value as shown 

in section 4.6.2.  

PbTiO3 bulk Huber-Fleck Calculations 

Input data cExp, dExp, εExp c
DFT

, d
DFT, εSM c

DFT
, d

DFT, εPF* 

Experiment 

*
33ε  () 68 22 90 50 [Shirane 1951] 

*
33d  (pC/N) 53 67 67 

51 [Ikegami 1971] 

28 [Ueda 1972] 

5.3.2 Thin film 

The material constants derived in the framework of different models with experimental input 

data are summarized and compared with experimental values in Table 5.10. The dielectric con-

stants obtained within the Huber-Fleck-model lie much closer to the experimentally determined 

values than those calculated within the least angle model. 

Present work PbTiO3 

thin film Least angle Huber-Fleck 

Method of eff. 

piezoel. medium  

Experimental results 

Figure 5.27:  Comparison of polarization configurations of bulk PTO (a) and BTO (b) polycrystals. 

Table 5.9:  Effective material constants of bulk PTO ceramics calculated with different input parameters. 
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clamped 
clamped 

Tin-plane 

[Pertsev 1998] 

Prem/Psp=0.5 

*
33ε  () 54 77 80 100 

90-200 [Matsui 1981] 

110-120 [Bao 2002] 

*
33d  (pC/N) 52 49 40 20 - 

Prem (C/m2) - 37 34 - 
27 [Bao 2002] 

 

 

Figure 5.28 shows the polarization hysteresis curves for different values of the in-plane stress 

induced by the substrate. As expected the remanent polarization decreases with increasing ten-

sion loading. The direct comparison with experimental data seems to be difficult because of the 

lack of the data on stress magnitudes [Bao 2002]. 
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The experimentally measured dielectric constant of the PTO thin film as well as that calculated 

in the framework of the Huber-Fleck model is larger than that of the corresponding bulk poly-

crystal while for BTO the corresponding relationship between thin film and bulk material is op-

posite (see section 5.2.2). This surprising effect can be attributed to the domain configurations 

formed at remanence. The typical polarization configurations of a free, clamped without and 

with tensile stress PTO polycrystals are compared in Figure 5.29. In the last case the fewest do-

mains are oriented in the direction of the applied field: a large number of polarizations is in-

plane oriented. Accordingly, the contribution of ε11=110 is also larger than that of ε33=37 for the 

PTO thin film, while for the bulk PTO ceramic ε33=37 delivers the dominant contribution. 

Table 5.10:  Effective material constants of a clamped 16-grain PTO probe, calculated with experimental 

input constants. 

Figure 5.28:  Polarization hysteresis of a PTO thin film for different stress magnitudes. 
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Effective material constants, derived using the least angle model, do not change for varying 

magnitude of the in-plane stress because the polarization configuration remains unaffected. 
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c) clamped, in-plane tensile stress 

 

Additionally to the calculations using experimental material constants, modeling with input pa-

rameters obtained theoretically within DFT, shell-model as well as phase-field method (see sec-

tion 4.6.2) has been performed. Results for the effective dielectric constant are summarized in 

Figure 5.29:  Comparison of typical polarization configurations for different PTO models. 
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Table 5.11. The effective piezoelectric constants are not included into the table since no experi-

mental values could be found in the literature. 

 

PTO clamped 

Tin-plane 

 

Huber-Fleck Calculations 

Input data cExp, dExp, εExp c
DFT

, d
DFT, εSM c

DFT
, d

DFT, εPF* 

Experiment 

*
33ε  () 80 34 113 

90-200 [Matsui 1981] 

110-120 [Bao 2002] 

 

The most convincing results on *
33ε  showing good agreement with experimental data have been 

obtained in simulations where the contributions of the domain wall motion were included via 

the input parameters εPF*. The computations performed with the dielectric constants εSM from 

the shell-model neglecting the domain wall contribution show large deviations from the experi-

mental results.  

