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Zusammenfassung der Dissertation

Optimalsteuerprobleme und besonders zustandsbeschränkte Optimalsteuerprobleme treten

in vielen verschiedenen Wissenschaftsgebieten auf, so beispielweise in der Aeronautik, der

Robotik, der Prozessteuerung und der Simulationstechnik im Autobau. Vor diesem Hinter-

grund ist es von Interesse, solche Probleme effizient zu lösen.

Kennzeichnend für Optimalsteuerprobleme ist die Existenz einer Steuerung u, die auf einen

Zustand y einwirkt. Letzterer ist besimmt durch eine (gewöhnliche/partielle/stochastische)

Differentialgleichung. In dieser Dissertation beschäftigten wir uns mit linearen, stationären

partiellen Differentialgleichungen (PDE), d.h. insbesondere, dass der Zustand y eine lineare

Funktion der Steuerung u ist, y = Su. Nun ist es so, dass das Lösen dieser Optimalsteuer-

probleme das numerische Lösen von zwei linearen PDEs in jedem Schitt eines Optimierungsal-

gorithmus nach sich zieht. In den letzten Jahrzehnten wurde intensiv über das effiziente Lösen

solcher linearen PDEs geforscht, insbesondere adaptive Finite Elemente Methoden haben sich

dabei als besonders nützlich herauskristallisiert. U.a. deswegen lag es nahe, diese adaptiven

Finite Elemente Methoden auch auf das spezielle Feld der zustandsbeschränkten Optimals-

teuerprobleme anzuwenden:

In dieser Dissertation gab es zwei Ziele:

1. Das erste Ziel war es, ein Basis-Konvergenzresultat zu beweisen, d.h.: die Folge

der diskreten Lösungen, die man durch die Diskretisierung des Optimalsteuerprob-

lems mit Finiten Elementen gewinnt, Ūk, konvergiert gegen die eigentliche Lösung des

undiskretisierten Optimalsteuerproblems ū: Ūk → ū.

2. Das zweite Ziel war es, einen zuverlässigen Fehlerschätzer herzuleiten, d.h. eine

obere Schranke für die Differenz
∥∥ū− Ū εk∥∥, die nur aus bekannten diskreten und kon-

tinuierlichen Funktionen und linearen Fehlern besteht, wobei

• Ū εk die diskrete Lösung zu einem regularisierten Problem bezeichnet - mit Para-

meter ε > 0 - , welche die diskrete Lösung ist, die man tatsächlich berechnet,

denn sie ist eine Lösung, die man - im Gegensatz zu Ūk - durch Newton-artige

Optimierungsmethoden gewinnen kann.
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• lineare Fehler solche Fehler sind, die man durch etablierte a posteriori Fehler-

schätzungstechniken der reinen PDE-Welt abschätzen kann, d.h. dies sind gerade

die Fehler, die aus der Differenz zwischen einer Finite Element Lösung und der

tatsächlichen Lösung einer PDE mit bekannter rechter Seite bestehen.

1. Ziel: Wir konnten erfolgreich die Konvergenz Ūk → ū exakt charakterisieren, Theo-

rem 3.3.8 und Theorem 3.3.10, d.h. wir haben eine notwendige und hinreichende Bedin-

gung für Konvergenz Ūk → ū hergeleitet. Diese Bedingung wurde mit Hilfe einer diskreten

Größe formuliert, welche potenziell zum Steuern eines Algorithmus eingesetzt werden kann,

s. Abschnitt 6.3. Wir konnten kein Beispiel dafür finden, dass diese Bedingung tatsächlich

erfüllt ist; nichtsdestotrotz, da dieses Resultat bewiesen wurde ohne irgendeine zusätzliche

Regularität für die Folge der Triangulierungen oder das Problem zu fordern, stellt es einen

bedeutenden Beitrag zur Konvergenzanalysis von adaptiven Finite-Elemente-Methoden für

zustandsbeschränkte Optimalsteuerprobleme da.

2. Ziel: Das zweite Ziel, der a posteriori Fehlerschätzer, wurde in Theorem 4.2.12 und

Theorem 4.2.13 erreicht. Tatsächlich gelang es sogar nachzuweisen, dass der hergeleitete

Fehlerschätzer unter milden Annahmen konvergiert, Theorem 4.3.14.

In den abschließenden Kapiteln dieser Dissertation konstruierten wir auf der Basis unseres

a posteriori Fehlerschätzers einen adaptiven Algorithmus, Kapitel 5, bevor wir diesen

erfolgreich an zwei Beispielen austesten, Kapitel 6.
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Summary of PhD Thesis

Optimal control problems and in particular state-constrained optimal control problems fre-

quently occur in all sorts of fields of science, from aerospace engineering to robotics, from

process engineering to vehicle simulations. Against this backdrop, it is of interest to solve

these kinds of problems in an efficient manner.

Optimal control problems are characterised by the existence of a control u acting on a state y

which is governed by a (ordinary/partial/stochastic) differential equation. In this PhD thesis,

we considered linear, stationary partial differential equations (PDE); in particular, the state

y is a linear function of the control u, y = Su. Now, solving such optimal control problems

numerically involves solving two linear PDEs in each iterate of an optimisation algorithm.

Over the last decades much research has been undertaken to numerically solve such linear

PDEs efficiently, especially discretisations with adaptive finite elements have been proven to

be highly useful for such a task. Thus, trying to apply these adaptive finite element methods

to the specific setting of state-constrained optimal control problems suggested itself as an

appropriate approach:

The aim of this thesis was twofold:

1. The first goal was to prove a basic convergence result, i.e.: the sequence of discrete

solutions obtained by discretising the optimal control problem with finite elements, Ūk,

converges to the true solution of the undiscretised problem ū: Ūk → ū.

2. The second goal was to derive a reliable a posteriori error estimator, i.e. an

upper bound for the difference
∥∥ū− Ū εk∥∥ containing only known discrete and continuous

functions and linear errors, where

• Ū εk denotes the discrete solution to a regularised problem - with parameter ε > 0 -

which is the discrete solution actually computed, because unlike the unregularised

solution Ūk, it is a solution which can be obtained by Newton-type optimisation

algorithms.

• linear errors are those errors which can be estimated by established a posteriori

error estimation technique from the pure PDE world, i.e. these are the errors

8



consisting of the difference between a finite element solution and the true solution

to a PDE with a known right hand side.

1st aim: We succeeded in characterising convergence Ūk → ū exactly, Theorem 3.3.8 and

Theorem 3.3.10, i.e. we derived a necessary and sufficient condition for convergence Ūk → ū,

in terms of a discrete quantity which can potentially be used to steer a numerical algorithm,

as we did in Section 6.3. We could not find an example, where this condition is fulfilled;

nevertheless, because this result was achieved without assuming any additional regularity for

the sequence of triangulations or the problem itself, it constitutes a major contribution to

the convergence analysis for adaptive finite element methods for state-constrained optimal

control problems.

2nd aim: The second goal, the a posteriori error estimator, was achieved in Theorem 4.2.12

and Theorem 4.2.13. Remarkably, the derived a posteriori estimator was proved to converge

under relatively mild assumptions, Theorem 4.3.14.

In the concluding chapters of this thesis, we constructed an adaptive algorithm on the basis

of our a posteriori error estimator, Chapter 5, before successfully testing it for two problems,

Chapter 6.
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Chapter 1

Motivation

Modelling and optimising physical processes naturally lead to mathematical optimal control

problems with state constraints. Let us illustrate this with the help of two examples:

• In problems of heat conduction a typical goal would be to find an optimally adjusted

heat source to come as close as possible to a desired temperature distribution in a

given workpiece. Here, the control is the regulation of the heat source and the state is

the temperature distribution. A partial differential equation, namely the (stationary)

heat equation links these to variables. A typical state constraint would be to force the

temperature distribution to stay below a certain threshold, for instance to prevent the

material from melting.

• In the optimisation of diffusion processes the latter being modelled e.g. by Fick’s dif-

fusion, compare [22], Chapter 1, a characteristic aim would be to achieve a desired

concentration of a chemical substance by optimally adjusting the chemical sources by

e.g. decreasing or increasing inflow. In this setting the control is represented by the

calibration of the chemical source while the state itself is represented by the concen-

tration of the substance. A natural state constraint here would be to demand that

the concentration do not surpass a certain critical threshold, e.g. possibly for health

reasons.

In these two examples we already discern the structure of state-constrained problems: A con-

trol u governs a state y, determined by a partial differential equation, with which we want to

come close to a desired state yd subject to a constraint on the state y. In mathematical terms

this problem represents an infinite-dimensional optimisation problem for which the solution

is in general not known.

In view of the fact that the solution is in general unkown, it would be highly desirable to

solve these problems efficiently numerically. As the first step towards solving such a problem

numerically we have to discretise it, i.e. we have to break it down to a finite-dimensional

optimisation problem from an infinite-dimensional one. In this setting, this is usually done

11



12 CHAPTER 1. MOTIVATION

by using finite element spaces (FE-spaces). The effort that we now have to put in to solve this

problem is heavily influenced by the dimension of our finite element spaces, i.e. by the amount

of degrees of freedom (DOFs) that are available to us. Clearly, it would now be of advantage

to be able to use those DOFs smartly, i.e. in a problem-dependent, adaptive manner, while

also being certain that adding DOFs and thus increasing the computational effort actually

gets us closer to the unknown solution. The latter aspect is the one of convergence of this

method, the focus of Chapter 3, while the former demands the derivation of a reliable a pos-

teriori error estimator, the subject of Chapter 4, on whose basis we can judge the quality

and thus the smartness of our finite element approximation. To put it in a brief mathematical

term: We want to build a convergent adaptive finite element method. This was the ultimate

aim of this thesis, one which is challenging both from an analytical and numerical persepctive.

Adaptive finite element methods have already been succesfully applied to PDEs, e.g. [84],

[34],[76] and many many more and purely control constrained optimal control problems, e.g.

[50], to name just one. In the a posteriori error analysis of state-constrained problems,

research has also been underway, mostly focussing on estimates of ’quantities of interest’

which do not provide a reliable bound - an upper bound up to constants depending on data

- of the error between the current discrete solution and the true solution [86], [6], while others

have not taken into account certain error sources, [46]. Besides, in general, the regularisation

error, which is a natural part of the numerical solution of state-constrained optimal control

problems, compare Section 2.2.2, was also neglected. In addition, it is not clear whether the

sequence of finite element solutions actually converge to the true one.

The fundamental difficulty of state-constrained optimal control problems is their lack of

regularity: Once a uniform mesh is no longer demanded, convergence properties of FE-

solutions to PDEs, such as convergence in L∞, can no longer be presupposed. In this situation,

the inherent difficulties of state constraints, chiefly the singular nature of the associated

Lagrange multiplier, see Section 2.2.1, strike with full ferocity. Yet, these difficulties also

formed part of my motivation because even though it proved to be a formidable challenge to

come up with a whole new set of tools for the analysis of state-constrained optimal control

problems - tools which could potentially be used in many other branches - it was precisely

this challenge which provided me with the opportunity to explore branches of mathematics,

especially functional analysis, such as the interpolation of spaces, but also optimisation in

Banach spaces, whose rich applications and powerful theory offered a truly fascinating study.

S. Steinig AFEM for State-Constrained Optimal Control



Chapter 2

General Framework

This chapter introduces the reader to the general mathematical framework of optimal control

problems and the adaptive finite element method. We will try to give a concise overview,

referring the reader - whenever it is needed - for more detailed information to additional

literature.

We will start by collecting some important notions and results respecting function spaces

such as embeddings, dual spaces and separation of convex sets, before briefly describing the

function spaces which one naturally deals with when tackling optimal control problems.

2.1 Function Spaces

Especially in the context of optimisation in Banach spaces, notions such as duality, reflexivity,

weak compactness as well as properties of convex sets will naturally come into play. It is

therefore advantageous to briefly gather important definitions and theorems, not least because

the reader will be able to follow this thesis more easily.

2.1.1 Banach Spaces and Convex Sets

Throughout this section, X is a real Banach space with norm ‖·‖X , in short (X, ‖·‖X). Its

dual space, denoted by X∗, consists of all linear and continuous mappings - referred to as

linear functionals - f : X → R and is endowed with the canonical norm

‖f‖X∗ := sup
‖x‖X=1

|f(x)| .

It is a Banach space itself. Sometimes we write

〈f, x〉X∗,X = 〈f, x〉 := f(x)

13



14 CHAPTER 2. GENERAL FRAMEWORK

where 〈·, ·〉X∗,X is the duality product, which bears certain similarities to a scalar product.

If the bi-dual of X, X∗∗ = (X∗)∗, can be identified with X by an isometric isomorphism, we

say that X is reflexive.

A special class of Banach spaces are Hilbert spaces. Hilbert spaces H possess a scalar product

(u, v)H ∀u, v ∈ H

and are normed with the canonical norm induced by the scalar product, i.e.:

‖u‖H =
√

(u, u)H

Hilbert spaces have the property that their dual space H∗ can be isometrically isomorphi-

cally identified with the space H itself. As a consequence, they are always reflexive. The

isomorphism is referred to as the Riesz-isomorphism, and the images in H of functionals in

H∗ are called Riesz representatives. Sometimes, though, it can still be advantageous to treat

the dual H∗ as a separate space.

n-tuples of Hilbert spaces H = H1 × H2 × ... × Hn are Hilbert spaces themselves equipped

with the canonical scalar product

(u, v)H :=

n∑
i=1

(ui, vi)Hi

and induced norm.

Dual spaces induce a topology that is usually referred to as the weak topology. In particular,

we are interested in the notion of weak convergence, which will be used on several occasions

in this thesis.

Definition 2.1.1 (weak convergence). A sequence {xk} ⊂ X converges weakly to an element

x ∈ X, denoted by xk ⇀ x, k →∞, if

〈f, xk〉X∗,X → 〈f, x〉X∗,X , k →∞ ∀f ∈ X∗.

The notion of weak convergence is a crucial tool in deriving existence results for optimisation

problems because - in some sense - it replaces the classic principle of finite dimensional analysis

that every bounded sequence contains a convergent subsequence, which plays a key role in

proofs of existence of minima. First of all, though, we need some separation theorems for

convex sets: The first can be found in [58], Section 5.12 Theorem 1:

Theorem 2.1.2 (Mazur’s Theorem/Geometric Hahn-Banach). Let C be a convex subset of

X with non-empty interior. Suppose V is an affine subspace in X with V ∩ int(C) = ∅. Then

S. Steinig AFEM for State-Constrained Optimal Control



15 CHAPTER 2. GENERAL FRAMEWORK

there exists x∗ ∈ X∗ such that the hyperplane H

H = {x ∈ X : 〈x∗, x〉X∗,X = c, c ∈ R}

fulfils

V ⊂ H, H ∩ int(C) = ∅, 〈x∗, x〉X∗,X < c ∀x ∈ int(C).

Another separation theorem is the following, which can be found in [3], Theorem 6.11.

Theorem 2.1.3. Let X be a Banach space, C ⊂ X non-empty, convex and closed. Besides,

let x0 ∈ X with x0 /∈ C.Then there exists f ∈ X∗ and α ∈ R such that

〈f, x〉X∗,X ≤ α ∀x ∈ C

and

〈f, x0〉X∗,X > α.

Obviously, f 6= 0 and

{x ∈ X : 〈f, x〉X∗,X = α}

is a hyperplane in X.

The next theorem is to a certain extent the infinite-dimensional equivalent of the Bolzano-

Weierstrass principle in finite dimension formulated in terms of weak convergence. A proof

can e.g. be found in [87], Section V.2, Theorem 1.

Theorem 2.1.4. Let X be a reflexive Banach space and {xk} be a bounded sequence. Then

{xk} possesses a weakly convergent subsequence.

This result will be used frequently throughout this thesis. Next, let us prove a Lemma offering

a way to make the step from (weak) convergence of subsequence to (weak) convergence of the

entire sequence.

Lemma 2.1.5. Let X be a reflexive Banach space and {xk} ⊂ X be a bounded sequence.

Suppose that every weakly convergent subsequence of {xk} converges to the same x ∈ X.

Then the entire sequence weakly converges to x:

xk ⇀ x, k →∞

Proof. Suppose the contrary. Then there exists a subsequence
{
xkj
}

, an ε > 0 and f ∈ X∗

such that

|〈f, xkj 〉 − 〈f, x〉| ≥ ε ∀j ∈ N (2.1.1)

S. Steinig AFEM for State-Constrained Optimal Control



16 CHAPTER 2. GENERAL FRAMEWORK

However, since xkj is bounded by assumption, there exists a subsequence of
{
xkj
}

denoted by{
xkjl

}
.
{
xkjl

}
being a subsequence of {xk}, it weakly converges to x by assumption. Thus,

for some L = L(ε) ∈ N,

|〈f, xkjl 〉 − 〈f, x〉| < ε ∀l ≥ L.

This is the desired contradiction to (2.1.1) which completes the proof.

We will often encounter a situation where the bounded sequence belongs to a certain subset

of X, and we need the weak limit to belong to this subset, too.

Theorem 2.1.6. Let C be a convex and closed subset of X. Then C is weakly compact,

i.e. every bounded sequence {xk} contains a weakly convergent subsequence {xkn} weakly

converging to an element x ∈ C as n→∞.

The proof of this theorem can be found in [3], Theorem 6.12.

Another important property of convex sets is the fact that they allow for the definition of

a projection operator onto them satisfying a variational inequality, which is very useful for

interpreting first-order optimality conditions for the optimisation problems we will consider

later:

Theorem 2.1.7 (projection on convex sets). Let H be a Hilbert space and C a convex, closed

and non-empty subset of H. Then, for every x ∈ H, there exists a unique element ΠC(x) ∈ C,

the projection of x on C, solving the minimisation problem

inf
v∈C

1

2
‖v − x‖2H , (2.1.2)

and satisfying

(ΠC(x)− x, v −ΠC(x))H ≥ 0 ∀v ∈ C. (2.1.3)

Conversely, if an element ṽ satisfies

(ṽ − x, v − ṽ)H ≥ 0 ∀v ∈ C, (2.1.4)

then ṽ ∈ C solves (2.1.2) and thus ṽ = ΠC(x).

In addition, the projection ΠC is Lipschitz continuous with Lipschitz constant 1, i.e.

‖ΠC(x)−ΠC(y)‖H ≤ ‖x− y‖H (2.1.5)

Proof. The existence of ΠC(x) can be easily transferred from the case where C is a closed

subspace of H (see e.g. [4] Theorem 10.5), because in essence, everything that is needed is
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that for the infimal sequence {vn}n∈N ⊂ C we have

1

2
(vn + vm) ∈ C,

which is true for convex sets.

As to the uniqueness of the solution to (2.1.2): Let us suppose there exist two solutions v1, v2

to (2.1.2) with v1 6= v2 and

d = inf
v∈C
‖v − x‖2H = ‖v1 − x‖2H = ‖v2 − x‖2H

Using the parallelogram identity, we obtain:

1

2

∥∥∥∥v1 + v2

2
− x
∥∥∥∥2

H

=
1

4
‖v1 − x‖2H +

1

4
‖v2 − x‖2H −

1

8
‖v1 − v2‖2H

<
1

4
‖v1 − x‖2H +

1

4
‖v2 − x‖2H

=
d

2
+
d

2
= d,

which is a contradiction, since v1 and v2 solve (2.1.2). Hence, the solution to (2.1.2) is unique,

and we denote it by ΠC(x).

The solution ΠCx satisfies (2.1.3) because for all t ∈ (0, 1] we can deduce

0 ≤ 1

2t
(‖(1− t)ΠC(x) + tv − x‖2H − ‖ΠC(x)− x‖2H)

=
1

2t
((ΠC(x)− x, t(v −ΠC(x))H + ‖tv‖2H).

Drawing the limit t→ 0 yields the assertion (2.1.3).

Now, suppose ṽ fulfills (2.1.4), then for all v ∈ C we can estimate in the ensuing way:

1

2
‖v − x‖2H = (v − ṽ, ṽ − x)H +

1

2
‖v − ṽ‖2H +

1

2
‖x− ṽ‖2H

≥ 1

2
‖x− ṽ‖2H .

Hence, ṽ solves (2.1.2).

Let us now turn to (2.1.5): (2.1.3) yields

(ΠC(x)− x,ΠC(y)−ΠC(x)) ≥ 0

(ΠC(y)− y,ΠC(x)−ΠC(y)) ≥ 0.

Adding and rearranging these two inequalities, we can conclude harnessing Cauchy-Schwarz’s
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inequality

‖ΠC(x)−ΠC(y)‖2H ≤ (x− y,ΠC(y)−ΠC(x))

≤ ‖x− y‖H ‖ΠC(y)−ΠC(x)‖H

Divinding by ‖ΠC(y)−ΠC(x)‖H completes the proof.

A subclass of convex sets are convex cones, which are important in optimisation because they

induce a pre-order relation that provides an extension to the ≤ on the real numbers in general

vector spaces.

Definition 2.1.8 (Cones). Let C ⊂ X be a convex set such that

x ∈ C ⇒ λx ∈ C ∀λ ≥ 0.

Then C is called a convex cone.

A cone induces a pre-ordering ≤C by the relation

x ≤C y ⇔ y − x ∈ C.

The relation ≤C is compatible with vector space operations, i.e.

∀x, y, z ∈ X : x ≤C y ⇒ x+ z ≤C y + z

∀λ ≥ 0 : x ≤C y ⇒ λx ≤C λy

The polar cone C− to C is given by:

C− := {f ∈ X∗ : 〈f, x〉 ≤ 0 ∀x ∈ C} .

If we do not consider C and its polar cone w.r.t to the canonical norm-topology in X but w.r.t

to the norm-topology of another Banach space Z ⊂ X, we specifically write:

CZ = C ∩ Z

and

C−Z = {ϕ ∈ Z∗ : 〈ϕ, z〉Z∗,Z ≤ 0 ∀z ∈ CZ} .

2.1.2 Linear & More General Mappings, Notions of Differentiabilty

We have already encountered the dual space X∗ of an arbitrary real Banach space X. Some-

times it is also necessary to treat more general mappings. We will now list some results
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pertaining to such mappings, starting with linear mappings S : X 7→ Y between two Banach

spaces X and Y .

Theorem 2.1.9. Let X and Y be two Banach spaces. Then the space L(X,Y ) consisting

of all linear and continuous operators S : X 7→ Y is a Banach space itself endowed with the

norm

‖S‖L(X,Y ) := sup
‖x‖X=1

‖Sx‖Y = sup
‖x‖X≤1

‖Sx‖Y = sup
x∈X\{0}

‖Sx‖Y
‖x‖X

For every S ∈ L(X,Y ) there exists an adjoint operator S∗ mapping Y ∗ to X∗. It maps y ∈ Y ∗

linearly and continuously on the element x = y(S) ∈ X∗. In the special case of Hilbert spaces,

the adjoint operator S∗ to an operator S ∈ L(H1, H2), where H1, H2 are Hilbert spaces, maps

H2 to H1 and is defined by the relation

(Su, v)H2 = (u, S∗v)H1 ∀u ∈ H1, v ∈ H2.

For existence proofs for Lagrange multipliers, the following characterisation of surjective linear

mappings, the famous open mapping theorem, is very useful. A proof can be found in [72],

Theorem 2.11.

Theorem 2.1.10 (Open Mapping Theorem). Let X,Y be two Banach spaces and S : X → Y

a continuous surjective linear mapping. Then S is an open mapping, i.e. the image of every

open subset V ⊂ X, S(V ), is open in Y .

A special class of linear and continuous operators are embedding operators. At several points

in this thesis such operators will be important. We will specify this notion in the ensuing

definition which can be found in [1], Definition 1.25.

Definition 2.1.11 (Embeddings). Let Y be a Banach space with norm ‖·‖Y and Y ⊂ X.

We say that Y embeds (continuously) into X, Y ↪→ X, if Y is a vector subspace of X and

the mapping I : Y → X defined by

Iy = y ∀y ∈ Y

is continuous.

If I is also compact, i.e.

xk ⇀ x ∈ Y ⇒ Ixk → Ix, k →∞ ∈ X,

we say that Y ↪→ X compactly.

In optimisation one invariably encounters goal functions, i.e. mappings g : V → R, where V

is a convex subset of a Banach space X. In view of Theorem 2.1.6, the question arises how

they act on weakly convergent sequences.
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First of all, let us define the appropriate notions:

Definition 2.1.12 (weak upper/lower semicontinuity). A function g : X → R where X is a

Banach space is weakly lower semicontinuous if xk ⇀ x implies

lim inf
k→∞

g(xk) ≥ g(x)

It is called weakly upper semicontinuous if −g is weakly lower semicontinuous.

Obviously, a question to ask is what kind of functions fulfil the properties mentioned in

Definition 2.1.12. Is mere continuity of g in the strong, norm-topology enough? For affine

functions this is obviously the case; for nonlinear functions, though, an extra (sufficient)

ingredient is needed, namely convexity:

Definition 2.1.13 ((Strictly) Convex and Concave Functions). Let g : V ⊂ X → R be a

function defined on a convex subset V of X. g is convex if

g(λu+ (1− λ)v) ≤ λg(u) + (1− λ)g(v) ∀u, v ∈ V, λ ∈ (0, 1).

It is called strictly convex if

g(λu+ (1− λ)v) < λg(u) + (1− λ)g(v) ∀u, v ∈ V, u 6= v, λ ∈ (0, 1).

g is (strictly) concave if −g is (strictly) convex.

With this definition we can return to the subject of weakly continuous functions:

Theorem 2.1.14. Let g : X → R be a convex, continuous function and X a reflexive Banach

space. Then g is weakly lower semicontinuous. Conversely, if g is concave and continuous, it

is weakly upper semicontinuous.

Proof. For a convex and continuous function g, the epigraph

epi(g) := {(x, a) ∈ X × R : g(x) ≤ a}

is closed and convex, compare [29], Proposition 2.1. Proposition 2.3. and Corollary 2.2 in [29]

now yield that every convex and continuous function is weakly lower semicontinuous. The

second part of the theorem is a consequence of the first. If g is concave, then −g is convex,

thus:

lim sup
k→∞

g(xk) = − lim inf
k→∞

−g(xk) ≤ −(−g(x)) = g(x).

In the context of existence results for minimisation problems, two properties are often needed

as prerequisites: radial unboundedness and boundedness from below:
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Definition 2.1.15. Let g : V ⊂ X → R be a function defined on a subset V of X. The

function g is radially unbounded on V if for every sequence {xk} ⊂ V with ‖xk‖X → ∞
g(xk)→ +∞ follows as k →∞.

The function g is said to be bounded from below on V if there exists a real number b such that

g(u) ≥ b ∀u ∈ V.

Notions of differentiability naturally come into play when one wants to formulate optimality

conditions. In the course of this paper we will employ two: That of Fréchet-differentiabilty,

which is perhaps the strictest, and that of semi-smoothness, which is a comparatively weak

one, but nevertheless a very valuable tool in analysing superlinearly convergent optimisation

algorithms.

Let us commence with the notion of Fréchet-differentiability; the following definition can be

found in [45], Definition 1.29:

Definition 2.1.16 (Fréchet-differentiability). An operator G : X → Y , where X,Y are

Banach spaces, is called Fréchet differentiable at x ∈ X, if there exists a linear operator

G
′
(x) ∈ L(X,Y ) such that∥∥∥G(x+ h)−G(x)−G′(x)h

∥∥∥
Y

= o(‖h‖X) for ‖h‖X → 0. (2.1.6)

If G is Fréchet-differentiable at every x ∈ V , where V is any open subset of X, then G is

Fréchet-differentiable on V .

Especially in the context of proving certain convergence rates for optimisation algorithms, it

will also be helpful to consider non-linear operatorsG which need not be Fréchet-differentiable,

but still possess a certain smoothness that can be compared to the smoothness of Fréchet-

differentiable operators (2.1.6). These operators will be called semismooth. Following Section

3.2. in [82], we define the notion of semismoothness in the following fashion:

Definition 2.1.17 (Semismoothness). Let G : V ⊂ X → Y be defined on an open subset

V of a Banach space X with images in the Banach space Y . Furthermore, let a set-valued

mapping ∂G : V → L(X,Y ) be given with non-empty images, i.e. ∂G(x) 6= ∅ for all x ∈ V :

• G is ∂G-semismooth at x if G is continuous in a neighbourhood of x and

sup
M∈∂G(x+h)

‖G(x+ h)−G(x)−Mh‖Y = o(‖h‖X) for ‖h‖X → 0.

• G is α-order ∂G-semismooth at x, 0 < α ≤ 1 if G is continuous in a neighbourhood of

S. Steinig AFEM for State-Constrained Optimal Control



22 CHAPTER 2. GENERAL FRAMEWORK

x and

sup
M∈∂G(x+h)

‖G(x+ h)−G(x)−Mh‖Y = o(‖h‖1+α
X ) for ‖h‖X → 0.

The multifunction ∂G will be called generalised differential of G and the non-emptiness of

∂G will always be assumed. In particular, ∂G-semismoothness of G will always entail that

∂G(v) 6= ∅ for all v ∈ V .

The importance of the concept of semismoothness will be illustrated in Section 2.2.3, where

we will discuss a q-superlinearly convergent method for solving non-linear equations, the

Semismooth Newton Method, which will be highly useful for solving optimality systems. At

this point, let us merely specify what superlinear convergence means. The definition below

can be found in [45], Section 2.1:

Definition 2.1.18 (superlinear convergence). Let X be a Banach spaces and {xk} ⊂ X a

sequence with xk → x, x ∈ X.

The sequence xk converges q-superlinearly to x if xk → x as k →∞ and

‖xk+1 − x‖X = o(‖xk − x‖X).

If for some α > 0

‖xk+1 − x‖X = O(‖xk − x‖1+α
X ),

then xk → x converges q-superlinearly with order 1 + α.

In the next section, we will list some crucial results pertaining to the solvability of variational

equalities because they will form a key part in the analysis of optimal control problems.

2.1.3 Linear Equations

In this section we will analyse a variational equality of the following general type:

y ∈ Y : B[y, w] = 〈f, w〉 ∀w ∈ Y, (2.1.7)

where Y is a Hilbert space and f ∈ Y ∗. B is a continuous bilinear form on Y , a notion which

we will specify in the next definition

Definition 2.1.19 (Continuous Bilinear Form). Suppose Y is a Hilbert space. A mapping

B : Y ×Y → R is a continuous bilinear form if it is linear in each component and if there
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exists a constant c

|B[y, w]| ≤ c ‖y‖Y ‖w‖Y ∀y, w ∈ Y.

The norm ‖B‖ of B is defined by

‖B‖ := inf {c : |B[y, w]| ≤ c ‖y‖Y ‖w‖Y ∀y, w ∈ Y } .

In case

B[y, w] = B[w, y] ∀y, w ∈ Y,

B is called symmetric.

If

B[w,w] ≥ β ‖w‖2Y , ∀w ∈ Y,

B is called coercive.

We are interested in conditions under which (2.1.7) is uniquely solvable, that is conditions,

which safeguard that for every f ∈ Y ∗ there exists a unique solution y = Sf depending

continuously on the data, i.e. for some constant cS

The key condition which is necessary and sufficient for the solvability of (2.1.7) is the inf − sup-

condition, which is the subject of the next theorem, taken from [61], Theorem 3.3 or [65],

Section 2.3. Theorem 2.

Theorem 2.1.20 (Nečas Theorem). Let Y be a Hilbert space and B : Y × Y → R be a

continuous bilinear form. Then the variational problem (2.1.7) admits a unique solution

y = Sf if and only if

inf
w∈Y

sup
z∈Y

B[w, z]

‖w‖Y ‖z‖Y
= inf

z∈Y
sup
w∈Y

B[w, z]

‖w‖Y ‖z‖Y
= α > 0 (2.1.8)

or equivalently:

∃α > 0 : sup
z∈Y

B[w, z]

‖z‖Y
≥ α ‖w‖Y

and for every 0 6= z ∈ Y there exists w ∈ Y such that B[w, z] 6= 0.

(2.1.9)
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In addition, y satisfies

‖y‖Y = ‖Sf‖Y ≤
1

α
‖f‖Y ∗ .

In the example section, Section 2.4, the reader will encounter continuous bilinear forms which

are symmetric and coercive. The following corollary ensures that these properties imply the

inf − sup-conditions of Theorem 2.1.20:

Corollary 2.1.21. Let Y be a Hilbert space and B : Y ×Y → R be a symmetric and coercive

bilinear form. Then B satisfies the condition (2.1.9) of Theorem 2.1.20 with α ≥ β, where β

is the coercivity constant.

Proof. We can estimate in the following fashion:

sup
z∈Y

B[w, z]

‖z‖Y
≥ B[w,w]

‖w‖Y
≥ β ‖w‖Y .

In addition, for 0 6= z ∈ Y , we obtain

B[z, z] ≥ β ‖z‖2Y > 0,

which yields (2.1.9) and α ≥ β.

One important aspect of coercivity is that it is immediately inherited by (closed) subspaces

Z ⊂ Y and thus, in particular by finite-dimensional subspaces, which is very helpful for

proving existence and stability results for discretisations of linear equations. We tackle the

following problem.

yZ ∈ Z : B[yZ , wZ ] = 〈f, wZ〉 ∀wZ ∈ Z, (2.1.10)

where Z is a closed subspace of Y .

Corollary 2.1.22. Suppose problem (2.1.10) is given with a bilinear form B : Y × Y → R
that is coercive and continuous on Y with coercivity constant β > 0. Suppose further that Z

is a closed subspace of the Hilbert space Y with the same norm, i.e. ‖·‖Z = ‖·‖Y . Then there

exists a unique solution SZf = yZ of (2.1.10) with

‖SZf‖Y = ‖yZ‖Y ≤
1

β
‖f‖Y ∗ . (2.1.11)

In particular, the estimate above does not depend on the subspace Z.

Proof. Coercivity and continuity of B on Y imply coercivity and continuity on Z of B, since

the same norm is used. Corollary 2.1.21 then yields condition (2.1.9) in the following modified
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way:

∃α > 0 : sup
wZ∈Z

B[qZ , wZ ]

‖wZ‖Y
≥ α ‖qZ‖Y ,

and for every 0 6= wZ ∈ Z, there exists qZ ∈ Z such that B[qZ , wZ ] 6= 0.

That in turn yields the existence of a solution SZf = yZ ∈ Z thanks to Theorem 2.1.20.

Corollary 2.1.21 yields:

‖SZf‖Y ≤
1

β
‖f‖Y ∗

where β is the coercivity constant of B on Y . This is estimate (2.1.11) which completes the

proof.

We will conclude this section with a remark on the right-hand side in (2.1.7).

Remark 2.1.23. Suppose that a Hilbert space U with U ↪→ Y ∗ and the following modified

form of (2.1.7) are given with u ∈ U :

y ∈ Y : B[y, w] = (u,w)U ∀w ∈ Y.

Then all the preceding results Theorem 2.1.20, Corollaries 2.1.21 and 2.1.22 can be immedi-

ately transferred to this setting because

fu(w) := (u,w)U w ∈ Y

is a linear functional on Y . In addition, the embedding U ↪→ Y ∗ yields

‖fu‖Y ∗ ≤ c ‖u‖U ,

and the stability results of Theorem 2.1.20 and (2.1.11) also hold in the following sense

‖Su‖Y ≤
c

β
‖u‖U .

2.1.4 Spaces of Classically Differentiable and Continuous Functions

In this section, we will specify the notion of (Hölder-) continuous and continuously differen-

tiable spaces of functions, which we will often come across in the course of the thesis.

Those functions are defined on a set Ω which throughout this thesis is a bounded domain in

Rd with d = 2 or d = 3 with closure Ω̄.

We now introduce the following spaces, compare also [31], Section 5.1. Theorem 1.

Definition 2.1.24. The space C l,γ(Ω̄), 0 ≤ l ≤ ∞, 0 ≤ γ ≤ 1, consists of all functions g

which are l-times classically differentiable and whose derivatives of order l are Hölder conti-
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nous with exponent γ. In case 0 ≤ l <∞ the norm is defined by

‖g‖Cl,γ(Ω̄) :=
∑
|α|≤l

max
x∈Ω̄
|Dαg(x)|+

∑
|α|=l

sup
x,y∈Ω̄,x 6=y

( |g(x)− g(y)|
|x− y|γ

)
.

It is a Banach space.

At several points throughout this thesis, we will encounter the space C∞0 (Ω), which we will

now define:

Definition 2.1.25. The space C∞0 (Ω) consists of all functions v with compact support - i.e.

the set

supp(v) := {x ∈ Ω : |v(x)| > 0}

is compact - which also satisfy v ∈ C∞(Ω). It is not metrisable, hence, in particular it does

not possess any norm.

2.1.5 Regularity of the Domain Ω

In the context of regularity results for the (weak) solutions of partial differential equations,

one often encounters conditions on the boundary of the domain, the boundary has to fulfil

certain smoothness conditions. The notion of boundary smoothness is defined below, the

definition itself can be found in [36], Section 6.2.

Definition 2.1.26. A bounded domain Ω in Rd and its boundary ∂Ω are of class Ck,α,

0 ≤ α ≤ 1, 0 ≤ k ≤ ∞ if at each point x0 ∈ ∂Ω there exists a ball Br(x0) with radius r > 0

and a one-to-one mapping Ψ of B onto D ⊂ Rd such that:

• Ψ(B ∩ Ω) ⊂ Rd+,

• Ψ(B ∩ ∂Ω) ⊂ ∂Rd+,

• Ψ ∈ Ck,α(B), Ψ−1 ∈ Ck,α(D),

where

Rd+ :=
{
x = (x1, ..., xd) ∈ Rd : xd > 0

}
,

and ∂Rd+ denotes its boundary.

In particular, compare again [36], Section 6.2, a domain Ω is in Ck,α if for each x0 ∈ ∂Ω

there exists a neighbourhood of x0 in which ∂Ω is the graph of a Ck,α function of d − 1 of

the coordinates x1, ..., xd. The latter characterisation of a Ck,α-domain can be found in [33],

Definition 1.18.
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We can now turn our attention to Lebesgue Lp-spaces and Sobolev W k
p -spaces, which, in

the context of optimal control problems and in that of weak solutions for partial differential

equations, naturally come into play.

2.1.6 Lebesgue and Sobolev Spaces

Let us start with the Lebesgue spaces Lp(Ω) with 1 ≤ p <∞:

Definition 2.1.27. Let f : Ω 7→ R be a function measurable with respect to the standard

d-dimensional Lebesgue measure dΩ. f ∈ Lp(Ω) iff∫
Ω

|f(x)|p dΩ <∞.

The associated norm is defined by:

‖f‖p :=
( ∫

Ω

|f(x)|p dΩ
) 1
p .

A more general definiton can be found in [3], Section 1.13. There, we also find that the

definitions above naturally and readily extend to the case of the spaces Lp(∂Ω), 1 ≤ p < ∞
where Ω ∈ C0,1 and the measures is the standard Hausdorff measure on ∂Ω, for a precise

description with the help of the local boundary descriptions in Definition 2.1.26 we refer to

[62] and [1], Sections 5.34 and 5.35.

We will now introduce the space L∞(Ω):

Definition 2.1.28. Let f : Ω 7→ R be a function measurable with respect to the standard

d-dimensional Lebesgue measure. f ∈ L∞(Ω) iff

sup
x∈Ω\N

|f(x)| <∞,

where N is a null set with respect to the Lebesgue measure.

The norm is defined and denoted by

‖f‖L∞(Ω) := inf {α > 0 : | {x ∈ Ω : |f(x)| > α} | = 0}

| · | denotes the Lebesgue measure of the described set. The expression on the right is called

the essential supremum.

All Lp(Ω) spaces are Banach spaces, the spaces Lp(Ω) with 1 < p <∞ are reflexive, and the
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space L2(Ω) is a Hilbert space with scalar product

(f, g) :=

∫
Ω

f(x)g(x) dx f, g ∈ L2(Ω).

The analogous results are valid for the spaces Lp(∂Ω).

Let us now turn to the Sobolev spaces W k
p (Ω). First we need to define the notion of weak

differentiability. The following definition is taken from [36], Section 7.3.

Definition 2.1.29. Let f ∈ L1,loc(Ω), i.e. f ∈ L1(K) for all compact subsets K ⊂ Ω with

dist(∂Ω,K) > 0. The weak derivative of f of order |α|, Dαf , is a function g ∈ L1,loc(Ω)

fulfilling ∫
Ω

f(x)Dαφ(x) dx = (−1)|α|
∫
Ω

g(x)φ(x) dx, ∀φ ∈ C∞0 (Ω).

Having clarified the notion of weak differentiability, we can now define the spaces W k
p (Ω):

Definition 2.1.30. The space W k
p (Ω), k ∈ N ∪ {0}, 1 ≤ p ≤ ∞, consists of all measurable

functions f whose weak derivatives of order |α|, Dαf , belong to Lp(Ω) for all 0 ≤ |α| ≤ k.

The associated norm in case 1 ≤ p <∞ is given by:

‖f‖Wk
p (Ω) :=

( ∑
0≤|α|≤k

‖Dαf‖pp
) 1
p .

The corresponding semi-norm for 1 ≤ p <∞is defined by

|f |Wk
p (Ω) :=

( ∑
|α|=k

‖Dαf‖pp
) 1
p .

In case p =∞ the norm on W k
∞(Ω) is defined by:

‖f‖Wk
∞(Ω) := max

0≤|α|≤k
‖Dαf‖L∞(Ω)

For a detailed introduction to the notion of weak derivatives, we refer to [3], Section 1.25.

The spaces W k
p (Ω) are Banach spaces, in particular the spaces W k

2 (Ω) =: Hk(Ω) are Hilbert

spaces with scalar product:

(f, g)Hk(Ω) :=
∑

0≤|α|≤k

(Dαf,Dαg).

In the context of partial differential equations, it is crucial to be able to assign boundary

values to functions f ∈ W k
p (Ω), k ≥ 1. Nominally, they do not exist, because functions
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belonging to Lp(Ω) or W k
p (Ω) are strictly speaking not functions but equivalence classes of

functions whose members are equal to each other up to sets of measure zero. The boundary,

however, is a set of measure zero; hence, it is not clear if boundary values are actually defined

for such functions. The trace theorem, though, offers a way around this dilemma, compare

[62], Theorem 5.5 and Theorem 5.7.

Theorem 2.1.31 (Trace Theorem). Let Ω be a bounded domain in Rd of class C0,1 and

1 < p < ∞. Then there exists a unique linear, continuous and surjective mapping T , the

trace operator, with

T : W 1
p (Ω) 7→W 1−1/p

p (∂Ω)

and

Tf = f
∣∣
∂Ω

∀f ∈W 1
p (Ω) ∩ C(Ω̄).

The space W
1−1/p
p (∂Ω) is defined as the space of those functions f ∈ Lp(∂Ω) for which the

norm

‖f‖
W

1−1/p
p (∂Ω)

:=

(
‖f‖pLp(∂Ω) +

∫
∂Ω

∫
∂Ω

|f(x)− f(y)|p

|x− y|d+p
d∂Ω(x)d∂Ω(y)

)1/p

is finite. Here, d∂Ω(x) denotes the Hausdorff measure with respect to the x-variable.

For p = 2 we again use the familiar abbreviation H1/2(∂Ω) := W
1−1/p
p (∂Ω).

The definition of the norm of W
1−1/p
p (∂Ω) with fractional exponent can be found in [62],

Section 3.8. and Section 5. For a more detailed discussion of traces we refer to [1], Section 7.

With the help of the trace theorem we can define zero boundary values for functions belonging

to certain Sobolev spaces W k
p (Ω), k ≥ 1:

Definition 2.1.32. Let Ω be a domain of class C0,1. The space W̊ 1
p (Ω) consists of all func-

tions f ∈W 1
p (Ω) which fulfil

Tf = 0

where T is the trace operator form Theorem 2.1.31.

In case p = 2: W̊ 1
2 (Ω) =: H̊1(Ω).

To derive existence and uniqueness results for variational formulations of second order partial

differential equations, where zero boundary values are given, one often has to work with the

space H̊1(Ω). In this context, it is crucial that H̊1(Ω) is a Banach space with the semi-norm

|·|H1(Ω). First, though, we need a very valuable auxiliary result, see e.g. in [31] Theorem 3,

Chapter 5.
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Theorem 2.1.33 (Poincaré - Friedrich’s inequality). Let Ω be a domain of class C0,1 and let

f ∈ W̊ 1
p (Ω) be arbitrary. Then there exists a constant C = C(Ω) > 0 such that

‖f‖Lp(Ω) ≤ C |f |W 1
p (Ω) .

As a consequence, there exist constants c1, c2 > 0 such that

c1 ‖f‖W 1
p (Ω) ≤ |f |W 1

p (Ω) ≤ c2 ‖f‖W 1
p (Ω) ∀f ∈ W̊

1
p (Ω) (2.1.12)

The Poincaré-Friedrich inequality leads to the following result:

Theorem 2.1.34. Let Ω be a bounded domain of class C0,1. The space W̊ 1
p (Ω), p ≥ 1,

normed by |·|W 1
p (Ω) is a Banach space.

Proof. The key to the proof is the Poincaré - Friedrich’s inequality, Theorem 2.1.33: There

exists a constant C = C(Ω) such that

‖v‖Lp(Ω) ≤ C |v|W 1
p (Ω) .

As a consequence, the semi-norm |·|W 1
p (Ω) and the full norm ‖·‖W 1

p (Ω) are equivalent on W̊ 1
p (Ω),

see (2.1.12), which yields all the results of the theorem above.

At different points of the thesis we will use embedding results for Sobolev spaces. The ones

necessary for this thesis are recorded in the theorem below, which can be found in [36],

Theorem 7.26,

Theorem 2.1.35 (Embedding Results). Assume Ω is a bounded domain in Rd of class C0,1.

Then the following embedding results are valid:

• If 0 < k < d
p , the space W k

p (Ω) is continuously embedded in Lp∗(Ω) with p∗ = dp
d−kp and

compactly embedded in Lq(Ω) for any q < p∗.

• If 0 ≤ m < k − d
p < m + 1, the space W k

p (Ω) is continuously embedded in Cm,α(Ω̄),

α = k − d
p −m and compactly embedded in Cm,β(Ω̄) for any β < α.

• If d = 1, then W 1
1 (a, b) is continuously embedded in C[a, b] for any interval (a, b) ⊂ R.

Throughout this thesis it will sometimes be necessary to consider Lebesgue and Sobolev spaces

of functions f with f : Ω ⊂ Rd → Rm. We will now extend the definitions above to this more

general setting in a natural, ’component-wise’ way:

Definition 2.1.36 ((Lp)
m and (W k

p )m-spaces). The space Lp(Ω,Rm), 1 ≤ p ≤ ∞, m ∈ N,

consists of all measurable functions f : Ω→ Rm for which the norm

‖f‖Lp(Ω,Rm) := (

m∑
i=1

‖fi‖pLp(Ω))
1/p
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is finite, fi denoting the i-th component function of f .

In particular, the space L2(Ω,Rm) is a Hilbert space with scalar product

(f, g)L2(Ω,Rm) :=

m∑
i=1

(fi, gi)L2(Ω).

The space W k
p (Ω,Rm) consists of all measurable functions f with f : Ω → Rm for which the

i-th component function fi is k-times weakly differentiable and the norm

‖f‖Wk
p (Ω,Rm) := (

m∑
i=1

‖fi‖pWk
p (Ω)

)1/p

is finite.

Sometimes it is also worth considering spaces for which just some weak partial derivatives

exist, first and foremost the space H(div,Ω) defined below, compare also [78], Definition 20.1:

Definition 2.1.37. The space H(div,Ω) defined by

H(div,Ω) :=

{
f ∈ L2(Ω,Rd) : div f =

d∑
i=1

∂f

∂xi
∈ L2(Ω)

}
,

where div f is understood in the weak sense, i.e a function f ∈ L2(Ω,Rd) has a divergence

div f ∈ L2(Ω), if ∫
Ω

(div f)(x)φ(x) dx = −
∫
Ω

f(x) · ∇φ(x) dx ∀φ ∈ C∞0 (Ω).

H(div,Ω) is a Banach space with the norm

‖f‖H(div,Ω) := (‖f‖2L2(Ω,Rd) + ‖divf‖2L2(Ω))
1/2.

2.1.7 Interpolation Spaces and Lorentz Spaces

Sometimes it is also of importance to deal with intermediate spaces, in this thesis we are

solely concerned with spaces intermediate between different Lp(Ω), the Lorentz spaces. We

will specify the notion of ’intermediateness’ and introduce the method of interpolation of

Banach spaces to obtain such intermediate spaces in this section.

For a much more general introduction to the interpolation of spaces and their many powerful

applications, we refer to the books [7],[79] and Section 7 of [1].

First, we will record an embedding Theorem for Lp(Ω):

S. Steinig AFEM for State-Constrained Optimal Control



32 CHAPTER 2. GENERAL FRAMEWORK

Theorem 2.1.38. Let Ω ⊂ Rd be a bounded domain. For 1 ≤ p ≤ q ≤ ∞ we have

Lq(Ω) ↪→ Lp(Ω)

Proof. For q/p ≥ 1 the dual exponent p′ defined by

p

q
+

1

p′
= 1

is given by p′ = p+1
q . Using Hölder’s inequality, we obtain for all g ∈ Lq(Ω).∫

Ω

|g|p ≤ (

∫
Ω

1p
′
)1/p′(

∫
Ω

|g|q)p/q

Drawing the p-th root on each side gives the desired result, since Ω is bounded.

Following the approach of [1], Definitions 7.7, 7.8. and 7.9. and Theorem 7.10, we define the

following space obtained by the K-method of real interpolation:

Definition 2.1.39. Let X0, X1 be two Banach spaces, with X1 ↪→ X0. Let t > 0 be fixed.

The K-functional given by

K(t;x) := inf
{
‖x0‖X0

+ t ‖x1‖X1
: x = x0 + x1, x0 ∈ X0, x1 ∈ X1

}
defines a norm on X0 which is equivalent to ‖·‖X0

.

The space

X = (X0, X1)θ,q, 0 < θ < 1, 1 ≤ q <∞,

consists of all functions x ∈ X0 +X1 = X0 such that

∞∫
0

(t−θK(t;x))q
dt

t
)1/q <∞.

Here, dt
t denotes the Haar measure, which is translation-invariant.

The space X is a Banach space itself with the property that it is intermediate between X0

and X1 in the sense that

X1 ↪→ X ↪→ X0. (2.1.13)

A highly useful property of such intermediate spaces obtained by interpolation is the fact that

they enable us to obtain estimates for the norms of linear operators acting on these spaces.

The following theorem is a combination of Definition 7.22 and Theorem 7.23 in [1]:
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Theorem 2.1.40. Suppose that f ∈ X∗i , i = 0, 1 and X as in Definition 2.1.39. Then

f ∈ X∗, too, and we have the estimate

‖f‖X∗ ≤ ‖f‖
1−θ
X∗0
‖f‖θX∗1 . (2.1.14)

We remark that this theorem can be extended to more general linear operators; however, in

this thesis we only need to make use of this property for linear functionals.

We now intend to apply this definition to the setting of Lp spaces. For the validity of the

definition we refer to [1], Theorem 7.26, and [1], Corollary 7.27.

Definition 2.1.41. Let 1 ≤ p1 < p < p2 ≤ ∞ and 1
p = 1−θ

p1
+ θ

p2
. Then the Lorentz space

Lp,q(Ω) is defined by

Lp,q(Ω) = (Lp1(Ω), Lp2(Ω))θ,q ,

and we have the property that for 1 < p <∞

Lp,p(Ω) = Lp(Ω)

with equivalent norms.

Lorentz spaces can also be obtained by a more direct way, see Definition 7.25 in [1] or [66],

Example 2, Chapter 2. However, as it is not significantly faster and the estimate (2.1.14)

cannot be obtained in a direct way, it is more convenient to work with the interpolation

spaces approach utilised here.

We can now turn to introducing the optimal control problem and presenting its relevant

properties.

2.2 Optimal Control and Optimisation in Banach Spaces

2.2.1 Problem Setting and Existence Results

Let us introduce the following continuous state-constrained optimal control problem:
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min
u∈U,y∈Y

1

2
‖y − yd‖2W +

ν

2
‖u‖2U

s.t.

B[y, w] = (u,w)U ∀w ∈ Y

and

u ∈ U ⊂ U

yc − y ∈ C ⊂ L2(Ω,Rm)


(P )

To formulate the required properties for (P ), we will often use the notation x . y for real

numbers x, y so as to do without constants: x . y means that there exists a constant c

independent of x, y and solely depending on data such as the domain Ω, S, yc, yd,, etc. such

that

x ≤ cy.

