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Abstract

The subject of this thesis is the investigation of the stability and the collapse dynamics of
a dipolar 52Cr Bose-Einstein condensate (BEC) in a one-dimensional (1D) optical lattice
potential. In this work, it is experimentally shown that the stability of the dipolar BEC
is strongly modified when increasing the modulation depth of the sinusoidal potential
landscape: a cross-over from dipolar destabilization to dipolar stabilization is observed.
For deep lattices, the dipolar BEC is split into a linear array of highly oblate, spatially
separated “sub-condensates”, located on the different sites of the optical lattice. While
stabilized by repulsive dipolar on-site interactions, numerical mean-field calculations
reveal a significant destabilization of the system by dipolar inter-site interactions in this
deep lattice regime. In a second set of measurements, the collapse of a coherent array of
dipolar BECs, formed by the 1D lattice, is studied. The system is driven from the stable
to the unstable region by lowering the lattice depth, while keeping the strength of the
inter-atomic interactions fixed. Operating in the unstable regime, the time evolution of
the collapsing system is found to be slowed down for larger lattice depths. Unexpectedly,
when the system is released from a stable in-trap configuration, still a collapsed atomic
cloud is observed after time-of-flight (TOF). Such novel collapse scenario, with the collapse
being triggered by the TOF itself, is confirmed by real-time simulations and is identified
to be a combined effect of the coherence between the sub-condensates and the anisotropy
of the dipole-dipole interaction.
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Zusammenfassung

Gegenstand dieser Arbeit ist die experimentelle Untersuchung eines dipolaren Bose-
Einstein-Kondensates (BEK) mit Chromatomen in einem eindimensionalen optischen
Gitterpotential. Zunächst wird der Einfluss der periodischen Potentiallandschaft auf die
wechselwirkungsabhängige Stabilität des dipolaren Quantengases untersucht. Aufbauend
auf diesen Messung wird die Kollapsdynamik des Systems, also dessen Zeitentwick-
lung wenn die Grenze vom stabilen zum instabilen Bereich plötzlich überschritten wird,
beobachtet und analysiert. Mit den beiden Untersuchungen wird ein Beitrag zum allge-
meinen Verständnis von dipolaren Quantengasen angestrebt. Die Studien bilden zudem
eine Grundlage für zukünftige Experimente mit dipolaren BEKs in optischen Gittern,
wobei die Beobachtung von selbstorganisierten Dichtestrukturen ein großes Ziel dieses
Forschungsbereiches darstellt.

Seit 1995 die ersten BEKs in ultrakalten atomaren Gasen erzeugt wurden [1–4],
haben sich entartete Quantengase zu einem idealen Testobjekt für Untersuchungen von
Vielteilchen-Quantensystemen entwickelt. In einem BEK besetzen viele Teilchen (typischer-
weise 10.000 - 1 Million) den Grundzustand eines Systems und können mit einer einzigen
Wellenfunktion beschrieben werden. Dies erlaubt eine relativ einfache mathematische
Beschreibung des Systems im Rahmen einer Molekularfeldtheorie, die jedoch komplex
genug ist um interessante Quantenphänomene zu beschreiben. Auf der experimentellen
Seite können die internen und externen Freiheitsgrade eines BEK sehr gut kontrolliert
werden. Insbesondere das externe Fallenpotential, durch welches das BEK räumlich
eingeschlossen wird, ist beinahe beliebig formbar: sogar periodische Potentiale, wie das
oben beschriebene optische Gitterpotential, können erzeugt und dynamisch verändert
werden. Schließlich lässt sich ein BEK direkt, z.B. per Schattenwurf, auf eine CCD Kamera
abbilden. Meist verwendet man dabei zur Vergrößerung des nur wenige Mikrometer großen
BEK die sog. Flugzeitmethode, bei der das Bild erst eine gewisse Zeit nach Abschalten
des Fallenpotentials aufgenommen wird. Inzwischen sind aber auch in-situ Aufnahmen,
teilweise von einzelnen Atomen, mit Hilfe speziell angefertigter Mikroskope gelungen [5,
6].

Trotz der geringen Dichte der Quantengase bestimmen die inter-atomaren Wechsel-
wirkungen die grundlegenden Eigenschaften eines BEK. Ohne ihren Einfluss gäbe es keine
kollektiven Phänomene in dem Vielteilchensystem, wie z.B. die charakteristische Supra-
fluidität [7, 8]. Für gewöhnlich sind die Wechselwirkungen zwischen den Atomen kurzreich-
weitig und können durch ein isotropes Kontakt-Wechselwirkungspotential beschrieben wer-
den. Dieses Potential wird durch einen einzigen skalaren Parameter, der s-Wellenstreulänge
a charakterisiert. Für positive Werte der Streulänge ist die (repulsive) Wechselwirkung
vergleichbar mit dem Stoß harter Billiardkugeln. Negative Streulängen hingegen weisen
auf eine attraktive Wechselwirkung zwischen den Atomen hin und das Modell der harten
Kugeln versagt. Typischerweise ist das BEK im Fall a < 0 instabil und es kollabiert [9, 10].
Wie beim externen Fallenpotential, gibt es auch bei den Wechselwirkungen die Möglichkeit

7



zur experimentellen Kontrolle: viele atomare Spezies verfügen über Feshbach-Resonanzen,
in deren Nähe die s-Wellenstreulänge über ein externes Magnetfeld eingestellt werden
kann [11, 12].

Aufgrund des großen magnetischen Dipolmoments der Chromatome spielt in den hier
gezeigten Experimenten außerdem die Dipol-Dipol-Wechselwirkung (DDW) eine zentrale
Rolle. Im Unterschied zur Kontaktwechselwirkung ist die DDW langreichweitig und
anisotrop, d.h. sie ist anziehend und abstoßend zugleich, je nach relativer Ausrichtung
zweier Dipole. Diese beiden Eigenschaften der DDW beeinflussen entscheidend das Verhal-
ten der Vielteilchen-Quantensysteme, wie in zahlreichen experimentellen und theoretischen
Studien gezeigt wird [13, 14]. Ein besonderes Merkmal welches für dipolare BEKs vorherge-
sagt ist, ist das sogenannte Roton-Maxon-Anregungsspektrum [15, 16]: die Energie der
Anregungen im Quantengas kann ein lokales Minimum für einen bestimmten Wert des
Impulses aufweisen, ähnlich wie es in flüssigem Helium beobachtet wurde [17–19]. Ver-
schiedene selbstorganisierte Strukturen in der Dichteverteilung von gefangenen dipolaren
BEKs [20, 21], sowie suprasolide Phasen in optischen Gittern [22, 23] sind nur zwei der
interessanten Phänomene die mit dem Roton-Maxon-Spektrum in Verbindung gebracht
werden.

Die Vorraussetzung zur Beobachtung der selbstorganisierten dichtemodulierten Zustände
ist ein starker Einschluss des dipolaren BEK in der Polarisationsrichtung der Dipole1
und ein schwacher Einschluss in den beiden senkrechten Raumrichtungen. Solch extrem
oblate (pfannkuchenförmige) Fallengeometrien können zum Beispiel mit eindimensionalen
(1D) optischen Gittern realisiert werden [24, 25]. Das dipolare BEK wird dabei durch das
periodische Potential in eine Reihe von räumlich getrennten Unter-Kondensaten mit der
gewünschten oblaten Form aufgeteilt, wobei für genügend hohe Potentialbarrieren das
Tunneln von Atomen zwischen den Gitterplätzen stark unterdrückt ist. Eine Besonderheit
des dipolaren Systems ist, dass sich die Unter-Kondensate selbst in diesem Fall nicht als
isolierte Ensembles beschreiben lassen: sie sind alle untereinander durch die langreich-
weitige DDW gekoppelt. Diese Kopplung führt zum Beispiel zu kollektiven Anregungen
im Gesamtsystem, die ein band-ähnliches Roton-Maxon-Anregungsspektrum mit vielen
Eigenmoden aufweisen [26, 27]. Außerdem kann die Wechselwirkung zwischen den Git-
terplätzen zu einer Verstärkung der selbstorganisierten Dichtestrukturen führen, wie in
numerischen Simulationen gezeigt wurde [28, 29]. Die Vorhersagen dieser interessanten
Phänomene sind die Motivation für die experimentellen Untersuchungen die in dieser
Arbeit präsentiert werden.

Die Grundlage der Untersuchungen bildet ein 52Cr BEK, welches im harmonischen
Potential einer optischen Dipolfalle2 gefangen ist [30]. Trotz des großen magnetischen
Dipolmomentes von 6 Bohrschen Magneton (µB) der Chromatome, ist zunächst die Kon-
taktwechselwirkung im BEK dominierend [31]. In der Nähe einer Feshbach-Resonanz kann
1Es wird angenommen, dass alle Dipole entlang eines äußeren Magnetfeldes ausgerichtet sind.
2Eine optische Dipolfalle schließt (nach dem Prinzip einer optischen Pinzette) das BEK mit Hilfe
fokussierter Laserstrahlen ein.
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die s-Wellenstreulänge jedoch reduziert und somit ein Quantengas mit starker dipolarer
Wechselwirkung erzeugt werden [32]. Die Kalibration der Streulänge, d.h. die experimen-
telle Bestimmung ihrer Abhängigkeit von der angelegten Magnetfeldstärke, spielt in den
Experimenten eine wichtige Rolle und wird in dieser Arbeit neu betrachtet. Das zen-
trale neue Element der Messungen ist das eindimensionale optische Gitter, welches einen
Abstand der Gitterplätze von 534 nm aufweist. Es wird durch zwei gekreuzte (beinahe
gegenläufige) Laserstrahlen erzeugt, wobei die Modulationstiefe (“Gittertiefe”) des sinus-
förmigen Gitterpotentials durch die Intensität der Laserstrahlen kontinuierlich eingestellt
werden kann. Die Eigenschaften eines BEK im optischen Gitter werden in der Arbeit aus-
führlich besprochen, zunächst unter Vernachlässigung der dipolaren Wechselwirkung. Die
Kalibration der Gittertiefe wird dabei behandelt, genauso wie der Grundzustand eines BEK
in einem kombinierten Potential aus Dipolfalle und optischem Gitter. Auch die Expansion
eines BEK nach Abschalten des Gitterpotentials wird theoretisch und experimentell unter-
sucht. Für geringe und mittlere Gittertiefen werden nach einer Flugzeit mehrere diskrete
Dichtemaxima aufgezeichnet, ähnlich dem Interferenzmuster von kohärentem Laserlicht
nach Passieren eines Mehrfachspaltes. Sehr tiefe Gitter führen hingegen zu komplexeren
Dichteverteilungen in den Flugzeitaufnahmen. Dies lässt auf eine Interferenz mehrerer
Unter-Kondensate mit unterschiedlichen Phasen rückschließen. Die Charakterisierung des
BEK im optischen Gitter ist die Grundvoraussetzung für die anschließend präsentierten
Untersuchungen des Systems in einem Regime mit dominanter DDW.

Die ersten Messungen konzentrieren sich auf die Stabilität des 52Cr BEK im 1D optischen
Gitter. Betrachtet man ein nicht-dipolares BEK, so hängt dessen Stabilität praktisch nur
vom Vorzeichen der s-Wellenstreulänge a ab. Oberhalb der kritischen Streulänge acrit = 0
ist das Quantengas stabil, während für kleinere Streulängen kein stabiler Grundzustand
existiert3. Im Gegensatz dazu wird die Stabilität eines einzelnen dipolaren BEK stark von
der Fallengeometrie beeinflusst [35]. In einer prolaten (zigarrenförmigen) Falle, mit den
Dipolen entlang der Symmetrieachse ausgerichtet, dominiert der anziehende Charakter der
DDW. Die dipolare Wechselwirkung destabilisiert daher das BEK, was zu einer positiven
kritischen Streulänge führt. Wählt man hingegen eine oblate Fallengeometrie, so überwiegt
die repulsive Wechselwirkung der hauptsächlich nebeneinander angeordneten Dipole. Ein
dipolares BEK kann somit selbst für negative Streulängen stabil sein, wobei solch eine
dipolare Stabilisierung bisher noch nicht experimentell demonstriert wurde.
Die Stabilität eines dipolaren BEK in einem 1D optischen Gitter ist aus den obigen
Betrachtungen eines einzelnen Kondensates nicht vorherzusehen. Während die extrem
oblate Form der Unter-Kondensate auf den Gitterplätzen eine dipolare Stabilisierung
vermuten lässt, führt die attraktive dipolare Wechselwirkung zwischen den räumlich
getrennten Ensembles zu einer Destabilisierung. Daher wird in dieser Arbeit die Stabilität
des 52Cr BEK im Bereich von sehr flachen bis sehr tiefen 1D optischen Gittern experimentell
untersucht. In den Messungen wird ausgehend von einer stabilen Konfiguration die
3Für kleine Atomzahlen und einen schwachen Einschluss können nicht-dipolare BEKs auch für a < 0 stabil
sein [33, 34]. Die hier erfolgende Stabilisierung durch den Quantendruck kann in unseren Experimenten
aber vernachlässigt werden.
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Streulänge reduziert, bis der kritische Wert acrit erreicht ist, bei der ein plötzlicher
Verlust der Atome im Kondensat eintritt. Für genügend kleine Gittertiefen werden po-
sitive kritische Streulängen bis zu acrit = (12 ± 2) a0 gemessen, mit a0 ' 0.053 nm dem
Bohrschen Radius. Aufgrund der hohen Tunnelrate zwischen den Gitterplätzen ist hier
die prolate Form des harmonischen Fallenpotentials (erzeugt durch die Dipolfalle) aus-
schlaggebend für die dipolare Destabilisierung des BEK. Im Bereich sehr tiefer optischer
Gitter hingegen wird ein negativer Wert von bis zu acrit = (−17± 3) a0 gemessen. Dies
zeigt, dass die repulsive dipolare Wechselwirkung auf den Gitterplätzen ein BEK mit
attraktiver Kontaktwechselwirkung stabilisiert. Im gesamten Messbereich stimmt die
gemessene Stabilitätsgrenze sehr gut mit dem Ergebnis numerischer Rechnungen überein.
Diese Rechnungen wurden im Rahmen einer Kollaboration von der Theoriegruppe um
Luis Santos in Hannover durchgeführt. Im Bereich sehr tiefer Gitterpotentiale wird die
kritische Streulänge außerdem durch Variationsrechnungen bestimmt, bei denen eine
Gaußförmige Dichteverteilung der Unter-Kondensate auf den Gitterplätzen angenommen
wird. Beide Arten von Rechnungen bestätigen die Stabilisierung des Systems durch die
repulsive dipolare Wechselwirkung auf den Gitterplätzen, zeigen aber auch, dass die
attraktive Wechselwirkung zwischen den räumlich getrennten Unter-Kondensaten die
Stabilität deutlich beeinflusst.

Das experimentell ermittelte Stabilitätsdiagramm, welches die kritische Streulänge acrit
als eine Funktion der Gittertiefe Ulat darstellt, bildet die Grundlage für Untersuchungen
der dynamischen Eigenschaften des 52Cr BEK im optischen Gitter. Dafür wird ein stabiles
dipolares System bei mittlerer Gittertiefe präpariert, welches als eine Reihe kohärenter
BEKs beschrieben werden kann. Die gemeinsame globale Phase der BEKs wird dabei
durch das Tunneln von Atomen zwischen den Gitterplätzen sichergestellt. Bei konstanter
Streulänge wird dann die Gittertiefe reduziert und damit sehr schnell die Grenze zum
instabilen Parameterbereich überschritten. Während das BEK in sich zusammenstürzt
kommt es aufgrund von inelastischen Dreikörperstößen zu Atomverlusten, durch deren
Messung auf die Zeitskala der Kollapsdynamik rückgeschlossen wird. Die Messungen
zeigen, dass sich für zunehmende Gittertiefen (aber immernoch im instabilen Bereich)
die Kollapsdynamik verlangsamt. Oberhalb der Stabilitätsgrenze werden, wie erwartet,
kaum Atomverluste des gefangenen BEK registriert. Wird das dipolare BEK jedoch
aus der stabilen Gitterkonfiguration losgelassen, kann es während der Flugzeit zu einem
Kollaps kommen. Dieses, vor Durchführung der Experimente unerwartete, Phänomen
basiert sowohl auf der Kohärenz der Unter-Kondensate als auch auf der Anisotropie der
DDW. Kurz nach dem Öffnen des Fallenpotentials interferieren die bis dahin räumlich
getrennten, extrem oblaten Ensembles und bilden atomare Wellenpakete. Die Form
dieser Wellenpakete ist nun nicht mehr oblat, sondern entspricht der Einhüllenden des
ursprünglich gefangenen BEK. Daher kann sich der dominante Charakter der DDW
während der Flugzeit von abstoßend zu anziehend verändern und die Wellenpakete
zum Einsturz bringen. Tatsächlich zeigt der Schattenwurf eines der Wellenpakete eine
Kleeblattstruktur, wie sie nach dem Kollaps eines einzelnen dipolaren BEK beobachtet
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wurde [36]. Dieses neuartige Kollapsszenario wird durch Echtzeit-Simulationen der Gruppe
aus Hannover bestätigt.

Die im Rahmen dieser Arbeit durchgeführten Untersuchungen zeigen neue, teils uner-
wartete dipolare Effekte und sind außerdem für zukünftige Experimente mit dipolaren
BEKs in optischen Gittern relevant. Insbesondere die Realisierung einer stabilen Reihe
von extrem oblaten dipolaren BEKs mit attraktiver Kontaktwechselwirkung lässt auf eine
Beobachtung von Phänomenen hoffen, die im Zusammenhang mit dem Roton-Maxon-
Anregungsspektrum stehen. Zum Beispiel werden nahe der Stabilitätsgrenze in sehr tiefen
optischen Gittern dichtemodulierte Grundzustände erwartet, die in einem “Roton-Kollaps”
in mehrere lokale Dichtemaxima zerfallen [37, 38]. Für experimentelle Untersuchungen
in diesem Parameterbereich sind jedoch einige Herausforderungen zu meistern: das De-
phasieren der Unter-Kondensate oder ein Kollaps in der Flugzeit kann die erzeugten
Strukturen “verwischen”. Am Ende dieser Arbeit werden anhand von Testmessungen
Möglichkeiten aufgezeigt, wie diese Experimente dennoch erfolgreich durchgeführt werden
könnten.

Obwohl eine präzise Kontrolle über die Wechselwirkungen im 52Cr BEK und über
das externe Fallenpotential erreicht ist, sind die technischen Möglichkeiten des gegen-
wärtigen experimentellen Systems weitestgehend ausgeschöpft. Daher wurde, parallel
zur Durchführung der hier gezeigten Messungen, ein neuer Aufbau geplant und bereits
teilweise installiert. Zur Zeit werden diese Arbeiten abgeschlossen, eine Dokumentation des
Aufbaus wird in den folgenden Dissertationen erfolgen. Es werden technische Neuerungen
implementiert, wie z.B. ein hochauflösendes Mikroskopobjektiv, das Strukturen im Bereich
von 1 µm auflösen soll - etwa ein Faktor 6 besser als das bisherige Abbildungssystem.
Außerdem wird dieses Objektiv dafür verwendet werden, den Laserstrahl einer optischen
Dipolfalle auf einen Strahlradius von ebenfalls ca. 1 µm zu fokussieren. Durch schnelles
Bewegen dieses Laserstrahls können dann fast beliebige, zeitlich-gemittelte Fallenpotentiale
realisiert werden [39]. Somit können die Studien von selbstorganisierten Grundzuständen
mit einer noch höheren Präzision und Kontrolle durchgeführt werden. Die bedeutend-
ste Neuerung ist jedoch der Wechsel der atomaren Spezies von Chrom auf Dysprosium.
Letzteres wurde im Jahr 2011 von der Gruppe um B. Lev erfolgreich kondensiert [40]
(164Dy BEK) und weist das größtmögliche magnetische Dipolmoment eines Atoms von
10µB auf. Da inzwischen auch das fermionische Isotop 161Dy unter die Fermi-Temperatur
gekühlt wurde [41], sind zukünfig auch erstmals Untersuchungen von entarteten dipolaren
Fermigasen und dipolaren Bose-Fermi-Mischungen möglich.
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1 Introduction

Since the realization of Bose-Einstein condensates (BECs) in ultracold dilute atomic
vapours in 1995 [1–4], degenerate quantum gases have become an ideal environment to
study many-body systems in the quantum regime. Essentially, BECs represent macrosopic
quantum objects, with around 10, 000 − 1million atoms described by one single wave
function. In a standard experimental setup, they may be directly observed by optical
means, e.g. through the technique of absorption imaging [42]. Furthermore, their internal
and external degrees of freedom can be controlled with a very high precision, in particular,
their external trapping potential can be almost arbitrarily designed. Even periodic
potentials may be realized, trapping the atoms in the high intensity regions of a standing
light wave [43]. Among the various studies in such optical lattices, bosonic as well as
fermionic quantum gases have successfully modelled solid state systems [44, 45]. One of
the greatest successes was the demonstration of the quantum phase transition from a
superfluid to a Mott insulator [46], recently confirmed by in-situ imaging techniques at
the single atom level [5, 6].

Besides the external confinement, it is the inter-atomic interactions which govern most
properties of a BEC. Only in their presence, the atoms in a condensate show a collective
behaviour, e.g. leading to the characteristic superfluid flow [7, 8]. Usually these interactions
are modelled by a short-range and isotropic contact interaction potential, characterized
by a single scalar parameter: the s-wave scattering length a. In the case of positive values
for a, such model is equivalent to the (repulsive) scattering of hard spheres. Negative
scattering lengths, in contrast, correspond to an attractive contact interaction between
the atoms, where no simple model exists. Experimentally, one can control the s-wave
scattering length by means of an external magnetic field in the vicinity of a Feshbach
resonance [11, 12]. The tunability of the local interactions enabled e.g. the study of
new quantum phases such as the one-dimensional Tonks-Girardeau gas [47]. On a more
fundamental level it has been shown that a BEC is typically unstable for negative s-wave
scattering lengths [9]. When suddenly driven into this unstable regime, the “violent”
collapse dynamics of the condensate shows bursts and jets of atoms that are expelled from
the sample [10].

As the properties of BECs are crucially depending on the interactions, there is a
quest for realizing quantum gases with new types of interactions. In particular, dipolar
quantum gases have attracted a major attention in the recent years. Here, the interaction
potential between two (electric or magnetic) dipoles is anisotropic and has a long-range
character − two features that significantly enrich the physics of ultracold many-body
systems. When starting the work on this thesis, the only condensed atomic species with
a relevant magnetic dipole-dipole interaction (DDI) was chromium (Cr). The first 52Cr
BEC was created in Stuttgart in 2004 [30], followed by the group of O. Gorceix in Paris
in 2007 [48]. Even though chromium has a large magnetic dipole moment (µm = 6µB,
with µB the Bohr magneton), the dipolar interactions are typically much weaker than
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the contact interactions in the system. Nevertheless, dipolar effects have been observed
e.g. by measuring the expansion velocity of the chromium BEC [31] or the frequency of a
collective excitation mode [49]. An anisotropic sound velocity in the dipolar BEC (dBEC),
depending on the orientation of the dipoles, was furthermore observed by measuring the
excitation spectrum of the condensate [50]. With the possibility to reduce the s-wave
scattering length via the Feshbach resonance technique, weak dipolar effects were also
observed in alkali BECs of 39K [51] and 7Li [52].
In the vicinity of such Feshbach resonance in chromium, a strongly dipolar 52Cr BEC could
be realized [32]. It was found that for dominant dipolar interactions the stability of the
dBEC depends on the geometry of the confining trap [35]: in a prolate trap (cigar-shaped)
with the polarized dipoles sitting mainly in the attractive head-to-tail configuration, the
dipolar interactions destabilize the atomic sample. In contrast, the dBEC is more stable
when confined in an oblate trapping geometry (pancake-shaped) where the dipoles repell
each other in a side-by-side configuration. By suddenly driving the system from the
stable into the unstable regime, the dBEC undergoes a collapse and explosion. Images
of a d-wave symmetric density distribution after such collapse have directly visualized
the anisotropy the DDI [36]. Even though the collapse is a violent process it does not
completely destroy the coherence in the system, as shown by the interference between
multiple collapsed dipolar condensates [53].

The family of dipolar bosonic quantum gases has recently been extended by condensates
of 168Er (erbium) [54] and 164Dy (dysprosium) [40], with the large magnetic moments
µm = 7µB and µm = 10µB, respectively. Erbium provides several Feshbach resonances
at low magnetic fields that allow to reach the strongly dipolar regime. The dysprosium
BEC shows features of dominant dipolar interactions even without reducing the contact
interaction strength. Long observation times of a strongly dipolar BEC may thus be
possible in the dysprosium system, while the lifetime of the samples is usually limited by
the enhanced atom losses in the vicinity of Feshbach resonances [55]. Both atomic species
are furthermore expected to show a more complex scattering behaviour than chromium or
the alkali elements, due to the strong DDI and the nonzero angular momentum in their
ground-states [56]. The elastic collisions observed in an ultracold gas of fermionic 161Dy
could be already a first signature of universal dipolar scattering [57, 58]. These collisions
allowed to cool the pure sample below the Fermi temperature and thus to create the first
quantum degenerate dipolar Fermi gas [41].
While dysprosium is the most magnetic atom available, heteronuclear molecules provide an
even stronger (and tunable) DDI via their electric dipole moment. Well-studied systems
are samples of fermionic 40K87Rb ground-state molecules [59], which were unfortuntely
found to be unstable due to exothermic bimolecular reactions [60, 61]. However, the
reaction rate could be substantially lowered by applying a tight confinement along the
polarization direction of the dipoles, creating meta-stable systems on experimental time
scales [62]. A promising candidate to form a chemically stable gas are fermionic 23Na40K
molecules, where weakly bound Feshbach molecules have recently been created [63]. The
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last dipolar system being presented here are homonuclear Rb2 molecules, with one of
the atoms excited to a high-lying Rydberg state [64]. Contrary to the general case of
homonuclear molecules, such system exhibits a large permanent electric dipole moment
through the asymmetric excitation between the atoms [65].

The active experimental branch in the field of dipolar quantum gases evolves in a
symbiosis with the theoretical progress. Especially dipolar gases in reduced dimensions
have been subject to many theoretical studies in the recent years. One major property
of a dipolar BEC, strongly confined along the polarization direction, is the roton-maxon
excitation spectrum [15, 16]: similar to the spectrum observed in liquid helium [17–19], the
energy of the excitations of a dipolar gas can show a local minimum at a finite momentum
value. Various structures in the atomic ground-state density of trapped dBECs [20, 21],
as well as supersolid phases in optical lattices [22, 23] are some of the most interesting
phenomena related to the rotonic excitation spectrum. These density modulations have
their beautiful analogon in the multi-peak structures of a classical ferrofluid that undergoes
a Rosensweig instability in an external magnetic field [66]. For very large dipole strengths,
as can be provided by polar molecules, a quantum phase transition from a superfluid to
a strongly correlated crystalline phase is expected to occur in a two-dimensional (2D)
bosonic system [67, 68]. Two-dimensional dipolar condensates furthermore support the
formation of anisotropic bright solitons [69–71] and vortex lattices of different symmetries
are predicted to form in rotating 2D dipolar BECs [72]. Dipolar many-body systems in
reduced dimensions thus hold many fascinating phenomena, with a detailed overview
given in two recent reviews [13, 14].

Regarding the experimental realization, low dimensional ultracold gases can be created
for example by using the optical lattice potentials discussed before [24, 25, 47]. An ultracold
cloud can thus be split into a linear array of spatially separated two-dimensional samples
when trapped in a one-dimensional (1D) lattice potential. In such lattice geometry, the
non-local character of the DDI has an interesting effect: even if the tunneling of atoms
between the lattice sites is suppressed, the spatially separated samples interact with
each other through the long-range DDI. The physics of 2D dipolar condensates therefore
becomes even richer in such multi-layer geometry. In particular, the roton-maxon excitation
spectrum is expected to develop a band-like structure through the inter-site coupling of
the excitations [26, 27]. Furthermore, modulated ground-state structures of the 2D on-site
condensates are predicted to be enhanced [28, 29]. Experimentally, weak effects of the
dipolar inter-site interactions were already observed in the damping of Bloch oscillations
of a 39K BEC in a 1D lattice [51]. The properties of strongly dipolar BECs in optical
lattices, however, have not been studied so far, motivating the experimental investigations
presented in this thesis.
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This thesis

In this thesis I report on the investigation of a 52Cr BEC in a one-dimensional optical
lattice, operating in a regime with dominant dipolar interactions. The experimental
work presented here, relies greatly on the previous achievement of a 52Cr BEC with the
s-wave scattering length tunable by the Feshbach resonance technique [73, 74]. To this
existing setup, we added a 1D lattice potential aligned in the polarization direction of
the dipoles. Our first studies address the most fundamental property of the system,
its stability, in the range from shallow to deep lattices. Slicing a prolate dBEC into a
stack of highly oblate sub-condensates, one encounters both an on-site repulsion and an
inter-site attraction between the dipoles. Therefore, the stability of the system is a priori
unknown and may not be deduced from the measurements performed on a single trapped
dBEC. Experimentally, we observe a cross-over from a dipolar destabilization to a dipolar
stabilization of the system when increasing the lattice depth. The dipolar repulsion inside
the quasi-two-dimensional4 on-site condensates thus dominates over the dipolar inter-site
attraction. Nevertheless, our investigations show that the attractive inter-site interactions
must be taken into account to correctly calculate the stability threshold of the system.
The experimental work has been performed in a close collaboration with the theory group
of Luis Santos in Hannover, with the results published in Ref. [75].
Moreover, measurements on the dynamic properties of the dBEC in the 1D lattice config-
uration are presented in this thesis. Taking advantage of the stability measurements, we
induce the collapse of an initially stable system by reducing only the depth of the optical
lattice potential while keeping the two-body interaction strength fixed. With this new
technique to induce the collapse by a change of the confinement, we study the time-scale
of the collapse dynamics of the dBEC in the lattice. In addition, we investigate a dynamic
phenomenon that was unexpected: the dBEC can become unstable after the release from
a stable lattice configuration to perform a so-called time-of-flight (TOF). Such behaviour
contradicts the standard assumption made on TOF measurements that a BEC remains
stable if it was stable in-trap. Again, the measurements are supported by the theory
group in Hannover performing numerical real-time simulations of the collapse dynamics,
with the results being published in Ref. [76].

Outline

The thesis is structured as follows. Chapter 2 gives a theoretical introduction to the
physics of dipolar BECs. The mean-field model is introduced, which allows for an efficient
computation of the properties of the system, taking into account the contact and the
dipolar interactions. In addition to a single dBEC, also a configuration with multiple,
4In a quasi-two-dimensional gas the excitations are frozen along one direction, while the scattering is still
three-dimensional. The phenomena described above, as e.g. the roton-maxon excitation spectrum, are
expected to occur in such a system.
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spatially separated dipolar condensates is considered in the discussion. Chapter 3 describes
the production process of a 52Cr BEC with tunable contact interactions. Special emphasis
is put on the principle and the application of the Feshbach resonance technique as it is
a key ingredient in our experiments. The setup of the 1D optical lattice and the basic
physics of a (non-dipolar) BEC in such periodic potential is presented in chapter 4. The
procedure to calibrate the lattice depth is explained and the ground-state properties of
a contact interacting BEC in the lattice are considered. Furthermore, the expansion of
a BEC from the optical lattice is discussed, including expansion measurements in both
shallow and deep lattice regimes. The stability of the dBEC in the 1D optical lattice is
the central topic of chapter 5. Before presenting our measurements, I introduce the basic
instability mechanisms (phonon and roton instability) and briefly review the stability
of a single trapped dBEC. It is discussed in details how the stability of a dBEC in the
lattice depends on the interplay between the on-site and inter-site interactions and the
tunneling in the system. Chapter 6 is dedicated to the dynamic properties of a strongly
dipolar lattice gas. Measurements and numerical simulations of the collapse dynamics
are presented, with a focus on the new scenario of a post-release collapse. Finally, a
summary of our findings and an outlook to the future prospects of the experiment is given
in chapter 7.
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2 Dipolar Quantum Gases

This chapter gives a brief introduction to the physics of bosonic dipolar quantum gases.
It provides the basic formalisms to understand the experimental results presented in this
thesis. For more details, two recent reviews on dipolar quantum gases give an excellent
overview of the field [13, 14].

The chapter starts with an introduction to the phenomenon of Bose-Einstein con-
densation. Including contact and dipolar interactions, we then derive the non-local
Gross-Pitaevskii equation (GPE), a mean-field description of the dipolar Bose-Einstein
condensate (dBEC). In the limit of dominant interactions, we may apply the so-called
Thomas-Fermi approximation and solve the GPE exactly. This approach reveals some
basic properties of a dBEC, such as its elongation along an external magnetic field. In
the last part of the chapter, we focus on the interaction of spatially separated dipolar
BECs. We first consider two interacting samples before showing that the dipolar inter-site
interaction may be enhanced in a linear array of multiple dipolar clouds.

2.1 Bose-Einstein Condensation

At any time in everyday life, we are surrounded by gases. In a microscopic view, even
when taking only one single atomic species, all the atoms in gas are different and can be
indentified one by one: they may differ in their position in space, their speed and the
direction they move, or any other property like internal excitation, magnetization, etc..
Generally speaking, they differ by the state that they occupy in the system.

Over the past three decades, experimental physicists made tremendous effort to cool and
trap neutral atoms [77]. They were motivated by Einstein’s prediction in 1925 that at ultra-
low temperatures, dilute gases of bosonic atoms exhibit a novel type of phase transition:
below a critical temperature the atoms may become indistinguishable by occupying the
very same single-particle state and form a so-called Bose-Einstein condensate (BEC) [78].
Finally in 1995, Bose-Einstein condensates were realized in dilute gases of the alkali
elements rubidium, sodium, and lithium [1–4]. Since then, condensation has been achieved
in many other atomic species5, the latest being dysprosium [40] and erbium [54].

Early contributions to the theory of BECs were made in the late 1920s. Eventually, the
observation of superfluidity of liquid helium in 1938 [83, 84] triggered further theoretical
progress: London was the first to connect superfluidity and Bose-Einstein condensation
in 1938 [85]. Landau and Lifschitz, and Penrose and Onsager developed this idea further
and formulated the concept of non-diagonal long-range order [86–88]. In essence, their
definition of a Bose-Einstein condensate does not only require superfluidity, but also

5Bose-Einstein condensation has also been achieved in other bosonic systems. For example BECs of
photons [79], excitions [80], and polaritons [81, 82] are reported.
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a macroscopic phase coherence throughout the sample. A detailed treatment on the
fundamental properties of BECs is given in Refs. [8, 89].

For an intuitive picture, let us consider the realistic case of a thermal sample of bosonic
atoms confined in a harmonic trapping potential, with ω0 the characteristic angular
oscillation frequency of a single particle. The thermal de-Broglie wavelength is defined
as [89]

λT (T ) def=
√

2π~2

mkBT
, (2.1)

where ~ = h
2π is the reduced Planck constant, m the atomic mass, kB the Boltzmann

constant, and T the temperature of the sample. Typically in a gas, λT is much smaller
than the mean distance between the particles, and therefore the gas shows only classical
behaviour without any wave-like character. However, if the temperature is decreased
below a critical value, λT becomes on the order of the mean inter-particle separation. The
atoms thus form overlapping wave packets and loose their individual identities. To obtain
the critical temperature Tc for this phase transition to the Bose-Einstein condensate, we
approximate the density in the gas by n = N

R3 , with N the atom number and R ∼
√

kBT
mω2

0
the

size of the sample. Replacing the thermal de-Broglie wavelength by the mean inter-particle
distance n−1/3, Eq. (2.1) results in

kBTc = C · ~ω0N
1/3, (2.2)

where C is a numerical constant which is determined by more advanced calculations to be
C ≈ 0.94 [90]. The equation (2.2) provides a good estimate of the critical temperature in
experiments with ultracold atoms. Typical experimental parameters are ω0 ≈ 2π· 100Hz
and N = 104 - 107 resulting in a range of Tc from about 100 nK to a few µK. When the
critical temperature is reached, not all the particles in the sample occupy the ground state
of the system. According to the Bose-Einstein distribution, Nex particles still populate
excited states, while the number of particles in the condensate is given by6 [91]

N0(T ) = N −Nex(T ) = N

[
1−

(
T

Tc

)3]
. (2.3)

The physics of the ideal Bose gas extends far beyond the brief description given above.
Early works on quantum statistics, thermodynamical and local properties of ideal Bose
gases are summarized e.g. in Ref. [92]. Our goal, however, is the study of interactions in
such degenerate quantum gas. Therefore, we next turn our attention to the theoretical
description of the binary interactions present in BECs.

