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1. Zusammenfassung

Im letzten Jahrzehnt sind ionische Flüssigkeiten, wie etwa Imidazolium-basierte Salze, immer
stärker in den Blickpunkt der Forschung geraten, vor allem jene, deren Schmelztemperatur
unterhalb der Raumtemperatur liegt. Um diese Klasse von Substanzen besser verstehen zu
können, wurde im Rahmen des DFG SPP 1191 ein Ansatz verfolgt, der die verschiedenen
Orts- und Zeitskalen miteinander verknüpft. Dabei wurde speziell darauf geachtet möglichst
unabhängig von experimentellen Resultaten bei der Modellierung der Salze zu bleiben. Denn
das finale Ziel ist es, ionischen Flüssigkeiten mit dem Computer zu designen. Während in der
Arbeitsgruppe von Robert Berger die Systeme mit quantenchemischen Methoden charakteris-
iert wurde, schufen diese Resultate die Grundlage für eine semi-quantenmechanische dynamis-
che Beschreibung kleiner Systeme in der Arbeitsgruppe von Luigi Delle Site.

In dieser Arbeit kommt es nun zu einer Verknüpfung der semi-quantenmechanischen mit der
klassischen Skala, die es schließlich zulässt thermodynamische Eigenschaften zu berechnen,
wie zum Beispiel die Leitfähigkeit oder Viskosität. Hiefür werden Methoden entwickelt,
um die Energien und Kräfte in Potentialen zu parametrisieren, damit die Koordinaten und
Geschwindigkeiten der Atome mittels Newton’scher Mechanik mit dem Computer effizient
propagiert werden können.

Dafür werden zunächst die Konzepte der klassischen Molekulardynamik vorgestellt und Meth-
oden zu deren Effizienzsteigerung weiterentwickelt. Danach wird der Prozess der Kraftfeldopti-
mierung, der vor allem die Partialladungen der Atome und deren Parameter für kurzreichweit-
ige Wechselwirkungen betrifft, detailliert diskutiert. Schließlich wird die Methodik zur Kraft-
feldvalidierung erläutert, die sicher stellen soll, dass ein akkurates und zuverlässiges Kraftfeld
vorliegt. Die dafür notwendigen Protokolle waren entweder schon teilweise in Programmen
vorhanden oder wurden, wenn nötig, implementiert, womit der Weg für eine Bestimmung der
Parameter für beliebige Systeme für die Zukunft geebnet ist.

Im Rahmen dieses Projektes wurde schon eine Reihe von Artikeln veröffentlicht,1,7,9–17 die
diese Verfahren vorstellen und Anwendungen aufzeigen. In dieser Arbeit wird jedoch noch
konkreter auf die Problematik eingegangen und weitere Resultate werden vorgestellt. Zudem
wird dem Leser alle nötige Information, von der Theorie der Molekulardynamik-Simulation
bis zur Validierung der Ergebnisse, präsentiert, damit die Vorgehensweise leicht verständlich
wird und das nötige Wissen vermittelt wird, um Kraftfelder für klassische Molekulardynamik
zu optimieren.

1.1. Die Prinzipien der klassischen Molekulardynamik

In der klassische Molekulardynamik (MD) wird ein Ensemble von Teilchen mit Hilfe von New-
tons Bewegungsgleichungen unter verschiedenen Annahmen in Raum und Zeit propagiert.
Eine davon ist die Born-Oppenheimer-Näherung, die vorhersagt, dass die Koordinaten des
Atoms durch die Kernkoordinaten beschrieben werden können. Darüberhinaus ist ein Kraft-
feld notwendig, das die interatomaren Energien adäquat beschreibt, woraus letztendlich Kräfte
berechnet werden, die für die Integration der Bewegungsgleichungen nötig sind. Um den iter-
ativen Prozess der Integration effizient auf Computern zu ermöglichen, wurden verschiedene
Ansätze entwickelt, deren Verständnis für die Durchführung von MD-Simulationen notwendig
ist. Im Folgenden werden die für diese Arbeit relevanten Methoden vorgestellt. Desweiteren
wird eine Technik zur Berechnung von elektrostatischen Kräften präsentiert und weiterentwick-
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1.1. Die Prinzipien der klassischen Molekulardynamik

elt, um die Simulationen in Hinblick auf Genauigkeit und Effizienz zu optimieren.13

Simulation verschiedener thermodynamischer Ensembles Im Laufe der Zeit wurden
verschiedene Schemata vorgestellt, die eine Integration der Bewegungsgleichungen erlauben.
Dabei wurden diese sogenannten Integratoren durch verschiedene Ansätze hergeleitet, doch
in den letzten Jahren hat sich der Trotter-Formalismus etabliert, der eine einfache Verallge-
meinerung der verschiedenen Integrationskonzepte zulässt. Dieser basiert auf dem Theorem
von Trotter, das aussagt, dass die Propagation der Koordination im Phasenraum durch eine
Operation innerhalb einer Semigruppe dargestellt werden kann und die schrittweise Zeitevolu-
tion verdeutlicht. Um diese Evolution der Koordinaten auch zeitreversibel durchzuführen,
wurde eine symmetrische Zerlegung der Hamiltonfunktion von Kreutz und Gocksch vorgesch-
lagen. Mit diesem Formalismus lässt sich jedes Integrationsschema leicht darstellen, da ver-
schiedene Schritte der Integration Teilen der Hamiltonfunktion entsprechen. Darüber hinaus
eröffnet sich die Möglichkeit zu einer Fehleranalyse des Integrationsschemas und Beurteilung
des Verhaltens des Integrators bezüglich chaotischen Verhaltens. Das ist von großer Bedeu-
tung, denn die Analyse einer MD Simulation stützt sich auf das ergodische Theorem, welches
ein dichtes Sampling des Phasenraums voraussetzt, um einen Ensemblemittelwert über eine
Zeitmittelung zu erhalten. Ein chaotisches Verhalten ist nötig, um zeitabhängige Größen aus
einer langen Trajektorie zu berechnen, weil nach einer bestimmten Anzahl von Integrationss-
chritten die Konfiguration unabhängig von der Ausgangskonfiguration ist.

Da eine Vielzahl von Integratoren existiert, werden hier nur der Verlet-, Leap-Frog- und
Velocity-Verlet-Algorithmus diskutiert, da jene am weitesten verbreitet und für diese Arbeit
relevant sind. Der Velocity-Verlet-Integrator korrespondiert komplett zur symmetrischen Zer-
legung der Hamiltonfunktion und ist somit zeitreversibel. Zudem ist dieser symplektisch,
was bedeutet, dass das Volumen des Phasenraums bei der Integration erhalten bleibt, womit
ein ergodisches Sampling ermöglicht wird. Bei einem Vergleich der erwähnten Integratoren
untereinander stellt sich heraus, dass alle eine äquivalente Propagation der Ortskoordinaten
liefern. Damit eignen sich alle für die Simulation eines mikrokanonischen Ensembles.

Unterschiede tauchen jedoch bei der Berechnung der Teilchengeschwindigkeiten auf. Während
keine explizite Berechnung im Verlet Algorithmus auftaucht, werden die Geschwindigkeiten
der Teilchen im Leap-Frog- und Velocity-Verlet-Schema benutzt, um die Bewegungsgleichun-
gen zu integrieren. Das erlaubt die Simulation eines kanonischen NV T -Ensembles, da die
Temperatur des Systems durch die Geschwindigkeiten der Teilchen bekannt ist. Um die
Temperatur konstant zu halten, wurden verschiedene Methoden vorgeschlagen, die alle auf
eine Skalierung der Geschwindigkeiten abzielen. Aber es hat sich gezeigt, dass eine einfache
Skalierung der Geschwindigkeiten gemäß einer vorgegebenen Relaxationszeit kein kanonisches
Ensemble generiert, sondern ein weiterer stochastischer Term addiert werden muss, um die
erwartete Geschwindigkeitsverteilung zu erhalten. Ein anderer Ansatz, genannt extended-
Lagrangian, beruht auf einer Skalierung der Geschwindigkeiten, wofür Bewegungsgleichun-
gen durch eine Pseudo-Lagrangefunktion, die durch bestimmte Erhaltungssätze definiert ist,
gegeben sind. Im Fall eines kanonischen NV T -Ensembles gilt es verschiedene Virialtheor-
eme zu erfüllen, was durch weitere generalisierte Koordinaten und entsprechenden Lagrange-
Multiplikator festgelegt wird, die letztendlich den Skalierungsfaktor für die Geschwindigkeit
bestimmen.

Geht man einen Schritt weiter und zielt auf die Simulation eines NpT -Ensembles ab, wird
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1. Zusammenfassung

die Gibbsche Freie Energie erhalten, womit durch zusätzliche Lagrange-Multiplikatoren weit-
ere Bewegungsgleichungen für die Vektoren der Simulationsbox konstituiert werden. Da bei
der Integration durch Velocity-Verlet die Orte und Geschwindigkeiten zum gleichen Zeitpunkt
bekannt sind und nicht um einen halben Zeitschritt verschoben, wie im Falle von Leap-Frog,
eignet sich dieser als einziger, die vorgegebenen Bewegungsgleichungen für das NV T - und
NPT -Ensemble exakt zu integrieren. Jedoch werden, im Vergleich zu Leap-Frog, mehr Kom-
munikationsschritte bei einer parallelen Version auf einem Supercomputer zwischen dem ver-
teiltem Speicher benötigt. Da auf einem Computer immer numerische Fehler auftreten und die
Abweichung der Integration durch Leap-Frog verglichen zu Velocity-Verlet mit der reziproken
Teilchenzahl abfallen, eignet sich somit auch Leap-Frog für Systeme mit großen Teilchenzahlen
und kann Velocity-Verlet vorgezogen werden. Nachdem nun Leap-Frog als geeigneter Integ-
rator identifiziert wurde, wird eine Methode vorgestellt und weiterentwickelt, die es erlaubt
die Berechnung der elektrostatischen Kräfte unter periodischen Randbedingung in Hinblick
auf Genauigkeit und Geschwindigkeit zu optimieren.

Optimierung der Simulationsparameter Da die Anpassung des Kraftfeldes und dessen
Verifizierung eine sehr große Anzahl an MD-Simulationen benötigt, spielt Effizienz und Ge-
nauigkeit eine entscheidende Rolle. Während die Berechnung der kurzreichweitigen und ge-
bunden Wechselwirkungen nicht viel Spielraum zur Optimierung läßt, existieren Möglichkeiten
den Rechenaufwand für die langreichweitigen Elektrostatik effizient zu gestalten.

In dieser Arbeit werden fast ausschließlich Systeme unter periodischen Randbedingungen
untersucht, um Randeffekte so klein wie möglich zu halten. Daher bieten sich sogenannte
Ewald-Methoden zur Berechnung der Elektrostatik an. Dabei wird bei der Summation der
Coulombenergie im realen und reziproken Raum nur eine endliche Anzahl von Termen berück-
sichtigt. Zwar konvergiert diese Summe nur bedingt, aber bei geeigneter Wahl der Parameter
sehr schnell. Jedoch ist der Raum der Parameter sehr groß, womit eine sorgfältige Auswahl
derer in Hinblick auf Effizienz und Genauigkeit erschwert wird.

Erst kürzlich wurde eine Verallgemeinerung derartiger Methoden, die auf einer Interpolation
der Ladung auf einem Gitter basieren, zugänglich. Diese erlaubt zudem für diese Art von
Algorithmen eine a-priori Fehlerabschätzung abzuleiten. Das ermöglichte, die vorhandene
Fehlerapproximation des Smooth-Particle-Mesh-Ewald-Algorithmus im Rahmen dieser Arbeit
auf ungerade Interpolationsordnungen zu erweitern. Ein entsprechendes Programm, genannt
g_pme_error, wurde für GROMACS implementiert, das die Fehlerberechnung erlaubt und die
Parameter in Hinsicht auf Genauigkeit optimiert. Damit ist nun ein wichtiges Werkzeug für
das Programmpaket GROMACS vorhanden, um ionische Flüssigkeiten auf atomarer Ebene
effizient und akkurat zu simulieren, da elektrostatische Kräfte eine große Rolle spielen.

Das Kraftfeld Um die Bewegungsgleichungen eines Systems von Teilchen auf einem Com-
puter zu lösen, ist nicht nur ein passender Integrationsalgorithmus notwendig, sondern auch
eine adäquate Parametrisierung der Energie des System, die zur Berechnung der Kräfte dient.
Leider gibt es keine eindeutige Lösung für das Problem, die interatomaren Wechselwirkungen
auf klassische Näherungen abzubilden. Jedoch haben sich bestimmte Formen der Parametris-
ierungen etabliert, da sie nicht nur ein mathematisch praktisches, sondern auch physikalisch
sinnvolles Modell konstatieren.
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1.1. Die Prinzipien der klassischen Molekulardynamik

Im Allgemeinen unterscheidet man bei einem Kraftfeld zwischen zwei Arten von Wechsel-
wirkungen. Auf der einen Seite stehen die Atombindungen, die das Molekül zusammenhalten,
und auf der anderen Seite die intermolekularen Wechselwirkungen, die sich aus der Ladung
der Atome, Dispersions- und Polarisationseffekten ergeben. Mit wachsender Molekülgröße
spielen auch auf intermolekularer Ebene letztere eine Rolle und es muss darauf geachtet wer-
den, dass die Parameter sorgfältig aufeinander abgestimmt sind. Zudem sollte sichergestellt
werden, dass die Parameter auf verschiedene Bereiche des Phasenraums übertragbar und mit
einer möglichst großen Anzahl von Molekülen kompatibel sind. Um dieser Vielzahl an Anfor-
derungen gerecht zu werden, ist eine sorgfältige Konstruktion und Validierung des Kraftfelds
immer notwendig.

Für die Bestimmung der intermolekularen Parametrisierung sind oft computergestützte quant-
enmechanische Berechnungen ausreichend und es ist eine relativ eindeutige Methodik vorhanden.
Jedoch lassen die Methoden zur Bestimmung der restlichen Parameter sehr viel Spielraum.
Allein die Berechnung der Partialladungen der Atome kann auf sehr viele verschiedene Arten
erfolgen, wobei es im Voraus sehr schwer zu beurteilen ist, welche der Methoden den genauen
Ladungszustand des Moleküls am besten widerspiegeln kann.

Noch schwieriger ist es, die kurzreichweitigen Wechselwirkungen zu parametrisieren, denn
im Gegensatz zu den Partialladungen, die ausschließlich elektrostatische Wechselwirkung be-
schreiben, muss die kurzreichweitige Parametrisierung verschiedene Effekte beschreiben wie
Polarisation, Dispersion und Pauli-Abstoßung. Um diese Effekte in einem effektiven Potential
zu verallgemeinern, werden für gewöhnlich viele experimentelle Resultate benötigt, womit das
Kraftfeld schließlich angepaßt wird. Daraus ergibt sich, dass bereits ein bestimmtes Maß
an Informationen vorhanden sein muss, was prädiktive Aussagen erschwert und teils sogar
unmöglich macht.

Aus diesem Grund stützt sich die Kraftfeldparametrisierung in dieser Arbeit allein auf die
experimentelle Massendichte. Alle weiteren nötigen Daten werden mit Simulationen bestimmt,
für die keine weiteren experimentellen Befunde nötig sind. Das erlaubt auch Systeme wie
ionische Flüssigkeiten zu parametrisieren, über die oft nur ein geringer Schatz an Wissen
vorhanden ist.

Tauglichkeitstest von Kraftfeldern für ionische Flüssigkeiten Obwohl ionische Flüssig-
keiten schon seit einiger Zeit mit MD-Simulationen untersucht werden, sind nur wenige Kraft-
felder verfügbar, die sowohl akkurat, als auch zwischen verschiedenen Kombinationen von
Anionen und Kationen transferierbar sind. Da diese Kraftfelder oft nicht ausreichend ge-
testet sind, wurden zwei verschiedene Kraftfelder verglichen, die ein relativ großes Repertoire
an ionischen Flüssigkeiten modellieren, und deren Konstruktion auf verschiedenen Methoden
basiert.

Es wurden verschiedene statische und dynamische Größen untersucht, wobei sich herausstellte,
dass die dynamischen Eigenschaften wie Diffusion oder Leitfähigkeit stark unterschätzt wur-
den. Ein Grund dafür ist, dass beide Kraftfelder vollständig im Vakuum oder der Kristallphase
parametrisiert wurden und keinerlei Information über die Flüssigphase in die Kraftfeldpoten-
tiale eingegangen ist. Es hat sich aber gezeigt, dass der Polarisationzustand in der konden-
sierten Phase, welche bei den untersuchten Kraftfeldern komplett außen vor bleibt, vor allem
für die Dynamik eine entscheidende Rolle spielt.
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1. Zusammenfassung

Jedoch diente die Untersuchung nicht allein zur Validierung der Kraftfelder, sondern es wurden
auch verschiedene Methoden zur Berechnung der unterschiedlichen Größen angewandt, um
daraus die effizientesten zu identifizieren. Dabei stellt sich heraus, dass die Einstein-Helfand-
Methode eine genaue Bestimmung der Leitfähigkeit erlaubt, ohne den Weg über die Integration
der Stromautokorrelationsfunktion zu gehen, der sehr viel Statistik und eine hochfrequente
Speicherung der Geschwindigkeiten verlangt.

Da sich die Leitfähigkeit als kollektive dynamische Systemeigenschaft sehr gut zur Kraftfeld-
validierung eignet und ein sorgsamer Umgang mit Ressourcen aufgrund der Masse an anfal-
lenden Simulationen nötig ist, wurde die genannten Methoden in das Programm g_current
implementiert. Dieses wurde Teil des GROMACS-Programmpaketes, das in dieser Arbeit
ausschließlich für die klassischen MD Simulationen verwendet wird.

1.2. Kraftfeldladungen von und für die flüssige Phase

Das Hauptziel dieser Arbeit ist, Techniken und Programme zu erarbeiten, die eine Konstruk-
tion und Optimierung eines Kraftfeldes erlauben. Um mit minimaler experimenteller Informa-
tion eine entsprechende Parametrisierung vorzunehmen, werden die Systemeigenschaften über
verschiedenen Größenordnungen hinweg auf quantenmechanischer Basis untersucht, um die
mit wachsender Systemgröße zunehmende Anzahl an Näherungen zu verifizieren. Einer der
entscheidenden Schritte beim Übergang von der semi-quantenmechanischen zur klassischen
MD ist schließlich die Reduktion der elektronischen Freiheitsgrade auf ein Punktladungsmo-
dell. Meistens werden Punktladungen von isolierten Zuständen der Moleküle berechnet, die
jedoch nicht zwangsläufig in der flüssigen Phase vorzufinden sind, obwohl gerade diese von
Interesse ist. Im Folgenden wird näher erläutert, warum dies der Fall ist und wie in dieser
Arbeit das Problem umgangen wird.

Schwierigkeiten in der Partialladungsberechnung Obwohl eine Vielzahl von Techniken
zur Berechnung von Partialladungen vorhanden ist, sind nur wenige auf dicht gepackte Zustän-
de wie die flüssige Phase anwendbar. Das resultiert aus dem Problem, das elektrostatische
Potential einer kontinuierlichen Ladungsdichte auf ein Modell mit Punktladungen zu proj-
izieren. Im isolierten Zustand kann dafür leicht eine passende Mannigfaltigkeit im Raum
spezifiert werden, nicht jedoch im kondensierten Zustand.

Da sich gezeigt hat, dass die elektrostatischen Eigenschaften von ionischen Flüssigkeiten, wie
das molekulare Dipolmoment, zwischen isolierten Ionen und Ionenpaarclustern stark variiert
und vorhandene Kraftfelder nur den isolierten Zustand korrekt beschreiben, wird in dieser
Arbeit die Methode von Blöchl angewendet. Diese macht sich die periodischen Randbedin-
gungen des Systems und dessen Dichte zunutze und umgeht die Schwierigkeiten, indem sie
im reziproken Raum operiert. Die Resultate sind sehr vielversprechend, da das elektrische
Dipolmoment in der flüssigen Phase reproduziert wird und sich eine Reduktion der Ionen-
ladungen ergibt, die auch in NMR-Experimenten gefunden wurde. Daher wird diese Methode
der Konstruktion des Kraftfelds zugrunde gelegt.
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1.2. Kraftfeldladungen von und für die flüssige Phase

CAB - Die Ladungszuordnungsmethode von Blöchl Im Gegensatz zum allgemeinen An-
satz, mit Punktladungen das elektrostatische Potential im realen Raum zu reproduzieren,
basiert die Technik von Blöchl (CAB) auf dessen Multipolentwicklung und der Ausdehnung
der Ladungsdichte. Dabei wird ein Ladungsmodell, das jedem Atom eine Partialladung zuord-
net, die durch eine Überlagerung mehrerer Gaußglocken unterschiedlicher Varianz verschmiert
wird, an die genannten Eigenschaften im reziproken Raum angepasst. Die Multipolentwicklung
ist im Ursprung des reziproken Raums eindeutig durch die Ladungsdichte und die zugehörigen
räumlichen Ableitungen bestimmt. Zudem wird die Gesamtanzahl der Elektronen erhalten,
was Systemneutralität garantiert. Der Einfluss von Polarisation wird durch die Anpassung
der Ausdehnung auch berücksichtigt. Dies wiederum spiegelt sich in einer Reduktion der
Ionenladung wider.

Eine Anwendung der Methode auf einzelne Ionen und Ionenpaare zeigt, dass die erwartete
Verbesserung des elektrostatischen Modells auftritt. Gegenüber quantenmechanischen Berech-
nungen wird die Polarisation zwar meist überschätzt, aber es wird eine gute Übereinstimmung
mit Resultaten, die wie CAB auf der quantenmechanischen elektronischen Dichtefunktion-
altheorie (DFT) basieren, beobachtet. Sobald jedoch mehr als ein Molekül involviert ist,
werden auch die Abweichungen zwischen den verschiedenen DFT-basierten Methoden größer,
was die Sensitivität gegenüber der Konfiguration unterstreicht. Letztendlich kann nur eine
gemittelte Beschreibung dieser sensiblen Reaktion auf verschiedene molekulare Geometrien
in einem Kraftfeld mit statischen Partialladungen erreicht werden. Hierfür wird jedoch eine
bestimmte Anzahl an Konfigurationen für die CAB Methode benötigt, um die Partialladungen
zu bestimmen, die Polarisation in der flüssigen Phase implizit beschreiben.

Berechnung der Partialladung aus der flüssigen Phase Zur Erzeugung einer Startkonfi-
guration für die DFT-gestützte ab-initio MD (AIMD), wurde zunächst ein System mit circa
30 Ionenpaaren (IP) und, um die Zulänglichkeit der Systemgröße zu verifizieren, ein weiteres
System mit 240 Ionenpaaren mit klassischer MD equilibriert. Ein Vergleich der Resultate der
klassischen MD mit 30 und 240 IP zeigt keine Effekte, die auf eine unzureichende Systemgröße
schließen lassen. Damit war eine verläßliche Startkonfiguration für eine AIMD-Simulation ver-
fügbar. Wie die klassische MD erfordert auch die semi-quantenmechanische AIMD eine genaue
Kenntnis der Algorithmen und Erfahrung. Da dies den Rahmen dieser Arbeit sprengen würde,
wurden die Trajektorien nicht selbst integriert. Vielmehr wurde dafür mit den Expertengrup-
pen von Prof. Dr. Barbara Kirchner und Dr. Luigi Delle Site zusammengearbeitet, die
letztendlich die notwendigen Konfigurationen für die Blöchl-Analyse, sowie die radialen Ver-
teilungsfunktionen, die später für die Optimierung des Kraftfeldes nötig sind, zur Verfügung
stellten.

Um eine Ladungsverteilung zu erhalten, die der flüssigen Phase entspricht, wurde darauf
geachtet, dass keine künstliche Struktur durch eine zu kleine Systemgröße vorhanden ist.
Zudem wurden 100 quasi-unabhängige Schnappschüsse untersucht, um die sensible Reaktion
des Polarisationzustand auf die lokale Konfiguration zu berücksichtigen.

Eine Untersuchung des Systems [MMIM][Cl] zeigt, wie erwartet, eine Reduktion der Ionen-
ladung auf ±0.631 e. Dabei weist die Verteilung der Partialladungen eine für den entspre-
chenden Atomtyp charakteristische Breite auf, die auf dessen Polarsierbarkeit zurückzuführen
ist.
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Vergleicht man die Ladungsverteilung der Gasphase und flüssigen Phase, kommt der unter-
schiedliche Polarisationszustand der Moleküle zum Vorschein. Beim Übergang vom Gas zur
Flüssigkeit tritt die zu erwartetende Delokalisation der Elektronen über das ganze Molekül auf,
die zu einem wachsenden Dipolmoment führt. Desweiteren begünstigt die in der Flüssigkeit
berechnete Ladungsverteilung die Wasserstoffbrückenbindung an dem Wasserstoff des Imi-
dazoliumrings, das am Kohlenstoff, der zwischen den Stickstoffen sitzt, gebunden ist. Diese
spezifische Wechselwirkung ist schon seit längerem dafür bekannt, von großer Bedeutung für
die Dynamik Imidazolium-basierter ionischer Flüssigkeiten zu sein. Dies ist ein weiterer Hin-
weis, dass die Blöchl-Ladungen eine sehr gute Repräsentation des Ladungszustands in der
Flüssigkeit liefern.

Da die Blöchl-Technik jedoch auf einer Ladungsdichte beruht, die mit DFT berechnet wurde,
muss der Einfluss des Austausch-Korrelation (XC) Funktionals geklärt werden. Obwohl ein
Vergleich von Partialladungen für [EMIM][DCA], die mit verschiedenen Funktionalen berech-
net wurden, zeigt, dass die Unterscheide meist innerhalb der Standardabweichung liegen, tre-
ten manchmal signifikante Variationen auf. Da eine Beurteilung der Genauigkeit eines XC-
Funktionals ab-initio nicht möglich ist, wurden deshalb immer Resultate quantenmechanischer
Rechnungen als Bezugspunkt ausgewählt, um ein passendes XC-Funktional zu finden.

Des weiteren gilt es zu klären, inwieweit kleine a-posteriori Modifikationen der Ladungen die
Beschreibung der Systemeigenschaften beeinflussen. Diese Information ist von großer Bedeu-
tung, denn es ist zu erwarten, dass für ein transferierbares Kraftfeld kleine Änderungen nötig
sind. Dafür wurden zwei verschiedene Modelle mit Blöchl-Ladungen verglichen, die sich durch
die Ladung mancher Ringatome unterscheiden. Während ein Modell direkt aus den Resultaten
der Blöchl-Analyse hervorging, wurde bei dem anderen Modell die Ladung der Atome des
gleichen Typs gemittelt, woraus eine symmetrische Ladung des Rings hervorging. Es stellte
sich heraus, dass weder strukturelle oder dynamische, noch energetische Eigenschaften stark
variieren. Das ist ein entscheidender Vorteil, denn es ebnet den Weg zur Konstruktion eines
großen transferierbaren Kraftfelds.

Konstruktion von Partialladungen für ein Kraftfeld Das Ziel dieser Arbeit ist die Ent-
wicklung einer Methode zur Kraftfeldparametrisierung, wobei einer der wichtigsten Aspekte
die Transferierbarkeit ist. Aus diesem Grund müssen die Parameter sorgfältig aufeinander
abgestimmt werden, wofür ein breites Spektrum an Kombinationen Imidazolium-basierter
Kationen verschiedener Seitenkettenlänge mit den Anionen Chlorid, Dicyanamid und Thio-
cyanat, sowie die ionische Flüssigkeit Dimethylammoniumnitrat untersucht wurde. Ein Ver-
ständnis der Ladungsumverteilung und Reduktion liefert dabei die Theorie von Leontyev und
Stuchebrukhov, die jedoch zuerst erweitert werden muss, um verschiedene Molekülspezies in
einem Lösungsmittel zu beschreiben. Die erweiterte Theorie läßt es schließlich zu, einen gen-
erischen Satz von Partialladungen zu definieren, der leicht auf andere Kationen und Anionen
erweiterbar ist, womit die Grundlage für ein großes transferierbares Kraftfeld gelegt ist.

Den Ausgangspunkt für die MDEC-Theorie von Leontyev und Stuchebrukhov bildet dabei die
Zerlegung der Polarisierbarkeit des Mediums in einen nuklearen und elektronischen Anteil.
Während der nukleare Anteil auf die Konfiguration der Atome und deren effektive Ladung
zurückzuführen ist, ergibt sich der elektronische Anteil aus den delokalisierten Elektronen.
Deren viel geringere Masse erlaubt es fast instantan und ohne Aufnahme von Impuls auf
eine Veränderung des Zustands zu reagieren, solange das elektrische Feld schwach genug ist,
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1.2. Kraftfeldladungen von und für die flüssige Phase

um die Näherung der linear-response Theorie zu erfüllen. Daraus ergibt sich das Bild, dass
sich die Atome anstatt im Vakuum in einem Medium mit der dielektrischen Konstante εel
aufhalten. Bei der Ladungsberechnung werden diese Effekte nicht entkoppelt, sodaß die Blöchl-
Analyse den effektiven Ladungszustand wiedergibt, der εel implizit enthält. Jedoch ist εel, keine
empirische Zahl, sondern materialabhängig und mit der Polarisation verknüpft. Für geladene
Moleküle ergibt sich damit zwangsläufig eine Reduktion der ganzzahligen Ladung um den
Faktor 1/

√
εel. Zudem ist es auch möglich die effektive Ladungsreduktion experimentell zu

verifizieren, da εel dem Quadrat des Brechnugsindex nD entspricht, wobei für [EMIM][DCA]
eine Abweichung im Bereich von nur 2 % zu beobachten ist.

Betrachtet man die Fluktuation der Ionenladung als Maß für die Polarisierbarkeit, erkennt
man, dass diese relativ unabhängig von der Ionenkombination sind. Ein Vergleich der Ladungs-
verteilungen im polarisierten und isolierten Zustand verdeutlicht dabei die Delokalisation der
Elektronen, falls Möglichkeiten zur Wechselwirkung gegeben sind. Letztendlich bildet all dies
die Grundlage für die Konstruktion eine Satzes von Partialladungen, der auf eine große Anzahl
von ionischen Flüssigkeiten anwendbar ist, sodass eine zeitaufwendige Blöchl-Analyse entfallen
kann.

Die elektrostatischen Eigenschaften von ionische Flüssigkeiten weisen eine sehr starke Lokalität
auf, die durch eine sehr hohe Ladungsdichte und Polarisierbarkeit hervorgerufen wird. Dies
wurde durch die Partialladungen bestätigt, die aus Ladungsdichten periodischer Systeme mit
acht beziehungsweise mindestens 30 Ionenpaaren hervorgingen. Die Unterschiede zwischen
den einzelnen Ladungen lagen innerhalb der Standardabweichung, woraus sich die Möglichkeit
ergibt, den Rechenaufwand für die Blöchl-Analyse massiv zu reduzieren.

Bei eine Betrachtung der polarisierten Ladungsverteilung kann kein entscheidender Einfluss
der Ionenkombination festgestellt werden. Auch ein Vergleich der Dipolmomente, die mit
den klassischen Partialladungen bestimmt wurden, mit den Resultaten einer Wannier-Analyse
bestätigt die Verlässlichkeit der Blöchl-Ladungen, obwohl eine a-posteriori Symmetrisierung
des Rings nötig ist, um eine angemessene Übereinstimmung des mittleren Dipolmoments zu
erreichen. Zudem wird auch deutlich, dass eine mittlere Beschreibung des Polarisierbarkeit
nicht ausreicht, um die Breite der Dipolmomentverteilung zu reproduzieren, die durch eine
Wannier-Analyse gegeben ist, die auf der Elektronendichte basiert und im Gegensatz zu den
statischen Partialladungen die Polarisierbarkeit explizit in Betracht zieht.

Um einen generischen Satz von Partialladungen zu konstruieren, wurden die Partialladungen
von einer Serie Imidazolium-basierter ionischer Flüssigkeiten mit der Blöchl-Methode unter-
sucht. Vergleicht man εel der verschiedenen Systeme, zeigt sich, dass die Variation von εel nur
innerhalb verschiedener Kation-Anion Kombinationen signifikant ist. Jedoch ist bei Systemen
mit dem gleichem Gegenion, aber wachsender Kettenlänge der Imidazolium-basierten Ka-
tionen, keine deutlichen Veränderungen der Ladungsverteilung des Rings beobachtbar. Auch
die Ladung der Seitengruppen behält bestimmte Charakteristika, wie die Ausdehnung der
Ladungsdichte auf die Wasserstoffe oder die Gesamtladung bestimmter Atomgruppen. Ob-
wohl bei längeren Seitenketten eine weitere Ausdehnung der Ladungsverteilung möglich wäre,
geschieht nichts derartiges, was darauf hindeutet, dass nur direkt an den Imidazoliumring ge-
bundene Atomgruppen in der Seitenkette, sowie der Ring selbst, merklich polarisierbar sind.
Dieser Mechanismus der intermolekularen Umverteilung der Ladung wird jedoch nur durch
eine Gliederung des Kations in Domänen ersichtlich, die eine Gegenüberstellung von Syste-
men mit verschiedener Seitenkettenlängen erlaubt. Schließlich stimmen auch die polarisierten
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Ladungsverteilung der Anionen überein. Diese Resultate zeigen, dass die Grundlage zur Kon-
struktion von generischen Kraftfeldladungen für Imidazolium-basierte ionische Flüssigkeiten
gegeben ist.

Verglichen zu den Schwankungen, die durch Polarisation und dem Einfluß des XC-Funktionals
hervorgerufen werden, ist die Variation der Partialladungen zwischen gleichen Kationen in Ver-
bindung mit unterschiedlichen Anionen klein. Um diese weiter abzumildern, wird deshalb zur
Konstruktion eines generischen Kraftfelds über die verschiedenen Systeme gemittelt. Leider
sind noch nicht ausreichend Daten vorhanden, um dies mit Sicherheit auf beliebige Ketten-
länge zu erweitern, da noch ein kleines Dipolmoment am Ende der Buthylkette zu finden
ist. Jedoch kann am Beispiel von [EMIM]+ das Vorgehen demonstriert werden und auch
ein Ladungsmodell für beliebige Kettenlängen vorgeschlagen werden. Um die Anzahl unter-
schiedlicher Atomtypen zu minimieren, wurde untersucht, ob Gemeinsamkeiten zu finden sind,
mit dem Ziel den weiteren Parametrisierungsaufwand so klein wie möglich zu halten. Leider
war dies nicht der Fall, aber es wurde zunächst ein symmetrisch geladener Imidazoliumring
durch Mittelung erzeugt, der, wie gezeigt, die Dipolmomente der AIMD in einem annehm-
baren Rahmen widerspiegelt. Daraufhin wurden die Ladungen der [EMIM]+-Kationen, die aus
den verschiedenen Systemen hervorgingen, gemittelt und schließlich noch eine Korrektur von
0.02 e am Kohlenstoff der Methylgruppe, die direkt an den Ring gebunden ist, vorgenommen,
um numerische Ungenauigkeiten auszugleichen und eine ganzzahlige Ladung des polarisierten
Ladungszustands herzustellen. Zur ersten Verifizierung der generischen Partialladungen wurde
das erzeugte Dipolmoment mit den AIMD Resultaten verglichen und, trotz einer kleinen Über-
schätzung, eine zufriedenstellende Übereinstimmung festgestellt. Hiermit wurde letztendlich
der theoretische Hintergrund für die Entwicklung der elektrostatischen Kraftfeldparameter
geliefert. Nun ist eine Methode notwendig, die es erlaubt, effizient die restlichen Parameter
anzupassen, um schließlich ein zuverlässiges Kraftfeld zu generieren.

1.3. Techniken zur Anpassung und Konstruktion eines
Kraftfelds

Bisher wurden ausschließlich Techniken vorgestellt, die sich mit der Bestimmung der Partial-
ladungen befassen. Jedoch besteht ein Kraftfeld aus einem großen Satz an Parametern, die
konsistent angepasst werden müssen. Um diesen Prozess so effizient wie möglich zu gestalten,
wurde ein automatisiertes Konzept entwickelt, das eine Anpassung der Parameter an beliebige
Referenzdaten erlaubt, und in ein Python Modul namens PyPaTEGRO implementiert. Im Fol-
genden wird dargestellt, auf welche Annahmen und Grundlagen sich die Optimierung stützt
und schließlich die Methode am Beispiel [MMIM][Cl] vorgestellt.