For the spaces Y,U and W we require the following properties:

Properties of the spaces Y,U,W:

Pr1. U, Y and W are Hilbert spaces with norms ‖·‖U, ‖·‖Y and ‖·‖W and scalar products

(·, ·)U, (·, ·)Y and (·, ·)W. Each space U,Y and W is a subset of a suitable L2-space. To be

more precise, for meshable (compare Definition 2.3.2) subsets Γ,Ω ⊂ Rd with Γ ⊂ Ω̄ we

assume W ↪→ L2(Ω,Rm), Y ↪→ L2(Ω,Rm) and U ↪→ L2(Γ), where L2(Ω,Rm) is equipped

with its canonical norm ‖·‖L2(Ω,Rm) = ‖·‖ and scalar product (·, ·)L2(Ω,Rm) = (·, ·). In

addition, we demand that the squares of the all the W,Y,U-norms are additive, i.e. for

Y we have for ω1, ω2 ⊂ Ω̄ with |ω1 ∩ ω2| = 0 that

‖y|ω1∪ω2‖
2 =: ‖y‖2Y(ω1∪ω2) = ‖y‖2Y(ω1) + ‖y‖2Y(ω2) = ‖y|ω1‖

2 + ‖y|ω2‖
2

and similarly for W and U. Here, y|γ denotes the restriction of y on a subset γ ⊂ Ω̄.

Lastly, we assume that U embeds into Y∗, U ↪→ Y∗ with the associate embedding

operator denoted by E, and Y ↪→ U.

Property guaranteeing the solvability of the equation B[u,w] = (u,w)U:

Pr2. The bilinear form B is continuous on Y× Y and satisfies an inf − sup condition

inf
z∈Y

sup
w∈Y

B[z, w]

‖z‖Y ‖w‖Y
= inf

w∈Y
sup
z∈Y

B[z, w]

‖z‖Y ‖w‖Y
= α > 0.

This is tantamount (compare Theorem 2.1.20 and Remark 2.1.23) to the fact that for
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every u ∈ U there exists a unique solution y = Su ∈ Y of

B[y, w] = (u,w)U ∀w ∈ Y

with S ∈ L(U,Y). Thus, due to the embeddings in (Pr1), S ∈ L(U,W) and S ∈
L(U, L2(Ω,Rm)), too.

Throughout this paper, we will not distinguish between these nominally different oper-

ators. It will be clear from the context which one we refer to in the specific setting.

Properties ensuring the existence of a unique minimiser:

Pr3. U is a convex and closed subset of U.

Pr4. C is a convex, closed cone in L2(Ω,Rm).

Pr5. yc ∈ L2(Ω,Rm) represents the state constraint and, yd ∈ W the desired state that one

wants to reach.

Pr6. There exists u ∈ U with u ∈ U and yc − Su ∈ C, i.e. the set of admissible functions for

(P )

Uad := {u ∈ U : u ∈ U , yc − Su ∈ C}

is non-empty.

Let us add some explanatory comments to these properties:

• (Pr1) gives a general Hilbert space setting in which to analyse an optimal control prob-

lem. A typical choice for a second order elliptic distributed optimal control problem

would be U = W = L2(Ω), Y = H̊1(Ω), compare with (MP ε).

• (Pr2) is a characterisation (see Theorem 2.1.20) of the property that the partial differen-

tial equation represented in its variational formulation by the bilinear form B possesses

a unique solution which depends continuously on the data. Thus, basically, we merely

demand that the partial differential equation is well-posed.

• (Pr4) defines the cone used to formulate the state constraint. It is defined with respect

to L2(Ω,Rm), which, since Y ↪→ L2(Ω,Rm), makes it the natural choice in the present

setting where no higher regularity than the Y-regularity for the solution to the state

equation in (P ) is assumed. Typical choices, such as L∞(Ω,Rm), are not well-defined

in this setting.

Sometimes, though, we will still need the cone C and its polar cone to be defined with

respect to different topologies of Banach spaces Z ⊂ L2(Ω,Rm). However, in this case,

this will always be indicated in the following way:

CZ := C ∩ Z
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The corresponding polar cone is then defined as

C−Z := {φ ∈ Z∗ : 〈φ, z〉Z∗,Z ≤ 0 ∀z ∈ CZ} .

If there is no lower case index Z as above, then C and C− are always under-

stood with respect to the topology in L2(Ω,Rm), compare also Definition 2.1.8.

• (Pr6) ensures that there exist feasible points for (P ). If this were not fulfilled, then

problem (P ) would be tantamount to optimising over the empty set.

Examples fitting this setting will be given in Section 2.4.

Thanks to Property (Pr2) the problem can be transformed to a reduced formulation:

min
u∈Uad

f(u) (2.2.1)

where

f : U 3 u 7→ 1

2
‖Su− yd‖2W +

ν

2
‖u‖2U . (2.2.2)

Naturally, one wonders if there exists a solution to this problem and, if so, whether it is

unique. A crucial tool to derive existence and uniqueness results is the following theorem,

which we want to apply to problem (2.2.1):

Theorem 2.2.1 (existence & uniqueness). Suppose V is a non-empty, convex and closed sub-

set of the Hilbert space H. Suppose further that g : H → R is a weakly lower semicontinuous,

strictly convex function which is bounded from below and radially unbounded.

Let the following optimisation problem be given:

min
u∈V

g(u) (2.2.3)

Then there exists a unique solution to (2.2.3), denoted by ū.

If, in addition, g is Fréchet-differentiable on an open subset O containing V , then ū is the

solution to (2.2.3) iff

(∇g(ū), u− ū)H ≥ 0 ∀u ∈ V (2.2.4)

where ∇g(ū) denotes the Riesz-representative of the Fréchet derivative g′(ū).

Proof. Since g is bounded from below, there exists j = inf
u∈V

g(u) and {uk} ⊂ V with g(uk)→ j

as k →∞ For ‖uk‖H →∞, we would obtain

g(uk)→∞, k →∞
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since g is radially unbounded. That means that the infimal sequence {uk} is bounded. The-

orem 2.1.4 ensures the existence of a weakly convergent subsequence (w.l.o.g. the sequence

itself), and Theorem 2.1.6 guarantees that the limit ũ belongs to V . Since g is weakly lower

semicontinuous, we find:

j = lim
k→∞

g(uk) ≥ g(ũ).

Hence, g(ũ) = j, and ū := ũ solves the optimisation problem. It is the only solution, because

if there were another one v̄ 6= ū, convexity of V and strict convexity of g would imply

j ≤ g(λū+ (1− λ)v̄) < λg(ū) + (1− λ)g(v̄) = j,

which is obviously a contradiction.

Let us now prove (2.2.4). If ū solves (2.2.3), then (recall (2.1.6)) for any u ∈ V we have

0 ≤ g(ū+ t(u− ū))− g(ū) = (∇g(ū), t(u− ū))H + o(‖t(u− ū)‖H) ∀t ∈ [0, 1]

This implies in particular that

0 ≤ t(∇g(ū), u− ū)H + o(‖t(u− ū)‖H) ∀t ∈ (0, 1].

Dividing by t and letting t→ 0, we can deduce that (again recall (2.1.6))

0 ≤ (∇g(ū), u− ū)H .

Since this is true for all u ∈ V , we can conclude

(∇g(ū), u− ū)H ≥ 0 ∀u ∈ V.

Let us now prove the other inclusion.

First of all, let u, v ∈ V be arbitrary, then we discover:

g(u)− g(v) ≥ (∇g(v), u− v)H (2.2.5)

Let us prove this inequality: For all t ∈ (0, 1] we obtain

t(g(u)− g(v)) ≥ g(v + t(u− v))− g(v)

= (∇g(v), t(u− v))H + o(‖t(u− v)‖H)

and thus in particular after dividing by t

g(u)− g(v) ≥ (∇g(v), u− v)H .
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Suppose now that (2.2.4) is true for all u ∈ V , but ū does not solve (2.2.3). As we have

already demonstrated, there exists a unique solution ũ to (2.2.3) and thus utilising (2.2.5),

we deduce

0 ≥ g(ũ)− g(ū) ≥ (∇g(ū), ū− ũ)H .

However, because

(∇g(ū), u− ū)H ≥ 0 ∀u ∈ V,

we can conclude

g(ũ) = g(ū)

and due to the uniqueness of the solution ū = ũ. This is the desired contradiction. The proof

is now complete.

We now want to apply this abstract existence and uniqueness result to the setting of (P ),

deriving also necessary and sufficient first-order optimality conditions.

The ensuing theorem will provide this application:

Theorem 2.2.2 (existence, uniqueness, first-order optimality for (P )). There exists a unique

solution ū to (P ) with corresponding state ȳ = Sū. Furthermore, the following necessary and

sufficient optimality condition holds

(p̄+ νū, u− ū)U ≥ 0 ∀u ∈ Uad. (2.2.6)

Here, p̄ = S∗(ȳ − yd) and S∗ denotes the adjoint operator S∗ : W→ U.

Proof. First of all, we observe that the functional f in (2.2.1) is Fréchet-differentiable, a proof

can be found e.g. in [80], Section 2.6. It is also radially unbounded because

f(u) ≥ ν

2
‖u‖2U ,

and weakly lower semicontinuous because ‖·‖2H is weakly lower semicontinuous in any Hilbert

space H and because S is weakly continuous, as it is a linear and continuous operator.

Furthermore, as a short computation shows, it is also strictly convex. Due to Property (Pr6),

the feasible set Uad is non-empty. Consequently, we can apply Theorem 2.2.1 with H = U,

V = Uad and g = f and obtain a unique solution ū to (P ) with corresponding state ȳ = Sū.

Thanks to (2.2.4) there holds:

(∇f(ū), u− ū)U ≥ 0 ∀u ∈ Uad

Let us now prove that the Riesz-representative of the Fréchet derivative is indeed ∇f(ū) =
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p̄+ νū.

For the Fréchet-derivative f ′ we obtain:

〈f ′(ū), u− ū〉U∗,U = (ȳ − yd, S(u− ū))W + (νū, u− ū)U

Using the adjoint operator, we can simplify the expression above to

(∇f(ū), u− ū)U = (S∗(ȳ − yd) + νū, u− ū)U

Now, we can just plug in the definition of p̄, and using the optimality condition (2.2.4), we

obtain the desired result.

The optimality condition (2.2.6) can also be interpreted as an optimality condition for the

projection on the convex set Uad. This is the subject of the next lemma.

Lemma 2.2.3. The optimality condition (2.2.6) is equivalent to

ū = ΠUad(−
1

ν
p̄),

where ΠUad denotes the projection on the convex set Uad.

Proof. Apply Theorem 2.1.7 to (2.2.6).

Remark 2.2.4. Lemma 2.2.3 reduces the optimality condition (2.2.6) to a fix point equation

ū− F (ū) = 0 (2.2.7)

with

F : U 3 u 7→ ΠUad(−
1

ν
S∗(Su− yd)).

For some classes of convex sets, such as convex sets defined by box constraints of the type

U = {u ∈ U : a ≤ u ≤ b} , a, b ∈ R ∪ {−∞,+∞} ,

the function F is a semismooth function (compare Definition 2.1.17); thus the fix point equa-

tion (2.2.7) can be solved by semismooth Newton methods, compare Section 2.2.3. Indeed,

in many applications, U is precisely of the above structure. However, in the case of state

constraints, this is not the case, a fact that constitutes one of the main difficulties for treating

state-constrained problems numerically.

Theorem 2.2.6 is a ’multiplier-free’ formulation of a first-order necessary and sufficient opti-

mality condition. ’Multiplier-free’ stands for an approach doing without Lagrange multipliers
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which are used to eliminate certain constraints. In the rest of the section, we will explain

how such a Lagrange multiplier ansatz would formally work for the state constraint in (P ) -

tacitly assuming that the control constraints in (Pr3) can be dealt with in an ’easy’ manner

- before giving two existence results for Lagrange multipliers. Let us start by specifying the

notion of Lagrange multipliers in the present setting, compare also [56] and [58], Section 8.

Definition 2.2.5. Suppose the following general optimisation problem in a Hilbert space H

is given:

min
u∈M, Lu∈KZ

g(u) (2.2.8)

with M ⊂ H closed and convex and KZ ⊂ Z a convex cone defined w.r.t the topology of the

Banach space Z, compare Definition 2.1.8. Furthermore, g : H → R is Fréchet-differentiable

and additionally fulfills the prerequisites for g of Theorem 2.2.1 (strictly convex, bounded from

below, radially unbounded). The feasible set is given by

F ad := {u ∈ H : u ∈M,Lu ∈ KZ} .

Besides, let L : H → Z be an affine, continuous mapping.

A Lagrange multiplier µ̄ ∈ K−Z for the constraint Lu ∈ K is an element for which we have

with the unique solution ū of (2.2.8):

min
u∈M
{g(u) + 〈µ̄, Lu〉Z∗,Z} = g(ū) (2.2.9)

(∇g(ū), u− ū) + 〈µ̄, L′(u− ū)〉Z∗,Z ≥ 0 ∀u ∈M (2.2.10)

〈µ̄, Lū〉Z∗,Z = 0. (2.2.11)

Interestingly, any couple (ũ, µ̃) ∈ M ×K−Z fulfilling (2.2.9), (2.2.10) and (2.2.11) is optimal

for (2.2.8). This is the subject of the next theorem; its proof can be found in [58], Section 8.4

Theorem 1.

Theorem 2.2.6 (Lagrange optimality condition). Suppose the setting of Definition 2.2.5 is

given. Suppose further that there exists a couple (ũ, µ̃) ∈ U ×K−Z fulfilling (2.2.9), (2.2.10)

and (2.2.11). Then ũ = ū and µ̃ is a Lagrange multiplier for the constraint Lu ∈ KZ .

For (P ) the setting of Definition 2.2.5 is reflected by the choices M = U , Lu = yc − Su and

KZ = CZ . Apart from the condition that Z ⊆ L2(Ω,Rm) we still have some leeway in the

selection of Z. Since the Lagrange multiplier µ̄ is an element of the dual space Z∗, it would be

favourable for both theoretical analysis and numerical applications that Z∗ is not ’too difficult

to handle’. Suppose e.g. that Z = L2(Ω), then Z∗ = L2(Ω) and µ̄ is a proper function with

values pointwise almost everywhere. However, if Z = C(Ω̄), then Z∗ is a space of measures

and both analytically and numerically not easy to treat.
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The trouble with state constraints is that the topology of spaces such as L2-type spaces is

in general too weak to allow for the existence of Lagrange multipliers. Let us elucidate this

point: A classic existence result for a Lagrange multiplier is the following, which can be found

e.g. in [58] Section 8.3 Theorem 1. For extensions and additional conditions for the existence

of Lagrange multipliers, we also refer to [56] and [55].

Theorem 2.2.7. Suppose the setting of Definition 2.2.5 is given, i.e.

min
u∈M, Lu∈KZ

g(u)

with g Fréchet-differentiable, radially unbounded, bounded from below and strictly convex.

Let the set LM be defined by:

LM := {Lu : u ∈M} ⊂ Z

If

LM ∩ int(KZ) 6= ∅, (2.2.12)

where the topological interior int is taken with respect to the topology in Z, then there exists

a Lagrange multiplier µ̄ ∈ Z∗ fulfilling (2.2.9), (2.2.10) and (2.2.11).

In view of the preceding theorem it is advantageous for KZ to have a non-empty topological

interior. In the setting of (P ε) we have CZ = KZ and the obvious (first) choice would be

Z = L2(Ω,Rm), specifically in the case m = 1 Z = L2(Ω).

The trouble with choosing Z = L2(Ω) (or even Z = H1(Ω) for d > 1) is that the most

important cones in applications, cones defined by pointwise almost everywhere inequality

constraints of the type

f(x) ≤ 0 f.a.a. x ∈ Ω,

have an empty interior illustrated by the example below

Example 2.2.8. Consider the cone

K = {f ∈ L2(0, 1) : f(x) ≥ 0 f.a.a. x ∈ (0, 1)}

in L2(0, 1). Naturally, one would think that the function f(x) ≡ 1 is an interior point.

However, the functions

gn(x) =

1 x ∈ ( 1
n , 1)

− 1
n x ∈ (0, 1

n)
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are arbitrarily close to f w.r.t the L2(0, 1)-topology as a short computation shows. Yet, gn /∈ K
for all n, in fact int(K) = ∅ with respect to the topology in L2(0, 1).

If we were now to consider the topology of C[0, 1], however, then f would be an interior point,

since for any δ > 0

‖f − g‖C[0,1] ≤ δ

in particular implies

g(x) ≥ 1− δ ∀x ∈ (0, 1),

and hence, provided δ is small enough, g ∈ K. Thus, K does not have an empty interior in

this topoplogy.

To circumvent this obstacle, one has to switch to ’stronger’ topologies more compatible with

pointwise constraints (compare Example 2.2.8) such as the topology of C(Ω̄) or L∞(Ω). The

downside is that the dual spaces, as mentioned before, are very irregular, both being spaces

of measures. Indeed, the space C(Ω̄)∗ can be isometrically identified with the space M(Ω),

consisting of all Borel measures defined on the Borel σ-algebra on Ω̄, the smallest σ-algebra

containing all closed subsets of Ω̄, see e.g. [53], Theorem 1.7.2.

Let us - despite this lack of regularity - record the theorem below, which applies the general

existence result of Theorem 2.2.7 to the specific setting of problem (P ).

Theorem 2.2.9. Suppose the cone C in (Pr4) is defined w.r.t the toplogy of C(Ω̄,Rm), i.e.

C = CC(Ω̄,Rm) :=
{
f ∈ C(Ω̄,Rm) : fi ≤ 0, i ∈ I

}
.

Suppose further that S : U → C(Ω̄,Rm) continuously. Besides, let there exist an element us

such that yc − Sus ∈ int(CC(Ω̄,Rm)).

Then there exists µ̄ ∈ C−
C(Ω̄,Rm)

such that the unique solution ū to (P ) and µ̄ fulfil the following

optimality system:

(S∗(Sū− yd) + νū, u− ū)U − 〈µ̄, Su− Sū〉C(Ω̄,Rm)∗,C(Ω̄,Rm) ≥ 0 ∀u ∈ U

〈µ̄, yc − Sū〉C(Ω̄,Rm)∗,C(Ω̄,Rm) = 0
(2.2.13)

Proof. Applying Theorem 2.2.7 with M = U , Lu = yc − Su and g = f to problem (P ) yields

the desired result.

Theorem 2.2.9 ensures the existence of a Lagrange multiplier under certain conditions. Taking

the adjoint S∗, we can transform (2.2.13) in the following way, taking into account Lemma
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2.2.3:

ū−ΠU (−1

ν
(S∗(Sū− yd − µ̄))) = 0

〈µ̄, yc − Sū〉C(Ω̄)∗,C(Ω̄) = 0.

If we assume in the vein of Remark 2.2.4 that the projection on U is ’easily’ computable, the

reformulation above, especially the equation

ū−ΠU (−1

ν
(S∗(Sū− yd − µ̄))) = 0,

offers a way to gain additional regularity for the optimal control ū provided S∗ possesses

some smoothing property. Algorithmically, though, despite arriving at a situation where ū

can be expressed as an accessible projection (ΠU instead of ΠUad , i.e. a pointwise nonsmooth

equation (compare also Section 2.2.3)), we still face the obstacle of the possibly measure-valued

multiplier, for which it is not possible to derive an equation similar to the projection equation

for ū above guaranteeing uniqueness and also additional regularity. That is why to apply

fast optimisation methods such as Newton methods, one inevitably has to do something else.

Here, we present the technique of relaxation of the state constraint coupled with a penalisation

of its violation in the goal functional. The goal is to obtain unique Lagrange multipliers in

L2(Ω,Rm) and an optimality system comparable to (2.2.13) that can be solved by Newton-

type methods. Targeting these goals, we are stuck with the topology of L2(Ω,Rm) for the

state constraint, since Lagrange multipliers naturally belong to the dual space, and, thus,

constraint qualifications of the type (2.2.12), where the topological interior is used, are not

conducive to obtaining existence results for Lagrange multipliers in L2(Ω,Rm) in the setting

of pointwise inequality constraints, as Example 2.2.8 all too clearly shows. Fortunately, there

are other constraint qualifications of which the most helpful for our purposes will be one

which states that L2(Ω,Rm) Lagrange multipliers exist if the range of the constraint mapping

yc − Su is rich enough, in particular, if it is surjective. If you think of S as the solution

operator of the Poisson equation with an L2-control on the right-hand side, however, it is

clear that S is not surjective as a mapping from L2 to L2, since the solution of the PDE is at

the very least in H1. Considering a different space pairing, L2-H1 for instance, does not help

either, since at the heart of the problem is the fact that the solution operator has a smoothing

effect on the right-hand side. Nevertheless, we have not reached the end of the line, since

by introducing a virtual control v ∈ L2(Ω,Rm) and an additional (not strictly necessary)

parameter ε into the constraint mapping, i.e.

yc − Su  yc − Su− εv, (2.2.14)

one forces the constraint mapping to be surjective. As a consequence, we can apply the ensuing
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existence result for Lagrange multipliers, which can be found in e.g. [55], Thm 4.3.(ii), or as

a corollary to a more general result in [56], Thm 4.1. As it is central to our later analyses,

we will present an overview of the proof.

Theorem 2.2.10. Suppose the following general optimisation problem in a Hilbert space H

is given:

min
u∈M, Lu∈K

g(u) (2.2.15)

with M ⊂ H closed and convex, Z a Banach space and KZ = K ⊂ Z a convex cone.

Furthermore, g : H → R is Fréchet-differentiable and additionally fulfills the prerequisites for

g of Theorem 2.2.1. The feasible set is given by

F ad := {u ∈ H : u ∈M,Lu ∈ K} .

Besides, let L : H → Z be an affine, continuous mapping with

ran(L(M)) = Z (2.2.16)

where ran denotes the range of a mapping.

Then there exists a Lagrange multiplier µ̄ ∈ K− = K−Z for the constraint Lu ∈ K, i.e. for

the solution ū to (2.2.15) we have:

min
u∈M
{g(u) + 〈µ̄, Lu〉Z∗,Z} = g(ū)

(∇g(ū), u− ū)U + 〈µ̄, L′(u− ū)〉Z∗,Z ≥ 0 ∀u ∈M

〈µ̄, Lū〉Z∗,Z = 0.

To prove this result, we first have to harness a fundamental result by [68], Theorem 1. In this

paper, the result is formulated in terms of set-valued mappings; we will, however, restrict it

to our single-valued case.

Theorem 2.2.11. Let (2.2.15) as in Theorem 2.2.10. Suppose further that

0 ∈ int {LM −K} (2.2.17)

Then for any u0 ∈ F ad, there exist γ = γ(u0) and ρ = ρ(u0) > 0 such that we have

dist(u, F ad) ≤ γ dist(Lu,K) ∀u ∈M ∩Bρ(u0). (2.2.18)

Observe that (2.2.18) can also be interpreted as a perturbation estimate. In the proof of

Theorem 2.2.10 we will see that Robinson’s famous constraint qualification (2.2.17) is actu-
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ally sufficient for the existence of Lagrange multipliers highlighting how closely the topics of

perturbation analysis and existence of Lagrange mutlipliers are linked. Combining this with

the lack of regularity for Lagrange multipliers mentioned previously and with the unavail-

ability of perturbation estimates of the type (2.2.18), we are starkly reminded of the serious

difficulties we face when analysing discretisations because in some sense, discretisations can

be interpreted as perturbations of the original problem.

We can now turn to the proof of Theorem 2.2.10

Proof of Theorem 2.2.10. The proof traces the arguments of [56].

Let ū be the unique solution to (2.2.15). First of all, we introduce the following cones:

C(ū) = {λ(u− ū) : λ ≥ 0, u ∈M}

K(Lū) = K − λLū, λ ≥ 0

T (F ad, ū) =

{
u ∈ H : u = lim

n→∞

1

tn
(un − ū), tn → 0+, un ∈ F ad

}
L(F ad, ū) =

{
u ∈ H : u ∈ C(ū), L′u ∈ K(Lū)

}
.

The last two cones are called sequential tangent cone and linearising cone of M respectively.

The key inclusion now is

L(F ad, ū) ⊂ T (F ad, ū).

To realise that, pick an arbitrary s ∈ L(F ad, ū). By definition ∃λ1, λ2, u ∈ M,k ∈ K such

that:

s = λ1(u− ū) and L′s = λ2(k − Lū). (2.2.19)

Here, remember that K is a cone.

In case λ1 = 0, we have s = 0 ∈ T (F ad, ū) (pick un = ū in the definition of T (F ad, ū)). Thus,

we can assume λ1 > 0. Presently, we define:

ũn := ū+ tn(u− ū), kn := L(ū) +
λ2

λ1
tn(k − Lū).

Due to convexity of M and u, ū ∈ M ũn ∈ M if tn ≤ 1. Likewise, convexity of K yields

kn ∈ K provided λ2
λ1
tn ≤ 1. Since tn → 0+, we can thus pick n large enough such that

ũn ∈M and kn ∈ K.

Now pick n large enough such that ũn ∈ Bρ(ū), compare (2.2.18). Then, with the help of

(2.2.18), we deduce

dist(ũn, F
ad) ≤ γdist(Lũn,K).
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Since kn ∈ K, we can estimate in the following fashion:

dist(Lũn,K) ≤ ‖Lū+ L(tn(u− ū))− kn‖Z

=

∥∥∥∥Lū+
tn
λ1
L′s− kn

∥∥∥∥
Z

= ‖Lū+ (kn − Lū)− kn‖Z
= 0.

Hence ũn ∈ F ad. Defining τn := tn
λ1
→ 0+, we obtain

lim
n→∞

1

τn
(ũn − ū) = s ∈ T (F ad, ū)

Thus

L(F ad, ū) ⊂ T (F ad, ū). (2.2.20)

Now, due to optimality of ū and Fréchet differentiability of g, we have

(∇g(ū), s)H ≥ 0 ∀s ∈ T (F ad, ū). (2.2.21)

(2.2.20) then yields

(∇g(ū), s)H ≥ 0 ∀s ∈ L(F ad, ū).

We now define the convex cone Q ⊂ Z × R by

Q :=
{

(L′s− y, (∇g(ū), s)H + α) : s ∈ C(ū), y ∈ K(Lū), α ≥ 0
}
.

Surjectivity of L yields surjectivity of L′, since L is affine. The open mapping theorem,

Theorem 2.1.10, then ensures the existence of a suitable γ such that

{(z, α) : z ∈ Bγ(0), α ≥ max {(∇g(ū), s)H : s ∈ {C − ū} ∩B1(0)}} ⊂ Q. (2.2.22)

Why does this hold? First of all, we observe that thanks to surjectivity of L and thus L′ as

a mapping L : M → Z, respectively L′ : M → Z, we know that:

∀z ∈ Z, ∃u ∈M, λ ≥ 0 s.t. λL′u = z + λLū

Recalling the definition of C(ū), we can deduce from the equation above that

L′(C − ū) = L′C(ū) = Z.
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In particular, L′(C − ū) contains an open ball denoted by Bγ(0). Combining this with the

definition of Q and (2.2.22), we deduce

Bγ(0)× {α} ⊂ Q ∀α ≥ max {(∇g(ū), s)H : s ∈ {C − ū} ∩B1(0)} .

This means that int(Q) is non-empty.

The origin (0, 0) is a boundary point of Q due to (2.2.21) and 0 ∈ T (F ad, ū). Theorem 2.1.2

ensures the existence of a non-trivial hyperplane (y∗, β) ∈ Z∗ ×R supporting Q at (0, 0), i.e.

−〈y∗, L′s− y〉Z∗,Z + β((∇g(ū), s)H + α) ≥ 0 ∀s ∈ C(ū), y ∈ K(Lū), α ≥ 0.

Inserting s = 0, α = 0, we observe

〈y∗, y〉Z∗,Z ≥ 0 ∀y ∈ K(Lū)

Recalling the definition of K(Lū), we discern that

〈y∗, k − λLū〉Z∗,Z ≥ 0 ∀λ ≥ 0.

Hence, inserting λ = 0 and in another step Lū = k, λ = 1± ε, ε > 0, we find

y∗ ∈ −K− and 〈y∗, Lū〉Z∗,Z = 0. (2.2.23)

Besides, β > 0 because if β were zero, affine linearity of L and the definition of C(ū) and

K(Lū) would yield

−〈y∗, Lu− Lū+ λLū〉Z∗,Z ≥ 0, ∀u ∈M, λ ≥ 0.

Inserting λ = 1, we would be able to deduce that

−〈y∗, Lu〉Z∗,Z = 0 ∀u ∈M

which immediately results in y∗ = 0, since L is surjective. This is the desired contradiction,

thus β > 0.

Setting α, y = 0 and K− 3 µ̄ := − 1
β y
∗ and recalling (2.2.23), we obtain

(∇g(ū), u− ū)H + 〈µ̄, L′(u− ū)〉Z∗,Z ≥ 0 ∀u ∈M, y

〈µ̄, Lū〉Z∗,Z = 0.

These are the properties (2.2.10) and (2.2.11) formulated in Definition 2.2.5. Property (2.2.9)

follows by straightforward duality arguments.
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We will now apply this valuable result to problem (P ), relaxing the state constraint in the way

indicated by (2.2.14) and penalising the new control v in the functional. This regularisation

technique will be presented in the next section.

2.2.2 The Regularisation Approach

Let us introduce the continuous regularised problem:

min
u∈U,y∈Y,v∈L2(Ω,Rm)

1

2
‖y − yd‖2W +

ν

2
‖u‖2U +

1

2ε
‖v‖2L2(Ω,Rm)

s.t.

B[y, w] = (u,w)U ∀w ∈ Y

and

u ∈ U

yc − y − εv ∈ C


(P ε)

Using the solution operator S for the state equation in (Pr2), we can again transfer the

problem above to a reduced formulation. Defining

f ε : U× L2(Ω,Rm) 3 (u, v) 7→ 1

2
‖Su− yd‖2W +

ν

2
‖u‖2U +

1

2ε
‖v‖2

and the admissible set

Uε,ad = {(u, v) ∈ U × L2(Ω,Rm) : yc − Su− εv ∈ C} ,

we can lay out the reduced formulation of (P ε)

min
(u,v)∈Uε,ad

f ε(u, v). (2.2.24)

The first question we want to answer is whether the existence and uniqueness results of the

original problem (P ) are inherited by the regularised problem. The good news is that they are

because Theorem 2.2.1 can be readily applied to the new setting of the regularised problem.

Theorem 2.2.12 (existence & uniquenss for the regularised problem). For every fixed ε > 0,

there exists a unique solution (ūε, v̄ε) ∈ Uε,ad such that the following necessary and sufficient

optimality condition is fulfilled

(p̄ε + νūε, u− ūε)U +
1

ε
(v̄ε, v − v̄ε) ≥ 0 ∀(u, v) ∈ Uε,ad, (2.2.25)

with p̄ε = S∗(ȳε − yd) being the adjoint state.

Proof. As in the proof of Theorem 2.2.2 we want to apply the general result of Theorem 2.2.1
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to the present, specific setting.

First of all, let us remark that f ε is a Fréchet-differentiable, radially unbounded, strictly

convex and continuous functional on the Hilbert space U×L2(Ω,Rm) endowed with the norm

‖(u, v)‖U×L2(Ω,Rm) := (‖u‖2U + ‖v‖2)1/2. (2.2.26)

For the Fréchet-differentiability property we refer to Section 2.6 in [80]. Besides the set Uad,ε is

non-empty, since (ū, 0) ∈ Uε,ad. Thus, we can apply Theorem 2.2.1 with H = U×L2(Ω,Rm),

V = Uε,ad and g = f ε to deduce that there exists a unique solution couple ūε, v̄ε with

corresponding state Sūε = ȳε.

To derive the first-order necessary and sufficient condition, we observe that - similar to the

proof of Theorem 2.2.2 - ∇f ε(ūε, v̄ε) can be expressed as

∇f ε(ūε, v̄ε) =
[
S∗(ȳε − yd) + νūε 1

ε v̄
ε
]
∈ U× L2(Ω,Rm).

Consequently, inserting the definition of p̄ε and employing (2.2.4), we obtain (2.2.25). The

fact that (2.2.25) is sufficient follows straight from Theorem 2.2.1.

The key reason for the regularisation and the introduction of the new control v was to obtain

existence of Lagrange multipliers in more favourable spaces, here L2(Ω,Rm). The next the-

orem shows that these troubles have not been in vain. In fact, we will also gain uniqueness

of the multiplier, which will turn out to be very helpful for employing efficient optimisation

algorithms as we will explain later. To formulate this theorem, let us, however, first introduce

the Lagrangian and the dual and primal problem for (P ε).

First, let us define the Lagrangian Lε : U× L2(Ω,Rm)× L2(Ω,Rm)→ R:

Lε(u, v, θ) := f ε(u, v) + (θ, yc − Su− εv).

With the Lagrangian we can define the primal problem

inf
(u,v)∈U×L2(Ω,Rm)

sup
θ∈C−

Lε(u, v, θ) (2.2.27)

and the dual problem

sup
θ∈C−

inf
(u,v)∈U×L2(Ω,Rm)

Lε(u, v, θ). (2.2.28)

Recall that in our notation C− signifies that the polar cone is taken with respect to the

topology induced by the standard L2(Ω,Rm)-norm.

Now, we can turn to the question of existence of a Lagrange multiplier:

Theorem 2.2.13 (existence & uniqueness of Lagrange multiplier). Let (P ε) for a fixed ε > 0

be given. Then there exists a unique element θ̄ε ∈ C− such that ūε, v̄ε, θ̄ε solve the following
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Karush-Kuhn-Tucker (KKT) system:

(S∗(ȳε − yd) + νūε, u− ūε)U − (θ̄ε, Su− ȳε) ≥ 0 ∀u ∈ U

−ε2θ̄ε + v̄ε = 0

(θ̄ε, ȳε − yc + εv̄ε) = 0.

(2.2.29)

Furthermore, (ūε, v̄ε, θ̄ε) solve the dual and primal problem, for which the following equality

holds:

f ε(ūε, v̄ε, θ̄ε) = Lε(ūε, v̄ε, θ̄ε). (2.2.30)

Besides, if (ũ, ṽ, θ̃) ∈ U × L2(Ω,Rm)× L2(Ω,Rm) solves (2.2.29) then

(ūε, v̄ε, θ̄ε) = (ũ, ṽ, θ̃)

Proof. First of all, the existence of a Lagrange multiplier θ̄ε ∈ C− is guaranteed by the fact

that the constraint mapping M ε : U × L2(Ω,Rm)→ L2(Ω,Rm) with

M ε(u, v) := yc − εv − Su

is surjective, after all, in this setting, we can apply Theorem 2.2.10 with H = U×L2(Ω,Rm),

L = M ε, Z = L2(Ω,Rm) and KZ = C. The KKT system (2.2.29) then readily follows,

compare also (2.2.11) and (2.2.10). The fact that the Lagrange multiplier θ̄ε is unique is a

consequence of the equation

ε2θε = v̄ε

in (2.2.29) and the fact that v̄ε is unique, see Theorem 2.2.12.

The definition of a Lagrange multiplier Definition 2.2.5 entails the solvability of the dual and

primal problems and the fact that their solutions are indeed the triples (ūε, v̄ε, θ̄ε). (2.2.30)

then follows from (2.2.11).

Naturally, analytically, it is more convenient to work with Lagrange multipliers which are

proper functions and not just measures. The uniqueness result of the Lagrange multiplier will

also be very helpful. However, at this stage, we want to focus more on the numerical aspect of

the results of Theorem 2.2.13. Under certain conditions on the control constraints represented

by the set U , it is possible to transform (2.2.29) into a non-linear equation for which generalised

Newton methods such as the Semismooth Newton Method are applicable. The fact that this

method can be applied in a function space setting opens up the possibility (and indeed, this

is observed, see e.g. [54], [41] and [43]) of convergence of the Newton method independent

of the mesh used later for defining the discrete spaces. This is especially important because

for algorithms tackling the discrete problem with iterative methods from finite-dimensional

nonlinear optimisation it was observed that the number of iterations increases linearly with
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the degrees of freedom, see e.g. [9]. Given that in 3D problems 500,000 degrees of freedom

are not unusual, it is clear that those methods are not practically applicable.

Another important property of the Semismooth Newton Method is the fact that - under

certain conditions - it generates a sequence of iterates that converge (locally) q-superlinearly

to the solution of the optimsation problem, cf. Definition 2.1.18. This is of course a very

desirable property for an optimisation algorithm, since essentially, it makes it very efficient

in the sense that the iterates converge fast to the true solution and not too many steps are

needed to get a ’good’ approximation of the true solution. After all, as we will show in the

course of this thesis, every step of an optimisation algorithm involves solving two partial

differential equations - something which one does not want to have repeated too often.

We will elucidate some of these aspects in the next section, which is intended to give an

explanatory overview without delving too much into the mathematical details. Detailed

proofs will either be omitted or postponed; we would simply like to give the reader an idea

as to how Semismooth Newton Methods can be applied in a setting with regularised state

constraints with the help of a simple model problem.

2.2.3 The Semismooth Newton Method

In this section, we will present an application of the semismooth Newton method to an optimal

control problem.

Let us first, for the sake of simplicity and just for this section, assume that Ω ⊂ R2, U = L2(Ω)

and the set U is given by

U = {u ∈ L2(Ω) : a ≤ u <∞}

with a real number a. Besides, let W = L2(Ω) and Y = H̊1(Ω).

Let us define the following linear-quadratic elliptic optimal control model problem with a

regularised state constraint:

min
u∈U,y∈Y

1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω) +

1

2ε
‖v̄ε‖2

s.t.∫
Ω

∇y · ∇w dΩ =

∫
Ω

uw dΩ. ∀w ∈ H̊1(Ω)

and

u ∈ U ⊂ U

yc − y − εv ≤ 0 a.e. in Ω



(MP ε)

We assume that yc ∈ H1(Ω) and Ω ∈ C0,1.

Here, the state equation (compare (Pr2)) simply is the variational formulation of the Poisson

equation with Dirichlet boundary data. In this particular case, the adjoint operator S∗ :
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L2(Ω) 3 z 7→ p ∈ L2(Ω) can be represented by the solution operator to∫
Ω

∇p · ∇w dΩ =

∫
Ω

zw dΩ. ∀w ∈ H̊1(Ω). (2.2.31)

We will postpone the proof until Chapter 4 of the thesis. Instead, let us point out that S is

self-adjoint and, more crucially, as we will later explain, S maps into better spaces, i.e. for

every w ∈ L2(Ω) p = S∗w is actually an element of (at least) H̊1(Ω).

Bearing this in mind, we can now combine Theorems 2.2.1 and 2.2.12 as well as the existence

result for Lagrange multipliers Theorems 2.2.10 and 2.2.13 to obtain the following Karush

Kuhn Tucker system for the solution couple (ūεm, v̄
ε
m) with corresponding state ȳεm = Sūεm

and unique Lagrange mutliplier θ̄εm ≥ 0 a.e. in Ω:

(S∗(ȳεm − yd) + νūεm, u− ūεm)L2(Ω) − (θ̄εm, Su− ȳεm)L2(Ω) ≥ 0 ∀u ∈ U

−ε2θ̄εm + v̄εm = 0

(θ̄εm, ȳ
ε
m − yc + εv̄εm)L2(Ω) = 0.

(2.2.32)

θ̄εm is an L2(Ω)-function. Hence, we can reformulate (2.2.32) by defining the adjoint state

p̄εm := S∗(ȳε − yd − θ̄εm). The optimality condition for ūεm in (2.2.32)

(S∗(ȳεm − yd) + νūεm, u− ūεm)L2(Ω) − (θ̄εm, Su− ȳεm)L2(Ω) ≥ 0 ∀u ∈ U

can then be transformed to

(p̄εm + νūεm, u− ūεm)L2(Ω) ≥ 0 ∀ a ≤ u ≤ b.

The good news is that the variational inequality above can be reformulated as a non-smooth

equation when we use pointwise min and max operators

ūεm(x) = a−min(0,
1

ν
p̄εm(x) + a) (2.2.33)

= a−min(0,
1

ν
S∗(Sūεm − yd) + a) f.a.a. x ∈ Ω. (2.2.34)

For v̄εm we can deduce the following equation

v̄εm(x) = ε2θ̄εm(x) = −1

ε
min(0, ȳεm(x)− yc(x)) (2.2.35)

= −1

ε
min(0, Sūεm(x)− yc(x)) f.a.a. x ∈ Ω. (2.2.36)
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Thus, all in all, using (2.2.33) and (2.2.35), we can conclude that (2.2.32), and at the same

time solving (MP ε) is actually equivalent to finding a solution to the fix-point equation[
u v

]T
− Fm(u, v) = 0 (2.2.37)

with Fm : L2(Ω)× L2(Ω)→ L2(Ω)× L2(Ω) and

Fm(u, v) =
[
a−min(0, 1

νS
∗(Su− yd) + a) −1

ε min(0, Su− yc)
]T
.

Here, we want to stress that the reformulation of the optimality system (2.2.32) in terms of a

fix-point equation with a pointwise superposition operator Fm, (2.2.37), is not possible for the

optimality system (2.2.13). The key difficulty here is the fact that the lack of regularity for

the multiplier µ̄ does not permit the transformation of (2.2.11) into a non-smooth equation

with a pointwisely define operator. Furthermore, the multiplier µ̄ might not be unique, which

would also lead to issues pertaining to the solvability of the KKT system (2.2.13). As we

have shown, it is possible to circumvent these problems by investigating a regularised problem,

thereby highlighting the importance of regularisation in the context of optimal control with

constraints on the state.

To solve (2.2.37), one naturally wants to apply Newton-type methods. However, in this case,

one is hampered by the fact that the min operator is not classically differentiable due to its

kinks.

The good news is that it is still semismooth. To prove this result, it is crucial that S and S∗

map to ’better’ spaces, as the following theorem, which is a slight reformulation of the (more

general) Theorem 2.14 in [45], clearly shows:

Theorem 2.2.14. Let φ be given by

φ(u, v) =
[
u v

]T
− Fm(u, v).

Then the operator φ : L2(Ω) → L2(Ω) is ∂φ-semismooth in the sense of Definition 2.1.17

provided

S∗S : L2(Ω)→ L2(Ω)

is Fréchet-differentiable and

S∗S : L2(Ω)→ Lp(Ω), p > 2 (2.2.38)

as well as

S∗ : L2(Ω)→ Lp(Ω), p > 2 (2.2.39)
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are locally Lipschitz-continuous.

At this stage, we want to quickly point out that S and S∗, the latter defined by the solution

of (2.2.31), fulfil the prerequisites of Theorem 2.2.14. After all, S and S∗ both map L2(Ω)-

functions to H1(Ω)-functions. As a consequence of Theorem 2.1.35, H1(Ω) ↪→ Lp(Ω) for all

1 ≤ p <∞ (recall that we assumed that d = 2 in this section) and, hence, conditions (2.2.38)

and (2.2.39) are always fulfilled.

Remark 2.2.15. Conditions (2.2.38) and (2.2.39) are critical because superposition operators

such as the pointwise min in (2.2.33) and (2.2.35) are in general not semismooth as mappings

from Lq to Lq, 1 ≤ q < ∞, see e.g. Lemma 2.7 in [45] or Example 3.57 in [82]. Therefore,

the smoothing done by the solution operator S and its adjoint S∗ is essential.

We can now formulate the semismooth Newton method for my model regularised problem

(MP ε). A general version of this algorithm can be found in [45], Algorithm 2.11.

Algorithm 2.2.1 Semismooth Newton Method

1: Choose (u0, v0) ∈ L2(Ω)× L2(Ω).

2: for k = 0, 1, 2, ... do

3: Choose Mk ∈ ∂φ((uk, vk))

4: Solve Mksk = −φ((uk, vk))

5: Set (uk+1, vk+1) = (uk, vk) + sk

6: end for

Algorithm 2.2.1 involves the solution of an equation

Mksk = −φ((uk, vk)),

which obviously makes it imperative that Mk ∈ ∂φ((uk, vk)) be invertible. The following

regularity condition, which can be found in [45], Equation 2.20, ensures just that:

∃C > 0, δ > 0 s.t.
∥∥M−1

∥∥
L(L2(Ω),L2(Ω)

≤ C, ∀M ∈ ∂φ(u, v),

∀(u, v) ∈ L2(Ω)2 : ‖(u, v)− (ūεm, v̄
ε
m)‖L2(Ω)2 < δ (2.2.40)

Let us remark that Theorem 4.8, [82], provides a more accessible approach to condition

(2.2.40). For more detailed information regarding this condition, we also want to refer to [83]

and [81].

We now conclude this chapter by citing the central theorem below, which states that Algo-

rithm 2.2.1 generates a q-superlinearly convergent sequence of iterates provided the assump-

tions of Theorem 2.2.14 and condition (2.2.40) are fulfilled.
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Theorem 2.2.16. Suppose that the Assumptions of Theorem 2.2.14 and condition (2.2.40)

are fulfilled. Suppose further that the starting point (u0, v0) of Algorithm 2.2.1 is chosen such

that

‖(u0, v0)− (ūεm, v̄
ε
m)‖L2(Ω)2 < δ

where δ is the δ of condition (2.2.40).

Then the sequence of iterates generated by Algorithm 2.2.1 converges q-superlinearly to the

solution (ūεm, v̄
ε
m).

This theorem and its proof can be found in [45], Theorem 2.12.

As yet, we have not addressed the question of globalisation of convergence, which is a very

helpful property. After all, Theorem 2.2.16 requires us to start ’somewhere in the vicinity’

of the true solution, possibly already quite close if δ > 0 is small. Such issues have been

investigated e.g. in [41], Theorem 3.2, and [47], Section 3.

2.3 Adaptive Finite Element Method

In this section, we will give a brief introduction to the adaptive finite element method, in

short AFEM, in the context of optimal control problems. Central to the AFEM is the

SOLVE→ ESTIMATE→ MARK→ REFINE

cycle or loop.

To explain it, one first has to introduce the notion of ’triangulation’ and ’finite element space’,

which is the subject of the next section.

2.3.1 Triangulations

To define finite element spaces, one first has to clarify what is meant by a triangulation because

the spaces themselves are defined on triangulations. Triangulations consist of simplices which

we will definie first. The defintion itself is taken from [65], Definition 5 and 6, Lemma 1,

Section 3.2.

Definition 2.3.1 (Simplex and Subsimplex). Let d ∈ N. A subset T of Rd is an n-simplex

in Rd if there exist n+ 1 points z0, z1, ..., zn ∈ Rd such that

T = conv hull {z0, ..., zn} =

{
n∑
i=0

: λi ≥ 0 ∀i,
n∑
i=0

λi = 1

}

and z1−z0, ..., zn−z0 are linearly independent vectors in Rd. Individual points are 0-simplices.
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A subset T
′

of T is a (proper) k-subsimplex of T if T
′

is a k-simplex such that

T
′

= conv hull
{
z
′
0, ...., z

′
k

}
⊂ ∂T

with k < n and z
′
0, ..., z

′
k ∈ {z0, ..., zn}.

Additionally, the following quantities define the diameter, inball diameter and scaled volume

of T :

dT := sup {|x− y| : x, y ∈ T}

rT := sup {2r : Br ⊂ T is a ball of radius r}

hT := |T |1/d .

The shape coefficient is the ratio of the diameter and the inball diameter:

σT :=
dT
rT
.

Having settled the question of what constitutes a simplex, we can now proceed to define a

triangulation of a domain Υ, compare [65], Definition 7, Section 3.2.

Definition 2.3.2 (Triangulation). Let Υ ⊂ Rd be a bounded set. A finite set T of d-simplices

in Rd with

Ῡ =
⋃
T∈T

T and |Υ| =
∑
T∈T
|T |

is called a triangulation of Υ. The set of 0-simplices of a triangulation T are called nodes, the

set of d− 1-simplices faces. A set Υ which admits such a triangulation is called meshable.

A triangulation T is conforming if it satisfies the following property: If any two simplices

T1, T2 ∈ T have a non-empty intersection S, then S is k-subsimplex of both T1 and T2 with

k ∈ {0, ..., d}.
A sequence of triangulations {Tk}k≥0 is shape-regular if

sup
k∈N

sup
T∈Tk

σT ≤ C.

Every triangulation T of a domain Υ is associated with a piecewise constant mesh-size function

hT : Υ→ R+, hT ∈ L∞(Υ) defined by:

hT (x) := |T |1/d x ∈ int(T ). (2.3.1)

A restrictive condition on a triangulation is the quasi-uniformity condition, which, in essence,

demands that every element of a triangulation be roughly about the same size. We will specify

this notion below because we will need it for comparison purposes throughout this thesis:
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Definition 2.3.3 (Quasi-Uniform Triangulations). Let Υ and Tk be as in Definition 2.3.2.

The sequence of triangulations Tk is called quasi-uniform if there exists a constant independent

of k such that

max
T∈Tk

hTk . min
T∈Tk

hTk

In this case, there exists hk ∈ R+ such that

hk . hTk(x) . hk f.a.a. x ∈ Ω,

where the hidden constants are independent of k. Hence, the local mesh-size functions hTk is

equivalent to a global mesh-size parameter hk.

From the definition above, it is clear that quasi-uniformity demands that the local mesh-size

function be equivalent to a global mesh-size parameter. That makes it impossible to locally

refine in some area of the domain Υ without (or just ’moderately’) changing the mesh in other

areas where the error may already be quite small. In a quasi-uniform setting, refinement is

always global, potentially leading to a case where a very fine mesh-size is ’wasted’ in parts of

the domain where the numerical approximation to the true solution had already been quite

accurate on a coarser grid. This is numerically a severe disadvantage and explains why in an

adaptive setting like ours one always does without such a condition.

We have now collected several geometric properties of triangulations. All these are important

for rigourously defining finite element spaces, the task we will turn to now.

2.3.2 Finite Element Spaces

Finite element (FE) spaces are essentially spaces of piecewise polynomial functions. Following

[19], Chapter 2, we define a finite element space V(T ) ⊂ Y in the ensuing way:

Definition 2.3.4 (Conforming FE Space). Let V be a Banach space, T a conforming tri-

angulation of a set Υ ⊂ Rd and m ≥ 0. The FE space FES(T ,Pm,V) equipped - unless

explicitly stated otherwise - with the norm ‖·‖V is then defined by

FES(T ,Pm,V) := {V ∈ V : V |T ∈ Pm(T ) ∀T ∈ T } .

Here, Pm(T ) denotes the space of all polynomials up to degree m on a single element T , i.e.

Pm(T ) :=

p ∈ V : p(x1, x2, ...xd)|T =
∑
|β|≤m

αβx
β1
1 x

β2
2 ...x

βd
d

 ,
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with multi-index β = (β1, β2, ..., βd) (β is a d-tupel of numbers in N ∪ {0}).

We now give two examples of FE spaces which are the most important applications of the

theoretical framework of this thesis. They are the piecewise constant and piecewise linear

ones:

Example 2.3.5 (P0 and P1 FE spaces). Let Ω be a bounded domain in Rd and T a triangu-

lation of Ω.

The space

FES(T ,P0, L2(Ω)) := {V ∈ L2(Ω) : V |T ∈ P0 ∀T ∈ T }

consists of all functions V ∈ L2(Ω) which are constant on every element T ∈ T .

The space

FES(T ,P1, H
1(Ω)) :=

{
V ∈ H1(Ω) : V |T ∈ P1 ∀T ∈ T

}
contains all H1(Ω)-functions which are linear on every element T ∈ T . Due to Theorem

2.1.1., [19], this space is identical to the finite element space defined by

FES(T ,P1, C(Ω̄)) :=
{
V ∈ C(Ω̄) : V |T ∈ P1 ∀T ∈ T

}
.

We now want to apply this general setting to the optimal control problem (P ), specifically,

we want to discretise it. This will be the subject of the next section.

2.3.3 Discretisation

To define a finite element discretisation for (P ), we first have to introduce triangulations T
and S of Ω and Γ respectively.

Let T now be a conforming, shape-regular triangulation of the domain Ω and S be a con-

forming, shape-regular one of Γ.

To these initial triangulations T and S we assign the index k = 0, i.e

T =: T0 S =: S0.

We now assume that a sequence of conforming and shape-regular Tk and Sk is generated,

starting with the initial triangulation by a suitable refinement algorithm - in Section 2.3.5 we

will clarify the notion of ’suitability’ and give examples of methods producing such sequences

of triangulations.