5.3.3 (111)-textured thin film 

In a similar manner to the previous calculations the effective dielectric and piezoelectric proper-

ties of a PTO (111) thin film have been calculated using different input data. The results are col-

lected in Table 5.12.  

 

PTO (111) 

thin film 
Least angle Huber-Fleck Experiment 

Input data 
cExp, dExp, 

εExp 

c
DFT

, d
DFT, 

εSM 

c
DFT

, d
DFT, 

εPF 

cExp, dExp, 

εExp 

c
DFT

, d
DFT, 

εSM 

c
DFT

, d
DFT, 

εPF* 
- 

*
33ε  () 100 77 66 80 34 - 50 150 

150 [Bruchhaus 

1998] 

*
33d  (pC/N) 29 31 32 48 44 32 

20 [Bruchhaus 

1998] 

 

In contrast to the texture-free polycrystalline materials the calculations for (111)-textured films 

performed with the least angle model and the Huber-Fleck procedure using equivalent single-

crystal constants do not show any significant differences. The reason for this effect lies in the 

Table 5.11:  Effective dielectric material constants of a polycrystalline PTO thin film calculated using 

input parameters obtained within different procedures.  

Table 5.12:  Effective dielectric and piezoelectric constants for a PTO (111)-textured thin film. 
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very similar polarization configurations of both models, which arises from the symmetry con-

striction induced by the texture. In Figure 5.30 configuration of polarizations obtained from the 

Huber-Fleck model is depicted. All electric dipoles lie close to the possible least angle orienta-

tion. Calculations with cDFT
, d

DFT and εPF* as input parameters provided the best agreement with 

experimental data similar to the untextured PTO thin films. 

 

5.4 Investigations of PbZr0.5Ti0.5O3 

5.4.1 Bulk 

Typical polarization and strain hysteresis curves of a polycrystalline PZT bulk sample obtained in 

Huber-Fleck simulations are given in Figure 5.31, while the corresponding effective material 

characteristics are summarized in Table 5.13. The calculated piezoelectric constant is considera-

bly smaller than the corresponding experimental value. Similar to other investigated materials 

the reason for the deviation lies in the missing contributions of the domain wall motion in the 

model parameter dDFT. However, the contribution of the domain wall motion cannot be quanti-

fied because of some artifacts of the phase-field model (see section 4.6.2). The effective dielec-

tric constants *
33ε  obtained in the calculations using εPF* as input parameter is considerably lo-

wer than the corresponding experimental value. The domain wall contribution to the effective 

dielectric constant estimated within the phase-field theory probably underestimates the realistic 

value (see section 4.6.2).  

 

Figure 5.30:  Polarization configuration of a (111) thin film at remanence calculated from the Huber-

Fleck model. The deviation of [111] axis from its ideal orientation equals 10°. 
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Huber-Fleck calculations 
PZT bulk 

εPF*, dDFT, cDFT εexp*, dDFT, cDFT
 

Experimental results 

*
33ε  () 410 650 585 [Landolt 2001] 

*
33d  (pC/N) 23 23 173 [Landolt 2001] 

Prem (C/m2) 29 29 - 

5.4.2 (111)-textured thin film 

5.4.2.1 Small- and large-signal properties 

The polarization hysteresis curves of ceramic thin films are softer than those of corresponding 

bulk materials: a typical hysteresis loop is tilted to the right, shows a smaller remanent polariza-

tion than that of a bulk sample but partially a larger (up to 1000%) coercivity [Damjanovic 1998]. 

Experimental investigations show that the lower the film thickness the higher the tilting as well 

as reduction of remanent polarization (see Figure 5.32). In thinner films the in-plane stress due 

to the substrate is higher than in thicker films. In order to model different film thicknesses vari-

ous in-plain tensile stress values have been applied. Our calculations for (111)-textured PZT thin 

film with Huber-Fleck model show similar behavior to Figure 5.32 (see Figure 5.33). The simula-

tions of Figure 5.33 were based on the dielectric constant 
exp*
ijε  (see section 4.6.1). 

