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Kurzfassung

Diese Arbeit beschäftigt sich mit der Dynamik kolloidaler Systeme unter ver-
schiedenartigen Nichtgleichgewichtsbedingungen. Kolloide bestehen im Allgemei-
nen aus Teilchen oder Tröpfchen, die fein in einem sogenannten Dispersionsmedium
wie beispielsweise Wasser verteilt sind. Sie gehören zur Klasse der mesoskopischen
Systeme, deren charakteristische Längenskala sich von einigen Nanometern bis hin
zu einigen Mikrometern erstreckt. Neben Kolloiden umfassen mesoskopische Sys-
teme eine Vielzahl interessanter Objekte angefangen von Proteinen über moleku-
lare Motoren, bis hin zu lebenden Organismen wie Bakterien [1]. Zwei Eigen-
schaften sind für solche Systeme charakteristisch. Erstens ist mit der kleinen
Längenskala zumeist auch eine entsprechend kleine Energieskala verbunden, die
sich im Bereich der thermischen Energie bewegt. Damit kommt thermischen Fluk-
tuationen eine entscheidende Rolle zu. Zweitens sind insbesondere biologische
Systeme oft fernab des thermischen Gleichgewichts angesiedelt. Da die klassische
Thermodynamik weder Fluktuationen beinhaltet noch für die Behandlung von
Nichtgleichgewichtszuständen ausgelegt ist, ist sie für die Beschreibung solcher
Systeme ungeeignet. Die stochastische Thermodynamik behebt diese beiden Prob-
leme indem sie thermodynamische Konzepte wie Arbeit, Wärme oder Entropie
unter relativ allgemeinen Nichtgleichgewichtsbedingungen auf der Ebene einzelner
Trajektorien beschreibt. Eckpfeiler dieser Theorie sind der erste Hauptsatz entlang
fluktuierender Pfade [2] sowie die Definition einer stochastischen Entropie auf Tra-
jektorienebene [3]. Wesentlich ist in diesem Zusammenhang, dass die stochastische
Thermodynamik lediglich die Kopplung an ein Wärmebad erfordert, das sich im
thermischen Gleichgewicht befindet. Das mesoskopische System ist in dieser Hin-
sicht keinerlei Einschränkung unterworfen.
Durch die Entwicklung optischer Pinzetten [4, 5] und der Rasterkraftmikrosko-

pie [6] wurde die Manipulation und Beobachtung mesoskopischer Systeme auf ex-
perimenteller Ebene möglich. Kolloide nehmen im Hinblick auf die stochastis-
che Thermodynamik insofern eine exponierte Rolle ein, als dass sich mit ihnen
experimentell gut kontrollierbare Systeme mit wenigen Freiheitsgraden kreieren
lassen mit denen man fundamentale Fragestellungen angehen und theoretische
Vorhersagen testen kann [7,8]. Andererseits sind Kolloide auch für komplexe Fra-
gestellungen gut geeignet, da sie ebenso in Form von wechselwirkenden Vielteil-
chensystemen auftreten, die auch in technischen Anwendungen eine Rolle spielen
können [9].
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Kurzfassung

Ziel dieser Arbeit ist es, verschiedene Aspekte der Dynamik kolloidaler Sys-
teme abseits des thermischen Gleichgewichts zu beleuchten. Dazu gehören ein-
erseits fundamentale Problemstellungen der stochastischen Thermodynamik, wie
etwa die Messung von Dissipationsraten oder die Rolle von verdeckten Freiheits-
graden, andererseits aber auch die Untersuchung kollektiver Phänomene, die erst
durch das Zusammenspiel vieler Freiheitsgrade zustande kommen. Beispiele hier-
für sind die Suche nach einer effektiven Nichtgleichgewichtstemperatur oder die
Bildung von Kolloidkristallen. Um diese Fragestellungen anzugehen, verwenden
wir zwei Systeme. Das erste besteht aus zwei miteinander wechselwirkenden kol-
loidalen Teilchen, die mittels einer optischen Pinzette auf zwei separate Kreis-
bahnen gezwungen werden. Mit diesem experimentell gut kontrollierbaren Aufbau
werden wir die grundlegenderen Problemstellungen dieser Arbeit angehen. Das
zweite System ist eine kolloidale Suspension, die zur Klasse der wechselwirkenden
Vielteilchensysteme gehört. Wir setzen diese Suspension einem externen Scher-
fluss aus und treiben es damit aus dem thermischen Gleichgewicht. Wir nutzen
dieses System, um Nichtgleichgewichtseffekte zu untersuchen, die sich aus dem
Zusammenspiel vieler Teilchen ergeben.

Kapitel 2: Brownsche Dynamik.– Kapitel 2 gibt einen kurzen Überblick über
die dynamischen Grundgleichungen, die für die restlichen Kapitel benötigt wer-
den. Dazu gehören die Langevin Gleichung, die Fokker-Planck Gleichung sowie
ein Pfadintegralzugang zur Beschreibung diffundierender Systeme. Detaillierte
Darstellungen finden sich in einschlägigen Lehrbüchern [10–13].

Kapitel 3: Dissipation.– Um auf eine umfassende Beschreibung des Nichtgle-
ichgewichts hinzuarbeiten, ist es sinnvoll mit Zuständen zu beginnen, die dem
Gleichgewicht am ähnlichsten sind. Stationäre Nichtgleichgewichtszustände (NESS1)
erfüllen diese Anforderung insofern, als dass sich ihre Eigenschaften zeitlich nicht
ändern. Der entscheidende Punkt, der solche Zustände von Gleichgewichtszuständ-
en unterscheidet, ist die ständige Dissipation von Wärme. Die Messung der Dis-
sipationsrate in Experimenten ist daher ein wichtiger Aspekt bei der Charakteri-
sierung eines NESS. Während die Messung der dissipierten Wärme in makrosko-
pischen Systemen über kalorimetrische Methoden realisiert werden kann, ist dies in
mesoskopischen Systemen wegen der sehr kleinen Dissipationsraten nicht möglich.
Der derzeit einzige Weg, Dissipation in mesoskopischen Systemen zu messen, nutzt,
neben Korrelationsfunktionen, die lineare Antwort des Systems auf externe Stör-
ungen [14]. In kolloidalen Systemen ist die experimentelle Bestimmung Letzterer
jedoch häufig ein schwieriges und aufwändiges Unterfangen. Die Aufzeichnung von
Trajektorien kolloidaler Teilchen hingegen ist leicht und präzise durchführbar. In

1nonequilibrium steady state
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Kapitel 3 stellen wir eine Methode vor wie Dissipationsraten allein aus den Tra-
jektorien der kolloidalen Teilchen erschlossen werden können [15]. Dabei muss das
System in keinerlei Form gestört werden. Wir testen diese Methode anhand einer
überdämpften Langevindynamik-Simulation des oben beschriebenen kolloidalen
Zweiteilchensystems und wenden sie auf experimentelle Daten2 an. Darüber hinaus
zeigen wir wie sich hydrodynamische Wechselwirkungen in die Methode integrieren
lassen, ohne dass zusätzliche Messdaten erforderlich werden.

Kapitel 4: Verdeckte Freiheitsgrade.– Die Beschreibung mesoskopischer Sys-
teme erfolgt in der Regel auf eine vergröberte Art und Weise, wie etwa in der
Langevin Gleichung [10], die die Lösungsmittelteilchen bei der Diffusion eines
kolloidalen Teilchens als effektiv weißes Rauschen beschreibt. Eine solche ef-
fektive Beschreibung von Freiheitsgraden ist in der Regel dann gerechtfertigt,
wenn eine klare Zeitskalenseparation in der Dynamik beobachteter und verdeckter
Freiheitsgrade vorliegt. Ist dies nicht der Fall, kann es zu Inkonsistenzen und
Widersprüchen kommen. In Kapitel 4 untersuchen wir diesen Sachverhalt für die
Entropieproduktion in einem NESS [16]. Konkret betrachten wir für das oben
beschriebene Zweiteilchensystem das Fluktuations-Theorem (FT) [3], welches eine
tiefe Symmetriebeziehung für die Verteilung der Fluktuationen der Entropiepro-
duktion beschreibt. Bezieht man in die Berechnung der Entropieproduktion nur
eines der beiden Teilchen mit ein, lässt die Wechselwirkung mit dem zweiten
(verdeckten) Teilchen aber dennoch bestehen, so erhält man eine scheinbare En-
tropieproduktion, für die die Voraussetzungen des FT verletzt sind. Es stellt sich
heraus, dass die scheinbare Entropie dennoch näherungsweise eine solche FT-artige
Symmetrie erfüllt. Wir diskutieren warum dieser Befund sowohl für kleine als
auch für große Entropiefluktuationen typisch ist, während im Übergangsbereich
Abweichungen zu erwarten sind. Für eine spezielle Wahl der Parameter lassen
sich diese Abweichungen klar herausstellen. Für den Fall der Entropieproduk-
tion in sehr kurzen Zeitintervallen zeigen wir zudem, dass auch die scheinbare
Entropieproduktion ein exaktes FT erfüllt.

Kapitel 5: Effektive Temperatur und das Fluktuations-Dissipations-Verhält-
nis.– Im Gleichgewicht ist die Temperatur eng mit dem Fluktuations-Dissipati-
ons-Theorem (FDT3) verbunden und kann über das sogenannte Fluktuations-
Dissipations-Verhältnis (FDR4) bestimmt werden. Das FDT verbindet Gleich-
gewichtsfluktuationen mit der linearen Antwort eines Systems auf externe Stör-

2Alle experimentellen Daten, die in dieser Arbeit verwendet werden, wurden von J. Mehl be-
reitgestellt.

3fluctuation-dissipation theorem
4fluctuation-dissipation ratio
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Kurzfassung

ungen, während das FDR korrespondierende Korrelations- und Antwortfunktionen
ins Verhältnis setzt. Im Nichtgleichgewicht gilt das FDT in dieser Form nicht
mehr, ebenso verliert das Temperaturkonzept seine Gültigkeit. Für kleine Stör-
ungen eines NESS lässt sich jedoch noch immer eine lineare Antwort definieren.
Gemeinsam mit den in NESSs ebenfalls gültigen Korrelationsfunktionen erhält
man damit auch im stationären Nichtgleichgewicht ein wohldefiniertes FDR. Es ist
daher ein naheliegender Ansatz, über das FDR eine effektive Temperatur für solche
Zustände einzuführen [17]. Kürzlich wurde gezeigt, dass das FDT in NESSs im All-
gemeinen einen additiven Korrekturfaktor beinhaltet, der nur ein zeitabhängiges
FDR zulässt [18–23]. Eine sinnvolle Temperaturdefinition über das FDR schlägt
damit fehl. In Gläsern und unterkühlten Suspensionen wurden jedoch FDRs
beobachtet die im Langzeitlimes näherungsweise zeitunabhängig werden [24,25].
In Kapitel 5 verfolgen wir die Bewegung eines zufällig gewählten Teilchens einer

gescherten kolloidalen Suspension in einer Langevindynamik-Simulation. Konkret
untersuchen wir Geschwindigkeitskorrelationen und die lineare Antwort der Ge-
schwindigkeit dieses Teilchens auf eine kleine Kraftstörung. Für moderate Dichten
finden wir für das zugehörige FDR einen näherungsweise zeitunabhängigen Ver-
lauf [26]. Hierbei beobachten wir dieses Verhalten nicht für das Langzeitverhalten
des FDRs, sondern für die anfängliche Relaxation der Korrelations- und Antwort-
funktionen. Darüber hinaus untersuchen wir ein einfaches Modellsystem bestehend
aus einem einzelnen Teilchen in einer harmonischen Falle ebenfalls im linearen
Scherfluss. Auch für dieses System beobachten wir ein näherungsweise zeitun-
abhängiges FDR für große Fallenstärken. Um einen Einblick in den Ursprung
dieses Befundes zu erhalten, leiten wir das FDT in einer hybriden Form her, die
sowohl additive als auch multiplikative Anteile beinhaltet. Für beide Systeme
führt ein räumliches Einschränken der Bewegungsfreiheit der Teilchen dazu, dass
der additive Anteil vernachlässigbar und damit das FDR näherungsweise konstant
wird. Darüber hinaus untersuchen wir die mit dem FDT eng verwandte Einstein-
Relation, die im Gleichgewicht die Mobilität und die Diffusionskonstante des kol-
loidalen Teilchens in Verbindung setzt [27]. Über eine effektive Einstein-Relation,
die das zuvor bestimmte, näherungsweise konstante FDR entält, finden wir auch
im gescherten System eine approximative Verknüpfung dieser beiden Größen.

Kapitel 6: Scherinduzierte Kristallisation.– Im letzten Kapitel verlassen wir
die Domäne der stationären Zustände und widmen uns der zeitlichen Entwicklung
eines Systems aus einem metastabilen Zustand heraus. Genauer gesagt unter-
suchen wir den Kristallisationsprozess in einer übersättigten kolloidalen Suspen-
sion im Scherfluss. Bisherige Arbeiten haben noch kein abschließendes Ergeb-
nis über den Einfluss der Scherung auf die Entwicklung eines Kristalls geliefert.
Einerseits wurde berichtet, dass ein linearer Scherfluss die Kristallisation erle-
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ichtert [28–34], andererseits davon, dass die Kristallisation durch Scherung er-
schwert wird [35–37]. Auch optimale Scherraten für den Kristallisationsprozess
wurden beobachtet [38–43].
In diesem Kapitel verwenden wir eine Langevindynamik-Simulation, um diese

Fragestellung zu untersuchen [44]. Wir beobachten eine maximale Kristallisations-
rate bei einer endlichen Scherrate und erklären dies dadurch, dass sich der Scher-
fluss auf unterschiedliche Phasen der Kristallisation in unterschiedlicher Weise
auswirkt. Zu Beginn der Kristallisation, d. h. in der Keimbildungsphase, er-
schwert der Scherfluss die Bildung kristalliner Nuklei. Während der Wachstums-
phase des Kristalls hingegen beschleunigt der Scherfluss den Prozess. Um die
zugrunde liegenden Mechanismen zu analysieren verwenden wir ein diskretes Zu-
standsmodell. Der Zustandsraum umfasst dabei fünf Zustände, denen Teilchen
je nach Konfiguration ihrer direkten Umgebung zugeordnet werden. Dabei unter-
scheiden wir die Zustände flüssig, vorstrukturiert sowie die drei kristallinen Gitter-
formen hcp5, bcc6 und fcc7. Eine Diskussion der Übergangsraten ergibt, dass die
erschwerte Nukleation durch die Zerstörung noch relativ loser Strukturen in der
Flüssigkeit verursacht wird, während die Scherkräfte nicht stark genug sind, be-
reits bestehende Nuklei in ihremWachstum nachhaltig zu beeinträchtigen. Für das
beschleunigte Wachstum extrahieren wir die funktionale Abhängigkeit der Wachs-
tumsrate vom Scherfluss aus den Simulationsdaten. Mittels eines einfachen Mo-
dells bringen wir diese funktionale Form mit der durch den Scherfluss verursachten
Konvektion in Verbindung. Zudem diskutieren wir den Einfluss der Scherung auf
die Zusammensetzung kristalliner Cluster. Eine Erhöhung der Scherrate stabili-
siert dabei bcc- im Verhältnis zu hcp- und fcc-Strukturen, was folglich zu einem
größeren bcc-Anteil im Kristall führt.

5hexagonal close-packed
6body-centered cubic
7face-centered cubic
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Abstract

This thesis is dedicated to the nonequilibrium dynamics of colloidal systems. Col-
loids consist of particles or droplets dispersed in a continuous medium. They
belong to the class of mesoscopic systems at typical length scales ranging from a
few nanometers to several micrometers. In addition to colloids, such systems span
proteins, molecular motors, up to living organisms such as bacteria [1]. The meso-
scopic regime is mainly characterized by two important properties. First, the small
length scale typically entails an accordingly small energy scale in the order of the
thermal energy. Hence, thermal fluctuations play a prominent role. Second, meso-
scopic systems, especially biological ones, occur mostly under far-from-equilibrium
conditions. For the description of such systems, classical thermodynamics is in-
adequate, as it does not incorporate fluctuations and involves equilibrium as a
prerequisite. Stochastic thermodynamics eliminates these problems by extending
thermodynamic concepts such as work, heat, and entropy to the level of fluctuat-
ing trajectories under fairly general nonequilibrium conditions. The cornerstones
of this approach, which has been developed over the past decades, are the first law
along fluctuating trajectories [2] and the definition of a stochastic entropy [3]. A
central quality of this framework is that it merely requires the coupling to an equi-
librated heat bath, while the mesoscopic system itself can be situated arbitrarily
far from equilibrium.
The experimental observation and manipulation of mesoscopic systems has be-

come possible mainly due to the development of optical tweezers [4,5] and atomic
force microscopy [6]. Regarding stochastic thermodynamics, colloids play a promi-
nent role in the sense that they provide ideal systems to construct well-controllable
setups with few degrees of freedom that can be used to approach fundamental ques-
tions and test theoretical predictions [7, 8]. However, the complexity of colloids
can easily be increased to complex, interacting many-body systems which may be
of interest for technological applications as well [9].
The goal of this thesis is to examine different aspects of the nonequilibrium

dynamics in colloidal systems. This task covers fundamental questions such as
the measurement of dissipation or the role of hidden degrees of freedom as well
as collective phenomena including the quest for an effective nonequilibrium tem-
perature and the formation of colloidal crystals. In order to tackle these points,
we employ two different systems. The first of them consists of two interacting
colloidal particles driven along two separate rings by optical tweezers. We employ
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this experimentally well-controllable system to approach the more fundamental
questions of this thesis. The second system is a colloidal suspension belonging to
the class of complex interacting many-body systems. We subject this suspension
to an external shear flow and use it to study nonequilibrium phenomena arising
from the interplay of many particles.

Chapter 2: Brownian dynamics.– In Chapter 2, we briefly review the basic
dynamical concepts we will need for the subsequent chapters. These concepts
include the Langevin equation, the Fokker-Planck equation, and a path-integral
approach for the description of diffusing systems. More detailed and comprehensive
presentations are given in several textbooks [10–13].

Chapter 3: Dissipation.– In order to study nonequilibrium, it is sensible to
start with nonequilibrium steady states (NESSs). Such states are similar to equi-
librium in the sense that their properties do not change with time. The essential
difference distinguishing a system in a NESS from an equilibrium system is the
constant dissipation of heat. Therefore, the measurement of the dissipation rate
is an important aspect in the characterization of NESSs. In macroscopic systems,
the dissipated heat can be obtained from calorimetric methods, whereas in a meso-
scopic system this route is not accessible due to the small size of the dissipation
rates. So far, the only way to measure dissipation at this scale requires both the
measurement of correlation functions and the linear response of the system to an
external perturbation [14]. However, determining the latter in colloidal systems
is mostly difficult and time-consuming. Yet, precise information about the trajec-
tories of colloidal particles is often readily available. In Chapter 3, we present a
method extracting the average dissipation rate exclusively from particle trajecto-
ries [15]. Hence, there is no need to perturb the system in any way. We test the
validity of this method using an overdamped Langevin dynamics simulation of the
colloidal two particle system described above and apply the method to experimen-
tal data.8 Moreover, we show how hydrodynamic interactions can be incorporated
in this scheme without requiring further data.

Chapter 4: Hidden degrees of freedom.– The description of mesoscopic sys-
tems involves in general some sort of coarse graining, for instance, in the Langevin
equation [10], which treats the solvent particles in the diffusion of a colloidal par-
ticle as an effectively white noise. In general, an effective treatment of hidden
degrees of freedom is justified if there is a clear-cut time-scale separation in the
dynamics of observed and hidden degrees of freedom. Otherwise, inconsistencies

8All experimental data in this thesis were provided by J. Mehl.
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and ambiguities may arise. In Chapter 4, we investigate this issue for the en-
tropy production in a NESS [16]. Specifically, we consider the two-particle system
described above and focus on the fluctuation theorem (FT) [3], a deep symmetry
relation for the probability density of entropy fluctuations. In the evaluation of the
entropy production, we include only one particle, pretending not to know about
the presence of the other. Hence, we observe an apparent entropy production, for
which the requirements of the FT are not met. Surprisingly, we still observe an
approximate FT-like symmetry even for the apparent entropy production. We dis-
cuss why this result is typical both for small and large entropy productions, while
deviations are expected for intermediate values. By fine-tuning the parameters,
we expose these deviations. Moreover, we show that, for the entropy production in
the limit of very short time intervals, an exact FT is obeyed even in the presence
of hidden degrees of freedom.

Chapter 5: Effective temperature and the fluctuation-dissipation ratio.– In
thermal equilibrium, temperature is closely related to the fluctuation-dissipation
theorem (FDT) and can be measured via the so-called fluctuation-dissipation ra-
tio (FDR). The FDT connects equilibrium fluctuations to the linear response of a
system to an external perturbation and the FDR defines the ratio of correspond-
ing correlation and response functions. Beyond the linear response regime around
equilibrium the FDT breaks down. Likewise does a well-defined temperature con-
cept cease to exist. Yet, around a NESS, we can still define a linear response
regime and measure correlation functions. Hence, the FDR can be observed as
well. It is tempting to define an effective nonequilibrium temperature via such an
FDR [17]. However, it has recently been shown that a generalization of the FDT in
a NESS involves an additive excess term causing a time-dependent FDR [18–23].
Consequently, the FDR does not qualify as an effective nonequilibrium temper-
ature. Yet, in glassy and supercooled suspensions FDRs have been observed to
become time-independent in the long-time limit [24,25].
In Chapter 5, we track the motion of a tagged particle in a sheared colloidal

suspension. Specifically, we focus on the velocity autocorrelation function and the
linear response of the particle to a small force. For moderate densities, we find an
approximately time-independent FDR [26]. In contrast to the time-independent
FDR in glassy and supercooled systems, we do not observe this behavior in the
long-time limit but for the initial relaxation of the response and correlation func-
tions. Moreover, we study a simple model system consisting of a single colloidal
particle in a harmonic trap subject to linear shear flow. For this system, we observe
an approximately time-independent FDR as well if the trap strength is sufficiently
large. In order to gain more insight into the origin of these results, we derive the
FDT in a hybrid form containing both additive and multiplicative contributions.
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For both systems, a confinement of the motion of the particles leads to a shrinking
additive contribution and thus to a more and more time-independent FDR. More-
over, we investigate the Einstein relation connecting the mobility and diffusivity
of, e. g., a colloidal particle in thermal equilibrium. We employ the approximately
time-independent FDR to define an effective Einstein relation [27]. We check this
relation for the simulation data and find a good agreement

Chapter 6: Shear-induced crystallization.– In the last chapter, we abandon
the stationarity condition and focus on the time evolution of a system out of a
metastable state. Specifically, we investigate the crystallization of a supersaturated
colloidal suspension subject to shear flow. Previous reports on the effect of shearing
on the crystallization process are not conclusive. On the one hand, the facilitation
of crystallization has been reported [28–34]. Others have observed a shear-induced
inhibition of the solidification process [35–37]. Also optimal strain rates for which
the crystallization proceeds fastest have been found [38–43].
In order to investigate the influence of a linear shear flow on the crystallization

process in a supersaturated charge-stabilized suspension in three dimensions, we
perform Langevin dynamics simulations [44]. We observe the fastest crystallization
for a finite strain rate, supporting the conjecture of an optimal strain rate. We
explain this behavior as a result of two counteracting shear-induced effects which
become important at different stages during the evolution of the crystallization
process. At the nucleation stage, shear flow inhibits the formation of crystalline
clusters, whereas at the growth stage the shear flow accelerates the development
of the crystal.
In order to analyze the underlying mechanisms, we employ a discrete state

model. The state space comprises five states to which we assign single particles ac-
cording to their structural environment. We distinguish liquid, pre-structured, and
the three crystalline structures, hcp (hexagonal close-packed), bcc (body-centered
cubic), and fcc (face-centered cubic). A discussion of the transition rates shows
that the inhibition of nucleation under shear flow is caused by the shear-induced
destruction of a pre-structuring in the liquid, while the shearing forces are too
weak to cause significant damage to existing crystalline clusters. Regarding the
shear-enhanced crystalline growth, we are able to extract the functional depen-
dence of the growth rate on the strain rate from the data. Using a simple model,
we connect this functional form to shear-induced convection. Furthermore, we
discuss the influence of the shearing on the composition of crystalline clusters and
find that the shear flow stabilizes bcc in relation to hcp and fcc and thus allows
for larger bcc domains in the crystal.
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1. Introduction

Thermodynamics describes how macroscopic systems consisting of a vast number
of interacting constituents exchange work and heat with their environment. This
knowledge has been exploited in various applications, most prominently in the
construction of heat engines. The Stirling motor, for instance, employs a cyclic
sequence of isochoric and isothermal processes to convert heat into mechanical
work. The construction of such an engine at the mesoscale, i. e., at typical length
scales in the order of tens of nanometers up to a few micrometers, and thus in the
regime of colloids, biomolecules, viruses, and bacteria [45], could provide interest-
ing prospects for future applications. Recently, Blickle and Bechinger did indeed
succeed in the construction of an analog of the Stirling engine at the scale of a
few micrometers [46], see Fig. 1.1. In their engine, the role of the working gas
is played by a single colloidal particle, while cylinder and piston are replaced by
a harmonic potential created by optical tweezers [4, 5]. The mesoscopic equiva-
lent of the isothermal compression and expansion steps is realized by changing the
stiffness of the harmonic potential and thus the volume accessible to the particle.
Beside the compression and expansion of the working gas, the Stirling process in-
volves isochoric heating and cooling. These steps require an alternating coupling
to a hot and a cold heat bath, which is realized through an almost instantaneous
temperature change in the solvent surrounding the colloidal particle generated by
a second laser.
The most important difference between a macroscopic and a mesoscopic engine

is the role of thermal fluctuations. For a macroscopic system, the characteristic
energy scale is much larger than the thermal energy and fluctuations are irrelevant.
At the mesoscale, however, typical energies reach the order of the thermal energy
and fluctuations play a prominent role [1]. Consequently, the sharp value for the
extracted work per cycle in a macroscopic Stirling engine turns into a stochastically
fluctuating quantity which is different for every cycle in the case of a mesoscopic
engine. Yet, these fluctuating values for the extracted work still follow a systematic
distribution, and one can still make exact statements, e. g., about the average
work extracted over many repetitions. Moreover, in the limit of very slow cycles,
the mesoscopic engine approaches an efficiency which corresponds to the one of a
macroscopic Stirling engine [46,47].
This colloidal system constitutes an impressive example of how fundamental is-

sues can be tackled at the mesoscopic scale. Colloids, in general, have proved very
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1. Introduction

Figure 1.1.: Sketch of the macroscopic (inset) and mesoscopic Stirling motor.
The inset schematically shows the four steps of the Stirling process in the pressure-
volume diagram. For the colloidal system, the isothermal compression and expan-
sion steps, (1) → (2) and (3) → (4), are realized respectively by increasing and
decreasing the stiffness of the trap potential at fixed temperatures. In the isochoric
steps, (2) → (3) and (4) → (1), the potential stiffness is kept fixed and the tem-
perature of the environment of the colloidal particle is changed by an additional
laser field. Figure from Ref. [46].
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valuable for the investigation of mesoscopic dynamics, primarily because of two
properties. First, trajectories of colloidal particles can be recorded and manipu-
lated very accurately, which is mainly due to the development of optical tweez-
ers [4,5] and atomic force microscopy [6]. Second, these systems provide a rich va-
riety of interaction types such as steric, electrostatic, and hydrodynamic [9,48,49],
as well as magnetic forces [16]. In some cases, these interactions can even be
tuned [16, 50]. Another merit of colloidal systems is that their complexity can be
varied from single particle systems, valuable especially to approach fundamental
questions and to test theoretical predictions [7,8], up to interacting many-body sys-
tems such as suspensions, which may even be of interest for various technological
applications [9].
In this thesis, we focus on two different colloidal systems. The first system con-

sists of two colloidal particles driven along two separate rings by optical tweezers,
see Fig. 1.2(a). The particles interact via a repulsive potential whose strength can
be controlled externally. We employ this experimentally well-controllable system
to address rather fundamental questions such as the measurement of heat dissi-
pation [15] and the role of hidden degrees of freedom [16]. The second system,
see Fig. 1.2(b), is a colloidal suspension comprising a large number of interacting
degrees of freedom belonging to the class of complex many-body systems. Using
this system, we will approach issues arising from collective phenomena such as the
quest for an effective nonequilibrium temperature [26] and crystallization under
shear flow. In Chapter 2, we will review the fundamental dynamical concepts
necessary to describe these systems.