Having introduced the sequences of triangulations Tk and Sk, we can now proceed to define

the discrete counterparts to the control space U and state space Y:

Definition 2.3.6 (the spaces Uk and Yk). Let m,n, k ∈ N∪{0} and Tk and Sk be conforming

and shape-regular triangulations of Ω and Γ respectively. Then Uk is either defined as the
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finite element space

Uk = Uk(Sk) := FES(Sk,Pm,U),

which is the full discretisation approach, or it is the entire space U, i.e.

U = Uk,

which is the variational discretisation technique.

The space Yk is in both cases defined as

Yk = Yk(Tk) := FES(Tk,Pn,Y).

Remark 2.3.7. The choice Uk = U in Definition 2.3.6 is the variational discretisation

approach pioneered in [44]. Occasionally, in this thesis, we will refer to it and add some

explanatory comments.

For the state constraint we define another discrete space Vk:

Definition 2.3.8. The space Vk is either the space Yk equipped with the norm ‖·‖L2(Ω,Rm),

in short

Vk = (Yk, ‖·‖L2(Ω,Rm)).

or - mirroring the variational discretisation approach - the entire space L2(Ω,Rm), i.e.

Vk = L2(Ω,Rm).

equipped with the L2(Ω,Rm)-norm.

Having introduced the discrete spaces Uk, Yk and Vk, we can now define a discretisation of

(P ):

min
U∈Uk,Y ∈Yk

1

2
‖Y − yd‖2W +

ν

2
‖U‖2U

s.t.

B[Y,W ] = (U,W )U ∀W ∈ Yk
and

U ∈ Uk
Ikyc − Y ∈ CVk ,


(Pk)

At this stage, we want to stress that on the discrete level we treat the cone C w.r.t the

S. Steinig AFEM for State-Constrained Optimal Control



60 CHAPTER 2. GENERAL FRAMEWORK

topology of the space Vk. In terms of sets we still have

W ∈ CVk ⇒W ∈ C (2.3.2)

After all, roughly speaking, we do not change the set C just the topology.

However, for the polar cone C−Vk things are different. Let us first observe that

C−Vk =
{
φk ∈ V∗k : 〈φk,W 〉V∗k,Vk ≤ 0 ∀W ∈ CVk

}
= {F ∈ Vk : (F,W ) ≤ 0 ∀W ∈ CVk}

(2.3.3)

The latter equality is due to the fact that Vk is a Hilbert space itself with the norm ‖·‖ and

associated scalar product (·, ·). However in contrast to (2.3.2)

F ∈ CVk 6⇒ F ∈ C−,

if Vk 6= L2(Ω,Rm).

This is important to bear in mind for out future analysis. To conclude these remarks about

the conce CVk , let us another short one:

Remark 2.3.9. Especially for higher order finite elements it can be helpful to dispense with

the assumption that CVk ⊂ C. The reason for this lies in the fact that pointwise a.e. con-

straints for quadratic or cubic polynomials are hard to verify due to oscillation. In this setting

state constraints could e.g. be transferred to formulations of the type

CVk =

{
V ∈ Yk :

1

|T |

∫
T
V dT ≥ 0, ∀T ∈ Tk

}
.

Let us therefore remark that the results of this thesis remain valid even if CVk 6⊂ C as long as

the approximation is consistent, i.e.

Vk ∈ CVk , Vk ⇀ v in L2(Ω,Rm), k →∞⇒ v ∈ C.

In addition to the properties (Pr1)-(Pr6) required of the continuous problem (P ), we have to

list two more properties and make additional assumptions for the discrete problem (Pk).

Property guaranteeing solvability of the equation B[Y,W ] = (u,W )U

Pr7. The bilinear form B satisfies a stable inf − sup condition on Yk, i.e.

inf
Z∈Yk

sup
W∈Yk

B[Z,W ]

‖Z‖Y ‖W‖Y
= inf

W∈Yk
sup
Z∈Yk

B[Z,W ]

‖Z‖Y ‖W‖Y
= αk ≥ α̃ > 0,
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compare e.g. [65], Section 3.1 Theorem 4 and Section 3.1.2.

This is equivalent to the fact that there exists a unique solution Y = Sku ∈ Yk for all

u ∈ U of

B[Y,W ] = (u,W )U ∀W ∈ Yk

with Sk ∈ L(U,Y) and

‖Sku‖Y . ‖u‖U (2.3.4)

independent of k. Due to inequality (2.3.4) and (Pr1), in particular the embeddings, the

operator norm of Sk is also uniformly bounded if interpreted as an operator Sk : U→W
and Sk : U → L2(Ω,Rm). As in the continuous case, we will not distinguish between

these nominally different operators, it being clear from the context which one we refer

to.

Properties of the operator Ik of the state constraint in (Pk)

Pr8. Ik is an operator defined on a dense subspace D of Y with the property that Ikyc ∈ Vk,
Ikyc → yc in L2(Ω,Rm) as k →∞ and

‖Ikyc‖ . ‖yc‖

independent of k.

To analyse convergence of the discrete solutions, we have to make the following assumptions:

Assumption ensuring existence of a bounded sequence of discrete solution of (Pk)

A1. There exists a bounded sequence
{
Ûk

}
k≥0

such that for some fixed N ∈ N

Ûk ∈ Uadk := {U ∈ Uk : U ∈ Uk, Ikyc − SkU ∈ CVk} ∀k ≥ N.

Assumptions needed to analyse convergence of discrete solutions

A2. For the sequence of discrete spaces Uk, Yk and Vk, we assume that

U =
⋃
k≥0

Uk
‖·‖U

, Y =
⋃
k≥0

Yk
‖·‖Y

, L2(Ω,Rm) =
⋃
k≥0

Vk
‖·‖

This is tantamount to the associated mesh size functions for the triangulations Sk
and Tk, hSk hTk , see (2.3.1), converging to 0 pointwise almost everywhere in Γ and Ω

respectively, see [60], Lemma 4.3.

A3. {Uk}k≥0 is a sequence of closed and convex subsets of U such that in U as k →∞

∀u ∈ U ∃Pku ∈ Uk s.t. Pku→ u (2.3.5)
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and

Uk ∈ Uk and Uk ⇀ ũ ⇒ ũ ∈ U . (2.3.6)

A4. Similar to (2.3.5), for every w ∈ C there exists Hkw ∈ Vk ∩ CVk such that as k →∞

Hkw → w in L2(Ω,Rm). (2.3.7)

We should explain the property (Pr7) as well as the technical assumptions (A1)-(A4):

• The stable inf − sup condition in (Pr7) ensures - among else - that the operator norm

‖Sk‖L(U,Y) is uniformly bounded. This is crucial for proving convergence results of the

type SkUk → Su as Uk → u and k →∞.

• (A1) - among else - safeguards that we are not optimising over the empty set, a neces-

sary condition. Besides, the existence of the bounded sequence
{
Ûk

}
ensures that the

sequence of discrete solution stays bounded in U. The reader should note that almost

all constants in the estimates for discrete functions depend on the existence of

such a norm-bound for the sequence
{
Ûk

}
.

• (A3): In (2.3.5) we have assumed that basically every function u ∈ U can be approxi-

mated by discrete functions Pku ∈ Uk. At this stage we want to emphasise that these

functions do not have to fulfil the state constraint, i.e. in general Ikyc − SkPku 6∈ C.

Provided (A2) holds, density always safeguards the existence of function Pku ∈ Uk such

that Pku→ u for all u ∈ U. Thus, we have enforced the additional condition that these

functions also belong to Uk. In Section 2.4, we will give several examples of problems

for which this condition holds, the easiest case being U = U and Uk = Uk.
Condition (2.3.6) guarantees that - in a sense - the closure w.r.t the weak topology of

the sequence of sets Uk is contained in U . It is trivially fulfilled if Uk ⊂ U , for all k.

Again, we refer to Section 2.4 for some helpful examples.

• (A4) guarantees that every w ∈ C can be approximated by a sequence of discrete

functions Hkw ∈ CVk , a property mirroring (A3). To the best of the authors’ knowledge

it is always fulfilled in case C is given by pointwise inequality constraints, the most

important application for this theoretical framework. It is very technical to prove,

though, especially for higher order finite elements. Compare also Section 2.4 for some

examples of cases where it is fulfilled.

Before we move on, let us shortly record an important consequence of the Property (Pr7) and

Assumption (A2):

Theorem 2.3.10 (Convergence of Discrete Solutions). For every u ∈ U we have Sku→ Su

as k →∞ in Y.
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Proof. First, we observe that the sequence {Sku} is uniformly bounded in Y thanks to (2.3.4).

Thus, there exists a weakly convergent subsequence with limit ỹ ∈ Y. Now, pick an arbitrary

w ∈ Y. Due to (A2) there exists a sequence {Wk} with Wk → w strongly in Y and Wk ∈ Yk
for all k. For the weakly convergent subsequence of {Sku} we can thus now conclude

B[Sku,Wk]→ B[ỹ, w], k →∞.

In addition, we have:

0 = B[Sku− Su,Wk] = B[Sku,Wk]− B[Su,Wk]→ B[ỹ, w]− B[Su,w], k →∞

⇔ B[Su,w] = B[ỹ, w].

Since this result is valid for all w ∈ Y, we immediately deduce ỹ = Su due to uniqueness of

the solution Su.

Now, we realise that these deductions are true for every weakly convergent subsequence of

{Sku} with the limit Su being unique. Lemma 2.1.5 then gives the desired result.

Naturally, one is interested in existence and uniqueness results for the discrete problems (Pk)

and optimality conditions. The good news is that the results of Theorem 2.2.2 can be readily

transferred. First though, let us introduce the reduced formulation of (Pk) similar to (2.2.1).

To this end, we define

fk : Uk 3 U 7→
1

2
‖SkU − yd‖2W +

ν

2
‖U‖2U .

The reduced formulation now reads:

min
U∈Uadk

fk(U). (2.3.8)

Applying Theorem 2.2.1 to (2.3.8) yields:

Theorem 2.3.11. For every k there exists a unique solution Ūk and corresponding state

Ȳk = SkŪk to (Pk) satisfying the following necessary and sufficient optimality condition

(P̄k + νŪk, U − Ūk)U ≥ 0 ∀U ∈ Uadk , (2.3.9)

where P̄k = S∗k(Ȳk − yd) with S∗k : W→ U.

Furthermore, the sequences
{
Ūk
}
k∈N and

{
fk(Ūk)

}
are bounded independently of k, and any

weak limit ũ of a subsequence of
{
Ūk
}

fulfils

ũ ∈ Uad
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Proof. Assumption (A1) is assumed to hold. In particular, this implies that the discrete

admissible set Uadk is non-empty. Besides, fk is radially unbounded, strictly convex, bounded

from below and Fréchet differentiable, the arguments are exactly the same as for f , compare

the proof of Theorem 2.2.2. Thus, we can apply Theorem 2.2.1 with H = Uk, V = Uadk
and g = fk to prove the existence of a unique solution for (Pk) and the optimality condition

(2.3.9), where

0 ≤ (∇fk(Ūk), U − Ūk)U = (S∗k(Ȳk − yd)︸ ︷︷ ︸
=P̄k

+νŪk, U − Ūk)U ∀U ∈ Uadk .

Let us now turn to the remaining claims of the theorem.

To prove the boundedness property of the sequence
{
Ūk
}
k∈N, we take advantage of (A1) and

optimality of Ūk to estimate in the ensuing way:

ν

2

∥∥Ūk∥∥2

U ≤
1

2

∥∥Ȳk − yd∥∥2

W +
ν

2

∥∥Ūk∥∥2

U = fk(Ūk)

≤ 1

2

∥∥∥SkÛk − yd∥∥∥2

W
+
ν

2

∥∥∥Ûk∥∥∥2

.
1

2
‖Sk‖L(U,W)

∥∥∥Ûk∥∥∥2
+ ‖Sk‖L(U,W)

∥∥∥Ûk∥∥∥
U
‖yd‖W + ‖yd‖2W +

ν

2

∥∥∥Ûk∥∥∥2

. (1 +
ν

2
)
∥∥∥Ûk∥∥∥2

U
+ ‖yd‖W

∥∥∥Ûk∥∥∥
U

+ ‖yd‖2W .

In the second to last line, we took advantage of continuity of Sk and Cauchy-Schwarz’ in-

equality and in the last line, we additionally employed Assumption (Pr7), specifically the fact

that ‖Sk‖L(U,W) . 1 thanks to (2.3.4) and Y ↪→ W. This yields boundedness of both
{
Ūk
}

and
{
fk(Ūk)

}
which completes the proof; after all,

{
Ûk

}
k∈N

is bounded by Assumption (A1).

Let us now turn to the question of the feasibility of the weak limit ũ of a convergent sub-

sequence of
{
Ūk
}

w.l.o.g. - for the sake of convenience - not distinguished from the entire

sequence by notation.

First of all, the corresponding sequence of states Ȳk is bounded thanks to (2.3.4). Since Y
is a Hilbert space, it possesses a weakly convergent subsequence Ȳkl with limit ỹ. Fixing an

arbitrary v ∈ Y, we choose a strongly convergent sequence {Vkl} ⊂ Y with Vkl ∈ Ykl whose

existence is ensured by the density Assumption (A2) and observe that

B[ỹ, v]← B[Ȳkl , Vkl ] = (Ūkl , Vkl)U → (ũ, v), l→∞

where we used strong convergence of Vk → v and weak convergence Ȳk ⇀ ỹ in Y and continuity

of B on Y × Y on the left-hand side and strong convergence Vk → v in U, due to Y ↪→ U,

(Pr1), and weak convergence Ūk ⇀ ũ in U on the right-hand side.
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Hence, because v is an arbitrary element of Y

ỹ = Sũ ↼ SklŪkl = Ȳkl , l→∞ (2.3.10)

This is true for every subsequence of
{
Ȳk
}

with the limit Sũ being unique. Lemma 2.1.5

now guarantees that the entire sequence
{
Ȳk
}

converges to Sũ.

Using Assumption (A3), in particular (2.3.6), we obtain

Uk 3 Ūk ⇀ ũ ∈ U .

First of all, thanks to (2.3.2) we have

Ikyc − Ȳk ∈ CVk ⇒ Ikyc − Ȳk ∈ C, k →∞

Now, harnessing the fact that the convex cone C is convex and closed and thus weakly closed,

we can conclude

C 3 Ikyc − Ȳk ⇀ yc − ỹ = yc − Sũ ∈ C, k →∞

As a consequence, we obtain

ũ ∈ Uad,

which completes the proof.

At this stage, we do not delve into the question of existence of Lagrange multipliers for the

discrete problem or the reformulation of (2.3.9) as a projection equation as we did in the

continuous case. Instead, we will move on to the discrete counterparts of the continuous

regularised problem (P ε). This analysis will form a centrepiece of this thesis. In fact, as

already discussed in Section 2.2.3, these are the problems that are actually numerically solved,

since these are the problems that can be tackled by efficient optimisation algorithms. We will

present these regularised problems in the next section and also record several important

properties.

2.3.4 The Discrete Regularised Problems

The discrete counterparts to (P ε) are then defined in the following way:
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min
U∈Uk,Y ∈Yk,V ∈Vk

1

2
‖Y − yd‖2W +

ν

2
‖U‖2U +

1

2
‖V ‖2

s.t.

B[Y,W ] = (U,W )U ∀W ∈ Yk
and

U ∈ Uk
Ikyc − Y − εV ∈ CVk ,


(P εk )

First and foremost, we want to prove an existence and uniqueness result for (P εk ). Again,

as in the unregularised case, the existence and uniqueness result for the continuous case of

Theorem 2.2.12 readily finds its counterpart in the discrete case as the next theorem shows.

To apply those results, we first transform (P εk ) into its reduced formulation by eliminating

the state with the help of the discrete solution operator Sk, cf. (Pr7). We define

f εk : Uk × Vk 3 (U, V ) 7→ 1

2
‖SkU − yd‖2W +

ν

2
‖U‖2U +

1

2ε
‖V ‖2

and the admissible set

Uε,adk := {(U, V ) ∈ Uk × Vk : Ikyc − SkU − εV ∈ CVk}

to put forward the reduced formulation for (P εk ):

min
(U,V )∈Uε,adk

f εk(U, V ). (2.3.11)

To this constrained strictly convex optimisation problem we can apply Theorem 2.2.1 to

obtain:

Theorem 2.3.12. For every k and every fixed ε, there exists a unique solution couple

(Ū εk , V̄
ε
k ) ∈ Uε,adk of (P εk ) and corresponding state Ȳ ε

k = SkŪ
ε
k such that the following first-

order necessary and sufficient optimality condition is fulfilled:

(P̄ εk + νŪ εk , U − Ū εk)U +
1

ε
(V̄ ε
k , V − V̄ ε

k ) ≥ 0 ∀(U, V ) ∈ Uε,adk (2.3.12)

with P̄k = S∗k(Ȳ ε
k − yd).

Furthermore, the sequence
{
Ū εk ,

1√
ε
V̄ ε
k

}
k∈N

is bounded independently of ε and k in U ×
L2(Ω,Rm).

Proof. Once again, we apply Theorem 2.2.1 to problem (2.3.11) to obtain existence of a

unique solution and the first-order optimality condition (2.3.12). We note that like f ε, f εk is
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Fréchet-differentiable, radially unbounded, bounded from below and strictly convex. Besides,

Uε,adk is non-empty, because (Ūk, 0) ∈ Uε,adk . Hence, we can take advantage of Theorem 2.2.1

with H = Uk × Vk, V = Uε,adk and g = fkε to gain the existence of a unique solution and the

first order optimality condition (2.3.12), where

0 ≤ (∇f εk(Ū εk , V̄
ε
k ), (U − Ū εk , V − V̄ ε

k ))U×L2(Ω,Rm)

= (P̄ εk + νŪ εk , U − Ū εk)U +
1

ε
(V̄ ε
k , V − V̄ ε

k ) ∀(U, V ) ∈ Uε,adk .

To derive the boundedness result for the sequence
{
Ū εk ,

1√
ε
V̄ ε
k

}
k∈N

, we first observe that

(U, 0) ∈ Uε,adk , ∀U ∈ Uadk

and hence

f εk(Ū εk , V̄
ε
k ) ≤ fk(Ūk),

which in particular yields

ν

2

∥∥Ū εk∥∥2

U +

∥∥∥∥ 1√
ε
V̄ ε
k

∥∥∥∥2

≤ fk(Ūk)

which thanks to the boundedness results of Theorem 2.3.11 implies the assertion.

As we have already remarked, it is (P εk ) that will be solved numerically not the unregularised

problem (Pk). That is why when we discuss an adaptive finite element method for the

discretisation of (P ) it is natural that a lot of effort goes into studying the properties of the

discretised regularised problem (P εk ): It will be the information extracted from its solution

which steers the adaptive algorithm, a brief introduction of which we will now given in the

next section.

2.3.5 The Different Modules of the AFEM

In this section, we will briefly discuss the four modules of the adaptive cycle in this state-

constrained optimal control setting. This section is not geared towards a rigorous mathemat-

ical analysis; rather, the goal is to give the reader an overview of what we aim for and what

we mean when discussing an adaptive algorithm.

To avoid certain technicalities, we assume that the spaces Uk and Yk are defined on the same

triangulations, i.e. Tk = Sk.
First of all, let us recall the adaptive cycle:

SOLVE→ ESTIMATE→ MARK→ REFINE
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In Chapter 4 and Chapter 5 we will derive an estimator which up to constants depending

solely on data (=Ω,yc,yd,...) provides the following upper bound:

∥∥Ū εk − ū∥∥2

U . ε
γN + E2

r(Ū
ε
k , V̄

ε
k ) + Es(Ū

ε
k , V̄

ε
k ) (2.3.13)

with 0 < γ < 1 determined by properties of the continuous problem, a parameter N which can

be choosen freely and expressions Er = Ek(Ū
ε
k , V̄

ε
k ) and Es = Es(Ū

ε
k , V̄

ε
k ) of which we assume

that we can compute them exactly (in truth, they are evaluated with numerical integration,

but we will not address the issues we face in this case in this thesis). Besides, we demand

that both Er and Es can be localised in the following sense:

E2
r =

∑
T∈Tk

e2
r(T )

E2
s .

∑
T∈Tk

e2
s(T )

(2.3.14)

with element contributions er(T ) and es(T ). We observe that there is a . in the second line

in (2.3.14). Indeed, as we will find out in Chapter 5, we will pay for a localisation of Es by

additional constants.

Furthermore, note that in (2.3.13) we estimate the distance between the solution of the

discrete regularised problem Ū εk and the true solution, because - as already explained before - it

is the discrete regularised problem (P εk ) which is solved numerically and not the unregularised

one (Pk). The reason for this is that only the regularised problem can be treated efficiently by

Newton-type methods, a behaviour which we have already explored on the continuous level

in Section 2.2.2 and Section 2.2.3.

We are now given a certain tolerance TOL > 0 and - for simplicity - assume that we fix N in

(2.3.13) in such a way that

εγN ≤ TOL

2
(2.3.15)

After these preliminaries we can now take a brief course through the different modules of our

adaptive algorithm.

• ’SOLVE’: In this module we solve (P εk ). For the presentation of the algorithm that we

will use, we refer to Chapter 5. Here, it is important that upon completing this module,

we assume that we possess the exact solution (Ū εk , V̄
ε
k ) of the problem (P εk ).

• ’ESTIMATE’: In this module, the error estimators E2
r and Es as well as the element

contributions er(T ) and es(T ) (compare (2.3.14)) are computed. If

E2
r + Es ≤

TOL

2
,

S. Steinig AFEM for State-Constrained Optimal Control



69 CHAPTER 2. GENERAL FRAMEWORK

we terminate the algorithm, because in view of (2.3.13) and (2.3.15) the current solution

Ū εk fulfills:

∥∥ū− Ū εk∥∥2

U . TOL.

If not, we continue with ’MARK’.

• ’MARK’: In this step, a set of elements MT ⊂ Tk is marked. As we will explain

in greater detail in Chapter 5, we will treat both local indicators E2
r (T ) and E2

s (T )

separately with the help of a maximum strategy: First, let

emax
r := max {er(T ) : T ∈ Tk}

emax
s := max {es(T ) : T ∈ Tk}

Given fixed parameters σr, σs ∈ [0, 1], the following set of elements will then be marked

for refinement

MT = {T ∈ Tk : er(T ) ≥ σremax
s ∨ es(T ) ≥ σsemax

s }

One could also adapt different marking strategies (equidistribution strategy,...) to the

setting of (2.3.13).

• ’REFINE’: During this step the marked elements are refined. We demand of any refine-

ment algorithm that it generate a new conforming triangulation Tk+1 and a sequence of

triangulations that is shape-regular, cf. Definition 2.3.2. In this thesis, we operate solely

in the context of bisectional refinement. One example of such a bisectional refine-

ment technique is the so-called recursive refinement, [51], another iterative refinement,

see e.g. [5], compare also [65], Section 4.3. We do not go into great detail here, because

it would impede the cogent presentation of the results of this thesis. Let us merely men-

tion that in the process of refinement not only the questions of shape-regularity and

conformity have to be settled, it is also crucial that the algorithm addresses the question

of refinement staying local. As the image below demonstrates, a conforming closure ul-

timately leads to refinement of possibly unmarked neighbouring elements indicated by

the dotted line:
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Figure 2.1: Conforming Closure

However, this necessary overhead needs to be limited in a way that assures that lo-

cal refinement and ensuing conforming closure do not spill over into an almost global

refinement obliterating the advantages of the adaptive finite element method. In [51],

Theorem 2, it is shown that for the recursive refinement algorithm an appropriate bound

safeguarding against such an effect can be obtained.

As a final note, let us also mention that there are of course other refinement techniques

apart from bisectional refinement.

Having sketched the different modules of the AFEM, we can now present some examples

which fit the abstract setting of Sections 2.2.1 and 2.3.3.

2.4 Examples

In this section, we will present several applications that fit into the framework of the preceding

sections, i.e applications for which the Properties (Pr1)-(Pr6) and the Properties (Pr7)-(Pr8)

as well as Assumptions (A1)-(A4) are fulfilled.

2.4.1 Distributed Elliptic Optimal Control Problems

Let us introduce the following elliptic optimal control problem with distributed control:

min
u∈L2(Ω),y∈H1(Ω)

1

2
‖y − yd‖2W +

ν

2
‖u‖2L2(Ω)

s.t.

−div(A · ∇y) + cy = u in Ω

y = 0 in ∂Ω

and

a ≤ u ≤ b a.e. in Ω

yc − y ≤ 0 a.e. in Ω

(2.4.1)
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Here Ω is a bounded domain in Rd which is assumed to be meshable, compare Definition

2.3.2. Besides, W = L2(Ω) or W = H1(Ω). U is chosen as L2(Ω). Besides, let yd ∈ W and

yc ∈W 1
p (Ω), p > d.

In addition, a, b ∈ R ∪ {−∞,+∞} and

U = {u ∈ L2(Ω) : a ≤ u ≤ b a.e. in Ω} .

C is the following cone:

C = {f ∈ L2(Ω) : f ≤ 0 a.e. in Ω} .

Following [36], Chapter 8, we make the following assumptions for the mappings A and c:

A ∈ L∞(Ω,Rm)

c ∈ L∞(Ω)

Besides, we demand that there exist λ > 0 such that

ηTA(x)η ≥ λ|η|2 f.a.a. x ∈ Ω, ∀η ∈ Rd (2.4.2)

and that there hold

c ≥ 0 a.e. in Ω. (2.4.3)

The bilinear form B of (Pr2) is given by

B : H̊1(Ω)× H̊1(Ω) 3 (y, w)→
∫
Ω

A∇y · ∇w dΩ ∈ R.

The state equation then reads∫
Ω

A∇y · ∇w dΩ =

∫
Ω

uw dΩ ∀w ∈ H̊1(Ω). (2.4.4)

In the next theorem, we want to collect some properties of the bilinear form B, which will

turn out to be very valuable in demonstrating that (2.4.4) is uniquely solvable

Theorem 2.4.1. The bilinear form B is continuous on H̊1(Ω)× H̊1(Ω), i.e.

|B[y, w]| ≤ ‖A‖L∞(Ω,Rd×d) |y|H1(Ω)|w|H1(Ω)

and coercive: For some α > 0, there holds

B[w,w] ≥ α|w|2H1(Ω).
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Proof. First of all, Theorem 2, Chapter 6 in [31], yields the continuity of the bilinear form

B. To prove that B is coercive, we use (2.4.2) and the fact that c ≥ 0 a.e, compare (2.4.3) to

conclude that

λ |w|2H1(Ω) ≤
∫
Ω

A∇w · ∇w dΩ

≤ B[w,w].

Corollary 2.1.21 now yields the inf − sup condition of (Pr2).

Having collected the properties of B, we are now in the position to prove that problem (2.4.1)

possesses the Properties (Pr1)-(Pr5):

Theorem 2.4.2 (elliptic model problem). Suppose (2.4.1) is given and the conditions listed

above hold. Then Properties (Pr1)-(Pr5) are fulfilled.

Proof. It is clear that the spaces U = L2(Ω), W = L2(Ω) or W = H1(Ω) and Y = H̊1(Ω) fit

the prerequisites of (Pr1). Let us therefore immediately turn to (Pr2).

Theorem 2.1.20 and Corollary 2.1.21 now ensure that there exists a unique weak solution to

(2.4.4), fulfilling Property (Pr2); in particular, the solution operator S maps L2(Ω) continu-

ously to H̊1(Ω). The cone C of functions in L2(Ω) which are non-positive on Ω, is a convex

and closed cone. The convexity property is straightforward. For the closedness property,

choose {fn} ⊂ C with fn → f in L2(Ω). As a consequence, there exists a subsequence {fnk}
which converges pointwise almost everywhere to f in Ω, see e.g. [39], Theorem 11.31, in com-

bination with Theorem 11.26. Since fnk(x) ≤ 0 pointwise almost everyhwere on Ω, pointwise

a.e convergence implies f(x) ≤ 0 for almost all x ∈ Ω. Thus, (Pr4) is also fulfilled.

The same argument can be made to prove closedness of the set U . Convexity of U is straight-

forward; thus, all in all, U satisifies (Pr3). Since yd ∈ W and yc ∈ W 1
p (Ω) ⊂ H1(Ω), p > d,

(Pr5) is fulfilled, too.

Before we turn to a discretisation approach for (2.4.1), let us briefly go into the question

whether (Pr6) is fulfilled: First of all, we want to point out that there is no general way

to ensure that there exist feasible points for (2.4.1). However, there are certain cases where

(Pr6) is satisfied, most of which hinge on the application of maximum principles for elliptic

equations. Sometimes it is also possible to explicitly construct feasible points. In the following

remark, we will present one case where (Pr6) is fulfilled:

Remark 2.4.3. Let us suppose that b ≥ 0 and yc ≤ 0 a.e. in Ω. Then there exist feasible

points for (2.4.1). The reason for this is the fact that u ≥ 0 implies Su ≥ 0. This is

a consequence of well-known maximum principles for elliptic equations, compare e.g. [67],

Chapter 5.
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Let us now verify whether the Assumptions (Pr7)-(A4) are fulfilled for the discretisation we

are now going to consider. For Uk we choose piecewise polynomials of up to degree l ≥ 0

defined on a sequence of shape-regular, conforming triangulations Tk of Ω, compare Definition

2.3.4 and Example 2.3.5:

Uk = FES(Tk,Pl, L2(Ω))

For Yk we choose the space of H̊1(Ω)-conforming piecewise polynomials of up to degree m ≥ 1,

i.e.

Yk = FES(Tk,Pm, H̊1(Ω)) (2.4.5)

For Vk we choose

Vk = (Yk, ‖·‖L2(Ω)) (2.4.6)

The admissible set Uk is defined by

Uk = {U ∈ Uk : a ≤ U ≤ b a.e. in Ω} .

For the operator Ik in (Pr8), we choose any of the Clément, Scott-Zhang or nodal interpolant.

For a definition of these interpolants and further information, we refer e.g. to [20], Chapter

2, Section 6, [75], [30], Section 1.6. An alternative approach would be to just take the best-

approximation of yc in Yk.
The state equation on the discrete level is then given by∫

Ω

A∇Y · ∇W : dΩ =

∫
Ω

UW dΩ ∀W ∈ Yk. (2.4.7)

If we use this discretisation scheme, then Properties (Pr7), (Pr8) and Assumptions (A2)-(A4)

are fulfilled. This is the subject of the next theorem.

Theorem 2.4.4. For the discretisation setting detailed above, (Pr7),(Pr8) and (A2)-(A4) are

fulfilled.

Proof. Let us tackle (Pr7) first: At this stage, we want to refer to Corollary 2.1.22, which

ensures that (Pr7) is fulfilled, since Yk ⊂ H̊1(Ω) is a closed subspace of H̊1(Ω).

By continuing refinement and letting the mesh-size tend to 0 we ensure that (A2) is fullfilled.

Let us check (A3) now. First of all, let us observe that the L2-projection of a function u ∈ U
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on the space of piecewise constant functions (compare Example 2.3.5) defined by∫
Ω

(Pku− u)W dΩ = 0 ∀W ∈ FES(Tk,P0, L2(Ω))

belongs to Uk. We can now choose for all T ∈ Tk V = χT
|T | and obtain (observe that Pku is

constant on every element T )

Pku|T =
1

|T |

∫
T

u dT ∀T ∈ Tk.

Since a ≤ u ≤ b, so

a ≤ 1

|T |

∫
T

u dT ≤ b,

and thus

a ≤ Pku|T ≤ b ∀T ∈ Tk,

which leads to a ≤ Pku ≤ b and thus Pku ∈ Uk. Pku is the best-approximation of u in

FES(L2(Ω),P0, Tk); hence, the density relation (A2) allows us to conclude that Pku→ u for

all u ∈ U . Thus, Assumption (2.3.5) is satisfied. Assumption (2.3.6) is also fulfilled, since the

set U is convex and closed in U and, as a consequence, weakly closed, and there holds:

Uk ⊂ U .

To show that (Pr8) is fulfilled, we employ standard interpolation results, e.g. [14], Theorem

4.4.4., and more generally [20], Theorems 16.1 and 16.2, which yield stability, i.e.

‖Ikyc‖ . ‖yc‖

with the constant depending - among else - on the shape regularity of Tk, and the following

estimates

‖yc − Ikyc‖H1(Ω) .
∑
T∈Tk

h
d( 1

2
− 1
p

)

T |yc|W 1
p (T )

≤
∑
|α|=1

∥∥∥hd(p/2−1)
Tk Dαyc

∥∥∥
Lp(Ω)

where hTk is the local mesh-size function of the triangulation Tk. Here, we took advantage

of the higher regularity of W 1
p (Ω). Density, cf. (A2), then yields pointwise a.e. convergence

S. Steinig AFEM for State-Constrained Optimal Control



75 CHAPTER 2. GENERAL FRAMEWORK

of hTk → 0 and, thus, since ‖hTk‖L∞ . 1, where the constant solely depends on the initial

mesh-size, an application of the dominated convergence theorem, compare [85], Theorem 5.36,

yields:

hTk → 0 in Lp(Ω) ∀1 ≤ p ≤ ∞.

Using Hölder’s inequality, we can then deduce that∑
|α|=1

∥∥∥hd(p/2−1)
Tk Dαyc

∥∥∥
Lp(Ω)

→ 0

and thus Ikyc → yc in H1(Ω) (and H̊1(Ω)) and hence, in particular, Ikyc → yc in L2(Ω).

Lastly, let us investigate (A4). For the operator Hk demanded by (A4), we use a positivity

preserving finite element approximation described in [64]. In general, such an operator does

not give an optimal approximation rate, but in our case it is enough that Hkw → w for all

w ∈ L2(Ω) which is ensured by the operator given in [64]. This completes the proof.

Let us conclude this section with some remarks on the question of whether (A1) is fulfilled:

As in the continuous case, generally it is not clear a priori that the discrete admissible set

Uadk is non-empty. If it were, though, the existence of the bounded sequence
{
Ûk

}
would

immediately be ensured, since for any feasbile point U ∈ Uadk we have a ≤ U ≤ b.
In certain special cases, this non-emptiness is ensured by additional properties of the mesh

and the solution operator. One is similar to Remark 2.4.3, namely if a maximum principle

holds for the discrete solution operator Sk, then the setting of Remark 2.4.3 can immediately

be transferred to the discrete case. For further reading regarding the conditions that need

to be satisfied for the discrete maximum principle to hold, we refer to [21] and [57] . The

second case that we want to mention here is strongly related to L∞(Ω)-convergence of the

states Sku→ Su for all u ∈ U. The convergence is given in terms of the mesh size,

‖Su− Sku‖L∞(Ω) . h
γ
k γ > 0,

where the sequence of triangulations has to be uniform, compare Definition 2.3.3. Provided

condition (2.2.12) holds, there are ways to prove that for sufficiently fine meshes (A1) is

fulfilled compare [69], Remark 3.1.
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2.4.2 Neumann Elliptic Optimal Control Problems

My second example is a Neumann elliptic optimal control problem with pointwise state con-

straints. We consider the following model problem

min
u∈L2(Ω),y∈H1(Ω)

1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(∂Ω)

s.t.

−∆y + y = 0 in Ω

∂ny = u on ∂Ω

and

a ≤ u ≤ b a.e. in ∂Ω

yc − y ≤ 0 a.e. in Ω

(2.4.8)

Here, U = L2(∂Ω). The set U is defined by:

U := {u ∈ L2(∂Ω) : a ≤ u ≤ b} , a, b ∈ R ∪ {−∞,∞}

yc ∈W 1
p (Ω), p > d, and the state constraint is given by

yc − y ≤ 0 a.e. in Ω.

The cone C is given by

C := {f ∈ L2(Ω) : f(x) ≤ 0 f.a.a. x ∈ Ω} .

As in the previous section, we first want to check whether the properties of the continuous

problem, Properties (Pr1)-(Pr6), are fulfilled. Evidently, the setting of (2.4.8) satisfies (Pr1),

since L2(∂Ω) ↪→ H1(Ω)∗, so we immediately turn to (Pr2). To check whether there exists a

unique solution to the state equation in (2.4.8) we first define the weak formulation:∫
Ω

∇y · ∇w dΩ +

∫
Ω

yw dΩ =

∫
∂Ω

uv d∂Ω ∀w ∈ H1(Ω) (2.4.9)

This variational formulation is well-defined, since functions belonging toH1(Ω) possess bound-

ary values in the sense of traces, compare Theorem 2.1.31. That is why using the embedding

operator E : L2(∂Ω) → H1(Ω)∗, we can ensure that the right-hand side in (2.4.9) defines a

functional on H1(Ω) by virtue of:

〈Eu,w〉(H1)∗,H1 :=

∫
∂Ω

uw d∂Ω.
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The next theorem now ensures that the state equation in 2.4.8 possess a unique solution

depending continuously on the data:

Theorem 2.4.5. The bilinear form given by the left-hand side in (2.4.9)

B[y, w] =

∫
Ω

∇y · ∇w dΩ +

∫
Ω

yw dΩ

is continuous and coercive on H1(Ω)×H1(Ω), i.e.

|B[y, w]| . ‖y‖H1(Ω) ‖w‖H1(Ω) ,

and there exists an α > 0 such that

B[w,w] ≥ α ‖w‖2H1(Ω) .

Thus, for every u ∈ L2(∂Ω) there exists a unique solution y = Su to (2.4.9) with

‖Su‖H1(Ω) . ‖u‖L2(∂Ω) .

Proof. Continuity of B is a consequence of a straightfoward application of Cauchy-Schwarz’s

inequality. The equation

B[w,w] = ‖w‖2H1(Ω)

immediately yields coercivity.

An application of Corollary 2.1.21 yields the inf − sup condition of B and thus ensures that

(2.4.9) is uniquely solvable with the solution depending continuously on the data.

The next theorem states that (Pr1)-(Pr5) are fulfilled:

Theorem 2.4.6. Let (2.4.8) be given. Then Properties (Pr1)-(Pr5) are fulfilled

Proof. That (Pr1) is fulfilled is evident, (Pr2) being satisfied is a consequence of Theorem

2.4.5. (Pr3), (Pr4) and (Pr5) hold too, in the case of (Pr3) and (Pr4) the proof of Theorem

2.4.2 can be readily adapted, while (Pr5) is clear from the problem setting.

(Pr6) can only be checked a priori in certain special cases. This problem has already been

discussed in the previous section; that’s why we move on to a possible way to discretise

(2.4.8). Since the discretisation of U = L2(∂Ω) requires a discretisation of space defined on

the boundary ∂Ω, things are a bit more technical compared to the distributed control case

of the previous section. Therefore, we will focus on P0-elements for the control and H1(Ω)-

conforming P1-elements for the state. In addition, we choose Vk as in the distributed case,

compare (2.4.6).

S. Steinig AFEM for State-Constrained Optimal Control



78 CHAPTER 2. GENERAL FRAMEWORK

We start with a sequence of shape-regular and conforming triangulations Tk of Ω with hTk → 0.

The space Yk is then defined completely analogously to (2.4.5) with n = 1.

To define Uk, we first examine the skeleton Ŝk of Tk

Ŝk =
⋃
T∈Tk

∂T

However, we are not interested in the entire skeleton, but only in the segments lying on the

boundary. Thus, we define the following triangulation Sk of ∂Ω, where ∂Ω is now viewed as

a d − 1 dimensional domain so that the notions of Definition 2.3.2 and Definition 2.3.4 are

immediately transferable:

Sk =
⋃
S∈Ŝk

S ∩ ∂Ω.

At this stage, we want to point out that such a definition is only possible if Ω is meshable, cf

Definition 2.3.2. Having defined a triangulation of ∂Ω, we can now proceed to define Uk:

Uk = FES(Sk,P0, L2(∂Ω)).

Compare also Definition 2.3.4 and Example 2.3.5.

The set Uk is given by

Uk := {U ∈ Uk : a ≤ U ≤ b}

and as in the case of the distributed control of the previous section, we observe that

Uk ⊂ U .

The discretised state equation reads∫
Ω

∇Y · ∇W dΩ +

∫
Ω

YW dΩ =

∫
∂Ω

UW d∂Ω ∀W ∈ Yk.

The state constraint on the continuous level finds its counterpart on the discrete level with

Ikyc − Y ≤ 0,

For the operator Ik the definitions and arguments of the previous section can be immediately

transferred to this setting. Having introduced a discretisation, we can now turn to verifying

the Properties (Pr7),(Pr8) and (A2)-(A4), which is done in the ensuing theorem:

Theorem 2.4.7. For the discretisation setting defined above, the Properties (Pr7),(Pr8) and
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Assumptions (A2)-(A4) hold.

Proof. To verify Property (Pr7), we first observe that the continuity and coercivity results of

Theorem 2.4.5 are inherited by the discrete space pairing Yk×Yk. As detailed in the proof of

Theorem 2.4.4, the bilinear form B is inf − sup stable on Yk ×Yk, which yields the existence

of a discrete solution operator Sk with all the properties demanded in (Pr7).

Due to mesh size function for Tk, hTk , tending to 0 almost everywhere in Ω as k → ∞ we

have

Y =
⋃
k≥0

Yk
‖·‖H1(Ω)

, L2(Ω) =
⋃
k≥0

Vk
‖·‖

For Uk things are not immediately clear, because Uk is just defined on the boundary. However,

shape regularity ensures that for the d−1-dimensional Hausdorff measure |S|d−1 of any S ∈ Sk
contained in an element T ∈ Tk we have up to constants independent of k

|S|d−1 = |T |
1
d−1 = hTk(x)

d−1
d , x ∈ T

Since hTk → 0 as k →∞ a.e., we also have that |S|d−1 → 0 for all S ∈ Sk as k →∞. This in

turn ensures that

U =
⋃
k≥0

Uk
‖·‖L2(∂Ω)

.

Thus, Assumption (A2) holds.

To realise that (A3) is fulfilled, the arguments from Theorem 2.4.4 can be immediately trans-

ferred, the same holds for (Pr8).

To realise that (A4) is fulfilled, we again employ the positivity preserving finite element of

[64].

As in the case of the distributed control setting of the previous section, it is only clear in

certain special cases whether (A1) is fulfilled. We do not want to list them again here, so

we just refer to the discussion of said previous section. For maximum principles for elliptic

equations with Neumann data, we refer to [15].
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2.4.3 Stationary Stokes Model Problem

We now want to depart from the elliptic setting of the previous two sections and present

another application: the control of a stationary Stokes model problem:

min
u∈L2(Ω,Rd),(y,p)∈H1(Ω,Rd)×L2,0(Ω)

1

2
‖(y, p)− yd‖2W +

ν

2
‖u‖2L2(Ω,Rd)

s.t.

−∆y +∇p = u in Ω

div y = 0

y = 0 in ∂Ω

and

pc − p ≤ 0 a.e. in Ω

(2.4.10)

In this setting Y = W = H̊1(Ω,Rd)× L2,0(Ω), where

L2,0(Ω) :=

p ∈ L2(Ω) :

∫
Ω

p dΩ = 0


is the space of L2-functions with zero mean value.

Here, we picked a setting where there are no constraints on the control and the velocity v,

though both can be included, too. Hence,

U = L2(Ω,Rd)

and (Pr3) is trivially satisfied.

However, there is a constraint on the pressure p. The cone C here again is the cone of

non-positive function in L2(Ω) given by

C := {f ∈ L2(Ω) : f(x) ≤ 0 f.a.a. x ∈ Ω} ,

which fulfils (Pr4). Besides, we assume that pc ∈W 1
p (Ω), p > d. Defining the bilinear forms

a : H̊1(Ω,Rd)× H̊1(Ω,Rd) 3 (w, z) 7→
∫
Ω

∇w : ∇z dΩ ∈ R,

where, in a slight abuse of notation,

∇w : ∇z :=

d∑
i=1

∇wi · ∇zi,
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and

b : L2,0(Ω)× H̊1(Ω) 3 (q, w) 7→
∫
Ω

divw q dΩ,

we can specify B : Y× Y→ R in (Pr2), which is given by

B[y, w] := a[y1, w1] + b[y2, w1] + b[w2, y1] (2.4.11)

with

y = (y1, y2) ∈ H̊1(Ω,Rd)× L2,0(Ω), w = (w1, w2) ∈ H̊1(Ω,Rd)× L2,0(Ω).

The right-hand side in the state equation in (2.4.10) is defined by:

(u,w)L2(Ω,Rd) =

∫
Ω

u · w dΩ w ∈ H1(Ω,Rd)

The next theorem states that (Pr2) holds. A proof can be found in [13], Section 6, in particular

Remark 6.5, and for general saddle point problems, we refer to [65], Section 2.4.2.

Theorem 2.4.8. For every u ∈ L2(Ω,Rd), there exists a unique weak solution (y, p) = Su to

the state equation in (2.4.10) with

(‖y‖2H1(Ω,Rd) + ‖p‖2L2(Ω))
1/2 . ‖u‖L2(Ω,Rd) .

Since there are no control constraints in (2.4.10), it is not difficult to construct a feasible

point. One starts with choosing a smooth p such that p ≥ pc. Then picking a smooth velocity

field y satisfying divy = 0 and y = 0 on ∂Ω, one can simply set

u = ∆y −∇p

in the classical sense. This u is a feasible point. Hence (Pr6) holds.

Discretising the stationary Stokes problem, one has to be careful to obtain a disretisation

scheme that fulfils the stable inf − sup condition of (Pr7). As it turns out, the straightfor-

ward P1 elements of the previous two sections for the velocity field coupled with piecewise

constant elements for the pressure do not satisfy this stability conditon, see. e.g. [11], Sec-

tion 2.1. Thus, it is crucial that one turns to other, stable methods; one of which is the

Taylor-Hood-Element, see e.g. [13], Section 7, and [84]. For a conforming and shape-regular
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sequence of triangulations Tk of Ω, we define

Wk := FES(Tk,P2, C(Ω̄,Rd) ∩ H̊1(Ω,Rd))

and

Qk := FES(Tk,P1, C(Ω) ∩ L2,0(Ω))

and

Yk = Wk ×Qk.

For the space Uk we choose

Uk = Wk.

Consequently,

Uk = Uk.

Indeed other choices are possible for the discretisation of the control u (piecewise constant,

piecewise linear, etc..), since for Uk we do not have to take into account any stability issues

as for the state.

Against the backdrop (2.4.11), the variational formulation of the state equation in (2.4.10)

reads

B[Y,W ] = (U,W )L2(Ω,Rd) ∀W = (W1,W2) ∈ Yk, Y = (Y1, Y2) ∈ Yk. (2.4.12)

For the proof of the stable inf − sup condition, we again refer to [84]. We will summarise this

result in the next theorem:

Theorem 2.4.9. For every U ∈ Uk, there exists a unique solution (Y1, Y2) = Y = SkU such

that

‖Y ‖H1(Ω,Rd)×L2,0(Ω) . ‖U‖L2(Ω,Rd) ,

where the hidden constant is independent of k. Hence, for this discretisation setting, Property

(Pr7) holds.

Let us now verify the other properties and assumptions for this discretisation scheme:

Theorem 2.4.10. For the discretisation scheme detailed above, the Property (Pr8) and As-

sumptions (A2)-(A4) are satisfied.
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Proof. By continuing refinement and letting the mesh-size tend to 0 we ensure that (A2) is

fulfilled.

The density relation (A2) for the sequence of discrete spaces Uk ensures that (A3) is fulfilled.

For Pk one can just take the best-approximation of an arbitrary function u ∈ L2(Ω,Rd) in

Uk.
For the definition of an appropriate operator Ikpc fulfilling (Pr8), we refer to the previous

sections, especially to the proof of Theorem 2.4.2.

Theorem 2.4.9 ensures that (Pr7) holds. For (A4) we again refer to the positivity preserving

finite element approximation of [64].

For the verification of (A1), we again refer to the discussions of the previous sections on the

same matter.
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Chapter 3

A Basic Convergence Result

In this chapter, we will prove a basic convergence result for the sequence of discrete solutions

Ūk of (Pk). In essence, this result states, without the assumption of any additional regularity

for the bilinear form B in (P ) and the sequence of triangulation Tk, that given a certain

condition

Ūk → ū, k →∞ in U,

where ū denotes the solution to (P ). This condition will turn out to be both necessary

and sufficient for convergence, i.e. in this chapter we derive an exact characterisation of

convergence Ūk → ū as k →∞.

The first question one has to ask is: What is the worth of such a ’low-regularity’ convergence

result? To answer this question, let us first recall the density assumption we made for the

sequence of discrete spaces, in particular the one for Uk, (A2):

U =
⋃
k≥0

Uk
‖·‖U

. (3.0.1)

Now, let us also once again state the adaptive cycle:

SOLVE→ ESTIMATE→ MARK→ REFINE

Basically, (A2) and (3.0.1) imply that we continue to refine according to our estimator, mark-

ing and refinement strategy, cf Section 2.3.5, - the ’ESTIMATE’, ’MARK’ and ’REFINE’

modules. We now pose the natural question whether this process of continuing refinement

actually gets us any closer to the true solution ū. This, however, is only guaranteed if we

know that Ūk → ū, otherwise we could refine and refine and still would not get any closer to

the true solution. This means that without convergence Ūk → ū continuing refinement may

become completely pointless making such a basic convergence result an absolutely necessary
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ingredient for a working adaptive algorithm.

The key obstacle we now face is that convergence Ūk → ū should remain valid regardless of

how we continue to refine our mesh. After all, the hallmark of an adaptive algorithm precisely

is that one does not know a priori how the mesh looks like at iterate k, because information

from the discrete solution is a posteriori extracted to guide refinement in a problem-dependent

manner. That is why one is for better or for worse confined to using solely density informa-

tion, such as (A2) and (3.0.1), and properties of the discrete problem (Pk) which are ensured

irrespective of regularity properties of the mesh, such as quasi-uniformity, cf Definition 2.3.3.

This is the fundamental difference to the convergence results for state-constrained optimal

control problems which have already been proven, e.g. [16],[26],[25], [59], [69] and [24]. Here,

quasi-uniformity was assumed a priori.

Having made these introductory remarks, we can now turn to the actual results of this sec-

tion:

The condition for convergence we briefly mentioned before is given in terms of a smoothness

property of the sequence of continuous and discrete regularised problems. Therefore, we will

proceed as follows: First, we will prove major properties of the continuous and discrete regu-

larised problems. Next, we will prove a theorem linking the question of convergence Ūk → ū

to a smoothness property of the regularised problems. To conclude this section, we will derive

a necessary and sufficient condition for which this smoothness property holds and prove the

central convergence result of this section.

Before we tackle the convergent results, let us list three technical lemmata, which we will

often make use of throughout this chapter:

3.1 Three Auxiliary Results

The first lemma provides a way to make the step from weak to strong convergence:

Lemma 3.1.1. Suppose Hi, i = 1, .., n, are Hilbert spaces and

H =
n∏
i=1

Hi

is the product space with norm

‖g‖H = (
∑
i=1

αi
∥∥gi∥∥2

Hi
)1/2,
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with αi > 0 for all i = 1, ....n. Suppose further that the sequence {gk} ⊂ H fulfils

gk = (g1
k, ..., g

n
k ) ⇀ (g1, ..., gn) = g, k →∞ in H

and

‖gk‖2H =
∥∥(g1

k, ..., g
n
k )
∥∥2

H
→
∥∥(g1, ..., gn)

∥∥2

H
= ‖g‖2H k →∞.

Then

gk = (g1
k, ..., g

n
k )→ (g1, ..., gn) = g, k →∞ in H

and

gik → gi, k →∞, in Hi, ∀i

Proof. Since gk ⇀ g and ‖gk‖2H → ‖g‖
2
H as k →∞, we can estimate in the following fashion

‖gk − g‖2H =

n∑
i=1

αi(g
i
k − gi, gik − gi)Hi

=

n∑
i=1

αi(
∥∥gik∥∥2

Hi
− 2(gi, gik)Hi +

∥∥gi∥∥2
)

= ‖gk‖2H − 2(gk, g)H + ‖g‖2H
→ 0, k →∞.

Since gk → g implies gik → gi for all i = 1, ..., n as k →∞, we can conclude this proof.

The second lemma of this section offers a way to deduce convergence of a sum of sequences

of real numbers from the convergence of the entire sum. The proof is trivial.

Lemma 3.1.2. Suppose that {xk} and {yk} are sequences of real numbers. Furthermore,

suppose that yk → y,

lim
k→∞

(xk + yk) = x+ y

and

lim inf
k→∞

xk ≥ x.
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Then

lim
k→∞

xk = x.

The third and last lemma deals with weak convergence of discrete states:

Lemma 3.1.3. Suppose the sequence {Uk} with Uk ∈ Uk converges weakly to u ∈ U, i.e.

Uk ⇀ u. Then, we also have SkUk ⇀ Su in Y.

