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Chapter 1

Self-propulsion of

micrometric objects

The past 50 years registered a growing interest towards the motion of mi-
crometric objects in viscous fluids. The peculiarity of these systems consists
in a very awkward hydrodynamics in contrast with what we are used to
observe in the macroscopic world.

The development of microscopy techniques showed that microorganisms
like bacteria and cells have to employ clever strategies in order to propel
themselves upon such conditions. Needless to say, the understanding of
the motion of eukaryotic and prokaryotic microswimmers is a fundamen-
tal issue in biology, biophysics as well as in medical science. In the last
decade, physicists also put a lot of effort to mimic the propulsion of biolog-
ical microorganism using artificial micro-robots or self-propelled particles.
Manmade micro-engines could in fact yield thriving opportunities for drug
delivery applications.

In this Chapter, I will present the main features of self-propulsion of
micrometric objects, both biological and artificial. I will describe how their
hydrodynamics is strongly affected by the absence of inertial effects and
what this implies in terms of ability to swim. I will provide a short glimpse
over biological systems, e.g., bacteria and cells, focusing then on how these
swimming tactics can be emulated artificially. Finally, I will introduce few
paradigmatic examples of how artificial propellers could be exploited for
delivery application.

1.1 Swimming at low Reynolds number

Our physical intuition and everyday experience of the concept of “swim-
ming” are often misleading in the microscopic world. The swimming style
a scuba diver uses to proceed underwater would indeed not work at smaller
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1.1 Swimming at low Reynolds number Self-propulsion of micrometric objects

length scales. This enormous behavioral difference is strictly related to the
role of inertia.

In short, the hydrodynamic properties of the motion of an object swim-
ming in a liquid of viscosity η is described by the classical Navier-Stokes
equation (1.1):

−∇ρ+ η∇2v = ρ
∂v

∂t
+ ρ(v · ∇)v, (1.1)

where v and ρ are the velocity and the density of the floating object,
respectively. The terms on the right-hand side are responsible of the high
non-linearity related to the emergence of inertia. Back to the easy example
of the scuba diver, the presence of these non-linear effects facilitates the
motion since the swimmer experiences a glide forward even after a stroke.

However, inertia-driven phenomena tend to fade either when the sur-
rounding fluid is too viscous or when the immersed object becomes too
small. In order to quantify the contribute of inertia to the overall motion,
we generally rely on the dimensionless Reynolds number which indicates the
ratio of inertial forces to viscous forces. Its mathematical expression reads
as follows (1.2):

Re =
avρ

η
, (1.2)

where a embodies the size of the object. When Re ≫ 1 the motion
is dominated by inertia as in several phenomena at the macroscopic scale;
for instance, for a man swimming in water, Re ∼ 104. On the other hand,
when a drops to the micrometric length scale, the Reynolds number becomes
much smaller than 1 as in the case of bacteria swimming in water where
Re ∼ 10−4. Very viscous fluids produce the same effect since η appears in
the denominator of Eq.(1.2).

If Re≪ 1, the Eq.(1.1) turns out to be linear since the right-hand terms
are approximatively 0. Due to this linearity a stroke forward is perfectly
cancelled out by an identical stroke backward, resulting in no net displace-
ment. Hence, compared to the scuba diver’s predicament, an additional
effort is needed to achieve a net propulsion at low Reynolds number.

This idea has been nicely illustrated by Purcell in a famous article from
the 70s [1]. To clarify the dilemma about propulsion at low Reynolds num-
ber Purcell formulated the well-known Scallop Theorem. A scallop (see
Fig.1.1(a)) is probably one of the simplest animal in nature, yet it is able
to swim in seawater just by opening and closing its shell, i.e., exploiting
only one degree of freedom. Nonetheless, in the absence of inertia, i.e., at
low Reynolds number, a scallop would not manage to move forward and
would wind up performing a reciprocal motion. The only way to achieve a
propulsion without inertia consists in breaking time-reversal symmetry by
having motors with more than one degree of freedom. This can be done, for
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1.2 Biological microswimmers Self-propulsion of micrometric objects

(a) (b)

Figure 1.1: Sketches taken from Purcell’s paper “Life at low Reynolds number” [1].

At low Re a scallop (a) does not swim whilst an organism equipped with a flexible

oar (b) does.

instance, through a flexible wiggling motor linked to the object’s body as
illustrated in Fig.1.1(b).

Nevertheless, a flexible oar is certainly not the only solution. In the
next Section, I will describe how biological microorganisms, whose small
size yields a Re ≪ 1, overcome the impasse of navigating in a liquid in the
absence inertia.

1.2 Biological microswimmers

Bacteria, algae and cells are biological organisms whose size varies from few
up to hundreds microns; therefore, when floating in aqueous solutions, they
behave as overdamped inertia-free systems and, as previously mentioned,
the locomotion strategy requires more than one degree of freedom to pro-
duce a net propulsion. For this reason, Nature decided to supply them with
flexible filaments that are embedded as appendices of the body. These lashes
are called flagella or cilia, meaning in Latin “whips” and “eyelashes”, re-
spectively; the distinction between the two terms is not rigorous but varies
from organism to organism, although usually rests on either their length
(cilia are often shorter) or their function [2].

When propelling the microorganism, these appendices deform in order
to trigger a non-reciprocal motion; due to the reasons extensively discussed
in §1.1 the propulsive and the recovery strokes must break the time-reversal
symmetry. In short, two very distinguishable propulsive mechanisms have
been so far observed [3]: the screw-like rotation and the whip-like beat
(Fig.1.2).1

• Screw-like micromotors usually rely on the presence of one or sev-
eral flagella, often longer than the body of the microorganism. These
filaments are rigid, exhibits an helical shape and, when rotating, man-

1The beating mode is often ascribed to ciliary motion, while the rotating mode is

attributed to the flagellar one. Although this distinction is fairly accepted amongst certain

communities, it clashes with few counterexamples, e.g., the Chlamydomonas reinhardtii

whose flagella exhibits a beating motion. [4]
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(a)

(d)

(c)

(b)

Figure 1.2: Examples of biological propulsion mechanisms (sketch taken from

Wikipedia). Bacteria and biological cells can be pushed by the rotation of he-

lical flagella (left) or pulled by the whip-like beating of flexible cilia (right).

Examples of the first type are the (a) Vibrio Cholerae (picture taken from

http://news.ucsc.edu/2009/12/3429.html) and the Escherichia Coli (picture taken

from Wikipedia), whilst the (c) Chlamydomonas reinhardtii alga [6] and the (d)

Paramecium protozoa (picture taken from Wikipedia) belong to the latter.

age to break the symmetry causing a directed motion of the organ-
ism. The flagella often push the cell body forward as rear motors,
although counterexamples exists where the screw-like rotation actu-
ally pulls the cell (e.g., Caulobacter crescentus [5]). Each microorgan-
ism can be equipped either with one single flagellum, like the Vibrio
Cholerae bacterium (Fig.1.2(a)), or with multiple filaments that bun-
dle together hydrodynamically, e.g., in the case of the Escherichia Coli
bacteria (Fig.1.2(b)).

• Whip-like motors exploits the deformation of short flexible filaments
(cilia), embedded to the cell body. These appendices often wiggle
simultaneously in order to amplify the strength of the strokes.

Thanks to the development of microscopy and particle tracking tech-
niques, the motion of the these biological swimmers has attracted the in-
terests of the physics community during the second half of the last century.
Their trajectories have been identified as the first experimental example of
the so-called active Brownian motion, i.e., a novel type of motion that rises
from the coexistence of Brownian and ballistic features.

The E.coli bacterium has been chosen, among all the available bacterial
species, as model system because of its handiness as well as its low micro-
biological dangerousness. Furthermore, its typical size of the order of few
microns implies that the Brownian component plays a role in the overall
motion of these microorganisms. Pioneering studies concerning the active
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(a) (b)

Figure 1.3: (a) Persistent random walk of an E.coli bacterium: the trajectory is

characterized by ballistic “runs” alternated with random reorientations (“tumbles”)

[8]. (b) Speed during a “run and tumble” motion. The velocity drops to zero when

the bacterium tumbles [8].

motion of these bacteria have been performed by H. Berg and coauthors
[7, 8]. As mentioned above, in order to swim through a liquid, E. coli bac-
teria exploit the screw-like rotation of helical flagella that propel the cell
body forward. In particular, these appendices possess a left-handed con-
figuration and they thus wrap together when the rotation happens to be
counter-clockwise. On the other hand, when the flagella rotate clockwise,
they unbundle and stretch out uniformly; by doing so, the motion is ar-
rested and the E.coli only fluctuate until a new random direction is chosen.
The motion of these biological organisms is therefore defined by the so-
called run and tumble events, i.e., the bacterium is propelled along straight
ballistic runs and reorients randomly while tumbling. The tumbling rate
determines the length of the ballistic segments, i.e., long runs correspond to
low tumbling rates. Inside an homogeneous environment, the average length
of the runs is roughly constant and therefore acts as a persistence length of
the effective random walk. A typical resulting trajectory is shown in Fig.1.3
alongside with the swimming speed. Under starving condition, a migration
up the food gradient is possible by adjusting the persistence length to the
concentration of nutrients. In particular, runs are longer up the gradient.
This process is known as chemotaxis.

Within Chapter 3 I will address in detail the properties of the persistent
random walk (or active Brownian motion); for the time being, it’s enough
to stress that the active motion of these complex living organisms can be
described by a simple model that takes into account propulsive events occur-
ring at short time intervals mediated by a large time scale random diffusion.
In spite of the simplicity of the model, tons of novel physical phenomena
spring from this type of motion.
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1.3 Bio-inspired artificial microswimmers

Inspired by the amazingly efficient design of natural cilia and flagella, during
the past decades scientists and engineers committed themselves to mimic
these swimming strategies using suitably assembled artificial micro- and
nano-motors.

(a) (b)

Figure 1.4: (a) A drawn of Purcell’s model swimmer. The angles θ1 and θ2 change

periodically in order to break the symmetry [1]. (b) Schematic representation of

the Golestanian’s swimmer which is essentially a 1D simplification of (a) [9].

The key-ingredient to devise a successful swimmer consists in break-
ing the time reversal symmetry, as underlined in §1.1. Back to the 70s,
Purcell already proposed a simple hypothetic swimmer consisting of three
rigid arms (see Fig.1.4(a)) that periodically change the two angle θ1 and θ2
and, thus, break the symmetry. More recently Golestanian and coworkers
have presented a 1D simplified model (Fig.1.4(b)) of such oscillatory motors,
where three beads are linked by rigid rods that vary their length periodi-
cally between two values. Despite its naiveté, this model clearly shows how
a periodic cycle can break time reversal symmetry and, therefore, provide a
directed propulsion.

Flagella- and cilia-inspired micromotors follow the same driving mech-
anism, cleverly elucidated by Golestanian, and perform a complex periodic
strokes with several features in common with bacterial locomotion. This
Section aims to present few paradigmatic examples of recent realization of
bio-inspired microswimmers. Nonetheless, a complete list of experimental
accomplishments is beyond the scope of this Chapter.

Microorganisms equipped with cilia are usually propelled due to the
whip-like beating of these appendices (see §1.2). A similar stroke can be
achieved also artificially by realizing a waving snake-like propeller which
can be obtained, for instance, linking in a row a certain number of spherical
colloids and agitating them with an external field [10]. In Ref. [10] colloidal
superpamagnetic particles, coated with streptavidin, are tethered together
with double stranded DNA linkers and lined up under an external uniform
magnetic field as illustrated in Fig.1.5. The so-assembled “snake” is then
actuated by oscillating a magnetic field perpendicular to it. The wiggling
produced by the oscillation emulates the biological ciliary beating and is
sufficient to break time reversal symmetry acting, thus, as a driving micro-

8



1.4 Drug delivery applications Self-propulsion of micrometric objects

(a) (b)

(c) (d)

Figure 1.5: (a) A cilia-inspired magnetic microswimmer. It consists of a snake of

magnetic beads, linked by DNA and aligned with an uniform magnetic field. The

active motion is then triggered by an further magnetic field oscillating perpendicu-

larly to the snake [10]. (b-d) Flagella-inspired magnetic microswimmers. (b) Helical

ribbon supplied with a soft magnetic head [11]. (c) SiO2 propeller coated with a

ferromagnetic material (cobalt). (d) DNA-bounded paramagnetic beads subjected

to a sinusoidal magnetic field [12].

engine.
An alternative approach is based on emulating the screw-like rotation of

bacterial flagella. Examples include magnetic helical tails activated under
an external magnetic field [11, 13]. The screw-like rotation of these objects
triggered by rotating magnetic field breaks time reversal symmetry and in-
duces the propulsion. Fig.1.5(b) shows an helical ribbon equipped with a
soft magnetic head, whereas a similar device can be also fabricated growing
a twisty silica layer half-coated with a ferromagnetic material (Fig.1.5(c)).
Finally, Fig.1.5(d) displays a further example, shape-wise different from the
ones above but conceptually very related. Two DNA-bounded paramagnetic
beads, with different size, hereby rotates when subjected to a sinusoidal
magnetic field parallel to the glass substrate beneath [12].

All the example presented in this Section fall into the category of mag-
netic artificial microswimmers since, although their shape recalls the natural
design of bacterial flagella (or cilia), an external magnetic field is needed to
actuate the motion. A second class of manmade propelled will be presented
in detail in the next Chapter.

1.4 Drug delivery applications

As described in §1.3, several artificial propulsive mechanisms can be devised
in order to assemble autonomous micro-robots. Further driving strategies
will be also introduced throughout the manuscript.

9



1.4 Drug delivery applications Self-propulsion of micrometric objects

During the past decade, the interests around these self-powered systems
grew exponentially: they in fact are not only handy models to study and
clone the more complex behavior of biological microswimmers [14], but they
also represent the first attempt to address the challenge of micro and nano
cargo’s delivery [15].

Concerning the former, the motion of self-propelled objects resembles
the active trajectories typical of biological swimmers. This active motion,
characterized by both a ballistic and a random term (the propulsion and the
reorientation, respectively), contains a remarkable amount of novel features
that attracted the physics community alike (see Chapter 3). Hence, the
importance of relying upon simplified experimental systems has certainly
attracted the interest of a broad audience.

From a more practical point of view, self-powered micro and nano devices
are a considerable breakthrough in the field of drug delivery. In fact, re-
searchers became recently very interested in engineering micro-transporters
that are able to carry micro and nano cargos throughout small capillaries,
e.g., human vessels or microfluidic circuits, without the need of external
driving fields. A success in this sense would have a huge impact over the
pharmaceutical industry since a particular drug could be selectively driven
to a specific cellular target [16].

At the moment, the road to entirely fulfill this goal appears impervious
and poorly explored. In order to target a specific cell we indeed need to
address the following basic requirements:

• The swimmer should be able to navigate in three dimensions and to
track down the cargos floating in the liquid.

• The swimmer should be able to pick-up only the desired cargo, i.e.,
the transporter-cargo link should be selective.

• The swimmer should be able to deliver the cargo to a precise location.

• The drop-off should occur in the proximity of the target.

Even though substantial developments are still needed to achieve the
listed goals, some noteworthy steps forward have been recently made. For
instance, it has been demonstrated that Pt−Au phoretic rod-like swimmers2

can collect and drag a cargo, provided that the surface of the two “actors” are
coated properly [17, 18]. A first alternative, shown in Fig.1.6(a), consists in
exploiting an electrostatic bond between charged polystyrene particles and
a negatively charged segment of the rod [17]. Other attachment methods
rely on chemical bonds, e.g., the streptadivin-biotin interaction shown in
Fig.1.6(b) [17], or magnetic forces [18]. Magnetic swimmers can be then

2For details about the propulsion mechanism that powers the so-called “phoretic mi-

croswimmers”, see Chapter 2.
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(a) (b)

Figure 1.6: Experimental methods used to attach a polystyrene cargo to a self-

propelled Pt − Au rod [17]. (a) Electrostatic interaction. (b) Strepradivin-biotin

bond.

guided with an external fields through microchannels, fabricated using soft
lithography techniques [12, 18]. In conclusion, although the delivery re-
quirements listed above are far to be entirely fulfilled, artificial micro-motors
certainly are an appealing tool to tackle drug delivery issues.
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Chapter 2

Phoretic Swimmers

As extensively discussed in §1, breaking time reversal symmetry is funda-
mental to achieve self-propulsion at the micrometric scale. The more in-
tuitive way to do so consists in employing asymmetric motors, e.g., helical
belts, yielding a non-reciprocal motion.

Nevertheless, the symmetry break can be also obtained without the need
of such complicated geometries. A clever alternative is based on the modi-
fication of the physical properties of the surrounding medium. It is indeed
well established that classical spherical colloids experience a phoretic force
when dispersed in a fluid with an heterogeneous distribution of physical or
chemical properties. This driving phoretic force may be, for instance, due
to either a temperature (thermophoresis) or a chemical (diffusiophoresis)
gradient. Of course, to have an internal propulsion, the gradient has to be
triggered by the particle itself. For this reason, this type of swimmers are
often addressed as self-propelled phoretic particles.

In this Chapter, I will first cover the basic features of phoretic forces:
in particular, I will discuss their origin, which is ascribed to the interaction
between the particle’s surface and the molecules of the liquid. Chronologi-
cally, the first discovered phoretic phenomenon was electrophoresis: colloids
have been hereby observed to be driven by an applied electric field when dis-
persed in an electrolyte solution. Later, phoretic forces have been found also
in uncharged solution, thanks to the presence of chemical or temperature
distributions.

The second part of the Chapter will be instead focused on self-phoretic
phenomena, where the colloids are able to create their own local gradient.
In order to interact asymmetrically with their surrounding, these particles
have to show some kind of surface pattern, e.g., an hemisphere made of a
different material. I will discuss how these so-called Janus or patchy particles
propel themselves inside different media, providing very recent experimental
examples of this phoretic propulsion.

12



2.1 The origin of phoretic forces Phoretic Swimmers

2.1 The origin of phoretic forces

The origin of phoretic phenomena has been very controversial and is yet not
totally understood. Micro- and nano-metric objects, suspended in a fluid,
have been often observed to drift up or down a gradient such as a solute
distribution. This motion recalls what would happen in the presence of
an external force field, e.g., a magnetic force. However, during a phoretic
migration, no net force is applied and the drift is purely a non-equilibrium
effect.

The first experimental observation of phoretic migration is dated 1807,
when Ferdinand Frederic Reuss found out that clay particles floating in
common water respond to a constant electric field with a net motion [19].
Surprisingly, no force was effectively acting on the clay particles owing to
the electrostatic screening and the motion was merely caused by the rear-
rangement of the water ions. The discovery of this phenomenon, nowadays
well-known as electrophoresis, encouraged scientists to develop tons of useful
applications for industrial or biological systems. For example, electrophore-
sis was used to sort proteins [20] or DNA/RNA mixtures [21] according to
their size and mobility. Other applications include electrodialysis techniques,
immunology, capillary science [21, 22] and so forth.

During the second half of the past century, numerical simulations, fol-
lowed by experimental works [23, 24, 25, 26, 27, 28], demonstrated that
migrations can occur even in uncharged inhomogeneous solution such as
gradients of nonelectrolytes. This phenomenon is usually named as diffusio-
phoresis or chemophoresis1.

Moreover, micro-metric particles have been also shown to drift in homo-
geneous fluids, e.g., water, provided that a temperature gradient is present.
This effect, called thermophoresis, was discovered by the physiologist Carl
Ludwig who witnessed that the diffusion of salt in water is affected by a tem-
perature gradient [29]. A theoretical explanation for this phenomenon was
then given by Charles Soret in 1879 [30]. Nevertheless, in spite of all the ad-
ditional theoretical efforts during the last century, the literature still lacks a
self-standing predictive model for the thermophoretic drift of microparticles
in a liquid.

What is the reason for all these phoretic migrations then? In 1989, J.
L. Anderson wrote an outstanding review [31] in which he analyzed the uni-
versality of the three “out of equilibrium” effects presented above. Phoretic
forces come into play under non-equilibrium conditions and when interfacial
phenomena become important.

1The nomenclature is confusing. Some people define “diffusiophoresis” the bare mi-

gration in a nonionic solution, whilst others prefer to use the word “chemophoresis” for

that. In the latter case, the definition of “diffusiophoresis” embraces the motion both in

electrolytes (“electrophoresis”) and nonelectrolytes solutions.
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(a) (b)
S

Figure 2.1: (a) Velocities balance upon “no-slip” boundary conditions at the in-

terface particle-solvent. (a) Cartoon explaining the origin of phoretic forces. The

interaction between the colloidal surface and the surrounding liquid within a small

interfacial layer S leads to an apparent slip velocity vs. vs is globally larger than

zero if the fluid is inhomogeneous as though in a gradient ∇ϕ.

In fields like fluid dynamics, the interface between two phase, e.g., a col-
loid and its surrounding medium, is often considered irrelevant; a “no slip”
boundary condition is usually used to tackle, mathematically or numeri-
cally, the Navier-Stokes equation. In this case, the velocity of the particle
−→u , induced for instance by an external field, is equal to the counterflow −→v .
However, when the “no-slip” condition fails at the boundary between the
particle and the fluid, the velocities balance (see also Fig.2.1(a)) needs to
include an additional term −→vs that embodies the slip, i.e.

−→u +−→vs = −→v . (2.1)

Eq. (2.1) implies that a motion is possible even if −→u = 0 as in the
absence of external forces.

The interface particle-solvent plays a crucial role in dynamical effects
such as phoresis. The surface and the liquid hereby interact within a small
but finite (few nm) interfacial layer S schematically drawn (not in scale)
with the red dashed line in Fig.2.1(b). Nevertheless, if the surrounding were
homogeneous the mean force acting on the particle because of this inter-
action would be zero due to the isotropy. Instead, when the interface is
characterized by an asymmetric particle-solvent interaction over the parti-
cle’s surface, e.g., if a surrounding gradient is imposed (Fig.2.1(b)), a global
effective force comes into play. From the point of view of a micron-sized par-
ticle, this global interaction acts like an apparent slip velocity −→vs as shown
in Fig.2.1(a). In the presence of an applied field gradient ∇ϕ, −→vs is therefore
larger than zero inducing the so-called a phoretic drift.

As mentioned before, a phoretic migration has been observed under an
electrical potential, a temperature field or a solute concentration in the fluid;
these phenomena are linear, therefore the phoretic-induced velocity has to
be proportional to the gradient of the external field, i.e.:

14
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z z

x x

Hold substrate Moving substrate

Osmosis Phoresis

Figure 2.2: A schematic representation of the induced flow field during osmosis

(left) and phoresis (right).

vphoretic = µ∇ϕ (2.2)

where µ stands for the phoretic mobility of the particle.
In conclusion, the origin of phoretic drift is conceptually very different

from any other force-driven motion. During any phoretic migration no net
force is applied and the driving is purely due to an additional hydrodynamic
effect, i.e., the appearance of a slip velocity2.

This model, based on the appearance of a slip velocity, is also helpful to
explain osmotic phenomena, e.g., electroosmosis [34, 35] or diffusioosmosis
[36, 37], in the presence of an external gradient. Osmotic flows generate
when the solid phase is fixed in contrast with phoresis where the suspended
particle is free to move. The different boundary conditions affect the flow
field as shown in Fig.2.2: the anchoring of the substrate induces a flow both
inside and outside the interfacial region since a continuity of the stress has
to be fulfilled. On the other hand, when the particle is allowed to move
towards favorite areas the fluid within the interface “follows” the motion
and swiftly decays to zero outside.

From now on, I will address exclusively the phoretic motion of rigid
particles suspended in a fluid under an applied field. In particular, I will
focus on how Eq.(2.2) reads in the three specific cases mentioned so far:
electrophoresis, diffusiophoresis and thermophoresis. Of course, these three
situation differ in terms of the type of external field as well as in terms of
particle-solvent interaction. After a description of the three effects I will
sum up and compare their main features.

2An alternative but essentially equivalent description considers a variation of surface

tension across the interface [32, 33]. In these models a generic phoretic drift can be written

as vs = −l∇γ/η, where l is the typical length-scale of the interfacial layer. Although all

the phoretic effects can be made to collapse onto this description, I personally find it

rather overblown since the rich variety of particle-solvent interactions is dumped into one

very generic parameter (the interfacial tension).
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2.1.1 Electrophoresis

Amongst the phoretic phenomena introduced so far, electrophoresis is the
more straightforward and definitely the better understood. Let us consider a
colloid immersed in an ionic solution as shown in Fig.2.3(a). Due to chemical
absorbtion, the composition of the colloidal surface is altered by the presence
of electrolytes in its vicinity, resulting in a net surface charge (positive or
negative). As a consequence, the charged colloidal surface attracts a tiny
layer of counterions (Stern layer) followed by a larger diffuse region where
the concentration decays slowly to the bulk value, i.e., to the equilibrium
between positive and negative ions. The strength of this interaction can be
extracted analytically from the Poisson-Boltzmann equation for the excess
charge density; under the assumption of weakly charged electrolytes [38],
the potential ψ(r) was shown to obey the following exponential law (see
also inset of Fig.2.3(a)):

ψ(r) = ψ(0)e−kr (2.3)

where r is the distance from the colloidal surface and ψ(0) is the surface
potential. The thickness of this double shell, also called electric double layer,
is conventionally given by the inverse of the coefficient k:

k−1 =

(
εkBT

e2
∑
ciz2i

)1/2

. (2.4)

k−1 is called Debye screening length and depends on the properties of the
solution, i.e., the permittivity ε and the concentration (and valence) of ions
ciz

2
i . The thickness of this layer can vary from few up to hundreds nm and

the potential corresponding to the Debye length is known as Zeta potential.
The ionic cloud provides an electrostatic screen around the colloid, i.e.,

if an electric field
−→
E is applied the colloids behave as they were uncharged.

Therefore, according to the simple Coulombic description, no net motion is
expected. On the other hand, the electrolytes are either attracted or repelled

by
−→
E depending on their charge.
Anyways, the electric double layer acts as a finite interface, where the col-

loid still interacts electrostatically with the ions of the medium. Therefore,
when the ions belonging to the double layer are dragged by the external
field, this force propagates all the way to the colloidal surface. In other
words, the Coulomb force is only exerted on the ion, but it gets anyways
transferred to the colloid because of the ions-particle interaction within the
finite interface. This force, often called retardation force because of its indi-
rect nature, is responsible of the phoretic migration. With this qualitative
picture in mind, the colloid can be represented as a rigid bead equipped
with a slip velocity that is actuated by the retardation (or phoretic) force
as shown in Fig.2.3(b).
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(a) (b)

Figure 2.3: (a) Electrical double layer model for a colloid in an electrolyte solu-

tion (picture taken from http://www.zetawest.com/science.html). The inset shows

the interaction potential related to the excessive charge in the double layer. (b)

Schematic representation of the electrophoretic force, aka retardation force. An

effective force is exerted only on the ions contained in the double layer and is

transferred to the colloid through the interaction potential.

Of course the electrophoretic migration can be investigated on a more
quantitative level in order to come up an expression for the phoretic mobility.
A first simplified model was developed in 1903 by Smoluchowsky [39, 40]
and is based on the assumption of point-like ions. When an electric field is
applied across the channel, the velocity profile inside the finite interface can
be calculated by solving the Stokes equation (2.5)3

η∇2v + ρeE∞ = 0 (2.5)

coupled with the following Poisson relation for the charge density inside
the double layer:

ρe = − ε

4π
∇2ψ (2.6)

.
Under the hypothesis that the radius R of the colloid is much larger than

the Debye length, the resulting slip velocity, defined at infinite distance from
the particle, reads as:

vs = − εζ

4πη
E∞ (2.7)

where ζ is the zeta potential introduced above and E∞ is the unperturbed
external electric field. This result underlines two important conclusions:

3Note that the pressure gradient is considered negligible in the limit of point-like ob-

jects.
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• The slip velocity and, thus, the phoretic force increase linearly with
the external field, as already mentioned during the general description
of phoretic phenomena.