Anpassung der Dihedralparameter Im Gegensatz zur Parametrisierung von kovalenten
Bindungen, müssen die Dihedralpotentiale angepasst werden, sobald sich die elektrostatische
oder kurzreichweitige Wechselwirkung ändert, da diese über die 1–4 Wechselwirkung mitei-
nander verknüpft sind. Dieser Vorgang ist unproblematisch, wenn Referenzenergien eines
anderen Kraftfelds vorliegen, wie in diesem Fall. Andernfalls ist es notwendig zuerst ents-
prechende Berechnungen durchzuführen. Liegen letztendlich die Torsionsenergieprofile der
verschiedenen Dihedralwinkel vor, lassen sich die Parameter leicht mit einem nicht-linearen
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Least-square-error Fit anpassen. Dieser Vorgang ist leicht automatisierbar und wird bei jeder
Veränderung der Partialladungen oder kurzreichweitigen Wechselwirkung vorgenommen. Al-
lein ein Vergleich der unmodifizierten mit den angepaßten Energien zeigt, dass ohne die Kor-
rektur eine falsche Grundzustandskonfiguration energetisch favorisiert wäre.

Optimierung der kurzreichweitigen Wechselwirkungen Obwohl [MMIM][Cl] erst bei einer
Temperatur von 398 K schmilzt, ist es abgesehen von der Symmetrie strukturell relativ gleich-
artig zu ionischen Flüssigkeiten, die bei Raumtemperatur flüssig sind. Aufgrund der geringen
Größe eignet es sich deshalb zur Entwicklung einer Kraftfeldoptimierungsroutine und dient
daher im Folgenden zur Entwicklung der Methodik als Beispiel. Obwohl nur eine Quelle
für experimenelle Referenzdaten zugänglich ist, reicht diese aus um das Kraftfeld anzupassen
und zu verifizieren. Dabei gilt es nun, die Parameter der Lennard-Jones (LJ) Potentiale zu
optimieren, wofür zwei verschiedene Wege eingeschlagen werden können.

Eine Methode beruht auf einer iterativen Skalierung der Parameter, wodurch sich die Massen-
dichte bei einer bestimmten Temperatur sehr leicht anpassen lässt. Dabei dienen die Referenz-
RDFs der AIMD-Simulationen als Maß für die strukturelle Übereinstimmung. Die Problem-
atik dieser Methode liegt jedoch in der gemeinsamen Optimierung der Parameter. Es ist
sehr schwierig, die richtige Kombination zu finden, um gleichzeitig mehrere Referenzdaten
anzupassen, wie etwa die Massendichte bei verschiedenen Temperaturen oder unterschied-
liche RDFs. Jedoch erlaubt diese Methode, das Kraftfeld bezüglich eines sehr limitierten
Gültigkeitsbereich schnell zu adaptieren.

Um diese Probleme aus dem Weg zu schaffen, wurde ein Verfahren entwickelt, dass eine Fehler-
funktion, die sich aus den verschiedensten Größen zusammensetzen lässt, minimiert, sodass
letztendlich ein optimaler Satz von Parametern zur Verfügung steht. Diese Technik basiert auf
der Entwicklung der Fehlerfunktion in eine Taylorreihe, wofür eine Reihe von Simulationen
aufgesetzt und durchgeführt werden muss, um die notwendigen Ableitungen zuverlässig zu
berechnen. Zu diesem Zweck wurde das Python-Modul PyPaTEGRO implementiert, das alle
nötigen Dateien vorbereitet, um die Rechnungen massiv parallel auf einem Supercomputer
ablaufen zu lassen. Desweiteren enthält es verschiedenste Routinen zur Simulationsanalyse
und ermöglicht letztendlich die Berechnung eines Satzes von Parametern, der die Fehlerfunk-
tion minimiert.

Diese Methode wurde wieder am Beispielsystem [MMIM][Cl] getestet. Um die Simulation-
szeiten so gering wie möglich zu halten, wurden nur statische Eigenschaften als Referenzdaten
benutzt, wie die Massendichte bei unterschiedlichen Temperaturen und die RDFs zwischen dem
Chlorid und den Wasserstoffen. Als Ausgangspunkt diente ein bekanntes Kraftfeld, das eine
zu langsame Dynamik der Ionen wiedergibt. Bei diesem wurden die Partialladungen durch die
Resultate einer Blöchl Analyse ersetzt und die Dihedralparameter angepasst. Hierfür wurde
letztendlich die Fehlerfunktion minimiert, wobei verschiedene Kombinationen aus den LJ-
Parametern der Wasserstoffe und des Chlorids am Optimierungsprozess beteiligt waren. Nach
sieben Iterationsschritten wurde die Fehlerfunktion als optimiert betrachtet, da die Massen-
dichten über einen Bereich von über 50 K innerhalb eines Fehlers von 1 % lagen und auch
die Abweichung der RDFs von ihren Referenzen als annehmbar betrachtet wurden. Der letzte
Schritt ist nun die Validierung des Kraftfelds, da bisher keine dynamischen oder energetischen
Größen im Parametrisierungsprozess direkt involviert waren.
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1. Zusammenfassung

Validierung des Kraftfelds Zuletzt ist es nun nötig, die Verlässlichkeit des Kraftfelds hinsicht-
lich verschiedener Eigenschaften zu überprüfen. Wie erwähnt dienten ausschließlich statische
Größen zur Parameteroptimierung, sodass keinerlei Information über die Reproduktion dy-
namischer oder energetischer Eigenschaften vorhanden ist. Diese Analyse erlaubt es zudem,
Unzulänglichkeiten zu identifizieren, die für den weiteren Optimierungsprozess, auch in Hin-
blick auf ein transferierbares Kraftfeld, von großem Interesse sind. Daher wurden die Diffu-
sionskonstanten, Leitfähigkeit und Verdampfungsenthalpie untersucht.

Obwohl das optimierte Kraftfeld BTFF gegenüber dem Ausgangskraftfeld CLaP die gewünsch-
te Beschleunigung der Dynamik aufweist, kommt zum Vorschein, dass BTFF die Leitfähigkeit
und damit auch Dynamik bei geringen Temperaturen überschätzt. Neben der schnelleren Dy-
namik weist BTFF gegenüber CLaP auch Unterschiede im Verhältnis der Diffusionskonstanten
und der Korrelation der Ionen auf. Dieser Umstand kann leider nur mit Resultaten aus an-
deren Simulationen verglichen werden, wobei der Trend von BTFF gestützt wird. Diese un-
gewöhnlich schnelle Dynamik und Leitfähigkeit ist höchstwahrscheinlich der unzureichenden
Übereinstimmung der RDFs zuzurechnen, da die ersten Maxima manchmal zu klein sind, was
für eine zu geringe Wechselwirkung und dementsprechend Bindung führt. Dabei liegt vor allem
die RDF zwischen Chlorid und dem Wasserstoffatom, das an das Kohlenstoffatom zwischen
den Stickstoffen gebunden ist, im Blick, da bekannt ist, dass die Wechselwirkungen in diesem
Bereich des Imidazoliumrings die Dynamik entscheidend beeinflussen.

Weiterhin spielt auch die Transferierbarkeit zwischen verschiedenen Temperaturen eine ent-
scheidende Rolle. Die Resultate von entsprechenden Simulationen zeigen, dass BTFF ab etwa
440 K die experimentellen Resultate sehr gut reproduziert. Zudem wird der subtile Zusam-
menhang zwischen kurz- und langreichweitigen Wechselwirkung deutlich, was die Vermutung
untermauert, dass eine zu geringe Wechselwirkung im entscheidenden Bereich des Imidazoli-
umrings besteht. Mit steigender Temperatur verliert diese Wechselwirkung seine Dominanz,
und die unzulängliche Parametrisierung der kurzreichweitigen Parameter wird von der akkur-
aten Darstellung der elektrostatischen Wechselwirkung überspielt.

Ein entscheidender Einfluss des genanntenWasserstoffatoms zeigt sich jedoch in den Verdampf-
ungsenthalpien. Gemäß den Erwartungen sind die Werte für BTFF viel kleiner als für CLaP,
jedoch liegen sie auch unterhalb von Simulationsresultaten aus der Literatur, die zudem eine
langsamere Diffusion als BTFF reproduzieren. Damit hat sich letztendlich gezeigt, dass zu-
mindest bestimmte RDFs sehr genau angepaßt werden müssen, um über einen weiten Tem-
peraturbereich eine verlässliche Beschreibung der Molekulardynamik zu liefern.

Mit diesen Ergebnissen kann nun der erste Zyklus zur Konstruktion eines großen transferi-
erbaren Kraftfeld für ionische Flüssigkeiten abgeschlossen werden. Obwohl die Resultate nach
dem erste Optimierungsprozess der kurzreichweitigen Wechselwirkungen bei niedrigen Tem-
peraturen nicht zufriedenstellend waren, wird bei höheren Temperaturen die Dynamik sehr
gut reproduziert. Durch Analyse der Defizite wurde zudem klar, dass einer akkuraten Mod-
ellierung der RDFs mehr Gewicht beizumessen ist, da diese ein Maß für die Balance zwischen
kurz- und langreichweitiger Wechselwirkung darstellen.

Abschließend lässt sich zusammenfassen, dass nun eine Theorie und die Software vorhanden
ist, um Kraftfelder zu parametrisieren. Obwohl etwas Erfahrung nötig ist, um den Vorgang
möglichst effizient zu gestalten, sind die entscheidenden Grundpfeiler gelegt. Damit sollte eine
weitere Hürde zur Parametrisierung von Kraftfeldern in-silico etwas geebnet worden sein, die
es letztendlich erlauben soll, ionische Flüssigkeiten zu charakterisieren und verstehen.
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2.1. Room Temperature Ionic Liquids

The most simple example for a salt is sodium chloride consisting of two atomic ions. At room
temperature this salt is present in the crystalline state, because its melting point is around
1000 K due to the strong ionic interaction. This is the case for all salts that consist of atomic
ions, which are referred to as molten salts in their liquid state.

Another class of salts are ionic liquids (ILs), which have a much lower melting point than
molten salts. They are constituted by ions, which are composed of several atoms such that
a strong delocalization of the electrons occurs which weakens the electrostatic interaction. In
addition the excluded volume and the configurational entropy increase which yields a signi-
ficant reduction of the Gibb’s Free energy of fusion and with that the melting temperature18.
An example for this class of solvents is ethyl-methyl-imidazolium thiocyanate [EMIM][SCN]
depicted in Figure 2.1 with a melting temperature of 327 K19. The charge of [EMIM]+ is
strongly delocalized around the imidazolium ring, which is one of the reasons for the very low
melting point.

Figure 2.1.: A picture of an ethyl-methyl-imidazolium ([EMIM]+) cation and a thiocyanate
([SCN]–) anion.

If the size of the ions is further increased, a decrease of the melting temperature is expected
and a further class of solvents is defined. Room temperature ionic liquids (RTILs) are per
definition the class of salts, which are present in the liquid phase at room temperature. An
example for this kind of compounds is [BMIM][DCA] melting at 267 K20.

However, it can be shown that molten salts and ionic liquids are not completely different from
each other. A comparison of the phase diagram for molten salts and ionic liquids in terms of
reduced units reveals that the reduced melting temperature is almost constant, while only the
reduced volume differs21 highlighting the importance of the size of the ions.

Yet, several theories exist, but the class of ILs is not completely understood. Actually the first
RTIL, Ethyl-ammonium nitrate (EAN), has been discovered by Walden22 in 1914, but the real
interest in this incredibly large class of compounds has been raised only some decades ago.23–34
On the one hand, many RTILs have been identified with the gained knowledge as well as many
potential applications. They have been “designed” for applications, which were inefficient or
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impossible with common solvents yet. Some good examples are the processing of cellulose35,36,
the capture of flue gases in chemical reactions37 and especially catalytic processes30,38. On
the other hand, already during the synthesis of RTILs, their high sensitivity to impurities,
especially water, has been recognized.30 But apart from the synthesis, also many experimental
techniques are not straightforwardly applicable, due to the high charge density, viscosity and
impurity dependence34. The problem of inaccurate measurements is a large topic in the field
of ionic liquids (ILs), because very small impurities in the range of a few ppm can affect the
results significantly.

A good example is the disagreement of different density measurement for ethyl-methyl-imidazolium
thiocyanate ([EMIM][SCN])19,39,40, all depending on a linear relation between density ρ and
temperature T :

ρ = aT + b (2.1)

Comparing the different experimental results reveals the same slope for the different references
up to precision 10−1 kg ·m−3 ·K−1. But Domanska et al.19 and Seki et al.40 derive a value
for the fitting parameter b around 1130 kg ·m−3, while Yokozeki and Shiflett39 obtain b =
1296 kg ·m−3. In order to avoid these inaccuracies, the sample has to be maintained pure over
the whole chain from synthesis to the measurement, which is very difficult.

But in order to allow an efficient “design” of ILs, the molecular mechanisms responsible for
their special behaviour have to be understood. A valuable tool for that kind of studies are com-
puter simulations, whereby especially quantum-chemical post-Hartree-Fock (pHF), electronic
density functional theory (DFT) and classical all-atom molecular dynamics (MD) simulations
allow to obtain insight into the energies and forces on different scales providing the basis for a
calculation of a vast number of properties. For RTIL systems, a new challenge in the field of
computer simulations arises, because all levels of theory have to deal with different problems.
Due to the relative large size of the solvent species, pHF and DFT calculations require an ex-
tremely large amount of computing time, while MD simulations suffer from a lack of detailled
information about the inter- and intramolecular interactions. However MD simulations are a
very suitable method to determine thermodynamic, structural and dynamic properties, but
they rely on an accurate parameterisation of the interactions. In order to allow a “design” of
RTILs in-silico avoiding potentially environmentally-unfriendly and expensive synthesis, such
a parameterisation has to be developed, which is the main topic of this thesis.

2.2. From the inhomogeneous electron gas to classical
molecular dynamics

From classical physics it is well known that an analytical solution of a many-body problem
involving more than two bodies is not possible. The same situation arises for the Schrödinger
equation. For this reason only the hydrogen atom allows an analytical treatment of the
quantum mechanics, but as soon as more than two particles are involved, approximations are
required. Finally systems of thousands of particles are of interest, which requires a consistent
mapping of the information about the energetics and interactions via different scales shown in
Figure 2.2.

In 1928 and 1930, Hartree41 and Fock42 established the basis for modern quantum chemical
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coarse graining

time/length

post-Hartree-Fock
+ high accuracy
− small and static systems

electronic DFT
+QM treatment of dynamics
− restricted to ps time scale

classical MD
+ thermodynamics, dynamics, statics
− accurate force field required

Figure 2.2.: Different computational methods with their advantages (+) and drawbacks (-)
are applied on different scales to consistently map the system properties between
each other.

calculations (HF), that allow a numerical solution of the Schrödinger equation for many-
body systems. The method of Hartree41 relies on a separation of the variables of the wave
function Ψ, which is used to numerically integrate the Schrödinger equation. This description
neglects the exchange interaction within the electrons as well as symmetry properties though
they are required to describe degenerated states. These insufficiencies were outweighed by an
extension of this description by Fock42. Therein a variational approach is applied to derive
the solution of the many-electron Schrödinger equation, and the wave function Ψ is a linear
combination of basis functions. It shows that the exchange interaction within the electrons is
small, such that a treatment in terms of perturbation theory is appropriate. Hence to solve
the complex set of equations, at first the Hartree approximation is derived by neglecting the
cross-terms. Afterwards iterative application of perturbation theory allows to calculate the
exchange interaction.

Nowadays many extensions of the Hartree-Fock method, called post-Hartree-Fock (pHF)
schemes, exist, where one of the most famous is probably Møller-Plesset perturbation the-
ory.43 Møller and Plesset43 have proven, that HF is an approximation correct up to first order
in energy perturbation. Higher order correction terms are easily gained, as they rely only
on single-electron wave functions, allowing to increase the accuracy of the calculations up to
arbitrary order. Often the accuracy of the second-order Møller-Plesset approximation (MP2)
is sufficient and hence it is widely used for studies on molecular compounds. However, the
computational effort is increasing with N5 with the number N of involved basis functions of
the atomic wave functions. As depcitured in Figure 2.2, this method is very accurate method,
but only applicable to small and static systems.

In order to allow one studies of larger systems in terms of quantum mechanics, the description
of the system is more coarse grained, shown in the center of Figure 2.2. Therein, the electrons
are considered as an inhomogeneous gas44 of density n(r) at the point in space r. This method
is called electronic density functional theory (DFT) and Hohenberg and Kohn44 established a
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theory that describes the energy of a system in terms of the electron density n(r) given as a
functional of an arbitrary external potential. Unfortunately the energy functional F [n(r)] is
rather complex and usually not analytically accessible. For a system of approximately constant
electron density and in case of a slowly varying electron density, exact solutions are accessible,
but more common cases require a subtle calculation of the functional. Finally a set of self-
consistent equations has been derived by Kohn and Sham45, that describes an inhomogeneous
electron gas including exchange and correlation effects. These equations explicitly depend
on the so-called exchange-correlation (XC) functional Exc[n], that is not known analytically.
Many XC functionals have been proposed during the last decades, that mostly rely on a
gradient approximation. Parameters involved in this approximation are obtained by a fit to
HF or pHF calculations and adapted to achieve correct asymptotic behaviour, as for example
the BLYP functional46–48. Another very popular functional has been introduced by Perdew
et al.49, known as the PBE functional. It completely relies on fundamental constants and is
constructed in order to describe the analytically known local spin density correctly.

A choice of an XC functional from “scratch” does not necessarily yield accurate results, there-
fore careful benchmarking is necessary, to assure reasonable accuracy. Yet, DFT allows to
study systems of hundreds and even thousands of atoms, such that ”bulk-like” phases are ac-
cessible. While HF and pHF methods are only applicable to static calculations, DFT moreover
can be combined with MD techniques to obtain the possibility to propagate the system in
time with the XC functional as only empirical parameter. This is finally called “ab-initio”
MD (AIMD). Mainly two schemes are applied in such kind of simulations, Born-Oppenheimer
MD and Car-Parrinello MD, which differ in the derivation of the forces from the electron
density.50 Efficient algorithms, such as the programs CPMD51 and CP2K52 are available, but
the simulation time is restricted to tens of picoseconds.

Hence, to simulate even larger systems on longer time scales, the computationally expensive
explicit treatment of the electron density has to be incorporated into a parameterisation of
the interaction into mathematically simple potentials. This kind of coarse-graining yields the
scheme of classical molecular dynamics (MD) simulations, drawn in the upper right corner of
Figure 2.2. The parameterisation process is a difficult task and not unique, because a careful
mapping of the systems properties over different length scales into reasonable potentials is
required. These are summarized in a so-called force field. Apart from the diversity of the
applied interaction potentials, various methods to coarse-grain an MD simulation exist. It
already starts on the level of an all-atom description of the system. At this point, it has to
be decided, if static partial charges are applied or polarization is explicitly considered during
the simulation. For this reason, different schemes have been developed to deal with even
macroscopic length scales. An increasing length scale requires an increasing coarse graining
of the simulation, starting with a condensation of several atoms into groups, over inclusion of
explicit solvent molecules up to mean field descriptions of the interactions, such that only the
actual object of interest is explicitly simulated.

Hence, to establish a reliable force field, the interactions given for the different scales have to
be mapped consistently, but provide differing levels of accuracy. The important information
has to be extracted on every level of theory in order to allow a proper description of the system
in terms of classical physics. For it, a multi-scale approach has been suggested and this thesis
takes the last step from the DFT to the classical level, that allows to parameterise and optimize
classical force fields. It is based on an interconnection of all levels of theory to transfer almost
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all important information straightforwardly from the QM to the classical level. Finally, the
most challenging task comprises a construction of a force field, which is transferable within
a certain set of compounds and points in the phase diagram. The main object inhere are
all-atom force fields, because they usually provide the basis for further coarse-graining of the
system. When the terms force field (FF) or molecular dynamics (MD) simulation are used in
this work, they refer to an all-atom description of the system with static partial charges, if
not stated otherwise.

2.3. Multiscale modeling of ionic liquids

A FF is the basis for every classical MD simulation and different levels of theory are involved
in the parameterisation procedure. The advantages and disadvantages of the various methods
have already been summarized in Figure 2.2. In order to allow one an efficient connection of
the different scales experience on every level of theory is required. To this end a cooperation of
the groups of Robert Berger, who has expertise in quantum chemical pHF studies, and Luigi
Delle Site, experienced in the field of electronic DFT, had been established. Within the DFG
SPP 1191 Ionic Liquids, we connected our knowledge on different levels of theory to establish
a multiscale approach for classical force field refinement. This work deals with the transfer
of the information from the DFT level to a classical force field. Herein partial charges are
determined from the results of the DFT calculation and methods are developed to adapt the
further parameters.

The multiscale approach begins at the pHF level of theory, which provides very accurate
information about the electronic structure and geometry of small static systems. Though
these calculations are restricted to the gas phase, this electronic structure is often used for
the calculation of classical FF parameters, that should describe liquid phase behaviour. For
some molecules this approximation works fine, but it fails for other systems, especially if
strongly polarizable molecules are involved. To study the electronic properties of systems in the
condensed phase electronic density functional theory methods are required, which sensitively
depend on the exchange-correlation (XC) functional. Only careful benchmarking of the DFT
with pHF results for small systems allows one to choose an XC functional, that provides
reasonable accuracy. For this reason the first important connection of our multiscaling method
is the connection between pHF and DFT depicted on the left side of the triangle in Figure 2.3.
Calculation on small clusters consisting of a few ions with pHF and DFT allow one to compare
a variety of properties, like structure, energy, forces or electrostatic moments. This in turn
provides the basis for the choice of an accurate XC functional and is an inevitable connection
between the different scales.

With that electronic structure, geometries, and even dynamics become accessible in the con-
densed phase based on quantum mechanical considerations because AIMD is applicable. Some
liquid phase properties are already contained in the DFT or AIMD studies, such as information
about structure and electostatics, but the system size and length of time propagation is still
not large enough to predict every kind of bulk property, such as the mass density, viscosity or
conductivity, which are of large interest in the field of ionic liquids.

For this reason, the DFT scale is bridged to classical MD simulations which allow one to
simulate systems of thousands of atoms and reach time scales of tens of nanoseconds. These
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time and length scales are finally sufficient to calculate the aforementioned properties as well
as a vast number of other thermodynamic, static and dynamic properties, such as the heats
of vaporization, melting temperatures or diffusion constants. Unfortunately, the accuracy of
the results strongly depend on the applied FF. For many organic liquids and biomolecular
systems reliable force fields such as OPLS-AA53 or AMBER54 are available, but also these
FF are continuously refined. A very good example for the sensitivity of a parameterisation is
the variety of available water models, which all have their advantages and disadvantages, such
that a choice “from scratch” does not guarantee reasonable results. This problem results from
the strong polarizability of water, that is not explicitly treated in a classical MD simulation.
Different methods are available for an incorporation of these effects, but the computational
effort of such polarizable models is much larger, restricting the accessible time and length scales
drastically. For this reason, a reliable approach is necessary to parameterise all important
properties of the system into a force field with a static charge distribution. As shown on the
right side of the triangle in Figure 2.3, we connect the DFT and classical MD scale in order
to include important condensed phase properties, which concerns especially the eletrostatics
and structure. Thereby we extract the partial charges from bulk-like phase configurations and
use the structure information given by radial distribution functions to adapt the short-range
parameters of the force field.

Experiments

– IR spectra
–X-ray/neutron scattering
–Dielectric spectra
–Thermodynamics, dynamics, and
statics

– continuum solvation models
– vibrational frequencies

post-Hartree-Fock Molecular dynamics

electronic
Density Functional Theory

Cluster:
– structure, energy, forces
– electrostatic moments
– harmonic frequencies
– charge transfer

Small systems:
– structure
– electrostatics in liquid
phase

– fast dynamic processes

Figure 2.3.: An iterative cycle between the different levels of theory allows to benchmark the
different methods and refine the FF parameterisation.

In order to transfer information between the different scales consistently, an iterative cycle
involving all levels of theory is the long-term goal, such as depicted in Figure 2.3. As already
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mentioned, the main object of this work is the connection of the DFT level with the classical
part by an establishment of a procedure to refine or define classical FFs. Mostly the para-
meterisation of the Coulomb interaction is based on gas phase calculations, that completely
neglect bulk effects. Afterwards this deficiency has to be removed in a demanding paramet-
erisation process, which requires much knowledge about the system of interest. Studies on new
compounds are difficult, because the parameterisation process requires quite long simulations
to adapt the parameters to dynamic properties like the diffusion constant. To overcome this
barrier the herein proposed method does not rely on the gas phase charge distribution, but
the electronic properties are transferred from AIMD simulations capturing the properties of
the condensed phase with the charge assignment method of Blöchl55 (CAB). Only a single
experimental property, the mass density, is involved in the setup of the AIMD simulations as
well as in the FF parameterisation. Yet, this method is the first step towards a design of new
chemical compounds in-silico.

So far, several articles have been published within this cooperation1,7,9–12,14–17, which describe
the development of the multiscale approach and its application. This also lead to a deeper
understanding of the mechanisms dominating the behaviour of ionic liquids which in turn
allows one to improve the already present methods. Additionally, an a–priori error estimate
to optimize the calculation of electrostatic interactions in the classical MD simulations has
been developed.13
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3. The principles of classical molecular
dynamics

Classical molecular dynamics (MD) simulations are a powerful tool to study condensed phases,
because a system of hundreds of thousands of atoms can be propagated in time. Though one
has to deal with atoms or molecules, their trajectory may be integrated following Newton’s
equation of motion. To render this possible, two assumption have to be valid.

The Born-Oppenheimer (BO) approximation56 that shows that the motion of the atoms is
given their nuclei. This arises from the large difference in mass between electrons and the nuc-
leus resulting in a ratio of their velocities velectron/vnucleus ≈ 104. Yet the electrons immediately
react on a movement of the nucleus and the wave function of the systems can be separated
into an electronic and a nuclear part. With that, the nuclei move in an effective potential
where the coordinates of the electrons are treated as parameters. Hence the positions of the
atoms can be integrated by considering them as point particles.

However, in order to derive the forces F which are required for the integration of the traject-
ories, a reliable parameterisation of them, a so-called force field (FF), is necessary. The FF
consists of a set of parameters that describe the interactions in mathematically simple terms.
These are often pair-wise additive and can be efficiently calculated on a computer. From the
potential energy Φ given by the parameters, forces F are derived and applied to integrate
Newton’s equation of motion:

F = −∇Φ. (3.1)

This seems to be straightforward, but many aspects have to be considered, in order to ac-
curately and efficiently propagate the coordinates and velocities of the particles. The next
sections give a brief introduction in the “art of molecular dynamics” as Rapaport57 stated.
After a discussion of the mechanisms to simulate different thermodynamic ensembles, and an
introduction to the principles of a FF, methods for the optimization of the simulations in terms
of computational efficiency and accuracy are presented which mainly concerns the electrostatic
interactions. An error estimate for the smooth-Particle-Mesh-Ewald method (SPME)58 and
the Particle-Particle-Particle mesh method with analytical differentiation (P3M-AD)59 is de-
rived, which finally completes the set of accessible error estimates for Ewald-based methods.
Yet an a-priori tuning of the simulations in terms of accuracy and speed becomes possible
for all methods and also all sets of parameters. The chapter closes with a review about the
development of IL FFs and a comparison of two of them, which are quite famous, where also
the methods for the benchmarking are discussed in more detail.
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3. The principles of classical molecular dynamics

3.1. Exploring different thermodynamic ensembles

To connect theory, experiment, and simulation correctly, it is necessary to assure that all
branches discuss the same thermodynamic ensemble. Computer simulations have to be in-
terpreted carefully due to finite size effects and numerical errors as well as require a suitable
algorithm to realize a given situation. Finite-size effects arise from the limited number of
particles that can be simulated and they are often minimized by the application of periodic
boundary conditions. Apart from the limited machine accuracy, numerical errors result from
unsuitable simulation parameters and can be significantly reduced by different optimization
techniques. Finally the generation of the desired thermodynamic ensemble is a crucial part,
because the ensemble averages for different kinds of ensemble only coincide for an infinite
number of particles. Hence it has to be assured that the simulated ensemble is known.

This section sheds more light onto the relations between different kinds of simulations and
ensembles. Therefore, canonical transformations, Liouville’s law, and Trotter’s theorems are
discussed at first, in order to provide the basis for an easy understanding of integrators, ther-
mostats and barostats that allow one to obtain different kinds of thermodynamic ensembles.

Canonical transformations, Liouville’s Law, and the Trotter identity In classical mech-
anics the class of canonical transformations describes the time evolution of a system.60 The ba-
sic idea is that a set of generalized coordinates and velocities exist determining the Lagrangian
L uniquely as well as the corresponding Hamiltonian H which is derived by a Legendre trans-
formation of L exchanging the generalized velocities q̇ with a generalized momentum p. In
terms of H the time evolution of the particles is given by the canonical equations:

q̇ =
∂H

∂p
, (3.2)

ṗ = −∂H
∂q

. (3.3)

If this form is conserved under a transformation of q → Q and p → P to another set of
generalized coordinates Q and momenta P the transformation is canonical. Yet a shift τ of
the generalized coordinates q and momenta p in phase space:

q(t+ τ) = Q(q(t),p(t), τ), (3.4)
p(t+ τ) = P (q(t),p(t), τ), (3.5)

can be regarded as a canonical transformation, too. For this reason, an integration of the
equations of motion for a certain time τ corresponds to a canonical transformation. Because
Liouville’s law states that a canonical transformation conserves the volume element dΓ =
dq1dp1 . . . dqndpn of the phase space Γ, also a generation of a proper thermodynamic ensemble
crucially depends on the conservation of phase space volume. Therefore, any scheme in an
MD simulation involved in the integration of the canonical equations, such as barostats and
thermostats as well as the integrator itself have to correspond to a canonical transformation.
If the integration scheme conserves dΓ it is referred to as symplectic.

One possibility to express the equations of motions of the coordinates and momenta of the

34



3.1. Exploring different thermodynamic ensembles

particles is provided by the Liouville operator iL:61–63

ḟ = iLf , with (3.6)

iL = ṙ
∂

∂r
+ ṗ

∂

∂p
. (3.7)

The formal solution of equation (3.6) is simply derived by integration:

f(x(t),p(t)) = eiLtf (x(0),p(0)) , (3.8)

but it is quite useless and does not offer much information about the time evolution of a system,
which is determined by the canonical equations equations (3.2) and (3.3). In order to alleviate
the interpretation of equation (3.8), some group theory is applied. From equation (3.8) it
follows that the operator Tt = eiLt satisfies to the continuity condition: limt→0 Ttf = f , so its
infinitesimal generator Ω = limt→0 t

−1(Tt − I) with the identity operation I is defined, and
the semi-group condition: Tt+s = TtTs for s, t > 0 is satisfied, because Tt+s has the same Ω as
Tt and Ts, and eiL(t+s)f = f(t + s) = eiLtf(s) = eiLteiLsf(0). Hence, the Liouville operator
iL is the infinitesimal generator Ω of a semi-group and the theorems of Trotter64 guide a
decomposition of Ω. One theorem proves that a decomposition of Ω in Ω1 and Ω2 such that
Ω = Ω1 + aΩ2 for a > 0 is only allowed if the operators T1 and T2 commute and therefore also
their infinitesimal generators. In order to show that the Liouville operator only commutes
in certain cases, the formalism of the Poisson bracket { · , · }p,q 60 is introduced. Inserting
equations (3.2) and (3.3) in equation (3.7) gives:

iLf =
∂H

∂p

∂

∂r
f − ∂H

∂x

∂

∂p
f, (3.9)

iLf = {H , f}p,q = ḟ (3.10)

Assuming the Hamiltonian H is split up in H = H1 + H2, then the infinitesimal generators
of the decomposition are given by [Ω1, f ] and [Ω2, f ]. With the Jacobi identity of the Poisson
brackets it is nicely illustrated that for commutative Ω1 and Ω2:

{
Ω1, {Ω2, f}p,q

}
p,q
−
{

Ω2, {Ω1, f}p,q
}
p,q

=
{
{Ω1,Ω2}p,q , f

}
p,q
, (3.11)

{
Ω1, ḟ2

}
p,q
−
{

Ω2, ḟ1

}
p,q

= 0, (3.12)
{

H1, ḟ2

}
p,q
−
{

H2, ḟ1

}
p,q

= 0, (3.13)

equation (3.13) has to vanish. This is only the case, if f is a constant of motion in respect
to H1 and H2 or H2 = cH1 for all c ∈ R. For this reason Trotter’s first theorem64 usually
does not apply. As a consequence the exponential in equation (3.8) must not be decomposed
into products and applied one after each. In other words velocities and positions have to be
known at the same point in time, to derive the acting forces and the resulting velocities and
positions. The second theorem Trotter64 proves that for any decomposition of iL a “product”
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3. The principles of classical molecular dynamics

semi-group Sa,t can be constructed:

Sa,t = lim
τ→0

(TτT
′
aτ )

[ tτ ] , (3.14)

that conforms to the semi-group condition for all a > 0 and the infinitesimal generator of
S(a, t) becomes Ωa = Ω + aΩ′. With that, a decomposition of the Liouville operator is
derived:

exp(iLt) = exp(iL1t+ iL2t) = lim
τ→0

[exp(iL1τ) exp(iL2τ)]
t
τ . (3.15)

Besides providing a possibility of decomposition, equation (3.15) justifies the stepwise integ-
ration of the equations motion, if the time steps τ are small enough:

f(t) = lim
τ→0

[exp(iLτ)]
t
τ f(0), (3.16)

f(t) = lim
n→∞

[exp(iLτ)]n f(0). (3.17)

While equations (3.16) and (3.17) are exact for τ → 0, a small τ introduces an error of order
O(τ 3)61 for a single operation and an overall error of O(τ 2) in the long time limit. As the
way of a decomposition of iL is not unique only a suitable choice will help to interpret the
physics behind this mathematical construction. If iL = iLp+ iLq is simply decomposed in two
parts iLp and iLq depending only on the momenta and positions, respectively, equation (3.15)
results in:

exp(iLt) = lim
τ→0

(exp(iLpτ) exp(iLqτ))n , (3.18)

⇒ lim
τ→0

exp(iLτ) = lim
τ→0

exp(iLpτ) exp(iLqτ). (3.19)

However, the choice in equation (3.18) only yields a time-reversible scheme for the propagation
of f(t), if τ = 0 or if q and p are both constants of motion, because:

f(q(τ),p(τ)) = exp(iLpτ) exp(iLqτ)f(q(0),p(0)), (3.20)
= exp(iLpτ)f(q(0) + q̇(0)τ,p(0)), (3.21)
= f(q(0) + q̇(0)τ,p(0) + ṗ(τ)τ), (3.22)

and:

exp(−iLτ)f(q(τ),p(τ)) = exp(−iLpτ)f(q(0) + (q̇(0)− q̇(τ))τ,p(0) + ṗ(τ)τ), (3.23)
= f(q(0) + (q̇(0)− q̇(τ))τ,p(0) + (ṗ(τ)− ṗ(0))τ). (3.24)

Time-reversibility is an important aspect, as it is required for energy conservation, which is
necessary for Newtonian or Hamiltonian dynamics. So equation (3.18) is unsuitable. The
introduced Trotter decomposition is also applicable to Monte-Carlo simulations, which have
to satisfy detailed-balance. A suitable decomposition was published by Creutz and Gocksch65,
who introduced a symmetric version of equation (3.18), such that an evolution of f(t) in time
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3.1. Exploring different thermodynamic ensembles

is given by:

f(q(τ),p(τ)) =
(
eiLpτ/2eiLqτeiLpτ/2

)
f(q(0),p(0)), (3.25)

= eiLpτ/2eiLqτf(q(0),p(0) + ṗ(0)τ/2), (3.26)

= eiLpτ/2f(q(0) + q̇(τ/2)τ,p(0) + ṗ(0)τ/2), (3.27)
= f(q(0) + q̇(τ/2)τ,p(0) + ṗ(0)τ/2 + ṗ(τ)τ/2). (3.28)

This provides a time-reversible integration scheme that is defined by the Hamiltonian H
decomposed in H = Hp/2 + Hq + Hp/2. As the transformation f(0) → f(τ) is a solution of
the canonical equations, it is a canonical transformation and hence the volume of the phase
space element dΓ = dq1 . . . dqndp1 . . . dpn is conserved. A small loop way to group theory was
necessary to illustrate the step-wise time evolution of a system H propagated by different
parts Hj of the corresponding Hamiltonian H =

∑
Hj. Finally the respective Liouville

operator iL =
∑

j iLj is obtained from the Hamiltonian H =
∑

i Hi by a time-reversible
decomposition. This formalism allows one to systematically include and understand various
symplectic methods for the integration scheme in order to model different thermodynamic
ensembles.