First law and dissipation

For the theoretical description of mesoscopic systems, classical thermodynamics
is inadequate since fluctuations are not incorporated. Moreover, mesoscopic sys-
tems frequently occur under nonequilibrium conditions [45]. For thermodynamics,
however, equilibrium is a prerequisite. A more promising approach requires a
framework generalizing the thermodynamic concepts to fluctuating systems under
fairly general nonequilibrium conditions. Such a framework, now termed stochas-
tic thermodynamics [52–54], has been developed in the past two decades. In 1997,
Sekimoto provided the starting point by establishing an energy balance which can
be regarded as the first law on the level a fluctuating trajectory of, e. g., a col-
loidal particle diffusing through water. The solvent, which typically surrounds
mesoscopic systems, serves as a heat bath and is assumed to rest in thermal equi-
librium with a well-defined temperature T at all times. A central quality of this
framework is that thermal equilibrium is only required for the heat bath, while the
mesoscopic system can be driven out of equilibrium arbitrarily far.
In order to study nonequilibrium, it is convenient to start with stationary states.
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1. Introduction

0

0

Figure 1.2.: (a) Snapshot of the experimental system from Ref. [51]. Two inter-
acting colloidal particles are driven along two separate rings (see black circles) by
optical tweezers. (b) Snapshot of a Langevin dynamics simulation of a sheared
suspension containing 4860 interacting colloidal particles. The color gradient in-
dicates the velocity of the surrounding solvent.

These nonequilibrium steady states (NESSs) occur in various contexts. They can
be found in molecular motors [55–57], in colloidal suspensions subject to a steady
shear flow [27], as well as in strongly-correlated dissipative electron systems [58],
and even in traffic jams on public roads [59]. NESSs are similar to equilibrium
in the sense that observables have time-independent expectation values. However,
there is an essential difference distinguishing them from equilibrium: while in equi-
librium there is no net transfer of heat to the environment, a NESS is characterized
by stationary currents which constantly dissipate energy into the heat bath.
In macroscopic systems, the dissipated heat can be inferred indirectly from the

knowledge of the work applied to a system or directly through the measurement
of temperature changes. By contrast, measuring dissipation at the mesoscale is
rather difficult as calorimetric methods fail because of the small magnitude of the
dissipation rates. In principle, the first law of stochastic thermodynamics allows
for the measurement of heat dissipation if both the external driving and the in-
ternal energy change in the system can be measured. However, in practice, this
information is generally not accessible. Knowing, for instance, the external force
applied to a colloidal particle by a laser field beyond the paradigmatic harmonic
trap [7] is rather challenging [8,60]. Likewise, measuring directly the amount of the
adenosine triphosphate (ATP) hydrolyzed by a single molecular motor is impossi-
ble [61]. The first, and so far only, viable method for measuring heat dissipation
in mesoscopic systems extracts the dissipation rate from the fluctuations and the
linear response of the system to external perturbations [14].
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In Chapter 3, we develop a method to determine the dissipation rate exclu-
sively from the knowledge of trajectories in configuration space, which is readily
available for colloidal systems [62]. We test this method in a Langevin dynamics
simulation for an experimentally accessible colloidal system and apply the proce-
dure to experimental data [15]. Moreover, we show how hydrodynamic interactions
can be incorporated in the procedure and discuss the entailing consequences for
heat dissipation.

Stochastic entropy and the role of hidden degrees of freedom

Endowed with the first law on the level of fluctuating trajectories, the next step
is to ask for an analogous extension of entropy. The answer was given by Seifert
in the definition of a stochastic entropy along fluctuating trajectories [3], thus
completing the fundament of stochastic thermodynamics [52–54]. On the level of
fluctuating trajectories, the stochastic entropy produced by the mesoscopic system
also becomes a fluctuating quantity. However, the distribution of these fluctuations
is not entirely arbitrary but obeys a deep symmetry relation which for NESSs can
be cast into the transparent form [3]

ln

[
p(∆stot)

p(−∆stot)

]
= ∆stot, (1.1)

where we set the Boltzmann constant to unity throughout this thesis. This fluctua-
tion theorem (FT) for the total entropy production ∆stot in the mesoscopic system
and the heat bath quantifies the relative frequencies of positive and negative en-
tropy fluctuations in a finite time interval. Here, p(∆stot) denotes the probability
density for finding the total entropy production ∆stot in an arbitrary but fixed time
interval. Eq. (1.1) is one representative of a large class of FTs, the first of which has
been found by Evans et al. in a numerical simulation of a two-dimensional, sheared
colloidal suspension [63]. For deterministic dynamics, a rigorous proof resting on
the chaotic hypothesis, time-reversibility, and a phase-space contraction associated
with dissipation was given by Gallavotti and Cohen [64]. In stochastic dynamics,
FTs can be proved for Markovian systems [3, 65, 66]. For mesoscopic systems, the
Markovian property rests on a time-scale separation between the dynamics of fast
and slow degrees of freedom. Interactions with fast degrees of freedom, such as
the coordinates of solvent molecules, lead to an effectively white noise and thus
to a Markovian dynamics for the slow degrees of freedom, such as the positions of
colloidal particles. For this type of dynamics, the FT has been confirmed experi-
mentally for colloidal systems [7,67] and a harmonic oscillator coupled to a thermal
bath [68]. FTs can also be formulated for time-dependent driving. Among them,
the Jarzynski [69] and the closely related Crooks relation [70] had the largest im-
pact, not least because of their practical importance. Most prominently, Hummer
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1. Introduction

Figure 1.3.: (a) Polystyrene particle dimer coupled via a linker protein (strepta-
vidin) to the γ-shaft (pink) of the F1-ATPase. The α3β3-ring (blue and dark gray)
is fixed on a glass surface. Picture from Ref. [61]. (b) Schematic sketch of the
shaft of the motor protein (blue) at state n coupled via a linker to a probe particle
(red) at the continuous position x. The motor jumps to neighboring sites with the
state-dependent rates k±. Figure from Ref. [79] (changed).

and Szabo [71] showed that the Jarzynski relation can be used to determine the
free-energy profiles in biomolecules [72–74], see Ref. [75] for a review.

Recently, Hayashi et al. [76] used a variant of the FT given in Eq. (1.1) to
determine the rotary torque exerted by the motor protein F1-ATPase during
ATP hydrolysis. As the rotor is too small to be seen under an optical micro-
scope (' 10 nm), it must be observed indirectly through a much larger probe
(358 − 940 nm) coupled to the motor by a linker protein [76–78], cf. Fig. 1.3. In
solving the microscopy issue, this coupling introduces a different problem. One
observes merely one out of two coupled degrees of freedom [79]. This situation
is fundamentally different from describing fast degrees of freedom only implic-
itly through white noise, since there is no clear-cut time-scale separation between
the dynamics of the probe and that of the motor. Hence, the conditions for the
derivation of the FT are not met and inconsistencies may arise if the FT is still
applied.

In Chapter 4, we use the experimental system shown in Fig. 1.2(a) to approach
this problem [16]. Specifically, we determine the probability distribution for an
apparent total entropy production caused by only one particle, while ignoring the
presence of the other. Hence, the ignored particle constitutes a hidden slow degree
of freedom with an influence of tunable strength. For this apparent total entropy
production, there is no such relation as the FT. Surprisingly, we find that the
functional form of Eq. (1.1) is preserved up to a constant factor. We show that
this behavior is merely approximate and give explanations for its origin. Moreover,
we show that, considering the entropy production in short time-intervals, the exact
form of the FT is approached even if hidden degrees of freedom are present.
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Linear response and effective temperatures

In the linear response regime around equilibrium, the fluctuation theorem implies
the fluctuation-dissipation theorem (FDT) [80]. This remarkable relation connects
equilibrium fluctuations to the linear response of an arbitrary observable to small
perturbations [81]. The virtue of this connection is twofold. On the one hand, we
gain information about the linear response regime around equilibrium simply by
observing equilibrium fluctuations, i. e., without actually leaving the equilibrium
state. On the other hand, macroscopic response coefficients, such as the magnetic
susceptibility, yield insight into microscopic fluctuations.
The first form of the FDT has been derived in 1905 by Einstein for a Brownian

particle diffusing through a solvent [82]. In 1928, Nyquist discovered another form
relating thermal fluctuations to the electromotive force in an electrical circuit [83],
before Onsager formulated the FDT in full generality in 1931 [84, 85]. A rigorous
proof was provided by Callen and Welton in 1951 [86].
An important property of the FDT is that it is the temperature T which links

the response to fluctuations. More precisely, the ratio between corresponding time-
dependent correlation and response functions, the so-called fluctuation-dissipation
ratio (FDR), is time-independent and yields the same value T for any choice of
observable and perturbation. Beyond the linear response regime around equilib-
rium, the FDT breaks down. Likewise, even in stationary nonequilibrium, there
is still no such concept as temperature. Yet, around each stationary state, it is
still possible to delineate a linear response regime. It is therefore tempting to
define an effective temperature by evaluating the equilibrium form of the FDR in
NESSs [87–90], see Ref. [17] for a review. However, recent progress both in the-
ory [18–20] and experiment [21–23] has shown that the extension of the FDT to
NESSs requires an additive form which is not compatible with a time-independent
FDR. Moreover, in general, the FDR will also depend on the choice of observable
and perturbation defining the shape of the response and correlation functions [91].
Nevertheless, there are still situations in which these dependencies vanish to a
very good degree. In supercooled and glassy systems, for instance, a time-scale
separation in the dynamics leads to an approximately constant FDR for long time
scales [24, 25].

In Chapter 5, we investigate the FDT for a tagged particle in a sheared col-
loidal suspension, see Fig. 1.2(b). In this NESS, we observe an approximately
constant FDR already at moderate densities deviating significantly from the equi-
librium value [26]. Motivated by a simple model system, in which we find a similar
behavior, we argue that this effect stems from an effective confinement [26] caused
by the neighboring particles. Moreover, we investigate the implications on the Ein-
stein relation connecting the mobility and diffusivity of the tagged particle [27].
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Colloidal crystallization in shear flow

Increasing the density of such a colloidal suspension, the disordered configurations
will at some point become unstable and turn into a solid with long-range order.
Also for simple hard-sphere systems, a larger density leads to crystallization or
even to glassy states [49, 92]. The solidification of such a hard-sphere fluid is
paradigmatic for a purely entropic phase transition, since there is no difference in
the internal energies of the solid and the liquid [92].
Typically, a solidification in colloidal suspensions involves a free-energy barrier

arising from the energetically expensive liquid-solid interface that must be formed
in order to create the energetically favorable solid bulk. In order to overcome
this free-energy barrier, a fluctuation must form a crystalline nucleus of a critical
size above which further growth decreases the free-energy of the cluster. Avoiding
nucleation, the density of a colloidal suspension can be increased even beyond
the thermodynamic freezing density without solidification. Such a suspension is
then called supersaturated. The classical nucleation theory (CNT) [93–95] provides
a means to obtain simple analytic expressions for the height of this free-energy
barrier and the size of the corresponding critical nucleus.
Subjecting such a supersaturated suspension to a stationary shear flow drives

the system out of equilibrium. Hence, the free energy is no longer well defined,
rendering the CNT invalid. Nevertheless, sheared suspensions still crystallize,
although with underlying dynamics and mechanisms that might be significantly
different from the unsheared case. Previous studies examining the effect of shear
flow on crystallization report both the suppression [35–37] and the facilitation [28,
32–34] of crystallization. Others report an optimal strain rate in hard-sphere-
like systems [38, 39] and in protein solutions [40]. Optimal strain rates have been
observed also in two dimensions for Yukawa-type [41], Ising [42], and depletion-
driven attractive [43] systems.

In Chapter 6, we introduce a discrete state model exploiting a time-scale
separation between fast transitions between different structures and the overall
progress of crystallization. Using this model, we investigate the influence of a
weak but steady shear flow on the crystallization rate for a highly supersaturated,
charge-stabilized colloidal suspension in three dimensions [44]. Our data supports
the conjecture of an optimal strain rate. We explain this result as a consequence
of two counteracting, shear-dependent effects which become important at different
stages during the crystallization process. At the nucleation stage, the flow field
suppresses the development of a loose structure in the liquid thus significantly
increasing the time the suspension needs to form a critical nucleus. Once a growing
nucleus is formed, the shear flow accelerates the growth process. We extract the
functional dependence of the growth rate on the strain rate from our data and
explain it through a simple convective mechanism. Moreover, we discuss how the
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flow field affects the structural composition of the crystalline clusters and suggest
a second mechanism how the flow field might accelerate the crystalline growth.
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2. Brownian motion in a nutshell

2.1. Introduction

The size of colloidal particles covers a range from roughly 1 nm to 10µm [96].
Therefore, they belong to the mesoscopic scale and are subject to thermal fluctu-
ations. Tracking the motion of a colloidal particle suspended in water, one will
observe that the particle is not at rest but moves erratically through the solvent.
This so-called Brownian motion was observed in 1785 by Jan Ingenhousz in the
irregular motion of coal dust particles on the surface of ethanol, but also by the
Scottish botanist Robert Brown in 1828, who reported on the jittery motion of
pollen grains in water [97], and after whom it was named. The physical explanation
of this type of motion as a result of the vast number of collisions between the ob-
served Brownian particle and the much smaller, unobserved solvent molecules was
provided early in the 20th century by Einstein [82] and Smoluchowski [98]. Their
work, in combination with the experimental confirmation by Perrin [99], provided
for the first time strong evidence for the existence of atoms and molecules.

On one side, an appropriate description of the dynamics of such mesoscopic
particles which are coupled to a heat bath requires the incorporation of thermal
fluctuations. On the other side, details about the microscopic trajectories of the
heat-bath particles are generally neither available nor relevant. In order to appre-
ciate these points, one usually employs coarse-grained descriptions including the
correct statistical properties of the thermal fluctuations. In this chapter, we will
briefly review three complementary but equivalent approaches described in detail
in several textbooks [10–13]. First, we focus on the Langevin equation modeling
Brownian motion most intuitively on a trajectory level by including the coupling to
the solvent through friction forces and a stochastic noise term. Second, we discuss
the Fokker-Planck equation describing the time evolution of the probability den-
sity function of stochastic variables. Finally, we briefly elucidate a path-integral
approach assigning a weight to every possible path the configuration of the system
can take.
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2. Brownian motion in a nutshell

2.2. Langevin equation

The Langevin approach models the motion of colloidal particles on a trajectory
level, in which collisions of the colloidal particles with the solvent molecules are
effectively described by a random force and a friction term. The goal is to obtain
an equation that generates trajectories with statistical properties equivalent those
of the full microscopic dynamics, however, with a much smaller effort. Such tra-
jectories would then provide a means to make exact statements about averaged
quantities such as expectation values and correlation functions. The crucial as-
sumption for this approach is a separation of the time scales on which the momenta
of the solvent molecules and those of the much larger colloidal particles equilibrate.
For colloidal particles in water, this assumption is satisfied to a very good degree:
the momenta of the solvent molecules relax to equilibrium in the order of 10−14 s,
whereas the equilibration of the colloidal momenta is slower by roughly five orders
of magnitude [96].
The Langevin approach implements these ideas by augmenting the Newton equa-

tions by an interaction with the solvent at temperature T in terms of friction and
stochastic forces. Specifically, the Langevin equations couple the set of position
and velocity vectors, R ≡ {ri|1 ≤ i ≤ N} and V ≡ {vi|1 ≤ i ≤ N}, respectively,
of N colloidal particles with masses mi by ṙi = vi and

miv̇i = Fi(R, λ)− µ−1
0 [vi − u(ri)] + ξi for i ∈ {1, . . . , N}, (2.1)

where the dot denotes a time derivative. At velocities characteristic for colloidal
systems, the friction term is proportional to the difference between the particle
velocity and the local solvent velocity u(ri). The Stokes law fixes the inverse
mobility, i. e., the friction constant, to µ−1

0 = 3πηa with the dynamic viscosity of
the solvent η and the particle diameter a. The stochastic forces ξi are chosen as
Gaussian white noise with zero mean 〈ξi〉 = 0 and correlations〈

ξi(t)ξ
T
j (t′)

〉
= 2µ−1

0 Tδij1δ(t− t′) (2.2)

with the transposition operator ·T and where unless stated otherwise the angular
brackets 〈·〉 are interpreted as an ensemble average in a stationary state throughout
this thesis. The Dirac distribution δ(t) accounts for the infinitesimally short cor-
relation time of the stochastic forces, the Kronecker symbol δij ensures that those
forces acting on different particles are uncorrelated, and 1 denotes the identity
matrix. The magnitude of the stochastic forces is determined by the temperature
T and the mobility µ0, which are connected to the bare diffusion constant D0

by the Einstein relation D0 = µ0T . This relation expresses the closely related
origin of friction and diffusion and ensures that in thermal equilibrium the dynam-
ics given in Eq. (2.1) leads to the Boltzmann distribution [100, 101]. The forces
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2.2. Langevin equation

Fi(R, λ) = Fext
i (ri, λ) + Fint

i (R, λ) can be tuned by an external control parameter
λ and comprise both externally imposed forces Fext

i (ri, λ) and interactions between
the colloidal particles

Fint
i (R, λ) = −

∑
j 6=i

∇iu(rij, λ). (2.3)

Throughout this thesis, we restrict ourselves to two-body interactions described
by pairwise interaction potentials of the form u(rij) with rij ≡ ri − rj and the
gradient operator with respect to the position of the ith particle ∇i.

Overdamped limit

So far, we have already used a time scale separation between the motion of the
solvent and that of the colloidal particles. Yet, in the description of the colloidal
dynamics, there is another time scale separation left to exploit. In such systems,
inertial effects are typically much smaller than their frictional counterparts. More
specifically, the momenta of the colloidal particles relax on a time scale τm ≡
µ0m ∼ 10−9 s, while experimental observation times are typically in the order
of the diffusive time scale τD ≡ a2/D0 ∼ 10−3 s [96]. In most situations, we
can therefore neglect inertial contributions and describe colloidal dynamics in the
so-called overdamped limit using only particle positions.
In order to expose the relevance of this time-scale separation in the Langevin

equation (2.1), we switch to dimensionless quantities marked by asterisks. Specif-
ically, we measure lengths in units of the particle diameter a, energies in units of
the thermal energy T , and time in units of the diffusive time scale τD. Multiplying
Eq. (2.1) with µ0τD/a, we obtain

µ0mi

τD

v̇∗i = F∗i (R, λ)− [v∗i − u∗(ri)] + ξ∗i . (2.4)

We can now exploit µ0mi ≡ τm � τD. Switching back to dimensionful quantities
and replacing the velocity by v = ṙ, we obtain the overdamped Langevin equation

ṙi = µ0Fi(R, λ) + u(ri) + ζi, (2.5)

where we use the stochastic velocities ζi ≡ µ0ξi with 〈ζi〉 = 0 and〈
ζi(t)ζ

T
j (t′)

〉
= 2D0δij1δ(t− t′). (2.6)
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2. Brownian motion in a nutshell

Hydrodynamic interaction

A colloidal particle moving through a solvent drags the surrounding liquid along.
The resulting flow field influences the trajectories of other nearby colloidal particles
and vice versa. So far, we have neglected such hydrodynamic interactions between
the colloidal particles. Yet, depending on the specific system, they can play a
significant role.
Flow fields can be characterized by the Reynolds number [96]

Re =
ρflva

η
, (2.7)

which quantifies the relative importance of inertial and viscous effects. It relates
the typical velocity v of objects of typical size a moving through a fluid of density
ρfl to the fluid viscosity η. For colloidal particles, typical Reynolds numbers are
small. For instance, a colloidal particle with a diameter of 1 µm moving with a
velocity of 1 µm/s through water at room temperature, we obtain Re ∼ 10−6.
Hence, inertial effects can be neglected. In addition, we assume that the flow
field caused by the motion of a particle spreads instantaneously, which is well
justified on the diffusive time scale [96]. The flow fields resulting from the motion
of colloidal particles are thus classified as creeping flow and can be described by
the Stokes equation.
The Stokes equation is linear and independent of time. Thus, there is a linear

relation between the hydrodynamic flow field and the forces acting on the particles.
The total hydrodynamically induced flow field at the position of the ith particle
is given by

uhyd(ri) =
N∑
j=1

µij(R)Fj(R, λ) (2.8)

where µij(R) are the mobility matrices coupling the motion of the ith and the
jth particle. The mobility matrices depend on all instantaneous particle coordi-
nates R and are computed for a hydrodynamically interacting pair of spheres in
Appendix A. In the dilute limit the mobility matrices reduce to

µij(R)→ µ01δij (2.9)

reproducing the Stokes friction for isolated spheres.
Including the hydrodynamic contribution in the overdamped Langevin equation,

we obtain

ṙi =
N∑
j=1

µij(R)Fj(R, λ) + u(ri) + d
(α)
i (R) + ζi (2.10)
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2.3. Fokker-Planck equation

where 〈ζ〉 = 0 and
〈
ζi(t)ζj(t

′)
〉

= 2Dij(R)δ(t − t′) with the Einstein relation
Dij(R) = Tµij(R). The so-called spurious drift d(α) is caused by the space-
dependent diffusion coefficient varying the magnitude of the stochastic velocities
multiplicatively [102], see Appendix B. For the treatment of stochastic differential
equations with multiplicative noise, it is crucial to specify the configuration R(α) ≡
(1−α)R(t)+αR(t+∆t) for α ∈ [0, 1] during a time step ∆t for which we determine
the magnitude of the stochastic velocities [10–12]. As different choices for α lead
to different solutions, we need to include the spurious drift [102],

d
(α)
i (R) = (1− 2α)

N∑
j=1

∇j · Dji(R) + α

N∑
j,k=1

[∇k · Gkj(R)]Gji(R), (2.11)

to ensure that the stationary distribution converges to the Boltzmann distribution
in thermal equilibrium. Here, the symmetric matrices Gij(R) are defined by their

connection to the diffusion coefficient Dij(R) ≡
N∑
k=1

Gik(R)Gkj(R).

2.3. Fokker-Planck equation

In the Langevin description, we model Brownian motion on a trajectory level. Pre-
cise predictions, however, can only be made for expectation values. The complete
information about ensemble averages of an observable A(x) is also contained in the
time-dependent probability density function (pdf) Ψ(x, t) for a stochastic variable
x. In this sense, the description of the time evolution of the pdf constitutes a
complementary but equivalent approach to model Brownian motion.
The time-evolution of Ψ(x, t) is described by the Fokker-Planck equation

∂tΨ(x, t) + ∂xj(x, t) = 0, (2.12)

here, written in the form of a continuity equation ensuring the conservation of prob-
ability, where we denote the partial derivative respect to x as ∂x. The Kramers-
Moyal expansion, which is detailed in several textbooks, see, e. g., Refs. [10–12],
yields the probability current

j(x, t) =
∞∑
n=1

(−∂x)n−1D(n)(x, t)Ψ(x, t) (2.13)

with the Kramers-Moyal coefficients

D(n)(x, t) ≡ ∂τ 〈[x(t+ τ)− x(t)]n〉 |τ=0/n!, (2.14)
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2. Brownian motion in a nutshell

where ! denotes the factorial operator. For systems with a diffusive contribution
to the dynamics, the displacement x(t + τ) − x(t) is statistically of the order
τ 1/2 [11]. Hence, all Kramers-Moyal coefficients vanish for n ≥ 3 and the current
contains only the first two summands. These coefficients can be obtained from
the Langevin Equation and therefore connect the Fokker-Planck equation to the
Langevin dynamics discussed above.
This approach can be easily generalized to arbitrary many degrees of free-

dom [10–12]. With the dynamics given, e. g., in Eq. (2.10), we can compute
the Kramers-Moyal coefficients and obtain the Fokker-Planck equation

∂tΨ(R, t) = −
N∑
i=1

∇ri · ji(R, t) (2.15)

with the corresponding probability currents

ji(R, t) ≡
N∑
j=1

[µij(R)Fj(R, λ) + u(ri)− Dij(R)∇j] Ψ(R, t). (2.16)

It is instructive to consider the mean local velocity [18]

νi(R, t) ≡ 〈ṙi|R, t〉 ≡ lim
∆t→0

〈ri(t+ ∆t)− ri(t−∆t)|R〉 /(2∆t) (2.17)

defined as the locally averaged velocity of all trajectories passing through a config-
uration R, see Fig. 2.1. Note that the derivative is evaluated in mid-step position,
corresponding to the Stratonovich convention. The conditional average on the
right-hand side can be evaluated by employing a path integral approach [54],

νi(R, t) = ji(R, t)/Ψ(R, t) =
N∑
j=1

[µij(R)Fj(R, λ) + u(ri)]−Dij(R)∇j ln Ψ(R, t),

(2.18)

where the last equality holds for the dynamics defined in Eq. (2.10). In the fol-
lowing, this notion will prove useful, especially for the physical interpretation of
systems in NESSs.