• Depending on the sign of the zeta potential, i.e., depending on the
surface charge of the particle, the colloid moves either in the direction
of the electric field or in the opposite direction.

• The pre-factor (εζ)/(4πη) stands for the electrophoretic mobility of the
particle and is independent of its size.

Of course, during the years, more refined theories have been developed
in order to get rid of some of the above-listed assumptions [41, 28, 31]. For
instance, O’Brien and White computed the electrophoretic mobility also for
ranges of k−1 and R where the Smoluchowsky’s formula does no longer hold
[42]. However these models are far beyond the take-home message of this
paragraph.

2.1.2 Diffusiophoresis

In the former Section the ions dispersed in the solution have been always ad-
dressed as point-like charges. The phoretic mobility was thereby induced by
the pure electrostatic interactions occurring throughout the finite interface,
i.e., the electric double layer. Nevertheless, the distribution of an hypo-
thetical solute around a colloid may also affect the phoretic mobility. This
effect is known as diffusiophoresis and happens when gradients of charged
or uncharged solutes surround a particle. Even though solutes often have
a charge as in the case of ionic solution, for the sake of clarity, I will first
focus on diffusiophoretic phenomena caused by uncharged solutes in order to
highlight additional interactions, other than electrostatic. For completeness,
I will then briefly mention the complex situation where diffusiophoresis is
superimposed to electrophoresis in electrolytes solutions.

A colloid always interacts with the compounds of a surrounding neutral
solution mainly through van der Waals forces. This interaction is short-
ranged, i.e., it occurrs within a tiny, but finite, interface called adsorption
layer [43, 31]. Its strength is given by the binding energy of the adsorbed
species with respect to the colloidal substrate, i.e., the interaction is weak
if the components of the fluid “do not like” the colloidal surface and vice
versa. A potential of mean force ϕ, that decays with the distance from the
colloidal surface, is generally associated to this energy value. In analogy
with electrophoretic phenomena, a force applied to a solute floating at the
edge of the interface propagates to the solid surface of the colloid through
the van der Waals potential.

Let us consider a colloid fluctuating in a solution characterized by a gra-
dient of a given solute in the x -direction, as shown in Fig.2.4. For simplicity
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Figure 2.4: (a) Sketch explaining the origin of osmotic pressure differences across

a solid substrate in an external concentration gradient. The gradient is illustrated

with small blue beads. (a) Schematic representation of the phoretic force acting on

the adsorption layer.

the colloidal surface is drawn as it were flat. The presence of a solute con-
centration gradient, schematically represented with the small blue beads,
carries along a difference in osmotic pressure, given by [36]:

∇P = kBT (n− n0) = kBT∇n, (2.8)

where n0 is the bulk concentration.
The osmotic pressure drop (2.9) is usually equilibrated in bulk according

to the following pressure balance:

P − kBTn = P0 − kBTn0 (2.9)

However, near the surface the pressure gradient (2.9) generates a force
that is conveyed all the way to physical substrate via the potential of mean
force. The macroscopic effect is identical to the one observed in the elec-
trophoretic case, with the emergence of an apparent slip velocity due to
retardation (phoretic) forces at the interface (see Fig.2.4(b)).

Once the type of colloid-fluid interaction is understood, the diffusio-
phoretic mobility can be easily derived [31]. The concentration of solute
obeys the Boltzmann distribution, i.e.,

n = n0e
− ϕ

kBT , (2.10)

where ϕ is again the potential of mean force, mostly related to van
der Waals interaction between the solute and the colloid. Plugging this
expression into the Stokes equation, it is possible to extract the velocity
profile at the interface and, thus, the slip velocity:

vs = −kBT
η

KL∗∇n (2.11)
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where K is the adsorption length and L∗ is the first moment of the solute
distribution at the interface. Therefore, both K and L∗ entirely depend on
the interfacial potential (the potential of mean force) and are known if and
only if the solute profile is totally traceable.

In conclusion, in tight analogy with the electrophoretic migrations:

• The slip velocity and, consequently, the phoretic force increase linearly
with the external field, i.e., with the solute concentration gradient

• The diffusiophoretic mobility is given by (kBTKL
∗)/η and, since L∗

can be either positive or negative depending on the energy profile, the
phoretic motion can go after or against ∇n.

Finally, the whole scenario becomes very complicated when the solutes
are actually electrolytes [26, 28, 27]. Alongside an extremely elaborated
interfacial potential, additional electrophoretic effects hereby appear due to
the electric field associated with the different diffusion coefficients of the
ions. Hence, predicting the phoretic mobility becomes very challenging and
does not particularly concerns the objectives of this manuscript.

2.1.3 Thermophoresis

The last phoretic phenomenon is called thermophoresis or Soret effect and
has been receiving a large attention among theoreticians and experimental-
ists during the past years. Despite this, a self-consistent predictive model is
still lacking.

Thermophoresis, i.e., the drift of particles inside temperature gradients,
is strictly related to the above-discussed diffusiophoresis, even though ther-
mophoretic effects are often considered negligible in the absence of steep
temperature slopes. Nonetheless, the interaction between a colloid and the
surrounding solvent/solutes remain the key-ingredient and is mandatory to
achieve a migration. Without this interaction, no phoretic drift will be in-
deed observed, even if ∇T ̸= 0. Therefore, the thickness of the interfacial
layer, i.e., the region where the interaction solvent-colloid plays a role, is
reasonably assumed to be the same as for diffusiophoretic phenomena.

When we consider a colloid in a liquid characterized by a temperature
gradient along the x -direction (see Fig.2.5), the thermodynamic heterogene-
ity of the solvent contained in the finite interface provides an apparent slip
velocity and, thus, a phoretic force acting on the colloidal surface. The
propagation of the phoretic “kick” from the edge of the interface to the
physical surface of the colloid follows the same mechanism illustrated for
electrophoresis and diffusiophoresis.

The theoretical background behind thermophoretic effects is based on
the principles of non-equilibrium thermodynamics. In short, due to the
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∇ T

Adsorption layer

Phoretic force

Figure 2.5: Schematic representation of the thermophoretic (or Soret) effect. A

colloid in a temperature gradient experiences a phoretic force acting at the interface.

Osnager’s reciprocal theorem, a heat flow is always associated with a mo-
mentum flux [44]. Using this momentum flux, it is possible to derive a
theoretical expression for the slip velocity [31, 24].

vs = −2He

ηT
∇T (2.12)

where He indicates the first moment for the excess entalphy at the inter-
face and is therefore calculated integrating over the whole interfacial layer.
In analogy with diffusiophoretic and electrophoretic migrations, the ther-
mophoretic mobility is given by (2He)/(ηT ).

Nevertheless, the determination of the coefficient He is experimentally
an herculean task. For this reason, the thermophoretic problem has been
tackled from another point of view, i.e., considering a suspension of several
particles and motoring the concentration profile, e.g., through microscopy or
scattering techniques, when a linear temperature gradient is applied. This
approach allows to write the following steady-state equation (2.13) for the
density distribution [45]:

dn

dx
= −nST

dT

dx
, (2.13)

valid as long as the temperature gradient is linear along the x -axis. The
equality (2.13) defines the so-called Soret coefficient, which is convention-
ally positive when the colloid drifts to the cold. For a fixed colloids/solvent
system, knowing the applied temperature profile and measuring the cor-
responding concentrations, the Soret coefficient can be experimentally ex-
tracted [46, 47, 48, 49]. In case of common mixtures, ST is only of the order
of 10−3 K−1, confirming that the Soret effect is relatively small [45]. The
general trend suggests that colloidal systems usually migrate towards the
cold side, i.e., the Soret coefficient is positive. However this statement is far
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from being the universal truth as it has been observed that some suspensions
can show a crossover to a negative ST increasing the temperature [50].

To recap, the phoretic slip velocity is a consequence of non-equilibrium
effects happening in a tiny but finite interfacial region. Under the reasonable
assumption of linearity, the phoretic speed is proportional to the field gradi-
ent (see Eq.(2.2)) where the pre-factor is the so-called phoretic mobility µ.
The phoretic mobilty condenses the type and the strength of the particle-
solvent interaction and, in particular, determines the direction of motion.
The formulae to extract µ in case of electrophoresic, diffusiophoretic and
thermophoretic are compared in the following Table.

External Field Gradient Phoretic Mobility

Electrophoresis E (εζ)/(4πη)

Diffusiophoresis (non-ionic) ∇n (kBTKL
∗)/η

Thermophoresis ∇T (2He)/(ηT )

Table 2.1: Mobility coefficients for the three phoretic migrations.

2.2 Swimmers self-propelled by phoretic effects

As described in §2.1, when surrounded by an non-uniform environment, col-
loids feel a phoretic force that acts on the fluid-solid interface as an effective
slip velocity. Therefore, even though de facto no external force accompanies
the motion, the symmetry break, due to, for example, a concentration or
a temperature gradient, is enough to provide the particle with a directed
propulsion.

Self-propelled phoretic swimmers exploit this effect to navigate in a liquid
at low Reynolds number. In particular, to be defined “self-propelled”, these
particles need to manage and modify independently as well as locally the
properties of the fluid. Therefore, in contrast with the situations reported
in §2.1, gradients are hereby only local and move together with the particle
(see sketches in Fig.2.6(a)).

In order to create neighboring gradients, the colloids have to be equipped
with some sort of surface asymmetry to differently interact with the fluid
and, thus, generate inhomogeneities. The theoretical example shown in
Fig.2.6(b) is very instructive and helpful to understand the mechanism [51].
Golestanian and coworkers modelled an hypothetical self-propelled device
made of a colloid supplied with a an enzymatic patch. This enzymatic side
is supposed to promote a chemical reaction in its vicinity and, in this way,
to generate an excess of product particles which are schematically drawn in
Fig.2.6(b) as small blue beads. As a consequence an asymmetric distribu-
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Figure 2.6: (a) Cartoon explaining the qualitative difference between phoresis

and self-phoresis. (b) The Golestanian’s swimmer. The device is driven by self-

diffusiophoresis [51].

tion of product particles characterizes the area where the catalytic reaction
is taking place. The solute concentration gradient, self-generated by the
particle, triggers a phoretic motion of the colloids as extensively discussed
in §2.1. Under the hypothesis that the product particles are non-ionic, this
motion is utterly induced by the diffusiophoretic forces that act within the
adsorption layer mainly because of osmotic pressure.

Colloids possessing a spotted surface are generally addressed as patchy
particles and are indeed suitable tools to design micro-devices propelled by
phoretic effects. If the patch covers half of the particle’s surface, colloids are
alternatively defined as Janus4. The way these particles achieve the propul-
sion is in line with Golestanian’s model, although complicated by additional
experimental peculiarities. Within the rest of this Section, I will introduce
some techniques used to fabricate patchy colloids as well as few experimen-
tal systems of patchy particles phoretically self-propelled. Although the goal
is certainly not to cover the whole literature of Janus and patchy colloids,
these examples will help the reader to get familiar with phoretic microswim-
mers, as the systems employed in this work is based on a similar propulsive
mechanism.

2.2.1 Fabrication of patchy and Janus colloids

During his Nobel Prize speech in 1991, P.-G. de Gennes proposed for the first
time the realization of colloids with a different chemical functionalization on
two hemispheres [52]. Starting from this lecture the concept of “Janus par-
ticle” spread rapidly in the field of theoretical and experimental colloidal
physics, insomuch as, from a simple albeit far-sighted idea, we face nowa-

4Janus was the Roman God of beginnings and transitions, usually portrayed with two

faces, looking at the past and at the future, respectively.
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Figure 2.7: (a) Main strategies used to fabricate patchy colloids [63]. (b) Self-

assembly: Ps − SiO2 dumbbells obtained via assembly and subsequent growing

[64, 65]. (c) Masking: patchy colloids prepared by linking gold nanoparticles onto

one hemisphere of an embedded colloid. [66, 65]. (d) Masking: fabrication of patchy

colloids through controlled Pickering emulsions of wax droplets in water [67]. (d)

Phase separation: biphasic particles engineered through microfluidic jetting of two

non-miscible phases [68, 63].

days a real mass production of such heterogeneous colloids. Although Janus
particles are used in this manuscript as micro-motors, the broad interest
around these novel colloids was initially motivated by self-assembly goals.
In fact, the use of microparticles with an anisotropic interaction as build-
ing blocks leads to the assembly of material with fascinating new properties
[53, 54, 55, 56, 57]. Thanks to the development of more and more power-
ful computational algorithms, the particle-particle interaction as well as the
phase behavior of dense suspension of patchy colloids have been also exten-
sively studied during the past years, enlightening novel structural features
[58, 59, 60, 61, 62].

The preparation of Janus and patchy particles aims to fulfill some basic
requirements [52]: first and foremost, the accuracy regarding the degree of
coverage has to be as high as possible to guarantee the full understanding
of the particle’s behavior. At the same time, high density studies require a
production of large numbers of particles. The techniques recently developed
to address these needs can be essentially grouped in three categories [63]:
self-assembly, masking and phase separation (see Fig.2.7(a)).

Self-assembly techniques rely either on the creation of block copolymers
or on other types of chemical bonds. To pursue this strategy an excellent
knowledge of chemistry is essential. Fig.2.7(b) shows, for instance, some
Ps−SiO2 dumbbells realized by growing polymer beads after tethering SiO2

particles to a monomer through acid-base interactions [64, 65]. Alternative
linking methods are largely available in literature and a detailed list can be
found in Refs. [65, 63].

A second approach is based on functionalizing selectively one side of the
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colloidal surface by masking (or shadowing) the other side. Deposition, evap-
oration and sputtering are definitely the most widely-used methods amongst
this category. Homogeneous colloidal beads are hereby dried on top of a flat
surface and the obtained substrate is then coated, e.g., with metallic vapors,
in high vacuum chambers. The spherical shape of the colloids provides auto-
matically the desired shadow; as a consequence, the degree of coverage can
be easily tuned by tweaking the angle between the substrate and the stream
of material that is being deposited. Combining masking and self-assembly
schemes, it is also possible to link nanoparticles to a selected area of the col-
loid (see Fig.2.7(c)) provided that the particle is partially sunk into a soft
material [66, 65]. Despite the handiness of the above-mentioned methods,
the use of planar solid substrates restricts the number of colloids that can be
coated during one single process. It is trivial to understand that a monolayer
of particles is strictly needed. To overcome this problem and move towards
the fabrication through masking of very large quantities of Janus particles,
S. Granick and his group recently developed a novel masking method based
on the concept of Pickering emulsions [52, 69]. In short, microparticles are
trapped at the interface of a wax/water emulsion, preventing the droplets
to coalesce5. The degree of sinking can be easily controlled according to the
Young’s law. Once the colloids seat at the wax-water interface, the outer
region is functionalized by, e.g., adding additives to the continuous phase
as shown in Fig.2.7(d). Compared to deposition on planar surfaces, the
spherical geometry hereby increases tremendously the interfacial areas and,
therefore, the amount of producible patchy particles.

Another method to fabricate in situ heterogeneous colloids consists in
combining two immiscible components. A typical example is illustrated
in Fig.2.7(e) [68]: two immiscible polymer solutions are thermally cross-
linked after electrodynamic jetting through micro-capillaries. In Fig.2.7(e)
one solution is labelled with a dye to demonstrate the effectiveness of this
building procedure.

2.2.2 Examples of self-phoretic swimmers

As mentioned before, despite the appealing topic of self-assembly, this thesis
will be focused on employing Janus and patchy particles as self-propelling
engines rather than as building blocks. I have also stressed enough that
breaking the symmetry of the surrounding fluid is crucial to raise phoretic
forces and achieve, thus, an effective propulsion. The Golestanian’s swim-
mer, shown in Fig.2.6(b), clarifies how a patch, that chemically interacts
with the fluid, could provide non-homogeneous environmental features. Fol-
lowing this paradigmatic example, a reaction rate between patches and fluid

5This kind of stabilization of emulsion through particles is well know in literature as

Pickering emulsions and credits the scientist who first described the phenomenon [70]
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Figure 2.8: Catalytic swimmers. (a) Decomposition of H2O2 nearby the Pt coating

(cartoon taken from Ref.[15]). (b) Redox reaction across a Pt−Au rod suspended

in an hydrogen peroxide solution [15].

can be also realized experimentally.
The catalytic decomposition of hydrogen peroxide is, with no doubt, the

most exploited chemical reaction to device successful phoretic microswim-
mers. The effectiveness of this driving mechanisms has been demonstrated
on particles with diverse shapes and coatings [15, 71]. Nonetheless, the
simplest example involves commercial spherical colloids half-coated with Pt
and subsequently diluted in an aqueous solution of H2O2 [72, 73, 74, 75].
Purified water is used to avoid the presence of additional ions. When in
contact with fluid, the Pt catalyzes the breakup of H2O2 according to the
two steps chemical reaction (2.14) [75, 71].

H2O2 → Pt(H2O2) → H2O +
1

2
O2 + Pt (2.14)

with kinetic coefficients k1 and k2, respectively. The chemical dismuta-
tion obviously leads to the consumption of H2O2 and to the production of
O2. This happens selectively close to the Pt-coated hemisphere (see sketch
in Fig.2.8(a)), whilst the other side of the colloid is initially surrounded by
bulk conditions, i.e., ∇2[H2O2] = 0 and ∇2[O2] = 0. Of course, the situation
evolves in time due to diffusion of the species. Naively, we expect the typical
pure diffusiophoretic migration, where vs ∝ ∇[fuel]; the pre-factor repre-
senting the phoretic mobility is theoretically only biased by the properties of
the interface (see §2.1 for more details). Electrophoresis does not enter the
description because no ions are present. Hence, once the fuel concentration
is known, the phoretic slip velocity can be calculated using Eq. (2.12).

As a matter of fact, the fuel distribution [fuel] can be precisely derived
solving the reaction-diffusion of the fuels involved in the propulsion: H2O2

and O2. On top of this, [H2O2] and [O2] need to satisfy the following balance:

Dhp[H2O2] +Dox[O2] = Dhpn∞ (2.15)

where Dhp and Dox are the diffusion coefficients of the two species and
n∞ is the bulk concentration. Taking into account all these considerations,
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Golestanian and coauthors solved the problem and found three characteristic
regimes, depending on the reaction rates and the size R of the colloid [75].
I am going to present them only on a very qualitative level.

1. If k1 ≫ k2, i.e., if the second step of (2.14) is much faster than the
first, the overall reaction is controlled by the concentration of H2O2.
If this is true, the concentration gradient ∇n of Eq. (2.12) is directly
given by [H2O2], yielding a linear increase of vs with the concentration
of hydrogen peroxide [74].

2. At high [H2O2] the first step saturates and ∇n becomes proportional
to the rate k2 of the second reaction. The linear relation between vs
and [H2O2] vanishes.

3. If both the reaction rates k1 and k2 are fast or the size R of the colloid
is sufficiently large, the reaction-diffusion problem is dominated by the
flux of reactants towards the Pt coating, leading to a slip velocity that
scales as a 1/R [75].

Chronologically, Pt-coated colloids were not the first to employ the cat-
alytic reaction as propulsion mechanism. A similar directed motion was ear-
lier observed with bi-metallic rods dispersed in the same hydrogen peroxide
solution [76, 77, 78]. In their trailbreaking work, Paxton and collaborators
studied the self-propulsion of nano-rods, half made of Pt and half of Au
as illustrated in Fig.2.8(b). The Pt side is still routinely used as catalyzer,
although similar effects have been later reported using other metals, such as
Ni [79, 80], or enzymes [81]. Very recently Palacci et al. demonstrated that
the decomposition of H2O2 can be also obtained through hematite cubes
upon light exposure [82].

Nonetheless, compared to the single Pt-coated particles described before
(Fig.2.8(a)), the presence of a second metallic side, usually made of Au,
largely complicates the scenario. In fact, as shown in Fig.2.8(b) a redox
reaction takes also place, i.e., the Pt and the Au side are reduced and
oxidized, respectively. This reaction proceeds with a flux of e− inside the
particle balanced with a migration of ions in the electric double layer. If we
recall the notions introduced in §2.1 the flux of ions inside the interfacial
region is the precondition for any sort of electrophoretic drift. Therefore,
the propulsion is hereby biased not only by diffusiophoretic force but also
by the interfacial electrophoretic slip.

Even though microswimmers driven by the catalytic dismutation of hy-
drogen peroxide are doubtless the most widely used, the past years regis-
tered the development of other types of phoretic propellers. Amongst them,
it is worth to spend some words about recent advances in the fabrication of
purely thermophoretic microswimmers [83, 84].
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(b)(a)

Figure 2.9: (a) Cartoon showing the motion of propellers driven by self-

thermophoresis [84]. (b) Schematic illustration of the experimental method used

to achieve a self-thermophoretic motion. Au coated colloids, floating in water, are

illuminated by a rather focused laser beam [83].

As extensively discussed in §2.1, a directed drift can be obtained even
without any gradient of chemical species as long as a temperature profile
surrounds the probe (thermophoresis). In analogy with the examples of
self-propelled particles provided above, when the temperature gradient is
generated by the colloid itself, the motion is address as self-thermophoretic
(see Fig.2.9(a)).

A local temperature gradient around a micrometric colloid is achievable
by heating selectively a patch. M. Sano and coworkers showed that this can
be done by coating one hemisphere of a spherical SiO2 colloid with a light-
absorbing material, such as gold, as schematically illustrated in Fig.2.9(b).
These Janus particles are then diluted in deionized water to rule out the
influence of other phoretic phenomena, alias electrophoresis and diffusio-
phoresis.

Under illumination with green light, the SiO2 side behaves as trans-
parent whereas the Au hemisphere is heated due to absorption. The heat
propagates into the fluid establishing a temperature gradient in the prox-
imity of the colloid as nicely shown in Fig.2.9(a). The problem becomes
analogous to the diffusiophoretic one, provided that we replace the diffusion
equation by the heat transfer and the diffusiophoretic mobility by the Soret
coefficient [84].

Nevertheless, thermophoretic migrations are always very small unless
a steep temperature gradient is applied. For this reason the illuminating
beam must be rather powerful (40 mW ) and focused: as shown in Fig.2.9(c)
the laser spots a very limited area around the particle. This prevents the
investigation of large displacements, which the main drawback of the system.
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Chapter 3

Active Brownian Motion

In Chapters 1 and 2 I focused the attention on how micron-sized probes,
either natural or manmade, can propel themselves in a liquid. I described
how internal driving forces can be achieved with particular geometrical con-
figurations (bio-inspired microswimmers) or through the local modification
of the environment (phoretic microswimmers). In both cases, self-propelled
particles become equipped with a ballistic speed that constantly points in
the direction of the driving force.

In this Chapter, which is partially inspired by Refs. [85, 86], I will
consider the effect of a directed propulsion onto the motion of micro- or
nano-metric particles. Because of their small size, such particles already
possess an intrinsic motion, due to thermal fluctuations, when suspended in
a liquid. This motion is well-known as Brownian diffusion and describes the
agitation (both translational and rotational) of objects in equilibrium in a
fluid at T ̸= 0 K. When these thermal fluctuations are coupled with an
internal ballistic propulsion, we observe a novel type of motion that naively
inherits the properties of both contributions. To underline this double nature
people commonly address this behavior as Active Brownian motion.

I will first present the features of classical Brownian diffusion, from a
physical as well as from a more mathematical point of view. I will then ex-
tend the notions to the behavior of Brownian objects supplied with some sort
of activity. In the latter case the literature is not as advanced as for Brow-
nian particles; I will therefore introduce two well-established approximated
models that lead to a good description of the system and, in particular, to a
helpful interpretation of the experimental trajectories. Finally, I will briefly
go through some basics about hydrodynamics of self-propelled particles.

3.1 Brownian motion

To acknowledge the first observation of what is nowadays called Brownian
motion we need to travel back to the beginning of the 19th century. In 1827,
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Robert Brown, a well-regarded Scottish botanist, reported that pollen grains
with a size of few microns, while floating in water, have a motion that arises
“neither from the current of the fluid, nor from its gradual evaporation, but
belongs to the particle itself” [87].

It then took about 80 years until physicists started being intrigued by
this phenomenon, providing some sort of explanation for it. In the beginning
of 20th century, the problem was tackled almost simultaneously by two
renowned scientists: Albert Einstein and Marian von Smoluchowski.

In 1905, Einstein published the first physics paper about Brownian mo-
tion [88]. He revisited the problem in terms of osmotic pressure arguing that
a particle suspended in the fluid behaves as particles dissolved in it [89]. By
matching osmotic pressure forces with the resistance of the fluid due to
friction he ended up with his famous relation for the diffusion coefficient,
i.e.

D0 =
kT

mγ0
, (3.1)

where, according to Stokes’ theory, mγ0 = 6πηR, for a spherical particle
with radius R immersed in a fluid of viscosity η.

During the time Einstein published his remarkable work, Smoluchowski
was working on the same topic with a different point of view. He published
his results [90] one year after Einstein’s paper (we could refer to this as “bad
timing”). Smoluchowski had a more mechanistic approach to the problem:
he formulated a detailed kinetic model based on the collisions of light and
heavy hard spheres that mimic the solvent and the probe, respectively. In
spite of a large number of approximations, the resulting diffusion coefficient
differed from (3.1) only by a factor 32/27.

3.1.1 The Langevin equation

In 1908, P. Langevin, in the attempt of overcoming Smoluchwski’s approxi-
mations, found a link between Einstein’s and Smoluchowski’s theories [91].
Langevin’s approach is very straightforward as it is based on one of the
benchmarks of phyisics: the Newton’s law. Because of its simplicity, his
model is very pedagogical and still largely used during basic lectures about
Brownian motion.

In short, if we consider a particle with mass m suspended in a fluid of
viscosity η, the 1D force balance reads as follows:

m
dv

dt
= −γ0v + ξ(t) (3.2)

γ0 is again the friction coefficient and ξ is an additional force introduced
to include in the description the interaction between the particle and the

30



3.1 Brownian motion Active Brownian Motion

molecules of the solvent. Since ξ is artificially added to Eq. (3.2), we can
anchor some restrictions inspired by its fluctuating nature.

• ξ must be isotropic, i.e., ⟨ξ(t)⟩ = 0.

• ξ is assumed to be Gaussian white noise, ergo it neither shows time
autocorrelation for t′ ̸= t nor is correlated with the position and the
velocity of the particle, i.e.

⟨
ξi(t)ξj(t

′)
⟩
= δtt′δij (3.3)

⟨ξ(t)x(s)⟩ = 0 (3.4)

⟨ξ(t)v(s)⟩ = 0 (3.5)

The Gaussian assumption is motivated Central Limit Theorem since
ξ(t) is the sum of several independent forces.

Eq. (3.2) cannot be solved exactly because of the unknown force ξ(t),
on which only few statistical requirements have been made. However, the
derivation of some averaged quantities is still possible.

In particular, applying the equipartition theorem
⟨
v2(t)

⟩
= kt/m and

taking into account the properties of ξ(t) defined above, one can analytically
derive the 1D mean square displacement

⟨
x2(t)

⟩
1.