Proof. First of all, we observe that thanks to (A2) we have for every v ∈ Y a sequence {Vk}
with Vk ∈ Yk and Vk → v strongly in Y as k →∞. Besides, since

‖SkUk‖Y . ‖Uk‖U ,

compare our stability assumption (Pr7), the sequence {SkUk} is bounded in Y. After all,

{Uk} is bounded, because it is weakly convergent. Thus, we can pick a subsequence {SklUkl}
which is weakly convergent to an element ỹ ∈ Y. Basically, we now have to show that ỹ = Su:

Taking the previously introduced sequence {Vk}, we can conclude

B[ỹ, v]← B[SklUkl , Vkl ] = (Ukl , Vkl)U → (u, v)U, l→∞

Here we used strong convergence of Vk → v as well as weak convergence Ukl ⇀ u and

SklUkl ⇀ ỹ as l→∞. Consequently, because v ∈ Y is arbitrary, we have

B[ỹ, v] = (u, v)U ∀v ∈ Y.

This is tantamount to ỹ = Su. However, as yet, we only have convergence of a subsequence

SklUkl ⇀ Su, l→∞. To extend convergence to the entire sequence, we again take advantage

of the fact that the limit Su is unique. Hence, harnessing the property that every weakly

convergent subsequence of {SkUk} converges to the same limit Su we deduce weak convergence

for the entire sequence {SkUk} as k → ∞ with limit Su, compare again the arguments of

Lemma 2.1.5.

3.2 Properties of the Regularised Problems

We will start by listing and proving a number of important properties of the continuous

regularised problem (P ε).
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3.2.1 The Continuous Regularised Problem

First, let us recall the continuous regularised problem:

min
u∈U,y∈Y,v∈L2(Ω,Rm)

1

2
‖y − yd‖2W +

ν

2
‖u‖2U +

1

2ε
‖v‖2L2(Ω,Rm)

s.t.

B[y, w] = (u,w)U ∀w ∈ Y

and

u ∈ U

yc − y − εv ∈ C

For the continuous regularised and unregularised problems, we define an optimal value func-

tion a linking both, which - as the reader will find out later - will play a central role in deriving

and formulating conditions for the convergence of Ūk → ū.

The optimal value function a : [0, 1]→ R≥0 is given by:

a(ε) := min
(u,v)∈Uε,ad

f ε(u, v), ε > 0

and

a(0) := min
u∈Uad

f(u)

Naturally, we are interested in the properties of this function, the most important of which

are recorded in the theorem below:

Theorem 3.2.1 (properties of the optimal value function). The optimal value function a is

uniformly bounded, i.e. a(ε) ≤ C for all ε ∈ [0, 1] with C independent of ε, continuous and

monotonically decreasing on [0, 1]. Besides, for every ε ∈ [0, 1] we have as εk → ε:

(ūεk , v̄εk , ȳεk)→ (ūε, v̄ε, ȳε) in U× L2(Ω,Rm)× Y ∀ε ∈ [0, 1], εk → ε (3.2.1)

with the convention that v̄0 := 0.

It is differentiable on (0, 1) with the derivative a′(ε) given by

a′(ε) = − 3

2ε2
‖v̄ε‖2

Furthermore, a is an element of the Sobolev space W 1
1 (0, 1).

The proof is rather lengthy and technical, therefore we will split it into several lemmata in

the following way:

• boundedness of a on [0, 1], continuity of a on (0, 1] and relation (3.2.1) on (0, 1], Lemma

3.2.2

S. Steinig AFEM for State-Constrained Optimal Control



89 CHAPTER 3. A BASIC CONVERGENCE RESULT

• continuity of a at 0 and relation (3.2.1) at 0, Lemma 3.2.3

• differentiability of a on (0, 1) and a ∈W 1
1 (0, 1), Lemma 3.2.4

The lemmata Lemma 3.2.2, 3.2.3 and 3.2.4 below combined will then give Theorem 3.2.1.

We will tackle the proof of continuity of a on (0, 1] and the uniform boundedness of a first:

Lemma 3.2.2 (continuity of a). The optimal value function a is continuous on (0, 1] and

uniformly bounded on [0, 1]. Besides, for every ε ∈ (0, 1] we have as εk → ε:

(ūεk , v̄εk , ȳεk)→ (ūε, v̄ε, ȳε) in U× L2(Ω,Rm)× Y, εk → ε.

Proof. We observe that there holds

a(ε) ≤ a(0) ∀ε ∈ [0, 1], (3.2.2)

because (ū, 0) ∈ Uε,ad.
This is the uniform boundedness property postulated in Theorem 3.2.1 and Lemma 3.2.2.

Let us now tackle continuity of a on (0, 1]: Taking an arbitrary point ε ∈ (0, 1) and a sequence

{εk} ⊂ (0, 1) with εk → ε, we can use (3.2.2) to deduce

a(εk) ≤ a(0) ∀k,

which, in particular, yields
ν

2
‖ūεk‖2U ,

1

2εk
‖v̄εk‖2 ≤ a(0).

Thus, there exists a weakly convergent subsequence of {(ūεk , v̄εk)} in U×L2(Ω,Rm) with weak

limit (ũ, ṽ). For notational convenience we will not distinguish between the subsequence and

the sequence. Later, we will show that in fact this can be done w.l.o.g.

The proof now takes the following steps:

1. Show (ũ, ṽ) ∈ Uε,ad.

2. Deduce (ũ, ṽ) = (ūε, v̄ε)

3. Prove strong convergence for the entire sequence: (ūεk , v̄εk)→ (ūε, v̄ε) as εk → ε.

Step 1: Let us now show that (ũ, ṽ) ∈ Uε,ad: For the weak limit ũ we know that ũ ∈ U ,

because {ūεk} ⊂ U and U is weakly closed. We also have that Sūεk ⇀ Sũ (weak continuity of

S) and because C is weakly closed, too, we realise that

C 3 yc − Sūεk − εkv̄εk ⇀ yc − Sũ− εṽ ∈ C, εk → ε,

Consequently, ũ ∈ U and yc − Sũ− ṽ ∈ C, hence (ũ, ṽ) ∈ Uε,ad.
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Step 2: (ũ, ṽ) = (ūε, v̄ε): We now know that

‖(y, u, v)‖ν := (
1

2
‖y‖2W +

ν

2
‖u‖2U +

1

2
‖v‖2)1/2

defines a Hilbert space norm on W×U×L2(Ω,Rm) which is equivalent to the canonical norm

given by

‖(y, u, v)‖W×U×L2(Ω,Rm) := (‖y‖2W + ‖u‖2U + ‖v‖2)1/2.

Harnessing weak lower semi-continuity for any Hilbert space norm and thus in particular for

‖·‖2ν as well as 1√
εk
v̄εk ⇀ 1√

ε
ṽ, we obtain:

lim inf
εk→ε

1

2
‖ȳεk − yd‖2W +

ν

2
‖ūεk‖2U +

1

2

∥∥∥∥ 1√
εk
v̄εk
∥∥∥∥2

≥ f ε(ũ, ṽ). (3.2.3)

Thanks to (ũ, ṽ) ∈ Uε,ad we immediately discern

lim inf
εk→ε

a(εk) ≥ f ε(ũ, ṽ) ≥ f ε(ūε, v̄ε) = a(ε).

Furthermore, we know that

(ūε,
ε

εk
v̄ε) ∈ Uεk,ad

and as a consequence

a(εk) ≤ f εk(ūε,
ε

εk
v̄ε) = a(ε) +

ε3 − ε3
k

2εε3
k

‖v̄ε‖2 . (3.2.4)

Drawing the lim inf on each side in (3.2.4), we realise

lim inf
εk→ε

a(εk) ≤ lim inf
εk→ε

(a(ε) +
ε3 − ε3

k

2εε3
k

‖v̄ε‖2) = a(ε).

Thus, recalling (3.2.3), we gain

lim inf
εk→ε

a(εk) = a(ε).

Ultimately, we deduce:

f ε(ūε, v̄ε) = a(ε) = lim inf
εk→ε

a(εk) ≥ f ε(ũ, ṽ)

Optimality and uniqueness of (ūε, v̄ε) then yields (ũ, ṽ) = (ūε, v̄ε).

Step 3: strong convergence of the entire sequence: Let us prove weak convergence first.

S. Steinig AFEM for State-Constrained Optimal Control



91 CHAPTER 3. A BASIC CONVERGENCE RESULT

The arguments detailed in steps 1 and 2 are valid for any subsequence of {(ūεk , v̄εk)}. Be-

sides, the limit (ūε, v̄ε) is unique. Consequently, employing Lemma 2.1.5, we deduce weak

convergence of the entire sequence, i.e.

ūεk ⇀ ūε, v̄εk ⇀ v̄ε, εk → ε.

To prove strong convergence of the control u and virtual control v, we employ the optimality

condition (2.2.25) and the fact that

(ūε,
ε

εk
v̄ε) ∈ Uεk,ad, (ūεk ,

εk
ε
v̄εk) ∈ Uε,ad

to obtain

(p̄ε + νūε, ūεk − ūε)U +
1

ε
(v̄ε,

ε

εk
v̄εk − v̄ε) ≥ 0

(p̄εk + νūεk , ūε − ūεk)U +
1

εk
(v̄εk ,

εk
ε
v̄ε − v̄εk) ≥ 0.

Adding and rearranging these inequalities, we derive

0 ≤ (p̄ε − p̄εk , ūεk − ūε)U + ν(ūε − ūεk , ūεk − ūε)U

+
1

ε
(v̄ε,

ε

εk
vεk − v̄ε) +

1

εk
(v̄εk ,

εk
ε
v̄ε − v̄εk)

Using p̄ε(k) = S∗(ūε(k) − yd) and doing further calculations, we arrive at

ν ‖ūε − ūεk‖2U + ‖ȳεk − ȳε‖2W ≤
1

ε
(v̄ε,

ε

εk
vεk − v̄ε) +

1

εk
(v̄εk ,

εk
ε
v̄ε − v̄εk)

=
1

εk
(v̄εk − εk

ε
v̄ε,

εk
ε
v̄ε − v̄εk) +

1

ε
(v̄ε,

εk
ε
v̄ε − v̄εk)

+
1

ε
(v̄ε,

ε

εk
vεk − v̄ε)

= − 1

εk

∥∥∥v̄εk − εk
ε
v̄ε
∥∥∥2

+
1

ε
(v̄ε,

ε− εk
εk

v̄εk − εk − ε
ε

v̄ε)

Hence

ν ‖ūε − ūεk‖2U + ‖ȳεk − ȳε‖2W +
1

εk

∥∥∥v̄εk − εk
ε
v̄ε
∥∥∥2
≤ εk − ε

εεk
(v̄ε,

εk
ε
v̄ε − v̄εk).

Due to weak convergence v̄εk ⇀ v̄ε and εk → ε, the right-hand side in the inequality above

tends to zero. This yields strong convergence ūεk → ūε and v̄εk → v̄ε as εk → ε.

Let us now extend this continuity result to the full closed interval [0, 1].

Lemma 3.2.3 (continuity of a at 0). The optimal value function a is continuous at 0. Besides,
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as ε→ 0 we have

(ūε, v̄ε)→ (ū, 0) in U× L2(Ω,Rm), ε→ 0

Proof. Let {εk} be an arbitrary null sequence with εk > 0 for all k. As in the proof of Lemma

3.2.2 we use (3.2.2) to deduce boundedness of the sequence {(ūεk , v̄εk)} in U × L2(Ω,Rm).

Thus, there exists a weakly convergent subsequence of {(ūεk , v̄εk)} with weak limit (ũ, ṽ).

For notational convenience, we will not distinguish between a subsequence of {(ūεk , v̄εk)} and

the entire sequence. Later, we will demonstrate that this can in fact be done w.l.o.g.

Since U is closed and convex and hence weakly closed, we observe that ũ ∈ U . v̄εk is bounded

and thus εkv̄
εk → 0 as εk → 0. Taking advantage of the fact that C is closed and convex and

as a consequence weakly closed and also of S being linear and continuous and hence weakly

continuous, we can conclude

C 3 yc − Sũ ↼ yc − Sūεk − εkv̄εk ∈ C, εk → 0

This means ũ ∈ Uad. Combining this with (3.2.2) and the fact that f is weakly lower-

semicontinuous, we can conclude:

f(ū) ≤ f(ũ) ≤ lim inf
εk→0

f(ūεk) ≤ lim inf
εk→0

f εk(ūεk , v̄εk)

≤ lim sup
εk→0

f εk(ūεk , v̄εk) = lim sup
εk→0

a(εk) ≤ a(0) = f(ū).
(3.2.5)

This entails f(ũ) = f(ū), and because ū is the unique solution to (P ), we immediately deduce

ũ = ū.

The conclusions above are true for any subsequence of ūεk . Together with the fact that the

limit ũ = ū is unique, we obtain weak convergence for the entire sequence ūεk ⇀ ū as εk → 0,

compare again Lemma 2.1.5.

Besides, we have
1

2εk
‖v̄εk‖2 ≤ a(0),

which in turn implies strong convergence v̄εk → 0 as εk → 0 for every subsequence and thus,

by arguments completely analogous to the ones used for for ūεk , we obtain strong convergence

of the entire sequence v̄εk → 0 as εk → 0. Estimate (3.2.5) can also be interpreted in the

following fashion (again in combination with (3.2.2))

a(0) ≤ lim inf
εk→0

a(εk) ≤ lim sup
εk→0

a(εk) ≤ a(0).

Hence lim sup
εk→0

a(εk) and lim inf
εk→0

a(εk) coincide and are equal to a(0). We obtain:

lim
εk→0

a(εk) = a(0).

S. Steinig AFEM for State-Constrained Optimal Control



93 CHAPTER 3. A BASIC CONVERGENCE RESULT

Therefore a is continuous at 0.

Let us now show that apart from v̄εk → 0 there also holds ūεk → ū as εk → 0. To do so, we

recall the optimality condition (2.2.25). Since (ū, 0) ∈ Uε,ad, there holds

(p̄εk + νūεk , ū− ūεk)U −
1

εk
‖v̄εk‖2 ≥ 0 = (p̄+ νū, ūεk − ū)U + (p̄+ νū, ū− ūεk)U.

Rearranging this inequality yields:

ν ‖ū− ūεk‖2U + ‖ȳεk − ȳ‖2W +
1

εk
‖v̄εk‖2 ≤ |(p̄+ νū, ū− ūεk)U|

Since ūεk ⇀ ū as εk → 0, the right-hand side tends to 0. This completes the proof.

Let us now turn to the question of differentiability of a:

Lemma 3.2.4 (differentiability of a). The optimal value function a is differentiable on (0, 1)

with the derivative given by

a′(ε) = − 3

2ε2
‖v̄ε‖2

As a consequence, a is monotonically decreasing on [0, 1].

Furthermore, a
′ ∈ L1(0, 1), and thus a ∈W 1

1 (0, 1).

Proof. We remark that for h ∈ R with ε+ h, ε ∈ (0, 1) there holds:

(ūε,
ε

ε+ h
v̄ε) ∈ Uε+h,ad

and

(ūε+h,
ε+ h

ε
v̄ε+h) ∈ Uε,ad.

This allows us to estimate in the following fashion for arbitrary h > 0:

1

h
(a(ε+ h)− a(ε)) =

1

h
(f ε+h(ūε+h, v̄ε+h)− f ε(ūε, v̄ε))

≤ 1

h
(f ε+h(ūε,

ε

ε+ h
v̄ε)− f ε(ūε, v̄ε))

=
1

h
(

ε2

2(ε+ h)3
− 1

2ε
) ‖v̄ε‖2

= (
−3εh− 3ε2 − h2

2(ε+ h)3ε
) ‖v̄ε‖2 ,

(3.2.6)

which allows us to conclude:

lim sup
h↘0

(
1

h
(a(ε+ h)− a(ε))) ≤ − 3

2ε2
‖v̄ε‖2 . (3.2.7)
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Conversely, we can estimate in the following way, again for h > 0:

1

h
(a(ε+ h)− a(ε)) =

1

h
(f ε+h(ūε+h, v̄ε+h)− f ε(ūε, v̄ε))

≥ 1

h
(f ε+h(ūε+h, v̄ε+h)− f ε(ūε+h, ε+ h

ε
v̄ε+h))

=
1

h
(

1

2(ε+ h)
− (ε+ h)2

2ε3
)
∥∥∥v̄ε+h∥∥∥2

= (
−3ε2 − 3εh− h2

2ε3(ε+ h)
)
∥∥∥v̄ε+h∥∥∥2

(3.2.8)

Hence, employing Lemma 3.2.2, especially v̄ε+h → v̄ε as h→ 0, we obtain

lim inf
h↘0

(
1

h
(a(ε+ h)− a(ε))) ≥ − 3

2ε2
‖v̄ε‖2 (3.2.9)

Combining (3.2.7) and (3.2.9), we derive

lim
h↘0

(
1

h
(a(ε+ h)− a(ε))) = − 3

2ε2
‖v̄ε‖2 (3.2.10)

Now, let us tackle the case h < 0. Proceeding as in (3.2.6), we obtain

lim inf
h↗0

(
1

h
(a(ε+ h)− a(ε))) ≥ − 3

2ε2
‖v̄ε‖2 .

Observe that in step 2 in (3.2.6) we now estimate from below, because h < 0. Likewise,

mirroring (3.2.8), we gain

lim sup
h↗0

(
1

h
(a(ε+ h)− a(ε))) ≤ − 3

2ε2
‖v̄ε‖2 .

Hence

lim
h↗0

(
1

h
(a(ε+ h)− a(ε))) = − 3

2ε2
‖v̄ε‖2 (3.2.11)

Combining (3.2.10) and (3.2.11), we can conclude that a is differentiable on (0, 1). The

monotonicity of a follows from the fact that a′ ≤ 0 on (0, 1).

We still have to show that a belongs to W 1
1 (0, 1). Since a is continuous on [0, 1], a is an

element of L1(0, 1). Besides, a ∈ C1(0, 1) and a
′ ∈ L1,loc(0, 1); hence a

′
is the weak derivative

of a. Thus, the only thing we have to show is that a′ ∈ L1(0, 1). We first investigate the

interval (δ, 1] with an arbitrary, but fixed δ > 0. Thanks to the differentiability of a, we can

invoke the mean value theorem and write:

a(1)− a(δ) =

1∫
δ

− 3

2s2
‖v̄s‖2 ds
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Now we can draw the limit δ → 0, utilising continuity of a at 0. Thus, we obtain:

a(1)− a(0) = lim
δ→0

a(1)− a(δ)

= lim
δ→0

1∫
δ

− 3

2s2
‖v̄s‖2 ds.

Thus, by definition of the improper integral, there holds

a(1)− a(0) = lim
δ→0

1∫
δ

− 3

2s2
‖v̄s‖2 ds =

1∫
0

− 3

2s2
‖v̄s‖2 ds. (3.2.12)

Since the derivate a
′
never changes sign on [0, 1], this is tantamount to a

′
belonging to L1(0, 1).

Hence, a ∈W 1
1 (0, 1).

Combining the lemmata Lemma 3.2.2, 3.2.3 and 3.2.4 yields the proof of Theorem 3.2.1.

Having collected these important properties, we can now turn to the discrete regularised

problem (P εk ), where we prove a result completely analogous to Theorem 3.2.1.

3.2.2 The Discrete Regularised Problem

First, let us recall the discrete regularised problem (P εk ) for fixed k and ε.

min
U∈Uk,Y ∈Yk,V ∈Vk

1

2
‖Y − yd‖2W +

ν

2
‖U‖2U +

1

2ε
‖V ‖2

s.t.

B[Y,W ] = (U,W )U ∀W ∈ Yk
and

U ∈ Uk
Ikyc − Y − εV ∈ CVk ,

As in the continuous case, we first define an optimal value function ak : [0, 1] → [0,∞) for

every fixed k:

ak(ε) := min
(U,V )∈Uε,adk

f εk(U, V ), ε > 0

and

ak(0) := min
U∈Uadk

fk(U).

The properties of a, cf Theorem 3.2.1, are reflected by its discrete counterpart ak as the next

theorem shows:

S. Steinig AFEM for State-Constrained Optimal Control



96 CHAPTER 3. A BASIC CONVERGENCE RESULT

Theorem 3.2.5 (properties of the discrete optimal value function). On [0, 1] the discrete

optimal value function ak is uniformly bounded, i.e. ak(ε) ≤ C, ε ∈ [0, 1], with C independent

of ε and k, continuous and monotonically decreasing. Besides, for ε ∈ [0, 1] we have as εl → ε:

(Ū εlk , V̄
εl
k , Ȳ

εl
k )→ (Ū εk , V̄

ε
k , Ȳ

ε
k ) in U× L2(Ω,Rm)× Y ∀ε ∈ [0, 1], εl → ε (3.2.13)

with the convention that V̄ 0
k := 0.

In addition, ak is differentiable on (0, 1). The derivative a′k(ε) is given by

a
′
k(ε) = − 3

2ε2

∥∥V̄ ε
k

∥∥2

ak is also an element of the Sobolev space W 1
1 (0, 1). Besides, the norm ‖ak‖W 1

1 (0,1) is bounded

independently of k and for all r > 0 we have

|a′k(ε)| .
1

r
∀ε ∈ [r, 1] (3.2.14)

with a constant independent of k.

Proof. Proving for every fixed k that ak is continuous on [0, 1], (3.2.13) holds, and that ak

differentiable on (0, 1) as well as an element of W 1
1 (0, 1) can be done exactly in the same way

as on the continuous level, Theorem 3.2.1 which we had split up into the lemmata Lemma

3.2.2, 3.2.3 and 3.2.4. Thus, we now want to tackle the uniform bounds of ak.

We observe that since (Ūk, 0) ∈ Uε,adk for all ε > 0

|ak(ε)| ≤ fk(Ūk) ∀ε ∈ [0, 1]

Since fk(Ūk) is uniformly bounded thanks to Theorem 2.3.11, we have

|ak(ε)| . 1, ∀ε ∈ [0, 1]. (3.2.15)

This immediately results in a uniform bound

‖ak‖L1(0,1) . 1.

Let us now bound the L1-norm of the derivative. The mean value theorem and continuity of
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ak imply for every 1 > δ > 0

|ak(0)− ak(1)| = lim
δ→0

(

1∫
δ

1

ε2

∥∥V̄ ε
k

∥∥2
dε)

= lim
δ→0

∥∥a′k∥∥L1(δ,1)

=
∥∥a′k∥∥L1(0,1)

Combining this with (3.2.15) yields the uniform bound for ‖ak‖W 1
1 (0,1).

For the bound (3.2.14) we first recall that

1

ε

∥∥V̄ ε
k

∥∥2 ≤ ak(ε) . 1 ∀ε ∈ [0, 1]

uniformly. Hence for all ε ∈ [r, 1] with an arbitrary r > 0 we deduce

|a′k(ε)| =
3

2ε2

∥∥V̄ ε
k

∥∥2
.

1

r

3.2.3 Convergence Analysis for the Regularised Problems

At the start of this chapter we explained that the question of Ūk → ū is closely linked to a

smoothness property of the regularised problems. To be more precise, in Theorem 3.3.1 we

will demonstrate that

Ūk → ū ⇔ ak → a in W 1
1 (0, 1), k →∞.

We will not be able to prove this result straightaway, first we need to collect several pointwise

convergence results for the sequence of optimal value functions {ak}, where by pointwise con-

vergence results we mean convergence results for arbitrary but fixed regularisation parameters

ε ∈ (0, 1). This is the main aim of this section captured by the following main result:

Theorem 3.2.6 (pointwise convergence). For all fixed ε ∈ (0, 1] there holds

Ū εk → ūε in U V̄ ε
k → v̄ε in L2(Ω,Rm), k →∞

As a consequence, the following pointwise convergence results hold for all fixed but arbitrary

ε ∈ (0, 1]:

ak(ε)→ a(ε), k →∞

and

a′k(ε)→ a′(ε), k →∞
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In fact both convergences are equivalent, i.e.

ak → a, a′k → a′ ptw. on (0, 1] ⇔

(Ū εk , V̄
ε
k )→ (ūε, v̄ε) in U× L2(Ω,Rm), ε ∈ (0, 1], k →∞ (3.2.16)

The proof is again fairly technical. For the reader’s convenience we will therefore split it up

into several lemmata in the following way:

• Prove the existence of a weakly convergent subsequence of
{

(Ū εk , V̄
ε
k )
}

with weak limit

(ũ, ṽ) ∈ Uε,ad, Lemma 3.2.9.

• Prove weak convergence of the entire sequence
{

(Ū εk , V̄
ε
k )
}

to (ūε, v̄ε), Lemma 3.2.10.

• Prove strong convergence of the entire sequence
{

(Ū εk , V̄
ε
k )
}

to (ūε, v̄ε). All the (other)

results of Theorem 3.2.6 then follow. This is done in the actual ’Proof of Theorem

3.2.6’ further below.

starting with some observations about the dual problems to (P ε) and (P εk ) respectively, com-

pare also (2.2.28), which will be of great assistance in said proof.

First of all, we recall the definition of the continuous Lagrangian:

Lε : U× L2(Ω,Rm)× L2(Ω,Rm) 3 (u, v, θ) 7→ f ε(u, v)− (θ, Su− εv − yc) (3.2.17)

and its discrete counterpart

Lεk : Uk × Vk × Vk 3 (U, V, θ) 7→ f ε(U, V )− (θ, SkU − εV − Ikyc) (3.2.18)

With their help we can define the continuous and discrete dual problems. Let us commence

with the continuous one:

sup
θ∈C−

inf
(u,v)∈U×L2(Ω,Rm)

Lε(u, v, θ). (DP εc )

The discrete problem can be formulated in an analogous fashion:

sup
θ∈C−Vk

inf
(U,V )∈Uk×Vk

Lεk(U, V, θ). (DP εd )

An important aspect of regularisation was that the regularised problems guarantee the exis-

tence of an L2(Ω,Rm)-multiplier as we already discussed in Section 2.2.2 and Theorem 2.2.13.

To make the results of this section easy to follow we repeat Theorem 2.2.13 before transferring

these existence result to the discrete level (DP εd ):

Theorem 3.2.7. Let (P ε) for a fixed ε > 0 be given. Then there exists a unique element
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θ̄ε ∈ C− such that ūε, v̄ε, θ̄ε solves the following Karush-Kuhn-Tucker (KKT) system:

(S∗(ȳε − yd) + νūε, u− ūε)U − (θ̄ε, Su− ȳε) ≥ 0 ∀u ∈ U

−ε2θ̄ε + v̄ε = 0

(θ̄ε, ȳε − yc + εv̄ε) = 0.

(3.2.19)

Furthermore, (ūε, v̄ε, θ̄ε) solve the dual problem (DP εc ), for which the following equality holds:

f ε(ūε, v̄ε, θ̄ε) = Lε(ūε, v̄ε, θ̄ε). (3.2.20)

Besides, if (ũ, ṽ, θ̃) ∈ U × L2(Ω,Rm)× L2(Ω,Rm) solves (3.2.19) then

(ūε, v̄ε, θ̄ε) = (ũ, ṽ, θ̃)

Lastly, we have

Lε(u, v, θ̄ε) ≥ Lε(ūε, v̄ε, θ̄ε) ∀(u, v) ∈ U × L2(Ω,Rm). (3.2.21)

Proof. The only thing which has not yet been proven in Theorem 2.2.13 is (3.2.21). To realise

this, note that for θ̄ε, (ūε, v̄ε) solve the inner minimisation in dual problem (DP εc ), i.e.

(ūε, v̄ε) = arg min
(u,v)∈U×L2(Ω,Rm)

Lε(u, v, θ̄ε).

Since for the fixed θ̄ε the Lagrangian Lε(·, ·, θ̄ε) is a convex function, the minimum is global.

Thus:

Lε(u, v, θ̄ε) ≥ Lε(ūε, v̄ε, θ̄ε)

Crucially, this result finds a ready counterpart on the discrete level:

Theorem 3.2.8. Let (P εk ) be given. Then, for every fixed ε > 0 there exists a unique Lagrange

multiplier θ̄εk ∈ C
−
Vk , which is also bounded in L2(Ω,Rm) independent of k (but not of ε), such

that
(S∗k(Ȳ ε

k − yd) + νŪ εk , U − Ū εk)U − (θ̄εk, SkU − Ȳ ε
k ) ≥ 0 ∀U ∈ Uk

−ε2θ̄εk + V̄ ε
k = 0

(θ̄εk, Ȳ
ε
k − Ikyc + εV̄ ε

k ) = 0.

(3.2.22)

As in the continuous case, the triple (Ū εk , V̄
ε
k , θ̄

ε
k) solves the dual problem (DP εd ). In particular,

f εk(Ū εk , V̄
ε
k ) = Lεk(Ū εk , V̄ ε

k , θ̄
ε
k) (3.2.23)
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Lastly, we have for every fixed k and ε > 0

Lεk(U, V, θ̄εk) ≥ Lεk(Ū εk , V̄ ε
k , θ̄

ε
k) ∀(U, V ) ∈ Uk × Vk (3.2.24)

Proof. The proof runs along the same lines as that of Theorem 2.2.13.

First of all, we define the discrete constraint mapping M ε
k : Uk × Vk → Vk by

M ε
k(U, V ) := Ikyc − εV − SkU.

Obviously, it is surjective as a mapping

M ε
k : Uk × Vk → Vk

In this setting, we can apply Theorem 2.2.10 as in the continuous case. The multiplier θ̄εk then

belongs to V∗k which, it being a Hilbert space with the standard L2(Ω,Rm) scalar product,

can be identified with Vk.
The KKT system (3.2.22) then readily follows, compare also (2.2.11) and (2.2.10). The fact

that the Lagrange multiplier θ̄εk is unique is a consequence of the equation

ε2θεk = V̄ ε
k

in (3.2.22) and the fact that V̄ ε
k is unique, see Theorem 2.3.12.

The definition of the Lagrange multiplier Definition 2.2.5 entails that the triple (Ū εk , V̄
ε
k , θ̄

ε
k)

does solve the dual problem (DP εd ). The relation (3.2.23) then follows from the complementary

slackness condition

(θ̄εk, SkŪ
ε
k + εV̄ ε

k − Ikyc) = 0.

The relation (3.2.24) is proven completely analogously to (3.2.21).

Let us now return to the proof of Theorem 3.2.6: As a quick reminder, here is our course of

action:

• Prove the existence of a weakly convergent subsequence of
{

(Ū εk , V̄
ε
k )
}

with weak limit

(ũ, ṽ) ∈ Uε,ad, Lemma 3.2.9.

• Prove weak convergence of the entire sequence
{

(Ū εk , V̄
ε
k )
}

to (ūε, v̄ε), Lemma 3.2.10.

• Prove strong convergence of the entire sequence
{

(Ū εk , V̄
ε
k )
}

to (ūε, v̄ε). All the (other)

results of Theorem 3.2.6 then follow. This is done in the actual ’Proof of Theorem

3.2.6’ further below.

So let us now start by proving the existence of weakly convergent subsequences of
{
Ū εk
}

and
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{
V̄ ε
k

}
and the feasibility of their weak limits for the continuous problem (P ε). This is the

subject of the next lemma:

Lemma 3.2.9. The sequences
{
Ū εk
}

and
{
V̄ ε
k

}
are bounded independent of ε and k in U and

L2(Ω,Rm) respectively. Thus, there exist weakly convergent subsequences whose weak limits

ũ and ṽ fulfil

(ũ, ṽ) ∈ Uε,ad.

In particular, there holds

f ε(ũ, ṽ) ≥ f ε(ūε, v̄ε). (3.2.25)

In addition, the sequence of Lagrange multipliers
{
θ̄εk
}

is bounded independent of k in L2(Ω,Rm).

In particular, there exists a weakly convergent subsequence with weak limit θ̃ ∈ C−.

Proof. The uniform boundedness (independent of ε and k) property of ak in Theorem 3.2.5,

compare also (2.3.12), immediately yields uniform boundedness of

∥∥Ū εk∥∥2

U ,
∥∥V̄ ε

k

∥∥2
. 1.

Since U and L2(Ω,Rm) are Hilbert spaces there exist weakly convergent subsequences with

weak limits ũ and ṽ respectively. The corresponding sequence of states
{
Ȳ ε
k

}
is also bounded

in Y thanks to continuity of Sk and Assumption (Pr7). The weak limit of this sequence is

denoted by ỹ. Thanks to Lemma 3.1.3 we gain ỹ = Sũ ↼ SkŪ
ε
k . Employing (A3), we obtain

ũ ∈ U and utilising weak closedness of C, we deduce

C ⊃ CVk 3 Ikyc − εV̄
ε
k − SkŪ εk ⇀ yc − εṽ − Sũ, k →∞

Hence (ũ, ṽ) ∈ Uε,ad. The relation

f ε(ũ, ṽ) ≥ f ε(ūε, v̄ε)

is a consequence of optimality of (ūε, v̄ε).

The fact that
{
θ̄εk
}

is bounded independently of k follows from

− 1

ε2
V̄ ε
k + θ̄εk = 0

in (3.2.22) and the fact that V̄ ε
k is bounded independently of k and ε. Thus, for every fixed

ε there exists a weakly convergent subsequence with weak limit θ̃ ∈ L2(Ω,Rm). Let us now

prove that, in fact, θ̃ ∈ C−. To this end, we take for every function y ∈ C its approximation
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Hky ∈ CVk with Hky → y, recall (A4). We obtain

0 ≥ (θ̄εk, Hky)→ (θ̃, y) ∀y ∈ C, k →∞,

because θ̄εk ⇀ θ̃ and Hky → y in L2(Ω,Rm) strongly as k → ∞. Since y ∈ C was arbitrary,

we can conclude that θ̃ ∈ C−. This completes the proof.

Having ascertained these important boundedness and feasibility results, we can turn our

attention back to the proof of the claims of Theorem 3.2.6. The next step is to show weak

convergence of the discrete solution couple to the continuous one:

Lemma 3.2.10. For every fixed ε ∈ (0, 1] there holds:

Ū εk ⇀ ūε in U, V̄ ε
k ⇀ v̄ε in L2(Ω,Rm), θ̄εk ⇀ θ̄ε in L2(Ω,Rm), k →∞

Besides, for every fixed ε ∈ (0, 1]

Ȳ ε
k ⇀ ȳε in Y and W, k →∞. (3.2.26)

Proof. Choose a weakly convergent subsequence of
{

(Ū εk , V̄
ε
k , θ̄

ε
k)
}

with weak limit (ũ, ṽ, θ̃), cf

Lemma 3.2.9. We have already proven in Lemma 3.2.9 that the weak limit satisfies (ũ, ṽ, θ̃) ∈
Uε,ad × C− and f ε(ũ, ṽ) ≥ f ε(ūε, v̄ε). We will now show that in fact

f ε(ũ, ṽ) = f ε(ūε, v̄ε),

which will entail the postulated weak convergence.

We denote the best-approximation of v̄ε in Vk w.r.t ‖·‖ by Bkv̄
ε, i.e.

Bkv̄
ε := arg min

W∈Vk
‖W − v̄ε‖2 . (3.2.27)

Thanks to (A2) we have

Bkv̄
ε → v̄ε in L2(Ω,Rm), k →∞ (3.2.28)

With the help of Assumption (A3) we can deduce the existence of Pkū
ε ∈ Uk with Pkū

ε → ūε

as k →∞ such that for θ̄εk ⇀ θ̃, k →∞:

Lε(ūε, v̄ε, θ̃) = lim
k→∞

Lεk(Pkūε, Bkv̄ε, θ̄εk). (3.2.29)
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Besides, we know that because θ̃ ∈ C−:

f ε(ūε, v̄ε) ≥ Lε(ūε, v̄ε, θ̃). (3.2.30)

Combining relations (3.2.29) and (3.2.30) with (3.2.24) and (3.2.23) then yields:

f ε(ūε, v̄ε) ≥ Lε(ūε, v̄ε, θ̃) cf (3.2.30)

= lim
k→∞

Lεk(Pkūε, Bkv̄ε, θ̄εk) cf (3.2.29)

= lim inf
k→∞

Lεk(Pkūε, Bkv̄ε, θ̄εk)

≥ lim inf
k→∞

Lεk(Ū εk , V̄ ε
k , θ̄

ε
k) cf (3.2.24)

= lim inf
k→∞

f εk(Ū εk , V̄
ε
k ) cf (3.2.23)

≥ f ε(ũ, ṽ),

where in the last line we have used weak lower semi continuity of f ε for every fixed ε > 0.

Combining this with (3.2.25) we obtain:

f ε(ũ, ṽ) = f ε(ūε, v̄ε) = Lε(ūε, v̄ε, θ̃)

Since ūε and v̄ε as well as the associated Lagrange multiplier θ̄ε are unique this means that

ũ = ūε, ṽ = v̄ε, θ̃ = θ̄ε.

At this stage, we have to emphasise that this is still only true for one weakly convergent

subsequence of
{

(Ū εk , V̄
ε
k , θ̄

ε
k)
}

. We have to extend this result to the entire sequence: The

arguments above are valid for every weakly convergent subsequence of
{

(Ū εk , V̄
ε
k , θ̄

ε
k)
}

, hence,

utilising the fact that the limit (ūε, v̄ε, θ̄ε) is unique, we can conclude that in fact the entire

sequence
{

(Ū εk , V̄
ε
k , θ̄

ε
k)
}

weakly converges, i.e.:

Ū εk ⇀ ūε, V̄ ε
k ⇀ v̄ε, θ̄εk ⇀ θ̄ε, k →∞.

The detailed arguments for this step of the proof are recorded in Lemma 2.1.5.

The relation (3.2.26) is a direct consequence of weak convergence Ū εk ⇀ ūε and Lemma 3.1.3

and Y ↪→W.

As yet, we have only demonstrated that the sequence
{

(Ū εk , V̄
ε
k )
}

converges weakly to (ūε, v̄ε),

we now intend to make the step to strong convergence of the sequence. More or less on the

way the results of the pointwise convergence theorem, Theorem 3.2.6, will follow:

Proof of Theorem 3.2.6. In this proof, we will take the following steps:
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1. Show ak(ε)→ a(ε) pointwise for all ε ∈ (0, 1] as k →∞.

2. Prove that this implies (Ū εk , V̄
ε
k , Ȳ

ε
k )→ (ūε, v̄ε, ȳε) in U× L2(Ω,Rm)× Y as k →∞.

3. Demonstrate that a′k(ε)→ a′(ε) pointwise for all ε ∈ (0, 1] as k →∞.

4. Prove the equivalence relation (3.2.16).

Step 1: Recalling the results of Lemma 3.2.10, we can then estimate in the following way

taking once again the best-approximation Bk, compare (3.2.27). The steps taken are explained

below:

f ε(ūε, v̄ε) = Lε(ūε, v̄ε, θ̄ε) = lim
k→∞

Lεk(Pkūε, Bkv̄ε, θ̄εk)

= lim sup
k→∞

Lεk(Pkūε, Bkv̄ε, θ̄εk)

≥ lim sup
k→∞

Lεk(Ū εk , V̄ ε
k , θ̄

ε
k)

= lim sup
k→∞

f εk(Ū εk , V̄
ε
k )

≥ lim inf
k→∞

f εk(Ū εk , V̄
ε
k )

≥ f ε(ūε, v̄ε),

In the first line we used the complimentary slackness equality, then we employed the fact that

by Assumption (A3) there exists Pku ∈ Uk for every u ∈ U with Pku → u in U as well as

θ̄εk ⇀ θ̄ε, Lemma 3.2.10, while in the third line we took advantage of the interior minimisation

in (DP εd ), compare (3.2.24). The fourth is a consequence of (3.2.23) and the sixth of weak

lower semi-continuity of f ε for every fixed ε > 0.

Hence,

a(ε) ≥ lim sup
k→∞

ak(ε) ≥ lim inf
k→∞

ak(ε) ≥ a(ε)

and as a consequence - lim sup and lim inf coincide -

ak(ε)→ a(ε), ∀ε > 0, k →∞. (3.2.31)

which is one of the pointwise convergence relations stated in Theorem 3.2.6.

Step 2: Strong convergence (Ū εk , V̄
ε
k , Ȳ

ε
k )→ (ūε, v̄ε, ȳε) in U×L2(Ω,Rm)×Y as k →∞: We

define for every fixed ε > 0 the norm

‖(y, u, v)‖∗∗ := (
1

2
‖y‖2W +

ν

2
‖u‖2U +

1

2ε
‖v‖2)1/2

which is equivalent to the canonical norm on W× U× L2(Ω,Rm) defined by

‖(y, u, v)‖W×U×L2(Ω,Rm) := (‖y‖2W + ‖u‖2U + ‖v‖2)1/2
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for every fixed ε > 0.

In addition, a short computation yields

‖(ȳε, ūε, v̄ε)‖2∗∗ = a(ε)− (ȳε, yd)W +
1

2
‖yd‖2W (3.2.32)

and the corresponding relation on the discrete level:

∥∥(Ȳ ε
k , Ū

ε
k , V̄

ε
k )
∥∥2

∗∗ = ak(ε)− (Ȳ ε
k , yd)W +

1

2
‖yd‖2W (3.2.33)

We now observe that the bounded (it is weakly convergent thanks to Lemma 3.2.10) sequence∥∥(Ȳ ε
k , Ū

ε
k , V̄

ε
k )
∥∥2

∗∗ fulfils all the prerequisites of the sequence xk of Lemma 3.1.2 with

lim inf
k→∞

∥∥(Ȳ ε
k , Ū

ε
k , V̄

ε
k )
∥∥2

∗∗ ≥ ‖(ȳ
ε, ūε, v̄ε)‖2∗∗

because of weak lower semi-continuity of a squared Hilbert space norm. The convergent

sequence

−(Ȳ ε
k , yd)W +

1

2
‖yd‖2W

plays the role of yk from Lemma 3.1.2.

Using (3.2.31), (3.2.32) and (3.2.33), we realise

lim
k→∞

ak(ε) = lim
k→∞

∥∥(Ȳ ε
k , Ū

ε
k , V̄

ε
k )
∥∥2

∗∗ + (Ȳ ε
k , yd)W +

1

2
‖yd‖2W

= a(ε)

= ‖(ȳε, ūε, v̄ε)‖2∗∗ + (ȳε, yd)W +
1

2
‖yd‖2W

Utilising the results of Lemma 3.1.2, we can then deduce

lim
k→∞

∥∥(Ȳ ε
k , Ū

ε
k , V̄

ε
k )
∥∥2

∗∗ = ‖(ȳε, ūε, v̄ε)‖2∗∗ .

Lemma 3.1.1 then ensures that

Ū εk → ūε, V̄ ε
k → v̄ε, Ȳ ε

k → ȳε, in U× L2(Ω,Rm)×W, k →∞.

To prove Ȳ ε
k → ȳε in Y, we observe that thanks to Assumption (Pr7)and convergence Ū εk → ūε

in U as k →∞:

∥∥Ȳ ε
k − ȳε

∥∥
Y ≤ ‖Sū

ε − Skūε‖Y︸ ︷︷ ︸
→0

+ ‖Sk‖L(U,Y)

∥∥ūε − Ū εk∥∥U︸ ︷︷ ︸
→0

.
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This gives convergence Ȳ ε
k → ȳε in Y as k →∞.

Step 3: Pointwise convergence a′k(ε) → a′(ε) is now a simple consequence of V̄ ε
k → v̄ε in

L2(Ω,Rm) as k →∞, the formulas for a′(ε) and a′k(ε), compare Theorem 3.2.1 and Theorem

3.2.5, and continuity of ‖·‖2.

Step 4: Now, we can move on to the fourth and last step of the proof, the equivalence result

(3.2.16):

ak → a, a′k → a′ ptw. on (0, 1) ⇔

(Ū εk , V̄
ε
k )→ (ūε, v̄ε) in U× L2(Ω,Rm), ε ∈ (0, 1], k →∞

First of all,

Ū εk → ūε, V̄ ε
k → v̄ε in U× L2(Ω,Rm) ⇒ ak(ε)→ a(ε), a′k(ε)→ a′(ε)

is a consequence of f ε and − 3
2ε ‖·‖

2 being continuous for every fixed ε > 0.

Let us therefore turn to the other inclusion: Combining (3.2.32), (3.2.33) and Lemma 3.1.1

as we did before in this proof, namely in Step 2, we obtain

ak(ε)→ a(ε)⇒ Ū εk → ūε, V̄ ε
k → v̄ε.

a′k(ε)→ a′(ε) is then a consequence of continuity of − 3
2ε ‖·‖

2.

This proof concludes this section. We have now collected every necessary ingredient to prove

the previously mentioned equivalence relation:

Ūk → ū in U ⇔ ak → a in W 1
1 (0, 1), k →∞.

3.3 Convergence Analysis for the Unregularised Problems

In this section we will accomplish two things. First, we will prove the equivalence relation:

Ūk → ū in U ⇔ ak → a in W 1
1 (0, 1), k →∞.

Then, having ascertained this crucial result, we will search for a condition for which ak → a

in W 1
1 (0, 1) as k →∞ holds. This condition will turn out to be both necessary and sufficient,

thus, this will be the ’exact’ characterisation of convergence Ūk → ū we had set out to gain

at the start of this chapter.

At the end of this chapter we will then list some consequences of Ūk converging to ū, the most

striking of which will be that for every null sequence εk → 0 we have Ū εkk → ū as k → ∞,
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Corollary 3.3.11, a remarkably strong result.

Let us start with the equivalence relation:

3.3.1 Equivalence of Convergence

The next theorem constitutes our equivalence relation:

Theorem 3.3.1 (equivalence of convergence). The following statements are equivalent:

1.

Ūk → ū in U, k →∞

2.

ak → a. in W 1
1 (0, 1), k →∞

Proof. We will prove the first implication Ūk → ū ⇒ ak → a with respect to W 1
1 (0, 1) as

k →∞ first:

Let us start by demonstrating that ak → a in L1(0, 1) as k → ∞. From Theorem 3.2.5 we

know that ak is uniformly bounded which means that

|ak − a| ≤ |ak|+ |a| ≤ C + |a| a.e. on (0, 1)

Since |ak − a| → 0 pointwise everywhere (cf Theorem 3.2.6) as k → ∞, an application of

Lebesgue’s dominated convergence theorem, [85], Theorem 5.36, results in ak → a in L1(0, 1).

We still have to show that a′k → a′ in L1(0, 1). First, we remark that SkŪk → Sū in both Y
and W and continuity of the norm ‖·‖2 for any Hilbert space yields

Ūk → ū⇒ 1

2

∥∥SkŪk − yd∥∥2

W +
ν

2

∥∥Ūk∥∥2

U →
1

2
‖Sū− yd‖2W +

ν

2
‖ū‖2U

⇔ ak(0)→ a(0), k →∞

Utilising the mean value theorem, continuity of ak and a and pointwise convergence, we

deduce as k →∞

∥∥a′k∥∥L1(0,1)
= −

1∫
0

a′k(ε) dε = ak(0)− ak(1)→ a(0)− a(1) = −
1∫

0

a′(ε) dε =
∥∥a′∥∥

L1(0,1)
,

because ak(0)→ a(0) as k →∞.

Consequently,

lim
k→∞

∥∥a′k∥∥L1(0,1)
=
∥∥a′∥∥

L1(0,1)
.

All in all, we have pointwise convergence of a′k on (0, 1) and convergence with respect to the

norm. Applying a slight generalisation of the dominated convergence theorem, compare [32],
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Section 1.3. Theorem 4, we obtain convergence a′k → a′ in L1(0, 1).

We now tackle the other implication, i.e.

ak → a in W 1
1 (0, 1) ⇒ Ūk → ū, k →∞

Thanks to the embedding W 1
1 (0, 1) ↪→ C[0, 1], compare Theorem 2.1.35, we also have conver-

gence ak → a in C[0, 1]. ak → a w.r.t C[0, 1] in particular implies that ak(0)→ a(0). Uniform

boundedness of ak on [0, 1] in particular implies:

∥∥Ūk∥∥U . 1.

Thus there exist a weakly convergent subsequence of
{
Ūk
}

. For every such weakly convergent

subsequence of Ūk with limit ũ ∈ Uad Theorem 2.3.11 yields

Ūk ⇀ ũ, Ȳk = SkŪk ⇀ Sũ, k →∞,

compare also Lemma 3.1.3 for the weak convergence of the states SkŪk.

This in turn implies

a(0) = f(ū) ≤ f(ũ) ≤ lim inf
k→∞

fk(Ūk) = lim inf
k→∞

ak(0) = lim
k→∞

ak(0) = a(0)

due to weak lower semi-continuity of J(Sku, u) = fk(u) = 1
2 ‖Sku− yd‖

2
W + ν

2 ‖u‖
2
U.

All in all, f(ū) = f(ũ), hence ũ = ū due to the uniqueness of the solution to (P ). These

arguments apply to every weakly convergent subsequence with the limit ū = ũ being unique,

as a consequence, again compare Lemma 2.1.5,

Ūk ⇀ ū, k →∞

for the entire sequence
{
Ūk
}

. This entails weak convergence

Ȳk ⇀ ȳ, k →∞,

compare once again Lemma 3.1.3.

To prove strong convergence Ūk → ū, we make similar arguments as in the proof of Theorem

3.2.6:

First, we define the norm

‖(y, u)‖∗ := (
1

2
‖y‖2W +

ν

2
‖u‖2U)1/2, (3.3.1)
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which is equivalent to the canonical norm on W× U given by

‖(y, u)‖W×U = (‖y‖2W + ‖u‖2U)1/2.

We then discern that

ak(0) =
∥∥(Ȳk, Ūk)

∥∥2

∗ − 2(Ȳk, yd)W + ‖yd‖2W

and that

a(0) = ‖(ȳ, ū)‖2∗ − 2(ȳ, yd)W + ‖yd‖2W .

Besides, weak lower semi-continuity of any squared Hilbert space norm yields

lim inf
k→∞

∥∥(Ȳk, Ūk)
∥∥2

∗ ≥ ‖(ȳ, ū)‖2∗ .

Furthermore, the sequence
∥∥(Ȳk, Ūk)

∥∥2

∗ is bounded because (Ȳk, Ūk) is weakly convergent. In

this setting, we can apply the results of Lemma 3.1.2 with
∥∥(Ȳk, Ūk)

∥∥2

∗ playing the role of xk

of Lemma 3.1.2 and 2(Ȳk, yd)W + ‖yd‖2W that of the convergent sequence yk of Lemma 3.1.2.

After all,

lim
k→∞

2(Ȳk, yd)W + ‖yd‖2W = 2(ȳ, yd)W + ‖yd‖2W

due to weak convergence Ȳk ⇀ ȳ. Thus, thanks to Lemma 3.1.2

∥∥(Ȳk, Ūk)
∥∥2

∗ → ‖(ȳ, ū)‖2∗ , k →∞

Together with weak convergence Ūk ⇀ ū Lemma 3.1.1 ensures strong convergence Ūk → ū.

In view of Theorem 3.3.1 we would be best advised to search for conditions under which

ak → a in W 1
1 (0, 1). First of all, let us prove a lemma demonstrating that in fact the question

of whether ak → a in W 1
1 (0, 1) boils down to ensuring that a′k → a′ in L1(0, 1), since the

functions ak converge in L1(0, 1).

Lemma 3.3.2. We have

ak → a in L1(0, 1).

Proof. Employing the uniform boundedness of ak, compare Theorem 3.2.5, we obtain almost

everywhere on (0, 1)

|ak − a| ≤ |ak|+ |a| . 1 + |a|
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The right hand side is integrable, hence using the fact that ak → a pointwise a.e. on (0, 1)

compare Theorem 3.2.6, and dominated convergence theorem we obtain

‖ak − a‖L1(0,1) → 0

We will now tackle the question of convergence a′k → a′.

Theorem 3.2.6 ensures that a′k converges pointwise on (0, 1). The trouble is that this is not

enough to guarantee convergence in L1(0, 1) as the example below demonstrates:

Example 3.3.3. The sequence gk : [0, 1]→ R with

gk(x) :=

0 if x ∈ ( 1
k , 1)

k else

converges pointwise to 0 on (0, 1), but since ‖gk‖L1(0,1) = 1 for all k

gk 6→ 0 in L1(0, 1).

To derive criteria for convergence a′k → a′ in L1(0, 1) we will first introduce the notion of

equi-integrability, compare Theorem 1.3 (b), Section VII in [29].

Definition 3.3.4 (equi-integrability). Let M be a subset of L1(0, 1). We say that all g ∈M
are equi-integrable if for all δ > 0 there exists λ = λ(δ) > 0 such that∫

|g(x)|>λ

|g(x)| dx ≤ δ ∀g ∈M. (3.3.2)

It is evident that condition (3.3.2) exerts some measure of control on the behaviour of functions

g on sets of small measure. Thus, it is not surprising that (3.3.2) is exactly the condition we

need to exclude the pathological case of Example 3.3.3. The following theorem confirms this

view. It can be found in [29], Corollary 1.3, Section VIII.