6In general the number of atoms in the excited states depends on the dimensionality of the system and the
shape of the trapping potential [89, 90]. Equation (2.3) is valid only in the case of a three-dimensional
harmonic trapping potential.
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2.2 Two-Body Interactions

The atomic density in a BEC is typically around nBEC = 1014 − 1015 cm−3, which is very
low compared to solids (ncarbon ∼ 1023 cm−3) or even air (nair ∼ 1019 cm−3). From such
low density we might deduce that interactions between the particles do not play any
role regarding the physics of BECs. Yet, despite the diluteness of a condensate, the
interactions determine the fundamental properties of a BEC, as for example its shape,
stability, dynamics, and even its decay [8, 89, 91, 93, 94].

In this section we examine the relevant two-body interactions in a dipolar BEC. We will
first show that, in the ultracold limit, the combined potential of all the short-range interac-
tions can be replaced by a zero-range pseudo-potential. The only remaining contribution,
that is not incorporated in the pseudo-potential, is the long-range dipolar interaction
which we will treat separately.

2.2.1 Short-range Interactions

At small separations r between two atoms, several interactions contribute to the so-called
molecular potential V (r). This potential is usually unknown, except from some general
properties:

(i) at very small distances the electron clouds of the atoms overlap, leading to a strong
Coulomb repulsion,

(ii) at slightly larger distance exchange interaction takes over, causing strong attraction
and a minimum of the potential at r = rmin,

(iii) further out induced dipole-dipole interaction leads to a weak attraction between the
particles, known as the van-der-Waals interaction, with a scaling VvdW ∝ −1/r6.

The molecular potential has typically a depth of |V (rmin)| /kB ∼ 103 K. Therefore, a large
amount of energy can be released, if two atoms in the BEC bind together to form a
molecular state. This indicates that even though the temperature of an ultracold atomic
samples is as low as T ∼ 1 µK, the BEC is not the true ground state of the system which
corresponds to a solid phase [8, Ch.9.1]. Fortunately, the rate at which molecules are
created in a BEC is usually sufficiently low to enable (meta-)stable condensates on the
time scale of around one second.
To estimate the spatial range of the molecular potential, we consider Heisenberg’s un-
certainty principle: any confinement of a particle to a region ∆x demands a momentum
uncertainty ∆p ≈ ~/∆x. Then, by equating the corresponding kinetic energy (∆p)2/(2m)
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with the van-der-Waals term of the molecular potential7, we obtain an interaction radius
r0 ∼ 100 a0 of the molecular potential. This defines the maximal distance between two
atoms at which the weakest bound-state can be formed.
The interaction range r0 is typically much smaller than the mean inter-particle distance
dmean in a BEC, with dmean = (nBEC)−1/3 ∼ 4000 a0. Therefore, in most regions of the
condensate, the atoms propagate freely without any perturbation by the interactions.
Only if two atoms are separated by less than r0, they undergo an elastic scattering process
and then move again freely. This means that, to compute the effect of the interactions
in the condensate, it is not crucial to know the exact shape of the interaction potential.
We only have to know the resulting wave function of the two-particle system after the
scattering process. Following this idea, we can replace the (unknown) molecular potential
by any suited two-body pseudo-potential of a simpler form which yields the same scattering
properties of the two-particle system.
To discuss the elastic scattering properties of an ultracold atomic gas8, let us consider the
simple picture of two colliding atoms of radius r0, illustrated in Fig. 2.1 (a). At first, we
address the question which states of relative angular momenta are involved in such elastic
scattering process, as this will define the symmetry of the scattered wave function. With
the pair of colliding atoms moving at a relative velocity v, we obtain a relative angular
momentum of ~l ' mredv rimpact, with rimpact the impact parameter defined in Fig. 2.1
(a) and l the quantum number of the relative orbital angular momentum. At ultra-low
temperatures, we may express the maximum relative velocity in terms of the de-Broglie
wavelength [97]: λdB def= h/p ' h/(mredv). By identifying the impact parameter with the
range of the interaction potential r0, we obtain the condition for the angular momentum
l ≤ 2πr0/λdB. As we know that, in a condensate, the de-Broglie wavelength is much larger
than r0 and since l is an integer value, the only possible solution is l = 0. Therefore,
the scattered wave function takes a spherically symmetric shape, representing a so-called
s-wave. As a consequence, we can replace the true molecular potential (that might even
by anisotropic), by a spherically symmetric pseudo potential, which is convenient for
any further calculations. From several existing pseudo potentials [93], we consider two
particularly useful cases:

(i) the hard sphere potential Vhs, with Vhs(r ≤ a) def=∞ and Vhs(r > a) def= 0, and

(ii) the zero-range contact interaction potential,

Vcontact
def= g δ(r) (2.4a)

7Equating the kinetic energy with the van-der-Waals potential results in ~2/(2mredr
2
0) = C6/r

6
0, where

we have inserted ∆x = r0. With the van-der-Waals coefficient in chromium [95] C6 = 733 atomic units,
and the reduced mass mred = m/2 of the two-particle system, we obtain the range r0 ∼ 100 a0 given in
the text.

8The following argumentation is valid for finite range potentials and potentials with a power-law scaling
V ∝ r−n, if n > 3 [93]. A detailed theoretical treatment on the scattering of ultracold atoms can be
found e.g. in Ref. [96, Ch.8].
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Fig. 2.1, Elastic two-body scattering: (a) Classical picture of two colliding atoms
moving at the relative velocity v. The impact parameter rimpact defines the
minimum distance of the particles in the scattering process. (b) The two-body
wave function ψ(r) (blue), scattered from the molecular potential V (r). The
scattering length a is determined by extrapolating the wave function back from
the asymptotic regime (dashed line).

with g the so-called contact coupling strength,

g
def= 4π~2

m
a. (2.4b)

In both cases, we have used the same parameter a which plays the role of the hard sphere
radius in the potential Vhs.

Concerning the scattering properties, a matter mave scattered by the hard sphere
potential Vhs(r) must fulfill the boundary condition ψ(a) = 0. In contrast, the scattering
of a matter wave from the true molecular potential is much more complicated, with the
phase of the wave function undergoing many periods of oscillations in the regime r < r0.
At large distances r � r0, however, the scattered wave function resembles the one reflected
by a hard sphere of radius a (see Fig. 2.1(b)). The scattering properties of an ultracold
bosonic gas are therefore fully described by a single scalar parameter, the so-called s-wave
scattering length a, which may even become zero or negative. In the latter case, of course,
the picture of the hard sphere scattering does not hold anymore.

The hard sphere potential Vhs is typically used, when performing quantum Monte-
Carlo simulations of an interacting condensate [98]. It is, however, not suited for the
computationally less demanding mean-field calculations, presented in section 2.3 and used
throughout this thesis. We therefore consider now the case of the zero-range contact
interaction potential, defined in Eq. (2.4). In the ultra-cold limit, the two-body wave
function may then be written in the simple form [96]

ψ(r) ∝ 1− mred g

2π~2r
= 1− a

r
, (2.5)
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using the reduced mass mred = m/2. We immediately see that the prefactors in the
contact coupling strength g, defined in Eq. (2.4b), are chosen such that r = a is the
intersection point of the wave function with the r-axis. Thus, the parameter a may be
identified with the s-wave scattering length introduced above and the scattering from
the δ-shape potential Vcontact can be related to the intuitive picture of the hard sphere
scattering. The fact that we can replace the full molecular potential by the contact
interaction potential, determined only by the scalar value of the s-wave scattering length,
will be of great benefit when later, we will turn our attention to the mean-field description
of a many-body system.

2.2.2 Dipolar Interactions

We now introduce the interactions between two dipoles which, in contrast to the interactions
considered in section 2.2.1, cannot be described by the pseudo contact interaction potential.
This arises from the long-range nature of the dipole-dipole interaction potential that we
also discuss here.

Throughout this thesis we consider magnetic dipoles polarized by a sufficiently strong
external magnetic field. The dipole-dipole interaction potential then reads [14]

V ′dd(r, ϑ) = µ0µ
2
m

4π
1− 3 cos2 ϑ

r3 , (2.6)

where µ0
def= 4π· 10−7 Tm/A is the permeability in free space, µm is the permanent

magnetic dipole moment and ϑ is the angle between the polarization direction and the
relative position of the dipoles r, as illustrated in Fig. 2.2(a). The prime denotes the fact
that we only consider the case r > 0 which is important, because V ′dd diverges when r
tends to zero.

The dipole-dipole interaction (DDI) potential has two characteristic features:

(i) its anisotropy, illustrated in Fig. 2.2: depending on the relative position of two
dipoles, they attract each other (ϑ = 0, head-to-tail configuration), repel each other
(ϑ = π/2, side-by-side configuration) or do not interact at all (ϑ = ϑm ≈ 54.7◦,
magic angle configuration), and

(ii) its long-range character, which we now discuss in more detail.

We will use two methods to address the question whether a potential has a short-
range or long-range character [99]. Let us first consider an homogeneous system from a
thermodynamical point of view. If the particles in the system interact only via short-range
interactions, the energy per particle is intensive, i.e. it depends only on the local properties,
such as the density. In contrast, in systems with long-range interactions, the energy per
particle also depends on global parameters, as for example the total number of atoms. The
classification of a potential Vint(r) can be immediately checked by testing the convergence
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(a) (b)

Fig. 2.2, Dipole-dipole interaction (DDI): (a) Two dipoles polarized by an external
magnetic field B along the z-direction. The separation r = |r| and the angle
ϑ = ∠(z, r) enter the DDI potential given by Eq. (2.6). (b) The interaction
between two dipoles is attractive in a head-to-tail configuration (ϑ = 0), repulsive
in a side-by-side configuration (ϑ = π/2) and vanishes at the magic angle
ϑ = ϑm.

of the potential energy at large distances. We therefore evaluate the following integral

I =
∫ ∞
rcutoff

Vint r
D−1dr, (2.7)

where rcutoff is some small but finite cut-off radius, and D is the dimensionality of the
system. Following this definition, the potential Vint is short-range if it decays faster
than r−D in D dimensions, as the integral I converges in this case. Hence, the DDI
potential Vdd ∝ r−3 is long-range in three dimensions (3D) and short-range in one and
two dimensions (1D and 2D).
The second method to determine the characteristic behaviour of a potential is more closely
connected to the physics of ultracold atomic samples. Referring to the considerations
in section 2.2.1, short-range potentials may be replaced by a hard sphere potential9
characterized by one single parameter, the s-wave scattering length a. By solving the
two-body scattering problem for a potential Vint ∝ r−3, the authors of Ref. [99] show
explicitly that, in one and three dimensions, the resulting wave function (at large distances
r) is not compatible with the freely propagating waves obtained in the hard sphere
scattering. This means that the DDI potential shows a long-range character in 1D and 3D.
In two dimensions, it is however possible to define a 2D scattering length a2D, reproducing
correctly the wave function for r →∞.
Interestingly, the two methods deliver different answers on the question of the interaction
range of the DDI in one dimension. For all the calculations in this thesis we will use
the exact form of the DDI potential given by Eq. (2.6). In this way, we obtain a correct
description of the interactions, independent of the dimensionality of the system.
9This approach is not limited to the three-dimensional case. In one and two dimensions we would call it
a hard-wall potential.
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After investigating the long-range behaviour of the DDI potential, we now consider its
behaviour at small distances r. If the DDI potential acts on a two-body wave function that
does not vanish at the origin, i.e. ψ(r = 0) 6= 0, the divergence of Vdd at this point must
be cured. In an according mathematical treatment in Ref. [100], a term proportional to
µ2
mδ(r) is added to the DDI potential, resembling the pseudo contact interaction potential

given by Eq. (2.4). We therefore seem to have a direct contribution of the dipoles to the
long-range and the short-range interactions, each depending on the magnetic moment.
However, we have to be careful: taking into account the real short-range interactions, we
know that at small distances r, strongly repulsive Coulomb forces ensure that the wave
function has zero amplitude at the origin. Thus, the DDI potential does not probe the
critical point r = 0, and a regularization of the dipolar potential is not required in the
context of an interacting atomic sample10.

In conclusion, the full pseudo-potential describing binary contact and dipolar interactions
reads

V
(2)
int (r, ϑ) = 4π~2

m
aδ(r) + µ0µ

2
m

4π
1− 3 cos2 ϑ

r3 . (2.8)

Its validity has been approved by distributed Monte-Carlo simulations performed in
Refs. [101, 102], under the condition that the scattering length a is replaced by a dipole
dependent scattering length a(d), where d is the dipole strength of either electric or mag-
netic dipoles. This seems to contradict our statement from above, saying that the dipoles
do not influence the s-wave scattering properties of the system. However, the modification
of the scattering length mentioned here does not result from the regularization of the
DDI potential. It stems either from dipolar induced shape resonances of s-wave bound
states [101–103] or from an effective s-wave scattering via dipolar coupling to the l = 2
partial wave [57]. Both of these effects are expected to be small in the case of magnetic
chromium atoms, as we discuss in more detail in section A.1. In any case, the s-wave
scattering length a is usually determined experimentally (see section 3.2.3), and therefore
automatically includes all kinds of contributions.

To describe the physics of dipolar BECs, we now define some useful parameters. In
analogy to the scattering length a, we define a characteristic dipolar length

add
def= µ0µ

2
mm

12π~2 , (2.9a)

and the dipolar coupling strength

gdd
def= 4π~2

m
add = µ0µ

2
m

3 . (2.9b)

10Even though the regularization is not required from a physical point of view, in calculations the
divergence of the DDI potential at the origin may cause difficulties. In practice they are resolved by
either truncating the interaction potential at sufficiently large momenta in Fourier space, or by adding
a hard sphere potential in real space [101, 102] to account for the short-range contact interactions.
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We stress here that the dipolar length add does not correspond to a finite interaction radius
of the dipolar interactions. Such radius cannot be defined for long-range interactions.
With the prefactors given in Eq. (2.9a), the value of add seems chosen arbitrarily at the
moment. But we will see in section 5 that it was chosen such that an homogeneous dipolar
condensate becomes unstable, when a = add. Finally, we define the ratio of the dipolar
and the contact coupling strength,

εdd
def= gdd

g
= add

a
= µ0µ

2
mm

12π~2a
, (2.9c)

which needs to be non-negligible to observe dipolar effects in a BEC.

2.3 Mean-Field Description of Dipolar Bose-Einstein Conden-
sates

While considering the interactions between two atoms only in the previous section, the
description of an interacting Bose-Einstein condensate (containing around 104 atoms)
requires a many-body theory. We therefore start from the many-body Hamiltonian, which
contains the two-body correlations between all the atom pairs. Then, we derive the
Gross-Pitaevskii equation (GPE), representing an effective single-particle description of
the full system in the so-called mean-field model. Such reduction in complexity greatly
simplifies the theoretical description of dipolar BECs, but relies on certain validity criteria
which we also discuss.

2.3.1 Gross-Pitaevskii Equation

The fundamental starting point for describing a system of interacting bosonic particles
confined in a external potential Vext(r) is the general many-body Hamiltonian [8, 89, 91]

Ĥ =
∫
d3r Ψ̂�(r)

[
− ~2

2m∇2 + Vext(r)
]

Ψ̂(r)

+ 1
2

∫
d3r

∫
d3r′ Ψ̂�(r)Ψ̂�(r′)V (2)

int (r, r′) Ψ̂(r)Ψ̂(r′),
(2.10)

where V (2)
int (r, r′) is the full two-body interaction potential, given by Eq. (2.8), and Ψ̂�(r)

and Ψ̂(r) are the bosonic field operators creating and annihilating a particle at the position
r, respectively. These operators can be expanded in terms of the creation and annihilation
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operators11 â�
k and âk, such that

Ψ̂�(r) =
∑
k

φk(r) â�
k and Ψ̂(r) =

∑
k

φk(r) âk, (2.11)

with φk(r) a set of single-particle states. Assuming a macroscopic population N of the
lowest lying single-particle state φ0 (such that N + 1 ' N � 1) we can replace the
according operators by numbers [91], with â�

0 = â0 =
√
N . We may then rewrite the field

operator in the form

Ψ̂(r) =
√
N φ0(r) +

∑
k>0

φk(r) âk def=
√
N ψ(r) + δΨ̂(r), (2.12)

where we have introduced the complex function ψ(r), defined by the expectation value
of the field operator12

〈
Ψ̂(r)

〉
=
√
Nψ(r). The function ψ(r) has the meaning of an

order parameter and exhibits a well defined phase, which is spontaneously chosen at
the phase transition from the normal gas to a Bose-Einstein condensate [91]. Hence, the
phase transition to a BEC manifests itself by a broken gauge symmetry in the many-body
system. In the following, we will call ψ(r) the wave function of the condensate.
In general, the field operator is time-dependent with a time evolution described by the
Heisenberg equation,

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂, Ĥ

]
=
[
− ~2

2m∇2 + Vext(r) +
∫
d3r′ Ψ̂�(r′, t)V (2)

int (r − r′) Ψ̂(r′, t)
]

Ψ̂(r, t).

(2.13)

With the field operator given by Eq. (2.12), and neglecting the fluctuations δΨ̂(r), we
obtain the time-dependent Gross-Pitaevskii equation (GPE) of a dipolar condensate

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m∇2 + Vext(r)

+ gN |ψ(r, t)|2 +N
∫
d3r′ V ′dd(r − r′) |ψ(r′, t)|2

]
ψ(r, t),

(2.14)

where we have inserted the two-body interaction potential V (2)
int (r− r′), given by Eq. (2.8).

Note that the DDI potential V ′dd(r−r′) adds a non-local character to the Gross-Pitaevskii
equation. In contrast, the “standard” GPE of a purely contact interacting BEC depends
only on the local density n(r, t) = N |ψ(r, t)|2 of the condensate.

11The operators â�k and âk obey the usual bosonic commutation relations[
âα, â�β

]
= δα,β , [âα, âβ ] = 0, and

[
â�α, â

�
β

]
= 0.

12We choose the function ψ(r) to be normalized to unity.
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Inserting the ansatz ψ(r, t) = ψ(r) exp(−iµt/~) into Eq. (2.14), where µ is the chemical
potential of the condensate, we obtain the stationary Gross-Pitaevskii equation

µψ(r) =
[
− ~2

2m∇2 + Vext(r) + Φcontact(r) + Φdip(r)
]
ψ(r), (2.15a)

with Φcontact(r) and Φdip(r) the mean-field potentials of the contact and dipolar interac-
tions, respectively. They are explicitly given by

Φcontact(r) def= g n(r) and (2.16a)

Φdip(r) def=
∫
d3r′ V ′dd(r − r′)n(r′). (2.16b)

Total energy of a dipolar BEC
An important quantity in a dipolar Bose-Einstein condensate is the total energy per
particle E/N for a given wave function. It is given by13 [14, Ch.4.3]

E[ψ]/N def= 〈ψ| Ĥ |ψ〉 /N
(2.10)=

∫
d3r

[
+ ~

2m |∇ψ(r)|2 + Vext(r) |ψ(r)|2 + Φcontact(r) + Φdip(r)
2 |ψ(r)|2

]
,

(2.17)

and is obtained by inserting Ψ̂(r) =
√
N ψ(r) into the many-body Hamiltonian given

by Eq. (2.10). The three terms in Eq. (2.17) correspond respectively to the kinetic, the
potential, and the interaction energy. The last contains the contributions from both
contact and dipolar interactions. With an educated guess for the shape of the wave
function ψ(r), e.g. using a Gaussian shape, all the terms in the Gross-Pitaevskii energy
functional can be directly evaluated. Such procedure will be useful when we investigate
a system of spatially separated dipolar samples in section 2.5. Furthermore, variational
calculations based on Eq. (2.17) provide an efficient tool to test the stability a trapped
dipolar BEC [35], as we will show in section 5.

2.3.2 Validity of the Mean-Field Model

The efficient description of Bose-Einstein condensates by the mean-field model may explain
partly the success of such systems as quantum mechanical model systems [104]. However,
we have to be aware that the validity of the non-local GPE is limited. We summarize the
basic validity criteria as follows:

13We use the notation in Heisenberg representation ψ(r) def= 〈r|ψ〉.
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(i) N � 1: The macroscopic population of a single particle state allows for the
replacement of the creation and annihilation operators by classical numbers [91], â ≈
â� ≈

√
N . With typical BEC atom numbers N ∼ 104 the condition N ≈ N + 1� 1

is well satisfied.

(ii) r0 � λdB: The de-Broglie wavelength λdB must be much larger than the range r0 of
the short-range interactions. Then, as shown in section 2.2, the scattering properties
in the atomic sample are fully determined by the s-wave scattering length a, which
enters the non-local GPE. In a chromium BEC, the range of the interactions is
r0 ∼ 100 a0 and the de-Broglie wavelength is on the order of the mean inter-particle
distance, i.e. λdB ∼ 4000 a0. Therefore, the required condition r0 � λdB is fulfilled.

(iii) n̄ a3 � 1: The product n̄ a3, with n̄ the mean density, is a measure of the diluteness14
of a sample consisting of hard spheres with radius a. In the context of an ultracold
atomic sample, the density and the scattering length a must be low enough, such
that correlations between the atoms are negligible and the use of pseudo-potentials
(see section 2.2) is justified15. With a maximum peak density n0 ∼ 1015 cm−3 in our
BEC and a ∼ 100 a0, we obtain n0a

3 ∼ 1.5 · 10−4, which is well within the validity
region.

(iv) E � ED: The energy in the system must be much smaller than the characteristic
dipole energy [58] ED = ~6/m3

red · (µ0µ
2
m/(4π))−4, with mred = m/2 the reduced

mass. Then, as shown in appendix A.1, the scattering in a dipolar gas occurs
mainly in the s-wave channel, even though the long-range DDI in principle leads to
scattering in all partial wave channels [106]. At condensation temperatures Tc . 1 µK
this criterion is well satisfied for chromium, since the dipole energy evaluates to
ED/kB ∼ 13mK.

(v) add � r0: The dipole length add must be much smaller than the short-range
interaction radius r0. This requirement, stated in Ref. [107], ensures the absence of
bound-states in the dipolar potential16. At larger dipole lengths, the so-called dipolar
s-wave shape resonances can occur, strongly changing the scattering properties of
the particles. In chromium, with add ' 15 a0 and r0 ∼ 100 a0 the condition is
fulfilled. In the recently realized dipolar BEC of dysprosium [40], this condition is
probably violated17. Nevertheless, we expect the GPE (2.15a) to be valid even for
dysprosium, as any dipolar effects on the s-wave scattering length may be absorbed
by the contact interaction term [101, 102, 108, 109].

14In a box of volume V , N hard spheres of radius a will occupy the volume VN = N · (4π/3) a3. Therefore,
the fraction VN/V ∝ n̄ a3, with n̄ = N/V , describes the filling of the box.

15A rigorous mathematical derivation of this condition is given in Ref. [105].
16In the calculations in Ref. [107], the occurence of bound-states was examined in a dipolar potential
with a hard-sphere boundary at r = r0.

17The interaction range r0 for 164Dy is so far unknown, but for an estimation we may use the chromium
value r0 ∼ 100 a0. With a dipole length add ∼ 134 a0 for 164Dy, the condition add � r0 is violated.
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Since in our experiments with a chromium BEC, all the validity criteria are fulfilled, we
will make use of the mean-field description in the remaining part of this thesis.

2.4 Solutions of the Non-Local Gross-Pitaevskii Equation

In this section, we discuss different solutions of the stationary Gross-Pitaevskii equation,
assuming the realistic case of an harmonic external trapping potential of the form

Vext(r) = m

2
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (2.18)

with the ωi (i = x, y, z) denoting the trap frequencies. At first, we consider a BEC with neg-
ligible interactions, where we encounter the well-known problem of the quantum-mechanical
harmonic oscillator. We then examine the case with dominant contact interactions, which
also leads to a simple solution of the GPE due to the local character of the interactions.
Including the dipolar interactions, the problem becomes non-trivial, however, an exact
solution of the GPE can still be found. With the results obtained here, we finally discuss
some basic properties of dipolar BECs.

2.4.1 GPE with Negligible Interactions

For sufficiently weak interactions, we can neglect their contribution in the stationary
GPE (2.15a). The remaining differential equation,

µψ(r) =
− ~2

2m∇2 + m

2
∑

i=x,y,z
ω2
i r

2
i

 ψ(r), (2.19)

corresponds to the well-known problem of the three-dimensional quantum-mechanical
harmonic oscillator [96]. Its discrete solutions in each direction are given by the Hermite
functions hn(ri) with eigenenergies En,i = (n+ 1/2) ~ωi, where n only takes integer values.
In a spherically symmetric trapping potential Vint(r) = mω2

0r
2/2, the ground-state wave

function ψ(r) ∝ h0(r) has a Gaussian shape18:

ψ(r) =
(√

πaho
)−3/2

e
− r2

2a2
ho , (2.20a)

where aho
def=
√

~
mω0

(2.20b)

is the so-called harmonic oscillator length. The characteristic size aho of a non-interacting
condensate may also be deduced from a simple variational calculation [89]: When the
radius R of the condensate is large, the energy of the system is given by the potential
18As stated in section 2.3.1, we choose the normalization condition

∫
dr3|ψ(r)|2 = 1.
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energy Vext(R) = mω2
0R

2/2. In the other limit of small and decreasing radii, Heisenberg’s
uncertainty relation p = ~/R leads to a divergence in the kinetic energy, given by
Ekin = p2/(2m) = ~2/(2mR2). This energy divergence results in the so-called quantum
pressure, which stabilizes the non-interacting condensate. The energy in the system is
minimal when the contributions from the potential energy and the kinetic energy are the
same, resulting in the condensate radius R =

√
~/(mω0) = aho. Finally, the chemical

potential µ in a non-interacting condensate is given by the zero point energy of the
three-dimensional quantum-mechanical harmonic oscillator, µ = 3~ω0/2, and is therefore
independent of the atom number.

2.4.2 GPE with Dominant Contact Interactions

The contact interactions contribute with the mean-field potential Φcontact(r) = g n(r)
(see Eq. (2.16a)) to the stationary GPE. While in a non-interacting BEC the quantum
pressure stabilizes the system at small radii, it is now the interactions that take over this
role, if they are sufficiently strong. In this case, the kinetic term in the GPE may be
neglected, and we obtain the GPE in Thomas-Fermi (TF) approximation

µψ(r) TF= [Vext(r) + g n(r)]ψ(r). (2.21)

Inserting the harmonic trapping potential Vext(r), given by Eq. (2.18), into Eq. (2.21)
yields the parabolic density of the BEC:

n(r) = N |ψ(r)|2 = µ− Vext(r)
g

= n0 · max
{(

1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, 0
}
, (2.22)

with n0 = 15N/(8πRxRyRz) the density at the center of the condensate, and with Rx,y,z

the TF-radii in the respective directions. The central density may also be expressed in
terms of the mean radius R̄ def= (RxRyRz)1/3, which in the case of a spherically symmetric
trap is given by19 R̄ = 151/5aho (Na/aho)1/5. We see that the calculated mean radius of a
contact interacting BEC is only significantly larger than the harmonic oscillator length aho,
if the condition Na/aho � 1 is fulfilled. Therefore, this condition defines the regime in
which the TF-approximation is valid. For a typical set of parameters in a chromium BEC,
{N = 20, 000, a = 100 a0, ω0 = 2π· 500Hz}, we obtain Na/aho ' 170 and thus the
system is typically well inside the Thomas-Fermi regime.

19In the case of a non-spherically symmetric trap, the harmonic oscillator length aho has to be replaced by
the mean harmonic oscillator length āho =

√
~/(mω̄), with the mean trap frequency ω̄ = (ωxωyωz)1/3,

as we show in appendix A.2. Note, that these formulae hold only for moderate trap frequencies with
~ωx,y,z � µ. We discuss the case of an highly oblate trap with ~ωz � µ� ~ωx,y in section 4.3.2.
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2.4.3 TF-Approximation with Contact and Dipolar Interactions

The long-range character of the dipole-dipole interaction significantly complicates the
description of a BEC in the TF-approximation. It has been found [110, 111] that in this
regime, the dipolar mean-field potential Φdip only contains terms that are either constant
or quadratic in the spatial coordinates. This leads to the remarkable fact that dipolar
BECs in the TF regime also have an inverted parabola shape, just like purely contact
interacting condensates.

To obtain an intuitive understanding how the dipolar interactions modify the properties
of a BEC, we choose a trapping potential with a cylindrical symmetry along the polarization
direction z of the dipoles. The radial and axial coordinates are then defined by r = (ρ, z)
with the according trap frequencies ωρ and ωz, and the trap ratio λ def= ωρ/ωz. In a first
step, we assume weak dipolar interactions, such that the shape of the BEC still resembles
an inverted parabola, with the cloud aspect ratio κ def= Rz/Rρ defined by the TF-radii Rρ

and Rz in the radial and axial directions. The dipoles then generate a mean-field potential
ΦTF,κ
dip (r) that enters the GPE and which in the cylindrical coordinates reads [110]

ΦTF,κ
dip (r) = n0gdd

[
ρ2

R2
ρ

− 2z2

R2
z

− fdip(κ)
(

1− 3
2
ρ2 − 2z2

R2
ρ −R2

z

)]
, (2.23a)

with the dipolar anisotropic function fdip(κ) given by

fdip(κ) = 1 + 2κ2

1− κ2 −
3κ2 artanh

(√
1− κ2

)
(1− κ2)3/2 . (2.23b)

We illustrate the function fdip(κ), taking numerical values in the interval [−2, 1], in
Fig. 2.3(a). As stated before, the terms in Eq. (2.23a) are either constant or quadratic
in ρ and z, i.e. the general form of the GPE is the same as in the purely contact
interacting case20. Therefore, in the TF-approximation, we obtain the same parabolic
density distribution of the dipolar BEC, as given by Eq. (2.22). However, now the radii of
the condensate depend on both the contact interaction strength g and the relative dipole
strength εdd and are given by the following expressions [110, 111]:

Rρ =
[

15gNκ
4πmω2

ρ

{
1 + εdd

(
3
2
κ2fdip(κ)

1− κ2 − 1
)}]1/5

, (2.24)

and Rz = Rρ/κ. At given trap ratio λ, the cloud aspect ratio κ may be evaluated via the
implicit equation

3κεdd
[(
λ2

2 + 1
)
fdip(κ)
1− κ2 − 1

]
+ (εdd − 1)

(
κ2 − λ2

)
= 0. (2.25)

20In Eq. (2.23a), the constant term proportional to fdip(κ) only adds an offset to the chemical potential
and the quadratic terms are of the same form as the trapping potential.
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Hence, for a given external trapping potential, we obtain an exact solution for the
stationary GPE, with the chemical potential given by µ = gn0 [1− εddfdip(κ)].
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1(a) (b)
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Fig. 2.3, Dipolar anisotropic function and dipolar mean-field potential:(a) The
dipolar anisotropic function fdip versus the cloud aspect ratio κ def= Rz/Rρ. The
asymptotic values are fdip(0) = 1 and fdip(∞) = −2, while fdip vanishes for
κ = 1. (b) The dipolar mean-field potential in the case κ = 1. It exhibits a
saddle-like shape with minima on the axis parallel to the external magnetic
field B.

Using the analytical expressions derived in this section, we can already learn some
characteristic properties of a dipolar BEC. Let us consider a spherically symmetric contact
interacting BEC with radius R, i.e. κ = 1, and add some weak dipolar interactions. Then,
the dipolar mean-field dipolar potential is given by [112]

ΦTF,1
dip (r) = εdd

mω2

5
(
1− 3 cos2 ϑ

){ r2 if r ≤ R

R5/r3 if r > R
, (2.26)

which has a saddle-like shape, with the minima on the axis parallel to the polarizing
external magnetic field B, as shown in Fig. 2.3(b). With increasing relative dipole strength
εdd, the cloud will elongate more and more along the polarization direction of the dipoles,
as the minima of the saddle-like potential become more prominent. This effect persists
even in the case of anisotropic trapping potentials [109, 110], where the dipolar mean-field
potential does not necessarily take a saddle-like shape [113, Ch. A.5.6]. We furthermore
note that the dipolar contribution to the chemical potential vanishes in the case of a
spherically symmetric cloud since fdip(κ = 1) = 0. At a given dipole strength εdd, the
required trap ratio λ to design such sample without dipolar mean-field contribution is
given by21 λ = [3/(1− 2εdd/5)− 2]1/2.

Finally, we mention that not only the properties of a BEC, but also the validity of
the Thomas-Fermi approximation is affected by the presence of the dipolar interactions.
Due to the anisotropic character of the DDI, the validity criterion depends on the trap
21We have to restrict the range of possible trap ratios to 0.5 ≤ λ ≤ 2.4. Else, the solution of the GPE
does not represent a stable configuration of the condensate [114].
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ratio [114]. It is given by N(a − add)/aho � 1 for trap ratios λ . 1, used e.g. in the
measurements for the calibration of the scattering length, presented in section 3.2.3.

Concluding this section, we have seen that the dipolar interactions influence the ground-
state properties of a BEC. While in the TF approximation the shape of the condensate
remains the same as in the purely contact interacting case, the radii are different: a dipolar
BEC elongates along an external magnetic field. Furthermore, the chemical potential µ of
the condensate depends on the relative dipole strength εdd, with µ = gn0 [1− εddfdip(κ)].
Depending on the aspect ratio κ of the atomic cloud, the chemical potential can be lower
or higher than in the case without dipolar interactions.

2.5 Dipolar Interactions between Spatially Separated Conden-
sates

After describing single dipolar BECs in the previous section, we now turn our attention
to systems with multiple spatially separated atomic samples. The distant dBECs can
interact with each other by the long-range dipolar interactions, whereas purely short-
range interacting condensates do not show any inter-site coupling, if particle exchange is
suppressed.
In this section, we give a basic introduction to dipolar multi-site systems, while more
detailed descriptions of their ground-state properties are given in Refs. [28, 29, 115–120].
We first investigate the inter-site mean-field potential in the minimal system of two dipolar
layers. We then calculate the inter-site energy between two Gaussian-shaped dipolar
BECs. This allows us to examine the relevance of the inter-site interactions with respect
to the on-site interactions in such system. At the end of this chapter we show that, under
realistic experimental conditions, the inter-site energy can be enhanced when adding more
layers to the system.

2.5.1 Mean-Field Potential in a Dipolar Double-Layer System

We consider a system composed of two identical discs of radius R, with the dipoles aligned
perpendicular to the disc plane, as illustrated in Fig. 2.4(a). The separation ∆z = dlat of
the two samples is assumed to be much larger than their “thickness” in the z-direction.
Then, the distance r between two dipoles (belonging to different layers) only depends
on dlat and their in-plane separation22 rin, and is given by r =

√
d2
lat + r2

in. The angle ϑ,
defining the relative alignment of the dipoles (see Fig. 2.2), is given by cosϑ = dlat/r.
Therefore, using Eq. (2.6), the dipole-dipole interaction potential of two dipoles belonging

22The in-plane separation is the distance between the two dipoles, when the discs are projected onto each
other.
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to different layers reads

V disc
dd (rin, dlat) = µ0µ

2
m

4π
1− 3 d2

lat/(r2
in + d2

lat)
(r2

in + d2
lat)3/2

= µ0µ
2
m

4π
r2
in − 2 d2

lat

(r2
in + d2

lat)
5/2 .