Figure 5.31: Polarization and strain hysteresis for an unclamped sample with input parameters ε
PF*,

 d
DFT

, 

and c
DFT

. 

Table 5.13: Comparison of the effective material constants calculated using different input parameters 

and corresponding experimental results. 
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It has been found that the strength of the coercive field of a sample under the tensile stress of 

180 MPa is only 10% larger than that of the bulk polycrystal investigated in the last section. It 

means that the huge increase of the coercivity in thin films cannot be explained by the elastic 

effects induced by the substrate only. Two reasons for the enhanced coercivity should be taken 

into account: i) the so-called dead-layer effect, appearing at the interface between the sample 

and the electrodes, and ii) the reduced domain wall mobility due to the decrease of grain and 

domain size [Damjanovic 1998]. 

 

In order to evaluate different procedures of multi-scale modeling for (111)-textured PZT films 

the effective *
33ε - and *

33d -constants have been calculated for clamped but not additionally 

strained samples using different input data. The results are presented in Table 5.14. Similar to 

Figure 5.32: Thickness dependence of the hysteretic properties of a (111) PZT thin film: experimental 

data [Damjanovic 1998]. 

Figure 5.33: Tensile stress dependence of the polarization hysteresis for a (111)-textured PZT film. 
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the PTO (111)-textured film the piezoelectric constants show negligible variations between re-

sults of least angle and Huber-Fleck models for identical input parameters. The dielectric con-

stants gained with εExp* are, in contrast, considerably higher and closer to the experimental find-

ings than those based on εSM single-crystal values from the atomistic shell model. An evident 

reason for the above described results is the large difference between εSM (18 and 77, see Table 

Table 4.5) and εExp* having elements round 600. Effective dielectric constants obtained with εPF* 

are considerably smaller. The reasons are probably too small domain wall contributions 
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 obtained from the phase-field model. Comparing theoretical and 

experimental results one has to keep in mind that not all experimental conditions like stress due 

to mismatch between the substrate and the thin film are known. Therefore, a certain deviation 

between theoretically and experimentally determined properties is unavoidable. 

 

In addition to the already discussed peculiarities of the dielectric constants the analysis of the 

results given in Table 5.14 reveals another noticeable feature: the effective *
33ε -constant calcu-

lated on the basis of εPF
 is small, similarly to that calculated with εSM, although the εPF-tensor has 

rather large elements (e. g. 407, see equation (4.77)). In the following we provide an explanation 

for this effect.  

 

As shown in section 4.6.2 the dielectric tensor of a film consisting of two domains only may be 

represented in the following form (see equation (4.71)): 

PZT (111)  

thin film 
Least angle Huber-Fleck Experiment 

Input single-

crystal data 

cDFT, dDFT, 

εExp* 

c
DFT

, d
DFT, 

εSM 

c
DFT

, d
DFT, 

εPF 

c
DFT

, d
DFT, 

εPF* 

cDFT, dDFT, 

εExp* 

c
DFT

, d
DFT, 

εSM 
- 

*
33ε  () 690 94 84 470 630 0 

800 [Bruchhaus 

1998] 

*
33d  (pC/N) 36 33 35 35 29 32 

60 [Bruchhaus 

1998] 

 

Table 5.14: Effective 
*
33ε - and 

*
33d -constants of a (111) PZT thin film gained via different calculation 

methods. 
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 (5.2) 

Arising from phase-field calculations for PZT 372
P

E

∂ =
∂

 is the domain wall contribution entering 

in several tensor elements. The transformation of the tensor (5.2) from the crystal coordinate 

system of the crystal to that of the substrate (for which the [111]-direction is oriented perpen-

dicularly to the film surface) with the help of the transformation tensor 
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 (5.4) 

For a (111) texture there is only one degree of freedom – the rotation about the [001] direction 

of the substrate coordinate system, which corresponds to the [111] direction of the crystal co-

ordinate system. This rotation, however, does not change the elements ,
33
PF SSε . This demon-

strates that the effective coefficients *
33ε

 
do not depend on the domain wall contribution 

P

E

∂
∂

, 

but rather are determined by contributions 11
SMε  and 33

SMε derived from the atomistic simula-

tions. That is why the effective *
33ε  constant, which has been obtained using εPF, is quite small, 

similar to that determined utilizing εSM.  