Theorem 3.3.5. Suppose that {gk} is an equi-integrable sequence in L1(0, 1), i.e. for all

δ > 0 there exists λ > 0 such that independent of k we have∫
|gk(x)|>λ

|gk(x)| dx ≤ δ.

Suppose further that gk(x)→ g(x) pointwise a.e. on (0, 1). Then g ∈ L1(0, 1) and gk → g in

L1(0, 1).
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With the help of the notion of equi-integrability and Theorem 3.3.5 we can formulate the

following crucial auxiliary lemma to prove convergence Ūk → ū.

Lemma 3.3.6. Suppose that the sequence {a′k} is equi-integrable, i.e. for all δ > 0 there

exists λ > 0 such that independent of k∫
|a′k(ε)|>λ

|a′k(ε)| dε ≤ δ. (3.3.3)

Then a′k → a′ in L1(0, 1).

Proof. Since a′k → a′ pointwise on (0, 1) we can apply Theorem 3.3.5 to obtain the desired

result.

These auxiliary results are the key ingredients to prove the convergence Ūk → ū which we

will do in the next section

3.3.2 Convergence Theorem

Before we formulate the central convergence theorem of this section, let us first introduce a

slightly more accessible notion of equi-integrability for the sequence {a′k}:

Lemma 3.3.7. The sequence {a′k} is equi-integrable in the sense of (3.3.3) iff for all δ > 0

there exists ξ = ξ(δ) > 0 such that independent of k

ξ∫
0

|a′k(ε)| dε =

ξ∫
0

3

2ε2

∥∥V̄ ε
k

∥∥2
dε ≤ δ. (3.3.4)

Proof. Let us prove⇐ first: Suppose that (3.3.4) holds. Then for given δ > 0 pick ξ = ξ(δ) >

0 such that (3.3.4) holds. Besides choose λ > 0 large enough so that

{
ε ∈ (0, 1) : |a′k(ε)| > λ

}
∩ (ξ, 1) = ∅

This is possible, since by Theorem 3.2.5, compare (3.2.14), a′k is bounded independent of k

and ε on [r, 1] for every fixed r > 0. For this λ we now have

∫
|a′k(ε)|>λ

|a′k(ε)| dε ≤
ξ∫

0

|a′k(ε)| dε ≤ δ

independent of k. Hence {a′k} is equi-integrable according to (3.3.3).

Let us now turn to ⇒: For given δ > 0 we can choose λ > 0 such that (3.3.3) holds. Again
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due to boundedness of a′k on any compact subset of (0, 1), (3.2.14), we can choose λ̃ ≥ λ > 0

and ξ > 0 such that

(0, ξ) ⊂
{
ε ∈ (0, 1) : |a′k(ε)| > λ̃

}
This now yields

ξ∫
0

|a′k(ε)| dε ≤
∫

{|a′k(ε)|>λ̃}

|a′k(ε)| dε

≤
∫

{|a′k(ε)|>λ}

|a′k(ε)| dε

≤ δ.

This gives the desired result completing the proof.

Combining Lemma 3.3.2 and Lemma 3.3.6 we can now prove the central convergence theorem

of this section:

Theorem 3.3.8 (convergence theorem). Suppose that (3.3.4) holds, i.e.: For all δ > 0 there

exists ξ = ξ(δ) > 0 such that independent of k

ξ∫
0

|a′k(ε)| dε =

ξ∫
0

3

2ε2

∥∥V̄ ε
k

∥∥2
dε ≤ δ.

Then

Ūk → ū in U, k →∞.

Proof. First of all, we recall Theorem 3.2.6 which yielded ak → a and a′k → a′ in (0, 1)

pointwise everywhere. Lemma 3.3.2 yields convergence ak → a in L1(0, 1). Now, observe

that thanks to Lemma 3.3.7, (3.3.4) is tantamount to (3.3.2) in Definition 3.3.4. Theorem

3.3.5 with gk = a′k then implies convergence a′k → a′ in L1(0, 1). Thus, all in all ak → a in

W 1
1 (0, 1). Theorem 3.3.1 then yields convergence Ūk → ū as k →∞.

At this stage, it is important to point out that (3.3.4) is an additional condition enforced on

the behaviour of a′k. However, as the next theorem states, we did not lose anything on the

way, i.e. convergence Ūk → ū implies condition (3.3.4), i.e (3.3.4) is an exact character-

isation of convergence. If (3.3.4) does not hold, then Ūk does not converge to the true

solution ū.
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To prove this result we first need an auxiliary lemma, the ’Dunford-Pettis compactness cri-

terion’. It can be found in [28], Theorem IV.8.9 and Corollary IV.8.11. Compare also [29],

Chapter VIII, Theorem 1.3.

Lemma 3.3.9. Let a′ and a′k be the derivatives of the continuous and discrete optimal value

functions and M := {{a′k} , a′} ⊂ L1(0, 1). Then the following equivalence relations hold

M weakly compact ⇔ (3.3.4)⇔ a′k → a′ in L1(0, 1)

Proof. The inclusion M weakly compact ⇔ (3.3.4) is the so called ’Dunford-Pettis compact-

ness criterion’ which can be found in [28], Corollary IV.8.11., compare also [27]. Here, observe

also that as shown in the proof of Theorem 3.3.8 the notion of equi-integrability (3.3.4) is

equivalent to the definition of equi-integrability, Definition 3.3.4 specifically formula (3.3.2).

The implication (3.3.4) ⇒ a′k → a′ was shown in Theorem 3.3.8. The inclusion a′k → a′ ⇒
M weakly compact is trivial. After all, since a′k → a′ every subsequence converges strongly

in L1(0, 1) and thus also weakly.

Now we can turn to the aforementioned exact characterisation of convergence.

Theorem 3.3.10 (exact characterisation of convergence). The following equivalence is valid:

Ūk → ū as k →∞ if and only if the sequence {a′k} is equi-integrable in the sense of (3.3.4).

Proof. We start with the direction ⇒ first. As Theorem 3.3.1 demonstrates, Ūk → ū implies

ak → a in W 1
1 (0, 1) and in particular a′k → a′ in L1(0, 1). The latter trivially implies a′k ⇀ a′

in L1(0, 1). Hence, the set M = {{a′k} , a′} is weakly compact. Lemma 3.3.9 then implies

(3.3.4).

Conversely, (3.3.4) implies a′k → a′ in L1(0, 1) due to Theorem 3.3.8 and together with Lemma

3.3.2 ak → a in W 1
1 (0, 1). Theorem 3.3.1 now yields the desired result.

Let us conclude this section by recording a result stating that provided Ūk → ū regularisation

and discretisation can be decoupled:

Corollary 3.3.11. Let k →∞ and εk → 0 as k →∞. Suppose that Ūk → ū or equivalently,

(3.3.4) holds. Then

Ū εkk → ū, k →∞.

Proof. If either Ūk → ū or (3.3.4) then Theorem 3.3.8 and Theorem 3.3.1 ensure that ak → a

in W 1
1 (0, 1) and due to the embedding W 1

1 (0, 1) ↪→ C[0, 1], compare Theorem 2.1.35, we also

have convergence ak → a in C[0, 1]. This implies that the set M = {{ak} , a} is compact w.r.t

to the canonical norm of C[0, 1]. Thus, thanks to the famous Theorem of Arzelá-Ascoli, cf [71],

Section 8, Theorem 33 and Corollary 34, the sequence of functions {ak} is equi-continuous,
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i.e. for every ε0 ∈ [0, 1] and η > 0 there exists a δ > 0 solely depending on η such that

|ak(ε)− ak(ε0)| < η ∀k, ∀ε : |ε0 − ε| < δ.

In particular, this means that for every null sequence {εk} ⊂ [0, 1] we have

ak(εk)→ a(0), k →∞. (3.3.5)

The reason for this is that, after all, thanks to equicontinuity and pointwise convergence

ak(0)→ a(0) for every η > 0 we can choose δ = δ(η) > 0 and K large enough such that

|ak(εk)− a(0)| ≤ |ak(εk)− ak(0)|+ |ak(0)− a(0)|

≤ η

2
+
η

2
= η ∀|εk| < δ, k ≥ K.

Uniform boundedness of {ak}, compare Theorem 3.2.5, yields that
{

(Ū εkk , V̄
εk
k )
}

is uniformly

bounded in U × L2(Ω,Rm) and thus possesses a weakly convergent subsequence with weak

limit (ũ, ṽ).

Since

Ikyc − SkŪ εkk − εkV̄
εk
k ⇀ yc − Sũ, k →∞

and C is weakly closed, we can conclude that ũ ∈ Uad. Here, recall that weak convergence of

SkŪ
εk
k ⇀ Sũ is ensured thanks to Lemma 3.1.3. We can now estimate in the following way

using properties of the lim inf and weak lower semicontinuity of

f εk(U, V ) = J(SkU,U,
1

2
√
εk
V ) =

1

2
‖SkU − yd‖2W +

ν

2
‖V ‖2U +

∥∥∥∥ 1

2
√
εk
V

∥∥∥∥2

and our previous observation (3.3.5)

a(0) = lim
k→∞

ak(0) = lim
k→∞

ak(εk) = lim inf
k→∞

ak(εk)

≥ lim inf
k→∞

(
1

2

∥∥SkŪ εkk − yd∥∥2

W +
ν

2

∥∥Ū εkk ∥∥2

U) + lim inf
k→∞

1

2εk

∥∥V̄ εk
k

∥∥2

≥ (
1

2
‖Sũ− yd‖2W +

ν

2
‖ũ‖2U).

Thus,

a(0) = f(ū) ≥ f(ũ).

From the estimate above we can deduce that ũ = ū, because ū is the unique solution to (P )

and ũ ∈ Uad. As this is true for every subsequence, the entire sequence Ū εkk converges weakly

to ū, compare Lemma 2.1.5.
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Let us now prove strong convergence Ū εkk → ū as k → ∞. Due to (recall that ak(0) → a(0)

and ak(εk)→ ak(0)!)

a(0) = lim
k→∞

ak(0) = lim sup
k→∞

ak(0) = lim sup
k→∞

ak(εk)

≥ lim sup
k→∞

fk(Ū
εk
k )︸ ︷︷ ︸

f
εk
k (Ū

εk
k ,V̄

εk
k )≥fk(Ū

εk
k )

≥ lim inf
k→∞

fk(Ū
εk
k ) ≥ a(0),

where in the last step we again used lower semicontinuity, we obtain fk(Ū
εk
k )→ f(ū) = a(0).

Let us now take a closer look at the functional fk:

fk(Ū
εk
k ) =

1

2

∥∥Ȳ εk
k − yd

∥∥2

W +
ν

2

∥∥Ū εkk ∥∥2

U

=
1

2

∥∥Ȳ εk
k

∥∥2

W +
ν

2

∥∥Ū εkk ∥∥2

U − (yd, Ȳ
εk
k )U + ‖yd‖2W .

We recall the definition of (3.3.1)

‖(u, y)‖∗ := (
1

2
‖y‖2W +

ν

2
‖u‖2U)1/2

which defines a norm on W× U that is equivalent to the canonical norm

‖(u, y)‖W×U = (‖y‖2W + ‖u‖2U)1/2.

We can then estimate in the following fashion using weak lower semi-continuity of the norm

‖(u, y)‖2∗ and properties of lim inf and lim sup as well as weak convergence Ū εkk ⇀ ū:

a(0) = lim
k→∞

ak(0) = lim sup
k→∞

ak(0)

= lim sup
k→∞

(
1

2

∥∥Ȳ εk
k

∥∥2

W +
ν

2

∥∥Ū εkk ∥∥2

U − (yd, Ȳ
εk
k )U + ‖yd‖2W)

= lim sup
k→∞

∥∥(Ū εkk , Ȳ
εk
k )
∥∥2

∗ + lim sup
k→∞

(−(yd, Ȳ
εk
k )U + ‖yd‖2W)

≥ lim inf
k→∞

∥∥(Ū εkk , Ȳk)
∥∥2

∗ + lim
k→∞

(−(yd, Ȳ
εk
k )U + ‖yd‖2W) ≥ a(0).

Evidently,

lim sup
k→∞

∥∥(Ū εkk , Ȳ
εk
k )
∥∥2

∗ = lim inf
k→∞

∥∥(Ū εkk , Ȳ
εk
k )
∥∥2

∗ = ‖(ū, ȳ)‖2∗ ,

recall also Lemma 3.1.2.

This results in ∥∥(Ȳ εk
k , Ū εkk )

∥∥
∗ → ‖(ȳ, ū)‖∗ , k →∞

Consequently, Ū εkk → ū (weak convergence and norm convergence as detailed in Lemma 3.1.1)
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which completes the proof.

As the last corollary of this section and last result of this chapter we obtain a ’diagonal

convergence’ property for the sequence of virtual controls
{
V̄ εk
k

}
.

Corollary 3.3.12. Suppose that the convergence condition (3.3.4) holds. Then for all εk → 0

1

2εk

∥∥V̄ εk
k

∥∥2 → 0, k →∞

Proof. Thanks to Corollary 3.3.11 we have Ū εkk → ū. This immediately entails:

Ȳ εk
k = SkŪ

εk
k → Sū = ȳ, k →∞

in Y and by assumption also in W.

As in the proof of Corollary 3.3.11 we gain convergence

a(εk)→ a(0), k →∞.

Let us now take a closer look at the function ak(εk):

ak(εk) =
1

2

∥∥Ȳ εk
k − yd

∥∥2

W +
ν

2

∥∥Ū εkk ∥∥2

U +
1

2εk

∥∥V̄ εk
k

∥∥2
.

The first two terms converge since Ū εkk → ū in U and Ȳ εk
k → ȳ in Y and thus also in W.

Employing once again Lemma 3.1.2 with 1
2

∥∥Ȳ εk
k − yd

∥∥2

W + ν
2

∥∥Ū εkk ∥∥2

U playing the role of the

convergent sequence yk in Lemma 3.1.2 and 1
2εk

∥∥V̄ εk
k

∥∥2
that of xk with x = 0, we then deduce

the desired result.

In this chapter we have characterised convergence of Ūk → ū exactly. We can now turn

to deriving an a posteriori error estimator steering an adaptive algorithm. This will be the

subject of the next Chapter.
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Chapter 4

The Estimator

In this chapter we will derive expressions Er = Er(Ū εk , V̄ ε
k , ε,data) and Es = Es(Ū εk , V̄ ε

k , ε,data)

consisting of

• computable quantities, i.e. quantities of the following kind:

‖f − g‖2 ; (f, g − h)

with known continuous or discrete functions f, g, h, of which we assume that we can

evaluate them exactly. Needless to say, in our actual numerical experiments, we have to

use numerical quadrature rules for terms with continuous functions. In certain special

cases the errors arising from numerical integration can be included in a rigorous a

posteriori analysis, e.g. [63].

• linear errors of the type

‖(S − Sk)gk‖2

with a known right hand side gk which in turn can estimated by an a posteriori error

estimator for FE solutions to linear PDE.

With these quantities we estimate the error

∥∥Ū εk − ū∥∥2

U

in the following reliable way, i.e. the estimator provides an upper bound up to constants:

∥∥Ū εk − ū∥∥2

U .
∥∥∥ūεN − ū∥∥∥2

U
+
∥∥∥Ū εk − ūεN∥∥∥2

U

. εγN + E2
r + Es

(4.0.1)
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with γ < 1 and N ≥ 1.

Let us stress that to prove this reliable upper bound (4.0.1) we can dispense with As-

sumptions (A1)-(A4)!. In particular, this means that even if we face a situation where the

set of admissible functions for the discrete unregularised problem is empty, we can still prove

the bound (4.0.1), because we solely use the regularised problem, for which there are always

admissible functions.

Only at the end of this chapter, namely in Section 4.3, where we will then prove - under

certain conditions - that the derived estimator converges as ε→ 0 and k →∞, will we again

require Assumptions (A1)-(A4).

As we will see in Theorem 4.1.10 the term∥∥∥ūεN − ū∥∥∥2

U

is estimated a priori in terms of the regularisation parameter εN , in Theorem 4.1.10, where

the N gives us greater leeway in pushing the error
∥∥∥ūεN − ū∥∥∥2

U
a priori below some tolerance

TOL: N can e.g. be chosen in such a way that∥∥∥ūεN − ū∥∥∥2

U
. εγN ≤ TOL2.

However, as the reader will realise in Section 4.2.2, in three space dimensions increasing N

will be paid for by a factor ε−δN , δ ≤ 1, scaling one of the terms in Es.
Existing results have either focused on estimating the difference in the goal functionals

f(ū) − f(Ūk), see e.g. [6] and [86] and/or neglected to estimate terms that are related to

the (regularised) Lagrange multiplier in providing a bound for the error
∥∥Ūk − ū∥∥U, cf e.g.

[46] and in the gradient-constrained case [42]. Others, such as [70] have primarily worked with

L∞ a posteriori estimators. Existing L∞-error estimators, however, come with a scaling by

lnhmin-terms, where hmin denotes the minimal mesh-size and demand higher W 1
p -regularity

p > d, see e.g [63].

Thus, our work which provides an upper bound up to constants depending solely on the data

in the sense of (4.0.1) constitutes a genuine extension and improvement to existing results.

In this chapter, we will deal with a linear-quadratic elliptic model problem and its discreti-

sation, which we will introduce in the next section. Throughout this chapter, we assume

that the space dimension d is either d = 2 or d = 3.
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4.1 Problem Setting

In Chapter 3 we have investigated a fairly general optimal control problem. In this and the

following sections and chapters, we will deal with a model Poisson linear-quadratic problem.

In the course of the first few sections we will thus focus on formulating the results proven for

the general problems in the specific setting of our model problem, also adding a number of

extending results on the way.

4.1.1 The Continuous Model Problem

Besides, we demand that Ω ∈ C0,1 and that Ω ⊂ Rd, d = 2, 3, as assumed, be meshable, cf

Definition 2.1.26 and Definition 2.3.2.

In the previous chapters we have nearly always operated within the framework of abstract

Hilbert spaces U,Y and W. We now make concrete choices setting:

U = L2(Ω), Y = H̊1(Ω), W = L2(Ω).

For notational convenience the norm ‖·‖L2(Ω) and corresponding scalar product (·, ·)L2(Ω) will

be shortened to ‖·‖ and (·, ·) respectively.

U is given by

U = {u ∈ L2(Ω) : a ≤ u ≤ b} , a, b ∈ R, b− a > 0.

A short computation yields that all functions u ∈ U are uniformly bounded with

‖u‖ ≤ max(|a|, |b|)|Ω|1/2. (4.1.1)

Remark 4.1.1. We remark that the results of this chapter do not hinge on the additional

enforcement of box-constraints. The bounds and estimates remain valid with most constants

now depending on the continuous solution ū (see below) and the bound on the sequence in

(A1).
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The following continuous unregularised problem is given:

min
u∈L2(Ω),y∈H̊1(Ω)

1

2
‖y − yd‖2 +

ν

2
‖u‖2

s.t.∫
Ω

∇y · ∇w dΩ =

∫
Ω

uw dΩ ∀w ∈ H̊1(Ω)

and

u ∈ U

yc − y ≤ 0 a.e. on Ω



(CMP )

Here, we also suppose yc ∈ H1(Ω) and ∇yc ∈ H(div,Ω) as well as yc|∂Ω < 0 and, as always,

a fixed ν > 0.

For the sake of abbreviation we define a continuous bilinear form b in a slight abuse of notation

by

b[y, w] := (∇y,∇w) :=

∫
Ω

∇y · ∇w dΩ ∀y, w ∈ H̊1(Ω). (4.1.2)

Since the bilinear form b is also coercive, compare Theorem 2.4.1, we immediately obtain the

existence of a solution operator mapping S : L2(Ω)→ H̊1(Ω), compare also Corollary 2.1.21.

In this special case, we even get additional regularity, i.e. the solution operator maps linearly

and continuously to better spaces. To prove this, we first have to record a classic regularity

theorem on the interior of a domain for elliptic equations which can e.g. be found in [36],

Theorem 8.9.:

Theorem 4.1.2. For any Ω′ ⊂⊂ Ω and u ∈ L2(Ω) the solution y ∈ H̊1(Ω) of∫
Ω

∇y · ∇w dΩ =

∫
Ω

uw dΩ ∀w ∈ H̊1(Ω)

satisfies y ∈ H̊1(Ω) ∩H2(Ω′).

Having listed this result, we can now turn to the main regularity result:

Lemma 4.1.3. Suppose that for fixed u ∈ L2(Ω), y ∈ H̊1(Ω) solves∫
Ω

∇y · ∇w dΩ =

∫
Ω

uw dΩ ∀w ∈ H̊1(Ω)
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Then, in addition ∇y ∈ H(div,Ω) and

‖∇y‖H(div,Ω) . ‖u‖L2(Ω) .

Proof. Pick an arbitrary w ∈ C∞0 (Ω). Since supp(w) ⊂⊂ Ω, Theorem 4.1.2 ensures y ∈
H2(supp(w)). Then by Green’s formula, cf [37], Theorem 1.5.3.1 and Lemma 1.5.3.2, we can

deduce that ∫
supp(w)

∇y · ∇w dΩ =

∫
Ω

∇y · ∇w dΩ = −
∫
Ω

div∇yw dΩ =

∫
Ω

uw dΩ,

Since v ∈ C∞0 (Ω) was arbitrary, we obtain

−
∫
Ω

div∇yw dΩ =

∫
Ω

uw dΩ ∀w ∈ C∞0 (Ω)

Harnessing the fundamental lemma of the calculus of variations, compare e.g [35], Chapter 1,

Lemma 3, we are then able to deduce

−div∇y = u a.e. on Ω.

u is an element of L2(Ω), hence, we can conclude

div∇y ∈ L2(Ω).

Evidently,

‖div∇y‖ = ‖u‖ .

Continuity of S and the definition of the H(div,Ω)-norm then yields:

‖∇y‖H(div,Ω) . ‖u‖

which completes the proof.

After this regularity detour, let us now return to the optimal control problem itself. Existence

and uniqueness results as well as optimality conditions are our first focus. To this end, we

can merely transfer the results of Section 2.2.1 to our specific model problem setting:

The fact that problem (CMP ) satisfies Properties (Pr1)-(Pr5) has already been discussed for

an even more general problem in Section 2.4.1. To ensure that we are not optimising over the

empty set, we make the following Slater-type assumption:

S. Steinig AFEM for State-Constrained Optimal Control



122 CHAPTER 4. THE ESTIMATOR

Assumption 4.1.4. There exists us ∈ U such that

Sus − yc ≥ τ > 0, a.e. on Ω

Evidently, (Pr6) is fulfilled, too, hence, we can now deduce the existence of a unique solution

ū and corresponding state ȳ = Sū (compare Theorem 2.2.1) such that

(p̄+ νū, u− ū) ≥ 0 ∀u ∈ Uad (4.1.3)

with p̄ = S∗(ȳ − yd) with S∗ : L2(Ω)→ L2(Ω) and

Uad := {u ∈ U : yc − Su ≤ 0} .

As before, we define the reduced functional by

f(u) =
1

2
‖Su− yd‖2 +

ν

2
‖u‖2

Having settled existence and uniqueness questions, we now aim to characterise S∗ as the

solution operator to another partial differential equation, in fact we obtain S = S∗. This will

be important for both analytical and numerical reasons:

Theorem 4.1.5. Given q ∈ L2(Ω), z = S∗q solves the variational problem∫
Ω

∇z · ∇w dΩ =

∫
Ω

qw dΩ ∀w ∈ H̊1(Ω) (4.1.4)

Thus, z = S∗q ∈ H̊1(Ω), ∇z ∈ H(div,Ω) and

‖z‖H̊1(Ω) + ‖∇z‖H(div,Ω) . ‖q‖ .

Proof. By definition of the adjoint operator, compare Section 2.1.2, S∗ satisfies

(h, z) = (h, S∗q) = (Sh, q), ∀h, q ∈ L2(Ω)

The variational problem (4.1.4) possesses a unique solution z ∈ H̊1(Ω),∇z ∈ H(div,Ω) for

every right-hand side q ∈ L2(Ω), again compare Theorem 2.4.1 and Lemma 4.1.3. Thus,

utilising the fact that H̊1(Ω) ↪→ L2(Ω), compare the Poincaré-Friedrich inequality Theorem

2.1.33, we can define a solution operator Ŝ : L2(Ω) → L2(Ω) to (4.1.4). Employing (4.1.4)

and the fact that Ŝq ∈ H̊1(Ω), we deduce:

(h, Ŝq) = (∇Sh,∇Ŝq) = (q, Sh) ∀q, h ∈ L2(Ω).
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As a consequence Ŝ = S = S∗.

Corollary 2.1.21, Theorem 4.1.2 and Lemma 4.1.3 now yield the bound for z = S∗q.

Let us now turn to the regularisation of (CMP ).

4.1.2 The Continuous Model Regularised Problem

In this section, the focus lies very much on deriving an a priori estimate in terms of the regu-

larisation parameter for the difference between the continuous regularised and unregularised

solution ūε, ū. This will be achieved in Theorem 4.1.10 and 4.1.11. Before, though, we have

to lay some notational and theoretical groundwork:

We tackle the following regularised model problem.

min
u∈L2(Ω),y∈H̊1(Ω),v∈L2(Ω)

1

2
‖y − yd‖2 +

ν

2
‖u‖2 +

1

2ε
‖v‖2

s.t.∫
Ω

∇y · ∇v dΩ =

∫
Ω

uv dΩ. ∀v ∈ H̊1(Ω)

and

u ∈ U

yc − y − εv ≤ 0 a.e. on Ω



(CMP ε)

Recalling Theorem 2.2.12, we obtain the following necessary and sufficient optimality condi-

tion for the unique solution couple (ūε, v̄ε):

(p̄εr + νūε, u− ūε) +
1

ε
(v̄ε, v − v̄ε) ≥ 0 ∀(u, v) ∈ Uε,ad. (4.1.5)

where p̄εr is the regular adjoint state defined by p̄εr = S∗(ȳε − yd) and

Uε,ad := {(u, v) ∈ L2(Ω)× L2(Ω) : a ≤ u ≤ b, Su+ εv ≥ yc} .

The reduced functional is defined by

f ε(u, v) :=
1

2
‖Su− yd‖2 +

ν

2
‖u‖2 +

1

2ε
‖v‖2 .

As in Chapter 3 we introduce the optimal value function

a : (0, 1] 3 ε 7→ f ε(ūε, v̄ε)
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and extend it to the unregularised case by setting

a(0) := f(ū).

At this stage, the reader may want to recall the results of Chapter 3, especially Theorem

3.2.1.

We now apply the results of Section 2.2.2 and Theorem 3.2.7 to the present, less general

setting. The key results are subsumed in the following theorem:

Theorem 4.1.6. Let (CMP ε) be given. Then, for each ε > 0 the unique solution couple

(ūε, v̄ε) ∈ L2(Ω)×L2(Ω) and corresponding state ȳε = Sūε and the unique Lagrange multiplier

θ̄ε ∈ L2(Ω), θ̄ε ≥ 0 a.e. in Ω, fulfil the following Karush-Kuhn-Tucker system:

(p̄ε + νūε, u− ūε) ≥ 0 ∀u ∈ U

−ε2θ̄ε + v̄ε = 0

(θ̄ε, ȳε − yc + εv̄ε) = 0.

(4.1.6)

where the full adjoint state is defined by p̄ε = S∗(ȳε−yd− θ̄ε) and its regular and singular

part by p̄εr := S∗(ȳε − yd) and p̄εs := −S∗θ̄ε respectively.

The optimality condition

(p̄ε + νūε, u− ūε)L2(Ω) ≥ 0 ∀u ∈ U

can be reformulated in the following pointwise fashion

ūε(x) = min(max(−1

ν
p̄ε(x), a), b) =: Π(p̄ε) f.a.a. x ∈ Ω. (4.1.7)

Besides:

v̄ε(x) = −1

ε
min(ȳε(x)− yc(x), 0) f.a.a x ∈ Ω (4.1.8)

Thus, v̄ε ∈ H̊1(Ω) for all ε > 0 and in addition, θ̄ε ∈ H̊1(Ω) for all ε > 0.

Furthermore, the slackness condition

(θ̄ε, ȳε − yc + εv̄ε) = 0

is equivalent to the pointwise formulation

θ̄ε(x)(ȳε(x)− yc(x) + εv̄ε(x)) = 0 f.a.a x ∈ Ω (4.1.9)

S. Steinig AFEM for State-Constrained Optimal Control



125 CHAPTER 4. THE ESTIMATOR

Proof. In Theorem 2.2.13 we have already proven that (ūε, v̄ε) fulfil the KKT system

(p̄εr + νūε, u− ūε)− (θ̄ε, Su− Sūε) ≥ 0 ∀u ∈ U

−ε2θ̄ε + v̄ε = 0

(θ̄ε, ȳε − yc + εv̄ε) = 0.

Now using the adjoint operator S∗, compare Theorem 4.1.5, we can reformulate it in the

desired fashion to gain (4.1.6).

The proof of formula (4.1.7) can be found in [80], Theorem 2.33.

Thus, we can now tackle the proof of the penalty structure (4.1.8). Here, the basic idea is to

prove that the function v̂ defined by (4.1.8), i.e.

v̂(x) = −1

ε
min(ȳε(x)− yc(x), 0),

satisfies (ūε, v̂) ∈ Uε,ad and

f(ūε, v̂) ≤ f ε(ūε, v̄ε).

Due to uniqueness of the optimal solution this would entail v̄ε = v̂ and thus all that we set

out to prove. So let us now tackle this proof:

First of all, we observe that v̂ ≥ 0 a.e. on Ω and by construction (ūε, v̂) ∈ Uε,ad. We now still

have to prove that

f ε(ūε, v̂) ≤ f ε(ūε, v̄ε).

We discern that thanks to admissibility of (ūε, v̄ε) we have

v̄ε(x) ≥ −1

ε
(ȳε(x)− yc(x)), f.a.a. x ∈ Ω. (4.1.10)

On the set

M− := {x ∈ Ω : ȳε(x)− yc(x) < 0} ,

we have v̄ε(x) ≥ 0 f.a.a. x ∈M−. Thanks to (4.1.10) we furthermore deduce f.a.a x ∈M−:

v̄ε(x) ≥ −1

ε
(ȳε(x)− yc(x)) = −1

ε
min(ȳε(x)− yc(x)) = v̂(x) ≥ 0 x ∈M−.

As a consequence we deduce |v̂| ≤ |v̄ε| a.e. on M−.
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By construction of v̂ we have v̂ = 0 a.e. on Ω \M− and hence

|v̂(x)| ≤ |v̄ε(x)| f.a.a. x ∈ Ω.

Standard properties of the L2(Ω)-norm then enable us to conclude

1

2ε
‖v̂‖2 ≤ 1

2ε
‖v̄ε‖2 .

Thus

f ε(ūε, v̂) ≤ f ε(ūε, v̄ε).

As explained before, uniqueness of the solution (ūε, v̄ε) now entails v̂ = v̄ε - which is the

desired penalty structure (4.1.8).

Thanks to the penalty structure (4.1.8) we know that v̄ε ∈ H̊1(Ω) for all ε > 0. After all,

min(yε−yc, 0) ∈ H̊1(Ω). The improved regularity for θ̄ε then readily follows as a consequence

of the equation for v̄ε and θ̄ε in (4.1.6).

The fact that the pointwise slackness condition (4.1.9) holds is a consequence of θ̄ε ∈ C−

(which means θ̄ε ≥ 0 a.e. on Ω), ȳε − yc + εv̄ε ≥ 0 a.e. on Ω and standard Lebesgue

integration theory. After all, L2(Ω) 3 f, g ≥ 0 and (f, g) = 0 imply f(x)g(x) = 0 f.a.a. x ∈ Ω.

Our aim now is to prove an a priori estimate∥∥∥ūεN − ū∥∥∥2
. εγN , γ > 0,

compare also (4.0.1). To do so, we need a couple of auxiliary results: The starting point will

be an improved bound for the Lagrange multiplier θ̄ε.

Lemma 4.1.7. Let 1 ≤ p ≤ 2 and p′ be its dual exponent, i.e. 1
p + 1

p′ = 1. Then, for θ̄ε the

following bound is valid:

∥∥θ̄ε∥∥
Lp(Ω)

. (
1

τ
)1−2/p′ε−3/p′ ,

where τ is the constant from the continuous Slater point in Assumption 4.1.4.

In particular, there holds:

∥∥θ̄ε∥∥
L1(Ω)

.
1

τ
.

Both constants are independent of p′.

Proof. The basic idea of the proof is to first prove a uniform L1(Ω) bound for the multiplier
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θ̄ε and then demonstrate the improved bound for the
∥∥θ̄ε∥∥

Lp(Ω)
, 1 ≤ p ≤ 2 by interpolation

arguments.

Thus, let us commence with the uniform L1(Ω)-bound. First of all, we observe that as an

L2-function for every fixed ε, θ̄ε ∈ Lp(Ω) for all 1 ≤ p ≤ 2.

Let us now recall the optimality condition for ūε in (4.1.6) in the following slightly reformu-

lated fashion where we split the full adjoint state into its regular and singular part:

0 ≤ (p̄ε + νūε, u− ūε) = (p̄εr + νūε, u− ūε)− (p̄εs, u− ūε)

= (p̄εr + νūε, u− ūε)− (S∗θ̄ε, u− ūε)

= (p̄εr + νūε, u− ūε)− (θ̄ε, Su− Sūε) ∀u ∈ U .

Inserting u = us from Assumption 4.1.4 into the inequality above, we can now deduce after

a short rearrangement:

(p̄εr + νūε, us − ūε) ≥ (θ̄ε, Sus − Sūε)

= (θ̄ε, Sus − yc) + (θ̄ε, yc − Sūε)

Using the slackness equation in (4.1.6) and the fact that θ̄ε ≥ 0 a.e. on Ω since θ̄ε ∈ C−, we

can proceed in the following way:

(θ̄ε, Sus − yc) + (θ̄ε, yc − Sūε) = τ
∥∥θ̄ε∥∥

L1(Ω)
+ (θ̄ε, yc − Sūε)

= τ
∥∥θ̄ε∥∥

L1(Ω)
− 1

ε
‖v̄ε‖2

All in all, we thus gain:

∥∥θ̄ε∥∥
L1(Ω)

≤ 1

τ
((p̄εr + νūε, us − ūε) +

1

ε
‖v̄ε‖2)

Now, recall that due to Theorem 3.2.1 a(ε) ≤ a(0) and thus in particular

1

ε
‖v̄ε‖2 . 1 (4.1.11)

Presently, we can harness continuity of S and S∗ as well as the uniform bound of functions

belonging to U derived in (4.1.1) to obtain:

∥∥θ̄ε∥∥
L1(Ω)

≤ 1

τ
|(p̄εr + νūε, us − ūε) +

1

ε
‖v̄ε‖2 |

.
1

τ
(‖S∗‖ ‖ȳε − yd‖+ 1)

≤ 1

τ
(‖S∗‖ (‖S‖ ‖uε‖+ ‖yd‖+ 1)) .

1

τ
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Thus, we have ascertained the uniform L1-bound

∥∥θ̄ε∥∥
L1(Ω)

.
1

τ
(4.1.12)

We can now utilise the interpolation theory arguments of Section 2.1.7 to derive the desired

result.

We observe that the Lp(Ω)-spaces have the property that

(Lp(Ω))∗ ∼= Lp′(Ω),
1

p
+

1

p′
= 1, 1 < p <∞, (4.1.13)

see e.g. [85], Theorem 10.44, and

L1(Ω) ↪→ L∞(Ω)∗ (4.1.14)

by Hölder’s inequality, compare [85], Theorem 10.43 or [40].

Since θ̄ε ∈ L2(Ω) for all fixed ε > 0, θ̄ε thus can also be interpreted as a functional on Lp′(Ω),

2 ≤ p′ ≤ ∞.

From the equation for θ̄ε and v̄ε in (4.1.6) we gain

∥∥θ̄ε∥∥ =
1

ε2
‖v̄ε‖ .

Combining this with the bound (4.1.11), we deduce:

∥∥θ̄ε∥∥
L2(Ω)

. ε−3/2. (4.1.15)

Setting σ according to 1
p′ = 1−σ

2 , 0 < σ < 1, i.e. σ = 1− 2
p′ we have by Definition 2.1.41

Lp′(Ω) = Lp′,p′(Ω) = (L2(Ω), L∞(Ω))σ,p′ , 1 < p′ <∞

Presently, using the properties of Lorentz spaces, Definition 2.1.41, the interpolation estimate

(2.1.14) from Theorem 2.1.40 and L2(Ω) ∼= L2(Ω)∗, we obtain for 1 < p ≤ 2 and its dual

exponent p′: ∥∥θ̄ε∥∥
Lp,p(Ω)

=
∥∥θ̄ε∥∥

Lp(Ω)

=
∥∥θ̄ε∥∥

Lp′ (Ω)∗

≤
∥∥θ̄ε∥∥1−σ

L2(Ω)∗

∥∥θ̄ε∥∥σ
L∞(Ω)∗

=
∥∥θ̄ε∥∥1−σ

L2(Ω)

∥∥θ̄ε∥∥σ
L∞(Ω)∗

, σ = 1− 2

p′

(4.1.16)

Now recall (4.1.13) and (4.1.14). Together with the bounds (4.1.12) and (4.1.15) these rela-

tions allow us to continue our estimates for 1 < p ≤ 2 and its dual exponent p′ in the following
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way

∥∥θ̄ε∥∥
Lp(Ω)

≤
∥∥θ̄ε∥∥1−σ

L2(Ω)

∥∥θ̄ε∥∥σ
L∞(Ω)∗

≤
∥∥θ̄ε∥∥1−σ

L2(Ω)

∥∥θ̄ε∥∥σ
L1(Ω)

. ε−
3
2

+ 3σ
2 (

1

τ
)σ = (

1

τ
)1−2/p′ε−3/p′ σ = 1− 2

p′
.

Combining this with our uniform bound L1(Ω)-bound for θ̄ε, (4.1.12), we can include the case

p = 1 and its dual exponent p′ =∞ in the above estimate and thus finally deduce the desired

result:

∥∥θ̄ε∥∥
Lp(Ω)

. (
1

τ
)1−2/p′ε−3/p′ , 1 ≤ p ≤ 2.

Before we move on to the next lemma, let us for notational convenience introduce a generic

constant s(τ) which is assigned to indicate that in those estimates where it appears negative

powers of τ enter. The negative powers themselves usually depend on p′ and the specific

setting, hence the attribute ’generic’. The estimate in Lemma 4.1.7 can in this way be

shortened to

∥∥θ̄ε∥∥
Lp(Ω)

. s(τ)ε−3/p′ , with s(τ) := (
1

τ
)1−2/p′ .

Likewise, for the embedding constant of the embedding H̊1(Ω) ↪→ Lp′(Ω), 1 ≤ p′ <∞ in 2d,

1 ≤ p′ ≤ 6 in 3d we introduce in the same spirit as for s(τ) another generic constant c(p′)

which is assigned to indicate that the embedding constant enters with some positive power

depending on the specific setting. In particular, the appearance of c(p′) indicates that in 2d,

c(p′) → ∞ as p′ → ∞. In a setting restricted to 3d we will do without explicitly stating

the constant as we are restricted to p′ ≤ 6 anyway and do not have to investigate the case

p′ →∞.

After this notational detour, let us now continue our stability estimates.

The next lemma provides a bound for theH1-semi norm of the violation of the state constraint:

Lemma 4.1.8. Let 2 ≤ p′ <∞ in case d = 2 and 2 ≤ p′ ≤ 6 in case d = 3. Furthermore, let

p denote its dual exponent, i.e. 1
p′ +

1
p = 1. For the difference (ȳε−yc)− we have the following

error bound

|(ȳε − yc)−|H1(Ω) . c(p
′)s(τ)ε1−1/p′ . (4.1.17)

Proof. Evidently, (ȳε − yc)− ∈ H̊1(Ω), since ȳε = 0 on ∂Ω and yc|∂Ω < 0 by assumption!.
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Thus, we can use it as a test function for the bilinear form b, (4.1.2), to obtain

|(ȳε − yc)−|2H1(Ω) = |(∇(ȳε − yc),∇(ȳε − yc)−|

= |(ūε + ∆yc, (ȳ
ε − yc)−|

Now we can take advantage of the penalty structure of v̄ε, compare (4.1.8), to get

|(ȳε − yc)−|2H1(Ω) = |(ūε + ∆yc,−εv̄ε)|

≤ ‖ūε + ∆yc‖ ‖εv̄ε‖ .
(4.1.18)

Presently, let us estimate ‖v̄ε‖:
Recalling the complimentary slackness condition (4.1.9), θ̄ε ≥ 0 a.e. in Ω and the embedding

H1(Ω) ↪→ Lp′(Ω), 1 ≤ p′ <∞ in case d = 2 and 1 ≤ p′ ≤ 6 in case d = 3, compare Theorem

2.1.35, we obtain

1

ε
‖v̄ε‖2 = (θ̄ε, yc − ȳε) ≤

∥∥θ̄ε∥∥
Lp(Ω)

∥∥(ȳε − yc)−
∥∥
Lp′ (Ω)

. c(p′)
∥∥θ̄ε∥∥

Lp(Ω)

∥∥(ȳε − yc)−
∥∥
H1(Ω)

.

Using the Poincaré-Friedrich-inequality Theorem 2.1.33 ((ȳ− yc)− ∈ H̊1(Ω)!) and the results

of Lemma 4.1.7, we can pursue our estimates in the following way:

1

ε
‖v̄ε‖2 . c(p′)

∥∥θ̄ε∥∥
Lp(Ω)

∥∥(ȳε − yc)−
∥∥
H1(Ω)

.
∥∥θ̄ε∥∥

Lp(Ω)
|(ȳε − yc)−|H1(Ω)

. c(p′)s(τ)ε−3/p′ |(ȳε − yc)−|H1(Ω)

Thus, we have gained:

1

ε
‖v̄ε‖2 . c(p′)s(τ)ε−3/p′ |(ȳε − yc)−|H1(Ω).

A short rearrangement of this bound yields

‖v̄ε‖ . c(p′)s(τ)ε
1
2
− 3

2p′ |(ȳε − yc)−|
1
2

H1(Ω)
.

Let us now insert this bound in (4.1.18) bearing in mind that ‖ūε + ∆yc‖ is uniformly bounded

in L2(Ω):

|(ȳε − yc)−|2H1(Ω) . ε ‖v̄
ε‖ . c(p′)s(τ)ε

3
2
− 3

2p′ |(ȳε − yc)−|
1
2

H1(Ω)

Dividing by |(ȳε − yc)
−|1/2
H1(Ω)

(if this term were 0, the postulated bound (4.1.17) trivially
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holds) yields:

|(ȳε − yc)−|
3
2

H1(Ω)
. c(p′)s(τ)ε

3
2
− 3

2p′ .

(4.1.17) then readily follows.

A consequence of the previous lemma is the following corollary:

Corollary 4.1.9. For 2 ≤ p′ <∞ in case d = 2 and 2 ≤ p′ ≤ 6 in case d = 3 we have the a

priori bound

‖v̄ε‖ . min(ε1/2, c(p′)s(τ)ε
1− 2

p′ )

Proof. First of all, we observe that boundedness of the continuous optimal value function a,

compare Theorem 3.2.1, in particular yields

1

ε
‖v̄ε‖2 ≤ a(ε) = f ε(ūε, v̄ε) ≤ f(ū) . 1.

Thus

‖v̄ε‖ . ε1/2,

which gives the first estimate.

Conversely, recall the slackness equation (4.1.9). We obtain as in the proof of Lemma 4.1.8

1

ε
‖v̄ε‖2 = |(θ̄ε, ȳε − yc)| . c(p′)

∥∥θ̄ε∥∥
Lp(Ω)

|(ȳε − yc)−|H1(Ω),
1

p
+

1

p′
= 1

Now we can just plug in the bounds for θ̄ε, Lemma 4.1.7, and the energy norm of (ȳε − yc)−

from Lemma 4.1.8 to derive the desired result.

Having collected these auxiliary results we are now in a position to prove an a priori estimate

‖ū− ūε‖ . c(p′)s(τ)εγ , γ > 0

into which we will insert - as the last step - ε = εN to gain the desired estimate for (4.0.1).

Theorem 4.1.10. Let 4 < p′ < ∞ in case d = 2 and p′ = 6 in case d = 3. The following a

priori estimates hold true:

‖ūε − ū‖2 .

c(p′)s(τ)ε1−4/p′ if d = 2, 4 < p′ <∞

s(τ)ε1/3 if d = 3, (p′ = 6)
(4.1.19)
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Proof. The proof uses Taylor expansion of f ε at (ūε, v̄ε). We refer to Chapter 8 in [48] and

especially Theorem 8.16 in [48]. Since f ε is quadratic, we gain

f(ū)− f ε(ūε, v̄ε) = f ε(ū, 0)− f ε(ūε, v̄ε)

= D1f ε(ūε, v̄ε) ·
[
ū− ūε, −v̄ε

]
+D2f ε(ūε, v̄ε) ·

[
ū− ūε, −v̄ε

]2
.

Differentiating now yields

D1f ε(ūε, v̄ε) ·
[
ū− ūε, −v̄ε

]
= (p̄εr + νūε, ū− ūε)− 1

ε
‖v̄ε‖2 ≥ 0,

where we have also used (4.1.5).

For the second derivatives we can conclude

D2f ε(ūε, v̄ε) ·
[
ū− ūε, −v̄ε

]2
= ‖ȳ − ȳε‖2 + ν ‖ū− ūε‖2 +

1

ε
‖v̄ε‖2 .

Thus

f(ū)− f ε(ūε, v̄ε) ≥ ν ‖ū− ūε‖2 .

Using the differentiability of the optimal value function, compare again Theorem 3.2.1, we

deduce
ν ‖ū− ūε‖2L2(Ω) ≤ f(ū)− f ε(ūε, v̄ε) = a(0)− a(ε)

=

ε∫
0

−a′(t) dt =

ε∫
0

1

t2
∥∥v̄t∥∥2

dt.
(4.1.20)

Harnessing θ̄t ≥ 0 for all t > 0, Hölder’s inequality and the complimentary slackness condition

in (4.1.6) with ε = t, we deduce:

1

t2
∥∥v̄t∥∥2

=
1

t
(θ̄t, yc − ȳt) ≤

1

t

∥∥θ̄t∥∥
Lp(Ω)

∥∥(ȳt − yc)−
∥∥
Lp′ (Ω)

,
1

p
+

1

p′
= 1

The embedding H̊1(Ω) ↪→ Lp′(Ω), 1 ≤ p′ < ∞ if d = 2 and 1 ≤ p′ ≤ 6 if d = 3, and the

results of Lemma 4.1.7 and Lemma 4.1.8 for ε = t enable us to continue our estimates in the

ensuing vein:

1

t2
∥∥v̄t∥∥2 ≤ 1

t

∥∥θ̄t∥∥
Lp(Ω)

∥∥(ȳt − yc)−
∥∥
Lp′ (Ω)

≤ c(p′)s(τ)
1

t
(t1−4/p′) = c(p′)s(τ)t−4/p′ .

Presently, we can pick up the thread we left off in (4.1.20) and continue our estimates taking

advantage of the estimates above (remember that we assumed p′ > 4 if d = 2 and p′ = 6 if
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d = 3!).

ν ‖ū− ūε‖2L2(Ω) ≤
ε∫

0

1

t2
∥∥v̄t∥∥2

≤ c(p′)s(τ)

ε∫
0

t−4/p′ dt

= c(p′)s(τ)
1

1− 4/p′
ε1−4/p′ . c(p′)s(τ)ε1−4/p′ , p′ > 4

In case d = 2, this gives the first estimate in (4.1.19). If d = 3 we just have to insert p′ = 6

into the estimates above. Here, note that the dependence on the embedding constant c(p′)

can be neglected since we fix it to c(p′) = c(6). Ultimately, we deduce in case d = 3

ν ‖ū− ūε‖2L2(Ω) . 3s(τ)ε1/3 . s(τ)ε1/3.

This gives the second estimate in (4.1.19).

As a corollary we now obtain the desired estimate for the difference
∥∥∥ū− ūεN∥∥∥2

in (4.0.1) by

inserting ε = εN in the bounds of Theorem 4.1.10:

Corollary 4.1.11. Let 4 < p′ < ∞ in case d = 2 and p′ = 6 in case d = 3. Then the

following a priori upper bounds are valid:

∥∥∥ūεN − ū∥∥∥2
.

c(p′)s(τ)ε(1−4/p′)N if d = 2, 4 < p′ <∞

s(τ)εN/3 if d = 3, (p′ = 6)
(4.1.21)

Hence, the γ in the estimator (4.0.1) is defined by

γ :=

(1− 4/p′) if d = 2, 4 < p′ <∞ fixed

1/3 if d = 3.
(4.1.22)

Proof. Since the constants in the estimates of Theorem 4.1.10 do not depend on ε, we can

merely insert ε = εN in (4.1.19) to obtain the desired result.

In deriving the a priori result in terms of the error in regularisation, Theorem 4.1.10, we

used a different approach compared to the techniques employed in [52] and [18], where higher

regularity of the solution operator - it maps to C0,α(Ω̄) - was used to gain estimates on

the maximal violation ‖(yc − ȳε)+‖L∞(Ω). The reasons for pursuing this alternative path are

twofold: First, we wanted to gain improved bounds for the multiplier θ̄ε in Lp(Ω), 1 ≤ p ≤ 2,

compare Lemma 4.1.7, and secondly, and more importantly, we wanted to prove the a priori

bound without any addtional regularity for the PDE making them potentially applicable
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in settings with less regularity such as constraints on the pressure as in Section 2.4.3.

Let us also stress that to the best of author’s knowledge Theorem 4.1.10 is the first re-

sult where Hölder-stability for the regularised problems has been proven without any such

additional regularity. In fact, the results - at least for d = 2 - even almost match the al-

ready cited existing ones such as [52], Theorem 11, where in case d = 2, exactly ε1/2 was

proven for more general elliptic PDE, but also under stricter regularity assumptions, namely

S ∈ L(L2(Ω), C0,1(Ω̄)).

At this stage let us shortly recall our aim (4.0.1):

∥∥Ū εk − ū∥∥2

U .
∥∥∥ūεN − ū∥∥∥2

U
+
∥∥∥Ū εk − ūεN∥∥∥2

U

. εγN + E2
r + E2

s .

For the term
∥∥∥ū− ūεN∥∥∥2

we have proven the desired a priori estimate in Theorem 4.1.10 and

Corollary 4.1.11. Now, we have to tackle the term
∥∥∥Ū εk − ūεN∥∥∥2

. To this end, though, we

first have to introduce a discretisation of the original problem (CMP ) and a corresponding

regularisation which we will do in the next two sections.

4.1.3 The Unregularised Discretised Problem

We introduce a series of triangulations of Ω, Tk such that:

Ω̄ =
⋃
T∈Tk

T̄ .

This enables us to define the following spaces:

The control space Uk will be either left undiscretised, this is the so called variational dis-

cretisation approach, compare [44], i.e.

Uk = U

or discretised by piecewise constant functions, the full discretisation approach, i.e

Uk = FES(Tk,P0, L2(Ω)).

We will treat both types of ansatz spaces simultaneously in this and the following section.

For the discretisation of the state space Y we choose (regardless of the control discretisation)

Yk = FES(Tk,P1, H̊
1(Ω)),
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compare also Definition 2.3.4. For Vk we choose (again irrespective of the control discretisa-

tion)

Vk = (Yk, L2(Ω)).

We introduce the set

Uk := {U ∈ Uk : a ≤ U ≤ b a.e. in Ω} ,

for which (4.1.1) is also valid. Despite the fact that Uk ⊂ Uk+1 (irrespective of the control

discretisation) we do in general have that

Uadk 6⊂ Uadk+1.

Let us now lay out the discrete unregularised problem:

min
U∈Uk,Y ∈Yk

1

2
‖Y − yd‖2 +

ν

2
‖U‖2

s.t.∫
Ω

∇Y · ∇W dΩ =

∫
Ω

UW dΩ ∀W ∈ Yk

and

U ∈ Uk
Ikyc − Y ≤ 0 a.e. on Ω.



(DMPk)

For the verification of Assumptions (A2)-(A4) we again refer to the discussions of Section

2.4.1. Note that we do not assume anything apart from Property (Pr8) for the operator Ik.

To ensure that (A1) is fulfilled, we next assume that the feasible set

Uadk := {U ∈ Uk : Ikyc − SkU ≤ 0}

is non-empty for all k. We observe that every sequence
{
Ûk

}
⊂ U with Ûk ∈ Uadk is uniformly

bounded thanks to (4.1.1).