(2.27)

Since we have chosen the extension of the discs in z-direction to be infinitely small, it is
useful to define the 2D atomic density n2D:

n2D(ρ) =
{

N
πR2 if ρ ≤ R

0 if ρ > R,
(2.28)

where N =
∫
n2D d2ρ is the number of atoms in each disc and R the disc radius. In the

given geometry, we may introduce the cylindrical coordinates (ρ, ϕ, 0) and (ρ′, ϕ′, dlat) for
the first and the second disc, respectively. We can then evaluate the mean-field potential
Φdisc

inter(ρ = 0) at the center of the first disc that is created by the presence of the second
disc, with

Φdisc
inter(ρ = 0) =

2π∫
0

R∫
0

V disc
dd (ρ′, dlat)n2D(ρ′) ρ′ dρ′ dϕ′

= µ0µ
2
m

4π
−2N

(R2 + d2
lat)

3/2 ,

(2.29)

which is valid in the cases dlat 6= 0 and R > 0. Considering the central mean-field potential,
given by Eq. (2.29), in different limits for the separation dlat and the disc radius R, we can
learn some basic properties of the dipolar inter-site interactions (we use the abbreviation
Φdisc
inter

def= Φdisc
inter(ρ = 0)):

(i) lim
dlat�R

Φdisc
inter ∝ (−2N)/d3

lat

When the distance between the two discs is much larger than their radial extension,
we recover the r−3 scaling law of the two-body DDI potential (Eq. (2.6)). We further
recognize that the interaction of the two samples is enhanced by the population
N of the discs, when compared to the case of only two dipoles in head-to-tail
configuration.

(ii) lim
R�dlat

Φdisc
inter ∝ (−2N)/R3

At large disc radii or at small separations, the mean-field potential does not depend
on dlat anymore. This means, that the central part of two large and thin magnetic
discs does not contribute to a relative attraction, as there is no potential gradient in
the z-direction. However, we should be aware of edge effects which we discuss below.

(iii) lim
R→∞

Φdisc
inter = 0
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This expression means that two infinite planes of dipoles do not interact [121]. In
this limit, the system is translationally invariant in the xy-plane, and therefore the
mean-field potential is zero everywhere.
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Fig. 2.4, Mean-field potential of two distant dipolar samples: (a) Schematic
drawing of the system. The two flat samples with the dipoles oriented along z
are separated by the distance dlat. Dipoles with angle ϑ < ϑm (red cone) give
negative contributions to the inter-site mean-field potential at the position ρ
of the probe dipole (tip of the cone). In contrast, for ϑ > ϑm the contribution
is positive. (b),(c) Inter-site mean-field potential (solid blue line) and density
distribution (dashed black line, normalized to the central density) in homoge-
neous disc-shaped samples and in samples with Gaussian density distribution,
respectively.

Let us now discuss the position dependent inter-site mean-field potential Φdisc
inter(ρ). For

the geometry of two discs at a given ratio R/dlat = 20, we numerically obtain the result
for Φdisc

inter(ρ) shown in Fig. 2.4(b). As expected for homogeneous discs, the mean-field
potential close to the center (at ρ = 0) is almost constant and negative (see case (ii)
above). Towards the edges, however, the potential develops first a deep minimum and
then a maximum at ρ & R, before it eventually approaches the zero value. The behaviour
of Φdisc

inter(ρ) close to the edge may be understood with the following geometrical argument:
only dipoles within the magic angle ϑm, indicated by the red cone in Fig. 2.4(a), give a
negative contribution to the mean-field potential since they attract each other. In contrast,
the dipoles just outside the cone give the strongest positive contribution, as the dipolar
potential falls off with r−3. Therefore, once the edge of the cone comes closer to the
edge of the neighbouring disc, there are less and less atoms with positive contributions
to the mean-field potential which therefore develops a minimum. For the chosen ratio
R/dlat = 20, the minimum sits at the position ρ ' R − dlat tanϑm ∼ 0.9R. Further
out, the number of dipoles inside the cone reduces and eventually vanishes, which leads
to the maximum in the mean-field potential. Far outside the disc, the potential finally
approaches the zero value due to the increasing distance to the neighbouring sample.
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Considering a real trapped dipolar gas with weak interactions, the density of the sample
will rather be described by a Gaussian than a disc shape, as we have shown in section 2.4.1.
We therefore write the 2D density distribution of the samples in the Gaussian form

nGauss
2D (ρ) = N

πσ2
ρ

e
− ρ

2

σ2
ρ , (2.30)

with σρ the width of the cloud in the radial directions. For the ratio σρ/dlat = 20, we obtain
the mean-field potential ΦGauss

inter (ρ), shown in Fig. 2.4(c). Contrary to the case of the discs,
here the potential has its minimum at the center and becomes only slightly positive at
ρ & σρ. As the atoms are attracted to the potential minimum, we deduce that the dipolar
inter-site interactions lead to a radial contraction of the samples. The equilibrium size of
the sample is eventually defined by the competition between the inter-site interactions,
the on-site (contact and dipolar) interactions and the quantum pressure.

2.5.2 Interaction Energy of Two Dipolar Samples with a Gaussian Shape

The inter-site mean-field potential yields a good qualitative description of a system with
distant dipolar clouds. We now evaluate the energy related to the inter-site interaction to
investigate its relevance compared to the other energy scales in the system. A thorough
theoretical treatment of such system has been the subject of a recent diploma thesis
in our group [118]. Here, we aim for a basic understanding of the system, while more
mathematical details are given in appendix A.5.

We choose a similar system as before, but we now consider two spatially separated
dBECs with identical Gaussian wave functions Ψ1(r) and Ψ2(r). The wave functions are
extended in all three spatial dimensions with σρ (σz) their radial (axial) size, and they
are explicitly given by

Ψ1(r) = 1
π3/4σρ

√
σz

exp
(
− ρ2

2σ2
ρ

− z2

2σ2
z

)
, and (2.31a)

Ψ2(r) = 1
π3/4σρ

√
σz

exp
(
− ρ2

2σ2
ρ

− (z − dlat)2

2σ2
z

)
. (2.31b)

Note that the two samples with aspect ratio κ def= σρ/σz are separated in the polarization
direction z by the distance dlat. Based on the expression for the energy of a single dipolar
BEC, given by Eq. (2.17), we define the inter-site interaction energy in a system of two
dipolar clouds by

E
(2)
inter

def=
∫
d3r

∫
d3r′ n1(r)V ′dd(r, r′)n2(r′), (2.32)

where ni(r) = N |Ψi(r)|2 (with i = 1, 2) is the Gaussian density distribution on the
separated sites, with N the atom number in each sample. The six-fold integral in
Eq. (2.32) may be reduced to a single integral, as we show in appendix A.5 (compare also
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Refs. [51, 118]),

E
(2)
inter(dlat) = − gddN

2

(2π)3/2σ3
ρ

1∫
0

du (1− 3u2)(1− u2(η + L2))
(1− ηu2)5/2 exp

(
− L2u2

2(1− ηu2)

)
, (2.33)

where L def= dlat/σρ is the normalized distance between the samples, and η def= 1− κ−2. The
remaining integral in Eq. (2.33) must be computed numerically.

We show the value of the inter-site energy per particle, E(2)
inter/N , versus the normalized

distance L for the cases of spherical clouds (κ = 1) and pancake-shaped clouds (κ = 10)
in Fig. 2.5. Furthermore, we show the overlap of the wave functions N12/(2N) def=∫

Ψ1(r)Ψ2(r)d3r. This value corresponds to the number of atoms in the region where
the clouds overlap, normalized by the total atom number 2N in the system. For the
calculations, we use typical chromium parameters: N = 3000, µm = 6µB, and σρ = 3 µm.
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Fig. 2.5, Inter-site energy of two Gaussian shaped dipolar clouds: The figures
show the inter-site energy per particle (solid blue lines) and the overlap of the
wave functions N12/(2N) (dashed black lines) versus the normalized distance
L = dlat/σρ. (a) Case of two spherical clouds (κ = 1) and (b) case of two
pancake-shaped clouds with κ = 10. We use typical chromium parameters
specified in the text.

We first consider the case of two spherical dipolar clouds, displayed in Fig. 2.5(a). At
large distances L� 1 the inter-site interaction energy is practically zero. When the clouds
approach each other, the energy becomes more and more negative until the clouds show a
significant overlap of N12/(2N) ∼ 0.5. The minimum value

∣∣∣Min
{
E

(2)
inter/N

}∣∣∣ ∼ h· 6Hz
close to L = 2 is small compared to the total energy per particle in the system for our
parameters23, E/N ∼ h· 1kHz. In the limit L→ 0 the clouds entirely overlap and the

23For weak interactions, i.e. N a/aho . 10, the typical energy per particle is E/N ' 2~ω̄ [89, Ch.6.2].
Inserting a typical mean trapping frequency ω̄ = 2π· 500Hz, we obtain the value E/N ' h· 1kHz
given in the text.
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inter-site energy vanishes. Thus, we recover the result obtained in the Thomas-Fermi
approximation, where we found a vanishing dipolar contribution to the chemical potential
of a spherically symmetric cloud (see section 2.4.3).
The pancake-shaped density distribution leads to an even more complex behaviour for
the inter-site energy, as displayed in Fig. 2.5(b). The minimum value of the inter-site
energy is now

∣∣∣Min
{
E

(2)
inter/N

}∣∣∣ ∼ h· 40Hz. This means that the inter-site interactions
are stronger than in the spherical case, but still remain small when compared to the total
energy per particle. The reason for the increased interaction strength is the following: at
a large cloud aspect ratio κ (but constant radial size) the two samples can get much closer
to each other without overlapping, strongly increasing the DDI between the neighbouring
dipoles. For L→ 0, i.e. when the clouds fully overlap, we find a finite positive value for
E

(2)
inter/N . This value corresponds to twice the dipolar energy of a single cloud containing

N atoms, and we can therefore define the on-site dipolar energy Eon,dip as

Eon,dip
def= 1

2 lim
L→0

E
(2)
inter = − gddN

2

2(2π)3/2σ3
ρ

1∫
0

du 1− 3u2

(1− ηu2)3/2 (2.34a)

= − gddN
2

2(2π)3/2σ3
ρ

κfdip(κ), (2.34b)

with the dipolar anisotropic function fdip(κ) introduced in section 2.4.3.

We have seen, that the inter-site interaction between two dipolar clouds is rather small
compared to the total energy in the system when using typical parameters for chromium
condensates. However, if we consider more than two clouds in a linear array, we may
enhance the dipolar inter-site interaction energy, as we discuss next.

2.5.3 Interaction Energy in a Linear Chain of Dipolar BECs

Let us consider a stack of Nlat regularly spaced pancake-shaped dipolar clouds, aligned in
the polarization direction z, as illustrated in Fig. 2.6(a). The total inter-site energy Einter,tot
in such system may be calculated by summing over the inter-site energy contributions
E

(2)
inter(∆z) of all the possible pairs of condensates,

Einter,tot =
Nlat−1∑
j=1

(Nlat − j) ·E
(2)
inter(∆z = j· dlat), (2.35)

where we make use of the equal spacing dlat between the next-neighbours. We also take
care in Eq. (2.35) that each pair of samples is only counted once.

In Fig. 2.6(b), we plot the total inter-site interaction energy divided by the total number
of particles Ntot = Nlat ·N as a function of the number of samples in the linear array.
We choose parameters close to the experimental ones (see section 5) {σρ = 3 µm, κ =
50, dlat = 534 nm, µm = 6µB}, and a constant on-site population N = 3000. Comparing
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Fig. 2.6, Inter-site energy in a dipolar multi-site system with constant filling of
the sites:(a) Sketch of the system. The Nlat samples, containing N atoms each,
with the dipoles oriented along the symmetry axis z, are equally separated by
the distance dlat. (b) Total inter-site energy, Einter,tot, divided by the total atom
number, Ntot = Nlat ·N , using the parameters {N = 3000, σρ = 3 µm, κ = 50,
dlat = 534 nm, µm = 6µB}. From Nlat = 2 to Nlat = 50 the total inter-site
energy per particle is multiplied by a factor of about 10.

the absolute value of the total inter-site energy per particle for the cases Nlat = 2 and
Nlat = 50, we observe a value about 10 times higher in the latter case. Note that, if we
consider only next-neighbour coupling, we obtain only a factor around 2 between the two
cases24. Therefore, the coupling between distant atomic samples by the long-range dipolar
interactions must be taken into account for a correct description of the system.

We have above considered a constant on-site population N of the spatially separated
samples. In a real experimental system, however, there is usually a limited total number
of atoms Ntot which can be distributed over the Nlat condensates. Performing variational
calculations, using a fixed total atom number Ntot = 20, 000 and an on-site trap ratio
λ = 50, we find a maximum absolute value of the inter-site interaction energy per particle
in a system of about Nlat = 10 atomic samples [122, Ch.5.5.4]. We will see in chapter 5
that we are close to this optimum value in our experiment.

Conclusion

In this chapter, we have reviewed the basic ground-state properties of a dipolar BEC.
Using mean-field calculations, we have shown that the shape of the condensate depends
crucially on the strength of the short-range contact interactions and the long-range dipolar
interactions between the particles. We have then investigated systems of multiple spatially

24This is easily seen by the fact that all the samples have two next-neighbours, except from the first and
the last one.
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separated dipolar BECs. The calculations have shown that the inter-site interaction
energy is strongly enhanced when considering more than two layers of the dipolar gas.
Based on the theoretical results presented here, we will address the role of the inter-site
interactions in a real experimental system in chapter 5.
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3 Producing a 52Cr BEC with Tunable Interactions

To investigate dipolar effects in an ultra-cold bosonic gas, we routinely create a 52Cr
condensate with tunable contact interactions. The complex production process of the
condensate has been developed in our group over several years, with detailed descriptions
of the trapping and cooling techniques given in Refs. [73, 123–127]. In the first part of this
chapter, we show the experimental setup and explain the way to produce a tunable 52Cr
condensate. We also briefly comment on the different laser systems used for creating the
BEC. In the second part, we focus on the Feshbach resonance (FR) technique [12] which
plays a central role in our experiments, as it provides the mechanism to tune the s-wave
scattering length. After the discussion of the underlying principle of Feshbach resonances,
we describe the experimental implementation of the FR technique in our system [74]. In
particular, we have revisited the calibration of the scattering length, which is the final
topic of this chapter.

3.1 Creating a 52Cr - BEC

3.1.1 Experimental Setup

In our experiment, we create the ultracold 52Cr samples in a stainless steel chamber, shown
in Fig. 3.1. The full apparatus is divided into two parts: the oven chamber, containing the
chromium effusion cell, is kept under high vacuum at a pressure p ∼ 10−9 mbar, and the
trapping chamber which is operated under ultra-high vacuum of p < 10−11 mbar. Such
low pressure is required to reduce the collisions of the trapped chromium atoms with the
background gas during the cooling process. In between the two chambers, an 80 cm long
Zeeman slower acts as a differential pumping stage.

The magnetic field, required for the initial trapping stages, is provided by a set of
water-cooled coils in a “cloverleaf” configuration [128]. Such setup allows for sufficiently
high optical access for the various laser beams used for the cooling, trapping, and imaging
of the atoms as detailed in the following section. Additional pairs of coils in Helmholtz
configuration (not shown in Fig. 3.1) can provide homogeneous magnetic fields along all
spatial directions to compensate for external magnetic fields. The additional coils are
also used to control the position of the cloud in the magnetic trap, and to provide a
quantization axis of the system. We define the z-axis of the system to be aligned with the
symmetry axis of the magnetic trapping field. Along this direction, we can apply a strong
homogeneous magnetic offset field (B ∼ 600G) to reach a Feshbach resonance, with the
details discussed in section 3.2.
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Fig. 3.1, Experimental Setup: The full chamber (A) is divided into the oven chamber
(containing the chromium effusion cell) and the trapping chamber (rotated by
90◦ along y in B). The two chambers are separated by the 80 cm long Zeeman
slower. Blue arrows indicate the laser beams for cooling and optical pumping
and the red arrows (in B) illustrate the optical dipole trap beams. The symmetry
axis of the cloverleaf coils define the z-direction. The imaging laser beam (probe
beam) propagates along the x-direction and the optical pumping beam along
the y-direction. Figure taken from Ref. [73].
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3.1.2 Procedure

We create a beam of chromium atoms by sublimation in an effusion cell25 at a temperature
T ∼ 1450◦C . The atomic beam is first collimated by a set of apertures, and then radially
cooled by a two-dimensional optical molasses [129, Ch.9.3]. For the radial cooling, we
use blue laser light at a power P ∼ 120mW and at the wavelength λ = 425.6 nm, close
to the 7S3 ↔ 7P4 transition (see Fig. 3.2(a)). We have chosen a single beam setup in a
back-reflected geometry to maximally use the available laser power.

After the radial cooling stage, the atoms enter a spin-flip Zeeman slower (ZS) [124,
Ch.3.4]. There, the atoms are decelerated by scattering the light from a counterpropagating
resonant laser beam. The efficient deceleration from a maximum velocity vmax ∼ 580m/s
to a final velocity vf ∼ 30m/s is obtained by designing a magnetic gradient field such
that the Zeeman-shift exactly compensates the Doppler-shift at any position inside the
ZS. This leads to persistent resonant absorption of the laser light [130, 131].
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Fig. 3.2, Cooling and trapping of 52Cr : (a) The magnetic quadrupole field created
by the cloverleaf coils is used to operate the magneto-optical trap (MOT) on
the 7S3 ↔ 7P4 transition. The field also provides a magnetic trap (MT) for
the atoms in the meta-stable 5D4 state. (b) To transfer back the atoms from
the 5D4 state to the 7S3 ground-state, a repump laser is used at a wavelength
λ = 663.2 nm, resonant with the transition to the 7P3 excited state. (c) After
loading the atoms from the MT to the optical dipole trap (ODT), the atoms
are optically pumped from the mJ = +3 to the mJ = −3 magnetic sublevel of
the 7S3 ground-state. Figure taken from [113].

25Supplier: CreaTec Fischer & Co. GmbH, part number: HTC-40-10-2000-284-SHM + WK-63-40-267.
We additionally use crucibles made of ZrO2 (stabilized by Y2O3) inside the tungsten crucible of the
effusion cell, to avoid an chromium-tungsten alloy to form [123, Ch.4.2.1]. Supplier of crucibles: Cesima
Ceramics. Internal link to technical drawings of oven and crucibles.
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From the exit of the ZS, the atoms travel only a short distance until they reach the
center of the trapping chamber, where they are captured in a magneto-optical trap (MOT).
While standard three-dimensional MOTs [129, Ch.9.4] are widely used in experiments
with alkali atoms [132, 133], a large inelastic two-body loss coefficient for excited state
collisions severly limits the maximum number of chromium atoms that can be accumulated
in such trap [123, 134]. Fortunately, the large magnetic dipole moment of chromium allows
for an alternative loading mechanism: the Continuous Loading of a Ioffe-Pritchard
(CLIP) magnetic trap [135, 136], illustrated in Fig. 3.2(a). The magnetic quadrupole
field, produced by the pair of cloverleaf coils, is used for operating a two-dimensional
MOT in radial direction plus a molasses on the z-axis, using the 7S3 ↔ 7P4 cooling
transition. With a branching ratio 1 : 250, 000 the atoms decay from the excited state
7P4 to the 5D4 meta-stable state. There they are decoupled from the MOT cycle, but
remain magnetically trapped. Owing to the small branching ratio, the atoms are cooled
approximately to Doppler temperature (TD = 124 µK) in the MOT cycle, before they
arrive in the meta-stable state. After around six seconds of loading time, the population
in the 5D4 state saturates at N ∼ 2 · 108. We then switch off the MOT light and excite
the atoms from the 5D4 to the 7P3 state by a 20ms light pulse from the repump-laser at
λ = 663.2 nm. From there the atoms decay back to the 7S3 ground-state, as shown in
Fig. 3.2(b).

As a next step, we compress the atomic cloud in the magnetic trap (MT) by maximally
ramping up the current through the cloverleaf coils. The sample heats up to T ∼ 1mK,
and we then perform Doppler cooling by flashing the axial MOT beams onto the dense
sample [137]. Without loosing atoms, we gain two orders of magnitude in phase-space
density (PSD) [138]. After this process, the PSD is ρ ∼ 10−7 which provides good starting
conditions for the RF-induced evaporation cooling26 [128, 139–141].

In most experiments using alkali elements, evaporative cooling in a magnetic trap is
used to reach the ultra-low critical temperature for Bose-Einstein condensation [1–3, 128].
However, it turned out that this is not possible in chromium: due to the anisotropic
dipole-dipole interaction, the magnetic quantum number mJ is not a conserved quantity
in a two-body scattering process, which leads to a heating of the chromium sample by
the so-called dipolar relaxation [126, 142–144]. As the atoms are initially trapped in the
magnetic sublevel of highest Zeeman energy27 (mJ = +3) spin-changing collisions are
accompanied with a release of energy leading to the heating of the sample. By adjusting
daily the magnetic offset field during the RF evaporation to the minimum possible positive

26The RF-induced evaporation technique is based on the selective removal of the hottest atoms from the
sample which, after a rethermalization time, will possess a lower temperature than before.

27Only the so-called ’low-field seeking’ states are magnetically trappable as local minima of magnetic
fields can be produced, while the creation of local maxima is impossible as a consequence of Maxwell’s
equations [145].
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value28, we minimize the Zeeman energy that is released in a dipolar relaxation process.
Still, the heating is too strong to reach the critical temperature for condensation.

To overcome the limitation in temperature, imposed by the dipolar relaxation, we stop
the RF evaporation after reaching the following conditions: N ∼ 6 · 106, T ∼ 20 µK,
and PSD ρ ∼ 10−5 [73]. We then transfer the atoms into a single-beam optical dipole
trap (ODT) oriented along z. The ODT is produced by a strong laser beam at a wavelength
λ = 1076 nm, which is far red-detuned from the strongest transitions in 52Cr (close to
λ = 425 nm). The basic principle of an optical dipole trap is explained in section 4.1.1,
and a review on the topic is given in Ref. [43]. The resulting trapping potential, that is
proportional to the position-dependent intensity of the tightly focussed Gaussian laser
beam29, is able to capture atoms in all magnetic sublevels of the 7S3 ground-state [73,
Ch.4]. Therefore, as shown in Fig. 3.2(c), we can transfer the atoms by optical pumping
to the magnetic sublevel of lowest Zeeman energy (mJ = −3) via the 7P3 excited state,
and thus prevent any further heating by dipolar relaxation30.

The transfer efficiency from the MT to the ODT is around 40 %, leaving N ∼ 2.5 · 106

atoms for the final evaporation steps. While keeping the intensity of the first trapping
laser beam (“ODT1”, along z-direction) constant, we ramp up a second trapping beam
(“ODT2”, along y-direction) within 4 seconds. In this crossed ODT, the elastic collision
rate is sufficiently high to reach Bose-Einstein condensation by forced evaporation, i.e. by
successively lowering the power of the ODT laser beams [30, 73].

When performing experiments close to the center of the Feshbach resonance at B0 =
589.1G [12, 32], we pause the evaporation process well before reaching degeneracy. We
then switch on the strong magnetic field oriented along the z-direction, before we continue
the evaporation to produce the BEC. In this way, we avoid strong atom losses when
crossing other Feshbach resonances [55] that are too narrow to be used for a well controlled
tuning of the contact interaction strength [95, 127].

We thus produce a 52Cr -BEC containing approximately N = 30, 000 atoms, either
in low magnetic field or close to a Feshbach resonance at B0 ∼ 589G. There, we can
tune the contact interaction strength in the dBEC, as we will describe in section 3.2.
During the time of this thesis, we could realize a cycle time to produce the chromium
BEC of around 23 s. The reduction by a few seconds compared to previous cycle times
was mainly achieved by reducing the MOT loading time, owing to the higher atomic flux
after implementing the radial laser cooling in the oven chamber.

28The magnetic field strength should not reach the zero value, as Majorana losses [146] would destroy the
sample [73, 135]. The minimum magnetic field strength that can be reached in our setup is defined by
our resolution ∆B ∼ 35mG [73].

29The strength of the potential created by the ODT can be calculated using the known energy level
scheme of chromium [73, Ch.4]

30We could even exploit the spin-changing collisions in the ODT to cool the atomic cloud without atom
losses by the so-called demagnetization technique [147]. Currently we are not using this scheme, as the
required high-precision control of the external magnetic field is not implemented in the system.
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3.1.3 Laser Systems

We now give a brief overview of the lasers that are involved in the production process of
the BEC.

425nm MOT laser system
The laser light at wavelength λ = 425.6 nm, resonant with the 7S3 ↔ 7P4 transition, is
used for several purposes on the experiment: radial cooling in oven chamber (120mW),
Zeeman slower (100mW), magneto-optical trap (radial: 2× 60mW, axial: 10mW), and
imaging (10mW). We produce the blue light in a multi-step process: a diode-pumped
solid state (DPSS) laser31 delivers 18W of green light at a wavelength λ = 532 nm, which
we use to optically pump a Ti:sapphire crystal inside a ring cavity32. At the output of the
Ti:sapphire system we obtain around 3W of infrared light at λ = 851.2 nm, with a narrow
linewidth of ∆ν ∼ 75 kHz. Finally, the infrared light is frequency-doubled by using a
lithium triborate (LBO) crystal inside a home-made monolithic ring cavity33 [149, Ch.5]
from which we obtain typically around 800mW of blue light34.
The laser frequency is actively stabilized by performing Doppler free polarization spec-
troscopy35 [151] with an electronic feedback to the external cavity of the Ti:sapphire
system36. The resulting laser linewidth ∆ν425 ∼ 1MHz is well below the natural linewidth
Γ/(2π) ∼ 5MHz of the 7P4 excited state. It is therefore sufficiently small for the cooling
and the imaging of the atomic cloud.

663 nm repump laser system
The repump laser system operating at λ = 663.2 nm is a home-built external-cavity
diode laser. It is frequency stabilized by a passively stable reference cavity37 using the
Pound-Drever-Hall (PDH) stabilization scheme [152, 153]. The output power of the laser
(P = 10mW) is split into two beams, one going to the experiment (P = 7mW) and one
used for the stabilization. The long-term frequency stability of the repump laser depends
on the thermal expansion properties of the reference cavity and exhibits a drift of around
2MHz per hour. Therefore, the laser frequency has to be readjusted several times per
day. Recently, a new cavity has been built [154] using the material SuperInvar® which
shows a low coefficient of thermal expansion. In addition, the new device shows a much
higher finesse than the one currently used, and can be actively stabilized in length via a
piezoelectric actuator.

31Coherent, Inc.: Verdi V18.
32Coherent, Inc.: MBR 110
33The length of the doubling cavity is actively stabilized using the Hänsch-Couillaud locking technique [148],
which does not require a frequency modulation of the incoming laser light.

34The total blue power specified here includes the main beam after the doubling cavity and two separately
outcoupled beams used for imaging and spectroscopy.

35We use a hollow cathode lamp [150] to provide the atomic chromium vapour in the spectroscopy setup.
36See [113, Ch.3.2.1] for the latest improvements of the light detection electronics.
37Reference cavity: length l = 1m, free spectral range FSR = 75MHz (TEM01 mode).
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427 nm optical pumping laser system
The setup of the optical pumping laser system (λ = 427.6 nm) is similar to the MOT
laser system, however, involving much lower laser powers. We produce around 60mW
of light at a wavelength λ = 855.2 nm from an external-cavity diode laser38, which is
frequency stabilized to the same reference cavity as the repump laser, using as well the
PDH technique. The infrared light is frequency doubled by a potassium niobate (KNbO3)
crystal39 inside a home-made ring-cavity [155]. We obtain around 10mW of blue light at
the output of the cavity. The light level is then actively stabilized to around P = 200 µW,
which is the optimum value for the optical pumping using the 7S3 ↔ 7P3 transition
(see [73, Ch.4.8] for details of the optical pumping process).

1076 nm optical dipole trap laser system
The laser light at λ = 1076 nm for trapping the atoms in the crossed ODT is provided by
an ytterbium fiber laser40, which we operate at an output power P = 61W. Behind the
exit of the fiber, the light is split into the horizontal (’ODT1’) and the vertical (’ODT2’)
trapping beams, separately controlled in intensity by AOMs. During the BEC production
sequence, we use the maximum powers P1 = 17W and P2 = 9W in ODT1 and ODT2,
respectively. The two linearly polarized laser beams are crossing under an angle of 90◦,
with their polarization directions being perpendicular to each other to avoid interferences.
The waists of the Gaussian laser beams are w1 = 30 µm and w2 = 50 µm for the ODT1 and
the ODT2, respectively. We thus obtain a maximum trap depth of |VODT| /kB ∼ 250 µK
in the crossed configuration [74].
An issue that occurs when dealing with high laser powers are thermal expansion effects in
the lenses that are placed in the optical path. To keep these effects as low as possible, we
are using thin quartz lenses with a thermal expansion coefficient around 10 times lower
than standard lenses made of the material BK7 [74].
In addition, to minimize the movement of the laser beams during the intensity ramps41,
we have developed a two-frequency driver for the AOMs [156]. Compared to the standard
single frequency operation, we are able to decrease the beam displacement by a factor of
around 20. Recently, we have exchanged the analogue power control by a digital one; this
system shows the same performance while being more user-friendly [122, Ch.A.1].

38Laser diode: ‘LD-0850-0100-1, SDL-5411-G1’, supplier: Toptica Photonics AG.
39Here, we use KNbO3 instead of LBO to enhance the conversion efficiency at such low input laser powers.
The temperature of the crystal is actively stabilized (T ∼ 15◦C), also in contrast to the LBO crystal,
where this is not needed.

40IPG Photonics, model: YLR-100-LP.
41The beam movement during the intensity ramps is induced by a heating of the AOM crystal when
increasing the RF driving power.
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3.2 Tuning of the Contact Interactions

In a chromium BEC, the dipolar interactions are much stronger than e.g. in condensates
of alkali elements, due to the six times larger magnetic moment of the atoms. However,
when compared to the contact interaction strength, the dipolar interactions are still weak
and induce only perturbative effects in the system [157]. Since the magnetic moment of
the atoms is fixed, the only way to enhance the dipolar effects is to reduce the strength of
the contact interactions, e.g. by using the Feshbach resonance technique [12]. In this way,
a system with strong dipolar effects can be created [32], and therefore the tuning of the
contact interactions is an important part in our experiments.

3.2.1 Feshbach Resonances in Ultracold Gases

Dealing with the short-range interactions in section 2.2.1, we have introduced the molecular
potential V (r) of a two-body system. We have shown that, despite the complicated form
of the interaction potential, the resulting wave function from a two-body scattering process
is fully determined by a single scalar parameter, the s-wave scattering length a. Usually,
the scattering length has a value close to the range of the potential r0, with r0 ∼ 100 a0
in chromium (reminder: a0 is the Bohr radius). However, if the potential V (r) supports a
bound-state with an energy close to the kinetic energy of the incident particles (E ∼ 0),
the scattering length diverges due to a resonant coupling mechanism [93].
In principle it is possible to shift the energy of the last bound-state of the molecular
potential by applying strong DC-electric fields [103], which would thus enable the tuning
of the scattering length. Unfortunately, the required electric field strength is too large for
this technique to be applied in the typical high vacuum setups of BEC experiments42 [159].
In our experiment, we therefore use the Feshbach resonance technique which involves
magnetic fields with a strength within experimental reach.
So far, we have considered only a single molecular potential in the scattering problem,
which represents a so-called open channel of the collision process. Here, the atoms can
separate to infinite distance after the collision process. In a real atomic system, there
furthermore exist other collision channels, where the molecular state differs in (at least)
one quantum number with respect to the open channel. In Fig. 3.3(a), we show a system
of two channels: one is the open channel, and one is a closed channel, as the potential
at large distances r is higher than the kinetic energy in the system. While in general,
the coupling to the closed channel is weak [160], it becomes strong when the energy E
of the incident particles becomes resonant with the energy Ec of a bound-state in the
closed channel. This has first been theoretically demonstrated by Herman Feshbach in
the context of nuclear physics [161]. Close to this so-called Feshbach resonance (FR), the
42The required electric field strength for tuning the s-wave scattering length is about 100 kV/cm [103].
This very large value is expected to be significantly reduced in systems of ultracold polar molecules [57,
58, 101, 102, 158].
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scattering properties in the system can be tuned by changing the potential difference
∆E between the open and the closed channel, which is the basic idea of the Feshbach
resonance technique.

Fig. 3.3, Feshbach resonance, principle and tuning of the scattering length:
(a) A Feshbach resonance occurs, when the energy Ec of a bound-state in the
closed channel is tuned in resonance with the kinetic energy E of the scattering
particles. The energy difference ∆E between the closed channel (red line) and
the open channel (black line) can be tuned e.g. by an external magnetic field
of variable strength B. (b) Scattering length a (blue line) as a function of the
magnetic field strength B close to a FR. The FR is located at B = B0 and
has a width ∆B0. The vertical dashed line indicates that we obtain a = 0 at
B = B0 + ∆B0. The horizontal dashed line indicates the asymptotic value
a = abg far away from the center of the FR.

We label the different channels by the total spin S = s1 + s2 of the two colliding
atoms and its projection onto the quantization axis MS = m1 + m2, with s1,2 and
m1,2 the quantum numbers of the single particles. Furthermore, the quantum numbers
(l,ml) indicate the relative angular momentum of the nuclear motion in the two-particle
system. In the chromium BEC, we prepare all atoms in the energetically lowest state43
|s = 3,ms = −3〉, as described in section 3.1.2. Therefore, the open (s-wave) channel is
labelled by the state |S = 6,MS = −6, l = 0,ml = 0〉. While in alkali systems there are
usually only few channels coupled by the isotropic exchange interactions, the situation is
different in chromium: the dipole-dipole interaction couples the open channel to several
other channels, that fulfill a certain set of selection rules44 [95, 127, 162].

43Note, that in chromium |s,ms〉 = |J,mJ〉, as the ground-state 7S3 has zero electronic orbital angular
momentum. Here, we choose the |s,ms〉 representation to be consistent with Refs. [95, 127, 162].

44The selection rules for first order coupling via DDI are: ∆S = 0,±2; ∆l = 0,±2; and ∆ml = 0,±1,±2
(see appendix A.1.1). There is no coupling from l = 0 to l = 0. Due to the axial symmetry of the DDI
potential, the projection of the angular momentum is conserved, i.e. ∆MS + ∆ml = 0. Even more
channels are coupled (weakly) by the DDI at the second order.
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Let us consider more closely the tuning of the scattering length in the vicinity of a
Feshbach resonance (see Fig. 3.3). If the spin projections of the two coupled states are
not the same, i.e. ∆MS 6= 0, also their associated magnetic moments show a difference
∆µm 6= 0. Then, the relative potential energy ∆E between the open and the closed
channel depends on the strength B of an external magnetic field, with ∆E = ∆µmB. We
can therefore tune the energy Ec of the coupled state and modify the scattering length,
as explained before. In the limit of small kinetic energies (E → 0) the scattering length is
given by [12, 163],

a(B) = abg

(
1− ∆B0

B −B0

)
, (3.1)

with abg the so-called background scattering length, ∆B0 the width and B0 the center of
the Feshbach resonance. The width ∆B0 may be either positive or negative and depends
on the value ∆µm and the coupling strength between the two channels [163].

Atom losses close to Feshbach resonances
Usually close to Feshbach resonances, a strong increase in atom losses in the BEC is
observed [55]. Two main loss mechanisms have been identified: on the one side, during
very fast magnetic field ramps over the FR, weakly bound molecules are created [164].
Even a stable molecular BEC may be formed in this way, if the remaining atomic BEC
is quickly removed from the system [165]. On the other side, deeply bound molecules
may form by a decay from the resonantly coupled state [166]. In such process, while two
atoms form a temporary bound-state in the closed channel, they collide with a third
atom. Thus, the two atoms are transferred into a deeply bound-state and the released
binding energy makes that all the three particles leave the trap. Both loss mechanisms
have an influence on our experiment: The creation of deeply bound molecules limits the
lifetime of our BEC close to the Feshbach resonance [74]. Furthermore, atom losses can
occur through the formation of weakly bound molecules when we cross several (narrow)
Feshbach resonances in the switch-on procedure of the strong magnetic field. We therefore
ramp up the field before producing the BEC to keep the density of the atomic cloud and
hence the production of the molecules at a low level.