Ensemble averages and Ergodicity In order to derive ensemble averages < P >E of an
observable P from an MD simulation it is necessary, that the trajectory satisfies the ergodicity
condition:

< P >E =< P >t, (3.29)

= lim
n→∞

1

n

n∑

i=1

P (ti) (3.30)

Equation (3.29) is the ergodic theorem and the integration scheme has to conserve this system
property. An analysis of this issue on the basis of the equations of motion is a difficult task, but
the Trotter formalism provides an easy way to the solution of the problem.62,63 If a pseudo
Liouville operator iLε = iL + ε/τ is defined for a certain decomposition of iL ε acts as a
measure of the introduced error. In order to supply a reasonable estimate for the error ε
introduced by the stepwise integration, the Baker-Campbell-Hausdorff (BCH) formula66 is
applied to represent ε in terms of the 2k + 1-order commutators Ck of the elements of iL for
a decomposition as suggested in equation (3.25):

exp(iLpτ/2) exp(iLqτ) exp(iLpτ/2) = exp[iLτ +
∞∑

k=1

Ckτ
2k+1]. (3.31)

Following Trotter64 the left hand side of equation (3.31) is bound by construction for an
infinitesimal small τ , but ε and iLε are only defined for a finite τ , if the series converges:

ε =
∞∑

k=1

Ckτ
2k+1. (3.32)
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3. The principles of classical molecular dynamics

In this case, the leading term in equation (3.32) will govern ε:

ε ≈ C1τ
3, (3.33)

= − 1

24
{[2iLp + iLq, [iLq, iLp]]} τ 3. (3.34)

A transition to infinitesimal small time steps τ yields an infinitesimal small error ε and the
dynamics given by a Hamiltonian, that is described by its corresponding Liouville operator iL,
are reproduced exactly. It should be noted, that if iLε exists it also defines a Hamiltonian Hε,
that is exactly preserved by the time propagation scheme suggested in equation (3.25) and only
differs from the true Hamiltonian H by a constant term in the order of ε/τ ∼ O(τ 2). For this
reason, no long term energy drift occurs and with that phase space of Hε is sampled canonically
and with that ergodicity is conserved. This means that if a trajectory, generated by any
integrator conforming to the symmetric Trotter decomposition of H , is long enough, the phase
space is sampled dense enough and the ensemble average corresponds to the time average.
Furthermore, it can be proven, that if a system is Lyapunov unstable62, a long trajectory
allows to calculate ensemble averages of time dependent properties. In case the momenta of
the configurations only differ by a small amount δp, the deviation of the coordinates δx(t)
follows an exponential law dictated by the largest of the 6N Lyapunov exponents λ:

δq(t) ∼ ∆ exp(λt). (3.35)

For this reason, small differences in the initial conditions diverge quite fast resulting in in-
dependent configurations, which does not only allow to derive time-independent ensemble
averages. Moreover, if a long trajectory is separated in blocks of sufficient length in time the
resulting samples are independent from each other. Hence a large enough number of blocks
also offers the possibility to derive ensemble averages of time-dependent properties.

Integrators for the microcanonical NVE ensemble If the total energy E given by a
Hamiltonian H is conserved for a closed system of volume V consisting of N particles it
corresponds to a microcanonical ensemble. The ensemble average 〈 · 〉 of a quantity A is
defined by the partition function Ω(q,p) of the microstates (q,p) with energy E and Dirac’s
δ-function:

〈A〉NV E =

∫ ∫
AΩ(q,p)δ(H (q,p)− E)dqdp∫ ∫

Ω(q,p)dqdp
. (3.36)

Since not all microstates can be sampled with an MD simulations in a finite time span, the
ergodic theorem (equation (3.29)) is used to derive 〈A〉 over n samples. If the samples are
uncorrelated, the variance σ2 is approximated by:

σ2 =
1

n (n− 1)

n∑

i=1

(Ai − 〈A〉)2 , (3.37)

which allows one to estimate the error ∆A =
√
σ2 of observable A introduced by the finite

sampling of the phase space. If more than one observable Aj is involved in the calculation of
a certain property f(A1, . . . , AN) Gauß’s law of error propagation provides an estimate of the
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3.1. Exploring different thermodynamic ensembles

variance of f , based on the variances σj of the different Aj:

σ2
f =

N∑

j=1

(
∂f

∂Aj

∣∣∣∣
Aj=〈Aj〉

)2

σ2
j . (3.38)

Because an efficient and symplectic integration scheme of an MD simulation is the basis for
a successful generation of a thermodynamic ensemble, many integrators have been proposed
during the development of computer simulations, but three of them: Verlet67, Leap-Frog59,
and Velocity-Verlet68, are very popular. The Verlet algorithm is derived from a sum of two
Taylor expansions of the coordinates for q(t + τ) and q(t − τ) to ensure reversibility of the
time evolution:

q(t+ τ) = q(t) + q̇(t)τ +
1

2
q̈τ 2 + . . . , (3.39)

q(t+ τ) + q(t− τ) = 2q(t) +
F (t)

2m
τ 2, (3.40)

⇒ q(t+ τ) = 2q(t) +
F (t)

2m
τ 2 − q(t− τ). (3.41)

Since all odd orders of the expansion cancel out each other, the error in the position is of
order O(τ 4), but from equation (3.41) a disadvantages become obvious. The velocities are not
explicitly involved in the calculation. Obtaining them afterwards by averaging over q(t + τ)
and q(t − τ) introduces an error in the order of O(τ 2). If velocities are defined at every half
time step τ/2:

v(t+ τ/2) =
q(t+ τ)− q(t)

τ
, (3.42)

v(t− τ/2) =
q(t)− q(t− τ)

τ
, (3.43)

they can be included in the propagation scheme and equation (3.39) decomposes into a
propagation scheme for the positions and velocities:

q(t+ τ) = q(t) + v(t+ τ/2)τ, (3.44)

v(t+ τ/2) = v(t− τ/2) +
F (t)

m
τ. (3.45)

Though, velocities are explicitly derived during the simulation, they are not synchronously
determined with the positions, but shifted by half a time step τ/2 as depicted in Figure 3.1.
The green lines demonstrate the propagation for a full time step τ of both velocities and
positions. This is the update scheme of the so-called Leap-Frog algorithm. To access positions
and velocities at the same point in time, the propagation of the velocities for a full time
step is divided into two parts. In this case the well known scheme of the symmetric Trotter
decomposition as given by equation (3.28) arises which is known as Velocity-Verlet algorithm.
In this case the velocities v(t) are integrated for τ/2 before and after a full time step of the
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3. The principles of classical molecular dynamics

integration of the positions, such that the forces at time t and t+ τ are involved:

v(t+ τ/2) = v(t) +
1

m
F (t)τ/2, (3.46)

q(t+ τ) = q(t) + v(t+ τ/2)τ, and, (3.47)

v(t+ τ) = v(t) +
1

2m
(F (t) + F (t+ τ))τ. (3.48)

It can be shown, that in terms of position all integrators are equivalent, because they are
all connected by a reformulation and split of the calculations. The Velocity-Verlet algorithm
introduces the smallest error of order O(τ 3) to the current velocities compared to the Verlet
and Leap-Frog method with an error in the order of O(τ 2). However all of these methods
conform to the symmetric decomposition scheme and its corresponding deviation from the true
Hamiltonian given in equation (3.31) which is of orderO(τ 2) as discussed in the last paragraph.
Moreover this shows that all introduced integrators are symplectic, which renders them suitable
for a simulation of a microcanonical ensemble. Though the split of the propagation allows
to access velocities and positions synchronously and increases the accuracy of the current
velocity, it comes with the cost of a further calculation and communication step which matters
for parallel computations on supercomputers.

Thermostats: a possibility for the simulation of a canonical NVT ensemble The intro-
duced integrators allow a variety of studies, but they are restricted to closed systems. Often
the situation occurs that a system R to study is in contact with a much larger one R′, such
that heat is transferred between R and R′, while the temperature of the large system, called
reservoir or heat bath, remains unchanged. Since R and R′ are not isolated, energy is trans-
ferred and not strictly conserved for the single systems. The systems R and R′ transfer heat
until they achieve an equilibrium state, that maximizes the accessible phase space Ω(q,p) of
the microstates and the entropy S:

S = kB ln Ω. (3.49)

If equilibrium is reached no heat is transferred and the system is characterised by the external
parameters N , V , and T . With the Helmholtz free energy F :

F = (E − TS), (3.50)

. . . v(t− τ/2) q(t) v(t+ τ/2) q(t+ τ) . . .

Figure 3.1.: Update scheme of the Leap-Frog algorithms for the velocities v and positions q.
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3.1. Exploring different thermodynamic ensembles

the equilibrium condition becomes:

dF = dE − TdS = 0, (3.51)

hence F is a constant of motion. While in the microcanonical ensemble the energy E is the
conserved quantity, the Helmholtz free energy F is constant in the canonical NV T ensemble
and equation (3.36) becomes:

〈A〉NV T =

∫∫
AΩ(q,p)δ(E − TS − F0)dqdp∫∫
Ω(q,p)δ(E − TS − F0)dqdp

. (3.52)

By some algebra and under the assumptions that N = NR � NR′ and ln Ω is maximal, a
partition function ΩNV T (p, q) is derived for the small system R:

ln ΩNV T (q,p) = −βH + ln(
∑

i

e−βHRR′,i), (3.53)

where the sum involves all accessible microstates i of the total system and β = 1
kBT

with the
Boltzmann constant kB. The second term of equation (3.53) is constant and is determined by
the normalization condition, such that the integral of equation (3.52) becomes:

〈A〉NV T =

∫∫
A exp(−βH (q,p))dqdp∫∫
exp(−βH (q,p))dqdp

. (3.54)

In the microcanonical ensemble only the states with exactly same energy occur, but the energy
of the states in the canonical ensemble is scattered around an average value defined by the
external parameters:

〈(E/N)2〉 − 〈E/N〉2 = kBT
2(C/N)/N, (3.55)

where C is the extensive heat capacity. These fluctuations vanish in the thermodynamic limit
N →∞, and the canonical and microcanonical ensemble become equivalent.

In order to achieve canonical conditions in an MD simulation, an obvious possibility is a scaling
of the velocities, because the temperature is defined by the number of degrees of freedom ndof
and the kinetic energy Ekin:

ndof
2
kBT = Ekin. (3.56)

Berendsen et al.69 introduced such a thermostat that scales the velocities and respectively the
kinetic energy Ekin such that they relax according to time constant τT :

dEkin =
(
Etarget

kin − Ekin
) dt

τT
. (3.57)

towards the target average kinetic energy Etarget
kin given by equation (3.56) This method allows

to equilibrate a system in a reliable and quite fast manner, but it does not generate a canonical
ensemble. A quite simple extension of this scheme was proposed by Bussi et al.70 where
a random term is added to equation (3.57) in order to obtain a canonical distribution of
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velocities and according states:

dEkin =
(
Etarget

kin − Ekin
) dt

τt
+ 2

√
Etarget

kin Ekin

ndof

dW√
τt
. (3.58)

The first term corresponds to the method suggested by Berendsen69 and the second term
influences the change dEkin by the increment of a stochastic Wiener process dW that is specified
by the Ornstein-Uhlenbeck process, an overdamped harmonic oscillator. The scaling factor α
for the velocities:

α2 = e−τ/τT +
Etarget

kin

ndofEkin
(1− e−τ/τT )(R2

1 +

ndof∑

i=2

R2
i ) + 2e−τ/2τT

√
Etarget

kin

ndofEkin
(1− e−τ/τT )R1, (3.59)

is derived based on ndof Gaussian distributed random numbers Ri and a parameter τT determ-
ining the strenght of coupling: For the limit τT → 0, an instantaneous adaption of the kinetic
energy is achieved and an increasing τT smoothens the coupling towards longer time scales.

Another approach is the construction of a pseudo Lagrangian Lpseudo, such that a constant
temperature T ref is introduced as a constraint. With that, equations of motion for the scaling
factors of the velocities are derived by Lpseudo. A famous thermostat of this kind was published
by Nóse71 and refined by Hoover72. It relies on the thermodynamic friction variable ξ which
is coupled to the particle momenta and results in following equations of motions:

q̇i =
pi
mi

, (3.60)

ṗi = −∇Φ− ξpi, and (3.61)

ξ̇ =

(
N∑

i=1

p2i
mi

− ndofkBT ref

)
/Q, (3.62)

where an effective mass Q determines the coupling strength. From equation (3.60) it becomes
obvious, that Q should be adapted to the desired temperature. However, since Q is not
explicitly defined equation (3.62) can be reformulated such that the constant factor ndofkB is
compensated by the effective mass Q′:

ξ̇ =
(
T − T ref) /Q′. (3.63)

Finally Q′ is defined by a coupling time constant τT :

Q′ =
τ 2TT

4π2
(3.64)

as implemented in the MD program package GROMACS73–76 and described in the correspond-
ing user manual77. With that the coupling strength of the thermostat can be set independent
of system size and reference temperature. This method is able to propagate the system ca-
nonically, but different conditions have to be satisfied, because only a single conservation law
can be satisfied. External forces have to be absent and the center of mass has to remain fixed.
However if the requirements are met, a Maxwell-Boltzmann distribution for the velocities and
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energy fluctuations corresponding to equation (3.55) arise and ergodicity is conserved.

An extension to this method includes a coupling of the thermostat to one or more further
thermostats. This method is named the Nóse-Hoover-chain(NHC) thermostat78 and solves
the mentioned problems. Since velocities are involved in the propagation of the thermostat,
the Verlet integrator is obviously not applicable in this schemes. In terms of a Trotter decom-
position, the final integrator for NHC is:

exp(iLτ) = exp(iLNHCτ/2) exp(iLp,qτ) exp(iLNHCτ/2). (3.65)

In this form equation (3.65) requires knowledge about the energy and with that positions and
velocities at the same point in time, which is only provided by Velocity-Verlet. For Leap-Frog
another decomposition can be derived79:

exp(iLτ) = exp(iLqτ) exp(iLNHCτ/2) exp(iLpτ) exp(iLNHCτ/2), (3.66)

which is also time-reversible and symplectic. This is of importance, because Leap-Frog is
computationally more efficient if communication is required in highly-parallel computations.
Moreover, since for a chain length of one the Nose-Hoover thermostat is recovered from the
NHC thermostat, equation (3.66) also includes this special case.

Barostats: discovering the canonical NpT ensemble In experiment the situation of an
NpT instead of an NV T ensemble is often given, if a system is additionally able to perform
mechanical work by a change of its volume. The equilibrium state for this ensemble is defined
by a constant temperature and pressure. Instead of the Helmholtz free energy F , Gibb’s free
enthalpy G is a conserved quantity:

G = F + pV, (3.67)
= E − TS + pV, (3.68)

and the equilibrium condition becomes:

dG = dE − TdS + pdV, (3.69)
= 0. (3.70)

The accessible phase space is extended, because the coordinates q of the particles are not re-
stricted to a certain volume anymore and the ensemble average corresponds to equation (3.52),
but without limits for q. In the thermodynamic limit, the fluctuations of the temperature and
volume tend to zero and all introduced ensembles become equivalent.

To simulate the effect of excerted pressure, similar methods as for thermostatting have been
suggested. The pressure calculation is based on the tensor of the kinetic energy Ekin and the
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virial Ξ with:

Ekin =
1

2

N∑

i=1

mivi ⊗ vi, and, (3.71)

Ξ = −1

2

N∑

i<j

qij ⊗ Fij, (3.72)

where the direct vector product ⊗ is defined by:

(a⊗ b)αβ = aαbβ, (3.73)

and the tensor notation for the indizes α and β is applied. Combining equations (3.71)
and (3.72) finally determines the pressure tensor P :

P =
2

V
(Ekin −Ξ) , (3.74)

and the scalar pressure p = trace(P )/3.

The most simple approach to simulate constant pressure has been introduced by Berendsen
et al.69 which corresponds to their thermostatting scheme. The pressure is relaxed according
to a coupling time τP towards a reference pressure P ref:

dP

dt
=
P ref − P

τP
, (3.75)

= − 1

βijV

dV

dt
. (3.76)

which is connected to a change in volume by the isothermal compressibility βij. If the equations
of motion for the positions q, given by the velocity v, are extended by a term proportional to
q:

q̇ = v + ax, (3.77)

the change of the volume in time becomes:

V̇ = 3aV. (3.78)

Combining equations (3.76) and (3.78) allows to determine a and the scaling matrix µ for the
coordinates and box vectors during a time step τ becomes:

µij = δij −
τ

3τP
βij(P

ref
ij − Pij). (3.79)

It should be noted that only the positions and box vectors are scaled:

q → µijq, (3.80)

but not the velocities v. This method is robust and suitable for the equilibration of a system,
but the generated ensemble is unknown.
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Another technique relies on equations of motions for the box vectors bi that are derived from a
pseudo Lagrangian. Based on the idea of Parrinello and Rahman80, Nosé71 introduced a set of
generalized coordinates and momenta, that can be easily combined with their thermostat. The
imbalance between P target and P , which denote the external and internal pressure, respectively,
drives the propagation of the barostat and a further effective mass W describes the coupling
strength. If only a uniform deformation of the cell is allowed, the scalar pressure ptarget is
enough to define the equation of motion for the volume V :

WV̈ = p− ptarget. (3.81)

The equations of motions are easily extended to the anisotropic case, where the box b = bij =
(bi)j and the coupling parameter W = Wij are described by a matrix. Furthermore W can
be reformulated such that the coupling strength is determined by a time constant τP, which
is independent of the system size:77

d2b

dt2
= VW−1(bT )−1(P − P target), (3.82)

and (W−1)ij is defined by:

(W−1)ij =
4π2βij
3τ 2PL

, (3.83)

where L is the size of the largest box vector. Corresponding to the NH time constant τT, τP is
representative for the oscillation period of the coupling bath and hence also for the maximal
response to a change in P . This method has been proven to be symplectic, but it does only
approximate the true NpT ensembles, though static observables, that depend only on the
positions of the atoms, are predicted correctly71,81. Only in the thermodynamic limit the
pressure virial theorems:

〈P 〉 = P target, and, (3.84)
〈PV 〉 = P target〈V 〉 − kT, (3.85)

are valid, otherwise an error in the order of O(N−1) is introduced. As large systems with
thousands of particles are considered in this work, the error is acceptable and the method will
be applied for the generation of an NpT ensemble.

3.2. The force field

So far, methods for a proper propagation in time were discussed assuming that energies and
the corresponding forces of the system are known. On the molecular scale quantum mechan-
ics are expected to dominate the dynamics, but for a progagation in time, the atomics can
be considered as point particles, in correspondence to the Born-Oppenheimer approximation.
MD simulations of liquids are usually applied in the regime, where energy fluctuations are
in the range of the thermal energy kBT , which is larger than many QM contributions. This
fact is used and a so-called force field (FF) is introduced that describes the atomic interac-
tions by simple physical models. Much effort was spent in the development of FFs over the
years. A certain kind of FFs are all–atom models, like AMBER82 and OPLS-AA53, which
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3. The principles of classical molecular dynamics

provide a description of certain liquids and organic molecules on an atomic level. They are
computationally expensive, but this detailed description is often required to implement all
relevant degrees of freedom properly. For the establishment of a force field the parameters are
usually fitted to experimentally or computationally derived properties in order to reproduce
further experimental quantities. One should always bear in mind that altering only a single
parameter can introduce unexpected artefacts and destroy the consistency of the whole FF.
This section provides an introduction to the commonly applied terms, which are summarized
in Figure 3.2, and where they originate from. In a classical MD simulation, the energies are
usually separated into contributions from the bonded energy Ebonded, which determine the mo-
lecular structure, and non-bonded contributions Enon-bonded, which describe the interactions
between the different atoms:

Etotal = Ebonded + Enon-bonded. (3.86)

The non–bonded terms Enon-bonded are constituted by electrostatic interaction and a short-
range interaction function, that describes Pauli repulsion, polarization and dispersive effects.
The establishment of an accurate classical FF is a quite difficult task since n-body interactions
have to be described by pairwise-additive potentials. This seems to be impossible, but an
implicit description of the n-body interactions is often sufficient to describe the physics of
the system on an appropriate level of accuracy. In the following paragraphs, these kinds of
interactions and their connections are described in more detail and the standard potential
forms, which are used in this work, are introduced.

Force Field

Bonded
inter-

actions

bond length
and stiffness

bending
angle

between
bonds

dihedral
conform-
ation

Non-
bonded
inter-

actions

long-ranged
short-ranged

Figure 3.2.: A scheme of a classical force field.
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3.2. The force field

Nonbonded interactions Usually, non-bonded (NB) interactions are characterized in re-
spect to their interaction range: short-ranged and long-ranged. The short-ranged part is a
superposition of various interactions. It should model dispersion, arising from the electron
correlation, as well as Pauli repulsion, and polarization effects. There is no unique equation to
combine this interactions in a simple pairwise-additive potential, but it has been shown that
the Lennard-Jones (LJ) potential allows a good approximation:

ELJ = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (3.87)

While the repulsive term ∼ r−12 is completely empirical, the attractive term ∼ r−6 should
approximate the dispersion energy. Every kind of atom i has its own set of LJ parameters, σi
and εj, and two methods are commonly employed to combine the parameters between different
types of atoms i and j. One of these combination rules is based on the geometrical mean of
the different types:

σij =
√
σiσj, and (3.88)

εij =
√
εiεj. (3.89)

The other one is called Lorentz-Berthelot rule, where an arithmetic average for σ and a geo-
metric average for ε is applied:

σij =
1

2
(σi + σj) , and (3.90)

εij =
√
εiεj. (3.91)

Either of them have a physical background, but they have to be consistently applied during
the force field construction. If the atoms carry a partial charge Coulomb interaction arises:

Ecoul(r) =
1

4πεr

qiqj
r
, (3.92)

that also contributes to the short range part of the FF and constitutes the long-range part
of the NB interactions. For a system that consists only of atoms, no bonds are involved and
the force field is already given by the introduced terms. Unfortunately, they are not straight-
forward to derive, because they depend on the actual environment. It is possible to derive
the parameters with the help of quantum mechanical calculations, but they are restricted to
small and isolated or highly symmetric systems. The parameters derived from this calcula-
tions are often not valid in the regime of interest and optimization methods are necessary,
which are described in section 4.1 and chapter 4. Partial charges are usually derived from a
fit of the electrostatic potential (ESP) with methods like RESP83 or CHELP84. Both rely on
a minimization of the error between the true ESP and the ESP, that is given by point charges
located on the atoms, on a suitable chosen surface. This is hard to achieve in a condensed
state. In order to access the charge distribution of the liquid phase, an alternative method
is introduced in this work, which relies on the electron density of bulk geometries. For the
LJ parameters, straightforward methods are not present. Tosi and Fumi85,86 proposed a tech-
nique to determine LJ parameters for crystals from QM calculations. Mostly these parameter
can only be applied as an educated guess for a further parameterisation process, because the
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parameters vary when the system crosses over from the crystalline to the liquid state. Many
methods have been proposed to fit force fields to certain quantities as the heat of vaporization,
diffusion constants, crystal configurations, or forces based on quantum-mechanics, which has
become recently very popular since the increasing computer power allows to perform corres-
ponding simulations. Finally they all have in common that an error function is minimized
and therefore a larger number of appropriate simulations have to be setup, performed, and
analyzed, tasks for which recently Hülsmann et al.87 proposed a work flow to perform. The
optimization process of a force field is computationally very demanding and an almost never
ending story as new molecular compounds have to included. An efficient, massively parallel
working technique is necessary to minimize the required amount of time, which is described in
chapter 4. It is based on the idea to distribute the workload over a large number of processor
allowing a linear scaling with the number of force field parameters, which have to tuned.

Bonded interactions The intramolecular forces, given by covalent bonds, describe the dif-
ferent stretching and bending modes of a molecule. Three different types of interactions are
usually applied:

Ebond =
1

2
kb (r − r0)2 , (3.93)

Eangle =
1

2
ka (Θ−Θ0)

2 , and, (3.94)

Edihedral =
4∑

i=1

Vi
2

[
1 + (−1)i−1 cos (iϕ)

]
. (3.95)

Equation (3.93) and equation (3.94) describe the stretching and bending of the bonds, respect-
ively, and equation (3.95) parameterises the energy due to intramolecular twisting. However,
equation (3.95) can also be parameterised in a computationally more efficient form, the so
called Ryckaert-Bellemans function88:

ERB =
5∑

n=0

Cn (cos (Ψ))n . (3.96)

Apart from the different functional form, the corresponding dihedral angles are also defined in
a different manner. Equation (3.95) utilizes the angles given by the IUPAC/IUB convention,
where ϕ is the angle between the planes with ϕ = 0 corresponding to a cis configuration. The
Ryckaert-Bellemans function uses the polymer convention resulting in Ψ = ϕ − 180◦, which
corresponds to Ψtrans = 0◦. In contrast to the nonbonded interactions, the parameterisation
of the intermolecular energies is quite insensitive to the environment and straightforward. The
bond and angle parameters are adapted to the ground state energies of the involved bonds
and the corresponding eigenfrequencies, which are independent of the environment.

Usually the interactions between the atoms separated by one or two bonds are completely in-
cluded in the bond and angle parameters. But the dihedral parameters describe an interaction
of atoms that are separated by exactly three atoms, which is the definition of a 1–4 interaction.
In many force fields the LJ and short-range electrostatic interaction partially contribute to
the 1–4 interaction, but similar to the combination rules for the short range parameters, no
physical background is provided. While OPLS uses a scaling factor ε1−4 of 0.5, the interactions
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are scaled down by 0.8 in AMBER. Yet the total 1–4 energy E1−4 is:

E1−4 = Edihedral + ε1−4(Ecoul. + ELJ). (3.97)

For this reason, an optimization of the non-bonded parameters also involves a consistent refit
of the dihedral parameters, because the overall torsional profile, given by equation (3.97),
should be maintained. A corresponding technique is included in the parameter optimization
routine (see Appendix A), and described in more detail in section 5.1.

Development of FFs is a difficult task, because most of the parameters depend on each other
and a large number of issues has to addressed. A reasonable description of the molecular
system over a wide range of temperature and pressure is required as well as compatibility with
as much molecular compounds as possible. In order to allow one a straightforward addition of
a further component to the FF, a strategy is proposed in this work covering all aspects, which
are important to obtain a parameterisation as accurate and transferable as possible.

3.3. Optimization of simulations

MD simulations are a powerful tool to investigate macromolecular systems, but finite size
effects and long-range interactions are of major concern. Finite size effects are usually circum-
vented by periodic boundary conditions (PBC), but this requires an efficient and appropriate
treatment of the long-range interactions. In order to allow one an optimization of the corres-
ponding simulation parameters in terms of accuracy and performance, the error introduced
by the algorithm has to be estimated a-priori. In GROMACS an efficient treatment of the
electrostatic interactions is only provided by the SPME algorithm58. For this kind of electro-
statics solver an error estimate had to be developed,13 which is only applicable to certain sets
of parameters. For this reason, an error estimate for an arbitrary set of SPME parameters is
developed in this section and a corresponding GROMACS tool, g_pme_error, which allows
one to estimate the error and tune the parameters such that the error is below a certain limit.
This tool also became part of the official GROMACS release.

Periodic boundary conditions and short ranged interactions On the molecular scale the
major part of the atoms covers the surface region of the simulation box, which is mostly not
desired. In order to get rid of this artefact, periodic boundary conditions (PBC) are applied.
Instead of a single simulation box, also referred to as unit cell, an infinite lattice of unit cells
is considered for the calculations. No surface effects arise, but the unit cell has to be large
enough to avoid artefacts due to the artificial symmetry. So as to derive the respective forces
all replicas have to be considered, which mainly concerns the long-range part of the forces.

The short range (SR) forces are characterized by a fast decay, such that they are are almost
negligible beyond a certain cut–radius rc and excluded from the force and energy calculation.
This approximation is applied in different methods to decrease the number of required calcu-
lations. In the famous neighbourlist method introduced by Verlet67, a neighbourlist cut–off
rn > rc is defined. If a list of neighbours is generated that is used for the force calculation.
This method reduces the scaling of the calculations from an order O(N2) to O(N) as long
as no particle diffusses from within r < rc to out of the neighbour search domain r > rn.
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However, an update of the neighbourlist involves O(N2) operations. To circumvent the poorly
scaling update of the neighbourlist, Hockney and Eastwood59 proposed a method that assigns
the particles to a grid, that can be constructed by an operation of order O(N). Yet also the
force calculation is reduced to O(N).

Besides the computational load, also the numerical inaccuracies for the calculation of the SR
interactions introduced by rc for the can be reduced. A correction to the neglected dispersion
energy can be derived under the assumption, that the system is homogeneous beyond rc

89.
As forces between rc − δ and rc + δ are not smooth for all δ > 0, because ESR = 0 for r > rc,
energy and momentum are not strictly conserved. This artefacts are reduced to a minimum
by a shift or a scaling of the short-range interaction, such that the interaction vanishes at
rc. A FF is always constructed in respect to a certain kind of potential with a respective rc.
For this reason, rc has to be considered as a fixed force field parameter, that should not be
changed arbitrarily, because artefacts may arise.

If large systems are regarded a single processor is often not capable to produce the required
statistics in a reasonable amount of time. For this reason, the work is distributed over a
network of processors, but this has to be done carefully to achieve an optimal load of the
individual CPUs. In this scenario, the communication between the CPUs is always the bot-
tleneck for the simulation and has to be reduced to a minimum. Since SR interactions are
only considered within rc, neighbor lists can be constructed, in order that no CPU time is
wasted to find the small fraction of particles involved in the force calculations. The most
obvious method is to divide particles on the different CPUs, but this is unsuitable for a large
number of processors P , because the number of communications scale with P 2.77 However
the scaling can be improved, if the unit cell is decomposed in separate spatial domains and
dedicated to the different CPUs communication is reduced strongly, because only information
about particles crossing the domain border has to be exchanged. This scheme is called domain
decomposition and allows to reduce the communication within the nodes to a minimum.73,90

Long-ranged electrostatic interactions in PBC As soon as the atoms are charged or grav-
itation is involved, long-range forces arise. A simple truncation of theses forces corresponding
to the SR forces introduces serious artefacts, for which reason an appropriate treatment is
necessary. Ewald91 encountered this problem as he was interested in the calculation of the
Madelung constant of a periodic crystal which involves the sum over an infinite number of
unit cell replicas. He solved the problem by a split of the periodic potential in two parts
E = Ereal + Erecip, such that Ereal and Erecip exponentially converge in real and reciprocal
space, respectively. Though the sum only converges conditionally, for a cubic or cylindric
summation over a few replicas the error is quite small.

This situation corresponds to a system with periodic boundary conditions (PBC). Yet many
algorithms to solve the electrostatics are based on this idea. Though many other approaches
have been suggested, like the Fast-Multipole method92,93 (FMM), MMM techniques94–96 or
the Wolf summation97 to mention just a few, only Ewald-based methods are described in this
work, because they are relevant for the performed simulations. Moreover a method is proposed
to optimize the parameters in terms of accuracy and speed.

A short summary of the Ewald technique is shown in Figure 3.3. If the calculations are
splitted over real and reciprocal space, four different terms can be separated. Besides the

50



3.3. Optimization of simulations
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Figure 3.3.: Ewald-based methods for electrostatic interactions in PBCs.

constributions from the short-ranged term in real space Ereal and the reciprocal term Erecip,
the decomposition introduces a constant correction energy Ecorrect.. This term depends on
the dipole moment M of the unit cell as well as the dielectric constant of the surrounding
medium ε′ and affects the fluctuations of M . Neumann and Steinhauser98 have shown that a
conducting system like an ionic liquid, requires a perfectly conducting medium with ε′ = ∞.
This boundary conditions are referred to as metallic. Yet the dipolar term Edipol vanishes.
As metallic boundaries are always applied in this work and Edipol does not depend on the
parameters of the Ewald techniques, it is not considered in the following discussion. The
parameters required as input for the Ewald summation span a large space and only a suitable
choice will yield an acceptable error and computation time. Kolafa and Perram99 as well as
Hummer100 developed an a-priori error estimate that allows to determine an optimal set of
Ewald parameters in terms of speed and accuracy, such that the distribution of the work load
between real and reciprocal space provides a scaling of the summation of O(N3/2).

The standard Ewald summation is a superior method for systems containing hundreds of
particles, but it is computationally too expensive for systems containing thousands or even
more particles. This disadvantage arises from the scaling behaviour and the limited capabilit-
ies to run the computation on many processors in parallel. These problems were circumvented
with the introduction of mesh based algorithms, which are summarized in Figure 3.3. Darden
et al.101 published the Particle Mesh Ewald (PME) method that achieves an O(N log(N))
scaling. PME uses fundamental Lagrange interpolation that has the advantage of error can-
cellation during charge assignment102, but suffers from a discontinuous charge density for odd
interpolation orders n. Furthermore, the charge density is not differentiable, independent of
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n. Essmann et al.58 suggested a charge assignment method with Euler B-splines. This results
in a (n− 2)-times continuous differentiable grid charge density, that has compact support.

Actually before the invention of PME and SPME, Hockney and Eastwood59 already proposed
the Particle-Particle-Particle mesh (P3M) method. In contrast to PME or SPME, an optimized
Green function Gopt. is applied to derive energy and force from a mesh-based charge density.
The term “optimized” regards to the ability to describe the true electrostatic interaction given
by a continuous charge density as good as possible by the mesh-based charge density. In
this context, it has to be mentioned that the optimized Gopt. looks different for the energy
and force, so one has to decide beforehand which one to use. Nevertheless, the differences
are marginal. This results in a higher accuracy of P3M compared to SPME for equal mesh
sizes and corresponding n. Yet if available P3M should always be the method of choice, but
SPME is a widely applied method and implemented in many MD simulation packages, like
GROMACS or AMBER. In contrast to P3M, where the problem of an a-priori estimate of
the error was already solved,59,102,103 an approach for SPME had to be elaborated and has
recently been published,13 but the estimate is only applicable to even n.
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Figure 3.4.: Calculated (solid) and estimated (dashed) error introduced by the SPME al-
gorithm for even n.

For a system of N atoms the estimated and calculated error is compared in terms of the
root mean square force (RMSF) error ε =

√
1
N

∑
N (FSPME − Fref) with reference forces Fref

derived from an Ewald sum of machine precision. Corresponding parameters for the Ewald
sum have been obtain by the approach published by Hummer100. The error estimate assumes
a homogeneous charge density and independent charges. On the left hand side of Figure 3.4
results are shown for 500 ion pairs in a cubic box of volume V = (10 nm)3, where the ions were
randomly placed within the box and overlapping is allowed. The solid and dashed lines depict
the actual and estimated errors, respectively. A constant cutoff rc = 1.7 nm is applied and the
estimated error is split up in its contribution from real and reciprocal space. The calculated
and estimated errors agree for different interpolation orders n and grid spacings κ = Lα/Kα
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with box lengths Lα and grid points Kα for the spatial dimensions α = 1, . . . , 3.

In contrast, on the right hand side of Figure 3.4, the results for an inhomogeneous charge
distribution are shown, where some of the atoms are connected via bonds and therefore not
independent. The systems is equilibrated and no overlap of the atoms is possible. In this
case, the error is overestimated. On the one hand side, this allows one to tune the parameters
a-priori, such that an upper bound for the error is always guaranteed, but on the other hand
side, this overtuning of the parameters causes a performance loss. Comparing the estimated
error for n = 4 and n = 6 shows, that the estimate agrees much better for a larger n.
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Figure 3.5.: Timing results for a system of 500 [MMIM][Cl] IPs, where up to 512 pro-
cessors were involved. The SPME parameters were tuned to an error ε ≈
5 · 10-2 kJ ·mol−1 · nm−1 for interpolation orders n = 4 and n = 6. In real space a
cutoff rc = 1.1 nm is applied.