2.4. Path integral formalism

Up to now, we have introduced two complementary but equivalent ways to treat
stochastic dynamics theoretically: the Langevin and the Fokker-Planck representa-
tion. While the former provides a means to generate typical trajectories from which
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2.4. Path integral formalism

Figure 2.1: Mean local velocity ν for a single par-
ticle determined from averaging the particle veloc-
ity for an ensemble of trajectories passing through
a fixed position r0.

averaged quantities can be computed, the latter describes the evolution of pdfs for
the configuration of the system. Yet another equivalent description [53, 103] is
based on the idea that the value of any observable A[X ] can be determined from
the knowledge about the path X ≡ {x(τ)|τ ∈ I} the degrees of freedom in the sys-
tem take in a time interval I. The square brackets denote a functional dependence
on the argument. If we are only interested in ensemble averages, it is sufficient
to know the normalized weight P [X ] of every path X to be able to compute any
expectation value,

〈A(t)〉 =

∫
A[X ]P [X ]dX , (2.19)

with the path-independent functional measure dX determined by the normaliza-
tion condition∫

P [X ]dX = 1. (2.20)

For one-dimensional overdamped Langevin dynamics, the only nondeterministic
variable is the stochastic velocity ζ modeled as Gaussian white noise, see Eq. (2.6).
The path weight leading to the same statistical properties is

P [Z] ≡ exp

{
1

4D0

∫
I
ζ(τ)2dτ

}
, (2.21)

with Z ≡ {ζ(τ)|τ ∈ I}. Given some starting point x0, we can obtain the weight
for the evolution of a trajectory in a time interval I by a change of variables. We
substitute ζ(τ) with ẋ(τ)− µ0F (x(τ)) and obtain the conditional path weight

P [X|x0] = N exp {−A[X|x0]}, (2.22)

with the normalization constant N , the action functional

A[X|x0] ≡ 1

4D0

∫
I

[ẋ(τ)− µ0F (x(τ))]2 dτ + J [X|x0], (2.23)
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2. Brownian motion in a nutshell

and the Jacobian [53]

J [X|x0] ≡ µ0

2

∫
I
∂xF (x)|x=x(τ)dτ. (2.24)

The analytical or numerical computation of such path integrals is quite chal-
lenging in many cases. Therefore, in practice, the two formalisms presented in
the preceding sections are employed more frequently. Nevertheless, this approach
can yield valuable insights, e. g., if we are interested in symmetry properties with
respect to time reversal, see Chapter 4.
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3. Heat dissipation along
trajectories

3.1. Introduction

The fundamental difference between nonequilibrium and equilibrium systems is
dissipation. Every NESS contains stationary currents which are connected with a
steady dissipation of heat. Measuring the corresponding dissipation rates is there-
fore a central point in the characterization of these states. However, in mesoscopic
systems such a measurement is a nontrivial task. Calorimetric methods usually
employed for macroscopic systems fail due to the tiny values of heat generated. So
far, the only available method, introduced by Harada and Sasa in 2005 [104], infers
dissipation from measuring response and correlation functions. In many colloidal
systems, however, response functions are difficult to obtain. By contrast, details
about steady-state trajectories are easily accessible. In this chapter, we will in-
troduce a simple averaging procedure which can be used to exploit this data in
order to reliably obtain the average heat production rate. We will test this method
using a Langevin dynamics simulation and apply it to experimental data of an in-
teracting driven colloidal system [15]. Moreover, we will show how hydrodynamic
interactions between the colloidal particles can be incorporated in this scheme and
discuss its effect on the average heat production rate in the same experiment.

3.2. First law along fluctuating trajectories

Before discussing the measurement of heat dissipation in colloidal systems, we need
to review the extension of the first law of thermodynamics to the mesoscopic scale.
Of course, energy must be conserved also along a fluctuating trajectory, e. g., for
a colloidal particle moving erratically through an aqueous solvent. Starting from
this idea, Sekimoto established an energy balance in which he identified work and
heat. Putting it differently, he transferred the notion of the first law to the level
of fluctuating trajectories [2, 101]. Blickle et al. demonstrated the validity of this
concept experimentally for an overdamped colloidal particle in a time-dependent
anharmonic potential in 2006 [8].
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3. Heat dissipation along trajectories

Figure 3.1: The mesoscopic system (sys) is cou-
pled to an external system (ext sys) which per-
forms work on (d̄w > 0) or extracts work from
(d̄w < 0) the system. In addition, the system can
dissipate heat into (d̄q > 0) and absorb heat from
(d̄q < 0) a coupled heat bath.

Along the lines of Refs. [52, 54, 101], we recapitulate the essential steps leading
to the first law along fluctuating trajectories. In particular, we discuss the matter
paradigmatically for a system consisting of a single colloidal particle coupled to
both a heat bath at temperature T and an external system serving as a work
reservoir, see Fig. 3.1. The dynamics of the system is described by an overdamped
Langevin equation in the form of Eqs. (2.5) and (2.6),

ẋ = −µ0F (x, λ) + ζ. (3.1)

The externally applied force

F (x, λ) = −∂xU(x, λ) + f(x, λ) (3.2)

can be decomposed into the gradient of the potential U(x, λ) and a nonconservative
force f(x, λ).1
Energy conservation along a fluctuating trajectory implies that the work

d̄w = dU +d̄q (3.3)

performed by the external system is either dissipated as heat d̄q or used to increase
the potential energy U of the system, where we use the convention that both work
injected into the system and heat dissipated into the bath are positive. By d̄, we
denote an incomplete differential. The work d̄w performed on the colloidal particle
is provided exclusively by the external system. It can be transferred to the system
either by external nonconservative forces or by changing the shape of the potential
U through the external control parameter λ, see Fig. 3.2,

d̄w ≡ ∂λUdλ+ fdx. (3.4)
1Note that in a one-dimensional system without boundaries, any force can be derived from a
potential U . However, employing periodic boundary conditions and a constant force f , there
is no potential U with −∂xU = f which is compatible with the periodicity. In the present
context, we consider such a force as nonconservative.
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3.2. First law along fluctuating trajectories

Figure 3.2.: Without nonconservative forces, work is defined as the change in the
internal energy at fixed configuration.

With the change of the total energy in the system

dU = ∂λUdλ+ ∂xUdx (3.5)

and the first law along a trajectory, see Eq. (3.3), we obtain the heat exchanged
with the heat bath

d̄q ≡ d̄w − dU = −∂xUdx+ fdx = Fdx. (3.6)

It is straightforward to generalize these results to N particles in three dimensions

d̄w ≡ ∂λUdλ+
N∑
i=1

fi · dri, (3.7)

dU ≡ ∂λUdλ+
N∑
i=1

∇iU · dri, (3.8)

d̄q ≡
N∑
i=1

(−∇iU + fi) · dri =
N∑
i=1

Fi · dri. (3.9)

Note that dr(t) includes stochastic contributions stemming from the noise in the
Langevin equation. As in general the forces and potentials in Eqs. (3.7), (3.8), and
(3.9) depend on r, we are confronted with multiplicative noise, see Appendix B.
Here, Eqs. (3.4) and (3.9) describe the physical quantities correctly only if we
interpret the products according to the Stratonovich convention [10, 101]. Unless
stated otherwise, we will implicitly assume this convention throughout this thesis.
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3. Heat dissipation along trajectories

External flow fields

So far, we have included external influences in two forms. First, by externally
steering the potential U via λ. Second, by adding a nonconservative force f .
Additionally, there is a third way to act on the system externally. We can impose
an external flow field u(r) to the solvent. One might wonder why such a flow field
cannot be simply absorbed into the nonconservative force f by an additional term
µ−1

0 u(r). The reason is that a flow field affects a particle via the solvent, whereas
forces act on the particle directly. This difference is essential for the definition of
heat dissipation. To make this point more obvious, we consider a colloidal particle
carried along with the flow. Of course, this particle does not dissipate any heat.
Yet, if a force is dragging the same particle through a resting solvent at the same
speed, heat is dissipated. Therefore, in the presence of an external flow field, the
definition of the heat transfer into the solvent should be extended to [105]

d̄q ≡
N∑
i=1

(−∇iU + fi) · [dri − u(ri)dt] =
N∑
i=1

Fi · [dri − u(ri)dt] . (3.10)

With Eq (3.8), we obtain the work

d̄w = dU +d̄q = ∂λUdλ+
N∑
i=1

fi · [dri − u(ri)dt] + ∇iU · u(ri)dt. (3.11)

We recognize the contributions already present in the case without external flow,
cf. Eq. (3.9), in the first and the second term on the right-hand side. However,
here, the latter gives rise to additional work only if the velocity of the particle
deviates from the velocity of the local flow field. The third term describes the
additional work performed by the solvent when pushing the particle up a potential
gradient.

3.3. Harada-Sasa relation

Having defined work and dissipated heat along trajectories, the next step is to
ask whether these quantities can be measured experimentally. The short answer
is yes. One needs to record the particle trajectories and the corresponding forces
acting on the particles at each point in time and to apply Eqs. (3.7) and (3.9)
afterwards. The catch is that, in practice, details about the interaction are mostly
unknown and hence forces cannot be inferred. For instance, the external force
applied by a laser field beyond the paradigmatic harmonic trap [7] is quite tough
to estimate [8,60]. Therefore, the ingredients required to infer dissipation from the
first law in mesoscopic systems are, in general, out of reach.
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3.3. Harada-Sasa relation

An elegant way to determine the average dissipation rate in NESSs without the
knowledge of interaction details has been put forward by Harada and Sasa [104]
for overdamped Langevin dynamics. They relate the average heat production to
the violation of a fluctuation-dissipation theorem (FDT) [81] in a NESS. Starting
from the definition of heat dissipation along trajectories, we obtain the Harada-
Sasa relation in a few steps [79]. For the overdamped Langevin dynamics defined
in Eq. (3.1), the average heat transfer into the solvent is given by

〈q̇〉 ≡ 〈ẋF (x)〉 =
〈
ẋµ−1

0 [ẋ− ζ]
〉

= µ−1
0

[〈
ẋ2
〉
− 〈ẋζ〉

]
. (3.12)

We define the autocorrelation function for the velocity relative to the global mean
velocity vs

C(t) ≡
〈
[v(t)− vs

i ][v(0)− vs
j]
〉

(3.13)

and the linear response of the mean velocity to an external force f

R(t) ≡ δ 〈v(t)〉f
δf(0)

∣∣∣∣∣
f=0

, (3.14)

where 〈·〉f denotes an average in the perturbed system. Using a path integral
approach, one can show that [18,100]

TR(t) =
1

2
〈v(t)ζ(0)〉 , (3.15)

see Appendix C. We can therefore write Eq. (3.12) as

〈q̇〉 = µ−1
0

{
(vs)2 + C(0)− 2TR(0)

}
= µ−1

0

{
(vs)2 +

∫ ∞
−∞

[
C̄(ω)− 2TR̄′(ω)

] dω

2π

}
, (3.16)

where C̄ and R̄ are the Fourier transform of the correlation and the response func-
tion, respectively. The prime denotes the real part of a function. The straightfor-
ward generalization to N -particle systems reads

〈q̇〉 =
N∑
i=1

µ−1
0,i

{
(vs

i)
2 +

∫ ∞
−∞

Tr
[
C̄i(ω)− 2T R̄′i(ω)

]dω
2π

}
(3.17)

with the trace operator Tr(·) and the response and correlation functions replaced
by the corresponding matrices.
A rigorous proof of the Harada-Sasa relation along with a generalization to

many-body systems for both over and underdamped Langevin dynamics is given
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3. Heat dissipation along trajectories

in Ref. [14]. The relation was experimentally tested for an optically driven colloidal
system [106] and applied to gain information about the nonequilibrium energetics
of the F1-ATPase [107]. Further generalizations and experiments applying this
technique comprise Hamiltonian systems [108], Langevin systems including mem-
ory [109,110], quantum Langevin systems [111], and FDT violations involving field
variables [112].
From a theoretical point of view, the fundamental insight gained from the

Harada-Sasa relation is the direct connection between FDT violations and dis-
sipation. From an experimental perspective, it provided the first, and so far only,
way to measure dissipation in colloidal systems. However, this route is open only if
correlation and response functions are accessible in the experiment. Determining
the latter for driven colloidal systems often poses a nontrivial and time-consuming
task for the following reasons. First, the system must be perturbed from its steady
state, which needs to be done separately for each degree of freedom. Second, this
perturbation must be sufficiently small to stay within the linear response regime,
which can result in a low signal-to-noise ratio. Another difficulty arises from the
limits in the integration over frequencies in Eq. (3.16). Of course, one cannot mea-
sure up to infinitely high ω and must therefore choose a cut-off frequency which
is sufficiently high to obtain a good approximation for the integral. However, in
the high-frequency regime, technical issues such as a limited sampling rate, a fi-
nite exposure time, and the noise inherent to the measurement devices limit the
accuracy of any experiment [107].
The main drawback of this method boils down to the fact that one needs to

determine the full time-dependent response and correlation functions but in the
end only requires the integral over their difference. One thus needs to put much
experimental effort into the extraction of information, the better part of which
remains unused. In the following, we will address the question whether there is a
more efficient way to measure dissipation in colloidal systems.

3.4. Noninvasive measurement of dissipation

In both experiments and simulations, good statistics for NESS trajectories of col-
loidal particles are often readily available. In the following, we will show how to
extract the average dissipation rate from this data. In particular, we will employ a
conditional averaging procedure on the trajectories from which the mean local ve-
locity field can be obtained. Combined with the measured stationary distribution,
this field yields the average heat production rate. Here, there is no need to perturb
the system since only steady-state trajectories are required as input. Therefore, we
call this procedure noninvasive. This point constitutes a main advantage of this
approach as issues connected with the application of external perturbations are
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3.4. Noninvasive measurement of dissipation

evaded. Moreover, the effort to create the statistics necessary for the evaluation is
relatively small for typical systems. This method complements the one given by
Harada and Sasa by making the average heat production rate easily inferable from
steady-state trajectories.
Starting from the definition of heat dissipation along a trajectory x(τ), see

Eq. (3.6), the average heat production rate in a NESS for the dynamics given in
Eq. (3.1) reads

〈q̇〉 ≡ 〈ẋF (x)〉 . (3.18)

The average can be split into two steps. The average over all realizations of the
stochastic velocity at fixed configuration x, and the subsequent average over the
configuration space [3]. Performing only the first step yields [3]

〈q̇〉 = 〈νs(x)F (x)〉 (3.19)

with the stationary mean local velocity

νs(x) ≡ 〈ẋ|x〉 =
js(x)

Ψs(x)
= µ0F (x)−D0∂x ln Ψs(x), (3.20)

see Eq. (2.17), the stationary pdf Ψs, and the stationary probability current js. We
eliminate the force in Eq. (3.19) using Eq. (3.20) and write the remaining average
over the configurations as

〈q̇〉 = µ−1
0

∫
νs(x)2Ψs(x)dx+ T

∫
νs(x)∂xΨ

s(x)dx. (3.21)

In a stationary state, the probability currents become divergence-free, i. e., ∂xjs =
0, in one dimension they are even constant, see Eq. (2.12). Exploiting this property,
the second term on the right-hand side vanishes∫

νs(x)∂xΨ
s(x)dx =

∫
js(x)∂x ln Ψs(x)dx = −

∫
∂xj

s(x) ln Ψs(x)dx = 0, (3.22)

where we have used a partial integration with a vanishing boundary term. There-
fore, the average heat production rate is

〈q̇〉 = µ−1
0

∫
νs(x)2Ψs(x)dx = µ−1

0

〈
νs(x)2

〉
. (3.23)

The generalization to N particles in arbitrary many spatial dimensions is straight-
forward and reads

〈q̇〉 =
N∑
i=1

µ−1
0,i

〈
νs
i(R)2

〉
. (3.24)

For the computation of the average heat production rate, we merely need the bare
mobility µ0 and the mean local velocity field as input. The latter can be obtained
via Eq. (2.17) from a long steady-state trajectory.
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3. Heat dissipation along trajectories

Hydrodynamic interaction

So far, we have neglected hydrodynamic interactions in our treatment of dissipa-
tion. However, a colloidal particle moving through the solvent drags the surround-
ing liquid along. Therefore, other particles in the vicinity are not moving through
a quiescent solvent but through the flow field induced by the moving particle.
Likewise, the neighboring particles in turn act back on the moving one and alter
the local flow field at its position. Analogously to the role of external flow fields
discussed in Sect. 3.2, this point should affect heat dissipation as well. Instead
of the particle velocity, the velocity in relation to the surrounding flow field then
becomes the relevant quantity. Hence, Eq. (3.24) needs to be modified accordingly.
Using the definition for heat dissipation given in Eq. (3.10), we have

〈q̇〉 ≡
N∑
i=1

〈[ṙi − ui(R)] · Fi(R)〉 (3.25)

with the hydrodynamic flow field

ui(R) =
∑
j 6=i

µij(R)Fj(R). (3.26)

In the case of two hydrodynamically interacting spheres in three dimensions, we
can approximate µij up to the Rotne-Prager level [96, 113, 114], cf. Appendix A,
as

µii = µ01, (3.27)

µij(rij) =
3

8
µ0

a

rij

(
1 +

rijr
T
ij

r2
ij

)
+

1

4
µ0

(
a

rij

)3
(
1− 3

rijr
T
ij

r2
ij

)
, for i 6= j,

(3.28)

with rij ≡ |rij|. Note that this approximation incorporates only two-body interac-
tions and that the accuracy of the underlying expansion decreases with increasing
ratio a/rij.
Again, we evaluate the average in Eq. (3.25) at fixed configuration R and sub-

stitute Eq. (3.26) for the flow field,

〈q̇〉 =
N∑
i=1

〈
(νs

i −
∑
j 6=i

µijFj) · Fi

〉

=
N∑
i=1

〈νs
i · Fi〉 −

N∑
i,j=1

〈µijFj · Fi〉 +
N∑
i=1

µ0

〈
F2
i

〉
, (3.29)
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where we suppress the dependence on R for ease of notation. Using Eq. (2.18)
and the stationary Fokker-Planck equation, we obtain the average heat production
rate

〈q̇〉 = µ0

N∑
i=1

〈
F2
i

〉
−

N∑
i,j=1

T 〈µij∇j ln Ψs · Fi〉

= µ0

N∑
i,j,k=1

〈
µ−1
ik ν

s
k · µ−1

ij ν
s
j

〉
+ 2µ0T

N∑
i,j=1

〈
µ−1
ij ν

s
j ·∇i ln Ψs

〉
+ T 2

N∑
i,j=1

〈∇i ln Ψs · (µ01δij − µij)∇j ln Ψs〉 . (3.30)

With Eq. (3.22), it is straightforward to check that for negligible hydrodynamic
interaction, i. e., for µij = µ01δij, the right-hand side reduces to Eq. (3.24). In
contrast to the case without hydrodynamic interaction, this result depends on
gradient of the logarithm of the stationary pdf in addition to the mean local
velocities and the mobility matrices. Yet, this quantity can still be easily obtained
from a long trajectory. Therefore, to include hydrodynamics, we do not need any
additional experimental input if an appropriate approximation for the mobility
matrices is available.

3.5. Applicability to a realistic system

We have derived the average heat production rate from nothing but fundamental
definitions and the dynamics of the system. Merely in the treatment of hydrody-
namic interactions approximations do enter in the form of the Rotne-Prager tensor.
Hence, there is no point in checking the correctness of Eq. (3.24) in an experiment
or simulation. In practice, however, the accuracy to which, for instance, the mean
local velocity field can be obtained is limited. In configuration-space regions rarely
visited by the system, no data might be obtainable at all. These difficulties can
affect the quality of the results generated by this method. As precisely the facil-
itation of the practical measurement of dissipation is the main objective in this
context, it is crucial to check this point for a realistic colloidal system.
Such a test can be conducted by employing Langevin dynamics simulations.

This class of simulations combines two properties essential for such a task. First,
steady-state trajectories of the same form as those obtained from experiments are
created. Second, details about the interaction are known, allowing for a direct
determination of the heat dissipation via Eq. (3.9). We can thus benefit from
reliable reference results.
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3. Heat dissipation along trajectories

Figure 3.3.: (a) Schematic sketch of the system: Two paramagnetic colloidal par-
ticles driven along two rings of radius R by constant forces fi. The coordinates
xi ∈ (−πR, πR] are given by the corresponding arc length measured in counter-
clockwise direction. The magnetic field B perpendicular to the rings induces a
magnetic moment parallel to the magnetic field in each particle. The strength of
the resulting interaction is described by the dimensionless coupling parameter Γ.
As indicated by the arrows, the driving forces are chosen such that the left parti-
cle moves in counterclockwise direction while the right particle moves in clockwise
direction. (b)-(c) Potential landscape on the left and right ring, respectively, in
the uncoupled case for parameter set III in Table 3.1.
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3.5. Applicability to a realistic system

Regarding the choice of the specific system, we should mention that for a serious
investigation of the present method’s practical value, a one-dimensional system is
insufficient. The crucial point is that a one-dimensional stationary probability
current is always constant in space, see Eq. (2.12). Measuring the mean local ve-
locity field then reduces essentially to the measurement of the pdf [115], which in
many cases is done quite easily in a one-dimensional system. In order to provide
a meaningful test, we investigate the following two-dimensional, experimentally
accessible system in a Langevin dynamics simulation [15, 16]. Two paramagnetic
colloidal particles are driven by constant forces fi along two nonoverlapping rings
of radius R, see Fig. 3.3. In addition to the constant forces, we impose a sinu-
soidal potential Ui(xi) = Ai sin (xi/R− φi) of amplitude Ai and phase shift φi on
each ring leading to the tilted (nonperiodic) potential Ũi(xi) ≡ Ui(xi) − fixi, see
Fig. 3.3(b) and (c). By applying a small homogeneous magnetic field of strength
B normal to the plane containing the rings, the particles acquire parallel magnetic
dipole moments of magnitude M ≈ χB with χ ' 5.9 × 10−12 Am2/T. The re-
sulting repulsive interaction is described by the potential W (x) = µM2/[πr3(x)],
where µ is the magnetic constant and r(x) is the distance between the particles
with x ≡ (x1, x2). We quantify the interaction strength by introducing the di-
mensionless coupling constant Γ ≡ ∆W/T , often referred to as plasma parameter,
where ∆W is the difference between the maximal and minimal interaction energy.
The total force acting on the ith particle is then given by

Fi(x) = fi − ∂xi [Ui(xi) +W (x)] for i ∈ {1, 2} (3.31)

and the dynamics of the system is defined by the Langevin equation

ẋi = µ0Fi(x) + ζi, (3.32)

cf. Eq. (2.5), where we neglect hydrodynamic interactions and assume a resting
solvent. We integrate the equations of motion numerically using the Milstein
scheme [116] with a time step ∆t = 0.0001 (µm)2/(µ0T ).
The central task in the application of Eq. (3.24) is the determination of the

mean local velocity fields νs
i and the pdf Ψs. In order to judge the quality of the

results, we determine the force field F(x) ≡ (F1(x), F2(x))T in two independent
ways. First, we compute F(x) analytically, which is possible since details about
the potential parameters are known in this simulation. Second, we determine the
forces via Eq. (3.20) by evaluating νs

i (x) and Ψs(x) from the simulated data. A
comparison of the two independently determined force fields yields a very good
agreement, see Fig. 3.4.
In the next step, we compute the average heat production rate in the system

from a long trajectory in two different ways:
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3. Heat dissipation along trajectories

Figure 3.4.: Comparison between the force fields F(x) computed (a) analytically
and (b) from simulated NESS trajectories via Eq. (3.20) for parameter set I in
Table 3.1.

(A) We use the trajectory-based method introduced in this chapter, i. e., we
determine νs

i and Ψs from the simulated trajectories and use Eq. (3.24) to
obtain 〈q̇〉.

(B) We determine the heat production rate directly via Eq. (3.9) by using the
knowledge of the forces acting on the particles along the trajectory. This pro-
cedure then yields the reference result, i. e., the true average heat production
rate along this particular trajectory.

In Fig. 3.5, we juxtapose the results determined by method (A) and (B) for the
three different parameter sets given in Table 3.1 and find a very good agreement,
in support of the consistency between our approach (A) and the reference result
(B).
A difficult point in the application of method (A) is the determination of the

mean local velocity field νs
i for configurations in which the system is found only

with a low probability. We also address this difficulty in our test. Specifically, we
choose the parameter sets II and III such that νs

i can only be obtained in a part
of the configuration space, see Fig. 3.5(c) and (d). In spite of this impediment,
the results for 〈q̇〉 still match the reference results very accurately. This point can
be understood as follows. The average heat production rate 〈q̇〉 is computed from
an integral in which the square of the mean local velocity enters weighted by the
probability density, see Eq. (3.23). Since poor statistics for νs

i (x) are expected
typically in regions where Ψs(x) is also very low, the contribution of these parts of
the data to 〈q̇〉 is thus only minor, provided that the νs

i stay finite. This property
holds for our system and should also be true for many other well-behaved systems.
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3.6. Heat dissipation and hydrodynamics in an experimental system

Figure 3.5.: (a) Average heat production rates 〈q̇〉 obtained from methods (A)
and (B) for the three different parameter sets I, II, and III given in Table 3.1. To
relate 〈q̇〉 to an experimental scale, we choose a = 5.2 µm. Error bars are smaller
than 1%. (b)-(d) Corresponding mean local velocity fields evaluated in the process
of determining 〈q̇〉. Regions without arrows are rarely visited by the system.

Thus, for the measurement of averaged quantities such as 〈q̇〉, only regions in
configuration space of substantial weight must be sampled accurately. Regions of
minor probability merely add small-sized corrections to the result.

3.6. Heat dissipation and hydrodynamics in an
experimental system

Having demonstrated the validity and applicability of the method in a Langevin
simulation, the next and final step is to employ this technique to measure dissipa-
tion in an experimental realization of the above system [16]. For this purpose, the
focus of a three-dimensional optical trap [4, 5], created by a laser beam of wave-
length 1070 nm, is moved rapidly along two nonoverlapping, coplanar rings. The
rings have a radius of R = 3.5 µm and a center-to-center distance of 17.0 µm. On
each ring, we place a paramagnetic colloidal particle of diameter a = 5.2 µm and
magnetic polarizability χ ' 5.9× 10−12 Am2/T (cf. Langevin simulation). Strong
viscous forces due to the quick motion of the trap prevent the colloidal particles
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3. Heat dissipation along trajectories

I II III
Γ 310.0 670.0 310.0
f1 [T/µm] 50.0 56.0 25.0
f2 [T/µm] −65.0 −54.0 −35.0
A1 [T] 225.0 175.0 175.0
A2 [T] 175.0 170.0 175.0
φ1 −π/5 −π/5 −π/5
φ2 −4π/5 −4π/5 −4π/5
R [µm] 3.5 3.5 3.5
center-center distance [µm] 17.0 17.0 17.0

Table 3.1.: Parameter sets I, II, III.

from being dragged along [117]. Instead, the laser focus runs over the particles
very quickly. In the process, they experience a short kick along the trajectory of
the trap and are forced towards the focus in the direction perpendicular to this
trajectory. In the time interval between two such kicks, the particles diffuse freely.
In this case, these intervals are short compared to both the observation time scale
and the diffusive time scale. This point has two important implications. First,
as single kicks cannot be resolved, they can be effectively described by a constant
tangential force fi exerted on the ith particle. Apart from this force, the particle
is diffusing freely along the ring. Second, in the radial direction, the particles
barely have time to diffuse away from the rings. This point effectively confines
their motion to one dimension. Moreover, by modulating the intensity of the laser
beam, an effective optical potential Ui(xi) can be imposed on each ring. The inter-
action between the two particles is of the same form as described for the Langevin
dynamics simulation. Here, we use magnetic fields of magnitudes B ≤ 40 mT re-
sulting in coupling constants in the range of 0 ≤ Γ ≤ 1100. We record the particle
trajectories using digital video microscopy with a spatial and temporal resolution
of 20 nm and 25 ms, respectively.2

In Fig. 3.6(a), we show the average heat production rate as a function of Γ with
[gray bars obtained via Eq. (3.30)] and without [red bars via Eq. (3.24)] hydro-
dynamic interaction. Note that no matter which of the two equations we choose
in order to evaluate the average heat production rate, we always use the same set
of experimental trajectories as input. Of course, these trajectories follow the full
dynamics of the system including hydrodynamic interactions. Consequently, the
average heat dissipation rate evaluated via Eq. (3.24) contains the correct hydro-
dynamic mean local velocity fields and pdfs shown in Figs. (3.6)(b) and (c) but

2Experiments were performed by J. Mehl. For a detailed experimental description refer to
Ref. [51].
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3.6. Heat dissipation and hydrodynamics in an experimental system

Figure 3.6.: (a) Average heat production rate 〈q̇〉 as a function of the coupling
strength Γ with standard error bars. The potentials on the left and right ring are
approximately sinusoidal with amplitudes A1 = 175 T and A2 = 164 T, respec-
tively. The driving forces are f1 = 56 T/µm and f2 = −51 T/µm. The red (gray)
bars are computed without (with) hydrodynamic correction terms. (b),(c) Mean
local velocity fields νs

i (white arrows) over the corresponding pdf in configuration
space for coupling constants (b) Γ = 0 and (c) Γ = 1100.

misses the hydrodynamic correction terms contained in Eq. (3.30). Apparently,
these hydrodynamic terms add measurable corrections for Γ . 500 but do not
change the qualitative behavior of 〈q̇〉 in dependence of Γ. In the following, we
will discuss this qualitative dependence first and focus on the role of the hydrody-
namic correction terms later.