Feshbach resonances in chromium
In chromium, 14 Feshbach resonances have been experimentally observed by atom loss spec-
troscopy, in the range B = 0− 600G [95]. Three first-order and 8 second-order resonances
belong to the incoming s-wave channel |S = 6,MS = −6, l = 0,ml = 0〉. Two resonances
belong to a d-wave entrance channel, with one of them studied experimentally in more
detail in Ref. [167]. One resonance is still unassigned. The broadest resonance, observed at
B0 = 589.1G, has a theoretical width of ∆B0 = 1.7G. It belongs to the incoming s-wave
channel and a closed channel with quantum numbers |S = 6,MS = −5, l = 2,ml = −1〉.
It is this Feshbach resonance that we use to tune the scattering length away from the back-
ground value abg = (102.5± 0.4) a0 [144]. While Eq. (3.1) provides a simple relation a(B),
the precise control of the scattering length is still a challenging task in the experiment, as
we will describe in the next section.
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3.2.2 Experimental Realization of the Feshbach System

The required magnetic field strength B ∼ 600G to reach the Feshbach resonance is
conveniently produced in our setup by using the offset coils from the magnetic trap [74].
They are water-cooled, such that the heat is efficiently removed when operating the coils at
the required current I ∼ 400A. With their relative distance of 75mm and their radius of
about 60mm, the offset coils are close to Helmholtz configuration, producing an almost ho-
mogeneous magnetic field at the position of the atomic cloud. It was found, however, that
the remaining field curvature (introducing trapping in radial direction and anti-trapping
in z-direction) was still strong enough to prevent efficient evaporative cooling from the
ODT. Thus, a BEC could not be obtained close to the FR. We therefore compensate the
magnetic field curvature with a current of around 15A running through the pinch coils45
of the magnetic trap, in opposite direction with respect to the offset current [168, Ch.4.3].
After optimizing the curvature compensation current to the maximum BEC atom number,
the remaining trapping frequencies, induced by the magnetic field, are νz < 10Hz in the
axial direction and |νrad| < 5Hz in the radial direction [168].

Current noise and active current stabilization
In order to observe strong dipolar effects (εdd ≥ 1) in our chromium condensate, we have
to tune the scattering length close to the zero value with an accuracy δa� add ' 15 a0.
The goal to keep the scattering length in an interval a = (0± 1) a0, thus allows only a
maximum peak-to-peak noise in the magnetic field46 (δB/B0)pp ' 6 · 10−5. Since the
magnetic field strength is directly proportional to the current in the Feshbach coils, the
problem is transferred to providing a current with a relative stability (δI/I)pp ≤ 6 · 10−5

at an absolute value I ∼ 400A.

Among several power supplies tested, there was only one47 showing sufficiently low peak-
to-peak noise (δI/I)pp = 5 · 10−5 and an rms noise (δI/I)rms = 1 · 10−5 [74, App.B]. As
the current is limited to 240A in the devices, we use two power supplies in a master-slave
configuration. We measure the current by a high-precision transducer48 and perform
active current stabilization by a low noise home-built proportional-integral (PI) con-
troller acting on the resistance of a MOSFET49. The stabilization lowers the rms noise to
(δI/I)rms = 7 · 10−6.

45The pinch coils are the central pair of coils in the magnetic trap setup, shown in red in Fig. 3.1.
46Close to its zero value, the scattering length varies with the magnetic field as {da/dB}|a=0 = abg/∆B0 '

60 a0/G. Then, the absolute value of the peak-to-peak noise in magnetic field is evaluated by (δB)pp =
(2 δa)/{da/dB}|a=0 = 2 a0 · 1G/(60a0) ' 0.033G. With B0 = 589G we finally obtain (δB/B0)pp '
6 · 10−5.

47Agilent, 6682
48Danfysik: ’Ultrastab 860 R’.
49We use two MOSFETs (metal-oxide-semiconductor field-effect transistor) in parallel configuration, model:
’Dynex:DIM400BSS12-A000’. In future, the use of a single MOSFET (e.g. ’Dynex:DIM1200DM12-E000’)
may be advantageous.

53



Eddy currents
The current in the Feshbach coils is dynamically computer-controlled by changing the
set-point of the PI-controller [74, Ch.4.2.2]. If, however, we change the desired current
value faster than the inverse bandwidth of the servo-loop (∼ 1 kHz), oscillations of the
Feshbach current occur as we show in detail in appendix A.8. There, we also show that
such oscillations are suppressed when using s-shaped current ramps. With this technique,
we obtain well controlled ramps of the current on time scales around 1ms. In addition, we
find a delay of the magnetic field at the position of the atoms with respect to the current
in the Feshbach coils (see also appendix A.8). Most likely this delay is produced by eddy
currents in the copper gaskets of the vacuum chamber. We can describe the real magnetic
field B(t) by the differential equation [36] τḂ(t) +B(t) = Bprog(t), where Bprog(t) is the
programmed magnetic field value that would be present in absence of any delays. We have
measured the delay time50 τ = 0.25ms (see also appendix A.8) which becomes relevant
when performing very fast ramps in the scattering length, as shown in section 6.3.

3.2.3 Calibration of the Scattering Length

We have seen that we can provide a current in the Feshbach coils at a very low noise
level. For an accurate tuning of the scattering length, however, we furthermore have to
precisely determine the magnetic magnetic field close to the Feshbach resonance. Due to
the small width of the FR, we are sensitive to any small shift in the external magnetic
field, and we thus perform a calibration of the scattering length for each dataset that we
produce. The basic idea of the calibration procedure is to transform the interaction energy
of the trapped condensate into kinetic energy by releasing the BEC from the trap. We
then deduce the scattering length from the extension of the BEC after a sufficiently long
time-of-flight (TOF).

Principle of the calibration
In the limit of dominant contact interactions, the stationary Gross-Pitaevskii equa-
tion (2.15a) can be solved exactly in the TF-approximation. In this case, the interaction
energy per particle Eint/N is directly proportional to the chemical potential µ, with
µ ∝ (Na)2/5 [89]. After suddenly releasing the BEC from the trap, the full interaction
energy is transferred to kinetic energy. The resulting asymptotic expansion velocity v
of the condensate is then given by v ∝ (Na)1/5. Hence, the radius of the BEC after
sufficiently long time-of-flight (TOF) is R = v· ttof ∝ (Na)1/5 ttof, with ttof the expansion
time.
In presence of dipolar interactions, the expansion dynamics of the condensate is crucially
modified [31, 32, 169]. However, the time-dependent condensate radii are still given ex-

50Note that the parameter τ = 0.25ms is about a factor of two smaller than previously measured with
the ’old’ version of the PI controller [74, Ch.4.3].
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actly within the TF approximation51 [169]. We are thus able to numerically calculate
the values R5

y/N and R5
z/N after TOF as a function of the scattering length, where Ry

(Rz) is the Thomas-Fermi-radius of the BEC in the y-direction (z-direction). The result
of such calculations are shown in Fig. 3.4(a), for typical experimental parameters. For
a & 40 a0 both values scale linearly with the scattering length, comparable to the case of a
non-dipolar BEC. In the regime a < 40 a0, however, the linear scaling is only observed in
the y-direction, i.e. transverse to the alignment of the dipoles. Using a cigar-shaped trap
(ωx, ωy > ωz), the value R5

y/N tends to zero when52 a ≈ add ' 15 a0. Thus, the scaling of
R5
y/N with the scattering length is well described by the empirical formula

R5
y

N
= σ (a− aoffset) , (3.2a)

leading to

a = σ−1 R
5
y

N
+ aoffset, (3.2b)

where the parameters σ and aoffset can be obtained from a linear fit to the calculated
values of R5

y

N
(a), as shown in Fig. 3.4(b). In principle, we can measure Ry and N at

different values of the magnetic field strength B close to the Feshbach resonance, and
obtain the scattering length a(B) via the relation (3.2b). In practice, it turns out that the
uncertainties on the trapping frequencies, on the BEC radius and on the atom numbers
are too large to perform an accurate calibration in such direct way. Nonetheless, we
have performed measurements of R5

y/N in low magnetic field (far from the Feshbach
resonance) where a = abg and find a deviation of only 6.2% to the value calculated in the
TF approximation (see Fig. 3.4(b)).

Considering the form of Eq. (3.2b), we see that any systematic scaling uncertainty on
R5
y/N may be absorbed by replacing the calculated parameter σ by an effective value, σ →

σeff. Since we know precisely the background value of the scattering length, abg = (102.5±
0.4) a0 [144], we obtain σeff directly from the expansion measurements, with the detailed
procedure given in appendix A.7. Thus, the only required input from the calculations
is the parameter aoffset. With the trap frequencies ω(x,y,z) = 2π· (680, 624, 270)Hz, we
obtain the value aoffset = (14 ± 1) a0 from the calculations in the TF approximation.
Since the parameter aoffset is a crucial input in the calibration of the scattering length,
we compare the TF-calculations to full numerical simulations of the expansion of the
dBEC53, which yield the slightly different value aoffset = (9± 1) a0 (see Fig. 3.4(b)). We
are using this latter value of aoffset for the calibration of the scattering length, since the

51In Ref. [169] a sign problem occurs in the expansion formulae. The corrected formualae are given
explicitely in Ref. [113, A.5.9].

52In calculations without dipolar interactions we find the zero crossing at a = 0 a0.
53The simulations are performed by K. Pawłowski from the theory group of K. Rzążewski in Warsaw,
using the numerical methods described in Ref. [118].

55



0
0 20 40 60 80 100

10

20

30

(a) (b)dipolar expansion (TF) TF vs. simulations

TF
simulations

0 20 40 60 80 100

10

0

20

30

40

Fig. 3.4, Dipolar expansion: (a) Ratios R5
y/N (red dots) and R5

z/N (blue dots), calcu-
lated for different scattering lengths using the TF approximation (parameters:
ωx,y,z = 2π· (680, 624, 270)Hz, ttof = 7ms, N = 20, 000). (b) Results of the
calculations for R5

y/N in the TF approximation (red dots) and using full numer-
ical simulations (green dots). The lines are linear fits to the data from which
we extract the value aoffset (see text). The experimental datapoint (black dot)
is taken at a = abg in low magnetic field, where we obtain smaller uncertainties
on R5

y/N than in the measurements close to the FR.

simulations are expected to recover more closely the dynamics of the real dipolar BEC
than the calculations within the TF approximation.

Measurements
In a typical calibration measurement, we create a BEC at B ≈ 626G (B ≈ 578G) when
measuring above (below) the FR. Then, we ramp the magnetic field to a value closer to
the FR and hold the system for 4ms at this value, for it to equilibrate. We then switch
off the optical dipole trap and perform a 7ms TOF before we take an absorption image of
the cloud. Using a bimodal fit (accounting for the BEC and for the remaining thermal
atoms), we extract the condensate radius Ry and the BEC atom number54 N . In this way,
we take at least four datapoints for each programmed current IFB in the Feshbach coils to
reduce the uncertainties on the values R5

y/N(IFB).

Fitting procedure
The fitting of the data is performed in a two-step process (see appendix A.7 for details):
We first fit the scaling parameter σeff and calculate the scattering length values aexp(IFB)
via Eq. (3.2b) from the measured values R5

y/N(IFB). In a second fitting procedure, the

54With the strong Feshbach field oriented along z, we cannot provide the maximum absorption cross
section for the imaging light (propagating along x) [36]. We thus record a lower atom number in the
absorption images than actually contained in the BEC. However, this effect is fully accounted for in our
evaluation procedure, by introducing the effective scaling parameter σeff.
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width and the center of the resonance is obtained by fitting the function

a(IFB) = abg ·
(

1− ∆IFB
IFB − IFB,0

)
, (3.3)

to the data, where the width and the center of the FR are expressed in terms of the
Feshbach current. The goal of this two-step fitting procedure is to extract not only
the fitting parameters ∆IFB and IFB,0 (and their uncertainties), but also the correlation
between them. If we find e.g. an anti-correlation, the value of interest (in our case the
scattering length) is better known than the single uncertainties on the fitting parameters
would suggest. We discuss the determination of the uncertainty ∆a on the scattering
length in details in appendix A.7.

The results for the calibration of the scattering length are shown in Fig. 3.5. Using only
the data above the FR (B > B0) for the calibration, we obtain a small uncertainty ∆a
close to the datapoints, i.e. for a & 20 a0. However, in the region a < 0 the uncertainty
grows significantly. This indicates a rather large uncertainty on the fitting parameters
∆IFB and IFB,0, combined with a strong anti-correlation between them. If we also use
the data for the magnetic field strengths below the resonance, the uncertainties on ∆IFB
and IFB,0 typically decrease by a factor of around four, while the anti-correlation becomes
smaller. As shown in Fig. 3.5(b), we thus obtain a more precise calibration in the region
a < 0, which is an interesting region for the experiments presented in this thesis.
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Fig. 3.5, Calibration of the scattering length: (a) Scattering length values computed
from the measured values R5

y/N above the Feshbach resonance (filled black
dots) and below the FR (open black dots). The black line is a fit with the
theoretically expected behaviour a(B), given by Eq. (3.1). (b) Uncertainty ∆a
on the scattering length a. Using only the datapoints above the FR in the
fitting procedure yields a large uncertainty ∆a in the experimentally interesting
region, i.e. when a . 0 (dashed line). When including datapoints below the FR
(solid line), ∆a decreases in this region, owing to reduced uncertainties on the
fitting parameters.
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The precise determination of the function a(IFB) is the main goal of the calibration
procedure. However, to display the results in real physical parameters, we have to convert
the Feshbach current into a magnetic field strength. Therefore, we have performed spec-
troscopy measurements on a thermal cloud for different values IFB. For our settings of
the PI controller55, we obtain the scaling dB/dIFB = (2.429± 0.004)G, where the value
IFB = 0− 20 is given in arbitrary units used in the Labview control program. Since the
measured center of the Feshbach resonance IFB,0 corresponds to the magnetic field value
B0 = 589.1G [95], the magnetic field is fully determined56.

Width of the Feshbach resonance
To evaluate the width of the Feshbach resonance at B0 = 589.1G, we have collected
the data of 14 calibrations of the scattering length. When calculating the mean value
and the standard deviation of the single measured widths, we obtain the width ∆B0 =
(1.49 ± 0.09)G for the FR. This value is slightly lower than the theoretical prediction
∆B0,theo = 1.7G [95].

55Analog output voltages of National Instruments cards: U(IFB = 0) = 0V, U(IFB = 20) = 10V.
Converted voltages on PI controller: DVsum(IFB = 0) = 9.23V and DVsum(IFB = 20) = 9.96V.

56The minimum field strength that we can reach is Bmin = B(IFB = 0) = (577.9 ± 0.2)G, while the
maximum field strength is Bmax = B(IFB = 20) = (626.0± 0.2)G.
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4 A BEC in a One-Dimensional Optical Lattice

In this chapter, the basic properties of a BEC trapped in a one-dimensional (1D) optical
lattice potential are described, neglecting the dipolar interactions. We focus only on the
topics that are relevant for this thesis. An overview over the broad physics of ultracold
quantum gases in optical lattices can be found in Refs. [44, 170].
After introducing the basic formalism of one-dimensional lattice potentials, we investigate
the case of a non-interacting BEC in a 1D lattice. Using this simplification (with respect
to the interacting case), we derive a scheme for the experimental calibration of the lattice
potential, based on the diffraction of a BEC from the lattice. Investigating furthermore
the dynamics of a moving wavepacket in the system, we identify the transition from a
regime of almost free propagation along the lattice direction to a regime with strongly
suppressed motion. As a next step, we include the contact interactions in the system
and derive the ground-state properties of a BEC in a 1D lattice. In very deep lattice
potentials, the particle exchange between the lattice sites is suppressed on experimental
time scales. The system then consists of an array of spatially separated condensates with
their phases evolving independently in time. As a result, we observe “quantum carpet”
structures, i.e. complex interference patterns after a time-of-flight, which we show at the
end of the chapter.

4.1 The 1D Optical Lattice Potential

4.1.1 Characteristics of the Lattice Potential

The creation of an optical lattice potential, and of optical dipole traps in general, relies on
the interaction between an atom and the electromagnetic field of a trapping laser. To be
more precise, the oscillating electric field of the laser induces an electric dipole moment d

in the atom, which then interacts with the light field. In this way, an optical trapping
potential VODT(r) is created, with [43]

VODT(r) = −d · E(r) ∝ α(ωL) |E(r)|2 , (4.1)

where α(ωL) is the polarizability of the atom, ωL the laser frequency, and I(r) ∝ |E(r)|2 is
the intensity of the laser light field, with E(r) the electric field amplitude at the position r.
The frequency of the laser is usually tuned far away from the atomic transitions to avoid
heating effects by spontaneous emission from the excited states, thus obtaining an almost
fully conservative trapping potential. In our experiments, we are using a far “red-detuned”
laser, i.e. the laser frequency ωL is much smaller than any resonance frequency in the
atomic spectrum. In this way, an attractive trapping potential VODT(r) is created with its
minima located in the high intensity regions of the laser beam.
Here and in the following, we consider laser beams with a Gaussian-shaped radial
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Fig. 4.1, Interference of two coherent laser beams: Two crossing laser beams
(propagation direction given by the arrows) produce a regular 1D array of
intensity maxima (darker shading means higher intensity). The spacing dlat
between the intensity maxima is defined by the wavelength of the laser and the
inclusion angle θ between the laser beams (see text).

intensity profile57. Using a focussed laser beam or two incoherent laser beams in a crossed
configuration, we can form a single container for an atomic cloud. In contrast, when
overlapping two coherent laser beams, we observe a periodic array of intensity maxima, as
shown in Fig. 4.1. Close to the crossing point of the two lasers, we obtain a 1D optical
lattice potential Vlat(z) of the form

Vlat(z) = Ulat · sin2
(
πz

dlat

)
, (4.2)

with Ulat the lattice depth and dlat the lattice spacing which specifies the distance between
the intensity maxima. For the moment, we neglect any trapping perpendicular to the
lattice direction z, which will be included in section 4.3. The lattice spacing is directly
given by dlat = λ/(2 cos [θ/2]), where λ is the wavelength of the laser and θ is the angle
between the laser beams (see Fig. 4.1). From the lattice depth and the spacing dlat, we
derive the characteristic lattice parameters which are commonly used for the description

57The intensity profile of a Gaussian laser beam that propagates along z is given by I(r) =
I0 (w0/w(z))2 exp

[
−2ρ2/(w(z))2], with I0 the intensity at the position (ρ = 0, z = 0 ); the beam

radius w(z) is given by w(z) = w0
√

1 + (z/zR)2, with w0 the waist of the laser beam and zR the
Rayleigh length.
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of ultra-cold gases in optical lattices:

klat = π

dlat
the lattice wave number, (4.3a)

ER = ~2k2
lat

2m = ~2π2

2md2
lat

the recoil energy, and (4.3b)

s = Ulat

ER
the dimensionless lattice depth. (4.3c)

4.1.2 Experimental Realization of the 1D Lattice

The optical lattice along the z-direction is produced by an ytterbium fiber laser58 with a
maximum output power P = 20W, operating at a wavelength λ = 1064 nm. In contrast
to the ODT laser, the lattice laser has a single output frequency at a narrow linewidth
∆ν ' 70 kHz. The long coherence length L = c/∆ν ∼ 4 km allows for the creation
of a standing-wave intensity pattern by interfering a single laser beam with itself in
an “almost back-reflected” geometry, as illustrated in Fig. 4.2. The angle θ between
the first and the back-reflected beam in our setup59 is θ = 9.4◦ ± 1.3◦ , resulting in a
lattice spacing dlat = (533.8 ± 0.5) nm. We have chosen the waists of the two lattice
laser beams wlat,1 = wlat,2 ' 72 µm to be larger than the waist of the ODT1 laser beam
(wODT1 = 30 µm). Therefore, the radial confinement of the lattice is typically much smaller
than the confinement by the underlying ODT. This confinement has to be taken into
account, however, when applying deep lattice potentials as we show in section 5.3.1.
We tune the power of the lattice laser beam via an AOM60 that uses a sheer-mode
acoustic wave. Such device shows a reduced beam movement during intensity ramps when
compared to standard AOMs, and thus ensures a stable operation of the lattice potential
in the experiment.

4.2 The Non-Interacting BEC in a 1D Lattice

In this part of the chapter, we neglect all inter-atomic interactions to derive some basic
properties of a BEC in a 1D lattice. The resulting formalism is closely related to the
description of the quasi-free electron gas inside a crystal, found in many solid state physics
textbooks [171–173]. We furthermore find an analogy to light diffraction from a phase
grating when discussing the diffraction of a BEC from the optical lattice, a technique that
we use to calibrate the depth of the optical lattice potential.
58IPG: ‘YLR-20-1064-LP-SF´.
59Measuring the angle between the symmetry axis of the lattice and the z-axis of the vacuum chamber,
we found only a small tilt of 1.9◦ ± 1.3◦ [122, Ch.4.3]. This tilt is not expected to have any significant
impact on our experiments.

60AA Opto-Electronic:MTS80, rise-time: T = 1µs for our beam diameter d = 1mm
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Fig. 4.2, Schematic drawing of the optical lattice setup (top view): The lattice
laser beam (solid red line) is intensity controlled by an AOM and may be
blocked by a shutter in front of the chamber. It is focussed to the center of the
vacuum chamber (crossing point of solid and dashed red lines), then collimated
and back-reflected with an angle θ = 9.4◦ ± 1.3◦ with respect to the first beam.
The symmetry axis of the lattice is well aligned with the external magnetic
field B along z, which is created by the Feshbach coils (green). The tilt of
the ODT1 laser beam (dashed red line) versus the z-axis is 8.0◦ ± 1.5◦, and
is exaggerated in the schematic drawing for a better illustration. Absorption
images are recorded by the CCD camera, with the probe beam aligned in the
x-direction, perpendicular to the lattice axis. Figure taken from [122].

4.2.1 Solution of the Schrödinger Equation by Mathieu Functions

In absence of interactions, a Bose-Einstein condensate in a 1D lattice is described by the
Schrödinger equation

Eψ(z) = − ~2

2m
∂2

∂z2ψ(z) + Ulat cos2 (klatz) , (4.4)

where we have applied a phase shift to the lattice potential given by Eq. (4.2), while
keeping its form. Using simple algebra rules61, and the substitution z̃

def= klatz, we can
write Eq. (4.4) in the form of a Mathieu differential equation [174]

∂2

∂z̃2ψ(z̃) + [A− 2Q cos(2z̃)] ψ(z̃) = 0, (4.5)

61We are using the trigonometric rule cos2(z) = [1 + cos(2z)] /2 and divide by ER = ~2k2
lat/(2m).
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with the parameter A def= E/ER −Ulat/(2ER) and the lattice parameter Q def= Ulat/(4ER) =
s/4. The solutions of Eq. (4.5) are the so-called Mathieu functions M(A,Q, z̃), which can
be computed numerically for known parameters A and Q. Recalling the periodicity of
the lattice potential and according to Bloch’s theorem, any eigenfunction of the system
may be written in the form [170] ψ(z) = eiqzu(z). Here, the function u(z) is periodic in z
with a period dlat, and q is the quasi-momentum of the wavepacket. For the moment, we
consider negligible center of mass motion (q = 0) such that any eigenfunction ψ(z) of the
system exhibits the characteristic lattice periodicity.
As a consequence of Floquet’s theorem, any Mathieu function can be written in the form
M(A,Q, z̃) = eirz̃f(A,Q, z̃), with f(A,Q, z̃) being a 2π-periodic function in z̃. While in
general complex and non-periodic, the Mathieu functions become real and periodic62 for
integer values of r, as requested by Bloch’s theorem. Then, for a given Q, the parameter
A = Ar can only take a finite number of values and is called the characteristic parameter,
with r being the characteristic Mathieu exponent. Note that, at given Q and r, there
exists only one value Ar solving the Mathieu equation: for even values of r the Mathieu
functions are symmetric, while they are anti-symmetric if r is odd.

4.2.2 Calibration of the Lattice Depth by BEC Diffraction

Since the lattice spacing dlat is given via the laser wavelength and the geometry of the
experimental setup (see section 4.1.1), the lattice depth Ulat is the only parameter that
we need to determine from the experiment to have a full characterization of our system63.
Among the existing methods [170], we choose the BEC diffraction method for a daily
calibration of the lattice depth as it provides a precise result, is applicable for deep lattices,
and consumes only little measurement time.

The underlying principle of this calibration scheme is closely related to the diffraction
of laser light from a phase grating (see e.g. [175, Ch.12.6]). The difference is mainly the
inverted role of matter and light: We first prepare a coherent matter wave (BEC) in
its trap. Then, we suddenly turn on the periodic lattice potential and after a variable
evolution time tpulse we switch off all optical trapping potentials to observe the diffracted
BEC in the “far field”, i.e. after a sufficiently long time-of-flight64.
At the time t = 0, i.e. directly before switching on the lattice potential, we can assume
the wave function of the BEC ψ(z) to be constant over the extent of two lattice sites.
When we suddenly turn on the lattice, the system does not adiabatically evolve from the

62The periodic Mathieu functions are normalized via the relation
π∫
−π

M(Ar, Q, z̃)M∗(Ar, Q, z̃)dz̃ = π.
63In our system, we do not control the absolute position of the lattice sites, i.e. there is no active phase
stabilization of the lattice laser. This does not play a role in most of our experiments, as the lattice
spacing is typically much smaller than the overall size of the BEC. We will comment on the influence of
the random lattice phase shift when it is relevant for the measurements.

64Not only the role of matter and light are exchanged, but also the role of space and time: while in optics
the components are located at different positions in space, we apply the elements (lattice potential,
imaging) at different instants in time.
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initial (flat) state to the ground state, described by the Mathieu function with lowest
eigenenergy E. We rather project the initial state ψ(z̃, t = 0) into the basis of Mathieu
functions, such that we can write

ψ(z̃, t = 0) =
rmax∑
r=0
|M(Ar, Q, z̃)〉 〈M(Ar, Q, z̃) |ψ(z̃, t = 0)〉

=
rmax∑
r=0

cr
1√
π
M(Ar, Q, z̃) (4.6)

with the coefficients cr given by65

cr
def= 〈M(Ar, Q, z̃) |ψ(z̃, t = 0)〉 =

π∫
−π

1√
π
M(Ar, Q, z̃) 1√

2π
dz̃. (4.7a)

As the Mathieu functions with odd r are anti-symmetric, the related coefficients cr vanish
due to the symmetry in the integration. We therefore replace r def= 2j and, exploiting the
even symmetry of the remaining Mathieu functions, we obtain

c2j =
√

2
π

π∫
0

M(A2j, Q, z̃) dz̃. (4.7b)

The time evolution of the eigenstates of the lattice system is determined by their
eigenenergy E = (A2j + 2Q)ER (see section 4.2.1), and thus the wave function of the
BEC at the time t = tpulse is given by

ψ(z̃, tpulse) =
jmax∑
j=0

c2j
1√
π
M(A2j, Q, z̃) e− i

~ (A2j+2Q)ERtpulse

= e− i
~2QERtpulse

jmax∑
j=0

c2j
1√
π
M(A2j, Q, z̃) e−iA2jωRtpulse (4.8)

where we have introduced the recoil frequency ωR = ER/~. We finally obtain the diffraction
pattern in the far field (after TOF) by applying a Fourier transform to the in-trap wave
function ψ(z̃, tpulse). Dealing with periodic eigenstates in coordinate space, only states
with discrete dimensionless momenta k̃ = 2n are populated, with n being an integer
number. The relative populations of these states is given by

Pn(Q, tpulse) =
∣∣∣∣∣∣

2π∫
0

1
2π ψ(z̃, tpulse) e−2inz̃ dz̃

∣∣∣∣∣∣
2

, (4.9)

65We choose the normalization ψ(z̃, t = 0) = 1/
√

2π, such that
∫ π
−π |ψ(z̃)|2dz̃ = 1. This choice requires to

multiply the Mathieu functions by 1/
√
π in Eq. (4.7a).
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and depends only on the time tpulse and the lattice depth Ulat via the lattice param-
eter Q = Ulat/(4ER). The normalization of the relative populations Pn is given by∑nmax
−nmax Pn(Q, tpulse) = 1, where nmax is the highest populated diffraction order.

tpulse
0.2 µs
0.7 µs
1.2 µs
1.7 µs
2.2 µs

9.2 µs

7.2 µs

z
y

Fig. 4.3, Diffraction of a BEC from a light grating: Each line in the picture
corresponds to a single absorption image, taken after a 6ms TOF. The pulse
time tpulse is increased from 0.2 µs to 9.2 µs in steps of 0.5 µs. The field of view
of a single absorption image is 67µm × 1.2mm in the y- and the z-direction,
respectively.

In Fig. 4.3, we show the recorded absorption images, taken for a variable time tpulse
after a 6ms TOF. In the first image, at the time tpulse = 0.2 µs, almost all the atoms are
found in the zeroth order momentum component, resembling an unperturbed BEC. When
increasing tpulse, we observe that higher order momenta are populated, until the maximum
order nmax = 6 becomes visible at tpulse ∼ 3.2 µs. The populations Pn then undergo
oscillations, until at tpulse ∼ 7.2 µs the zeroth order exhibits a (non-perfect) revival, the
populations in all the higher diffraction orders becoming small. In the final pictures (after
tpulse ∼ 6.2 µs), we observe a slight asymmetry in the populations ±n, which is not in
agreement with theory. This indicates a small misalignment of the lattice laser beams.
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We compare the measurements with the calculations by the following procedure. We
integrate the single absorption images along the y-direction and fit an 1D Gaussian
function to every diffraction order in a semi-automatic procedure [122, Ch.A.2.2]. In this
way, we extract the relative populations Pn(tpulse) in the discrete momentum peaks. Then,
for each momentum component n we compare the measured dynamics of Pn(tpulse) with
the calculated populations66 Pn(Q, tpulse) for different lattice parameters Q = Ulat/(4ER).
By using the least-square method, we finally obtain the lattice depth Ulat. In Fig. 4.4,
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Fig. 4.4, Calibration of the lattice depth: For each diffraction order n, we compare
the experimentally measured populations Pn(tpulse) (open blue circles) with the
calculations via Eq. (4.9) (solid red lines). For each dataset, we extract the
lattice depth Ulat by using the least-square method with the results given on
top of each figure.

66In the calculation of the wave function, given by Eq. (4.8), for different lattice parameters we use the
value jmax = nmax + 1, with nmax being the highest observed diffraction order.
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we show the results of the evaluation of the absorption images from Fig. 4.3. We obtain
independent fitting results of the lattice depth for each diffraction order. All of them
match within a small intervall around the mean value Ulat = (144± 2)ER (disregarding
the weakly populated 6th order).
From the calibration of the lattice depth, taken at the maximal laser power Plat, we
directly obtain the lattice depths at smaller laser powers by the linear scaling relation
Ulat ∝ Plat. We checked the linearity of the scaling by recording diffraction patterns at
different laser powers and found indeed good agreement [122, Ch.4.4.2.2].

4.2.3 Dynamics in Shallow and Deep Lattices

Let us now discuss the dynamics, i.e. the movement of a wavepacket in the periodic
potential landscape. As we do not accelerate the condensate in the lattice, we are mainly
interested in the dynamics of a wavepacket close to the zero quasi-momentum, q ≈ 0,
simplifying the discussion below. A thorough analysis of the dynamics of BECs in optical
lattices is given in Ref. [170].

Originally investigated in the context of electrons moving inside a solid body with
crystalline structure [171, 172], travelling wavepackets in periodic potentials are well
understood in physics. The description of the momentum dependent energies E(q) in
terms of energy bands [173] has recently been experimentally demonstrated to be also valid
for superfluids in optical lattices [176]. The full solution of the Schrödinger equation (4.4),
including the movement of the wavepackets (i.e. q 6= 0), may be performed numerically.
However, for our purposes, it is sufficient to consider two limiting cases:

1. shallow lattices: In the case of small lattice depths Ulat ≈ 1ER, the band structure
of the lowest energy band is approximately given by [171],

E(q̃)
ER

= q̃2 −
√

4q̃2 + s2

16 , (4.10)

where q̃ = q/klat − 1. Expanding the expression (4.10) into a power series around
q = 0 (using s = Ulat/ER = 1), we obtain E(q)/ER ≈ const. − 0.015 q/klat +
0.98 (q/klat)2 + O(q3). Hence, at low momenta, the wavepackets moving in such
shallow lattice potential show mainly quadratic dispersion, resulting in an almost
free movement along the lattice potential67. As the lattice potential is only a weak
perturbation to the system, the wavepackets are well described by delocalized Bloch
waves extending over the full size of the condensate.

67At the edge of the Brillouin-zone, i.e. q = klat, the dispersion curve flattens out, and the particles are
reflected by the lattice when accelerated towards this momentum value. This regime is not relevant in
our experiments, as we do not move or accelerate the BEC in the lattice.
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2. deeper lattices: At increasing lattice depths, the movement of the wavepackets
becomes gradually inhibited by the strong confinement at the positions of the
individual lattice sites. In this case, the delocalized Bloch waves are not well suited
for an intuitive description of the system anymore. In contrast, the so-called Wannier
functions provide an orthogonal set of wave functions that are localized on the
individual lattice sites68. The Wannier function w1(z − zj), describing a wavepacket
localized at z = zj in the lowest energy band, is constructed via a superposition of
the Bloch functions [170]:

w1(z − zj) = 1
dlat

∫
dq e−izjq φ1,q(z), (4.11)

where φ1,q(z) = eiqz∑m c
1
m eimz2π/dlat with m being integer numbers69 and the coeffi-

cients c1
m define the weight of the different plane wave states.

Using the localized wave functions, given by Eq. (4.11), we can understand the
movement of the wavepackets in terms of particles tunneling from one lattice site to
the next one. The corresponding tunneling matrix element J , which measures the
inter-site kinetic energy in the system, is then calculated by [177]

J =
∫

dz w(z − zj)
(
− ~2

2m
∂2

∂z2 + Vlat(z)
)
w(z − zj+1). (4.12)

In the approximation s � 1, the energy in the lowest band may be calculated
analytically by solving the 1D Mathieu equation (4.5), with the resulting energy
spectrum [178]

E(q)
ER

=
√
s− 2 J

ER
cos (qdlat) (4.13a)

with J = 4√
π
s3/4e−2

√
sER. (4.13b)

We see from Eq. (4.13a) that the tunneling matrix element J is directly related to the
bandwidth of the lowest energy band via J = (max(E)−min(E))/4. Furthermore,
using Eq. (4.13b), we may estimate the relevance of the tunneling in the system:
when the tunneling time h/J is large on experimental time scales70 (1-10 ms), the
particle exchange between the lattice sites becomes negligible. While there is no
clear threshold, we may neglect the tunneling in our experiments for lattice depths
Ulat & 15ER. In this regime of very deep lattices, the calculated tunneling time is
larger than 40ms.

68Note that the Wannier functions are not eigenfunctions of the lattice system.
69For usual lattice parameters it is sufficient to sum over mmax ∼ 5 plane wave states [177].
70The experimental time scale are estimated by the inverse trapping frequencies which typically range
from 100Hz to 1000Hz.
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For lattice depths Ulat ∼ 10ER, there is still particle exchange between the lattice
sites. However, the lattice is sufficiently deep that the localized wave functions show
almost no overlap from one site to the next. This greatly simplifies the description
of an interacting condensate in a 1D optical lattice, which is the topic of the next
section.

4.3 The Interacting BEC in a 1D Optical Lattice

Having discussed the non-interacting condensate in the perfectly periodic lattice potential,
we now come closer to the real experimental conditions: we include an underlying harmonic
trapping potential and also the inter-atomic contact interactions. We here consider the
case of sufficiently deep lattices, where the BEC is split into a linear chain of spatially
separated atomic samples. Assuming a harmonic trapping of all these “sub-condensates”,
we then apply the so-called tight-binding approximation. This allows us to derive some
basic ground-state properties of the system, including the analytical expression for the
atom number distribution over the lattice sites.