The discrete solution operator Sk fulfils a Galerkin-orthogonality property which is the subject

of the next lemma:

Lemma 4.1.12. For any q ∈ L2(Ω) we have

(∇(Sq − Skq),∇W ) = 0 ∀W ∈ Yk. (4.1.23)
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Proof. Since Yk ⊂ H̊1(Ω) we can deduce that

(∇(Sq − Skq),∇W ) = (q,W )− (q,W ) = 0.

For the discrete adjoint operator S∗k we are able to prove a result mirroring Theorem 4.1.5:

Theorem 4.1.13. Suppose we interpret Sk as an operator Sk : L2(Ω) → L2(Ω). Given

q ∈ L2(Ω), Z = S∗kq ∈ Yk solves the variational problem∫
Ω

∇Z · ∇W dΩ =

∫
Ω

qW dΩ ∀W ∈ Yk. (4.1.24)

Thus

‖S∗kq‖H̊1(Ω) = ‖Z‖H̊1(Ω) . ‖q‖ .

Proof. By definition of the adjoint operator, compare Section 2.1.2, S∗k satisfies

(h, S∗kq) = (Skh, q), ∀h, q ∈ L2(Ω).

Defining Z as the unique solution Z ∈ Yk ⊂ H̊1(Ω) of (4.1.24), we obtain by employing

(4.1.24), the properties of the solution operator S and Galerkin orthogonality (4.1.23):

(h, Z) = (∇Sh,∇Z) = (∇Skh,∇Z) = (q, Skh) ∀q, h ∈ L2(Ω).

Thus

(h, Skq) = (h, Z) = (q, Skh) ∀q, h ∈ L2(Ω)

Hence Z = S∗kq which completes the proof.

The discrete solution Ūk and its corresponding optimal state Ȳk = SkŪk and adjoint state

P̄k := S∗k(Ȳk − yd) satisfy the following familiar first order necessary and sufficient optimality

condition:

(P̄k + νŪk, U − Ūk) ≥ 0 ∀U ∈ Uadk .

We next turn to the regularised discretised problem whose solution will be the one actually

computed by the algorithm presented in Chapter 5.
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4.1.4 The Regularised Discretised Problem

We tackle the following discrete regularised problem:

min
U∈Uk,Y ∈Yk,V ∈Vk

1

2
‖Y − yd‖2 +

ν

2
‖U‖2 +

1

2ε
‖V ‖2

s.t.∫
Ω

∇Y · ∇W dΩ =

∫
Ω

UW dΩ ∀W ∈ Yk

and

U ∈ Uk
Ikyc − Y − εV ≤ 0 a.e. on Ω.



(DMP εk )

The next theorem is an application of the results of Theorem 3.2.8 to the present setting:

Theorem 4.1.14. The unique discrete solution couple (Ū εk , V̄
ε
k ) fulfils the following necessary

and sufficient optimality system:

(S∗k(Ȳ ε
k − yd − θ̄εk) + νŪ εk , U − Ū εk) ≥ 0 ∀U ∈ Uk

−ε2θ̄εk + V̄ ε
k = 0

(θ̄εk, Ȳ
ε
k − Ikyc + εV̄ ε

k ) = 0

(4.1.25)

As in the continuous case, we define the discrete full adjoint state by P̄ εk := S∗k(Ȳ ε
k −yd−θ̄εk),

its regular part by P̄ εk,r := S∗k(Ȳ ε
k − yd) and its singular part by P̄ εk,s := −S∗k θ̄εk.

Proof. The KKT system (4.1.25) is an immediate consequence of the adjoint representation

(4.1.24) and Theorem 3.2.8.

Before we turn the derivation of the estimator for the difference
∥∥∥ūεN − Ū εk∥∥∥2

, let us prove a

projection relation for Ū εk mirroring (4.1.7). To do so - for future use in a different setting - we

will first formulate a fairly general result for the projection of functions on box-constrained

convex sets:

Lemma 4.1.15. Let L either be a closed subspace of L2(Ω) or L = L2(Ω). Furthermore, let

the convex and closed set W ⊂ L be defined by

W := {w ∈ L : ω1 ≤ w ≤ ω2 a.e. in Ω}

with ω1, ω2 ∈ R ∪ {−∞,∞}, ω1 ≤ ω2 and let for g ∈ L2(Ω)

(Πω2
ω2
g)(x) = min(max(g(x), ω1)), ω2) x ∈ Ω. (4.1.26)
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denote the pointwise cut-off of the function g which is in addition assumed to fulfil

Πω2
ω2

(z) ∈ L ∀z ∈ L. (4.1.27)

Besides, we denote by PL the orthogonal projection on L defined for arbitrary g ∈ L2(Ω) by

(PL(g)− g, z) = 0 ∀z ∈ L.

Then the projection ΠW (g) of a function g ∈ L2(Ω) on W defined by (compare Theorem 2.1.7)

(ΠW (g)− g, w −ΠW (g)) ≥ 0 ∀w ∈W (4.1.28)

satisfies:

(ΠW g)(x) = (Πω2
ω1

(PLg))(x) f.a.a x ∈ Ω.

Proof. Let us first investigate the case L = L2(Ω) before we turn to the general case L ⊂
L2(Ω):

Since L = L2(Ω) PL = I, where I is the identity operator. Recalling Theorem 2.1.7, we gain

for the projection ΠW (g) of an arbitrary function g ∈ L2(Ω) on W :

(ΠW (g)− g, w −ΠW (g)) ≥ 0 ∀w ∈W

Inserting w = Πω2
ω2

(g) ∈W , we deduce

0 ≤ (ΠW (g)− g,Πω2
ω2

(g)−ΠW (g)) = (ΠW (g)−Πω2
ω1
g + Πω2

ω1
g − g,Πω2

ω2
(g)−ΠW (g))

= −
∥∥ΠW g −Πω2

ω2
g
∥∥2

+ (Πω2
ω1
g − g,Πω2

ω1
g −ΠW g)

Rearranging this inequality, we derive

∥∥ΠW g −Πω2
ω2
g
∥∥2 ≤ (Πω2

ω1
g − g,Πω2

ω1
g −ΠW g). (4.1.29)

Now we distinguish between three (not necessarily non-empty) sets:

Ω+ := {x ∈ Ω : g(x) > ω2 a.e}

Ω− := {x ∈ Ω : g(x) < ω1 a.e. }

Ω0 := Ω \ (Ω+ ∪ Ω−).

Distinguishing between these different sets on the right hand side in (4.1.29), we derive by

S. Steinig AFEM for State-Constrained Optimal Control



139 CHAPTER 4. THE ESTIMATOR

definition of Πω2
ω1
g:

∥∥ΠW g −Πω2
ω2
g
∥∥2 ≤ (Πω2

ω1
g − g,Πω2

ω1
g −ΠW g)L2(Ω+) + (Πω2

ω1
g − g,Πω2

ω1
g −ΠW g)L2(Ω−)

+ (Πω2
ω1
g − g,Πω2

ω1
g −ΠW g)L2(Ω0)

= (ω2 − g︸ ︷︷ ︸
≤0

, ω2 −ΠW g︸ ︷︷ ︸
≥0, ΠW g∈W

)L2(Ω+) + (ω1 − g︸ ︷︷ ︸
≥0

, ω1 −ΠW g︸ ︷︷ ︸
≤0, ΠW g∈W

)L2(Ω−)

+ (g − g, g −ΠW g)L2(Ω0)︸ ︷︷ ︸
=0

≤ 0

Hence

ΠW g = Πω2
ω1
g, (4.1.30)

because the projection on W is unique, compare Theorem 2.1.7.

Having settled the case L = L2(Ω), we can now turn to the general setting L ⊂ L2(Ω): Here,

we investigate ∥∥ΠW (g)−Πω2
ω1

(PLg)
∥∥2

= (ΠW (g)− g,ΠW (g)−Πω2
ω1

(PLg))

+ (g −Πω2
ω1

(PLg),ΠW (g)−Πω2
ω1
PL(g)).

(4.1.31)

Due to (4.1.27) we have Πω2
ω1

(PLg) ∈ W . Thus, (4.1.28) yields for the first term on the right

above:

(ΠW (g)− g,ΠW (g)−Πω2
ω1

(PLg)) ≤ 0.

Hence, continuing our estimates in (4.1.31), we obtain

∥∥ΠW (g)−Πω2
ω1

(PLg)
∥∥2 ≤ (g − PL(g),ΠW (g)−Πω2

ω1
(PLg))

+ (PL(g)−Πω2
ω1

(PLg),ΠW (g)−Πω2
ω1

(PLg)).

For the first term on the right in the inequality above we use the definition of the orthogonal

projection and once again (4.1.27) to deduce

(g − PL(g),ΠW (g)−Πω2
ω1

(PLg)︸ ︷︷ ︸
=0,ΠW g,Π

ω2
ω1

(PLg)∈L

) = 0

For the second term we take advantage of (4.1.30) for g = PLg to obtain

(PL(g)−Πω2
ω1

(PLg),ΠW (g)−Πω2
ω1

(PLg)) ≤ 0,
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because ω1 ≤ ΠW g ≤ ω2 a.e. by definition of W .

Thus, all in all

∥∥ΠW (g)−Πω2
ω1

(PLg)
∥∥2 ≤ 0

and hence

ΠW g = Πω2
ω1

(PLg).

This completes the proof.

This result can now be transferred to the optimality condition for Ū εk in both the variational

and full discretisation setting. This is the subject of the next theorem:

Theorem 4.1.16. For the variational discretisation setting, i.e. Uk = U, in the notation of

(4.1.7), the following relation is valid:

Ū εk(x) = min(max(−1

ν
P̄ εk (x), a), b) = (Πb

a(−
1

ν
P̄ εk ))(x) = (Π(P̄ εk ))(x) f.a.a. x ∈ Ω (4.1.32)

For the full discretisation setting we have with the L2-orthogonal projection on Uk, PUk

Ū εk(x) = min(max(PUk(−1

ν
P̄ εk )(x), a), b)

= (Πb
a(PUk(−1

ν
(P̄ εk ))(x) =: (Πk(P̄

ε
k ))(x) f.a.a x ∈ Ω

(4.1.33)

holds.

Proof. Let us recall the optimality condition for Ū εk in the following slightly reformulated way:

(Ū εk +
1

ν
P̄ εk , U − Ū εk) ≥ 0 ∀U ∈ Uk.

In the variational discretisation setting we can thus immediately apply Lemma 4.1.15 with

W = Uk and ω1 = a, ω2 = b to deduce:

Ū εk = Πb
a(−

1

ν
P̄ εk ).

This gives (4.1.32).

To derive (4.1.33), we again intend to apply Lemma 4.1.15, however, we have to verify (4.1.27)

for Uk first. Naturally, though, it is clear that the pointwise cut-off (4.1.26) of a piecewise

constant function is still a piecewise constant function. Hence (4.1.27) holds. This in turn
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allows us to harness the results of Lemma 4.1.15 to gain

Ū εk = Πb
a(PUk(−1

ν
(P̄ εk )))

This completes the proof.

Let us now finally turn to constructing an estimator for∥∥∥ūεN − Ū εk∥∥∥2
.

4.2 Derivation of the Estimator

We will not be able to derive an estimator for
∥∥∥ūεN − Ū εk∥∥∥2

all at once in one step. For better

readability, we will thus shortly list the necessary steps to achieve this aim:

Recalling the definition of Π(·), (4.1.7), i.e.

(Π(v))(x) := min(max(v(x), a), b) v ∈ L2(Ω),

(4.1.32), we can lay out the broad strategy to derive the desired estimator:

1. Estimate for arbitrary P ∈ H̊1(Ω) ∥∥∥Π(P )− ūεN
∥∥∥2

(4.2.1)

2. Estimate the resulting terms involving the multipliers θ̄ε
N
, θ̄εk

3. Combining both, derive an estimate for the variational discretisation approach Ū εk =

Π(P̄ εk ) by inserting P = P̄ εk in (4.2.1)

4. Deduce estimate for the full discretisation by splitting the difference and using (4.2.1):∥∥∥Ū εk − ūεN∥∥∥2
≤ 2

∥∥Π(P̄ εk )− Ū εk
∥∥2

+ 2
∥∥∥Π(P̄ εk )− ūεN

∥∥∥2

The first term on the left can be evaluated exactly, compare [49], Remark 4.3, the second

one can be dealt with as in the variational discretisation setting.

As we see, (4.2.1) is the starting point for our analyses. This ’basic’ estimate is therefore our

first goal:
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4.2.1 The Basic Estimator

Before, we turn to the actual estimator, let us first recall the well-known Young’s inequality:

ab ≤ 1

2δ
a2 +

δ

2
b2, a, b, δ > 0 (4.2.2)

On several occasions, we will also use the following application of Young’s inequality. The

proof is trivial.

Lemma 4.2.1. Let ai, bi, i = 1, ....m be non-negative real numbers. Then

(
m∑
i=1

aibi)
2 ≤ m

m∑
i=1

a2
i b

2
i

We are now in a position to prove the first crucial estimate

Lemma 4.2.2. Let (P, Y ) ∈ H̊1(Ω) × H̊1(Ω) be arbitrary. Furthermore, we define ŷ :=

SΠ(P ), p̂ := S∗(Y − yd − θ̄εk) and U := Π(P ). Then, with a fixed N ≥ 1, we have∥∥∥Π(P )− ūεN
∥∥∥2
≤ 1

2ν
‖ŷ − Y ‖2 +

1

ν2
‖p̂− P‖2

+
2

ν
(θ̄ε

N
, ȳε

N − ŷ) +
2

ν
(θ̄εk, ŷ − ȳε

N
),

(4.2.3)

Proof. We start by remarking that for the projection on the closed and convex set U of − 1
ν ,

ΠU (− 1
νP ) we have thanks to Lemma 4.1.15

(ΠU (−1

ν
P ))(x) = min(max(−1

ν
P̄ εk (x), a), b) = (Π(P ))(x) f.a.a. x ∈ Ω.

Using the variational inequality for the projection on a closed and convex set, compare The-

orem 2.1.7 or (4.1.28), we then obtain:

(P + νΠ(P ), u−Π(P )) ≥ 0 ∀u ∈ U . (4.2.4)

In particular, we thus have

(P + νΠ(P ),Π(P )− ūεN ) ≤ 0,

because ūε
N

. Similarly, employing the optimality condition for ūε
N

in (4.1.6) into which we

insert u = Π(P ) ∈ U , we obtain

−(p̄ε
N

+ νūε
N
,Π(P )− ūεN ) ≤ 0
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From these observations we can infer that:

ν
∥∥∥Π(P )− ūεN

∥∥∥2
= (P + νΠ(P ),Π(P )− ūεN )L2(Ω)︸ ︷︷ ︸

≤0

−(p̄ε
N

+ νūε
N
,Π(P )− ūεN )︸ ︷︷ ︸
≤0

+(p̄ε
N − P,Π(P )− ūεN )

≤ (p̄ε
N − P,Π(P )− ūεN )

Inserting p̂, we can split the last term in the following fashion:

(p̄ε
N − P,Π(P )− ūεN ) = (p̄ε

N − p̂,Π(P )− ūεN ) + (p̂− P,Π(P )− ūεN ) (4.2.5)

For the second term on the right hand side we use Cauchy-Schwarz and then Young’s inequal-

ity (4.2.2) with δ = ν to obtain:

(p̂− P,Π(P )− ūεN ) ≤ 1

2ν
‖p̂− P‖2 +

ν

2

∥∥∥Π(P )− ūεN
∥∥∥2
. (4.2.6)

For the first term on the right hand side in (4.2.5) we use p̄ε
N
, p̂ ∈ H̊1(Ω) for every fixed

ε > 0, as well as ŷ = SΠ(P ) and p̂ = S∗(Y − yd − θ̄εk) to deduce:

(p̄ε
N − p̂,Π(P )− ūεN ) = (∇(ŷ − ȳεN ),∇(p̄ε

N − p̂))

= (ȳε
N − Y, ŷ − ȳεN ) + (θ̄εk − θ̄ε

N
, ŷ − ȳεN )

The second term already forms a part of (4.2.3), thus, at this stage, we content ourselves with

estimating the first using Cauchy-Schwarz’s and then Young’s inequality (4.2.2) with δ = 2:

(ȳε
N − Y, ŷ − ȳεN ) = (ȳε

N − ŷ, ŷ − ȳεN ) + (ŷ − Y, ŷ − ȳεN )

= −
∥∥∥ŷ − ȳεN∥∥∥2

+ ‖ŷ − Y ‖
∥∥∥ŷ − ȳεN∥∥∥

≤ −
∥∥∥ŷ − ȳεN∥∥∥2

+
1

4
‖ŷ − Y ‖2 +

∥∥∥ȳεN − ŷ∥∥∥2

=
1

4
‖ŷ − Y ‖2

(4.2.7)

Combining (4.2.6) and (4.2.7), we discern

ν
∥∥∥Π(P )− ūεN

∥∥∥2
≤ 1

2ν
‖p̂− P‖2 +

ν

2

∥∥∥Π(P )− ūεN
∥∥∥2

+
1

4
‖ŷ − Y ‖2

+ (θ̄εk − θ̄ε
N
, ŷ − ȳεN )
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We can now subtract the term ν
2

∥∥∥Π(P )− ūεN
∥∥∥2

in the inequality above. Then, we obtain:

ν

2

∥∥∥Π(P )− ūεN
∥∥∥2
≤ 1

4
‖ŷ − Y ‖2 +

1

2ν
‖p̂− P‖2

+ (θ̄ε
N
, ȳε

N − ŷ) + (θ̄εk, ŷ − ȳε
N

).

Multiplying the inequality by 2
ν then yields the desired result.

A similar estimate was also derived in [46]. However, we will now extend this result by

providing an upper bound for the terms

(θ̄ε, ȳε
N − ŷ), (θ̄εk, ŷ − ȳε

N
), ŷ = SΠ(P ), P ∈ H̊1(Ω) (4.2.8)

This is the second step of our ’roadmap’ to derive an estimator for the difference
∥∥∥ūεN − Ū εk∥∥∥2

which we presented at the beginning of this section.

Before, though, we need a couple of auxiliary results. The first one provides a ’monotonicity’

property of the continuous solution operator S, see e.g. [36], Theorem 8.1. Its proof is rooted

in the maximum principle for elliptic differential operators:

Lemma 4.2.3. Suppose that q ∈ L2(Ω) with q ≥ 0 a.e. in Ω is given. Then Sq ≥ 0 a.e., too,

and since S = S∗ by Theorem 4.1.5, we also have S∗q ≥ 0.

Secondly, we need a special projection:

Definition 4.2.4. For an arbitrary function z ∈ L2(Ω) we define the projection P 0+
k :

L2(Ω)→ FES(Tk,P0, L2(Ω)) by

P 0+
k z = arg min

W∈FES(Tk,P0,L2(Ω)),W≥0 a.e.

1

2
‖W − z‖2 , (4.2.9)

i.e. it is the projection on the closed and convex subset of the space of piecewise constant

functions

F := {W ∈ FES(Tk,P0, L2(Ω)) : 0 ≤W <∞ a.e.} .

P 0+
k perfectly fits into the setting of Lemma 4.1.15. The following lemma summarises the

properties we will often use throughout our analyses:

Lemma 4.2.5. For any v ∈ L2(Ω), P 0+
k satisfies

∥∥P 0+
k v

∥∥
L2(Ω)

≤ ‖v‖L2(Ω) . (4.2.10)
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Besides, on every element T ∈ Tk, P 0+
k is defined by

P 0+
k v|T = max(

1

|T |

∫
T

v(x) dT, 0) = max((PFES(Tk,P0,L2(Ω))v)(x), 0), (4.2.11)

where PFES(Tk,P0,L2(Ω)) denotes the L2-orthogonal projection on the space FES(Tk,P0, L2(Ω)).

Proof. Let us first turn to the stability estimate (4.2.10): First of all, we recall the definition

of P 0+
k , Definition 4.2.4, where we observed that P 0+

k is the projection on the closed and

convex set

F := {W ∈ FES(Tk,P0, L2(Ω)) : 0 ≤W <∞ a.e.} .

Thanks to Theorem 2.1.7 it is uniquely defined - hence, the operator P 0+
k is well-defined. Due

to P 0+
k 0 = 0 Lipschitz continuity, compare again Theorem 2.1.7, now yields for all v ∈ L2(Ω):

∥∥P 0+
k v

∥∥ =
∥∥P 0+

k v − 0
∥∥ =

∥∥P 0+
k v − P 0+

k 0
∥∥ ≤ ‖v − 0‖ = ‖v‖ .

This gives (4.2.10).

Let us now prove (4.2.11): To do so, we simply apply Lemma 4.1.15. First of all, we are

again projecting on the space of piecewise constant functions, hence, (4.1.27) holds. With

ω1 = 0, ω2 =∞ and PC := PFES(Tk,P0,L2(Ω)) as the L2(Ω)-orthogonal projection on the space

of piecewise constant functions, Lemma 4.1.15 yields for any v ∈ L2(Ω):

(P 0+
k v)(x) = max((PCv)(x), 0) = (Π∞0 (PCv))(x) f.a.a x ∈ Ω. (4.2.12)

Finally, in the proof of Theorem 2.4.4 we have already demonstrated that the L2(Ω)-orthogonal

projection on the space of piece constant functions satisfies:

PCv|T :=
1

|T |

∫
T

v(x) dT ∀T ∈ Tk.

Combining this with formula (4.2.12) gives (4.2.11).

We can now return to the question of estimating (4.2.8), starting with the term

(θ̄εk, ŷ − ȳε
N

), ŷ = SΠ(P ), P ∈ H̊1(Ω)

Lemma 4.2.6. Let (U,P, Y ) ∈ L2(Ω)×H̊1(Ω)×Yk be arbitrary. Furthermore, let ŷ = SΠ(P )
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and p̂ = S∗(Y − yd− θ̄εk) be given. Finally, let Rk denote the Ritz-projection on Yk defined by

(∇(Rkq − q),∇W ) = 0 ∀W ∈ Yk, q ∈ H̊1(Ω). (4.2.13)

Then

(θ̄εk, ŷ − ȳε
N

) ≤ (Π(P ), P − p̂)− (Y − yd, Rk(SU)− ŷ)

+ (U −Π(P ), P ) + (θ̄εk, Rk(SU)− Y ) + (θ̄εk, Y − Ikyc)

+ (θ̄εk, Ikyc − yc) + (θ̄εk, yc − ȳε
N

).

(4.2.14)

Let 4 < p′ <∞ in case d = 2 and p′ = 6 in case d = 3. Then, for the last term in 4.2.14, we

have the estimate

(θ̄εk, yc − ȳε) .
∥∥θ̄εk − P 0+

k θ̄εk
∥∥+

∥∥P 0+
k θ̄εk

∥∥min(ε3N/2, c(p′)s(τ)ε2N(1−1/p′)), (4.2.15)

where P 0+
k is defined as in Definition 4.2.4.

The constants in (4.2.15) depend on a, b, ‖S‖ ,Ω, yd, yc.

Proof. Let us first split the left hand side in (4.2.14) in the following way

(θ̄εk, ŷ − ȳε
N

) = (θ̄εk, ŷ − yc + yc − ȳε
N

)

= (θ̄εk, ŷ − yc) + (θ̄εk, yc − ȳε
N

).
(4.2.16)

The proof is now divided into two parts: First, we will prove (4.2.15) for the second term on

the right in the equation above which already appears in (4.2.14). Secondly, we will derive

the rest of the bound in (4.2.14) by investigating the first term on the right in (4.2.16):

1st part of the proof:

We turn our focus now towards the second term on the right hand side above, which already

appears on the right as the last term in (4.2.14): To prove its additional property (4.2.15),

we first split it in the following way:

(θ̄εk, yc − ȳε
N

) = (θ̄εk − P 0+
k θ̄εk, yc − ȳε

N
) + (P 0+

k θ̄εk, yc − ȳε
N

). (4.2.17)

Let us first tackle the second term on the right in the equation above. Since (P 0+
k θ̄εk)(x) ≥ 0

by construction, we obtain

(P 0+
k θ̄εk, yc − ȳε

N
) ≤ (P 0+

k θ̄εk, (yc − ȳε
N

)+) = (P 0+
k θ̄εk,−(ȳε

N − yc)−)
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The penalty structure (4.1.8) then yields:

(P 0+
k θ̄εk,−(ȳε

N − yc)−) = εN (P 0+
k θ̄εk, v̄

εN ).

Corollary 4.1.9 presently allows us to conclude that

(P 0+
k θ̄εk, yc − ȳε

N
) ≤ εN (P 0+

k θ̄εk, v̄
εN )

≤ εN
∥∥P 0+

k θ̄εk
∥∥∥∥∥v̄εN∥∥∥

.
∥∥P 0+

k θ̄εk
∥∥min(ε3N/2, c(p′)s(τ)ε2(N−1/p′)).

Going back to (4.2.17), we have thus gained the bound

(θ̄εk, yc − ȳε
N

) . (θ̄εk − P 0+
k θ̄εk, yc − ȳε

N
) +

∥∥P 0+
k θ̄εk

∥∥min(ε3N/2, c(p′)s(τ)ε2(N−1/p′)).

Employing Cauchy-Schwarz’s inequality for the first term on the right in the inequality above,

we can pursue our estimates to obtain

(θ̄εk, yc − ȳε
N

) .
∥∥θ̄εk − P 0+

k θ̄εk
∥∥∥∥∥yc − ȳεN∥∥∥+

∥∥P 0+
k θ̄εk

∥∥min(ε3N/2, c(p′)s(τ)ε2(N−1/p′)).

(4.2.18)

Now, observe that thanks to continuity of S and the uniform bound on ūε
N ∈ U , (4.1.1), we

have ∥∥∥yc − ȳεN∥∥∥ ≤ ‖S‖L(L2(Ω),L2(Ω))

∥∥∥ūεN∥∥∥ ‖yc‖ . 1.

Thus, recalling (4.2.18), we can then finally derive (4.2.15):

(θ̄εk, yc − ȳε
N

) .
∥∥θ̄εk − P 0+

k θ̄εk
∥∥+

∥∥P 0+
k θ̄εk

∥∥min(ε3N/2, c(p′)s(τ)ε2(N−1/p′)).

This completes the first part of the proof, let us now tackle the second.

2nd part of the proof:

Let us have a look at the following term, its significance will become evident later on:

(∇(Rk(p̂)− p̂),∇(Y − ŷ)). (4.2.19)

Using the Ritz-projection Rk, (4.2.13), ŷ = SΠ(P ) and p̂ = S∗(Y − yd − θ̄εk) we can conclude

S. Steinig AFEM for State-Constrained Optimal Control



148 CHAPTER 4. THE ESTIMATOR

that:

(∇(Rk(p̂)− p̂),∇(Y − ŷ)) = (∇(Rk(p̂)− p̂),∇(Y −Rk(SU) +Rk(SU)− ŷ))

= (∇(Rk(p̂)− p̂),∇(Y −Rk(SU)))︸ ︷︷ ︸
=0,Y,Rk(SU)∈Yk

+ (∇(Rk(p̂)− p̂),∇(Rk(SU)− ŷ))

= (∇(Rk(p̂)− p̂),∇(Rk(SU)− ŷ))

= (∇Rk(p̂),∇(Rk(SU)− ŷ))

− (∇p̂,∇(Rk(SU)− ŷ))

= (∇Rk(p̂),∇(SU − ŷ))− (∇p̂,∇(Rk(SU)− ŷ))

= (Rk(p̂), U)− (Rk(p̂),Π(P ))− (∇p̂,∇(Rk(SU)− ŷ))

= (Rk(p̂), U)− (Rk(p̂),Π(P ))

− (Y − yd − θ̄εk, Rk(SU)− ŷ)

(4.2.20)

Now, let us look at (4.2.19) from another point of view. Harnessing once again the Ritz

projection Rk, (4.2.13), and ŷ = SΠ(P ) we immediately arrive at

(∇(Rk(p̂)− p̂),∇(Y − ŷ)) = −(∇(Rk(p̂)− p̂),∇ŷ) = −(Π(P ), Rk(p̂)− p̂).

Rearranging (4.2.20), we derive

(θ̄εk, ŷ −Rk(SU)) = (Π(P ), Rk(p̂)− p̂)− (Y − yd, Rk(SU)− ŷ) + (U −Π(P ), Rk(p̂))

and thus, combining this with our previous deductions, we obtain

(θ̄εk, ŷ − yc) = (θ̄εk, ŷ −Rk(SU) +Rk(SU)− Y + Y − Ikyc + Ikyc − yc)

= (θ̄εk, ŷ −Rk(SU)) + (θ̄εk, Rk(SU)− Y ) + (θ̄εk, Y − Ikyc) + (θ̄εk, Ikyc − yc)

= (Π(P ), Rk(p̂)− p̂)− (Y − yd, Rk(SU)− ŷ) + (U −Π(P ), Rk(p̂))

+ (θ̄εk, Rk(SU)− Y ) + (θ̄εk, Y − Ikyc) + (θ̄εk, Ikyc − yc).

Recalling (4.2.16), we are now in possession of the desired result.

Remark 4.2.7. We remark that the computation of P 0+
k requires the evaluation of element

mean values, see (4.2.11). Computationally, this requires limited effort and is thus acceptable

as a part of an a posteriori error estimator.

Remark 4.2.8. Instead of using the space of piecewise constant functions FES(Tk,P0, L2(Ω))

as the image space for the projector P 0+
k in Definition 4.2.4, we could also project on the subset

of a.e. non-negative functions in a space of discontinuous piecewise linear finite elements, such
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as

FES(Tk,P1, L2(Ω)).

Computationally, this would require inverting a (d + 1) × (d + 1) matrix on every element

T ∈ Tk. Again, this is a computationally justifiable effort.

We will now tackle the second term in (4.2.8)

(θ̄ε
N
, ȳε

N − ŷ)

Before, though, we again need some auxiliary results beginning with the definition of the

harmonic extension:

Definition 4.2.9 (Harmonic Extension). Let z ∈ H1/2(∂Ω) (compare Theorem 2.1.31) be

given. Then the harmonic extension Hz ∈ H1(Ω),∇Hz ∈ H(div,Ω) of z is the unique

solution to the boundary value problem:

−∆Hz = 0 in Ω

Hz = z on ∂Ω

Let us shortly explain that the harmonic extension is well-defined. Surjectivity of the trace

mapping, compare Theorem 2.1.31, immediately allows us to conclude that there exists a

function φ ∈ H1(Ω) such that φ = z in the sense of traces on ∂Ω. The unique solvability of

the boundary value problem in Definition 4.2.9 then is a standard result, which can e.g. be

found in [36], Theorem 8.3.

Using the harmonic extension, we gain the following lemma, which is a consequence of The-

orem 8.1 in [36] and the fact that yc|∂Ω < 0 by assumption.

Lemma 4.2.10. Define ι ∈ H1/2(∂Ω) by

ι(x) := yc(x), x ∈ Γ

Then Hι ≤ 0 a.e., yc −Hι ∈ H̊1(Ω) and ∇yc,∇ι ∈ H(div,Ω) and ∆Hι = 0 a.e. in Ω.

We can now turn to estimating the continuous multiplier term:

Lemma 4.2.11. Let (Y, P ) ∈ H̊1(Ω) × H̊1(Ω) be arbitrary, ŷ = SΠ(P ) and 4 < p′ < ∞ in
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case d = 2 and p′ = 6 in case d = 3. Then the following estimate is valid

(θ̄ε
N
, ȳε − ŷ) . min

{
‖p̄εNs ‖

∥∥(Π(P ) + ∆yc)
−∥∥ ,

+ c(p′)s(τ)ε−3N/p′(|ŷ − Y |H1(Ω) + |(Y − Ikyc)−|H1(Ω) + ‖yc − Ikyc‖H1(Ω))

}
− 1

εN

∥∥∥v̄εN∥∥∥2
.

(4.2.21)

Proof. First of all, we take Hι as in Lemma 4.2.10 and split the critical term in the following

way.

(θ̄ε
N
, ȳε − ŷ) = (θ̄ε

N
, ȳε − (yc −Hι)) + (θ̄ε

N
, yc −Hι− ŷ).

Investigating the first term, we take advantage of the complimentary slackness condition

(4.1.9) and the sign on the harmonic extension Hι, see Lemma 4.2.10, to deduce

(θ̄ε
N
, ȳε − yc +Hι) = − 1

εN

∥∥∥v̄εN∥∥∥2
+ (θ̄ε

N
, Hι)︸ ︷︷ ︸
≤0

≤ 0.

We still need to estimate the term

(θ̄ε
N
, yc −Hι− ŷ),

though:

Using the singular part of the adjoint state p̄ε
N

s = −S∗θ̄εN , compare Theorem 4.1.6,∇ŷ,∇yc,∇Hι ∈
H(div,Ω), yc −Hι ∈ H̊1(Ω) and Green’s formula, we deduce:

(θ̄ε
N
, yc −Hι− ŷ) = (−∇p̄εNs ,∇(yc −Hι− ŷ))

= (p̄ε
N

s ,∆yc −∆Hι−∆ŷ)..

Now, observe that ∆Hι = 0 and −∆ŷ = Π(P ) a.e in Ω. This allows us to conclude:

(θ̄ε
N
, yc −Hι− ŷ) = (p̄ε

N

s ,∆yc −∆Hι+ ∆ŷ) = (p̄ε
N
,∆yc + Π(P )).

Thanks to −θ̄εN ≤ 0 a.e. and Lemma 4.2.3 we know that p̄ε
N

= −S∗θ̄εN ≤ 0 a.e. Thus, we

discern:
( p̄ε

N

s︸︷︷︸
≤0

,∆yc + Π(P )) ≤ (p̄ε
N
, (∆yc + Π(P ))−)

≤
∥∥∥p̄εNs ∥∥∥∥∥(∆yc + Π(P ))−

∥∥ . (4.2.22)
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All in all, we have proven the bound:

(θ̄ε
N
, ȳε − ŷ) ≤

∥∥∥p̄εNs ∥∥∥∥∥(∆yc + Π(P ))−
∥∥− 1

εN

∥∥∥v̄εN∥∥∥2
=: min1. (4.2.23)

This gives the first argument in the min operation in (4.2.21).

To derive the other bound given by the second argument in the min operation in (4.2.21), we

return to the start and split the critical term in the following way:

(θ̄ε
N
, ȳε − ŷ) = (θ̄ε

N
, ȳε − yc) + (θ̄ε

N
, yc − ŷ) (4.2.24)

For the first term, we once again take advantage of the complimentary slackness condition

(4.1.9):

(θ̄ε
N
, ȳε − yc) = − 1

εN

∥∥∥v̄εN∥∥∥2
.

For the other term on the right in (4.2.24) we discern that

(θ̄ε
N
, yc − ŷ) = (θ̄ε

N
, yc − Ikyc) + (θ̄ε

N
, Ikyc − Y ) + (θ̄ε

N
, Y − ŷ)

Utilising the bound for θ̄ε
N

derived in Lemma 4.1.7, θ̄ε
N ≥ 0 and the embedding H̊1(Ω) ↪→

Lp(Ω), see Theorem 2.1.35 and the Poincaré-Friedrich inequality, Theorem 2.1.33, we obtain

for 1 ≤ p ≤ 2 and 1
p + 1

p′ = 1:

(θ̄ε
N
, yc − Ikyc) ≤

∥∥∥θ̄εN∥∥∥
Lp(Ω)

‖yc − Ikyc‖Lp′ (Ω) . c(p
′)s(τ)ε−3N/p′ ‖yc − Ikyc‖H1(Ω)

(θ̄ε
N
, Ikyc − Y ) ≤

∥∥∥θ̄εN∥∥∥
Lp(Ω)

∥∥(Y − Ikyc)−
∥∥
Lp′ (Ω)

. c(p′)s(τ)ε−3N/p′ |(Y − Ikyc)−|H1(Ω)

(θ̄ε
N
, Y − ŷ) ≤

∥∥∥θ̄εN∥∥∥
Lp(Ω)

‖Y − ŷ‖Lp′ (Ω) . c(p
′)s(τ)ε−3N/p′ |Y − ŷ|H1(Ω),

where the hidden constants depend on a, b,Ω, ν, yd, ‖S‖.
Reviewing the previous estimates, we have proven the bound given by the second argument

of the min argument in (4.2.21):

(θ̄ε
N
, ȳε − ŷ) . c(p′)s(τ)ε−3N/p′

(
‖yc − Ikyc‖H1(Ω) + |(Y − Ikyc)−|H1(Ω) + |Y − ŷ|H1(Ω)

)
− 1

εN

∥∥∥v̄εN∥∥∥2

=: min2

Combining this with (4.2.23), we obtain

(θ̄ε
N
, ȳε − ŷ) . min(min1,min2)
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which is the desired result.

Let us shortly recapitulate our ’roadmap’ for deriving an estimator which we presented at the

beginning of this section:

1. Estimate for arbitrary P ∈ H̊1(Ω) ∥∥∥Π(P )− ūεN
∥∥∥2

2. Estimate the resulting terms involving the multipliers θ̄ε
N
, θ̄εk

3. Combining both, derive an estimate for the variational discretisation approach Ū εk =

Π(P̄ εk ) by inserting P = P̄ εk in (4.2.1)

4. Deduce estimate for the full discretisation by splitting the difference and using (4.2.1):∥∥∥Ū εk − ūεN∥∥∥2
≤ 2

∥∥Π(P̄ εk )− Ū εk
∥∥2

+ 2
∥∥∥Π(P̄ εk )− ūεN

∥∥∥2

The first and second step we have completed with the Lemmata 4.2.2, 4.2.6 and 4.2.11. What

remains to be done are steps 3 and 4, to which we now turn presently:

4.2.2 Estimators for the Semi and Fully Discrete Problem

In the case of the variational discretisation technique, we have thanks to Theorem 4.1.16,

in particular formula (4.1.32), Ū εk = Π(P̄ εk ). As described in our ’roadmap’, in this case,

Lemmata 4.2.2, Lemma 4.2.6 and Lemma 4.2.11 already provide us with a full estimator:

Theorem 4.2.12. Let N ≥ 1 be fixed and 4 < p′ < ∞ in case d = 2 and p′ = 6 in case

d = 3. In the case of variational discretisation, i.e Π(P̄ εk ) = Ū εk we gain the error bound

∥∥Ū εk − ū∥∥2
+

4

νεN

∥∥∥v̄εN∥∥∥2
. c(p′)s(τ)εγN + E2

r (Ū εk , V̄
ε
k ) + Es(Ū εk , V̄ ε

k ) (4.2.25)

with γ as in (4.1.22) and

E2
r (Ū εk , V̄

ε
k ) =

1

ν

∥∥(S − Sk)Ū εk
∥∥2

+
2

ν2

∥∥(S − Sk)∗(Ȳ ε
k − yd − θ̄εk)

∥∥2

+
4

ν
(θ̄εk, Ȳ

ε
k − Ikyc) +

4

ν
(θ̄εk, Ikyc − yc)

(4.2.26)
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and

Es(Ū εk , V̄ ε
k ) =

4

ν

∥∥Ȳ ε
k − yd

∥∥∥∥(S − Sk)Ū εk
∥∥+

4

ν

∥∥Ū εk∥∥∥∥(S − Sk)∗(Ȳ ε
k − yd − θ̄εk)

∥∥
+

4

ν

∥∥θ̄εk − P 0+
k θ̄εk

∥∥
+

4

ν
c(p′)s(τ)

∥∥P 0+
k (θ̄εk)

∥∥min(ε2N(1−1/p′), ε3N/2)

+
4

ν
min

{∥∥∥p̄εNs ∥∥∥∥∥(Ū εk + ∆yc)
−∥∥ ,

c(p′)s(τ)ε−3N/p′
(
|(S − Sk)Ū εk |H1(Ω) + ‖yc − Ikyc‖H1(Ω)

+ |(Ȳ ε
k − Ikyc)−|H1(Ω)

)}
,

(4.2.27)

where P 0+
k is the projection defined in Definition 4.2.4.

Proof. First of all, we split the error
∥∥ū− Ū εk∥∥2

with the help of the triangle and Young’s

inequality with δ = 1, (4.2.2), in the following way

∥∥ū− Ū εk∥∥2 ≤ 2
∥∥∥ū− ūεN∥∥∥2

+ 2
∥∥∥ūεN − Ū εk∥∥∥2

. (4.2.28)

For the first term on the right in the inequality above we can use Theorem 4.1.10 to deduce∥∥∥ū− ūεN∥∥∥2
. c(p′)s(τ)εγN .

with γ defined in (4.1.22).

For the second term on the right in (4.2.28) we employ Lemma 4.2.2 with U = Ū εk = Π(P̄ εk ),

P = P̄ εk and Y = Ȳ ε
k to gain

2
∥∥∥ūεN − Ū εk∥∥∥2

≤ 1

ν

∥∥SŪ εk − Ȳ ε
k

∥∥2
+

2

ν2

∥∥S∗(Ȳ ε
k − yd − θ̄εk)− P̄ εk

∥∥2

+
4

ν
(θ̄εk, SŪ

ε
k − ȳε

N
) +

4

ν
(θ̄ε

N
, ȳε

N − SŪ εk).

(4.2.29)

Investigating the second to last term on the right, we harness Lemma 4.2.6 and Rk(SŪ
ε
k) = Ȳ ε

k
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thanks to Lemma 4.1.12 to conclude with the additional help of (4.2.15):

(θ̄εk, SŪ
ε
k − ȳε

N
) ≤ (Ū εk , P̄

ε
k − S∗(Ȳ ε

k − yd − θ̄εk))︸ ︷︷ ︸
Cauchy−Schwarz

− (Ȳ ε
k − yd, Ȳ ε

k − ŷ)︸ ︷︷ ︸
Cauchy−Schwarz

+ (θ̄εk, Ȳ
ε
k − Ikyc) + (θ̄εk, Ikyc − yc) + (θ̄εk, yc − ȳε

N
)︸ ︷︷ ︸

(4.2.15)

.
∥∥Ū εk∥∥∥∥P̄ εk − S∗(Ȳ ε

k − yd − θ̄εk)
∥∥+

∥∥Ȳ ε
k − yd

∥∥∥∥Ȳ ε
k − ŷ

∥∥
+ (θ̄εk, Ȳ

ε
k − Ikyc) +

∥∥θ̄εk − P 0+
k (θ̄εk)

∥∥
+ c(p′)s(τ)

∥∥P 0+
k (θ̄εk)

∥∥min(ε2N(1−1/p′), ε3N/2)

(4.2.30)

Combining (4.2.29) and (4.2.30) and we obtain∥∥∥Ū εk − ūεN∥∥∥2
≤ E2

r (Ū εk , V̄
ε
k ) +

4

ν

∥∥Ū εk∥∥∥∥P̄ εk − S∗(Ȳ ε
k − yd − θ̄εk)

∥∥
+

4

ν

∥∥Ȳ ε
k − yd

∥∥∥∥Ȳ ε
k − ŷ

∥∥
+

4

ν

∥∥θ̄εk − P 0+
k (θ̄εk)

∥∥
+

4

ν
c(p′)s(τ)

∥∥P 0+
k (θ̄εk)

∥∥min(ε2N(1−1/p′), ε3N/2)

+
4

ν
(θ̄ε

N
, ȳε

N − SŪ εk)

(4.2.31)

The last term remains to be estimated.

Recalling Lemma 4.2.11 with Y = Ȳ ε
k , P = P̄ εk and Ū εk = Π(P̄ εk ), we deduce

4

ν
(θ̄ε

N
, ȳε

N − SŪ εk) .
4

ν
min

{
‖p̄εNs ‖

∥∥(Ū εk + ∆yc)
−∥∥ ,

+ c(p′)s(τ)ε−3N/p′
(
|SŪ εk − Ȳ ε

k |H1(Ω) + |(Ȳ ε
k − Ikyc)−|H1(Ω)

+ ‖yc − Ikyc‖H1(Ω)

)}
− 4

νεN

∥∥∥v̄εN∥∥∥2

The term 4
νεN

∥∥∥v̄εN∥∥∥2
can be shifted to the left in (4.2.29) to complete the left hand side in

(4.2.25). Presently, inserting the estimate above in (4.2.31) and recalling the definition of

Es(Ū εk , V̄ ε
k ), (4.2.27), we deduce the the right hand side in (4.2.25), i.e.:

∥∥Ū εk − ū∥∥2
+

4

νεN

∥∥∥v̄εN∥∥∥2
. c(p′)s(τ)εγN + E2

r (Ū εk , V̄
ε
k ) + Es(Ū εk , V̄ ε

k )
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As the final step of our ’roadmap’, we now naturally want to extend the results of Theorem

4.2.12 to the setting of the full discretisation approach where the controls are discretised

by piecewise constant functions. In this setting, in general Π(P̄ εk ) 6= Ū εk , hence, we encounter

an additional error which has to be taken into account leading to estimators which are slightly

different to the estimators Er and Es in Theorem 4.2.12.

This is the subject of the next theorem:

Theorem 4.2.13. Let Ū εk , V̄
ε
k be the solution to (DMP εk ) and N ≥ 1 be fixed. Besides, let

4 < p′ <∞ in case d = 2 and p′ = 6 in case d = 3. Then the following estimates hold:

∥∥Ū εk − ū∥∥2
+

8

νεN

∥∥∥v̄εN∥∥∥2
. c(p′)s(τ)εγN + E2

r (Ū εk , V̄
ε
k ) + Es(Ū εk , V̄ ε

k ) (4.2.32)

with

E2
r (Ū εk , V̄

ε
k ) =

4

ν
(
∥∥(S − Sk)Ū εk

∥∥2
+ (2 +

4 ‖S‖2

ν
)
∥∥Ū εk −Π(P̄ εk )

∥∥2

+
4

ν2

∥∥(S − Sk)∗(Ȳ ε
k − yd − θ̄εk)

∥∥2

+
8

ν
(Ū εk −Π(P̄ εk ), P̄ εk ) +

8

ν
(θ̄εk, Ȳ

ε
k − Ikyc)

+
8

ν
(θ̄εk, Ikyc − yc),

(4.2.33)

where ‖S‖ = ‖S‖L(L2(Ω),L2(Ω)), and

Es(Ū εk , V̄ ε
k ) =

8

ν

∥∥Ȳ ε
k − yd

∥∥ (
∥∥(S − Sk)Ū εk

∥∥+
∥∥Ū εk −Π(P̄ εk )

∥∥)

+
8

ν

∥∥Π(P̄ εk )
∥∥∥∥(S − Sk)∗(Ȳ ε

k − yd − θ̄εk)
∥∥

+
8

ν
c(p′)s(τ)

∥∥P 0+
k (θ̄εk)

∥∥min(ε2N(1−1/p′), ε3N/2)

+
8

ν

∥∥θ̄εk − P 0+
k θ̄εk

∥∥
+

8

ν
min

{∥∥∥p̄εNs ∥∥∥∥∥(Π(P̄ εk ) + ∆yc)
−∥∥ , c(p′)s(τ)ε−3N/p′

(
|(S − Sk)Ū εk |H1(Ω)

+ |S|
∥∥Ū εk −Π(P̄ εk )

∥∥+ ‖yc − Ikyc‖H1(Ω)

+ |(Ȳ ε
k − Ikyc)−|H1(Ω)

)}
(4.2.34)

where |S| = ‖S‖L(L2(Ω),H̊1(Ω)).

Proof. As in the proof of Theorem 4.2.12 we harness the results of Lemmas 4.2.2, 4.2.6 and

4.2.11 to prove the bound (4.2.32).
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Utilising Lemma 4.2.1 and Theorem 4.1.10, we observe that∥∥Ū εk − ū∥∥2 ≤ 2
∥∥Ū εk −Π(P̄ εk )

∥∥2
+ 2

∥∥Π(P̄ εk )− ū
∥∥2

≤ 2
∥∥Ū εk −Π(P̄ εk )

∥∥2
+ 4

∥∥∥Π(P̄ εk )− ūεN
∥∥∥2

+ 4
∥∥∥ū− ūεN∥∥∥2

. 2
∥∥Ū εk −Π(P̄ εk )

∥∥2
+ 4

∥∥∥Π(P̄ εk )− ūεN
∥∥∥2

+ 4c(p′)s(τ)εγN .

(4.2.35)

The first term
∥∥Ū εk −Π(P̄ εk )

∥∥2
can be evaluated by numerical integration, compare again [49],

Remark 4.3. Thus, the aim now is to control the term
∥∥∥Π(P̄ εk )− ūεN

∥∥∥2
.

Inserting (Ȳ ε
k , P̄

ε
k ) for (Y, P ) in Lemma 4.2.2 with Y = Ȳ ε

k and P = P̄ εk , we obtain∥∥∥Π(P̄ εk )− ūεN
∥∥∥2
≤ 1

2ν

∥∥SΠ(P̄ εk )− Ȳ ε
k

∥∥2
+

1

ν2

∥∥S∗(Ȳ ε
k − yd − θ̄εk)− P̄ εk

∥∥2

+
2

ν
(θ̄ε

N
, ȳε

N − SΠ(P̄ εk )) +
2

ν
(θ̄εk, SΠ(P̄ εk )− ȳεN )

(4.2.36)

We will derive (4.2.33) first. To begin with, we discern with ‖S‖ = ‖S‖L(L2(Ω),L2(Ω)) and

Ȳ ε
k = SkŪ

ε
k that∥∥SΠ(P̄ εk )− Ȳ ε

k

∥∥2
=
∥∥SΠ(P̄ εk )− SŪ εk + SŪ εk − Ȳ ε

k

∥∥2

≤ 2
∥∥S(Ū εk −Π(P̄ εk ))

∥∥2
+ 2

∥∥(S − Sk)Ū εk
∥∥2

≤ 2 ‖S‖2
∥∥Ū εk −Π(P̄ εk )

∥∥2
+ 2

∥∥(S − Sk)Ū εk
∥∥2

(4.2.37)

Let us now tackle the remaining terms in (4.2.36) beginning with (θ̄εk, SΠ(P̄ εk )− ȳεN ):

First of all we discern that (Ȳ ε
k = SkŪ

ε
k):

∥∥Ȳ ε
k − SΠ(P̄ εk )

∥∥ ≤ ‖S‖ ∥∥Ū εk −Π(Ū εk)
∥∥+

∥∥(S − Sk)Ū εk
∥∥ . (4.2.38)

Presently, to gain an estimate for (θ̄εk, SΠ(P̄ εk )− ȳεN ), we employ Lemma 4.2.6 with U = Ū εk ,
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P = P̄ εk and Y = Ȳ ε
k ; also recollect that Rk(SŪ

ε
k) = Ȳ ε

k :

(θ̄εk, SΠ(P̄ εk )− ȳεN ) ≤ (Π(P̄ εk ), P̄ εk − S∗(Ȳ ε
k − yd − θ̄εk))︸ ︷︷ ︸

Cauchy−Schwarz

− (Ȳ ε
k − yd, Ȳ ε

k − SΠ(P̄ εk ))︸ ︷︷ ︸
Cauchy−Schwarz+(4.2.38)

+ (θ̄εk, yc − ȳε
N

)︸ ︷︷ ︸
(4.2.15)

+(Ū εk −Π(P̄ εk ), P̄ εk )

+ (θ̄εk, Ȳ
ε
k − Ikyc) + (θ̄εk, Ikyc − yc)

.
∥∥Π(P̄ εk )

∥∥∥∥(S − Sk)∗(Ȳ ε
k − yd − θ̄εk)

∥∥
+
∥∥Ȳ ε

k − yd
∥∥ (
∥∥(S − Sk)Ū εk

∥∥+ ‖S‖
∥∥Ū εk −Π(P̄ εk )

∥∥)

+
∥∥θ̄εk − P 0+

k (θ̄εk)
∥∥

+ c(p′)s(τ)
∥∥P 0+

k (θ̄εk)
∥∥min(ε2N(1−1/p′), ε3N/2)

+ (Ū εk −Π(P̄ εk ), P̄ εk ) + (θ̄εk, Ikyc − yc) + (θ̄εk, Ȳ
ε
k − Ikyc)

(4.2.39)

This bound can now be used in (4.2.36): We set

X :=
∥∥Π(P̄ εk )

∥∥∥∥(S − Sk)∗(Ȳ ε
k − yd − θ̄εk)

∥∥
+
∥∥Ȳ ε

k − yd
∥∥ (
∥∥(S − Sk)Ū εk

∥∥+ ‖S‖
∥∥Ū εk −Π(P̄ εk )

∥∥)

+
∥∥θ̄εk − P 0+

k (θ̄εk)
∥∥+ c(p′)s(τ)

∥∥P 0+
k (θ̄εk)

∥∥min(ε2N(1−1/p′), ε3N/2)

(4.2.40)

and observe that X already contains many of the terms given in (4.2.34).