Nonmonotonous dependence of 〈q̇〉 on Γ

The most prominent feature in Fig. 3.6(a) is that 〈q̇〉 depends nonmonotonously
on Γ. The origin of this feature lies in a transition between two distinct dynamical
steady states mediated by Γ. These states are characterized by their qualitatively
different pdfs shown together with their corresponding mean local velocity fields
in Figs. 3.6(b) and (c) for Γ = 0 and 1100, respectively.
In the absence of coupling, the particles move independently along their rings.

The average time for a round-trip is 12 s, and the particles spend the longest
part of their revolutions in the proximity of the, relatively shallow, local potential

53



3. Heat dissipation along trajectories

minima. There, they fluctuate at small mean local velocities. These minima
are located at x1/R ' −π/4 and x2/R ' π/4, i. e., at relatively short particle
distances. The steep parts in the potential landscape are traversed rapidly leading
to large mean local velocities and small probabilities for the occurrence of such
configurations, see Fig. 3.6(b). A large Γ has a significant effect on the shape
of the pdf in the steady state. The entailing strong repulsive interaction makes
configurations with short particle distances energetically unfavorable. Hence, if
the particles are close to their local potential minima simultaneously, at least one
of the particles will be pushed over the shallow potential barrier at the boundary
of its local minimum. This point initiates the following mechanism, see Fig. 3.7.
While one particle fluctuates around its local minimum, the other one is “running”
down the steep part of the potential on its ring. Once this “running” particle
approaches its local potential minimum again, it pushes the “resting” particle out
of its potential valley. Now, the roles switch and the formerly “running” particle
“rests" in its potential minimum, while the formerly “resting” particle is “running”
down its potential hill. This mechanism reduces the time both particles spend in
their local potential minima considerably. Moreover, the particles cannot overtake
one another anymore, which results in a highly synchronized pattern of motion, see
Fig. 3.6(c). In the crossover regime between these two dynamical steady states, the
particles do repel each other, but they can still overtake one another. During such
an overtaking process, the faster particle can hinder the slower one in overcoming
the potential barrier effectively slowing down the motion.
With this mechanism in mind, we can understand the nonmonotonous depen-

dence of 〈q̇〉 on Γ, see Fig. 3.6(a). Going from zero to small coupling constants,
the motion of the particles slows down due to the repulsive interaction, reducing
the average heat production rate in the process. A further increase of Γ leads to
the synchronized pattern of motion described above, cf. Fig. 3.7. In this mode,
the time the particles spend fluctuating in their potential valleys is considerably
reduced, which in turn increases the weight of the highly dissipative trajectories of
particles running down the steep potential hills. These changes result in a larger
average dissipation rate.

Hydrodynamic interaction

In order to include hydrodynamics in the computation of the average dissipation
rate via Eq. (3.30), we need the appropriate mobility tensor. Although the Rotne-
Prager tensor given in Eqs. (3.27) and (3.28) provides a good starting point, it
cannot be used without adaption. The point is that this tensor was derived as an
approximation for two hydrodynamically interacting spheres in three spatial di-
mensions. Here, the hydrodynamic interaction is mediated via a three-dimensional
medium as well. However, the motion of the particles is restricted to a single dimen-
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3.6. Heat dissipation and hydrodynamics in an experimental system

Figure 3.7.: Sketch of the dynamical mechanism. Upper picture: In the process
of completing a circulation, the left particle pushes the right one over its potential
barrier depicted by the bar blocking the path. Right picture: The left particle
cannot overcome the barrier and is fluctuating in front of it, while the right particle
quickly completes a circulation. Lower picture: Arriving again at its barrier, the
right particle pushes the left one over the barrier. Left picture: The right particle
is fluctuating in front of the potential barrier, while the left one quickly completes
a circulation.

sion each. Consequently, we need to project the full mobility tensor µij, consisting
of four 3 × 3 matrices, onto four 1 × 1 matrices µij coupling the one-dimensional
motion of the two particles. How this projection is done in particular can be
seen by writing the effective dynamics as a projection of the full three-dimensional
Langevin equations

ẋi = ei · ṙi =
2∑
j=1

ei ·µijFj +ei ·ζi =
2∑
j=1

ei ·µijejFj + ζi ≡
2∑
j=1

µijFj + ζi, (3.33)

where, for the sake of clarity, we refrain from making the dependence of the mo-
bility and the forces on the particle coordinates explicit. Here, we used that, as
each particle is confined to its ring, all forces act parallel to the normalized vectors
ei(xi) ≡ (− sinxi, cosxi, 0)T spanning a basis of the effectively two-dimensional
system. Thus, we have Fi = Fiei and ζi = ζiei. The symmetric mobility matrix
of the confined dynamics is given by

µij(x) ≡ ei(xi) · µij(x)ej(xj), (3.34)

in which the diagonal elements have the simple form µii(x) = µ0. The resulting
hydrodynamic corrections to the average heat production rate shown in Fig. 3.6(a)
increase 〈q̇〉 by roughly 20% for small Γ, while there is no significant effect for large
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Figure 3.8.: Left: Sketch of mechanism leading to the main deviation from the
average heat production rate. The moving particle causes a hydrodynamic flow
field, depicted as black arrows, at the position of the resting particle. The resting
particle is not advected by the flow due to a potential barrier marked by the
black bar. The resulting nonzero velocity in relation to the flow field causes an
additional heat production compared to the case neglecting hydrodynamics. As
the system is not perfectly symmetric, the configurations do not contribute equally.
The configuration depicted in the lower panel is dominant. Right: Hydrodynamic
correction term for the average local heat production rate.
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Γ. In order to figure out the mechanism leading to this type of contribution, we
investigate the average local heat production rates

Ω(x) ≡ Ω0(x) + ∆Ω(x) (3.35)

and

Ω0(x) ≡ µ−1
0

2∑
i=1

ν2
i (x), (3.36)

with and without hydrodynamic interactions, respectively. The hydrodynamic
correction terms cause the additional average local heat production rate

∆Ω(x) ≡ 2µ0
ν1(x)ν2(x)

µ12(x)2
− 2T 2µ12(x)[∂x1 ln Ψs(x)][∂x2 ln Ψs(x)]

+ 2µ0T
2∑

i,j=1

µ−1
ij (x)νj(x)∂xi ln Ψs(x), (3.37)

which follows from Eqs. (3.24) and (3.30) after a simple calculation using the
projected mobility tensor. Note that taking the mean of the average local heat
production rate over configuration space yields the average global heat produc-
tion rate. By considering ∆Ω(x) weighted with the stationary pdf Ψs(x), we can
identify the configurations with the largest contribution to the difference in the av-
erage global heat production rate, see Fig. 3.8. The quantitative difference caused
by the hydrodynamic correction terms can be traced back to the contribution of
essentially two symmetric configurations. In these configurations, one particle is
fluctuating around its local potential minimum, while the other one is approaching
it frontally and rapidly. Without the magnetic repulsion, the potential barrier is
strong enough to help the fluctuating particle resist the hydrodynamic flow field
generated by the approaching particle. This resistance against the flow field is dis-
sipating heat in the process. For strong coupling, the repulsion is strong enough
to simply push the fluctuating particle over the potential barrier, cf. Fig. 3.7. The
particle is then able to follow the hydrodynamic flow field more accurately and
less additional heat is dissipated. Note that this result depends strongly on the
specific system. In general, hydrodynamics can cause a negative correction just as
well as a positive one.

3.7. Conclusion and outlook

In this chapter, we have introduced an approach to determine the average heat
production rate for colloidal systems in a NESS. While the so far only method

57



3. Heat dissipation along trajectories

introduced by Harada and Sasa quantifies dissipation via response and correla-
tion functions, the present method exclusively uses information obtained from
steady-state trajectories without the need to perturb the system. In particular,
the method neither requires any information about the underlying potentials nor
about the driving forces. Moreover, for measuring the average heat production,
only parts of the configuration space with a significant weight are important. This
point makes the application of the method to experiments very convenient as good
statistics are only needed for such configurations in which good statistics are easily
achieved anyway. Thus, if the relevant configuration space stays sufficiently small,
the method can still be applied to interacting systems with a larger number of
degrees of freedom. Therefore, the approach constitutes a complementary way to
measure dissipation, which is easily implemented, particularly in setups for small
colloidal systems. Moreover, we have shown that hydrodynamic interactions can
be incorporated in the scheme, where we require additional information only about
the geometry of the particles and the boundary conditions.
For future work, it would be interesting to check the usefulness of this method

for other nonequilibrium systems. Particularly interesting examples are molecular
motors such as the F1-ATPase. In an experiment, the state of such a motor is
inferred indirectly from an attached probe [77]. In principle, to apply our method,
we need the trajectories of both the attached probe and the motor. However,
although the state of the motor is not detectable directly, one should be able to
reliably estimate its state from the trajectory of the probe if the motor is moving
sufficiently slowly. Moreover, by replacing the stationary distribution function and
the stationary mean local velocity field by their time-dependent counterparts, a
generalization of the present method should also be applicable to relaxing and
time-dependent systems.
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4. Hidden degrees of freedom in
the fluctuation theorem

4.1. Introduction

In general, the description of mesoscopic systems is possible only if we accept
some degree of coarse graining. Knowledge about the dynamics of all the solvent
particles surrounding a colloidal particle, for instance, is neither available nor
necessary to describe most relevant physical properties. Hidden degrees of freedom
are usually accounted for in some effective way, e. g., as Gaussian white noise in
the Langevin equation. Such an effective description is justified if a time-scale
separation in the dynamics of observed and unobserved degrees of freedom exists.
In the description of mesoscopic systems, such time-scale separations are exploited,
for instance, in the effective treatment of solvent molecules or in the negligence of
momenta in the overdamped dynamics of colloidal particles. However, in systems
without a clear-cut time-scale separation, neglecting hidden degrees of freedom
naively can lead to inconsistencies.
In this chapter, we investigate the role of slow hidden degrees of freedom for a

most relevant concept: entropy production. More precisely, we scrutinize this issue
for the fluctuation theorem (FT), an important symmetry relation characterizing
the fluctuations of entropy in a NESS [16].

4.2. Stochastic entropy

In the previous chapter, we have discussed how the first law of thermodynamics can
be transferred to fluctuating mesoscopic systems. The next step is to ask whether
the concept of entropy, the central quantity of the second law of thermodynamics,
can be extended to the level of fluctuating trajectories as well. A consistent def-
inition for such a stochastic entropy was suggested by Seifert in 2005 [3]. In this
section, we discuss the stochastic entropy along the lines of Ref. [3].
For simplicity, we start with the one-dimensional dynamics already defined in

the preceding chapter by Eq. (3.1). The total system consists of two parts: the
mesoscopic system and the surrounding heat bath. Therefore, we need to con-
sider also two contributions to the total stochastic entropy: the stochastic system
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4. Hidden degrees of freedom in the fluctuation theorem

entropy and the stochastic medium entropy. The former is defined as

s(τ) ≡ − ln Ψ(x(τ), τ) (4.1)

with the, in general, time-dependent solution of the Fokker-Planck equation (2.12)
Ψ evaluated along the trajectory x(τ) for τ ∈ [0, t]. The entropy is thus a function
of the fluctuating configuration of the system and becomes a fluctuating quantity
itself. This definition is motivated by the fact that the ensemble average of s is
equivalent to the nonequilibrium Gibbs entropy

〈s(τ)〉 = −
∫

ln Ψ(x, τ)Ψ(x, τ)dx ≡ S(τ). (4.2)

Moreover, in thermal equilibrium, the stochastic entropy obeys the thermodynamic
relation s(τ) = [U(x(τ))−F ]/T with the free energy [3]

F ≡ −T ln

∫
exp [−U(x)/T ]dx. (4.3)

The entropy change in the surrounding medium should be identified with the heat
flux from the system into the surrounding solvent, cf. Eq. (3.6),

∆sm[x(τ)] ≡ q[x(τ)]/T =
1

T

∫ t

0

F (x(τ))ẋ(τ)dτ. (4.4)

While a change in the system entropy is completely determined by the initial and
final configuration, the entropy change in the medium depends on the complete tra-
jectory x(τ). We denote such a functional dependence by square brackets around
the argument.
The total entropy change along a trajectory is then given by the heat dissipated

into the environment and an additional boundary term arising from the initial and
final configurations of the system, see Eq. (4.1),

∆stot[x(τ)] ≡ ∆s[x(τ)]+∆sm[x(τ)] = − ln

[
Ψ(x(t), t)

Ψ(x(0), 0)

]
+

1

T

∫ t

0

F (x(τ))ẋ(τ)dτ.

(4.5)

In the following, we will understand that the entropy changes are trajectory-
dependent and suppress the functional arguments.

4.3. Fluctuation theorems

At first glance, a highly disconcerting property of the total stochastic entropy is
that it can be negative, seemingly in conflict with the second law of thermodynam-
ics. In this context, one should keep in mind that just as work and heat, the total
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4.3. Fluctuation theorems

entropy production is also a trajectory-dependent and thus fluctuating quantity.
However, thermodynamics does not incorporate fluctuations and does therefore
not make any statement about the value of single fluctuations. It merely demands
the nonnegativity of the ensemble average of the total entropy production, i. e.,
〈∆stot〉 ≥ 0. In fact, the second law enters the world of fluctuating trajectories
not only in the form of this averaged thermodynamic analog but also in another,
refined way [54]. Specifically for NESSs, it fixes the ratio of the probability weight
for positive and negative total entropy production along paths of arbitrary but
constant duration ∆t to [3]

p(∆stot)/p(−∆stot) = exp {∆stot/T}. (4.6)

Not only does this theorem allow for negative values of ∆stot, it even implies
and quantifies their existence. In particular, if a positive fluctuation ∆stot occurs
with finite probability, its negative counterpart must appear as well, albeit with
an exponentially suppressed probability. From Eq. (4.6), we easily recover the
second law in its familiar form. First, we solve for p(−∆stot) and average over all
realizations

〈exp {−∆stot/T}〉 = 1, (4.7)

then we employ Jensen’s inequality to obtain 〈∆stot〉 ≥ 0.
Eqs. (4.6) and (4.7) belong to a large family of remarkable symmetry relations

known as fluctuation theorems [3, 63–66]. FTs of various forms have been proved
for deterministic and stochastic dynamics. For the former class, the proof rests on
the chaotic hypothesis, time-reversibility, and a phase-space contraction associated
with dissipation [64]. For the latter dynamics, the FT requires the concept of
entropy production along trajectories as introduced in the preceding section. It
can be proved for Markovian systems [3,65,66] and compatible experimental tests
have been performed for driven colloidal particles [7,67] and a harmonic oscillator
coupled to a thermal bath [68]. Further experimental tests of FT-like symmetries
have been reported for Rayleigh-Bénard convection [118], turbulent flow [119],
granular matter [120], and self-propelled particles [121]. For these systems, the
appropriate class of dynamics is less obvious and hence the status regarding the
assumptions of the FT is unclear a priori. One should also appreciate that the
measured observable for some of these systems is typically not ∆stot directly, but
rather some dimensionful quantity, like, e. g., the injected or dissipated work [120,
122].
In order to derive Eqs. (4.6) and (4.7), we follow Refs. [103,123,124] in the proof

of a master FT for Langevin dynamics from which, among several other FTs, these
two can be deduced.
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4. Hidden degrees of freedom in the fluctuation theorem

4.3.1. Master FT

Generally speaking, fluctuation theorems are symmetry properties of functionals
of the system trajectories under conjugation of the dynamics. A path-integral
approach is ideally suited to approach this class of relations as it explicitly incor-
porates the trajectories of the complete set of the degrees of freedom in the system.
Hence, it will be employed in the subsequent derivation. Although the following
is in principle valid for several types of conjugation, we restrict ourselves to time
reversal for simplicity. Moreover, we focus exclusively on steady states since we
will need the FT only in connection with stationary systems. For a more general
discussion, see Ref. [54].
We consider a trajectory X ≡ {x(τ)|τ ∈ I} in a time interval I ending at a

time t and denote the time reversed path as X c ≡ {xc(τ) = x(t − τ)|τ ∈ I}. We
define the functional

R[X ] ≡ ln

[
P [X ]

P [X c]

]
= −R[X c] (4.8)

and compute for an arbitrary function g(R) the weighted average [103,123,125]

〈
g(R)e−R

〉
=

∫
g(R[X ])e−R[X ]P [X ]dX

=

∫
g(R[X ])P [X c]dX

=

∫
g(−R[X c])P [X c]dX c = 〈g(−R)〉 . (4.9)

In the second step, we used the definition of R, see Eq. (4.8), and, in the last
line, we have substituted X c for X keeping in mind that the set of integration
paths remains unchanged under time reversal. Choosing g(R) = δ(R′ − R) and
g(R) = 1 yields the detailed and the integral FTs

p(R′)
p(−R′) = eR

′
(4.10)

and 〈
e−R

〉
= 1, (4.11)

respectively, where we used that 〈δ(R′ −R)〉 = p(R′). These equations are already
of the form of Eqs. (4.6) and (4.7). However, the physical interpretation of R is
not yet clear.
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4.3.2. Physical interpretation

From a physical point of view, the relation derived in Eq. (4.9) becomes interesting
only if one can provide the functional R[X ] with a physical meaning. The inter-
pretation of R[X ] becomes obvious if we decompose the path weights in Eq. (4.8)
into the stationary probability weight for their respective starting points, Ψs(x0)
and Ψs(xc

0), and the conditional probability for their subsequent evolution

R[X ] ≡ ln

[
P [X ]

P [X c]

]
= ln

[
Ψs(x0)

Ψs(xc
0)

]
︸ ︷︷ ︸

≡R0

+ ln

[
P [X|x0]

P [X c|xc
0]

]
︸ ︷︷ ︸

≡R1

. (4.12)

The first summand is easily identified as the entropy change in the system

R0 = ln Ψs(x0)− ln Ψs(xc
0) = − ln Ψs(xf ) + ln Ψs(x0) ≡ ∆s, (4.13)

where the starting point of the time-reversed trajectory xc
0 = xf is the endpoint

of the original one. The second summand can be interpreted as well by employing
the conditional path-weight for the evolution of a trajectory following overdamped
Langevin dynamics. Using Eqs. (2.22) and (2.23) the term becomes

R1 = A[X c|xc
0]−A[X|x0] =

1

T

∫
I
F (x(τ))ẋ(τ)dτ = ∆sm, (4.14)

i. e., the medium entropy produced along the path X . Applying these results to
Eq. (4.12) yields R[X ] = ∆stot. Hence, the functional is equivalent to the total
entropy produced along X . With this result, Eqs. (4.10) and (4.11) turn into
the detailed and the integral fluctuation theorem for the total entropy production
given respectively in Eqs. (4.6) and (4.7).

4.4. Hidden degrees of freedom

The proof of the FT discussed in the previous section implicitly rests on a time-
scale separation. Unobserved fast degrees of freedom contribute to an effectively
white noise and lead thus to a Markovian dynamics of the visible slow degrees of
freedom. Entropy production can be deduced from observing the dynamics of all
slow degrees of freedom. If some of these degrees of freedom are not or cannot be
observed, the inferred entropy production is only an apparent one for which the
status of an FT-like symmetry is unclear a priori. Theoretical efforts to describe
coarse-graining in general have been restricted, so far, to the case of well-separated
time scales [126–128] and to the question how such coarse-graining affects bounds
on dissipated work [129].

63



4. Hidden degrees of freedom in the fluctuation theorem

Here, we investigate the influence of such hidden slow degrees of freedom on the
FT for the apparent entropy production. In order to put the subsequent discussion
on a firm ground, we first need to elucidate what we mean precisely with “apparent”
entropy production. Therefore, we dedicate the next subsection to clarifying which
entropy production an experimentalist would infer from a reduced set of degrees
of freedom if he were not aware of the missing ones.

4.4.1. Apparent entropy production

We consider a Langevin system in a NESS with n slow degrees of freedom col-
lected in the configuration vector x(τ) ≡ (x1(τ), . . . , xn(τ))T. The total entropy
production along a trajectory in the time interval I = [0, t] is given by

∆stot = − ln

[
Ψs(x(t))

Ψs(x(0))

]
+

∫ t

0

n∑
i=1

ẋi(τ)Fi(x(τ))dτ/T

=

∫ t

0

n∑
i=1

ẋ(τ)νs
i (x(τ))dτ/D0, (4.15)

where we used the stationary mean local velocities νs
i (x(τ)) given by Eq. (3.20)

in the last step. Both the sum and the arguments of the mean local velocities
involve all n degrees of freedom. If only the first ñ coordinates, x̃ ≡ (x1, . . . , xñ)T,
can be accessed, an observer would be forced to deduce all information from the
trajectories of this reduced set. For the accessible coordinates x̃, one can still
measure the actual velocities ˙̃x correctly. For the mean local velocities, however,
the lack of knowledge changes the results to

ν̃s
i (x̃) ≡

∫
νs
i (x)p(x̂|x̃)dx̂ (4.16)

with the conditional probability p(x̂|x̃) to find the set of hidden degrees of freedom
x̂ ≡ (xñ+1, . . . , xn)T in this specific configuration for given x̃. The apparent entropy
production is therefore

∆s̃tot =

∫ t

0

ñ∑
i=1

ẋi(τ)ν̃s
i (x̃(τ))dτ/D0. (4.17)

In the following, we investigate the status of the FT in the presence of hidden
degrees of freedom, i. e., if we substitute ∆s̃tot for ∆stot in Eq. (4.6).
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0

0

Figure 4.1.: (a) Snapshot of the experimental system augmented by a drawing
of the rings to which the particles are confined. The second particle (shaded lower
picture) is considered as the hidden degree of freedom. (b) Effective nonperiodic
potentials for parameter set I in Table 4.1. Figure from Ref. [51].

4.4.2. Experimental results

We now turn to the experimentally accessible1 system consisting of two magnet-
ically coupled colloidal particles driven along two coplanar, nonoverlapping rings
of radius R, see Fig. 4.1. This system has been already introduced in the previous
chapter, see Fig. 3.3 for a schematic sketch. Its dynamics is given by the over-
damped Langevin equation (2.5) with the forces defined in Eq. (3.31). Here, we
prepare the system as follows. The particles are driven in opposite directions on
their respective ring with equally strong driving forces on symmetrically adjusted
potentials. The specific parameters are listed as set I in Table 4.1. In particular,
the driving forces are so strong that there are no local minima left in the tilted po-
tentials Ũi(xi) ≡ Ai sin (xi/R− φi)+fixi on both rings, cf. Fig. 4.1(b). The phase
shifts φi are adjusted such that the flattest parts of the Ũi(xi) are near the position
where the two rings are closest. In this NESS, we record the positions of the two
particles as functions of time for coupling constants in the range 0 ≤ Γ ≤ 300.
This setup provides a means to experimentally scrutinize the role of hidden slow

degrees of freedom in the FT for the total entropy production. In the following,
we evaluate ∆s̃tot, the apparent entropy produced by the first particle only, which
represents the accessible degree of freedom. Meanwhile, the second particle acts as
a hidden degree of freedom with the coupling constant Γ controlling the strength
of its influence, cf. Fig. 4.1(a).

1Experiments have been performed by J. Mehl.
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I II
f1 [T/µm] 57 57
f2 [T/µm] −57 −57
A1 [T] 181 262
A2 [T] 181 71
R [µm] 3.5 3.5
center-center distance [µm] 17 17

Table 4.1.: Parameter sets I and II. Note that the phase shifts φi can be esti-
mated only roughly and are therefore not listed here. They are adjusted such that
they fall into the region where the particles are closest.

Figure 4.2.: (a) Distribution of the apparent entropy production p(s̃tot) for dif-
ferent trajectory lengths t and coupling constants Γ. (b) Section of previous his-
tograms around s̃tot = 0. (c) Corresponding logarithmic probability ratio f(∆s̃tot)
as a function of ∆s̃tot. The dashed black line has the theoretically predicted slope
1, whereas the red line is a linear fit with slope α = 0.65.
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Entropy production without coupling

First, we discuss the pdf of the apparent entropy produced along trajectories of
duration t = 1.75 s and 10 s in the absence of coupling, see Fig. 4.2(a). Note that
for Γ = 0, the two particles become independent and ∆s̃tot is equivalent to the
total entropy production of a single particle system. The distribution for ∆s̃tot is
characterized by peaks of strongly varying magnitude. For t = 1.75 s, we find the
largest peak close to zero at small positive ∆s̃tot. This contribution is caused by
fluctuations in the flat part of Ũ producing only little entropy. The second peak at
∆s̃tot ' 950 belongs to trajectory segments in which the particle is moving rapidly
down the steep part of Ũ . For longer trajectories, the probability for larger ∆s̃tot

increases and the corresponding distribution shifts to higher ∆s̃tot. If the duration
of the trajectory segments matches the average time t ' 10 s of a revolution, the
probability that a complete round-trip takes place in such a time segment is very
high. Hence, we have a large peak at entropy productions associated with heat
transfer for a full revolution ∆s̃tot ' 2πRf1 = 1250. An experimental check of the
FT, or equivalently the determination of the function

f(∆s̃tot) ≡ ln [p(∆s̃tot)/p(−∆s̃tot)], (4.18)

requires the accurate measurement of events with both entropy productions ∆s̃tot

and −∆s̃tot. As trajectory segments with negative entropy production become
increasingly rare with both growing t and ∆s̃tot, the trajectory length is limited
by t . 2 s and the range of f restricted to −3 . ∆s̃tot . 3. Fig. 4.2(b) magnifies
the section of the black histogram (closed bars) from Fig. 4.2(a) around ∆s̃tot = 0.
The excellent agreement between f(∆s̃tot), black squares in Fig. 4.2(c), and the
straight black dashed line with slope one crossing the origin expectedly confirms
the validity of the FT (4.6) for one ring in the uncoupled case.

Approximate FT-like symmetry for Γ 6= 0

The red histograms (open bars) in Figs. 4.2(a) and (b) demonstrate the situation
for coupled particles. Most prominent is the change in the structure of the pdf in
the range 0 . ∆s̃tot . 200. While for the maximum at ∆s̃tot ' 0 the probability
density is enhanced, it passes through a local minimum for slightly larger ∆s̃tot

before we observe another local maximum at ∆s̃tot ' 100. The peak around
∆s̃tot = 800 is shifted towards lower entropy productions due to the slower average
velocities of the particle for this Γ. Since the red dots in Fig. 4.2(c) do not agree
with the dashed line of slope one, this apparent entropy production does not obey
the FT. Surprisingly, we still find a linear relation

f(∆s̃tot) ' σ∆s̃tot (4.19)
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Figure 4.3.: (a) Typical trajectories of the observed (black line) and hidden par-
ticle (red line) for parameter set II in Table 4.1 and coupling constant Γ = 380.
Inset: Corresponding tilted potentials for the observed (black line) and the hidden
(red line) particle. (b) Logarithmic probability ratio f as a function of ∆s̃tot for
t = 3 s (black) and 0.25 s (blue). Figure from [51].

within the experimental error margins with a slope σ ' 0.65 deviating significantly
from one. We find such linear functions for various coupling strengths albeit with
different slopes. One might speculate that this behavior results from the symmetric
choice of parameters employed here. However, such linear relations appear as well
in additional measurements performed for asymmetric configurations. Hence, we
exclude geometrical symmetry in the setup as the sole origin of this behavior.