4.3.1 Tight Binding Approximation

In the experiment, we confine the BEC in an harmonic trapping potential Vharm(r), created
by the ODT, which is overlapped with the 1D lattice potential Vlat(z), given by Eq. (4.2).
Here, we restrict for simplicity the harmonic potential to be cylindrically symmetric along
the lattice direction z. The full external trapping potential then writes

Vext(r) = Vharm(r) + Vlat(z)

= m

2
[
ω2
ρ

(
x2 + y2

)
+ ω2

zz
2
]

+ Ulat sin2
(
πz

dlat

)
,

(4.14)

with ωρ and ωz the radial and axial trapping frequencies of the ODT, respectively. When
the lattice potential is deep enough, the initially single condensate is split into several
sub-condensates that are localized at the discrete positions zj = j dlat with integer numbers
j. In this case, we may apply the so-called tight-binding approximation (TBA). Here,
we consider the “generalized” TBA [179], where the spatial parts of the on-site wave
functions71 Φj(r, Nj) can depend on the local populations Nj of the lattice sites. The
ground-state wave function of the whole lattice system may then be written in the form

Ψ(r, t) def=
∑
j

ψj(t) Φj(r, Nj), (4.15a)

with ψj(t) def=
√
Nj e−iϕj(t), (4.15b)

71The on-site wave functions Φj(r, Nj) are normalized to unity,
∫
d3r |Φj |2 = 1.
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where the ϕj(t) are the phases of the separated on-site condensates. As long as there
is tunneling in the system, all the phases of the sub-condensates are the same and are
determined through the chemical potential µ, with ϕj(t) = ϕ(t) = µ t/~.

In the TBA, the sinusoidal lattice potential at the position z = zj may be approximated
by the leading term of a Taylor series, and thus takes the harmonic form

Vlat(z − zj) = Ulat · sin2 (klat(z − zj)) ≈
m

2 ω2
lat(z − zj)2, (4.16a)

where ωlat =
√

2Ulatk2
lat

m
= 2
√
s
ER

~
(4.16b)

is the on-site trapping frequency in the lattice direction z. Hence, we obtain a linear
array of harmonically trapped BECs, with each of them described by the Gross-Pitaevskii
equation given by Eq. (2.15a). Note that, for simplicity, we neglect the dipolar interactions
for the following description of the ground-state properties of the interacting condensate
in the lattice.

4.3.2 Ground-State of a BEC in a 1D Lattice

Let us consider an interacting BEC in a sufficiently deep lattice, such that the on-site
trapping frequency ωlat is much larger than the radial trapping frequency ωρ in the system.
If, in addition, the interaction energy per particle is much lower than ~ωlat, the on-site
condensates may only occupy the lowest energy level of the harmonic oscillator potential in
the lattice direction [180]. In other words, this direction is frozen with respect to excitations
and the system aquires a two-dimensional character. However, we stress that for typical
parameters in our experiment, the 2D character does not apply for the interactions:
the scattering of the particles is still a three dimensional process, well described by the
s-wave scattering length a. In this quasi two-dimensional regime, the system is an array
of pancake-like condensates, where the on-site wave functions Φj(r, Nj) factorize as a
Gaussian φG along z and a Thomas-Fermi profile φ(j)

TF in the radial directions72 [179],

Φj(r, Nj) = φG(z − zj)φ(j)
TF(x, y,Nj). (4.17)

With this ansatz for the wave functions of the on-site condensates, we insert the full
wave function Ψ(r) from Eq. (4.15a) into the stationary Gross-Pitaevskii equation, given
by Eq. (2.15a). We recall that we do not take into account the dipolar interactions.
By integrating over the spatial degrees of freedom, we obtain a set of j non-linear
equations [179, 181]

µψj = εjψj + µjψj, (4.18)

72The explicit form of the Gaussian is given by φG(z) = (alat
√
π)−1/2 exp

[
−z2/(2a2

lat)
]
, with alat

def=√
~/(mωlat). The TF profile in the radial directions has the form (φ(j)

TF)2 = nj,2D/Nj · max{[1− (x2 +
y2)/(R(j)

⊥ )2], 0}, with nj,2D the central 2D density and R(j)
⊥ the radius of the BEC.
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where we have neglected any contributions from the tunneling. The global chemical poten-
tial µ is thus expressed as the sum of the on-site potential energy εj def= mω2

z(dlatj)2/2 def= Ωj2

arising from the underlying harmonic trapping in the z-direction, and the local chemical
potential µj , as illustrated in Fig. 4.5. Note that Eq. (4.18) is valid only if the tunneling is
not fully suppressed: then, the atoms distribute such among the lattice sites that, in the
combined potential of ODT and lattice, the global chemical potential is constant across
the full system. From the calculations performed explicitly in appendix A.3, we obtain

BEC

Fig. 4.5, BEC in the combined potential Vext of ODT and lattice: Left: For the
tight-binding approximation to be valid, we consider a trapping potential with
the modulation Ulat of the lattice much larger than the chemical potential µ
of the condensate. Right: Zoom into the region Vext ≈ µ. The global chemical
potential µ is the sum of the on-site potential energy εj and the local chemical
potential µj.

the local chemical potential

µj = U1 ·N
1/2
j , with U1

def=
√
mg̃ ω2

ρ

π
, (4.19)

where we use g̃ def= g/(
√

2πalat), with g the contact coupling strength defined in Eq. (2.4b)
and alat def=

√
~/(mωlat) the harmonic oscillator length in the lattice direction. The radial

TF radius R(j)
⊥ of the j-th on-site condensate is then given by R(j)

⊥ =
√

2µj/(mω2
ρ).

The most interesting quantity regarding our experiments is the atom number distribution
Nj in the lattice. Inserting the local chemical potential from Eq. (4.19), into Eq. (4.18),
we obtain

Nj = N0 · max

(

1− j2

j2
inv

)2

, 0
 , (4.20)
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where N0
def= (µ/U1)2 is the atom number in the central lattice site and the “inversion point”

jinv
def=
√
µ/Ω yields the number of populated lattice sites: Nlat = 2jinv + 1. With the total

number of atoms defined by N = ∑
j Nj, we finally obtain the global chemical potential

µ =
(
15N U2

1
√

Ω/16
)2/5

(see appendix A.3 for details). The populations Nj of the lattice
sites are therefore defined by the following (known) parameters: the total number of atoms
N , the scattering length a, the lattice depth Ulat, and the trap frequencies ωρ and ωz.

4.3.3 Phase Evolution of Decoupled BECs

So far, we have considered sufficiently large tunneling in the lattice such that we could
define a constant global chemical potential µ. Let us now consider the case of very deep
lattices where the particle exchange between the different lattice sites is suppressed. In
such a system of decoupled condensates, any imbalance in the chemical potential from
one lattice site to the next persists and eventually leads to an independent time evolution
of the phases of the separated condensates.
In the context of bosonic quantum gases in optical lattices, there are two major influences
on the relative phases of separated condensates that are discussed in the literature [182–
187]:

(i) random relative phase evolution: In the presence of tunneling, the on-site populations
Nj fluctuate around their equilibrium values (given by Eq. (4.20)), obeying a
Poissonian number distribution. By increasing the lattice depth above a certain
threshold, we suppress the tunneling and thus fix the populations at some (unknown)
values. As a consequence, a random phase difference establishes between the on-site
BECs which increases linearly in time. The dephasing time73 tdeph =

√
2h/U1

(with U1 given by Eq. (4.19)) denotes the time when two on-site condensates close
to the center of the system show a relative phase uncertainty ∆ϕj(tdeph) = 2π.
Calculating the dephasing time for the parameters74 {Ulat = 20ER, a = 25 a0,

ωρ = 2π· 100Hz, ωz = 2π· 300Hz, and N = 20, 000}, we obtain tdeph ' 87ms.
This time scale is rather long compared to the time for which we usually hold the
BEC in the lattice. Therefore, the random phase evolution of the on-site condensates
plays only a minor role in our experiments and will be neglected in the following.

(ii) deterministic relative phase evolution: When the tunneling is suppressed, the
chemical potential cannot equilibrate among the lattice sites anymore. While the
global chemical potential µ is now ill-defined, we introduce a position dependent
chemical potential µ̃(z = j dlat) = εj + µj. Thus, when changing any external

73The relative phase difference between two neighbouring BECs is given by [183, 184] [∆ϕj(t)]2 =
1/(2Nj) (µjt/~)2, where we have neglected terms that arise from quantum fluctuations [182]. Inserting
the local chemical potential µj = U1

√
Nj , and solving for the time tdeph such that ∆ϕj(tdeph) = 2π,

we obtain the expression given in the text.
74We have chosen this set of parameters, as they correspond to the experimental parameters of the
measurements that we will present in section 4.4.2.
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parameter (a, Ulat, ωρ,z), we also change the local values of µ̃ such that it differs from
one lattice site to another. As we can calculate both εj and µj (see section 4.3.2), we
obtain analytical expressions for the phases ϕj(t) = µ̃(j dlat) t/~ of the independent
condensates in the lattice. The resulting deterministic evolution of the relative
phases can be probed for example by the time-of-flight (TOF) technique, when the
dephased matter waves interfere after switching off the trapping potential75.

In conclusion of this section, we have determined the ground-state properties of a
contact interacting BEC in a 1D lattice potential. The results obtained here for e.g. the
populations of the lattice sites provide a good estimate for the case of a dipolar BEC at
a weak relative dipole strength, i.e. for εdd � 1. Since the time-of-flight technique is a
fundamental tool in our experiments to probe the ground-state of the BEC in the lattice,
we next investigate the expansion of a condensate from a 1D lattice potential.

4.4 Expansion of a BEC from the Lattice

Due to the limited imaging resolution of around 6 µm in our experiment, we cannot resolve
the in-trap density distribution of the BEC in the lattice. Therefore, we use the TOF
technique to expand the atomic cloud before taking an absorption image. Since the
spatially separated on-site condensates overlap during the expansion, the TOF technique
is essentially an interference measurement in lattice experiments. It thus becomes a
valuable tool to probe the relative phases between the on-site condensates.
We first discuss the expansion of a coherent array of BECs, i.e. with all the on-site
condensates in phase with each other. Then, we examine the expansion from a lattice of
increasing lattice depths. By comparing experimental data with simulations, we are able
to identify the lattice depth above which we can neglect the tunneling of atoms between
the lattice sites on experimental time scales.

4.4.1 Expansion of a Coherent Array of Condensates

We consider the case of a BEC in a lattice of intermediate depth, where tunneling is
present and the chemical potential µ is constant over all the lattice sites. The system is
then a coherent array of condensates, with the expansion first investigated in Ref. [180].
To describe the expansion process by analytical expressions we neglect all inter-atomic
interactions. This is typically a valid assumption since the density of the cloud rapidly
decreases after release from the trap and interactions do not play a role anymore.

75Experiments with a well controlled dephasing of independent BECs have been carried out in Refs. [186,
187]. There, the TOF technique has been extended to the so-called band-mapping technique, allowing
for instance for the observation of the Talbot-effect with matter waves.
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Again, we may use the analogy with the diffraction of laser light on a grating. In contrast
with our previous considerations in section 4.2.2, the optical lattice introduces here a
density modulation in the BEC rather than a periodic phase modulation. Therefore, the
observed spatial pattern after TOF is determined by the Fourier transform of the in-trap
wave function, corresponding to the optical analogon of the Fraunhofer diffraction [175,
Ch.4]. Let us consider the simple case of a lattice with an equal filling of the Nlat lattice
sites. The Fourier transform Φ(pz) of the spatial wave function in the z-direction then
writes [180]

Φ(pz) = φ0(pz)
jinv∑

j=−jinv
eipzjdlat/~

= φ0(pz)
sin [Nlatpzdlat/(2~)]

sin [pzdlat/(2~)] , (4.21)

where pz is the momentum in the z-direction and φ0(pz) is the Fourier transform of the
on-site wave functions. The momentum distribution n0(pz) = |φ0(pz)|2 of the on-site
condensates determines the envelope of the full diffraction pattern n(pz) = |Φ(pz)|2.
The second term in Eq. (4.21) is well known from the light diffraction on a multi-slit
grating: it describes peaks in the momentum distribution at the discrete momentum
values pz,η = η 2π~/dlat, with η being a positive or negative integer. We can therefore
deduce the dynamics of the BEC after switching off the trapping potentials at t = 0:
part of the cloud does not move in the z-direction, corresponding to the zeroth order
momentum component. In contrast, higher momentum components move out very fast,
their center of mass position being given by

zη(t) = pz,η
m

t = η
2π~
dlatm

t. (4.22)

The relative population Pη of the diffraction orders is given by the envelope function
of the momentum distribution n0(pz) = |φ0(pz)|2, as described above. In principle, one
has therefore to calculate numerically the Fourier transform of the on-site Wannier wave
functions, given by Eq. (4.11). An analytical solution, however, has been derived in
Ref. [188] by approximating the Wannier functions by Gaussians. The width of the
Gaussian σ was then determined by variational calculations, using the sinusoidal lattice
potential given by Eq. (4.2). The resulting population P±1 of the first diffraction order
can then be calculated by numerically solving the equation [188]

s = 16
(lnP±1)2 (P±1)−1/4 , (4.23)

with s the dimensionless lattice depth. Following Ref. [188], we choose the populations Pη
to be normalized to the population of the zero momentum component (this means that
P0 = 1 and in particular ∑η Pη 6= 1).
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In very deep lattices, the width of the Gaussian on-site wave functions is directly given by
the harmonic oscillator length alat. In this case, the expression for relative population of
the different momentum components is well approximated by [188] Pη(s) ≈ exp [−4η2/

√
s].

For example, for s = 20 we obtain a relative population of the first order momentum
peaks of P±1(20) ≈ 0.4 and only a weak population of the second order component
P±2(20) ≈ 0.03.
The knowledge of the occupation numbers of the different diffraction orders will become
important when we investigate the expansion dynamics of a dipolar condensate in chapter 6.
Furthermore, Eq. (4.23) provides a calibration of the lattice depth, independent from
the method described in section 4.2.2, by measuring the populations of the different
momentum components after time-of-flight (see Ref. [122, Ch.4.4.1] for technical details).

4.4.2 Interference Measurements from Shallow and Deep Lattices

We have performed measurements on the expansion of a BEC from the 1D lattice, studying
the cross-over from the shallow to the deep lattice regime. In the measurement sequence,
we prepare a BEC (N ∼ 20, 000) in the ODT at a scattering length a = 25 a0. Then, we
ramp up linearly the lattice depth Ulat at a rate of 10/3ERms−1, before switching off all
trapping potentials and performing an 8ms TOF. We repeat this sequence for different
ramping times t, i.e. for different lattice depths Ulat just before the TOF, as illustrated in
Fig. 4.6(a).

In Fig. 4.6(b), we show the absorption images that are recorded in the experiment. At
small lattice depths Ulat . 3ER, we observe only a single peak in the BEC density after
TOF, i.e. vanishing populations P±1 of the first order momentum components. Then,
for increasing lattice depths, the first order momentum components become populated
as we would expect from the expansion of a coherent array of condensates, discussed in
section 4.4.1. In the regime 25ER < Ulat < 39ER, a temporary broadening of the three
peaks is visible, while the general shape of the interference patterns is unchanged. At even
larger lattice depths Ulat ≥ 39ER the interference patterns exhibit a rich dynamics: the
three momentum peaks split into several sub-peaks. The sub-peaks of maximum optical
density move away from the center before coming back at the longest applied loading
time t = 16.38ms.

Simulations
We compare our measurements to simulations that follow closely the experimental sequence.
According to the theoretical results of this chapter, the properties of the system depend
crucially on the tunneling between the lattice sites. In a simple approach, we assume
that tunneling is present only up to a certain lattice depth Ufix. At larger lattice depths,
we model the system by completely decoupled on-site condensates. The parameters in
the simulations are chosen close to the experimental ones: {N = 20, 000, a = 25 a0,

ωρ = 2π 100Hz, ωz = 2π 300Hz}.
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Fig. 4.6, Expansion of a BEC from a 1D lattice with increasing lattice depth:
(a) Experimental sequence: we ramp up linearly the lattice depth at a rate
of 10/3ERms−1 before switching off all trapping potentials to perform an
8ms TOF (solid line). To probe the system at deeper lattices, we repeat the
measurement using a longer loading time (dashed line). (b) Absorption pictures
from the experiment and the density distribution obtained from the simulations.
Fixing the on-site populations at Ufix = 13ER, the simulations can reproduce
the main features observed in the experiment.
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In the regime 0 < Ulat < Ufix, we calculate the equilibrium atom number distribution in
the lattice, given by Eq. (4.20), for the different lattice depths used in the experiment. We
then perform the TOF simulations, independently expanding the on-site condensates as
explained in Ref. [89, Ch.13]. In this procedure, we approximate the on-site wave functions
by 1D Gaussians of width σ = alat and with equal phases ϕj = 0.
When reaching the lattice depth Ufix, we model the suppression of the tunneling by fixing
the on-site populations Nj such that Nj(Ulat > Ufix) = Nj(Ufix). We now perform real-time
simulations of the evolution of the independent phases ϕj(t) of the separated on-site
condensates: we split the linear lattice ramp into small time intervals ∆t� (µ0/~)−1, with
µ0 the local chemical potential on the central lattice site. Then, we let the phases ϕj(t)
evolve linearly in time with ϕj(t+ ∆t) = ϕj(t) + µ̃(z = jdlat) ∆t/~, where µ̃(z = jdlat) is
the position-dependent chemical potential introduced in section 4.3.2. Finally, we simulate
the TOF procedure at regular time intervals of the loading time, as explained above.
The results of the simulations are shown in Fig. 4.6(b), next to the experimental data.
Choosing the threshold Ufix = 13ER for the suppression of the tunneling, we can reproduce
the main features observed in the experiment. We observe initially the discrete momentum
peaks that we expect from the interference of a coherent array of condensates. Interestingly,
the on-site condensates show a significant dephasing (indicated by the multi-peak structure
after TOF) only at a lattice depth Ulat ∼ 39ER, much larger than the value Ufix. This is
an effect of both, the weak dependence µ̃ ∝ U

1/8
lat of the chemical potential on the lattice

depth and the timing of the experiment, i.e. the ramping speed of the lattice potential.

We see that we can model the measured phase dynamics of the dipolar 52Cr condensate
in the lattice by considering only contact interactions and a deterministic phase evolution
between the on-site condensates. Indeed, it was shown in Ref. [51] that, in a 1D optical
lattice, the effect of the on-site dipolar interactions on the phases of the condensates
can be accounted for by introducing an effective s-wave scattering length. This effective
scattering length replaces the true scattering length a, but the basic description of the
system remains the same. The effect of the inter-site dipolar interactions on the phase
dynamics of the system is typically small, as investigated also in Ref. [51].

Understanding the in-trap phase dynamics and the resulting density patterns after the
TOF is required to interpret correctly the absorption images collected in our experiments.
In particular, the dephasing of the on-site condensates in the deep lattice regime has
consequences for our measurements: we have to adapt our evaluation routine of the
absorption images to cope with the multi-peak patterns, as we explain in detail in
section 5.3.1. Furthermore, our investigations of the collapse dynamics of a dipolar BEC
in chapter 6 greatly rely on the discussion of the expansion of a BEC from the lattice.
In this chapter, we could explain all experimental observations even without taking into
account the dipolar interactions. The situation is different, however, when entering the
strongly dipolar regime for sufficiently low s-wave scattering lengths. Then, the dipolar
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interactions crucially change the properties of the system, as we show in the next chapter
presenting our measurements on the stability of a dipolar BEC in the 1D optical lattice.
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5 Stability of a Dipolar BEC in a 1D Optical Lattice

In this chapter, we address the question about the stability of a dipolar condensate in the
one-dimensional lattice potential. Due to the anisotropy of the dipole-dipole interaction,
a single dBEC was found to be more stable in an oblate trap (pancake-shaped) than in a
prolate (cigar-shaped) trapping potential [35]. In the multi-site configuration of the 1D
lattice, however, we can encounter both a highly oblate on-site trapping geometry and
a globally prolate shape of the underlying harmonic trapping potential. Therefore, the
stability of a dipolar BEC in a 1D lattice is a priori unclear, motivating our experimental
investigations with the results published in Ref. [75].

The chapter is structured as follows: we start by reviewing the basic instability mecha-
nisms in homogeneous dipolar condensates. Then, we consider a single trapped dipolar
condensate and briefly discuss the results of the stability measurements performed earlier
in our group in this configuration [35]. We then turn our attention to the central part of
this chapter: the stability of the dBEC in the lattice. After describing our measurement
procedure, we show the stability diagram of the dBEC in the 1D optical lattice which is
the major result. We finally discuss how inter-site interactions shift the stability threshold
in very deep lattices, a particular effect of the long-range dipolar interactions.

5.1 Excitations in a Dipolar BEC

To investigate the destabilizing role of excitations in dipolar BECs, we consider the
instructive case of a system with constant density. We therefore neglect trapping in all
spatial directions (3D homogeneous case) or we consider trapping along one direction only
(2D homogeneous case). Introducing the excitations as small density perturbations, we
analyse their energy spectrum and search for unstable modes. The results obtained in
these idealized systems will serve as a useful background when we will discuss the more
complicated case of a trapped dipolar BEC.

5.1.1 Phonons in a 3D Homogeneous Dipolar BEC

We consider a 3D homogeneous dipolar condensate with a constant density n0, independent
of the spatial coordinates. Excitations are then introduced by adding small density
modulations δn, which we assume to be plane waves with a well defined frequency ω
and a quasi-momentum q. Inserting the ansatz n = n0 + δn for the density into the
hydrodynamic equations of a dipolar condensate [111] and keeping only terms linear in
δn, one obtains the excitation energy spectrum E(q) of a homogeneous dipolar BEC [14,
Ch.5.1],

E(q) = ~ω(q) =

√√√√(~2q2

2m

)2

+ ~2q2

2m 2n0 [g + gdd (3 cos2 α− 1)], (5.1)
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where α denotes the angle between the quasi-momentum of the excitations and the
polarization direction of the dipoles (the contact coupling strength g is defined in Eq. (2.4b)
and the dipolar coupling strength gdd is given by Eq. (2.9b)). Let us look at the limiting
cases of the excitation spectrum: in the limit of large momenta, we recover the quadratic
dispersion of a free particle Efree(q) = ~2q2/(2m). In contrast, at low momenta, the
excitations show a linear dispersion, comparable to sound waves, with a speed of sound
vs = ω/q determined by the density and the strength of the inter-atomic interactions76.
Note that the dipoles create an anisotropic sound velocity vs(α), i.e. the speed of sound
depends on the propagation direction of the excitations. In a quasi-particle description,
we can identify these low-momentum excitations as phonons, in close analogy to the
theoretical description of excitations in solid state systems77.

stable (á = 0) unstable (á = ð/2)(a) (b)

Fig. 5.1, Phonons in homogeneous dBECs: (a) Density waves (phonons) travelling
parallel to the polarization direction of the dipoles (α = 0). Lines of increased
density (dark shaded areas) are generated with the dipoles sitting side-by-side.
(b) For α = π/2, the density maxima correspond to dipoles sitting in a head-to-
tail configuration. The stability of the two configurations is discussed in the
text.

In the limit of vanishing dipolar interactions (gdd � g), the excitation spectrum given
in Eq. (5.1) reduces to the well-known Bogoliubov spectrum of purely contact interacting
BECs [190]. In this case, the phonon dispersion does not depend on the direction of motion
of the excitations. For dominant dipolar interactions (DI) (gdd � g), however, the dipolar
excitation spectrum clearly reveals the anisotropy of the DI: Phonons travelling parallel
to the orientation of the dipoles (α = 0) yield real and positive excitation frequencies, i.e.
a stable configuration of the system. In contrast, phonons moving in the perpendicular
direction (α = π/2) lead to imaginary excitation frequencies, indicating an unstable
configuration of the dBEC. We illustrate this so-called phonon instability in Fig. 5.1. In

76In absence of dipolar interactions, the transition between linear and quadratic dispersion occurs at the
quasi-momentum q ∼ ξ−1, where ξ def= ~/

√
2mn0g is the so-called healing length of the condensate.

77The dipolar excitation spectrum, given in Eq. (5.1), may also be obtained by using quantum field theory
which emphasizes the particle character of the excitations [113, 189].
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the case α = 0, the sound waves create lines of maximum density, with the dipoles sitting
side-by-side as shown in Fig. 5.1(a). In such configuration, the dipoles interact repulsively,
leading to an increase in energy and hence a stable configuration of the system. This is
different in the case α = π/2. Here, the lines of maximum density are aligned with the
dipoles, which attract each other in the head-to-tail configuration shown in Fig. 5.1(b).
The condensate can lower its energy by increasing the population of this unstable mode,
which finally leads to the collapse of the whole system.

The required dipole strength for the phonon instability to occur in a 3D homogeneous
dBEC is given by εdd = gdd/g > 1, as we can directly see from Eq. (5.1). Translating
this value into a critical scattering length acrit via Eq. (2.9c), this unstable situation
corresponds to scattering lengths below acrit = add.

5.1.2 Rotons in a 2D Homogeneous Dipolar BEC

We now slightly change the system from the previous section and introduce a harmonic
trapping potential in the polarization direction z of the dipoles. Thus, we create a
2D homogeneous sample with the dipoles mainly sitting in a side-by-side configuration.
Assuming a Gaussian shape of the BEC along the confined direction, the excitation
spectrum in the 2D homogeneous system takes the form (see appendix A.6)

E(q⊥) =

√√√√(~2q2
⊥

2m

)2

+ ~2q2
⊥

2m 2n0

[
g + 2gddH2D

(
q⊥lz√

2

)]
, (5.2)

where q⊥ is the absolute value of the quasi-momentum perpendicular to the confined
direction and lz is the width of the Gaussian along z. The contribution of the dipolar
interactions to the excitation spectrum is proportional to the function H2D(χ) = 1 −
3
2
√
π|χ| exp[χ2] erfc[χ], with erfc[χ] the complementary error function. We see that the

excitation spectra in the 3D and in the 2D homogeneous systems show a similar structure.
However, they present one important difference: the effective dipolar contribution in the
2D case depends on the absolute value of the quasi momentum through the function
H2D

(
q⊥lz/

√
2
)
, shown in Fig. 5.2(a), while it is independent of |q| in three dimensions.

Due to the competition between the monotonically decreasing function H2D
(
q⊥lz/

√
2
)

and the free-particle dispersion Efree(q⊥) = ~2q2
⊥/(2m), the excitation spectrum of a 2D

homogeneous dipolar gas can exhibit a local minimum, as shown in Fig. 5.2(b). Following
Landau [17], the quasi-particles related to the excitations close to the local minimum are
called rotons. This particular excitation spectrum in a dBEC is therefore often referred to
as the roton-maxon excitation spectrum [15]. Note that the rotons in superfluid helium,
discussed by Landau, may be illustrated by the rotation of a ring of atoms [18]. This
picture, however, does not hold in the dipolar 2D homogeneous system, even though the
excitation spectra show a similar form.
To investigate the dipolar system more closely, let us consider the excitations again as

81



0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0 (-20) a0
(-21) a0

(-21.9) a0

roton-maxon spectrummomentum dependence DI

0.01 0.1 1 10
-0.5

0.0

0.5

1.0

(a) (b)

Fig. 5.2, Excitations in a 2D homogeneous dipolar BEC: (a) The function
H2D

(
q⊥lz/

√
2
)
, characterizing the momentum dependent dipolar interactions

(DI): below q⊥ ∼ l−1
z , the DI is effectively repulsive, while above this momentum

value the attraction dominates. (b) Excitation spectrum of the dipolar 2D
homogeneous system for three different scattering lengths, specified in the inset.
The spectra are calculated for chromium (mass / dipole strength) using the
parameters {ωz = 2π· 30 kHz, n0 = 1015cm−3}.

wavepackets. Their size in the z-direction is given by the width lz of the condensate,
which depends mainly on the external confinement. In the radial directions, the extension
of the wavepackets is given by their wavelength, which is inversely proportional to the
quasi-momentum q⊥. At small momenta q⊥ � l−1

z , the wavepackets are therefore highly
anisotropic, with the dipoles mainly aligned side-by-side. As the dipoles effectively repel
each other in this configuration, they stabilize the system giving a positive contribution
to the excitation spectrum. In the extreme case q⊥lz → 0, the dipoles can stabilize
the sample even for negative scattering lengths as long as g & −2gdd (see Eq. (5.2)).
For increasing momenta q⊥, the radial size of the wavepackets decreases. When their
overall shape is spherically symmetric, i.e. for q⊥ ≈ l−1

z , the dipolar contribution to the
excitation energy vanishes. This behaviour is directly related to the vanishing dipolar
interaction energy in a spherically symmetric BEC, shown in section 2.4.3. Eventually, in
the limit of large momenta (q⊥ � l−1

z ), the effective dipolar interaction becomes attractive
since the density wavepackets are cigar-shaped, with the dipoles aligned mainly in the
head-to-tail configuration. The momentum dependence of the excitation spectrum, given
by Eq. (5.2), is therefore induced by the anisotropy of the long-range dipolar interactions78.

Roton instability
To discuss the phenomenon of the roton and the related instability, we first consider very

78A roton-type excitation spectrum is also predicted for BECs with isotropic non-local interactions [191,
192]. Here, the momentum of the rotons is related to the characteristic range of the interactions.
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strong trapping in the z-direction. The system is then well inside the quasi-2D regime
(see section 4.3.2), with its transverse size lz given by the harmonic oscillator length. It
is shown in Ref. [16] that in such geometry the dipoles do not reach sufficiently strong
attraction to produce a roton minimum in the excitation spectrum of a purely dipolar
system. However, including attractive contact interactions, the excitation spectrum may
show the roton-maxon form in a small interval of negative scattering lengths, as illustrated
in Fig. 5.2(b). At even more negative scattering lengths, excitation frequencies close
to the characteristic roton momentum qrot become imaginary which indicates a roton
instability. Since qrot < l−1

z in the quasi-2D regime, the effective dipolar interactions for
this momentum value are repulsive79, as discussed before. Thus, we deduce that the roton
instability is driven by the attractive contact interactions in the quasi-2D regime.
The roton instability is qualitatively different, when considering only moderate trapping
along z such that we obtain a chemical potential µ ∼ ~ωz. Then, the system is just
at the threshold between the quasi-2D regime and the 3D regime. The width of the
condensate lz can now be found for example by variational calculations (see section 5.2).
On the quasi-2D side, a purely dipolar system will always be stable, as explained above.
In contrast, when crossing the threshold to the 3D regime, the effective DI can become
attractive and may drive the system into the roton instability at a momentum qrot > l−1

z .
This mechanism even holds in presence of weak repulsive contact interactions, with the
s-wave scattering length in the range 0 < a < add.

The results obtained in the 2D homogeneous system are also relevant for trapped
dipolar condensates. For example, in a numerical study [193], a roton-like dispersion
of the excitations was found in an oblate dipolar BEC. Interestingly, a stable trapped
condensate with a static density modulation can exist, the distance between the density
maxima being related to the characteristic roton momentum qrot [20, 21]. When driving a
stable dBEC into the roton instability, the system is expected to decay into a multi-peak
structure [37], in close analogy with the Rosensweig instability of surface waves in classical
ferrofluid systems [66], illustrated in Fig. 5.3.

5.2 Stability of a Single Trapped dBEC

We now discuss the stability of a single trapped dipolar BEC. In this system, we develop an
intuitive picture for the role of the dipolar interactions which can be either destabilizing or
stabilizing, depending on the geometry of the external trapping potential. The discussion
and the following calculation of the stability threshold of the single dBEC serves as a basis
to understand the more complex case of the dBEC in the 1D optical lattice potential,
which we investigate in section 5.3.

79The value H2D
(
qrotlz/

√
2
)
is positive for values qrotlz < 1, leading to a positive contribution of the

dipoles to the excitation energy E(qrot).
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(a) (b)

Fig. 5.3, Rosensweig instability in a classical ferrofluid: (a) A fluid consisting of
ferromagnetic particles (ferrofluid) in a Petri dish develops a flat surface in
earth’s gravitational field. No change is observed, when raising a homogeneous
external magnetic field B, oriented perpendicular to the surface, to a strength
smaller than the critical value Bc. (b) At the threshold B = Bc, the flat surface
becomes unstable and develops a regular pattern of surface spikes, typically in
a hexagonal order [66]. Images taken from [194].

Let us consider a dipolar atomic cloud in a harmonic trap with a cylindrical symmetry
along the polarization direction of the dipoles, as illustrated in Fig. 5.4. If the cloud is
elongated in the polarization direction (i.e. in a prolate trap), the dipoles are mainly
attracting each other. The energy contribution of the dipolar interaction to the total
energy of the system is negative in this configuration. Hence, the DI has a destabilizing
character and a stable condensate can only be obtained at sufficiently strong repulsive
contact interactions. In contrast, in an oblate cloud, the dipoles sit mainly side-by side.
The resulting repulsive DI leads to a dipolar stabilization of the atomic sample. Now, the
system can even be stable for attractive contact interactions. This simple geometrical
argumentation is recovered by calculations and provides an intuitive picture of the system.

(a) (b)

Fig. 5.4, A dBEC in different trapping geometries: (a) In a prolate trap with trap
ratio λ < 1, the dipoles sit mainly in the attractive head-to-tail configuration.
(b) An oblate trap (λ > 1) provides a more stable configuration of the dBEC,
with the dipoles sitting mainly side-by-side.
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Measurements
The geometry dependent stability of a single trapped dipolar BEC has been experimen-
tally investigated in our group [35]. In the experiment, a cylindrically symmetric trap is
used, with the symmetry axis oriented along the polarization direction z of the dipoles.
The trap geometry is then conveniently described by the trap ratio λ = ωz/ωρ, with ωz
and ωρ the trap frequency in the z-direction and in the radial directions, respectively.
Figure 5.5(a) shows the measured stability diagram: the stable and the unstable regions
for the dBEC are separated by the critical scattering length acrit, measured as a function
of the trap ratio λ. We see that the stability of the dipolar BEC crucially depends on
the trap ratio, since the external trapping potential mainly defines the shape of the
condensate. Using a prolate trap (λ < 1), the condensate is experimentally found to
be unstable at a positive critical scattering length acrit = (15 ± 3) a0 ' add. Then, for
increasing trap ratios, the critical scattering length decreases. For the most oblate trap
geometry in the experiment, with λ = 10, a purely dipolar BEC with acrit ' 0 is obtained.
The measurements basically reproduce the expected results from our simple geometri-
cal picture. However, the expected regime of the dipolar stabilization has not been reached.
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Fig. 5.5, Stability diagram of a single trapped dipolar BEC: (a) Experimental
values (green dots) for the critical scattering length acrit as a function of the trap
ratio λ. The blue line shows the results for acrit(λ) obtained from variational
calculations for a mean trap frequency ω̄ = 2π· 700Hz and N = 20, 000
atoms. The grey line is obtained in the limit N →∞ and the red line marks
the stability threshold for a purely contact interacting BEC using the same
parameters. Full numerical simulations of the GPE [37] (green line) reveal a
bi-concave BEC-density close to acrit for oblate traps. (b)-(e) Energy landscape
E(lρ, lz) in the variational calculations. Lines of equal energy are plotted for
λ = 10 and a = (18, 10,−8.5,−32) a0 as indicated by the black dots in (a).
The widths (lρ, lz) are given in units of the mean harmonic oscillator length
āho =

√
~/(mω̄). Figure taken from [113].
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Calculation of the critical scattering length
The stability threshold of the dipolar condensate can be computed for a given set of
trap parameters. The general procedure is to solve the Gross-Pitaevskii equation (2.15a),
searching for the critical scattering length below which there exists no physical solution
anymore. In the limit of infinite atom number, the GPE can be solved exactly in the
Thomas-Fermi (TF) approximation [110] (see section 2.4.3). Alternatively, in the more
realistic case of a finite atom number, the critical scattering length can be obtained by
searching a minimum in the energy of the system through variational calculations. Close
to the stability threshold the atomic cloud is well described by a Gaussian wave function80.
The Gross-Pitaevskii energy functional, given by Eq. (2.17), then only depends on the
widths (lρ, lz) of the cloud in the radial and in the axial directions (see appendix A.4). The
resulting energy landscape E(lρ, lz) is shown in the Figs. 5.5(b)-(e) for a dBEC in a trap
with λ = 10 for different scattering lengths. A stable condensate, indicated by a global
minimum at positive energy, is found for scattering lengths above add (see Fig. 5.5(b)).
For a . add, the global energy minimum transforms into a local minimum, presenting a
meta-stable state for the BEC81. Crossing the critical scattering length, the local energy
minimum vanishes and the system is expected to be unstable. Note that in the limit of
infinite atom number, the variational calculations recover the result acrit(λ) obtained in
the TF approximation [113, Ch.4.2].
The stability diagram, obtained by the variational calculations, can be divided into
two parts: at positive critical scattering lengths, i.e. for trap ratios λ < λ0 ≈ 5.2, we
identify the destabilizing character of the DI as discussed above. At larger trap ratios,
we expect a dipolar stabilization of the gas, where the most negative critical scattering
length acrit,min = −2add ' −30 a0 is obtained in the extreme limit of infinite atom number
and for a trap ratio λ → ∞. This is in strong contrast with the behaviour of a purely
contact interacting BEC for which the stability threshold shows almost no dependency on
the trap geometry. Here the calculations yield |acrit| < 0.4 a0 in the full range of trap ratios.