Combining the estimate (4.2.39) with (4.2.35), (4.2.36) and (4.2.37), we obtain

∥∥Ū εk − ū∥∥2
. c(p′)s(τ)εγN + (2 +

4 ‖S‖2

ν
)
∥∥Π(P̄ εk )− Ū εk

∥∥2

+
4

ν

∥∥(S − Sk)Ū εk
∥∥2

+
4

ν2

∥∥S∗(Ȳ ε
k − yd − θ̄εk)− P̄ εk

∥∥2

+
8

ν
(θ̄εk, Ikyc − yc) +

8

ν
(θ̄εk, Ȳ

ε
k − Ikyc) +

8

ν
(Ū εk −Π(P̄ εk ), P̄ εk )

+
8

ν
A+

8

ν
(θ̄ε

N
, ȳε

N − SΠ(P̄ εk ))

In short:

∥∥Ū εk − ū∥∥2
. c(p′)s(τ)εγN + E2

r (Ū εk , V̄
ε
k ) +

8

ν
A+

8

ν
(θ̄ε

N
, ȳε

N − SΠ(P̄ εk )) (4.2.41)

The last term remains to be estimated:
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We employ Lemma 4.2.11 with Y = Ȳ ε
k and P = P̄ εk to obtain:

(θ̄ε
N
, ȳε

N − SΠ(P̄ εk )) . min

{
‖p̄εNs ‖

∥∥(Π(P̄ εk ) + ∆yc)
−∥∥ ,

+ c(p′)s(τ)ε−3N/p′
( ∣∣SΠ(P̄ εk )− SkŪ εk

∣∣
H1(Ω)

+ |(Ȳ ε
k − Ikyc)−|H1(Ω) + ‖yc − Ikyc‖H1(Ω)

)}
− 8

νεN

∥∥∥v̄εN∥∥∥2
.

(4.2.42)

Except for
∣∣SΠ(P̄ εk )− SkŪ εk

∣∣
H1(Ω)

all terms already appear in (4.2.34). Let us therefore further

estimate this term. Using continuity of S and setting |S| = ‖S‖L(L2(Ω),H1(Ω)), we derive

|S̄kŪ εk − SΠ(P̄ εk )|H1(Ω) ≤ |S|
∥∥Π(P̄ εk )− Ū εk

∥∥+
∣∣(S − Sk)Ū εk ∣∣H1(Ω)

With the help of this bound we can further estimate the left hand side in (4.2.42) to obtain

the bound:

(θ̄ε
N
, ȳε

N − SΠ(P̄ εk )) . min

{
‖p̄εNs ‖

∥∥(Π(P̄ εk ) + ∆yc)
−∥∥ , c(p′)s(τ)ε−3N/p′

( ∣∣(S − Sk)Ū εk ∣∣H1(Ω)

+ |S|
∥∥Π(P̄ εk )− Ū εk

∥∥+ |(Ȳ ε
k − Ikyc)−|H1(Ω)

+ ‖yc − Ikyc‖H1(Ω)

)}
− 8

νεN

∥∥∥v̄εN∥∥∥2

=: Y
(4.2.43)

We observe that by definition, compare (4.2.40):

X + Y = Es(Ū εk , V̄ ε
k )− 8

νεN

∥∥∥v̄εN∥∥∥2
.

Bearing this relation in mind, we can now insert the bound derived in (4.2.43) in (4.2.41) to

deduce:

∥∥Ū εk − ū∥∥2
. c(p′)s(τ)εγN + E2

r (Ū εk , V̄
ε
k ) + Es(Ū εk , V̄ ε

k )− 8

νεN

∥∥∥v̄εN∥∥∥2
.

Shifting the term − 8
νεN

∥∥∥v̄εN∥∥∥2
to the left we obtain the desired inequality (4.2.32). This

completes the proof.
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4.2.3 Boundedness of the Explicit Constants

In the inequalities (4.2.27), (4.2.26), (4.2.34) and (4.2.33) there still appear the quantities∥∥∥p̄εN∥∥∥ , ∥∥Π(P̄ εk )
∥∥ .

In this section, our aim is to bound them uniformly to justify treating them as constants

in the error estimators of Section 5.2.2. To prove this result we have to take advantage of

the powerful machinery of solution notions of PDE, where the right hand side is merely a

measure. Limiting the scope of this thesis, we will merely cite the most basic result which

goes back to [77], Theorem 9.1. For additional information, we refer to the instructive paper

[23].

Theorem 4.2.14 (Existence of Solutions for L1 RHS). For every µ ∈ L1(Ω) there exists a

unique S∗µ ∈ W̊ 1
s (Ω), s < d

d−1 , d = 2 or d = 3, such that the following equation is fulfilled:

(∇S∗µ,∇z) = (µ, z) ∀z ∈ W̊ 1
s′(Ω),

1

s
+

1

s′
= 1.

Besides

‖S∗µ‖W 1
s (Ω) . ‖µ‖L1(Ω) .

We can now tackle the main result of this section which is the following theorem:

Theorem 4.2.15. The following bound is valid

∥∥Π(P̄ εk )
∥∥ . 1 (4.2.44)

with a hidden constant depending solely on a, b,Ω.

Suppose further that Assumption 4.1.4 holds. Then for all s < d
d−1 , d = 2 or d = 3∥∥∥p̄εNs ∥∥∥ ,∥∥∥p̄εNs ∥∥∥

W 1
s (Ω)
. s(τ). (4.2.45)

Proof. Let us tackle (4.2.44) first. Since

a ≤ Π(P̄ εk ) ≤ b,

this bound is trivial. For the second bound (4.2.45) we have to utilise Theorem 4.2.14, which

provides us with the following estimate:∥∥∥p̄εNs ∥∥∥
W 1
s (Ω)

=
∥∥∥S∗θ̄εN∥∥∥

W 1
s (Ω)
.
∥∥∥θ̄εN∥∥∥

L1(Ω)
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with s < d
d−1 . Combining this result with Lemma 4.1.7, we obtain the desired result. After

all, thanks to Theorem 2.1.35 W 1
s (Ω) ↪→ Lp(Ω) compactly for all p <∞, d = 2 and p < 3 for

d = 3, we have ∥∥∥p̄εNs ∥∥∥
L2(Ω)

.
∥∥∥p̄εNs ∥∥∥

W 1
s (Ω)

.

Remark 4.2.16. Theorem 4.2.15 provides the justification for shifting∥∥∥p̄εN∥∥∥∥∥Π(P̄ εk )
∥∥

into the hidden constant . which then depends on data S,Ω, a, b, yd, ν, .. and the generic

embedding constant c(p′) as well as the generic Slater point related constant s(τ).

Let us finish this section with a remark about the properties and structure of the estimators

derived in Theorem 4.2.12 and Theorem 4.2.13:

Remark 4.2.17. The estimators of Theorem 4.2.12 and Theorem 4.2.13 have two main

issues: The first one is the fact that they still contain linear errors such as
∥∥(S − Sk)Ū εk

∥∥
which need to be estimated further, because the function SŪ εk is in general not known. To

overcome this problem, we will introduce residual type error estimators providing an upper

bound for these terms in Section 4.3.3.

The second issue is centred around the fact that the term Es in both the variational and

full discretisation setting does not lend itself to localisation, because, in essence, Es does not

contain squared L2- and H1-(semi)norms, just plain norms. To remedy this disadvantage, we

will describe a way to estimate the term(s) Es further to allow precisely for a localisation by

elementwise contributions. This will be done in Section 5.2 and Section 5.3.

We will now conclude this chapter by examining the issues of convergence of the estimator.

4.3 Convergence Properties of the Estimator

In this section the onus lies on giving the reader an impression of how the estimators derived

in Theorems 4.2.12 and 4.2.13 behave as k →∞ and εk → 0. Naturally, the desired property

would be

c(p′)s(τ)εγNk + E2
r (Ū εkk , V̄

εk
k ) + Es(Ū εkk , V̄

εk
k )→ 0 as εk → 0, k →∞

without any further conditions.

However, as we will soon discover, we will not be able to prove such a result without enforcing
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further sufficient conditions. Apart from certain technical assumptions, see (CA1)-(CA5)

below, the key condition for convergence will take the shape of

ε−rk (hmax
k )s, r, s > 0, (4.3.1)

where

hmax
k := max

T∈Tk
hT . (4.3.2)

defines the maximal mesh size at iterate k. We emphasise that conditions of the type 4.3.1

should be viewed in a way that eventually successive refinement, i.e. hmax
k → 0, will make the

adaptive algorithm converge provided we are careful in choosing the regularisation parameter

ε and N .

To be more specific, we will present the reader with our convergence theorem, the key

result of this section, which we will prove step by step over the next few pages:

Theorem (Convergence of Estimator). Let εk → 0, k →∞, N ≥ 1 and 4 < p′ <∞ in case

d = 2 and p′ = 6 in case d = 3 be chosen such that

ε
3/4−3N/p′

k , ε
−3N/p′

k (hmax
k )

1+ d
2
− d
q̄ , ε

− 3N+1
p′

k hmax
k → 0,

ε
−9/4
k (hmax

k )1/2 → 0, ε−3
k hmax

k → 0 min(ε
2(N−1/p′)−3/2
k , ε

3
2

(N−1)

k )→ 0

Then

εγNk + E2
r (Ū εkk , V̄

εk
k ) + Es(Ū εkk , V̄

εk
k )→ 0 as εk → 0, k →∞.

At this stage we want to stress that the error estimators (4.2.32) and (4.2.25) still contain

linear errors, which still need to be estimated. We will sketch some of the issues and present

residual type estimators in Section 4.3.3, which also converge as εk → 0 and k →∞.

The focus in this section lies very much on the error estimators derived for the full dis-

cretisation setting, Theorem 4.2.13. Convergence of the error estimators for the variational

discretisation approach, Theorem 4.2.12, is then just an easy consequence of convergence of

the error estimators in the full discretisation case.

For notational convenience, we will now drop explicitly stating the constants c(p′), s(τ).

The reader should bear in mind that in certain estimates they arise.

Let us now give a list of the additional assumptions we make to prove the convergence
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theorem:

CA1. The Slater-type assumption, Assumption 4.1.4, is fulfilled.

CA2. Let q̄ > d
2 be a fixed real number: Then yc has the following properties: yc ∈ H̊1(Ω) ∩

W 2
q̄ (Ω) and ∇yc ∈ H(div,Ω).

CA3. The convergence condition (3.3.4) is fulfilled.

CA4. The operator Ik is the Lagrange interpolant. It is well-defined for yc since W 2
q̄ (Ω) ↪→

C(Ω̄), q̄ > d
2 , compare Theorem 2.1.35.

CA5. For all k ≥ N there exists a constant independent of k and ε, such that

∥∥θ̄εk∥∥L1(Ω)
. 1

CA6. Let 4 < p′ <∞ in case d = 2 and p′ = 6 in case d = 3 and 1
p + 1

p′ = 1

It is worthwhile to add some explanatory remarks to these assumptions:

• (CA1): We already needed this assumption to derive the estimators (4.2.25) and (4.2.32).

Thus, it is only natural that we need it again in this setting.

• (CA2): The higher regularity of yc is needed to use standard interpolation estimates.

However, it is not overly restrictive at all, since - as we will see in Theorem 4.3.1 - it

merely reflects the generic regularity of the solution to the PDE in (CMP ).

• (CA4): We want to stress here that interpolation operators such as the Scott-Zhang

or Clément operators could be used as well for the operator Ik. The crucial thing

is that Ik provides us with certain rates of convergence in terms of the mesh-size:

‖yc − Ikyc‖ . (hmax
k )ρ, ρ large enough.

• (CA5): This bound is crucial for providing estimates for the Lp-norm of the discrete

multiplier,
∥∥θ̄εk∥∥Lp(Ω)

, with 1 ≤ p ≤ 2 which in turn are need to bound quantities such

as
∣∣S∗θ̄εk∣∣H1(Ω)

, a key tool to prove convergence as we will soon discover.

However, the reader should note that we only enforce a uniform bound in the relatively

weak L1(Ω)-norm. On the continuous level we have such a bound, compare Lemma

4.1.7.

• (CA6): This is the by now familiar convention for p′ and p which enables us to use

the a priori estimates of Theorem 4.1.10 and which we already demanded in Theorem

4.2.12 and Theorem 4.2.13, where we derived the estimators for the variational and full

discretisation respectively.
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Before we explore some consequence of these assumptions, let us first - for future use - record

an additional regularity result for the solution of the PDE in (CMP ). The proof of the W 1
p -

regularity can be found in [73], Section 4, Theorem 2, the proofs of the W 2
q -regularity are in

Chapter 4, [37], in case d = 2 and Chapter 2, [38], if d = 3:

Theorem 4.3.1. The solution operator S is a linear and continuous mapping S : L2(Ω) →
W̊ 1
p (Ω) ∩W 2

q̄ (Ω) for some p̄ > d and q̄ > d
2 from Assumption (CA2).

Remark 4.3.2. The q̄ of the theorem above is the same q̄ as in (CA2) and will always

remain the same in the next two sections!

As a corollary of Assumption (CA5) we obtain the following bound

Corollary 4.3.3. Suppose that Assumption (CA5) holds. Then with p′, p from Assumption

(CA6):

∥∥θ̄εk∥∥Lp(Ω)
. ε−3/p′ .

Proof. The proof merely constitutes tracing the arguments of Lemma 4.1.7.

Now, we can actually commence the task of proving our convergence theorem. The terms we

will focus upon first are the linear errors S − Sk, this will be the subject of the next section:

4.3.1 Convergence of the Linear Errors

To start with, we observe that condition (CA3) ensures that (3.3.4) is fulfilled, which, in turn,

guarantees, compare Corollary 3.3.11 and Corollary 3.3.12, that for any null sequence εk and

k →∞:
Ū εkk → ū in L2(Ω)

Ȳ εk
k → ȳ in H1(Ω)

1

εk

∥∥V̄ εk
k

∥∥2 → 0.

(4.3.3)

These are the necessary ingredients to prove the following theorem:

Theorem 4.3.4 (Convergence of Linear Errors). Let εk → 0 be a null sequence and k →∞.

Then

∥∥(S − Sk)Ū εkk
∥∥ , |(S − Sk)Ū εkk |H1(Ω) → 0, k →∞ (4.3.4)

Suppose further that εk and p′ from Assumption (CA6) are chosen in such a way that

ε
− 3
p′

k (hmax
k )

1+ d
2
− d
q̄ → 0, k →∞, (4.3.5)
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with q̄ > d
2 from (CA2), then

∥∥(S − Sk)∗(Ȳ εk
k − yd − θ̄

εk
k )
∥∥→ 0, k →∞. (4.3.6)

Proof. We prove (4.3.4) first: We observe with ‖S‖ = ‖S‖L(L2(Ω),L2(Ω)) and |S| = ‖S‖L(L2(Ω),H̊1(Ω)

and the same convention for ‖Sk‖ and |Sk| that

∥∥(S − Sk)Ū εkk
∥∥ ≤ ‖S‖ ∥∥ū− Ū εkk ∥∥+ ‖(S − Sk)ū‖+ ‖Sk‖

∥∥ū− Ū εkk ∥∥∣∣(S − Sk)Ū εkk ∣∣H1(Ω)
≤ |S|

∥∥ū− Ū εkk ∥∥+ |(S − Sk)ū|H1(Ω) + |Sk|
∥∥ū− Ū εkk ∥∥ .

Since Skg → Sg for all g ∈ L2(Ω) - see Theorem 2.3.10 - and (4.3.3) holds, uniform bounded-

ness of ‖Sk‖ , |Sk|, compare Corollary 2.1.22, ensures that the right hand sides in the inequal-

ities above converge. This gives (4.3.4).

Let us now tackle (4.3.6): With arguments completely analogous to those above, we immedi-

ately obtain

S∗k(Ȳ εk
k − yd)→ S∗(ȳ − yd), in H̊1(Ω), k →∞

Thanks to the Poincaré-Friedrich inequality, Theorem 2.1.33, we thus immediately deduce:

(S − Sk)∗(Ȳ εk
k − yd)→ 0 in L2(Ω), k →∞. (4.3.7)

Hence, to prove (4.3.6), we have to show L2(Ω)-convergence of (S − Sk)
∗θ̄εkk → 0. Here,

though, things are not that straightforward, since θ̄εkk need not strongly converge. In the

remaining part of the proof, we will demonstrate how to overcome this obstacle:

We note that

∥∥(S − Sk)∗(−θ̄εkk )
∥∥ = sup

g∈L2(Ω)\{0}

((S − Sk)∗(−θ̄εkk ), g)

‖g‖
. (4.3.8)

We define the space W by

W := W 2
q̄ (Ω) ∩

{
ψ ∈ H̊1(Ω) : ∇ψ ∈ H(div,Ω)

}
and observe that thanks to Theorem 4.3.1 and Lemma 4.1.3 we have for an arbitrary g ∈ L2(Ω)

a ψ ∈W with −∆ψ = g a.e in Ω. Consequently (4.3.8) is equivalent to

∥∥(S − Sk)∗(−θ̄εkk )
∥∥ = sup

ψ∈W\{0}

((S − Sk)∗(−θ̄εkk ),−∆ψ)

‖∆ψ‖
. (4.3.9)

Let us therefore investigate the term ((S − Sk)∗(−θ̄εkk ),−∆ψ) for arbitrary ψ ∈ W . Using
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Green’s formula and ψ ∈ H̊1(Ω), we deduce

((S − Sk)∗(−θ̄εkk ),−∆ψ) = −(∇Sθ̄εkk ,∇ψ) + (∇Skθ̄εkk ,∇ψ). (4.3.10)

Using the Ritz projection Rk, (4.2.13), and the fact that Rk(S
∗θ̄εkk ) = S∗k θ̄

εk
k , we can continue

to rearrange (4.3.10) in the following way:

((S − Sk)∗(−θ̄εkk ),−∆ψ) = −(∇S∗θ̄εkk ,∇ψ) + (∇S∗k θ̄
εk
k ,∇ψ)

= −(∇S∗θ̄εkk ,∇ψ) + (∇S̄∗k θ̄
εk
k ,∇Rkψ)

= −(∇S∗θ̄εkk ,∇ψ) + (∇S̄∗θ̄εkk ,∇Rkψ)

= −(∇S∗θ̄εkk ,∇(ψ −Rkψ)).

An application of Cauchy-Schwarz’s inequality on the right then yields:

((S − Sk)∗(−θ̄εkk ),−∆ψ) ≤
∣∣S∗θ̄εkk ∣∣H1(Ω)

|ψ −Rkψ|H1(Ω) . (4.3.11)

Since S∗ : H−1(Ω)→ H̊1(Ω) and Lp(Ω) ↪→ H−1(Ω), 1
p + 1

p′ = 1 thanks to Assumption (CA6),

we obtain using Corollary 4.3.3:

|S∗θ̄εkk |H1(Ω) .
∥∥θ̄εkk ∥∥Lp(Ω)

. ε−3/p′

k . (4.3.12)

This can now be inserted in (4.3.11) so that together with standard interpolation estimates

for the Ritz projection, see e.g. [14], Sections 4.4 and 4.8, we are able to conclude :

((S − Sk)∗(−θ̄εkk ),−∆ψ) . ε−3/p′

k |ψ −Rkψ|H1(Ω)

. ε−3/p′

k (hmax
k )

1+ d
2
− d
q̄ ‖ψ‖W 2

q̄ (Ω)

Now, observe that due to Theorem 4.3.1 and the definition of ψ, ‖ψ‖W 2
q̄ (Ω) . ‖g‖ = ‖−∆ψ‖.

Thus for any such 0 6= ψ ∈W :

((S − Sk)∗(−θ̄εkk ),−∆ψ)

‖∆ψ‖
. ε−3/p′

k (hmax
k )

1+ d
2
− d
q̄

‖ψ‖W 2
q̄ (Ω)

‖−∆ψ‖
. ε−3/p′

k (hmax
k )

1+ d
2
− d
q̄ .

Plugging this bound into (4.3.9) yields:

∥∥(S − Sk)∗(−θ̄εkk )
∥∥ . ε−3/p′

k (hmax
k )

1+ d
2
− d
q̄

Due to (4.3.6) the right hand side converges and together with (4.3.7) we obtain the desired

result.
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In the singular parts of the error estimators (4.2.27) and (4.2.34) ’weighted’ terms of the type:

ε−3N/p′
∣∣(S − Sk)Ū εk ∣∣H1(Ω)

occur. With the help of a condition similar to (4.3.6) we can prove convergence for those

terms, too:

Theorem 4.3.5. Suppose that εk → 0, N and p′ from Assumption (CA6) are chosen in such

a way that

ε
−3N/p′

k (hmax
k )

1+ d
2
− d
q̄ → 0, k →∞. (4.3.13)

with q̄ from Assumption (CA2). Then

ε
−3N/p′

k |(S − Sk)Ū εkk |H1(Ω) → 0, , k →∞. (4.3.14)

Proof. Standard interpolation estimates yield

|(S − Sk)Ū εkk |H1(Ω) . (hmax
k )

1+ d
2
− d
q̄
∥∥SŪ εkk ∥∥W 2

q̄ (Ω)

Multiplying this term with ε
−3N/p′

k yields:

ε
−3N/p′

k |(S − Sk)Ū εkk |H1(Ω) . ε
−3N/p′

k (hmax
k )

1+ d
2
− d
q̄
∥∥SŪ εkk ∥∥W 2

q̄ (Ω)

Theorem 4.3.1 now allows us to conclude uniform boundedness of
∥∥SŪ εkk ∥∥W 2

q̄ (Ω)
and condition

(4.3.14) guarantees convergence of the right hand side and thus the desired result (4.3.14).

Remark 4.3.6. We observe that for N ≥ 1 condition (4.3.14) is a stronger condition than

(4.3.6). Thus, it is condition (4.3.14) which appears in our convergence theorem not its weaker

counterpart (4.3.6).

Having ascertained convergence of the linear error terms we can now focus on those terms in

(4.2.25) and (4.2.32) which contain only known discrete and continuous functions, i.e. those

quantities which we dubbed ’computable’ at the beginning of this chapter.

4.3.2 Convergence of the Computable Quantities

Theorem 4.3.7 (Convergence of Projection Error). Let εk → 0 and p′ from Assumption

(CA6) are chosen in such a way that

ε
−3/p′

k hmax
k → 0, k →∞. (4.3.15)
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Then

∥∥Ū εkk −Π(P̄ εkk )
∥∥→ 0, k →∞.

In particular,

Π(P̄ εkk )→ ū, k → 0

Proof. The key estimate that we prove in the course of this proof is

∥∥Ū εkk −Π(P̄ εkk )
∥∥ . ε−3/p′

k hmax
k .

To derive this estimate, we recall Lemma 4.1.15. There, we demonstrated that Π(·) is the

best-approximation of − 1
ν · in the convex and closed set

U = {u ∈ L2(Ω) : a ≤ u ≤ b a.e in Ω} .

Thanks to Theorem 2.1.7 we know that Π is Lipschitz-continuous. Together with the pro-

jection relation (4.1.33) and standard estimates for the L2-projection of an H1-function, we

then obtain: ∥∥Ū εkk −Π(P̄ εkk )
∥∥ = ||Π(PUk(P̄ εkk ))︸ ︷︷ ︸

=Ū
εk
k

−Π(P̄ εkk )||

≤ 1

ν

∥∥PUk(P̄ εkk )− P̄ εkk
∥∥

. hmax
k |P̄ εkk |H1(Ω).

(4.3.16)

We now observe that P̄ εk is the Ritz-projection (4.2.13) of S∗(Ȳ εk
k − yd − θ̄

εk
k ). Harnessing

its stability in the H1 semi-norm, we can pursue our estimates with the help of Assumption

(CA5) and (4.3.12) in the following way:

hmax
k |P̄ εkk |H1(Ω) ≤ hmax

k |P̄ εkk − S
∗(Ȳ εk

k − yd − θ̄
εk
k )|H1(Ω) + hmax

k |S∗(Ȳ εk
k − yd − θ̄

εk
k )|H1(Ω)

. hmax
k |S∗(Ȳ εk

k − yd − θ̄
εk
k )|H1(Ω)

. hmax
k

∥∥Ȳ εk
k − yd

∥∥+ hmax
k

∥∥θ̄εkk ∥∥Lp(Ω)
,

1

p
+

1

p′
= 1

. ε−3/p′

k hmax
k .

Inserting this bound in (4.3.16), we obtain:

∥∥Ū εkk −Π(P̄ εkk )
∥∥ . ε−3/p′

k hmax
k .

If (4.3.15) holds, then the right hand side in the inequality above converges and hence, the
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left side does, too. Due to (4.3.3) we know in addition that

lim
k→∞

Π(P̄ εkk ) = lim
k→∞

Ū εkk = ū.

This is the desired result.

Let us recollect that in the singular part of the error estimator (4.2.34) the following term

enters:

ε
−3N/p′

k

∥∥Ū εkk −Π(P̄ εkk )
∥∥

To prove convergence of this term, we need to strengthen condition (4.3.15) in a similar way

as in Theorem 4.3.5. This is done in the next theorem:

Theorem 4.3.8. Suppose that εk → 0, p′ from Assumption (CA6) and N ≥ 1 are chosen

such that the following condition is fulfilled

ε
−3(N+1)

p′
k hmax

k → 0, k →∞. (4.3.17)

Then,

ε
−3N
p′

k

∥∥Ū εkk −Π(P̄ εkk )
∥∥→ 0, k →∞. (4.3.18)

Proof. From Theorem 4.3.7 we know that

∥∥Ū εkk −Π(P̄ εkk )
∥∥ . ε−3/p′

k hmax
k .

Multiplying the inequality above with ε3N/p′ yields:

ε
−3N/p′

k

∥∥Ū εkk −Π(P̄ εkk )
∥∥ . ε−3(N+1)/p′

k hmax
k .

Condition (4.3.17) then implies the desired result.

Remark 4.3.9. We observe that (4.3.17) is a stronger condition compared to (4.3.15), thus

it is the former which enters as a condition in our convergence theorem.

We can now turn to the remaining explicit quantities. To tackle them, we need the ensuing

auxiliary estimate:

Lemma 4.3.10. For each ε > 0 and q̄ from Assumption (CA2) we have:

|(Ȳ ε
k − Ikyc)−|H1(Ω) . (hmax

k )
1+ d

2
− d
q̄ + ε3/4
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Proof. Define ŷ := SŪ εk be given. Then we can estimate in the following fashion:

|(Ȳ ε
k − Ikyc)−|2H1(Ω) =

∫
Ω

∇(Ȳ ε
k − Ikyc)−∇(Ȳ ε

k − Ikyc) dΩ

=

∫
Ω

∇(Ȳ ε
k − Ikyc)−∇(Ȳ ε

k − ŷ) dΩ +

∫
Ω

∇(Ȳ ε
k − Ikyc)−∇(ŷ − yc) dΩ

+

∫
∇(Ȳ ε

k − Ikyc)−∇(yc − Ikyc) dΩ.

Using Young’s inequality, (4.2.2), and Green’s formula, we can pursue our estimates above to

derive:

|(Ȳ ε
k − Ikyc)−|2H1(Ω) ≤

1

2
|(Ȳ ε

k − Ikyc)−|2H1(Ω) + |ŷ − Ȳ ε
k |2H1(Ω) + ‖yc − Ikyc‖2H1(Ω)

+

∫
Ω

(−∆ŷ + ∆yc)(Ȳ
ε
k − Ikyc)− dΩ

(4.3.19)

Let us have a closer look at the term (Ȳ ε
k −Ikyc)−. In case Ȳ ε

k −Ikyc ≤ 0 feasibility of (Ū εk , V̄
ε
k )

yields

εV̄ ε
k ≥ Ikyc − Ȳ ε

k .

Thus,

∥∥(Ȳ ε
k − Ikyc)−

∥∥ ≤ ε∥∥V̄ ε
k

∥∥ .
Observe now that −∆ŷ = Ū εk a.e. in Ω. Employing our deductions above, we gain for the

last integral on the right in (4.3.19):∫
Ω

(−∆ŷ + ∆yc)(Ȳ
ε
k − Ikyc)− dΩ ≤ ||( Ū εk︸︷︷︸

=−∆ŷ

+∆yc)||
∥∥(Ȳ ε

k − Ikyc)−
∥∥

≤
∥∥Ū εk + ∆yc

∥∥ ε∥∥V̄ ε
k

∥∥ . ε3/2.

Let us now insert this estimate in (4.3.19). Harnessing standard interpolation estimates,

Assumption (CA2) and the fact that ŷ ∈ W 2
q̄ (Ω) thanks to Theorem 4.3.1, we can then

conclude for (4.3.19):

|(Ȳ ε
k − Ikyc)−|2H1(Ω) . | ŷ − Ȳ

ε
k︸ ︷︷ ︸

=(S−Sk)Ūεk

|2H1(Ω) + ‖yc − Ikyc‖2H1(Ω) + ε3/2

. (hmax
k )2+d−q̄ ‖ŷ‖2W 2

q̄ (Ω) (hmax
k )2+d−q̄ ‖yc‖2W 2

q̄ (Ω) + ε3/2.
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Drawing the square root then yields the postulated assertion.

After this slight detour, we are now in the position to prove the following theorem:

Theorem 4.3.11 (Convergence of Explicit Quantities). Let εk → 0 be a null sequence and

k →∞. Then

(θ̄εk, Ȳ
ε
k − Ikyc)→ 0, k →∞ (4.3.20)

Suppose now that (4.3.15) is satisfied. Then,

∥∥(Π(P̄ εkk ) + ∆yc)
−∥∥→ ∥∥(ū+ ∆yc)

−∥∥ , k →∞. (4.3.21)

Besides, let (4.3.5) be fulfilled. Then

(θ̄εk, Ikyc − yc)→ 0, k →∞ (4.3.22)

and

(Ū εkk −Π(P̄ εkk ), P̄ εkk ), k →∞. (4.3.23)

Assume further that N ≥ 1, εk → 0 and p′ from Assumption (CA6) are chosen in such a way

that conditions (4.3.13), (4.3.17) as well as

ε
3
4
− 3N
p′

k → 0, k →∞, (4.3.24)

are fulfilled. Then

ε
−3N/p′

k

( ∥∥Π(P̄ εkk )− Ū εkk
∥∥+ |(Ȳ εk

k − Ikyc)
−|H1(Ω)

+ ‖yc − Ikyc‖H1(Ω)

)
→ 0, k →∞

(4.3.25)

Proof. The slackness identity in (4.1.25) immediately yields

(θ̄εk, Ȳ
ε
k − Ikyc) = − 1

εk

∥∥V̄ εk
k

∥∥2
.

The fact that we demanded that the basic convergence condition (3.3.4) be fulfilled, Assump-

tion (CA3), then allows us to conclude, compare Corollary 3.3.12:

1

εk

∥∥V̄ εk
k

∥∥2 → 0, k →∞.

Thus, (4.3.20) follows.

Let us tackle (4.3.21). Since we enforced condition (4.3.15), we know thanks to Theorem 4.3.7
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that

Π(P̄ εkk )→ ū, k →∞.

Continuity of ‖·‖ then gives the desired result (4.3.21).

Let us now examine (4.3.22): For p′ and p from Assumption (CA6) we have the following

estimate (compare also Corollary 4.3.3):

(θ̄εk, Ikyc − yc) ≤ c(p′)
∥∥θ̄εkk ∥∥Lp(Ω)

‖Ikyc − yc‖Lp′ (Ω)

. c(p′)
∥∥θ̄εkk ∥∥Lp(Ω)

‖Ikyc − yc‖H1(Ω)

. ε−3/p′

k (hmax
k )

1+ d
2
− d
q̄ ‖yc‖W 2

q̄ (Ω) ,

Condition (4.3.5) now implies convergence.

Turning to (4.3.23), we first realise that thanks to (CA5) and Theorem 4.2.14 we know that

∥∥S∗(Ȳ εk
k − yd − θ̄

ε
k)
∥∥ . 1. (4.3.26)

We now have the standard estimate:

∥∥S∗k(Ȳ εk
k − yd − θ̄

ε
k)
∥∥− ∥∥S∗(Ȳ εk

k − yd − θ̄
ε
k)
∥∥ ≤ ∥∥(S − Sk)∗(Ȳ εk

k − yd − θ̄
ε
k)
∥∥ .

Condition (4.3.5) guarantees convergence of the right-hand side above which in turn - coupled

with (4.3.26) - ensures boundedness

∥∥P̄ εkk ∥∥ =
∥∥S∗k(Ȳ εk

k − yd − θ̄
ε
k)
∥∥ . 1.

Now, Cauchy-Schwarz’s inequality, (4.3.15) and the previous deductions together imply

(Ū εkk −Π(P̄ εkk ), P̄ εkk ) ≤
∥∥Ū εkk −Π(P̄ εkk )

∥∥∥∥P̄ εkk ∥∥→ 0, k →∞

which is (4.3.23).

Let us now investigate (4.3.25) term by term:

For |(Ȳ εk
k − Ikyc)

−|H1(Ω) we employ Lemma 4.3.10 to deduce:

ε
−3N/p′

k |(Ȳ εk
k − Ikyc)

−|H1(Ω) . ε
−3N/p′

k (hmax
k )

1+ d
2
− d
q̄ + ε

3/4−3N/p′

k .

Conditions (4.3.13) and (4.3.24) then yield convergence.

Taking a look at ‖Ikyc − yc‖H1(Ω), we are able to conclude with the help of standard interpo-
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lation estimates:

ε
−3N/p′

k ‖Ikyc − yc‖H1(Ω) . ε
−3N/p′

k (hmax
k )

1+ d
2
− d
q ‖yc‖W 2

q (Ω) .

Lastly, for the term

ε
−3N/p′

k

∥∥Π(P̄ εkk )− Ū εkk
∥∥

we take advantage of Theorem 4.3.8, in particular (4.3.17) to deduce convergence of the entire

term (4.3.25).

Remark 4.3.12. In case d = 3, where p′ = 6 by Assumption (CA6), condition (4.3.24) poses

a restriction on the choice of N with the help of which we can decrease the regularisation

error on the continuous level. Naturally, this is not something for which we would wish.

However, it should be pointed out that numerically we often observe a faster convergence of

the regularisation error
∥∥V̄ ε

k

∥∥, which is the source of the restriction (4.3.24), compare the

proof of Lemma 4.3.10. Thus, condition (4.3.24) is in effect not as severe it might strike the

reader.

Let us now tackle the term
∥∥θ̄εkk − P 0+

k θ̄εkk
∥∥:

Theorem 4.3.13. Suppose that εk → 0 as k →∞ satisfies

ε
−9/4
k (hmax

k )1/2 → 0, ε−3
k hmax

k → 0, k →∞. (4.3.27)

Then

∥∥θ̄εkk − P 0+
k (θ̄εkk )

∥∥→ 0.

Proof. The proof is fairly technical, thus we will restrict ourselves to the most important steps

here. The proof itself is based on the comparison of the problem (DMP εk ) with a semi-discrete

problem of the type:

min
U∈Uk,Y ∈Yk,V ∈L2(Ω)

1

2
‖Y − yd‖2L2(Ω) +

ν

2
‖U‖2L2(Ω) +

1

2ε
‖V ‖2L2(Ω)

s.t.∫
Ω

∇Y · ∇W dΩ =

∫
Ω

UW dΩ. ∀W ∈ Yk

and

U ∈ Uk
Ikyc − Y − εV ≤ 0 a.e. on Ω



(SDMP εk )
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Here, (Û εkk , Ŷ
εk
k , V̂ εk

k , θ̂εkk ) denotes the solution and associated Lagrange multiplier θ̂εkk for

problem (SDMP εk ).

The crucial theoretical advantage of (SDMP εk ) is a penalty structure for the virtual control

mirroring the one in the continuous case, (4.1.8), i.e:

V̂ εk
k (x) = − 1

εk
(min((Ŷ εk

k (x)− (Ikyc)(x), 0)). (4.3.28)

Note that thanks to (4.1.1) and ‖Sk‖ . 1 due to (Pr7), we have∥∥∥Ŷ εk
k

∥∥∥
H1(Ω)

. 1.

Hence, we immediately deduce thanks to (4.3.28)∥∥∥εkV̂ εk
k

∥∥∥
H1(Ω)

. 1. (4.3.29)

Besides, using the Lagrange interpolant Ik, we realise at once that

(IkV̂
εk
k )(x) ≥ V̂ εk

k (x) f.a.a. x ∈ Ω.

After all, V̂ εk
k is just the cut-off of the piecewise affine function Ŷ εk

k − Ikyc. Consequently, we

discern (Û εkk , IkV̂
εk
k ) ∈ Uε,adk .

Presently, testing the respective optimality conditions of (DMP εk ) and (SDMP εk ), we can

then proceed in the following way:

1

εk

∥∥∥V̄ εk
k − V̂

εk
k

∥∥∥2
≤ 1

εk

∥∥V̄ εk
k

∥∥∥∥∥Ik(V̂ εk
k )− V̂ εk

k

∥∥∥
≤ ε−2

k

∥∥V̄ εk
k

∥∥∥∥∥Ik(εkV̂ ε
k )− (εkV̂

εk
k )
∥∥∥

≤ ε−3/2
k hmax

k

∥∥∥εkV̂ εk
k

∥∥∥
H1(Ω)

.

(4.3.30)

Here, we also used the bound, compare Theorem 3.2.5

1

εk

∥∥V̄ εk
k

∥∥2
. 1.

Taking advantage of (4.3.29), we ultimately obtain for (4.3.30):∥∥∥V̄ εk
k − V̂

εk
k

∥∥∥ . ε−1/4
k (hmax

k )1/2. (4.3.31)
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The KKT system of the semi-discrete problem also yields an equation for θ̂εkk and V̂ εk
k :

θ̂εkk =
1

ε2
k

V̂ εk
k . (4.3.32)

Combining this with the same relation for V̄ εk
k and θ̄εkk in the KKT system for (DMP εk ),

(4.1.25), (4.3.31) allows to deduce:∥∥∥θ̄εkk − θ̂εkk ∥∥∥ . ε−9/4
k (hmax

k )1/2. (4.3.33)

Besides, we note that θ̂εkk ≥ 0, hence Lemma 4.2.5 and in particular (4.2.11) yield:

P 0+
k θ̂εkk = PFES(Tk,P0,L2(Ω))θ̂

εk
k =: P 0

k θ̂
εk
k .

Here, PFES(Tk,P0,L2(Ω)) denotes the L2-orthogonal projection on the space FES(Tk,P0, L2(Ω)).

Standard interpolation estimates, (4.3.29) and (4.3.32) enable us to conclude:∥∥∥P 0
k θ̂

εk
k

∥∥∥ . ε−3
k hmax

k

∥∥∥εkV̂ εk
k

∥∥∥
H1(Ω)

. (4.3.34)

With this at hand we can now use Lipschitz continuity of P 0+
k with constant 1 - compare

Lemma 4.1.15 and Theorem 2.1.7 - (4.3.33) and (4.3.34) to arrive at:

∥∥θ̄εkk − P 0+
k (θ̄εkk )

∥∥ ≤ ∥∥∥θ̄εkk − θ̂εkk ∥∥∥+
∥∥∥θ̂εkk − P 0+

k (θ̂εkk )
∥∥∥+

∥∥∥P 0+
k (θ̂εkk )− P 0+

k (θ̄εkk )
∥∥∥

≤ 2
∥∥∥θ̄εkk − θ̂εkk ∥∥∥+

∥∥∥θ̂εkk − P 0
k (θ̂εkk )

∥∥∥
. ε−9/4

k (hmax
k )1/2 + ε−3

k hmax
k

∥∥∥εkV̂ εk
k

∥∥∥
H1(Ω)

.

Recalling (4.3.29), we know that the right hand side of the inequality above converges to 0

provided (4.3.27) is satisfied. This is the desired result.

We are now finally in the position to prove our convergence theorem from the beginning of

the section:

Theorem 4.3.14 (Convergence of Estimator). Let εk → 0, k → ∞, N ≥ 1 and p′ from

Assumption (CA6) be chosen such that as k →∞

ε
3/4−3N/p′

k , ε
−3N/p′

k (hmax
k )

1+ d
2
− d
q̄ , ε

− 3N+1
p′

k hmax
k → 0,

ε
−9/4
k (hmax

k )1/2 → 0, ε−3
k hmax

k → 0 min(ε
2(N−1/p′)−3/2
k , ε

3
2

(N−1)

k )→ 0.

(4.3.35)

Then

εγNk + E2
r (Ū εkk , V̄

εk
k ) + Es(Ū εkk , V̄

εk
k )→ 0 as εk → 0, k →∞.
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Proof. We will start with the regular parts (4.2.26) and (4.2.33) and proceed term by term:

The regular part:

Theorem 4.3.4 yields convergence of
∥∥(S − Sk)Ū εkk

∥∥ as k →∞ without any further condition.

Thus, let us tackle
∥∥Ū εkk −Π(P̄ εkk )

∥∥ → 0: Here, (4.3.35) implies (4.3.15) for N ≥ 1. With

the help of Theorem 4.3.7 we can deduce convergence of
∥∥Ū εkk −Π(P̄ εkk )

∥∥ → 0 as k → ∞.

Since for N ≥ 1 (4.3.35) additionally ensures that (4.3.6) holds, Theorem 4.3.11, in particular

(4.3.23), allows us to conclude:

(Ū εkk −Π(P̄ εkk ), P̄ εkk )→ 0, k →∞.

As already remarked, for N ≥ 1 (4.3.35) is stronger than (4.3.5). Thus, thanks to Theorem

4.3.4, this allows us to conclude:

∥∥(S − Sk)∗(Ȳ εk
k − yd − θ̄

εk
k )
∥∥→ 0, k →∞

Condition (4.3.35) also ensures (4.3.5), which in turn thanks to Theorem 4.3.11 also guarantees

convergence of (θ̄εkk , Ikyc−yc)→ 0 and (θ̄εkk , Ȳ
εk
k −Ikyc)→ 0. All in all, we can thus conclude:

E2
r (Ū εkk , V̄

εk
k )→ 0, k →∞

Let us now turn to Es:

The singular part:

Again, we will proceed term-by-term. Convergence of the terms

∥∥(S − Sk)∗(Ȳ εk
k − yd − θ̄

εk
k )
∥∥ ,∥∥Ū εkk −Π(P̄ εkk )

∥∥ ,∥∥(S − Sk)Ū εkk
∥∥

has already been established. Therefore, let us tackle the term

∥∥P 0+
k θ̄εkk

∥∥min(ε
2N(1−1/p′)
k , ε

3N/2
k ).

We observe that due to Theorem 3.2.5 and (4.1.25):

1

εk

∥∥V̄ εk
k

∥∥2
. 1 ⇔

∥∥θ̄εkk ∥∥ . ε−3/2
k .

Lemma 4.2.5 then provides the following bound:

∥∥P 0+
k θ̄εkk

∥∥ ≤ ∥∥θ̄εkk ∥∥ . ε−3/2.
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Consequently,

∥∥P 0+
k θ̄εkk

∥∥min(ε
2N(1−1/p′)
k , ε

3N/2
k ) . min(ε

2N(1−1/p′)−3/2
k , ε

3
2

(N−1)

k ).

Condition (4.3.35) then ensures convergence.

In addition, (4.3.35) also implies (4.3.27), which in turn allows us to conclude harnessing

Theorem 4.3.13:

∥∥θ̄εkk − P 0+
k (θ̄εkk )

∥∥→ 0, k →∞

Besides, (4.3.35) ensures that (4.3.24),(4.3.13) and (4.3.17) all hold. Theorem 4.3.11, in

particular (4.3.25), in combination with Theorem 4.3.5 then immediately result in:

min

(∥∥(Π(P̄ εkk ) + ∆yc)
−∥∥ ,

ε
−3N/p′

k (
∥∥Π(P̄ εkk )− Ū εkk

∥∥+ |(S − Sk)Ū εkk |H1(Ω)

+|(Ȳ εk
k − Ikyc)

−|H1(Ω) + ‖yc − Ikyc‖H1(Ω))

)
→ 0.

All in all, we thus have

Es(Ū εkk , V̄
εk
k )→ 0, k →∞

which completes the proof.

We can now turn to the last section of this chapter in which we will derive residual error

estimators for the linear error terms (S − Sk)· which still appear in the error estimators Er
and Er.

4.3.3 Convergent Residual Type Estimators for the Linear Errors

In this section we derive residual estimators for the linear errors in (4.2.32) and (4.2.25). For

detailed information on definitions and further reading we refer to [2], Section 2.2. and [65].

To begin with, we make the following definition

Definition 4.3.15 (skeleton and jump residual). Let Tk be given. We define the skeleton Sk
by

Sk := (
⋃
T∈Tk

∂T ) \ ∂Ω

S. Steinig AFEM for State-Constrained Optimal Control



177 CHAPTER 4. THE ESTIMATOR

For a given finite element function V ∈ Yk we define the jump residual by:

JV KS := n+ · ∇V + n− · ∇V,

for all S ∈ Sk, where n+ and n− are the outer unit normal vectors pointing towards T+ and

T− respectively with T+ and T− being the elements meeting at the side S.

In the ensuing theorem, we will now derive a reliable L2- error estimator for the linear error

in the adjoint state (S − Sk)∗(Ȳ ε
k − yd − θ̄εk).

Theorem 4.3.16. Let q̄ be as in Assumption (CA2) and q̄′ be its dual exponent, i.e. 1
q̄ + 1

q̄′ =

1. Then the following bound is valid:

∥∥(S − Sk)∗(Ȳ ε
k − yd − θ̄εk)

∥∥2
.
( ∑
T∈Tk

h
q̄′(2+ d

2
− d
q̄

)

T

∥∥Ȳ ε
k − yd − θ̄εk

∥∥q̄′
L2(T )

+ h
q̄′( 3

2
+ d

2
− d
q̄

)

T

∥∥J∇P̄ εk K∥∥q̄′L2(∂T )

)2/q̄′
:= EP2

k(Ȳ
ε
k , θ̄

ε
k, Tk, q̄),

(4.3.36)

Proof. For the sake of abbreviation we use the notation:

p̂ε := S∗(Ȳ ε
k − yd − θ̄εk).

Theorem 4.3.1 is crucial to the proof, it guarantees that for each g ∈ L2(Ω) we obtain a

ψ ∈W 2
q̄ (Ω) ∩ W̊ 1

p̄ (Ω), p̄ > d, and ∇ψ ∈ H(div,Ω) with −∆ψ = g a.e. in Ω such that

∥∥p̂− P̄ εk∥∥ = sup
‖g‖=1

(p̂ε − P̄ εk , g)

. sup
‖∆ψ‖≤1

(p̂ε − P̄ εk ,−∆ψ).

up to a constant depending solely on ‖S‖L(L2(Ω),W 2
q (Ω)).

We can now estimate the term on the right using Green’s formula, Galerkin orthogonal-

ity (Lemma 4.1.12) and standard interpolation estimates for the Lagrange interpolant Ik :

W̊ 1
p̄ (Ω) ∩W 2

q̄ (Ω)→ Yk:

(p̂ε − P̄ εk ,−∆ψ) = (∇(p̂ε − P̄ εk ),∇ψ)

= (∇(p̂ε − P̄ εk ), ψ − Ikψ)

=
∑
T∈Tk

(Ȳ ε
k − yd − θ̄εk, ψ − Ikψ)L2(T ) +

∑
S∈Sk

(JP̄ εk K, ψ − Ikψ)L2(S)

.
∑
T∈Tk

|ψ|W 2
q̄ (T )(h

2+ d
2
− d
q̄

T

∥∥Ȳ ε
k − yd − θ̄εk

∥∥
L2(T )

+ h
3
2

+ d
2
− d
q̄

T

∥∥JP̄ εk K∥∥L2(∂T )
),
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Using Hölder’s inequality for sums, we can continue in the following fashion:

(p̂ε − P̄ εk ,−∆ψ) ≤
( ∑
T∈Tk

h
2q̄′+q̄′( d

2
− d
q

)

T

∥∥Ȳ ε
k − yd − θ̄εk

∥∥q̄′
L2(Ω)

+ h
q̄′( 3

2
+ d

2
− d
q̄

)

T

∥∥JP̄ εk K∥∥q̄′Ls(∂T )

)1/q̄′
·
( ∑
T∈Tk

|ψ|q̄
W 2
q̄ (T )

)1/q̄
=
( ∑
T∈Tk

h
q̄′(2+ d

2
− d
q̄

)

T

∥∥Ȳ ε
k − yd − θ̄εk

∥∥q̄′
L2(Ω)

+ h
q̄′( 3

2
+ d

2
− d
q̄

)

T

∥∥JP̄ εk K∥∥q̄′L2(∂T )

)1/q̄′ · ‖ψ‖W 2
q̄ (Ω)

with 1
q̄′ + 1

q̄ = 1. Since ‖ψ‖W 2
q̄ (Ω) . 1 we obtain the desired result by taking the supremum

over all ψ on each side.

As an easy consequence we obtain the following L2 residual type estimator for the linear error

in the state:

Theorem 4.3.17. Let q̄ be given and q̄′ denote its dual exponent. Then the following bound

is valid:

∥∥(S − Sk)Ū εk
∥∥2
.
( ∑
T∈Tk

h
q̄′(2+ d

2
− d
q̄′ )

T ‖U εk‖
q̄′

L2(T ) + h
q̄′( 3

2
+ d

2
− d
q

)

T

∥∥J∇Ȳ ε
k K
∥∥q̄′
L2(∂T )

)2/q̄′
:= EYL22

k(Ū
ε
k , Tk, q̄),

(4.3.37)

Proof. The proof is an application of the techniques presented in the proof of Theorem 4.3.16.

Finally, we present an H1 residual type estimator. The proof of the bound given below can

e.g. be found in [65], Section 6.

Theorem 4.3.18. The following bound holds:

|(S − Sk)Ū εk |2H1(Ω) .
∑
T∈Tk

h2
T ‖U εk‖

2
L2(T ) + hT

∥∥J∇Ȳ ε
k K
∥∥q̄′
L2(∂T )

:= EYH12
k(Ū

ε
k , Tk),

(4.3.38)

We now conclude this chapter by demonstrating that EY2
k(Ū

εk
k , q) and EY2

k(Ȳ
εk
k , θ̄εkk , Tk, q)

converge to 0 as εk → 0 and k → ∞ irrespective of the refinement strategy employed.

The convergence is independent of the particular refinement strategy because we demanded

that hmax
k tend to 0 a.e, something which we will use frequently in the proof of convergence.

Needless to say, in the actual implementation one should opt for a smart marking strategy,
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e.g. one that at least captures the maximal error indicator, and not just a random one. In

Section 5.3 we will present a maximum strategy adapted to our setting.

Theorem 4.3.19. Let εk → 0 and k →∞ such that condition (4.3.5) is fulfilled. Then

EP2
k(Ȳ

εk
k , θ̄εkk , Tk, q)→ 0

EYL22
k(Ū

εk
k , Tk, q)→ 0

EYH12
k(Ū

ε
k , Tk)→ 0

Proof. First of all, EYH12
k(Ū

ε
k , Tk) → 0 is a consequence of the fact that for this estimator

there exists a local lower bound up to oscillation. The detailed arguments and proofs can be

looked up in [76],[60],[17] and [65], Sections 6 and 7.

Let us therefore tackle EP2
k(Ȳ

εk
k , θ̄εkk , Tk, q̄) → 0. We recall the well known inequality for

1 ≤ p ≤ q <∞.

(∑
n

|an|q
)1/q ≤ (∑

n

|an|p
)1/p

(4.3.39)

We can then estimate in the following way:

∑
T∈Tk

h
q̄′(2+ d

2
− d
q̄

)

T

∥∥Ȳ εk
k − yd − θ̄

ε
k

∥∥q̄′
L2(T )

.
∑
T∈Tk

h
q̄′(2+ d

2
− d
q̄

)

T

∥∥Ȳ εk
k − yd

∥∥q̄′
L2(T )

+ h
q̄′(2+ d

2
− d
q̄

)

T

∥∥θ̄εkk ∥∥q̄′L2(T )

.
∑
T∈Tk

h
q̄′(2+ d

2
− d
q̄

)

T

∥∥Ȳ εk
k − yd

∥∥q̄′
L2(T )

+ h
q̄′(2− d

q̄
)

T

∥∥θ̄εk∥∥q̄′L1(T )
.

In the last line, we have used inverse estimates, compare [14], Section 4.5.