 

Recent experiments show that the piezoelectric and dielectric constants of (111)-textured thin 

films with significant Zr fraction (PbZrxTi1-xO3 with 0.5x ≈ ) exceed the corresponding material 

parameters of Zr – poor samples ( 0.2x ≤ , e.g. PbTiO3) by the factor of two (see Figure 5.34).  

Effective *
33ε - und *

33d -coefficients of PTO and PZT thin films calculated in this work are com-

pared in Table 5.15. Analogous to the described trend of Figure 5.34 the PZT parameters are 
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larger than corresponding values of PTO-films. The difference is, however, less pronounced. The 

latter observation seems to have three reasons: (i) the single-crystal constants obtained within 

the atomistic simulations for PZT polycrystals only slightly exceed the corresponding coefficients 

of PTO; (ii) the piezoelectric input data do not possess any domain wall contributions; and (iii)  

the contributions due to domain wall motion in εPF*,PZT are too small. 

 

 

5.4.2.2 Self-polarization 

The (111)-textured films manufactured by sputtering usually possess a finite effective polariza-

tion even without applying any electric field.  This phenomenon is called self-polarization. Re-

cent studies [PYROHL 2000] have demonstrated that even very thin dipolar film arising at the 

interface between the ceramics and the substrate might promote the spontaneous polarization 

of the ceramic layer. The spontaneous polarization of thin ceramic films, however, shows very 

puzzling properties. For example, until now it is not clear why the self-polarization of tetragonal 

thin films is very robust and remains stable in a very broad range of temperatures despite of the 

large stress coming from the substrate, while the spontaneous polarization of rhomboedric films 

 PTO PZT 

Input data c
DFT

, d
DFT, εSM c

DFT
, d

DFT, εPF c
DFT

, d
DFT, εPF* 

c
DFT

, d
DFT, εSM c

DFT
, d

DFT, εPF c
DFT

, d
DFT, εPF* 

*
33ε  () 77 66 150 94 84 470 

*
33d  (pC/N) 31 32 32 33 35 35 

Table 5.15:  Comparison of the simulated effective material constants for (111)-textured PTO and PZT 

thin films. 

Figure 5.34:  Dielectric, piezoelectric, and pyroelectric constants of a (111)-textured PbZrxTi1-xO3 thin 

film [Bruchhaus 1998]. 
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vanishes already at room temperatures. The present section is devoted to the clarification of 

this exiting question.  

 

Because of the difference in coefficients of thermal expansion of Si substrate 

( 6 1
2.8 10Si

K
α −= ⋅ ) and PZT ( 6 1

7.5 10PZT

K
α −= ⋅ ), the thin PZT film shrinks considerably 

stronger than the substrate during the cooling process after sputtering. Typical temperature 

changes amount to 600T K∆ = − . The magnitude of the in-plane tensile stress in planeT − arising 

from cooling in a PZT thin film can be estimated using the Young - modulus 80PZTY GPa=  as 

 ( ) ( ) 230 .in plane PZT Si PZT PZT Si PZTT Y Y T MPaε ε α α− = − = ∆ − =  (5.5) 

The critical stress critT  leading to complete depolarization of the sample can be estimated on 

example of the 90° polarization switching from the [001] to the [100] direction as this process 

requires the lowest energy. The corresponding change of strain S∆ reads  

 

1 0 0 0.5 0 0 1.5 0 0

0 0.5 0 0 0.5 0 0 0 0

0 0 0.5 0 0 1 0 0 1.5

sp sp spS S S S

−     
     ∆ = − − − =     
     − −     

. (5.6) 

Here, 
spS  is spontaneous strain of PZT. The critical tensile stress coming from the substrate and 

leading to the depolarization of the sample can be described as 

 

1 0 0

0 1 0 .