⟨
x2(t)

⟩
=

2kT

γ0
t+K · e−

γ0
m

t. (3.6)

where K is an integration constant. The ratio m/γ0 is the relaxation
time of the particle and, for typical situation, is orders of magnitude shorter
than 1 s. Although the result (3.6) seizes even very small time scales, for
practical applications, the exponential term is usually neglected2, yielding

d
⟨
x2(t)

⟩
dt

=
2kT

γ0
= 2D0 (3.8)

The generalization to the 3D case is trivial and leads to

1Even though I only report explicitly the 1D mean square displacement, the whole

derivation can be easily extended to the 3D case since the equipartition theorem in 3D

reads as
⟨
v2(t)

⟩
= 3kt/m.

2At low Re number the systems are inertia-free, so we can alternatively solve

0 = −γv + ξ(t). (3.7)
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d
⟨
r2(t)

⟩
dt

= 6D0 (3.9)

Therefore, the mean square displacement of a Brownian particle scales
linearly with time and the slope of the line is directly related to the diffusion
coefficient D0 of the particle.

Finally, using the Langevin equation and similar arguments, one can
also extract some information about the mean velocity. Amongst them, it
is certainly worth to remark that, if the particle is initially in equilibrium,
its mean velocity ⟨v(t)⟩ is zero for each following time step t.

3.1.2 A stochastic approach: the Fokker-Plank equation

The Langevin equation provides access to mean quantities in the (−→r ,−→v )
phase space. Despite the importance of these parameters, the Brownian
behavior of a particle contains much more information. For instance, how
do the probability distributions look like? This is key-question in statistical
physics where we are usually interested in understanding the probability
that a particle i at time t is in a certain position −→r with velocity −→v . In
order to grasp this additional knowledge, it is necessary to look deeply into
the properties of the fluctuating force ξ(t).

The stochastic calculus, which became popular in the beginning of the
20th century, is a powerful tool to treat non-deterministic phenomena. The
random fluctuation of Brownian particles obviously belongs to this category.
It is however important to remark that, although the stochastic descrip-
tion provides additional statistical information, the Langevin equation is
still needed to identify the suitable parameters that have to be used in the
stochastic calculus.

Let us review how the probability distributions p(x, v, t) can be easily
derived from the Fokker-Plank equation A.133 in the 1D4 case of a single
Brownian particles immersed in a liquid. If the systems is overdamped, the
Langevin equation corresponding to such system is:

0 = −γ0v + ξ(t) (3.10)

with ẋ = v. Extracting the transitions moments from A.7 and A.8, the
drift and the diffusion coefficients (b(x, v, t) and σ(x, v, t), respectively) are:{

b(v) = −γ−1
0 v

σ = kT
γ0

≡ D0
(3.11)

3Readers that wish to have a hint about the mathematical features of this equation

can refer to the Appendix of this thesis.
43D systems are described conceptually in the same way but the notation is tougher.

32



3.1 Brownian motion Active Brownian Motion

We can now rewrite the Fokker-Plank equation for the x variable alone.
In this case p(x, t) becomes a density distribution ρ(x, t) and satisfies the
following differential equation:

∂ρ

∂t
= D0

∂2ρ

∂x2
. (3.12)

(3.12) is well-known as Fick’s (or diffusion) equation and yields a Gaus-
sian distribution of the displacements.

On the other hand, considering the Fokker-Plank equation for the whole
phase space (x, v), we obtain, for the probability distribution p(x, v, t):

∂p

∂t
=

∂

∂v

(
γ0vp+D

∂p

∂v

)
− v

∂p

∂x
(3.13)

Eq. (3.13) is known as Kramers-Klein equation and leads to a Maxwell
distribution of the velocities.

For completeness, the scenario is only slightly more complicated when an
external field U(x) is present. Following identical arguments one can easily
show that:

• The density distribution obeys the so-called Smoluchowski equation,
i.e.

∂ρ

∂t
+

1

γ0

∂U(x)ρ

∂x
= D

∂2ρ

∂x2
(3.14)

• p(x, v, t) is distributed according to the famous Maxwell-Bolzmann
statistics, i.e.

p(x, v) = cost · e−
U(r)
kT · e−

γ0v
2

2D0 (3.15)

3.1.3 The unrestricted random walk

So far, I have discussed how some quantities (e.g., the mean displacement
or the probability distributions) can be extracted using both a classical and
a stochastic description of Brownian motion. But how shall we characterize
the trajectories of Brownian particles?

The evolution of the positions is usually modelled using random steps
of finite length in a a lattice, as displayed in Fig.3.1. This type of motion
is known as unrestricted random walk since the reorientation angle is drawn
completely at random.

Is there a mathematical way to seize the properties of these paths? The
answer is yes. Just as Einstein and Smoluchowski were formulating their
theories of Brownian motion, a statistician, named Karl Pearson, proposed
a different approach to the problem of diffusion [92]. The Brownian particle
is hereby traced as a random walker, travelling in a 1D lattice (again the 3D
case is not qualitatively different) with steps of length l at times 0, τ, 2τ, ...
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Figure 3.1: An unrestricted random walk on a 2D lattice (picture taken from

Wikipedia).

The probability that the particle is at a distance ml after a time nτ is given
by a binomial distribution with mean 0 and variance n, i.e.

p(m,n) =
n!

2n
(
n+m
2

)
!
(
n−m
2

)
!

(3.16)

After enough time, the probability distribution (3.16) converges to a
Gaussian due to the Central Limit Theorem. In particular, it can be shown
that the position of the particles becomes normally distributed with mean 0
and variance l2t/τ [85]. Therefore, in the continuous limit (τ → 0) and defin-
ing the diffusion coefficient D as l2/2τ , the probability distribution p(m,n)
satisfies the Fick’s equation (3.12). In conclusion, the positional properties
of a Brownian diffuser can be easily described in a purely mathematical way
considering a walker that randomly reorients at each time step.

3.2 Active Brownian motion

Let us go back for a while to the system of self-propelled we wish to un-
derstand. Micrometric colloids are small enough to possess the Brownian
features highlighted in §3.1 when dipped into a liquid. However, their mo-
tion cannot be oversimplified as an unrestricted random walk since an inter-
nal propulsive force always comes in play along with the classical diffusion.
Hence, the motion of these active particles is way more complex...

Janus particles can be driven in (or in the opposite) direction of the
coating by means of self-generated phoretic forces, as extensively described
in §2.2. Because of rotational diffusion the particle’s orientation and, as
a consequence, the direction of the internal driving change in time. The
resulting trajectory, schematically illustrated in Fig.3.2(a), shows therefore
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(a) (b)

l l

(c)

Figure 3.2: (a) Schematic trajectory of self-propelled Janus colloids with persis-

tence length l. (b) Sketch of a “run” and “tumble” motion with persistence length

l. For E.coli the “runs” and the “tumbles” are achieved bundling or unbundling

their flagella, respectively (see cartoons next to the trajectory). (c) Example of a

persistent random search strategy on a 2D lattice [93].

a “persistence” that leads to characteristic length l of the motion. In plain
words, an active particle has the tendency to keep a straight motion and
this tendency is more and more pronounced the slower the colloid rotates.

The presence of a persistency characterizes also the motion of several
biological organisms (bacteria and cells). “Run” and “tumble” bacteria,
for instance, chase food performing persistent straight paths abruptly in-
terrupted by random reorientations (tumbles), as previously mentioned in
§1.2. The tumbling rate obviously defines the duration of the persistency
(see Fig.3.2(b)). This “run” and “tumble’ motion can be reproduced with
self-propelled particles alike in a quasi-2D configuration: When the trans-
lational motion is constrained in 2D (for instance by glass slides) but the
particle rotates freely in 3D, any driving force pointing out of the 2D plane
is screened by the confinements. This results in an effective tumbling when
the propulsive force happens to be perpendicular to the 2D plane.

The first attempt to incorporate a persistency into a classical “unre-
stricted random walk theory” gave birth to the so-called Levy flights. In
short, the basic idea is to allow the presence of large “jumps” by drawing
the spacial steps out of a long-tail exponential distribution. The resulting
trajectories are thereby defined by very long segments alternated with short
ones. This type of path has been extensively use to model food search-
ing strategies of animals and microorganisms when the targets are sparse
[94, 95, 96, 97].

Nevertheless, it is important to remark that this kind of walk keeps being
unrestricted because reorientations still happen at random; therefore, Levy
flights do not mimic correctly the persistency.

During an unrestricted random walk (read, Brownian motion) the po-
sition at time t is only given by the immediately previous state and the
transition probability. Stochastically speaking, unrestricted random walks
are Markov processes (see Appendix A for a proper definition of Markov
processes). On the other hand, the active motion of self-propelled particles
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and bacteria is strictly non-markovian since positions are also affected by
the persistence of the orientation. In other words, whilst Brownian mo-
tion is fully uncorrelated, active trajectories show a short time correlation.
For these reasons, random walk of active particles are usually addressed as
persistent (or correlated) random walks. A typical example of correlated
random search on a 2D lattice is shown in Fig.3.2(c).

Needless to say, uncorrelated random walks are mathematically far more
complicated to handle and a feverish discussion is still in progress. Using
numerical simulations we can partially overcome the impasse by coupling
the Smoluchowski equation 3.14 with a particle’s orientation that undergoes
a free rotational diffusion. Hereafter, I will present an approximated model
[86, 98, 99] that provides some useful information about active Brownian
trajectories, e.g., mean square displacement as well as long and short time
behavior, . In line with §3.1 I will discuss a physical approach first, followed
by few hints regarding random walks theory.

3.2.1 The Langevin and the Fokker-Plank equations

When we write down the 2D Langevin equation (3.2) describing an active
Brownian particle, an internal propulsive force needs to be added to the
balance.

m
dv

dt
= −γ0v+ fprop + ξ(t) (3.17)

Since the self-propelled particle takes up energy from the environment
and converts it into directed motion, the contribution of the internal force
can be included into drag coefficient that thereby becomes velocity-dependent,
i.e.

m
dv

dt
= −γ(v)v+ ξ(t) (3.18)

This manageable approach is very powerful in its simplicity: a suitable
choice for the function γ(v) permits to seize rather variegated phenomena,
where, for instance, the energy is stored (pumping) or dissipated. The main
drawback is related to the fact that the choice of γ(v) is arbitrary. To
overcome this problem, Schweitzer and coworkers proposed the following
general expression for γ(v) based only on energetic observations [99]:

γ(v2) = γ0 −
qd

c+ dv2
(3.19)

where γ0 is the bare friction coefficient, and q, d, and c sketch the “pump-
ing”, the conversion into kinetic energy and the dissipation, respectively.

The velocity-dependent friction coefficient γ(v) can be finally plugged
into the Fokker-Plank equation (3.13) that describes the probability distri-
bution p(r, v, t), yielding
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∂p

∂t
=

∂

∂v

(
γ(v)vp+D

∂p

∂v

)
− v

∂p

∂r
(3.20)

where D is defined in the velocity space5. Although general solutions
can be extracted from (3.20), self-propelled colloids belong to the particular
case in which the dissipation is negligible, i.e., the whole energy gets con-
verted into kinetic motion. Under this assumption, it is possible to calculate
precisely the 2D mean square displacement of the self-propelled particles in
the real space [100].⟨

(r2(t)− r2(0)
⟩
= 2Dτ2r t+Dτ3r

[
e−

2t
τr − 1

]
(3.21)

in which τr stands for the typical rotational time of the particles. More-
over, v2 is linearly related to τr with a slope given by the diffusion coefficient
in the velocity space, i.e., v2 = Dτr. Moving back to the real space and
considering the coupling between translation and rotation for a spherical
geometry Eq. (3.21) becomes [74]:

⟨
(r2(t)− r2(0)

⟩
= 4D0t+

v2τ2r
2

[
2t

τr
+ e−

2t
τr − 1

]
(3.22)

with temporal limits⟨
(r2(t)− r2(0)

⟩
= 4D0t+ v2t2 for t≪ τr⟨

(r2(t)− r2(0)
⟩
= (4D0 + v2τr)t for t≫ τr

(3.23)

Here D0 is the bare diffusion coefficient in the real space. The form
(3.22) of the mean square displacement describes well the particle’s roaming
when an internal force introduces a short time persistency. I will discuss
the practical implications of (3.22) within the experimental Section of the
thesis. For the time being, it is sufficient to remark that the motion of an
active particle (small enough to be subjected to Brownian fluctuations) is
defined by a ballistic behavior (

⟨
(r2(t)− r2(0)

⟩
∝ t2) at time scales short

compared to its rotational diffusion. On the hand, longer times lead to a
diffusive motion (

⟨
(r2(t)− r2(0)

⟩
∝ t); comparing the second Eq. (3.23)

with the classical 2D diffusive behavior where
⟨
(r2(t)− r2(0)

⟩
= 4D0t the

diffusion stands out to be enhanced, i.e., an effective diffusion coefficient can
be straightforwardly defined as:

Deff = D0 +
1

4
v2τr (3.24)

As side remark, it is worth to underline that Eq. (3.21) is more universal
than appears: τr, although introduced as rotational diffusion time, indeed
has the meaning of a generic reorientation rate of the particle. Therefore, Eq.

5The diffusion coefficient in the real space is simply given by D divided by γ2.
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(3.21) can be easily extended to “run” and “tumble” bacteria interpreting
τr as a tumbling rate.

3.2.2 The persistent random walk

As shown above, the use of a velocity-depend friction is a smart technique to
take into account the internal propulsions without loosing the Fokker-Plank
formalism of Brownian diffusion. With this trick non-markovian process are
stochastically treated as markonian.

Nonetheless, the same scaling of the mean square displacement can be
obtained with a completely different approach: it consists in analyzing the
random walk from a mathematical point of view in analogy with Pearson’s
arguments about unrestricted random walks (see §3.1.3). This way, the
trajectories of active particles can be described with no need of “faking”
their non-markovian nature.

As a reminder, unrestricted walks were characterized by random reori-
entations at each time step; in their continuous limit, they converged to the
classical Fick’s equation of diffusion. In contrast, when we deal with corre-
lated or persistent random walks the orientation can be maintained for two
or more time intervals. This implies that, keeping the same 1D formalism
used in §3.1.3, at each time step τi the walkers can either change direction
with probability ετ or keep going in the same direction with probability
1 − ετ [101]. The velocity during each step is constant and trivially equal
to the ratio between the length of the jumps l and the time interval τ .

Through simple probability arguments and with a pinch of math, it can
be shown that, in the continuous limit, the probability for a walker to be in
the position x at time t obeys the following differential equation [85, 101].

∂2p

∂t2
+ 2ε

∂p

∂t
= v2

∂2p

∂x2
(3.25)

Eq. (3.25) is known as Telegraph equation6 and it is the one to one anal-
ogous of the diffusion equation since it is derived with the same probability
arguments used in §3.1.3. Therefore, remarkably, random walks theory is a
simple, self-consistent and efficient mathematical tool to treat a broad vari-
ety of physical phenomena, as long as we know how an object navigates in
the liquid.

Once the form of the probability distribution is deduced from (3.25), the
mean square displacement follows automatically as

⟨
x2(t)

⟩
=

∫
x2p(x, t)dx (3.26)

6The name Telegraph equation has historical reasons; Eq. (3.25) was in fact formulated

by W. Thomson to model the propagation of telegraph signals [102].
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The solution is astonishingly in agreement with what obtained in previ-
ous Section with a totally different method. It reads as

⟨
x2(t)

⟩
=
v2

ε

(
t− 1

2ε
(1− e−2εt)

)
(3.27)

where 1/ε generalizes the role of τr in Eq. (3.22). Again, for times
small compared to 1/ε the mean square displacements has an approximated
quadratic behavior, whereas large ts lead to an effective diffusion.

3.3 Hydrodynamics in active suspensions

The motion of active organisms in a fluid contains striking features also from
an hydrodynamic point of view. The hydrodynamics of microswimmers has
been extensively studied during the last decade leading to a “sea” of phe-
nomena that are not observable in equilibrium, such as collective behaviors
or interactions with confinements [103, 104, 105, 106, 107, 108, 109, 110, 3].
Notice to motorists: A deepen analysis of all these effects could provide
enough material for a further thesis; the following paragraph only includes
few breadcrumbs about active matter hydrodynamics and certainly does not
aim to be exhaustive.

A noteworthy model to grasp the hydrodynamics of active swimmers is
based on a far field approximation [71]. A colloid driven by an external force
behaves as a force monopole, i.e., its flow field scales as with the inverse of
the distance r. The situation is totally different when the force is internal
as for self-propelling objects.

Self-phoretic swimmers show in fact a very fast (∼ r−3) decay of the
far field surrounding flow; hydrodynamically speaking, microswimmers that
possess the above-mentioned r−3 decay are often address as squirmers.

Other active organisms rather behave as force dipoles; in particular, de-
pending whether a swimmer moves using “arms” (puller) or “tails” (pusher),
the far field flow can be respectively sketched as in Fig.3.3(a) or 3.3(b). A
rear propulsion is typical of microorganisms equipped with long flagella as
in the case of E. coli bacteria, whereas ciliates usually swim with front
whip-like strokes (see §1.2 for details about these swimming mechanisms).

The take-home message is that the mechanism of propulsion strongly
affects the behavior of the flow field and the hydrodynamics can thus be
mapped if and only if the details of the driving force are fully known.

Nevertheless, a far field approximation sometimes is not enough to grasp
the entire pictures: as I will show in the experimental section, propellers can
get very close to each other, at distances where higher order terms need to
be take into account. Although very recent works [111] managed to map the
flow in the near field, at short distances the whole scenario is additionally
complicated by the appearance of lubrication forces. Luckily, under the
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(b)(a)

Figure 3.3: Far field hydrodynamics of (a) pullers (propelled from the front) and

(b) pushers (propelled from the rear). The blue and the red arrows sketches the

flow field and the force dipole, respectively.

experimental conditions that will be considered, hydrodynamics does not
change dramatically the qualitative behavior of the system of self-propelled
particles. In most of the experiments that I will present hydrodynamic
effects are indeed proved to be negligible.
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Part II

Experimental details
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Chapter 4

Sample fabrication

The experimental system I will present in the following Chapters exploits a
self-phoretic propulsion. Within §2.2 I’ve described several methods, avail-
able in the literature, to achieve a phoretic internal driving. All these tech-
niques have in common the need of modifying asymmetrically the proper-
ties of the the particle’s surrounding in order to create a gradient localized
nearby the colloid. These non-homogeneities can either involve a chemical
(e.g., ionic) distribution or a temperature profile.

Because of the asymmetric surface properties, Janus and patchy colloids
are perfectly suitable for this goal and their fabrication has been supported
by a large experimental effort during the past decades. In §2.2 I have il-
lustrated that, choosing the right combination particle/solvent, Janus col-
loids can be propelled by electrophoretic, diffusiophoretic or thermophoretic
forces. Although the self-propulsion mechanism used in this work has several
novel features, it fits well in this background.

In this Chapter, I will introduce the ingredients that have been em-
ployed to perform the experiments. I will not focus on the propulsion, i.e., I
will do nothing but listing each element that characterizes the experimental
systems. In short, I am basically going to refer to three ingredients:

1. The Janus particles, i.e., silica colloids coated using evaporation meth-
ods.

2. The solvent, i.e., a binary mixture kept at the critical concentration
and heated beyond its critical point.

3. The illumination which provides a selective heating onto the light-
absorbing side of the colloids.

Finally, I will spend few words on how the recorded videos are analyzed;
in particular, I will briefly explain how the colloids are tracked in order to
reconstruct their trajectories and, therefore, to understand the properties of
their motion.
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Evaporated metal

Gold coating

Silica colloid

(b)

(c)

(a)

Figure 4.1: (a) The evaporation unit. (b) Cartoon of the two steps carried out

during the evaporation. Left: a suspension of SiO2 is spread on a glass slide.

Right: a metallic layer is evaporated onto the exposed hemisphere. (c) A scanning

electron microscopy image [115] of a colloidal particle with a 20 nm thick gold cap

(highlighted).

4.1 The particles

4.1.1 Fabrication of Janus colloids via evaporation methods

In order to produce the Janus colloids that will subsequently serve as self-
propelling phoretic particles we employ a standard evaporation method.
This technique has been largely used in recent experiments due to its relative
handiness [52, 65, 74, 72, 83, 112, 113, 114].

The protocol is rather straightforward: homogeneous SiO2 colloids, pur-
chased in aqueous solution from Microparticles GmbH, are poured on top
of a glass substrate as shown in Fig.4.1(b) (left).

After drying, the slide is place upside down inside an evaporation unit
(Fig.4.1(a)). The boats located at the bottom of the chamber are then
loaded with the material that will be later evaporated. The chamber is fi-
nally closed and brought to high vacuum conditions by means of two neigh-
boring pumps. The low pressure assures the right cleanness of the sample as
well as it maximizes the mean free path of the evaporated particulate, which
can therefore hit directly the target as shown schematically in Fig.4.1(b)
(right).

To trigger the evaporation, the frame that holds the source material is
heated by an electric filament at a suitable current. The melting point of
the material sets of course the value of the current, whilst the evaporating
time defines the thickness of the coating. Finally, the evaporation angle
determines the ratio of patchiness; in particular, the half coverage is obtained
by evaporating at 90 degrees.

Once the process is completed the patchy colloids are shaken out of the
colloidal substrate using an ultrasonic bath and diluted in a chosen solvent.
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The single particle experiments presented in the next Chapters are per-
formed using Au-coated colloids (see SEM-picture in Fig.4.1(c)). The thick-
ness of the Au layer is usually set to 20 nm. An additional thin layer of Cr
(2 nm) is added underneath the gold to provide a good adhesion. As we will
see in details throughout the following Chapters, the role of the gold coating
consists in being selectively heated up when illuminated with green light in
contrast with the uncoated SiO2 hemisphere that remains transparent to
it. This way, a local temperature profile, necessary for the self-propulsion,
is achieved.

The gold coating can be replaced by a layer made of a different ma-
terial, provided that it absorbs enough light. With the same evaporation
unit (Fig.4.1 (a)) we have realized Al, Cu and Ag coatings and all of them
guarantee the light absorption needed for the propulsion. However, metals
have sometimes disadvantages as coating materials; for instance, we observe
a large attraction between gold-coated hemispheres due to Van der Waals
forces leading to a significant sticking.

4.1.2 Stability of multiple particles suspensions

If we work with multiple particles systems, such as dense suspensions of
Janus colloids, we need to take care that the coating is not going to affect
the overall colloidal stability, i.e., that the additional layer does not induce
attraction-driven aggregation.

Homogeneous SiO2 colloids are stable in aqueous solutions thanks to the
OH− ions that get bound to the silica atoms and, therefore, accumulate at
the colloidal surface. This cloud of ions provides an electrostatic screening
against aggregation. However, when an attractive force is added the situ-
ation might abruptly change and the colloidal suspension can collapse into
larger clusters.

For large enough attraction, the gain of energy overcomes the loss of
entropy and the suspension separates into a dense liquid or solid, and a dilute
gas phase. This behavior has been studied both theoretically [116, 117] and
experimentally with colloids characterized by tunable attractions [118, 119,
120, 121]. In my view, the most self-explanatory example (albeit not the
first in time) is the experiment performed in the Weitz’s group in Harvard
[121, 122]: a short-range attraction is hereby induced by the presence of
depletion agents in solution1. The strength of the attractive potential is
determined by the concentration of depletants. Long-range repulsions can
be screened by adding salt to the solution [121]. Real space snapshots are
taken using confocal microscopy (see Fig.4.2(a),(b),(c),(d)).

1Depletion forces comes into play when colloids are immersed, e.g., in a polymer solu-

tion. The attractive potential is triggered by the excluded volume between two neighboring

colloids [38].
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When the depletion forces are weak, the suspension remains homoge-
neous as in the absence of depletants (Fig.4.2(a)). Increasing slightly the
polymer concentration the colloidal beads start aggregating into small clus-
ters (Fig.4.2(c)) that, anyways, do not growth beyond a characteristic size.
This phase is commonly known as cluster fluid and has been experimen-
tally observed with or without additional repulsive potentials [121], although
it has been theoretically predicted only in the presence of long-range re-
pulsions [116]. Finally, higher attractions lead to the coalescence of the
small cluster into a large aggregate, i.e., to the phase separation of the sus-
pension (Fig.4.2(b)). For completeness, during this transition the dynam-
ics can eventually arrest yielding a non-percolating worm-like structure as
shown in Fig.4.2(d). This arrested state is know as gel phase, although this
“phase” is purely kinetic and does not have any thermodynamic meaning
[122, 117, 123, 116].

Since SiO2 homogeneous colloids do not show aggregation, in our ex-
perimental systems, attractive forces could be only due to the coated side.
We realized that the origin of additional attractions is related to Van der
Waals interactions between the coated hemispheres. While the full form the
potential strongly depends on the geometries of the system, the strength of
the attraction is essentially given by the so-called Hamaker constant. The
Hamaker constant A is indeed the pre-factor of the Van der Waals potential
and gathers all the relevant parameters (e.g., the index of refractions or the
dielectric constants) that define the pair interaction mediated by a liquid.
The larger is A, the stronger is attraction between the particles. Literature
values are usually available for many common materials in aqueous media
[124].

By glancing at these tables, one can immediately notice that, compared
to other materials, A is particularly high in case of metallic surfaces. For
this reason, gold-capped colloids have the tendency to stick to each other,
as confirmed by experiments at high particles concentration. Hence, when
dealing with multiple particles systems, we decided to employ carbon-coated
colloids instead. The carbon is hereby deposited using a different apparatus,
yet based on a similar evaporation protocol2.

While the carbon layer remains as effective as the gold one in absorbing
green light (I will repeatedly highlight the importance of this aspect in the
next Sections), the Hamaker constant between two carbon surfaces immersed
in water is roughly one order of magnitude smaller (AAu

∼= 27 × 10−20 J
vs AC

∼= 3.7 × 10−20 J). Consequently to this, we expect weaker Van der
Waals attractions.

In fact, a qualitative look at a dense suspension of carbon-capped parti-
cles (see inset of Fig.4.2(b)) already proves the absence of significant aggrega-

2We are grateful to the biology institute of the University of Stuttgart for granting us

with the use of their facility.
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(a) (b)

(c) (d)

(e)

Figure 4.2: Confocal pictures [121] of: (a) Homogeneous colloidal fluid. (b) Phase

separated suspension. (c) Cluster fluid. (d) Gel-like phase. (e) Structure of the

passive suspension in equilibrium [125]: Experimental pair distribution function

g(r) at packing fraction 0.37 and simulation results employing the a purely repulsive

(blue line) or a slighly attractive (red line) potential. The inset shows a microscope

image of the system of carbon-coated colloids (R = 2.13 µm, the coating is not

visible at the 50X magnification used to take the snapshot). The suspension is

confined in 2D.

tions. The suspension appears homogeneous and, in time, we do not observe
the formation of clusters under equilibrium conditions. To justify this state-
ment on a more quantitative level we decided to plot the pair correlation
function of the highlighted suspension in order to estimate the attractive
potential [125]. The pair correlation (or radial distribution) function g(r)
describes indeed the density distributions in terms of relative position be-
tween the particles. In equilibrium and for dilute systems, it can be related
to the pair potential U(r) as follows:

g(r) = e−
U(r)
kT (4.1)

In Fig.4.2(b) the experimental g(r) (black circles) is compared with nu-
merical simulations recovered with different attractive potentials. The blue
curve considers purely repulsive hard spheres, whereas the red line also in-
cludes small attractive forces of the order of 0.5kBT . Therefore, a weak
attraction is still present but 0.5kBT is not sufficient to induce attraction-
driven aggregation which comes into play with values above the kBT thresh-
old, instead [121, 116]. For this reason the colloids will be often reasonably
approximated with repulsive spheres, described by the following pair Yukawa
potential:

UY (r) = p1
e−r/p2

r/p2
(4.2)

where p1 and p2 are parameters chosen to match the physical values.
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4.2 The solvent

4.2.1 The sample cell

After the evaporation/deposition step the Janus particles are ready to be
dissolved in a chosen liquid. As a solvent, for reasons that will be clear in the
next Chapters, we use a critical binary mixture of water and 2,6-lutidine,
an aromatic organic compound. The Janus colloids are added, at a desired
concentration, to the critical mixture and the resulting suspension is then
poured onto a glass slide.