In Figure 3.5 timing results for a system of 500 [MMIM][Cl] ion pairs are given with two sets of
SPME parameters, tuned with a constant cutoff rc = 1.1 nm. Interpolation orders n = 4 and
n = 6 are applied to achieve an error ε ≈ 5 · 10-2 kJ ·mol−1 · nm−1, which results in K = 64
and K = 32 grid points in each spatial dimension, respectively. The system is simulated for
1100 steps with 8, 16, 32, 64, 128, 256, and 512 processors and the last 1000 steps are used
for the timing. As GROMACS allows one to assign the workload of the reciprocal space on
separate CPUs, the tool g_tune_pme has been used to perform the timings, because it tests
different numbers of processors, exclusively dedicated to SPME. For the analysis, always the
fastest settings were chosen.

Obviously, both sets of parameters perform equally, but sometimes the simulations with n = 6
are slightly faster. For this reason two points support to prefer n = 6 for the simulations.
At first, a slightly higher performance is achieved over a wide range of applied processors
compared to the tuned parameters with n = 4. At second, the behaviour of the error estimate
for inhomogeneous systems agrees better with the actual error for n = 6, which allows a more
precise tuning. The timing results may change significantly for a different system size, but the
property of an improving estimate accuracy with increasing n remains. As the performance of
the simulations for odd n is also of interest, an error estimate for SPME and P3M is proposed
that includes this condition.
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An error estimate for an arbitrary set of SPME parameters Very recently, the math-
ematical framework to convert SPME and P3M has been established by Ballenegger et al.104.
It should be mentioned, that two different schemes to derive the forces from the mesh-bashed
energy are available. The ik -scheme, which is a simple multiplication in Fourier space, is usu-
ally applied in the P3M algorithm, because it conserves the momentum, but requires one Fast
Fourier transformation (FFT) into reciprocal space and three FFTs back in real space, which
requires a lot of global communication in parallel simulations. The other method is referred to
as analytical differentiation (AD) scheme, which is also usually applied in combination with
SPME. In the AD scheme the forces are derived from the analytically differentiated reciprocal
energy. Though this method is not momentum conserving, it requires only a single FFT back
in real space and conserves energy. For this reason, it is often preferred for large systems,
which require a highly parallelized enviroment to achieve a reasonable performance. Actually,
P3M-AD and SPME only have different functions Ω(m) in their influence function G(m):

G(m) = Ω(m)ϕ(m), (3.98)

with:
ϕ(m) =

4π

m2
exp

(
−m

2

4β2

)
, (3.99)

where β is the splitting parameter between real and reciprocal space andm is a grid vector in
reciprocal space, which is spanned by a?i = εijk

1
a1 ·a2×a3

aj×ak with the Levi-Civita tensor εijk.
The real space basis vectors ai are orthonormal to a?j , ai ·a?j = δij. Every SPME algorithm is
simply converted to a P3M algorithm by a substitution of Ω. Only the routine which involves
equation (3.98) has to be modified, such that the corresponding Ω of P3M is calculated. This
allows to use an optimized influence function and apply the error estimates derived for P3M,
which are valid for odd and even interpolation orders.

All details are provided for the implementation of P3M, but a single piece of the error estimate
for the AD scheme is missing, the estimate of the self-forces. In contrast to the ik -scheme,
where the self-forces cancel out, the AD scheme generates self-forces, which have to be either
subtracted during the simulation or estimated a-priori. Yet for studies of errors, the self-forces
were subtracted in the simulation, but this is not standard case for all MD packages, such that
a corresponding estimate is required. A formula for the self-force is present105 and inhere the
average is derived by integrating the square of the force over the volume V :

F self(r) =
∑

m

b(m) sin(2πms), (3.100)

with sα = rβ/hα and hα = Lα/Nα for α = 1, 2, 3. The coefficient b(m) is given by:

b(m) = kNm
1

2V

∑

kn

G(kn)f (m)(kn), (3.101)

with the Green’s function G and:

f (m)(kn) =
∑

m′∈Z3

Û (kn+Nm′)Û(kn+Nm′+Nm). (3.102)
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The functions Û are proportional to the Fourier transform of the charges assignment function
and given in Ballenegger et al.104, (eq. 2.21). Integrating equation (3.100) over the volume of
a unit cell provides the mean self-force:

1

V

∫
(F self(r))2d3r =

q4i
V

∑

m,m′

(b(m))(b(m
′))

∫
sin(2πms) sin(2πm′s)d3r, (3.103)

= q4i
∑

m

(b(m))2. (3.104)

The integral in equation (3.103) is V/2 in case of m = m′ and m = −m′. All other terms
are identically zero, such that the average self-force for a particle reduces to the sum in
equation (3.104). The average of the self-force also vanishes, because the integral is equal to
zero. With that, only equation (3.104) contributes to the common error formula for P3M for
the reciprocal error:

(∆F rec)2 =
1

V 2

Q

N

(
N∑

i=1

q2i

)2

+
1

N
(
∑

m∈Z3

(b(m))2)
N∑

i=1

q4i , (3.105)

=
1

V 2

Q

N

(
N∑

i=1

q2i

)2

+
S

N

N∑

i=1

q4i . (3.106)

The factor Q is given in Ballenegger et al.104, (eq. 4.8), and depends on the Green’s or influence
function G and the differentiation method. Therefore, Q and S can be calculated for both
SPME and P3M. Thus an error estimate for all interpolation orders of SPME as well as an
explicit estimate of the self-force F self is available.

P3M-AD is expected to achieve a higher accuracy for the same parameters compared to SPME,
so it was implemented in the GROMACS 4.6 branch and is switched on with the mdp option
coulombtype=p3m-ad. With it, an influence function Gopt optimized in respect to the energy
is applied to calculate the reciprocal part of the electrostatic interaction. The GROMACS
tool g_pme_error has been prepared in order to estimate the error and tune the parameters
of SPME and P3M-AD, in terms of accuracy, for a fixed cutoff rc in real space. For the
reciprocal part, the error estimate is based on equation (3.106) and the real space error is
derived by the method of Kolafa and Perram99. An error estimate and tuning routine for the
Ewald sum has also been included. It is based on the work of Hummer100, that provides a
formula for the reciprocal space cut-off, such that the error can easily is equally distributed
over real and reciprocal space. Finally a combination of the GROMACS tools g_tune_pme
and g_pme_error allows one to derive a set of SPME or P3M paramters optimized in terms
of accuracy and speed.

In order to numerically verify the error estimate, the homogeneous configuration of 500 [Na][Cl]
IPs, discussed in the last paragraph, is chosen. A real space cutoff of 1.7 nm is applied to
compare the errors for different interpolation orders and mesh sizes in respect to the splitting
parameter β, shown in Figure 3.6. Meshes with K = 32 and K = 48 points in every spatial
dimension are given on the left and right hand side, respectively. The estimated and calculated
errors agrees well for both, SPME and P3M-AD, for all n. For a large mesh size, the difference
between SPME and P3M-AD is negligible, but a significant difference arises for small mesh
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Figure 3.6.: RMSF errors for different n and K in every spatial dimension. Estimated errors
are shown by markers. Dashed and densely dotted lines are the calculated errors
for the SPME and P3M method, respectively.

sizes, especially if odd n are considered. It shows that a proper setting of β is important,
because the minimum of the error is quite narrow, especially in the case of SPME. For small
mesh sizes P3M-AD should be the method of choice, while for larger mesh sizes the difference
between the methods vanishes in the regime of β, where the minimal error is achieved.
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Figure 3.7.: Ratio of the RMS error of the forces ∆F of SPME and P3M-AD.

In Figure 3.7, the force error ratio ∆F (SPME)/∆F (P3M) of SPME to P3M-AD is shown, in
order to study the difference in accuracy. P3M-AD always shows a smaller or equal error in the
minimal error regime, because the ratio always has a value larger than one there. So the choice
of P3M-AD will only bring advantages, but no drawbacks, compared to SPME. A consistent
and comprehensive comparison of accuracy and speed for the different branches of the mesh-
based Ewald techniques has been elaborated in the diploma thesis of Weik106. Besides the

56



3.3. Optimization of simulations

introduced SPME and P3M methods, also interlaced versions of these algorithms107,108 are
considered which rely on the average of two eletrostatic energies derived from grids that are
shifted such that errors may cancel out. It has been shown that the interlaced version of P3M-
AD performs out all investigated Ewald-methods at a given method. This strongly suggest to
convert and extend an SPME scheme to an interlaced P3M-AD scheme, if energy conservation
and performance are of interest.

Finally, the applicability of the new error estimate with equation (3.106) to inhomogeneous
systems is studied. An equilibrated system of 500 [MMIM][Cl] ion pairs is chosen, with a
unit cell given by a cubic box of V = (4.62935 nm)3. Instead of setting the number of mesh
points K, the Fourier spacing κ = Lα/Kα is used to determine the mesh size Kα by the length
Lα of the three box vectors.

In Figure 3.8, errors for SPME and P3M-AD with a cutoff rc = 1.5 nm and Fourier spacings
κ = 0.10, 0.12, and 0.14 nm are compared for n = 4 and n = 6. As expected, the error
is overestimated for all cases, but the deviation of the estimate from the calculated error
decreases with increasing interpolation order, shown in Figure 3.4. The overestimation seems
not to be affected by the mesh size and no significant difference between SPME and P3M-AD
in terms of accuracy is observed.
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Figure 3.8.: RMSF errors of the electrostatic forces for an inhomogeneous [MMIM][Cl] system
are compared for different n and κ. Estimated errors are given by markers. Dashed
and densely dotted lines are the calculated errors for the SPME and P3M method,
respectively.

Yet mesh-based algorithms and error estimates are easily transformed into each other. Due to
an estimate of the mean self-force for P3M-AD, provided here, and the conversion formulas to
SPME,104 an error estimate for SPME is available for all interpolation orders now as well as
an implementation of the P3M-AD scheme in GROMACS. The numerical test showed, that
if the assumptions of distribution homogeneity and charge independence holds the estimates
agree with the calculated errors. For more realistic system, such as the [MMIM][Cl] IL, the
error is overestimated. This allows one to determine the upper bound of the error, but some
performance is lost, because the same accuracy could be achieved with parameters that require
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less computational effort. For this reason, the settings of the eletrostatic algorithm should be
chosen carefully for every simulation regarding both, accuracy and speed.

3.4. Force fields for ionic liquids

Due to the increasing interest in RTILs in the last decades, also many computational tech-
niques have been established and refined to study these compounds. This class of solvents
brought new challenges to the fields of computational physics and chemistry, due to the size
of the solvent molecules and their properties, such as a high viscosity, strong electrostatic
interaction between the solvent molecules, and high polarizability. For quantum mechanical
calculations, the size of the solvent species is the main problem. Though a variety of prop-
erties, such as electrostatics, energy, geometries or vibrational frequencies of single ion pairs
or very small clusters can be studied, it is unclear how much their behaviour differs com-
pared to bulk-like systems. Semi-quantum mechanical DFT calculations offer the possibility
to study the dynamics of bulky systems, but suffer from a short simulation time and a lack
of experience regarding the choice of a suitable XC functional. Finally, classical MD simu-
lations aim at a generation of a thermodynamic ensembles that allows to calculate a variety
of properties, such as density, viscosity, or conductivity, which are of main interest for IL
systems. However, these MD simulations rely on an accurate force field which is often lacking
for ILs. Fortunately, the computer power increases steadily, alleviating the QM calculations,
which in turn provide the basis for the development of corresponding interaction potentials for
the classical simulations. The construction of a FF is not a straightforward task and usually
involves many iterative cycles. Nowadays, MD simulations are a common tool especially in
biochemistry and biophysics. For this reason, a lot of effort has been put into the develop-
ment of adequate parameterizations for biomolecular FFs to study proteins or DNA, where
AMBER,82,109 CHARMM,110 and OPLS-AA53,111 are some prominent examples. These FFs
describe a large class of molecules over a certain temperature range, but their development
is still ongoing, because new molecules are added and parameters are refined. However, an
important property of force fields, which is often hard to achieve, is transferability over various
molecules and temperatures, because a simple combination of parameters from different force
fields for different molecules does not guarantee a valid parameterisation.

Hence, in order to study ILs with MD simulations, corresponding potentials are required.
Reviewing the history of FF development for RTILs allows to identify the main methods
which are commonly employed and introduced in the following paragraphs. As number of
ionic liquids is rather large, the discussion is restricted to imidazolium-based ionic liquids, but
the main conclusions are also valid for non-imidazolium ILs. For a more detailed overview,
the reader is referred to literature.16

Transfer of established non-ionic liquid force fields In Figure 3.2 of section 3.2, a scheme
of a classical FF is given which clearly shows the different types of interaction, usually present
in an MD simulation. While the parameters for the bonded interactions can be straight-
forwardly calculated with QM methods, different methods are commonly used to obtain a
suitable set of non-bonded parameters, which are often decomposed in long-range and short-
range contributions. Usually electrostatics solely determine to the long range interactions,
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but the short-range parameters have to describe various effects. Besides the contribution of
the electrostatics to the short-range interactions, QM mechanisms, such as Pauli exclusion or
electron-electron correlation, have to be included adequately in order to describe the interac-
tions accurately. Different techniques are available to calculate a set of partial charges, but
the parameterisation of the remaining short-range parameters is a tedious work. Hence, many
FF for ILs are a combination of parameters from established FFs and partial charges derived
for the particular ionic liquid of interest.

The first FF for an IL has been published by Hanke et al.112 in 2001. While the bonded and
short range parameters are chosen from different FFs,113–116 the partial charges were derived by
a second-order Møller-Plesset perturbation theory based distributed multipole analysis. This
practice, to restrict the refinement of a FF to the recalculation of partial charges, continued
and parameterisations for different ionic liquids were published,28,117,118 based on different
prominent FFs. The FFs were successfully validated against structural features obtained from
neutron diffraction and diffusion constants determined by NMR experiments, but only few
properties are studied, because further experimental knowledge was lacking, which is even
nowadays often the case.

In 2002, an important concept for the charge calculation has been introduced by Morrow and
Maginn119. While the short-range and bonded parameters were transferred from CHARMM,
partial charges were obtained from ion pair instead of isolated ion calculations. This yields a
reduction of the ionic net-charge, which sounds unphysical at first. Studying this effect in more
detail (see section 4.4 and section 4.4) shows that it corresponds to an implicit description
of polarization. Unfortunately, this concept has not been considered further at this point in
time, but in recent years it became an essential part of FF parameterisation for ILs.

Unfortunately, the number of ILs is rather large, hence establishing a force field for every
IL separately would consume a huge amount of time. For this reason, a FF transferable
over many cations and ions is desirable. An important step towards this direction has been
achieved by Canongia Lopes et al.5, who established CLaP,5,120–122 a transferable FF for a
large number of ILs, by combining the short-range and bonded parameters from different
established parameterisations with their own set of partial charges and small refinements on
some bonded parameters. CLaP provides a proper description of the static properties, but
fails in an accurate description of the dynamics, which is shown in section 3.5. However, due
to its transferability, CLaP provided the starting point for many other IL FFs.

Hence, the technique to determine a set of IL specific partial charges and combine them with
a present FF for a similar compound, allows one to obtain a more or less accurate FF for the
specific IL. But the collection of the parameters may be tedious and a proper benchmark is
required, in order to verify that all properties of the IL are described appropriately.

Explicit parametrization to the liquid phase All IL FFs, introduced so far, contain partial
charges that have been parameterised in the gas phase with either a single ion or an ion pair.
The parameters for the short-range interactions were simply chosen from established FFs,
which were not explicitly parameterised for ILs. The bond parameters were either transferred
from similar chemical complexes or explicitly derived. Thereby it has been assumed that the
parameters do not significantly differ between gas and liquid phase as well as transferability
between the FFs. Though some properties have been successfully validated, a benchmark
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involving a large set of properties was not feasible unfortunately and a solid background for the
assumed parameter transferability is lacking. However the results of Morrow and Maginn119
have already shown that polarization plays an important role for ILs. For this reason, it
should also be appropriately modelled by the force field parameters, but an explicit treatment
is very time-consuming. Sometimes a proper adjustment of the short-range parameters is
sufficient to model the polarization effects, but therefore corresponding experimetal data is
required, such that the parameters can be fitted in order to match a certain set of adequately
chosen properties, which are sensitive to the effects that have to be modelled. Since it has
been observed, that polarization plays an important role for the dynamics of ILs123, diffusion
constants and rotational correlation times are suitable properties for an adaption of the force
field parameters. Unfortunately, this is also not a straightforward task for ILs, because often
data is lacking or inaccurate. Moreover, due to the high viscosity of ILs long simulations are
required for a sampling of the phase space in order to derive well-converged ensemble averages.
Finally, what’s more, the parameters should be transferable to different states in the phase
diagram. This difficult task is necessary to parameterise a generic FF for a large class of ILs.

An example for the breakdown of the transferability assumption can nicely be demonstrated.
Liu et al.124 introduced a parameterisation, denoted LHW in here, for imidazolium-based
cations and the [BF4]

– and [PF6]
– anions. The bonded and short-range parameters are com-

pletely based on AMBER, apart for the acidic ring hydrogen H1 of [EMIM]+ (a scheme of the
ions is shown in Figure 3.9). The short-range parameters of this hydrogen have been adapted
in order to achieve agreement with molecular geometries obtained with accurate QM methods.
The FF has been successfully validated against the mass density, but the phase space has been
sampled only 100 ps, which does not allow to obtain a reliable averages of dynamic properties.
Though, CLaP and LHW are quite similar, the most significant difference is the treatment of
the bonded hydrogens. In CLaP, the hydrogen bond lengths are constraint, while LHW treats
them as flexible. The effect of this difference and especially a benchmark of LHW against
CLaP in terms of dynamics is discussed in the next section 3.5, but at this point the import-
ant message is that both FFs, CLaP and LHW, underestimate the dynamics of the IL. Finally
this is not astonishing, because bulk properties were not involved in the parameterisation. It
has already been shown that an adequate choice of the partial charges and short-range para-
meters allows one to describe an IL system in both aspects, statics and dynamics, properly,
but an exploration of the huge amount of possible combinations of different FF parameters
consumes very much time. For this reason, techniques are required to efficiently parametrize
the bulk effects within ILs into the FF parameters.

The force-matching technique, which is becoming more and more prominent due to the in-
creasing computer power, allows one to adapt the whole set of FF parameters to a provided
set of coordinates and forces. In order to do so, reference data is obtained by an ab-initio
method and the parameters of the FFs are fitted such that they match the reference forces.
With that, information about the bulk properties is mediated by the forces. This method has
been applied by Youngs et al.125 to [MMIM][Cl], where all FF parameters were involved in the
fitting process with the constraint of an integer ionic net-charge. The resulting FF parameters
finally show the expected liquid character, given by an increase of the dipole moment, which
is a result of an extended electron cloud around the ions, given by their mutual interaction.
However, force-matching requires reference data, which is gathered by computationally very
demanding calculations. Another possibility is a fit of the FF parameters to experimental
liquid phase properties. With this method, Köddermann et al.126 derived a force field for the
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members of [CnMIM][Tf2N] family of ionic liquids. Diffusion and rotational correlation times
were measured and the short-range parameters of CLaP were adapted to match these prop-
erties. Currently, this is the only parameterisation describing static, dynamic and energetic
properties, accurately, while a certain transferability is provided. The reason might be that
the fitting process requires accurate experimental data, which is often lacking, and a lot of
computational and human effort.

An alternative is to apply a reduced net-charge of the ions, which obviously accelerates the
system dynamics and was initially motivated by the screening of the electrostatic forces in
the strongly charged IL system without considering the aspect of polarization explicitly. In
this manner, many successful FFs for different ILs have been established.127–132 This approach
works quite well, but all sets of partial charges therein are either just uniformly scaled down
from results of isolated ion calculations or based on calculations of ion pair (IP) clusters, which
does not guarantee, that the charge distribution of the liquid state is given. Finally, the charge
assigment method of Blöchl (CAB), described in detail in section 4.1, has been discovered and
applied to [MMIM][Cl]11. This method allows one to access the charge distribution in the
liquid state, which naturally results in a reduced ionic net-charge. Combining all the pieces
of the puzzle shows that CAB charges include the polarization of the electron cloud impli-
citly. Hence, CAB is a very suitable method to establish a set of partial charges for a FF.
However, due to significant change of the partial charges compared to other calculations, an
adaption of the short-range and some bonded parameters is required, too12. To this end, an
approach and the corresponding computational framework is developed in here(see section 5.2
and Appendix A), which allows one to adapt the FF parameters in order to match a variety
of properties.

FFs for ILs are still a heavily studied topic. Though much insight has already been gained,
an accurate FF transferable between a large class of ionic liquids is required. However, this
is a difficult task due to the variety of ILs as well as their properties. To this end, different
strategies to establish an appropriate set of parameters are proposed in this thesis. The
theory and computational framework is elaborated in chapter 4 and Appendix A, respectively.
This computational framework minimizes the required amount of human input and is easily
transferable to arbitrary systems. It should be applicable in all supercomputing centers that
support the MD package GROMACS73–76 and a Python interpreter133.

3.5. Benchmarking force fields for ionic liquids

RTILs just recently became of major topic in research and industry, so available force fields
have not always been validated sufficiently, to assess their reliability. The number of RTILs is
very large and benchmarking is a quite time-demanding task, which is discussed in the follow-
ing paragraphs. The FFs are not expected to be technically completely mature yet, compared
to FFs like OPLS53,111 or AMBER54, which have been refined over decades. Many FFs are
already available for ILs, but often they are restricted to a single cation/anion combination or
only transferable between small modifications of the cation. In 2004, Canongia Lopes et al.5
started publishing the FF CLaP that covers a large number of cation and anions.5,121,122 The
parametrization has been performed on isolated ions and only structural properties have been
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chosen for a validation, but dynamics have neither been studied nor used for the FF setup.
For this reason, the IL [EMIM][BF4], depicted in Figure 3.9, has been studied to shed more
light on the accuracy of CLaP in terms of statics and dynamics.10 A further parametrization
for [EMIM][BF4] by Liu et al.124, denoted LHW, is also available and investigated, that mainly
differs from CLaP by the treatment of the covalently bonded cation hydrogens.
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Figure 3.9.: A schematic description and picture of [EMIM][BF4].

All MD simulations in this thesis have been performed with the package GROMACS 4,73–76
which offers highly optimized and parallelized algorithms for an efficient treatment of an all-
atom system on a supercomputer with many CPUs. A large number of suitable analysis
tools is already present in GROMACS, but some properties, which are important for ILs,
could not be assessed at the beginning of this thesis. GROMACS is Open-Source software,
so the source code is accessible to everyone and freely modifiable. With that, the missing
analysis routines have been implemented and finally became part of GROMACS distribution
in the tool g_current. This tool allows a calculation of the current in a system, which is
required to derive the static conductivity accurately, as well as the different contributions
to the dipole moment, required in order to obtain the static dielectric constant. Although
the GROMACS tool g_dipoles also allows a calculation of the dielectric constant, it is only
applicable to systems, which do not contain free charges and since ILs do not belong to this
kind of systems, it cannot be used.

For the visualization of molecules or simulation snapshots, the trajectory viewer VMD134,135

is used exclusively, if not stated otherwise.

Simulation setup For a comparison of CLaP and LHW, a unit cell of 150 [EMIM][BF4] ion
pairs is simulated in an NpT ensemble at 1 bar pressure with periodic boundary conditions
(PBC). The Leap-Frog integration scheme is employed with a time step of 1 fs. Nose-Hoover
temperature and Parrinello-Rahman pressure coupling schemes are utilized with time con-
stants of τT = 0.5 ps and τP = 4 ps, respectively. Starting configurations were chosen from
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an earlier study.9 ILs are know to be highly viscous and glassy systems, so long correlation
times are expected. For this reason, simulations of 100 ns are performed at a temperature
T = 400 K to access a sufficiently large volume of the phase space and accumulate enough
statistics for collective properties. Apart from the single parameters, CLaP and LHW dif-
fer in their treatment of the covalently bonded hydrogens. In CLaP the bond length of the
bond are fixed, while LHW allows fluctuations, so the parallel constraints solver P-LINCS136

is involved in all simulations with CLaP. Usually a larger integration time step can be used,
if the fast degrees of freedom are removed by constraints. Though this allows an immense
acceleration of the simulations, in order to allow a fair comparison, the time step for both FFs
is chosen equally. The further bonded potentials of the parameterisations are either obtained
by ab-initio calculations or transferred from the FFs OPLS or AMBER. Besides the LJ para-
meters for H1 in LHW, which has been adapted in order to match ground state structures,
LJ parameters for both CLaP and LHW have also been transferred from OPLS or AMBER.
Also the procedures for the partial charge assignment differ. LHW only relies on the RESP
method83 for the calculation of the partial charges, but CLaP has been constructed with the
aspect of transferability in mind. For this reason, RESP is applied with the further con-
straints. In CLaP, the charging of hydrogens belonging to alkyl groups directly attached to
the ring is symmetric and the charges of the first side chain atom is adapted to recover an
integer net-charge. Partial charges for atoms separated more than three sites from the ring
correspond in CLaP to the OPLS parametrization for alkanes. The electrostatic interaction
is treated by the smooth particle mesh Ewald algorithm (SPME)58 with a short range cut-off
rc = 1.2 nm and Fourier grid spacing of 0.12 nm at interpolation order 4, requesting a relative
energy of real space and reciprocal space of 10−5. Metallic boundary conditions are applied
for the electrostatics, because an IL is a highly polar system and the fluctuation of the dipole
moment is important and should not be correlated with the surrounding medium.98 The LJ
interactions are smoothly switched off between 0.9 and 1.0 nm and a neighbour list update is
performed up to 1.2 nm every fifth step.

Structural properties ILs consist of bulky cations and anions, which are densely packed
indicated by their high viscosity and mass density ρ. In Table 3.1, some properties of
[EMIM][BF4] are summarized. The simulated and experimental values for ρ agree and the
dense packing is indicated by the relative large value around 1200 kg ·m−3, which is approx-
imately 200 kg ·m−3 larger than the mass density of water at room temperature.137

More insight is obtained by the radial distribution functions (RDF), given in Figure 3.10,
that nicely illustrate the layering structure of the positively and negatively charged ions in
the liquid, which has also been observed for other ILs.9,119,123,138. The RDFs between the
imidazolium ring and the boron atom B given by CLaP and LHW agree, but significant differ-
ences arise for the ring-ring and B-B RDFs. In CLaP, a more pronounced B-B RDF indicates
stronger layering compared to LHW, which is supported by the less developed shoulder of
the ring-ring RDF around 0.45 nm. Studies on other [EMIM]+ based ILs9 have shown, that
this shoulder is attributed to an offset-stacking of the imidazolium rings. More detailed in-
formation about the local structuring of the liquid is gathered by the spatial distribution
functions (SDF) that is the density distribution of a particle around a reference particle for
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all spatial dimensions dimensions r, θ, and φ:

γ(r, θ, φ) =
dN(r, θ, φ)

dV
. (3.107)
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Figure 3.10.: Radial distribution and orientational correlation functions obtained by CLaP
and LHW for the boron atom and the center of the imidazolium ring. The
orientational correlation is determined by the angle between the normal vectors
of the imidazolium rings and plotted in term of the SDF γ normalized by its
average 〈γ〉.

In Figure 3.11, the SDF for B around the imidazolium ring as well as the SDFs of the rings and
nearest B around an imidazolium ring are shown, plotted with the program GOPENMOL.139
The ring-B SDF for CLaP and LHW significantly differ around the ring hydrogen H1 between
the methyl and ethyl group. For LHW, the SDF of B around H1 is localized homogeneously, but
the SDF, given by CLaP, is stretched towards the imidazolium ring. This indicates that LHW
prefers hydrogen bonding at H1 compared to CLaP. It has also been shown for [MMIM][Cl]
by AIMD simulations140 that CLaP underestimates the probability of hydrogen bonding at
H1. If the population of the nearest anions around the cations is considered in the bottom
part of Figure 3.11 a larger spread is observed for LHW than for CLaP, which is reflected in
the less pronounced layering. If the distribution of the rings around another ring is studied a
first indicator for a strong offset-stacking in both FFs is given by the large population of rings
above and below other rings, shown by the red and blue regions. It has to be noted that the
center of this regions is not exactly above or below the respective ring, but shifted away from
H1 to the lower part of the ring. Also the domains above and below the ring are separated for
LHW, which is not the case for CLaP.
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Figure 3.11.: Spatial distribution functions are plotted for the boron atom B and the im-
idazolium ring, both in respect to the imidazolium ring. The blue, green, black,
red, and yellow isosurfaces depict the areas with ten, eight, six, five, and four
times higher density than the average for the ring-B SDFs. The blue and red
isosurfaces are plotted within a range from 0−0.59 nm, while the green and yellow
is given from 0.59 up to 0.73 nm and 0.75 nm for LHW and CLaP, respectively.
For the SDF involving the nearest anions and cations around a ring, the color
coding changed for blue and red providing the space with 5, and 2.5 times larger
values for the density of the rings, respectively. For CLaP and LHW ranges of
0− 0.54 nm and 0− 0.52 nm are considered for the ring-ring SDFs, respectively.
The color black depicts a six times higher average density of the anions around
the ring in the range from 0− 0.59 nm for both FFs.
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In order to allow one a final conclusion about the orientation, a correlation function gSDF(γ):

gSDF(γ) =
1

N(γ)

N(γ)∑

i=1

3 [cos(αi(γ))]2 − 1

2
, (3.108)

is defined dependent on the SDF γ. It is derived from theN(γ) angles α(γ) between the normal
vectors of a reference imidazolium ring and the imidazolium rings around which correspond to
the same γ. In combination with the SDF plots in Figure 3.11, this provides a good idea about
the alignment of the imidazolium rings. If the results are compared, as shown in Figure 3.10,
gSDF(γ) provides are more parallel alignment of the rings in LHW starting at γ = 4, because
gSDF(γ) = 1 corresponds to parallel orientation. Within the considered range, gSDF(γ) given
by LHW almost converges to 1. Yet due to the almost parallel alignment and the location of
the populations, offset stacking is present in both FFs, but more pronounced by LHW.

D / 10-10 ·m2 · s−1 σ / S ·m−1
Force field cations anions σNE σGK σEH ε / ε0 µ+ / D ρ / g · cm−3

CLaP 1.39 0.65 3.6 3.5 3.5 12.6 1.79 1.183
LHW 0.66 0.42 2.2 2.1 2.2 11.3 1.74 1.218

Exp. 4.40a 3.94a 13.5a 8.3a 12.8b 1.56c 1.193b

aObtained by complex impedance measurements141.
bExperimental data at 298.15K 18,142–146

cµ+ in [EMIM][TF2N] 18,142–146

Table 3.1.: Some properties of [EMIM][BF4] at 400K.

In summary, the detailed study elucidated some significant differences of CLaP and LHW.
Although they seem to be small, if only the mass density is considered, a dissection of the
structural properties shows that especially the region around the H1 hydrogen influences the
structure of the liquid. Supported by AIMD results, the more pronounced hydrogen bonding
at this site is more properly modelled by LHW, resulting in a less layered liquid.

Dynamics CLaP and LHW differ in the modelling of the local liquid structure, but a more
general static property, the mass density ρ, is predicted well by both of them. This is a
result of the parameterisation techniques of the FFs, that rely only on static properties of the
crystal or gas phase. The differences in the local liquid structure arise, because the liquid
phase is not explicitly considered for the establishment of the force field, though it is of main
interest. This lack of care is finally reflected in the poor modelling of the dynamics by both
parameterisations.

A dynamic property, that is also accessible by experiment, is the diffusion of the ions. In
Figure 3.12, the mean square displacement (MSD) ∆x of the ions’ center of mass xcom is
plotted:

∆x(t) = 〈[xcom(t)− xcom(0)]2〉, (3.109)

which is related to the diffusion constant D for the ions at concentration c(xcom, t) by Fick’s
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law and the assumption of conservation of total momentum62:

∂c(xcom, t)

∂t
−D∇T ·∇c(xcom, t) = 0. (3.110)

Equation (3.110) is explicitly solvable and the solution allows one to calculate ∆x(t) in terms
of c(xcom, t) known as the Einstein relation:

D =
1

2d
lim
t→∞

∂

∂t
∆x(t), (3.111)

with the number of spatial dimensions d.
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Figure 3.12.: Mean square displacement of the ions’ center of mass.

In the insets of Figure 3.12, three different regimes are observed. Within the first tens of
picoseconds the MSD is strongly increasing, which corresponds to the ballistic regime. The
ions almost freely move, before the influence of the actual environment becomes significant. In
the following sub-diffusive regime, the interactions with the other particles become dominant,
such that further tens or even hundreds of picoseconds are required until the MSD converges
to a linear behaviour, that reflects the average interactions and with that the diffusion of the
system. If the diffusion constants of the cations and anions are derived by equation (3.111)
and compared to experiments (see Table 3.1) both FFs underestimate the experimental value
up to an order of magnitude. CLaP predicts a two times faster diffusion of the cations
compared to LHW, but the anionic diffusion constant is only approximately 25% larger. For
this reason, also collective dynamic properties like the conductivity are expected to be severly
underestimated.

The diffusion is a particle-based property and averaging within a trajectory snapshot is pos-
sible, but statistics for collective properties like the dielectric constant or conductivity are only
accumulated in the course of simulation time. However sometimes an single-particle proper-
ties allow an approximation. For the conductivity the diffusion coefficients D given an upper
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Figure 3.13.: Comparison of the current autocorrelation functions and their integrated ver-
sions, the mean square displacements of the MJ.

bound by the Nernst-Einstein method:

σNE =
N(qnet)2

V kBT
(D+ +D−), (3.112)

involving the number of ion pairs N and the ion net charge qnet. This approach completely
neglects the cross-correlation of the ions that reduces conductivity.

For an exact calculation of the conductivity including also the ion correlations a time span of
100 ns simulation time has been chosen to apply the seemingly straightforward Green-Kubo
method. Therefore the current autocorrelation function J(t) = 〈j(t)j(0)〉62 is integrated:

σGK =
1

3V kBT

∞∫

0

〈j(t)j(0)〉dt, (3.113)

where the current j(t) =
∑N

i=1 q
net
i v

com
i (t) is determined by the ionic charge qneti and the center

of mass velocities vcomi of the ions i.

As shown in Figure 3.13 on the left hand side, J(t) converges slowly and with the present
statistics a direct integration is impossible. For this reason, the long time tail of J(t) is fitted
to a function ∼ −t−a starting at tc = 1 ps, that is also applied for an analytical integration
of J(t) starting at tc. In the insets of Figure 3.13 on the left hand side, the agreement of
the decay, given by the simulations and the fit, is clearly shown. The functions J(t) converge
in the long time limit ∼ t−2.12 and ∼ t−2.60 for CLaP and LHW, respectively. This limiting
behaviour is an requirement for the existence of the dielectric susceptibility[citesega12a] which
has to be at least ∼ t−2.

A further possibility to derive the conductivity is the Einstein-Helfand (EH) approach, that
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relies on the translational dipole moment MJ =
N∑
i=1

qneti x
com
i of the ions:147

lim
t→∞

∆MJ = lim
t→∞
〈[MJ(t)−MJ(0)]2〉 = lim

t→∞
6V kBTσEHt+ 2〈M 2

J 〉. (3.114)

Similar to the relation of the velocity autocorrelation-function and the MSD of the ions, ∆MJ

is the double integrated version of the current autocorrelation function.

In Table 3.1, the results for CLaP and LHW given by equation (3.112) are compared to
the Green-Kubo approach and the Einstein-Helfand method. Both FFs predict an almost
negligible correlation, because σNE is only slightly larger than the correlation-including values
of σGK and σNE. With the Green-Kubo method CLaP and LHW predict conductivities of
3.5 S ·m−1 and 2.1 S ·m−1, respectively, which are too small compared to the experimental
value of 8.3 S ·m−1. The Einstein-Helfand method almost gives conductivities of 3.5 S ·m−1
and 2.2 S ·m−1 for CLaP and LHW, respectively. Yet almost the same conductivities are
calculated with the equations (3.113) and (3.114), proving the consistency of the methods and
the inaccurate modelling of the dynamics by the studied force fields. Though EH only relies
on the particle position and does not require a frequent saving of the velocities, the value for
σ is very sensitive to the chosen fit interval[citesega12a]. This sensitivity even increases for
〈M 2

J 〉, because a small error in the slope evolves to a large error in the intercept of the fit
with axis. Unfortunately 〈M 2

J 〉 is involved in the calculation of the static dielectric constant
and is not directly accessible from MD simulations.