0 0 0

critT T

 
 =  
 
 

 (5.7) 

In absence of an electric field the energy of the 90°-switching equals 

 90 1.5.sp critG T s s T° = ⋅ ∆ = ⋅ ⋅  (5.8) 

Using 90G °  and sps  from Table 4.5 the critical stress can be estimated to 

 
90

30 .
1.5

crit

sp

G
T MPa

s

°

= ≈  (5.9) 

The depolarization of the texture-free poled polycrystalline structure due to the biaxial tensile 

stress has been simulated in the framework of the Huber-Fleck model. The results are shown in 

Figure 5.35 a. The first switching events appear at stress strengths of approximately 30-50 MPa. 

At the stresses about 240 MPa, a typical strain induced by substrate in a thin ceramic film (see 

equation (5.5), only few domains are oriented along the initial polarization direction. In the case 

of (111)-textured thin PZT films (see Figure 5.35 b), in contrast, the polarization remains even at 

high stresses about 240 MPa, which is consistent with experimental findings. The reasons for 

such a behavior of (111) films are discussed in the following. 
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The strain change due to a 90° polarization switch for a (111)-textured sample (5.6) in the sub-

strate coordinate system can be estimated using the transformation tensor (5.3) as 

Figure 5.35: Depolarization of a bulk ceramic polycrystalline PZT sample as well as (111)-textured PZT 

thin film via biaxial tension stress induced by the substrate.  

z 

x 
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 ( )
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0.433 0.75 1.06 .

0.612 1.06 0

TSS CS SS CS CS SS spS a S a s→ →
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 (5.10) 

The scalar product with an arbitrarily large tensile strain; i.e., the projection of SSS∆ on the di-

rection of loading (5.7) 

 0SSG T S= ⋅ ∆ = . (5.11) 

 This means that the energy G involved into each 90° switching event equals zero for any (111) 

oriented grain. Analogously, it can be shown that the energy vanishes for every 180° switching 

event as well. Consequently, the rate of operation (see section 4.5) 

1

0

n

c c

G G
f B

G G

α α
α α

α α

−
 

= = 
 

ɺ  and, therefore, the polarization remains unchanged.  

 

The (111)-texture of a realistic sample is not perfect. Typical deviations of the crystalline struc-

ture from an ideal orientation are of order of 5°-10°, which has been incorporated into simula-

tion model. Therefore, small rates of operations f αɺ  can arise and lead to minimal changes in 

the polarization configuration as it can be seen in Figure 5.35 b. 

 

The two above discussed examples underline the importance of the crystal symmetry and crys-

tallographic orientation with respect to the loading direction. Crucial is thereby the projection of 

the strain change due to the switching process on the direction of loading rather than the mag-

nitude of the strain change. In contrast to the tetragonal symmetry discussed above, for a thin 

ceramic film with rhombohedral crystal structure the projection of the strain change vector for a 

71°-switching process reads (see Figure 5.36): 

 sin(71 ) 1.3sp critS T S T∆ ⋅ = ⋅ ° ⋅ ⋅ . (5.12) 

The factor 1.3 describes the effect of the transversal contraction. 

             

a)                         b) 

Figure 5.36: a) Rhombohedral cell, violet balls visualize eight possible polarization directions;  

b) a depolarizing 71°- switching process in a rhombohedral cell polarized perpendicular to the substrate. 