In equilibrium, due to gravity, the colloids sediment to the bottom slide
with only a tiny spacing caused by the electrostatic repulsions between the
particles and the glass substrate. However, when the particles become self-
propelled a motion along the z-direction is also possible; to avoid this 3D
displacement and investigate the sole 2D motion of the colloids the sample
is sandwiched by a further cover slip and the edges are sealed with a solvent
resistant glue (see Fig.4.3(a)).

In order to prevent drift towards the edges, a further x, y-confinement
is added as shown in Fig.4.3(a). This cavity has an area roughly twice as
large as the field of view and a thickness equal to the diameter of the Janus
colloids. Such thin additional layer is prepared by spin-coating a photorestist
(SU-8, purchased from Microchem Corp.) on the bottom glass slide. The
cavity is then realized through standard lithography techniques [126]. Under
illumination with UV-light, the polymer is crosslinked and cannot be rinsed
away by conventional solvents, e.g., isopropanol. The cavity is therefore
“printed” if a suitable mask casts a shadow during the illumination process.
We employ the same technique to imprint more complicated structures, such
as obstacles with various geometries. The viscosity of the SU-8 and the spin
velocity determine the thickness of the layer.

4.2.2 Properties of the critical binary mixture

The binary mixture (water-2,6-lutidine) in which the colloids are immersed
has very unique properties. A simple fluid is usually characterized by first
order phase transitions, typically liquid-gas, liquid-solid etc. The name “first
order” is due to the fact that the free energy displays a discontinuity in its
first derivative with respect to some thermodynamic variable. In liquid-solid
transitions, for instance, this discontinuity shows up in the derivative with
respect to the chemical potential, i.e., in the density [128].

Critical binary mixtures of two fluids, such as water/2,6-lutidine, still
posses a first order criticality. The two liquids can either coexist in a ho-
mogenous phase or become immiscible forming an unstable emulsion of one
fluid into the other; the transition between these two states occurs, at a fixed
concentration of the species, increasing (or decreasing) the temperature. A

47



4.2 The solvent Sample fabrication

SU-8 photoresist Janus particles

Water-2,6 Lutidine critical mixture

(a) (b)

Figure 4.3: (a) Cartoon illustrating a typical sample cell used in the experiments.

(b) A schematic phase diagram for water and 2,6-lutidine. The insets are bright-

field microscopy pictures of the mixed (i) and the demixed (ii) phase at the critical

concentration [127].

phase diagram is usually plotted as a function of the mass concentration
ratio between the two species (x-axis) and temperature (y-axis). The curve
obtained setting to zero the first derivative of the free energy with respect
to density is called binodal : it separates the mixed and the heterogeneous
phases and has approximatively the shape of a parabola (Fig.4.3(b)). De-
pending on the concavity, the mixture is defined by either an upper or a
lower critical point. In the two cases the demixed phase is thus achieved by
decreasing or increasing the temperature, respectively.

On top of this binodal decomposition, critical mixtures are also charac-
terized, in the proximity of their critical point, by an additional feature. At
the critical point, also the second derivative of the free energy is zero and
this implies that the transition happens without any thermodynamic barrier
(spinodal decomposition). The large localized fluctuations due to nucleation
are thereby replaced by a continuous of clusters of the two species [128].
Thus the demixed phase shows, instead of the coalescence of droplets, a
worm-like structure (see inset (ii) of Fig.4.3(b)) with a correlation length
growing in time [129]. Novel soft material, called bijels, can be fabricated
arresting the growth through colloidal particles that sits at the interface
[130, 131]. Last but not least, the transition is utterly reversible, i.e., the
two fluids remix crossing back the critical point .

Fig.4.3(b) illustrates a schematic phase diagram of the critical binary
mixture of water and 2,6-lutidine employed in the experiments [127]. The
mixture has a lower critical point, i.e., water and lutine phase separate in
the area above the parabola. As mentioned above, the transition occurs
via nucleation and growth everywhere but in the proximity of the critical
point (Tc = 307 K, 0.286 mass fraction of lutidine). In order to exploit the
thermodynamic reversibility we always work at the critical concentration

48



4.3 The experimental setup Sample fabrication

Laser beam
(532 nm)

Acousto-optic deflectors

Sample
cell

CCD
Camera

Water heating/cooling

(a) (b)

Figure 4.4: (a) Side and (b) front view of the experimental setup. The sample is

illuminated from above and watched from below.

varying the temperature across its critical value: At the critical composition
and below 307 K the mixture is homogeneous, as shown by the bright-field
picture in inset (i) of Fig.4.3(b). Increasing the temperature above Tc, the
mixture separates via spinodal decomposition as described in the former
paragraph. The worm-like demixed phase appears as shown in inset (ii).
The physical properties of the mixture for different temperatures are nicely
listed in Ref. [132].

4.3 The experimental setup

The home-built setup used to perform most of the experiments is shown in
Fig.4.4(a) and (b) from two different angles. It basically consists in three
parts:

1. A monochromatic illumination implemented using a green laser beam.
The beam is first scanned by two Acousto-Optic Deflectors (Fig.4.4(a))
before hitting the sample from above (Fig.4.4(b)). The role of the
illumination is to heat selectively the coated hemisphere of the Janus
colloids, breaking, therefore, the symmetry of the system.

2. A water bath (connected to the sample cell with pipes as shown in
Fig.4.4(b)) that provides an homogeneous heating of the sample (p.n.,
the bath is not shown in the picture).

3. A long distance 50x objective and a CCD camera connected to a PC
(Fig.4.4(b)) in order to record real space videos of the colloidal sus-
pension.

For the study of asymmetric self-propelled particles (see Chapter 7) we
used a different apparatus, shown in Fig.4.5. It includes a commercial in-
verse microscope Nikon Eclipse TE2000-U equipped with a 100X immersion
oil objective. The microscope is coupled to a mercury lamp X-Cite 120
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Camera

100x objective
electrically heated

Green illumination

Figure 4.5: The apparatus employed for measurements of asymmetric microswim-

mers (Chapter 7). The mercury lamp X-Cite 120 is not visible but illuminates the

sample from below.

that has various light emission peaks at different wavelengths. The peak in
the green is usually singled out through a bandpass filter 550/100 to max-
imize the absorption of the gold coating of the Janus colloids. Compared
to a laser illumination, the power per area injected by the mercury lamp
into the system is much lower. Since the self-propulsion is effective only
if we work across the critical point the objective is also supplied with an
electrical heating that operates alongside a thermal bath to adjust the base
temperature.

In the following Sections I will only focus on the first setup (Fig.4.4(a)
and (b)).

4.3.1 Heating and illumination with green light

In the self-propulsion mechanism I will present in Chapter 5, the illumina-
tion is responsible of breaking the symmetry. The incident light is in fact
optimized to be uniquely absorbed by the coating of the particles, generating
thereby a local temperature gradient across the colloid.

Thus, we decided to utilize a monochromatic light beam with a frequency
centered within a high-absorption region of gold (the coating material). In
particular, we use the light (λ = 532 nm) generated by a 2.2 W (maxi-
mum power) of a green laser (Verdi, Coherent). After passing through some
mirrors the light hits the sample from above as shown in Fig.4.4(a) and (b).

To achieve a large illuminated area, typically around 400 × 400 µm2,
the laser beam is also first scanned using two Acousto-Optic deflectors (see
Fig.4.4(a)). These devices are made of a TeO2 crystal that deflects the
incident beam as schematically illustrated in Fig.4.6(a). The physical prin-
ciple is the following: a TeO2 crystal has the ability to change its refractive
properties when actuated by an acoustic transducer. The acoustic frequency
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Incident

Beam

Scanned

Beam

(a) (b)

(c)

(d)

Figure 4.6: (a) Cartoon explaining the working principle of an Acousto-Optic De-

flector (AOD). (b) Focused square light pattern obtained using two AOD. (c) Fo-

cused radial gradient pattern. (d) Homogenous illumination achieved by defocusing

the square pattern shown in (b).

hereby determines the scattering angle. A laser beam that travels through-
out the crystal can be therefore scattered with a controlled angle. In order
to scan the x and the y directions the beam is often guided by a pair of
Acousto-Optic deflectors (AOD).

AODs are often used for optical manipulation purposes, e.g., optical
tweezing. However, in our experimental system, we exploit the fact that
each deflection can be performed in a very short time interval, i.e., with
a jumping time up to 0.1 MHz. Due to this extraordinary high scanning
frequency, we obtain de facto quasi-static 2D light patterns like the ones
shown in Figs.4.6(b), (c). We usually employ patterns made of 4000 spots:
at 0.1 MHz, this corresponds to a repetition time (the time between two
consecutive scans of the same spot) of 40 ms. To confirm the quasi-static
nature of the illumination, we note that in 40 ms an active particle typically
travels a distance up to 0.2 µm which is smaller than the particle’s radius.
Since each spot is larger than the size of the colloids, we conclude that the
swimmers indeed experience a static illumination in the range of velocities
used in the experiments.

The AODs are controlled via PC by means of a commercial software
called “Tweez”. We typically make use of a simple square pattern (Fig.4.6(b)),
roughly twice as large as the field view, to achieve an homogeneous illumi-
nation throughout the sample. Nonetheless, AOD provide us with the pos-
sibility of making more complicated light fields such as the radial gradient
displayed in Fig.4.6(c).

Nonetheless, the highly focused light patterns shown in Figs.4.6(b) and
(c) exerts remarkable optical forces onto the colloid dispersed in solution.
Since we aim to have a smooth illumination, lacking such optical implica-
tions, the light that hits the colloidal suspension is finally strongly defocused
(spot radius ≈ 30 µm), leading to the homogeneous light field of Fig.4.6(d).
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(a) (b)

(c) (d)

Figure 4.7: Main steps of the tracking Matlab routine. (a) Original image. (b)

Stretched image. (c) Binary image obtained after applying the brightness threshold.

(d) Detection of the centers of mass of the colloids.

Calculating the power density, we estimated illumination intensities from
few up to roughly 10 µWµm−2 [127]. These values allow us to rule com-
pletely out optical forces which are typically relevant only for intensities at
least an order of magnitude larger [133].

The laser power is usually enough to heat, by absorption, the coating of
the particles from room temperature up to the critical point (Tc = 307 K) of
the surrounding binary fluid. However, smaller illumination intensities can
be also employed, provided that the whole sample is homogeneously heated
and kept at, typically, few degrees below the critical temperature. To do so,
in some experiments we did this connecting a water bath to the sample cell
(Fig.4.4(b)). This allowed us to access higher swimming speeds (details will
be provided within Chapter 5).

4.3.2 Video acquisition and analysis

Once a colloidal suspension is sealed inside a 2D confinement as previously
shown in Fig.4.3(a), its behavior (with and without illumination) is finally
watched and recorded in transmission using a CCD camera placed under-
neath the sample (see Fig.4.4(b)). The cavity is 400 × 400 µm2 large (p.n.,
the cavity has the same size of the illuminated area). We record the behav-
ior of the suspension in an area of 290 × 218 µm2, located approximately
in the middle of the cavity, using a resolution of 1280 × 960 pixels and a
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recording frequency of 7.5 frames per second.
In order to extract the trajectories of the colloids, we have implemented

in Matlab a customized tracking routine. It is essentially based on brightness
threshold levels, i.e., the particles are recognized when they appear brighter
(or darker) than the background. The main steps are illustrated in Fig.4.7.
The original image (Fig.4.7(a)) is first stretched to increase the contrast
with the background (Fig.4.7(b)). The RBG picture is then converted into
a binary image (Fig.4.7(c)), i.e., pixels brighter than a certain threshold
are converted into white, whereas the others turn black. The threshold
is optimized to detect the colloids. The center of mass of the white spots,
corresponding to the colloids, is finally detected and followed frame by frame
(Fig.4.7(d)). Additional filters can be introduced to address dense colloidal
suspension or situation where the background is not homogeneous, e.g., due
to the presence of obstacles.
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Chapter 5

Light-driven microswimmers

With this Chapter, I finally come to the core of the manuscript, matching
together all the concepts I introduced so far. To recap, in the former Chap-
ters we have seen that an artificial micrometric object (microswimmer) can
propelled itself in a liquid if and only if is able to break the time reversal
symmetry. A clever solution to do so consists in modifying asymmetrically
the local properties (e.g., chemical composition, ion density, temperature)
of the surrounding medium. This leads to an heterogeneous interaction be-
tween the surface of the particle and the molecules of the liquid, occurring
within a tiny superficial layer. An internal force (phoretic force) is directly
associated to this interaction. Thus, the particle acts as an autonomous en-
gine, capable of producing its own “fuel”. When the propulsion is combined
with the classical Brownian motion of a micro- or nano-metric particles,
the resulting motion (active Brownian motion) possesses very anomalous
features that are yet not fully understood.

Moreover, I’ve described several propulsive mechanisms that have been
recently developed to phoretically drive a colloid inside a liquid environment.
For instance, Janus particles show self-propulsion when they are able to
generate either a local chemical gradient (e.g., through the decomposition
of H2O2) or some kind of temperature slope.

In the next Sections, I will put together all the ingredients I have intro-
duced within Chapter 4 to devise a novel propulsion mechanism: we use a
laser illumination to heat up by light absorption the coated hemispheres of
Janus colloids. Particles are immersed in a critical mixture of water and 2,6-
lutidine which is kept close to its critical point. Upon a suitable illumination,
the binary mixtures located in the proximity of the heated hemispheres un-
dergoes a phase transition. When this happens, we observe that the colloids
start performing active Brownian motion.

At first glance, the asymmetric heating suggests a propulsion induced
by self-thermophoretic; however, I will point out that this is not the case.
Our colloids are driven by self-diffusiophoretic forces due to the criti-
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(a) (b)

(ii)

(i)
T>T
Local

Demixing

c

Critical mixture
T<Tc

Figure 5.1: Active Brownian micro-swimmers in a critical binary mixture. (a)

Schematic cartoon explaining the self-propulsion mechanism: a Janus particle is

illuminated and the cap is heated above Tc inducing a local demixing that eventually

propels the particle [127]. (b) Phase diagram and bright-microscopy snapshots of

the critical mixture of water and 2,6-lutidine. The points A and B stand for the

thermodynamic states when the laser is “off” and “on”, respectively [127].

cal decomposition of the binary solvent. I will also stress the advantages
and drawbacks of this driving method in contrast with other mechanisms
available in the literature.

5.1 The propulsion: self-diffusiophoresis

We observe that Janus colloids fabricated according to the protocol of §4.1.1
behave as active swimmers when are both immersed in a critical binary
mixture of water-2,6-lutidine and illuminated with green light.

To demonstrate the effectiveness of the propulsion and to elucidate the
principles behind it, we prepared a dilute sample of Janus colloids following
the method described in §4.2.1. We used silica spheres with radius R = 2.13
µm half-coated with 20 nm thick gold caps. The surrounding mixture is at
the critical concentration (0.286 mass of lutidine) and the sample cell is 7
µm high [115].

The base temperature of the system is controlled by a thermostat and
adjusted roughly one degree below the critical point Tc = 307 K. Therefore,
at the beginning of the experiment the whole sample is in equilibrium and
the solvent is described by the point A of the reported water-lutidine phase
diagram (Fig.5.1(b)). In particular, the mixture is everywhere homogeneous,
i.e., the two phases (water and lutidine) are mixed together as shown by the
bright-field picture in inset (i) of Fig.5.1(b).

The whole field of view is then illuminated with a green (λ = 532 nm)
laser light coming from above (see Fig.5.1(a)). As discussed in §4.3.1, the
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green light is chosen because it is located near the plasmonic absorption
peak of gold [134]. The laser beam is also scanned by two Acousto-Optic
Deflectors (AOD) and strongly defocused before hitting the sample (again,
refer §4.3.1 for details). The light intensity is always kept lower than ≈
10 µW µm−2 to rule completely out optical forces, that come in play with
values at least one order of magnitude larger.

Due to light absorption, the gold caps are heated above Tc. On the other
hand, the temperature at the silica side does not change because silica does
not absorb green light. The heating of the caps propagates all the way to
the neighboring liquid and triggers the local decomposition of the critical
mixture (Fig.5.1(a)). Inasmuch as we work at the critical concentration, this
transition occurs via spinodal decomposition: jumping from the point A to
the point B the solvent undertakes the bicontinuous worm-like structure of
inset (ii). Since the spinodal decomposition occurs without thermodynamic
barriers, the transition is utterly reversible, i.e., when the laser light is turned
off again, the binary fluid goes back to the mixed state (point A and inset
(i)).

If the laser is off the Janus particles simply perform classical Brown-
ian diffusion. On the contrary, when the light absorption triggers a local
demixing nearby the coated hemisphere, we observe that the colloids be-
come self-propelling undergoing a directed motion. The reason behind the
propulsion is embedded in the phoretic forces that arise when the liquid
nearby the particle has asymmetric physical properties, such as in the case
of a gradient. Depending on which kind of gradient surrounds the colloids
the propulsion can be caused by electrophoretic, thermophoretic or diffusio-
phoretic forces (see Chapter 2).

To clarify the main mechanism responsible of the driving, we took a
deeper look at the propulsion and we compared it with other phoretic swim-
mers recently devised.

On one hand, it is trivial that when only half of the particles is heated by
light absorption a thermal gradient naturally comes into play. Thus, ther-
mophoresis is naively the first “suspect”. Our experiment is, in fact, very
similar in spirit to the one carried out by Sano and coworkers [83] (§2.2.2)
where a thermophoretic propulsion was observed. In both case a gold-coated
colloid is illuminated with green light to generate a local temperature gra-
dient. The differences are the solvent (we use a critical mixture instead of
water) and the illumination intensities employed.

In Sano’s experiment, gold-coated colloids, dispersed in water, are driven
by thermophoretic internal forces when illuminated by the (slightly) defo-
cused green laser light. The illuminated spot is hereby rather small (10 µm
in diameter) and this leads to a power density larger than 100 µW µm−2. In
our case, due to a much wider illumination field, the light intensity is about
two orders of magnitude smaller. This implies that the temperature differ-
ence and, thus, the thermophoretic driving are expected to be much weaker.
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(a) (b) (c)

Figure 5.2: Light-induced heating. Temperature increase ∆T in the equatorial

plane of a Janus particle with R = (a) 0.5, (b) 1 and (c) 2 µm. In all cases, the

dashed line profiles the contour of the particle, the cap is on the left side and the

light intensity I is 1 µW µm−2 [127].

However, operating with a binary mixture across the critical point does not
allow us to isolate the thermophoretic contribute from effects caused by the
redistribution of the solvents (diffusiophoresis).

In order to confirm our feeling about the negligibility of thermophoretic
forces we performed the experiment illustrated in Fig.5.1(a) with bare wa-
ter at the same conditions of light intensity. In other words, we repro-
duced Sano’s experiment with a far weaker illumination. No active motion
is hereby observed. We therefore conclude that, in contrast with Ref. [83],
thermophoretic forces are not the main contribute to the propulsion in our
system.

To better understand the heating process induced by the illumination,
we have numerically estimated the temperature increase ∆T for an incident
light intensity comparable with the experimental values. Heat is generated
only in the cap because of the absorption associated to the imaginary com-
ponent of the dielectric constant of gold, and then diffuses in the surrounding
materials, i.e., the silica sphere and the water-2,6-lutidine medium, accord-
ing to the Poisson heat equation [127].

We followed the green dyadic method [135, 136] with the goal of simulat-
ing the light absorption of the gold coating. This method has the remarkable
advantage of focusing on morphology features while discarding volume ef-
fects. In short, this approach is based on the evaluation of the absorption
cross section σabs; under a uniform plane-wave illumination, this quantifier
has the following expression [135]:

σabs =
k

ε0 |E0|2

∫
NP

Im(εw) |E(r)|2 dr (5.1)

where k is the wave-vector of the incident light, εw is the permittivity of
the material and E0 and E(r) are the electric field of the incoming light and
the total electric field, respectively. The latter is calculated propagating E0

by means of an operator that is a function of the physical parameter of the
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illuminated material, i.e.,

|E(r)| =
∫

K(r, r’, w)E0(r
′)dr′ (5.2)

Once the absorption cross section is known the heat produced on the
metallic coating is simply given by its product with the irradiance of the
incoming light.

Q = σabs · I =
ncε0
2

|E0|2 (5.3)

where n is the optical index of the liquid.
Finally, the heat Q diffuses, according the classical Poisson heat equa-

tion, into the surrounding medium yielding the full temperature profile.
Considering the physical properties of the materials involved in the pro-

cess (gold, silica and water-2,6-lutidine), we derived, for different radii R
(0.5, 1 and 2.13 µm) of the Janus colloid, the results displayed in Fig.5.2.
The snapshots are obtained for a linearly polarized green illumination with
intensity 1 µW µm−2. The coated hemisphere is located on the left side of
the particle, whose contour is marked with the white dashed line; brighter
colors correspond to larger ∆T .

We notice a sharp temperature transition at the edge between the capped
and uncapped sides of the particle which validates the assumption that the
light is uniquely absorbed by the gold coating. Moreover, as the particle size
increases, ∆T becomes larger, because of the higher heat dissipation at the
metallic cap. Last but foremost, the temperature difference is in all cases
smaller than 0.7 K. This value, weighted across a distance of few microns
(the size of the colloid, is too small to provoke a noteworthy thermophoretic
migration1. We noted that these results are independent of the the base
temperature.

Rather than in thermophoretic forces we found a reasonable justification
for the directed motion in the local concentration gradient that comes along
with the decomposition of the mixture once the critical point is crossed.

When the heat generated by the illuminated coating is enough to lead
to the local spinodal demixing (Fig.5.1(a) and (b)), water and lutidine rear-
range around the particle according to its surface properties. In particular,
since Au and SiO2 are obviously two different material, they never pos-
sess the same degree of hydrophilicity. When no functionalization of the
surface is made, the evaporated Au is usually more hydrophobic than the
colloidal SiO2. Therefore, as soon as the phase separation happens, water
and lutidine tend to accumulate nearby the material they have more affinity
with.

1The strength of a phoretic force is given by the steepness of the gradient rather than

by its absolute value.
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To clarify this point we performed the paradigmatic experiment shown
in Fig.5.3. We basically repeated the single particle experiment highlighted
in Fig.5.1 with a further control over the surface properties of the evaporated
layer of gold. Before dispersing the Janus particles in the critical mixture
we spread a thiol solution on the particles and let it dry. The thiolate
groups strongly bond with the gold surface, thereby modifying its surface
preference. In particular, we render the gold cap strongly hydrophilic or hy-
drophobic through the functionalization with 11-Mercaptoundecanoic acid
and 1-Octadecanethiol, respectively [127]. To distinguish the two phases
(water and lutidine) after the decomposition, we also labelled the organic
one with a dye (Rhodamine 6G). We finally turned on the illumination with
rather high light intensity (I = 10 µW µm−2) and observed the directed
motion of the Janus colloid as well as the rearrangement of the two phases
after the local demixing.

In Figs.5.3(b) and (d), we show the fluorescence intensity encoded in
color: yellow and red correspond to a rich-lutidine and a rich-water region,
respectively. In particular, Fig.5.3(b) shows the concentration of lutidine
around a Janus particle with a hydrophilic cap. The cap is easily identified
as the bright half-moon shape at the center of the picture. Upon illumina-
tion, the lutidine becomes depleted from the area near the cap (red), while
it accumulates at the silica side (yellow), which is hydrophobic (in compari-
son to the hydrophilic-functionalized cap), thus resulting in a concentration
gradient around the particle. The particle moves within this gradient in
the direction of the lutidine-rich phase as indicated by the red arrow. The
cartoon of Fig.5.3(a) sketches the view from side and underlines that the
cap is the rear of the particle. Contrariwise, Fig.5.3(d) shows the lutidine
concentration around a Janus particle with a hydrophobic cap. In this case,
the lutidine-rich phase (yellow) accumulates at the cap, while the water-rich
(red) phase populates the silica side, the latter being more hydrophilic than
the cap. Again, the particle moves within the resulting gradient towards
the lutidine-rich phase (arrow). The coating is now the head of the colloid
during the active motion (Fig.5.3(c)).

This experiment proves that the Janus colloids are propelled by self-
diffusiophoresis, i.e., by a local concentration gradient of the two phases in
the surrounding. The word “self” emphasizes that the particles themselves
generate these gradients by triggering the spinodal decomposition when il-
luminated with light. The snapshots shown in Figs.5.3(b) and (d) are also
an incontestable proof that thermophoresis is not the main mechanism of
propulsion; in fact, if this was the case, no change of direction would be ob-
served depending on the cap functionalization. The particle would always
move towards the hot or the cold side, no matter where the lutidine-rich
phase is.

The strength of the propulsion is given by the steepness of these concen-
tration gradients (see §2.1.2); it can be tuned easily by tweaking the illu-
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Fluorescence intensity

cap

(a) (b)

(c) (d)

Figure 5.3: Direction of the propulsion when the cap is hydrophilic ((a) and (b))

or hydrophobic ((c) and (d)). (a) and (c) schematically reproduce the side view

of the sample whereas (b) and (d) are fluorescence experimental snapshots. The

lutidine phase is labelled with a hydrophobic dye (Rhodamine 6G) that in the

picture appears yellow. The gold cap correspond to the bright half-moon shape.

Since the size of the demixed regions depends on the illumination intensity, the

latter is set significantly high in order to visualize the gradient better (10 µW

µm−2) [127].

mination power injected into systems. Higher light intensities imply a more
pronounced decomposition and, therefore, wider and steeper concentration
profiles nearby the colloid. It is important to remark that the pictures 5.3(b)
and (d) have been taken under a rather extreme regime of light intensity
(I = 10 µW µm−2, value much larger than the typical power employed in all
the other experiments) in order to visualize the surrounding gradient. Typ-
ically, the demixed area is not visible with conventional bright microscopy
since it involves only a tiny region around the particle.

The self-diffusiophoretic driving mechanism we propose is complemen-
tary to the system of Janus particles in H2O2 solution, presented in §2.2.2.
Colloidal particles self-propelled in H2O2 have been recently widely em-
ployed to investigate the active motion of micrometric beads [72, 73, 74,
75, 82]. In short, colloids coated with a catalyst (e.g., Pt) can locally de-
compose the hydrogen peroxide and, thereby, generate a local concentration
gradient that propels diffusiophoretically the particle. Such system is well-
conceived since the bulk concentration of H2O2 determines the strength of
the propulsion.

However, the catalytic reaction of H2O2 also carries along some limita-
tions: first of all, the peroxide acts as a “fuel” and is therefore consumed
every time the particle gets propelled. A constant fuel supply has to be real-
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Figure 5.4: Active trajectories. (a) 2D trajectories (1000 s) of a Janus particle for

illumination intensities (from top to bottom) I = 0, 69, 92, 115, 161 nW µm−2

[115]. (b) Probability distribution of the angle α (inset) between the cap and the

particle velocity for (from top to bottom) I = 0, 69, and 138 nW µm−2 [115].

ized, e.g., by using a microfluidic chamber [72]. This energy supply becomes
tricky when the colloidal suspension is rather dense, since the reservoir of
H2O2 cannot keep up with the consumption made by the particles. I am not
aware of experiments with self-propelling colloids in hydrogen peroxide solu-
tion with particle density (read in 2D, area fraction) larger that 0.2 [73, 82].
In our case, since the demixing of the critical mixture is only local, the water
and the lutidine phases remixe as soon as the colloids has travelled past, i.e.,
the “fuel” that drives the microswimmer regenerates once the particle has
moved to a different region of the sample.