The static dielectric constant Dielectric properties of ionic liquids are of great interest,
because the frequency spectrum allows to identify different kinds of interactions and motions.
The static dielectric constant ε is a measure for the response of the medium to an external
electric field. For uncharged species only the dipole of the particle is of interest, but charged
ions also contribute to ε by their translational motion. Moreover if free charges are present
the total dipole moment is ill-defined and dependent on the orientation of the unit cell. [cite-
sega12a] dissected different methods that circumvent this problems. One of them, which has
already been used in the field of ionic liquids148 is based on a decomposition of the total
dipole moment into a rotational part MD =

∑N
i=1

∑ni
j=1 qj,i(xj,i − xcom

i ), which is given by
the positions xj,i and partial charges qj,i of the nj atoms j belonging to the ion i, and the
translational part MJ. With this decomposition ε is calculated by:10

ε = 1 +
1

3V kBTε0

(
〈M 2

D〉 − 2〈MDMJ〉+ 〈M 2
J 〉
)
. (3.115)

The first term converges quite fast, but the cross-term involving MD and MJ as well as the
last term are not calculated straightforwardly. 〈M 2

J 〉 is obtained from the Einstein-Helfand
fit by equation (3.114). The cross-term is derived by an integration of the current:

〈MJMD〉 = 〈
∫
MD(0) · j(t)dt〉. (3.116)

If the static dielectric constant is calculated from the simulations with CLaP and LHW the
results are ε = 12.6 and ε = 11.3, respectively, which coincide well with the experimental
value of 12.8. Also the dynamical property j(t), which is underestimated by CLaP and LHW,
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is involved in equation (3.116), therefore the cross-term of equation (3.115) might also be
underestimated. Additionally stronger correlations may occur within the ionic liquid than
obtained from the simulations. This is also supported by recent simulations with polarizable
force fields.149,150 Therein the conductivity derived by EH is about 70% lower, than obtained
with the correlation neglecting Nernst-Einstein (NE) approach. Yet only a reliable force field
allows to shed more light on the influence on the cross-term.

Although both force fields describe the global structure and static properties, such as the
mass density and dielectric constant similar, subtle differences arise for the local structure.
However, both force fields fail in a proper description of dynamical properties. In order to
obtain such a parametrization methods are developed in the following chapters that aim on
an optimization and extension of partial charges and short range parameters of a given FF.
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for the liquid phase of ionic liquids

One of the main objectives of this work is the parameterisation and refinement of force fields
(FFs) for ionic liquids (ILs). In this regard, one of the basic question is the calculation of the
partial charges. Usually the set of charges for a force field are derived from QM calculations
on isolated molecules with a Restrained Electrostatic Potential fit (RESP)83 or CHarges from
Electrostatic Potentials using a Grid based method (CHELPG)84 are generated. However,
the electronic properties of ILs change drastically when switching from an isolated molecule
to small clusters1,7, but these effects are also very localized as a result of the strong Coulomb
screening in this kind of system14,15,151. In order to include liquid phase properties in the partial
charges, an appropriate method is required. In the following sections, an approach suggested
by Blöchl55 is introduced and applied to ILs. Furthermore the MDEC theory of Leontyev
and Stuchebrukhov152 is introduced, which provides a consistent and implicit description of
polarization with static partial charges. The final aim is the construction of a consistent set
of partial charges. Thus different aspects are considered, such as the effect of the cation–
anion combination, dipole moments or the influence of small changes in the electrostatic
model. Finally, this allows us to suggest a reliable and straightforward method to derive a
parameterisation of partial charges, which is transferable within different ILs and contains the
characteristics of an IL under bulk conditions.

71



4. Force field partial charges from and for the liquid phase of ionic liquids

4.1. Difficulties in partial charge calculations

Mostly, partial charges of established force fields for liquids, ionic liquids or biomolecular mo-
lecules, such as OPLS-AA, CHARMM, CLaP or AMBER, were derived from QM calculations
in vacuo or with implicit solvent models. The charge is often assigned with the methods
CHELPG84 or RESP.83 These are based on a fit of the partial charges qi to match the electro-
static potential (ESP), which is derived from a charge density n(r) of single molecules or ion
pairs, either in–vacuo or embedded in an implicit solvent. However, this approach has disad-
vantages, if the charge distribution for a liquid state is of interest. One aspect is the sensitivity
of n(r) to the configuration of the atoms. Hence, the partial charges should be derived by
averaging the results for different configurations. However, often only the ground states of a
molecule are considered. For this reason, the actual information about the liquid state, such
as the correlation of the electrons from different molecules or the influence of temperature,
is missing. While implicit solvent models help to include at least an average influence of the
polarizing medium, the impact of the dense packing in the liquid state and the corresponding
larger phase space is completely neglected. Though ab–initio molecular dynamics (AIMD)
simulations allow one to model the bulk state of a system of tens of ion pairs in the ps regime,
CHELPG and RESP are not applicable, because the choice of a reasonable manifold, which
allows an accurate fit of the ESP, is very hard, due to the density of the atoms and periodicity
of the charge density.
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Figure 4.1.: The average cation dipole with respect to the center of mass1 derived with
quantum mechanical methods MP2 and DFT, is compared to calculations with
the classical force fields CLaP and LHW.

However, if the electrostatic properties of ILs of the gas and bulk phase are compared significant
differences arise,1,2,11,12,15 as shown in Figure 4.1. While the electric dipole moment µ of the
cation with respect to the center of mass is around 0.8D for a single ion, µ increases to about
2.4D in larger clusters of up to eight ion pairs, if ab-initio methods like MP2 or DFT are
applied. This effect is a result of electron correlation, and therefore only observable if more
than a single ion is present. The electron clouds of the ions extend, resulting in an increase
of the dipole moment. A maximum of the cation dipole moment arises for single ion pairs
(IPs), but with a growing number of ions, the space around a molecule is filled more and more
homogeneously, such that a balance of the interactions between all molecules establishes and
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a convergence of the dipole moment to ≈ 2.4D is observed.7

If the dipole moments for the different systems are calculated via partial charges given by the
FFs, CLaP5 and LHW124, µ remains almost constant with increasing system size at value of
about 0.8D and 1.2D, respectively. Thus, they are not even close to the bulk value. This
clearly shows that the charges of CLaP and LHW, are unable to model the electrostatic
character of a bulk phase, because the FFs have been derived by single ion calculations. Static
partial charges are not able to describe the increase in the dipole moment, because they do
not model polarization effects. For this reason, a method is needed that allows the inclusion
of bulk state characteristics of n(r) in the partial charges.

Such a technique has been suggeted by Blöchl55, that allows the derivation of the partial
charges for periodic systems55, which is perfectly suitable for a periodic ab-initio MD (AIMD)
simulation. Applying this method to IL systems shows a significant reduction of the ion
net-charge from ±1 e to about ±0.6 e, which has also been observed in QM gas phase calcula-
tions11,119,153 and, more recently, in NMRmeasurements of ILs.154 Furthermore, a change in the
distribution of the charge within the ions is obtained, if results from gas and liquid state calcu-
lations are compared. Though different IL force fields with a reduced net-charge127,128,130–132,153
have been suggested, the charge distribution has always been based on single ion or ion pair
calculations. Only Youngs and Hardacre129 include bulk effects, since the charges are derived
by a force matching technique, which is applied to an AIMD trajectory under bulk conditions.
However, in contrast to these methods, the partial charges derived with the Blöchl charge
assignment method55 (CAB) are directly connected to the charge density of the bulk phase.
Yet, these charges are expected to be an improved electrostatic model for the characteristics
of a liquid phase, compared to a model which relies on gas phase calculations.

Hence, the Blöchl method is a promising technique for the calculation of partial charges for
IL force fields. In order to be able to apply it correctly, a precise description of the method
itself is given in the following section.

4.2. CAB - The Charge Assignment method of Blöchl

While RESP and CHELPG rely on the electrostatic potential in real space, the charge assign-
ment method of Blöchl55 (CAB) acts on the charge density n(k) in reciprocal space, which
renders it perfectly suitable for systems with periodic boundary conditions. To derive partial
charges qi at atomic sites Ri a model charge density ñ(r):

ñ(r) =
∑

qigi(r), (4.1)

consisting of Gaussians gi:

gi(r) =
1

(
√
πrc,i)

3 · exp

(
−(r −Ri)

2

r2c,i

)
, (4.2)
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with a decay length of rc,i, is fitted to the expansion of the charge density in multipole moments
Ql:

Ql =

∫

V

|r|l Yl(r)n(r)d3r, (4.3)

in terms of a sum Yl of spherical harmonics Ylm(ϕ, θ):

Yl =
4π

2l + 1

l∑

m=−l
Y ∗lm. (4.4)

The guiding principle of this method is based on the property of the multipole expansion
in reciprocal space Ql(k), that it is completely determined by the charge density and all its
derivatives at k = 0. It has been shown11,55 that a few vectors in k–space corresponding
to an energy cutoff K2

cut = 14 Ry are enough to make the results converge. Due to to the
translational invariance of the periodic lattice, the problem of a suitable choice for the origin
of the multipole expansion does not need to be solved. Blöchl55 showed that for a suitable
construction of ñ(r), a point charge model n̂(r) =

∑
i qiδ(r −Ri) with partial charges equal

to the partial charges of the Gaussians in ñ(r) also matches the multipole moments given by
n(r), if the two following conditions are met. The difference of the multipole moments ∆Ql

given by the true and model charge densities is minimal:

∆Ql =

∣∣∣∣∣∣

∫

V

|r|l Yl (n(r)− ñ(r)) d3r

∣∣∣∣∣∣
, (4.5)

as well as the width of the charge distribution ∆W is minimal:

∆W =

∣∣∣∣∣∣

∫

V

r2 (n(r)− ñ(r)) d3r

∣∣∣∣∣∣
. (4.6)

An extremal condition F (qi, λ) is formulated in terms of Langrangian multipliers

F (qi, λ) =
V

2

∑

k 6=0

w(k)

∣∣∣∣∣n(k)−
∑

i

qigi(k)

∣∣∣∣∣

2

−

− λ
[
n(k = 0)V −

∑

i

qigi(k = 0)V

]
, (4.7)

with a weighting function w(k):

w(k) =

{
4π

(k2−K2
c )

2

k2K2
c

, if |k| < K2
c ,

0 , elsewhere,
(4.8)

which is defined, in order to increase the importance of space around k = 0. Since the
weighting function is not defined for k = 0, this case is treated with a Lagrangian multiplier
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λ and the constraint for charge conservation separately. If F (qi, λ) is reformulated with:

bi =V
∑

k 6=0

w(k)< [n∗(k)gi(k)] , (4.9)

Aij =V
∑

k 6=0

w(k)g∗i (k)gj(k), (4.10)

ci =V gi(k = 0) = 1, (4.11)
N =V n(k = 0), (4.12)

where <( · ) is the real space part of a complex number, a system of linear equations arises:
∑

j

Aijqj + λci = bi,
∑

i

ciqi = N, (4.13)

with the solution:

qi =
∑

j

(
A−1

)
ij

[
bj − cj

∑
k,l ck (A−1)kl bl −N∑
m,n cm (A−1)mn cn

]
. (4.14)

To match the width of the charge density a model density consisting of 3 to 4 Gaussians
with increasing decay lengths rcα,i for every atomic site i is proposed55. It has been shown
by Blöchl55 that a minimal rc0,i of 0.5− 1 Bohr radii a0 and rcα,i = 1.5 · rc(α−1),i yields results
accurate up to a few meV.

Partial charges and dipoles for single [MMIM][Cl] ion pairs derived by GPW and MP2
methods In order to benchmark the Blöchl method, hybrid Gaussian plane wave (GPW)
calculations155 with the QUICKSTEP50 module implemented in the program package CP2K52

have been performed on four ground state structures (see Figure 4.2). These structures were
obtained by high level second order Møller-Plesset perturbation theory (MP2) and coupled
cluster calculations (CC) and were kindly provided by Y.Y. Zhao.2

charge q / e

DZVP TZV2P aug-QZV3P MP22,11

geometry BLYP-G PBE BLYP-G PBE PBE CHELP RESP
1 -0.69 -0.69 -0.65 -0.65 -0.63 -0.74 -0.74
2 -0.64 -0.64 -0.62 -0.62 -0.61 -0.71 -0.72
3 -0.79 -0.79 -0.77 -0.77 -0.76 -0.85 -0.85
4 -0.73 -0.73 -0.70 -0.69 -0.68 -0.78 -0.79

Table 4.1.: Charges of the chloride for the optimized structures, shown in Figure 4.2, derived
by CAB and reference calculations on the MP2 level applying the established pro-
cedures CHELPG and RESP.

Partial charges for the chloride have been derived by the Blöchl method for different basis sets
and exchange-correlation functionals and are compared in Table 4.1. For the GPWmethod, an
energy cutoff Ec = 280 Ry and a cubic box size of V = (21.618 Å)3 is applied. Further results,
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(1) (2)

(3) (4)

Figure 4.2.: Equilibrium structures derived by MP2 and coupled-cluster calculations2 where
structure 2 is the ground state.

which have been obtained by CHELPG or RESP by Schmidt et al.11 with charge densities
derived on the MP2 level of theory, are also compared. While a negligible dependence on the
exchange-correlation functional is observed, an increase of the basis set size results in a less
negative charge. Compared to the MP2 reference calculations, CAB tends to overestimate the
charge reduction of the net-charge given by the RESP and CHELP procedure by about 10 %.
This difference can be attributed to the insufficient description of the electron correlation by
the exchange-correlation functionals, which might favour polarization. Since the results for
the largest two basis sets do not differ significantly, the TZV2P basis set is expected to provide
a good balance between accuracy and efficiency. However, the Blöchl method explicitly adapts
the partial charges to the width of the charge distribution. This allows it to maintain a more
precise description of the density than RESP or CHELPG, which rely on the electrostatic
potential on a certain surface, significantly restricting the information about the density.

A comparison of the dipole moments of the four structures obtained from the Blöchl charges
to MP2 calculations or the Maximally localized Wannier scheme (MLW) is given in Table 4.2.
Consistently smaller dipole moments are obtained by CAB, apart from geometry 2. However
this result is expected, because CAB charges provide an implicit description of polarization,
which is discussed in detail in section 4.2. For the combination of TZV2P and PBE, the
corrected results are shown, which fluctuate around the reference data. The large deviation
for geometry 2 arises due to the location of the chloride, resulting in a structure with very small
spatial extent. Yet, the sensitivity of the partial charges to the actual structure is highlighted.

Table 4.3 shows the consistency of the different schemes. A Blöchl analysis has been performed
on single cations with an aug-QZV3P basis set and the PBE exchange-correlation functional
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for the geometries 1–4. The dipoles have been calculated and averaged over the 4 structures.
The results agree with the reference DFT calculations using the MLW scheme1, but compared
to the MP2 reference data1, the Blöchl method predicts a 0.06D larger dipole moment with
respect to the center of mass (see Table 4.3), as well as the other DFT approach.
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Figure 4.3.: Schematic drawing of the [MMIM]+ cation.

In Table 4.4 the CAB charges averaged over the four geometries of isolated cations (for the
nomenclature see Figure 4.3) are compared to the partial charges from the CLaP FF that
were derived by CHELPG at the MP2 level of theory also using isolated ions. The largest
differences are observed for the C3, H3, and N1 atom types enhancing the dipolar character of
a cation. Negative charge is transferred from the imidazolium ring to the carbon atoms of the
methyl groups, if CAB is compared to CLaP. The charge of the C2H2 groups obtain with CAB
is decreased compared to the CLaP FF and for C1H1 an increase of the charge is observed.
This results in a quite polar region of the molecule around N1, C1, H1, and N1′ , which is
not that pronounced for the CLaP parameterisation. This finally proves that different charge
assignment schemes can yield quite different partial charges as the mapping of the charge
density is not unique. Especially if more than one molecule is involved, the results from CAB,
CHELPG, RESP, and MLW differ significantly. The monopoles obtained with CAB charges
are expected to allow a reliable classical description of the electrostatic interactions, because
they also reproduce the dipole of a single cation. Thus the next step is the application of CAB
to “bulk-like” systems, which allows the incorporation of the electrostatic character of a liquid

Totale dipole moment / D
DZVP TZV2P aug-QZV3P DFT (PBE)

geometry BLYP-G PBE BLYP-G PBE PBE MP21 MLW1

1 9.77 9.75 9.22 9.12 (14.03) 8.92 12.65 12.4
2 10.00 10.02 9.70 9.65 (15.57) 9.57 8.63 8.3
3 12.76 12.78 12.45 12.39 (16.09) 12.28 16.59 17.4
4 14.35 14.32 13.65 13.50 (19.57) 13.28 16.25 16.5

Table 4.2.: Total dipole moments of the ground state structures obtained with CAB from cal-
culations with different basis sets and exchange-correlation functionals. The values
in brackets include the effect of electronic polarization, disscussed in section 4.2.
The results are compared to reference calculations on the MP2 level and a DFT
approach using the Maximally localized Wannier (MLW) scheme1.
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4. Force field partial charges from and for the liquid phase of ionic liquids

geometry avg. DFT1 MP21

1 2 3 4 〈µi〉 µ µ
µcom /D 0.79 1.17 0.49 0.88 0.83 0.83 0.77
µcor /D 2.13 2.68 1.72 2.20 2.18 2.19 n.a.

Table 4.3.: Dipole moments of a single cation in vacuum with respect to the center of mass
µcom and geometric center of the ring µcor are compared to DFT and MP2 reference
data1.

into the partial charges.

partial charges q / e

H1 H2 H3 C1 C2 C3 N1

CLaP5 0.21 0.21 0.13 -0.11 -0.13 -0.17 0.15
CAB 0.20 0.25 0.22 -0.09 -0.20 -0.53 0.265

Table 4.4.: Charges of [MMIM][Cl] derived by CAB are compared to the partial charges of the
CLaP FF. A nomenclature of the atoms is given in Figure 4.3.

An introduction to the MDEC theory Although the reduced net-charge of the ions seems
odd at first, a consistent mean field theory exists,152,156 that can explain charge reduction for
partial charges of classical force fields in terms of polarization.

In the Molecular Dynamics Electronic Continuum (MDEC) model of Leontyev and Stuchebruk-
hov152, the charges of the force field are considered as effective qeff = q/

√
εel, screened by the

electronic dielectric constant εel of the medium. The polarization P of the system is decom-
posed into a slow “inertial” part Pin and a fast “noninterial” part Pel. While Pin depends on
the positions of the nuclei, Pel is the contribution from the electrons, that react on a con-
formational change of the nuclei, nearly adiabatically. This approximation holds in the linear
response regime, where the susceptibility χ is an additive quantity:

χ = χnuc + χel, (4.15)

which connects P to the electric field E:

P = χE, (4.16)

and hence, P decomposes into a nuclear Pin and an electronic part Pel:

P = χnucE + χelE (4.17)
= Pin + Pel. (4.18)

Thus the molecules are assumed to be immersed in a medium of dielectric constant εel, which
in this case consists of the strongly delocalized electron cloud.

Leontyev and Stuchebrukhov156 applied their approach to water and obtained very good agree-
ment of experiment and theory. Moreover, it turns out that the parameterisation of the SPC/E
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4.3. Determining partial charges from bulk-like configurations

water model137, partly includes the MDEC theory, which results in its good performance.
While standard water models often fail to describe the correct dipole in the liquid phase, the
proposed MDEC model is superior or equal to the standard models for all compared properties
and has an electronic constant of εel,water = 1.78.

This implicit treatment of polarizability by an electronic dielectric constant εel results in an
“effective” charge reduction for charged species. From the physical point of view, εel is a
measure for the screening of the electrostatic interactions, arising from the almost inertialess
reaction of the electron clouds to a force. In order to obtain unscreened charges, the results
from the Blöchl analysis have to be scaled by a factor of

√
εel = 1/

√
qnet · qnet.

4.3. Determining partial charges from bulk-like
configurations

Generating a bulk-like configuration The first step for the calculation of partial charges for
the liquid phase is the generation of corresponding quasi–independent configurations, which
are then subjected to a Blöchl analysis. To this end, an ab–initio MD (AIMD) simulation is
performed and 100 snapshots are extracted. In order to minimize the time for the equilibra-
tion of the computationally demanding AIMD, preequilibrated boxes have been prepared by
classical MD simulations. Lastly, the global structure of the small system, given by the ion-ion
radial distribution functions, has been compared to results of a larger system, in order to check
if finite size effects are observable. The procedure is described for the IL [EMIM][DCA] below.

ρ(300K) = 1107.76 kg ·m−3

ρ(363K) = 1066.65 kg ·m−3

ρ(400K) = 1043.82 kg ·m−3
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300 1.997 1107.76
363 2.023 1066.65
400 2.037 1043.82

Figure 4.4.: On the left hand side the experimental density of [EMIM][DCA] measured by
Fröba et al.3 is plotted. Box samples containing 30 ion pairs were prepared for
the AIMD simulations at temperatures indicated by the arrows, while the corres-
ponding box sizes are summarized in the table on the right hand side.

Since all MD simulations were performed with GROMACS, appropriate input files are required.
An easy starting point to obtain these files for complex molecules, such as molecular ionic
liquids, is the PRODRUG server157, which allows the generation of a PDB file containing
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4. Force field partial charges from and for the liquid phase of ionic liquids

the structural information of a cation and an anion. These PDB files have been processed
by the GROMACS tool pdb2gmx, which generates corresponding topology files, including the
parameterisation of the system. Hence, all molecule specific information which is required
for an MD simulation is present. In order to obtain a starting configuration for the AIMD,
the cation and anion structures given by the PRODRUG server were energy minimized using
the steepest descent method of GROMACS. The resulting structures were then placed in
a cubic box of size (2.5 nm)3, randomly, such that a system of 30 ion pairs is obtained.
This system has been subjected to a further energy minimization under periodic boundary
conditions. To prepare the system for the final equilibration step, the system is heated up
to the desired temperature. In the first 300 ps, the temperature T was increased from 100 K
to 300 K, linearly. From then on, the slope of T was reduced to 50 K per 100 ps until a
temperature of 400 K had been achieved. The error of the electrostatic forces, which were
calculated using the SPME algorithm, had been estimated a–priori with the parameters tuned
to achieve an accuracy of ≈ 10-4 kJ ·mol−1 · nm−1. For a box size V = (2.5 nm)3, this resulted
in an interpolation order n = 6, K = 128 grid points in every dimension, and a splitting
parameter β of 5.75 nm−1. The cutoffs of SPME in real space and of the LJ forces as well
as the neighbor search cutoffs were set to 0.7 nm, while updating the neighbor list every
five integration steps of 1 fs. For the annealing, the velocity-rescale thermostat by Bussi
et al.70 has been applied with a time constant τ = 0.1 ps. Finally, the annealed system was
equilibrated at T = 300, 363, and 400 K at a pressure p = 1 bar for 500 ps. The pressure
is coupled with the barostat of Berendsen et al.69. A system state close to the experimental
density is obtained. This allows us to scale the box vectors in order to create systems for the
AIMD simulations, which are performed in an NV T ensemble at experimental density (see
Figure 4.4). The resulting boxes have been energy minimized such that the maximal force was
10 kJ ·mol−1 · nm−1 and afterwards equilibrated for 10 ns at the corresponding temperatures.
This was how equilibrated starting structures for the AIMD simulations have been established.
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Figure 4.5.: While a comparison between the radial distribution functions of 30 (circles) and
240 (solid lines) ion pairs at T = 400 K is shown on the left hand side, a unit cell
with 240 [EMIM][DCA] ion pairs is depicted on the right. The cations are drawn
in ocre and the anions in red.

80



4.3. Determining partial charges from bulk-like configurations

In order to benchmark, if structural finite size effects are observable, a box of 240 ion pairs was
tested. To this end, a cubic unit cell with V = (4.0 nm)3 has been filled with 240 randomly
placed ion pairs, chosen from the annealed 30 ion pair system. Due to the bigger box size the
cutoffs for the SPME algorithm were increased to 1.2 nm in real space, but the reciprocal space
cutoff was reduced, to a grid size of K = 96 in every spatial dimension. To distribute the error
equally between real and reciprocal space, an Ewald splitting parameter β = 3.1 nm−1 was
applied, which to achieve an error of approximately 10-4 kJ ·mol−1 · nm−1, as before. At first,
a steepest descent energy minimization was applied until the forces converged to a value below
100 kJ ·mol−1 · nm−1. In order to equilibrate the system, NpT simulations with a Berendsen
barostat69 at T = 300 and 400 K were performed, until a stable value of the box size had
been achieved, which required 500 ps. Afterwards, a further 1500 ps were simulated for data
accumulation. The application of the Berendsen barostat for the data production is justified
here, because only static observables are compared quantitatively. At both temperatures an
underestimation of the experimental mass density by the simulations with 240 IP systems is
observed (see Figure 4.4), but the deviation is only 1%. Hence, the CLaP force field provides
a reliable description of the mass density, as already observed for other anions9,10.

To detect possible finite size effects in the global liquid structure, the results of the 30 and 240
IP systems at T = 400 K are compared in terms of the radial distribution functions (RDF)
between the anions, cations, and anion-cation (see Figure 4.5). Obviously, the structures
compare very well, hence the global arrangement of the molecules is not influenced by the box
size.

For this reason, the equilibrated 30 ion pair structures are expected to provide a solid basis
for the AIMD simulations.

Calculating partial charges from bulk-like configurations To determine a set of partial
charges for a classical force field, which contains the characteristics of a liquid, such as a
polarized electron distribution, several aspects have to be considered. Firstly, the structural
information of the IL given by the coordinates of the atoms must not suffer from finite size
effects. Furthermore, a reliable method to assign the partial charges from a periodic charge
density is required. The standard approaches RESP and CHELP are difficult to apply in
dense systems, because a suitable choice of a surface for a fit of the electrostatic potential is
hard. In addition, a certain amount of volume around the atoms has to be excluded, because
in the vincinity of the atoms, a point charge is not able to model a continuous charge density.
The introduced Blöchl method (CAB) (see section 4.2) has been especially developed for the
periodic case and therefore is very suitable. Due to the sensitivity of the electron density to
the configuration of the atoms, a sufficiently large set of configurations is required, to derive
a set of partial charges that appropriately resembles the average charge distribution of the
molecules in the polarized state. To this end, quasi-independent snapshots from an AIMD
simulation have been chosen and CAB has been applied to every configuration. Finally, the
partial charge of the atoms is derived by averaging over all snapshots and molecules. In order
to introduce the procedure for the application of the Blöchl scheme, a set of 100 snapshots
has been chosen from an AIMD simulation7 of 30 [MMIM][Cl] ion pairs. The simulation had
been performed at T = 425 K and integrated up to 30 ps simulation time with the plane-wave
based approach of CPMD51, using Troullier-Martins pseudopotentials and the PBE exchange-
correlation functional. The snapshots were analyzed with the CP2K program package52. In
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4. Force field partial charges from and for the liquid phase of ionic liquids

contrast to the AIMD simulations, the electron density for CAB is calculated with the hybrid
Gaussian plane wave (GPW) method using a TZV2P basis set in combination with the PBE
exchange correlation functional and Goedecker-Teter-Hutter (GTH) pseudopotentials158. In
the Blöchl analysis, three Gaussians have been applied on every atomic site with a progression
factor of 1.5 for the decay length rc,i of the Gaussians and rc,0 = 0.265 Å.
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Figure 4.6.: Distribution of the partial charges determined by the Blöchl method from 100
snapshots of a 30 ps AIMD simulation with 30 [MMIM][Cl] ion pairs. The red
line is a Gaussian distribution with the corresponding average charge and standard
deviation.

In Figure 4.6, the normalized distribution of the derived partial charges for the anion and the
C1 atom of the cation are plotted (for nomenclature see Figure 4.3). The average chloride
charge q[Cl]− = −0.631 e is very similar to the charges of the minimum energy geometries (see
Table 4.1) and the distribution for the charges of the individual snapshots shows Gaussian
behaviour. All distributions of cationic partial charges are dominated by a large spread of the
order of the partial charge itself as shown in Figure 4.7 for the atoms of the methyl groups,
except from C1, with about four times larger fluctuations. The Gaussian character of the
distributions is highlighted, by looking at the hydrogens H3, which provide the largest number
of samples. Hence, the derived set of partial charges is equivalent to a set of independent vari-
ables, because the law of large numbers applies and the individual charge distributions follow
a Gaussian distribution. For this reason, the spread is not a relict of insufficient sampling, but
the proof for a convergence of the probability distribution. The large spread emphasizes the
high sensitivity of the partial charges to the environment resulting from polarization of the
electron cloud.

Comparing the different sets of partial charges obtained in the isolated and bulk-like state
allows to illustrate the rearrangement of the charges. The partial charges derived by averaging
over the snapshots are considered as “effective”, because they are expected to contain the
characteristics the polarized electron cloud in the liquid phase. Thus, the reduced net-charge
is a result from the strong polarizability of the charge density. The reduced net charge qnet =
±0.631 e, [MMIM][Cl] has an electronic dielectric constant εel = 2.51.
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Figure 4.7.: Partial charges and their distribution derived from 100 AIMD snapshots for the
methyl groups of [MMIM][Cl].

Comparing the charge distributions derived from a single ion given by CLaP, to the unscreened
and “effective” bulk calculations clearly shows that negative charge is redistributed from the
whole molecule to the C2 atoms of the imidazolium ring. An important effect of this re-
arrangement is the expected increase in the molecular dipole moment poiting in the C1−H1

direction.1 Moreover, if the “effective” charges are considered the changing interaction becomes
clear. Apart from an increase of the dipole moment, the interaction H1 with the anion be-
comes stronger, which has often been argued to play an important role for the dynamics of
imidazolium based ionic liquids.15,112,126,140,159–162 Although there is no significant difference
in the effective charging of H1, if the conditions are changed from a single ion to the bulk
phase, the complete environment around is charged less positively, increasing the probability
of hydrogen bonding at this specific atom. For this reason, the partial charges derived in bulk
are favouring hydrogen bonding at H1 and at the hydrogens of the methyl groups H3, while
decreasing the possibility at H2, which has previously been observed.112,160

partial charges q / e

H1 H2 H3 C1 C2 C3 N1 Cl

CLaP5 0.21 0.21 0.13 -0.11 -0.13 -0.17 0.15 -1.0
“effective” CAB (30IP) 0.138 0.234 0.106 -0.043 -0.224 -0.253 0.193 -0.631

“effective” CAB / qnet (30IP) 0.219 0.371 0.168 -0.068 -0.355 -0.401 0.306 -1.0

Table 4.5.: Comparsion of the charges for [MMIM][Cl] derived by CAB and the CLaP FF.5 A
nomenclature of the atoms is given in Figure 4.3.

In summary, the charge distribution given by the Blöchl analysis shows that the ions are highly
polarized. The redistribution of negative charge to the C2 ring carbons and C3 methyl carbons
emphasizes the extended spatial distribution over the molecule, which is a characteristic of
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4. Force field partial charges from and for the liquid phase of ionic liquids

the liquid state.

The influence of the exchange correlation functional approximation Since the accur-
acy of an electronic DFT calculation depends on the employed exchange–correlation (XC)
functional, which is not exact, comparing with more accurate methods such as second-order
Møller-Plesset (MP2) calculations is required to make a reasonable choice. In order to study
the dependence of the partial charges on the exchange-correlation (XC) functional, the elec-
tron density of 100 snapshots of an “ab–initio” simulation15 of [EMIM][DCA] (the scheme is
shown in Figure 4.9) has been derived with a PBE and a Grimme-corrected BLYP (BLYP–G)
XC functional. It has been shown, that the energetic order of the minimum energy structures,
which were derived from MP2 calculations, are only reproducible with BLYP–G15. Hence,
BLYP–G has been applied for the AIMD simulations to generate the configurations for a
Blöchl analysis. In order to study, if the strong dependency of the energies is transferred to
the results of the partial charges, two different XC functionals are compared.
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Figure 4.8.: Partial charges obtained from electron densities, based on different XC functionals,
are compared to CLaP FF charges derived in–vacuo. A nomenclature of the atoms
is given in Figure 4.9.

In Figure 4.8, the partial charges for [EMIM][DCA] derived by calculations, which differ in
choice of the exchange-correlation functional only, are compared to the CLaP parameterisation
of Canongia Lopes et al.5 calculated from an isolated ion with the CHELP approach. As in
the case of [MMIM][Cl], the charge distribution of [EMIM]+ derived by the Blöchl method
deviates significantly from the partial charges given by CLaP, which is discussed in detail in
section 4.4. In contrast, the differences between the results with the PBE and BLYP–G XC
functional are rather small.

Thus the calculation of the partial charge is only slighlty influenced by the exchange correlation
functional. Most of the charges obtained with the different XC functionals are separated
less than their standard deviation. However, as the BLYP–G functional has been shown to
reproduce results obtained from higher-order QM methods more accurately, it is expected to
allow a more accurate calculation of the partial charges as well.
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4.3. Determining partial charges from bulk-like configurations

Influence of small variations of the charge model on dynamical and structural properties
In contrast to [MMIM][Cl], which has a symmetric charge distribution, the partial charge
assignment strategy for an asymmetric cation is not obvious. Moreover, since the final aim is
the construction of a generic force field, it is expected, that small modifications of the partial
charges are required. In order to study the influence on small changes in the charge distribution
and the impact of the reduced net-charge different electrostatic models are compared for the IL
[EMIM][DCA] (the scheme of the ions is shown in Figure 4.9). While bonded and short-range
interactions were transferred from the CLaP FF, the average charge distribution derived by
the Blöchl method (aCAB), and a version of aCAB with a symmetric charge distribution on
the ring (CAB) were applied. For the FFs with a reduced net-charge, CAB and aCAB, the
dihedral parameters were adapted to their partial charges as described in section 5.1.
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Figure 4.9.: Nomenclature scheme for the [EMIM]+ cation and the [SCN]–, [Cl]–, and [DCA]–

anions.

partial charge q / e

C1 C2/2′ C3 C3′ C4 N1/1′

CLaP -0.110 -0.130 -0.170 -0.170 -0.050 0.150
aCAB -0.043 -0.179/-0.233 0.151 -0.583 -0.082 0.017 / 0.316
CAB -0.043 -0.206 0.151 -0.583 -0.082 0.166

H1 H2/2′ H3 H3′ H4

CLaP 0.210 0.210 0.130 0.130 0.060
aCAB 0.149 0.247/0.203 (0.225) 0.013 0.196 0.031
CAB 0.149 0.225 0.013 0.196 0.031

Table 4.6.: CAB force field charges for [EMIM][DCA].

The partial charges are summarized in Table 4.6. The models aCAB and CAB differ only in
the partial charge assignment of the symmetric ring carbons C2,2’ and nitrogens N1,1’, because
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the difference between the charging of the symmetric ring hydrogens H2,2’ are smaller than
0.04 e and their average has been used in the simulations.

In Figure 4.10, the distributions of the cationic dipole moments in respect to the center of
mass are shown which were derived from the AIMD snapshots. Obviously, the averaged
charge distribution aCAB does not reproduce higher electrostatic moments, but an acceptable
modelling of the dipole distribution is achieved, if the imidazolium ring is made symmetric by
averaging the symmetric carbons, nitrogens, and hydrogens, correspondingly. This is discussed
in detail in section 4.4.
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Figure 4.10.: Dipole moment distributions in respect to the center of mass for different charge
assignments are compared to the Wannier analysis of the AIMD snapshots for
[EMIM][DCA].

To consider a reasonable set of benchmark properties, the density and radial distribution func-
tions are chosen to investigate structural properties, while the dynamics of the single ions is
captured by their diffusion coefficient. Finally, collectivity is studied in terms of the static
conductivity derived by the Einstein-Helfand method and the heat of vaporization ∆Hvap..
To this end 240 [EMIM][DCA] ion pairs have been simulated with an extended-Lagrangian
approach to sample an NpT ensemble at T = 400 K and p = 1 bar for 40 ns after an appropri-
ate equilibration for 10 ns with a Berendsen barostat to achieve a stable pressure and further
10 ns equilibration time in the canonical ensemble. The Leap-Frog algorithm is applied with a
timestep of 1 fs and the electrostatic error of SPME is kept below 10-3 kJ ·mol−1 · nm−1. The
LJ interactions were calculated up to 0.9 nm and smoothly switched off within 1.2 nm by a
corresponding scaling of the forces. A dispersion correction has been applied to energy and
pressure.