For the first term in the sum above, we can then proceed in the following way:

∑
T∈Tk

h
q̄′(2+ d

2
− d
q̄

)

T

∥∥Ȳ εk
k − yd

∥∥q̄′
L2(T )

≤ hγmax(
∑
T∈Tk

∥∥Ȳ εk
k − yd

∥∥2

L2(T )
)q̄
′/2

≤ hγmax

∥∥Ȳ εk
k − yd

∥∥q̄′
with γ = q̄′(2+ d

2−
d
q̄ ) > 0, after all q̄ > d

2 . Hence, the term converges to 0, after all, hmax
k → 0.

The same estimates (with different exponents) can be made for the term

∑
T∈Tk

h
q̄′(2− d

q̄
)

T

∥∥θ̄εk∥∥q̄′L1(T )
.

Taking advantage of Assumption CA5, we can conclude convergence, too.
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Let us now tackle the jump residual. For any side S, where two elements T+, T− ∈ Tk meet

we can deduce using the fact that the gradient is piecewise constant on each T ∈ Tk:∫
S

|∇P̄ εkk · n
+ +∇P̄ εkk · n

−|2 .
∫
S

|∇P̄ εkk |T+ |2 + |∇P̄ εkk |T− |
2

= |S|(|∇P̄ εkk |T+ |2 + |∇P̄ εkk |T− |
2)

=
|S|
|T+|

∫
T+

|∇P̄ εkk |T+ |2 +
|S|
|T−|

∫
T−

|∇P̄ εkk |T− |
2

. h−1
T+

∥∥∇P εkk ∥∥2

L2(T+)
+ h−1

T−

∥∥∇P εkk ∥∥2

L2(T−)
.

This in turn implies:

h
q̄′( 3

2
+ d

2
− d
q̄

)

T

∥∥JP̄ εkk K
∥∥q̄′
L2(S)

.
∑

T∈{T+,T−}

h
q̄′(1+ d

2
− d
q̄

)

T

∥∥∇P̄ εkk ∥∥q̄′L2(T )
.

At this stage we need to stress that ∇P̄ εkk is in general not bounded uniformly in L2. However,

completely analogous to (4.3.12), we can conclude that

ε
−3/p′

k |P̄ εkk |H1(Ω) . 1

which implies the following estimates for the jump residual, compare also (4.3.39):

∑
T∈Tk

h
q̄′( 3

2
+ d

2
− d
q̄

)

T

∥∥JP̄ εkk K
∥∥q̄′
L2(∂T )

.
( ∑
T∈Tk

h
2(1+ d

2
− d
q

)

T |P̄ εkk |
2
H1(T )

)q̄′/2
. (hmax

k )
q̄′(1+ d

2
− d
q̄

)|P̄ εkk |
q̄′

H1(Ω)

. (hmax
k )

q̄′(1+ d
2
− d
q̄

)
ε−3q̄′/p′

→ 0

thanks to condition (4.3.5).

The result EYL22
k(Ū

εk
k , Tk, q̄) → 0 is a straightforward application of the arguments made

for the term EP2
k(Ȳ

εk
k , θ̄εkk , Tk, q̄) and is valid regardless of condition (4.3.5).
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Chapter 5

The Adaptive Algorithm

In this chapter we will describe the adaptive algorithm used for the numerical experiments

evaluated in Chapter 6. Theoretically, the framework is that of the previous chapter, Chapter

4, specifically we deal with the model problem (CMP ), its regularisation (CMP ε) and the

corresponding discrete problems (DMPk) and (DMP εk ). Structurally, we will follow the

adaptive loop

SOLVE→ ESTIMATE→ MARK→ REFINE

and explain the different modules in detail on the way. At the end of this chapter we will

then present our adaptive algorithm in a compact way, Algorithm 5.4.1.

An crucial aspect of this chapter will be the localisation of the estimators derived in Theo-

rem 4.2.12 and Theorem 4.2.13. We will describe how to obtain a localisable error estimator

in detail in the ’ESTIMATE’ and ’MARK’ sections, Sections 5.2 and 5.3.

The reader should note that in this Chapter we focus solely on the full discretisation

technique, i.e.

Uk = FES(Tk,P0, L2(Ω)),

as this is the discretisation method we employed for our numerical experiments.

5.1 ’SOLVE’

In this section we will explain the optimisation algorithm used to compute a solution to

(DMP εk ) which - as usual - is denoted by (Ū εk , V̄
ε
k ). The optimisation method which we use

is the primal-dual active set strategy (PDAS) which has been proven to be equivalent to a

semismooth Newton method introduced on the continuous level in Section 2.2.3, cf [41]. This

method ensures fast convergence, which is also demonstrated by our results in Chapter 6 and

theoretically underpinned by Theorem 2.2.16. Before taking the reader step by step through
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182 CHAPTER 5. THE ADAPTIVE ALGORITHM

the algorithm, we first have to lay some notational groundwork, which revolves around trans-

ferring the equations and inequalities of the discrete KKT system (4.1.25) expressed in terms

of discrete functions into a matrix vector equation setting.

5.1.1 Deriving a Matrix-Vector Setting

First recall that the finite element spaces for the control and state in the full discretisation

setting of Chapter 4 were given by

Uk = FES(Tk,P0, L2(Ω))

Yk = FES(Tk,P1, H̊
1(Ω)),

i.e piecewise constant functions for the control and piecewise linear finite elements for the

state. Here, Tk is a shape-regular, conforming triangulation of Ω.

For a fixed k we introduce bases for both spaces, first for the control space.

Uk = span
{
ψ1
k, ψ

2
k, ...ψ

nu
k

}
.

Numbering the elements of the triangulation Tk by E1, E2, ..., Enu , we choose a basis for Uk
by defining the basis functions ψ in the following way:

ψik|Ej = δij = χEi , (5.1.1)

where δij is the Kronecker symbol and χEi the characteristic function of the element Ei.

This allows us to expand functions in Uk, i.e. U ∈ Uk can be written as

U =

nu∑
i=1

uiψik

with the coefficient vector u = (ui)nui=1. Thus, a function U ∈ Uk is uniquely determined by

its associated coeffcient vector u. Notationally, we will stick to a bold face notation for the

corresponding vector of coefficients of a discrete function.

An important consequence of (5.1.1) is that

a ≤ U ≤ b ⇔ a ≤ ui ≤ b ∀i ∈ {1, ..., nu} .

Consequently,

Uk ⇔
{
u ∈ Rnu : a ≤ ui ≤ b

}
=: Uk(Rnu),
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where the ⇔ is understood in the sense that every U ∈ Uk is uniquely associated with a

coefficient vector u ∈ Uk(Rnu) and vice versa. This will be highly useful for the PDAS

algorithm of the SOLVE module.

To construct a basis for the state space Yk we first introduce the larger finite element space

Yfk defined by

Yfk = FES(Tk,P1, H
1(Ω)).

Denoting the set of nodes of the triangulation Tk by Nk, compare Definition 2.3.2, we define

a basis for Yfk by setting for all nj ∈ Nk

ϕik(nj) = δij ,

where δij is again the Kronecker symbol.

Then Yfk possesses the following basis:

Yk = span
{
ϕ1
k, ϕ

2
k, ...ϕ

ny
k

}
⊂ H1(Ω).

Presently, for the basis of Yk we now take those ϕik which vanish on the boundary ∂Ω:

Y̊k = span
{
ϕ1
k, ..., ϕ

nd
k

}
⊂ H̊1(Ω), nd < ny.

The basis expansion allows us to write the discretised state equation SkŪ
ε
k = Ȳ ε

k and the

adjoint equation S∗k(Ȳ ε
k − yd − θ̄εk) = P̄ εk in the following matrix vector fashion:

Ayεk = MSCuεk (5.1.2)

for the state equation and

Apεk = MSS(yεk −
1

ε2
vεk)− yd, (5.1.3)

for the adjoint equation, where we also used the relation 1
ε2
V̄ ε
k = θ̄εk of the discrete KKT

system (4.1.25). As before, the bold face letters denote the coefficient vectors to the discrete

function Ȳ ε
k , P̄

ε
k , Ū

ε
k . For the stiffness matrix A = (aij)

ny
ij we have

aij =

= (∇ϕik,∇ϕ
j
k) 1 ≤ i ≤ ny, 1 ≤ j ≤ nd

= δij i > nd.
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The mass matrices MSS and MSC are given by

MSS = ((ϕik, ϕ
j
k))

ny
i,j

MSC = ((ϕik, ψ
j
k))i,j ∈ Rny×nu .

The vector yd = (yid)
ny
i is given by

(yid) =

(yd, ϕ
i
k) 1 ≤ i ≤ nd

0 else.

We now intend to rewrite the optimality condition for Ū εk and V̄ ε
k , (4.1.25) in terms of the

associated coefficient vectors uεk and vεk starting with the optimality condition for Ū εk .

Basis expansion allows us to write the optimality condition for Ū εk in (4.1.25),

(P̄ εk + νŪ εk , U − Ū εk) ≥ 0 ∀U ∈ Uk, (5.1.4)

in an indicewise way:

Introducing an additional mass matrix MCC defined by

MCC = ((ψik, ψ
j
k))i,j ,

we claim that (5.1.4) is equivalent to the following indicewise projection formula

ūε,i = min(b,max(a, ūε,i − ((MSC)tpεk)i − (νMCCuεk)i). (5.1.5)

The proof of this assertion is given in the ensuing lemma:

Lemma 5.1.1. The optimality conditions in the form (5.1.4) and (5.1.5) are equivalent.

Proof. As an intermediate step we observe that (5.1.4) can be reformulated in the following

way by simply writing the involved functions Ū εk , P̄
ε
k in their basis representation:

(ui − ūε,i)((MSC)tpεk + νMCCuεk)
i ≥ 0 ∀1 ≤ i ≤ nu, ui ∈ R, a ≤ ui ≤ b. (5.1.6)

Investigating the three cases ūε,i = a, a < ūε,i < b and ūε,i = b we immediately deduce:

((MSC)tpεk + νMCCuεk)
i


= 0 if a < ūε,i < b

≥ 0 if ūε,i = a

≤ 0 if ūε,i = b

Now, (5.1.5) readily follows.
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Conversely, (5.1.5) implies (5.1.6) and thus in turn (5.1.4).

The relation (5.1.5) constitutes the bedrock of our PDAS algorithm to solve the optimal

control problem it being the matrix-vector equivalent of the projection formula of Theorem

4.1.16. At this stage, we also want to stress that it was precisely such a projection formula

which lay at the heart of the semismooth Newton method on the continuous level presented

in Section 2.2.3.

As we will shortly discover, the algorithm hinges on sets of active or inactive indices A, which

are subsets of either {1, ..., nu} or {1, ..., ny}, and to which are associated matrices PA = (pij)ij

pij =

1 if i = j and i ∈ A

0 else.
(5.1.7)

Defining

Aau :=
{
i ∈ {1, ..., nu} : ūε,i = a

}
Abu :=

{
i ∈ {1, ..., nu} : ūε,i = b

}
Iu := {1, ..., nu} \ (Aau ∪Abu)

with associated matrices PAau ,PAbu
and PIu , (5.1.5) can be expressed by the equation

uεk = PIu(−(MCS)tpεk + (I− νMCC)uεk) + PAbu
(b) + PAau(a), (5.1.8)

where a and b are vectors of a’s and b’s of length nu respectively and I denotes the identity

matrix. The rather forced relation (5.1.8) is important for understanding the steps of the

PDAS properly, which we will present in a compact way at the end of this section. Before,

though, let us first derive a relation similar to (5.1.5) and (5.1.8) for the virtual control V̄ ε
k .

Employing the usual notation for the coefficient vectors associated with Ikyc, Ȳ
ε
k , V̄ ε

k and θ̄εk,

we derive from (4.1.25):

v̄ε,i =
1

ε2
θ̄ε,i. (5.1.9)

The condition θ̄εk ∈ C
−
Vk can be transferred to a matrix vector setting by demanding

(MSSθεk)
i ≥ 0 ∀i = 1, ..., ny.

or equivalently, compare (5.1.9)

(MSSvεk)
i ≥ 0 ∀i = 1, ..., ny

Standard nonlinear programming theory guarantees that the slackness equation in (4.1.25)
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can be reformulated with the familiar min-NCP-function in the following way:

min
(
(MSSvεk)

i, Iky
i
c − ȳε,i − εv̄ε,i

)
= 0 ∀i = 1, ..., ny

Defining an active and an inactive set by

Av :=

{
i ∈ {1, ..., ny} : ȳε,i + εv̄ε,i − 1

ε2
(MSSvεk)

i < Iky
i
c

}
Iv := {1, ..., ny} \Av,

we obtain a relation analogous to (5.1.8)

PIv

1

ε2
MSSvεk + PAvεv

ε
k = −PAv(y

ε
k + Ikyc), (5.1.10)

Combining (5.1.8),(5.1.10), (5.1.2) and (5.1.3) we realise that the discrete KKT system

(4.1.25) is equivalent to the following system of matrix vector equations.
A MSC 0 0

0 I−PIu(I− νMCC) PIu(MSC)t 0

−MSS 0 A 1
ε2

MSS

PAv 0 0 PIv
1
ε2

MSS + PAvε




yεk
uεk
pεk
vεk


=

0

PAaua + PAbu
b

−yd

PAvIkyc.



(5.1.11)

We can now write down the PDAS algorithm in a compact way:

5.1.2 PDAS Algorithm

(5.1.11) constitutes the core of the PDAS - algorithm through which we will now take the

reader:
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Algorithm 5.1.1 PDAS

1: Set n = 0.

2: Choose sets of active and inactive indices Aa,nu ,Ab,nu , Inu ⊂ {1, ..., nu}, Inu = {1, ..., nu} \
(Aa,nu ∪ Ab,nu ), and Anv , Inv ⊂ {1, ..., ny}, Inv = {1, ..., nu} \ Anv .

3: Build the associated matrices PAa,nu , ... according to (5.1.7).

4: Solve 
A MSC 0 0

0 I−PInu (I− νMCC) PInu (MSC)t 0

−MSS 0 A 1
ε2

MSS

PAnv 0 0 PInv
1
ε2

MSS + PAnv ε




yn

un

pn

vn


=

0

PAa,nu a + PAb,nu
b

−yd

PAnv Ikyc.


5: Compute the new active and inactive sets for the control Aa,n+1

u ,Ab,n+1
u , In+1

u according

to the ensuing formula

ui,n − ((MSC)tpn + νMCCun)i


< a ⇒ i ∈ Aa,n+1

u

> b ⇒ i ∈ Ab,n+1
u

else ⇒ i ∈ In+1
u .

6: Compute the new active and inactive set for the virtual controlAn+1
v , In+1

v in the following

fashion

yn,i + εvn,i − 1

ε2
MSSvn

< Iky
i
c ⇒ i ∈ An+1

v

else ⇒ i ∈ In+1
v .

7: If Aa,n+1
u = Aa,nu , Ab,n+1

u = Ab,nu and An+1
v = Anv then un,vn is optimal, since it solves

(5.1.11).

Else Go to Step 3.

This algorithm can be interpreted as a semismooth Newton method, see. e.g [41]. Convergence

properties are also investigated in this paper. Let us finish this section with a remark on

computational aspects:

Remark 5.1.2. From a computational point of view it is often advantageous, especially for

small regularisation parameters ε, to use lumped masses instead of the mass matrix MSS in
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the virtual control equation in the KKT system. We used lumped masses for regularisation

parameters ε < 0.02 for both the smooth example, Section 6.1, and the Dirac example, Section

6.2.

We can now turn to the ’ESTIMATE’ module.

5.2 ’ESTIMATE’

In this and the next section we will explain how to turn the error estimator of Theorem 4.2.13,

which still contains linear errors (S−Sk)· into a localisable, numerically evaluable estimator,

i.e. an estimator which only contains known discrete and continuous functions. To be more

precise, in this and the next section we will derive quantities E2
r(Ū

ε
k , V̄

ε
k ), Es(Ū

ε
k , V̄

ε
k ) and

Ê2
s(Ū

ε
k , V̄

ε
k ) which contain only known continuous and discrete functions such that

E2
r (Ū εk , V̄

ε
k ) . E2

r(Ū
ε
k , V̄

ε
k ) =

∑
T∈Tk

(erk)
2(T )

Es(Ū εk , V̄ ε
k ) . Es(Ū

ε
k , V̄

ε
k )

Es(Ū εk , V̄ ε
k )2 . Ê2

s(Ū
ε
k , V̄

ε
k ) =

∑
T∈Tk

(esk)
2(T )

with local indicators (erk)
2(T ) and (esk)

2(T ).

First of all, let us recall the estimator for the full discretisation derived in Theorem 4.2.13,

compare also Theorem 4.2.15 and Remark 4.2.16. In this section, we will stop explicitly

stating the generic constants s(τ) and c(p′) as well as ‖S‖ and fix ν = 1:

∥∥Ū εk − ū∥∥2
+

8

εN

∥∥∥v̄εN∥∥∥2
. εγN + E2

r (Ū εk , V̄
ε
k ) + Es(Ū εk , V̄ ε

k ) (5.2.1)

with
E2
r (Ū εk , V̄

ε
k ) = 4

∥∥(S − Sk)Ū εk
∥∥2

+ 6
∥∥Ū εk −Π(P̄ εk )

∥∥2

+ 4
∥∥(S − Sk)∗(Ȳ ε

k − yd − θ̄εk)
∥∥2

+ 8(Ū εk −Π(P̄ εk ), P̄ εk ) + 8(θ̄εk, Ȳ
ε
k − Ikyc)

+ 8(θ̄εk, Ikyc − yc)

(5.2.2)
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and

Es(Ū εk , V̄ ε
k ) = 8

∥∥Ȳ ε
k − yd

∥∥ (
∥∥(S − Sk)Ū εk

∥∥+
∥∥Ū εk −Π(P̄ εk )

∥∥)

+ 8
∥∥Π(P̄ εk )

∥∥∥∥(S − Sk)∗(Ȳ ε
k − yd − θ̄εk)

∥∥+ 8
∥∥θ̄εk − P 0+

k θ̄εk
∥∥

+ 8
∥∥P 0+

k θ̄εk
∥∥min(ε2N(1−1/p′),ε3N/2)

+ 8 min

{∥∥(Π(P̄ εk ) + ∆yc)
−∥∥ , ε−3N/p′

(
|(S − Sk)Ū εk |H1(Ω) +

∥∥Ū εk −Π(P̄ εk )
∥∥

+ ‖yc − Ikyc‖H1(Ω) + |(Ȳ ε
k − Ikyc)−|H1(Ω)

)}
.

(5.2.3)

As we have already mentioned, this estimator has the drawback that it cannot be localised on

each element. Let us expound on this point a bit: Er does not pose any problem in this aspect,

since it solely contains squared L2-norms and scalar products which can be evaluated on each

element T ∈ Tk and then added to obtain the bound Er. In addition, the local indicator is

stored on the element as an indicator for the ’MARK’-procedure.

However, Es cannot be localised in this manner, because it contains solely norms not squared

norms. This is not an issue if one just wants to compute the global error estimator Es, yet,

we do not get any quantities on each T which can be interpreted as local error indicators as

the foundation for a marking algorithm. Therefore, the basic idea now is to square Es to get

squared norms - which can then be computed on each T ∈ Tk and stored on each T to get

local indicators for the marking algorithm. This is the subject of the next theorem:

Theorem 5.2.1. For Es(Ū εk , V̄ ε
k ) we have the following estimate:

Es(Ū εk , V̄ ε
k ) ≤ (Ê2

s (Ū εk , V̄
ε
k )1/2

with

Ê2
s (Ū εk , V̄

ε
k ) := 48

∥∥Ȳ ε
k − yd

∥∥2
(
∥∥(S − Sk)Ū εk

∥∥2
+
∥∥Ū εk −Π(P̄ εk )

∥∥2
)

+ 48
∥∥Π(P̄ εk )

∥∥2 ∥∥(S − Sk)∗(Ȳ ε
k − yd − θ̄εk)

∥∥2
+ 48

∥∥θ̄εk − P 0+
k θ̄εk

∥∥2

+ 48
∥∥P 0+

k θ̄εk
∥∥2

min(ε4N(1−1/p′), ε3N )

+ 48 min

{∥∥(Π(P̄ εk ) + ∆yc)
−∥∥2

, 4ε−6N/p′
(
|(S − Sk)Ū εk |2H1(Ω)

+
∥∥Ū εk −Π(P̄ εk )

∥∥2
+ ‖yc − Ikyc‖2H1(Ω) + |(Ȳ ε

k − Ikyc)−|2H1(Ω)

)}
(5.2.4)

Proof. To prove the bound (5.2.4), we merely square Es and repeatedly apply Young’s in-

equality, (4.2.2) and then draw the root:
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Since Es ≥ 0 we know that (E2
s )1/2 = Es. Squaring Es and using Lemma 4.2.1, we obtain:

1

48
(Es)2 ≤

∥∥Ȳ ε
k − yd

∥∥2
(
∥∥(S − Sk)Ū εk

∥∥2
+
∥∥Ū εk −Π(P̄ εk )

∥∥2
)

+
∥∥Π(P̄ εk )

∥∥2 ∥∥(S − Sk)∗(Ȳ ε
k − yd − θ̄εk)

∥∥2
+
∥∥θ̄εk − P 0+

k θ̄εk
∥∥2

+
∥∥P 0+

k θ̄εk
∥∥2

min(ε4N(1−1/p′), ε3N )

+

(
min

{∥∥(Π(P̄ εk ) + ∆yc)
−∥∥ , ε−3N/p′

(
|(S − Sk)Ū εk |H1(Ω)

+
∥∥Ū εk −Π(P̄ εk )

∥∥+ ‖yc − Ikyc‖H1(Ω) + |(Ȳ ε
k − Ikyc)−|H1(Ω)

)})2

.

(5.2.5)

We now merely have to tackle the min term, all other terms already appear in (5.2.4). Setting

X :=
∥∥(Π(P̄ εk ) + ∆yc)

−∥∥
Y := ε−3N/p′

(
|(S − Sk)Ū εk |H1(Ω)

+
∥∥Ū εk −Π(P̄ εk )

∥∥+ ‖yc − Ikyc‖H1(Ω) + |(Ȳ ε
k − Ikyc)−|H1(Ω)

)
we deduce employing standard properties of the min operator

Z2 := (min(X ,Y))2 = min(X 2,Y2).

Let us now as the final step estimate Y2. Harnessing once again Lemma 4.2.1, we gain:

Y2 ≤ 4ε−6N/p′
(
|(S − Sk)Ū εk |2H1(Ω)

+
∥∥Ū εk −Π(P̄ εk )

∥∥2
+ ‖yc − Ikyc‖2H1(Ω) + |(Ȳ ε

k − Ikyc)−|2H1(Ω)

)
.

The estimates for Z and Y can now be inserted in (5.2.5) to get the desired result.

The quantities E2
r (Ū εk , V̄

ε
k ), Es(Ū εk , V̄ ε

k ) and Ê2
s (Ū εk , V̄

ε
k ) still contain linear errors (S−Sk)· which

need to be estimated. This will be done by the residual-type error estimators of Section 4.3.3.

Let us thus therefore briefly recapitulate them:

5.2.1 Estimators for the Linear Errors

Let us for simplicity assume that Ω is regular enough to admit an H2(Ω) solution, i.e. for q̄

from Theorem 4.3.1 we have q̄ = 2.

Theorem 4.3.17 then provides an L2-residual estimator which gives the following global upper
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bound for the linear error in the state
∥∥(S − Sk)Ū εk

∥∥2
:∥∥(S − Sk)Ū εk

∥∥2
.
∑
T∈Tk

h4
T

∥∥Ū εk∥∥2

L2(T )
+ h3

T

∥∥JȲ ε
k K
∥∥2

L2(∂T )

:= EYL22
k(Ū

ε
k , Ȳ

ε
k , Tk)

(5.2.6)

The global upper bound EYL22
k(Ū

ε
k , Tk) is the sum of local indicators EY L22

k(Ū
ε
k , Ȳ

ε
k , T ),

compare (5.2.6)

EYL22
k = EYL22

k(Ū
ε
k , Ȳ

ε
k , Tk) =

∑
T∈Tk

EY L22
k(Ū

ε
k , Ȳ

ε
k , T ), (5.2.7)

where

EY L22
k(Ū

ε
k , Ȳ

ε
k , T ) = EY L22

k := h4
T

∥∥Ū εk∥∥2

L2(T )
+ h3

T

∥∥J∇Ȳ ε
k K
∥∥2

L2(∂T )

The local indicators EY L22
k(Ū

ε
k , Ȳ

ε
k , T ) can then be used as the basis of a marking strategy

as explained in the next section. That is why a localisation of the type (5.2.7) and (5.2.6)

is so crucial.

For the H1(Ω)-error we recall Theorem 4.3.18 to gain the following upper bound:

|(S − Sk)Ū εk |2H1(Ω) .
∑
T∈Tk

h2
T

∥∥Ū εk∥∥2

L2(T )
+ hT

∥∥J∇Ȳ ε
k K
∥∥2

L2(∂T )

:= EYH12
k(Ū

ε
k , Ȳ

ε
k , Tk),

(5.2.8)

Again, as in (5.2.7) we can localise E2
y,1 in the following way:

EYH12
k = EYH12

k(Ū
ε
k , Ȳ

ε
k , Tk) =

∑
T∈Tk

EYH12
k(Ū

ε
k , Ȳ

ε
k , T ) (5.2.9)

with

EYH12
k(Ū

ε
k , Ȳ

ε
k , T ) = EYH12

k := h2
T

∥∥Ū εk∥∥2

L2(T )
+ hT

∥∥J∇Ȳ ε
k K
∥∥2

L2(∂T )
.

The local indicators EYH12
k(Ū

ε
k , Ȳ

ε
k , T ) can then again be used as the foundation for a mark-

ing strategy.

The linear error which remains to be dealt with is the one in the adjoint state:

∥∥(S − Sk)∗(Ȳ ε
k − yd − θ̄εk)

∥∥2
.
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Theorem 4.3.16 supplies the global upper bound∥∥(S − Sk)∗(Ȳ ε
k − yd − θ̄εk)

∥∥2
.
∑
T∈Tk

h4
T

∥∥Ȳ ε
k − yd − θ̄εk

∥∥2

L2(T )
+ h3

T

∥∥J∇P̄ εk K∥∥2

L2(∂T )

:= EP2
k(Ȳ

ε
k , θ̄

ε
k, P̄

ε
k , Tk).

(5.2.10)

As before, we can localise (5.2.10) in the following way:

EP2
k = EP2

k(P̄
ε
k , Ȳ

ε
k , θ̄

ε
k, Tk) =

∑
T∈Tk

EP 2
k (Ȳ ε

k , θ̄
ε
k, P̄

ε
k , T ) (5.2.11)

with

EP 2
k (Ȳ ε

k , θ̄
ε
k, P̄

ε
k , T ) = EP 2

k := h4
T

∥∥Ȳ ε
k − yd − θ̄εk

∥∥2

L2(T )
+ h3

T

∥∥J∇P̄ εk K∥∥2

L2(∂T )
.

We are now in the position to finally derive our estimators E2
r(Ū

ε
k , V̄

ε
k ),Es(Ū

ε
k , V̄

ε
k ) and Ê2

s(Ū
ε
k , V̄

ε
k )

which only contains known discrete or continuous functions. This is the subject of the next

section:

5.2.2 Collecting the Global Estimate

Inserting the error estimators of Section 5.2.1 into the definitions of E2
r , (5.2.2), Es, (5.2.3),

and Ês, (5.2.4), we obtain the following bounds:

E2
r (Ū εk , V̄

ε
k ) . E2

r(Ū
ε
k , V̄

ε
k )

with
E2
r(Ū

ε
k , V̄

ε
k ) := 4EYL22

k + 6
∥∥Ū εk −Π(P̄ εk )

∥∥2
+ 4EP2

k

+ 8(Ū εk −Π(P̄ εk ), P̄ εk ) + 8(θ̄εk, Ȳ
ε
k − Ikyc)

+ 8(θ̄εk, Ikyc − yc).

(5.2.12)

Secondly,

Es(Ū εk , V̄ ε
k ) . Es(Ū

ε
k , V̄

ε
k )
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with

Es(Ū
ε
k , V̄

ε
k ) := 8

∥∥Ȳ ε
k − yd

∥∥ (EYL2k +
∥∥Ū εk −Π(P̄ εk )

∥∥)

+ 8
∥∥Π(P̄ εk )

∥∥EPk + 8
∥∥θ̄εk − P 0+

k θ̄εk
∥∥+ 8

∥∥P 0+
k θ̄εk

∥∥min(ε2N(1−1/p′), ε3N/2)

+ 8 min

{∥∥(Π(P̄ εk ) + ∆yc)
−∥∥ , ε−3N/p′

(
EYH1k +

∥∥Ū εk −Π(P̄ εk )
∥∥

+ ‖yc − Ikyc‖H1(Ω) + |(Ȳ ε
k − Ikyc)−|H1(Ω)

)}
(5.2.13)

And lastly,

Ê2
s (Ū εk , V̄

ε
k ) . Ê2

s(Ū
ε
k , V̄

ε
k )

with

Ê2
s(Ū

ε
k , V̄

ε
k ) := 48

∥∥Ȳ ε
k − yd

∥∥2
(EYL22

k +
∥∥Ū εk −Π(P̄ εk )

∥∥2
)

+ 48
∥∥Π(P̄ εk )

∥∥2
EP2

k + 48
∥∥θ̄εk − P 0+

k θ̄εk
∥∥2

+ 48
∥∥P 0+

k θ̄εk
∥∥2

min(ε4N(1−1/p′), ε3N )

+ 48 min

{∥∥(Π(P̄ εk ) + ∆yc)
−∥∥2

, 4ε−6N/p′
(
EYH12

k

+
∥∥Ū εk −Π(P̄ εk )

∥∥2
+ ‖yc − Ikyc‖2H1(Ω) + |(Ȳ ε

k − Ikyc)−|2H1(Ω)

)}
.

(5.2.14)

As we aimed for, the right hand sides in (5.2.12), (5.2.13) and (5.2.14) contain only known

discrete or continuous functions. Combining the bounds above with the result of Theorem

4.2.13, we obtain the estimator:

∥∥Ū εk − ū∥∥2
. εγN + E2

r(Ū
ε
k , V̄

ε
k ) + Es(Ū

ε
k , V̄

ε
k ),

where, as observed before, the estimators E2
r(Ū

ε
k , V̄

ε
k ) and Es(Ū

ε
k , V̄

ε
k ) contain only known

discrete or continuous functions

5.3 ’MARK’

In this section we will explain how to obtain local indicators from our estimators E2
r(Ū

ε
k , V̄

ε
k )

and Ês(Ū
ε
k , V̄

ε
k ) which we can then use for our marking strategy, Algorithm 5.3.1:

For the regular part E2
r(Ū

ε
k , V̄

ε
k ) we gain:

E2
r(Ū

ε
k , V̄

ε
k ) =

∑
T∈Tk

(erk)
2(T )
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with local indicator (compare (5.2.6) and (5.2.10) for the definition of EY 22
k and EP 2

k )

(erk)
2(T ) := 8(Ū εk −Π(P̄ εk ), P̄ εk )L2(T ) + 8(θ̄εk, Ȳ

ε
k − Ikyc)L2(T )

+ 8(θ̄εk, Ikyc − yc)L2(T ) + 6
∥∥Ū εk −Π(P̄ εk )

∥∥2

L2(T )

+ 4EP 2
k + 4EY 22

k.

Due to the min-bracket in the localisable singular part Ês(Ū
ε
k , V̄

ε
k ), (5.2.14), things are a bit

more complicated:

Let us first define:

ctk :=
∥∥Ȳ ε

k − yd
∥∥2

and dtk :=
∥∥Π(P̄ εk )

∥∥2

and recall the localisable singular part Ê2
s(Ū

ε
k , V̄

ε
k ):

Ê2
s(Ū

ε
k , V̄

ε
k ) := 48ctk

∥∥Ū εk −Π(P̄ εk )
∥∥2

+ 48dtkEP2
k + 48ctkEYL22

k

+ 48
∥∥θ̄εk − P 0+

k (θ̄εk)
∥∥2

+ 48
∥∥P 0+

k (θ̄εk)
∥∥2

min(ε4N(1−1/p′), ε3N )

+ 48 min

{∥∥(Π(P̄ εk ) + ∆yc)
−∥∥2

, 4ε−6N/p′(EYH12
k +

∥∥Ū εk −Π(P̄ εk )
∥∥2

+ ‖yc − Ikyc‖2H1(Ω) + |(Ȳ ε
k − Ikyc)−|2H1(Ω))

}
.

In case the minimum in the definition above is attained by
∥∥(Ū εk + ∆yc)

−∥∥2
the local indicators

are given by

(esk)
2(T ) := 48ctk

∥∥Ū εk −Π(P̄ εk )
∥∥2

L2(T )
+ 48

∥∥(Π(P̄ εk ) + ∆yc)
−∥∥2

L2(T )
+ 48

∥∥θ̄εk − P 0+
k (θ̄εk)

∥∥2

L2(T )

+ 48
∥∥P 0+

k (θ̄εk)
∥∥2

L2(T )
min(ε4N(1−1/p′), ε3N ) + 48dtkEP

2
k + 48ctkEY L22

k.

If not, the local indicators take the following shape (compare (5.2.9) for the definition of

EYH12
k):

(esk)
2(T ) := (48 + 4ε−6N/p′)ctk

∥∥Ū εk −Π(P̄ εk )
∥∥2

L2(T )
+ 48dtkEP

2
k + ctkEY L22

k

+ 48
∥∥θ̄εk − P 0+

k θ̄εk
∥∥2

L2(T )
+ 48

∥∥P 0+
k (θ̄εk)

∥∥2

L2(T )
min(ε4N(1−1/p′), ε3N )

+ 48ε−6N/p′(4 ‖yc − Ikyc‖2H1(Ω) + 4|(Ȳ ε
k − Ikyc)−|2H1(Ω) + 4EYH12

k).

Thus, all in all

Ê2
s(Ū

ε
k , V̄

ε
k ) =

∑
T∈Tk

(esk)
2(T ).

These observations now enable us to present our marking algorithm:
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Algorithm 5.3.1 Marking

1: Choose parameters ηr ∈ (0, 1] and ηs ∈ (0, 1].

2: Let emax,r
k := max

T∈Tk
{erk} and emax,s := max

T∈Tk
{esk}

3: for T ∈ Tk do MARK T if

erk ≥ ηre
max,r
k ∨ esk ≥ ηse

max,s
k

4: end for

Algorithm 5.3.1 generates a set of marked elements M ⊂ Tk which is then refined with the

help of a refinement algorithm generating a new shape-regular and conforming triangulation

Tk+1, compare also our remarks in Section 2.3.5. On the new grid Tk+1 we again start with

’SOLVE’, Section 5.1.

As a brief summary of this chapter we can now lay out the complete adaptive algorithm:

5.4 The Complete Adaptive Algorithm

Algorithm 5.4.1 The Adaptive Algorithm

1: : Choose a tolerance TOL and parameters N ≥ 1, in case d = 2 p′ > 4 and ηr, ηs ∈ (0, 1],

the latter for the marking algorithm, Algorithm 5.3.1.

2: SOLVE: Perform the PDAS-algorithm, Algorithm 5.1.1

3: ESTIMATE: Compute E2
r(Ū

ε
k , V̄

ε
k ), Es(Ū

ε
k , V̄

ε
k ) and Ê2

s(Ū
ε
k , V̄

ε
k ) as well as the local indi-

cators erk and esk.

If

εγN + E2
r(Ū

ε
k , V̄

ε
k ) + Es(Ū

ε
k , V̄

ε
k ) ≤ TOL2

with γ from (4.1.22), then break.

Else: go to MARK

4: MARK: Perform the marking algorithm, Algorithm 5.3.1.

5: REFINE: Refine marked elements and generate a new shape-regular and conforming

triangulation Tk+1, go to SOLVE
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Chapter 6

Numerical Experiments

In this chapter, we will present two numerical examples of the successful implementation

of our adaptive algorithm. The first is a smooth example, the second is an example with

a Dirac δ-distribution as the multiplier to the continuous unregularised problem, compare

Theorem 2.2.7. All computations were done with the help of the finite element software

library ALBERTA, cf. [74].

To check the performance of our adaptive algorithm, we constructed an analytic solution of

a state-constrained optimal control problem with the help of an additional source term g,

which does not change the analyses of the previous sections. The true solution satisfies the

following necessary and sufficient optimality system:

−∆ȳ = ū+ g in Ω

ȳ = 0 on ∂Ω

−∆p̄ = ȳ − yd − µ̄ in Ω

p̄ = 0 on ∂Ω

ū = Π(p̄)

µ̄ ≥ 0

〈µ̄, ȳ − yc〉 = 0.

(6.0.1)

Here, we deliberately leave some ambiguity as to the duality product in the last line. In the

smooth case of Section 6.1 the duality product simply is the L2(Ω) scalar product, but in the

minimum regularity setting of Section 6.2 we have

〈µ̄, ȳ − yc〉 = 〈µ̄, ȳ − yc〉C(Ω̄)∗,C(Ω̄).

Let us now turn to the actual examples:

196



197 CHAPTER 6. NUMERICAL EXPERIMENTS

6.1 The Smooth Example

For this example we choose Ω = [0, 1]2 and a smooth solution to the optimal control problem.

The goal was to verify that the adaptive algorithm deploys degrees of freedom smartly and

does not waste them. As we will see, the adaptive algorithm performs reasonably well.

The following functions were given with x = (x0, x1):

ȳ(x) = sin(πx0) sin(πx1)

p̄(x) = 100x0(x0 − 1)x1(x1 − 1)e−
1

100
(x0− 1

10
)

yc(x) =

ȳ(x) if |(x0, x1)− (1
2 ,

1
2)|2 ≤ 0.125

ȳ(x)− (|(x0, x1)− (1
2 ,

1
2)|2 − 0.125)2 else

ū(x) = Π(p̄(x))

µ̄(x) =

10 if |(x0, x1)− (1
2 ,

1
2)|2 ≤ 0.07

0 else.

yd and g were adjusted to solve the adjoint and state equation in (6.0.1). Besides, a = −5

and b = 5 was chosen.

Though the problem is ’smooth’ in the sense that the Lagrange multiplier to the state con-

straint µ̄ is a regular L2-function, the problem is of interest numerically, because strict com-

plementarity is lacking, i.e.

µ̄(x) = 0 6⇒ ȳ(x) > yc(x), x ∈ Ω.

From an optimisation point of view this is a disadvantage, because lack of strict complemen-

tarity can lead to ’chattering’ of active sets, compare [8], Example 5.2 and [10], Section 6.1.5,

which is reflected on the finite-dimensional level by the same index being flagged active, then

- in the next iterate of the PDAS loop - being flagged inactive again and then active again

and so on. This is the dreaded circling behaviour of active set strategies. Fortunately, we did

not encounter many numerical issues in our example.

The regularisation parameter ε was fixed to ε = 0.015. For the adaptive algorithm, Algorithm

5.4.1, we chose N = 3, p′ = 18 and TOL = 10−2. The parameters for the marking strategy,

compare the marking algorithm, Algorithm 5.3.1, were fixed to ηr = 0.65, ηs = 0.75. Besides,

we observed that by using the modified regular part Ẽ(Ū εk , V̄
ε
k ) defined by

Ẽ(Ū εk , V̄
ε
k ) =

∑
T∈Tk

(ẽrk)
2(T ) (6.1.1)
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with local indicator

(ẽrk)
2(T ) := 8 max((Ū εk −Π(P̄ εk ), P̄ εk )L2(T ), 0) + 8 max((θ̄εk, Ȳ

ε
k − Ikyc)L2(T ), 0)

+ 8 max(θ̄εk, Ikyc − yc)L2(T ), 0) + 6
∥∥Ū εk −Π(P̄ εk )

∥∥2

L2(T )

+ 4EP 2
k + 4EY 22

k

we achieved a better performance of the adaptive algorithm.

As the following figure shows, the adaptive strategy achieves a higher computational precision

for a given number of degrees of freedom (DOFs), where DOFs= dim(Uk). This is of course

the desired effect:

Figure 6.1: The Smooth Example

The figure above has logarithmic scale for both axes.

Let us add some remarks to Figure 6.1:

• For comparison purposes we have included a gold ’optimal order’ curve in Figure 6.1.

It is motivated by the fact that for the best-approximation in L2(Ω) of a function

u ∈ H1(Ω) by a piecewise constant function Pku ∈ Uk we have the optimal estimate,

compare Theorem 2.3, [34] and [12]:

‖u− Pku‖ ≤ (dim(Uk))−1/2. (6.1.2)

Thus, we cannot expect the discrete solution Ū εk to approximate ū better than the rate

(dim(Uk))−1/2 given by the inequality above. As we see in Figure 6.1, both the adaptive
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and uniform refinement strategies achieve this order - as would be expected in such a

smooth case.

• We observe that the actual error decays slightly faster compared to the estimator, that

is, the actual error curve possesses a steeper slope. This is partly explained by our

modified estimator (6.1.1) and - in addition - by the fact that the estimator is built for

the worst-case, i.e. the least regular case as exemplified by the Dirac example of Section

6.2, where we will see that in this case the estimator reflects the true decay of the error

almost exactly. However, in the present case which is significantly smoother, because

the Lagrange multiplier for the state constraint µ̄ is a regular L2-function, some of the

estimates used for deriving the estimator are too conservative and too pessimistic. This

explains the slightly worse slope.

Next, we want to tackle a more singular example for which the gain of using an adaptive

refinement strategy is more obvious.

6.2 The Dirac Example

We choose the ball B1(0) ⊂ R2 as our domain Ω. Even though it is not meshable, the

adaptive algorithm resolves the boundary quite well. Thus, at least in this example, the

adaptive algorithm even performs well in a setting where there is an additional error coming

from the resolution of the curved boundary.

As in the first example and Chapter 4 we treat the model problem with an additional function

g as a source term. The following true solution solving the optimality system (6.0.1) was given

ȳ(x) = sin(π |x|2)

p̄(x) = 35 ln(|x|)

yc(x) = ȳ(x)− |x|2

ū(x) = Π(p̄(x))

yd(x) = ȳ(x)

The Lagrange multiplier for the continuous unregularised problem is given by 35δ(0), the

Dirac source at x = 0, and p̄(x) is the (scaled) fundamental solution in 2d solving

−∆p̄ = 35δ(0) in B1(0)

p̄ = 0 on ∂B1(0).

This setting represents the minimum regularity, worst-case setting, because, in this case, p̄ is

not an H1(Ω)-function. In choosing a = −1e12 and b = 1e12, we ensured that the singularity

is not completely nullified by the cut off with Π and is making itself felt in the optimal control
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ū, too.

As parameters for the adaptive algorithm, recall Algorithm 5.4.1, we chose N = 3, p′ = 18,

TOL = 10−2 and a fixed regularisation parameter ε = 0.018. The parameters for the marking

algorithm, Algorithm 5.3.1, were taken to be ηr = 0.7 and ηs = 0.8.

As the following chart shows, the discrete solutions generated by the adaptive algorithm of

Chapter 5 are a superior approximation to the true solution compared to uniform refinement.

Again DOFs= dim(Uk) and again, we employed the modified estimator (6.1.1):

Figure 6.2: The Dirac Example

Again, we employed a logarithmic scale for both axes.

We discern that the adaptive refinement strategy deploys degrees of freedom smartly, since

for a given number of DOFs its output is a more accurate solution. In addition, the behaviour

of the true error is captured well by the estimator for both the adaptive and uniform refine-

ment case. However, the optimal order of (dim(Uk))−1/2 - represented by the gold ’optimal

order’ curve, compare (6.1.2), is not reached. The reason for this is that if the regularisation

parameter ε is fixed, eventually the error due to regularisation in this low-regularity setting,

which is highly sensitive to changes in ε, dominates. This is highlighted by both the adaptive

and uniform error curves flattening out for higher degrees of freedom: The discrete solutions

converge to a continuous (smooth) solution ūε with

‖ū− ūε‖L2(Ω) ≈ ε
ρ, for some ρ > 0.

That is of course not a satisfiying state of affairs. Therefore, in the next section, we will present
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an heuristic steering approach for the regularisation parameter ε to achieve the ’optimal order’

which - as we will see - provides a remedy to this conundrum.

6.3 An Heuristic Steering Approach for Discretisation and

Regularisation

In this section, we will give an example of an heuristic approach to steer both regularisation

and discretisation simultaneously. Let us first dwell a bit on the motivation:

Suppose that the discrete unregularised problem (DMPk) admits the existence of a Lagrange

multiplier θ̄k ∈ C−Vk for the state constraint in the vein of Definition 2.2.5 which is furthermore

uniformly bounded in L1(Ω). The following optimality condition for the unique solution Ūk

holds:

(P̄k + νŪk, U − Ūk)− (θ̄k, SkU − SkŪk) ≥ 0 ∀U ∈ Uk.

Then, testing the optimality condition above with Ū εk and the optimality condition in the

KKT system for the regularised discrete problem (4.1.25) with Ūk, we deduce - after a short

computation and also harnessing the improved bounds for the discrete multiplier θ̄k which

are merely an application of the results of Corollary 4.3.3 to the unregularised setting:

ν
∥∥Ūk − Ū εk∥∥2

+
1

ε

∥∥V̄ ε
k

∥∥2
. ε1−3/p′ |V̄ ε

k |H1(Ω).

This gives rise to the interpretation of |V̄ ε
k |H1(Ω) as an ’indicator’ for the overall error which

is solely generated by regularisation. Needless to say, this is not a solid mathematical basis for

a simultaneous steering of regularisation and discretisation, but as Figure 6.3 below demon-

strates, it is not without its merits.

Based on this indicator, we then performed the following ε-adaption given a tolerance TOL

for the adaptive algorithm and an initial regularisation parameter ε:

Algorithm 6.3.1 ε-adaption

1: Choose parameters 0 < ρ < 1, 0 < γ < 1 and Cs > 0 as well as εmin > 0.

2: Compute |V ε
k |H1(Ω)

3: if ερ−3/p′ |V ε
k |H1(Ω) > CsTOL

2 then set

ε = max(γ1ε, εmin)

4: else set

Do not change ε

5: end if

We realise that strictly speaking, we have not utilised ε1−3/p′ |V̄ ε
k |H1(Ω) as an indicator but

ερ−3/p′ |V̄ ε
k |H1(Ω) with ρ < 1. This modification has its roots in the observation that a uniform
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(independent of ε and k) bound on the term ερ−3/p′ |V̄ ε
k |H1(Ω) with ρ < 1 coupled with a

uniform L1(Ω)-bound for the Lagrange multiplier θ̄εk for the regularised problem (DMPk)

ensures that the central convergence condition (3.3.4) is fulfilled. We will shortly sketch why:

A uniform bound for
∥∥θ̄εk∥∥L1(Ω)

immediately leads to the bound - compare the arguments of

Lemma 4.1.7 -

∥∥θ̄εk∥∥Lp(Ω)
. ε−3/p′ , 1 ≤ p ≤ 2,

1

p
+

1

p′
= 1.

This in turn allows us to estimate:

|a′k(ε)| =
3

2ε2

∥∥V̄ ε
k

∥∥2
=

3

2ε2
|(V̄ ε

k , V̄
ε
k )| . |(θ̄εk, V̄ ε

k )| . ε−3/p′
∣∣εV̄ ε

k

∣∣
H1(Ω)

. Csε
−ρTOL2.

Now, because 0 < ρ < 1, we have an integrable function on (0, 1) bounding |a′k(ε)| which

means that the convergence condition (3.3.4), where equi-integrability of the sequence a′k was

demanded, is met.

We employed the following paramters: TOL = 10−2, N = 3, p′ = 18 and for the marking

strategy ηr = 0.65 and ηs = 0.75. The parameters of Algorithm 6.3.1 were chosen as ρ = 0.91,

Cs = 6.5, γ1 = 0.85 and εmin = 0.004. and obtained the following results:

Figure 6.3: Simultaneous Steering

As before, a logarithmic scale for both axes was used.

We realise that employing the steering strategy for the regularisation parameter ε proposed

by Algorithm 6.3.1 combined with adaptive refinement according to our estimator, we recover
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the optimal order of (dim(Uk))−1/2 that can be expected for a piecewise constant ansatz, in

fact there is even a slight superconvergence effect.

For a uniform strategy such an approach is at least not immediately applicable, because there

are fewer iterates and the mesh is refined globally such that the degrees of freedom double in

each step. Due to the high ε-sensitivity of this Dirac example this would mean that ε would

have to be decreased quite swiftly otherwise we are (almost) in the same situation as in the

fixed regularisation parameter setting, where eventually the regularisation error dominates.

In particular γ1 in Algorithm 6.3.1 would have to be chosen much closer to 0. This, however,

leads to numerical difficulties because the driving down the regularisation parameter to 0

will lead to a problem for which the PDAS algorithm fails to converge. Thus, Algorithm

6.3.1 lends itself better to a situation where the grid is refined adaptively - which is why we

implemented it merely in an adaptive setting.
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Conclusions & Outlook

To assess the results of this thesis, it is perhaps best to recall its title: ’AFEM for State-

Constrained Optimal Control - Convergence Analysis and A Posteriori Error Estimation’.

Reflecting upon the theorems and proofs of Chapter 3 and Chapter 4, we realise that what

we set out to do, namely to provide a rigorous convergence analysis without imposing any

regularity conditions on the mesh and/or the solution and to derive a reliable a posteriori

estimator, we have achieved.

Needless to say, there are directions for possible expansions of the results presented in this

thesis. First and foremost, perhaps, one would like to measure the efficiency of the a posteriori

error estimator. After all, efficiency is a property highly coveted in a posteriori error analysis

and unsurprisingly so, since this is the notion that perhaps best captures the inherent advan-

tage of adaptive methods compared to the strategy of uniform refinement. In the context of

a posteriori error estimation for (linear elliptic) PDE, efficiency is defined by the existence of

a a local lower bound up to oscillation in the following vein, compare [65], Theorem 6.2:

ET .
∥∥ū− Ūk∥∥L2(ω(T ))

+ osc(Ūk)

Here, ω(T ) denotes a patch of elements

ωT :=
{
T ′ ∈ Tk : T̄ ∩ T̄ ′ 6= ∅

}
,

ET is the local error indicator, ū − Ūk the error between the true and discrete solution and

osc denotes a data oscillation term that converges faster than the true error. However, such a

notion is unsuited to the unusual structure of the a posteriori error estimator derived in this

setting, after all the estimator derived in Chapter 4 has one term, E2
r squared, and the other,

Es entering without. Therefore, another notion would have to be developed.

Also, it would of course be desirable to possess an efficient strategy to steer discretisation and

regularisation simultaneously. Unfortunately, this is a very intricate question and the subject

of a posteriori error estimates for the regularisation would have to be addressed in this setting

- a subject whose complexity must not be underestimated.

Besides, it is also of interest to find out if there are settings in which the necessary and sufficient

condition of convergence in Chapter 3 is not fulfilled. In the setting of the control of a Poisson
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equation with a constant state constraint yc ≡ β < 0, a sufficient condition for convergence

would be the existence of a sequence of functions zεk ∈ H1(Ω) with ∇zεk ∈ H(div,Ω) such that

|Ȳ ε
k − Ikyc − zεk|H1(Ω) . ε

γ , ‖∆zεk‖ . ε−ρ, γ, ρ > 0 γ >
3

p′
, ρ < 3(

1

2
− 1

p′
),

where p′ is chosen in such a way that H1(Ω) ↪→ Lp′(Ω).

At the end, though, let us with these final thoughts stress that it is fair to say that in this

thesis, basic techniques were developed with which state-constrained optimal control problems

can be analysed without the machinery of maximum norm error estimates, be it on a discrete

or on the continuous level. That is a genuine novelty in this particular branch of mathematics

- and in the authors’ humble view a novelty with some merit - , hopefully, perhaps, one which

in the future will come to serve at least as a little brick in a large, striking and impressive

edifice of future results on adaptive methods in the context of state-constrained optimal

control problems.

S. Steinig AFEM for State-Constrained Optimal Control



Bibliography

[1] R.A. Adams and J.J.F. Fournier. Sobolev spaces. Academic Press, San Diego, 2007.

[2] M. Ainsworth and J.T. Oden. A Posteriori Error Estimation in Finite Element Analysis.

Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley,

2000.

[3] H.W. Alt. Lineare Funktionalanalysis. Springer-Verlag, Berlin, 2006.

[4] G. Bachmann and L. Narici. Functional Analysis. Academic Press, 3rd edition, 1968.
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