Deviations from linearity

Despite all this experimental evidence, it would be very surprising if this result
was a strict relation. However, if this results holds only approximately, we should
be able to find parameters for which deviations become visible. Indeed, we observe
an obviously nonlinear result by fine-tuning the parameters, see Fig. 4.3(b). In
this special case, the coupling constant is set to Γ = 380 and two particles are
subjected to quite different potentials, while the driving forces remain unchanged,
cf. parameter set II in Table 4.1. Specifically, the potential of the hidden particle
is adjusted such that it moves along the ring almost freely. By contrast, for the
observed particle, a deep minimum remains in the tilted potential Ũ1(x1) which the
particle is not able to leave on its own. A complete revolution can only be observed
when the hidden particle pushes the observed one over the barrier. We elucidate
this pattern of motion by means of a typical trajectory shown in Fig. 4.3(a). The
hidden particle (red line) moves with a period of 4 s at an almost constant velocity
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along Ũ2(x2). Only around x2 = 0.75, the repulsive interaction (Γ = 380) causes
it to slow down somewhat. By contrast, the observed particle (black line) is not
moving quickly but fluctuating at low mean local velocities around a potential
minimum at x1 = −0.35. In addition, we find oscillations whose characteristic
frequency matches the revolution frequency of the hidden particle, see Fig. 4.3(b).
These oscillations arise due to the following mechanism. Each time the hidden
particle traverses the region close to the neighboring ring, it pushes the observed
particle up the potential hill towards positive x1. In most cases, however, the push
is not strong enough for the observed particle to overcome the barrier. Hence,
once the hidden particle has passed by, the observed one relaxes into the potential
minimum again. The process repeats itself as soon as the hidden particle returns.
These oscillations enhance the probability for the occurrence of events with the
apparent entropy productions corresponding to the up and downhill sections of
the oscillating trajectories. The entailing changes in p(∆s̃tot), in turn, cause the
deviations from a linear f(∆s̃tot).

Discussion

So far, we have worked out that relation Eq. (4.19) is not an exact law but rather a
good approximation for many cases. In order to explain this result, we discuss the
logarithmic probability ratio f(∆s̃tot) [Eq. (4.18)] in more detail. First, we note
that f(∆s̃tot) is antisymmetric by construction. For small entropy productions,
∆s̃tot � 1, f(∆s̃tot) must therefore be linear up to corrections of third order or
higher [130]. Second, we discuss f(∆s̃tot) for large entropy productions, ∆s̃tot � 1.
Solving Eq. (4.18) for p(−∆s̃tot) and integrating over all ∆s̃tot yields∫ +∞

−∞
p(∆s̃tot) e

−f(∆s̃tot) d∆s̃tot = 1 (4.20)

by normalization. We assume that p(∆s̃tot) does not decay faster than a Gaussian.
We have observed this property in all measurements and expect the assumption to
be rather weak because for any quantity consisting of independent contributions,
the central limit theorem would imply a Gaussian. Any correlation would typically
lead to a slower decay. Under this assumption, convergence of the integral in
Eq. (4.20) requires that f(∆s̃tot) = O(∆s̃2

tot). Since, in addition, f(∆s̃tot) is
antisymmetric, we expect the generic asymptotic behavior to be linear, f(∆s̃tot) ∼
∆s̃tot, with a slope in general different from the one for small ∆s̃tot. We emphasize
that this reasoning does not prove the linearity of f in the limit of large ∆s̃tot,
rather it provides an argument why such a behavior can be considered as typical.
In summary, we expect a linear function both for small and for large entropy
production for any time t. This reasoning leaves the possibility for a nonlinear
regime for intermediate t.
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Figure 4.4.: (a) Slope σ vs. coupling constant Γ for t = 1.75 s. (b) Slope σ for
different trajectory lengths t for Γ = 0 (black squares) and Γ = 300 (red dots).
The deviation of the black squares from σ = 1 is in the order of the statistical
error.

4.4.3. Slope in dependence of the trajectory length

For parameter set I in Table 4.1, we observe approximately linear relations of the
form of Eq. (4.19) for all accessible coupling strengths and trajectory lengths. Still,
the slope varies as a function of both parameters, see Figs. 4.4. The dependence
of σ on Γ is a manifestation of the transition from an uncoupled to a coupled
state. Considering the dependence of σ on t in the uncoupled case, we expectedly
find the FT confirmed for arbitrary t, see black squares in Fig. 4.4(b). Increasing
the coupling constant to Γ = 300, the slope deviates from one with its value
depending on t. An intriguing feature is that in the limit of short trajectories, the
slope approaches one and hence fulfills the FT in this limit. We observe a similar
behavior for the nonlinear f shown in Fig. 4.3(b). Here, the nonlinear f for finite t
becomes a linear function with slope one in the short-time limit. In the following,
we show that this behavior is a generic feature of the apparent entropy production.

Slope in the short-time limit

The origin of the FT for the apparent entropy production approaching the exact
FT in the short-time limit is that for very short trajectories ∆s̃tot becomes equiv-
alent to the total entropy production of an effective one-particle system which
trivially obeys the FT. This equivalence comes to light in a short-time expansion
of ∆s̃tot. For such an expansion, it is crucial to appreciate the stochastic nature
of the underlying dynamics. Therefore, we write the dynamics in terms of the Îto
process [11]

dxi(t) = (2D0)1/2dwi(t) + µ0Fi(x)dt (4.21)
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with the Wiener process wi(t) ≡
∫ t

0
dw(t) starting at wi(0) = 0. The Wiener

process is defined by the differential increments dwi(t) which follow a Gaussian
distribution with zero mean and variance dt at any time t. In particular, we have

〈dwi(t)dwj(t)〉 = δij dt. (4.22)

Regarding the short-time limit, an important consequence of this relation is that
dw2

i (t) [not dw(t)] is of the order dt, i. e., dw2
i = O(dt) [11].

The apparent entropy production for the ith accessible degree of freedom is given
by the Riemann-Stieltjes integral [116]

∆s̃tot =

∫ t

0

ν̃s
i (xi(t))dxi(t) =

∫ t

0

ν̃s
i (xi(t)) ◦dxi(t) +

1

2

∫ t

0

∂xi ν̃
s
i (xi(t))dt. (4.23)

In the last step, we express the Stratonovich integral as the sum of an Îto integral
denoted by ◦ and an additional deterministic drift term. The short-time expansion
of the latter is straightforward while the expansion of the Îto integral is somewhat
more subtle due to the short-time behavior of w(t), see Eq. (4.22). With Eq. (4.21)
we obtain

∆s̃tot = ν̃s
i (x

0
i )wi(t)︸ ︷︷ ︸
O(t1/2)

+
∂ν̃s

i

∂xi

∣∣∣∣
xi=x0i

w2
i (t) +

(
ν̃s
i (x

0
i )µ0Fi(x

0) +
1

2

∂ν̃s
i

∂xi

∣∣∣∣
xi=x0i

)
t︸ ︷︷ ︸

O(t)

+O
(
t3/2
)
,

(4.24)

where x0
i ≡ xi(0), x0 ≡ x(0), and wi(t) ≡

∫ t
0
dwi(τ). Analogously, the short-time

expansion of the total entropy production in a system consisting of only one degree
of freedom i reads

∆stot = νs
i (x

0
i )wi(t)︸ ︷︷ ︸
O(t1/2)

+
∂νs

∂xi

∣∣∣∣
xi=x0i

w2
i (t) +

(
νs
i (x

0
i )µ0Fi(x

0
i ) +

1

2

∂νs
i

∂xi

∣∣∣∣
xi=x0i

)
t︸ ︷︷ ︸

O(t)

+O
(
t3/2
)
.

(4.25)

Comparing Eqs. (4.24) and (4.25) up to O
(
t1/2
)
, we find that the apparent entropy

production is equivalent to the total entropy production of an effective one-particle
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system subject to a Markovian dynamics with mean local velocity ν̃s
i . This system

trivially fulfills the FT. Already for O(t), not all contributions can be attributed to
the same dynamics anymore. More specifically, the forces Fi(x0) and the apparent
mean local velocity ν̃s

i (x
0
i ) are not compatible in this sense. Hence, the FT must

hold in the short-time limit, and deviations can occur already in first order in time
consistent with the experimental observation shown in Fig. 4.4(b). There, we find
deviations of from σ = 1 around t = 0 in first order of t.

4.5. Conclusion and outlook

In this chapter, we have discussed the influence of a hidden degree of freedom on
the entropy production for a paradigmatic two-particle system. In particular, we
have scrutinized the apparent entropy one would infer from the trajectory of only
one of the particles. Surprisingly, this apparent entropy production still obeys an
approximate FT-like symmetry in many cases, albeit with a slope different from
one. Consequently, in any experiment in which hidden degrees of freedom cannot
be ruled out a priori, an observed linear behavior in an FT-like relation cannot
be used to extract information by implicitly assuming σ = 1. Moreover, we have
discussed why such an approximate FT-like symmetry is typical. First, in the
limit of very short trajectories, we showed that an FT-like symmetry with the
correct slope must hold. Second, for large entropy productions a simple argument
restricts an increase in f(∆s̃tot) to O(∆s̃2

tot). Combined with the antisymmetry of
f(∆s̃tot) a linear asymptote seems natural. Also, for small ∆s̃tot, the antisymmetry
of f(∆s̃tot) ensures that deviations from linearity can only be found in third order
of ∆s̃tot or higher.
For a deeper understanding analytic expressions would be desirable. At least

in the large-deviation limit such expressions can be obtained for harmonic sys-
tems [131, 132]. Investigating, e. g., a harmonic dumbbell bound to the origin
at one end by a harmonic potential driven to nonequilibrium by a linear shear
flow could sharpen the asymptotic argument for large entropy productions. More-
over, one could exchange the linear shear flow by a different source of driving
and investigate the influence of the type of NESS. A further prospect is the in-
vestigation of nonstationary fluctuation theorems such as the Crooks fluctuation
theorem [70] as analytic asymptotic expressions for work distributions are within
reach too [133]. An analytically tractable system does also provide a means to
study the influence of a hidden slow degree of freedom on other relations such as
the fluctuation-dissipation theorem.
Finally, it would be interesting to search for quantities fulfilling exact fluctuation

relations even if only a reduced set of degrees of freedom is accessible. Recently, a
first step in this direction has been taken by Kawaguchi and Nakayama [134], who
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proved an integral fluctuation theorem for a type of a hidden entropy production
in a Markovian system.

73





5. Fluctuation-dissipation
theorem in a sheared colloidal
suspension

5.1. Introduction

The main virtue of equilibrium statistical mechanics is that even highly complex
systems, consisting of a large number of interacting degrees of freedom, can be
described by a small set of thermodynamic variables such as temperature or pres-
sure. Once we abandon the restriction to thermal equilibrium, these quantities
loose their validity. Therefore, an extension of such concepts to nonequilibrium
systems would be highly desirable in order to develop a general and comprehensive
treatment of systems far from equilibrium. In particular, much work has been ded-
icated to the search for simple quantities characterizing nonequilibrium systems in
the spirit of a temperature [17,87].
The measurement of a physically significant effective temperature in nonequi-

librium should yield a unique value independent of the type of thermometer em-
ployed. From a microscopic point of view, a thermometer works by equilibrating
the average energy of its own degrees of freedom with that of the fluctuations in
the system. In order to probe the thermal fluctuations, the thermometer needs to
be coupled to the system, constituting a small perturbation in the process [135].
While the reaction of the system to this perturbation is described by a linear re-
sponse function, the system’s fluctuations are quantified by correlation functions.
To which temperature the thermometer relaxes is determined by the ratio of these
correlation and response functions, i. e., by the so-called fluctuation-dissipation
ratio (FDR). In equilibrium, the fluctuation-dissipation theorem (FDT) ensures
that the FDR equals the thermal energy for any time scale and any choice of cor-
responding correlation and response functions. Hence, every thermometer relaxes
to the same, unique equilibrium temperature.
Since even in a NESS one can define and measure correlation and response func-

tions [136–139], it is tempting to introduce an effective temperature for stationary
nonequilibrium through such an FDR. However, it has recently been shown that for
Markovian systems in NESSs coupled to a heat bath of well-defined temperature
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5. Fluctuation-dissipation theorem in a sheared colloidal suspension

T the FDT should be interpreted in terms of an additive correlation rather than
in the form of a multiplicative factor as implied by such an effective temperature
concept [18–21,140–142]. Nevertheless, for the purpose of a simple description, we
might still be interested in defining an approximate temperature through the FDR.
This strategy was originally proposed in the context of aging mean-field spin sys-
tems [17, 87] and has subsequently been applied to various other systems [88–90].
In particular, in a sheared colloidal suspension or fluid the Einstein relation be-
tween the diffusion coefficient of a tagged particle and its mobility is broken and
was used to define an effective temperature [24,27,143–146].
In the following, we will briefly introduce the FDT in equilibrium and show how

it can be extended to NESSs along the lines of Ref. [20]. We will examine the FDR
and its usefulness as an effective temperature for a sheared colloidal suspension by
following the trajectory of a tagged particle, i. e., a randomly chosen particle out
of many identical, interacting particles. Motivated by the physical picture of an
effective confinement in dense systems, we also consider a single trapped colloidal
particle in shear flow [147]. In particular, we discuss the FDT in a “hybrid” form
in which we relate response and correlations through the kinetic temperature in
the spirit of an effective temperature, but with an additive correction term still
present. For the trapped particle, expressions can be obtained analytically while,
for the tagged particle, we derive a similar FDT exploiting a time scale separation
due to the effective confinement. In both cases, we show that the correction term
indeed becomes negligible for strong confinement [26]. Finally, we investigate the
implications of this result for the mobility and the diffusion coefficient of the tagged
particle in the suspension. Specifically, we find an approximate Einstein relation
in the regime in which the correction term is negligible [27].

5.2. FDT in equilibrium

If we apply a time-dependent external perturbation to an equilibrium system, the
mean value of an arbitrary observable A will change in general. In particular, for a
sufficiently small perturbation, the average of A at time t is given by the expansion

〈A(t)〉heq = 〈A〉eq +

∫ t

−∞
Req
A,h(t− t′)h(t′)dt′ +O

(
h2
)
, (5.1)

where we distinguish the ensemble average in equilibrium 〈·〉eq and in a system
perturbed by h in the linear response regime around equilibrium 〈·〉heq. The linear
response at time t to a perturbation at an earlier time t′ ≤ t is defined by the
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functional derivative

Req
A,h(t− t′) ≡

δ 〈A(t)〉heq

δh(t′)

∣∣∣∣∣
h=0

. (5.2)

This response function is related to the equilibrium correlation function

Ceq
A,h(t− t′) ≡ 〈A(t)Beq(t′)〉eq (5.3)

by the fluctuation-dissipation theorem

TReq
A,h(τ) = Ceq

A,h(τ) for τ ≥ 0, (5.4)

see, e. g., Refs. [81, 148]. Note that in any stationary state both the response and
the correlation functions are translationally invariant in time and thus only depen-
dent on the time difference τ ≡ t − t′. The second observable in the correlation
function (5.3) is conjugated to the perturbation h in the sense that

Beq ≡ −∂t[∂hU ]h=0, (5.5)

i. e., Beq is equivalent to the negative time-derivative of the change in the internal
energy U for a variation in the perturbation h. The FDT (5.4) implies that the
equilibrium fluctuation-dissipation ratio,

Xeq
A,h(τ) ≡

Ceq
A,h(τ)

Req
A,h(τ)

= T, (5.6)

is equivalent to the temperature, regardless of the time difference τ ≥ 0 and the
choice of A or h.
The physical picture behind the FDT is condensed in Onsager’s regression hy-

pothesis which states that “as far as the average behavior is concerned, it does
not matter whether a state was the result of a spontaneous fluctuation or of an
imposed constraint” [149]. For a Gaussian process this hypothesis is equivalent to
the Markovian assumption, which becomes obvious by restating it in the following
way: “The system does not remember how it got to the given state.” [149]
For practical purposes, the relevance of the FDT is twofold. On the one hand,

one can obtain the linear response of a system to a perturbation simply by observ-
ing equilibrium fluctuations, i. e., without the need to actually apply a perturba-
tion. On the other hand, one can gain information about microscopic fluctuations
already from macroscopic linear response coefficients.
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5. Fluctuation-dissipation theorem in a sheared colloidal suspension

Figure 5.1.: Schematic sketch of the linear response regime of a system in equi-
librium and a system driven into a NESS by f0. The red arrows depict small
perturbations applied in the stationary states.

5.3. Extended FDT in a NESS

The FDT, in the form of Eq. (5.4), is valid only in the proximity of equilibrium.
Upon leaving the linear response regime, this relation breaks down. Still, analo-
gous to equilibrium, a linear response regime around a NESS can be defined as
well, see Fig. 5.1. Likewise, the evaluation of correlation functions in a NESS is
unproblematic. Therefore, we can generalize Eqs. (5.2) and (5.3) to

RA,h(t− t′) ≡
δ 〈A(t)〉h
δh(t′)

∣∣∣∣∣
h=0

, for t ≥ t′, (5.7)

and

CA,h(t− t′) ≡ 〈A(t)B(t′)〉 , (5.8)

respectively, where we have replaced the equilibrium ensemble averages with en-
semble averages in an arbitrary steady state. Using stochastic thermodynamics,
the extension of the FDT to NESSs takes the form [20]

TRA,h(t− t′) =
〈
A(t)BNESS(t′)

〉
, for t ≥ t′, (5.9)

with the conjugate quantity

BNESS ≡ −T∂hṡ, (5.10)

in which the role of the internal energy is now played by the stochastic entropy.
The connection to the equilibrium FDT is easily seen for systems relaxing to an
equilibrium state with the pdf

Ψh(x) = exp {−[U(x, h)−F(h)]/T} (5.11)
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5.4. Effective confinement as the origin of a time-independent FDR

even for small nonvanishing perturbations h with the perturbation-dependent free
energy of the system. Since, in contrast to the internal energy, the free energy F
of the system does not depend on the configuration x, the free energy is constant
along any trajectory. Hence, its time derivative is zero. Using the definition of the
stochastic entropy (4.1), the conjugate quantity (5.10) reduces to the equilibrium
result [20]

BNESS eq
= ∂t∂h[U(x, h)−F(h)] = ∂t∂hU(x, h) = Beq. (5.12)

The general structure of the FDT in NESSs becomes most transparent, when we
split the entropy production of the system into the total and the medium entropy
production,

RA,h(t− t′) = 〈A(t)[∂hṡmed]h=0(t′)〉 − 〈A(t)[∂hṡtot]h=0(t′)〉
≡ CA,h(t − t′) − IA,h(t − t′), (5.13)

see Eq. (4.5). The FDT is now of an additive form involving two terms, the first
of which, C, can be shown to correspond to the equilibrium form of the FDT
evaluated in a NESS [20]. The second term is the time dependent excess function
I caused by the total entropy production. This term vanishes along with ṡtot if
we approach equilibrium. With this additive form in mind, there is no reason why
the equivalent of the equilibrium FDR (5.6) evaluated in the NESS,

XA,h(τ) ≡ CA,h(τ)

RA,h(τ)
, (5.14)

should be time independent. Yet, in the next sections, we will see that there are
conditions under which this FDR becomes approximately constant.

5.4. Effective confinement as the origin of a
time-independent FDR

In the following, we will examine the FDR in a NESS for a single particle moving
in a viscous liquid at temperature T . For the remainder of this chapter, we employ
dimensionless units and measure lengths in units of the particle diameter a, energy
in units of T , and time in units of the diffusive time scale τD ≡ a2/D0. In these
units, the reduced mass of the particle m relates the momentum relaxation time
to the diffusive time scale. The motion of the particle is described by the Langevin
equations ṙ = v and

mv̇ = −∇U + f − [v − u(r)] + ξ, (5.15)
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5. Fluctuation-dissipation theorem in a sheared colloidal suspension

cf. Eq. (2.1), with stochastic forces of zero mean and correlations given by Eq. (2.2).
The particle is subject to an externally imposed shear flow u(r) = γ̇yex pointing
in x direction with its magnitude increasing linearly with the y coordinate. In
this set of units, the strain rate γ̇ is equivalent to the Péclet number relating the
time scales of convection and diffusion. We leave the potential U arbitrary, for
now, but will pick two specific realizations in the following subsections. The small,
externally applied forces f(t) ≡ (f1(t), f2(t), f3(t))T with fi(t) = 0 for t < 0 give
rise to an evolution of the mean velocity according to

〈v(t)〉f =

∫ t

0

R(t− t′)f(t′)dt′ +O
(
f2
)
, (5.16)

where R is the response matrix with the components

Rij(t− t′) ≡
δ 〈vi(t)〉f
δfj(t′)

∣∣∣∣∣
f=0

. (5.17)

Here and for the remainder of this chapter, we implicitly assume A ≡ v and h ≡ f
for the choice of observable and perturbation. In equilibrium, the response matrix
is equal to the velocity autocorrelation matrix C with the components

Cij(t− t′) ≡ 〈vi(t)vj(t′)〉 . (5.18)

We denote the corresponding FDR for the diagonal components as

Xi(τ) ≡ Cii(τ)

Rii(τ)
, (5.19)

cf. Eq. (5.14). For Xi(0), we can obtain an analytical result by performing a
short-time expansion of Eq. (5.16) leading to

〈v〉f ≈ R(0)f(0)∆t. (5.20)

In the short-time limit, we get from the Langevin equation (5.15)

m 〈v̇〉f ≈ m 〈v〉f /∆t = f(0). (5.21)

Besides the zero mean of the stochastic forces, we have exploited that the veloci-
ties of the particles fluctuate symmetrically around the local solvent velocity and
therefore 〈v − u(r)〉 = 0. Moreover, we have used that the conservative force van-
ishes on average, 〈−∇U〉 = 0. This assertion holds for any isotropic system and
is still valid in linear shear flow which preserves the inversion symmetry about the
origin. Hence, Eqs. (5.20) and (5.21) imply

Rij(0) = δij/m, (5.22)
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Figure 5.2.: Sketch of the systems studied: (a) Single particle bound to the origin
by a harmonic potential depicted as a spring. (b) Tagged particle (red) in a dense
colloidal suspension. The line marks the shape of the shell of its nearest neighbors.
Both systems are driven into a NESS by a linear shear flow.

and consequently

Xi(0) = m
〈
v2
i

〉
≡ θi. (5.23)

The right-hand side is the kinetic temperature θi quantifying the velocity fluctu-
ations of component i. In the following, we study for two systems, see Fig. 5.2,
whether, and under which conditions, Eq. (5.23) extends to t > 0, i. e., whether
Xi(t) ≈ θi.

5.4.1. Trapped particle in shear flow

The first model we investigate in this context is a single particle trapped in the
harmonic potential

U(r) =
1

2
kr2 (5.24)

with the potential strength k and the displacement from the origin r ≡ |r|. As
the restoring force is linear, the z component in Eq. (5.15) decouples and remains
in equilibrium independent of the driving, i. e., Xz(t) = θz = 1. We will therefore
focus on the x-y plane in this part.
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Analytical results

For a harmonic potential, the equations of motion (5.15) comprise a system of first
order differential equations. The solution for the velocity reads

v(t) = Gvr(t)r0 + Gvv(t)v0 +
1

m

∫ t

0

Gvv(t− t′)ξ(t′)dt′ (5.25)

with the initial position r0 ≡ r(0) and velocity v0 ≡ v(0). The complete set
of Green’s functions G(t) and a brief derivation are given in Appendix D. Both
the velocity autocorrelation function (VACF) and the response function can be
obtained from Eq. (5.25). For the VACF, we find

C(t) =
〈
v(t)vT

0

〉
= Gvr(t)

〈
r0v

T
0

〉
+ Gvv(t)

〈
v0v

T
0

〉
, (5.26)

while the response function is trivially related to the Green’s function by

R(t− t′) =
1

2

〈
v(t)ξT(t′)

〉
=

1

m
Gvv(t− t′), (5.27)

where we have used Eq. (C.5) and the noise correlations Eq. (2.2). The moments
involved in Eq. (5.26) are connected to the Green’s functions by Chandrasekhar’s
theorem [96] and are given by

〈
r0v

T
0

〉
=

1

2k

(
0 −γ̇
γ̇ 0

)
(5.28)

〈
v0v

T
0

〉
=

1

m
1 +

1

2k

(
γ̇2 0
0 0

)
, (5.29)

see Appendix D. Hence, the kinetic temperatures perpendicular to the shear flow
are θy = θz = 1, see Eq. (5.23), whereas

θx = 1 + αxγ̇
2 ≥ 1 (5.30)

with αx ≡ m/(2k). As changing the sign of the strain rate cannot change the
kinetic temperature, we expect θx to depend only on even powers of γ̇. The
property that no powers larger than two appear in θx is due to the linearity of the
interaction forces and does not extend to nonlinear systems.