While for many ILs, experimental measurements are rare, a wide spectrum of experimental and
simulation data is present for [EMIM][DCA].3,4,121,138,149,163 Since the mass density is easily
obtained from an MD simulation, it very often acts as a target and validation property in
the FF parameterisation process. Recently, Fröba et al.3 have investigated [EMIM][DCA] and
fitted the measured mass densities for different temperatures to a quadratic function:

ρ(T ) / kg ·m−3 = 1339.847− 0.87546 ·T + 0.33846 · 10−3 ·T 2, (4.19)
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that predicts the experimental results within an error of ±0.02 % and agrees also with already
published literature.163 Furthermore, the studies by Fröba et al.3 uncover a trend of an increas-
ing density of the ionic liquid with increasing moleculare weight of the anion. For T = 400 K
equation (4.19) predicts ρexp. = 1043.8 kg ·m−3 which is about 5 % above the simulation res-
ults. This results from a decreased electrostatic interaction for the reduced net–charge models,
aCAB and CAB, and unsuitable short–range parameters. The difference between aCAB and
CAB is negligible.

D / 10-5 cm2 · s−1
ρ / kg ·m−3 D+ D− D+ / D− σ / S ·m−1 ∆Hvap. / kJ ·mol−1

aCAB 993.0 0.74 0.85 0.87 6.41 118.2
CAB 993.4 0.69 0.88 0.78 6.83 118.1

Table 4.7.: Some properties of [EMIM][DCA] obtained with different sets of partial charges at
T = 400 K and p = 1 bar.
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Figure 4.11.: Different radial distribution functions of [EMIM][DCA] for different charge as-
signments are compared to AIMD results.

In order to dissect the effect of the charge distribution on the local packing in more detail,
radial distribution functions are considered. All parameterisations demonstrate the layering
of oppositely charged ion species nicely, as already observed for other ionic liquids.9,10,138
Corresponding to the results of the density, the cation-anion RDFs of aCAB and CAB, shown
in Figure 4.11, coincide almost perfectly, but a deviation from reference AIMD simulations
by Wendler et al.15, are observed. The too low mass densities, reproduced by aCAB and
CAB, are an artefact of a shift of their first maximum in the cation–anion RDF to larger
distances compared to the reference AIMD RDF. In contrast, the anion-anion RDFs of aCAB
and CAB agree very well with the AIMD results. This coincides with the results obtained
for [MMIM][Cl]12, because the Cl–Cl RDF matches the reference AIMD results very well if
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charges derived by the Blöchl method are inserted into the CLaP force field, just as done
for the parameterisations CAB and aCAB. This shows that the balance between short and
long range interactions depends strongly on the size of the ion. For small ions electrostatic
interactions seem to dominate the global structural behaviour, while with an increasing size of
the molecule the interplay between short–range and electrostatic interactions becomes more
and more important for a correct modelling of the liquid structure.
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Figure 4.12.: Partial RDF between H1 and the center nitrogen N of the anion.

A more detailled study of the local structure by a comparsion of the partial RDFs between
H1 and the center nitrogen N of [DCA]– is shown in Figure 4.12. No significant difference is
observed between the results for aCAB and CAB, though the partial charges of the atoms
around H1 are completely assymetric in case of aCAB. Thus either the global nor the local
structure is significantly influenced by slight changes of the partial charges. The results from
the classical MD simulations with aCAB and CAB deviate from the AIMD reference RDF,
showing that an optimization of the short–range parameters is inevitable.

While structural properties up until now will be applied for the calibration of the force field
parameters, the following properties shed light on the dynamics and collectivity of the sys-
tem. An indicator for the single particle dynamics of a system is the diffusivity. As shown
in Figure 4.13 and summarized in Table 4.7, the parameterisations aCAB and CAB predict
almost the same diffusion constant, but they are twice as large as the results from the polar-
izable model of Borodin149. Apart from a fast dynamics, a value for the ratio of the diffusion
constants D+ /D− of smaller than 1 is observed, if reduced charges are applied, such as in the
case of [MMIM][Cl].12,129 However, the the ratio is not that small as for [MMIM][Cl], but the
result for aCAB and CAB are smaller compared to the polarizable FF. This arises due to a
subtle interplay between electrostatic and LJ interactions determining the molecular volume
Vm of the ions138, which seems to be of greater importance for small molecules like [MMIM]+

and [Cl]–. This is not unexpected, because Vm depends on the charging of the ion, as well as
on its short-range parameterisation. Hence, the impact of charging decreases if the number of
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Figure 4.13.: Mean square displacement of [EMIM]+ and [DCA]– for different sets of partial
charges.

atoms constituting the molecule is increasing. With that, the ratio of the molecular volumes
does not change drastically for [EMIM][DCA] if an electronic continuum model, such as aCAB
or CAB, with a reduced net–charge is applied. This agrees with the simulations of Schröder
and Steinhauser138 performed at T = 300 K with different integer net–charge models, which
give values of 0.88 and 0.92 for the ratio of the diffusion constants. Thus also slight variations
in the charge model do not heavily disturb the single particle dynamics.

To study the correlation between the moving ions, the static conductivity σ is derived by
the Einstein-Helfand method. As the simulation temperature is above the experimentally
accessible range, corresponding values have to be derived from corresponding extrapolations.
Since ILs are known to behave like supercooled liquids, the temperature dependence of σ is
assumed to be reflected by the empirical Vogel-Fulcher-Tamman equation164:

σ = σ0 · exp(
B

T − TVTF
). (4.20)

While the parameters σ0 and B are temperature-independent parameters, TV TF depends on
the regime, where equation (4.20) is applied. If the temperature range near the glass-transition
temperature Tg is considered, TV TF is related to Tg via the fragility m165,166, that depends
on the behaviour of the orientational relaxation near Tg. Therefore, TV TF can be used either
as a parameter to predict material properties, or, for decreasing the degrees of freedom of
equation (4.20).

For [EMIM][DCA], Yoshida et al.4 measured the static conductivity in the range from 300 K
to 340 K. Yet, as the simulations were performed at T = 400 K, an extrapolation of the
experimental results to higher temperatures is required. To this end, equation (4.20) is applied
to the experimental data. The resulting fit is shown in Figure 4.14 on the left hand side and
gives σ(400 K) = 11.42 S ·m−1.
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Figure 4.14.: Static conductivity for [EMIM][DCA] obtained from experiment4 and different
parameterisations.

On the right hand side of Figure 4.14, the mean square displacement of MJ is shown, which
is used to determine σ from its slope. The results, summarized in Table 4.7, prove that the
difference between the models with a reduced net-charge, aCAB and CAB, is rather small, but
the experimental reference data is underestimated. Also the polarizable model of Borodin149
predicts a too small value of 10.5 S ·m−1 compared to experiment, but a larger value compared
to the results of aCAB and CAB, although the diffusivity of aCAB and CAB is much faster
than given by the polarizable model. But the collectivity of the dynamics is not sensitive to
small changes in the partial charges.

Finally, the molar heats of vaporization ∆Hvap. are compared in Table 4.7, in order to analyze
the influence of the partial charges on collective energetic properties. These are derived from
the difference of the liquid H liq. and gas phase Hgas enthalpies:

∆Hvap. = Hgas −H liq.. (4.21)

The enthalpy of the liquid phase is easily calculated from the total energy Etot. and the term
P 〈V 〉 where P is the reference pressure of theNpT simulation and 〈V 〉 the average volume. For
the gas phase simulations, no pressure is accessible, because they are preformed in vacuum,
but assuming an ideal behaviour, the equation of state can be utilized to obtain the term
P 〈V 〉 = nRT with the amount n of ion pairs in mol, the gas constant R, and the temperature
T . Thus following relation is obtained:

∆Hvap. = Etot.,gas +RT −H liq., (4.22)

for the molar heats of vaporization.

No impact of the small differences in the charge distribution of aCAB and CAB on ∆Hvap

is observable. The results of aCAB and CAB are slightly lower than those derived with a
polarizable model at 298 K. Hence, the smaller value might also be attributed to the higher
simulation temperature, but only an experimental measurement is able to conclusively validate

90



4.4. Mapping of partial charges

the results.

In summary, the comparison of different charge models for an [EMIM][DCA] force field high-
lighted that slight modifications of the charge distribution affect neither structural nor dy-
namical properties significantly. It has been shown that the local packing reproduced by
aCAB and CAB does not resemble the results from the AIMD simulations. Neither diffusivity
nor conductivity is influenced by small changes in the charge distribution, but fast dynamics
compared to a polarizable model149 for aCAB and CAB are observed, due to the reduced
electrostatic interaction. If the collectivity of the system is studied in terms of the heat of
vaporization, there is also no difference between aCAB and CAB is observable. Yet, neither
structural, dynamical, nor energetic properties are strongly influenced by moderate changes
of the partial charges, relieving a construction of a large transferable force field, because the
number of different atom types may be reduced by “educated ” averaging, such as performed
in order to obtain a symmetric ring charge.

4.4. Mapping of partial charges

In order to study the mechanisms of the charge distribution for different cations and anions,
snapshots of ethyl-methyl-imidazolium and buthyl-methyl-imidazolium cations in combination
with the anions chloride [Cl]–, dicyanamide [DCA]–, and thiocyanate [SCN]– (see Figure 4.9)
have been analyzed. The required configurations had been present from already existing stud-
ies of Wendler et al.167 for [DCA]– and [Cl]–, and from Thar et al.168 for [SCN]– in combina-
tion with [EMIM]+. Morever, the configurations for [BMIM]+ based ILs had been exclusively
provided by Wendler et al.167. While the snapshots from the simulations of Wendler et al.15,167
are derived with plane wave based CPMD, the configurations from Thar et al.168 are obtained
by Born-Oppenheimer MD combined with the GPW method. All simulations were performed
at a temperature T = 400 K. This variety of partial charges allows one to study the influence
of the ion combination on the charge distribution. Since the Blöchl method is expected to
provide a reliable description of the ionic charge state in the liquid, the obtained data will be
a first step towards the construction of a transferable force field, which is desirable to allow a
systematic investigation of ionic liquid properties with classical MD simulations. However, a
proper understanding of the charge redistribution in the liquid is required in order to construct
such a force field.

It is shown that the high charge density in an IL provides strong electrostatic screening, which
causes a strong locality of the electrostatic properties. In order to derive a reliable set of partial
charges, the influence of the combination of cation and anion is discussed, as well as the effect
of small a-posteriori changes in the partial charges on the dipole moment. Finally a method is
proposed that allows the construction of a set of partial charges transferable between different
cations and anions.

Application of the MDEC theory to Blöchl charges The polarizability of an atoms de-
termines the size of an induced dipole in respect to a certain electric field. If a dipole is induced
a certain amount of charge is dislocated from the center of an atom. The charge on the center
of the atom is reduced, assuming the amount of dislocated charge is constant, charge conserva-
tion in the whole system, and that various induced dipole moments arise from a delocalization
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4. Force field partial charges from and for the liquid phase of ionic liquids

of the charge in different directions. Hence, if the charge for a polarized system is projected
onto the center of the atoms and averaged over different configurations, a certain amount of
charge is expected to be dislocated, constantly. To this end, the effective net-charges of the
ions are always reduced in the polarized state and the electronic part of the polarization is
described by the effective screening of the interactions. Charges qeff.i derived with a Blöchl
analysis describe the effective electrostatic forces. With that, the polarization state of the ion
is not given directly, but included implicitly. Since the charge reduction given by qeff.i allows
to derive εel = 1

q2net
, the polarized state of the charges qpol.i is also accessible:

ECoulomb =
1

4πε0

qiqj
rij

(4.23)

=
1

εel

1

4πε0

qpol.i qpol.j

rij
. (4.24)

Yet, a measure for polarizability is the average dislocated charge per atom given by the root
mean charge fluctuation δq:

δq =

√
1

Natoms
(〈q2net〉 − 〈qnet〉2), (4.25)

where Natoms is the number of atoms per ion. In Table 4.8, δq has been summarized for the
studied imidazolium-based ionic liquids.

δq / e [SCN] [Cl] [DCA]

[MMIM] 0.03, 0.08
[EMIM] 0.05, 0.08 0.04, 0.10 0.04, 0.06
[BMIM] 0.05, 0.09 0.04, 0.09 0.04, 0.05

Table 4.8.: Root mean charge fluctuation of the cation and anion net charges of the studied
ionic liquid systems, normalized with respect to the number of atoms per ion. The
first number in a cell belongs to the cation in the row, while the second number
belongs to the anion given by the column.

Obviously, δq of the cation is quite independent of the ion combination as expected, apart from
small deviations for the [SCN]– systems and [MMIM][Cl]. If δq of the anions is considered, also
small differences within a series of anions is observed, but without any trend, such that they
are expected to be an artefact of poor statistics or numerical errors. However, δq of [DCA]–

is quite close to δq of [BMIM]+ and [EMIM]+ for all ion combinations. This results from
the elements which [DCA]– consists of, N and C, which are also present in imidazolium. The
larger value might be a result of the missing hydrogens in [DCA]–, which might decrease δq
for the imidazolium-based cations, if the charge fluctuation at the hydrogens is smaller than
on the heavier atoms. Since all cations consist of the same kinds of atoms, these results show,
that the approximations for the linear response regime hold.

To compare our results to experiment, the relation between εel and the refractive index nD of
a medium is considered:

εel = n2
D. (4.26)
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4.4. Mapping of partial charges

For [EMIM][DCA], an experimental value of εel,exp. = 2.28 has been obtained by Fröba et al.3,
which is in good agreement with εel,calc. = 2.23 derived by the Blöchl method.
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Figure 4.15.: Partial charges qi for [EMIM][DCA] derived by CAB are compared to partial
charges of the CLaP FF5, which both describe the effective electrostatic forces.
However to obtain the polarization state from the CAB charges qpol.i , a rescaling
by the ionic net charge qnet is required.

The Blöchl method predicts the effective charges corresponding to the MDEC theory. For this
reason, it is expected to be an appropriate choice for the calculation of the partial charges from
systems under bulk conditions. In Figure 4.15 partial charges for [EMIM][DCA] derived by
CAB and single ion calculations of Canongia Lopes et al.5, which provide the parameterisation
of the CLaP FF, are compared. The polarization state of the ion is included in the charge
distribution of CLaP, which is also indicated by the integer net–charge. But the parameterisa-
tion has been performed in vacuum on single ion configurations, where no polarization effects
arise. If the effective CAB partial charges qi are compared to the CLaP FF, a delocalization
of the charge over the whole molecule is observed for CAB, which is characteristic for the
liquid phase. This becomes even more clear, if the charge distribution qpol.i is considered, that
includes Pel expliticly. Obviously, charge is distributed to over the ring and to the exterior
regions of the cation, such that an expected increase in the dipole moment is observed.1,14,15

Hence a consistent combination of the MDEC theory and the results of a Blöchl analysis is a
promising method to obtain a transferable set of partial charges for a large ionic liquid force
field. By considering the polarizability of the medium in terms of the electronic dielectric
constant εel, detailed insight into the redistribution of charge is obtained for a change from an
unpolarized single ion state to a polarized one in the liquid phase. Moreover the separation of
polarizability and charge distribution allows one to consider both quantities for the force field
construction, which alleviates this time-consuming process.

Locality of charges and dipole moments Apart from the screening, which is reflected
in the reduced ionic net-charge, also a strong locality of the dipole moments is observed in
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4. Force field partial charges from and for the liquid phase of ionic liquids

[MMIM][Cl],1,7 [EMIM]+-based, and protic ILs.14,15 This means that only the dipoles within
the nearest neighborhood are correlated with each other, which arises from the high charge
density in an ionic liquid and its polarizability. Hence it is also expected that the charge
distribution is only influenced by its immediate neighborhood. For this reason, partial charges
are derived for different ionic liquids from configurations of small, but periodic, and bulk like
systems. From already existing studies, bulk configurations were available for [EMIM][DCA],15
[EMIM][SCN]168 as well as [MMA][NO3]

169 and [MMIM][Cl].7 Moreover snapshots of small
corresponding counterparts, consisting of eight ion pairs, for all large systems were provided,14
in order to perform a Blöchl analysis.
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Figure 4.16.: Net charges of cations derived from samples of different size.

The ionic net charges are given in Figure 4.16 and Table 4.9. Apart for [EMIM][DCA] with
a difference in charge of only 0.026 e, the effect of the system size on the total charge is
negligible. If the fluctuations of the ionic partial charges are considered, a convergence to a
value characteristic for the is observed, which is also independent of system size. This shows
that already on a very local scale, the electrostatic properties converge to their equilibrium
state and no finite–size effects are observable.

q / e
IL IP qnet δq+ δq− IP qnet δq+ δq−

[MMA][NO3] 8 0.56 0.18 0.21 48 0.55 0.20 0.22
[MMIM][Cl] 8 0.64 0.13 0.08 30 0.63 0.12 0.08
[EMIM][Cl] 8 0.61 0.16 0.10 –

[EMIM][DCA] 8 0.70 0.17 0.12 30 0.67 0.19 0.14
[EMIM][SCN] 8 0.56 0.22 0.14 32 0.56 0.22 0.14

Table 4.9.: Net charge qnet and charge fluctuation of the cations and anions δq± obtained from
small and large systems.
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4.4. Mapping of partial charges

Moreover, the difference of the partial charge distributions is also very small. For the anions
[DCA]– and [SCN]–, the results derived from a small and a large system are compared in
Table 4.10 to force field parameters that were derived by single ion calculations. Since the
reduced net–charge is a result of polarization, the vacuum calculations on single ions, which
were performed for the force field of Chaumont and Wipff8 (CWFF) for [SCN]− and Canongia
Lopes et al.5 (CLaP) for [DCA]–, result in an integer net–charge for the ions. In order to
compare the state of polarization of the ions qpol., the effective partial charges qeff.i derived by
CAB are scaled correspondingly. For both, [DCA]– and [SCN]–, a shift of the electron density
to the central atom of the anions is observed. Since the single partial charges for [DCA]– and
[SCN]–, as well as the total net–charges agree quite well for the large and small system, the
redistribution of charge in a bulk–like environment is a characteristic property of an IL, that
is already present on a local scale. This demonstrates that partial charges can be derived from
small bulk–like systems.

q / e

[DCA]–

N Cc Nc qnet

8 IP -0.600 0.506 -0.554 -0.696
32 IP -0.584 0.490 -0.533 -0.670

32 IP / q[DCA]−

net -0.875 0.631 -0.796 -1.0
CLaP -0.760 0.640 -0.760 -1.0

[SCN]–

S C N qnet

8 IP -0.304 0.058 -0.312 -0.558
32 IP -0.302 0.042 -0.297 -0.557

32 IP / q[SCN]−

net -0.542 0.075 -0.533 -1.0
CW FF8 -0.757 0.480 -0.723 -1.0

Table 4.10.: Partial charges of the dicyanamide anion [DCA]– and thiocyanate anion [SCN]–

derived by CAB from AIMD snapshots of 8 and 32 ion pairs (IP) are compared
to the force field charges given by CLaP and Chaumont and Wipff8, respectively.

Hence, this locality allows one to decrease the required computational effort for the calculation
of an IL specific set of partial charges. In Figure 4.17, partial charges qpol. = qeff./qnet for
[EMIM][Cl] are derived from 100 snapshots of 8 ion pairs by the Blöchl method and compared
to the results of [EMIM][DCA] for both a small and large system. As one can see, the partial
charges differ only very slightly between the different combinations of system size and ion
combination. Apart from the terminal group of the long ethyl side chain, the charge is more
delocalized over the ring and the attached groups compared to the unpolarized vacuum state
given by the CLaP FF. This is consistent with the strong localization of the electron density
of the anions. A decisive aspect is the small difference in the charge distribution of [EMIM]+,
though different anions are involved. Hence, an important requirement for a transferable force
field is met, because the charge distribution is quite insensitive to the specific ionic liquid, in
contrast to the overall charge reduction, which depends on the ion combination present in the
system.
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Figure 4.17.: Partial charges of [EMIM]+ derived for different anions from small and large
systems and a comparison to the integer charge model of CLaP. A nomenclature
of the atoms is given in Figure 4.9.

But in addition to a correct description of the electric monopoles, an accurate modelling of
the dipole moments is desirable, to describe the dielectric properties of the IL properly. Due
to the symmetry of [MMIM] a mapping of the charges to different atom types is unique, but
many reasonable possibilities exist to group the atoms of an asymmetric IL. For this reason
the aspect of transferability is the guide for the definition of the different atom types, but the
force field has to describe the properties of the IL with an acceptable level of accuracy. To this
end, the dipole moment distributions given by a Wannier analysis170–172 (WA) of the AIMD
configurations and CAB charges, are shown in Figure 4.18, to study the reliability of the
proposed partial charges. For this reason, the dipole moment distribution of [EMIM][DCA]
given by WA is compared to dipole moment distributions derived by CAB charges, but based
on different calculation methods. For the calculation of the direct distributions, the charges
have been chosen corresponding to the configuration they were derived from. Though the
direct distributions are much broader compared to the results of the WA, the averages do not
differ drastically. This agreement is no coincidence, but a result of the Blöchl method that also
fits higher electric moments. The difference in width is a result of the applied methods. For
the calculation of the molecular dipoles with WA, the electron density is mapped to electron
pairs, residing on the molecular orbitals (MO). In contrast, CAB projects the charges to the
atoms dependent on their the actual configuration and is not restricted by MOs. For this
reason, the charge on the ions is not given by an integer net–charge, but fluctuates strongly
giving rise to the large width of the dipole moment distribution. Unfortunately, for [DCA]–

the agreement is not as good as for [EMIM]+, which is an artefact of the molecular geometry of
the anion. Because the charge density around the central N atom is increased, it is expected,
that a wide region around the molecule center is involved. Due to the overlap of the Gaussians
constituting the model charge density, additional charge might be also assigned to side chain
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carbons. Moreover, [DCA]– is quite linear and already small geometrical changes affect the
dipole moment of the molecule strongly.
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Figure 4.18.: The distribution of the dipole moments obtained from WA are compared to res-
ults given by CAB charges. The solid and dashed lines describe the dipole of
[EMIM]+ and [DCA]–, respectively. The direct CAB distribution was obtained
using the dipole moments given by the partial charge distribution of each snap-
shot. For the other cases, the partial charges were averaged over all snapshots
first.

While Pel is considered in the dipole moment distribution, calculated directly from the snap-
shots, a distribution derived from the averaged effective force field charges describes polarizab-
ility on the mean–field level only. A Wannier analysis describes the extension of the electron
cloud by a projection of the electron pairs on the correspondingly spatially extended MOs
describing Pel explicitly. Yet, the dipole moments obtained from the calculation with the
effective charges have to be scaled properly:

µ =
√
εel ·µeff , (4.27)

in order to obtain a comparable value for µ. The partial charges for the CAB parameterisation
are obtained by averaging over all snapshots and molecules. In a further step, also the charges
of the symmetric atoms of the imidazolium ring and the anion are averaged. If this paramet-
erisation is applied to derive the dipole moment distribution from the AIMD snapshots, the
averages also agree with the WA result for [EMIM]+, but the width of the distribution given
by CAB is smaller. Furthermore, the narrow distribution of the dipole moments of [DCA]–is
shifted to a lower average value compared to the AIMD results. This again shows the sensitiv-
ity of the dipole moment distribution of the almost linear [DCA]–. However, if the WA results
are compared to the dipole moment distributions obtained from an MD simulation of 240 IP,
an improved description of the average dipole moment of [DCA]– is obtained. Although the
width of the distributions agrees well, the average is below its correct value, which is attributed
to the consideration mentioned above. Too little negative charge is assigned to the central
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nitrogen, such that the dipole moment is weaker than it should. However, for [EMIM]+ the
difference between the results of the static partial charges applied to the AIMD snapshots and
the 240 IP MD snapshots is quite small. Only a slight shift of the dipole moments to smaller
values is observed. This is a result of the rather complex molecular structure, that allows us
to fit the electron density accurately.
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Figure 4.19.: Dipole moment distributions for different systems sizes are derived by CAB
charges and compared to the AIMD results.

To verify by classical MD simulations that a system size of 30 IP does not contain any artificial
structuring introduced by the periodic boundary conditions, the dipole moment distribution is
calculated for systems consisting of up to 240 IP. The results, given in Figure 4.19, show that
the average and shape of the distribution is already reproduced by the smallest system and
with increasing size, only the statistics improve. Therefore, it becomes clear, that the width
is not an artefact of too few statistics, but a result of the conformational changes, which are
insufficient in order to describe the actual polarization state.

In summary, these results show that the application of the Blöchl method to IL systems allows
a reliable description of the electronic properties by partial charges. The fact that the derived
values already converge for small systems, proves that the electronic properties are very local,
which is shown for the partial charge and dipole moment distributions. Finally, though the
average is underestimated for [DCA]–, as well as the distribution width for [EMIM]+, the
overall agreement with the WA is quite acceptable, such that the static partial charges are
expected to provide a reliable description.

Partial charges from different combinations of cations and anions In order to construct
a transferable force field, the number of atom types should be kept as low as possible. For
this reason, CAB charges have been calculated from AIMD configurations taken from exist-
ing studies of the IL [MMIM][Cl]7 and all combinations of the cations [EMIM]+14,15,168 and
[BMIM]+167 with [Cl]–, [DCA]–, and [SCN]–, schematically depicted in Figure 4.9 and Fig-
ure 4.20. Hence, a data set is available, that allows the study of the differences in the charge
distributions, in order to show that the polarized state of the molecule is ion combination
independent, as predicted by the extended MDEC theory.
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Figure 4.20.: Nomenclature scheme for the [BMIM]+ cation.

In order to obtain an initial overview, the net–charges qnet and electronic dielectric con-
stants εel = q2net are summarized in Table 4.11. Depending on the anion, the total charge
varies from ±0.56 e to ±0.71 e, but within a series of systems, that differ only in the side
chain length of the imidazolium cation, the differences are at most 0.04 e. This suggests, that
εel is rather a quantity, which is specific for the cation-anion combination, and an indicator
that the charge groups separated from the ring more than two sites are only slightly polariz-
able. Moreover, as the variation between the different anions is also small, a generic electronic
dielectric constant might allow an appropriate description, which would significantly reduce
the amount of required force field parameters.

qnet / e, εel
[SCN] [Cl] [DCA]

[MMIM] 0.63, 2.52
[EMIM] 0.56, 3.19 0.61, 2.69 0.67, 2.23
[BMIM] 0.60, 2.78 0.62, 2.60 0.71, 1.98

Table 4.11.: Net charges qnet and electronic dielectric constants εel of some imidazolium based
ionic liquids.

A further criterion for a reduction of atom types is the coincidence of the charge distributions
qpol.i =

√
εelqi describing the polarized state of the ions. The charge distribution qpol.i is chosen,

because it considers polarization effects, explicitly, providing unbiased information about the
charge distribution.

In Figure 4.21, the partial charges qpol.i are compared for [EMIM]+–based systems with the
anions [DCA]–, [SCN]–, and [Cl]–. Apart from the carbons C3 and C3’, the difference in charge
is quite small. However, the distribution differs for most of the atoms significantly, if the
electron density is derived from the liquid state or from calculations on a single molecule,
which has been done for the parameterisation of the CLaP FF. Interestingly, C3 even exhibits
a change from negative to positive charge for all studied ion combinations.

However the positive charge of C3 is not an [EMIM]+ related property, but also observable for
the C4 and C5 atoms of [BMIM]+ for the same series of anions, as shown in Figure 4.22. In
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Figure 4.21.: Partial charges qpol.i = qi/qnet in the polarized state for [EMIM]+ derived by CAB,
are compared for different cation–anion combinations and to the results of single
ion calculations from the CLaP FF.

contrast, the charge of C3 for [BMIM]+–based ionic liquids differs from −0.18 e over −0.10 e
to 0.05 e in combination with the anions [DCA]–, [Cl]–, and [SCN]–, respectively. A similar,
but smaller fluctuation of the charge for different anions is observed for the upper part of
the imidazolium ring, consisting of the nitrogens and C1, and C3’. This highlights the strong
delocalization of the ring electrons and the sensitivity of the charges to the actual configuration.
Hence, the observed fluctuation is a result of the strong polarizability of the imidazolium ring.
For the remainder of the atom types, the partial charges vary only slightly, if different anions
are combined with [BMIM]+. Yet, compared to CLaP, a significant amount of negative charge
redistributes from the alkyl chain’s carbons C4 and C5 to the attached hydrogens H4 and H5,
respectively. With that the electron cloud extends, which is expected for the liquid phase.

In Figure 4.23, the partial charges qpol.i are compared for [CnMIM][Cl] with n = 1, 2, 4. Ob-
viously, the polarization of the ring electrons coincides for the different systems, because the
partial charges of the ring atoms and the attached hydrogens agree quite well. However due
to increasing size of the cation from [MMIM]+ to [BMIM]+, the charge of the atoms attached
to the ring differs, but characteristics remain. While all terminal carbon atoms are strongly
negatively charged, the other carbons of the alkyl chain carry a positive or relatively small
negative charge. Moreover, the charge of the alkyl chain hydrogens is decreased and the elec-
tron cloud is delocalized over the length of the side chain. In contrast, the charge transfer
mechanism at the CH3’ methyl group results in a localization of negative charge at the corres-
ponding carbon, but no redistribution of the charge over the whole group occurs for neither
[BMIM]+, [EMIM]+, nor [MMIM]+.

A more global picture of the cationic charge distribution is provided, if the atoms are condensed
in reasonable groups, which relieves the identification of the intra-molecular charge-transfer,
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Figure 4.22.: Partial charges qpol.i = qi/qnet in the polarized state for [BMIM]+ derived by CAB,
are compared for different cation–anion combinations to the results of single ion
calculations from the CLaP FF.
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Figure 4.23.: Charge distribution qpol.i for a series of imidazolium-chloride based ionic liquids
of different cationic alkyl chain length.
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Figure 4.24.: Charge of atom groups for [CnMIM][Cl] for n=1, 2, and 4.

which occurs, if the charge distribution alters from a gas to a liquid phase state. In Figure 4.24,
the Blöchl bulk charges of the alkyl groups and the imidazolium ring are compared to the in–
vacuo CLaP parameterisation for different side chain length of [CnMIM][Cl] with n=1, 2, and
4. As expected, all results derived from bulk show the characteristic for a liquid phase, because
the charge is more delocalized over whole molecule compared to CLaP, which even assigns a
zero net–charge to the atom groups, which are separated by more than two carbons from the
ring. Most of the charge is localized around the ring and this amount is quite independent
of the alkyl chain length of the cation. However the other atom groups react to the size of
the cation sensitively, because the space for a redistribution of charge is increasing. While
the charge of [MMIM]+ is symmetric due to the molecular cation structure, the increasing
anisotropy of the cations [EMIM]+ and [BMIM]+ introduces an asymmetric charge to the
cation. However, since [EMIM]+ is still a rather small molecule, the global charge distribution
shows a symmetry with respect to a zero charge of the terminal groups CH4 and CH3’. Hence,
[EMIM]+ is separated in two small neutral groups at the termini and two unlike charged and
unlike sized domains in between.

This partition is also applicable to [BMIM]+, if the grouping is adapted by considering CH6

and CH5 as one terminal domain and the CH4 and CH3 groups as the inner chain domain.
The resulting charge distribution, provided in Figure 4.25, shows good agreement between the
[BMIM]+ and [EMIM]+ domains. Hence, the charge transfer from the imidazolium ring to
the long alkyl chain does not increase linearly with chain length, but converges already for
[EMIM]+, also observable in the small differences between the corresponding εel. For a side
chain length of n > 2, also only the inner domains attached to the ring are charged positively,
while the terminal domain and the CH3’ group do not carry a net–charge. For this reason, it
is expected that imidazolium based ILs with n > 4 behave similarly, such that only the ring
domain and the first two atom groups of the side chain carry the whole net–charge of the ion.
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Figure 4.25.: Charge of molecular domains of [CnMIM][Cl] for n=1, 2, and 4.

To prove that this behaviour is generic for imidazolium–based ILs, the charge distribution
of the atomgroups for [BMIM]+–based systems with the anion [Cl]–, [SCN]–, and [DCA]– is
provided in Figure 4.26. Though the charge of [BMIM][SCN] is more strongly localized around
the imidazolium ring, the charge of all other atom groups agrees between the different anions.
Hence the charging of the domains also remains constant.

Summarizing, the analysis of the cationic charge distribution shows that the polarized state of
the cation is only weakly affected by the anion and results from the limited range of accessible
configurations. Yet, it is not an ion specific effect. Though differences arise for a varying size
of the side chain length, a scheme is observable for all studied ILs. If the alkyl side chain
is elongated, only the ring and domains of the long side chain, which are attached to the
molecule directly, carry a positive charge. The terminal domain of the chain and the CH3’

atom group are neutral or only slightly charged. Hence, it is also expected that this trend
continues for imidazolium–based ILs with n > 4, such that the additional atom groups in a
longer side chain are also uncharged.

To finally prove, that the charge distribution qpol. is not specific for an ion combination, it is
necessary that the anionic charge distributions also show good agreement.

In Figure 4.27 the effective charge distributions and the polarized states of [Cl]–, [SCN]–, and
[DCA]– derived by a Blöchl analysis are compared. As already observed for the polarized
state of the cationic charges, the charge distribution of the anions is insensitive to the ion
combination. If the effective and polarized states of [BMIM][DCA] and [BMIM][SCN] are
compared a decrease of the difference between the partial charges for the majority of atoms
is observable as shown in Figure 4.28. Hence, the fluctuations in the charge distributions are
negligible, which shows that the anionic and cationic charge distribution is not coupled to the
ion combination, as expected.

Finally, considering all results which were discussed for the different cation–anion combina-
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Figure 4.26.: Charge of atom groups for [BMIM]+ combined with different anions.
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Figure 4.27.: Partial charges of [Cl]–, [SCN]–, and [DCA]–for [EMIM]+ and [BMIM]+ based
ionic liquids derived by the Blöchl method under bulk conditions are given for
the polarized state (pol.). In addition the effective distribution is illustrated,
that includes the polarization effects implicitly (eff.).
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Figure 4.28.: Polarized and effective partial charges qi, which are derived from bulk configur-
ations, are compared for [BMIM][DCA] and [BMIM][SCN].

tions, it turns out that in the polarized state, the global partial charge distributions are un-
affected by the choice of the anion as well as the side chain length of the imidazolium cation.
Hence a gateway to a large transferable force field opens, because a consistent construction of
generic atom types may allow a reasonable description of a large set of ionic liquids. Moreover
it has been shown in section 4.3 that small changes in the partial charge distribution only
slightly affect the performance of the FF. Yet, even a framework for a model, which relies on a
generic εel could potentially be constructed, a topic which is discussed in the next paragraph.

A transferable electrostatic model for ionic liquids As shown in the preceding paragraphs,
the variation of the cationic charge distribution with respect to different anions is small, if
the MDEC model is applied in order to implicitly consider polarizability by an electronic
dielectric constant εel. The variation of the charge distribution is small, compared to the
fluctuations of the partial charges arising from the sensitivity of the actual configuration and
the limited accuracy of the XC functional. To counterbalance this deficiencies the cationic
partial charges are averaged over a series of different ILs. With that a set of generic partial
charges is constructed, such that only the charge reduction is a system-specific parameter, but
as observed, not too sensitive within a series of anions. In order to establish a FF for arbitrary
chain length, it is necessary to determine the charging of atom groups that are separated more
than four sites away from the imidazolium ring. Though these groups are expected to be
of hydrophobic character, it has been shown, that the terminal group of the long [BMIM]+

side chain (SC) still carries a small dipole in the terminal domain (see Figure 4.25). Yet, it
is currently not known how much the charge distribution alters with increasing SC length.
Though only small or negligible differences are expected, further calculations are needed to
clarify this aspect. However, as soon as a convergence of the SC charge distribution is observed,
a solid basis for a force field, transferable to arbitrary SC length is created. Inhere, a sufficient
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4. Force field partial charges from and for the liquid phase of ionic liquids

large data set is available for [EMIM]+, with which a procedure to establish a set of generic
partial charges is introduced. Finally also a generic set of partial charges for imidazolium
based cations is constructed assuming that the alkyl groups in the side chain separated more
than four carbons from the ring are completely hydrophobic.

charge q / e
FF CH4 CH3 ring CH3’ εel

[EMIM][Cl] 0.01 0.29 0.70 0.00 2.69
[EMIM][DCA] 0.02 0.26 0.71 0.01 2.23
[EMIM][SCN] -0.01 0.34 0.65 0.02 3.29

Table 4.12.: Charging of the atom groups defined in section 4.4 for different imidazolium based
ILs, based on charges not biased by the corresponding electronic dielectric con-
stant εel.