Instability mechanisms in the trapped dBEC
To investigate the mechanisms of the instability, we recall the discussion about the excita-
tions in homogeneous systems from section 5.1. There, the long-wavelength excitations
were associated with phonons as they show a linear dispersion. Considering a trapped con-
densate, the global size of the BEC (given by the width of the Gaussian in the variational
calculations) corresponds to the longest possible wavelength of an excitation in the system.
Therefore, the Gaussian variational calculations can only predict the stability threshold
associated with the phonon instability. Looking at the stability diagram in Fig. 5.5(a),

80The choice of the Gaussian shape of the wave function is based on the solution of the GPE for negligible
and weak interactions, see section 2.4.1.

81The BEC is said to be meta-stable, since it could decay into unstable configurations that are separated
by a barrier in the energy landscape. Practically, the condensate will be stable on experimental time
scales, if no excitations are created e.g. by fast ramps of the scattering length or sudden changes in the
trapping potential.
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the variational calculations match the measured critical scattering length in the regime
of prolate traps (λ < 1). Thus, the instability mechanism in this regime is identified
with the phonon instability. At larger trap ratios, however, the variational calculations
predict a more stable situation than it is observed in the experiment. Only the results of
a full numerical solution of the GPE [37] closely recover the observed stability threshold,
as shown also in Fig. 5.5(a). In such type of calculations no assumption is made on
the shape of the wave function. It is suggested in Ref. [37] that the difference in the
critical scattering length, obtained from numerical and variational calculations, indicates
an instability via roton-like modes. Indeed, the numerical simulations show a decay of
the condensate into a three-peak structure after reducing the scattering length below the
critical value at a trap ratio λ = 8 for instance. Furthermore, the numerical calculations
yield a bi-concave density distribution for the condensate close to the stability threshold
(see Fig. 5.5(a)). Such deformation of the atomic cloud corresponds to the structured
ground-states already mentioned in section 5.1.2.

So far, no clear sign of the roton instability has been experimentally observed in a
dipolar BEC. In addition, the exploration of the regime with a strong dipolar stabilization
was hindered by the technical difficulty to further increase the trap ratio of the single
trap82. This limitation can be overcome by using the experimental setup of the 1D optical
lattice: here, large (on-site) trap ratios λ > 100 can be created in the limit of very deep
lattices. In such highly oblate trapping geometry we would expect the system to be stable
down to very negative critical scattering lengths, where a roton minimum is expected to
occur in the excitation spectrum. However, the attractive interactions between dipoles
that are located on different lattice sites may destabilize the condensate. The stability
of the dipolar BEC in the lattice is therefore an open question which we have addressed
experimentally, with the results presented in the next section.

5.3 Stability Diagram of a 52Cr - BEC in a 1D Lattice

We now present our measurements of the stability of a 52Cr BEC in a 1D optical lattice.
We first give a detailed description of the measurement procedure and the data evaluation.
Then, we present the stability diagram of the dipolar BEC in the 1D lattice, which displays
the critical scattering length as a function of the lattice depth. We will see that our results
are in good agreement with the stability threshold obtained from numerical calculations,
performed in the group of Luis Santos in Hannover.

82Note the logarithmic scale of the horizontal axis (trap ratio λ) in the stability diagram shown in
Fig. 5.5(a). To considerably lower the critical scattering length, the trap ratio must be increased much
above λ = 10, which was difficult in the experimental setup of Ref. [35].
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5.3.1 Measurement procedure

Before describing the details of the experimental procedure, let us consider the principle
of the stability measurement. We first have to find an observable that is suited to identify
the critical scattering length. From the discussion of the stability of a single trapped
condensate, we know that above the stability threshold a stable BEC exists, with its radii
determined e.g. by variational calculations. When reaching the critical scattering length,
the condensate will suddenly shrink and collapse [36], following the largest gradient in
the energy landscape presented in Fig. 5.5(d). With the contraction of the condensate
comes a dramatic increase in density, which in turn leads to strongly enhanced losses of
atoms [195]. Hence, the idea of the measurement is the following: we load the BEC into
the lattice in the stable regime and then approach the critical scattering length while
measuring the number of atoms in the BEC. If the ramp in scattering length is sufficiently
slow, the system remains in the stable state until we reach the critical scattering length
that is identified by a sudden drop in the BEC atom number [35].
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Fig. 5.6, Experimental sequence for stability measurements in the 1D lattice:
(a) Time evolution of the power of the lattice laser beam (orange) and the
horizontal beam of the optical dipole trap (“ODT1”, blue). (b) Evolution of the
magnetic field strength (green) defining the scattering length via the Feshbach
resonance. The red dashed line illustrates the stability threshold, given by
acrit = a(Bcrit).

To perform the stability measurements as described above, we have chosen the exper-
imental sequence shown in Fig. 5.6. We show the time evolution of the most relevant
parameters: the power in the lattice laser beam (defining the lattice depth), the power in
the horizontal beam of the optical dipole trap (“ODT1”, producing a confinement in the
radial direction of the lattice), and the magnetic field strength which defines the scattering
length close to the Feshbach resonance.
Once we have created a thermal cloud of atoms in the crossed ODT, we perform forced

88



evaporation by continuously lowering the power of the ODT laser beams83. Before reaching
degeneracy, we switch on the strong magnetic field to a strength Bevap = 602G, well
above the Feshbach resonance (FR) located at B0 = 589.1G. At the scattering length
a(Bevap) = 90 a0, we finish the evaporation and create the BEC in a trap with frequencies
ωx,y,z = 2π· (440± 14, 330± 10, 290± 10)Hz.
We then linearly decrease the magnetic field to B = Blat, to approach the FR with
a(Blat) = 60 a0. As a next step, we load the BEC into the lattice by increasing the power
of the lattice laser84 in an s-shaped ramp to a variable value which defines the lattice depth
Ulat. While doing so, the lattice introduces an additional transverse (radial) confinement.
In order to keep the radial (x, y) trap frequencies constant during the ramp (and to avoid
excitations in the BEC), we decrease the power in the ODT1 laser beam in an inverted
s-shaped ramp85.
In a second linear ramp of the magnetic field strength to the final value Bf , we then
bring the system close to the stability threshold, defined by the critical scattering length
acrit = a(Bcrit). We hold the condensate in this configuration for thold = 2ms, such that
the system can equilibrate. After this holding time, we switch off all trapping potentials
to perform a 6ms time-of-flight and finally take an absorption image of the expanded cloud.

Loading of the BEC into the lattice
To probe the stability of the condensate in the lattice, we have to prepare the system in its
ground-state, i.e. in the lowest energy band of the lattice. This implies that any excitation
to higher bands has to be avoided during the loading of the lattice potential. We thus
obtain a criterion for the speed of the lattice ramp [170]. In general, the adiabaticity
criterion is given by [196] dU/dt � (∆E)2/~ with ∆E the spacing between the first
and the second excited band and with U(t) the time-dependent lattice depth during the
ramp. At the center of the Brillouin zone, i.e. at quasi-momentum q = 0, the energy gap
∆E = 4ER is independent of the lattice depth, such that the adiabaticity criterion for
the lattice ramp in our experimental sequence is given by

dU
dt �

16E2
R

~
. (5.3)

For our parameters (, the lattice must be ramped up much slower than 0.3ER/µs to fulfill
the criterion given by Eq. (5.3). Experimentally, we ramp up the lattice using an s-shaped

83During the sequence, we not only lower the power of the horizontal ODT beam, but we also decrease
the light level of the vertical beam (“ODT2”). After reaching the BEC, the power in ODT2 is not
changed anymore until it is switched off to perform the time-of-flight.

84The lattice laser beam is switched on during the production process of the BEC to heat the optical
components in the beam path. During this time the beam is blocked by a shutter in front of the vacuum
chamber. With this technique, we minimize the movement of the focus of the laser beam during the
lattice ramp that is induced by thermal effects in the lenses.

85For our trap frequencies, and for the given parameters of the lattice laser beams (waists wlat,1 = wlat,2 =
72 µm), we can provide constant radial trap frequencies up to a lattice depth of around 200ER. This is
sufficient for all our experiments.

89



ramp of the form
U(t̃) = Ulat

[
(k + 1) t̃ k + k t̃ k+1

]
, (5.4)

with t̃ = t/Tramp the time in units of the ramp duration Tramp = 20ms and k = 11 the
ramping parameter. The ramp, shown in Fig. 5.3(a), is globally slow enough to ensure adi-
abaticity. In addition it is made slow at its beginning and at its end86 to avoid any sloshing
of the condensate in the trap. To experimentally test the adiabaticity of our loading proce-
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Fig. 5.7, Ramping of the lattice potential: (a) S-shaped lattice ramp, given by
Eq. (5.4) with ramping time Tramp = 20ms and k = 11, as used in the stability
measurements. (b) Temperature of the thermal cloud of a partly condensed
system, after loading and unloading the condensate in a lattice of different
depths Ulat. No measurable heating is observed, even for very deep lattices
Ulat ∼ 90ER.

dure, we create a partly condensed system, such that we can measure the temperature of
the remaining thermal cloud from its size after TOF [42]. We then load the condensate into
the lattice and immediately unload it, using the same ramp inverted. Investigating lattice
depths up to 90ER we cannot observe a significant heating of the sample, as we show
in Fig. 5.7(b). This indicates that we load the dBEC adiabatically into the lattice potential.

Evaluation of absorption images
After each experimental sequence we take an absorption image, i.e. we illuminate the
atomic cloud with a resonant laser beam and record its shadow on a CCD camera [42].
With the imaging laser beam propagating along the x-direction, the recorded pattern is
given by the three-dimensional density distribution integrated along the line-of-sight87. In
86The ramp of the lattice is slow at the beginning and at the end, since the derivative dU(t̃)/dt̃ vanishes
for both values t̃ = 0 and t̃ = 1 (see Eq. (5.4)).

87As the strong (Feshbach) magnetic field is aligned perpendicular to the imaging beam, we cannot
provide the required σ−-polarization of the laser light to obtain the maximum absorption cross-section.
We therefore use a superposition of σ+ and σ− polarized light and account for the reduced absorption
as described in Ref. [168, Ch.4.4.2].
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the images, taken after the expansion from the lattice, we observe the interference pattern
of the condensate and, in addition, a thermal cloud in the background (see Fig. 5.8(a)).
To extract the atom number in the condensate, we first integrate the recorded 2D
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Fig. 5.8, Data acquisition and evaluation: (a) 2D density distribution of the atomic
cloud after time-of-flight, recorded by absorption imaging (lattice depth Ulat =
10ER, final scattering length a = 20 a0). The field of view is (50× 50) pixels2 =
(307 × 307) µm2. Red (blue) colors indicate high (low) density. (b) Density
profile in the y-direction (black crosses) obtained by integrating the 2D density
distribution along z. We extract the BEC atom number from a bi-modal fit
(red line). Before performing the full fit, we fit the thermal cloud (blue line)
to the wings of the density profile, i.e. we disregard the region between the
magenta horizontal bars.

density distribution along the z-direction. Then, we perform a one-dimensional bi-modal
fit, accounting for the presence of the condensate and the thermal cloud as shown in
Fig. 5.8(b). The 1D fitting function for the BEC is obtained by integrating the 3D density
of a single condensate (see Eq. (2.22)) over the x- and y-direction with the result [197]

nBEC,1D(y, t) = 15NBEC

16Ry(t)
max

[
1− y2

R2
y(t)

, 0
]2

. (5.5)

where NBEC is the atom number in the condensate and Ry(t) is the radius of the BEC
after an expansion of time t. The thermal cloud has the following Gaussian shape,

nth,1D(y, t) = Nth√
2π ly(t, T )

exp
[
− y2

2l2y(t, T )

]
, (5.6)

with Nth the number of thermal atoms and ly(t, T ) the width of the thermal cloud,
determined by the expansion time t and the temperature T of the sample. We briefly
explain the fitting procedure in Fig. 5.8 while more technical details are given in Ref. [122,
Ch. A.2.]. By using the 1D fitting method, we obtain a reliable evaluation of the BEC
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atom number NBEC even when we load the condensate into very deep lattices: here, the
absorption images show complicated multi-peak patterns in the z-direction, as shown in
section 4.4.2. This effect arises due to the dephasing of the on-site condensates and their
subsequent interference during the TOF.

5.3.2 Stability Diagram in the 1D Lattice

We perform the stability measurements, as described in the previous section, for different
lattice depths in the range from Ulat = 0ER to 63ER, loading typically around 15 sites of
the lattice potential88. For each lattice depth, we measure the number of atoms in the
condensate as a function of the scattering length at which we finally hold the system.
We show two of such datasets in Fig. 5.9, one for a dBEC loaded into a lattice of depth
Ulat = (6.2 ± 0.6)ER and the other with the condensate in a very deep lattice with
Ulat = (37± 4)ER. When reducing the final scattering length, we observe that the BEC
atom number decreases slowly until it abruptly falls down to zero. We identify this drop
with fact that the stability threshold has been reached. While for Ulat = 6.2ER the
condensate becomes unstable at positive scattering lengths, we observe a stable dBEC
even at negative scattering lengths in the case of the very deep lattice. Thus, the data
shown in Fig. 5.9 already indicates a dipolar stabilization in the deep lattice regime.
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Fig. 5.9, Stability measurements: Atom numbers in the BEC NBEC as a function
of the final scattering length a for Ulat = (6.2 ± 0.6)ER (open blue dots)
and Ulat = (37 ± 4)ER (filled red dots). The lines correspond to a fit of the
experimental data by an empirically chosen function, from which is extracted
the critical scattering length (see text for details).

88The exact atom number distribution, i.e. the number of populated lattice sites Nlat, depends in general
on the lattice depth, as given by Eq. (4.20). The value given here corresponds to a lattice depth
Ulat = 15ER.
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To extract the critical scattering length acrit from the measurements, we perform a fit
with the empirically chosen function

NBEC(a) = max
[
N0 (a− acrit)β , 0

]
, (5.7)

where N0, acrit and the exponent β are the fitting parameters [35]. The function NBEC(a)
accounts for the observed decrease of the BEC atom number when approaching the critical
scattering length. Note, however, that there is no physical background of the chosen
functional form.
By evaluating datasets taken for different lattice depths, we obtain the stability diagram
of the dipolar BEC in the 1D optical lattice, shown in Fig. 5.10. It displays the measured
critical scattering length acrit as a function of the lattice depth Ulat. We measure acrit =
(12± 2) a0 when the dBEC is only confined by the ODT, i.e. for Ulat = 0. For increasing
lattice depths, we observe a decrease of the critical scattering length, passing from positive
to negative values for Ulat ∼ 10ER. Finally, in the case of very deep lattices, the system
proves to be stable down to acrit = (−17± 3) a0.
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Fig. 5.10, Stability diagram of the dBEC in the 1D optical lattice: Measured
critical scattering length acrit (black dots) as a function of the lattice depth
Ulat. Red and black lines are the results from numerical calculations for
different BEC atom numbers with chromium parameters. The green line
shows the stability threshold with the dipolar interactions (DI) neglected, but
same parameters otherwise. Positive critical scattering lengths are associated
with destabilizing dipolar interactions, while negative values of acrit indicate
stabilizing DI.
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In the following we discuss the mechanisms that define the stability of the dBEC in the
1D lattice. To do so we divide the stability diagram into three regimes:

(i) For shallow lattices with Ulat . 3ER, the lattice has no significant effect on the
stability of the system. Hence, the relevant trap aspect ratios are given by the trap
frequencies of the underlying harmonic trap, λx def= ωz/ωx ' 0.66 and λy def= ωz/ωy '
0.88, which are both smaller than unity. Therefore, from our considerations of the
single trapped dBEC in section 5.2, we would expect the system to become unstable
close to the value a = add ' 15 a0 [35]. Measuring acrit(Ulat = 0) = (12± 2) a0 and
acrit(Ulat = 3.7ER) = (11± 2) a0, we almost recover the expected stability threshold.

(ii) Then, the region 3ER ≤ Ulat ≤ 15ER represents the transition from shallow to
deep lattices. In this regime, the stability of the system is determined by the non-
trivial interplay between the contact and the dipolar interactions, and the tunneling
between the lattice sites. For large tunneling rates, it is the overall prolate shape
of the condensate which mainly defines the stability threshold. This results in a
positive critical scattering length, as explained above. In deeper lattices, however,
it is mainly the very oblate on-site geometry which is relevant for the stability
of the system: when the tunneling is suppressed on experimental time scales (for
Ulat ∼ 15ER), we observe a negative critical scattering length as we would expect
for a single oblate dBEC.

(iii) For very deep lattices (Ulat > 15ER) the critical scattering length decreases further
to very negative values. This can be explained by the increasing mean on-site trap
ratio λ̄on-site def= ωlat/

√
ωxωy : for a lattice depth Ulat = 15ER we obtain λ̄on-site ∼ 70,

while the largest lattice depth Ulat = 63ER yields λ̄on-site ∼ 140. We will come back
in details on this regime in section 5.4. There, we study the inter-site effects due
to the long-range dipolar interactions, which have a considerable influence on the
stability of the system.

Comparison with numerical calculations
Our experimental results are in excellent agreement with numerical mean-field calculations,
taking into account the combined trapping potential created by the ODT and the lattice.
On the one side, this confirms that our experimental results correspond to the stability
threshold of a dBEC in the ground-state of the lattice potential. On the other side, it
also shows that numerical mean-field calculations can predict the stability threshold of a
dBEC in such a complex trapping geometry.
In the calculations, the critical scattering length is obtained by integrating the time-
dependent Gross-Pitaevskii equation (given by Eq. (2.14)) in imaginary time on a three-
dimensional numerical grid, and looking for a stable ground-state. The calculations reveal
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a weak dependence of the stability threshold on the BEC atom number89, as shown in
Fig. 5.10. For lattice depths Ulat > 15ER the variation of acrit with the BEC atom number
is very small and well below our experimental uncertainties. Dealing with very deep
lattices we note that, in absence of tunneling, the system cannot evolve into its global
ground-state: when loading the dBEC in lattices with Ulat & 15ER, the atom number
distribution does not follow the equilibrium distribution derived in section 4.3.2. However,
real-time simulations of the experimental sequence show that the small deviation from
the “true” ground-state of the system has almost no influence on the stability threshold.

The calculations offer furthermore the possibility to compare the stability of the
chromium BEC to a purely contact interacting BEC with chromium parameters otherwise.
We are thus able to test whether it is the dipolar interactions that stabilize the BEC
in the deep lattice regime or if the quantum pressure stabilizes the system as it was
shown for samples of small atom numbers [3, 198]. For our trapping parameters, the
calculated stability threshold of a BEC without dipolar interactions varies only in a very
small interval |acrit| < 0.4 a0 in the full range of lattice depths. Thus, we deduce that our
dBEC is mainly stabilized by the dipolar interactions, with a negligible influence of the
quantum pressure. In other words, we have shown for the first time that a BEC with
attractive contact interactions can be stabilized in an interaction-dominated regime. One
further asset in our system is the interaction between the lattice sites: even when the
tunneling is suppressed on experimental time scales, the spatially separated samples can
interact via the long-range dipolar interactions. We therefore investigate next the role
played by the dipolar inter-site interactions which, indeed, are non-negligible in our system.

5.4 Effects of Inter-site Interactions on the Stability of a dBEC

We now study the influence of the dipolar inter-site interactions on the stability of the
lattice system. We therefore look closely to the regime of very deep lattices. Only here we
can make a separation between the on-site interactions and the inter-site interactions, as
the tunneling is negligible on experimental time scales. We first analyse by which amount
the dipolar inter-site interactions shift the stability threshold. For this task we use both
numerical and variational calculations and compare their results to the experimentally
measured critical scattering length. Finally, we discuss in more detail the inter-site
coupling in the context of the elementary roton-type excitations.

89Note, that we distinguish between the atom number Nat used in the calculations, and the BEC atom
number NBEC measured after time-of-flight in the experiment. The value Nat should be compared to
the experimental atom number prior to the holding time at the final scattering length, which is about
20, 000 for Ulat . 10ER and about 15, 000 in deeper lattices.
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5.4.1 Analysis of Inter-site Effects in the Lattice

In our experiment, both on-site and inter-site interactions are always present and cannot
be “switched off” selectively to test their relative influence on the stability of the system.
However, the effect of the inter-site interactions can be revealed by the numerical calcula-
tions (described in the previous section) by introducing a truncated dipolar interaction
potential V box

dd (r) = Vdd(r) [Θ((r · ẑ) + dlat/2)−Θ((r · ẑ)− dlat/2)], where Θ(ξ) is the
Heaviside function. Such cutoff of the dipolar interactions in the lattice direction z

effectively amounts to removing the inter-site interactions, still taking into account the
full short-range and the long-range on-site interactions.
In Fig. 5.11, we compare the measured stability threshold to the calculations with V box

dd (r)
and with the full dipolar potential Vdd(r). The calculations with the full dipolar potential
agree well the experimental data. In contrast, the calculations with the inter-site inter-
actions removed predict a substantially lower stability threshold: for the lattice depth
Ulat ' 20ER, the difference compared to the datapoints is ∆acrit ' 8 a0, which is about
three times our experimental uncertainty. Hence, we identify a destabilizing character of
the dipolar inter-site interactions. Note that in both cases (with and without inter-site
interactions) the stability threshold in the calculations approaches the fundamental limit
−2add ' −30 a0 for very large lattice depths. In this regime, the spatially separated
condensates behave like infinitely extended discs that do not interact, as we have shown
in section 2.5.1.
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Fig. 5.11, Destabilization of the dBEC by inter-site interactions: Zoom into the
stability diagram in the deep lattice regime Ulat > 15ER. Black dots show
the experimental values for the critical scattering length. Red lines show the
results of numerical calculations with the inter-site interactions included (solid
red line) or excluded (dashed-dotted red line). Similar results are obtained
by variational calculations with Nj = 2000 atoms per lattice site. Here, the
inter-site interactions are included in a calculation with Nlat = 15 lattice sites
(solid blue line) and excluded by using Nlat = 1 (dashed-dotted blue line).
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In a second approach, we analyse the inter-site effects by performing variational calcu-
lations with a Gaussian ansatz for the on-site wave functions. For an efficient calculation,
all these wave functions are assumed to be the same and radially symmetric. We define
the on-site trap geometry by the radial trap frequency ωρ = √ωxωy = 2π· 380Hz and
the axial trap frequency given by the dimensionless lattice depth s via ωlat = 2

√
sER/~.

To find the stability threshold, we minimize the total energy of the system, which is
composed by the total on-site energy90 and the total inter-site energy, given by Eq. (2.35).
We calculate the stability threshold including the inter-site interactions, by considering
a system of Nlat = 15 lattice sites with a constant filling of Ni = 2000 atoms per site.
Despite the simplified model, we closely recover the measured critical scattering length,
as shown in Fig. 5.11. Similarly to the numerical results, a calculation with the inter-site
interactions removed, i.e. using Nlat = 1, predicts a more stable system.

Note that the Gaussian variational calculations can only predict the phonon instability
threshold of the system, referring to the discussion in section 5.2. The good agreement of
the calculations with the experimental results indicates that, indeed, the system becomes
unstable by the long-wavelength phonon-like modes. However, due to the highly oblate
on-site trapping geometry, we would expect that the system undergoes a roton instability
instead (see section 5.1.2). This contradiction can be resolved by considering the inter-site
coupling of the elementary excitations, that we discuss in the next section.

5.4.2 Inter-site Coupling of Excitations

We have seen that the dipolar inter-site interactions in our 1D lattice configuration
play a significant role for the stability of the system. Now we show that this effect is
closely connected with an inter-site coupling of the elementary excitations that we have
introduced in section 5.1. Therefore, we discuss the influence of the inter-site coupling on
the excitation spectrum of a multi-site system with 2D homogeneous dipolar samples [26,
27]. Then, we apply the results to the case of a trapped dipolar BEC in a 1D optical
lattice [28, 29].

Let us first consider the simple case of two layers of a 2D homogeneous gas with the
dipoles aligned out of the plane, as before. The excitations of the system are again
described by local density perturbations. If a local density maximum spontaneously forms
on one of the sites, the dipoles on the other site will also form a maximum at the same
spot, due to the attraction of the dipoles. By such dipolar coupling mechanism, the
excitation is shared between the two lattice sites.

In a multi-site system, the excitations might even extend over several lattice sites.
Calculating the excitation spectrum of a system of Nlat coupled 2D homogenous samples
yields a band-like spectrum with a set of Nlat excitation modes [26, 27]. In Fig. 5.12(a), we

90To obtain total on-site energy, we calculate the energy of a single dipolar BEC trapped on one site of
the lattice potential (see appendix A.4) and multiply by the number of populated lattice sites Nlat.
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show the energy spectrum of the collective excitations for Nlat = 15 dipolar condensates,
using parameters close to the experimental ones. The lowest lying mode of the band-
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Fig. 5.12, Inter-site coupling in homogeneous and trapped dBECs: (a) Band-
like excitation spectrum in a system of Nlat = 15 coupled 2D homogeneous
chromium BECs (blue lines). The red line shows a single site spectrum
with same parameters: trap frequency ωlat = 2π· 42 kHz, scattering length
a = −17 a0, density n = 1015cm−3, lattice spacing dlat = 534 nm. (b) Phonon
instability threshold and regions with structured ground-states (obtained by
numerical calculations), depending on the number of lattice sites Nlat and the
scattering length a, taken from Ref. [28]. The calculations are performed with
a Gaussian distribution of the atom numbers on the different lattice sites, with
N0 = 3300 atoms in the central site. Parameters: ωlat = 2π· 48 kHz, radial
trap frequency ωρ = 2π· 143Hz, dlat = 560 nm, and chromium parameters for
mass and dipole strength.

like excitation spectrum is significantly softened, i.e. it is showing lower energies E(q⊥)
compared to the spectrum of a single populated site. As a consequence, the lattice system
is prone to develop a roton instability already at higher scattering lengths than a single-site
system. In addition, we observe that the quasi-momentum qrot, corresponding to the local
minimum in the excitation spectrum, is found at smaller momentum values than in the
single-site configuration. This means that the more lattice sites are populated, the longer
is the wavelength of the excitations involved in the roton instability. Essentially, it is the
global extension of the system in the lattice direction, which defines the wavelength of the
most unstable roton mode.

Numerical calculations allow to translate the effect of the roton softening to a trapped
multi-site system: for instance a bi-concave structure is expected to emerge in the on-site
wave function of a dBEC in a 1D lattice, while a single-site system does not show such
modulation for the same parameters [29]. Furthermore, it was found that such structured
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states emerge mainly, if only few lattice sites91 are populated [28], as shown in Fig. 5.12(b).
Loading many lattice sites, the roton instability may not be distinguished anymore from
the long-wavelength phonon instability, as the characteristic roton wavelength exceeds the
radial size of the system. This argument applies to our stability measurements presented in
section 5.3, since we load around 15 lattice sites. The inter-site coupling of the excitations
thus explains why the Gaussian variational calculations are able to reproduce the measured
critical scattering length in the regime of very deep lattices.

Conclusion

In this chapter, we have presented the results of our experimental investigation of the
stability of a dipolar Bose-Einstein condensate in a one-dimensional optical lattice. In
contrast to the case of purely contact interacting systems, an optical lattice changes
drastically the stability properties of a dipolar BEC. In particular in deep lattices, we have
shown that a condensate can be stabilized even for negative s-wave scattering lengths by
the repulsive on-site dipolar interactions. In this regime, we have furthermore identified a
significant destabilization of the system by the dipolar inter-site interactions.
The determination of the stability threshold is fundamental for any further investigations
of lattice gases with strong dipolar interactions. It sets the basis, for example, for our
studies of the instability dynamics of a dBEC in the lattice, presented in the next chapter.

91The number of filled lattice sites that leads to a visible modulation of the ground-state, depends crucially
on the lattice spacing dlat. The calculations of Ref. [28] are performed with parameters close to our
experimental ones, using dlat = 560 nm.
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6 Collapse of a Dipolar BEC in a 1D Optical Lattice

The subject of this chapter is the collapse dynamics of the dBEC in the 1D optical lattice,
i.e. its time evolution in the unstable regime after the stability threshold is crossed
rapidly. Usually in such studies, the system is driven into instability by a change in the
scattering length [9, 10, 36, 53]. Here, we use a new technique: we induce the collapse
of an initially stable dBEC in the lattice by only reducing the lattice depth below the
stability threshold, while keeping the interaction strength constant. Generally speaking,
the collapse is induced by a deconfinement of the system. Choosing the lattice depth above
the stability threshold, one would not expect any instability to occur. However, even in
this case, a collapsed cloud is observed in the absorption images taken after time-of-flight.
Since the system is stable in-trap, we identify a novel collapse scenario: a TOF-triggered
collapse which we discuss in details in this chapter.
In the beginning of the chapter, we discuss briefly the collapse dynamics of a single dBEC,
previously studied in our group [36, 53, 113]. Then, we present the measurements of the
collapse dynamics of a dBEC in a 1D optical lattice of moderate lattice depth. The
measurements are supported by real-time simulations of the collapse dynamics, again
contributed by the group of Luis Santos, in a close collaboration with our experiment. Our
results, both experimental and theoretical, are published in Ref. [76]. Finally, motivated
by the search for a roton-type of collapse, we propose a method to perform collapse
measurements in the regime of very deep lattices.

6.1 Interaction-Induced Collapse of a Single dBEC

In this first part of the chapter, we aim for a basic description of the collapse dynamics of
a dBEC. Before discussing the case of a dipolar gas, let us first consider the collapse of a
BEC with dominant contact interactions, as studied in samples of 85Rb [10]. Such system
is stable for repulsive inter-atomic interactions, while no stable configuration exists for
dominant attraction between the atoms. Thus, the collapse of the system can be induced
by switching the scattering length from a positive to a negative value and its subsequent
collapse dynamics is described by a three-step process [199]:

(i) The condensate shrinks globally due to the attractive inter-particle interactions.

(ii) The collapse of the BEC occurs, which is a fast and irreversible process: very narrow
density peaks form at the center of the condensate, leading to substantial atom
losses via inelastic collisions.

(iii) The sample explodes by emitting atom bursts from the central region. Since the
outer regions of the condensate are not involved in the collapse process, there
typically exists a remnant BEC after the explosion.
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Due to the isotropic nature of the contact interactions, there is no preferential direction
for the atom bursts that are emitted from a purely contact interacting BEC after the
collapse92. In contrast, the collapse dynamics of a dipolar BEC, even when confined in
a spherically symmetric trap, shows highly anisotropic features, as we explain now by
reviewing the experimental results obtained in our group [36].

In the collapse measurements in Ref. [36], a BEC of chromium atoms is prepared in an
essentially round trap93 with the scattering length controlled by an external magnetic field
close to a Feshbach resonance. The sequence to induce the collapse (see Fig. 6.1(a)) is the
following: starting in a stable configuration, the scattering length is rapidly reduced from
an initial value ai = 30 a0 to a final value af = 5 a0, thus crossing the stability threshold at
acrit = (15± 3) a0 [35] (see section 5.2). Note that the “real” scattering length a(t) has a
delay with respect to the programmed value due to eddy currents in the metallic vacuum
chamber, as explained in more detail in section 3.2.2. After the ramp, the dBEC is held in
the trap for a variable time thold before the trap is switched off and an absorption image
is taken after an 8ms TOF.

The upper row of Fig. 6.1(b) shows the measured time evolution of the remnant BEC 94

for different holding times. The images are obtained by averaging typically five absorption
pictures after removing the broad isotropic thermal cloud. We see that during the
collapse dynamics a highly anisotropic feature develops: such feature is remarkably clear
at thold = 0.5ms where the density pattern exhibits an angular structure that reflects
the d-wave symmetry of the dipole-dipole interaction potential. On the contrary, at
thold = 0ms, the system has not collapsed yet, but takes a very elongated shape along
the external magnetic field. Indeed, in this case, the condensate is released from the trap
before the scattering length a(t) has reached the stability threshold.
Integrating over the optical density in the experimental images shown in Fig. 6.1(b) yields
the BEC atom number NBEC that is shown in Fig. 6.1(c) as a function of thold. The initial
BEC atom number is about 16, 000. One observes a fast decrease until thold ' 0.5ms
and an almost constant value NBEC ' 6000 at longer holding times. Even though the
BEC atom number is measured after the TOF, its variation with the holding time gives
a good estimate of the time scale of the collapse dynamics, as we will discuss in more
detail in section 6.2. Hence, the time scale of the collapse dynamics in the single trap
is around 0.5ms that we will compare later to our measurements of the collapse in the
lattice.

In addition to the measurements, the collapse of the single dBEC has been investigated
theoretically by numerical real-time simulations95 based on the time-dependent Gross-
92The directed “jets” that have been observed in Ref. [10] are actually created by the interference of
matter-waves from two point-like sources of atom bursts in the elongated trap [199].

93With the trap frequencies (ωx, ωy, ωz) = 2π· (660, 400, 530)Hz, the trap is not exactly spherically
symmetric due to the crossed configuration of the ODT.

94To be consistent with the nomenclature in Ref. [36], we define the remnant BEC as the part of the
atomic cloud obtained after removing the thermal cloud from the absorption images.

95The numerical simulations are performed in the group of M. Ueda in Tokyo.
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Fig. 6.1, Collapse dynamics of a dBEC in a single round trap: (a) Experimental
sequence to induce the collapse. Both the programmed ramp (red line) of the
scattering length a(t) and the real ramp taking into account the eddy currents
(blue line) are shown. The stability threshold is acrit = (15 ± 3)a0 [35], the
uncertainty being illustrated by the grey zone. (b) Time evolution of the remnant
BEC for different values of thold: the upper row corresponds to experimental
images taken after TOF and the lower row shows the results of numerical
simulations. (c) Evolution of the atom number in the remnant BEC after TOF
as a function of thold, extracted from the measurements (dots) and from the
simulations (line). All figures are taken from Ref. [36].