Furthermore, the use of the laser light as trigger for the self-propulsion
allows us to have an external control over the propulsion strength, that can
be freely turned off/on or adjusted in situ. This degree of freedom was only
achieved very recently on H2O2 systems by employing an hematite cube,
attached to the colloid, as a catalyst [82]; the hematite, in fact, decomposes
the H2O2 only if illuminated with UV light. However, due to the chemical
synthesis of the colloids, the degree of patchyness is fairly polydisperse.

The downside of our driving method consists in the fact that, for how the
illumination is designed, it is limited to 2D systems, whereas the propulsion
driven by H2O2 is effective in 3D samples, alike.
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5.2 Active trajectories

When a Janus particle is equipped with an internal propelling force, its
motion becomes directed and any random reorientation is only due to rota-
tional diffusion. In other words, the translational motion change radically
while the rotational diffusion DR remains unaffected. Since the colloidal
suspension is constrained in 2D by two glass slides (Fig.5.1), the translation
occurs only in the x, y whereas the rotation is still 3D. The motion is, thus,
quasi -2D.

The Janus colloids can be propelled either in or in the opposite direction
of the coating, but, anyhow, the motion always follows the direction of
the asymmetry. The latter of course varies, continuously and randomly,
owing to the rotational motion. In particular, when the driving force gets
oriented towards the glass confinements, the directed motion is arrested
by the walls and the effective 2D translational motion is solely given by
Brownian diffusion.

If we fix the radius R of the particles, the typical reorientation time
τR = D−1

R does not vary and the shape of the 2D trajectories is only given
by the strength of the propulsive events, which is, in turn, determined by
the illumination power. Fig.5.4(a) shows the trajectories of particles with
R = 2.13 µm when confined a 7 µm thick cavity and illuminated at different
laser intensities. While the rotational diffusion DR is the same for all cases,
the different propulsion strength leads to fairly distinguishable trajectories.
In particular, the black one corresponds to I = 0, i.e., to classical Brownian
diffusion; increasing the laser power, the trajectories become characterized,
at short time scale, by ballistic segments, whose length grows with the laser
power.

These straight segments confirm the tendency of the active particle to
proceed with a fixed orientation for some time, until rotational diffusion
comes into play. This orientation coincides with the direction of the particle
asymmetry. To demonstrate this last statement we plotted in Figs.5.4(b),(c),
and (d) the distributions of the angle α between propulsion direction v and
the cap orientation n (see inset of Fig.5.4(b)) for increasing illumination
intensities. When the particles is just Brownian (I = 0, Fig.5.4(b)), the
distribution is uniform since the colloid jiggles randomly in the whole 2D
space. On the other hand, the distribution becomes strongly peaked around
α = 0 with growing I (Figs.5.4(c) and (d)), which demonstrates that the
propulsion force acts in the direction of the asymmetry. In particular, since
the gold cap is strongly hydrophilic (see §5.1) the ballistic velocity points in
the direction opposite to the coating.
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(a) (c)
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Figure 5.5: Displacement properties of the active motion of self-propelled particles.

(a) Trajectory of an active Brownian particle (R = 2.13 µm) drawn on top of a

bright microscopy snapshot. (b) Sketch explaining the information contained in

the MSD of a self-propelling particle. (c) Experimental mean square displacement

of active Janus particles (R = 2.13 µm) for I = 0 (black), 69 (red), 92 (green),

115 (light blue), 161 (dark blue) nWµm−2. The inset shows the zoom of the black

curve. The corresponding trajectories are drawn aside each curve with the same

color [115].

5.3 Properties of the active motion

Let us analyze more in detail the trajectory properties introduced in the last
Section. The physical motion where a diffusive component (rotational and
translational) is combined with a ballistic propulsion is usually addressed as
active Brownian motion. In Chapter 3 I’ve presented few ways to describe
precisely this type of motion. In the following paragraphs I am going to
contextualize in these description the behavior of the self-propelling colloids.

As we have have seen in §3.2.2, the active Brownian motion of biological
or artificial microswimmers is modelled as a random walk equipped with a
persistency (correlated or persistent random walk). When an object takes
up energy from the environment and converted into kinetic motion, it shows
a tendency to persist towards specific direction, although the reorientations
still remain random. For “run” and “tumble” bacteria this persistency is
given by the travelling space between two consecutive tumbling events. In
case of self-propelling particles, such as the ones presented in the last Sec-
tions, the reorientation happens smoothly since the rotational diffusion is a
continuous process.

Fig.5.5(a) illustrates the trajectory of a self-propelling Janus particle,
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plotted on top of the corresponding bright microscopy picture of the sam-
ple. The active motion of the colloid clearly displays the property of a
persistent random walk: The particle has a ballistic behavior until a signif-
icant reorientation steers the motion. In other words, at short time scales
the motion is ballistic, as confirmed by the straight paths of the trajectory
of Fig.5.5(a), while it becomes diffusive again at time large compared to the
typical rotational diffusion. This mean that if we look at the trajectory of
Fig.5.5(a) after enough time, it will appear as it were Brownian.

The competition between ballistic and diffusive behavior is tracked down
very well by the behavior in time of the mean square displacement (MSD).
A first sketch is shown in Fig.5.5(b)2.

The MSD of a self-propelling particle is clearly characterized by two
distinguishable regimes: the ballistic behavior at short-time scales with a
quadratic growth of the MSD in time and the diffusive one at large t where
the increase is linear. The crossover τ between the two regimes defines
the persistency of the motion, i.e., the average persistence timescale over
which the trajectory direction is maintained. We do expect this timescale
to coincide with the typical rotation time τR = D−1

R of the particle. The
definition of persistence or swimming length l follows automatically as the
product between τ and the ballistic velocity v of the active particle. More-
over, the long-time diffusive behavior is describe by an enhanced diffusion
coefficient, given by the slope of the line. This effective diffusion Deff is
sometimes sketched with an effective temperature Teff , according to the
Einstein’s definition (3.1) of the diffusion coefficient and assuming that the
system reaches a steady state at large t.

In Chapter 3, I have demonstrate how the behavior of the MSD of self-
propelling colloids shown in Fig.5.5(b) can be fitted by the following relation:

MSD(t) = 4

(
D0 +

1

4

l2

τ

)
t+

l2

τ

[
e−

2t
τ − 1

]
(5.4)

where τ is again the characteristic timescale shown in Fig.5.5(b), l = vτ is
the persistence length defined above andD0 is the bare diffusion coefficient of
the particle when the illumination is off, i.e., when the bead is just Brownian.
Due to the 2D confinement D0 does not coincide with the Einstein’s value
D0 = (kBT )/(6πηR) for a sphere of radius R in bulk. Instead, we calculate
D0 from the linear fitting of the experimental MSD of the particle in the
absence of illumination, i.e.

MSD(t)I=0 = 4D0t. (5.5)

Eq. (5.4) contains the information about the two regimes illustrated in
Fig.5.5(b). The asymptotic behavior for t ≫ τ (large time scales) leads to

2Fig.5.5(b) is meant as a tutorial cartoon. No experimental data correspond to this

plot and units are omitted.
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an effective diffusive linear behavior:

MSD(t) = 4Deff t (5.6)

with an enhanced diffusion coefficient Deff equal to

Deff = D0 +
1

4

l2

τ
. (5.7)

On the other hand, at short time scales (t≪ τ), the expression (5.4) has
the limiting form:

MSD(t) = 4D0t+
l2

τ2
t2, (5.8)

i.e., the motion is ballistic and the displacement is proportional to the
swimming (or persistence) length l.

Fig.5.5(c) displays the experimental data obtained for R = 2.13 µm
Janus particles dispersed in a 7 µm thick sample cell and illuminated at
different laser intensities [115]. The plotted MSDs correspond to the trajec-
tories presented in §5.2 (Fig.5.4(a)) and reported, for sake of clarity, next to
each curve. The inset is nothing but the zoom of the black curve which, in
turn, shows the displacement at I = 0 nWµm−2 (Brownian particle). The
dashed line are the fittings of the experimental data made with Eq. (5.4).
As expected, high laser intensities lead to larger mean square displacements
since the colloid becomes more and more “alive”.

We first extracted D0 from the linear fitting of the black curve (Eq.
(5.5)) obtaining D0 = 0.031 ± 0.006 µm2s−1. Afterwards, we calculated the
parameters τ (average persistence timescale) and l (persistence length) by
fitting the data with (5.4). Finally, we derived the swimming speeds from
the linear relation l = vτ and the effective diffusion from Eq. (5.7). The
results are summarized in Tab. 5.1.

I (nWµm−2) τ (s) v (nms−1) l (µm) Deff (µm2s−1)

0 − − − 0.031 ± 0.006

46 220 ± 20 46 ± 5 10 ± 2 0.147 ± 0.029

69 190 ± 20 85 ± 7 16 ± 3 0.370 ± 0.069

92 190 ± 20 175 ± 20 33 ± 8 1.49 ± 0.42

115 220 ± 30 265 ± 33 58 ± 14 3.89 ± 1.01

138 240 ± 40 310 ± 28 74 ± 13 5.80 ± 1.49

161 230 ± 40 360 ± 27 83 ± 12 7.48 ± 1.86

Table 5.1: Characterization of the self-propulsion of Janus colloids with radius R =

2.13 µm. Parameters obtained from the fitting of the measured MSD (Fig.5.5(c)).

The errors correspond to standard deviations.
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Figure 5.6: Swimming parameters for different particle’s sizes [127]. (a) Velocity

(v) of self-propelled Janus particles, with R = 2.13 (black), 1.0 (red) and 0.5 (blue)

µm, as a function of the illumination intensity I. (b) Average persistence time τ

plotted as a function of the rotational diffusion time τR = D−1
R over two orders of

magnitude. The inset shows τ plotted as a function of the particle radius. The

error bars are obtained from the measurements at different I.

From Tab. 5.1 it becomes obvious that, as soon as the light intensity
I is enough to trigger the decomposition of the binary mixture, l and v in-
crease linearly with the I. In contrast, no significant variation of τ with I
is observed. Hence, the typical transition from the ballistic to the diffusive
regime does not depend on the strength of the propulsion. This observa-
tion was somehow expected since for an active Janus particle the average
persistence time τ is given by the rotational diffusion which is unaffected
by the driving force. In support of this argument, it’s worth to notice that
the value τ ≈ 200 s for which best agreement with the experimental data
is obtained is close to the timescale of rotational diffusion τR = D−1

R . For a
spherical colloid DR is given by the following expression

DR =
3D0

4R2
(5.9)

which leads, for R = 2.13 µm, to τR = 188 s. This value is indeed close
to the experimental τ . We have therefore verified experimentally that for
self-propelling Janus colloids the average persistence time is determined by
the rotational diffusion. We also note that the decoupling of rotational and
translational motion largely simplifies corresponding numerical simulations
of the system.

5.4 Dependence on the particle’s size

To investigate the effects of the particle’s size on the propulsion, we made
the same single particle experiment described in the former Sections with
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gold-coated particles of different radii. The evaporated layer is again 20 nm
thick but, instead of using a 7 µm cavity, we dispersed the colloid in a higher
sample cell (100 µm). Due to gravity as well as to the rather weak swim-
ming speeds (smaller than 2 µms−1), the active motion is still effectively
constrained to two dimensions. However, some physical parameters (e.g.,
D0) are not comparable with the results of §5.3 because of the influence of
the glass slides over the particle’s diffusion.

That being said, Fig.5.6(a) shows the swimming speed v as a function
of the illumination intensity I for particles of different size (R = 0.5, 1.0
and 2.13 µm). The velocities v are calculated by fitting the MSDs as ex-
plained in §5.3. From the three curves becomes evident that there is always
an intensity threshold below which v is approximately 0, i.e., the particle is
simply Brownian. This threshold is motivated by the fact that, in order to
see active motion, the illumination intensities has to be powerful enough to
heat the liquid surrounding the gold coating above the critical temperature.
The experimental data of Fig.5.6(a) suggest that the critical light intensity
is larger for smaller colloids. This observation makes actually sense in view
of the fact that big Janus particles provide a larger light-absorbing area (the
gold-coated hemisphere) from which the heat propagates into the neighbor-
ing liquid (see also Fig.5.2). Once the particle becomes active, we again
observe the linear increase of the swimming speed with the light intensity
in agreement with the results of §5.3 (Tab.5.1).

We also checked the robustness of the equality between the average per-
sistence time τ and the rotational diffusion time τR = D−1

R . It’s worth to
remark once more that the relation τ = τR has a powerful meaning inas-
much as it implies that the sole rotational diffusion rules the persistency of
the trajectories, no matter how “active” the particles are. The data sum-
marized in Tab. 5.1 showed a good match for large particle (R = 2.13 µm).
Fig.5.6(b) also includes the experimental τ for R = 1.0 and 0.5 µm and
proves that the equality τ = τR holds for smaller colloids either. Moreover,
we again find no variation with the light intensity. Please note that the
rotational diffusion time scales with R3 (small particles reorients far more
often), therefore Fig.5.6(b) covers a wide range of times.

5.5 Active motion in a light gradient

The possibility of tuning the active Brownian motion of the micro-swimmers
can be employed in various contexts. For example, we harnessed the depen-
dence of the swimming strength on the illumination intensity to investigate
the behavior of a microswimmer in a spatial light gradient3, where its swim-
ming properties are space-dependent; these conditions resemble the situation

3It’s important not to confuse the spatial light gradient (externally imposed) with the

local concentration gradient (generated internally by the colloids).
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Figure 5.7: Motion of Janus particles in a light gradient [127]. (a) Trajectory of

a self-propelled particle in a radial gradient. (b) Light intensity as a function of

the radial position r. (c) Average swimming velocity v as a function of r. (d), (e)

Density rearrangement of a self-propelled colloidal suspension (area fraction ≈ 0.1)

in a radial (d) and in a concavity-like gradient (e). The insets show the defocused

light patterns.

of bacteria moving inside a chemical gradient.
In §1.2 I highlighted that bacteria and cells have the ability of swim-

ming up a food gradient (chemotaxis) in search of a more advantageous
environment [7, 8, 137, 138, 139, 140]. In order to make this migration more
effective, the persistence length is adjusted along the way, becoming longer
and longer as the high concentration region is approached.

Our system of self-propelling colloids is powered by the green illumina-
tion rather than by nutrients profiles. We can therefore simulate the gradient
of food by illuminating the sample with a radial gradient of light, illustrated
in Fig.5.7(a) as a background and obtained exploiting the AODs of our setup
(see §4.3.1).

Fig.5.7(a) also includes the trajectory of a microswimmer moving in-
side such gradient; the radial dependence of the intensity is depicted in
Fig.5.7(b). The particle starts from the lower left corner, where, since there
is almost no light, it undergoes standard Brownian motion. As soon as it
randomly moves closer to the center, it starts to perform active Brownian
motion with increasingly high v and l as it approaches the high-intensity
center of the gradient; the radial dependence of v is plotted in Fig.5.7(c).
The trajectory becomes more directed and less rough as the active motion
increases. The blue curve in Fig.5.7(a) therefore resembles the motion of
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biological swimmers inside food gradients, showing a continuous growth of
its persistence length l. However, synthetic colloids are not equipped with
chemotactic sensors and no effective migration is in average observed: the
Janus colloids have the same chance to move towards or against the light
gradient.

We finally checked how the concentration of a multiple particle suspen-
sion (area fraction ϕ ≈ 0.1) varies upon illumination with a radial light
gradient. Fig.5.7(d) shows the distribution of the particles after the illu-
mination (gradient shown in the inset) has been on for 5 minutes. The
central region characterized by high intensities gets depleted since the par-
ticles are faster there. Likewise, if we reverse the gradient, i.e., if we use
a concavity-like illumination such as the one in the inset of Fig.5.7(e), the
colloids accumulates in the inner region (Fig.5.7(e)).

5.6 Summary

In conclusion, I presented a novel method to obtained Janus self-propelling
colloids inside a critical binary mixture with a lower critical point. The
propulsion is caused by self-diffusiophoretic forces when the fluid phase sep-
arates due to a local heating. The demixing occurs when the metallic coating
of the particles is heated by green light. The internal driving can be easily
tuned by controlling the illumination power given to the system.

I also showed that the active Brownian motion of the colloids is charac-
terized by few key-parameters, i.e., the persistence length l and the average
persistence time τ , which define the interplay between ballistic and diffusive
behavior. Above a critical threshold needed to achieve the phase separation,
l is directly proportional to the light intensity, whereas τ is independent of
it and only given by the rotational diffusion time τR of the colloids.

Finally, I stressed this dependence of the swimming strength on the
illumination intensity to investigate the behavior of a microswimmer in a
spatial light gradient, where the swimming properties are space-dependent.
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Chapter 6

Swimmers in confinements

In the very beginning of this thesis I highlighted that artificial microswim-
mers, such as Janus particles self-driven by phoretic forces, aimed at fulfill-
ing two very broad goals. On one hand manmade microswimmers could be
employed to transport and deliver drugs throughout the human body for
medical treatments. Secondly, these autonomous motors are model systems
used to emulate the active motion of more complex biological microorgan-
isms like bacteria, cells or algae.

Either ways the motion of a single particle in bulk, described in the
past Chapter, does not address realistic conditions. A microswimmers that
navigates throughout human tissues does not deal with an environment free
of obstacles: blood vessels, skin capillaries and porous membranes are only
few examples of the rich structure of the human body. The typical sizes of
these habitats go often down to the micro-metric scale affecting directly the
basic features of the active motion of the swimmers.

Likewise, natural microswimmers, such as “run” and “tumble” bacteria,
often move in patterned environments, e.g., inside the intestinal tract, which
provides the natural ecosystem of E. coli, or during bioremediation, where
chemotactic bacteria spread through porous polluted soils. Moreover, it’s
very unlikely to find these microorganisms isolated and sparse; bacteria and
cells often gather in dense colonies because of confined geometries or in order
to cooperate upon starvation conditions.

Due to the tunable properties of their driving mechanisms, the phoretic
microswimmer I described in the former Chapter are a perfect tool to in-
vestigate these puzzling issues on a very fundamental level. With the help
of lab-on-a-chip devices, we can in fact resemble complex events that would
be tough to track otherwise.

This Chapter is divided in two main Sections: the first will be focused
on the interaction between a single self-propelled colloid and some fixed
obstacles whose size is comparable with the typical lengths of the active tra-
jectory. Instead, the second part will address the topic of clusters formation
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in dense active suspensions.
The numerical simulations of the multiple particle system, used to cor-

roborate the experimental observations, have been made by T. Speck, J.
Bialkè and H. Löwen at the Heinrich-Heine-Universität in Düsseldorf.

6.1 Microswimmers across confinements

6.1.1 Biological swimmers in confined geometries

Biological microswimmers, such as bacteria, are ubiquitous in our everyday
life. Their active motion in bulk has been fairly understood during the
past century thanks to the advances in video microscopy and micro-particle
imaging; for instance, wild E. coli bacteria are known to undergo a “run”
and “tumble” motion in search of nutrients (see also §1.2) [7, 8].

Very little is however known about their behavior in complex habitats,
in spite of the fact that biological microswimmers live and proliferate in a
wide range of environments presenting complex surfaces and obstacles [141].
The interaction of bacteria with surfaces is, for instance, the first stage to-
wards the formation of biofilms [142]. Bacteria also play an important role
in regulating the ecosystem of soils and rocks up to the point that they are
often artificially spread over farmlands to remove pollutants (bioremedia-
tion) [143]. In addition, E. coli bacteria populate the membranes of the
intestinal tract causing, sometimes, annoying infections [144].

All these environments are characterized by pores whose size is on the
order of the typical persistence length of the bacterial active motion (few
microns) [141]. A classical “run” and “tumble” trajectory (Fig.6.1(a)) is
therefore constrained inside such porous materials and some directions are
hindered by the presence of confinements (Fig.6.1(b)) [145].

Nevertheless, despite the relevance of these phenomena, systematic stud-
ies in situ not doable for practical reasons. The remarkable progresses in
the field of lithography [126] has afforded the opportunity to reproduce in
the laboratory the above-mentioned experimental condition by fabricating
micron-sized constraining structures such as micro-channels or porous me-
dia.

Before examining the behavior of biological swimmers inside such com-
plicated media, let us begin with the easiest form of confinement one can
think of: flat straight wall. The 3D motion of an E. coli bacterium ap-
proaching and hitting a surface has been tracked in Ref. [108]. Fig.6.1(c)
shows one of the recorded experimental trajectories: The bacterium collides
against the substrate, changes its orientation and finally swarm along the
surface until it moves eventually away. Hence, the swimmer maintains its
persistency by sliding along the wall for a while after the collision. A simi-
lar result was obtained with bacteria confined in narrow (few microns wide)
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(a) (b) (c)

(d) (e)

Figure 6.1: (a) Schematic representation of the bacterial “run” and “tumble” in a

bulk system [145]. (b) Same as in (a) but in presence of porous grains [145] (c) 3D

tracking of a wild type bacterium near the surface [108]. (d) Microswimmer moving

inside a narrow microfluidic channel [146]. (e) Bacteria hitting (white arrow) and

leaving (black arrow) a micro-fabricated gear. The collisions induce a clockwise

rotation of the wheel [147].

channels (Fig.6.1(d)) [146]: As shown by the trajectory in Fig.6.1(d) the mi-
croswimmer moves parallel to the wall for some time before detaching. This
interaction between biological swimmers and walls can be also exploited
in several applications: for instance, the collisions of bacteria against gears
(white arrow of Fig.6.1(e)) can power the rotation of micro-fabricated wheels
[147].

The coupling between the active Brownian motion and surfaces is also
essential to understand the behavior inside more complex environments such
as porous media. Despite the importance of this issue in many fields, e.g.,
bioremediation, the literature still lacks a thorough knowledge as well as a
robust theoretical background. I am only aware of few models that have
been proposed on a rather phenomenological level [145, 148]. Although
these model rather address the environmental engineering community, the
basic idea behind them is tightly related with the experiments I am going
to present in next Sections and, thus, deserves specific attention.

When a bacterium swims through a porous medium, the ratio between
the typical distance dpore that spaces apart the obstacles and the average per-
sistence length l of the bacterial motion determines whether the active tra-
jectory (Fig.6.1(a)) is affected or not by the presence of grains (Fig.6.1(b)).
Ref. [145] suggests the emergence of three regimes.

1. If l ≪ dpore the active motion is unaltered by the porous surrounding.

2. If l ≫ dpore, i.e., when the bacteria are propelled over distances much
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(i) (ii) (iii) (iv) (v)

20 mm

Figure 6.2: An encounter between a microswimmer and a wall. Experimentally

measured (bars) distribution p(τc) of the contact time between a microswimmer and

a wall (I = 115 nWµm−2) for more than 250 encounter events. The line represents

the result of a numerical simulation with L and τR taken from the experimental

values. The insets are snapshots, taken at t = 0 (i), 0.7 (ii), 1.6 (iii), 2.8 (iv) and

3.6 (v) s, showing the approach, the contact and the detachment [115].

larger that the average pore size, the long time effective diffusion Deff

(see §5.3) is essentially ruled by dpore.

3. If l ≈ dpore, the behavior wobbles between the situations (1) and (2).
In this case, the authors proposed a pragmatic way-out, i.e., to esti-
mate the effective mobility as an harmonic average of the free-particle’s
and the strongly confined-particle’s mobility.

In the oncoming Sections I will show how self-propelled particles can be
employed to shine some light on the interaction between active trajectories
and confinements.

6.1.2 Interaction of self-propelled colloids with walls

We use our self-propelled Janus particles (§5.1) driven by self-diffusiophoresis
as model system to investigate how active Brownian motion (§5.2) is affected
by the presence of more or less elaborated confinements.

By means of the classical lithography (see §4.2.1 for details) we directly
imprint on the glass substrate a structure with the desired geometry. The
colloidal suspension is then poured on the slide and sandwiched by a second
glass in a sample cell 7 µm thick as extensively described in §4.2.1. We
again use Janus colloids with radius R = 2.13 µm half-coated with 20 nm of
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Au. The colloidal suspension is very diluted in order to focus on the single
particle behavior.

We first addressed the simplest form of confinement: a straight wall
[115]. The insets of Fig.6.2 show the interaction with the wall of an active
particle with persistence length l = 58 µm (corresponding laser intensity
I = 115 nWµm−2). First the particle approaches the wall (i) and gets in
contact (ii). Then it slides along the surface (iii) until rotational diffusion
realigns the particle so that its orientation vector n points away from the
wall and leads to particle detachment (iv,v). Measuring the distribution of
the particle-wall contact time τc for more than 250 encounters, we find a
monotonic decrease as shown in Fig.6.2 (bars).

We also performed numerical Brownian dynamics simulations, where the
motion of the Janus particle is modelled by a superposition of random diffu-
sion and ballistic motion with velocity v. The parametersD0 and v are taken
to match the experimental values obtained in bulk (Tab. 5.1). The direction
of v is determined by the free 3D diffusion of the particle’s orientation. To
account for the presence of confinements (top and bottom glass slides as well
as the wall-like structure made of SU-8 and shown in the insets) the compo-
nent of v perpendicular to the obstacles is set to zero. From the simulated
particle trajectories we calculated the corresponding distribution p(τc) (blue
line in Fig.6.2), which shows good agreement with the experimental data.
In particular, in both cases the average τc is much smaller than τR due to
the angular distribution of the incoming particle direction. This suggests
that the particle-wall encounter mechanism is correctly described by this
simple model and that the rotational diffusion remains largely unaffected by
the proximity to the wall. We also note that, at least under our experimen-
tal condition, hydrodynamics effects (neglected in the simulations) are not
needed to seize the particle-wall interaction.

We then decided to probe the coupling between the persistence length l of
an active trajectory and the typical size of a pore by confining the particle
in a circular cavity with radius r = 38 µm [115]. This approach follows
the guidelines of Ref. [145] according to which the ratio between r and l
determines to which amount a trajectory is affected by the confinement.

The experimental snapshot of Fig.6.3(a) qualitatively shows that a swim-
mer with l > r keeps up with its persistency after the collision with the cav-
ity’s rim and, therefore, moves preferentially along the circular barrier. To
elucidate more systematically this statement we repeated the experiment at
different illumination intensities, i.e., with particles characterized by differ-
ent persistence length. The red (experiments) and blue (simulations) lines
of Figs.6.3(b-f) are typical trajectories when l is (b) 16, (c) 33, (d) 58, (e)
74 and (f) 83 µm, respectively. In Fig.6.3(b), the particle moves diffusively
exploring all the pore uniformly, as a consequence of its ballistic length be-
ing much shorter than the pore characteristic length, i.e., l = 16 µm ≪ r.
Similar results hold for shorter l and in particular for a non-active Brownian
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(a) (b) (c) (d) (e) (f)10 mm20 mm

Figure 6.3: Microswimmers in a confined geometry. (a) Experimental snapshot

displaying the trajectory (red dots) of an Janus particles inside a circular cavity.