One of the main guidelines for the force field construction is the minimization of atom types,
because it significantly reduces the amount of work required for the final short-range paramet-
erisation. For this reason, atom groups with equal amount of charge are identified first. For
[EMIM]+ the charging of the atom groups, defined in the previous paragraph, indicates that
the charge is mainly located at the imidazolium ring and the first atom group of the ethyl
chain, while the terminal groups are apolar domains of the molecule, shown in Table 4.12.

partial charge q / e

atom [Cl]– [SCN]– [DCA]– ILEC CLaP

C4 −0.11 −0.14 −0.12 −0.12 −0.05
H4 0.04 0.04 0.05 0.04 0.06
C3 0.29 0.36 0.23 0.29 −0.17
H3 0.00 −0.01 0.02 0.00 0.13
N1 0.26 0.20 0.25 0.24 0.15
C2 −0.33 −0.28 −0.31 −0.30 −0.13
H2 0.34 0.30 0.34 0.33 0.21
C1 −0.06 −0.01 −0.07 −0.04 −0.11
H1 0.21 0.19 0.22 0.21 0.21
C3’ −0.84 −0.66 −0.87 −0.81 −0.17
H3’ 0.28 0.23 0.29 0.27 0.13

Table 4.13.: Parameters of CAB charges for [EMIM]+-based ILs and the constructed generic
ILEC FF are compared to the CLaP parameterisation.

The charge of the single carbons and hydrogens belonging to different groups varies, disallowing
a reduction of atom types. However, as a symmetric ring has been shown to describe the dipole
moment distributions, sufficiently accurately, it provides the basis for a further construction of
the force field. Therefore by averaging, a symmetric ring is established in the [EMIM]+charge
distributions, derived in combination with the anions [SCN]–, [Cl]–, and [DCA]–. In the
following steps, the polarized states qpol. =

√
εelq

eff. of the different ILs have been averaged
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4.4. Mapping of partial charges

and finally a charge of 0.02 e is subtracted from C3’. This was required in order to correct
for numerical errors and achieve an integer net-charge. The C3’ carbon was chosen, because
it carries the largest amount of charge, which minimizes the distortion due to the correction.
Furthermore, the resulting charge provides an apolar CH3’ terminal group, which directly
arises for CH4. This parameterisation is denoted by ILEC, as it it based on an Ionic Liquids
Electronic Continuum model and is given in Table 4.13.

In Figure 4.29, the dipole moment distribution is shown for [EMIM][DCA] calculated with WA,
CAB charges derived from the corresponding configurations, and the ILEC model. Though
the ILEC dipole moment distribution overestimates the average from AIMD, it deviates only
slightly from CAB. Yet, apart from the monopoles, the next higher electric moment is mod-
elled, appropriately too.
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Figure 4.29.: The distribution of the cationic dipole moments in [EMIM][DCA] obtained from
WA are compared to result with CAB charges, derived directly for this IL, and
the generic ILEC charges.

This good agreement of the dipoles, is a first proof, that ILEC provides the basis for a generic
[EMIM]+ force field, transferable within different anions. Moreover, it represents a first val-
idation of the introduced method to construct a generic force field. Hence, it also represents
the theoretical background for a treatment of imidazolium-based ILs with longer side chain.

With the present data, a set of partial charges can also be constructed for imidazolium cations
with a side chain length n > 2. The same procedure is applied as already suggested for
[EMIM]+, but to make the model applicable to arbitrary n, the partial charges have to be
modified slightly and it has to be assumed, that the alkyl groups separated more than four
carbons from the ring have to be neutral. This is achieved by a shift of the positive charge
from the C5 to the C6 atom and a transfer of 0.01 e from C4 to C6. The resulting partial
charges are summarized in Table 4.14 and denoted [CnMIM].

A further step towards an even more generic force field is the application of a common reduced
net–charge qnet. It is obtained by averaging over all results from the [EMIM]+ and [BMIM]+

based ILs and results in qnet = 0.63 e which also corresponds to the value for [MMIM][Cl].
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4. Force field partial charges from and for the liquid phase of ionic liquids

atom [BMIM]/[EMIM] [CnMIM] eff. [CnMIM] CLaP

C6 −0.20 -0.12 -0.09 −0.18
H6 0.04 0.04 0.03 0.06
C5 0.07 0.00 0.00 −0.12
H5 0.00 0.00 0.00 0.06
C4 0.09/-0.12 0.08 0.05 0.01
H4 0.02/0.04 0.02 0.01 0.06
C3 -0.08/0.29 −0.08 −0.05 −0.17
H3 0.09/0.00 0.09 0.06 0.13
N1 0.25 0.25 0.16 0.15
C2 −0.31 −0.31 −0.20 −0.13
H2 0.33 0.33 0.21 0.21
C1 −0.02 −0.02 −0.01 −0.11
H1 0.20 0.20 0.13 0.21
C3’ -0.63/-0.82 −0.63 -0.39 −0.17
H3’ 0.23/0.27 0.23 0.14 0.13

Table 4.14.: A generic set of partial charges for imidazolium–based cations.

Multiplying the partial charges by this generic factor finally gives a generic set of partial
charges for arbitrary side chain length and counterions. The result is given in Table 4.14 and
denoted effective [CnMIM]. Thus, a model for the partial charges is present.

Finally, a technique to optimize the remaining force field parameters remains elusive, pre-
venting a consistent and transferable model. For this reason, a suitable computational and
theoretical framework is established in chapter 5.
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techniques for a force field

As shown for [EMIM][DCA], a drastic change of the partial charges requires an appropriate
adaption of the short range interactions, which is a time-consuming and not straightforward
task. For this reason, a strategy is desired to minimize this effort, besides the already described
parametrization of the partial charges. The major steps for the force field optimization are
summarized in Figure 5.1, but the last important stages have not been performed yet. In this
chapter, the computational and theoretical methods for this task are developed, such that an
application to arbitrary systems is possible.

ab-initio based bulk charge density n(r)

calculation of model charge density ñ(r)

partial charges

adaption of intra molecular interactions

tuning of short range interactions

force field validation

Figure 5.1.: Major steps of the force field parametrization

One of the main goals is to reduce the number of iterations in the final optimization loop,
shown by the grey arrows, to a minimum, as this is one of the steps consuming the main
amount of computational resources. Therefore the number of atom types has to be kept as
small as possible, because the amount of CPU time scales linearly or even quadratically with
the number of atom types, depending on the applied optimization method. The bonded and
angle potential do not need to be adapted, as they are not affected by a change of the partial
charges or LJ parameters and the adaption of the dihedral interactions is a straightforward
task. However, more elaborated methods are required to optimize the LJ interactions, which
is in this case performed by fitting to reference data. Finally, a reliable validation of the FF
is required, which considers different kinds of system properties.
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5.1. Adapting dihedral parameters

The force field parameters, describing the interactions for the covalent bonds and the angles
between them, are fitted in respect to their ground state modes and hence are independent
from the charge distribution, because ground state dominance is assumed. For this reason,
these intramolecular force field parameters are independent of the short range parametriza-
tion. However, Canongia Lopes and Padua121 already outlined, that the dihedral potentials
describe the interactions of atoms that are separated by exactly three bonds, which is the
same separation criterion as for the 1–4 interactions. These are given by the non–bonded
interactions between the first and last atom of a dihedral, scaled by a factor ε1−−4 that is
determined by the force field. Hence, if a force field defines 1–4 interactions, the overall dihed-
ral profile E = Edih. + E1−4 is affected in case the non-bonded parameters change. Different
ε1−4 have been suggested, as for example 1

2
and 1

1.2
for the OPLS53 and AMBER82 force field,

respectively, but they are based on empirical findings. Finally, the dihedral parameters have
to be consistent with the 1–4 interaction and require adaption to maintain the appropriate
intramolecular energy landscape in case the non–bonded parameters change.

Although, most of the force fields use a sum of cosine terms with different phase shifts and
amplitudes, for the sake of computational efficiency and flexibility Ryckaert-Bellemans (RB)
potentials88 are applied for parametrization of the dihedral interaction:

ERB
dihedral =

5∑

i=0

Vi cosi(Ψ). (5.1)

The dihedral angle Ψ is given in the polymer convention, with Ψ = 0 corresponding to a
trans configuration and the force field potentials Vi for the dihedral interaction have to be
adapted in respect to a dihedral profile given by a QM calculation. As the CLaP parameters
constitute the framework for the intramolecular parameters of an optimized force field, the
dihedral parameters were transferred into a set of RB parameters by applying the theorems
for the trigonometric functions. Moreover, the sum of 1–4 and dihedral interactions provides
the dihedral profile of the QM calculation, and therewith, the reference energies. If an initial
guess for a new force field (BLFF) is set up by inserting Blöchl charges into CLaP, the 1–4
interactions change and the dihedral profiles requires an adaption to the reference energies:

EBLFF
1−4 + EBLFF

dih. = ECLaP
1−4 + ECLaP

dih. , (5.2)
EBLFF
dih. = ECLaP

1−4 + ECLaP
dih. − EBLFF

1−4 . (5.3)

To this end, a simple least–square minimization for every type of dihedral has been applied
to match Vi to the corresponding set of short range interactions. This has been achieved
by sampling a certain number of dihedral angles and fitting the derived energies with equa-
tion (5.3) to the reference values.17

As example, the dihedral profile of N1−C1−N1’−C3’ given by equation (5.2) is shown on the
left hand side of Figure 5.2. While the unfitted potential predicts a more favorable energy
for a cis configuration of the molecule, the adapted parameters for BLFF match the reference
potential given by CLaP, perfectly. Hence the equilibrium geometry of BLFF corresponds to
the prediction of QM calculations. On the right hand side of Figure 5.2, the corresponding
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Figure 5.2.: On the left hand side the energy profile Edihdral of the dihedral interactions for
N1−C1−N1′−C3′ including the corresponding 1-4 interactions E1−4. The solid
lines depict the reference energies (CLaP, black) and the energies derived from
our set of charges and LJ parameters (to fit, red). The fit is plotted in red circles.
In the plot on the right hand side, E1−4 is decomposed into the electrostatic and
LJ contributions, where the latter is equal for BLFF and CLaP.

contributions to the 1–4 interactions are drawn. Although the difference between CLaP and
BLFF differs only within a few kJ ·mol−1, the overall dihedral profile is affected strongly.
Since the 1–4 Coulomb interaction of BLFF is shifted to lower energies, the contribution to
the dihedral profile is only positive for Ψ ∼ π, which is the reason for the large difference.
Hence, an adaption of the dihedral interactions is necessary to obtain energies able to model
the dihedral behaviour predicted by QM calculations.

5.2. Optimization of short range interactions

Due its melting point at 398 K, dimethylimidazolium chloride [MMIM][Cl] it is not a Room
Temperature Ionic Liquid, but the chemical compounds are very similar to common RTILs
like ethylmethylimidazolium chloride or other imidazolium based ILs with varying side chains
and anions. However due to its size, it is perfectly suited to develop and establish a multiscale
framework of computional techniques, ranging from the theory of quantum mechanics to clas-
sical physics, to study RTILs by classical molecular dynamics simulations. Although there is
only one experimental publication available by Fannin et al.6 studying thermodynamic prop-
erties of [MMIM][Cl], enough information is contained to tune and discuss the validation of a
classical MD force field. The non–bonded short range interactions between the particle types
i and j are modeled by a LJ potential:

Eij
LJ = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
. (5.4)
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Different kinds of physical properties have to be consistently mapped to a 2-parameter pairwise–
additive potential, but actually, equation (5.4) depends on 4 parameters, εi, εj, σi, and σj,
present for every atom involved in the pair interaction. The parameters for equation (5.4) are
derived from a combination rule, that is in this case of Lorentz-Bertelot type, as suggested in
the CLaP force field:5,121,122

σij =
1

2
(σi + σj) , (5.5)

εij =
√
εiεj. (5.6)

In this section methods for an adaption of this parameters are discussed and depicted on the
example [MMIM][Cl].17

5.2.1. The conjugate gradient based approach

Though many parameters have to be determined to setup a force field for classical molecular
dynamics simulations, the final adaption of the short range interactions modeled by Lennard–
Jones (LJ) or Buckingham (BH) potentials is one of most challenging parts. For this reason,
a method is desired, which allows an easy determination of any kind of force field parameters.
This problem is tackled with a conjugate gradient (CG) approach that is iteratively minimizing
an error function ε, derived from certain reference properties. Moreover, the Python module
PyPaTEGro is developed, described in Appendix A, that automatically performs the required
simulations for the error analysis and provides a new set of parameters. Furthermore, the
workload is distributed over many CPUs in order to reduce the amount of real waiting time
to a minimum.

Setup of an error function ε The use of a CG method requires a suitable choice of an error
function ε(p), which depends on the fit parameters p ∈ Rn. It is defined by the mean square
error ∆ of the simulated data y(p) from given reference data y0:

∆ =
∑

k

∆k, with, (5.7)

∆k = (yk(p)− yk0)2 . (5.8)

A Taylor expansion of the elements ∆k(p) is suitable to define a set of linear equations that
can be solved by a CG method efficiently.

The target set of parameters ptarget has to define the minimum of ε:

∇i∆k = 2 · (yk(p)− yk0)
(
∂yk
∂pi

)
= 0 (5.9)

Normally only a few points of ε are known. For this reason, a Taylor expansion up to first
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order is applied to yk(p):

yk(p) = yk(p0) +
∑

i

(
∂yk
∂pi

)∣∣∣∣
p=p0

· (pi − p0). (5.10)

Combining equations (5.9) and (5.10), while assuming ∂piyk is constant within the space of
the allowed parameters yields:

∇i∆k =2

[∑

j

(
∂yk
∂pj

)∣∣∣∣
p0

· (pj − p0) + (yk(p0)− yk0)
]
·
(
∂yk
∂pi

)
, (5.11)

so that from equation (5.9) we get:

∇i∆ =2

[∑

j

∑

k

(
∂yk
∂pi

)∣∣∣∣
p0

(
∂yk
∂pj

)∣∣∣∣
p0

· (pj − p0) + (yk(p0)− yk0)
(
∂yk
∂pi

)∣∣∣∣
p0

]
= 0. (5.12)

The set of linear equations 5.12 for i = {1 . . . n} can be written as Ax+ b = 0 with:

aij =
∑

k

(
∂yk
∂pi

)∣∣∣∣
p0

(
∂yk
∂pj

)∣∣∣∣
p0

(5.13)

bi =
∑

k

(yk(p0)− yk0)
(
∂yk
∂pi

)∣∣∣∣
p0

(5.14)

An alternative error function εalt is defined as:

εalt :=
1

2
xTAx+ bx, (5.15)

where x = p − p0. Equation (5.15) has the same derivatives and hence minima as well as
maxima as ε. This definition of εalt has some nice properties, which are necessary to apply the
CG method, as proven in reference173 (p. 603-607):

• Aalt ∈ Rn×n is symmetric, and with that,

• Aalt = A is semi-positive definite, because it is the Hessian of the quadratic function εalt.

Search of the parameter space Pn In order to locate the minimum ptarget of ε within Pn
efficiently, some considerations have to be taken into account:

1. Force field parameters, e.g the LJ interactions, only make sense if the parameters are
within a certain range, e.g. pi ≥ 0 or ‖pi − pi0‖ ≤ δi for p = (p1, . . . , pn) ∈ Pn.

2. Since the elements of the error function are Taylor expanded, they are valid within a
certain range.

3. It is often desirable to weight the different elements of the error function with a certain
weighting factor ωk.
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The last point can be straightforwardly incorporated into the approach, because if weighting
the different ∆i with a factor ωk, equations (5.13) and (5.14) turn into:

aij =
∑

k

(
∂yk
∂pi

)∣∣∣∣
p0

(
∂yk
∂pj

)∣∣∣∣
p0

ωk, and, (5.16)

bi =
∑

k

(yk(p0)− yk0)
(
∂yk
∂pi

)∣∣∣∣
p0

ωk. (5.17)

The points 1 and 2 can be handled easily, too. In case a parameter pi changes too drastically
its value is fixed corresponding to the boundary conditions. Afterwards a further CG step
with the fixed parameters allows to check if the left parameters are able to further reduce the
amount of the error function.

Improvement of the sampling Obviously, the accuracy of the introduced method is in-
creased, if the error function ∆ is expanded up to second order:

∆ = ∆|x=0 + xT ∇∆|x=0 +
1

2
xT ∇ (∇∆)|x=0 x, (5.18)

∇∆ = Hx+ d, with Hij =
∂2∆

∂xi∂xj

∣∣∣∣
x=0

and di =
∂∆

∂xi

∣∣∣∣
x=0

. (5.19)

The matrix H is symmetric and semi positive definite, too. Hence, the CG method is ap-
plicable to solve the equation ∇∆ = 0. The elements of H and d are obtained from the
difference quotients derived from the simulation results, but now besides the first also the
second derivatives of ∆ are necessary to construct the respective Hessian H:

∂2f(x, y)

∂x∂y
=

1

hxhy
[f(x+ h, y + h)− f(x+ h, y)− f(x, y + h) + f(x, y)] (5.20)

Obviously, simulations of all combinations of modified parameters N are necessary to construct
H with an computational effort ∼ 1

2
N · (N + 3) + 1:

di =
∆(. . . , hi, . . . )−∆(. . . ,−hi, . . . )

2hi
, (5.21)

H =





∆(. . . , hi, . . . )− 2∆(0) + ∆(. . . ,−hi, . . . )
h2i

for (i = j),

1

hxhy
[∆ (0, . . . , hi, hj, . . . , 0)−∆ (0, . . . , hi, . . . , 0)−

−∆ (0, . . . , hj, . . . , 0) + ∆ (0)]

for (i 6= j).

(5.22)

Although high computational effort is required compared to the first order method, correlations
between the different derivatives are included explicitly.

A method in between is to increase the accuracy of the first derivatives by simulations, which
symmetrically changed parameters around the reference topology. With that, the number of
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5.2. Optimization of short range interactions

required simulations scales as 2N + 1 for N parameters to be optimized.

Minimizing an error function for [MMIM][Cl] Assigning point charges to the atoms is
quite straightforward, compared to the adaption of the short range interactions. The optim-
ization of LJ parameters, by using the error function ∆, given by equation (5.15), is the most
tedious part, because a numerous simulations have to be set up and performed in order to
sample the parameter space Pn. The number of simulations depends on the number of tem-
peratures nT involved in the error function and the number of parameters n that should be
tuned. Finally also the accuracy of derivatives plays a role. A second-order finite differences
schemes is applied173, where the derivative of a function f(x) is obtained by:

∂f

∂x
=
f(x+ h)− f(x− h)

2h
. (5.23)

Thus for every iteration step (2 ·n+1)nT simulations are required to obtain the derivatives and
the error function at the expansion point. Since the FF shall be applicable to a certain range
of temperatures, corresponding information has to be involved, but the required computation
time should be kept at a minimum. To this end, only target properties are chosen, which
require a minimal sampling of the phase space, such that most of the computation time is
spent for equilibration.

In order to match the temperature dependence of the parameters, the experimental mass
densities6 at T = 425, 440, and 465 K are used as target properties. Hence, the respective
elements of the error function, defined by equation (5.7), are:

y00 = ρ(425K) = 1123.4 kg ·m−3, (5.24)
y10 = ρ(440K) = 1115.0 kg ·m−3, (5.25)

and, y20 = ρ(465K) = 1101.1 kg ·m−3. (5.26)

Furthermore, the weighting parameters ωi = 1/y2i0 are set to the square of the inverse reference
density yi0, for the establishment of a relative and unit–less error.

Information about the local structure is provided by the radial distribution functions (RDFs)
between the hydrogens H1, H2, and H3 and the chloride anion, given by AIMD simulations7.
For this case, the mean square error of the relative deviation from the reference RDF gref(r)
is considered as corresponding term ∆i in the error function equation (5.15):

∆i =
1

N

N∑

i=1

δg(ri), with (5.27)

δg(ri) =





(
g(ri)
gref(ri)

− 1.0
)2

if gref(ri) > 0,
(
g(ri)

grefmin
− 1.0

)2
if gref(ri) = 0.

(5.28)

To allow a normalization of the single errors in case the reference value is zero, the smallest
non-zero element grefmin of the RDF is applied. Depending on the location of the maxima,
equation (5.27) is applied to different ranges of the RDFs. Although all calculations of the
MSE start at 2 Å, the end points differ within 4 Å, 6 Å, and 8 Å for H1−Cl, H3−Cl, and
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H2−Cl, respectively. All errors of the RDFs are weighted equally by corresponding weight
factors ωi = 1.

Hence, the error function ∆ carries no unit and all target properties are weighted equally,
because they all have a relative measure. As the minimization procedure is guided by the
matrix A and the vector b, the partial derivatives of the error function terms are necessary.
To this end, a second–order finite differences scheme is applied,173 where the errors for different
sets of parameters were derived by corresponding simulations. So for every minimization step,
one simulation is performed with the set of start parameters p0 ∈ Pn, where n is the number
of parameters to be tuned. The number n varies at the different stages of tuning and is
given in the next paragraph for every tuning stage. Additionally, 2n sets of simulations with
slightly decreased and increased parameters provide the necessary data for the calculation of
the partial derivatives. During the minimization procedure the step width δi for the finite–
differences is adapted in respect to the change of the parameters pi. If the minimization
predicts a change of pi larger than 2δi, δi is decreased by a factor of 0.5. For a change of pi
smaller than δi, δi is increased by a factor of 2 for the next set of simulations. This criteria
are applied, to construct a balance between the accuracy of the derivatives and to reduce the
risk to get trapped in a local minima. To assure, that the applied Taylor expansion is valid,
the changes of the parameters are bound to a value of 4δi. Since the different simulations are
independent, the iteration procedure runs massively parallel and the tuning time is dominated
by the number of accessible processors. This parallelization allows to parametrize the short
range interactions within days or weeks which is an acceptable time for this kind of process.

For the initial guess, the short range parameters and bonded parameters from CLaP have
been chosen. Partial charges have obtained from a Blöchl analysis11, and finally, a refit of the
dihedral parameters, as described in section 5.1, yields the starting parametrization BLFF.
The optimization of short–range interactions is separated in four major steps. At first, only
the parameters of the hydrogens have been tuned until the error converged, so n = 6. In the
second step, the tuning was restricted to the parameters of the chloride with n = 2, but after
one iteration step, no decrease of the error has been observed, and reference properties were
reduced to the mass densities and the H1−Cl RDF. As, the resulting deviation of the mass
densities were still in the order of several percent, the target properties were restricted to the
mass densities and only the parameters of chloride were optimized. After two iteration steps
a maximal error of 1 % is achieved for the mass densities. In the last part of the optimization
procedure, the parameters of H1 and Cl are tuned, thus n = 4, and the full set of target
properties is considered. With this setup, the error nearly converged after three steps and the
result is chosen as the tuned force field BTFF with Blöchl charges. In every iteration step the
dihedral parameters were adapted to the corresponding 1–4 interactions.

In order to allow an efficient optimization, the Python133 module PyPaTEGRO has been
implemented, which is described in Appendix A detailedly. The package acts as an interface
between the user and GROMACS, which allows to setup and perform the simulations for
the error minimization. Moreover, the package includes several scripts to analyze important
thermodynamic properties, such that it is very useful for non-optimization studies, too. Its
strength is especially, the distribution of the workload and that the whole simulation process
from the equilibration to the analysis is performed by PyPaTEGRO with a single submission
command to the queue of a supercomputer.
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5.2. Optimization of short range interactions

Target properties: mass density and radial distribution functions In order to optimize
the performance of the force field, the LJ parameters were adapted to minimize the error of
the mass density ρ and different radial distribution functions (RDFs). The results show, that
the optimization routine works and is robust, also outside the regime of tuning. However,
a perfect adaption to all target properties is quite time consuming, especially for the three
RDFs between the hydrogens and the choride, and is not performed, here. This task will be
necessary if a generic charge model has been established, and the LJ parameters have to be
adapted to this generic set of charges.

A comparison of the mass density ρ for the temperatures T , which were used for the parameter
tuning, is shown in 5.3. The finally tuned force field BTFF shows very good agreement with
the experimental data and is also able to recover the trend over a temperature range of 50 K
quite well. This exhibits the reliability of the proposed approach, because the mass densities
simulated with the initial parametriation BLFF are far off the experimental values. Hence,
obviously a good agreement with ρ is achieved easily over the range of temperatures, that
were used for the parameter optimization. However, compared to the results of CLaP, which
predicts the course of ρ with T quite well, a stronger decrease in ρ is observed for increasing
T .
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Figure 5.3.: Density of mass obtained with different FF parametrizations and by experiment6.

In 5.4, the RDF for different stages of the parameter adaption are shown. While the results
of the simulations with CLaP deviate from the AIMD results, significantly, the parameter
optimization improves the agreement between the RDFs from the classical MD and the AIMD.
Hence the shape and, especially, the location of the maxima of the RDFs given by BTFF agree
with the AIMD ones. However, compared to the error of the mass density, the deviation of
the RDFs is still large.

Yet, the optimization procedure allowed to derive LJ parameters, that model the mass density
within an error of maximal 1 % in only a few iteration steps. The RDFs are not matched
optimally compared to ρ, but a considerable improvement is achieved. However, the location
of the first maximum of the H1−Cl RDF is expected to play an important role for the dynamics
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Figure 5.4.: The radial distribution functions (RDFs) derived from simulations with the CLaP
parametrization and the tuned FF BTFF are compared to the reference data from
AIMD simulations7.

of the system126,127,168,174. For this reason, it is of certain interest, how the dynamic properties
given by a certain FF compare to the experimental measurement, in respect to the deviation
of the H1−Cl RDF of the FF from the reference RDF. To this end, a benchmark of CLaP and
BTFF is described in the following section.

5.3. Validation of the derived parameters

So far, the procedure for the tuning of a force field has been described. In the following
paragraphs, the reliability of the parametrization is discussed by the study of properties that
have not been used as targets for the parametrization. Energetic as well as different dynamic
quantities are derived at temperatures T = 425, 440, 465, and 500 K to dissect the performance
of the tuned force field BTFF, also outside the tuning regime, and detect insufficiencies.17

Dynamic properties at different stages of tuning Since no dynamical properties were
involved in the parameter tuning procedure, a validation of the tuned force field in terms of
dynamical properties is inevitable. Unfortunately, experimental data for [MMIM][Cl] is rare
and the static conductivity is the only available dynamical property, that has been measured6.
However, it allows to study the collective system dynamics. Though many possibilities exist
to calculate the conductivity σ from an MD simulation, a careful choice is inevitable to allow
comparison to experiment. For instance, the Nernst-Einstein method allows to calculate σ in
terms of the diffusion constants of the cations and anions, but it completely neglects mutual
correlations, which are included in experimental measurements. However, as the Nernst-
Einstein method relies on single particle properties, the computational effort is quite small
compared to correlation including methods. Therefore, it is applied to obtain a first rough
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5.3. Validation of the derived parameters

approximation. Moreover, classical MD simulation studies have been published, that discuss
the diffusion of [MMIM][Cl]129,153, which allows at least comparison of our results to different
parametrization methods. To consider the mutual correlation of the ions, the Einstein-Helfand
(EH) method is applied to derive the static conductivity from the mean square displacement
of the translational dipole moment MJ:

MJ =
N∑

i=1

qneti ·xcom
i , (5.29)

where qneti and xcom
i are the net charge and the center of mass of the ion, respectively, and N

is the number of ions. At this point it has to be clarified, if the unscreened or effective charges
have to be applied for the calculation of the conductivity. The conductivity is defined via the
current response j to an electric field E:

j = σE. (5.30)

As j = jn + je decomposes into a nuclear jn and an electronic contribution je, the static
limit obeys a special case. While the atomic nuclear contribution arises from the movement
of the nucleus carrying effective charges jn = qeffvn, je = qelve is the contribution of the
constantly polarized electron cloud. For a static E field the Born-Oppenheimer approximation
predicts an instantaneous reaction of the electron cloud to the configuration of the nuclei.
Yet, the electronic part of the current for the whole system vanishes, because the steadily
polarized charge qel does not move compared to the nuclei. Hence for a calculation of the
static conductivity, effective charges have to be applied, which constitute a model with a
reduced net-charge. However, if a frequency dependent spectrum is of interest, static charges
are not applicable, because they are not able to include the characteristics of the spectrum
arising due to the time-dependency of je.175

10−3 10−2 10−1 100 101

10−2

10−1

100

101

102

103

[MMIM]+

Time / ns

M
S
D
/
n
m

2

CLaP BLFF

10−3 10−2 10−1 100 101

10−2

10−1

100

101

102

103

[Cl]–

Time / ns

M
S
D
/
n
m

2

Figure 5.5.: Mean square displacement of the ion coordinates of the 239 ion pairs system at
T = 425K.
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In order to apply the NE method, at first the Einstein relation has been used to calculate the
diffusion constants D± from a linear fit to the mean square displacement (MSD) of xcom

i :

lim
t→∞
〈[x(t)− x(0)]2〉

t
= 6 ·D, (5.31)

as shown in Figure 5.5. In Table 5.1, the results for the simulations at T = 425 K are
summarized to show the sensitivity of the dynamics to the force field parameters. BTFF,
considered to be the most accurate force field, predicts diffusion constants which are two
orders of magnitude largen than CLaP. However, if the diffusion is too fast or not is hard
to decide, because published force fields give different results and no experimental data is
available. While the UA10 united-atom model of Liu et al.153 with a reduced net charge of
0.8 e predicts roughly six times smaller values, the model of Youngs and Hardacre129 with a
reduced net charge of 0.6 e, gives comparable but still smaller values as BTFF. As the H1

hydrogen is known to play an important role for the dynamics of ILs126,127,168,174, a reduction
of the diffusivity in BTFF might occur if the corresponding RDFs is matched more accurately.
This increases the probability for hydrogen bonding and, therewith, the interaction between
the ions. The obviously fast diffusion might be an artefact of the smaller height of the first
H1−Cl RDF maximum compared to the AIMD reference.

A significant difference between CLaP and the FFs including Blöchl charges is the ratio γ
between the diffusion constants of the cations and anions, γ = D+/D−. While CLaP predicts
γ > 1, BTFF shows γ ∼ 1. This has also been observed for [MMIM][Cl] by Youngs and
Hardacre129 while studying models differing in the scaling of the ion net charge.129 There,
all models with a net charge smaller than ±0.7 e gave a ratio of the diffusion constants of
γ < 1. In terms of Stoke’s law, the faster diffusion of the anions can be understood from their
smaller hydrodynamic radii which account for the interaction range of particles within their
environment. Unfortunately, no experimental data for diffusion is available for [MMIM][Cl].
However, experimental measurements of other ILs, with an approximately spherical anion
like [EMIM][BF4]141 or [BMIM][PF6]176, give ratios of γ = 1.24 or γ = 1.34, and therefore
suggest a larger hydrodynamic radius for the anion compared to the cation. Though the
anions’ hydrodynamic radii were calculated to be smaller than the cations’ ones177. Hence,
Stoke’s law is not applicable. Due to the stronger electrostatic interaction compared to reduced
charge models, CLaP tends to model a too rigid hydrogen bond network, which causes the
slow dynamics of CLaP, that is also observed for other ILs, like [EMIM][BF4]

10. In case of
decreased intermolecular interaction given by scaled net charge parametrizations as BTFF,
or in the studies by Youngs and Hardacre129, Stoke’s law is valid as it shows slower diffusion
for larger ions. So, though [MMIM][Cl] consists of a molecular, but symmetric, cation and
a symmetric atomic anion, it seems that it can be considered as a simple liquid in terms of
Stoke’s law.

To derive the conductivity σNE from the diffusion coefficients, the Nernst-Einstein equation
has been applied:

σNE =
Nq2

V kBT

(
D+ +D−

)
, (5.32)

with the volume V , the temperature T , the number of ion pairs N , the effective net charge of
the ions q, and the Boltzmann constant kB. The conductivities, derived by equation (5.32) with
the diffusion constants obtained at T = 425 K, are summarized in Table 5.2. While CLaP
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D / 10-5 cm2 · s−1
FF D+ D− γ

CLaP 0.021 0.015 1.40
BTFF 1.208 1.240 0.98

Table 5.1.: Diffusion constants and their ratio γ = D+ /D− for the different parametrizations
derived from simulations at temperature T = 425K.

underestimates the experimental conductivity6 of 10.65 S ·m−1 by an order of magnitude,
BTFF overestimates the value from experiment strongly. However, these numbers do not
include the collective contribution of the ions’ mutual correlations to the conductivity.

σ / S ·m−1
FF σNE σEH κ

CLaP 0.80 0.67 0.84
BTFF 21.94 14.68 0.67

Table 5.2.: Conductivities at T = 425 K calculated by the correlation neglecting Nernst Ein-
stein approach and the correlation including Einstein Helfand technique are sum-
marized, as well as the ratio κ = σEH/σNE.

Hence, an appropriate method such as the Green-Kubo approach being based on integration
of the current autocorrelation function is necessary. Unfortunately, very long simulations
are necessary to gain reliable results, as shown in section 3.5. But an equivalent technique
reducing the required amount of simulation time significantly is available. Corresponding to
the Einstein method for the diffusion constant, the Einstein-Helfand147 (EH) technique allows
to determine σEH from the slope of the mean square displacement of the translational dipole
moment MJ =

∑N
i=1 qi ·xcom

i involving the sum over all center of mass coordinates xcom
i of

the N ions with an effective net-charge qi:

lim
t→∞
〈[MJ(t)−MJ(0)]2〉 = lim

t→∞
〈∆MJ〉 = 6V kBTσt. (5.33)

In other words, equation (5.33) is the integrated version of the Green-Kubo relation for the
conductivity, such as the Einstein method for the diffusion constant. The EH method allows to
consider the collective current of the system and to derive an accurate value for the conductivity
with much less statistics than required if the current autocorrelation function is integrated
explicitly.

Unfolding of the ion coordinates is necessary for the calculation of ∆MJ to avoid discontinuit-
ies caused by PBC. In Figure 5.6, ∆MJ is given for different parametrizations at T = 425 K.
While the linear regime starts around 50 ps for BTFF and BLFF, approximately 100 ps are
necessary to reach the linear regime for CLaP. A straight line is fitted to the ∆MJ from the
beginning of the linear regime up to 500 ps, and the resulting conductivities are summar-
ized in Table 5.2. Though the same trends arise compared to the Nernst-Einstein method,
EH provides consistently smaller conductivities, but BTFF predicts still a slightly too large
value. Considering not only the difference, but also the ratio between the conductivities
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Figure 5.6.: Mean square displacement of the translational dipole moment MJ as a function
of time t on a double-logarithmic scale for different FF parametrizations at T =
425K and time-dependent correlation factor α as given by eq. 5.34.

κ = σEH/σNE, two levels of correlation κ are identified. While the force field with Blöchl
charges, BTFF, predict κ ≈ 0.7, a larger value of κ ≈ 0.8 is observed for CLaP. Borodin149
suggested a similar, but time dependent correlation α(t):

α(t) =
σEH(t)

σNE(t)
, (5.34)

where σEH(t) and σNE(t) are derived from linear fits with a time span of 10 ps, and hence,
limt→∞ α = κ. In their polarizable model for ILs149,150, α converges already within the sub-
diffusive regime of ∆MJ. This finally allows to obtain an accurate prediction of the correlation
including conductivity with less statistics than required if EH is applied only to the linear
regime of ∆MJ.

On the right hand side of Figure 5.6, α is plotted for CLaP and BTFF at T = 425 K to judge if
similar procedure can be applied here. As expected, the fast dynamics of BTFF is reflected in
a corresponding fast convergence behaviour. For CLaP, the convergence is not observable with
the present statistics of ∆MJ. However, for BTFF, α converges before 200 ps and agrees with
the corresponding long time limit κ. Hence, as polarizable models,149,150 BTFF also predicts
this fast convergence of α. This is an important fact, because it is related for example to the
“caging” in ILs.123 Finally, though BTFF overestimates σ also with EH, the value of κ and
the quite fast convergence of α is comparable to polarizable models.149,150

Yet, although the optimized force field BTFF predicts the density in the temperature range
from 425 to 500 K accurately, the conductivity is overestimated at T = 425 K. As a proper
modeling of hydrogen bonding strongly influences the dynamics, and the important role of the
acidic H1 hydrogen is well known,126,127,168,174 a more accurate matching of the RDF between
the hydrogens and the anion seems to be required for an appropriate modelling of the ionic
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liquid. However, compared to a polarizable model the qualitative behaviour of the dynamics
is properly predicted by the classical non-polarizable force field.