71° 

oldP

newP

Tensile stress due to the substrate 
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The critical depolarizing stress leading to the vanishing of self-polarization in rhombohedral 

(111) thin films can be calculated using following assumption for the switching energy for the 

71°-process 
71

3
1

MJ
G

m
° = : 

 
71

50 .crit G
T MPa

s T

°

= ≈
∆ ⋅

 (5.13) 

According to (5.5), the thermal coefficient of expansion for the substrate has to be larger than 

 
6 1

6.5 10
crit

substrate PZT

PZT

T

KY T
α α −= + ≈ ⋅

∆
 (5.14) 

in order to ensure the stability of the spontaneous polarization against the tensile stress. In the 

calculation the parameters 80PZTY GPa= , 600T K∆ = − and 6 1
7.5 10PZT

K
α −= ⋅ have been 

utilized. According to this finding, in the project COMFEM rhombohedral PZT (111)-textured thin 

films were grown on a sapphire wafer as substrate with thermal coefficient of expansion 

6 1
16 10Sapphire

K
α −≈ ⋅ . As predicted in equation (5.14) the self-polarization could be conserved. 
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6  Summary 

In the present thesis, several multi-scale and single-scale approaches are introduced and evalu-

ated for the purpose of accurate prediction of micro- and macroscopic properties of ferroelec-

tric thin films and bulk ceramics. The main focus of the investigation was directed on the formu-

lation of the multi-scale procedure, which is able to reliably describe the properties of novel 

materials without experimental input data. Another important requirement to the multi-scale 

chain was a realistic description of the polycrystalline geometry. Our investigations concerned 

BTO, PTO und PZT ceramics because these materials are widely explored experimentally and 

theoretically as well as utilized industrially.  

 

For an accurate description of the micro- and macroscopic properties of polycrystalline ceramics 

single-crystal constants including contributions from the domain wall motion as well as domain 

structure resulting from polarization switching play the most important roles. In order to take 

into account the polarization switching the micromechanical Huber-Fleck model has been used. 

The model was formulated in 2001 [Huber 2001] and utilized for parametric studies with idealis-

tic polycrystalline grains represented by one finite element only [Pathak 2005]. In contrast to 

previous publications, we studied real materials like BTO, PTO and PZT with non-idealized poly-

crystalline geometry and adopted the Huber-Fleck procedure for description of thin ceramic 

films.  

 

In the first step, experimental single-crystal data have been used as input for micromechanical 

modeling. A good predictability of the Huber-Fleck model has been concluded by means of 

quantitative comparison with available experimental data. Further, several peculiar experimen-

tal findings could be explained on the basis of calculated polarization configurations. In order to 

exclude the experimental single-crystal constants as input data for the micromechanical model, 

in the second step single-crystal coefficients obtained from DFT simulations and shell-model 

have been utilized. In the third step, the contributions coming from the domain wall motion 

have been evaluated from the phase-field model and incorporated into the Huber-Fleck calcula-

tions. 

 

Outcomes of all three steps have been systematically compared with results of analytical calcu-

lations using the method of effective piezoelectric medium, simulations within the scheme of 
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least angle (see section 4.4) and experimental results. We conclude that the Huber-Fleck formu-

lation provided us with the most realistic small-signal constants for bulk as well as for thin film 

models using the experimental input data or using shell-model parameters combined with do-

main wall contributions from the phase-field theory. As in contrast to the effective dielectric 

parameters *
33ε  the domain wall contribution to the elastic and piezoelectric material coeffi-

cients could not been derived from the phase-filed model, considerable deviations between the 

theoretical (using DFT data as input parameters) and experimental values of the piezoelectric 

constant *
33d have been found. An overview of the performed calculations and the degree of 

agreement with available experimental parameters are given in Table 6.1. Green fields symbol-

ize a small deviation from experimental results (less than 10%), yellow fields – considerable de-

viation between 10% and 35%, while red fields correspond to rather large deviations (larger 

then 35%). 