FDT

With the explicit expressions for C(t) and R(t), we can compute the FDR for any
component. For Cyy(t), i. e., for the diagonal component perpendicular to the flow
field the first term on the right-hand side of Eq. (5.26) vanishes. Hence, we have
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Cyy(t) = Gvv
yy(t)

〈
v2
y

〉
= m

〈
v2
y

〉
Ryy(t) = Ryy(t) and therefore Xy = θy = 1 for any

time t. By contrast, in the direction parallel to the shear flow, we obtain

Cxx(t) = θxRxx(t) + 〈yvx〉Gvr
xy(t), (5.31)

i. e., the velocity correlations are expressed through the response times the kinetic
temperature plus a correction term arising from the off-diagonal components of
the Green’s function and the moments. This correlation function is represented in
a hybrid form including parts of both the additive structure of an FDT in a NESS,
cf. Eq. (5.9), and a constant multiplicative factor from an effective temperature
approach. Separating the dependence on strain rate, the correction term can be
rewritten as

〈yvx〉Gvr
xy(t) ≡ γ̇2βxIx(t), (5.32)

where βx ≡ max | 〈yvx〉Gvr
xy(t)/γ̇

2| captures the magnitude of the correction term
and Ix(t) accounts for the shape of its time dependence with max |Ix(t)| = 1.
As demonstrated in Fig. 5.3(a), increasing the trap strength k strongly decreases
βx, i. e., the additive correction becomes less and less important until finally, the
response and correlation functions are related by the constant kinetic temperature
θx. Yet, an application of this approximately time-independent FDR, Xx(t) ≈ θx,
in an effective temperature approach becomes interesting only if θx simultaneously
deviates from one, i. e., from the equilibrium value. From Eq. (5.30), we see that
the latter is true for k � mγ̇2. In the oscillatory regime, i. e., for k & 1/m, we
find that k � max {γ̇2,mγ̇2} must hold for an approximately time independent
FDR, for details see Appendix E. This general behavior is sketched for m . 1 in
Fig. 5.3(b), where in the upper left region the FDR is approximately constant,
and in the lower right region the kinetic temperature is significantly larger than
one, θx � 1. For low masses, these regions are separated by a gap (shaded area),
i. e., the FDR cannot be both constant and larger than one simultaneously. For
increasing masses, the regions come closer. For m & 1, the gap finally vanishes
and, in the vicinity of the borderline, a constant FDR deviating from one can be
realized.
In Fig. 5.4, we plot the scaled response and correlation functions for the three

cases we have just discussed. First, in the left panel, Fig. 5.4(a), we show the
response and correlation function for parameters with a kinetic temperature de-
viating significantly from one, however, with an obviously time-dependent FDR.
Second, in the right panel, Fig. 5.4(c), we show the case of an almost perfectly
time-independent FDR, but with a kinetic temperature barely deviating from the
equilibrium value. Finally, in the central panel, Fig. 5.4(b), we demonstrate that
there is indeed a regime of intermediate trap strength k ∼ mγ̇2 with an increased
effective temperature, where nevertheless Xx(t) ≈ θx holds to a very good degree.
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Figure 5.3.: (a) Magnitude of the correction term βx, as a function of k for two
different masses. (b) Sketch of the different regimes of the FDT for m = 0.6. The
dashed lines γ̇2 and 1/m limit the region where the FDR is approximately time
independent, i. e., Xx ≈ θx. Below the solid line mγ̇2, the kinetic temperature is
much larger than unity. While for the chosen m there is a gap (shaded area), with
increasing m both regimes can be realized in the vicinity of the solid line.
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Figure 5.4.: Scaled velocity autocorrelation functions Cxx(t)/θx and correspond-
ing response functions Rxx(t) vs. time t for strain rate γ̇ = 2.0 and the following
remaining parameters (a) m = 1, k = 1.25; (b) m = 1, k = 12.5; (c) m = 0.25,
k = 25.
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5.4.2. Tagged particle in a suspension

Now, we turn to a much more complex system. Specifically, we consider the FDR
for a suspension composed of N particles without hydrodynamic interactions in
which we follow a single particle. Without loss of generality, we tag the particle
with index k = 1 with the corresponding position r1 and velocity v1. The in-
teraction between the particles is defined through a pairwise interaction with the
potential u(r) leading to the total potential energy

U =
∑
i<j

u(|ri − rj|). (5.33)

The linear shear flow implies different solvent velocities for different regions in the
suspension leading to the well-known Taylor dispersion [150]. This varying solvent
velocity strongly affects the velocity autocorrelation and response functions. For
the system discussed above, this issue was irrelevant as the particle was confined to
a small volume around the origin. Here, the particle coordinates are not bounded
and we deal with this problem by introducing the relative velocities with respect
to the local shear flow

ṽi ≡ vi − u(ri) (5.34)

instead of the absolute velocity vi as the observable entering the response R(t) and
correlation functions C(t).

Time scale separation

In a fairly dense suspension, the tagged particle is in general surrounded by a “cage”
of neighbors. Within such a cage, there is typically a local potential minimum, say
at r0, and we expect the tagged particle to be close to r0 very often. Linearizing
the total interaction force acting on the tagged particle around r0 leads to

−∇1U ≈ −k(t)[r1(t)− r0(t)], kij ≡
∂2U

∂ri∂rj
. (5.35)

Now, we assume a time scale separation between the motion of the local potential-
energy minimum r0 and the vibrational motion of the tagged particle around r0.
The underlying physical picture is that of particles vibrating in an effective “cage”
formed by surrounding particles and that local reorganization, or “cage breaks”,
occur on a time scale much longer than the vibrational motion. Assuming that
r0(t) is approximately constant, we can solve the resulting linear equations of
motion analogously to the case of the trapped particle leading to formally identical
results for the correlation function and the response function, see Eq. (5.26) and
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Eq. (5.27), respectively. In principle, the Green’s functions can be calculated also
for a time-dependent k, but we will not need their explicit forms here. A crucial
difference to the trapped particle is that this system is homogeneous and thus
translationally invariant. Consequently, the first term in Eq. (5.26) vanishes. This
point becomes obvious by considering the projected stationary pdf

Ψ̄s(r1, ṽ1) ≡
∫

dr2 · · ·
∫

drN

∫
dṽ2 · · ·

∫
dṽNΨs(R, Ṽ) (5.36)

with R ≡ {r1, . . . , rN} and Ṽ ≡ {ṽ1, . . . , ṽN}. Due to the homogeneity of the
suspension, Ψ̄s cannot depend on the position r1 and therefore

〈
r1ṽ

T
1

〉
∼ 〈ṽ1〉 = 0

vanishes. Hence, we obtain

Cii(t) = θiRii(t) +m
∑
j 6=i

〈
ṽi1ṽ

j
1

〉
Rij(t), (5.37)

with ṽ1 ≡ (ṽi1). Also for a tagged particle in a suspension, we find a hybrid form of
the FDT with the kinetic temperature connecting response and correlation function
plus an additive correction term. The shape of the correction term, however, differs
from the one in Eq. (5.31) due to the different symmetry properties. Here, the
deviation stems from the off-diagonal components of the response functions instead
of the Green’s function coupling velocity and position. Note that this result holds
not only for dense suspensions but is also valid in the dilute limit as, in general, a
weak interaction can be linearized.

Langevin dynamics simulation

In order to study Eq. (5.37) for a specific system, we perform Langevin dynamics
simulations. In a cubic simulation box of volume V , N = 1728 colloidal particles
interact through the purely repulsive Yukawa pair potential

u(r) =

{
ε e
−κ(r−1)

r
(r > 1)

∞ (r < 1),
(5.38)

where ε is the interaction energy at contact and κ−1 is the screening length. The
magnitude of κ is influenced mainly by the ion concentration in the solvent and
interpolates between Coulombic (low κ, low ion concentration) and hard-sphere
interactions (large κ, high ion concentration). We choose ε = 8.0 and κ = 5.0 in
order to obtain a broad range of densities for which the liquid phase is stable [151].
Since we are interested in the bulk behavior of the liquid, we impose Lees-Edwards
boundary conditions [152]. We integrate the equations of motion by a stochastic
velocity Verlet algorithm [152] with a time step of 5 × 10−4, for details refer to
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Appendix F. In order to implement the hard-core repulsion and prevent the parti-
cles from overlapping, we employ a simple algorithm which detects collisions and
computes the computes the appropriate positions and velocities after the impact
according to momentum and energy conservation, see Appendix F.
In the following, we study the correlation and response functions, C(t) and R(t),

respectively, in NESSs for different volume fractions φ ≡ πN/(6V ) and strain rates
γ̇. We prepare these states by initializing the particle positions on a regular lattice
at low density. Then, we equilibrate the system and slowly increase the density by
scaling down both the particle coordinates and the edge length of the simulation
box. Once we have reached the final density, we slowly ramp up γ̇ until the system
reaches the desired strain rate. Finally, we simulate another 1000 time steps to
relax the system into the steady state. This procedure is conducted separately
for every independent run. In these NESSs, we record the trajectories for 200
randomly chosen particles in four independent runs. From this data, we can easily
infer the VACF. The conventional way to determine response functions in such
a simulation would be to apply a step perturbation of the force to the tagged
particles and record their subsequent velocity relaxation. After many repetitions,
one would obtain the response function as the time derivative of the mean velocity
divided by the perturbation force. Here, we avoid this time consuming procedure
by using the variant

R(t− t′) =
1

2

〈
ṽ1(t)ξT

1 (t′)
〉

(5.39)

of Eq. (C.5) holding also for the case of the tagged particle in an interacting
suspension. Since in a Langevin dynamics simulation the stochastic forces are
readily accessible, we merely need to record these forces for the tagged particles
and can infer the response functions from steady-state correlations, i. e., without
the need to actually perturb the system.

Effective confinement

In order to visualize the average environment of the tagged particle, we determine
the stationary pair distribution function

(N − 1)N

V 2
g(r1, r2) ≡

∫
dr3 · · ·

∫
drN

∫
dṼΨs(R, Ṽ). (5.40)

This function is proportional to the joint probability of finding a particle at position
r1 given that there is another particle at r2 simultaneously. Because of the homo-
geneity of the suspension, g depends only on the relative coordinate r12 ≡ r1− r2.
In the unsheared case, the suspension is also isotropic and g depends only on the
absolute value of the displacement, whereas, in the sheared case, g is distorted
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5. Fluctuation-dissipation theorem in a sheared colloidal suspension

= +

Figure 5.5.: A linear flow of the form u(r) = γ̇yex can be decomposed in equal
parts into a purely elongational uel ≡ γ̇(yex + xey)/2 and a purely rotational flow
field urot ≡ γ̇(yex − xey)/2.

mainly due to the elongational part of the flow field, see Fig. 5.5. Specifically, the
neighbors are found on average more frequently in the compressional zones and less
frequently in the extensional zones around the particle [153], see Fig. 5.6(a). Re-
gardless of the flow field, there is a shell structure of neighbors around the tagged
particle resulting from the fixed density. These shells manifest themselves in peaks
along the radial direction of g(r), see, e. g., Ref. [9]. With increasing density, these
peaks become much more pronounced, see Fig. 5.6(a).
In Fig. 5.6(b), the response functions mRxx(t) are shown along with the scaled

VACFs Cxx(t)/θx for volume fractions φ = 0.1 and 0.4 for a range of strain rates.
Even for times t > 0, these functions coincide which implies that the additive
correction term in Eq. (5.37) is negligible. We observe the same behavior for the
diagonal components in y and z direction. In order to understand this point,
we need to discuss the off-diagonal components of the response functions and the
moments for the corresponding velocity components. In Fig. 5.6(c), we show the
off-diagonal response functions Rxy(t) and Ryx(t), i. e., the response of the mean
relative velocity of the tagged particle in x and y direction when it is pulled in y
and x direction, respectively. For every other off-diagonal combination, i. e., xz,
yz, zx, and zy, the responses are too small to be detected in this simulation. The
same is true for the corresponding off-diagonal moments 〈ṽx1 ṽz1〉 ' 0 and 〈ṽy1 ṽz1〉 ' 0.
Defining the off-diagonal kinetic “temperature”

θxy ≡ m 〈ṽx1 ṽy1〉 = θyx, (5.41)

we see that the dominant contribution to the additive correction term in Eq. (5.37)
is θxyRxy(t) for Cxx(t) and θxyRyx(t) for Cyy(t). The correction for the zz compo-
nent contains only off-diagonal terms of very small magnitude. In analogy to the
trapped particle [cf. Eq. (5.32)], we separate the strain rate dependence from the
correction terms,

θxyRxy(t) ≈ γ̇2βxIx(t), θxyRyx(t) ≈ γ̇2βyIy(t), (5.42)
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Figure 5.6.: Different results for a tagged particle with mass m = 1 in a sheared
suspension at volume fractions φ = 0.1 (top row) and φ = 0.4 (bottom row).
(a) Cross section of the pair distribution function in the x-y plane for strain rate
γ̇ = 1.0. (b) Scaled velocity autocorrelation functions Cxx(t)/θx and response
functions mRxx(t) for the strain rates γ̇ = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 (from
bottom to top). The curves are shifted for better visibility. (c) Off-diagonal
response functions Rxy(t) (solid lines) and Ryx(t) (dashed lines) for the same strain
rates and offsets. (d) Magnitude of the correction term |θxyR∗ij| with the maximum
R∗ij of the off-diagonal response function shown in dependence of the strain rate.
The dashed lines show quadratic fits.

where again max |Ii(t)| = 1 and the coefficients βi quantify the magnitude of
the shear-reduced correction. Here, the quadratic dependence on the strain rate
is not an exact result but an expansion to the lowest nonvanishing order in γ̇.
In Fig. 5.6(d), we show |θxyR∗ij| as a function of the strain rate, where R∗ij =
max |Rij(t)| is the maximal absolute value of the corresponding response function.
For φ = 0.1, the data follows the predicted quadratic dependence on γ̇, while for
φ = 0.4 higher order terms become important above γ̇ ' 0.8.
In Fig. 5.7, we plot the diagonal components of the kinetic temperatures for

the three spatial directions as a function of the strain rate. While there is a clear
difference between the motion parallel to the flow (θx) and the motion perpen-
dicular to the flow (θy ' θz) for φ = 0.1, this distinction diminishes at higher
densities. Moreover, all kinetic temperatures can be fitted by a quadratic function
of the form of Eq. (5.30) with coefficients αi for the three directions. The increase
in the magnitude of the velocity fluctuations can be explained by collisions with
neighbors caused by the flow gradient. This effect is more pronounced at higher
densities and higher strain rates.
Fig. 5.7(c) shows the fitted coefficients αi and βx as functions of φ. The coeffi-
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Figure 5.7.: (a),(b) Kinetic temperatures θi (symbols) and their quadratic fits
(lines) in dependence of the strain rate γ̇ for mass m = 1 for (a) φ = 0.1 and
(b) φ = 0.4. (c) Coefficients αi and βx×102 as a function of the volume fraction φ.
(d) Relative magnitude of the correction term compared to the kinetic temperature,
|θxyR∗xy|/θx×103 as a function of the strain rate and the density. Colors are linearly
interpolated.

cient βx decreases strongly for growing φ before it turns up again at φ = 0.4. In
order to judge the impact of the correction term on the quality of the FDR, it is
helpful to visualize the ratio of the magnitudes of the correction term |θxyR∗xy|
and the corresponding kinetic temperature θx, see Fig. 5.7(d). We find that
|θxyR∗xy|/θx < 0.02 over the entire parameter range and Xi(t) ≈ θi is thus ful-
filled to a very good degree. However, we see that for large strain rates and low
densities this ratio grows by an order of magnitude. Also for the highest density,
the corrections to a time-independent FDR grow, albeit not as strongly as in the
low density limit.

Deviations

In order to understand the corrections to the approximately time-independent
FDR at high and low densities, we need to focus on the off-diagonal components
of the response matrix. According to Eq. (5.37), we should be able to detect
deviations under conditions where at least one off-diagonal component plays a
significant role. Such conditions can be found when approaching the dilute limit,
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Figure 5.8.: Correlation and response functions at γ̇ = 2.0 for densities approach-
ing the dilute limit (from left to right). The right panel shows analytical results
for the dilute limit, i. e., for a free particle.

see Fig. 5.8. This point becomes clear when we consider the response of the x
component of the relative velocity of a tagged particle pulled in, say, positive
y direction. In a dilute suspension, the particle follows the force in y direction
almost unobstructed by other particles. Moving upwards, i. e., in the positive y
direction, it enters a region where the solvent flows faster. The relative velocity
is thus negative until the particle has adapted its motion to the surrounding flow
field, see sketch in Fig. 5.9(a). Hence, we observe a pronounced negative bulge in
Rxy(t). In a more dense suspension, the upwards-directed motion quickly decays
due to collisions with neighboring particles, see Fig. 5.9(b). Relative velocities
resulting from a velocity change in the surrounding solvent are thus negligible and
the negative bulge is much smaller, see Fig. 5.8. Therefore, a large correction term
at low densities becomes much smaller with increasing φ. In this sense, the strong
confinement of a tagged particle leads to an equivalence of the FDR and the kinetic
temperature.
Increasing the density further, we find that the magnitude of the off-diagonal

corrections become larger again. This behavior results from the shear-induced
distortion in the distribution of neighboring particles, cf. Fig. 5.6(a), and the
resulting asymmetry in collisions with these neighbors. In contrast to the first
mechanism, this process affects both the xy and the yx component of the response
matrix. Specifically, pulling the particle upwards in the y direction, the distorted
distribution of neighbors makes collisions with particles from the left more likely
than with particles from the right, see also Fig. 5.9(b) for a schematic sketch.
Likewise, if we pull the particle in x direction, there is a larger probability for
impacts from below than from above. The asymmetric frequency of impacts causes,
on average, an acceleration in the positive x or y direction for a perturbation force
in the positive y or x direction, respectively. This acceleration manifests itself
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5. Fluctuation-dissipation theorem in a sheared colloidal suspension

Figure 5.9.: Sketch of the time evolution after a force perturbation in the y di-
rection (arrow) determining the shape of the Rxy(t) response function. At low
densities (a), the tagged particle is following the force almost freely. As for larger
y the flow field velocity is also larger it is at first moving slower than the sur-
rounding solvent due to inertia. At high densities (b), collisions with neighboring
particles are more likely. Because of the shear-distorted distribution of neighbors,
collisions push the tagged particle on average in the direction of the flow.

in a positive bulge in the off-diagonal response functions. With growing density,
particle collisions become more frequent and this effect increasingly relevant. In
Fig. 5.10, we can follow the xy component of the response matrix turn from its
shape in the dilute regime into its form in the collision regime. For φ = 0.1, the xy
component of R shows a pronounced negative bulge. Hence, the dilute mechanism
dominates for this density. For the highest density, we observe instead a positive
bulge, which is characteristic for the collision effect. For intermediate densities,
the response function is almost flat, as the two effects cancel each other out.
To summarize the behavior, the function Rxy(t) is large at low densities, shrink-

ing with increasing density. It becomes almost flat for intermediate densities and
grows again for high φ, explaining the minimum of βx at intermediate densities,
see Fig. 5.7(c).

Overdamped limit

We have discussed and derived our results for systems with underdamped stochas-
tic dynamics. In practice, inertial effects in colloidal systems are mostly negligible
and the overdamped limit is perfectly sufficient. In order to discuss how these
results approach the limit without inertia, we show the coefficients βi and the ki-
netic temperature θx as functions of the reduced mass m. As expected, for small
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Figure 5.10.: Off-diagonal component Rxy(t) for strain rate γ̇ = 1.0 for volume
fractions (a) φ = 0.1, (b) φ = 0.2, (c) φ = 0.3, and (d) φ = 0.4. For low densities,
the response function shows a pronounced negative bulge. Increasing the density,
this negative bulge becomes very small for intermediate densities and turns into a
positive one for the highest density.

masses, the kinetic temperature approaches unity, θi ≈ 1. Moreover, the additive
correction term is no longer negligible as βx and βy grow strongly. We thus recover
the FDT in the form of Eq. (5.13), in which only the bath temperature enters and
the equilibrium form of the FDT is augmented by an additive excess correlation
function.

5.5. Mobility and diffusivity in shear flow

An important property of the fluctuation-dissipation theorem for practical pur-
poses is its close relation to transport coefficients. In particular, the velocity-force
FDT discussed in detail in the preceding sections implies the Einstein relation

D = Tµ (5.43)

connecting the mobility µ and the diffusion coefficient D. Specifically, this relation
follows from the equilibrium FDT, C(t) = TR(t), by an integration over time, as
the mobility and the diffusion coefficient,

Dij ≡
∫ ∞

0

Cij(t)dt (5.44)
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Figure 5.11.: Coefficients βi (solid lines, left axis) and kinetic temperature θx as
functions of the reduced particle mass m for volume fraction φ = 0.4 and strain
rate γ̇ = 2.0.

and

µij ≡
∂ 〈ṽi1〉
∂fj

=

∫ ∞
0

Rij(t)dt, (5.45)

respectively, are simply time-integrated versions of the velocity-force response func-
tion and the VACF. Obviously, along with the equilibrium FDT also the Einstein
relation looses its validity in a NESS. However, if an effective temperature can be
found relating response and correlation function in a time-independent manner,
such a factor will recover the Einstein relation in a NESS as well.
Diffusion, characterizing the transport of a tagged particle through a homoge-

neous suspension, has been studied extensively in computer simulations [24, 25,
153–156], experiments [157, 158], and analytically [143, 159, 160]. The mobility,
describing the velocity change in response to a small force, is much harder to de-
termine both experimentally and numerically and has been addressed somewhat
less prominently and mostly in analytic calculations [143, 161]. In the following,
we will first focus on the diffusivity determined via Eq. (5.44) from the VACFs
discussed in the preceding section. Then, we discuss the mobility coefficient ob-
tainable from the velocity-force response functions using Eq. (5.45) and finally
their connection via an approximate Einstein relation.
From our data, we find that the yy and zz component of the diffusion matrix

are numerically identical. We thus distinguish only the diffusivity perpendicular
to the flow field D⊥ ≡ Dyy = Dzz from the diffusivity in the direction of the
flow D‖ ≡ Dxx. In Fig. 5.12, we show D‖ and D⊥ as functions of the strain rate
for different volume fractions. We find that diffusivity increases strongly with γ̇.
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Figure 5.12.: Diffusion coefficients parallel D‖ and perpendicular D⊥ to the flow
field as functions of the strain rate γ̇ for φ = 0.1, 0.2, 0.3, and 0.4.

This property results from the motion parallel to the shear gradient direction (y
direction), which leads to larger fluctuations in the relative velocity and allows
the particle to explore the phase space faster. While at low density diffusion is
strongly anisotropic, specifically, D‖ > D⊥, this difference vanishes for larger φ.
This growing isotropy is closely related to the mechanisms depicted in Fig. 5.9. For
low densities, fluctuations in y direction lead the particle into regions of different
flow velocity in x direction and thus, on average, to larger fluctuations of vx. For
higher densities, the enhancement of fluctuations is still induced in the same way,
i. e., in x direction. However, frequent collisions rapidly balance the increased
mean-squared velocity among the three degrees of freedom. Moreover, we find
that large densities heavily suppress the diffusivity of tagged particles. As an
illustration, we note that, in the unsheared case, the diffusivity decreases from
D‖ = D⊥ = 1 for a free particle to D‖ = D⊥ ' 0.025 for a tagged particle in a
suspension at volume fraction to φ = 0.4. Beside the enhancement of fluctuations,
shear flow facilitates transport by steadily changing the positions of particles in
relation to each other thus helping them to break out of temporary cages formed
by neighbors. Hence, diffusivity increases more strongly with growing strain rate
for larger densities.
For the mobility, we observe a similar behavior. With increasing density, the

mobility of the tagged particle decreases rapidly, see Fig. 5.13(a). Similar to the
diffusivity, also the mobility is enhanced by the shear flow. This effect is not
detectable for low densities but clearly visible for larger φ, see Fig. 5.13(b). Note
that in Fig. 5.13, we do not distinguish between the x, y, and z direction as they
coincide in the range of our numerical accuracy, µ ≡ µxx = µyy = µzz.
The form of the dependence of the mobility on the strain rate appears surprising
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Figure 5.13.: (a) Mobility in the unsheared case µeq as a function of the volume
fraction φ. (b) Reduced mobilities µ/µeq in dependence of the strain rate γ̇ for
different volume fractions. The lines are fits to Eq. (5.49).

at first glance. As µmust be invariant with respect to a sign change in γ̇, one would
expect an expansion to start with a term proportional to γ̇2, which apparently is
not the case, see Fig. 5.13(b). In order to explain the shape of µ(γ̇), we compute
the mean velocity of a tagged particle pulled through the suspension by a constant
(small) force f . For the steady-state velocity, the acceleration term in Eq. (5.15)
is irrelevant. Also the stochastic forces do not contribute on average. Therefore,
we obtain for the relative velocity for the tagged particle

〈ṽ1〉 = −〈∇1U〉+ f = −N3/V

∫
g(r; γ̇, f)∇u(r)dr + f , (5.46)

where, in the second step, we exploited that the potential U is a sum of identical
pair potentials, see Eq. (5.33). The effect of the shear flow enters only through the
pair distribution function g, which depends additionally on the density and the
perturbation force. We can expand g into a regular Taylor series for small forces

g(r; γ̇, f) ≈ g(r; γ̇, 0) +
∑
i

∂fig(r; γ̇, f)|f=0 fi. (5.47)

The dependence on γ̇, however, must be handled with somewhat more care as the
structure of the suspension is singularly perturbed by the shear flow [49, 96, 162].
The essential point causing this singularity is that no matter how small a strain
rate we choose, we can never consider the contribution of the shear flow as small
on all length scales. In the Fokker-Planck equation (2.15), and thus also in the pair
correlation function, u(r) = γ̇yex will always become dominant for large y. Such a
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Figure 5.14.: Test of the Einstein relation Dii = θiµii for components (a) parallel
and (b) perpendicular to the flow field. We find a very good agreement for all
considered densities. Only for the highest strain rates at φ = 0.4 in the parallel
case, we observe a deviation.

problem can be treated by employing the so-called boundary layer theory [96,163].
Van de Ven and Mason [162] showed that such a treatment leads to an expansion
of the pair correlation function in powers of γ̇1/2 for a weak linear shear flow,

g(r; γ̇, f) ≈ g(0)(r; 0, f) + g(1)(r; 0, f)γ̇1/2. (5.48)

Hence, using Eqs. (5.47) and (5.48), we obtain for the components of the mobility
in the lowest order

µij ≡
∂ 〈ṽi1〉
∂fj

∣∣∣∣
f=0

= δij −
[
N3/V

∫
∂fjg

(1)(r; 0, f)
∣∣
f=0

∂iu(r)dr

]
γ̇1/2. (5.49)

The expansion coefficients for different φ can, in principle, be obtained from the
knowledge of the perturbed pair distribution function. Here, we determine them
by fitting the mobility, see Fig. 5.13(b). The fits show a good agreement even
though we have only used an expansion to the lowest order.
Finally, we use the approximate effective temperatures discussed in the preceding

section to write down a generalized Einstein relation

Dii = θiµ (5.50)

for the diagonal components of the diffusion matrix. In Fig. 5.14, we test this
relation by comparing the diffusivities Dii to θiµ for different strain rates and
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densities. For θi, we employ the same quadratic expansion we already used in
Figs. 5.7(a) and (b). We find a very good agreement for all parameters except for
the largest density at γ̇ ' 1.0. There, we observe deviations in the components
parallel to the flow field.