The persistence length l is larger than the diameter of the cavity. (b), (c), (d),

(e) and (f) show measured (red lines) and simulated (blue lines) trajectory for for

different illumination intensities corresponding to ballistic lengths (b) 16 µm, (c)

33 µm, (d) 58 µm, (e) 74 µm and (f) 83 µm. The radius r of the confinement is

38 µm. All trajectories were sampled over 600 s. [115].

particle for which l is due to the inertia of the particle and lays in the order
of a few pm [149]. The chances that the particle encounters the cavity wall
in one of its straight runs increase as l gets longer. Once the particle touches
the wall, it starts sliding along the cavity perimeter until the rotational dif-
fusion orients the cap towards the interior of the well, according with the
process described in Fig.6.2. As expected, the probability of finding the
particle at the confinement wall strongly increases when l is significantly
larger than r, e.g., l = 74 µm (Fig.6.3(e)) and l = 83 µm (Fig.6.3(f)). As
shown by the agreement between blue and red lines, experiments are well
corroborated by numerical simulations. A similar behavior has been recently
observed with E. coli confined in emulsion droplets: bacteria have indeed
the tendency to move along the internal surface of the droplet1.

6.1.3 Microswimmers in patterned environment

The interplay between the persistency of an active trajectory and the typical
porous size can be exploited to design simple sorting devices. The strategies
employed so far in order to sort out chemotactic bacteria is based on the
creation of chemical gradients, which are obtained in turn through rather
complicated microfluidic geometries [150, 151, 152, 153].

In the following paragraphs, we propose a novel device that allows us to
sort our active self-propelled particles according to the properties of their
motion, i.e., their persistence length l. To do so, we disperse the Janus parti-
cles inside a pattern of elliptical pillars, periodically arranged (Figs.6.4(a-e))
[115]. Again the periodic structure is imprinted on top of the glass substrate
by means of classical lithography. The pillars are place in a triangular lattice
and the lattice constant Lc = 35 µm defines the characteristic “pore size”.
Once more the persistence length l is adjusted by tuning the illumination
power I injected into the system.

1Reference not available yet.
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(a) (b)

(f)
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Figure 6.4: Microswimmers in a patterned environment. (a-e) Typical trajectories

of self-propelled particles moving through a triangular lattice (lattice constant Lc =

35 µm) of elliptical obstacles when a drift force F = 0.12 pN is applied along the y-

direction. (a) Brownian particle (no propulsion), (b) l = 16 µm, (c) l = 24 µm, (d)

l = 33 µm and (e) l = 83 µm. (f-j) Corresponding histograms of the experimentally

measured (red) and simulated (blue) directions of the particle trajectories as defined

by two points in the trajectory separated by 100 µm. The experimental histograms

were obtained considering more than 100 trajectories in each case. The parameters

for the simulations are taken from the experimental values reported in Tab. 5.1

[115].

Within such structures, long swimming cycles are only possible along
two main directions: at ±60 and ±90 degrees with respect to the y-axis.
Otherwise the motion is strongly hindered due to collisions with the obsta-
cles. This leads to strong differences in the particle trajectories depending on
their swimming length. In the presence of an additionally applied drift force,
this permits us to separate the microswimmers according to their swimming
behavior. The drift force is obtained by employing Janus beads that are
also paramagnetic and dragging them in the y-direction with a permanent
magnet (Fig.6.4(a)). The magnet can be placed at different distances away
from the sample to tune the strength of the drift force. We remark that
this force is independent of the orientation of the particles because these are
sufficiently isotropic.

We first consider a constant drift force F = 0.12 pN ; this value has been
estimated from the average drift speed vd = 0.97 µms−1 of a Brownian parti-
cle (I = 0 nWµm−2). The typical trajectory of a Brownian particle is shown
in Fig.6.4(a). Because of the Péclet number Pe ≈ 1000, the effect of the
diffusion is rather weak and the particle meanders almost deterministically
through the structure in the direction of F .

For increasing swimming lengths (Figs.6.4(b-e), from left to right), how-
ever, significant changes in the shape of the trajectories are observed. This
becomes particularly pronounced for l > Lc, where the particles perform
swimming cycles of increasing length along the diagonal channels (Figs.6.4(c),
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Figure 6.5: Deflection efficiency of microswimmers. Measured probability that

particles are deflected by more than 30 degrees after a travelling length of 100

µm as a function of the swimming length l for various imposed magnetic drift

forces F = 0.06 ± 0.02 pN (diamonds), 0.12 ± 0.05 pN (squares) and 0.28 ± 0.12

pN (triangles). The solid lines are the results of numerical calculations. The

experimental histograms were obtained considering more than 100 trajectories in

each case. The parameters for the simulations are taken from the experimental

values reported in Tab. 5.1. [115].

(d)). For l = 83 µm the propulsion becomes so strong that the particles par-
tially move perpendicular to the drift force (Fig.6.4(e)); occasionally even
motion against the drift force can be observed.

The particle motion through the structure is characterized by the di-
rection (with respect to the y-axis) of the line connecting points of the
trajectory separated by a distance of 100 µm. The probability distributions
of these angles are shown by the red polar histograms in Figs.6.4(f-j). One
clearly observes that with increasing l (again, from left to right) the propa-
gation of particles along the direction of the applied drift becomes less likely,
while trajectories along ±60 degrees, i.e., along the directions that permit
long swimming events, become more frequent. As shown in Fig.6.4(e), at
very high illumination powers, i.e., when l ≫ Lc, the swimmers manage to
follow also the free channels at ±90 degrees (with respect to the y-direction),
“bending” the probability distribution towards angles larger than 60 degrees
(Fig.6.4(j)). We again compared these results with numerical simulations
(blue polar histograms in Figs.6.4(f-j)), which show good agreement with
the experimental data.

With the additional possibility of varying the drift force by simply mov-
ing the magnet, these observations can be exploited to spatially separate
self-propelled particles with small differences in their individual swimming
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behavior. This is demonstrated in Fig.6.5, where we show the deflection effi-
ciency as a function of l, as defined by the probability that the mean particle
trajectory is deflected by more than 30 degrees after a travelling length of
100 µm. As symbols (lines) we have plotted experimental (simulation) data
obtained for different drift forces. The black data (squares) correspond to
F = 0.12 pN (Fig.6.4). Here the deflection efficiency shows a strong increase
around l ≈ 30 µm and a flattening towards larger swimming lengths. The
blue (diamonds) and red (triangles) data are obtained for F = 0.06 and
0.28 pN , respectively, and demonstrate that the sorting efficiency strongly
responds to variations in F . Accordingly, the deflection (transmission) of
self-propelled particles while crossing a patterned structure can be easily
tuned by the appropriate choice of F .

In conclusion, the choice of a suitable pattern of obstacles is enough to
sort out microswimmers equipped with different persistence lengths, pro-
vided that a generic drift force is applied. Although for simplicity we used a
magnetic force, any other drift force could be applied, e.g., an electric field
or a solvent flow through the device.

6.2 Collective behavior of active suspensions

6.2.1 Clustering of active matter

As shown in §6.1 the motion of active objects is strongly altered by the
presence of confinements in its vicinity. So far, I have only discussed the
case of fixed obstacles, e.g., straight walls, circular cavities and arrays of
elliptical pillars. Nonetheless, microswimmers can also limit each other’s
motion when dispersed in crowded suspensions: the collisions between the
swimmers play hereby a key-role and, together with other more complicated
interactions, strongly affect the collective behavior of the overall suspension.

The observation of collective phenomena involving “living active matter”
is as old as life itself. For instance, a naive glance up at the sky bestows
us with the spectacular view of graceful flocks (Fig.6.6(a)) that rearrange
ceaselessly [155]. Similar impressive phenomena occur in the seas (e.g.,
schools of fishes) and on solid ground (e.g., herds of sheep), alike. Down
to the micro-metric scale, bacteria are well-known to form colonies, such
as the one shown in Fig.6.6(b) [154], provided that the bacterial density is
large enough [156, 157, 158, 159, 160]. Colonization of surfaces is actually
the first step towards the growth of biofilms [161], although dense bacterial
solutions can also give birth to other appealing phenomena such as swarming
[162] or microbacterial turbulence [163]. Active clusters have been recently
observed also in suspension of colloids self-propelled by phoretic forces [73,
82]. Fig.6.6(c), e.g., shows the emergence of dynamic clusters in a rather
dense suspension (area fraction ≈ 0.1) of Pt-coated active colloids roaming
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(a) (b)

(d)(c)

Figure 6.6: (a) A flock of starlings gracing the sky over Rome (picture taken from

physicsword.com). (b) A typical colony of Bacillus subtilis bacteria [154]. (c)

Dynamic clusters of sedimenting Pt-coated colloids. The particles are propelled

by diffusiophoresis in an H2O2 solution [73]. (d) Living crystal of active surfers

performing a 2D active Brownian motion onto a glass slide. The particles are

propelled by diffusiophoresis in an H2O2 solution as long as illuminated by UV-

light [82].

in an hydrogen peroxide solution (see §2.2.2) and undergoing sedimentation.
Likewise, Fig.6.6(d) displays the formation of large dynamic aggregates,
named “living crystals”, in a 2D system of colloidal “surfers”, equipped
with a hematite cube that triggers the catalytic decomposition ofH2O2 upon
UV-illumination, thereby propelling the colloids by self-diffusiophoresis (see
again §2.2.2 for details).

All the above-listed examples defy the physical intuition according to
which the disorder increases with the temperature, i.e., with the noise. The
most simple and paradigmatic example is the Ising model of interacting
spins on a lattice, which, in two or more dimensions, displays a second-
order phase transition from an ordered state to a disordered state as we
raise the temperature [164]. Non-equilibrium driven systems, however, may
show the opposite behavior [165, 166]: increasing the noise strength leads
to the emergence of ordered states, e.g., flocks, colonies or clustering in
general. As mentioned within Chapter 5 an active system can indeed be
sketched, at large t, with an effective diffusion coefficient and, therefore,
with an effective temperature: higher activities, given by high swimming
velocities, correspond to larger Teff , i.e., to noisier systems. Hence, the
appearance of ordered aggregates (clusters) increasing, e.g., the swimming
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(a)

(c) (d)

(b)

Figure 6.7: (a) Sketch of the Vicsek’s model: a particle i undertakes the average

orientation of the particles in its neighborhood S(i), which can be either a circle or a

square [168]. (b) Clusters formation, driven by the Vicsek’s model, in system of self-

propelled particles with an effective alignment. The arrows indicate the swimming

velocities [162]. (c) Phase separated state obtained through numerical simulations

of a suspension of self-propelled particles beyond the critical levels of activity and

density [169]. (d) Phase diagram of a suspension of self-propelled particles plotted

as a function of the Peclet number (activity) and the particles density. The dashed

curve marks the approximate location of the binodal and the color bar indicates

the degree of order [169].

speed is by all means an outstanding example of the so-called “freezing by
heating” transitions [167].

What are the reasons behind the formation of clusters in non-equilibrium
systems such as the ones shown in Figs.6.6(a-d)? The answer to this ques-
tion is not ubiquitous and requires a deep understanding of the particular
system under investigation. Nonetheless, in the past years theoreticians con-
ceived few widespread models in the attempt of grasping the features that
characterize all these out-of-equilibrium systems.

Clustering induced by alignments

The Vicsek’s model is acknowledged as the benchmark to understand the
collective motion of biological (or bio-inspired) organisms [168, 170]. This
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model describes a system of identical active objects moving in the 2D space
with a constant absolute speed v and subjected to a noise η of varying
amplitude [170]. Thus, the control parameters of the simulations are the
density ρ of active particles, the activity v and the strength of the noise
term η. Moreover, a strong assumption is made: When the particle are close
enough, they interact by changing their direction of motion, i.e., the system
shows an effective alignment at short distances. If S(i) is the neighborhood
of the particle i where the interaction takes place (see Fig.6.7(a)), then
the particle’s orientation θi is derived from the average direction of the
surrounding particles as follows [168]:

θi(t+∆t) = ⟨θ(t)⟩S(i) + ξ (6.1)

where ξ is the uncertainty determined by the noise amplitude η of the
system. As shown in Fig.6.7(a) the neighborhood S(i) of the simulation’s
lattice can be chosen either circular or squared without affecting qualita-
tively the results.

By implementing these simple assumptions in the simulations, Vicsek
and coworkers found a non-equilibrium phase transition governed by the
density and the activity of the system [162]. When the noise is not too large
this transition occurs increasing the particle’s density, i.e., higher ρ cause
the formation of groups of particles that move together (see Fig.6.7(b)). In
conclusion, due to the interaction shown in the Eq. (6.1), the active system
gains order at high densities, i.e., when the particles happen to be often at
close distances.

The hypothesis of an effective alignment is motivated by the behavior of
organisms such as fishes (birds), which are known to assume the same orien-
tation inside a school (flock). In colloidal systems the short-range alignment
can be indirectly reproduced using rods [157, 171] or polar disks [172] inter-
acting through volume exclusion.

Clustering induced by collisions

We note that, in the Vicsek’s model, the noise annihilates the transition
into ordered states. Surprisingly, a similar disorder-order transition has
been recently predicted for active systems that are characterized by an in-
creasing effective noise, instead. The effective noise (temperature) is given,
as discussed above, by the activity (speed) of the particles: faster particles
contribute to, effectively, noisier systems. Such transition does not require
any assumption on the alignment. Therefore, even symmetrically shaped
swimmers, like disks or spheres, can undergo the out-of-equilibrium phase
separation. Specifically, simulations of a minimal model for a suspension
of repulsive disks below the freezing transition [173] show phase separation
into a dense large cluster and a dilute gas phase [174, 169]. Phase separation
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due to a density-dependent mobility has been discussed theoretically in the
context of run-and-tumble bacteria [175], and a link has been made recently
to self-propelled Brownian particles [176].

The idea behind the aggregation of active particle in the absence of any
alignment relies on a simple self-trapping mechanism. Since the orienta-
tion of the driving varies continuously according to the rotational diffusion,
swimmers colliding head-on cannot free themselves until the rotational dif-
fusion reorients the direction of the propulsion. This implies that, if the
particles density and the swimming speed allow the swimmers to collide of-
ten enough, the clusters can grow up to the complete phase separation of
the sample2.

For instance, in Refs. [174, 169] the non-equilibrium phase transition of
self-propelled disks is discussed. The disks are purely repulsive and supplied
with both a rotational and a translational white noise. The self-propulsion
is implemented by adding a constant speed whose orientation is governed
by the free rotational diffusion. Above some critical densities and activities
(velocities), the disks meet often enough to trap each others inside one or
few large clusters. In fact, by the time a particle located at the rim of a
cluster is redirecting its driving outwards, a new swimmer pushing inwards
has joined the aggregate. Activity and particles density work jointly in
this phase separating process, i.e., larger densities (activities) need smaller
activities (densities) to produce a similar effect on the dynamics.

The results of this self-trapping mechanism are shown in Fig.6.7(c-d).
If the parameters v and ρ are large enough to trap the swimmers inside a
cluster accordingly to the description given above, the particles gather in
very big aggregates as shown in Fig.6.7(c). These clusters are then pre-
dicted to slowly merge into one final large cluster surrounded by diluted
gas phase of free particles. The separation occurs thereby via coarsening.
Nevertheless, a phase transition via nucleation and growth may also happen
upon a shallow quenching [169, 177]3. The non-equilibrium phase transi-
tion is described by a phase diagram (Fig.6.7(d)) which is similar to that
of a suspension of attractive colloids in equilibrium. The phase separation
is indeed depicted by a binodal curve with the Peclet number Pe (i.e., the
swimming speed) and the particles density ρ as control parameters [169]. In
particular above a critical density the diagram of Fig.6.7(d) settles the min-
imum velocity required to reach the phase separated region. This critical
activity becomes smaller and smaller at higher densities in agreement with
the collision argument introduced above.

2I will take up again this self-trapping mechanism in the following Sections, where our

experimental findings are discussed.
3A full interpretation of the dynamics of the phase separation is work-in-progress [169,

177].
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(a) (b)

Figure 6.8: (a) Cartoon portraying the origin of phoretic attractions. v1 and v2 are

the propulsion speeds. vDP is the drift velocity of particle 2 caused by the gradient

of particle 1 [73]. (b) Experimental measurement of the phoretic attractions caused

by local gradient of H2O2 [82]. (Left) Snapshots showing the phoretic drift of tracer

particles towards the catalytic source of hematite. (Right) Radial velocity Vp from

the ensemble average of the tracer drift (inset, black symbols). The r−2 scaling

agrees with the predictions for phoretic attractions.

Clustering induced by effective attractions

The assumption of purely repulsive swimmers might be unrealistic in sev-
eral colloidal systems. In §4.1.2 I highlighted that colloids with a mutual
attraction can show clustering and phase separation even in equilibrium
[119, 120, 121]. Typically an aggregation is observable for attractions larger
than kBT . The strength of the mutual attractive potential can be mini-
mized below this critical level with a clever choice of the colloidal beads.
For instance, I showed that the replacement of the metallic coating of a
Janus particle with a carbon layer leads to weaker Van der Waals attrac-
tions between the capped hemispheres (refer again to §4.1.2 for a detailed
explanation).

Nonetheless, phoretic swimmers, such as the ones used as model systems
in this manuscript, possess an additional source of attraction that is fully
related to the driving mechanism. Let us consider two phoretic swimmers
that move close to each other as shown in Fig.6.8(a) [73]. The propellers are
constantly surrounded by their self-generated gradient that in turn powers
the propulsion. The swimming speeds v1 and v2 are proportional to the
strength of the corresponding gradients with a pre-factor that stands for the
phoretic mobility (see Eq. (2.2) of §2.1). When the two particle are suffi-
ciently close for their gradients to overlap, each swimmer responds not only
to its own gradient but also to the one of the neighboring particle. There-
fore, in addition to the propulsion, each swimmer feels a phoretic drift vDP

that leads to an effective attraction. The adjective “effective” emphasizes
the fact that the drift pops in only when the particles are active (no gradient
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would be there otherwise), i.e., when the system is out-of-equilibrium.
A similar effective attraction, induced by local overlapping gradients,

has been predicted [178, 179] and subsequently observed [180, 181] in the
context of chemotactic bacteria. In analogy with the phoretic propellers,
bacteria respond to food gradients with a directed motion (chemotaxis) as
extensively discussed in §1.2. Likewise, a bacterium creates in its local
surrounding gradients of nutrients that can be chemotactically sensed by a
second microorganism passing by.

Back to the phoretic propellers, although the mutual phoretic attraction
characterizes any multiple particles system where a propeller generates its
own gradient, the existence of this force has been experimentally proved
for diffusiophoretic swimmers, which originate a local solute concentration
gradient ∇c [73, 82]. For a net production/absorption of c per object, the
c-field gradient was shown to decay as r−2 [182].

This theoretical prediction has been recently verified using catalytic
swimmers immersed in an H2O2 aqueous solution (see also §2.2.2). The
gradient is hereby given by the concentration of H2O2 that is continuously
consumed/produced by the self-propelling colloids. In particular, Palacci
and coworkers witnessed a quadratic behavior of the velocity of tracer col-
loids approaching a catalytic source [82]. This striking experiment is illus-
trated in Fig.6.8(b). In short, an hematite cube is embedded to a glass
substrate and few colloidal tracers are dispersed around it. Under illumina-
tion with UV light the hematite acts as catalyst for the decomposition of
H2O2, thus generating a concentration gradient in its vicinity. The profile of
the gradient is then mapped by the motion of the tracers that are naturally
attracted by the cube because of diffusiophoretic forces. The snapshots of
Fig.6.8(b) (left) clearly show that the phoretic attraction is large enough
to induce a drift towards the catalytic source. Likewise, the velocity of the
colloids, plotted in Fig.6.8(b) (right) as function of the distance from the
hematite cube, confirms the r−2 behavior expected for phoretic attractions.

Ergo, phoretic attraction can be responsible for the aggregation of self-
propelling colloids [73, 82, 183].

We note that, since the phoretic attractive force appears if and only
if the particles are active, it is hard to disentangle, without a careful pre-
liminary check, the (effective) attraction-driven aggregation from the one
that could be caused by the collisions. Although these two effects may lead
to the same result, i.e., the clustering, it is worth underline that they are
conceptually very different. Only the latter is in fact a purely dynamical
effect. Unfortunately, in active suspensions of phoretic particles these two
phenomena always appear in pair and it is thus up to the researcher to sort
out which of them is contributing to the aggregation the most. As a general
remark, a significative clustering induced by collisions usually requires large
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particles densities (area fractions ϕ > 0.2) , whereas clusters induced by
phoretic attractions have been also observed at smaller densities [73, 82].

Very recently Baskaran et al. computed the full phase diagram of self-
propelled particles featuring a mutual attraction as well [184]. This remark-
able work in my opinion clarifies the competition/cohoperation of the two
mechanisms responsible for the aggregation: the self-trapping, i.e., the col-
lisions between the active colloids, and the attractive forces, such as the
phoretic sensing. Three regimes are basically found:

• When the attractions are large and the activity (swimming speed)
small the colloidal suspension phase separates as though it would do
in equilibrium. The suspension forms gels that can arrest or slowly
coarsen towards the complete phase transition.

• Increasing the propulsion, the activity annihilates the phase transition.
The colloids now have the ability to escape from the cluster preventing
them from merging.

• When the activity is large compared to the attractive potential the self-
trapping mechanisms comes into play restoring the phase transition,
although the latter is now triggered by the out-of-equilibrium dynamics
of the particles rather than by attractive forces.

In summary, the phase diagram of this complex system is reentrant and
affords some guidelines to tackle the issue of clustering of colloids that are
both attractive and self-propelling. As I will show later, in contrast with
Refs. [73, 82] where the aggregation is driven by (phoretic) attractions, we
decided to work experimentally in a regime where the self-trapping domi-
nates over the effective phoretic drift.

Last but not least, the numerical simulations presented so far do not
take into account hydrodynamic interactions between the active colloids.
Nevertheless, hydrodynamics is a feature that an experimental suspension
of colloid always contains: When a particle navigates through a liquid, the
surrounding flow field is altered by the motion. Therefore, two bodies that
swim in the same region necessarily show a more or less pronounced inter-
action due to the superimposition of the respective flows.

The issue of the flow field produced by a single swimmers was success-
fully investigated during the past decade; as emphasized in §3.3 it is now
understood that the flow surrounding a microswimmer can show either a r−2

(dipoles) or a r−3 decay depending on the driving mechanism. In particular,
phoretic propellers belong to the second category and are often alternatively
addressed as squirmers.

Nevertheless, the influence of hydrodynamic interaction on the collective
behavior of active suspension remains an open topic. Very recent simulations
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t=0s t=8s

t=32s t=50s

(a) (b)

Figure 6.9: Clustering of self-propelled colloids at low densities. (a) Experimental

snapshot for speed v ≈ 1.51 µms−1 and area fraction ϕ ≈ 0.1. (b) Dynamical

clustering of self-propelled colloidal particles at low densities (ϕ ≈ 0.1 and v ≈ 1.51

µms−1). Shown is the formation and breaking up of one cluster. Every particle

that at one time has been a member of the cluster is colored differently [125].

(not yet published) show that the rotational diffusion is greatly enhanced
in dense suspensions of pushers, i.e., dipoles propelled with a rear motor
[185]. Further simulations reported the same increase of Dr in suspension
of self-propelling colloids (squirmers) either [186]. The enhancement of Dr

is expected to suppress the phase separation destroying the self-trapping
mechanism: faster reorientations allow a colloid to leave a cluster before a
new swimmer joins the aggregate. Other numerical simulations, that include
the far-field hydrodynamics as well as the lubrication forces, showed the
opposite effect: hydrodynamic interactions seem to facilitate the aggregation
of the colloids [187].

I will show in the next Section that we do not observe experimentally
a faster orientational diffusion of particles belonging to a cluster; Dr ap-
pears rather unaffected by the presence of neighboring swimmers under our
experimental conditions.

In conclusion, it is fair to claim that the role of hydrodynamics in active
dense suspension is still wrapped in mystery.

6.2.2 Experimental observation of clustering

From §6.2.1 we learnt that clustering in a dense suspension of self-propelled
colloids might be a consequence of three main effects: alignment, collisions
and attractions. The latter includes also the so-called “effective” attractions,
i.e., attractive forces (e.g., phoretic sensing) that are present only when the
colloids are active. None of these effects excludes the others.

We carefully designed a system of self-propelling particles that interact
only through collision, thus behaving, to a first approximation, as hard
spheres [125]. I will demonstrate throughout this Section that the other two
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(i)

(ii)

Figure 6.10: Mean cluster size at low densities (ϕ ≈ 0.1). Average number of

particles per cluster plotted for different swimming velocities. The mean cluster

size increases linearly as a function of speed v. The dashed line is the fit 1.1+1.1v.

Error bars indicate the statistical uncertainty. Each statistical error is estimated

by splitting the data into 3 samples and calculating the standard deviation of the

means. The insets show the experimental snapshots at (i) v ≈ 0.36 µms−1 and (ii)

v ≈ 1.51 µms−1 [125].

mechanisms of clustering are negligible or even absent.
Janus particles are again prepared from SiO2 beads with a radius of

R = 2.13 µm by sputtering a thin layer (10 nm) of graphite onto one
hemisphere. These carbon-coated particles are then suspended in a water-
2,6-lutidine mixture close to the critical concentration (0.28 mass lutidine)
and a small amount of suspension is poured in a 400 × 400 µm2 cavity made
by photolithography of SU-8 photoresist on a glass surface (please refer to
§4.2.1 for the details about the sample preparation). The 2D area fraction
ϕ is tuned up to 0.4 by adjusting the concentration of the initial suspension.
The sample is finally sealed with a cover glass on top. Since the height
of the cavity is about 6 µm, the motion of the particles is confined in 2D
(albeit particles may move out of plane and slightly overlap in the recorded
images). The spheres remain however free to rotate in 3D. The laser light is
absorbed by the carbon-coated hemisphere which locally heats up the binary
mixture above the critical temperature. The colloids are therefore propelled
by self-diffusiophoresis as extensively described in Chapter 5.

In the following, the control parameters are the area fraction (or 2D par-
ticles density) ϕ and the laser intensity. In order to estimate the swimming
speed v in dense suspensions for a given intensity, we determine the trajec-
tories of isolated particles and fit their short-time mean-square displacement
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(b)

(c) (d)
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laser on
t=0s

laser off
t=1h
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Figure 6.11: Phase transition of an active suspension at high densities. (a-b) Snap-

shots extracted from a movie showing two large clusters merging after collision.

One of them is marked with a red circle. The area fraction and the swimming

velocity are 0.25 and 1.45 µms−1, respectively. (c) Phase separated stage of an

active suspension at ϕ ≈ 0.27 and v ≈ 1.63 µms−1. Particles slightly out of focus

appear darker than the others. The aggregation is completely reversible: The snap-

shots (d-e) show how the clusters dissolve after the illumination has been turned

off. After 4 hours (e) the suspension looks homogenous as it was before turning on

the illumination [125].

to the expansion 4D0t+(vt)2 of Eq. (5.4), where D0 = 0.029 µm2s−1 is the
bare diffusion coefficient in equilibrium. The long-time effective diffusion
does obviously not fit with Eq. (5.4): at large t the colloids collide more
and more often, whereas (5.4) has been derived for free particles.

Under equilibrium conditions, i.e., with the illumination turned off, we
observe a homogeneous suspension at all studied area fractions ϕ ≈ 0.1−0.4.
After turning on the illumination, the particles are driven out of thermal
equilibrium and are propelled along their orientation. We let the system
relax into a steady state (for about 15 minutes) and then analyze trajectories
with a length of about 5 minutes. We estimate cluster sizes through the
enclosed area since within larger clusters it becomes difficult to reliably
detect particle positions.