Agreement with experimental data 

Investigated models 
*
33ε

 

*
33d

 
Prem 

BTO bulk with cExp, dExp, εExp With cExp, dExp, εExp 
With cExp, dExp, 

εExp 

BTO thin film With cExp, dExp, εExp With cExp, dExp, εExp - 

PTO bulk With cExp, dExp, εExp With cExp, dExp, εExp 
With cExp, dExp, 

εExp 

PTO thin film With εPF*, dDFT, cDFT With εPF*, dDFT, cDFT 
With cExp, dExp, 

εExp 

PTO (111) thin film With εPF*, dDFT, cDFT With εPF*, dDFT, cDFT - 

PZT bulk With εPF*, dDFT, cDFT With εPF*, dDFT, cDFT - 

PZT (111) thin film With εPF*, dDFT, cDFT With εPF*, dDFT, cDFT - 

 

         

c
Exp

, d
Exp

, ε
Exp

: Experimentally determined elastic, piezoelectric, and dielectric single-crystal-tensors  

d
DFT

, c
DFT

: Single crystal tensors of piezoelectric and elastic constants from the ab-initio calculations 

(Density Functional Theory) 

ε
PF*

: dielectric single crystal tensor obtained using results of the ab-initio- and phase-field simula-

tions(see section 4.6.2) 

Deviation from exp. 

results more than 35% 

Deviation from exp. 

results less than 10%  

Deviation between 

10% and 35%  
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There are several reasons for the partially large deviations. The difficulty to derive the domain 

wall contribution for the piezoelectric constants from the phase-field theory has been already 

mentioned (see also section 4.6.2). Further, the domain wall contribution, derived within the 

phase-field procedure for the dielectric single-crystal constants of PZT, with large probability 

underestimates the realistic value (see section 4.6.2). Because of the impurities, structural de-

fects, resulting pinning of domain walls, small grain sizes and porosity, the constitution of poly-

crystalline grains does not exactly coincide with that of the model input data. Finally, exact val-

ues of mechanical strain induced by the substrate are rarely published in the papers reporting 

small-signal constants of the thin films.  

 

Despite of the mentioned difficulties, the proposed simulation method allowed us to reproduce 

numerous experimental findings: 

- *
33d  of the BTO and PTO thin films are considerably smaller than those of corresponding 

bulk polycrystals; 

- *
33ε  of a pure PTO bulk polycrystal is smaller than that of a pure  PTO thin film. In the ca-

se of BTO ceramics, in contrast, the dielectric constant of bulk material is larger than 

that of a corresponding thin film.  

- *
33ε  and 

*
33d  of a PTO (111)-textured thin film are lower than 

*
33ε  and 

*
33d  of a PZT (111)-

textured thin film; 

- The polarization hysteresis loop of a ceramic thin film is tilted to the right side, pos-

sesses a stronger coercive electric field and lower remanent polarization than that of 

corresponding bulk ceramics. 

Furthermore, with help of performed calculations new physical statements could been formu-

lated, e.g. the magnitude of the critical switching energy and so the coercive electric field has 

only a minor effect on the effective small-signal constants of thin ceramic films. The above de-

scribed effects as well as results of the Table 6.1 qualify the proposed multi-scale method as a 

theoretical tool, which can be used for the description and understanding of existing ceramics 

and for design of new materials. 

 

Additionally to the multi-scale procedure, a new functional approach, which permits to reliably 

generate realistic structures and finite-element-networks with several thousand grains, has 

been elaborated in the present work. In order to obtain realistic models of polycrystalline mate-

Table 6.1:   Review of the performed calculations and comparison of their results with available experi-

mental data. 
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rials versatile options of this procedure can be applied individually as well in any combinations. 

They are: 

- Voronoi tiling ; 

- Hard-core tiling; 

- Constrained hard-core-Voronoi tiling; 

- agglomerations; 

- pores; 

- lognormal grain size distribution; 

- reliable meshing of grain structures with a small number of finite elements; 

- periodic boundary conditions for the grain geometry; 

- periodic boundary conditions for the finite-elements network; 

- columnar grain structures. 

 

The elaborated constrained hard-core-Voronoi space tiling as well as the developed merging 

algorithms considerably contribute to the geometric and numerical description of many classes 

of polycrystalline materials. 
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