5.6. Conclusion and outlook

In this chapter, we have studied the fluctuation-dissipation theorem for a single
colloidal particle subject to shear flow both in a harmonic trap and in an inter-
acting colloidal suspension. In general, the FDT in such NESSs is given by the
equilibrium form and an additive correction closely related to entropy production.
Hence, the FDR is in general time dependent. For the case of an interacting
colloidal suspension, we have found that this time dependence vanishes approx-
imately. We have explained this result by deriving the FDR in a hybrid form
containing both an additive and a multiplicative contribution. Under strong con-
finement, the additive contribution becomes negligible and the FDR is given by
the kinetic temperature. Moreover, we have explored the limits of this behavior
and investigated its implications on the Einstein relation in a colloidal suspen-
sion. Note that these findings are different from the effective temperatures found
in glassy systems. There, effective temperatures were investigated for large time
scales [24,25], while the systems were close to equilibrium at short times. Here, we
considered the initial decay of response and correlation functions, i. e., we worked
at short time scales but still far from equilibrium.
A prospect for future research is to check, whether the approximate effective

temperature found in this chapter can be measured with a thermometer. Such a
device could, e. g., consist of a probe particle immersed in the suspension with
a mass M different from the other particles [24]. For this probe particle, one
would then measure the kinetic temperature. For M = m, obviously the effective
temperature of the probe particle is the same as the one of the colloidal particles in
the suspension. However, varyingM , this thermometer should respond on different
time scales. Consequently, one might find different kinetic temperatures on longer
time scales, as the present considerations do not necessarily extend into the tails
of the response and correlation functions.
Another point concerns the dependence of the results on the type of observable

and perturbation. An interesting choice accessible in Langevin dynamics simula-
tions [140] is the response of the shear stress to a linear perturbation in the flow
field. This pair of observable and perturbation would be fundamentally different
from the present one, since the FDT would include the response of a collective
observable to a collective perturbation in which no particle plays an eminent role.
Moreover, in order to probe the FDR at longer time scales, one could investigate
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density-density correlations in the regime of the structural relaxation time [164].
Finally, it should be tested to what extent the results depend on the type of

the driving. Intriguing systems to approach this question include a tagged particle
dragged through a dense suspension at a constant force or suspensions of self-
propelled particles.
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6. Shear-induced crystallization
in a colloidal suspension

6.1. Introduction

In this final chapter, we focus on a somewhat different topic: the freezing transition
of a disordered colloidal suspension into a crystalline solid. This phase transition
is typically first-order and proceeds via a nucleation and growth mechanism [48].
In order to form a nucleus of the energetically favorable solid bulk, an energetically
expensive interface must be created leading to a free-energy barrier. Before crystal-
lization can start, this barrier needs to be overcome by a spontaneous fluctuation.
Avoiding nucleation, the density of a suspension can be increased even beyond the
thermodynamic freezing density1 without solidification. Such a metastable state
is then called supersaturated.
In contrast to atomistic systems, investigating the freezing transition of such a

mesoscopic system has the advantage that the crystallization process is experimen-
tally accessible. Both the spatial and temporal evolution can be monitored directly
via light scattering [165–167] or in real space via confocal microscopy [39,168], see
also Ref. [169] for a review. Although the underlying dynamics for atomic and col-
loidal systems are similar, there is an essential difference. In colloidal suspensions,
the crystallizing particles are immersed in a solvent adding friction and thermal
fluctuations to the dynamics. Moreover, a flow field imposed on the solvent can
influence the crystallization mechanism. Subjecting a colloidal suspension, e. g.,
to simple shear flow, the nucleation and growth kinetics can deviate significantly
from those in the unsheared case [170, 171]. Even a dynamical coexistence of
liquid and solid phases have been observed [172, 173]. Previous reports on the
effects of shear flow on the crystallization rate are not conclusive. On the one
hand, shear-enhanced crystallization has been reported for experiments [28–32]
and numerical simulations [33,34]. On the other hand, a suppression of nucleation

1In the limit of perfect hard spheres, the crystallization process is driven exclusively by en-
tropy [9]. Consequently, density is the only relevant parameter in the phase diagram as it
determines the accessibility of the phase-space regions. If we add a repulsive interaction to
the hard shell, the phase diagram will depend on temperature as well. Yet, density will still
be the dominant parameter.
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6. Shear-induced crystallization in a colloidal suspension

has been observed experimentally [35] and numerically [36, 37]. Others report on
an optimal strain rate for crystallization in supersaturated hard-sphere-like sus-
pensions [38, 39] and protein solutions [40]. Optimal strain rates were also found
in two dimensions for numerical simulations of Yukawa-type [41], Ising [42], and
depletion-driven attractive [41] systems, as well as in a three-dimensional model
glass [43].
In this chapter, we investigate this issue for a strongly supersaturated, charge-

stabilized colloidal suspension in three dimensions [44] by means of a Langevin
dynamics simulation. We observe that crystallization still proceeds via nucleation
and growth as small clusters appear and disappear until one of them reaches a
critical size. The subsequent growth process is dominated by a single large cluster.
We find that the time for this cluster to reach a specific size which is larger than
the critical size but still smaller than the total number of particles in the system
becomes minimal at a finite strain rate. Note that the strain rates we apply in the
process are so low that shear-induced layering plays no role [28, 156]. In order to
scrutinize the underlying mechanisms causing this optimal strain rate, we introduce
a discrete state model to describe the transitions between different structures in
the environment of single colloidal particles. We identify two counteracting shear-
dependent effects which become important at different stages during the evolution
of the crystal. At the nucleation state, the formation of small crystalline clusters is
hindered by the shear flow. We show that the origin of this behavior is the shear-
induced disruption of a loose structure in the fluid. In unsheared liquids, such a
pre-structured liquid has recently been shown to play a crucial role in the formation
of the critical nucleus [174–177]. At the growth stage, the flow field facilitates the
development of crystalline clusters. For this point, we give a tentative explanation
relating the enhanced growth rate to convection. In this simple approach, we are
able to derive the functional form of the cluster growth rate which we infer from
our data. Finally, we discuss how shear flow affects the composition and transition
in the solid. We find that it stabilizes a body-centered cubic structure and discuss
how this might contribute to a faster growth as well.

6.2. Classical nucleation theory

Before we discuss the influence of shear flow on the crystallization process, we will
briefly review the essential features of the CNT [93,94] along the lines of Ref. [95].
In the process, we discuss how simple expressions for the free-energy barrier can
be obtained within this approach.
In general, a liquid will crystallize if the chemical potential in the bulk of the

solid phase is lower than that in the bulk of the fluid. In the process of creating the
energetically favorable crystalline bulk, an energetically expensive interface must

102



6.2. Classical nucleation theory

be formed. Hence, to estimate the free-energy barrier ∆F that must be overcome
to initiate crystallization, we need to relate the free energy gained from the created
crystalline bulk to the free-energy cost for the creation of the liquid-solid interface.
For a spherical cluster of radius R containing n particles, we obtain [95]

∆F =
4π

3

R3

Vp

∆µ+ 4πR2γs, (6.1)

where γs is the surface tension, i. e., the free-energy cost per unit area for an
interface between the liquid and the solid, ∆µ ≡ µsol − µfl is the difference in
chemical potential between the liquid and the solid bulk, and

Vp ≡
4π

3

R3

n
(6.2)

is the average volume accessible to one particle within the cluster. Using this
volume [Eq. (6.2)], we represent the free-energy difference as a function of n

∆F = n∆µ+ (36πV 2
p )1/3n2/3γs. (6.3)

For γs > 0 and ∆µ < 0, the free energy for a cluster of size n increases for small
n, goes through a maximum at the critical cluster size

n∗ ≡ −32

3
πV 2

p

(
γs

∆µ

)3

, (6.4)

and decreases monotonously for large n, see Fig. 6.1. Hence, the liquid is metastable
and crystallization must be initiated by a fluctuation forming a critical nucleus. In
order to create such a critical cluster, the system needs to overcome the free-energy
barrier

∆F∗ ≡ max(∆F) =
16π

3

γ3
sV

2
p

∆µ2
. (6.5)

The probability p∗ for the formation of a critical nucleus is given by [178]

p∗ ∝ exp (−∆F∗/T ), (6.6)

i. e., it decreases exponentially with the height of the free-energy barrier. Hence,
the nucleation process depends heavily on both the chemical potential difference
∆µ and the surface tension γs. Conditions affecting either of these quantities
can thus have a great impact on the time scale on which crystallization occurs.
Influences such as interactions with confining walls [179–181] or impurities [182] can
affect the surface tension and change the probability for nucleation significantly.
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6. Shear-induced crystallization in a colloidal suspension

Figure 6.1.: Sketch of the free energy for the creation of a cluster of size n.
The free-energy landscape goes through a maximum of height ∆F∗ at the critical
cluster size n∗.

Impurities can act as catalysts for the nucleation process [182], but they can also
increase the nucleation barrier, as observed, e. g., in polydisperse systems [183].
Therefore, one distinguishes two types of processes. If impurities, walls, etc., can be
excluded, the nucleation process is denoted as homogeneous and as heterogeneous
otherwise. In the following, we will exclusively consider homogeneous nucleation.

Although, on a fundamental level, CNT yields some insight into the crystalliza-
tion process, it is still too simple to be considered general and comprehensive. One
issue is, for instance, that the nucleus is modeled as a spherical droplet, which may
be a valid approximation if the critical nucleus is large but breaks down for small
clusters for which the surface structure cannot be considered as smooth anymore.
Also, the chemical potential in a small cluster is not necessarily equivalent to the
chemical potential in the solid bulk. A last but in the context of sheared systems
crucial point is that CNT cannot be applied under nonequilibrium conditions be-
cause then the free energy is no longer a well-defined quantity.
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6.3. Methods

6.3.1. System and simulation details

In order to investigate the crystallization process, we consider a monodisperse col-
loidal suspension consisting of N = 4860 particles in a nearly cubic simulation box2

of constant volume V with volume fraction φ ≡ πN/(6V ). Just as in the preceding
chapter, we measure length, energy, and time in units of the particle diameter a,
the thermal energy T , and the diffusive time scale τD ≡ a2/D0, respectively. We
simulate the underdamped dynamics given by ṙi = vi and

mv̇i = −∇iU − [vi − u(ri)] + ξi, (6.7)

with the stochastic forces ξi of zero mean and correlations as defined in Eq. (2.2)
and the potential

U =
∑
j<j

u(|ri − rj|) (6.8)

by employing the Langevin dynamics simulation described in Section 5.4.2 and
Appendix F. Again, the particles of mass m = 1 interact via a repulsive Yukawa
pair-potential including hard-sphere exclusion [see Eq. (5.38)]. In this case, we
use the inverse screening length κ = 8.0 and the energy at contact ε = 10.0.
For this set of parameters, the freezing volume fraction is φ∗ ' 0.38. We are
interested in the influence of a weak but steady shear flow u(r) = γ̇yex with strain
rate γ̇ on the crystallization dynamics in the bulk of colloidal suspensions under
highly supersaturated conditions (φ = 0.45 and 0.52). Therefore, we again employ
periodic Lees-Edwards boundary conditions [152].
Initial configurations for different runs are generated by equilibrating the system

at low densities (φ = 0.2). Subsequently, the volume fraction is increased stepwise
by rescaling both the simulation box and the particle coordinates until the final
volume fraction is reached. This procedure is done in 200 compression steps where
we propagate the system for 100 time steps with ∆t = 0.0005 after each compres-
sion. Once we reach the final volume fraction, we switch on the shear flow with
strain rate γ̇.
For a numerical treatment, molecular or Langevin dynamics simulations appear

ideally suited to track the temporal development of crystalline nuclei since particle
trajectories are easily accessible. However, if the nucleation process is hampered by
a large free-energy barrier, the formation of a critical nucleus becomes a rare event.
Depending on the height of the barrier, sampling such events ranges from difficult

2Dimensions of the box are (in units of the particle diameter a): Lx = 16.876, Ly = 16.535,
and Lz = 17.538 for φ = 0.52 and Lx = 17.709, Ly = 17.351, and Lz = 18.404 for φ = 0.45.
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6. Shear-induced crystallization in a colloidal suspension

to prohibitive unless specifically tailored methods are employed. Such methods
include transition path sampling [184, 185], forward flux sampling [186, 187], and
umbrella sampling [188,189].
In this case, the high supersaturation in the system shifts the probability for

nucleation into a regime accessible to straightforward sampling. Thus, we are
able to investigate crystallization in the suspension by simple Langevin dynamics
without resorting to importance sampling schemes.

6.3.2. Structure analysis

In order to describe the crystallization process quantitatively, we need a way to
distinguish between liquid and solid structures. For a three-dimensional hard-core
Yukawa system, the phase diagram of the equilibrium bulk structure includes, be-
side the liquid phase, the two crystalline structures body-centered cubic (bcc) and
face-centered cubic (fcc) [48, 190, 191]. The fcc lattice is a dense sphere packing
which deviates from a hexagonal close packed structure merely in the stacking se-
quence of their hexagonal planes. Hence, their free-energy difference is expected to
be rather low [192] and hcp structures are likely to occur along with fcc structures,
as it has been observed in microgravity experiments for hard-sphere colloids [193].
For the parameters studied here, the bulk equilibrium structure is fcc. However,
in the spirit of the Ostwald step rule [194], intermediate structures may be of a
different type. E. g., small nuclei have been found to be predominantly bcc struc-
tured in a Lennard-Jones liquid [195]. Hence, in our analysis, we will not only
discern fcc from the liquid state but also include hcp and bcc structures.
We determine the symmetry of the local environment of a single particle by

employing different variants of the well-known Steinhardt order parameters [196].
The basic idea is to construct quantities sensitive to rotational symmetries of
connecting vectors rkj ≡ rk − rj between the central, say the kth, particle and
its set of neighbors Nb(k) with size |Nb(k)|. Here, we consider all particles as
neighbors that are located within a range of Rb = 1.4 for φ = 0.52 and Rb = 1.47
for φ = 0.45, which ensures that only first-shell neighbors are taken into account.
Note that the range of this shell and thus also Rb vary with the density.
The central ingredient to the computation of the Steinhardt order parameters

are the complex vectors ql with components

qlm(k) ≡ 1

|Nb(k)|
∑

j∈Nb(k)

Ylm(rkj), (6.9)

where Ylm are spherical harmonics and the integers obey l > 0, |m| ≤ l. Contrary
to these vectors, a proper order parameter should be both real and independent
of the choice of the coordinate system. In the following, we will therefore discuss
different real and rotationally invariant combinations of the qlm.
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Figure 6.2.: (a) Histograms of q̄6 for a pure liquid and the three lattice structures
hcp, bcc, and fcc. The q̄6 distributions of the three crystalline structures and the
liquid are well separated. We choose q̄6 = 0.4 as the borderline (dashed line).
(b) Scatter plot of w̄4-w̄6 trajectories for perfect hcp, bcc, and fcc crystals subject
to thermal fluctuations. The w̄4-w̄6 plane is divided into the indicated regions
which are used to determine the crystal structure of solid particles.

In the first step, we distinguish fluid particles from solid particles characterized
by a disordered and an ordered environment, respectively. For this purpose, we
make use of a recently introduced variant of the Steinhardt order parameters that
averages over the second-neighbor shell [197],

q̄l(k) ≡

√√√√ 4π

2l + 1

l∑
m=−l

|q̄lm(k)|, (6.10)

where

q̄lm(k) ≡ 1

|N ′b(k)|
∑

j∈N ′b(k)

qlm(j) (6.11)

and N ′b(k) is the set of neighboring particles including the kth particle itself. Av-
eraging the order parameter this way sharpens the distinction between different
structures at the expense of spatial resolution. For l = 6, the probability distribu-
tions of q̄6 for fluid and solid particles are well separated, providing a reliable means
to discriminate these two basic structure types from each other, see Fig 6.2(a). We
regard a particle as fluid if q̄6 < 0.4 and as solid otherwise.
Having determined these two particle sets, we further split the fluid particles

into two subsets: liquid (liq) and pre-structured (pre). While liquid particles have
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6. Shear-induced crystallization in a colloidal suspension

a truly disordered environment, we identify particles as pre-structured which have
an environment that does not qualify as solid but where nevertheless some “bonds”
between particles have formed. To substantiate the concept of a bond, we consider
the normalized scalar product

S
(l)
kj ≡

l∑
m=−l

qlm(k)q∗lm(j)(
l∑

m=−l
qlm(k)q∗lm(k)

)1/2( l∑
m=−l

qlm(j)q∗lm(j)

)1/2
, (6.12)

with q∗ the complex conjugate of q. This product defines a measure for the strength
of the correlation between the surrounding structures of the kth and the jth par-
ticle. We regard two neighboring particles as “bonded” if S(6)

kj > 0.5 [198]. The
number of bonds nbonds represents a good indicator for how structured the vicinity
of a particle is. Also in the liquid, particles will have a few bonds. If the number
of bonds with neighboring particles is at least 8 (but still q̄6 < 0.4), we denote
particle as pre-structured.
Finally, by employing another type of averaged order parameters [197]

w̄l(k) ≡

∑
m1+m2+m3=0

(
l l l
m1 m2 m3

)
q̄lm1(k)q̄lm2(k)q̄lm3(k)(

l∑
m=−l

|q̄lm(k)|2
)3/2

, (6.13)

we are able to discern the different crystalline structures within the solid parti-
cles. The term in brackets is the Wigner-3-j symbol, which is related to Clebsch-
Gordan coefficients. The sum runs over all combinations of m1, m2 and m3 with
m1 + m2 + m3 = 0. In the following, it is sensible to work with l = 6 and l = 4
which can be seen as follows. Both fcc and hcp lattices contain planes of hexagonal
symmetry. Additionally, both fcc and bcc structures are cubic lattices and thus
contain fourfold symmetries. Indeed, using the two parameters w̄4 and w̄6, we
obtain a good separation between the distributions in the w̄4w̄6 plane, see scatter
plot in Fig. 6.2(b). The w̄4 distribution is widely separated for hcp and fcc struc-
tures, while w̄6 separates bcc from hcp and fcc. Hence, a solid particle is classified
as fcc if w̄4 ≤ 0 and w̄6 ≤ −0.005 (lower left region), as hcp if w̄4 > 0 and w̄6 ≤ 0
(lower right region), and as bcc otherwise (upper region). The complete decision
process is summarized in Fig. 6.3.

6.3.3. Discrete state model

By using the above analysis, we categorize the structure of single particles accord-
ing to their local environment. For a given configuration of particle positions at
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Figure 6.3.: Decision tree for the structure assignment to a single particle. First,
the value of q̄6 classifies the particle as solid or fluid. Then, a fluid particles
is denoted as pre-structured if it possesses 8 or more bonds with neighboring
particles. A solid particle is assigned one of the three crystalline structures hcp,
bcc, and fcc, according to the classification shown in Fig. 6.2(b).

time t, we define an indicator function hk(t) for every particle k which takes on
one of the five values: liq, pre, hcp, bcc, or fcc. The population (fraction of all
particles) in structure type i is

ci(t) ≡
1

N

N∑
k=1

δi,hk(t). (6.14)

As the suspension evolves also the structural environment of the particles changes.
We quantify these changes in the fluxes

fi→j(t) ≡
N∑
k=1

δi,hk(t)δj,hk(t+δt) (6.15)

counting the number of particles changing from structure i to structure j within
a time interval [t, t+ δt], where we set δt = 100∆t if not indicated otherwise.
Both the fluxes and the population trajectories are heavily fluctuating, time-

dependent quantities. Therefore, a systematic discussion requires an appropriate
averaging procedure. Since we start in a metastable configuration, the fluxes and
populations do not only fluctuate but do also evolve systematically in time as
a consequence of the overall progress in the crystallization process. In order to
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provide a meaningful average, we need to choose an appropriate order parameter
indicating the state of the advancement in the crystallization process. In the
following, we use the size of the largest cluster n as an order parameter, where we
define clusters as sets of solid particles that are mutually connected by bonds (in
the sense defined above, i. e., S(6)

kj > 0.5). Using this order parameter, we define
the average composition at fixed n

c̄i(n) ≡
〈
ci(t)δn,n(t))

〉
/Zn, (6.16)

where in this chapter the average 〈·〉 is understood as an average over time and over
different realizations of the crystallization process, i. e., over different simulation
runs, with the normalization constant Zn ≡

〈
δn,n(t)

〉
. Moreover, we define the 5×5

transfer matrix T with components

Ti→j(n) ≡
〈
fi→j(t)

Nci(t)
δn,n(t)

〉/
Zn (6.17)

and normalization
∑

j Ti→j = 1. The component Ti→j(n) describes the average
fraction of particles in state i that convert to state j within the time interval δt.
We sort the eigenvalues λ(i) of T in decreasing order, λ(0) > λ(1) > · · · > λ(4), with
λ(0) = 1. The components of the corresponding right-hand-side eigenvectors fulfill

∑
i

w
(0)
i = 1,

∑
i

w
(α)
i = 0 (α ≥ 1). (6.18)

The product T(n(t))c(t) = c(t + δt) propagates the population at time t to the
average population a time δt later, where c(t) ≡ (ci(t)). Applying the transfer
matrix repeatedly describes an effective Markovian dynamics at fixed cluster size.
Under this dynamics, the average population after an elapsed time τ becomes

c(τ) = w(0) +
4∑

α=1

ζαw
(α)e−τ/τα (6.19)

with time scales τα(n) ≡ −δt/ lnλα(n) and coefficients ζα ≡ w(α) ·c(0). Hence, for
τ � τ1, the system approaches a (quasi)-stationary average population given by
w(0), where the relaxation time is determined by the largest eigenvalue unequal to
one τ1.
For a freely evolving suspension, the size of the largest cluster is of course not

constrained to a fixed n. However, if there is a time-scale separation between
the transitions described by T(n) and the change in n, the system relaxes into
the quasi-stationary state before the size of the largest cluster grows any further.
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Figure 6.4.: Quasi-stationary populations in the (a) liquid, (b) pre-structured,
and (c) solid state as functions of n (lines) and the corresponding average popula-
tions c̄ (symbols) actually found in the simulations.

Then, the actual average populations of local structures measured in the simula-
tions should be equal to the stationary eigenvector: c̄(n) ≈ w(0)(n). Fig. 6.4 shows
average composition actually observed in the suspension (symbols) and the corre-
sponding components of the quasi-stationary eigenvector w(0) (lines) for the liquid,
the pre-structured, and the combined solid state, where c̄sol ≡ c̄hcp + c̄bcc + c̄fcc and
w

(0)
sol ≡ w

(0)
hcp + w

(0)
bcc + w

(0)
fcc . Deviations are small but increase with both increasing

strain rate and cluster size up to maximal 7% at n = 1000. This demonstrates
that the growth of the cluster is a slow process and that the lag time δt is sufficient
to sample the fast dynamics described by T(n).

6.4. Crystallization process

6.4.1. Crystallization rate

We first examine the cumulative effect of shear flow on the speed of the crystalliza-
tion process by recording the time it takes a supersaturated suspension to become
solid. According to the protocol described above, we start in a supersaturated sus-
pension and apply shear flow. Once the largest cluster has reached a size of 800,
we record the elapsed time τ ∗. For every combination of strain rate and density,
we determine τ ∗ for 500 independent runs. Of course, we do not observe the same
value for τ ∗ in every run but rather a characteristic distribution p(τ ∗) for each pa-
rameter set. Figs. 6.5(a)-(c) show the normalized histograms for τ ∗ obtained from
our simulations for φ = 0.52 and strain rates γ̇ = 0.0, γ̇ = 0.02, and γ̇ = 0.08.
For γ̇ = 0.0 and γ̇ = 0.08, the histograms are comparably wide. In particular,
the ratio στ∗/ 〈τ ∗〉 of the standard deviation στ∗ and the average value 〈τ ∗〉 over
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all runs is 0.45 and 0.70 for γ̇ = 0.0 and γ̇ = 0.08, respectively. By contrast, for
γ̇ = 0.02, the distribution is much sharper and concentrated around low τ ∗ with
στ∗/ 〈τ ∗〉 ' 0.20.
Fig. 6.5(d) shows the mean value of the crystallization duration 〈τ ∗〉 as a function

of γ̇ for φ = 0.52 and 0.45. We find a nonmonotonous dependence of 〈τ ∗〉 on γ̇ for
both densities. For small strain rates, 〈τ ∗〉 decreases and reaches a flat minimum
for γ̇ ' 0.02 for φ = 0.52 and a somewhat sharper minimum at γ̇ ' 0.01 for
φ = 0.45. A further increase of the strain rate leads to rapidly growing 〈τ ∗〉. At
γ̇ = 0.1 and γ̇ = 0.05 for φ = 0.52 and φ = 0.45, respectively, already a significant
part (more than 10%) of the 500 runs did not crystallize within 2 × 106 time
steps. Hence, the overall effect of shear flow on the crystallization process is an
acceleration for small strain rates followed by a strong increase in 〈τ ∗〉 at higher
γ̇.
Comparing the behavior of 〈τ ∗〉 for the two densities, we find that the decrease

in the average crystallization duration is much stronger for the higher density for
which it drops almost by a factor of 3, whereas for the lower density it decreases
only by somewhat more than 20%. Furthermore, for φ = 0.45, the steep increase
of 〈τ ∗〉 starts already at lower γ̇. Hence, compared to φ = 0.52, the range of γ̇ in
which the strain rate accelerates the crystallization process narrows significantly.
Following the evolution of the size of the largest cluster n in time for typical

runs at different strain rates, we find qualitative differences in the way the cluster
grows, see Fig. 6.5(e). Without shear flow, the system starts crystallizing very
quickly, whereas n grows only slowly. By contrast, in the high-shear case, the
system stays at a low n for some time before the crystallization process initiates.
Afterwards, n increases rapidly. Close to the optimal strain rate, we find features
of both limiting cases. On one side, crystallization starts almost as early as in the
unsheared case. On the other side, it grows faster later on.

6.4.2. Shear flow suppresses nucleation

Growth rate

In order to investigate the crystalline growth more systematically, a pertinent
quantity to study is the growth rate of the largest cluster

ν(n) ≡
〈
n(t+ δt)− n(t)

δt
δn,n(t)

〉/
Zn (6.20)

averaged at fixed n, i. e., at a specific stage in the development of the largest cluster.
In Fig. 6.6, we show this quantity for n ≤ 50. For γ̇ = 0.02, the average growth
rate is only marginally smaller than the one in the unsheared case. By contrast,
for γ̇ = 0.08 the growth is strongly suppressed in a broad range 10 . n . 40. One
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Figure 6.5.: (a)-(c) Histograms for the duration of the crystallization process at
φ = 0.52 for γ̇ = 0.0, 0.02, and 0.08. (d) Average value for the duration of the
crystallization process 〈τ ∗〉 as a function of the strain rate with the standard error
for the estimation of the mean value 〈τ ∗〉 of the distribution of τ ∗. (e) Temporal
development of n for typical runs at φ = 0.52 for γ̇ = 0.0, 0.02, and 0.08.
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Figure 6.6.: Average growth rate of the size of the largest cluster as a function of
n for different strain rates at φ = 0.52. For large γ̇, the growth rate of the largest
cluster is strongly suppressed in an interval 10 . n . 40.

might speculate that this shear-induced suppression of crystalline growth at small
n results from the destruction of small clusters through the shear flow. However,
even the largest of the applied strain rates (γ̇ = 0.08) is still very small. Therefore,
it is doubtful whether the resulting weak shearing forces are sufficiently strong to
destroy even small clusters. Yet, for the development of a loose structure in the
fluid, even weak shearing forces might be decisive. In the following, we thus start
the investigating this issue on the level of the development of a loose structure in
the fluid.

Pre-structured liquid

A crystalline cluster is not likely to occur in the middle of an entirely random
distribution of particles, whereas, in a region of the fluid which has already acquired
a loosely ordered state, fluctuations transforming parts of this pre-structured liquid
into a crystal are much more probable. For this system, this scenario applies
as well. The fraction of pre-structured particles transferring to a solid state in
a time interval δt is on the order of a few percent, Tpre→sol ' 3%, while the
corresponding transfer from the liquid to the solid state is more than three orders
of magnitude smaller, Tliq→sol < 10−5. In order to study the effect of shear flow
on the structure of the fluid, we record the transfer matrix component Tliq→pre.
Likewise, we compute the corresponding backward component Tpre→liq, see Fig. 6.7.
Note that Tliq→pre < Tpre→liq does not imply a net particle current from the pre-
structured to the liquid state, as the transfer matrix component Ti→j describes the
fraction of particles in state i transferring on average to j. In addition to the Ti→j,
the net current of particles depends as well on the population in these states. At
this early stage in the crystallization process, there are significantly more liquid
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6.4. Crystallization process

Figure 6.7.: Transfer matrix components for transitions from the liquid to the
pre-structured state (solid lines) and the corresponding backwards transitions
(dashed).

than pre-structured particles in the suspension and the net current is directed
from liq to pre. Regarding the effect of the shear flow on the transfer matrix
components, we find that it has a strong influence on the development of structure
in the liquid. The establishment of bonds is inhibited, as can be seen from the
reduced values for Tliq→pre. Moreover, structure in the fluid is destroyed, resulting
in an enhanced value for Tpre→liq. Consequently, compared to the unsheared case,
we find a much smaller fraction of pre-structured particles c̄pre in the suspension
for γ̇ = 0.08, see Fig. 6.4(b). In other words, shear flow prevents the liquid from
developing a loose structure.
Fig. 6.8 shows snapshots of the suspension at different stages in the evolution

of the largest cluster for low and high γ̇. In both cases, the crystallization is
dominated by a single cluster. Note that the crystalline clusters are composed of
different local structures (large spheres in blue, gray, and red), but there seems to
be no tendency for a certain type to form a core or surface. Moreover, the clusters
are surrounded by pre-structured particles (small green spheres). Although most
prominent in the vicinity of solid clusters, these loosely structured regions can be
found throughout the suspension. In the strongly sheared case, we observe con-
siderably less pre-structured particles than in the unsheared suspension indicating
the shear-induced disruption of a loosely structured fluid.