Temperature dependence of dynamical properties On the one hand side, it has been
shown, that the mass density is predicted very accurate for within temperature range, which
has been used during the parameter optimization. However, on the other hand side, it has been
observed, that the decrease of density with increasing temperature is overestimated. Hence,
it is of importance to validate the temperature dependence of the dynamics. To this end,
the diffusion and conductivity for CLaP and BTFF are compared at temperatures T = 425,
440, 465, and 500 K. Since ionic liquids are known to behave like supercooled liquids, the
temperature dependence of the dynamical properties P (T ) is assumed to be reflected by the
empirical Vogel-Fulcher-Tamman equation164:

logP (T ) = logA+

(
B

T − TVTF

)
. (5.35)

While the parameters A and B are always temperature-independent, TV TF can be handled
in two different ways. If the temperature range near the glass-transition temperature Tg is
considered, TV TF is related to Tg via the fragility m165,166, that depends on the behaviour of
the orientational relaxation near Tg. This allows to reduce the degrees of freedom for the fit.
If a wider temperature range is taken into account, TV TF is used only a fit parameter, but
not related to the glass transition temperature. Here, the VTF equation is fitted to a wide
temperature range in order to study the temperature trend of the dynamic properties.
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Figure 5.7.: Diffusion constants calculated from the MSD and conductivities are summarized
for different temperatures. As guide for the eye corresponding VTF fits (loosely
dashed lines) are provided for the MSD.

In Figure 5.7, the diffusion constants obtained by CLaP and BTFF for different temperatures
and the corresponding VTF fits, given by the dashed lines, are shown. Besides the expected
prediction of a faster diffusion by BTFF compared to the results of CLaP, a completely different
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behaviour in respect to the temperature is observed. While BTFF gives almost straight lines,
a significant curvature arises for CLaP. As the curvature is related to TV TF , this implies
small values of TV TF or even, that instead of VTF behaviour, Arrhenius behaviour is given,
which corresponds to TV TF = 0. However, one has to keep in mind, that the conductivity at
T = 425 K is overestimated by BTFF, which implies also a too fast diffusion at T = 425 K.
For this reason, a more accurately tuned version of BTFF is expected to show a curvature in
the temperature dependence of the diffusion coefficients, too, because the diffusion seems to
be overestimated at low temperatures.

D / 10-5 cm2 · s−1
CLaP BTFF

T / K D+ D− γ D+ D− γ

425 0.021 0.015 1.40 1.208 1.240 0.97
440 0.039 0.029 1.34 1.433 1.488 0.96
465 0.088 0.063 1.40 1.883 1.947 0.97
500 0.201 0.167 1.20 2.563 2.738 0.94

Table 5.3.: Diffusion constants derived from simulations with the force fields CLaP and BTFF.

The diffusion coefficients and their corresponding ratio γ = D+ / D− are summarized in
Table 5.3. At this point, it should be mentioned, that the statistical error of all values
is at least an order of magnitude smaller than the number of significant digits, which is of
importance for the discussion of the results of γ. Though CLaP and BTFF show a qualitatively
different behaviour, because for all studied temperatures CLaP and BTFF predict γ > 1 and
γ < 1, respectively, a common behaviour of the course of γ with T is observable. While γ is
decreasing, if the temperature is increased from T = 425 K to T = 440 K, a further increase
of the temperature to T = 465 K gives the same ratio for γ as for T = 425 K. Finally, if
the highest studied temperature T = 500 K is considered, γ reaches its significantly smallest
value. This fluctuations of γ indicate, that the energy barriers, which have to be passed for a
increasing diffusion, differ for the cation and the anion at low temperatures, but vanish with
increasing temperature. Since chloride is has no rotational degrees of freedom, the increase in
diffusion is dominated by the breaking of the hydrogen bond network. In contrast, a breaking
of the hydrogen bond formation influences the rotation of [MMIM]+, and hence, the diffusion of
the cation. This subtle interplay between the short and long range interactions, which governs
the rotational and translation motion, respectively, is a well known characteristic behaviour
of glass formers like [MMIM][Cl].

In order to validate the tuned force field BTFF also outside the temperature regime, which
has been applied during the parameter optimization, the conductivity is studied, because it
can be compared to experimental results6.

In Figure 5.7 the experimental and simulation data is shown and summarized in Table 5.4.
The solid black line describes the experimentally derived course of the conductivity, which is
given by a least-square fit to a parabolic function6. A comparison of the simulation results
shows, that BTFF predicts the conductivity quite well over a wide temperature range, while
CLaP strongly underestimates it. Again two level of correlations are observed for the differ-
ent force fields, where BTFF is correlated more strongly, but the correlation is temperature
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σ / S ·m−1
CLaP BTFF

T / K σ κ σ κ σexp.

425 0.67 0.84 14.68 0.67 10.65
440 1.05 0.72 15.67 0.63 13.42
465 2.51 0.84 19.87 0.65 18.19
500 5.16 0.77 24.03 0.63 25.13

Table 5.4.: Conductivities σ at different temperatures obtained by the force fields are compared
to experimental data6. The correlation κ is also summarized for CLaP and BTFF.

independent. The too fast dynamics at low temperatures, where high densities arise and short
range interactions strongly contribute to the overall interaction, highlights, that the dispersion
energy given by the short range interactions is too small. In high temperature regimes, where
the electrostatic long range interaction dominates, this contribution becomes negligible and
the force field describes the dynamics of the system very accurately.

In summary, the validation process has shown, that though the tuned force field BTFF over-
estimates the conductivity at low temperatures around T = 440 K, but a convergence to the
correct behaviour is achieved in the high temperature regime starting around T = 470 K. This
indicates, that a too small dispersion interaction is modelled, which is furthermore underlined
by the quite fast diffusion compared to other force fields. Hence, for the construction of a
transferable and accurate FF for ILs, a more proper modeling of the very local structure,
describe by the first maxima in the RDFs, is inevitable.

Heats of Vaporization As sensitive indicator for the single particle dynamics of a system
as well as its collectivity, expressed by the shear viscosity or ionic conductivity, the heat of
vaporization ∆Hvap is often used as a target property for the force field parameterization.
Furthermore, no large amount of simulation time is necessary to sample the phase space
properly, which is also of great importance for the parameter optimization. Though a much
less amount would be required, the statistics of the liquid phase are obtained from 90 ns
simulation time, while the single ion pair has been simulated for 9 ns in the gas phase, which
would also be a sufficient time to obtain enough statistics in the liquid phase.

The heat of vaporization ∆Hvap is the difference in enthalpy H = U +PV between the liquid
and the gas phase. The enthalpy of the liquid state Hliq. = 〈Etot.〉+P · 〈V 〉 is obtained for the
average total energy Etot and the product of the reference pressure P with the average volume
〈V 〉89. However, since no volume is defined for the single ion pair vacuum calculations, the
term PV is undefined, too. For this reason the ion pairs in the gas phase are considered to
behave ideal, such that the missing term is given by the corresponding equation of state:

PV = nRT, (5.36)

with the gas constant R and the amount of substance n in mole. Therefore, the heat of
vaporization per mole is given by:

∆Hvap = Etot.
gas +RT −Hliq.. (5.37)
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Moreover, during the phase transition, the polarization of a molecule alters, which is not
described by classical non-polarizable FFs. Thus, the energy contribution Epol from the change
of the polarization state has to considered explicitly. While this is mostly not taken into
account, it has been shown that an explicit consideration improves the parametrization of
SPC/E water156. Standard force fields for ILs usually model the polarizability in the LJ
interactions. Hence, Epol is only partly captured by the decreasing number of short range
interactions of an ion moving from the liquid to the gas state. Moreover, the partial charges
mostly rely on the charge distribution of an isolated single ion. Thus, the explicit calculation
of Epol, actually given by the change of the dipole moment, is impossible. In contrast, our
approach allows to directly access Epol because εel has been derived for the gas and liquid
phase. From the MP2 gas phase calculations11, εel = 1.67 is calculated by averaging of the net
ion charges of the four ground state geometries, corresponding to an average ionic net charge
of ±0.77 e. However, the results of the MP2 calculations are only a rough estimate, because
they have been performed at 0 K and only 4 geometries are sampled. To improve the estimate,
100 snapshots are chosen from an MD simulation of ion pair and simulated with AIMD at a
finite temperature T = 425 K until the average charge of the chloride has been converged. In
this case an average net charge of 0.65 e is obtained, corresponding to an electronic dielectric
constant of εel = 2.37, which differs only slightly from the bulk value εel = 2.51.
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Figure 5.8.: The enthalpies H of the gas and liquid phase, as well as heats of vaporization
∆Hvap are derived with CLaP and BTFF. For BTFF also the result for the gas
phase calculations in the electronic continuum model (EC) are shown, to point
out the contribution of Epol to ∆Hvap. The circles in the left plot depict H in the
liquid phase, while the circles show the values for the gas phase state. The heat of
vaporization is also compared to a united atom model for [MMIM][Cl] (UA10)153.

The obtained enthalpies H for BTFF and CLaP in the gas and liquid phase and the vapor-
ization enthalpies are presented in Figure 5.8. Comparing the enthalpies of the liquid phase,
depicted by the squares, reveals a dramatic increase in energy if the net charge decreases.
Considering the gas phase enthalpies, shown by the circles, the large impact of Epol. becomes
obvious. If the electronic continuum (EC) model, which is only valid for the liquid phase, is
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still taken into account for the gas state calculations, the gas phase enthalpy is larger than for
CLaP due to the reduced electrostatic interaction. However, the gas phase enthalpy decreases
by Epol ≈ 50 kJ ·mol−1, if the partial charges of the liquid phase are scaled up to the average
net charge of 0.77 e as obtained by the MP2 calculations at 0 K. But the application of a set
of partial charges rescaled to a net charge of 0.65 e, as obtained from the AIMD simulations of
the single ion pairs at T = 425 K, results in a gas phase enthalpy, which coincides almost with
the results, where the EC model is used and gives Epol. ≈ 4 kJ ·mol−1. Hence, the common
method to use the liquid state charges for the calculation of the vacuum energies introduces
only a small error, and the partial charges are expected to describe the gas phase of the ionic
liquid, too. Moreover, this small contributation might be easily incorporated into the LJ in-
teraction. Yet, as already shown for SPC/E137 and other water models156, the contribution of
Epol. to the enthalpy is observable, but much larger for water, than for an ionic liquid pair.

Unfortunately, experimental data for ∆Hvap is lacking for [MMIM][Cl]. Therefore in the
following, the results are compared to already published simulation data for [MMIM][NTf2]
by Köddermann et al.126 (KPL) and Chaban130 (QSC), and for [MMIM][Cl] by Liu et al.153
(UA10). While KPL and QSC are reparametrized versions of CLaP, UA10 provides an united-
atom model. Moreover, the parametrization methods differ16. KPL has been derived by an
optimization of short range interactions with respect to several thermodynamic properties such
that bulk polarization effects are modelled exclusively by the LJ interactions. In contrast,
QSC is a result from a global charge scaling optimized with respect to a certain experimental
property, such as the conductivity. Finally, UA10 also constitutes a model with a reduced ionic
net-charge, but motivated by ab-initio ion pair calculations. Furthermore, the LJ parameters
of UA10 are adapted by force-matching to all-atom simulations of the liquid phase,124 while
QSC relies on the short-range parametrization of CLaP. Therefore, KPL and UA10 model
polarizability in a similar manner, though UA10 gives a reduced ion net charge. The partial
charges of UA10 are based on gas phase calculation, which are not able to describe the bulk
polarization. Yet, a large part of the polarization effects are included in the short-range
parameters. The parametrization QSC includes the major part of the polarization within the
charge-scaling, such that the short-range interactions are mainly responsible for the dispersion
interaction and repulsion, but the charge distribution relies on an isolated state. However,
neither of the studies, explicitly considers the contribution of Epol for the calculation of ∆Hvap.

∆Hvap / kJ ·mol−1

T / K CLaP BTFF(MP2) BTFF(EC) BTFF

425 196.05 53.16 99.36 103.54
440 194.26 52.15 97.50 102.11
465 191.49 49.33 95.32 99.75
500 187.50 45.79 92.08 96.45

Table 5.5.: Heats of vaporization ∆Hvap. of [MMIM][Cl] obtained with CLaP, BLFF and
BTFF. Obviously the energy is underestimated, if the change of the polarization
state is not considered, when the molecule is moved from the liquid (EC) to the
vacuum.

In Figure 5.8 and Table 5.5, the enthalpies of vaporization calculated with different para-
meterisations are summarized. While for [MMIM][NTf2], ∆Hvap ≈ 130 kJ ·mol−1 has been
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obtained around T = 300 K by Köddermann et al.178 with KPL and with QSC by Chaban130,
UA10 predicts enthalpies around 144 kJ ·mol−1 153 for [MMIM][Cl] at T = 400 K. In contrast,
CLaP predicts a heat of vaporization, that is approximately 50 kJ ·mol−1 larger, which is also
reflected in the very slow dynamics. In contrast, the enthalpies of vaporization derived by
BTFF are up to 150 kJ ·mol−1 smaller, depending on the values, which are used for the gas
phase enthalpies. However, if the appropriate method is chosen, which uses the set of partial
charges rescaled to a net charge of 0.65 e, BTFF predicts ∆Hvap. around 100 kJ ·mol−1, which
is roughly 40 kJ ·mol−1 smaller than the results from UA10. This difference in ∆Hvap. is also
reflected in the behaviour of the diffusion constants, because BTFF gives a three times faster
diffusion than UA10.

Though CLaP predicts a thermodynamic quantity as the mass density within an error of less
than 0.5%, the enthalpy of vaporization is much larger compared to the results of classical MD
simulations with other force fields or experimental data for similar ILs. This is in agreement
with the too slow dynamics modelled by CLaP, because the ions in the system are too strongly
bound, which is a relict of an insufficient parametrization of the LJ interactions, that are
transferred from OPLS and AMBER, but not adapted to the polarizabilities of the atom
types. In contrast, KPL126 shows that careful inclusion of polarizability into LJ interactions is
possible and accurately describes energetic, static, and dynamic properties of [CnMIM][NTf2]
ionic liquids. Though with that, polarization effects can appropriately be modelled by solely
LJ interactions also for ionic liquids, the FF has been derived in respect to dynamical variables.
Therefore, the required amount of computational resources is significantly larger than for the
procedure porposed in this work, which in contrast, does not rely on a large experimental
data set. This classical MD study of ionic liquids also considers the contributions of Epol.

for the calculation of ∆Hvap explicitly, and reveals a contribution of roughly 4 kJ ·mol−1.
However, BTFF predicts unusual small Hvap., which is consistent with the overestimation of
the dynamics at low temperatures. Hence, only a final adaption of the dispersion interactions,
modelled by the LJ parameters, seems to be required, in order to obtain an accurate force
field over the whole temperature range. Therefore even a single experimental data point for
Hvap. might be sufficient, but is not accessible, unfortunately. The mismatch of the maxima
of the RDFs is also an indicator for the bonding of the atoms. Yet, an appropriate adaption
is expected to allow a very accurate modelling of the ionic liquid.

Hence, a first iterative cycle to refine force fields for classical molecular dynamics simulations
is closed. The proposed method for the parameter tuning is quite promising as it is able to
adapt the set of parameters in a reasonable time due to the massive parallelization of the
method. Furthermore, the proposed approach to derive the partial charges from liquid state
configurations allows to include only static properties like the density of mass and radial dis-
tribution functions during the parameterisation process reducing the computational effort as
shorter simulation times are required. Though, the validation process shows that the dynam-
ics in terms of diffusion and conductivity is overestimated at low temperatures, the deviations
from experiment vanish at high temperatures and the correct trend is achieved. This is a quite
promising result, because dynamic quantities have never been involved in the parametrization
process. Though the study of the heat of vaporization reveals, that the tuned force field BTFF
predicts unusual small value, it is shown that a correct inclusion of the polarization energy
Epol. contributes roughly 5 % to ∆Hvap. and is therefore not negligible. Yet, an important
level in the multiscale approach is reached, because a force field parametrization machinery
is established that requires minimal experimental data, while the remaining information is
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carefully extracted from calculations and simulations. Furthermore, the computational frame-
work, given by the Python module PyPaTEGro is now present, which allows to include all
properties into the parameterisation process, that were introduced in this study. This is an
important step towards an efficient way for identifying, classification, and understanding of
this class of solvents, because it supplies the basis for an efficient design of a consistent and
transferable force field for RTILs.
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In this work, a multiscale method has been introduced and elaborated in order to optimize
or construct force fields (FFs) for ionic liquids (ILs). A FF consists of a variety of interac-
tion terms. Some of them, such as the bond and angle potentials, can be straightforwardly
derived, but various methods for the calculation of the point charges are accessible and also
the determination of the short-range interactions is a non-trivial task that usually requires
an iterative adaption to experimental reference data. A FF is a highly correlated parameter
set, such that small changes of single parameters may drastically affect the results. For this
reason, a large parameter set providing descriptions of various atom types and molecules, is
required which is also transferable between different states of the phase diagram.

Ionic liquids are of major interest in this thesis, therefore two famous FFs for [EMIM][BF4],
namely CLaP5 and LHW124, were benchmarked.10 These FFs have been parametrized in-
vacuo, so it is not guaranteed that they also provide an accurate model of the liquid phase.
If only static properties, like the mass density, the static dielectric constant, or the global
liquid structure, are considered both FFs perform well, but subtle differences arise in the local
structure if the radial and spatial distribution and the orientation is studied in more detail.
In terms of dynamics, both FF fail in a correct modeling of the system. This is observable in
underestimation of the diffusivity and conductivity. The conductivity is a collective property,
thus a reliable and time-saving method for its calculation had to be identified. It has been
shown that the Einstein-Helfand technique fulfills this requirements. For this reason, it has
been implemented in the program g_current, which became part of the molecular dynamics
simulation package GROMACS.

The benchmark showed that methods to optimize IL FFs are necessary, which is the major
topic of this thesis and discussed in chapter 4 and chapter 5. Apart from an optimization of
the FF, also efficient simulations are desired, because a large number of them has to be per-
formed during the tuning and validation of the FF parameters. Most of the computing time is
spent for the calculation of the electrostatic forces. For large systems under periodic bound-
ary conditions (PBC) the Smooth-Particle-Mesh-Ewald (SPME) algorithm allows an efficient
treatment of the electrostatics, but an a-priori error estimate had been lacking. An error
estimate for SPME recently became available,13 but is only applicable to even interpolation
orders. Based on the connection of the various branches of mesh-based Ewald techniques and
error estimates104, an error estimate for an arbitrary set of SPME parameters was derived in
section 3.3, which also includes an a-priori error estimate of self-forces. This provides a round
figure of the error estimates. In order to numerically validate the estimate, the algorithm
has been implemented in the GROMACS tool g_pme_error, which also became part of the
official release. The tool allows one to estimate the error and tune the parameters in order to
a achieve a certain error limit.

For a minimization of the tuning time, a Message Passing Interface parallelization is also
provided. Yet GROMACS has been extended, such that highly optimized simulations in terms
of accuracy and speed are easily achieved and efficient analysis tools have been made avail-
able. These both aspects considerably affect the FF parameterisation and validation process,
described in chapter 5, because a large number of simulations is required in order to adapt
the parameters. In addition, the trajectories for the final validation have to be integrated
over a large number of steps for the sampling of a sufficiently large part of the phase space.
Yet already small gains in performance considerably contribute to the whole parameterisation
process.
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Equipped with the computational framework for highly efficient simulations, the first step in
the FF optimization process was the refinement of partial charges, as described in chapter 4.
It was shown that partial charges, which have been derived from isolated states, are not able
to correctly model the bulk effects found in the liquid phase. Characteristics of the charge
distribution of a liquid state are an increased dipole moment and reduced ionic net-charges,
compared to the isolated state, which has been shown by QM calculations1,7,15,167 and NMR
experiments154. For this reason, an alternative method by Blöchl55 (CAB) was introduced in
section 4.2.11 It is applicable to bulk systems which describe the liquid state. A liquid state
is only accessible by periodic boundary conditions, which actually enables the use of CAB,
because it relies on the charge density in reciprocal space n(k). Partial charges are obtained
from an adaption of a model charge density to the multipole expansion and width of the
calculated charge density n(k). A comparison of the CAB charges to partial charges derived
with standard approaches like RESP or CHELP, highlights the high sensitivity of all results
to the configuration of the atoms, especially if polarization plays a role such as in the liquid
phase. A comparison of CAB charges, derived from the bulk phase, to partial charges of the
CLaP FF, derived from isolated states, showed that CAB provides an improved description of
liquid characteristics given by charge transfer and polarization. The partial charges capture
these aspects by a reduced net-charge and a strong fluctuation of their average.

These effects can be quantified by the MDEC theory of Leontyev and Stuchebrukhov152, show-
ing that the reduced ionic net–charge is an effective and implicit description of polarization.
The MDEC approximation is only applicable, if the medium is strongly screening, such that
the electrostatic interactions converge within the local environment. For ILs, this has been
observed, because the correlations of the dipole moments already vanish beyond the nearest
neighborhood.15,167 In addition, the influence of the system size on the partial charges was
investigated and also a strong screening has been observed. This shows that the MDEC the-
ory is applicable to ILs and allows the reduction of the computational effort to determine the
partial charges, because even small systems contain enough information for an appropriate
fit. It was also shown that CAB charges appropriately describe the average molecular dipole
moment in the liquid compared to the results of a WA of the AIMD charge density.

In order to establish a generic FF moderate changes to the CAB charges are required. Thus
classical MD simulation were performed with slightly different sets of CAB based partial
charges. The effect on neither structural nor dynamical properties is strong. As expected,12 a
decreased mass density and faster dynamics are observed, if reduced net charges are involved,
but the CAB-based models do not differ significantly. Yet small modifications of the CAB
charges affect the MD simulations only slightly and a comparison of the partial charges for
different cation–anion combinations showed that the distributions are quite independent of the
ion combination. With that, a generic set of partial charges is constructed that allows a con-
siderable description of the cation dipole moment and is transferable to different imidazolium
based cations and anions.

The missing pieces for a multi-scale optimization technique were finally described in chapter 5.
A method for an adaption of the short-range parameter was developed,17 which provides the
theoretical basis for the construction of a transferable FF. Besides a theoretical framework,
the Python133 module PyPATEGRO, described in Appendix A, was implemented to allow one
a simple and user-friendly application. Two kinds of interactions, which are not completely
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independent from each other, are involved in this tuning step. The dihedral interactions are
connected to the 1–4 interactions and an appropriate adaption of the corresponding poten-
tials is required, if the partial charges or LJ parameters are changed. This is a comparably
straightforward task, while the optimization of the LJ parameters is more time-consuming
and is based on the minimization of an error function. Polarization strongly contributes to
the dynamics and is already parameterised in the partial charges, so the error function is con-
structed of solely static properties, such as different RDFs and the mass density at different
temperatures. For this reason, only short simulation times are required allowing a very fast
tuning.

As example system, the IL [MMIM][Cl] was used and considerable improvement of the accuracy
in terms of the reference data has been obtained. During the validation of the optimized FF,
an overestimation of dynamical properties is observed at low temperatures, but the behaviour
is predicted qualitatively correct compared to a polarizable FF149,150. At higher temperatures
the predicted conductivity converges to the experimental reference. This is expected to arise
from a too small dispersion interaction, which is also indicated by a too small first maximum
of the H1−Cl RDF. For this reason, very accurate modelling of the local structure is expected
to improve the overall description significantly. This is underlined by results for the heats
of vaporization which are quite small. Thus the applied technique allows a considerable im-
provement of the FF, but insufficiencies are still present, which are expected to vanish with a
decreasing deviation of the RDFs.

In summary, theories and computational tools were introduced, developed, and validated in
this thesis, which provide the foundation for the construction of a transferable RTIL FF. A
large data set has also been made available and the next steps are rather clear. Enough
computer time has to be allocated in order to optimize the short-range parameters for the
suggested set of generic force field charges. Also many possibilities for an improvement of the
parameter space sampling for the short-range interactions exists, but the basic framework,
provided here, is accessible and easily extensible.
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A. PyPaTEGRO: A Python Parameter
Tuning Engine for GROMACS

GPL3 Licensed.
Copyright 2010-2012 Florian Dommert (ICP, University Stuttgart)

A.1. Introduction and Installation

PyPATEGRO is a set of Python scripts and modules which has been developed to alleviate
force field parameterisation with the MD package GROMACS. It allows one to easily generate
input files that are required for the simulation, analysis, and submission to a queuing system.
Only a few requirements have to be met in order to use this software:

1. a Python interpreter (version 2.5 till 3.0),

2. the NumPy and SciPy packages,

3. a GROMACS distribution (version 4.4 or later), and

4. an OpenTorque queuing system.

The module is installed by extraction of the compressed source code into the $PYTHONPATH.
Some of the module files are also executable and contained in the directory pypategro/bin.
For this reason, the $PATH variable has to be set accordingly. After this steps, the tool is ready
to use.

A.2. Working mechanisms

To optimize short-range parameters, an error function is minimized by a conjugate-gradient
approach as described in subsection 5.2.1 detailledly. A short introduction is given here, as
well as some remarks on the implementation in the code.

Construction of the total error function εtot For reference data, that only consists of a
single value, such as the mass density or diffusion constants, the norm of the error is easily
given by the relative deviation:

ε =
y − yref
yref

=
y

yref
− 1.0. (A.1)

Though this is a reliable error norm in most of the cases, problems arise, if the reference
properties has a value of zero. Moreover for properties, which are characterized by a large set
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of points, such as the radial distribution functions, an error measure that consists just of a
single number is desired. To this end, the root mean square error between every point of the
reference and simulation data is considered:

εRMSE =

√√√√ 1

N

N∑

i=1

ε2i . (A.2)

Furthermore, to achieve consistency with the errors of the single point properties, for all
points of the data set the relative error εi is chosen, such that equation (A.2) reduces to
equation (A.1), if the data set consists just of a single point.

Finally only a reasonable normalization is required. Several possibilities are implemented and
determined by the function rse_func. One possibility, which is also applied this thesis, is to
use the minimum of the absolute values of yi,ref which is larger than zero. This assures, that
the error is compatible to cases with yi,ref & 0, to maintain the relative character of the errors
and it is also applicable to functions, that may have negative values, which is not the case
for the RDF. For the RDF also the possiblity exists to leave out the normalization, because
it converges to 1, which can used as normalization factor. So far, one has to comment and
uncomment the function rse_func in order to use the different normalization methods for
equation (A.2).

Finally, the total error εtot, which has to be minimized, is defined by the sum of the squares
of all single errors for the reference properties α:

εtot =
∑

α

ε2α. (A.3)

For the single value properties εα is given by equation (A.1) and equation (A.2) applies to
properties that are defined by a whole set of data points.

Adaptive step width control Since the error minimization routine is based on the derivat-
ives, which are obtained by the finite differences method, the estimate of the error depends on
the accuracy, heavily. While a too large step width δ decrease the accuracy of the derivative
at the applied point p0 in the parameters space Pk, a decrease of δ shrinks the range of the
validity of the error expansion around p0. For this reason, an adaptive step width control is
applied, which automatically decreases δ for the finite differences method and keeps the change
of the parameters within given bounds, to assure that the error estimate is applicable. Hence,
if the derivatives are accurate enough, the error should decrease monotonically. However, δ
may also not become to small, because the risk of being trapped in a local minimum increases
with decreasing δ. To improve the sampling of the error function in the high-dimensional
parameter space, δ is adapted for the subsequent simulations, corresponding to the changes
of the parameters.

Order of the finite differences scheme In PyPATEGRO, a first– and a second–order finite
differences schemes can be applied to obtain the derivatives for the Taylor expansion. The
choice is controlled by the option -n of the main script ppgrun.py.
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A.3. Input files

A.3.1. The ppg input file

The ppg input file controls almost all options for PyPATEGRO. It is divided into different
sections that are described in the following. One always has to bear in mind, that if an option
is defined twice, the latter one will be chosen without warning.

[ defaults ] This section controls the main setup for the simulation environment.

• ppn_apbs: processor per node for analysis

• wallt_pbs: walltime for analysis

• rdf_ndx: GROMACS indexfile for RDF analysis

• ppdir: directory of PAPAteGRO and templates

• wdir: base directory for the runs and location of index and mdp files

• source: optional argument, if given a corresponding line will be inserted into the queue
scripts

• dt: restart time for MSD calculation and dt for g_rdf

• dtconv (0.0): time interval for frames of the converted tractory, containing only whole
molecules, 0.0 corresponds to every frame

• max_delta (1.0): maximum change of the parameters in units of the stepwidth; if set to
-1, the parameters are adapted without restrictions

• qprefix (PBS): Different queuing system usually allow to set the job options via com-
mand lines starting with a special prefix, such as #PBS for the OpenTorque system.
qprefix allows to choose the prefix behind the hash symbol.

• mdp: a GROMACS mdp file that determines the main simulations parameters such as
cut-offs, PME options, saving frequency of the trajectories, ...; the file has to be fully
functional and only some options will be changed by PyPATEGRO

• nmol_ene: number of molecules/ion pairs contained in the system; important for the
calculation of energies in mol

[ templates ] Template files for the simulations and analysis for the OpenTorque queueing
system that allows to submit jobs from the compute nodes.

• simulation: simulation template, usually gmx.pbs.templ

• analysis: analysis template, usually analysis.apbs.templ

[ exp_fit ] Polynomial coefficients for a temperature dependency of the properties density
and MSD can be provided and the reference data is chosen from this function if no value is
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given in section [ reference ]. The polynomial will be of the form:

f(T ) =
n∑

i=0

aiT
i, (A.4)

and the order depends on the number n of given parameters. The temperature T is assumed
to be in K. For the MSD also the molecule name has to be set as given in the GROMACS
topology file.

• density a0 a1 . . .

• msd molecule a0 a1 . . .

[ fit_dihedrals ] If a fit of the dihedral interactions as described in section 5.1 should
be performed, the molecule names mol and the reference topologies molref.top have to be
specified in this section for every molecule separately:

mol molref.top

If the section is not given, the fit will not be performed.

[ atomtypes ] This section controls the tuning of the Lennard-Jones parameters ε and σ.
Corresponding to the naming in the GROMACS topology file, the atomtypes, kind of LJ
parameter (eps or sig for ε and σ, respectively), and stepwidth for the finite differences
method in units of parameters.

Cl sig 0.05
Cl eps 0.1

If no parameters are provided in the section input files for simulations with the provided
topology files are generated, which is very useful for the preparation of validation runs.

[ mdrun ] Options for mdrun and mpiexec

• -np: number of processors

• -npme: number of dedicated PME nodes

• -maxh: maximal runtime for the queue

[ mdp ] Common options for the simulations.

• ref-t: temperature for the different simulations

• ref-p: pressure for the simulations in corresponding order to the temperatures. If not
given, a pressure of 1 bar will be used.

• nsteps_em: number of steps for the energy minimization
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• emstep: maximal step size for the steepest descent energy minimization step

• emtol: if the maximal force in the system is smaller than this value (force is given in
kJ/(mol nm) the energy minimization will terminate

• nsteps_eq: number of steps for the equilibration stage

• nsteps_md: number of steps for the production stage

• nsteps_hvap: number of steps for the vacuum calculation if the heats of vaporization
should be calculated

• equi_time: fraction of the production run, which should be omitted for the analysis

[ simulation ]

• top_include: files which are included in the topology files. If the files are not found
in the given path, which is assumed to be relative to the ppg input file, also the topol
directory relative to the ppg input file will be scanned.

• structure: structure files with a start configuration

[ reference ] So far, PyPATEGRO is able to include the mass density and RDFs into the
error function for an optimization of the SR interactions. The input in this section is always
organized as follows. In the first column, a keyword followed by a number without space
determines which property should be calculated from the simulation. If the same property for
different temperatures are involved the numbers have to differ, otherwise only the last input
line will be considered. In the second column the weight for the error of this property in
the error function is set. The third column always determines the temperature for which the
property should be analyzed. In the following columns property specific options are set, apart
from the last column, which provides the reference data for the error function. The input for
the mass density and RDF is organized as follows:

• Density

– reference values are expected in SI-units, kgm−3

– sample input line

density1 <weight> <temperature> <reference value>

• for the calculation of the RDF between two groups a sample input line looks like:

rdf1 <weight> <temperature> <group1> <group2> <reference file>

• group1 and group2 correspond to the group numbers in the index file, which is set in the
defaults section, starting with 0 and should have a certain content structure as described
in subsection A.3.2.

• the range where the error will be calculated is determined by the range provided in the
reference file

Apart from parameter optimization, PyPATEGRO also is able to create a set of simple MD
simulations at different temperatures and pressures. The following options for the refer-
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ence section prepare the data for an easy calculation of different properties. In the future,
PyPATEGRO will be extended such that these properties can also be included in the error
function. Therefore the option for the the weight and reference data is already included, but
not of use.

• MSD

– the reference values has to be in units of 10−5 cm2/s

– sample input line:

msd1 <weight> <temperature> <molecule> <nmol> <reference value>

– the option molecule determines which molecule species should be considered, an
the naming has to be consistent with the name given in the topology

– nmol sets the number of molecules which have to be analyzed

– the ouput of the analysis is in the directory g_msd, which is a subdirectory of the
simulation directory for a certain temperature

– the tool calc_msd.py allows to fit the data and obtain the diffusion constants

• Conductivity

– derived from fit of straight line to MSD of translational current→ Einstein-Helfand
method

– the SI-unit for the conductivity, Sm−1, is expected as reference value

– sample input line:

cond1 <weight> <temperature> <nshift> <reference value>

– the parameter nshift determines after how many frames a new start point for the
averaging should be set

– the tool calc_eh.py allows to fit a straight line to the results, given in the file
dsp.xvg which can be found in the subdirectory g_c_xtc of the simulation directory

• Heat of vaporization

– derived from the enthalpy difference of the liquid and gas phase

– ∆Hvap is derived in kJmol−1

– sample input line:

hvap1 <weight> <temperature> <conf> <q_liq> <q_gas> <reference value>

– for the calculation of the enthalpy in the gas phase, a corresponding configuration
conf is required

– if the charging of the liquid and gas phase is very different, the respective net–
charges can be set with q_liq and q_gas, respectively

– the tool hvapor.py postprocesses the files liq_enthalpy.xvg and vac_energy.xvg,
which are contained in the subdirectory g_energy of the simulation direcory, and
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derives the heats of vaporization

A.3.2. Indexfiles

For some kinds of analysis, index files are required for the corresponding GROMACS tools.
These have to contain a certain structure, which is described in the following

RDF For the calculation of the RDF, the index file has to start with following groups:

1. system,

2. cation,

3. anion,

but afterwards the groups can be in arbitrary order.

MSD For the calculation of the MSD, index files are required for the different molecule
species. They have to be named like the molecule as given in the topology file with the suffix
.ndx. Each index group has to contain a single molecule. Thus for a system of n molecules,
n groups should be contained in the index file.

A.4. Example for a working cycle

The main script of PyPATEGRO is ppgrun.py. Depending on the provided options and
input, it is able to generate a set of simulations, analyze the error from reference data and
minimize the error function. For the generation of the simulation set, a PyPATEGRO input file
ppg.in is needed, which controls various options as described above, as well as a GROMACS
topology file topol.top. For this example, it is assumed that we are in the working directory,
determined by the option wdir.With a command like:

ppgrun.py -i ppg.in -t topol.top -n 2 -m generation -o run1

the directories run1a and run1b are created containing several subdirectories depending on
the parameters which should be tuned. The option -n 2 determines that a second-order finite
differences scheme should be applied for the error minimization. If the standard templates
for the simulation and analysis scripts, which are submitted to the queueing system. For the
submission of the simulations, the script submit_run.sh has been prepared and the generated
runs are started like this:

submit_run.sh run1a
submit_run.sh run1b

The simulation is divided into three parts. At first an energy minimization is performed,
followed by an equilibration run. Finally the production run is automatically submitted.
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When a simulation has finished the analysis script is submitted which finally processes the
trajectory and derives the desired data. If everything has finished the parameters can be
optimized.

ppgrun.py -i ppg.in -n 2 -m analysis -d run1 -o run2

Now ppgrun.py is analyzing the data and writes a logfile run1.log and a topology file
run1.top with the optimized parameters in the directory run1a. Finally a new set of simu-
lations based on the optimized parameters in run1.top is generated in the directories run2a
and run2b. Thus everything is ready for the next iteration step. If the option -o is omitted no
new output directories will be created. Examples of input files can be found in the directory
pypategro/examples.
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