Pitaevskii equation. A crucial point in the simulations is to include the three-body atom
losses that occur during the collapse dynamics. Else, the condensate only contracts to a
single point of the numerical grid and no collapse dynamics can be observed. With the
empirically chosen three-body loss rate96 L3 = 2 · 10−40m6/s, the simulations reproduce
both the d-wave density pattern after TOF (see the lower row in Fig. 6.1(b)) and the
measured evolution of the atom number NBEC(thold) shown in Fig. 6.1(c).
The simulations allow furthermore to reconstruct the in-trap time evolution of the dBEC
after the stability threshold has been passed: First, the dBEC contracts radially, forming
a very thin cigar along the direction of the external magnetic field. Then, strong atom
losses occur at the center of the cloud, such that the centripetal force of the dipoles
weakens and the BEC finally explodes in the radial directions (x, y) due to the surplus of
the quantum pressure. Since the atoms at both ends of the cigar are not involved in the

96The three-body loss rate L3 enters the Gross-Pitaevskii equation, as we show in section 6.2.3.
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collapse process, they remain at their positions during the explosion of the cloud. This
leads to the characteristic d-wave density pattern that is preserved during the TOF.
We see that the simulations reveal the real-time collapse dynamics of the dBEC, which is
not accessible in the experiment. Due to the limited imaging resolution, the system can
only be probed after an expansion, i.e. after a TOF. As our investigation of the collapse of
the dBEC in the 1D lattice is also supported by such type of simulations, we will describe
them in more detail in section 6.2.3.

6.2 Deconfinement-Induced Collapse in the 1D Lattice

We now present our studies of the collapse of a dBEC in the 1D optical lattice. First
we describe our new technique to induce the collapse of the dBEC through a change
in the lattice depth, i.e. by changing the external confinement of the system. We then
present the results of the collapse measurements, including a quantitative analysis of
the time scale of the collapse dynamics. In addition, we show a novel collapse scenario,
where the collapse of an initially stable dBEC is triggered by the time-of-flight procedure
(necessary to image the atoms) itself. Our experimental results are supported by numerical
simulations, which also allow for a real-time study of the TOF-triggered collapse.

6.2.1 Experimental Sequence

The experimental sequence to study the collapse of a dBEC in a 1D optical lattice consists
basically of two parts: First, we prepare the chromium BEC in a stable lattice configuration
at a scattering length below the value add. Then, we induce the collapse by lowering the
lattice depth, thus crossing the stability threshold that we have mapped before.
The preparation of the condensate in the lattice potential is similar to the procedure
described in section 5.3.1: We produce a BEC in the crossed ODT with the harmonic trap
frequencies (ωx, ωy, ωz) = 2π· (540 ± 20, 270 ± 15, 470 ± 15)Hz, at a scattering length
a = 98 a0. We then reduce the scattering length within 6ms to a = 40 a0, where we load
the BEC into the 1D optical lattice potential at a depth Uinit = 12.6ER. For the loading
process, we use the s-shaped ramp given by Eq. (5.4) with a ramp duration Tramp = 4ms
and a ramping parameter k = 4, such that we fulfill very well the adiabaticity criterion
given by Eq. (5.3). The scattering length is further lowered97 to a = (2±2) a0 within 4ms,
where we wait for 1ms for the eddy currents to settle. At this stage of the sequence, the
condensate is stable and contains typically 15, 000 atoms. This configuration corresponds
to the starting point of our collapse measurements.
To perform the collapse measurements, we reduce the lattice depth linearly from the
initial depth Uinit to a variable depth U within 100 µs. The value of U is chosen arbitrarily

97The parameters of the s-shaped ramp for the Feshbach magnetic field are the same as for the lattice
ramp: Tramp = 4ms and k = 4. Note that the two ramps have a slightly different form, with the one of
the Feshbach field given by Eq. (A.33) in appendix A.8.
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above or below the stability threshold, as shown in Fig. 6.2(a). We then hold the system
in this final configuration for a variable time thold, before we switch off all the trapping
lasers and perform an 8ms TOF (see Fig. 6.2(b) for an illustration of the sequence). Our
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Fig. 6.2, Experimental sequence of confinement-induced collapse: (a) The sys-
tem is prepared in a stable configuration at a lattice depth Uinit = 12.6ER and
a scattering length a = (2 ± 2) a0 (blue square). Then, the lattice depth is
reduced to the final depth U with the values U = (12.6, 9.5, 8.2, 6.3, 3.2, 0)ER
(blue and red crosses). Thus U is chosen above and below the stability threshold
(red line), which is calculated numerically for our parameters. (b) Timing of
the experiment. After the linear lattice ramp of duration 100 µs, we hold the
system for a variable time thold and then perform an 8ms TOF. Note that the
time origin is chosen at the end of the lattice ramp to be consistent with the
studies presented in section 6.2.3.

imaging procedure is here different than for the stability measurements: we switch off the
Feshbach magnetic field (oriented along z) after 4ms of TOF and apply a low magnetic
field (B ∼ 10G) along the imaging direction x. This field is kept on during the remaining
TOF and the imaging procedure. We can thus make use of the maximum absorption cross-
section for the imaging, increasing the signal-to-noise ratio in the absorption images [36].
We have checked explicitly that the switching of the magnetic fields does not change the
shape of the condensate after TOF98. More technical details for the switch-off procedure
of the Feshbach magnetic field can be found in Ref. [113, Ch.5.2.1].

With the new technique to induce the collapse by changing the external confinement,
we can, in principle, drive the system into the unstable regime on the microseconds scale.
The technical limit of the lattice ramping time is on the order of 1 µs only and is given by
the rise time of the acousto-optical modulator. We choose, however, our ramping time of
100 µs such that we cannot not observe any excitations of the BEC when operating in the

98Following the procedure described in Ref. [36], we have performed d-wave collapse measurements using
a single trapped dBEC, with and without switching off the Feshbach magnetic field during the TOF.
We checked that we obtain the same d-wave structure of the collapsed cloud in both the cases.
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Fig. 6.3, Collapse dynamics of a dBEC in a 1D lattice: Evolution of the system
for increasing holding time thold and different final lattice depth U , following
the experimental sequence described in section 6.2.1. Each image is an average
of five absorption pictures with the thermal cloud removed and the color scale
is adjusted individually for better visibility (field of view: 190× 337 µm2).

stable regime with a > add. The ramping time is still considerably shorter than in the
case of the interaction-induced collapse, where the ramp duration is typically restricted to
around 1ms [36]. Hence, this technique provides a new and powerful tool to investigate
the dynamics of dipolar BECs close to the stability threshold.

6.2.2 Collapse of a Coherent Array of dBECs

Following the procedure described above, we measure the time evolution of the system
for a varying holding time thold and for different final lattice depths U ≤ Uinit = 12.6ER.
Our results are shown in Fig. 6.3. Each image of the density distribution is obtained by
averaging five absorption pictures, taken under exactly the same experimental conditions.
Before the averaging process, we fit the broad isotropic thermal cloud, present on each
picture, by a Gaussian and subtract it from the absorption images. Therefore, the images
in Fig. 6.3 show only the interference patterns of the remaining coherent atoms.

We first consider the two smallest lattice depths U = 0 and U = 3.2ER, well below the
stability threshold located at around 7ER. We observe a decay of the number of coherent
atoms when increasing the in-trap holding time, which is indicated by the increasing
background noise in the images. From this observation we infer that the dBEC is collapsing
in-trap, i.e. while still confined by the external trapping potential. In addition, we observe
that the collapsed clouds show mainly structures in the y-direction, transversal to the
external B-field and the lattice direction.
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In contrast, if the final lattice depth is chosen above the stability threshold, i.e. in the
cases U = 12.6ER and U = 8.2ER, there is no visible decay of the atom numbers. Here,
the TOF images basically show the usual interference pattern of a coherent array of
condensates (see section 4.4.2): we observe the central zero-momentum component and
the two side peaks corresponding to the lattice recoil momenta ±2~klat (with klat = π/dlat).
However, the central density peak shows a deviation with respect to the usual shape
obtained in non-dipolar BECs: it develops a d-wave shape that is similar to the one
observed in a single collapsed dBEC [36], shown in section 6.1. Due to our limited imaging
resolution, the characteristic cloverleaf shape of the central peak becomes more clear if
we expand the condensate for longer times ttof, as shown in Fig. 6.4. For both the stable
in-trap configurations, considered here, we do not expect any in-trap evolution of the
system. Therefore, the observed d-wave collapse of the zero-momentum component must
be triggered by the time-of-flight (TOF-triggered collapse). Such collapse behaviour is
fundamentally different from the interaction-induced collapse shown in Ref. [36]. There,
the collapse happened partly during the TOF because the ramp in the scattering length
has not converged yet to its final value due to the eddy currents.
Finally, in the case U = 6.3ER, which is just below the stability threshold, we observe a
slow decay of the atom number with increasing thold, but also a d-wave density pattern
of the central cloud. The observed dynamics of the system hence shows features of
both an in-trap collapse, as well as a TOF-triggered collapse. Using numerical real-
time simulations, we will investigate the complex dynamics of the system in details in
section 6.2.3. Before that, however, we study the time scale of the collapse dynamics
by performing a quantitative analysis of the absorption images taken in the collapse
measurements.

y
z

Fig. 6.4, d-wave collapse of the zero-momentum component: The images show
the remaining coherent atoms of a BEC that is released from a lattice of
depth 8ER, for the two different expansion times ttof = 9ms and ttof = 14ms.
Due to the limited resolution of our imaging system, the d-wave shape of the
central density peak is more visible at long expansion times (field of view:
190× 497 µm2).

By integrating the optical density in the images shown in Fig. 6.3, we obtain the number
of remaining coherent atoms for each lattice depth as a function of thold. For further
processing, we calculate the remnant fraction, defined as the number of coherent atoms
normalized by the total number of atoms, i.e. including the thermal cloud. Normalizing
the data in such way removes partly the shot-to-shot fluctuations that occur due to the
variation of the total atom number in the experiment. We then extract an atom loss rate
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for short holding times thold ≤ 0.6ms from an exponential fit99 to the remnant fraction,
as shown in Fig. 6.5(a). We note that the choice of the exponential fitting function is not
related to any physical model, but describes well the data in the considered time interval
and thus enables to quantify the time scale of the collapse dynamics. The resulting loss
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Fig. 6.5, Loss rate in collapse dynamics: (a) Evolution of the remnant fraction (see
text for definition) for different final lattice depths U , from which the loss rate is
extracted by fitting an exponential function (solid lines). (b) Loss rate extracted
from the different datasets, versus final lattice depth U . The vertical dashed
line marks the stability threshold obtained from numerical calculations.

rate, shown in Fig. 6.5(b), is crucially depending on whether the final lattice depth U is
chosen above or below the stability threshold. For values of U above the stability threshold
(located at around 7ER) the loss rate is smaller than 0.25ms−1. This indicates that there
is basically no in-trap evolution of the system, as expected. When crossing the calculated
stability threshold, the loss rate suddenly increases. If we completely ramp down the
lattice potential, the loss rate increases further to about 2.5ms−1. The remnant fraction
thus reduces by around 60% when holding the atoms for 0.4ms in the trap. Therefore, in
the case U = 0ER, our measurements agree well with the observed atom number decay in
a single dBEC [36] (see section 6.1). Measuring a smaller loss rate at larger lattice depths
(but below the stability threshold), we infer that the presence of a lattice slows down the
collapse dynamics of the system.

While the loss rate measurements provide an estimate for the time scale of the collapse
dynamics, they cannot clearly distinguish whether the atom losses occur in-trap or during
the TOF. In contrast, numerical simulations can reveal the real-time dynamics of the
collapsing system. Therefore, they are a valuable tool to investigate the collapse dynamics
of a dipolar BEC, as we show in the following section 6.2.3.

99We fit the measured remnant fraction by a function F (t) = F0 exp [−Lt], with F0 and the loss rate L
being the fitting parameters.
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6.2.3 Numerical Simulations of the Collapse Dynamics

In a collaboration with the theory group in Hannover, we have examined more closely
the collapse dynamics of the dipolar condensate in the lattice by means of numerical
simulations. The simulations are based on the time-dependent Gross-Pitaevskii equation
(given by Eq. (6.1)),

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m∇2 + Vext(r)− i~L3

2 N2 |ψ(r, t)|4

+N
4π~2a

m
|ψ(r, t)|2 +N

∫
d3r′ V ′dd(r − r′) |ψ(r′, t)|2

]
ψ(r, t),

(6.1)

where the non-unitary term proportional to L3 describes three-body atom losses due
to inelastic collisions. N is the initial number of atoms in the condensate and Vext(r)
is the combined trapping potential of ODT and lattice with Vext(r) = U sin2(πz/dlat) +
m
∑
i=x,y,z ω

2
i r

2
i /2. The contact interactions are included via the s-wave scattering length

a and the dipole-dipole interaction potential V ′dd(r − r′) is given by Eq. (2.6).
As a first step, the ground-state of the condensate is calculated for a scattering length
a = 2 a0 and a lattice depth U = Uinit = 12.6ER. This task is performed by integrating
the GPE in imaginary time, with the loss parameter L3 set to zero. Then, the simulations
are performed by a real-time evolution of Eq. (6.1), following our experimental sequence
and choosing100 L3 = 2 · 10−40m6/s. In analogy to the experimental imaging procedure,
the time-evolution of the system, shown in Fig. 6.6(a), is illustrated by integrating the
atomic density along the x-direction. After sufficiently long expansion of the dBEC in the
TOF, the dilute cloud undergoes a ballistic expansion, since interactions do not play a
role anymore. Calculating the momentum distribution of the system in this regime (see
Fig. 6.6(b)) yields the spatial density distribution of the atomic cloud in the far field of
the TOF, corresponding to the absorption images taken in the experiment. Finally, the
time evolution of the number N of coherent atoms is extracted from the simulations, with
the results presented in Fig. 6.6(c). We note that the time origin in the simulations, t = 0,
is set at the end of the lattice ramp. Furthermore, a fixed holding time thold = 0.6ms is
chosen, before starting the TOF.

Collapse dynamics
We split the discussion of the collapse dynamics, shown in Fig. 6.6, into three parts: First,
we discuss the deconfinement-induced collapse of a single dBEC (U = 0ER). Then, we
consider the stable in-trap configurations (U = 8.2ER and U = 12.6ER) and finally we
address the unstable situations at the lattice depths U = 3.2ER and U = 6.3ER.

(i) By choosing the final lattice depth U = 0ER, we obtain an unstable in-trap
configuration of the system. At the end of the lattice ramp, the periodic density

100The loss rate L3 is chosen equal to the value that is used in the simulations of the d-wave collapse of a
single dBEC [36] (see section 6.1).
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Fig. 6.6, Real-time simulations of the collapsing dBEC: (a) Time evolution of the
system for a final lattice depth U = 12.6ER (first row) and U = 0ER (second
row). Note that the snapshots in the two sequences are taken at different times
t, with the time origin set at the end of the lattice ramp. At the time t = 0.6ms
the TOF is started, i.e. the trapping potentials are suddenly switched off. (b)
Momentum distribution of the system in the ballistic regime, corresponding to
the spatial density distribution in the far field of the TOF (for U = 12.6ER,
only the zero-momentum component is shown). (c) Evolution of the atom
numbers N for different final lattice depths U (specified in the figure).

modulation vanishes due to the absence of the lattice potential, as shown in the
second row of the images in Fig. 6.6(a). The condensate then shrinks and shows
strong atom losses while it is still trapped in the harmonic potential. The decay of
the BEC atom number slows down at around t = 0.5ms and after the release from
the trap (at t = 0.6ms) we do not observe any atom losses anymore. The simulations
therefore confirm our hypothesis that, for U = 0ER, the collapse is initiated in the
trap. In addition, the simulations show a loss of about 60% of the atoms within the
first 0.5ms of the in-trap holding time, which is close to our experimental results.
During the TOF, the cloud explodes mainly radially. Its shape in the far field of
the TOF (see Fig. 6.6(b)) is similar to the one observed in the experiment for the
longest applied holding time.

(ii) Considering the stable in-trap configurations U = 12.6ER and U = 8.2ER, the
evolution of the atom number, shown in Fig. 6.6(c), clearly supports the hypothesis
of the TOF-triggered collapse: while there are almost no in-trap atom losses, we
observe a sudden drop in the atom number only some time after switching off the
trapping potentials. For U = 12.6ER the drop occurs at t ' 1.45ms, where we also
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observe the collapse of the zero-momentum component in the images in Fig. 6.6(a)
(upper row). The collapsed cloud then develops the d-wave pattern that is also
recorded after TOF in the experiment. We explain this novel collapse scenario in
more detail in the text below.

(iii) Holding the dBEC at a non-zero lattice depth below the stability threshold, we
observe that the decay of the atom number is delayed with respect to the case
U = 0ER. In particular for U = 6.3ER, which is just below the stability threshold,
the collapse is initiated in-trap, but the strong atom losses stop only during the
TOF. Note that the system would collapse completely in-trap if we would choose
a longer holding time in the simulations. In contrast, for a shorter holding time
thold . 0.3ms, the collapse occurs mainly during the TOF. Comparable to the stable
configurations, the zero-momentum component then collapses in TOF and develops
the d-wave shape that we observe experimentally.

TOF-triggered collapse of a dBEC
The TOF-triggered collapse that we observe after releasing the dBEC from a stable lattice
configuration can be seen as a special case of the deconfinement-induced collapse − it
occurs after switching off all the trapping potentials. This novel collapse scenario may
be explained by a two-step process: during the initial phase of the TOF, the different
momentum components of the wave function separate very quickly, thus forming individual
wavepackets. The spatially separated atomic clouds then evolve independently and may
either expand indefinitely or collapse, depending on their shape and population.
In the initial phase of the expansion, until a time t ∼ ~/ER, the dynamics of the system
is well described by the expansion of a coherent array of non-interacting condensates (see
section 4.4.1). This relies on the fact that the lattice recoil energy ER is much larger than
any other energy scale in the system. The different momentum components of the BEC
thus move away from each other, with the relative velocities given by multiples of ~klat/m
(with klat = π/dlat the lattice recoil momentum). As we can see in the images of Fig. 6.6(a),
the different wavepackets are almost spatially separated at around 0.25ms after the release
from the trap (i.e. at t = 0.85ms). After such short expansion time, their shape is still
given by the envelope of the initially trapped condensate. According to our considerations
in section 4.4.1, only the zero-momentum component and the ±2~klat components are
significantly populated at a lattice depth U = 12ER: the central wavepacket contains
around 60% of all coherent atoms, while only 20% of the atoms occupy each of the two
outer wavepackets.
With the given shape and populations, the stability of the individual wavepackets can
be examined by variational calculations with a Gaussian ansatz for the wave functions
(see section 5.2). The calculations show that only in the zero-momentum component
the dipolar interactions are sufficiently strong to destabilize the atomic cloud. In the
side-peaks, however, the density is too low to induce the collapse, matching with our
experimental observation.
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We emphasize that the inter-site coherence in the lattice plays a crucial role for the
TOF-triggered collapse to occur. Considering the expansion of an incoherent array of
condensates, their interference pattern will not show well-separated density peaks. The
density distribution is instead given by a very broad Gaussian-shaped atomic cloud, since
the rapidly expanding on-site wave functions are adding incoherently. As a result, the
density in the system drops very fast after the release from the trap and the interactions
do not induce a collapse of the atomic cloud.
In addition to the inter-site coherence, the anisotropy of the dipole-dipole interaction is
required to observe the TOF-triggered collapse. In the trap, the system is stable due to
the highly oblate shape of the on-site condensates, thus stabilized by the repulsive part of
the DDI. During the TOF, however, the shape of the wavepackets (corresponding to the
different momentum components) becomes relevant. Here, the attractive part of the DDI
becomes dominant and drives the system into the instability.

Concluding the collapse measurements for moderate lattice depths, we have shown
that we can induce the collapse of a dipolar BEC by changing only the depth of an
optical lattice potential at a constant interaction strength. The time scale of the in-trap
collapse depends on the final lattice depth, the collapse dynamics being slowed down at
increasing lattice depths. We have also shown that a coherent array of dipolar BECs,
which is stable in-trap, can undergo a collapse upon release from the trapping potential
(TOF-triggered collapse). Such collapse behaviour arises due to the combined effect of the
inter-site coherence and the anisotropy of the dipole-dipole interaction. We note that the
TOF-triggered collapse is specific to dipolar lattice gases: neither a single dipolar BEC,
nor a contact interacting gas with attractive interactions will become unstable during the
TOF if it was stable in-trap.
Finally, we mention that our observations in the chromium BEC can be generalized to
other dipolar systems, when expressing the scattering length a in units of the dipole
length add. The deconfinement-induced collapse, and its extreme case the TOF-triggered
collapse, then occur in the strongly dipolar regime with a < add.

6.3 Collapse in Deep Lattices - Techniques for Roton Measure-
ments

Based on our studies of the stability and the collapse of a dipolar BEC in the 1D optical
lattice, we now propose an experimental sequence to investigate the collapse dynamics in
the regime of very deep lattices (Ulat & 20ER). This regime is particularly interesting, as
the quasi-two-dimensional on-site condensates may collapse into multi-peak structures via
roton-like modes, as discussed in section 5.1.2. So far, such type of collapse has not been
observed in a dipolar gas. In our experimental approach, we follow the idea presented in
Ref. [37]. The numerical simulations in this work show a roton-type collapse of a single
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oblate dBEC, if the system forms a structured ground-state before it is driven into the
unstable regime. We therefore aim to cross the narrow parameter range101 where the
structured ground-states are predicted to appear [28], while the system is still trapped in
the lattice. The principle of this measurement is straight forward, its actual realization,
however, features some challenges that we discuss now.

Dephasing of on-site condensates
In the very deep lattice regime, the tunneling between the lattice sites is suppressed on
experimental time scales. By changing any parameter of the system, such as the lattice
depth or the scattering length, the individual on-site condensates will dephase in time, as
discussed in section 4.3.3. The resulting complex interference patterns after TOF (see
section 4.4.2) then lead to a very low signal-to-noise ratio in our absorption images. In
this case, the identification of any radial structures in the density distribution is very
difficult. We therefore keep the dephasing at a low level by optimizing our experimental
sequence to the shortest possible holding time in the deep lattice, with the details given
below.

Collapse in TOF
Following the proposed measurement scheme, the collapse must be initiated inside the
highly oblate trapping geometry provided by the deep lattice to observe the desired roton
features. However, a collapse can also be triggered after the release of the dBEC from
the lattice potential, as shown in section 6.2.3. The latter scenario should be avoided not
to confuse the two different types of collapses in the measurements. A possible solution
to suppress a collapse arising in TOF is the following: to perform the TOF, at first
only the underlying harmonic confinement of the ODT is suddenly removed. The on-site
condensates then expand shortly in the radial directions inside the 2D geometry of the
lattice sites102. Then, after a short delay ∆t, the lattice confinement is switched off for
the remaining TOF. We have tested this sequence by releasing a dBEC from a stable
configuration (U = (8± 1)ER, a = (4± 3) a0), where a TOF-triggered collapse is expected
to occur. Figure 6.7 shows that, for zero delay in the lattice switch-off, we indeed observe
a collapse of the system. In contrast, for delay times ∆t ≥ 0.2ms, the TOF-triggered
collapse is suppressed, resulting in the usual interference patterns of a coherent array of
condensates.

Measurement sequence
The experimental sequence that we propose for the collapse measurements is the following:
At first, a stable dipolar condensate is prepared in a lattice of moderate depth Uinit ∼ 10ER
at an initial scattering length ai > add. Then, both the scattering length and the lattice
depth are ramped at the same time to reach the unstable region in the very deep lattice

101Loading around 3-7 lattice sites may provide the largest range of parameters, where structured
ground-states are expected to form [28] (see also section 5.4.2).

102The radial confinement created by the lattice does probably not affect the radial expansion of the
on-site BECs for short expansion times after switching off the ODT. This should be checked, however,
by numerical simulations.
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Fig. 6.7, Delayed lattice switch-off: Atomic density distribution after TOF, for differ-
ent delay times ∆t between ODT and lattice switch-off. The parameters in the
sequence are a = (4± 3) a0, Uinit = (13± 1)ER, U = (8± 1)ER, thold = 0.4ms
and ttof = 9ms. Each image is an average of four absorption images with the
thermal cloud removed (field of view: 190× 374 µm2).

regime. The minimum ramping time of around 1ms is defined by the control of the
Feshbach magnetic field, and is limited e.g. by eddy currents in the metallic vacuum
chamber (see appendix A.8).
We illustrate such sequence in Fig. 6.8 with parameters that we used in an experiment.
The dBEC is prepared in a lattice of depth Uinit = (8 ± 1)ER at a scattering length
ai = (40± 2) a0. The trap frequencies of the underlying harmonic trap are similar to the
ones used in the collapse measurements presented in section 6.2.1. Within 1ms, we then
ramp up the lattice depth linearly to U = (50± 5)ER and at the same time we decrease
the scattering length in an s-shaped ramp103 to af = (−19 ± 4) a0. Note that we take
into account the eddy currents when calculating the time-dependent scattering length
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Fig. 6.8, Collapse in very deep lattices - Sequence: (a) Timing of the experiment.
The lattice depth Ulat (blue line) and the scattering length a (red line, eddy
currents included) are ramped simultaneously, before holding the system for a
variable time thold. The green line shows the critical scattering length acrit(Ulat)
calculated for N = 15, 000 atoms. (b) Sequence in parameter space. The value
of a (red line) is shown as a function of the lattice depth Ulat. The green line
again indicates the stability threshold acrit(Ulat).

103The ramp of the scattering length is performed by ramping the Feshbach magnetic field in an s-shaped
form, as given by Eq. (A.33) in appendix A.8. We use the parameters Tramp = 1ms and k = 3.
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a(t), shown in Fig. 6.8(a). We therefore cross the stability threshold, given by the critical
scattering length acrit, only after the end of the programmed ramp. Then, we hold the
condensate for a variable time thold in the trap, before we switch off the ODT. After a
delay ∆t = 0.2ms, we also switch off the lattice potential to perform a 15ms TOF, and
finally take an absorption image.
Our sequence is a modification of the “standard” interaction-induced collapse, as we can
see from the trajectory in parameter space shown in Fig. 6.8(b). While tuning only the
scattering length a would result in a vertical trajectory a(Ulat), here we obtain a diagonal
line by tuning both parameters a and Ulat at the same time. A short vertical movement
in parameter space still occurs, since the ramp of the scattering length is delayed with
respect to the lattice ramp due to the eddy currents.

Preliminary observations
Figure 6.9 shows two single absorption images of the dBEC, taken for the holding times
thold = 0.16ms and thold = 0.2ms, with the thermal cloud removed. We observe four
density peaks (instead of three as in the case of moderate lattice depths), which indicates
that there is some dephasing between the on-site condensates when ramping a and Ulat.
Let us first consider the image taken at thold = 0.16ms. The two central density peaks
show a “double structure” in the y-direction. We thus assume that there was a collapse of
the system. Even the weakly populated outer peaks show a similiar structure which is,
however, hard to distinguish from the background noise. The appearance of structures in
all the density peaks is in contrast with the case of the TOF-triggered collapse. There, only
the peaks with the largest population are expected to become unstable after the release
from the lattice. The observed structures could therefore indicate that the collapse has
been induced in-trap, as desired for the roton measurements104. According to the sequence
shown in Fig. 6.8(a), we would expect that after an in-trap holding time thold = 0.16ms
the stability threshold has not been passed yet. However, the collapse might be still
induced in the trap, considering that the lattice is switched off 0.2ms after the ODT and
taking into account our uncertainty on the scattering length (∆a ' 4 a0).

y
z

Fig. 6.9, Collapse in very deep lattices - Images: Single absorption images (with
the thermal cloud removed) taken for different times thold after finishing the
collapse ramp. The field of view is 190× 883 µm2.

104The assumption that the collapse is initiated in-trap has to be carefully checked by simulations. It
is possible that, due to the attractive contact interactions (a = −19 a0), even the weakly populated
density peaks may become unstable during the TOF.
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In the image taken for thold = 0.2ms, we observe an even stronger expansion of the two
central density peaks in the y-direction, while the two outer peaks are hardly visible.
There is no clear structure in the atomic clouds anymore, the observation of small density
modulations might, however, be hindered by the background noise in the absorption
images105 or by the limited resolution of our imaging system. If we hold the system longer
than 0.2ms in the trap, we observe a mostly exploded cloud without any visible structures.
It may be that the strong expansion of the collapsed system in the y-direction is related
to a roton-type collapse. If the on-site condensates collapse into a radial multi-peak
structure, we would indeed expect the formation of a complicated interference pattern,
created by multiple atom bursts [37]. While the exact collapse dynamics is difficult to
predict, numerical simulations may again show the real-time evolution of the system.

The different techniques presented in this section open a way to experimentally inves-
tigate roton features of a dBEC in a deep 1D optical lattice. We have seen that such
study is at the technical limit of our experimental apparatus, concerning the control
of the interactions and the imaging resolution. Therefore, a substantial technical im-
provement will be required to further explore the interesting physics of strongly dipolar
quasi-two-dimensional BECs.

105An averaging of the absorption images to reduce the background noise is more difficult than before:
the atomic interference patterns are typically shifted in the z-direction from shot to shot. This is due
to the fact that we do not actively stabilize the phase of the lattice laser.
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7 Summary and Outlook

Summary

The main subject of this thesis was the study of the static and dynamic properties of a
dipolar chromium Bose-Einstein condensate (BEC) in a one-dimensional optical lattice
potential. The stability of the system was investigated by measuring the critical s-wave
scattering length, i.e. the threshold between the stable and the unstable regime, as a
function of the lattice potential depth. Furthermore, I presented studies on the dynamics
of a dipolar BEC (dBEC) undergoing an instability either inside the trap or after the
release from a stable lattice configuration.

To perform the measurements, we have modified an existing experimental setup to load
the harmonically trapped 52Cr BEC into a one-dimensional (1D) optical lattice. The
atomic dipoles were polarized in the direction of the lattice by an external magnetic field
that was also used to tune the s-wave scattering length in the vicinity of a Feshbach
resonance. A major task was to precisely calibrate the two tunable parameters: the
lattice potential depth Ulat and the s-wave scattering length a. Measuring the BEC atom
number while reducing the scattering length, we determined the stability threshold of the
52Cr BEC for different lattice depths. For shallow lattices, the dBEC was found unstable
for positive critical s-wave scattering lengths acrit, indicating a destabilizing character of
the dipolar interactions. Here, the prolate shape of the underlying harmonic trapping
potential led to an effective attraction between the dipoles. In contrast, in the regime of
very deep lattices, a stable system was observed even for negative scattering lengths down
to acrit = (−17± 3) a0 (with a0 the Bohr radius). In this case, the system is a stack of
spatially separated quasi-two-dimensional dBECs, located on the lattice sites. Due to the
highly oblate shape of the on-site trapping potentials, the dipoles are mainly aligned in
the repulsive side-by-side configuration thus stabilizing the system. Finally, in the full
range from shallow to very deep lattices, the measured stability threshold was found to
agree very well with the results from numerical mean-field calculations, performed in the
group of Luis Santos in Hannover. In the limit of very deep lattices, we have furthermore
performed variational calculations, assuming a Gaussian shape for the wave functions of
the on-site dBECs. Both calculations confirmed the stabilization of the system by the
on-site dipolar repulsion, but also revealed a significant destabilization by the attractive
dipolar inter-site interactions.

The measured stability diagram, showing the function acrit(Ulat), has set the basis for
our investigation of the instability dynamics of the dipolar lattice gas. We thus prepared
a stable dipolar system in a lattice of moderate depth. Here, the tunneling of atoms
between the lattice sites ensured the coherence among the highly oblate sub-condensates.
We then drove the system from the stable to the unstable regime by only reducing the
lattice depth, i.e. by a change of the external confinement, while keeping the two-body
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interaction strength fixed. Using this new technique, we found that the in-trap collapse
dynamics of an unstable dBEC is slowed down for increasing lattice depths Ulat. Choosing
Ulat above the stability threshold, the system showed almost no in-trap time evolution.
However, after the release from the stable lattice configuration, we observed that the
dBEC collapsed in the time-of-flight (TOF) as confirmed by real-time simulations. This
novel collapse scenario relies on the anisotropy of the dipole-dipole interaction and the
inter-site coherence of the dBEC in the lattice.

The studies presented in this thesis are relevant for any future experiments on strongly
dBECs in lattices. In particular, the realization of a stack of stable quasi-two-dimensional
dipolar BECs with attractive contact interactions may motivate further experimental
investigations, as such system is promising to show novel dipolar phenomena related
to the roton-maxon excitation spectrum. For example, structured ground-states or a
roton-type collapse via multiple density peaks might occur. In this extreme parameter
region, however, experimental studies face several challenges: a dephasing between the
sub-condensates or a collapse in TOF might hinder the desired observations. In a set
of test measurements, we have addressed these challenges experimentally and proposed
solutions to reveal interesting roton features of a dBEC in a deep one-dimensional optical
lattice.

Outlook

In our experiments we have reached a high level of control over the interactions in the
52Cr BEC and over its external confinement. The goal to observe self-organized density
structures and other novel quantum phases, however, requires to go beyond the technical
capabilities of the current experimental system. In parallel to the work presented in this
thesis, we have therefore planned and partly installed a new experimental setup. It is now
being completed and will be described in following PhD theses. In the new setup, we will
transport106 the dipolar quantum gas from the (basically unchanged) metallic vacuum
chamber to a specially designed glass cell. The latter offers a large optical access to image
the atoms through a high-resolution microscope objective, allowing to resolve structures
on a length scale of around 1 µm. We thus enhance our current imaging resolution by
approximately a factor of six. The microscope objective will furthermore be used to
tightly focus a laser beam, realizing an optical dipole trap on micrometer size. By moving
the position of the trapping beam faster than the atoms can follow107, we can create
time-averaged trapping potentials of almost arbitrary shape in the focal plane [39].

Our new system may enable the in-trap observation of self-organized structures of
dBECs in different trapping geometries. Quasi-two-dimensional systems can be studied,
106We will transport the atoms in a single-beam optical dipole trap over a distance of around 40 cm by

moving the focussing lens with a high-precision air-bearing translation stage, as performed in Ref. [200].
107To dynamically vary the position of the laser in the focal plane, we will actively control the angle of

the laser beam before the microscope objective, using two electro-optical deflectors.
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as well as e.g. dipolar condensates in toroidal traps (created by “painting” a circle with
the laser beam of the dipole trap). The latter case has been subject to a theoretical study,
showing that the dBEC may form a self-induced Josephson-junction [201]: with the dipoles
aligned in the plane of the trap, the anisotropic dipole-dipole interaction (DDI) breaks
the rotational symmetry of the system and the atoms may accumulate at two opposite
sites of the ring-trap. Coherent tunneling phenomena, such as Josephson oscillations and
quantum self-trapping can then take place depending on the initial population imbalance
on the two sites.
Interesting systems to visibly demonstrate the long-range character of the DDI are dBECs
in multi-well potentials. By toggling the trapping laser beam very fast from one position
to the next, such potential is created with a tunable distance and alignment between the
wells. Depending on the (tunable) ratio between the on-site and the inter-site interactions,
various ground-state phases are expected to occur [116, 202]: in a system of three potential
wells in a linear arrangement, all the atoms may be found for instance in the two outer
wells. Such state relies on repulsive dipolar inter-site interactions and cannot form when
only short-range interactions are present. A detailed theoretical investigation of dipolar
BECs in multi-well potentials has been performed by David Peter in the scope of his
diploma thesis in our group [118, 120]. It was found that, in a triple-well potential, a
state with an almost empty central well can indeed be obtained for realistic experimental
parameters, close to the stability threshold of the system.

The parameter range to observe the interesting dipolar effects is typically very narrow.
It is enlarged, however, for larger dipole strengths of the magnetic atoms. In addition to
the technical improvements, we therefore decided to replace our “working horse” chromium
by the most magnetic element dysprosium (Dy), with a magnetic dipole moment µm of
10 Bohr magneton (compare Cr: µm = 6µB). The 164Dy BEC, realized by the group
of B. Lev in 2011, has shown strong dipolar effects even without reducing the s-wave
scattering length a [40]. Indeed, the relative dipole strength εdd ∝ µ2

mm/a (with m the
atomic mass) is expected to be around eight times larger than in chromium108. In addition,
the fermionic isotope 161Dy has recently been cooled below the Fermi temperature by the
Lev group [41], opening the route to study quantum degenerate dipolar Fermi gases and
dipolar Bose-Fermi mixtures.