From pre-structured to crystalline

Once a loosely ordered but still fluid environment is formed, the pre-structured
liquid has yet to transform into a crystalline cluster. Hence, the next step is to
focus on the influence of shear flow on the second part of the transition from
liquid to crystal. We trace the transitions between the pre-structured liquid and
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6. Shear-induced crystallization in a colloidal suspension

Figure 6.8.: Snapshots of the suspension during the crystallization process for
γ̇ = 0.0 (left column) and γ̇ = 0.08 (right column) at three different sizes of the
largest cluster n. The large spheres are solid particles with hcp (blue), bcc (gray),
and fcc-structured (red) environments. Pre-structured particles are shown as small
sphere (green), whereas liquid particles are not shown for clarity.
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6.4. Crystallization process

Figure 6.9.: Transfer matrix components for transitions from the pre-structured
state to hcp, bcc, and fcc (from left to right, solid lines) scaled by a factor 10 and
their corresponding backwards rates (dashed lines) for γ̇ = 0.0, 0.02, and 0.08.
The magnitude of the rates is comparable for the three structures and they are
barely affected by the flow field.

the crystalline structures hcp, bcc, and fcc and show the corresponding transfer
components Tj→i in Fig. 6.9. Here, the influence of the shear flow is much smaller
than for the transitions between liquid and pre-structured. The rates from the
crystalline states to the pre-structured one describe the destruction of crystalline
clusters. They are not increased by the shear flow but even somewhat reduced.
The rates ending in the crystalline states are barely affected by the shearing as
well. Hence, even the largest strain rate applied (γ̇ = 0.08) is not strong enough
to destroy or shrink crystalline clusters once they have formed. Thus, the main
effect of shear flow on the creation of crystalline clusters is the suppression of
the development of a loosely structured environment and not the destruction of
existing clusters.

6.4.3. Shear flow enhances growth of clusters

Growth rate

Complementary to Fig. 6.6, we show the growth rate [see Eq. (6.20)] of the largest
cluster now for a wider range of cluster sizes 0 ≤ n ≤ 1000, see Fig. 6.10(a). Note
that for the larger clusters considered here, we need to increase the time interval
over which the change in n is evaluated to δt = 5000∆t in order to separate the
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6. Shear-induced crystallization in a colloidal suspension

Figure 6.10.: (a) Average growth rate of the largest cluster at fixed n for different
strain rates for φ = 0.52. The solid lines are linear fits to the data for n ≥ 400.
(b) Slope of the linear fit functions plotted against the strain rate γ̇. The solid line
is a linear fit to the slopes crossing the origin. (c) Sketch of the current of liquid
particles arriving at the surface of a sphere. Only in the regions marked with “+”
liquid particles enter this surface, whereas in regions marked with “-” the particle
current is negative.

growth trend from fluctuations. Switching on the flow field enhances the growth
rates significantly. For n & 400, the growth rate is dominated by a linear increase
in n. The slope of this linear contribution itself grows proportional to the strain
rate, see Fig. 6.10(b). The dominant contribution of the shear flow to the growth
rate can thus be condensed in the simple form

ν(n) = Bγ̇n, (6.21)

where the proportionality constant B is obtained from least-square fits to the data.
We findB = 2.28±0.10 andB = 2.75±0.16 for φ = 0.52 and φ = 0.45, respectively.
This strongly shear-dependent growth rate expresses the rapid crystalline growth
in the sheared suspensions as shown in Fig. 6.5(e) on a more systematic level.

Tentative explanation

A growth rate linear in n might arise from convection, which can be understood
as follows. We assume that particles in the vicinity of a crystalline nucleus are
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6.4. Crystallization process

more likely to crystallize. Liquid particles move on average with the the local
solvent velocity γ̇ye, whereas particles in a crystalline cluster move on average
with the mean velocity of the cluster. Therefore, particularly in the uppermost
and lowermost part of the cluster in y direction, the surrounding liquid particles
move at different velocities. In other words, shear flow enhances the number of
particles passing through the vicinity of the cluster, see Fig. 6.10(c). We model
the surface of this vicinity S as a sphere of radius R. The shear-induced particle
current entering this sphere reads

1

2

∫
S
ρlγ̇|yex · dS| = 4

3
ρlR

3γ̇ ∝ nγ̇, (6.22)

with the the number density in the liquid ρl ≡ πφ/6. The particle current is
thus proportional to both the size of the cluster and the strain rate γ̇. Hence,
we obtain Eq. (6.21) with a free parameter B accounting for deviations from the
spherical shapes of the clusters and the probability with which particles attach to
the cluster.

6.4.4. Restructuring in the solid

A crystalline cluster does not necessarily form in the most stable configuration
right at the beginning. Ostwald’s step rule [194], which is, strictly speaking, not a
universal rule but rather a tendency for nucleation pathways, suggests that crys-
talline clusters form preferentially in the structure which is closest to the liquid
phase in their free energy [195]. Moreover, especially for small clusters, the proper-
ties of the surface still play an important role. How the most stable structure looks
like can therefore depend on both the shape and the size of the cluster. External
influences such as the linear shear flow can affect inter alia these properties and
thus also the most likely composition.
Figs. 6.11(a)-(c) show the components of the transfer matrix for the transitions

between solid structures. The most prominent effect of the shear flow is that the
rates for transitions ending in the bcc configuration are significantly enhanced.
Other transitions respond rather weakly to an increased strain rate. The rates
towards an hcp structure grow slightly with γ̇ and for the optimal strain rate
γ̇ = 0.02 the likelihood for a transition from bcc to fcc is increased somewhat.
Fig. 6.11(d) shows the average fraction of the three solid structures of all solid

particles in the suspension as a function of the largest cluster size n. The largest
part of the solid particles belongs to the fcc structure which is the most stable
configuration in equilibrium. In consistency with the shear dependence of the
transition rates, the fraction of fcc particles is slightly enhanced at the expense
of bcc particles for γ̇ = 0.02, while the fraction of hcp particles barely changes.
Increasing the strain rate to γ̇ = 0.08, the bcc structure becomes dominant and
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6. Shear-induced crystallization in a colloidal suspension

Figure 6.11.: (a)-(c) Transfer matrix components for the transitions between the
three solid structures. (a) hcp and bcc, (b) bcc and fcc, and (c) hcp and fcc.
(d) Fraction of the solid population c̄i/c̄sol in hcp, bcc, and fcc measured in the
simulations.

the fraction of fcc particles decreases accordingly, see also Fig. 6.8. If, in the spirit
of Ostwald’s step rule, bcc is most easily formed from the liquid, then crystalline
clusters can grow the faster the more bcc they contain. Since larger strain rates
stabilize bcc compared to fcc and hcp, this point might contribute as well to the
enhanced cluster growth for these strain rates.

6.5. Conclusion and outlook

In this chapter, we have used Langevin dynamics simulations to investigate the
influence of a weak but steady shear flow on the time it takes a highly supersat-
urated, charge-stabilized colloidal suspension to crystallize. We find an optimal
strain rate for which this time exhibits a minimum. We explain this behavior as
a consequence of two counteracting, shear-dependent effects influencing the crys-
tallization at different stages in the solidification process. At the nucleation stage,
shear flow hampers the formation of small clusters, whereas at the growth stage
the shearing enhances the development of the crystal.
In order to investigate these effects in more detail, we employed a discrete state

model. With this model, we discussed the transitions between the five relevant
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6.5. Conclusion and outlook

structural configurations in the environment of a single particle. We separated
the state space into two fluid states, comprising an entirely liquid configuration
and a pre-structured state, and the three crystalline configurations, hcp, bcc, and
fcc. In order to obtain meaningful averages respecting the momentary state in the
progress of the crystallization, we used the size of the largest cluster n as an order
parameter. We averaged the population in the five states and transition rates
between them at fixed n. From the latter, we constructed a transfer matrix from
which we were able to infer a quasi-stationary state towards which the suspension
relaxes. The actual average configuration and the quasi-stationary state coincided
to a very good degree implying a time scale separation between the fast transitions
between different state and the overall progress of the crystallization.

Analyzing the transition rates, we found that in this system nucleation proceeds
via the pre-structured state. Even a weak shear flow, which was not strong enough
to destroy existing clusters, disrupted the formation of such a loose ordering in the
liquid. Consequently, the probability for the formation of a critical nucleus was
significantly lowered. At the growth stage, the flow field accelerated the crystal-
lization process. The functional form of the shear dependence could be explained
by a simple convective mechanism. Moreover, the strain rate stabilized the bcc
structure compared to hcp and fcc allowing for larger bcc domains in the crystal.
If, in the spirit of Ostwald’s step rule, bcc is most easily formed, this structural
change might contribute to a faster growth as well.

Our data show that the depth of the minimum for the duration of the crystal-
lization process is less pronounced for the smaller volume fraction which entails the
question whether there is a lower bound on the density for which this minimum
vanishes. How the existence and depth of this minimum depend on the supersat-
uration remains a topic for future investigation. Another prospect concerns the
relative orientation of crystalline planes in the clusters and the direction of the
shear flow. According to Butler and Harrowell [36] crystalline planes in clusters
should orient parallel to the shear flow, i. e., perpendicular to the shear gradient
direction. Yet, for the weak strain rates and the high supersaturation studied here,
differently oriented planes do occur. However, “properly” oriented clusters might
still be more probable or have larger growth rates. It could also be worthwhile
investigating the effect of shearing on cluster breakup and coalescence for this sys-
tem [42]. There, typical length scales are on the order of cluster diameters instead
of particle diameters and thus velocity differences caused by the flow field should
play a very prominent role. Furthermore, an essential point for the duration of
crystallization processes is the time a system spends in metastable configurations
which it must leave before further growth can set in [199]. One could speculate that
shearing forces might help the system to overcome such local minima thus provid-
ing another mechanism accelerating the solidification process. Therefore, it would
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6. Shear-induced crystallization in a colloidal suspension

be interesting to study how shear flow affects the sojourn times of a crystallizing
system in metastable configurations. Moreover, in order to compare simulation
data to experiments, it is necessary to explore the role of hydrodynamics on the
crystallization process [200].
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A. Mobility tensor for two
hydrodynamically interacting
spheres

In this section, we compute the mobility tensor for two hydrodynamically inter-
acting, nonrotating spheres in creeping flow along the lines of Ref. [114]. We
start by computing the flow field around a single sphere. For creeping flow, the
Navier-Stokes equations reduce to the linear Stokes equations

η∇2v(r)−∇p(r) + f(r) = 0 (A.1)
∇ · v(r) = 0 (A.2)

for the fluid velocity v(r) at position r, the pressure field p(r), and the body force
f(r). Solving this set of equations for a point force f(r) = f0 δ(r) yields the so-called
Oseen tensor or Stokeslet

G(r) =
1

8πηr

(
1 +

rrT

r2

)
(A.3)

with r ≡ |r|. The pressure field is given by

p(r) = −∇ ·
(

f0

4πr

)
. (A.4)

With the body forces f(r) on the surface S of an arbitrary rigid structure in
an unbounded medium, we describe the velocity of the surrounding fluid by the
surface integral

v(r) =

∫
S
G(r− r′)f(r′)dS. (A.5)

As this integral is generally not tractable analytically, one often resorts to a mul-
tipole expansion. Yet, for a sphere, symmetry allows for an exact result. We
obtain [96]

v(r) =

(
1 +

a2

24
∇2

r0

)
G(r− r0) F (A.6)
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A. Mobility tensor for two hydrodynamically interacting spheres

for a spherical particle of diameter a centered at r0 with the total force F =∫
S f(r′)dS exerted on the particle. By using no-slip boundary conditions and
Eq.(A.6), we deduce the Stokes law for the velocity of a sphere dragged through
the solvent by a force F

vS =
1

πa2

∫
S

v(r)dS =
1

3πηa
F. (A.7)

Let us now consider two such spherical particles in an unbounded fluid. To the
ith and the jth particle, we apply the external forces Fi and Fj, respectively. The
velocity field accompanying the motion of particle i is then affected by the motion
of particle j. In principle, the altered velocity field of particle i in turn modifies
the velocity field of particle j and so forth. Assuming, however, that the particle
distance is much larger than their diameter, i. e., a/rij � 1, we can neglect such
higher order effects. The resulting velocity of particle i then reads

vS
i =

1

3πηa
Fi +

1

πa2

∫
Si

vj(r)dSi. (A.8)

The second term on the right-hand side is given by the velocity field of particle
j on the surface of particle i, while the first term is simply the Stokes friction
contribution. Introducing the mobility tensor µij, we write [114]

vS
i ≡

∑
j

µijFj (A.9)

with

µii ≡
1

3πηa
1 = µ01, (A.10)

µij ≡
1

8πηa

a

rij

(
1 +

rijr
T
ij

r2
ij

)
+

1

12πηa

(
a

rij

)3
(
1− 3

rijr
T
ij

r2
ij

)

=
3

8
µ0

a

rij

(
1 +

rijr
T
ij

r2
ij

)
+

1

4
µ0

(
a

rij

)3
(
1− 3

rijr
T
ij

r2
ij

)
for i 6= j.

(A.11)

This approximation for the mobility is also known as the Rotne-Prager tensor [113].
It can also be applied for colloidal suspensions consisting of many particles if the
suspension is sufficiently dilute.
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B. Multiplicative Noise

Dealing with Langevin equations involving a spatially inhomogeneous diffusion
coefficient requires caution in the interpretation of integrals. Along the lines of
Lau and Lubensky [102], we will illustrate and solve this problem for the Langevin
equation,

ẋ = f(x) + g(x)η(t), (B.1)

describing a particle at position x with an additional drift f and the normalized
Gaussian white noise η with zero mean and correlations 〈η(t)η(t′)〉 = δ(t− t′). A
spatially varying diffusion coefficient D(x) is introduced through the multiplicative
factor g(x) ≡ [2D(x)]1/2 modifying the magnitude of the normalized noise.
The difficulty in dealing with this multiplicative noise term boils down to the

interpretation of the integral

I(t,∆t) ≡
∫ t+∆t

t

g(x(τ))η(τ)dτ. (B.2)

If both g and η were continuous functions, the integral mean-value theorem would
imply that any approximation

Iα(t,∆t) ≡ g(xα)

∫ t+∆t

t

η(τ)dτ (B.3)

with xα ≡ (1−α)x(t)+αx(t+∆t) for α ∈ [0, 1] would converge to the unique value
g(x(t))η(t) in the limit ∆t→ 0. The noise η, however, is a stochastically fluctuat-
ing quantity and hence discontinuous in time. Therefore, the integral mean-value
theorem does not hold. In fact, approximations of the form (B.3) converge to dif-
ferent values for different choices of α [10,11]. For any stochastic integral including
multiplicative noise, it is therefore crucial to define the type of the underlying dis-
cretization, i. e., to define α. Typical choices are the Îto-convention (α = 0) and
the Stratonovich-convention (α = 1/2) [10].
However, from a physical point of view, the dynamics is unique, which takes

us to the core of the problem. There is only one choice for α for which Eq. (B.1)
leads to the Boltzmann distribution in the long-time limit. In order to obtain the α
dependence of the steady-state solution of Eq. (B.1), we derive the corresponding
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Fokker-Planck equation from the Kramers-Moyal expansion, see Section 2.3. To
this end, we compute the first and second moment for the displacement ∆x ≡
x(t + ∆t) − x(t) in the time interval ∆t and use Eqs. (2.12), (2.13), and (2.14).
Integrating Eq. (B.1) yields

∆x ≡ x(t+ ∆t)− x(t) =

∫ t+∆t

t

{f [x(τ)] + g[x(τ)]η(τ)} dτ

= f [x(t) + α∆x]∆t + g[x(t) + α∆x]

∫ t+∆t

t

η(τ)dτ, (B.4)

from which we obtain

〈∆x〉 = f(x(t))∆t+ αg(x(t))∂xg(x(t))∆t, (B.5)〈
(∆x)2

〉
= g(x(t))2∆t, (B.6)

up to first order in ∆t, where we used that
∫ t+∆t

t
η(τ)dτ is statistically of the order

(∆t)1/2 [11]. The resulting Fokker-Planck equation is therefore

∂tΨ(x, t) = −∂x[f(x) + αg(x)∂xg(x)]Ψ(x, t) + ∂2
xg(x)2Ψ(x, t)/2 (B.7)

= −∂x[f(x)− (1− α)∂xD(x)]Ψ(x, t) + ∂xD(x)∂xΨ(x, t). (B.8)

The long-time solution of this equation is the Boltzmann distribution Ψ(x) ∝
exp {−U(x)/T} with the internal energy U if and only if

f(x) = f (0)(x) + d(α)(x) (B.9)

with the regular drift f (0)(x) ≡ −g(x)2∂xU(x)/(2T ) = −D(x)∂xU(x)/T and an
additional spurious drift

d(α)(x) ≡ (1− α)g(x)∂xg(x) = (1− α)∂xD(x). (B.10)

This result implies that, beside the usual conservative force the drift term f ,
Eq. (B.1) must include an additional α dependent drift term d(α) if we require
the long-time distribution to be the Boltzmann distribution. The spurious drift
vanishes if either D(x) = const., i. e., without multiplicative noise, or if we choose
the isothermal convention α = 1 [102]. Generalizing this result to N degrees of
freedom, the spurious drift becomes

d(α) = (1− 2α)∇ · D(x) + α[∇ · G(x)]G(x) (B.11)

with the diffusion matrix D(x) ≡ G2(x)/2, GT (x) = G(x) and with x ≡ (x1, . . . , xN)
denoting the entire set of degrees of freedom.
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C. Response and noise-correlation

We consider a system described by a set of n coupled Langevin equations

ẋi = gi(x) + µ0hi + ζi for i ∈ {0, . . . , n} (C.1)

with arbitrary functions gi depending on the entire configuration x ≡ (x1, . . . , xn),
small perturbation forces h ≡ (h1, . . . , hn) and Gaussian white noise ζ ≡ (ζ1, . . . , ζn).
The stochastic path weight reads

P [ζ(t); h(t)] = N exp

{
− 1

4D0

∫
ζ2(t)dt

}
(C.2)

reproducing the properties discussed in Section 2.2, i. e., zero mean and correlations
as defined in Eq. (2.6).
The components of the linear response of an observable A ≡ (A1, . . . , An) to a

small external perturbation h is defined as the functional derivative

Rij(t, t
′) ≡ δ 〈Ai(t)〉h

δhj(t′)

∣∣∣∣
h=0

(C.3)

of the average value of the observable 〈Ai(t)〉h in the perturbed system with respect
to the perturbation at a different time t′. Causality requires Rij(t, t

′) ∝ θ(t − t′),
where θ(τ) = 1 for τ > 0 and zero otherwise.
In the Langevin equation (C.1), a shift in the noise ζi is equivalent to a small

perturbation hi. For t > t′, we can therefore write

TRij(t, t
′) = µ0T

δ 〈Ai(t)〉
δζj(t′)

= µ0T

〈∫
dζ
δAi(t)

δζj(t′)
P [ζ(t)]

〉
= −µ0T

〈∫
dζAi(t)

δP [ζ(t)]

δζi(t′)

〉
= 〈Ai(t)ζj(t′)〉 /2, (C.4)

after partial integration in the third step and using both the Einstein relation and
Eq. (C.2) [18,100]. For underdamped dynamics, an analogous calculation yields

TRij(t, t
′) = µ0 〈Ai(t)ξj(t′)〉 /2. (C.5)
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D. Green’s function for a trapped
particle in shear flow

The set of coupled Langevin equations (5.15) for the harmonic potential Eq. (5.24)
can be written in the compact form

ẋ = Ax + (0, 0, ξx, ξy)
T (D.1)

with x ≡ (x, y, vx, vy)
T and

A =
1

m


0 0 m 0
0 0 0 m
−k γ̇ −1 0
0 −k 0 −1

 . (D.2)

The Green’s function for this stochastic differential equation is

G(t) ≡ eAt =

(
Grr(t) Grv(t)
Gvr(t) Gvv(t)

)
. (D.3)

Explicitly, the four submatrices are given by

Grr(t) = e−t/(2m)

[(
cosωt+

sinωt

2mω

)
1 + γ̇grr(t)1xy

]
, (D.4)

Grv(t) = e−t/(2m)

[
sinωt

ω
1 + γ̇grv(t)1xy

]
, (D.5)

Gvr(t) = e−t/(2m)

[
−
(
ω +

1

4m2ω

)
sinωt1 + γ̇gvr(t)1xy

]
, (D.6)

Gvv(t) = e−t/(2m)

[(
cosωt− sinωt

2mω

)
1 + γ̇gvv(t)1xy

]
, (D.7)

(D.8)

with

ω ≡
√

4km− 1

2m
, 1xy ≡

(
0 1
0 0

)
(D.9)
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and

grr(t) ≡
(2mω2t+ 1) sinωt− ωt cosωt

4m2ω3
, (D.10)

grv(t) ≡
sinωt− ωt cosωt

2mω3
, (D.11)

gvr(t) ≡
(4m2ω2 − 1) sinωt+ (4m2ω2 + 1)ωt cosωt

8m3ω3
, (D.12)

gvv(t) ≡
(2mω2t− 1) sinωt+ ωt cosωt

4m2ω3
. (D.13)

The stationary distribution

Ψ(x) =
1

(2π)2
√

detM
exp

{
−1

2
xTM−1x

}
(D.14)

is Gaussian with zero mean and thus determined by the symmetric covariance
matrix

M ≡
( 〈

rrT
〉 〈

vrT
〉〈

vrT
〉 〈

vvT
〉 ) . (D.15)

Using Chandrasekhar’s theorem [96], we can compute M from the above Green’s
functions

M =
2

m2

∫ ∞
0

(
Grv(t)GrvT(t) Grv(t)GvvT(t)
Gvv(t)GrvT(t) Gvv(t)GvvT(t)

)
dt. (D.16)

With 1 + 4(mω)2 = 4km, we obtain the stationary correlations

〈
rrT〉 =

1

k
1 +

1

2k2

(
1+km
k
γ̇2 γ̇

γ̇ 0

)
, (D.17)

〈
rvT〉 =

〈
vrT〉T =

1

2k

(
0 −γ̇
γ̇ 0

)
, (D.18)

〈
vvT〉 =

1

m
1 +

1

2k

(
γ̇2 0
0 0

)
. (D.19)
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E. Approximately
time-independent FDR

We estimate the range of the parameters k and γ̇ for which the FDR correspond-
ing to the FDT in Eq. (5.31) becomes approximately independent of time. Since
it is only the additive correction term in Eq. (5.31) that prevents this time-
independence, we need to find the regime where its magnitude becomes small
compared to the first part, i. e.,

θx|Rxx(t)| = (θx/m)|Gvv
xx(t)| � 〈yvx〉 |Gvr

xy(t)|. (E.1)

We focus on the case km & 11 for oscillatory motion of the trapped particle with
frequency ω ≈

√
k/m. Using the explicit expressions for the Green’s functions

given in Appendix D, the condition reduces to

θ/m� 〈yvx〉 γ̇|gvr(t)|. (E.2)

For short times, we have sinωt ≈ ωt and cosωt ≈ 1 the function gvr(t), see
Eq. (D.12), is dominated by 1/m. Hence, we find an approximately time-independ-
ent FDR if

1 +mγ̇2/(2k)� γ̇2/(2k), (E.3)

where we have substituted Eq. (5.30) for θx and Eq. (D.18) for the moment. For
large masses, m � 1, this condition is fulfilled if k � mγ̇2, while for m . 1,
it requires k � γ̇2, where we drop all numerical factors. Hence, we have k �
max {γ̇2,mγ̇2}.
The kinetic temperature θx requires k � mγ̇2 to be much larger than the equi-

librium value. We therefore find a gap between the two conditions for low masses,
i. e., we can either have a time-independent FDR or a kinetic temperature larger
than one. For increasing mass, this gap becomes smaller, and for m & 1, the
regimes are adjoint to each other, see Fig. E.1. Close to the borderline, we can
find both properties realized simultaneously, i. e., an approximately constant FDR
and θx > 1.

1For km . 1, an analogous discussion is possible.
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E. Approximately time-independent FDR

Figure E.1.: Sketch of the regimes in which the FDR is approximately constant
(blue) and in which the kinetic temperature is much larger than one (red). For
low masses, there is a gap between the two regimes, while for masses m & 1 they
are adjoint.
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F. Simulation details

F.1. Stochastic velocity Verlet algorithm

We integrate the coupled set of Langevin equations,

ṙi = vi, (F.1)

miv̇i = −∇iU − [vi − u(ri)] + ξi ≡ F̃i, (F.2)

by employing a simple extension of the velocity Verlet scheme [152] similar to the
BKK1 integrator [201]. We start by initializing the particle positions on a regular
lattice and setting all velocities to zero. Then, we compute the initial total force
F̃i acting on each particle from the initial positions and velocities, see Fig. F.1.
The stochastic contribution to the total forces is provided by a random-number
generator creating normally distributed numbers with zero mean and variance
2/∆t with the time step ∆t = 5× 10−4. After the initialization, we propagate the
velocities for half a time step

vi(t+ ∆t/2) = vi(t) + F̃i(t)/(2mi)∆t (F.3)

and use these velocities to compute the new set of positions

ri(t+ ∆t) = ri(t) + vi(t+ ∆t/2)∆t. (F.4)

Then, we update the total forces using the momentary positions and velocities and
complete the cycle by propagating the velocities for another half time step

vi(t+ ∆t) = vi(t+ ∆t/2) + F̃i(t+ ∆t)/(2mi)∆t. (F.5)

For an efficient computation of the pair interaction, we exploit the exponential
decay of the potential: we neglect forces stemming from particles with a displace-
ment larger than rc = 2 and use a Verlet list to efficiently keep track of the
distances [189].

1named after Brünger, Brooks, and Karplus
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F. Simulation details

Figure F.1.: Schematic depiction of the employed stochastic velocity Verlet algo-
rithm.

F.2. Implementation of the hard shell

The interaction between the colloidal particles comprises a weak repulsion and
a hard core, see Eq. (5.38). However, a hard shell cannot be incorporated in a
continuous interaction potential. Also, modeling the hard core by a very steep
but continuous potential increase is difficult since requires very small time steps
to keep the simulation stable. We evade this problem by employing the following
simple algorithm, see Refs. [153,202] and references therein.
We start by moving every particle ignoring their hard shells. After every particle

has been moved, but before new forces are calculated, we detect all particle pairs
with overlapping cores. For each overlapping particle pair, we move both particles
backwards in time along their respective velocity vector up to the point where
their collision took place. Knowing the positions and velocities at the impact, we
can infer the correct coordinates at the end of the time step from momentum and
energy conservation. We assign the respective correct position and velocity to both
particles and repeat this procedure until there are no overlapping pairs left.
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