At low densities (e.g., ϕ ≈ 0.1), the system rapidly enters a steady
state that can be described as a dynamical cluster fluid (Fig.6.9(a)), i.e.,
the suspension is characterized by small aggregates that, however, do not
grow beyond a certain size. Fig.6.9(b) shows the temporal evolution of a
small cluster. Each particle belonging at one to the cluster is marked with
a different color. The sequence of snapshots clearly demonstrates that the
aggregation is dynamical, i.e., particles join and leave the cluster, until in
the last snapshot the cluster has finally broken into two smaller aggregates.
Furthermore, we note that the mean cluster size (Fig.6.10), i.e., the average
number of particles belonging to a cluster, increases approximately linearly
as a function of the propulsion speed similar to what has been observed by
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Theurkauff et al. [73]. Higher activities determine in fact larger probabilities
of mutual collisions. The more often the colloids collide against each other,
the larger is the typical size of the clusters.

At higher densities (ϕ > 0.2), we observe a phase separation where
clusters grow until the system consists of a few big aggregates surrounded
by a dilute gas phase. The clusters continuously expand in size changing
their shape and acquiring more and more particles. Averaged-sized clusters
coarsen into a larger aggregate as soon as they get in touch. The coarsening
mechanism is illustrated in Fig.(a) and (b): the cluster marked with a red
circle mingles with the neighboring aggregate right after the collision. We
presume that the final stage is the condensation into one final cluster. How-
ever, the slow dynamic of the large aggregates puts the direct observation
of this final stage out of our current reach.

Therefore, we report experimentally for the first time a transition a tran-
sition from the initially disordered, homogeneous fluid into an ordered state
driven by the change (increase) the swimming speed. The ordered state
is comprised of a few big clusters surrounded by a dilute phase of single
self-propelled particles (see Fig.6.2.2(c)). These clusters are once more not
static but they constantly change their shape while particles are exchanged
between the cluster and the diluted phase. Moreover, clustering occurs only
when the laser light is turned on and thus is fully related to the activity.
Figs.6.2.2(d-e) shows the temporal evolution of the suspension in Fig.6.2.2(c)
after we turn off the illumination. The particle diffusion restores in this case
the homogeneous density profile, indicating that also for large clusters the
aggregation is reversible and solely induced by the propulsion of the colloidal
particles.

To identify the phase transition, i.e., the emergence of an ordered state,
we plot in Fig.6.12 a geometrical order parameter P for different values of
ϕ and v. In particular, we evaluate the average number of particles in the
largest cluster normalized by the total number of particles in the field of
view, i.e.

P =
⟨Nlc⟩
N

(6.2)

We actually add together the size of all clusters larger than N/10 par-
ticles since we expect all big clusters to finally merge. In fact, when the
sample undergoes a phase transition, we only observe the coalescence of
smaller clusters and not that a larger cluster breaks up.

When the active suspension is not dense enough (ϕ ≈ 0.1, blue circles)
a cluster fluid phase is observed increasing the activity, but no phase tran-
sition is reported at any of the accessible swimming speeds. The suspension
remains into the disordered state (P ≪ 1) no matter how fast the colloids
are. On the other hand a phase transition into an ordered state is found at
larger densities (ϕ > 0.18) and is confirmed by a rapid increase of P towards
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(i)

(ii)

Figure 6.12: Disorder-order phase transition induced by the particles activity. Ex-

perimental relative mean size P of the largest cluster as a function of swimming

speed v for ϕ = 0.11 (blue), 0.18 (red), 0.26 (purple) and 0.36 (green). The in-

set show experimental snapshots of (i) a phase separated sample (ϕ ≈ 0.25 and

v ≈ 1.45 µms−1) and (ii) a (non-phase separated) cluster fluid phase (v ≈ 1.51

µms−1 and ϕ ≈ 0.1) [125].

the unit (red, purple and green circles). In particular, the phase transition
is achieved increasing the driving strength v beyond a critical value that de-
pends, in turn, on ϕ. Larger densities undergo a phase transition at smaller
activities: for instance, the active suspension at ϕ = 0.36 (green) jumps into
the ordered state at velocities that are approximately half compared to the
ones found at ϕ = 0.26 (purple). As a side remark, the order parameter P
seems to ramp up with continuity, suggesting a phase transition of the 2nd

order.

What is the mechanism of cluster formation? In the previous Section I
highlighted the three main effects that contribute to the clustering in active
suspensions of colloids propelled by self-generated phoretic forces: align-
ment, attraction (static and effective) and collision. Let us carefully check
the role of each in our experimental system.

Clustering due to alignments is motivated by the Vicsek’s model and
occurs when the active particles have the same orientational order inside
a large aggregate. In colloidal systems this usually happens with parti-
cles whose shape is somewhat asymmetric. The typical example are rods
[157, 171] which, due to steric collisions, naturally assume a nematic con-
figuration when densely packed. In the case of spherical colloids, such as
the ones employed in this work, an effective alignment could be caused
by hydrodynamics interactions or by short-ranged attraction between the
coated hemispheres of the particles. Short-ranged interaction would have

91



6.2 Collective behavior of active suspensions Swimmers in confinements

free particle

1

2

3

4

5

(a) (b)

time [s]

1
2

,2
1

4
5

,5
4

2
3

,3
2

(c)

Figure 6.13: The absence of alignment inside large clusters. (a) Snapshot of the

colloidal suspension. The measured projected orientations are marked by red ar-

rows. The index of the particles that we have analyzed is labelled. (b) Estimated

apparent rotational diffusion coefficient as a function of the particle index. The

dashed line shows the estimated diffusion coefficient 3D0/(2R)
2 of a free particle.

(c) Off-diagonal elements of the correlations ρij(t) for three particle pairs [125].

two distinguishable consequences: a systematic alignment of the swimming
velocities and a change of the rotational diffusion in dense environments.

We do not observe the alignment of orientations. To address the above-
mentioned issues in more detail we analyzed the orientations of few particles
that are constrained inside a big active cluster. In particular, we prepared a
dense sample of larger active particles with radius R = 3.88 µm at illumina-
tion intensity 1.88 µWµm−2, which is comparable to the typical illumination
powers employed in all the other measurements. In order to investigate the
orientation for enough time we hold the active cluster in a concave cavity.

A first glimpse of the experimental snapshot in Fig.6.13(a) suggests that
the angles are indeed oriented randomly. Unfortunately, we cannot resolve
the full orientation of the particles. For a more quantitative analysis we
have instead recorded, for the labelled particles, the projected angle φi(t)
with a time resolution of 1 s. From the time series we estimate the angular
velocity as

φ̇i(t) ≈ φi(t+ 1)− φi(t). (6.3)

The correlations as a function of time difference are thus given by

σ2ij(t) =
1

K

K−1∑
k=0

φ̇i(k)φ̇j(k + t) (6.4)

From these correlations we can extract a rough estimate Dr ≈ 1/2σ2ii(0)
(Fig.6.13(b)) for the rotational diffusion coefficient for particle i. Error
bars are estimated as the variance when splitting the data into three sets.
Also shown is the rotational diffusion coefficient for a free particle Dr =
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3D0/(2R)
2 ≈ 1.3 × 10−3 s−1 employing the no-slip boundary condition as

appropriate for colloidal particles.
We find that the estimated rotational diffusion coefficients are reasonably

close to that of a free particle. Particles 2 and 4 seem to rotate faster but
also their statistical error is much larger. For an explanation note that we
are only able to measure the projected angle φ whereas the particle rotates
in three dimensions described by spherical coordinates φ and θ. For free
rotation the stochastic equation read [188]:

φ̇ =
ξφ

sin(θ) , ⟨ξφ(t)ξφ(t′)⟩ = 2Drδ(t− t′) (6.5)

and

θ̇ = 1
tan(θ) + ξθ , ⟨ξθ(t)ξθ(t′)⟩ = 2Drδ(t− t′). (6.6)

Our estimate for Dr is only accurate for θ ≈ π/2, i.e., the orientation
of the particle is parallel to the top and bottom slides of the cell. If the
orientation has moved out of this plane it will appear to rotate faster, which
explains the data for particles 2 and 4.

To check for possible correlations, i.e., for evidence of mutual alignments,
we calculate the normalized correlation coefficients ρij between the generic
particles i and j as

ρij(t) =
σ2ij(t)

σii(0)σjj(0)
. (6.7)

The resulting cross-correlations are plotted in Fig.6.13(c) for 3 pairs of
particles: For particles 2 and 3 (bottom panel) as well as 4 and 5 (center
panel), which are neighbors but with a larger separation, no correlations
are found. Moreover, ρij(0) ≈ 0 for all particle pairs. There are, however,
systematic oscillations for the neighboring particles 1 and 2 (top panel) in
response to an earlier motion of the other particle.

The picture that emerges from this data is that there is no systematic
alignment of particle orientations, which justifies their neglecting in the
minimal model. However, some interactions are present especially at small
particle separations.

A second possible reason for the clusters formation is the presence of
attractive forces. We have first examined the role of static attractions
that act independently of the activity of the colloids and are mainly due to
van der Waals forces. In §4.1.2 I highlighted that the choice of the carbon
coating largely reduce the attractions due to van der Waals forces between
the colloids. We have verified that comparing with numerical results the
experimental pair correlation function of a non-active suspension of Janus
colloids with area fraction ϕ ≈ 0.37. Good agreement between experiment
and simulations is achieved by adding a small attraction (0.5kBT ) in the sim-
ulations (see Fig.4.2(e) of §4.1.2). Nonetheless, this value is small enough to
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(a) (b)

Figure 6.14: Experimental test for the strength of phoretic mutual drift. Pair distri-

bution function of passive tracer particles in the presence of an active coated Janus

particle fixed at the origin. (a) Without illumination and at moderate illumination

intensity 4.4 µWµm−2. (b) At high illumination intensity 111.3 µWµm−2. The

inset are the experimental snapshots taken at the end of the measurement [125].

exclude the static attraction as main mechanism of clustering. In addition,
I’ve shown in Figs.6.2.2(c-e) that even large aggregates break off once the
laser light is turned off. This observation pleads for a minor role of static
attractions in the clusters formation.

Anyways, colloids propelled by self-phoresis experience further attractive
contribute known as chemotactic sensing, i.e., a phoretic drift triggered by
the overlap of the self-generated concentration gradients. These attraction
are present only when the particles are active. As discussed in §6.2.1 ac-
tive clusters driven by these kind of effective attractions have been recently
reported in dense suspensions of patchy colloids propelled by the local de-
composition of H2O2 [73, 82]. The strength and the range of the effective
attraction are given by the size of the local concentration gradient weighted
by the particle’s mobility; since the surrounding gradient is directly related
to the swimming speed (see Eq. (2.2)), the phoretic drift strongly depends
on the activity: higher swimming velocities imply larger effective attractions.

In our experiments the propulsion force is due to a local demixing of
the solvent (water)-molecular solute (lutidine) mixture. As first qualitative
argument that phoretic interactions are weak, I stressed in §5.1 that the
demixing zone is generally so small that cannot even be imaged with the
microscope; we can thus naivly exclude chemotaxis as a possible long-ranged
phoretic force. Other possibilities include hydrodynamic interactions and
effective short-ranged interactions of the demixing zones.

To verify the presence/absence of significant phoretic effective attrac-
tions between the self-propelled colloids we have performed an experiment
similar in spirit to the one described in Fig.6.8(b) [82]. To this end we have
prepared a cell containing a suspension of passive tracer particles with radius
R = 1.3 µm and a few coated Janus particles with radius R = 4 µm. The
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t=0s t=1.5s t=4.5s
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Figure 6.15: The self-trapping mechanism. (a) Consecutive close-ups of a cluster,

where we resolve the projected orientations (arrows) of the caps. Particles along

the rim mostly point inwards. The snapshots show how the indicated particle

towards the bottom (left) leaves the cluster (center) and is replaced by another

particle (right). (b) Sketch of the self-trapping mechanism: for colliding particles

to become free, they have to wait for their orientations to change due to rotational

diffusion and to point outwards [125].

area fraction of the passive particles is ϕ = 0.3. We identified a region of the
sample where by chance one of the coated particles sticks to the surface. To
study whether attractive forces between active and passive particles occur,
we then calculate the pair distribution function g∗(r) of the passive parti-
cles with the active coated particle at the origin (Figs.6.14(a-b)). We have
investigated three situations: illumination turned off (Fig.6.14(a), red line),
illumination with moderate intensity 4.4 µWµm−2 (Fig.6.14(a), blue line),
and with high intensity 11.3 µWµm−2 (Fig.6.14(b)). The swimming speeds
measured using the method described in the main text are v ≈ 1.4 µms−1

and v ≈ 9 µms−1, respectively. Note that the maximal intensity used to
gather the data presented in this Chapter is 5 µWµm−2.

At high laser power we do indeed observe an aggregation of passive
particles around the immobile coated particle indicating an effective phoretic
attraction. However, at the lower laser power, corresponding to the actual
experiments, we do not see any aggregation. We thus conclude that, at
least for the illumination intensities used, the phoretic attractive forces can
be neglected.

We rather ascribe the clustering shown in Figs.6.9 and 6.2.2 to a self-
trapping mechanism caused by the collisions between particles equipped
with a persistency. Particles that by chance bump against each other do not
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free themselves immediately owing to the persistence of their orientations.
To confirm experimentally this argument, we repeated the experiments using
larger particles with radius R = 4 µm, which allow us to resolve the caps and
thus the projected orientations of particles (dynamics is also much slower,
which is why for measurements we have employed smaller particles).

Fig.6.15(a) shows consecutive snapshots of a single cluster. Note that
the orientations along the rim mostly point inwards. One particle with an
outward orientation leaves the cluster while another particle attaches. The
emerging physical picture is thus that of a simple self-trapping mechanism,
see Fig.6.15(b): Two or more particles that collide head-on are blocked due
to the persistence of their orientations. Hence, a particle situated in the rim
of the cluster has to wait a time ∼ D−1

r until rotational diffusion points its
orientation outward to become free again. While the time to leave the cluster
is independent of the swimming speed v, a larger swimming speed implies a
larger probability for other particles to collide with the cluster, leading to its
growth. The size of clusters is determined by the flux balance of incoming
and outgoing particles. When the incoming flux is much larger than outgoing
one the suspension phase separates (Fig.6.2.2) since the cluster do do longer
have enough time to dissolve.

A deeper comparison with the results obtained in Refs. [73, 82] yields
the following further important remarks.

• Clustering driven by attractions is expected to occur already at rather
low area fractions. This prediction is confirmed by the experimental
results at ϕ < 0.1 of Refs. [73, 82]. On the other hand, our active
suspension requires larger ϕ to show a relevant aggregation, in quali-
tative agreement with the phase diagram predicted for repulsive active
colloids [169].

• We observe that, if the phase transition takes place, large clusters do
not break-up, whereas in Refs. [73, 82] the aggregates only grow up to a
characteristic size. In my view this substantial difference can be framed
in the general theoretical description given by Baskaran et al. [184].
When the clustering is induced by attractions, as in Refs. [73, 82], the
additional activity destabilizes the aggregates preventing the complete
growth. In our case the clustering is caused by collisions and therefore
clusters inevitably coarsen if the incoming flux of particles, determined
by v and ϕ, dominates over the outgoing one.

6.2.3 Comparison with a minimal model

The robustness of our experimental discoveries (active clustering and phase
transition) is corroborated by numerical simulations of purely repulsive disks
performed by Thomas Speck et al. at the Heinrich-Heine-Universität in
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Düsseldorf [125, 189]. In this Section I am going to summarize the bench-
marks of the theoretical model; I will not focus on the details of the numerical
simulations for which the reader can refer to Ref. [189]. Instead, I will un-
derline the hypothesis behind the model and the experimental features that
are not fully seized due to the bareness of these assumptions.

The instability that leads to the phase separation of an active suspen-
sion can be foreshadowed theoretically solving the many body Smoluchowski
equation (6.8) for the joint probability distribution ψ(rk, φk, t).

∂tψ =
N∑
k=1

∇k · [(∇kU)− fek + T∇k]ψ +Dr

N∑
k=1

∂2ψ

∂φ2
k

. (6.8)

The integration of (6.8) yields an equation for the projected density of
a single particle ρ1 that reads:

∂tρ1 = −∇ · [F+ feρ1 − T∇ρ1] +Dr∂
2
φρ1, (6.9)

where F is the force exerted by the surrounding onto the target particle
and is a function of the two-body density distribution ρ2 to find a particle
at r′ together with the tagged particle at r with orientation φ.

The closure of Eq. (6.9) is achieved noting that the force F can be
decomposed along the driving force and density gradient, i.e.:

F ≈ −ζρ̄eρ1 − (Deff − T )∇ρ1 (6.10)

where ζ is the effective force due to the neighboring particles. Hence,
Eq. (6.9) for the single particle density is finally rewritten as

∂tρ1 = −∇ · [veffe−D∇] +Dr∂
2
φρ1, (6.11)

where the effective speed veff is the results of the propulsion mediated
by the average density of the suspension, i.e.

veff ≡ f − ζρ̄. (6.12)

The solution of (6.11) shows a dynamical instability within a range of
effective forces with limits ζ+ and ζ−. Hence, since ζ depends on both the
mean particles density ρ̄ and the activity f of the single particles, the phase
separation is predicted to occur within very precise boundaries. In other
words, the swimmers need to be fast and dense enough to undergo a out-
of-equilibrium transition. This theory is in qualitative agreement with the
experiments shown in §6.2.2.

In order to contextualize the experiments into the theory described
above, the Düsseldorf’s group has performed Brownian dynamics simula-
tions. The experimental active suspension is sketched using disks that freely
rotate in the 2D-plane. Although the experimental particles undergo a 3D
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rotation, the 2D rotational diffusion coefficient is matched, for simplicity,
with the experimentalDr = 3D0/(2R)

2, where R = 2.13 µm andD0 = 0.029
µm2s−1 are again the particle’s radius and the free translational diffusion
coefficient, respectively. The activity is implemented supplying each parti-
cle k with a constant force f whose orientation ek varies according to the
rotational diffusion of the angle φk. Thus, the coupled equations of motions
are:

ṙk = −∇kU + fek + ξk (6.13)

where ξk is the Gaussian noise and U is the total potential energy derived
from the pair potential u(r) as

U =
∑
k<k′

u(|rk − rk′ |). (6.14)

The pair interaction is adjusted to fit some experimental features. In
particular, as shown in Fig.6.2.2(c), particles slightly overlap; we account
for this (apparent) softness in the simulations, by picking the following pair
potential:

u(r) =

{
εuLJ(r) + uLJ(2R)(λ− ε) (r ≤ 2R)

λuLJ(r) (r > 2R)
(6.15)

with Lennard-Jones potential uLJ(r) = 4[(σ/r)12 − (σ/r)6]. λ is the
depth of the attractive tail. The parameters ε and σ are fixed such that the
potential minimum coincides with the particle diameter 2R. As repeatedly
stressed in §6.2.2 and 4.1.2, the best agreement between experiment and
simulations is achieved by adding a small attraction with λ = 0.5kBT ; how-
ever, we focused on the purely repulsive pair potential with λ = 0 to show
that, conceptually, the observed clustering does not depend on attractions.

The results of the simulations are shown in Fig.6.16. In the simulations
clusters are determined from a simple overlap criterion: all particles with
a separation smaller than their diameter share a “bond”. A cluster is then
the set of all particles that are mutually bonded.

The simulation outcomes, illustrated in Fig.6.16(a), demonstrate that
a purely repulsive pair potential is sufficient to reproduce at ϕ = 0.3 the
increase of the mean cluster size with swimming speed. We remark that the
data displayed in Fig.6.16(a) are obtained at ϕ where the phase transition
does not occur yet. However, comparing with Fig.6.9(a), the increase of the
cluster size is somewhat stronger in the experiments. The low-density snap-
shots of the simulations (Fig.6.16(b)) and experiments [Figs.6.9(a)] reveal
another difference: while in the simulations a few large clusters dominate,
the experimental snapshots show many clusters containing fewer particles.

Likewise, the numerical simulations seize the disorder-order phase transi-
tion as ϕ increases. Above a ϕ threshold, the ordered state is again achieved
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(a) (c)

(b) (d)

Figure 6.16: Clustering and phase separation in the numerical simulations. (a)

Mean cluster size as a function of swimming speed v in a region where no phase

separation occurs (ϕ = 0.3). (b) Snapshot for ϕ = 0.3 and speed Pe = 140 (corre-

sponding to v = 0.95 µms−1). (c) Simulations results (closed symbols) compared

with the experimental ones (open symbols). The experimental data are the same

as shown in Fig.6.12. (d) Simulation snapshot of the separated system at ϕ = 0.5

and speed Pe = 100 [125].

increasing the driving. Contrary to the experiments, where the dynamics is
too slow to observe the coalescence of very large aggregates, the simulation
are run for enough time to actually observe the formation of one final large
cluster (Fig.6.16(d)). The order parameter P (closed symbols) is shown in
Fig.6.16(c) alongside the experimental data (open symbols) already reported
in Fig.6.12. The qualitative behavior of P is the same in both cases. When v
crosses a critical value, P increases rapidly suggesting that an ordered state
is reached. Increasing ϕ the transition takes place at lower v. However,
the clustering seems to be more pronounced in the experiments, i.e., the
transition occurs at lower densities (ϕ ≈ 0.2) whereas no phase separation
is noted below ϕ ≈ 0.4 in the simulations. For the highest experimental
density ϕ ≈ 0.36, the critical speed agrees quite well with the simulations.

In conclusion, numerical simulation and experiments show a very good
qualitative agreement and both capture the main features of clustering and
non-equilibrium phase transition of self-propelled colloids. Nonetheless, ex-
perimental results are shifted towards a situation with “more clustering”. If
we reason about the origin of such discrepancy, three main points immedi-
ately emerge.

1. The numerical simulation neglect any effect caused by hydrodynamics,
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which is obviously present in the experimental system. In §6.2.1 we
have seen that hydrodynamics certainly has an effect on the clustering,
even though its precise influence is rather unclear.

2. The simulation are performed using purely repulsive disks. Instead,
the colloids used in the experiment experience a weak attraction that
we quantified around 0.5kBT . Although this attraction is too feeble to
induce alone any clustering, it certainly helps in stabilizing aggregated
that form due to self-trapping. Therefore, small attractions could
definitely explain the observed disagreement.

3. The experimental system is quasi-2D, i.e., albeit the translational mo-
tion happens on the glass substrate, the particles rotate in 3D. When
the orientation points up (or down) the driving force is blocked by
the glass slides of the sample cell and the colloid behave as it were
Brownian. The consequence of this “apparent passiveness” are not
fully understood: on one hand it seems easier to trap particles if they
become slower but, on the other hand, the driving force for the phase
separation also becomes smaller. For sure, a mismatch with a purely
2D system (simulation) is not surprising.

4. Particles trapped inside a cluster are very packed. For the reason we
expect that the demixing region of a swimmer located inside a clus-
ter could be reduced by the presence of neighboring particles. This
effect would effectively lead to weaker phoretic driving forces, provid-
ing thereby a possible qualitative argument for the higher clustering
observed experimentally. In fact, slower swimmers do not break the
clusters as effectively as the swifter ones.

6.3 Summary

The behavior of self-propelled particles or, more in general, active objects
inside complex environments is definitely an appealing topic. The persis-
tency these swimmers are equipped with leads to phenomenological effects
that do not appear in classical Brownian suspensions. Confinements indeed
tremendously modify the active motion and are therefore far more important
for active systems than for Brownian ones.

In this Chapter, I have discussed two shining example: the confinement
caused by fixed obstacles and the one induced by collisions in a dense active
suspension. In the first case we have found that, when the persistence length
of the active motion is sufficiently long compared to the typical distance
between the obstacles, the active particles tend to spend more time by the
confinement walls than their Brownian counterparts. This behavior can be
exploited to implement novel sorting, classification and dialysis techniques
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6.3 Summary Swimmers in confinements

acting on the swimming style of the particles. In the second example, we
have demonstrated that the self-trapping of particle with a persistency leads
to the emergence of dynamical clusters that can eventually grow up to a
compete phase transition into an ordered state.
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Chapter 7

Asymmetric swimmers

The experimental results I have discussed so far address the particular case
of phoretic swimmers whose shape is spherical, ergo, perfectly symmetric.
The propulsion drives the particle straight and any reorientation is due to the
rotational diffusion alone. These artificial micro-motors are often employed
to understand and resemble the active motion of more complex biological
swimmers as bacteria, cells or algae. However, biological microorganisms
are often far from being symmetric. Simple rotationally symmetric shapes,
e.g., spheres, provide thus only a crude approximation.

In the particular case of asymmetric propellers where the driving force is
no longer applied on the center of mass, an active torque is induced alongside
the driving perturbing significantly the swimming path. In this Chapter I
will show that this perturbation results in a characteristic circular motion.
We model a front-rear asymmetry by fabricating patchy L-shaped particles,
coated on the short arm, which are by construction asymmetric around their
propulsion axis. These asymmetric self-propelled particles perform a circu-
lar motion whose curvature radius is independent of the propulsion strength.
Furthermore, the motion of asymmetric particles in lateral confinement re-
veals a fascinating novel feature, i.e., a critical contact angle that determines
a switch from a stable sliding along the wall to a reflection.

I wish to acknowledge Felix Kümmel who made the experiments sum-
marized in this Chapter. I will also present some numerical simulations
done by B. ten Hagen, R. Wittkowski and H. Löwen at the Heinrich-Heine-
Universität in Düsseldorf.

7.1 Circular motion of L-shaped active particles

Spherical active colloids undergo a persistent motion that recalls the behav-
ior of several biological organisms (see §1.2). The typical example, discussed
more than once throughout the manuscript, is the “run” and “tumble” tra-
jectory of E.coli bacteria [7]. In short, such trajectories are the consequence
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(a)

(b)

(c)

Figure 7.1: (a) The bean-like shape of the Paramecium’s body (picture taken from

http://boomerblog.sdsu.edu). The external surface is clothed with short filaments

(cilia) that pull the body forward with synchronized whip-like beating. (a) Example

of a front-rear asymmetry in a Chlamydomonas reinhardtii (picture taken from

Wikipedia). This alga is pulled by the two flagella embedded in the front of its

body. (c) Microscope image of L-shaped particles laying on the silicon wafer after

the lithographic process.

of a propulsive force that reorients randomly with a fixed tumbling rate. As
highlighted in §5.3 the features of this motion are reproduced pretty well by
the active motion of self-propelled particles. The equivalent of the tumbling
rate is hereby the free rotational diffusion of the colloids.

Nevertheless, sometimes the approximation of a biological microswim-
mer with a sphere is too daring. Biological microorganisms possess often a
shape that is stretched or deformed in one or more direction. In particu-
lar, the shape of a swimmer remarkably affects the active motion when the
asymmetry develops around the propulsion axis (front-rear asymmetry).

Figs.7.1(a-b) illustrate microscopic images of a Paramecium and a Chlamy-
domonas reinhardtii, respectively. The first is a relatively large cell (dozens
of microns) that is propelled by the synchronous beating of cilia attached
to the body; the second is a green alga that swims thanks to the whip-like
strokes of its two front flagella. Anyways, from both Figures appears clear
that the body of the organism has a side fatter than the other reminding
somehow the shape of a bean.