Already above the threshold to quantum degeneracy, both bosonic and fermionic
dysprosium isotopes are expected to show interesting scattering properties. Reason is
the anisotropic scattering potential which relies on the strong DDI, but also on the
non-zero electronic orbital angular momentum (with a quantum number L = 6) in the
ground-state. Spin changing collisions are thus enhanced when compared to other atomic
species [203, 204], allowing e.g. for studies of spinor physics at very low external magnetic
fields. Furthermore, partial waves higher than the usual s-wave contribute to the elastic
scattering processes, even at ultra-low temperatures [41]. Following the methods presented

108The scaling of the relative dipole strengths between chromium and dysprosium is not exactly known,
as the s-wave scattering length of 164Dy is still undetermined.
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in Ref. [205], our new setup may be suited to directly image the various partial waves at
selectable collision energies: making use of the tunable trapping potentials, two ultracold
thermal clouds109 can be accelerated towards each other to collide at a well controlled
relative velocity. The elastically scattered atoms, imaged after time-of-flight, are expected
to form density patterns of particular symmetries that directly reflect the symmetries of
the partial waves involved in the scattering process.
Regarding the experiments with dysprosium BECs, the s-wave scattering lengths of the
bosonic isotopes 162Dy and 164Dy in the zero-temperature limit are yet undetermined.
Here, due to the anisotropic two-body interaction potentials, many Feshbach resonances
are expected to occur for magnetic field strengths up to 200 Gauss [206]. Measuring the
positions and the widths of these resonances will give further insight into the scattering
properties of dysprosium and set the basis to control the contact interactions in the
system.

109For bosons, the temperature of the clouds should be chosen just above condensation temperature.
Finite temperature effects are thus minimized and interference effects (as observed for BECs) can be
avoided.
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A appendix

A.1 Scattering Properties of Bosonic Dipolar Gases

In this section, we discuss the basic elastic and inelastic scattering properties of cold and
ultra-cold bosonic dipolar gases, mainly summarizing the theoretical results from Refs. [57,
58, 101, 108, 109, 207–210]. The studies presented here are motivated by the question
whether or not dipolar scattering effects are relevant in ultra-cold chromium samples. We
furthermore comment on the relevance of dipolar scattering in several other atomic and
molecular species, where ultra-cold samples exist.

A.1.1 Elastic Dipolar Scattering

In this part, we consider the elastic scattering properties of two bosonic dipolar particles.
After describing the coupling of different partial waves by the dipole-dipole interaction,
we discuss the energy-dependent elastic scattering cross-section. Finally, we compare the
characteristic dipolar parameters of different existing dipolar systems.
Let us consider a system of two polarized dipolar particles (with the polarization direction
z) at a relative distance r. The dipoles interact only via the dipole-dipole interaction
potential V ′dd(r, ϑ) = d2 (1− 3 cos2 ϑ)/r3 with d the (electric or magnetic) dipole strength
and ϑ defining the relative alignment of the dipoles (see section 2.2.2). The equation of
relative motion of the two particles can be written in a dimensionless form [58],[

−1
2∇

2 + 1
r3 (1− 3

(
r̂· ẑ)2

)]
ψ(r) = Erelψ(r), (A.1)

if all distances and energies are measured in dipole units, i.e. in units of the dipole length
D and the dipole energy ED:

D
def= mredd

2

~2 , and ED
def= d2

D3 = ~6

m3
redd

4 , (A.2)

where mred = m/2 is the reduced mass of the two-particle system. In absence of the
dipolar interactions, the spherical harmonics Ylm(r̂) solve the eigenvalue problem of the
angular part of equation (A.1) [96]. However, the situation is different in presence of
the dipolar interactions: the dipole-dipole interaction (DDI) potential couples states of
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different angular momenta, with the strength given by the potential matrix elements V (m)
ll′ ,

V
(m)
ll′

def= 〈lm| 1− 3(r̂· ẑ)2 |l′m〉

=
[
1− 3

2l + 1

(
(l −m)(l +m)

2l − 1 + (l −m+ 1)(l +m+ 1)
2l + 3

)]
δl,l′

− 3
2l + 3

√√√√((l + 1)2 −m2)((l + 2)2 −m2)
(2l + 1)(2l + 5) δl,l′−2

− 3
2l − 1

√√√√((l − 1)2 −m2)(l2 −m2)
(2l − 3)(2l + 1) δl,l′+2 (A.3)

with |lm〉 = Ylm(r̂) and δα,α′ the Kronecker delta. We see that, due to its d-wave
symmetry, the DDI potential couples states with a difference in relative angular momenta110
∆l = |l − l′| = 2 and ∆l = 0 (for l = l′ 6= 0). Hence, the spherical harmonics do not
represent eigenstates of the system at small distances r, where the coupling by the dipole-
dipole interaction is strong. During the scattering process, the eigenstate of the system
contains contributions from several spherical harmonics, with a weight depending on
the distance between the dipolar particles r. Therefore, a coupled-channel calculation is
required to calculate the elastic scattering properties of a dipolar gas. While in principle
an infinite number of channels has to be considered in such calculations, the results for
the elastic scattering cross-section have shown to converge by using a finite set of channels
in the so-called adiabatic representation of the scattering states [58]. In Fig. A.1, we show
the results from Ref. [58] for the elastic scattering cross-section σ (averaged over the
full solid angle) as a function of the relative kinetic energy E. We see that, for energies
E � ED, the strongest contribution to the elastic scattering cross-section is given by
σlm,l′m = σ21,21 which belongs to an incoming and outgoing d-wave channel with quantum
numbers (l,m) = (l′,m) = (2, 1). Then for a decreasing energy E, the s-wave scattering
cross-section σ00,00 grows until it becomes the dominant term in the low energy limit
E � ED.

This result in the low energy regime seems counter-intuitive, since the dipole-dipole
interaction does not directly couple an ingoing and an outgoing s-wave channel due to
the vanishing potential matrix element for l = l′ = 0. However, it has been shown
that a second order coupling via the d-wave channel introduces an effective scattering
potential [57, 207]

V00(r) ≈ −

∣∣∣V (0)
02 /r

3
∣∣∣2

l(l + 1)/(2r2)
def= −C4

r4 , (A.4)

110Due to the cylindrical symmetry of the dipole-dipole interaction potential, the projection of the angular
momentum m is conserved in the scattering process [58]. In general, it is the total value m+MS which
is conserved, with MS the spin projection of the two-body system. Here, we assume that MS does
not change during the collision, which can be ensured in the experiment by trapping the atoms in the
energetically lowest Zeeman sublevel.
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Fig. A.1, Elastic dipolar scattering: Total elastic scattering cross section σtotal (red
line) in dipole units (d.u.) in dependence of the energy E in units of the dipolar
energy ED [58]. Furthermore, the contributions σlm,l′m of the most important
scattering processes are shown, with the quantum numbers (l,m) denoting the
incoming and (l′,m) the outgoing channel. Figure taken from [58].

with the potential matrix element V (0)
02 given by Eq. (A.3). In dipole units and using l = 2,

the resulting coefficient is C4 = (4/3)
√

5. We may estimate a finite interaction range r4,0
of this potential using Heisenberg’s uncertainty relation [57] (see section 2.2.1):

r4,0 =
√

2dC4

~2 ≈ 1.09D. (A.5)

We compare the dipolar parameters of different atomic and one molecular species in
Tab. A.1, choosing only systems where ultra-cold samples have been realized. We see
that, for typical temperatures T ≤ 100 µK of cold thermal samples, only dysprosium and
the polar molecules are expected to show significant scattering via higher partial waves
(l > 0), as they fulfill the condition ED/kB < 100 µK.
Furthermore, if the interaction range r4,0 ≈ 1.09D is comparable to the typical interaction
range r0 ≈ 100 a0 of the short-range interactions, the dipolar induced s-wave scattering
becomes important for ultra-low temperatures. Refering to Tab. A.1, we see that e.g.
for dysprosium we obtain r0,4 ∼ 218 a0. We therefore expect a significant contribution
of the dipolar interactions to the elastic s-wave scattering properties in this system. For
chromium the scattering is probably dominated by the short-range interactions, as we
obtain r0,4 ∼ 25 a0 � r0.
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species dipole moment D ED/kB
87Rb 1µB 0.6 a0 16K
52Cr 6µB 23 a0 13mK

164Dy 10µB 200 a0 53 µK
K-Rb ∼ 0.5 Debye 60, 000 a0 1 nK

Tab. A.1, Dipole length D and dipole energy ED for different dipolar systems:
Except from chromium, the table displays the parameters for rubidium (Rb)
which is widely used in ultra-cold atoms experiments, dysprosium (Dy) as it
exhibits the largest magnetic dipole moment of all condensed atomic species
and of a potassium-rubidium molecule (K-Rb). In the case of the molecule, we
specify the electric dipole moment measured in a sample of fermionic 40K87Rb
molecules in the singlet ground-state [59].

A.1.2 Inelastic Dipolar Scattering

The inelastic scattering properties of a dipolar gas, i.e. the recombination of three dipoles
to a weakly bound dimer and a single dipole, have been theoretically investigated in
Ref. [210]. It was found that a universal description of the three-body scattering process is
possible, if both, the dipole length D and the s-wave scattering length a are much larger
than the interaction range r0 ∼ 100 a0 of the short-range interactions (see section 2.2.1).
Under this assumption, the three-body recombination rate K3 in a dipolar BEC takes the
following form111 [210],

K3 '
32
√

3π2~
m

[
a4 + 0.44 a2D2

]
+ 2 · 495~

3!m D4, (A.6)

with m the mass of a single particle. If the scattering length is much larger than the dipole
length, i.e. a/D � 1, the recombination rate approaches the well known result K3 ∝ a4

for short-range interacting bosons in the universal regime a � r0 [211]. In the dipolar
case, however, one obtains additional terms proportional to the dipole length D which
are explained by the creation of atom-dimer states with non-zero angular momentum. In
particular, when a/D � 1, the rate K3 is entirely determined by the dipole length, with
K3 ∝ D4.

In systems of polar molecules, the dipole strength can be tuned by an external electric
field. Furthermore, the s-wave scattering length can be varied by the same field, close to
a so-called shape-resonance [101, 108], in analogy to the Feshbach resonance technique
discussed in section 3.2.1. Thus, the universal regime (D, a) � r0 can be reached in
molecular systems, enabling future experimental studies of inelastic dipolar scattering
processes.
111We have divided the result obtained in Ref. [210] by the Bose-enhancement factor 3!, as we consider a

BEC instead of a thermal cloud.
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The situation is different in atomic systems with permanent magnetic dipoles where
the dipole length D is fixed: here, the dipolar inelastic scattering is only relevant if the
condition D � r0 is fulfilled for the given atomic parameters. Since this is not the case
for chromium (see Tab. A.1), dipolar contributions to the inelastic scattering properties
of a 52Cr BEC are expected to be small. They may be substantial, however, in ultracold
dysprosium samples. Due to the unknown short-range scattering properties, experimental
studies are required to further investigate the influence of the inelastic collisions in this
system.

A.2 GPE in Thomas-Fermi Approximation with Contact Inter-
actions

This section describes the ground-state properties of a BEC with dominant contact
interactions, discussed in section 2.4.2. In the TF approximation, and neglecting the
dipolar interactions, the stationary Gross-Pitaevskii equation, given by Eq. (2.15a), writes

µψ(r) TF= [Vext(r) + g n(r)]ψ(r), (A.7)

with µ the chemical potential, g the contact coupling strength and with the harmonic
potential given by Vext(r) = m/2 (ω2

xx
2 + ω2

yy
2 + ω2

zz
2). Hence, the density distribution

n(r) = N |ψ(r)|2 of the BEC in each direction has the shape of an inverted parabola:

n(r) = µ− Vext(r)
g

= n0 · max
{(

1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, 0
}
, (A.8)

where n0
def= n(0) = 15N/(8πRxRyRz) is the central density of the condensate, with

(Rx, Ry, Rz) its Thomas-Fermi radii in the respective directions. The boundary n(R) = 0
of the BEC is determined by the condition Vext(R) = µ, with R = (Rx, Ry, Rz). Therefore,
the TF radii are given by R2

i = 2µ/(mω2
i ) with i = x, y, z. The chemical potential is then

obtained via the normalization condition
∫
dr3n(r) = N , with the result [89]

µ = 152/5

2

(
Na

āho

)2/5
~ω̄, (A.9)

where ω̄ = (ωxωyωz)1/3 is the mean trapping frequency and āho =
√
~/(mω̄) the mean

harmonic oscillator length. With this result, we obtain the mean condensate radius
R̄ = (RxRyRz)1/3 in the form that we have used in section 2.4.2:

R̄ = 151/5 āho

(
Na

āho

)1/5
≈ 1.72 āho

(
Na

āho

)1/5
. (A.10)
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A.3 Calculations on the Ground State in a 1D Optical Lattice

In this part, we show the explicit calculations of the ground-state properties of a contact
interacting BEC in a 1D lattice, discussed in section 4.3. We obtain analytical results for
e.g. the local chemical potential µj and the atom number distribution Nj on the lattice
sites.
Let us first consider the properties of a (sub-)condensate located on the j-th lattice site.
We assume the tight-binding approximation to be valid with the harmonically trapped
on-site condensates well inside the quasi-2D regime [179]. The spatial part of the on-site
wave functions can then be written in the form Φj(r, Nj) = φG(z − zj)φ(j)

TF(x, y,Nj),
assuming a Gaussian shape112 in the z-direction and a Thomas-Fermi profile in the radial
directions. Inserting this ansatz for the wave function into the stationary GPE (2.15a)
and integrating over the z-direction, we obtain[

− ~2

2m∇
2
⊥ + V(r⊥) + g̃Nj

∣∣∣φ(j)
TF

∣∣∣2]φ(j)
TF = µjφ

(j)
TF, (A.11)

with µj the local chemical potential, g̃ def= g/(
√

2πalat) the 2D coupling strength113,
r⊥ = (x, y) the radial coordinates, and V(r⊥) = mω2

ρr⊥
2/2 the harmonic trapping

potential in the radial directions. For simplicity, we have assumed a cylindrically symmetric
harmonic trapping potential, with ωρ the radial trap frequency. In the TF-approximation,
we neglect the kinetic term in Eq. (A.11), and thus obtain the radial wave function
φ

(j)
TF(r⊥) via

∣∣∣φ(j)
TF(r⊥)

∣∣∣2 = µj − V(r⊥)
g̃Nj

= µj
g̃Nj

· max


1− r⊥

2(
R

(j)
⊥

)2

 , 0
 , (A.12)

where R(j)
⊥ =

√
2µj/(mω2

ρ) is the TF radius of the condensate on the j-th lattice site.

From the normalization condition
∫
d2R

∣∣∣φ(j)
TF

∣∣∣2 = 1, we obtain the local chemical potential

µj =
√
mg̃ ω2

ρ

π
N

1/2
j

def= U1 ·N
1/2
j , (A.13)

with U1
def=
√
mg̃ ω2

ρ

π
.

112The Gaussian wave function is given by φG(z) = (alat
√
π)−1/2 exp

[
−z2/(2a2

lat)
]
, with alat

def=√
~/(mωlat) the harmonic oscillator length in the lattice direction.

113The 2D coupling strength is obtained by integrating out the z-direction in the interaction energy term,
g
∫
dz d2R |φG(z)φTF(r⊥)|4 = g̃

∫
d2R|φTF(r⊥)|4.
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U1 is a constant that depends neither on the number of atoms nor on the site index
and is determined by the dimensionality of the system114. We now consider the global
properties of the lattice system. As shown in section 4.3.2, we can write the global
chemical potential µ as the sum of the local chemical potential µj and the local potential
energy εj def= mω2

z(dlatj)2/2 def= Ωj2 that arises from the harmonic trapping in the lattice
direction z. With the local chemical potential given by Eq. (A.13), we thus obtain an
expression for the atom number Nj on the j-th lattice site,

Nj = max

(
µ− Ω j2

U1

)2

, 0
 def= N0 · max


(

1− j2

j2
inv

)2

, 0
 , (A.14)

where N0
def= (µ/U1)2 is the atom number in the central lattice site and jinv def=

√
µ/Ω is

the inversion point above which the lattice sites are not occupied anymore. The global
chemical potential µ is then calculated using the condition115 ∑j Nj = N . We first replace
the lattice site index by j → zj/dlat, where the zj are the (discrete) positions of the lattice
sites in the z-direction and dlat is the spacing between the sites. We then express Nj via
Eq. (A.14) and use continuous variables, i.e. we replace zj → z. By integrating over the
z-direction, we finally obtain the global chemical potential µ:

µ =
(15

16N U2
1
√

Ω
)2/5

, (A.15)

which agrees with the results given in Refs. [179, 180]. We can thus express the ground-
state properties of a BEC in a 1D lattice in terms of the trap parameters (harmonic trap
and lattice), the contact coupling strength and the total atom number in the system.

A.4 Variational Calculations with a Gaussian-Shaped Dipolar
BEC

Here, we describe the principle of the Gaussian variational calculations, an efficient
numerical method to calculate the critical scattering length of a trapped dipolar BEC. For
simplicity, we assume a cylindrically symmetric harmonic trap, with the symmetry axis
aligned with the polarization direction z of the dipoles. The according trap frequencies
are given by ωρ and ωz in the radial and in the axial direction, respectively. Close to the
stability threshold, the interactions are typically sufficiently weak such that the shape of
the dBEC is well described by a Gaussian (see section 2.4.1). We therefore write the wave

114In general, the relation is given by µj = Uα|ψj |α, where α = 4/(2 + D) is determined by the
dimensionality D of the system [179]. Therefore, we obtain α = 1 in the quasi-2D system.

115The condition
∑
j Nj = N ensures that the sum of the local atom numbers Nj equals the total number

of atoms N in the system.
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function of the BEC in the form

ψG(ρ, z) def= 1
π3/4 l2ρlz

exp
[
− ρ2

2 l2ρ
− z2

2 l2z

]
, (A.16)

where lρ (lz) is the radial (axial) width of the condensate. With this ansatz, we can
calculate the energy per particle via Eq. (2.17). This yields the following terms for the
kinetic energy Ekin, the potential energy Epot, the contact interaction energy Econtact and
the dipolar interaction energy Edip:

Ekin

N ~ω̄
= a2

ho
4

(
2
l2ρ

+ 1
l2z

)
Epot

N ~ω̄
=

2l2ρ + λ2l2z
4 a2

hoλ
2/3

Econtact

N ~ω̄
= N√

2π

(
aho
lρ

)2
a

lz

Edip

N ~ω̄
= − N√

2π

(
aho
lρ

)2
addfdip(κ)

lz
,

(A.17)

with N the BEC atom number, ω̄ = (ω2
ρωz)1/3 the mean trapping frequency, aho =√

~/(mω̄) the mean harmonic oscillator length, λ = ωz/ωρ the trap aspect ratio, κ = lρ/lz
the cloud aspect ratio, and fdip(κ) the dipolar anisotropic function given by Eq. (2.23b).
For a given set of parameters {N,ωρ, ωz, a}, the equilibrium values of the widths lρ and lz,
and thus the ground-state wave function, may be found by searching the global minimum
of the total energy (given by the sum of the energy terms written above) in a variational
calculation. Depending on the starting conditions in the calculations, also meta-stable
states (i.e. local energy minima) can be found in such procedure, as we show in section 5.2.
If no local or global energy minimum exists for positive values lρ, lz, the condensate is
unstable for this set of parameters.

A.5 Dipolar Interaction Energy between Two Gaussian-Shaped
Clouds

In this part, we derive the interaction energy between two Gaussian-shaped dipolar BECs.
The result of these calculations is used to obtain the total inter-site interaction energy in
a linear array of dipolar BECs in section 2.5.3. Furthermore, by variational calculations,
it allows to calculate the stability threshold of a dBEC confined in a 1D optical lattice,
with the result shown in section 5.4.1. The derivation of the dipolar inter-site energy, that
is shown here, has been performed by David Peter in the scope of his diploma thesis in
our group [118, Ch. 2.2].
The wave functions of the two dipolar condensates, each confined by a cylindrically
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symmetric trap along the polarization direction z, are approximated by the Gaussian
forms

Ψ1(ρ, z) = 1
π3/4σρ

√
σz

exp
(
− ρ2

2σ2
ρ

− z2

2σ2
z

)
, (A.18a)

and Ψ2(ρ, z) = 1
π3/4σρ

√
σz

exp
(
− ρ2

2σ2
ρ

− (z − l)2

2σ2
z

)
, (A.18b)

where σρ (σz) is the radial (axial) size of the condensates and l the distance between them.
The corresponding atomic densities are defined via nj(r) = N |Ψj(r)|2 with j = 1, 2.
The spacing between the clouds is assumed to be much larger than the axial size, i.e.
l� σz, such that the overlap of the wave functions is small. Introducing the total wave
function Ψ(r) = Ψ1(r) + Ψ2(r) and using the dipolar term from the Gross-Pitaevskii
energy functional (2.17), the total dipolar energy in the system is given by

Edip = N2

2

∫
d3r

∫
d3r′ |Ψ(r)|2 V ′dd(r, r′) |Ψ(r′)|2

' 2Eon,dip + Einter,

(A.19a)

where we have used the approximation Ψ1(r)Ψ2(r) ' 0 and the definitions for the dipolar
on-site energy (note the indices for the local densities nj)

Eon,dip
def= 1

2

∫
d3r

∫
d3r′n1(r)V ′dd(r, r′)n1(r′)

= 1
2

∫
d3r

∫
d3r′n2(r)V ′dd(r, r′)n2(r′),

(A.19b)

and the inter-site energy

Einter
def=
∫

d3r
∫

d3r′n1(r)V ′dd(r, r′)n2(r′). (A.19c)

We have chosen the definition of the dipolar inter-site energy such that it is defined
globally, i.e. we count it only once for the full system. In contrast, the dipolar on-site
energy agrees with the definition for a single cloud. We therefore have to add up the
contributions from both the condensates to obtain the total dipolar on-site energy in the
system.

To evaluate of the dipolar inter-site energy, we write it in terms of the Fourier transforms,
using the convolution theorem twice:

Einter = (2π)3/2
∫

d3kF{n1}F{V ′dd}F{n2}. (A.20)
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The choice of the Gaussian form for the density distributions nj(r) allows for a simple
expression of their Fourier transforms

F{nj} = N

(2π)3/2 exp
(
−1

4k
2
ρσ

2
ρ −

1
4k

2
zσ

2
z − ilδj2kz

)
, (A.21)

where k2
ρ = k2

x + k2
y , δ12 = 0 and δ22 = 1. We see that the relative distance l between the

two clouds in coordinate space has transformed into a phase shift in Fourier space. Using
the Fourier transform of the dipolar potential [113, Ch. A.5.2] F{V ′dd} = −gdd (1− 3k2

z/k
2),

we obtain the following expression for the inter-site interaction energy:

Einter = −gddN
2

(2π)3

∫
d3k

(
1− 3k

2
z

k2

)
exp

(
−1

2k
2
ρσ

2
ρ −

1
2k

2
zσ

2
z − ilkz

)
. (A.22)

For the next step, we exchange the integration variable k by the dimensionless variable
q = σρk. We furthermore define the cloud aspect ratio κ = σρ/σz and the dimensionless
distance L = l/σρ between the clouds, such that

Einter = − gddN
2

(2π)3σ3
ρ

∫
d3q

(
1− 3q

2
z

q2

)
exp

(
−1

2q
2
ρ −

1
2q

2
zκ
−2 − iLqz

)
. (A.23)

To perform the integration, we use the spherical coordinates (q, θ, ϕ): the integration over
the angle ϕ simply yields a factor 2π as the system is cylindrically symmetric. With the
substitution u def= cos θ, we obtain

Einter = −2π· gddN
2

(2π)3σ3
ρ

∞∫
0

dq
1∫
−1

du q2
(
1− 3u2

)
exp

(
−1

2q
2
(
(1− u2) + κ−2u2

)
− iqLu

)
.

(A.24)

The final analytical step is the integration over q, leading to the result

Einter = − gddN
2

(2π)3/2σ3
ρ

1∫
0

du (1− 3u2)(1− u2(η + L2))
(1− ηu2)5/2 exp

(
− L2u2

2(1− ηu2)

)
. (A.25)

For simplified notation, we have used η def= 1− κ−2 and furthermore, we have changed the
integration limits, exploiting the even symmetry in the variable u. The last remaining
integration over u has to be performed numerically. Therefore, Eq. (A.25) is the final
analytical result for the dipolar interaction energy of two Gaussian-shaped clouds, in
agreement with Ref. [51].
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A.6 Excitation Spectrum of a 2D Homogeneous Dipolar BEC

Here, we show a brief derivation of the excitation spectrum in a 2D homogeneous dipolar
gas, discussed in section 5.1.2. A more detailed treatment can be found in Refs. [16, 26,
27]. We start from the excitation spectrum in the 3D homogeneous system, given by
Eq. (5.1),

E(q) = ~ω(q) =

√√√√(~2q2

2m

)2

+ ~2q2

2m 2n0 [g + gdd (3 cos2 α− 1)], (A.26)

where n0 is the (constant) atomic density, q = |q| is the quasi-momentum of the excitations
and α the angle between their propagation direction and the polarization direction z

of the dipoles. We see that in Eq. (A.26), the contact and the dipolar interactions are
represented by the Fourier transform of the two-body interaction potential (see Eq. (2.8))
given by Ṽint = g + gdd(3 cos2 α− 1).
In a 2D homogeneous condensate, we may approximate the shape of the wave func-
tion in the z-direction by a Gaussian φG(z) = (lz

√
π)−1/2 exp [−z2/(2l2z)], with lz the

width of the sample. The atomic density along z is then given by n(z) = |φG(z)|2 =
(lz
√
π)−1 exp [−z2/l2z ] with its Fourier transform ñ(qz) = (2π)−1/2 exp [−q2

z l
2
z/4]. With

this ansatz for the wave function, we obtain the effective 2D interaction potential in
Fourier space Ṽ (2D)

int (q⊥) via [16]

Ṽ
(2D)
int (q⊥) def=

∞∫
−∞

ñ(qz) Ṽint ñ(−qz) dqz

= 1
2π

∞∫
−∞

e−q2
z l

2
z/2
[
g + gdd

(
3q2
z

q2
⊥ + q2

z

− 1
)]

dqz

= 1√
2πlz

[
g + 2gddH2D

(
q⊥lz√

2

)]
, (A.27)

where we have used cos2 α = q2
z/q

2 = q2
z/(q2

⊥+q2
z) with q⊥ (qz) the radial (axial) component

of the quasi-momentum. The function H2D(χ) that we obtain from the integration is given
by H2D(χ) = 1− 3

2
√
π|χ| exp[χ2] erfc[χ], with erfc[χ] the complementary error function.

We furthermore introduce the two-dimensional homogeneous density n2D =
√

2π lz n0.
Finally, by replacing in Eq. (A.26) the expressions q → q⊥, n0 → n2D and Ṽint → Ṽ

(2D)
int (q⊥),

we obtain the excitation spectrum of a 2D homogeneous dBEC,

E(q⊥) =

√√√√(~2q2
⊥

2m

)2

+ ~2q2
⊥

2m 2n2D Ṽ
(2D)
int (q⊥)

=

√√√√(~2q2
⊥

2m

)2

+ ~2q2
⊥

2m 2n0

[
g + 2gddH2D

(
q⊥lz√

2

)]
. (A.28)

131



A.7 Fitting Procedure in Calibration of the Scattering Length

In this part, we describe the fitting procedure used in the calibration of the scattering
length (see section 3.2.3). The calibration procedure relies on the linear scaling relation
between the scattering length a and the quantity R5

y/N , where Ry is the condensate
radius in the y-direction after time-of-flight (TOF) and N the BEC atom number. In
section 3.2.3, we write this scaling relation in the form

R5
y/N = σeff(a− aoffset), (A.29)

with the effective scaling parameter σeff and the offset aoffset = (9± 1) a0 that we obtain
from numerical simulations116. In the measurements, we record the condensate radius Ry

and the atom number N for different values of the current IFB in the Feshbach coils. This
current produces the magnetic field close to the Feshbach resonance (FR), that we use to
tune the scattering length a. We take at least four datapoints per value IFB and compute
the mean value R5

y

N
(IFB).

As a first step in the fitting procedure, we extract the scaling parameter σeff by fitting
Eq. (A.29) to the mean data R5

y

N
(IFB) in a logarithmic fit:

log
{
R5
y

N
(IFB)

}
fit= log

{
σeff

[
abg

(
1− ∆IFB

IFB − IFB,0

)
− aoffset

]}
. (A.30)

Here, we have replaced a→ abg
(
1− ∆IFB

IFB−IFB,0

)
, with abg = (102.5±0.4) a0 the background

scattering length [144] and with the additional fitting parameters ∆IFB and IFB,0 that
characterize the width and the center of the resonance in terms of the Feshbach current117.
We are using a logarithmic fit as otherwise the data on the lower side of the FR (IFB <
IFB,0), where R5

y/N takes very large values, would be strongly over-weighted with respect
to the data on the upper side of the FR, where R5

y/N tends to zero.

From this fit, in principle, we already obtain all the relevant information (width and
position of the FR) for the calibration of the scattering length. However, as we are
furthermore interested in the uncertainty of the scattering length, we need to know the
correlation between the fitting parameters ∆IFB and IFB,0. Hence, we perform a second
fit of the form

log {aexp(IFB)} fit= log
{
abg

(
1− ∆IFB

IFB − IFB,0

)}
, (A.31)

where we have inserted the scattering length aexp, which we obtain from the measured
values R5

y/N(IFB) using the relation (3.2b): aexp = σ−1
eff

R5
y

N
+ aoffset. The Matlab fitting

116The scaling parameter aoffset depends in general on the trap frequencies used in the calibration
measurement. Here, we use ω(x,y,z) = 2π· (680, 624, 270)Hz, as specified in section 3.2.3.

117In principle it is possible to obtain σeff by using only datapoints far away from the Feshbach resonance,
where a ' abg. However, it has proven more robust and precise to perform the fit with the full dataset
and the formula given by Eq. (A.30).
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routine ’leasqr.m’ directly provides the correlation between the two fitting parameters.
Replacing for clarity the variables x def= ∆IFB and y def= IFB,0, with their fitting uncertainties
∆x and ∆y and their correlation sxy, we can compute the uncertainty of the scattering
length [212]

(∆a)2 = (∂a/∂x)2 · (∆x)2 + (∂a/∂y)2 · (∆y)2 + 2 · (∂a/∂x)∆x (∂a/∂y)∆y· sxy.

(A.32)

Depending on the magnitude and the sign of the correlation sxy, we can, in general,
identify three different cases:

i) sxy = 0: There is no correlation between the two variables. This means, the
uncertainties on x and y are summed in quadrature, just as for any uncorrelated
parameters.

ii) sxy = 1: The parameters are fully correlated, meaning that ∆a = (∂a/∂x) · ∆x+
(∂a/∂y) · ∆y. Therefore, we are just adding linearly the single uncertainties.

iii) sxy = −1: The parameters are fully anti-correlated, which means that the uncertain-
ties on the single parameters (partly) compensate each other. The value of interest
(in our case the scattering length a) is then better known than the uncertainties on
each parameter suggest.

In our case, due to the non-trivial function a(IFB, IFB,0,∆IFB) = abg
(
1− ∆IFB

IFB−IFB,0

)
, the

sign of the correlation does not immediately tell if the uncertainty on a is increasing or
decreasing. Going through the calculations, we find indeed that a negative correlation
means smaller uncertainties in the experimentally interesting region above the FR.

The full uncertainty on the scattering length that we specify in section 3.2.3 does not
only include the uncertainties on ∆IFB and IFB,0 given by Eq. (A.32). We also include
the uncertainties on the background scattering length [144] ∆a = ∂ a

∂abg
· 0.4 a0 and on the

offset value ∆aoffset = 1 a0 (see section 3.2.3). Both of these uncertainties are added in
quadrature to the terms given in Eq. (A.32) as they are uncorrelated with the errors of
the fitting procedure.

A.8 Magnetic Field Ramps at the Feshbach Resonance

Close to the magnetic Feshbach resonance at B0 = 589.1G, we aim for a high level of
control over the magnetic field strength, as the scattering length is directly related to
it. As explained in section 3.2.2, we tune the current in the Feshbach coils by adding a
variable voltage to the set-point of a proportional-integral controller (PI) (see also Ref. [74,
Ch.4.2.2]).
Performing slow magnetic field ramps (ramping time Tramp � 1ms), the magnetic field
at the position of the atoms will directly follow the value programmed at the computer.
For fast ramps (Tramp ∼ 1ms), however, we have observed strong deviations between
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the programmed field value and its actual value measured by Zeeman spectroscopy. We
have identified two reasons for the deviations: (i) due to the limited bandwidth of the
active current stabilization, the PI controller may introduce delays and oscillations in the
Feshbach current when its set-point is suddenly changed and (ii) eddy currents in the
metallic vacuum chamber yield an additional delay of the real magnetic field with respect
to the programmed value. We have experimentally addressed both issues, with the results
shown in Fig. A.2.
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Fig. A.2, Measured Feshbach current and magnetic field at cloud position: Cur-
rent running through the Feshbach coils (red dots), measured by a transducer,
and programmed value of the current (dashed blue line), both in normalized
units. (a) We observe strong oscillations in the measured current after a sudden
change in the programmed value. (b) The oscillations are reduced when using
a linear ramp and (c) are almost suppressed when using the s-shaped ramp
given by Eq. (A.33). (d) The black dots show the measured field strength B
at the position of the atoms, also in normalized units. The measured field
exhibits a delay with respect to both the programmed value and the measured
current in the coils. The data is well described by the numerical solution B(t)
of the differential equation (A.34) with the parameter τ = 0.25ms (black line).

Optimized magnetic field ramps
We measure the current in the Feshbach coils by a transducer, when the programmed
field Bprog is changed from Bi = 626G to Bf = 602G by (a) a jump, (b) a linear ramp or
(c) an s-shaped ramp. When programming a sudden jump for the field Bprog, we observe
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strong oscillations of the Feshbach current which are damping out after around 2ms.
These oscillations are reduced when using a linear ramp (with a ramping time of 1ms),
and almost vanish when using an s-shaped ramp of the form

Bprog(t̃) = Bf − (Bf −Bi) ·
[
(k + 1) · (1− t̃ )k − k· (1− t̃ )k+1

]
, (A.33)

where t̃ = t/Tramp is the time normalized by the ramping time Tramp and k ≥ 2 is the
ramping parameter that characterizes the “steepness” of the s-shaped curve. The particular
form of the ramp given by Eq. (A.33) ensures a smooth behaviour of the programmed
field, as both the derivatives of Bprog at the beginning (t̃ = 0 ) and at the end (t̃ = 1 ) of
the ramp vanish. For the measurements presented here, we have used the parameters
Tramp = 1ms and k = 3.

Eddy currents
As mentioned before, eddy currents in the metallic vacuum chamber lead to a delay of
the real magnetic field B(t) at the position of the atoms with respect to the programmed
field Bprog(t). The field B(t) is well described by the differential equation [36]

τḂ(t) +B(t) = Bprog(t) (A.34)

and we can measure its value at different times of the s-shaped ramp by performing
Zeeman spectroscopy118. As expected for the s-shaped ramp, we see no oscillations in the
measured magnetic field and the behaviour of B(t) is well described by the numerical
solution of Eq. (A.34) with the parameter τ = 0.25ms. At the time t = 1ms, i.e. at the
end of the programmed ramp, the real magnetic field has accomplished around 90 % of
the ramp. We can therefore experimentally realize well controlled ramps of the Feshbach
magnetic field on time scales around 1ms.

118Each value of the magnetic field shown in Fig. A.2 is the result of a spectroscopy measurement: We
vary the detuning of the probe laser in the absorption imaging and extract the resonance frequency
from a Lorentzian fit to the recorded atom numbers. From the known Zeeman shift of the magnetic
sublevels, we can eventually calculate the magnetic field at the position of the atoms.
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