To reproduce artificially the front-rear asymmetry that characterizes
some biological swimmers, we have replaced the spherical colloids described
in Chapter 5 with L-shaped particles fabricated from photoresist SU-8 by
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Figure 7.2: (a),(b) Trajectories of an (a) L+ and (b) L- swimmer for an illumination

intensity of 7.5 µWµm2. (Red) bullets and (blue) square symbols correspond to

initial particle positions and those after 1 min each, respectively. The insets show

microscope images of two different swimmers with the Au coating (not visible in

the bright-field image) indicated by an arrow. (c),(d),(e) Probability distributions

p(α) of the angle α [see inset in (c)] between the normal vector u⊥ of the metal

coating and the displacement vector △r of an L+ particle in time intervals of 12

s each for illumination intensities (c) I = 0 µWµm−2, (d) 5 µWµm−2 and (e) 7.5

µWµm−2 [190].

photolithography [190]. The details of the fabrication of particles made of
SU-8 with different shapes can be found in Ref. [191]. In short, a 2.5 µm
thick layer of SU-8 is spin coated onto a silicon wafer, soft baked for 80 s
at 95 degrees and then exposed to ultraviolet light through a photomask.
After a post-exposure bake at 95 degrees for 140 s the entire wafer with
the attached particles is coated with a 20 nm thick Au layer by thermal
evaporation. When the wafer is tilted to approximately 90 degrees relative
to the evaporation source, the Au is selectively deposited at the front side
of the short arms. A sacrificial layer is added beneath the SU-8 layer in
order to remove the particles from the wafer (Fig.(c)) once the lithographic
printing is made. The insets of Figs.7.2(a,b) show microscope images of the
two configurations of L-particles used, denoted as L+ (left) and L- (right).

Once removed from the wafer, the particles are finally diluted in the
critical binary mixture of water-2,6-lutidine and propelled according to the
mechanism thoroughly described in §5.1. To confine the particle’s motion to
two dimensions, the suspension is contained in a sealed sample cell with 7 µm
height. The particles are localized above the lower wall at an average height
of about 100 nm due to the presence of electrostatic and gravitational forces.
Under these conditions, they cannot rotate between the two configurations
shown in Figs. 7.2(a) and 7.2(b).

Figs.7.2(a) and 7.2(b) also show the trajectories of L+ and L- swimmers
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Figure 7.3: (a) Angular velocity ω and (b) radius R of the circular motion of an L+

swimmer plotted as functions of the linear velocity v and the illumination intensity

I ∼ v. The dashed lines correspond to a linear fit with nonzero and zero slope,

respectively [190].

obtained by digital video microscopy for an illumination intensity of 7.5
µWµm−2, which corresponds to a mean propulsion speed of 1.25 µms−1.
In contrast to spherical swimmers, here a pronounced circular motion with
clockwise (L+) and counterclockwise (L-) direction of rotation is observed.
For the characterization of trajectories we determined the center-of-mass
position r(t) ≡ (x(t), y(t)) and the normalized orientation vector u⊥ of
the particles (see inset of Fig.7.2(c)). From this, we derived the angle α
between the displacement vector △r and the particle’s body orientation
u⊥. Figs.7.2(c-e) show how the normalized probability distribution p(α)
changes with increasing illumination intensity I. In the case of pure Brownian
motion (see Fig.7.2(c)) p(α) ≈ const since the orientational and translational
degrees of freedom are decoupled when only random forces are acting on the
particle.

In the presence of a propulsion force which is constant in the body frame
of the particle, however, the translational and rotational motion of an asym-
metric particle are coupled. This leads to a peaked behavior of p(α) as shown
in Figs.7.2(d) and (e). The peak’s half-width decreases with increasing illu-
mination intensity since the contribution of the Brownian motion is more and
more dominated by the propulsive part. In addition, the peaks are shifted
to positive (negative) values for a particle swimming in a (counter)clockwise
direction. The position of the peak is given by α = π∆t/τ , where τ is the
intensity-dependent cycle duration of the circle swimmer and ∆t is the con-
sidered time interval. This estimate (see arrows in Figs.7.2(d,e)) is in good
agreement with the experimental data. The shift of the maximum of p(α)
documents a torque responsible for the observed circular motion of such
asymmetric swimmers. In contrast to an externally applied constant torque
[192], here it is due to viscous forces acting on the self-propelling particle.

The internal nature of the torque is supported by the experimental ob-
servation of the particle’s angular velocity: ω(t) = dα/dt strongly depends
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Figure 7.4: Geometrical sketch of an ideal L+ swimmer as considered in our model.

The dimensions are a a = 9 µm, b = 6 µm, xS = 2.29 µm, and yS = 3.55 µm (for

homogeneous mass density and an additional 20 nm thick Au layer). The internal

force F induces a torque M on the center of mass S depending on the lever arm l.

(b),(c) Visualization of the experimental trajectory (for an illumination intensity

of I = 7.5 µWµm−2) that is used for the quantitative analysis of the fluctuation-

averaged trajectory in (d). The dashed curve in (d) is the experimental one, and

the solid curve shows the theoretical prediction with the starting point indicated

by a red bullet. Inset: closeup of the framed area in the plot [190].

on the propulsion speed and, in particular, we find a linear increase of ω
with v (Fig.7.3(a)). As a direct result of the linear relationship between ω
and v, the radius R = (∂ω/∂v)−1 of the circular trajectories becomes inde-
pendent of the propulsion speed, which is set by the illumination intensity
(see Fig.7.3(b)).

7.2 Comparison with a theoretical description

For a theoretical description of the motion of asymmetric swimmers, we
consider an effective propulsion force F [193], which is constant in a body-
fixed coordinate system that rotates with the active particle. With the unit
vectors û⊥ = (− sinϕ, cosϕ) and û∥ = (cosϕ, sinϕ) (see 7.4(a)), where, in
case of L-shaped particles, ϕ is the angle between the short arm and the
x axis, the propulsion force F is given by F = F ûint with ûint = (cû∥ +

û⊥)/
√
1 + c2 with the constant c depending on how the force is aligned

relative to the particle shape. If the propulsion force is aligned along the long
axis û⊥, one obtains c = 0, i.e., ûint = û⊥. In case of an asymmetric particle,
the propulsion force leads also to a velocity-dependent torque relative to the
particle’s center-of-mass. For c = 0 this torque is given by M = lF with
l the effective lever arm (Fig.7.4(a)). Our theoretical model is valid for
arbitrary particle shapes and values of c and l. However, for the sake of
clarity, we set c = 0 as this applies for the L-shaped particles considered
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here. Accordingly, we obtain the following coupled Langevin equations,
which describe the motion of an asymmetric microswimmer.

ṙ = βF
(
DTû⊥ + lDC

)
+ ζr ,

ϕ̇ = βF
(
lDR +DC ·û⊥

)
+ ζϕ .

(7.1)

Here, β = 1/(kBT ) is the inverse effective thermal energy of the sys-
tem. These Langevin equations contain the translational short-time diffu-
sion tensor DT(ϕ) = D∥û∥ ⊗ û∥ + D⊥

∥ (û∥ ⊗ û⊥ + û⊥⊗ û∥) + D⊥û⊥⊗ û⊥
with the dyadic product ⊗ and the translation-rotation coupling vector

DC(ϕ) = D
∥
Cû∥ + D⊥

C û⊥. The translational diffusion coefficients D∥, D
⊥
∥ ,

and D⊥, the coupling coefficients D
∥
C and D⊥

C , and the rotational diffusion
constant DR are determined by the specific shape of the particle. Finally,
ζr(t) and ζϕ(t) are Gaussian noise terms.

In case of vanishing noise, Eq. (7.1) immediately leads to a circular tra-
jectory with a radius that, in agreement with the experimental observations
(Fig.7.3(b)), does not depend on the particle velocity set by the propulsion
force. Rather, the value of R is only determined by the particle’s geome-
try, which defines its diffusion properties. Moreover, the translational and

angular particle velocities are v = βF
√

(D⊥
∥ + lD

∥
C)

2 + (D⊥ + lD⊥
C )

2 and

ω = βF (D⊥
C + lDR). Both quantities are proportional to the internal force

F and ensure R = v/|ω| in perfect agreement with the experimental results
shown in Fig.7.3(b).

For a quantitative comparison with the experimental data, most impor-
tantly, the diffusion and coupling coefficients for the particles under study
have to be determined. They constitute the components of the general-
ized diffusion matrix and are, in principle, obtained from solving the Stokes
equation that describes the low Reynolds number flow field around a particle
close to the substrate [194]. This procedure can be approximated by using
a bead model [195], where the L-shaped particle is assembled from a large
number of rigidly connected small spheres. Exploiting the linearity of the
Stokes equation, the hydrodynamic interactions between any pair of those
beads can be superimposed to calculate the generalized mobility tensor of
the L-shaped particle and from that its diffusion and coupling coefficients;
details of the calculation are outlined in Ref. [195]. This method is well es-
tablished for arbitrarily shaped particles in bulk solution [195, 196]. We take
into account the presence of the substrate by using the Stokeslet close to a
no-slip boundary [197] to model the hydrodynamic interactions between the
component beads in the bead model. For the L-shaped particles considered
here, we find the following approximated relation for the trajectory’s radius
R:

R = |D⊥/(lDR)| (7.2)
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and, correspondingly,

ω = βDRlF (7.3)

for the angular velocity.

experiment theory

D⊥ [10−3µm2s−1] 8.1± 0.6 8.3

D∥ [10−3µm2s−1] 7.2± 0.4 7.5

DR [10−4s−1] 6.2± 0.8 6.1

Table 7.1: Diffusion coefficients for the L-shaped particle in Fig.7.4(a) on a sub-

strate: translational diffusion along the long (D⊥) and the short (D∥) axis of the

L-shaped particle as well as rotational diffusion constant DR.

We determined the diffusion coefficients D⊥, D∥, and DR experimentally
under equilibrium conditions ,i.e., in the absence of propulsion from the
short-time correlations of the translational and orientational components of
the particle’s trajectories [198, 199] (see Tab. 7.1). The experimental values
are in good agreement with the theoretical predictions.

Inserting the experimentally determined values for the diffusion coeffi-
cients and the mean trajectory radius R = 7.91 µm into Eq. (7.2), we
obtain the effective lever arm l = −1.65 µm. This value is about a factor
of two larger compared to an ideally shaped L-particle (see Fig.7.4(a)) with
its propulsion force perfectly centered at the middle of the Au layer. This
deviation suggests that the force is shifted by 0.94 µm in lateral direction,
which is most likely caused by small inhomogeneities of the Au layer due
to shadowing effects during the grazing incidence metal evaporation. Ac-
cordingly, from Eq. (7.3) we obtain the intensity-dependent propulsion force
F/I = 0.83× 10−13 Nµm2µW−1.

To compare the trajectories obtained from the Langevin equations (7.1)
with experimental data, we divided the measured trajectories into smaller
segments and superimposed them such that the initial slopes and positions
of the segments overlap. After averaging the data we obtained the noise-
averaged mean swimming path, which is predicted to be a logarithmic spiral
(spira mirabilis) [200] that is given in polar coordinates by

r(ϕ) = βF

√
D2

⊥
D2

R + ω2
exp

(
− DR

ω
(ϕ− ϕ0)

)
. (7.4)

Qualitatively, such spirals can be understood as follows: in the absence
of thermal noise, the average swimming path corresponds to a circle with
radius R given by Eq. (7.2). In the presence of thermal noise, however,
single trajectory segments become increasingly different as time proceeds.
This leads to decreasing distances di between adjacent turns of the mean
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Figure 7.5: (a),(b) Trajectories of an L+ swimmer approaching a straight wall at

different angles (symbols correspond to positions after 1 minute each). (c) Exper-

imentally determined particle motion for different contact angles θ. Bullets and

open squares correspond to particle sliding and reflection. (d),(e) Visualization

of the predicted types of motion for an L+ swimmer with arrows indicating the

direction of the propulsion force: (d) stable sliding and (e) reflection [190].

swimming path (di/di+1 = exp (2πDR/|ω|), see Fig.7.4(d)) and, finally, to
the convergence in a single point for t → ∞. Due to the alignment of the
initial slope, this point is shifted relative to the starting point depending on
the alignment angle and the circulation direction of the particle.

The solid curve in Fig.7.4(d) is the theoretical prediction from Eq. (7.4)
with the measured values of D⊥, DR, and ω. On the other hand, the dashed
curve in Fig.7.4(d) visualizes the noise-averaged trajectory determined di-
rectly from the experimental data (Figs.7.4(b),(c)). The agreement of the
two curves constitutes a direct verification of our theoretical model on a
fundamental level.

7.3 Circular swimmers confined by a straight wall

We finally checked the behavior of L-shaped particles across a simple straight
confinement, i.e., a wall. In §6.1.2 I have highlighted that the interaction of
spherical (symmetric) swimmers with a wall do not any surprising behavior:
the swimmers glides along the wall and gets reflected when its orientation
points outwards. When the symmetry of the object is broken, the additional
active torque widely enriches the behavior of the swimmers.

The interaction of an active L-particle with the wall is shown in Fig.7.5(a)
exemplarily for an L+ swimmer which approaches the wall at an angle .
Because of the internal torque associated with the active particle motion,
it becomes stabilized at the wall and smoothly glides to the right along the
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interface. In contrast, for a much larger initial contact angle the internal
torque rotates the front part of the particle away from the obstacle, the
motion is unstable, and the swimmer is reflected by the wall (see Fig.7.5(b)].
Fig.7.5(c) shows the observed dependence of the motional behavior on the
approaching angle.

The experimental findings are in line with an instability analysis based
on a torque balance condition of an L-shaped particle at wall contact as a
function of its contact angle θ. For θcrit < θ < π (see Figs.7.5(b),(e)) with
a critical angle θcrit, the particle is reflected, while for 0 < θ < θcrit (see
Figs.7.5(a),(d)) stable sliding with an angle θsl occurs. Both, θsl and θcrit
are given as stable and unstable solutions, respectively, of the torque balance
condition

|l| = [(a− yS) cos θ − xS sin θ] sin θ . (7.5)

For l = −0.71 µm corresponding to an ideal L-shaped particle with the
propulsion force centered in the middle of the Au layer, we obtain θsl =
8 degrees and θcrit = 59.2 degrees, which is in good agreement with the
measured value of about θcrit = 60 degrees (see Fig.7.5(c)). The observed
scatter in the experimental data around the critical angle is due to thermal
fluctuations that wash out the sharp transition between the sliding and the
reflection regime.

7.4 Summary

We have demonstrated that, due to the viscous forces of the surrounding
liquid, asymmetric microswimmers are subjected to a velocity-dependent
torque. This leads to a circular motion, which is observed in experiments in
agreement with a theoretical model based on two coupled Langevin equa-
tions. In a channel geometry, this torque leads either to a reflection or a
stable sliding motion along the wall.

Our findings could be directly used to interpret the behavior of those
biological swimmers whose shape cannot be approximated with a sphere.

110
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In this thesis I have contextualized our experimental system in the broad
field of active matter. This fascinating topic includes out-of-equilibrium
phenomena where an object, either biological or artificial, takes up energy
from the environment in order to perform a self-propelled directed motion.

At the micrometric scale, the propulsion in a viscous fluid becomes tricky
because of the absence of inertial terms in the classical Navier-Stokes equa-
tion. In this case, a symmetry break is needed to achieve a directed motion
without any additional external field. Chapter 1 focuses on this issue and
on the tricks that biological microswimmers, such as bacteria, employ to
navigate under low Reynold’s number conditions.

During the past decades active matter at low Re also received a large
interest among the physic and the nano-engineering communities. The op-
portunity of devising micron- and nano-sized motors, capable of powering
their own motion inside, e.g., small capillaries, has been stimulating studies
on a very fundamental level. Specifically, Chapter 2 addresses one class of
autonomous propellers, based on self-generated phoretic forces. Such mi-
croswimmers break the symmetry of the medium creating a local gradient
through which are then propelled due to phoretic forces.

A deep comparison with the classical Brownian motion of micromet-
ric objects in a liquid unravels the novel properties of these tiny particles
equipped with an internal driving. Chapter 3 highlights that the internal
propulsion leads to a characteristic persistency given by the strength of the
driving force. This persistency, combined with random features such as rota-
tional diffusion, gives birth to novel bewitching paths usually grouped under
the name of “active Brownian motion”.

We have contributed to this field conceiving a novel 2D active system
with half-coated colloids propelled by diffusiophoretic forces. The driving
mechanism works when the solvent is a critical binary mixture and relies
on the critical decomposition nearby the coated hemispheres of the parti-
cles. A laser light is used to heat selectively the coated side approaching
thereby the critical temperature of the fluid. The activity, i.e., the strength
of the propulsion, is controlled by the illumination power. Chapters 4 and 5
show the advantages of such propulsion mechanism and underline the tight
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analogies with other active systems such as bacterial solution.
The active Brownian particles differ from their Brownian counterparts

in many aspects due to the additional persistency (activity). We asked our-
selves what are the implications of these differences when the swimmers
are immersed in complex environments rather than in bulk solutions. This
question is of extreme importance to acquire a better insight on the behav-
ior of active organisms, like bacteria, in complex media (e.g., soils, blood
vessels, dense solutions). Our self-propelled particles are the perfect tool to
study these phenomena on the laboratory scale, providing thereby a direct
observation of the samples. Chapter 6 describes two scenarios where the
environment strongly deviates from the bulk. On one hand the presence of
fixed obstacles leads to a preferential motion along open channels. On the
other hand dense active suspension display a dynamical clustering induced
by a reciprocal self-trapping. Under specific conditions of particles density
and activity, this clustering can even develop into the phase separation of
the sample.

Finally, the active motion of a particle changes radically when the driv-
ing force is not applied in the center-of-mass as it happens in many biological
system where the weight is not homogenously distributed or where the body
shows a geometrical asymmetry. The last Chapter investigates the behav-
ior of asymmetric model L-shaped swimmers where, due to the geometrical
configuration, an active torque is present along with the driving. The ad-
ditional torque leads to a circular motion whose radius of curvature only
depends on the geometry of the particles.

Of course the examples mentioned above and studied throughout this
manuscript do not cover all the possible issues about this relatively new
field, known as active matter. In the following I suggest few application of
our experimental system aimed at modelling further realistic conditions.

Firstly, although we achieved a good control of the experimental system,
a further investigation is certainly needed to understand the details of the
propulsion mechanism. In Chapter 5 I have shown the profile of the demixing
zone responsible for the directed motion. However, the full flow profile
would definitely provide further insights on the propulsion. To grasp this
information, neutral tracers particles, i.e., small colloids with no preference
for either the lutidine or the water phase, would be needed to track the flow.

The ability of steering active objects only by tuning the light permits
also to employ swimmers that act as shuttles in cargo delivery applications,
e.g, drugs throughout human tissues. In the past decade several methods
have been provided in order to collect and guide cargos: motor proteins,
for instance, can be tether to their loads through a biotin-streptavidin bond
[17]. Electrostatics [17] and magnetic links [18] have been also implemented
onto catalytic motors. In this context, of course, both the cargo and the
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shuttle have to be specifically functionalized to achieve the bond. The first
step towards the realization of a suitable autonomous micro-shuttle consists
in providing it with the ability of moving either backward or forward; the
evaporation method described in Chapter 4 allows to coat opposite facets of
the particle with two different materials absorbing light at different wave-
lengths. This way, according to the propulsion mechanism delineated in
Chapter 5, the direction of the swimming speed would swap depending on
which material is heated at the current wavelength. As a second step, a
suitable shape of the swimmer has to be used in order to grab or dump the
cargo. The fabrication of particles through soft-lithography, illustrated in
Chapters 4 and 7 permits to create U-shaped swimmers able to collect the
cargos in their “alcoves” and to release them when the motion is reversed.

Moreover, a study of the motion of self-propelled particles upon further
complex environmental conditions would be for sure helpful to achieve a
better understanding of some biological phenomena. The patterned struc-
ture and the clusters described in Chapter 6 resemble somehow the motion
of bacteria in porous material and inside large colonies, respectively. How-
ever, chemotactic bacteria sometimes also move in swarms of passive (e.g.,
dead) organisms [201]. Such passive objects could be easily reproduced ar-
tificially using homogeneous, i.e., uncoated, Brownian colloids. Therefore,
it would be definitely interesting to investigate experimentally the behavior
of active particles in the presence of a medium made of mobile obstacles,
as passive Brownian beads. An active particle, in order to carry on its ac-
tive motion, has hereby to shove aside the surrounding Brownian colloids;
therefore, while swimming, the active particle depletes “channels” which
then remain open behind until the passive particles manage to diffuse back.
Since crowded areas are tough for microswimmers to enter, microswimmers
can help each other by undertaking the same paths. We expect that this
behavior generates a so-called adaptive landscape, where swimmers indeed
cooperate between each other.

Finally, an appealing outlook for the asymmetric swimmers described in
Chapter 7 the motion of chiral swimmers in the presence of external fields
such as gravity [202]. In the case of asymmetric particles, this leads to an
orientational alignment during their sedimentation, which may result in a
preferential motion relative to gravity similar to the gravitactic behavior of
asymmetric cells as, e.g., Chlamydomonas [203, 204].
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polar disks.” Physical review letters, 105, 9, (2010), 098001.
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Appendix A

Stochastic Calculus

I will hereafter briefly summarize few basic features of stochastic calculus
that are of particular interest to revisit the Langevin equation. In partic-
ular, I will introduce and define some tools that can be then applied to
the Brownian dynamic of micrometric particles suspended in a liquid. This
Appendix does not claim, however, to be a mathematical guideline for the
entire stochastic calculus. Many aspects will be in fact overlooked and I will
primarily focus on definitions that are relevant to understand the stochastic
approach to Brownian motion. For further details and applications as well
as for exhaustive mathematical derivations I suggest the reader to refer to
Refs. [85, 89].

A stochastic process X is a family of random variables, such as the
positions of a particle at different times, and is usually represented mathe-
matically as

X = {Xt : tϵT} (A.1)

Stochastic processes characterize our everyday life and their definition
does not only concern Physics: any systems has to be considered stochastic
as long as one of its variables is aleatory. Therefore, tons stochastic processes
can be defined mathematically. Amongst them, it is useful to introduce here
the so-called Wiener process, which is strictly related to Brownian diffusion
(see Chapter 3). A Wiener process Wt is characterized by a probability of
transition from two different states that is drawn from a Gaussian distribu-
tion, i.e. {

Wt −Wk ∼ N(0, t− k) for t > k
W0 = 0

(A.2)

When no “memory” is involved, stochastic processes are known asMarko-
vian. In this case the probability of a certain state (e.g., position) at time
t+ 1 depends merely on the t-state and is not affected by prior events, i.e.
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Prob {Xt+1 = j|X0 = i0; ...;Xt = it} = Prob {Xt+1 = j|Xt = it} (A.3)

For Markovian chains the transition from a generic state i to a final
state j can be expressed as the sum of all the intermediate transitions. This
means that, if pij is the probability of transition from the state i to the state
j, then

pij =
∑
r

pirprj . (A.4)

Eq. (A.4) is known as Chapman-Kolmogorov equality.
The Chapman-Kolmogorov equality is rather general and holds for sev-

eral kind of stochastic processes. However, to extend its applicability to
physical phenomena we need to introduce additional hypothesis. These ad-
ditional restrictions are typical of the so-called diffusion processes.

A Markov process X belongs to the diffusive subclass if:

• X is homogeneous.

• The transition probabilities are twice continuously differentiable.

• The transition moments (see below for definition) are proportional to
the time difference.

Under these conditions, the Chapman-Kolmogorov equality for the tran-
sition probabilities can be rewritten in a continuous form as

p(x, t+∆t|y, 0) =
∫
p(x, t+∆t|z, t)p(z, t|y, 0)dz (A.5)

where x, y and z outline here three different states.
Eq. (A.5) can be modify to assume a more useful form. In particular, it

can be shown [85] that from Chapman-Kolmogorov continuous equality one
can derive the following differential equation for the transition probabilities.

∂p(x, t|y, 0)
∂t

= − ∂

∂x
(A(x)p) +

1

2

∂2

∂x2
(B(x)p) (A.6)

where A(X) and B(x) are the transition moments defined in the short
time limit as:

A(x) = lim
∆t→0

∫
(x− z)p(x,∆t|z, 0)dz (A.7)

B(x) = lim
∆t→0

∫
(x− z)2p(x,∆t|z, 0)dz (A.8)
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Eq. (A.6) is the renowned Fokker-Plank equation (aka forward Kol-
mogorov equation) and it is the main tool used to determine the probability
distributions in Brownian dynamics.

Hereafter, I am going to derive the form of the Fokker-Plank equation
employed on those stochastic processes of interest for physical phenomena.

Let us consider a Markovian process Y (t) that obeys the following dif-
ferential equation:{

dY (t) = b(Y (t), t)dt+ σ(Y (t), t)dWt

Y (0) = y0
(A.9)

beingWt the Wiener process defined in (A.2). Clever readers recognize in
(A.9) a general form of the Langevin equation (3.2); for this reason b(Y (t), t)
and σ(Y (t), t) are addressed as drift coefficient and diffusion coefficient,
respectively.

A stochastic process Y (t) that satisfies (A.9) is equally known as Ito’s
process and, in its integral form, Eq. (A.9) reads as

Y (t) = y0 +

∫ t

0
b(Y (s), s)ds+

∫ t

0
σ(Y (s), s)dW (s), (A.10)

The integral that contains the Wiener process is ambiguous and has been
historically defined in the two ways:∫ t

0
σ(Y (s), s)dW (s) = lim

∑
σ(Ysi)(Wsi+1 −Wsi) (A.11)

∫ t

0
σ(Y (s), s)dW (s) = lim

∑
σ

(
Ysi+1 − Ysi

2

)
(Wsi+1 −Wsi) (A.12)

These two definitions belong to Ito and Stratonovich, respectively, and
they obviously differ only due to the choice of the nodes of the Riemann
integral. The discussion about which definition is more physical and, at the
same time, mathematically correct, albeit very fascinating, is beyond the
scope of this Appendix. We need however to keep in mind that any result
that follows is biased by the interpretation of the integral.

If we consider a generic probability function p(Y (t), t) of the process
Y (t), and we calculate the transition moments A(Y (t)) and B(Y (t)) of Eq.
(A.6) for each stochastic variable yi of the process, we come up with the Ito’s
and the Stratonovich’s formulations of the Fokker-Plank equation (A.6).

∂p
∂t = −

∑
i

∂
∂yi

(bp) +
∑

i,j
1
2

∂2

∂yi∂yj
(σ2p) (Ito)

∂p
∂t = −

∑
i

∂
∂yi

[(
b+ 1

2σ
∂σ
∂yi

)
p
]
+

∑
i,j

1
2

∂2

∂yi∂yj
(σ2p) (Stratonovich)

(A.13)
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Looking at (A.13) with the eyes of a physicist as we do in the attempt of
describing the dynamics of a physical particle in a liquid, the set of variables
yi is given by the phase space (−→r ,−→v ). Furthermore, in several physical ap-
plications the diffusion coefficient σ(−→r ,−→v , t), luckily, does no longer depend
on −→r and −→v and the two descriptions match exactly.
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Abstract

In dieser Arbeit untersuche ich die wesentlichen Eigen-
schaften biologischer und künstlicher aktiver Systeme und
stelle eine neue Technik zur Herstellung von selbstgetriebe-
nen mikroskopischen Kolloiden vor. Um den Antrieb zu
erhalten nutzen wir phoretische Kräfte, welche ins Spiel
kommen, wenn ein Janus-Teilchen seine Umgebung asym-
metrisch verändert. Erheblicher experimenteller Aufwand
wird der Entwicklung aktiver Kolloide gewidmet, welche
sich näherungsweise als selbstgetriebene harte Kugeln ver-
halten. Dies ermöglicht es uns, die Rolle der aktiven Be-
wegung hinsichtlich ihrer Phänomene unter komplexeren
Bedingungen zu untersuchen. Zur Unterstützung unserer
experimentellen Erkenntnisse vergleichen wir diese mit nu-
merischen Simulationen von miteinander wechselwirkenden
harten Kugeln. Tatsächlich beobachten wir, dass die Nicht-
gleichgewichtsphysik, welche diese aktiven Objekte beschreibt,
voller neuer und überraschender Besonderheiten steckt.
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